xref: /titanic_50/usr/src/uts/common/io/asy.c (revision b3700b074e637f8c6991b70754c88a2cfffb246b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
23 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
24 /*	  All Rights Reserved					*/
25 
26 /*
27  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Copyright 2012 Milan Jurik. All rights reserved.
29  */
30 
31 
32 /*
33  * Serial I/O driver for 8250/16450/16550A/16650/16750 chips.
34  */
35 
36 #include <sys/param.h>
37 #include <sys/types.h>
38 #include <sys/signal.h>
39 #include <sys/stream.h>
40 #include <sys/termio.h>
41 #include <sys/errno.h>
42 #include <sys/file.h>
43 #include <sys/cmn_err.h>
44 #include <sys/stropts.h>
45 #include <sys/strsubr.h>
46 #include <sys/strtty.h>
47 #include <sys/debug.h>
48 #include <sys/kbio.h>
49 #include <sys/cred.h>
50 #include <sys/stat.h>
51 #include <sys/consdev.h>
52 #include <sys/mkdev.h>
53 #include <sys/kmem.h>
54 #include <sys/cred.h>
55 #include <sys/strsun.h>
56 #ifdef DEBUG
57 #include <sys/promif.h>
58 #endif
59 #include <sys/modctl.h>
60 #include <sys/ddi.h>
61 #include <sys/sunddi.h>
62 #include <sys/pci.h>
63 #include <sys/asy.h>
64 #include <sys/policy.h>
65 
66 /*
67  * set the RX FIFO trigger_level to half the RX FIFO size for now
68  * we may want to make this configurable later.
69  */
70 static	int asy_trig_level = FIFO_TRIG_8;
71 
72 int asy_drain_check = 15000000;		/* tunable: exit drain check time */
73 int asy_min_dtr_low = 500000;		/* tunable: minimum DTR down time */
74 int asy_min_utbrk = 100000;		/* tunable: minumum untimed brk time */
75 
76 int asymaxchip = ASY16750;	/* tunable: limit chip support we look for */
77 
78 /*
79  * Just in case someone has a chip with broken loopback mode, we provide a
80  * means to disable the loopback test. By default, we only loopback test
81  * UARTs which look like they have FIFOs bigger than 16 bytes.
82  * Set to 0 to suppress test, or to 2 to enable test on any size FIFO.
83  */
84 int asy_fifo_test = 1;		/* tunable: set to 0, 1, or 2 */
85 
86 /*
87  * Allow ability to switch off testing of the scratch register.
88  * Some UART emulators might not have it. This will also disable the test
89  * for Exar/Startech ST16C650, as that requires use of the SCR register.
90  */
91 int asy_scr_test = 1;		/* tunable: set to 0 to disable SCR reg test */
92 
93 /*
94  * As we don't yet support on-chip flow control, it's a bad idea to put a
95  * large number of characters in the TX FIFO, since if other end tells us
96  * to stop transmitting, we can only stop filling the TX FIFO, but it will
97  * still carry on draining by itself, so remote end still gets what's left
98  * in the FIFO.
99  */
100 int asy_max_tx_fifo = 16;	/* tunable: max fill of TX FIFO */
101 
102 #define	async_stopc	async_ttycommon.t_stopc
103 #define	async_startc	async_ttycommon.t_startc
104 
105 #define	ASY_INIT	1
106 #define	ASY_NOINIT	0
107 
108 /* enum value for sw and hw flow control action */
109 typedef enum {
110 	FLOW_CHECK,
111 	FLOW_STOP,
112 	FLOW_START
113 } async_flowc_action;
114 
115 #ifdef DEBUG
116 #define	ASY_DEBUG_INIT	0x0001	/* Output msgs during driver initialization. */
117 #define	ASY_DEBUG_INPUT	0x0002	/* Report characters received during int. */
118 #define	ASY_DEBUG_EOT	0x0004	/* Output msgs when wait for xmit to finish. */
119 #define	ASY_DEBUG_CLOSE	0x0008	/* Output msgs when driver open/close called */
120 #define	ASY_DEBUG_HFLOW	0x0010	/* Output msgs when H/W flowcontrol is active */
121 #define	ASY_DEBUG_PROCS	0x0020	/* Output each proc name as it is entered. */
122 #define	ASY_DEBUG_STATE	0x0040	/* Output value of Interrupt Service Reg. */
123 #define	ASY_DEBUG_INTR	0x0080	/* Output value of Interrupt Service Reg. */
124 #define	ASY_DEBUG_OUT	0x0100	/* Output msgs about output events. */
125 #define	ASY_DEBUG_BUSY	0x0200	/* Output msgs when xmit is enabled/disabled */
126 #define	ASY_DEBUG_MODEM	0x0400	/* Output msgs about modem status & control. */
127 #define	ASY_DEBUG_MODM2	0x0800	/* Output msgs about modem status & control. */
128 #define	ASY_DEBUG_IOCTL	0x1000	/* Output msgs about ioctl messages. */
129 #define	ASY_DEBUG_CHIP	0x2000	/* Output msgs about chip identification. */
130 #define	ASY_DEBUG_SFLOW	0x4000	/* Output msgs when S/W flowcontrol is active */
131 #define	ASY_DEBUG(x) (debug & (x))
132 static	int debug  = 0;
133 #else
134 #define	ASY_DEBUG(x) B_FALSE
135 #endif
136 
137 /* pnpISA compressed device ids */
138 #define	pnpMTS0219 0xb6930219	/* Multitech MT5634ZTX modem */
139 
140 /*
141  * PPS (Pulse Per Second) support.
142  */
143 void ddi_hardpps(struct timeval *, int);
144 /*
145  * This is protected by the asy_excl_hi of the port on which PPS event
146  * handling is enabled.  Note that only one port should have this enabled at
147  * any one time.  Enabling PPS handling on multiple ports will result in
148  * unpredictable (but benign) results.
149  */
150 static struct ppsclockev asy_ppsev;
151 
152 #ifdef PPSCLOCKLED
153 /* XXX Use these to observe PPS latencies and jitter on a scope */
154 #define	LED_ON
155 #define	LED_OFF
156 #else
157 #define	LED_ON
158 #define	LED_OFF
159 #endif
160 
161 static	int max_asy_instance = -1;
162 
163 static	uint_t	asysoftintr(caddr_t intarg);
164 static	uint_t	asyintr(caddr_t argasy);
165 
166 static boolean_t abort_charseq_recognize(uchar_t ch);
167 
168 /* The async interrupt entry points */
169 static void	async_txint(struct asycom *asy);
170 static void	async_rxint(struct asycom *asy, uchar_t lsr);
171 static void	async_msint(struct asycom *asy);
172 static void	async_softint(struct asycom *asy);
173 
174 static void	async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp);
175 static void	async_reioctl(void *unit);
176 static void	async_iocdata(queue_t *q, mblk_t *mp);
177 static void	async_restart(void *arg);
178 static void	async_start(struct asyncline *async);
179 static void	async_nstart(struct asyncline *async, int mode);
180 static void	async_resume(struct asyncline *async);
181 static void	asy_program(struct asycom *asy, int mode);
182 static void	asyinit(struct asycom *asy);
183 static void	asy_waiteot(struct asycom *asy);
184 static void	asyputchar(cons_polledio_arg_t, uchar_t c);
185 static int	asygetchar(cons_polledio_arg_t);
186 static boolean_t	asyischar(cons_polledio_arg_t);
187 
188 static int	asymctl(struct asycom *, int, int);
189 static int	asytodm(int, int);
190 static int	dmtoasy(int);
191 /*PRINTFLIKE2*/
192 static void	asyerror(int level, const char *fmt, ...) __KPRINTFLIKE(2);
193 static void	asy_parse_mode(dev_info_t *devi, struct asycom *asy);
194 static void	asy_soft_state_free(struct asycom *);
195 static char	*asy_hw_name(struct asycom *asy);
196 static void	async_hold_utbrk(void *arg);
197 static void	async_resume_utbrk(struct asyncline *async);
198 static void	async_dtr_free(struct asyncline *async);
199 static int	asy_identify_chip(dev_info_t *devi, struct asycom *asy);
200 static void	asy_reset_fifo(struct asycom *asy, uchar_t flags);
201 static int	asy_getproperty(dev_info_t *devi, struct asycom *asy,
202 		    const char *property);
203 static boolean_t	async_flowcontrol_sw_input(struct asycom *asy,
204 			    async_flowc_action onoff, int type);
205 static void	async_flowcontrol_sw_output(struct asycom *asy,
206 		    async_flowc_action onoff);
207 static void	async_flowcontrol_hw_input(struct asycom *asy,
208 		    async_flowc_action onoff, int type);
209 static void	async_flowcontrol_hw_output(struct asycom *asy,
210 		    async_flowc_action onoff);
211 
212 #define	GET_PROP(devi, pname, pflag, pval, plen) \
213 		(ddi_prop_op(DDI_DEV_T_ANY, (devi), PROP_LEN_AND_VAL_BUF, \
214 		(pflag), (pname), (caddr_t)(pval), (plen)))
215 
216 kmutex_t asy_glob_lock; /* lock protecting global data manipulation */
217 void *asy_soft_state;
218 
219 /* Standard COM port I/O addresses */
220 static const int standard_com_ports[] = {
221 	COM1_IOADDR, COM2_IOADDR, COM3_IOADDR, COM4_IOADDR
222 };
223 
224 static int *com_ports;
225 static uint_t num_com_ports;
226 
227 #ifdef	DEBUG
228 /*
229  * Set this to true to make the driver pretend to do a suspend.  Useful
230  * for debugging suspend/resume code with a serial debugger.
231  */
232 boolean_t	asy_nosuspend = B_FALSE;
233 #endif
234 
235 
236 /*
237  * Baud rate table. Indexed by #defines found in sys/termios.h
238  */
239 ushort_t asyspdtab[] = {
240 	0,	/* 0 baud rate */
241 	0x900,	/* 50 baud rate */
242 	0x600,	/* 75 baud rate */
243 	0x417,	/* 110 baud rate (%0.026) */
244 	0x359,	/* 134 baud rate (%0.058) */
245 	0x300,	/* 150 baud rate */
246 	0x240,	/* 200 baud rate */
247 	0x180,	/* 300 baud rate */
248 	0x0c0,	/* 600 baud rate */
249 	0x060,	/* 1200 baud rate */
250 	0x040,	/* 1800 baud rate */
251 	0x030,	/* 2400 baud rate */
252 	0x018,	/* 4800 baud rate */
253 	0x00c,	/* 9600 baud rate */
254 	0x006,	/* 19200 baud rate */
255 	0x003,	/* 38400 baud rate */
256 
257 	0x002,	/* 57600 baud rate */
258 	0x0,	/* 76800 baud rate not supported */
259 	0x001,	/* 115200 baud rate */
260 	0x0,	/* 153600 baud rate not supported */
261 	0x0,	/* 0x8002 (SMC chip) 230400 baud rate not supported */
262 	0x0,	/* 307200 baud rate not supported */
263 	0x0,	/* 0x8001 (SMC chip) 460800 baud rate not supported */
264 	0x0,	/* unused */
265 	0x0,	/* unused */
266 	0x0,	/* unused */
267 	0x0,	/* unused */
268 	0x0,	/* unused */
269 	0x0,	/* unused */
270 	0x0,	/* unused */
271 	0x0,	/* unused */
272 	0x0,	/* unused */
273 };
274 
275 static int asyrsrv(queue_t *q);
276 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
277 static int asyclose(queue_t *q, int flag, cred_t *credp);
278 static int asywputdo(queue_t *q, mblk_t *mp, boolean_t);
279 static int asywput(queue_t *q, mblk_t *mp);
280 
281 struct module_info asy_info = {
282 	0,
283 	"asy",
284 	0,
285 	INFPSZ,
286 	4096,
287 	128
288 };
289 
290 static struct qinit asy_rint = {
291 	putq,
292 	asyrsrv,
293 	asyopen,
294 	asyclose,
295 	NULL,
296 	&asy_info,
297 	NULL
298 };
299 
300 static struct qinit asy_wint = {
301 	asywput,
302 	NULL,
303 	NULL,
304 	NULL,
305 	NULL,
306 	&asy_info,
307 	NULL
308 };
309 
310 struct streamtab asy_str_info = {
311 	&asy_rint,
312 	&asy_wint,
313 	NULL,
314 	NULL
315 };
316 
317 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
318 		void **result);
319 static int asyprobe(dev_info_t *);
320 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
321 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
322 static int asyquiesce(dev_info_t *);
323 
324 static 	struct cb_ops cb_asy_ops = {
325 	nodev,			/* cb_open */
326 	nodev,			/* cb_close */
327 	nodev,			/* cb_strategy */
328 	nodev,			/* cb_print */
329 	nodev,			/* cb_dump */
330 	nodev,			/* cb_read */
331 	nodev,			/* cb_write */
332 	nodev,			/* cb_ioctl */
333 	nodev,			/* cb_devmap */
334 	nodev,			/* cb_mmap */
335 	nodev,			/* cb_segmap */
336 	nochpoll,		/* cb_chpoll */
337 	ddi_prop_op,		/* cb_prop_op */
338 	&asy_str_info,		/* cb_stream */
339 	D_MP			/* cb_flag */
340 };
341 
342 struct dev_ops asy_ops = {
343 	DEVO_REV,		/* devo_rev */
344 	0,			/* devo_refcnt */
345 	asyinfo,		/* devo_getinfo */
346 	nulldev,		/* devo_identify */
347 	asyprobe,		/* devo_probe */
348 	asyattach,		/* devo_attach */
349 	asydetach,		/* devo_detach */
350 	nodev,			/* devo_reset */
351 	&cb_asy_ops,		/* devo_cb_ops */
352 	NULL,			/* devo_bus_ops */
353 	NULL,			/* power */
354 	asyquiesce,		/* quiesce */
355 };
356 
357 static struct modldrv modldrv = {
358 	&mod_driverops, /* Type of module.  This one is a driver */
359 	"ASY driver",
360 	&asy_ops,	/* driver ops */
361 };
362 
363 static struct modlinkage modlinkage = {
364 	MODREV_1,
365 	(void *)&modldrv,
366 	NULL
367 };
368 
369 int
370 _init(void)
371 {
372 	int i;
373 
374 	i = ddi_soft_state_init(&asy_soft_state, sizeof (struct asycom), 2);
375 	if (i == 0) {
376 		mutex_init(&asy_glob_lock, NULL, MUTEX_DRIVER, NULL);
377 		if ((i = mod_install(&modlinkage)) != 0) {
378 			mutex_destroy(&asy_glob_lock);
379 			ddi_soft_state_fini(&asy_soft_state);
380 		} else {
381 			DEBUGCONT2(ASY_DEBUG_INIT, "%s, debug = %x\n",
382 			    modldrv.drv_linkinfo, debug);
383 		}
384 	}
385 	return (i);
386 }
387 
388 int
389 _fini(void)
390 {
391 	int i;
392 
393 	if ((i = mod_remove(&modlinkage)) == 0) {
394 		DEBUGCONT1(ASY_DEBUG_INIT, "%s unloading\n",
395 		    modldrv.drv_linkinfo);
396 		ASSERT(max_asy_instance == -1);
397 		mutex_destroy(&asy_glob_lock);
398 		/* free "motherboard-serial-ports" property if allocated */
399 		if (com_ports != NULL && com_ports != (int *)standard_com_ports)
400 			ddi_prop_free(com_ports);
401 		com_ports = NULL;
402 		ddi_soft_state_fini(&asy_soft_state);
403 	}
404 	return (i);
405 }
406 
407 int
408 _info(struct modinfo *modinfop)
409 {
410 	return (mod_info(&modlinkage, modinfop));
411 }
412 
413 void
414 async_put_suspq(struct asycom *asy, mblk_t *mp)
415 {
416 	struct asyncline *async = asy->asy_priv;
417 
418 	ASSERT(mutex_owned(&asy->asy_excl));
419 
420 	if (async->async_suspqf == NULL)
421 		async->async_suspqf = mp;
422 	else
423 		async->async_suspqb->b_next = mp;
424 
425 	async->async_suspqb = mp;
426 }
427 
428 static mblk_t *
429 async_get_suspq(struct asycom *asy)
430 {
431 	struct asyncline *async = asy->asy_priv;
432 	mblk_t *mp;
433 
434 	ASSERT(mutex_owned(&asy->asy_excl));
435 
436 	if ((mp = async->async_suspqf) != NULL) {
437 		async->async_suspqf = mp->b_next;
438 		mp->b_next = NULL;
439 	} else {
440 		async->async_suspqb = NULL;
441 	}
442 	return (mp);
443 }
444 
445 static void
446 async_process_suspq(struct asycom *asy)
447 {
448 	struct asyncline *async = asy->asy_priv;
449 	mblk_t *mp;
450 
451 	ASSERT(mutex_owned(&asy->asy_excl));
452 
453 	while ((mp = async_get_suspq(asy)) != NULL) {
454 		queue_t *q;
455 
456 		q = async->async_ttycommon.t_writeq;
457 		ASSERT(q != NULL);
458 		mutex_exit(&asy->asy_excl);
459 		(void) asywputdo(q, mp, B_FALSE);
460 		mutex_enter(&asy->asy_excl);
461 	}
462 	async->async_flags &= ~ASYNC_DDI_SUSPENDED;
463 	cv_broadcast(&async->async_flags_cv);
464 }
465 
466 static int
467 asy_get_bus_type(dev_info_t *devinfo)
468 {
469 	char	parent_type[16];
470 	int	parentlen;
471 
472 	parentlen = sizeof (parent_type);
473 
474 	if (ddi_prop_op(DDI_DEV_T_ANY, devinfo, PROP_LEN_AND_VAL_BUF, 0,
475 	    "device_type", (caddr_t)parent_type, &parentlen)
476 	    != DDI_PROP_SUCCESS && ddi_prop_op(DDI_DEV_T_ANY, devinfo,
477 	    PROP_LEN_AND_VAL_BUF, 0, "bus-type", (caddr_t)parent_type,
478 	    &parentlen) != DDI_PROP_SUCCESS) {
479 			cmn_err(CE_WARN,
480 			    "asy: can't figure out device type for"
481 			    " parent \"%s\"",
482 			    ddi_get_name(ddi_get_parent(devinfo)));
483 			return (ASY_BUS_UNKNOWN);
484 	}
485 	if (strcmp(parent_type, "isa") == 0)
486 		return (ASY_BUS_ISA);
487 	else if (strcmp(parent_type, "pci") == 0)
488 		return (ASY_BUS_PCI);
489 	else
490 		return (ASY_BUS_UNKNOWN);
491 }
492 
493 static int
494 asy_get_io_regnum_pci(dev_info_t *devi, struct asycom *asy)
495 {
496 	int reglen, nregs;
497 	int regnum, i;
498 	uint64_t size;
499 	struct pci_phys_spec *reglist;
500 
501 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
502 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
503 		cmn_err(CE_WARN, "asy_get_io_regnum_pci: reg property"
504 		    " not found in devices property list");
505 		return (-1);
506 	}
507 
508 	/*
509 	 * PCI devices are assumed to not have broken FIFOs;
510 	 * Agere/Lucent Venus PCI modem chipsets are an example
511 	 */
512 	if (asy)
513 		asy->asy_flags2 |= ASY2_NO_LOOPBACK;
514 
515 	regnum = -1;
516 	nregs = reglen / sizeof (*reglist);
517 	for (i = 0; i < nregs; i++) {
518 		switch (reglist[i].pci_phys_hi & PCI_ADDR_MASK) {
519 		case PCI_ADDR_IO:		/* I/O bus reg property */
520 			if (regnum == -1) /* use only the first one */
521 				regnum = i;
522 			break;
523 
524 		default:
525 			break;
526 		}
527 	}
528 
529 	/* check for valid count of registers */
530 	if (regnum >= 0) {
531 		size = ((uint64_t)reglist[regnum].pci_size_low) |
532 		    ((uint64_t)reglist[regnum].pci_size_hi) << 32;
533 		if (size < 8)
534 			regnum = -1;
535 	}
536 	kmem_free(reglist, reglen);
537 	return (regnum);
538 }
539 
540 static int
541 asy_get_io_regnum_isa(dev_info_t *devi, struct asycom *asy)
542 {
543 	int reglen, nregs;
544 	int regnum, i;
545 	struct {
546 		uint_t bustype;
547 		int base;
548 		int size;
549 	} *reglist;
550 
551 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
552 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
553 		cmn_err(CE_WARN, "asy_get_io_regnum: reg property not found "
554 		    "in devices property list");
555 		return (-1);
556 	}
557 
558 	regnum = -1;
559 	nregs = reglen / sizeof (*reglist);
560 	for (i = 0; i < nregs; i++) {
561 		switch (reglist[i].bustype) {
562 		case 1:			/* I/O bus reg property */
563 			if (regnum == -1) /* only use the first one */
564 				regnum = i;
565 			break;
566 
567 		case pnpMTS0219:	/* Multitech MT5634ZTX modem */
568 			/* Venus chipset can't do loopback test */
569 			if (asy)
570 				asy->asy_flags2 |= ASY2_NO_LOOPBACK;
571 			break;
572 
573 		default:
574 			break;
575 		}
576 	}
577 
578 	/* check for valid count of registers */
579 	if ((regnum < 0) || (reglist[regnum].size < 8))
580 		regnum = -1;
581 	kmem_free(reglist, reglen);
582 	return (regnum);
583 }
584 
585 static int
586 asy_get_io_regnum(dev_info_t *devinfo, struct asycom *asy)
587 {
588 	switch (asy_get_bus_type(devinfo)) {
589 	case ASY_BUS_ISA:
590 		return (asy_get_io_regnum_isa(devinfo, asy));
591 	case ASY_BUS_PCI:
592 		return (asy_get_io_regnum_pci(devinfo, asy));
593 	default:
594 		return (-1);
595 	}
596 }
597 
598 static int
599 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
600 {
601 	int instance;
602 	struct asycom *asy;
603 	struct asyncline *async;
604 
605 	instance = ddi_get_instance(devi);	/* find out which unit */
606 
607 	asy = ddi_get_soft_state(asy_soft_state, instance);
608 	if (asy == NULL)
609 		return (DDI_FAILURE);
610 	async = asy->asy_priv;
611 
612 	switch (cmd) {
613 	case DDI_DETACH:
614 		DEBUGNOTE2(ASY_DEBUG_INIT, "asy%d: %s shutdown.",
615 		    instance, asy_hw_name(asy));
616 
617 		/* cancel DTR hold timeout */
618 		if (async->async_dtrtid != 0) {
619 			(void) untimeout(async->async_dtrtid);
620 			async->async_dtrtid = 0;
621 		}
622 
623 		/* remove all minor device node(s) for this device */
624 		ddi_remove_minor_node(devi, NULL);
625 
626 		mutex_destroy(&asy->asy_excl);
627 		mutex_destroy(&asy->asy_excl_hi);
628 		cv_destroy(&async->async_flags_cv);
629 		ddi_remove_intr(devi, 0, asy->asy_iblock);
630 		ddi_regs_map_free(&asy->asy_iohandle);
631 		ddi_remove_softintr(asy->asy_softintr_id);
632 		mutex_destroy(&asy->asy_soft_lock);
633 		asy_soft_state_free(asy);
634 		DEBUGNOTE1(ASY_DEBUG_INIT, "asy%d: shutdown complete",
635 		    instance);
636 		break;
637 	case DDI_SUSPEND:
638 		{
639 		unsigned i;
640 		uchar_t lsr;
641 
642 #ifdef	DEBUG
643 		if (asy_nosuspend)
644 			return (DDI_SUCCESS);
645 #endif
646 		mutex_enter(&asy->asy_excl);
647 
648 		ASSERT(async->async_ops >= 0);
649 		while (async->async_ops > 0)
650 			cv_wait(&async->async_ops_cv, &asy->asy_excl);
651 
652 		async->async_flags |= ASYNC_DDI_SUSPENDED;
653 
654 		/* Wait for timed break and delay to complete */
655 		while ((async->async_flags & (ASYNC_BREAK|ASYNC_DELAY))) {
656 			if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl)
657 			    == 0) {
658 				async_process_suspq(asy);
659 				mutex_exit(&asy->asy_excl);
660 				return (DDI_FAILURE);
661 			}
662 		}
663 
664 		/* Clear untimed break */
665 		if (async->async_flags & ASYNC_OUT_SUSPEND)
666 			async_resume_utbrk(async);
667 
668 		mutex_exit(&asy->asy_excl);
669 
670 		mutex_enter(&asy->asy_soft_sr);
671 		mutex_enter(&asy->asy_excl);
672 		if (async->async_wbufcid != 0) {
673 			bufcall_id_t bcid = async->async_wbufcid;
674 			async->async_wbufcid = 0;
675 			async->async_flags |= ASYNC_RESUME_BUFCALL;
676 			mutex_exit(&asy->asy_excl);
677 			unbufcall(bcid);
678 			mutex_enter(&asy->asy_excl);
679 		}
680 		mutex_enter(&asy->asy_excl_hi);
681 
682 		/* Disable interrupts from chip */
683 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
684 		asy->asy_flags |= ASY_DDI_SUSPENDED;
685 
686 		/*
687 		 * Hardware interrupts are disabled we can drop our high level
688 		 * lock and proceed.
689 		 */
690 		mutex_exit(&asy->asy_excl_hi);
691 
692 		/* Process remaining RX characters and RX errors, if any */
693 		lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
694 		async_rxint(asy, lsr);
695 
696 		/* Wait for TX to drain */
697 		for (i = 1000; i > 0; i--) {
698 			lsr = ddi_get8(asy->asy_iohandle,
699 			    asy->asy_ioaddr + LSR);
700 			if ((lsr & (XSRE | XHRE)) == (XSRE | XHRE))
701 				break;
702 			delay(drv_usectohz(10000));
703 		}
704 		if (i == 0)
705 			cmn_err(CE_WARN,
706 			    "asy: transmitter wasn't drained before "
707 			    "driver was suspended");
708 
709 		mutex_exit(&asy->asy_excl);
710 		mutex_exit(&asy->asy_soft_sr);
711 		break;
712 	}
713 	default:
714 		return (DDI_FAILURE);
715 	}
716 
717 	return (DDI_SUCCESS);
718 }
719 
720 /*
721  * asyprobe
722  * We don't bother probing for the hardware, as since Solaris 2.6, device
723  * nodes are only created for auto-detected hardware or nodes explicitly
724  * created by the user, e.g. via the DCA. However, we should check the
725  * device node is at least vaguely usable, i.e. we have a block of 8 i/o
726  * ports. This prevents attempting to attach to bogus serial ports which
727  * some BIOSs still partially report when they are disabled in the BIOS.
728  */
729 static int
730 asyprobe(dev_info_t *devi)
731 {
732 	return ((asy_get_io_regnum(devi, NULL) < 0) ?
733 	    DDI_PROBE_FAILURE : DDI_PROBE_DONTCARE);
734 }
735 
736 static int
737 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
738 {
739 	int instance;
740 	int mcr;
741 	int ret;
742 	int regnum = 0;
743 	int i;
744 	struct asycom *asy;
745 	char name[ASY_MINOR_LEN];
746 	int status;
747 	static ddi_device_acc_attr_t ioattr = {
748 		DDI_DEVICE_ATTR_V0,
749 		DDI_NEVERSWAP_ACC,
750 		DDI_STRICTORDER_ACC,
751 	};
752 
753 	instance = ddi_get_instance(devi);	/* find out which unit */
754 
755 	switch (cmd) {
756 	case DDI_ATTACH:
757 		break;
758 	case DDI_RESUME:
759 	{
760 		struct asyncline *async;
761 
762 #ifdef	DEBUG
763 		if (asy_nosuspend)
764 			return (DDI_SUCCESS);
765 #endif
766 		asy = ddi_get_soft_state(asy_soft_state, instance);
767 		if (asy == NULL)
768 			return (DDI_FAILURE);
769 
770 		mutex_enter(&asy->asy_soft_sr);
771 		mutex_enter(&asy->asy_excl);
772 		mutex_enter(&asy->asy_excl_hi);
773 
774 		async = asy->asy_priv;
775 		/* Disable interrupts */
776 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
777 		if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
778 			mutex_exit(&asy->asy_excl_hi);
779 			mutex_exit(&asy->asy_excl);
780 			mutex_exit(&asy->asy_soft_sr);
781 			cmn_err(CE_WARN, "!Cannot identify UART chip at %p\n",
782 			    (void *)asy->asy_ioaddr);
783 			return (DDI_FAILURE);
784 		}
785 		asy->asy_flags &= ~ASY_DDI_SUSPENDED;
786 		if (async->async_flags & ASYNC_ISOPEN) {
787 			asy_program(asy, ASY_INIT);
788 			/* Kick off output */
789 			if (async->async_ocnt > 0) {
790 				async_resume(async);
791 			} else {
792 				mutex_exit(&asy->asy_excl_hi);
793 				if (async->async_xmitblk)
794 					freeb(async->async_xmitblk);
795 				async->async_xmitblk = NULL;
796 				async_start(async);
797 				mutex_enter(&asy->asy_excl_hi);
798 			}
799 			ASYSETSOFT(asy);
800 		}
801 		mutex_exit(&asy->asy_excl_hi);
802 		mutex_exit(&asy->asy_excl);
803 		mutex_exit(&asy->asy_soft_sr);
804 
805 		mutex_enter(&asy->asy_excl);
806 		if (async->async_flags & ASYNC_RESUME_BUFCALL) {
807 			async->async_wbufcid = bufcall(async->async_wbufcds,
808 			    BPRI_HI, (void (*)(void *)) async_reioctl,
809 			    (void *)(intptr_t)async->async_common->asy_unit);
810 			async->async_flags &= ~ASYNC_RESUME_BUFCALL;
811 		}
812 		async_process_suspq(asy);
813 		mutex_exit(&asy->asy_excl);
814 		return (DDI_SUCCESS);
815 	}
816 	default:
817 		return (DDI_FAILURE);
818 	}
819 
820 	ret = ddi_soft_state_zalloc(asy_soft_state, instance);
821 	if (ret != DDI_SUCCESS)
822 		return (DDI_FAILURE);
823 	asy = ddi_get_soft_state(asy_soft_state, instance);
824 	ASSERT(asy != NULL);	/* can't fail - we only just allocated it */
825 	asy->asy_unit = instance;
826 	mutex_enter(&asy_glob_lock);
827 	if (instance > max_asy_instance)
828 		max_asy_instance = instance;
829 	mutex_exit(&asy_glob_lock);
830 
831 	regnum = asy_get_io_regnum(devi, asy);
832 
833 	if (regnum < 0 ||
834 	    ddi_regs_map_setup(devi, regnum, (caddr_t *)&asy->asy_ioaddr,
835 	    (offset_t)0, (offset_t)0, &ioattr, &asy->asy_iohandle)
836 	    != DDI_SUCCESS) {
837 		cmn_err(CE_WARN, "asy%d: could not map UART registers @ %p",
838 		    instance, (void *)asy->asy_ioaddr);
839 
840 		asy_soft_state_free(asy);
841 		return (DDI_FAILURE);
842 	}
843 
844 	DEBUGCONT2(ASY_DEBUG_INIT, "asy%dattach: UART @ %p\n",
845 	    instance, (void *)asy->asy_ioaddr);
846 
847 	mutex_enter(&asy_glob_lock);
848 	if (com_ports == NULL) {	/* need to initialize com_ports */
849 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, devi, 0,
850 		    "motherboard-serial-ports", &com_ports, &num_com_ports) !=
851 		    DDI_PROP_SUCCESS) {
852 			/* Use our built-in COM[1234] values */
853 			com_ports = (int *)standard_com_ports;
854 			num_com_ports = sizeof (standard_com_ports) /
855 			    sizeof (standard_com_ports[0]);
856 		}
857 		if (num_com_ports > 10) {
858 			/* We run out of single digits for device properties */
859 			num_com_ports = 10;
860 			cmn_err(CE_WARN,
861 			    "More than %d motherboard-serial-ports",
862 			    num_com_ports);
863 		}
864 	}
865 	mutex_exit(&asy_glob_lock);
866 
867 	/*
868 	 * Lookup the i/o address to see if this is a standard COM port
869 	 * in which case we assign it the correct tty[a-d] to match the
870 	 * COM port number, or some other i/o address in which case it
871 	 * will be assigned /dev/term/[0123...] in some rather arbitrary
872 	 * fashion.
873 	 */
874 
875 	for (i = 0; i < num_com_ports; i++) {
876 		if (asy->asy_ioaddr == (uint8_t *)(uintptr_t)com_ports[i]) {
877 			asy->asy_com_port = i + 1;
878 			break;
879 		}
880 	}
881 
882 	/*
883 	 * It appears that there was async hardware that on reset
884 	 * did not clear ICR.  Hence when we get to
885 	 * ddi_get_iblock_cookie below, this hardware would cause
886 	 * the system to hang if there was input available.
887 	 */
888 
889 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0x00);
890 
891 	/* establish default usage */
892 	asy->asy_mcr |= RTS|DTR;		/* do use RTS/DTR after open */
893 	asy->asy_lcr = STOP1|BITS8;		/* default to 1 stop 8 bits */
894 	asy->asy_bidx = B9600;			/* default to 9600  */
895 #ifdef DEBUG
896 	asy->asy_msint_cnt = 0;			/* # of times in async_msint */
897 #endif
898 	mcr = 0;				/* don't enable until open */
899 
900 	if (asy->asy_com_port != 0) {
901 		/*
902 		 * For motherboard ports, emulate tty eeprom properties.
903 		 * Actually, we can't tell if a port is motherboard or not,
904 		 * so for "motherboard ports", read standard DOS COM ports.
905 		 */
906 		switch (asy_getproperty(devi, asy, "ignore-cd")) {
907 		case 0:				/* *-ignore-cd=False */
908 			DEBUGCONT1(ASY_DEBUG_MODEM,
909 			    "asy%dattach: clear ASY_IGNORE_CD\n", instance);
910 			asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */
911 			break;
912 		case 1:				/* *-ignore-cd=True */
913 			/*FALLTHRU*/
914 		default:			/* *-ignore-cd not defined */
915 			/*
916 			 * We set rather silly defaults of soft carrier on
917 			 * and DTR/RTS raised here because it might be that
918 			 * one of the motherboard ports is the system console.
919 			 */
920 			DEBUGCONT1(ASY_DEBUG_MODEM,
921 			    "asy%dattach: set ASY_IGNORE_CD, set RTS & DTR\n",
922 			    instance);
923 			mcr = asy->asy_mcr;		/* rts/dtr on */
924 			asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
925 			break;
926 		}
927 
928 		/* Property for not raising DTR/RTS */
929 		switch (asy_getproperty(devi, asy, "rts-dtr-off")) {
930 		case 0:				/* *-rts-dtr-off=False */
931 			asy->asy_flags |= ASY_RTS_DTR_OFF;	/* OFF */
932 			mcr = asy->asy_mcr;		/* rts/dtr on */
933 			DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dattach: "
934 			    "ASY_RTS_DTR_OFF set and DTR & RTS set\n",
935 			    instance);
936 			break;
937 		case 1:				/* *-rts-dtr-off=True */
938 			/*FALLTHRU*/
939 		default:			/* *-rts-dtr-off undefined */
940 			break;
941 		}
942 
943 		/* Parse property for tty modes */
944 		asy_parse_mode(devi, asy);
945 	} else {
946 		DEBUGCONT1(ASY_DEBUG_MODEM,
947 		    "asy%dattach: clear ASY_IGNORE_CD, clear RTS & DTR\n",
948 		    instance);
949 		asy->asy_flags &= ~ASY_IGNORE_CD;	/* wait for cd */
950 	}
951 
952 	/*
953 	 * Initialize the port with default settings.
954 	 */
955 
956 	asy->asy_fifo_buf = 1;
957 	asy->asy_use_fifo = FIFO_OFF;
958 
959 	/*
960 	 * Get icookie for mutexes initialization
961 	 */
962 	if ((ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) !=
963 	    DDI_SUCCESS) ||
964 	    (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_MED,
965 	    &asy->asy_soft_iblock) != DDI_SUCCESS)) {
966 		ddi_regs_map_free(&asy->asy_iohandle);
967 		cmn_err(CE_CONT,
968 		    "asy%d: could not hook interrupt for UART @ %p\n",
969 		    instance, (void *)asy->asy_ioaddr);
970 		asy_soft_state_free(asy);
971 		return (DDI_FAILURE);
972 	}
973 
974 	/*
975 	 * Initialize mutexes before accessing the hardware
976 	 */
977 	mutex_init(&asy->asy_soft_lock, NULL, MUTEX_DRIVER,
978 	    (void *)asy->asy_soft_iblock);
979 	mutex_init(&asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
980 	mutex_init(&asy->asy_excl_hi, NULL, MUTEX_DRIVER,
981 	    (void *)asy->asy_iblock);
982 	mutex_init(&asy->asy_soft_sr, NULL, MUTEX_DRIVER,
983 	    (void *)asy->asy_soft_iblock);
984 	mutex_enter(&asy->asy_excl);
985 	mutex_enter(&asy->asy_excl_hi);
986 
987 	if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
988 		mutex_exit(&asy->asy_excl_hi);
989 		mutex_exit(&asy->asy_excl);
990 		mutex_destroy(&asy->asy_soft_lock);
991 		mutex_destroy(&asy->asy_excl);
992 		mutex_destroy(&asy->asy_excl_hi);
993 		mutex_destroy(&asy->asy_soft_sr);
994 		ddi_regs_map_free(&asy->asy_iohandle);
995 		cmn_err(CE_CONT, "!Cannot identify UART chip at %p\n",
996 		    (void *)asy->asy_ioaddr);
997 		asy_soft_state_free(asy);
998 		return (DDI_FAILURE);
999 	}
1000 
1001 	/* disable all interrupts */
1002 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
1003 	/* select baud rate generator */
1004 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
1005 	/* Set the baud rate to 9600 */
1006 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLL),
1007 	    asyspdtab[asy->asy_bidx] & 0xff);
1008 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLH),
1009 	    (asyspdtab[asy->asy_bidx] >> 8) & 0xff);
1010 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, asy->asy_lcr);
1011 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
1012 
1013 	mutex_exit(&asy->asy_excl_hi);
1014 	mutex_exit(&asy->asy_excl);
1015 
1016 	/*
1017 	 * Set up the other components of the asycom structure for this port.
1018 	 */
1019 	asy->asy_dip = devi;
1020 
1021 	/*
1022 	 * Install per instance software interrupt handler.
1023 	 */
1024 	if (ddi_add_softintr(devi, DDI_SOFTINT_MED,
1025 	    &(asy->asy_softintr_id), NULL, 0, asysoftintr,
1026 	    (caddr_t)asy) != DDI_SUCCESS) {
1027 		mutex_destroy(&asy->asy_soft_lock);
1028 		mutex_destroy(&asy->asy_excl);
1029 		mutex_destroy(&asy->asy_excl_hi);
1030 		ddi_regs_map_free(&asy->asy_iohandle);
1031 		cmn_err(CE_CONT,
1032 		    "Can not set soft interrupt for ASY driver\n");
1033 		asy_soft_state_free(asy);
1034 		return (DDI_FAILURE);
1035 	}
1036 
1037 	mutex_enter(&asy->asy_excl);
1038 	mutex_enter(&asy->asy_excl_hi);
1039 
1040 	/*
1041 	 * Install interrupt handler for this device.
1042 	 */
1043 	if (ddi_add_intr(devi, 0, NULL, 0, asyintr,
1044 	    (caddr_t)asy) != DDI_SUCCESS) {
1045 		mutex_exit(&asy->asy_excl_hi);
1046 		mutex_exit(&asy->asy_excl);
1047 		ddi_remove_softintr(asy->asy_softintr_id);
1048 		mutex_destroy(&asy->asy_soft_lock);
1049 		mutex_destroy(&asy->asy_excl);
1050 		mutex_destroy(&asy->asy_excl_hi);
1051 		ddi_regs_map_free(&asy->asy_iohandle);
1052 		cmn_err(CE_CONT,
1053 		    "Can not set device interrupt for ASY driver\n");
1054 		asy_soft_state_free(asy);
1055 		return (DDI_FAILURE);
1056 	}
1057 
1058 	mutex_exit(&asy->asy_excl_hi);
1059 	mutex_exit(&asy->asy_excl);
1060 
1061 	asyinit(asy);	/* initialize the asyncline structure */
1062 
1063 	/* create minor device nodes for this device */
1064 	if (asy->asy_com_port != 0) {
1065 		/*
1066 		 * For DOS COM ports, add letter suffix so
1067 		 * devfsadm can create correct link names.
1068 		 */
1069 		name[0] = asy->asy_com_port + 'a' - 1;
1070 		name[1] = '\0';
1071 	} else {
1072 		/*
1073 		 * asy port which isn't a standard DOS COM
1074 		 * port gets a numeric name based on instance
1075 		 */
1076 		(void) snprintf(name, ASY_MINOR_LEN, "%d", instance);
1077 	}
1078 	status = ddi_create_minor_node(devi, name, S_IFCHR, instance,
1079 	    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB : DDI_NT_SERIAL, NULL);
1080 	if (status == DDI_SUCCESS) {
1081 		(void) strcat(name, ",cu");
1082 		status = ddi_create_minor_node(devi, name, S_IFCHR,
1083 		    OUTLINE | instance,
1084 		    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB_DO :
1085 		    DDI_NT_SERIAL_DO, NULL);
1086 	}
1087 
1088 	if (status != DDI_SUCCESS) {
1089 		struct asyncline *async = asy->asy_priv;
1090 
1091 		ddi_remove_minor_node(devi, NULL);
1092 		ddi_remove_intr(devi, 0, asy->asy_iblock);
1093 		ddi_remove_softintr(asy->asy_softintr_id);
1094 		mutex_destroy(&asy->asy_soft_lock);
1095 		mutex_destroy(&asy->asy_excl);
1096 		mutex_destroy(&asy->asy_excl_hi);
1097 		cv_destroy(&async->async_flags_cv);
1098 		ddi_regs_map_free(&asy->asy_iohandle);
1099 		asy_soft_state_free(asy);
1100 		return (DDI_FAILURE);
1101 	}
1102 
1103 	/*
1104 	 * Fill in the polled I/O structure.
1105 	 */
1106 	asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0;
1107 	asy->polledio.cons_polledio_argument = (cons_polledio_arg_t)asy;
1108 	asy->polledio.cons_polledio_putchar = asyputchar;
1109 	asy->polledio.cons_polledio_getchar = asygetchar;
1110 	asy->polledio.cons_polledio_ischar = asyischar;
1111 	asy->polledio.cons_polledio_enter = NULL;
1112 	asy->polledio.cons_polledio_exit = NULL;
1113 
1114 	ddi_report_dev(devi);
1115 	DEBUGCONT1(ASY_DEBUG_INIT, "asy%dattach: done\n", instance);
1116 	return (DDI_SUCCESS);
1117 }
1118 
1119 /*ARGSUSED*/
1120 static int
1121 asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1122 	void **result)
1123 {
1124 	dev_t dev = (dev_t)arg;
1125 	int instance, error;
1126 	struct asycom *asy;
1127 
1128 	instance = UNIT(dev);
1129 
1130 	switch (infocmd) {
1131 	case DDI_INFO_DEVT2DEVINFO:
1132 		asy = ddi_get_soft_state(asy_soft_state, instance);
1133 		if ((asy == NULL) || (asy->asy_dip == NULL))
1134 			error = DDI_FAILURE;
1135 		else {
1136 			*result = (void *) asy->asy_dip;
1137 			error = DDI_SUCCESS;
1138 		}
1139 		break;
1140 	case DDI_INFO_DEVT2INSTANCE:
1141 		*result = (void *)(intptr_t)instance;
1142 		error = DDI_SUCCESS;
1143 		break;
1144 	default:
1145 		error = DDI_FAILURE;
1146 	}
1147 	return (error);
1148 }
1149 
1150 /* asy_getproperty -- walk through all name variants until we find a match */
1151 
1152 static int
1153 asy_getproperty(dev_info_t *devi, struct asycom *asy, const char *property)
1154 {
1155 	int len;
1156 	int ret;
1157 	char letter = asy->asy_com_port + 'a' - 1;	/* for ttya */
1158 	char number = asy->asy_com_port + '0';		/* for COM1 */
1159 	char val[40];
1160 	char name[40];
1161 
1162 	/* Property for ignoring DCD */
1163 	(void) sprintf(name, "tty%c-%s", letter, property);
1164 	len = sizeof (val);
1165 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1166 	if (ret != DDI_PROP_SUCCESS) {
1167 		(void) sprintf(name, "com%c-%s", number, property);
1168 		len = sizeof (val);
1169 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1170 	}
1171 	if (ret != DDI_PROP_SUCCESS) {
1172 		(void) sprintf(name, "tty0%c-%s", number, property);
1173 		len = sizeof (val);
1174 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1175 	}
1176 	if (ret != DDI_PROP_SUCCESS) {
1177 		(void) sprintf(name, "port-%c-%s", letter, property);
1178 		len = sizeof (val);
1179 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1180 	}
1181 	if (ret != DDI_PROP_SUCCESS)
1182 		return (-1);		/* property non-existant */
1183 	if (val[0] == 'f' || val[0] == 'F' || val[0] == '0')
1184 		return (0);		/* property false/0 */
1185 	return (1);			/* property true/!0 */
1186 }
1187 
1188 /* asy_soft_state_free - local wrapper for ddi_soft_state_free(9F) */
1189 
1190 static void
1191 asy_soft_state_free(struct asycom *asy)
1192 {
1193 	mutex_enter(&asy_glob_lock);
1194 	/* If we were the max_asy_instance, work out new value */
1195 	if (asy->asy_unit == max_asy_instance) {
1196 		while (--max_asy_instance >= 0) {
1197 			if (ddi_get_soft_state(asy_soft_state,
1198 			    max_asy_instance) != NULL)
1199 				break;
1200 		}
1201 	}
1202 	mutex_exit(&asy_glob_lock);
1203 
1204 	if (asy->asy_priv != NULL) {
1205 		kmem_free(asy->asy_priv, sizeof (struct asyncline));
1206 		asy->asy_priv = NULL;
1207 	}
1208 	ddi_soft_state_free(asy_soft_state, asy->asy_unit);
1209 }
1210 
1211 static char *
1212 asy_hw_name(struct asycom *asy)
1213 {
1214 	switch (asy->asy_hwtype) {
1215 	case ASY8250A:
1216 		return ("8250A/16450");
1217 	case ASY16550:
1218 		return ("16550");
1219 	case ASY16550A:
1220 		return ("16550A");
1221 	case ASY16650:
1222 		return ("16650");
1223 	case ASY16750:
1224 		return ("16750");
1225 	default:
1226 		DEBUGNOTE2(ASY_DEBUG_INIT,
1227 		    "asy%d: asy_hw_name: unknown asy_hwtype: %d",
1228 		    asy->asy_unit, asy->asy_hwtype);
1229 		return ("?");
1230 	}
1231 }
1232 
1233 static int
1234 asy_identify_chip(dev_info_t *devi, struct asycom *asy)
1235 {
1236 	int ret;
1237 	int mcr;
1238 	dev_t dev;
1239 	uint_t hwtype;
1240 
1241 	if (asy_scr_test) {
1242 		/* Check scratch register works. */
1243 
1244 		/* write to scratch register */
1245 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, SCRTEST);
1246 		/* make sure that pattern doesn't just linger on the bus */
1247 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, 0x00);
1248 		/* read data back from scratch register */
1249 		ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
1250 		if (ret != SCRTEST) {
1251 			/*
1252 			 * Scratch register not working.
1253 			 * Probably not an async chip.
1254 			 * 8250 and 8250B don't have scratch registers,
1255 			 * but only worked in ancient PC XT's anyway.
1256 			 */
1257 			cmn_err(CE_CONT, "!asy%d: UART @ %p "
1258 			    "scratch register: expected 0x5a, got 0x%02x\n",
1259 			    asy->asy_unit, (void *)asy->asy_ioaddr, ret);
1260 			return (DDI_FAILURE);
1261 		}
1262 	}
1263 	/*
1264 	 * Use 16550 fifo reset sequence specified in NS application
1265 	 * note. Disable fifos until chip is initialized.
1266 	 */
1267 	ddi_put8(asy->asy_iohandle,
1268 	    asy->asy_ioaddr + FIFOR, 0x00);	/* clear */
1269 	ddi_put8(asy->asy_iohandle,
1270 	    asy->asy_ioaddr + FIFOR, FIFO_ON);	/* enable */
1271 	ddi_put8(asy->asy_iohandle,
1272 	    asy->asy_ioaddr + FIFOR, FIFO_ON | FIFORXFLSH);
1273 						/* reset */
1274 	if (asymaxchip >= ASY16650 && asy_scr_test) {
1275 		/*
1276 		 * Reset 16650 enhanced regs also, in case we have one of these
1277 		 */
1278 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1279 		    EFRACCESS);
1280 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1281 		    0);
1282 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1283 		    STOP1|BITS8);
1284 	}
1285 
1286 	/*
1287 	 * See what sort of FIFO we have.
1288 	 * Try enabling it and see what chip makes of this.
1289 	 */
1290 
1291 	asy->asy_fifor = 0;
1292 	asy->asy_hwtype = asymaxchip; /* just for asy_reset_fifo() */
1293 	if (asymaxchip >= ASY16550A)
1294 		asy->asy_fifor |=
1295 		    FIFO_ON | FIFODMA | (asy_trig_level & 0xff);
1296 	if (asymaxchip >= ASY16650)
1297 		asy->asy_fifor |= FIFOEXTRA1 | FIFOEXTRA2;
1298 
1299 	asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
1300 
1301 	mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
1302 	ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
1303 	DEBUGCONT4(ASY_DEBUG_CHIP,
1304 	    "asy%d: probe fifo FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
1305 	    asy->asy_unit, asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH,
1306 	    ret, mcr);
1307 	switch (ret & 0xf0) {
1308 	case 0x40:
1309 		hwtype = ASY16550; /* 16550 with broken FIFO */
1310 		asy->asy_fifor = 0;
1311 		break;
1312 	case 0xc0:
1313 		hwtype = ASY16550A;
1314 		asy->asy_fifo_buf = 16;
1315 		asy->asy_use_fifo = FIFO_ON;
1316 		asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
1317 		break;
1318 	case 0xe0:
1319 		hwtype = ASY16650;
1320 		asy->asy_fifo_buf = 32;
1321 		asy->asy_use_fifo = FIFO_ON;
1322 		asy->asy_fifor &= ~(FIFOEXTRA1);
1323 		break;
1324 	case 0xf0:
1325 		/*
1326 		 * Note we get 0xff if chip didn't return us anything,
1327 		 * e.g. if there's no chip there.
1328 		 */
1329 		if (ret == 0xff) {
1330 			cmn_err(CE_CONT, "asy%d: UART @ %p "
1331 			    "interrupt register: got 0xff\n",
1332 			    asy->asy_unit, (void *)asy->asy_ioaddr);
1333 			return (DDI_FAILURE);
1334 		}
1335 		/*FALLTHRU*/
1336 	case 0xd0:
1337 		hwtype = ASY16750;
1338 		asy->asy_fifo_buf = 64;
1339 		asy->asy_use_fifo = FIFO_ON;
1340 		break;
1341 	default:
1342 		hwtype = ASY8250A; /* No FIFO */
1343 		asy->asy_fifor = 0;
1344 	}
1345 
1346 	if (hwtype > asymaxchip) {
1347 		cmn_err(CE_CONT, "asy%d: UART @ %p "
1348 		    "unexpected probe result: "
1349 		    "FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
1350 		    asy->asy_unit, (void *)asy->asy_ioaddr,
1351 		    asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH, ret, mcr);
1352 		return (DDI_FAILURE);
1353 	}
1354 
1355 	/*
1356 	 * Now reset the FIFO operation appropriate for the chip type.
1357 	 * Note we must call asy_reset_fifo() before any possible
1358 	 * downgrade of the asy->asy_hwtype, or it may not disable
1359 	 * the more advanced features we specifically want downgraded.
1360 	 */
1361 	asy_reset_fifo(asy, 0);
1362 	asy->asy_hwtype = hwtype;
1363 
1364 	/*
1365 	 * Check for Exar/Startech ST16C650, which will still look like a
1366 	 * 16550A until we enable its enhanced mode.
1367 	 */
1368 	if (asy->asy_hwtype == ASY16550A && asymaxchip >= ASY16650 &&
1369 	    asy_scr_test) {
1370 		/* Enable enhanced mode register access */
1371 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1372 		    EFRACCESS);
1373 		/* zero scratch register (not scratch register if enhanced) */
1374 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, 0);
1375 		/* Disable enhanced mode register access */
1376 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1377 		    STOP1|BITS8);
1378 		/* read back scratch register */
1379 		ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
1380 		if (ret == SCRTEST) {
1381 			/* looks like we have an ST16650 -- enable it */
1382 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1383 			    EFRACCESS);
1384 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1385 			    ENHENABLE);
1386 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1387 			    STOP1|BITS8);
1388 			asy->asy_hwtype = ASY16650;
1389 			asy->asy_fifo_buf = 32;
1390 			asy->asy_fifor |= 0x10; /* 24 byte txfifo trigger */
1391 			asy_reset_fifo(asy, 0);
1392 		}
1393 	}
1394 
1395 	/*
1396 	 * If we think we might have a FIFO larger than 16 characters,
1397 	 * measure FIFO size and check it against expected.
1398 	 */
1399 	if (asy_fifo_test > 0 &&
1400 	    !(asy->asy_flags2 & ASY2_NO_LOOPBACK) &&
1401 	    (asy->asy_fifo_buf > 16 ||
1402 	    (asy_fifo_test > 1 && asy->asy_use_fifo == FIFO_ON) ||
1403 	    ASY_DEBUG(ASY_DEBUG_CHIP))) {
1404 		int i;
1405 
1406 		/* Set baud rate to 57600 (fairly arbitrary choice) */
1407 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1408 		    DLAB);
1409 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
1410 		    asyspdtab[B57600] & 0xff);
1411 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1412 		    (asyspdtab[B57600] >> 8) & 0xff);
1413 		/* Set 8 bits, 1 stop bit */
1414 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1415 		    STOP1|BITS8);
1416 		/* Set loopback mode */
1417 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1418 		    DTR | RTS | ASY_LOOP | OUT1 | OUT2);
1419 
1420 		/* Overfill fifo */
1421 		for (i = 0; i < asy->asy_fifo_buf * 2; i++) {
1422 			ddi_put8(asy->asy_iohandle,
1423 			    asy->asy_ioaddr + DAT, i);
1424 		}
1425 		/*
1426 		 * Now there's an interesting question here about which
1427 		 * FIFO we're testing the size of, RX or TX. We just
1428 		 * filled the TX FIFO much faster than it can empty,
1429 		 * although it is possible one or two characters may
1430 		 * have gone from it to the TX shift register.
1431 		 * We wait for enough time for all the characters to
1432 		 * move into the RX FIFO and any excess characters to
1433 		 * have been lost, and then read all the RX FIFO. So
1434 		 * the answer we finally get will be the size which is
1435 		 * the MIN(RX FIFO,(TX FIFO + 1 or 2)). The critical
1436 		 * one is actually the TX FIFO, because if we overfill
1437 		 * it in normal operation, the excess characters are
1438 		 * lost with no warning.
1439 		 */
1440 		/*
1441 		 * Wait for characters to move into RX FIFO.
1442 		 * In theory, 200 * asy->asy_fifo_buf * 2 should be
1443 		 * enough. However, in practice it isn't always, so we
1444 		 * increase to 400 so some slow 16550A's finish, and we
1445 		 * increase to 3 so we spot more characters coming back
1446 		 * than we sent, in case that should ever happen.
1447 		 */
1448 		delay(drv_usectohz(400 * asy->asy_fifo_buf * 3));
1449 
1450 		/* Now see how many characters we can read back */
1451 		for (i = 0; i < asy->asy_fifo_buf * 3; i++) {
1452 			ret = ddi_get8(asy->asy_iohandle,
1453 			    asy->asy_ioaddr + LSR);
1454 			if (!(ret & RCA))
1455 				break;	/* FIFO emptied */
1456 			(void) ddi_get8(asy->asy_iohandle,
1457 			    asy->asy_ioaddr + DAT); /* lose another */
1458 		}
1459 
1460 		DEBUGCONT3(ASY_DEBUG_CHIP,
1461 		    "asy%d FIFO size: expected=%d, measured=%d\n",
1462 		    asy->asy_unit, asy->asy_fifo_buf, i);
1463 
1464 		hwtype = asy->asy_hwtype;
1465 		if (i < asy->asy_fifo_buf) {
1466 			/*
1467 			 * FIFO is somewhat smaller than we anticipated.
1468 			 * If we have 16 characters usable, then this
1469 			 * UART will probably work well enough in
1470 			 * 16550A mode. If less than 16 characters,
1471 			 * then we'd better not use it at all.
1472 			 * UARTs with busted FIFOs do crop up.
1473 			 */
1474 			if (i >= 16 && asy->asy_fifo_buf >= 16) {
1475 				/* fall back to a 16550A */
1476 				hwtype = ASY16550A;
1477 				asy->asy_fifo_buf = 16;
1478 				asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
1479 			} else {
1480 				/* fall back to no FIFO at all */
1481 				hwtype = ASY16550;
1482 				asy->asy_fifo_buf = 1;
1483 				asy->asy_use_fifo = FIFO_OFF;
1484 				asy->asy_fifor &=
1485 				    ~(FIFO_ON | FIFOEXTRA1 | FIFOEXTRA2);
1486 			}
1487 		}
1488 		/*
1489 		 * We will need to reprogram the FIFO if we changed
1490 		 * our mind about how to drive it above, and in any
1491 		 * case, it would be a good idea to flush any garbage
1492 		 * out incase the loopback test left anything behind.
1493 		 * Again as earlier above, we must call asy_reset_fifo()
1494 		 * before any possible downgrade of asy->asy_hwtype.
1495 		 */
1496 		if (asy->asy_hwtype >= ASY16650 && hwtype < ASY16650) {
1497 			/* Disable 16650 enhanced mode */
1498 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1499 			    EFRACCESS);
1500 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1501 			    0);
1502 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1503 			    STOP1|BITS8);
1504 		}
1505 		asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
1506 		asy->asy_hwtype = hwtype;
1507 
1508 		/* Clear loopback mode and restore DTR/RTS */
1509 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
1510 	}
1511 
1512 	DEBUGNOTE3(ASY_DEBUG_CHIP, "asy%d %s @ %p",
1513 	    asy->asy_unit, asy_hw_name(asy), (void *)asy->asy_ioaddr);
1514 
1515 	/* Make UART type visible in device tree for prtconf, etc */
1516 	dev = makedevice(DDI_MAJOR_T_UNKNOWN, asy->asy_unit);
1517 	(void) ddi_prop_update_string(dev, devi, "uart", asy_hw_name(asy));
1518 
1519 	if (asy->asy_hwtype == ASY16550)	/* for broken 16550's, */
1520 		asy->asy_hwtype = ASY8250A;	/* drive them as 8250A */
1521 
1522 	return (DDI_SUCCESS);
1523 }
1524 
1525 /*
1526  * asyinit() initializes the TTY protocol-private data for this channel
1527  * before enabling the interrupts.
1528  */
1529 static void
1530 asyinit(struct asycom *asy)
1531 {
1532 	struct asyncline *async;
1533 
1534 	asy->asy_priv = kmem_zalloc(sizeof (struct asyncline), KM_SLEEP);
1535 	async = asy->asy_priv;
1536 	mutex_enter(&asy->asy_excl);
1537 	async->async_common = asy;
1538 	cv_init(&async->async_flags_cv, NULL, CV_DRIVER, NULL);
1539 	mutex_exit(&asy->asy_excl);
1540 }
1541 
1542 /*ARGSUSED3*/
1543 static int
1544 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
1545 {
1546 	struct asycom	*asy;
1547 	struct asyncline *async;
1548 	int		mcr;
1549 	int		unit;
1550 	int 		len;
1551 	struct termios 	*termiosp;
1552 
1553 	unit = UNIT(*dev);
1554 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dopen\n", unit);
1555 	asy = ddi_get_soft_state(asy_soft_state, unit);
1556 	if (asy == NULL)
1557 		return (ENXIO);		/* unit not configured */
1558 	async = asy->asy_priv;
1559 	mutex_enter(&asy->asy_excl);
1560 
1561 again:
1562 	mutex_enter(&asy->asy_excl_hi);
1563 
1564 	/*
1565 	 * Block waiting for carrier to come up, unless this is a no-delay open.
1566 	 */
1567 	if (!(async->async_flags & ASYNC_ISOPEN)) {
1568 		/*
1569 		 * Set the default termios settings (cflag).
1570 		 * Others are set in ldterm.
1571 		 */
1572 		mutex_exit(&asy->asy_excl_hi);
1573 
1574 		if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
1575 		    0, "ttymodes",
1576 		    (caddr_t)&termiosp, &len) == DDI_PROP_SUCCESS &&
1577 		    len == sizeof (struct termios)) {
1578 			async->async_ttycommon.t_cflag = termiosp->c_cflag;
1579 			kmem_free(termiosp, len);
1580 		} else
1581 			cmn_err(CE_WARN,
1582 			    "asy: couldn't get ttymodes property!");
1583 		mutex_enter(&asy->asy_excl_hi);
1584 
1585 		/* eeprom mode support - respect properties */
1586 		if (asy->asy_cflag)
1587 			async->async_ttycommon.t_cflag = asy->asy_cflag;
1588 
1589 		async->async_ttycommon.t_iflag = 0;
1590 		async->async_ttycommon.t_iocpending = NULL;
1591 		async->async_ttycommon.t_size.ws_row = 0;
1592 		async->async_ttycommon.t_size.ws_col = 0;
1593 		async->async_ttycommon.t_size.ws_xpixel = 0;
1594 		async->async_ttycommon.t_size.ws_ypixel = 0;
1595 		async->async_dev = *dev;
1596 		async->async_wbufcid = 0;
1597 
1598 		async->async_startc = CSTART;
1599 		async->async_stopc = CSTOP;
1600 		asy_program(asy, ASY_INIT);
1601 	} else
1602 		if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
1603 		    secpolicy_excl_open(cr) != 0) {
1604 		mutex_exit(&asy->asy_excl_hi);
1605 		mutex_exit(&asy->asy_excl);
1606 		return (EBUSY);
1607 	} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
1608 		mutex_exit(&asy->asy_excl_hi);
1609 		mutex_exit(&asy->asy_excl);
1610 		return (EBUSY);
1611 	}
1612 
1613 	if (*dev & OUTLINE)
1614 		async->async_flags |= ASYNC_OUT;
1615 
1616 	/* Raise DTR on every open, but delay if it was just lowered. */
1617 	while (async->async_flags & ASYNC_DTR_DELAY) {
1618 		DEBUGCONT1(ASY_DEBUG_MODEM,
1619 		    "asy%dopen: waiting for the ASYNC_DTR_DELAY to be clear\n",
1620 		    unit);
1621 		mutex_exit(&asy->asy_excl_hi);
1622 		if (cv_wait_sig(&async->async_flags_cv,
1623 		    &asy->asy_excl) == 0) {
1624 			DEBUGCONT1(ASY_DEBUG_MODEM,
1625 			    "asy%dopen: interrupted by signal, exiting\n",
1626 			    unit);
1627 			mutex_exit(&asy->asy_excl);
1628 			return (EINTR);
1629 		}
1630 		mutex_enter(&asy->asy_excl_hi);
1631 	}
1632 
1633 	mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
1634 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1635 	    mcr|(asy->asy_mcr&DTR));
1636 
1637 	DEBUGCONT3(ASY_DEBUG_INIT,
1638 	    "asy%dopen: \"Raise DTR on every open\": make mcr = %x, "
1639 	    "make TS_SOFTCAR = %s\n",
1640 	    unit, mcr|(asy->asy_mcr&DTR),
1641 	    (asy->asy_flags & ASY_IGNORE_CD) ? "ON" : "OFF");
1642 
1643 	if (asy->asy_flags & ASY_IGNORE_CD) {
1644 		DEBUGCONT1(ASY_DEBUG_MODEM,
1645 		    "asy%dopen: ASY_IGNORE_CD set, set TS_SOFTCAR\n",
1646 		    unit);
1647 		async->async_ttycommon.t_flags |= TS_SOFTCAR;
1648 	}
1649 	else
1650 		async->async_ttycommon.t_flags &= ~TS_SOFTCAR;
1651 
1652 	/*
1653 	 * Check carrier.
1654 	 */
1655 	asy->asy_msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
1656 	DEBUGCONT3(ASY_DEBUG_INIT, "asy%dopen: TS_SOFTCAR is %s, "
1657 	    "MSR & DCD is %s\n",
1658 	    unit,
1659 	    (async->async_ttycommon.t_flags & TS_SOFTCAR) ? "set" : "clear",
1660 	    (asy->asy_msr & DCD) ? "set" : "clear");
1661 
1662 	if (asy->asy_msr & DCD)
1663 		async->async_flags |= ASYNC_CARR_ON;
1664 	else
1665 		async->async_flags &= ~ASYNC_CARR_ON;
1666 	mutex_exit(&asy->asy_excl_hi);
1667 
1668 	/*
1669 	 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
1670 	 * Quit on interrupt.
1671 	 */
1672 	if (!(flag & (FNDELAY|FNONBLOCK)) &&
1673 	    !(async->async_ttycommon.t_cflag & CLOCAL)) {
1674 		if ((!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) &&
1675 		    !(async->async_ttycommon.t_flags & TS_SOFTCAR)) ||
1676 		    ((async->async_flags & ASYNC_OUT) &&
1677 		    !(*dev & OUTLINE))) {
1678 			async->async_flags |= ASYNC_WOPEN;
1679 			if (cv_wait_sig(&async->async_flags_cv,
1680 			    &asy->asy_excl) == B_FALSE) {
1681 				async->async_flags &= ~ASYNC_WOPEN;
1682 				mutex_exit(&asy->asy_excl);
1683 				return (EINTR);
1684 			}
1685 			async->async_flags &= ~ASYNC_WOPEN;
1686 			goto again;
1687 		}
1688 	} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
1689 		mutex_exit(&asy->asy_excl);
1690 		return (EBUSY);
1691 	}
1692 
1693 	async->async_ttycommon.t_readq = rq;
1694 	async->async_ttycommon.t_writeq = WR(rq);
1695 	rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
1696 	mutex_exit(&asy->asy_excl);
1697 	/*
1698 	 * Caution here -- qprocson sets the pointers that are used by canput
1699 	 * called by async_softint.  ASYNC_ISOPEN must *not* be set until those
1700 	 * pointers are valid.
1701 	 */
1702 	qprocson(rq);
1703 	async->async_flags |= ASYNC_ISOPEN;
1704 	async->async_polltid = 0;
1705 	DEBUGCONT1(ASY_DEBUG_INIT, "asy%dopen: done\n", unit);
1706 	return (0);
1707 }
1708 
1709 static void
1710 async_progress_check(void *arg)
1711 {
1712 	struct asyncline *async = arg;
1713 	struct asycom	 *asy = async->async_common;
1714 	mblk_t *bp;
1715 
1716 	/*
1717 	 * We define "progress" as either waiting on a timed break or delay, or
1718 	 * having had at least one transmitter interrupt.  If none of these are
1719 	 * true, then just terminate the output and wake up that close thread.
1720 	 */
1721 	mutex_enter(&asy->asy_excl);
1722 	mutex_enter(&asy->asy_excl_hi);
1723 	if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
1724 		async->async_ocnt = 0;
1725 		async->async_flags &= ~ASYNC_BUSY;
1726 		async->async_timer = 0;
1727 		bp = async->async_xmitblk;
1728 		async->async_xmitblk = NULL;
1729 		mutex_exit(&asy->asy_excl_hi);
1730 		if (bp != NULL)
1731 			freeb(bp);
1732 		/*
1733 		 * Since this timer is running, we know that we're in exit(2).
1734 		 * That means that the user can't possibly be waiting on any
1735 		 * valid ioctl(2) completion anymore, and we should just flush
1736 		 * everything.
1737 		 */
1738 		flushq(async->async_ttycommon.t_writeq, FLUSHALL);
1739 		cv_broadcast(&async->async_flags_cv);
1740 	} else {
1741 		async->async_flags &= ~ASYNC_PROGRESS;
1742 		async->async_timer = timeout(async_progress_check, async,
1743 		    drv_usectohz(asy_drain_check));
1744 		mutex_exit(&asy->asy_excl_hi);
1745 	}
1746 	mutex_exit(&asy->asy_excl);
1747 }
1748 
1749 /*
1750  * Release DTR so that asyopen() can raise it.
1751  */
1752 static void
1753 async_dtr_free(struct asyncline *async)
1754 {
1755 	struct asycom *asy = async->async_common;
1756 
1757 	DEBUGCONT0(ASY_DEBUG_MODEM,
1758 	    "async_dtr_free, clearing ASYNC_DTR_DELAY\n");
1759 	mutex_enter(&asy->asy_excl);
1760 	async->async_flags &= ~ASYNC_DTR_DELAY;
1761 	async->async_dtrtid = 0;
1762 	cv_broadcast(&async->async_flags_cv);
1763 	mutex_exit(&asy->asy_excl);
1764 }
1765 
1766 /*
1767  * Close routine.
1768  */
1769 /*ARGSUSED2*/
1770 static int
1771 asyclose(queue_t *q, int flag, cred_t *credp)
1772 {
1773 	struct asyncline *async;
1774 	struct asycom	 *asy;
1775 	int icr, lcr;
1776 #ifdef DEBUG
1777 	int instance;
1778 #endif
1779 
1780 	async = (struct asyncline *)q->q_ptr;
1781 	ASSERT(async != NULL);
1782 #ifdef DEBUG
1783 	instance = UNIT(async->async_dev);
1784 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose\n", instance);
1785 #endif
1786 	asy = async->async_common;
1787 
1788 	mutex_enter(&asy->asy_excl);
1789 	async->async_flags |= ASYNC_CLOSING;
1790 
1791 	/*
1792 	 * Turn off PPS handling early to avoid events occuring during
1793 	 * close.  Also reset the DCD edge monitoring bit.
1794 	 */
1795 	mutex_enter(&asy->asy_excl_hi);
1796 	asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
1797 	mutex_exit(&asy->asy_excl_hi);
1798 
1799 	/*
1800 	 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
1801 	 * untimed (TIOCSBRK).  For the timed case, these are enqueued on our
1802 	 * write queue and there's a timer running, so we don't have to worry
1803 	 * about them.  For the untimed case, though, the user obviously made a
1804 	 * mistake, because these are handled immediately.  We'll terminate the
1805 	 * break now and honor his implicit request by discarding the rest of
1806 	 * the data.
1807 	 */
1808 	if (async->async_flags & ASYNC_OUT_SUSPEND) {
1809 		if (async->async_utbrktid != 0) {
1810 			(void) untimeout(async->async_utbrktid);
1811 			async->async_utbrktid = 0;
1812 		}
1813 		mutex_enter(&asy->asy_excl_hi);
1814 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
1815 		ddi_put8(asy->asy_iohandle,
1816 		    asy->asy_ioaddr + LCR, (lcr & ~SETBREAK));
1817 		mutex_exit(&asy->asy_excl_hi);
1818 		async->async_flags &= ~ASYNC_OUT_SUSPEND;
1819 		goto nodrain;
1820 	}
1821 
1822 	/*
1823 	 * If the user told us not to delay the close ("non-blocking"), then
1824 	 * don't bother trying to drain.
1825 	 *
1826 	 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
1827 	 * getting an M_START (since these messages aren't enqueued), and the
1828 	 * only other way to clear the stop condition is by loss of DCD, which
1829 	 * would discard the queue data.  Thus, we drop the output data if
1830 	 * ASYNC_STOPPED is set.
1831 	 */
1832 	if ((flag & (FNDELAY|FNONBLOCK)) ||
1833 	    (async->async_flags & ASYNC_STOPPED)) {
1834 		goto nodrain;
1835 	}
1836 
1837 	/*
1838 	 * If there's any pending output, then we have to try to drain it.
1839 	 * There are two main cases to be handled:
1840 	 *	- called by close(2): need to drain until done or until
1841 	 *	  a signal is received.  No timeout.
1842 	 *	- called by exit(2): need to drain while making progress
1843 	 *	  or until a timeout occurs.  No signals.
1844 	 *
1845 	 * If we can't rely on receiving a signal to get us out of a hung
1846 	 * session, then we have to use a timer.  In this case, we set a timer
1847 	 * to check for progress in sending the output data -- all that we ask
1848 	 * (at each interval) is that there's been some progress made.  Since
1849 	 * the interrupt routine grabs buffers from the write queue, we can't
1850 	 * trust changes in async_ocnt.  Instead, we use a progress flag.
1851 	 *
1852 	 * Note that loss of carrier will cause the output queue to be flushed,
1853 	 * and we'll wake up again and finish normally.
1854 	 */
1855 	if (!ddi_can_receive_sig() && asy_drain_check != 0) {
1856 		async->async_flags &= ~ASYNC_PROGRESS;
1857 		async->async_timer = timeout(async_progress_check, async,
1858 		    drv_usectohz(asy_drain_check));
1859 	}
1860 	while (async->async_ocnt > 0 ||
1861 	    async->async_ttycommon.t_writeq->q_first != NULL ||
1862 	    (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
1863 		if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0)
1864 			break;
1865 	}
1866 	if (async->async_timer != 0) {
1867 		(void) untimeout(async->async_timer);
1868 		async->async_timer = 0;
1869 	}
1870 
1871 nodrain:
1872 	async->async_ocnt = 0;
1873 	if (async->async_xmitblk != NULL)
1874 		freeb(async->async_xmitblk);
1875 	async->async_xmitblk = NULL;
1876 
1877 	/*
1878 	 * If line has HUPCL set or is incompletely opened fix up the modem
1879 	 * lines.
1880 	 */
1881 	DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dclose: next check HUPCL flag\n",
1882 	    instance);
1883 	mutex_enter(&asy->asy_excl_hi);
1884 	if ((async->async_ttycommon.t_cflag & HUPCL) ||
1885 	    (async->async_flags & ASYNC_WOPEN)) {
1886 		DEBUGCONT3(ASY_DEBUG_MODEM,
1887 		    "asy%dclose: HUPCL flag = %x, ASYNC_WOPEN flag = %x\n",
1888 		    instance,
1889 		    async->async_ttycommon.t_cflag & HUPCL,
1890 		    async->async_ttycommon.t_cflag & ASYNC_WOPEN);
1891 		async->async_flags |= ASYNC_DTR_DELAY;
1892 
1893 		/* turn off DTR, RTS but NOT interrupt to 386 */
1894 		if (asy->asy_flags & (ASY_IGNORE_CD|ASY_RTS_DTR_OFF)) {
1895 			DEBUGCONT3(ASY_DEBUG_MODEM,
1896 			    "asy%dclose: ASY_IGNORE_CD flag = %x, "
1897 			    "ASY_RTS_DTR_OFF flag = %x\n",
1898 			    instance,
1899 			    asy->asy_flags & ASY_IGNORE_CD,
1900 			    asy->asy_flags & ASY_RTS_DTR_OFF);
1901 
1902 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1903 			    asy->asy_mcr|OUT2);
1904 		} else {
1905 			DEBUGCONT1(ASY_DEBUG_MODEM,
1906 			    "asy%dclose: Dropping DTR and RTS\n", instance);
1907 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1908 			    OUT2);
1909 		}
1910 		async->async_dtrtid =
1911 		    timeout((void (*)())async_dtr_free,
1912 		    (caddr_t)async, drv_usectohz(asy_min_dtr_low));
1913 	}
1914 	/*
1915 	 * If nobody's using it now, turn off receiver interrupts.
1916 	 */
1917 	if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
1918 		icr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ICR);
1919 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1920 		    (icr & ~RIEN));
1921 	}
1922 	mutex_exit(&asy->asy_excl_hi);
1923 out:
1924 	ttycommon_close(&async->async_ttycommon);
1925 
1926 	/*
1927 	 * Cancel outstanding "bufcall" request.
1928 	 */
1929 	if (async->async_wbufcid != 0) {
1930 		unbufcall(async->async_wbufcid);
1931 		async->async_wbufcid = 0;
1932 	}
1933 
1934 	/* Note that qprocsoff can't be done until after interrupts are off */
1935 	qprocsoff(q);
1936 	q->q_ptr = WR(q)->q_ptr = NULL;
1937 	async->async_ttycommon.t_readq = NULL;
1938 	async->async_ttycommon.t_writeq = NULL;
1939 
1940 	/*
1941 	 * Clear out device state, except persistant device property flags.
1942 	 */
1943 	async->async_flags &= (ASYNC_DTR_DELAY|ASY_RTS_DTR_OFF);
1944 	cv_broadcast(&async->async_flags_cv);
1945 	mutex_exit(&asy->asy_excl);
1946 
1947 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose: done\n", instance);
1948 	return (0);
1949 }
1950 
1951 static boolean_t
1952 asy_isbusy(struct asycom *asy)
1953 {
1954 	struct asyncline *async;
1955 
1956 	DEBUGCONT0(ASY_DEBUG_EOT, "asy_isbusy\n");
1957 	async = asy->asy_priv;
1958 	ASSERT(mutex_owned(&asy->asy_excl));
1959 	ASSERT(mutex_owned(&asy->asy_excl_hi));
1960 /*
1961  * XXXX this should be recoded
1962  */
1963 	return ((async->async_ocnt > 0) ||
1964 	    ((ddi_get8(asy->asy_iohandle,
1965 	    asy->asy_ioaddr + LSR) & (XSRE|XHRE)) == 0));
1966 }
1967 
1968 static void
1969 asy_waiteot(struct asycom *asy)
1970 {
1971 	/*
1972 	 * Wait for the current transmission block and the
1973 	 * current fifo data to transmit. Once this is done
1974 	 * we may go on.
1975 	 */
1976 	DEBUGCONT0(ASY_DEBUG_EOT, "asy_waiteot\n");
1977 	ASSERT(mutex_owned(&asy->asy_excl));
1978 	ASSERT(mutex_owned(&asy->asy_excl_hi));
1979 	while (asy_isbusy(asy)) {
1980 		mutex_exit(&asy->asy_excl_hi);
1981 		mutex_exit(&asy->asy_excl);
1982 		drv_usecwait(10000);		/* wait .01 */
1983 		mutex_enter(&asy->asy_excl);
1984 		mutex_enter(&asy->asy_excl_hi);
1985 	}
1986 }
1987 
1988 /* asy_reset_fifo -- flush fifos and [re]program fifo control register */
1989 static void
1990 asy_reset_fifo(struct asycom *asy, uchar_t flush)
1991 {
1992 	uchar_t lcr;
1993 
1994 	/* On a 16750, we have to set DLAB in order to set FIFOEXTRA. */
1995 
1996 	if (asy->asy_hwtype >= ASY16750) {
1997 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
1998 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1999 		    lcr | DLAB);
2000 	}
2001 
2002 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR,
2003 	    asy->asy_fifor | flush);
2004 
2005 	/* Clear DLAB */
2006 
2007 	if (asy->asy_hwtype >= ASY16750) {
2008 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
2009 	}
2010 }
2011 
2012 /*
2013  * Program the ASY port. Most of the async operation is based on the values
2014  * of 'c_iflag' and 'c_cflag'.
2015  */
2016 
2017 #define	BAUDINDEX(cflg)	(((cflg) & CBAUDEXT) ? \
2018 			(((cflg) & CBAUD) + CBAUD + 1) : ((cflg) & CBAUD))
2019 
2020 static void
2021 asy_program(struct asycom *asy, int mode)
2022 {
2023 	struct asyncline *async;
2024 	int baudrate, c_flag;
2025 	int icr, lcr;
2026 	int flush_reg;
2027 	int ocflags;
2028 #ifdef DEBUG
2029 	int instance;
2030 #endif
2031 
2032 	ASSERT(mutex_owned(&asy->asy_excl));
2033 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2034 
2035 	async = asy->asy_priv;
2036 #ifdef DEBUG
2037 	instance = UNIT(async->async_dev);
2038 	DEBUGCONT2(ASY_DEBUG_PROCS,
2039 	    "asy%d_program: mode = 0x%08X, enter\n", instance, mode);
2040 #endif
2041 
2042 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2043 
2044 	async->async_ttycommon.t_cflag &= ~(CIBAUD);
2045 
2046 	if (baudrate > CBAUD) {
2047 		async->async_ttycommon.t_cflag |= CIBAUDEXT;
2048 		async->async_ttycommon.t_cflag |=
2049 		    (((baudrate - CBAUD - 1) << IBSHIFT) & CIBAUD);
2050 	} else {
2051 		async->async_ttycommon.t_cflag &= ~CIBAUDEXT;
2052 		async->async_ttycommon.t_cflag |=
2053 		    ((baudrate << IBSHIFT) & CIBAUD);
2054 	}
2055 
2056 	c_flag = async->async_ttycommon.t_cflag &
2057 	    (CLOCAL|CREAD|CSTOPB|CSIZE|PARENB|PARODD|CBAUD|CBAUDEXT);
2058 
2059 	/* disable interrupts */
2060 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
2061 
2062 	ocflags = asy->asy_ocflag;
2063 
2064 	/* flush/reset the status registers */
2065 	(void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
2066 	(void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2067 	asy->asy_msr = flush_reg = ddi_get8(asy->asy_iohandle,
2068 	    asy->asy_ioaddr + MSR);
2069 	/*
2070 	 * The device is programmed in the open sequence, if we
2071 	 * have to hardware handshake, then this is a good time
2072 	 * to check if the device can receive any data.
2073 	 */
2074 
2075 	if ((CRTSCTS & async->async_ttycommon.t_cflag) && !(flush_reg & CTS)) {
2076 		async_flowcontrol_hw_output(asy, FLOW_STOP);
2077 	} else {
2078 		/*
2079 		 * We can not use async_flowcontrol_hw_output(asy, FLOW_START)
2080 		 * here, because if CRTSCTS is clear, we need clear
2081 		 * ASYNC_HW_OUT_FLW bit.
2082 		 */
2083 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
2084 	}
2085 
2086 	/*
2087 	 * If IXON is not set, clear ASYNC_SW_OUT_FLW;
2088 	 * If IXON is set, no matter what IXON flag is before this
2089 	 * function call to asy_program,
2090 	 * we will use the old ASYNC_SW_OUT_FLW status.
2091 	 * Because of handling IXON in the driver, we also should re-calculate
2092 	 * the value of ASYNC_OUT_FLW_RESUME bit, but in fact,
2093 	 * the TCSET* commands which call asy_program
2094 	 * are put into the write queue, so there is no output needed to
2095 	 * be resumed at this point.
2096 	 */
2097 	if (!(IXON & async->async_ttycommon.t_iflag))
2098 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
2099 
2100 	/* manually flush receive buffer or fifo (workaround for buggy fifos) */
2101 	if (mode == ASY_INIT)
2102 		if (asy->asy_use_fifo == FIFO_ON) {
2103 			for (flush_reg = asy->asy_fifo_buf; flush_reg-- > 0; ) {
2104 				(void) ddi_get8(asy->asy_iohandle,
2105 				    asy->asy_ioaddr + DAT);
2106 			}
2107 		} else {
2108 			flush_reg = ddi_get8(asy->asy_iohandle,
2109 			    asy->asy_ioaddr + DAT);
2110 		}
2111 
2112 	if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
2113 		/* Set line control */
2114 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
2115 		lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
2116 
2117 		if (c_flag & CSTOPB)
2118 			lcr |= STB;	/* 2 stop bits */
2119 
2120 		if (c_flag & PARENB)
2121 			lcr |= PEN;
2122 
2123 		if ((c_flag & PARODD) == 0)
2124 			lcr |= EPS;
2125 
2126 		switch (c_flag & CSIZE) {
2127 		case CS5:
2128 			lcr |= BITS5;
2129 			break;
2130 		case CS6:
2131 			lcr |= BITS6;
2132 			break;
2133 		case CS7:
2134 			lcr |= BITS7;
2135 			break;
2136 		case CS8:
2137 			lcr |= BITS8;
2138 			break;
2139 		}
2140 
2141 		/* set the baud rate, unless it is "0" */
2142 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
2143 
2144 		if (baudrate != 0) {
2145 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
2146 			    asyspdtab[baudrate] & 0xff);
2147 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
2148 			    (asyspdtab[baudrate] >> 8) & 0xff);
2149 		}
2150 		/* set the line control modes */
2151 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
2152 
2153 		/*
2154 		 * If we have a FIFO buffer, enable/flush
2155 		 * at intialize time, flush if transitioning from
2156 		 * CREAD off to CREAD on.
2157 		 */
2158 		if ((ocflags & CREAD) == 0 && (c_flag & CREAD) ||
2159 		    mode == ASY_INIT)
2160 			if (asy->asy_use_fifo == FIFO_ON)
2161 				asy_reset_fifo(asy, FIFORXFLSH);
2162 
2163 		/* remember the new cflags */
2164 		asy->asy_ocflag = c_flag & ~CLOCAL;
2165 	}
2166 
2167 	if (baudrate == 0)
2168 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
2169 		    (asy->asy_mcr & RTS) | OUT2);
2170 	else
2171 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
2172 		    asy->asy_mcr | OUT2);
2173 
2174 	/*
2175 	 * Call the modem status interrupt handler to check for the carrier
2176 	 * in case CLOCAL was turned off after the carrier came on.
2177 	 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
2178 	 */
2179 	async_msint(asy);
2180 
2181 	/* Set interrupt control */
2182 	DEBUGCONT3(ASY_DEBUG_MODM2,
2183 	    "asy%d_program: c_flag & CLOCAL = %x t_cflag & CRTSCTS = %x\n",
2184 	    instance, c_flag & CLOCAL,
2185 	    async->async_ttycommon.t_cflag & CRTSCTS);
2186 
2187 	if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
2188 		/*
2189 		 * direct-wired line ignores DCD, so we don't enable modem
2190 		 * status interrupts.
2191 		 */
2192 		icr = (TIEN | SIEN);
2193 	else
2194 		icr = (TIEN | SIEN | MIEN);
2195 
2196 	if (c_flag & CREAD)
2197 		icr |= RIEN;
2198 
2199 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, icr);
2200 	DEBUGCONT1(ASY_DEBUG_PROCS, "asy%d_program: done\n", instance);
2201 }
2202 
2203 static boolean_t
2204 asy_baudok(struct asycom *asy)
2205 {
2206 	struct asyncline *async = asy->asy_priv;
2207 	int baudrate;
2208 
2209 
2210 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2211 
2212 	if (baudrate >= sizeof (asyspdtab)/sizeof (*asyspdtab))
2213 		return (0);
2214 
2215 	return (baudrate == 0 || asyspdtab[baudrate]);
2216 }
2217 
2218 /*
2219  * asyintr() is the High Level Interrupt Handler.
2220  *
2221  * There are four different interrupt types indexed by ISR register values:
2222  *		0: modem
2223  *		1: Tx holding register is empty, ready for next char
2224  *		2: Rx register now holds a char to be picked up
2225  *		3: error or break on line
2226  * This routine checks the Bit 0 (interrupt-not-pending) to determine if
2227  * the interrupt is from this port.
2228  */
2229 uint_t
2230 asyintr(caddr_t argasy)
2231 {
2232 	struct asycom		*asy = (struct asycom *)argasy;
2233 	struct asyncline	*async;
2234 	int			ret_status = DDI_INTR_UNCLAIMED;
2235 	uchar_t			interrupt_id, lsr;
2236 
2237 	interrupt_id = ddi_get8(asy->asy_iohandle,
2238 	    asy->asy_ioaddr + ISR) & 0x0F;
2239 	async = asy->asy_priv;
2240 
2241 	if ((async == NULL) ||
2242 	    !(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
2243 		if (interrupt_id & NOINTERRUPT)
2244 			return (DDI_INTR_UNCLAIMED);
2245 		else {
2246 			/*
2247 			 * reset the device by:
2248 			 *	reading line status
2249 			 *	reading any data from data status register
2250 			 *	reading modem status
2251 			 */
2252 			(void) ddi_get8(asy->asy_iohandle,
2253 			    asy->asy_ioaddr + LSR);
2254 			(void) ddi_get8(asy->asy_iohandle,
2255 			    asy->asy_ioaddr + DAT);
2256 			asy->asy_msr = ddi_get8(asy->asy_iohandle,
2257 			    asy->asy_ioaddr + MSR);
2258 			return (DDI_INTR_CLAIMED);
2259 		}
2260 	}
2261 
2262 	mutex_enter(&asy->asy_excl_hi);
2263 
2264 	if (asy->asy_flags & ASY_DDI_SUSPENDED) {
2265 		mutex_exit(&asy->asy_excl_hi);
2266 		return (DDI_INTR_CLAIMED);
2267 	}
2268 
2269 	/*
2270 	 * We will loop until the interrupt line is pulled low. asy
2271 	 * interrupt is edge triggered.
2272 	 */
2273 	/* CSTYLED */
2274 	for (;; interrupt_id =
2275 	    (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR) & 0x0F)) {
2276 
2277 		if (interrupt_id & NOINTERRUPT)
2278 			break;
2279 		ret_status = DDI_INTR_CLAIMED;
2280 
2281 		DEBUGCONT1(ASY_DEBUG_INTR, "asyintr: interrupt_id = 0x%d\n",
2282 		    interrupt_id);
2283 		lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2284 		switch (interrupt_id) {
2285 		case RxRDY:
2286 		case RSTATUS:
2287 		case FFTMOUT:
2288 			/* receiver interrupt or receiver errors */
2289 			async_rxint(asy, lsr);
2290 			break;
2291 		case TxRDY:
2292 			/* transmit interrupt */
2293 			async_txint(asy);
2294 			continue;
2295 		case MSTATUS:
2296 			/* modem status interrupt */
2297 			async_msint(asy);
2298 			break;
2299 		}
2300 		if ((lsr & XHRE) && (async->async_flags & ASYNC_BUSY) &&
2301 		    (async->async_ocnt > 0))
2302 			async_txint(asy);
2303 	}
2304 	mutex_exit(&asy->asy_excl_hi);
2305 	return (ret_status);
2306 }
2307 
2308 /*
2309  * Transmitter interrupt service routine.
2310  * If there is more data to transmit in the current pseudo-DMA block,
2311  * send the next character if output is not stopped or draining.
2312  * Otherwise, queue up a soft interrupt.
2313  *
2314  * XXX -  Needs review for HW FIFOs.
2315  */
2316 static void
2317 async_txint(struct asycom *asy)
2318 {
2319 	struct asyncline *async = asy->asy_priv;
2320 	int		fifo_len;
2321 
2322 	/*
2323 	 * If ASYNC_BREAK or ASYNC_OUT_SUSPEND has been set, return to
2324 	 * asyintr()'s context to claim the interrupt without performing
2325 	 * any action. No character will be loaded into FIFO/THR until
2326 	 * timed or untimed break is removed
2327 	 */
2328 	if (async->async_flags & (ASYNC_BREAK|ASYNC_OUT_SUSPEND))
2329 		return;
2330 
2331 	fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
2332 	if (fifo_len > asy_max_tx_fifo)
2333 		fifo_len = asy_max_tx_fifo;
2334 
2335 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
2336 		fifo_len--;
2337 
2338 	if (async->async_ocnt > 0 && fifo_len > 0 &&
2339 	    !(async->async_flags &
2340 	    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_STOPPED))) {
2341 		while (fifo_len-- > 0 && async->async_ocnt-- > 0) {
2342 			ddi_put8(asy->asy_iohandle,
2343 			    asy->asy_ioaddr + DAT, *async->async_optr++);
2344 		}
2345 		async->async_flags |= ASYNC_PROGRESS;
2346 	}
2347 
2348 	if (fifo_len <= 0)
2349 		return;
2350 
2351 	ASYSETSOFT(asy);
2352 }
2353 
2354 /*
2355  * Interrupt on port: handle PPS event.  This function is only called
2356  * for a port on which PPS event handling has been enabled.
2357  */
2358 static void
2359 asy_ppsevent(struct asycom *asy, int msr)
2360 {
2361 	if (asy->asy_flags & ASY_PPS_EDGE) {
2362 		/* Have seen leading edge, now look for and record drop */
2363 		if ((msr & DCD) == 0)
2364 			asy->asy_flags &= ~ASY_PPS_EDGE;
2365 		/*
2366 		 * Waiting for leading edge, look for rise; stamp event and
2367 		 * calibrate kernel clock.
2368 		 */
2369 	} else if (msr & DCD) {
2370 			/*
2371 			 * This code captures a timestamp at the designated
2372 			 * transition of the PPS signal (DCD asserted).  The
2373 			 * code provides a pointer to the timestamp, as well
2374 			 * as the hardware counter value at the capture.
2375 			 *
2376 			 * Note: the kernel has nano based time values while
2377 			 * NTP requires micro based, an in-line fast algorithm
2378 			 * to convert nsec to usec is used here -- see hrt2ts()
2379 			 * in common/os/timers.c for a full description.
2380 			 */
2381 			struct timeval *tvp = &asy_ppsev.tv;
2382 			timestruc_t ts;
2383 			long nsec, usec;
2384 
2385 			asy->asy_flags |= ASY_PPS_EDGE;
2386 			LED_OFF;
2387 			gethrestime(&ts);
2388 			LED_ON;
2389 			nsec = ts.tv_nsec;
2390 			usec = nsec + (nsec >> 2);
2391 			usec = nsec + (usec >> 1);
2392 			usec = nsec + (usec >> 2);
2393 			usec = nsec + (usec >> 4);
2394 			usec = nsec - (usec >> 3);
2395 			usec = nsec + (usec >> 2);
2396 			usec = nsec + (usec >> 3);
2397 			usec = nsec + (usec >> 4);
2398 			usec = nsec + (usec >> 1);
2399 			usec = nsec + (usec >> 6);
2400 			tvp->tv_usec = usec >> 10;
2401 			tvp->tv_sec = ts.tv_sec;
2402 
2403 			++asy_ppsev.serial;
2404 
2405 			/*
2406 			 * Because the kernel keeps a high-resolution time,
2407 			 * pass the current highres timestamp in tvp and zero
2408 			 * in usec.
2409 			 */
2410 			ddi_hardpps(tvp, 0);
2411 	}
2412 }
2413 
2414 /*
2415  * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
2416  * error interrupt.
2417  * Try to put the character into the circular buffer for this line; if it
2418  * overflows, indicate a circular buffer overrun. If this port is always
2419  * to be serviced immediately, or the character is a STOP character, or
2420  * more than 15 characters have arrived, queue up a soft interrupt to
2421  * drain the circular buffer.
2422  * XXX - needs review for hw FIFOs support.
2423  */
2424 
2425 static void
2426 async_rxint(struct asycom *asy, uchar_t lsr)
2427 {
2428 	struct asyncline *async = asy->asy_priv;
2429 	uchar_t c;
2430 	uint_t s, needsoft = 0;
2431 	tty_common_t *tp;
2432 	int looplim = asy->asy_fifo_buf * 2;
2433 
2434 	tp = &async->async_ttycommon;
2435 	if (!(tp->t_cflag & CREAD)) {
2436 		while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
2437 			(void) (ddi_get8(asy->asy_iohandle,
2438 			    asy->asy_ioaddr + DAT) & 0xff);
2439 			lsr = ddi_get8(asy->asy_iohandle,
2440 			    asy->asy_ioaddr + LSR);
2441 			if (looplim-- < 0)		/* limit loop */
2442 				break;
2443 		}
2444 		return; /* line is not open for read? */
2445 	}
2446 
2447 	while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
2448 		c = 0;
2449 		s = 0;				/* reset error status */
2450 		if (lsr & RCA) {
2451 			c = ddi_get8(asy->asy_iohandle,
2452 			    asy->asy_ioaddr + DAT) & 0xff;
2453 
2454 			/*
2455 			 * We handle XON/XOFF char if IXON is set,
2456 			 * but if received char is _POSIX_VDISABLE,
2457 			 * we left it to the up level module.
2458 			 */
2459 			if (tp->t_iflag & IXON) {
2460 				if ((c == async->async_stopc) &&
2461 				    (c != _POSIX_VDISABLE)) {
2462 					async_flowcontrol_sw_output(asy,
2463 					    FLOW_STOP);
2464 					goto check_looplim;
2465 				} else if ((c == async->async_startc) &&
2466 				    (c != _POSIX_VDISABLE)) {
2467 					async_flowcontrol_sw_output(asy,
2468 					    FLOW_START);
2469 					needsoft = 1;
2470 					goto check_looplim;
2471 				}
2472 				if ((tp->t_iflag & IXANY) &&
2473 				    (async->async_flags & ASYNC_SW_OUT_FLW)) {
2474 					async_flowcontrol_sw_output(asy,
2475 					    FLOW_START);
2476 					needsoft = 1;
2477 				}
2478 			}
2479 		}
2480 
2481 		/*
2482 		 * Check for character break sequence
2483 		 */
2484 		if ((abort_enable == KIOCABORTALTERNATE) &&
2485 		    (asy->asy_flags & ASY_CONSOLE)) {
2486 			if (abort_charseq_recognize(c))
2487 				abort_sequence_enter((char *)NULL);
2488 		}
2489 
2490 		/* Handle framing errors */
2491 		if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
2492 			if (lsr & PARERR) {
2493 				if (tp->t_iflag & INPCK) /* parity enabled */
2494 					s |= PERROR;
2495 			}
2496 
2497 			if (lsr & (FRMERR|BRKDET))
2498 				s |= FRERROR;
2499 			if (lsr & OVRRUN) {
2500 				async->async_hw_overrun = 1;
2501 				s |= OVERRUN;
2502 			}
2503 		}
2504 
2505 		if (s == 0)
2506 			if ((tp->t_iflag & PARMRK) &&
2507 			    !(tp->t_iflag & (IGNPAR|ISTRIP)) &&
2508 			    (c == 0377))
2509 				if (RING_POK(async, 2)) {
2510 					RING_PUT(async, 0377);
2511 					RING_PUT(async, c);
2512 				} else
2513 					async->async_sw_overrun = 1;
2514 			else
2515 				if (RING_POK(async, 1))
2516 					RING_PUT(async, c);
2517 				else
2518 					async->async_sw_overrun = 1;
2519 		else
2520 			if (s & FRERROR) /* Handle framing errors */
2521 				if (c == 0)
2522 					if ((asy->asy_flags & ASY_CONSOLE) &&
2523 					    (abort_enable !=
2524 					    KIOCABORTALTERNATE))
2525 						abort_sequence_enter((char *)0);
2526 					else
2527 						async->async_break++;
2528 				else
2529 					if (RING_POK(async, 1))
2530 						RING_MARK(async, c, s);
2531 					else
2532 						async->async_sw_overrun = 1;
2533 			else /* Parity errors are handled by ldterm */
2534 				if (RING_POK(async, 1))
2535 					RING_MARK(async, c, s);
2536 				else
2537 					async->async_sw_overrun = 1;
2538 check_looplim:
2539 		lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2540 		if (looplim-- < 0)		/* limit loop */
2541 			break;
2542 	}
2543 	if ((RING_CNT(async) > (RINGSIZE * 3)/4) &&
2544 	    !(async->async_inflow_source & IN_FLOW_RINGBUFF)) {
2545 		async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_RINGBUFF);
2546 		(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
2547 		    IN_FLOW_RINGBUFF);
2548 	}
2549 
2550 	if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
2551 	    (RING_FRAC(async)) || (async->async_polltid == 0))
2552 		ASYSETSOFT(asy);	/* need a soft interrupt */
2553 }
2554 
2555 /*
2556  * Modem status interrupt.
2557  *
2558  * (Note: It is assumed that the MSR hasn't been read by asyintr().)
2559  */
2560 
2561 static void
2562 async_msint(struct asycom *asy)
2563 {
2564 	struct asyncline *async = asy->asy_priv;
2565 	int msr, t_cflag = async->async_ttycommon.t_cflag;
2566 #ifdef DEBUG
2567 	int instance = UNIT(async->async_dev);
2568 #endif
2569 
2570 async_msint_retry:
2571 	/* this resets the interrupt */
2572 	msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
2573 	DEBUGCONT10(ASY_DEBUG_STATE,
2574 	    "async%d_msint call #%d:\n"
2575 	    "   transition: %3s %3s %3s %3s\n"
2576 	    "current state: %3s %3s %3s %3s\n",
2577 	    instance,
2578 	    ++(asy->asy_msint_cnt),
2579 	    (msr & DCTS) ? "DCTS" : "    ",
2580 	    (msr & DDSR) ? "DDSR" : "    ",
2581 	    (msr & DRI)  ? "DRI " : "    ",
2582 	    (msr & DDCD) ? "DDCD" : "    ",
2583 	    (msr & CTS)  ? "CTS " : "    ",
2584 	    (msr & DSR)  ? "DSR " : "    ",
2585 	    (msr & RI)   ? "RI  " : "    ",
2586 	    (msr & DCD)  ? "DCD " : "    ");
2587 
2588 	/* If CTS status is changed, do H/W output flow control */
2589 	if ((t_cflag & CRTSCTS) && (((asy->asy_msr ^ msr) & CTS) != 0))
2590 		async_flowcontrol_hw_output(asy,
2591 		    msr & CTS ? FLOW_START : FLOW_STOP);
2592 	/*
2593 	 * Reading MSR resets the interrupt, we save the
2594 	 * value of msr so that other functions could examine MSR by
2595 	 * looking at asy_msr.
2596 	 */
2597 	asy->asy_msr = (uchar_t)msr;
2598 
2599 	/* Handle PPS event */
2600 	if (asy->asy_flags & ASY_PPS)
2601 		asy_ppsevent(asy, msr);
2602 
2603 	async->async_ext++;
2604 	ASYSETSOFT(asy);
2605 	/*
2606 	 * We will make sure that the modem status presented to us
2607 	 * during the previous read has not changed. If the chip samples
2608 	 * the modem status on the falling edge of the interrupt line,
2609 	 * and uses this state as the base for detecting change of modem
2610 	 * status, we would miss a change of modem status event that occured
2611 	 * after we initiated a read MSR operation.
2612 	 */
2613 	msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
2614 	if (STATES(msr) != STATES(asy->asy_msr))
2615 		goto	async_msint_retry;
2616 }
2617 
2618 /*
2619  * Handle a second-stage interrupt.
2620  */
2621 /*ARGSUSED*/
2622 uint_t
2623 asysoftintr(caddr_t intarg)
2624 {
2625 	struct asycom *asy = (struct asycom *)intarg;
2626 	struct asyncline *async;
2627 	int rv;
2628 	uint_t cc;
2629 
2630 	/*
2631 	 * Test and clear soft interrupt.
2632 	 */
2633 	mutex_enter(&asy->asy_soft_lock);
2634 	DEBUGCONT0(ASY_DEBUG_PROCS, "asysoftintr: enter\n");
2635 	rv = asy->asysoftpend;
2636 	if (rv != 0)
2637 		asy->asysoftpend = 0;
2638 	mutex_exit(&asy->asy_soft_lock);
2639 
2640 	if (rv) {
2641 		if (asy->asy_priv == NULL)
2642 			return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2643 		async = (struct asyncline *)asy->asy_priv;
2644 		mutex_enter(&asy->asy_excl_hi);
2645 		if (asy->asy_flags & ASY_NEEDSOFT) {
2646 			asy->asy_flags &= ~ASY_NEEDSOFT;
2647 			mutex_exit(&asy->asy_excl_hi);
2648 			async_softint(asy);
2649 			mutex_enter(&asy->asy_excl_hi);
2650 		}
2651 
2652 		/*
2653 		 * There are some instances where the softintr is not
2654 		 * scheduled and hence not called. It so happens that
2655 		 * causes the last few characters to be stuck in the
2656 		 * ringbuffer. Hence, call the handler once again so
2657 		 * the last few characters are cleared.
2658 		 */
2659 		cc = RING_CNT(async);
2660 		mutex_exit(&asy->asy_excl_hi);
2661 		if (cc > 0)
2662 			(void) async_softint(asy);
2663 	}
2664 	return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2665 }
2666 
2667 /*
2668  * Handle a software interrupt.
2669  */
2670 static void
2671 async_softint(struct asycom *asy)
2672 {
2673 	struct asyncline *async = asy->asy_priv;
2674 	uint_t	cc;
2675 	mblk_t	*bp;
2676 	queue_t	*q;
2677 	uchar_t	val;
2678 	uchar_t	c;
2679 	tty_common_t	*tp;
2680 	int nb;
2681 	int instance = UNIT(async->async_dev);
2682 
2683 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint\n", instance);
2684 	mutex_enter(&asy->asy_excl_hi);
2685 	if (asy->asy_flags & ASY_DOINGSOFT) {
2686 		asy->asy_flags |= ASY_DOINGSOFT_RETRY;
2687 		mutex_exit(&asy->asy_excl_hi);
2688 		return;
2689 	}
2690 	asy->asy_flags |= ASY_DOINGSOFT;
2691 begin:
2692 	asy->asy_flags &= ~ASY_DOINGSOFT_RETRY;
2693 	mutex_exit(&asy->asy_excl_hi);
2694 	mutex_enter(&asy->asy_excl);
2695 	tp = &async->async_ttycommon;
2696 	q = tp->t_readq;
2697 	if (async->async_flags & ASYNC_OUT_FLW_RESUME) {
2698 		if (async->async_ocnt > 0) {
2699 			mutex_enter(&asy->asy_excl_hi);
2700 			async_resume(async);
2701 			mutex_exit(&asy->asy_excl_hi);
2702 		} else {
2703 			if (async->async_xmitblk)
2704 				freeb(async->async_xmitblk);
2705 			async->async_xmitblk = NULL;
2706 			async_start(async);
2707 		}
2708 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
2709 	}
2710 	mutex_enter(&asy->asy_excl_hi);
2711 	if (async->async_ext) {
2712 		async->async_ext = 0;
2713 		/* check for carrier up */
2714 		DEBUGCONT3(ASY_DEBUG_MODM2,
2715 		    "async%d_softint: asy_msr & DCD = %x, "
2716 		    "tp->t_flags & TS_SOFTCAR = %x\n",
2717 		    instance, asy->asy_msr & DCD, tp->t_flags & TS_SOFTCAR);
2718 
2719 		if (asy->asy_msr & DCD) {
2720 			/* carrier present */
2721 			if ((async->async_flags & ASYNC_CARR_ON) == 0) {
2722 				DEBUGCONT1(ASY_DEBUG_MODM2,
2723 				    "async%d_softint: set ASYNC_CARR_ON\n",
2724 				    instance);
2725 				async->async_flags |= ASYNC_CARR_ON;
2726 				if (async->async_flags & ASYNC_ISOPEN) {
2727 					mutex_exit(&asy->asy_excl_hi);
2728 					mutex_exit(&asy->asy_excl);
2729 					(void) putctl(q, M_UNHANGUP);
2730 					mutex_enter(&asy->asy_excl);
2731 					mutex_enter(&asy->asy_excl_hi);
2732 				}
2733 				cv_broadcast(&async->async_flags_cv);
2734 			}
2735 		} else {
2736 			if ((async->async_flags & ASYNC_CARR_ON) &&
2737 			    !(tp->t_cflag & CLOCAL) &&
2738 			    !(tp->t_flags & TS_SOFTCAR)) {
2739 				int flushflag;
2740 
2741 				DEBUGCONT1(ASY_DEBUG_MODEM,
2742 				    "async%d_softint: carrier dropped, "
2743 				    "so drop DTR\n",
2744 				    instance);
2745 				/*
2746 				 * Carrier went away.
2747 				 * Drop DTR, abort any output in
2748 				 * progress, indicate that output is
2749 				 * not stopped, and send a hangup
2750 				 * notification upstream.
2751 				 */
2752 				val = ddi_get8(asy->asy_iohandle,
2753 				    asy->asy_ioaddr + MCR);
2754 				ddi_put8(asy->asy_iohandle,
2755 				    asy->asy_ioaddr + MCR, (val & ~DTR));
2756 
2757 				if (async->async_flags & ASYNC_BUSY) {
2758 					DEBUGCONT0(ASY_DEBUG_BUSY,
2759 					    "async_softint: "
2760 					    "Carrier dropped.  "
2761 					    "Clearing async_ocnt\n");
2762 					async->async_ocnt = 0;
2763 				}	/* if */
2764 
2765 				async->async_flags &= ~ASYNC_STOPPED;
2766 				if (async->async_flags & ASYNC_ISOPEN) {
2767 					mutex_exit(&asy->asy_excl_hi);
2768 					mutex_exit(&asy->asy_excl);
2769 					(void) putctl(q, M_HANGUP);
2770 					mutex_enter(&asy->asy_excl);
2771 					DEBUGCONT1(ASY_DEBUG_MODEM,
2772 					    "async%d_softint: "
2773 					    "putctl(q, M_HANGUP)\n",
2774 					    instance);
2775 					/*
2776 					 * Flush FIFO buffers
2777 					 * Any data left in there is invalid now
2778 					 */
2779 					if (asy->asy_use_fifo == FIFO_ON)
2780 						asy_reset_fifo(asy, FIFOTXFLSH);
2781 					/*
2782 					 * Flush our write queue if we have one.
2783 					 * If we're in the midst of close, then
2784 					 * flush everything. Don't leave stale
2785 					 * ioctls lying about.
2786 					 */
2787 					flushflag = (async->async_flags &
2788 					    ASYNC_CLOSING) ? FLUSHALL :
2789 					    FLUSHDATA;
2790 					flushq(tp->t_writeq, flushflag);
2791 
2792 					/* active msg */
2793 					bp = async->async_xmitblk;
2794 					if (bp != NULL) {
2795 						freeb(bp);
2796 						async->async_xmitblk = NULL;
2797 					}
2798 
2799 					mutex_enter(&asy->asy_excl_hi);
2800 					async->async_flags &= ~ASYNC_BUSY;
2801 					/*
2802 					 * This message warns of Carrier loss
2803 					 * with data left to transmit can hang
2804 					 * the system.
2805 					 */
2806 					DEBUGCONT0(ASY_DEBUG_MODEM,
2807 					    "async_softint: Flushing to "
2808 					    "prevent HUPCL hanging\n");
2809 				}	/* if (ASYNC_ISOPEN) */
2810 			}	/* if (ASYNC_CARR_ON && CLOCAL) */
2811 			async->async_flags &= ~ASYNC_CARR_ON;
2812 			cv_broadcast(&async->async_flags_cv);
2813 		}	/* else */
2814 	}	/* if (async->async_ext) */
2815 
2816 	mutex_exit(&asy->asy_excl_hi);
2817 
2818 	/*
2819 	 * If data has been added to the circular buffer, remove
2820 	 * it from the buffer, and send it up the stream if there's
2821 	 * somebody listening. Try to do it 16 bytes at a time. If we
2822 	 * have more than 16 bytes to move, move 16 byte chunks and
2823 	 * leave the rest for next time around (maybe it will grow).
2824 	 */
2825 	mutex_enter(&asy->asy_excl_hi);
2826 	if (!(async->async_flags & ASYNC_ISOPEN)) {
2827 		RING_INIT(async);
2828 		goto rv;
2829 	}
2830 	if ((cc = RING_CNT(async)) == 0)
2831 		goto rv;
2832 	mutex_exit(&asy->asy_excl_hi);
2833 
2834 	if (!canput(q)) {
2835 		mutex_enter(&asy->asy_excl_hi);
2836 		if (!(async->async_inflow_source & IN_FLOW_STREAMS)) {
2837 			async_flowcontrol_hw_input(asy, FLOW_STOP,
2838 			    IN_FLOW_STREAMS);
2839 			(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
2840 			    IN_FLOW_STREAMS);
2841 		}
2842 		goto rv;
2843 	}
2844 	if (async->async_inflow_source & IN_FLOW_STREAMS) {
2845 		mutex_enter(&asy->asy_excl_hi);
2846 		async_flowcontrol_hw_input(asy, FLOW_START,
2847 		    IN_FLOW_STREAMS);
2848 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
2849 		    IN_FLOW_STREAMS);
2850 		mutex_exit(&asy->asy_excl_hi);
2851 	}
2852 
2853 	DEBUGCONT2(ASY_DEBUG_INPUT, "async%d_softint: %d char(s) in queue.\n",
2854 	    instance, cc);
2855 
2856 	if (!(bp = allocb(cc, BPRI_MED))) {
2857 		mutex_exit(&asy->asy_excl);
2858 		ttycommon_qfull(&async->async_ttycommon, q);
2859 		mutex_enter(&asy->asy_excl);
2860 		mutex_enter(&asy->asy_excl_hi);
2861 		goto rv;
2862 	}
2863 	mutex_enter(&asy->asy_excl_hi);
2864 	do {
2865 		if (RING_ERR(async, S_ERRORS)) {
2866 			RING_UNMARK(async);
2867 			c = RING_GET(async);
2868 			break;
2869 		} else
2870 			*bp->b_wptr++ = RING_GET(async);
2871 	} while (--cc);
2872 	mutex_exit(&asy->asy_excl_hi);
2873 	mutex_exit(&asy->asy_excl);
2874 	if (bp->b_wptr > bp->b_rptr) {
2875 			if (!canput(q)) {
2876 				asyerror(CE_NOTE, "asy%d: local queue full",
2877 				    instance);
2878 				freemsg(bp);
2879 			} else
2880 				(void) putq(q, bp);
2881 	} else
2882 		freemsg(bp);
2883 	/*
2884 	 * If we have a parity error, then send
2885 	 * up an M_BREAK with the "bad"
2886 	 * character as an argument. Let ldterm
2887 	 * figure out what to do with the error.
2888 	 */
2889 	if (cc) {
2890 		(void) putctl1(q, M_BREAK, c);
2891 		ASYSETSOFT(async->async_common);	/* finish cc chars */
2892 	}
2893 	mutex_enter(&asy->asy_excl);
2894 	mutex_enter(&asy->asy_excl_hi);
2895 rv:
2896 	if ((RING_CNT(async) < (RINGSIZE/4)) &&
2897 	    (async->async_inflow_source & IN_FLOW_RINGBUFF)) {
2898 		async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_RINGBUFF);
2899 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
2900 		    IN_FLOW_RINGBUFF);
2901 	}
2902 
2903 	/*
2904 	 * If a transmission has finished, indicate that it's finished,
2905 	 * and start that line up again.
2906 	 */
2907 	if (async->async_break > 0) {
2908 		nb = async->async_break;
2909 		async->async_break = 0;
2910 		if (async->async_flags & ASYNC_ISOPEN) {
2911 			mutex_exit(&asy->asy_excl_hi);
2912 			mutex_exit(&asy->asy_excl);
2913 			for (; nb > 0; nb--)
2914 				(void) putctl(q, M_BREAK);
2915 			mutex_enter(&asy->asy_excl);
2916 			mutex_enter(&asy->asy_excl_hi);
2917 		}
2918 	}
2919 	if (async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) {
2920 		DEBUGCONT2(ASY_DEBUG_BUSY,
2921 		    "async%d_softint: Clearing ASYNC_BUSY.  async_ocnt=%d\n",
2922 		    instance,
2923 		    async->async_ocnt);
2924 		async->async_flags &= ~ASYNC_BUSY;
2925 		mutex_exit(&asy->asy_excl_hi);
2926 		if (async->async_xmitblk)
2927 			freeb(async->async_xmitblk);
2928 		async->async_xmitblk = NULL;
2929 		async_start(async);
2930 		/*
2931 		 * If the flag isn't set after doing the async_start above, we
2932 		 * may have finished all the queued output.  Signal any thread
2933 		 * stuck in close.
2934 		 */
2935 		if (!(async->async_flags & ASYNC_BUSY))
2936 			cv_broadcast(&async->async_flags_cv);
2937 		mutex_enter(&asy->asy_excl_hi);
2938 	}
2939 	/*
2940 	 * A note about these overrun bits: all they do is *tell* someone
2941 	 * about an error- They do not track multiple errors. In fact,
2942 	 * you could consider them latched register bits if you like.
2943 	 * We are only interested in printing the error message once for
2944 	 * any cluster of overrun errrors.
2945 	 */
2946 	if (async->async_hw_overrun) {
2947 		if (async->async_flags & ASYNC_ISOPEN) {
2948 			mutex_exit(&asy->asy_excl_hi);
2949 			mutex_exit(&asy->asy_excl);
2950 			asyerror(CE_NOTE, "asy%d: silo overflow", instance);
2951 			mutex_enter(&asy->asy_excl);
2952 			mutex_enter(&asy->asy_excl_hi);
2953 		}
2954 		async->async_hw_overrun = 0;
2955 	}
2956 	if (async->async_sw_overrun) {
2957 		if (async->async_flags & ASYNC_ISOPEN) {
2958 			mutex_exit(&asy->asy_excl_hi);
2959 			mutex_exit(&asy->asy_excl);
2960 			asyerror(CE_NOTE, "asy%d: ring buffer overflow",
2961 			    instance);
2962 			mutex_enter(&asy->asy_excl);
2963 			mutex_enter(&asy->asy_excl_hi);
2964 		}
2965 		async->async_sw_overrun = 0;
2966 	}
2967 	if (asy->asy_flags & ASY_DOINGSOFT_RETRY) {
2968 		mutex_exit(&asy->asy_excl);
2969 		goto begin;
2970 	}
2971 	asy->asy_flags &= ~ASY_DOINGSOFT;
2972 	mutex_exit(&asy->asy_excl_hi);
2973 	mutex_exit(&asy->asy_excl);
2974 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint: done\n", instance);
2975 }
2976 
2977 /*
2978  * Restart output on a line after a delay or break timer expired.
2979  */
2980 static void
2981 async_restart(void *arg)
2982 {
2983 	struct asyncline *async = (struct asyncline *)arg;
2984 	struct asycom *asy = async->async_common;
2985 	uchar_t lcr;
2986 
2987 	/*
2988 	 * If break timer expired, turn off the break bit.
2989 	 */
2990 #ifdef DEBUG
2991 	int instance = UNIT(async->async_dev);
2992 
2993 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_restart\n", instance);
2994 #endif
2995 	mutex_enter(&asy->asy_excl);
2996 	/*
2997 	 * If ASYNC_OUT_SUSPEND is also set, we don't really
2998 	 * clean the HW break, TIOCCBRK is responsible for this.
2999 	 */
3000 	if ((async->async_flags & ASYNC_BREAK) &&
3001 	    !(async->async_flags & ASYNC_OUT_SUSPEND)) {
3002 		mutex_enter(&asy->asy_excl_hi);
3003 		lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
3004 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3005 		    (lcr & ~SETBREAK));
3006 		mutex_exit(&asy->asy_excl_hi);
3007 	}
3008 	async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK);
3009 	cv_broadcast(&async->async_flags_cv);
3010 	async_start(async);
3011 
3012 	mutex_exit(&asy->asy_excl);
3013 }
3014 
3015 static void
3016 async_start(struct asyncline *async)
3017 {
3018 	async_nstart(async, 0);
3019 }
3020 
3021 /*
3022  * Start output on a line, unless it's busy, frozen, or otherwise.
3023  */
3024 /*ARGSUSED*/
3025 static void
3026 async_nstart(struct asyncline *async, int mode)
3027 {
3028 	struct asycom *asy = async->async_common;
3029 	int cc;
3030 	queue_t *q;
3031 	mblk_t *bp;
3032 	uchar_t *xmit_addr;
3033 	uchar_t	val;
3034 	int	fifo_len = 1;
3035 	boolean_t didsome;
3036 	mblk_t *nbp;
3037 
3038 #ifdef DEBUG
3039 	int instance = UNIT(async->async_dev);
3040 
3041 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_nstart\n", instance);
3042 #endif
3043 	if (asy->asy_use_fifo == FIFO_ON) {
3044 		fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
3045 		if (fifo_len > asy_max_tx_fifo)
3046 			fifo_len = asy_max_tx_fifo;
3047 	}
3048 
3049 	ASSERT(mutex_owned(&asy->asy_excl));
3050 
3051 	/*
3052 	 * If the chip is busy (i.e., we're waiting for a break timeout
3053 	 * to expire, or for the current transmission to finish, or for
3054 	 * output to finish draining from chip), don't grab anything new.
3055 	 */
3056 	if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY)) {
3057 		DEBUGCONT2((mode? ASY_DEBUG_OUT : 0),
3058 		    "async%d_nstart: start %s.\n",
3059 		    instance,
3060 		    async->async_flags & ASYNC_BREAK ? "break" : "busy");
3061 		return;
3062 	}
3063 
3064 	/*
3065 	 * Check only pended sw input flow control.
3066 	 */
3067 	mutex_enter(&asy->asy_excl_hi);
3068 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3069 		fifo_len--;
3070 	mutex_exit(&asy->asy_excl_hi);
3071 
3072 	/*
3073 	 * If we're waiting for a delay timeout to expire, don't grab
3074 	 * anything new.
3075 	 */
3076 	if (async->async_flags & ASYNC_DELAY) {
3077 		DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
3078 		    "async%d_nstart: start ASYNC_DELAY.\n", instance);
3079 		return;
3080 	}
3081 
3082 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
3083 		DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
3084 		    "async%d_nstart: start writeq is null.\n", instance);
3085 		return;	/* not attached to a stream */
3086 	}
3087 
3088 	for (;;) {
3089 		if ((bp = getq(q)) == NULL)
3090 			return;	/* no data to transmit */
3091 
3092 		/*
3093 		 * We have a message block to work on.
3094 		 * Check whether it's a break, a delay, or an ioctl (the latter
3095 		 * occurs if the ioctl in question was waiting for the output
3096 		 * to drain).  If it's one of those, process it immediately.
3097 		 */
3098 		switch (bp->b_datap->db_type) {
3099 
3100 		case M_BREAK:
3101 			/*
3102 			 * Set the break bit, and arrange for "async_restart"
3103 			 * to be called in 1/4 second; it will turn the
3104 			 * break bit off, and call "async_start" to grab
3105 			 * the next message.
3106 			 */
3107 			mutex_enter(&asy->asy_excl_hi);
3108 			val = ddi_get8(asy->asy_iohandle,
3109 			    asy->asy_ioaddr + LCR);
3110 			ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3111 			    (val | SETBREAK));
3112 			mutex_exit(&asy->asy_excl_hi);
3113 			async->async_flags |= ASYNC_BREAK;
3114 			(void) timeout(async_restart, (caddr_t)async,
3115 			    drv_usectohz(1000000)/4);
3116 			freemsg(bp);
3117 			return;	/* wait for this to finish */
3118 
3119 		case M_DELAY:
3120 			/*
3121 			 * Arrange for "async_restart" to be called when the
3122 			 * delay expires; it will turn ASYNC_DELAY off,
3123 			 * and call "async_start" to grab the next message.
3124 			 */
3125 			(void) timeout(async_restart, (caddr_t)async,
3126 			    (int)(*(unsigned char *)bp->b_rptr + 6));
3127 			async->async_flags |= ASYNC_DELAY;
3128 			freemsg(bp);
3129 			return;	/* wait for this to finish */
3130 
3131 		case M_IOCTL:
3132 			/*
3133 			 * This ioctl was waiting for the output ahead of
3134 			 * it to drain; obviously, it has.  Do it, and
3135 			 * then grab the next message after it.
3136 			 */
3137 			mutex_exit(&asy->asy_excl);
3138 			async_ioctl(async, q, bp);
3139 			mutex_enter(&asy->asy_excl);
3140 			continue;
3141 		}
3142 
3143 		while (bp != NULL && ((cc = MBLKL(bp)) == 0)) {
3144 			nbp = bp->b_cont;
3145 			freeb(bp);
3146 			bp = nbp;
3147 		}
3148 		if (bp != NULL)
3149 			break;
3150 	}
3151 
3152 	/*
3153 	 * We have data to transmit.  If output is stopped, put
3154 	 * it back and try again later.
3155 	 */
3156 	if (async->async_flags & (ASYNC_HW_OUT_FLW | ASYNC_SW_OUT_FLW |
3157 	    ASYNC_STOPPED | ASYNC_OUT_SUSPEND)) {
3158 		(void) putbq(q, bp);
3159 		return;
3160 	}
3161 
3162 	async->async_xmitblk = bp;
3163 	xmit_addr = bp->b_rptr;
3164 	bp = bp->b_cont;
3165 	if (bp != NULL)
3166 		(void) putbq(q, bp);	/* not done with this message yet */
3167 
3168 	/*
3169 	 * In 5-bit mode, the high order bits are used
3170 	 * to indicate character sizes less than five,
3171 	 * so we need to explicitly mask before transmitting
3172 	 */
3173 	if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
3174 		unsigned char *p = xmit_addr;
3175 		int cnt = cc;
3176 
3177 		while (cnt--)
3178 			*p++ &= (unsigned char) 0x1f;
3179 	}
3180 
3181 	/*
3182 	 * Set up this block for pseudo-DMA.
3183 	 */
3184 	mutex_enter(&asy->asy_excl_hi);
3185 	/*
3186 	 * If the transmitter is ready, shove the first
3187 	 * character out.
3188 	 */
3189 	didsome = B_FALSE;
3190 	while (--fifo_len >= 0 && cc > 0) {
3191 		if (!(ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) &
3192 		    XHRE))
3193 			break;
3194 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
3195 		    *xmit_addr++);
3196 		cc--;
3197 		didsome = B_TRUE;
3198 	}
3199 	async->async_optr = xmit_addr;
3200 	async->async_ocnt = cc;
3201 	if (didsome)
3202 		async->async_flags |= ASYNC_PROGRESS;
3203 	DEBUGCONT2(ASY_DEBUG_BUSY,
3204 	    "async%d_nstart: Set ASYNC_BUSY.  async_ocnt=%d\n",
3205 	    instance, async->async_ocnt);
3206 	async->async_flags |= ASYNC_BUSY;
3207 	mutex_exit(&asy->asy_excl_hi);
3208 }
3209 
3210 /*
3211  * Resume output by poking the transmitter.
3212  */
3213 static void
3214 async_resume(struct asyncline *async)
3215 {
3216 	struct asycom *asy = async->async_common;
3217 #ifdef DEBUG
3218 	int instance;
3219 #endif
3220 
3221 	ASSERT(mutex_owned(&asy->asy_excl_hi));
3222 #ifdef DEBUG
3223 	instance = UNIT(async->async_dev);
3224 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_resume\n", instance);
3225 #endif
3226 
3227 	if (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE) {
3228 		if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3229 			return;
3230 		if (async->async_ocnt > 0 &&
3231 		    !(async->async_flags &
3232 		    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_OUT_SUSPEND))) {
3233 			ddi_put8(asy->asy_iohandle,
3234 			    asy->asy_ioaddr + DAT, *async->async_optr++);
3235 			async->async_ocnt--;
3236 			async->async_flags |= ASYNC_PROGRESS;
3237 		}
3238 	}
3239 }
3240 
3241 /*
3242  * Hold the untimed break to last the minimum time.
3243  */
3244 static void
3245 async_hold_utbrk(void *arg)
3246 {
3247 	struct asyncline *async = arg;
3248 	struct asycom *asy = async->async_common;
3249 
3250 	mutex_enter(&asy->asy_excl);
3251 	async->async_flags &= ~ASYNC_HOLD_UTBRK;
3252 	cv_broadcast(&async->async_flags_cv);
3253 	async->async_utbrktid = 0;
3254 	mutex_exit(&asy->asy_excl);
3255 }
3256 
3257 /*
3258  * Resume the untimed break.
3259  */
3260 static void
3261 async_resume_utbrk(struct asyncline *async)
3262 {
3263 	uchar_t	val;
3264 	struct asycom *asy = async->async_common;
3265 	ASSERT(mutex_owned(&asy->asy_excl));
3266 
3267 	/*
3268 	 * Because the wait time is very short,
3269 	 * so we use uninterruptably wait.
3270 	 */
3271 	while (async->async_flags & ASYNC_HOLD_UTBRK) {
3272 		cv_wait(&async->async_flags_cv, &asy->asy_excl);
3273 	}
3274 	mutex_enter(&asy->asy_excl_hi);
3275 	/*
3276 	 * Timed break and untimed break can exist simultaneously,
3277 	 * if ASYNC_BREAK is also set at here, we don't
3278 	 * really clean the HW break.
3279 	 */
3280 	if (!(async->async_flags & ASYNC_BREAK)) {
3281 		val = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
3282 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3283 		    (val & ~SETBREAK));
3284 	}
3285 	async->async_flags &= ~ASYNC_OUT_SUSPEND;
3286 	cv_broadcast(&async->async_flags_cv);
3287 	if (async->async_ocnt > 0) {
3288 		async_resume(async);
3289 		mutex_exit(&asy->asy_excl_hi);
3290 	} else {
3291 		async->async_flags &= ~ASYNC_BUSY;
3292 		mutex_exit(&asy->asy_excl_hi);
3293 		if (async->async_xmitblk != NULL) {
3294 			freeb(async->async_xmitblk);
3295 			async->async_xmitblk = NULL;
3296 		}
3297 		async_start(async);
3298 	}
3299 }
3300 
3301 /*
3302  * Process an "ioctl" message sent down to us.
3303  * Note that we don't need to get any locks until we are ready to access
3304  * the hardware.  Nothing we access until then is going to be altered
3305  * outside of the STREAMS framework, so we should be safe.
3306  */
3307 int asydelay = 10000;
3308 static void
3309 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp)
3310 {
3311 	struct asycom *asy = async->async_common;
3312 	tty_common_t  *tp = &async->async_ttycommon;
3313 	struct iocblk *iocp;
3314 	unsigned datasize;
3315 	int error = 0;
3316 	uchar_t val;
3317 	mblk_t *datamp;
3318 	unsigned int index;
3319 
3320 #ifdef DEBUG
3321 	int instance = UNIT(async->async_dev);
3322 
3323 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl\n", instance);
3324 #endif
3325 
3326 	if (tp->t_iocpending != NULL) {
3327 		/*
3328 		 * We were holding an "ioctl" response pending the
3329 		 * availability of an "mblk" to hold data to be passed up;
3330 		 * another "ioctl" came through, which means that "ioctl"
3331 		 * must have timed out or been aborted.
3332 		 */
3333 		freemsg(async->async_ttycommon.t_iocpending);
3334 		async->async_ttycommon.t_iocpending = NULL;
3335 	}
3336 
3337 	iocp = (struct iocblk *)mp->b_rptr;
3338 
3339 	/*
3340 	 * For TIOCMGET and the PPS ioctls, do NOT call ttycommon_ioctl()
3341 	 * because this function frees up the message block (mp->b_cont) that
3342 	 * contains the user location where we pass back the results.
3343 	 *
3344 	 * Similarly, CONSOPENPOLLEDIO needs ioc_count, which ttycommon_ioctl
3345 	 * zaps.  We know that ttycommon_ioctl doesn't know any CONS*
3346 	 * ioctls, so keep the others safe too.
3347 	 */
3348 	DEBUGCONT2(ASY_DEBUG_IOCTL, "async%d_ioctl: %s\n",
3349 	    instance,
3350 	    iocp->ioc_cmd == TIOCMGET ? "TIOCMGET" :
3351 	    iocp->ioc_cmd == TIOCMSET ? "TIOCMSET" :
3352 	    iocp->ioc_cmd == TIOCMBIS ? "TIOCMBIS" :
3353 	    iocp->ioc_cmd == TIOCMBIC ? "TIOCMBIC" :
3354 	    "other");
3355 
3356 	switch (iocp->ioc_cmd) {
3357 	case TIOCMGET:
3358 	case TIOCGPPS:
3359 	case TIOCSPPS:
3360 	case TIOCGPPSEV:
3361 	case CONSOPENPOLLEDIO:
3362 	case CONSCLOSEPOLLEDIO:
3363 	case CONSSETABORTENABLE:
3364 	case CONSGETABORTENABLE:
3365 		error = -1; /* Do Nothing */
3366 		break;
3367 	default:
3368 
3369 		/*
3370 		 * The only way in which "ttycommon_ioctl" can fail is if the
3371 		 * "ioctl" requires a response containing data to be returned
3372 		 * to the user, and no mblk could be allocated for the data.
3373 		 * No such "ioctl" alters our state.  Thus, we always go ahead
3374 		 * and do any state-changes the "ioctl" calls for.  If we
3375 		 * couldn't allocate the data, "ttycommon_ioctl" has stashed
3376 		 * the "ioctl" away safely, so we just call "bufcall" to
3377 		 * request that we be called back when we stand a better
3378 		 * chance of allocating the data.
3379 		 */
3380 		if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
3381 			if (async->async_wbufcid)
3382 				unbufcall(async->async_wbufcid);
3383 			async->async_wbufcid = bufcall(datasize, BPRI_HI,
3384 			    (void (*)(void *)) async_reioctl,
3385 			    (void *)(intptr_t)async->async_common->asy_unit);
3386 			return;
3387 		}
3388 	}
3389 
3390 	mutex_enter(&asy->asy_excl);
3391 
3392 	if (error == 0) {
3393 		/*
3394 		 * "ttycommon_ioctl" did most of the work; we just use the
3395 		 * data it set up.
3396 		 */
3397 		switch (iocp->ioc_cmd) {
3398 
3399 		case TCSETS:
3400 			mutex_enter(&asy->asy_excl_hi);
3401 			if (asy_baudok(asy))
3402 				asy_program(asy, ASY_NOINIT);
3403 			else
3404 				error = EINVAL;
3405 			mutex_exit(&asy->asy_excl_hi);
3406 			break;
3407 		case TCSETSF:
3408 		case TCSETSW:
3409 		case TCSETA:
3410 		case TCSETAW:
3411 		case TCSETAF:
3412 			mutex_enter(&asy->asy_excl_hi);
3413 			if (!asy_baudok(asy))
3414 				error = EINVAL;
3415 			else {
3416 				if (asy_isbusy(asy))
3417 					asy_waiteot(asy);
3418 				asy_program(asy, ASY_NOINIT);
3419 			}
3420 			mutex_exit(&asy->asy_excl_hi);
3421 			break;
3422 		}
3423 	} else if (error < 0) {
3424 		/*
3425 		 * "ttycommon_ioctl" didn't do anything; we process it here.
3426 		 */
3427 		error = 0;
3428 		switch (iocp->ioc_cmd) {
3429 
3430 		case TIOCGPPS:
3431 			/*
3432 			 * Get PPS on/off.
3433 			 */
3434 			if (mp->b_cont != NULL)
3435 				freemsg(mp->b_cont);
3436 
3437 			mp->b_cont = allocb(sizeof (int), BPRI_HI);
3438 			if (mp->b_cont == NULL) {
3439 				error = ENOMEM;
3440 				break;
3441 			}
3442 			if (asy->asy_flags & ASY_PPS)
3443 				*(int *)mp->b_cont->b_wptr = 1;
3444 			else
3445 				*(int *)mp->b_cont->b_wptr = 0;
3446 			mp->b_cont->b_wptr += sizeof (int);
3447 			mp->b_datap->db_type = M_IOCACK;
3448 			iocp->ioc_count = sizeof (int);
3449 			break;
3450 
3451 		case TIOCSPPS:
3452 			/*
3453 			 * Set PPS on/off.
3454 			 */
3455 			error = miocpullup(mp, sizeof (int));
3456 			if (error != 0)
3457 				break;
3458 
3459 			mutex_enter(&asy->asy_excl_hi);
3460 			if (*(int *)mp->b_cont->b_rptr)
3461 				asy->asy_flags |= ASY_PPS;
3462 			else
3463 				asy->asy_flags &= ~ASY_PPS;
3464 			/* Reset edge sense */
3465 			asy->asy_flags &= ~ASY_PPS_EDGE;
3466 			mutex_exit(&asy->asy_excl_hi);
3467 			mp->b_datap->db_type = M_IOCACK;
3468 			break;
3469 
3470 		case TIOCGPPSEV:
3471 		{
3472 			/*
3473 			 * Get PPS event data.
3474 			 */
3475 			mblk_t *bp;
3476 			void *buf;
3477 #ifdef _SYSCALL32_IMPL
3478 			struct ppsclockev32 p32;
3479 #endif
3480 			struct ppsclockev ppsclockev;
3481 
3482 			if (mp->b_cont != NULL) {
3483 				freemsg(mp->b_cont);
3484 				mp->b_cont = NULL;
3485 			}
3486 
3487 			if ((asy->asy_flags & ASY_PPS) == 0) {
3488 				error = ENXIO;
3489 				break;
3490 			}
3491 
3492 			/* Protect from incomplete asy_ppsev */
3493 			mutex_enter(&asy->asy_excl_hi);
3494 			ppsclockev = asy_ppsev;
3495 			mutex_exit(&asy->asy_excl_hi);
3496 
3497 #ifdef _SYSCALL32_IMPL
3498 			if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
3499 				TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
3500 				p32.serial = ppsclockev.serial;
3501 				buf = &p32;
3502 				iocp->ioc_count = sizeof (struct ppsclockev32);
3503 			} else
3504 #endif
3505 			{
3506 				buf = &ppsclockev;
3507 				iocp->ioc_count = sizeof (struct ppsclockev);
3508 			}
3509 
3510 			if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
3511 				error = ENOMEM;
3512 				break;
3513 			}
3514 			mp->b_cont = bp;
3515 
3516 			bcopy(buf, bp->b_wptr, iocp->ioc_count);
3517 			bp->b_wptr += iocp->ioc_count;
3518 			mp->b_datap->db_type = M_IOCACK;
3519 			break;
3520 		}
3521 
3522 		case TCSBRK:
3523 			error = miocpullup(mp, sizeof (int));
3524 			if (error != 0)
3525 				break;
3526 
3527 			if (*(int *)mp->b_cont->b_rptr == 0) {
3528 
3529 				/*
3530 				 * XXX Arrangements to ensure that a break
3531 				 * isn't in progress should be sufficient.
3532 				 * This ugly delay() is the only thing
3533 				 * that seems to work on the NCR Worldmark.
3534 				 * It should be replaced. Note that an
3535 				 * asy_waiteot() also does not work.
3536 				 */
3537 				if (asydelay)
3538 					delay(drv_usectohz(asydelay));
3539 
3540 				while (async->async_flags & ASYNC_BREAK) {
3541 					cv_wait(&async->async_flags_cv,
3542 					    &asy->asy_excl);
3543 				}
3544 				mutex_enter(&asy->asy_excl_hi);
3545 				/*
3546 				 * We loop until the TSR is empty and then
3547 				 * set the break.  ASYNC_BREAK has been set
3548 				 * to ensure that no characters are
3549 				 * transmitted while the TSR is being
3550 				 * flushed and SOUT is being used for the
3551 				 * break signal.
3552 				 *
3553 				 * The wait period is equal to
3554 				 * clock / (baud * 16) * 16 * 2.
3555 				 */
3556 				index = BAUDINDEX(
3557 				    async->async_ttycommon.t_cflag);
3558 				async->async_flags |= ASYNC_BREAK;
3559 
3560 				while ((ddi_get8(asy->asy_iohandle,
3561 				    asy->asy_ioaddr + LSR) & XSRE) == 0) {
3562 					mutex_exit(&asy->asy_excl_hi);
3563 					mutex_exit(&asy->asy_excl);
3564 					drv_usecwait(
3565 					    32*asyspdtab[index] & 0xfff);
3566 					mutex_enter(&asy->asy_excl);
3567 					mutex_enter(&asy->asy_excl_hi);
3568 				}
3569 				/*
3570 				 * Arrange for "async_restart"
3571 				 * to be called in 1/4 second;
3572 				 * it will turn the break bit off, and call
3573 				 * "async_start" to grab the next message.
3574 				 */
3575 				val = ddi_get8(asy->asy_iohandle,
3576 				    asy->asy_ioaddr + LCR);
3577 				ddi_put8(asy->asy_iohandle,
3578 				    asy->asy_ioaddr + LCR,
3579 				    (val | SETBREAK));
3580 				mutex_exit(&asy->asy_excl_hi);
3581 				(void) timeout(async_restart, (caddr_t)async,
3582 				    drv_usectohz(1000000)/4);
3583 			} else {
3584 				DEBUGCONT1(ASY_DEBUG_OUT,
3585 				    "async%d_ioctl: wait for flush.\n",
3586 				    instance);
3587 				mutex_enter(&asy->asy_excl_hi);
3588 				asy_waiteot(asy);
3589 				mutex_exit(&asy->asy_excl_hi);
3590 				DEBUGCONT1(ASY_DEBUG_OUT,
3591 				    "async%d_ioctl: ldterm satisfied.\n",
3592 				    instance);
3593 			}
3594 			break;
3595 
3596 		case TIOCSBRK:
3597 			if (!(async->async_flags & ASYNC_OUT_SUSPEND)) {
3598 				mutex_enter(&asy->asy_excl_hi);
3599 				async->async_flags |= ASYNC_OUT_SUSPEND;
3600 				async->async_flags |= ASYNC_HOLD_UTBRK;
3601 				index = BAUDINDEX(
3602 				    async->async_ttycommon.t_cflag);
3603 				while ((ddi_get8(asy->asy_iohandle,
3604 				    asy->asy_ioaddr + LSR) & XSRE) == 0) {
3605 					mutex_exit(&asy->asy_excl_hi);
3606 					mutex_exit(&asy->asy_excl);
3607 					drv_usecwait(
3608 					    32*asyspdtab[index] & 0xfff);
3609 					mutex_enter(&asy->asy_excl);
3610 					mutex_enter(&asy->asy_excl_hi);
3611 				}
3612 				val = ddi_get8(asy->asy_iohandle,
3613 				    asy->asy_ioaddr + LCR);
3614 				ddi_put8(asy->asy_iohandle,
3615 				    asy->asy_ioaddr + LCR, (val | SETBREAK));
3616 				mutex_exit(&asy->asy_excl_hi);
3617 				/* wait for 100ms to hold BREAK */
3618 				async->async_utbrktid =
3619 				    timeout((void (*)())async_hold_utbrk,
3620 				    (caddr_t)async,
3621 				    drv_usectohz(asy_min_utbrk));
3622 			}
3623 			mioc2ack(mp, NULL, 0, 0);
3624 			break;
3625 
3626 		case TIOCCBRK:
3627 			if (async->async_flags & ASYNC_OUT_SUSPEND)
3628 				async_resume_utbrk(async);
3629 			mioc2ack(mp, NULL, 0, 0);
3630 			break;
3631 
3632 		case TIOCMSET:
3633 		case TIOCMBIS:
3634 		case TIOCMBIC:
3635 			if (iocp->ioc_count != TRANSPARENT) {
3636 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3637 				    "non-transparent\n", instance);
3638 
3639 				error = miocpullup(mp, sizeof (int));
3640 				if (error != 0)
3641 					break;
3642 
3643 				mutex_enter(&asy->asy_excl_hi);
3644 				(void) asymctl(asy,
3645 				    dmtoasy(*(int *)mp->b_cont->b_rptr),
3646 				    iocp->ioc_cmd);
3647 				mutex_exit(&asy->asy_excl_hi);
3648 				iocp->ioc_error = 0;
3649 				mp->b_datap->db_type = M_IOCACK;
3650 			} else {
3651 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3652 				    "transparent\n", instance);
3653 				mcopyin(mp, NULL, sizeof (int), NULL);
3654 			}
3655 			break;
3656 
3657 		case TIOCMGET:
3658 			datamp = allocb(sizeof (int), BPRI_MED);
3659 			if (datamp == NULL) {
3660 				error = EAGAIN;
3661 				break;
3662 			}
3663 
3664 			mutex_enter(&asy->asy_excl_hi);
3665 			*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
3666 			mutex_exit(&asy->asy_excl_hi);
3667 
3668 			if (iocp->ioc_count == TRANSPARENT) {
3669 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3670 				    "transparent\n", instance);
3671 				mcopyout(mp, NULL, sizeof (int), NULL, datamp);
3672 			} else {
3673 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3674 				    "non-transparent\n", instance);
3675 				mioc2ack(mp, datamp, sizeof (int), 0);
3676 			}
3677 			break;
3678 
3679 		case CONSOPENPOLLEDIO:
3680 			error = miocpullup(mp, sizeof (struct cons_polledio *));
3681 			if (error != 0)
3682 				break;
3683 
3684 			*(struct cons_polledio **)mp->b_cont->b_rptr =
3685 			    &asy->polledio;
3686 
3687 			mp->b_datap->db_type = M_IOCACK;
3688 			break;
3689 
3690 		case CONSCLOSEPOLLEDIO:
3691 			mp->b_datap->db_type = M_IOCACK;
3692 			iocp->ioc_error = 0;
3693 			iocp->ioc_rval = 0;
3694 			break;
3695 
3696 		case CONSSETABORTENABLE:
3697 			error = secpolicy_console(iocp->ioc_cr);
3698 			if (error != 0)
3699 				break;
3700 
3701 			if (iocp->ioc_count != TRANSPARENT) {
3702 				error = EINVAL;
3703 				break;
3704 			}
3705 
3706 			if (*(intptr_t *)mp->b_cont->b_rptr)
3707 				asy->asy_flags |= ASY_CONSOLE;
3708 			else
3709 				asy->asy_flags &= ~ASY_CONSOLE;
3710 
3711 			mp->b_datap->db_type = M_IOCACK;
3712 			iocp->ioc_error = 0;
3713 			iocp->ioc_rval = 0;
3714 			break;
3715 
3716 		case CONSGETABORTENABLE:
3717 			/*CONSTANTCONDITION*/
3718 			ASSERT(sizeof (boolean_t) <= sizeof (boolean_t *));
3719 			/*
3720 			 * Store the return value right in the payload
3721 			 * we were passed.  Crude.
3722 			 */
3723 			mcopyout(mp, NULL, sizeof (boolean_t), NULL, NULL);
3724 			*(boolean_t *)mp->b_cont->b_rptr =
3725 			    (asy->asy_flags & ASY_CONSOLE) != 0;
3726 			break;
3727 
3728 		default:
3729 			/*
3730 			 * If we don't understand it, it's an error.  NAK it.
3731 			 */
3732 			error = EINVAL;
3733 			break;
3734 		}
3735 	}
3736 	if (error != 0) {
3737 		iocp->ioc_error = error;
3738 		mp->b_datap->db_type = M_IOCNAK;
3739 	}
3740 	mutex_exit(&asy->asy_excl);
3741 	qreply(wq, mp);
3742 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl: done\n", instance);
3743 }
3744 
3745 static int
3746 asyrsrv(queue_t *q)
3747 {
3748 	mblk_t *bp;
3749 	struct asyncline *async;
3750 
3751 	async = (struct asyncline *)q->q_ptr;
3752 
3753 	while (canputnext(q) && (bp = getq(q)))
3754 		putnext(q, bp);
3755 	ASYSETSOFT(async->async_common);
3756 	async->async_polltid = 0;
3757 	return (0);
3758 }
3759 
3760 /*
3761  * The ASYWPUTDO_NOT_SUSP macro indicates to asywputdo() whether it should
3762  * handle messages as though the driver is operating normally or is
3763  * suspended.  In the suspended case, some or all of the processing may have
3764  * to be delayed until the driver is resumed.
3765  */
3766 #define	ASYWPUTDO_NOT_SUSP(async, wput) \
3767 	!((wput) && ((async)->async_flags & ASYNC_DDI_SUSPENDED))
3768 
3769 /*
3770  * Processing for write queue put procedure.
3771  * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
3772  * set the flow control character for M_STOPI and M_STARTI messages;
3773  * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
3774  * by the start routine, and then call the start routine; discard
3775  * everything else.  Note that this driver does not incorporate any
3776  * mechanism to negotiate to handle the canonicalization process.
3777  * It expects that these functions are handled in upper module(s),
3778  * as we do in ldterm.
3779  */
3780 static int
3781 asywputdo(queue_t *q, mblk_t *mp, boolean_t wput)
3782 {
3783 	struct asyncline *async;
3784 	struct asycom *asy;
3785 #ifdef DEBUG
3786 	int instance;
3787 #endif
3788 	int error;
3789 
3790 	async = (struct asyncline *)q->q_ptr;
3791 
3792 #ifdef DEBUG
3793 	instance = UNIT(async->async_dev);
3794 #endif
3795 	asy = async->async_common;
3796 
3797 	switch (mp->b_datap->db_type) {
3798 
3799 	case M_STOP:
3800 		/*
3801 		 * Since we don't do real DMA, we can just let the
3802 		 * chip coast to a stop after applying the brakes.
3803 		 */
3804 		mutex_enter(&asy->asy_excl);
3805 		async->async_flags |= ASYNC_STOPPED;
3806 		mutex_exit(&asy->asy_excl);
3807 		freemsg(mp);
3808 		break;
3809 
3810 	case M_START:
3811 		mutex_enter(&asy->asy_excl);
3812 		if (async->async_flags & ASYNC_STOPPED) {
3813 			async->async_flags &= ~ASYNC_STOPPED;
3814 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3815 				/*
3816 				 * If an output operation is in progress,
3817 				 * resume it.  Otherwise, prod the start
3818 				 * routine.
3819 				 */
3820 				if (async->async_ocnt > 0) {
3821 					mutex_enter(&asy->asy_excl_hi);
3822 					async_resume(async);
3823 					mutex_exit(&asy->asy_excl_hi);
3824 				} else {
3825 					async_start(async);
3826 				}
3827 			}
3828 		}
3829 		mutex_exit(&asy->asy_excl);
3830 		freemsg(mp);
3831 		break;
3832 
3833 	case M_IOCTL:
3834 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
3835 
3836 		case TCSBRK:
3837 			error = miocpullup(mp, sizeof (int));
3838 			if (error != 0) {
3839 				miocnak(q, mp, 0, error);
3840 				return (0);
3841 			}
3842 
3843 			if (*(int *)mp->b_cont->b_rptr != 0) {
3844 				DEBUGCONT1(ASY_DEBUG_OUT,
3845 				    "async%d_ioctl: flush request.\n",
3846 				    instance);
3847 				(void) putq(q, mp);
3848 
3849 				mutex_enter(&asy->asy_excl);
3850 				if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3851 					/*
3852 					 * If an TIOCSBRK is in progress,
3853 					 * clean it as TIOCCBRK does,
3854 					 * then kick off output.
3855 					 * If TIOCSBRK is not in progress,
3856 					 * just kick off output.
3857 					 */
3858 					async_resume_utbrk(async);
3859 				}
3860 				mutex_exit(&asy->asy_excl);
3861 				break;
3862 			}
3863 			/*FALLTHROUGH*/
3864 		case TCSETSW:
3865 		case TCSETSF:
3866 		case TCSETAW:
3867 		case TCSETAF:
3868 			/*
3869 			 * The changes do not take effect until all
3870 			 * output queued before them is drained.
3871 			 * Put this message on the queue, so that
3872 			 * "async_start" will see it when it's done
3873 			 * with the output before it.  Poke the
3874 			 * start routine, just in case.
3875 			 */
3876 			(void) putq(q, mp);
3877 
3878 			mutex_enter(&asy->asy_excl);
3879 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3880 				/*
3881 				 * If an TIOCSBRK is in progress,
3882 				 * clean it as TIOCCBRK does.
3883 				 * then kick off output.
3884 				 * If TIOCSBRK is not in progress,
3885 				 * just kick off output.
3886 				 */
3887 				async_resume_utbrk(async);
3888 			}
3889 			mutex_exit(&asy->asy_excl);
3890 			break;
3891 
3892 		default:
3893 			/*
3894 			 * Do it now.
3895 			 */
3896 			mutex_enter(&asy->asy_excl);
3897 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3898 				mutex_exit(&asy->asy_excl);
3899 				async_ioctl(async, q, mp);
3900 				break;
3901 			}
3902 			async_put_suspq(asy, mp);
3903 			mutex_exit(&asy->asy_excl);
3904 			break;
3905 		}
3906 		break;
3907 
3908 	case M_FLUSH:
3909 		if (*mp->b_rptr & FLUSHW) {
3910 			mutex_enter(&asy->asy_excl);
3911 
3912 			/*
3913 			 * Abort any output in progress.
3914 			 */
3915 			mutex_enter(&asy->asy_excl_hi);
3916 			if (async->async_flags & ASYNC_BUSY) {
3917 				DEBUGCONT1(ASY_DEBUG_BUSY, "asy%dwput: "
3918 				    "Clearing async_ocnt, "
3919 				    "leaving ASYNC_BUSY set\n",
3920 				    instance);
3921 				async->async_ocnt = 0;
3922 				async->async_flags &= ~ASYNC_BUSY;
3923 			} /* if */
3924 
3925 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3926 				/* Flush FIFO buffers */
3927 				if (asy->asy_use_fifo == FIFO_ON) {
3928 					asy_reset_fifo(asy, FIFOTXFLSH);
3929 				}
3930 			}
3931 			mutex_exit(&asy->asy_excl_hi);
3932 
3933 			/* Flush FIFO buffers */
3934 			if (asy->asy_use_fifo == FIFO_ON) {
3935 				asy_reset_fifo(asy, FIFOTXFLSH);
3936 			}
3937 
3938 			/*
3939 			 * Flush our write queue.
3940 			 */
3941 			flushq(q, FLUSHDATA);	/* XXX doesn't flush M_DELAY */
3942 			if (async->async_xmitblk != NULL) {
3943 				freeb(async->async_xmitblk);
3944 				async->async_xmitblk = NULL;
3945 			}
3946 			mutex_exit(&asy->asy_excl);
3947 			*mp->b_rptr &= ~FLUSHW;	/* it has been flushed */
3948 		}
3949 		if (*mp->b_rptr & FLUSHR) {
3950 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3951 				/* Flush FIFO buffers */
3952 				if (asy->asy_use_fifo == FIFO_ON) {
3953 					asy_reset_fifo(asy, FIFORXFLSH);
3954 				}
3955 			}
3956 			flushq(RD(q), FLUSHDATA);
3957 			qreply(q, mp);	/* give the read queues a crack at it */
3958 		} else {
3959 			freemsg(mp);
3960 		}
3961 
3962 		/*
3963 		 * We must make sure we process messages that survive the
3964 		 * write-side flush.
3965 		 */
3966 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3967 			mutex_enter(&asy->asy_excl);
3968 			async_start(async);
3969 			mutex_exit(&asy->asy_excl);
3970 		}
3971 		break;
3972 
3973 	case M_BREAK:
3974 	case M_DELAY:
3975 	case M_DATA:
3976 		/*
3977 		 * Queue the message up to be transmitted,
3978 		 * and poke the start routine.
3979 		 */
3980 		(void) putq(q, mp);
3981 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3982 			mutex_enter(&asy->asy_excl);
3983 			async_start(async);
3984 			mutex_exit(&asy->asy_excl);
3985 		}
3986 		break;
3987 
3988 	case M_STOPI:
3989 		mutex_enter(&asy->asy_excl);
3990 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3991 			mutex_enter(&asy->asy_excl_hi);
3992 			if (!(async->async_inflow_source & IN_FLOW_USER)) {
3993 				async_flowcontrol_hw_input(asy, FLOW_STOP,
3994 				    IN_FLOW_USER);
3995 				(void) async_flowcontrol_sw_input(asy,
3996 				    FLOW_STOP, IN_FLOW_USER);
3997 			}
3998 			mutex_exit(&asy->asy_excl_hi);
3999 			mutex_exit(&asy->asy_excl);
4000 			freemsg(mp);
4001 			break;
4002 		}
4003 		async_put_suspq(asy, mp);
4004 		mutex_exit(&asy->asy_excl);
4005 		break;
4006 
4007 	case M_STARTI:
4008 		mutex_enter(&asy->asy_excl);
4009 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4010 			mutex_enter(&asy->asy_excl_hi);
4011 			if (async->async_inflow_source & IN_FLOW_USER) {
4012 				async_flowcontrol_hw_input(asy, FLOW_START,
4013 				    IN_FLOW_USER);
4014 				(void) async_flowcontrol_sw_input(asy,
4015 				    FLOW_START, IN_FLOW_USER);
4016 			}
4017 			mutex_exit(&asy->asy_excl_hi);
4018 			mutex_exit(&asy->asy_excl);
4019 			freemsg(mp);
4020 			break;
4021 		}
4022 		async_put_suspq(asy, mp);
4023 		mutex_exit(&asy->asy_excl);
4024 		break;
4025 
4026 	case M_CTL:
4027 		if (MBLKL(mp) >= sizeof (struct iocblk) &&
4028 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
4029 			mutex_enter(&asy->asy_excl);
4030 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4031 				((struct iocblk *)mp->b_rptr)->ioc_cmd =
4032 				    MC_HAS_POSIX;
4033 				mutex_exit(&asy->asy_excl);
4034 				qreply(q, mp);
4035 				break;
4036 			} else {
4037 				async_put_suspq(asy, mp);
4038 			}
4039 		} else {
4040 			/*
4041 			 * These MC_SERVICE type messages are used by upper
4042 			 * modules to tell this driver to send input up
4043 			 * immediately, or that it can wait for normal
4044 			 * processing that may or may not be done.  Sun
4045 			 * requires these for the mouse module.
4046 			 * (XXX - for x86?)
4047 			 */
4048 			mutex_enter(&asy->asy_excl);
4049 			switch (*mp->b_rptr) {
4050 
4051 			case MC_SERVICEIMM:
4052 				async->async_flags |= ASYNC_SERVICEIMM;
4053 				break;
4054 
4055 			case MC_SERVICEDEF:
4056 				async->async_flags &= ~ASYNC_SERVICEIMM;
4057 				break;
4058 			}
4059 			mutex_exit(&asy->asy_excl);
4060 			freemsg(mp);
4061 		}
4062 		break;
4063 
4064 	case M_IOCDATA:
4065 		mutex_enter(&asy->asy_excl);
4066 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4067 			mutex_exit(&asy->asy_excl);
4068 			async_iocdata(q, mp);
4069 			break;
4070 		}
4071 		async_put_suspq(asy, mp);
4072 		mutex_exit(&asy->asy_excl);
4073 		break;
4074 
4075 	default:
4076 		freemsg(mp);
4077 		break;
4078 	}
4079 	return (0);
4080 }
4081 
4082 static int
4083 asywput(queue_t *q, mblk_t *mp)
4084 {
4085 	return (asywputdo(q, mp, B_TRUE));
4086 }
4087 
4088 /*
4089  * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
4090  * the buffer we need.
4091  */
4092 static void
4093 async_reioctl(void *unit)
4094 {
4095 	int instance = (uintptr_t)unit;
4096 	struct asyncline *async;
4097 	struct asycom *asy;
4098 	queue_t	*q;
4099 	mblk_t	*mp;
4100 
4101 	asy = ddi_get_soft_state(asy_soft_state, instance);
4102 	ASSERT(asy != NULL);
4103 	async = asy->asy_priv;
4104 
4105 	/*
4106 	 * The bufcall is no longer pending.
4107 	 */
4108 	mutex_enter(&asy->asy_excl);
4109 	async->async_wbufcid = 0;
4110 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
4111 		mutex_exit(&asy->asy_excl);
4112 		return;
4113 	}
4114 	if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
4115 		/* not pending any more */
4116 		async->async_ttycommon.t_iocpending = NULL;
4117 		mutex_exit(&asy->asy_excl);
4118 		async_ioctl(async, q, mp);
4119 	} else
4120 		mutex_exit(&asy->asy_excl);
4121 }
4122 
4123 static void
4124 async_iocdata(queue_t *q, mblk_t *mp)
4125 {
4126 	struct asyncline	*async = (struct asyncline *)q->q_ptr;
4127 	struct asycom		*asy;
4128 	struct iocblk *ip;
4129 	struct copyresp *csp;
4130 #ifdef DEBUG
4131 	int instance = UNIT(async->async_dev);
4132 #endif
4133 
4134 	asy = async->async_common;
4135 	ip = (struct iocblk *)mp->b_rptr;
4136 	csp = (struct copyresp *)mp->b_rptr;
4137 
4138 	if (csp->cp_rval != 0) {
4139 		if (csp->cp_private)
4140 			freemsg(csp->cp_private);
4141 		freemsg(mp);
4142 		return;
4143 	}
4144 
4145 	mutex_enter(&asy->asy_excl);
4146 	DEBUGCONT2(ASY_DEBUG_MODEM, "async%d_iocdata: case %s\n",
4147 	    instance,
4148 	    csp->cp_cmd == TIOCMGET ? "TIOCMGET" :
4149 	    csp->cp_cmd == TIOCMSET ? "TIOCMSET" :
4150 	    csp->cp_cmd == TIOCMBIS ? "TIOCMBIS" :
4151 	    "TIOCMBIC");
4152 	switch (csp->cp_cmd) {
4153 
4154 	case TIOCMGET:
4155 		if (mp->b_cont) {
4156 			freemsg(mp->b_cont);
4157 			mp->b_cont = NULL;
4158 		}
4159 		mp->b_datap->db_type = M_IOCACK;
4160 		ip->ioc_error = 0;
4161 		ip->ioc_count = 0;
4162 		ip->ioc_rval = 0;
4163 		mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
4164 		break;
4165 
4166 	case TIOCMSET:
4167 	case TIOCMBIS:
4168 	case TIOCMBIC:
4169 		mutex_enter(&asy->asy_excl_hi);
4170 		(void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr),
4171 		    csp->cp_cmd);
4172 		mutex_exit(&asy->asy_excl_hi);
4173 		mioc2ack(mp, NULL, 0, 0);
4174 		break;
4175 
4176 	default:
4177 		mp->b_datap->db_type = M_IOCNAK;
4178 		ip->ioc_error = EINVAL;
4179 		break;
4180 	}
4181 	qreply(q, mp);
4182 	mutex_exit(&asy->asy_excl);
4183 }
4184 
4185 /*
4186  * debugger/console support routines.
4187  */
4188 
4189 /*
4190  * put a character out
4191  * Do not use interrupts.  If char is LF, put out CR, LF.
4192  */
4193 static void
4194 asyputchar(cons_polledio_arg_t arg, uchar_t c)
4195 {
4196 	struct asycom *asy = (struct asycom *)arg;
4197 
4198 	if (c == '\n')
4199 		asyputchar(arg, '\r');
4200 
4201 	while ((ddi_get8(asy->asy_iohandle,
4202 	    asy->asy_ioaddr + LSR) & XHRE) == 0) {
4203 		/* wait for xmit to finish */
4204 		drv_usecwait(10);
4205 	}
4206 
4207 	/* put the character out */
4208 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, c);
4209 }
4210 
4211 /*
4212  * See if there's a character available. If no character is
4213  * available, return 0. Run in polled mode, no interrupts.
4214  */
4215 static boolean_t
4216 asyischar(cons_polledio_arg_t arg)
4217 {
4218 	struct asycom *asy = (struct asycom *)arg;
4219 
4220 	return ((ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & RCA)
4221 	    != 0);
4222 }
4223 
4224 /*
4225  * Get a character. Run in polled mode, no interrupts.
4226  */
4227 static int
4228 asygetchar(cons_polledio_arg_t arg)
4229 {
4230 	struct asycom *asy = (struct asycom *)arg;
4231 
4232 	while (!asyischar(arg))
4233 		drv_usecwait(10);
4234 	return (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT));
4235 }
4236 
4237 /*
4238  * Set or get the modem control status.
4239  */
4240 static int
4241 asymctl(struct asycom *asy, int bits, int how)
4242 {
4243 	int mcr_r, msr_r;
4244 	int instance = asy->asy_unit;
4245 
4246 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4247 	ASSERT(mutex_owned(&asy->asy_excl));
4248 
4249 	/* Read Modem Control Registers */
4250 	mcr_r = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
4251 
4252 	switch (how) {
4253 
4254 	case TIOCMSET:
4255 		DEBUGCONT2(ASY_DEBUG_MODEM,
4256 		    "asy%dmctl: TIOCMSET, bits = %x\n", instance, bits);
4257 		mcr_r = bits;		/* Set bits	*/
4258 		break;
4259 
4260 	case TIOCMBIS:
4261 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIS, bits = %x\n",
4262 		    instance, bits);
4263 		mcr_r |= bits;		/* Mask in bits	*/
4264 		break;
4265 
4266 	case TIOCMBIC:
4267 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIC, bits = %x\n",
4268 		    instance, bits);
4269 		mcr_r &= ~bits;		/* Mask out bits */
4270 		break;
4271 
4272 	case TIOCMGET:
4273 		/* Read Modem Status Registers */
4274 		/*
4275 		 * If modem interrupts are enabled, we return the
4276 		 * saved value of msr. We read MSR only in async_msint()
4277 		 */
4278 		if (ddi_get8(asy->asy_iohandle,
4279 		    asy->asy_ioaddr + ICR) & MIEN) {
4280 			msr_r = asy->asy_msr;
4281 			DEBUGCONT2(ASY_DEBUG_MODEM,
4282 			    "asy%dmctl: TIOCMGET, read msr_r = %x\n",
4283 			    instance, msr_r);
4284 		} else {
4285 			msr_r = ddi_get8(asy->asy_iohandle,
4286 			    asy->asy_ioaddr + MSR);
4287 			DEBUGCONT2(ASY_DEBUG_MODEM,
4288 			    "asy%dmctl: TIOCMGET, read MSR = %x\n",
4289 			    instance, msr_r);
4290 		}
4291 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dtodm: modem_lines = %x\n",
4292 		    instance, asytodm(mcr_r, msr_r));
4293 		return (asytodm(mcr_r, msr_r));
4294 	}
4295 
4296 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr_r);
4297 
4298 	return (mcr_r);
4299 }
4300 
4301 static int
4302 asytodm(int mcr_r, int msr_r)
4303 {
4304 	int b = 0;
4305 
4306 	/* MCR registers */
4307 	if (mcr_r & RTS)
4308 		b |= TIOCM_RTS;
4309 
4310 	if (mcr_r & DTR)
4311 		b |= TIOCM_DTR;
4312 
4313 	/* MSR registers */
4314 	if (msr_r & DCD)
4315 		b |= TIOCM_CAR;
4316 
4317 	if (msr_r & CTS)
4318 		b |= TIOCM_CTS;
4319 
4320 	if (msr_r & DSR)
4321 		b |= TIOCM_DSR;
4322 
4323 	if (msr_r & RI)
4324 		b |= TIOCM_RNG;
4325 	return (b);
4326 }
4327 
4328 static int
4329 dmtoasy(int bits)
4330 {
4331 	int b = 0;
4332 
4333 	DEBUGCONT1(ASY_DEBUG_MODEM, "dmtoasy: bits = %x\n", bits);
4334 #ifdef	CAN_NOT_SET	/* only DTR and RTS can be set */
4335 	if (bits & TIOCM_CAR)
4336 		b |= DCD;
4337 	if (bits & TIOCM_CTS)
4338 		b |= CTS;
4339 	if (bits & TIOCM_DSR)
4340 		b |= DSR;
4341 	if (bits & TIOCM_RNG)
4342 		b |= RI;
4343 #endif
4344 
4345 	if (bits & TIOCM_RTS) {
4346 		DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & RTS\n");
4347 		b |= RTS;
4348 	}
4349 	if (bits & TIOCM_DTR) {
4350 		DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & DTR\n");
4351 		b |= DTR;
4352 	}
4353 
4354 	return (b);
4355 }
4356 
4357 static void
4358 asyerror(int level, const char *fmt, ...)
4359 {
4360 	va_list adx;
4361 	static	time_t	last;
4362 	static	const char *lastfmt;
4363 	time_t	now;
4364 
4365 	/*
4366 	 * Don't print the same error message too often.
4367 	 * Print the message only if we have not printed the
4368 	 * message within the last second.
4369 	 * Note: that fmt cannot be a pointer to a string
4370 	 * stored on the stack. The fmt pointer
4371 	 * must be in the data segment otherwise lastfmt would point
4372 	 * to non-sense.
4373 	 */
4374 	now = gethrestime_sec();
4375 	if (last == now && lastfmt == fmt)
4376 		return;
4377 
4378 	last = now;
4379 	lastfmt = fmt;
4380 
4381 	va_start(adx, fmt);
4382 	vcmn_err(level, fmt, adx);
4383 	va_end(adx);
4384 }
4385 
4386 /*
4387  * asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4388  * The value of this property is in the form of "9600,8,n,1,-"
4389  * 1) speed: 9600, 4800, ...
4390  * 2) data bits
4391  * 3) parity: n(none), e(even), o(odd)
4392  * 4) stop bits
4393  * 5) handshake: -(none), h(hardware: rts/cts), s(software: xon/off)
4394  *
4395  * This parsing came from a SPARCstation eeprom.
4396  */
4397 static void
4398 asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4399 {
4400 	char		name[40];
4401 	char		val[40];
4402 	int		len;
4403 	int		ret;
4404 	char		*p;
4405 	char		*p1;
4406 
4407 	ASSERT(asy->asy_com_port != 0);
4408 
4409 	/*
4410 	 * Parse the ttyx-mode property
4411 	 */
4412 	(void) sprintf(name, "tty%c-mode", asy->asy_com_port + 'a' - 1);
4413 	len = sizeof (val);
4414 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
4415 	if (ret != DDI_PROP_SUCCESS) {
4416 		(void) sprintf(name, "com%c-mode", asy->asy_com_port + '0');
4417 		len = sizeof (val);
4418 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
4419 	}
4420 
4421 	/* no property to parse */
4422 	asy->asy_cflag = 0;
4423 	if (ret != DDI_PROP_SUCCESS)
4424 		return;
4425 
4426 	p = val;
4427 	/* ---- baud rate ---- */
4428 	asy->asy_cflag = CREAD|B9600;		/* initial default */
4429 	if (p && (p1 = strchr(p, ',')) != 0) {
4430 		*p1++ = '\0';
4431 	} else {
4432 		asy->asy_cflag |= BITS8;	/* add default bits */
4433 		return;
4434 	}
4435 
4436 	if (strcmp(p, "110") == 0)
4437 		asy->asy_bidx = B110;
4438 	else if (strcmp(p, "150") == 0)
4439 		asy->asy_bidx = B150;
4440 	else if (strcmp(p, "300") == 0)
4441 		asy->asy_bidx = B300;
4442 	else if (strcmp(p, "600") == 0)
4443 		asy->asy_bidx = B600;
4444 	else if (strcmp(p, "1200") == 0)
4445 		asy->asy_bidx = B1200;
4446 	else if (strcmp(p, "2400") == 0)
4447 		asy->asy_bidx = B2400;
4448 	else if (strcmp(p, "4800") == 0)
4449 		asy->asy_bidx = B4800;
4450 	else if (strcmp(p, "9600") == 0)
4451 		asy->asy_bidx = B9600;
4452 	else if (strcmp(p, "19200") == 0)
4453 		asy->asy_bidx = B19200;
4454 	else if (strcmp(p, "38400") == 0)
4455 		asy->asy_bidx = B38400;
4456 	else if (strcmp(p, "57600") == 0)
4457 		asy->asy_bidx = B57600;
4458 	else if (strcmp(p, "115200") == 0)
4459 		asy->asy_bidx = B115200;
4460 	else
4461 		asy->asy_bidx = B9600;
4462 
4463 	asy->asy_cflag &= ~CBAUD;
4464 	if (asy->asy_bidx > CBAUD) {	/* > 38400 uses the CBAUDEXT bit */
4465 		asy->asy_cflag |= CBAUDEXT;
4466 		asy->asy_cflag |= asy->asy_bidx - CBAUD - 1;
4467 	} else {
4468 		asy->asy_cflag |= asy->asy_bidx;
4469 	}
4470 
4471 	ASSERT(asy->asy_bidx == BAUDINDEX(asy->asy_cflag));
4472 
4473 	/* ---- Next item is data bits ---- */
4474 	p = p1;
4475 	if (p && (p1 = strchr(p, ',')) != 0)  {
4476 		*p1++ = '\0';
4477 	} else {
4478 		asy->asy_cflag |= BITS8;	/* add default bits */
4479 		return;
4480 	}
4481 	switch (*p) {
4482 		default:
4483 		case '8':
4484 			asy->asy_cflag |= CS8;
4485 			asy->asy_lcr = BITS8;
4486 			break;
4487 		case '7':
4488 			asy->asy_cflag |= CS7;
4489 			asy->asy_lcr = BITS7;
4490 			break;
4491 		case '6':
4492 			asy->asy_cflag |= CS6;
4493 			asy->asy_lcr = BITS6;
4494 			break;
4495 		case '5':
4496 			/* LINTED: CS5 is currently zero (but might change) */
4497 			asy->asy_cflag |= CS5;
4498 			asy->asy_lcr = BITS5;
4499 			break;
4500 	}
4501 
4502 	/* ---- Parity info ---- */
4503 	p = p1;
4504 	if (p && (p1 = strchr(p, ',')) != 0)  {
4505 		*p1++ = '\0';
4506 	} else {
4507 		return;
4508 	}
4509 	switch (*p)  {
4510 		default:
4511 		case 'n':
4512 			break;
4513 		case 'e':
4514 			asy->asy_cflag |= PARENB;
4515 			asy->asy_lcr |= PEN; break;
4516 		case 'o':
4517 			asy->asy_cflag |= PARENB|PARODD;
4518 			asy->asy_lcr |= PEN|EPS;
4519 			break;
4520 	}
4521 
4522 	/* ---- Find stop bits ---- */
4523 	p = p1;
4524 	if (p && (p1 = strchr(p, ',')) != 0)  {
4525 		*p1++ = '\0';
4526 	} else {
4527 		return;
4528 	}
4529 	if (*p == '2') {
4530 		asy->asy_cflag |= CSTOPB;
4531 		asy->asy_lcr |= STB;
4532 	}
4533 
4534 	/* ---- handshake is next ---- */
4535 	p = p1;
4536 	if (p) {
4537 		if ((p1 = strchr(p, ',')) != 0)
4538 			*p1++ = '\0';
4539 
4540 		if (*p == 'h')
4541 			asy->asy_cflag |= CRTSCTS;
4542 		else if (*p == 's')
4543 			asy->asy_cflag |= CRTSXOFF;
4544 	}
4545 }
4546 
4547 /*
4548  * Check for abort character sequence
4549  */
4550 static boolean_t
4551 abort_charseq_recognize(uchar_t ch)
4552 {
4553 	static int state = 0;
4554 #define	CNTRL(c) ((c)&037)
4555 	static char sequence[] = { '\r', '~', CNTRL('b') };
4556 
4557 	if (ch == sequence[state]) {
4558 		if (++state >= sizeof (sequence)) {
4559 			state = 0;
4560 			return (B_TRUE);
4561 		}
4562 	} else {
4563 		state = (ch == sequence[0]) ? 1 : 0;
4564 	}
4565 	return (B_FALSE);
4566 }
4567 
4568 /*
4569  * Flow control functions
4570  */
4571 /*
4572  * Software input flow control
4573  * This function can execute software input flow control sucessfully
4574  * at most of situations except that the line is in BREAK status
4575  * (timed and untimed break).
4576  * INPUT VALUE of onoff:
4577  *               FLOW_START means to send out a XON char
4578  *                          and clear SW input flow control flag.
4579  *               FLOW_STOP means to send out a XOFF char
4580  *                          and set SW input flow control flag.
4581  *               FLOW_CHECK means to check whether there is pending XON/XOFF
4582  *                          if it is true, send it out.
4583  * INPUT VALUE of type:
4584  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
4585  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
4586  *		 IN_FLOW_USER means flow control is due to user's commands
4587  * RETURN VALUE: B_FALSE means no flow control char is sent
4588  *               B_TRUE means one flow control char is sent
4589  */
4590 static boolean_t
4591 async_flowcontrol_sw_input(struct asycom *asy, async_flowc_action onoff,
4592     int type)
4593 {
4594 	struct asyncline *async = asy->asy_priv;
4595 	int instance = UNIT(async->async_dev);
4596 	int rval = B_FALSE;
4597 
4598 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4599 
4600 	if (!(async->async_ttycommon.t_iflag & IXOFF))
4601 		return (rval);
4602 
4603 	/*
4604 	 * If we get this far, then we know IXOFF is set.
4605 	 */
4606 	switch (onoff) {
4607 	case FLOW_STOP:
4608 		async->async_inflow_source |= type;
4609 
4610 		/*
4611 		 * We'll send an XOFF character for each of up to
4612 		 * three different input flow control attempts to stop input.
4613 		 * If we already send out one XOFF, but FLOW_STOP comes again,
4614 		 * it seems that input flow control becomes more serious,
4615 		 * then send XOFF again.
4616 		 */
4617 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
4618 		    IN_FLOW_STREAMS | IN_FLOW_USER))
4619 			async->async_flags |= ASYNC_SW_IN_FLOW |
4620 			    ASYNC_SW_IN_NEEDED;
4621 		DEBUGCONT2(ASY_DEBUG_SFLOW, "async%d: input sflow stop, "
4622 		    "type = %x\n", instance, async->async_inflow_source);
4623 		break;
4624 	case FLOW_START:
4625 		async->async_inflow_source &= ~type;
4626 		if (async->async_inflow_source == 0) {
4627 			async->async_flags = (async->async_flags &
4628 			    ~ASYNC_SW_IN_FLOW) | ASYNC_SW_IN_NEEDED;
4629 			DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: "
4630 			    "input sflow start\n", instance);
4631 		}
4632 		break;
4633 	default:
4634 		break;
4635 	}
4636 
4637 	if (((async->async_flags & (ASYNC_SW_IN_NEEDED | ASYNC_BREAK |
4638 	    ASYNC_OUT_SUSPEND)) == ASYNC_SW_IN_NEEDED) &&
4639 	    (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE)) {
4640 		/*
4641 		 * If we get this far, then we know we need to send out
4642 		 * XON or XOFF char.
4643 		 */
4644 		async->async_flags = (async->async_flags &
4645 		    ~ASYNC_SW_IN_NEEDED) | ASYNC_BUSY;
4646 		ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
4647 		    async->async_flags & ASYNC_SW_IN_FLOW ?
4648 		    async->async_stopc : async->async_startc);
4649 		rval = B_TRUE;
4650 	}
4651 	return (rval);
4652 }
4653 
4654 /*
4655  * Software output flow control
4656  * This function can be executed sucessfully at any situation.
4657  * It does not handle HW, and just change the SW output flow control flag.
4658  * INPUT VALUE of onoff:
4659  *                 FLOW_START means to clear SW output flow control flag,
4660  *			also combine with HW output flow control status to
4661  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
4662  *                 FLOW_STOP means to set SW output flow control flag,
4663  *			also clear ASYNC_OUT_FLW_RESUME.
4664  */
4665 static void
4666 async_flowcontrol_sw_output(struct asycom *asy, async_flowc_action onoff)
4667 {
4668 	struct asyncline *async = asy->asy_priv;
4669 	int instance = UNIT(async->async_dev);
4670 
4671 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4672 
4673 	if (!(async->async_ttycommon.t_iflag & IXON))
4674 		return;
4675 
4676 	switch (onoff) {
4677 	case FLOW_STOP:
4678 		async->async_flags |= ASYNC_SW_OUT_FLW;
4679 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
4680 		DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow stop\n",
4681 		    instance);
4682 		break;
4683 	case FLOW_START:
4684 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
4685 		if (!(async->async_flags & ASYNC_HW_OUT_FLW))
4686 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
4687 		DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow start\n",
4688 		    instance);
4689 		break;
4690 	default:
4691 		break;
4692 	}
4693 }
4694 
4695 /*
4696  * Hardware input flow control
4697  * This function can be executed sucessfully at any situation.
4698  * It directly changes RTS depending on input parameter onoff.
4699  * INPUT VALUE of onoff:
4700  *       FLOW_START means to clear HW input flow control flag,
4701  *                  and pull up RTS if it is low.
4702  *       FLOW_STOP means to set HW input flow control flag,
4703  *                  and low RTS if it is high.
4704  * INPUT VALUE of type:
4705  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
4706  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
4707  *		 IN_FLOW_USER means flow control is due to user's commands
4708  */
4709 static void
4710 async_flowcontrol_hw_input(struct asycom *asy, async_flowc_action onoff,
4711     int type)
4712 {
4713 	uchar_t	mcr;
4714 	uchar_t	flag;
4715 	struct asyncline *async = asy->asy_priv;
4716 	int instance = UNIT(async->async_dev);
4717 
4718 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4719 
4720 	if (!(async->async_ttycommon.t_cflag & CRTSXOFF))
4721 		return;
4722 
4723 	switch (onoff) {
4724 	case FLOW_STOP:
4725 		async->async_inflow_source |= type;
4726 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
4727 		    IN_FLOW_STREAMS | IN_FLOW_USER))
4728 			async->async_flags |= ASYNC_HW_IN_FLOW;
4729 		DEBUGCONT2(ASY_DEBUG_HFLOW, "async%d: input hflow stop, "
4730 		    "type = %x\n", instance, async->async_inflow_source);
4731 		break;
4732 	case FLOW_START:
4733 		async->async_inflow_source &= ~type;
4734 		if (async->async_inflow_source == 0) {
4735 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
4736 			DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: "
4737 			    "input hflow start\n", instance);
4738 		}
4739 		break;
4740 	default:
4741 		break;
4742 	}
4743 	mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
4744 	flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
4745 
4746 	if (((mcr ^ flag) & RTS) != 0) {
4747 		ddi_put8(asy->asy_iohandle,
4748 		    asy->asy_ioaddr + MCR, (mcr ^ RTS));
4749 	}
4750 }
4751 
4752 /*
4753  * Hardware output flow control
4754  * This function can execute HW output flow control sucessfully
4755  * at any situation.
4756  * It doesn't really change RTS, and just change
4757  * HW output flow control flag depending on CTS status.
4758  * INPUT VALUE of onoff:
4759  *                FLOW_START means to clear HW output flow control flag.
4760  *			also combine with SW output flow control status to
4761  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
4762  *                FLOW_STOP means to set HW output flow control flag.
4763  *			also clear ASYNC_OUT_FLW_RESUME.
4764  */
4765 static void
4766 async_flowcontrol_hw_output(struct asycom *asy, async_flowc_action onoff)
4767 {
4768 	struct asyncline *async = asy->asy_priv;
4769 	int instance = UNIT(async->async_dev);
4770 
4771 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4772 
4773 	if (!(async->async_ttycommon.t_cflag & CRTSCTS))
4774 		return;
4775 
4776 	switch (onoff) {
4777 	case FLOW_STOP:
4778 		async->async_flags |= ASYNC_HW_OUT_FLW;
4779 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
4780 		DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow stop\n",
4781 		    instance);
4782 		break;
4783 	case FLOW_START:
4784 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
4785 		if (!(async->async_flags & ASYNC_SW_OUT_FLW))
4786 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
4787 		DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow start\n",
4788 		    instance);
4789 		break;
4790 	default:
4791 		break;
4792 	}
4793 }
4794 
4795 
4796 /*
4797  * quiesce(9E) entry point.
4798  *
4799  * This function is called when the system is single-threaded at high
4800  * PIL with preemption disabled. Therefore, this function must not be
4801  * blocked.
4802  *
4803  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
4804  * DDI_FAILURE indicates an error condition and should almost never happen.
4805  */
4806 static int
4807 asyquiesce(dev_info_t *devi)
4808 {
4809 	int instance;
4810 	struct asycom *asy;
4811 
4812 	instance = ddi_get_instance(devi);	/* find out which unit */
4813 
4814 	asy = ddi_get_soft_state(asy_soft_state, instance);
4815 	if (asy == NULL)
4816 		return (DDI_FAILURE);
4817 
4818 	/* disable all interrupts */
4819 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
4820 
4821 	/* reset the FIFO */
4822 	asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
4823 
4824 	return (DDI_SUCCESS);
4825 }
4826