xref: /titanic_50/usr/src/uts/common/io/asy.c (revision 8eea8e29cc4374d1ee24c25a07f45af132db3499)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
23 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
24 /*	  All Rights Reserved					*/
25 
26 /*
27  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
28  * Use is subject to license terms.
29  */
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 /*
34  * Serial I/O driver for 8250/16450/16550A/16650/16750 chips.
35  */
36 
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/signal.h>
40 #include <sys/stream.h>
41 #include <sys/termio.h>
42 #include <sys/errno.h>
43 #include <sys/file.h>
44 #include <sys/cmn_err.h>
45 #include <sys/stropts.h>
46 #include <sys/strsubr.h>
47 #include <sys/strtty.h>
48 #include <sys/debug.h>
49 #include <sys/kbio.h>
50 #include <sys/cred.h>
51 #include <sys/stat.h>
52 #include <sys/consdev.h>
53 #include <sys/mkdev.h>
54 #include <sys/kmem.h>
55 #include <sys/cred.h>
56 #include <sys/strsun.h>
57 #ifdef DEBUG
58 #include <sys/promif.h>
59 #endif
60 #include <sys/modctl.h>
61 #include <sys/ddi.h>
62 #include <sys/sunddi.h>
63 #include <sys/asy.h>
64 #include <sys/policy.h>
65 
66 /*
67  * set the RX FIFO trigger_level to half the RX FIFO size for now
68  * we may want to make this configurable later.
69  */
70 static	int asy_trig_level = FIFO_TRIG_8;
71 
72 int asy_drain_check = 15000000;		/* tunable: exit drain check time */
73 int asy_min_dtr_low = 500000;		/* tunable: minimum DTR down time */
74 int asy_min_utbrk = 100000;		/* tunable: minumum untimed brk time */
75 
76 int asymaxchip = ASY16750;	/* tunable: limit chip support we look for */
77 
78 /*
79  * Just in case someone has a chip with broken loopback mode, we provide a
80  * means to disable the loopback test. By default, we only loopback test
81  * UARTs which look like they have FIFOs bigger than 16 bytes.
82  * Set to 0 to suppress test, or to 2 to enable test on any size FIFO.
83  */
84 int asy_fifo_test = 1;		/* tunable: set to 0, 1, or 2 */
85 
86 /*
87  * Allow ability to switch off testing of the scratch register.
88  * Some UART emulators might not have it. This will also disable the test
89  * for Exar/Startech ST16C650, as that requires use of the SCR register.
90  */
91 int asy_scr_test = 1;		/* tunable: set to 0 to disable SCR reg test */
92 
93 /*
94  * As we don't yet support on-chip flow control, it's a bad idea to put a
95  * large number of characters in the TX FIFO, since if other end tells us
96  * to stop transmitting, we can only stop filling the TX FIFO, but it will
97  * still carry on draining by itself, so remote end still gets what's left
98  * in the FIFO.
99  */
100 int asy_max_tx_fifo = 16;	/* tunable: max fill of TX FIFO */
101 
102 #define	async_stopc	async_ttycommon.t_stopc
103 #define	async_startc	async_ttycommon.t_startc
104 
105 #define	ASY_INIT	1
106 #define	ASY_NOINIT	0
107 
108 /* enum value for sw and hw flow control action */
109 typedef enum {
110 	FLOW_CHECK,
111 	FLOW_STOP,
112 	FLOW_START
113 } async_flowc_action;
114 
115 #ifdef DEBUG
116 #define	ASY_DEBUG_INIT	0x0001	/* Output msgs during driver initialization. */
117 #define	ASY_DEBUG_INPUT	0x0002	/* Report characters received during int. */
118 #define	ASY_DEBUG_EOT	0x0004	/* Output msgs when wait for xmit to finish. */
119 #define	ASY_DEBUG_CLOSE	0x0008	/* Output msgs when driver open/close called */
120 #define	ASY_DEBUG_HFLOW	0x0010	/* Output msgs when H/W flowcontrol is active */
121 #define	ASY_DEBUG_PROCS	0x0020	/* Output each proc name as it is entered. */
122 #define	ASY_DEBUG_STATE	0x0040	/* Output value of Interrupt Service Reg. */
123 #define	ASY_DEBUG_INTR	0x0080	/* Output value of Interrupt Service Reg. */
124 #define	ASY_DEBUG_OUT	0x0100	/* Output msgs about output events. */
125 #define	ASY_DEBUG_BUSY	0x0200	/* Output msgs when xmit is enabled/disabled */
126 #define	ASY_DEBUG_MODEM	0x0400	/* Output msgs about modem status & control. */
127 #define	ASY_DEBUG_MODM2	0x0800	/* Output msgs about modem status & control. */
128 #define	ASY_DEBUG_IOCTL	0x1000	/* Output msgs about ioctl messages. */
129 #define	ASY_DEBUG_CHIP	0x2000	/* Output msgs about chip identification. */
130 #define	ASY_DEBUG_SFLOW	0x4000	/* Output msgs when S/W flowcontrol is active */
131 #define	ASY_DEBUG(x) (debug & (x))
132 static	int debug  = 0;
133 #else
134 #define	ASY_DEBUG(x) B_FALSE
135 #endif
136 
137 /* pnpISA compressed device ids */
138 #define	pnpMTS0219 0xb6930219	/* Multitech MT5634ZTX modem */
139 
140 /*
141  * PPS (Pulse Per Second) support.
142  */
143 void ddi_hardpps();
144 /*
145  * This is protected by the asy_excl_hi of the port on which PPS event
146  * handling is enabled.  Note that only one port should have this enabled at
147  * any one time.  Enabling PPS handling on multiple ports will result in
148  * unpredictable (but benign) results.
149  */
150 static struct ppsclockev asy_ppsev;
151 
152 #ifdef PPSCLOCKLED
153 /* XXX Use these to observe PPS latencies and jitter on a scope */
154 #define	LED_ON
155 #define	LED_OFF
156 #else
157 #define	LED_ON
158 #define	LED_OFF
159 #endif
160 
161 static	int max_asy_instance = -1;
162 
163 static	uint_t	asysoftintr(caddr_t intarg);
164 static	uint_t	asyintr(caddr_t argasy);
165 
166 static boolean_t abort_charseq_recognize(uchar_t ch);
167 
168 /* The async interrupt entry points */
169 static void	async_txint(struct asycom *asy);
170 static void	async_rxint(struct asycom *asy, uchar_t lsr);
171 static void	async_msint(struct asycom *asy);
172 static void	async_softint(struct asycom *asy);
173 
174 static void	async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp);
175 static void	async_reioctl(void *unit);
176 static void	async_iocdata(queue_t *q, mblk_t *mp);
177 static void	async_restart(void *arg);
178 static void	async_start(struct asyncline *async);
179 static void	async_nstart(struct asyncline *async, int mode);
180 static void	async_resume(struct asyncline *async);
181 static void	asy_program(struct asycom *asy, int mode);
182 static void	asyinit(struct asycom *asy);
183 static void	asy_waiteot(struct asycom *asy);
184 static void	asyputchar(struct cons_polledio_arg *, uchar_t c);
185 static int	asygetchar(struct cons_polledio_arg *);
186 static boolean_t	asyischar(struct cons_polledio_arg *);
187 
188 static int	asymctl(struct asycom *, int, int);
189 static int	asytodm(int, int);
190 static int	dmtoasy(int);
191 /*PRINTFLIKE2*/
192 static void	asyerror(int level, const char *fmt, ...) __KPRINTFLIKE(2);
193 static void	asy_parse_mode(dev_info_t *devi, struct asycom *asy);
194 static void	asy_soft_state_free(struct asycom *);
195 static char	*asy_hw_name(struct asycom *asy);
196 static void	async_hold_utbrk(void *arg);
197 static void	async_resume_utbrk(struct asyncline *async);
198 static void	async_dtr_free(struct asyncline *async);
199 static int	asy_identify_chip(dev_info_t *devi, struct asycom *asy);
200 static void	asy_reset_fifo(struct asycom *asy, uchar_t flags);
201 static int	asy_getproperty(dev_info_t *devi, struct asycom *asy,
202 		    const char *property);
203 static boolean_t	async_flowcontrol_sw_input(struct asycom *asy,
204 			    async_flowc_action onoff, int type);
205 static void	async_flowcontrol_sw_output(struct asycom *asy,
206 		    async_flowc_action onoff);
207 static void	async_flowcontrol_hw_input(struct asycom *asy,
208 		    async_flowc_action onoff, int type);
209 static void	async_flowcontrol_hw_output(struct asycom *asy,
210 		    async_flowc_action onoff);
211 
212 #define	GET_PROP(devi, pname, pflag, pval, plen) \
213 		(ddi_prop_op(DDI_DEV_T_ANY, (devi), PROP_LEN_AND_VAL_BUF, \
214 		(pflag), (pname), (caddr_t)(pval), (plen)))
215 
216 static ddi_iblock_cookie_t asy_soft_iblock;
217 ddi_softintr_t asy_softintr_id;
218 static	int asy_addedsoft = 0;
219 int	asysoftpend;	/* soft interrupt pending */
220 kmutex_t asy_soft_lock;	/* lock protecting asysoftpend */
221 kmutex_t asy_glob_lock; /* lock protecting global data manipulation */
222 void *asy_soft_state;
223 
224 /* Standard COM port I/O addresses */
225 static const int standard_com_ports[] = {
226 	COM1_IOADDR, COM2_IOADDR, COM3_IOADDR, COM4_IOADDR
227 };
228 
229 static int *com_ports;
230 static uint_t num_com_ports;
231 
232 /*
233  * Baud rate table. Indexed by #defines found in sys/termios.h
234  */
235 ushort_t asyspdtab[] = {
236 	0,	/* 0 baud rate */
237 	0x900,	/* 50 baud rate */
238 	0x600,	/* 75 baud rate */
239 	0x417,	/* 110 baud rate (%0.026) */
240 	0x359,	/* 134 baud rate (%0.058) */
241 	0x300,	/* 150 baud rate */
242 	0x240,	/* 200 baud rate */
243 	0x180,	/* 300 baud rate */
244 	0x0c0,	/* 600 baud rate */
245 	0x060,	/* 1200 baud rate */
246 	0x040,	/* 1800 baud rate */
247 	0x030,	/* 2400 baud rate */
248 	0x018,	/* 4800 baud rate */
249 	0x00c,	/* 9600 baud rate */
250 	0x006,	/* 19200 baud rate */
251 	0x003,	/* 38400 baud rate */
252 
253 	0x002,	/* 57600 baud rate */
254 	0x0,	/* 76800 baud rate not supported */
255 	0x001,	/* 115200 baud rate */
256 	0x0,	/* 153600 baud rate not supported */
257 	0x0,	/* 0x8002 (SMC chip) 230400 baud rate not supported */
258 	0x0,	/* 307200 baud rate not supported */
259 	0x0,	/* 0x8001 (SMC chip) 460800 baud rate not supported */
260 	0x0,	/* unused */
261 	0x0,	/* unused */
262 	0x0,	/* unused */
263 	0x0,	/* unused */
264 	0x0,	/* unused */
265 	0x0,	/* unused */
266 	0x0,	/* unused */
267 	0x0,	/* unused */
268 	0x0,	/* unused */
269 };
270 
271 static int asyrsrv(queue_t *q);
272 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
273 static int asyclose(queue_t *q, int flag, cred_t *credp);
274 static int asywput(queue_t *q, mblk_t *mp);
275 
276 struct module_info asy_info = {
277 	0,
278 	"asy",
279 	0,
280 	INFPSZ,
281 	4096,
282 	128
283 };
284 
285 static struct qinit asy_rint = {
286 	putq,
287 	asyrsrv,
288 	asyopen,
289 	asyclose,
290 	NULL,
291 	&asy_info,
292 	NULL
293 };
294 
295 static struct qinit asy_wint = {
296 	asywput,
297 	NULL,
298 	NULL,
299 	NULL,
300 	NULL,
301 	&asy_info,
302 	NULL
303 };
304 
305 struct streamtab asy_str_info = {
306 	&asy_rint,
307 	&asy_wint,
308 	NULL,
309 	NULL
310 };
311 
312 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
313 		void **result);
314 static int asyprobe(dev_info_t *);
315 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
316 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
317 
318 static 	struct cb_ops cb_asy_ops = {
319 	nodev,			/* cb_open */
320 	nodev,			/* cb_close */
321 	nodev,			/* cb_strategy */
322 	nodev,			/* cb_print */
323 	nodev,			/* cb_dump */
324 	nodev,			/* cb_read */
325 	nodev,			/* cb_write */
326 	nodev,			/* cb_ioctl */
327 	nodev,			/* cb_devmap */
328 	nodev,			/* cb_mmap */
329 	nodev,			/* cb_segmap */
330 	nochpoll,		/* cb_chpoll */
331 	ddi_prop_op,		/* cb_prop_op */
332 	&asy_str_info,		/* cb_stream */
333 	D_MP			/* cb_flag */
334 };
335 
336 struct dev_ops asy_ops = {
337 	DEVO_REV,		/* devo_rev */
338 	0,			/* devo_refcnt */
339 	asyinfo,		/* devo_getinfo */
340 	nulldev,		/* devo_identify */
341 	asyprobe,		/* devo_probe */
342 	asyattach,		/* devo_attach */
343 	asydetach,		/* devo_detach */
344 	nodev,			/* devo_reset */
345 	&cb_asy_ops,		/* devo_cb_ops */
346 };
347 
348 static struct modldrv modldrv = {
349 	&mod_driverops, /* Type of module.  This one is a driver */
350 	"ASY driver %I%",
351 	&asy_ops,	/* driver ops */
352 };
353 
354 static struct modlinkage modlinkage = {
355 	MODREV_1,
356 	(void *)&modldrv,
357 	NULL
358 };
359 
360 int
361 _init(void)
362 {
363 	int i;
364 
365 	i = ddi_soft_state_init(&asy_soft_state, sizeof (struct asycom), 2);
366 	if (i == 0) {
367 		mutex_init(&asy_glob_lock, NULL, MUTEX_DRIVER, NULL);
368 		if ((i = mod_install(&modlinkage)) != 0) {
369 			mutex_destroy(&asy_glob_lock);
370 			ddi_soft_state_fini(&asy_soft_state);
371 		} else {
372 			DEBUGCONT2(ASY_DEBUG_INIT, "%s, debug = %x\n",
373 			    modldrv.drv_linkinfo, debug);
374 		}
375 	}
376 	return (i);
377 }
378 
379 int
380 _fini(void)
381 {
382 	int i;
383 
384 	if ((i = mod_remove(&modlinkage)) == 0) {
385 		DEBUGCONT1(ASY_DEBUG_INIT, "%s unloading\n",
386 		    modldrv.drv_linkinfo);
387 		ASSERT(max_asy_instance == -1);
388 		mutex_destroy(&asy_glob_lock);
389 		if (asy_addedsoft)
390 			ddi_remove_softintr(asy_softintr_id);
391 		asy_addedsoft = 0;
392 		/* free "motherboard-serial-ports" property if allocated */
393 		if (com_ports != NULL && com_ports != (int *)standard_com_ports)
394 		    ddi_prop_free(com_ports);
395 		com_ports = NULL;
396 		mutex_destroy(&asy_soft_lock);
397 		ddi_soft_state_fini(&asy_soft_state);
398 	}
399 	return (i);
400 }
401 
402 int
403 _info(struct modinfo *modinfop)
404 {
405 	return (mod_info(&modlinkage, modinfop));
406 }
407 
408 static int
409 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
410 {
411 	int instance;
412 	struct asycom *asy;
413 	struct asyncline *async;
414 
415 	if (cmd != DDI_DETACH)
416 		return (DDI_FAILURE);
417 
418 	instance = ddi_get_instance(devi);	/* find out which unit */
419 
420 	asy = ddi_get_soft_state(asy_soft_state, instance);
421 	if (asy == NULL)
422 		return (DDI_FAILURE);
423 	async = asy->asy_priv;
424 
425 	DEBUGNOTE2(ASY_DEBUG_INIT, "asy%d: %s shutdown.",
426 	    instance, asy_hw_name(asy));
427 
428 	/* cancel DTR hold timeout */
429 	if (async->async_dtrtid != 0) {
430 		(void) untimeout(async->async_dtrtid);
431 		async->async_dtrtid = 0;
432 	}
433 
434 	/* remove all minor device node(s) for this device */
435 	ddi_remove_minor_node(devi, NULL);
436 
437 	mutex_destroy(&asy->asy_excl);
438 	mutex_destroy(&asy->asy_excl_hi);
439 	cv_destroy(&async->async_flags_cv);
440 	ddi_remove_intr(devi, 0, asy->asy_iblock);
441 	ddi_regs_map_free(&asy->asy_iohandle);
442 	asy_soft_state_free(asy);
443 	DEBUGNOTE1(ASY_DEBUG_INIT, "asy%d: shutdown complete", instance);
444 	return (DDI_SUCCESS);
445 }
446 
447 /*
448  * asyprobe
449  * We don't bother probing for the hardware, as since Solaris 2.6, device
450  * nodes are only created for auto-detected hardware or nodes explicitly
451  * created by the user, e.g. via the DCA. However, we should check the
452  * device node is at least vaguely usable, i.e. we have a block of 8 i/o
453  * ports. This prevents attempting to attach to bogus serial ports which
454  * some BIOSs still partially report when they are disabled in the BIOS.
455  */
456 static int
457 asyprobe(dev_info_t *devi)
458 {
459 	int instance;
460 	int ret = DDI_PROBE_FAILURE;
461 	int regnum;
462 	int reglen, nregs;
463 	struct reglist {
464 		uint_t bustype;
465 		int base;
466 		int size;
467 	} *reglist = NULL;
468 
469 	instance = ddi_get_instance(devi);
470 
471 	/* Retrieve "reg" property */
472 
473 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
474 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
475 		cmn_err(CE_WARN, "asyprobe: \"reg\" property not found "
476 		    "in devices property list");
477 		goto probedone;
478 	}
479 
480 	/* find I/O bus register property */
481 
482 	nregs = reglen / sizeof (struct reglist);
483 	for (regnum = 0; regnum < nregs; regnum++) {
484 		if (reglist[regnum].bustype == 1)
485 			break;
486 	}
487 	if (regnum >= nregs) {
488 		DEBUGCONT1(ASY_DEBUG_INIT,
489 		    "asy%dprobe: No I/O register property", instance);
490 		goto probedone;
491 	}
492 
493 	if (reglist[regnum].size < 8) {	/* not enough registers for a UART */
494 		DEBUGCONT1(ASY_DEBUG_INIT,
495 		    "asy%dprobe: Invalid I/O register property", instance);
496 		goto probedone;
497 	}
498 
499 	ret = DDI_PROBE_DONTCARE;	/* OK, looks like it might be usable */
500 
501 probedone:
502 	if (reglist != NULL)
503 		kmem_free(reglist, reglen);
504 
505 	DEBUGCONT2(ASY_DEBUG_INIT, "asy%dprobe: ret=%s\n", instance,
506 	    ret == DDI_PROBE_DONTCARE ? "DDI_PROBE_DONTCARE" :
507 	    "DDI_PROBE_FAILURE");
508 
509 	return (ret);
510 }
511 
512 static int
513 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
514 {
515 	int instance;
516 	int mcr;
517 	int ret;
518 	int regnum = 0;
519 	int i;
520 	struct asycom *asy;
521 	char name[40];
522 	int status;
523 	static ddi_device_acc_attr_t ioattr = {
524 		DDI_DEVICE_ATTR_V0,
525 		DDI_NEVERSWAP_ACC,
526 		DDI_STRICTORDER_ACC,
527 	};
528 
529 	if (cmd != DDI_ATTACH)
530 		return (DDI_FAILURE);
531 
532 	instance = ddi_get_instance(devi);	/* find out which unit */
533 	ret = ddi_soft_state_zalloc(asy_soft_state, instance);
534 	if (ret != DDI_SUCCESS)
535 		return (DDI_FAILURE);
536 	asy = ddi_get_soft_state(asy_soft_state, instance);
537 	ASSERT(asy != NULL);	/* can't fail - we only just allocated it */
538 	asy->asy_unit = instance;
539 	mutex_enter(&asy_glob_lock);
540 	if (instance > max_asy_instance)
541 		max_asy_instance = instance;
542 	mutex_exit(&asy_glob_lock);
543 
544 	/*CSTYLED*/
545 	{
546 		int reglen, nregs;
547 		int i;
548 		struct {
549 			uint_t bustype;
550 			int base;
551 			int size;
552 		} *reglist;
553 
554 		/* new probe */
555 		if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
556 		    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
557 			cmn_err(CE_WARN, "asyattach: reg property not found "
558 				"in devices property list");
559 			asy_soft_state_free(asy);
560 			return (DDI_PROBE_FAILURE);
561 		}
562 		regnum = -1;
563 		nregs = reglen / sizeof (*reglist);
564 		for (i = 0; i < nregs; i++) {
565 			switch (reglist[i].bustype) {
566 			case 1:			/* I/O bus reg property */
567 				if (regnum == -1) /* only use the first one */
568 					regnum = i;
569 				break;
570 
571 			case pnpMTS0219:	/* Multitech MT5634ZTX modem */
572 				/* Venus chipset can't do loopback test */
573 				asy->asy_flags2 |= ASY2_NO_LOOPBACK;
574 				break;
575 
576 			default:
577 				break;
578 			}
579 		}
580 		kmem_free(reglist, reglen);
581 	}
582 
583 	if (regnum < 0 ||
584 	    ddi_regs_map_setup(devi, regnum, (caddr_t *)&asy->asy_ioaddr,
585 	    (offset_t)0, (offset_t)0, &ioattr, &asy->asy_iohandle)
586 	    != DDI_SUCCESS) {
587 		cmn_err(CE_WARN, "asy%d: could not map UART registers @ %p",
588 		    instance, (void *)asy->asy_ioaddr);
589 
590 		asy_soft_state_free(asy);
591 		return (DDI_FAILURE);
592 	}
593 
594 	DEBUGCONT2(ASY_DEBUG_INIT, "asy%dattach: UART @ %p\n",
595 	    instance, (void *)asy->asy_ioaddr);
596 
597 	mutex_enter(&asy_glob_lock);
598 	if (com_ports == NULL) {	/* need to initialize com_ports */
599 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, devi, 0,
600 		    "motherboard-serial-ports", &com_ports, &num_com_ports) !=
601 		    DDI_PROP_SUCCESS) {
602 			/* Use our built-in COM[1234] values */
603 			com_ports = (int *)standard_com_ports;
604 			num_com_ports = sizeof (standard_com_ports) /
605 			    sizeof (standard_com_ports[0]);
606 		}
607 		if (num_com_ports > 10) {
608 			/* We run out of single digits for device properties */
609 			num_com_ports = 10;
610 			cmn_err(CE_WARN,
611 			    "More than %d motherboard-serial-ports",
612 			    num_com_ports);
613 		}
614 	}
615 	mutex_exit(&asy_glob_lock);
616 
617 	/*
618 	 * Lookup the i/o address to see if this is a standard COM port
619 	 * in which case we assign it the correct tty[a-d] to match the
620 	 * COM port number, or some other i/o address in which case it
621 	 * will be assigned /dev/term/[0123...] in some rather arbitrary
622 	 * fashion.
623 	 */
624 
625 	for (i = 0; i < num_com_ports; i++) {
626 		if (asy->asy_ioaddr == (uint8_t *)(uintptr_t)com_ports[i]) {
627 			asy->asy_com_port = i + 1;
628 			break;
629 		}
630 	}
631 
632 	/*
633 	 * It appears that there was async hardware that on reset
634 	 * did not clear ICR.  Hence when we get to
635 	 * ddi_get_iblock_cookie below, this hardware would cause
636 	 * the system to hang if there was input available.
637 	 */
638 
639 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0x00);
640 
641 	/* establish default usage */
642 	asy->asy_mcr |= RTS|DTR;		/* do use RTS/DTR after open */
643 	asy->asy_lcr = STOP1|BITS8;		/* default to 1 stop 8 bits */
644 	asy->asy_bidx = B9600;			/* default to 9600  */
645 #ifdef DEBUG
646 	asy->asy_msint_cnt = 0;			/* # of times in async_msint */
647 #endif
648 	mcr = 0;				/* don't enable until open */
649 
650 	if (asy->asy_com_port != 0) {
651 		/*
652 		 * For motherboard ports, emulate tty eeprom properties.
653 		 * Actually, we can't tell if a port is motherboard or not,
654 		 * so for "motherboard ports", read standard DOS COM ports.
655 		 */
656 		switch (asy_getproperty(devi, asy, "ignore-cd")) {
657 		case 0:				/* *-ignore-cd=False */
658 			DEBUGCONT1(ASY_DEBUG_MODEM,
659 			    "asy%dattach: clear ASY_IGNORE_CD\n", instance);
660 			asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */
661 			break;
662 		case 1:				/* *-ignore-cd=True */
663 			/*FALLTHRU*/
664 		default:			/* *-ignore-cd not defined */
665 			/*
666 			 * We set rather silly defaults of soft carrier on
667 			 * and DTR/RTS raised here because it might be that
668 			 * one of the motherboard ports is the system console.
669 			 */
670 			DEBUGCONT1(ASY_DEBUG_MODEM,
671 			    "asy%dattach: set ASY_IGNORE_CD, set RTS & DTR\n",
672 			    instance);
673 			mcr = asy->asy_mcr;		/* rts/dtr on */
674 			asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
675 			break;
676 		}
677 
678 		/* Property for not raising DTR/RTS */
679 		switch (asy_getproperty(devi, asy, "rts-dtr-off")) {
680 		case 0:				/* *-rts-dtr-off=False */
681 			asy->asy_flags |= ASY_RTS_DTR_OFF;	/* OFF */
682 			mcr = asy->asy_mcr;		/* rts/dtr on */
683 			DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dattach: "
684 			    "ASY_RTS_DTR_OFF set and DTR & RTS set\n",
685 			    instance);
686 			break;
687 		case 1:				/* *-rts-dtr-off=True */
688 			/*FALLTHRU*/
689 		default:			/* *-rts-dtr-off undefined */
690 			break;
691 		}
692 
693 		/* Parse property for tty modes */
694 		asy_parse_mode(devi, asy);
695 	} else {
696 		DEBUGCONT1(ASY_DEBUG_MODEM,
697 		    "asy%dattach: clear ASY_IGNORE_CD, clear RTS & DTR\n",
698 		    instance);
699 		asy->asy_flags &= ~ASY_IGNORE_CD;	/* wait for cd */
700 	}
701 
702 	/*
703 	 * Initialize the port with default settings.
704 	 */
705 
706 	asy->asy_fifo_buf = 1;
707 	asy->asy_use_fifo = FIFO_OFF;
708 
709 	/*
710 	 * Get icookie for mutexes initialization
711 	 */
712 	if ((ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) !=
713 	    DDI_SUCCESS) ||
714 	    (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_MED,
715 	    &asy_soft_iblock) != DDI_SUCCESS)) {
716 		ddi_regs_map_free(&asy->asy_iohandle);
717 		cmn_err(CE_CONT,
718 		    "asy%d: could not hook interrupt for UART @ %p\n",
719 		    instance, (void *)asy->asy_ioaddr);
720 		asy_soft_state_free(asy);
721 		return (DDI_FAILURE);
722 	}
723 
724 	/*
725 	 * Initialize mutexes before accessing the hardware
726 	 */
727 	mutex_init(&asy->asy_excl, NULL, MUTEX_DRIVER, asy_soft_iblock);
728 	mutex_init(&asy->asy_excl_hi, NULL, MUTEX_DRIVER,
729 		(void *)asy->asy_iblock);
730 
731 	mutex_enter(&asy->asy_excl);
732 	mutex_enter(&asy->asy_excl_hi);
733 
734 	if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
735 		mutex_exit(&asy->asy_excl_hi);
736 		mutex_exit(&asy->asy_excl);
737 		mutex_destroy(&asy->asy_excl);
738 		mutex_destroy(&asy->asy_excl_hi);
739 		ddi_regs_map_free(&asy->asy_iohandle);
740 		cmn_err(CE_CONT, "Cannot identify UART chip at %p\n",
741 		    (void *)asy->asy_ioaddr);
742 		asy_soft_state_free(asy);
743 		return (DDI_FAILURE);
744 	}
745 
746 	/* disable all interrupts */
747 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
748 	/* select baud rate generator */
749 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
750 	/* Set the baud rate to 9600 */
751 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLL),
752 		asyspdtab[asy->asy_bidx] & 0xff);
753 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLH),
754 		(asyspdtab[asy->asy_bidx] >> 8) & 0xff);
755 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
756 		asy->asy_lcr);
757 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
758 
759 	mutex_exit(&asy->asy_excl_hi);
760 	mutex_exit(&asy->asy_excl);
761 
762 	/*
763 	 * Set up the other components of the asycom structure for this port.
764 	 */
765 	asy->asy_dip = devi;
766 
767 	mutex_enter(&asy_glob_lock);
768 	if (asy_addedsoft == 0) { /* install the soft interrupt handler */
769 		if (ddi_add_softintr(devi, DDI_SOFTINT_MED,
770 		    &asy_softintr_id, NULL, 0, asysoftintr,
771 		    (caddr_t)0) != DDI_SUCCESS) {
772 			mutex_destroy(&asy->asy_excl);
773 			mutex_destroy(&asy->asy_excl_hi);
774 			ddi_regs_map_free(&asy->asy_iohandle);
775 			mutex_exit(&asy_glob_lock);
776 			cmn_err(CE_CONT,
777 				"Can not set soft interrupt for ASY driver\n");
778 			asy_soft_state_free(asy);
779 			return (DDI_FAILURE);
780 		}
781 		mutex_init(&asy_soft_lock, NULL, MUTEX_DRIVER,
782 			(void *)asy->asy_iblock);
783 		asy_addedsoft++;
784 	}
785 	mutex_exit(&asy_glob_lock);
786 
787 	mutex_enter(&asy->asy_excl);
788 	mutex_enter(&asy->asy_excl_hi);
789 
790 	/*
791 	 * Install interrupt handler for this device.
792 	 */
793 	if (ddi_add_intr(devi, 0, NULL, 0, asyintr,
794 	    (caddr_t)asy) != DDI_SUCCESS) {
795 		mutex_exit(&asy->asy_excl_hi);
796 		mutex_exit(&asy->asy_excl);
797 		mutex_destroy(&asy->asy_excl);
798 		mutex_destroy(&asy->asy_excl_hi);
799 		ddi_regs_map_free(&asy->asy_iohandle);
800 		cmn_err(CE_CONT,
801 			"Can not set device interrupt for ASY driver\n");
802 		asy_soft_state_free(asy);
803 		return (DDI_FAILURE);
804 	}
805 
806 	mutex_exit(&asy->asy_excl_hi);
807 	mutex_exit(&asy->asy_excl);
808 
809 	asyinit(asy);	/* initialize the asyncline structure */
810 
811 	/* create minor device nodes for this device */
812 	if (asy->asy_com_port != 0) {
813 		/*
814 		 * For DOS COM ports, add letter suffix so
815 		 * devfsadm can create correct link names.
816 		 */
817 		name[0] = asy->asy_com_port + 'a' - 1;
818 		name[1] = '\0';
819 	} else {
820 		/*
821 		 * ISA port which isn't a standard DOS COM
822 		 * port needs no further qualification.
823 		 */
824 		name[0] = '\0';
825 	}
826 	status = ddi_create_minor_node(devi, name, S_IFCHR, instance,
827 	    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB : DDI_NT_SERIAL, NULL);
828 	if (status == DDI_SUCCESS) {
829 		(void) strcat(name, ",cu");
830 		status = ddi_create_minor_node(devi, name, S_IFCHR,
831 		    OUTLINE | instance,
832 		    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB_DO :
833 		    DDI_NT_SERIAL_DO, NULL);
834 	}
835 
836 	if (status != DDI_SUCCESS) {
837 		struct asyncline *async = asy->asy_priv;
838 
839 		ddi_remove_minor_node(devi, NULL);
840 		ddi_remove_intr(devi, 0, asy->asy_iblock);
841 		mutex_destroy(&asy->asy_excl);
842 		mutex_destroy(&asy->asy_excl_hi);
843 		cv_destroy(&async->async_flags_cv);
844 		ddi_regs_map_free(&asy->asy_iohandle);
845 		asy_soft_state_free(asy);
846 		return (DDI_FAILURE);
847 	}
848 
849 	/*
850 	 * Fill in the polled I/O structure.
851 	 */
852 	asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0;
853 	asy->polledio.cons_polledio_argument = (struct cons_polledio_arg *)asy;
854 	asy->polledio.cons_polledio_putchar = asyputchar;
855 	asy->polledio.cons_polledio_getchar = asygetchar;
856 	asy->polledio.cons_polledio_ischar = asyischar;
857 	asy->polledio.cons_polledio_enter = NULL;
858 	asy->polledio.cons_polledio_exit = NULL;
859 
860 	ddi_report_dev(devi);
861 	DEBUGCONT1(ASY_DEBUG_INIT, "asy%dattach: done\n", instance);
862 	return (DDI_SUCCESS);
863 }
864 
865 /*ARGSUSED*/
866 static int
867 asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
868 	void **result)
869 {
870 	dev_t dev = (dev_t)arg;
871 	int instance, error;
872 	struct asycom *asy;
873 
874 	instance = UNIT(dev);
875 	asy = ddi_get_soft_state(asy_soft_state, instance);
876 	if (asy == NULL)
877 		return (DDI_FAILURE);
878 
879 	switch (infocmd) {
880 	case DDI_INFO_DEVT2DEVINFO:
881 		if (asy->asy_dip == NULL)
882 			error = DDI_FAILURE;
883 		else {
884 			*result = (void *) asy->asy_dip;
885 			error = DDI_SUCCESS;
886 		}
887 		break;
888 	case DDI_INFO_DEVT2INSTANCE:
889 		*result = (void *)(intptr_t)instance;
890 		error = DDI_SUCCESS;
891 		break;
892 	default:
893 		error = DDI_FAILURE;
894 	}
895 	return (error);
896 }
897 
898 /* asy_getproperty -- walk through all name variants until we find a match */
899 
900 static int
901 asy_getproperty(dev_info_t *devi, struct asycom *asy, const char *property)
902 {
903 	int len;
904 	int ret;
905 	char letter = asy->asy_com_port + 'a' - 1;	/* for ttya */
906 	char number = asy->asy_com_port + '0';		/* for COM1 */
907 	char val[40];
908 	char name[40];
909 
910 	/* Property for ignoring DCD */
911 	(void) sprintf(name, "tty%c-%s", letter, property);
912 	len = sizeof (val);
913 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
914 	if (ret != DDI_PROP_SUCCESS) {
915 		(void) sprintf(name, "com%c-%s", number, property);
916 		len = sizeof (val);
917 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val,
918 				&len);
919 	}
920 	if (ret != DDI_PROP_SUCCESS) {
921 		(void) sprintf(name, "tty0%c-%s", number, property);
922 		len = sizeof (val);
923 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val,
924 				&len);
925 	}
926 	if (ret != DDI_PROP_SUCCESS) {
927 		(void) sprintf(name, "port-%c-%s", letter, property);
928 		len = sizeof (val);
929 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val,
930 				&len);
931 	}
932 	if (ret != DDI_PROP_SUCCESS)
933 		return (-1);		/* property non-existant */
934 	if (val[0] == 'f' || val[0] == 'F' || val[0] == '0')
935 		return (0);		/* property false/0 */
936 	return (1);			/* property true/!0 */
937 }
938 
939 /* asy_soft_state_free - local wrapper for ddi_soft_state_free(9F) */
940 
941 static void
942 asy_soft_state_free(struct asycom *asy)
943 {
944 	mutex_enter(&asy_glob_lock);
945 	/* If we were the max_asy_instance, work out new value */
946 	if (asy->asy_unit == max_asy_instance) {
947 		while (--max_asy_instance >= 0) {
948 			if (ddi_get_soft_state(asy_soft_state,
949 			    max_asy_instance) != NULL)
950 				break;
951 		}
952 	}
953 	mutex_exit(&asy_glob_lock);
954 
955 	if (asy->asy_priv != NULL) {
956 		kmem_free(asy->asy_priv, sizeof (struct asyncline));
957 		asy->asy_priv = NULL;
958 	}
959 	ddi_soft_state_free(asy_soft_state, asy->asy_unit);
960 }
961 
962 static char *
963 asy_hw_name(struct asycom *asy)
964 {
965 	switch (asy->asy_hwtype) {
966 	case ASY8250A:
967 		return ("8250A/16450");
968 	case ASY16550:
969 		return ("16550");
970 	case ASY16550A:
971 		return ("16550A");
972 	case ASY16650:
973 		return ("16650");
974 	case ASY16750:
975 		return ("16750");
976 	default:
977 		DEBUGNOTE2(ASY_DEBUG_INIT,
978 		    "asy%d: asy_hw_name: unknown asy_hwtype: %d",
979 		    asy->asy_unit, asy->asy_hwtype);
980 		return ("?");
981 	}
982 }
983 
984 static int
985 asy_identify_chip(dev_info_t *devi, struct asycom *asy)
986 {
987 	int ret;
988 	int mcr;
989 	dev_t dev;
990 	uint_t hwtype;
991 
992 	if (asy_scr_test) {
993 		/* Check scratch register works. */
994 
995 		/* write to scratch register */
996 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, SCRTEST);
997 		/* make sure that pattern doesn't just linger on the bus */
998 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, 0x00);
999 		/* read data back from scratch register */
1000 		ret = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
1001 		if (ret != SCRTEST) {
1002 			/*
1003 			 * Scratch register not working.
1004 			 * Probably not an async chip.
1005 			 * 8250 and 8250B don't have scratch registers,
1006 			 * but only worked in ancient PC XT's anyway.
1007 			 */
1008 			cmn_err(CE_CONT, "asy%d: UART @ %p "
1009 			    "scratch register: expected 0x5a, got 0x%02x\n",
1010 			    asy->asy_unit, (void *)asy->asy_ioaddr, ret);
1011 			return (DDI_FAILURE);
1012 		}
1013 	}
1014 	/*
1015 	 * Use 16550 fifo reset sequence specified in NS application
1016 	 * note. Disable fifos until chip is initialized.
1017 	 */
1018 	ddi_io_put8(asy->asy_iohandle,
1019 	    asy->asy_ioaddr + FIFOR, 0x00);	/* clear */
1020 	ddi_io_put8(asy->asy_iohandle,
1021 	    asy->asy_ioaddr + FIFOR, FIFO_ON);	/* enable */
1022 	ddi_io_put8(asy->asy_iohandle,
1023 	    asy->asy_ioaddr + FIFOR, FIFO_ON | FIFORXFLSH);
1024 						/* reset */
1025 	if (asymaxchip >= ASY16650 && asy_scr_test) {
1026 		/*
1027 		 * Reset 16650 enhanced regs also, in case we have one of these
1028 		 */
1029 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1030 		    EFRACCESS);
1031 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1032 		    0);
1033 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1034 		    STOP1|BITS8);
1035 	}
1036 
1037 	/*
1038 	 * See what sort of FIFO we have.
1039 	 * Try enabling it and see what chip makes of this.
1040 	 */
1041 
1042 	asy->asy_fifor = 0;
1043 	asy->asy_hwtype = asymaxchip; /* just for asy_reset_fifo() */
1044 	if (asymaxchip >= ASY16550A)
1045 		asy->asy_fifor |=
1046 		    FIFO_ON | FIFODMA | (asy_trig_level & 0xff);
1047 	if (asymaxchip >= ASY16650)
1048 		asy->asy_fifor |= FIFOEXTRA1 | FIFOEXTRA2;
1049 
1050 	asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
1051 
1052 	mcr = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
1053 	ret = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
1054 	DEBUGCONT4(ASY_DEBUG_CHIP,
1055 	    "asy%d: probe fifo FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
1056 	    asy->asy_unit, asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH,
1057 	    ret, mcr);
1058 	switch (ret & 0xf0) {
1059 	case 0x40:
1060 		hwtype = ASY16550; /* 16550 with broken FIFO */
1061 		asy->asy_fifor = 0;
1062 		break;
1063 	case 0xc0:
1064 		hwtype = ASY16550A;
1065 		asy->asy_fifo_buf = 16;
1066 		asy->asy_use_fifo = FIFO_ON;
1067 		asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
1068 		break;
1069 	case 0xe0:
1070 		hwtype = ASY16650;
1071 		asy->asy_fifo_buf = 32;
1072 		asy->asy_use_fifo = FIFO_ON;
1073 		asy->asy_fifor &= ~(FIFOEXTRA1);
1074 		break;
1075 	case 0xf0:
1076 		/*
1077 		 * Note we get 0xff if chip didn't return us anything,
1078 		 * e.g. if there's no chip there.
1079 		 */
1080 		if (ret == 0xff) {
1081 			cmn_err(CE_CONT, "asy%d: UART @ %p "
1082 			    "interrupt register: got 0xff\n",
1083 			    asy->asy_unit, (void *)asy->asy_ioaddr);
1084 			return (DDI_FAILURE);
1085 		}
1086 		/*FALLTHRU*/
1087 	case 0xd0:
1088 		hwtype = ASY16750;
1089 		asy->asy_fifo_buf = 64;
1090 		asy->asy_use_fifo = FIFO_ON;
1091 		break;
1092 	default:
1093 		hwtype = ASY8250A; /* No FIFO */
1094 		asy->asy_fifor = 0;
1095 	}
1096 
1097 	if (hwtype > asymaxchip) {
1098 		cmn_err(CE_CONT, "asy%d: UART @ %p "
1099 		    "unexpected probe result: "
1100 		    "FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
1101 		    asy->asy_unit, (void *)asy->asy_ioaddr,
1102 		    asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH, ret, mcr);
1103 		return (DDI_FAILURE);
1104 	}
1105 
1106 	/*
1107 	 * Now reset the FIFO operation appropriate for the chip type.
1108 	 * Note we must call asy_reset_fifo() before any possible
1109 	 * downgrade of the asy->asy_hwtype, or it may not disable
1110 	 * the more advanced features we specifically want downgraded.
1111 	 */
1112 	asy_reset_fifo(asy, 0);
1113 	asy->asy_hwtype = hwtype;
1114 
1115 	/*
1116 	 * Check for Exar/Startech ST16C650, which will still look like a
1117 	 * 16550A until we enable its enhanced mode.
1118 	 */
1119 	if (asy->asy_hwtype == ASY16550A && asymaxchip >= ASY16650 &&
1120 	    asy_scr_test) {
1121 		/* Enable enhanced mode register access */
1122 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1123 		    EFRACCESS);
1124 		/* zero scratch register (not scratch register if enhanced) */
1125 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, 0);
1126 		/* Disable enhanced mode register access */
1127 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1128 		    STOP1|BITS8);
1129 		/* read back scratch register */
1130 		ret = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
1131 		if (ret == SCRTEST) {
1132 			/* looks like we have an ST16650 -- enable it */
1133 			ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1134 			    EFRACCESS);
1135 			ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1136 			    ENHENABLE);
1137 			ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1138 			    STOP1|BITS8);
1139 			asy->asy_hwtype = ASY16650;
1140 			asy->asy_fifo_buf = 32;
1141 			asy->asy_fifor |= 0x10; /* 24 byte txfifo trigger */
1142 			asy_reset_fifo(asy, 0);
1143 		}
1144 	}
1145 
1146 	/*
1147 	 * If we think we might have a FIFO larger than 16 characters,
1148 	 * measure FIFO size and check it against expected.
1149 	 */
1150 	if (asy_fifo_test > 0 &&
1151 	    !(asy->asy_flags2 & ASY2_NO_LOOPBACK) &&
1152 	    (asy->asy_fifo_buf > 16 ||
1153 	    (asy_fifo_test > 1 && asy->asy_use_fifo == FIFO_ON) ||
1154 	    ASY_DEBUG(ASY_DEBUG_CHIP))) {
1155 		int i;
1156 
1157 		/* Set baud rate to 57600 (fairly arbitrary choice) */
1158 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1159 		    DLAB);
1160 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
1161 		    asyspdtab[B57600] & 0xff);
1162 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1163 		    (asyspdtab[B57600] >> 8) & 0xff);
1164 		/* Set 8 bits, 1 stop bit */
1165 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1166 		    STOP1|BITS8);
1167 		/* Set loopback mode */
1168 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1169 		    DTR | RTS | ASY_LOOP | OUT1 | OUT2);
1170 
1171 		/* Overfill fifo */
1172 		for (i = 0; i < asy->asy_fifo_buf * 2; i++) {
1173 			ddi_io_put8(asy->asy_iohandle,
1174 			    asy->asy_ioaddr + DAT, i);
1175 		}
1176 		/*
1177 		 * Now there's an interesting question here about which
1178 		 * FIFO we're testing the size of, RX or TX. We just
1179 		 * filled the TX FIFO much faster than it can empty,
1180 		 * although it is possible one or two characters may
1181 		 * have gone from it to the TX shift register.
1182 		 * We wait for enough time for all the characters to
1183 		 * move into the RX FIFO and any excess characters to
1184 		 * have been lost, and then read all the RX FIFO. So
1185 		 * the answer we finally get will be the size which is
1186 		 * the MIN(RX FIFO,(TX FIFO + 1 or 2)). The critical
1187 		 * one is actually the TX FIFO, because if we overfill
1188 		 * it in normal operation, the excess characters are
1189 		 * lost with no warning.
1190 		 */
1191 		/*
1192 		 * Wait for characters to move into RX FIFO.
1193 		 * In theory, 200 * asy->asy_fifo_buf * 2 should be
1194 		 * enough. However, in practice it isn't always, so we
1195 		 * increase to 400 so some slow 16550A's finish, and we
1196 		 * increase to 3 so we spot more characters coming back
1197 		 * than we sent, in case that should ever happen.
1198 		 */
1199 		delay(drv_usectohz(400 * asy->asy_fifo_buf * 3));
1200 
1201 		/* Now see how many characters we can read back */
1202 		for (i = 0; i < asy->asy_fifo_buf * 3; i++) {
1203 			ret = ddi_io_get8(asy->asy_iohandle,
1204 			    asy->asy_ioaddr + LSR);
1205 			if (!(ret & RCA))
1206 				break;	/* FIFO emptied */
1207 			(void) ddi_io_get8(asy->asy_iohandle,
1208 			    asy->asy_ioaddr + DAT); /* lose another */
1209 		}
1210 
1211 		DEBUGCONT3(ASY_DEBUG_CHIP,
1212 		    "asy%d FIFO size: expected=%d, measured=%d\n",
1213 		    asy->asy_unit, asy->asy_fifo_buf, i);
1214 
1215 		hwtype = asy->asy_hwtype;
1216 		if (i < asy->asy_fifo_buf) {
1217 			/*
1218 			 * FIFO is somewhat smaller than we anticipated.
1219 			 * If we have 16 characters usable, then this
1220 			 * UART will probably work well enough in
1221 			 * 16550A mode. If less than 16 characters,
1222 			 * then we'd better not use it at all.
1223 			 * UARTs with busted FIFOs do crop up.
1224 			 */
1225 			if (i >= 16 && asy->asy_fifo_buf >= 16) {
1226 				/* fall back to a 16550A */
1227 				hwtype = ASY16550A;
1228 				asy->asy_fifo_buf = 16;
1229 				asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
1230 			} else {
1231 				/* fall back to no FIFO at all */
1232 				hwtype = ASY16550;
1233 				asy->asy_fifo_buf = 1;
1234 				asy->asy_use_fifo = FIFO_OFF;
1235 				asy->asy_fifor &=
1236 				    ~(FIFO_ON | FIFOEXTRA1 | FIFOEXTRA2);
1237 			}
1238 		}
1239 		/*
1240 		 * We will need to reprogram the FIFO if we changed
1241 		 * our mind about how to drive it above, and in any
1242 		 * case, it would be a good idea to flush any garbage
1243 		 * out incase the loopback test left anything behind.
1244 		 * Again as earlier above, we must call asy_reset_fifo()
1245 		 * before any possible downgrade of asy->asy_hwtype.
1246 		 */
1247 		if (asy->asy_hwtype >= ASY16650 && hwtype < ASY16650) {
1248 			/* Disable 16650 enhanced mode */
1249 			ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1250 			    EFRACCESS);
1251 			ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1252 			    0);
1253 			ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1254 			    STOP1|BITS8);
1255 		}
1256 		asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
1257 		asy->asy_hwtype = hwtype;
1258 
1259 		/* Clear loopback mode and restore DTR/RTS */
1260 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
1261 	}
1262 
1263 	DEBUGNOTE3(ASY_DEBUG_CHIP, "asy%d %s @ %p",
1264 	    asy->asy_unit, asy_hw_name(asy), (void *)asy->asy_ioaddr);
1265 
1266 	/* Make UART type visible in device tree for prtconf, etc */
1267 	dev = makedevice(DDI_MAJOR_T_UNKNOWN, asy->asy_unit);
1268 	(void) ddi_prop_update_string(dev, devi, "uart", asy_hw_name(asy));
1269 
1270 	if (asy->asy_hwtype == ASY16550)	/* for broken 16550's, */
1271 		asy->asy_hwtype = ASY8250A;	/* drive them as 8250A */
1272 
1273 	return (DDI_SUCCESS);
1274 }
1275 
1276 /*
1277  * asyinit() initializes the TTY protocol-private data for this channel
1278  * before enabling the interrupts.
1279  */
1280 static void
1281 asyinit(struct asycom *asy)
1282 {
1283 	struct asyncline *async;
1284 
1285 	asy->asy_priv = kmem_zalloc(sizeof (struct asyncline), KM_SLEEP);
1286 	async = asy->asy_priv;
1287 	mutex_enter(&asy->asy_excl);
1288 	async->async_common = asy;
1289 	cv_init(&async->async_flags_cv, NULL, CV_DRIVER, NULL);
1290 	mutex_exit(&asy->asy_excl);
1291 }
1292 
1293 /*ARGSUSED3*/
1294 static int
1295 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
1296 {
1297 	struct asycom	*asy;
1298 	struct asyncline *async;
1299 	int		mcr;
1300 	int		unit;
1301 	int 		len;
1302 	struct termios 	*termiosp;
1303 
1304 	unit = UNIT(*dev);
1305 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dopen\n", unit);
1306 	asy = ddi_get_soft_state(asy_soft_state, unit);
1307 	if (asy == NULL)
1308 		return (ENXIO);		/* unit not configured */
1309 	async = asy->asy_priv;
1310 	mutex_enter(&asy->asy_excl);
1311 
1312 again:
1313 	mutex_enter(&asy->asy_excl_hi);
1314 
1315 	/*
1316 	 * Block waiting for carrier to come up, unless this is a no-delay open.
1317 	 */
1318 	if (!(async->async_flags & ASYNC_ISOPEN)) {
1319 		/*
1320 		 * Set the default termios settings (cflag).
1321 		 * Others are set in ldterm.
1322 		 */
1323 		mutex_exit(&asy->asy_excl_hi);
1324 
1325 		if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
1326 		    0, "ttymodes",
1327 		    (caddr_t)&termiosp, &len) == DDI_PROP_SUCCESS &&
1328 		    len == sizeof (struct termios)) {
1329 			async->async_ttycommon.t_cflag = termiosp->c_cflag;
1330 			kmem_free(termiosp, len);
1331 		} else
1332 			cmn_err(CE_WARN,
1333 				"asy: couldn't get ttymodes property!");
1334 		mutex_enter(&asy->asy_excl_hi);
1335 
1336 		/* eeprom mode support - respect properties */
1337 		if (asy->asy_cflag)
1338 			async->async_ttycommon.t_cflag = asy->asy_cflag;
1339 
1340 		async->async_ttycommon.t_iflag = 0;
1341 		async->async_ttycommon.t_iocpending = NULL;
1342 		async->async_ttycommon.t_size.ws_row = 0;
1343 		async->async_ttycommon.t_size.ws_col = 0;
1344 		async->async_ttycommon.t_size.ws_xpixel = 0;
1345 		async->async_ttycommon.t_size.ws_ypixel = 0;
1346 		async->async_dev = *dev;
1347 		async->async_wbufcid = 0;
1348 
1349 		async->async_startc = CSTART;
1350 		async->async_stopc = CSTOP;
1351 		asy_program(asy, ASY_INIT);
1352 	} else if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
1353 						secpolicy_excl_open(cr) != 0) {
1354 		mutex_exit(&asy->asy_excl_hi);
1355 		mutex_exit(&asy->asy_excl);
1356 		return (EBUSY);
1357 	} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
1358 		mutex_exit(&asy->asy_excl_hi);
1359 		mutex_exit(&asy->asy_excl);
1360 		return (EBUSY);
1361 	}
1362 
1363 	if (*dev & OUTLINE)
1364 		async->async_flags |= ASYNC_OUT;
1365 
1366 	/* Raise DTR on every open, but delay if it was just lowered. */
1367 	while (async->async_flags & ASYNC_DTR_DELAY) {
1368 		DEBUGCONT1(ASY_DEBUG_MODEM,
1369 		    "asy%dopen: waiting for the ASYNC_DTR_DELAY to be clear\n",
1370 		    unit);
1371 		mutex_exit(&asy->asy_excl_hi);
1372 		if (cv_wait_sig(&async->async_flags_cv,
1373 		    &asy->asy_excl) == 0) {
1374 			DEBUGCONT1(ASY_DEBUG_MODEM,
1375 			    "asy%dopen: interrupted by signal, exiting\n",
1376 			    unit);
1377 			mutex_exit(&asy->asy_excl);
1378 			return (EINTR);
1379 		}
1380 		mutex_enter(&asy->asy_excl_hi);
1381 	}
1382 
1383 	mcr = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
1384 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1385 		mcr|(asy->asy_mcr&DTR));
1386 
1387 	DEBUGCONT3(ASY_DEBUG_INIT,
1388 		"asy%dopen: \"Raise DTR on every open\": make mcr = %x, "
1389 		"make TS_SOFTCAR = %s\n",
1390 		unit, mcr|(asy->asy_mcr&DTR),
1391 		(asy->asy_flags & ASY_IGNORE_CD) ? "ON" : "OFF");
1392 	if (asy->asy_flags & ASY_IGNORE_CD) {
1393 		DEBUGCONT1(ASY_DEBUG_MODEM,
1394 			"asy%dopen: ASY_IGNORE_CD set, set TS_SOFTCAR\n",
1395 			unit);
1396 		async->async_ttycommon.t_flags |= TS_SOFTCAR;
1397 	}
1398 	else
1399 		async->async_ttycommon.t_flags &= ~TS_SOFTCAR;
1400 
1401 	/*
1402 	 * Check carrier.
1403 	 */
1404 	asy->asy_msr = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
1405 	DEBUGCONT3(ASY_DEBUG_INIT, "asy%dopen: TS_SOFTCAR is %s, "
1406 		"MSR & DCD is %s\n",
1407 		unit,
1408 		(async->async_ttycommon.t_flags & TS_SOFTCAR) ? "set" : "clear",
1409 		(asy->asy_msr & DCD) ? "set" : "clear");
1410 	if (asy->asy_msr & DCD)
1411 		async->async_flags |= ASYNC_CARR_ON;
1412 	else
1413 		async->async_flags &= ~ASYNC_CARR_ON;
1414 	mutex_exit(&asy->asy_excl_hi);
1415 
1416 	/*
1417 	 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
1418 	 * Quit on interrupt.
1419 	 */
1420 	if (!(flag & (FNDELAY|FNONBLOCK)) &&
1421 	    !(async->async_ttycommon.t_cflag & CLOCAL)) {
1422 		if ((!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) &&
1423 		    !(async->async_ttycommon.t_flags & TS_SOFTCAR)) ||
1424 		    ((async->async_flags & ASYNC_OUT) &&
1425 		    !(*dev & OUTLINE))) {
1426 			async->async_flags |= ASYNC_WOPEN;
1427 			if (cv_wait_sig(&async->async_flags_cv,
1428 			    &asy->asy_excl) == B_FALSE) {
1429 				async->async_flags &= ~ASYNC_WOPEN;
1430 				mutex_exit(&asy->asy_excl);
1431 				return (EINTR);
1432 			}
1433 			async->async_flags &= ~ASYNC_WOPEN;
1434 			goto again;
1435 		}
1436 	} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
1437 		mutex_exit(&asy->asy_excl);
1438 		return (EBUSY);
1439 	}
1440 
1441 	async->async_ttycommon.t_readq = rq;
1442 	async->async_ttycommon.t_writeq = WR(rq);
1443 	rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
1444 	mutex_exit(&asy->asy_excl);
1445 	/*
1446 	 * Caution here -- qprocson sets the pointers that are used by canput
1447 	 * called by async_softint.  ASYNC_ISOPEN must *not* be set until those
1448 	 * pointers are valid.
1449 	 */
1450 	qprocson(rq);
1451 	async->async_flags |= ASYNC_ISOPEN;
1452 	async->async_polltid = 0;
1453 	DEBUGCONT1(ASY_DEBUG_INIT, "asy%dopen: done\n", unit);
1454 	return (0);
1455 }
1456 
1457 static void
1458 async_progress_check(void *arg)
1459 {
1460 	struct asyncline *async = arg;
1461 	struct asycom	 *asy = async->async_common;
1462 	mblk_t *bp;
1463 
1464 	/*
1465 	 * We define "progress" as either waiting on a timed break or delay, or
1466 	 * having had at least one transmitter interrupt.  If none of these are
1467 	 * true, then just terminate the output and wake up that close thread.
1468 	 */
1469 	mutex_enter(&asy->asy_excl);
1470 	mutex_enter(&asy->asy_excl_hi);
1471 	if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
1472 		async->async_ocnt = 0;
1473 		async->async_flags &= ~ASYNC_BUSY;
1474 		async->async_timer = 0;
1475 		bp = async->async_xmitblk;
1476 		async->async_xmitblk = NULL;
1477 		mutex_exit(&asy->asy_excl_hi);
1478 		if (bp != NULL)
1479 			freeb(bp);
1480 		/*
1481 		 * Since this timer is running, we know that we're in exit(2).
1482 		 * That means that the user can't possibly be waiting on any
1483 		 * valid ioctl(2) completion anymore, and we should just flush
1484 		 * everything.
1485 		 */
1486 		flushq(async->async_ttycommon.t_writeq, FLUSHALL);
1487 		cv_broadcast(&async->async_flags_cv);
1488 	} else {
1489 		async->async_flags &= ~ASYNC_PROGRESS;
1490 		async->async_timer = timeout(async_progress_check, async,
1491 		    drv_usectohz(asy_drain_check));
1492 		mutex_exit(&asy->asy_excl_hi);
1493 	}
1494 	mutex_exit(&asy->asy_excl);
1495 }
1496 
1497 /*
1498  * Release DTR so that asyopen() can raise it.
1499  */
1500 static void
1501 async_dtr_free(struct asyncline *async)
1502 {
1503 	struct asycom *asy = async->async_common;
1504 
1505 	DEBUGCONT0(ASY_DEBUG_MODEM,
1506 	    "async_dtr_free, clearing ASYNC_DTR_DELAY\n");
1507 	mutex_enter(&asy->asy_excl);
1508 	async->async_flags &= ~ASYNC_DTR_DELAY;
1509 	async->async_dtrtid = 0;
1510 	cv_broadcast(&async->async_flags_cv);
1511 	mutex_exit(&asy->asy_excl);
1512 }
1513 
1514 /*
1515  * Close routine.
1516  */
1517 /*ARGSUSED2*/
1518 static int
1519 asyclose(queue_t *q, int flag, cred_t *credp)
1520 {
1521 	struct asyncline *async;
1522 	struct asycom	 *asy;
1523 	int icr, lcr;
1524 #ifdef DEBUG
1525 	int instance;
1526 #endif
1527 
1528 	async = (struct asyncline *)q->q_ptr;
1529 	ASSERT(async != NULL);
1530 #ifdef DEBUG
1531 	instance = UNIT(async->async_dev);
1532 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose\n", instance);
1533 #endif
1534 	asy = async->async_common;
1535 
1536 	mutex_enter(&asy->asy_excl);
1537 	async->async_flags |= ASYNC_CLOSING;
1538 
1539 	/*
1540 	 * Turn off PPS handling early to avoid events occuring during
1541 	 * close.  Also reset the DCD edge monitoring bit.
1542 	 */
1543 	mutex_enter(&asy->asy_excl_hi);
1544 	asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
1545 	mutex_exit(&asy->asy_excl_hi);
1546 
1547 	/*
1548 	 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
1549 	 * untimed (TIOCSBRK).  For the timed case, these are enqueued on our
1550 	 * write queue and there's a timer running, so we don't have to worry
1551 	 * about them.  For the untimed case, though, the user obviously made a
1552 	 * mistake, because these are handled immediately.  We'll terminate the
1553 	 * break now and honor his implicit request by discarding the rest of
1554 	 * the data.
1555 	 */
1556 	if (async->async_flags & ASYNC_OUT_SUSPEND) {
1557 		if (async->async_utbrktid != 0) {
1558 			(void) untimeout(async->async_utbrktid);
1559 			async->async_utbrktid = 0;
1560 		}
1561 		mutex_enter(&asy->asy_excl_hi);
1562 		lcr = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
1563 		ddi_io_put8(asy->asy_iohandle,
1564 		    asy->asy_ioaddr + LCR, (lcr & ~SETBREAK));
1565 		mutex_exit(&asy->asy_excl_hi);
1566 		async->async_flags &= ~ASYNC_OUT_SUSPEND;
1567 		goto nodrain;
1568 	}
1569 
1570 	/*
1571 	 * If the user told us not to delay the close ("non-blocking"), then
1572 	 * don't bother trying to drain.
1573 	 *
1574 	 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
1575 	 * getting an M_START (since these messages aren't enqueued), and the
1576 	 * only other way to clear the stop condition is by loss of DCD, which
1577 	 * would discard the queue data.  Thus, we drop the output data if
1578 	 * ASYNC_STOPPED is set.
1579 	 */
1580 	if ((flag & (FNDELAY|FNONBLOCK)) ||
1581 	    (async->async_flags & ASYNC_STOPPED)) {
1582 		goto nodrain;
1583 	}
1584 
1585 	/*
1586 	 * If there's any pending output, then we have to try to drain it.
1587 	 * There are two main cases to be handled:
1588 	 *	- called by close(2): need to drain until done or until
1589 	 *	  a signal is received.  No timeout.
1590 	 *	- called by exit(2): need to drain while making progress
1591 	 *	  or until a timeout occurs.  No signals.
1592 	 *
1593 	 * If we can't rely on receiving a signal to get us out of a hung
1594 	 * session, then we have to use a timer.  In this case, we set a timer
1595 	 * to check for progress in sending the output data -- all that we ask
1596 	 * (at each interval) is that there's been some progress made.  Since
1597 	 * the interrupt routine grabs buffers from the write queue, we can't
1598 	 * trust changes in async_ocnt.  Instead, we use a progress flag.
1599 	 *
1600 	 * Note that loss of carrier will cause the output queue to be flushed,
1601 	 * and we'll wake up again and finish normally.
1602 	 */
1603 	if (!ddi_can_receive_sig() && asy_drain_check != 0) {
1604 		async->async_flags &= ~ASYNC_PROGRESS;
1605 		async->async_timer = timeout(async_progress_check, async,
1606 		    drv_usectohz(asy_drain_check));
1607 	}
1608 	while (async->async_ocnt > 0 ||
1609 	    async->async_ttycommon.t_writeq->q_first != NULL ||
1610 	    (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
1611 		if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0)
1612 			break;
1613 	}
1614 	if (async->async_timer != 0) {
1615 		(void) untimeout(async->async_timer);
1616 		async->async_timer = 0;
1617 	}
1618 
1619 nodrain:
1620 	async->async_ocnt = 0;
1621 	if (async->async_xmitblk != NULL)
1622 		freeb(async->async_xmitblk);
1623 	async->async_xmitblk = NULL;
1624 
1625 	/*
1626 	 * If line has HUPCL set or is incompletely opened fix up the modem
1627 	 * lines.
1628 	 */
1629 	DEBUGCONT1(ASY_DEBUG_MODEM,
1630 		"asy%dclose: next check HUPCL flag\n", instance);
1631 	mutex_enter(&asy->asy_excl_hi);
1632 	if ((async->async_ttycommon.t_cflag & HUPCL) ||
1633 	    (async->async_flags & ASYNC_WOPEN)) {
1634 		DEBUGCONT3(ASY_DEBUG_MODEM,
1635 			"asy%dclose: HUPCL flag = %x, ASYNC_WOPEN flag = %x\n",
1636 			instance,
1637 			async->async_ttycommon.t_cflag & HUPCL,
1638 			async->async_ttycommon.t_cflag & ASYNC_WOPEN);
1639 		async->async_flags |= ASYNC_DTR_DELAY;
1640 
1641 		/* turn off DTR, RTS but NOT interrupt to 386 */
1642 		if (asy->asy_flags & (ASY_IGNORE_CD|ASY_RTS_DTR_OFF)) {
1643 			DEBUGCONT3(ASY_DEBUG_MODEM,
1644 				"asy%dclose: ASY_IGNORE_CD flag = %x, "
1645 				"ASY_RTS_DTR_OFF flag = %x\n",
1646 				instance,
1647 				asy->asy_flags & ASY_IGNORE_CD,
1648 				asy->asy_flags & ASY_RTS_DTR_OFF);
1649 			ddi_io_put8(asy->asy_iohandle,
1650 				asy->asy_ioaddr + MCR, asy->asy_mcr|OUT2);
1651 		} else {
1652 			DEBUGCONT1(ASY_DEBUG_MODEM,
1653 			    "asy%dclose: Dropping DTR and RTS\n", instance);
1654 			ddi_io_put8(asy->asy_iohandle,
1655 				asy->asy_ioaddr + MCR, OUT2);
1656 		}
1657 		async->async_dtrtid =
1658 		    timeout((void (*)())async_dtr_free,
1659 		    (caddr_t)async, drv_usectohz(asy_min_dtr_low));
1660 	}
1661 	/*
1662 	 * If nobody's using it now, turn off receiver interrupts.
1663 	 */
1664 	if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
1665 		icr = ddi_io_get8(asy->asy_iohandle,
1666 			asy->asy_ioaddr + ICR);
1667 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1668 			(icr & ~RIEN));
1669 	}
1670 	mutex_exit(&asy->asy_excl_hi);
1671 out:
1672 	ttycommon_close(&async->async_ttycommon);
1673 
1674 	/*
1675 	 * Cancel outstanding "bufcall" request.
1676 	 */
1677 	if (async->async_wbufcid != 0) {
1678 		unbufcall(async->async_wbufcid);
1679 		async->async_wbufcid = 0;
1680 	}
1681 
1682 	/* Note that qprocsoff can't be done until after interrupts are off */
1683 	qprocsoff(q);
1684 	q->q_ptr = WR(q)->q_ptr = NULL;
1685 	async->async_ttycommon.t_readq = NULL;
1686 	async->async_ttycommon.t_writeq = NULL;
1687 
1688 	/*
1689 	 * Clear out device state, except persistant device property flags.
1690 	 */
1691 	async->async_flags &= (ASYNC_DTR_DELAY|ASY_RTS_DTR_OFF);
1692 	cv_broadcast(&async->async_flags_cv);
1693 	mutex_exit(&asy->asy_excl);
1694 
1695 	DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose: done\n", instance);
1696 	return (0);
1697 }
1698 
1699 static boolean_t
1700 asy_isbusy(struct asycom *asy)
1701 {
1702 	struct asyncline *async;
1703 
1704 	DEBUGCONT0(ASY_DEBUG_EOT, "asy_isbusy\n");
1705 	async = asy->asy_priv;
1706 	ASSERT(mutex_owned(&asy->asy_excl));
1707 	ASSERT(mutex_owned(&asy->asy_excl_hi));
1708 	return ((async->async_ocnt > 0) ||
1709 		((ddi_io_get8(asy->asy_iohandle,
1710 		    asy->asy_ioaddr + LSR) & (XSRE|XHRE)) == 0));
1711 }
1712 
1713 static void
1714 asy_waiteot(struct asycom *asy)
1715 {
1716 	/*
1717 	 * Wait for the current transmission block and the
1718 	 * current fifo data to transmit. Once this is done
1719 	 * we may go on.
1720 	 */
1721 	DEBUGCONT0(ASY_DEBUG_EOT, "asy_waiteot\n");
1722 	ASSERT(mutex_owned(&asy->asy_excl));
1723 	ASSERT(mutex_owned(&asy->asy_excl_hi));
1724 	while (asy_isbusy(asy)) {
1725 		mutex_exit(&asy->asy_excl_hi);
1726 		mutex_exit(&asy->asy_excl);
1727 		drv_usecwait(10000);		/* wait .01 */
1728 		mutex_enter(&asy->asy_excl);
1729 		mutex_enter(&asy->asy_excl_hi);
1730 	}
1731 }
1732 
1733 /* asy_reset_fifo -- flush fifos and [re]program fifo control register */
1734 static void
1735 asy_reset_fifo(struct asycom *asy, uchar_t flush)
1736 {
1737 	uchar_t lcr;
1738 
1739 	/* On a 16750, we have to set DLAB in order to set FIFOEXTRA. */
1740 
1741 	if (asy->asy_hwtype >= ASY16750) {
1742 		lcr = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
1743 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1744 		    lcr | DLAB);
1745 	}
1746 
1747 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR,
1748 	    asy->asy_fifor | flush);
1749 
1750 	/* Clear DLAB */
1751 
1752 	if (asy->asy_hwtype >= ASY16750) {
1753 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
1754 	}
1755 }
1756 
1757 /*
1758  * Program the ASY port. Most of the async operation is based on the values
1759  * of 'c_iflag' and 'c_cflag'.
1760  */
1761 
1762 #define	BAUDINDEX(cflg)	(((cflg) & CBAUDEXT) ? \
1763 			(((cflg) & CBAUD) + CBAUD + 1) : ((cflg) & CBAUD))
1764 
1765 static void
1766 asy_program(struct asycom *asy, int mode)
1767 {
1768 	struct asyncline *async;
1769 	int baudrate, c_flag;
1770 	int icr, lcr;
1771 	int flush_reg;
1772 	int ocflags;
1773 #ifdef DEBUG
1774 	int instance;
1775 #endif
1776 
1777 	ASSERT(mutex_owned(&asy->asy_excl));
1778 	ASSERT(mutex_owned(&asy->asy_excl_hi));
1779 
1780 	async = asy->asy_priv;
1781 #ifdef DEBUG
1782 	instance = UNIT(async->async_dev);
1783 	DEBUGCONT2(ASY_DEBUG_PROCS,
1784 		"asy%d_program: mode = 0x%08X, enter\n", instance, mode);
1785 #endif
1786 
1787 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
1788 
1789 	async->async_ttycommon.t_cflag &= ~(CIBAUD);
1790 
1791 	if (baudrate > CBAUD) {
1792 		async->async_ttycommon.t_cflag |= CIBAUDEXT;
1793 		async->async_ttycommon.t_cflag |=
1794 			(((baudrate - CBAUD - 1) << IBSHIFT) & CIBAUD);
1795 	} else {
1796 		async->async_ttycommon.t_cflag &= ~CIBAUDEXT;
1797 		async->async_ttycommon.t_cflag |=
1798 			((baudrate << IBSHIFT) & CIBAUD);
1799 	}
1800 
1801 	c_flag = async->async_ttycommon.t_cflag &
1802 		(CLOCAL|CREAD|CSTOPB|CSIZE|PARENB|PARODD|CBAUD|CBAUDEXT);
1803 
1804 	/* disable interrupts */
1805 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
1806 
1807 	ocflags = asy->asy_ocflag;
1808 
1809 	/* flush/reset the status registers */
1810 	(void) ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
1811 	(void) ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
1812 	asy->asy_msr = flush_reg = ddi_io_get8(asy->asy_iohandle,
1813 					asy->asy_ioaddr + MSR);
1814 	/*
1815 	 * The device is programmed in the open sequence, if we
1816 	 * have to hardware handshake, then this is a good time
1817 	 * to check if the device can receive any data.
1818 	 */
1819 
1820 	if ((CRTSCTS & async->async_ttycommon.t_cflag) && !(flush_reg & CTS)) {
1821 		async_flowcontrol_hw_output(asy, FLOW_STOP);
1822 	} else {
1823 		/*
1824 		 * We can not use async_flowcontrol_hw_output(asy, FLOW_START)
1825 		 * here, because if CRTSCTS is clear, we need clear
1826 		 * ASYNC_HW_OUT_FLW bit.
1827 		 */
1828 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
1829 	}
1830 
1831 	/*
1832 	 * If IXON is not set, clear ASYNC_SW_OUT_FLW;
1833 	 * If IXON is set, no matter what IXON flag is before this
1834 	 * function call to asy_program,
1835 	 * we will use the old ASYNC_SW_OUT_FLW status.
1836 	 * Because of handling IXON in the driver, we also should re-calculate
1837 	 * the value of ASYNC_OUT_FLW_RESUME bit, but in fact,
1838 	 * the TCSET* commands which call asy_program
1839 	 * are put into the write queue, so there is no output needed to
1840 	 * be resumed at this point.
1841 	 */
1842 	if (!(IXON & async->async_ttycommon.t_iflag))
1843 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
1844 
1845 	/* manually flush receive buffer or fifo (workaround for buggy fifos) */
1846 	if (mode == ASY_INIT)
1847 		if (asy->asy_use_fifo == FIFO_ON) {
1848 			for (flush_reg = asy->asy_fifo_buf; flush_reg-- > 0; ) {
1849 				(void) ddi_io_get8(asy->asy_iohandle,
1850 						asy->asy_ioaddr + DAT);
1851 			}
1852 		} else {
1853 			flush_reg = ddi_io_get8(asy->asy_iohandle,
1854 					asy->asy_ioaddr + DAT);
1855 		}
1856 
1857 	if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
1858 		/* Set line control */
1859 		lcr = ddi_io_get8(asy->asy_iohandle,
1860 			asy->asy_ioaddr + LCR);
1861 		lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
1862 
1863 		if (c_flag & CSTOPB)
1864 			lcr |= STB;	/* 2 stop bits */
1865 
1866 		if (c_flag & PARENB)
1867 			lcr |= PEN;
1868 
1869 		if ((c_flag & PARODD) == 0)
1870 			lcr |= EPS;
1871 
1872 		switch (c_flag & CSIZE) {
1873 		case CS5:
1874 			lcr |= BITS5;
1875 			break;
1876 		case CS6:
1877 			lcr |= BITS6;
1878 			break;
1879 		case CS7:
1880 			lcr |= BITS7;
1881 			break;
1882 		case CS8:
1883 			lcr |= BITS8;
1884 			break;
1885 		}
1886 
1887 		/* set the baud rate, unless it is "0" */
1888 		ddi_io_put8(asy->asy_iohandle,
1889 			asy->asy_ioaddr + LCR, DLAB);
1890 		if (baudrate != 0) {
1891 			ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
1892 				asyspdtab[baudrate] & 0xff);
1893 			ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1894 				(asyspdtab[baudrate] >> 8) & 0xff);
1895 		}
1896 		/* set the line control modes */
1897 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
1898 
1899 		/*
1900 		 * If we have a FIFO buffer, enable/flush
1901 		 * at intialize time, flush if transitioning from
1902 		 * CREAD off to CREAD on.
1903 		 */
1904 		if ((ocflags & CREAD) == 0 && (c_flag & CREAD) ||
1905 		    mode == ASY_INIT)
1906 			if (asy->asy_use_fifo == FIFO_ON)
1907 				asy_reset_fifo(asy, FIFORXFLSH);
1908 
1909 		/* remember the new cflags */
1910 		asy->asy_ocflag = c_flag & ~CLOCAL;
1911 	}
1912 
1913 	if (baudrate == 0)
1914 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1915 			(asy->asy_mcr & RTS) | OUT2);
1916 	else
1917 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1918 			asy->asy_mcr | OUT2);
1919 
1920 	/*
1921 	 * Call the modem status interrupt handler to check for the carrier
1922 	 * in case CLOCAL was turned off after the carrier came on.
1923 	 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
1924 	 */
1925 	async_msint(asy);
1926 
1927 	/* Set interrupt control */
1928 	DEBUGCONT3(ASY_DEBUG_MODM2,
1929 		"asy%d_program: c_flag & CLOCAL = %x t_cflag & CRTSCTS = %x\n",
1930 		instance,
1931 		c_flag & CLOCAL,
1932 		async->async_ttycommon.t_cflag & CRTSCTS);
1933 	if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
1934 		/*
1935 		 * direct-wired line ignores DCD, so we don't enable modem
1936 		 * status interrupts.
1937 		 */
1938 		icr = (TIEN | SIEN);
1939 	else
1940 		icr = (TIEN | SIEN | MIEN);
1941 
1942 	if (c_flag & CREAD)
1943 		icr |= RIEN;
1944 
1945 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, icr);
1946 	DEBUGCONT1(ASY_DEBUG_PROCS, "asy%d_program: done\n", instance);
1947 }
1948 
1949 static boolean_t
1950 asy_baudok(struct asycom *asy)
1951 {
1952 	struct asyncline *async = asy->asy_priv;
1953 	int baudrate;
1954 
1955 
1956 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
1957 
1958 	if (baudrate >= sizeof (asyspdtab)/sizeof (*asyspdtab))
1959 		return (0);
1960 
1961 	return (baudrate == 0 || asyspdtab[baudrate]);
1962 }
1963 
1964 /*
1965  * asyintr() is the High Level Interrupt Handler.
1966  *
1967  * There are four different interrupt types indexed by ISR register values:
1968  *		0: modem
1969  *		1: Tx holding register is empty, ready for next char
1970  *		2: Rx register now holds a char to be picked up
1971  *		3: error or break on line
1972  * This routine checks the Bit 0 (interrupt-not-pending) to determine if
1973  * the interrupt is from this port.
1974  */
1975 uint_t
1976 asyintr(caddr_t argasy)
1977 {
1978 	struct asycom		*asy = (struct asycom *)argasy;
1979 	struct asyncline	*async;
1980 	int			ret_status = DDI_INTR_UNCLAIMED;
1981 	uchar_t			interrupt_id, lsr;
1982 
1983 	interrupt_id = ddi_io_get8(asy->asy_iohandle,
1984 				asy->asy_ioaddr + ISR) & 0x0F;
1985 	async = asy->asy_priv;
1986 	if ((async == NULL) || asy_addedsoft == 0 ||
1987 		!(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
1988 		if (interrupt_id & NOINTERRUPT)
1989 			return (DDI_INTR_UNCLAIMED);
1990 		else {
1991 			/*
1992 			 * reset the device by:
1993 			 *	reading line status
1994 			 *	reading any data from data status register
1995 			 *	reading modem status
1996 			 */
1997 			(void) ddi_io_get8(asy->asy_iohandle,
1998 					asy->asy_ioaddr + LSR);
1999 			(void) ddi_io_get8(asy->asy_iohandle,
2000 					asy->asy_ioaddr + DAT);
2001 			asy->asy_msr = ddi_io_get8(asy->asy_iohandle,
2002 						asy->asy_ioaddr + MSR);
2003 			return (DDI_INTR_CLAIMED);
2004 		}
2005 	}
2006 	mutex_enter(&asy->asy_excl_hi);
2007 	/*
2008 	 * We will loop until the interrupt line is pulled low. asy
2009 	 * interrupt is edge triggered.
2010 	 */
2011 	/* CSTYLED */
2012 	for (;; interrupt_id = (ddi_io_get8(asy->asy_iohandle,
2013 					asy->asy_ioaddr + ISR) & 0x0F)) {
2014 		if (interrupt_id & NOINTERRUPT)
2015 			break;
2016 		ret_status = DDI_INTR_CLAIMED;
2017 
2018 		DEBUGCONT1(ASY_DEBUG_INTR,
2019 			"asyintr: interrupt_id = 0x%d\n", interrupt_id);
2020 		lsr = ddi_io_get8(asy->asy_iohandle,
2021 			asy->asy_ioaddr + LSR);
2022 		switch (interrupt_id) {
2023 		case RxRDY:
2024 		case RSTATUS:
2025 		case FFTMOUT:
2026 			/* receiver interrupt or receiver errors */
2027 			async_rxint(asy, lsr);
2028 			break;
2029 		case TxRDY:
2030 			/* transmit interrupt */
2031 			async_txint(asy);
2032 			continue;
2033 		case MSTATUS:
2034 			/* modem status interrupt */
2035 			async_msint(asy);
2036 			break;
2037 		}
2038 		if ((lsr & XHRE) && (async->async_flags & ASYNC_BUSY) &&
2039 		    (async->async_ocnt > 0))
2040 			async_txint(asy);
2041 	}
2042 	mutex_exit(&asy->asy_excl_hi);
2043 	return (ret_status);
2044 }
2045 
2046 /*
2047  * Transmitter interrupt service routine.
2048  * If there is more data to transmit in the current pseudo-DMA block,
2049  * send the next character if output is not stopped or draining.
2050  * Otherwise, queue up a soft interrupt.
2051  *
2052  * XXX -  Needs review for HW FIFOs.
2053  */
2054 static void
2055 async_txint(struct asycom *asy)
2056 {
2057 	struct asyncline *async = asy->asy_priv;
2058 	int		fifo_len;
2059 
2060 	/*
2061 	 * If ASYNC_BREAK or ASYNC_OUT_SUSPEND has been set, return to
2062 	 * asyintr()'s context to claim the interrupt without performing
2063 	 * any action. No character will be loaded into FIFO/THR until
2064 	 * timed or untimed break is removed
2065 	 */
2066 	if (async->async_flags & (ASYNC_BREAK|ASYNC_OUT_SUSPEND))
2067 		return;
2068 
2069 	fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
2070 	if (fifo_len > asy_max_tx_fifo)
2071 		fifo_len = asy_max_tx_fifo;
2072 
2073 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
2074 		fifo_len--;
2075 
2076 	if (async->async_ocnt > 0 && fifo_len > 0 &&
2077 	    !(async->async_flags &
2078 	    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_STOPPED))) {
2079 		while (fifo_len-- > 0 && async->async_ocnt-- > 0) {
2080 			ddi_io_put8(asy->asy_iohandle,
2081 			    asy->asy_ioaddr + DAT, *async->async_optr++);
2082 		}
2083 		async->async_flags |= ASYNC_PROGRESS;
2084 	}
2085 
2086 	if (fifo_len <= 0)
2087 		return;
2088 
2089 	ASYSETSOFT(asy);
2090 }
2091 
2092 /*
2093  * Interrupt on port: handle PPS event.  This function is only called
2094  * for a port on which PPS event handling has been enabled.
2095  */
2096 static void
2097 asy_ppsevent(struct asycom *asy, int msr)
2098 {
2099 	if (asy->asy_flags & ASY_PPS_EDGE) {
2100 		/* Have seen leading edge, now look for and record drop */
2101 		if ((msr & DCD) == 0)
2102 			asy->asy_flags &= ~ASY_PPS_EDGE;
2103 		/*
2104 		 * Waiting for leading edge, look for rise; stamp event and
2105 		 * calibrate kernel clock.
2106 		 */
2107 	} else if (msr & DCD) {
2108 			/*
2109 			 * This code captures a timestamp at the designated
2110 			 * transition of the PPS signal (DCD asserted).  The
2111 			 * code provides a pointer to the timestamp, as well
2112 			 * as the hardware counter value at the capture.
2113 			 *
2114 			 * Note: the kernel has nano based time values while
2115 			 * NTP requires micro based, an in-line fast algorithm
2116 			 * to convert nsec to usec is used here -- see hrt2ts()
2117 			 * in common/os/timers.c for a full description.
2118 			 */
2119 			struct timeval *tvp = &asy_ppsev.tv;
2120 			timestruc_t ts;
2121 			long nsec, usec;
2122 
2123 			asy->asy_flags |= ASY_PPS_EDGE;
2124 			LED_OFF;
2125 			gethrestime(&ts);
2126 			LED_ON;
2127 			nsec = ts.tv_nsec;
2128 			usec = nsec + (nsec >> 2);
2129 			usec = nsec + (usec >> 1);
2130 			usec = nsec + (usec >> 2);
2131 			usec = nsec + (usec >> 4);
2132 			usec = nsec - (usec >> 3);
2133 			usec = nsec + (usec >> 2);
2134 			usec = nsec + (usec >> 3);
2135 			usec = nsec + (usec >> 4);
2136 			usec = nsec + (usec >> 1);
2137 			usec = nsec + (usec >> 6);
2138 			tvp->tv_usec = usec >> 10;
2139 			tvp->tv_sec = ts.tv_sec;
2140 
2141 			++asy_ppsev.serial;
2142 
2143 			/*
2144 			 * Because the kernel keeps a high-resolution time,
2145 			 * pass the current highres timestamp in tvp and zero
2146 			 * in usec.
2147 			 */
2148 			ddi_hardpps(tvp, 0);
2149 	}
2150 }
2151 
2152 /*
2153  * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
2154  * error interrupt.
2155  * Try to put the character into the circular buffer for this line; if it
2156  * overflows, indicate a circular buffer overrun. If this port is always
2157  * to be serviced immediately, or the character is a STOP character, or
2158  * more than 15 characters have arrived, queue up a soft interrupt to
2159  * drain the circular buffer.
2160  * XXX - needs review for hw FIFOs support.
2161  */
2162 
2163 static void
2164 async_rxint(struct asycom *asy, uchar_t lsr)
2165 {
2166 	struct asyncline *async = asy->asy_priv;
2167 	uchar_t c;
2168 	uint_t s, needsoft = 0;
2169 	tty_common_t *tp;
2170 	int looplim = asy->asy_fifo_buf * 2;
2171 
2172 	tp = &async->async_ttycommon;
2173 	if (!(tp->t_cflag & CREAD)) {
2174 		while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
2175 			(void) (ddi_io_get8(asy->asy_iohandle,
2176 					asy->asy_ioaddr + DAT) & 0xff);
2177 			lsr = ddi_io_get8(asy->asy_iohandle,
2178 					asy->asy_ioaddr + LSR);
2179 			if (looplim-- < 0)		/* limit loop */
2180 				break;
2181 		}
2182 		return; /* line is not open for read? */
2183 	}
2184 
2185 	while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
2186 		c = 0;
2187 		s = 0;				/* reset error status */
2188 		if (lsr & RCA) {
2189 			c = ddi_io_get8(asy->asy_iohandle,
2190 				asy->asy_ioaddr + DAT) & 0xff;
2191 
2192 			/*
2193 			 * We handle XON/XOFF char if IXON is set,
2194 			 * but if received char is _POSIX_VDISABLE,
2195 			 * we left it to the up level module.
2196 			 */
2197 			if (tp->t_iflag & IXON) {
2198 				if ((c == async->async_stopc) &&
2199 				    (c != _POSIX_VDISABLE)) {
2200 					async_flowcontrol_sw_output(asy,
2201 					    FLOW_STOP);
2202 					goto check_looplim;
2203 				} else if ((c == async->async_startc) &&
2204 				    (c != _POSIX_VDISABLE)) {
2205 					async_flowcontrol_sw_output(asy,
2206 					    FLOW_START);
2207 					needsoft = 1;
2208 					goto check_looplim;
2209 				}
2210 				if ((tp->t_iflag & IXANY) &&
2211 				    (async->async_flags & ASYNC_SW_OUT_FLW)) {
2212 					async_flowcontrol_sw_output(asy,
2213 					    FLOW_START);
2214 					needsoft = 1;
2215 				}
2216 			}
2217 		}
2218 
2219 		/*
2220 		 * Check for character break sequence
2221 		 */
2222 		if ((abort_enable == KIOCABORTALTERNATE) &&
2223 		    (asy->asy_flags & ASY_CONSOLE)) {
2224 			if (abort_charseq_recognize(c))
2225 				abort_sequence_enter((char *)NULL);
2226 		}
2227 
2228 		/* Handle framing errors */
2229 		if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
2230 			if (lsr & PARERR) {
2231 				if (tp->t_iflag & INPCK) /* parity enabled */
2232 					s |= PERROR;
2233 			}
2234 
2235 			if (lsr & (FRMERR|BRKDET))
2236 				s |= FRERROR;
2237 			if (lsr & OVRRUN) {
2238 				async->async_hw_overrun = 1;
2239 				s |= OVERRUN;
2240 			}
2241 		}
2242 
2243 		if (s == 0)
2244 			if ((tp->t_iflag & PARMRK) &&
2245 			    !(tp->t_iflag & (IGNPAR|ISTRIP)) &&
2246 			    (c == 0377))
2247 				if (RING_POK(async, 2)) {
2248 					RING_PUT(async, 0377);
2249 					RING_PUT(async, c);
2250 				} else
2251 					async->async_sw_overrun = 1;
2252 			else
2253 				if (RING_POK(async, 1))
2254 					RING_PUT(async, c);
2255 				else
2256 					async->async_sw_overrun = 1;
2257 		else
2258 			if (s & FRERROR) /* Handle framing errors */
2259 				if (c == 0)
2260 					if ((asy->asy_flags & ASY_CONSOLE) &&
2261 					    (abort_enable !=
2262 					    KIOCABORTALTERNATE))
2263 						abort_sequence_enter((char *)0);
2264 					else
2265 						async->async_break++;
2266 				else
2267 					if (RING_POK(async, 1))
2268 						RING_MARK(async, c, s);
2269 					else
2270 						async->async_sw_overrun = 1;
2271 			else /* Parity errors are handled by ldterm */
2272 				if (RING_POK(async, 1))
2273 					RING_MARK(async, c, s);
2274 				else
2275 					async->async_sw_overrun = 1;
2276 check_looplim:
2277 		lsr = ddi_io_get8(asy->asy_iohandle,
2278 			asy->asy_ioaddr + LSR);
2279 		if (looplim-- < 0)		/* limit loop */
2280 			break;
2281 	}
2282 	if ((RING_CNT(async) > (RINGSIZE * 3)/4) &&
2283 	    !(async->async_inflow_source & IN_FLOW_RINGBUFF)) {
2284 		async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_RINGBUFF);
2285 		(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
2286 		    IN_FLOW_RINGBUFF);
2287 	}
2288 
2289 	if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
2290 	    (RING_FRAC(async)) || (async->async_polltid == 0))
2291 		ASYSETSOFT(asy);	/* need a soft interrupt */
2292 }
2293 
2294 /*
2295  * Modem status interrupt.
2296  *
2297  * (Note: It is assumed that the MSR hasn't been read by asyintr().)
2298  */
2299 
2300 static void
2301 async_msint(struct asycom *asy)
2302 {
2303 	struct asyncline *async = asy->asy_priv;
2304 	int msr, t_cflag = async->async_ttycommon.t_cflag;
2305 #ifdef DEBUG
2306 	int instance = UNIT(async->async_dev);
2307 #endif
2308 
2309 async_msint_retry:
2310 	/* this resets the interrupt */
2311 	msr = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
2312 	DEBUGCONT10(ASY_DEBUG_STATE,
2313 		"async%d_msint call #%d:\n"
2314 		"   transition: %3s %3s %3s %3s\n"
2315 		"current state: %3s %3s %3s %3s\n",
2316 		instance,
2317 		++(asy->asy_msint_cnt),
2318 		(msr & DCTS) ? "DCTS" : "    ",
2319 		(msr & DDSR) ? "DDSR" : "    ",
2320 		(msr & DRI)  ? "DRI " : "    ",
2321 		(msr & DDCD) ? "DDCD" : "    ",
2322 		(msr & CTS)  ? "CTS " : "    ",
2323 		(msr & DSR)  ? "DSR " : "    ",
2324 		(msr & RI)   ? "RI  " : "    ",
2325 		(msr & DCD)  ? "DCD " : "    ");
2326 
2327 	/* If CTS status is changed, do H/W output flow control */
2328 	if ((t_cflag & CRTSCTS) && (((asy->asy_msr ^ msr) & CTS) != 0))
2329 		async_flowcontrol_hw_output(asy,
2330 		    msr & CTS ? FLOW_START : FLOW_STOP);
2331 	/*
2332 	 * Reading MSR resets the interrupt, we save the
2333 	 * value of msr so that other functions could examine MSR by
2334 	 * looking at asy_msr.
2335 	 */
2336 	asy->asy_msr = (uchar_t)msr;
2337 
2338 	/* Handle PPS event */
2339 	if (asy->asy_flags & ASY_PPS)
2340 		asy_ppsevent(asy, msr);
2341 
2342 	async->async_ext++;
2343 	ASYSETSOFT(asy);
2344 	/*
2345 	 * We will make sure that the modem status presented to us
2346 	 * during the previous read has not changed. If the chip samples
2347 	 * the modem status on the falling edge of the interrupt line,
2348 	 * and uses this state as the base for detecting change of modem
2349 	 * status, we would miss a change of modem status event that occured
2350 	 * after we initiated a read MSR operation.
2351 	 */
2352 	msr = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
2353 	if (STATES(msr) != STATES(asy->asy_msr))
2354 		goto	async_msint_retry;
2355 }
2356 
2357 /*
2358  * Handle a second-stage interrupt.
2359  */
2360 /*ARGSUSED*/
2361 uint_t
2362 asysoftintr(caddr_t intarg)
2363 {
2364 	struct asycom *asy;
2365 	int rv;
2366 	int instance;
2367 
2368 	/*
2369 	 * Test and clear soft interrupt.
2370 	 */
2371 	mutex_enter(&asy_soft_lock);
2372 	DEBUGCONT0(ASY_DEBUG_PROCS, "asysoftintr: enter\n");
2373 	rv = asysoftpend;
2374 	if (rv != 0)
2375 		asysoftpend = 0;
2376 	mutex_exit(&asy_soft_lock);
2377 
2378 	if (rv) {
2379 		/*
2380 		 * Note - we can optimize the loop by remembering the last
2381 		 * device that requested soft interrupt
2382 		 */
2383 		for (instance = 0; instance <= max_asy_instance; instance++) {
2384 			asy = ddi_get_soft_state(asy_soft_state, instance);
2385 			if (asy == NULL || asy->asy_priv == NULL)
2386 				continue;
2387 			mutex_enter(&asy_soft_lock);
2388 			if (asy->asy_flags & ASY_NEEDSOFT) {
2389 				asy->asy_flags &= ~ASY_NEEDSOFT;
2390 				mutex_exit(&asy_soft_lock);
2391 				async_softint(asy);
2392 			} else
2393 				mutex_exit(&asy_soft_lock);
2394 		}
2395 	}
2396 	return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2397 }
2398 
2399 /*
2400  * Handle a software interrupt.
2401  */
2402 static void
2403 async_softint(struct asycom *asy)
2404 {
2405 	struct asyncline *async = asy->asy_priv;
2406 	short	cc;
2407 	mblk_t	*bp;
2408 	queue_t	*q;
2409 	uchar_t	val;
2410 	uchar_t	c;
2411 	tty_common_t	*tp;
2412 	int nb;
2413 	int instance = UNIT(async->async_dev);
2414 
2415 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint\n", instance);
2416 	mutex_enter(&asy_soft_lock);
2417 	if (asy->asy_flags & ASY_DOINGSOFT) {
2418 		asy->asy_flags |= ASY_DOINGSOFT_RETRY;
2419 		mutex_exit(&asy_soft_lock);
2420 		return;
2421 	}
2422 	asy->asy_flags |= ASY_DOINGSOFT;
2423 begin:
2424 	asy->asy_flags &= ~ASY_DOINGSOFT_RETRY;
2425 	mutex_exit(&asy_soft_lock);
2426 	mutex_enter(&asy->asy_excl);
2427 	tp = &async->async_ttycommon;
2428 	q = tp->t_readq;
2429 	if (async->async_flags & ASYNC_OUT_FLW_RESUME) {
2430 		if (async->async_ocnt > 0) {
2431 			mutex_enter(&asy->asy_excl_hi);
2432 			async_resume(async);
2433 			mutex_exit(&asy->asy_excl_hi);
2434 		} else {
2435 			if (async->async_xmitblk)
2436 				freeb(async->async_xmitblk);
2437 			async->async_xmitblk = NULL;
2438 			async_start(async);
2439 		}
2440 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
2441 	}
2442 	mutex_enter(&asy->asy_excl_hi);
2443 	if (async->async_ext) {
2444 		async->async_ext = 0;
2445 		/* check for carrier up */
2446 		DEBUGCONT3(ASY_DEBUG_MODM2,
2447 			"async%d_softint: asy_msr & DCD = %x, "
2448 			"tp->t_flags & TS_SOFTCAR = %x\n",
2449 			instance,
2450 			asy->asy_msr & DCD,
2451 			tp->t_flags & TS_SOFTCAR);
2452 		if (asy->asy_msr & DCD) {
2453 			/* carrier present */
2454 			if ((async->async_flags & ASYNC_CARR_ON) == 0) {
2455 				DEBUGCONT1(ASY_DEBUG_MODM2,
2456 					"async%d_softint: set ASYNC_CARR_ON\n",
2457 					instance);
2458 				async->async_flags |= ASYNC_CARR_ON;
2459 				if (async->async_flags & ASYNC_ISOPEN) {
2460 					mutex_exit(&asy->asy_excl_hi);
2461 					mutex_exit(&asy->asy_excl);
2462 					(void) putctl(q, M_UNHANGUP);
2463 					mutex_enter(&asy->asy_excl);
2464 					mutex_enter(&asy->asy_excl_hi);
2465 				}
2466 				cv_broadcast(&async->async_flags_cv);
2467 			}
2468 		} else {
2469 			if ((async->async_flags & ASYNC_CARR_ON) &&
2470 			    !(tp->t_cflag & CLOCAL) &&
2471 			    !(tp->t_flags & TS_SOFTCAR)) {
2472 				int flushflag;
2473 
2474 				DEBUGCONT1(ASY_DEBUG_MODEM,
2475 					"async%d_softint: carrier dropped, "
2476 					"so drop DTR\n",
2477 					instance);
2478 				/*
2479 				 * Carrier went away.
2480 				 * Drop DTR, abort any output in
2481 				 * progress, indicate that output is
2482 				 * not stopped, and send a hangup
2483 				 * notification upstream.
2484 				 */
2485 				val = ddi_io_get8(asy->asy_iohandle,
2486 					asy->asy_ioaddr + MCR);
2487 				ddi_io_put8(asy->asy_iohandle,
2488 				    asy->asy_ioaddr + MCR, (val & ~DTR));
2489 				if (async->async_flags & ASYNC_BUSY) {
2490 				    DEBUGCONT0(ASY_DEBUG_BUSY,
2491 					    "async_softint: "
2492 					    "Carrier dropped.  "
2493 					    "Clearing async_ocnt\n");
2494 				    async->async_ocnt = 0;
2495 				}	/* if */
2496 
2497 				async->async_flags &= ~ASYNC_STOPPED;
2498 				if (async->async_flags & ASYNC_ISOPEN) {
2499 				    mutex_exit(&asy->asy_excl_hi);
2500 				    mutex_exit(&asy->asy_excl);
2501 				    (void) putctl(q, M_HANGUP);
2502 				    mutex_enter(&asy->asy_excl);
2503 				DEBUGCONT1(ASY_DEBUG_MODEM,
2504 					"async%d_softint: "
2505 					"putctl(q, M_HANGUP)\n",
2506 					instance);
2507 				/*
2508 				 * Flush FIFO buffers
2509 				 * Any data left in there is invalid now
2510 				 */
2511 				if (asy->asy_use_fifo == FIFO_ON)
2512 					asy_reset_fifo(asy, FIFOTXFLSH);
2513 				/*
2514 				 * Flush our write queue if we have one.
2515 				 *
2516 				 * If we're in the midst of close, then flush
2517 				 * everything.  Don't leave stale ioctls lying
2518 				 * about.
2519 				 */
2520 				flushflag = (async->async_flags &
2521 				    ASYNC_CLOSING) ? FLUSHALL : FLUSHDATA;
2522 				flushq(tp->t_writeq, flushflag);
2523 
2524 				bp = async->async_xmitblk; /* active msg */
2525 				if (bp != NULL) {
2526 					freeb(bp);
2527 					async->async_xmitblk = NULL;
2528 				}
2529 
2530 				mutex_enter(&asy->asy_excl_hi);
2531 				async->async_flags &= ~ASYNC_BUSY;
2532 				/*
2533 				 * This message warns of Carrier loss
2534 				 * with data left to transmit can hang the
2535 				 * system.
2536 				 */
2537 				DEBUGCONT0(ASY_DEBUG_MODEM,
2538 					"async_softint: Flushing to "
2539 					"prevent HUPCL hanging\n");
2540 				}	/* if (ASYNC_ISOPEN) */
2541 			}	/* if (ASYNC_CARR_ON && CLOCAL) */
2542 			async->async_flags &= ~ASYNC_CARR_ON;
2543 			cv_broadcast(&async->async_flags_cv);
2544 		}	/* else */
2545 	}	/* if (async->async_ext) */
2546 
2547 	mutex_exit(&asy->asy_excl_hi);
2548 
2549 	/*
2550 	 * If data has been added to the circular buffer, remove
2551 	 * it from the buffer, and send it up the stream if there's
2552 	 * somebody listening. Try to do it 16 bytes at a time. If we
2553 	 * have more than 16 bytes to move, move 16 byte chunks and
2554 	 * leave the rest for next time around (maybe it will grow).
2555 	 */
2556 	mutex_enter(&asy->asy_excl_hi);
2557 	if (!(async->async_flags & ASYNC_ISOPEN)) {
2558 		RING_INIT(async);
2559 		goto rv;
2560 	}
2561 	if ((cc = RING_CNT(async)) <= 0)
2562 		goto rv;
2563 	mutex_exit(&asy->asy_excl_hi);
2564 
2565 	if (!canput(q)) {
2566 		mutex_enter(&asy->asy_excl_hi);
2567 		if (!(async->async_inflow_source & IN_FLOW_STREAMS)) {
2568 			async_flowcontrol_hw_input(asy, FLOW_STOP,
2569 			    IN_FLOW_STREAMS);
2570 			(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
2571 			    IN_FLOW_STREAMS);
2572 		}
2573 		goto rv;
2574 	}
2575 	if (async->async_inflow_source & IN_FLOW_STREAMS) {
2576 		mutex_enter(&asy->asy_excl_hi);
2577 		async_flowcontrol_hw_input(asy, FLOW_START,
2578 		    IN_FLOW_STREAMS);
2579 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
2580 		    IN_FLOW_STREAMS);
2581 		mutex_exit(&asy->asy_excl_hi);
2582 	}
2583 	DEBUGCONT2(ASY_DEBUG_INPUT,
2584 		"async%d_softint: %d char(s) in queue.\n", instance, cc);
2585 	if (!(bp = allocb(cc, BPRI_MED))) {
2586 		mutex_exit(&asy->asy_excl);
2587 		ttycommon_qfull(&async->async_ttycommon, q);
2588 		mutex_enter(&asy->asy_excl);
2589 		mutex_enter(&asy->asy_excl_hi);
2590 		goto rv;
2591 	}
2592 	mutex_enter(&asy->asy_excl_hi);
2593 	do {
2594 		if (RING_ERR(async, S_ERRORS)) {
2595 			RING_UNMARK(async);
2596 			c = RING_GET(async);
2597 			break;
2598 		} else
2599 			*bp->b_wptr++ = RING_GET(async);
2600 	} while (--cc);
2601 	mutex_exit(&asy->asy_excl_hi);
2602 	mutex_exit(&asy->asy_excl);
2603 	if (bp->b_wptr > bp->b_rptr) {
2604 			if (!canput(q)) {
2605 				asyerror(CE_NOTE, "asy%d: local queue full",
2606 					instance);
2607 				freemsg(bp);
2608 			} else
2609 				(void) putq(q, bp);
2610 	} else
2611 		freemsg(bp);
2612 	/*
2613 	 * If we have a parity error, then send
2614 	 * up an M_BREAK with the "bad"
2615 	 * character as an argument. Let ldterm
2616 	 * figure out what to do with the error.
2617 	 */
2618 	if (cc) {
2619 		(void) putctl1(q, M_BREAK, c);
2620 		ASYSETSOFT(async->async_common);	/* finish cc chars */
2621 	}
2622 	mutex_enter(&asy->asy_excl);
2623 	mutex_enter(&asy->asy_excl_hi);
2624 rv:
2625 	if ((RING_CNT(async) < (RINGSIZE/4)) &&
2626 	    (async->async_inflow_source & IN_FLOW_RINGBUFF)) {
2627 		async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_RINGBUFF);
2628 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
2629 		    IN_FLOW_RINGBUFF);
2630 	}
2631 
2632 	/*
2633 	 * If a transmission has finished, indicate that it's finished,
2634 	 * and start that line up again.
2635 	 */
2636 	if (async->async_break > 0) {
2637 		nb = async->async_break;
2638 		async->async_break = 0;
2639 		if (async->async_flags & ASYNC_ISOPEN) {
2640 			mutex_exit(&asy->asy_excl_hi);
2641 			mutex_exit(&asy->asy_excl);
2642 			for (; nb > 0; nb--)
2643 				(void) putctl(q, M_BREAK);
2644 			mutex_enter(&asy->asy_excl);
2645 			mutex_enter(&asy->asy_excl_hi);
2646 		}
2647 	}
2648 	if (async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) {
2649 		DEBUGCONT2(ASY_DEBUG_BUSY,
2650 		    "async%d_softint: Clearing ASYNC_BUSY.  async_ocnt=%d\n",
2651 		    instance,
2652 		    async->async_ocnt);
2653 		async->async_flags &= ~ASYNC_BUSY;
2654 		mutex_exit(&asy->asy_excl_hi);
2655 		if (async->async_xmitblk)
2656 			freeb(async->async_xmitblk);
2657 		async->async_xmitblk = NULL;
2658 		async_start(async);
2659 		/*
2660 		 * If the flag isn't set after doing the async_start above, we
2661 		 * may have finished all the queued output.  Signal any thread
2662 		 * stuck in close.
2663 		 */
2664 		if (!(async->async_flags & ASYNC_BUSY))
2665 			cv_broadcast(&async->async_flags_cv);
2666 		mutex_enter(&asy->asy_excl_hi);
2667 	}
2668 	/*
2669 	 * A note about these overrun bits: all they do is *tell* someone
2670 	 * about an error- They do not track multiple errors. In fact,
2671 	 * you could consider them latched register bits if you like.
2672 	 * We are only interested in printing the error message once for
2673 	 * any cluster of overrun errrors.
2674 	 */
2675 	if (async->async_hw_overrun) {
2676 		if (async->async_flags & ASYNC_ISOPEN) {
2677 			mutex_exit(&asy->asy_excl_hi);
2678 			mutex_exit(&asy->asy_excl);
2679 			asyerror(CE_NOTE, "asy%d: silo overflow", instance);
2680 			mutex_enter(&asy->asy_excl);
2681 			mutex_enter(&asy->asy_excl_hi);
2682 		}
2683 		async->async_hw_overrun = 0;
2684 	}
2685 	if (async->async_sw_overrun) {
2686 		if (async->async_flags & ASYNC_ISOPEN) {
2687 			mutex_exit(&asy->asy_excl_hi);
2688 			mutex_exit(&asy->asy_excl);
2689 			asyerror(CE_NOTE, "asy%d: ring buffer overflow",
2690 				instance);
2691 			mutex_enter(&asy->asy_excl);
2692 			mutex_enter(&asy->asy_excl_hi);
2693 		}
2694 		async->async_sw_overrun = 0;
2695 	}
2696 	mutex_exit(&asy->asy_excl_hi);
2697 	mutex_exit(&asy->asy_excl);
2698 	mutex_enter(&asy_soft_lock);
2699 	if (asy->asy_flags & ASY_DOINGSOFT_RETRY) {
2700 		goto begin;
2701 	}
2702 	asy->asy_flags &= ~ASY_DOINGSOFT;
2703 	mutex_exit(&asy_soft_lock);
2704 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint: done\n", instance);
2705 }
2706 
2707 /*
2708  * Restart output on a line after a delay or break timer expired.
2709  */
2710 static void
2711 async_restart(void *arg)
2712 {
2713 	struct asyncline *async = (struct asyncline *)arg;
2714 	struct asycom *asy = async->async_common;
2715 	uchar_t lcr;
2716 
2717 	/*
2718 	 * If break timer expired, turn off the break bit.
2719 	 */
2720 #ifdef DEBUG
2721 	int instance = UNIT(async->async_dev);
2722 
2723 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_restart\n", instance);
2724 #endif
2725 	mutex_enter(&asy->asy_excl);
2726 	/*
2727 	 * If ASYNC_OUT_SUSPEND is also set, we don't really
2728 	 * clean the HW break, TIOCCBRK is responsible for this.
2729 	 */
2730 	if ((async->async_flags & ASYNC_BREAK) &&
2731 	    !(async->async_flags & ASYNC_OUT_SUSPEND)) {
2732 		mutex_enter(&asy->asy_excl_hi);
2733 		lcr = ddi_io_get8(asy->asy_iohandle,
2734 			asy->asy_ioaddr + LCR);
2735 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
2736 			(lcr & ~SETBREAK));
2737 		mutex_exit(&asy->asy_excl_hi);
2738 	}
2739 	async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK);
2740 	cv_broadcast(&async->async_flags_cv);
2741 	async_start(async);
2742 
2743 	mutex_exit(&asy->asy_excl);
2744 }
2745 
2746 static void
2747 async_start(struct asyncline *async)
2748 {
2749 	async_nstart(async, 0);
2750 }
2751 
2752 /*
2753  * Start output on a line, unless it's busy, frozen, or otherwise.
2754  */
2755 /*ARGSUSED*/
2756 static void
2757 async_nstart(struct asyncline *async, int mode)
2758 {
2759 	struct asycom *asy = async->async_common;
2760 	int cc;
2761 	queue_t *q;
2762 	mblk_t *bp;
2763 	uchar_t *xmit_addr;
2764 	uchar_t	val;
2765 	int	fifo_len = 1;
2766 	boolean_t didsome;
2767 	mblk_t *nbp;
2768 
2769 #ifdef DEBUG
2770 	int instance = UNIT(async->async_dev);
2771 
2772 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_nstart\n", instance);
2773 #endif
2774 	if (asy->asy_use_fifo == FIFO_ON) {
2775 		fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
2776 		if (fifo_len > asy_max_tx_fifo)
2777 			fifo_len = asy_max_tx_fifo;
2778 	}
2779 
2780 	ASSERT(mutex_owned(&asy->asy_excl));
2781 
2782 	/*
2783 	 * If the chip is busy (i.e., we're waiting for a break timeout
2784 	 * to expire, or for the current transmission to finish, or for
2785 	 * output to finish draining from chip), don't grab anything new.
2786 	 */
2787 	if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY)) {
2788 		DEBUGCONT2((mode? ASY_DEBUG_OUT : 0),
2789 			"async%d_nstart: start %s.\n",
2790 			instance,
2791 			async->async_flags & ASYNC_BREAK ? "break" : "busy");
2792 		return;
2793 	}
2794 
2795 	/*
2796 	 * Check only pended sw input flow control.
2797 	 */
2798 	mutex_enter(&asy->asy_excl_hi);
2799 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
2800 		fifo_len--;
2801 	mutex_exit(&asy->asy_excl_hi);
2802 
2803 	/*
2804 	 * If we're waiting for a delay timeout to expire, don't grab
2805 	 * anything new.
2806 	 */
2807 	if (async->async_flags & ASYNC_DELAY) {
2808 		DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
2809 			"async%d_nstart: start ASYNC_DELAY.\n", instance);
2810 		return;
2811 	}
2812 
2813 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
2814 		DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
2815 			"async%d_nstart: start writeq is null.\n", instance);
2816 		return;	/* not attached to a stream */
2817 	}
2818 
2819 	for (;;) {
2820 		if ((bp = getq(q)) == NULL)
2821 			return;	/* no data to transmit */
2822 
2823 		/*
2824 		 * We have a message block to work on.
2825 		 * Check whether it's a break, a delay, or an ioctl (the latter
2826 		 * occurs if the ioctl in question was waiting for the output
2827 		 * to drain).  If it's one of those, process it immediately.
2828 		 */
2829 		switch (bp->b_datap->db_type) {
2830 
2831 		case M_BREAK:
2832 			/*
2833 			 * Set the break bit, and arrange for "async_restart"
2834 			 * to be called in 1/4 second; it will turn the
2835 			 * break bit off, and call "async_start" to grab
2836 			 * the next message.
2837 			 */
2838 			mutex_enter(&asy->asy_excl_hi);
2839 			val = ddi_io_get8(asy->asy_iohandle,
2840 				asy->asy_ioaddr + LCR);
2841 			ddi_io_put8(asy->asy_iohandle,
2842 				asy->asy_ioaddr + LCR, (val | SETBREAK));
2843 			mutex_exit(&asy->asy_excl_hi);
2844 			async->async_flags |= ASYNC_BREAK;
2845 			(void) timeout(async_restart, (caddr_t)async,
2846 			    drv_usectohz(1000000)/4);
2847 			freemsg(bp);
2848 			return;	/* wait for this to finish */
2849 
2850 		case M_DELAY:
2851 			/*
2852 			 * Arrange for "async_restart" to be called when the
2853 			 * delay expires; it will turn ASYNC_DELAY off,
2854 			 * and call "async_start" to grab the next message.
2855 			 */
2856 			(void) timeout(async_restart, (caddr_t)async,
2857 			    (int)(*(unsigned char *)bp->b_rptr + 6));
2858 			async->async_flags |= ASYNC_DELAY;
2859 			freemsg(bp);
2860 			return;	/* wait for this to finish */
2861 
2862 		case M_IOCTL:
2863 			/*
2864 			 * This ioctl was waiting for the output ahead of
2865 			 * it to drain; obviously, it has.  Do it, and
2866 			 * then grab the next message after it.
2867 			 */
2868 			mutex_exit(&asy->asy_excl);
2869 			async_ioctl(async, q, bp);
2870 			mutex_enter(&asy->asy_excl);
2871 			continue;
2872 		}
2873 
2874 		while (bp != NULL && (cc = bp->b_wptr - bp->b_rptr) == 0) {
2875 			nbp = bp->b_cont;
2876 			freeb(bp);
2877 			bp = nbp;
2878 		}
2879 		if (bp != NULL)
2880 			break;
2881 	}
2882 
2883 	/*
2884 	 * We have data to transmit.  If output is stopped, put
2885 	 * it back and try again later.
2886 	 */
2887 	if (async->async_flags & (ASYNC_HW_OUT_FLW | ASYNC_SW_OUT_FLW |
2888 	    ASYNC_STOPPED | ASYNC_OUT_SUSPEND)) {
2889 		(void) putbq(q, bp);
2890 		return;
2891 	}
2892 
2893 	async->async_xmitblk = bp;
2894 	xmit_addr = bp->b_rptr;
2895 	bp = bp->b_cont;
2896 	if (bp != NULL)
2897 		(void) putbq(q, bp);	/* not done with this message yet */
2898 
2899 	/*
2900 	 * In 5-bit mode, the high order bits are used
2901 	 * to indicate character sizes less than five,
2902 	 * so we need to explicitly mask before transmitting
2903 	 */
2904 	if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
2905 		unsigned char *p = xmit_addr;
2906 		int cnt = cc;
2907 
2908 		while (cnt--)
2909 			*p++ &= (unsigned char) 0x1f;
2910 	}
2911 
2912 	/*
2913 	 * Set up this block for pseudo-DMA.
2914 	 */
2915 	mutex_enter(&asy->asy_excl_hi);
2916 	/*
2917 	 * If the transmitter is ready, shove the first
2918 	 * character out.
2919 	 */
2920 	didsome = B_FALSE;
2921 	while (--fifo_len >= 0 && cc > 0) {
2922 		if (!(ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) &
2923 		    XHRE))
2924 			break;
2925 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
2926 		    *xmit_addr++);
2927 		cc--;
2928 		didsome = B_TRUE;
2929 	}
2930 	async->async_optr = xmit_addr;
2931 	async->async_ocnt = cc;
2932 	if (didsome)
2933 		async->async_flags |= ASYNC_PROGRESS;
2934 	DEBUGCONT2(ASY_DEBUG_BUSY,
2935 		"async%d_nstart: Set ASYNC_BUSY.  async_ocnt=%d\n",
2936 		instance,
2937 		async->async_ocnt);
2938 	async->async_flags |= ASYNC_BUSY;
2939 	mutex_exit(&asy->asy_excl_hi);
2940 }
2941 
2942 /*
2943  * Resume output by poking the transmitter.
2944  */
2945 static void
2946 async_resume(struct asyncline *async)
2947 {
2948 	struct asycom *asy = async->async_common;
2949 #ifdef DEBUG
2950 	int instance;
2951 #endif
2952 
2953 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2954 #ifdef DEBUG
2955 	instance = UNIT(async->async_dev);
2956 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_resume\n", instance);
2957 #endif
2958 
2959 	if (ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE) {
2960 		if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
2961 			return;
2962 		if (async->async_ocnt > 0 &&
2963 		    !(async->async_flags &
2964 		    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_OUT_SUSPEND))) {
2965 			ddi_io_put8(asy->asy_iohandle,
2966 			    asy->asy_ioaddr + DAT, *async->async_optr++);
2967 			async->async_ocnt--;
2968 			async->async_flags |= ASYNC_PROGRESS;
2969 		}
2970 	}
2971 }
2972 
2973 /*
2974  * Hold the untimed break to last the minimum time.
2975  */
2976 static void
2977 async_hold_utbrk(void *arg)
2978 {
2979 	struct asyncline *async = arg;
2980 	struct asycom *asy = async->async_common;
2981 
2982 	mutex_enter(&asy->asy_excl);
2983 	async->async_flags &= ~ASYNC_HOLD_UTBRK;
2984 	cv_broadcast(&async->async_flags_cv);
2985 	async->async_utbrktid = 0;
2986 	mutex_exit(&asy->asy_excl);
2987 }
2988 
2989 /*
2990  * Resume the untimed break.
2991  */
2992 static void
2993 async_resume_utbrk(struct asyncline *async)
2994 {
2995 	uchar_t	val;
2996 	struct asycom *asy = async->async_common;
2997 	ASSERT(mutex_owned(&asy->asy_excl));
2998 
2999 	/*
3000 	 * Because the wait time is very short,
3001 	 * so we use uninterruptably wait.
3002 	 */
3003 	while (async->async_flags & ASYNC_HOLD_UTBRK) {
3004 		cv_wait(&async->async_flags_cv, &asy->asy_excl);
3005 	}
3006 	mutex_enter(&asy->asy_excl_hi);
3007 	/*
3008 	 * Timed break and untimed break can exist simultaneously,
3009 	 * if ASYNC_BREAK is also set at here, we don't
3010 	 * really clean the HW break.
3011 	 */
3012 	if (!(async->async_flags & ASYNC_BREAK)) {
3013 		val = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
3014 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3015 		    (val & ~SETBREAK));
3016 	}
3017 	async->async_flags &= ~ASYNC_OUT_SUSPEND;
3018 	cv_broadcast(&async->async_flags_cv);
3019 	if (async->async_ocnt > 0) {
3020 		async_resume(async);
3021 		mutex_exit(&asy->asy_excl_hi);
3022 	} else {
3023 		async->async_flags &= ~ASYNC_BUSY;
3024 		mutex_exit(&asy->asy_excl_hi);
3025 		if (async->async_xmitblk != NULL) {
3026 			freeb(async->async_xmitblk);
3027 			async->async_xmitblk = NULL;
3028 		}
3029 		async_start(async);
3030 	}
3031 }
3032 
3033 /*
3034  * Process an "ioctl" message sent down to us.
3035  * Note that we don't need to get any locks until we are ready to access
3036  * the hardware.  Nothing we access until then is going to be altered
3037  * outside of the STREAMS framework, so we should be safe.
3038  */
3039 int asydelay = 10000;
3040 static void
3041 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp)
3042 {
3043 	struct asycom *asy = async->async_common;
3044 	tty_common_t  *tp = &async->async_ttycommon;
3045 	struct iocblk *iocp;
3046 	unsigned datasize;
3047 	int error = 0;
3048 	uchar_t val;
3049 	mblk_t *datamp;
3050 	unsigned int index;
3051 
3052 #ifdef DEBUG
3053 	int instance = UNIT(async->async_dev);
3054 
3055 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl\n", instance);
3056 #endif
3057 
3058 	if (tp->t_iocpending != NULL) {
3059 		/*
3060 		 * We were holding an "ioctl" response pending the
3061 		 * availability of an "mblk" to hold data to be passed up;
3062 		 * another "ioctl" came through, which means that "ioctl"
3063 		 * must have timed out or been aborted.
3064 		 */
3065 		freemsg(async->async_ttycommon.t_iocpending);
3066 		async->async_ttycommon.t_iocpending = NULL;
3067 	}
3068 
3069 	iocp = (struct iocblk *)mp->b_rptr;
3070 
3071 	/*
3072 	 * For TIOCMGET and the PPS ioctls, do NOT call ttycommon_ioctl()
3073 	 * because this function frees up the message block (mp->b_cont) that
3074 	 * contains the user location where we pass back the results.
3075 	 *
3076 	 * Similarly, CONSOPENPOLLEDIO needs ioc_count, which ttycommon_ioctl
3077 	 * zaps.  We know that ttycommon_ioctl doesn't know any CONS*
3078 	 * ioctls, so keep the others safe too.
3079 	 */
3080 	DEBUGCONT2(ASY_DEBUG_IOCTL, "async%d_ioctl: %s\n",
3081 		instance,
3082 		iocp->ioc_cmd == TIOCMGET ? "TIOCMGET" :
3083 		iocp->ioc_cmd == TIOCMSET ? "TIOCMSET" :
3084 		iocp->ioc_cmd == TIOCMBIS ? "TIOCMBIS" :
3085 		iocp->ioc_cmd == TIOCMBIC ? "TIOCMBIC" :
3086 					    "other");
3087 	switch (iocp->ioc_cmd) {
3088 	case TIOCMGET:
3089 	case TIOCGPPS:
3090 	case TIOCSPPS:
3091 	case TIOCGPPSEV:
3092 	case CONSOPENPOLLEDIO:
3093 	case CONSCLOSEPOLLEDIO:
3094 	case CONSSETABORTENABLE:
3095 	case CONSGETABORTENABLE:
3096 		error = -1; /* Do Nothing */
3097 		break;
3098 	default:
3099 
3100 		/*
3101 		 * The only way in which "ttycommon_ioctl" can fail is if the
3102 		 * "ioctl" requires a response containing data to be returned
3103 		 * to the user, and no mblk could be allocated for the data.
3104 		 * No such "ioctl" alters our state.  Thus, we always go ahead
3105 		 * and do any state-changes the "ioctl" calls for.  If we
3106 		 * couldn't allocate the data, "ttycommon_ioctl" has stashed
3107 		 * the "ioctl" away safely, so we just call "bufcall" to
3108 		 * request that we be called back when we stand a better
3109 		 * chance of allocating the data.
3110 		 */
3111 		if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
3112 			if (async->async_wbufcid)
3113 				unbufcall(async->async_wbufcid);
3114 			async->async_wbufcid = bufcall(datasize, BPRI_HI,
3115 			    (void (*)(void *)) async_reioctl,
3116 			    (void *)(intptr_t)async->async_common->asy_unit);
3117 			return;
3118 		}
3119 	}
3120 
3121 	mutex_enter(&asy->asy_excl);
3122 
3123 	if (error == 0) {
3124 		/*
3125 		 * "ttycommon_ioctl" did most of the work; we just use the
3126 		 * data it set up.
3127 		 */
3128 		switch (iocp->ioc_cmd) {
3129 
3130 		case TCSETS:
3131 			mutex_enter(&asy->asy_excl_hi);
3132 			if (asy_baudok(asy))
3133 				asy_program(asy, ASY_NOINIT);
3134 			else
3135 				error = EINVAL;
3136 			mutex_exit(&asy->asy_excl_hi);
3137 			break;
3138 		case TCSETSF:
3139 		case TCSETSW:
3140 		case TCSETA:
3141 		case TCSETAW:
3142 		case TCSETAF:
3143 			mutex_enter(&asy->asy_excl_hi);
3144 			if (!asy_baudok(asy))
3145 				error = EINVAL;
3146 			else {
3147 				if (asy_isbusy(asy))
3148 					asy_waiteot(asy);
3149 				asy_program(asy, ASY_NOINIT);
3150 			}
3151 			mutex_exit(&asy->asy_excl_hi);
3152 			break;
3153 		}
3154 	} else if (error < 0) {
3155 		/*
3156 		 * "ttycommon_ioctl" didn't do anything; we process it here.
3157 		 */
3158 		error = 0;
3159 		switch (iocp->ioc_cmd) {
3160 
3161 		case TIOCGPPS:
3162 			/*
3163 			 * Get PPS on/off.
3164 			 */
3165 			if (mp->b_cont != NULL)
3166 				freemsg(mp->b_cont);
3167 
3168 			mp->b_cont = allocb(sizeof (int), BPRI_HI);
3169 			if (mp->b_cont == NULL) {
3170 				error = ENOMEM;
3171 				break;
3172 			}
3173 			if (asy->asy_flags & ASY_PPS)
3174 				*(int *)mp->b_cont->b_wptr = 1;
3175 			else
3176 				*(int *)mp->b_cont->b_wptr = 0;
3177 			mp->b_cont->b_wptr += sizeof (int);
3178 			mp->b_datap->db_type = M_IOCACK;
3179 			iocp->ioc_count = sizeof (int);
3180 			break;
3181 
3182 		case TIOCSPPS:
3183 			/*
3184 			 * Set PPS on/off.
3185 			 */
3186 			error = miocpullup(mp, sizeof (int));
3187 			if (error != 0)
3188 				break;
3189 
3190 			mutex_enter(&asy->asy_excl_hi);
3191 			if (*(int *)mp->b_cont->b_rptr)
3192 				asy->asy_flags |= ASY_PPS;
3193 			else
3194 				asy->asy_flags &= ~ASY_PPS;
3195 			/* Reset edge sense */
3196 			asy->asy_flags &= ~ASY_PPS_EDGE;
3197 			mutex_exit(&asy->asy_excl_hi);
3198 			mp->b_datap->db_type = M_IOCACK;
3199 			break;
3200 
3201 		case TIOCGPPSEV:
3202 		{
3203 			/*
3204 			 * Get PPS event data.
3205 			 */
3206 			mblk_t *bp;
3207 			void *buf;
3208 #ifdef _SYSCALL32_IMPL
3209 			struct ppsclockev32 p32;
3210 #endif
3211 			struct ppsclockev ppsclockev;
3212 
3213 			if (mp->b_cont != NULL) {
3214 				freemsg(mp->b_cont);
3215 				mp->b_cont = NULL;
3216 			}
3217 
3218 			if ((asy->asy_flags & ASY_PPS) == 0) {
3219 				error = ENXIO;
3220 				break;
3221 			}
3222 
3223 			/* Protect from incomplete asy_ppsev */
3224 			mutex_enter(&asy->asy_excl_hi);
3225 			ppsclockev = asy_ppsev;
3226 			mutex_exit(&asy->asy_excl_hi);
3227 
3228 #ifdef _SYSCALL32_IMPL
3229 			if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
3230 				TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
3231 				p32.serial = ppsclockev.serial;
3232 				buf = &p32;
3233 				iocp->ioc_count = sizeof (struct ppsclockev32);
3234 			} else
3235 #endif
3236 			{
3237 				buf = &ppsclockev;
3238 				iocp->ioc_count = sizeof (struct ppsclockev);
3239 			}
3240 
3241 			if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
3242 				error = ENOMEM;
3243 				break;
3244 			}
3245 			mp->b_cont = bp;
3246 
3247 			bcopy(buf, bp->b_wptr, iocp->ioc_count);
3248 			bp->b_wptr += iocp->ioc_count;
3249 			mp->b_datap->db_type = M_IOCACK;
3250 			break;
3251 		}
3252 
3253 		case TCSBRK:
3254 			error = miocpullup(mp, sizeof (int));
3255 			if (error != 0)
3256 				break;
3257 
3258 			if (*(int *)mp->b_cont->b_rptr == 0) {
3259 
3260 				/*
3261 				 * XXX Arrangements to ensure that a break
3262 				 * isn't in progress should be sufficient.
3263 				 * This ugly delay() is the only thing
3264 				 * that seems to work on the NCR Worldmark.
3265 				 * It should be replaced. Note that an
3266 				 * asy_waiteot() also does not work.
3267 				 */
3268 				if (asydelay)
3269 					delay(drv_usectohz(asydelay));
3270 
3271 				while (async->async_flags & ASYNC_BREAK) {
3272 					cv_wait(&async->async_flags_cv,
3273 					    &asy->asy_excl);
3274 				}
3275 				mutex_enter(&asy->asy_excl_hi);
3276 				/*
3277 				 * We loop until the TSR is empty and then
3278 				 * set the break.  ASYNC_BREAK has been set
3279 				 * to ensure that no characters are
3280 				 * transmitted while the TSR is being
3281 				 * flushed and SOUT is being used for the
3282 				 * break signal.
3283 				 *
3284 				 * The wait period is equal to
3285 				 * clock / (baud * 16) * 16 * 2.
3286 				 */
3287 				index = BAUDINDEX(
3288 					async->async_ttycommon.t_cflag);
3289 				async->async_flags |= ASYNC_BREAK;
3290 				while ((ddi_io_get8(asy->asy_iohandle,
3291 				    asy->asy_ioaddr + LSR) & XSRE) == 0) {
3292 					mutex_exit(&asy->asy_excl_hi);
3293 					mutex_exit(&asy->asy_excl);
3294 					drv_usecwait(
3295 						32*asyspdtab[index] & 0xfff);
3296 					mutex_enter(&asy->asy_excl);
3297 					mutex_enter(&asy->asy_excl_hi);
3298 				}
3299 				/*
3300 				 * Arrange for "async_restart"
3301 				 * to be called in 1/4 second;
3302 				 * it will turn the break bit off, and call
3303 				 * "async_start" to grab the next message.
3304 				 */
3305 				val = ddi_io_get8(asy->asy_iohandle,
3306 					asy->asy_ioaddr + LCR);
3307 				ddi_io_put8(asy->asy_iohandle,
3308 					asy->asy_ioaddr + LCR,
3309 					(val | SETBREAK));
3310 				mutex_exit(&asy->asy_excl_hi);
3311 				(void) timeout(async_restart, (caddr_t)async,
3312 				    drv_usectohz(1000000)/4);
3313 			} else {
3314 				DEBUGCONT1(ASY_DEBUG_OUT,
3315 					"async%d_ioctl: wait for flush.\n",
3316 					instance);
3317 				mutex_enter(&asy->asy_excl_hi);
3318 				asy_waiteot(asy);
3319 				mutex_exit(&asy->asy_excl_hi);
3320 				DEBUGCONT1(ASY_DEBUG_OUT,
3321 					"async%d_ioctl: ldterm satisfied.\n",
3322 					instance);
3323 			}
3324 			break;
3325 
3326 		case TIOCSBRK:
3327 			if (!(async->async_flags & ASYNC_OUT_SUSPEND)) {
3328 				mutex_enter(&asy->asy_excl_hi);
3329 				async->async_flags |= ASYNC_OUT_SUSPEND;
3330 				async->async_flags |= ASYNC_HOLD_UTBRK;
3331 				index = BAUDINDEX(
3332 				    async->async_ttycommon.t_cflag);
3333 				while ((ddi_io_get8(asy->asy_iohandle,
3334 				    asy->asy_ioaddr + LSR) & XSRE) == 0) {
3335 					mutex_exit(&asy->asy_excl_hi);
3336 					mutex_exit(&asy->asy_excl);
3337 					drv_usecwait(
3338 					    32*asyspdtab[index] & 0xfff);
3339 					mutex_enter(&asy->asy_excl);
3340 					mutex_enter(&asy->asy_excl_hi);
3341 				}
3342 				val = ddi_io_get8(asy->asy_iohandle,
3343 				    asy->asy_ioaddr + LCR);
3344 				ddi_io_put8(asy->asy_iohandle,
3345 				    asy->asy_ioaddr + LCR, (val | SETBREAK));
3346 				mutex_exit(&asy->asy_excl_hi);
3347 				/* wait for 100ms to hold BREAK */
3348 				async->async_utbrktid =
3349 				    timeout((void (*)())async_hold_utbrk,
3350 				    (caddr_t)async,
3351 				    drv_usectohz(asy_min_utbrk));
3352 			}
3353 			mioc2ack(mp, NULL, 0, 0);
3354 			break;
3355 
3356 		case TIOCCBRK:
3357 			if (async->async_flags & ASYNC_OUT_SUSPEND)
3358 				async_resume_utbrk(async);
3359 			mioc2ack(mp, NULL, 0, 0);
3360 			break;
3361 
3362 		case TIOCMSET:
3363 		case TIOCMBIS:
3364 		case TIOCMBIC:
3365 			if (iocp->ioc_count != TRANSPARENT) {
3366 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3367 					"non-transparent\n", instance);
3368 
3369 				error = miocpullup(mp, sizeof (int));
3370 				if (error != 0)
3371 					break;
3372 
3373 				mutex_enter(&asy->asy_excl_hi);
3374 				(void) asymctl(asy,
3375 					dmtoasy(*(int *)mp->b_cont->b_rptr),
3376 					iocp->ioc_cmd);
3377 				mutex_exit(&asy->asy_excl_hi);
3378 				iocp->ioc_error = 0;
3379 				mp->b_datap->db_type = M_IOCACK;
3380 			} else {
3381 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3382 					"transparent\n", instance);
3383 				mcopyin(mp, NULL, sizeof (int), NULL);
3384 			}
3385 			break;
3386 
3387 		case TIOCMGET:
3388 			datamp = allocb(sizeof (int), BPRI_MED);
3389 			if (datamp == NULL) {
3390 				error = EAGAIN;
3391 				break;
3392 			}
3393 
3394 			mutex_enter(&asy->asy_excl_hi);
3395 			*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
3396 			mutex_exit(&asy->asy_excl_hi);
3397 
3398 			if (iocp->ioc_count == TRANSPARENT) {
3399 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3400 					"transparent\n", instance);
3401 				mcopyout(mp, NULL, sizeof (int), NULL,
3402 					datamp);
3403 			} else {
3404 				DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3405 					"non-transparent\n", instance);
3406 				mioc2ack(mp, datamp, sizeof (int), 0);
3407 			}
3408 			break;
3409 
3410 		case CONSOPENPOLLEDIO:
3411 			error = miocpullup(mp, sizeof (struct cons_polledio *));
3412 			if (error != 0)
3413 				break;
3414 
3415 			*(struct cons_polledio **)mp->b_cont->b_rptr =
3416 				&asy->polledio;
3417 
3418 			mp->b_datap->db_type = M_IOCACK;
3419 			break;
3420 
3421 		case CONSCLOSEPOLLEDIO:
3422 			mp->b_datap->db_type = M_IOCACK;
3423 			iocp->ioc_error = 0;
3424 			iocp->ioc_rval = 0;
3425 			break;
3426 
3427 		case CONSSETABORTENABLE:
3428 			error = secpolicy_console(iocp->ioc_cr);
3429 			if (error != 0)
3430 				break;
3431 
3432 			if (iocp->ioc_count != TRANSPARENT) {
3433 				error = EINVAL;
3434 				break;
3435 			}
3436 
3437 			if (*(intptr_t *)mp->b_cont->b_rptr)
3438 				asy->asy_flags |= ASY_CONSOLE;
3439 			else
3440 				asy->asy_flags &= ~ASY_CONSOLE;
3441 
3442 			mp->b_datap->db_type = M_IOCACK;
3443 			iocp->ioc_error = 0;
3444 			iocp->ioc_rval = 0;
3445 			break;
3446 
3447 		case CONSGETABORTENABLE:
3448 			/*CONSTANTCONDITION*/
3449 			ASSERT(sizeof (boolean_t) <= sizeof (boolean_t *));
3450 			/*
3451 			 * Store the return value right in the payload
3452 			 * we were passed.  Crude.
3453 			 */
3454 			mcopyout(mp, NULL, sizeof (boolean_t), NULL, NULL);
3455 			*(boolean_t *)mp->b_cont->b_rptr =
3456 				(asy->asy_flags & ASY_CONSOLE) != 0;
3457 			break;
3458 
3459 		default:
3460 			/*
3461 			 * If we don't understand it, it's an error.  NAK it.
3462 			 */
3463 			error = EINVAL;
3464 			break;
3465 		}
3466 	}
3467 	if (error != 0) {
3468 		iocp->ioc_error = error;
3469 		mp->b_datap->db_type = M_IOCNAK;
3470 	}
3471 	mutex_exit(&asy->asy_excl);
3472 	qreply(wq, mp);
3473 	DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl: done\n", instance);
3474 }
3475 
3476 static int
3477 asyrsrv(queue_t *q)
3478 {
3479 	mblk_t *bp;
3480 	struct asyncline *async;
3481 
3482 	async = (struct asyncline *)q->q_ptr;
3483 
3484 	while (canputnext(q) && (bp = getq(q)))
3485 		putnext(q, bp);
3486 	ASYSETSOFT(async->async_common);
3487 	async->async_polltid = 0;
3488 	return (0);
3489 }
3490 
3491 /*
3492  * Put procedure for write queue.
3493  * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
3494  * set the flow control character for M_STOPI and M_STARTI messages;
3495  * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
3496  * by the start routine, and then call the start routine; discard
3497  * everything else.  Note that this driver does not incorporate any
3498  * mechanism to negotiate to handle the canonicalization process.
3499  * It expects that these functions are handled in upper module(s),
3500  * as we do in ldterm.
3501  */
3502 static int
3503 asywput(queue_t *q, mblk_t *mp)
3504 {
3505 	struct asyncline *async;
3506 	struct asycom *asy;
3507 #ifdef DEBUG
3508 	int instance;
3509 #endif
3510 	int error;
3511 
3512 	async = (struct asyncline *)q->q_ptr;
3513 #ifdef DEBUG
3514 	instance = UNIT(async->async_dev);
3515 #endif
3516 	asy = async->async_common;
3517 
3518 	switch (mp->b_datap->db_type) {
3519 
3520 	case M_STOP:
3521 		/*
3522 		 * Since we don't do real DMA, we can just let the
3523 		 * chip coast to a stop after applying the brakes.
3524 		 */
3525 		mutex_enter(&asy->asy_excl);
3526 		async->async_flags |= ASYNC_STOPPED;
3527 		mutex_exit(&asy->asy_excl);
3528 		freemsg(mp);
3529 		break;
3530 
3531 	case M_START:
3532 		mutex_enter(&asy->asy_excl);
3533 		if (async->async_flags & ASYNC_STOPPED) {
3534 			async->async_flags &= ~ASYNC_STOPPED;
3535 			/*
3536 			 * If an output operation is in progress,
3537 			 * resume it.  Otherwise, prod the start
3538 			 * routine.
3539 			 */
3540 			if (async->async_ocnt > 0) {
3541 				mutex_enter(&asy->asy_excl_hi);
3542 				async_resume(async);
3543 				mutex_exit(&asy->asy_excl_hi);
3544 			} else {
3545 				async_start(async);
3546 			}
3547 		}
3548 		mutex_exit(&asy->asy_excl);
3549 		freemsg(mp);
3550 		break;
3551 
3552 	case M_IOCTL:
3553 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
3554 
3555 		case TCSBRK:
3556 			error = miocpullup(mp, sizeof (int));
3557 			if (error != 0) {
3558 				miocnak(q, mp, 0, error);
3559 				return (0);
3560 			}
3561 
3562 			if (*(int *)mp->b_cont->b_rptr != 0) {
3563 				DEBUGCONT1(ASY_DEBUG_OUT,
3564 					"async%d_ioctl: flush request.\n",
3565 					instance);
3566 				(void) putq(q, mp);
3567 				mutex_enter(&asy->asy_excl);
3568 
3569 				/*
3570 				 * If an TIOCSBRK is in progress,
3571 				 * clean it as TIOCCBRK does,
3572 				 * then kick off output.
3573 				 * If TIOCSBRK is not in progress,
3574 				 * just kick off output.
3575 				 */
3576 				async_resume_utbrk(async);
3577 				mutex_exit(&asy->asy_excl);
3578 				break;
3579 			}
3580 			/*FALLTHROUGH*/
3581 		case TCSETSW:
3582 		case TCSETSF:
3583 		case TCSETAW:
3584 		case TCSETAF:
3585 			/*
3586 			 * The changes do not take effect until all
3587 			 * output queued before them is drained.
3588 			 * Put this message on the queue, so that
3589 			 * "async_start" will see it when it's done
3590 			 * with the output before it.  Poke the
3591 			 * start routine, just in case.
3592 			 */
3593 			(void) putq(q, mp);
3594 			mutex_enter(&asy->asy_excl);
3595 
3596 			/*
3597 			 * If an TIOCSBRK is in progress,
3598 			 * clean it as TIOCCBRK does.
3599 			 * then kick off output.
3600 			 * If TIOCSBRK is not in progress,
3601 			 * just kick off output.
3602 			 */
3603 			async_resume_utbrk(async);
3604 			mutex_exit(&asy->asy_excl);
3605 			break;
3606 
3607 		default:
3608 			/*
3609 			 * Do it now.
3610 			 */
3611 			async_ioctl(async, q, mp);
3612 			break;
3613 		}
3614 		break;
3615 
3616 	case M_FLUSH:
3617 		if (*mp->b_rptr & FLUSHW) {
3618 			mutex_enter(&asy->asy_excl);
3619 
3620 			/*
3621 			 * Abort any output in progress.
3622 			 */
3623 			mutex_enter(&asy->asy_excl_hi);
3624 			if (async->async_flags & ASYNC_BUSY) {
3625 			    DEBUGCONT1(ASY_DEBUG_BUSY, "asy%dwput: "
3626 				    "Clearing async_ocnt, "
3627 				    "leaving ASYNC_BUSY set\n",
3628 				    instance);
3629 				async->async_ocnt = 0;
3630 				async->async_flags &= ~ASYNC_BUSY;
3631 			} /* if */
3632 			mutex_exit(&asy->asy_excl_hi);
3633 
3634 			/* Flush FIFO buffers */
3635 			if (asy->asy_use_fifo == FIFO_ON) {
3636 				asy_reset_fifo(asy, FIFOTXFLSH);
3637 			}
3638 
3639 			/*
3640 			 * Flush our write queue.
3641 			 */
3642 			flushq(q, FLUSHDATA);	/* XXX doesn't flush M_DELAY */
3643 			if (async->async_xmitblk != NULL) {
3644 				freeb(async->async_xmitblk);
3645 				async->async_xmitblk = NULL;
3646 			}
3647 			mutex_exit(&asy->asy_excl);
3648 			*mp->b_rptr &= ~FLUSHW;	/* it has been flushed */
3649 		}
3650 		if (*mp->b_rptr & FLUSHR) {
3651 			/* Flush FIFO buffers */
3652 			if (asy->asy_use_fifo == FIFO_ON) {
3653 				asy_reset_fifo(asy, FIFORXFLSH);
3654 			}
3655 			flushq(RD(q), FLUSHDATA);
3656 			qreply(q, mp);	/* give the read queues a crack at it */
3657 		} else {
3658 			freemsg(mp);
3659 		}
3660 
3661 		/*
3662 		 * We must make sure we process messages that survive the
3663 		 * write-side flush.
3664 		 */
3665 		mutex_enter(&asy->asy_excl);
3666 		async_start(async);
3667 		mutex_exit(&asy->asy_excl);
3668 		break;
3669 
3670 	case M_BREAK:
3671 	case M_DELAY:
3672 	case M_DATA:
3673 		/*
3674 		 * Queue the message up to be transmitted,
3675 		 * and poke the start routine.
3676 		 */
3677 		(void) putq(q, mp);
3678 		mutex_enter(&asy->asy_excl);
3679 		async_start(async);
3680 		mutex_exit(&asy->asy_excl);
3681 		break;
3682 
3683 	case M_STOPI:
3684 		mutex_enter(&asy->asy_excl);
3685 		mutex_enter(&asy->asy_excl_hi);
3686 		if (!(async->async_inflow_source & IN_FLOW_USER)) {
3687 			async_flowcontrol_hw_input(asy, FLOW_STOP,
3688 			    IN_FLOW_USER);
3689 			(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
3690 			    IN_FLOW_USER);
3691 		}
3692 		mutex_exit(&asy->asy_excl_hi);
3693 		mutex_exit(&asy->asy_excl);
3694 		freemsg(mp);
3695 		break;
3696 
3697 	case M_STARTI:
3698 		mutex_enter(&asy->asy_excl);
3699 		mutex_enter(&asy->asy_excl_hi);
3700 		if (async->async_inflow_source & IN_FLOW_USER) {
3701 			async_flowcontrol_hw_input(asy, FLOW_START,
3702 			    IN_FLOW_USER);
3703 			(void) async_flowcontrol_sw_input(asy, FLOW_START,
3704 			    IN_FLOW_USER);
3705 		}
3706 		mutex_exit(&asy->asy_excl_hi);
3707 		mutex_exit(&asy->asy_excl);
3708 		freemsg(mp);
3709 		break;
3710 
3711 	case M_CTL:
3712 		if (MBLKL(mp) >= sizeof (struct iocblk) &&
3713 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
3714 			((struct iocblk *)mp->b_rptr)->ioc_cmd = MC_HAS_POSIX;
3715 			qreply(q, mp);
3716 		} else {
3717 			/*
3718 			 * These MC_SERVICE type messages are used by upper
3719 			 * modules to tell this driver to send input up
3720 			 * immediately, or that it can wait for normal
3721 			 * processing that may or may not be done.  Sun
3722 			 * requires these for the mouse module.
3723 			 * (XXX - for x86?)
3724 			 */
3725 			mutex_enter(&asy->asy_excl);
3726 			switch (*mp->b_rptr) {
3727 
3728 			case MC_SERVICEIMM:
3729 				async->async_flags |= ASYNC_SERVICEIMM;
3730 				break;
3731 
3732 			case MC_SERVICEDEF:
3733 				async->async_flags &= ~ASYNC_SERVICEIMM;
3734 				break;
3735 			}
3736 			mutex_exit(&asy->asy_excl);
3737 			freemsg(mp);
3738 		}
3739 		break;
3740 
3741 	case M_IOCDATA:
3742 		async_iocdata(q, mp);
3743 		break;
3744 
3745 	default:
3746 		freemsg(mp);
3747 		break;
3748 	}
3749 	return (0);
3750 }
3751 
3752 /*
3753  * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
3754  * the buffer we need.
3755  */
3756 static void
3757 async_reioctl(void *unit)
3758 {
3759 	int instance = (uintptr_t)unit;
3760 	struct asyncline *async;
3761 	struct asycom *asy;
3762 	queue_t	*q;
3763 	mblk_t	*mp;
3764 
3765 	asy = ddi_get_soft_state(asy_soft_state, instance);
3766 	ASSERT(asy != NULL);
3767 	async = asy->asy_priv;
3768 
3769 	/*
3770 	 * The bufcall is no longer pending.
3771 	 */
3772 	mutex_enter(&asy->asy_excl);
3773 	async->async_wbufcid = 0;
3774 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
3775 		mutex_exit(&asy->asy_excl);
3776 		return;
3777 	}
3778 	if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
3779 		/* not pending any more */
3780 		async->async_ttycommon.t_iocpending = NULL;
3781 		mutex_exit(&asy->asy_excl);
3782 		async_ioctl(async, q, mp);
3783 	} else
3784 		mutex_exit(&asy->asy_excl);
3785 }
3786 
3787 static void
3788 async_iocdata(queue_t *q, mblk_t *mp)
3789 {
3790 	struct asyncline	*async = (struct asyncline *)q->q_ptr;
3791 	struct asycom		*asy;
3792 	struct iocblk *ip;
3793 	struct copyresp *csp;
3794 #ifdef DEBUG
3795 	int instance = UNIT(async->async_dev);
3796 #endif
3797 
3798 	asy = async->async_common;
3799 	ip = (struct iocblk *)mp->b_rptr;
3800 	csp = (struct copyresp *)mp->b_rptr;
3801 
3802 	if (csp->cp_rval != 0) {
3803 		if (csp->cp_private)
3804 			freemsg(csp->cp_private);
3805 		freemsg(mp);
3806 		return;
3807 	}
3808 
3809 	mutex_enter(&asy->asy_excl);
3810 	DEBUGCONT2(ASY_DEBUG_MODEM, "async%d_iocdata: case %s\n",
3811 		instance,
3812 		csp->cp_cmd == TIOCMGET ? "TIOCMGET" :
3813 		csp->cp_cmd == TIOCMSET ? "TIOCMSET" :
3814 		csp->cp_cmd == TIOCMBIS ? "TIOCMBIS" :
3815 		    "TIOCMBIC");
3816 	switch (csp->cp_cmd) {
3817 
3818 	case TIOCMGET:
3819 		if (mp->b_cont) {
3820 			freemsg(mp->b_cont);
3821 			mp->b_cont = NULL;
3822 		}
3823 		mp->b_datap->db_type = M_IOCACK;
3824 		ip->ioc_error = 0;
3825 		ip->ioc_count = 0;
3826 		ip->ioc_rval = 0;
3827 		mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
3828 		break;
3829 
3830 	case TIOCMSET:
3831 	case TIOCMBIS:
3832 	case TIOCMBIC:
3833 		mutex_enter(&asy->asy_excl_hi);
3834 		(void) asymctl(asy,
3835 			dmtoasy(*(int *)mp->b_cont->b_rptr),
3836 			csp->cp_cmd);
3837 		mutex_exit(&asy->asy_excl_hi);
3838 		mioc2ack(mp, NULL, 0, 0);
3839 		break;
3840 
3841 	default:
3842 		mp->b_datap->db_type = M_IOCNAK;
3843 		ip->ioc_error = EINVAL;
3844 		break;
3845 	}
3846 	qreply(q, mp);
3847 	mutex_exit(&asy->asy_excl);
3848 }
3849 
3850 /*
3851  * debugger/console support routines.
3852  */
3853 
3854 /*
3855  * put a character out
3856  * Do not use interrupts.  If char is LF, put out CR, LF.
3857  */
3858 static void
3859 asyputchar(struct cons_polledio_arg *arg, uchar_t c)
3860 {
3861 	struct asycom *asy = (struct asycom *)arg;
3862 
3863 	if (c == '\n')
3864 		asyputchar(arg, '\r');
3865 
3866 	while ((ddi_io_get8(asy->asy_iohandle,
3867 	    asy->asy_ioaddr + LSR) & XHRE) == 0) {
3868 		/* wait for xmit to finish */
3869 		drv_usecwait(10);
3870 	}
3871 
3872 	/* put the character out */
3873 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, c);
3874 }
3875 
3876 /*
3877  * See if there's a character available. If no character is
3878  * available, return 0. Run in polled mode, no interrupts.
3879  */
3880 static boolean_t
3881 asyischar(struct cons_polledio_arg *arg)
3882 {
3883 	struct asycom *asy = (struct asycom *)arg;
3884 
3885 	return ((ddi_io_get8(asy->asy_iohandle,
3886 		asy->asy_ioaddr + LSR) & RCA) != 0);
3887 }
3888 
3889 /*
3890  * Get a character. Run in polled mode, no interrupts.
3891  */
3892 static int
3893 asygetchar(struct cons_polledio_arg *arg)
3894 {
3895 	struct asycom *asy = (struct asycom *)arg;
3896 
3897 	while (!asyischar(arg))
3898 		drv_usecwait(10);
3899 	return (ddi_io_get8(asy->asy_iohandle,
3900 		asy->asy_ioaddr + DAT));
3901 }
3902 
3903 /*
3904  * Set or get the modem control status.
3905  */
3906 static int
3907 asymctl(struct asycom *asy, int bits, int how)
3908 {
3909 	int mcr_r, msr_r;
3910 	int instance = asy->asy_unit;
3911 
3912 	ASSERT(mutex_owned(&asy->asy_excl_hi));
3913 	ASSERT(mutex_owned(&asy->asy_excl));
3914 
3915 	/* Read Modem Control Registers */
3916 	mcr_r = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
3917 
3918 	switch (how) {
3919 
3920 	case TIOCMSET:
3921 		DEBUGCONT2(ASY_DEBUG_MODEM,
3922 			"asy%dmctl: TIOCMSET, bits = %x\n", instance, bits);
3923 		mcr_r = bits;		/* Set bits	*/
3924 		break;
3925 
3926 	case TIOCMBIS:
3927 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIS, bits = %x\n",
3928 			instance, bits);
3929 		mcr_r |= bits;		/* Mask in bits	*/
3930 		break;
3931 
3932 	case TIOCMBIC:
3933 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIC, bits = %x\n",
3934 			instance, bits);
3935 		mcr_r &= ~bits;		/* Mask out bits */
3936 		break;
3937 
3938 	case TIOCMGET:
3939 		/* Read Modem Status Registers */
3940 		/*
3941 		 * If modem interrupts are enabled, we return the
3942 		 * saved value of msr. We read MSR only in async_msint()
3943 		 */
3944 		if (ddi_io_get8(asy->asy_iohandle,
3945 		    asy->asy_ioaddr + ICR) & MIEN) {
3946 			msr_r = asy->asy_msr;
3947 			DEBUGCONT2(ASY_DEBUG_MODEM,
3948 				"asy%dmctl: TIOCMGET, read msr_r = %x\n",
3949 				instance, msr_r);
3950 		} else {
3951 			msr_r = ddi_io_get8(asy->asy_iohandle,
3952 					asy->asy_ioaddr + MSR);
3953 			DEBUGCONT2(ASY_DEBUG_MODEM,
3954 				"asy%dmctl: TIOCMGET, read MSR = %x\n",
3955 				instance, msr_r);
3956 		}
3957 		DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dtodm: modem_lines = %x\n",
3958 			instance, asytodm(mcr_r, msr_r));
3959 		return (asytodm(mcr_r, msr_r));
3960 	}
3961 
3962 	ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr_r);
3963 
3964 	return (mcr_r);
3965 }
3966 
3967 static int
3968 asytodm(int mcr_r, int msr_r)
3969 {
3970 	int b = 0;
3971 
3972 	/* MCR registers */
3973 	if (mcr_r & RTS)
3974 		b |= TIOCM_RTS;
3975 
3976 	if (mcr_r & DTR)
3977 		b |= TIOCM_DTR;
3978 
3979 	/* MSR registers */
3980 	if (msr_r & DCD)
3981 		b |= TIOCM_CAR;
3982 
3983 	if (msr_r & CTS)
3984 		b |= TIOCM_CTS;
3985 
3986 	if (msr_r & DSR)
3987 		b |= TIOCM_DSR;
3988 
3989 	if (msr_r & RI)
3990 		b |= TIOCM_RNG;
3991 	return (b);
3992 }
3993 
3994 static int
3995 dmtoasy(int bits)
3996 {
3997 	int b = 0;
3998 
3999 	DEBUGCONT1(ASY_DEBUG_MODEM, "dmtoasy: bits = %x\n", bits);
4000 #ifdef	CAN_NOT_SET	/* only DTR and RTS can be set */
4001 	if (bits & TIOCM_CAR)
4002 		b |= DCD;
4003 	if (bits & TIOCM_CTS)
4004 		b |= CTS;
4005 	if (bits & TIOCM_DSR)
4006 		b |= DSR;
4007 	if (bits & TIOCM_RNG)
4008 		b |= RI;
4009 #endif
4010 
4011 	if (bits & TIOCM_RTS) {
4012 		DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & RTS\n");
4013 		b |= RTS;
4014 	}
4015 	if (bits & TIOCM_DTR) {
4016 		DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & DTR\n");
4017 		b |= DTR;
4018 	}
4019 
4020 	return (b);
4021 }
4022 
4023 static void
4024 asyerror(int level, const char *fmt, ...)
4025 {
4026 	va_list adx;
4027 	static	time_t	last;
4028 	static	const char *lastfmt;
4029 	time_t	now;
4030 
4031 	/*
4032 	 * Don't print the same error message too often.
4033 	 * Print the message only if we have not printed the
4034 	 * message within the last second.
4035 	 * Note: that fmt cannot be a pointer to a string
4036 	 * stored on the stack. The fmt pointer
4037 	 * must be in the data segment otherwise lastfmt would point
4038 	 * to non-sense.
4039 	 */
4040 	now = gethrestime_sec();
4041 	if (last == now && lastfmt == fmt)
4042 		return;
4043 
4044 	last = now;
4045 	lastfmt = fmt;
4046 
4047 	va_start(adx, fmt);
4048 	vcmn_err(level, fmt, adx);
4049 	va_end(adx);
4050 }
4051 
4052 /*
4053  * asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4054  * The value of this property is in the form of "9600,8,n,1,-"
4055  * 1) speed: 9600, 4800, ...
4056  * 2) data bits
4057  * 3) parity: n(none), e(even), o(odd)
4058  * 4) stop bits
4059  * 5) handshake: -(none), h(hardware: rts/cts), s(software: xon/off)
4060  *
4061  * This parsing came from a SPARCstation eeprom.
4062  */
4063 static void
4064 asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4065 {
4066 	char		name[40];
4067 	char		val[40];
4068 	int		len;
4069 	int		ret;
4070 	char		*p;
4071 	char		*p1;
4072 
4073 	ASSERT(asy->asy_com_port != 0);
4074 
4075 	/*
4076 	 * Parse the ttyx-mode property
4077 	 */
4078 	(void) sprintf(name, "tty%c-mode", asy->asy_com_port + 'a' - 1);
4079 	len = sizeof (val);
4080 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
4081 	if (ret != DDI_PROP_SUCCESS) {
4082 		(void) sprintf(name, "com%c-mode", asy->asy_com_port + '0');
4083 		len = sizeof (val);
4084 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
4085 	}
4086 
4087 	/* no property to parse */
4088 	asy->asy_cflag = 0;
4089 	if (ret != DDI_PROP_SUCCESS)
4090 		return;
4091 
4092 	p = val;
4093 	/* ---- baud rate ---- */
4094 	asy->asy_cflag = CREAD|B9600;		/* initial default */
4095 	if (p && (p1 = strchr(p, ',')) != 0) {
4096 		*p1++ = '\0';
4097 	} else {
4098 		asy->asy_cflag |= BITS8;	/* add default bits */
4099 		return;
4100 	}
4101 
4102 	if (strcmp(p, "110") == 0)
4103 		asy->asy_bidx = B110;
4104 	else if (strcmp(p, "150") == 0)
4105 		asy->asy_bidx = B150;
4106 	else if (strcmp(p, "300") == 0)
4107 		asy->asy_bidx = B300;
4108 	else if (strcmp(p, "600") == 0)
4109 		asy->asy_bidx = B600;
4110 	else if (strcmp(p, "1200") == 0)
4111 		asy->asy_bidx = B1200;
4112 	else if (strcmp(p, "2400") == 0)
4113 		asy->asy_bidx = B2400;
4114 	else if (strcmp(p, "4800") == 0)
4115 		asy->asy_bidx = B4800;
4116 	else if (strcmp(p, "9600") == 0)
4117 		asy->asy_bidx = B9600;
4118 	else if (strcmp(p, "19200") == 0)
4119 		asy->asy_bidx = B19200;
4120 	else if (strcmp(p, "38400") == 0)
4121 		asy->asy_bidx = B38400;
4122 	else if (strcmp(p, "57600") == 0)
4123 		asy->asy_bidx = B57600;
4124 	else if (strcmp(p, "115200") == 0)
4125 		asy->asy_bidx = B115200;
4126 	else
4127 		asy->asy_bidx = B9600;
4128 
4129 	asy->asy_cflag &= ~CBAUD;
4130 	if (asy->asy_bidx > CBAUD) {	/* > 38400 uses the CBAUDEXT bit */
4131 		asy->asy_cflag |= CBAUDEXT;
4132 		asy->asy_cflag |= asy->asy_bidx - CBAUD - 1;
4133 	} else {
4134 		asy->asy_cflag |= asy->asy_bidx;
4135 	}
4136 
4137 	ASSERT(asy->asy_bidx == BAUDINDEX(asy->asy_cflag));
4138 
4139 	/* ---- Next item is data bits ---- */
4140 	p = p1;
4141 	if (p && (p1 = strchr(p, ',')) != 0)  {
4142 		*p1++ = '\0';
4143 	} else {
4144 		asy->asy_cflag |= BITS8;	/* add default bits */
4145 		return;
4146 	}
4147 	switch (*p) {
4148 		default:
4149 		case '8':
4150 			asy->asy_cflag |= CS8;
4151 			asy->asy_lcr = BITS8;
4152 			break;
4153 		case '7':
4154 			asy->asy_cflag |= CS7;
4155 			asy->asy_lcr = BITS7;
4156 			break;
4157 		case '6':
4158 			asy->asy_cflag |= CS6;
4159 			asy->asy_lcr = BITS6;
4160 			break;
4161 		case '5':
4162 			/* LINTED: CS5 is currently zero (but might change) */
4163 			asy->asy_cflag |= CS5;
4164 			asy->asy_lcr = BITS5;
4165 			break;
4166 	}
4167 
4168 	/* ---- Parity info ---- */
4169 	p = p1;
4170 	if (p && (p1 = strchr(p, ',')) != 0)  {
4171 		*p1++ = '\0';
4172 	} else {
4173 		return;
4174 	}
4175 	switch (*p)  {
4176 		default:
4177 		case 'n':
4178 			break;
4179 		case 'e':
4180 			asy->asy_cflag |= PARENB;
4181 			asy->asy_lcr |= PEN; break;
4182 		case 'o':
4183 			asy->asy_cflag |= PARENB|PARODD;
4184 			asy->asy_lcr |= PEN|EPS;
4185 			break;
4186 	}
4187 
4188 	/* ---- Find stop bits ---- */
4189 	p = p1;
4190 	if (p && (p1 = strchr(p, ',')) != 0)  {
4191 		*p1++ = '\0';
4192 	} else {
4193 		return;
4194 	}
4195 	if (*p == '2') {
4196 		asy->asy_cflag |= CSTOPB;
4197 		asy->asy_lcr |= STB;
4198 	}
4199 
4200 	/* ---- handshake is next ---- */
4201 	p = p1;
4202 	if (p) {
4203 		if ((p1 = strchr(p, ',')) != 0)
4204 			*p1++ = '\0';
4205 
4206 		if (*p == 'h')
4207 			asy->asy_cflag |= CRTSCTS;
4208 		else if (*p == 's')
4209 			asy->asy_cflag |= CRTSXOFF;
4210 	}
4211 }
4212 
4213 /*
4214  * Check for abort character sequence
4215  */
4216 static boolean_t
4217 abort_charseq_recognize(uchar_t ch)
4218 {
4219 	static int state = 0;
4220 #define	CNTRL(c) ((c)&037)
4221 	static char sequence[] = { '\r', '~', CNTRL('b') };
4222 
4223 	if (ch == sequence[state]) {
4224 		if (++state >= sizeof (sequence)) {
4225 			state = 0;
4226 			return (B_TRUE);
4227 		}
4228 	} else {
4229 		state = (ch == sequence[0]) ? 1 : 0;
4230 	}
4231 	return (B_FALSE);
4232 }
4233 
4234 /*
4235  * Flow control functions
4236  */
4237 /*
4238  * Software input flow control
4239  * This function can execute software input flow control sucessfully
4240  * at most of situations except that the line is in BREAK status
4241  * (timed and untimed break).
4242  * INPUT VALUE of onoff:
4243  *               FLOW_START means to send out a XON char
4244  *                          and clear SW input flow control flag.
4245  *               FLOW_STOP means to send out a XOFF char
4246  *                          and set SW input flow control flag.
4247  *               FLOW_CHECK means to check whether there is pending XON/XOFF
4248  *                          if it is true, send it out.
4249  * INPUT VALUE of type:
4250  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
4251  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
4252  *		 IN_FLOW_USER means flow control is due to user's commands
4253  * RETURN VALUE: B_FALSE means no flow control char is sent
4254  *               B_TRUE means one flow control char is sent
4255  */
4256 static boolean_t
4257 async_flowcontrol_sw_input(struct asycom *asy, async_flowc_action onoff,
4258     int type)
4259 {
4260 	struct asyncline *async = asy->asy_priv;
4261 	int instance = UNIT(async->async_dev);
4262 	int rval = B_FALSE;
4263 
4264 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4265 
4266 	if (!(async->async_ttycommon.t_iflag & IXOFF))
4267 		return (rval);
4268 
4269 	/*
4270 	 * If we get this far, then we know IXOFF is set.
4271 	 */
4272 	switch (onoff) {
4273 	case FLOW_STOP:
4274 		async->async_inflow_source |= type;
4275 
4276 		/*
4277 		 * We'll send an XOFF character for each of up to
4278 		 * three different input flow control attempts to stop input.
4279 		 * If we already send out one XOFF, but FLOW_STOP comes again,
4280 		 * it seems that input flow control becomes more serious,
4281 		 * then send XOFF again.
4282 		 */
4283 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
4284 		    IN_FLOW_STREAMS | IN_FLOW_USER))
4285 			async->async_flags |= ASYNC_SW_IN_FLOW |
4286 			    ASYNC_SW_IN_NEEDED;
4287 		DEBUGCONT2(ASY_DEBUG_SFLOW, "async%d: input sflow stop, "
4288 		    "type = %x\n", instance, async->async_inflow_source);
4289 		break;
4290 	case FLOW_START:
4291 		async->async_inflow_source &= ~type;
4292 		if (async->async_inflow_source == 0) {
4293 			async->async_flags = (async->async_flags &
4294 			    ~ASYNC_SW_IN_FLOW) | ASYNC_SW_IN_NEEDED;
4295 			DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: "
4296 			    "input sflow start\n", instance);
4297 		}
4298 		break;
4299 	default:
4300 		break;
4301 	}
4302 
4303 	if (((async->async_flags & (ASYNC_SW_IN_NEEDED | ASYNC_BREAK |
4304 	    ASYNC_OUT_SUSPEND)) == ASYNC_SW_IN_NEEDED) &&
4305 	    (ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE)) {
4306 		/*
4307 		 * If we get this far, then we know we need to send out
4308 		 * XON or XOFF char.
4309 		 */
4310 		async->async_flags = (async->async_flags &
4311 		    ~ASYNC_SW_IN_NEEDED) | ASYNC_BUSY;
4312 		ddi_io_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
4313 		    async->async_flags & ASYNC_SW_IN_FLOW ?
4314 		    async->async_stopc : async->async_startc);
4315 		rval = B_TRUE;
4316 	}
4317 	return (rval);
4318 }
4319 
4320 /*
4321  * Software output flow control
4322  * This function can be executed sucessfully at any situation.
4323  * It does not handle HW, and just change the SW output flow control flag.
4324  * INPUT VALUE of onoff:
4325  *                 FLOW_START means to clear SW output flow control flag,
4326  *			also combine with HW output flow control status to
4327  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
4328  *                 FLOW_STOP means to set SW output flow control flag,
4329  *			also clear ASYNC_OUT_FLW_RESUME.
4330  */
4331 static void
4332 async_flowcontrol_sw_output(struct asycom *asy, async_flowc_action onoff)
4333 {
4334 	struct asyncline *async = asy->asy_priv;
4335 	int instance = UNIT(async->async_dev);
4336 
4337 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4338 
4339 	if (!(async->async_ttycommon.t_iflag & IXON))
4340 		return;
4341 
4342 	switch (onoff) {
4343 	case FLOW_STOP:
4344 		async->async_flags |= ASYNC_SW_OUT_FLW;
4345 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
4346 		DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow stop\n",
4347 		    instance);
4348 		break;
4349 	case FLOW_START:
4350 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
4351 		if (!(async->async_flags & ASYNC_HW_OUT_FLW))
4352 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
4353 		DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow start\n",
4354 		    instance);
4355 		break;
4356 	default:
4357 		break;
4358 	}
4359 }
4360 
4361 /*
4362  * Hardware input flow control
4363  * This function can be executed sucessfully at any situation.
4364  * It directly changes RTS depending on input parameter onoff.
4365  * INPUT VALUE of onoff:
4366  *       FLOW_START means to clear HW input flow control flag,
4367  *                  and pull up RTS if it is low.
4368  *       FLOW_STOP means to set HW input flow control flag,
4369  *                  and low RTS if it is high.
4370  * INPUT VALUE of type:
4371  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
4372  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
4373  *		 IN_FLOW_USER means flow control is due to user's commands
4374  */
4375 static void
4376 async_flowcontrol_hw_input(struct asycom *asy, async_flowc_action onoff,
4377     int type)
4378 {
4379 	uchar_t	mcr;
4380 	uchar_t	flag;
4381 	struct asyncline *async = asy->asy_priv;
4382 	int instance = UNIT(async->async_dev);
4383 
4384 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4385 
4386 	if (!(async->async_ttycommon.t_cflag & CRTSXOFF))
4387 		return;
4388 
4389 	switch (onoff) {
4390 	case FLOW_STOP:
4391 		async->async_inflow_source |= type;
4392 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
4393 		    IN_FLOW_STREAMS | IN_FLOW_USER))
4394 			async->async_flags |= ASYNC_HW_IN_FLOW;
4395 		DEBUGCONT2(ASY_DEBUG_HFLOW, "async%d: input hflow stop, "
4396 		    "type = %x\n", instance, async->async_inflow_source);
4397 		break;
4398 	case FLOW_START:
4399 		async->async_inflow_source &= ~type;
4400 		if (async->async_inflow_source == 0) {
4401 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
4402 			DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: "
4403 			    "input hflow start\n", instance);
4404 		}
4405 		break;
4406 	default:
4407 		break;
4408 	}
4409 	mcr = ddi_io_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
4410 	flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
4411 
4412 	if (((mcr ^ flag) & RTS) != 0) {
4413 		ddi_io_put8(asy->asy_iohandle,
4414 		    asy->asy_ioaddr + MCR, (mcr ^ RTS));
4415 	}
4416 }
4417 
4418 /*
4419  * Hardware output flow control
4420  * This function can execute HW output flow control sucessfully
4421  * at any situation.
4422  * It doesn't really change RTS, and just change
4423  * HW output flow control flag depending on CTS status.
4424  * INPUT VALUE of onoff:
4425  *                FLOW_START means to clear HW output flow control flag.
4426  *			also combine with SW output flow control status to
4427  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
4428  *                FLOW_STOP means to set HW output flow control flag.
4429  *			also clear ASYNC_OUT_FLW_RESUME.
4430  */
4431 static void
4432 async_flowcontrol_hw_output(struct asycom *asy, async_flowc_action onoff)
4433 {
4434 	struct asyncline *async = asy->asy_priv;
4435 	int instance = UNIT(async->async_dev);
4436 
4437 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4438 
4439 	if (!(async->async_ttycommon.t_cflag & CRTSCTS))
4440 		return;
4441 
4442 	switch (onoff) {
4443 	case FLOW_STOP:
4444 		async->async_flags |= ASYNC_HW_OUT_FLW;
4445 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
4446 		DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow stop\n",
4447 		    instance);
4448 		break;
4449 	case FLOW_START:
4450 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
4451 		if (!(async->async_flags & ASYNC_SW_OUT_FLW))
4452 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
4453 		DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow start\n",
4454 		    instance);
4455 		break;
4456 	default:
4457 		break;
4458 	}
4459 }
4460