xref: /titanic_50/usr/src/uts/common/io/bge/bge_chip2.c (revision 3f1e69bef33050bee99ea1e9992af13fc467281f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 
29 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
30 
31 /*
32  * Future features ... ?
33  */
34 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
35 #define	BGE_IND_IO32	1	/* indirect access code		*/
36 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
37 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
38 
39 /*
40  * BGE MSI tunable:
41  *
42  * By default MSI is enabled on all supported platforms but it is disabled
43  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
44  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
45  */
46 boolean_t bge_enable_msi = B_TRUE;
47 
48 /*
49  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
50  */
51 boolean_t bge_relaxed_ordering = B_TRUE;
52 
53 /*
54  * Property names
55  */
56 static char knownids_propname[] = "bge-known-subsystems";
57 
58 /*
59  * Patchable globals:
60  *
61  *	bge_autorecover
62  *		Enables/disables automatic recovery after fault detection
63  *
64  *	bge_mlcr_default
65  *		Value to program into the MLCR; controls the chip's GPIO pins
66  *
67  *	bge_dma_{rd,wr}prio
68  *		Relative priorities of DMA reads & DMA writes respectively.
69  *		These may each be patched to any value 0-3.  Equal values
70  *		will give "fair" (round-robin) arbitration for PCI access.
71  *		Unequal values will give one or the other function priority.
72  *
73  *	bge_dma_rwctrl
74  *		Value to put in the Read/Write DMA control register.  See
75  *	        the Broadcom PRM for things you can fiddle with in this
76  *		register ...
77  *
78  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
79  *		Send/receive interrupt coalescing parameters.  Counts are
80  *		#s of descriptors, ticks are in microseconds.  *norm* values
81  *		apply between status updates/interrupts; the *intr* values
82  *		refer to the 'during-interrupt' versions - see the PRM.
83  *
84  *		NOTE: these values have been determined by measurement. They
85  *		differ significantly from the values recommended in the PRM.
86  */
87 static uint32_t bge_autorecover = 1;
88 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
89 
90 static uint32_t bge_dma_rdprio = 1;
91 static uint32_t bge_dma_wrprio = 0;
92 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
93 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
94 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
95 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
96 
97 uint32_t bge_rx_ticks_norm = 128;
98 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
99 uint32_t bge_rx_count_norm = 8;
100 uint32_t bge_tx_count_norm = 128;
101 
102 static uint32_t bge_rx_ticks_intr = 128;
103 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
104 static uint32_t bge_rx_count_intr = 2;
105 static uint32_t bge_tx_count_intr = 0;
106 
107 /*
108  * Memory pool configuration parameters.
109  *
110  * These are generally specific to each member of the chip family, since
111  * each one may have a different memory size/configuration.
112  *
113  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
114  * the driver from programming the various registers; instead they are left
115  * at their hardware defaults.  This is the preferred option for later chips
116  * (5705+), whereas the older chips *required* these registers to be set,
117  * since the h/w default was 0 ;-(
118  */
119 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
120 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
121 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
122 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
123 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
124 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
125 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
126 static uint32_t bge_mbuf_pool_len_5721	= 0;
127 
128 /*
129  * Various high and low water marks, thresholds, etc ...
130  *
131  * Note: these are taken from revision 7 of the PRM, and some are different
132  * from both the values in earlier PRMs *and* those determined experimentally
133  * and used in earlier versions of this driver ...
134  */
135 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
136 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
137 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
138 
139 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
140 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
141 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
142 
143 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
144 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
145 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
146 
147 static uint32_t	bge_watchdog_count	= 1 << 16;
148 static uint16_t bge_dma_miss_limit	= 20;
149 
150 static uint32_t bge_stop_start_on_sync	= 0;
151 
152 boolean_t bge_jumbo_enable		= B_TRUE;
153 
154 /*
155  * bge_intr_max_loop controls the maximum loop number within bge_intr.
156  * When loading NIC with heavy network traffic, it is useful.
157  * Increasing this value could have positive effect to throughput,
158  * but it might also increase ticks of a bge ISR stick on CPU, which might
159  * lead to bad UI interactive experience. So tune this with caution.
160  */
161 static int bge_intr_max_loop = 1;
162 
163 /*
164  * ========== Low-level chip & ring buffer manipulation ==========
165  */
166 
167 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
168 
169 
170 /*
171  * Config space read-modify-write routines
172  */
173 
174 #if	BGE_CFG_IO8
175 
176 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
177 #pragma	inline(bge_cfg_clr16)
178 
179 static void
180 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
181 {
182 	uint16_t regval;
183 
184 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
185 	    (void *)bgep, regno, bits));
186 
187 	regval = pci_config_get16(bgep->cfg_handle, regno);
188 
189 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 	    (void *)bgep, regno, bits, regval, regval & ~bits));
191 
192 	regval &= ~bits;
193 	pci_config_put16(bgep->cfg_handle, regno, regval);
194 }
195 
196 #endif	/* BGE_CFG_IO8 */
197 
198 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
199 #pragma	inline(bge_cfg_clr32)
200 
201 static void
202 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
203 {
204 	uint32_t regval;
205 
206 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
207 	    (void *)bgep, regno, bits));
208 
209 	regval = pci_config_get32(bgep->cfg_handle, regno);
210 
211 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
212 	    (void *)bgep, regno, bits, regval, regval & ~bits));
213 
214 	regval &= ~bits;
215 	pci_config_put32(bgep->cfg_handle, regno, regval);
216 }
217 
218 #if	BGE_IND_IO32
219 
220 /*
221  * Indirect access to registers & RISC scratchpads, using config space
222  * accesses only.
223  *
224  * This isn't currently used, but someday we might want to use it for
225  * restoring the Subsystem Device/Vendor registers (which aren't directly
226  * writable in Config Space), or for downloading firmware into the RISCs
227  *
228  * In any case there are endian issues to be resolved before this code is
229  * enabled; the bizarre way that bytes get twisted by this chip AND by
230  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
231  * it's been thoroughly tested for all access sizes on all supported
232  * architectures (SPARC *and* x86!).
233  */
234 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
235 #pragma	inline(bge_ind_get32)
236 
237 uint32_t
238 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
239 {
240 	uint32_t val;
241 
242 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
243 
244 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
245 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
246 
247 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
248 	    (void *)bgep, regno, val));
249 
250 	val = LE_32(val);
251 
252 	return (val);
253 }
254 
255 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
256 #pragma	inline(bge_ind_put32)
257 
258 void
259 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
260 {
261 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
262 	    (void *)bgep, regno, val));
263 
264 	val = LE_32(val);
265 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
266 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
267 }
268 
269 #endif	/* BGE_IND_IO32 */
270 
271 #if	BGE_DEBUGGING
272 
273 static void bge_pci_check(bge_t *bgep);
274 #pragma	no_inline(bge_pci_check)
275 
276 static void
277 bge_pci_check(bge_t *bgep)
278 {
279 	uint16_t pcistatus;
280 
281 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
282 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
283 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
284 		    (void *)bgep, pcistatus));
285 }
286 
287 #endif	/* BGE_DEBUGGING */
288 
289 /*
290  * Perform first-stage chip (re-)initialisation, using only config-space
291  * accesses:
292  *
293  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
294  *   returning the data in the structure pointed to by <idp>.
295  * + Configure the target-mode endianness (swap) options.
296  * + Disable interrupts and enable Memory Space accesses.
297  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
298  *
299  * This sequence is adapted from Broadcom document 570X-PG102-R,
300  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
301  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
302  *
303  * This function MUST be called before any non-config-space accesses
304  * are made; on this first call <enable_dma> is B_FALSE, and it
305  * effectively performs steps 3-1(!) of the initialisation sequence
306  * (the rest are not required but should be harmless).
307  *
308  * It MUST also be called after a chip reset, as this disables
309  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
310  * it is effectively performing steps 6-8.
311  */
312 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
313 #pragma	no_inline(bge_chip_cfg_init)
314 
315 void
316 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
317 {
318 	ddi_acc_handle_t handle;
319 	uint16_t command;
320 	uint32_t mhcr;
321 	uint16_t value16;
322 	int i;
323 
324 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
325 	    (void *)bgep, (void *)cidp, enable_dma));
326 
327 	/*
328 	 * Step 3: save PCI cache line size and subsystem vendor ID
329 	 *
330 	 * Read all the config-space registers that characterise the
331 	 * chip, specifically vendor/device/revision/subsystem vendor
332 	 * and subsystem device id.  We expect (but don't check) that
333 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
334 	 *
335 	 * Also save all bus-transaction related registers (cache-line
336 	 * size, bus-grant/latency parameters, etc).  Some of these are
337 	 * cleared by reset, so we'll have to restore them later.  This
338 	 * comes from the Broadcom document 570X-PG102-R ...
339 	 *
340 	 * Note: Broadcom document 570X-PG102-R seems to be in error
341 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
342 	 * Subsystem (Device) ID registers, which are the opposite way
343 	 * round according to the PCI standard.  For good measure, we
344 	 * save/restore both anyway.
345 	 */
346 	handle = bgep->cfg_handle;
347 
348 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
349 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
350 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
351 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
352 
353 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
354 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
355 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
356 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
357 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
358 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
359 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
360 
361 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
362 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
363 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
364 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
365 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
366 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
367 	    cidp->vendor, cidp->device, cidp->revision));
368 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
369 	    cidp->subven, cidp->subdev, cidp->asic_rev));
370 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
371 	    cidp->clsize, cidp->latency, cidp->command));
372 
373 	/*
374 	 * Step 2 (also step 6): disable and clear interrupts.
375 	 * Steps 11-13: configure PIO endianness options, and enable
376 	 * indirect register access.  We'll also select any other
377 	 * options controlled by the MHCR (e.g. tagged status, mask
378 	 * interrupt mode) at this stage ...
379 	 *
380 	 * Note: internally, the chip is 64-bit and BIG-endian, but
381 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
382 	 * it normally swaps bytes around at the PCI interface.
383 	 * However, the PCI host bridge on SPARC systems normally
384 	 * swaps the byte lanes around too, since SPARCs are also
385 	 * BIG-endian.  So it turns out that on SPARC, the right
386 	 * option is to tell the chip to swap (and the host bridge
387 	 * will swap back again), whereas on x86 we ask the chip
388 	 * NOT to swap, so the natural little-endianness of the
389 	 * PCI bus is assumed.  Then the only thing that doesn't
390 	 * automatically work right is access to an 8-byte register
391 	 * by a little-endian host; but we don't want to set the
392 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
393 	 * accesses don't go where expected ;-(  So we live with
394 	 * that, and perform word-swaps in software in the few cases
395 	 * where a chip register is defined as an 8-byte value --
396 	 * see the code below for details ...
397 	 *
398 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
399 	 * very clear in the register description in the PRM, but
400 	 * Broadcom document 570X-PG104-R page 248 explains a little
401 	 * more (under "Broadcom Mask Mode").  The bit changes the way
402 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
403 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
404 	 * way as the 5700 did, which isn't very convenient.  Setting
405 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
406 	 * bit do just what its name says -- MASK the PCI #INTA output
407 	 * (i.e. deassert the signal at the pin) leaving all internal
408 	 * state unchanged.  This is much more convenient for our
409 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
410 	 *
411 	 * Note: the inconvenient semantics of the interrupt mailbox
412 	 * (nonzero disables and acknowledges/clears the interrupt,
413 	 * zero enables AND CLEARS it) would make race conditions
414 	 * likely in the interrupt handler:
415 	 *
416 	 * (1)	acknowledge & disable interrupts
417 	 * (2)	while (more to do)
418 	 * 		process packets
419 	 * (3)	enable interrupts -- also clears pending
420 	 *
421 	 * If the chip received more packets and internally generated
422 	 * an interrupt between the check at (2) and the mbox write
423 	 * at (3), this interrupt would be lost :-(
424 	 *
425 	 * The best way to avoid this is to use TAGGED STATUS mode,
426 	 * where the chip includes a unique tag in each status block
427 	 * update, and the host, when re-enabling interrupts, passes
428 	 * the last tag it saw back to the chip; then the chip can
429 	 * see whether the host is truly up to date, and regenerate
430 	 * its interrupt if not.
431 	 */
432 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
433 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
434 	    MHCR_MASK_INTERRUPT_MODE |
435 	    MHCR_CLEAR_INTERRUPT_INTA;
436 
437 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
438 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
439 
440 #ifdef	_BIG_ENDIAN
441 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
442 #endif	/* _BIG_ENDIAN */
443 
444 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
445 
446 #ifdef BGE_IPMI_ASF
447 	bgep->asf_wordswapped = B_FALSE;
448 #endif
449 	/*
450 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
451 	 *			 Disable Memory Write/Invalidate
452 	 *			 Enable or disable Bus Mastering
453 	 *
454 	 * Note that all other bits are taken from the original value saved
455 	 * the first time through here, rather than from the current register
456 	 * value, 'cos that will have been cleared by a soft RESET since.
457 	 * In this way we preserve the OBP/nexus-parent's preferred settings
458 	 * of the parity-error and system-error enable bits across multiple
459 	 * chip RESETs.
460 	 */
461 	command = bgep->chipid.command | PCI_COMM_MAE;
462 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
463 	if (enable_dma)
464 		command |= PCI_COMM_ME;
465 	/*
466 	 * on BCM5714 revision A0, false parity error gets generated
467 	 * due to a logic bug. Provide a workaround by disabling parity
468 	 * error.
469 	 */
470 	if (((cidp->device == DEVICE_ID_5714C) ||
471 	    (cidp->device == DEVICE_ID_5714S)) &&
472 	    (cidp->revision == REVISION_ID_5714_A0)) {
473 		command &= ~PCI_COMM_PARITY_DETECT;
474 	}
475 	pci_config_put16(handle, PCI_CONF_COMM, command);
476 
477 	/*
478 	 * On some PCI-E device, there were instances when
479 	 * the device was still link training.
480 	 */
481 	if (bgep->chipid.pci_type == BGE_PCI_E) {
482 		i = 0;
483 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
484 		while ((value16 != command) && (i < 100)) {
485 			drv_usecwait(200);
486 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
487 			++i;
488 		}
489 	}
490 
491 	/*
492 	 * Clear any remaining error status bits
493 	 */
494 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
495 
496 	/*
497 	 * Do following if and only if the device is NOT BCM5714C OR
498 	 * BCM5715C
499 	 */
500 	if (!((cidp->device == DEVICE_ID_5714C) ||
501 	    (cidp->device == DEVICE_ID_5715C))) {
502 		/*
503 		 * Make sure these indirect-access registers are sane
504 		 * rather than random after power-up or reset
505 		 */
506 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
507 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
508 	}
509 	/*
510 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
511 	 */
512 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
513 
514 	if (cidp->pci_type == BGE_PCI_E)
515 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
516 		    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
517 }
518 
519 #ifdef __amd64
520 /*
521  * Distinguish CPU types
522  *
523  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
524  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
525  * for PCI-Express based network interface card. This is the work-around
526  * for those nics.
527  */
528 static boolean_t bge_get_em64t_type(void);
529 #pragma	inline(bge_get_em64t_type)
530 
531 static boolean_t
532 bge_get_em64t_type(void)
533 {
534 
535 	return (x86_vendor == X86_VENDOR_Intel);
536 }
537 #endif
538 
539 /*
540  * Operating register get/set access routines
541  */
542 
543 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
544 #pragma	inline(bge_reg_get32)
545 
546 uint32_t
547 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
548 {
549 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
550 	    (void *)bgep, regno));
551 
552 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
553 }
554 
555 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
556 #pragma	inline(bge_reg_put32)
557 
558 void
559 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
560 {
561 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
562 	    (void *)bgep, regno, data));
563 
564 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
565 	BGE_PCICHK(bgep);
566 }
567 
568 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
569 #pragma	inline(bge_reg_set32)
570 
571 void
572 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
573 {
574 	uint32_t regval;
575 
576 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
577 	    (void *)bgep, regno, bits));
578 
579 	regval = bge_reg_get32(bgep, regno);
580 	regval |= bits;
581 	bge_reg_put32(bgep, regno, regval);
582 }
583 
584 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
585 #pragma	inline(bge_reg_clr32)
586 
587 void
588 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
589 {
590 	uint32_t regval;
591 
592 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
593 	    (void *)bgep, regno, bits));
594 
595 	regval = bge_reg_get32(bgep, regno);
596 	regval &= ~bits;
597 	bge_reg_put32(bgep, regno, regval);
598 }
599 
600 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
601 #pragma	inline(bge_reg_get64)
602 
603 static uint64_t
604 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
605 {
606 	uint64_t regval;
607 
608 #ifdef	__amd64
609 	if (bge_get_em64t_type()) {
610 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
611 		regval <<= 32;
612 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
613 	} else {
614 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
615 	}
616 #else
617 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
618 #endif
619 
620 #ifdef	_LITTLE_ENDIAN
621 	regval = (regval >> 32) | (regval << 32);
622 #endif	/* _LITTLE_ENDIAN */
623 
624 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
625 	    (void *)bgep, regno, regval));
626 
627 	return (regval);
628 }
629 
630 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
631 #pragma	inline(bge_reg_put64)
632 
633 static void
634 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
635 {
636 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
637 	    (void *)bgep, regno, data));
638 
639 #ifdef	_LITTLE_ENDIAN
640 	data = ((data >> 32) | (data << 32));
641 #endif	/* _LITTLE_ENDIAN */
642 
643 #ifdef	__amd64
644 	if (bge_get_em64t_type()) {
645 		ddi_put32(bgep->io_handle,
646 		    PIO_ADDR(bgep, regno), (uint32_t)data);
647 		BGE_PCICHK(bgep);
648 		ddi_put32(bgep->io_handle,
649 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
650 
651 	} else {
652 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
653 	}
654 #else
655 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
656 #endif
657 
658 	BGE_PCICHK(bgep);
659 }
660 
661 /*
662  * The DDI doesn't provide get/put functions for 128 bit data
663  * so we put RCBs out as two 64-bit chunks instead.
664  */
665 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
666 #pragma	inline(bge_reg_putrcb)
667 
668 static void
669 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
670 {
671 	uint64_t *p;
672 
673 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
674 	    (void *)bgep, addr, rcbp->host_ring_addr,
675 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
676 
677 	ASSERT((addr % sizeof (*rcbp)) == 0);
678 
679 	p = (void *)rcbp;
680 	bge_reg_put64(bgep, addr, *p++);
681 	bge_reg_put64(bgep, addr+8, *p);
682 }
683 
684 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
685 #pragma	inline(bge_mbx_put)
686 
687 void
688 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
689 {
690 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
691 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
692 
693 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
694 	    (void *)bgep, regno, data));
695 
696 	/*
697 	 * Mailbox registers are nominally 64 bits on the 5701, but
698 	 * the MSW isn't used.  On the 5703, they're only 32 bits
699 	 * anyway.  So here we just write the lower(!) 32 bits -
700 	 * remembering that the chip is big-endian, even though the
701 	 * PCI bus is little-endian ...
702 	 */
703 #ifdef	_BIG_ENDIAN
704 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
705 #else
706 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
707 #endif	/* _BIG_ENDIAN */
708 	BGE_PCICHK(bgep);
709 }
710 
711 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
712 #pragma inline(bge_mbx_get)
713 
714 uint32_t
715 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
716 {
717 	uint32_t val32;
718 
719 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
720 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
721 
722 	BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
723 	    (void *)bgep, regno));
724 
725 #ifdef	_BIG_ENDIAN
726 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
727 #else
728 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
729 #endif	/* _BIG_ENDIAN */
730 	BGE_PCICHK(bgep);
731 
732 	return (val32);
733 }
734 
735 
736 #if	BGE_DEBUGGING
737 
738 void bge_led_mark(bge_t *bgep);
739 #pragma	no_inline(bge_led_mark)
740 
741 void
742 bge_led_mark(bge_t *bgep)
743 {
744 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
745 	    LED_CONTROL_1000MBPS_LED |
746 	    LED_CONTROL_100MBPS_LED |
747 	    LED_CONTROL_10MBPS_LED;
748 
749 	/*
750 	 * Blink all three LINK LEDs on simultaneously, then all off,
751 	 * then restore to automatic hardware control.  This is used
752 	 * in laboratory testing to trigger a logic analyser or scope.
753 	 */
754 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
755 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
756 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
757 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
758 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
759 }
760 
761 #endif	/* BGE_DEBUGGING */
762 
763 /*
764  * NIC on-chip memory access routines
765  *
766  * Only 32K of NIC memory is visible at a time, controlled by the
767  * Memory Window Base Address Register (in PCI config space).  Once
768  * this is set, the 32K region of NIC-local memory that it refers
769  * to can be directly addressed in the upper 32K of the 64K of PCI
770  * memory space used for the device.
771  */
772 
773 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
774 #pragma	inline(bge_nic_setwin)
775 
776 static void
777 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
778 {
779 	chip_id_t *cidp;
780 
781 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
782 	    (void *)bgep, base));
783 
784 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
785 
786 	/*
787 	 * Don't do repeated zero data writes,
788 	 * if the device is BCM5714C/15C.
789 	 */
790 	cidp = &bgep->chipid;
791 	if ((cidp->device == DEVICE_ID_5714C) ||
792 	    (cidp->device == DEVICE_ID_5715C)) {
793 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
794 			return;
795 		/* Adjust lastWriteZeroData */
796 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
797 		    B_TRUE : B_FALSE);
798 	}
799 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
800 }
801 
802 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
803 #pragma	inline(bge_nic_get32)
804 
805 static uint32_t
806 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
807 {
808 	uint32_t data;
809 
810 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
811 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
812 		/* workaround for word swap error */
813 		if (addr & 4)
814 			addr = addr - 4;
815 		else
816 			addr = addr + 4;
817 	}
818 #endif
819 
820 #ifdef __sparc
821 	data = bge_nic_read32(bgep, addr);
822 #else
823 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
824 	addr &= MWBAR_GRANULE_MASK;
825 	addr += NIC_MEM_WINDOW_OFFSET;
826 
827 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
828 #endif
829 
830 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
831 	    (void *)bgep, addr, data));
832 
833 	return (data);
834 }
835 
836 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
837 #pragma inline(bge_nic_put32)
838 
839 void
840 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
841 {
842 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
843 	    (void *)bgep, addr, data));
844 
845 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
846 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
847 		/* workaround for word swap error */
848 		if (addr & 4)
849 			addr = addr - 4;
850 		else
851 			addr = addr + 4;
852 	}
853 #endif
854 
855 #ifdef __sparc
856 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
857 	data = LE_32(data);
858 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
859 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
860 #else
861 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
862 	addr &= MWBAR_GRANULE_MASK;
863 	addr += NIC_MEM_WINDOW_OFFSET;
864 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
865 	BGE_PCICHK(bgep);
866 #endif
867 }
868 
869 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
870 #pragma	inline(bge_nic_get64)
871 
872 static uint64_t
873 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
874 {
875 	uint64_t data;
876 
877 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
878 	addr &= MWBAR_GRANULE_MASK;
879 	addr += NIC_MEM_WINDOW_OFFSET;
880 
881 #ifdef	__amd64
882 		if (bge_get_em64t_type()) {
883 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
884 			data <<= 32;
885 			data |= ddi_get32(bgep->io_handle,
886 			    PIO_ADDR(bgep, addr + 4));
887 		} else {
888 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
889 		}
890 #else
891 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
892 #endif
893 
894 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
895 	    (void *)bgep, addr, data));
896 
897 	return (data);
898 }
899 
900 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
901 #pragma	inline(bge_nic_put64)
902 
903 static void
904 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
905 {
906 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
907 	    (void *)bgep, addr, data));
908 
909 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
910 	addr &= MWBAR_GRANULE_MASK;
911 	addr += NIC_MEM_WINDOW_OFFSET;
912 
913 #ifdef	__amd64
914 	if (bge_get_em64t_type()) {
915 		ddi_put32(bgep->io_handle,
916 		    PIO_ADDR(bgep, addr), (uint32_t)data);
917 		BGE_PCICHK(bgep);
918 		ddi_put32(bgep->io_handle,
919 		    PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
920 	} else {
921 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
922 	}
923 #else
924 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
925 #endif
926 
927 	BGE_PCICHK(bgep);
928 }
929 
930 /*
931  * The DDI doesn't provide get/put functions for 128 bit data
932  * so we put RCBs out as two 64-bit chunks instead.
933  */
934 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
935 #pragma	inline(bge_nic_putrcb)
936 
937 static void
938 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
939 {
940 	uint64_t *p;
941 
942 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
943 	    (void *)bgep, addr, rcbp->host_ring_addr,
944 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
945 
946 	ASSERT((addr % sizeof (*rcbp)) == 0);
947 
948 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
949 	addr &= MWBAR_GRANULE_MASK;
950 	addr += NIC_MEM_WINDOW_OFFSET;
951 
952 	p = (void *)rcbp;
953 #ifdef	__amd64
954 	if (bge_get_em64t_type()) {
955 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
956 		    (uint32_t)(*p));
957 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
958 		    (uint32_t)(*p >> 32));
959 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
960 		    (uint32_t)(*(p + 1)));
961 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
962 		    (uint32_t)(*p >> 32));
963 
964 	} else {
965 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
966 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
967 	}
968 #else
969 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
970 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
971 #endif
972 
973 	BGE_PCICHK(bgep);
974 }
975 
976 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
977 #pragma	inline(bge_nic_zero)
978 
979 static void
980 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
981 {
982 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
983 	    (void *)bgep, addr, nbytes));
984 
985 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
986 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
987 
988 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
989 	addr &= MWBAR_GRANULE_MASK;
990 	addr += NIC_MEM_WINDOW_OFFSET;
991 
992 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
993 	    nbytes, 1, DDI_DATA_SZ08_ACC);
994 	BGE_PCICHK(bgep);
995 }
996 
997 /*
998  * MII (PHY) register get/set access routines
999  *
1000  * These use the chip's MII auto-access method, controlled by the
1001  * MII Communication register at 0x044c, so the CPU doesn't have
1002  * to fiddle with the individual bits.
1003  */
1004 
1005 #undef	BGE_DBG
1006 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1007 
1008 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1009 				uint16_t data, uint32_t cmd);
1010 #pragma	no_inline(bge_mii_access)
1011 
1012 static uint16_t
1013 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1014 {
1015 	uint32_t timeout;
1016 	uint32_t regval1;
1017 	uint32_t regval2;
1018 
1019 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1020 	    (void *)bgep, regno, data, cmd));
1021 
1022 	ASSERT(mutex_owned(bgep->genlock));
1023 
1024 	/*
1025 	 * Assemble the command ...
1026 	 */
1027 	cmd |= data << MI_COMMS_DATA_SHIFT;
1028 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1029 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1030 	cmd |= MI_COMMS_START;
1031 
1032 	/*
1033 	 * Wait for any command already in progress ...
1034 	 *
1035 	 * Note: this *shouldn't* ever find that there is a command
1036 	 * in progress, because we already hold the <genlock> mutex.
1037 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1038 	 * bit set here -- it seems that the chip can initiate MII
1039 	 * accesses internally, even with polling OFF.
1040 	 */
1041 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1042 	for (timeout = 100; ; ) {
1043 		if ((regval2 & MI_COMMS_START) == 0) {
1044 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1045 			break;
1046 		}
1047 		if (--timeout == 0)
1048 			break;
1049 		drv_usecwait(10);
1050 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1051 	}
1052 
1053 	if (timeout == 0)
1054 		return ((uint16_t)~0u);
1055 
1056 	if (timeout != 100)
1057 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1058 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1059 		    cmd, 10*(100-timeout), regval1, regval2));
1060 
1061 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1062 	for (timeout = 1000; ; ) {
1063 		if ((regval1 & MI_COMMS_START) == 0)
1064 			break;
1065 		if (--timeout == 0)
1066 			break;
1067 		drv_usecwait(10);
1068 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1069 	}
1070 
1071 	/*
1072 	 * Drop out early if the READ FAILED bit is set -- this chip
1073 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1074 	 */
1075 	if (regval2 & MI_COMMS_READ_FAILED)
1076 		return ((uint16_t)~0u);
1077 
1078 	if (timeout == 0)
1079 		return ((uint16_t)~0u);
1080 
1081 	/*
1082 	 * The PRM says to wait 5us after seeing the START bit clear
1083 	 * and then re-read the register to get the final value of the
1084 	 * data field, in order to avoid a race condition where the
1085 	 * START bit is clear but the data field isn't yet valid.
1086 	 *
1087 	 * Note: we don't actually seem to be encounter this race;
1088 	 * except when the START bit is seen set again (see below),
1089 	 * the data field doesn't change during this 5us interval.
1090 	 */
1091 	drv_usecwait(5);
1092 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1093 
1094 	/*
1095 	 * Unfortunately, when following the PRMs instructions above,
1096 	 * we have occasionally seen the START bit set again(!) in the
1097 	 * value read after the 5us delay. This seems to be due to the
1098 	 * chip autonomously starting another MII access internally.
1099 	 * In such cases, the command/data/etc fields relate to the
1100 	 * internal command, rather than the one that we thought had
1101 	 * just finished.  So in this case, we fall back to returning
1102 	 * the data from the original read that showed START clear.
1103 	 */
1104 	if (regval2 & MI_COMMS_START) {
1105 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1106 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1107 		    cmd, regval1, regval2));
1108 		regval2 = regval1;
1109 	}
1110 
1111 	if (regval2 & MI_COMMS_START)
1112 		return ((uint16_t)~0u);
1113 
1114 	if (regval2 & MI_COMMS_READ_FAILED)
1115 		return ((uint16_t)~0u);
1116 
1117 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1118 }
1119 
1120 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1121 #pragma	no_inline(bge_mii_get16)
1122 
1123 uint16_t
1124 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1125 {
1126 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1127 	    (void *)bgep, regno));
1128 
1129 	ASSERT(mutex_owned(bgep->genlock));
1130 
1131 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1132 	    (regno == MII_1000BASE_T_CONTROL)))
1133 		return (0);
1134 
1135 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1136 }
1137 
1138 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1139 #pragma	no_inline(bge_mii_put16)
1140 
1141 void
1142 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1143 {
1144 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1145 	    (void *)bgep, regno, data));
1146 
1147 	ASSERT(mutex_owned(bgep->genlock));
1148 
1149 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1150 	    (regno == MII_1000BASE_T_CONTROL)))
1151 		return;
1152 
1153 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1154 }
1155 
1156 #undef	BGE_DBG
1157 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1158 
1159 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1160 
1161 /*
1162  * Basic SEEPROM get/set access routine
1163  *
1164  * This uses the chip's SEEPROM auto-access method, controlled by the
1165  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1166  * doesn't have to fiddle with the individual bits.
1167  *
1168  * The caller should hold <genlock> and *also* have already acquired
1169  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1170  *
1171  * Return value:
1172  *	0 on success,
1173  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1174  *	EPROTO on other h/w or s/w errors.
1175  *
1176  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1177  * from a (successful) SEEPROM_ACCESS_READ.
1178  */
1179 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1180 				uint32_t *dp);
1181 #pragma	no_inline(bge_seeprom_access)
1182 
1183 static int
1184 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1185 {
1186 	uint32_t tries;
1187 	uint32_t regval;
1188 
1189 	ASSERT(mutex_owned(bgep->genlock));
1190 
1191 	/*
1192 	 * On the newer chips that support both SEEPROM & Flash, we need
1193 	 * to specifically enable SEEPROM access (Flash is the default).
1194 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1195 	 * and the NVM control registers don't exist ...
1196 	 */
1197 	switch (bgep->chipid.nvtype) {
1198 	case BGE_NVTYPE_NONE:
1199 	case BGE_NVTYPE_UNKNOWN:
1200 		_NOTE(NOTREACHED)
1201 	case BGE_NVTYPE_SEEPROM:
1202 		break;
1203 
1204 	case BGE_NVTYPE_LEGACY_SEEPROM:
1205 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1206 	case BGE_NVTYPE_BUFFERED_FLASH:
1207 	default:
1208 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1209 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1210 		break;
1211 	}
1212 
1213 	/*
1214 	 * Check there's no command in progress.
1215 	 *
1216 	 * Note: this *shouldn't* ever find that there is a command
1217 	 * in progress, because we already hold the <genlock> mutex.
1218 	 * Also, to ensure we don't have a conflict with the chip's
1219 	 * internal firmware or a process accessing the same (shared)
1220 	 * SEEPROM through the other port of a 5704, we've already
1221 	 * been through the "software arbitration" protocol.
1222 	 * So this is just a final consistency check: we shouldn't
1223 	 * see EITHER the START bit (command started but not complete)
1224 	 * OR the COMPLETE bit (command completed but not cleared).
1225 	 */
1226 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1227 	if (regval & SEEPROM_ACCESS_START)
1228 		return (EPROTO);
1229 	if (regval & SEEPROM_ACCESS_COMPLETE)
1230 		return (EPROTO);
1231 
1232 	/*
1233 	 * Assemble the command ...
1234 	 */
1235 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1236 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1237 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1238 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1239 	cmd |= SEEPROM_ACCESS_START;
1240 	cmd |= SEEPROM_ACCESS_COMPLETE;
1241 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1242 
1243 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1244 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1245 
1246 	/*
1247 	 * By observation, a successful access takes ~20us on a 5703/4,
1248 	 * but apparently much longer (up to 1000us) on the obsolescent
1249 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1250 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1251 	 * out interrupts for longer than necessary. So we'll allow up
1252 	 * to 1000us ...
1253 	 */
1254 	for (tries = 0; tries < 1000; ++tries) {
1255 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1256 		if (regval & SEEPROM_ACCESS_COMPLETE)
1257 			break;
1258 		drv_usecwait(1);
1259 	}
1260 
1261 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1262 		/*
1263 		 * All OK; read the SEEPROM data register, then write back
1264 		 * the value read from the address register in order to
1265 		 * clear the <complete> bit and leave the SEEPROM access
1266 		 * state machine idle, ready for the next access ...
1267 		 */
1268 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1269 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1270 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1271 		return (0);
1272 	}
1273 
1274 	/*
1275 	 * Hmm ... what happened here?
1276 	 *
1277 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1278 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1279 	 * and didn't respond to being addressed. Either way, it's left
1280 	 * the SEEPROM access state machine wedged. So we'll reset it
1281 	 * before we leave, so it's ready for next time ...
1282 	 */
1283 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1284 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1285 	return (ENODATA);
1286 }
1287 
1288 /*
1289  * Basic Flash get/set access routine
1290  *
1291  * These use the chip's Flash auto-access method, controlled by the
1292  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1293  * fiddle with the individual bits.
1294  *
1295  * The caller should hold <genlock> and *also* have already acquired
1296  * the right to access the Flash, via bge_nvmem_acquire() above.
1297  *
1298  * Return value:
1299  *	0 on success,
1300  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1301  *	ENODEV if the NVmem device is missing or otherwise unusable
1302  *
1303  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1304  * from a (successful) NVM_FLASH_CMD_RD.
1305  */
1306 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1307 				uint32_t *dp);
1308 #pragma	no_inline(bge_flash_access)
1309 
1310 static int
1311 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1312 {
1313 	uint32_t tries;
1314 	uint32_t regval;
1315 
1316 	ASSERT(mutex_owned(bgep->genlock));
1317 
1318 	/*
1319 	 * On the newer chips that support both SEEPROM & Flash, we need
1320 	 * to specifically disable SEEPROM access while accessing Flash.
1321 	 * The older chips don't support Flash, and the NVM registers don't
1322 	 * exist, so we shouldn't be here at all!
1323 	 */
1324 	switch (bgep->chipid.nvtype) {
1325 	case BGE_NVTYPE_NONE:
1326 	case BGE_NVTYPE_UNKNOWN:
1327 		_NOTE(NOTREACHED)
1328 	case BGE_NVTYPE_SEEPROM:
1329 		return (ENODEV);
1330 
1331 	case BGE_NVTYPE_LEGACY_SEEPROM:
1332 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1333 	case BGE_NVTYPE_BUFFERED_FLASH:
1334 	default:
1335 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1336 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1337 		break;
1338 	}
1339 
1340 	/*
1341 	 * Assemble the command ...
1342 	 */
1343 	addr &= NVM_FLASH_ADDR_MASK;
1344 	cmd |= NVM_FLASH_CMD_DOIT;
1345 	cmd |= NVM_FLASH_CMD_FIRST;
1346 	cmd |= NVM_FLASH_CMD_LAST;
1347 	cmd |= NVM_FLASH_CMD_DONE;
1348 
1349 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1350 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1351 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1352 
1353 	/*
1354 	 * Allow up to 1000ms ...
1355 	 */
1356 	for (tries = 0; tries < 1000; ++tries) {
1357 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1358 		if (regval & NVM_FLASH_CMD_DONE)
1359 			break;
1360 		drv_usecwait(1);
1361 	}
1362 
1363 	if (regval & NVM_FLASH_CMD_DONE) {
1364 		/*
1365 		 * All OK; read the data from the Flash read register
1366 		 */
1367 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1368 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1369 		return (0);
1370 	}
1371 
1372 	/*
1373 	 * Hmm ... what happened here?
1374 	 *
1375 	 * Most likely, the user addressed a non-existent Flash. Or
1376 	 * maybe the Flash was busy internally (e.g. processing a write)
1377 	 * and didn't respond to being addressed. Either way, there's
1378 	 * nothing we can here ...
1379 	 */
1380 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1381 	return (ENODATA);
1382 }
1383 
1384 /*
1385  * The next two functions regulate access to the NVram (if fitted).
1386  *
1387  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1388  * (SPI) interface, but they can be accessed through either port. These
1389  * are managed by different instance of this driver and have no software
1390  * state in common.
1391  *
1392  * In addition (and even on a single core chip) the chip's internal
1393  * firmware can access the SEEPROM/Flash, most notably after a RESET
1394  * when it may download code to run internally.
1395  *
1396  * So we need to arbitrate between these various software agents.  For
1397  * this purpose, the chip provides the Software Arbitration Register,
1398  * which implements hardware(!) arbitration.
1399  *
1400  * This functionality didn't exist on older (5700/5701) chips, so there's
1401  * nothing we can do by way of arbitration on those; also, if there's no
1402  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1403  * nothing to do.
1404  *
1405  * The internal firmware appears to use Request 0, which is the highest
1406  * priority.  So we'd like to use Request 2, leaving one higher and one
1407  * lower for any future developments ... but apparently this doesn't
1408  * always work.  So for now, the code uses Request 1 ;-(
1409  */
1410 
1411 #define	NVM_READ_REQ	NVM_READ_REQ1
1412 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1413 #define	NVM_SET_REQ	NVM_SET_REQ1
1414 
1415 static void bge_nvmem_relinquish(bge_t *bgep);
1416 #pragma	no_inline(bge_nvmem_relinquish)
1417 
1418 static void
1419 bge_nvmem_relinquish(bge_t *bgep)
1420 {
1421 	ASSERT(mutex_owned(bgep->genlock));
1422 
1423 	switch (bgep->chipid.nvtype) {
1424 	case BGE_NVTYPE_NONE:
1425 	case BGE_NVTYPE_UNKNOWN:
1426 		_NOTE(NOTREACHED)
1427 		return;
1428 
1429 	case BGE_NVTYPE_SEEPROM:
1430 		/*
1431 		 * No arbitration performed, no release needed
1432 		 */
1433 		return;
1434 
1435 	case BGE_NVTYPE_LEGACY_SEEPROM:
1436 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1437 	case BGE_NVTYPE_BUFFERED_FLASH:
1438 	default:
1439 		break;
1440 	}
1441 
1442 	/*
1443 	 * Our own request should be present (whether or not granted) ...
1444 	 */
1445 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1446 
1447 	/*
1448 	 * ... this will make it go away.
1449 	 */
1450 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1451 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1452 }
1453 
1454 /*
1455  * Arbitrate for access to the NVmem, if necessary
1456  *
1457  * Return value:
1458  *	0 on success
1459  *	EAGAIN if the device is in use (retryable)
1460  *	ENODEV if the NVmem device is missing or otherwise unusable
1461  */
1462 static int bge_nvmem_acquire(bge_t *bgep);
1463 #pragma	no_inline(bge_nvmem_acquire)
1464 
1465 static int
1466 bge_nvmem_acquire(bge_t *bgep)
1467 {
1468 	uint32_t regval;
1469 	uint32_t tries;
1470 
1471 	ASSERT(mutex_owned(bgep->genlock));
1472 
1473 	switch (bgep->chipid.nvtype) {
1474 	case BGE_NVTYPE_NONE:
1475 	case BGE_NVTYPE_UNKNOWN:
1476 		/*
1477 		 * Access denied: no (recognisable) device fitted
1478 		 */
1479 		return (ENODEV);
1480 
1481 	case BGE_NVTYPE_SEEPROM:
1482 		/*
1483 		 * Access granted: no arbitration needed (or possible)
1484 		 */
1485 		return (0);
1486 
1487 	case BGE_NVTYPE_LEGACY_SEEPROM:
1488 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1489 	case BGE_NVTYPE_BUFFERED_FLASH:
1490 	default:
1491 		/*
1492 		 * Access conditional: conduct arbitration protocol
1493 		 */
1494 		break;
1495 	}
1496 
1497 	/*
1498 	 * We're holding the per-port mutex <genlock>, so no-one other
1499 	 * thread can be attempting to access the NVmem through *this*
1500 	 * port. But it could be in use by the *other* port (of a 5704),
1501 	 * or by the chip's internal firmware, so we have to go through
1502 	 * the full (hardware) arbitration protocol ...
1503 	 *
1504 	 * Note that *because* we're holding <genlock>, the interrupt handler
1505 	 * won't be able to progress.  So we're only willing to spin for a
1506 	 * fairly short time.  Specifically:
1507 	 *
1508 	 *	We *must* wait long enough for the hardware to resolve all
1509 	 *	requests and determine the winner.  Fortunately, this is
1510 	 *	"almost instantaneous", even as observed by GHz CPUs.
1511 	 *
1512 	 *	A successful access by another Solaris thread (via either
1513 	 *	port) typically takes ~20us.  So waiting a bit longer than
1514 	 *	that will give a good chance of success, if the other user
1515 	 *	*is* another thread on the other port.
1516 	 *
1517 	 *	However, the internal firmware can hold on to the NVmem
1518 	 *	for *much* longer: at least 10 milliseconds just after a
1519 	 *	RESET, and maybe even longer if the NVmem actually contains
1520 	 *	code to download and run on the internal CPUs.
1521 	 *
1522 	 * So, we'll allow 50us; if that's not enough then it's up to the
1523 	 * caller to retry later (hence the choice of return code EAGAIN).
1524 	 */
1525 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1526 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1527 
1528 	for (tries = 0; tries < 50; ++tries) {
1529 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1530 		if (regval & NVM_WON_REQ1)
1531 			break;
1532 		drv_usecwait(1);
1533 	}
1534 
1535 	if (regval & NVM_WON_REQ1) {
1536 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1537 		return (0);
1538 	}
1539 
1540 	/*
1541 	 * Somebody else must be accessing the NVmem, so abandon our
1542 	 * attempt take control of it.  The caller can try again later ...
1543 	 */
1544 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1545 	bge_nvmem_relinquish(bgep);
1546 	return (EAGAIN);
1547 }
1548 
1549 /*
1550  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1551  * write protect line in such a way that the NVmem is protected when
1552  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1553  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1554  *
1555  * Note: there's only one set of GPIO pins on a 5704, even though they
1556  * can be accessed through either port.  So the chip has to resolve what
1557  * happens if the two ports program a single pin differently ... the rule
1558  * it uses is that if the ports disagree about the *direction* of a pin,
1559  * "output" wins over "input", but if they disagree about its *value* as
1560  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1561  * wins, and the external signal does whatever the external circuitry
1562  * defines as the default -- which we've assumed is the PROTECTED state.
1563  * So, we always change GPIO1 back to being an *input* whenever we're not
1564  * specifically using it to unprotect the NVmem. This allows either port
1565  * to update the NVmem, although obviously only one at a time!
1566  *
1567  * The caller should hold <genlock> and *also* have already acquired the
1568  * right to access the NVmem, via bge_nvmem_acquire() above.
1569  */
1570 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1571 #pragma	inline(bge_nvmem_protect)
1572 
1573 static void
1574 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1575 {
1576 	uint32_t regval;
1577 
1578 	ASSERT(mutex_owned(bgep->genlock));
1579 
1580 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1581 	if (protect) {
1582 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1583 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1584 	} else {
1585 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1586 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1587 	}
1588 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1589 }
1590 
1591 /*
1592  * Now put it all together ...
1593  *
1594  * Try to acquire control of the NVmem; if successful, then:
1595  *	unprotect it (if we want to write to it)
1596  *	perform the requested access
1597  *	reprotect it (after a write)
1598  *	relinquish control
1599  *
1600  * Return value:
1601  *	0 on success,
1602  *	EAGAIN if the device is in use (retryable)
1603  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1604  *	ENODEV if the NVmem device is missing or otherwise unusable
1605  *	EPROTO on other h/w or s/w errors.
1606  */
1607 static int
1608 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1609 {
1610 	int err;
1611 
1612 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1613 		switch (cmd) {
1614 		case BGE_SEE_READ:
1615 			err = bge_seeprom_access(bgep,
1616 			    SEEPROM_ACCESS_READ, addr, dp);
1617 			break;
1618 
1619 		case BGE_SEE_WRITE:
1620 			bge_nvmem_protect(bgep, B_FALSE);
1621 			err = bge_seeprom_access(bgep,
1622 			    SEEPROM_ACCESS_WRITE, addr, dp);
1623 			bge_nvmem_protect(bgep, B_TRUE);
1624 			break;
1625 
1626 		case BGE_FLASH_READ:
1627 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1628 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1629 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1630 				    NVM_ACCESS_ENABLE);
1631 			}
1632 			err = bge_flash_access(bgep,
1633 			    NVM_FLASH_CMD_RD, addr, dp);
1634 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1635 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1636 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1637 				    NVM_ACCESS_ENABLE);
1638 			}
1639 			break;
1640 
1641 		case BGE_FLASH_WRITE:
1642 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1643 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1644 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1645 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1646 			}
1647 			bge_nvmem_protect(bgep, B_FALSE);
1648 			err = bge_flash_access(bgep,
1649 			    NVM_FLASH_CMD_WR, addr, dp);
1650 			bge_nvmem_protect(bgep, B_TRUE);
1651 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1652 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1653 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1654 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1655 			}
1656 
1657 			break;
1658 
1659 		default:
1660 			_NOTE(NOTREACHED)
1661 			break;
1662 		}
1663 		bge_nvmem_relinquish(bgep);
1664 	}
1665 
1666 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1667 	return (err);
1668 }
1669 
1670 /*
1671  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1672  */
1673 static uint64_t bge_get_nvmac(bge_t *bgep);
1674 #pragma no_inline(bge_get_nvmac)
1675 
1676 static uint64_t
1677 bge_get_nvmac(bge_t *bgep)
1678 {
1679 	uint32_t mac_high;
1680 	uint32_t mac_low;
1681 	uint32_t addr;
1682 	uint32_t cmd;
1683 	uint64_t mac;
1684 
1685 	BGE_TRACE(("bge_get_nvmac($%p)",
1686 	    (void *)bgep));
1687 
1688 	switch (bgep->chipid.nvtype) {
1689 	case BGE_NVTYPE_NONE:
1690 	case BGE_NVTYPE_UNKNOWN:
1691 	default:
1692 		return (0ULL);
1693 
1694 	case BGE_NVTYPE_SEEPROM:
1695 	case BGE_NVTYPE_LEGACY_SEEPROM:
1696 		cmd = BGE_SEE_READ;
1697 		break;
1698 
1699 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1700 	case BGE_NVTYPE_BUFFERED_FLASH:
1701 		cmd = BGE_FLASH_READ;
1702 		break;
1703 	}
1704 
1705 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1706 		addr = NVMEM_DATA_MAC_ADDRESS_5906;
1707 	else
1708 		addr = NVMEM_DATA_MAC_ADDRESS;
1709 
1710 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1711 		return (0ULL);
1712 	addr += 4;
1713 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1714 		return (0ULL);
1715 
1716 	/*
1717 	 * The Broadcom chip is natively BIG-endian, so that's how the
1718 	 * MAC address is represented in NVmem.  We may need to swap it
1719 	 * around on a little-endian host ...
1720 	 */
1721 #ifdef	_BIG_ENDIAN
1722 	mac = mac_high;
1723 	mac = mac << 32;
1724 	mac |= mac_low;
1725 #else
1726 	mac = BGE_BSWAP_32(mac_high);
1727 	mac = mac << 32;
1728 	mac |= BGE_BSWAP_32(mac_low);
1729 #endif	/* _BIG_ENDIAN */
1730 
1731 	return (mac);
1732 }
1733 
1734 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1735 
1736 /*
1737  * Dummy version for when we're not supporting NVmem access
1738  */
1739 static uint64_t bge_get_nvmac(bge_t *bgep);
1740 #pragma inline(bge_get_nvmac)
1741 
1742 static uint64_t
1743 bge_get_nvmac(bge_t *bgep)
1744 {
1745 	_NOTE(ARGUNUSED(bgep))
1746 	return (0ULL);
1747 }
1748 
1749 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1750 
1751 /*
1752  * Determine the type of NVmem that is (or may be) attached to this chip,
1753  */
1754 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1755 #pragma no_inline(bge_nvmem_id)
1756 
1757 static enum bge_nvmem_type
1758 bge_nvmem_id(bge_t *bgep)
1759 {
1760 	enum bge_nvmem_type nvtype;
1761 	uint32_t config1;
1762 
1763 	BGE_TRACE(("bge_nvmem_id($%p)",
1764 	    (void *)bgep));
1765 
1766 	switch (bgep->chipid.device) {
1767 	default:
1768 		/*
1769 		 * We shouldn't get here; it means we don't recognise
1770 		 * the chip, which means we don't know how to determine
1771 		 * what sort of NVmem (if any) it has.  So we'll say
1772 		 * NONE, to disable the NVmem access code ...
1773 		 */
1774 		nvtype = BGE_NVTYPE_NONE;
1775 		break;
1776 
1777 	case DEVICE_ID_5700:
1778 	case DEVICE_ID_5700x:
1779 	case DEVICE_ID_5701:
1780 		/*
1781 		 * These devices support *only* SEEPROMs
1782 		 */
1783 		nvtype = BGE_NVTYPE_SEEPROM;
1784 		break;
1785 
1786 	case DEVICE_ID_5702:
1787 	case DEVICE_ID_5702fe:
1788 	case DEVICE_ID_5703C:
1789 	case DEVICE_ID_5703S:
1790 	case DEVICE_ID_5704C:
1791 	case DEVICE_ID_5704S:
1792 	case DEVICE_ID_5704:
1793 	case DEVICE_ID_5705M:
1794 	case DEVICE_ID_5705C:
1795 	case DEVICE_ID_5705_2:
1796 	case DEVICE_ID_5706:
1797 	case DEVICE_ID_5780:
1798 	case DEVICE_ID_5782:
1799 	case DEVICE_ID_5787:
1800 	case DEVICE_ID_5787M:
1801 	case DEVICE_ID_5788:
1802 	case DEVICE_ID_5789:
1803 	case DEVICE_ID_5751:
1804 	case DEVICE_ID_5751M:
1805 	case DEVICE_ID_5752:
1806 	case DEVICE_ID_5752M:
1807 	case DEVICE_ID_5754:
1808 	case DEVICE_ID_5755:
1809 	case DEVICE_ID_5755M:
1810 	case DEVICE_ID_5756M:
1811 	case DEVICE_ID_5721:
1812 	case DEVICE_ID_5722:
1813 	case DEVICE_ID_5714C:
1814 	case DEVICE_ID_5714S:
1815 	case DEVICE_ID_5715C:
1816 	case DEVICE_ID_5715S:
1817 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1818 		if (config1 & NVM_CFG1_FLASH_MODE)
1819 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1820 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1821 			else
1822 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1823 		else
1824 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1825 		break;
1826 	case DEVICE_ID_5906:
1827 	case DEVICE_ID_5906M:
1828 		nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1829 		break;
1830 	}
1831 
1832 	return (nvtype);
1833 }
1834 
1835 #undef	BGE_DBG
1836 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1837 
1838 static void
1839 bge_init_recv_rule(bge_t *bgep)
1840 {
1841 	bge_recv_rule_t *rulep;
1842 	uint32_t i;
1843 
1844 	/*
1845 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1846 	 * 1. to direct UDP traffic, set:
1847 	 * 	rulep->control = RULE_PROTO_CONTROL;
1848 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1849 	 * 2. to direct ICMP traffic, set:
1850 	 * 	rulep->control = RULE_PROTO_CONTROL;
1851 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1852 	 * 3. to direct traffic by source ip, set:
1853 	 * 	rulep->control = RULE_SIP_CONTROL;
1854 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1855 	 */
1856 	rulep = bgep->recv_rules;
1857 	rulep->control = RULE_PROTO_CONTROL;
1858 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1859 
1860 	/*
1861 	 * set receive rule registers
1862 	 */
1863 	rulep = bgep->recv_rules;
1864 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1865 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1866 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1867 	}
1868 }
1869 
1870 /*
1871  * Using the values captured by bge_chip_cfg_init(), and additional probes
1872  * as required, characterise the chip fully: determine the label by which
1873  * to refer to this chip, the correct settings for various registers, and
1874  * of course whether the device and/or subsystem are supported!
1875  */
1876 int bge_chip_id_init(bge_t *bgep);
1877 #pragma	no_inline(bge_chip_id_init)
1878 
1879 int
1880 bge_chip_id_init(bge_t *bgep)
1881 {
1882 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1883 	boolean_t sys_ok;
1884 	boolean_t dev_ok;
1885 	chip_id_t *cidp;
1886 	uint32_t subid;
1887 	char *devname;
1888 	char *sysname;
1889 	int *ids;
1890 	int err;
1891 	uint_t i;
1892 
1893 	sys_ok = dev_ok = B_FALSE;
1894 	cidp = &bgep->chipid;
1895 
1896 	/*
1897 	 * Check the PCI device ID to determine the generic chip type and
1898 	 * select parameters that depend on this.
1899 	 *
1900 	 * Note: because the SPARC platforms in general don't fit the
1901 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1902 	 * as zero - which is why we use <asic_rev> rather than <revision>
1903 	 * below ...
1904 	 *
1905 	 * Note: in general we can't distinguish between the Copper/SerDes
1906 	 * versions by ID alone, as some Copper devices (e.g. some but not
1907 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1908 	 * treat them the same here, and the MII code works out the media
1909 	 * type later on ...
1910 	 */
1911 	cidp->mbuf_base = bge_mbuf_pool_base;
1912 	cidp->mbuf_length = bge_mbuf_pool_len;
1913 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1914 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1915 	cidp->pci_type = BGE_PCI_X;
1916 	cidp->statistic_type = BGE_STAT_BLK;
1917 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1918 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1919 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1920 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
1921 	cidp->rx_count_norm = bge_rx_count_norm;
1922 
1923 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1924 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1925 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1926 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1927 
1928 	cidp->msi_enabled = B_FALSE;
1929 
1930 	switch (cidp->device) {
1931 	case DEVICE_ID_5700:
1932 	case DEVICE_ID_5700x:
1933 		cidp->chip_label = 5700;
1934 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1935 		break;
1936 
1937 	case DEVICE_ID_5701:
1938 		cidp->chip_label = 5701;
1939 		dev_ok = B_TRUE;
1940 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1941 		break;
1942 
1943 	case DEVICE_ID_5702:
1944 	case DEVICE_ID_5702fe:
1945 		cidp->chip_label = 5702;
1946 		dev_ok = B_TRUE;
1947 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1948 		cidp->pci_type = BGE_PCI;
1949 		break;
1950 
1951 	case DEVICE_ID_5703C:
1952 	case DEVICE_ID_5703S:
1953 	case DEVICE_ID_5703:
1954 		/*
1955 		 * Revision A0 of the 5703/5793 had various errata
1956 		 * that we can't or don't work around, so it's not
1957 		 * supported, but all later versions are
1958 		 */
1959 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
1960 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
1961 			dev_ok = B_TRUE;
1962 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1963 		break;
1964 
1965 	case DEVICE_ID_5704C:
1966 	case DEVICE_ID_5704S:
1967 	case DEVICE_ID_5704:
1968 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
1969 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
1970 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
1971 		dev_ok = B_TRUE;
1972 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1973 		break;
1974 
1975 	case DEVICE_ID_5705C:
1976 	case DEVICE_ID_5705M:
1977 	case DEVICE_ID_5705MA3:
1978 	case DEVICE_ID_5705F:
1979 	case DEVICE_ID_5705_2:
1980 	case DEVICE_ID_5754:
1981 		if (cidp->device == DEVICE_ID_5754) {
1982 			cidp->chip_label = 5754;
1983 			cidp->pci_type = BGE_PCI_E;
1984 		} else {
1985 			cidp->chip_label = 5705;
1986 			cidp->pci_type = BGE_PCI;
1987 		}
1988 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
1989 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
1990 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
1991 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
1992 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
1993 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
1994 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
1995 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
1996 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
1997 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1998 		cidp->statistic_type = BGE_STAT_REG;
1999 		dev_ok = B_TRUE;
2000 		break;
2001 
2002 	case DEVICE_ID_5906:
2003 	case DEVICE_ID_5906M:
2004 		cidp->chip_label = 5906;
2005 		cidp->pci_type = BGE_PCI_E;
2006 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2007 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2008 		cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2009 		cidp->mbuf_base = bge_mbuf_pool_base;
2010 		cidp->mbuf_length = bge_mbuf_pool_len;
2011 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2012 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2013 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2014 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2015 		cidp->statistic_type = BGE_STAT_REG;
2016 		dev_ok = B_TRUE;
2017 		break;
2018 
2019 	case DEVICE_ID_5753:
2020 		cidp->chip_label = 5753;
2021 		cidp->pci_type = BGE_PCI_E;
2022 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2023 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2024 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2025 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2026 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2027 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2028 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2029 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2030 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2031 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2032 		cidp->statistic_type = BGE_STAT_REG;
2033 		dev_ok = B_TRUE;
2034 		break;
2035 
2036 	case DEVICE_ID_5755:
2037 	case DEVICE_ID_5755M:
2038 		cidp->chip_label = 5755;
2039 		cidp->pci_type = BGE_PCI_E;
2040 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2041 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2042 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2043 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2044 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2045 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2046 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2047 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2048 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2049 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2050 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2051 		cidp->statistic_type = BGE_STAT_REG;
2052 		dev_ok = B_TRUE;
2053 		break;
2054 
2055 	case DEVICE_ID_5756M:
2056 		/*
2057 		 * This is nearly identical to the 5755M.
2058 		 * (Actually reports the 5755 chip ID.)
2059 		 */
2060 		cidp->chip_label = 5756;
2061 		cidp->pci_type = BGE_PCI_E;
2062 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2063 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2064 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2065 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2066 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2067 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2068 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2069 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2070 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2071 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2072 		cidp->statistic_type = BGE_STAT_REG;
2073 		dev_ok = B_TRUE;
2074 		break;
2075 
2076 	case DEVICE_ID_5787:
2077 	case DEVICE_ID_5787M:
2078 		cidp->chip_label = 5787;
2079 		cidp->pci_type = BGE_PCI_E;
2080 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2081 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2082 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2083 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2084 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2085 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2086 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2087 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2088 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2089 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2090 		cidp->statistic_type = BGE_STAT_REG;
2091 		dev_ok = B_TRUE;
2092 		break;
2093 
2094 	case DEVICE_ID_5706:
2095 		cidp->chip_label = 5706;
2096 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2097 		break;
2098 
2099 	case DEVICE_ID_5780:
2100 		cidp->chip_label = 5780;
2101 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2102 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2103 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2104 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2105 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2106 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2107 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2108 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2109 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2110 		cidp->statistic_type = BGE_STAT_REG;
2111 		cidp->pci_type = BGE_PCI;
2112 		dev_ok = B_TRUE;
2113 		break;
2114 
2115 	case DEVICE_ID_5782:
2116 		/*
2117 		 * Apart from the label, we treat this as a 5705(?)
2118 		 */
2119 		cidp->chip_label = 5782;
2120 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2121 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2122 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2123 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2124 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2125 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2126 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2127 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2128 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2129 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2130 		cidp->statistic_type = BGE_STAT_REG;
2131 		dev_ok = B_TRUE;
2132 		break;
2133 
2134 	case DEVICE_ID_5788:
2135 		/*
2136 		 * Apart from the label, we treat this as a 5705(?)
2137 		 */
2138 		cidp->chip_label = 5788;
2139 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2140 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2141 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2142 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2143 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2144 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2145 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2146 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2147 		cidp->statistic_type = BGE_STAT_REG;
2148 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2149 		dev_ok = B_TRUE;
2150 		break;
2151 
2152 	case DEVICE_ID_5714C:
2153 		if (cidp->revision >= REVISION_ID_5714_A2)
2154 			cidp->msi_enabled = bge_enable_msi;
2155 		/* FALLTHRU */
2156 	case DEVICE_ID_5714S:
2157 		cidp->chip_label = 5714;
2158 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2159 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2160 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2161 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2162 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2163 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2164 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2165 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2166 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2167 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2168 		cidp->pci_type = BGE_PCI_E;
2169 		cidp->statistic_type = BGE_STAT_REG;
2170 		dev_ok = B_TRUE;
2171 		break;
2172 
2173 	case DEVICE_ID_5715C:
2174 	case DEVICE_ID_5715S:
2175 		cidp->chip_label = 5715;
2176 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2177 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2178 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2179 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2180 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2181 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2182 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2183 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2184 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2185 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2186 		cidp->pci_type = BGE_PCI_E;
2187 		cidp->statistic_type = BGE_STAT_REG;
2188 		if (cidp->revision >= REVISION_ID_5715_A2)
2189 			cidp->msi_enabled = bge_enable_msi;
2190 		dev_ok = B_TRUE;
2191 		break;
2192 
2193 	case DEVICE_ID_5721:
2194 		cidp->chip_label = 5721;
2195 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2196 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2197 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2198 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2199 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2200 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2201 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2202 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2203 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2204 		cidp->pci_type = BGE_PCI_E;
2205 		cidp->statistic_type = BGE_STAT_REG;
2206 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2207 		dev_ok = B_TRUE;
2208 		break;
2209 
2210 	case DEVICE_ID_5722:
2211 		cidp->chip_label = 5722;
2212 		cidp->pci_type = BGE_PCI_E;
2213 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2214 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2215 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2216 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2217 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2218 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2219 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2220 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2221 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2222 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2223 		cidp->statistic_type = BGE_STAT_REG;
2224 		dev_ok = B_TRUE;
2225 		break;
2226 
2227 	case DEVICE_ID_5751:
2228 	case DEVICE_ID_5751M:
2229 		cidp->chip_label = 5751;
2230 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2231 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2232 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2233 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2234 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2235 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2236 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2237 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2238 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2239 		cidp->pci_type = BGE_PCI_E;
2240 		cidp->statistic_type = BGE_STAT_REG;
2241 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2242 		dev_ok = B_TRUE;
2243 		break;
2244 
2245 	case DEVICE_ID_5752:
2246 	case DEVICE_ID_5752M:
2247 		cidp->chip_label = 5752;
2248 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2249 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2250 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2251 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2252 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2253 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2254 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2255 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2256 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2257 		cidp->pci_type = BGE_PCI_E;
2258 		cidp->statistic_type = BGE_STAT_REG;
2259 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2260 		dev_ok = B_TRUE;
2261 		break;
2262 
2263 	case DEVICE_ID_5789:
2264 		cidp->chip_label = 5789;
2265 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2266 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2267 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2268 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2269 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2270 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2271 		cidp->pci_type = BGE_PCI_E;
2272 		cidp->statistic_type = BGE_STAT_REG;
2273 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2274 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2275 		cidp->msi_enabled = B_TRUE;
2276 		dev_ok = B_TRUE;
2277 		break;
2278 
2279 	}
2280 
2281 	/*
2282 	 * Setup the default jumbo parameter.
2283 	 */
2284 	cidp->ethmax_size = ETHERMAX;
2285 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2286 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2287 
2288 	/*
2289 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2290 	 * setup below jumbo specific parameters.
2291 	 *
2292 	 * For BCM5714/5715, there is only one standard receive ring. So the
2293 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2294 	 * feature is enabled.
2295 	 */
2296 	if (bge_jumbo_enable &&
2297 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2298 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2299 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2300 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2301 			cidp->mbuf_lo_water_rdma =
2302 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2303 			cidp->mbuf_lo_water_rmac =
2304 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2305 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2306 			cidp->jumbo_slots = 0;
2307 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2308 		} else {
2309 			cidp->mbuf_lo_water_rdma =
2310 			    RDMA_MBUF_LOWAT_JUMBO;
2311 			cidp->mbuf_lo_water_rmac =
2312 			    MAC_RX_MBUF_LOWAT_JUMBO;
2313 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2314 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2315 		}
2316 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2317 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2318 		cidp->ethmax_size = cidp->default_mtu +
2319 		    sizeof (struct ether_header);
2320 	}
2321 
2322 	/*
2323 	 * Identify the NV memory type: SEEPROM or Flash?
2324 	 */
2325 	cidp->nvtype = bge_nvmem_id(bgep);
2326 
2327 	/*
2328 	 * Now, we want to check whether this device is part of a
2329 	 * supported subsystem (e.g., on the motherboard of a Sun
2330 	 * branded platform).
2331 	 *
2332 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2333 	 */
2334 	if (cidp->subven == VENDOR_ID_SUN)
2335 		sys_ok = B_TRUE;
2336 
2337 	/*
2338 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2339 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2340 	 * doesn't enforce that.
2341 	 */
2342 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2343 	    DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2344 	if (err == DDI_PROP_SUCCESS) {
2345 		/*
2346 		 * Got the list; scan for a matching subsystem vendor/device
2347 		 */
2348 		subid = (cidp->subven << 16) | cidp->subdev;
2349 		while (i--)
2350 			if (ids[i] == subid)
2351 				sys_ok = B_TRUE;
2352 		ddi_prop_free(ids);
2353 	}
2354 
2355 	/*
2356 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2357 	 *
2358 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2359 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2360 	 * we have to check specially for the exact device paths to the
2361 	 * motherboard devices on those platforms ;-(
2362 	 *
2363 	 * Note: we can't just use the "supported-subsystems" mechanism
2364 	 * above, because the entry would have to be 0x14e41647 -- which
2365 	 * would then accept *any* plugin card that *didn't* contain a
2366 	 * (valid) SEEPROM ;-(
2367 	 */
2368 	sysname = ddi_node_name(ddi_root_node());
2369 	devname = ddi_pathname(bgep->devinfo, buf);
2370 	ASSERT(strlen(devname) > 0);
2371 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2372 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2373 			sys_ok = B_TRUE;
2374 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2375 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2376 			sys_ok = B_TRUE;
2377 
2378 	/*
2379 	 * Now check what we've discovered: is this truly a supported
2380 	 * chip on (the motherboard of) a supported platform?
2381 	 *
2382 	 * Possible problems here:
2383 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2384 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2385 	 * 3)	it's a chip we would support if it were on the motherboard
2386 	 *	of a Sun platform, but this one isn't ;-(
2387 	 */
2388 	if (cidp->chip_label == 0)
2389 		bge_problem(bgep,
2390 		    "Device 'pci%04x,%04x' not recognized (%d?)",
2391 		    cidp->vendor, cidp->device, cidp->device);
2392 	else if (!dev_ok)
2393 		bge_problem(bgep,
2394 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
2395 		    cidp->vendor, cidp->device, cidp->chip_label,
2396 		    cidp->revision);
2397 #if	BGE_DEBUGGING
2398 	else if (!sys_ok)
2399 		bge_problem(bgep,
2400 		    "%d-based subsystem 'pci%04x,%04x' not validated",
2401 		    cidp->chip_label, cidp->subven, cidp->subdev);
2402 #endif
2403 	else
2404 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2405 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2406 		return (EIO);
2407 	return (0);
2408 }
2409 
2410 void
2411 bge_chip_msi_trig(bge_t *bgep)
2412 {
2413 	uint32_t	regval;
2414 
2415 	regval = bgep->param_msi_cnt<<4;
2416 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2417 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2418 }
2419 
2420 /*
2421  * Various registers that control the chip's internal engines (state
2422  * machines) have a <reset> and <enable> bits (fortunately, in the
2423  * same place in each such register :-).
2424  *
2425  * To reset the state machine, the <reset> bit must be written with 1;
2426  * it will then read back as 1 while the reset is in progress, but
2427  * self-clear to 0 when the reset completes.
2428  *
2429  * To enable a state machine, one must set the <enable> bit, which
2430  * will continue to read back as 0 until the state machine is running.
2431  *
2432  * To disable a state machine, the <enable> bit must be cleared, but
2433  * it will continue to read back as 1 until the state machine actually
2434  * stops.
2435  *
2436  * This routine implements polling for completion of a reset, enable
2437  * or disable operation, returning B_TRUE on success (bit reached the
2438  * required state) or B_FALSE on timeout (200*100us == 20ms).
2439  */
2440 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2441 					uint32_t mask, uint32_t val);
2442 #pragma	no_inline(bge_chip_poll_engine)
2443 
2444 static boolean_t
2445 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2446 	uint32_t mask, uint32_t val)
2447 {
2448 	uint32_t regval;
2449 	uint32_t n;
2450 
2451 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2452 	    (void *)bgep, regno, mask, val));
2453 
2454 	for (n = 200; n; --n) {
2455 		regval = bge_reg_get32(bgep, regno);
2456 		if ((regval & mask) == val)
2457 			return (B_TRUE);
2458 		drv_usecwait(100);
2459 	}
2460 
2461 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2462 	return (B_FALSE);
2463 }
2464 
2465 /*
2466  * Various registers that control the chip's internal engines (state
2467  * machines) have a <reset> bit (fortunately, in the same place in
2468  * each such register :-).  To reset the state machine, this bit must
2469  * be written with 1; it will then read back as 1 while the reset is
2470  * in progress, but self-clear to 0 when the reset completes.
2471  *
2472  * This code sets the bit, then polls for it to read back as zero.
2473  * The return value is B_TRUE on success (reset bit cleared itself),
2474  * or B_FALSE if the state machine didn't recover :(
2475  *
2476  * NOTE: the Core reset is similar to other resets, except that we
2477  * can't poll for completion, since the Core reset disables memory
2478  * access!  So we just have to assume that it will all complete in
2479  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2480  */
2481 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2482 #pragma	no_inline(bge_chip_reset_engine)
2483 
2484 static boolean_t
2485 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2486 {
2487 	uint32_t regval;
2488 	uint32_t val32;
2489 
2490 	regval = bge_reg_get32(bgep, regno);
2491 
2492 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2493 	    (void *)bgep, regno));
2494 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2495 	    regno, regval));
2496 
2497 	regval |= STATE_MACHINE_RESET_BIT;
2498 
2499 	switch (regno) {
2500 	case MISC_CONFIG_REG:
2501 		/*
2502 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2503 		 * resetting PCIE block and bringing PCIE link down, bit 29
2504 		 * in the register needs to be set first, and then set it again
2505 		 * while the reset bit is written.
2506 		 * See:P500 of 57xx-PG102-RDS.pdf.
2507 		 */
2508 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2509 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2510 		    DEVICE_5714_SERIES_CHIPSETS(bgep)||
2511 		    DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2512 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2513 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2514 				if (bgep->chipid.asic_rev ==
2515 				    MHCR_CHIP_REV_5751_A0 ||
2516 				    bgep->chipid.asic_rev ==
2517 				    MHCR_CHIP_REV_5721_A0 ||
2518 				    bgep->chipid.asic_rev ==
2519 				    MHCR_CHIP_REV_5755_A0) {
2520 					val32 = bge_reg_get32(bgep,
2521 					    PHY_TEST_CTRL_REG);
2522 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2523 					    PHY_PCIE_LTASS_MODE))
2524 						bge_reg_put32(bgep,
2525 						    PHY_TEST_CTRL_REG,
2526 						    PHY_PCIE_SCRAM_MODE);
2527 					val32 = pci_config_get32
2528 					    (bgep->cfg_handle,
2529 					    PCI_CONF_BGE_CLKCTL);
2530 					val32 |= CLKCTL_PCIE_A0_FIX;
2531 					pci_config_put32(bgep->cfg_handle,
2532 					    PCI_CONF_BGE_CLKCTL, val32);
2533 				}
2534 				bge_reg_set32(bgep, regno,
2535 				    MISC_CONFIG_GRC_RESET_DISABLE);
2536 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2537 			}
2538 		}
2539 
2540 		/*
2541 		 * Special case - causes Core reset
2542 		 *
2543 		 * On SPARC v9 we want to ensure that we don't start
2544 		 * timing until the I/O access has actually reached
2545 		 * the chip, otherwise we might make the next access
2546 		 * too early.  And we can't just force the write out
2547 		 * by following it with a read (even to config space)
2548 		 * because that would cause the fault we're trying
2549 		 * to avoid.  Hence the need for membar_sync() here.
2550 		 */
2551 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2552 #ifdef	__sparcv9
2553 		membar_sync();
2554 #endif	/* __sparcv9 */
2555 		/*
2556 		 * On some platforms,system need about 300us for
2557 		 * link setup.
2558 		 */
2559 		drv_usecwait(300);
2560 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2561 			bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
2562 			bge_reg_clr32(
2563 			    bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
2564 		}
2565 
2566 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2567 			/* PCI-E device need more reset time */
2568 			drv_usecwait(120000);
2569 
2570 			/* Set PCIE max payload size and clear error status. */
2571 			if ((bgep->chipid.chip_label == 5721) ||
2572 			    (bgep->chipid.chip_label == 5751) ||
2573 			    (bgep->chipid.chip_label == 5752) ||
2574 			    (bgep->chipid.chip_label == 5789) ||
2575 			    (bgep->chipid.chip_label == 5906)) {
2576 				pci_config_put16(bgep->cfg_handle,
2577 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2578 				pci_config_put16(bgep->cfg_handle,
2579 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2580 			}
2581 		}
2582 
2583 		BGE_PCICHK(bgep);
2584 		return (B_TRUE);
2585 
2586 	default:
2587 		bge_reg_put32(bgep, regno, regval);
2588 		return (bge_chip_poll_engine(bgep, regno,
2589 		    STATE_MACHINE_RESET_BIT, 0));
2590 	}
2591 }
2592 
2593 /*
2594  * Various registers that control the chip's internal engines (state
2595  * machines) have an <enable> bit (fortunately, in the same place in
2596  * each such register :-).  To stop the state machine, this bit must
2597  * be written with 0, then polled to see when the state machine has
2598  * actually stopped.
2599  *
2600  * The return value is B_TRUE on success (enable bit cleared), or
2601  * B_FALSE if the state machine didn't stop :(
2602  */
2603 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2604 						uint32_t morebits);
2605 #pragma	no_inline(bge_chip_disable_engine)
2606 
2607 static boolean_t
2608 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2609 {
2610 	uint32_t regval;
2611 
2612 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2613 	    (void *)bgep, regno, morebits));
2614 
2615 	switch (regno) {
2616 	case FTQ_RESET_REG:
2617 		/*
2618 		 * For Schumacher's bugfix CR6490108
2619 		 */
2620 #ifdef BGE_IPMI_ASF
2621 #ifdef BGE_NETCONSOLE
2622 		if (bgep->asf_enabled)
2623 			return (B_TRUE);
2624 #endif
2625 #endif
2626 		/*
2627 		 * Not quite like the others; it doesn't
2628 		 * have an <enable> bit, but instead we
2629 		 * have to set and then clear all the bits
2630 		 */
2631 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2632 		drv_usecwait(100);
2633 		bge_reg_put32(bgep, regno, 0);
2634 		return (B_TRUE);
2635 
2636 	default:
2637 		regval = bge_reg_get32(bgep, regno);
2638 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2639 		regval &= ~morebits;
2640 		bge_reg_put32(bgep, regno, regval);
2641 		return (bge_chip_poll_engine(bgep, regno,
2642 		    STATE_MACHINE_ENABLE_BIT, 0));
2643 	}
2644 }
2645 
2646 /*
2647  * Various registers that control the chip's internal engines (state
2648  * machines) have an <enable> bit (fortunately, in the same place in
2649  * each such register :-).  To start the state machine, this bit must
2650  * be written with 1, then polled to see when the state machine has
2651  * actually started.
2652  *
2653  * The return value is B_TRUE on success (enable bit set), or
2654  * B_FALSE if the state machine didn't start :(
2655  */
2656 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2657 					uint32_t morebits);
2658 #pragma	no_inline(bge_chip_enable_engine)
2659 
2660 static boolean_t
2661 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2662 {
2663 	uint32_t regval;
2664 
2665 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2666 	    (void *)bgep, regno, morebits));
2667 
2668 	switch (regno) {
2669 	case FTQ_RESET_REG:
2670 #ifdef BGE_IPMI_ASF
2671 #ifdef BGE_NETCONSOLE
2672 		if (bgep->asf_enabled)
2673 			return (B_TRUE);
2674 #endif
2675 #endif
2676 		/*
2677 		 * Not quite like the others; it doesn't
2678 		 * have an <enable> bit, but instead we
2679 		 * have to set and then clear all the bits
2680 		 */
2681 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2682 		drv_usecwait(100);
2683 		bge_reg_put32(bgep, regno, 0);
2684 		return (B_TRUE);
2685 
2686 	default:
2687 		regval = bge_reg_get32(bgep, regno);
2688 		regval |= STATE_MACHINE_ENABLE_BIT;
2689 		regval |= morebits;
2690 		bge_reg_put32(bgep, regno, regval);
2691 		return (bge_chip_poll_engine(bgep, regno,
2692 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2693 	}
2694 }
2695 
2696 /*
2697  * Reprogram the Ethernet, Transmit, and Receive MAC
2698  * modes to match the param_* variables
2699  */
2700 void bge_sync_mac_modes(bge_t *bgep);
2701 #pragma	no_inline(bge_sync_mac_modes)
2702 
2703 void
2704 bge_sync_mac_modes(bge_t *bgep)
2705 {
2706 	uint32_t macmode;
2707 	uint32_t regval;
2708 
2709 	ASSERT(mutex_owned(bgep->genlock));
2710 
2711 	/*
2712 	 * Reprogram the Ethernet MAC mode ...
2713 	 */
2714 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2715 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2716 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2717 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2718 			macmode |= ETHERNET_MODE_LINK_POLARITY;
2719 		else
2720 			macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2721 	else
2722 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2723 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2724 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2725 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
2726 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2727 			macmode |= ETHERNET_MODE_PORTMODE_GMII;
2728 		else
2729 			macmode |= ETHERNET_MODE_PORTMODE_TBI;
2730 	} else if (bgep->param_link_speed == 10 ||
2731 	    bgep->param_link_speed == 100)
2732 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2733 	else
2734 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2735 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2736 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2737 	else
2738 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2739 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2740 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2741 	else
2742 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2743 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2744 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2745 	    (void *)bgep, regval, macmode));
2746 
2747 	/*
2748 	 * ... the Transmit MAC mode ...
2749 	 */
2750 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2751 	if (bgep->param_link_tx_pause)
2752 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2753 	else
2754 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2755 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2756 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2757 	    (void *)bgep, regval, macmode));
2758 
2759 	/*
2760 	 * ... and the Receive MAC mode
2761 	 */
2762 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2763 	if (bgep->param_link_rx_pause)
2764 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2765 	else
2766 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2767 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2768 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2769 	    (void *)bgep, regval, macmode));
2770 }
2771 
2772 /*
2773  * bge_chip_sync() -- program the chip with the unicast MAC address,
2774  * the multicast hash table, the required level of promiscuity, and
2775  * the current loopback mode ...
2776  */
2777 #ifdef BGE_IPMI_ASF
2778 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2779 #else
2780 int bge_chip_sync(bge_t *bgep);
2781 #endif
2782 #pragma	no_inline(bge_chip_sync)
2783 
2784 int
2785 #ifdef BGE_IPMI_ASF
2786 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2787 #else
2788 bge_chip_sync(bge_t *bgep)
2789 #endif
2790 {
2791 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2792 	boolean_t promisc;
2793 	uint64_t macaddr;
2794 	uint32_t fill;
2795 	int i, j;
2796 	int retval = DDI_SUCCESS;
2797 
2798 	BGE_TRACE(("bge_chip_sync($%p)",
2799 	    (void *)bgep));
2800 
2801 	ASSERT(mutex_owned(bgep->genlock));
2802 
2803 	promisc = B_FALSE;
2804 	fill = ~(uint32_t)0;
2805 
2806 	if (bgep->promisc)
2807 		promisc = B_TRUE;
2808 	else
2809 		fill = (uint32_t)0;
2810 
2811 	/*
2812 	 * If the TX/RX MAC engines are already running, we should stop
2813 	 * them (and reset the RX engine) before changing the parameters.
2814 	 * If they're not running, this will have no effect ...
2815 	 *
2816 	 * NOTE: this is currently disabled by default because stopping
2817 	 * and restarting the Tx engine may cause an outgoing packet in
2818 	 * transit to be truncated.  Also, stopping and restarting the
2819 	 * Rx engine seems to not work correctly on the 5705.  Testing
2820 	 * has not (yet!) revealed any problems with NOT stopping and
2821 	 * restarting these engines (and Broadcom say their drivers don't
2822 	 * do this), but if it is found to cause problems, this variable
2823 	 * can be patched to re-enable the old behaviour ...
2824 	 */
2825 	if (bge_stop_start_on_sync) {
2826 #ifdef BGE_IPMI_ASF
2827 		if (!bgep->asf_enabled) {
2828 			if (!bge_chip_disable_engine(bgep,
2829 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2830 				retval = DDI_FAILURE;
2831 		} else {
2832 			if (!bge_chip_disable_engine(bgep,
2833 			    RECEIVE_MAC_MODE_REG, 0))
2834 				retval = DDI_FAILURE;
2835 		}
2836 #else
2837 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2838 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2839 			retval = DDI_FAILURE;
2840 #endif
2841 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2842 			retval = DDI_FAILURE;
2843 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2844 			retval = DDI_FAILURE;
2845 	}
2846 
2847 	/*
2848 	 * Reprogram the hashed multicast address table ...
2849 	 */
2850 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2851 		bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
2852 
2853 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2854 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2855 			bgep->mcast_hash[i] | fill);
2856 
2857 #ifdef BGE_IPMI_ASF
2858 	if (!bgep->asf_enabled || !asf_keeplive) {
2859 #endif
2860 		/*
2861 		 * Transform the MAC address(es) from host to chip format, then
2862 		 * reprogram the transmit random backoff seed and the unicast
2863 		 * MAC address(es) ...
2864 		 */
2865 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2866 			for (i = 0, fill = 0, macaddr = 0ull;
2867 			    i < ETHERADDRL; ++i) {
2868 				macaddr <<= 8;
2869 				macaddr |= bgep->curr_addr[j].addr[i];
2870 				fill += bgep->curr_addr[j].addr[i];
2871 			}
2872 			bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2873 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2874 		}
2875 
2876 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2877 			(void *)bgep, macaddr));
2878 #ifdef BGE_IPMI_ASF
2879 	}
2880 #endif
2881 
2882 	/*
2883 	 * Set or clear the PROMISCUOUS mode bit
2884 	 */
2885 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2886 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2887 
2888 	/*
2889 	 * Sync the rest of the MAC modes too ...
2890 	 */
2891 	bge_sync_mac_modes(bgep);
2892 
2893 	/*
2894 	 * Restart RX/TX MAC engines if required ...
2895 	 */
2896 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2897 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2898 			retval = DDI_FAILURE;
2899 #ifdef BGE_IPMI_ASF
2900 		if (!bgep->asf_enabled) {
2901 			if (!bge_chip_enable_engine(bgep,
2902 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2903 				retval = DDI_FAILURE;
2904 		} else {
2905 			if (!bge_chip_enable_engine(bgep,
2906 			    RECEIVE_MAC_MODE_REG, 0))
2907 				retval = DDI_FAILURE;
2908 		}
2909 #else
2910 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2911 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2912 			retval = DDI_FAILURE;
2913 #endif
2914 	}
2915 	return (retval);
2916 }
2917 
2918 /*
2919  * This array defines the sequence of state machine control registers
2920  * in which the <enable> bit must be cleared to bring the chip to a
2921  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2922  */
2923 static bge_regno_t shutdown_engine_regs[] = {
2924 	RECEIVE_MAC_MODE_REG,
2925 	RCV_BD_INITIATOR_MODE_REG,
2926 	RCV_LIST_PLACEMENT_MODE_REG,
2927 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2928 	RCV_DATA_BD_INITIATOR_MODE_REG,
2929 	RCV_DATA_COMPLETION_MODE_REG,
2930 	RCV_BD_COMPLETION_MODE_REG,
2931 
2932 	SEND_BD_SELECTOR_MODE_REG,
2933 	SEND_BD_INITIATOR_MODE_REG,
2934 	SEND_DATA_INITIATOR_MODE_REG,
2935 	READ_DMA_MODE_REG,
2936 	SEND_DATA_COMPLETION_MODE_REG,
2937 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2938 	SEND_BD_COMPLETION_MODE_REG,
2939 	TRANSMIT_MAC_MODE_REG,
2940 
2941 	HOST_COALESCE_MODE_REG,
2942 	WRITE_DMA_MODE_REG,
2943 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2944 	FTQ_RESET_REG,		/* special - see code	*/
2945 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2946 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2947 	BGE_REGNO_NONE		/* terminator		*/
2948 };
2949 
2950 #ifndef __sparc
2951 static bge_regno_t quiesce_regs[] = {
2952 	READ_DMA_MODE_REG,
2953 	DMA_COMPLETION_MODE_REG,
2954 	WRITE_DMA_MODE_REG,
2955 	BGE_REGNO_NONE
2956 };
2957 
2958 void bge_chip_stop_nonblocking(bge_t *bgep);
2959 #pragma no_inline(bge_chip_stop_nonblocking)
2960 
2961 /*
2962  * This function is called by bge_quiesce(). We
2963  * turn off all the DMA engines here.
2964  */
2965 void
2966 bge_chip_stop_nonblocking(bge_t *bgep)
2967 {
2968 	bge_regno_t *rbp;
2969 
2970 	/*
2971 	 * Flag that no more activity may be initiated
2972 	 */
2973 	bgep->progress &= ~PROGRESS_READY;
2974 
2975 	rbp = quiesce_regs;
2976 	while (*rbp != BGE_REGNO_NONE) {
2977 		(void) bge_chip_disable_engine(bgep, *rbp, 0);
2978 		++rbp;
2979 	}
2980 
2981 	bgep->bge_chip_state = BGE_CHIP_STOPPED;
2982 }
2983 
2984 #endif
2985 
2986 /*
2987  * bge_chip_stop() -- stop all chip processing
2988  *
2989  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2990  * we've detected a problem internally; otherwise, this is a normal
2991  * (clean) stop (at user request i.e. the last STREAM has been closed).
2992  */
2993 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2994 #pragma	no_inline(bge_chip_stop)
2995 
2996 void
2997 bge_chip_stop(bge_t *bgep, boolean_t fault)
2998 {
2999 	bge_regno_t regno;
3000 	bge_regno_t *rbp;
3001 	boolean_t ok;
3002 
3003 	BGE_TRACE(("bge_chip_stop($%p)",
3004 	    (void *)bgep));
3005 
3006 	ASSERT(mutex_owned(bgep->genlock));
3007 
3008 	rbp = shutdown_engine_regs;
3009 	/*
3010 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
3011 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
3012 	 * -ory arbiter should not be disabled.
3013 	 */
3014 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
3015 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3016 				ok &= bge_chip_disable_engine(bgep, regno, 0);
3017 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
3018 			    (regno != DMA_COMPLETION_MODE_REG) &&
3019 			    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
3020 			    (regno != BUFFER_MANAGER_MODE_REG) &&
3021 			    (regno != MEMORY_ARBITER_MODE_REG))
3022 				ok &= bge_chip_disable_engine(bgep,
3023 				    regno, 0);
3024 	}
3025 
3026 	if (!ok && !fault)
3027 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3028 
3029 	/*
3030 	 * Finally, disable (all) MAC events & clear the MAC status
3031 	 */
3032 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3033 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3034 
3035 	/*
3036 	 * if we're stopping the chip because of a detected fault then do
3037 	 * appropriate actions
3038 	 */
3039 	if (fault) {
3040 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3041 			bgep->bge_chip_state = BGE_CHIP_FAULT;
3042 			if (!bgep->manual_reset)
3043 				ddi_fm_service_impact(bgep->devinfo,
3044 				    DDI_SERVICE_LOST);
3045 			if (bgep->bge_dma_error) {
3046 				/*
3047 				 * need to free buffers in case the fault was
3048 				 * due to a memory error in a buffer - got to
3049 				 * do a fair bit of tidying first
3050 				 */
3051 				if (bgep->progress & PROGRESS_KSTATS) {
3052 					bge_fini_kstats(bgep);
3053 					bgep->progress &= ~PROGRESS_KSTATS;
3054 				}
3055 				if (bgep->progress & PROGRESS_INTR) {
3056 					bge_intr_disable(bgep);
3057 					rw_enter(bgep->errlock, RW_WRITER);
3058 					bge_fini_rings(bgep);
3059 					rw_exit(bgep->errlock);
3060 					bgep->progress &= ~PROGRESS_INTR;
3061 				}
3062 				if (bgep->progress & PROGRESS_BUFS) {
3063 					bge_free_bufs(bgep);
3064 					bgep->progress &= ~PROGRESS_BUFS;
3065 				}
3066 				bgep->bge_dma_error = B_FALSE;
3067 			}
3068 		}
3069 	} else
3070 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
3071 }
3072 
3073 /*
3074  * Poll for completion of chip's ROM firmware; also, at least on the
3075  * first time through, find and return the hardware MAC address, if any.
3076  */
3077 static uint64_t bge_poll_firmware(bge_t *bgep);
3078 #pragma	no_inline(bge_poll_firmware)
3079 
3080 static uint64_t
3081 bge_poll_firmware(bge_t *bgep)
3082 {
3083 	uint64_t magic;
3084 	uint64_t mac;
3085 	uint32_t gen, val;
3086 	uint32_t i;
3087 
3088 	/*
3089 	 * Step 19: poll for firmware completion (GENCOMM port set
3090 	 * to the ones complement of T3_MAGIC_NUMBER).
3091 	 *
3092 	 * While we're at it, we also read the MAC address register;
3093 	 * at some stage the firmware will load this with the
3094 	 * factory-set value.
3095 	 *
3096 	 * When both the magic number and the MAC address are set,
3097 	 * we're done; but we impose a time limit of one second
3098 	 * (1000*1000us) in case the firmware fails in some fashion
3099 	 * or the SEEPROM that provides that MAC address isn't fitted.
3100 	 *
3101 	 * After the first time through (chip state != INITIAL), we
3102 	 * don't need the MAC address to be set (we've already got it
3103 	 * or not, from the first time), so we don't wait for it, but
3104 	 * we still have to wait for the T3_MAGIC_NUMBER.
3105 	 *
3106 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3107 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3108 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3109 	 * it work correctly on both big- and little-endian hosts.
3110 	 */
3111 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3112 	    MHCR_CHIP_ASIC_REV_5906) {
3113 		for (i = 0; i < 1000; ++i) {
3114 			drv_usecwait(1000);
3115 			val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3116 			if (val & VCPU_INIT_DONE)
3117 				break;
3118 		}
3119 		BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3120 		    (void *)bgep, i));
3121 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3122 	} else {
3123 		for (i = 0; i < 1000; ++i) {
3124 			drv_usecwait(1000);
3125 			gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3126 			if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3127 				drv_usecwait(100000);
3128 			mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3129 #ifdef BGE_IPMI_ASF
3130 			if (!bgep->asf_enabled) {
3131 #endif
3132 				if (gen != ~T3_MAGIC_NUMBER)
3133 					continue;
3134 #ifdef BGE_IPMI_ASF
3135 			}
3136 #endif
3137 			if (mac != 0ULL)
3138 				break;
3139 			if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3140 				break;
3141 		}
3142 	}
3143 
3144 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3145 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3146 	    (void *)bgep, gen, i));
3147 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3148 	    mac, magic));
3149 
3150 	return (mac);
3151 }
3152 
3153 /*
3154  * Maximum times of trying to get the NVRAM access lock
3155  * by calling bge_nvmem_acquire()
3156  */
3157 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3158 
3159 #ifdef BGE_IPMI_ASF
3160 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3161 #else
3162 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3163 #endif
3164 #pragma	no_inline(bge_chip_reset)
3165 
3166 int
3167 #ifdef BGE_IPMI_ASF
3168 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3169 #else
3170 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3171 #endif
3172 {
3173 	chip_id_t chipid;
3174 	uint64_t mac;
3175 	uint64_t magic;
3176 	uint32_t modeflags;
3177 	uint32_t mhcr;
3178 	uint32_t sx0;
3179 	uint32_t i, tries;
3180 #ifdef BGE_IPMI_ASF
3181 	uint32_t mailbox;
3182 #endif
3183 	int retval = DDI_SUCCESS;
3184 
3185 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3186 		(void *)bgep, enable_dma));
3187 
3188 	ASSERT(mutex_owned(bgep->genlock));
3189 
3190 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3191 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3192 
3193 	/*
3194 	 * Do we need to stop the chip cleanly before resetting?
3195 	 */
3196 	switch (bgep->bge_chip_state) {
3197 	default:
3198 		_NOTE(NOTREACHED)
3199 		return (DDI_FAILURE);
3200 
3201 	case BGE_CHIP_INITIAL:
3202 	case BGE_CHIP_STOPPED:
3203 	case BGE_CHIP_RESET:
3204 		break;
3205 
3206 	case BGE_CHIP_RUNNING:
3207 	case BGE_CHIP_ERROR:
3208 	case BGE_CHIP_FAULT:
3209 		bge_chip_stop(bgep, B_FALSE);
3210 		break;
3211 	}
3212 
3213 #ifdef BGE_IPMI_ASF
3214 	if (bgep->asf_enabled) {
3215 #ifdef __sparc
3216 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3217 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3218 			MHCR_MASK_INTERRUPT_MODE |
3219 			MHCR_MASK_PCI_INT_OUTPUT |
3220 			MHCR_CLEAR_INTERRUPT_INTA |
3221 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3222 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3223 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3224 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3225 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3226 			MEMORY_ARBITER_ENABLE);
3227 #endif
3228 		if (asf_mode == ASF_MODE_INIT) {
3229 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3230 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3231 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3232 		}
3233 	}
3234 #endif
3235 	/*
3236 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3237 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3238 	 *
3239 	 * Before reset Core clock,it is
3240 	 * also required to initialize the Memory Arbiter as specified in step9
3241 	 * and Misc Host Control Register as specified in step-13
3242 	 * Step 4-5: reset Core clock & wait for completion
3243 	 * Steps 6-8: are done by bge_chip_cfg_init()
3244 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3245 	 */
3246 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3247 		retval = DDI_FAILURE;
3248 
3249 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3250 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3251 	    MHCR_MASK_INTERRUPT_MODE |
3252 	    MHCR_MASK_PCI_INT_OUTPUT |
3253 	    MHCR_CLEAR_INTERRUPT_INTA;
3254 #ifdef  _BIG_ENDIAN
3255 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3256 #endif  /* _BIG_ENDIAN */
3257 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3258 #ifdef BGE_IPMI_ASF
3259 	if (bgep->asf_enabled)
3260 		bgep->asf_wordswapped = B_FALSE;
3261 #endif
3262 	/*
3263 	 * NVRAM Corruption Workaround
3264 	 */
3265 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3266 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3267 			break;
3268 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3269 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3270 			bgep->ifname));
3271 
3272 #ifdef BGE_IPMI_ASF
3273 	if (!bgep->asf_enabled) {
3274 #endif
3275 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3276 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3277 #ifdef BGE_IPMI_ASF
3278 	}
3279 #endif
3280 
3281 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3282 		retval = DDI_FAILURE;
3283 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3284 
3285 	/*
3286 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3287 	 * a bit set to avoid a fifo overflow/underflow bug.
3288 	 */
3289 	if ((bgep->chipid.chip_label == 5721) ||
3290 		(bgep->chipid.chip_label == 5751) ||
3291 		(bgep->chipid.chip_label == 5752) ||
3292 		(bgep->chipid.chip_label == 5755) ||
3293 		(bgep->chipid.chip_label == 5756) ||
3294 		(bgep->chipid.chip_label == 5789) ||
3295 		(bgep->chipid.chip_label == 5906))
3296 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3297 
3298 
3299 	/*
3300 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3301 	 * not be changed.
3302 	 */
3303 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3304 		retval = DDI_FAILURE;
3305 
3306 	/*
3307 	 * Steps 10-11: configure PIO endianness options and
3308 	 * enable indirect register access -- already done
3309 	 * Steps 12-13: enable writing to the PCI state & clock
3310 	 * control registers -- not required; we aren't going to
3311 	 * use those features.
3312 	 * Steps 14-15: Configure DMA endianness options.  See
3313 	 * the comments on the setting of the MHCR above.
3314 	 */
3315 #ifdef	_BIG_ENDIAN
3316 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3317 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3318 #else
3319 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3320 #endif	/* _BIG_ENDIAN */
3321 #ifdef BGE_IPMI_ASF
3322 	if (bgep->asf_enabled)
3323 		modeflags |= MODE_HOST_STACK_UP;
3324 #endif
3325 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3326 
3327 #ifdef BGE_IPMI_ASF
3328 	if (bgep->asf_enabled) {
3329 #ifdef __sparc
3330 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3331 			MEMORY_ARBITER_ENABLE |
3332 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3333 #endif
3334 
3335 #ifdef  BGE_NETCONSOLE
3336 		if (!bgep->asf_newhandshake) {
3337 			if ((asf_mode == ASF_MODE_INIT) ||
3338 			(asf_mode == ASF_MODE_POST_INIT)) {
3339 				bge_asf_post_reset_old_mode(bgep,
3340 					BGE_INIT_RESET);
3341 			} else {
3342 				bge_asf_post_reset_old_mode(bgep,
3343 					BGE_SHUTDOWN_RESET);
3344 			}
3345 		}
3346 #endif
3347 
3348 		/* Wait for NVRAM init */
3349 		i = 0;
3350 		drv_usecwait(5000);
3351 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3352 
3353 		while ((mailbox != (uint32_t)
3354 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3355 			(i < 10000)) {
3356 			drv_usecwait(100);
3357 			mailbox = bge_nic_get32(bgep,
3358 				BGE_FIRMWARE_MAILBOX);
3359 			i++;
3360 		}
3361 
3362 #ifndef BGE_NETCONSOLE
3363 		if (!bgep->asf_newhandshake) {
3364 			if ((asf_mode == ASF_MODE_INIT) ||
3365 				(asf_mode == ASF_MODE_POST_INIT)) {
3366 
3367 				bge_asf_post_reset_old_mode(bgep,
3368 					BGE_INIT_RESET);
3369 			} else {
3370 				bge_asf_post_reset_old_mode(bgep,
3371 					BGE_SHUTDOWN_RESET);
3372 			}
3373 		}
3374 #endif
3375 	}
3376 #endif
3377 	/*
3378 	 * Steps 16-17: poll for firmware completion
3379 	 */
3380 	mac = bge_poll_firmware(bgep);
3381 
3382 	/*
3383 	 * Step 18: enable external memory -- doesn't apply.
3384 	 *
3385 	 * However we take the opportunity to set the MLCR anyway, as
3386 	 * this register also controls the SEEPROM auto-access method
3387 	 * which we may want to use later ...
3388 	 *
3389 	 * The proper value here depends on the way the chip is wired
3390 	 * into the circuit board, as this register *also* controls which
3391 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3392 	 * values driven onto those pins!
3393 	 *
3394 	 * See also step 74 in the PRM ...
3395 	 */
3396 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3397 	    bgep->chipid.bge_mlcr_default);
3398 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3399 
3400 	/*
3401 	 * Step 20: clear the Ethernet MAC mode register
3402 	 */
3403 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3404 
3405 	/*
3406 	 * Step 21: restore cache-line-size, latency timer, and
3407 	 * subsystem ID registers to their original values (not
3408 	 * those read into the local structure <chipid>, 'cos
3409 	 * that was after they were cleared by the RESET).
3410 	 *
3411 	 * Note: the Subsystem Vendor/Device ID registers are not
3412 	 * directly writable in config space, so we use the shadow
3413 	 * copy in "Page Zero" of register space to restore them
3414 	 * both in one go ...
3415 	 */
3416 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3417 		bgep->chipid.clsize);
3418 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3419 		bgep->chipid.latency);
3420 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3421 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3422 
3423 	/*
3424 	 * The SEND INDEX registers should be reset to zero by the
3425 	 * global chip reset; if they're not, there'll be trouble
3426 	 * later on.
3427 	 */
3428 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3429 	if (sx0 != 0) {
3430 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3431 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3432 		retval = DDI_FAILURE;
3433 	}
3434 
3435 	/* Enable MSI code */
3436 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3437 		bge_reg_set32(bgep, MSI_MODE_REG,
3438 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3439 
3440 	/*
3441 	 * On the first time through, save the factory-set MAC address
3442 	 * (if any).  If bge_poll_firmware() above didn't return one
3443 	 * (from a chip register) consider looking in the attached NV
3444 	 * memory device, if any.  Once we have it, we save it in both
3445 	 * register-image (64-bit) and byte-array forms.  All-zero and
3446 	 * all-one addresses are not valid, and we refuse to stash those.
3447 	 */
3448 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3449 		if (mac == 0ULL)
3450 			mac = bge_get_nvmac(bgep);
3451 		if (mac != 0ULL && mac != ~0ULL) {
3452 			bgep->chipid.hw_mac_addr = mac;
3453 			for (i = ETHERADDRL; i-- != 0; ) {
3454 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3455 				mac >>= 8;
3456 			}
3457 			bgep->chipid.vendor_addr.set = B_TRUE;
3458 		}
3459 	}
3460 
3461 #ifdef BGE_IPMI_ASF
3462 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3463 		if (asf_mode != ASF_MODE_NONE) {
3464 			if ((asf_mode == ASF_MODE_INIT) ||
3465 				(asf_mode == ASF_MODE_POST_INIT)) {
3466 
3467 				bge_asf_post_reset_new_mode(bgep,
3468 					BGE_INIT_RESET);
3469 			} else {
3470 				bge_asf_post_reset_new_mode(bgep,
3471 					BGE_SHUTDOWN_RESET);
3472 			}
3473 		}
3474 	}
3475 #endif
3476 
3477 	/*
3478 	 * Record the new state
3479 	 */
3480 	bgep->chip_resets += 1;
3481 	bgep->bge_chip_state = BGE_CHIP_RESET;
3482 	return (retval);
3483 }
3484 
3485 /*
3486  * bge_chip_start() -- start the chip transmitting and/or receiving,
3487  * including enabling interrupts
3488  */
3489 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3490 #pragma	no_inline(bge_chip_start)
3491 
3492 int
3493 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3494 {
3495 	uint32_t coalmode;
3496 	uint32_t ledctl;
3497 	uint32_t mtu;
3498 	uint32_t maxring;
3499 	uint32_t stats_mask;
3500 	uint32_t dma_wrprio;
3501 	uint64_t ring;
3502 	int retval = DDI_SUCCESS;
3503 
3504 	BGE_TRACE(("bge_chip_start($%p)",
3505 	    (void *)bgep));
3506 
3507 	ASSERT(mutex_owned(bgep->genlock));
3508 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3509 
3510 	/*
3511 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3512 	 * The document specifies 95 separate steps to fully
3513 	 * initialise the chip!!!!
3514 	 *
3515 	 * The reset code above has already got us as far as step
3516 	 * 21, so we continue with ...
3517 	 *
3518 	 * Step 22: clear the MAC statistics block
3519 	 * (0x0300-0x0aff in NIC-local memory)
3520 	 */
3521 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3522 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3523 		    NIC_MEM_STATISTICS_SIZE);
3524 
3525 	/*
3526 	 * Step 23: clear the status block (in host memory)
3527 	 */
3528 	DMA_ZERO(bgep->status_block);
3529 
3530 	/*
3531 	 * Step 24: set DMA read/write control register
3532 	 */
3533 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3534 	    bgep->chipid.bge_dma_rwctrl);
3535 
3536 	/*
3537 	 * Step 25: Configure DMA endianness -- already done (16/17)
3538 	 * Step 26: Configure Host-Based Send Rings
3539 	 * Step 27: Indicate Host Stack Up
3540 	 */
3541 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3542 	    MODE_HOST_SEND_BDS |
3543 	    MODE_HOST_STACK_UP);
3544 
3545 	/*
3546 	 * Step 28: Configure checksum options:
3547 	 *	Solaris supports the hardware default checksum options.
3548 	 *
3549 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3550 	 */
3551 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3552 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3553 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3554 
3555 	/*
3556 	 * Step 29: configure Timer Prescaler.  The value is always the
3557 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3558 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3559 	 * for the whole chip!
3560 	 */
3561 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3562 
3563 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3564 		drv_usecwait(40);
3565 		/* put PHY into ready state */
3566 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
3567 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
3568 		drv_usecwait(40);
3569 	}
3570 
3571 	/*
3572 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3573 	 *
3574 	 * If the mbuf_length is specified as 0, we just leave these at
3575 	 * their hardware defaults, rather than explicitly setting them.
3576 	 * As the Broadcom HRM,driver better not change the parameters
3577 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3578 	 */
3579 	if ((bgep->chipid.mbuf_length != 0) &&
3580 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3581 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3582 			    bgep->chipid.mbuf_base);
3583 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3584 			    bgep->chipid.mbuf_length);
3585 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3586 			    DMAD_POOL_BASE_DEFAULT);
3587 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3588 			    DMAD_POOL_LENGTH_DEFAULT);
3589 	}
3590 
3591 	/*
3592 	 * Step 32: configure MAC memory pool watermarks
3593 	 */
3594 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3595 	    bgep->chipid.mbuf_lo_water_rdma);
3596 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3597 	    bgep->chipid.mbuf_lo_water_rmac);
3598 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3599 	    bgep->chipid.mbuf_hi_water);
3600 
3601 	/*
3602 	 * Step 33: configure DMA resource watermarks
3603 	 */
3604 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3605 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3606 		    bge_dmad_lo_water);
3607 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3608 		    bge_dmad_hi_water);
3609 	}
3610 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3611 
3612 	/*
3613 	 * Steps 34-36: enable buffer manager & internal h/w queues
3614 	 */
3615 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3616 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3617 		retval = DDI_FAILURE;
3618 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3619 		retval = DDI_FAILURE;
3620 
3621 	/*
3622 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3623 	 */
3624 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3625 	    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3626 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3627 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3628 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3629 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3630 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3631 	}
3632 
3633 	/*
3634 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3635 	 */
3636 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3637 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3638 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3639 		    bge_replenish_jumbo);
3640 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3641 		    bge_replenish_mini);
3642 	}
3643 
3644 	/*
3645 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3646 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3647 	 */
3648 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3649 		maxring = BGE_SEND_RINGS_MAX;
3650 	else
3651 		maxring = BGE_SEND_RINGS_MAX_5705;
3652 	for (ring = 0; ring < maxring; ++ring) {
3653 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3654 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3655 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3656 		    &bgep->send[ring].hw_rcb);
3657 	}
3658 
3659 	/*
3660 	 * Steps 44-45: initialise Receive Return Rings
3661 	 * (0x0200-0x02ff in NIC-local memory)
3662 	 */
3663 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3664 		maxring = BGE_RECV_RINGS_MAX;
3665 	else
3666 		maxring = BGE_RECV_RINGS_MAX_5705;
3667 	for (ring = 0; ring < maxring; ++ring)
3668 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3669 		    &bgep->recv[ring].hw_rcb);
3670 
3671 	/*
3672 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3673 	 */
3674 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3675 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3676 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3677 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3678 	}
3679 	/*
3680 	 * Step 47: configure the MAC unicast address
3681 	 * Step 48: configure the random backoff seed
3682 	 * Step 96: set up multicast filters
3683 	 */
3684 #ifdef BGE_IPMI_ASF
3685 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3686 #else
3687 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3688 #endif
3689 		retval = DDI_FAILURE;
3690 
3691 	/*
3692 	 * Step 49: configure the MTU
3693 	 */
3694 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3695 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3696 
3697 	/*
3698 	 * Step 50: configure the IPG et al
3699 	 */
3700 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3701 
3702 	/*
3703 	 * Step 51: configure the default Rx Return Ring
3704 	 */
3705 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3706 
3707 	/*
3708 	 * Steps 52-54: configure Receive List Placement,
3709 	 * and enable Receive List Placement Statistics
3710 	 */
3711 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3712 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
3713 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3714 	case MHCR_CHIP_ASIC_REV_5700:
3715 	case MHCR_CHIP_ASIC_REV_5701:
3716 	case MHCR_CHIP_ASIC_REV_5703:
3717 	case MHCR_CHIP_ASIC_REV_5704:
3718 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3719 		break;
3720 	case MHCR_CHIP_ASIC_REV_5705:
3721 		break;
3722 	default:
3723 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3724 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3725 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3726 		break;
3727 	}
3728 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3729 
3730 	if (bgep->chipid.rx_rings > 1)
3731 		bge_init_recv_rule(bgep);
3732 
3733 	/*
3734 	 * Steps 55-56: enable Send Data Initiator Statistics
3735 	 */
3736 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3737 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3738 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3739 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3740 	} else {
3741 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3742 		    SEND_INIT_STATS_ENABLE);
3743 	}
3744 	/*
3745 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3746 	 */
3747 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3748 		retval = DDI_FAILURE;
3749 
3750 	/*
3751 	 * Steps 59-62: initialise Host Coalescing parameters
3752 	 */
3753 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3754 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3755 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3756 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3757 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3758 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3759 		    bge_tx_count_intr);
3760 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3761 		    bge_tx_ticks_intr);
3762 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3763 		    bge_rx_count_intr);
3764 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3765 		    bge_rx_ticks_intr);
3766 	}
3767 
3768 	/*
3769 	 * Steps 63-64: initialise status block & statistics
3770 	 * host memory addresses
3771 	 * The statistic block does not exist in some chipsets
3772 	 * Step 65: initialise Statistics Coalescing Tick Counter
3773 	 */
3774 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3775 	    bgep->status_block.cookie.dmac_laddress);
3776 
3777 	/*
3778 	 * Steps 66-67: initialise status block & statistics
3779 	 * NIC-local memory addresses
3780 	 */
3781 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3782 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3783 		    bgep->statistics.cookie.dmac_laddress);
3784 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3785 		    STATISTICS_TICKS_DEFAULT);
3786 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3787 		    NIC_MEM_STATUS_BLOCK);
3788 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3789 		    NIC_MEM_STATISTICS);
3790 	}
3791 
3792 	/*
3793 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3794 	 * Completion Engine, the Receive List Placement Engine, and the
3795 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3796 	 * and BCM5715.
3797 	 */
3798 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3799 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3800 		coalmode = COALESCE_64_BYTE_STATUS;
3801 	else
3802 		coalmode = 0;
3803 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3804 		retval = DDI_FAILURE;
3805 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3806 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3807 		retval = DDI_FAILURE;
3808 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3809 		retval = DDI_FAILURE;
3810 
3811 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3812 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3813 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3814 			retval = DDI_FAILURE;
3815 
3816 	/*
3817 	 * Step 72: Enable MAC DMA engines
3818 	 * Step 73: Clear & enable MAC statistics
3819 	 */
3820 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3821 	    ETHERNET_MODE_ENABLE_FHDE |
3822 	    ETHERNET_MODE_ENABLE_RDE |
3823 	    ETHERNET_MODE_ENABLE_TDE);
3824 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3825 	    ETHERNET_MODE_ENABLE_TX_STATS |
3826 	    ETHERNET_MODE_ENABLE_RX_STATS |
3827 	    ETHERNET_MODE_CLEAR_TX_STATS |
3828 	    ETHERNET_MODE_CLEAR_RX_STATS);
3829 
3830 	/*
3831 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3832 	 * Register); not required, as we set up the MLCR in step 10
3833 	 * (part of the reset code) above.
3834 	 *
3835 	 * Step 75: clear Interrupt Mailbox 0
3836 	 */
3837 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3838 
3839 	/*
3840 	 * Steps 76-87: Gentlemen, start your engines ...
3841 	 *
3842 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3843 	 * the Read DMA Engine, Receive Data Completion Engine,
3844 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3845 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3846 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3847 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3848 	 *
3849 	 * Beware exhaust fumes?
3850 	 */
3851 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3852 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3853 			retval = DDI_FAILURE;
3854 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
3855 	    ALL_DMA_ATTN_BITS;
3856 	if ((MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3857 	    MHCR_CHIP_ASIC_REV_5755) ||
3858 	    (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3859 	    MHCR_CHIP_ASIC_REV_5906)) {
3860 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
3861 	}
3862 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3863 	    dma_wrprio))
3864 		retval = DDI_FAILURE;
3865 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3866 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3867 		retval = DDI_FAILURE;
3868 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3869 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3870 		retval = DDI_FAILURE;
3871 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3872 		if (!bge_chip_enable_engine(bgep,
3873 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3874 			retval = DDI_FAILURE;
3875 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3876 		retval = DDI_FAILURE;
3877 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3878 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3879 		retval = DDI_FAILURE;
3880 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3881 	    RCV_BD_DISABLED_RING_ATTN))
3882 		retval = DDI_FAILURE;
3883 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3884 	    RCV_DATA_BD_ILL_RING_ATTN))
3885 		retval = DDI_FAILURE;
3886 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3887 		retval = DDI_FAILURE;
3888 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3889 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3890 		retval = DDI_FAILURE;
3891 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3892 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3893 		retval = DDI_FAILURE;
3894 
3895 	/*
3896 	 * Step 88: download firmware -- doesn't apply
3897 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3898 	 */
3899 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3900 		retval = DDI_FAILURE;
3901 #ifdef BGE_IPMI_ASF
3902 	if (!bgep->asf_enabled) {
3903 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3904 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3905 			retval = DDI_FAILURE;
3906 	} else {
3907 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3908 			retval = DDI_FAILURE;
3909 	}
3910 #else
3911 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3912 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3913 		retval = DDI_FAILURE;
3914 #endif
3915 
3916 	/*
3917 	 * Step 91: disable auto-polling of PHY status
3918 	 */
3919 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3920 
3921 	/*
3922 	 * Step 92: configure D0 power state (not required)
3923 	 * Step 93: initialise LED control register ()
3924 	 */
3925 	ledctl = LED_CONTROL_DEFAULT;
3926 	switch (bgep->chipid.device) {
3927 	case DEVICE_ID_5700:
3928 	case DEVICE_ID_5700x:
3929 	case DEVICE_ID_5701:
3930 		/*
3931 		 * Switch to 5700 (MAC) mode on these older chips
3932 		 */
3933 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3934 		ledctl |= LED_CONTROL_LED_MODE_5700;
3935 		break;
3936 
3937 	default:
3938 		break;
3939 	}
3940 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3941 
3942 	/*
3943 	 * Step 94: activate link
3944 	 */
3945 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3946 
3947 	/*
3948 	 * Step 95: set up physical layer (PHY/SerDes)
3949 	 * restart autoneg (if required)
3950 	 */
3951 	if (reset_phys)
3952 		if (bge_phys_update(bgep) == DDI_FAILURE)
3953 			retval = DDI_FAILURE;
3954 
3955 	/*
3956 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3957 	 */
3958 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3959 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3960 		    bgep->buff[ring].rf_next);
3961 
3962 	/*
3963 	 * MSI bits:The least significant MSI 16-bit word.
3964 	 * ISR will be triggered different.
3965 	 */
3966 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3967 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3968 
3969 	/*
3970 	 * Extra step (DSG): select which interrupts are enabled
3971 	 *
3972 	 * Program the Ethernet MAC engine to signal attention on
3973 	 * Link Change events, then enable interrupts on MAC, DMA,
3974 	 * and FLOW attention signals.
3975 	 */
3976 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3977 	    ETHERNET_EVENT_LINK_INT |
3978 	    ETHERNET_STATUS_PCS_ERROR_INT);
3979 #ifdef BGE_IPMI_ASF
3980 	if (bgep->asf_enabled) {
3981 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3982 		    MODE_INT_ON_FLOW_ATTN |
3983 		    MODE_INT_ON_DMA_ATTN |
3984 		    MODE_HOST_STACK_UP|
3985 		    MODE_INT_ON_MAC_ATTN);
3986 	} else {
3987 #endif
3988 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3989 		    MODE_INT_ON_FLOW_ATTN |
3990 		    MODE_INT_ON_DMA_ATTN |
3991 		    MODE_INT_ON_MAC_ATTN);
3992 #ifdef BGE_IPMI_ASF
3993 	}
3994 #endif
3995 
3996 	/*
3997 	 * Step 97: enable PCI interrupts!!!
3998 	 */
3999 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
4000 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
4001 		    MHCR_MASK_PCI_INT_OUTPUT);
4002 
4003 	/*
4004 	 * All done!
4005 	 */
4006 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
4007 	return (retval);
4008 }
4009 
4010 
4011 /*
4012  * ========== Hardware interrupt handler ==========
4013  */
4014 
4015 #undef	BGE_DBG
4016 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
4017 
4018 /*
4019  * Sync the status block, then atomically clear the specified bits in
4020  * the <flags-and-tag> field of the status block.
4021  * the <flags> word of the status block, returning the value of the
4022  * <tag> and the <flags> before the bits were cleared.
4023  */
4024 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
4025 #pragma	inline(bge_status_sync)
4026 
4027 static int
4028 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
4029 {
4030 	bge_status_t *bsp;
4031 	int retval;
4032 
4033 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
4034 	    (void *)bgep, bits));
4035 
4036 	ASSERT(bgep->bge_guard == BGE_GUARD);
4037 
4038 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
4039 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
4040 	if (retval != DDI_FM_OK)
4041 		return (retval);
4042 
4043 	bsp = DMA_VPTR(bgep->status_block);
4044 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
4045 
4046 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
4047 	    (void *)bgep, bits, *flags));
4048 
4049 	return (retval);
4050 }
4051 
4052 void bge_wake_factotum(bge_t *bgep);
4053 #pragma	inline(bge_wake_factotum)
4054 
4055 void
4056 bge_wake_factotum(bge_t *bgep)
4057 {
4058 	mutex_enter(bgep->softintrlock);
4059 	if (bgep->factotum_flag == 0) {
4060 		bgep->factotum_flag = 1;
4061 		ddi_trigger_softintr(bgep->factotum_id);
4062 	}
4063 	mutex_exit(bgep->softintrlock);
4064 }
4065 
4066 /*
4067  *	bge_intr() -- handle chip interrupts
4068  */
4069 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
4070 #pragma	no_inline(bge_intr)
4071 
4072 uint_t
4073 bge_intr(caddr_t arg1, caddr_t arg2)
4074 {
4075 	bge_t *bgep = (void *)arg1;		/* private device info	*/
4076 	bge_status_t *bsp;
4077 	uint64_t flags;
4078 	uint32_t regval;
4079 	uint_t result;
4080 	int retval, loop_cnt = 0;
4081 
4082 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
4083 
4084 	/*
4085 	 * GLD v2 checks that s/w setup is complete before passing
4086 	 * interrupts to this routine, thus eliminating the old
4087 	 * (and well-known) race condition around ddi_add_intr()
4088 	 */
4089 	ASSERT(bgep->progress & PROGRESS_HWINT);
4090 
4091 	result = DDI_INTR_UNCLAIMED;
4092 	mutex_enter(bgep->genlock);
4093 
4094 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4095 		/*
4096 		 * Check whether chip's says it's asserting #INTA;
4097 		 * if not, don't process or claim the interrupt.
4098 		 *
4099 		 * Note that the PCI signal is active low, so the
4100 		 * bit is *zero* when the interrupt is asserted.
4101 		 */
4102 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
4103 		if (regval & MLCR_INTA_STATE) {
4104 			if (bge_check_acc_handle(bgep, bgep->io_handle)
4105 			    != DDI_FM_OK)
4106 				goto chip_stop;
4107 			mutex_exit(bgep->genlock);
4108 			return (result);
4109 		}
4110 
4111 		/*
4112 		 * Block further PCI interrupts ...
4113 		 */
4114 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
4115 		    MHCR_MASK_PCI_INT_OUTPUT);
4116 
4117 	} else {
4118 		/*
4119 		 * Check MSI status
4120 		 */
4121 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
4122 		if (regval & MSI_ERROR_ATTENTION) {
4123 			BGE_REPORT((bgep, "msi error attention,"
4124 			    " status=0x%x", regval));
4125 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
4126 		}
4127 	}
4128 
4129 	result = DDI_INTR_CLAIMED;
4130 
4131 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
4132 
4133 	/*
4134 	 * Sync the status block and grab the flags-n-tag from it.
4135 	 * We count the number of interrupts where there doesn't
4136 	 * seem to have been a DMA update of the status block; if
4137 	 * it *has* been updated, the counter will be cleared in
4138 	 * the while() loop below ...
4139 	 */
4140 	bgep->missed_dmas += 1;
4141 	bsp = DMA_VPTR(bgep->status_block);
4142 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4143 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4144 			/*
4145 			 * bge_chip_stop() may have freed dma area etc
4146 			 * while we were in this interrupt handler -
4147 			 * better not call bge_status_sync()
4148 			 */
4149 			(void) bge_check_acc_handle(bgep,
4150 			    bgep->io_handle);
4151 			mutex_exit(bgep->genlock);
4152 			return (DDI_INTR_CLAIMED);
4153 		}
4154 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4155 		    &flags);
4156 		if (retval != DDI_FM_OK) {
4157 			bgep->bge_dma_error = B_TRUE;
4158 			goto chip_stop;
4159 		}
4160 
4161 		if (!(flags & STATUS_FLAG_UPDATED))
4162 			break;
4163 
4164 		/*
4165 		 * Tell the chip that we're processing the interrupt
4166 		 */
4167 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4168 		    INTERRUPT_MBOX_DISABLE(flags));
4169 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4170 		    DDI_FM_OK)
4171 			goto chip_stop;
4172 
4173 		/*
4174 		 * Drop the mutex while we:
4175 		 * 	Receive any newly-arrived packets
4176 		 *	Recycle any newly-finished send buffers
4177 		 */
4178 		bgep->bge_intr_running = B_TRUE;
4179 		mutex_exit(bgep->genlock);
4180 		bge_receive(bgep, bsp);
4181 		bge_recycle(bgep, bsp);
4182 		mutex_enter(bgep->genlock);
4183 		bgep->bge_intr_running = B_FALSE;
4184 
4185 		/*
4186 		 * Tell the chip we've finished processing, and
4187 		 * give it the tag that we got from the status
4188 		 * block earlier, so that it knows just how far
4189 		 * we've gone.  If it's got more for us to do,
4190 		 * it will now update the status block and try
4191 		 * to assert an interrupt (but we've got the
4192 		 * #INTA blocked at present).  If we see the
4193 		 * update, we'll loop around to do some more.
4194 		 * Eventually we'll get out of here ...
4195 		 */
4196 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4197 		    INTERRUPT_MBOX_ENABLE(flags));
4198 		if (bgep->chipid.pci_type == BGE_PCI_E)
4199 			(void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
4200 		bgep->missed_dmas = 0;
4201 	}
4202 
4203 	/*
4204 	 * Check for exceptional conditions that we need to handle
4205 	 *
4206 	 * Link status changed
4207 	 * Status block not updated
4208 	 */
4209 	if (flags & STATUS_FLAG_LINK_CHANGED)
4210 		bge_wake_factotum(bgep);
4211 
4212 	if (bgep->missed_dmas) {
4213 		/*
4214 		 * Probably due to the internal status tag not
4215 		 * being reset.  Force a status block update now;
4216 		 * this should ensure that we get an update and
4217 		 * a new interrupt.  After that, we should be in
4218 		 * sync again ...
4219 		 */
4220 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4221 		    "not updated?", flags));
4222 		bgep->missed_updates++;
4223 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4224 		    COALESCE_NOW);
4225 
4226 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4227 			/*
4228 			 * If this happens multiple times in a row,
4229 			 * it means DMA is just not working.  Maybe
4230 			 * the chip's failed, or maybe there's a
4231 			 * problem on the PCI bus or in the host-PCI
4232 			 * bridge (Tomatillo).
4233 			 *
4234 			 * At all events, we want to stop further
4235 			 * interrupts and let the recovery code take
4236 			 * over to see whether anything can be done
4237 			 * about it ...
4238 			 */
4239 			bge_fm_ereport(bgep,
4240 			    DDI_FM_DEVICE_BADINT_LIMIT);
4241 			goto chip_stop;
4242 		}
4243 	}
4244 
4245 	/*
4246 	 * Reenable assertion of #INTA, unless there's a DMA fault
4247 	 */
4248 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4249 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4250 		    MHCR_MASK_PCI_INT_OUTPUT);
4251 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4252 		    DDI_FM_OK)
4253 			goto chip_stop;
4254 	}
4255 
4256 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4257 		goto chip_stop;
4258 
4259 	mutex_exit(bgep->genlock);
4260 	return (result);
4261 
4262 chip_stop:
4263 #ifdef BGE_IPMI_ASF
4264 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4265 		/*
4266 		 * We must stop ASF heart beat before
4267 		 * bge_chip_stop(), otherwise some
4268 		 * computers (ex. IBM HS20 blade
4269 		 * server) may crash.
4270 		 */
4271 		bge_asf_update_status(bgep);
4272 		bge_asf_stop_timer(bgep);
4273 		bgep->asf_status = ASF_STAT_STOP;
4274 
4275 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4276 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4277 	}
4278 #endif
4279 	bge_chip_stop(bgep, B_TRUE);
4280 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4281 	mutex_exit(bgep->genlock);
4282 	return (result);
4283 }
4284 
4285 /*
4286  * ========== Factotum, implemented as a softint handler ==========
4287  */
4288 
4289 #undef	BGE_DBG
4290 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4291 
4292 static void bge_factotum_error_handler(bge_t *bgep);
4293 #pragma	no_inline(bge_factotum_error_handler)
4294 
4295 static void
4296 bge_factotum_error_handler(bge_t *bgep)
4297 {
4298 	uint32_t flow;
4299 	uint32_t rdma;
4300 	uint32_t wdma;
4301 	uint32_t tmac;
4302 	uint32_t rmac;
4303 	uint32_t rxrs;
4304 	uint32_t txrs = 0;
4305 
4306 	ASSERT(mutex_owned(bgep->genlock));
4307 
4308 	/*
4309 	 * Read all the registers that show the possible
4310 	 * reasons for the ERROR bit to be asserted
4311 	 */
4312 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4313 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4314 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4315 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4316 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4317 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4318 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4319 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4320 
4321 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4322 	    (void *)bgep, flow, rdma, wdma));
4323 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4324 	    (void *)bgep, tmac, rmac, rxrs, txrs));
4325 
4326 	/*
4327 	 * For now, just clear all the errors ...
4328 	 */
4329 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4330 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4331 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4332 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4333 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4334 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4335 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4336 }
4337 
4338 /*
4339  * Handler for hardware link state change.
4340  *
4341  * When this routine is called, the hardware link state has changed
4342  * and the new state is reflected in the param_* variables.  Here
4343  * we must update the softstate and reprogram the MAC to match.
4344  */
4345 static void bge_factotum_link_handler(bge_t *bgep);
4346 #pragma	no_inline(bge_factotum_link_handler)
4347 
4348 static void
4349 bge_factotum_link_handler(bge_t *bgep)
4350 {
4351 	ASSERT(mutex_owned(bgep->genlock));
4352 
4353 	/*
4354 	 * Update the s/w link_state
4355 	 */
4356 	if (bgep->param_link_up)
4357 		bgep->link_state = LINK_STATE_UP;
4358 	else
4359 		bgep->link_state = LINK_STATE_DOWN;
4360 
4361 	/*
4362 	 * Reprogram the MAC modes to match
4363 	 */
4364 	bge_sync_mac_modes(bgep);
4365 }
4366 
4367 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4368 #pragma	no_inline(bge_factotum_link_check)
4369 
4370 static boolean_t
4371 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4372 {
4373 	boolean_t check;
4374 	uint64_t flags;
4375 	uint32_t tmac_status;
4376 
4377 	ASSERT(mutex_owned(bgep->genlock));
4378 
4379 	/*
4380 	 * Get & clear the writable status bits in the Tx status register
4381 	 * (some bits are write-1-to-clear, others are just readonly).
4382 	 */
4383 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4384 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4385 
4386 	/*
4387 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4388 	 */
4389 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4390 	    STATUS_FLAG_LINK_CHANGED, &flags);
4391 	if (*dma_state != DDI_FM_OK)
4392 		return (B_FALSE);
4393 
4394 	/*
4395 	 * Clear any errors flagged in the status block ...
4396 	 */
4397 	if (flags & STATUS_FLAG_ERROR)
4398 		bge_factotum_error_handler(bgep);
4399 
4400 	/*
4401 	 * We need to check the link status if:
4402 	 *	the status block says there's been a link change
4403 	 *	or there's any discrepancy between the various
4404 	 *	flags indicating the link state (link_state,
4405 	 *	param_link_up, and the LINK STATE bit in the
4406 	 *	Transmit MAC status register).
4407 	 */
4408 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4409 	switch (bgep->link_state) {
4410 	case LINK_STATE_UP:
4411 		check |= (bgep->param_link_up == B_FALSE);
4412 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4413 		break;
4414 
4415 	case LINK_STATE_DOWN:
4416 		check |= (bgep->param_link_up != B_FALSE);
4417 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4418 		break;
4419 
4420 	default:
4421 		check = B_TRUE;
4422 		break;
4423 	}
4424 
4425 	/*
4426 	 * If <check> is false, we're sure the link hasn't changed.
4427 	 * If true, however, it's not yet definitive; we have to call
4428 	 * bge_phys_check() to determine whether the link has settled
4429 	 * into a new state yet ... and if it has, then call the link
4430 	 * state change handler.But when the chip is 5700 in Dell 6650
4431 	 * ,even if check is false, the link may have changed.So we
4432 	 * have to call bge_phys_check() to determine the link state.
4433 	 */
4434 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4435 		check = bge_phys_check(bgep);
4436 		if (check)
4437 			bge_factotum_link_handler(bgep);
4438 	}
4439 
4440 	return (check);
4441 }
4442 
4443 /*
4444  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4445  */
4446 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4447 #pragma	no_inline(bge_factotum_stall_check)
4448 
4449 static boolean_t
4450 bge_factotum_stall_check(bge_t *bgep)
4451 {
4452 	uint32_t dogval;
4453 
4454 	ASSERT(mutex_owned(bgep->genlock));
4455 
4456 	/*
4457 	 * Specific check for Tx stall ...
4458 	 *
4459 	 * The 'watchdog' counter is incremented whenever a packet
4460 	 * is queued, reset to 1 when some (but not all) buffers
4461 	 * are reclaimed, reset to 0 (disabled) when all buffers
4462 	 * are reclaimed, and shifted left here.  If it exceeds the
4463 	 * threshold value, the chip is assumed to have stalled and
4464 	 * is put into the ERROR state.  The factotum will then reset
4465 	 * it on the next pass.
4466 	 *
4467 	 * All of which should ensure that we don't get into a state
4468 	 * where packets are left pending indefinitely!
4469 	 */
4470 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4471 	if (dogval < bge_watchdog_count)
4472 		return (B_FALSE);
4473 
4474 #if !defined(BGE_NETCONSOLE)
4475 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4476 #endif
4477 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4478 	return (B_TRUE);
4479 }
4480 
4481 /*
4482  * The factotum is woken up when there's something to do that we'd rather
4483  * not do from inside a hardware interrupt handler or high-level cyclic.
4484  * Its two main tasks are:
4485  *	reset & restart the chip after an error
4486  *	check the link status whenever necessary
4487  */
4488 uint_t bge_chip_factotum(caddr_t arg);
4489 #pragma	no_inline(bge_chip_factotum)
4490 
4491 uint_t
4492 bge_chip_factotum(caddr_t arg)
4493 {
4494 	bge_t *bgep;
4495 	uint_t result;
4496 	boolean_t error;
4497 	boolean_t linkchg;
4498 	int dma_state;
4499 
4500 	bgep = (void *)arg;
4501 
4502 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4503 
4504 	mutex_enter(bgep->softintrlock);
4505 	if (bgep->factotum_flag == 0) {
4506 		mutex_exit(bgep->softintrlock);
4507 		return (DDI_INTR_UNCLAIMED);
4508 	}
4509 	bgep->factotum_flag = 0;
4510 	mutex_exit(bgep->softintrlock);
4511 
4512 	result = DDI_INTR_CLAIMED;
4513 	error = B_FALSE;
4514 	linkchg = B_FALSE;
4515 
4516 	mutex_enter(bgep->genlock);
4517 	switch (bgep->bge_chip_state) {
4518 	default:
4519 		break;
4520 
4521 	case BGE_CHIP_RUNNING:
4522 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4523 		error = bge_factotum_stall_check(bgep);
4524 		if (dma_state != DDI_FM_OK) {
4525 			bgep->bge_dma_error = B_TRUE;
4526 			error = B_TRUE;
4527 		}
4528 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4529 			error = B_TRUE;
4530 		if (error)
4531 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4532 		break;
4533 
4534 	case BGE_CHIP_ERROR:
4535 		error = B_TRUE;
4536 		break;
4537 
4538 	case BGE_CHIP_FAULT:
4539 		/*
4540 		 * Fault detected, time to reset ...
4541 		 */
4542 		if (bge_autorecover) {
4543 			if (!(bgep->progress & PROGRESS_BUFS)) {
4544 				/*
4545 				 * if we can't allocate the ring buffers,
4546 				 * try later
4547 				 */
4548 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4549 					mutex_exit(bgep->genlock);
4550 					return (result);
4551 				}
4552 				bgep->progress |= PROGRESS_BUFS;
4553 			}
4554 			if (!(bgep->progress & PROGRESS_INTR)) {
4555 				bge_init_rings(bgep);
4556 				bge_intr_enable(bgep);
4557 				bgep->progress |= PROGRESS_INTR;
4558 			}
4559 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4560 				bge_init_kstats(bgep,
4561 				    ddi_get_instance(bgep->devinfo));
4562 				bgep->progress |= PROGRESS_KSTATS;
4563 			}
4564 
4565 			BGE_REPORT((bgep, "automatic recovery activated"));
4566 
4567 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4568 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4569 				error = B_TRUE;
4570 			}
4571 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4572 			    DDI_FM_OK) {
4573 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4574 				error = B_TRUE;
4575 			}
4576 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4577 			    DDI_FM_OK) {
4578 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4579 				error = B_TRUE;
4580 			}
4581 			if (error == B_FALSE) {
4582 #ifdef BGE_IPMI_ASF
4583 				if (bgep->asf_enabled &&
4584 				    bgep->asf_status != ASF_STAT_RUN) {
4585 					bgep->asf_timeout_id = timeout(
4586 					    bge_asf_heartbeat, (void *)bgep,
4587 					    drv_usectohz(
4588 					    BGE_ASF_HEARTBEAT_INTERVAL));
4589 					bgep->asf_status = ASF_STAT_RUN;
4590 				}
4591 #endif
4592 				if (!bgep->manual_reset) {
4593 					ddi_fm_service_impact(bgep->devinfo,
4594 					    DDI_SERVICE_RESTORED);
4595 				}
4596 			}
4597 		}
4598 		break;
4599 	}
4600 
4601 
4602 	/*
4603 	 * If an error is detected, stop the chip now, marking it as
4604 	 * faulty, so that it will be reset next time through ...
4605 	 *
4606 	 * Note that if intr_running is set, then bge_intr() has dropped
4607 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4608 	 * this point so have to wait until the next time the factotum runs.
4609 	 */
4610 	if (error && !bgep->bge_intr_running) {
4611 #ifdef BGE_IPMI_ASF
4612 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4613 			/*
4614 			 * We must stop ASF heart beat before bge_chip_stop(),
4615 			 * otherwise some computers (ex. IBM HS20 blade server)
4616 			 * may crash.
4617 			 */
4618 			bge_asf_update_status(bgep);
4619 			bge_asf_stop_timer(bgep);
4620 			bgep->asf_status = ASF_STAT_STOP;
4621 
4622 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4623 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4624 		}
4625 #endif
4626 		bge_chip_stop(bgep, B_TRUE);
4627 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4628 	}
4629 	mutex_exit(bgep->genlock);
4630 
4631 	/*
4632 	 * If the link state changed, tell the world about it.
4633 	 * Note: can't do this while still holding the mutex.
4634 	 */
4635 	if (bgep->link_update_timer == BGE_LINK_UPDATE_TIMEOUT &&
4636 	    bgep->link_state != LINK_STATE_UNKNOWN)
4637 		linkchg = B_TRUE;
4638 	else if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT &&
4639 	    bgep->link_state == LINK_STATE_DOWN)
4640 		linkchg = B_FALSE;
4641 
4642 	if (linkchg) {
4643 		mac_link_update(bgep->mh, bgep->link_state);
4644 		bgep->link_update_timer = BGE_LINK_UPDATE_DONE;
4645 	}
4646 	if (bgep->manual_reset) {
4647 		bgep->manual_reset = B_FALSE;
4648 	}
4649 
4650 	return (result);
4651 }
4652 
4653 /*
4654  * High-level cyclic handler
4655  *
4656  * This routine schedules a (low-level) softint callback to the
4657  * factotum, and prods the chip to update the status block (which
4658  * will cause a hardware interrupt when complete).
4659  */
4660 void bge_chip_cyclic(void *arg);
4661 #pragma	no_inline(bge_chip_cyclic)
4662 
4663 void
4664 bge_chip_cyclic(void *arg)
4665 {
4666 	bge_t *bgep;
4667 
4668 	bgep = arg;
4669 
4670 	switch (bgep->bge_chip_state) {
4671 	default:
4672 		return;
4673 
4674 	case BGE_CHIP_RUNNING:
4675 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4676 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4677 			ddi_fm_service_impact(bgep->devinfo,
4678 			    DDI_SERVICE_UNAFFECTED);
4679 
4680 		if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT)
4681 			bgep->link_update_timer++;
4682 
4683 		break;
4684 
4685 	case BGE_CHIP_FAULT:
4686 	case BGE_CHIP_ERROR:
4687 		break;
4688 	}
4689 
4690 	bge_wake_factotum(bgep);
4691 }
4692 
4693 
4694 /*
4695  * ========== Ioctl subfunctions ==========
4696  */
4697 
4698 #undef	BGE_DBG
4699 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4700 
4701 #if	BGE_DEBUGGING || BGE_DO_PPIO
4702 
4703 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4704 #pragma	no_inline(bge_chip_peek_cfg)
4705 
4706 static void
4707 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4708 {
4709 	uint64_t regval;
4710 	uint64_t regno;
4711 
4712 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4713 	    (void *)bgep, (void *)ppd));
4714 
4715 	regno = ppd->pp_acc_offset;
4716 
4717 	switch (ppd->pp_acc_size) {
4718 	case 1:
4719 		regval = pci_config_get8(bgep->cfg_handle, regno);
4720 		break;
4721 
4722 	case 2:
4723 		regval = pci_config_get16(bgep->cfg_handle, regno);
4724 		break;
4725 
4726 	case 4:
4727 		regval = pci_config_get32(bgep->cfg_handle, regno);
4728 		break;
4729 
4730 	case 8:
4731 		regval = pci_config_get64(bgep->cfg_handle, regno);
4732 		break;
4733 	}
4734 
4735 	ppd->pp_acc_data = regval;
4736 }
4737 
4738 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4739 #pragma	no_inline(bge_chip_poke_cfg)
4740 
4741 static void
4742 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4743 {
4744 	uint64_t regval;
4745 	uint64_t regno;
4746 
4747 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4748 	    (void *)bgep, (void *)ppd));
4749 
4750 	regno = ppd->pp_acc_offset;
4751 	regval = ppd->pp_acc_data;
4752 
4753 	switch (ppd->pp_acc_size) {
4754 	case 1:
4755 		pci_config_put8(bgep->cfg_handle, regno, regval);
4756 		break;
4757 
4758 	case 2:
4759 		pci_config_put16(bgep->cfg_handle, regno, regval);
4760 		break;
4761 
4762 	case 4:
4763 		pci_config_put32(bgep->cfg_handle, regno, regval);
4764 		break;
4765 
4766 	case 8:
4767 		pci_config_put64(bgep->cfg_handle, regno, regval);
4768 		break;
4769 	}
4770 }
4771 
4772 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4773 #pragma	no_inline(bge_chip_peek_reg)
4774 
4775 static void
4776 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4777 {
4778 	uint64_t regval;
4779 	void *regaddr;
4780 
4781 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4782 	    (void *)bgep, (void *)ppd));
4783 
4784 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4785 
4786 	switch (ppd->pp_acc_size) {
4787 	case 1:
4788 		regval = ddi_get8(bgep->io_handle, regaddr);
4789 		break;
4790 
4791 	case 2:
4792 		regval = ddi_get16(bgep->io_handle, regaddr);
4793 		break;
4794 
4795 	case 4:
4796 		regval = ddi_get32(bgep->io_handle, regaddr);
4797 		break;
4798 
4799 	case 8:
4800 		regval = ddi_get64(bgep->io_handle, regaddr);
4801 		break;
4802 	}
4803 
4804 	ppd->pp_acc_data = regval;
4805 }
4806 
4807 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4808 #pragma	no_inline(bge_chip_peek_reg)
4809 
4810 static void
4811 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4812 {
4813 	uint64_t regval;
4814 	void *regaddr;
4815 
4816 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4817 	    (void *)bgep, (void *)ppd));
4818 
4819 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4820 	regval = ppd->pp_acc_data;
4821 
4822 	switch (ppd->pp_acc_size) {
4823 	case 1:
4824 		ddi_put8(bgep->io_handle, regaddr, regval);
4825 		break;
4826 
4827 	case 2:
4828 		ddi_put16(bgep->io_handle, regaddr, regval);
4829 		break;
4830 
4831 	case 4:
4832 		ddi_put32(bgep->io_handle, regaddr, regval);
4833 		break;
4834 
4835 	case 8:
4836 		ddi_put64(bgep->io_handle, regaddr, regval);
4837 		break;
4838 	}
4839 	BGE_PCICHK(bgep);
4840 }
4841 
4842 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4843 #pragma	no_inline(bge_chip_peek_nic)
4844 
4845 static void
4846 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4847 {
4848 	uint64_t regoff;
4849 	uint64_t regval;
4850 	void *regaddr;
4851 
4852 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4853 	    (void *)bgep, (void *)ppd));
4854 
4855 	regoff = ppd->pp_acc_offset;
4856 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4857 	regoff &= MWBAR_GRANULE_MASK;
4858 	regoff += NIC_MEM_WINDOW_OFFSET;
4859 	regaddr = PIO_ADDR(bgep, regoff);
4860 
4861 	switch (ppd->pp_acc_size) {
4862 	case 1:
4863 		regval = ddi_get8(bgep->io_handle, regaddr);
4864 		break;
4865 
4866 	case 2:
4867 		regval = ddi_get16(bgep->io_handle, regaddr);
4868 		break;
4869 
4870 	case 4:
4871 		regval = ddi_get32(bgep->io_handle, regaddr);
4872 		break;
4873 
4874 	case 8:
4875 		regval = ddi_get64(bgep->io_handle, regaddr);
4876 		break;
4877 	}
4878 
4879 	ppd->pp_acc_data = regval;
4880 }
4881 
4882 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4883 #pragma	no_inline(bge_chip_poke_nic)
4884 
4885 static void
4886 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4887 {
4888 	uint64_t regoff;
4889 	uint64_t regval;
4890 	void *regaddr;
4891 
4892 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4893 	    (void *)bgep, (void *)ppd));
4894 
4895 	regoff = ppd->pp_acc_offset;
4896 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4897 	regoff &= MWBAR_GRANULE_MASK;
4898 	regoff += NIC_MEM_WINDOW_OFFSET;
4899 	regaddr = PIO_ADDR(bgep, regoff);
4900 	regval = ppd->pp_acc_data;
4901 
4902 	switch (ppd->pp_acc_size) {
4903 	case 1:
4904 		ddi_put8(bgep->io_handle, regaddr, regval);
4905 		break;
4906 
4907 	case 2:
4908 		ddi_put16(bgep->io_handle, regaddr, regval);
4909 		break;
4910 
4911 	case 4:
4912 		ddi_put32(bgep->io_handle, regaddr, regval);
4913 		break;
4914 
4915 	case 8:
4916 		ddi_put64(bgep->io_handle, regaddr, regval);
4917 		break;
4918 	}
4919 	BGE_PCICHK(bgep);
4920 }
4921 
4922 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4923 #pragma	no_inline(bge_chip_peek_mii)
4924 
4925 static void
4926 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4927 {
4928 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4929 	    (void *)bgep, (void *)ppd));
4930 
4931 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4932 }
4933 
4934 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4935 #pragma	no_inline(bge_chip_poke_mii)
4936 
4937 static void
4938 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4939 {
4940 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4941 	    (void *)bgep, (void *)ppd));
4942 
4943 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4944 }
4945 
4946 #if	BGE_SEE_IO32
4947 
4948 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4949 #pragma	no_inline(bge_chip_peek_seeprom)
4950 
4951 static void
4952 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4953 {
4954 	uint32_t data;
4955 	int err;
4956 
4957 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4958 	    (void *)bgep, (void *)ppd));
4959 
4960 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4961 	ppd->pp_acc_data = err ? ~0ull : data;
4962 }
4963 
4964 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4965 #pragma	no_inline(bge_chip_poke_seeprom)
4966 
4967 static void
4968 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4969 {
4970 	uint32_t data;
4971 
4972 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4973 	    (void *)bgep, (void *)ppd));
4974 
4975 	data = ppd->pp_acc_data;
4976 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4977 }
4978 #endif	/* BGE_SEE_IO32 */
4979 
4980 #if	BGE_FLASH_IO32
4981 
4982 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4983 #pragma	no_inline(bge_chip_peek_flash)
4984 
4985 static void
4986 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4987 {
4988 	uint32_t data;
4989 	int err;
4990 
4991 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4992 	    (void *)bgep, (void *)ppd));
4993 
4994 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4995 	ppd->pp_acc_data = err ? ~0ull : data;
4996 }
4997 
4998 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4999 #pragma	no_inline(bge_chip_poke_flash)
5000 
5001 static void
5002 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5003 {
5004 	uint32_t data;
5005 
5006 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5007 	    (void *)bgep, (void *)ppd));
5008 
5009 	data = ppd->pp_acc_data;
5010 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5011 	    ppd->pp_acc_offset, &data);
5012 }
5013 #endif	/* BGE_FLASH_IO32 */
5014 
5015 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5016 #pragma	no_inline(bge_chip_peek_mem)
5017 
5018 static void
5019 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5020 {
5021 	uint64_t regval;
5022 	void *vaddr;
5023 
5024 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5025 	    (void *)bgep, (void *)ppd));
5026 
5027 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5028 
5029 	switch (ppd->pp_acc_size) {
5030 	case 1:
5031 		regval = *(uint8_t *)vaddr;
5032 		break;
5033 
5034 	case 2:
5035 		regval = *(uint16_t *)vaddr;
5036 		break;
5037 
5038 	case 4:
5039 		regval = *(uint32_t *)vaddr;
5040 		break;
5041 
5042 	case 8:
5043 		regval = *(uint64_t *)vaddr;
5044 		break;
5045 	}
5046 
5047 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
5048 	    (void *)bgep, (void *)ppd, regval, vaddr));
5049 
5050 	ppd->pp_acc_data = regval;
5051 }
5052 
5053 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5054 #pragma	no_inline(bge_chip_poke_mem)
5055 
5056 static void
5057 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5058 {
5059 	uint64_t regval;
5060 	void *vaddr;
5061 
5062 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
5063 	    (void *)bgep, (void *)ppd));
5064 
5065 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5066 	regval = ppd->pp_acc_data;
5067 
5068 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
5069 	    (void *)bgep, (void *)ppd, regval, vaddr));
5070 
5071 	switch (ppd->pp_acc_size) {
5072 	case 1:
5073 		*(uint8_t *)vaddr = (uint8_t)regval;
5074 		break;
5075 
5076 	case 2:
5077 		*(uint16_t *)vaddr = (uint16_t)regval;
5078 		break;
5079 
5080 	case 4:
5081 		*(uint32_t *)vaddr = (uint32_t)regval;
5082 		break;
5083 
5084 	case 8:
5085 		*(uint64_t *)vaddr = (uint64_t)regval;
5086 		break;
5087 	}
5088 }
5089 
5090 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5091 					struct iocblk *iocp);
5092 #pragma	no_inline(bge_pp_ioctl)
5093 
5094 static enum ioc_reply
5095 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5096 {
5097 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
5098 	bge_peekpoke_t *ppd;
5099 	dma_area_t *areap;
5100 	uint64_t sizemask;
5101 	uint64_t mem_va;
5102 	uint64_t maxoff;
5103 	boolean_t peek;
5104 
5105 	switch (cmd) {
5106 	default:
5107 		/* NOTREACHED */
5108 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5109 		return (IOC_INVAL);
5110 
5111 	case BGE_PEEK:
5112 		peek = B_TRUE;
5113 		break;
5114 
5115 	case BGE_POKE:
5116 		peek = B_FALSE;
5117 		break;
5118 	}
5119 
5120 	/*
5121 	 * Validate format of ioctl
5122 	 */
5123 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5124 		return (IOC_INVAL);
5125 	if (mp->b_cont == NULL)
5126 		return (IOC_INVAL);
5127 	ppd = (void *)mp->b_cont->b_rptr;
5128 
5129 	/*
5130 	 * Validate request parameters
5131 	 */
5132 	switch (ppd->pp_acc_space) {
5133 	default:
5134 		return (IOC_INVAL);
5135 
5136 	case BGE_PP_SPACE_CFG:
5137 		/*
5138 		 * Config space
5139 		 */
5140 		sizemask = 8|4|2|1;
5141 		mem_va = 0;
5142 		maxoff = PCI_CONF_HDR_SIZE;
5143 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5144 		break;
5145 
5146 	case BGE_PP_SPACE_REG:
5147 		/*
5148 		 * Memory-mapped I/O space
5149 		 */
5150 		sizemask = 8|4|2|1;
5151 		mem_va = 0;
5152 		maxoff = RIAAR_REGISTER_MAX;
5153 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5154 		break;
5155 
5156 	case BGE_PP_SPACE_NIC:
5157 		/*
5158 		 * NIC on-chip memory
5159 		 */
5160 		sizemask = 8|4|2|1;
5161 		mem_va = 0;
5162 		maxoff = MWBAR_ONCHIP_MAX;
5163 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5164 		break;
5165 
5166 	case BGE_PP_SPACE_MII:
5167 		/*
5168 		 * PHY's MII registers
5169 		 * NB: all PHY registers are two bytes, but the
5170 		 * addresses increment in ones (word addressing).
5171 		 * So we scale the address here, then undo the
5172 		 * transformation inside the peek/poke functions.
5173 		 */
5174 		ppd->pp_acc_offset *= 2;
5175 		sizemask = 2;
5176 		mem_va = 0;
5177 		maxoff = (MII_MAXREG+1)*2;
5178 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5179 		break;
5180 
5181 #if	BGE_SEE_IO32
5182 	case BGE_PP_SPACE_SEEPROM:
5183 		/*
5184 		 * Attached SEEPROM(s), if any.
5185 		 * NB: we use the high-order bits of the 'address' as
5186 		 * a device select to accommodate multiple SEEPROMS,
5187 		 * If each one is the maximum size (64kbytes), this
5188 		 * makes them appear contiguous.  Otherwise, there may
5189 		 * be holes in the mapping.  ENxS doesn't have any
5190 		 * SEEPROMs anyway ...
5191 		 */
5192 		sizemask = 4;
5193 		mem_va = 0;
5194 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5195 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5196 		break;
5197 #endif	/* BGE_SEE_IO32 */
5198 
5199 #if	BGE_FLASH_IO32
5200 	case BGE_PP_SPACE_FLASH:
5201 		/*
5202 		 * Attached Flash device (if any); a maximum of one device
5203 		 * is currently supported.  But it can be up to 1MB (unlike
5204 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5205 		 */
5206 		sizemask = 4;
5207 		mem_va = 0;
5208 		maxoff = NVM_FLASH_ADDR_MASK;
5209 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5210 		break;
5211 #endif	/* BGE_FLASH_IO32 */
5212 
5213 	case BGE_PP_SPACE_BGE:
5214 		/*
5215 		 * BGE data structure!
5216 		 */
5217 		sizemask = 8|4|2|1;
5218 		mem_va = (uintptr_t)bgep;
5219 		maxoff = sizeof (*bgep);
5220 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5221 		break;
5222 
5223 	case BGE_PP_SPACE_STATUS:
5224 	case BGE_PP_SPACE_STATISTICS:
5225 	case BGE_PP_SPACE_TXDESC:
5226 	case BGE_PP_SPACE_TXBUFF:
5227 	case BGE_PP_SPACE_RXDESC:
5228 	case BGE_PP_SPACE_RXBUFF:
5229 		/*
5230 		 * Various DMA_AREAs
5231 		 */
5232 		switch (ppd->pp_acc_space) {
5233 		case BGE_PP_SPACE_TXDESC:
5234 			areap = &bgep->tx_desc;
5235 			break;
5236 		case BGE_PP_SPACE_TXBUFF:
5237 			areap = &bgep->tx_buff[0];
5238 			break;
5239 		case BGE_PP_SPACE_RXDESC:
5240 			areap = &bgep->rx_desc[0];
5241 			break;
5242 		case BGE_PP_SPACE_RXBUFF:
5243 			areap = &bgep->rx_buff[0];
5244 			break;
5245 		case BGE_PP_SPACE_STATUS:
5246 			areap = &bgep->status_block;
5247 			break;
5248 		case BGE_PP_SPACE_STATISTICS:
5249 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5250 				areap = &bgep->statistics;
5251 			break;
5252 		}
5253 
5254 		sizemask = 8|4|2|1;
5255 		mem_va = (uintptr_t)areap->mem_va;
5256 		maxoff = areap->alength;
5257 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5258 		break;
5259 	}
5260 
5261 	switch (ppd->pp_acc_size) {
5262 	default:
5263 		return (IOC_INVAL);
5264 
5265 	case 8:
5266 	case 4:
5267 	case 2:
5268 	case 1:
5269 		if ((ppd->pp_acc_size & sizemask) == 0)
5270 			return (IOC_INVAL);
5271 		break;
5272 	}
5273 
5274 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5275 		return (IOC_INVAL);
5276 
5277 	if (ppd->pp_acc_offset >= maxoff)
5278 		return (IOC_INVAL);
5279 
5280 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5281 		return (IOC_INVAL);
5282 
5283 	/*
5284 	 * All OK - go do it!
5285 	 */
5286 	ppd->pp_acc_offset += mem_va;
5287 	(*ppfn)(bgep, ppd);
5288 	return (peek ? IOC_REPLY : IOC_ACK);
5289 }
5290 
5291 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5292 					struct iocblk *iocp);
5293 #pragma	no_inline(bge_diag_ioctl)
5294 
5295 static enum ioc_reply
5296 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5297 {
5298 	ASSERT(mutex_owned(bgep->genlock));
5299 
5300 	switch (cmd) {
5301 	default:
5302 		/* NOTREACHED */
5303 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5304 		return (IOC_INVAL);
5305 
5306 	case BGE_DIAG:
5307 		/*
5308 		 * Currently a no-op
5309 		 */
5310 		return (IOC_ACK);
5311 
5312 	case BGE_PEEK:
5313 	case BGE_POKE:
5314 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5315 
5316 	case BGE_PHY_RESET:
5317 		return (IOC_RESTART_ACK);
5318 
5319 	case BGE_SOFT_RESET:
5320 	case BGE_HARD_RESET:
5321 		/*
5322 		 * Reset and reinitialise the 570x hardware
5323 		 */
5324 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5325 		ddi_trigger_softintr(bgep->factotum_id);
5326 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5327 		return (IOC_ACK);
5328 	}
5329 
5330 	/* NOTREACHED */
5331 }
5332 
5333 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5334 
5335 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5336 				    struct iocblk *iocp);
5337 #pragma	no_inline(bge_mii_ioctl)
5338 
5339 static enum ioc_reply
5340 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5341 {
5342 	struct bge_mii_rw *miirwp;
5343 
5344 	/*
5345 	 * Validate format of ioctl
5346 	 */
5347 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5348 		return (IOC_INVAL);
5349 	if (mp->b_cont == NULL)
5350 		return (IOC_INVAL);
5351 	miirwp = (void *)mp->b_cont->b_rptr;
5352 
5353 	/*
5354 	 * Validate request parameters ...
5355 	 */
5356 	if (miirwp->mii_reg > MII_MAXREG)
5357 		return (IOC_INVAL);
5358 
5359 	switch (cmd) {
5360 	default:
5361 		/* NOTREACHED */
5362 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5363 		return (IOC_INVAL);
5364 
5365 	case BGE_MII_READ:
5366 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5367 		return (IOC_REPLY);
5368 
5369 	case BGE_MII_WRITE:
5370 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5371 		return (IOC_ACK);
5372 	}
5373 
5374 	/* NOTREACHED */
5375 }
5376 
5377 #if	BGE_SEE_IO32
5378 
5379 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5380 				    struct iocblk *iocp);
5381 #pragma	no_inline(bge_see_ioctl)
5382 
5383 static enum ioc_reply
5384 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5385 {
5386 	struct bge_see_rw *seerwp;
5387 
5388 	/*
5389 	 * Validate format of ioctl
5390 	 */
5391 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5392 		return (IOC_INVAL);
5393 	if (mp->b_cont == NULL)
5394 		return (IOC_INVAL);
5395 	seerwp = (void *)mp->b_cont->b_rptr;
5396 
5397 	/*
5398 	 * Validate request parameters ...
5399 	 */
5400 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5401 		return (IOC_INVAL);
5402 
5403 	switch (cmd) {
5404 	default:
5405 		/* NOTREACHED */
5406 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5407 		return (IOC_INVAL);
5408 
5409 	case BGE_SEE_READ:
5410 	case BGE_SEE_WRITE:
5411 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5412 		    seerwp->see_addr, &seerwp->see_data);
5413 		return (IOC_REPLY);
5414 	}
5415 
5416 	/* NOTREACHED */
5417 }
5418 
5419 #endif	/* BGE_SEE_IO32 */
5420 
5421 #if	BGE_FLASH_IO32
5422 
5423 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5424 				    struct iocblk *iocp);
5425 #pragma	no_inline(bge_flash_ioctl)
5426 
5427 static enum ioc_reply
5428 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5429 {
5430 	struct bge_flash_rw *flashrwp;
5431 
5432 	/*
5433 	 * Validate format of ioctl
5434 	 */
5435 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5436 		return (IOC_INVAL);
5437 	if (mp->b_cont == NULL)
5438 		return (IOC_INVAL);
5439 	flashrwp = (void *)mp->b_cont->b_rptr;
5440 
5441 	/*
5442 	 * Validate request parameters ...
5443 	 */
5444 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5445 		return (IOC_INVAL);
5446 
5447 	switch (cmd) {
5448 	default:
5449 		/* NOTREACHED */
5450 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5451 		return (IOC_INVAL);
5452 
5453 	case BGE_FLASH_READ:
5454 	case BGE_FLASH_WRITE:
5455 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5456 		    flashrwp->flash_addr, &flashrwp->flash_data);
5457 		return (IOC_REPLY);
5458 	}
5459 
5460 	/* NOTREACHED */
5461 }
5462 
5463 #endif	/* BGE_FLASH_IO32 */
5464 
5465 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5466 				struct iocblk *iocp);
5467 #pragma	no_inline(bge_chip_ioctl)
5468 
5469 enum ioc_reply
5470 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5471 {
5472 	int cmd;
5473 
5474 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5475 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5476 
5477 	ASSERT(mutex_owned(bgep->genlock));
5478 
5479 	cmd = iocp->ioc_cmd;
5480 	switch (cmd) {
5481 	default:
5482 		/* NOTREACHED */
5483 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5484 		return (IOC_INVAL);
5485 
5486 	case BGE_DIAG:
5487 	case BGE_PEEK:
5488 	case BGE_POKE:
5489 	case BGE_PHY_RESET:
5490 	case BGE_SOFT_RESET:
5491 	case BGE_HARD_RESET:
5492 #if	BGE_DEBUGGING || BGE_DO_PPIO
5493 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5494 #else
5495 		return (IOC_INVAL);
5496 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5497 
5498 	case BGE_MII_READ:
5499 	case BGE_MII_WRITE:
5500 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5501 
5502 #if	BGE_SEE_IO32
5503 	case BGE_SEE_READ:
5504 	case BGE_SEE_WRITE:
5505 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5506 #endif	/* BGE_SEE_IO32 */
5507 
5508 #if	BGE_FLASH_IO32
5509 	case BGE_FLASH_READ:
5510 	case BGE_FLASH_WRITE:
5511 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5512 #endif	/* BGE_FLASH_IO32 */
5513 	}
5514 
5515 	/* NOTREACHED */
5516 }
5517 
5518 void
5519 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5520 {
5521 	bge_t *bgep = arg;
5522 
5523 	mutex_enter(bgep->genlock);
5524 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5525 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5526 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5527 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5528 	mutex_exit(bgep->genlock);
5529 }
5530 
5531 #ifdef BGE_IPMI_ASF
5532 
5533 uint32_t
5534 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5535 {
5536 	uint32_t data;
5537 
5538 #ifndef __sparc
5539 	if (!bgep->asf_wordswapped) {
5540 		/* a workaround word swap error */
5541 		if (addr & 4)
5542 			addr = addr - 4;
5543 		else
5544 			addr = addr + 4;
5545 	}
5546 #endif
5547 
5548 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5549 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5550 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5551 
5552 	data = LE_32(data);
5553 	return (data);
5554 }
5555 
5556 void
5557 bge_asf_update_status(bge_t *bgep)
5558 {
5559 	uint32_t event;
5560 
5561 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5562 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5563 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5564 
5565 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5566 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5567 }
5568 
5569 
5570 /*
5571  * The driver is supposed to notify ASF that the OS is still running
5572  * every three seconds, otherwise the management server may attempt
5573  * to reboot the machine.  If it hasn't actually failed, this is
5574  * not a desirable result.  However, this isn't running as a real-time
5575  * thread, and even if it were, it might not be able to generate the
5576  * heartbeat in a timely manner due to system load.  As it isn't a
5577  * significant strain on the machine, we will set the interval to half
5578  * of the required value.
5579  */
5580 void
5581 bge_asf_heartbeat(void *arg)
5582 {
5583 	bge_t *bgep = (bge_t *)arg;
5584 
5585 	mutex_enter(bgep->genlock);
5586 	bge_asf_update_status((bge_t *)bgep);
5587 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5588 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5589 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5590 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5591 	mutex_exit(bgep->genlock);
5592 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5593 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5594 }
5595 
5596 
5597 void
5598 bge_asf_stop_timer(bge_t *bgep)
5599 {
5600 	timeout_id_t tmp_id = 0;
5601 
5602 	while ((bgep->asf_timeout_id != 0) &&
5603 	    (tmp_id != bgep->asf_timeout_id)) {
5604 		tmp_id = bgep->asf_timeout_id;
5605 		(void) untimeout(tmp_id);
5606 	}
5607 	bgep->asf_timeout_id = 0;
5608 }
5609 
5610 
5611 
5612 /*
5613  * This function should be placed at the earliest position of bge_attach().
5614  */
5615 void
5616 bge_asf_get_config(bge_t *bgep)
5617 {
5618 	uint32_t nicsig;
5619 	uint32_t niccfg;
5620 
5621 	bgep->asf_enabled = B_FALSE;
5622 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5623 	if (nicsig == BGE_NIC_DATA_SIG) {
5624 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5625 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5626 			/*
5627 			 * Here, we don't consider BAXTER, because BGE haven't
5628 			 * supported BAXTER (that is 5752). Also, as I know,
5629 			 * BAXTER doesn't support ASF feature.
5630 			 */
5631 			bgep->asf_enabled = B_TRUE;
5632 		else
5633 			bgep->asf_enabled = B_FALSE;
5634 	} else
5635 		bgep->asf_enabled = B_FALSE;
5636 }
5637 
5638 
5639 void
5640 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5641 {
5642 	uint32_t tries;
5643 	uint32_t event;
5644 
5645 	ASSERT(bgep->asf_enabled);
5646 
5647 	/* Issues "pause firmware" command and wait for ACK */
5648 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5649 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5650 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5651 
5652 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5653 	tries = 0;
5654 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5655 		drv_usecwait(1);
5656 		tries ++;
5657 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5658 	}
5659 
5660 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5661 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5662 
5663 	if (bgep->asf_newhandshake) {
5664 		switch (mode) {
5665 		case BGE_INIT_RESET:
5666 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5667 			    BGE_DRV_STATE_START);
5668 			break;
5669 		case BGE_SHUTDOWN_RESET:
5670 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5671 			    BGE_DRV_STATE_UNLOAD);
5672 			break;
5673 		case BGE_SUSPEND_RESET:
5674 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5675 			    BGE_DRV_STATE_SUSPEND);
5676 			break;
5677 		default:
5678 			break;
5679 		}
5680 	}
5681 }
5682 
5683 
5684 void
5685 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5686 {
5687 	switch (mode) {
5688 	case BGE_INIT_RESET:
5689 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5690 		    BGE_DRV_STATE_START);
5691 		break;
5692 	case BGE_SHUTDOWN_RESET:
5693 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5694 		    BGE_DRV_STATE_UNLOAD);
5695 		break;
5696 	case BGE_SUSPEND_RESET:
5697 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5698 		    BGE_DRV_STATE_SUSPEND);
5699 		break;
5700 	default:
5701 		break;
5702 	}
5703 }
5704 
5705 
5706 void
5707 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5708 {
5709 	switch (mode) {
5710 	case BGE_INIT_RESET:
5711 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5712 		    BGE_DRV_STATE_START_DONE);
5713 		break;
5714 	case BGE_SHUTDOWN_RESET:
5715 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5716 		    BGE_DRV_STATE_UNLOAD_DONE);
5717 		break;
5718 	default:
5719 		break;
5720 	}
5721 }
5722 
5723 #endif /* BGE_IPMI_ASF */
5724