xref: /titanic_50/usr/src/uts/common/io/bge/bge_chip2.c (revision 3244bcaa97c6de4c5692dd87485de1ef73364ab5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "bge_impl.h"
30 
31 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
32 
33 /*
34  * Future features ... ?
35  */
36 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
37 #define	BGE_IND_IO32	0	/* indirect access code		*/
38 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
39 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
40 
41 /*
42  * BGE MSI tunable:
43  *
44  * By default MSI is enabled on all supported platforms but it is disabled
45  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
46  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
47  */
48 #if defined(__sparc)
49 boolean_t bge_enable_msi = B_TRUE;
50 #else
51 boolean_t bge_enable_msi = B_FALSE;
52 #endif
53 
54 /*
55  * Property names
56  */
57 static char knownids_propname[] = "bge-known-subsystems";
58 
59 /*
60  * Patchable globals:
61  *
62  *	bge_autorecover
63  *		Enables/disables automatic recovery after fault detection
64  *
65  *	bge_mlcr_default
66  *		Value to program into the MLCR; controls the chip's GPIO pins
67  *
68  *	bge_dma_{rd,wr}prio
69  *		Relative priorities of DMA reads & DMA writes respectively.
70  *		These may each be patched to any value 0-3.  Equal values
71  *		will give "fair" (round-robin) arbitration for PCI access.
72  *		Unequal values will give one or the other function priority.
73  *
74  *	bge_dma_rwctrl
75  *		Value to put in the Read/Write DMA control register.  See
76  *	        the Broadcom PRM for things you can fiddle with in this
77  *		register ...
78  *
79  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
80  *		Send/receive interrupt coalescing parameters.  Counts are
81  *		#s of descriptors, ticks are in microseconds.  *norm* values
82  *		apply between status updates/interrupts; the *intr* values
83  *		refer to the 'during-interrupt' versions - see the PRM.
84  *
85  *		NOTE: these values have been determined by measurement. They
86  *		differ significantly from the values recommended in the PRM.
87  */
88 static uint32_t bge_autorecover = 1;
89 static uint32_t bge_mlcr_default = MLCR_DEFAULT;
90 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
91 
92 static uint32_t bge_dma_rdprio = 1;
93 static uint32_t bge_dma_wrprio = 0;
94 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
95 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
96 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
97 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
98 
99 uint32_t bge_rx_ticks_norm = 128;
100 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
101 uint32_t bge_rx_count_norm = 8;
102 uint32_t bge_tx_count_norm = 128;
103 
104 static uint32_t bge_rx_ticks_intr = 128;
105 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
106 static uint32_t bge_rx_count_intr = 2;
107 static uint32_t bge_tx_count_intr = 0;
108 
109 /*
110  * Memory pool configuration parameters.
111  *
112  * These are generally specific to each member of the chip family, since
113  * each one may have a different memory size/configuration.
114  *
115  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
116  * the driver from programming the various registers; instead they are left
117  * at their hardware defaults.  This is the preferred option for later chips
118  * (5705+), whereas the older chips *required* these registers to be set,
119  * since the h/w default was 0 ;-(
120  */
121 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
122 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
123 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
124 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
125 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
126 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
127 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
128 static uint32_t bge_mbuf_pool_len_5721	= 0;
129 
130 /*
131  * Various high and low water marks, thresholds, etc ...
132  *
133  * Note: these are taken from revision 7 of the PRM, and some are different
134  * from both the values in earlier PRMs *and* those determined experimentally
135  * and used in earlier versions of this driver ...
136  */
137 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
138 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
139 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
140 
141 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
142 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
143 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
144 
145 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
146 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
147 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
148 
149 static uint32_t	bge_watchdog_count	= 1 << 16;
150 static uint16_t bge_dma_miss_limit	= 20;
151 
152 static uint32_t bge_stop_start_on_sync	= 0;
153 
154 boolean_t bge_jumbo_enable		= B_TRUE;
155 static uint32_t bge_default_jumbo_size	= BGE_JUMBO_BUFF_SIZE;
156 
157 /*
158  * ========== Low-level chip & ring buffer manipulation ==========
159  */
160 
161 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
162 
163 
164 /*
165  * Config space read-modify-write routines
166  */
167 
168 #if	BGE_CFG_IO8
169 
170 /*
171  * 8- and 16-bit set/clr operations are not used; all the config registers
172  * that we need to do bit-twiddling on are 32 bits wide.  I'll leave the
173  * code here, though, in case we ever find that we do want it after all ...
174  */
175 
176 static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
177 #pragma	inline(bge_cfg_set8)
178 
179 static void
180 bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
181 {
182 	uint8_t regval;
183 
184 	BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)",
185 		(void *)bgep, regno, bits));
186 
187 	regval = pci_config_get8(bgep->cfg_handle, regno);
188 
189 	BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 		(void *)bgep, regno, bits, regval, regval | bits));
191 
192 	regval |= bits;
193 	pci_config_put8(bgep->cfg_handle, regno, regval);
194 }
195 
196 static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits);
197 #pragma	inline(bge_cfg_clr8)
198 
199 static void
200 bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits)
201 {
202 	uint8_t regval;
203 
204 	BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)",
205 		(void *)bgep, regno, bits));
206 
207 	regval = pci_config_get8(bgep->cfg_handle, regno);
208 
209 	BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
210 		(void *)bgep, regno, bits, regval, regval & ~bits));
211 
212 	regval &= ~bits;
213 	pci_config_put8(bgep->cfg_handle, regno, regval);
214 }
215 
216 static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
217 #pragma	inline(bge_cfg_set16)
218 
219 static void
220 bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
221 {
222 	uint16_t regval;
223 
224 	BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)",
225 		(void *)bgep, regno, bits));
226 
227 	regval = pci_config_get16(bgep->cfg_handle, regno);
228 
229 	BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
230 		(void *)bgep, regno, bits, regval, regval | bits));
231 
232 	regval |= bits;
233 	pci_config_put16(bgep->cfg_handle, regno, regval);
234 }
235 
236 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
237 #pragma	inline(bge_cfg_clr16)
238 
239 static void
240 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
241 {
242 	uint16_t regval;
243 
244 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
245 		(void *)bgep, regno, bits));
246 
247 	regval = pci_config_get16(bgep->cfg_handle, regno);
248 
249 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
250 		(void *)bgep, regno, bits, regval, regval & ~bits));
251 
252 	regval &= ~bits;
253 	pci_config_put16(bgep->cfg_handle, regno, regval);
254 }
255 
256 #endif	/* BGE_CFG_IO8 */
257 
258 static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
259 #pragma	inline(bge_cfg_set32)
260 
261 static void
262 bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
263 {
264 	uint32_t regval;
265 
266 	BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)",
267 		(void *)bgep, regno, bits));
268 
269 	regval = pci_config_get32(bgep->cfg_handle, regno);
270 
271 	BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
272 		(void *)bgep, regno, bits, regval, regval | bits));
273 
274 	regval |= bits;
275 	pci_config_put32(bgep->cfg_handle, regno, regval);
276 }
277 
278 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
279 #pragma	inline(bge_cfg_clr32)
280 
281 static void
282 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
283 {
284 	uint32_t regval;
285 
286 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
287 		(void *)bgep, regno, bits));
288 
289 	regval = pci_config_get32(bgep->cfg_handle, regno);
290 
291 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
292 		(void *)bgep, regno, bits, regval, regval & ~bits));
293 
294 	regval &= ~bits;
295 	pci_config_put32(bgep->cfg_handle, regno, regval);
296 }
297 
298 #if	BGE_IND_IO32
299 
300 /*
301  * Indirect access to registers & RISC scratchpads, using config space
302  * accesses only.
303  *
304  * This isn't currently used, but someday we might want to use it for
305  * restoring the Subsystem Device/Vendor registers (which aren't directly
306  * writable in Config Space), or for downloading firmware into the RISCs
307  *
308  * In any case there are endian issues to be resolved before this code is
309  * enabled; the bizarre way that bytes get twisted by this chip AND by
310  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
311  * it's been thoroughly tested for all access sizes on all supported
312  * architectures (SPARC *and* x86!).
313  */
314 static uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
315 #pragma	inline(bge_ind_get32)
316 
317 static uint32_t
318 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
319 {
320 	uint32_t val;
321 
322 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
323 
324 	ASSERT(mutex_owned(bgep->genlock));
325 
326 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
327 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
328 
329 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
330 		(void *)bgep, regno, val));
331 
332 	return (val);
333 }
334 
335 static void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
336 #pragma	inline(bge_ind_put32)
337 
338 static void
339 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
340 {
341 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
342 		(void *)bgep, regno, val));
343 
344 	ASSERT(mutex_owned(bgep->genlock));
345 
346 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
347 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
348 }
349 
350 #endif	/* BGE_IND_IO32 */
351 
352 #if	BGE_DEBUGGING
353 
354 static void bge_pci_check(bge_t *bgep);
355 #pragma	no_inline(bge_pci_check)
356 
357 static void
358 bge_pci_check(bge_t *bgep)
359 {
360 	uint16_t pcistatus;
361 
362 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
363 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
364 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
365 			(void *)bgep, pcistatus));
366 }
367 
368 #endif	/* BGE_DEBUGGING */
369 
370 /*
371  * Perform first-stage chip (re-)initialisation, using only config-space
372  * accesses:
373  *
374  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
375  *   returning the data in the structure pointed to by <idp>.
376  * + Configure the target-mode endianness (swap) options.
377  * + Disable interrupts and enable Memory Space accesses.
378  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
379  *
380  * This sequence is adapted from Broadcom document 570X-PG102-R,
381  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
382  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
383  *
384  * This function MUST be called before any non-config-space accesses
385  * are made; on this first call <enable_dma> is B_FALSE, and it
386  * effectively performs steps 3-1(!) of the initialisation sequence
387  * (the rest are not required but should be harmless).
388  *
389  * It MUST also be called after a chip reset, as this disables
390  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
391  * it is effectively performing steps 6-8.
392  */
393 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
394 #pragma	no_inline(bge_chip_cfg_init)
395 
396 void
397 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
398 {
399 	ddi_acc_handle_t handle;
400 	uint16_t command;
401 	uint32_t mhcr;
402 	uint16_t value16;
403 	int i;
404 
405 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
406 		(void *)bgep, (void *)cidp, enable_dma));
407 
408 	/*
409 	 * Step 3: save PCI cache line size and subsystem vendor ID
410 	 *
411 	 * Read all the config-space registers that characterise the
412 	 * chip, specifically vendor/device/revision/subsystem vendor
413 	 * and subsystem device id.  We expect (but don't check) that
414 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
415 	 *
416 	 * Also save all bus-transaction related registers (cache-line
417 	 * size, bus-grant/latency parameters, etc).  Some of these are
418 	 * cleared by reset, so we'll have to restore them later.  This
419 	 * comes from the Broadcom document 570X-PG102-R ...
420 	 *
421 	 * Note: Broadcom document 570X-PG102-R seems to be in error
422 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
423 	 * Subsystem (Device) ID registers, which are the opposite way
424 	 * round according to the PCI standard.  For good measure, we
425 	 * save/restore both anyway.
426 	 */
427 	handle = bgep->cfg_handle;
428 
429 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
430 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
431 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
432 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
433 
434 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
435 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
436 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
437 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
438 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
439 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
440 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
441 
442 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
443 		cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
444 		cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
445 		cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
446 		cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
447 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
448 		cidp->vendor, cidp->device, cidp->revision));
449 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
450 		cidp->subven, cidp->subdev, cidp->asic_rev));
451 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
452 		cidp->clsize, cidp->latency, cidp->command));
453 
454 	/*
455 	 * Step 2 (also step 6): disable and clear interrupts.
456 	 * Steps 11-13: configure PIO endianness options, and enable
457 	 * indirect register access.  We'll also select any other
458 	 * options controlled by the MHCR (e.g. tagged status, mask
459 	 * interrupt mode) at this stage ...
460 	 *
461 	 * Note: internally, the chip is 64-bit and BIG-endian, but
462 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
463 	 * it normally swaps bytes around at the PCI interface.
464 	 * However, the PCI host bridge on SPARC systems normally
465 	 * swaps the byte lanes around too, since SPARCs are also
466 	 * BIG-endian.  So it turns out that on SPARC, the right
467 	 * option is to tell the chip to swap (and the host bridge
468 	 * will swap back again), whereas on x86 we ask the chip
469 	 * NOT to swap, so the natural little-endianness of the
470 	 * PCI bus is assumed.  Then the only thing that doesn't
471 	 * automatically work right is access to an 8-byte register
472 	 * by a little-endian host; but we don't want to set the
473 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
474 	 * accesses don't go where expected ;-(  So we live with
475 	 * that, and perform word-swaps in software in the few cases
476 	 * where a chip register is defined as an 8-byte value --
477 	 * see the code below for details ...
478 	 *
479 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
480 	 * very clear in the register description in the PRM, but
481 	 * Broadcom document 570X-PG104-R page 248 explains a little
482 	 * more (under "Broadcom Mask Mode").  The bit changes the way
483 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
484 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
485 	 * way as the 5700 did, which isn't very convenient.  Setting
486 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
487 	 * bit do just what its name says -- MASK the PCI #INTA output
488 	 * (i.e. deassert the signal at the pin) leaving all internal
489 	 * state unchanged.  This is much more convenient for our
490 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
491 	 *
492 	 * Note: the inconvenient semantics of the interrupt mailbox
493 	 * (nonzero disables and acknowledges/clears the interrupt,
494 	 * zero enables AND CLEARS it) would make race conditions
495 	 * likely in the interrupt handler:
496 	 *
497 	 * (1)	acknowledge & disable interrupts
498 	 * (2)	while (more to do)
499 	 * 		process packets
500 	 * (3)	enable interrupts -- also clears pending
501 	 *
502 	 * If the chip received more packets and internally generated
503 	 * an interrupt between the check at (2) and the mbox write
504 	 * at (3), this interrupt would be lost :-(
505 	 *
506 	 * The best way to avoid this is to use TAGGED STATUS mode,
507 	 * where the chip includes a unique tag in each status block
508 	 * update, and the host, when re-enabling interrupts, passes
509 	 * the last tag it saw back to the chip; then the chip can
510 	 * see whether the host is truly up to date, and regenerate
511 	 * its interrupt if not.
512 	 */
513 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
514 		MHCR_ENABLE_TAGGED_STATUS_MODE |
515 		MHCR_MASK_INTERRUPT_MODE |
516 		MHCR_CLEAR_INTERRUPT_INTA;
517 
518 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
519 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
520 
521 #ifdef	_BIG_ENDIAN
522 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
523 #endif	/* _BIG_ENDIAN */
524 
525 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
526 
527 #ifdef BGE_IPMI_ASF
528 	bgep->asf_wordswapped = B_FALSE;
529 #endif
530 	/*
531 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
532 	 *			 Disable Memory Write/Invalidate
533 	 *			 Enable or disable Bus Mastering
534 	 *
535 	 * Note that all other bits are taken from the original value saved
536 	 * the first time through here, rather than from the current register
537 	 * value, 'cos that will have been cleared by a soft RESET since.
538 	 * In this way we preserve the OBP/nexus-parent's preferred settings
539 	 * of the parity-error and system-error enable bits across multiple
540 	 * chip RESETs.
541 	 */
542 	command = bgep->chipid.command | PCI_COMM_MAE;
543 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
544 	if (enable_dma)
545 		command |= PCI_COMM_ME;
546 	/*
547 	 * on BCM5714 revision A0, false parity error gets generated
548 	 * due to a logic bug. Provide a workaround by disabling parity
549 	 * error.
550 	 */
551 	if (((cidp->device == DEVICE_ID_5714C) ||
552 	    (cidp->device == DEVICE_ID_5714S)) &&
553 	    (cidp->revision == REVISION_ID_5714_A0)) {
554 		command &= ~PCI_COMM_PARITY_DETECT;
555 	}
556 	pci_config_put16(handle, PCI_CONF_COMM, command);
557 
558 	/*
559 	 * On some PCI-E device, there were instances when
560 	 * the device was still link training.
561 	 */
562 	if (bgep->chipid.pci_type == BGE_PCI_E) {
563 		i = 0;
564 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
565 		while ((value16 != command) && (i < 100)) {
566 			drv_usecwait(200);
567 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
568 			++i;
569 		}
570 	}
571 
572 	/*
573 	 * Clear any remaining error status bits
574 	 */
575 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
576 
577 	/*
578 	 * Do following if and only if the device is NOT BCM5714C OR
579 	 * BCM5715C
580 	 */
581 	if (!((cidp->device == DEVICE_ID_5714C) ||
582 		(cidp->device == DEVICE_ID_5715C))) {
583 		/*
584 		 * Make sure these indirect-access registers are sane
585 		 * rather than random after power-up or reset
586 		 */
587 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
588 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
589 	}
590 	/*
591 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
592 	 */
593 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
594 
595 	if (cidp->pci_type == BGE_PCI_E)
596 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
597 				DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
598 }
599 
600 #ifdef __amd64
601 /*
602  * Distinguish CPU types
603  *
604  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
605  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
606  * for PCI-Express based network interface card. This is the work-around
607  * for those nics.
608  */
609 static boolean_t bge_get_em64t_type(void);
610 #pragma	inline(bge_get_em64t_type)
611 
612 static boolean_t
613 bge_get_em64t_type(void)
614 {
615 
616 	return (x86_vendor == X86_VENDOR_Intel);
617 }
618 #endif
619 
620 /*
621  * Operating register get/set access routines
622  */
623 
624 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
625 #pragma	inline(bge_reg_get32)
626 
627 uint32_t
628 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
629 {
630 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
631 		(void *)bgep, regno));
632 
633 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
634 }
635 
636 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
637 #pragma	inline(bge_reg_put32)
638 
639 void
640 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
641 {
642 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
643 		(void *)bgep, regno, data));
644 
645 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
646 	BGE_PCICHK(bgep);
647 }
648 
649 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
650 #pragma	inline(bge_reg_set32)
651 
652 void
653 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
654 {
655 	uint32_t regval;
656 
657 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
658 		(void *)bgep, regno, bits));
659 
660 	regval = bge_reg_get32(bgep, regno);
661 	regval |= bits;
662 	bge_reg_put32(bgep, regno, regval);
663 }
664 
665 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
666 #pragma	inline(bge_reg_clr32)
667 
668 void
669 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
670 {
671 	uint32_t regval;
672 
673 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
674 		(void *)bgep, regno, bits));
675 
676 	regval = bge_reg_get32(bgep, regno);
677 	regval &= ~bits;
678 	bge_reg_put32(bgep, regno, regval);
679 }
680 
681 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
682 #pragma	inline(bge_reg_get64)
683 
684 static uint64_t
685 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
686 {
687 	uint64_t regval;
688 
689 #ifdef	__amd64
690 	if (bge_get_em64t_type()) {
691 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
692 		regval <<= 32;
693 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
694 	} else {
695 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
696 	}
697 #else
698 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
699 #endif
700 
701 #ifdef	_LITTLE_ENDIAN
702 	regval = (regval >> 32) | (regval << 32);
703 #endif	/* _LITTLE_ENDIAN */
704 
705 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
706 		(void *)bgep, regno, regval));
707 
708 	return (regval);
709 }
710 
711 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
712 #pragma	inline(bge_reg_put64)
713 
714 static void
715 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
716 {
717 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
718 		(void *)bgep, regno, data));
719 
720 #ifdef	_LITTLE_ENDIAN
721 	data = ((data >> 32) | (data << 32));
722 #endif	/* _LITTLE_ENDIAN */
723 
724 #ifdef	__amd64
725 	if (bge_get_em64t_type()) {
726 		ddi_put32(bgep->io_handle,
727 			PIO_ADDR(bgep, regno), (uint32_t)data);
728 		BGE_PCICHK(bgep);
729 		ddi_put32(bgep->io_handle,
730 			PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
731 
732 	} else {
733 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
734 	}
735 #else
736 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
737 #endif
738 
739 	BGE_PCICHK(bgep);
740 }
741 
742 /*
743  * The DDI doesn't provide get/put functions for 128 bit data
744  * so we put RCBs out as two 64-bit chunks instead.
745  */
746 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
747 #pragma	inline(bge_reg_putrcb)
748 
749 static void
750 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
751 {
752 	uint64_t *p;
753 
754 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
755 		(void *)bgep, addr, rcbp->host_ring_addr,
756 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
757 
758 	ASSERT((addr % sizeof (*rcbp)) == 0);
759 
760 	p = (void *)rcbp;
761 	bge_reg_put64(bgep, addr, *p++);
762 	bge_reg_put64(bgep, addr+8, *p);
763 }
764 
765 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
766 #pragma	inline(bge_mbx_put)
767 
768 void
769 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
770 {
771 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
772 		(void *)bgep, regno, data));
773 
774 	/*
775 	 * Mailbox registers are nominally 64 bits on the 5701, but
776 	 * the MSW isn't used.  On the 5703, they're only 32 bits
777 	 * anyway.  So here we just write the lower(!) 32 bits -
778 	 * remembering that the chip is big-endian, even though the
779 	 * PCI bus is little-endian ...
780 	 */
781 #ifdef	_BIG_ENDIAN
782 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
783 #else
784 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
785 #endif	/* _BIG_ENDIAN */
786 	BGE_PCICHK(bgep);
787 }
788 
789 #if	BGE_DEBUGGING
790 
791 void bge_led_mark(bge_t *bgep);
792 #pragma	no_inline(bge_led_mark)
793 
794 void
795 bge_led_mark(bge_t *bgep)
796 {
797 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
798 			    LED_CONTROL_1000MBPS_LED |
799 			    LED_CONTROL_100MBPS_LED |
800 			    LED_CONTROL_10MBPS_LED;
801 
802 	/*
803 	 * Blink all three LINK LEDs on simultaneously, then all off,
804 	 * then restore to automatic hardware control.  This is used
805 	 * in laboratory testing to trigger a logic analyser or scope.
806 	 */
807 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
808 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
809 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
810 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
811 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
812 }
813 
814 #endif	/* BGE_DEBUGGING */
815 
816 /*
817  * NIC on-chip memory access routines
818  *
819  * Only 32K of NIC memory is visible at a time, controlled by the
820  * Memory Window Base Address Register (in PCI config space).  Once
821  * this is set, the 32K region of NIC-local memory that it refers
822  * to can be directly addressed in the upper 32K of the 64K of PCI
823  * memory space used for the device.
824  */
825 
826 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
827 #pragma	inline(bge_nic_setwin)
828 
829 static void
830 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
831 {
832 	chip_id_t *cidp;
833 
834 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
835 		(void *)bgep, base));
836 
837 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
838 
839 	/*
840 	 * Don't do repeated zero data writes,
841 	 * if the device is BCM5714C/15C.
842 	 */
843 	cidp = &bgep->chipid;
844 	if ((cidp->device == DEVICE_ID_5714C) ||
845 		(cidp->device == DEVICE_ID_5715C)) {
846 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
847 			return;
848 		/* Adjust lastWriteZeroData */
849 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
850 			B_TRUE : B_FALSE);
851 	}
852 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
853 }
854 
855 
856 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
857 #pragma	inline(bge_nic_get32)
858 
859 static uint32_t
860 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
861 {
862 	uint32_t data;
863 
864 #ifdef BGE_IPMI_ASF
865 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
866 		/* workaround for word swap error */
867 		if (addr & 4)
868 			addr = addr - 4;
869 		else
870 			addr = addr + 4;
871 	}
872 #endif
873 
874 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
875 	addr &= MWBAR_GRANULE_MASK;
876 	addr += NIC_MEM_WINDOW_OFFSET;
877 
878 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
879 
880 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
881 		(void *)bgep, addr, data));
882 
883 	return (data);
884 }
885 
886 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
887 #pragma inline(bge_nic_put32)
888 
889 void
890 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
891 {
892 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
893 		(void *)bgep, addr, data));
894 
895 #ifdef BGE_IPMI_ASF
896 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
897 		/* workaround for word swap error */
898 		if (addr & 4)
899 			addr = addr - 4;
900 		else
901 			addr = addr + 4;
902 	}
903 #endif
904 
905 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
906 	addr &= MWBAR_GRANULE_MASK;
907 	addr += NIC_MEM_WINDOW_OFFSET;
908 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
909 	BGE_PCICHK(bgep);
910 }
911 
912 
913 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
914 #pragma	inline(bge_nic_get64)
915 
916 static uint64_t
917 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
918 {
919 	uint64_t data;
920 
921 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
922 	addr &= MWBAR_GRANULE_MASK;
923 	addr += NIC_MEM_WINDOW_OFFSET;
924 
925 #ifdef	__amd64
926 		if (bge_get_em64t_type()) {
927 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
928 			data <<= 32;
929 			data |= ddi_get32(bgep->io_handle,
930 				PIO_ADDR(bgep, addr + 4));
931 		} else {
932 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
933 		}
934 #else
935 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
936 #endif
937 
938 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
939 		(void *)bgep, addr, data));
940 
941 	return (data);
942 }
943 
944 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
945 #pragma	inline(bge_nic_put64)
946 
947 static void
948 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
949 {
950 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
951 		(void *)bgep, addr, data));
952 
953 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
954 	addr &= MWBAR_GRANULE_MASK;
955 	addr += NIC_MEM_WINDOW_OFFSET;
956 
957 #ifdef	__amd64
958 	if (bge_get_em64t_type()) {
959 		ddi_put32(bgep->io_handle,
960 			PIO_ADDR(bgep, addr), (uint32_t)data);
961 		BGE_PCICHK(bgep);
962 		ddi_put32(bgep->io_handle,
963 			PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
964 	} else {
965 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
966 	}
967 #else
968 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
969 #endif
970 
971 	BGE_PCICHK(bgep);
972 }
973 
974 /*
975  * The DDI doesn't provide get/put functions for 128 bit data
976  * so we put RCBs out as two 64-bit chunks instead.
977  */
978 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
979 #pragma	inline(bge_nic_putrcb)
980 
981 static void
982 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
983 {
984 	uint64_t *p;
985 
986 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
987 		(void *)bgep, addr, rcbp->host_ring_addr,
988 		rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
989 
990 	ASSERT((addr % sizeof (*rcbp)) == 0);
991 
992 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
993 	addr &= MWBAR_GRANULE_MASK;
994 	addr += NIC_MEM_WINDOW_OFFSET;
995 
996 	p = (void *)rcbp;
997 #ifdef	__amd64
998 	if (bge_get_em64t_type()) {
999 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1000 			(uint32_t)(*p));
1001 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1002 			(uint32_t)(*p >> 32));
1003 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1004 			(uint32_t)(*(p + 1)));
1005 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1006 			(uint32_t)(*p >> 32));
1007 
1008 	} else {
1009 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1010 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1011 	}
1012 #else
1013 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1014 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1015 #endif
1016 
1017 	BGE_PCICHK(bgep);
1018 }
1019 
1020 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1021 #pragma	inline(bge_nic_zero)
1022 
1023 static void
1024 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1025 {
1026 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1027 		(void *)bgep, addr, nbytes));
1028 
1029 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1030 		((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1031 
1032 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1033 	addr &= MWBAR_GRANULE_MASK;
1034 	addr += NIC_MEM_WINDOW_OFFSET;
1035 
1036 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1037 		nbytes, 1, DDI_DATA_SZ08_ACC);
1038 	BGE_PCICHK(bgep);
1039 }
1040 
1041 /*
1042  * MII (PHY) register get/set access routines
1043  *
1044  * These use the chip's MII auto-access method, controlled by the
1045  * MII Communication register at 0x044c, so the CPU doesn't have
1046  * to fiddle with the individual bits.
1047  */
1048 
1049 #undef	BGE_DBG
1050 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1051 
1052 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1053 				uint16_t data, uint32_t cmd);
1054 #pragma	no_inline(bge_mii_access)
1055 
1056 static uint16_t
1057 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1058 {
1059 	uint32_t timeout;
1060 	uint32_t regval1;
1061 	uint32_t regval2;
1062 
1063 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1064 		(void *)bgep, regno, data, cmd));
1065 
1066 	ASSERT(mutex_owned(bgep->genlock));
1067 
1068 	/*
1069 	 * Assemble the command ...
1070 	 */
1071 	cmd |= data << MI_COMMS_DATA_SHIFT;
1072 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1073 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1074 	cmd |= MI_COMMS_START;
1075 
1076 	/*
1077 	 * Wait for any command already in progress ...
1078 	 *
1079 	 * Note: this *shouldn't* ever find that there is a command
1080 	 * in progress, because we already hold the <genlock> mutex.
1081 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1082 	 * bit set here -- it seems that the chip can initiate MII
1083 	 * accesses internally, even with polling OFF.
1084 	 */
1085 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1086 	for (timeout = 100; ; ) {
1087 		if ((regval2 & MI_COMMS_START) == 0) {
1088 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1089 			break;
1090 		}
1091 		if (--timeout == 0)
1092 			break;
1093 		drv_usecwait(10);
1094 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1095 	}
1096 
1097 	if (timeout == 0)
1098 		return ((uint16_t)~0u);
1099 
1100 	if (timeout != 100)
1101 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1102 			"MI_COMMS_START set for %d us; 0x%x->0x%x",
1103 			cmd, 10*(100-timeout), regval1, regval2));
1104 
1105 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1106 	for (timeout = 1000; ; ) {
1107 		if ((regval1 & MI_COMMS_START) == 0)
1108 			break;
1109 		if (--timeout == 0)
1110 			break;
1111 		drv_usecwait(10);
1112 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1113 	}
1114 
1115 	/*
1116 	 * Drop out early if the READ FAILED bit is set -- this chip
1117 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1118 	 */
1119 	if (regval2 & MI_COMMS_READ_FAILED)
1120 		return ((uint16_t)~0u);
1121 
1122 	if (timeout == 0)
1123 		return ((uint16_t)~0u);
1124 
1125 	/*
1126 	 * The PRM says to wait 5us after seeing the START bit clear
1127 	 * and then re-read the register to get the final value of the
1128 	 * data field, in order to avoid a race condition where the
1129 	 * START bit is clear but the data field isn't yet valid.
1130 	 *
1131 	 * Note: we don't actually seem to be encounter this race;
1132 	 * except when the START bit is seen set again (see below),
1133 	 * the data field doesn't change during this 5us interval.
1134 	 */
1135 	drv_usecwait(5);
1136 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1137 
1138 	/*
1139 	 * Unfortunately, when following the PRMs instructions above,
1140 	 * we have occasionally seen the START bit set again(!) in the
1141 	 * value read after the 5us delay. This seems to be due to the
1142 	 * chip autonomously starting another MII access internally.
1143 	 * In such cases, the command/data/etc fields relate to the
1144 	 * internal command, rather than the one that we thought had
1145 	 * just finished.  So in this case, we fall back to returning
1146 	 * the data from the original read that showed START clear.
1147 	 */
1148 	if (regval2 & MI_COMMS_START) {
1149 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1150 			"MI_COMMS_START set after transaction; 0x%x->0x%x",
1151 			cmd, regval1, regval2));
1152 		regval2 = regval1;
1153 	}
1154 
1155 	if (regval2 & MI_COMMS_START)
1156 		return ((uint16_t)~0u);
1157 
1158 	if (regval2 & MI_COMMS_READ_FAILED)
1159 		return ((uint16_t)~0u);
1160 
1161 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1162 }
1163 
1164 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1165 #pragma	no_inline(bge_mii_get16)
1166 
1167 uint16_t
1168 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1169 {
1170 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1171 		(void *)bgep, regno));
1172 
1173 	ASSERT(mutex_owned(bgep->genlock));
1174 
1175 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1176 }
1177 
1178 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1179 #pragma	no_inline(bge_mii_put16)
1180 
1181 void
1182 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1183 {
1184 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1185 		(void *)bgep, regno, data));
1186 
1187 	ASSERT(mutex_owned(bgep->genlock));
1188 
1189 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1190 }
1191 
1192 #undef	BGE_DBG
1193 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1194 
1195 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1196 
1197 /*
1198  * Basic SEEPROM get/set access routine
1199  *
1200  * This uses the chip's SEEPROM auto-access method, controlled by the
1201  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1202  * doesn't have to fiddle with the individual bits.
1203  *
1204  * The caller should hold <genlock> and *also* have already acquired
1205  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1206  *
1207  * Return value:
1208  *	0 on success,
1209  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1210  *	EPROTO on other h/w or s/w errors.
1211  *
1212  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1213  * from a (successful) SEEPROM_ACCESS_READ.
1214  */
1215 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1216 				uint32_t *dp);
1217 #pragma	no_inline(bge_seeprom_access)
1218 
1219 static int
1220 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1221 {
1222 	uint32_t tries;
1223 	uint32_t regval;
1224 
1225 	ASSERT(mutex_owned(bgep->genlock));
1226 
1227 	/*
1228 	 * On the newer chips that support both SEEPROM & Flash, we need
1229 	 * to specifically enable SEEPROM access (Flash is the default).
1230 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1231 	 * and the NVM control registers don't exist ...
1232 	 */
1233 	switch (bgep->chipid.nvtype) {
1234 	case BGE_NVTYPE_NONE:
1235 	case BGE_NVTYPE_UNKNOWN:
1236 		_NOTE(NOTREACHED)
1237 	case BGE_NVTYPE_SEEPROM:
1238 		break;
1239 
1240 	case BGE_NVTYPE_LEGACY_SEEPROM:
1241 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1242 	case BGE_NVTYPE_BUFFERED_FLASH:
1243 	default:
1244 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1245 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1246 		break;
1247 	}
1248 
1249 	/*
1250 	 * Check there's no command in progress.
1251 	 *
1252 	 * Note: this *shouldn't* ever find that there is a command
1253 	 * in progress, because we already hold the <genlock> mutex.
1254 	 * Also, to ensure we don't have a conflict with the chip's
1255 	 * internal firmware or a process accessing the same (shared)
1256 	 * SEEPROM through the other port of a 5704, we've already
1257 	 * been through the "software arbitration" protocol.
1258 	 * So this is just a final consistency check: we shouldn't
1259 	 * see EITHER the START bit (command started but not complete)
1260 	 * OR the COMPLETE bit (command completed but not cleared).
1261 	 */
1262 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1263 	if (regval & SEEPROM_ACCESS_START)
1264 		return (EPROTO);
1265 	if (regval & SEEPROM_ACCESS_COMPLETE)
1266 		return (EPROTO);
1267 
1268 	/*
1269 	 * Assemble the command ...
1270 	 */
1271 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1272 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1273 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1274 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1275 	cmd |= SEEPROM_ACCESS_START;
1276 	cmd |= SEEPROM_ACCESS_COMPLETE;
1277 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1278 
1279 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1280 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1281 
1282 	/*
1283 	 * By observation, a successful access takes ~20us on a 5703/4,
1284 	 * but apparently much longer (up to 1000us) on the obsolescent
1285 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1286 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1287 	 * out interrupts for longer than necessary. So we'll allow up
1288 	 * to 1000us ...
1289 	 */
1290 	for (tries = 0; tries < 1000; ++tries) {
1291 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1292 		if (regval & SEEPROM_ACCESS_COMPLETE)
1293 			break;
1294 		drv_usecwait(1);
1295 	}
1296 
1297 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1298 		/*
1299 		 * All OK; read the SEEPROM data register, then write back
1300 		 * the value read from the address register in order to
1301 		 * clear the <complete> bit and leave the SEEPROM access
1302 		 * state machine idle, ready for the next access ...
1303 		 */
1304 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1305 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1306 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1307 		return (0);
1308 	}
1309 
1310 	/*
1311 	 * Hmm ... what happened here?
1312 	 *
1313 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1314 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1315 	 * and didn't respond to being addressed. Either way, it's left
1316 	 * the SEEPROM access state machine wedged. So we'll reset it
1317 	 * before we leave, so it's ready for next time ...
1318 	 */
1319 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1320 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1321 	return (ENODATA);
1322 }
1323 
1324 /*
1325  * Basic Flash get/set access routine
1326  *
1327  * These use the chip's Flash auto-access method, controlled by the
1328  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1329  * fiddle with the individual bits.
1330  *
1331  * The caller should hold <genlock> and *also* have already acquired
1332  * the right to access the Flash, via bge_nvmem_acquire() above.
1333  *
1334  * Return value:
1335  *	0 on success,
1336  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1337  *	ENODEV if the NVmem device is missing or otherwise unusable
1338  *
1339  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1340  * from a (successful) NVM_FLASH_CMD_RD.
1341  */
1342 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1343 				uint32_t *dp);
1344 #pragma	no_inline(bge_flash_access)
1345 
1346 static int
1347 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1348 {
1349 	uint32_t tries;
1350 	uint32_t regval;
1351 
1352 	ASSERT(mutex_owned(bgep->genlock));
1353 
1354 	/*
1355 	 * On the newer chips that support both SEEPROM & Flash, we need
1356 	 * to specifically disable SEEPROM access while accessing Flash.
1357 	 * The older chips don't support Flash, and the NVM registers don't
1358 	 * exist, so we shouldn't be here at all!
1359 	 */
1360 	switch (bgep->chipid.nvtype) {
1361 	case BGE_NVTYPE_NONE:
1362 	case BGE_NVTYPE_UNKNOWN:
1363 		_NOTE(NOTREACHED)
1364 	case BGE_NVTYPE_SEEPROM:
1365 		return (ENODEV);
1366 
1367 	case BGE_NVTYPE_LEGACY_SEEPROM:
1368 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1369 	case BGE_NVTYPE_BUFFERED_FLASH:
1370 	default:
1371 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1372 				NVM_CFG1_LEGACY_SEEPROM_MODE);
1373 		break;
1374 	}
1375 
1376 	/*
1377 	 * Assemble the command ...
1378 	 */
1379 	addr &= NVM_FLASH_ADDR_MASK;
1380 	cmd |= NVM_FLASH_CMD_DOIT;
1381 	cmd |= NVM_FLASH_CMD_FIRST;
1382 	cmd |= NVM_FLASH_CMD_LAST;
1383 	cmd |= NVM_FLASH_CMD_DONE;
1384 
1385 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1386 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1387 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1388 
1389 	/*
1390 	 * Allow up to 1000ms ...
1391 	 */
1392 	for (tries = 0; tries < 1000; ++tries) {
1393 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1394 		if (regval & NVM_FLASH_CMD_DONE)
1395 			break;
1396 		drv_usecwait(1);
1397 	}
1398 
1399 	if (regval & NVM_FLASH_CMD_DONE) {
1400 		/*
1401 		 * All OK; read the data from the Flash read register
1402 		 */
1403 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1404 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1405 		return (0);
1406 	}
1407 
1408 	/*
1409 	 * Hmm ... what happened here?
1410 	 *
1411 	 * Most likely, the user addressed a non-existent Flash. Or
1412 	 * maybe the Flash was busy internally (e.g. processing a write)
1413 	 * and didn't respond to being addressed. Either way, there's
1414 	 * nothing we can here ...
1415 	 */
1416 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1417 	return (ENODATA);
1418 }
1419 
1420 /*
1421  * The next two functions regulate access to the NVram (if fitted).
1422  *
1423  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1424  * (SPI) interface, but they can be accessed through either port. These
1425  * are managed by different instance of this driver and have no software
1426  * state in common.
1427  *
1428  * In addition (and even on a single core chip) the chip's internal
1429  * firmware can access the SEEPROM/Flash, most notably after a RESET
1430  * when it may download code to run internally.
1431  *
1432  * So we need to arbitrate between these various software agents.  For
1433  * this purpose, the chip provides the Software Arbitration Register,
1434  * which implements hardware(!) arbitration.
1435  *
1436  * This functionality didn't exist on older (5700/5701) chips, so there's
1437  * nothing we can do by way of arbitration on those; also, if there's no
1438  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1439  * nothing to do.
1440  *
1441  * The internal firmware appears to use Request 0, which is the highest
1442  * priority.  So we'd like to use Request 2, leaving one higher and one
1443  * lower for any future developments ... but apparently this doesn't
1444  * always work.  So for now, the code uses Request 1 ;-(
1445  */
1446 
1447 #define	NVM_READ_REQ	NVM_READ_REQ1
1448 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1449 #define	NVM_SET_REQ	NVM_SET_REQ1
1450 
1451 static void bge_nvmem_relinquish(bge_t *bgep);
1452 #pragma	no_inline(bge_nvmem_relinquish)
1453 
1454 static void
1455 bge_nvmem_relinquish(bge_t *bgep)
1456 {
1457 	ASSERT(mutex_owned(bgep->genlock));
1458 
1459 	switch (bgep->chipid.nvtype) {
1460 	case BGE_NVTYPE_NONE:
1461 	case BGE_NVTYPE_UNKNOWN:
1462 		_NOTE(NOTREACHED)
1463 		return;
1464 
1465 	case BGE_NVTYPE_SEEPROM:
1466 		/*
1467 		 * No arbitration performed, no release needed
1468 		 */
1469 		return;
1470 
1471 	case BGE_NVTYPE_LEGACY_SEEPROM:
1472 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1473 	case BGE_NVTYPE_BUFFERED_FLASH:
1474 	default:
1475 		break;
1476 	}
1477 
1478 	/*
1479 	 * Our own request should be present (whether or not granted) ...
1480 	 */
1481 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1482 
1483 	/*
1484 	 * ... this will make it go away.
1485 	 */
1486 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1487 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1488 }
1489 
1490 /*
1491  * Arbitrate for access to the NVmem, if necessary
1492  *
1493  * Return value:
1494  *	0 on success
1495  *	EAGAIN if the device is in use (retryable)
1496  *	ENODEV if the NVmem device is missing or otherwise unusable
1497  */
1498 static int bge_nvmem_acquire(bge_t *bgep);
1499 #pragma	no_inline(bge_nvmem_acquire)
1500 
1501 static int
1502 bge_nvmem_acquire(bge_t *bgep)
1503 {
1504 	uint32_t regval;
1505 	uint32_t tries;
1506 
1507 	ASSERT(mutex_owned(bgep->genlock));
1508 
1509 	switch (bgep->chipid.nvtype) {
1510 	case BGE_NVTYPE_NONE:
1511 	case BGE_NVTYPE_UNKNOWN:
1512 		/*
1513 		 * Access denied: no (recognisable) device fitted
1514 		 */
1515 		return (ENODEV);
1516 
1517 	case BGE_NVTYPE_SEEPROM:
1518 		/*
1519 		 * Access granted: no arbitration needed (or possible)
1520 		 */
1521 		return (0);
1522 
1523 	case BGE_NVTYPE_LEGACY_SEEPROM:
1524 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1525 	case BGE_NVTYPE_BUFFERED_FLASH:
1526 	default:
1527 		/*
1528 		 * Access conditional: conduct arbitration protocol
1529 		 */
1530 		break;
1531 	}
1532 
1533 	/*
1534 	 * We're holding the per-port mutex <genlock>, so no-one other
1535 	 * thread can be attempting to access the NVmem through *this*
1536 	 * port. But it could be in use by the *other* port (of a 5704),
1537 	 * or by the chip's internal firmware, so we have to go through
1538 	 * the full (hardware) arbitration protocol ...
1539 	 *
1540 	 * Note that *because* we're holding <genlock>, the interrupt handler
1541 	 * won't be able to progress.  So we're only willing to spin for a
1542 	 * fairly short time.  Specifically:
1543 	 *
1544 	 *	We *must* wait long enough for the hardware to resolve all
1545 	 *	requests and determine the winner.  Fortunately, this is
1546 	 *	"almost instantaneous", even as observed by GHz CPUs.
1547 	 *
1548 	 *	A successful access by another Solaris thread (via either
1549 	 *	port) typically takes ~20us.  So waiting a bit longer than
1550 	 *	that will give a good chance of success, if the other user
1551 	 *	*is* another thread on the other port.
1552 	 *
1553 	 *	However, the internal firmware can hold on to the NVmem
1554 	 *	for *much* longer: at least 10 milliseconds just after a
1555 	 *	RESET, and maybe even longer if the NVmem actually contains
1556 	 *	code to download and run on the internal CPUs.
1557 	 *
1558 	 * So, we'll allow 50us; if that's not enough then it's up to the
1559 	 * caller to retry later (hence the choice of return code EAGAIN).
1560 	 */
1561 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1562 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1563 
1564 	for (tries = 0; tries < 50; ++tries) {
1565 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1566 		if (regval & NVM_WON_REQ1)
1567 			break;
1568 		drv_usecwait(1);
1569 	}
1570 
1571 	if (regval & NVM_WON_REQ1) {
1572 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1573 		return (0);
1574 	}
1575 
1576 	/*
1577 	 * Somebody else must be accessing the NVmem, so abandon our
1578 	 * attempt take control of it.  The caller can try again later ...
1579 	 */
1580 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1581 	bge_nvmem_relinquish(bgep);
1582 	return (EAGAIN);
1583 }
1584 
1585 /*
1586  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1587  * write protect line in such a way that the NVmem is protected when
1588  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1589  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1590  *
1591  * Note: there's only one set of GPIO pins on a 5704, even though they
1592  * can be accessed through either port.  So the chip has to resolve what
1593  * happens if the two ports program a single pin differently ... the rule
1594  * it uses is that if the ports disagree about the *direction* of a pin,
1595  * "output" wins over "input", but if they disagree about its *value* as
1596  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1597  * wins, and the external signal does whatever the external circuitry
1598  * defines as the default -- which we've assumed is the PROTECTED state.
1599  * So, we always change GPIO1 back to being an *input* whenever we're not
1600  * specifically using it to unprotect the NVmem. This allows either port
1601  * to update the NVmem, although obviously only one at a time!
1602  *
1603  * The caller should hold <genlock> and *also* have already acquired the
1604  * right to access the NVmem, via bge_nvmem_acquire() above.
1605  */
1606 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1607 #pragma	inline(bge_nvmem_protect)
1608 
1609 static void
1610 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1611 {
1612 	uint32_t regval;
1613 
1614 	ASSERT(mutex_owned(bgep->genlock));
1615 
1616 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1617 	if (protect) {
1618 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1619 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1620 	} else {
1621 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1622 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1623 	}
1624 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1625 }
1626 
1627 /*
1628  * Now put it all together ...
1629  *
1630  * Try to acquire control of the NVmem; if successful, then:
1631  *	unprotect it (if we want to write to it)
1632  *	perform the requested access
1633  *	reprotect it (after a write)
1634  *	relinquish control
1635  *
1636  * Return value:
1637  *	0 on success,
1638  *	EAGAIN if the device is in use (retryable)
1639  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1640  *	ENODEV if the NVmem device is missing or otherwise unusable
1641  *	EPROTO on other h/w or s/w errors.
1642  */
1643 static int
1644 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1645 {
1646 	int err;
1647 
1648 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1649 		switch (cmd) {
1650 		case BGE_SEE_READ:
1651 			err = bge_seeprom_access(bgep,
1652 			    SEEPROM_ACCESS_READ, addr, dp);
1653 			break;
1654 
1655 		case BGE_SEE_WRITE:
1656 			bge_nvmem_protect(bgep, B_FALSE);
1657 			err = bge_seeprom_access(bgep,
1658 			    SEEPROM_ACCESS_WRITE, addr, dp);
1659 			bge_nvmem_protect(bgep, B_TRUE);
1660 			break;
1661 
1662 		case BGE_FLASH_READ:
1663 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1664 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1665 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1666 				    NVM_ACCESS_ENABLE);
1667 			}
1668 			err = bge_flash_access(bgep,
1669 			    NVM_FLASH_CMD_RD, addr, dp);
1670 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1671 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1672 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1673 				    NVM_ACCESS_ENABLE);
1674 			}
1675 			break;
1676 
1677 		case BGE_FLASH_WRITE:
1678 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1679 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1680 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1681 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1682 			}
1683 			bge_nvmem_protect(bgep, B_FALSE);
1684 			err = bge_flash_access(bgep,
1685 			    NVM_FLASH_CMD_WR, addr, dp);
1686 			bge_nvmem_protect(bgep, B_TRUE);
1687 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1688 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1689 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1690 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1691 			}
1692 
1693 			break;
1694 
1695 		default:
1696 			_NOTE(NOTREACHED)
1697 			break;
1698 		}
1699 		bge_nvmem_relinquish(bgep);
1700 	}
1701 
1702 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1703 	return (err);
1704 }
1705 
1706 /*
1707  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1708  */
1709 static uint64_t bge_get_nvmac(bge_t *bgep);
1710 #pragma no_inline(bge_get_nvmac)
1711 
1712 static uint64_t
1713 bge_get_nvmac(bge_t *bgep)
1714 {
1715 	uint32_t mac_high;
1716 	uint32_t mac_low;
1717 	uint32_t addr;
1718 	uint32_t cmd;
1719 	uint64_t mac;
1720 
1721 	BGE_TRACE(("bge_get_nvmac($%p)",
1722 		(void *)bgep));
1723 
1724 	switch (bgep->chipid.nvtype) {
1725 	case BGE_NVTYPE_NONE:
1726 	case BGE_NVTYPE_UNKNOWN:
1727 	default:
1728 		return (0ULL);
1729 
1730 	case BGE_NVTYPE_SEEPROM:
1731 	case BGE_NVTYPE_LEGACY_SEEPROM:
1732 		cmd = BGE_SEE_READ;
1733 		break;
1734 
1735 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1736 	case BGE_NVTYPE_BUFFERED_FLASH:
1737 		cmd = BGE_FLASH_READ;
1738 		break;
1739 	}
1740 
1741 	addr = NVMEM_DATA_MAC_ADDRESS;
1742 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1743 		return (0ULL);
1744 	addr += 4;
1745 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1746 		return (0ULL);
1747 
1748 	/*
1749 	 * The Broadcom chip is natively BIG-endian, so that's how the
1750 	 * MAC address is represented in NVmem.  We may need to swap it
1751 	 * around on a little-endian host ...
1752 	 */
1753 #ifdef	_BIG_ENDIAN
1754 	mac = mac_high;
1755 	mac = mac << 32;
1756 	mac |= mac_low;
1757 #else
1758 	mac = BGE_BSWAP_32(mac_high);
1759 	mac = mac << 32;
1760 	mac |= BGE_BSWAP_32(mac_low);
1761 #endif	/* _BIG_ENDIAN */
1762 
1763 	return (mac);
1764 }
1765 
1766 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1767 
1768 /*
1769  * Dummy version for when we're not supporting NVmem access
1770  */
1771 static uint64_t bge_get_nvmac(bge_t *bgep);
1772 #pragma inline(bge_get_nvmac)
1773 
1774 static uint64_t
1775 bge_get_nvmac(bge_t *bgep)
1776 {
1777 	_NOTE(ARGUNUSED(bgep))
1778 	return (0ULL);
1779 }
1780 
1781 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1782 
1783 /*
1784  * Determine the type of NVmem that is (or may be) attached to this chip,
1785  */
1786 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1787 #pragma no_inline(bge_nvmem_id)
1788 
1789 static enum bge_nvmem_type
1790 bge_nvmem_id(bge_t *bgep)
1791 {
1792 	enum bge_nvmem_type nvtype;
1793 	uint32_t config1;
1794 
1795 	BGE_TRACE(("bge_nvmem_id($%p)",
1796 		(void *)bgep));
1797 
1798 	switch (bgep->chipid.device) {
1799 	default:
1800 		/*
1801 		 * We shouldn't get here; it means we don't recognise
1802 		 * the chip, which means we don't know how to determine
1803 		 * what sort of NVmem (if any) it has.  So we'll say
1804 		 * NONE, to disable the NVmem access code ...
1805 		 */
1806 		nvtype = BGE_NVTYPE_NONE;
1807 		break;
1808 
1809 	case DEVICE_ID_5700:
1810 	case DEVICE_ID_5700x:
1811 	case DEVICE_ID_5701:
1812 		/*
1813 		 * These devices support *only* SEEPROMs
1814 		 */
1815 		nvtype = BGE_NVTYPE_SEEPROM;
1816 		break;
1817 
1818 	case DEVICE_ID_5702:
1819 	case DEVICE_ID_5702fe:
1820 	case DEVICE_ID_5703C:
1821 	case DEVICE_ID_5703S:
1822 	case DEVICE_ID_5704C:
1823 	case DEVICE_ID_5704S:
1824 	case DEVICE_ID_5704:
1825 	case DEVICE_ID_5705M:
1826 	case DEVICE_ID_5705C:
1827 	case DEVICE_ID_5705_2:
1828 	case DEVICE_ID_5706:
1829 	case DEVICE_ID_5782:
1830 	case DEVICE_ID_5788:
1831 	case DEVICE_ID_5789:
1832 	case DEVICE_ID_5751:
1833 	case DEVICE_ID_5751M:
1834 	case DEVICE_ID_5752:
1835 	case DEVICE_ID_5752M:
1836 	case DEVICE_ID_5754:
1837 	case DEVICE_ID_5721:
1838 	case DEVICE_ID_5714C:
1839 	case DEVICE_ID_5714S:
1840 	case DEVICE_ID_5715C:
1841 	case DEVICE_ID_5715S:
1842 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1843 		if (config1 & NVM_CFG1_FLASH_MODE)
1844 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1845 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1846 			else
1847 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1848 		else
1849 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1850 		break;
1851 	}
1852 
1853 	return (nvtype);
1854 }
1855 
1856 #undef	BGE_DBG
1857 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1858 
1859 static void
1860 bge_init_recv_rule(bge_t *bgep)
1861 {
1862 	bge_recv_rule_t *rulep;
1863 	uint32_t i;
1864 
1865 	/*
1866 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1867 	 * 1. to direct UDP traffic, set:
1868 	 * 	rulep->control = RULE_PROTO_CONTROL;
1869 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1870 	 * 2. to direct ICMP traffic, set:
1871 	 * 	rulep->control = RULE_PROTO_CONTROL;
1872 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1873 	 * 3. to direct traffic by source ip, set:
1874 	 * 	rulep->control = RULE_SIP_CONTROL;
1875 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1876 	 */
1877 	rulep = bgep->recv_rules;
1878 	rulep->control = RULE_PROTO_CONTROL;
1879 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1880 
1881 	/*
1882 	 * set receive rule registers
1883 	 */
1884 	rulep = bgep->recv_rules;
1885 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1886 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1887 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1888 	}
1889 }
1890 
1891 /*
1892  * Using the values captured by bge_chip_cfg_init(), and additional probes
1893  * as required, characterise the chip fully: determine the label by which
1894  * to refer to this chip, the correct settings for various registers, and
1895  * of course whether the device and/or subsystem are supported!
1896  */
1897 int bge_chip_id_init(bge_t *bgep);
1898 #pragma	no_inline(bge_chip_id_init)
1899 
1900 int
1901 bge_chip_id_init(bge_t *bgep)
1902 {
1903 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1904 	boolean_t sys_ok;
1905 	boolean_t dev_ok;
1906 	chip_id_t *cidp;
1907 	uint32_t subid;
1908 	char *devname;
1909 	char *sysname;
1910 	int *ids;
1911 	int err;
1912 	uint_t i;
1913 
1914 	ASSERT(bgep->bge_chip_state == BGE_CHIP_INITIAL);
1915 
1916 	sys_ok = dev_ok = B_FALSE;
1917 	cidp = &bgep->chipid;
1918 
1919 	/*
1920 	 * Check the PCI device ID to determine the generic chip type and
1921 	 * select parameters that depend on this.
1922 	 *
1923 	 * Note: because the SPARC platforms in general don't fit the
1924 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1925 	 * as zero - which is why we use <asic_rev> rather than <revision>
1926 	 * below ...
1927 	 *
1928 	 * Note: in general we can't distinguish between the Copper/SerDes
1929 	 * versions by ID alone, as some Copper devices (e.g. some but not
1930 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1931 	 * treat them the same here, and the MII code works out the media
1932 	 * type later on ...
1933 	 */
1934 	cidp->mbuf_base = bge_mbuf_pool_base;
1935 	cidp->mbuf_length = bge_mbuf_pool_len;
1936 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1937 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1938 	cidp->pci_type = BGE_PCI_X;
1939 	cidp->statistic_type = BGE_STAT_BLK;
1940 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1941 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1942 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1943 
1944 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1945 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1946 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1947 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1948 
1949 	cidp->msi_enabled = B_FALSE;
1950 
1951 	switch (cidp->device) {
1952 	case DEVICE_ID_5700:
1953 	case DEVICE_ID_5700x:
1954 		cidp->chip_label = 5700;
1955 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1956 		break;
1957 
1958 	case DEVICE_ID_5701:
1959 		cidp->chip_label = 5701;
1960 		dev_ok = B_TRUE;
1961 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1962 		break;
1963 
1964 	case DEVICE_ID_5702:
1965 	case DEVICE_ID_5702fe:
1966 		cidp->chip_label = 5702;
1967 		dev_ok = B_TRUE;
1968 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1969 		cidp->pci_type = BGE_PCI;
1970 		break;
1971 
1972 	case DEVICE_ID_5703C:
1973 	case DEVICE_ID_5703S:
1974 	case DEVICE_ID_5703:
1975 		/*
1976 		 * Revision A0 of the 5703/5793 had various errata
1977 		 * that we can't or don't work around, so it's not
1978 		 * supported, but all later versions are
1979 		 */
1980 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
1981 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
1982 			dev_ok = B_TRUE;
1983 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1984 		break;
1985 
1986 	case DEVICE_ID_5704C:
1987 	case DEVICE_ID_5704S:
1988 	case DEVICE_ID_5704:
1989 		/*
1990 		 * Revision A0 of the 5704/5794 had various errata
1991 		 * but we have workarounds, so it *is* supported.
1992 		 */
1993 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
1994 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
1995 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
1996 		dev_ok = B_TRUE;
1997 		if (cidp->asic_rev <  MHCR_CHIP_REV_5704_B0)
1998 			cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1999 		break;
2000 
2001 	case DEVICE_ID_5705C:
2002 	case DEVICE_ID_5705M:
2003 	case DEVICE_ID_5705MA3:
2004 	case DEVICE_ID_5705F:
2005 	case DEVICE_ID_5705_2:
2006 	case DEVICE_ID_5754:
2007 		if (cidp->device == DEVICE_ID_5754) {
2008 			cidp->chip_label = 5754;
2009 			cidp->pci_type = BGE_PCI_E;
2010 		} else {
2011 			cidp->chip_label = 5705;
2012 			cidp->pci_type = BGE_PCI;
2013 		}
2014 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2015 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2016 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2017 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2018 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2019 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2020 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2021 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2022 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2023 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2024 		cidp->statistic_type = BGE_STAT_REG;
2025 		dev_ok = B_TRUE;
2026 		break;
2027 
2028 	case DEVICE_ID_5706:
2029 		cidp->chip_label = 5706;
2030 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2031 		break;
2032 
2033 	case DEVICE_ID_5782:
2034 		/*
2035 		 * Apart from the label, we treat this as a 5705(?)
2036 		 */
2037 		cidp->chip_label = 5782;
2038 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2039 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2040 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2041 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2042 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2043 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2044 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2045 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2046 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2047 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2048 		cidp->statistic_type = BGE_STAT_REG;
2049 		dev_ok = B_TRUE;
2050 		break;
2051 
2052 	case DEVICE_ID_5788:
2053 		/*
2054 		 * Apart from the label, we treat this as a 5705(?)
2055 		 */
2056 		cidp->chip_label = 5788;
2057 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2058 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2059 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2060 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2061 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2062 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2063 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2064 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2065 		cidp->statistic_type = BGE_STAT_REG;
2066 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2067 		dev_ok = B_TRUE;
2068 		break;
2069 
2070 	case DEVICE_ID_5714C:
2071 		if (cidp->revision >= REVISION_ID_5714_A2)
2072 			cidp->msi_enabled = bge_enable_msi;
2073 		/* FALLTHRU */
2074 	case DEVICE_ID_5714S:
2075 		cidp->chip_label = 5714;
2076 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2077 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2078 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2079 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2080 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2081 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2082 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2083 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2084 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2085 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2086 		cidp->pci_type = BGE_PCI_E;
2087 		cidp->statistic_type = BGE_STAT_REG;
2088 		dev_ok = B_TRUE;
2089 		break;
2090 
2091 	case DEVICE_ID_5715C:
2092 	case DEVICE_ID_5715S:
2093 		cidp->chip_label = 5715;
2094 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2095 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2096 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2097 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2098 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2099 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2100 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2101 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2102 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2103 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2104 		cidp->pci_type = BGE_PCI_E;
2105 		cidp->statistic_type = BGE_STAT_REG;
2106 		if (cidp->revision >= REVISION_ID_5715_A2)
2107 			cidp->msi_enabled = bge_enable_msi;
2108 		dev_ok = B_TRUE;
2109 		break;
2110 
2111 	case DEVICE_ID_5721:
2112 		cidp->chip_label = 5721;
2113 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2114 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2115 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2116 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2117 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2118 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2119 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2120 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2121 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2122 		cidp->pci_type = BGE_PCI_E;
2123 		cidp->statistic_type = BGE_STAT_REG;
2124 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2125 		dev_ok = B_TRUE;
2126 		break;
2127 
2128 	case DEVICE_ID_5751:
2129 	case DEVICE_ID_5751M:
2130 		cidp->chip_label = 5751;
2131 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2132 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2133 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2134 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2135 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2136 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2137 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2138 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2139 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2140 		cidp->pci_type = BGE_PCI_E;
2141 		cidp->statistic_type = BGE_STAT_REG;
2142 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2143 		dev_ok = B_TRUE;
2144 		break;
2145 
2146 	case DEVICE_ID_5752:
2147 	case DEVICE_ID_5752M:
2148 		cidp->chip_label = 5752;
2149 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2150 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2151 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2152 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2153 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2154 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2155 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2156 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2157 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2158 		cidp->pci_type = BGE_PCI_E;
2159 		cidp->statistic_type = BGE_STAT_REG;
2160 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2161 		dev_ok = B_TRUE;
2162 		break;
2163 
2164 	case DEVICE_ID_5789:
2165 		cidp->chip_label = 5789;
2166 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2167 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2168 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2169 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2170 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2171 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2172 		cidp->pci_type = BGE_PCI_E;
2173 		cidp->statistic_type = BGE_STAT_REG;
2174 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2175 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2176 		cidp->msi_enabled = B_TRUE;
2177 		dev_ok = B_TRUE;
2178 		break;
2179 
2180 	}
2181 
2182 	/*
2183 	 * Setup the default jumbo parameter.
2184 	 */
2185 	cidp->ethmax_size = ETHERMAX;
2186 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2187 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2188 
2189 	/*
2190 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2191 	 * setup below jumbo specific parameters.
2192 	 *
2193 	 * For BCM5714/5715, there is only one standard receive ring. So the
2194 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2195 	 * feature is enabled.
2196 	 */
2197 	if (bge_jumbo_enable &&
2198 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2199 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2200 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2201 	    if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2202 			cidp->mbuf_lo_water_rdma =
2203 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2204 			cidp->mbuf_lo_water_rmac =
2205 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2206 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2207 			cidp->jumbo_slots = 0;
2208 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2209 	    } else {
2210 			cidp->mbuf_lo_water_rdma =
2211 			    RDMA_MBUF_LOWAT_JUMBO;
2212 			cidp->mbuf_lo_water_rmac =
2213 			    MAC_RX_MBUF_LOWAT_JUMBO;
2214 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2215 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2216 		}
2217 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2218 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2219 		cidp->ethmax_size = cidp->default_mtu +
2220 		    sizeof (struct ether_header);
2221 	}
2222 
2223 	/*
2224 	 * Identify the NV memory type: SEEPROM or Flash?
2225 	 */
2226 	cidp->nvtype = bge_nvmem_id(bgep);
2227 
2228 	/*
2229 	 * Now, we want to check whether this device is part of a
2230 	 * supported subsystem (e.g., on the motherboard of a Sun
2231 	 * branded platform).
2232 	 *
2233 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2234 	 */
2235 	if (cidp->subven == VENDOR_ID_SUN)
2236 		sys_ok = B_TRUE;
2237 
2238 	/*
2239 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2240 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2241 	 * doesn't enforce that.
2242 	 */
2243 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2244 		DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2245 	if (err == DDI_PROP_SUCCESS) {
2246 		/*
2247 		 * Got the list; scan for a matching subsystem vendor/device
2248 		 */
2249 		subid = (cidp->subven << 16) | cidp->subdev;
2250 		while (i--)
2251 			if (ids[i] == subid)
2252 				sys_ok = B_TRUE;
2253 		ddi_prop_free(ids);
2254 	}
2255 
2256 	/*
2257 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2258 	 *
2259 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2260 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2261 	 * we have to check specially for the exact device paths to the
2262 	 * motherboard devices on those platforms ;-(
2263 	 *
2264 	 * Note: we can't just use the "supported-subsystems" mechanism
2265 	 * above, because the entry would have to be 0x14e41647 -- which
2266 	 * would then accept *any* plugin card that *didn't* contain a
2267 	 * (valid) SEEPROM ;-(
2268 	 */
2269 	sysname = ddi_node_name(ddi_root_node());
2270 	devname = ddi_pathname(bgep->devinfo, buf);
2271 	ASSERT(strlen(devname) > 0);
2272 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2273 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2274 			sys_ok = B_TRUE;
2275 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2276 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2277 			sys_ok = B_TRUE;
2278 
2279 	/*
2280 	 * Now check what we've discovered: is this truly a supported
2281 	 * chip on (the motherboard of) a supported platform?
2282 	 *
2283 	 * Possible problems here:
2284 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2285 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2286 	 * 3)	it's a chip we would support if it were on the motherboard
2287 	 *	of a Sun platform, but this one isn't ;-(
2288 	 */
2289 	if (cidp->chip_label == 0)
2290 		bge_problem(bgep,
2291 			"Device 'pci%04x,%04x' not recognized (%d?)",
2292 			cidp->vendor, cidp->device, cidp->device);
2293 	else if (!dev_ok)
2294 		bge_problem(bgep,
2295 			"Device 'pci%04x,%04x' (%d) revision %d not supported",
2296 			cidp->vendor, cidp->device, cidp->chip_label,
2297 			cidp->revision);
2298 #if	BGE_DEBUGGING
2299 	else if (!sys_ok)
2300 		bge_problem(bgep,
2301 			"%d-based subsystem 'pci%04x,%04x' not validated",
2302 			cidp->chip_label, cidp->subven, cidp->subdev);
2303 #endif
2304 	else
2305 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2306 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2307 		return (EIO);
2308 	return (0);
2309 }
2310 
2311 void
2312 bge_chip_msi_trig(bge_t *bgep)
2313 {
2314 	uint32_t	regval;
2315 
2316 	regval = bgep->param_msi_cnt<<4;
2317 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2318 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2319 }
2320 
2321 /*
2322  * Various registers that control the chip's internal engines (state
2323  * machines) have a <reset> and <enable> bits (fortunately, in the
2324  * same place in each such register :-).
2325  *
2326  * To reset the state machine, the <reset> bit must be written with 1;
2327  * it will then read back as 1 while the reset is in progress, but
2328  * self-clear to 0 when the reset completes.
2329  *
2330  * To enable a state machine, one must set the <enable> bit, which
2331  * will continue to read back as 0 until the state machine is running.
2332  *
2333  * To disable a state machine, the <enable> bit must be cleared, but
2334  * it will continue to read back as 1 until the state machine actually
2335  * stops.
2336  *
2337  * This routine implements polling for completion of a reset, enable
2338  * or disable operation, returning B_TRUE on success (bit reached the
2339  * required state) or B_FALSE on timeout (200*100us == 20ms).
2340  */
2341 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2342 					uint32_t mask, uint32_t val);
2343 #pragma	no_inline(bge_chip_poll_engine)
2344 
2345 static boolean_t
2346 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2347 	uint32_t mask, uint32_t val)
2348 {
2349 	uint32_t regval;
2350 	uint32_t n;
2351 
2352 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2353 		(void *)bgep, regno, mask, val));
2354 
2355 	for (n = 200; n; --n) {
2356 		regval = bge_reg_get32(bgep, regno);
2357 		if ((regval & mask) == val)
2358 			return (B_TRUE);
2359 		drv_usecwait(100);
2360 	}
2361 
2362 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2363 	return (B_FALSE);
2364 }
2365 
2366 /*
2367  * Various registers that control the chip's internal engines (state
2368  * machines) have a <reset> bit (fortunately, in the same place in
2369  * each such register :-).  To reset the state machine, this bit must
2370  * be written with 1; it will then read back as 1 while the reset is
2371  * in progress, but self-clear to 0 when the reset completes.
2372  *
2373  * This code sets the bit, then polls for it to read back as zero.
2374  * The return value is B_TRUE on success (reset bit cleared itself),
2375  * or B_FALSE if the state machine didn't recover :(
2376  *
2377  * NOTE: the Core reset is similar to other resets, except that we
2378  * can't poll for completion, since the Core reset disables memory
2379  * access!  So we just have to assume that it will all complete in
2380  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2381  */
2382 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2383 #pragma	no_inline(bge_chip_reset_engine)
2384 
2385 static boolean_t
2386 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2387 {
2388 	uint32_t regval;
2389 	uint32_t val32;
2390 
2391 	regval = bge_reg_get32(bgep, regno);
2392 
2393 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2394 		(void *)bgep, regno));
2395 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2396 		regno, regval));
2397 
2398 	regval |= STATE_MACHINE_RESET_BIT;
2399 
2400 	switch (regno) {
2401 	case MISC_CONFIG_REG:
2402 		/*
2403 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2404 		 * resetting PCIE block and bringing PCIE link down, bit 29
2405 		 * in the register needs to be set first, and then set it again
2406 		 * while the reset bit is written.
2407 		 * See:P500 of 57xx-PG102-RDS.pdf.
2408 		 */
2409 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2410 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2411 		    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2412 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2413 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2414 				if (bgep->chipid.asic_rev ==
2415 				    MHCR_CHIP_REV_5751_A0 ||
2416 				    bgep->chipid.asic_rev ==
2417 				    MHCR_CHIP_REV_5721_A0) {
2418 					val32 = bge_reg_get32(bgep,
2419 					    PHY_TEST_CTRL_REG);
2420 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2421 					    PHY_PCIE_LTASS_MODE))
2422 						bge_reg_put32(bgep,
2423 						    PHY_TEST_CTRL_REG,
2424 						    PHY_PCIE_SCRAM_MODE);
2425 					val32 = pci_config_get32
2426 					    (bgep->cfg_handle,
2427 					    PCI_CONF_BGE_CLKCTL);
2428 					val32 |= CLKCTL_PCIE_A0_FIX;
2429 					pci_config_put32(bgep->cfg_handle,
2430 					    PCI_CONF_BGE_CLKCTL, val32);
2431 				}
2432 				bge_reg_set32(bgep, regno,
2433 					MISC_CONFIG_GRC_RESET_DISABLE);
2434 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2435 			}
2436 		}
2437 
2438 		/*
2439 		 * Special case - causes Core reset
2440 		 *
2441 		 * On SPARC v9 we want to ensure that we don't start
2442 		 * timing until the I/O access has actually reached
2443 		 * the chip, otherwise we might make the next access
2444 		 * too early.  And we can't just force the write out
2445 		 * by following it with a read (even to config space)
2446 		 * because that would cause the fault we're trying
2447 		 * to avoid.  Hence the need for membar_sync() here.
2448 		 */
2449 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2450 #ifdef	__sparcv9
2451 		membar_sync();
2452 #endif	/* __sparcv9 */
2453 		/*
2454 		 * On some platforms,system need about 300us for
2455 		 * link setup.
2456 		 */
2457 		drv_usecwait(300);
2458 
2459 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2460 			/* PCI-E device need more reset time */
2461 			drv_usecwait(120000);
2462 
2463 			/* Set PCIE max payload size and clear error status. */
2464 			if ((bgep->chipid.chip_label == 5721) ||
2465 			    (bgep->chipid.chip_label == 5751) ||
2466 			    (bgep->chipid.chip_label == 5752) ||
2467 			    (bgep->chipid.chip_label == 5789)) {
2468 				pci_config_put16(bgep->cfg_handle,
2469 					PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2470 				pci_config_put16(bgep->cfg_handle,
2471 					PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2472 			}
2473 		}
2474 
2475 		BGE_PCICHK(bgep);
2476 		return (B_TRUE);
2477 
2478 	default:
2479 		bge_reg_put32(bgep, regno, regval);
2480 		return (bge_chip_poll_engine(bgep, regno,
2481 		    STATE_MACHINE_RESET_BIT, 0));
2482 	}
2483 }
2484 
2485 /*
2486  * Various registers that control the chip's internal engines (state
2487  * machines) have an <enable> bit (fortunately, in the same place in
2488  * each such register :-).  To stop the state machine, this bit must
2489  * be written with 0, then polled to see when the state machine has
2490  * actually stopped.
2491  *
2492  * The return value is B_TRUE on success (enable bit cleared), or
2493  * B_FALSE if the state machine didn't stop :(
2494  */
2495 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2496 						uint32_t morebits);
2497 #pragma	no_inline(bge_chip_disable_engine)
2498 
2499 static boolean_t
2500 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2501 {
2502 	uint32_t regval;
2503 
2504 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2505 		(void *)bgep, regno, morebits));
2506 
2507 	switch (regno) {
2508 	case FTQ_RESET_REG:
2509 		/*
2510 		 * Not quite like the others; it doesn't
2511 		 * have an <enable> bit, but instead we
2512 		 * have to set and then clear all the bits
2513 		 */
2514 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2515 		drv_usecwait(100);
2516 		bge_reg_put32(bgep, regno, 0);
2517 		return (B_TRUE);
2518 
2519 	default:
2520 		regval = bge_reg_get32(bgep, regno);
2521 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2522 		regval &= ~morebits;
2523 		bge_reg_put32(bgep, regno, regval);
2524 		return (bge_chip_poll_engine(bgep, regno,
2525 		    STATE_MACHINE_ENABLE_BIT, 0));
2526 	}
2527 }
2528 
2529 /*
2530  * Various registers that control the chip's internal engines (state
2531  * machines) have an <enable> bit (fortunately, in the same place in
2532  * each such register :-).  To start the state machine, this bit must
2533  * be written with 1, then polled to see when the state machine has
2534  * actually started.
2535  *
2536  * The return value is B_TRUE on success (enable bit set), or
2537  * B_FALSE if the state machine didn't start :(
2538  */
2539 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2540 					uint32_t morebits);
2541 #pragma	no_inline(bge_chip_enable_engine)
2542 
2543 static boolean_t
2544 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2545 {
2546 	uint32_t regval;
2547 
2548 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2549 		(void *)bgep, regno, morebits));
2550 
2551 	switch (regno) {
2552 	case FTQ_RESET_REG:
2553 		/*
2554 		 * Not quite like the others; it doesn't
2555 		 * have an <enable> bit, but instead we
2556 		 * have to set and then clear all the bits
2557 		 */
2558 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2559 		drv_usecwait(100);
2560 		bge_reg_put32(bgep, regno, 0);
2561 		return (B_TRUE);
2562 
2563 	default:
2564 		regval = bge_reg_get32(bgep, regno);
2565 		regval |= STATE_MACHINE_ENABLE_BIT;
2566 		regval |= morebits;
2567 		bge_reg_put32(bgep, regno, regval);
2568 		return (bge_chip_poll_engine(bgep, regno,
2569 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2570 	}
2571 }
2572 
2573 /*
2574  * Reprogram the Ethernet, Transmit, and Receive MAC
2575  * modes to match the param_* variables
2576  */
2577 static void bge_sync_mac_modes(bge_t *bgep);
2578 #pragma	no_inline(bge_sync_mac_modes)
2579 
2580 static void
2581 bge_sync_mac_modes(bge_t *bgep)
2582 {
2583 	uint32_t macmode;
2584 	uint32_t regval;
2585 
2586 	ASSERT(mutex_owned(bgep->genlock));
2587 
2588 	/*
2589 	 * Reprogram the Ethernet MAC mode ...
2590 	 */
2591 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2592 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2593 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2594 		macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2595 	else
2596 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2597 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2598 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2599 		(bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2600 		macmode |= ETHERNET_MODE_PORTMODE_TBI;
2601 	else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100)
2602 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2603 	else
2604 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2605 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2606 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2607 	else
2608 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2609 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2610 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2611 	else
2612 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2613 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2614 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2615 		(void *)bgep, regval, macmode));
2616 
2617 	/*
2618 	 * ... the Transmit MAC mode ...
2619 	 */
2620 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2621 	if (bgep->param_link_tx_pause)
2622 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2623 	else
2624 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2625 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2626 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2627 		(void *)bgep, regval, macmode));
2628 
2629 	/*
2630 	 * ... and the Receive MAC mode
2631 	 */
2632 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2633 	if (bgep->param_link_rx_pause)
2634 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2635 	else
2636 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2637 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2638 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2639 		(void *)bgep, regval, macmode));
2640 }
2641 
2642 /*
2643  * bge_chip_sync() -- program the chip with the unicast MAC address,
2644  * the multicast hash table, the required level of promiscuity, and
2645  * the current loopback mode ...
2646  */
2647 #ifdef BGE_IPMI_ASF
2648 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2649 #else
2650 int bge_chip_sync(bge_t *bgep);
2651 #endif
2652 #pragma	no_inline(bge_chip_sync)
2653 
2654 int
2655 #ifdef BGE_IPMI_ASF
2656 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2657 #else
2658 bge_chip_sync(bge_t *bgep)
2659 #endif
2660 {
2661 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2662 	boolean_t promisc;
2663 	uint64_t macaddr;
2664 	uint32_t fill;
2665 	int i, j;
2666 	int retval = DDI_SUCCESS;
2667 
2668 	BGE_TRACE(("bge_chip_sync($%p)",
2669 		(void *)bgep));
2670 
2671 	ASSERT(mutex_owned(bgep->genlock));
2672 
2673 	promisc = B_FALSE;
2674 	fill = ~(uint32_t)0;
2675 
2676 	if (bgep->promisc)
2677 		promisc = B_TRUE;
2678 	else
2679 		fill = (uint32_t)0;
2680 
2681 	/*
2682 	 * If the TX/RX MAC engines are already running, we should stop
2683 	 * them (and reset the RX engine) before changing the parameters.
2684 	 * If they're not running, this will have no effect ...
2685 	 *
2686 	 * NOTE: this is currently disabled by default because stopping
2687 	 * and restarting the Tx engine may cause an outgoing packet in
2688 	 * transit to be truncated.  Also, stopping and restarting the
2689 	 * Rx engine seems to not work correctly on the 5705.  Testing
2690 	 * has not (yet!) revealed any problems with NOT stopping and
2691 	 * restarting these engines (and Broadcom say their drivers don't
2692 	 * do this), but if it is found to cause problems, this variable
2693 	 * can be patched to re-enable the old behaviour ...
2694 	 */
2695 	if (bge_stop_start_on_sync) {
2696 #ifdef BGE_IPMI_ASF
2697 		if (!bgep->asf_enabled) {
2698 			if (!bge_chip_disable_engine(bgep,
2699 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2700 				retval = DDI_FAILURE;
2701 		} else {
2702 			if (!bge_chip_disable_engine(bgep,
2703 			    RECEIVE_MAC_MODE_REG, 0))
2704 				retval = DDI_FAILURE;
2705 		}
2706 #else
2707 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2708 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2709 			retval = DDI_FAILURE;
2710 #endif
2711 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2712 			retval = DDI_FAILURE;
2713 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2714 			retval = DDI_FAILURE;
2715 	}
2716 
2717 	/*
2718 	 * Reprogram the hashed multicast address table ...
2719 	 */
2720 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2721 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2722 			bgep->mcast_hash[i] | fill);
2723 
2724 #ifdef BGE_IPMI_ASF
2725 	if (!bgep->asf_enabled || !asf_keeplive) {
2726 #endif
2727 		/*
2728 		 * Transform the MAC address(es) from host to chip format, then
2729 		 * reprogram the transmit random backoff seed and the unicast
2730 		 * MAC address(es) ...
2731 		 */
2732 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2733 			for (i = 0, fill = 0, macaddr = 0ull;
2734 			    i < ETHERADDRL; ++i) {
2735 				macaddr <<= 8;
2736 				macaddr |= bgep->curr_addr[j].addr[i];
2737 				fill += bgep->curr_addr[j].addr[i];
2738 			}
2739 			bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2740 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2741 		}
2742 
2743 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2744 			(void *)bgep, macaddr));
2745 #ifdef BGE_IPMI_ASF
2746 	}
2747 #endif
2748 
2749 	/*
2750 	 * Set or clear the PROMISCUOUS mode bit
2751 	 */
2752 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2753 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2754 
2755 	/*
2756 	 * Sync the rest of the MAC modes too ...
2757 	 */
2758 	bge_sync_mac_modes(bgep);
2759 
2760 	/*
2761 	 * Restart RX/TX MAC engines if required ...
2762 	 */
2763 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2764 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2765 			retval = DDI_FAILURE;
2766 #ifdef BGE_IPMI_ASF
2767 		if (!bgep->asf_enabled) {
2768 			if (!bge_chip_enable_engine(bgep,
2769 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2770 				retval = DDI_FAILURE;
2771 		} else {
2772 			if (!bge_chip_enable_engine(bgep,
2773 			    RECEIVE_MAC_MODE_REG, 0))
2774 				retval = DDI_FAILURE;
2775 		}
2776 #else
2777 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2778 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2779 			retval = DDI_FAILURE;
2780 #endif
2781 	}
2782 	return (retval);
2783 }
2784 
2785 /*
2786  * This array defines the sequence of state machine control registers
2787  * in which the <enable> bit must be cleared to bring the chip to a
2788  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2789  */
2790 static bge_regno_t shutdown_engine_regs[] = {
2791 	RECEIVE_MAC_MODE_REG,
2792 	RCV_BD_INITIATOR_MODE_REG,
2793 	RCV_LIST_PLACEMENT_MODE_REG,
2794 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2795 	RCV_DATA_BD_INITIATOR_MODE_REG,
2796 	RCV_DATA_COMPLETION_MODE_REG,
2797 	RCV_BD_COMPLETION_MODE_REG,
2798 
2799 	SEND_BD_SELECTOR_MODE_REG,
2800 	SEND_BD_INITIATOR_MODE_REG,
2801 	SEND_DATA_INITIATOR_MODE_REG,
2802 	READ_DMA_MODE_REG,
2803 	SEND_DATA_COMPLETION_MODE_REG,
2804 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2805 	SEND_BD_COMPLETION_MODE_REG,
2806 	TRANSMIT_MAC_MODE_REG,
2807 
2808 	HOST_COALESCE_MODE_REG,
2809 	WRITE_DMA_MODE_REG,
2810 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2811 	FTQ_RESET_REG,		/* special - see code	*/
2812 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2813 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2814 	BGE_REGNO_NONE		/* terminator		*/
2815 };
2816 
2817 /*
2818  * bge_chip_stop() -- stop all chip processing
2819  *
2820  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2821  * we've detected a problem internally; otherwise, this is a normal
2822  * (clean) stop (at user request i.e. the last STREAM has been closed).
2823  */
2824 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2825 #pragma	no_inline(bge_chip_stop)
2826 
2827 void
2828 bge_chip_stop(bge_t *bgep, boolean_t fault)
2829 {
2830 	bge_regno_t regno;
2831 	bge_regno_t *rbp;
2832 	boolean_t ok;
2833 
2834 	BGE_TRACE(("bge_chip_stop($%p)",
2835 		(void *)bgep));
2836 
2837 	ASSERT(mutex_owned(bgep->genlock));
2838 
2839 	rbp = shutdown_engine_regs;
2840 	/*
2841 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2842 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2843 	 * -ory arbiter should not be disabled.
2844 	 */
2845 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2846 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2847 			    ok &= bge_chip_disable_engine(bgep, regno, 0);
2848 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2849 				    (regno != DMA_COMPLETION_MODE_REG) &&
2850 				    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2851 				    (regno != BUFFER_MANAGER_MODE_REG) &&
2852 				    (regno != MEMORY_ARBITER_MODE_REG))
2853 					ok &= bge_chip_disable_engine(bgep,
2854 					    regno, 0);
2855 	}
2856 
2857 	if (!ok && !fault)
2858 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
2859 
2860 	/*
2861 	 * Finally, disable (all) MAC events & clear the MAC status
2862 	 */
2863 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2864 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2865 
2866 	/*
2867 	 * if we're stopping the chip because of a detected fault then do
2868 	 * appropriate actions
2869 	 */
2870 	if (fault) {
2871 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
2872 			bgep->bge_chip_state = BGE_CHIP_FAULT;
2873 			ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST);
2874 			if (bgep->bge_dma_error) {
2875 				/*
2876 				 * need to free buffers in case the fault was
2877 				 * due to a memory error in a buffer - got to
2878 				 * do a fair bit of tidying first
2879 				 */
2880 				if (bgep->progress & PROGRESS_KSTATS) {
2881 					bge_fini_kstats(bgep);
2882 					bgep->progress &= ~PROGRESS_KSTATS;
2883 				}
2884 				if (bgep->progress & PROGRESS_INTR) {
2885 					bge_intr_disable(bgep);
2886 					rw_enter(bgep->errlock, RW_WRITER);
2887 					bge_fini_rings(bgep);
2888 					rw_exit(bgep->errlock);
2889 					bgep->progress &= ~PROGRESS_INTR;
2890 				}
2891 				if (bgep->progress & PROGRESS_BUFS) {
2892 					bge_free_bufs(bgep);
2893 					bgep->progress &= ~PROGRESS_BUFS;
2894 				}
2895 				bgep->bge_dma_error = B_FALSE;
2896 			}
2897 		}
2898 	} else
2899 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
2900 }
2901 
2902 /*
2903  * Poll for completion of chip's ROM firmware; also, at least on the
2904  * first time through, find and return the hardware MAC address, if any.
2905  */
2906 static uint64_t bge_poll_firmware(bge_t *bgep);
2907 #pragma	no_inline(bge_poll_firmware)
2908 
2909 static uint64_t
2910 bge_poll_firmware(bge_t *bgep)
2911 {
2912 	uint64_t magic;
2913 	uint64_t mac;
2914 	uint32_t gen;
2915 	uint32_t i;
2916 
2917 	/*
2918 	 * Step 19: poll for firmware completion (GENCOMM port set
2919 	 * to the ones complement of T3_MAGIC_NUMBER).
2920 	 *
2921 	 * While we're at it, we also read the MAC address register;
2922 	 * at some stage the firmware will load this with the
2923 	 * factory-set value.
2924 	 *
2925 	 * When both the magic number and the MAC address are set,
2926 	 * we're done; but we impose a time limit of one second
2927 	 * (1000*1000us) in case the firmware fails in some fashion
2928 	 * or the SEEPROM that provides that MAC address isn't fitted.
2929 	 *
2930 	 * After the first time through (chip state != INITIAL), we
2931 	 * don't need the MAC address to be set (we've already got it
2932 	 * or not, from the first time), so we don't wait for it, but
2933 	 * we still have to wait for the T3_MAGIC_NUMBER.
2934 	 *
2935 	 * Note: the magic number is only a 32-bit quantity, but the NIC
2936 	 * memory is 64-bit (and big-endian) internally.  Addressing the
2937 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
2938 	 * it work correctly on both big- and little-endian hosts.
2939 	 */
2940 	for (i = 0; i < 1000; ++i) {
2941 		drv_usecwait(1000);
2942 		gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
2943 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
2944 #ifdef BGE_IPMI_ASF
2945 		if (!bgep->asf_enabled) {
2946 #endif
2947 			if (gen != ~T3_MAGIC_NUMBER)
2948 				continue;
2949 #ifdef BGE_IPMI_ASF
2950 		}
2951 #endif
2952 		if (mac != 0ULL)
2953 			break;
2954 		if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
2955 			break;
2956 	}
2957 
2958 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
2959 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
2960 		(void *)bgep, gen, i));
2961 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
2962 		mac, magic));
2963 
2964 	return (mac);
2965 }
2966 
2967 /*
2968  * Maximum times of trying to get the NVRAM access lock
2969  * by calling bge_nvmem_acquire()
2970  */
2971 #define	MAX_TRY_NVMEM_ACQUIRE	10000
2972 
2973 #ifdef BGE_IPMI_ASF
2974 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
2975 #else
2976 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
2977 #endif
2978 #pragma	no_inline(bge_chip_reset)
2979 
2980 int
2981 #ifdef BGE_IPMI_ASF
2982 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
2983 #else
2984 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
2985 #endif
2986 {
2987 	chip_id_t chipid;
2988 	uint64_t mac;
2989 	uint64_t magic;
2990 	uint32_t modeflags;
2991 	uint32_t mhcr;
2992 	uint32_t sx0;
2993 	uint32_t i, tries;
2994 #ifdef BGE_IPMI_ASF
2995 	uint32_t mailbox;
2996 #endif
2997 	int retval = DDI_SUCCESS;
2998 
2999 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3000 		(void *)bgep, enable_dma));
3001 
3002 	ASSERT(mutex_owned(bgep->genlock));
3003 
3004 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3005 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3006 
3007 	/*
3008 	 * Do we need to stop the chip cleanly before resetting?
3009 	 */
3010 	switch (bgep->bge_chip_state) {
3011 	default:
3012 		_NOTE(NOTREACHED)
3013 		return (DDI_FAILURE);
3014 
3015 	case BGE_CHIP_INITIAL:
3016 	case BGE_CHIP_STOPPED:
3017 	case BGE_CHIP_RESET:
3018 		break;
3019 
3020 	case BGE_CHIP_RUNNING:
3021 	case BGE_CHIP_ERROR:
3022 	case BGE_CHIP_FAULT:
3023 		bge_chip_stop(bgep, B_FALSE);
3024 		break;
3025 	}
3026 
3027 #ifdef BGE_IPMI_ASF
3028 	if (bgep->asf_enabled) {
3029 		if (asf_mode == ASF_MODE_INIT) {
3030 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3031 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3032 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3033 		}
3034 	}
3035 #endif
3036 	/*
3037 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3038 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3039 	 *
3040 	 * Before reset Core clock,it is
3041 	 * also required to initialize the Memory Arbiter as specified in step9
3042 	 * and Misc Host Control Register as specified in step-13
3043 	 * Step 4-5: reset Core clock & wait for completion
3044 	 * Steps 6-8: are done by bge_chip_cfg_init()
3045 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3046 	 */
3047 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3048 		retval = DDI_FAILURE;
3049 
3050 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3051 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3052 	    MHCR_MASK_INTERRUPT_MODE |
3053 	    MHCR_MASK_PCI_INT_OUTPUT |
3054 	    MHCR_CLEAR_INTERRUPT_INTA;
3055 #ifdef  _BIG_ENDIAN
3056 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3057 #endif  /* _BIG_ENDIAN */
3058 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3059 #ifdef BGE_IPMI_ASF
3060 	if (bgep->asf_enabled)
3061 		bgep->asf_wordswapped = B_FALSE;
3062 #endif
3063 	/*
3064 	 * NVRAM Corruption Workaround
3065 	 */
3066 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3067 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3068 			break;
3069 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3070 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3071 			bgep->ifname));
3072 
3073 #ifdef BGE_IPMI_ASF
3074 	if (!bgep->asf_enabled) {
3075 #endif
3076 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3077 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3078 #ifdef BGE_IPMI_ASF
3079 	}
3080 #endif
3081 
3082 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3083 		retval = DDI_FAILURE;
3084 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3085 
3086 	/*
3087 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3088 	 * a bit set to avoid a fifo overflow/underflow bug.
3089 	 */
3090 	if ((bgep->chipid.chip_label == 5721) ||
3091 		(bgep->chipid.chip_label == 5751) ||
3092 		(bgep->chipid.chip_label == 5752) ||
3093 		(bgep->chipid.chip_label == 5789))
3094 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3095 
3096 
3097 	/*
3098 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3099 	 * not be changed.
3100 	 */
3101 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3102 		retval = DDI_FAILURE;
3103 
3104 	/*
3105 	 * Steps 10-11: configure PIO endianness options and
3106 	 * enable indirect register access -- already done
3107 	 * Steps 12-13: enable writing to the PCI state & clock
3108 	 * control registers -- not required; we aren't going to
3109 	 * use those features.
3110 	 * Steps 14-15: Configure DMA endianness options.  See
3111 	 * the comments on the setting of the MHCR above.
3112 	 */
3113 #ifdef	_BIG_ENDIAN
3114 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3115 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3116 #else
3117 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3118 #endif	/* _BIG_ENDIAN */
3119 #ifdef BGE_IPMI_ASF
3120 	if (bgep->asf_enabled)
3121 		modeflags |= MODE_HOST_STACK_UP;
3122 #endif
3123 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3124 
3125 #ifdef BGE_IPMI_ASF
3126 	if (bgep->asf_enabled) {
3127 		if (asf_mode != ASF_MODE_NONE) {
3128 			/* Wait for NVRAM init */
3129 			i = 0;
3130 			drv_usecwait(5000);
3131 			mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3132 			while ((mailbox != (uint32_t)
3133 				~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3134 				(i < 10000)) {
3135 				drv_usecwait(100);
3136 				mailbox = bge_nic_get32(bgep,
3137 					BGE_FIRMWARE_MAILBOX);
3138 				i++;
3139 			}
3140 			if (!bgep->asf_newhandshake) {
3141 				if ((asf_mode == ASF_MODE_INIT) ||
3142 					(asf_mode == ASF_MODE_POST_INIT)) {
3143 
3144 					bge_asf_post_reset_old_mode(bgep,
3145 						BGE_INIT_RESET);
3146 				} else {
3147 					bge_asf_post_reset_old_mode(bgep,
3148 						BGE_SHUTDOWN_RESET);
3149 				}
3150 			}
3151 		}
3152 	}
3153 #endif
3154 	/*
3155 	 * Steps 16-17: poll for firmware completion
3156 	 */
3157 	mac = bge_poll_firmware(bgep);
3158 
3159 	/*
3160 	 * Step 18: enable external memory -- doesn't apply.
3161 	 *
3162 	 * However we take the opportunity to set the MLCR anyway, as
3163 	 * this register also controls the SEEPROM auto-access method
3164 	 * which we may want to use later ...
3165 	 *
3166 	 * The proper value here depends on the way the chip is wired
3167 	 * into the circuit board, as this register *also* controls which
3168 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3169 	 * values driven onto those pins!
3170 	 *
3171 	 * See also step 74 in the PRM ...
3172 	 */
3173 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3174 	    bgep->chipid.bge_mlcr_default);
3175 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3176 
3177 	/*
3178 	 * Step 20: clear the Ethernet MAC mode register
3179 	 */
3180 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3181 
3182 	/*
3183 	 * Step 21: restore cache-line-size, latency timer, and
3184 	 * subsystem ID registers to their original values (not
3185 	 * those read into the local structure <chipid>, 'cos
3186 	 * that was after they were cleared by the RESET).
3187 	 *
3188 	 * Note: the Subsystem Vendor/Device ID registers are not
3189 	 * directly writable in config space, so we use the shadow
3190 	 * copy in "Page Zero" of register space to restore them
3191 	 * both in one go ...
3192 	 */
3193 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3194 		bgep->chipid.clsize);
3195 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3196 		bgep->chipid.latency);
3197 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3198 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3199 
3200 	/*
3201 	 * The SEND INDEX registers should be reset to zero by the
3202 	 * global chip reset; if they're not, there'll be trouble
3203 	 * later on.
3204 	 */
3205 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3206 	if (sx0 != 0) {
3207 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3208 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3209 		retval = DDI_FAILURE;
3210 	}
3211 
3212 	/* Enable MSI code */
3213 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3214 		bge_reg_set32(bgep, MSI_MODE_REG,
3215 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE);
3216 
3217 	/*
3218 	 * On the first time through, save the factory-set MAC address
3219 	 * (if any).  If bge_poll_firmware() above didn't return one
3220 	 * (from a chip register) consider looking in the attached NV
3221 	 * memory device, if any.  Once we have it, we save it in both
3222 	 * register-image (64-bit) and byte-array forms.  All-zero and
3223 	 * all-one addresses are not valid, and we refuse to stash those.
3224 	 */
3225 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3226 		if (mac == 0ULL)
3227 			mac = bge_get_nvmac(bgep);
3228 		if (mac != 0ULL && mac != ~0ULL) {
3229 			bgep->chipid.hw_mac_addr = mac;
3230 			for (i = ETHERADDRL; i-- != 0; ) {
3231 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3232 				mac >>= 8;
3233 			}
3234 			bgep->chipid.vendor_addr.set = B_TRUE;
3235 		}
3236 	}
3237 
3238 #ifdef BGE_IPMI_ASF
3239 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3240 		if (asf_mode != ASF_MODE_NONE) {
3241 			if ((asf_mode == ASF_MODE_INIT) ||
3242 				(asf_mode == ASF_MODE_POST_INIT)) {
3243 
3244 				bge_asf_post_reset_new_mode(bgep,
3245 					BGE_INIT_RESET);
3246 			} else {
3247 				bge_asf_post_reset_new_mode(bgep,
3248 					BGE_SHUTDOWN_RESET);
3249 			}
3250 		}
3251 	}
3252 #endif
3253 
3254 	/*
3255 	 * Record the new state
3256 	 */
3257 	bgep->chip_resets += 1;
3258 	bgep->bge_chip_state = BGE_CHIP_RESET;
3259 	return (retval);
3260 }
3261 
3262 /*
3263  * bge_chip_start() -- start the chip transmitting and/or receiving,
3264  * including enabling interrupts
3265  */
3266 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3267 #pragma	no_inline(bge_chip_start)
3268 
3269 int
3270 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3271 {
3272 	uint32_t coalmode;
3273 	uint32_t ledctl;
3274 	uint32_t mtu;
3275 	uint32_t maxring;
3276 	uint32_t stats_mask;
3277 	uint64_t ring;
3278 	int retval = DDI_SUCCESS;
3279 
3280 	BGE_TRACE(("bge_chip_start($%p)",
3281 		(void *)bgep));
3282 
3283 	ASSERT(mutex_owned(bgep->genlock));
3284 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3285 
3286 	/*
3287 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3288 	 * The document specifies 95 separate steps to fully
3289 	 * initialise the chip!!!!
3290 	 *
3291 	 * The reset code above has already got us as far as step
3292 	 * 21, so we continue with ...
3293 	 *
3294 	 * Step 22: clear the MAC statistics block
3295 	 * (0x0300-0x0aff in NIC-local memory)
3296 	 */
3297 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3298 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3299 		    NIC_MEM_STATISTICS_SIZE);
3300 
3301 	/*
3302 	 * Step 23: clear the status block (in host memory)
3303 	 */
3304 	DMA_ZERO(bgep->status_block);
3305 
3306 	/*
3307 	 * Step 24: set DMA read/write control register
3308 	 */
3309 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3310 		bgep->chipid.bge_dma_rwctrl);
3311 
3312 	/*
3313 	 * Step 25: Configure DMA endianness -- already done (16/17)
3314 	 * Step 26: Configure Host-Based Send Rings
3315 	 * Step 27: Indicate Host Stack Up
3316 	 */
3317 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3318 		MODE_HOST_SEND_BDS |
3319 		MODE_HOST_STACK_UP);
3320 
3321 	/*
3322 	 * Step 28: Configure checksum options:
3323 	 *	Solaris supports the hardware default checksum options.
3324 	 *
3325 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3326 	 */
3327 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3328 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3329 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3330 
3331 	/*
3332 	 * Step 29: configure Timer Prescaler.  The value is always the
3333 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3334 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3335 	 * for the whole chip!
3336 	 */
3337 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3338 
3339 	/*
3340 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3341 	 *
3342 	 * If the mbuf_length is specified as 0, we just leave these at
3343 	 * their hardware defaults, rather than explicitly setting them.
3344 	 * As the Broadcom HRM,driver better not change the parameters
3345 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3346 	 */
3347 	if ((bgep->chipid.mbuf_length != 0) &&
3348 		(DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3349 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3350 				bgep->chipid.mbuf_base);
3351 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3352 				bgep->chipid.mbuf_length);
3353 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3354 				DMAD_POOL_BASE_DEFAULT);
3355 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3356 				DMAD_POOL_LENGTH_DEFAULT);
3357 	}
3358 
3359 	/*
3360 	 * Step 32: configure MAC memory pool watermarks
3361 	 */
3362 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3363 		bgep->chipid.mbuf_lo_water_rdma);
3364 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3365 		bgep->chipid.mbuf_lo_water_rmac);
3366 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3367 		bgep->chipid.mbuf_hi_water);
3368 
3369 	/*
3370 	 * Step 33: configure DMA resource watermarks
3371 	 */
3372 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3373 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3374 		    bge_dmad_lo_water);
3375 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3376 		    bge_dmad_hi_water);
3377 	}
3378 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3379 
3380 	/*
3381 	 * Steps 34-36: enable buffer manager & internal h/w queues
3382 	 */
3383 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3384 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3385 		retval = DDI_FAILURE;
3386 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3387 		retval = DDI_FAILURE;
3388 
3389 	/*
3390 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3391 	 */
3392 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3393 		&bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3394 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3395 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3396 			&bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3397 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3398 			&bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3399 	}
3400 
3401 	/*
3402 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3403 	 */
3404 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3405 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3406 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3407 		    bge_replenish_jumbo);
3408 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3409 		    bge_replenish_mini);
3410 	}
3411 
3412 	/*
3413 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3414 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3415 	 */
3416 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3417 		maxring = BGE_SEND_RINGS_MAX;
3418 	else
3419 		maxring = BGE_SEND_RINGS_MAX_5705;
3420 	for (ring = 0; ring < maxring; ++ring) {
3421 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3422 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3423 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3424 			&bgep->send[ring].hw_rcb);
3425 	}
3426 
3427 	/*
3428 	 * Steps 44-45: initialise Receive Return Rings
3429 	 * (0x0200-0x02ff in NIC-local memory)
3430 	 */
3431 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3432 		maxring = BGE_RECV_RINGS_MAX;
3433 	else
3434 		maxring = BGE_RECV_RINGS_MAX_5705;
3435 	for (ring = 0; ring < maxring; ++ring)
3436 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3437 			&bgep->recv[ring].hw_rcb);
3438 
3439 	/*
3440 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3441 	 */
3442 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3443 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3444 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3445 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3446 	}
3447 	/*
3448 	 * Step 47: configure the MAC unicast address
3449 	 * Step 48: configure the random backoff seed
3450 	 * Step 96: set up multicast filters
3451 	 */
3452 #ifdef BGE_IPMI_ASF
3453 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3454 #else
3455 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3456 #endif
3457 		retval = DDI_FAILURE;
3458 
3459 	/*
3460 	 * Step 49: configure the MTU
3461 	 */
3462 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3463 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3464 
3465 	/*
3466 	 * Step 50: configure the IPG et al
3467 	 */
3468 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3469 
3470 	/*
3471 	 * Step 51: configure the default Rx Return Ring
3472 	 */
3473 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3474 
3475 	/*
3476 	 * Steps 52-54: configure Receive List Placement,
3477 	 * and enable Receive List Placement Statistics
3478 	 */
3479 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3480 		RCV_LP_CONFIG(bgep->chipid.rx_rings));
3481 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3482 	case MHCR_CHIP_ASIC_REV_5700:
3483 	case MHCR_CHIP_ASIC_REV_5701:
3484 	case MHCR_CHIP_ASIC_REV_5703:
3485 	case MHCR_CHIP_ASIC_REV_5704:
3486 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3487 		break;
3488 	case MHCR_CHIP_ASIC_REV_5705:
3489 		break;
3490 	default:
3491 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3492 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3493 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3494 		break;
3495 	}
3496 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3497 
3498 	if (bgep->chipid.rx_rings > 1)
3499 		bge_init_recv_rule(bgep);
3500 
3501 	/*
3502 	 * Steps 55-56: enable Send Data Initiator Statistics
3503 	 */
3504 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3505 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3506 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3507 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3508 	} else {
3509 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3510 		    SEND_INIT_STATS_ENABLE);
3511 	}
3512 	/*
3513 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3514 	 */
3515 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3516 		retval = DDI_FAILURE;
3517 
3518 	/*
3519 	 * Steps 59-62: initialise Host Coalescing parameters
3520 	 */
3521 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3522 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3523 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3524 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3525 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3526 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3527 		    bge_tx_count_intr);
3528 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3529 		    bge_tx_ticks_intr);
3530 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3531 		    bge_rx_count_intr);
3532 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3533 		    bge_rx_ticks_intr);
3534 	}
3535 
3536 	/*
3537 	 * Steps 63-64: initialise status block & statistics
3538 	 * host memory addresses
3539 	 * The statistic block does not exist in some chipsets
3540 	 * Step 65: initialise Statistics Coalescing Tick Counter
3541 	 */
3542 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3543 		bgep->status_block.cookie.dmac_laddress);
3544 
3545 	/*
3546 	 * Steps 66-67: initialise status block & statistics
3547 	 * NIC-local memory addresses
3548 	 */
3549 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3550 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3551 		    bgep->statistics.cookie.dmac_laddress);
3552 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3553 		    STATISTICS_TICKS_DEFAULT);
3554 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3555 		    NIC_MEM_STATUS_BLOCK);
3556 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3557 		    NIC_MEM_STATISTICS);
3558 	}
3559 
3560 	/*
3561 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3562 	 * Completion Engine, the Receive List Placement Engine, and the
3563 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3564 	 * and BCM5715.
3565 	 */
3566 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3567 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3568 		coalmode = COALESCE_64_BYTE_STATUS;
3569 	else
3570 		coalmode = 0;
3571 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3572 		retval = DDI_FAILURE;
3573 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3574 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3575 		retval = DDI_FAILURE;
3576 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3577 		retval = DDI_FAILURE;
3578 
3579 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3580 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3581 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3582 			retval = DDI_FAILURE;
3583 
3584 	/*
3585 	 * Step 72: Enable MAC DMA engines
3586 	 * Step 73: Clear & enable MAC statistics
3587 	 */
3588 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3589 		ETHERNET_MODE_ENABLE_FHDE |
3590 		ETHERNET_MODE_ENABLE_RDE |
3591 		ETHERNET_MODE_ENABLE_TDE);
3592 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3593 		ETHERNET_MODE_ENABLE_TX_STATS |
3594 		ETHERNET_MODE_ENABLE_RX_STATS |
3595 		ETHERNET_MODE_CLEAR_TX_STATS |
3596 		ETHERNET_MODE_CLEAR_RX_STATS);
3597 
3598 	/*
3599 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3600 	 * Register); not required, as we set up the MLCR in step 10
3601 	 * (part of the reset code) above.
3602 	 *
3603 	 * Step 75: clear Interrupt Mailbox 0
3604 	 */
3605 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3606 
3607 	/*
3608 	 * Steps 76-87: Gentlemen, start your engines ...
3609 	 *
3610 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3611 	 * the Read DMA Engine, Receive Data Completion Engine,
3612 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3613 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3614 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3615 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3616 	 *
3617 	 * Beware exhaust fumes?
3618 	 */
3619 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3620 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3621 			retval = DDI_FAILURE;
3622 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3623 	    (bge_dma_wrprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3624 		retval = DDI_FAILURE;
3625 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3626 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3627 		retval = DDI_FAILURE;
3628 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3629 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3630 		retval = DDI_FAILURE;
3631 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3632 		if (!bge_chip_enable_engine(bgep,
3633 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3634 			retval = DDI_FAILURE;
3635 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3636 		retval = DDI_FAILURE;
3637 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3638 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3639 		retval = DDI_FAILURE;
3640 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3641 	    RCV_BD_DISABLED_RING_ATTN))
3642 		retval = DDI_FAILURE;
3643 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3644 	    RCV_DATA_BD_ILL_RING_ATTN))
3645 		retval = DDI_FAILURE;
3646 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3647 		retval = DDI_FAILURE;
3648 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3649 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3650 		retval = DDI_FAILURE;
3651 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3652 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3653 		retval = DDI_FAILURE;
3654 
3655 	/*
3656 	 * Step 88: download firmware -- doesn't apply
3657 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3658 	 */
3659 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3660 		retval = DDI_FAILURE;
3661 #ifdef BGE_IPMI_ASF
3662 	if (!bgep->asf_enabled) {
3663 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3664 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3665 			retval = DDI_FAILURE;
3666 	} else {
3667 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3668 			retval = DDI_FAILURE;
3669 	}
3670 #else
3671 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3672 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3673 		retval = DDI_FAILURE;
3674 #endif
3675 
3676 	/*
3677 	 * Step 91: disable auto-polling of PHY status
3678 	 */
3679 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3680 
3681 	/*
3682 	 * Step 92: configure D0 power state (not required)
3683 	 * Step 93: initialise LED control register ()
3684 	 */
3685 	ledctl = LED_CONTROL_DEFAULT;
3686 	switch (bgep->chipid.device) {
3687 	case DEVICE_ID_5700:
3688 	case DEVICE_ID_5700x:
3689 	case DEVICE_ID_5701:
3690 		/*
3691 		 * Switch to 5700 (MAC) mode on these older chips
3692 		 */
3693 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3694 		ledctl |= LED_CONTROL_LED_MODE_5700;
3695 		break;
3696 
3697 	default:
3698 		break;
3699 	}
3700 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3701 
3702 	/*
3703 	 * Step 94: activate link
3704 	 */
3705 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3706 
3707 	/*
3708 	 * Step 95: set up physical layer (PHY/SerDes)
3709 	 * restart autoneg (if required)
3710 	 */
3711 	if (reset_phys)
3712 		if (bge_phys_update(bgep) == DDI_FAILURE)
3713 			retval = DDI_FAILURE;
3714 
3715 	/*
3716 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3717 	 */
3718 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3719 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3720 			bgep->buff[ring].rf_next);
3721 
3722 	/*
3723 	 * MSI bits:The least significant MSI 16-bit word.
3724 	 * ISR will be triggered different.
3725 	 */
3726 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3727 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3728 
3729 	/*
3730 	 * Extra step (DSG): select which interrupts are enabled
3731 	 *
3732 	 * Program the Ethernet MAC engine to signal attention on
3733 	 * Link Change events, then enable interrupts on MAC, DMA,
3734 	 * and FLOW attention signals.
3735 	 */
3736 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3737 		ETHERNET_EVENT_LINK_INT |
3738 		ETHERNET_STATUS_PCS_ERROR_INT);
3739 #ifdef BGE_IPMI_ASF
3740 	if (bgep->asf_enabled) {
3741 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3742 			MODE_INT_ON_FLOW_ATTN |
3743 			MODE_INT_ON_DMA_ATTN |
3744 			MODE_HOST_STACK_UP|
3745 			MODE_INT_ON_MAC_ATTN);
3746 	} else {
3747 #endif
3748 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3749 			MODE_INT_ON_FLOW_ATTN |
3750 			MODE_INT_ON_DMA_ATTN |
3751 			MODE_INT_ON_MAC_ATTN);
3752 #ifdef BGE_IPMI_ASF
3753 	}
3754 #endif
3755 
3756 	/*
3757 	 * Step 97: enable PCI interrupts!!!
3758 	 */
3759 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3760 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3761 		    MHCR_MASK_PCI_INT_OUTPUT);
3762 
3763 	/*
3764 	 * All done!
3765 	 */
3766 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3767 	return (retval);
3768 }
3769 
3770 
3771 /*
3772  * ========== Hardware interrupt handler ==========
3773  */
3774 
3775 #undef	BGE_DBG
3776 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3777 
3778 /*
3779  * Sync the status block, then atomically clear the specified bits in
3780  * the <flags-and-tag> field of the status block.
3781  * the <flags> word of the status block, returning the value of the
3782  * <tag> and the <flags> before the bits were cleared.
3783  */
3784 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
3785 #pragma	inline(bge_status_sync)
3786 
3787 static int
3788 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
3789 {
3790 	bge_status_t *bsp;
3791 	int retval;
3792 
3793 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3794 		(void *)bgep, bits));
3795 
3796 	ASSERT(bgep->bge_guard == BGE_GUARD);
3797 
3798 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3799 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
3800 	if (retval != DDI_FM_OK)
3801 		return (retval);
3802 
3803 	bsp = DMA_VPTR(bgep->status_block);
3804 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
3805 
3806 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
3807 		(void *)bgep, bits, *flags));
3808 
3809 	return (retval);
3810 }
3811 
3812 static void bge_wake_factotum(bge_t *bgep);
3813 #pragma	inline(bge_wake_factotum)
3814 
3815 static void
3816 bge_wake_factotum(bge_t *bgep)
3817 {
3818 	mutex_enter(bgep->softintrlock);
3819 	if (bgep->factotum_flag == 0) {
3820 		bgep->factotum_flag = 1;
3821 		ddi_trigger_softintr(bgep->factotum_id);
3822 	}
3823 	mutex_exit(bgep->softintrlock);
3824 }
3825 
3826 /*
3827  *	bge_intr() -- handle chip interrupts
3828  */
3829 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
3830 #pragma	no_inline(bge_intr)
3831 
3832 uint_t
3833 bge_intr(caddr_t arg1, caddr_t arg2)
3834 {
3835 	bge_t *bgep = (bge_t *)arg1;		/* private device info	*/
3836 	bge_status_t *bsp;
3837 	uint64_t flags;
3838 	uint32_t mlcr = 0;
3839 	uint_t result;
3840 	int retval;
3841 
3842 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
3843 
3844 	/*
3845 	 * GLD v2 checks that s/w setup is complete before passing
3846 	 * interrupts to this routine, thus eliminating the old
3847 	 * (and well-known) race condition around ddi_add_intr()
3848 	 */
3849 	ASSERT(bgep->progress & PROGRESS_HWINT);
3850 
3851 	/*
3852 	 * Check whether chip's says it's asserting #INTA;
3853 	 * if not, don't process or claim the interrupt.
3854 	 *
3855 	 * Note that the PCI signal is active low, so the
3856 	 * bit is *zero* when the interrupt is asserted.
3857 	 */
3858 	result = DDI_INTR_UNCLAIMED;
3859 	mutex_enter(bgep->genlock);
3860 
3861 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3862 		mlcr = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
3863 
3864 	BGE_DEBUG(("bge_intr($%p) ($%p) mlcr 0x%08x", arg1, arg2, mlcr));
3865 
3866 	if ((mlcr & MLCR_INTA_STATE) == 0) {
3867 		/*
3868 		 * Block further PCI interrupts ...
3869 		 */
3870 		result = DDI_INTR_CLAIMED;
3871 
3872 		if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3873 			bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
3874 				MHCR_MASK_PCI_INT_OUTPUT);
3875 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
3876 			    DDI_FM_OK)
3877 				goto chip_stop;
3878 		}
3879 
3880 		/*
3881 		 * Sync the status block and grab the flags-n-tag from it.
3882 		 * We count the number of interrupts where there doesn't
3883 		 * seem to have been a DMA update of the status block; if
3884 		 * it *has* been updated, the counter will be cleared in
3885 		 * the while() loop below ...
3886 		 */
3887 		bgep->missed_dmas += 1;
3888 		bsp = DMA_VPTR(bgep->status_block);
3889 		for (;;) {
3890 			if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
3891 				/*
3892 				 * bge_chip_stop() may have freed dma area etc
3893 				 * while we were in this interrupt handler -
3894 				 * better not call bge_status_sync()
3895 				 */
3896 				(void) bge_check_acc_handle(bgep,
3897 				    bgep->io_handle);
3898 				mutex_exit(bgep->genlock);
3899 				return (DDI_INTR_CLAIMED);
3900 			}
3901 			retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
3902 			    &flags);
3903 			if (retval != DDI_FM_OK) {
3904 				bgep->bge_dma_error = B_TRUE;
3905 				goto chip_stop;
3906 			}
3907 
3908 			if (!(flags & STATUS_FLAG_UPDATED))
3909 				break;
3910 
3911 			/*
3912 			 * Tell the chip that we're processing the interrupt
3913 			 */
3914 			bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
3915 				INTERRUPT_MBOX_DISABLE(flags));
3916 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
3917 			    DDI_FM_OK)
3918 				goto chip_stop;
3919 
3920 			/*
3921 			 * Drop the mutex while we:
3922 			 * 	Receive any newly-arrived packets
3923 			 *	Recycle any newly-finished send buffers
3924 			 */
3925 			bgep->bge_intr_running = B_TRUE;
3926 			mutex_exit(bgep->genlock);
3927 			bge_receive(bgep, bsp);
3928 			bge_recycle(bgep, bsp);
3929 			mutex_enter(bgep->genlock);
3930 			bgep->bge_intr_running = B_FALSE;
3931 
3932 			/*
3933 			 * Tell the chip we've finished processing, and
3934 			 * give it the tag that we got from the status
3935 			 * block earlier, so that it knows just how far
3936 			 * we've gone.  If it's got more for us to do,
3937 			 * it will now update the status block and try
3938 			 * to assert an interrupt (but we've got the
3939 			 * #INTA blocked at present).  If we see the
3940 			 * update, we'll loop around to do some more.
3941 			 * Eventually we'll get out of here ...
3942 			 */
3943 			bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
3944 				INTERRUPT_MBOX_ENABLE(flags));
3945 			bgep->missed_dmas = 0;
3946 		}
3947 
3948 		/*
3949 		 * Check for exceptional conditions that we need to handle
3950 		 *
3951 		 * Link status changed
3952 		 * Status block not updated
3953 		 */
3954 		if (flags & STATUS_FLAG_LINK_CHANGED)
3955 			bge_wake_factotum(bgep);
3956 
3957 		if (bgep->missed_dmas) {
3958 			/*
3959 			 * Probably due to the internal status tag not
3960 			 * being reset.  Force a status block update now;
3961 			 * this should ensure that we get an update and
3962 			 * a new interrupt.  After that, we should be in
3963 			 * sync again ...
3964 			 */
3965 			BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
3966 				"not updated?", flags));
3967 			bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
3968 				COALESCE_NOW);
3969 
3970 			if (bgep->missed_dmas >= bge_dma_miss_limit) {
3971 				/*
3972 				 * If this happens multiple times in a row,
3973 				 * it means DMA is just not working.  Maybe
3974 				 * the chip's failed, or maybe there's a
3975 				 * problem on the PCI bus or in the host-PCI
3976 				 * bridge (Tomatillo).
3977 				 *
3978 				 * At all events, we want to stop further
3979 				 * interrupts and let the recovery code take
3980 				 * over to see whether anything can be done
3981 				 * about it ...
3982 				 */
3983 				bge_fm_ereport(bgep,
3984 				    DDI_FM_DEVICE_BADINT_LIMIT);
3985 				goto chip_stop;
3986 			}
3987 		}
3988 
3989 		/*
3990 		 * Reenable assertion of #INTA, unless there's a DMA fault
3991 		 */
3992 		if (result == DDI_INTR_CLAIMED) {
3993 			if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
3994 				bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
3995 					MHCR_MASK_PCI_INT_OUTPUT);
3996 				if (bge_check_acc_handle(bgep,
3997 				    bgep->cfg_handle) != DDI_FM_OK)
3998 					goto chip_stop;
3999 			}
4000 		}
4001 	}
4002 
4003 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4004 		goto chip_stop;
4005 
4006 	mutex_exit(bgep->genlock);
4007 	return (result);
4008 
4009 chip_stop:
4010 #ifdef BGE_IPMI_ASF
4011 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4012 		/*
4013 		 * We must stop ASF heart beat before
4014 		 * bge_chip_stop(), otherwise some
4015 		 * computers (ex. IBM HS20 blade
4016 		 * server) may crash.
4017 		 */
4018 		bge_asf_update_status(bgep);
4019 		bge_asf_stop_timer(bgep);
4020 		bgep->asf_status = ASF_STAT_STOP;
4021 
4022 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4023 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4024 	}
4025 #endif
4026 	bge_chip_stop(bgep, B_TRUE);
4027 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4028 	mutex_exit(bgep->genlock);
4029 	return (result);
4030 }
4031 
4032 /*
4033  * ========== Factotum, implemented as a softint handler ==========
4034  */
4035 
4036 #undef	BGE_DBG
4037 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4038 
4039 static void bge_factotum_error_handler(bge_t *bgep);
4040 #pragma	no_inline(bge_factotum_error_handler)
4041 
4042 static void
4043 bge_factotum_error_handler(bge_t *bgep)
4044 {
4045 	uint32_t flow;
4046 	uint32_t rdma;
4047 	uint32_t wdma;
4048 	uint32_t tmac;
4049 	uint32_t rmac;
4050 	uint32_t rxrs;
4051 	uint32_t txrs = 0;
4052 
4053 	ASSERT(mutex_owned(bgep->genlock));
4054 
4055 	/*
4056 	 * Read all the registers that show the possible
4057 	 * reasons for the ERROR bit to be asserted
4058 	 */
4059 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4060 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4061 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4062 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4063 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4064 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4065 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4066 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4067 
4068 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4069 		(void *)bgep, flow, rdma, wdma));
4070 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4071 		(void *)bgep, tmac, rmac, rxrs, txrs));
4072 
4073 	/*
4074 	 * For now, just clear all the errors ...
4075 	 */
4076 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4077 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4078 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4079 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4080 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4081 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4082 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4083 }
4084 
4085 /*
4086  * Handler for hardware link state change.
4087  *
4088  * When this routine is called, the hardware link state has changed
4089  * and the new state is reflected in the param_* variables.  Here
4090  * we must update the softstate, reprogram the MAC to match, and
4091  * record the change in the log and/or on the console.
4092  */
4093 static void bge_factotum_link_handler(bge_t *bgep);
4094 #pragma	no_inline(bge_factotum_link_handler)
4095 
4096 static void
4097 bge_factotum_link_handler(bge_t *bgep)
4098 {
4099 	void (*logfn)(bge_t *bgep, const char *fmt, ...);
4100 	const char *msg;
4101 	hrtime_t deltat;
4102 
4103 	ASSERT(mutex_owned(bgep->genlock));
4104 
4105 	/*
4106 	 * Update the s/w link_state
4107 	 */
4108 	if (bgep->param_link_up)
4109 		bgep->link_state = LINK_STATE_UP;
4110 	else
4111 		bgep->link_state = LINK_STATE_DOWN;
4112 
4113 	/*
4114 	 * Reprogram the MAC modes to match
4115 	 */
4116 	bge_sync_mac_modes(bgep);
4117 
4118 	/*
4119 	 * Finally, we have to decide whether to write a message
4120 	 * on the console or only in the log.  If the PHY has
4121 	 * been reprogrammed (at user request) "recently", then
4122 	 * the message only goes in the log.  Otherwise it's an
4123 	 * "unexpected" event, and it goes on the console as well.
4124 	 */
4125 	deltat = bgep->phys_event_time - bgep->phys_write_time;
4126 	if (deltat > BGE_LINK_SETTLE_TIME)
4127 		msg = "";
4128 	else if (bgep->param_link_up)
4129 		msg = bgep->link_up_msg;
4130 	else
4131 		msg = bgep->link_down_msg;
4132 
4133 	logfn = (msg == NULL || *msg == '\0') ? bge_notice : bge_log;
4134 	(*logfn)(bgep, "link %s%s", bgep->link_mode_msg, msg);
4135 }
4136 
4137 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4138 #pragma	no_inline(bge_factotum_link_check)
4139 
4140 static boolean_t
4141 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4142 {
4143 	boolean_t check;
4144 	uint64_t flags;
4145 	uint32_t tmac_status;
4146 
4147 	ASSERT(mutex_owned(bgep->genlock));
4148 
4149 	/*
4150 	 * Get & clear the writable status bits in the Tx status register
4151 	 * (some bits are write-1-to-clear, others are just readonly).
4152 	 */
4153 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4154 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4155 
4156 	/*
4157 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4158 	 */
4159 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4160 	    STATUS_FLAG_LINK_CHANGED, &flags);
4161 	if (*dma_state != DDI_FM_OK)
4162 		return (B_FALSE);
4163 
4164 	/*
4165 	 * Clear any errors flagged in the status block ...
4166 	 */
4167 	if (flags & STATUS_FLAG_ERROR)
4168 		bge_factotum_error_handler(bgep);
4169 
4170 	/*
4171 	 * We need to check the link status if:
4172 	 *	the status block says there's been a link change
4173 	 *	or there's any discrepancy between the various
4174 	 *	flags indicating the link state (link_state,
4175 	 *	param_link_up, and the LINK STATE bit in the
4176 	 *	Transmit MAC status register).
4177 	 */
4178 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4179 	switch (bgep->link_state) {
4180 	case LINK_STATE_UP:
4181 		check |= (bgep->param_link_up == B_FALSE);
4182 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4183 		break;
4184 
4185 	case LINK_STATE_DOWN:
4186 		check |= (bgep->param_link_up != B_FALSE);
4187 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4188 		break;
4189 
4190 	default:
4191 		check = B_TRUE;
4192 		break;
4193 	}
4194 
4195 	/*
4196 	 * If <check> is false, we're sure the link hasn't changed.
4197 	 * If true, however, it's not yet definitive; we have to call
4198 	 * bge_phys_check() to determine whether the link has settled
4199 	 * into a new state yet ... and if it has, then call the link
4200 	 * state change handler.But when the chip is 5700 in Dell 6650
4201 	 * ,even if check is false, the link may have changed.So we
4202 	 * have to call bge_phys_check() to determine the link state.
4203 	 */
4204 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4205 		check = bge_phys_check(bgep);
4206 		if (check)
4207 			bge_factotum_link_handler(bgep);
4208 	}
4209 
4210 	return (check);
4211 }
4212 
4213 /*
4214  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4215  */
4216 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4217 #pragma	no_inline(bge_factotum_stall_check)
4218 
4219 static boolean_t
4220 bge_factotum_stall_check(bge_t *bgep)
4221 {
4222 	uint32_t dogval;
4223 
4224 	ASSERT(mutex_owned(bgep->genlock));
4225 
4226 	/*
4227 	 * Specific check for Tx stall ...
4228 	 *
4229 	 * The 'watchdog' counter is incremented whenever a packet
4230 	 * is queued, reset to 1 when some (but not all) buffers
4231 	 * are reclaimed, reset to 0 (disabled) when all buffers
4232 	 * are reclaimed, and shifted left here.  If it exceeds the
4233 	 * threshold value, the chip is assumed to have stalled and
4234 	 * is put into the ERROR state.  The factotum will then reset
4235 	 * it on the next pass.
4236 	 *
4237 	 * All of which should ensure that we don't get into a state
4238 	 * where packets are left pending indefinitely!
4239 	 */
4240 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4241 	if (dogval < bge_watchdog_count)
4242 		return (B_FALSE);
4243 
4244 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4245 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4246 	return (B_TRUE);
4247 }
4248 
4249 /*
4250  * The factotum is woken up when there's something to do that we'd rather
4251  * not do from inside a hardware interrupt handler or high-level cyclic.
4252  * Its two main tasks are:
4253  *	reset & restart the chip after an error
4254  *	check the link status whenever necessary
4255  */
4256 uint_t bge_chip_factotum(caddr_t arg);
4257 #pragma	no_inline(bge_chip_factotum)
4258 
4259 uint_t
4260 bge_chip_factotum(caddr_t arg)
4261 {
4262 	bge_t *bgep;
4263 	uint_t result;
4264 	boolean_t error;
4265 	boolean_t linkchg;
4266 	int dma_state;
4267 
4268 	bgep = (bge_t *)arg;
4269 
4270 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4271 
4272 	mutex_enter(bgep->softintrlock);
4273 	if (bgep->factotum_flag == 0) {
4274 		mutex_exit(bgep->softintrlock);
4275 		return (DDI_INTR_UNCLAIMED);
4276 	}
4277 	bgep->factotum_flag = 0;
4278 	mutex_exit(bgep->softintrlock);
4279 
4280 	result = DDI_INTR_CLAIMED;
4281 	error = B_FALSE;
4282 	linkchg = B_FALSE;
4283 
4284 	mutex_enter(bgep->genlock);
4285 	switch (bgep->bge_chip_state) {
4286 	default:
4287 		break;
4288 
4289 	case BGE_CHIP_RUNNING:
4290 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4291 		error = bge_factotum_stall_check(bgep);
4292 		if (dma_state != DDI_FM_OK) {
4293 			bgep->bge_dma_error = B_TRUE;
4294 			error = B_TRUE;
4295 		}
4296 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4297 			error = B_TRUE;
4298 		if (error)
4299 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4300 		break;
4301 
4302 	case BGE_CHIP_ERROR:
4303 		error = B_TRUE;
4304 		break;
4305 
4306 	case BGE_CHIP_FAULT:
4307 		/*
4308 		 * Fault detected, time to reset ...
4309 		 */
4310 		if (bge_autorecover) {
4311 			if (!(bgep->progress & PROGRESS_BUFS)) {
4312 				/*
4313 				 * if we can't allocate the ring buffers,
4314 				 * try later
4315 				 */
4316 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4317 					mutex_exit(bgep->genlock);
4318 					return (result);
4319 				}
4320 				bgep->progress |= PROGRESS_BUFS;
4321 			}
4322 			if (!(bgep->progress & PROGRESS_INTR)) {
4323 				bge_init_rings(bgep);
4324 				bge_intr_enable(bgep);
4325 				bgep->progress |= PROGRESS_INTR;
4326 			}
4327 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4328 				bge_init_kstats(bgep,
4329 				    ddi_get_instance(bgep->devinfo));
4330 				bgep->progress |= PROGRESS_KSTATS;
4331 			}
4332 
4333 			BGE_REPORT((bgep, "automatic recovery activated"));
4334 
4335 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4336 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4337 				error = B_TRUE;
4338 			}
4339 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4340 			    DDI_FM_OK) {
4341 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4342 				error = B_TRUE;
4343 			}
4344 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4345 			    DDI_FM_OK) {
4346 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4347 				error = B_TRUE;
4348 			}
4349 			if (error == B_FALSE) {
4350 #ifdef BGE_IPMI_ASF
4351 				if (bgep->asf_enabled &&
4352 				    bgep->asf_status != ASF_STAT_RUN) {
4353 					bgep->asf_timeout_id = timeout(
4354 					    bge_asf_heartbeat, (void *)bgep,
4355 					    drv_usectohz(
4356 					    BGE_ASF_HEARTBEAT_INTERVAL));
4357 					bgep->asf_status = ASF_STAT_RUN;
4358 				}
4359 #endif
4360 				ddi_fm_service_impact(bgep->devinfo,
4361 				    DDI_SERVICE_RESTORED);
4362 			}
4363 		}
4364 		break;
4365 	}
4366 
4367 
4368 	/*
4369 	 * If an error is detected, stop the chip now, marking it as
4370 	 * faulty, so that it will be reset next time through ...
4371 	 *
4372 	 * Note that if intr_running is set, then bge_intr() has dropped
4373 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4374 	 * this point so have to wait until the next time the factotum runs.
4375 	 */
4376 	if (error && !bgep->bge_intr_running) {
4377 #ifdef BGE_IPMI_ASF
4378 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4379 			/*
4380 			 * We must stop ASF heart beat before bge_chip_stop(),
4381 			 * otherwise some computers (ex. IBM HS20 blade server)
4382 			 * may crash.
4383 			 */
4384 			bge_asf_update_status(bgep);
4385 			bge_asf_stop_timer(bgep);
4386 			bgep->asf_status = ASF_STAT_STOP;
4387 
4388 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4389 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4390 		}
4391 #endif
4392 		bge_chip_stop(bgep, B_TRUE);
4393 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4394 	}
4395 	mutex_exit(bgep->genlock);
4396 
4397 	/*
4398 	 * If the link state changed, tell the world about it.
4399 	 * Note: can't do this while still holding the mutex.
4400 	 */
4401 	if (linkchg)
4402 		mac_link_update(bgep->mh, bgep->link_state);
4403 
4404 	return (result);
4405 }
4406 
4407 /*
4408  * High-level cyclic handler
4409  *
4410  * This routine schedules a (low-level) softint callback to the
4411  * factotum, and prods the chip to update the status block (which
4412  * will cause a hardware interrupt when complete).
4413  */
4414 void bge_chip_cyclic(void *arg);
4415 #pragma	no_inline(bge_chip_cyclic)
4416 
4417 void
4418 bge_chip_cyclic(void *arg)
4419 {
4420 	bge_t *bgep;
4421 
4422 	bgep = arg;
4423 
4424 	switch (bgep->bge_chip_state) {
4425 	default:
4426 		return;
4427 
4428 	case BGE_CHIP_RUNNING:
4429 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4430 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4431 			ddi_fm_service_impact(bgep->devinfo,
4432 			    DDI_SERVICE_UNAFFECTED);
4433 		break;
4434 
4435 	case BGE_CHIP_FAULT:
4436 	case BGE_CHIP_ERROR:
4437 		break;
4438 	}
4439 
4440 	bge_wake_factotum(bgep);
4441 }
4442 
4443 
4444 /*
4445  * ========== Ioctl subfunctions ==========
4446  */
4447 
4448 #undef	BGE_DBG
4449 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4450 
4451 #if	BGE_DEBUGGING || BGE_DO_PPIO
4452 
4453 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4454 #pragma	no_inline(bge_chip_peek_cfg)
4455 
4456 static void
4457 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4458 {
4459 	uint64_t regval;
4460 	uint64_t regno;
4461 
4462 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4463 		(void *)bgep, (void *)ppd));
4464 
4465 	regno = ppd->pp_acc_offset;
4466 
4467 	switch (ppd->pp_acc_size) {
4468 	case 1:
4469 		regval = pci_config_get8(bgep->cfg_handle, regno);
4470 		break;
4471 
4472 	case 2:
4473 		regval = pci_config_get16(bgep->cfg_handle, regno);
4474 		break;
4475 
4476 	case 4:
4477 		regval = pci_config_get32(bgep->cfg_handle, regno);
4478 		break;
4479 
4480 	case 8:
4481 		regval = pci_config_get64(bgep->cfg_handle, regno);
4482 		break;
4483 	}
4484 
4485 	ppd->pp_acc_data = regval;
4486 }
4487 
4488 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4489 #pragma	no_inline(bge_chip_poke_cfg)
4490 
4491 static void
4492 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4493 {
4494 	uint64_t regval;
4495 	uint64_t regno;
4496 
4497 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4498 		(void *)bgep, (void *)ppd));
4499 
4500 	regno = ppd->pp_acc_offset;
4501 	regval = ppd->pp_acc_data;
4502 
4503 	switch (ppd->pp_acc_size) {
4504 	case 1:
4505 		pci_config_put8(bgep->cfg_handle, regno, regval);
4506 		break;
4507 
4508 	case 2:
4509 		pci_config_put16(bgep->cfg_handle, regno, regval);
4510 		break;
4511 
4512 	case 4:
4513 		pci_config_put32(bgep->cfg_handle, regno, regval);
4514 		break;
4515 
4516 	case 8:
4517 		pci_config_put64(bgep->cfg_handle, regno, regval);
4518 		break;
4519 	}
4520 }
4521 
4522 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4523 #pragma	no_inline(bge_chip_peek_reg)
4524 
4525 static void
4526 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4527 {
4528 	uint64_t regval;
4529 	void *regaddr;
4530 
4531 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4532 		(void *)bgep, (void *)ppd));
4533 
4534 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4535 
4536 	switch (ppd->pp_acc_size) {
4537 	case 1:
4538 		regval = ddi_get8(bgep->io_handle, regaddr);
4539 		break;
4540 
4541 	case 2:
4542 		regval = ddi_get16(bgep->io_handle, regaddr);
4543 		break;
4544 
4545 	case 4:
4546 		regval = ddi_get32(bgep->io_handle, regaddr);
4547 		break;
4548 
4549 	case 8:
4550 		regval = ddi_get64(bgep->io_handle, regaddr);
4551 		break;
4552 	}
4553 
4554 	ppd->pp_acc_data = regval;
4555 }
4556 
4557 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4558 #pragma	no_inline(bge_chip_peek_reg)
4559 
4560 static void
4561 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4562 {
4563 	uint64_t regval;
4564 	void *regaddr;
4565 
4566 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4567 		(void *)bgep, (void *)ppd));
4568 
4569 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4570 	regval = ppd->pp_acc_data;
4571 
4572 	switch (ppd->pp_acc_size) {
4573 	case 1:
4574 		ddi_put8(bgep->io_handle, regaddr, regval);
4575 		break;
4576 
4577 	case 2:
4578 		ddi_put16(bgep->io_handle, regaddr, regval);
4579 		break;
4580 
4581 	case 4:
4582 		ddi_put32(bgep->io_handle, regaddr, regval);
4583 		break;
4584 
4585 	case 8:
4586 		ddi_put64(bgep->io_handle, regaddr, regval);
4587 		break;
4588 	}
4589 	BGE_PCICHK(bgep);
4590 }
4591 
4592 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4593 #pragma	no_inline(bge_chip_peek_nic)
4594 
4595 static void
4596 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4597 {
4598 	uint64_t regoff;
4599 	uint64_t regval;
4600 	void *regaddr;
4601 
4602 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4603 		(void *)bgep, (void *)ppd));
4604 
4605 	regoff = ppd->pp_acc_offset;
4606 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4607 	regoff &= MWBAR_GRANULE_MASK;
4608 	regoff += NIC_MEM_WINDOW_OFFSET;
4609 	regaddr = PIO_ADDR(bgep, regoff);
4610 
4611 	switch (ppd->pp_acc_size) {
4612 	case 1:
4613 		regval = ddi_get8(bgep->io_handle, regaddr);
4614 		break;
4615 
4616 	case 2:
4617 		regval = ddi_get16(bgep->io_handle, regaddr);
4618 		break;
4619 
4620 	case 4:
4621 		regval = ddi_get32(bgep->io_handle, regaddr);
4622 		break;
4623 
4624 	case 8:
4625 		regval = ddi_get64(bgep->io_handle, regaddr);
4626 		break;
4627 	}
4628 
4629 	ppd->pp_acc_data = regval;
4630 }
4631 
4632 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4633 #pragma	no_inline(bge_chip_poke_nic)
4634 
4635 static void
4636 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4637 {
4638 	uint64_t regoff;
4639 	uint64_t regval;
4640 	void *regaddr;
4641 
4642 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4643 		(void *)bgep, (void *)ppd));
4644 
4645 	regoff = ppd->pp_acc_offset;
4646 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4647 	regoff &= MWBAR_GRANULE_MASK;
4648 	regoff += NIC_MEM_WINDOW_OFFSET;
4649 	regaddr = PIO_ADDR(bgep, regoff);
4650 	regval = ppd->pp_acc_data;
4651 
4652 	switch (ppd->pp_acc_size) {
4653 	case 1:
4654 		ddi_put8(bgep->io_handle, regaddr, regval);
4655 		break;
4656 
4657 	case 2:
4658 		ddi_put16(bgep->io_handle, regaddr, regval);
4659 		break;
4660 
4661 	case 4:
4662 		ddi_put32(bgep->io_handle, regaddr, regval);
4663 		break;
4664 
4665 	case 8:
4666 		ddi_put64(bgep->io_handle, regaddr, regval);
4667 		break;
4668 	}
4669 	BGE_PCICHK(bgep);
4670 }
4671 
4672 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4673 #pragma	no_inline(bge_chip_peek_mii)
4674 
4675 static void
4676 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4677 {
4678 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4679 		(void *)bgep, (void *)ppd));
4680 
4681 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4682 }
4683 
4684 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4685 #pragma	no_inline(bge_chip_poke_mii)
4686 
4687 static void
4688 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4689 {
4690 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4691 		(void *)bgep, (void *)ppd));
4692 
4693 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4694 }
4695 
4696 #if	BGE_SEE_IO32
4697 
4698 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4699 #pragma	no_inline(bge_chip_peek_seeprom)
4700 
4701 static void
4702 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4703 {
4704 	uint32_t data;
4705 	int err;
4706 
4707 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4708 		(void *)bgep, (void *)ppd));
4709 
4710 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4711 	ppd->pp_acc_data = err ? ~0ull : data;
4712 }
4713 
4714 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4715 #pragma	no_inline(bge_chip_poke_seeprom)
4716 
4717 static void
4718 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4719 {
4720 	uint32_t data;
4721 
4722 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4723 		(void *)bgep, (void *)ppd));
4724 
4725 	data = ppd->pp_acc_data;
4726 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4727 }
4728 #endif	/* BGE_SEE_IO32 */
4729 
4730 #if	BGE_FLASH_IO32
4731 
4732 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4733 #pragma	no_inline(bge_chip_peek_flash)
4734 
4735 static void
4736 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4737 {
4738 	uint32_t data;
4739 	int err;
4740 
4741 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4742 		(void *)bgep, (void *)ppd));
4743 
4744 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4745 	ppd->pp_acc_data = err ? ~0ull : data;
4746 }
4747 
4748 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4749 #pragma	no_inline(bge_chip_poke_flash)
4750 
4751 static void
4752 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4753 {
4754 	uint32_t data;
4755 
4756 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4757 		(void *)bgep, (void *)ppd));
4758 
4759 	data = ppd->pp_acc_data;
4760 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4761 	    ppd->pp_acc_offset, &data);
4762 }
4763 #endif	/* BGE_FLASH_IO32 */
4764 
4765 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4766 #pragma	no_inline(bge_chip_peek_mem)
4767 
4768 static void
4769 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4770 {
4771 	uint64_t regval;
4772 	void *vaddr;
4773 
4774 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4775 		(void *)bgep, (void *)ppd));
4776 
4777 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4778 
4779 	switch (ppd->pp_acc_size) {
4780 	case 1:
4781 		regval = *(uint8_t *)vaddr;
4782 		break;
4783 
4784 	case 2:
4785 		regval = *(uint16_t *)vaddr;
4786 		break;
4787 
4788 	case 4:
4789 		regval = *(uint32_t *)vaddr;
4790 		break;
4791 
4792 	case 8:
4793 		regval = *(uint64_t *)vaddr;
4794 		break;
4795 	}
4796 
4797 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
4798 		(void *)bgep, (void *)ppd, regval, vaddr));
4799 
4800 	ppd->pp_acc_data = regval;
4801 }
4802 
4803 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4804 #pragma	no_inline(bge_chip_poke_mem)
4805 
4806 static void
4807 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4808 {
4809 	uint64_t regval;
4810 	void *vaddr;
4811 
4812 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
4813 		(void *)bgep, (void *)ppd));
4814 
4815 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4816 	regval = ppd->pp_acc_data;
4817 
4818 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
4819 		(void *)bgep, (void *)ppd, regval, vaddr));
4820 
4821 	switch (ppd->pp_acc_size) {
4822 	case 1:
4823 		*(uint8_t *)vaddr = (uint8_t)regval;
4824 		break;
4825 
4826 	case 2:
4827 		*(uint16_t *)vaddr = (uint16_t)regval;
4828 		break;
4829 
4830 	case 4:
4831 		*(uint32_t *)vaddr = (uint32_t)regval;
4832 		break;
4833 
4834 	case 8:
4835 		*(uint64_t *)vaddr = (uint64_t)regval;
4836 		break;
4837 	}
4838 }
4839 
4840 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
4841 					struct iocblk *iocp);
4842 #pragma	no_inline(bge_pp_ioctl)
4843 
4844 static enum ioc_reply
4845 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
4846 {
4847 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
4848 	bge_peekpoke_t *ppd;
4849 	dma_area_t *areap;
4850 	uint64_t sizemask;
4851 	uint64_t mem_va;
4852 	uint64_t maxoff;
4853 	boolean_t peek;
4854 
4855 	switch (cmd) {
4856 	default:
4857 		/* NOTREACHED */
4858 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
4859 		return (IOC_INVAL);
4860 
4861 	case BGE_PEEK:
4862 		peek = B_TRUE;
4863 		break;
4864 
4865 	case BGE_POKE:
4866 		peek = B_FALSE;
4867 		break;
4868 	}
4869 
4870 	/*
4871 	 * Validate format of ioctl
4872 	 */
4873 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
4874 		return (IOC_INVAL);
4875 	if (mp->b_cont == NULL)
4876 		return (IOC_INVAL);
4877 	ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr;
4878 
4879 	/*
4880 	 * Validate request parameters
4881 	 */
4882 	switch (ppd->pp_acc_space) {
4883 	default:
4884 		return (IOC_INVAL);
4885 
4886 	case BGE_PP_SPACE_CFG:
4887 		/*
4888 		 * Config space
4889 		 */
4890 		sizemask = 8|4|2|1;
4891 		mem_va = 0;
4892 		maxoff = PCI_CONF_HDR_SIZE;
4893 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
4894 		break;
4895 
4896 	case BGE_PP_SPACE_REG:
4897 		/*
4898 		 * Memory-mapped I/O space
4899 		 */
4900 		sizemask = 8|4|2|1;
4901 		mem_va = 0;
4902 		maxoff = RIAAR_REGISTER_MAX;
4903 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
4904 		break;
4905 
4906 	case BGE_PP_SPACE_NIC:
4907 		/*
4908 		 * NIC on-chip memory
4909 		 */
4910 		sizemask = 8|4|2|1;
4911 		mem_va = 0;
4912 		maxoff = MWBAR_ONCHIP_MAX;
4913 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
4914 		break;
4915 
4916 	case BGE_PP_SPACE_MII:
4917 		/*
4918 		 * PHY's MII registers
4919 		 * NB: all PHY registers are two bytes, but the
4920 		 * addresses increment in ones (word addressing).
4921 		 * So we scale the address here, then undo the
4922 		 * transformation inside the peek/poke functions.
4923 		 */
4924 		ppd->pp_acc_offset *= 2;
4925 		sizemask = 2;
4926 		mem_va = 0;
4927 		maxoff = (MII_MAXREG+1)*2;
4928 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
4929 		break;
4930 
4931 #if	BGE_SEE_IO32
4932 	case BGE_PP_SPACE_SEEPROM:
4933 		/*
4934 		 * Attached SEEPROM(s), if any.
4935 		 * NB: we use the high-order bits of the 'address' as
4936 		 * a device select to accommodate multiple SEEPROMS,
4937 		 * If each one is the maximum size (64kbytes), this
4938 		 * makes them appear contiguous.  Otherwise, there may
4939 		 * be holes in the mapping.  ENxS doesn't have any
4940 		 * SEEPROMs anyway ...
4941 		 */
4942 		sizemask = 4;
4943 		mem_va = 0;
4944 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
4945 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
4946 		break;
4947 #endif	/* BGE_SEE_IO32 */
4948 
4949 #if	BGE_FLASH_IO32
4950 	case BGE_PP_SPACE_FLASH:
4951 		/*
4952 		 * Attached Flash device (if any); a maximum of one device
4953 		 * is currently supported.  But it can be up to 1MB (unlike
4954 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
4955 		 */
4956 		sizemask = 4;
4957 		mem_va = 0;
4958 		maxoff = NVM_FLASH_ADDR_MASK;
4959 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
4960 		break;
4961 #endif	/* BGE_FLASH_IO32 */
4962 
4963 	case BGE_PP_SPACE_BGE:
4964 		/*
4965 		 * BGE data structure!
4966 		 */
4967 		sizemask = 8|4|2|1;
4968 		mem_va = (uintptr_t)bgep;
4969 		maxoff = sizeof (*bgep);
4970 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
4971 		break;
4972 
4973 	case BGE_PP_SPACE_STATUS:
4974 	case BGE_PP_SPACE_STATISTICS:
4975 	case BGE_PP_SPACE_TXDESC:
4976 	case BGE_PP_SPACE_TXBUFF:
4977 	case BGE_PP_SPACE_RXDESC:
4978 	case BGE_PP_SPACE_RXBUFF:
4979 		/*
4980 		 * Various DMA_AREAs
4981 		 */
4982 		switch (ppd->pp_acc_space) {
4983 		case BGE_PP_SPACE_TXDESC:
4984 			areap = &bgep->tx_desc;
4985 			break;
4986 		case BGE_PP_SPACE_TXBUFF:
4987 			areap = &bgep->tx_buff[0];
4988 			break;
4989 		case BGE_PP_SPACE_RXDESC:
4990 			areap = &bgep->rx_desc[0];
4991 			break;
4992 		case BGE_PP_SPACE_RXBUFF:
4993 			areap = &bgep->rx_buff[0];
4994 			break;
4995 		case BGE_PP_SPACE_STATUS:
4996 			areap = &bgep->status_block;
4997 			break;
4998 		case BGE_PP_SPACE_STATISTICS:
4999 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5000 				areap = &bgep->statistics;
5001 			break;
5002 		}
5003 
5004 		sizemask = 8|4|2|1;
5005 		mem_va = (uintptr_t)areap->mem_va;
5006 		maxoff = areap->alength;
5007 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5008 		break;
5009 	}
5010 
5011 	switch (ppd->pp_acc_size) {
5012 	default:
5013 		return (IOC_INVAL);
5014 
5015 	case 8:
5016 	case 4:
5017 	case 2:
5018 	case 1:
5019 		if ((ppd->pp_acc_size & sizemask) == 0)
5020 			return (IOC_INVAL);
5021 		break;
5022 	}
5023 
5024 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5025 		return (IOC_INVAL);
5026 
5027 	if (ppd->pp_acc_offset >= maxoff)
5028 		return (IOC_INVAL);
5029 
5030 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5031 		return (IOC_INVAL);
5032 
5033 	/*
5034 	 * All OK - go do it!
5035 	 */
5036 	ppd->pp_acc_offset += mem_va;
5037 	(*ppfn)(bgep, ppd);
5038 	return (peek ? IOC_REPLY : IOC_ACK);
5039 }
5040 
5041 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5042 					struct iocblk *iocp);
5043 #pragma	no_inline(bge_diag_ioctl)
5044 
5045 static enum ioc_reply
5046 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5047 {
5048 	ASSERT(mutex_owned(bgep->genlock));
5049 
5050 	switch (cmd) {
5051 	default:
5052 		/* NOTREACHED */
5053 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5054 		return (IOC_INVAL);
5055 
5056 	case BGE_DIAG:
5057 		/*
5058 		 * Currently a no-op
5059 		 */
5060 		return (IOC_ACK);
5061 
5062 	case BGE_PEEK:
5063 	case BGE_POKE:
5064 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5065 
5066 	case BGE_PHY_RESET:
5067 		return (IOC_RESTART_ACK);
5068 
5069 	case BGE_SOFT_RESET:
5070 	case BGE_HARD_RESET:
5071 		/*
5072 		 * Reset and reinitialise the 570x hardware
5073 		 */
5074 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5075 		return (IOC_ACK);
5076 	}
5077 
5078 	/* NOTREACHED */
5079 }
5080 
5081 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5082 
5083 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5084 				    struct iocblk *iocp);
5085 #pragma	no_inline(bge_mii_ioctl)
5086 
5087 static enum ioc_reply
5088 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5089 {
5090 	struct bge_mii_rw *miirwp;
5091 
5092 	/*
5093 	 * Validate format of ioctl
5094 	 */
5095 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5096 		return (IOC_INVAL);
5097 	if (mp->b_cont == NULL)
5098 		return (IOC_INVAL);
5099 	miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr;
5100 
5101 	/*
5102 	 * Validate request parameters ...
5103 	 */
5104 	if (miirwp->mii_reg > MII_MAXREG)
5105 		return (IOC_INVAL);
5106 
5107 	switch (cmd) {
5108 	default:
5109 		/* NOTREACHED */
5110 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5111 		return (IOC_INVAL);
5112 
5113 	case BGE_MII_READ:
5114 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5115 		return (IOC_REPLY);
5116 
5117 	case BGE_MII_WRITE:
5118 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5119 		return (IOC_ACK);
5120 	}
5121 
5122 	/* NOTREACHED */
5123 }
5124 
5125 #if	BGE_SEE_IO32
5126 
5127 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5128 				    struct iocblk *iocp);
5129 #pragma	no_inline(bge_see_ioctl)
5130 
5131 static enum ioc_reply
5132 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5133 {
5134 	struct bge_see_rw *seerwp;
5135 
5136 	/*
5137 	 * Validate format of ioctl
5138 	 */
5139 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5140 		return (IOC_INVAL);
5141 	if (mp->b_cont == NULL)
5142 		return (IOC_INVAL);
5143 	seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr;
5144 
5145 	/*
5146 	 * Validate request parameters ...
5147 	 */
5148 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5149 		return (IOC_INVAL);
5150 
5151 	switch (cmd) {
5152 	default:
5153 		/* NOTREACHED */
5154 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5155 		return (IOC_INVAL);
5156 
5157 	case BGE_SEE_READ:
5158 	case BGE_SEE_WRITE:
5159 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5160 		    seerwp->see_addr, &seerwp->see_data);
5161 		return (IOC_REPLY);
5162 	}
5163 
5164 	/* NOTREACHED */
5165 }
5166 
5167 #endif	/* BGE_SEE_IO32 */
5168 
5169 #if	BGE_FLASH_IO32
5170 
5171 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5172 				    struct iocblk *iocp);
5173 #pragma	no_inline(bge_flash_ioctl)
5174 
5175 static enum ioc_reply
5176 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5177 {
5178 	struct bge_flash_rw *flashrwp;
5179 
5180 	/*
5181 	 * Validate format of ioctl
5182 	 */
5183 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5184 		return (IOC_INVAL);
5185 	if (mp->b_cont == NULL)
5186 		return (IOC_INVAL);
5187 	flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr;
5188 
5189 	/*
5190 	 * Validate request parameters ...
5191 	 */
5192 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5193 		return (IOC_INVAL);
5194 
5195 	switch (cmd) {
5196 	default:
5197 		/* NOTREACHED */
5198 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5199 		return (IOC_INVAL);
5200 
5201 	case BGE_FLASH_READ:
5202 	case BGE_FLASH_WRITE:
5203 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5204 		    flashrwp->flash_addr, &flashrwp->flash_data);
5205 		return (IOC_REPLY);
5206 	}
5207 
5208 	/* NOTREACHED */
5209 }
5210 
5211 #endif	/* BGE_FLASH_IO32 */
5212 
5213 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5214 				struct iocblk *iocp);
5215 #pragma	no_inline(bge_chip_ioctl)
5216 
5217 enum ioc_reply
5218 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5219 {
5220 	int cmd;
5221 
5222 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5223 		(void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5224 
5225 	ASSERT(mutex_owned(bgep->genlock));
5226 
5227 	cmd = iocp->ioc_cmd;
5228 	switch (cmd) {
5229 	default:
5230 		/* NOTREACHED */
5231 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5232 		return (IOC_INVAL);
5233 
5234 	case BGE_DIAG:
5235 	case BGE_PEEK:
5236 	case BGE_POKE:
5237 	case BGE_PHY_RESET:
5238 	case BGE_SOFT_RESET:
5239 	case BGE_HARD_RESET:
5240 #if	BGE_DEBUGGING || BGE_DO_PPIO
5241 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5242 #else
5243 		return (IOC_INVAL);
5244 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5245 
5246 	case BGE_MII_READ:
5247 	case BGE_MII_WRITE:
5248 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5249 
5250 #if	BGE_SEE_IO32
5251 	case BGE_SEE_READ:
5252 	case BGE_SEE_WRITE:
5253 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5254 #endif	/* BGE_SEE_IO32 */
5255 
5256 #if	BGE_FLASH_IO32
5257 	case BGE_FLASH_READ:
5258 	case BGE_FLASH_WRITE:
5259 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5260 #endif	/* BGE_FLASH_IO32 */
5261 	}
5262 
5263 	/* NOTREACHED */
5264 }
5265 
5266 void
5267 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5268 {
5269 	bge_t *bgep = arg;
5270 
5271 	mutex_enter(bgep->genlock);
5272 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5273 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5274 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5275 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5276 	mutex_exit(bgep->genlock);
5277 }
5278 
5279 #ifdef BGE_IPMI_ASF
5280 
5281 uint32_t
5282 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5283 {
5284 	uint32_t data;
5285 
5286 	if (!bgep->asf_wordswapped) {
5287 		/* a workaround word swap error */
5288 		if (addr & 4)
5289 			addr = addr - 4;
5290 		else
5291 			addr = addr + 4;
5292 	}
5293 
5294 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5295 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5296 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5297 
5298 	return (data);
5299 }
5300 
5301 
5302 void
5303 bge_asf_update_status(bge_t *bgep)
5304 {
5305 	uint32_t event;
5306 
5307 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5308 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5309 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5310 
5311 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5312 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5313 }
5314 
5315 
5316 /*
5317  * The driver is supposed to notify ASF that the OS is still running
5318  * every three seconds, otherwise the management server may attempt
5319  * to reboot the machine.  If it hasn't actually failed, this is
5320  * not a desirable result.  However, this isn't running as a real-time
5321  * thread, and even if it were, it might not be able to generate the
5322  * heartbeat in a timely manner due to system load.  As it isn't a
5323  * significant strain on the machine, we will set the interval to half
5324  * of the required value.
5325  */
5326 void
5327 bge_asf_heartbeat(void *arg)
5328 {
5329 	bge_t *bgep = (bge_t *)arg;
5330 
5331 	mutex_enter(bgep->genlock);
5332 	bge_asf_update_status((bge_t *)bgep);
5333 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5334 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5335 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5336 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5337 	mutex_exit(bgep->genlock);
5338 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5339 		drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5340 }
5341 
5342 
5343 void
5344 bge_asf_stop_timer(bge_t *bgep)
5345 {
5346 	timeout_id_t tmp_id = 0;
5347 
5348 	while ((bgep->asf_timeout_id != 0) &&
5349 		(tmp_id != bgep->asf_timeout_id)) {
5350 		tmp_id = bgep->asf_timeout_id;
5351 		(void) untimeout(tmp_id);
5352 	}
5353 	bgep->asf_timeout_id = 0;
5354 }
5355 
5356 
5357 
5358 /*
5359  * This function should be placed at the earliest position of bge_attach().
5360  */
5361 void
5362 bge_asf_get_config(bge_t *bgep)
5363 {
5364 	uint32_t nicsig;
5365 	uint32_t niccfg;
5366 
5367 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5368 	if (nicsig == BGE_NIC_DATA_SIG) {
5369 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5370 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5371 			/*
5372 			 * Here, we don't consider BAXTER, because BGE haven't
5373 			 * supported BAXTER (that is 5752). Also, as I know,
5374 			 * BAXTER doesn't support ASF feature.
5375 			 */
5376 			bgep->asf_enabled = B_TRUE;
5377 		else
5378 			bgep->asf_enabled = B_FALSE;
5379 	} else
5380 		bgep->asf_enabled = B_FALSE;
5381 }
5382 
5383 
5384 void
5385 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5386 {
5387 	uint32_t tries;
5388 	uint32_t event;
5389 
5390 	ASSERT(bgep->asf_enabled);
5391 
5392 	/* Issues "pause firmware" command and wait for ACK */
5393 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5394 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5395 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5396 
5397 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5398 	tries = 0;
5399 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5400 		drv_usecwait(1);
5401 		tries ++;
5402 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5403 	}
5404 
5405 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5406 		BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5407 
5408 	if (bgep->asf_newhandshake) {
5409 		switch (mode) {
5410 		case BGE_INIT_RESET:
5411 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5412 				BGE_DRV_STATE_START);
5413 			break;
5414 		case BGE_SHUTDOWN_RESET:
5415 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5416 				BGE_DRV_STATE_UNLOAD);
5417 			break;
5418 		case BGE_SUSPEND_RESET:
5419 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5420 				BGE_DRV_STATE_SUSPEND);
5421 			break;
5422 		default:
5423 			break;
5424 		}
5425 	}
5426 }
5427 
5428 
5429 void
5430 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5431 {
5432 	switch (mode) {
5433 	case BGE_INIT_RESET:
5434 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5435 			BGE_DRV_STATE_START);
5436 		break;
5437 	case BGE_SHUTDOWN_RESET:
5438 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5439 			BGE_DRV_STATE_UNLOAD);
5440 		break;
5441 	case BGE_SUSPEND_RESET:
5442 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5443 			BGE_DRV_STATE_SUSPEND);
5444 		break;
5445 	default:
5446 		break;
5447 	}
5448 }
5449 
5450 
5451 void
5452 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5453 {
5454 	switch (mode) {
5455 	case BGE_INIT_RESET:
5456 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5457 			BGE_DRV_STATE_START_DONE);
5458 		break;
5459 	case BGE_SHUTDOWN_RESET:
5460 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5461 			BGE_DRV_STATE_UNLOAD_DONE);
5462 		break;
5463 	default:
5464 		break;
5465 	}
5466 }
5467 
5468 #endif /* BGE_IPMI_ASF */
5469