xref: /titanic_50/usr/src/uts/common/io/arn/arn_hw.c (revision d6114e2d100d9ec3b45f9968d45ac2e3a0827af0)
1 /*
2  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2008 Atheros Communications Inc.
8  *
9  * Permission to use, copy, modify, and/or distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/param.h>
23 #include <sys/types.h>
24 #include <sys/cmn_err.h>
25 #include <sys/kmem.h>
26 #include <sys/ddi.h>
27 #include <sys/sunddi.h>
28 #include <sys/varargs.h>
29 
30 #include "arn_ath9k.h"
31 #include "arn_core.h"
32 #include "arn_hw.h"
33 #include "arn_reg.h"
34 #include "arn_phy.h"
35 #include "arn_initvals.h"
36 
37 static const uint8_t CLOCK_RATE[] = { 40, 80, 22, 44, 88, 40 };
38 
39 extern struct hal_percal_data iq_cal_multi_sample;
40 extern struct hal_percal_data iq_cal_single_sample;
41 extern struct hal_percal_data adc_gain_cal_multi_sample;
42 extern struct hal_percal_data adc_gain_cal_single_sample;
43 extern struct hal_percal_data adc_dc_cal_multi_sample;
44 extern struct hal_percal_data adc_dc_cal_single_sample;
45 extern struct hal_percal_data adc_init_dc_cal;
46 
47 static boolean_t ath9k_hw_set_reset_reg(struct ath_hal *ah, uint32_t type);
48 static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
49     enum ath9k_ht_macmode macmode);
50 static uint32_t ath9k_hw_ini_fixup(struct ath_hal *ah,
51     struct ar5416_eeprom_def *pEepData,
52     uint32_t reg, uint32_t value);
53 static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah,
54     struct ath9k_channel *chan);
55 static void ath9k_hw_spur_mitigate(struct ath_hal *ah,
56     struct ath9k_channel *chan);
57 
58 /* Helper Functions */
59 
60 static uint32_t
61 ath9k_hw_mac_usec(struct ath_hal *ah, uint32_t clks)
62 {
63 	if (ah->ah_curchan != NULL)
64 		return (clks /
65 		    CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)]);
66 	else
67 		return (clks / CLOCK_RATE[ATH9K_MODE_11B]);
68 }
69 
70 static uint32_t
71 ath9k_hw_mac_to_usec(struct ath_hal *ah, uint32_t clks)
72 {
73 	struct ath9k_channel *chan = ah->ah_curchan;
74 
75 	if (chan && IS_CHAN_HT40(chan))
76 		return (ath9k_hw_mac_usec(ah, clks) / 2);
77 	else
78 		return (ath9k_hw_mac_usec(ah, clks));
79 }
80 
81 static uint32_t
82 ath9k_hw_mac_clks(struct ath_hal *ah, uint32_t usecs)
83 {
84 	if (ah->ah_curchan != NULL)
85 		return (usecs * CLOCK_RATE[ath9k_hw_chan2wmode(ah,
86 		    ah->ah_curchan)]);
87 	else
88 		return (usecs * CLOCK_RATE[ATH9K_MODE_11B]);
89 }
90 
91 static uint32_t
92 ath9k_hw_mac_to_clks(struct ath_hal *ah, uint32_t usecs)
93 {
94 	struct ath9k_channel *chan = ah->ah_curchan;
95 
96 	if (chan && IS_CHAN_HT40(chan))
97 		return (ath9k_hw_mac_clks(ah, usecs) * 2);
98 	else
99 		return (ath9k_hw_mac_clks(ah, usecs));
100 }
101 
102 /* ARGSUSED */
103 enum wireless_mode
104 ath9k_hw_chan2wmode(struct ath_hal *ah, const struct ath9k_channel *chan)
105 {
106 	if (IS_CHAN_B(chan))
107 		return (ATH9K_MODE_11B);
108 	if (IS_CHAN_G(chan))
109 		return (ATH9K_MODE_11G);
110 
111 	return (ATH9K_MODE_11A);
112 }
113 
114 boolean_t
115 ath9k_hw_wait(struct ath_hal *ah, uint32_t reg, uint32_t mask, uint32_t val)
116 {
117 	int i;
118 
119 	for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) {
120 		if ((REG_READ(ah, reg) & mask) == val)
121 			return (B_TRUE);
122 
123 		drv_usecwait(AH_TIME_QUANTUM);
124 	}
125 	ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_wait(): "
126 	    "timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127 	    reg, REG_READ(ah, reg), mask, val));
128 
129 	return (B_FALSE);
130 }
131 
132 uint32_t
133 ath9k_hw_reverse_bits(uint32_t val, uint32_t n)
134 {
135 	uint32_t retval;
136 	int i;
137 
138 	for (i = 0, retval = 0; i < n; i++) {
139 		retval = (retval << 1) | (val & 1);
140 		val >>= 1;
141 	}
142 	return (retval);
143 }
144 
145 boolean_t
146 ath9k_get_channel_edges(struct ath_hal *ah,
147     uint16_t flags, uint16_t *low, uint16_t *high)
148 {
149 	struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
150 
151 	if (flags & CHANNEL_5GHZ) {
152 		*low = pCap->low_5ghz_chan;
153 		*high = pCap->high_5ghz_chan;
154 		return (B_TRUE);
155 	}
156 	if ((flags & CHANNEL_2GHZ)) {
157 		*low = pCap->low_2ghz_chan;
158 		*high = pCap->high_2ghz_chan;
159 		return (B_TRUE);
160 	}
161 	return (B_FALSE);
162 }
163 
164 uint16_t
165 ath9k_hw_computetxtime(struct ath_hal *ah,
166     struct ath_rate_table *rates,
167     uint32_t frameLen, uint16_t rateix,
168     boolean_t shortPreamble)
169 {
170 	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
171 	uint32_t kbps;
172 
173 	kbps = rates->info[rateix].ratekbps;
174 
175 	if (kbps == 0)
176 		return (0);
177 
178 	switch (rates->info[rateix].phy) {
179 	case WLAN_RC_PHY_CCK:
180 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
181 		if (shortPreamble && rates->info[rateix].short_preamble)
182 			phyTime >>= 1;
183 		numBits = frameLen << 3;
184 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
185 		break;
186 	case WLAN_RC_PHY_OFDM:
187 		if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) {
188 			bitsPerSymbol =
189 			    (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
190 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
191 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
192 			txTime = OFDM_SIFS_TIME_QUARTER +
193 			    OFDM_PREAMBLE_TIME_QUARTER +
194 			    (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
195 		} else if (ah->ah_curchan &&
196 		    IS_CHAN_HALF_RATE(ah->ah_curchan)) {
197 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
198 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
199 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
200 			txTime = OFDM_SIFS_TIME_HALF +
201 			    OFDM_PREAMBLE_TIME_HALF +
202 			    (numSymbols * OFDM_SYMBOL_TIME_HALF);
203 		} else {
204 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
205 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
206 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
207 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME +
208 			    (numSymbols * OFDM_SYMBOL_TIME);
209 		}
210 		break;
211 	default:
212 		arn_problem("arn: "
213 		    "%s: unknown phy %u (rate ix %u)\n", __func__,
214 		    rates->info[rateix].phy, rateix);
215 		txTime = 0;
216 		break;
217 	}
218 
219 	return ((uint16_t)txTime);
220 }
221 
222 uint32_t
223 ath9k_hw_mhz2ieee(struct ath_hal *ah, uint32_t freq, uint32_t flags)
224 {
225 	if (flags & CHANNEL_2GHZ) {
226 		if (freq == 2484)
227 			return (14);
228 		if (freq < 2484)
229 			return ((freq - 2407) / 5);
230 		else
231 			return (15 + ((freq - 2512) / 20));
232 	} else if (flags & CHANNEL_5GHZ) {
233 		if (ath9k_regd_is_public_safety_sku(ah) &&
234 		    IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
235 			return (((freq * 10) +
236 			    (((freq % 5) == 2) ? 5 : 0) - 49400) / 5);
237 		} else if ((flags & CHANNEL_A) && (freq <= 5000)) {
238 			return ((freq - 4000) / 5);
239 		} else {
240 			return ((freq - 5000) / 5);
241 		}
242 	} else {
243 		if (freq == 2484)
244 			return (14);
245 		if (freq < 2484)
246 			return ((freq - 2407) / 5);
247 		if (freq < 5000) {
248 			if (ath9k_regd_is_public_safety_sku(ah) &&
249 			    IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
250 				return (((freq * 10) +
251 				    (((freq % 5) ==
252 				    2) ? 5 : 0) - 49400) / 5);
253 			} else if (freq > 4900) {
254 				return ((freq - 4000) / 5);
255 			} else {
256 				return (15 + ((freq - 2512) / 20));
257 			}
258 		}
259 		return ((freq - 5000) / 5);
260 	}
261 }
262 
263 void
264 ath9k_hw_get_channel_centers(struct ath_hal *ah,
265     struct ath9k_channel *chan,
266     struct chan_centers *centers)
267 {
268 	int8_t extoff;
269 	struct ath_hal_5416 *ahp = AH5416(ah);
270 
271 	if (!IS_CHAN_HT40(chan)) {
272 		centers->ctl_center = centers->ext_center =
273 		    centers->synth_center = chan->channel;
274 		return;
275 	}
276 
277 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
278 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
279 		centers->synth_center =
280 		    chan->channel + HT40_CHANNEL_CENTER_SHIFT;
281 		extoff = 1;
282 	} else {
283 		centers->synth_center =
284 		    chan->channel - HT40_CHANNEL_CENTER_SHIFT;
285 		extoff = -1;
286 	}
287 
288 	centers->ctl_center =
289 	    centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
290 	centers->ext_center =
291 	    centers->synth_center + (extoff *
292 	    ((ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
293 	    HT40_CHANNEL_CENTER_SHIFT : 15));
294 
295 }
296 
297 /* Chip Revisions */
298 
299 static void
300 ath9k_hw_read_revisions(struct ath_hal *ah)
301 {
302 	uint32_t val;
303 
304 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
305 
306 	if (val == 0xFF) {
307 		val = REG_READ(ah, AR_SREV);
308 		ah->ah_macVersion = (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
309 		ah->ah_macRev = MS(val, AR_SREV_REVISION2);
310 		ah->ah_isPciExpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
311 	} else {
312 		if (!AR_SREV_9100(ah))
313 			ah->ah_macVersion = MS(val, AR_SREV_VERSION);
314 
315 		ah->ah_macRev = val & AR_SREV_REVISION;
316 
317 		if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE)
318 			ah->ah_isPciExpress = B_TRUE;
319 	}
320 }
321 
322 static int
323 ath9k_hw_get_radiorev(struct ath_hal *ah)
324 {
325 	uint32_t val;
326 	int i;
327 
328 	REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
329 
330 	for (i = 0; i < 8; i++)
331 		REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
332 	val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
333 	val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
334 
335 	return (ath9k_hw_reverse_bits(val, 8));
336 }
337 
338 /* HW Attach, Detach, Init Routines */
339 
340 static void
341 ath9k_hw_disablepcie(struct ath_hal *ah)
342 {
343 	if (!AR_SREV_9100(ah))
344 		return;
345 
346 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
347 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
348 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
349 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
350 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
351 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
352 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
353 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
354 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
355 
356 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
357 }
358 
359 static boolean_t
360 ath9k_hw_chip_test(struct ath_hal *ah)
361 {
362 	uint32_t regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
363 	uint32_t regHold[2];
364 	uint32_t patternData[4] = { 0x55555555, 0xaaaaaaaa,
365 	    0x66666666, 0x99999999 };
366 	int i, j;
367 
368 	for (i = 0; i < 2; i++) {
369 		uint32_t addr = regAddr[i];
370 		uint32_t wrData, rdData;
371 
372 		regHold[i] = REG_READ(ah, addr);
373 		for (j = 0; j < 0x100; j++) {
374 			wrData = (j << 16) | j;
375 			REG_WRITE(ah, addr, wrData);
376 			rdData = REG_READ(ah, addr);
377 			if (rdData != wrData) {
378 				ARN_DBG((ARN_DBG_REG_IO,
379 				    "arn: ath9k_hw_chip_test(): "
380 				    "address test failed "
381 				    "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
382 				    addr, wrData, rdData));
383 
384 				return (B_FALSE);
385 			}
386 		}
387 		for (j = 0; j < 4; j++) {
388 			wrData = patternData[j];
389 			REG_WRITE(ah, addr, wrData);
390 			rdData = REG_READ(ah, addr);
391 			if (wrData != rdData) {
392 				ARN_DBG((ARN_DBG_REG_IO,
393 				    "arn: ath9k_hw_chip_test(): "
394 				    "address test failed "
395 				    "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
396 				    addr, wrData, rdData));
397 
398 				return (B_FALSE);
399 			}
400 		}
401 		REG_WRITE(ah, regAddr[i], regHold[i]);
402 	}
403 	drv_usecwait(100);
404 
405 	return (B_TRUE);
406 }
407 
408 static const char *
409 ath9k_hw_devname(uint16_t devid)
410 {
411 	switch (devid) {
412 	case AR5416_DEVID_PCI:
413 		return ("Atheros 5416");
414 	case AR5416_DEVID_PCIE:
415 		return ("Atheros 5418");
416 	case AR9160_DEVID_PCI:
417 		return ("Atheros 9160");
418 	case AR9280_DEVID_PCI:
419 	case AR9280_DEVID_PCIE:
420 		return ("Atheros 9280");
421 	case AR9285_DEVID_PCIE:
422 		return ("Atheros 9285");
423 	}
424 
425 	return (NULL);
426 }
427 
428 static void
429 ath9k_hw_set_defaults(struct ath_hal *ah)
430 {
431 	int i;
432 
433 	ah->ah_config.dma_beacon_response_time = 2;
434 	ah->ah_config.sw_beacon_response_time = 10;
435 	ah->ah_config.additional_swba_backoff = 0;
436 	ah->ah_config.ack_6mb = 0x0;
437 	ah->ah_config.cwm_ignore_extcca = 0;
438 	ah->ah_config.pcie_powersave_enable = 0;
439 	ah->ah_config.pcie_l1skp_enable = 0;
440 	ah->ah_config.pcie_clock_req = 0;
441 	ah->ah_config.pcie_power_reset = 0x100;
442 	ah->ah_config.pcie_restore = 0;
443 	ah->ah_config.pcie_waen = 0;
444 	ah->ah_config.analog_shiftreg = 1;
445 	ah->ah_config.ht_enable = 1;
446 	ah->ah_config.ofdm_trig_low = 200;
447 	ah->ah_config.ofdm_trig_high = 500;
448 	ah->ah_config.cck_trig_high = 200;
449 	ah->ah_config.cck_trig_low = 100;
450 	ah->ah_config.enable_ani = 1;
451 	ah->ah_config.noise_immunity_level = 4;
452 	ah->ah_config.ofdm_weaksignal_det = 1;
453 	ah->ah_config.cck_weaksignal_thr = 0;
454 	ah->ah_config.spur_immunity_level = 2;
455 	ah->ah_config.firstep_level = 0;
456 	ah->ah_config.rssi_thr_high = 40;
457 	ah->ah_config.rssi_thr_low = 7;
458 	ah->ah_config.diversity_control = 0;
459 	ah->ah_config.antenna_switch_swap = 0;
460 
461 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
462 		ah->ah_config.spurchans[i][0] = AR_NO_SPUR;
463 		ah->ah_config.spurchans[i][1] = AR_NO_SPUR;
464 	}
465 
466 	ah->ah_config.intr_mitigation = 1;
467 
468 	/*
469 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
470 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
471 	 * This means we use it for all AR5416 devices, and the few
472 	 * minor PCI AR9280 devices out there.
473 	 *
474 	 * Serialization is required because these devices do not handle
475 	 * well the case of two concurrent reads/writes due to the latency
476 	 * involved. During one read/write another read/write can be issued
477 	 * on another CPU while the previous read/write may still be working
478 	 * on our hardware, if we hit this case the hardware poops in a loop.
479 	 * We prevent this by serializing reads and writes.
480 	 *
481 	 * This issue is not present on PCI-Express devices or pre-AR5416
482 	 * devices (legacy, 802.11abg).
483 	 */
484 
485 	/* num_of_cpus */
486 }
487 
488 static struct ath_hal_5416 *
489 ath9k_hw_newstate(uint16_t device_id, struct arn_softc *sc, caddr_t mem,
490     int *status)
491 {
492 	static const uint8_t defbssidmask[IEEE80211_ADDR_LEN] =
493 	    { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
494 	struct ath_hal_5416 *ahp;
495 	struct ath_hal *ah;
496 
497 	ahp = (struct ath_hal_5416 *)
498 	    kmem_zalloc(sizeof (struct ath_hal_5416), KM_SLEEP);
499 	if (ahp == NULL) {
500 		ARN_DBG((ARN_DBG_ANY, "arn: ath9k_hw_newstate(): "
501 		    "failed to alloc mem for ahp\n"));
502 		*status = ENOMEM;
503 		return (NULL);
504 	}
505 
506 	ah = &ahp->ah;
507 	ah->ah_sc = sc;
508 	ah->ah_sh = mem;
509 	ah->ah_magic = AR5416_MAGIC;
510 	ah->ah_countryCode = CTRY_DEFAULT;
511 	ah->ah_devid = device_id;
512 	ah->ah_subvendorid = 0;
513 
514 	ah->ah_flags = 0;
515 	if ((device_id == AR5416_AR9100_DEVID))
516 		ah->ah_macVersion = AR_SREV_VERSION_9100;
517 	if (!AR_SREV_9100(ah))
518 		ah->ah_flags = AH_USE_EEPROM;
519 
520 	ah->ah_powerLimit = MAX_RATE_POWER;
521 	ah->ah_tpScale = ATH9K_TP_SCALE_MAX;
522 	ahp->ah_atimWindow = 0;
523 	ahp->ah_diversityControl = ah->ah_config.diversity_control;
524 	ahp->ah_antennaSwitchSwap =
525 	    ah->ah_config.antenna_switch_swap;
526 	ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
527 	ahp->ah_beaconInterval = 100;
528 	ahp->ah_enable32kHzClock = DONT_USE_32KHZ;
529 	ahp->ah_slottime = (uint32_t)-1;
530 	ahp->ah_acktimeout = (uint32_t)-1;
531 	ahp->ah_ctstimeout = (uint32_t)-1;
532 	ahp->ah_globaltxtimeout = (uint32_t)-1;
533 	(void) memcpy(&ahp->ah_bssidmask, defbssidmask, IEEE80211_ADDR_LEN);
534 
535 	ahp->ah_gBeaconRate = 0;
536 
537 	return (ahp);
538 }
539 
540 static int
541 ath9k_hw_rfattach(struct ath_hal *ah)
542 {
543 	boolean_t  rfStatus = B_FALSE;
544 	int ecode = 0;
545 
546 	rfStatus = ath9k_hw_init_rf(ah, &ecode);
547 	if (!rfStatus) {
548 		ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_rfattach(): "
549 		    "RF setup failed, status %u\n", ecode));
550 
551 		return (ecode);
552 	}
553 
554 	return (0);
555 }
556 
557 static int
558 ath9k_hw_rf_claim(struct ath_hal *ah)
559 {
560 	uint32_t val;
561 
562 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
563 
564 	val = ath9k_hw_get_radiorev(ah);
565 	switch (val & AR_RADIO_SREV_MAJOR) {
566 	case 0:
567 		val = AR_RAD5133_SREV_MAJOR;
568 		break;
569 	case AR_RAD5133_SREV_MAJOR:
570 	case AR_RAD5122_SREV_MAJOR:
571 	case AR_RAD2133_SREV_MAJOR:
572 	case AR_RAD2122_SREV_MAJOR:
573 		break;
574 	default:
575 		ARN_DBG((ARN_DBG_CHANNEL,
576 		    "arn: ath9k_hw_rf_claim(): "
577 		    "5G Radio Chip Rev 0x%02X "
578 		    "is not supported by this driver\n",
579 		    ah->ah_analog5GhzRev));
580 
581 		return (ENOTSUP);
582 	}
583 
584 	ah->ah_analog5GhzRev = (uint16_t)val;
585 
586 	return (0);
587 }
588 
589 static int
590 ath9k_hw_init_macaddr(struct ath_hal *ah)
591 {
592 	uint32_t sum;
593 	int i;
594 	uint16_t eeval;
595 	struct ath_hal_5416 *ahp = AH5416(ah);
596 
597 	sum = 0;
598 	for (i = 0; i < 3; i++) {
599 		eeval = ath9k_hw_get_eeprom(ah, AR_EEPROM_MAC(i));
600 		sum += eeval;
601 		ahp->ah_macaddr[2 * i] = eeval >> 8;
602 		ahp->ah_macaddr[2 * i + 1] = eeval & 0xff;
603 	}
604 	if (sum == 0 || sum == 0xffff * 3) {
605 		ARN_DBG((ARN_DBG_EEPROM, "arn: ath9k_hw_init_macaddr(): "
606 		    "mac address read failed: %pM\n",
607 		    ahp->ah_macaddr));
608 
609 		return (EADDRNOTAVAIL);
610 	}
611 
612 	return (0);
613 }
614 
615 static void
616 ath9k_hw_init_rxgain_ini(struct ath_hal *ah)
617 {
618 	uint32_t rxgain_type;
619 	struct ath_hal_5416 *ahp = AH5416(ah);
620 
621 	if (ath9k_hw_get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
622 		rxgain_type = ath9k_hw_get_eeprom(ah, EEP_RXGAIN_TYPE);
623 		if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF) {
624 			INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
625 			    ar9280Modes_backoff_13db_rxgain_9280_2,
626 			    ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2),
627 			    6);
628 		} else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF) {
629 			INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
630 			    ar9280Modes_backoff_23db_rxgain_9280_2,
631 			    ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2),
632 			    6);
633 			} else {
634 			INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
635 			    ar9280Modes_original_rxgain_9280_2,
636 			    ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
637 		}
638 	} else {
639 		INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
640 		    ar9280Modes_original_rxgain_9280_2,
641 		    ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
642 	}
643 }
644 
645 static void
646 ath9k_hw_init_txgain_ini(struct ath_hal *ah)
647 {
648 	uint32_t txgain_type;
649 	struct ath_hal_5416 *ahp = AH5416(ah);
650 
651 	if (ath9k_hw_get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
652 		txgain_type = ath9k_hw_get_eeprom(ah, EEP_TXGAIN_TYPE);
653 
654 		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
655 			INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
656 			    ar9280Modes_high_power_tx_gain_9280_2,
657 			    ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2),
658 			    6);
659 			} else {
660 			INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
661 			    ar9280Modes_original_tx_gain_9280_2,
662 			    ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
663 		}
664 	} else {
665 		INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
666 		    ar9280Modes_original_tx_gain_9280_2,
667 		    ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
668 	}
669 }
670 
671 static int
672 ath9k_hw_post_attach(struct ath_hal *ah)
673 {
674 	int ecode;
675 
676 	if (!ath9k_hw_chip_test(ah)) {
677 		ARN_DBG((ARN_DBG_REG_IO, "arn: ath9k_hw_post_attach(): "
678 		    "hardware self-test failed\n"));
679 
680 	}
681 
682 	ecode = ath9k_hw_rf_claim(ah);
683 	if (ecode != 0)
684 		return (ecode);
685 
686 	ecode = ath9k_hw_eeprom_attach(ah);
687 	if (ecode != 0)
688 		return (ecode);
689 	ecode = ath9k_hw_rfattach(ah);
690 	if (ecode != 0)
691 		return (ecode);
692 
693 	if (!AR_SREV_9100(ah)) {
694 		ath9k_hw_ani_setup(ah);
695 		ath9k_hw_ani_attach(ah);
696 	}
697 
698 	return (0);
699 }
700 
701 static struct ath_hal *
702 ath9k_hw_do_attach(uint16_t device_id, struct arn_softc *sc,
703     caddr_t mem, int *status)
704 {
705 	struct ath_hal_5416 *ahp;
706 	struct ath_hal *ah;
707 	int ecode;
708 	uint32_t i;
709 	uint32_t j;
710 
711 	ahp = ath9k_hw_newstate(device_id, sc, mem, status);
712 	if (ahp == NULL)
713 		return (NULL);
714 
715 	ah = &ahp->ah;
716 
717 	ath9k_hw_set_defaults(ah);
718 
719 	if (ah->ah_config.intr_mitigation != 0)
720 		ahp->ah_intrMitigation = B_TRUE;
721 
722 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
723 		ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_set_reset_reg(): "
724 		    "couldn't reset chip \n"));
725 		ecode = EIO;
726 		goto bad;
727 	}
728 
729 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
730 		ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_setpower(): "
731 		    "couldn't wakeup chip \n"));
732 		ecode = EIO;
733 		goto bad;
734 	}
735 
736 	if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) {
737 		if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI ||
738 		    (AR_SREV_9280(ah) && !ah->ah_isPciExpress)) {
739 			ah->ah_config.serialize_regmode =
740 			    SER_REG_MODE_ON;
741 		} else {
742 			ah->ah_config.serialize_regmode =
743 			    SER_REG_MODE_OFF;
744 		}
745 	}
746 	ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_do_attach(): "
747 	    "serialize_regmode is %d\n",
748 	    ah->ah_config.serialize_regmode));
749 
750 	if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) &&
751 	    (ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) &&
752 	    (ah->ah_macVersion != AR_SREV_VERSION_9160) &&
753 	    (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) &&
754 	    (!AR_SREV_9285(ah))) {
755 		ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_do_attach(): "
756 		    "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
757 		    ah->ah_macVersion, ah->ah_macRev));
758 		ecode = ENOTSUP;
759 		goto bad;
760 	}
761 
762 	if (AR_SREV_9100(ah)) {
763 		ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
764 		ahp->ah_suppCals = IQ_MISMATCH_CAL;
765 		ah->ah_isPciExpress = B_FALSE;
766 	}
767 	ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
768 
769 	if (AR_SREV_9160_10_OR_LATER(ah)) {
770 		if (AR_SREV_9280_10_OR_LATER(ah)) {
771 			ahp->ah_iqCalData.calData = &iq_cal_single_sample;
772 			ahp->ah_adcGainCalData.calData =
773 			    &adc_gain_cal_single_sample;
774 			ahp->ah_adcDcCalData.calData =
775 			    &adc_dc_cal_single_sample;
776 			ahp->ah_adcDcCalInitData.calData =
777 			    &adc_init_dc_cal;
778 		} else {
779 			ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
780 			ahp->ah_adcGainCalData.calData =
781 			    &adc_gain_cal_multi_sample;
782 			ahp->ah_adcDcCalData.calData =
783 			    &adc_dc_cal_multi_sample;
784 			ahp->ah_adcDcCalInitData.calData =
785 			    &adc_init_dc_cal;
786 		}
787 		ahp->ah_suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
788 	}
789 
790 	if (AR_SREV_9160(ah)) {
791 		ah->ah_config.enable_ani = 1;
792 		ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL |
793 		    ATH9K_ANI_FIRSTEP_LEVEL);
794 	} else {
795 		ahp->ah_ani_function = ATH9K_ANI_ALL;
796 		if (AR_SREV_9280_10_OR_LATER(ah)) {
797 			ahp->ah_ani_function &=
798 			    ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
799 		}
800 	}
801 	ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_do_attach(): "
802 	    "This Mac Chip Rev 0x%02x.%x is \n",
803 	    ah->ah_macVersion, ah->ah_macRev));
804 
805 	if (AR_SREV_9285_12_OR_LATER(ah)) {
806 		INIT_INI_ARRAY(&ahp->ah_iniModes, ar9285Modes_9285_1_2,
807 		    ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
808 
809 		INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9285Common_9285_1_2,
810 		    ARRAY_SIZE(ar9285Common_9285_1_2), 2);
811 
812 		if (ah->ah_config.pcie_clock_req) {
813 			INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
814 			    ar9285PciePhy_clkreq_off_L1_9285_1_2,
815 			    ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2),
816 			    2);
817 		} else {
818 			INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
819 			    ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
820 			    ARRAY_SIZE
821 			    (ar9285PciePhy_clkreq_always_on_L1_9285_1_2), 2);
822 		}
823 	} else if (AR_SREV_9285_10_OR_LATER(ah)) {
824 		INIT_INI_ARRAY(&ahp->ah_iniModes, ar9285Modes_9285,
825 		    ARRAY_SIZE(ar9285Modes_9285), 6);
826 
827 		INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9285Common_9285,
828 		    ARRAY_SIZE(ar9285Common_9285), 2);
829 
830 		if (ah->ah_config.pcie_clock_req) {
831 
832 			INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
833 			    ar9285PciePhy_clkreq_off_L1_9285,
834 			    ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
835 		} else {
836 			INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
837 			    ar9285PciePhy_clkreq_always_on_L1_9285,
838 			    ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285),
839 			    2);
840 		}
841 	} else if (AR_SREV_9280_20_OR_LATER(ah)) {
842 		INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2,
843 		    ARRAY_SIZE(ar9280Modes_9280_2), 6);
844 
845 		INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2,
846 		    ARRAY_SIZE(ar9280Common_9280_2), 2);
847 
848 		if (ah->ah_config.pcie_clock_req) {
849 			INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
850 			    ar9280PciePhy_clkreq_off_L1_9280,
851 			    ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280), 2);
852 		} else {
853 			INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
854 			    ar9280PciePhy_clkreq_always_on_L1_9280,
855 			    ARRAY_SIZE
856 			    (ar9280PciePhy_clkreq_always_on_L1_9280), 2);
857 		}
858 
859 		INIT_INI_ARRAY(&ahp->ah_iniModesAdditional,
860 		    ar9280Modes_fast_clock_9280_2,
861 		    ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
862 	} else if (AR_SREV_9280_10_OR_LATER(ah)) {
863 
864 		INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280,
865 		    ARRAY_SIZE(ar9280Modes_9280), 6);
866 
867 		INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280,
868 		    ARRAY_SIZE(ar9280Common_9280), 2);
869 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
870 		INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160,
871 		    ARRAY_SIZE(ar5416Modes_9160), 6);
872 
873 		INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160,
874 		    ARRAY_SIZE(ar5416Common_9160), 2);
875 
876 		INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160,
877 		    ARRAY_SIZE(ar5416Bank0_9160), 2);
878 
879 		INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160,
880 		    ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
881 
882 		INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160,
883 		    ARRAY_SIZE(ar5416Bank1_9160), 2);
884 
885 		INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160,
886 		    ARRAY_SIZE(ar5416Bank2_9160), 2);
887 
888 		INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160,
889 		    ARRAY_SIZE(ar5416Bank3_9160), 3);
890 
891 		INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160,
892 		    ARRAY_SIZE(ar5416Bank6_9160), 3);
893 
894 		INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160,
895 		    ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
896 
897 		INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160,
898 		    ARRAY_SIZE(ar5416Bank7_9160), 2);
899 		if (AR_SREV_9160_11(ah)) {
900 			INIT_INI_ARRAY(&ahp->ah_iniAddac,
901 			    ar5416Addac_91601_1,
902 			    ARRAY_SIZE(ar5416Addac_91601_1), 2);
903 		} else {
904 			INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160,
905 			    ARRAY_SIZE(ar5416Addac_9160), 2);
906 		}
907 	} else if (AR_SREV_9100_OR_LATER(ah)) {
908 		INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100,
909 		    ARRAY_SIZE(ar5416Modes_9100), 6);
910 
911 		INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100,
912 		    ARRAY_SIZE(ar5416Common_9100), 2);
913 
914 		INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100,
915 		    ARRAY_SIZE(ar5416Bank0_9100), 2);
916 
917 		INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100,
918 		    ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
919 
920 		INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100,
921 		    ARRAY_SIZE(ar5416Bank1_9100), 2);
922 
923 		INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100,
924 		    ARRAY_SIZE(ar5416Bank2_9100), 2);
925 
926 		INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100,
927 		    ARRAY_SIZE(ar5416Bank3_9100), 3);
928 
929 		INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100,
930 		    ARRAY_SIZE(ar5416Bank6_9100), 3);
931 
932 		INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100,
933 		    ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
934 
935 		INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100,
936 		    ARRAY_SIZE(ar5416Bank7_9100), 2);
937 
938 		INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100,
939 		    ARRAY_SIZE(ar5416Addac_9100), 2);
940 	} else {
941 		INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes,
942 		    ARRAY_SIZE(ar5416Modes), 6);
943 
944 		INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common,
945 		    ARRAY_SIZE(ar5416Common), 2);
946 
947 		INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0,
948 		    ARRAY_SIZE(ar5416Bank0), 2);
949 
950 		INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain,
951 		    ARRAY_SIZE(ar5416BB_RfGain), 3);
952 
953 		INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1,
954 		    ARRAY_SIZE(ar5416Bank1), 2);
955 
956 		INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2,
957 		    ARRAY_SIZE(ar5416Bank2), 2);
958 
959 		INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3,
960 		    ARRAY_SIZE(ar5416Bank3), 3);
961 
962 		INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6,
963 		    ARRAY_SIZE(ar5416Bank6), 3);
964 
965 		INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC,
966 		    ARRAY_SIZE(ar5416Bank6TPC), 3);
967 
968 		INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7,
969 		    ARRAY_SIZE(ar5416Bank7), 2);
970 
971 		INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac,
972 		    ARRAY_SIZE(ar5416Addac), 2);
973 	}
974 
975 	if (ah->ah_isPciExpress)
976 		ath9k_hw_configpcipowersave(ah, 0);
977 	else
978 		ath9k_hw_disablepcie(ah);
979 
980 	ecode = ath9k_hw_post_attach(ah);
981 	if (ecode != 0)
982 		goto bad;
983 
984 	/* rxgain table */
985 	if (AR_SREV_9280_20(ah))
986 		ath9k_hw_init_rxgain_ini(ah);
987 
988 	/* txgain table */
989 	if (AR_SREV_9280_20(ah))
990 		ath9k_hw_init_txgain_ini(ah);
991 
992 	if (ah->ah_devid == AR9280_DEVID_PCI) {
993 		for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
994 			uint32_t reg =
995 			    INI_RA(&ahp->ah_iniModes, i, 0);
996 
997 			for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) {
998 				uint32_t val
999 				    = INI_RA(&ahp->ah_iniModes, i, j);
1000 
1001 				INI_RA(&ahp->ah_iniModes, i, j) =
1002 				    ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom.def,
1003 				    reg, val);
1004 			}
1005 		}
1006 	}
1007 
1008 	if (!ath9k_hw_fill_cap_info(ah)) {
1009 		ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_do_attach(): "
1010 		    "failed ath9k_hw_fill_cap_info\n"));
1011 		goto bad;
1012 	}
1013 
1014 	ecode = ath9k_hw_init_macaddr(ah);
1015 	if (ecode != 0) {
1016 		ARN_DBG((ARN_DBG_HW, "arn: "
1017 		    "%s: failed initializing mac address\n",
1018 		    __func__));
1019 		goto bad;
1020 	}
1021 
1022 	if (AR_SREV_9285(ah))
1023 		ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S);
1024 	else
1025 		ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S);
1026 
1027 	ath9k_init_nfcal_hist_buffer(ah);
1028 
1029 	return (ah);
1030 bad:
1031 	if (ahp)
1032 		ath9k_hw_detach((struct ath_hal *)ahp);
1033 	if (status)
1034 		*status = ecode;
1035 
1036 	return (NULL);
1037 }
1038 
1039 static void
1040 ath9k_hw_init_bb(struct ath_hal *ah, struct ath9k_channel *chan)
1041 {
1042 	uint32_t synthDelay;
1043 
1044 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1045 	if (IS_CHAN_B(chan))
1046 		synthDelay = (4 * synthDelay) / 22;
1047 	else
1048 		synthDelay /= 10;
1049 
1050 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1051 
1052 	drv_usecwait(synthDelay + BASE_ACTIVATE_DELAY);
1053 }
1054 
1055 static void
1056 ath9k_hw_init_qos(struct ath_hal *ah)
1057 {
1058 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1059 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1060 
1061 	REG_WRITE(ah, AR_QOS_NO_ACK,
1062 	    SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1063 	    SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1064 	    SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1065 
1066 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1067 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1068 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1069 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1070 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1071 }
1072 
1073 static void
1074 ath9k_hw_init_pll(struct ath_hal *ah, struct ath9k_channel *chan)
1075 {
1076 	uint32_t pll;
1077 
1078 	if (AR_SREV_9100(ah)) {
1079 		if (chan && IS_CHAN_5GHZ(chan))
1080 			pll = 0x1450;
1081 		else
1082 			pll = 0x1458;
1083 	} else {
1084 		if (AR_SREV_9280_10_OR_LATER(ah)) {
1085 			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1086 
1087 			if (chan && IS_CHAN_HALF_RATE(chan))
1088 				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1089 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1090 				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1091 
1092 			if (chan && IS_CHAN_5GHZ(chan)) {
1093 				pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1094 
1095 
1096 				if (AR_SREV_9280_20(ah)) {
1097 					if (((chan->channel % 20) == 0) ||
1098 					    ((chan->channel % 10) == 0))
1099 						pll = 0x2850;
1100 					else
1101 						pll = 0x142c;
1102 				}
1103 			} else {
1104 				pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1105 			}
1106 
1107 		} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1108 
1109 			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1110 
1111 			if (chan && IS_CHAN_HALF_RATE(chan))
1112 				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1113 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1114 				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1115 
1116 			if (chan && IS_CHAN_5GHZ(chan))
1117 				pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1118 			else
1119 				pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1120 		} else {
1121 			pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1122 
1123 			if (chan && IS_CHAN_HALF_RATE(chan))
1124 				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1125 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1126 				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1127 
1128 			if (chan && IS_CHAN_5GHZ(chan))
1129 				pll |= SM(0xa, AR_RTC_PLL_DIV);
1130 			else
1131 				pll |= SM(0xb, AR_RTC_PLL_DIV);
1132 		}
1133 	}
1134 	REG_WRITE(ah, (uint16_t)(AR_RTC_PLL_CONTROL), pll);
1135 
1136 	drv_usecwait(RTC_PLL_SETTLE_DELAY);
1137 
1138 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1139 }
1140 
1141 static void
1142 ath9k_hw_init_chain_masks(struct ath_hal *ah)
1143 {
1144 	struct ath_hal_5416 *ahp = AH5416(ah);
1145 	int rx_chainmask, tx_chainmask;
1146 
1147 	rx_chainmask = ahp->ah_rxchainmask;
1148 	tx_chainmask = ahp->ah_txchainmask;
1149 
1150 	switch (rx_chainmask) {
1151 	case 0x5:
1152 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1153 		    AR_PHY_SWAP_ALT_CHAIN);
1154 		/*FALLTHRU*/
1155 	case 0x3:
1156 		if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) {
1157 			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1158 			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1159 			break;
1160 		}
1161 		/*FALLTHRU*/
1162 	case 0x1:
1163 	case 0x2:
1164 	case 0x7:
1165 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1166 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1167 		break;
1168 	default:
1169 		break;
1170 	}
1171 
1172 	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1173 	if (tx_chainmask == 0x5) {
1174 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1175 		    AR_PHY_SWAP_ALT_CHAIN);
1176 	}
1177 	if (AR_SREV_9100(ah))
1178 		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1179 		    REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1180 }
1181 
1182 static void
1183 ath9k_hw_init_interrupt_masks(struct ath_hal *ah, enum ath9k_opmode opmode)
1184 {
1185 	struct ath_hal_5416 *ahp = AH5416(ah);
1186 
1187 	ahp->ah_maskReg = AR_IMR_TXERR |
1188 	    AR_IMR_TXURN |
1189 	    AR_IMR_RXERR |
1190 	    AR_IMR_RXORN |
1191 	    AR_IMR_BCNMISC;
1192 
1193 	if (ahp->ah_intrMitigation)
1194 		ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1195 	else
1196 		ahp->ah_maskReg |= AR_IMR_RXOK;
1197 
1198 	ahp->ah_maskReg |= AR_IMR_TXOK;
1199 
1200 	if (opmode == ATH9K_M_HOSTAP)
1201 		ahp->ah_maskReg |= AR_IMR_MIB;
1202 
1203 	REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
1204 	REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1205 
1206 	if (!AR_SREV_9100(ah)) {
1207 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1208 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1209 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1210 	}
1211 }
1212 
1213 static boolean_t
1214 ath9k_hw_set_ack_timeout(struct ath_hal *ah, uint32_t us)
1215 {
1216 	struct ath_hal_5416 *ahp = AH5416(ah);
1217 
1218 	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1219 		ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_set_ack_timeout(): "
1220 		    "bad ack timeout %u\n", us));
1221 
1222 		ahp->ah_acktimeout = (uint32_t)-1;
1223 		return (B_FALSE);
1224 	} else {
1225 		REG_RMW_FIELD(ah, AR_TIME_OUT,
1226 		    AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1227 		ahp->ah_acktimeout = us;
1228 		return (B_TRUE);
1229 	}
1230 }
1231 
1232 static boolean_t
1233 ath9k_hw_set_cts_timeout(struct ath_hal *ah, uint32_t us)
1234 {
1235 	struct ath_hal_5416 *ahp = AH5416(ah);
1236 
1237 	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1238 		ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_set_cts_timeout(): "
1239 		    "bad cts timeout %u\n", us));
1240 
1241 		ahp->ah_ctstimeout = (uint32_t)-1;
1242 		return (B_FALSE);
1243 	} else {
1244 		REG_RMW_FIELD(ah, AR_TIME_OUT,
1245 		    AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1246 		ahp->ah_ctstimeout = us;
1247 		return (B_TRUE);
1248 	}
1249 }
1250 
1251 static boolean_t
1252 ath9k_hw_set_global_txtimeout(struct ath_hal *ah, uint32_t tu)
1253 {
1254 	struct ath_hal_5416 *ahp = AH5416(ah);
1255 
1256 	if (tu > 0xFFFF) {
1257 		ARN_DBG((ARN_DBG_XMIT,
1258 		    "arn: ath9k_hw_set_global_txtimeout(): "
1259 		    "ath9k_hw_set_global_txtimeout\n", tu));
1260 
1261 		ahp->ah_globaltxtimeout = (uint32_t)-1;
1262 		return (B_FALSE);
1263 	} else {
1264 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1265 		ahp->ah_globaltxtimeout = tu;
1266 		return (B_TRUE);
1267 	}
1268 }
1269 
1270 static void
1271 ath9k_hw_init_user_settings(struct ath_hal *ah)
1272 {
1273 	struct ath_hal_5416 *ahp = AH5416(ah);
1274 
1275 	ARN_DBG((ARN_DBG_ANY, "arn: ath9k_hw_init_user_settings(): "
1276 	    "--AP ahp->ah_miscMode 0x%x\n", ahp->ah_miscMode));
1277 
1278 	if (ahp->ah_miscMode != 0)
1279 		REG_WRITE(ah, AR_PCU_MISC,
1280 		    REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode);
1281 	if (ahp->ah_slottime != (uint32_t)-1)
1282 		(void) ath9k_hw_setslottime(ah, ahp->ah_slottime);
1283 	if (ahp->ah_acktimeout != (uint32_t)-1)
1284 		(void) ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout);
1285 	if (ahp->ah_ctstimeout != (uint32_t)-1)
1286 		(void) ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout);
1287 	if (ahp->ah_globaltxtimeout != (uint32_t)-1)
1288 		(void) ath9k_hw_set_global_txtimeout
1289 		    (ah, ahp->ah_globaltxtimeout);
1290 }
1291 
1292 const char *
1293 ath9k_hw_probe(uint16_t vendorid, uint16_t devid)
1294 {
1295 	return (vendorid == ATHEROS_VENDOR_ID ?
1296 	    ath9k_hw_devname(devid) : NULL);
1297 }
1298 
1299 void
1300 ath9k_hw_detach(struct ath_hal *ah)
1301 {
1302 	if (!AR_SREV_9100(ah))
1303 		ath9k_hw_ani_detach(ah);
1304 
1305 	ath9k_hw_rfdetach(ah);
1306 	(void) ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1307 	kmem_free(ah, sizeof (struct ath_hal_5416)); /* ???? */
1308 }
1309 
1310 struct ath_hal *
1311 ath9k_hw_attach(uint16_t device_id, struct arn_softc *sc,
1312     caddr_t mem, int *error)
1313 {
1314 	struct ath_hal *ah = NULL;
1315 
1316 	switch (device_id) {
1317 	case AR5416_DEVID_PCI:
1318 	case AR5416_DEVID_PCIE:
1319 	case AR9160_DEVID_PCI:
1320 	case AR9280_DEVID_PCI:
1321 	case AR9280_DEVID_PCIE:
1322 	case AR9285_DEVID_PCIE:
1323 		ah = ath9k_hw_do_attach(device_id, sc, mem, error);
1324 		break;
1325 	default:
1326 		*error = ENXIO;
1327 		break;
1328 	}
1329 
1330 	return (ah);
1331 }
1332 
1333 /* INI */
1334 
1335 /* ARGSUSED */
1336 static void
1337 ath9k_hw_override_ini(struct ath_hal *ah, struct ath9k_channel *chan)
1338 {
1339 	/*
1340 	 * Set the RX_ABORT and RX_DIS and clear if off only after
1341 	 * RXE is set for MAC. This prevents frames with corrupted
1342 	 * descriptor status.
1343 	 */
1344 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1345 
1346 	if (!AR_SREV_5416_V20_OR_LATER(ah) ||
1347 	    AR_SREV_9280_10_OR_LATER(ah))
1348 		return;
1349 
1350 	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1351 }
1352 
1353 static uint32_t
1354 ath9k_hw_def_ini_fixup(struct ath_hal *ah,
1355     struct ar5416_eeprom_def *pEepData,
1356     uint32_t reg, uint32_t value)
1357 {
1358 	struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1359 
1360 	switch (ah->ah_devid) {
1361 	case AR9280_DEVID_PCI:
1362 		if (reg == 0x7894) {
1363 			ARN_DBG((ARN_DBG_ANY,
1364 			    "arn: ath9k_hw_ini_fixup(): "
1365 			    "ini VAL: %x  EEPROM: %x\n",
1366 			    value, (pBase->version & 0xff)));
1367 
1368 			if ((pBase->version & 0xff) > 0x0a) {
1369 				ARN_DBG((ARN_DBG_ANY,
1370 				    "arn: ath9k_hw_ini_fixup(): "
1371 				    "PWDCLKIND: %d\n",
1372 				    pBase->pwdclkind));
1373 
1374 				value &= ~AR_AN_TOP2_PWDCLKIND;
1375 				value |= AR_AN_TOP2_PWDCLKIND &
1376 				    (pBase->pwdclkind <<
1377 				    AR_AN_TOP2_PWDCLKIND_S);
1378 			} else {
1379 				ARN_DBG((ARN_DBG_ANY,
1380 				    "arn: ath9k_hw_ini_fixup(): "
1381 				    "PWDCLKIND Earlier Rev\n"));
1382 			}
1383 
1384 			ARN_DBG((ARN_DBG_ANY,
1385 			    "arn: ath9k_hw_ini_fixup(): "
1386 			    "final ini VAL: %x\n\n", value));
1387 		}
1388 		break;
1389 	}
1390 
1391 	return (value);
1392 }
1393 
1394 static uint32_t
1395 ath9k_hw_ini_fixup(struct ath_hal *ah, struct ar5416_eeprom_def *pEepData,
1396     uint32_t reg, uint32_t value)
1397 {
1398 	struct ath_hal_5416 *ahp = AH5416(ah);
1399 
1400 	if (ahp->ah_eep_map == EEP_MAP_4KBITS)
1401 		return (value);
1402 	else
1403 		return (ath9k_hw_def_ini_fixup(ah, pEepData, reg, value));
1404 }
1405 
1406 static int
1407 ath9k_hw_process_ini(struct ath_hal *ah,
1408     struct ath9k_channel *chan,
1409     enum ath9k_ht_macmode macmode)
1410 {
1411 	int i, regWrites = 0;
1412 	struct ath_hal_5416 *ahp = AH5416(ah);
1413 	uint32_t modesIndex, freqIndex;
1414 	int status;
1415 
1416 	switch (chan->chanmode) {
1417 	case CHANNEL_A:
1418 	case CHANNEL_A_HT20:
1419 		modesIndex = 1;
1420 		freqIndex = 1;
1421 		break;
1422 	case CHANNEL_A_HT40PLUS:
1423 	case CHANNEL_A_HT40MINUS:
1424 		modesIndex = 2;
1425 		freqIndex = 1;
1426 		break;
1427 	case CHANNEL_G:
1428 	case CHANNEL_G_HT20:
1429 	case CHANNEL_B:
1430 		modesIndex = 4;
1431 		freqIndex = 2;
1432 		break;
1433 	case CHANNEL_G_HT40PLUS:
1434 	case CHANNEL_G_HT40MINUS:
1435 		modesIndex = 3;
1436 		freqIndex = 2;
1437 		break;
1438 
1439 	default:
1440 		ARN_DBG((ARN_DBG_CHANNEL, "arn: "
1441 		    "%s: err: unknow chan->chanmode\n", __func__));
1442 		return (EINVAL);
1443 	}
1444 
1445 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
1446 
1447 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1448 
1449 	ath9k_hw_set_addac(ah, chan);
1450 
1451 	if (AR_SREV_5416_V22_OR_LATER(ah)) {
1452 		/* LINTED: E_CONSTANT_CONDITION */
1453 		REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites);
1454 	} else {
1455 		struct ar5416IniArray temp;
1456 		uint32_t addacSize =
1457 		    sizeof (uint32_t) * ahp->ah_iniAddac.ia_rows *
1458 		    ahp->ah_iniAddac.ia_columns;
1459 
1460 		(void) memcpy(ahp->ah_addac5416_21,
1461 		    ahp->ah_iniAddac.ia_array, addacSize);
1462 
1463 		(ahp->ah_addac5416_21)
1464 		    [31 * ahp->ah_iniAddac.ia_columns + 1] = 0;
1465 
1466 		temp.ia_array = ahp->ah_addac5416_21;
1467 		temp.ia_columns = ahp->ah_iniAddac.ia_columns;
1468 		temp.ia_rows = ahp->ah_iniAddac.ia_rows;
1469 		/* LINTED: E_CONSTANT_CONDITION */
1470 		REG_WRITE_ARRAY(&temp, 1, regWrites);
1471 	}
1472 
1473 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1474 
1475 	for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
1476 		uint32_t reg = INI_RA(&ahp->ah_iniModes, i, 0);
1477 		uint32_t val = INI_RA(&ahp->ah_iniModes, i, modesIndex);
1478 
1479 		REG_WRITE(ah, reg, val);
1480 
1481 		if (reg >= 0x7800 && reg < 0x78a0 &&
1482 		    ah->ah_config.analog_shiftreg) {
1483 			drv_usecwait(100);
1484 		}
1485 
1486 		/* LINTED: E_CONSTANT_CONDITION */
1487 		DO_DELAY(regWrites);
1488 	}
1489 
1490 	if (AR_SREV_9280(ah)) {
1491 		/* LINTED: E_CONSTANT_CONDITION */
1492 		REG_WRITE_ARRAY(&ahp->ah_iniModesRxGain, modesIndex,
1493 		    regWrites);
1494 	}
1495 
1496 	if (AR_SREV_9280(ah)) {
1497 		/* LINTED: E_CONSTANT_CONDITION */
1498 		REG_WRITE_ARRAY(&ahp->ah_iniModesTxGain, modesIndex,
1499 		    regWrites);
1500 	}
1501 
1502 	for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) {
1503 		uint32_t reg = INI_RA(&ahp->ah_iniCommon, i, 0);
1504 		uint32_t val = INI_RA(&ahp->ah_iniCommon, i, 1);
1505 
1506 		REG_WRITE(ah, reg, val);
1507 
1508 		if (reg >= 0x7800 && reg < 0x78a0 &&
1509 		    ah->ah_config.analog_shiftreg) {
1510 			drv_usecwait(100);
1511 		}
1512 
1513 		/* LINTED: E_CONSTANT_CONDITION */
1514 		DO_DELAY(regWrites);
1515 	}
1516 
1517 	ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1518 
1519 	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1520 		/* LINTED: E_CONSTANT_CONDITION */
1521 		REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex,
1522 		    regWrites);
1523 	}
1524 
1525 	ath9k_hw_override_ini(ah, chan);
1526 	ath9k_hw_set_regs(ah, chan, macmode);
1527 	ath9k_hw_init_chain_masks(ah);
1528 
1529 	status = ath9k_hw_set_txpower(ah, chan,
1530 	    ath9k_regd_get_ctl(ah, chan),
1531 	    ath9k_regd_get_antenna_allowed(ah, chan),
1532 	    chan->maxRegTxPower * 2,
1533 	    min((uint32_t)MAX_RATE_POWER,
1534 	    (uint32_t)ah->ah_powerLimit));
1535 	if (status != 0) {
1536 		ARN_DBG((ARN_DBG_ANY, "arn: ath9k_hw_process_ini(): "
1537 		    "%s: error init'ing transmit power\n", __func__));
1538 
1539 		return (EIO);
1540 	}
1541 
1542 	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1543 		ARN_DBG((ARN_DBG_ANY, "arn: ath9k_hw_process_ini(): "
1544 		    "%s: ar5416SetRfRegs failed\n", __func__));
1545 
1546 		return (EIO);
1547 	}
1548 
1549 	return (0);
1550 }
1551 
1552 /* Reset and Channel Switching Routines */
1553 
1554 static void
1555 ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan)
1556 {
1557 	uint32_t rfMode = 0;
1558 
1559 	if (chan == NULL)
1560 		return;
1561 
1562 	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1563 	    ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1564 
1565 	if (!AR_SREV_9280_10_OR_LATER(ah))
1566 		rfMode |= (IS_CHAN_5GHZ(chan)) ?
1567 		    AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1568 
1569 	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1570 		rfMode |= (AR_PHY_MODE_DYNAMIC |
1571 		    AR_PHY_MODE_DYN_CCK_DISABLE);
1572 
1573 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
1574 }
1575 
1576 static void
1577 ath9k_hw_mark_phy_inactive(struct ath_hal *ah)
1578 {
1579 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1580 }
1581 
1582 static inline void
1583 ath9k_hw_set_dma(struct ath_hal *ah)
1584 {
1585 	uint32_t regval;
1586 
1587 	regval = REG_READ(ah, AR_AHB_MODE);
1588 	REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1589 
1590 	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1591 	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1592 
1593 	REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel);
1594 
1595 	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1596 	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1597 
1598 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1599 
1600 	if (AR_SREV_9285(ah)) {
1601 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1602 		    AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1603 	} else {
1604 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1605 		    AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1606 	}
1607 }
1608 
1609 static void
1610 ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode)
1611 {
1612 	uint32_t val;
1613 
1614 	val = REG_READ(ah, AR_STA_ID1);
1615 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1616 	switch (opmode) {
1617 	case ATH9K_M_HOSTAP:
1618 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP |
1619 		    AR_STA_ID1_KSRCH_MODE);
1620 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1621 		break;
1622 	case ATH9K_M_IBSS:
1623 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC |
1624 		    AR_STA_ID1_KSRCH_MODE);
1625 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1626 		break;
1627 	case ATH9K_M_STA:
1628 	case ATH9K_M_MONITOR:
1629 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1630 		break;
1631 	}
1632 }
1633 
1634 /* ARGSUSED */
1635 static inline void
1636 ath9k_hw_get_delta_slope_vals(struct ath_hal *ah,
1637     uint32_t coef_scaled,
1638     uint32_t *coef_mantissa,
1639     uint32_t *coef_exponent)
1640 {
1641 	uint32_t coef_exp, coef_man;
1642 
1643 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1644 		if ((coef_scaled >> coef_exp) & 0x1)
1645 			break;
1646 
1647 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1648 
1649 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1650 
1651 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1652 	*coef_exponent = coef_exp - 16;
1653 }
1654 
1655 static void
1656 ath9k_hw_set_delta_slope(struct ath_hal *ah,
1657     struct ath9k_channel *chan)
1658 {
1659 	uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
1660 	uint32_t clockMhzScaled = 0x64000000;
1661 	struct chan_centers centers;
1662 
1663 	if (IS_CHAN_HALF_RATE(chan))
1664 		clockMhzScaled = clockMhzScaled >> 1;
1665 	else if (IS_CHAN_QUARTER_RATE(chan))
1666 		clockMhzScaled = clockMhzScaled >> 2;
1667 
1668 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1669 	coef_scaled = clockMhzScaled / centers.synth_center;
1670 
1671 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1672 	    &ds_coef_exp);
1673 
1674 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1675 	    AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1676 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1677 	    AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1678 
1679 	coef_scaled = (9 * coef_scaled) / 10;
1680 
1681 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1682 	    &ds_coef_exp);
1683 
1684 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1685 	    AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1686 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1687 	    AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1688 }
1689 
1690 static boolean_t
1691 ath9k_hw_set_reset(struct ath_hal *ah, int type)
1692 {
1693 	uint32_t rst_flags;
1694 	uint32_t tmpReg;
1695 
1696 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1697 	    AR_RTC_FORCE_WAKE_ON_INT);
1698 
1699 	if (AR_SREV_9100(ah)) {
1700 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1701 		    AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1702 	} else {
1703 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1704 		if (tmpReg &
1705 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1706 		    AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1707 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1708 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1709 		} else {
1710 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1711 		}
1712 
1713 		rst_flags = AR_RTC_RC_MAC_WARM;
1714 		if (type == ATH9K_RESET_COLD)
1715 			rst_flags |= AR_RTC_RC_MAC_COLD;
1716 	}
1717 
1718 	REG_WRITE(ah, (uint16_t)(AR_RTC_RC), rst_flags);
1719 	drv_usecwait(50);
1720 
1721 	REG_WRITE(ah, (uint16_t)(AR_RTC_RC), 0);
1722 	if (!ath9k_hw_wait(ah, (uint16_t)(AR_RTC_RC), AR_RTC_RC_M, 0)) {
1723 		ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_set_reset(): "
1724 		    "RTC stuck in MAC reset\n"));
1725 
1726 		return (B_FALSE);
1727 	}
1728 
1729 	if (!AR_SREV_9100(ah))
1730 		REG_WRITE(ah, AR_RC, 0);
1731 
1732 	ath9k_hw_init_pll(ah, NULL);
1733 
1734 	if (AR_SREV_9100(ah))
1735 		drv_usecwait(50);
1736 
1737 	return (B_TRUE);
1738 }
1739 
1740 static boolean_t
1741 ath9k_hw_set_reset_power_on(struct ath_hal *ah)
1742 {
1743 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1744 	    AR_RTC_FORCE_WAKE_ON_INT);
1745 
1746 	REG_WRITE(ah, (uint16_t)(AR_RTC_RESET), 0);
1747 	REG_WRITE(ah, (uint16_t)(AR_RTC_RESET), 1);
1748 
1749 	if (!ath9k_hw_wait(ah,
1750 	    AR_RTC_STATUS,
1751 	    AR_RTC_STATUS_M,
1752 	    AR_RTC_STATUS_ON)) {
1753 		ARN_DBG((ARN_DBG_HW,
1754 		    "arn: ath9k_hw_set_reset_power_on(): "
1755 		    "RTC not waking up \n"));
1756 
1757 		return (B_FALSE);
1758 	}
1759 
1760 	ath9k_hw_read_revisions(ah);
1761 
1762 	return (ath9k_hw_set_reset(ah, ATH9K_RESET_WARM));
1763 }
1764 
1765 static boolean_t
1766 ath9k_hw_set_reset_reg(struct ath_hal *ah, uint32_t type)
1767 {
1768 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1769 	    AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1770 
1771 	switch (type) {
1772 	case ATH9K_RESET_POWER_ON:
1773 		return (ath9k_hw_set_reset_power_on(ah));
1774 	case ATH9K_RESET_WARM:
1775 	case ATH9K_RESET_COLD:
1776 		return (ath9k_hw_set_reset(ah, type));
1777 	default:
1778 		return (B_FALSE);
1779 	}
1780 }
1781 
1782 static void
1783 ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
1784     enum ath9k_ht_macmode macmode)
1785 {
1786 	uint32_t phymode;
1787 	uint32_t enableDacFifo = 0;
1788 	struct ath_hal_5416 *ahp = AH5416(ah);
1789 
1790 	if (AR_SREV_9285_10_OR_LATER(ah))
1791 		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1792 		    AR_PHY_FC_ENABLE_DAC_FIFO);
1793 
1794 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 |
1795 	    AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1796 
1797 	if (IS_CHAN_HT40(chan)) {
1798 		phymode |= AR_PHY_FC_DYN2040_EN;
1799 
1800 		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1801 		    (chan->chanmode == CHANNEL_G_HT40PLUS))
1802 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1803 
1804 		if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1805 			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1806 	}
1807 	REG_WRITE(ah, AR_PHY_TURBO, phymode);
1808 
1809 	ath9k_hw_set11nmac2040(ah, macmode);
1810 
1811 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1812 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1813 }
1814 
1815 static boolean_t
1816 ath9k_hw_chip_reset(struct ath_hal *ah,
1817     struct ath9k_channel *chan)
1818 {
1819 	struct ath_hal_5416 *ahp = AH5416(ah);
1820 
1821 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1822 		return (B_FALSE);
1823 
1824 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1825 		return (B_FALSE);
1826 
1827 	ahp->ah_chipFullSleep = B_FALSE;
1828 
1829 	ath9k_hw_init_pll(ah, chan);
1830 
1831 	ath9k_hw_set_rfmode(ah, chan);
1832 
1833 	return (B_TRUE);
1834 }
1835 
1836 static struct ath9k_channel *
1837 ath9k_hw_check_chan(struct ath_hal *ah, struct ath9k_channel *chan)
1838 {
1839 	if (!(IS_CHAN_2GHZ(chan) ^ IS_CHAN_5GHZ(chan))) {
1840 		ARN_DBG((ARN_DBG_CHANNEL, "arn: "
1841 		    "%s: invalid channel %u/0x%x; not marked as "
1842 		    "2GHz or 5GHz\n",
1843 		    __func__, chan->channel, chan->channelFlags));
1844 		return (NULL);
1845 	}
1846 
1847 	if (!IS_CHAN_OFDM(chan) &&
1848 	    !IS_CHAN_B(chan) &&
1849 	    !IS_CHAN_HT20(chan) &&
1850 	    !IS_CHAN_HT40(chan)) {
1851 		ARN_DBG((ARN_DBG_CHANNEL, "arn: "
1852 		    "%s: invalid channel %u/0x%x; not marked as "
1853 		    "OFDM or CCK or HT20 or HT40PLUS or HT40MINUS\n",
1854 		    __func__, chan->channel, chan->channelFlags));
1855 
1856 		return (NULL);
1857 	}
1858 
1859 	return (ath9k_regd_check_channel(ah, chan));
1860 }
1861 
1862 static boolean_t
1863 ath9k_hw_channel_change(struct ath_hal *ah,
1864     struct ath9k_channel *chan,
1865     enum ath9k_ht_macmode macmode)
1866 {
1867 	uint32_t synthDelay, qnum;
1868 
1869 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1870 		if (ath9k_hw_numtxpending(ah, qnum)) {
1871 			ARN_DBG((ARN_DBG_QUEUE, "arn: "
1872 			    "%s: Transmit frames pending on queue %d\n",
1873 			    __func__, qnum));
1874 
1875 			return (B_FALSE);
1876 		}
1877 	}
1878 
1879 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1880 	if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1881 	    AR_PHY_RFBUS_GRANT_EN)) {
1882 		ARN_DBG((ARN_DBG_HW, "arn: "
1883 		    "%s: Could not kill baseband RX\n", __func__));
1884 
1885 		return (B_FALSE);
1886 	}
1887 
1888 	ath9k_hw_set_regs(ah, chan, macmode);
1889 
1890 	if (AR_SREV_9280_10_OR_LATER(ah)) {
1891 		if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
1892 			ARN_DBG((ARN_DBG_CHANNEL, "arn: "
1893 			    "%s: failed to set channel\n", __func__));
1894 			return (B_FALSE);
1895 		}
1896 	} else {
1897 		if (!(ath9k_hw_set_channel(ah, chan))) {
1898 			ARN_DBG((ARN_DBG_CHANNEL, "arn: "
1899 			    "%s: failed to set channel\n", __func__));
1900 
1901 			return (B_FALSE);
1902 		}
1903 	}
1904 
1905 	if (ath9k_hw_set_txpower(ah, chan,
1906 	    ath9k_regd_get_ctl(ah, chan),
1907 	    ath9k_regd_get_antenna_allowed(ah, chan),
1908 	    chan->maxRegTxPower * 2,
1909 	    min((uint32_t)MAX_RATE_POWER,
1910 	    (uint32_t)ah->ah_powerLimit)) != 0) {
1911 		ARN_DBG((ARN_DBG_EEPROM, "arn: "
1912 		    "%s: error init'ing transmit power\n", __func__));
1913 
1914 		return (B_FALSE);
1915 	}
1916 
1917 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1918 	if (IS_CHAN_B(chan))
1919 		synthDelay = (4 * synthDelay) / 22;
1920 	else
1921 		synthDelay /= 10;
1922 
1923 	drv_usecwait(synthDelay + BASE_ACTIVATE_DELAY);
1924 
1925 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1926 
1927 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1928 		ath9k_hw_set_delta_slope(ah, chan);
1929 
1930 	if (AR_SREV_9280_10_OR_LATER(ah))
1931 		ath9k_hw_9280_spur_mitigate(ah, chan);
1932 	else
1933 		ath9k_hw_spur_mitigate(ah, chan);
1934 
1935 	if (!chan->oneTimeCalsDone)
1936 		chan->oneTimeCalsDone = B_TRUE;
1937 
1938 	return (B_TRUE);
1939 }
1940 
1941 static void
1942 ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan)
1943 {
1944 	int bb_spur = AR_NO_SPUR;
1945 	int freq;
1946 	int bin, cur_bin;
1947 	int bb_spur_off, spur_subchannel_sd;
1948 	int spur_freq_sd;
1949 	int spur_delta_phase;
1950 	int denominator;
1951 	int upper, lower, cur_vit_mask;
1952 	int tmp, newVal;
1953 	int i;
1954 	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1955 	    AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1956 	};
1957 	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1958 	    AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1959 	};
1960 	int inc[4] = { 0, 100, 0, 0 };
1961 	struct chan_centers centers;
1962 
1963 	int8_t mask_m[123];
1964 	int8_t mask_p[123];
1965 	int8_t mask_amt;
1966 	int tmp_mask;
1967 	int cur_bb_spur;
1968 	boolean_t is2GHz = IS_CHAN_2GHZ(chan);
1969 
1970 	(void) memset(&mask_m, 0, sizeof (int8_t) * 123);
1971 	(void) memset(&mask_p, 0, sizeof (int8_t) * 123);
1972 
1973 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1974 	freq = centers.synth_center;
1975 
1976 	ah->ah_config.spurmode = SPUR_ENABLE_EEPROM;
1977 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1978 		cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
1979 
1980 		if (is2GHz)
1981 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1982 		else
1983 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1984 
1985 		if (AR_NO_SPUR == cur_bb_spur)
1986 			break;
1987 		cur_bb_spur = cur_bb_spur - freq;
1988 
1989 		if (IS_CHAN_HT40(chan)) {
1990 			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1991 			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1992 				bb_spur = cur_bb_spur;
1993 				break;
1994 			}
1995 		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1996 		    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1997 			bb_spur = cur_bb_spur;
1998 			break;
1999 		}
2000 	}
2001 
2002 	if (AR_NO_SPUR == bb_spur) {
2003 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
2004 		    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
2005 		return;
2006 	} else {
2007 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
2008 		    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
2009 	}
2010 
2011 	bin = bb_spur * 320;
2012 
2013 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2014 
2015 	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2016 	    AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2017 	    AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2018 	    AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2019 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
2020 
2021 	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2022 	    AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2023 	    AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2024 	    AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2025 	    SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2026 	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
2027 
2028 	if (IS_CHAN_HT40(chan)) {
2029 		if (bb_spur < 0) {
2030 			spur_subchannel_sd = 1;
2031 			bb_spur_off = bb_spur + 10;
2032 		} else {
2033 			spur_subchannel_sd = 0;
2034 			bb_spur_off = bb_spur - 10;
2035 		}
2036 	} else {
2037 		spur_subchannel_sd = 0;
2038 		bb_spur_off = bb_spur;
2039 	}
2040 
2041 	if (IS_CHAN_HT40(chan))
2042 		spur_delta_phase =
2043 		    ((bb_spur * 262144) / 10) &
2044 		    AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2045 	else
2046 		spur_delta_phase =
2047 		    ((bb_spur * 524288) / 10) &
2048 		    AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2049 
2050 	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
2051 	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
2052 
2053 	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2054 	    SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2055 	    SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2056 	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
2057 
2058 	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
2059 	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
2060 
2061 	cur_bin = -6000;
2062 	upper = bin + 100;
2063 	lower = bin - 100;
2064 
2065 	for (i = 0; i < 4; i++) {
2066 		int pilot_mask = 0;
2067 		int chan_mask = 0;
2068 		int bp = 0;
2069 		for (bp = 0; bp < 30; bp++) {
2070 			if ((cur_bin > lower) && (cur_bin < upper)) {
2071 				pilot_mask = pilot_mask | 0x1 << bp;
2072 				chan_mask = chan_mask | 0x1 << bp;
2073 			}
2074 			cur_bin += 100;
2075 		}
2076 		cur_bin += inc[i];
2077 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2078 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2079 	}
2080 
2081 	cur_vit_mask = 6100;
2082 	upper = bin + 120;
2083 	lower = bin - 120;
2084 
2085 	for (i = 0; i < 123; i++) {
2086 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2087 
2088 			/* workaround for gcc bug #37014 */
2089 			volatile int tmp = abs(cur_vit_mask - bin);
2090 
2091 			if (tmp < 75)
2092 				mask_amt = 1;
2093 			else
2094 				mask_amt = 0;
2095 			if (cur_vit_mask < 0)
2096 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2097 			else
2098 				mask_p[cur_vit_mask / 100] = mask_amt;
2099 		}
2100 		cur_vit_mask -= 100;
2101 	}
2102 
2103 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) |
2104 	    (mask_m[48] << 26) | (mask_m[49] << 24) |
2105 	    (mask_m[50] << 22) | (mask_m[51] << 20) |
2106 	    (mask_m[52] << 18) | (mask_m[53] << 16) |
2107 	    (mask_m[54] << 14) | (mask_m[55] << 12) |
2108 	    (mask_m[56] << 10) | (mask_m[57] << 8) |
2109 	    (mask_m[58] << 6) | (mask_m[59] << 4) |
2110 	    (mask_m[60] << 2) | (mask_m[61] << 0);
2111 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2112 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2113 
2114 	tmp_mask = (mask_m[31] << 28) |
2115 	    (mask_m[32] << 26) | (mask_m[33] << 24) |
2116 	    (mask_m[34] << 22) | (mask_m[35] << 20) |
2117 	    (mask_m[36] << 18) | (mask_m[37] << 16) |
2118 	    (mask_m[48] << 14) | (mask_m[39] << 12) |
2119 	    (mask_m[40] << 10) | (mask_m[41] << 8) |
2120 	    (mask_m[42] << 6) | (mask_m[43] << 4) |
2121 	    (mask_m[44] << 2) | (mask_m[45] << 0);
2122 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2123 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2124 
2125 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) |
2126 	    (mask_m[18] << 26) | (mask_m[18] << 24) |
2127 	    (mask_m[20] << 22) | (mask_m[20] << 20) |
2128 	    (mask_m[22] << 18) | (mask_m[22] << 16) |
2129 	    (mask_m[24] << 14) | (mask_m[24] << 12) |
2130 	    (mask_m[25] << 10) | (mask_m[26] << 8) |
2131 	    (mask_m[27] << 6) | (mask_m[28] << 4) |
2132 	    (mask_m[29] << 2) | (mask_m[30] << 0);
2133 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2134 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2135 
2136 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) |
2137 	    (mask_m[2] << 26) | (mask_m[3] << 24) |
2138 	    (mask_m[4] << 22) | (mask_m[5] << 20) |
2139 	    (mask_m[6] << 18) | (mask_m[7] << 16) |
2140 	    (mask_m[8] << 14) | (mask_m[9] << 12) |
2141 	    (mask_m[10] << 10) | (mask_m[11] << 8) |
2142 	    (mask_m[12] << 6) | (mask_m[13] << 4) |
2143 	    (mask_m[14] << 2) | (mask_m[15] << 0);
2144 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2145 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2146 
2147 	tmp_mask = (mask_p[15] << 28) |
2148 	    (mask_p[14] << 26) | (mask_p[13] << 24) |
2149 	    (mask_p[12] << 22) | (mask_p[11] << 20) |
2150 	    (mask_p[10] << 18) | (mask_p[9] << 16) |
2151 	    (mask_p[8] << 14) | (mask_p[7] << 12) |
2152 	    (mask_p[6] << 10) | (mask_p[5] << 8) |
2153 	    (mask_p[4] << 6) | (mask_p[3] << 4) |
2154 	    (mask_p[2] << 2) | (mask_p[1] << 0);
2155 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2156 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2157 
2158 	tmp_mask = (mask_p[30] << 28) |
2159 	    (mask_p[29] << 26) | (mask_p[28] << 24) |
2160 	    (mask_p[27] << 22) | (mask_p[26] << 20) |
2161 	    (mask_p[25] << 18) | (mask_p[24] << 16) |
2162 	    (mask_p[23] << 14) | (mask_p[22] << 12) |
2163 	    (mask_p[21] << 10) | (mask_p[20] << 8) |
2164 	    (mask_p[19] << 6) | (mask_p[18] << 4) |
2165 	    (mask_p[17] << 2) | (mask_p[16] << 0);
2166 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2167 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2168 
2169 	tmp_mask = (mask_p[45] << 28) |
2170 	    (mask_p[44] << 26) | (mask_p[43] << 24) |
2171 	    (mask_p[42] << 22) | (mask_p[41] << 20) |
2172 	    (mask_p[40] << 18) | (mask_p[39] << 16) |
2173 	    (mask_p[38] << 14) | (mask_p[37] << 12) |
2174 	    (mask_p[36] << 10) | (mask_p[35] << 8) |
2175 	    (mask_p[34] << 6) | (mask_p[33] << 4) |
2176 	    (mask_p[32] << 2) | (mask_p[31] << 0);
2177 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2178 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2179 
2180 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) |
2181 	    (mask_p[59] << 26) | (mask_p[58] << 24) |
2182 	    (mask_p[57] << 22) | (mask_p[56] << 20) |
2183 	    (mask_p[55] << 18) | (mask_p[54] << 16) |
2184 	    (mask_p[53] << 14) | (mask_p[52] << 12) |
2185 	    (mask_p[51] << 10) | (mask_p[50] << 8) |
2186 	    (mask_p[49] << 6) | (mask_p[48] << 4) |
2187 	    (mask_p[47] << 2) | (mask_p[46] << 0);
2188 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2189 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2190 }
2191 
2192 static void
2193 ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan)
2194 {
2195 	int bb_spur = AR_NO_SPUR;
2196 	int bin, cur_bin;
2197 	int spur_freq_sd;
2198 	int spur_delta_phase;
2199 	int denominator;
2200 	int upper, lower, cur_vit_mask;
2201 	int tmp, new;
2202 	int i;
2203 	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2204 	    AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2205 	};
2206 	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2207 	    AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2208 	};
2209 	int inc[4] = { 0, 100, 0, 0 };
2210 
2211 	int8_t mask_m[123];
2212 	int8_t mask_p[123];
2213 	int8_t mask_amt;
2214 	int tmp_mask;
2215 	int cur_bb_spur;
2216 	boolean_t is2GHz = IS_CHAN_2GHZ(chan);
2217 
2218 	(void) memset(&mask_m, 0, sizeof (int8_t) * 123);
2219 	(void) memset(&mask_p, 0, sizeof (int8_t) * 123);
2220 
2221 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2222 		cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
2223 		if (AR_NO_SPUR == cur_bb_spur)
2224 			break;
2225 		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2226 		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2227 			bb_spur = cur_bb_spur;
2228 			break;
2229 		}
2230 	}
2231 
2232 	if (AR_NO_SPUR == bb_spur)
2233 		return;
2234 
2235 	bin = bb_spur * 32;
2236 
2237 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2238 	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2239 	    AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2240 	    AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2241 	    AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2242 
2243 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2244 
2245 	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2246 	    AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2247 	    AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2248 	    AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2249 	    SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2250 	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2251 
2252 	spur_delta_phase = ((bb_spur * 524288) / 100) &
2253 	    AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2254 
2255 	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2256 	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2257 
2258 	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2259 	    SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2260 	    SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2261 	REG_WRITE(ah, AR_PHY_TIMING11, new);
2262 
2263 	cur_bin = -6000;
2264 	upper = bin + 100;
2265 	lower = bin - 100;
2266 
2267 	for (i = 0; i < 4; i++) {
2268 		int pilot_mask = 0;
2269 		int chan_mask = 0;
2270 		int bp = 0;
2271 		for (bp = 0; bp < 30; bp++) {
2272 			if ((cur_bin > lower) && (cur_bin < upper)) {
2273 				pilot_mask = pilot_mask | 0x1 << bp;
2274 				chan_mask = chan_mask | 0x1 << bp;
2275 			}
2276 			cur_bin += 100;
2277 		}
2278 		cur_bin += inc[i];
2279 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2280 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2281 	}
2282 
2283 	cur_vit_mask = 6100;
2284 	upper = bin + 120;
2285 	lower = bin - 120;
2286 
2287 	for (i = 0; i < 123; i++) {
2288 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2289 
2290 			/* workaround for gcc bug #37014 */
2291 			volatile int tmp = abs(cur_vit_mask - bin);
2292 
2293 			if (tmp < 75)
2294 				mask_amt = 1;
2295 			else
2296 				mask_amt = 0;
2297 			if (cur_vit_mask < 0)
2298 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2299 			else
2300 				mask_p[cur_vit_mask / 100] = mask_amt;
2301 		}
2302 		cur_vit_mask -= 100;
2303 	}
2304 
2305 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) |
2306 	    (mask_m[48] << 26) | (mask_m[49] << 24) |
2307 	    (mask_m[50] << 22) | (mask_m[51] << 20) |
2308 	    (mask_m[52] << 18) | (mask_m[53] << 16) |
2309 	    (mask_m[54] << 14) | (mask_m[55] << 12) |
2310 	    (mask_m[56] << 10) | (mask_m[57] << 8) |
2311 	    (mask_m[58] << 6) | (mask_m[59] << 4) |
2312 	    (mask_m[60] << 2) | (mask_m[61] << 0);
2313 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2314 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2315 
2316 	tmp_mask = (mask_m[31] << 28) |
2317 	    (mask_m[32] << 26) | (mask_m[33] << 24) |
2318 	    (mask_m[34] << 22) | (mask_m[35] << 20) |
2319 	    (mask_m[36] << 18) | (mask_m[37] << 16) |
2320 	    (mask_m[48] << 14) | (mask_m[39] << 12) |
2321 	    (mask_m[40] << 10) | (mask_m[41] << 8) |
2322 	    (mask_m[42] << 6) | (mask_m[43] << 4) |
2323 	    (mask_m[44] << 2) | (mask_m[45] << 0);
2324 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2325 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2326 
2327 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) |
2328 	    (mask_m[18] << 26) | (mask_m[18] << 24) |
2329 	    (mask_m[20] << 22) | (mask_m[20] << 20) |
2330 	    (mask_m[22] << 18) | (mask_m[22] << 16) |
2331 	    (mask_m[24] << 14) | (mask_m[24] << 12) |
2332 	    (mask_m[25] << 10) | (mask_m[26] << 8) |
2333 	    (mask_m[27] << 6) | (mask_m[28] << 4) |
2334 	    (mask_m[29] << 2) | (mask_m[30] << 0);
2335 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2336 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2337 
2338 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) |
2339 	    (mask_m[2] << 26) | (mask_m[3] << 24) |
2340 	    (mask_m[4] << 22) | (mask_m[5] << 20) |
2341 	    (mask_m[6] << 18) | (mask_m[7] << 16) |
2342 	    (mask_m[8] << 14) | (mask_m[9] << 12) |
2343 	    (mask_m[10] << 10) | (mask_m[11] << 8) |
2344 	    (mask_m[12] << 6) | (mask_m[13] << 4) |
2345 	    (mask_m[14] << 2) | (mask_m[15] << 0);
2346 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2347 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2348 
2349 	tmp_mask = (mask_p[15] << 28) |
2350 	    (mask_p[14] << 26) | (mask_p[13] << 24) |
2351 	    (mask_p[12] << 22) | (mask_p[11] << 20) |
2352 	    (mask_p[10] << 18) | (mask_p[9] << 16) |
2353 	    (mask_p[8] << 14) | (mask_p[7] << 12) |
2354 	    (mask_p[6] << 10) | (mask_p[5] << 8) |
2355 	    (mask_p[4] << 6) | (mask_p[3] << 4) |
2356 	    (mask_p[2] << 2) | (mask_p[1] << 0);
2357 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2358 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2359 
2360 	tmp_mask = (mask_p[30] << 28) |
2361 	    (mask_p[29] << 26) | (mask_p[28] << 24) |
2362 	    (mask_p[27] << 22) | (mask_p[26] << 20) |
2363 	    (mask_p[25] << 18) | (mask_p[24] << 16) |
2364 	    (mask_p[23] << 14) | (mask_p[22] << 12) |
2365 	    (mask_p[21] << 10) | (mask_p[20] << 8) |
2366 	    (mask_p[19] << 6) | (mask_p[18] << 4) |
2367 	    (mask_p[17] << 2) | (mask_p[16] << 0);
2368 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2369 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2370 
2371 	tmp_mask = (mask_p[45] << 28) |
2372 	    (mask_p[44] << 26) | (mask_p[43] << 24) |
2373 	    (mask_p[42] << 22) | (mask_p[41] << 20) |
2374 	    (mask_p[40] << 18) | (mask_p[39] << 16) |
2375 	    (mask_p[38] << 14) | (mask_p[37] << 12) |
2376 	    (mask_p[36] << 10) | (mask_p[35] << 8) |
2377 	    (mask_p[34] << 6) | (mask_p[33] << 4) |
2378 	    (mask_p[32] << 2) | (mask_p[31] << 0);
2379 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2380 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2381 
2382 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) |
2383 	    (mask_p[59] << 26) | (mask_p[58] << 24) |
2384 	    (mask_p[57] << 22) | (mask_p[56] << 20) |
2385 	    (mask_p[55] << 18) | (mask_p[54] << 16) |
2386 	    (mask_p[53] << 14) | (mask_p[52] << 12) |
2387 	    (mask_p[51] << 10) | (mask_p[50] << 8) |
2388 	    (mask_p[49] << 6) | (mask_p[48] << 4) |
2389 	    (mask_p[47] << 2) | (mask_p[46] << 0);
2390 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2391 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2392 }
2393 
2394 boolean_t
2395 ath9k_hw_reset(struct ath_hal *ah, struct ath9k_channel *chan,
2396     enum ath9k_ht_macmode macmode,
2397     uint8_t txchainmask, uint8_t rxchainmask,
2398     enum ath9k_ht_extprotspacing extprotspacing,
2399     boolean_t bChannelChange, int *status)
2400 {
2401 	uint32_t saveLedState;
2402 	struct ath_hal_5416 *ahp = AH5416(ah);
2403 	struct ath9k_channel *curchan = ah->ah_curchan;
2404 	uint32_t saveDefAntenna;
2405 	uint32_t macStaId1;
2406 	int ecode;
2407 	int i, rx_chainmask;
2408 
2409 	ahp->ah_extprotspacing = extprotspacing;
2410 	ahp->ah_txchainmask = txchainmask;
2411 	ahp->ah_rxchainmask = rxchainmask;
2412 
2413 	if (AR_SREV_9280(ah)) {
2414 		ahp->ah_txchainmask &= 0x3;
2415 		ahp->ah_rxchainmask &= 0x3;
2416 	}
2417 
2418 	if (ath9k_hw_check_chan(ah, chan) == NULL) {
2419 		ARN_DBG((ARN_DBG_ANY, "arn: "
2420 		    "%s: invalid channel %u/0x%x; no mapping\n",
2421 		    __func__, chan->channel, chan->channelFlags));
2422 		ecode = EINVAL;
2423 		goto bad;
2424 	}
2425 
2426 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
2427 		ARN_DBG((ARN_DBG_ANY, "arn: "
2428 		    "%s: ath9k_hw_setpower failed!!!\n", __func__));
2429 		ecode = EIO;
2430 		goto bad;
2431 	}
2432 
2433 	if (curchan)
2434 		(void) ath9k_hw_getnf(ah, curchan);
2435 
2436 	if (bChannelChange &&
2437 	    (ahp->ah_chipFullSleep != B_TRUE) &&
2438 	    (ah->ah_curchan != NULL) &&
2439 	    (chan->channel != ah->ah_curchan->channel) &&
2440 	    ((chan->channelFlags & CHANNEL_ALL) ==
2441 	    (ah->ah_curchan->channelFlags & CHANNEL_ALL)) &&
2442 	    (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2443 	    !IS_CHAN_A_5MHZ_SPACED(ah->ah_curchan)))) {
2444 
2445 		if (ath9k_hw_channel_change(ah, chan, macmode)) {
2446 			ath9k_hw_loadnf(ah, ah->ah_curchan);
2447 			ath9k_hw_start_nfcal(ah);
2448 			return (B_TRUE);
2449 		}
2450 	}
2451 
2452 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2453 	if (saveDefAntenna == 0)
2454 		saveDefAntenna = 1;
2455 
2456 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2457 
2458 	saveLedState = REG_READ(ah, AR_CFG_LED) &
2459 	    (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2460 	    AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2461 
2462 	ath9k_hw_mark_phy_inactive(ah);
2463 
2464 	if (!ath9k_hw_chip_reset(ah, chan)) {
2465 		ARN_DBG((ARN_DBG_RESET, "arn: "
2466 		    "%s: chip reset failed\n", __func__));
2467 		ecode = EINVAL;
2468 		goto bad;
2469 	}
2470 
2471 	if (AR_SREV_9280(ah)) {
2472 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2473 		    AR_GPIO_JTAG_DISABLE);
2474 		if (is_set(ATH9K_MODE_11A, ah->ah_caps.wireless_modes)) {
2475 			if (IS_CHAN_5GHZ(chan))
2476 				ath9k_hw_set_gpio(ah, 9, 0);
2477 			else
2478 				ath9k_hw_set_gpio(ah, 9, 1);
2479 		}
2480 		ath9k_hw_cfg_output(ah, 9, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2481 	}
2482 
2483 	ecode = ath9k_hw_process_ini(ah, chan, macmode);
2484 	if (ecode != 0) {
2485 		ecode = EINVAL;
2486 		goto bad;
2487 	}
2488 
2489 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2490 		ath9k_hw_set_delta_slope(ah, chan);
2491 
2492 	if (AR_SREV_9280_10_OR_LATER(ah))
2493 		ath9k_hw_9280_spur_mitigate(ah, chan);
2494 	else
2495 		ath9k_hw_spur_mitigate(ah, chan);
2496 
2497 	if (!ath9k_hw_eeprom_set_board_values(ah, chan)) {
2498 		ARN_DBG((ARN_DBG_EEPROM, "arn: "
2499 		    "%s: error setting board options\n", __func__));
2500 		ecode = EIO;
2501 		goto bad;
2502 	}
2503 
2504 	ath9k_hw_decrease_chain_power(ah, chan);
2505 
2506 	REG_WRITE(ah, AR_STA_ID0, ARN_LE_READ_32(ahp->ah_macaddr));
2507 	REG_WRITE(ah, AR_STA_ID1, ARN_LE_READ_16(ahp->ah_macaddr + 4) |
2508 	    macStaId1 |
2509 	    AR_STA_ID1_RTS_USE_DEF |
2510 	    (ah->ah_config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) |
2511 	    ahp->ah_staId1Defaults);
2512 	ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
2513 
2514 	REG_WRITE(ah, AR_BSSMSKL, ARN_LE_READ_32(ahp->ah_bssidmask));
2515 	REG_WRITE(ah, AR_BSSMSKU, ARN_LE_READ_16(ahp->ah_bssidmask + 4));
2516 
2517 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2518 
2519 	REG_WRITE(ah, AR_BSS_ID0, ARN_LE_READ_32(ahp->ah_bssid));
2520 	REG_WRITE(ah, AR_BSS_ID1, ARN_LE_READ_16(ahp->ah_bssid + 4) |
2521 	    ((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S));
2522 
2523 	REG_WRITE(ah, AR_ISR, ~0);
2524 
2525 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2526 
2527 	if (AR_SREV_9280_10_OR_LATER(ah)) {
2528 		if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
2529 			ARN_DBG((ARN_DBG_FATAL, "arn: "
2530 			    "%s: ath9k_hw_ar9280_set_channel failed!!!\n",
2531 			    __func__));
2532 			ecode = EIO;
2533 			goto bad;
2534 		}
2535 	} else {
2536 		if (!(ath9k_hw_set_channel(ah, chan))) {
2537 			ARN_DBG((ARN_DBG_FATAL, "arn: "
2538 			    "%s: ath9k_hw_set_channel failed!!!\n", __func__));
2539 			ecode = EIO;
2540 			goto bad;
2541 		}
2542 	}
2543 
2544 	for (i = 0; i < AR_NUM_DCU; i++)
2545 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2546 
2547 	ahp->ah_intrTxqs = 0;
2548 	for (i = 0; i < ah->ah_caps.total_queues; i++)
2549 		(void) ath9k_hw_resettxqueue(ah, i);
2550 
2551 	ath9k_hw_init_interrupt_masks(ah, ah->ah_opmode);
2552 	ath9k_hw_init_qos(ah);
2553 
2554 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2555 	if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2556 		ath9k_enable_rfkill(ah);
2557 #endif
2558 	ath9k_hw_init_user_settings(ah);
2559 
2560 	REG_WRITE(ah, AR_STA_ID1,
2561 	    REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2562 
2563 	ath9k_hw_set_dma(ah);
2564 
2565 	REG_WRITE(ah, AR_OBS, 8);
2566 
2567 	if (ahp->ah_intrMitigation) {
2568 
2569 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2570 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2571 	}
2572 
2573 	ath9k_hw_init_bb(ah, chan);
2574 
2575 	if (!ath9k_hw_init_cal(ah, chan)) {
2576 		ecode = EIO;
2577 		goto bad;
2578 	}
2579 
2580 	rx_chainmask = ahp->ah_rxchainmask;
2581 	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2582 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2583 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2584 	}
2585 
2586 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2587 
2588 	if (AR_SREV_9100(ah)) {
2589 		uint32_t mask;
2590 		mask = REG_READ(ah, AR_CFG);
2591 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2592 			ARN_DBG((ARN_DBG_RESET, "arn: "
2593 			    "%s CFG Byte Swap Set 0x%x\n",
2594 			    __func__, mask));
2595 		} else {
2596 			mask = INIT_CONFIG_STATUS |
2597 			    AR_CFG_SWRB | AR_CFG_SWTB;
2598 			REG_WRITE(ah, AR_CFG, mask);
2599 			ARN_DBG((ARN_DBG_RESET, "arn: "
2600 			    "%s Setting CFG 0x%x\n",
2601 			    __func__, REG_READ(ah, AR_CFG)));
2602 		}
2603 	} else {
2604 		ARN_DBG((ARN_DBG_HW, "arn: ath9k_hw_keyreset(): "
2605 		    "#ifdef __BIG_ENDIAN \n"));
2606 #ifdef __BIG_ENDIAN
2607 		REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2608 #endif
2609 	}
2610 
2611 	return (B_TRUE);
2612 bad:
2613 	if (status)
2614 		*status = ecode;
2615 	return (B_FALSE);
2616 }
2617 
2618 /* Key Cache Management */
2619 
2620 boolean_t
2621 ath9k_hw_keyreset(struct ath_hal *ah, uint16_t entry)
2622 {
2623 	uint32_t keyType;
2624 
2625 	if (entry >= ah->ah_caps.keycache_size) {
2626 		ARN_DBG((ARN_DBG_KEYCACHE, "arn: ath9k_hw_keyreset(): "
2627 		    "entry %u out of range\n", entry));
2628 
2629 		return (B_FALSE);
2630 	}
2631 
2632 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2633 
2634 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2635 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2636 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2637 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2638 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2639 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2640 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2641 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2642 
2643 	if (keyType == AR_KEYTABLE_TYPE_TKIP &&
2644 	    ATH9K_IS_MIC_ENABLED(ah)) {
2645 		uint16_t micentry = entry + 64;
2646 
2647 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2648 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2649 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2650 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2651 
2652 	}
2653 
2654 	if (ah->ah_curchan == NULL)
2655 		return (B_TRUE);
2656 
2657 	return (B_TRUE);
2658 }
2659 
2660 boolean_t
2661 ath9k_hw_keysetmac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
2662 {
2663 	uint32_t macHi, macLo;
2664 
2665 	if (entry >= ah->ah_caps.keycache_size) {
2666 		ARN_DBG((ARN_DBG_KEYCACHE, "arn: "
2667 		    "%s: entry %u out of range\n", __func__, entry));
2668 		return (B_FALSE);
2669 	}
2670 
2671 	if (mac != NULL) {
2672 		macHi = (mac[5] << 8) | mac[4];
2673 		macLo = (mac[3] << 24) |
2674 		    (mac[2] << 16) |
2675 		    (mac[1] << 8) |
2676 		    mac[0];
2677 		macLo >>= 1;
2678 		macLo |= (macHi & 1) << 31;
2679 		macHi >>= 1;
2680 	} else {
2681 		macLo = macHi = 0;
2682 	}
2683 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2684 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2685 
2686 	return (B_TRUE);
2687 }
2688 
2689 boolean_t
2690 ath9k_hw_set_keycache_entry(struct ath_hal *ah, uint16_t entry,
2691     const struct ath9k_keyval *k, const uint8_t *mac, int xorKey)
2692 {
2693 	const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
2694 	uint32_t key0, key1, key2, key3, key4;
2695 	uint32_t keyType;
2696 	uint32_t xorMask = xorKey ?
2697 	    (ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 |
2698 	    ATH9K_KEY_XOR << 8 | ATH9K_KEY_XOR) : 0;
2699 	struct ath_hal_5416 *ahp = AH5416(ah);
2700 
2701 	if (entry >= pCap->keycache_size) {
2702 		ARN_DBG((ARN_DBG_KEYCACHE, "arn: "
2703 		    "%s: entry %u out of range\n", __func__, entry));
2704 		return (B_FALSE);
2705 	}
2706 
2707 	switch (k->kv_type) {
2708 	case ATH9K_CIPHER_AES_OCB:
2709 		keyType = AR_KEYTABLE_TYPE_AES;
2710 		break;
2711 	case ATH9K_CIPHER_AES_CCM:
2712 		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2713 			ARN_DBG((ARN_DBG_KEYCACHE, "arn: "
2714 			    "%s: AES-CCM not supported by "
2715 			    "mac rev 0x%x\n", __func__,
2716 			    ah->ah_macRev));
2717 			return (B_FALSE);
2718 		}
2719 		keyType = AR_KEYTABLE_TYPE_CCM;
2720 		break;
2721 	case ATH9K_CIPHER_TKIP:
2722 		keyType = AR_KEYTABLE_TYPE_TKIP;
2723 		if (ATH9K_IS_MIC_ENABLED(ah) &&
2724 		    entry + 64 >= pCap->keycache_size) {
2725 			ARN_DBG((ARN_DBG_KEYCACHE, "arn: "
2726 			    "%s: entry %u inappropriate for TKIP\n",
2727 			    __func__, entry));
2728 			return (B_FALSE);
2729 		}
2730 		break;
2731 	case ATH9K_CIPHER_WEP:
2732 		if (k->kv_len < ATH9K_LEN_WEP40) {
2733 			ARN_DBG((ARN_DBG_KEYCACHE, "arn: "
2734 			    "%s: WEP key length %u too small\n",
2735 			    __func__, k->kv_len));
2736 			return (B_FALSE);
2737 		}
2738 		if (k->kv_len <= ATH9K_LEN_WEP40)
2739 			keyType = AR_KEYTABLE_TYPE_40;
2740 		else if (k->kv_len <= ATH9K_LEN_WEP104)
2741 			keyType = AR_KEYTABLE_TYPE_104;
2742 		else
2743 			keyType = AR_KEYTABLE_TYPE_128;
2744 		break;
2745 	case ATH9K_CIPHER_CLR:
2746 		keyType = AR_KEYTABLE_TYPE_CLR;
2747 		break;
2748 	default:
2749 		ARN_DBG((ARN_DBG_KEYCACHE, "arn: "
2750 		    "%s: cipher %u not supported\n", __func__,
2751 		    k->kv_type));
2752 		return (B_FALSE);
2753 	}
2754 
2755 	key0 = ARN_LE_READ_32(k->kv_val + 0) ^ xorMask;
2756 	key1 = (ARN_LE_READ_16(k->kv_val + 4) ^ xorMask) & 0xffff;
2757 	key2 = ARN_LE_READ_32(k->kv_val + 6) ^ xorMask;
2758 	key3 = (ARN_LE_READ_16(k->kv_val + 10) ^ xorMask) & 0xffff;
2759 	key4 = ARN_LE_READ_32(k->kv_val + 12) ^ xorMask;
2760 
2761 	if (k->kv_len <= ATH9K_LEN_WEP104)
2762 		key4 &= 0xff;
2763 
2764 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2765 		uint16_t micentry = entry + 64;
2766 
2767 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2768 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2769 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2770 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2771 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2772 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2773 		(void) ath9k_hw_keysetmac(ah, entry, mac);
2774 
2775 		if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) {
2776 			uint32_t mic0, mic1, mic2, mic3, mic4;
2777 			mic0 = ARN_LE_READ_32(k->kv_mic + 0);
2778 			mic2 = ARN_LE_READ_32(k->kv_mic + 4);
2779 			mic1 = ARN_LE_READ_16(k->kv_txmic + 2) & 0xffff;
2780 			mic3 = ARN_LE_READ_16(k->kv_txmic + 0) & 0xffff;
2781 			mic4 = ARN_LE_READ_32(k->kv_txmic + 4);
2782 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2783 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2784 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2785 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2786 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2787 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2788 			    AR_KEYTABLE_TYPE_CLR);
2789 
2790 		} else {
2791 			uint32_t mic0, mic2;
2792 			mic0 = ARN_LE_READ_32(k->kv_mic + 0);
2793 			mic2 = ARN_LE_READ_32(k->kv_mic + 4);
2794 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2795 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2796 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2797 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2798 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2799 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2800 			    AR_KEYTABLE_TYPE_CLR);
2801 		}
2802 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2803 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2804 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2805 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2806 	} else {
2807 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2808 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2809 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2810 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2811 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2812 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2813 
2814 		(void) ath9k_hw_keysetmac(ah, entry, mac);
2815 	}
2816 
2817 	if (ah->ah_curchan == NULL)
2818 		return (B_TRUE);
2819 
2820 	return (B_TRUE);
2821 }
2822 
2823 boolean_t
2824 ath9k_hw_keyisvalid(struct ath_hal *ah, uint16_t entry)
2825 {
2826 	if (entry < ah->ah_caps.keycache_size) {
2827 		uint32_t val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2828 		if (val & AR_KEYTABLE_VALID)
2829 			return (B_TRUE);
2830 	}
2831 	return (B_FALSE);
2832 }
2833 
2834 /* Power Management (Chipset) */
2835 
2836 static void
2837 ath9k_set_power_sleep(struct ath_hal *ah, int setChip)
2838 {
2839 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2840 	if (setChip) {
2841 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2842 		    AR_RTC_FORCE_WAKE_EN);
2843 		if (!AR_SREV_9100(ah))
2844 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2845 
2846 		REG_CLR_BIT(ah, (uint16_t)(AR_RTC_RESET),
2847 		    AR_RTC_RESET_EN);
2848 	}
2849 }
2850 
2851 static void
2852 ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip)
2853 {
2854 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2855 	if (setChip) {
2856 		struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
2857 
2858 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2859 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2860 			    AR_RTC_FORCE_WAKE_ON_INT);
2861 		} else {
2862 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2863 			    AR_RTC_FORCE_WAKE_EN);
2864 		}
2865 	}
2866 }
2867 
2868 static boolean_t
2869 ath9k_hw_set_power_awake(struct ath_hal *ah, int setChip)
2870 {
2871 	uint32_t val;
2872 	int i;
2873 
2874 	if (setChip) {
2875 		if ((REG_READ(ah, AR_RTC_STATUS) &
2876 		    AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2877 			if (ath9k_hw_set_reset_reg(ah,
2878 			    ATH9K_RESET_POWER_ON) != B_TRUE) {
2879 				return (B_FALSE);
2880 			}
2881 		}
2882 		if (AR_SREV_9100(ah))
2883 			REG_SET_BIT(ah, AR_RTC_RESET,
2884 			    AR_RTC_RESET_EN);
2885 
2886 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2887 		    AR_RTC_FORCE_WAKE_EN);
2888 		drv_usecwait(50);
2889 
2890 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2891 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2892 			if (val == AR_RTC_STATUS_ON)
2893 				break;
2894 			drv_usecwait(50);
2895 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2896 			    AR_RTC_FORCE_WAKE_EN);
2897 		}
2898 		if (i == 0) {
2899 			ARN_DBG((ARN_DBG_POWER_MGMT,
2900 			    "arn: ath9k_hw_set_power_awake(): "
2901 			    "Failed to wakeup in %uus\n",
2902 			    POWER_UP_TIME / 20));
2903 
2904 			return (B_FALSE);
2905 		}
2906 	}
2907 
2908 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2909 
2910 	return (B_TRUE);
2911 }
2912 
2913 boolean_t
2914 ath9k_hw_setpower(struct ath_hal *ah, enum ath9k_power_mode mode)
2915 {
2916 	struct ath_hal_5416 *ahp = AH5416(ah);
2917 	static const char *modes[] = {
2918 		"AWAKE",
2919 		"FULL-SLEEP",
2920 		"NETWORK SLEEP",
2921 		"UNDEFINED"
2922 	};
2923 	int status = B_TRUE, setChip = B_TRUE;
2924 	ARN_DBG((ARN_DBG_ANY, "arn: ath9k_hw_setpower(): "
2925 	    "%s -> %s (%s)\n",
2926 	    modes[ahp->ah_powerMode],
2927 	    modes[mode],
2928 	    setChip ? "set chip " : ""));
2929 
2930 	switch (mode) {
2931 	case ATH9K_PM_AWAKE:
2932 		status = ath9k_hw_set_power_awake(ah, setChip);
2933 		break;
2934 	case ATH9K_PM_FULL_SLEEP:
2935 		ath9k_set_power_sleep(ah, setChip);
2936 		ahp->ah_chipFullSleep = B_TRUE;
2937 		break;
2938 	case ATH9K_PM_NETWORK_SLEEP:
2939 		ath9k_set_power_network_sleep(ah, setChip);
2940 		break;
2941 	default:
2942 		ARN_DBG((ARN_DBG_ANY, "arn: ath9k_hw_setpower(): "
2943 		    "unknown power mode %u\n", mode));
2944 		return (B_FALSE);
2945 	}
2946 	ahp->ah_powerMode = mode;
2947 
2948 	return (status);
2949 }
2950 
2951 void
2952 ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore)
2953 {
2954 	struct ath_hal_5416 *ahp = AH5416(ah);
2955 	uint8_t i;
2956 
2957 	if (ah->ah_isPciExpress != B_TRUE)
2958 		return;
2959 
2960 	if (ah->ah_config.pcie_powersave_enable == 2)
2961 		return;
2962 
2963 	if (restore)
2964 		return;
2965 
2966 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2967 		for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) {
2968 			REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0),
2969 			    INI_RA(&ahp->ah_iniPcieSerdes, i, 1));
2970 		}
2971 		drv_usecwait(1000);
2972 	} else if (AR_SREV_9280(ah) &&
2973 	    (ah->ah_macRev == AR_SREV_REVISION_9280_10)) {
2974 		REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2975 		REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2976 
2977 		REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2978 		REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2979 		REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2980 
2981 		if (ah->ah_config.pcie_clock_req)
2982 			REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2983 		else
2984 			REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2985 
2986 		REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2987 		REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2988 		REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2989 
2990 		REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2991 
2992 		drv_usecwait(1000);
2993 	} else {
2994 		REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2995 		REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2996 		REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2997 		REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2998 		REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2999 		REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3000 		REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3001 		REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3002 		REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3003 		REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3004 	}
3005 
3006 	REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3007 
3008 	if (ah->ah_config.pcie_waen) {
3009 		REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen);
3010 	} else {
3011 		if (AR_SREV_9285(ah))
3012 			REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
3013 		else if (AR_SREV_9280(ah))
3014 			REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
3015 		else
3016 			REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
3017 	}
3018 }
3019 
3020 /* Interrupt Handling */
3021 
3022 boolean_t
3023 ath9k_hw_intrpend(struct ath_hal *ah)
3024 {
3025 	uint32_t host_isr;
3026 
3027 	if (AR_SREV_9100(ah))
3028 		return (B_TRUE);
3029 
3030 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3031 	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3032 		return (B_TRUE);
3033 
3034 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3035 
3036 	if ((host_isr & AR_INTR_SYNC_DEFAULT) &&
3037 	    (host_isr != AR_INTR_SPURIOUS))
3038 		return (B_TRUE);
3039 
3040 	return (B_FALSE);
3041 }
3042 
3043 boolean_t
3044 ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked)
3045 {
3046 	uint32_t isr = 0;
3047 	uint32_t mask2 = 0;
3048 	struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
3049 	uint32_t sync_cause = 0;
3050 	boolean_t fatal_int = B_FALSE;
3051 	struct ath_hal_5416 *ahp = AH5416(ah);
3052 
3053 	if (!AR_SREV_9100(ah)) {
3054 		if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3055 			if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3056 			    == AR_RTC_STATUS_ON) {
3057 				isr = REG_READ(ah, AR_ISR);
3058 			}
3059 		}
3060 
3061 		sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3062 		    AR_INTR_SYNC_DEFAULT;
3063 
3064 		*masked = 0;
3065 
3066 		if (!isr && !sync_cause)
3067 			return (B_FALSE);
3068 	} else {
3069 		*masked = 0;
3070 		isr = REG_READ(ah, AR_ISR);
3071 	}
3072 
3073 	if (isr) {
3074 		if (isr & AR_ISR_BCNMISC) {
3075 			uint32_t isr2;
3076 			isr2 = REG_READ(ah, AR_ISR_S2);
3077 			if (isr2 & AR_ISR_S2_TIM)
3078 				mask2 |= ATH9K_INT_TIM;
3079 			if (isr2 & AR_ISR_S2_DTIM)
3080 				mask2 |= ATH9K_INT_DTIM;
3081 			if (isr2 & AR_ISR_S2_DTIMSYNC)
3082 				mask2 |= ATH9K_INT_DTIMSYNC;
3083 			if (isr2 & (AR_ISR_S2_CABEND))
3084 				mask2 |= ATH9K_INT_CABEND;
3085 			if (isr2 & AR_ISR_S2_GTT)
3086 				mask2 |= ATH9K_INT_GTT;
3087 			if (isr2 & AR_ISR_S2_CST)
3088 				mask2 |= ATH9K_INT_CST;
3089 		}
3090 
3091 		isr = REG_READ(ah, AR_ISR_RAC);
3092 		if (isr == 0xffffffff) {
3093 			*masked = 0;
3094 			return (B_FALSE);
3095 		}
3096 
3097 		*masked = isr & ATH9K_INT_COMMON;
3098 
3099 		if (ahp->ah_intrMitigation) {
3100 			if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3101 				*masked |= ATH9K_INT_RX;
3102 		}
3103 
3104 		if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3105 			*masked |= ATH9K_INT_RX;
3106 		if (isr &
3107 		    (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3108 		    AR_ISR_TXEOL)) {
3109 			uint32_t s0_s, s1_s;
3110 
3111 			*masked |= ATH9K_INT_TX;
3112 
3113 			s0_s = REG_READ(ah, AR_ISR_S0_S);
3114 			ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3115 			ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3116 
3117 			s1_s = REG_READ(ah, AR_ISR_S1_S);
3118 			ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3119 			ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3120 		}
3121 
3122 		if (isr & AR_ISR_RXORN) {
3123 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: "
3124 			    "%s: receive FIFO overrun interrupt\n", __func__));
3125 		}
3126 
3127 		if (!AR_SREV_9100(ah)) {
3128 			if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3129 				uint32_t isr5 = REG_READ(ah, AR_ISR_S5_S);
3130 				if (isr5 & AR_ISR_S5_TIM_TIMER)
3131 					*masked |= ATH9K_INT_TIM_TIMER;
3132 			}
3133 		}
3134 
3135 		*masked |= mask2;
3136 	}
3137 
3138 	if (AR_SREV_9100(ah))
3139 		return (B_TRUE);
3140 
3141 	if (sync_cause) {
3142 		fatal_int = (sync_cause &
3143 		    (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) ?
3144 		    B_TRUE : B_FALSE;
3145 
3146 		if (fatal_int) {
3147 			if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3148 				ARN_DBG((ARN_DBG_INTERRUPT, "arn: "
3149 				    "%s: received PCI FATAL interrupt\n",
3150 				    __func__));
3151 			}
3152 			if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3153 				ARN_DBG((ARN_DBG_INTERRUPT, "arn: "
3154 				    "%s: received PCI PERR interrupt\n",
3155 				    __func__));
3156 			}
3157 		}
3158 		if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3159 			ARN_DBG((ARN_DBG_INTERRUPT, "arn: "
3160 			    "%s: AR_INTR_SYNC_RADM_CPL_TIMEOUT\n",
3161 			    __func__));
3162 
3163 			REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3164 			REG_WRITE(ah, AR_RC, 0);
3165 			*masked |= ATH9K_INT_FATAL;
3166 		}
3167 		if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3168 			ARN_DBG((ARN_DBG_ANY, "arn: "
3169 			    "%s: AR_INTR_SYNC_LOCAL_TIMEOUT\n",
3170 			    __func__));
3171 		}
3172 
3173 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3174 		(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3175 	}
3176 
3177 	return (B_TRUE);
3178 }
3179 
3180 enum ath9k_int
3181 ath9k_hw_intrget(struct ath_hal *ah)
3182 {
3183 	return (AH5416(ah)->ah_maskReg);
3184 }
3185 
3186 enum ath9k_int
3187 ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints)
3188 {
3189 	struct ath_hal_5416 *ahp = AH5416(ah);
3190 	uint32_t omask = ahp->ah_maskReg;
3191 	uint32_t mask, mask2;
3192 	struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
3193 
3194 	ARN_DBG((ARN_DBG_INTERRUPT,
3195 	    "arn: ath9k_hw_set_interrupts(): "
3196 	    "0x%x => 0x%x\n", omask, ints));
3197 
3198 	if (omask & ATH9K_INT_GLOBAL) {
3199 		ARN_DBG((ARN_DBG_INTERRUPT,
3200 		    "arn: ath9k_hw_set_interrupts(): "
3201 		    "disable IER\n"));
3202 
3203 		REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3204 		(void) REG_READ(ah, AR_IER);
3205 		if (!AR_SREV_9100(ah)) {
3206 			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3207 			(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3208 
3209 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3210 			(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3211 		}
3212 	}
3213 
3214 	mask = ints & ATH9K_INT_COMMON;
3215 	mask2 = 0;
3216 
3217 	if (ints & ATH9K_INT_TX) {
3218 		if (ahp->ah_txOkInterruptMask)
3219 			mask |= AR_IMR_TXOK;
3220 		if (ahp->ah_txDescInterruptMask)
3221 			mask |= AR_IMR_TXDESC;
3222 		if (ahp->ah_txErrInterruptMask)
3223 			mask |= AR_IMR_TXERR;
3224 		if (ahp->ah_txEolInterruptMask)
3225 			mask |= AR_IMR_TXEOL;
3226 	}
3227 	if (ints & ATH9K_INT_RX) {
3228 		mask |= AR_IMR_RXERR;
3229 		if (ahp->ah_intrMitigation)
3230 			mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3231 		else
3232 			mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3233 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3234 			mask |= AR_IMR_GENTMR;
3235 	}
3236 
3237 	if (ints & (ATH9K_INT_BMISC)) {
3238 		mask |= AR_IMR_BCNMISC;
3239 		if (ints & ATH9K_INT_TIM)
3240 			mask2 |= AR_IMR_S2_TIM;
3241 		if (ints & ATH9K_INT_DTIM)
3242 			mask2 |= AR_IMR_S2_DTIM;
3243 		if (ints & ATH9K_INT_DTIMSYNC)
3244 			mask2 |= AR_IMR_S2_DTIMSYNC;
3245 		if (ints & ATH9K_INT_CABEND)
3246 			mask2 |= (AR_IMR_S2_CABEND);
3247 	}
3248 
3249 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3250 		mask |= AR_IMR_BCNMISC;
3251 		if (ints & ATH9K_INT_GTT)
3252 			mask2 |= AR_IMR_S2_GTT;
3253 		if (ints & ATH9K_INT_CST)
3254 			mask2 |= AR_IMR_S2_CST;
3255 	}
3256 
3257 	REG_WRITE(ah, AR_IMR, mask);
3258 	mask = REG_READ(ah, AR_IMR_S2) &
3259 	    ~(AR_IMR_S2_TIM |
3260 	    AR_IMR_S2_DTIM |
3261 	    AR_IMR_S2_DTIMSYNC |
3262 	    AR_IMR_S2_CABEND |
3263 	    AR_IMR_S2_CABTO |
3264 	    AR_IMR_S2_TSFOOR |
3265 	    AR_IMR_S2_GTT |
3266 	    AR_IMR_S2_CST);
3267 	REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3268 	ahp->ah_maskReg = ints;
3269 
3270 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3271 		if (ints & ATH9K_INT_TIM_TIMER)
3272 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3273 		else
3274 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3275 	}
3276 
3277 	if (ints & ATH9K_INT_GLOBAL) {
3278 		REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3279 		if (!AR_SREV_9100(ah)) {
3280 			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3281 			    AR_INTR_MAC_IRQ);
3282 			REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3283 
3284 
3285 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3286 			    AR_INTR_SYNC_DEFAULT);
3287 			REG_WRITE(ah, AR_INTR_SYNC_MASK,
3288 			    AR_INTR_SYNC_DEFAULT);
3289 		}
3290 
3291 	}
3292 
3293 	return (omask);
3294 }
3295 
3296 /* Beacon Handling */
3297 
3298 void
3299 ath9k_hw_beaconinit(struct ath_hal *ah, uint32_t next_beacon,
3300     uint32_t beacon_period)
3301 {
3302 	struct ath_hal_5416 *ahp = AH5416(ah);
3303 	int flags = 0;
3304 
3305 	ahp->ah_beaconInterval = beacon_period;
3306 
3307 	switch (ah->ah_opmode) {
3308 	case ATH9K_M_STA:
3309 	case ATH9K_M_MONITOR:
3310 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3311 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3312 		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3313 		flags |= AR_TBTT_TIMER_EN;
3314 		break;
3315 	case ATH9K_M_IBSS:
3316 		REG_SET_BIT(ah, AR_TXCFG,
3317 		    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3318 		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3319 		    TU_TO_USEC(next_beacon +
3320 		    (ahp->ah_atimWindow ? ahp->
3321 		    ah_atimWindow : 1)));
3322 		flags |= AR_NDP_TIMER_EN;
3323 		/*FALLTHRU*/
3324 	case ATH9K_M_HOSTAP:
3325 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3326 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3327 		    TU_TO_USEC(next_beacon -
3328 		    ah->ah_config.
3329 		    dma_beacon_response_time));
3330 		REG_WRITE(ah, AR_NEXT_SWBA,
3331 		    TU_TO_USEC(next_beacon -
3332 		    ah->ah_config.
3333 		    sw_beacon_response_time));
3334 		flags |=
3335 		    AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3336 		break;
3337 	default:
3338 		ARN_DBG((ARN_DBG_BEACON,
3339 		    "%s: unsupported opmode: %d\n",
3340 		    __func__, ah->ah_opmode));
3341 		return;
3342 	}
3343 
3344 	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3345 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3346 	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3347 	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3348 
3349 	beacon_period &= ~ATH9K_BEACON_ENA;
3350 	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3351 		beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3352 		ath9k_hw_reset_tsf(ah);
3353 	}
3354 
3355 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3356 }
3357 
3358 void
3359 ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah,
3360     const struct ath9k_beacon_state *bs)
3361 {
3362 	uint32_t nextTbtt, beaconintval, dtimperiod, beacontimeout;
3363 	struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
3364 
3365 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3366 
3367 	REG_WRITE(ah, AR_BEACON_PERIOD,
3368 	    TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3369 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3370 	    TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3371 
3372 	REG_RMW_FIELD(ah, AR_RSSI_THR,
3373 	    AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3374 
3375 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3376 
3377 	if (bs->bs_sleepduration > beaconintval)
3378 		beaconintval = bs->bs_sleepduration;
3379 
3380 	dtimperiod = bs->bs_dtimperiod;
3381 	if (bs->bs_sleepduration > dtimperiod)
3382 		dtimperiod = bs->bs_sleepduration;
3383 
3384 	if (beaconintval == dtimperiod)
3385 		nextTbtt = bs->bs_nextdtim;
3386 	else
3387 		nextTbtt = bs->bs_nexttbtt;
3388 
3389 	ARN_DBG((ARN_DBG_BEACON, "arn: "
3390 	    "%s: next DTIM %d\n", __func__, bs->bs_nextdtim));
3391 	ARN_DBG((ARN_DBG_BEACON, "arn: "
3392 	    "%s: next beacon %d\n", __func__, nextTbtt));
3393 	ARN_DBG((ARN_DBG_BEACON, "arn: "
3394 	    "%s: beacon period %d\n", __func__, beaconintval));
3395 	ARN_DBG((ARN_DBG_BEACON, "arn: "
3396 	    "%s: DTIM period %d\n", __func__, dtimperiod));
3397 
3398 	REG_WRITE(ah, AR_NEXT_DTIM,
3399 	    TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3400 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3401 
3402 	REG_WRITE(ah, AR_SLEEP1,
3403 	    SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) |
3404 	    AR_SLEEP1_ASSUME_DTIM);
3405 
3406 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3407 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3408 	else
3409 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3410 
3411 	REG_WRITE(ah, AR_SLEEP2,
3412 	    SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3413 
3414 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3415 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3416 
3417 	REG_SET_BIT(ah, AR_TIMER_MODE,
3418 	    AR_TBTT_TIMER_EN |
3419 	    AR_TIM_TIMER_EN |
3420 	    AR_DTIM_TIMER_EN);
3421 
3422 	/* TSF Out of Range Threshold */
3423 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3424 }
3425 
3426 /* HW Capabilities */
3427 
3428 boolean_t
3429 ath9k_hw_fill_cap_info(struct ath_hal *ah)
3430 {
3431 	struct ath_hal_5416 *ahp = AH5416(ah);
3432 	struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
3433 	uint16_t capField = 0, eeval;
3434 
3435 	eeval = ath9k_hw_get_eeprom(ah, EEP_REG_0);
3436 
3437 	ah->ah_currentRD = eeval;
3438 
3439 	eeval = ath9k_hw_get_eeprom(ah, EEP_REG_1);
3440 	ah->ah_currentRDExt = eeval;
3441 
3442 	capField = ath9k_hw_get_eeprom(ah, EEP_OP_CAP);
3443 
3444 	if (ah->ah_opmode != ATH9K_M_HOSTAP &&
3445 	    ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3446 		if (ah->ah_currentRD == 0x64 ||
3447 		    ah->ah_currentRD == 0x65)
3448 			ah->ah_currentRD += 5;
3449 		else if (ah->ah_currentRD == 0x41)
3450 			ah->ah_currentRD = 0x43;
3451 
3452 		ARN_DBG((ARN_DBG_REGULATORY,
3453 		    "%s: regdomain mapped to 0x%x\n", __func__,
3454 		    ah->ah_currentRD));
3455 	}
3456 
3457 	eeval = ath9k_hw_get_eeprom(ah, EEP_OP_MODE);
3458 
3459 	bzero(pCap->wireless_modes, sizeof (uint8_t)*4);
3460 
3461 	if (eeval & AR5416_OPFLAGS_11A) {
3462 		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3463 		if (ah->ah_config.ht_enable) {
3464 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3465 				set_bit(ATH9K_MODE_11NA_HT20,
3466 				    pCap->wireless_modes);
3467 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3468 				set_bit(ATH9K_MODE_11NA_HT40PLUS,
3469 				    pCap->wireless_modes);
3470 				set_bit(ATH9K_MODE_11NA_HT40MINUS,
3471 				    pCap->wireless_modes);
3472 			}
3473 		}
3474 	}
3475 
3476 	if (eeval & AR5416_OPFLAGS_11G) {
3477 		set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
3478 		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3479 		if (ah->ah_config.ht_enable) {
3480 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3481 				set_bit(ATH9K_MODE_11NG_HT20,
3482 				    pCap->wireless_modes);
3483 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3484 				set_bit(ATH9K_MODE_11NG_HT40PLUS,
3485 				    pCap->wireless_modes);
3486 				set_bit(ATH9K_MODE_11NG_HT40MINUS,
3487 				    pCap->wireless_modes);
3488 			}
3489 		}
3490 	}
3491 
3492 	pCap->tx_chainmask = ath9k_hw_get_eeprom(ah, EEP_TX_MASK);
3493 	if ((ah->ah_isPciExpress) ||
3494 	    (eeval & AR5416_OPFLAGS_11A)) {
3495 		pCap->rx_chainmask =
3496 		    ath9k_hw_get_eeprom(ah, EEP_RX_MASK);
3497 	} else {
3498 		pCap->rx_chainmask =
3499 		    (ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7;
3500 	}
3501 
3502 	if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0)))
3503 		ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA;
3504 
3505 	pCap->low_2ghz_chan = 2312;
3506 	pCap->high_2ghz_chan = 2732;
3507 
3508 	pCap->low_5ghz_chan = 4920;
3509 	pCap->high_5ghz_chan = 6100;
3510 
3511 	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3512 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3513 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3514 
3515 	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3516 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3517 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3518 
3519 	pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
3520 #ifdef ARN_11N_SUPPORT
3521 	if (ah->ah_config.ht_enable)
3522 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
3523 	else
3524 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3525 #else
3526 	pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3527 #endif
3528 
3529 	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3530 	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3531 	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3532 	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3533 
3534 	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3535 		pCap->total_queues =
3536 		    MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3537 	else
3538 		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3539 
3540 	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3541 		pCap->keycache_size =
3542 		    1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3543 	else
3544 		pCap->keycache_size = AR_KEYTABLE_SIZE;
3545 
3546 	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3547 	pCap->num_mr_retries = 4;
3548 	pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3549 
3550 	if (AR_SREV_9280_10_OR_LATER(ah))
3551 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
3552 	else
3553 		pCap->num_gpio_pins = AR_NUM_GPIO;
3554 
3555 	if (AR_SREV_9280_10_OR_LATER(ah)) {
3556 		pCap->hw_caps |= ATH9K_HW_CAP_WOW;
3557 		pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3558 	} else {
3559 		pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
3560 		pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
3561 	}
3562 
3563 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3564 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
3565 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3566 	} else {
3567 		pCap->rts_aggr_limit = (8 * 1024);
3568 	}
3569 
3570 	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3571 
3572 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3573 	ah->ah_rfsilent = ath9k_hw_get_eeprom(ah, EEP_RF_SILENT);
3574 	if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) {
3575 		ah->ah_rfkill_gpio =
3576 		    MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL);
3577 		ah->ah_rfkill_polarity =
3578 		    MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY);
3579 
3580 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3581 	}
3582 #endif
3583 
3584 	if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) ||
3585 	    (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ||
3586 	    (ah->ah_macVersion == AR_SREV_VERSION_9160) ||
3587 	    (ah->ah_macVersion == AR_SREV_VERSION_9100) ||
3588 	    (ah->ah_macVersion == AR_SREV_VERSION_9280))
3589 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3590 	else
3591 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3592 
3593 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3594 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3595 	else
3596 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3597 
3598 	if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) {
3599 		pCap->reg_cap =
3600 		    AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3601 		    AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3602 		    AR_EEPROM_EEREGCAP_EN_KK_U2 |
3603 		    AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3604 	} else {
3605 		pCap->reg_cap =
3606 		    AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3607 		    AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3608 	}
3609 
3610 	pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3611 
3612 	/* ATH9K_HAL_FREQ_BAND_5GHZ == 0 */
3613 	pCap->num_antcfg_5ghz =
3614 	    ath9k_hw_get_num_ant_config(ah, 0);
3615 	/* ATH9K_HAL_FREQ_BAND_2GHZ == 1 */
3616 	pCap->num_antcfg_2ghz =
3617 	    ath9k_hw_get_num_ant_config(ah, 1);
3618 
3619 	return (B_TRUE);
3620 }
3621 
3622 boolean_t
3623 ath9k_hw_getcapability(struct ath_hal *ah,
3624     enum ath9k_capability_type type,
3625     uint32_t capability, uint32_t *result)
3626 {
3627 	struct ath_hal_5416 *ahp = AH5416(ah);
3628 	const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
3629 
3630 	switch (type) {
3631 	case ATH9K_CAP_CIPHER:
3632 		switch (capability) {
3633 		case ATH9K_CIPHER_AES_CCM:
3634 		case ATH9K_CIPHER_AES_OCB:
3635 		case ATH9K_CIPHER_TKIP:
3636 		case ATH9K_CIPHER_WEP:
3637 		case ATH9K_CIPHER_MIC:
3638 		case ATH9K_CIPHER_CLR:
3639 			return (B_TRUE);
3640 		default:
3641 			return (B_FALSE);
3642 		}
3643 	case ATH9K_CAP_TKIP_MIC:
3644 		switch (capability) {
3645 		case 0:
3646 			return (B_TRUE);
3647 		case 1:
3648 			return ((ahp->ah_staId1Defaults &
3649 			    AR_STA_ID1_CRPT_MIC_ENABLE) ? B_TRUE :
3650 			    B_FALSE);
3651 		}
3652 		/*FALLTHRU*/
3653 	case ATH9K_CAP_TKIP_SPLIT:
3654 		return ((ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ?
3655 		    B_FALSE : B_TRUE);
3656 	case ATH9K_CAP_WME_TKIPMIC:
3657 		return (0);
3658 	case ATH9K_CAP_PHYCOUNTERS:
3659 		return (ahp->ah_hasHwPhyCounters ? 0 : -ENXIO);
3660 	case ATH9K_CAP_DIVERSITY:
3661 		return ((REG_READ(ah, AR_PHY_CCK_DETECT) &
3662 		    AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3663 		    B_TRUE : B_FALSE);
3664 	case ATH9K_CAP_PHYDIAG:
3665 		return (B_TRUE);
3666 	case ATH9K_CAP_MCAST_KEYSRCH:
3667 		switch (capability) {
3668 		case 0:
3669 			return (B_TRUE);
3670 		case 1:
3671 			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3672 				return (B_FALSE);
3673 			} else {
3674 				return ((ahp->ah_staId1Defaults &
3675 				    AR_STA_ID1_MCAST_KSRCH) ? B_TRUE :
3676 				    B_FALSE);
3677 			}
3678 		}
3679 		return (B_FALSE);
3680 	case ATH9K_CAP_TSF_ADJUST:
3681 		return ((ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ?
3682 		    B_TRUE : B_FALSE);
3683 	case ATH9K_CAP_RFSILENT:
3684 		if (capability == 3)
3685 			return (B_FALSE);
3686 		/*FALLTHRU*/
3687 	case ATH9K_CAP_ANT_CFG_2GHZ:
3688 		*result = pCap->num_antcfg_2ghz;
3689 		return (B_TRUE);
3690 	case ATH9K_CAP_ANT_CFG_5GHZ:
3691 		*result = pCap->num_antcfg_5ghz;
3692 		return (B_TRUE);
3693 	case ATH9K_CAP_TXPOW:
3694 		switch (capability) {
3695 		case 0:
3696 			return (0);
3697 		case 1:
3698 			*result = ah->ah_powerLimit;
3699 			return (0);
3700 		case 2:
3701 			*result = ah->ah_maxPowerLevel;
3702 			return (0);
3703 		case 3:
3704 			*result = ah->ah_tpScale;
3705 			return (0);
3706 		}
3707 		return (B_FALSE);
3708 	default:
3709 		return (B_FALSE);
3710 	}
3711 }
3712 
3713 /* ARGSUSED */
3714 boolean_t
3715 ath9k_hw_setcapability(struct ath_hal *ah,
3716     enum ath9k_capability_type type,
3717     uint32_t capability, uint32_t setting,
3718     int *status)
3719 {
3720 	struct ath_hal_5416 *ahp = AH5416(ah);
3721 	uint32_t v;
3722 
3723 	switch (type) {
3724 	case ATH9K_CAP_TKIP_MIC:
3725 		if (setting)
3726 			ahp->ah_staId1Defaults |=
3727 			    AR_STA_ID1_CRPT_MIC_ENABLE;
3728 		else
3729 			ahp->ah_staId1Defaults &=
3730 			    ~AR_STA_ID1_CRPT_MIC_ENABLE;
3731 		return (B_TRUE);
3732 	case ATH9K_CAP_DIVERSITY:
3733 		v = REG_READ(ah, AR_PHY_CCK_DETECT);
3734 		if (setting)
3735 			v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3736 		else
3737 			v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3738 		REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3739 		return (B_TRUE);
3740 	case ATH9K_CAP_MCAST_KEYSRCH:
3741 		if (setting)
3742 			ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
3743 		else
3744 			ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3745 		return (B_TRUE);
3746 	case ATH9K_CAP_TSF_ADJUST:
3747 		if (setting)
3748 			ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
3749 		else
3750 			ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
3751 		return (B_TRUE);
3752 	default:
3753 		return (B_FALSE);
3754 	}
3755 }
3756 
3757 /* GPIO / RFKILL / Antennae */
3758 
3759 static void
3760 ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah,
3761     uint32_t gpio, uint32_t type)
3762 {
3763 	int addr;
3764 	uint32_t gpio_shift, tmp;
3765 
3766 	if (gpio > 11)
3767 		addr = AR_GPIO_OUTPUT_MUX3;
3768 	else if (gpio > 5)
3769 		addr = AR_GPIO_OUTPUT_MUX2;
3770 	else
3771 		addr = AR_GPIO_OUTPUT_MUX1;
3772 
3773 	gpio_shift = (gpio % 6) * 5;
3774 
3775 	if (AR_SREV_9280_20_OR_LATER(ah) ||
3776 	    (addr != AR_GPIO_OUTPUT_MUX1)) {
3777 		REG_RMW(ah, addr, (type << gpio_shift),
3778 		    (0x1f << gpio_shift));
3779 	} else {
3780 		tmp = REG_READ(ah, addr);
3781 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3782 		tmp &= ~(0x1f << gpio_shift);
3783 		tmp |= (type << gpio_shift);
3784 		REG_WRITE(ah, addr, tmp);
3785 	}
3786 }
3787 
3788 void
3789 ath9k_hw_cfg_gpio_input(struct ath_hal *ah, uint32_t gpio)
3790 {
3791 	uint32_t gpio_shift;
3792 
3793 	ASSERT(gpio < ah->ah_caps.num_gpio_pins);
3794 
3795 	gpio_shift = gpio << 1;
3796 
3797 	REG_RMW(ah,
3798 	    AR_GPIO_OE_OUT,
3799 	    (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3800 	    (AR_GPIO_OE_OUT_DRV << gpio_shift));
3801 }
3802 
3803 uint32_t
3804 ath9k_hw_gpio_get(struct ath_hal *ah, uint32_t gpio)
3805 {
3806 	if (gpio >= ah->ah_caps.num_gpio_pins)
3807 		return (0xffffffff);
3808 
3809 	if (AR_SREV_9280_10_OR_LATER(ah)) {
3810 		return ((MS(REG_READ(ah, AR_GPIO_IN_OUT),
3811 		    AR928X_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0);
3812 	} else {
3813 		return ((MS(REG_READ(ah,
3814 		    AR_GPIO_IN_OUT), AR_GPIO_IN_VAL) &
3815 		    AR_GPIO_BIT(gpio)) != 0);
3816 	}
3817 }
3818 
3819 void
3820 ath9k_hw_cfg_output(struct ath_hal *ah, uint32_t gpio,
3821     uint32_t ah_signal_type)
3822 {
3823 	uint32_t gpio_shift;
3824 
3825 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3826 
3827 	gpio_shift = 2 * gpio;
3828 
3829 	REG_RMW(ah,
3830 	    AR_GPIO_OE_OUT,
3831 	    (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3832 	    (AR_GPIO_OE_OUT_DRV << gpio_shift));
3833 }
3834 
3835 void
3836 ath9k_hw_set_gpio(struct ath_hal *ah, uint32_t gpio, uint32_t val)
3837 {
3838 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3839 	    AR_GPIO_BIT(gpio));
3840 }
3841 
3842 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3843 void
3844 ath9k_enable_rfkill(struct ath_hal *ah)
3845 {
3846 	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3847 	    AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
3848 
3849 	REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
3850 	    AR_GPIO_INPUT_MUX2_RFSILENT);
3851 
3852 	ath9k_hw_cfg_gpio_input(ah, ah->ah_rfkill_gpio);
3853 	REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
3854 }
3855 #endif
3856 
3857 int
3858 ath9k_hw_select_antconfig(struct ath_hal *ah, uint32_t cfg)
3859 {
3860 	struct ath9k_channel *chan = ah->ah_curchan;
3861 	const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
3862 	uint16_t ant_config;
3863 	uint32_t halNumAntConfig;
3864 
3865 	halNumAntConfig = IS_CHAN_2GHZ(chan) ?
3866 	    pCap->num_antcfg_2ghz : pCap->num_antcfg_5ghz;
3867 
3868 	if (cfg < halNumAntConfig) {
3869 		if (!ath9k_hw_get_eeprom_antenna_cfg(ah, chan,
3870 		    cfg, &ant_config)) {
3871 			REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
3872 			return (0);
3873 		}
3874 	}
3875 
3876 	return (-EINVAL);
3877 }
3878 
3879 uint32_t
3880 ath9k_hw_getdefantenna(struct ath_hal *ah)
3881 {
3882 	return (REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
3883 }
3884 
3885 void
3886 ath9k_hw_setantenna(struct ath_hal *ah, uint32_t antenna)
3887 {
3888 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3889 }
3890 
3891 /* ARGSUSED */
3892 boolean_t
3893 ath9k_hw_setantennaswitch(struct ath_hal *ah,
3894     enum ath9k_ant_setting settings,
3895     struct ath9k_channel *chan,
3896     uint8_t *tx_chainmask,
3897     uint8_t *rx_chainmask,
3898     uint8_t *antenna_cfgd)
3899 {
3900 	struct ath_hal_5416 *ahp = AH5416(ah);
3901 	static uint8_t tx_chainmask_cfg, rx_chainmask_cfg;
3902 
3903 	if (AR_SREV_9280(ah)) {
3904 		if (!tx_chainmask_cfg) {
3905 
3906 			tx_chainmask_cfg = *tx_chainmask;
3907 			rx_chainmask_cfg = *rx_chainmask;
3908 		}
3909 
3910 		switch (settings) {
3911 		case ATH9K_ANT_FIXED_A:
3912 			*tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3913 			*rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3914 			*antenna_cfgd = B_TRUE;
3915 			break;
3916 		case ATH9K_ANT_FIXED_B:
3917 			if (ah->ah_caps.tx_chainmask >
3918 			    ATH9K_ANTENNA1_CHAINMASK) {
3919 				*tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3920 			}
3921 			*rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3922 			*antenna_cfgd = B_TRUE;
3923 			break;
3924 		case ATH9K_ANT_VARIABLE:
3925 			*tx_chainmask = tx_chainmask_cfg;
3926 			*rx_chainmask = rx_chainmask_cfg;
3927 			*antenna_cfgd = B_TRUE;
3928 			break;
3929 		default:
3930 			break;
3931 		}
3932 	} else {
3933 		ahp->ah_diversityControl = settings;
3934 	}
3935 
3936 	return (B_TRUE);
3937 }
3938 
3939 /* General Operation */
3940 
3941 uint32_t
3942 ath9k_hw_getrxfilter(struct ath_hal *ah)
3943 {
3944 	uint32_t bits = REG_READ(ah, AR_RX_FILTER);
3945 	uint32_t phybits = REG_READ(ah, AR_PHY_ERR);
3946 
3947 	if (phybits & AR_PHY_ERR_RADAR)
3948 		bits |= ATH9K_RX_FILTER_PHYRADAR;
3949 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3950 		bits |= ATH9K_RX_FILTER_PHYERR;
3951 
3952 	return (bits);
3953 }
3954 
3955 void
3956 ath9k_hw_setrxfilter(struct ath_hal *ah, uint32_t bits)
3957 {
3958 	uint32_t phybits;
3959 
3960 	REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3961 	phybits = 0;
3962 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
3963 		phybits |= AR_PHY_ERR_RADAR;
3964 	if (bits & ATH9K_RX_FILTER_PHYERR)
3965 		phybits |= AR_PHY_ERR_OFDM_TIMING |
3966 		    AR_PHY_ERR_CCK_TIMING;
3967 	REG_WRITE(ah, AR_PHY_ERR, phybits);
3968 
3969 	if (phybits)
3970 		REG_WRITE(ah, AR_RXCFG,
3971 		    REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3972 	else
3973 		REG_WRITE(ah, AR_RXCFG,
3974 		    REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3975 }
3976 
3977 boolean_t
3978 ath9k_hw_phy_disable(struct ath_hal *ah)
3979 {
3980 	return (ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM));
3981 }
3982 
3983 boolean_t
3984 ath9k_hw_disable(struct ath_hal *ah)
3985 {
3986 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3987 		return (B_FALSE);
3988 
3989 	return (ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD));
3990 }
3991 
3992 boolean_t
3993 ath9k_hw_set_txpowerlimit(struct ath_hal *ah, uint32_t limit)
3994 {
3995 	struct ath9k_channel *chan = ah->ah_curchan;
3996 
3997 	/* LINT */
3998 	ah->ah_powerLimit = (uint16_t)min(limit, (uint32_t)MAX_RATE_POWER);
3999 
4000 	if (ath9k_hw_set_txpower(ah, chan,
4001 	    ath9k_regd_get_ctl(ah, chan),
4002 	    ath9k_regd_get_antenna_allowed(ah, chan),
4003 	    chan->maxRegTxPower * 2,
4004 	    ARN_MIN((uint32_t)MAX_RATE_POWER,
4005 	    (uint32_t)ah->ah_powerLimit)) != 0)
4006 		return (B_FALSE);
4007 
4008 	return (B_TRUE);
4009 }
4010 
4011 void
4012 ath9k_hw_getmac(struct ath_hal *ah, uint8_t *mac)
4013 {
4014 	struct ath_hal_5416 *ahp = AH5416(ah);
4015 
4016 	(void) memcpy(mac, ahp->ah_macaddr, 6);
4017 }
4018 
4019 boolean_t
4020 ath9k_hw_setmac(struct ath_hal *ah, const uint8_t *mac)
4021 {
4022 	struct ath_hal_5416 *ahp = AH5416(ah);
4023 
4024 	(void) memcpy(ahp->ah_macaddr, mac, 6);
4025 
4026 	return (B_TRUE);
4027 }
4028 
4029 void
4030 ath9k_hw_setopmode(struct ath_hal *ah)
4031 {
4032 	ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
4033 }
4034 
4035 void
4036 ath9k_hw_setmcastfilter(struct ath_hal *ah, uint32_t filter0, uint32_t filter1)
4037 {
4038 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
4039 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
4040 }
4041 
4042 void
4043 ath9k_hw_getbssidmask(struct ath_hal *ah, uint8_t *mask)
4044 {
4045 	struct ath_hal_5416 *ahp = AH5416(ah);
4046 
4047 	(void) memcpy(mask, ahp->ah_bssidmask, 6);
4048 }
4049 
4050 boolean_t
4051 ath9k_hw_setbssidmask(struct ath_hal *ah, const uint8_t *mask)
4052 {
4053 	struct ath_hal_5416 *ahp = AH5416(ah);
4054 
4055 	(void) memcpy(ahp->ah_bssidmask, mask, 6);
4056 
4057 	REG_WRITE(ah, AR_BSSMSKL, ARN_LE_READ_32(ahp->ah_bssidmask));
4058 	REG_WRITE(ah, AR_BSSMSKU, ARN_LE_READ_16(ahp->ah_bssidmask + 4));
4059 
4060 	return (B_TRUE);
4061 }
4062 
4063 void
4064 ath9k_hw_write_associd(struct ath_hal *ah,
4065     const uint8_t *bssid, uint16_t assocId)
4066 {
4067 	struct ath_hal_5416 *ahp = AH5416(ah);
4068 
4069 	(void) memcpy(ahp->ah_bssid, bssid, 6);
4070 	ahp->ah_assocId = assocId;
4071 
4072 	REG_WRITE(ah, AR_BSS_ID0, ARN_LE_READ_32(ahp->ah_bssid));
4073 	REG_WRITE(ah, AR_BSS_ID1, ARN_LE_READ_16(ahp->ah_bssid + 4) |
4074 	    ((assocId & 0x3fff) << AR_BSS_ID1_AID_S));
4075 }
4076 
4077 uint64_t
4078 ath9k_hw_gettsf64(struct ath_hal *ah)
4079 {
4080 	uint64_t tsf;
4081 
4082 	tsf = REG_READ(ah, AR_TSF_U32);
4083 	tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
4084 
4085 	return (tsf);
4086 }
4087 
4088 void
4089 ath9k_hw_reset_tsf(struct ath_hal *ah)
4090 {
4091 	int count;
4092 
4093 	count = 0;
4094 	while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
4095 		count++;
4096 		if (count > 10) {
4097 			ARN_DBG((ARN_DBG_HW, "arn: "
4098 			    "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n",
4099 			    __func__));
4100 
4101 			break;
4102 		}
4103 		drv_usecwait(10);
4104 	}
4105 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
4106 }
4107 
4108 boolean_t
4109 ath9k_hw_set_tsfadjust(struct ath_hal *ah, uint32_t setting)
4110 {
4111 	struct ath_hal_5416 *ahp = AH5416(ah);
4112 
4113 	if (setting)
4114 		ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
4115 	else
4116 		ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
4117 
4118 	return (B_TRUE);
4119 }
4120 
4121 boolean_t
4122 ath9k_hw_setslottime(struct ath_hal *ah, uint32_t us)
4123 {
4124 	struct ath_hal_5416 *ahp = AH5416(ah);
4125 
4126 	if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
4127 		ARN_DBG((ARN_DBG_HW, "arn: "
4128 		    "%s: bad slot time %u\n",  __func__, us));
4129 
4130 		ahp->ah_slottime = (uint32_t)-1;
4131 		return (B_FALSE);
4132 	} else {
4133 		REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
4134 		ahp->ah_slottime = us;
4135 		return (B_TRUE);
4136 	}
4137 }
4138 
4139 void
4140 ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode)
4141 {
4142 	uint32_t macmode;
4143 
4144 	if (mode == ATH9K_HT_MACMODE_2040 &&
4145 	    !ah->ah_config.cwm_ignore_extcca)
4146 		macmode = AR_2040_JOINED_RX_CLEAR;
4147 	else
4148 		macmode = 0;
4149 
4150 	REG_WRITE(ah, AR_2040_MODE, macmode);
4151 }
4152