xref: /titanic_50/usr/src/uts/common/io/bge/bge_chip2.c (revision 7c64d3750da7fda7e450b8f9b0b963905ded6379)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
32 
33 /*
34  * Future features ... ?
35  */
36 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
37 #define	BGE_IND_IO32	1	/* indirect access code		*/
38 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
39 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
40 
41 /*
42  * BGE MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms but it is disabled
45  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
46  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
47  */
48 #if defined(__sparc)
49 boolean_t bge_enable_msi = B_TRUE;
50 #else
51 boolean_t bge_enable_msi = B_FALSE;
52 #endif
53 
54 /*
55  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
56  */
57 boolean_t bge_relaxed_ordering = B_TRUE;
58 
59 /*
60  * Property names
61  */
62 static char knownids_propname[] = "bge-known-subsystems";
63 
64 /*
65  * Patchable globals:
66  *
67  *	bge_autorecover
68  *		Enables/disables automatic recovery after fault detection
69  *
70  *	bge_mlcr_default
71  *		Value to program into the MLCR; controls the chip's GPIO pins
72  *
73  *	bge_dma_{rd,wr}prio
74  *		Relative priorities of DMA reads & DMA writes respectively.
75  *		These may each be patched to any value 0-3.  Equal values
76  *		will give "fair" (round-robin) arbitration for PCI access.
77  *		Unequal values will give one or the other function priority.
78  *
79  *	bge_dma_rwctrl
80  *		Value to put in the Read/Write DMA control register.  See
81  *	        the Broadcom PRM for things you can fiddle with in this
82  *		register ...
83  *
84  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
85  *		Send/receive interrupt coalescing parameters.  Counts are
86  *		#s of descriptors, ticks are in microseconds.  *norm* values
87  *		apply between status updates/interrupts; the *intr* values
88  *		refer to the 'during-interrupt' versions - see the PRM.
89  *
90  *		NOTE: these values have been determined by measurement. They
91  *		differ significantly from the values recommended in the PRM.
92  */
93 static uint32_t bge_autorecover = 1;
94 static uint32_t bge_mlcr_default = MLCR_DEFAULT;
95 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
96 
97 static uint32_t bge_dma_rdprio = 1;
98 static uint32_t bge_dma_wrprio = 0;
99 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
100 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
101 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
102 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
103 
104 uint32_t bge_rx_ticks_norm = 128;
105 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
106 uint32_t bge_rx_count_norm = 8;
107 uint32_t bge_tx_count_norm = 128;
108 
109 static uint32_t bge_rx_ticks_intr = 128;
110 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
111 static uint32_t bge_rx_count_intr = 2;
112 static uint32_t bge_tx_count_intr = 0;
113 
114 /*
115  * Memory pool configuration parameters.
116  *
117  * These are generally specific to each member of the chip family, since
118  * each one may have a different memory size/configuration.
119  *
120  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
121  * the driver from programming the various registers; instead they are left
122  * at their hardware defaults.  This is the preferred option for later chips
123  * (5705+), whereas the older chips *required* these registers to be set,
124  * since the h/w default was 0 ;-(
125  */
126 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
127 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
128 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
129 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
130 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
131 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
132 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
133 static uint32_t bge_mbuf_pool_len_5721	= 0;
134 
135 /*
136  * Various high and low water marks, thresholds, etc ...
137  *
138  * Note: these are taken from revision 7 of the PRM, and some are different
139  * from both the values in earlier PRMs *and* those determined experimentally
140  * and used in earlier versions of this driver ...
141  */
142 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
143 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
144 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
145 
146 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
147 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
148 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
149 
150 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
151 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
152 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
153 
154 static uint32_t	bge_watchdog_count	= 1 << 16;
155 static uint16_t bge_dma_miss_limit	= 20;
156 
157 static uint32_t bge_stop_start_on_sync	= 0;
158 
159 boolean_t bge_jumbo_enable		= B_TRUE;
160 static uint32_t bge_default_jumbo_size	= BGE_JUMBO_BUFF_SIZE;
161 
162 /*
163  * bge_intr_max_loop controls the maximum loop number within bge_intr.
164  * When loading NIC with heavy network traffic, it is useful.
165  * Increasing this value could have positive effect to throughput,
166  * but it might also increase ticks of a bge ISR stick on CPU, which might
167  * lead to bad UI interactive experience. So tune this with caution.
168  */
169 static int bge_intr_max_loop = 1;
170 
171 /*
172  * ========== Low-level chip & ring buffer manipulation ==========
173  */
174 
175 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
176 
177 
178 /*
179  * Config space read-modify-write routines
180  */
181 
182 #if	BGE_CFG_IO8
183 
184 /*
185  * 8- and 16-bit set/clr operations are not used; all the config registers
186  * that we need to do bit-twiddling on are 32 bits wide.  I'll leave the
187  * code here, though, in case we ever find that we do want it after all ...
188  */
189 
190 static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
191 #pragma	inline(bge_cfg_set8)
192 
193 static void
194 bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
195 {
196 	uint8_t regval;
197 
198 	BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)",
199 	    (void *)bgep, regno, bits));
200 
201 	regval = pci_config_get8(bgep->cfg_handle, regno);
202 
203 	BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
204 	    (void *)bgep, regno, bits, regval, regval | bits));
205 
206 	regval |= bits;
207 	pci_config_put8(bgep->cfg_handle, regno, regval);
208 }
209 
210 static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
211 #pragma	inline(bge_cfg_clr8)
212 
213 static void
214 bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
215 {
216 	uint8_t regval;
217 
218 	BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)",
219 	    (void *)bgep, regno, bits));
220 
221 	regval = pci_config_get8(bgep->cfg_handle, regno);
222 
223 	BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
224 	    (void *)bgep, regno, bits, regval, regval & ~bits));
225 
226 	regval &= ~bits;
227 	pci_config_put8(bgep->cfg_handle, regno, regval);
228 }
229 
230 static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
231 #pragma	inline(bge_cfg_set16)
232 
233 static void
234 bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
235 {
236 	uint16_t regval;
237 
238 	BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)",
239 	    (void *)bgep, regno, bits));
240 
241 	regval = pci_config_get16(bgep->cfg_handle, regno);
242 
243 	BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
244 	    (void *)bgep, regno, bits, regval, regval | bits));
245 
246 	regval |= bits;
247 	pci_config_put16(bgep->cfg_handle, regno, regval);
248 }
249 
250 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
251 #pragma	inline(bge_cfg_clr16)
252 
253 static void
254 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
255 {
256 	uint16_t regval;
257 
258 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
259 	    (void *)bgep, regno, bits));
260 
261 	regval = pci_config_get16(bgep->cfg_handle, regno);
262 
263 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
264 	    (void *)bgep, regno, bits, regval, regval & ~bits));
265 
266 	regval &= ~bits;
267 	pci_config_put16(bgep->cfg_handle, regno, regval);
268 }
269 
270 #endif	/* BGE_CFG_IO8 */
271 
272 static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
273 #pragma	inline(bge_cfg_set32)
274 
275 static void
276 bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
277 {
278 	uint32_t regval;
279 
280 	BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)",
281 	    (void *)bgep, regno, bits));
282 
283 	regval = pci_config_get32(bgep->cfg_handle, regno);
284 
285 	BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
286 	    (void *)bgep, regno, bits, regval, regval | bits));
287 
288 	regval |= bits;
289 	pci_config_put32(bgep->cfg_handle, regno, regval);
290 }
291 
292 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
293 #pragma	inline(bge_cfg_clr32)
294 
295 static void
296 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
297 {
298 	uint32_t regval;
299 
300 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
301 	    (void *)bgep, regno, bits));
302 
303 	regval = pci_config_get32(bgep->cfg_handle, regno);
304 
305 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
306 	    (void *)bgep, regno, bits, regval, regval & ~bits));
307 
308 	regval &= ~bits;
309 	pci_config_put32(bgep->cfg_handle, regno, regval);
310 }
311 
312 #if	BGE_IND_IO32
313 
314 /*
315  * Indirect access to registers & RISC scratchpads, using config space
316  * accesses only.
317  *
318  * This isn't currently used, but someday we might want to use it for
319  * restoring the Subsystem Device/Vendor registers (which aren't directly
320  * writable in Config Space), or for downloading firmware into the RISCs
321  *
322  * In any case there are endian issues to be resolved before this code is
323  * enabled; the bizarre way that bytes get twisted by this chip AND by
324  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
325  * it's been thoroughly tested for all access sizes on all supported
326  * architectures (SPARC *and* x86!).
327  */
328 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
329 #pragma	inline(bge_ind_get32)
330 
331 uint32_t
332 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
333 {
334 	uint32_t val;
335 
336 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
337 
338 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
339 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
340 
341 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
342 	    (void *)bgep, regno, val));
343 
344 	val = LE_32(val);
345 
346 	return (val);
347 }
348 
349 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
350 #pragma	inline(bge_ind_put32)
351 
352 void
353 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
354 {
355 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
356 	    (void *)bgep, regno, val));
357 
358 	val = LE_32(val);
359 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
360 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
361 }
362 
363 #endif	/* BGE_IND_IO32 */
364 
365 #if	BGE_DEBUGGING
366 
367 static void bge_pci_check(bge_t *bgep);
368 #pragma	no_inline(bge_pci_check)
369 
370 static void
371 bge_pci_check(bge_t *bgep)
372 {
373 	uint16_t pcistatus;
374 
375 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
376 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
377 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
378 		    (void *)bgep, pcistatus));
379 }
380 
381 #endif	/* BGE_DEBUGGING */
382 
383 /*
384  * Perform first-stage chip (re-)initialisation, using only config-space
385  * accesses:
386  *
387  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
388  *   returning the data in the structure pointed to by <idp>.
389  * + Configure the target-mode endianness (swap) options.
390  * + Disable interrupts and enable Memory Space accesses.
391  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
392  *
393  * This sequence is adapted from Broadcom document 570X-PG102-R,
394  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
395  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
396  *
397  * This function MUST be called before any non-config-space accesses
398  * are made; on this first call <enable_dma> is B_FALSE, and it
399  * effectively performs steps 3-1(!) of the initialisation sequence
400  * (the rest are not required but should be harmless).
401  *
402  * It MUST also be called after a chip reset, as this disables
403  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
404  * it is effectively performing steps 6-8.
405  */
406 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
407 #pragma	no_inline(bge_chip_cfg_init)
408 
409 void
410 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
411 {
412 	ddi_acc_handle_t handle;
413 	uint16_t command;
414 	uint32_t mhcr;
415 	uint16_t value16;
416 	int i;
417 
418 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
419 	    (void *)bgep, (void *)cidp, enable_dma));
420 
421 	/*
422 	 * Step 3: save PCI cache line size and subsystem vendor ID
423 	 *
424 	 * Read all the config-space registers that characterise the
425 	 * chip, specifically vendor/device/revision/subsystem vendor
426 	 * and subsystem device id.  We expect (but don't check) that
427 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
428 	 *
429 	 * Also save all bus-transaction related registers (cache-line
430 	 * size, bus-grant/latency parameters, etc).  Some of these are
431 	 * cleared by reset, so we'll have to restore them later.  This
432 	 * comes from the Broadcom document 570X-PG102-R ...
433 	 *
434 	 * Note: Broadcom document 570X-PG102-R seems to be in error
435 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
436 	 * Subsystem (Device) ID registers, which are the opposite way
437 	 * round according to the PCI standard.  For good measure, we
438 	 * save/restore both anyway.
439 	 */
440 	handle = bgep->cfg_handle;
441 
442 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
443 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
444 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
445 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
446 
447 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
448 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
449 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
450 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
451 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
452 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
453 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
454 
455 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
456 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
457 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
458 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
459 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
460 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
461 	    cidp->vendor, cidp->device, cidp->revision));
462 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
463 	    cidp->subven, cidp->subdev, cidp->asic_rev));
464 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
465 	    cidp->clsize, cidp->latency, cidp->command));
466 
467 	/*
468 	 * Step 2 (also step 6): disable and clear interrupts.
469 	 * Steps 11-13: configure PIO endianness options, and enable
470 	 * indirect register access.  We'll also select any other
471 	 * options controlled by the MHCR (e.g. tagged status, mask
472 	 * interrupt mode) at this stage ...
473 	 *
474 	 * Note: internally, the chip is 64-bit and BIG-endian, but
475 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
476 	 * it normally swaps bytes around at the PCI interface.
477 	 * However, the PCI host bridge on SPARC systems normally
478 	 * swaps the byte lanes around too, since SPARCs are also
479 	 * BIG-endian.  So it turns out that on SPARC, the right
480 	 * option is to tell the chip to swap (and the host bridge
481 	 * will swap back again), whereas on x86 we ask the chip
482 	 * NOT to swap, so the natural little-endianness of the
483 	 * PCI bus is assumed.  Then the only thing that doesn't
484 	 * automatically work right is access to an 8-byte register
485 	 * by a little-endian host; but we don't want to set the
486 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
487 	 * accesses don't go where expected ;-(  So we live with
488 	 * that, and perform word-swaps in software in the few cases
489 	 * where a chip register is defined as an 8-byte value --
490 	 * see the code below for details ...
491 	 *
492 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
493 	 * very clear in the register description in the PRM, but
494 	 * Broadcom document 570X-PG104-R page 248 explains a little
495 	 * more (under "Broadcom Mask Mode").  The bit changes the way
496 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
497 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
498 	 * way as the 5700 did, which isn't very convenient.  Setting
499 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
500 	 * bit do just what its name says -- MASK the PCI #INTA output
501 	 * (i.e. deassert the signal at the pin) leaving all internal
502 	 * state unchanged.  This is much more convenient for our
503 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
504 	 *
505 	 * Note: the inconvenient semantics of the interrupt mailbox
506 	 * (nonzero disables and acknowledges/clears the interrupt,
507 	 * zero enables AND CLEARS it) would make race conditions
508 	 * likely in the interrupt handler:
509 	 *
510 	 * (1)	acknowledge & disable interrupts
511 	 * (2)	while (more to do)
512 	 * 		process packets
513 	 * (3)	enable interrupts -- also clears pending
514 	 *
515 	 * If the chip received more packets and internally generated
516 	 * an interrupt between the check at (2) and the mbox write
517 	 * at (3), this interrupt would be lost :-(
518 	 *
519 	 * The best way to avoid this is to use TAGGED STATUS mode,
520 	 * where the chip includes a unique tag in each status block
521 	 * update, and the host, when re-enabling interrupts, passes
522 	 * the last tag it saw back to the chip; then the chip can
523 	 * see whether the host is truly up to date, and regenerate
524 	 * its interrupt if not.
525 	 */
526 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
527 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
528 	    MHCR_MASK_INTERRUPT_MODE |
529 	    MHCR_CLEAR_INTERRUPT_INTA;
530 
531 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
532 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
533 
534 #ifdef	_BIG_ENDIAN
535 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
536 #endif	/* _BIG_ENDIAN */
537 
538 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
539 
540 #ifdef BGE_IPMI_ASF
541 	bgep->asf_wordswapped = B_FALSE;
542 #endif
543 	/*
544 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
545 	 *			 Disable Memory Write/Invalidate
546 	 *			 Enable or disable Bus Mastering
547 	 *
548 	 * Note that all other bits are taken from the original value saved
549 	 * the first time through here, rather than from the current register
550 	 * value, 'cos that will have been cleared by a soft RESET since.
551 	 * In this way we preserve the OBP/nexus-parent's preferred settings
552 	 * of the parity-error and system-error enable bits across multiple
553 	 * chip RESETs.
554 	 */
555 	command = bgep->chipid.command | PCI_COMM_MAE;
556 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
557 	if (enable_dma)
558 		command |= PCI_COMM_ME;
559 	/*
560 	 * on BCM5714 revision A0, false parity error gets generated
561 	 * due to a logic bug. Provide a workaround by disabling parity
562 	 * error.
563 	 */
564 	if (((cidp->device == DEVICE_ID_5714C) ||
565 	    (cidp->device == DEVICE_ID_5714S)) &&
566 	    (cidp->revision == REVISION_ID_5714_A0)) {
567 		command &= ~PCI_COMM_PARITY_DETECT;
568 	}
569 	pci_config_put16(handle, PCI_CONF_COMM, command);
570 
571 	/*
572 	 * On some PCI-E device, there were instances when
573 	 * the device was still link training.
574 	 */
575 	if (bgep->chipid.pci_type == BGE_PCI_E) {
576 		i = 0;
577 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
578 		while ((value16 != command) && (i < 100)) {
579 			drv_usecwait(200);
580 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
581 			++i;
582 		}
583 	}
584 
585 	/*
586 	 * Clear any remaining error status bits
587 	 */
588 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
589 
590 	/*
591 	 * Do following if and only if the device is NOT BCM5714C OR
592 	 * BCM5715C
593 	 */
594 	if (!((cidp->device == DEVICE_ID_5714C) ||
595 	    (cidp->device == DEVICE_ID_5715C))) {
596 		/*
597 		 * Make sure these indirect-access registers are sane
598 		 * rather than random after power-up or reset
599 		 */
600 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
601 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
602 	}
603 	/*
604 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
605 	 */
606 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
607 
608 	if (cidp->pci_type == BGE_PCI_E)
609 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
610 		    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
611 }
612 
613 #ifdef __amd64
614 /*
615  * Distinguish CPU types
616  *
617  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
618  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
619  * for PCI-Express based network interface card. This is the work-around
620  * for those nics.
621  */
622 static boolean_t bge_get_em64t_type(void);
623 #pragma	inline(bge_get_em64t_type)
624 
625 static boolean_t
626 bge_get_em64t_type(void)
627 {
628 
629 	return (x86_vendor == X86_VENDOR_Intel);
630 }
631 #endif
632 
633 /*
634  * Operating register get/set access routines
635  */
636 
637 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
638 #pragma	inline(bge_reg_get32)
639 
640 uint32_t
641 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
642 {
643 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
644 	    (void *)bgep, regno));
645 
646 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
647 }
648 
649 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
650 #pragma	inline(bge_reg_put32)
651 
652 void
653 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
654 {
655 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
656 	    (void *)bgep, regno, data));
657 
658 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
659 	BGE_PCICHK(bgep);
660 }
661 
662 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
663 #pragma	inline(bge_reg_set32)
664 
665 void
666 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
667 {
668 	uint32_t regval;
669 
670 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
671 	    (void *)bgep, regno, bits));
672 
673 	regval = bge_reg_get32(bgep, regno);
674 	regval |= bits;
675 	bge_reg_put32(bgep, regno, regval);
676 }
677 
678 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
679 #pragma	inline(bge_reg_clr32)
680 
681 void
682 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
683 {
684 	uint32_t regval;
685 
686 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
687 	    (void *)bgep, regno, bits));
688 
689 	regval = bge_reg_get32(bgep, regno);
690 	regval &= ~bits;
691 	bge_reg_put32(bgep, regno, regval);
692 }
693 
694 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
695 #pragma	inline(bge_reg_get64)
696 
697 static uint64_t
698 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
699 {
700 	uint64_t regval;
701 
702 #ifdef	__amd64
703 	if (bge_get_em64t_type()) {
704 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
705 		regval <<= 32;
706 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
707 	} else {
708 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
709 	}
710 #else
711 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
712 #endif
713 
714 #ifdef	_LITTLE_ENDIAN
715 	regval = (regval >> 32) | (regval << 32);
716 #endif	/* _LITTLE_ENDIAN */
717 
718 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
719 	    (void *)bgep, regno, regval));
720 
721 	return (regval);
722 }
723 
724 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
725 #pragma	inline(bge_reg_put64)
726 
727 static void
728 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
729 {
730 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
731 	    (void *)bgep, regno, data));
732 
733 #ifdef	_LITTLE_ENDIAN
734 	data = ((data >> 32) | (data << 32));
735 #endif	/* _LITTLE_ENDIAN */
736 
737 #ifdef	__amd64
738 	if (bge_get_em64t_type()) {
739 		ddi_put32(bgep->io_handle,
740 		    PIO_ADDR(bgep, regno), (uint32_t)data);
741 		BGE_PCICHK(bgep);
742 		ddi_put32(bgep->io_handle,
743 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
744 
745 	} else {
746 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
747 	}
748 #else
749 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
750 #endif
751 
752 	BGE_PCICHK(bgep);
753 }
754 
755 /*
756  * The DDI doesn't provide get/put functions for 128 bit data
757  * so we put RCBs out as two 64-bit chunks instead.
758  */
759 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
760 #pragma	inline(bge_reg_putrcb)
761 
762 static void
763 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
764 {
765 	uint64_t *p;
766 
767 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
768 	    (void *)bgep, addr, rcbp->host_ring_addr,
769 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
770 
771 	ASSERT((addr % sizeof (*rcbp)) == 0);
772 
773 	p = (void *)rcbp;
774 	bge_reg_put64(bgep, addr, *p++);
775 	bge_reg_put64(bgep, addr+8, *p);
776 }
777 
778 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
779 #pragma	inline(bge_mbx_put)
780 
781 void
782 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
783 {
784 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
785 	    (void *)bgep, regno, data));
786 
787 	/*
788 	 * Mailbox registers are nominally 64 bits on the 5701, but
789 	 * the MSW isn't used.  On the 5703, they're only 32 bits
790 	 * anyway.  So here we just write the lower(!) 32 bits -
791 	 * remembering that the chip is big-endian, even though the
792 	 * PCI bus is little-endian ...
793 	 */
794 #ifdef	_BIG_ENDIAN
795 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
796 #else
797 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
798 #endif	/* _BIG_ENDIAN */
799 	BGE_PCICHK(bgep);
800 }
801 
802 #if	BGE_DEBUGGING
803 
804 void bge_led_mark(bge_t *bgep);
805 #pragma	no_inline(bge_led_mark)
806 
807 void
808 bge_led_mark(bge_t *bgep)
809 {
810 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
811 	    LED_CONTROL_1000MBPS_LED |
812 	    LED_CONTROL_100MBPS_LED |
813 	    LED_CONTROL_10MBPS_LED;
814 
815 	/*
816 	 * Blink all three LINK LEDs on simultaneously, then all off,
817 	 * then restore to automatic hardware control.  This is used
818 	 * in laboratory testing to trigger a logic analyser or scope.
819 	 */
820 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
821 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
822 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
823 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
824 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
825 }
826 
827 #endif	/* BGE_DEBUGGING */
828 
829 /*
830  * NIC on-chip memory access routines
831  *
832  * Only 32K of NIC memory is visible at a time, controlled by the
833  * Memory Window Base Address Register (in PCI config space).  Once
834  * this is set, the 32K region of NIC-local memory that it refers
835  * to can be directly addressed in the upper 32K of the 64K of PCI
836  * memory space used for the device.
837  */
838 
839 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
840 #pragma	inline(bge_nic_setwin)
841 
842 static void
843 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
844 {
845 	chip_id_t *cidp;
846 
847 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
848 	    (void *)bgep, base));
849 
850 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
851 
852 	/*
853 	 * Don't do repeated zero data writes,
854 	 * if the device is BCM5714C/15C.
855 	 */
856 	cidp = &bgep->chipid;
857 	if ((cidp->device == DEVICE_ID_5714C) ||
858 	    (cidp->device == DEVICE_ID_5715C)) {
859 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
860 			return;
861 		/* Adjust lastWriteZeroData */
862 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
863 		    B_TRUE : B_FALSE);
864 	}
865 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
866 }
867 
868 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
869 #pragma	inline(bge_nic_get32)
870 
871 static uint32_t
872 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
873 {
874 	uint32_t data;
875 
876 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
877 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
878 		/* workaround for word swap error */
879 		if (addr & 4)
880 			addr = addr - 4;
881 		else
882 			addr = addr + 4;
883 	}
884 #endif
885 
886 #ifdef __sparc
887 	data = bge_nic_read32(bgep, addr);
888 #else
889 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
890 	addr &= MWBAR_GRANULE_MASK;
891 	addr += NIC_MEM_WINDOW_OFFSET;
892 
893 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
894 #endif
895 
896 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
897 	    (void *)bgep, addr, data));
898 
899 	return (data);
900 }
901 
902 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
903 #pragma inline(bge_nic_put32)
904 
905 void
906 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
907 {
908 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
909 	    (void *)bgep, addr, data));
910 
911 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
912 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
913 		/* workaround for word swap error */
914 		if (addr & 4)
915 			addr = addr - 4;
916 		else
917 			addr = addr + 4;
918 	}
919 #endif
920 
921 #ifdef __sparc
922 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
923 	data = LE_32(data);
924 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
925 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
926 #else
927 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
928 	addr &= MWBAR_GRANULE_MASK;
929 	addr += NIC_MEM_WINDOW_OFFSET;
930 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
931 	BGE_PCICHK(bgep);
932 #endif
933 }
934 
935 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
936 #pragma	inline(bge_nic_get64)
937 
938 static uint64_t
939 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
940 {
941 	uint64_t data;
942 
943 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
944 	addr &= MWBAR_GRANULE_MASK;
945 	addr += NIC_MEM_WINDOW_OFFSET;
946 
947 #ifdef	__amd64
948 		if (bge_get_em64t_type()) {
949 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
950 			data <<= 32;
951 			data |= ddi_get32(bgep->io_handle,
952 			    PIO_ADDR(bgep, addr + 4));
953 		} else {
954 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
955 		}
956 #else
957 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
958 #endif
959 
960 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
961 	    (void *)bgep, addr, data));
962 
963 	return (data);
964 }
965 
966 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
967 #pragma	inline(bge_nic_put64)
968 
969 static void
970 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
971 {
972 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
973 	    (void *)bgep, addr, data));
974 
975 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
976 	addr &= MWBAR_GRANULE_MASK;
977 	addr += NIC_MEM_WINDOW_OFFSET;
978 
979 #ifdef	__amd64
980 	if (bge_get_em64t_type()) {
981 		ddi_put32(bgep->io_handle,
982 		    PIO_ADDR(bgep, addr), (uint32_t)data);
983 		BGE_PCICHK(bgep);
984 		ddi_put32(bgep->io_handle,
985 		    PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
986 	} else {
987 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
988 	}
989 #else
990 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
991 #endif
992 
993 	BGE_PCICHK(bgep);
994 }
995 
996 /*
997  * The DDI doesn't provide get/put functions for 128 bit data
998  * so we put RCBs out as two 64-bit chunks instead.
999  */
1000 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1001 #pragma	inline(bge_nic_putrcb)
1002 
1003 static void
1004 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1005 {
1006 	uint64_t *p;
1007 
1008 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1009 	    (void *)bgep, addr, rcbp->host_ring_addr,
1010 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1011 
1012 	ASSERT((addr % sizeof (*rcbp)) == 0);
1013 
1014 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1015 	addr &= MWBAR_GRANULE_MASK;
1016 	addr += NIC_MEM_WINDOW_OFFSET;
1017 
1018 	p = (void *)rcbp;
1019 #ifdef	__amd64
1020 	if (bge_get_em64t_type()) {
1021 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1022 		    (uint32_t)(*p));
1023 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1024 		    (uint32_t)(*p >> 32));
1025 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1026 		    (uint32_t)(*(p + 1)));
1027 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1028 		    (uint32_t)(*p >> 32));
1029 
1030 	} else {
1031 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1032 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1033 	}
1034 #else
1035 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1036 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1037 #endif
1038 
1039 	BGE_PCICHK(bgep);
1040 }
1041 
1042 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1043 #pragma	inline(bge_nic_zero)
1044 
1045 static void
1046 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1047 {
1048 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1049 	    (void *)bgep, addr, nbytes));
1050 
1051 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1052 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1053 
1054 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1055 	addr &= MWBAR_GRANULE_MASK;
1056 	addr += NIC_MEM_WINDOW_OFFSET;
1057 
1058 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1059 	    nbytes, 1, DDI_DATA_SZ08_ACC);
1060 	BGE_PCICHK(bgep);
1061 }
1062 
1063 /*
1064  * MII (PHY) register get/set access routines
1065  *
1066  * These use the chip's MII auto-access method, controlled by the
1067  * MII Communication register at 0x044c, so the CPU doesn't have
1068  * to fiddle with the individual bits.
1069  */
1070 
1071 #undef	BGE_DBG
1072 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1073 
1074 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1075 				uint16_t data, uint32_t cmd);
1076 #pragma	no_inline(bge_mii_access)
1077 
1078 static uint16_t
1079 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1080 {
1081 	uint32_t timeout;
1082 	uint32_t regval1;
1083 	uint32_t regval2;
1084 
1085 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1086 	    (void *)bgep, regno, data, cmd));
1087 
1088 	ASSERT(mutex_owned(bgep->genlock));
1089 
1090 	/*
1091 	 * Assemble the command ...
1092 	 */
1093 	cmd |= data << MI_COMMS_DATA_SHIFT;
1094 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1095 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1096 	cmd |= MI_COMMS_START;
1097 
1098 	/*
1099 	 * Wait for any command already in progress ...
1100 	 *
1101 	 * Note: this *shouldn't* ever find that there is a command
1102 	 * in progress, because we already hold the <genlock> mutex.
1103 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1104 	 * bit set here -- it seems that the chip can initiate MII
1105 	 * accesses internally, even with polling OFF.
1106 	 */
1107 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1108 	for (timeout = 100; ; ) {
1109 		if ((regval2 & MI_COMMS_START) == 0) {
1110 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1111 			break;
1112 		}
1113 		if (--timeout == 0)
1114 			break;
1115 		drv_usecwait(10);
1116 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1117 	}
1118 
1119 	if (timeout == 0)
1120 		return ((uint16_t)~0u);
1121 
1122 	if (timeout != 100)
1123 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1124 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1125 		    cmd, 10*(100-timeout), regval1, regval2));
1126 
1127 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1128 	for (timeout = 1000; ; ) {
1129 		if ((regval1 & MI_COMMS_START) == 0)
1130 			break;
1131 		if (--timeout == 0)
1132 			break;
1133 		drv_usecwait(10);
1134 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1135 	}
1136 
1137 	/*
1138 	 * Drop out early if the READ FAILED bit is set -- this chip
1139 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1140 	 */
1141 	if (regval2 & MI_COMMS_READ_FAILED)
1142 		return ((uint16_t)~0u);
1143 
1144 	if (timeout == 0)
1145 		return ((uint16_t)~0u);
1146 
1147 	/*
1148 	 * The PRM says to wait 5us after seeing the START bit clear
1149 	 * and then re-read the register to get the final value of the
1150 	 * data field, in order to avoid a race condition where the
1151 	 * START bit is clear but the data field isn't yet valid.
1152 	 *
1153 	 * Note: we don't actually seem to be encounter this race;
1154 	 * except when the START bit is seen set again (see below),
1155 	 * the data field doesn't change during this 5us interval.
1156 	 */
1157 	drv_usecwait(5);
1158 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1159 
1160 	/*
1161 	 * Unfortunately, when following the PRMs instructions above,
1162 	 * we have occasionally seen the START bit set again(!) in the
1163 	 * value read after the 5us delay. This seems to be due to the
1164 	 * chip autonomously starting another MII access internally.
1165 	 * In such cases, the command/data/etc fields relate to the
1166 	 * internal command, rather than the one that we thought had
1167 	 * just finished.  So in this case, we fall back to returning
1168 	 * the data from the original read that showed START clear.
1169 	 */
1170 	if (regval2 & MI_COMMS_START) {
1171 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1172 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1173 		    cmd, regval1, regval2));
1174 		regval2 = regval1;
1175 	}
1176 
1177 	if (regval2 & MI_COMMS_START)
1178 		return ((uint16_t)~0u);
1179 
1180 	if (regval2 & MI_COMMS_READ_FAILED)
1181 		return ((uint16_t)~0u);
1182 
1183 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1184 }
1185 
1186 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1187 #pragma	no_inline(bge_mii_get16)
1188 
1189 uint16_t
1190 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1191 {
1192 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1193 	    (void *)bgep, regno));
1194 
1195 	ASSERT(mutex_owned(bgep->genlock));
1196 
1197 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1198 }
1199 
1200 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1201 #pragma	no_inline(bge_mii_put16)
1202 
1203 void
1204 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1205 {
1206 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1207 	    (void *)bgep, regno, data));
1208 
1209 	ASSERT(mutex_owned(bgep->genlock));
1210 
1211 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1212 }
1213 
1214 #undef	BGE_DBG
1215 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1216 
1217 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1218 
1219 /*
1220  * Basic SEEPROM get/set access routine
1221  *
1222  * This uses the chip's SEEPROM auto-access method, controlled by the
1223  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1224  * doesn't have to fiddle with the individual bits.
1225  *
1226  * The caller should hold <genlock> and *also* have already acquired
1227  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1228  *
1229  * Return value:
1230  *	0 on success,
1231  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1232  *	EPROTO on other h/w or s/w errors.
1233  *
1234  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1235  * from a (successful) SEEPROM_ACCESS_READ.
1236  */
1237 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1238 				uint32_t *dp);
1239 #pragma	no_inline(bge_seeprom_access)
1240 
1241 static int
1242 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1243 {
1244 	uint32_t tries;
1245 	uint32_t regval;
1246 
1247 	ASSERT(mutex_owned(bgep->genlock));
1248 
1249 	/*
1250 	 * On the newer chips that support both SEEPROM & Flash, we need
1251 	 * to specifically enable SEEPROM access (Flash is the default).
1252 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1253 	 * and the NVM control registers don't exist ...
1254 	 */
1255 	switch (bgep->chipid.nvtype) {
1256 	case BGE_NVTYPE_NONE:
1257 	case BGE_NVTYPE_UNKNOWN:
1258 		_NOTE(NOTREACHED)
1259 	case BGE_NVTYPE_SEEPROM:
1260 		break;
1261 
1262 	case BGE_NVTYPE_LEGACY_SEEPROM:
1263 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1264 	case BGE_NVTYPE_BUFFERED_FLASH:
1265 	default:
1266 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1267 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1268 		break;
1269 	}
1270 
1271 	/*
1272 	 * Check there's no command in progress.
1273 	 *
1274 	 * Note: this *shouldn't* ever find that there is a command
1275 	 * in progress, because we already hold the <genlock> mutex.
1276 	 * Also, to ensure we don't have a conflict with the chip's
1277 	 * internal firmware or a process accessing the same (shared)
1278 	 * SEEPROM through the other port of a 5704, we've already
1279 	 * been through the "software arbitration" protocol.
1280 	 * So this is just a final consistency check: we shouldn't
1281 	 * see EITHER the START bit (command started but not complete)
1282 	 * OR the COMPLETE bit (command completed but not cleared).
1283 	 */
1284 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1285 	if (regval & SEEPROM_ACCESS_START)
1286 		return (EPROTO);
1287 	if (regval & SEEPROM_ACCESS_COMPLETE)
1288 		return (EPROTO);
1289 
1290 	/*
1291 	 * Assemble the command ...
1292 	 */
1293 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1294 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1295 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1296 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1297 	cmd |= SEEPROM_ACCESS_START;
1298 	cmd |= SEEPROM_ACCESS_COMPLETE;
1299 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1300 
1301 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1302 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1303 
1304 	/*
1305 	 * By observation, a successful access takes ~20us on a 5703/4,
1306 	 * but apparently much longer (up to 1000us) on the obsolescent
1307 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1308 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1309 	 * out interrupts for longer than necessary. So we'll allow up
1310 	 * to 1000us ...
1311 	 */
1312 	for (tries = 0; tries < 1000; ++tries) {
1313 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1314 		if (regval & SEEPROM_ACCESS_COMPLETE)
1315 			break;
1316 		drv_usecwait(1);
1317 	}
1318 
1319 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1320 		/*
1321 		 * All OK; read the SEEPROM data register, then write back
1322 		 * the value read from the address register in order to
1323 		 * clear the <complete> bit and leave the SEEPROM access
1324 		 * state machine idle, ready for the next access ...
1325 		 */
1326 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1327 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1328 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1329 		return (0);
1330 	}
1331 
1332 	/*
1333 	 * Hmm ... what happened here?
1334 	 *
1335 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1336 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1337 	 * and didn't respond to being addressed. Either way, it's left
1338 	 * the SEEPROM access state machine wedged. So we'll reset it
1339 	 * before we leave, so it's ready for next time ...
1340 	 */
1341 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1342 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1343 	return (ENODATA);
1344 }
1345 
1346 /*
1347  * Basic Flash get/set access routine
1348  *
1349  * These use the chip's Flash auto-access method, controlled by the
1350  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1351  * fiddle with the individual bits.
1352  *
1353  * The caller should hold <genlock> and *also* have already acquired
1354  * the right to access the Flash, via bge_nvmem_acquire() above.
1355  *
1356  * Return value:
1357  *	0 on success,
1358  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1359  *	ENODEV if the NVmem device is missing or otherwise unusable
1360  *
1361  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1362  * from a (successful) NVM_FLASH_CMD_RD.
1363  */
1364 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1365 				uint32_t *dp);
1366 #pragma	no_inline(bge_flash_access)
1367 
1368 static int
1369 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1370 {
1371 	uint32_t tries;
1372 	uint32_t regval;
1373 
1374 	ASSERT(mutex_owned(bgep->genlock));
1375 
1376 	/*
1377 	 * On the newer chips that support both SEEPROM & Flash, we need
1378 	 * to specifically disable SEEPROM access while accessing Flash.
1379 	 * The older chips don't support Flash, and the NVM registers don't
1380 	 * exist, so we shouldn't be here at all!
1381 	 */
1382 	switch (bgep->chipid.nvtype) {
1383 	case BGE_NVTYPE_NONE:
1384 	case BGE_NVTYPE_UNKNOWN:
1385 		_NOTE(NOTREACHED)
1386 	case BGE_NVTYPE_SEEPROM:
1387 		return (ENODEV);
1388 
1389 	case BGE_NVTYPE_LEGACY_SEEPROM:
1390 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1391 	case BGE_NVTYPE_BUFFERED_FLASH:
1392 	default:
1393 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1394 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1395 		break;
1396 	}
1397 
1398 	/*
1399 	 * Assemble the command ...
1400 	 */
1401 	addr &= NVM_FLASH_ADDR_MASK;
1402 	cmd |= NVM_FLASH_CMD_DOIT;
1403 	cmd |= NVM_FLASH_CMD_FIRST;
1404 	cmd |= NVM_FLASH_CMD_LAST;
1405 	cmd |= NVM_FLASH_CMD_DONE;
1406 
1407 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1408 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1409 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1410 
1411 	/*
1412 	 * Allow up to 1000ms ...
1413 	 */
1414 	for (tries = 0; tries < 1000; ++tries) {
1415 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1416 		if (regval & NVM_FLASH_CMD_DONE)
1417 			break;
1418 		drv_usecwait(1);
1419 	}
1420 
1421 	if (regval & NVM_FLASH_CMD_DONE) {
1422 		/*
1423 		 * All OK; read the data from the Flash read register
1424 		 */
1425 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1426 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1427 		return (0);
1428 	}
1429 
1430 	/*
1431 	 * Hmm ... what happened here?
1432 	 *
1433 	 * Most likely, the user addressed a non-existent Flash. Or
1434 	 * maybe the Flash was busy internally (e.g. processing a write)
1435 	 * and didn't respond to being addressed. Either way, there's
1436 	 * nothing we can here ...
1437 	 */
1438 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1439 	return (ENODATA);
1440 }
1441 
1442 /*
1443  * The next two functions regulate access to the NVram (if fitted).
1444  *
1445  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1446  * (SPI) interface, but they can be accessed through either port. These
1447  * are managed by different instance of this driver and have no software
1448  * state in common.
1449  *
1450  * In addition (and even on a single core chip) the chip's internal
1451  * firmware can access the SEEPROM/Flash, most notably after a RESET
1452  * when it may download code to run internally.
1453  *
1454  * So we need to arbitrate between these various software agents.  For
1455  * this purpose, the chip provides the Software Arbitration Register,
1456  * which implements hardware(!) arbitration.
1457  *
1458  * This functionality didn't exist on older (5700/5701) chips, so there's
1459  * nothing we can do by way of arbitration on those; also, if there's no
1460  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1461  * nothing to do.
1462  *
1463  * The internal firmware appears to use Request 0, which is the highest
1464  * priority.  So we'd like to use Request 2, leaving one higher and one
1465  * lower for any future developments ... but apparently this doesn't
1466  * always work.  So for now, the code uses Request 1 ;-(
1467  */
1468 
1469 #define	NVM_READ_REQ	NVM_READ_REQ1
1470 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1471 #define	NVM_SET_REQ	NVM_SET_REQ1
1472 
1473 static void bge_nvmem_relinquish(bge_t *bgep);
1474 #pragma	no_inline(bge_nvmem_relinquish)
1475 
1476 static void
1477 bge_nvmem_relinquish(bge_t *bgep)
1478 {
1479 	ASSERT(mutex_owned(bgep->genlock));
1480 
1481 	switch (bgep->chipid.nvtype) {
1482 	case BGE_NVTYPE_NONE:
1483 	case BGE_NVTYPE_UNKNOWN:
1484 		_NOTE(NOTREACHED)
1485 		return;
1486 
1487 	case BGE_NVTYPE_SEEPROM:
1488 		/*
1489 		 * No arbitration performed, no release needed
1490 		 */
1491 		return;
1492 
1493 	case BGE_NVTYPE_LEGACY_SEEPROM:
1494 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1495 	case BGE_NVTYPE_BUFFERED_FLASH:
1496 	default:
1497 		break;
1498 	}
1499 
1500 	/*
1501 	 * Our own request should be present (whether or not granted) ...
1502 	 */
1503 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1504 
1505 	/*
1506 	 * ... this will make it go away.
1507 	 */
1508 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1509 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1510 }
1511 
1512 /*
1513  * Arbitrate for access to the NVmem, if necessary
1514  *
1515  * Return value:
1516  *	0 on success
1517  *	EAGAIN if the device is in use (retryable)
1518  *	ENODEV if the NVmem device is missing or otherwise unusable
1519  */
1520 static int bge_nvmem_acquire(bge_t *bgep);
1521 #pragma	no_inline(bge_nvmem_acquire)
1522 
1523 static int
1524 bge_nvmem_acquire(bge_t *bgep)
1525 {
1526 	uint32_t regval;
1527 	uint32_t tries;
1528 
1529 	ASSERT(mutex_owned(bgep->genlock));
1530 
1531 	switch (bgep->chipid.nvtype) {
1532 	case BGE_NVTYPE_NONE:
1533 	case BGE_NVTYPE_UNKNOWN:
1534 		/*
1535 		 * Access denied: no (recognisable) device fitted
1536 		 */
1537 		return (ENODEV);
1538 
1539 	case BGE_NVTYPE_SEEPROM:
1540 		/*
1541 		 * Access granted: no arbitration needed (or possible)
1542 		 */
1543 		return (0);
1544 
1545 	case BGE_NVTYPE_LEGACY_SEEPROM:
1546 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1547 	case BGE_NVTYPE_BUFFERED_FLASH:
1548 	default:
1549 		/*
1550 		 * Access conditional: conduct arbitration protocol
1551 		 */
1552 		break;
1553 	}
1554 
1555 	/*
1556 	 * We're holding the per-port mutex <genlock>, so no-one other
1557 	 * thread can be attempting to access the NVmem through *this*
1558 	 * port. But it could be in use by the *other* port (of a 5704),
1559 	 * or by the chip's internal firmware, so we have to go through
1560 	 * the full (hardware) arbitration protocol ...
1561 	 *
1562 	 * Note that *because* we're holding <genlock>, the interrupt handler
1563 	 * won't be able to progress.  So we're only willing to spin for a
1564 	 * fairly short time.  Specifically:
1565 	 *
1566 	 *	We *must* wait long enough for the hardware to resolve all
1567 	 *	requests and determine the winner.  Fortunately, this is
1568 	 *	"almost instantaneous", even as observed by GHz CPUs.
1569 	 *
1570 	 *	A successful access by another Solaris thread (via either
1571 	 *	port) typically takes ~20us.  So waiting a bit longer than
1572 	 *	that will give a good chance of success, if the other user
1573 	 *	*is* another thread on the other port.
1574 	 *
1575 	 *	However, the internal firmware can hold on to the NVmem
1576 	 *	for *much* longer: at least 10 milliseconds just after a
1577 	 *	RESET, and maybe even longer if the NVmem actually contains
1578 	 *	code to download and run on the internal CPUs.
1579 	 *
1580 	 * So, we'll allow 50us; if that's not enough then it's up to the
1581 	 * caller to retry later (hence the choice of return code EAGAIN).
1582 	 */
1583 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1584 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1585 
1586 	for (tries = 0; tries < 50; ++tries) {
1587 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1588 		if (regval & NVM_WON_REQ1)
1589 			break;
1590 		drv_usecwait(1);
1591 	}
1592 
1593 	if (regval & NVM_WON_REQ1) {
1594 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1595 		return (0);
1596 	}
1597 
1598 	/*
1599 	 * Somebody else must be accessing the NVmem, so abandon our
1600 	 * attempt take control of it.  The caller can try again later ...
1601 	 */
1602 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1603 	bge_nvmem_relinquish(bgep);
1604 	return (EAGAIN);
1605 }
1606 
1607 /*
1608  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1609  * write protect line in such a way that the NVmem is protected when
1610  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1611  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1612  *
1613  * Note: there's only one set of GPIO pins on a 5704, even though they
1614  * can be accessed through either port.  So the chip has to resolve what
1615  * happens if the two ports program a single pin differently ... the rule
1616  * it uses is that if the ports disagree about the *direction* of a pin,
1617  * "output" wins over "input", but if they disagree about its *value* as
1618  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1619  * wins, and the external signal does whatever the external circuitry
1620  * defines as the default -- which we've assumed is the PROTECTED state.
1621  * So, we always change GPIO1 back to being an *input* whenever we're not
1622  * specifically using it to unprotect the NVmem. This allows either port
1623  * to update the NVmem, although obviously only one at a time!
1624  *
1625  * The caller should hold <genlock> and *also* have already acquired the
1626  * right to access the NVmem, via bge_nvmem_acquire() above.
1627  */
1628 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1629 #pragma	inline(bge_nvmem_protect)
1630 
1631 static void
1632 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1633 {
1634 	uint32_t regval;
1635 
1636 	ASSERT(mutex_owned(bgep->genlock));
1637 
1638 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1639 	if (protect) {
1640 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1641 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1642 	} else {
1643 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1644 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1645 	}
1646 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1647 }
1648 
1649 /*
1650  * Now put it all together ...
1651  *
1652  * Try to acquire control of the NVmem; if successful, then:
1653  *	unprotect it (if we want to write to it)
1654  *	perform the requested access
1655  *	reprotect it (after a write)
1656  *	relinquish control
1657  *
1658  * Return value:
1659  *	0 on success,
1660  *	EAGAIN if the device is in use (retryable)
1661  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1662  *	ENODEV if the NVmem device is missing or otherwise unusable
1663  *	EPROTO on other h/w or s/w errors.
1664  */
1665 static int
1666 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1667 {
1668 	int err;
1669 
1670 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1671 		switch (cmd) {
1672 		case BGE_SEE_READ:
1673 			err = bge_seeprom_access(bgep,
1674 			    SEEPROM_ACCESS_READ, addr, dp);
1675 			break;
1676 
1677 		case BGE_SEE_WRITE:
1678 			bge_nvmem_protect(bgep, B_FALSE);
1679 			err = bge_seeprom_access(bgep,
1680 			    SEEPROM_ACCESS_WRITE, addr, dp);
1681 			bge_nvmem_protect(bgep, B_TRUE);
1682 			break;
1683 
1684 		case BGE_FLASH_READ:
1685 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1686 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1687 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1688 				    NVM_ACCESS_ENABLE);
1689 			}
1690 			err = bge_flash_access(bgep,
1691 			    NVM_FLASH_CMD_RD, addr, dp);
1692 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1693 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1694 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1695 				    NVM_ACCESS_ENABLE);
1696 			}
1697 			break;
1698 
1699 		case BGE_FLASH_WRITE:
1700 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1701 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1702 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1703 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1704 			}
1705 			bge_nvmem_protect(bgep, B_FALSE);
1706 			err = bge_flash_access(bgep,
1707 			    NVM_FLASH_CMD_WR, addr, dp);
1708 			bge_nvmem_protect(bgep, B_TRUE);
1709 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1710 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1711 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1712 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1713 			}
1714 
1715 			break;
1716 
1717 		default:
1718 			_NOTE(NOTREACHED)
1719 			break;
1720 		}
1721 		bge_nvmem_relinquish(bgep);
1722 	}
1723 
1724 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1725 	return (err);
1726 }
1727 
1728 /*
1729  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1730  */
1731 static uint64_t bge_get_nvmac(bge_t *bgep);
1732 #pragma no_inline(bge_get_nvmac)
1733 
1734 static uint64_t
1735 bge_get_nvmac(bge_t *bgep)
1736 {
1737 	uint32_t mac_high;
1738 	uint32_t mac_low;
1739 	uint32_t addr;
1740 	uint32_t cmd;
1741 	uint64_t mac;
1742 
1743 	BGE_TRACE(("bge_get_nvmac($%p)",
1744 	    (void *)bgep));
1745 
1746 	switch (bgep->chipid.nvtype) {
1747 	case BGE_NVTYPE_NONE:
1748 	case BGE_NVTYPE_UNKNOWN:
1749 	default:
1750 		return (0ULL);
1751 
1752 	case BGE_NVTYPE_SEEPROM:
1753 	case BGE_NVTYPE_LEGACY_SEEPROM:
1754 		cmd = BGE_SEE_READ;
1755 		break;
1756 
1757 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1758 	case BGE_NVTYPE_BUFFERED_FLASH:
1759 		cmd = BGE_FLASH_READ;
1760 		break;
1761 	}
1762 
1763 	addr = NVMEM_DATA_MAC_ADDRESS;
1764 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1765 		return (0ULL);
1766 	addr += 4;
1767 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1768 		return (0ULL);
1769 
1770 	/*
1771 	 * The Broadcom chip is natively BIG-endian, so that's how the
1772 	 * MAC address is represented in NVmem.  We may need to swap it
1773 	 * around on a little-endian host ...
1774 	 */
1775 #ifdef	_BIG_ENDIAN
1776 	mac = mac_high;
1777 	mac = mac << 32;
1778 	mac |= mac_low;
1779 #else
1780 	mac = BGE_BSWAP_32(mac_high);
1781 	mac = mac << 32;
1782 	mac |= BGE_BSWAP_32(mac_low);
1783 #endif	/* _BIG_ENDIAN */
1784 
1785 	return (mac);
1786 }
1787 
1788 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1789 
1790 /*
1791  * Dummy version for when we're not supporting NVmem access
1792  */
1793 static uint64_t bge_get_nvmac(bge_t *bgep);
1794 #pragma inline(bge_get_nvmac)
1795 
1796 static uint64_t
1797 bge_get_nvmac(bge_t *bgep)
1798 {
1799 	_NOTE(ARGUNUSED(bgep))
1800 	return (0ULL);
1801 }
1802 
1803 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1804 
1805 /*
1806  * Determine the type of NVmem that is (or may be) attached to this chip,
1807  */
1808 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1809 #pragma no_inline(bge_nvmem_id)
1810 
1811 static enum bge_nvmem_type
1812 bge_nvmem_id(bge_t *bgep)
1813 {
1814 	enum bge_nvmem_type nvtype;
1815 	uint32_t config1;
1816 
1817 	BGE_TRACE(("bge_nvmem_id($%p)",
1818 	    (void *)bgep));
1819 
1820 	switch (bgep->chipid.device) {
1821 	default:
1822 		/*
1823 		 * We shouldn't get here; it means we don't recognise
1824 		 * the chip, which means we don't know how to determine
1825 		 * what sort of NVmem (if any) it has.  So we'll say
1826 		 * NONE, to disable the NVmem access code ...
1827 		 */
1828 		nvtype = BGE_NVTYPE_NONE;
1829 		break;
1830 
1831 	case DEVICE_ID_5700:
1832 	case DEVICE_ID_5700x:
1833 	case DEVICE_ID_5701:
1834 		/*
1835 		 * These devices support *only* SEEPROMs
1836 		 */
1837 		nvtype = BGE_NVTYPE_SEEPROM;
1838 		break;
1839 
1840 	case DEVICE_ID_5702:
1841 	case DEVICE_ID_5702fe:
1842 	case DEVICE_ID_5703C:
1843 	case DEVICE_ID_5703S:
1844 	case DEVICE_ID_5704C:
1845 	case DEVICE_ID_5704S:
1846 	case DEVICE_ID_5704:
1847 	case DEVICE_ID_5705M:
1848 	case DEVICE_ID_5705C:
1849 	case DEVICE_ID_5705_2:
1850 	case DEVICE_ID_5706:
1851 	case DEVICE_ID_5782:
1852 	case DEVICE_ID_5788:
1853 	case DEVICE_ID_5789:
1854 	case DEVICE_ID_5751:
1855 	case DEVICE_ID_5751M:
1856 	case DEVICE_ID_5752:
1857 	case DEVICE_ID_5752M:
1858 	case DEVICE_ID_5754:
1859 	case DEVICE_ID_5755:
1860 	case DEVICE_ID_5721:
1861 	case DEVICE_ID_5714C:
1862 	case DEVICE_ID_5714S:
1863 	case DEVICE_ID_5715C:
1864 	case DEVICE_ID_5715S:
1865 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1866 		if (config1 & NVM_CFG1_FLASH_MODE)
1867 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1868 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1869 			else
1870 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1871 		else
1872 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1873 		break;
1874 	}
1875 
1876 	return (nvtype);
1877 }
1878 
1879 #undef	BGE_DBG
1880 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1881 
1882 static void
1883 bge_init_recv_rule(bge_t *bgep)
1884 {
1885 	bge_recv_rule_t *rulep;
1886 	uint32_t i;
1887 
1888 	/*
1889 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1890 	 * 1. to direct UDP traffic, set:
1891 	 * 	rulep->control = RULE_PROTO_CONTROL;
1892 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1893 	 * 2. to direct ICMP traffic, set:
1894 	 * 	rulep->control = RULE_PROTO_CONTROL;
1895 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1896 	 * 3. to direct traffic by source ip, set:
1897 	 * 	rulep->control = RULE_SIP_CONTROL;
1898 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1899 	 */
1900 	rulep = bgep->recv_rules;
1901 	rulep->control = RULE_PROTO_CONTROL;
1902 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1903 
1904 	/*
1905 	 * set receive rule registers
1906 	 */
1907 	rulep = bgep->recv_rules;
1908 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1909 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1910 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1911 	}
1912 }
1913 
1914 /*
1915  * Using the values captured by bge_chip_cfg_init(), and additional probes
1916  * as required, characterise the chip fully: determine the label by which
1917  * to refer to this chip, the correct settings for various registers, and
1918  * of course whether the device and/or subsystem are supported!
1919  */
1920 int bge_chip_id_init(bge_t *bgep);
1921 #pragma	no_inline(bge_chip_id_init)
1922 
1923 int
1924 bge_chip_id_init(bge_t *bgep)
1925 {
1926 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1927 	boolean_t sys_ok;
1928 	boolean_t dev_ok;
1929 	chip_id_t *cidp;
1930 	uint32_t subid;
1931 	char *devname;
1932 	char *sysname;
1933 	int *ids;
1934 	int err;
1935 	uint_t i;
1936 
1937 	sys_ok = dev_ok = B_FALSE;
1938 	cidp = &bgep->chipid;
1939 
1940 	/*
1941 	 * Check the PCI device ID to determine the generic chip type and
1942 	 * select parameters that depend on this.
1943 	 *
1944 	 * Note: because the SPARC platforms in general don't fit the
1945 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1946 	 * as zero - which is why we use <asic_rev> rather than <revision>
1947 	 * below ...
1948 	 *
1949 	 * Note: in general we can't distinguish between the Copper/SerDes
1950 	 * versions by ID alone, as some Copper devices (e.g. some but not
1951 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1952 	 * treat them the same here, and the MII code works out the media
1953 	 * type later on ...
1954 	 */
1955 	cidp->mbuf_base = bge_mbuf_pool_base;
1956 	cidp->mbuf_length = bge_mbuf_pool_len;
1957 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1958 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1959 	cidp->pci_type = BGE_PCI_X;
1960 	cidp->statistic_type = BGE_STAT_BLK;
1961 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1962 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1963 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1964 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
1965 	cidp->rx_count_norm = bge_rx_count_norm;
1966 
1967 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1968 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1969 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1970 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1971 
1972 	cidp->msi_enabled = B_FALSE;
1973 
1974 	switch (cidp->device) {
1975 	case DEVICE_ID_5700:
1976 	case DEVICE_ID_5700x:
1977 		cidp->chip_label = 5700;
1978 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1979 		break;
1980 
1981 	case DEVICE_ID_5701:
1982 		cidp->chip_label = 5701;
1983 		dev_ok = B_TRUE;
1984 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1985 		break;
1986 
1987 	case DEVICE_ID_5702:
1988 	case DEVICE_ID_5702fe:
1989 		cidp->chip_label = 5702;
1990 		dev_ok = B_TRUE;
1991 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1992 		cidp->pci_type = BGE_PCI;
1993 		break;
1994 
1995 	case DEVICE_ID_5703C:
1996 	case DEVICE_ID_5703S:
1997 	case DEVICE_ID_5703:
1998 		/*
1999 		 * Revision A0 of the 5703/5793 had various errata
2000 		 * that we can't or don't work around, so it's not
2001 		 * supported, but all later versions are
2002 		 */
2003 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2004 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2005 			dev_ok = B_TRUE;
2006 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2007 		break;
2008 
2009 	case DEVICE_ID_5704C:
2010 	case DEVICE_ID_5704S:
2011 	case DEVICE_ID_5704:
2012 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2013 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
2014 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
2015 		dev_ok = B_TRUE;
2016 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2017 		break;
2018 
2019 	case DEVICE_ID_5705C:
2020 	case DEVICE_ID_5705M:
2021 	case DEVICE_ID_5705MA3:
2022 	case DEVICE_ID_5705F:
2023 	case DEVICE_ID_5705_2:
2024 	case DEVICE_ID_5754:
2025 		if (cidp->device == DEVICE_ID_5754) {
2026 			cidp->chip_label = 5754;
2027 			cidp->pci_type = BGE_PCI_E;
2028 		} else {
2029 			cidp->chip_label = 5705;
2030 			cidp->pci_type = BGE_PCI;
2031 		}
2032 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2033 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2034 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2035 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2036 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2037 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2038 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2039 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2040 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2041 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2042 		cidp->statistic_type = BGE_STAT_REG;
2043 		dev_ok = B_TRUE;
2044 		break;
2045 
2046 	case DEVICE_ID_5753:
2047 		cidp->chip_label = 5753;
2048 		cidp->pci_type = BGE_PCI_E;
2049 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2050 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2051 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2052 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2053 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2054 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2055 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2056 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2057 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2058 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2059 		cidp->statistic_type = BGE_STAT_REG;
2060 		dev_ok = B_TRUE;
2061 		break;
2062 
2063 	case DEVICE_ID_5755:
2064 		cidp->chip_label = 5755;
2065 		cidp->pci_type = BGE_PCI_E;
2066 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2067 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2068 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2069 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2070 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2071 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2072 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2073 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2074 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2075 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2076 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2077 		cidp->statistic_type = BGE_STAT_REG;
2078 		dev_ok = B_TRUE;
2079 		break;
2080 
2081 	case DEVICE_ID_5706:
2082 		cidp->chip_label = 5706;
2083 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2084 		break;
2085 
2086 	case DEVICE_ID_5782:
2087 		/*
2088 		 * Apart from the label, we treat this as a 5705(?)
2089 		 */
2090 		cidp->chip_label = 5782;
2091 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2092 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2093 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2094 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2095 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2096 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2097 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2098 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2099 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2100 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2101 		cidp->statistic_type = BGE_STAT_REG;
2102 		dev_ok = B_TRUE;
2103 		break;
2104 
2105 	case DEVICE_ID_5788:
2106 		/*
2107 		 * Apart from the label, we treat this as a 5705(?)
2108 		 */
2109 		cidp->chip_label = 5788;
2110 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2111 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2112 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2113 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2114 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2115 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2116 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2117 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2118 		cidp->statistic_type = BGE_STAT_REG;
2119 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2120 		dev_ok = B_TRUE;
2121 		break;
2122 
2123 	case DEVICE_ID_5714C:
2124 		if (cidp->revision >= REVISION_ID_5714_A2)
2125 			cidp->msi_enabled = bge_enable_msi;
2126 		/* FALLTHRU */
2127 	case DEVICE_ID_5714S:
2128 		cidp->chip_label = 5714;
2129 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2130 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2131 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2132 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2133 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2134 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2135 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2136 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2137 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2138 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2139 		cidp->pci_type = BGE_PCI_E;
2140 		cidp->statistic_type = BGE_STAT_REG;
2141 		dev_ok = B_TRUE;
2142 		break;
2143 
2144 	case DEVICE_ID_5715C:
2145 	case DEVICE_ID_5715S:
2146 		cidp->chip_label = 5715;
2147 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2148 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2149 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2150 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2151 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2152 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2153 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2154 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2155 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2156 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2157 		cidp->pci_type = BGE_PCI_E;
2158 		cidp->statistic_type = BGE_STAT_REG;
2159 		if (cidp->revision >= REVISION_ID_5715_A2)
2160 			cidp->msi_enabled = bge_enable_msi;
2161 		dev_ok = B_TRUE;
2162 		break;
2163 
2164 	case DEVICE_ID_5721:
2165 		cidp->chip_label = 5721;
2166 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2167 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2168 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2169 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2170 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2171 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2172 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2173 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2174 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2175 		cidp->pci_type = BGE_PCI_E;
2176 		cidp->statistic_type = BGE_STAT_REG;
2177 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2178 		dev_ok = B_TRUE;
2179 		break;
2180 
2181 	case DEVICE_ID_5751:
2182 	case DEVICE_ID_5751M:
2183 		cidp->chip_label = 5751;
2184 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2185 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2186 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2187 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2188 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2189 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2190 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2191 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2192 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2193 		cidp->pci_type = BGE_PCI_E;
2194 		cidp->statistic_type = BGE_STAT_REG;
2195 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2196 		dev_ok = B_TRUE;
2197 		break;
2198 
2199 	case DEVICE_ID_5752:
2200 	case DEVICE_ID_5752M:
2201 		cidp->chip_label = 5752;
2202 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2203 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2204 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2205 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2206 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2207 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2208 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2209 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2210 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2211 		cidp->pci_type = BGE_PCI_E;
2212 		cidp->statistic_type = BGE_STAT_REG;
2213 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2214 		dev_ok = B_TRUE;
2215 		break;
2216 
2217 	case DEVICE_ID_5789:
2218 		cidp->chip_label = 5789;
2219 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2220 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2221 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2222 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2223 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2224 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2225 		cidp->pci_type = BGE_PCI_E;
2226 		cidp->statistic_type = BGE_STAT_REG;
2227 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2228 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2229 		cidp->msi_enabled = B_TRUE;
2230 		dev_ok = B_TRUE;
2231 		break;
2232 
2233 	}
2234 
2235 	/*
2236 	 * Setup the default jumbo parameter.
2237 	 */
2238 	cidp->ethmax_size = ETHERMAX;
2239 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2240 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2241 
2242 	/*
2243 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2244 	 * setup below jumbo specific parameters.
2245 	 *
2246 	 * For BCM5714/5715, there is only one standard receive ring. So the
2247 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2248 	 * feature is enabled.
2249 	 */
2250 	if (bge_jumbo_enable &&
2251 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2252 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2253 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2254 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2255 			cidp->mbuf_lo_water_rdma =
2256 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2257 			cidp->mbuf_lo_water_rmac =
2258 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2259 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2260 			cidp->jumbo_slots = 0;
2261 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2262 		} else {
2263 			cidp->mbuf_lo_water_rdma =
2264 			    RDMA_MBUF_LOWAT_JUMBO;
2265 			cidp->mbuf_lo_water_rmac =
2266 			    MAC_RX_MBUF_LOWAT_JUMBO;
2267 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2268 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2269 		}
2270 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2271 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2272 		cidp->ethmax_size = cidp->default_mtu +
2273 		    sizeof (struct ether_header);
2274 	}
2275 
2276 	/*
2277 	 * Identify the NV memory type: SEEPROM or Flash?
2278 	 */
2279 	cidp->nvtype = bge_nvmem_id(bgep);
2280 
2281 	/*
2282 	 * Now, we want to check whether this device is part of a
2283 	 * supported subsystem (e.g., on the motherboard of a Sun
2284 	 * branded platform).
2285 	 *
2286 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2287 	 */
2288 	if (cidp->subven == VENDOR_ID_SUN)
2289 		sys_ok = B_TRUE;
2290 
2291 	/*
2292 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2293 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2294 	 * doesn't enforce that.
2295 	 */
2296 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2297 	    DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2298 	if (err == DDI_PROP_SUCCESS) {
2299 		/*
2300 		 * Got the list; scan for a matching subsystem vendor/device
2301 		 */
2302 		subid = (cidp->subven << 16) | cidp->subdev;
2303 		while (i--)
2304 			if (ids[i] == subid)
2305 				sys_ok = B_TRUE;
2306 		ddi_prop_free(ids);
2307 	}
2308 
2309 	/*
2310 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2311 	 *
2312 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2313 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2314 	 * we have to check specially for the exact device paths to the
2315 	 * motherboard devices on those platforms ;-(
2316 	 *
2317 	 * Note: we can't just use the "supported-subsystems" mechanism
2318 	 * above, because the entry would have to be 0x14e41647 -- which
2319 	 * would then accept *any* plugin card that *didn't* contain a
2320 	 * (valid) SEEPROM ;-(
2321 	 */
2322 	sysname = ddi_node_name(ddi_root_node());
2323 	devname = ddi_pathname(bgep->devinfo, buf);
2324 	ASSERT(strlen(devname) > 0);
2325 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2326 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2327 			sys_ok = B_TRUE;
2328 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2329 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2330 			sys_ok = B_TRUE;
2331 
2332 	/*
2333 	 * Now check what we've discovered: is this truly a supported
2334 	 * chip on (the motherboard of) a supported platform?
2335 	 *
2336 	 * Possible problems here:
2337 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2338 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2339 	 * 3)	it's a chip we would support if it were on the motherboard
2340 	 *	of a Sun platform, but this one isn't ;-(
2341 	 */
2342 	if (cidp->chip_label == 0)
2343 		bge_problem(bgep,
2344 		    "Device 'pci%04x,%04x' not recognized (%d?)",
2345 		    cidp->vendor, cidp->device, cidp->device);
2346 	else if (!dev_ok)
2347 		bge_problem(bgep,
2348 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
2349 		    cidp->vendor, cidp->device, cidp->chip_label,
2350 		    cidp->revision);
2351 #if	BGE_DEBUGGING
2352 	else if (!sys_ok)
2353 		bge_problem(bgep,
2354 		    "%d-based subsystem 'pci%04x,%04x' not validated",
2355 		    cidp->chip_label, cidp->subven, cidp->subdev);
2356 #endif
2357 	else
2358 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2359 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2360 		return (EIO);
2361 	return (0);
2362 }
2363 
2364 void
2365 bge_chip_msi_trig(bge_t *bgep)
2366 {
2367 	uint32_t	regval;
2368 
2369 	regval = bgep->param_msi_cnt<<4;
2370 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2371 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2372 }
2373 
2374 /*
2375  * Various registers that control the chip's internal engines (state
2376  * machines) have a <reset> and <enable> bits (fortunately, in the
2377  * same place in each such register :-).
2378  *
2379  * To reset the state machine, the <reset> bit must be written with 1;
2380  * it will then read back as 1 while the reset is in progress, but
2381  * self-clear to 0 when the reset completes.
2382  *
2383  * To enable a state machine, one must set the <enable> bit, which
2384  * will continue to read back as 0 until the state machine is running.
2385  *
2386  * To disable a state machine, the <enable> bit must be cleared, but
2387  * it will continue to read back as 1 until the state machine actually
2388  * stops.
2389  *
2390  * This routine implements polling for completion of a reset, enable
2391  * or disable operation, returning B_TRUE on success (bit reached the
2392  * required state) or B_FALSE on timeout (200*100us == 20ms).
2393  */
2394 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2395 					uint32_t mask, uint32_t val);
2396 #pragma	no_inline(bge_chip_poll_engine)
2397 
2398 static boolean_t
2399 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2400 	uint32_t mask, uint32_t val)
2401 {
2402 	uint32_t regval;
2403 	uint32_t n;
2404 
2405 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2406 	    (void *)bgep, regno, mask, val));
2407 
2408 	for (n = 200; n; --n) {
2409 		regval = bge_reg_get32(bgep, regno);
2410 		if ((regval & mask) == val)
2411 			return (B_TRUE);
2412 		drv_usecwait(100);
2413 	}
2414 
2415 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2416 	return (B_FALSE);
2417 }
2418 
2419 /*
2420  * Various registers that control the chip's internal engines (state
2421  * machines) have a <reset> bit (fortunately, in the same place in
2422  * each such register :-).  To reset the state machine, this bit must
2423  * be written with 1; it will then read back as 1 while the reset is
2424  * in progress, but self-clear to 0 when the reset completes.
2425  *
2426  * This code sets the bit, then polls for it to read back as zero.
2427  * The return value is B_TRUE on success (reset bit cleared itself),
2428  * or B_FALSE if the state machine didn't recover :(
2429  *
2430  * NOTE: the Core reset is similar to other resets, except that we
2431  * can't poll for completion, since the Core reset disables memory
2432  * access!  So we just have to assume that it will all complete in
2433  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2434  */
2435 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2436 #pragma	no_inline(bge_chip_reset_engine)
2437 
2438 static boolean_t
2439 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2440 {
2441 	uint32_t regval;
2442 	uint32_t val32;
2443 
2444 	regval = bge_reg_get32(bgep, regno);
2445 
2446 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2447 	    (void *)bgep, regno));
2448 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2449 	    regno, regval));
2450 
2451 	regval |= STATE_MACHINE_RESET_BIT;
2452 
2453 	switch (regno) {
2454 	case MISC_CONFIG_REG:
2455 		/*
2456 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2457 		 * resetting PCIE block and bringing PCIE link down, bit 29
2458 		 * in the register needs to be set first, and then set it again
2459 		 * while the reset bit is written.
2460 		 * See:P500 of 57xx-PG102-RDS.pdf.
2461 		 */
2462 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2463 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2464 		    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2465 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2466 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2467 				if (bgep->chipid.asic_rev ==
2468 				    MHCR_CHIP_REV_5751_A0 ||
2469 				    bgep->chipid.asic_rev ==
2470 				    MHCR_CHIP_REV_5721_A0 ||
2471 				    bgep->chipid.asic_rev ==
2472 				    MHCR_CHIP_REV_5755_A0) {
2473 					val32 = bge_reg_get32(bgep,
2474 					    PHY_TEST_CTRL_REG);
2475 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2476 					    PHY_PCIE_LTASS_MODE))
2477 						bge_reg_put32(bgep,
2478 						    PHY_TEST_CTRL_REG,
2479 						    PHY_PCIE_SCRAM_MODE);
2480 					val32 = pci_config_get32
2481 					    (bgep->cfg_handle,
2482 					    PCI_CONF_BGE_CLKCTL);
2483 					val32 |= CLKCTL_PCIE_A0_FIX;
2484 					pci_config_put32(bgep->cfg_handle,
2485 					    PCI_CONF_BGE_CLKCTL, val32);
2486 				}
2487 				bge_reg_set32(bgep, regno,
2488 				    MISC_CONFIG_GRC_RESET_DISABLE);
2489 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2490 			}
2491 		}
2492 
2493 		/*
2494 		 * Special case - causes Core reset
2495 		 *
2496 		 * On SPARC v9 we want to ensure that we don't start
2497 		 * timing until the I/O access has actually reached
2498 		 * the chip, otherwise we might make the next access
2499 		 * too early.  And we can't just force the write out
2500 		 * by following it with a read (even to config space)
2501 		 * because that would cause the fault we're trying
2502 		 * to avoid.  Hence the need for membar_sync() here.
2503 		 */
2504 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2505 #ifdef	__sparcv9
2506 		membar_sync();
2507 #endif	/* __sparcv9 */
2508 		/*
2509 		 * On some platforms,system need about 300us for
2510 		 * link setup.
2511 		 */
2512 		drv_usecwait(300);
2513 
2514 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2515 			/* PCI-E device need more reset time */
2516 			drv_usecwait(120000);
2517 
2518 			/* Set PCIE max payload size and clear error status. */
2519 			if ((bgep->chipid.chip_label == 5721) ||
2520 			    (bgep->chipid.chip_label == 5751) ||
2521 			    (bgep->chipid.chip_label == 5752) ||
2522 			    (bgep->chipid.chip_label == 5789)) {
2523 				pci_config_put16(bgep->cfg_handle,
2524 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2525 				pci_config_put16(bgep->cfg_handle,
2526 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2527 			}
2528 		}
2529 
2530 		BGE_PCICHK(bgep);
2531 		return (B_TRUE);
2532 
2533 	default:
2534 		bge_reg_put32(bgep, regno, regval);
2535 		return (bge_chip_poll_engine(bgep, regno,
2536 		    STATE_MACHINE_RESET_BIT, 0));
2537 	}
2538 }
2539 
2540 /*
2541  * Various registers that control the chip's internal engines (state
2542  * machines) have an <enable> bit (fortunately, in the same place in
2543  * each such register :-).  To stop the state machine, this bit must
2544  * be written with 0, then polled to see when the state machine has
2545  * actually stopped.
2546  *
2547  * The return value is B_TRUE on success (enable bit cleared), or
2548  * B_FALSE if the state machine didn't stop :(
2549  */
2550 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2551 						uint32_t morebits);
2552 #pragma	no_inline(bge_chip_disable_engine)
2553 
2554 static boolean_t
2555 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2556 {
2557 	uint32_t regval;
2558 
2559 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2560 	    (void *)bgep, regno, morebits));
2561 
2562 	switch (regno) {
2563 	case FTQ_RESET_REG:
2564 		/*
2565 		 * For Schumacher's bugfix CR6490108
2566 		 */
2567 #ifdef BGE_IPMI_ASF
2568 #ifdef BGE_NETCONSOLE
2569 		if (bgep->asf_enabled)
2570 			return (B_TRUE);
2571 #endif
2572 #endif
2573 		/*
2574 		 * Not quite like the others; it doesn't
2575 		 * have an <enable> bit, but instead we
2576 		 * have to set and then clear all the bits
2577 		 */
2578 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2579 		drv_usecwait(100);
2580 		bge_reg_put32(bgep, regno, 0);
2581 		return (B_TRUE);
2582 
2583 	default:
2584 		regval = bge_reg_get32(bgep, regno);
2585 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2586 		regval &= ~morebits;
2587 		bge_reg_put32(bgep, regno, regval);
2588 		return (bge_chip_poll_engine(bgep, regno,
2589 		    STATE_MACHINE_ENABLE_BIT, 0));
2590 	}
2591 }
2592 
2593 /*
2594  * Various registers that control the chip's internal engines (state
2595  * machines) have an <enable> bit (fortunately, in the same place in
2596  * each such register :-).  To start the state machine, this bit must
2597  * be written with 1, then polled to see when the state machine has
2598  * actually started.
2599  *
2600  * The return value is B_TRUE on success (enable bit set), or
2601  * B_FALSE if the state machine didn't start :(
2602  */
2603 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2604 					uint32_t morebits);
2605 #pragma	no_inline(bge_chip_enable_engine)
2606 
2607 static boolean_t
2608 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2609 {
2610 	uint32_t regval;
2611 
2612 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2613 	    (void *)bgep, regno, morebits));
2614 
2615 	switch (regno) {
2616 	case FTQ_RESET_REG:
2617 #ifdef BGE_IPMI_ASF
2618 #ifdef BGE_NETCONSOLE
2619 		if (bgep->asf_enabled)
2620 			return (B_TRUE);
2621 #endif
2622 #endif
2623 		/*
2624 		 * Not quite like the others; it doesn't
2625 		 * have an <enable> bit, but instead we
2626 		 * have to set and then clear all the bits
2627 		 */
2628 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2629 		drv_usecwait(100);
2630 		bge_reg_put32(bgep, regno, 0);
2631 		return (B_TRUE);
2632 
2633 	default:
2634 		regval = bge_reg_get32(bgep, regno);
2635 		regval |= STATE_MACHINE_ENABLE_BIT;
2636 		regval |= morebits;
2637 		bge_reg_put32(bgep, regno, regval);
2638 		return (bge_chip_poll_engine(bgep, regno,
2639 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2640 	}
2641 }
2642 
2643 /*
2644  * Reprogram the Ethernet, Transmit, and Receive MAC
2645  * modes to match the param_* variables
2646  */
2647 void bge_sync_mac_modes(bge_t *bgep);
2648 #pragma	no_inline(bge_sync_mac_modes)
2649 
2650 void
2651 bge_sync_mac_modes(bge_t *bgep)
2652 {
2653 	uint32_t macmode;
2654 	uint32_t regval;
2655 
2656 	ASSERT(mutex_owned(bgep->genlock));
2657 
2658 	/*
2659 	 * Reprogram the Ethernet MAC mode ...
2660 	 */
2661 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2662 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2663 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2664 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2665 	else
2666 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2667 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2668 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2669 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2670 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
2671 	else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
2672 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2673 	else
2674 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2675 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2676 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2677 	else
2678 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2679 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2680 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2681 	else
2682 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2683 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2684 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2685 	    (void *)bgep, regval, macmode));
2686 
2687 	/*
2688 	 * ... the Transmit MAC mode ...
2689 	 */
2690 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2691 	if (bgep->param_link_tx_pause)
2692 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2693 	else
2694 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2695 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2696 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2697 	    (void *)bgep, regval, macmode));
2698 
2699 	/*
2700 	 * ... and the Receive MAC mode
2701 	 */
2702 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2703 	if (bgep->param_link_rx_pause)
2704 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2705 	else
2706 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2707 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2708 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2709 	    (void *)bgep, regval, macmode));
2710 }
2711 
2712 /*
2713  * bge_chip_sync() -- program the chip with the unicast MAC address,
2714  * the multicast hash table, the required level of promiscuity, and
2715  * the current loopback mode ...
2716  */
2717 #ifdef BGE_IPMI_ASF
2718 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2719 #else
2720 int bge_chip_sync(bge_t *bgep);
2721 #endif
2722 #pragma	no_inline(bge_chip_sync)
2723 
2724 int
2725 #ifdef BGE_IPMI_ASF
2726 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2727 #else
2728 bge_chip_sync(bge_t *bgep)
2729 #endif
2730 {
2731 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2732 	boolean_t promisc;
2733 	uint64_t macaddr;
2734 	uint32_t fill;
2735 	int i, j;
2736 	int retval = DDI_SUCCESS;
2737 
2738 	BGE_TRACE(("bge_chip_sync($%p)",
2739 	    (void *)bgep));
2740 
2741 	ASSERT(mutex_owned(bgep->genlock));
2742 
2743 	promisc = B_FALSE;
2744 	fill = ~(uint32_t)0;
2745 
2746 	if (bgep->promisc)
2747 		promisc = B_TRUE;
2748 	else
2749 		fill = (uint32_t)0;
2750 
2751 	/*
2752 	 * If the TX/RX MAC engines are already running, we should stop
2753 	 * them (and reset the RX engine) before changing the parameters.
2754 	 * If they're not running, this will have no effect ...
2755 	 *
2756 	 * NOTE: this is currently disabled by default because stopping
2757 	 * and restarting the Tx engine may cause an outgoing packet in
2758 	 * transit to be truncated.  Also, stopping and restarting the
2759 	 * Rx engine seems to not work correctly on the 5705.  Testing
2760 	 * has not (yet!) revealed any problems with NOT stopping and
2761 	 * restarting these engines (and Broadcom say their drivers don't
2762 	 * do this), but if it is found to cause problems, this variable
2763 	 * can be patched to re-enable the old behaviour ...
2764 	 */
2765 	if (bge_stop_start_on_sync) {
2766 #ifdef BGE_IPMI_ASF
2767 		if (!bgep->asf_enabled) {
2768 			if (!bge_chip_disable_engine(bgep,
2769 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2770 				retval = DDI_FAILURE;
2771 		} else {
2772 			if (!bge_chip_disable_engine(bgep,
2773 			    RECEIVE_MAC_MODE_REG, 0))
2774 				retval = DDI_FAILURE;
2775 		}
2776 #else
2777 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2778 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2779 			retval = DDI_FAILURE;
2780 #endif
2781 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2782 			retval = DDI_FAILURE;
2783 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2784 			retval = DDI_FAILURE;
2785 	}
2786 
2787 	/*
2788 	 * Reprogram the hashed multicast address table ...
2789 	 */
2790 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2791 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2792 			bgep->mcast_hash[i] | fill);
2793 
2794 #ifdef BGE_IPMI_ASF
2795 	if (!bgep->asf_enabled || !asf_keeplive) {
2796 #endif
2797 		/*
2798 		 * Transform the MAC address(es) from host to chip format, then
2799 		 * reprogram the transmit random backoff seed and the unicast
2800 		 * MAC address(es) ...
2801 		 */
2802 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2803 			for (i = 0, fill = 0, macaddr = 0ull;
2804 			    i < ETHERADDRL; ++i) {
2805 				macaddr <<= 8;
2806 				macaddr |= bgep->curr_addr[j].addr[i];
2807 				fill += bgep->curr_addr[j].addr[i];
2808 			}
2809 			bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2810 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2811 		}
2812 
2813 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2814 			(void *)bgep, macaddr));
2815 #ifdef BGE_IPMI_ASF
2816 	}
2817 #endif
2818 
2819 	/*
2820 	 * Set or clear the PROMISCUOUS mode bit
2821 	 */
2822 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2823 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2824 
2825 	/*
2826 	 * Sync the rest of the MAC modes too ...
2827 	 */
2828 	bge_sync_mac_modes(bgep);
2829 
2830 	/*
2831 	 * Restart RX/TX MAC engines if required ...
2832 	 */
2833 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2834 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2835 			retval = DDI_FAILURE;
2836 #ifdef BGE_IPMI_ASF
2837 		if (!bgep->asf_enabled) {
2838 			if (!bge_chip_enable_engine(bgep,
2839 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2840 				retval = DDI_FAILURE;
2841 		} else {
2842 			if (!bge_chip_enable_engine(bgep,
2843 			    RECEIVE_MAC_MODE_REG, 0))
2844 				retval = DDI_FAILURE;
2845 		}
2846 #else
2847 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2848 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2849 			retval = DDI_FAILURE;
2850 #endif
2851 	}
2852 	return (retval);
2853 }
2854 
2855 /*
2856  * This array defines the sequence of state machine control registers
2857  * in which the <enable> bit must be cleared to bring the chip to a
2858  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2859  */
2860 static bge_regno_t shutdown_engine_regs[] = {
2861 	RECEIVE_MAC_MODE_REG,
2862 	RCV_BD_INITIATOR_MODE_REG,
2863 	RCV_LIST_PLACEMENT_MODE_REG,
2864 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2865 	RCV_DATA_BD_INITIATOR_MODE_REG,
2866 	RCV_DATA_COMPLETION_MODE_REG,
2867 	RCV_BD_COMPLETION_MODE_REG,
2868 
2869 	SEND_BD_SELECTOR_MODE_REG,
2870 	SEND_BD_INITIATOR_MODE_REG,
2871 	SEND_DATA_INITIATOR_MODE_REG,
2872 	READ_DMA_MODE_REG,
2873 	SEND_DATA_COMPLETION_MODE_REG,
2874 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2875 	SEND_BD_COMPLETION_MODE_REG,
2876 	TRANSMIT_MAC_MODE_REG,
2877 
2878 	HOST_COALESCE_MODE_REG,
2879 	WRITE_DMA_MODE_REG,
2880 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2881 	FTQ_RESET_REG,		/* special - see code	*/
2882 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2883 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2884 	BGE_REGNO_NONE		/* terminator		*/
2885 };
2886 
2887 /*
2888  * bge_chip_stop() -- stop all chip processing
2889  *
2890  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2891  * we've detected a problem internally; otherwise, this is a normal
2892  * (clean) stop (at user request i.e. the last STREAM has been closed).
2893  */
2894 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2895 #pragma	no_inline(bge_chip_stop)
2896 
2897 void
2898 bge_chip_stop(bge_t *bgep, boolean_t fault)
2899 {
2900 	bge_regno_t regno;
2901 	bge_regno_t *rbp;
2902 	boolean_t ok;
2903 
2904 	BGE_TRACE(("bge_chip_stop($%p)",
2905 	    (void *)bgep));
2906 
2907 	ASSERT(mutex_owned(bgep->genlock));
2908 
2909 	rbp = shutdown_engine_regs;
2910 	/*
2911 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2912 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2913 	 * -ory arbiter should not be disabled.
2914 	 */
2915 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2916 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2917 				ok &= bge_chip_disable_engine(bgep, regno, 0);
2918 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2919 			    (regno != DMA_COMPLETION_MODE_REG) &&
2920 			    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2921 			    (regno != BUFFER_MANAGER_MODE_REG) &&
2922 			    (regno != MEMORY_ARBITER_MODE_REG))
2923 				ok &= bge_chip_disable_engine(bgep,
2924 				    regno, 0);
2925 	}
2926 
2927 	if (!ok && !fault)
2928 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
2929 
2930 	/*
2931 	 * Finally, disable (all) MAC events & clear the MAC status
2932 	 */
2933 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2934 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2935 
2936 	/*
2937 	 * if we're stopping the chip because of a detected fault then do
2938 	 * appropriate actions
2939 	 */
2940 	if (fault) {
2941 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
2942 			bgep->bge_chip_state = BGE_CHIP_FAULT;
2943 			if (!bgep->manual_reset)
2944 				ddi_fm_service_impact(bgep->devinfo,
2945 				    DDI_SERVICE_LOST);
2946 			if (bgep->bge_dma_error) {
2947 				/*
2948 				 * need to free buffers in case the fault was
2949 				 * due to a memory error in a buffer - got to
2950 				 * do a fair bit of tidying first
2951 				 */
2952 				if (bgep->progress & PROGRESS_KSTATS) {
2953 					bge_fini_kstats(bgep);
2954 					bgep->progress &= ~PROGRESS_KSTATS;
2955 				}
2956 				if (bgep->progress & PROGRESS_INTR) {
2957 					bge_intr_disable(bgep);
2958 					rw_enter(bgep->errlock, RW_WRITER);
2959 					bge_fini_rings(bgep);
2960 					rw_exit(bgep->errlock);
2961 					bgep->progress &= ~PROGRESS_INTR;
2962 				}
2963 				if (bgep->progress & PROGRESS_BUFS) {
2964 					bge_free_bufs(bgep);
2965 					bgep->progress &= ~PROGRESS_BUFS;
2966 				}
2967 				bgep->bge_dma_error = B_FALSE;
2968 			}
2969 		}
2970 	} else
2971 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
2972 }
2973 
2974 /*
2975  * Poll for completion of chip's ROM firmware; also, at least on the
2976  * first time through, find and return the hardware MAC address, if any.
2977  */
2978 static uint64_t bge_poll_firmware(bge_t *bgep);
2979 #pragma	no_inline(bge_poll_firmware)
2980 
2981 static uint64_t
2982 bge_poll_firmware(bge_t *bgep)
2983 {
2984 	uint64_t magic;
2985 	uint64_t mac;
2986 	uint32_t gen;
2987 	uint32_t i;
2988 
2989 	/*
2990 	 * Step 19: poll for firmware completion (GENCOMM port set
2991 	 * to the ones complement of T3_MAGIC_NUMBER).
2992 	 *
2993 	 * While we're at it, we also read the MAC address register;
2994 	 * at some stage the firmware will load this with the
2995 	 * factory-set value.
2996 	 *
2997 	 * When both the magic number and the MAC address are set,
2998 	 * we're done; but we impose a time limit of one second
2999 	 * (1000*1000us) in case the firmware fails in some fashion
3000 	 * or the SEEPROM that provides that MAC address isn't fitted.
3001 	 *
3002 	 * After the first time through (chip state != INITIAL), we
3003 	 * don't need the MAC address to be set (we've already got it
3004 	 * or not, from the first time), so we don't wait for it, but
3005 	 * we still have to wait for the T3_MAGIC_NUMBER.
3006 	 *
3007 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3008 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3009 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3010 	 * it work correctly on both big- and little-endian hosts.
3011 	 */
3012 	for (i = 0; i < 1000; ++i) {
3013 		drv_usecwait(1000);
3014 		gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3015 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3016 #ifdef BGE_IPMI_ASF
3017 		if (!bgep->asf_enabled) {
3018 #endif
3019 			if (gen != ~T3_MAGIC_NUMBER)
3020 				continue;
3021 #ifdef BGE_IPMI_ASF
3022 		}
3023 #endif
3024 		if (mac != 0ULL)
3025 			break;
3026 		if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3027 			break;
3028 	}
3029 
3030 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3031 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3032 	    (void *)bgep, gen, i));
3033 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3034 	    mac, magic));
3035 
3036 	return (mac);
3037 }
3038 
3039 /*
3040  * Maximum times of trying to get the NVRAM access lock
3041  * by calling bge_nvmem_acquire()
3042  */
3043 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3044 
3045 #ifdef BGE_IPMI_ASF
3046 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3047 #else
3048 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3049 #endif
3050 #pragma	no_inline(bge_chip_reset)
3051 
3052 int
3053 #ifdef BGE_IPMI_ASF
3054 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3055 #else
3056 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3057 #endif
3058 {
3059 	chip_id_t chipid;
3060 	uint64_t mac;
3061 	uint64_t magic;
3062 	uint32_t modeflags;
3063 	uint32_t mhcr;
3064 	uint32_t sx0;
3065 	uint32_t i, tries;
3066 #ifdef BGE_IPMI_ASF
3067 	uint32_t mailbox;
3068 #endif
3069 	int retval = DDI_SUCCESS;
3070 
3071 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3072 		(void *)bgep, enable_dma));
3073 
3074 	ASSERT(mutex_owned(bgep->genlock));
3075 
3076 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3077 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3078 
3079 	/*
3080 	 * Do we need to stop the chip cleanly before resetting?
3081 	 */
3082 	switch (bgep->bge_chip_state) {
3083 	default:
3084 		_NOTE(NOTREACHED)
3085 		return (DDI_FAILURE);
3086 
3087 	case BGE_CHIP_INITIAL:
3088 	case BGE_CHIP_STOPPED:
3089 	case BGE_CHIP_RESET:
3090 		break;
3091 
3092 	case BGE_CHIP_RUNNING:
3093 	case BGE_CHIP_ERROR:
3094 	case BGE_CHIP_FAULT:
3095 		bge_chip_stop(bgep, B_FALSE);
3096 		break;
3097 	}
3098 
3099 #ifdef BGE_IPMI_ASF
3100 	if (bgep->asf_enabled) {
3101 #ifdef __sparc
3102 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3103 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3104 			MHCR_MASK_INTERRUPT_MODE |
3105 			MHCR_MASK_PCI_INT_OUTPUT |
3106 			MHCR_CLEAR_INTERRUPT_INTA |
3107 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3108 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3109 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3110 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3111 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3112 			MEMORY_ARBITER_ENABLE);
3113 #endif
3114 		if (asf_mode == ASF_MODE_INIT) {
3115 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3116 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3117 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3118 		}
3119 	}
3120 #endif
3121 	/*
3122 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3123 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3124 	 *
3125 	 * Before reset Core clock,it is
3126 	 * also required to initialize the Memory Arbiter as specified in step9
3127 	 * and Misc Host Control Register as specified in step-13
3128 	 * Step 4-5: reset Core clock & wait for completion
3129 	 * Steps 6-8: are done by bge_chip_cfg_init()
3130 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3131 	 */
3132 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3133 		retval = DDI_FAILURE;
3134 
3135 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3136 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3137 	    MHCR_MASK_INTERRUPT_MODE |
3138 	    MHCR_MASK_PCI_INT_OUTPUT |
3139 	    MHCR_CLEAR_INTERRUPT_INTA;
3140 #ifdef  _BIG_ENDIAN
3141 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3142 #endif  /* _BIG_ENDIAN */
3143 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3144 #ifdef BGE_IPMI_ASF
3145 	if (bgep->asf_enabled)
3146 		bgep->asf_wordswapped = B_FALSE;
3147 #endif
3148 	/*
3149 	 * NVRAM Corruption Workaround
3150 	 */
3151 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3152 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3153 			break;
3154 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3155 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3156 			bgep->ifname));
3157 
3158 #ifdef BGE_IPMI_ASF
3159 	if (!bgep->asf_enabled) {
3160 #endif
3161 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3162 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3163 #ifdef BGE_IPMI_ASF
3164 	}
3165 #endif
3166 
3167 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3168 		retval = DDI_FAILURE;
3169 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3170 
3171 	/*
3172 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3173 	 * a bit set to avoid a fifo overflow/underflow bug.
3174 	 */
3175 	if ((bgep->chipid.chip_label == 5721) ||
3176 		(bgep->chipid.chip_label == 5751) ||
3177 		(bgep->chipid.chip_label == 5752) ||
3178 		(bgep->chipid.chip_label == 5755) ||
3179 		(bgep->chipid.chip_label == 5789))
3180 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3181 
3182 
3183 	/*
3184 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3185 	 * not be changed.
3186 	 */
3187 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3188 		retval = DDI_FAILURE;
3189 
3190 	/*
3191 	 * Steps 10-11: configure PIO endianness options and
3192 	 * enable indirect register access -- already done
3193 	 * Steps 12-13: enable writing to the PCI state & clock
3194 	 * control registers -- not required; we aren't going to
3195 	 * use those features.
3196 	 * Steps 14-15: Configure DMA endianness options.  See
3197 	 * the comments on the setting of the MHCR above.
3198 	 */
3199 #ifdef	_BIG_ENDIAN
3200 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3201 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3202 #else
3203 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3204 #endif	/* _BIG_ENDIAN */
3205 #ifdef BGE_IPMI_ASF
3206 	if (bgep->asf_enabled)
3207 		modeflags |= MODE_HOST_STACK_UP;
3208 #endif
3209 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3210 
3211 #ifdef BGE_IPMI_ASF
3212 	if (bgep->asf_enabled) {
3213 #ifdef __sparc
3214 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3215 			MEMORY_ARBITER_ENABLE |
3216 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3217 #endif
3218 
3219 #ifdef  BGE_NETCONSOLE
3220 		if (!bgep->asf_newhandshake) {
3221 			if ((asf_mode == ASF_MODE_INIT) ||
3222 			(asf_mode == ASF_MODE_POST_INIT)) {
3223 				bge_asf_post_reset_old_mode(bgep,
3224 					BGE_INIT_RESET);
3225 			} else {
3226 				bge_asf_post_reset_old_mode(bgep,
3227 					BGE_SHUTDOWN_RESET);
3228 			}
3229 		}
3230 #endif
3231 
3232 		/* Wait for NVRAM init */
3233 		i = 0;
3234 		drv_usecwait(5000);
3235 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3236 
3237 		while ((mailbox != (uint32_t)
3238 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3239 			(i < 10000)) {
3240 			drv_usecwait(100);
3241 			mailbox = bge_nic_get32(bgep,
3242 				BGE_FIRMWARE_MAILBOX);
3243 			i++;
3244 		}
3245 
3246 #ifndef BGE_NETCONSOLE
3247 		if (!bgep->asf_newhandshake) {
3248 			if ((asf_mode == ASF_MODE_INIT) ||
3249 				(asf_mode == ASF_MODE_POST_INIT)) {
3250 
3251 				bge_asf_post_reset_old_mode(bgep,
3252 					BGE_INIT_RESET);
3253 			} else {
3254 				bge_asf_post_reset_old_mode(bgep,
3255 					BGE_SHUTDOWN_RESET);
3256 			}
3257 		}
3258 #endif
3259 	}
3260 #endif
3261 	/*
3262 	 * Steps 16-17: poll for firmware completion
3263 	 */
3264 	mac = bge_poll_firmware(bgep);
3265 
3266 	/*
3267 	 * Step 18: enable external memory -- doesn't apply.
3268 	 *
3269 	 * However we take the opportunity to set the MLCR anyway, as
3270 	 * this register also controls the SEEPROM auto-access method
3271 	 * which we may want to use later ...
3272 	 *
3273 	 * The proper value here depends on the way the chip is wired
3274 	 * into the circuit board, as this register *also* controls which
3275 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3276 	 * values driven onto those pins!
3277 	 *
3278 	 * See also step 74 in the PRM ...
3279 	 */
3280 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3281 	    bgep->chipid.bge_mlcr_default);
3282 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3283 
3284 	/*
3285 	 * Step 20: clear the Ethernet MAC mode register
3286 	 */
3287 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3288 
3289 	/*
3290 	 * Step 21: restore cache-line-size, latency timer, and
3291 	 * subsystem ID registers to their original values (not
3292 	 * those read into the local structure <chipid>, 'cos
3293 	 * that was after they were cleared by the RESET).
3294 	 *
3295 	 * Note: the Subsystem Vendor/Device ID registers are not
3296 	 * directly writable in config space, so we use the shadow
3297 	 * copy in "Page Zero" of register space to restore them
3298 	 * both in one go ...
3299 	 */
3300 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3301 		bgep->chipid.clsize);
3302 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3303 		bgep->chipid.latency);
3304 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3305 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3306 
3307 	/*
3308 	 * The SEND INDEX registers should be reset to zero by the
3309 	 * global chip reset; if they're not, there'll be trouble
3310 	 * later on.
3311 	 */
3312 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3313 	if (sx0 != 0) {
3314 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3315 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3316 		retval = DDI_FAILURE;
3317 	}
3318 
3319 	/* Enable MSI code */
3320 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3321 		bge_reg_set32(bgep, MSI_MODE_REG,
3322 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3323 
3324 	/*
3325 	 * On the first time through, save the factory-set MAC address
3326 	 * (if any).  If bge_poll_firmware() above didn't return one
3327 	 * (from a chip register) consider looking in the attached NV
3328 	 * memory device, if any.  Once we have it, we save it in both
3329 	 * register-image (64-bit) and byte-array forms.  All-zero and
3330 	 * all-one addresses are not valid, and we refuse to stash those.
3331 	 */
3332 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3333 		if (mac == 0ULL)
3334 			mac = bge_get_nvmac(bgep);
3335 		if (mac != 0ULL && mac != ~0ULL) {
3336 			bgep->chipid.hw_mac_addr = mac;
3337 			for (i = ETHERADDRL; i-- != 0; ) {
3338 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3339 				mac >>= 8;
3340 			}
3341 			bgep->chipid.vendor_addr.set = B_TRUE;
3342 		}
3343 	}
3344 
3345 #ifdef BGE_IPMI_ASF
3346 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3347 		if (asf_mode != ASF_MODE_NONE) {
3348 			if ((asf_mode == ASF_MODE_INIT) ||
3349 				(asf_mode == ASF_MODE_POST_INIT)) {
3350 
3351 				bge_asf_post_reset_new_mode(bgep,
3352 					BGE_INIT_RESET);
3353 			} else {
3354 				bge_asf_post_reset_new_mode(bgep,
3355 					BGE_SHUTDOWN_RESET);
3356 			}
3357 		}
3358 	}
3359 #endif
3360 
3361 	/*
3362 	 * Record the new state
3363 	 */
3364 	bgep->chip_resets += 1;
3365 	bgep->bge_chip_state = BGE_CHIP_RESET;
3366 	return (retval);
3367 }
3368 
3369 /*
3370  * bge_chip_start() -- start the chip transmitting and/or receiving,
3371  * including enabling interrupts
3372  */
3373 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3374 #pragma	no_inline(bge_chip_start)
3375 
3376 int
3377 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3378 {
3379 	uint32_t coalmode;
3380 	uint32_t ledctl;
3381 	uint32_t mtu;
3382 	uint32_t maxring;
3383 	uint32_t stats_mask;
3384 	uint32_t dma_wrprio;
3385 	uint64_t ring;
3386 	int retval = DDI_SUCCESS;
3387 
3388 	BGE_TRACE(("bge_chip_start($%p)",
3389 	    (void *)bgep));
3390 
3391 	ASSERT(mutex_owned(bgep->genlock));
3392 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3393 
3394 	/*
3395 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3396 	 * The document specifies 95 separate steps to fully
3397 	 * initialise the chip!!!!
3398 	 *
3399 	 * The reset code above has already got us as far as step
3400 	 * 21, so we continue with ...
3401 	 *
3402 	 * Step 22: clear the MAC statistics block
3403 	 * (0x0300-0x0aff in NIC-local memory)
3404 	 */
3405 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3406 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3407 		    NIC_MEM_STATISTICS_SIZE);
3408 
3409 	/*
3410 	 * Step 23: clear the status block (in host memory)
3411 	 */
3412 	DMA_ZERO(bgep->status_block);
3413 
3414 	/*
3415 	 * Step 24: set DMA read/write control register
3416 	 */
3417 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3418 	    bgep->chipid.bge_dma_rwctrl);
3419 
3420 	/*
3421 	 * Step 25: Configure DMA endianness -- already done (16/17)
3422 	 * Step 26: Configure Host-Based Send Rings
3423 	 * Step 27: Indicate Host Stack Up
3424 	 */
3425 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3426 	    MODE_HOST_SEND_BDS |
3427 	    MODE_HOST_STACK_UP);
3428 
3429 	/*
3430 	 * Step 28: Configure checksum options:
3431 	 *	Solaris supports the hardware default checksum options.
3432 	 *
3433 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3434 	 */
3435 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3436 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3437 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3438 
3439 	/*
3440 	 * Step 29: configure Timer Prescaler.  The value is always the
3441 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3442 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3443 	 * for the whole chip!
3444 	 */
3445 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3446 
3447 	/*
3448 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3449 	 *
3450 	 * If the mbuf_length is specified as 0, we just leave these at
3451 	 * their hardware defaults, rather than explicitly setting them.
3452 	 * As the Broadcom HRM,driver better not change the parameters
3453 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3454 	 */
3455 	if ((bgep->chipid.mbuf_length != 0) &&
3456 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3457 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3458 			    bgep->chipid.mbuf_base);
3459 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3460 			    bgep->chipid.mbuf_length);
3461 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3462 			    DMAD_POOL_BASE_DEFAULT);
3463 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3464 			    DMAD_POOL_LENGTH_DEFAULT);
3465 	}
3466 
3467 	/*
3468 	 * Step 32: configure MAC memory pool watermarks
3469 	 */
3470 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3471 	    bgep->chipid.mbuf_lo_water_rdma);
3472 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3473 	    bgep->chipid.mbuf_lo_water_rmac);
3474 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3475 	    bgep->chipid.mbuf_hi_water);
3476 
3477 	/*
3478 	 * Step 33: configure DMA resource watermarks
3479 	 */
3480 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3481 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3482 		    bge_dmad_lo_water);
3483 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3484 		    bge_dmad_hi_water);
3485 	}
3486 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3487 
3488 	/*
3489 	 * Steps 34-36: enable buffer manager & internal h/w queues
3490 	 */
3491 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3492 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3493 		retval = DDI_FAILURE;
3494 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3495 		retval = DDI_FAILURE;
3496 
3497 	/*
3498 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3499 	 */
3500 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3501 	    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3502 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3503 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3504 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3505 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3506 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3507 	}
3508 
3509 	/*
3510 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3511 	 */
3512 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3513 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3514 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3515 		    bge_replenish_jumbo);
3516 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3517 		    bge_replenish_mini);
3518 	}
3519 
3520 	/*
3521 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3522 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3523 	 */
3524 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3525 		maxring = BGE_SEND_RINGS_MAX;
3526 	else
3527 		maxring = BGE_SEND_RINGS_MAX_5705;
3528 	for (ring = 0; ring < maxring; ++ring) {
3529 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3530 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3531 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3532 		    &bgep->send[ring].hw_rcb);
3533 	}
3534 
3535 	/*
3536 	 * Steps 44-45: initialise Receive Return Rings
3537 	 * (0x0200-0x02ff in NIC-local memory)
3538 	 */
3539 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3540 		maxring = BGE_RECV_RINGS_MAX;
3541 	else
3542 		maxring = BGE_RECV_RINGS_MAX_5705;
3543 	for (ring = 0; ring < maxring; ++ring)
3544 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3545 		    &bgep->recv[ring].hw_rcb);
3546 
3547 	/*
3548 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3549 	 */
3550 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3551 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3552 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3553 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3554 	}
3555 	/*
3556 	 * Step 47: configure the MAC unicast address
3557 	 * Step 48: configure the random backoff seed
3558 	 * Step 96: set up multicast filters
3559 	 */
3560 #ifdef BGE_IPMI_ASF
3561 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3562 #else
3563 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3564 #endif
3565 		retval = DDI_FAILURE;
3566 
3567 	/*
3568 	 * Step 49: configure the MTU
3569 	 */
3570 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3571 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3572 
3573 	/*
3574 	 * Step 50: configure the IPG et al
3575 	 */
3576 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3577 
3578 	/*
3579 	 * Step 51: configure the default Rx Return Ring
3580 	 */
3581 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3582 
3583 	/*
3584 	 * Steps 52-54: configure Receive List Placement,
3585 	 * and enable Receive List Placement Statistics
3586 	 */
3587 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3588 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
3589 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3590 	case MHCR_CHIP_ASIC_REV_5700:
3591 	case MHCR_CHIP_ASIC_REV_5701:
3592 	case MHCR_CHIP_ASIC_REV_5703:
3593 	case MHCR_CHIP_ASIC_REV_5704:
3594 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3595 		break;
3596 	case MHCR_CHIP_ASIC_REV_5705:
3597 		break;
3598 	default:
3599 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3600 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3601 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3602 		break;
3603 	}
3604 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3605 
3606 	if (bgep->chipid.rx_rings > 1)
3607 		bge_init_recv_rule(bgep);
3608 
3609 	/*
3610 	 * Steps 55-56: enable Send Data Initiator Statistics
3611 	 */
3612 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3613 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3614 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3615 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3616 	} else {
3617 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3618 		    SEND_INIT_STATS_ENABLE);
3619 	}
3620 	/*
3621 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3622 	 */
3623 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3624 		retval = DDI_FAILURE;
3625 
3626 	/*
3627 	 * Steps 59-62: initialise Host Coalescing parameters
3628 	 */
3629 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3630 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3631 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3632 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3633 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3634 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3635 		    bge_tx_count_intr);
3636 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3637 		    bge_tx_ticks_intr);
3638 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3639 		    bge_rx_count_intr);
3640 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3641 		    bge_rx_ticks_intr);
3642 	}
3643 
3644 	/*
3645 	 * Steps 63-64: initialise status block & statistics
3646 	 * host memory addresses
3647 	 * The statistic block does not exist in some chipsets
3648 	 * Step 65: initialise Statistics Coalescing Tick Counter
3649 	 */
3650 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3651 	    bgep->status_block.cookie.dmac_laddress);
3652 
3653 	/*
3654 	 * Steps 66-67: initialise status block & statistics
3655 	 * NIC-local memory addresses
3656 	 */
3657 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3658 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3659 		    bgep->statistics.cookie.dmac_laddress);
3660 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3661 		    STATISTICS_TICKS_DEFAULT);
3662 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3663 		    NIC_MEM_STATUS_BLOCK);
3664 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3665 		    NIC_MEM_STATISTICS);
3666 	}
3667 
3668 	/*
3669 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3670 	 * Completion Engine, the Receive List Placement Engine, and the
3671 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3672 	 * and BCM5715.
3673 	 */
3674 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3675 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3676 		coalmode = COALESCE_64_BYTE_STATUS;
3677 	else
3678 		coalmode = 0;
3679 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3680 		retval = DDI_FAILURE;
3681 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3682 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3683 		retval = DDI_FAILURE;
3684 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3685 		retval = DDI_FAILURE;
3686 
3687 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3688 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3689 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3690 			retval = DDI_FAILURE;
3691 
3692 	/*
3693 	 * Step 72: Enable MAC DMA engines
3694 	 * Step 73: Clear & enable MAC statistics
3695 	 */
3696 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3697 	    ETHERNET_MODE_ENABLE_FHDE |
3698 	    ETHERNET_MODE_ENABLE_RDE |
3699 	    ETHERNET_MODE_ENABLE_TDE);
3700 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3701 	    ETHERNET_MODE_ENABLE_TX_STATS |
3702 	    ETHERNET_MODE_ENABLE_RX_STATS |
3703 	    ETHERNET_MODE_CLEAR_TX_STATS |
3704 	    ETHERNET_MODE_CLEAR_RX_STATS);
3705 
3706 	/*
3707 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3708 	 * Register); not required, as we set up the MLCR in step 10
3709 	 * (part of the reset code) above.
3710 	 *
3711 	 * Step 75: clear Interrupt Mailbox 0
3712 	 */
3713 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3714 
3715 	/*
3716 	 * Steps 76-87: Gentlemen, start your engines ...
3717 	 *
3718 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3719 	 * the Read DMA Engine, Receive Data Completion Engine,
3720 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3721 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3722 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3723 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3724 	 *
3725 	 * Beware exhaust fumes?
3726 	 */
3727 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3728 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3729 			retval = DDI_FAILURE;
3730 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
3731 	    ALL_DMA_ATTN_BITS;
3732 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3733 	    MHCR_CHIP_ASIC_REV_5755) {
3734 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
3735 	}
3736 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3737 	    dma_wrprio))
3738 		retval = DDI_FAILURE;
3739 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3740 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3741 		retval = DDI_FAILURE;
3742 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3743 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3744 		retval = DDI_FAILURE;
3745 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3746 		if (!bge_chip_enable_engine(bgep,
3747 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3748 			retval = DDI_FAILURE;
3749 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3750 		retval = DDI_FAILURE;
3751 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3752 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3753 		retval = DDI_FAILURE;
3754 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3755 	    RCV_BD_DISABLED_RING_ATTN))
3756 		retval = DDI_FAILURE;
3757 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3758 	    RCV_DATA_BD_ILL_RING_ATTN))
3759 		retval = DDI_FAILURE;
3760 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3761 		retval = DDI_FAILURE;
3762 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3763 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3764 		retval = DDI_FAILURE;
3765 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3766 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3767 		retval = DDI_FAILURE;
3768 
3769 	/*
3770 	 * Step 88: download firmware -- doesn't apply
3771 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3772 	 */
3773 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3774 		retval = DDI_FAILURE;
3775 #ifdef BGE_IPMI_ASF
3776 	if (!bgep->asf_enabled) {
3777 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3778 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3779 			retval = DDI_FAILURE;
3780 	} else {
3781 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3782 			retval = DDI_FAILURE;
3783 	}
3784 #else
3785 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3786 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3787 		retval = DDI_FAILURE;
3788 #endif
3789 
3790 	/*
3791 	 * Step 91: disable auto-polling of PHY status
3792 	 */
3793 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3794 
3795 	/*
3796 	 * Step 92: configure D0 power state (not required)
3797 	 * Step 93: initialise LED control register ()
3798 	 */
3799 	ledctl = LED_CONTROL_DEFAULT;
3800 	switch (bgep->chipid.device) {
3801 	case DEVICE_ID_5700:
3802 	case DEVICE_ID_5700x:
3803 	case DEVICE_ID_5701:
3804 		/*
3805 		 * Switch to 5700 (MAC) mode on these older chips
3806 		 */
3807 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3808 		ledctl |= LED_CONTROL_LED_MODE_5700;
3809 		break;
3810 
3811 	default:
3812 		break;
3813 	}
3814 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3815 
3816 	/*
3817 	 * Step 94: activate link
3818 	 */
3819 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3820 
3821 	/*
3822 	 * Step 95: set up physical layer (PHY/SerDes)
3823 	 * restart autoneg (if required)
3824 	 */
3825 	if (reset_phys)
3826 		if (bge_phys_update(bgep) == DDI_FAILURE)
3827 			retval = DDI_FAILURE;
3828 
3829 	/*
3830 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3831 	 */
3832 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3833 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3834 		    bgep->buff[ring].rf_next);
3835 
3836 	/*
3837 	 * MSI bits:The least significant MSI 16-bit word.
3838 	 * ISR will be triggered different.
3839 	 */
3840 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3841 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3842 
3843 	/*
3844 	 * Extra step (DSG): select which interrupts are enabled
3845 	 *
3846 	 * Program the Ethernet MAC engine to signal attention on
3847 	 * Link Change events, then enable interrupts on MAC, DMA,
3848 	 * and FLOW attention signals.
3849 	 */
3850 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3851 	    ETHERNET_EVENT_LINK_INT |
3852 	    ETHERNET_STATUS_PCS_ERROR_INT);
3853 #ifdef BGE_IPMI_ASF
3854 	if (bgep->asf_enabled) {
3855 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3856 		    MODE_INT_ON_FLOW_ATTN |
3857 		    MODE_INT_ON_DMA_ATTN |
3858 		    MODE_HOST_STACK_UP|
3859 		    MODE_INT_ON_MAC_ATTN);
3860 	} else {
3861 #endif
3862 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3863 		    MODE_INT_ON_FLOW_ATTN |
3864 		    MODE_INT_ON_DMA_ATTN |
3865 		    MODE_INT_ON_MAC_ATTN);
3866 #ifdef BGE_IPMI_ASF
3867 	}
3868 #endif
3869 
3870 	/*
3871 	 * Step 97: enable PCI interrupts!!!
3872 	 */
3873 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3874 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3875 		    MHCR_MASK_PCI_INT_OUTPUT);
3876 
3877 	/*
3878 	 * All done!
3879 	 */
3880 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3881 	return (retval);
3882 }
3883 
3884 
3885 /*
3886  * ========== Hardware interrupt handler ==========
3887  */
3888 
3889 #undef	BGE_DBG
3890 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3891 
3892 /*
3893  * Sync the status block, then atomically clear the specified bits in
3894  * the <flags-and-tag> field of the status block.
3895  * the <flags> word of the status block, returning the value of the
3896  * <tag> and the <flags> before the bits were cleared.
3897  */
3898 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
3899 #pragma	inline(bge_status_sync)
3900 
3901 static int
3902 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
3903 {
3904 	bge_status_t *bsp;
3905 	int retval;
3906 
3907 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3908 	    (void *)bgep, bits));
3909 
3910 	ASSERT(bgep->bge_guard == BGE_GUARD);
3911 
3912 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3913 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
3914 	if (retval != DDI_FM_OK)
3915 		return (retval);
3916 
3917 	bsp = DMA_VPTR(bgep->status_block);
3918 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
3919 
3920 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
3921 	    (void *)bgep, bits, *flags));
3922 
3923 	return (retval);
3924 }
3925 
3926 void bge_wake_factotum(bge_t *bgep);
3927 #pragma	inline(bge_wake_factotum)
3928 
3929 void
3930 bge_wake_factotum(bge_t *bgep)
3931 {
3932 	mutex_enter(bgep->softintrlock);
3933 	if (bgep->factotum_flag == 0) {
3934 		bgep->factotum_flag = 1;
3935 		ddi_trigger_softintr(bgep->factotum_id);
3936 	}
3937 	mutex_exit(bgep->softintrlock);
3938 }
3939 
3940 /*
3941  *	bge_intr() -- handle chip interrupts
3942  */
3943 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
3944 #pragma	no_inline(bge_intr)
3945 
3946 uint_t
3947 bge_intr(caddr_t arg1, caddr_t arg2)
3948 {
3949 	bge_t *bgep = (bge_t *)arg1;		/* private device info	*/
3950 	bge_status_t *bsp;
3951 	uint64_t flags;
3952 	uint32_t regval;
3953 	uint_t result;
3954 	int retval, loop_cnt = 0;
3955 
3956 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
3957 
3958 	/*
3959 	 * GLD v2 checks that s/w setup is complete before passing
3960 	 * interrupts to this routine, thus eliminating the old
3961 	 * (and well-known) race condition around ddi_add_intr()
3962 	 */
3963 	ASSERT(bgep->progress & PROGRESS_HWINT);
3964 
3965 	result = DDI_INTR_UNCLAIMED;
3966 	mutex_enter(bgep->genlock);
3967 
3968 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3969 		/*
3970 		 * Check whether chip's says it's asserting #INTA;
3971 		 * if not, don't process or claim the interrupt.
3972 		 *
3973 		 * Note that the PCI signal is active low, so the
3974 		 * bit is *zero* when the interrupt is asserted.
3975 		 */
3976 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
3977 		if (regval & MLCR_INTA_STATE) {
3978 			if (bge_check_acc_handle(bgep, bgep->io_handle)
3979 			    != DDI_FM_OK)
3980 				goto chip_stop;
3981 			mutex_exit(bgep->genlock);
3982 			return (result);
3983 		}
3984 
3985 		/*
3986 		 * Block further PCI interrupts ...
3987 		 */
3988 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
3989 		    MHCR_MASK_PCI_INT_OUTPUT);
3990 
3991 	} else {
3992 		/*
3993 		 * Check MSI status
3994 		 */
3995 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
3996 		if (regval & MSI_ERROR_ATTENTION) {
3997 			BGE_REPORT((bgep, "msi error attention,"
3998 			    " status=0x%x", regval));
3999 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
4000 		}
4001 	}
4002 
4003 	result = DDI_INTR_CLAIMED;
4004 
4005 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
4006 
4007 	/*
4008 	 * Sync the status block and grab the flags-n-tag from it.
4009 	 * We count the number of interrupts where there doesn't
4010 	 * seem to have been a DMA update of the status block; if
4011 	 * it *has* been updated, the counter will be cleared in
4012 	 * the while() loop below ...
4013 	 */
4014 	bgep->missed_dmas += 1;
4015 	bsp = DMA_VPTR(bgep->status_block);
4016 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4017 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4018 			/*
4019 			 * bge_chip_stop() may have freed dma area etc
4020 			 * while we were in this interrupt handler -
4021 			 * better not call bge_status_sync()
4022 			 */
4023 			(void) bge_check_acc_handle(bgep,
4024 			    bgep->io_handle);
4025 			mutex_exit(bgep->genlock);
4026 			return (DDI_INTR_CLAIMED);
4027 		}
4028 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4029 		    &flags);
4030 		if (retval != DDI_FM_OK) {
4031 			bgep->bge_dma_error = B_TRUE;
4032 			goto chip_stop;
4033 		}
4034 
4035 		if (!(flags & STATUS_FLAG_UPDATED))
4036 			break;
4037 
4038 		/*
4039 		 * Tell the chip that we're processing the interrupt
4040 		 */
4041 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4042 		    INTERRUPT_MBOX_DISABLE(flags));
4043 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4044 		    DDI_FM_OK)
4045 			goto chip_stop;
4046 
4047 		/*
4048 		 * Drop the mutex while we:
4049 		 * 	Receive any newly-arrived packets
4050 		 *	Recycle any newly-finished send buffers
4051 		 */
4052 		bgep->bge_intr_running = B_TRUE;
4053 		mutex_exit(bgep->genlock);
4054 		bge_receive(bgep, bsp);
4055 		bge_recycle(bgep, bsp);
4056 		mutex_enter(bgep->genlock);
4057 		bgep->bge_intr_running = B_FALSE;
4058 
4059 		/*
4060 		 * Tell the chip we've finished processing, and
4061 		 * give it the tag that we got from the status
4062 		 * block earlier, so that it knows just how far
4063 		 * we've gone.  If it's got more for us to do,
4064 		 * it will now update the status block and try
4065 		 * to assert an interrupt (but we've got the
4066 		 * #INTA blocked at present).  If we see the
4067 		 * update, we'll loop around to do some more.
4068 		 * Eventually we'll get out of here ...
4069 		 */
4070 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4071 		    INTERRUPT_MBOX_ENABLE(flags));
4072 		bgep->missed_dmas = 0;
4073 	}
4074 
4075 	/*
4076 	 * Check for exceptional conditions that we need to handle
4077 	 *
4078 	 * Link status changed
4079 	 * Status block not updated
4080 	 */
4081 	if (flags & STATUS_FLAG_LINK_CHANGED)
4082 		bge_wake_factotum(bgep);
4083 
4084 	if (bgep->missed_dmas) {
4085 		/*
4086 		 * Probably due to the internal status tag not
4087 		 * being reset.  Force a status block update now;
4088 		 * this should ensure that we get an update and
4089 		 * a new interrupt.  After that, we should be in
4090 		 * sync again ...
4091 		 */
4092 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4093 		    "not updated?", flags));
4094 		bgep->missed_updates++;
4095 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4096 		    COALESCE_NOW);
4097 
4098 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4099 			/*
4100 			 * If this happens multiple times in a row,
4101 			 * it means DMA is just not working.  Maybe
4102 			 * the chip's failed, or maybe there's a
4103 			 * problem on the PCI bus or in the host-PCI
4104 			 * bridge (Tomatillo).
4105 			 *
4106 			 * At all events, we want to stop further
4107 			 * interrupts and let the recovery code take
4108 			 * over to see whether anything can be done
4109 			 * about it ...
4110 			 */
4111 			bge_fm_ereport(bgep,
4112 			    DDI_FM_DEVICE_BADINT_LIMIT);
4113 			goto chip_stop;
4114 		}
4115 	}
4116 
4117 	/*
4118 	 * Reenable assertion of #INTA, unless there's a DMA fault
4119 	 */
4120 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4121 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4122 		    MHCR_MASK_PCI_INT_OUTPUT);
4123 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4124 		    DDI_FM_OK)
4125 			goto chip_stop;
4126 	}
4127 
4128 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4129 		goto chip_stop;
4130 
4131 	mutex_exit(bgep->genlock);
4132 	return (result);
4133 
4134 chip_stop:
4135 #ifdef BGE_IPMI_ASF
4136 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4137 		/*
4138 		 * We must stop ASF heart beat before
4139 		 * bge_chip_stop(), otherwise some
4140 		 * computers (ex. IBM HS20 blade
4141 		 * server) may crash.
4142 		 */
4143 		bge_asf_update_status(bgep);
4144 		bge_asf_stop_timer(bgep);
4145 		bgep->asf_status = ASF_STAT_STOP;
4146 
4147 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4148 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4149 	}
4150 #endif
4151 	bge_chip_stop(bgep, B_TRUE);
4152 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4153 	mutex_exit(bgep->genlock);
4154 	return (result);
4155 }
4156 
4157 /*
4158  * ========== Factotum, implemented as a softint handler ==========
4159  */
4160 
4161 #undef	BGE_DBG
4162 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4163 
4164 static void bge_factotum_error_handler(bge_t *bgep);
4165 #pragma	no_inline(bge_factotum_error_handler)
4166 
4167 static void
4168 bge_factotum_error_handler(bge_t *bgep)
4169 {
4170 	uint32_t flow;
4171 	uint32_t rdma;
4172 	uint32_t wdma;
4173 	uint32_t tmac;
4174 	uint32_t rmac;
4175 	uint32_t rxrs;
4176 	uint32_t txrs = 0;
4177 
4178 	ASSERT(mutex_owned(bgep->genlock));
4179 
4180 	/*
4181 	 * Read all the registers that show the possible
4182 	 * reasons for the ERROR bit to be asserted
4183 	 */
4184 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4185 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4186 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4187 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4188 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4189 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4190 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4191 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4192 
4193 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4194 	    (void *)bgep, flow, rdma, wdma));
4195 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4196 	    (void *)bgep, tmac, rmac, rxrs, txrs));
4197 
4198 	/*
4199 	 * For now, just clear all the errors ...
4200 	 */
4201 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4202 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4203 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4204 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4205 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4206 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4207 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4208 }
4209 
4210 /*
4211  * Handler for hardware link state change.
4212  *
4213  * When this routine is called, the hardware link state has changed
4214  * and the new state is reflected in the param_* variables.  Here
4215  * we must update the softstate and reprogram the MAC to match.
4216  */
4217 static void bge_factotum_link_handler(bge_t *bgep);
4218 #pragma	no_inline(bge_factotum_link_handler)
4219 
4220 static void
4221 bge_factotum_link_handler(bge_t *bgep)
4222 {
4223 	ASSERT(mutex_owned(bgep->genlock));
4224 
4225 	/*
4226 	 * Update the s/w link_state
4227 	 */
4228 	if (bgep->param_link_up)
4229 		bgep->link_state = LINK_STATE_UP;
4230 	else
4231 		bgep->link_state = LINK_STATE_DOWN;
4232 
4233 	/*
4234 	 * Reprogram the MAC modes to match
4235 	 */
4236 	bge_sync_mac_modes(bgep);
4237 }
4238 
4239 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4240 #pragma	no_inline(bge_factotum_link_check)
4241 
4242 static boolean_t
4243 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4244 {
4245 	boolean_t check;
4246 	uint64_t flags;
4247 	uint32_t tmac_status;
4248 
4249 	ASSERT(mutex_owned(bgep->genlock));
4250 
4251 	/*
4252 	 * Get & clear the writable status bits in the Tx status register
4253 	 * (some bits are write-1-to-clear, others are just readonly).
4254 	 */
4255 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4256 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4257 
4258 	/*
4259 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4260 	 */
4261 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4262 	    STATUS_FLAG_LINK_CHANGED, &flags);
4263 	if (*dma_state != DDI_FM_OK)
4264 		return (B_FALSE);
4265 
4266 	/*
4267 	 * Clear any errors flagged in the status block ...
4268 	 */
4269 	if (flags & STATUS_FLAG_ERROR)
4270 		bge_factotum_error_handler(bgep);
4271 
4272 	/*
4273 	 * We need to check the link status if:
4274 	 *	the status block says there's been a link change
4275 	 *	or there's any discrepancy between the various
4276 	 *	flags indicating the link state (link_state,
4277 	 *	param_link_up, and the LINK STATE bit in the
4278 	 *	Transmit MAC status register).
4279 	 */
4280 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4281 	switch (bgep->link_state) {
4282 	case LINK_STATE_UP:
4283 		check |= (bgep->param_link_up == B_FALSE);
4284 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4285 		break;
4286 
4287 	case LINK_STATE_DOWN:
4288 		check |= (bgep->param_link_up != B_FALSE);
4289 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4290 		break;
4291 
4292 	default:
4293 		check = B_TRUE;
4294 		break;
4295 	}
4296 
4297 	/*
4298 	 * If <check> is false, we're sure the link hasn't changed.
4299 	 * If true, however, it's not yet definitive; we have to call
4300 	 * bge_phys_check() to determine whether the link has settled
4301 	 * into a new state yet ... and if it has, then call the link
4302 	 * state change handler.But when the chip is 5700 in Dell 6650
4303 	 * ,even if check is false, the link may have changed.So we
4304 	 * have to call bge_phys_check() to determine the link state.
4305 	 */
4306 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4307 		check = bge_phys_check(bgep);
4308 		if (check)
4309 			bge_factotum_link_handler(bgep);
4310 	}
4311 
4312 	return (check);
4313 }
4314 
4315 /*
4316  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4317  */
4318 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4319 #pragma	no_inline(bge_factotum_stall_check)
4320 
4321 static boolean_t
4322 bge_factotum_stall_check(bge_t *bgep)
4323 {
4324 	uint32_t dogval;
4325 
4326 	ASSERT(mutex_owned(bgep->genlock));
4327 
4328 	/*
4329 	 * Specific check for Tx stall ...
4330 	 *
4331 	 * The 'watchdog' counter is incremented whenever a packet
4332 	 * is queued, reset to 1 when some (but not all) buffers
4333 	 * are reclaimed, reset to 0 (disabled) when all buffers
4334 	 * are reclaimed, and shifted left here.  If it exceeds the
4335 	 * threshold value, the chip is assumed to have stalled and
4336 	 * is put into the ERROR state.  The factotum will then reset
4337 	 * it on the next pass.
4338 	 *
4339 	 * All of which should ensure that we don't get into a state
4340 	 * where packets are left pending indefinitely!
4341 	 */
4342 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4343 	if (dogval < bge_watchdog_count)
4344 		return (B_FALSE);
4345 
4346 #if !defined(BGE_NETCONSOLE)
4347 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4348 #endif
4349 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4350 	return (B_TRUE);
4351 }
4352 
4353 /*
4354  * The factotum is woken up when there's something to do that we'd rather
4355  * not do from inside a hardware interrupt handler or high-level cyclic.
4356  * Its two main tasks are:
4357  *	reset & restart the chip after an error
4358  *	check the link status whenever necessary
4359  */
4360 uint_t bge_chip_factotum(caddr_t arg);
4361 #pragma	no_inline(bge_chip_factotum)
4362 
4363 uint_t
4364 bge_chip_factotum(caddr_t arg)
4365 {
4366 	bge_t *bgep;
4367 	uint_t result;
4368 	boolean_t error;
4369 	boolean_t linkchg;
4370 	int dma_state;
4371 
4372 	bgep = (bge_t *)arg;
4373 
4374 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4375 
4376 	mutex_enter(bgep->softintrlock);
4377 	if (bgep->factotum_flag == 0) {
4378 		mutex_exit(bgep->softintrlock);
4379 		return (DDI_INTR_UNCLAIMED);
4380 	}
4381 	bgep->factotum_flag = 0;
4382 	mutex_exit(bgep->softintrlock);
4383 
4384 	result = DDI_INTR_CLAIMED;
4385 	error = B_FALSE;
4386 	linkchg = B_FALSE;
4387 
4388 	mutex_enter(bgep->genlock);
4389 	switch (bgep->bge_chip_state) {
4390 	default:
4391 		break;
4392 
4393 	case BGE_CHIP_RUNNING:
4394 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4395 		error = bge_factotum_stall_check(bgep);
4396 		if (dma_state != DDI_FM_OK) {
4397 			bgep->bge_dma_error = B_TRUE;
4398 			error = B_TRUE;
4399 		}
4400 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4401 			error = B_TRUE;
4402 		if (error)
4403 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4404 		break;
4405 
4406 	case BGE_CHIP_ERROR:
4407 		error = B_TRUE;
4408 		break;
4409 
4410 	case BGE_CHIP_FAULT:
4411 		/*
4412 		 * Fault detected, time to reset ...
4413 		 */
4414 		if (bge_autorecover) {
4415 			if (!(bgep->progress & PROGRESS_BUFS)) {
4416 				/*
4417 				 * if we can't allocate the ring buffers,
4418 				 * try later
4419 				 */
4420 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4421 					mutex_exit(bgep->genlock);
4422 					return (result);
4423 				}
4424 				bgep->progress |= PROGRESS_BUFS;
4425 			}
4426 			if (!(bgep->progress & PROGRESS_INTR)) {
4427 				bge_init_rings(bgep);
4428 				bge_intr_enable(bgep);
4429 				bgep->progress |= PROGRESS_INTR;
4430 			}
4431 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4432 				bge_init_kstats(bgep,
4433 				    ddi_get_instance(bgep->devinfo));
4434 				bgep->progress |= PROGRESS_KSTATS;
4435 			}
4436 
4437 			BGE_REPORT((bgep, "automatic recovery activated"));
4438 
4439 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4440 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4441 				error = B_TRUE;
4442 			}
4443 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4444 			    DDI_FM_OK) {
4445 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4446 				error = B_TRUE;
4447 			}
4448 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4449 			    DDI_FM_OK) {
4450 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4451 				error = B_TRUE;
4452 			}
4453 			if (error == B_FALSE) {
4454 #ifdef BGE_IPMI_ASF
4455 				if (bgep->asf_enabled &&
4456 				    bgep->asf_status != ASF_STAT_RUN) {
4457 					bgep->asf_timeout_id = timeout(
4458 					    bge_asf_heartbeat, (void *)bgep,
4459 					    drv_usectohz(
4460 					    BGE_ASF_HEARTBEAT_INTERVAL));
4461 					bgep->asf_status = ASF_STAT_RUN;
4462 				}
4463 #endif
4464 				if (!bgep->manual_reset) {
4465 					ddi_fm_service_impact(bgep->devinfo,
4466 					    DDI_SERVICE_RESTORED);
4467 				}
4468 			}
4469 		}
4470 		break;
4471 	}
4472 
4473 
4474 	/*
4475 	 * If an error is detected, stop the chip now, marking it as
4476 	 * faulty, so that it will be reset next time through ...
4477 	 *
4478 	 * Note that if intr_running is set, then bge_intr() has dropped
4479 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4480 	 * this point so have to wait until the next time the factotum runs.
4481 	 */
4482 	if (error && !bgep->bge_intr_running) {
4483 #ifdef BGE_IPMI_ASF
4484 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4485 			/*
4486 			 * We must stop ASF heart beat before bge_chip_stop(),
4487 			 * otherwise some computers (ex. IBM HS20 blade server)
4488 			 * may crash.
4489 			 */
4490 			bge_asf_update_status(bgep);
4491 			bge_asf_stop_timer(bgep);
4492 			bgep->asf_status = ASF_STAT_STOP;
4493 
4494 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4495 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4496 		}
4497 #endif
4498 		bge_chip_stop(bgep, B_TRUE);
4499 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4500 	}
4501 	mutex_exit(bgep->genlock);
4502 
4503 	/*
4504 	 * If the link state changed, tell the world about it.
4505 	 * Note: can't do this while still holding the mutex.
4506 	 */
4507 	if (linkchg)
4508 		mac_link_update(bgep->mh, bgep->link_state);
4509 	if (bgep->manual_reset) {
4510 		bgep->manual_reset = B_FALSE;
4511 	}
4512 
4513 	return (result);
4514 }
4515 
4516 /*
4517  * High-level cyclic handler
4518  *
4519  * This routine schedules a (low-level) softint callback to the
4520  * factotum, and prods the chip to update the status block (which
4521  * will cause a hardware interrupt when complete).
4522  */
4523 void bge_chip_cyclic(void *arg);
4524 #pragma	no_inline(bge_chip_cyclic)
4525 
4526 void
4527 bge_chip_cyclic(void *arg)
4528 {
4529 	bge_t *bgep;
4530 
4531 	bgep = arg;
4532 
4533 	switch (bgep->bge_chip_state) {
4534 	default:
4535 		return;
4536 
4537 	case BGE_CHIP_RUNNING:
4538 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4539 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4540 			ddi_fm_service_impact(bgep->devinfo,
4541 			    DDI_SERVICE_UNAFFECTED);
4542 		break;
4543 
4544 	case BGE_CHIP_FAULT:
4545 	case BGE_CHIP_ERROR:
4546 		break;
4547 	}
4548 
4549 	bge_wake_factotum(bgep);
4550 }
4551 
4552 
4553 /*
4554  * ========== Ioctl subfunctions ==========
4555  */
4556 
4557 #undef	BGE_DBG
4558 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4559 
4560 #if	BGE_DEBUGGING || BGE_DO_PPIO
4561 
4562 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4563 #pragma	no_inline(bge_chip_peek_cfg)
4564 
4565 static void
4566 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4567 {
4568 	uint64_t regval;
4569 	uint64_t regno;
4570 
4571 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4572 	    (void *)bgep, (void *)ppd));
4573 
4574 	regno = ppd->pp_acc_offset;
4575 
4576 	switch (ppd->pp_acc_size) {
4577 	case 1:
4578 		regval = pci_config_get8(bgep->cfg_handle, regno);
4579 		break;
4580 
4581 	case 2:
4582 		regval = pci_config_get16(bgep->cfg_handle, regno);
4583 		break;
4584 
4585 	case 4:
4586 		regval = pci_config_get32(bgep->cfg_handle, regno);
4587 		break;
4588 
4589 	case 8:
4590 		regval = pci_config_get64(bgep->cfg_handle, regno);
4591 		break;
4592 	}
4593 
4594 	ppd->pp_acc_data = regval;
4595 }
4596 
4597 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4598 #pragma	no_inline(bge_chip_poke_cfg)
4599 
4600 static void
4601 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4602 {
4603 	uint64_t regval;
4604 	uint64_t regno;
4605 
4606 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4607 	    (void *)bgep, (void *)ppd));
4608 
4609 	regno = ppd->pp_acc_offset;
4610 	regval = ppd->pp_acc_data;
4611 
4612 	switch (ppd->pp_acc_size) {
4613 	case 1:
4614 		pci_config_put8(bgep->cfg_handle, regno, regval);
4615 		break;
4616 
4617 	case 2:
4618 		pci_config_put16(bgep->cfg_handle, regno, regval);
4619 		break;
4620 
4621 	case 4:
4622 		pci_config_put32(bgep->cfg_handle, regno, regval);
4623 		break;
4624 
4625 	case 8:
4626 		pci_config_put64(bgep->cfg_handle, regno, regval);
4627 		break;
4628 	}
4629 }
4630 
4631 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4632 #pragma	no_inline(bge_chip_peek_reg)
4633 
4634 static void
4635 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4636 {
4637 	uint64_t regval;
4638 	void *regaddr;
4639 
4640 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4641 	    (void *)bgep, (void *)ppd));
4642 
4643 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4644 
4645 	switch (ppd->pp_acc_size) {
4646 	case 1:
4647 		regval = ddi_get8(bgep->io_handle, regaddr);
4648 		break;
4649 
4650 	case 2:
4651 		regval = ddi_get16(bgep->io_handle, regaddr);
4652 		break;
4653 
4654 	case 4:
4655 		regval = ddi_get32(bgep->io_handle, regaddr);
4656 		break;
4657 
4658 	case 8:
4659 		regval = ddi_get64(bgep->io_handle, regaddr);
4660 		break;
4661 	}
4662 
4663 	ppd->pp_acc_data = regval;
4664 }
4665 
4666 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4667 #pragma	no_inline(bge_chip_peek_reg)
4668 
4669 static void
4670 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4671 {
4672 	uint64_t regval;
4673 	void *regaddr;
4674 
4675 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4676 	    (void *)bgep, (void *)ppd));
4677 
4678 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4679 	regval = ppd->pp_acc_data;
4680 
4681 	switch (ppd->pp_acc_size) {
4682 	case 1:
4683 		ddi_put8(bgep->io_handle, regaddr, regval);
4684 		break;
4685 
4686 	case 2:
4687 		ddi_put16(bgep->io_handle, regaddr, regval);
4688 		break;
4689 
4690 	case 4:
4691 		ddi_put32(bgep->io_handle, regaddr, regval);
4692 		break;
4693 
4694 	case 8:
4695 		ddi_put64(bgep->io_handle, regaddr, regval);
4696 		break;
4697 	}
4698 	BGE_PCICHK(bgep);
4699 }
4700 
4701 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4702 #pragma	no_inline(bge_chip_peek_nic)
4703 
4704 static void
4705 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4706 {
4707 	uint64_t regoff;
4708 	uint64_t regval;
4709 	void *regaddr;
4710 
4711 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4712 	    (void *)bgep, (void *)ppd));
4713 
4714 	regoff = ppd->pp_acc_offset;
4715 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4716 	regoff &= MWBAR_GRANULE_MASK;
4717 	regoff += NIC_MEM_WINDOW_OFFSET;
4718 	regaddr = PIO_ADDR(bgep, regoff);
4719 
4720 	switch (ppd->pp_acc_size) {
4721 	case 1:
4722 		regval = ddi_get8(bgep->io_handle, regaddr);
4723 		break;
4724 
4725 	case 2:
4726 		regval = ddi_get16(bgep->io_handle, regaddr);
4727 		break;
4728 
4729 	case 4:
4730 		regval = ddi_get32(bgep->io_handle, regaddr);
4731 		break;
4732 
4733 	case 8:
4734 		regval = ddi_get64(bgep->io_handle, regaddr);
4735 		break;
4736 	}
4737 
4738 	ppd->pp_acc_data = regval;
4739 }
4740 
4741 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4742 #pragma	no_inline(bge_chip_poke_nic)
4743 
4744 static void
4745 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4746 {
4747 	uint64_t regoff;
4748 	uint64_t regval;
4749 	void *regaddr;
4750 
4751 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4752 	    (void *)bgep, (void *)ppd));
4753 
4754 	regoff = ppd->pp_acc_offset;
4755 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4756 	regoff &= MWBAR_GRANULE_MASK;
4757 	regoff += NIC_MEM_WINDOW_OFFSET;
4758 	regaddr = PIO_ADDR(bgep, regoff);
4759 	regval = ppd->pp_acc_data;
4760 
4761 	switch (ppd->pp_acc_size) {
4762 	case 1:
4763 		ddi_put8(bgep->io_handle, regaddr, regval);
4764 		break;
4765 
4766 	case 2:
4767 		ddi_put16(bgep->io_handle, regaddr, regval);
4768 		break;
4769 
4770 	case 4:
4771 		ddi_put32(bgep->io_handle, regaddr, regval);
4772 		break;
4773 
4774 	case 8:
4775 		ddi_put64(bgep->io_handle, regaddr, regval);
4776 		break;
4777 	}
4778 	BGE_PCICHK(bgep);
4779 }
4780 
4781 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4782 #pragma	no_inline(bge_chip_peek_mii)
4783 
4784 static void
4785 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4786 {
4787 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4788 	    (void *)bgep, (void *)ppd));
4789 
4790 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4791 }
4792 
4793 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4794 #pragma	no_inline(bge_chip_poke_mii)
4795 
4796 static void
4797 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4798 {
4799 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4800 	    (void *)bgep, (void *)ppd));
4801 
4802 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4803 }
4804 
4805 #if	BGE_SEE_IO32
4806 
4807 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4808 #pragma	no_inline(bge_chip_peek_seeprom)
4809 
4810 static void
4811 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4812 {
4813 	uint32_t data;
4814 	int err;
4815 
4816 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4817 	    (void *)bgep, (void *)ppd));
4818 
4819 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4820 	ppd->pp_acc_data = err ? ~0ull : data;
4821 }
4822 
4823 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4824 #pragma	no_inline(bge_chip_poke_seeprom)
4825 
4826 static void
4827 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4828 {
4829 	uint32_t data;
4830 
4831 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4832 	    (void *)bgep, (void *)ppd));
4833 
4834 	data = ppd->pp_acc_data;
4835 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4836 }
4837 #endif	/* BGE_SEE_IO32 */
4838 
4839 #if	BGE_FLASH_IO32
4840 
4841 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4842 #pragma	no_inline(bge_chip_peek_flash)
4843 
4844 static void
4845 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4846 {
4847 	uint32_t data;
4848 	int err;
4849 
4850 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4851 	    (void *)bgep, (void *)ppd));
4852 
4853 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4854 	ppd->pp_acc_data = err ? ~0ull : data;
4855 }
4856 
4857 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4858 #pragma	no_inline(bge_chip_poke_flash)
4859 
4860 static void
4861 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4862 {
4863 	uint32_t data;
4864 
4865 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4866 	    (void *)bgep, (void *)ppd));
4867 
4868 	data = ppd->pp_acc_data;
4869 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4870 	    ppd->pp_acc_offset, &data);
4871 }
4872 #endif	/* BGE_FLASH_IO32 */
4873 
4874 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4875 #pragma	no_inline(bge_chip_peek_mem)
4876 
4877 static void
4878 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4879 {
4880 	uint64_t regval;
4881 	void *vaddr;
4882 
4883 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4884 	    (void *)bgep, (void *)ppd));
4885 
4886 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4887 
4888 	switch (ppd->pp_acc_size) {
4889 	case 1:
4890 		regval = *(uint8_t *)vaddr;
4891 		break;
4892 
4893 	case 2:
4894 		regval = *(uint16_t *)vaddr;
4895 		break;
4896 
4897 	case 4:
4898 		regval = *(uint32_t *)vaddr;
4899 		break;
4900 
4901 	case 8:
4902 		regval = *(uint64_t *)vaddr;
4903 		break;
4904 	}
4905 
4906 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
4907 	    (void *)bgep, (void *)ppd, regval, vaddr));
4908 
4909 	ppd->pp_acc_data = regval;
4910 }
4911 
4912 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4913 #pragma	no_inline(bge_chip_poke_mem)
4914 
4915 static void
4916 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4917 {
4918 	uint64_t regval;
4919 	void *vaddr;
4920 
4921 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
4922 	    (void *)bgep, (void *)ppd));
4923 
4924 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4925 	regval = ppd->pp_acc_data;
4926 
4927 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
4928 	    (void *)bgep, (void *)ppd, regval, vaddr));
4929 
4930 	switch (ppd->pp_acc_size) {
4931 	case 1:
4932 		*(uint8_t *)vaddr = (uint8_t)regval;
4933 		break;
4934 
4935 	case 2:
4936 		*(uint16_t *)vaddr = (uint16_t)regval;
4937 		break;
4938 
4939 	case 4:
4940 		*(uint32_t *)vaddr = (uint32_t)regval;
4941 		break;
4942 
4943 	case 8:
4944 		*(uint64_t *)vaddr = (uint64_t)regval;
4945 		break;
4946 	}
4947 }
4948 
4949 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4950 					struct iocblk *iocp);
4951 #pragma	no_inline(bge_pp_ioctl)
4952 
4953 static enum ioc_reply
4954 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4955 {
4956 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
4957 	bge_peekpoke_t *ppd;
4958 	dma_area_t *areap;
4959 	uint64_t sizemask;
4960 	uint64_t mem_va;
4961 	uint64_t maxoff;
4962 	boolean_t peek;
4963 
4964 	switch (cmd) {
4965 	default:
4966 		/* NOTREACHED */
4967 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
4968 		return (IOC_INVAL);
4969 
4970 	case BGE_PEEK:
4971 		peek = B_TRUE;
4972 		break;
4973 
4974 	case BGE_POKE:
4975 		peek = B_FALSE;
4976 		break;
4977 	}
4978 
4979 	/*
4980 	 * Validate format of ioctl
4981 	 */
4982 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
4983 		return (IOC_INVAL);
4984 	if (mp->b_cont == NULL)
4985 		return (IOC_INVAL);
4986 	ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr;
4987 
4988 	/*
4989 	 * Validate request parameters
4990 	 */
4991 	switch (ppd->pp_acc_space) {
4992 	default:
4993 		return (IOC_INVAL);
4994 
4995 	case BGE_PP_SPACE_CFG:
4996 		/*
4997 		 * Config space
4998 		 */
4999 		sizemask = 8|4|2|1;
5000 		mem_va = 0;
5001 		maxoff = PCI_CONF_HDR_SIZE;
5002 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5003 		break;
5004 
5005 	case BGE_PP_SPACE_REG:
5006 		/*
5007 		 * Memory-mapped I/O space
5008 		 */
5009 		sizemask = 8|4|2|1;
5010 		mem_va = 0;
5011 		maxoff = RIAAR_REGISTER_MAX;
5012 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5013 		break;
5014 
5015 	case BGE_PP_SPACE_NIC:
5016 		/*
5017 		 * NIC on-chip memory
5018 		 */
5019 		sizemask = 8|4|2|1;
5020 		mem_va = 0;
5021 		maxoff = MWBAR_ONCHIP_MAX;
5022 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5023 		break;
5024 
5025 	case BGE_PP_SPACE_MII:
5026 		/*
5027 		 * PHY's MII registers
5028 		 * NB: all PHY registers are two bytes, but the
5029 		 * addresses increment in ones (word addressing).
5030 		 * So we scale the address here, then undo the
5031 		 * transformation inside the peek/poke functions.
5032 		 */
5033 		ppd->pp_acc_offset *= 2;
5034 		sizemask = 2;
5035 		mem_va = 0;
5036 		maxoff = (MII_MAXREG+1)*2;
5037 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5038 		break;
5039 
5040 #if	BGE_SEE_IO32
5041 	case BGE_PP_SPACE_SEEPROM:
5042 		/*
5043 		 * Attached SEEPROM(s), if any.
5044 		 * NB: we use the high-order bits of the 'address' as
5045 		 * a device select to accommodate multiple SEEPROMS,
5046 		 * If each one is the maximum size (64kbytes), this
5047 		 * makes them appear contiguous.  Otherwise, there may
5048 		 * be holes in the mapping.  ENxS doesn't have any
5049 		 * SEEPROMs anyway ...
5050 		 */
5051 		sizemask = 4;
5052 		mem_va = 0;
5053 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5054 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5055 		break;
5056 #endif	/* BGE_SEE_IO32 */
5057 
5058 #if	BGE_FLASH_IO32
5059 	case BGE_PP_SPACE_FLASH:
5060 		/*
5061 		 * Attached Flash device (if any); a maximum of one device
5062 		 * is currently supported.  But it can be up to 1MB (unlike
5063 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5064 		 */
5065 		sizemask = 4;
5066 		mem_va = 0;
5067 		maxoff = NVM_FLASH_ADDR_MASK;
5068 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5069 		break;
5070 #endif	/* BGE_FLASH_IO32 */
5071 
5072 	case BGE_PP_SPACE_BGE:
5073 		/*
5074 		 * BGE data structure!
5075 		 */
5076 		sizemask = 8|4|2|1;
5077 		mem_va = (uintptr_t)bgep;
5078 		maxoff = sizeof (*bgep);
5079 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5080 		break;
5081 
5082 	case BGE_PP_SPACE_STATUS:
5083 	case BGE_PP_SPACE_STATISTICS:
5084 	case BGE_PP_SPACE_TXDESC:
5085 	case BGE_PP_SPACE_TXBUFF:
5086 	case BGE_PP_SPACE_RXDESC:
5087 	case BGE_PP_SPACE_RXBUFF:
5088 		/*
5089 		 * Various DMA_AREAs
5090 		 */
5091 		switch (ppd->pp_acc_space) {
5092 		case BGE_PP_SPACE_TXDESC:
5093 			areap = &bgep->tx_desc;
5094 			break;
5095 		case BGE_PP_SPACE_TXBUFF:
5096 			areap = &bgep->tx_buff[0];
5097 			break;
5098 		case BGE_PP_SPACE_RXDESC:
5099 			areap = &bgep->rx_desc[0];
5100 			break;
5101 		case BGE_PP_SPACE_RXBUFF:
5102 			areap = &bgep->rx_buff[0];
5103 			break;
5104 		case BGE_PP_SPACE_STATUS:
5105 			areap = &bgep->status_block;
5106 			break;
5107 		case BGE_PP_SPACE_STATISTICS:
5108 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5109 				areap = &bgep->statistics;
5110 			break;
5111 		}
5112 
5113 		sizemask = 8|4|2|1;
5114 		mem_va = (uintptr_t)areap->mem_va;
5115 		maxoff = areap->alength;
5116 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5117 		break;
5118 	}
5119 
5120 	switch (ppd->pp_acc_size) {
5121 	default:
5122 		return (IOC_INVAL);
5123 
5124 	case 8:
5125 	case 4:
5126 	case 2:
5127 	case 1:
5128 		if ((ppd->pp_acc_size & sizemask) == 0)
5129 			return (IOC_INVAL);
5130 		break;
5131 	}
5132 
5133 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5134 		return (IOC_INVAL);
5135 
5136 	if (ppd->pp_acc_offset >= maxoff)
5137 		return (IOC_INVAL);
5138 
5139 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5140 		return (IOC_INVAL);
5141 
5142 	/*
5143 	 * All OK - go do it!
5144 	 */
5145 	ppd->pp_acc_offset += mem_va;
5146 	(*ppfn)(bgep, ppd);
5147 	return (peek ? IOC_REPLY : IOC_ACK);
5148 }
5149 
5150 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5151 					struct iocblk *iocp);
5152 #pragma	no_inline(bge_diag_ioctl)
5153 
5154 static enum ioc_reply
5155 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5156 {
5157 	ASSERT(mutex_owned(bgep->genlock));
5158 
5159 	switch (cmd) {
5160 	default:
5161 		/* NOTREACHED */
5162 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5163 		return (IOC_INVAL);
5164 
5165 	case BGE_DIAG:
5166 		/*
5167 		 * Currently a no-op
5168 		 */
5169 		return (IOC_ACK);
5170 
5171 	case BGE_PEEK:
5172 	case BGE_POKE:
5173 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5174 
5175 	case BGE_PHY_RESET:
5176 		return (IOC_RESTART_ACK);
5177 
5178 	case BGE_SOFT_RESET:
5179 	case BGE_HARD_RESET:
5180 		/*
5181 		 * Reset and reinitialise the 570x hardware
5182 		 */
5183 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5184 		ddi_trigger_softintr(bgep->factotum_id);
5185 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5186 		return (IOC_ACK);
5187 	}
5188 
5189 	/* NOTREACHED */
5190 }
5191 
5192 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5193 
5194 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5195 				    struct iocblk *iocp);
5196 #pragma	no_inline(bge_mii_ioctl)
5197 
5198 static enum ioc_reply
5199 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5200 {
5201 	struct bge_mii_rw *miirwp;
5202 
5203 	/*
5204 	 * Validate format of ioctl
5205 	 */
5206 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5207 		return (IOC_INVAL);
5208 	if (mp->b_cont == NULL)
5209 		return (IOC_INVAL);
5210 	miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr;
5211 
5212 	/*
5213 	 * Validate request parameters ...
5214 	 */
5215 	if (miirwp->mii_reg > MII_MAXREG)
5216 		return (IOC_INVAL);
5217 
5218 	switch (cmd) {
5219 	default:
5220 		/* NOTREACHED */
5221 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5222 		return (IOC_INVAL);
5223 
5224 	case BGE_MII_READ:
5225 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5226 		return (IOC_REPLY);
5227 
5228 	case BGE_MII_WRITE:
5229 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5230 		return (IOC_ACK);
5231 	}
5232 
5233 	/* NOTREACHED */
5234 }
5235 
5236 #if	BGE_SEE_IO32
5237 
5238 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5239 				    struct iocblk *iocp);
5240 #pragma	no_inline(bge_see_ioctl)
5241 
5242 static enum ioc_reply
5243 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5244 {
5245 	struct bge_see_rw *seerwp;
5246 
5247 	/*
5248 	 * Validate format of ioctl
5249 	 */
5250 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5251 		return (IOC_INVAL);
5252 	if (mp->b_cont == NULL)
5253 		return (IOC_INVAL);
5254 	seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr;
5255 
5256 	/*
5257 	 * Validate request parameters ...
5258 	 */
5259 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5260 		return (IOC_INVAL);
5261 
5262 	switch (cmd) {
5263 	default:
5264 		/* NOTREACHED */
5265 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5266 		return (IOC_INVAL);
5267 
5268 	case BGE_SEE_READ:
5269 	case BGE_SEE_WRITE:
5270 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5271 		    seerwp->see_addr, &seerwp->see_data);
5272 		return (IOC_REPLY);
5273 	}
5274 
5275 	/* NOTREACHED */
5276 }
5277 
5278 #endif	/* BGE_SEE_IO32 */
5279 
5280 #if	BGE_FLASH_IO32
5281 
5282 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5283 				    struct iocblk *iocp);
5284 #pragma	no_inline(bge_flash_ioctl)
5285 
5286 static enum ioc_reply
5287 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5288 {
5289 	struct bge_flash_rw *flashrwp;
5290 
5291 	/*
5292 	 * Validate format of ioctl
5293 	 */
5294 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5295 		return (IOC_INVAL);
5296 	if (mp->b_cont == NULL)
5297 		return (IOC_INVAL);
5298 	flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr;
5299 
5300 	/*
5301 	 * Validate request parameters ...
5302 	 */
5303 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5304 		return (IOC_INVAL);
5305 
5306 	switch (cmd) {
5307 	default:
5308 		/* NOTREACHED */
5309 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5310 		return (IOC_INVAL);
5311 
5312 	case BGE_FLASH_READ:
5313 	case BGE_FLASH_WRITE:
5314 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5315 		    flashrwp->flash_addr, &flashrwp->flash_data);
5316 		return (IOC_REPLY);
5317 	}
5318 
5319 	/* NOTREACHED */
5320 }
5321 
5322 #endif	/* BGE_FLASH_IO32 */
5323 
5324 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5325 				struct iocblk *iocp);
5326 #pragma	no_inline(bge_chip_ioctl)
5327 
5328 enum ioc_reply
5329 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5330 {
5331 	int cmd;
5332 
5333 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5334 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5335 
5336 	ASSERT(mutex_owned(bgep->genlock));
5337 
5338 	cmd = iocp->ioc_cmd;
5339 	switch (cmd) {
5340 	default:
5341 		/* NOTREACHED */
5342 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5343 		return (IOC_INVAL);
5344 
5345 	case BGE_DIAG:
5346 	case BGE_PEEK:
5347 	case BGE_POKE:
5348 	case BGE_PHY_RESET:
5349 	case BGE_SOFT_RESET:
5350 	case BGE_HARD_RESET:
5351 #if	BGE_DEBUGGING || BGE_DO_PPIO
5352 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5353 #else
5354 		return (IOC_INVAL);
5355 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5356 
5357 	case BGE_MII_READ:
5358 	case BGE_MII_WRITE:
5359 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5360 
5361 #if	BGE_SEE_IO32
5362 	case BGE_SEE_READ:
5363 	case BGE_SEE_WRITE:
5364 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5365 #endif	/* BGE_SEE_IO32 */
5366 
5367 #if	BGE_FLASH_IO32
5368 	case BGE_FLASH_READ:
5369 	case BGE_FLASH_WRITE:
5370 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5371 #endif	/* BGE_FLASH_IO32 */
5372 	}
5373 
5374 	/* NOTREACHED */
5375 }
5376 
5377 void
5378 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5379 {
5380 	bge_t *bgep = arg;
5381 
5382 	mutex_enter(bgep->genlock);
5383 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5384 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5385 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5386 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5387 	mutex_exit(bgep->genlock);
5388 }
5389 
5390 #ifdef BGE_IPMI_ASF
5391 
5392 uint32_t
5393 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5394 {
5395 	uint32_t data;
5396 
5397 #ifndef __sparc
5398 	if (!bgep->asf_wordswapped) {
5399 		/* a workaround word swap error */
5400 		if (addr & 4)
5401 			addr = addr - 4;
5402 		else
5403 			addr = addr + 4;
5404 	}
5405 #endif
5406 
5407 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5408 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5409 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5410 
5411 	data = LE_32(data);
5412 	return (data);
5413 }
5414 
5415 void
5416 bge_asf_update_status(bge_t *bgep)
5417 {
5418 	uint32_t event;
5419 
5420 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5421 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5422 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5423 
5424 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5425 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5426 }
5427 
5428 
5429 /*
5430  * The driver is supposed to notify ASF that the OS is still running
5431  * every three seconds, otherwise the management server may attempt
5432  * to reboot the machine.  If it hasn't actually failed, this is
5433  * not a desirable result.  However, this isn't running as a real-time
5434  * thread, and even if it were, it might not be able to generate the
5435  * heartbeat in a timely manner due to system load.  As it isn't a
5436  * significant strain on the machine, we will set the interval to half
5437  * of the required value.
5438  */
5439 void
5440 bge_asf_heartbeat(void *arg)
5441 {
5442 	bge_t *bgep = (bge_t *)arg;
5443 
5444 	mutex_enter(bgep->genlock);
5445 	bge_asf_update_status((bge_t *)bgep);
5446 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5447 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5448 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5449 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5450 	mutex_exit(bgep->genlock);
5451 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5452 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5453 }
5454 
5455 
5456 void
5457 bge_asf_stop_timer(bge_t *bgep)
5458 {
5459 	timeout_id_t tmp_id = 0;
5460 
5461 	while ((bgep->asf_timeout_id != 0) &&
5462 	    (tmp_id != bgep->asf_timeout_id)) {
5463 		tmp_id = bgep->asf_timeout_id;
5464 		(void) untimeout(tmp_id);
5465 	}
5466 	bgep->asf_timeout_id = 0;
5467 }
5468 
5469 
5470 
5471 /*
5472  * This function should be placed at the earliest position of bge_attach().
5473  */
5474 void
5475 bge_asf_get_config(bge_t *bgep)
5476 {
5477 	uint32_t nicsig;
5478 	uint32_t niccfg;
5479 
5480 	bgep->asf_enabled = B_FALSE;
5481 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5482 	if (nicsig == BGE_NIC_DATA_SIG) {
5483 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5484 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5485 			/*
5486 			 * Here, we don't consider BAXTER, because BGE haven't
5487 			 * supported BAXTER (that is 5752). Also, as I know,
5488 			 * BAXTER doesn't support ASF feature.
5489 			 */
5490 			bgep->asf_enabled = B_TRUE;
5491 		else
5492 			bgep->asf_enabled = B_FALSE;
5493 	} else
5494 		bgep->asf_enabled = B_FALSE;
5495 }
5496 
5497 
5498 void
5499 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5500 {
5501 	uint32_t tries;
5502 	uint32_t event;
5503 
5504 	ASSERT(bgep->asf_enabled);
5505 
5506 	/* Issues "pause firmware" command and wait for ACK */
5507 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5508 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5509 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5510 
5511 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5512 	tries = 0;
5513 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5514 		drv_usecwait(1);
5515 		tries ++;
5516 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5517 	}
5518 
5519 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5520 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5521 
5522 	if (bgep->asf_newhandshake) {
5523 		switch (mode) {
5524 		case BGE_INIT_RESET:
5525 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5526 			    BGE_DRV_STATE_START);
5527 			break;
5528 		case BGE_SHUTDOWN_RESET:
5529 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5530 			    BGE_DRV_STATE_UNLOAD);
5531 			break;
5532 		case BGE_SUSPEND_RESET:
5533 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5534 			    BGE_DRV_STATE_SUSPEND);
5535 			break;
5536 		default:
5537 			break;
5538 		}
5539 	}
5540 }
5541 
5542 
5543 void
5544 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5545 {
5546 	switch (mode) {
5547 	case BGE_INIT_RESET:
5548 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5549 		    BGE_DRV_STATE_START);
5550 		break;
5551 	case BGE_SHUTDOWN_RESET:
5552 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5553 		    BGE_DRV_STATE_UNLOAD);
5554 		break;
5555 	case BGE_SUSPEND_RESET:
5556 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5557 		    BGE_DRV_STATE_SUSPEND);
5558 		break;
5559 	default:
5560 		break;
5561 	}
5562 }
5563 
5564 
5565 void
5566 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5567 {
5568 	switch (mode) {
5569 	case BGE_INIT_RESET:
5570 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5571 		    BGE_DRV_STATE_START_DONE);
5572 		break;
5573 	case BGE_SHUTDOWN_RESET:
5574 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5575 		    BGE_DRV_STATE_UNLOAD_DONE);
5576 		break;
5577 	default:
5578 		break;
5579 	}
5580 }
5581 
5582 #endif /* BGE_IPMI_ASF */
5583