xref: /titanic_50/usr/src/uts/common/io/bge/bge_chip2.c (revision 187beb97985a345463f4e233439438fd755cd830)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include "bge_impl.h"
28 
29 #define	PIO_ADDR(bgep, offset)	((void *)((caddr_t)(bgep)->io_regs+(offset)))
30 
31 /*
32  * Future features ... ?
33  */
34 #define	BGE_CFG_IO8	1	/* 8/16-bit cfg space BIS/BIC	*/
35 #define	BGE_IND_IO32	1	/* indirect access code		*/
36 #define	BGE_SEE_IO32	1	/* SEEPROM access code		*/
37 #define	BGE_FLASH_IO32	1	/* FLASH access code		*/
38 
39 /*
40  * BGE MSI tunable:
41  *
42  * By default MSI is enabled on all supported platforms but it is disabled
43  * for some Broadcom chips due to known MSI hardware issues. Currently MSI
44  * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
45  */
46 boolean_t bge_enable_msi = B_TRUE;
47 
48 /*
49  * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
50  */
51 boolean_t bge_relaxed_ordering = B_TRUE;
52 
53 /*
54  * Property names
55  */
56 static char knownids_propname[] = "bge-known-subsystems";
57 
58 /*
59  * Patchable globals:
60  *
61  *	bge_autorecover
62  *		Enables/disables automatic recovery after fault detection
63  *
64  *	bge_mlcr_default
65  *		Value to program into the MLCR; controls the chip's GPIO pins
66  *
67  *	bge_dma_{rd,wr}prio
68  *		Relative priorities of DMA reads & DMA writes respectively.
69  *		These may each be patched to any value 0-3.  Equal values
70  *		will give "fair" (round-robin) arbitration for PCI access.
71  *		Unequal values will give one or the other function priority.
72  *
73  *	bge_dma_rwctrl
74  *		Value to put in the Read/Write DMA control register.  See
75  *	        the Broadcom PRM for things you can fiddle with in this
76  *		register ...
77  *
78  *	bge_{tx,rx}_{count,ticks}_{norm,intr}
79  *		Send/receive interrupt coalescing parameters.  Counts are
80  *		#s of descriptors, ticks are in microseconds.  *norm* values
81  *		apply between status updates/interrupts; the *intr* values
82  *		refer to the 'during-interrupt' versions - see the PRM.
83  *
84  *		NOTE: these values have been determined by measurement. They
85  *		differ significantly from the values recommended in the PRM.
86  */
87 static uint32_t bge_autorecover = 1;
88 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
89 
90 static uint32_t bge_dma_rdprio = 1;
91 static uint32_t bge_dma_wrprio = 0;
92 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
93 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
94 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
95 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
96 
97 uint32_t bge_rx_ticks_norm = 128;
98 uint32_t bge_tx_ticks_norm = 2048;		/* 8 for FJ2+ !?!?	*/
99 uint32_t bge_rx_count_norm = 8;
100 uint32_t bge_tx_count_norm = 128;
101 
102 static uint32_t bge_rx_ticks_intr = 128;
103 static uint32_t bge_tx_ticks_intr = 0;		/* 8 for FJ2+ !?!?	*/
104 static uint32_t bge_rx_count_intr = 2;
105 static uint32_t bge_tx_count_intr = 0;
106 
107 /*
108  * Memory pool configuration parameters.
109  *
110  * These are generally specific to each member of the chip family, since
111  * each one may have a different memory size/configuration.
112  *
113  * Setting the mbuf pool length for a specific type of chip to 0 inhibits
114  * the driver from programming the various registers; instead they are left
115  * at their hardware defaults.  This is the preferred option for later chips
116  * (5705+), whereas the older chips *required* these registers to be set,
117  * since the h/w default was 0 ;-(
118  */
119 static uint32_t bge_mbuf_pool_base	= MBUF_POOL_BASE_DEFAULT;
120 static uint32_t bge_mbuf_pool_base_5704	= MBUF_POOL_BASE_5704;
121 static uint32_t bge_mbuf_pool_base_5705	= MBUF_POOL_BASE_5705;
122 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
123 static uint32_t bge_mbuf_pool_len	= MBUF_POOL_LENGTH_DEFAULT;
124 static uint32_t bge_mbuf_pool_len_5704	= MBUF_POOL_LENGTH_5704;
125 static uint32_t bge_mbuf_pool_len_5705	= 0;	/* use h/w default	*/
126 static uint32_t bge_mbuf_pool_len_5721	= 0;
127 
128 /*
129  * Various high and low water marks, thresholds, etc ...
130  *
131  * Note: these are taken from revision 7 of the PRM, and some are different
132  * from both the values in earlier PRMs *and* those determined experimentally
133  * and used in earlier versions of this driver ...
134  */
135 static uint32_t bge_mbuf_hi_water	= MBUF_HIWAT_DEFAULT;
136 static uint32_t bge_mbuf_lo_water_rmac	= MAC_RX_MBUF_LOWAT_DEFAULT;
137 static uint32_t bge_mbuf_lo_water_rdma	= RDMA_MBUF_LOWAT_DEFAULT;
138 
139 static uint32_t bge_dmad_lo_water	= DMAD_POOL_LOWAT_DEFAULT;
140 static uint32_t bge_dmad_hi_water	= DMAD_POOL_HIWAT_DEFAULT;
141 static uint32_t bge_lowat_recv_frames	= LOWAT_MAX_RECV_FRAMES_DEFAULT;
142 
143 static uint32_t bge_replenish_std	= STD_RCV_BD_REPLENISH_DEFAULT;
144 static uint32_t bge_replenish_mini	= MINI_RCV_BD_REPLENISH_DEFAULT;
145 static uint32_t bge_replenish_jumbo	= JUMBO_RCV_BD_REPLENISH_DEFAULT;
146 
147 static uint32_t	bge_watchdog_count	= 1 << 16;
148 static uint16_t bge_dma_miss_limit	= 20;
149 
150 static uint32_t bge_stop_start_on_sync	= 0;
151 
152 boolean_t bge_jumbo_enable		= B_TRUE;
153 
154 /*
155  * bge_intr_max_loop controls the maximum loop number within bge_intr.
156  * When loading NIC with heavy network traffic, it is useful.
157  * Increasing this value could have positive effect to throughput,
158  * but it might also increase ticks of a bge ISR stick on CPU, which might
159  * lead to bad UI interactive experience. So tune this with caution.
160  */
161 static int bge_intr_max_loop = 1;
162 
163 /*
164  * ========== Low-level chip & ring buffer manipulation ==========
165  */
166 
167 #define	BGE_DBG		BGE_DBG_REGS	/* debug flag for this code	*/
168 
169 
170 /*
171  * Config space read-modify-write routines
172  */
173 
174 #if	BGE_CFG_IO8
175 
176 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
177 #pragma	inline(bge_cfg_clr16)
178 
179 static void
180 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
181 {
182 	uint16_t regval;
183 
184 	BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
185 	    (void *)bgep, regno, bits));
186 
187 	regval = pci_config_get16(bgep->cfg_handle, regno);
188 
189 	BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 	    (void *)bgep, regno, bits, regval, regval & ~bits));
191 
192 	regval &= ~bits;
193 	pci_config_put16(bgep->cfg_handle, regno, regval);
194 }
195 
196 #endif	/* BGE_CFG_IO8 */
197 
198 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
199 #pragma	inline(bge_cfg_clr32)
200 
201 static void
202 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
203 {
204 	uint32_t regval;
205 
206 	BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
207 	    (void *)bgep, regno, bits));
208 
209 	regval = pci_config_get32(bgep->cfg_handle, regno);
210 
211 	BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
212 	    (void *)bgep, regno, bits, regval, regval & ~bits));
213 
214 	regval &= ~bits;
215 	pci_config_put32(bgep->cfg_handle, regno, regval);
216 }
217 
218 #if	BGE_IND_IO32
219 
220 /*
221  * Indirect access to registers & RISC scratchpads, using config space
222  * accesses only.
223  *
224  * This isn't currently used, but someday we might want to use it for
225  * restoring the Subsystem Device/Vendor registers (which aren't directly
226  * writable in Config Space), or for downloading firmware into the RISCs
227  *
228  * In any case there are endian issues to be resolved before this code is
229  * enabled; the bizarre way that bytes get twisted by this chip AND by
230  * the PCI bridge in SPARC systems mean that we shouldn't enable it until
231  * it's been thoroughly tested for all access sizes on all supported
232  * architectures (SPARC *and* x86!).
233  */
234 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
235 #pragma	inline(bge_ind_get32)
236 
237 uint32_t
238 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
239 {
240 	uint32_t val;
241 
242 	BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
243 
244 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
245 	val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
246 
247 	BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
248 	    (void *)bgep, regno, val));
249 
250 	val = LE_32(val);
251 
252 	return (val);
253 }
254 
255 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
256 #pragma	inline(bge_ind_put32)
257 
258 void
259 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
260 {
261 	BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
262 	    (void *)bgep, regno, val));
263 
264 	val = LE_32(val);
265 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
266 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
267 }
268 
269 #endif	/* BGE_IND_IO32 */
270 
271 #if	BGE_DEBUGGING
272 
273 static void bge_pci_check(bge_t *bgep);
274 #pragma	no_inline(bge_pci_check)
275 
276 static void
277 bge_pci_check(bge_t *bgep)
278 {
279 	uint16_t pcistatus;
280 
281 	pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
282 	if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
283 		BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
284 		    (void *)bgep, pcistatus));
285 }
286 
287 #endif	/* BGE_DEBUGGING */
288 
289 /*
290  * Perform first-stage chip (re-)initialisation, using only config-space
291  * accesses:
292  *
293  * + Read the vendor/device/revision/subsystem/cache-line-size registers,
294  *   returning the data in the structure pointed to by <idp>.
295  * + Configure the target-mode endianness (swap) options.
296  * + Disable interrupts and enable Memory Space accesses.
297  * + Enable or disable Bus Mastering according to the <enable_dma> flag.
298  *
299  * This sequence is adapted from Broadcom document 570X-PG102-R,
300  * page 102, steps 1-3, 6-8 and 11-13.  The omitted parts of the sequence
301  * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
302  *
303  * This function MUST be called before any non-config-space accesses
304  * are made; on this first call <enable_dma> is B_FALSE, and it
305  * effectively performs steps 3-1(!) of the initialisation sequence
306  * (the rest are not required but should be harmless).
307  *
308  * It MUST also be called after a chip reset, as this disables
309  * Memory Space cycles!  In this case, <enable_dma> is B_TRUE, and
310  * it is effectively performing steps 6-8.
311  */
312 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
313 #pragma	no_inline(bge_chip_cfg_init)
314 
315 void
316 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
317 {
318 	ddi_acc_handle_t handle;
319 	uint16_t command;
320 	uint32_t mhcr;
321 	uint16_t value16;
322 	int i;
323 
324 	BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
325 	    (void *)bgep, (void *)cidp, enable_dma));
326 
327 	/*
328 	 * Step 3: save PCI cache line size and subsystem vendor ID
329 	 *
330 	 * Read all the config-space registers that characterise the
331 	 * chip, specifically vendor/device/revision/subsystem vendor
332 	 * and subsystem device id.  We expect (but don't check) that
333 	 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
334 	 *
335 	 * Also save all bus-transaction related registers (cache-line
336 	 * size, bus-grant/latency parameters, etc).  Some of these are
337 	 * cleared by reset, so we'll have to restore them later.  This
338 	 * comes from the Broadcom document 570X-PG102-R ...
339 	 *
340 	 * Note: Broadcom document 570X-PG102-R seems to be in error
341 	 * here w.r.t. the offsets of the Subsystem Vendor ID and
342 	 * Subsystem (Device) ID registers, which are the opposite way
343 	 * round according to the PCI standard.  For good measure, we
344 	 * save/restore both anyway.
345 	 */
346 	handle = bgep->cfg_handle;
347 
348 	mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
349 	cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK;
350 	cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
351 	cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
352 
353 	cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
354 	cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
355 	cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
356 	cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
357 	cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
358 	cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
359 	cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
360 
361 	BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
362 	    cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
363 	    cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
364 	    cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
365 	    cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
366 	BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
367 	    cidp->vendor, cidp->device, cidp->revision));
368 	BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
369 	    cidp->subven, cidp->subdev, cidp->asic_rev));
370 	BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
371 	    cidp->clsize, cidp->latency, cidp->command));
372 
373 	/*
374 	 * Step 2 (also step 6): disable and clear interrupts.
375 	 * Steps 11-13: configure PIO endianness options, and enable
376 	 * indirect register access.  We'll also select any other
377 	 * options controlled by the MHCR (e.g. tagged status, mask
378 	 * interrupt mode) at this stage ...
379 	 *
380 	 * Note: internally, the chip is 64-bit and BIG-endian, but
381 	 * since it talks to the host over a (LITTLE-endian) PCI bus,
382 	 * it normally swaps bytes around at the PCI interface.
383 	 * However, the PCI host bridge on SPARC systems normally
384 	 * swaps the byte lanes around too, since SPARCs are also
385 	 * BIG-endian.  So it turns out that on SPARC, the right
386 	 * option is to tell the chip to swap (and the host bridge
387 	 * will swap back again), whereas on x86 we ask the chip
388 	 * NOT to swap, so the natural little-endianness of the
389 	 * PCI bus is assumed.  Then the only thing that doesn't
390 	 * automatically work right is access to an 8-byte register
391 	 * by a little-endian host; but we don't want to set the
392 	 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
393 	 * accesses don't go where expected ;-(  So we live with
394 	 * that, and perform word-swaps in software in the few cases
395 	 * where a chip register is defined as an 8-byte value --
396 	 * see the code below for details ...
397 	 *
398 	 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
399 	 * very clear in the register description in the PRM, but
400 	 * Broadcom document 570X-PG104-R page 248 explains a little
401 	 * more (under "Broadcom Mask Mode").  The bit changes the way
402 	 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
403 	 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
404 	 * way as the 5700 did, which isn't very convenient.  Setting
405 	 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
406 	 * bit do just what its name says -- MASK the PCI #INTA output
407 	 * (i.e. deassert the signal at the pin) leaving all internal
408 	 * state unchanged.  This is much more convenient for our
409 	 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
410 	 *
411 	 * Note: the inconvenient semantics of the interrupt mailbox
412 	 * (nonzero disables and acknowledges/clears the interrupt,
413 	 * zero enables AND CLEARS it) would make race conditions
414 	 * likely in the interrupt handler:
415 	 *
416 	 * (1)	acknowledge & disable interrupts
417 	 * (2)	while (more to do)
418 	 * 		process packets
419 	 * (3)	enable interrupts -- also clears pending
420 	 *
421 	 * If the chip received more packets and internally generated
422 	 * an interrupt between the check at (2) and the mbox write
423 	 * at (3), this interrupt would be lost :-(
424 	 *
425 	 * The best way to avoid this is to use TAGGED STATUS mode,
426 	 * where the chip includes a unique tag in each status block
427 	 * update, and the host, when re-enabling interrupts, passes
428 	 * the last tag it saw back to the chip; then the chip can
429 	 * see whether the host is truly up to date, and regenerate
430 	 * its interrupt if not.
431 	 */
432 	mhcr =	MHCR_ENABLE_INDIRECT_ACCESS |
433 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
434 	    MHCR_MASK_INTERRUPT_MODE |
435 	    MHCR_CLEAR_INTERRUPT_INTA;
436 
437 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
438 		mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
439 
440 #ifdef	_BIG_ENDIAN
441 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
442 #endif	/* _BIG_ENDIAN */
443 
444 	pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
445 
446 #ifdef BGE_IPMI_ASF
447 	bgep->asf_wordswapped = B_FALSE;
448 #endif
449 	/*
450 	 * Step 1 (also step 7): Enable PCI Memory Space accesses
451 	 *			 Disable Memory Write/Invalidate
452 	 *			 Enable or disable Bus Mastering
453 	 *
454 	 * Note that all other bits are taken from the original value saved
455 	 * the first time through here, rather than from the current register
456 	 * value, 'cos that will have been cleared by a soft RESET since.
457 	 * In this way we preserve the OBP/nexus-parent's preferred settings
458 	 * of the parity-error and system-error enable bits across multiple
459 	 * chip RESETs.
460 	 */
461 	command = bgep->chipid.command | PCI_COMM_MAE;
462 	command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
463 	if (enable_dma)
464 		command |= PCI_COMM_ME;
465 	/*
466 	 * on BCM5714 revision A0, false parity error gets generated
467 	 * due to a logic bug. Provide a workaround by disabling parity
468 	 * error.
469 	 */
470 	if (((cidp->device == DEVICE_ID_5714C) ||
471 	    (cidp->device == DEVICE_ID_5714S)) &&
472 	    (cidp->revision == REVISION_ID_5714_A0)) {
473 		command &= ~PCI_COMM_PARITY_DETECT;
474 	}
475 	pci_config_put16(handle, PCI_CONF_COMM, command);
476 
477 	/*
478 	 * On some PCI-E device, there were instances when
479 	 * the device was still link training.
480 	 */
481 	if (bgep->chipid.pci_type == BGE_PCI_E) {
482 		i = 0;
483 		value16 = pci_config_get16(handle, PCI_CONF_COMM);
484 		while ((value16 != command) && (i < 100)) {
485 			drv_usecwait(200);
486 			value16 = pci_config_get16(handle, PCI_CONF_COMM);
487 			++i;
488 		}
489 	}
490 
491 	/*
492 	 * Clear any remaining error status bits
493 	 */
494 	pci_config_put16(handle, PCI_CONF_STAT, ~0);
495 
496 	/*
497 	 * Do following if and only if the device is NOT BCM5714C OR
498 	 * BCM5715C
499 	 */
500 	if (!((cidp->device == DEVICE_ID_5714C) ||
501 	    (cidp->device == DEVICE_ID_5715C))) {
502 		/*
503 		 * Make sure these indirect-access registers are sane
504 		 * rather than random after power-up or reset
505 		 */
506 		pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
507 		pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
508 	}
509 	/*
510 	 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
511 	 */
512 	bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
513 
514 	if (cidp->pci_type == BGE_PCI_E)
515 		bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
516 		    DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
517 }
518 
519 #ifdef __amd64
520 /*
521  * Distinguish CPU types
522  *
523  * These use to  distinguish AMD64 or Intel EM64T of CPU running mode.
524  * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
525  * for PCI-Express based network interface card. This is the work-around
526  * for those nics.
527  */
528 static boolean_t bge_get_em64t_type(void);
529 #pragma	inline(bge_get_em64t_type)
530 
531 static boolean_t
532 bge_get_em64t_type(void)
533 {
534 
535 	return (x86_vendor == X86_VENDOR_Intel);
536 }
537 #endif
538 
539 /*
540  * Operating register get/set access routines
541  */
542 
543 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
544 #pragma	inline(bge_reg_get32)
545 
546 uint32_t
547 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
548 {
549 	BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
550 	    (void *)bgep, regno));
551 
552 	return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
553 }
554 
555 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
556 #pragma	inline(bge_reg_put32)
557 
558 void
559 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
560 {
561 	BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
562 	    (void *)bgep, regno, data));
563 
564 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
565 	BGE_PCICHK(bgep);
566 }
567 
568 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
569 #pragma	inline(bge_reg_set32)
570 
571 void
572 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
573 {
574 	uint32_t regval;
575 
576 	BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
577 	    (void *)bgep, regno, bits));
578 
579 	regval = bge_reg_get32(bgep, regno);
580 	regval |= bits;
581 	bge_reg_put32(bgep, regno, regval);
582 }
583 
584 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
585 #pragma	inline(bge_reg_clr32)
586 
587 void
588 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
589 {
590 	uint32_t regval;
591 
592 	BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
593 	    (void *)bgep, regno, bits));
594 
595 	regval = bge_reg_get32(bgep, regno);
596 	regval &= ~bits;
597 	bge_reg_put32(bgep, regno, regval);
598 }
599 
600 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
601 #pragma	inline(bge_reg_get64)
602 
603 static uint64_t
604 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
605 {
606 	uint64_t regval;
607 
608 #ifdef	__amd64
609 	if (bge_get_em64t_type()) {
610 		regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
611 		regval <<= 32;
612 		regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
613 	} else {
614 		regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
615 	}
616 #else
617 	regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
618 #endif
619 
620 #ifdef	_LITTLE_ENDIAN
621 	regval = (regval >> 32) | (regval << 32);
622 #endif	/* _LITTLE_ENDIAN */
623 
624 	BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
625 	    (void *)bgep, regno, regval));
626 
627 	return (regval);
628 }
629 
630 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
631 #pragma	inline(bge_reg_put64)
632 
633 static void
634 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
635 {
636 	BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
637 	    (void *)bgep, regno, data));
638 
639 #ifdef	_LITTLE_ENDIAN
640 	data = ((data >> 32) | (data << 32));
641 #endif	/* _LITTLE_ENDIAN */
642 
643 #ifdef	__amd64
644 	if (bge_get_em64t_type()) {
645 		ddi_put32(bgep->io_handle,
646 		    PIO_ADDR(bgep, regno), (uint32_t)data);
647 		BGE_PCICHK(bgep);
648 		ddi_put32(bgep->io_handle,
649 		    PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
650 
651 	} else {
652 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
653 	}
654 #else
655 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
656 #endif
657 
658 	BGE_PCICHK(bgep);
659 }
660 
661 /*
662  * The DDI doesn't provide get/put functions for 128 bit data
663  * so we put RCBs out as two 64-bit chunks instead.
664  */
665 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
666 #pragma	inline(bge_reg_putrcb)
667 
668 static void
669 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
670 {
671 	uint64_t *p;
672 
673 	BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
674 	    (void *)bgep, addr, rcbp->host_ring_addr,
675 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
676 
677 	ASSERT((addr % sizeof (*rcbp)) == 0);
678 
679 	p = (void *)rcbp;
680 	bge_reg_put64(bgep, addr, *p++);
681 	bge_reg_put64(bgep, addr+8, *p);
682 }
683 
684 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
685 #pragma	inline(bge_mbx_put)
686 
687 void
688 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
689 {
690 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
691 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
692 
693 	BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
694 	    (void *)bgep, regno, data));
695 
696 	/*
697 	 * Mailbox registers are nominally 64 bits on the 5701, but
698 	 * the MSW isn't used.  On the 5703, they're only 32 bits
699 	 * anyway.  So here we just write the lower(!) 32 bits -
700 	 * remembering that the chip is big-endian, even though the
701 	 * PCI bus is little-endian ...
702 	 */
703 #ifdef	_BIG_ENDIAN
704 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
705 #else
706 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
707 #endif	/* _BIG_ENDIAN */
708 	BGE_PCICHK(bgep);
709 }
710 
711 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
712 #pragma inline(bge_mbx_get)
713 
714 uint32_t
715 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
716 {
717 	uint32_t val32;
718 
719 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
720 		regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
721 
722 	BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
723 	    (void *)bgep, regno));
724 
725 #ifdef	_BIG_ENDIAN
726 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
727 #else
728 	val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
729 #endif	/* _BIG_ENDIAN */
730 	BGE_PCICHK(bgep);
731 
732 	return (val32);
733 }
734 
735 
736 #if	BGE_DEBUGGING
737 
738 void bge_led_mark(bge_t *bgep);
739 #pragma	no_inline(bge_led_mark)
740 
741 void
742 bge_led_mark(bge_t *bgep)
743 {
744 	uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
745 	    LED_CONTROL_1000MBPS_LED |
746 	    LED_CONTROL_100MBPS_LED |
747 	    LED_CONTROL_10MBPS_LED;
748 
749 	/*
750 	 * Blink all three LINK LEDs on simultaneously, then all off,
751 	 * then restore to automatic hardware control.  This is used
752 	 * in laboratory testing to trigger a logic analyser or scope.
753 	 */
754 	bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
755 	led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
756 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
757 	led_ctrl = LED_CONTROL_OVERRIDE_LINK;
758 	bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
759 }
760 
761 #endif	/* BGE_DEBUGGING */
762 
763 /*
764  * NIC on-chip memory access routines
765  *
766  * Only 32K of NIC memory is visible at a time, controlled by the
767  * Memory Window Base Address Register (in PCI config space).  Once
768  * this is set, the 32K region of NIC-local memory that it refers
769  * to can be directly addressed in the upper 32K of the 64K of PCI
770  * memory space used for the device.
771  */
772 
773 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
774 #pragma	inline(bge_nic_setwin)
775 
776 static void
777 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
778 {
779 	chip_id_t *cidp;
780 
781 	BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
782 	    (void *)bgep, base));
783 
784 	ASSERT((base & MWBAR_GRANULE_MASK) == 0);
785 
786 	/*
787 	 * Don't do repeated zero data writes,
788 	 * if the device is BCM5714C/15C.
789 	 */
790 	cidp = &bgep->chipid;
791 	if ((cidp->device == DEVICE_ID_5714C) ||
792 	    (cidp->device == DEVICE_ID_5715C)) {
793 		if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
794 			return;
795 		/* Adjust lastWriteZeroData */
796 		bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
797 		    B_TRUE : B_FALSE);
798 	}
799 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
800 }
801 
802 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
803 #pragma	inline(bge_nic_get32)
804 
805 static uint32_t
806 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
807 {
808 	uint32_t data;
809 
810 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
811 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
812 		/* workaround for word swap error */
813 		if (addr & 4)
814 			addr = addr - 4;
815 		else
816 			addr = addr + 4;
817 	}
818 #endif
819 
820 #ifdef __sparc
821 	data = bge_nic_read32(bgep, addr);
822 #else
823 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
824 	addr &= MWBAR_GRANULE_MASK;
825 	addr += NIC_MEM_WINDOW_OFFSET;
826 
827 	data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
828 #endif
829 
830 	BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
831 	    (void *)bgep, addr, data));
832 
833 	return (data);
834 }
835 
836 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
837 #pragma inline(bge_nic_put32)
838 
839 void
840 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
841 {
842 	BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
843 	    (void *)bgep, addr, data));
844 
845 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
846 	if (bgep->asf_enabled && !bgep->asf_wordswapped) {
847 		/* workaround for word swap error */
848 		if (addr & 4)
849 			addr = addr - 4;
850 		else
851 			addr = addr + 4;
852 	}
853 #endif
854 
855 #ifdef __sparc
856 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
857 	data = LE_32(data);
858 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
859 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
860 #else
861 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
862 	addr &= MWBAR_GRANULE_MASK;
863 	addr += NIC_MEM_WINDOW_OFFSET;
864 	ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
865 	BGE_PCICHK(bgep);
866 #endif
867 }
868 
869 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
870 #pragma	inline(bge_nic_get64)
871 
872 static uint64_t
873 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
874 {
875 	uint64_t data;
876 
877 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
878 	addr &= MWBAR_GRANULE_MASK;
879 	addr += NIC_MEM_WINDOW_OFFSET;
880 
881 #ifdef	__amd64
882 		if (bge_get_em64t_type()) {
883 			data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
884 			data <<= 32;
885 			data |= ddi_get32(bgep->io_handle,
886 			    PIO_ADDR(bgep, addr + 4));
887 		} else {
888 			data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
889 		}
890 #else
891 		data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
892 #endif
893 
894 	BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
895 	    (void *)bgep, addr, data));
896 
897 	return (data);
898 }
899 
900 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
901 #pragma	inline(bge_nic_put64)
902 
903 static void
904 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
905 {
906 	BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
907 	    (void *)bgep, addr, data));
908 
909 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
910 	addr &= MWBAR_GRANULE_MASK;
911 	addr += NIC_MEM_WINDOW_OFFSET;
912 
913 #ifdef	__amd64
914 	if (bge_get_em64t_type()) {
915 		ddi_put32(bgep->io_handle,
916 		    PIO_ADDR(bgep, addr), (uint32_t)data);
917 		BGE_PCICHK(bgep);
918 		ddi_put32(bgep->io_handle,
919 		    PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32));
920 	} else {
921 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
922 	}
923 #else
924 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
925 #endif
926 
927 	BGE_PCICHK(bgep);
928 }
929 
930 /*
931  * The DDI doesn't provide get/put functions for 128 bit data
932  * so we put RCBs out as two 64-bit chunks instead.
933  */
934 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
935 #pragma	inline(bge_nic_putrcb)
936 
937 static void
938 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
939 {
940 	uint64_t *p;
941 
942 	BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
943 	    (void *)bgep, addr, rcbp->host_ring_addr,
944 	    rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
945 
946 	ASSERT((addr % sizeof (*rcbp)) == 0);
947 
948 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
949 	addr &= MWBAR_GRANULE_MASK;
950 	addr += NIC_MEM_WINDOW_OFFSET;
951 
952 	p = (void *)rcbp;
953 #ifdef	__amd64
954 	if (bge_get_em64t_type()) {
955 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
956 		    (uint32_t)(*p));
957 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
958 		    (uint32_t)(*p >> 32));
959 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
960 		    (uint32_t)(*(p + 1)));
961 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
962 		    (uint32_t)(*p >> 32));
963 
964 	} else {
965 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
966 		ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
967 	}
968 #else
969 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
970 	ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
971 #endif
972 
973 	BGE_PCICHK(bgep);
974 }
975 
976 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
977 #pragma	inline(bge_nic_zero)
978 
979 static void
980 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
981 {
982 	BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
983 	    (void *)bgep, addr, nbytes));
984 
985 	ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
986 	    ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
987 
988 	bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
989 	addr &= MWBAR_GRANULE_MASK;
990 	addr += NIC_MEM_WINDOW_OFFSET;
991 
992 	(void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
993 	    nbytes, 1, DDI_DATA_SZ08_ACC);
994 	BGE_PCICHK(bgep);
995 }
996 
997 /*
998  * MII (PHY) register get/set access routines
999  *
1000  * These use the chip's MII auto-access method, controlled by the
1001  * MII Communication register at 0x044c, so the CPU doesn't have
1002  * to fiddle with the individual bits.
1003  */
1004 
1005 #undef	BGE_DBG
1006 #define	BGE_DBG		BGE_DBG_MII	/* debug flag for this code	*/
1007 
1008 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1009 				uint16_t data, uint32_t cmd);
1010 #pragma	no_inline(bge_mii_access)
1011 
1012 static uint16_t
1013 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1014 {
1015 	uint32_t timeout;
1016 	uint32_t regval1;
1017 	uint32_t regval2;
1018 
1019 	BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1020 	    (void *)bgep, regno, data, cmd));
1021 
1022 	ASSERT(mutex_owned(bgep->genlock));
1023 
1024 	/*
1025 	 * Assemble the command ...
1026 	 */
1027 	cmd |= data << MI_COMMS_DATA_SHIFT;
1028 	cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1029 	cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1030 	cmd |= MI_COMMS_START;
1031 
1032 	/*
1033 	 * Wait for any command already in progress ...
1034 	 *
1035 	 * Note: this *shouldn't* ever find that there is a command
1036 	 * in progress, because we already hold the <genlock> mutex.
1037 	 * Nonetheless, we have sometimes seen the MI_COMMS_START
1038 	 * bit set here -- it seems that the chip can initiate MII
1039 	 * accesses internally, even with polling OFF.
1040 	 */
1041 	regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1042 	for (timeout = 100; ; ) {
1043 		if ((regval2 & MI_COMMS_START) == 0) {
1044 			bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1045 			break;
1046 		}
1047 		if (--timeout == 0)
1048 			break;
1049 		drv_usecwait(10);
1050 		regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1051 	}
1052 
1053 	if (timeout == 0)
1054 		return ((uint16_t)~0u);
1055 
1056 	if (timeout != 100)
1057 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1058 		    "MI_COMMS_START set for %d us; 0x%x->0x%x",
1059 		    cmd, 10*(100-timeout), regval1, regval2));
1060 
1061 	regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1062 	for (timeout = 1000; ; ) {
1063 		if ((regval1 & MI_COMMS_START) == 0)
1064 			break;
1065 		if (--timeout == 0)
1066 			break;
1067 		drv_usecwait(10);
1068 		regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1069 	}
1070 
1071 	/*
1072 	 * Drop out early if the READ FAILED bit is set -- this chip
1073 	 * could be a 5703/4S, with a SerDes instead of a PHY!
1074 	 */
1075 	if (regval2 & MI_COMMS_READ_FAILED)
1076 		return ((uint16_t)~0u);
1077 
1078 	if (timeout == 0)
1079 		return ((uint16_t)~0u);
1080 
1081 	/*
1082 	 * The PRM says to wait 5us after seeing the START bit clear
1083 	 * and then re-read the register to get the final value of the
1084 	 * data field, in order to avoid a race condition where the
1085 	 * START bit is clear but the data field isn't yet valid.
1086 	 *
1087 	 * Note: we don't actually seem to be encounter this race;
1088 	 * except when the START bit is seen set again (see below),
1089 	 * the data field doesn't change during this 5us interval.
1090 	 */
1091 	drv_usecwait(5);
1092 	regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1093 
1094 	/*
1095 	 * Unfortunately, when following the PRMs instructions above,
1096 	 * we have occasionally seen the START bit set again(!) in the
1097 	 * value read after the 5us delay. This seems to be due to the
1098 	 * chip autonomously starting another MII access internally.
1099 	 * In such cases, the command/data/etc fields relate to the
1100 	 * internal command, rather than the one that we thought had
1101 	 * just finished.  So in this case, we fall back to returning
1102 	 * the data from the original read that showed START clear.
1103 	 */
1104 	if (regval2 & MI_COMMS_START) {
1105 		BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1106 		    "MI_COMMS_START set after transaction; 0x%x->0x%x",
1107 		    cmd, regval1, regval2));
1108 		regval2 = regval1;
1109 	}
1110 
1111 	if (regval2 & MI_COMMS_START)
1112 		return ((uint16_t)~0u);
1113 
1114 	if (regval2 & MI_COMMS_READ_FAILED)
1115 		return ((uint16_t)~0u);
1116 
1117 	return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1118 }
1119 
1120 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1121 #pragma	no_inline(bge_mii_get16)
1122 
1123 uint16_t
1124 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1125 {
1126 	BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1127 	    (void *)bgep, regno));
1128 
1129 	ASSERT(mutex_owned(bgep->genlock));
1130 
1131 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1132 	    (regno == MII_1000BASE_T_CONTROL)))
1133 		return (0);
1134 
1135 	return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1136 }
1137 
1138 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1139 #pragma	no_inline(bge_mii_put16)
1140 
1141 void
1142 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1143 {
1144 	BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1145 	    (void *)bgep, regno, data));
1146 
1147 	ASSERT(mutex_owned(bgep->genlock));
1148 
1149 	if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1150 	    (regno == MII_1000BASE_T_CONTROL)))
1151 		return;
1152 
1153 	(void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1154 }
1155 
1156 #undef	BGE_DBG
1157 #define	BGE_DBG		BGE_DBG_SEEPROM	/* debug flag for this code	*/
1158 
1159 #if	BGE_SEE_IO32 || BGE_FLASH_IO32
1160 
1161 /*
1162  * Basic SEEPROM get/set access routine
1163  *
1164  * This uses the chip's SEEPROM auto-access method, controlled by the
1165  * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1166  * doesn't have to fiddle with the individual bits.
1167  *
1168  * The caller should hold <genlock> and *also* have already acquired
1169  * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1170  *
1171  * Return value:
1172  *	0 on success,
1173  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1174  *	EPROTO on other h/w or s/w errors.
1175  *
1176  * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1177  * from a (successful) SEEPROM_ACCESS_READ.
1178  */
1179 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1180 				uint32_t *dp);
1181 #pragma	no_inline(bge_seeprom_access)
1182 
1183 static int
1184 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1185 {
1186 	uint32_t tries;
1187 	uint32_t regval;
1188 
1189 	ASSERT(mutex_owned(bgep->genlock));
1190 
1191 	/*
1192 	 * On the newer chips that support both SEEPROM & Flash, we need
1193 	 * to specifically enable SEEPROM access (Flash is the default).
1194 	 * On older chips, we don't; SEEPROM is the only NVtype supported,
1195 	 * and the NVM control registers don't exist ...
1196 	 */
1197 	switch (bgep->chipid.nvtype) {
1198 	case BGE_NVTYPE_NONE:
1199 	case BGE_NVTYPE_UNKNOWN:
1200 		_NOTE(NOTREACHED)
1201 	case BGE_NVTYPE_SEEPROM:
1202 		break;
1203 
1204 	case BGE_NVTYPE_LEGACY_SEEPROM:
1205 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1206 	case BGE_NVTYPE_BUFFERED_FLASH:
1207 	default:
1208 		bge_reg_set32(bgep, NVM_CONFIG1_REG,
1209 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1210 		break;
1211 	}
1212 
1213 	/*
1214 	 * Check there's no command in progress.
1215 	 *
1216 	 * Note: this *shouldn't* ever find that there is a command
1217 	 * in progress, because we already hold the <genlock> mutex.
1218 	 * Also, to ensure we don't have a conflict with the chip's
1219 	 * internal firmware or a process accessing the same (shared)
1220 	 * SEEPROM through the other port of a 5704, we've already
1221 	 * been through the "software arbitration" protocol.
1222 	 * So this is just a final consistency check: we shouldn't
1223 	 * see EITHER the START bit (command started but not complete)
1224 	 * OR the COMPLETE bit (command completed but not cleared).
1225 	 */
1226 	regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1227 	if (regval & SEEPROM_ACCESS_START)
1228 		return (EPROTO);
1229 	if (regval & SEEPROM_ACCESS_COMPLETE)
1230 		return (EPROTO);
1231 
1232 	/*
1233 	 * Assemble the command ...
1234 	 */
1235 	cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1236 	addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1237 	addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1238 	cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1239 	cmd |= SEEPROM_ACCESS_START;
1240 	cmd |= SEEPROM_ACCESS_COMPLETE;
1241 	cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1242 
1243 	bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1244 	bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1245 
1246 	/*
1247 	 * By observation, a successful access takes ~20us on a 5703/4,
1248 	 * but apparently much longer (up to 1000us) on the obsolescent
1249 	 * BCM5700/BCM5701.  We want to be sure we don't get any false
1250 	 * timeouts here; but OTOH, we don't want a bogus access to lock
1251 	 * out interrupts for longer than necessary. So we'll allow up
1252 	 * to 1000us ...
1253 	 */
1254 	for (tries = 0; tries < 1000; ++tries) {
1255 		regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1256 		if (regval & SEEPROM_ACCESS_COMPLETE)
1257 			break;
1258 		drv_usecwait(1);
1259 	}
1260 
1261 	if (regval & SEEPROM_ACCESS_COMPLETE) {
1262 		/*
1263 		 * All OK; read the SEEPROM data register, then write back
1264 		 * the value read from the address register in order to
1265 		 * clear the <complete> bit and leave the SEEPROM access
1266 		 * state machine idle, ready for the next access ...
1267 		 */
1268 		BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1269 		*dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1270 		bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1271 		return (0);
1272 	}
1273 
1274 	/*
1275 	 * Hmm ... what happened here?
1276 	 *
1277 	 * Most likely, the user addressed a non-existent SEEPROM. Or
1278 	 * maybe the SEEPROM was busy internally (e.g. processing a write)
1279 	 * and didn't respond to being addressed. Either way, it's left
1280 	 * the SEEPROM access state machine wedged. So we'll reset it
1281 	 * before we leave, so it's ready for next time ...
1282 	 */
1283 	BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1284 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1285 	return (ENODATA);
1286 }
1287 
1288 /*
1289  * Basic Flash get/set access routine
1290  *
1291  * These use the chip's Flash auto-access method, controlled by the
1292  * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1293  * fiddle with the individual bits.
1294  *
1295  * The caller should hold <genlock> and *also* have already acquired
1296  * the right to access the Flash, via bge_nvmem_acquire() above.
1297  *
1298  * Return value:
1299  *	0 on success,
1300  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1301  *	ENODEV if the NVmem device is missing or otherwise unusable
1302  *
1303  * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1304  * from a (successful) NVM_FLASH_CMD_RD.
1305  */
1306 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1307 				uint32_t *dp);
1308 #pragma	no_inline(bge_flash_access)
1309 
1310 static int
1311 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1312 {
1313 	uint32_t tries;
1314 	uint32_t regval;
1315 
1316 	ASSERT(mutex_owned(bgep->genlock));
1317 
1318 	/*
1319 	 * On the newer chips that support both SEEPROM & Flash, we need
1320 	 * to specifically disable SEEPROM access while accessing Flash.
1321 	 * The older chips don't support Flash, and the NVM registers don't
1322 	 * exist, so we shouldn't be here at all!
1323 	 */
1324 	switch (bgep->chipid.nvtype) {
1325 	case BGE_NVTYPE_NONE:
1326 	case BGE_NVTYPE_UNKNOWN:
1327 		_NOTE(NOTREACHED)
1328 	case BGE_NVTYPE_SEEPROM:
1329 		return (ENODEV);
1330 
1331 	case BGE_NVTYPE_LEGACY_SEEPROM:
1332 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1333 	case BGE_NVTYPE_BUFFERED_FLASH:
1334 	default:
1335 		bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1336 		    NVM_CFG1_LEGACY_SEEPROM_MODE);
1337 		break;
1338 	}
1339 
1340 	/*
1341 	 * Assemble the command ...
1342 	 */
1343 	addr &= NVM_FLASH_ADDR_MASK;
1344 	cmd |= NVM_FLASH_CMD_DOIT;
1345 	cmd |= NVM_FLASH_CMD_FIRST;
1346 	cmd |= NVM_FLASH_CMD_LAST;
1347 	cmd |= NVM_FLASH_CMD_DONE;
1348 
1349 	bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1350 	bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1351 	bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1352 
1353 	/*
1354 	 * Allow up to 1000ms ...
1355 	 */
1356 	for (tries = 0; tries < 1000; ++tries) {
1357 		regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1358 		if (regval & NVM_FLASH_CMD_DONE)
1359 			break;
1360 		drv_usecwait(1);
1361 	}
1362 
1363 	if (regval & NVM_FLASH_CMD_DONE) {
1364 		/*
1365 		 * All OK; read the data from the Flash read register
1366 		 */
1367 		BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1368 		*dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1369 		return (0);
1370 	}
1371 
1372 	/*
1373 	 * Hmm ... what happened here?
1374 	 *
1375 	 * Most likely, the user addressed a non-existent Flash. Or
1376 	 * maybe the Flash was busy internally (e.g. processing a write)
1377 	 * and didn't respond to being addressed. Either way, there's
1378 	 * nothing we can here ...
1379 	 */
1380 	BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1381 	return (ENODATA);
1382 }
1383 
1384 /*
1385  * The next two functions regulate access to the NVram (if fitted).
1386  *
1387  * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1388  * (SPI) interface, but they can be accessed through either port. These
1389  * are managed by different instance of this driver and have no software
1390  * state in common.
1391  *
1392  * In addition (and even on a single core chip) the chip's internal
1393  * firmware can access the SEEPROM/Flash, most notably after a RESET
1394  * when it may download code to run internally.
1395  *
1396  * So we need to arbitrate between these various software agents.  For
1397  * this purpose, the chip provides the Software Arbitration Register,
1398  * which implements hardware(!) arbitration.
1399  *
1400  * This functionality didn't exist on older (5700/5701) chips, so there's
1401  * nothing we can do by way of arbitration on those; also, if there's no
1402  * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1403  * nothing to do.
1404  *
1405  * The internal firmware appears to use Request 0, which is the highest
1406  * priority.  So we'd like to use Request 2, leaving one higher and one
1407  * lower for any future developments ... but apparently this doesn't
1408  * always work.  So for now, the code uses Request 1 ;-(
1409  */
1410 
1411 #define	NVM_READ_REQ	NVM_READ_REQ1
1412 #define	NVM_RESET_REQ	NVM_RESET_REQ1
1413 #define	NVM_SET_REQ	NVM_SET_REQ1
1414 
1415 static void bge_nvmem_relinquish(bge_t *bgep);
1416 #pragma	no_inline(bge_nvmem_relinquish)
1417 
1418 static void
1419 bge_nvmem_relinquish(bge_t *bgep)
1420 {
1421 	ASSERT(mutex_owned(bgep->genlock));
1422 
1423 	switch (bgep->chipid.nvtype) {
1424 	case BGE_NVTYPE_NONE:
1425 	case BGE_NVTYPE_UNKNOWN:
1426 		_NOTE(NOTREACHED)
1427 		return;
1428 
1429 	case BGE_NVTYPE_SEEPROM:
1430 		/*
1431 		 * No arbitration performed, no release needed
1432 		 */
1433 		return;
1434 
1435 	case BGE_NVTYPE_LEGACY_SEEPROM:
1436 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1437 	case BGE_NVTYPE_BUFFERED_FLASH:
1438 	default:
1439 		break;
1440 	}
1441 
1442 	/*
1443 	 * Our own request should be present (whether or not granted) ...
1444 	 */
1445 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1446 
1447 	/*
1448 	 * ... this will make it go away.
1449 	 */
1450 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1451 	(void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1452 }
1453 
1454 /*
1455  * Arbitrate for access to the NVmem, if necessary
1456  *
1457  * Return value:
1458  *	0 on success
1459  *	EAGAIN if the device is in use (retryable)
1460  *	ENODEV if the NVmem device is missing or otherwise unusable
1461  */
1462 static int bge_nvmem_acquire(bge_t *bgep);
1463 #pragma	no_inline(bge_nvmem_acquire)
1464 
1465 static int
1466 bge_nvmem_acquire(bge_t *bgep)
1467 {
1468 	uint32_t regval;
1469 	uint32_t tries;
1470 
1471 	ASSERT(mutex_owned(bgep->genlock));
1472 
1473 	switch (bgep->chipid.nvtype) {
1474 	case BGE_NVTYPE_NONE:
1475 	case BGE_NVTYPE_UNKNOWN:
1476 		/*
1477 		 * Access denied: no (recognisable) device fitted
1478 		 */
1479 		return (ENODEV);
1480 
1481 	case BGE_NVTYPE_SEEPROM:
1482 		/*
1483 		 * Access granted: no arbitration needed (or possible)
1484 		 */
1485 		return (0);
1486 
1487 	case BGE_NVTYPE_LEGACY_SEEPROM:
1488 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1489 	case BGE_NVTYPE_BUFFERED_FLASH:
1490 	default:
1491 		/*
1492 		 * Access conditional: conduct arbitration protocol
1493 		 */
1494 		break;
1495 	}
1496 
1497 	/*
1498 	 * We're holding the per-port mutex <genlock>, so no-one other
1499 	 * thread can be attempting to access the NVmem through *this*
1500 	 * port. But it could be in use by the *other* port (of a 5704),
1501 	 * or by the chip's internal firmware, so we have to go through
1502 	 * the full (hardware) arbitration protocol ...
1503 	 *
1504 	 * Note that *because* we're holding <genlock>, the interrupt handler
1505 	 * won't be able to progress.  So we're only willing to spin for a
1506 	 * fairly short time.  Specifically:
1507 	 *
1508 	 *	We *must* wait long enough for the hardware to resolve all
1509 	 *	requests and determine the winner.  Fortunately, this is
1510 	 *	"almost instantaneous", even as observed by GHz CPUs.
1511 	 *
1512 	 *	A successful access by another Solaris thread (via either
1513 	 *	port) typically takes ~20us.  So waiting a bit longer than
1514 	 *	that will give a good chance of success, if the other user
1515 	 *	*is* another thread on the other port.
1516 	 *
1517 	 *	However, the internal firmware can hold on to the NVmem
1518 	 *	for *much* longer: at least 10 milliseconds just after a
1519 	 *	RESET, and maybe even longer if the NVmem actually contains
1520 	 *	code to download and run on the internal CPUs.
1521 	 *
1522 	 * So, we'll allow 50us; if that's not enough then it's up to the
1523 	 * caller to retry later (hence the choice of return code EAGAIN).
1524 	 */
1525 	regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1526 	bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1527 
1528 	for (tries = 0; tries < 50; ++tries) {
1529 		regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1530 		if (regval & NVM_WON_REQ1)
1531 			break;
1532 		drv_usecwait(1);
1533 	}
1534 
1535 	if (regval & NVM_WON_REQ1) {
1536 		BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1537 		return (0);
1538 	}
1539 
1540 	/*
1541 	 * Somebody else must be accessing the NVmem, so abandon our
1542 	 * attempt take control of it.  The caller can try again later ...
1543 	 */
1544 	BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1545 	bge_nvmem_relinquish(bgep);
1546 	return (EAGAIN);
1547 }
1548 
1549 /*
1550  * This code assumes that the GPIO1 bit has been wired up to the NVmem
1551  * write protect line in such a way that the NVmem is protected when
1552  * GPIO1 is an input, or is an output but driven high.  Thus, to make the
1553  * NVmem writable we have to change GPIO1 to an output AND drive it low.
1554  *
1555  * Note: there's only one set of GPIO pins on a 5704, even though they
1556  * can be accessed through either port.  So the chip has to resolve what
1557  * happens if the two ports program a single pin differently ... the rule
1558  * it uses is that if the ports disagree about the *direction* of a pin,
1559  * "output" wins over "input", but if they disagree about its *value* as
1560  * an output, then the pin is TRISTATED instead!  In such a case, no-one
1561  * wins, and the external signal does whatever the external circuitry
1562  * defines as the default -- which we've assumed is the PROTECTED state.
1563  * So, we always change GPIO1 back to being an *input* whenever we're not
1564  * specifically using it to unprotect the NVmem. This allows either port
1565  * to update the NVmem, although obviously only one at a time!
1566  *
1567  * The caller should hold <genlock> and *also* have already acquired the
1568  * right to access the NVmem, via bge_nvmem_acquire() above.
1569  */
1570 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1571 #pragma	inline(bge_nvmem_protect)
1572 
1573 static void
1574 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1575 {
1576 	uint32_t regval;
1577 
1578 	ASSERT(mutex_owned(bgep->genlock));
1579 
1580 	regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1581 	if (protect) {
1582 		regval |= MLCR_MISC_PINS_OUTPUT_1;
1583 		regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1584 	} else {
1585 		regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1586 		regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1587 	}
1588 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1589 }
1590 
1591 /*
1592  * Now put it all together ...
1593  *
1594  * Try to acquire control of the NVmem; if successful, then:
1595  *	unprotect it (if we want to write to it)
1596  *	perform the requested access
1597  *	reprotect it (after a write)
1598  *	relinquish control
1599  *
1600  * Return value:
1601  *	0 on success,
1602  *	EAGAIN if the device is in use (retryable)
1603  *	ENODATA on access timeout (maybe retryable: device may just be busy)
1604  *	ENODEV if the NVmem device is missing or otherwise unusable
1605  *	EPROTO on other h/w or s/w errors.
1606  */
1607 static int
1608 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1609 {
1610 	int err;
1611 
1612 	if ((err = bge_nvmem_acquire(bgep)) == 0) {
1613 		switch (cmd) {
1614 		case BGE_SEE_READ:
1615 			err = bge_seeprom_access(bgep,
1616 			    SEEPROM_ACCESS_READ, addr, dp);
1617 			break;
1618 
1619 		case BGE_SEE_WRITE:
1620 			bge_nvmem_protect(bgep, B_FALSE);
1621 			err = bge_seeprom_access(bgep,
1622 			    SEEPROM_ACCESS_WRITE, addr, dp);
1623 			bge_nvmem_protect(bgep, B_TRUE);
1624 			break;
1625 
1626 		case BGE_FLASH_READ:
1627 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1628 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1629 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1630 				    NVM_ACCESS_ENABLE);
1631 			}
1632 			err = bge_flash_access(bgep,
1633 			    NVM_FLASH_CMD_RD, addr, dp);
1634 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1635 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1636 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1637 				    NVM_ACCESS_ENABLE);
1638 			}
1639 			break;
1640 
1641 		case BGE_FLASH_WRITE:
1642 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1643 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1644 				bge_reg_set32(bgep, NVM_ACCESS_REG,
1645 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1646 			}
1647 			bge_nvmem_protect(bgep, B_FALSE);
1648 			err = bge_flash_access(bgep,
1649 			    NVM_FLASH_CMD_WR, addr, dp);
1650 			bge_nvmem_protect(bgep, B_TRUE);
1651 			if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1652 			    DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1653 				bge_reg_clr32(bgep, NVM_ACCESS_REG,
1654 				    NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1655 			}
1656 
1657 			break;
1658 
1659 		default:
1660 			_NOTE(NOTREACHED)
1661 			break;
1662 		}
1663 		bge_nvmem_relinquish(bgep);
1664 	}
1665 
1666 	BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1667 	return (err);
1668 }
1669 
1670 /*
1671  * Attempt to get a MAC address from the SEEPROM or Flash, if any
1672  */
1673 static uint64_t bge_get_nvmac(bge_t *bgep);
1674 #pragma no_inline(bge_get_nvmac)
1675 
1676 static uint64_t
1677 bge_get_nvmac(bge_t *bgep)
1678 {
1679 	uint32_t mac_high;
1680 	uint32_t mac_low;
1681 	uint32_t addr;
1682 	uint32_t cmd;
1683 	uint64_t mac;
1684 
1685 	BGE_TRACE(("bge_get_nvmac($%p)",
1686 	    (void *)bgep));
1687 
1688 	switch (bgep->chipid.nvtype) {
1689 	case BGE_NVTYPE_NONE:
1690 	case BGE_NVTYPE_UNKNOWN:
1691 	default:
1692 		return (0ULL);
1693 
1694 	case BGE_NVTYPE_SEEPROM:
1695 	case BGE_NVTYPE_LEGACY_SEEPROM:
1696 		cmd = BGE_SEE_READ;
1697 		break;
1698 
1699 	case BGE_NVTYPE_UNBUFFERED_FLASH:
1700 	case BGE_NVTYPE_BUFFERED_FLASH:
1701 		cmd = BGE_FLASH_READ;
1702 		break;
1703 	}
1704 
1705 	if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1706 		addr = NVMEM_DATA_MAC_ADDRESS_5906;
1707 	else
1708 		addr = NVMEM_DATA_MAC_ADDRESS;
1709 
1710 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1711 		return (0ULL);
1712 	addr += 4;
1713 	if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1714 		return (0ULL);
1715 
1716 	/*
1717 	 * The Broadcom chip is natively BIG-endian, so that's how the
1718 	 * MAC address is represented in NVmem.  We may need to swap it
1719 	 * around on a little-endian host ...
1720 	 */
1721 #ifdef	_BIG_ENDIAN
1722 	mac = mac_high;
1723 	mac = mac << 32;
1724 	mac |= mac_low;
1725 #else
1726 	mac = BGE_BSWAP_32(mac_high);
1727 	mac = mac << 32;
1728 	mac |= BGE_BSWAP_32(mac_low);
1729 #endif	/* _BIG_ENDIAN */
1730 
1731 	return (mac);
1732 }
1733 
1734 #else	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1735 
1736 /*
1737  * Dummy version for when we're not supporting NVmem access
1738  */
1739 static uint64_t bge_get_nvmac(bge_t *bgep);
1740 #pragma inline(bge_get_nvmac)
1741 
1742 static uint64_t
1743 bge_get_nvmac(bge_t *bgep)
1744 {
1745 	_NOTE(ARGUNUSED(bgep))
1746 	return (0ULL);
1747 }
1748 
1749 #endif	/* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1750 
1751 /*
1752  * Determine the type of NVmem that is (or may be) attached to this chip,
1753  */
1754 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1755 #pragma no_inline(bge_nvmem_id)
1756 
1757 static enum bge_nvmem_type
1758 bge_nvmem_id(bge_t *bgep)
1759 {
1760 	enum bge_nvmem_type nvtype;
1761 	uint32_t config1;
1762 
1763 	BGE_TRACE(("bge_nvmem_id($%p)",
1764 	    (void *)bgep));
1765 
1766 	switch (bgep->chipid.device) {
1767 	default:
1768 		/*
1769 		 * We shouldn't get here; it means we don't recognise
1770 		 * the chip, which means we don't know how to determine
1771 		 * what sort of NVmem (if any) it has.  So we'll say
1772 		 * NONE, to disable the NVmem access code ...
1773 		 */
1774 		nvtype = BGE_NVTYPE_NONE;
1775 		break;
1776 
1777 	case DEVICE_ID_5700:
1778 	case DEVICE_ID_5700x:
1779 	case DEVICE_ID_5701:
1780 		/*
1781 		 * These devices support *only* SEEPROMs
1782 		 */
1783 		nvtype = BGE_NVTYPE_SEEPROM;
1784 		break;
1785 
1786 	case DEVICE_ID_5702:
1787 	case DEVICE_ID_5702fe:
1788 	case DEVICE_ID_5703C:
1789 	case DEVICE_ID_5703S:
1790 	case DEVICE_ID_5704C:
1791 	case DEVICE_ID_5704S:
1792 	case DEVICE_ID_5704:
1793 	case DEVICE_ID_5705M:
1794 	case DEVICE_ID_5705C:
1795 	case DEVICE_ID_5705_2:
1796 	case DEVICE_ID_5706:
1797 	case DEVICE_ID_5782:
1798 	case DEVICE_ID_5787:
1799 	case DEVICE_ID_5787M:
1800 	case DEVICE_ID_5788:
1801 	case DEVICE_ID_5789:
1802 	case DEVICE_ID_5751:
1803 	case DEVICE_ID_5751M:
1804 	case DEVICE_ID_5752:
1805 	case DEVICE_ID_5752M:
1806 	case DEVICE_ID_5754:
1807 	case DEVICE_ID_5755:
1808 	case DEVICE_ID_5755M:
1809 	case DEVICE_ID_5721:
1810 	case DEVICE_ID_5722:
1811 	case DEVICE_ID_5714C:
1812 	case DEVICE_ID_5714S:
1813 	case DEVICE_ID_5715C:
1814 	case DEVICE_ID_5715S:
1815 		config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1816 		if (config1 & NVM_CFG1_FLASH_MODE)
1817 			if (config1 & NVM_CFG1_BUFFERED_MODE)
1818 				nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1819 			else
1820 				nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1821 		else
1822 			nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1823 		break;
1824 	case DEVICE_ID_5906:
1825 	case DEVICE_ID_5906M:
1826 		nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1827 		break;
1828 	}
1829 
1830 	return (nvtype);
1831 }
1832 
1833 #undef	BGE_DBG
1834 #define	BGE_DBG		BGE_DBG_CHIP	/* debug flag for this code	*/
1835 
1836 static void
1837 bge_init_recv_rule(bge_t *bgep)
1838 {
1839 	bge_recv_rule_t *rulep;
1840 	uint32_t i;
1841 
1842 	/*
1843 	 * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING
1844 	 * 1. to direct UDP traffic, set:
1845 	 * 	rulep->control = RULE_PROTO_CONTROL;
1846 	 * 	rulep->mask_value = RULE_UDP_MASK_VALUE;
1847 	 * 2. to direct ICMP traffic, set:
1848 	 * 	rulep->control = RULE_PROTO_CONTROL;
1849 	 * 	rulep->mask_value = RULE_ICMP_MASK_VALUE;
1850 	 * 3. to direct traffic by source ip, set:
1851 	 * 	rulep->control = RULE_SIP_CONTROL;
1852 	 * 	rulep->mask_value = RULE_SIP_MASK_VALUE;
1853 	 */
1854 	rulep = bgep->recv_rules;
1855 	rulep->control = RULE_PROTO_CONTROL;
1856 	rulep->mask_value = RULE_TCP_MASK_VALUE;
1857 
1858 	/*
1859 	 * set receive rule registers
1860 	 */
1861 	rulep = bgep->recv_rules;
1862 	for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
1863 		bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
1864 		bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
1865 	}
1866 }
1867 
1868 /*
1869  * Using the values captured by bge_chip_cfg_init(), and additional probes
1870  * as required, characterise the chip fully: determine the label by which
1871  * to refer to this chip, the correct settings for various registers, and
1872  * of course whether the device and/or subsystem are supported!
1873  */
1874 int bge_chip_id_init(bge_t *bgep);
1875 #pragma	no_inline(bge_chip_id_init)
1876 
1877 int
1878 bge_chip_id_init(bge_t *bgep)
1879 {
1880 	char buf[MAXPATHLEN];		/* any risk of stack overflow?	*/
1881 	boolean_t sys_ok;
1882 	boolean_t dev_ok;
1883 	chip_id_t *cidp;
1884 	uint32_t subid;
1885 	char *devname;
1886 	char *sysname;
1887 	int *ids;
1888 	int err;
1889 	uint_t i;
1890 
1891 	sys_ok = dev_ok = B_FALSE;
1892 	cidp = &bgep->chipid;
1893 
1894 	/*
1895 	 * Check the PCI device ID to determine the generic chip type and
1896 	 * select parameters that depend on this.
1897 	 *
1898 	 * Note: because the SPARC platforms in general don't fit the
1899 	 * SEEPROM 'behind' the chip, the PCI revision ID register reads
1900 	 * as zero - which is why we use <asic_rev> rather than <revision>
1901 	 * below ...
1902 	 *
1903 	 * Note: in general we can't distinguish between the Copper/SerDes
1904 	 * versions by ID alone, as some Copper devices (e.g. some but not
1905 	 * all 5703Cs) have the same ID as the SerDes equivalents.  So we
1906 	 * treat them the same here, and the MII code works out the media
1907 	 * type later on ...
1908 	 */
1909 	cidp->mbuf_base = bge_mbuf_pool_base;
1910 	cidp->mbuf_length = bge_mbuf_pool_len;
1911 	cidp->recv_slots = BGE_RECV_SLOTS_USED;
1912 	cidp->bge_dma_rwctrl = bge_dma_rwctrl;
1913 	cidp->pci_type = BGE_PCI_X;
1914 	cidp->statistic_type = BGE_STAT_BLK;
1915 	cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
1916 	cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
1917 	cidp->mbuf_hi_water = bge_mbuf_hi_water;
1918 	cidp->rx_ticks_norm = bge_rx_ticks_norm;
1919 	cidp->rx_count_norm = bge_rx_count_norm;
1920 
1921 	if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
1922 		cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
1923 	if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
1924 		cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
1925 
1926 	cidp->msi_enabled = B_FALSE;
1927 
1928 	switch (cidp->device) {
1929 	case DEVICE_ID_5700:
1930 	case DEVICE_ID_5700x:
1931 		cidp->chip_label = 5700;
1932 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1933 		break;
1934 
1935 	case DEVICE_ID_5701:
1936 		cidp->chip_label = 5701;
1937 		dev_ok = B_TRUE;
1938 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1939 		break;
1940 
1941 	case DEVICE_ID_5702:
1942 	case DEVICE_ID_5702fe:
1943 		cidp->chip_label = 5702;
1944 		dev_ok = B_TRUE;
1945 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1946 		cidp->pci_type = BGE_PCI;
1947 		break;
1948 
1949 	case DEVICE_ID_5703C:
1950 	case DEVICE_ID_5703S:
1951 	case DEVICE_ID_5703:
1952 		/*
1953 		 * Revision A0 of the 5703/5793 had various errata
1954 		 * that we can't or don't work around, so it's not
1955 		 * supported, but all later versions are
1956 		 */
1957 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
1958 		if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
1959 			dev_ok = B_TRUE;
1960 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1961 		break;
1962 
1963 	case DEVICE_ID_5704C:
1964 	case DEVICE_ID_5704S:
1965 	case DEVICE_ID_5704:
1966 		cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
1967 		cidp->mbuf_base = bge_mbuf_pool_base_5704;
1968 		cidp->mbuf_length = bge_mbuf_pool_len_5704;
1969 		dev_ok = B_TRUE;
1970 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1971 		break;
1972 
1973 	case DEVICE_ID_5705C:
1974 	case DEVICE_ID_5705M:
1975 	case DEVICE_ID_5705MA3:
1976 	case DEVICE_ID_5705F:
1977 	case DEVICE_ID_5705_2:
1978 	case DEVICE_ID_5754:
1979 		if (cidp->device == DEVICE_ID_5754) {
1980 			cidp->chip_label = 5754;
1981 			cidp->pci_type = BGE_PCI_E;
1982 		} else {
1983 			cidp->chip_label = 5705;
1984 			cidp->pci_type = BGE_PCI;
1985 		}
1986 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
1987 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
1988 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
1989 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
1990 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
1991 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
1992 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
1993 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
1994 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
1995 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
1996 		cidp->statistic_type = BGE_STAT_REG;
1997 		dev_ok = B_TRUE;
1998 		break;
1999 
2000 	case DEVICE_ID_5906:
2001 	case DEVICE_ID_5906M:
2002 		cidp->chip_label = 5906;
2003 		cidp->pci_type = BGE_PCI_E;
2004 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2005 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2006 		cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2007 		cidp->mbuf_base = bge_mbuf_pool_base;
2008 		cidp->mbuf_length = bge_mbuf_pool_len;
2009 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2010 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2011 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2012 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2013 		cidp->statistic_type = BGE_STAT_REG;
2014 		dev_ok = B_TRUE;
2015 		break;
2016 
2017 	case DEVICE_ID_5753:
2018 		cidp->chip_label = 5753;
2019 		cidp->pci_type = BGE_PCI_E;
2020 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2021 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2022 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2023 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2024 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2025 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2026 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2027 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2028 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2029 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2030 		cidp->statistic_type = BGE_STAT_REG;
2031 		dev_ok = B_TRUE;
2032 		break;
2033 
2034 	case DEVICE_ID_5755:
2035 	case DEVICE_ID_5755M:
2036 		cidp->chip_label = 5755;
2037 		cidp->pci_type = BGE_PCI_E;
2038 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2039 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2040 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2041 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2042 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2043 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2044 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2045 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2046 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2047 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2048 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2049 		cidp->statistic_type = BGE_STAT_REG;
2050 		dev_ok = B_TRUE;
2051 		break;
2052 
2053 	case DEVICE_ID_5787:
2054 	case DEVICE_ID_5787M:
2055 		cidp->chip_label = 5787;
2056 		cidp->pci_type = BGE_PCI_E;
2057 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2058 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2059 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2060 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2061 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2062 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2063 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2064 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2065 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2066 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2067 		cidp->statistic_type = BGE_STAT_REG;
2068 		dev_ok = B_TRUE;
2069 		break;
2070 
2071 	case DEVICE_ID_5706:
2072 		cidp->chip_label = 5706;
2073 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2074 		break;
2075 
2076 	case DEVICE_ID_5782:
2077 		/*
2078 		 * Apart from the label, we treat this as a 5705(?)
2079 		 */
2080 		cidp->chip_label = 5782;
2081 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2082 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2083 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2084 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2085 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2086 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2087 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2088 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2089 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2090 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2091 		cidp->statistic_type = BGE_STAT_REG;
2092 		dev_ok = B_TRUE;
2093 		break;
2094 
2095 	case DEVICE_ID_5788:
2096 		/*
2097 		 * Apart from the label, we treat this as a 5705(?)
2098 		 */
2099 		cidp->chip_label = 5788;
2100 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2101 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2102 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2103 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2104 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2105 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2106 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2107 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2108 		cidp->statistic_type = BGE_STAT_REG;
2109 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2110 		dev_ok = B_TRUE;
2111 		break;
2112 
2113 	case DEVICE_ID_5714C:
2114 		if (cidp->revision >= REVISION_ID_5714_A2)
2115 			cidp->msi_enabled = bge_enable_msi;
2116 		/* FALLTHRU */
2117 	case DEVICE_ID_5714S:
2118 		cidp->chip_label = 5714;
2119 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2120 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2121 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2122 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2123 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2124 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2125 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2126 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2127 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2128 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2129 		cidp->pci_type = BGE_PCI_E;
2130 		cidp->statistic_type = BGE_STAT_REG;
2131 		dev_ok = B_TRUE;
2132 		break;
2133 
2134 	case DEVICE_ID_5715C:
2135 	case DEVICE_ID_5715S:
2136 		cidp->chip_label = 5715;
2137 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2138 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2139 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2140 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2141 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2142 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2143 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2144 		cidp->bge_mlcr_default = bge_mlcr_default_5714;
2145 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2146 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2147 		cidp->pci_type = BGE_PCI_E;
2148 		cidp->statistic_type = BGE_STAT_REG;
2149 		if (cidp->revision >= REVISION_ID_5715_A2)
2150 			cidp->msi_enabled = bge_enable_msi;
2151 		dev_ok = B_TRUE;
2152 		break;
2153 
2154 	case DEVICE_ID_5721:
2155 		cidp->chip_label = 5721;
2156 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2157 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2158 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2159 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2160 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2161 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2162 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2163 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2164 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2165 		cidp->pci_type = BGE_PCI_E;
2166 		cidp->statistic_type = BGE_STAT_REG;
2167 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2168 		dev_ok = B_TRUE;
2169 		break;
2170 
2171 	case DEVICE_ID_5722:
2172 		cidp->chip_label = 5722;
2173 		cidp->pci_type = BGE_PCI_E;
2174 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2175 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2176 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2177 		cidp->mbuf_base = bge_mbuf_pool_base_5705;
2178 		cidp->mbuf_length = bge_mbuf_pool_len_5705;
2179 		cidp->recv_slots = BGE_RECV_SLOTS_5705;
2180 		cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2181 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2182 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2183 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2184 		cidp->statistic_type = BGE_STAT_REG;
2185 		dev_ok = B_TRUE;
2186 		break;
2187 
2188 	case DEVICE_ID_5751:
2189 	case DEVICE_ID_5751M:
2190 		cidp->chip_label = 5751;
2191 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2192 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2193 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2194 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2195 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2196 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2197 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2198 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2199 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2200 		cidp->pci_type = BGE_PCI_E;
2201 		cidp->statistic_type = BGE_STAT_REG;
2202 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2203 		dev_ok = B_TRUE;
2204 		break;
2205 
2206 	case DEVICE_ID_5752:
2207 	case DEVICE_ID_5752M:
2208 		cidp->chip_label = 5752;
2209 		cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2210 		cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2211 		cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2212 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2213 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2214 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2215 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2216 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2217 		cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2218 		cidp->pci_type = BGE_PCI_E;
2219 		cidp->statistic_type = BGE_STAT_REG;
2220 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2221 		dev_ok = B_TRUE;
2222 		break;
2223 
2224 	case DEVICE_ID_5789:
2225 		cidp->chip_label = 5789;
2226 		cidp->mbuf_base = bge_mbuf_pool_base_5721;
2227 		cidp->mbuf_length = bge_mbuf_pool_len_5721;
2228 		cidp->recv_slots = BGE_RECV_SLOTS_5721;
2229 		cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2230 		cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2231 		cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2232 		cidp->pci_type = BGE_PCI_E;
2233 		cidp->statistic_type = BGE_STAT_REG;
2234 		cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2235 		cidp->flags |= CHIP_FLAG_NO_JUMBO;
2236 		cidp->msi_enabled = B_TRUE;
2237 		dev_ok = B_TRUE;
2238 		break;
2239 
2240 	}
2241 
2242 	/*
2243 	 * Setup the default jumbo parameter.
2244 	 */
2245 	cidp->ethmax_size = ETHERMAX;
2246 	cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2247 	cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2248 
2249 	/*
2250 	 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2251 	 * setup below jumbo specific parameters.
2252 	 *
2253 	 * For BCM5714/5715, there is only one standard receive ring. So the
2254 	 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2255 	 * feature is enabled.
2256 	 */
2257 	if (bge_jumbo_enable &&
2258 	    !(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2259 	    (cidp->default_mtu > BGE_DEFAULT_MTU) &&
2260 	    (cidp->default_mtu <= BGE_MAXIMUM_MTU)) {
2261 		if (DEVICE_5714_SERIES_CHIPSETS(bgep)) {
2262 			cidp->mbuf_lo_water_rdma =
2263 			    RDMA_MBUF_LOWAT_5714_JUMBO;
2264 			cidp->mbuf_lo_water_rmac =
2265 			    MAC_RX_MBUF_LOWAT_5714_JUMBO;
2266 			cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
2267 			cidp->jumbo_slots = 0;
2268 			cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
2269 		} else {
2270 			cidp->mbuf_lo_water_rdma =
2271 			    RDMA_MBUF_LOWAT_JUMBO;
2272 			cidp->mbuf_lo_water_rmac =
2273 			    MAC_RX_MBUF_LOWAT_JUMBO;
2274 			cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
2275 			cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
2276 		}
2277 		cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
2278 		cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
2279 		cidp->ethmax_size = cidp->default_mtu +
2280 		    sizeof (struct ether_header);
2281 	}
2282 
2283 	/*
2284 	 * Identify the NV memory type: SEEPROM or Flash?
2285 	 */
2286 	cidp->nvtype = bge_nvmem_id(bgep);
2287 
2288 	/*
2289 	 * Now, we want to check whether this device is part of a
2290 	 * supported subsystem (e.g., on the motherboard of a Sun
2291 	 * branded platform).
2292 	 *
2293 	 * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-)
2294 	 */
2295 	if (cidp->subven == VENDOR_ID_SUN)
2296 		sys_ok = B_TRUE;
2297 
2298 	/*
2299 	 * Rule 2: If it's on the list on known subsystems, then it's OK.
2300 	 * Note: 0x14e41647 should *not* appear in the list, but the code
2301 	 * doesn't enforce that.
2302 	 */
2303 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo,
2304 	    DDI_PROP_DONTPASS, knownids_propname, &ids, &i);
2305 	if (err == DDI_PROP_SUCCESS) {
2306 		/*
2307 		 * Got the list; scan for a matching subsystem vendor/device
2308 		 */
2309 		subid = (cidp->subven << 16) | cidp->subdev;
2310 		while (i--)
2311 			if (ids[i] == subid)
2312 				sys_ok = B_TRUE;
2313 		ddi_prop_free(ids);
2314 	}
2315 
2316 	/*
2317 	 * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK
2318 	 *
2319 	 * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram
2320 	 * the Subsystem Vendor ID, so it defaults to Broadcom.  Therefore,
2321 	 * we have to check specially for the exact device paths to the
2322 	 * motherboard devices on those platforms ;-(
2323 	 *
2324 	 * Note: we can't just use the "supported-subsystems" mechanism
2325 	 * above, because the entry would have to be 0x14e41647 -- which
2326 	 * would then accept *any* plugin card that *didn't* contain a
2327 	 * (valid) SEEPROM ;-(
2328 	 */
2329 	sysname = ddi_node_name(ddi_root_node());
2330 	devname = ddi_pathname(bgep->devinfo, buf);
2331 	ASSERT(strlen(devname) > 0);
2332 	if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0)	/* Taco */
2333 		if (strcmp(devname, "/pci@1f,700000/network@2") == 0)
2334 			sys_ok = B_TRUE;
2335 	if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0)	/* ENWS */
2336 		if (strcmp(devname, "/pci@1c,600000/network@3") == 0)
2337 			sys_ok = B_TRUE;
2338 
2339 	/*
2340 	 * Now check what we've discovered: is this truly a supported
2341 	 * chip on (the motherboard of) a supported platform?
2342 	 *
2343 	 * Possible problems here:
2344 	 * 1)	it's a completely unheard-of chip (e.g. 5761)
2345 	 * 2)	it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
2346 	 * 3)	it's a chip we would support if it were on the motherboard
2347 	 *	of a Sun platform, but this one isn't ;-(
2348 	 */
2349 	if (cidp->chip_label == 0)
2350 		bge_problem(bgep,
2351 		    "Device 'pci%04x,%04x' not recognized (%d?)",
2352 		    cidp->vendor, cidp->device, cidp->device);
2353 	else if (!dev_ok)
2354 		bge_problem(bgep,
2355 		    "Device 'pci%04x,%04x' (%d) revision %d not supported",
2356 		    cidp->vendor, cidp->device, cidp->chip_label,
2357 		    cidp->revision);
2358 #if	BGE_DEBUGGING
2359 	else if (!sys_ok)
2360 		bge_problem(bgep,
2361 		    "%d-based subsystem 'pci%04x,%04x' not validated",
2362 		    cidp->chip_label, cidp->subven, cidp->subdev);
2363 #endif
2364 	else
2365 		cidp->flags |= CHIP_FLAG_SUPPORTED;
2366 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
2367 		return (EIO);
2368 	return (0);
2369 }
2370 
2371 void
2372 bge_chip_msi_trig(bge_t *bgep)
2373 {
2374 	uint32_t	regval;
2375 
2376 	regval = bgep->param_msi_cnt<<4;
2377 	bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
2378 	BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
2379 }
2380 
2381 /*
2382  * Various registers that control the chip's internal engines (state
2383  * machines) have a <reset> and <enable> bits (fortunately, in the
2384  * same place in each such register :-).
2385  *
2386  * To reset the state machine, the <reset> bit must be written with 1;
2387  * it will then read back as 1 while the reset is in progress, but
2388  * self-clear to 0 when the reset completes.
2389  *
2390  * To enable a state machine, one must set the <enable> bit, which
2391  * will continue to read back as 0 until the state machine is running.
2392  *
2393  * To disable a state machine, the <enable> bit must be cleared, but
2394  * it will continue to read back as 1 until the state machine actually
2395  * stops.
2396  *
2397  * This routine implements polling for completion of a reset, enable
2398  * or disable operation, returning B_TRUE on success (bit reached the
2399  * required state) or B_FALSE on timeout (200*100us == 20ms).
2400  */
2401 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2402 					uint32_t mask, uint32_t val);
2403 #pragma	no_inline(bge_chip_poll_engine)
2404 
2405 static boolean_t
2406 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
2407 	uint32_t mask, uint32_t val)
2408 {
2409 	uint32_t regval;
2410 	uint32_t n;
2411 
2412 	BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
2413 	    (void *)bgep, regno, mask, val));
2414 
2415 	for (n = 200; n; --n) {
2416 		regval = bge_reg_get32(bgep, regno);
2417 		if ((regval & mask) == val)
2418 			return (B_TRUE);
2419 		drv_usecwait(100);
2420 	}
2421 
2422 	bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
2423 	return (B_FALSE);
2424 }
2425 
2426 /*
2427  * Various registers that control the chip's internal engines (state
2428  * machines) have a <reset> bit (fortunately, in the same place in
2429  * each such register :-).  To reset the state machine, this bit must
2430  * be written with 1; it will then read back as 1 while the reset is
2431  * in progress, but self-clear to 0 when the reset completes.
2432  *
2433  * This code sets the bit, then polls for it to read back as zero.
2434  * The return value is B_TRUE on success (reset bit cleared itself),
2435  * or B_FALSE if the state machine didn't recover :(
2436  *
2437  * NOTE: the Core reset is similar to other resets, except that we
2438  * can't poll for completion, since the Core reset disables memory
2439  * access!  So we just have to assume that it will all complete in
2440  * 100us.  See Broadcom document 570X-PG102-R, p102, steps 4-5.
2441  */
2442 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
2443 #pragma	no_inline(bge_chip_reset_engine)
2444 
2445 static boolean_t
2446 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
2447 {
2448 	uint32_t regval;
2449 	uint32_t val32;
2450 
2451 	regval = bge_reg_get32(bgep, regno);
2452 
2453 	BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
2454 	    (void *)bgep, regno));
2455 	BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
2456 	    regno, regval));
2457 
2458 	regval |= STATE_MACHINE_RESET_BIT;
2459 
2460 	switch (regno) {
2461 	case MISC_CONFIG_REG:
2462 		/*
2463 		 * BCM5714/5721/5751 pcie chip special case. In order to avoid
2464 		 * resetting PCIE block and bringing PCIE link down, bit 29
2465 		 * in the register needs to be set first, and then set it again
2466 		 * while the reset bit is written.
2467 		 * See:P500 of 57xx-PG102-RDS.pdf.
2468 		 */
2469 		if (DEVICE_5705_SERIES_CHIPSETS(bgep)||
2470 		    DEVICE_5721_SERIES_CHIPSETS(bgep)||
2471 		    DEVICE_5714_SERIES_CHIPSETS(bgep)||
2472 		    DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2473 			regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
2474 			if (bgep->chipid.pci_type == BGE_PCI_E) {
2475 				if (bgep->chipid.asic_rev ==
2476 				    MHCR_CHIP_REV_5751_A0 ||
2477 				    bgep->chipid.asic_rev ==
2478 				    MHCR_CHIP_REV_5721_A0 ||
2479 				    bgep->chipid.asic_rev ==
2480 				    MHCR_CHIP_REV_5755_A0) {
2481 					val32 = bge_reg_get32(bgep,
2482 					    PHY_TEST_CTRL_REG);
2483 					if (val32 == (PHY_PCIE_SCRAM_MODE |
2484 					    PHY_PCIE_LTASS_MODE))
2485 						bge_reg_put32(bgep,
2486 						    PHY_TEST_CTRL_REG,
2487 						    PHY_PCIE_SCRAM_MODE);
2488 					val32 = pci_config_get32
2489 					    (bgep->cfg_handle,
2490 					    PCI_CONF_BGE_CLKCTL);
2491 					val32 |= CLKCTL_PCIE_A0_FIX;
2492 					pci_config_put32(bgep->cfg_handle,
2493 					    PCI_CONF_BGE_CLKCTL, val32);
2494 				}
2495 				bge_reg_set32(bgep, regno,
2496 				    MISC_CONFIG_GRC_RESET_DISABLE);
2497 				regval |= MISC_CONFIG_GRC_RESET_DISABLE;
2498 			}
2499 		}
2500 
2501 		/*
2502 		 * Special case - causes Core reset
2503 		 *
2504 		 * On SPARC v9 we want to ensure that we don't start
2505 		 * timing until the I/O access has actually reached
2506 		 * the chip, otherwise we might make the next access
2507 		 * too early.  And we can't just force the write out
2508 		 * by following it with a read (even to config space)
2509 		 * because that would cause the fault we're trying
2510 		 * to avoid.  Hence the need for membar_sync() here.
2511 		 */
2512 		ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
2513 #ifdef	__sparcv9
2514 		membar_sync();
2515 #endif	/* __sparcv9 */
2516 		/*
2517 		 * On some platforms,system need about 300us for
2518 		 * link setup.
2519 		 */
2520 		drv_usecwait(300);
2521 		if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
2522 			bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
2523 			bge_reg_clr32(
2524 			    bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
2525 		}
2526 
2527 		if (bgep->chipid.pci_type == BGE_PCI_E) {
2528 			/* PCI-E device need more reset time */
2529 			drv_usecwait(120000);
2530 
2531 			/* Set PCIE max payload size and clear error status. */
2532 			if ((bgep->chipid.chip_label == 5721) ||
2533 			    (bgep->chipid.chip_label == 5751) ||
2534 			    (bgep->chipid.chip_label == 5752) ||
2535 			    (bgep->chipid.chip_label == 5789) ||
2536 			    (bgep->chipid.chip_label == 5906)) {
2537 				pci_config_put16(bgep->cfg_handle,
2538 				    PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
2539 				pci_config_put16(bgep->cfg_handle,
2540 				    PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
2541 			}
2542 		}
2543 
2544 		BGE_PCICHK(bgep);
2545 		return (B_TRUE);
2546 
2547 	default:
2548 		bge_reg_put32(bgep, regno, regval);
2549 		return (bge_chip_poll_engine(bgep, regno,
2550 		    STATE_MACHINE_RESET_BIT, 0));
2551 	}
2552 }
2553 
2554 /*
2555  * Various registers that control the chip's internal engines (state
2556  * machines) have an <enable> bit (fortunately, in the same place in
2557  * each such register :-).  To stop the state machine, this bit must
2558  * be written with 0, then polled to see when the state machine has
2559  * actually stopped.
2560  *
2561  * The return value is B_TRUE on success (enable bit cleared), or
2562  * B_FALSE if the state machine didn't stop :(
2563  */
2564 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
2565 						uint32_t morebits);
2566 #pragma	no_inline(bge_chip_disable_engine)
2567 
2568 static boolean_t
2569 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2570 {
2571 	uint32_t regval;
2572 
2573 	BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
2574 	    (void *)bgep, regno, morebits));
2575 
2576 	switch (regno) {
2577 	case FTQ_RESET_REG:
2578 		/*
2579 		 * For Schumacher's bugfix CR6490108
2580 		 */
2581 #ifdef BGE_IPMI_ASF
2582 #ifdef BGE_NETCONSOLE
2583 		if (bgep->asf_enabled)
2584 			return (B_TRUE);
2585 #endif
2586 #endif
2587 		/*
2588 		 * Not quite like the others; it doesn't
2589 		 * have an <enable> bit, but instead we
2590 		 * have to set and then clear all the bits
2591 		 */
2592 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2593 		drv_usecwait(100);
2594 		bge_reg_put32(bgep, regno, 0);
2595 		return (B_TRUE);
2596 
2597 	default:
2598 		regval = bge_reg_get32(bgep, regno);
2599 		regval &= ~STATE_MACHINE_ENABLE_BIT;
2600 		regval &= ~morebits;
2601 		bge_reg_put32(bgep, regno, regval);
2602 		return (bge_chip_poll_engine(bgep, regno,
2603 		    STATE_MACHINE_ENABLE_BIT, 0));
2604 	}
2605 }
2606 
2607 /*
2608  * Various registers that control the chip's internal engines (state
2609  * machines) have an <enable> bit (fortunately, in the same place in
2610  * each such register :-).  To start the state machine, this bit must
2611  * be written with 1, then polled to see when the state machine has
2612  * actually started.
2613  *
2614  * The return value is B_TRUE on success (enable bit set), or
2615  * B_FALSE if the state machine didn't start :(
2616  */
2617 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
2618 					uint32_t morebits);
2619 #pragma	no_inline(bge_chip_enable_engine)
2620 
2621 static boolean_t
2622 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
2623 {
2624 	uint32_t regval;
2625 
2626 	BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
2627 	    (void *)bgep, regno, morebits));
2628 
2629 	switch (regno) {
2630 	case FTQ_RESET_REG:
2631 #ifdef BGE_IPMI_ASF
2632 #ifdef BGE_NETCONSOLE
2633 		if (bgep->asf_enabled)
2634 			return (B_TRUE);
2635 #endif
2636 #endif
2637 		/*
2638 		 * Not quite like the others; it doesn't
2639 		 * have an <enable> bit, but instead we
2640 		 * have to set and then clear all the bits
2641 		 */
2642 		bge_reg_put32(bgep, regno, ~(uint32_t)0);
2643 		drv_usecwait(100);
2644 		bge_reg_put32(bgep, regno, 0);
2645 		return (B_TRUE);
2646 
2647 	default:
2648 		regval = bge_reg_get32(bgep, regno);
2649 		regval |= STATE_MACHINE_ENABLE_BIT;
2650 		regval |= morebits;
2651 		bge_reg_put32(bgep, regno, regval);
2652 		return (bge_chip_poll_engine(bgep, regno,
2653 		    STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
2654 	}
2655 }
2656 
2657 /*
2658  * Reprogram the Ethernet, Transmit, and Receive MAC
2659  * modes to match the param_* variables
2660  */
2661 void bge_sync_mac_modes(bge_t *bgep);
2662 #pragma	no_inline(bge_sync_mac_modes)
2663 
2664 void
2665 bge_sync_mac_modes(bge_t *bgep)
2666 {
2667 	uint32_t macmode;
2668 	uint32_t regval;
2669 
2670 	ASSERT(mutex_owned(bgep->genlock));
2671 
2672 	/*
2673 	 * Reprogram the Ethernet MAC mode ...
2674 	 */
2675 	macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
2676 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2677 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC))
2678 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2679 			macmode |= ETHERNET_MODE_LINK_POLARITY;
2680 		else
2681 			macmode &= ~ETHERNET_MODE_LINK_POLARITY;
2682 	else
2683 		macmode |= ETHERNET_MODE_LINK_POLARITY;
2684 	macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
2685 	if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
2686 	    (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
2687 		if (DEVICE_5714_SERIES_CHIPSETS(bgep))
2688 			macmode |= ETHERNET_MODE_PORTMODE_GMII;
2689 		else
2690 			macmode |= ETHERNET_MODE_PORTMODE_TBI;
2691 	} else if (bgep->param_link_speed == 10 ||
2692 	    bgep->param_link_speed == 100)
2693 		macmode |= ETHERNET_MODE_PORTMODE_MII;
2694 	else
2695 		macmode |= ETHERNET_MODE_PORTMODE_GMII;
2696 	if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
2697 		macmode |= ETHERNET_MODE_HALF_DUPLEX;
2698 	else
2699 		macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
2700 	if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
2701 		macmode |= ETHERNET_MODE_MAC_LOOPBACK;
2702 	else
2703 		macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
2704 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
2705 	BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
2706 	    (void *)bgep, regval, macmode));
2707 
2708 	/*
2709 	 * ... the Transmit MAC mode ...
2710 	 */
2711 	macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
2712 	if (bgep->param_link_tx_pause)
2713 		macmode |= TRANSMIT_MODE_FLOW_CONTROL;
2714 	else
2715 		macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
2716 	bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
2717 	BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
2718 	    (void *)bgep, regval, macmode));
2719 
2720 	/*
2721 	 * ... and the Receive MAC mode
2722 	 */
2723 	macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
2724 	if (bgep->param_link_rx_pause)
2725 		macmode |= RECEIVE_MODE_FLOW_CONTROL;
2726 	else
2727 		macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
2728 	bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
2729 	BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
2730 	    (void *)bgep, regval, macmode));
2731 }
2732 
2733 /*
2734  * bge_chip_sync() -- program the chip with the unicast MAC address,
2735  * the multicast hash table, the required level of promiscuity, and
2736  * the current loopback mode ...
2737  */
2738 #ifdef BGE_IPMI_ASF
2739 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
2740 #else
2741 int bge_chip_sync(bge_t *bgep);
2742 #endif
2743 #pragma	no_inline(bge_chip_sync)
2744 
2745 int
2746 #ifdef BGE_IPMI_ASF
2747 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
2748 #else
2749 bge_chip_sync(bge_t *bgep)
2750 #endif
2751 {
2752 	void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
2753 	boolean_t promisc;
2754 	uint64_t macaddr;
2755 	uint32_t fill;
2756 	int i, j;
2757 	int retval = DDI_SUCCESS;
2758 
2759 	BGE_TRACE(("bge_chip_sync($%p)",
2760 	    (void *)bgep));
2761 
2762 	ASSERT(mutex_owned(bgep->genlock));
2763 
2764 	promisc = B_FALSE;
2765 	fill = ~(uint32_t)0;
2766 
2767 	if (bgep->promisc)
2768 		promisc = B_TRUE;
2769 	else
2770 		fill = (uint32_t)0;
2771 
2772 	/*
2773 	 * If the TX/RX MAC engines are already running, we should stop
2774 	 * them (and reset the RX engine) before changing the parameters.
2775 	 * If they're not running, this will have no effect ...
2776 	 *
2777 	 * NOTE: this is currently disabled by default because stopping
2778 	 * and restarting the Tx engine may cause an outgoing packet in
2779 	 * transit to be truncated.  Also, stopping and restarting the
2780 	 * Rx engine seems to not work correctly on the 5705.  Testing
2781 	 * has not (yet!) revealed any problems with NOT stopping and
2782 	 * restarting these engines (and Broadcom say their drivers don't
2783 	 * do this), but if it is found to cause problems, this variable
2784 	 * can be patched to re-enable the old behaviour ...
2785 	 */
2786 	if (bge_stop_start_on_sync) {
2787 #ifdef BGE_IPMI_ASF
2788 		if (!bgep->asf_enabled) {
2789 			if (!bge_chip_disable_engine(bgep,
2790 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2791 				retval = DDI_FAILURE;
2792 		} else {
2793 			if (!bge_chip_disable_engine(bgep,
2794 			    RECEIVE_MAC_MODE_REG, 0))
2795 				retval = DDI_FAILURE;
2796 		}
2797 #else
2798 		if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
2799 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2800 			retval = DDI_FAILURE;
2801 #endif
2802 		if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2803 			retval = DDI_FAILURE;
2804 		if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
2805 			retval = DDI_FAILURE;
2806 	}
2807 
2808 	/*
2809 	 * Reprogram the hashed multicast address table ...
2810 	 */
2811 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2812 		bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
2813 
2814 	for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
2815 		bge_reg_put32(bgep, MAC_HASH_REG(i),
2816 			bgep->mcast_hash[i] | fill);
2817 
2818 #ifdef BGE_IPMI_ASF
2819 	if (!bgep->asf_enabled || !asf_keeplive) {
2820 #endif
2821 		/*
2822 		 * Transform the MAC address(es) from host to chip format, then
2823 		 * reprogram the transmit random backoff seed and the unicast
2824 		 * MAC address(es) ...
2825 		 */
2826 		for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
2827 			for (i = 0, fill = 0, macaddr = 0ull;
2828 			    i < ETHERADDRL; ++i) {
2829 				macaddr <<= 8;
2830 				macaddr |= bgep->curr_addr[j].addr[i];
2831 				fill += bgep->curr_addr[j].addr[i];
2832 			}
2833 			bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
2834 			bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
2835 		}
2836 
2837 		BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx",
2838 			(void *)bgep, macaddr));
2839 #ifdef BGE_IPMI_ASF
2840 	}
2841 #endif
2842 
2843 	/*
2844 	 * Set or clear the PROMISCUOUS mode bit
2845 	 */
2846 	opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
2847 	(*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
2848 
2849 	/*
2850 	 * Sync the rest of the MAC modes too ...
2851 	 */
2852 	bge_sync_mac_modes(bgep);
2853 
2854 	/*
2855 	 * Restart RX/TX MAC engines if required ...
2856 	 */
2857 	if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
2858 		if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
2859 			retval = DDI_FAILURE;
2860 #ifdef BGE_IPMI_ASF
2861 		if (!bgep->asf_enabled) {
2862 			if (!bge_chip_enable_engine(bgep,
2863 			    RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
2864 				retval = DDI_FAILURE;
2865 		} else {
2866 			if (!bge_chip_enable_engine(bgep,
2867 			    RECEIVE_MAC_MODE_REG, 0))
2868 				retval = DDI_FAILURE;
2869 		}
2870 #else
2871 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
2872 		    RECEIVE_MODE_KEEP_VLAN_TAG))
2873 			retval = DDI_FAILURE;
2874 #endif
2875 	}
2876 	return (retval);
2877 }
2878 
2879 /*
2880  * This array defines the sequence of state machine control registers
2881  * in which the <enable> bit must be cleared to bring the chip to a
2882  * clean stop.  Taken from Broadcom document 570X-PG102-R, p116.
2883  */
2884 static bge_regno_t shutdown_engine_regs[] = {
2885 	RECEIVE_MAC_MODE_REG,
2886 	RCV_BD_INITIATOR_MODE_REG,
2887 	RCV_LIST_PLACEMENT_MODE_REG,
2888 	RCV_LIST_SELECTOR_MODE_REG,		/* BCM5704 series only	*/
2889 	RCV_DATA_BD_INITIATOR_MODE_REG,
2890 	RCV_DATA_COMPLETION_MODE_REG,
2891 	RCV_BD_COMPLETION_MODE_REG,
2892 
2893 	SEND_BD_SELECTOR_MODE_REG,
2894 	SEND_BD_INITIATOR_MODE_REG,
2895 	SEND_DATA_INITIATOR_MODE_REG,
2896 	READ_DMA_MODE_REG,
2897 	SEND_DATA_COMPLETION_MODE_REG,
2898 	DMA_COMPLETION_MODE_REG,		/* BCM5704 series only	*/
2899 	SEND_BD_COMPLETION_MODE_REG,
2900 	TRANSMIT_MAC_MODE_REG,
2901 
2902 	HOST_COALESCE_MODE_REG,
2903 	WRITE_DMA_MODE_REG,
2904 	MBUF_CLUSTER_FREE_MODE_REG,		/* BCM5704 series only	*/
2905 	FTQ_RESET_REG,		/* special - see code	*/
2906 	BUFFER_MANAGER_MODE_REG,		/* BCM5704 series only	*/
2907 	MEMORY_ARBITER_MODE_REG,		/* BCM5704 series only	*/
2908 	BGE_REGNO_NONE		/* terminator		*/
2909 };
2910 
2911 #ifndef __sparc
2912 static bge_regno_t quiesce_regs[] = {
2913 	READ_DMA_MODE_REG,
2914 	DMA_COMPLETION_MODE_REG,
2915 	WRITE_DMA_MODE_REG,
2916 	BGE_REGNO_NONE
2917 };
2918 
2919 void bge_chip_stop_nonblocking(bge_t *bgep);
2920 #pragma no_inline(bge_chip_stop_nonblocking)
2921 
2922 /*
2923  * This function is called by bge_quiesce(). We
2924  * turn off all the DMA engines here.
2925  */
2926 void
2927 bge_chip_stop_nonblocking(bge_t *bgep)
2928 {
2929 	bge_regno_t *rbp;
2930 
2931 	/*
2932 	 * Flag that no more activity may be initiated
2933 	 */
2934 	bgep->progress &= ~PROGRESS_READY;
2935 
2936 	rbp = quiesce_regs;
2937 	while (*rbp != BGE_REGNO_NONE) {
2938 		(void) bge_chip_disable_engine(bgep, *rbp, 0);
2939 		++rbp;
2940 	}
2941 
2942 	bgep->bge_chip_state = BGE_CHIP_STOPPED;
2943 }
2944 
2945 #endif
2946 
2947 /*
2948  * bge_chip_stop() -- stop all chip processing
2949  *
2950  * If the <fault> parameter is B_TRUE, we're stopping the chip because
2951  * we've detected a problem internally; otherwise, this is a normal
2952  * (clean) stop (at user request i.e. the last STREAM has been closed).
2953  */
2954 void bge_chip_stop(bge_t *bgep, boolean_t fault);
2955 #pragma	no_inline(bge_chip_stop)
2956 
2957 void
2958 bge_chip_stop(bge_t *bgep, boolean_t fault)
2959 {
2960 	bge_regno_t regno;
2961 	bge_regno_t *rbp;
2962 	boolean_t ok;
2963 
2964 	BGE_TRACE(("bge_chip_stop($%p)",
2965 	    (void *)bgep));
2966 
2967 	ASSERT(mutex_owned(bgep->genlock));
2968 
2969 	rbp = shutdown_engine_regs;
2970 	/*
2971 	 * When driver try to shutdown the BCM5705/5788/5721/5751/
2972 	 * 5752/5714 and 5715 chipsets,the buffer manager and the mem
2973 	 * -ory arbiter should not be disabled.
2974 	 */
2975 	for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) {
2976 			if (DEVICE_5704_SERIES_CHIPSETS(bgep))
2977 				ok &= bge_chip_disable_engine(bgep, regno, 0);
2978 			else if ((regno != RCV_LIST_SELECTOR_MODE_REG) &&
2979 			    (regno != DMA_COMPLETION_MODE_REG) &&
2980 			    (regno != MBUF_CLUSTER_FREE_MODE_REG)&&
2981 			    (regno != BUFFER_MANAGER_MODE_REG) &&
2982 			    (regno != MEMORY_ARBITER_MODE_REG))
2983 				ok &= bge_chip_disable_engine(bgep,
2984 				    regno, 0);
2985 	}
2986 
2987 	if (!ok && !fault)
2988 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
2989 
2990 	/*
2991 	 * Finally, disable (all) MAC events & clear the MAC status
2992 	 */
2993 	bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
2994 	bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
2995 
2996 	/*
2997 	 * if we're stopping the chip because of a detected fault then do
2998 	 * appropriate actions
2999 	 */
3000 	if (fault) {
3001 		if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3002 			bgep->bge_chip_state = BGE_CHIP_FAULT;
3003 			if (!bgep->manual_reset)
3004 				ddi_fm_service_impact(bgep->devinfo,
3005 				    DDI_SERVICE_LOST);
3006 			if (bgep->bge_dma_error) {
3007 				/*
3008 				 * need to free buffers in case the fault was
3009 				 * due to a memory error in a buffer - got to
3010 				 * do a fair bit of tidying first
3011 				 */
3012 				if (bgep->progress & PROGRESS_KSTATS) {
3013 					bge_fini_kstats(bgep);
3014 					bgep->progress &= ~PROGRESS_KSTATS;
3015 				}
3016 				if (bgep->progress & PROGRESS_INTR) {
3017 					bge_intr_disable(bgep);
3018 					rw_enter(bgep->errlock, RW_WRITER);
3019 					bge_fini_rings(bgep);
3020 					rw_exit(bgep->errlock);
3021 					bgep->progress &= ~PROGRESS_INTR;
3022 				}
3023 				if (bgep->progress & PROGRESS_BUFS) {
3024 					bge_free_bufs(bgep);
3025 					bgep->progress &= ~PROGRESS_BUFS;
3026 				}
3027 				bgep->bge_dma_error = B_FALSE;
3028 			}
3029 		}
3030 	} else
3031 		bgep->bge_chip_state = BGE_CHIP_STOPPED;
3032 }
3033 
3034 /*
3035  * Poll for completion of chip's ROM firmware; also, at least on the
3036  * first time through, find and return the hardware MAC address, if any.
3037  */
3038 static uint64_t bge_poll_firmware(bge_t *bgep);
3039 #pragma	no_inline(bge_poll_firmware)
3040 
3041 static uint64_t
3042 bge_poll_firmware(bge_t *bgep)
3043 {
3044 	uint64_t magic;
3045 	uint64_t mac;
3046 	uint32_t gen, val;
3047 	uint32_t i;
3048 
3049 	/*
3050 	 * Step 19: poll for firmware completion (GENCOMM port set
3051 	 * to the ones complement of T3_MAGIC_NUMBER).
3052 	 *
3053 	 * While we're at it, we also read the MAC address register;
3054 	 * at some stage the firmware will load this with the
3055 	 * factory-set value.
3056 	 *
3057 	 * When both the magic number and the MAC address are set,
3058 	 * we're done; but we impose a time limit of one second
3059 	 * (1000*1000us) in case the firmware fails in some fashion
3060 	 * or the SEEPROM that provides that MAC address isn't fitted.
3061 	 *
3062 	 * After the first time through (chip state != INITIAL), we
3063 	 * don't need the MAC address to be set (we've already got it
3064 	 * or not, from the first time), so we don't wait for it, but
3065 	 * we still have to wait for the T3_MAGIC_NUMBER.
3066 	 *
3067 	 * Note: the magic number is only a 32-bit quantity, but the NIC
3068 	 * memory is 64-bit (and big-endian) internally.  Addressing the
3069 	 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3070 	 * it work correctly on both big- and little-endian hosts.
3071 	 */
3072 	if (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3073 	    MHCR_CHIP_ASIC_REV_5906) {
3074 		for (i = 0; i < 1000; ++i) {
3075 			drv_usecwait(1000);
3076 			val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3077 			if (val & VCPU_INIT_DONE)
3078 				break;
3079 		}
3080 		BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3081 		    (void *)bgep, i));
3082 		mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3083 	} else {
3084 		for (i = 0; i < 1000; ++i) {
3085 			drv_usecwait(1000);
3086 			gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3087 			if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3088 				drv_usecwait(100000);
3089 			mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3090 #ifdef BGE_IPMI_ASF
3091 			if (!bgep->asf_enabled) {
3092 #endif
3093 				if (gen != ~T3_MAGIC_NUMBER)
3094 					continue;
3095 #ifdef BGE_IPMI_ASF
3096 			}
3097 #endif
3098 			if (mac != 0ULL)
3099 				break;
3100 			if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3101 				break;
3102 		}
3103 	}
3104 
3105 	magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3106 	BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3107 	    (void *)bgep, gen, i));
3108 	BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3109 	    mac, magic));
3110 
3111 	return (mac);
3112 }
3113 
3114 /*
3115  * Maximum times of trying to get the NVRAM access lock
3116  * by calling bge_nvmem_acquire()
3117  */
3118 #define	MAX_TRY_NVMEM_ACQUIRE	10000
3119 
3120 #ifdef BGE_IPMI_ASF
3121 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3122 #else
3123 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3124 #endif
3125 #pragma	no_inline(bge_chip_reset)
3126 
3127 int
3128 #ifdef BGE_IPMI_ASF
3129 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3130 #else
3131 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3132 #endif
3133 {
3134 	chip_id_t chipid;
3135 	uint64_t mac;
3136 	uint64_t magic;
3137 	uint32_t modeflags;
3138 	uint32_t mhcr;
3139 	uint32_t sx0;
3140 	uint32_t i, tries;
3141 #ifdef BGE_IPMI_ASF
3142 	uint32_t mailbox;
3143 #endif
3144 	int retval = DDI_SUCCESS;
3145 
3146 	BGE_TRACE(("bge_chip_reset($%p, %d)",
3147 		(void *)bgep, enable_dma));
3148 
3149 	ASSERT(mutex_owned(bgep->genlock));
3150 
3151 	BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3152 		(void *)bgep, enable_dma, bgep->bge_chip_state));
3153 
3154 	/*
3155 	 * Do we need to stop the chip cleanly before resetting?
3156 	 */
3157 	switch (bgep->bge_chip_state) {
3158 	default:
3159 		_NOTE(NOTREACHED)
3160 		return (DDI_FAILURE);
3161 
3162 	case BGE_CHIP_INITIAL:
3163 	case BGE_CHIP_STOPPED:
3164 	case BGE_CHIP_RESET:
3165 		break;
3166 
3167 	case BGE_CHIP_RUNNING:
3168 	case BGE_CHIP_ERROR:
3169 	case BGE_CHIP_FAULT:
3170 		bge_chip_stop(bgep, B_FALSE);
3171 		break;
3172 	}
3173 
3174 #ifdef BGE_IPMI_ASF
3175 	if (bgep->asf_enabled) {
3176 #ifdef __sparc
3177 		mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3178 			MHCR_ENABLE_TAGGED_STATUS_MODE |
3179 			MHCR_MASK_INTERRUPT_MODE |
3180 			MHCR_MASK_PCI_INT_OUTPUT |
3181 			MHCR_CLEAR_INTERRUPT_INTA |
3182 			MHCR_ENABLE_ENDIAN_WORD_SWAP |
3183 			MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3184 		pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3185 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3186 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3187 			MEMORY_ARBITER_ENABLE);
3188 #endif
3189 		if (asf_mode == ASF_MODE_INIT) {
3190 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3191 		} else if (asf_mode == ASF_MODE_SHUTDOWN) {
3192 			bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3193 		}
3194 	}
3195 #endif
3196 	/*
3197 	 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3198 	 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3199 	 *
3200 	 * Before reset Core clock,it is
3201 	 * also required to initialize the Memory Arbiter as specified in step9
3202 	 * and Misc Host Control Register as specified in step-13
3203 	 * Step 4-5: reset Core clock & wait for completion
3204 	 * Steps 6-8: are done by bge_chip_cfg_init()
3205 	 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3206 	 */
3207 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3208 		retval = DDI_FAILURE;
3209 
3210 	mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
3211 	    MHCR_ENABLE_TAGGED_STATUS_MODE |
3212 	    MHCR_MASK_INTERRUPT_MODE |
3213 	    MHCR_MASK_PCI_INT_OUTPUT |
3214 	    MHCR_CLEAR_INTERRUPT_INTA;
3215 #ifdef  _BIG_ENDIAN
3216 	mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
3217 #endif  /* _BIG_ENDIAN */
3218 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3219 #ifdef BGE_IPMI_ASF
3220 	if (bgep->asf_enabled)
3221 		bgep->asf_wordswapped = B_FALSE;
3222 #endif
3223 	/*
3224 	 * NVRAM Corruption Workaround
3225 	 */
3226 	for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3227 		if (bge_nvmem_acquire(bgep) != EAGAIN)
3228 			break;
3229 	if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3230 		BGE_DEBUG(("%s: fail to acquire nvram lock",
3231 			bgep->ifname));
3232 
3233 #ifdef BGE_IPMI_ASF
3234 	if (!bgep->asf_enabled) {
3235 #endif
3236 		magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3237 		bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3238 #ifdef BGE_IPMI_ASF
3239 	}
3240 #endif
3241 
3242 	if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3243 		retval = DDI_FAILURE;
3244 	bge_chip_cfg_init(bgep, &chipid, enable_dma);
3245 
3246 	/*
3247 	 * Step 8a: This may belong elsewhere, but BCM5721 needs
3248 	 * a bit set to avoid a fifo overflow/underflow bug.
3249 	 */
3250 	if ((bgep->chipid.chip_label == 5721) ||
3251 		(bgep->chipid.chip_label == 5751) ||
3252 		(bgep->chipid.chip_label == 5752) ||
3253 		(bgep->chipid.chip_label == 5755) ||
3254 		(bgep->chipid.chip_label == 5789) ||
3255 		(bgep->chipid.chip_label == 5906))
3256 		bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3257 
3258 
3259 	/*
3260 	 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3261 	 * not be changed.
3262 	 */
3263 	if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3264 		retval = DDI_FAILURE;
3265 
3266 	/*
3267 	 * Steps 10-11: configure PIO endianness options and
3268 	 * enable indirect register access -- already done
3269 	 * Steps 12-13: enable writing to the PCI state & clock
3270 	 * control registers -- not required; we aren't going to
3271 	 * use those features.
3272 	 * Steps 14-15: Configure DMA endianness options.  See
3273 	 * the comments on the setting of the MHCR above.
3274 	 */
3275 #ifdef	_BIG_ENDIAN
3276 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME |
3277 		    MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME;
3278 #else
3279 	modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3280 #endif	/* _BIG_ENDIAN */
3281 #ifdef BGE_IPMI_ASF
3282 	if (bgep->asf_enabled)
3283 		modeflags |= MODE_HOST_STACK_UP;
3284 #endif
3285 	bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags);
3286 
3287 #ifdef BGE_IPMI_ASF
3288 	if (bgep->asf_enabled) {
3289 #ifdef __sparc
3290 		bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3291 			MEMORY_ARBITER_ENABLE |
3292 			bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
3293 #endif
3294 
3295 #ifdef  BGE_NETCONSOLE
3296 		if (!bgep->asf_newhandshake) {
3297 			if ((asf_mode == ASF_MODE_INIT) ||
3298 			(asf_mode == ASF_MODE_POST_INIT)) {
3299 				bge_asf_post_reset_old_mode(bgep,
3300 					BGE_INIT_RESET);
3301 			} else {
3302 				bge_asf_post_reset_old_mode(bgep,
3303 					BGE_SHUTDOWN_RESET);
3304 			}
3305 		}
3306 #endif
3307 
3308 		/* Wait for NVRAM init */
3309 		i = 0;
3310 		drv_usecwait(5000);
3311 		mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
3312 
3313 		while ((mailbox != (uint32_t)
3314 			~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
3315 			(i < 10000)) {
3316 			drv_usecwait(100);
3317 			mailbox = bge_nic_get32(bgep,
3318 				BGE_FIRMWARE_MAILBOX);
3319 			i++;
3320 		}
3321 
3322 #ifndef BGE_NETCONSOLE
3323 		if (!bgep->asf_newhandshake) {
3324 			if ((asf_mode == ASF_MODE_INIT) ||
3325 				(asf_mode == ASF_MODE_POST_INIT)) {
3326 
3327 				bge_asf_post_reset_old_mode(bgep,
3328 					BGE_INIT_RESET);
3329 			} else {
3330 				bge_asf_post_reset_old_mode(bgep,
3331 					BGE_SHUTDOWN_RESET);
3332 			}
3333 		}
3334 #endif
3335 	}
3336 #endif
3337 	/*
3338 	 * Steps 16-17: poll for firmware completion
3339 	 */
3340 	mac = bge_poll_firmware(bgep);
3341 
3342 	/*
3343 	 * Step 18: enable external memory -- doesn't apply.
3344 	 *
3345 	 * However we take the opportunity to set the MLCR anyway, as
3346 	 * this register also controls the SEEPROM auto-access method
3347 	 * which we may want to use later ...
3348 	 *
3349 	 * The proper value here depends on the way the chip is wired
3350 	 * into the circuit board, as this register *also* controls which
3351 	 * of the "Miscellaneous I/O" pins are driven as outputs and the
3352 	 * values driven onto those pins!
3353 	 *
3354 	 * See also step 74 in the PRM ...
3355 	 */
3356 	bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
3357 	    bgep->chipid.bge_mlcr_default);
3358 	bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
3359 
3360 	/*
3361 	 * Step 20: clear the Ethernet MAC mode register
3362 	 */
3363 	bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
3364 
3365 	/*
3366 	 * Step 21: restore cache-line-size, latency timer, and
3367 	 * subsystem ID registers to their original values (not
3368 	 * those read into the local structure <chipid>, 'cos
3369 	 * that was after they were cleared by the RESET).
3370 	 *
3371 	 * Note: the Subsystem Vendor/Device ID registers are not
3372 	 * directly writable in config space, so we use the shadow
3373 	 * copy in "Page Zero" of register space to restore them
3374 	 * both in one go ...
3375 	 */
3376 	pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
3377 		bgep->chipid.clsize);
3378 	pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
3379 		bgep->chipid.latency);
3380 	bge_reg_put32(bgep, PCI_CONF_SUBVENID,
3381 		(bgep->chipid.subdev << 16) | bgep->chipid.subven);
3382 
3383 	/*
3384 	 * The SEND INDEX registers should be reset to zero by the
3385 	 * global chip reset; if they're not, there'll be trouble
3386 	 * later on.
3387 	 */
3388 	sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
3389 	if (sx0 != 0) {
3390 		BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
3391 		bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
3392 		retval = DDI_FAILURE;
3393 	}
3394 
3395 	/* Enable MSI code */
3396 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3397 		bge_reg_set32(bgep, MSI_MODE_REG,
3398 		    MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
3399 
3400 	/*
3401 	 * On the first time through, save the factory-set MAC address
3402 	 * (if any).  If bge_poll_firmware() above didn't return one
3403 	 * (from a chip register) consider looking in the attached NV
3404 	 * memory device, if any.  Once we have it, we save it in both
3405 	 * register-image (64-bit) and byte-array forms.  All-zero and
3406 	 * all-one addresses are not valid, and we refuse to stash those.
3407 	 */
3408 	if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
3409 		if (mac == 0ULL)
3410 			mac = bge_get_nvmac(bgep);
3411 		if (mac != 0ULL && mac != ~0ULL) {
3412 			bgep->chipid.hw_mac_addr = mac;
3413 			for (i = ETHERADDRL; i-- != 0; ) {
3414 				bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
3415 				mac >>= 8;
3416 			}
3417 			bgep->chipid.vendor_addr.set = B_TRUE;
3418 		}
3419 	}
3420 
3421 #ifdef BGE_IPMI_ASF
3422 	if (bgep->asf_enabled && bgep->asf_newhandshake) {
3423 		if (asf_mode != ASF_MODE_NONE) {
3424 			if ((asf_mode == ASF_MODE_INIT) ||
3425 				(asf_mode == ASF_MODE_POST_INIT)) {
3426 
3427 				bge_asf_post_reset_new_mode(bgep,
3428 					BGE_INIT_RESET);
3429 			} else {
3430 				bge_asf_post_reset_new_mode(bgep,
3431 					BGE_SHUTDOWN_RESET);
3432 			}
3433 		}
3434 	}
3435 #endif
3436 
3437 	/*
3438 	 * Record the new state
3439 	 */
3440 	bgep->chip_resets += 1;
3441 	bgep->bge_chip_state = BGE_CHIP_RESET;
3442 	return (retval);
3443 }
3444 
3445 /*
3446  * bge_chip_start() -- start the chip transmitting and/or receiving,
3447  * including enabling interrupts
3448  */
3449 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
3450 #pragma	no_inline(bge_chip_start)
3451 
3452 int
3453 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
3454 {
3455 	uint32_t coalmode;
3456 	uint32_t ledctl;
3457 	uint32_t mtu;
3458 	uint32_t maxring;
3459 	uint32_t stats_mask;
3460 	uint32_t dma_wrprio;
3461 	uint64_t ring;
3462 	int retval = DDI_SUCCESS;
3463 
3464 	BGE_TRACE(("bge_chip_start($%p)",
3465 	    (void *)bgep));
3466 
3467 	ASSERT(mutex_owned(bgep->genlock));
3468 	ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
3469 
3470 	/*
3471 	 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
3472 	 * The document specifies 95 separate steps to fully
3473 	 * initialise the chip!!!!
3474 	 *
3475 	 * The reset code above has already got us as far as step
3476 	 * 21, so we continue with ...
3477 	 *
3478 	 * Step 22: clear the MAC statistics block
3479 	 * (0x0300-0x0aff in NIC-local memory)
3480 	 */
3481 	if (bgep->chipid.statistic_type == BGE_STAT_BLK)
3482 		bge_nic_zero(bgep, NIC_MEM_STATISTICS,
3483 		    NIC_MEM_STATISTICS_SIZE);
3484 
3485 	/*
3486 	 * Step 23: clear the status block (in host memory)
3487 	 */
3488 	DMA_ZERO(bgep->status_block);
3489 
3490 	/*
3491 	 * Step 24: set DMA read/write control register
3492 	 */
3493 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
3494 	    bgep->chipid.bge_dma_rwctrl);
3495 
3496 	/*
3497 	 * Step 25: Configure DMA endianness -- already done (16/17)
3498 	 * Step 26: Configure Host-Based Send Rings
3499 	 * Step 27: Indicate Host Stack Up
3500 	 */
3501 	bge_reg_set32(bgep, MODE_CONTROL_REG,
3502 	    MODE_HOST_SEND_BDS |
3503 	    MODE_HOST_STACK_UP);
3504 
3505 	/*
3506 	 * Step 28: Configure checksum options:
3507 	 *	Solaris supports the hardware default checksum options.
3508 	 *
3509 	 *	Workaround for Incorrect pseudo-header checksum calculation.
3510 	 */
3511 	if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
3512 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3513 		    MODE_SEND_NO_PSEUDO_HDR_CSUM);
3514 
3515 	/*
3516 	 * Step 29: configure Timer Prescaler.  The value is always the
3517 	 * same: the Core Clock frequency in MHz (66), minus 1, shifted
3518 	 * into bits 7-1.  Don't set bit 0, 'cos that's the RESET bit
3519 	 * for the whole chip!
3520 	 */
3521 	bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT);
3522 
3523 	if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3524 		drv_usecwait(40);
3525 		/* put PHY into ready state */
3526 		bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
3527 		(void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
3528 		drv_usecwait(40);
3529 	}
3530 
3531 	/*
3532 	 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
3533 	 *
3534 	 * If the mbuf_length is specified as 0, we just leave these at
3535 	 * their hardware defaults, rather than explicitly setting them.
3536 	 * As the Broadcom HRM,driver better not change the parameters
3537 	 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
3538 	 */
3539 	if ((bgep->chipid.mbuf_length != 0) &&
3540 	    (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
3541 			bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
3542 			    bgep->chipid.mbuf_base);
3543 			bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
3544 			    bgep->chipid.mbuf_length);
3545 			bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
3546 			    DMAD_POOL_BASE_DEFAULT);
3547 			bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
3548 			    DMAD_POOL_LENGTH_DEFAULT);
3549 	}
3550 
3551 	/*
3552 	 * Step 32: configure MAC memory pool watermarks
3553 	 */
3554 	bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
3555 	    bgep->chipid.mbuf_lo_water_rdma);
3556 	bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
3557 	    bgep->chipid.mbuf_lo_water_rmac);
3558 	bge_reg_put32(bgep, MBUF_HIWAT_REG,
3559 	    bgep->chipid.mbuf_hi_water);
3560 
3561 	/*
3562 	 * Step 33: configure DMA resource watermarks
3563 	 */
3564 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3565 		bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
3566 		    bge_dmad_lo_water);
3567 		bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
3568 		    bge_dmad_hi_water);
3569 	}
3570 	bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
3571 
3572 	/*
3573 	 * Steps 34-36: enable buffer manager & internal h/w queues
3574 	 */
3575 	if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG,
3576 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3577 		retval = DDI_FAILURE;
3578 	if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
3579 		retval = DDI_FAILURE;
3580 
3581 	/*
3582 	 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
3583 	 */
3584 	bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
3585 	    &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
3586 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3587 		bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
3588 		    &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
3589 		bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
3590 		    &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
3591 	}
3592 
3593 	/*
3594 	 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
3595 	 */
3596 	bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
3597 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3598 		bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
3599 		    bge_replenish_jumbo);
3600 		bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
3601 		    bge_replenish_mini);
3602 	}
3603 
3604 	/*
3605 	 * Steps 41-43: clear Send Ring Producer Indices and initialise
3606 	 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
3607 	 */
3608 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3609 		maxring = BGE_SEND_RINGS_MAX;
3610 	else
3611 		maxring = BGE_SEND_RINGS_MAX_5705;
3612 	for (ring = 0; ring < maxring; ++ring) {
3613 		bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
3614 		bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
3615 		bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
3616 		    &bgep->send[ring].hw_rcb);
3617 	}
3618 
3619 	/*
3620 	 * Steps 44-45: initialise Receive Return Rings
3621 	 * (0x0200-0x02ff in NIC-local memory)
3622 	 */
3623 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3624 		maxring = BGE_RECV_RINGS_MAX;
3625 	else
3626 		maxring = BGE_RECV_RINGS_MAX_5705;
3627 	for (ring = 0; ring < maxring; ++ring)
3628 		bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
3629 		    &bgep->recv[ring].hw_rcb);
3630 
3631 	/*
3632 	 * Step 46: initialise Receive Buffer (Producer) Ring indexes
3633 	 */
3634 	bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
3635 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3636 		bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
3637 		bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
3638 	}
3639 	/*
3640 	 * Step 47: configure the MAC unicast address
3641 	 * Step 48: configure the random backoff seed
3642 	 * Step 96: set up multicast filters
3643 	 */
3644 #ifdef BGE_IPMI_ASF
3645 	if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
3646 #else
3647 	if (bge_chip_sync(bgep) == DDI_FAILURE)
3648 #endif
3649 		retval = DDI_FAILURE;
3650 
3651 	/*
3652 	 * Step 49: configure the MTU
3653 	 */
3654 	mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
3655 	bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
3656 
3657 	/*
3658 	 * Step 50: configure the IPG et al
3659 	 */
3660 	bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
3661 
3662 	/*
3663 	 * Step 51: configure the default Rx Return Ring
3664 	 */
3665 	bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
3666 
3667 	/*
3668 	 * Steps 52-54: configure Receive List Placement,
3669 	 * and enable Receive List Placement Statistics
3670 	 */
3671 	bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
3672 	    RCV_LP_CONFIG(bgep->chipid.rx_rings));
3673 	switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) {
3674 	case MHCR_CHIP_ASIC_REV_5700:
3675 	case MHCR_CHIP_ASIC_REV_5701:
3676 	case MHCR_CHIP_ASIC_REV_5703:
3677 	case MHCR_CHIP_ASIC_REV_5704:
3678 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
3679 		break;
3680 	case MHCR_CHIP_ASIC_REV_5705:
3681 		break;
3682 	default:
3683 		stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
3684 		stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
3685 		bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
3686 		break;
3687 	}
3688 	bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
3689 
3690 	if (bgep->chipid.rx_rings > 1)
3691 		bge_init_recv_rule(bgep);
3692 
3693 	/*
3694 	 * Steps 55-56: enable Send Data Initiator Statistics
3695 	 */
3696 	bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
3697 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3698 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3699 		    SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
3700 	} else {
3701 		bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
3702 		    SEND_INIT_STATS_ENABLE);
3703 	}
3704 	/*
3705 	 * Steps 57-58: stop (?) the Host Coalescing Engine
3706 	 */
3707 	if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
3708 		retval = DDI_FAILURE;
3709 
3710 	/*
3711 	 * Steps 59-62: initialise Host Coalescing parameters
3712 	 */
3713 	bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm);
3714 	bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm);
3715 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm);
3716 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm);
3717 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3718 		bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
3719 		    bge_tx_count_intr);
3720 		bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
3721 		    bge_tx_ticks_intr);
3722 		bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
3723 		    bge_rx_count_intr);
3724 		bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
3725 		    bge_rx_ticks_intr);
3726 	}
3727 
3728 	/*
3729 	 * Steps 63-64: initialise status block & statistics
3730 	 * host memory addresses
3731 	 * The statistic block does not exist in some chipsets
3732 	 * Step 65: initialise Statistics Coalescing Tick Counter
3733 	 */
3734 	bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
3735 	    bgep->status_block.cookie.dmac_laddress);
3736 
3737 	/*
3738 	 * Steps 66-67: initialise status block & statistics
3739 	 * NIC-local memory addresses
3740 	 */
3741 	if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3742 		bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
3743 		    bgep->statistics.cookie.dmac_laddress);
3744 		bge_reg_put32(bgep, STATISTICS_TICKS_REG,
3745 		    STATISTICS_TICKS_DEFAULT);
3746 		bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
3747 		    NIC_MEM_STATUS_BLOCK);
3748 		bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
3749 		    NIC_MEM_STATISTICS);
3750 	}
3751 
3752 	/*
3753 	 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
3754 	 * Completion Engine, the Receive List Placement Engine, and the
3755 	 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
3756 	 * and BCM5715.
3757 	 */
3758 	if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
3759 	    bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
3760 		coalmode = COALESCE_64_BYTE_STATUS;
3761 	else
3762 		coalmode = 0;
3763 	if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
3764 		retval = DDI_FAILURE;
3765 	if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
3766 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3767 		retval = DDI_FAILURE;
3768 	if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
3769 		retval = DDI_FAILURE;
3770 
3771 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3772 		if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
3773 		    STATE_MACHINE_ATTN_ENABLE_BIT))
3774 			retval = DDI_FAILURE;
3775 
3776 	/*
3777 	 * Step 72: Enable MAC DMA engines
3778 	 * Step 73: Clear & enable MAC statistics
3779 	 */
3780 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3781 	    ETHERNET_MODE_ENABLE_FHDE |
3782 	    ETHERNET_MODE_ENABLE_RDE |
3783 	    ETHERNET_MODE_ENABLE_TDE);
3784 	bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
3785 	    ETHERNET_MODE_ENABLE_TX_STATS |
3786 	    ETHERNET_MODE_ENABLE_RX_STATS |
3787 	    ETHERNET_MODE_CLEAR_TX_STATS |
3788 	    ETHERNET_MODE_CLEAR_RX_STATS);
3789 
3790 	/*
3791 	 * Step 74: configure the MLCR (Miscellaneous Local Control
3792 	 * Register); not required, as we set up the MLCR in step 10
3793 	 * (part of the reset code) above.
3794 	 *
3795 	 * Step 75: clear Interrupt Mailbox 0
3796 	 */
3797 	bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
3798 
3799 	/*
3800 	 * Steps 76-87: Gentlemen, start your engines ...
3801 	 *
3802 	 * Enable the DMA Completion Engine, the Write DMA Engine,
3803 	 * the Read DMA Engine, Receive Data Completion Engine,
3804 	 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
3805 	 * the Send BD Completion Engine, the Receive BD Initiator Engine,
3806 	 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
3807 	 * the Send BD Initiator Engine, and the Send BD Selector Engine.
3808 	 *
3809 	 * Beware exhaust fumes?
3810 	 */
3811 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3812 		if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
3813 			retval = DDI_FAILURE;
3814 	dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
3815 	    ALL_DMA_ATTN_BITS;
3816 	if ((MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3817 	    MHCR_CHIP_ASIC_REV_5755) ||
3818 	    (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev) ==
3819 	    MHCR_CHIP_ASIC_REV_5906)) {
3820 		dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
3821 	}
3822 	if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
3823 	    dma_wrprio))
3824 		retval = DDI_FAILURE;
3825 	if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
3826 	    (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
3827 		retval = DDI_FAILURE;
3828 	if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
3829 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3830 		retval = DDI_FAILURE;
3831 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
3832 		if (!bge_chip_enable_engine(bgep,
3833 		    MBUF_CLUSTER_FREE_MODE_REG, 0))
3834 			retval = DDI_FAILURE;
3835 	if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
3836 		retval = DDI_FAILURE;
3837 	if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
3838 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3839 		retval = DDI_FAILURE;
3840 	if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
3841 	    RCV_BD_DISABLED_RING_ATTN))
3842 		retval = DDI_FAILURE;
3843 	if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
3844 	    RCV_DATA_BD_ILL_RING_ATTN))
3845 		retval = DDI_FAILURE;
3846 	if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
3847 		retval = DDI_FAILURE;
3848 	if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
3849 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3850 		retval = DDI_FAILURE;
3851 	if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
3852 	    STATE_MACHINE_ATTN_ENABLE_BIT))
3853 		retval = DDI_FAILURE;
3854 
3855 	/*
3856 	 * Step 88: download firmware -- doesn't apply
3857 	 * Steps 89-90: enable Transmit & Receive MAC Engines
3858 	 */
3859 	if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3860 		retval = DDI_FAILURE;
3861 #ifdef BGE_IPMI_ASF
3862 	if (!bgep->asf_enabled) {
3863 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3864 		    RECEIVE_MODE_KEEP_VLAN_TAG))
3865 			retval = DDI_FAILURE;
3866 	} else {
3867 		if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
3868 			retval = DDI_FAILURE;
3869 	}
3870 #else
3871 	if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3872 	    RECEIVE_MODE_KEEP_VLAN_TAG))
3873 		retval = DDI_FAILURE;
3874 #endif
3875 
3876 	/*
3877 	 * Step 91: disable auto-polling of PHY status
3878 	 */
3879 	bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
3880 
3881 	/*
3882 	 * Step 92: configure D0 power state (not required)
3883 	 * Step 93: initialise LED control register ()
3884 	 */
3885 	ledctl = LED_CONTROL_DEFAULT;
3886 	switch (bgep->chipid.device) {
3887 	case DEVICE_ID_5700:
3888 	case DEVICE_ID_5700x:
3889 	case DEVICE_ID_5701:
3890 		/*
3891 		 * Switch to 5700 (MAC) mode on these older chips
3892 		 */
3893 		ledctl &= ~LED_CONTROL_LED_MODE_MASK;
3894 		ledctl |= LED_CONTROL_LED_MODE_5700;
3895 		break;
3896 
3897 	default:
3898 		break;
3899 	}
3900 	bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
3901 
3902 	/*
3903 	 * Step 94: activate link
3904 	 */
3905 	bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3906 
3907 	/*
3908 	 * Step 95: set up physical layer (PHY/SerDes)
3909 	 * restart autoneg (if required)
3910 	 */
3911 	if (reset_phys)
3912 		if (bge_phys_update(bgep) == DDI_FAILURE)
3913 			retval = DDI_FAILURE;
3914 
3915 	/*
3916 	 * Extra step (DSG): hand over all the Receive Buffers to the chip
3917 	 */
3918 	for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
3919 		bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
3920 		    bgep->buff[ring].rf_next);
3921 
3922 	/*
3923 	 * MSI bits:The least significant MSI 16-bit word.
3924 	 * ISR will be triggered different.
3925 	 */
3926 	if (bgep->intr_type == DDI_INTR_TYPE_MSI)
3927 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
3928 
3929 	/*
3930 	 * Extra step (DSG): select which interrupts are enabled
3931 	 *
3932 	 * Program the Ethernet MAC engine to signal attention on
3933 	 * Link Change events, then enable interrupts on MAC, DMA,
3934 	 * and FLOW attention signals.
3935 	 */
3936 	bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
3937 	    ETHERNET_EVENT_LINK_INT |
3938 	    ETHERNET_STATUS_PCS_ERROR_INT);
3939 #ifdef BGE_IPMI_ASF
3940 	if (bgep->asf_enabled) {
3941 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3942 		    MODE_INT_ON_FLOW_ATTN |
3943 		    MODE_INT_ON_DMA_ATTN |
3944 		    MODE_HOST_STACK_UP|
3945 		    MODE_INT_ON_MAC_ATTN);
3946 	} else {
3947 #endif
3948 		bge_reg_set32(bgep, MODE_CONTROL_REG,
3949 		    MODE_INT_ON_FLOW_ATTN |
3950 		    MODE_INT_ON_DMA_ATTN |
3951 		    MODE_INT_ON_MAC_ATTN);
3952 #ifdef BGE_IPMI_ASF
3953 	}
3954 #endif
3955 
3956 	/*
3957 	 * Step 97: enable PCI interrupts!!!
3958 	 */
3959 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
3960 		bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
3961 		    MHCR_MASK_PCI_INT_OUTPUT);
3962 
3963 	/*
3964 	 * All done!
3965 	 */
3966 	bgep->bge_chip_state = BGE_CHIP_RUNNING;
3967 	return (retval);
3968 }
3969 
3970 
3971 /*
3972  * ========== Hardware interrupt handler ==========
3973  */
3974 
3975 #undef	BGE_DBG
3976 #define	BGE_DBG		BGE_DBG_INT	/* debug flag for this code	*/
3977 
3978 /*
3979  * Sync the status block, then atomically clear the specified bits in
3980  * the <flags-and-tag> field of the status block.
3981  * the <flags> word of the status block, returning the value of the
3982  * <tag> and the <flags> before the bits were cleared.
3983  */
3984 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
3985 #pragma	inline(bge_status_sync)
3986 
3987 static int
3988 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
3989 {
3990 	bge_status_t *bsp;
3991 	int retval;
3992 
3993 	BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
3994 	    (void *)bgep, bits));
3995 
3996 	ASSERT(bgep->bge_guard == BGE_GUARD);
3997 
3998 	DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
3999 	retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
4000 	if (retval != DDI_FM_OK)
4001 		return (retval);
4002 
4003 	bsp = DMA_VPTR(bgep->status_block);
4004 	*flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
4005 
4006 	BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
4007 	    (void *)bgep, bits, *flags));
4008 
4009 	return (retval);
4010 }
4011 
4012 void bge_wake_factotum(bge_t *bgep);
4013 #pragma	inline(bge_wake_factotum)
4014 
4015 void
4016 bge_wake_factotum(bge_t *bgep)
4017 {
4018 	mutex_enter(bgep->softintrlock);
4019 	if (bgep->factotum_flag == 0) {
4020 		bgep->factotum_flag = 1;
4021 		ddi_trigger_softintr(bgep->factotum_id);
4022 	}
4023 	mutex_exit(bgep->softintrlock);
4024 }
4025 
4026 /*
4027  *	bge_intr() -- handle chip interrupts
4028  */
4029 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
4030 #pragma	no_inline(bge_intr)
4031 
4032 uint_t
4033 bge_intr(caddr_t arg1, caddr_t arg2)
4034 {
4035 	bge_t *bgep = (void *)arg1;		/* private device info	*/
4036 	bge_status_t *bsp;
4037 	uint64_t flags;
4038 	uint32_t regval;
4039 	uint_t result;
4040 	int retval, loop_cnt = 0;
4041 
4042 	BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
4043 
4044 	/*
4045 	 * GLD v2 checks that s/w setup is complete before passing
4046 	 * interrupts to this routine, thus eliminating the old
4047 	 * (and well-known) race condition around ddi_add_intr()
4048 	 */
4049 	ASSERT(bgep->progress & PROGRESS_HWINT);
4050 
4051 	result = DDI_INTR_UNCLAIMED;
4052 	mutex_enter(bgep->genlock);
4053 
4054 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4055 		/*
4056 		 * Check whether chip's says it's asserting #INTA;
4057 		 * if not, don't process or claim the interrupt.
4058 		 *
4059 		 * Note that the PCI signal is active low, so the
4060 		 * bit is *zero* when the interrupt is asserted.
4061 		 */
4062 		regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
4063 		if (regval & MLCR_INTA_STATE) {
4064 			if (bge_check_acc_handle(bgep, bgep->io_handle)
4065 			    != DDI_FM_OK)
4066 				goto chip_stop;
4067 			mutex_exit(bgep->genlock);
4068 			return (result);
4069 		}
4070 
4071 		/*
4072 		 * Block further PCI interrupts ...
4073 		 */
4074 		bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
4075 		    MHCR_MASK_PCI_INT_OUTPUT);
4076 
4077 	} else {
4078 		/*
4079 		 * Check MSI status
4080 		 */
4081 		regval = bge_reg_get32(bgep, MSI_STATUS_REG);
4082 		if (regval & MSI_ERROR_ATTENTION) {
4083 			BGE_REPORT((bgep, "msi error attention,"
4084 			    " status=0x%x", regval));
4085 			bge_reg_put32(bgep, MSI_STATUS_REG, regval);
4086 		}
4087 	}
4088 
4089 	result = DDI_INTR_CLAIMED;
4090 
4091 	BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
4092 
4093 	/*
4094 	 * Sync the status block and grab the flags-n-tag from it.
4095 	 * We count the number of interrupts where there doesn't
4096 	 * seem to have been a DMA update of the status block; if
4097 	 * it *has* been updated, the counter will be cleared in
4098 	 * the while() loop below ...
4099 	 */
4100 	bgep->missed_dmas += 1;
4101 	bsp = DMA_VPTR(bgep->status_block);
4102 	for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
4103 		if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
4104 			/*
4105 			 * bge_chip_stop() may have freed dma area etc
4106 			 * while we were in this interrupt handler -
4107 			 * better not call bge_status_sync()
4108 			 */
4109 			(void) bge_check_acc_handle(bgep,
4110 			    bgep->io_handle);
4111 			mutex_exit(bgep->genlock);
4112 			return (DDI_INTR_CLAIMED);
4113 		}
4114 		retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED,
4115 		    &flags);
4116 		if (retval != DDI_FM_OK) {
4117 			bgep->bge_dma_error = B_TRUE;
4118 			goto chip_stop;
4119 		}
4120 
4121 		if (!(flags & STATUS_FLAG_UPDATED))
4122 			break;
4123 
4124 		/*
4125 		 * Tell the chip that we're processing the interrupt
4126 		 */
4127 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4128 		    INTERRUPT_MBOX_DISABLE(flags));
4129 		if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4130 		    DDI_FM_OK)
4131 			goto chip_stop;
4132 
4133 		/*
4134 		 * Drop the mutex while we:
4135 		 * 	Receive any newly-arrived packets
4136 		 *	Recycle any newly-finished send buffers
4137 		 */
4138 		bgep->bge_intr_running = B_TRUE;
4139 		mutex_exit(bgep->genlock);
4140 		bge_receive(bgep, bsp);
4141 		bge_recycle(bgep, bsp);
4142 		mutex_enter(bgep->genlock);
4143 		bgep->bge_intr_running = B_FALSE;
4144 
4145 		/*
4146 		 * Tell the chip we've finished processing, and
4147 		 * give it the tag that we got from the status
4148 		 * block earlier, so that it knows just how far
4149 		 * we've gone.  If it's got more for us to do,
4150 		 * it will now update the status block and try
4151 		 * to assert an interrupt (but we've got the
4152 		 * #INTA blocked at present).  If we see the
4153 		 * update, we'll loop around to do some more.
4154 		 * Eventually we'll get out of here ...
4155 		 */
4156 		bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
4157 		    INTERRUPT_MBOX_ENABLE(flags));
4158 		if (bgep->chipid.pci_type == BGE_PCI_E)
4159 			(void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
4160 		bgep->missed_dmas = 0;
4161 	}
4162 
4163 	/*
4164 	 * Check for exceptional conditions that we need to handle
4165 	 *
4166 	 * Link status changed
4167 	 * Status block not updated
4168 	 */
4169 	if (flags & STATUS_FLAG_LINK_CHANGED)
4170 		bge_wake_factotum(bgep);
4171 
4172 	if (bgep->missed_dmas) {
4173 		/*
4174 		 * Probably due to the internal status tag not
4175 		 * being reset.  Force a status block update now;
4176 		 * this should ensure that we get an update and
4177 		 * a new interrupt.  After that, we should be in
4178 		 * sync again ...
4179 		 */
4180 		BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
4181 		    "not updated?", flags));
4182 		bgep->missed_updates++;
4183 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
4184 		    COALESCE_NOW);
4185 
4186 		if (bgep->missed_dmas >= bge_dma_miss_limit) {
4187 			/*
4188 			 * If this happens multiple times in a row,
4189 			 * it means DMA is just not working.  Maybe
4190 			 * the chip's failed, or maybe there's a
4191 			 * problem on the PCI bus or in the host-PCI
4192 			 * bridge (Tomatillo).
4193 			 *
4194 			 * At all events, we want to stop further
4195 			 * interrupts and let the recovery code take
4196 			 * over to see whether anything can be done
4197 			 * about it ...
4198 			 */
4199 			bge_fm_ereport(bgep,
4200 			    DDI_FM_DEVICE_BADINT_LIMIT);
4201 			goto chip_stop;
4202 		}
4203 	}
4204 
4205 	/*
4206 	 * Reenable assertion of #INTA, unless there's a DMA fault
4207 	 */
4208 	if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4209 		bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
4210 		    MHCR_MASK_PCI_INT_OUTPUT);
4211 		if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4212 		    DDI_FM_OK)
4213 			goto chip_stop;
4214 	}
4215 
4216 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4217 		goto chip_stop;
4218 
4219 	mutex_exit(bgep->genlock);
4220 	return (result);
4221 
4222 chip_stop:
4223 #ifdef BGE_IPMI_ASF
4224 	if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
4225 		/*
4226 		 * We must stop ASF heart beat before
4227 		 * bge_chip_stop(), otherwise some
4228 		 * computers (ex. IBM HS20 blade
4229 		 * server) may crash.
4230 		 */
4231 		bge_asf_update_status(bgep);
4232 		bge_asf_stop_timer(bgep);
4233 		bgep->asf_status = ASF_STAT_STOP;
4234 
4235 		bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4236 		(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4237 	}
4238 #endif
4239 	bge_chip_stop(bgep, B_TRUE);
4240 	(void) bge_check_acc_handle(bgep, bgep->io_handle);
4241 	mutex_exit(bgep->genlock);
4242 	return (result);
4243 }
4244 
4245 /*
4246  * ========== Factotum, implemented as a softint handler ==========
4247  */
4248 
4249 #undef	BGE_DBG
4250 #define	BGE_DBG		BGE_DBG_FACT	/* debug flag for this code	*/
4251 
4252 static void bge_factotum_error_handler(bge_t *bgep);
4253 #pragma	no_inline(bge_factotum_error_handler)
4254 
4255 static void
4256 bge_factotum_error_handler(bge_t *bgep)
4257 {
4258 	uint32_t flow;
4259 	uint32_t rdma;
4260 	uint32_t wdma;
4261 	uint32_t tmac;
4262 	uint32_t rmac;
4263 	uint32_t rxrs;
4264 	uint32_t txrs = 0;
4265 
4266 	ASSERT(mutex_owned(bgep->genlock));
4267 
4268 	/*
4269 	 * Read all the registers that show the possible
4270 	 * reasons for the ERROR bit to be asserted
4271 	 */
4272 	flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4273 	rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4274 	wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4275 	tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4276 	rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4277 	rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4278 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4279 		txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4280 
4281 	BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x",
4282 	    (void *)bgep, flow, rdma, wdma));
4283 	BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4284 	    (void *)bgep, tmac, rmac, rxrs, txrs));
4285 
4286 	/*
4287 	 * For now, just clear all the errors ...
4288 	 */
4289 	if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4290 		bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4291 	bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4292 	bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4293 	bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4294 	bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4295 	bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4296 }
4297 
4298 /*
4299  * Handler for hardware link state change.
4300  *
4301  * When this routine is called, the hardware link state has changed
4302  * and the new state is reflected in the param_* variables.  Here
4303  * we must update the softstate and reprogram the MAC to match.
4304  */
4305 static void bge_factotum_link_handler(bge_t *bgep);
4306 #pragma	no_inline(bge_factotum_link_handler)
4307 
4308 static void
4309 bge_factotum_link_handler(bge_t *bgep)
4310 {
4311 	ASSERT(mutex_owned(bgep->genlock));
4312 
4313 	/*
4314 	 * Update the s/w link_state
4315 	 */
4316 	if (bgep->param_link_up)
4317 		bgep->link_state = LINK_STATE_UP;
4318 	else
4319 		bgep->link_state = LINK_STATE_DOWN;
4320 
4321 	/*
4322 	 * Reprogram the MAC modes to match
4323 	 */
4324 	bge_sync_mac_modes(bgep);
4325 }
4326 
4327 static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state);
4328 #pragma	no_inline(bge_factotum_link_check)
4329 
4330 static boolean_t
4331 bge_factotum_link_check(bge_t *bgep, int *dma_state)
4332 {
4333 	boolean_t check;
4334 	uint64_t flags;
4335 	uint32_t tmac_status;
4336 
4337 	ASSERT(mutex_owned(bgep->genlock));
4338 
4339 	/*
4340 	 * Get & clear the writable status bits in the Tx status register
4341 	 * (some bits are write-1-to-clear, others are just readonly).
4342 	 */
4343 	tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4344 	bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status);
4345 
4346 	/*
4347 	 * Get & clear the ERROR and LINK_CHANGED bits from the status block
4348 	 */
4349 	*dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR |
4350 	    STATUS_FLAG_LINK_CHANGED, &flags);
4351 	if (*dma_state != DDI_FM_OK)
4352 		return (B_FALSE);
4353 
4354 	/*
4355 	 * Clear any errors flagged in the status block ...
4356 	 */
4357 	if (flags & STATUS_FLAG_ERROR)
4358 		bge_factotum_error_handler(bgep);
4359 
4360 	/*
4361 	 * We need to check the link status if:
4362 	 *	the status block says there's been a link change
4363 	 *	or there's any discrepancy between the various
4364 	 *	flags indicating the link state (link_state,
4365 	 *	param_link_up, and the LINK STATE bit in the
4366 	 *	Transmit MAC status register).
4367 	 */
4368 	check = (flags & STATUS_FLAG_LINK_CHANGED) != 0;
4369 	switch (bgep->link_state) {
4370 	case LINK_STATE_UP:
4371 		check |= (bgep->param_link_up == B_FALSE);
4372 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0);
4373 		break;
4374 
4375 	case LINK_STATE_DOWN:
4376 		check |= (bgep->param_link_up != B_FALSE);
4377 		check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0);
4378 		break;
4379 
4380 	default:
4381 		check = B_TRUE;
4382 		break;
4383 	}
4384 
4385 	/*
4386 	 * If <check> is false, we're sure the link hasn't changed.
4387 	 * If true, however, it's not yet definitive; we have to call
4388 	 * bge_phys_check() to determine whether the link has settled
4389 	 * into a new state yet ... and if it has, then call the link
4390 	 * state change handler.But when the chip is 5700 in Dell 6650
4391 	 * ,even if check is false, the link may have changed.So we
4392 	 * have to call bge_phys_check() to determine the link state.
4393 	 */
4394 	if (check || bgep->chipid.device == DEVICE_ID_5700) {
4395 		check = bge_phys_check(bgep);
4396 		if (check)
4397 			bge_factotum_link_handler(bgep);
4398 	}
4399 
4400 	return (check);
4401 }
4402 
4403 /*
4404  * Factotum routine to check for Tx stall, using the 'watchdog' counter
4405  */
4406 static boolean_t bge_factotum_stall_check(bge_t *bgep);
4407 #pragma	no_inline(bge_factotum_stall_check)
4408 
4409 static boolean_t
4410 bge_factotum_stall_check(bge_t *bgep)
4411 {
4412 	uint32_t dogval;
4413 
4414 	ASSERT(mutex_owned(bgep->genlock));
4415 
4416 	/*
4417 	 * Specific check for Tx stall ...
4418 	 *
4419 	 * The 'watchdog' counter is incremented whenever a packet
4420 	 * is queued, reset to 1 when some (but not all) buffers
4421 	 * are reclaimed, reset to 0 (disabled) when all buffers
4422 	 * are reclaimed, and shifted left here.  If it exceeds the
4423 	 * threshold value, the chip is assumed to have stalled and
4424 	 * is put into the ERROR state.  The factotum will then reset
4425 	 * it on the next pass.
4426 	 *
4427 	 * All of which should ensure that we don't get into a state
4428 	 * where packets are left pending indefinitely!
4429 	 */
4430 	dogval = bge_atomic_shl32(&bgep->watchdog, 1);
4431 	if (dogval < bge_watchdog_count)
4432 		return (B_FALSE);
4433 
4434 #if !defined(BGE_NETCONSOLE)
4435 	BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
4436 #endif
4437 	bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
4438 	return (B_TRUE);
4439 }
4440 
4441 /*
4442  * The factotum is woken up when there's something to do that we'd rather
4443  * not do from inside a hardware interrupt handler or high-level cyclic.
4444  * Its two main tasks are:
4445  *	reset & restart the chip after an error
4446  *	check the link status whenever necessary
4447  */
4448 uint_t bge_chip_factotum(caddr_t arg);
4449 #pragma	no_inline(bge_chip_factotum)
4450 
4451 uint_t
4452 bge_chip_factotum(caddr_t arg)
4453 {
4454 	bge_t *bgep;
4455 	uint_t result;
4456 	boolean_t error;
4457 	boolean_t linkchg;
4458 	int dma_state;
4459 
4460 	bgep = (void *)arg;
4461 
4462 	BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
4463 
4464 	mutex_enter(bgep->softintrlock);
4465 	if (bgep->factotum_flag == 0) {
4466 		mutex_exit(bgep->softintrlock);
4467 		return (DDI_INTR_UNCLAIMED);
4468 	}
4469 	bgep->factotum_flag = 0;
4470 	mutex_exit(bgep->softintrlock);
4471 
4472 	result = DDI_INTR_CLAIMED;
4473 	error = B_FALSE;
4474 	linkchg = B_FALSE;
4475 
4476 	mutex_enter(bgep->genlock);
4477 	switch (bgep->bge_chip_state) {
4478 	default:
4479 		break;
4480 
4481 	case BGE_CHIP_RUNNING:
4482 		linkchg = bge_factotum_link_check(bgep, &dma_state);
4483 		error = bge_factotum_stall_check(bgep);
4484 		if (dma_state != DDI_FM_OK) {
4485 			bgep->bge_dma_error = B_TRUE;
4486 			error = B_TRUE;
4487 		}
4488 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4489 			error = B_TRUE;
4490 		if (error)
4491 			bgep->bge_chip_state = BGE_CHIP_ERROR;
4492 		break;
4493 
4494 	case BGE_CHIP_ERROR:
4495 		error = B_TRUE;
4496 		break;
4497 
4498 	case BGE_CHIP_FAULT:
4499 		/*
4500 		 * Fault detected, time to reset ...
4501 		 */
4502 		if (bge_autorecover) {
4503 			if (!(bgep->progress & PROGRESS_BUFS)) {
4504 				/*
4505 				 * if we can't allocate the ring buffers,
4506 				 * try later
4507 				 */
4508 				if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
4509 					mutex_exit(bgep->genlock);
4510 					return (result);
4511 				}
4512 				bgep->progress |= PROGRESS_BUFS;
4513 			}
4514 			if (!(bgep->progress & PROGRESS_INTR)) {
4515 				bge_init_rings(bgep);
4516 				bge_intr_enable(bgep);
4517 				bgep->progress |= PROGRESS_INTR;
4518 			}
4519 			if (!(bgep->progress & PROGRESS_KSTATS)) {
4520 				bge_init_kstats(bgep,
4521 				    ddi_get_instance(bgep->devinfo));
4522 				bgep->progress |= PROGRESS_KSTATS;
4523 			}
4524 
4525 			BGE_REPORT((bgep, "automatic recovery activated"));
4526 
4527 			if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
4528 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4529 				error = B_TRUE;
4530 			}
4531 			if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
4532 			    DDI_FM_OK) {
4533 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4534 				error = B_TRUE;
4535 			}
4536 			if (bge_check_acc_handle(bgep, bgep->io_handle) !=
4537 			    DDI_FM_OK) {
4538 				bgep->bge_chip_state = BGE_CHIP_ERROR;
4539 				error = B_TRUE;
4540 			}
4541 			if (error == B_FALSE) {
4542 #ifdef BGE_IPMI_ASF
4543 				if (bgep->asf_enabled &&
4544 				    bgep->asf_status != ASF_STAT_RUN) {
4545 					bgep->asf_timeout_id = timeout(
4546 					    bge_asf_heartbeat, (void *)bgep,
4547 					    drv_usectohz(
4548 					    BGE_ASF_HEARTBEAT_INTERVAL));
4549 					bgep->asf_status = ASF_STAT_RUN;
4550 				}
4551 #endif
4552 				if (!bgep->manual_reset) {
4553 					ddi_fm_service_impact(bgep->devinfo,
4554 					    DDI_SERVICE_RESTORED);
4555 				}
4556 			}
4557 		}
4558 		break;
4559 	}
4560 
4561 
4562 	/*
4563 	 * If an error is detected, stop the chip now, marking it as
4564 	 * faulty, so that it will be reset next time through ...
4565 	 *
4566 	 * Note that if intr_running is set, then bge_intr() has dropped
4567 	 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
4568 	 * this point so have to wait until the next time the factotum runs.
4569 	 */
4570 	if (error && !bgep->bge_intr_running) {
4571 #ifdef BGE_IPMI_ASF
4572 		if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
4573 			/*
4574 			 * We must stop ASF heart beat before bge_chip_stop(),
4575 			 * otherwise some computers (ex. IBM HS20 blade server)
4576 			 * may crash.
4577 			 */
4578 			bge_asf_update_status(bgep);
4579 			bge_asf_stop_timer(bgep);
4580 			bgep->asf_status = ASF_STAT_STOP;
4581 
4582 			bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4583 			(void) bge_check_acc_handle(bgep, bgep->cfg_handle);
4584 		}
4585 #endif
4586 		bge_chip_stop(bgep, B_TRUE);
4587 		(void) bge_check_acc_handle(bgep, bgep->io_handle);
4588 	}
4589 	mutex_exit(bgep->genlock);
4590 
4591 	/*
4592 	 * If the link state changed, tell the world about it.
4593 	 * Note: can't do this while still holding the mutex.
4594 	 */
4595 	if (bgep->link_update_timer == BGE_LINK_UPDATE_TIMEOUT &&
4596 	    bgep->link_state != LINK_STATE_UNKNOWN)
4597 		linkchg = B_TRUE;
4598 	else if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT &&
4599 	    bgep->link_state == LINK_STATE_DOWN)
4600 		linkchg = B_FALSE;
4601 
4602 	if (linkchg) {
4603 		mac_link_update(bgep->mh, bgep->link_state);
4604 		bgep->link_update_timer = BGE_LINK_UPDATE_DONE;
4605 	}
4606 	if (bgep->manual_reset) {
4607 		bgep->manual_reset = B_FALSE;
4608 	}
4609 
4610 	return (result);
4611 }
4612 
4613 /*
4614  * High-level cyclic handler
4615  *
4616  * This routine schedules a (low-level) softint callback to the
4617  * factotum, and prods the chip to update the status block (which
4618  * will cause a hardware interrupt when complete).
4619  */
4620 void bge_chip_cyclic(void *arg);
4621 #pragma	no_inline(bge_chip_cyclic)
4622 
4623 void
4624 bge_chip_cyclic(void *arg)
4625 {
4626 	bge_t *bgep;
4627 
4628 	bgep = arg;
4629 
4630 	switch (bgep->bge_chip_state) {
4631 	default:
4632 		return;
4633 
4634 	case BGE_CHIP_RUNNING:
4635 		bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
4636 		if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
4637 			ddi_fm_service_impact(bgep->devinfo,
4638 			    DDI_SERVICE_UNAFFECTED);
4639 
4640 		if (bgep->link_update_timer < BGE_LINK_UPDATE_TIMEOUT)
4641 			bgep->link_update_timer++;
4642 
4643 		break;
4644 
4645 	case BGE_CHIP_FAULT:
4646 	case BGE_CHIP_ERROR:
4647 		break;
4648 	}
4649 
4650 	bge_wake_factotum(bgep);
4651 }
4652 
4653 
4654 /*
4655  * ========== Ioctl subfunctions ==========
4656  */
4657 
4658 #undef	BGE_DBG
4659 #define	BGE_DBG		BGE_DBG_PPIO	/* debug flag for this code	*/
4660 
4661 #if	BGE_DEBUGGING || BGE_DO_PPIO
4662 
4663 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4664 #pragma	no_inline(bge_chip_peek_cfg)
4665 
4666 static void
4667 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4668 {
4669 	uint64_t regval;
4670 	uint64_t regno;
4671 
4672 	BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
4673 	    (void *)bgep, (void *)ppd));
4674 
4675 	regno = ppd->pp_acc_offset;
4676 
4677 	switch (ppd->pp_acc_size) {
4678 	case 1:
4679 		regval = pci_config_get8(bgep->cfg_handle, regno);
4680 		break;
4681 
4682 	case 2:
4683 		regval = pci_config_get16(bgep->cfg_handle, regno);
4684 		break;
4685 
4686 	case 4:
4687 		regval = pci_config_get32(bgep->cfg_handle, regno);
4688 		break;
4689 
4690 	case 8:
4691 		regval = pci_config_get64(bgep->cfg_handle, regno);
4692 		break;
4693 	}
4694 
4695 	ppd->pp_acc_data = regval;
4696 }
4697 
4698 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
4699 #pragma	no_inline(bge_chip_poke_cfg)
4700 
4701 static void
4702 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
4703 {
4704 	uint64_t regval;
4705 	uint64_t regno;
4706 
4707 	BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
4708 	    (void *)bgep, (void *)ppd));
4709 
4710 	regno = ppd->pp_acc_offset;
4711 	regval = ppd->pp_acc_data;
4712 
4713 	switch (ppd->pp_acc_size) {
4714 	case 1:
4715 		pci_config_put8(bgep->cfg_handle, regno, regval);
4716 		break;
4717 
4718 	case 2:
4719 		pci_config_put16(bgep->cfg_handle, regno, regval);
4720 		break;
4721 
4722 	case 4:
4723 		pci_config_put32(bgep->cfg_handle, regno, regval);
4724 		break;
4725 
4726 	case 8:
4727 		pci_config_put64(bgep->cfg_handle, regno, regval);
4728 		break;
4729 	}
4730 }
4731 
4732 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4733 #pragma	no_inline(bge_chip_peek_reg)
4734 
4735 static void
4736 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4737 {
4738 	uint64_t regval;
4739 	void *regaddr;
4740 
4741 	BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
4742 	    (void *)bgep, (void *)ppd));
4743 
4744 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4745 
4746 	switch (ppd->pp_acc_size) {
4747 	case 1:
4748 		regval = ddi_get8(bgep->io_handle, regaddr);
4749 		break;
4750 
4751 	case 2:
4752 		regval = ddi_get16(bgep->io_handle, regaddr);
4753 		break;
4754 
4755 	case 4:
4756 		regval = ddi_get32(bgep->io_handle, regaddr);
4757 		break;
4758 
4759 	case 8:
4760 		regval = ddi_get64(bgep->io_handle, regaddr);
4761 		break;
4762 	}
4763 
4764 	ppd->pp_acc_data = regval;
4765 }
4766 
4767 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
4768 #pragma	no_inline(bge_chip_peek_reg)
4769 
4770 static void
4771 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
4772 {
4773 	uint64_t regval;
4774 	void *regaddr;
4775 
4776 	BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
4777 	    (void *)bgep, (void *)ppd));
4778 
4779 	regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
4780 	regval = ppd->pp_acc_data;
4781 
4782 	switch (ppd->pp_acc_size) {
4783 	case 1:
4784 		ddi_put8(bgep->io_handle, regaddr, regval);
4785 		break;
4786 
4787 	case 2:
4788 		ddi_put16(bgep->io_handle, regaddr, regval);
4789 		break;
4790 
4791 	case 4:
4792 		ddi_put32(bgep->io_handle, regaddr, regval);
4793 		break;
4794 
4795 	case 8:
4796 		ddi_put64(bgep->io_handle, regaddr, regval);
4797 		break;
4798 	}
4799 	BGE_PCICHK(bgep);
4800 }
4801 
4802 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4803 #pragma	no_inline(bge_chip_peek_nic)
4804 
4805 static void
4806 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4807 {
4808 	uint64_t regoff;
4809 	uint64_t regval;
4810 	void *regaddr;
4811 
4812 	BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
4813 	    (void *)bgep, (void *)ppd));
4814 
4815 	regoff = ppd->pp_acc_offset;
4816 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4817 	regoff &= MWBAR_GRANULE_MASK;
4818 	regoff += NIC_MEM_WINDOW_OFFSET;
4819 	regaddr = PIO_ADDR(bgep, regoff);
4820 
4821 	switch (ppd->pp_acc_size) {
4822 	case 1:
4823 		regval = ddi_get8(bgep->io_handle, regaddr);
4824 		break;
4825 
4826 	case 2:
4827 		regval = ddi_get16(bgep->io_handle, regaddr);
4828 		break;
4829 
4830 	case 4:
4831 		regval = ddi_get32(bgep->io_handle, regaddr);
4832 		break;
4833 
4834 	case 8:
4835 		regval = ddi_get64(bgep->io_handle, regaddr);
4836 		break;
4837 	}
4838 
4839 	ppd->pp_acc_data = regval;
4840 }
4841 
4842 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
4843 #pragma	no_inline(bge_chip_poke_nic)
4844 
4845 static void
4846 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
4847 {
4848 	uint64_t regoff;
4849 	uint64_t regval;
4850 	void *regaddr;
4851 
4852 	BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
4853 	    (void *)bgep, (void *)ppd));
4854 
4855 	regoff = ppd->pp_acc_offset;
4856 	bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
4857 	regoff &= MWBAR_GRANULE_MASK;
4858 	regoff += NIC_MEM_WINDOW_OFFSET;
4859 	regaddr = PIO_ADDR(bgep, regoff);
4860 	regval = ppd->pp_acc_data;
4861 
4862 	switch (ppd->pp_acc_size) {
4863 	case 1:
4864 		ddi_put8(bgep->io_handle, regaddr, regval);
4865 		break;
4866 
4867 	case 2:
4868 		ddi_put16(bgep->io_handle, regaddr, regval);
4869 		break;
4870 
4871 	case 4:
4872 		ddi_put32(bgep->io_handle, regaddr, regval);
4873 		break;
4874 
4875 	case 8:
4876 		ddi_put64(bgep->io_handle, regaddr, regval);
4877 		break;
4878 	}
4879 	BGE_PCICHK(bgep);
4880 }
4881 
4882 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4883 #pragma	no_inline(bge_chip_peek_mii)
4884 
4885 static void
4886 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4887 {
4888 	BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
4889 	    (void *)bgep, (void *)ppd));
4890 
4891 	ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
4892 }
4893 
4894 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
4895 #pragma	no_inline(bge_chip_poke_mii)
4896 
4897 static void
4898 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
4899 {
4900 	BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
4901 	    (void *)bgep, (void *)ppd));
4902 
4903 	bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
4904 }
4905 
4906 #if	BGE_SEE_IO32
4907 
4908 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4909 #pragma	no_inline(bge_chip_peek_seeprom)
4910 
4911 static void
4912 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4913 {
4914 	uint32_t data;
4915 	int err;
4916 
4917 	BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
4918 	    (void *)bgep, (void *)ppd));
4919 
4920 	err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
4921 	ppd->pp_acc_data = err ? ~0ull : data;
4922 }
4923 
4924 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
4925 #pragma	no_inline(bge_chip_poke_seeprom)
4926 
4927 static void
4928 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
4929 {
4930 	uint32_t data;
4931 
4932 	BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
4933 	    (void *)bgep, (void *)ppd));
4934 
4935 	data = ppd->pp_acc_data;
4936 	(void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
4937 }
4938 #endif	/* BGE_SEE_IO32 */
4939 
4940 #if	BGE_FLASH_IO32
4941 
4942 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4943 #pragma	no_inline(bge_chip_peek_flash)
4944 
4945 static void
4946 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4947 {
4948 	uint32_t data;
4949 	int err;
4950 
4951 	BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
4952 	    (void *)bgep, (void *)ppd));
4953 
4954 	err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
4955 	ppd->pp_acc_data = err ? ~0ull : data;
4956 }
4957 
4958 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
4959 #pragma	no_inline(bge_chip_poke_flash)
4960 
4961 static void
4962 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
4963 {
4964 	uint32_t data;
4965 
4966 	BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
4967 	    (void *)bgep, (void *)ppd));
4968 
4969 	data = ppd->pp_acc_data;
4970 	(void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
4971 	    ppd->pp_acc_offset, &data);
4972 }
4973 #endif	/* BGE_FLASH_IO32 */
4974 
4975 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
4976 #pragma	no_inline(bge_chip_peek_mem)
4977 
4978 static void
4979 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
4980 {
4981 	uint64_t regval;
4982 	void *vaddr;
4983 
4984 	BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
4985 	    (void *)bgep, (void *)ppd));
4986 
4987 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
4988 
4989 	switch (ppd->pp_acc_size) {
4990 	case 1:
4991 		regval = *(uint8_t *)vaddr;
4992 		break;
4993 
4994 	case 2:
4995 		regval = *(uint16_t *)vaddr;
4996 		break;
4997 
4998 	case 4:
4999 		regval = *(uint32_t *)vaddr;
5000 		break;
5001 
5002 	case 8:
5003 		regval = *(uint64_t *)vaddr;
5004 		break;
5005 	}
5006 
5007 	BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
5008 	    (void *)bgep, (void *)ppd, regval, vaddr));
5009 
5010 	ppd->pp_acc_data = regval;
5011 }
5012 
5013 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5014 #pragma	no_inline(bge_chip_poke_mem)
5015 
5016 static void
5017 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5018 {
5019 	uint64_t regval;
5020 	void *vaddr;
5021 
5022 	BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
5023 	    (void *)bgep, (void *)ppd));
5024 
5025 	vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5026 	regval = ppd->pp_acc_data;
5027 
5028 	BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
5029 	    (void *)bgep, (void *)ppd, regval, vaddr));
5030 
5031 	switch (ppd->pp_acc_size) {
5032 	case 1:
5033 		*(uint8_t *)vaddr = (uint8_t)regval;
5034 		break;
5035 
5036 	case 2:
5037 		*(uint16_t *)vaddr = (uint16_t)regval;
5038 		break;
5039 
5040 	case 4:
5041 		*(uint32_t *)vaddr = (uint32_t)regval;
5042 		break;
5043 
5044 	case 8:
5045 		*(uint64_t *)vaddr = (uint64_t)regval;
5046 		break;
5047 	}
5048 }
5049 
5050 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5051 					struct iocblk *iocp);
5052 #pragma	no_inline(bge_pp_ioctl)
5053 
5054 static enum ioc_reply
5055 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5056 {
5057 	void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
5058 	bge_peekpoke_t *ppd;
5059 	dma_area_t *areap;
5060 	uint64_t sizemask;
5061 	uint64_t mem_va;
5062 	uint64_t maxoff;
5063 	boolean_t peek;
5064 
5065 	switch (cmd) {
5066 	default:
5067 		/* NOTREACHED */
5068 		bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5069 		return (IOC_INVAL);
5070 
5071 	case BGE_PEEK:
5072 		peek = B_TRUE;
5073 		break;
5074 
5075 	case BGE_POKE:
5076 		peek = B_FALSE;
5077 		break;
5078 	}
5079 
5080 	/*
5081 	 * Validate format of ioctl
5082 	 */
5083 	if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5084 		return (IOC_INVAL);
5085 	if (mp->b_cont == NULL)
5086 		return (IOC_INVAL);
5087 	ppd = (void *)mp->b_cont->b_rptr;
5088 
5089 	/*
5090 	 * Validate request parameters
5091 	 */
5092 	switch (ppd->pp_acc_space) {
5093 	default:
5094 		return (IOC_INVAL);
5095 
5096 	case BGE_PP_SPACE_CFG:
5097 		/*
5098 		 * Config space
5099 		 */
5100 		sizemask = 8|4|2|1;
5101 		mem_va = 0;
5102 		maxoff = PCI_CONF_HDR_SIZE;
5103 		ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5104 		break;
5105 
5106 	case BGE_PP_SPACE_REG:
5107 		/*
5108 		 * Memory-mapped I/O space
5109 		 */
5110 		sizemask = 8|4|2|1;
5111 		mem_va = 0;
5112 		maxoff = RIAAR_REGISTER_MAX;
5113 		ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5114 		break;
5115 
5116 	case BGE_PP_SPACE_NIC:
5117 		/*
5118 		 * NIC on-chip memory
5119 		 */
5120 		sizemask = 8|4|2|1;
5121 		mem_va = 0;
5122 		maxoff = MWBAR_ONCHIP_MAX;
5123 		ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5124 		break;
5125 
5126 	case BGE_PP_SPACE_MII:
5127 		/*
5128 		 * PHY's MII registers
5129 		 * NB: all PHY registers are two bytes, but the
5130 		 * addresses increment in ones (word addressing).
5131 		 * So we scale the address here, then undo the
5132 		 * transformation inside the peek/poke functions.
5133 		 */
5134 		ppd->pp_acc_offset *= 2;
5135 		sizemask = 2;
5136 		mem_va = 0;
5137 		maxoff = (MII_MAXREG+1)*2;
5138 		ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5139 		break;
5140 
5141 #if	BGE_SEE_IO32
5142 	case BGE_PP_SPACE_SEEPROM:
5143 		/*
5144 		 * Attached SEEPROM(s), if any.
5145 		 * NB: we use the high-order bits of the 'address' as
5146 		 * a device select to accommodate multiple SEEPROMS,
5147 		 * If each one is the maximum size (64kbytes), this
5148 		 * makes them appear contiguous.  Otherwise, there may
5149 		 * be holes in the mapping.  ENxS doesn't have any
5150 		 * SEEPROMs anyway ...
5151 		 */
5152 		sizemask = 4;
5153 		mem_va = 0;
5154 		maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5155 		ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5156 		break;
5157 #endif	/* BGE_SEE_IO32 */
5158 
5159 #if	BGE_FLASH_IO32
5160 	case BGE_PP_SPACE_FLASH:
5161 		/*
5162 		 * Attached Flash device (if any); a maximum of one device
5163 		 * is currently supported.  But it can be up to 1MB (unlike
5164 		 * the 64k limit on SEEPROMs) so why would you need more ;-)
5165 		 */
5166 		sizemask = 4;
5167 		mem_va = 0;
5168 		maxoff = NVM_FLASH_ADDR_MASK;
5169 		ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5170 		break;
5171 #endif	/* BGE_FLASH_IO32 */
5172 
5173 	case BGE_PP_SPACE_BGE:
5174 		/*
5175 		 * BGE data structure!
5176 		 */
5177 		sizemask = 8|4|2|1;
5178 		mem_va = (uintptr_t)bgep;
5179 		maxoff = sizeof (*bgep);
5180 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5181 		break;
5182 
5183 	case BGE_PP_SPACE_STATUS:
5184 	case BGE_PP_SPACE_STATISTICS:
5185 	case BGE_PP_SPACE_TXDESC:
5186 	case BGE_PP_SPACE_TXBUFF:
5187 	case BGE_PP_SPACE_RXDESC:
5188 	case BGE_PP_SPACE_RXBUFF:
5189 		/*
5190 		 * Various DMA_AREAs
5191 		 */
5192 		switch (ppd->pp_acc_space) {
5193 		case BGE_PP_SPACE_TXDESC:
5194 			areap = &bgep->tx_desc;
5195 			break;
5196 		case BGE_PP_SPACE_TXBUFF:
5197 			areap = &bgep->tx_buff[0];
5198 			break;
5199 		case BGE_PP_SPACE_RXDESC:
5200 			areap = &bgep->rx_desc[0];
5201 			break;
5202 		case BGE_PP_SPACE_RXBUFF:
5203 			areap = &bgep->rx_buff[0];
5204 			break;
5205 		case BGE_PP_SPACE_STATUS:
5206 			areap = &bgep->status_block;
5207 			break;
5208 		case BGE_PP_SPACE_STATISTICS:
5209 			if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5210 				areap = &bgep->statistics;
5211 			break;
5212 		}
5213 
5214 		sizemask = 8|4|2|1;
5215 		mem_va = (uintptr_t)areap->mem_va;
5216 		maxoff = areap->alength;
5217 		ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5218 		break;
5219 	}
5220 
5221 	switch (ppd->pp_acc_size) {
5222 	default:
5223 		return (IOC_INVAL);
5224 
5225 	case 8:
5226 	case 4:
5227 	case 2:
5228 	case 1:
5229 		if ((ppd->pp_acc_size & sizemask) == 0)
5230 			return (IOC_INVAL);
5231 		break;
5232 	}
5233 
5234 	if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5235 		return (IOC_INVAL);
5236 
5237 	if (ppd->pp_acc_offset >= maxoff)
5238 		return (IOC_INVAL);
5239 
5240 	if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
5241 		return (IOC_INVAL);
5242 
5243 	/*
5244 	 * All OK - go do it!
5245 	 */
5246 	ppd->pp_acc_offset += mem_va;
5247 	(*ppfn)(bgep, ppd);
5248 	return (peek ? IOC_REPLY : IOC_ACK);
5249 }
5250 
5251 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5252 					struct iocblk *iocp);
5253 #pragma	no_inline(bge_diag_ioctl)
5254 
5255 static enum ioc_reply
5256 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5257 {
5258 	ASSERT(mutex_owned(bgep->genlock));
5259 
5260 	switch (cmd) {
5261 	default:
5262 		/* NOTREACHED */
5263 		bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
5264 		return (IOC_INVAL);
5265 
5266 	case BGE_DIAG:
5267 		/*
5268 		 * Currently a no-op
5269 		 */
5270 		return (IOC_ACK);
5271 
5272 	case BGE_PEEK:
5273 	case BGE_POKE:
5274 		return (bge_pp_ioctl(bgep, cmd, mp, iocp));
5275 
5276 	case BGE_PHY_RESET:
5277 		return (IOC_RESTART_ACK);
5278 
5279 	case BGE_SOFT_RESET:
5280 	case BGE_HARD_RESET:
5281 		/*
5282 		 * Reset and reinitialise the 570x hardware
5283 		 */
5284 		bgep->bge_chip_state = BGE_CHIP_FAULT;
5285 		ddi_trigger_softintr(bgep->factotum_id);
5286 		(void) bge_restart(bgep, cmd == BGE_HARD_RESET);
5287 		return (IOC_ACK);
5288 	}
5289 
5290 	/* NOTREACHED */
5291 }
5292 
5293 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5294 
5295 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5296 				    struct iocblk *iocp);
5297 #pragma	no_inline(bge_mii_ioctl)
5298 
5299 static enum ioc_reply
5300 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5301 {
5302 	struct bge_mii_rw *miirwp;
5303 
5304 	/*
5305 	 * Validate format of ioctl
5306 	 */
5307 	if (iocp->ioc_count != sizeof (struct bge_mii_rw))
5308 		return (IOC_INVAL);
5309 	if (mp->b_cont == NULL)
5310 		return (IOC_INVAL);
5311 	miirwp = (void *)mp->b_cont->b_rptr;
5312 
5313 	/*
5314 	 * Validate request parameters ...
5315 	 */
5316 	if (miirwp->mii_reg > MII_MAXREG)
5317 		return (IOC_INVAL);
5318 
5319 	switch (cmd) {
5320 	default:
5321 		/* NOTREACHED */
5322 		bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
5323 		return (IOC_INVAL);
5324 
5325 	case BGE_MII_READ:
5326 		miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
5327 		return (IOC_REPLY);
5328 
5329 	case BGE_MII_WRITE:
5330 		bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
5331 		return (IOC_ACK);
5332 	}
5333 
5334 	/* NOTREACHED */
5335 }
5336 
5337 #if	BGE_SEE_IO32
5338 
5339 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5340 				    struct iocblk *iocp);
5341 #pragma	no_inline(bge_see_ioctl)
5342 
5343 static enum ioc_reply
5344 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5345 {
5346 	struct bge_see_rw *seerwp;
5347 
5348 	/*
5349 	 * Validate format of ioctl
5350 	 */
5351 	if (iocp->ioc_count != sizeof (struct bge_see_rw))
5352 		return (IOC_INVAL);
5353 	if (mp->b_cont == NULL)
5354 		return (IOC_INVAL);
5355 	seerwp = (void *)mp->b_cont->b_rptr;
5356 
5357 	/*
5358 	 * Validate request parameters ...
5359 	 */
5360 	if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
5361 		return (IOC_INVAL);
5362 
5363 	switch (cmd) {
5364 	default:
5365 		/* NOTREACHED */
5366 		bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
5367 		return (IOC_INVAL);
5368 
5369 	case BGE_SEE_READ:
5370 	case BGE_SEE_WRITE:
5371 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5372 		    seerwp->see_addr, &seerwp->see_data);
5373 		return (IOC_REPLY);
5374 	}
5375 
5376 	/* NOTREACHED */
5377 }
5378 
5379 #endif	/* BGE_SEE_IO32 */
5380 
5381 #if	BGE_FLASH_IO32
5382 
5383 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5384 				    struct iocblk *iocp);
5385 #pragma	no_inline(bge_flash_ioctl)
5386 
5387 static enum ioc_reply
5388 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5389 {
5390 	struct bge_flash_rw *flashrwp;
5391 
5392 	/*
5393 	 * Validate format of ioctl
5394 	 */
5395 	if (iocp->ioc_count != sizeof (struct bge_flash_rw))
5396 		return (IOC_INVAL);
5397 	if (mp->b_cont == NULL)
5398 		return (IOC_INVAL);
5399 	flashrwp = (void *)mp->b_cont->b_rptr;
5400 
5401 	/*
5402 	 * Validate request parameters ...
5403 	 */
5404 	if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
5405 		return (IOC_INVAL);
5406 
5407 	switch (cmd) {
5408 	default:
5409 		/* NOTREACHED */
5410 		bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
5411 		return (IOC_INVAL);
5412 
5413 	case BGE_FLASH_READ:
5414 	case BGE_FLASH_WRITE:
5415 		iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
5416 		    flashrwp->flash_addr, &flashrwp->flash_data);
5417 		return (IOC_REPLY);
5418 	}
5419 
5420 	/* NOTREACHED */
5421 }
5422 
5423 #endif	/* BGE_FLASH_IO32 */
5424 
5425 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
5426 				struct iocblk *iocp);
5427 #pragma	no_inline(bge_chip_ioctl)
5428 
5429 enum ioc_reply
5430 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
5431 {
5432 	int cmd;
5433 
5434 	BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
5435 	    (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
5436 
5437 	ASSERT(mutex_owned(bgep->genlock));
5438 
5439 	cmd = iocp->ioc_cmd;
5440 	switch (cmd) {
5441 	default:
5442 		/* NOTREACHED */
5443 		bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
5444 		return (IOC_INVAL);
5445 
5446 	case BGE_DIAG:
5447 	case BGE_PEEK:
5448 	case BGE_POKE:
5449 	case BGE_PHY_RESET:
5450 	case BGE_SOFT_RESET:
5451 	case BGE_HARD_RESET:
5452 #if	BGE_DEBUGGING || BGE_DO_PPIO
5453 		return (bge_diag_ioctl(bgep, cmd, mp, iocp));
5454 #else
5455 		return (IOC_INVAL);
5456 #endif	/* BGE_DEBUGGING || BGE_DO_PPIO */
5457 
5458 	case BGE_MII_READ:
5459 	case BGE_MII_WRITE:
5460 		return (bge_mii_ioctl(bgep, cmd, mp, iocp));
5461 
5462 #if	BGE_SEE_IO32
5463 	case BGE_SEE_READ:
5464 	case BGE_SEE_WRITE:
5465 		return (bge_see_ioctl(bgep, cmd, mp, iocp));
5466 #endif	/* BGE_SEE_IO32 */
5467 
5468 #if	BGE_FLASH_IO32
5469 	case BGE_FLASH_READ:
5470 	case BGE_FLASH_WRITE:
5471 		return (bge_flash_ioctl(bgep, cmd, mp, iocp));
5472 #endif	/* BGE_FLASH_IO32 */
5473 	}
5474 
5475 	/* NOTREACHED */
5476 }
5477 
5478 void
5479 bge_chip_blank(void *arg, time_t ticks, uint_t count)
5480 {
5481 	bge_t *bgep = arg;
5482 
5483 	mutex_enter(bgep->genlock);
5484 	bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
5485 	bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
5486 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5487 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
5488 	mutex_exit(bgep->genlock);
5489 }
5490 
5491 #ifdef BGE_IPMI_ASF
5492 
5493 uint32_t
5494 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
5495 {
5496 	uint32_t data;
5497 
5498 #ifndef __sparc
5499 	if (!bgep->asf_wordswapped) {
5500 		/* a workaround word swap error */
5501 		if (addr & 4)
5502 			addr = addr - 4;
5503 		else
5504 			addr = addr + 4;
5505 	}
5506 #endif
5507 
5508 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
5509 	data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
5510 	pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
5511 
5512 	data = LE_32(data);
5513 	return (data);
5514 }
5515 
5516 void
5517 bge_asf_update_status(bge_t *bgep)
5518 {
5519 	uint32_t event;
5520 
5521 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
5522 	bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
5523 	bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX,   3);
5524 
5525 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5526 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5527 }
5528 
5529 
5530 /*
5531  * The driver is supposed to notify ASF that the OS is still running
5532  * every three seconds, otherwise the management server may attempt
5533  * to reboot the machine.  If it hasn't actually failed, this is
5534  * not a desirable result.  However, this isn't running as a real-time
5535  * thread, and even if it were, it might not be able to generate the
5536  * heartbeat in a timely manner due to system load.  As it isn't a
5537  * significant strain on the machine, we will set the interval to half
5538  * of the required value.
5539  */
5540 void
5541 bge_asf_heartbeat(void *arg)
5542 {
5543 	bge_t *bgep = (bge_t *)arg;
5544 
5545 	mutex_enter(bgep->genlock);
5546 	bge_asf_update_status((bge_t *)bgep);
5547 	if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5548 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5549 	if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
5550 		ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
5551 	mutex_exit(bgep->genlock);
5552 	((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
5553 	    drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
5554 }
5555 
5556 
5557 void
5558 bge_asf_stop_timer(bge_t *bgep)
5559 {
5560 	timeout_id_t tmp_id = 0;
5561 
5562 	while ((bgep->asf_timeout_id != 0) &&
5563 	    (tmp_id != bgep->asf_timeout_id)) {
5564 		tmp_id = bgep->asf_timeout_id;
5565 		(void) untimeout(tmp_id);
5566 	}
5567 	bgep->asf_timeout_id = 0;
5568 }
5569 
5570 
5571 
5572 /*
5573  * This function should be placed at the earliest position of bge_attach().
5574  */
5575 void
5576 bge_asf_get_config(bge_t *bgep)
5577 {
5578 	uint32_t nicsig;
5579 	uint32_t niccfg;
5580 
5581 	bgep->asf_enabled = B_FALSE;
5582 	nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
5583 	if (nicsig == BGE_NIC_DATA_SIG) {
5584 		niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
5585 		if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
5586 			/*
5587 			 * Here, we don't consider BAXTER, because BGE haven't
5588 			 * supported BAXTER (that is 5752). Also, as I know,
5589 			 * BAXTER doesn't support ASF feature.
5590 			 */
5591 			bgep->asf_enabled = B_TRUE;
5592 		else
5593 			bgep->asf_enabled = B_FALSE;
5594 	} else
5595 		bgep->asf_enabled = B_FALSE;
5596 }
5597 
5598 
5599 void
5600 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
5601 {
5602 	uint32_t tries;
5603 	uint32_t event;
5604 
5605 	ASSERT(bgep->asf_enabled);
5606 
5607 	/* Issues "pause firmware" command and wait for ACK */
5608 	bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
5609 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5610 	bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
5611 
5612 	event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5613 	tries = 0;
5614 	while ((event & RRER_ASF_EVENT) && (tries < 100)) {
5615 		drv_usecwait(1);
5616 		tries ++;
5617 		event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
5618 	}
5619 
5620 	bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
5621 	    BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
5622 
5623 	if (bgep->asf_newhandshake) {
5624 		switch (mode) {
5625 		case BGE_INIT_RESET:
5626 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5627 			    BGE_DRV_STATE_START);
5628 			break;
5629 		case BGE_SHUTDOWN_RESET:
5630 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5631 			    BGE_DRV_STATE_UNLOAD);
5632 			break;
5633 		case BGE_SUSPEND_RESET:
5634 			bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5635 			    BGE_DRV_STATE_SUSPEND);
5636 			break;
5637 		default:
5638 			break;
5639 		}
5640 	}
5641 }
5642 
5643 
5644 void
5645 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
5646 {
5647 	switch (mode) {
5648 	case BGE_INIT_RESET:
5649 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5650 		    BGE_DRV_STATE_START);
5651 		break;
5652 	case BGE_SHUTDOWN_RESET:
5653 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5654 		    BGE_DRV_STATE_UNLOAD);
5655 		break;
5656 	case BGE_SUSPEND_RESET:
5657 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5658 		    BGE_DRV_STATE_SUSPEND);
5659 		break;
5660 	default:
5661 		break;
5662 	}
5663 }
5664 
5665 
5666 void
5667 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
5668 {
5669 	switch (mode) {
5670 	case BGE_INIT_RESET:
5671 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5672 		    BGE_DRV_STATE_START_DONE);
5673 		break;
5674 	case BGE_SHUTDOWN_RESET:
5675 		bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
5676 		    BGE_DRV_STATE_UNLOAD_DONE);
5677 		break;
5678 	default:
5679 		break;
5680 	}
5681 }
5682 
5683 #endif /* BGE_IPMI_ASF */
5684