xref: /titanic_50/usr/src/uts/common/inet/udp/udp.c (revision f8c3982ab1838a24e4b671d13329f52bbbebc2a7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 const char udp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/pattr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/time.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/strsubr.h>
45 #include <sys/suntpi.h>
46 #include <sys/xti_inet.h>
47 #include <sys/cmn_err.h>
48 #include <sys/kmem.h>
49 #include <sys/policy.h>
50 #include <sys/ucred.h>
51 #include <sys/zone.h>
52 
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/vtrace.h>
56 #include <sys/sdt.h>
57 #include <sys/debug.h>
58 #include <sys/isa_defs.h>
59 #include <sys/random.h>
60 #include <netinet/in.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/udp.h>
64 #include <net/if.h>
65 #include <net/route.h>
66 
67 #include <inet/common.h>
68 #include <inet/ip.h>
69 #include <inet/ip_impl.h>
70 #include <inet/ip6.h>
71 #include <inet/ip_ire.h>
72 #include <inet/ip_if.h>
73 #include <inet/ip_multi.h>
74 #include <inet/ip_ndp.h>
75 #include <inet/mi.h>
76 #include <inet/mib2.h>
77 #include <inet/nd.h>
78 #include <inet/optcom.h>
79 #include <inet/snmpcom.h>
80 #include <inet/kstatcom.h>
81 #include <inet/udp_impl.h>
82 #include <inet/ipclassifier.h>
83 #include <inet/ipsec_impl.h>
84 #include <inet/ipp_common.h>
85 
86 /*
87  * The ipsec_info.h header file is here since it has the definition for the
88  * M_CTL message types used by IP to convey information to the ULP. The
89  * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence.
90  */
91 #include <net/pfkeyv2.h>
92 #include <inet/ipsec_info.h>
93 
94 #include <sys/tsol/label.h>
95 #include <sys/tsol/tnet.h>
96 #include <rpc/pmap_prot.h>
97 
98 /*
99  * Synchronization notes:
100  *
101  * UDP is MT and uses the usual kernel synchronization primitives. There are 2
102  * locks, the fanout lock (uf_lock) and the udp endpoint lock udp_rwlock.
103  * We also use conn_lock when updating things that affect the IP classifier
104  * lookup.
105  * The lock order is udp_rwlock -> uf_lock and is udp_rwlock -> conn_lock.
106  *
107  * The fanout lock uf_lock:
108  * When a UDP endpoint is bound to a local port, it is inserted into
109  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
110  * The size of the array is controlled by the udp_bind_fanout_size variable.
111  * This variable can be changed in /etc/system if the default value is
112  * not large enough.  Each bind hash bucket is protected by a per bucket
113  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
114  * structure and a few other fields in the udp_t. A UDP endpoint is removed
115  * from the bind hash list only when it is being unbound or being closed.
116  * The per bucket lock also protects a UDP endpoint's state changes.
117  *
118  * The udp_rwlock:
119  * This protects most of the other fields in the udp_t. The exact list of
120  * fields which are protected by each of the above locks is documented in
121  * the udp_t structure definition.
122  *
123  * Plumbing notes:
124  * UDP is always a device driver. For compatibility with mibopen() code
125  * it is possible to I_PUSH "udp", but that results in pushing a passthrough
126  * dummy module.
127  *
128  * The above implies that we don't support any intermediate module to
129  * reside in between /dev/ip and udp -- in fact, we never supported such
130  * scenario in the past as the inter-layer communication semantics have
131  * always been private.
132  */
133 
134 /* For /etc/system control */
135 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
136 
137 #define	NDD_TOO_QUICK_MSG \
138 	"ndd get info rate too high for non-privileged users, try again " \
139 	"later.\n"
140 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
141 
142 /* Option processing attrs */
143 typedef struct udpattrs_s {
144 	union {
145 		ip6_pkt_t	*udpattr_ipp6;	/* For V6 */
146 		ip4_pkt_t 	*udpattr_ipp4;	/* For V4 */
147 	} udpattr_ippu;
148 #define	udpattr_ipp6 udpattr_ippu.udpattr_ipp6
149 #define	udpattr_ipp4 udpattr_ippu.udpattr_ipp4
150 	mblk_t		*udpattr_mb;
151 	boolean_t	udpattr_credset;
152 } udpattrs_t;
153 
154 static void	udp_addr_req(queue_t *q, mblk_t *mp);
155 static void	udp_bind(queue_t *q, mblk_t *mp);
156 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
157 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
158 static void	udp_bind_result(conn_t *, mblk_t *);
159 static void	udp_bind_ack(conn_t *, mblk_t *mp);
160 static void	udp_bind_error(conn_t *, mblk_t *mp);
161 static int	udp_build_hdrs(udp_t *udp);
162 static void	udp_capability_req(queue_t *q, mblk_t *mp);
163 static int	udp_close(queue_t *q);
164 static void	udp_connect(queue_t *q, mblk_t *mp);
165 static void	udp_disconnect(queue_t *q, mblk_t *mp);
166 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
167 		    int sys_error);
168 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
169 		    t_scalar_t tlierr, int unixerr);
170 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
171 		    cred_t *cr);
172 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
173 		    char *value, caddr_t cp, cred_t *cr);
174 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
175 		    char *value, caddr_t cp, cred_t *cr);
176 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
177 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
178 static void	udp_info_req(queue_t *q, mblk_t *mp);
179 static void	udp_input(void *, mblk_t *, void *);
180 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
181 		    t_scalar_t addr_length);
182 static void	udp_lrput(queue_t *, mblk_t *);
183 static void	udp_lwput(queue_t *, mblk_t *);
184 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
185 		    cred_t *credp, boolean_t isv6);
186 static int	udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag,
187 		    cred_t *credp);
188 static int	udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
189 		    cred_t *credp);
190 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
191 		    int *errorp, udpattrs_t *udpattrs);
192 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
193 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
194 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt);
195 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
196 		    cred_t *cr);
197 static void	udp_report_item(mblk_t *mp, udp_t *udp);
198 static int	udp_rinfop(queue_t *q, infod_t *dp);
199 static int	udp_rrw(queue_t *q, struiod_t *dp);
200 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
201 		    cred_t *cr);
202 static void	udp_send_data(udp_t *, queue_t *, mblk_t *, ipha_t *);
203 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
204 		    t_scalar_t destlen, t_scalar_t err);
205 static void	udp_unbind(queue_t *q, mblk_t *mp);
206 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
207     boolean_t random);
208 static mblk_t	*udp_output_v4(conn_t *, mblk_t *, ipaddr_t, uint16_t, uint_t,
209 		    int *, boolean_t);
210 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
211 		    int *error);
212 static void	udp_wput_other(queue_t *q, mblk_t *mp);
213 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
214 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
215 
216 static void	*udp_stack_init(netstackid_t stackid, netstack_t *ns);
217 static void	udp_stack_fini(netstackid_t stackid, void *arg);
218 
219 static void	*udp_kstat_init(netstackid_t stackid);
220 static void	udp_kstat_fini(netstackid_t stackid, kstat_t *ksp);
221 static void	*udp_kstat2_init(netstackid_t, udp_stat_t *);
222 static void	udp_kstat2_fini(netstackid_t, kstat_t *);
223 static int	udp_kstat_update(kstat_t *kp, int rw);
224 
225 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
226 		    uint_t pkt_len);
227 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
228 static void	udp_xmit(queue_t *, mblk_t *, ire_t *ire, conn_t *, zoneid_t);
229 
230 #define	UDP_RECV_HIWATER	(56 * 1024)
231 #define	UDP_RECV_LOWATER	128
232 #define	UDP_XMIT_HIWATER	(56 * 1024)
233 #define	UDP_XMIT_LOWATER	1024
234 
235 static struct module_info udp_mod_info =  {
236 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
237 };
238 
239 /*
240  * Entry points for UDP as a device.
241  * We have separate open functions for the /dev/udp and /dev/udp6 devices.
242  */
243 static struct qinit udp_rinitv4 = {
244 	NULL, NULL, udp_openv4, udp_close, NULL,
245 	&udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
246 };
247 
248 static struct qinit udp_rinitv6 = {
249 	NULL, NULL, udp_openv6, udp_close, NULL,
250 	&udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
251 };
252 
253 static struct qinit udp_winit = {
254 	(pfi_t)udp_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL,
255 	&udp_mod_info, NULL, NULL, NULL, STRUIOT_NONE
256 };
257 
258 /*
259  * UDP needs to handle I_LINK and I_PLINK since ifconfig
260  * likes to use it as a place to hang the various streams.
261  */
262 static struct qinit udp_lrinit = {
263 	(pfi_t)udp_lrput, NULL, udp_openv4, udp_close, NULL,
264 	&udp_mod_info
265 };
266 
267 static struct qinit udp_lwinit = {
268 	(pfi_t)udp_lwput, NULL, udp_openv4, udp_close, NULL,
269 	&udp_mod_info
270 };
271 
272 /* For AF_INET aka /dev/udp */
273 struct streamtab udpinfov4 = {
274 	&udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit
275 };
276 
277 /* For AF_INET6 aka /dev/udp6 */
278 struct streamtab udpinfov6 = {
279 	&udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit
280 };
281 
282 static	sin_t	sin_null;	/* Zero address for quick clears */
283 static	sin6_t	sin6_null;	/* Zero address for quick clears */
284 
285 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
286 
287 /* Default structure copied into T_INFO_ACK messages */
288 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
289 	T_INFO_ACK,
290 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
291 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
292 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
293 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
294 	sizeof (sin_t),	/* ADDR_size. */
295 	0,		/* OPT_size - not initialized here */
296 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
297 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
298 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
299 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
300 };
301 
302 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
303 
304 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
305 	T_INFO_ACK,
306 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
307 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
308 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
309 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
310 	sizeof (sin6_t), /* ADDR_size. */
311 	0,		/* OPT_size - not initialized here */
312 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
313 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
314 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
315 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
316 };
317 
318 /* largest UDP port number */
319 #define	UDP_MAX_PORT	65535
320 
321 /*
322  * Table of ND variables supported by udp.  These are loaded into us_nd
323  * in udp_open.
324  * All of these are alterable, within the min/max values given, at run time.
325  */
326 /* BEGIN CSTYLED */
327 udpparam_t udp_param_arr[] = {
328  /*min		max		value		name */
329  { 0L,		256,		32,		"udp_wroff_extra" },
330  { 1L,		255,		255,		"udp_ipv4_ttl" },
331  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
332  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
333  { 0,		1,		1,		"udp_do_checksum" },
334  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
335  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
336  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
337  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
338  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
339  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
340  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
341 };
342 /* END CSTYLED */
343 
344 /* Setable in /etc/system */
345 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
346 uint32_t udp_random_anon_port = 1;
347 
348 /*
349  * Hook functions to enable cluster networking.
350  * On non-clustered systems these vectors must always be NULL
351  */
352 
353 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
354     uint8_t *laddrp, in_port_t lport) = NULL;
355 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
356     uint8_t *laddrp, in_port_t lport) = NULL;
357 
358 typedef union T_primitives *t_primp_t;
359 
360 /*
361  * Return the next anonymous port in the privileged port range for
362  * bind checking.
363  *
364  * Trusted Extension (TX) notes: TX allows administrator to mark or
365  * reserve ports as Multilevel ports (MLP). MLP has special function
366  * on TX systems. Once a port is made MLP, it's not available as
367  * ordinary port. This creates "holes" in the port name space. It
368  * may be necessary to skip the "holes" find a suitable anon port.
369  */
370 static in_port_t
371 udp_get_next_priv_port(udp_t *udp)
372 {
373 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
374 	in_port_t nextport;
375 	boolean_t restart = B_FALSE;
376 	udp_stack_t *us = udp->udp_us;
377 
378 retry:
379 	if (next_priv_port < us->us_min_anonpriv_port ||
380 	    next_priv_port >= IPPORT_RESERVED) {
381 		next_priv_port = IPPORT_RESERVED - 1;
382 		if (restart)
383 			return (0);
384 		restart = B_TRUE;
385 	}
386 
387 	if (is_system_labeled() &&
388 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
389 	    next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
390 		next_priv_port = nextport;
391 		goto retry;
392 	}
393 
394 	return (next_priv_port--);
395 }
396 
397 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
398 /* ARGSUSED */
399 static int
400 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
401 {
402 	udp_fanout_t	*udpf;
403 	int		i;
404 	zoneid_t	zoneid;
405 	conn_t		*connp;
406 	udp_t		*udp;
407 	udp_stack_t	*us;
408 
409 	connp = Q_TO_CONN(q);
410 	udp = connp->conn_udp;
411 	us = udp->udp_us;
412 
413 	/* Refer to comments in udp_status_report(). */
414 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
415 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
416 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
417 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
418 			return (0);
419 		}
420 	}
421 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
422 		/* The following may work even if we cannot get a large buf. */
423 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
424 		return (0);
425 	}
426 
427 	(void) mi_mpprintf(mp,
428 	    "UDP     " MI_COL_HDRPAD_STR
429 	/*   12345678[89ABCDEF] */
430 	    " zone lport src addr        dest addr       port  state");
431 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
432 
433 	zoneid = connp->conn_zoneid;
434 
435 	for (i = 0; i < us->us_bind_fanout_size; i++) {
436 		udpf = &us->us_bind_fanout[i];
437 		mutex_enter(&udpf->uf_lock);
438 
439 		/* Print the hash index. */
440 		udp = udpf->uf_udp;
441 		if (zoneid != GLOBAL_ZONEID) {
442 			/* skip to first entry in this zone; might be none */
443 			while (udp != NULL &&
444 			    udp->udp_connp->conn_zoneid != zoneid)
445 				udp = udp->udp_bind_hash;
446 		}
447 		if (udp != NULL) {
448 			uint_t print_len, buf_len;
449 
450 			buf_len = mp->b_cont->b_datap->db_lim -
451 			    mp->b_cont->b_wptr;
452 			print_len = snprintf((char *)mp->b_cont->b_wptr,
453 			    buf_len, "%d\n", i);
454 			if (print_len < buf_len) {
455 				mp->b_cont->b_wptr += print_len;
456 			} else {
457 				mp->b_cont->b_wptr += buf_len;
458 			}
459 			for (; udp != NULL; udp = udp->udp_bind_hash) {
460 				if (zoneid == GLOBAL_ZONEID ||
461 				    zoneid == udp->udp_connp->conn_zoneid)
462 					udp_report_item(mp->b_cont, udp);
463 			}
464 		}
465 		mutex_exit(&udpf->uf_lock);
466 	}
467 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
468 	return (0);
469 }
470 
471 /*
472  * Hash list removal routine for udp_t structures.
473  */
474 static void
475 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
476 {
477 	udp_t	*udpnext;
478 	kmutex_t *lockp;
479 	udp_stack_t *us = udp->udp_us;
480 
481 	if (udp->udp_ptpbhn == NULL)
482 		return;
483 
484 	/*
485 	 * Extract the lock pointer in case there are concurrent
486 	 * hash_remove's for this instance.
487 	 */
488 	ASSERT(udp->udp_port != 0);
489 	if (!caller_holds_lock) {
490 		lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
491 		    us->us_bind_fanout_size)].uf_lock;
492 		ASSERT(lockp != NULL);
493 		mutex_enter(lockp);
494 	}
495 	if (udp->udp_ptpbhn != NULL) {
496 		udpnext = udp->udp_bind_hash;
497 		if (udpnext != NULL) {
498 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
499 			udp->udp_bind_hash = NULL;
500 		}
501 		*udp->udp_ptpbhn = udpnext;
502 		udp->udp_ptpbhn = NULL;
503 	}
504 	if (!caller_holds_lock) {
505 		mutex_exit(lockp);
506 	}
507 }
508 
509 static void
510 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
511 {
512 	udp_t	**udpp;
513 	udp_t	*udpnext;
514 
515 	ASSERT(MUTEX_HELD(&uf->uf_lock));
516 	ASSERT(udp->udp_ptpbhn == NULL);
517 	udpp = &uf->uf_udp;
518 	udpnext = udpp[0];
519 	if (udpnext != NULL) {
520 		/*
521 		 * If the new udp bound to the INADDR_ANY address
522 		 * and the first one in the list is not bound to
523 		 * INADDR_ANY we skip all entries until we find the
524 		 * first one bound to INADDR_ANY.
525 		 * This makes sure that applications binding to a
526 		 * specific address get preference over those binding to
527 		 * INADDR_ANY.
528 		 */
529 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
530 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
531 			while ((udpnext = udpp[0]) != NULL &&
532 			    !V6_OR_V4_INADDR_ANY(
533 			    udpnext->udp_bound_v6src)) {
534 				udpp = &(udpnext->udp_bind_hash);
535 			}
536 			if (udpnext != NULL)
537 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
538 		} else {
539 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
540 		}
541 	}
542 	udp->udp_bind_hash = udpnext;
543 	udp->udp_ptpbhn = udpp;
544 	udpp[0] = udp;
545 }
546 
547 /*
548  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
549  * passed to udp_wput.
550  * It associates a port number and local address with the stream.
551  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
552  * protocol type (IPPROTO_UDP) placed in the message following the address.
553  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
554  * (Called as writer.)
555  *
556  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
557  * without setting SO_REUSEADDR. This is needed so that they
558  * can be viewed as two independent transport protocols.
559  * However, anonymouns ports are allocated from the same range to avoid
560  * duplicating the us->us_next_port_to_try.
561  */
562 static void
563 udp_bind(queue_t *q, mblk_t *mp)
564 {
565 	sin_t		*sin;
566 	sin6_t		*sin6;
567 	mblk_t		*mp1;
568 	in_port_t	port;		/* Host byte order */
569 	in_port_t	requested_port;	/* Host byte order */
570 	struct T_bind_req *tbr;
571 	int		count;
572 	in6_addr_t	v6src;
573 	boolean_t	bind_to_req_port_only;
574 	int		loopmax;
575 	udp_fanout_t	*udpf;
576 	in_port_t	lport;		/* Network byte order */
577 	zoneid_t	zoneid;
578 	conn_t		*connp;
579 	udp_t		*udp;
580 	boolean_t	is_inaddr_any;
581 	mlp_type_t	addrtype, mlptype;
582 	udp_stack_t	*us;
583 
584 	connp = Q_TO_CONN(q);
585 	udp = connp->conn_udp;
586 	us = udp->udp_us;
587 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
588 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
589 		    "udp_bind: bad req, len %u",
590 		    (uint_t)(mp->b_wptr - mp->b_rptr));
591 		udp_err_ack(q, mp, TPROTO, 0);
592 		return;
593 	}
594 	if (udp->udp_state != TS_UNBND) {
595 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
596 		    "udp_bind: bad state, %u", udp->udp_state);
597 		udp_err_ack(q, mp, TOUTSTATE, 0);
598 		return;
599 	}
600 	/*
601 	 * Reallocate the message to make sure we have enough room for an
602 	 * address and the protocol type.
603 	 */
604 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
605 	if (!mp1) {
606 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
607 		return;
608 	}
609 
610 	mp = mp1;
611 	tbr = (struct T_bind_req *)mp->b_rptr;
612 	switch (tbr->ADDR_length) {
613 	case 0:			/* Request for a generic port */
614 		tbr->ADDR_offset = sizeof (struct T_bind_req);
615 		if (udp->udp_family == AF_INET) {
616 			tbr->ADDR_length = sizeof (sin_t);
617 			sin = (sin_t *)&tbr[1];
618 			*sin = sin_null;
619 			sin->sin_family = AF_INET;
620 			mp->b_wptr = (uchar_t *)&sin[1];
621 		} else {
622 			ASSERT(udp->udp_family == AF_INET6);
623 			tbr->ADDR_length = sizeof (sin6_t);
624 			sin6 = (sin6_t *)&tbr[1];
625 			*sin6 = sin6_null;
626 			sin6->sin6_family = AF_INET6;
627 			mp->b_wptr = (uchar_t *)&sin6[1];
628 		}
629 		port = 0;
630 		break;
631 
632 	case sizeof (sin_t):	/* Complete IPv4 address */
633 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
634 		    sizeof (sin_t));
635 		if (sin == NULL || !OK_32PTR((char *)sin)) {
636 			udp_err_ack(q, mp, TSYSERR, EINVAL);
637 			return;
638 		}
639 		if (udp->udp_family != AF_INET ||
640 		    sin->sin_family != AF_INET) {
641 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
642 			return;
643 		}
644 		port = ntohs(sin->sin_port);
645 		break;
646 
647 	case sizeof (sin6_t):	/* complete IPv6 address */
648 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
649 		    sizeof (sin6_t));
650 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
651 			udp_err_ack(q, mp, TSYSERR, EINVAL);
652 			return;
653 		}
654 		if (udp->udp_family != AF_INET6 ||
655 		    sin6->sin6_family != AF_INET6) {
656 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
657 			return;
658 		}
659 		port = ntohs(sin6->sin6_port);
660 		break;
661 
662 	default:		/* Invalid request */
663 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
664 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
665 		udp_err_ack(q, mp, TBADADDR, 0);
666 		return;
667 	}
668 
669 	requested_port = port;
670 
671 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
672 		bind_to_req_port_only = B_FALSE;
673 	else			/* T_BIND_REQ and requested_port != 0 */
674 		bind_to_req_port_only = B_TRUE;
675 
676 	if (requested_port == 0) {
677 		/*
678 		 * If the application passed in zero for the port number, it
679 		 * doesn't care which port number we bind to. Get one in the
680 		 * valid range.
681 		 */
682 		if (udp->udp_anon_priv_bind) {
683 			port = udp_get_next_priv_port(udp);
684 		} else {
685 			port = udp_update_next_port(udp,
686 			    us->us_next_port_to_try, B_TRUE);
687 		}
688 	} else {
689 		/*
690 		 * If the port is in the well-known privileged range,
691 		 * make sure the caller was privileged.
692 		 */
693 		int i;
694 		boolean_t priv = B_FALSE;
695 
696 		if (port < us->us_smallest_nonpriv_port) {
697 			priv = B_TRUE;
698 		} else {
699 			for (i = 0; i < us->us_num_epriv_ports; i++) {
700 				if (port == us->us_epriv_ports[i]) {
701 					priv = B_TRUE;
702 					break;
703 				}
704 			}
705 		}
706 
707 		if (priv) {
708 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
709 
710 			if (secpolicy_net_privaddr(cr, port) != 0) {
711 				udp_err_ack(q, mp, TACCES, 0);
712 				return;
713 			}
714 		}
715 	}
716 
717 	if (port == 0) {
718 		udp_err_ack(q, mp, TNOADDR, 0);
719 		return;
720 	}
721 
722 	/*
723 	 * The state must be TS_UNBND. TPI mandates that users must send
724 	 * TPI primitives only 1 at a time and wait for the response before
725 	 * sending the next primitive.
726 	 */
727 	rw_enter(&udp->udp_rwlock, RW_WRITER);
728 	if (udp->udp_state != TS_UNBND || udp->udp_pending_op != -1) {
729 		rw_exit(&udp->udp_rwlock);
730 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
731 		    "udp_bind: bad state, %u", udp->udp_state);
732 		udp_err_ack(q, mp, TOUTSTATE, 0);
733 		return;
734 	}
735 	udp->udp_pending_op = tbr->PRIM_type;
736 	/*
737 	 * Copy the source address into our udp structure. This address
738 	 * may still be zero; if so, IP will fill in the correct address
739 	 * each time an outbound packet is passed to it. Since the udp is
740 	 * not yet in the bind hash list, we don't grab the uf_lock to
741 	 * change udp_ipversion
742 	 */
743 	if (udp->udp_family == AF_INET) {
744 		ASSERT(sin != NULL);
745 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
746 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
747 		    udp->udp_ip_snd_options_len;
748 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
749 	} else {
750 		ASSERT(sin6 != NULL);
751 		v6src = sin6->sin6_addr;
752 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
753 			/*
754 			 * no need to hold the uf_lock to set the udp_ipversion
755 			 * since we are not yet in the fanout list
756 			 */
757 			udp->udp_ipversion = IPV4_VERSION;
758 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
759 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
760 		} else {
761 			udp->udp_ipversion = IPV6_VERSION;
762 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
763 		}
764 	}
765 
766 	/*
767 	 * If udp_reuseaddr is not set, then we have to make sure that
768 	 * the IP address and port number the application requested
769 	 * (or we selected for the application) is not being used by
770 	 * another stream.  If another stream is already using the
771 	 * requested IP address and port, the behavior depends on
772 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
773 	 * search for any an unused port to bind to the the stream.
774 	 *
775 	 * As per the BSD semantics, as modified by the Deering multicast
776 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
777 	 * to the same port independent of the local IP address.
778 	 *
779 	 * This is slightly different than in SunOS 4.X which did not
780 	 * support IP multicast. Note that the change implemented by the
781 	 * Deering multicast code effects all binds - not only binding
782 	 * to IP multicast addresses.
783 	 *
784 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
785 	 * order to guarantee a unique port.
786 	 */
787 
788 	count = 0;
789 	if (udp->udp_anon_priv_bind) {
790 		/*
791 		 * loopmax = (IPPORT_RESERVED-1) -
792 		 *    us->us_min_anonpriv_port + 1
793 		 */
794 		loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port;
795 	} else {
796 		loopmax = us->us_largest_anon_port -
797 		    us->us_smallest_anon_port + 1;
798 	}
799 
800 	is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
801 	zoneid = connp->conn_zoneid;
802 
803 	for (;;) {
804 		udp_t		*udp1;
805 		boolean_t	found_exclbind = B_FALSE;
806 
807 		/*
808 		 * Walk through the list of udp streams bound to
809 		 * requested port with the same IP address.
810 		 */
811 		lport = htons(port);
812 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport,
813 		    us->us_bind_fanout_size)];
814 		mutex_enter(&udpf->uf_lock);
815 		for (udp1 = udpf->uf_udp; udp1 != NULL;
816 		    udp1 = udp1->udp_bind_hash) {
817 			if (lport != udp1->udp_port)
818 				continue;
819 
820 			/*
821 			 * On a labeled system, we must treat bindings to ports
822 			 * on shared IP addresses by sockets with MAC exemption
823 			 * privilege as being in all zones, as there's
824 			 * otherwise no way to identify the right receiver.
825 			 */
826 			if (!(IPCL_ZONE_MATCH(udp1->udp_connp, zoneid) ||
827 			    IPCL_ZONE_MATCH(connp,
828 			    udp1->udp_connp->conn_zoneid)) &&
829 			    !udp->udp_mac_exempt && !udp1->udp_mac_exempt)
830 				continue;
831 
832 			/*
833 			 * If UDP_EXCLBIND is set for either the bound or
834 			 * binding endpoint, the semantics of bind
835 			 * is changed according to the following chart.
836 			 *
837 			 * spec = specified address (v4 or v6)
838 			 * unspec = unspecified address (v4 or v6)
839 			 * A = specified addresses are different for endpoints
840 			 *
841 			 * bound	bind to		allowed?
842 			 * -------------------------------------
843 			 * unspec	unspec		no
844 			 * unspec	spec		no
845 			 * spec		unspec		no
846 			 * spec		spec		yes if A
847 			 *
848 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
849 			 * as UDP_EXCLBIND, except that zoneid is ignored.
850 			 */
851 			if (udp1->udp_exclbind || udp->udp_exclbind ||
852 			    udp1->udp_mac_exempt || udp->udp_mac_exempt) {
853 				if (V6_OR_V4_INADDR_ANY(
854 				    udp1->udp_bound_v6src) ||
855 				    is_inaddr_any ||
856 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
857 				    &v6src)) {
858 					found_exclbind = B_TRUE;
859 					break;
860 				}
861 				continue;
862 			}
863 
864 			/*
865 			 * Check ipversion to allow IPv4 and IPv6 sockets to
866 			 * have disjoint port number spaces.
867 			 */
868 			if (udp->udp_ipversion != udp1->udp_ipversion) {
869 
870 				/*
871 				 * On the first time through the loop, if the
872 				 * the user intentionally specified a
873 				 * particular port number, then ignore any
874 				 * bindings of the other protocol that may
875 				 * conflict. This allows the user to bind IPv6
876 				 * alone and get both v4 and v6, or bind both
877 				 * both and get each seperately. On subsequent
878 				 * times through the loop, we're checking a
879 				 * port that we chose (not the user) and thus
880 				 * we do not allow casual duplicate bindings.
881 				 */
882 				if (count == 0 && requested_port != 0)
883 					continue;
884 			}
885 
886 			/*
887 			 * No difference depending on SO_REUSEADDR.
888 			 *
889 			 * If existing port is bound to a
890 			 * non-wildcard IP address and
891 			 * the requesting stream is bound to
892 			 * a distinct different IP addresses
893 			 * (non-wildcard, also), keep going.
894 			 */
895 			if (!is_inaddr_any &&
896 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
897 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
898 			    &v6src)) {
899 				continue;
900 			}
901 			break;
902 		}
903 
904 		if (!found_exclbind &&
905 		    (udp->udp_reuseaddr && requested_port != 0)) {
906 			break;
907 		}
908 
909 		if (udp1 == NULL) {
910 			/*
911 			 * No other stream has this IP address
912 			 * and port number. We can use it.
913 			 */
914 			break;
915 		}
916 		mutex_exit(&udpf->uf_lock);
917 		if (bind_to_req_port_only) {
918 			/*
919 			 * We get here only when requested port
920 			 * is bound (and only first  of the for()
921 			 * loop iteration).
922 			 *
923 			 * The semantics of this bind request
924 			 * require it to fail so we return from
925 			 * the routine (and exit the loop).
926 			 *
927 			 */
928 			udp->udp_pending_op = -1;
929 			rw_exit(&udp->udp_rwlock);
930 			udp_err_ack(q, mp, TADDRBUSY, 0);
931 			return;
932 		}
933 
934 		if (udp->udp_anon_priv_bind) {
935 			port = udp_get_next_priv_port(udp);
936 		} else {
937 			if ((count == 0) && (requested_port != 0)) {
938 				/*
939 				 * If the application wants us to find
940 				 * a port, get one to start with. Set
941 				 * requested_port to 0, so that we will
942 				 * update us->us_next_port_to_try below.
943 				 */
944 				port = udp_update_next_port(udp,
945 				    us->us_next_port_to_try, B_TRUE);
946 				requested_port = 0;
947 			} else {
948 				port = udp_update_next_port(udp, port + 1,
949 				    B_FALSE);
950 			}
951 		}
952 
953 		if (port == 0 || ++count >= loopmax) {
954 			/*
955 			 * We've tried every possible port number and
956 			 * there are none available, so send an error
957 			 * to the user.
958 			 */
959 			udp->udp_pending_op = -1;
960 			rw_exit(&udp->udp_rwlock);
961 			udp_err_ack(q, mp, TNOADDR, 0);
962 			return;
963 		}
964 	}
965 
966 	/*
967 	 * Copy the source address into our udp structure.  This address
968 	 * may still be zero; if so, ip will fill in the correct address
969 	 * each time an outbound packet is passed to it.
970 	 * If we are binding to a broadcast or multicast address then
971 	 * udp_bind_ack will clear the source address when it receives
972 	 * the T_BIND_ACK.
973 	 */
974 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
975 	udp->udp_port = lport;
976 	/*
977 	 * Now reset the the next anonymous port if the application requested
978 	 * an anonymous port, or we handed out the next anonymous port.
979 	 */
980 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
981 		us->us_next_port_to_try = port + 1;
982 	}
983 
984 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
985 	if (udp->udp_family == AF_INET) {
986 		sin->sin_port = udp->udp_port;
987 	} else {
988 		int error;
989 
990 		sin6->sin6_port = udp->udp_port;
991 		/* Rebuild the header template */
992 		error = udp_build_hdrs(udp);
993 		if (error != 0) {
994 			udp->udp_pending_op = -1;
995 			rw_exit(&udp->udp_rwlock);
996 			mutex_exit(&udpf->uf_lock);
997 			udp_err_ack(q, mp, TSYSERR, error);
998 			return;
999 		}
1000 	}
1001 	udp->udp_state = TS_IDLE;
1002 	udp_bind_hash_insert(udpf, udp);
1003 	mutex_exit(&udpf->uf_lock);
1004 	rw_exit(&udp->udp_rwlock);
1005 
1006 	if (cl_inet_bind) {
1007 		/*
1008 		 * Running in cluster mode - register bind information
1009 		 */
1010 		if (udp->udp_ipversion == IPV4_VERSION) {
1011 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1012 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1013 			    (in_port_t)udp->udp_port);
1014 		} else {
1015 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1016 			    (uint8_t *)&(udp->udp_v6src),
1017 			    (in_port_t)udp->udp_port);
1018 		}
1019 
1020 	}
1021 
1022 	connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
1023 	if (is_system_labeled() && (!connp->conn_anon_port ||
1024 	    connp->conn_anon_mlp)) {
1025 		uint16_t mlpport;
1026 		cred_t *cr = connp->conn_cred;
1027 		zone_t *zone;
1028 
1029 		zone = crgetzone(cr);
1030 		connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth :
1031 		    mlptSingle;
1032 		addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION,
1033 		    &v6src, us->us_netstack->netstack_ip);
1034 		if (addrtype == mlptSingle) {
1035 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1036 			udp->udp_pending_op = -1;
1037 			rw_exit(&udp->udp_rwlock);
1038 			udp_err_ack(q, mp, TNOADDR, 0);
1039 			connp->conn_anon_port = B_FALSE;
1040 			connp->conn_mlp_type = mlptSingle;
1041 			return;
1042 		}
1043 		mlpport = connp->conn_anon_port ? PMAPPORT : port;
1044 		mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
1045 		    addrtype);
1046 		if (mlptype != mlptSingle &&
1047 		    (connp->conn_mlp_type == mlptSingle ||
1048 		    secpolicy_net_bindmlp(cr) != 0)) {
1049 			if (udp->udp_debug) {
1050 				(void) strlog(UDP_MOD_ID, 0, 1,
1051 				    SL_ERROR|SL_TRACE,
1052 				    "udp_bind: no priv for multilevel port %d",
1053 				    mlpport);
1054 			}
1055 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1056 			udp->udp_pending_op = -1;
1057 			rw_exit(&udp->udp_rwlock);
1058 			udp_err_ack(q, mp, TACCES, 0);
1059 			connp->conn_anon_port = B_FALSE;
1060 			connp->conn_mlp_type = mlptSingle;
1061 			return;
1062 		}
1063 
1064 		/*
1065 		 * If we're specifically binding a shared IP address and the
1066 		 * port is MLP on shared addresses, then check to see if this
1067 		 * zone actually owns the MLP.  Reject if not.
1068 		 */
1069 		if (mlptype == mlptShared && addrtype == mlptShared) {
1070 			/*
1071 			 * No need to handle exclusive-stack zones since
1072 			 * ALL_ZONES only applies to the shared stack.
1073 			 */
1074 			zoneid_t mlpzone;
1075 
1076 			mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
1077 			    htons(mlpport));
1078 			if (connp->conn_zoneid != mlpzone) {
1079 				if (udp->udp_debug) {
1080 					(void) strlog(UDP_MOD_ID, 0, 1,
1081 					    SL_ERROR|SL_TRACE,
1082 					    "udp_bind: attempt to bind port "
1083 					    "%d on shared addr in zone %d "
1084 					    "(should be %d)",
1085 					    mlpport, connp->conn_zoneid,
1086 					    mlpzone);
1087 				}
1088 				rw_enter(&udp->udp_rwlock, RW_WRITER);
1089 				udp->udp_pending_op = -1;
1090 				rw_exit(&udp->udp_rwlock);
1091 				udp_err_ack(q, mp, TACCES, 0);
1092 				connp->conn_anon_port = B_FALSE;
1093 				connp->conn_mlp_type = mlptSingle;
1094 				return;
1095 			}
1096 		}
1097 		if (connp->conn_anon_port) {
1098 			int error;
1099 
1100 			error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
1101 			    port, B_TRUE);
1102 			if (error != 0) {
1103 				if (udp->udp_debug) {
1104 					(void) strlog(UDP_MOD_ID, 0, 1,
1105 					    SL_ERROR|SL_TRACE,
1106 					    "udp_bind: cannot establish anon "
1107 					    "MLP for port %d", port);
1108 				}
1109 				rw_enter(&udp->udp_rwlock, RW_WRITER);
1110 				udp->udp_pending_op = -1;
1111 				rw_exit(&udp->udp_rwlock);
1112 				udp_err_ack(q, mp, TACCES, 0);
1113 				connp->conn_anon_port = B_FALSE;
1114 				connp->conn_mlp_type = mlptSingle;
1115 				return;
1116 			}
1117 		}
1118 		connp->conn_mlp_type = mlptype;
1119 	}
1120 
1121 	/* Pass the protocol number in the message following the address. */
1122 	*mp->b_wptr++ = IPPROTO_UDP;
1123 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1124 		/*
1125 		 * Append a request for an IRE if udp_v6src not
1126 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1127 		 */
1128 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1129 		if (!mp->b_cont) {
1130 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1131 			udp->udp_pending_op = -1;
1132 			rw_exit(&udp->udp_rwlock);
1133 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1134 			return;
1135 		}
1136 		mp->b_cont->b_wptr += sizeof (ire_t);
1137 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1138 	}
1139 	if (udp->udp_family == AF_INET6)
1140 		mp = ip_bind_v6(q, mp, connp, NULL);
1141 	else
1142 		mp = ip_bind_v4(q, mp, connp);
1143 
1144 	/* The above return NULL if the bind needs to be deferred */
1145 	if (mp != NULL)
1146 		udp_bind_result(connp, mp);
1147 	else
1148 		CONN_INC_REF(connp);
1149 }
1150 
1151 /*
1152  * This is called from ip_wput_nondata to handle the results of a
1153  * deferred UDP bind. It is called once the bind has been completed.
1154  */
1155 void
1156 udp_resume_bind(conn_t *connp, mblk_t *mp)
1157 {
1158 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1159 
1160 	udp_bind_result(connp, mp);
1161 
1162 	CONN_OPER_PENDING_DONE(connp);
1163 }
1164 
1165 /*
1166  * This routine handles each T_CONN_REQ message passed to udp.  It
1167  * associates a default destination address with the stream.
1168  *
1169  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1170  *	T_BIND_REQ	- specifying local and remote address/port
1171  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1172  *	T_OK_ACK	- for the T_CONN_REQ
1173  *	T_CONN_CON	- to keep the TPI user happy
1174  *
1175  * The connect completes in udp_bind_result.
1176  * When a T_BIND_ACK is received information is extracted from the IRE
1177  * and the two appended messages are sent to the TPI user.
1178  * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will
1179  * convert it to an error ack for the appropriate primitive.
1180  */
1181 static void
1182 udp_connect(queue_t *q, mblk_t *mp)
1183 {
1184 	sin6_t	*sin6;
1185 	sin_t	*sin;
1186 	struct T_conn_req	*tcr;
1187 	in6_addr_t v6dst;
1188 	ipaddr_t v4dst;
1189 	uint16_t dstport;
1190 	uint32_t flowinfo;
1191 	mblk_t	*mp1, *mp2;
1192 	udp_fanout_t	*udpf;
1193 	udp_t	*udp, *udp1;
1194 	ushort_t	ipversion;
1195 	udp_stack_t	*us;
1196 	conn_t		*connp = Q_TO_CONN(q);
1197 
1198 	udp = connp->conn_udp;
1199 	tcr = (struct T_conn_req *)mp->b_rptr;
1200 	us = udp->udp_us;
1201 
1202 	/* A bit of sanity checking */
1203 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1204 		udp_err_ack(q, mp, TPROTO, 0);
1205 		return;
1206 	}
1207 
1208 	if (tcr->OPT_length != 0) {
1209 		udp_err_ack(q, mp, TBADOPT, 0);
1210 		return;
1211 	}
1212 
1213 	/*
1214 	 * Determine packet type based on type of address passed in
1215 	 * the request should contain an IPv4 or IPv6 address.
1216 	 * Make sure that address family matches the type of
1217 	 * family of the the address passed down
1218 	 */
1219 	switch (tcr->DEST_length) {
1220 	default:
1221 		udp_err_ack(q, mp, TBADADDR, 0);
1222 		return;
1223 
1224 	case sizeof (sin_t):
1225 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1226 		    sizeof (sin_t));
1227 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1228 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1229 			return;
1230 		}
1231 		if (udp->udp_family != AF_INET ||
1232 		    sin->sin_family != AF_INET) {
1233 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1234 			return;
1235 		}
1236 		v4dst = sin->sin_addr.s_addr;
1237 		dstport = sin->sin_port;
1238 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1239 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1240 		ipversion = IPV4_VERSION;
1241 		break;
1242 
1243 	case sizeof (sin6_t):
1244 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1245 		    sizeof (sin6_t));
1246 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1247 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1248 			return;
1249 		}
1250 		if (udp->udp_family != AF_INET6 ||
1251 		    sin6->sin6_family != AF_INET6) {
1252 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1253 			return;
1254 		}
1255 		v6dst = sin6->sin6_addr;
1256 		dstport = sin6->sin6_port;
1257 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1258 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1259 			ipversion = IPV4_VERSION;
1260 			flowinfo = 0;
1261 		} else {
1262 			ipversion = IPV6_VERSION;
1263 			flowinfo = sin6->sin6_flowinfo;
1264 		}
1265 		break;
1266 	}
1267 	if (dstport == 0) {
1268 		udp_err_ack(q, mp, TBADADDR, 0);
1269 		return;
1270 	}
1271 
1272 	rw_enter(&udp->udp_rwlock, RW_WRITER);
1273 
1274 	/*
1275 	 * This UDP must have bound to a port already before doing a connect.
1276 	 * TPI mandates that users must send TPI primitives only 1 at a time
1277 	 * and wait for the response before sending the next primitive.
1278 	 */
1279 	if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) {
1280 		rw_exit(&udp->udp_rwlock);
1281 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1282 		    "udp_connect: bad state, %u", udp->udp_state);
1283 		udp_err_ack(q, mp, TOUTSTATE, 0);
1284 		return;
1285 	}
1286 	udp->udp_pending_op = T_CONN_REQ;
1287 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1288 
1289 	if (ipversion == IPV4_VERSION) {
1290 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1291 		    udp->udp_ip_snd_options_len;
1292 	} else {
1293 		udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1294 	}
1295 
1296 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1297 	    us->us_bind_fanout_size)];
1298 
1299 	mutex_enter(&udpf->uf_lock);
1300 	if (udp->udp_state == TS_DATA_XFER) {
1301 		/* Already connected - clear out state */
1302 		udp->udp_v6src = udp->udp_bound_v6src;
1303 		udp->udp_state = TS_IDLE;
1304 	}
1305 
1306 	/*
1307 	 * Create a default IP header with no IP options.
1308 	 */
1309 	udp->udp_dstport = dstport;
1310 	udp->udp_ipversion = ipversion;
1311 	if (ipversion == IPV4_VERSION) {
1312 		/*
1313 		 * Interpret a zero destination to mean loopback.
1314 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1315 		 * generate the T_CONN_CON.
1316 		 */
1317 		if (v4dst == INADDR_ANY) {
1318 			v4dst = htonl(INADDR_LOOPBACK);
1319 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1320 			if (udp->udp_family == AF_INET) {
1321 				sin->sin_addr.s_addr = v4dst;
1322 			} else {
1323 				sin6->sin6_addr = v6dst;
1324 			}
1325 		}
1326 		udp->udp_v6dst = v6dst;
1327 		udp->udp_flowinfo = 0;
1328 
1329 		/*
1330 		 * If the destination address is multicast and
1331 		 * an outgoing multicast interface has been set,
1332 		 * use the address of that interface as our
1333 		 * source address if no source address has been set.
1334 		 */
1335 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1336 		    CLASSD(v4dst) &&
1337 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1338 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1339 			    &udp->udp_v6src);
1340 		}
1341 	} else {
1342 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1343 		/*
1344 		 * Interpret a zero destination to mean loopback.
1345 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1346 		 * generate the T_CONN_CON.
1347 		 */
1348 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1349 			v6dst = ipv6_loopback;
1350 			sin6->sin6_addr = v6dst;
1351 		}
1352 		udp->udp_v6dst = v6dst;
1353 		udp->udp_flowinfo = flowinfo;
1354 		/*
1355 		 * If the destination address is multicast and
1356 		 * an outgoing multicast interface has been set,
1357 		 * then the ip bind logic will pick the correct source
1358 		 * address (i.e. matching the outgoing multicast interface).
1359 		 */
1360 	}
1361 
1362 	/*
1363 	 * Verify that the src/port/dst/port is unique for all
1364 	 * connections in TS_DATA_XFER
1365 	 */
1366 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1367 		if (udp1->udp_state != TS_DATA_XFER)
1368 			continue;
1369 		if (udp->udp_port != udp1->udp_port ||
1370 		    udp->udp_ipversion != udp1->udp_ipversion ||
1371 		    dstport != udp1->udp_dstport ||
1372 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1373 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst) ||
1374 		    !(IPCL_ZONE_MATCH(udp->udp_connp,
1375 		    udp1->udp_connp->conn_zoneid) ||
1376 		    IPCL_ZONE_MATCH(udp1->udp_connp,
1377 		    udp->udp_connp->conn_zoneid)))
1378 			continue;
1379 		mutex_exit(&udpf->uf_lock);
1380 		udp->udp_pending_op = -1;
1381 		rw_exit(&udp->udp_rwlock);
1382 		udp_err_ack(q, mp, TBADADDR, 0);
1383 		return;
1384 	}
1385 	udp->udp_state = TS_DATA_XFER;
1386 	mutex_exit(&udpf->uf_lock);
1387 
1388 	/*
1389 	 * Send down bind to IP to verify that there is a route
1390 	 * and to determine the source address.
1391 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1392 	 */
1393 	if (udp->udp_family == AF_INET)
1394 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1395 	else
1396 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1397 	if (mp1 == NULL) {
1398 bind_failed:
1399 		mutex_enter(&udpf->uf_lock);
1400 		udp->udp_state = TS_IDLE;
1401 		udp->udp_pending_op = -1;
1402 		mutex_exit(&udpf->uf_lock);
1403 		rw_exit(&udp->udp_rwlock);
1404 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1405 		return;
1406 	}
1407 
1408 	rw_exit(&udp->udp_rwlock);
1409 	/*
1410 	 * We also have to send a connection confirmation to
1411 	 * keep TLI happy. Prepare it for udp_bind_result.
1412 	 */
1413 	if (udp->udp_family == AF_INET)
1414 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1415 		    sizeof (*sin), NULL, 0);
1416 	else
1417 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1418 		    sizeof (*sin6), NULL, 0);
1419 	if (mp2 == NULL) {
1420 		freemsg(mp1);
1421 		rw_enter(&udp->udp_rwlock, RW_WRITER);
1422 		goto bind_failed;
1423 	}
1424 
1425 	mp = mi_tpi_ok_ack_alloc(mp);
1426 	if (mp == NULL) {
1427 		/* Unable to reuse the T_CONN_REQ for the ack. */
1428 		freemsg(mp2);
1429 		rw_enter(&udp->udp_rwlock, RW_WRITER);
1430 		mutex_enter(&udpf->uf_lock);
1431 		udp->udp_state = TS_IDLE;
1432 		udp->udp_pending_op = -1;
1433 		mutex_exit(&udpf->uf_lock);
1434 		rw_exit(&udp->udp_rwlock);
1435 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1436 		return;
1437 	}
1438 
1439 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1440 	linkb(mp1, mp);
1441 	linkb(mp1, mp2);
1442 
1443 	mblk_setcred(mp1, connp->conn_cred);
1444 	if (udp->udp_family == AF_INET)
1445 		mp1 = ip_bind_v4(q, mp1, connp);
1446 	else
1447 		mp1 = ip_bind_v6(q, mp1, connp, NULL);
1448 
1449 	/* The above return NULL if the bind needs to be deferred */
1450 	if (mp1 != NULL)
1451 		udp_bind_result(connp, mp1);
1452 	else
1453 		CONN_INC_REF(connp);
1454 }
1455 
1456 static int
1457 udp_close(queue_t *q)
1458 {
1459 	conn_t	*connp = (conn_t *)q->q_ptr;
1460 	udp_t	*udp;
1461 
1462 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1463 	udp = connp->conn_udp;
1464 
1465 	udp_quiesce_conn(connp);
1466 	ip_quiesce_conn(connp);
1467 	/*
1468 	 * Disable read-side synchronous stream
1469 	 * interface and drain any queued data.
1470 	 */
1471 	udp_rcv_drain(q, udp, B_TRUE);
1472 	ASSERT(!udp->udp_direct_sockfs);
1473 
1474 	qprocsoff(q);
1475 
1476 	ASSERT(udp->udp_rcv_cnt == 0);
1477 	ASSERT(udp->udp_rcv_msgcnt == 0);
1478 	ASSERT(udp->udp_rcv_list_head == NULL);
1479 	ASSERT(udp->udp_rcv_list_tail == NULL);
1480 
1481 	udp_close_free(connp);
1482 
1483 	/*
1484 	 * Now we are truly single threaded on this stream, and can
1485 	 * delete the things hanging off the connp, and finally the connp.
1486 	 * We removed this connp from the fanout list, it cannot be
1487 	 * accessed thru the fanouts, and we already waited for the
1488 	 * conn_ref to drop to 0. We are already in close, so
1489 	 * there cannot be any other thread from the top. qprocsoff
1490 	 * has completed, and service has completed or won't run in
1491 	 * future.
1492 	 */
1493 	ASSERT(connp->conn_ref == 1);
1494 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
1495 	connp->conn_ref--;
1496 	ipcl_conn_destroy(connp);
1497 
1498 	q->q_ptr = WR(q)->q_ptr = NULL;
1499 	return (0);
1500 }
1501 
1502 /*
1503  * Called in the close path to quiesce the conn
1504  */
1505 void
1506 udp_quiesce_conn(conn_t *connp)
1507 {
1508 	udp_t	*udp = connp->conn_udp;
1509 
1510 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1511 		/*
1512 		 * Running in cluster mode - register unbind information
1513 		 */
1514 		if (udp->udp_ipversion == IPV4_VERSION) {
1515 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1516 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1517 			    (in_port_t)udp->udp_port);
1518 		} else {
1519 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1520 			    (uint8_t *)(&(udp->udp_v6src)),
1521 			    (in_port_t)udp->udp_port);
1522 		}
1523 	}
1524 
1525 	udp_bind_hash_remove(udp, B_FALSE);
1526 
1527 }
1528 
1529 void
1530 udp_close_free(conn_t *connp)
1531 {
1532 	udp_t *udp = connp->conn_udp;
1533 
1534 	/* If there are any options associated with the stream, free them. */
1535 	if (udp->udp_ip_snd_options != NULL) {
1536 		mi_free((char *)udp->udp_ip_snd_options);
1537 		udp->udp_ip_snd_options = NULL;
1538 		udp->udp_ip_snd_options_len = 0;
1539 	}
1540 
1541 	if (udp->udp_ip_rcv_options != NULL) {
1542 		mi_free((char *)udp->udp_ip_rcv_options);
1543 		udp->udp_ip_rcv_options = NULL;
1544 		udp->udp_ip_rcv_options_len = 0;
1545 	}
1546 
1547 	/* Free memory associated with sticky options */
1548 	if (udp->udp_sticky_hdrs_len != 0) {
1549 		kmem_free(udp->udp_sticky_hdrs,
1550 		    udp->udp_sticky_hdrs_len);
1551 		udp->udp_sticky_hdrs = NULL;
1552 		udp->udp_sticky_hdrs_len = 0;
1553 	}
1554 
1555 	ip6_pkt_free(&udp->udp_sticky_ipp);
1556 
1557 	/*
1558 	 * Clear any fields which the kmem_cache constructor clears.
1559 	 * Only udp_connp needs to be preserved.
1560 	 * TBD: We should make this more efficient to avoid clearing
1561 	 * everything.
1562 	 */
1563 	ASSERT(udp->udp_connp == connp);
1564 	bzero(udp, sizeof (udp_t));
1565 	udp->udp_connp = connp;
1566 }
1567 
1568 /*
1569  * This routine handles each T_DISCON_REQ message passed to udp
1570  * as an indicating that UDP is no longer connected. This results
1571  * in sending a T_BIND_REQ to IP to restore the binding to just
1572  * the local address/port.
1573  *
1574  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1575  *	T_BIND_REQ	- specifying just the local address/port
1576  *	T_OK_ACK	- for the T_DISCON_REQ
1577  *
1578  * The disconnect completes in udp_bind_result.
1579  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
1580  * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will
1581  * convert it to an error ack for the appropriate primitive.
1582  */
1583 static void
1584 udp_disconnect(queue_t *q, mblk_t *mp)
1585 {
1586 	udp_t	*udp;
1587 	mblk_t	*mp1;
1588 	udp_fanout_t *udpf;
1589 	udp_stack_t *us;
1590 	conn_t	*connp = Q_TO_CONN(q);
1591 
1592 	udp = connp->conn_udp;
1593 	us = udp->udp_us;
1594 	rw_enter(&udp->udp_rwlock, RW_WRITER);
1595 	if (udp->udp_state != TS_DATA_XFER || udp->udp_pending_op != -1) {
1596 		rw_exit(&udp->udp_rwlock);
1597 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1598 		    "udp_disconnect: bad state, %u", udp->udp_state);
1599 		udp_err_ack(q, mp, TOUTSTATE, 0);
1600 		return;
1601 	}
1602 	udp->udp_pending_op = T_DISCON_REQ;
1603 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1604 	    us->us_bind_fanout_size)];
1605 	mutex_enter(&udpf->uf_lock);
1606 	udp->udp_v6src = udp->udp_bound_v6src;
1607 	udp->udp_state = TS_IDLE;
1608 	mutex_exit(&udpf->uf_lock);
1609 
1610 	/*
1611 	 * Send down bind to IP to remove the full binding and revert
1612 	 * to the local address binding.
1613 	 */
1614 	if (udp->udp_family == AF_INET)
1615 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
1616 	else
1617 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
1618 	if (mp1 == NULL) {
1619 		udp->udp_pending_op = -1;
1620 		rw_exit(&udp->udp_rwlock);
1621 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1622 		return;
1623 	}
1624 	mp = mi_tpi_ok_ack_alloc(mp);
1625 	if (mp == NULL) {
1626 		/* Unable to reuse the T_DISCON_REQ for the ack. */
1627 		udp->udp_pending_op = -1;
1628 		rw_exit(&udp->udp_rwlock);
1629 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
1630 		return;
1631 	}
1632 
1633 	if (udp->udp_family == AF_INET6) {
1634 		int error;
1635 
1636 		/* Rebuild the header template */
1637 		error = udp_build_hdrs(udp);
1638 		if (error != 0) {
1639 			udp->udp_pending_op = -1;
1640 			rw_exit(&udp->udp_rwlock);
1641 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
1642 			freemsg(mp1);
1643 			return;
1644 		}
1645 	}
1646 
1647 	rw_exit(&udp->udp_rwlock);
1648 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_bind_ack */
1649 	linkb(mp1, mp);
1650 
1651 	if (udp->udp_family == AF_INET6)
1652 		mp1 = ip_bind_v6(q, mp1, connp, NULL);
1653 	else
1654 		mp1 = ip_bind_v4(q, mp1, connp);
1655 
1656 	/* The above return NULL if the bind needs to be deferred */
1657 	if (mp1 != NULL)
1658 		udp_bind_result(connp, mp1);
1659 	else
1660 		CONN_INC_REF(connp);
1661 }
1662 
1663 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
1664 static void
1665 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
1666 {
1667 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
1668 		qreply(q, mp);
1669 }
1670 
1671 /* Shorthand to generate and send TPI error acks to our client */
1672 static void
1673 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
1674     int sys_error)
1675 {
1676 	struct T_error_ack	*teackp;
1677 
1678 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
1679 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
1680 		teackp = (struct T_error_ack *)mp->b_rptr;
1681 		teackp->ERROR_prim = primitive;
1682 		teackp->TLI_error = t_error;
1683 		teackp->UNIX_error = sys_error;
1684 		qreply(q, mp);
1685 	}
1686 }
1687 
1688 /*ARGSUSED*/
1689 static int
1690 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
1691 {
1692 	int i;
1693 	udp_t		*udp = Q_TO_UDP(q);
1694 	udp_stack_t *us = udp->udp_us;
1695 
1696 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1697 		if (us->us_epriv_ports[i] != 0)
1698 			(void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]);
1699 	}
1700 	return (0);
1701 }
1702 
1703 /* ARGSUSED */
1704 static int
1705 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
1706     cred_t *cr)
1707 {
1708 	long	new_value;
1709 	int	i;
1710 	udp_t		*udp = Q_TO_UDP(q);
1711 	udp_stack_t *us = udp->udp_us;
1712 
1713 	/*
1714 	 * Fail the request if the new value does not lie within the
1715 	 * port number limits.
1716 	 */
1717 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
1718 	    new_value <= 0 || new_value >= 65536) {
1719 		return (EINVAL);
1720 	}
1721 
1722 	/* Check if the value is already in the list */
1723 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1724 		if (new_value == us->us_epriv_ports[i]) {
1725 			return (EEXIST);
1726 		}
1727 	}
1728 	/* Find an empty slot */
1729 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1730 		if (us->us_epriv_ports[i] == 0)
1731 			break;
1732 	}
1733 	if (i == us->us_num_epriv_ports) {
1734 		return (EOVERFLOW);
1735 	}
1736 
1737 	/* Set the new value */
1738 	us->us_epriv_ports[i] = (in_port_t)new_value;
1739 	return (0);
1740 }
1741 
1742 /* ARGSUSED */
1743 static int
1744 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
1745     cred_t *cr)
1746 {
1747 	long	new_value;
1748 	int	i;
1749 	udp_t		*udp = Q_TO_UDP(q);
1750 	udp_stack_t *us = udp->udp_us;
1751 
1752 	/*
1753 	 * Fail the request if the new value does not lie within the
1754 	 * port number limits.
1755 	 */
1756 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
1757 	    new_value <= 0 || new_value >= 65536) {
1758 		return (EINVAL);
1759 	}
1760 
1761 	/* Check that the value is already in the list */
1762 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1763 		if (us->us_epriv_ports[i] == new_value)
1764 			break;
1765 	}
1766 	if (i == us->us_num_epriv_ports) {
1767 		return (ESRCH);
1768 	}
1769 
1770 	/* Clear the value */
1771 	us->us_epriv_ports[i] = 0;
1772 	return (0);
1773 }
1774 
1775 /* At minimum we need 4 bytes of UDP header */
1776 #define	ICMP_MIN_UDP_HDR	4
1777 
1778 /*
1779  * udp_icmp_error is called by udp_input to process ICMP msgs. passed up by IP.
1780  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
1781  * Assumes that IP has pulled up everything up to and including the ICMP header.
1782  */
1783 static void
1784 udp_icmp_error(queue_t *q, mblk_t *mp)
1785 {
1786 	icmph_t *icmph;
1787 	ipha_t	*ipha;
1788 	int	iph_hdr_length;
1789 	udpha_t	*udpha;
1790 	sin_t	sin;
1791 	sin6_t	sin6;
1792 	mblk_t	*mp1;
1793 	int	error = 0;
1794 	udp_t	*udp = Q_TO_UDP(q);
1795 
1796 	ipha = (ipha_t *)mp->b_rptr;
1797 
1798 	ASSERT(OK_32PTR(mp->b_rptr));
1799 
1800 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
1801 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
1802 		udp_icmp_error_ipv6(q, mp);
1803 		return;
1804 	}
1805 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
1806 
1807 	/* Skip past the outer IP and ICMP headers */
1808 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1809 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1810 	ipha = (ipha_t *)&icmph[1];
1811 
1812 	/* Skip past the inner IP and find the ULP header */
1813 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1814 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
1815 
1816 	switch (icmph->icmph_type) {
1817 	case ICMP_DEST_UNREACHABLE:
1818 		switch (icmph->icmph_code) {
1819 		case ICMP_FRAGMENTATION_NEEDED:
1820 			/*
1821 			 * IP has already adjusted the path MTU.
1822 			 */
1823 			break;
1824 		case ICMP_PORT_UNREACHABLE:
1825 		case ICMP_PROTOCOL_UNREACHABLE:
1826 			error = ECONNREFUSED;
1827 			break;
1828 		default:
1829 			/* Transient errors */
1830 			break;
1831 		}
1832 		break;
1833 	default:
1834 		/* Transient errors */
1835 		break;
1836 	}
1837 	if (error == 0) {
1838 		freemsg(mp);
1839 		return;
1840 	}
1841 
1842 	/*
1843 	 * Deliver T_UDERROR_IND when the application has asked for it.
1844 	 * The socket layer enables this automatically when connected.
1845 	 */
1846 	if (!udp->udp_dgram_errind) {
1847 		freemsg(mp);
1848 		return;
1849 	}
1850 
1851 	switch (udp->udp_family) {
1852 	case AF_INET:
1853 		sin = sin_null;
1854 		sin.sin_family = AF_INET;
1855 		sin.sin_addr.s_addr = ipha->ipha_dst;
1856 		sin.sin_port = udpha->uha_dst_port;
1857 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
1858 		    error);
1859 		break;
1860 	case AF_INET6:
1861 		sin6 = sin6_null;
1862 		sin6.sin6_family = AF_INET6;
1863 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
1864 		sin6.sin6_port = udpha->uha_dst_port;
1865 
1866 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
1867 		    NULL, 0, error);
1868 		break;
1869 	}
1870 	if (mp1)
1871 		putnext(q, mp1);
1872 	freemsg(mp);
1873 }
1874 
1875 /*
1876  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
1877  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
1878  * Assumes that IP has pulled up all the extension headers as well as the
1879  * ICMPv6 header.
1880  */
1881 static void
1882 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
1883 {
1884 	icmp6_t		*icmp6;
1885 	ip6_t		*ip6h, *outer_ip6h;
1886 	uint16_t	iph_hdr_length;
1887 	uint8_t		*nexthdrp;
1888 	udpha_t		*udpha;
1889 	sin6_t		sin6;
1890 	mblk_t		*mp1;
1891 	int		error = 0;
1892 	udp_t		*udp = Q_TO_UDP(q);
1893 	udp_stack_t	*us = udp->udp_us;
1894 
1895 	outer_ip6h = (ip6_t *)mp->b_rptr;
1896 	if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6)
1897 		iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h);
1898 	else
1899 		iph_hdr_length = IPV6_HDR_LEN;
1900 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
1901 	ip6h = (ip6_t *)&icmp6[1];
1902 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) {
1903 		freemsg(mp);
1904 		return;
1905 	}
1906 	udpha = (udpha_t *)((char *)ip6h + iph_hdr_length);
1907 
1908 	switch (icmp6->icmp6_type) {
1909 	case ICMP6_DST_UNREACH:
1910 		switch (icmp6->icmp6_code) {
1911 		case ICMP6_DST_UNREACH_NOPORT:
1912 			error = ECONNREFUSED;
1913 			break;
1914 		case ICMP6_DST_UNREACH_ADMIN:
1915 		case ICMP6_DST_UNREACH_NOROUTE:
1916 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
1917 		case ICMP6_DST_UNREACH_ADDR:
1918 			/* Transient errors */
1919 			break;
1920 		default:
1921 			break;
1922 		}
1923 		break;
1924 	case ICMP6_PACKET_TOO_BIG: {
1925 		struct T_unitdata_ind	*tudi;
1926 		struct T_opthdr		*toh;
1927 		size_t			udi_size;
1928 		mblk_t			*newmp;
1929 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
1930 		    sizeof (struct ip6_mtuinfo);
1931 		sin6_t			*sin6;
1932 		struct ip6_mtuinfo	*mtuinfo;
1933 
1934 		/*
1935 		 * If the application has requested to receive path mtu
1936 		 * information, send up an empty message containing an
1937 		 * IPV6_PATHMTU ancillary data item.
1938 		 */
1939 		if (!udp->udp_ipv6_recvpathmtu)
1940 			break;
1941 
1942 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
1943 		    opt_length;
1944 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
1945 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
1946 			break;
1947 		}
1948 
1949 		/*
1950 		 * newmp->b_cont is left to NULL on purpose.  This is an
1951 		 * empty message containing only ancillary data.
1952 		 */
1953 		newmp->b_datap->db_type = M_PROTO;
1954 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
1955 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
1956 		tudi->PRIM_type = T_UNITDATA_IND;
1957 		tudi->SRC_length = sizeof (sin6_t);
1958 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
1959 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
1960 		tudi->OPT_length = opt_length;
1961 
1962 		sin6 = (sin6_t *)&tudi[1];
1963 		bzero(sin6, sizeof (sin6_t));
1964 		sin6->sin6_family = AF_INET6;
1965 		sin6->sin6_addr = udp->udp_v6dst;
1966 
1967 		toh = (struct T_opthdr *)&sin6[1];
1968 		toh->level = IPPROTO_IPV6;
1969 		toh->name = IPV6_PATHMTU;
1970 		toh->len = opt_length;
1971 		toh->status = 0;
1972 
1973 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
1974 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
1975 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
1976 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
1977 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
1978 		/*
1979 		 * We've consumed everything we need from the original
1980 		 * message.  Free it, then send our empty message.
1981 		 */
1982 		freemsg(mp);
1983 		putnext(q, newmp);
1984 		return;
1985 	}
1986 	case ICMP6_TIME_EXCEEDED:
1987 		/* Transient errors */
1988 		break;
1989 	case ICMP6_PARAM_PROB:
1990 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
1991 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
1992 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
1993 		    (uchar_t *)nexthdrp) {
1994 			error = ECONNREFUSED;
1995 			break;
1996 		}
1997 		break;
1998 	}
1999 	if (error == 0) {
2000 		freemsg(mp);
2001 		return;
2002 	}
2003 
2004 	/*
2005 	 * Deliver T_UDERROR_IND when the application has asked for it.
2006 	 * The socket layer enables this automatically when connected.
2007 	 */
2008 	if (!udp->udp_dgram_errind) {
2009 		freemsg(mp);
2010 		return;
2011 	}
2012 
2013 	sin6 = sin6_null;
2014 	sin6.sin6_family = AF_INET6;
2015 	sin6.sin6_addr = ip6h->ip6_dst;
2016 	sin6.sin6_port = udpha->uha_dst_port;
2017 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2018 
2019 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2020 	    error);
2021 	if (mp1)
2022 		putnext(q, mp1);
2023 	freemsg(mp);
2024 }
2025 
2026 /*
2027  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2028  * The local address is filled in if endpoint is bound. The remote address
2029  * is filled in if remote address has been precified ("connected endpoint")
2030  * (The concept of connected CLTS sockets is alien to published TPI
2031  *  but we support it anyway).
2032  */
2033 static void
2034 udp_addr_req(queue_t *q, mblk_t *mp)
2035 {
2036 	sin_t	*sin;
2037 	sin6_t	*sin6;
2038 	mblk_t	*ackmp;
2039 	struct T_addr_ack *taa;
2040 	udp_t	*udp = Q_TO_UDP(q);
2041 
2042 	/* Make it large enough for worst case */
2043 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2044 	    2 * sizeof (sin6_t), 1);
2045 	if (ackmp == NULL) {
2046 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2047 		return;
2048 	}
2049 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2050 
2051 	bzero(taa, sizeof (struct T_addr_ack));
2052 	ackmp->b_wptr = (uchar_t *)&taa[1];
2053 
2054 	taa->PRIM_type = T_ADDR_ACK;
2055 	ackmp->b_datap->db_type = M_PCPROTO;
2056 	rw_enter(&udp->udp_rwlock, RW_READER);
2057 	/*
2058 	 * Note: Following code assumes 32 bit alignment of basic
2059 	 * data structures like sin_t and struct T_addr_ack.
2060 	 */
2061 	if (udp->udp_state != TS_UNBND) {
2062 		/*
2063 		 * Fill in local address first
2064 		 */
2065 		taa->LOCADDR_offset = sizeof (*taa);
2066 		if (udp->udp_family == AF_INET) {
2067 			taa->LOCADDR_length = sizeof (sin_t);
2068 			sin = (sin_t *)&taa[1];
2069 			/* Fill zeroes and then initialize non-zero fields */
2070 			*sin = sin_null;
2071 			sin->sin_family = AF_INET;
2072 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2073 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2074 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2075 				    sin->sin_addr.s_addr);
2076 			} else {
2077 				/*
2078 				 * INADDR_ANY
2079 				 * udp_v6src is not set, we might be bound to
2080 				 * broadcast/multicast. Use udp_bound_v6src as
2081 				 * local address instead (that could
2082 				 * also still be INADDR_ANY)
2083 				 */
2084 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2085 				    sin->sin_addr.s_addr);
2086 			}
2087 			sin->sin_port = udp->udp_port;
2088 			ackmp->b_wptr = (uchar_t *)&sin[1];
2089 			if (udp->udp_state == TS_DATA_XFER) {
2090 				/*
2091 				 * connected, fill remote address too
2092 				 */
2093 				taa->REMADDR_length = sizeof (sin_t);
2094 				/* assumed 32-bit alignment */
2095 				taa->REMADDR_offset = taa->LOCADDR_offset +
2096 				    taa->LOCADDR_length;
2097 
2098 				sin = (sin_t *)(ackmp->b_rptr +
2099 				    taa->REMADDR_offset);
2100 				/* initialize */
2101 				*sin = sin_null;
2102 				sin->sin_family = AF_INET;
2103 				sin->sin_addr.s_addr =
2104 				    V4_PART_OF_V6(udp->udp_v6dst);
2105 				sin->sin_port = udp->udp_dstport;
2106 				ackmp->b_wptr = (uchar_t *)&sin[1];
2107 			}
2108 		} else {
2109 			taa->LOCADDR_length = sizeof (sin6_t);
2110 			sin6 = (sin6_t *)&taa[1];
2111 			/* Fill zeroes and then initialize non-zero fields */
2112 			*sin6 = sin6_null;
2113 			sin6->sin6_family = AF_INET6;
2114 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2115 				sin6->sin6_addr = udp->udp_v6src;
2116 			} else {
2117 				/*
2118 				 * UNSPECIFIED
2119 				 * udp_v6src is not set, we might be bound to
2120 				 * broadcast/multicast. Use udp_bound_v6src as
2121 				 * local address instead (that could
2122 				 * also still be UNSPECIFIED)
2123 				 */
2124 				sin6->sin6_addr =
2125 				    udp->udp_bound_v6src;
2126 			}
2127 			sin6->sin6_port = udp->udp_port;
2128 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2129 			if (udp->udp_state == TS_DATA_XFER) {
2130 				/*
2131 				 * connected, fill remote address too
2132 				 */
2133 				taa->REMADDR_length = sizeof (sin6_t);
2134 				/* assumed 32-bit alignment */
2135 				taa->REMADDR_offset = taa->LOCADDR_offset +
2136 				    taa->LOCADDR_length;
2137 
2138 				sin6 = (sin6_t *)(ackmp->b_rptr +
2139 				    taa->REMADDR_offset);
2140 				/* initialize */
2141 				*sin6 = sin6_null;
2142 				sin6->sin6_family = AF_INET6;
2143 				sin6->sin6_addr = udp->udp_v6dst;
2144 				sin6->sin6_port =  udp->udp_dstport;
2145 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2146 			}
2147 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2148 		}
2149 	}
2150 	rw_exit(&udp->udp_rwlock);
2151 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2152 	qreply(q, ackmp);
2153 }
2154 
2155 static void
2156 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2157 {
2158 	if (udp->udp_family == AF_INET) {
2159 		*tap = udp_g_t_info_ack_ipv4;
2160 	} else {
2161 		*tap = udp_g_t_info_ack_ipv6;
2162 	}
2163 	tap->CURRENT_state = udp->udp_state;
2164 	tap->OPT_size = udp_max_optsize;
2165 }
2166 
2167 /*
2168  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2169  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2170  * udp_g_t_info_ack.  The current state of the stream is copied from
2171  * udp_state.
2172  */
2173 static void
2174 udp_capability_req(queue_t *q, mblk_t *mp)
2175 {
2176 	t_uscalar_t		cap_bits1;
2177 	struct T_capability_ack	*tcap;
2178 	udp_t	*udp = Q_TO_UDP(q);
2179 
2180 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2181 
2182 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2183 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2184 	if (!mp)
2185 		return;
2186 
2187 	tcap = (struct T_capability_ack *)mp->b_rptr;
2188 	tcap->CAP_bits1 = 0;
2189 
2190 	if (cap_bits1 & TC1_INFO) {
2191 		udp_copy_info(&tcap->INFO_ack, udp);
2192 		tcap->CAP_bits1 |= TC1_INFO;
2193 	}
2194 
2195 	qreply(q, mp);
2196 }
2197 
2198 /*
2199  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2200  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2201  * The current state of the stream is copied from udp_state.
2202  */
2203 static void
2204 udp_info_req(queue_t *q, mblk_t *mp)
2205 {
2206 	udp_t *udp = Q_TO_UDP(q);
2207 
2208 	/* Create a T_INFO_ACK message. */
2209 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2210 	    T_INFO_ACK);
2211 	if (!mp)
2212 		return;
2213 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2214 	qreply(q, mp);
2215 }
2216 
2217 /*
2218  * IP recognizes seven kinds of bind requests:
2219  *
2220  * - A zero-length address binds only to the protocol number.
2221  *
2222  * - A 4-byte address is treated as a request to
2223  * validate that the address is a valid local IPv4
2224  * address, appropriate for an application to bind to.
2225  * IP does the verification, but does not make any note
2226  * of the address at this time.
2227  *
2228  * - A 16-byte address contains is treated as a request
2229  * to validate a local IPv6 address, as the 4-byte
2230  * address case above.
2231  *
2232  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2233  * use it for the inbound fanout of packets.
2234  *
2235  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2236  * use it for the inbound fanout of packets.
2237  *
2238  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2239  * information consisting of local and remote addresses
2240  * and ports.  In this case, the addresses are both
2241  * validated as appropriate for this operation, and, if
2242  * so, the information is retained for use in the
2243  * inbound fanout.
2244  *
2245  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2246  * fanout information, like the 12-byte case above.
2247  *
2248  * IP will also fill in the IRE request mblk with information
2249  * regarding our peer.  In all cases, we notify IP of our protocol
2250  * type by appending a single protocol byte to the bind request.
2251  */
2252 static mblk_t *
2253 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2254 {
2255 	char	*cp;
2256 	mblk_t	*mp;
2257 	struct T_bind_req *tbr;
2258 	ipa_conn_t	*ac;
2259 	ipa6_conn_t	*ac6;
2260 	sin_t		*sin;
2261 	sin6_t		*sin6;
2262 
2263 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2264 	ASSERT(RW_LOCK_HELD(&udp->udp_rwlock));
2265 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2266 	if (!mp)
2267 		return (mp);
2268 	mp->b_datap->db_type = M_PROTO;
2269 	tbr = (struct T_bind_req *)mp->b_rptr;
2270 	tbr->PRIM_type = bind_prim;
2271 	tbr->ADDR_offset = sizeof (*tbr);
2272 	tbr->CONIND_number = 0;
2273 	tbr->ADDR_length = addr_length;
2274 	cp = (char *)&tbr[1];
2275 	switch (addr_length) {
2276 	case sizeof (ipa_conn_t):
2277 		ASSERT(udp->udp_family == AF_INET);
2278 		/* Append a request for an IRE */
2279 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2280 		if (!mp->b_cont) {
2281 			freemsg(mp);
2282 			return (NULL);
2283 		}
2284 		mp->b_cont->b_wptr += sizeof (ire_t);
2285 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2286 
2287 		/* cp known to be 32 bit aligned */
2288 		ac = (ipa_conn_t *)cp;
2289 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2290 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2291 		ac->ac_fport = udp->udp_dstport;
2292 		ac->ac_lport = udp->udp_port;
2293 		break;
2294 
2295 	case sizeof (ipa6_conn_t):
2296 		ASSERT(udp->udp_family == AF_INET6);
2297 		/* Append a request for an IRE */
2298 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2299 		if (!mp->b_cont) {
2300 			freemsg(mp);
2301 			return (NULL);
2302 		}
2303 		mp->b_cont->b_wptr += sizeof (ire_t);
2304 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2305 
2306 		/* cp known to be 32 bit aligned */
2307 		ac6 = (ipa6_conn_t *)cp;
2308 		ac6->ac6_laddr = udp->udp_v6src;
2309 		ac6->ac6_faddr = udp->udp_v6dst;
2310 		ac6->ac6_fport = udp->udp_dstport;
2311 		ac6->ac6_lport = udp->udp_port;
2312 		break;
2313 
2314 	case sizeof (sin_t):
2315 		ASSERT(udp->udp_family == AF_INET);
2316 		/* Append a request for an IRE */
2317 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2318 		if (!mp->b_cont) {
2319 			freemsg(mp);
2320 			return (NULL);
2321 		}
2322 		mp->b_cont->b_wptr += sizeof (ire_t);
2323 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2324 
2325 		sin = (sin_t *)cp;
2326 		*sin = sin_null;
2327 		sin->sin_family = AF_INET;
2328 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2329 		sin->sin_port = udp->udp_port;
2330 		break;
2331 
2332 	case sizeof (sin6_t):
2333 		ASSERT(udp->udp_family == AF_INET6);
2334 		/* Append a request for an IRE */
2335 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2336 		if (!mp->b_cont) {
2337 			freemsg(mp);
2338 			return (NULL);
2339 		}
2340 		mp->b_cont->b_wptr += sizeof (ire_t);
2341 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2342 
2343 		sin6 = (sin6_t *)cp;
2344 		*sin6 = sin6_null;
2345 		sin6->sin6_family = AF_INET6;
2346 		sin6->sin6_addr = udp->udp_bound_v6src;
2347 		sin6->sin6_port = udp->udp_port;
2348 		break;
2349 	}
2350 	/* Add protocol number to end */
2351 	cp[addr_length] = (char)IPPROTO_UDP;
2352 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2353 	return (mp);
2354 }
2355 
2356 /* For /dev/udp aka AF_INET open */
2357 static int
2358 udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2359 {
2360 	return (udp_open(q, devp, flag, sflag, credp, B_FALSE));
2361 }
2362 
2363 /* For /dev/udp6 aka AF_INET6 open */
2364 static int
2365 udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2366 {
2367 	return (udp_open(q, devp, flag, sflag, credp, B_TRUE));
2368 }
2369 
2370 /*
2371  * This is the open routine for udp.  It allocates a udp_t structure for
2372  * the stream and, on the first open of the module, creates an ND table.
2373  */
2374 /*ARGSUSED2*/
2375 static int
2376 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2377     boolean_t isv6)
2378 {
2379 	int		err;
2380 	udp_t		*udp;
2381 	conn_t		*connp;
2382 	dev_t		conn_dev;
2383 	zoneid_t	zoneid;
2384 	netstack_t	*ns;
2385 	udp_stack_t	*us;
2386 	vmem_t		*minor_arena;
2387 
2388 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2389 
2390 	/* If the stream is already open, return immediately. */
2391 	if (q->q_ptr != NULL)
2392 		return (0);
2393 
2394 	if (sflag == MODOPEN)
2395 		return (EINVAL);
2396 
2397 	ns = netstack_find_by_cred(credp);
2398 	ASSERT(ns != NULL);
2399 	us = ns->netstack_udp;
2400 	ASSERT(us != NULL);
2401 
2402 	/*
2403 	 * For exclusive stacks we set the zoneid to zero
2404 	 * to make UDP operate as if in the global zone.
2405 	 */
2406 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
2407 		zoneid = GLOBAL_ZONEID;
2408 	else
2409 		zoneid = crgetzoneid(credp);
2410 
2411 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2412 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2413 		minor_arena = ip_minor_arena_la;
2414 	} else {
2415 		/*
2416 		 * Either minor numbers in the large arena were exhausted
2417 		 * or a non socket application is doing the open.
2418 		 * Try to allocate from the small arena.
2419 		 */
2420 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2421 			netstack_rele(ns);
2422 			return (EBUSY);
2423 		}
2424 		minor_arena = ip_minor_arena_sa;
2425 	}
2426 
2427 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
2428 
2429 	connp = ipcl_conn_create(IPCL_UDPCONN, KM_SLEEP, ns);
2430 	connp->conn_dev = conn_dev;
2431 	connp->conn_minor_arena = minor_arena;
2432 	udp = connp->conn_udp;
2433 
2434 	/*
2435 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
2436 	 * done by netstack_find_by_cred()
2437 	 */
2438 	netstack_rele(ns);
2439 
2440 	/*
2441 	 * Initialize the udp_t structure for this stream.
2442 	 */
2443 	q->q_ptr = connp;
2444 	WR(q)->q_ptr = connp;
2445 	connp->conn_rq = q;
2446 	connp->conn_wq = WR(q);
2447 
2448 	rw_enter(&udp->udp_rwlock, RW_WRITER);
2449 	ASSERT(connp->conn_ulp == IPPROTO_UDP);
2450 	ASSERT(connp->conn_udp == udp);
2451 	ASSERT(udp->udp_connp == connp);
2452 
2453 	/* Set the initial state of the stream and the privilege status. */
2454 	udp->udp_state = TS_UNBND;
2455 	if (isv6) {
2456 		udp->udp_family = AF_INET6;
2457 		udp->udp_ipversion = IPV6_VERSION;
2458 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2459 		udp->udp_ttl = us->us_ipv6_hoplimit;
2460 		connp->conn_af_isv6 = B_TRUE;
2461 		connp->conn_flags |= IPCL_ISV6;
2462 	} else {
2463 		udp->udp_family = AF_INET;
2464 		udp->udp_ipversion = IPV4_VERSION;
2465 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2466 		udp->udp_ttl = us->us_ipv4_ttl;
2467 		connp->conn_af_isv6 = B_FALSE;
2468 		connp->conn_flags &= ~IPCL_ISV6;
2469 	}
2470 
2471 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2472 	udp->udp_pending_op = -1;
2473 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2474 	connp->conn_zoneid = zoneid;
2475 
2476 	udp->udp_open_time = lbolt64;
2477 	udp->udp_open_pid = curproc->p_pid;
2478 
2479 	/*
2480 	 * If the caller has the process-wide flag set, then default to MAC
2481 	 * exempt mode.  This allows read-down to unlabeled hosts.
2482 	 */
2483 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2484 		udp->udp_mac_exempt = B_TRUE;
2485 
2486 	if (flag & SO_SOCKSTR) {
2487 		connp->conn_flags |= IPCL_SOCKET;
2488 		udp->udp_issocket = B_TRUE;
2489 		udp->udp_direct_sockfs = B_TRUE;
2490 	}
2491 
2492 	connp->conn_ulp_labeled = is_system_labeled();
2493 
2494 	udp->udp_us = us;
2495 
2496 	q->q_hiwat = us->us_recv_hiwat;
2497 	WR(q)->q_hiwat = us->us_xmit_hiwat;
2498 	WR(q)->q_lowat = us->us_xmit_lowat;
2499 
2500 	connp->conn_recv = udp_input;
2501 	crhold(credp);
2502 	connp->conn_cred = credp;
2503 
2504 	mutex_enter(&connp->conn_lock);
2505 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2506 	mutex_exit(&connp->conn_lock);
2507 
2508 	qprocson(q);
2509 
2510 	if (udp->udp_family == AF_INET6) {
2511 		/* Build initial header template for transmit */
2512 		if ((err = udp_build_hdrs(udp)) != 0) {
2513 			rw_exit(&udp->udp_rwlock);
2514 			qprocsoff(q);
2515 			ipcl_conn_destroy(connp);
2516 			return (err);
2517 		}
2518 	}
2519 	rw_exit(&udp->udp_rwlock);
2520 
2521 	/* Set the Stream head write offset and high watermark. */
2522 	(void) mi_set_sth_wroff(q,
2523 	    udp->udp_max_hdr_len + us->us_wroff_extra);
2524 	(void) mi_set_sth_hiwat(q, udp_set_rcv_hiwat(udp, q->q_hiwat));
2525 
2526 	return (0);
2527 }
2528 
2529 /*
2530  * Which UDP options OK to set through T_UNITDATA_REQ...
2531  */
2532 /* ARGSUSED */
2533 static boolean_t
2534 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
2535 {
2536 	return (B_TRUE);
2537 }
2538 
2539 /*
2540  * This routine gets default values of certain options whose default
2541  * values are maintained by protcol specific code
2542  */
2543 /* ARGSUSED */
2544 int
2545 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2546 {
2547 	udp_t		*udp = Q_TO_UDP(q);
2548 	udp_stack_t *us = udp->udp_us;
2549 	int *i1 = (int *)ptr;
2550 
2551 	switch (level) {
2552 	case IPPROTO_IP:
2553 		switch (name) {
2554 		case IP_MULTICAST_TTL:
2555 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
2556 			return (sizeof (uchar_t));
2557 		case IP_MULTICAST_LOOP:
2558 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
2559 			return (sizeof (uchar_t));
2560 		}
2561 		break;
2562 	case IPPROTO_IPV6:
2563 		switch (name) {
2564 		case IPV6_MULTICAST_HOPS:
2565 			*i1 = IP_DEFAULT_MULTICAST_TTL;
2566 			return (sizeof (int));
2567 		case IPV6_MULTICAST_LOOP:
2568 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
2569 			return (sizeof (int));
2570 		case IPV6_UNICAST_HOPS:
2571 			*i1 = us->us_ipv6_hoplimit;
2572 			return (sizeof (int));
2573 		}
2574 		break;
2575 	}
2576 	return (-1);
2577 }
2578 
2579 /*
2580  * This routine retrieves the current status of socket options.
2581  * It returns the size of the option retrieved.
2582  */
2583 int
2584 udp_opt_get_locked(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2585 {
2586 	int	*i1 = (int *)ptr;
2587 	conn_t	*connp;
2588 	udp_t	*udp;
2589 	ip6_pkt_t *ipp;
2590 	int	len;
2591 	udp_stack_t	*us;
2592 
2593 	connp = Q_TO_CONN(q);
2594 	udp = connp->conn_udp;
2595 	ipp = &udp->udp_sticky_ipp;
2596 	us = udp->udp_us;
2597 
2598 	switch (level) {
2599 	case SOL_SOCKET:
2600 		switch (name) {
2601 		case SO_DEBUG:
2602 			*i1 = udp->udp_debug;
2603 			break;	/* goto sizeof (int) option return */
2604 		case SO_REUSEADDR:
2605 			*i1 = udp->udp_reuseaddr;
2606 			break;	/* goto sizeof (int) option return */
2607 		case SO_TYPE:
2608 			*i1 = SOCK_DGRAM;
2609 			break;	/* goto sizeof (int) option return */
2610 
2611 		/*
2612 		 * The following three items are available here,
2613 		 * but are only meaningful to IP.
2614 		 */
2615 		case SO_DONTROUTE:
2616 			*i1 = udp->udp_dontroute;
2617 			break;	/* goto sizeof (int) option return */
2618 		case SO_USELOOPBACK:
2619 			*i1 = udp->udp_useloopback;
2620 			break;	/* goto sizeof (int) option return */
2621 		case SO_BROADCAST:
2622 			*i1 = udp->udp_broadcast;
2623 			break;	/* goto sizeof (int) option return */
2624 
2625 		case SO_SNDBUF:
2626 			*i1 = q->q_hiwat;
2627 			break;	/* goto sizeof (int) option return */
2628 		case SO_RCVBUF:
2629 			*i1 = RD(q)->q_hiwat;
2630 			break;	/* goto sizeof (int) option return */
2631 		case SO_DGRAM_ERRIND:
2632 			*i1 = udp->udp_dgram_errind;
2633 			break;	/* goto sizeof (int) option return */
2634 		case SO_RECVUCRED:
2635 			*i1 = udp->udp_recvucred;
2636 			break;	/* goto sizeof (int) option return */
2637 		case SO_TIMESTAMP:
2638 			*i1 = udp->udp_timestamp;
2639 			break;	/* goto sizeof (int) option return */
2640 		case SO_ANON_MLP:
2641 			*i1 = udp->udp_anon_mlp;
2642 			break;	/* goto sizeof (int) option return */
2643 		case SO_MAC_EXEMPT:
2644 			*i1 = udp->udp_mac_exempt;
2645 			break;	/* goto sizeof (int) option return */
2646 		case SO_ALLZONES:
2647 			*i1 = connp->conn_allzones;
2648 			break;	/* goto sizeof (int) option return */
2649 		case SO_EXCLBIND:
2650 			*i1 = udp->udp_exclbind ? SO_EXCLBIND : 0;
2651 			break;
2652 		case SO_PROTOTYPE:
2653 			*i1 = IPPROTO_UDP;
2654 			break;
2655 		case SO_DOMAIN:
2656 			*i1 = udp->udp_family;
2657 			break;
2658 		default:
2659 			return (-1);
2660 		}
2661 		break;
2662 	case IPPROTO_IP:
2663 		if (udp->udp_family != AF_INET)
2664 			return (-1);
2665 		switch (name) {
2666 		case IP_OPTIONS:
2667 		case T_IP_OPTIONS:
2668 			len = udp->udp_ip_rcv_options_len - udp->udp_label_len;
2669 			if (len > 0) {
2670 				bcopy(udp->udp_ip_rcv_options +
2671 				    udp->udp_label_len, ptr, len);
2672 			}
2673 			return (len);
2674 		case IP_TOS:
2675 		case T_IP_TOS:
2676 			*i1 = (int)udp->udp_type_of_service;
2677 			break;	/* goto sizeof (int) option return */
2678 		case IP_TTL:
2679 			*i1 = (int)udp->udp_ttl;
2680 			break;	/* goto sizeof (int) option return */
2681 		case IP_DHCPINIT_IF:
2682 			return (-EINVAL);
2683 		case IP_NEXTHOP:
2684 		case IP_RECVPKTINFO:
2685 			/*
2686 			 * This also handles IP_PKTINFO.
2687 			 * IP_PKTINFO and IP_RECVPKTINFO have the same value.
2688 			 * Differentiation is based on the size of the argument
2689 			 * passed in.
2690 			 * This option is handled in IP which will return an
2691 			 * error for IP_PKTINFO as it's not supported as a
2692 			 * sticky option.
2693 			 */
2694 			return (-EINVAL);
2695 		case IP_MULTICAST_IF:
2696 			/* 0 address if not set */
2697 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
2698 			return (sizeof (ipaddr_t));
2699 		case IP_MULTICAST_TTL:
2700 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
2701 			return (sizeof (uchar_t));
2702 		case IP_MULTICAST_LOOP:
2703 			*ptr = connp->conn_multicast_loop;
2704 			return (sizeof (uint8_t));
2705 		case IP_RECVOPTS:
2706 			*i1 = udp->udp_recvopts;
2707 			break;	/* goto sizeof (int) option return */
2708 		case IP_RECVDSTADDR:
2709 			*i1 = udp->udp_recvdstaddr;
2710 			break;	/* goto sizeof (int) option return */
2711 		case IP_RECVIF:
2712 			*i1 = udp->udp_recvif;
2713 			break;	/* goto sizeof (int) option return */
2714 		case IP_RECVSLLA:
2715 			*i1 = udp->udp_recvslla;
2716 			break;	/* goto sizeof (int) option return */
2717 		case IP_RECVTTL:
2718 			*i1 = udp->udp_recvttl;
2719 			break;	/* goto sizeof (int) option return */
2720 		case IP_ADD_MEMBERSHIP:
2721 		case IP_DROP_MEMBERSHIP:
2722 		case IP_BLOCK_SOURCE:
2723 		case IP_UNBLOCK_SOURCE:
2724 		case IP_ADD_SOURCE_MEMBERSHIP:
2725 		case IP_DROP_SOURCE_MEMBERSHIP:
2726 		case MCAST_JOIN_GROUP:
2727 		case MCAST_LEAVE_GROUP:
2728 		case MCAST_BLOCK_SOURCE:
2729 		case MCAST_UNBLOCK_SOURCE:
2730 		case MCAST_JOIN_SOURCE_GROUP:
2731 		case MCAST_LEAVE_SOURCE_GROUP:
2732 		case IP_DONTFAILOVER_IF:
2733 			/* cannot "get" the value for these */
2734 			return (-1);
2735 		case IP_BOUND_IF:
2736 			/* Zero if not set */
2737 			*i1 = udp->udp_bound_if;
2738 			break;	/* goto sizeof (int) option return */
2739 		case IP_UNSPEC_SRC:
2740 			*i1 = udp->udp_unspec_source;
2741 			break;	/* goto sizeof (int) option return */
2742 		case IP_BROADCAST_TTL:
2743 			*(uchar_t *)ptr = connp->conn_broadcast_ttl;
2744 			return (sizeof (uchar_t));
2745 		default:
2746 			return (-1);
2747 		}
2748 		break;
2749 	case IPPROTO_IPV6:
2750 		if (udp->udp_family != AF_INET6)
2751 			return (-1);
2752 		switch (name) {
2753 		case IPV6_UNICAST_HOPS:
2754 			*i1 = (unsigned int)udp->udp_ttl;
2755 			break;	/* goto sizeof (int) option return */
2756 		case IPV6_MULTICAST_IF:
2757 			/* 0 index if not set */
2758 			*i1 = udp->udp_multicast_if_index;
2759 			break;	/* goto sizeof (int) option return */
2760 		case IPV6_MULTICAST_HOPS:
2761 			*i1 = udp->udp_multicast_ttl;
2762 			break;	/* goto sizeof (int) option return */
2763 		case IPV6_MULTICAST_LOOP:
2764 			*i1 = connp->conn_multicast_loop;
2765 			break;	/* goto sizeof (int) option return */
2766 		case IPV6_JOIN_GROUP:
2767 		case IPV6_LEAVE_GROUP:
2768 		case MCAST_JOIN_GROUP:
2769 		case MCAST_LEAVE_GROUP:
2770 		case MCAST_BLOCK_SOURCE:
2771 		case MCAST_UNBLOCK_SOURCE:
2772 		case MCAST_JOIN_SOURCE_GROUP:
2773 		case MCAST_LEAVE_SOURCE_GROUP:
2774 			/* cannot "get" the value for these */
2775 			return (-1);
2776 		case IPV6_BOUND_IF:
2777 			/* Zero if not set */
2778 			*i1 = udp->udp_bound_if;
2779 			break;	/* goto sizeof (int) option return */
2780 		case IPV6_UNSPEC_SRC:
2781 			*i1 = udp->udp_unspec_source;
2782 			break;	/* goto sizeof (int) option return */
2783 		case IPV6_RECVPKTINFO:
2784 			*i1 = udp->udp_ip_recvpktinfo;
2785 			break;	/* goto sizeof (int) option return */
2786 		case IPV6_RECVTCLASS:
2787 			*i1 = udp->udp_ipv6_recvtclass;
2788 			break;	/* goto sizeof (int) option return */
2789 		case IPV6_RECVPATHMTU:
2790 			*i1 = udp->udp_ipv6_recvpathmtu;
2791 			break;	/* goto sizeof (int) option return */
2792 		case IPV6_RECVHOPLIMIT:
2793 			*i1 = udp->udp_ipv6_recvhoplimit;
2794 			break;	/* goto sizeof (int) option return */
2795 		case IPV6_RECVHOPOPTS:
2796 			*i1 = udp->udp_ipv6_recvhopopts;
2797 			break;	/* goto sizeof (int) option return */
2798 		case IPV6_RECVDSTOPTS:
2799 			*i1 = udp->udp_ipv6_recvdstopts;
2800 			break;	/* goto sizeof (int) option return */
2801 		case _OLD_IPV6_RECVDSTOPTS:
2802 			*i1 = udp->udp_old_ipv6_recvdstopts;
2803 			break;	/* goto sizeof (int) option return */
2804 		case IPV6_RECVRTHDRDSTOPTS:
2805 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
2806 			break;	/* goto sizeof (int) option return */
2807 		case IPV6_RECVRTHDR:
2808 			*i1 = udp->udp_ipv6_recvrthdr;
2809 			break;	/* goto sizeof (int) option return */
2810 		case IPV6_PKTINFO: {
2811 			/* XXX assumes that caller has room for max size! */
2812 			struct in6_pktinfo *pkti;
2813 
2814 			pkti = (struct in6_pktinfo *)ptr;
2815 			if (ipp->ipp_fields & IPPF_IFINDEX)
2816 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
2817 			else
2818 				pkti->ipi6_ifindex = 0;
2819 			if (ipp->ipp_fields & IPPF_ADDR)
2820 				pkti->ipi6_addr = ipp->ipp_addr;
2821 			else
2822 				pkti->ipi6_addr = ipv6_all_zeros;
2823 			return (sizeof (struct in6_pktinfo));
2824 		}
2825 		case IPV6_TCLASS:
2826 			if (ipp->ipp_fields & IPPF_TCLASS)
2827 				*i1 = ipp->ipp_tclass;
2828 			else
2829 				*i1 = IPV6_FLOW_TCLASS(
2830 				    IPV6_DEFAULT_VERS_AND_FLOW);
2831 			break;	/* goto sizeof (int) option return */
2832 		case IPV6_NEXTHOP: {
2833 			sin6_t *sin6 = (sin6_t *)ptr;
2834 
2835 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
2836 				return (0);
2837 			*sin6 = sin6_null;
2838 			sin6->sin6_family = AF_INET6;
2839 			sin6->sin6_addr = ipp->ipp_nexthop;
2840 			return (sizeof (sin6_t));
2841 		}
2842 		case IPV6_HOPOPTS:
2843 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
2844 				return (0);
2845 			if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6)
2846 				return (0);
2847 			/*
2848 			 * The cipso/label option is added by kernel.
2849 			 * User is not usually aware of this option.
2850 			 * We copy out the hbh opt after the label option.
2851 			 */
2852 			bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6,
2853 			    ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6);
2854 			if (udp->udp_label_len_v6 > 0) {
2855 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
2856 				ptr[1] = (ipp->ipp_hopoptslen -
2857 				    udp->udp_label_len_v6 + 7) / 8 - 1;
2858 			}
2859 			return (ipp->ipp_hopoptslen - udp->udp_label_len_v6);
2860 		case IPV6_RTHDRDSTOPTS:
2861 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
2862 				return (0);
2863 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
2864 			return (ipp->ipp_rtdstoptslen);
2865 		case IPV6_RTHDR:
2866 			if (!(ipp->ipp_fields & IPPF_RTHDR))
2867 				return (0);
2868 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
2869 			return (ipp->ipp_rthdrlen);
2870 		case IPV6_DSTOPTS:
2871 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
2872 				return (0);
2873 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
2874 			return (ipp->ipp_dstoptslen);
2875 		case IPV6_PATHMTU:
2876 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
2877 			    udp->udp_dstport, (struct ip6_mtuinfo *)ptr,
2878 			    us->us_netstack));
2879 		default:
2880 			return (-1);
2881 		}
2882 		break;
2883 	case IPPROTO_UDP:
2884 		switch (name) {
2885 		case UDP_ANONPRIVBIND:
2886 			*i1 = udp->udp_anon_priv_bind;
2887 			break;
2888 		case UDP_EXCLBIND:
2889 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
2890 			break;
2891 		case UDP_RCVHDR:
2892 			*i1 = udp->udp_rcvhdr ? 1 : 0;
2893 			break;
2894 		case UDP_NAT_T_ENDPOINT:
2895 			*i1 = udp->udp_nat_t_endpoint;
2896 			break;
2897 		default:
2898 			return (-1);
2899 		}
2900 		break;
2901 	default:
2902 		return (-1);
2903 	}
2904 	return (sizeof (int));
2905 }
2906 
2907 int
2908 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2909 {
2910 	udp_t	*udp;
2911 	int	err;
2912 
2913 	udp = Q_TO_UDP(q);
2914 
2915 	rw_enter(&udp->udp_rwlock, RW_READER);
2916 	err = udp_opt_get_locked(q, level, name, ptr);
2917 	rw_exit(&udp->udp_rwlock);
2918 	return (err);
2919 }
2920 
2921 /*
2922  * This routine sets socket options.
2923  */
2924 /* ARGSUSED */
2925 int
2926 udp_opt_set_locked(queue_t *q, uint_t optset_context, int level,
2927     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
2928     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
2929 {
2930 	udpattrs_t *attrs = thisdg_attrs;
2931 	int	*i1 = (int *)invalp;
2932 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
2933 	boolean_t checkonly;
2934 	int	error;
2935 	conn_t	*connp;
2936 	udp_t	*udp;
2937 	uint_t	newlen;
2938 	udp_stack_t *us;
2939 	size_t	sth_wroff;
2940 
2941 	connp = Q_TO_CONN(q);
2942 	udp = connp->conn_udp;
2943 	us = udp->udp_us;
2944 
2945 	switch (optset_context) {
2946 	case SETFN_OPTCOM_CHECKONLY:
2947 		checkonly = B_TRUE;
2948 		/*
2949 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
2950 		 * inlen != 0 implies value supplied and
2951 		 * 	we have to "pretend" to set it.
2952 		 * inlen == 0 implies that there is no
2953 		 * 	value part in T_CHECK request and just validation
2954 		 * done elsewhere should be enough, we just return here.
2955 		 */
2956 		if (inlen == 0) {
2957 			*outlenp = 0;
2958 			return (0);
2959 		}
2960 		break;
2961 	case SETFN_OPTCOM_NEGOTIATE:
2962 		checkonly = B_FALSE;
2963 		break;
2964 	case SETFN_UD_NEGOTIATE:
2965 	case SETFN_CONN_NEGOTIATE:
2966 		checkonly = B_FALSE;
2967 		/*
2968 		 * Negotiating local and "association-related" options
2969 		 * through T_UNITDATA_REQ.
2970 		 *
2971 		 * Following routine can filter out ones we do not
2972 		 * want to be "set" this way.
2973 		 */
2974 		if (!udp_opt_allow_udr_set(level, name)) {
2975 			*outlenp = 0;
2976 			return (EINVAL);
2977 		}
2978 		break;
2979 	default:
2980 		/*
2981 		 * We should never get here
2982 		 */
2983 		*outlenp = 0;
2984 		return (EINVAL);
2985 	}
2986 
2987 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
2988 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
2989 
2990 	/*
2991 	 * For fixed length options, no sanity check
2992 	 * of passed in length is done. It is assumed *_optcom_req()
2993 	 * routines do the right thing.
2994 	 */
2995 
2996 	switch (level) {
2997 	case SOL_SOCKET:
2998 		switch (name) {
2999 		case SO_REUSEADDR:
3000 			if (!checkonly)
3001 				udp->udp_reuseaddr = onoff;
3002 			break;
3003 		case SO_DEBUG:
3004 			if (!checkonly)
3005 				udp->udp_debug = onoff;
3006 			break;
3007 		/*
3008 		 * The following three items are available here,
3009 		 * but are only meaningful to IP.
3010 		 */
3011 		case SO_DONTROUTE:
3012 			if (!checkonly)
3013 				udp->udp_dontroute = onoff;
3014 			break;
3015 		case SO_USELOOPBACK:
3016 			if (!checkonly)
3017 				udp->udp_useloopback = onoff;
3018 			break;
3019 		case SO_BROADCAST:
3020 			if (!checkonly)
3021 				udp->udp_broadcast = onoff;
3022 			break;
3023 
3024 		case SO_SNDBUF:
3025 			if (*i1 > us->us_max_buf) {
3026 				*outlenp = 0;
3027 				return (ENOBUFS);
3028 			}
3029 			if (!checkonly) {
3030 				q->q_hiwat = *i1;
3031 			}
3032 			break;
3033 		case SO_RCVBUF:
3034 			if (*i1 > us->us_max_buf) {
3035 				*outlenp = 0;
3036 				return (ENOBUFS);
3037 			}
3038 			if (!checkonly) {
3039 				RD(q)->q_hiwat = *i1;
3040 				rw_exit(&udp->udp_rwlock);
3041 				(void) mi_set_sth_hiwat(RD(q),
3042 				    udp_set_rcv_hiwat(udp, *i1));
3043 				rw_enter(&udp->udp_rwlock, RW_WRITER);
3044 			}
3045 			break;
3046 		case SO_DGRAM_ERRIND:
3047 			if (!checkonly)
3048 				udp->udp_dgram_errind = onoff;
3049 			break;
3050 		case SO_RECVUCRED:
3051 			if (!checkonly)
3052 				udp->udp_recvucred = onoff;
3053 			break;
3054 		case SO_ALLZONES:
3055 			/*
3056 			 * "soft" error (negative)
3057 			 * option not handled at this level
3058 			 * Do not modify *outlenp.
3059 			 */
3060 			return (-EINVAL);
3061 		case SO_TIMESTAMP:
3062 			if (!checkonly)
3063 				udp->udp_timestamp = onoff;
3064 			break;
3065 		case SO_ANON_MLP:
3066 			if (!checkonly)
3067 				udp->udp_anon_mlp = onoff;
3068 			break;
3069 		case SO_MAC_EXEMPT:
3070 			if (secpolicy_net_mac_aware(cr) != 0 ||
3071 			    udp->udp_state != TS_UNBND)
3072 				return (EACCES);
3073 			if (!checkonly)
3074 				udp->udp_mac_exempt = onoff;
3075 			break;
3076 		case SCM_UCRED: {
3077 			struct ucred_s *ucr;
3078 			cred_t *cr, *newcr;
3079 			ts_label_t *tsl;
3080 
3081 			/*
3082 			 * Only sockets that have proper privileges and are
3083 			 * bound to MLPs will have any other value here, so
3084 			 * this implicitly tests for privilege to set label.
3085 			 */
3086 			if (connp->conn_mlp_type == mlptSingle)
3087 				break;
3088 			ucr = (struct ucred_s *)invalp;
3089 			if (inlen != ucredsize ||
3090 			    ucr->uc_labeloff < sizeof (*ucr) ||
3091 			    ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
3092 				return (EINVAL);
3093 			if (!checkonly) {
3094 				mblk_t *mb;
3095 
3096 				if (attrs == NULL ||
3097 				    (mb = attrs->udpattr_mb) == NULL)
3098 					return (EINVAL);
3099 				if ((cr = DB_CRED(mb)) == NULL)
3100 					cr = udp->udp_connp->conn_cred;
3101 				ASSERT(cr != NULL);
3102 				if ((tsl = crgetlabel(cr)) == NULL)
3103 					return (EINVAL);
3104 				newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
3105 				    tsl->tsl_doi, KM_NOSLEEP);
3106 				if (newcr == NULL)
3107 					return (ENOSR);
3108 				mblk_setcred(mb, newcr);
3109 				attrs->udpattr_credset = B_TRUE;
3110 				crfree(newcr);
3111 			}
3112 			break;
3113 		}
3114 		case SO_EXCLBIND:
3115 			if (!checkonly)
3116 				udp->udp_exclbind = onoff;
3117 			break;
3118 		default:
3119 			*outlenp = 0;
3120 			return (EINVAL);
3121 		}
3122 		break;
3123 	case IPPROTO_IP:
3124 		if (udp->udp_family != AF_INET) {
3125 			*outlenp = 0;
3126 			return (ENOPROTOOPT);
3127 		}
3128 		switch (name) {
3129 		case IP_OPTIONS:
3130 		case T_IP_OPTIONS:
3131 			/* Save options for use by IP. */
3132 			newlen = inlen + udp->udp_label_len;
3133 			if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) {
3134 				*outlenp = 0;
3135 				return (EINVAL);
3136 			}
3137 			if (checkonly)
3138 				break;
3139 
3140 			/*
3141 			 * Update the stored options taking into account
3142 			 * any CIPSO option which we should not overwrite.
3143 			 */
3144 			if (!tsol_option_set(&udp->udp_ip_snd_options,
3145 			    &udp->udp_ip_snd_options_len,
3146 			    udp->udp_label_len, invalp, inlen)) {
3147 				*outlenp = 0;
3148 				return (ENOMEM);
3149 			}
3150 
3151 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3152 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3153 			sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
3154 			rw_exit(&udp->udp_rwlock);
3155 			(void) mi_set_sth_wroff(RD(q), sth_wroff);
3156 			rw_enter(&udp->udp_rwlock, RW_WRITER);
3157 			break;
3158 
3159 		case IP_TTL:
3160 			if (!checkonly) {
3161 				udp->udp_ttl = (uchar_t)*i1;
3162 			}
3163 			break;
3164 		case IP_TOS:
3165 		case T_IP_TOS:
3166 			if (!checkonly) {
3167 				udp->udp_type_of_service = (uchar_t)*i1;
3168 			}
3169 			break;
3170 		case IP_MULTICAST_IF: {
3171 			/*
3172 			 * TODO should check OPTMGMT reply and undo this if
3173 			 * there is an error.
3174 			 */
3175 			struct in_addr *inap = (struct in_addr *)invalp;
3176 			if (!checkonly) {
3177 				udp->udp_multicast_if_addr =
3178 				    inap->s_addr;
3179 			}
3180 			break;
3181 		}
3182 		case IP_MULTICAST_TTL:
3183 			if (!checkonly)
3184 				udp->udp_multicast_ttl = *invalp;
3185 			break;
3186 		case IP_MULTICAST_LOOP:
3187 			if (!checkonly)
3188 				connp->conn_multicast_loop = *invalp;
3189 			break;
3190 		case IP_RECVOPTS:
3191 			if (!checkonly)
3192 				udp->udp_recvopts = onoff;
3193 			break;
3194 		case IP_RECVDSTADDR:
3195 			if (!checkonly)
3196 				udp->udp_recvdstaddr = onoff;
3197 			break;
3198 		case IP_RECVIF:
3199 			if (!checkonly)
3200 				udp->udp_recvif = onoff;
3201 			break;
3202 		case IP_RECVSLLA:
3203 			if (!checkonly)
3204 				udp->udp_recvslla = onoff;
3205 			break;
3206 		case IP_RECVTTL:
3207 			if (!checkonly)
3208 				udp->udp_recvttl = onoff;
3209 			break;
3210 		case IP_PKTINFO: {
3211 			/*
3212 			 * This also handles IP_RECVPKTINFO.
3213 			 * IP_PKTINFO and IP_RECVPKTINFO have same value.
3214 			 * Differentiation is based on the size of the
3215 			 * argument passed in.
3216 			 */
3217 			struct in_pktinfo *pktinfop;
3218 			ip4_pkt_t *attr_pktinfop;
3219 
3220 			if (checkonly)
3221 				break;
3222 
3223 			if (inlen == sizeof (int)) {
3224 				/*
3225 				 * This is IP_RECVPKTINFO option.
3226 				 * Keep a local copy of whether this option is
3227 				 * set or not and pass it down to IP for
3228 				 * processing.
3229 				 */
3230 
3231 				udp->udp_ip_recvpktinfo = onoff;
3232 				return (-EINVAL);
3233 			}
3234 
3235 			if (attrs == NULL ||
3236 			    (attr_pktinfop = attrs->udpattr_ipp4) == NULL) {
3237 				/*
3238 				 * sticky option or no buffer to return
3239 				 * the results.
3240 				 */
3241 				return (EINVAL);
3242 			}
3243 
3244 			if (inlen != sizeof (struct in_pktinfo))
3245 				return (EINVAL);
3246 
3247 			pktinfop = (struct in_pktinfo *)invalp;
3248 
3249 			/*
3250 			 * At least one of the values should be specified
3251 			 */
3252 			if (pktinfop->ipi_ifindex == 0 &&
3253 			    pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) {
3254 				return (EINVAL);
3255 			}
3256 
3257 			attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr;
3258 			attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex;
3259 
3260 			break;
3261 		}
3262 		case IP_ADD_MEMBERSHIP:
3263 		case IP_DROP_MEMBERSHIP:
3264 		case IP_BLOCK_SOURCE:
3265 		case IP_UNBLOCK_SOURCE:
3266 		case IP_ADD_SOURCE_MEMBERSHIP:
3267 		case IP_DROP_SOURCE_MEMBERSHIP:
3268 		case MCAST_JOIN_GROUP:
3269 		case MCAST_LEAVE_GROUP:
3270 		case MCAST_BLOCK_SOURCE:
3271 		case MCAST_UNBLOCK_SOURCE:
3272 		case MCAST_JOIN_SOURCE_GROUP:
3273 		case MCAST_LEAVE_SOURCE_GROUP:
3274 		case IP_SEC_OPT:
3275 		case IP_NEXTHOP:
3276 		case IP_DHCPINIT_IF:
3277 			/*
3278 			 * "soft" error (negative)
3279 			 * option not handled at this level
3280 			 * Do not modify *outlenp.
3281 			 */
3282 			return (-EINVAL);
3283 		case IP_BOUND_IF:
3284 			if (!checkonly)
3285 				udp->udp_bound_if = *i1;
3286 			break;
3287 		case IP_UNSPEC_SRC:
3288 			if (!checkonly)
3289 				udp->udp_unspec_source = onoff;
3290 			break;
3291 		case IP_BROADCAST_TTL:
3292 			if (!checkonly)
3293 				connp->conn_broadcast_ttl = *invalp;
3294 			break;
3295 		default:
3296 			*outlenp = 0;
3297 			return (EINVAL);
3298 		}
3299 		break;
3300 	case IPPROTO_IPV6: {
3301 		ip6_pkt_t		*ipp;
3302 		boolean_t		sticky;
3303 
3304 		if (udp->udp_family != AF_INET6) {
3305 			*outlenp = 0;
3306 			return (ENOPROTOOPT);
3307 		}
3308 		/*
3309 		 * Deal with both sticky options and ancillary data
3310 		 */
3311 		sticky = B_FALSE;
3312 		if (attrs == NULL || (ipp = attrs->udpattr_ipp6) ==
3313 		    NULL) {
3314 			/* sticky options, or none */
3315 			ipp = &udp->udp_sticky_ipp;
3316 			sticky = B_TRUE;
3317 		}
3318 
3319 		switch (name) {
3320 		case IPV6_MULTICAST_IF:
3321 			if (!checkonly)
3322 				udp->udp_multicast_if_index = *i1;
3323 			break;
3324 		case IPV6_UNICAST_HOPS:
3325 			/* -1 means use default */
3326 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3327 				*outlenp = 0;
3328 				return (EINVAL);
3329 			}
3330 			if (!checkonly) {
3331 				if (*i1 == -1) {
3332 					udp->udp_ttl = ipp->ipp_unicast_hops =
3333 					    us->us_ipv6_hoplimit;
3334 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3335 					/* Pass modified value to IP. */
3336 					*i1 = udp->udp_ttl;
3337 				} else {
3338 					udp->udp_ttl = ipp->ipp_unicast_hops =
3339 					    (uint8_t)*i1;
3340 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3341 				}
3342 				/* Rebuild the header template */
3343 				error = udp_build_hdrs(udp);
3344 				if (error != 0) {
3345 					*outlenp = 0;
3346 					return (error);
3347 				}
3348 			}
3349 			break;
3350 		case IPV6_MULTICAST_HOPS:
3351 			/* -1 means use default */
3352 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3353 				*outlenp = 0;
3354 				return (EINVAL);
3355 			}
3356 			if (!checkonly) {
3357 				if (*i1 == -1) {
3358 					udp->udp_multicast_ttl =
3359 					    ipp->ipp_multicast_hops =
3360 					    IP_DEFAULT_MULTICAST_TTL;
3361 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3362 					/* Pass modified value to IP. */
3363 					*i1 = udp->udp_multicast_ttl;
3364 				} else {
3365 					udp->udp_multicast_ttl =
3366 					    ipp->ipp_multicast_hops =
3367 					    (uint8_t)*i1;
3368 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3369 				}
3370 			}
3371 			break;
3372 		case IPV6_MULTICAST_LOOP:
3373 			if (*i1 != 0 && *i1 != 1) {
3374 				*outlenp = 0;
3375 				return (EINVAL);
3376 			}
3377 			if (!checkonly)
3378 				connp->conn_multicast_loop = *i1;
3379 			break;
3380 		case IPV6_JOIN_GROUP:
3381 		case IPV6_LEAVE_GROUP:
3382 		case MCAST_JOIN_GROUP:
3383 		case MCAST_LEAVE_GROUP:
3384 		case MCAST_BLOCK_SOURCE:
3385 		case MCAST_UNBLOCK_SOURCE:
3386 		case MCAST_JOIN_SOURCE_GROUP:
3387 		case MCAST_LEAVE_SOURCE_GROUP:
3388 			/*
3389 			 * "soft" error (negative)
3390 			 * option not handled at this level
3391 			 * Note: Do not modify *outlenp
3392 			 */
3393 			return (-EINVAL);
3394 		case IPV6_BOUND_IF:
3395 			if (!checkonly)
3396 				udp->udp_bound_if = *i1;
3397 			break;
3398 		case IPV6_UNSPEC_SRC:
3399 			if (!checkonly)
3400 				udp->udp_unspec_source = onoff;
3401 			break;
3402 		/*
3403 		 * Set boolean switches for ancillary data delivery
3404 		 */
3405 		case IPV6_RECVPKTINFO:
3406 			if (!checkonly)
3407 				udp->udp_ip_recvpktinfo = onoff;
3408 			break;
3409 		case IPV6_RECVTCLASS:
3410 			if (!checkonly) {
3411 				udp->udp_ipv6_recvtclass = onoff;
3412 			}
3413 			break;
3414 		case IPV6_RECVPATHMTU:
3415 			if (!checkonly) {
3416 				udp->udp_ipv6_recvpathmtu = onoff;
3417 			}
3418 			break;
3419 		case IPV6_RECVHOPLIMIT:
3420 			if (!checkonly)
3421 				udp->udp_ipv6_recvhoplimit = onoff;
3422 			break;
3423 		case IPV6_RECVHOPOPTS:
3424 			if (!checkonly)
3425 				udp->udp_ipv6_recvhopopts = onoff;
3426 			break;
3427 		case IPV6_RECVDSTOPTS:
3428 			if (!checkonly)
3429 				udp->udp_ipv6_recvdstopts = onoff;
3430 			break;
3431 		case _OLD_IPV6_RECVDSTOPTS:
3432 			if (!checkonly)
3433 				udp->udp_old_ipv6_recvdstopts = onoff;
3434 			break;
3435 		case IPV6_RECVRTHDRDSTOPTS:
3436 			if (!checkonly)
3437 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3438 			break;
3439 		case IPV6_RECVRTHDR:
3440 			if (!checkonly)
3441 				udp->udp_ipv6_recvrthdr = onoff;
3442 			break;
3443 		/*
3444 		 * Set sticky options or ancillary data.
3445 		 * If sticky options, (re)build any extension headers
3446 		 * that might be needed as a result.
3447 		 */
3448 		case IPV6_PKTINFO:
3449 			/*
3450 			 * The source address and ifindex are verified
3451 			 * in ip_opt_set(). For ancillary data the
3452 			 * source address is checked in ip_wput_v6.
3453 			 */
3454 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3455 				return (EINVAL);
3456 			if (checkonly)
3457 				break;
3458 
3459 			if (inlen == 0) {
3460 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3461 				ipp->ipp_sticky_ignored |=
3462 				    (IPPF_IFINDEX|IPPF_ADDR);
3463 			} else {
3464 				struct in6_pktinfo *pkti;
3465 
3466 				pkti = (struct in6_pktinfo *)invalp;
3467 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3468 				ipp->ipp_addr = pkti->ipi6_addr;
3469 				if (ipp->ipp_ifindex != 0)
3470 					ipp->ipp_fields |= IPPF_IFINDEX;
3471 				else
3472 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3473 				if (!IN6_IS_ADDR_UNSPECIFIED(
3474 				    &ipp->ipp_addr))
3475 					ipp->ipp_fields |= IPPF_ADDR;
3476 				else
3477 					ipp->ipp_fields &= ~IPPF_ADDR;
3478 			}
3479 			if (sticky) {
3480 				error = udp_build_hdrs(udp);
3481 				if (error != 0)
3482 					return (error);
3483 			}
3484 			break;
3485 		case IPV6_HOPLIMIT:
3486 			if (sticky)
3487 				return (EINVAL);
3488 			if (inlen != 0 && inlen != sizeof (int))
3489 				return (EINVAL);
3490 			if (checkonly)
3491 				break;
3492 
3493 			if (inlen == 0) {
3494 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3495 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3496 			} else {
3497 				if (*i1 > 255 || *i1 < -1)
3498 					return (EINVAL);
3499 				if (*i1 == -1)
3500 					ipp->ipp_hoplimit =
3501 					    us->us_ipv6_hoplimit;
3502 				else
3503 					ipp->ipp_hoplimit = *i1;
3504 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3505 			}
3506 			break;
3507 		case IPV6_TCLASS:
3508 			if (inlen != 0 && inlen != sizeof (int))
3509 				return (EINVAL);
3510 			if (checkonly)
3511 				break;
3512 
3513 			if (inlen == 0) {
3514 				ipp->ipp_fields &= ~IPPF_TCLASS;
3515 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3516 			} else {
3517 				if (*i1 > 255 || *i1 < -1)
3518 					return (EINVAL);
3519 				if (*i1 == -1)
3520 					ipp->ipp_tclass = 0;
3521 				else
3522 					ipp->ipp_tclass = *i1;
3523 				ipp->ipp_fields |= IPPF_TCLASS;
3524 			}
3525 			if (sticky) {
3526 				error = udp_build_hdrs(udp);
3527 				if (error != 0)
3528 					return (error);
3529 			}
3530 			break;
3531 		case IPV6_NEXTHOP:
3532 			/*
3533 			 * IP will verify that the nexthop is reachable
3534 			 * and fail for sticky options.
3535 			 */
3536 			if (inlen != 0 && inlen != sizeof (sin6_t))
3537 				return (EINVAL);
3538 			if (checkonly)
3539 				break;
3540 
3541 			if (inlen == 0) {
3542 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3543 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3544 			} else {
3545 				sin6_t *sin6 = (sin6_t *)invalp;
3546 
3547 				if (sin6->sin6_family != AF_INET6)
3548 					return (EAFNOSUPPORT);
3549 				if (IN6_IS_ADDR_V4MAPPED(
3550 				    &sin6->sin6_addr))
3551 					return (EADDRNOTAVAIL);
3552 				ipp->ipp_nexthop = sin6->sin6_addr;
3553 				if (!IN6_IS_ADDR_UNSPECIFIED(
3554 				    &ipp->ipp_nexthop))
3555 					ipp->ipp_fields |= IPPF_NEXTHOP;
3556 				else
3557 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3558 			}
3559 			if (sticky) {
3560 				error = udp_build_hdrs(udp);
3561 				if (error != 0)
3562 					return (error);
3563 			}
3564 			break;
3565 		case IPV6_HOPOPTS: {
3566 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
3567 			/*
3568 			 * Sanity checks - minimum size, size a multiple of
3569 			 * eight bytes, and matching size passed in.
3570 			 */
3571 			if (inlen != 0 &&
3572 			    inlen != (8 * (hopts->ip6h_len + 1)))
3573 				return (EINVAL);
3574 
3575 			if (checkonly)
3576 				break;
3577 
3578 			error = optcom_pkt_set(invalp, inlen, sticky,
3579 			    (uchar_t **)&ipp->ipp_hopopts,
3580 			    &ipp->ipp_hopoptslen,
3581 			    sticky ? udp->udp_label_len_v6 : 0);
3582 			if (error != 0)
3583 				return (error);
3584 			if (ipp->ipp_hopoptslen == 0) {
3585 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
3586 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
3587 			} else {
3588 				ipp->ipp_fields |= IPPF_HOPOPTS;
3589 			}
3590 			if (sticky) {
3591 				error = udp_build_hdrs(udp);
3592 				if (error != 0)
3593 					return (error);
3594 			}
3595 			break;
3596 		}
3597 		case IPV6_RTHDRDSTOPTS: {
3598 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3599 
3600 			/*
3601 			 * Sanity checks - minimum size, size a multiple of
3602 			 * eight bytes, and matching size passed in.
3603 			 */
3604 			if (inlen != 0 &&
3605 			    inlen != (8 * (dopts->ip6d_len + 1)))
3606 				return (EINVAL);
3607 
3608 			if (checkonly)
3609 				break;
3610 
3611 			if (inlen == 0) {
3612 				if (sticky &&
3613 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
3614 					kmem_free(ipp->ipp_rtdstopts,
3615 					    ipp->ipp_rtdstoptslen);
3616 					ipp->ipp_rtdstopts = NULL;
3617 					ipp->ipp_rtdstoptslen = 0;
3618 				}
3619 
3620 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
3621 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
3622 			} else {
3623 				error = optcom_pkt_set(invalp, inlen, sticky,
3624 				    (uchar_t **)&ipp->ipp_rtdstopts,
3625 				    &ipp->ipp_rtdstoptslen, 0);
3626 				if (error != 0)
3627 					return (error);
3628 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
3629 			}
3630 			if (sticky) {
3631 				error = udp_build_hdrs(udp);
3632 				if (error != 0)
3633 					return (error);
3634 			}
3635 			break;
3636 		}
3637 		case IPV6_DSTOPTS: {
3638 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3639 
3640 			/*
3641 			 * Sanity checks - minimum size, size a multiple of
3642 			 * eight bytes, and matching size passed in.
3643 			 */
3644 			if (inlen != 0 &&
3645 			    inlen != (8 * (dopts->ip6d_len + 1)))
3646 				return (EINVAL);
3647 
3648 			if (checkonly)
3649 				break;
3650 
3651 			if (inlen == 0) {
3652 				if (sticky &&
3653 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
3654 					kmem_free(ipp->ipp_dstopts,
3655 					    ipp->ipp_dstoptslen);
3656 					ipp->ipp_dstopts = NULL;
3657 					ipp->ipp_dstoptslen = 0;
3658 				}
3659 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
3660 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
3661 			} else {
3662 				error = optcom_pkt_set(invalp, inlen, sticky,
3663 				    (uchar_t **)&ipp->ipp_dstopts,
3664 				    &ipp->ipp_dstoptslen, 0);
3665 				if (error != 0)
3666 					return (error);
3667 				ipp->ipp_fields |= IPPF_DSTOPTS;
3668 			}
3669 			if (sticky) {
3670 				error = udp_build_hdrs(udp);
3671 				if (error != 0)
3672 					return (error);
3673 			}
3674 			break;
3675 		}
3676 		case IPV6_RTHDR: {
3677 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
3678 
3679 			/*
3680 			 * Sanity checks - minimum size, size a multiple of
3681 			 * eight bytes, and matching size passed in.
3682 			 */
3683 			if (inlen != 0 &&
3684 			    inlen != (8 * (rt->ip6r_len + 1)))
3685 				return (EINVAL);
3686 
3687 			if (checkonly)
3688 				break;
3689 
3690 			if (inlen == 0) {
3691 				if (sticky &&
3692 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
3693 					kmem_free(ipp->ipp_rthdr,
3694 					    ipp->ipp_rthdrlen);
3695 					ipp->ipp_rthdr = NULL;
3696 					ipp->ipp_rthdrlen = 0;
3697 				}
3698 				ipp->ipp_fields &= ~IPPF_RTHDR;
3699 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
3700 			} else {
3701 				error = optcom_pkt_set(invalp, inlen, sticky,
3702 				    (uchar_t **)&ipp->ipp_rthdr,
3703 				    &ipp->ipp_rthdrlen, 0);
3704 				if (error != 0)
3705 					return (error);
3706 				ipp->ipp_fields |= IPPF_RTHDR;
3707 			}
3708 			if (sticky) {
3709 				error = udp_build_hdrs(udp);
3710 				if (error != 0)
3711 					return (error);
3712 			}
3713 			break;
3714 		}
3715 
3716 		case IPV6_DONTFRAG:
3717 			if (checkonly)
3718 				break;
3719 
3720 			if (onoff) {
3721 				ipp->ipp_fields |= IPPF_DONTFRAG;
3722 			} else {
3723 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
3724 			}
3725 			break;
3726 
3727 		case IPV6_USE_MIN_MTU:
3728 			if (inlen != sizeof (int))
3729 				return (EINVAL);
3730 
3731 			if (*i1 < -1 || *i1 > 1)
3732 				return (EINVAL);
3733 
3734 			if (checkonly)
3735 				break;
3736 
3737 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
3738 			ipp->ipp_use_min_mtu = *i1;
3739 			break;
3740 
3741 		case IPV6_BOUND_PIF:
3742 		case IPV6_SEC_OPT:
3743 		case IPV6_DONTFAILOVER_IF:
3744 		case IPV6_SRC_PREFERENCES:
3745 		case IPV6_V6ONLY:
3746 			/* Handled at the IP level */
3747 			return (-EINVAL);
3748 		default:
3749 			*outlenp = 0;
3750 			return (EINVAL);
3751 		}
3752 		break;
3753 		}		/* end IPPROTO_IPV6 */
3754 	case IPPROTO_UDP:
3755 		switch (name) {
3756 		case UDP_ANONPRIVBIND:
3757 			if ((error = secpolicy_net_privaddr(cr, 0)) != 0) {
3758 				*outlenp = 0;
3759 				return (error);
3760 			}
3761 			if (!checkonly) {
3762 				udp->udp_anon_priv_bind = onoff;
3763 			}
3764 			break;
3765 		case UDP_EXCLBIND:
3766 			if (!checkonly)
3767 				udp->udp_exclbind = onoff;
3768 			break;
3769 		case UDP_RCVHDR:
3770 			if (!checkonly)
3771 				udp->udp_rcvhdr = onoff;
3772 			break;
3773 		case UDP_NAT_T_ENDPOINT:
3774 			if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) {
3775 				*outlenp = 0;
3776 				return (error);
3777 			}
3778 
3779 			/*
3780 			 * Use udp_family instead so we can avoid ambiguitites
3781 			 * with AF_INET6 sockets that may switch from IPv4
3782 			 * to IPv6.
3783 			 */
3784 			if (udp->udp_family != AF_INET) {
3785 				*outlenp = 0;
3786 				return (EAFNOSUPPORT);
3787 			}
3788 
3789 			if (!checkonly) {
3790 				udp->udp_nat_t_endpoint = onoff;
3791 
3792 				udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3793 				    UDPH_SIZE + udp->udp_ip_snd_options_len;
3794 
3795 				/* Also, adjust wroff */
3796 				if (onoff) {
3797 					udp->udp_max_hdr_len +=
3798 					    sizeof (uint32_t);
3799 				}
3800 				(void) mi_set_sth_wroff(RD(q),
3801 				    udp->udp_max_hdr_len + us->us_wroff_extra);
3802 			}
3803 			break;
3804 		default:
3805 			*outlenp = 0;
3806 			return (EINVAL);
3807 		}
3808 		break;
3809 	default:
3810 		*outlenp = 0;
3811 		return (EINVAL);
3812 	}
3813 	/*
3814 	 * Common case of OK return with outval same as inval.
3815 	 */
3816 	if (invalp != outvalp) {
3817 		/* don't trust bcopy for identical src/dst */
3818 		(void) bcopy(invalp, outvalp, inlen);
3819 	}
3820 	*outlenp = inlen;
3821 	return (0);
3822 }
3823 
3824 int
3825 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3826     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3827     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3828 {
3829 	udp_t	*udp;
3830 	int	err;
3831 
3832 	udp = Q_TO_UDP(q);
3833 
3834 	rw_enter(&udp->udp_rwlock, RW_WRITER);
3835 	err = udp_opt_set_locked(q, optset_context, level, name, inlen, invalp,
3836 	    outlenp, outvalp, thisdg_attrs, cr, mblk);
3837 	rw_exit(&udp->udp_rwlock);
3838 	return (err);
3839 }
3840 
3841 /*
3842  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
3843  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
3844  * headers, and the udp header.
3845  * Returns failure if can't allocate memory.
3846  */
3847 static int
3848 udp_build_hdrs(udp_t *udp)
3849 {
3850 	udp_stack_t *us = udp->udp_us;
3851 	uchar_t	*hdrs;
3852 	uint_t	hdrs_len;
3853 	ip6_t	*ip6h;
3854 	ip6i_t	*ip6i;
3855 	udpha_t	*udpha;
3856 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
3857 	size_t	sth_wroff;
3858 
3859 	ASSERT(RW_WRITE_HELD(&udp->udp_rwlock));
3860 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
3861 	ASSERT(hdrs_len != 0);
3862 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
3863 		/* Need to reallocate */
3864 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
3865 		if (hdrs == NULL)
3866 			return (ENOMEM);
3867 
3868 		if (udp->udp_sticky_hdrs_len != 0) {
3869 			kmem_free(udp->udp_sticky_hdrs,
3870 			    udp->udp_sticky_hdrs_len);
3871 		}
3872 		udp->udp_sticky_hdrs = hdrs;
3873 		udp->udp_sticky_hdrs_len = hdrs_len;
3874 	}
3875 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
3876 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
3877 
3878 	/* Set header fields not in ipp */
3879 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
3880 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
3881 		ip6h = (ip6_t *)&ip6i[1];
3882 	} else {
3883 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
3884 	}
3885 
3886 	if (!(ipp->ipp_fields & IPPF_ADDR))
3887 		ip6h->ip6_src = udp->udp_v6src;
3888 
3889 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
3890 	udpha->uha_src_port = udp->udp_port;
3891 
3892 	/* Try to get everything in a single mblk */
3893 	if (hdrs_len > udp->udp_max_hdr_len) {
3894 		udp->udp_max_hdr_len = hdrs_len;
3895 		sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
3896 		rw_exit(&udp->udp_rwlock);
3897 		(void) mi_set_sth_wroff(udp->udp_connp->conn_rq, sth_wroff);
3898 		rw_enter(&udp->udp_rwlock, RW_WRITER);
3899 	}
3900 	return (0);
3901 }
3902 
3903 /*
3904  * This routine retrieves the value of an ND variable in a udpparam_t
3905  * structure.  It is called through nd_getset when a user reads the
3906  * variable.
3907  */
3908 /* ARGSUSED */
3909 static int
3910 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
3911 {
3912 	udpparam_t *udppa = (udpparam_t *)cp;
3913 
3914 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
3915 	return (0);
3916 }
3917 
3918 /*
3919  * Walk through the param array specified registering each element with the
3920  * named dispatch (ND) handler.
3921  */
3922 static boolean_t
3923 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt)
3924 {
3925 	for (; cnt-- > 0; udppa++) {
3926 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
3927 			if (!nd_load(ndp, udppa->udp_param_name,
3928 			    udp_param_get, udp_param_set,
3929 			    (caddr_t)udppa)) {
3930 				nd_free(ndp);
3931 				return (B_FALSE);
3932 			}
3933 		}
3934 	}
3935 	if (!nd_load(ndp, "udp_extra_priv_ports",
3936 	    udp_extra_priv_ports_get, NULL, NULL)) {
3937 		nd_free(ndp);
3938 		return (B_FALSE);
3939 	}
3940 	if (!nd_load(ndp, "udp_extra_priv_ports_add",
3941 	    NULL, udp_extra_priv_ports_add, NULL)) {
3942 		nd_free(ndp);
3943 		return (B_FALSE);
3944 	}
3945 	if (!nd_load(ndp, "udp_extra_priv_ports_del",
3946 	    NULL, udp_extra_priv_ports_del, NULL)) {
3947 		nd_free(ndp);
3948 		return (B_FALSE);
3949 	}
3950 	if (!nd_load(ndp, "udp_status", udp_status_report, NULL,
3951 	    NULL)) {
3952 		nd_free(ndp);
3953 		return (B_FALSE);
3954 	}
3955 	if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL,
3956 	    NULL)) {
3957 		nd_free(ndp);
3958 		return (B_FALSE);
3959 	}
3960 	return (B_TRUE);
3961 }
3962 
3963 /* This routine sets an ND variable in a udpparam_t structure. */
3964 /* ARGSUSED */
3965 static int
3966 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
3967 {
3968 	long		new_value;
3969 	udpparam_t	*udppa = (udpparam_t *)cp;
3970 
3971 	/*
3972 	 * Fail the request if the new value does not lie within the
3973 	 * required bounds.
3974 	 */
3975 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
3976 	    new_value < udppa->udp_param_min ||
3977 	    new_value > udppa->udp_param_max) {
3978 		return (EINVAL);
3979 	}
3980 
3981 	/* Set the new value */
3982 	udppa->udp_param_value = new_value;
3983 	return (0);
3984 }
3985 
3986 /*
3987  * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with
3988  * T_opthdr) and return the number of bytes copied.  'dbuf' may be NULL to
3989  * just count the length needed for allocation.  If 'dbuf' is non-NULL,
3990  * then it's assumed to be allocated to be large enough.
3991  *
3992  * Returns zero if trimming of the security option causes all options to go
3993  * away.
3994  */
3995 static size_t
3996 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf)
3997 {
3998 	struct T_opthdr *toh;
3999 	size_t hol = ipp->ipp_hopoptslen;
4000 	ip6_hbh_t *dstopt = NULL;
4001 	const ip6_hbh_t *srcopt = ipp->ipp_hopopts;
4002 	size_t tlen, olen, plen;
4003 	boolean_t deleting;
4004 	const struct ip6_opt *sopt, *lastpad;
4005 	struct ip6_opt *dopt;
4006 
4007 	if ((toh = (struct T_opthdr *)dbuf) != NULL) {
4008 		toh->level = IPPROTO_IPV6;
4009 		toh->name = IPV6_HOPOPTS;
4010 		toh->status = 0;
4011 		dstopt = (ip6_hbh_t *)(toh + 1);
4012 	}
4013 
4014 	/*
4015 	 * If labeling is enabled, then skip the label option
4016 	 * but get other options if there are any.
4017 	 */
4018 	if (is_system_labeled()) {
4019 		dopt = NULL;
4020 		if (dstopt != NULL) {
4021 			/* will fill in ip6h_len later */
4022 			dstopt->ip6h_nxt = srcopt->ip6h_nxt;
4023 			dopt = (struct ip6_opt *)(dstopt + 1);
4024 		}
4025 		sopt = (const struct ip6_opt *)(srcopt + 1);
4026 		hol -= sizeof (*srcopt);
4027 		tlen = sizeof (*dstopt);
4028 		lastpad = NULL;
4029 		deleting = B_FALSE;
4030 		/*
4031 		 * This loop finds the first (lastpad pointer) of any number of
4032 		 * pads that preceeds the security option, then treats the
4033 		 * security option as though it were a pad, and then finds the
4034 		 * next non-pad option (or end of list).
4035 		 *
4036 		 * It then treats the entire block as one big pad.  To preserve
4037 		 * alignment of any options that follow, or just the end of the
4038 		 * list, it computes a minimal new padding size that keeps the
4039 		 * same alignment for the next option.
4040 		 *
4041 		 * If it encounters just a sequence of pads with no security
4042 		 * option, those are copied as-is rather than collapsed.
4043 		 *
4044 		 * Note that to handle the end of list case, the code makes one
4045 		 * loop with 'hol' set to zero.
4046 		 */
4047 		for (;;) {
4048 			if (hol > 0) {
4049 				if (sopt->ip6o_type == IP6OPT_PAD1) {
4050 					if (lastpad == NULL)
4051 						lastpad = sopt;
4052 					sopt = (const struct ip6_opt *)
4053 					    &sopt->ip6o_len;
4054 					hol--;
4055 					continue;
4056 				}
4057 				olen = sopt->ip6o_len + sizeof (*sopt);
4058 				if (olen > hol)
4059 					olen = hol;
4060 				if (sopt->ip6o_type == IP6OPT_PADN ||
4061 				    sopt->ip6o_type == ip6opt_ls) {
4062 					if (sopt->ip6o_type == ip6opt_ls)
4063 						deleting = B_TRUE;
4064 					if (lastpad == NULL)
4065 						lastpad = sopt;
4066 					sopt = (const struct ip6_opt *)
4067 					    ((const char *)sopt + olen);
4068 					hol -= olen;
4069 					continue;
4070 				}
4071 			} else {
4072 				/* if nothing was copied at all, then delete */
4073 				if (tlen == sizeof (*dstopt))
4074 					return (0);
4075 				/* last pass; pick up any trailing padding */
4076 				olen = 0;
4077 			}
4078 			if (deleting) {
4079 				/*
4080 				 * compute aligning effect of deleted material
4081 				 * to reproduce with pad.
4082 				 */
4083 				plen = ((const char *)sopt -
4084 				    (const char *)lastpad) & 7;
4085 				tlen += plen;
4086 				if (dopt != NULL) {
4087 					if (plen == 1) {
4088 						dopt->ip6o_type = IP6OPT_PAD1;
4089 					} else if (plen > 1) {
4090 						plen -= sizeof (*dopt);
4091 						dopt->ip6o_type = IP6OPT_PADN;
4092 						dopt->ip6o_len = plen;
4093 						if (plen > 0)
4094 							bzero(dopt + 1, plen);
4095 					}
4096 					dopt = (struct ip6_opt *)
4097 					    ((char *)dopt + plen);
4098 				}
4099 				deleting = B_FALSE;
4100 				lastpad = NULL;
4101 			}
4102 			/* if there's uncopied padding, then copy that now */
4103 			if (lastpad != NULL) {
4104 				olen += (const char *)sopt -
4105 				    (const char *)lastpad;
4106 				sopt = lastpad;
4107 				lastpad = NULL;
4108 			}
4109 			if (dopt != NULL && olen > 0) {
4110 				bcopy(sopt, dopt, olen);
4111 				dopt = (struct ip6_opt *)((char *)dopt + olen);
4112 			}
4113 			if (hol == 0)
4114 				break;
4115 			tlen += olen;
4116 			sopt = (const struct ip6_opt *)
4117 			    ((const char *)sopt + olen);
4118 			hol -= olen;
4119 		}
4120 		/* go back and patch up the length value, rounded upward */
4121 		if (dstopt != NULL)
4122 			dstopt->ip6h_len = (tlen - 1) >> 3;
4123 	} else {
4124 		tlen = hol;
4125 		if (dstopt != NULL)
4126 			bcopy(srcopt, dstopt, hol);
4127 	}
4128 
4129 	tlen += sizeof (*toh);
4130 	if (toh != NULL)
4131 		toh->len = tlen;
4132 
4133 	return (tlen);
4134 }
4135 
4136 /*
4137  * Update udp_rcv_opt_len from the packet.
4138  * Called when options received, and when no options received but
4139  * udp_ip_recv_opt_len has previously recorded options.
4140  */
4141 static void
4142 udp_save_ip_rcv_opt(udp_t *udp, void *opt, int opt_len)
4143 {
4144 	/* Save the options if any */
4145 	if (opt_len > 0) {
4146 		if (opt_len > udp->udp_ip_rcv_options_len) {
4147 			/* Need to allocate larger buffer */
4148 			if (udp->udp_ip_rcv_options_len != 0)
4149 				mi_free((char *)udp->udp_ip_rcv_options);
4150 			udp->udp_ip_rcv_options_len = 0;
4151 			udp->udp_ip_rcv_options =
4152 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
4153 			if (udp->udp_ip_rcv_options != NULL)
4154 				udp->udp_ip_rcv_options_len = opt_len;
4155 		}
4156 		if (udp->udp_ip_rcv_options_len != 0) {
4157 			bcopy(opt, udp->udp_ip_rcv_options, opt_len);
4158 			/* Adjust length if we are resusing the space */
4159 			udp->udp_ip_rcv_options_len = opt_len;
4160 		}
4161 	} else if (udp->udp_ip_rcv_options_len != 0) {
4162 		/* Clear out previously recorded options */
4163 		mi_free((char *)udp->udp_ip_rcv_options);
4164 		udp->udp_ip_rcv_options = NULL;
4165 		udp->udp_ip_rcv_options_len = 0;
4166 	}
4167 }
4168 
4169 /* ARGSUSED2 */
4170 static void
4171 udp_input(void *arg1, mblk_t *mp, void *arg2)
4172 {
4173 	conn_t *connp = (conn_t *)arg1;
4174 	struct T_unitdata_ind	*tudi;
4175 	uchar_t			*rptr;		/* Pointer to IP header */
4176 	int			hdr_length;	/* Length of IP+UDP headers */
4177 	int			opt_len;
4178 	int			udi_size;	/* Size of T_unitdata_ind */
4179 	int			mp_len;
4180 	udp_t			*udp;
4181 	udpha_t			*udpha;
4182 	int			ipversion;
4183 	ip6_pkt_t		ipp;
4184 	ip6_t			*ip6h;
4185 	ip6i_t			*ip6i;
4186 	mblk_t			*mp1;
4187 	mblk_t			*options_mp = NULL;
4188 	ip_pktinfo_t		*pinfo = NULL;
4189 	cred_t			*cr = NULL;
4190 	pid_t			cpid;
4191 	uint32_t		udp_ip_rcv_options_len;
4192 	udp_bits_t		udp_bits;
4193 	cred_t			*rcr = connp->conn_cred;
4194 	udp_stack_t *us;
4195 
4196 	ASSERT(connp->conn_flags & IPCL_UDPCONN);
4197 
4198 	udp = connp->conn_udp;
4199 	us = udp->udp_us;
4200 	rptr = mp->b_rptr;
4201 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4202 	ASSERT(OK_32PTR(rptr));
4203 
4204 	/*
4205 	 * IP should have prepended the options data in an M_CTL
4206 	 * Check M_CTL "type" to make sure are not here bcos of
4207 	 * a valid ICMP message
4208 	 */
4209 	if (DB_TYPE(mp) == M_CTL) {
4210 		if (MBLKL(mp) == sizeof (ip_pktinfo_t) &&
4211 		    ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type ==
4212 		    IN_PKTINFO) {
4213 			/*
4214 			 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information
4215 			 * has been prepended to the packet by IP. We need to
4216 			 * extract the mblk and adjust the rptr
4217 			 */
4218 			pinfo = (ip_pktinfo_t *)mp->b_rptr;
4219 			options_mp = mp;
4220 			mp = mp->b_cont;
4221 			rptr = mp->b_rptr;
4222 			UDP_STAT(us, udp_in_pktinfo);
4223 		} else {
4224 			/*
4225 			 * ICMP messages.
4226 			 */
4227 			udp_icmp_error(connp->conn_rq, mp);
4228 			return;
4229 		}
4230 	}
4231 
4232 	mp_len = msgdsize(mp);
4233 	/*
4234 	 * This is the inbound data path.
4235 	 * First, we check to make sure the IP version number is correct,
4236 	 * and then pull the IP and UDP headers into the first mblk.
4237 	 */
4238 
4239 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4240 	ipp.ipp_fields = 0;
4241 
4242 	ipversion = IPH_HDR_VERSION(rptr);
4243 
4244 	rw_enter(&udp->udp_rwlock, RW_READER);
4245 	udp_ip_rcv_options_len = udp->udp_ip_rcv_options_len;
4246 	udp_bits = udp->udp_bits;
4247 	rw_exit(&udp->udp_rwlock);
4248 
4249 	switch (ipversion) {
4250 	case IPV4_VERSION:
4251 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4252 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4253 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4254 		opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
4255 		if ((opt_len > 0 || udp_ip_rcv_options_len > 0) &&
4256 		    udp->udp_family == AF_INET) {
4257 			/*
4258 			 * Record/update udp_ip_rcv_options with the lock
4259 			 * held. Not needed for AF_INET6 sockets
4260 			 * since they don't support a getsockopt of IP_OPTIONS.
4261 			 */
4262 			rw_enter(&udp->udp_rwlock, RW_WRITER);
4263 			udp_save_ip_rcv_opt(udp, rptr + IP_SIMPLE_HDR_LENGTH,
4264 			    opt_len);
4265 			rw_exit(&udp->udp_rwlock);
4266 		}
4267 		/* Handle IPV6_RECVPKTINFO even for IPv4 packet. */
4268 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4269 		    udp->udp_ip_recvpktinfo) {
4270 			if (pinfo->ip_pkt_flags & IPF_RECVIF) {
4271 				ipp.ipp_fields |= IPPF_IFINDEX;
4272 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
4273 			}
4274 		}
4275 		break;
4276 	case IPV6_VERSION:
4277 		/*
4278 		 * IPv6 packets can only be received by applications
4279 		 * that are prepared to receive IPv6 addresses.
4280 		 * The IP fanout must ensure this.
4281 		 */
4282 		ASSERT(udp->udp_family == AF_INET6);
4283 
4284 		ip6h = (ip6_t *)rptr;
4285 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4286 
4287 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4288 			uint8_t nexthdrp;
4289 			/* Look for ifindex information */
4290 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4291 				ip6i = (ip6i_t *)ip6h;
4292 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4293 					goto tossit;
4294 
4295 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4296 					ASSERT(ip6i->ip6i_ifindex != 0);
4297 					ipp.ipp_fields |= IPPF_IFINDEX;
4298 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4299 				}
4300 				rptr = (uchar_t *)&ip6i[1];
4301 				mp->b_rptr = rptr;
4302 				if (rptr == mp->b_wptr) {
4303 					mp1 = mp->b_cont;
4304 					freeb(mp);
4305 					mp = mp1;
4306 					rptr = mp->b_rptr;
4307 				}
4308 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4309 					goto tossit;
4310 				ip6h = (ip6_t *)rptr;
4311 				mp_len = msgdsize(mp);
4312 			}
4313 			/*
4314 			 * Find any potentially interesting extension headers
4315 			 * as well as the length of the IPv6 + extension
4316 			 * headers.
4317 			 */
4318 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4319 			    UDPH_SIZE;
4320 			ASSERT(nexthdrp == IPPROTO_UDP);
4321 		} else {
4322 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4323 			ip6i = NULL;
4324 		}
4325 		break;
4326 	default:
4327 		ASSERT(0);
4328 	}
4329 
4330 	/*
4331 	 * IP inspected the UDP header thus all of it must be in the mblk.
4332 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4333 	 * to check if the size of the packet as specified
4334 	 * by the header is the same as the physical size of the packet.
4335 	 * FIXME? Didn't IP already check this?
4336 	 */
4337 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4338 	if ((MBLKL(mp) < hdr_length) ||
4339 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4340 		goto tossit;
4341 	}
4342 
4343 
4344 	/* Walk past the headers unless IP_RECVHDR was set. */
4345 	if (!udp_bits.udpb_rcvhdr) {
4346 		mp->b_rptr = rptr + hdr_length;
4347 		mp_len -= hdr_length;
4348 	}
4349 
4350 	/*
4351 	 * This is the inbound data path.  Packets are passed upstream as
4352 	 * T_UNITDATA_IND messages with full IP headers still attached.
4353 	 */
4354 	if (udp->udp_family == AF_INET) {
4355 		sin_t *sin;
4356 
4357 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4358 
4359 		/*
4360 		 * Normally only send up the source address.
4361 		 * If IP_RECVDSTADDR is set we include the destination IP
4362 		 * address as an option. With IP_RECVOPTS we include all
4363 		 * the IP options.
4364 		 */
4365 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4366 		if (udp_bits.udpb_recvdstaddr) {
4367 			udi_size += sizeof (struct T_opthdr) +
4368 			    sizeof (struct in_addr);
4369 			UDP_STAT(us, udp_in_recvdstaddr);
4370 		}
4371 
4372 		if (udp_bits.udpb_ip_recvpktinfo && (pinfo != NULL) &&
4373 		    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4374 			udi_size += sizeof (struct T_opthdr) +
4375 			    sizeof (struct in_pktinfo);
4376 			UDP_STAT(us, udp_ip_rcvpktinfo);
4377 		}
4378 
4379 		if ((udp_bits.udpb_recvopts) && opt_len > 0) {
4380 			udi_size += sizeof (struct T_opthdr) + opt_len;
4381 			UDP_STAT(us, udp_in_recvopts);
4382 		}
4383 
4384 		/*
4385 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4386 		 * space accordingly
4387 		 */
4388 		if ((udp_bits.udpb_recvif) && (pinfo != NULL) &&
4389 		    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4390 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4391 			UDP_STAT(us, udp_in_recvif);
4392 		}
4393 
4394 		if ((udp_bits.udpb_recvslla) && (pinfo != NULL) &&
4395 		    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4396 			udi_size += sizeof (struct T_opthdr) +
4397 			    sizeof (struct sockaddr_dl);
4398 			UDP_STAT(us, udp_in_recvslla);
4399 		}
4400 
4401 		if ((udp_bits.udpb_recvucred) &&
4402 		    (cr = DB_CRED(mp)) != NULL) {
4403 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4404 			cpid = DB_CPID(mp);
4405 			UDP_STAT(us, udp_in_recvucred);
4406 		}
4407 
4408 		/*
4409 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4410 		 * buffer. Since gethrestime() expects a pointer aligned
4411 		 * argument, we allocate space necessary for extra
4412 		 * alignment (even though it might not be used).
4413 		 */
4414 		if (udp_bits.udpb_timestamp) {
4415 			udi_size += sizeof (struct T_opthdr) +
4416 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4417 			UDP_STAT(us, udp_in_timestamp);
4418 		}
4419 
4420 		/*
4421 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4422 		 */
4423 		if (udp_bits.udpb_recvttl) {
4424 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4425 			UDP_STAT(us, udp_in_recvttl);
4426 		}
4427 
4428 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4429 		mp1 = allocb(udi_size, BPRI_MED);
4430 		if (mp1 == NULL) {
4431 			freemsg(mp);
4432 			if (options_mp != NULL)
4433 				freeb(options_mp);
4434 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
4435 			return;
4436 		}
4437 		mp1->b_cont = mp;
4438 		mp = mp1;
4439 		mp->b_datap->db_type = M_PROTO;
4440 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4441 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4442 		tudi->PRIM_type = T_UNITDATA_IND;
4443 		tudi->SRC_length = sizeof (sin_t);
4444 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4445 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4446 		    sizeof (sin_t);
4447 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4448 		tudi->OPT_length = udi_size;
4449 		sin = (sin_t *)&tudi[1];
4450 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4451 		sin->sin_port =	udpha->uha_src_port;
4452 		sin->sin_family = udp->udp_family;
4453 		*(uint32_t *)&sin->sin_zero[0] = 0;
4454 		*(uint32_t *)&sin->sin_zero[4] = 0;
4455 
4456 		/*
4457 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4458 		 * IP_RECVTTL has been set.
4459 		 */
4460 		if (udi_size != 0) {
4461 			/*
4462 			 * Copy in destination address before options to avoid
4463 			 * any padding issues.
4464 			 */
4465 			char *dstopt;
4466 
4467 			dstopt = (char *)&sin[1];
4468 			if (udp_bits.udpb_recvdstaddr) {
4469 				struct T_opthdr *toh;
4470 				ipaddr_t *dstptr;
4471 
4472 				toh = (struct T_opthdr *)dstopt;
4473 				toh->level = IPPROTO_IP;
4474 				toh->name = IP_RECVDSTADDR;
4475 				toh->len = sizeof (struct T_opthdr) +
4476 				    sizeof (ipaddr_t);
4477 				toh->status = 0;
4478 				dstopt += sizeof (struct T_opthdr);
4479 				dstptr = (ipaddr_t *)dstopt;
4480 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4481 				dstopt += sizeof (ipaddr_t);
4482 				udi_size -= toh->len;
4483 			}
4484 
4485 			if (udp_bits.udpb_recvopts && opt_len > 0) {
4486 				struct T_opthdr *toh;
4487 
4488 				toh = (struct T_opthdr *)dstopt;
4489 				toh->level = IPPROTO_IP;
4490 				toh->name = IP_RECVOPTS;
4491 				toh->len = sizeof (struct T_opthdr) + opt_len;
4492 				toh->status = 0;
4493 				dstopt += sizeof (struct T_opthdr);
4494 				bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt,
4495 				    opt_len);
4496 				dstopt += opt_len;
4497 				udi_size -= toh->len;
4498 			}
4499 
4500 			if ((udp_bits.udpb_ip_recvpktinfo) && (pinfo != NULL) &&
4501 			    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4502 				struct T_opthdr *toh;
4503 				struct in_pktinfo *pktinfop;
4504 
4505 				toh = (struct T_opthdr *)dstopt;
4506 				toh->level = IPPROTO_IP;
4507 				toh->name = IP_PKTINFO;
4508 				toh->len = sizeof (struct T_opthdr) +
4509 				    sizeof (*pktinfop);
4510 				toh->status = 0;
4511 				dstopt += sizeof (struct T_opthdr);
4512 				pktinfop = (struct in_pktinfo *)dstopt;
4513 				pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex;
4514 				pktinfop->ipi_spec_dst =
4515 				    pinfo->ip_pkt_match_addr;
4516 				pktinfop->ipi_addr.s_addr =
4517 				    ((ipha_t *)rptr)->ipha_dst;
4518 
4519 				dstopt += sizeof (struct in_pktinfo);
4520 				udi_size -= toh->len;
4521 			}
4522 
4523 			if ((udp_bits.udpb_recvslla) && (pinfo != NULL) &&
4524 			    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4525 
4526 				struct T_opthdr *toh;
4527 				struct sockaddr_dl	*dstptr;
4528 
4529 				toh = (struct T_opthdr *)dstopt;
4530 				toh->level = IPPROTO_IP;
4531 				toh->name = IP_RECVSLLA;
4532 				toh->len = sizeof (struct T_opthdr) +
4533 				    sizeof (struct sockaddr_dl);
4534 				toh->status = 0;
4535 				dstopt += sizeof (struct T_opthdr);
4536 				dstptr = (struct sockaddr_dl *)dstopt;
4537 				bcopy(&pinfo->ip_pkt_slla, dstptr,
4538 				    sizeof (struct sockaddr_dl));
4539 				dstopt += sizeof (struct sockaddr_dl);
4540 				udi_size -= toh->len;
4541 			}
4542 
4543 			if ((udp_bits.udpb_recvif) && (pinfo != NULL) &&
4544 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4545 
4546 				struct T_opthdr *toh;
4547 				uint_t		*dstptr;
4548 
4549 				toh = (struct T_opthdr *)dstopt;
4550 				toh->level = IPPROTO_IP;
4551 				toh->name = IP_RECVIF;
4552 				toh->len = sizeof (struct T_opthdr) +
4553 				    sizeof (uint_t);
4554 				toh->status = 0;
4555 				dstopt += sizeof (struct T_opthdr);
4556 				dstptr = (uint_t *)dstopt;
4557 				*dstptr = pinfo->ip_pkt_ifindex;
4558 				dstopt += sizeof (uint_t);
4559 				udi_size -= toh->len;
4560 			}
4561 
4562 			if (cr != NULL) {
4563 				struct T_opthdr *toh;
4564 
4565 				toh = (struct T_opthdr *)dstopt;
4566 				toh->level = SOL_SOCKET;
4567 				toh->name = SCM_UCRED;
4568 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4569 				toh->status = 0;
4570 				dstopt += sizeof (struct T_opthdr);
4571 				(void) cred2ucred(cr, cpid, dstopt, rcr);
4572 				dstopt += ucredsize;
4573 				udi_size -= toh->len;
4574 			}
4575 
4576 			if (udp_bits.udpb_timestamp) {
4577 				struct	T_opthdr *toh;
4578 
4579 				toh = (struct T_opthdr *)dstopt;
4580 				toh->level = SOL_SOCKET;
4581 				toh->name = SCM_TIMESTAMP;
4582 				toh->len = sizeof (struct T_opthdr) +
4583 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4584 				toh->status = 0;
4585 				dstopt += sizeof (struct T_opthdr);
4586 				/* Align for gethrestime() */
4587 				dstopt = (char *)P2ROUNDUP((intptr_t)dstopt,
4588 				    sizeof (intptr_t));
4589 				gethrestime((timestruc_t *)dstopt);
4590 				dstopt = (char *)toh + toh->len;
4591 				udi_size -= toh->len;
4592 			}
4593 
4594 			/*
4595 			 * CAUTION:
4596 			 * Due to aligment issues
4597 			 * Processing of IP_RECVTTL option
4598 			 * should always be the last. Adding
4599 			 * any option processing after this will
4600 			 * cause alignment panic.
4601 			 */
4602 			if (udp_bits.udpb_recvttl) {
4603 				struct	T_opthdr *toh;
4604 				uint8_t	*dstptr;
4605 
4606 				toh = (struct T_opthdr *)dstopt;
4607 				toh->level = IPPROTO_IP;
4608 				toh->name = IP_RECVTTL;
4609 				toh->len = sizeof (struct T_opthdr) +
4610 				    sizeof (uint8_t);
4611 				toh->status = 0;
4612 				dstopt += sizeof (struct T_opthdr);
4613 				dstptr = (uint8_t *)dstopt;
4614 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4615 				dstopt += sizeof (uint8_t);
4616 				udi_size -= toh->len;
4617 			}
4618 
4619 			/* Consumed all of allocated space */
4620 			ASSERT(udi_size == 0);
4621 		}
4622 	} else {
4623 		sin6_t *sin6;
4624 
4625 		/*
4626 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
4627 		 *
4628 		 * Normally we only send up the address. If receiving of any
4629 		 * optional receive side information is enabled, we also send
4630 		 * that up as options.
4631 		 */
4632 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
4633 
4634 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
4635 		    IPPF_RTHDR|IPPF_IFINDEX)) {
4636 			if ((udp_bits.udpb_ipv6_recvhopopts) &&
4637 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4638 				size_t hlen;
4639 
4640 				UDP_STAT(us, udp_in_recvhopopts);
4641 				hlen = copy_hop_opts(&ipp, NULL);
4642 				if (hlen == 0)
4643 					ipp.ipp_fields &= ~IPPF_HOPOPTS;
4644 				udi_size += hlen;
4645 			}
4646 			if (((udp_bits.udpb_ipv6_recvdstopts) ||
4647 			    udp_bits.udpb_old_ipv6_recvdstopts) &&
4648 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4649 				udi_size += sizeof (struct T_opthdr) +
4650 				    ipp.ipp_dstoptslen;
4651 				UDP_STAT(us, udp_in_recvdstopts);
4652 			}
4653 			if ((((udp_bits.udpb_ipv6_recvdstopts) &&
4654 			    udp_bits.udpb_ipv6_recvrthdr &&
4655 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
4656 			    (udp_bits.udpb_ipv6_recvrthdrdstopts)) &&
4657 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4658 				udi_size += sizeof (struct T_opthdr) +
4659 				    ipp.ipp_rtdstoptslen;
4660 				UDP_STAT(us, udp_in_recvrtdstopts);
4661 			}
4662 			if ((udp_bits.udpb_ipv6_recvrthdr) &&
4663 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4664 				udi_size += sizeof (struct T_opthdr) +
4665 				    ipp.ipp_rthdrlen;
4666 				UDP_STAT(us, udp_in_recvrthdr);
4667 			}
4668 			if ((udp_bits.udpb_ip_recvpktinfo) &&
4669 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4670 				udi_size += sizeof (struct T_opthdr) +
4671 				    sizeof (struct in6_pktinfo);
4672 				UDP_STAT(us, udp_in_recvpktinfo);
4673 			}
4674 
4675 		}
4676 		if ((udp_bits.udpb_recvucred) &&
4677 		    (cr = DB_CRED(mp)) != NULL) {
4678 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4679 			cpid = DB_CPID(mp);
4680 			UDP_STAT(us, udp_in_recvucred);
4681 		}
4682 
4683 		/*
4684 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4685 		 * buffer. Since gethrestime() expects a pointer aligned
4686 		 * argument, we allocate space necessary for extra
4687 		 * alignment (even though it might not be used).
4688 		 */
4689 		if (udp_bits.udpb_timestamp) {
4690 			udi_size += sizeof (struct T_opthdr) +
4691 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4692 			UDP_STAT(us, udp_in_timestamp);
4693 		}
4694 
4695 		if (udp_bits.udpb_ipv6_recvhoplimit) {
4696 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4697 			UDP_STAT(us, udp_in_recvhoplimit);
4698 		}
4699 
4700 		if (udp_bits.udpb_ipv6_recvtclass) {
4701 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4702 			UDP_STAT(us, udp_in_recvtclass);
4703 		}
4704 
4705 		mp1 = allocb(udi_size, BPRI_MED);
4706 		if (mp1 == NULL) {
4707 			freemsg(mp);
4708 			if (options_mp != NULL)
4709 				freeb(options_mp);
4710 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
4711 			return;
4712 		}
4713 		mp1->b_cont = mp;
4714 		mp = mp1;
4715 		mp->b_datap->db_type = M_PROTO;
4716 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4717 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4718 		tudi->PRIM_type = T_UNITDATA_IND;
4719 		tudi->SRC_length = sizeof (sin6_t);
4720 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4721 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4722 		    sizeof (sin6_t);
4723 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
4724 		tudi->OPT_length = udi_size;
4725 		sin6 = (sin6_t *)&tudi[1];
4726 		if (ipversion == IPV4_VERSION) {
4727 			in6_addr_t v6dst;
4728 
4729 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
4730 			    &sin6->sin6_addr);
4731 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
4732 			    &v6dst);
4733 			sin6->sin6_flowinfo = 0;
4734 			sin6->sin6_scope_id = 0;
4735 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
4736 			    connp->conn_zoneid, us->us_netstack);
4737 		} else {
4738 			sin6->sin6_addr = ip6h->ip6_src;
4739 			/* No sin6_flowinfo per API */
4740 			sin6->sin6_flowinfo = 0;
4741 			/* For link-scope source pass up scope id */
4742 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
4743 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4744 				sin6->sin6_scope_id = ipp.ipp_ifindex;
4745 			else
4746 				sin6->sin6_scope_id = 0;
4747 			sin6->__sin6_src_id = ip_srcid_find_addr(
4748 			    &ip6h->ip6_dst, connp->conn_zoneid,
4749 			    us->us_netstack);
4750 		}
4751 		sin6->sin6_port = udpha->uha_src_port;
4752 		sin6->sin6_family = udp->udp_family;
4753 
4754 		if (udi_size != 0) {
4755 			uchar_t *dstopt;
4756 
4757 			dstopt = (uchar_t *)&sin6[1];
4758 			if ((udp_bits.udpb_ip_recvpktinfo) &&
4759 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4760 				struct T_opthdr *toh;
4761 				struct in6_pktinfo *pkti;
4762 
4763 				toh = (struct T_opthdr *)dstopt;
4764 				toh->level = IPPROTO_IPV6;
4765 				toh->name = IPV6_PKTINFO;
4766 				toh->len = sizeof (struct T_opthdr) +
4767 				    sizeof (*pkti);
4768 				toh->status = 0;
4769 				dstopt += sizeof (struct T_opthdr);
4770 				pkti = (struct in6_pktinfo *)dstopt;
4771 				if (ipversion == IPV6_VERSION)
4772 					pkti->ipi6_addr = ip6h->ip6_dst;
4773 				else
4774 					IN6_IPADDR_TO_V4MAPPED(
4775 					    ((ipha_t *)rptr)->ipha_dst,
4776 					    &pkti->ipi6_addr);
4777 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
4778 				dstopt += sizeof (*pkti);
4779 				udi_size -= toh->len;
4780 			}
4781 			if (udp_bits.udpb_ipv6_recvhoplimit) {
4782 				struct T_opthdr *toh;
4783 
4784 				toh = (struct T_opthdr *)dstopt;
4785 				toh->level = IPPROTO_IPV6;
4786 				toh->name = IPV6_HOPLIMIT;
4787 				toh->len = sizeof (struct T_opthdr) +
4788 				    sizeof (uint_t);
4789 				toh->status = 0;
4790 				dstopt += sizeof (struct T_opthdr);
4791 				if (ipversion == IPV6_VERSION)
4792 					*(uint_t *)dstopt = ip6h->ip6_hops;
4793 				else
4794 					*(uint_t *)dstopt =
4795 					    ((ipha_t *)rptr)->ipha_ttl;
4796 				dstopt += sizeof (uint_t);
4797 				udi_size -= toh->len;
4798 			}
4799 			if (udp_bits.udpb_ipv6_recvtclass) {
4800 				struct T_opthdr *toh;
4801 
4802 				toh = (struct T_opthdr *)dstopt;
4803 				toh->level = IPPROTO_IPV6;
4804 				toh->name = IPV6_TCLASS;
4805 				toh->len = sizeof (struct T_opthdr) +
4806 				    sizeof (uint_t);
4807 				toh->status = 0;
4808 				dstopt += sizeof (struct T_opthdr);
4809 				if (ipversion == IPV6_VERSION) {
4810 					*(uint_t *)dstopt =
4811 					    IPV6_FLOW_TCLASS(ip6h->ip6_flow);
4812 				} else {
4813 					ipha_t *ipha = (ipha_t *)rptr;
4814 					*(uint_t *)dstopt =
4815 					    ipha->ipha_type_of_service;
4816 				}
4817 				dstopt += sizeof (uint_t);
4818 				udi_size -= toh->len;
4819 			}
4820 			if ((udp_bits.udpb_ipv6_recvhopopts) &&
4821 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4822 				size_t hlen;
4823 
4824 				hlen = copy_hop_opts(&ipp, dstopt);
4825 				dstopt += hlen;
4826 				udi_size -= hlen;
4827 			}
4828 			if ((udp_bits.udpb_ipv6_recvdstopts) &&
4829 			    (udp_bits.udpb_ipv6_recvrthdr) &&
4830 			    (ipp.ipp_fields & IPPF_RTHDR) &&
4831 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4832 				struct T_opthdr *toh;
4833 
4834 				toh = (struct T_opthdr *)dstopt;
4835 				toh->level = IPPROTO_IPV6;
4836 				toh->name = IPV6_DSTOPTS;
4837 				toh->len = sizeof (struct T_opthdr) +
4838 				    ipp.ipp_rtdstoptslen;
4839 				toh->status = 0;
4840 				dstopt += sizeof (struct T_opthdr);
4841 				bcopy(ipp.ipp_rtdstopts, dstopt,
4842 				    ipp.ipp_rtdstoptslen);
4843 				dstopt += ipp.ipp_rtdstoptslen;
4844 				udi_size -= toh->len;
4845 			}
4846 			if ((udp_bits.udpb_ipv6_recvrthdr) &&
4847 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4848 				struct T_opthdr *toh;
4849 
4850 				toh = (struct T_opthdr *)dstopt;
4851 				toh->level = IPPROTO_IPV6;
4852 				toh->name = IPV6_RTHDR;
4853 				toh->len = sizeof (struct T_opthdr) +
4854 				    ipp.ipp_rthdrlen;
4855 				toh->status = 0;
4856 				dstopt += sizeof (struct T_opthdr);
4857 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
4858 				dstopt += ipp.ipp_rthdrlen;
4859 				udi_size -= toh->len;
4860 			}
4861 			if ((udp_bits.udpb_ipv6_recvdstopts) &&
4862 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4863 				struct T_opthdr *toh;
4864 
4865 				toh = (struct T_opthdr *)dstopt;
4866 				toh->level = IPPROTO_IPV6;
4867 				toh->name = IPV6_DSTOPTS;
4868 				toh->len = sizeof (struct T_opthdr) +
4869 				    ipp.ipp_dstoptslen;
4870 				toh->status = 0;
4871 				dstopt += sizeof (struct T_opthdr);
4872 				bcopy(ipp.ipp_dstopts, dstopt,
4873 				    ipp.ipp_dstoptslen);
4874 				dstopt += ipp.ipp_dstoptslen;
4875 				udi_size -= toh->len;
4876 			}
4877 
4878 			if (cr != NULL) {
4879 				struct T_opthdr *toh;
4880 
4881 				toh = (struct T_opthdr *)dstopt;
4882 				toh->level = SOL_SOCKET;
4883 				toh->name = SCM_UCRED;
4884 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4885 				toh->status = 0;
4886 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
4887 				dstopt += toh->len;
4888 				udi_size -= toh->len;
4889 			}
4890 			if (udp_bits.udpb_timestamp) {
4891 				struct	T_opthdr *toh;
4892 
4893 				toh = (struct T_opthdr *)dstopt;
4894 				toh->level = SOL_SOCKET;
4895 				toh->name = SCM_TIMESTAMP;
4896 				toh->len = sizeof (struct T_opthdr) +
4897 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4898 				toh->status = 0;
4899 				dstopt += sizeof (struct T_opthdr);
4900 				/* Align for gethrestime() */
4901 				dstopt = (uchar_t *)P2ROUNDUP((intptr_t)dstopt,
4902 				    sizeof (intptr_t));
4903 				gethrestime((timestruc_t *)dstopt);
4904 				dstopt = (uchar_t *)toh + toh->len;
4905 				udi_size -= toh->len;
4906 			}
4907 
4908 			/* Consumed all of allocated space */
4909 			ASSERT(udi_size == 0);
4910 		}
4911 #undef	sin6
4912 		/* No IP_RECVDSTADDR for IPv6. */
4913 	}
4914 
4915 	BUMP_MIB(&us->us_udp_mib, udpHCInDatagrams);
4916 	if (options_mp != NULL)
4917 		freeb(options_mp);
4918 
4919 	if (udp_bits.udpb_direct_sockfs) {
4920 		/*
4921 		 * There is nothing above us except for the stream head;
4922 		 * use the read-side synchronous stream interface in
4923 		 * order to reduce the time spent in interrupt thread.
4924 		 */
4925 		ASSERT(udp->udp_issocket);
4926 		udp_rcv_enqueue(connp->conn_rq, udp, mp, mp_len);
4927 	} else {
4928 		/*
4929 		 * Use regular STREAMS interface to pass data upstream
4930 		 * if this is not a socket endpoint, or if we have
4931 		 * switched over to the slow mode due to sockmod being
4932 		 * popped or a module being pushed on top of us.
4933 		 */
4934 		putnext(connp->conn_rq, mp);
4935 	}
4936 	return;
4937 
4938 tossit:
4939 	freemsg(mp);
4940 	if (options_mp != NULL)
4941 		freeb(options_mp);
4942 	BUMP_MIB(&us->us_udp_mib, udpInErrors);
4943 }
4944 
4945 /*
4946  * Handle the results of a T_BIND_REQ whether deferred by IP or handled
4947  * immediately.
4948  */
4949 static void
4950 udp_bind_result(conn_t *connp, mblk_t *mp)
4951 {
4952 	struct T_error_ack	*tea;
4953 
4954 	switch (mp->b_datap->db_type) {
4955 	case M_PROTO:
4956 	case M_PCPROTO:
4957 		/* M_PROTO messages contain some type of TPI message. */
4958 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
4959 		    (uintptr_t)INT_MAX);
4960 		if (mp->b_wptr - mp->b_rptr < sizeof (t_scalar_t)) {
4961 			freemsg(mp);
4962 			return;
4963 		}
4964 		tea = (struct T_error_ack *)mp->b_rptr;
4965 
4966 		switch (tea->PRIM_type) {
4967 		case T_ERROR_ACK:
4968 			switch (tea->ERROR_prim) {
4969 			case O_T_BIND_REQ:
4970 			case T_BIND_REQ:
4971 				udp_bind_error(connp, mp);
4972 				return;
4973 			default:
4974 				break;
4975 			}
4976 			ASSERT(0);
4977 			freemsg(mp);
4978 			return;
4979 
4980 		case T_BIND_ACK:
4981 			udp_bind_ack(connp, mp);
4982 			return;
4983 
4984 		default:
4985 			break;
4986 		}
4987 		freemsg(mp);
4988 		return;
4989 	default:
4990 		/* FIXME: other cases? */
4991 		ASSERT(0);
4992 		freemsg(mp);
4993 		return;
4994 	}
4995 }
4996 
4997 /*
4998  * Process a T_BIND_ACK
4999  */
5000 static void
5001 udp_bind_ack(conn_t *connp, mblk_t *mp)
5002 {
5003 	udp_t	*udp = connp->conn_udp;
5004 	mblk_t	*mp1;
5005 	ire_t	*ire;
5006 	struct T_bind_ack *tba;
5007 	uchar_t *addrp;
5008 	ipa_conn_t	*ac;
5009 	ipa6_conn_t	*ac6;
5010 	udp_fanout_t	*udpf;
5011 	udp_stack_t	*us = udp->udp_us;
5012 
5013 	ASSERT(udp->udp_pending_op != -1);
5014 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5015 	/*
5016 	 * If a broadcast/multicast address was bound set
5017 	 * the source address to 0.
5018 	 * This ensures no datagrams with broadcast address
5019 	 * as source address are emitted (which would violate
5020 	 * RFC1122 - Hosts requirements)
5021 	 *
5022 	 * Note that when connecting the returned IRE is
5023 	 * for the destination address and we only perform
5024 	 * the broadcast check for the source address (it
5025 	 * is OK to connect to a broadcast/multicast address.)
5026 	 */
5027 	mp1 = mp->b_cont;
5028 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
5029 		ire = (ire_t *)mp1->b_rptr;
5030 
5031 		/*
5032 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
5033 		 * local address.
5034 		 */
5035 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
5036 		    us->us_bind_fanout_size)];
5037 		if (ire->ire_type == IRE_BROADCAST &&
5038 		    udp->udp_state != TS_DATA_XFER) {
5039 			ASSERT(udp->udp_pending_op == T_BIND_REQ ||
5040 			    udp->udp_pending_op == O_T_BIND_REQ);
5041 			/* This was just a local bind to a broadcast addr */
5042 			mutex_enter(&udpf->uf_lock);
5043 			V6_SET_ZERO(udp->udp_v6src);
5044 			mutex_exit(&udpf->uf_lock);
5045 			if (udp->udp_family == AF_INET6)
5046 				(void) udp_build_hdrs(udp);
5047 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
5048 			/*
5049 			 * Local address not yet set - pick it from the
5050 			 * T_bind_ack
5051 			 */
5052 			tba = (struct T_bind_ack *)mp->b_rptr;
5053 			addrp = &mp->b_rptr[tba->ADDR_offset];
5054 			switch (udp->udp_family) {
5055 			case AF_INET:
5056 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5057 					ac = (ipa_conn_t *)addrp;
5058 				} else {
5059 					ASSERT(tba->ADDR_length ==
5060 					    sizeof (ipa_conn_x_t));
5061 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5062 				}
5063 				mutex_enter(&udpf->uf_lock);
5064 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5065 				    &udp->udp_v6src);
5066 				mutex_exit(&udpf->uf_lock);
5067 				break;
5068 			case AF_INET6:
5069 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5070 					ac6 = (ipa6_conn_t *)addrp;
5071 				} else {
5072 					ASSERT(tba->ADDR_length ==
5073 					    sizeof (ipa6_conn_x_t));
5074 					ac6 = &((ipa6_conn_x_t *)
5075 					    addrp)->ac6x_conn;
5076 				}
5077 				mutex_enter(&udpf->uf_lock);
5078 				udp->udp_v6src = ac6->ac6_laddr;
5079 				mutex_exit(&udpf->uf_lock);
5080 				(void) udp_build_hdrs(udp);
5081 				break;
5082 			}
5083 		}
5084 		mp1 = mp1->b_cont;
5085 	}
5086 	udp->udp_pending_op = -1;
5087 	rw_exit(&udp->udp_rwlock);
5088 	/*
5089 	 * Look for one or more appended ACK message added by
5090 	 * udp_connect or udp_disconnect.
5091 	 * If none found just send up the T_BIND_ACK.
5092 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5093 	 * udp_disconnect has appended a T_OK_ACK.
5094 	 */
5095 	if (mp1 != NULL) {
5096 		if (mp->b_cont == mp1)
5097 			mp->b_cont = NULL;
5098 		else {
5099 			ASSERT(mp->b_cont->b_cont == mp1);
5100 			mp->b_cont->b_cont = NULL;
5101 		}
5102 		freemsg(mp);
5103 		mp = mp1;
5104 		while (mp != NULL) {
5105 			mp1 = mp->b_cont;
5106 			mp->b_cont = NULL;
5107 			putnext(connp->conn_rq, mp);
5108 			mp = mp1;
5109 		}
5110 		return;
5111 	}
5112 	freemsg(mp->b_cont);
5113 	mp->b_cont = NULL;
5114 	putnext(connp->conn_rq, mp);
5115 }
5116 
5117 static void
5118 udp_bind_error(conn_t *connp, mblk_t *mp)
5119 {
5120 	udp_t	*udp = connp->conn_udp;
5121 	struct T_error_ack *tea;
5122 	udp_fanout_t	*udpf;
5123 	udp_stack_t	*us = udp->udp_us;
5124 
5125 	tea = (struct T_error_ack *)mp->b_rptr;
5126 
5127 	/*
5128 	 * If our O_T_BIND_REQ/T_BIND_REQ fails,
5129 	 * clear out the associated port and source
5130 	 * address before passing the message
5131 	 * upstream. If this was caused by a T_CONN_REQ
5132 	 * revert back to bound state.
5133 	 */
5134 
5135 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5136 	ASSERT(udp->udp_pending_op != -1);
5137 	tea->ERROR_prim = udp->udp_pending_op;
5138 	udp->udp_pending_op = -1;
5139 	udpf = &us->us_bind_fanout[
5140 	    UDP_BIND_HASH(udp->udp_port,
5141 	    us->us_bind_fanout_size)];
5142 	mutex_enter(&udpf->uf_lock);
5143 
5144 	switch (tea->ERROR_prim) {
5145 	case T_CONN_REQ:
5146 		ASSERT(udp->udp_state == TS_DATA_XFER);
5147 		/* Connect failed */
5148 		/* Revert back to the bound source */
5149 		udp->udp_v6src = udp->udp_bound_v6src;
5150 		udp->udp_state = TS_IDLE;
5151 		mutex_exit(&udpf->uf_lock);
5152 		if (udp->udp_family == AF_INET6)
5153 			(void) udp_build_hdrs(udp);
5154 		rw_exit(&udp->udp_rwlock);
5155 		break;
5156 
5157 	case T_DISCON_REQ:
5158 	case T_BIND_REQ:
5159 	case O_T_BIND_REQ:
5160 		V6_SET_ZERO(udp->udp_v6src);
5161 		V6_SET_ZERO(udp->udp_bound_v6src);
5162 		udp->udp_state = TS_UNBND;
5163 		udp_bind_hash_remove(udp, B_TRUE);
5164 		udp->udp_port = 0;
5165 		mutex_exit(&udpf->uf_lock);
5166 		if (udp->udp_family == AF_INET6)
5167 			(void) udp_build_hdrs(udp);
5168 		rw_exit(&udp->udp_rwlock);
5169 		break;
5170 
5171 	default:
5172 		mutex_exit(&udpf->uf_lock);
5173 		rw_exit(&udp->udp_rwlock);
5174 		(void) mi_strlog(connp->conn_rq, 1,
5175 		    SL_ERROR|SL_TRACE,
5176 		    "udp_input_other: bad ERROR_prim, "
5177 		    "len %d", tea->ERROR_prim);
5178 	}
5179 	putnext(connp->conn_rq, mp);
5180 }
5181 
5182 /*
5183  * return SNMP stuff in buffer in mpdata. We don't hold any lock and report
5184  * information that can be changing beneath us.
5185  */
5186 mblk_t *
5187 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5188 {
5189 	mblk_t			*mpdata;
5190 	mblk_t			*mp_conn_ctl;
5191 	mblk_t			*mp_attr_ctl;
5192 	mblk_t			*mp6_conn_ctl;
5193 	mblk_t			*mp6_attr_ctl;
5194 	mblk_t			*mp_conn_tail;
5195 	mblk_t			*mp_attr_tail;
5196 	mblk_t			*mp6_conn_tail;
5197 	mblk_t			*mp6_attr_tail;
5198 	struct opthdr		*optp;
5199 	mib2_udpEntry_t		ude;
5200 	mib2_udp6Entry_t	ude6;
5201 	mib2_transportMLPEntry_t mlp;
5202 	int			state;
5203 	zoneid_t		zoneid;
5204 	int			i;
5205 	connf_t			*connfp;
5206 	conn_t			*connp = Q_TO_CONN(q);
5207 	int			v4_conn_idx;
5208 	int			v6_conn_idx;
5209 	boolean_t		needattr;
5210 	udp_t			*udp;
5211 	ip_stack_t		*ipst = connp->conn_netstack->netstack_ip;
5212 	udp_stack_t		*us = connp->conn_netstack->netstack_udp;
5213 	mblk_t			*mp2ctl;
5214 
5215 	/*
5216 	 * make a copy of the original message
5217 	 */
5218 	mp2ctl = copymsg(mpctl);
5219 
5220 	mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
5221 	if (mpctl == NULL ||
5222 	    (mpdata = mpctl->b_cont) == NULL ||
5223 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5224 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
5225 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
5226 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
5227 		freemsg(mp_conn_ctl);
5228 		freemsg(mp_attr_ctl);
5229 		freemsg(mp6_conn_ctl);
5230 		freemsg(mpctl);
5231 		freemsg(mp2ctl);
5232 		return (0);
5233 	}
5234 
5235 	zoneid = connp->conn_zoneid;
5236 
5237 	/* fixed length structure for IPv4 and IPv6 counters */
5238 	SET_MIB(us->us_udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5239 	SET_MIB(us->us_udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5240 	/* synchronize 64- and 32-bit counters */
5241 	SYNC32_MIB(&us->us_udp_mib, udpInDatagrams, udpHCInDatagrams);
5242 	SYNC32_MIB(&us->us_udp_mib, udpOutDatagrams, udpHCOutDatagrams);
5243 
5244 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5245 	optp->level = MIB2_UDP;
5246 	optp->name = 0;
5247 	(void) snmp_append_data(mpdata, (char *)&us->us_udp_mib,
5248 	    sizeof (us->us_udp_mib));
5249 	optp->len = msgdsize(mpdata);
5250 	qreply(q, mpctl);
5251 
5252 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
5253 	v4_conn_idx = v6_conn_idx = 0;
5254 
5255 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5256 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5257 		connp = NULL;
5258 
5259 		while ((connp = ipcl_get_next_conn(connfp, connp,
5260 		    IPCL_UDPCONN))) {
5261 			udp = connp->conn_udp;
5262 			if (zoneid != connp->conn_zoneid)
5263 				continue;
5264 
5265 			/*
5266 			 * Note that the port numbers are sent in
5267 			 * host byte order
5268 			 */
5269 
5270 			if (udp->udp_state == TS_UNBND)
5271 				state = MIB2_UDP_unbound;
5272 			else if (udp->udp_state == TS_IDLE)
5273 				state = MIB2_UDP_idle;
5274 			else if (udp->udp_state == TS_DATA_XFER)
5275 				state = MIB2_UDP_connected;
5276 			else
5277 				state = MIB2_UDP_unknown;
5278 
5279 			needattr = B_FALSE;
5280 			bzero(&mlp, sizeof (mlp));
5281 			if (connp->conn_mlp_type != mlptSingle) {
5282 				if (connp->conn_mlp_type == mlptShared ||
5283 				    connp->conn_mlp_type == mlptBoth)
5284 					mlp.tme_flags |= MIB2_TMEF_SHARED;
5285 				if (connp->conn_mlp_type == mlptPrivate ||
5286 				    connp->conn_mlp_type == mlptBoth)
5287 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
5288 				needattr = B_TRUE;
5289 			}
5290 
5291 			/*
5292 			 * Create an IPv4 table entry for IPv4 entries and also
5293 			 * any IPv6 entries which are bound to in6addr_any
5294 			 * (i.e. anything a IPv4 peer could connect/send to).
5295 			 */
5296 			if (udp->udp_ipversion == IPV4_VERSION ||
5297 			    (udp->udp_state <= TS_IDLE &&
5298 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5299 				ude.udpEntryInfo.ue_state = state;
5300 				/*
5301 				 * If in6addr_any this will set it to
5302 				 * INADDR_ANY
5303 				 */
5304 				ude.udpLocalAddress =
5305 				    V4_PART_OF_V6(udp->udp_v6src);
5306 				ude.udpLocalPort = ntohs(udp->udp_port);
5307 				if (udp->udp_state == TS_DATA_XFER) {
5308 					/*
5309 					 * Can potentially get here for
5310 					 * v6 socket if another process
5311 					 * (say, ping) has just done a
5312 					 * sendto(), changing the state
5313 					 * from the TS_IDLE above to
5314 					 * TS_DATA_XFER by the time we hit
5315 					 * this part of the code.
5316 					 */
5317 					ude.udpEntryInfo.ue_RemoteAddress =
5318 					    V4_PART_OF_V6(udp->udp_v6dst);
5319 					ude.udpEntryInfo.ue_RemotePort =
5320 					    ntohs(udp->udp_dstport);
5321 				} else {
5322 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5323 					ude.udpEntryInfo.ue_RemotePort = 0;
5324 				}
5325 
5326 				/*
5327 				 * We make the assumption that all udp_t
5328 				 * structs will be created within an address
5329 				 * region no larger than 32-bits.
5330 				 */
5331 				ude.udpInstance = (uint32_t)(uintptr_t)udp;
5332 				ude.udpCreationProcess =
5333 				    (udp->udp_open_pid < 0) ?
5334 				    MIB2_UNKNOWN_PROCESS :
5335 				    udp->udp_open_pid;
5336 				ude.udpCreationTime = udp->udp_open_time;
5337 
5338 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
5339 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
5340 				mlp.tme_connidx = v4_conn_idx++;
5341 				if (needattr)
5342 					(void) snmp_append_data2(
5343 					    mp_attr_ctl->b_cont, &mp_attr_tail,
5344 					    (char *)&mlp, sizeof (mlp));
5345 			}
5346 			if (udp->udp_ipversion == IPV6_VERSION) {
5347 				ude6.udp6EntryInfo.ue_state  = state;
5348 				ude6.udp6LocalAddress = udp->udp_v6src;
5349 				ude6.udp6LocalPort = ntohs(udp->udp_port);
5350 				ude6.udp6IfIndex = udp->udp_bound_if;
5351 				if (udp->udp_state == TS_DATA_XFER) {
5352 					ude6.udp6EntryInfo.ue_RemoteAddress =
5353 					    udp->udp_v6dst;
5354 					ude6.udp6EntryInfo.ue_RemotePort =
5355 					    ntohs(udp->udp_dstport);
5356 				} else {
5357 					ude6.udp6EntryInfo.ue_RemoteAddress =
5358 					    sin6_null.sin6_addr;
5359 					ude6.udp6EntryInfo.ue_RemotePort = 0;
5360 				}
5361 				/*
5362 				 * We make the assumption that all udp_t
5363 				 * structs will be created within an address
5364 				 * region no larger than 32-bits.
5365 				 */
5366 				ude6.udp6Instance = (uint32_t)(uintptr_t)udp;
5367 				ude6.udp6CreationProcess =
5368 				    (udp->udp_open_pid < 0) ?
5369 				    MIB2_UNKNOWN_PROCESS :
5370 				    udp->udp_open_pid;
5371 				ude6.udp6CreationTime = udp->udp_open_time;
5372 
5373 				(void) snmp_append_data2(mp6_conn_ctl->b_cont,
5374 				    &mp6_conn_tail, (char *)&ude6,
5375 				    sizeof (ude6));
5376 				mlp.tme_connidx = v6_conn_idx++;
5377 				if (needattr)
5378 					(void) snmp_append_data2(
5379 					    mp6_attr_ctl->b_cont,
5380 					    &mp6_attr_tail, (char *)&mlp,
5381 					    sizeof (mlp));
5382 			}
5383 		}
5384 	}
5385 
5386 	/* IPv4 UDP endpoints */
5387 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
5388 	    sizeof (struct T_optmgmt_ack)];
5389 	optp->level = MIB2_UDP;
5390 	optp->name = MIB2_UDP_ENTRY;
5391 	optp->len = msgdsize(mp_conn_ctl->b_cont);
5392 	qreply(q, mp_conn_ctl);
5393 
5394 	/* table of MLP attributes... */
5395 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
5396 	    sizeof (struct T_optmgmt_ack)];
5397 	optp->level = MIB2_UDP;
5398 	optp->name = EXPER_XPORT_MLP;
5399 	optp->len = msgdsize(mp_attr_ctl->b_cont);
5400 	if (optp->len == 0)
5401 		freemsg(mp_attr_ctl);
5402 	else
5403 		qreply(q, mp_attr_ctl);
5404 
5405 	/* IPv6 UDP endpoints */
5406 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
5407 	    sizeof (struct T_optmgmt_ack)];
5408 	optp->level = MIB2_UDP6;
5409 	optp->name = MIB2_UDP6_ENTRY;
5410 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
5411 	qreply(q, mp6_conn_ctl);
5412 
5413 	/* table of MLP attributes... */
5414 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
5415 	    sizeof (struct T_optmgmt_ack)];
5416 	optp->level = MIB2_UDP6;
5417 	optp->name = EXPER_XPORT_MLP;
5418 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
5419 	if (optp->len == 0)
5420 		freemsg(mp6_attr_ctl);
5421 	else
5422 		qreply(q, mp6_attr_ctl);
5423 
5424 	return (mp2ctl);
5425 }
5426 
5427 /*
5428  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
5429  * NOTE: Per MIB-II, UDP has no writable data.
5430  * TODO:  If this ever actually tries to set anything, it needs to be
5431  * to do the appropriate locking.
5432  */
5433 /* ARGSUSED */
5434 int
5435 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
5436     uchar_t *ptr, int len)
5437 {
5438 	switch (level) {
5439 	case MIB2_UDP:
5440 		return (0);
5441 	default:
5442 		return (1);
5443 	}
5444 }
5445 
5446 static void
5447 udp_report_item(mblk_t *mp, udp_t *udp)
5448 {
5449 	char *state;
5450 	char addrbuf1[INET6_ADDRSTRLEN];
5451 	char addrbuf2[INET6_ADDRSTRLEN];
5452 	uint_t print_len, buf_len;
5453 
5454 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
5455 	ASSERT(buf_len >= 0);
5456 	if (buf_len == 0)
5457 		return;
5458 
5459 	if (udp->udp_state == TS_UNBND)
5460 		state = "UNBOUND";
5461 	else if (udp->udp_state == TS_IDLE)
5462 		state = "IDLE";
5463 	else if (udp->udp_state == TS_DATA_XFER)
5464 		state = "CONNECTED";
5465 	else
5466 		state = "UnkState";
5467 	print_len = snprintf((char *)mp->b_wptr, buf_len,
5468 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
5469 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
5470 	    inet_ntop(AF_INET6, &udp->udp_v6src, addrbuf1, sizeof (addrbuf1)),
5471 	    inet_ntop(AF_INET6, &udp->udp_v6dst, addrbuf2, sizeof (addrbuf2)),
5472 	    ntohs(udp->udp_dstport), state);
5473 	if (print_len < buf_len) {
5474 		mp->b_wptr += print_len;
5475 	} else {
5476 		mp->b_wptr += buf_len;
5477 	}
5478 }
5479 
5480 /* Report for ndd "udp_status" */
5481 /* ARGSUSED */
5482 static int
5483 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5484 {
5485 	zoneid_t zoneid;
5486 	connf_t	*connfp;
5487 	conn_t	*connp = Q_TO_CONN(q);
5488 	udp_t	*udp = connp->conn_udp;
5489 	int	i;
5490 	udp_stack_t *us = udp->udp_us;
5491 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
5492 
5493 	/*
5494 	 * Because of the ndd constraint, at most we can have 64K buffer
5495 	 * to put in all UDP info.  So to be more efficient, just
5496 	 * allocate a 64K buffer here, assuming we need that large buffer.
5497 	 * This may be a problem as any user can read udp_status.  Therefore
5498 	 * we limit the rate of doing this using us_ndd_get_info_interval.
5499 	 * This should be OK as normal users should not do this too often.
5500 	 */
5501 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
5502 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
5503 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
5504 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
5505 			return (0);
5506 		}
5507 	}
5508 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
5509 		/* The following may work even if we cannot get a large buf. */
5510 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
5511 		return (0);
5512 	}
5513 	(void) mi_mpprintf(mp,
5514 	    "UDP     " MI_COL_HDRPAD_STR
5515 	/*   12345678[89ABCDEF] */
5516 	    " zone lport src addr        dest addr       port  state");
5517 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
5518 
5519 	zoneid = connp->conn_zoneid;
5520 
5521 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5522 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5523 		connp = NULL;
5524 
5525 		while ((connp = ipcl_get_next_conn(connfp, connp,
5526 		    IPCL_UDPCONN))) {
5527 			udp = connp->conn_udp;
5528 			if (zoneid != GLOBAL_ZONEID &&
5529 			    zoneid != connp->conn_zoneid)
5530 				continue;
5531 
5532 			udp_report_item(mp->b_cont, udp);
5533 		}
5534 	}
5535 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
5536 	return (0);
5537 }
5538 
5539 /*
5540  * This routine creates a T_UDERROR_IND message and passes it upstream.
5541  * The address and options are copied from the T_UNITDATA_REQ message
5542  * passed in mp.  This message is freed.
5543  */
5544 static void
5545 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
5546     t_scalar_t err)
5547 {
5548 	struct T_unitdata_req *tudr;
5549 	mblk_t	*mp1;
5550 	uchar_t	*optaddr;
5551 	t_scalar_t optlen;
5552 
5553 	if (DB_TYPE(mp) == M_DATA) {
5554 		ASSERT(destaddr != NULL && destlen != 0);
5555 		optaddr = NULL;
5556 		optlen = 0;
5557 	} else {
5558 		if ((mp->b_wptr < mp->b_rptr) ||
5559 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
5560 			goto done;
5561 		}
5562 		tudr = (struct T_unitdata_req *)mp->b_rptr;
5563 		destaddr = mp->b_rptr + tudr->DEST_offset;
5564 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
5565 		    destaddr + tudr->DEST_length < mp->b_rptr ||
5566 		    destaddr + tudr->DEST_length > mp->b_wptr) {
5567 			goto done;
5568 		}
5569 		optaddr = mp->b_rptr + tudr->OPT_offset;
5570 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
5571 		    optaddr + tudr->OPT_length < mp->b_rptr ||
5572 		    optaddr + tudr->OPT_length > mp->b_wptr) {
5573 			goto done;
5574 		}
5575 		destlen = tudr->DEST_length;
5576 		optlen = tudr->OPT_length;
5577 	}
5578 
5579 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
5580 	    (char *)optaddr, optlen, err);
5581 	if (mp1 != NULL)
5582 		qreply(q, mp1);
5583 
5584 done:
5585 	freemsg(mp);
5586 }
5587 
5588 /*
5589  * This routine removes a port number association from a stream.  It
5590  * is called by udp_wput to handle T_UNBIND_REQ messages.
5591  */
5592 static void
5593 udp_unbind(queue_t *q, mblk_t *mp)
5594 {
5595 	udp_t *udp = Q_TO_UDP(q);
5596 	udp_fanout_t	*udpf;
5597 	udp_stack_t	*us = udp->udp_us;
5598 
5599 	if (cl_inet_unbind != NULL) {
5600 		/*
5601 		 * Running in cluster mode - register unbind information
5602 		 */
5603 		if (udp->udp_ipversion == IPV4_VERSION) {
5604 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
5605 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
5606 			    (in_port_t)udp->udp_port);
5607 		} else {
5608 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
5609 			    (uint8_t *)&(udp->udp_v6src),
5610 			    (in_port_t)udp->udp_port);
5611 		}
5612 	}
5613 
5614 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5615 	if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) {
5616 		rw_exit(&udp->udp_rwlock);
5617 		udp_err_ack(q, mp, TOUTSTATE, 0);
5618 		return;
5619 	}
5620 	udp->udp_pending_op = T_UNBIND_REQ;
5621 	rw_exit(&udp->udp_rwlock);
5622 
5623 	/*
5624 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
5625 	 * and therefore ip_unbind must never return NULL.
5626 	 */
5627 	mp = ip_unbind(q, mp);
5628 	ASSERT(mp != NULL);
5629 	ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK);
5630 
5631 	/*
5632 	 * Once we're unbound from IP, the pending operation may be cleared
5633 	 * here.
5634 	 */
5635 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5636 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
5637 	    us->us_bind_fanout_size)];
5638 	mutex_enter(&udpf->uf_lock);
5639 	udp_bind_hash_remove(udp, B_TRUE);
5640 	V6_SET_ZERO(udp->udp_v6src);
5641 	V6_SET_ZERO(udp->udp_bound_v6src);
5642 	udp->udp_port = 0;
5643 	mutex_exit(&udpf->uf_lock);
5644 
5645 	udp->udp_pending_op = -1;
5646 	udp->udp_state = TS_UNBND;
5647 	if (udp->udp_family == AF_INET6)
5648 		(void) udp_build_hdrs(udp);
5649 	rw_exit(&udp->udp_rwlock);
5650 
5651 	qreply(q, mp);
5652 }
5653 
5654 /*
5655  * Don't let port fall into the privileged range.
5656  * Since the extra privileged ports can be arbitrary we also
5657  * ensure that we exclude those from consideration.
5658  * us->us_epriv_ports is not sorted thus we loop over it until
5659  * there are no changes.
5660  */
5661 static in_port_t
5662 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
5663 {
5664 	int i;
5665 	in_port_t nextport;
5666 	boolean_t restart = B_FALSE;
5667 	udp_stack_t *us = udp->udp_us;
5668 
5669 	if (random && udp_random_anon_port != 0) {
5670 		(void) random_get_pseudo_bytes((uint8_t *)&port,
5671 		    sizeof (in_port_t));
5672 		/*
5673 		 * Unless changed by a sys admin, the smallest anon port
5674 		 * is 32768 and the largest anon port is 65535.  It is
5675 		 * very likely (50%) for the random port to be smaller
5676 		 * than the smallest anon port.  When that happens,
5677 		 * add port % (anon port range) to the smallest anon
5678 		 * port to get the random port.  It should fall into the
5679 		 * valid anon port range.
5680 		 */
5681 		if (port < us->us_smallest_anon_port) {
5682 			port = us->us_smallest_anon_port +
5683 			    port % (us->us_largest_anon_port -
5684 			    us->us_smallest_anon_port);
5685 		}
5686 	}
5687 
5688 retry:
5689 	if (port < us->us_smallest_anon_port)
5690 		port = us->us_smallest_anon_port;
5691 
5692 	if (port > us->us_largest_anon_port) {
5693 		port = us->us_smallest_anon_port;
5694 		if (restart)
5695 			return (0);
5696 		restart = B_TRUE;
5697 	}
5698 
5699 	if (port < us->us_smallest_nonpriv_port)
5700 		port = us->us_smallest_nonpriv_port;
5701 
5702 	for (i = 0; i < us->us_num_epriv_ports; i++) {
5703 		if (port == us->us_epriv_ports[i]) {
5704 			port++;
5705 			/*
5706 			 * Make sure that the port is in the
5707 			 * valid range.
5708 			 */
5709 			goto retry;
5710 		}
5711 	}
5712 
5713 	if (is_system_labeled() &&
5714 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
5715 	    port, IPPROTO_UDP, B_TRUE)) != 0) {
5716 		port = nextport;
5717 		goto retry;
5718 	}
5719 
5720 	return (port);
5721 }
5722 
5723 static int
5724 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst)
5725 {
5726 	int err;
5727 	uchar_t opt_storage[IP_MAX_OPT_LENGTH];
5728 	udp_t *udp = Q_TO_UDP(wq);
5729 	udp_stack_t	*us = udp->udp_us;
5730 
5731 	err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst,
5732 	    opt_storage, udp->udp_mac_exempt,
5733 	    us->us_netstack->netstack_ip);
5734 	if (err == 0) {
5735 		err = tsol_update_options(&udp->udp_ip_snd_options,
5736 		    &udp->udp_ip_snd_options_len, &udp->udp_label_len,
5737 		    opt_storage);
5738 	}
5739 	if (err != 0) {
5740 		DTRACE_PROBE4(
5741 		    tx__ip__log__info__updatelabel__udp,
5742 		    char *, "queue(1) failed to update options(2) on mp(3)",
5743 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
5744 	} else {
5745 		IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst);
5746 	}
5747 	return (err);
5748 }
5749 
5750 static mblk_t *
5751 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
5752     uint_t srcid, int *error, boolean_t insert_spi)
5753 {
5754 	udp_t	*udp = connp->conn_udp;
5755 	queue_t	*q = connp->conn_wq;
5756 	mblk_t	*mp1 = mp;
5757 	mblk_t	*mp2;
5758 	ipha_t	*ipha;
5759 	int	ip_hdr_length;
5760 	uint32_t ip_len;
5761 	udpha_t	*udpha;
5762 	boolean_t lock_held = B_FALSE;
5763 	in_port_t	uha_src_port;
5764 	udpattrs_t	attrs;
5765 	uchar_t	ip_snd_opt[IP_MAX_OPT_LENGTH];
5766 	uint32_t	ip_snd_opt_len = 0;
5767 	ip4_pkt_t  pktinfo;
5768 	ip4_pkt_t  *pktinfop = &pktinfo;
5769 	ip_opt_info_t optinfo;
5770 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
5771 	udp_stack_t	*us = udp->udp_us;
5772 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5773 
5774 
5775 	*error = 0;
5776 	pktinfop->ip4_ill_index = 0;
5777 	pktinfop->ip4_addr = INADDR_ANY;
5778 	optinfo.ip_opt_flags = 0;
5779 	optinfo.ip_opt_ill_index = 0;
5780 
5781 	if (v4dst == INADDR_ANY)
5782 		v4dst = htonl(INADDR_LOOPBACK);
5783 
5784 	/*
5785 	 * If options passed in, feed it for verification and handling
5786 	 */
5787 	attrs.udpattr_credset = B_FALSE;
5788 	if (DB_TYPE(mp) != M_DATA) {
5789 		mp1 = mp->b_cont;
5790 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
5791 			attrs.udpattr_ipp4 = pktinfop;
5792 			attrs.udpattr_mb = mp;
5793 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
5794 				goto done;
5795 			/*
5796 			 * Note: success in processing options.
5797 			 * mp option buffer represented by
5798 			 * OPT_length/offset now potentially modified
5799 			 * and contain option setting results
5800 			 */
5801 			ASSERT(*error == 0);
5802 		}
5803 	}
5804 
5805 	/* mp1 points to the M_DATA mblk carrying the packet */
5806 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
5807 
5808 	rw_enter(&udp->udp_rwlock, RW_READER);
5809 	lock_held = B_TRUE;
5810 	/*
5811 	 * Check if our saved options are valid; update if not.
5812 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
5813 	 * to different destination may require different labels,
5814 	 * or worse, UDP packets to same IP address may require
5815 	 * different labels due to use of shared all-zones address.
5816 	 * We use conn_lock to ensure that lastdst, ip_snd_options,
5817 	 * and ip_snd_options_len are consistent for the current
5818 	 * destination and are updated atomically.
5819 	 */
5820 	mutex_enter(&connp->conn_lock);
5821 	if (is_system_labeled()) {
5822 		/* Using UDP MLP requires SCM_UCRED from user */
5823 		if (connp->conn_mlp_type != mlptSingle &&
5824 		    !attrs.udpattr_credset) {
5825 			mutex_exit(&connp->conn_lock);
5826 			DTRACE_PROBE4(
5827 			    tx__ip__log__info__output__udp,
5828 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
5829 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
5830 			*error = ECONNREFUSED;
5831 			goto done;
5832 		}
5833 		/*
5834 		 * update label option for this UDP socket if
5835 		 * - the destination has changed, or
5836 		 * - the UDP socket is MLP
5837 		 */
5838 		if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) ||
5839 		    V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst ||
5840 		    connp->conn_mlp_type != mlptSingle) &&
5841 		    (*error = udp_update_label(q, mp, v4dst)) != 0) {
5842 			mutex_exit(&connp->conn_lock);
5843 			goto done;
5844 		}
5845 	}
5846 	if (udp->udp_ip_snd_options_len > 0) {
5847 		ip_snd_opt_len = udp->udp_ip_snd_options_len;
5848 		bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len);
5849 	}
5850 	mutex_exit(&connp->conn_lock);
5851 
5852 	/* Add an IP header */
5853 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len +
5854 	    (insert_spi ? sizeof (uint32_t) : 0);
5855 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
5856 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
5857 	    !OK_32PTR(ipha)) {
5858 		mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO);
5859 		if (mp2 == NULL) {
5860 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5861 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
5862 			*error = ENOMEM;
5863 			goto done;
5864 		}
5865 		mp2->b_wptr = DB_LIM(mp2);
5866 		mp2->b_cont = mp1;
5867 		mp1 = mp2;
5868 		if (DB_TYPE(mp) != M_DATA)
5869 			mp->b_cont = mp1;
5870 		else
5871 			mp = mp1;
5872 
5873 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
5874 	}
5875 	ip_hdr_length -= (UDPH_SIZE + (insert_spi ? sizeof (uint32_t) : 0));
5876 #ifdef	_BIG_ENDIAN
5877 	/* Set version, header length, and tos */
5878 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5879 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
5880 	    udp->udp_type_of_service);
5881 	/* Set ttl and protocol */
5882 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
5883 #else
5884 	/* Set version, header length, and tos */
5885 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5886 	    ((udp->udp_type_of_service << 8) |
5887 	    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
5888 	/* Set ttl and protocol */
5889 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
5890 #endif
5891 	if (pktinfop->ip4_addr != INADDR_ANY) {
5892 		ipha->ipha_src = pktinfop->ip4_addr;
5893 		optinfo.ip_opt_flags = IP_VERIFY_SRC;
5894 	} else {
5895 		/*
5896 		 * Copy our address into the packet.  If this is zero,
5897 		 * first look at __sin6_src_id for a hint. If we leave the
5898 		 * source as INADDR_ANY then ip will fill in the real source
5899 		 * address.
5900 		 */
5901 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
5902 		if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
5903 			in6_addr_t v6src;
5904 
5905 			ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid,
5906 			    us->us_netstack);
5907 			IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
5908 		}
5909 	}
5910 	uha_src_port = udp->udp_port;
5911 	if (ip_hdr_length == IP_SIMPLE_HDR_LENGTH) {
5912 		rw_exit(&udp->udp_rwlock);
5913 		lock_held = B_FALSE;
5914 	}
5915 
5916 	if (pktinfop->ip4_ill_index != 0) {
5917 		optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index;
5918 	}
5919 
5920 	ipha->ipha_fragment_offset_and_flags = 0;
5921 	ipha->ipha_ident = 0;
5922 
5923 	mp1->b_rptr = (uchar_t *)ipha;
5924 
5925 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
5926 	    (uintptr_t)UINT_MAX);
5927 
5928 	/* Determine length of packet */
5929 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
5930 	if ((mp2 = mp1->b_cont) != NULL) {
5931 		do {
5932 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
5933 			ip_len += (uint32_t)MBLKL(mp2);
5934 		} while ((mp2 = mp2->b_cont) != NULL);
5935 	}
5936 	/*
5937 	 * If the size of the packet is greater than the maximum allowed by
5938 	 * ip, return an error. Passing this down could cause panics because
5939 	 * the size will have wrapped and be inconsistent with the msg size.
5940 	 */
5941 	if (ip_len > IP_MAXPACKET) {
5942 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5943 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
5944 		*error = EMSGSIZE;
5945 		goto done;
5946 	}
5947 	ipha->ipha_length = htons((uint16_t)ip_len);
5948 	ip_len -= ip_hdr_length;
5949 	ip_len = htons((uint16_t)ip_len);
5950 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
5951 
5952 	/* Insert all-0s SPI now. */
5953 	if (insert_spi)
5954 		*((uint32_t *)(udpha + 1)) = 0;
5955 
5956 	/*
5957 	 * Copy in the destination address
5958 	 */
5959 	ipha->ipha_dst = v4dst;
5960 
5961 	/*
5962 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
5963 	 */
5964 	if (CLASSD(v4dst))
5965 		ipha->ipha_ttl = udp->udp_multicast_ttl;
5966 
5967 	udpha->uha_dst_port = port;
5968 	udpha->uha_src_port = uha_src_port;
5969 
5970 	if (ip_snd_opt_len > 0) {
5971 		uint32_t	cksum;
5972 
5973 		bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len);
5974 		lock_held = B_FALSE;
5975 		rw_exit(&udp->udp_rwlock);
5976 		/*
5977 		 * Massage source route putting first source route in ipha_dst.
5978 		 * Ignore the destination in T_unitdata_req.
5979 		 * Create a checksum adjustment for a source route, if any.
5980 		 */
5981 		cksum = ip_massage_options(ipha, us->us_netstack);
5982 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5983 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
5984 		    (ipha->ipha_dst & 0xFFFF);
5985 		if ((int)cksum < 0)
5986 			cksum--;
5987 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5988 		/*
5989 		 * IP does the checksum if uha_checksum is non-zero,
5990 		 * We make it easy for IP to include our pseudo header
5991 		 * by putting our length in uha_checksum.
5992 		 */
5993 		cksum += ip_len;
5994 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5995 		/* There might be a carry. */
5996 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5997 #ifdef _LITTLE_ENDIAN
5998 		if (us->us_do_checksum)
5999 			ip_len = (cksum << 16) | ip_len;
6000 #else
6001 		if (us->us_do_checksum)
6002 			ip_len = (ip_len << 16) | cksum;
6003 		else
6004 			ip_len <<= 16;
6005 #endif
6006 	} else {
6007 		/*
6008 		 * IP does the checksum if uha_checksum is non-zero,
6009 		 * We make it easy for IP to include our pseudo header
6010 		 * by putting our length in uha_checksum.
6011 		 */
6012 		if (us->us_do_checksum)
6013 			ip_len |= (ip_len << 16);
6014 #ifndef _LITTLE_ENDIAN
6015 		else
6016 			ip_len <<= 16;
6017 #endif
6018 	}
6019 	ASSERT(!lock_held);
6020 	/* Set UDP length and checksum */
6021 	*((uint32_t *)&udpha->uha_length) = ip_len;
6022 	if (DB_CRED(mp) != NULL)
6023 		mblk_setcred(mp1, DB_CRED(mp));
6024 
6025 	if (DB_TYPE(mp) != M_DATA) {
6026 		ASSERT(mp != mp1);
6027 		freeb(mp);
6028 	}
6029 
6030 	/* mp has been consumed and we'll return success */
6031 	ASSERT(*error == 0);
6032 	mp = NULL;
6033 
6034 	/* We're done.  Pass the packet to ip. */
6035 	BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
6036 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6037 	    "udp_wput_end: q %p (%S)", q, "end");
6038 
6039 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
6040 	    CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) ||
6041 	    connp->conn_dontroute ||
6042 	    connp->conn_nofailover_ill != NULL ||
6043 	    connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 ||
6044 	    optinfo.ip_opt_ill_index != 0 ||
6045 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
6046 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst) ||
6047 	    ipst->ips_ip_g_mrouter != NULL) {
6048 		UDP_STAT(us, udp_ip_send);
6049 		ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT,
6050 		    &optinfo);
6051 	} else {
6052 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
6053 	}
6054 
6055 done:
6056 	if (lock_held)
6057 		rw_exit(&udp->udp_rwlock);
6058 	if (*error != 0) {
6059 		ASSERT(mp != NULL);
6060 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6061 	}
6062 	return (mp);
6063 }
6064 
6065 static void
6066 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
6067 {
6068 	conn_t	*connp = udp->udp_connp;
6069 	ipaddr_t src, dst;
6070 	ire_t	*ire;
6071 	ipif_t	*ipif = NULL;
6072 	mblk_t	*ire_fp_mp;
6073 	boolean_t retry_caching;
6074 	udp_stack_t *us = udp->udp_us;
6075 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6076 
6077 	dst = ipha->ipha_dst;
6078 	src = ipha->ipha_src;
6079 	ASSERT(ipha->ipha_ident == 0);
6080 
6081 	if (CLASSD(dst)) {
6082 		int err;
6083 
6084 		ipif = conn_get_held_ipif(connp,
6085 		    &connp->conn_multicast_ipif, &err);
6086 
6087 		if (ipif == NULL || ipif->ipif_isv6 ||
6088 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
6089 		    PHYI_LOOPBACK)) {
6090 			if (ipif != NULL)
6091 				ipif_refrele(ipif);
6092 			UDP_STAT(us, udp_ip_send);
6093 			ip_output(connp, mp, q, IP_WPUT);
6094 			return;
6095 		}
6096 	}
6097 
6098 	retry_caching = B_FALSE;
6099 	mutex_enter(&connp->conn_lock);
6100 	ire = connp->conn_ire_cache;
6101 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
6102 
6103 	if (ire == NULL || ire->ire_addr != dst ||
6104 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
6105 		retry_caching = B_TRUE;
6106 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
6107 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
6108 
6109 		ASSERT(ipif != NULL);
6110 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
6111 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
6112 			retry_caching = B_TRUE;
6113 	}
6114 
6115 	if (!retry_caching) {
6116 		ASSERT(ire != NULL);
6117 		IRE_REFHOLD(ire);
6118 		mutex_exit(&connp->conn_lock);
6119 	} else {
6120 		boolean_t cached = B_FALSE;
6121 
6122 		connp->conn_ire_cache = NULL;
6123 		mutex_exit(&connp->conn_lock);
6124 
6125 		/* Release the old ire */
6126 		if (ire != NULL) {
6127 			IRE_REFRELE_NOTR(ire);
6128 			ire = NULL;
6129 		}
6130 
6131 		if (CLASSD(dst)) {
6132 			ASSERT(ipif != NULL);
6133 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6134 			    connp->conn_zoneid, MBLK_GETLABEL(mp),
6135 			    MATCH_IRE_ILL_GROUP, ipst);
6136 		} else {
6137 			ASSERT(ipif == NULL);
6138 			ire = ire_cache_lookup(dst, connp->conn_zoneid,
6139 			    MBLK_GETLABEL(mp), ipst);
6140 		}
6141 
6142 		if (ire == NULL) {
6143 			if (ipif != NULL)
6144 				ipif_refrele(ipif);
6145 			UDP_STAT(us, udp_ire_null);
6146 			ip_output(connp, mp, q, IP_WPUT);
6147 			return;
6148 		}
6149 		IRE_REFHOLD_NOTR(ire);
6150 
6151 		mutex_enter(&connp->conn_lock);
6152 		if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL &&
6153 		    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6154 			irb_t		*irb = ire->ire_bucket;
6155 
6156 			/*
6157 			 * IRE's created for non-connection oriented transports
6158 			 * are normally initialized with IRE_MARK_TEMPORARY set
6159 			 * in the ire_marks. These IRE's are preferentially
6160 			 * reaped when the hash chain length in the cache
6161 			 * bucket exceeds the maximum value specified in
6162 			 * ip[6]_ire_max_bucket_cnt. This can severely affect
6163 			 * UDP performance if IRE cache entries that we need
6164 			 * to reuse are continually removed. To remedy this,
6165 			 * when we cache the IRE in the conn_t, we remove the
6166 			 * IRE_MARK_TEMPORARY bit from the ire_marks if it was
6167 			 * set.
6168 			 */
6169 			if (ire->ire_marks & IRE_MARK_TEMPORARY) {
6170 				rw_enter(&irb->irb_lock, RW_WRITER);
6171 				if (ire->ire_marks & IRE_MARK_TEMPORARY) {
6172 					ire->ire_marks &= ~IRE_MARK_TEMPORARY;
6173 					irb->irb_tmp_ire_cnt--;
6174 				}
6175 				rw_exit(&irb->irb_lock);
6176 			}
6177 			connp->conn_ire_cache = ire;
6178 			cached = B_TRUE;
6179 		}
6180 		mutex_exit(&connp->conn_lock);
6181 
6182 		/*
6183 		 * We can continue to use the ire but since it was not
6184 		 * cached, we should drop the extra reference.
6185 		 */
6186 		if (!cached)
6187 			IRE_REFRELE_NOTR(ire);
6188 	}
6189 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6190 	ASSERT(!CLASSD(dst) || ipif != NULL);
6191 
6192 	/*
6193 	 * Check if we can take the fast-path.
6194 	 * Note that "incomplete" ire's (where the link-layer for next hop
6195 	 * is not resolved, or where the fast-path header in nce_fp_mp is not
6196 	 * available yet) are sent down the legacy (slow) path
6197 	 */
6198 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6199 	    (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) ||
6200 	    (ire->ire_max_frag < ntohs(ipha->ipha_length)) ||
6201 	    ((ire->ire_nce == NULL) ||
6202 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL)) ||
6203 	    connp->conn_nexthop_set || (MBLKL(ire_fp_mp) > MBLKHEAD(mp))) {
6204 		if (ipif != NULL)
6205 			ipif_refrele(ipif);
6206 		UDP_STAT(us, udp_ip_ire_send);
6207 		IRE_REFRELE(ire);
6208 		ip_output(connp, mp, q, IP_WPUT);
6209 		return;
6210 	}
6211 
6212 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6213 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6214 			ipha->ipha_src = ipif->ipif_src_addr;
6215 		else
6216 			ipha->ipha_src = ire->ire_src_addr;
6217 	}
6218 
6219 	if (ipif != NULL)
6220 		ipif_refrele(ipif);
6221 
6222 	udp_xmit(connp->conn_wq, mp, ire, connp, connp->conn_zoneid);
6223 }
6224 
6225 static void
6226 udp_xmit(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, zoneid_t zoneid)
6227 {
6228 	ipaddr_t src, dst;
6229 	ill_t	*ill;
6230 	mblk_t	*ire_fp_mp;
6231 	uint_t	ire_fp_mp_len;
6232 	uint16_t *up;
6233 	uint32_t cksum, hcksum_txflags;
6234 	queue_t	*dev_q;
6235 	udp_t	*udp = connp->conn_udp;
6236 	ipha_t	*ipha = (ipha_t *)mp->b_rptr;
6237 	udp_stack_t	*us = udp->udp_us;
6238 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6239 
6240 	dev_q = ire->ire_stq->q_next;
6241 	ASSERT(dev_q != NULL);
6242 
6243 
6244 	if (DEV_Q_IS_FLOW_CTLED(dev_q)) {
6245 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsHCOutRequests);
6246 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
6247 		if (ipst->ips_ip_output_queue)
6248 			(void) putq(connp->conn_wq, mp);
6249 		else
6250 			freemsg(mp);
6251 		ire_refrele(ire);
6252 		return;
6253 	}
6254 
6255 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
6256 	ire_fp_mp_len = MBLKL(ire_fp_mp);
6257 	ASSERT(MBLKHEAD(mp) >= ire_fp_mp_len);
6258 
6259 	dst = ipha->ipha_dst;
6260 	src = ipha->ipha_src;
6261 
6262 	ill = ire_to_ill(ire);
6263 	ASSERT(ill != NULL);
6264 
6265 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
6266 
6267 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6268 #ifndef _BIG_ENDIAN
6269 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6270 #endif
6271 
6272 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6273 		ASSERT(ill->ill_hcksum_capab != NULL);
6274 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6275 	} else {
6276 		hcksum_txflags = 0;
6277 	}
6278 
6279 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6280 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6281 
6282 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6283 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6284 	if (*up != 0) {
6285 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6286 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6287 		    ntohs(ipha->ipha_length), cksum);
6288 
6289 		/* Software checksum? */
6290 		if (DB_CKSUMFLAGS(mp) == 0) {
6291 			UDP_STAT(us, udp_out_sw_cksum);
6292 			UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes,
6293 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6294 		}
6295 	}
6296 
6297 	if (!CLASSD(dst)) {
6298 		ipha->ipha_fragment_offset_and_flags |=
6299 		    (uint32_t)htons(ire->ire_frag_flag);
6300 	}
6301 
6302 	/* Calculate IP header checksum if hardware isn't capable */
6303 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6304 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6305 		    ((uint16_t *)ipha)[4]);
6306 	}
6307 
6308 	if (CLASSD(dst)) {
6309 		ilm_t *ilm;
6310 
6311 		ILM_WALKER_HOLD(ill);
6312 		ilm = ilm_lookup_ill(ill, dst, ALL_ZONES);
6313 		ILM_WALKER_RELE(ill);
6314 		if (ilm != NULL) {
6315 			ip_multicast_loopback(q, ill, mp,
6316 			    connp->conn_multicast_loop ? 0 :
6317 			    IP_FF_NO_MCAST_LOOP, zoneid);
6318 		}
6319 
6320 		/* If multicast TTL is 0 then we are done */
6321 		if (ipha->ipha_ttl == 0) {
6322 			freemsg(mp);
6323 			ire_refrele(ire);
6324 			return;
6325 		}
6326 	}
6327 
6328 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6329 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6330 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6331 
6332 	UPDATE_OB_PKT_COUNT(ire);
6333 	ire->ire_last_used_time = lbolt;
6334 
6335 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
6336 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
6337 	    ntohs(ipha->ipha_length));
6338 
6339 	if (ILL_DLS_CAPABLE(ill)) {
6340 		/*
6341 		 * Send the packet directly to DLD, where it may be queued
6342 		 * depending on the availability of transmit resources at
6343 		 * the media layer.
6344 		 */
6345 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
6346 	} else {
6347 		DTRACE_PROBE4(ip4__physical__out__start,
6348 		    ill_t *, NULL, ill_t *, ill,
6349 		    ipha_t *, ipha, mblk_t *, mp);
6350 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
6351 		    ipst->ips_ipv4firewall_physical_out,
6352 		    NULL, ill, ipha, mp, mp, ipst);
6353 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
6354 		if (mp != NULL)
6355 			putnext(ire->ire_stq, mp);
6356 	}
6357 
6358 	IRE_REFRELE(ire);
6359 }
6360 
6361 static boolean_t
6362 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst)
6363 {
6364 	udp_t *udp = Q_TO_UDP(wq);
6365 	int err;
6366 	uchar_t opt_storage[TSOL_MAX_IPV6_OPTION];
6367 	udp_stack_t		*us = udp->udp_us;
6368 
6369 	err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred),
6370 	    dst, opt_storage, udp->udp_mac_exempt,
6371 	    us->us_netstack->netstack_ip);
6372 	if (err == 0) {
6373 		err = tsol_update_sticky(&udp->udp_sticky_ipp,
6374 		    &udp->udp_label_len_v6, opt_storage);
6375 	}
6376 	if (err != 0) {
6377 		DTRACE_PROBE4(
6378 		    tx__ip__log__drop__updatelabel__udp6,
6379 		    char *, "queue(1) failed to update options(2) on mp(3)",
6380 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6381 	} else {
6382 		udp->udp_v6lastdst = *dst;
6383 	}
6384 	return (err);
6385 }
6386 
6387 void
6388 udp_output_connected(void *arg, mblk_t *mp)
6389 {
6390 	conn_t	*connp = (conn_t *)arg;
6391 	udp_t	*udp = connp->conn_udp;
6392 	udp_stack_t	*us = udp->udp_us;
6393 	ipaddr_t	v4dst;
6394 	in_port_t	dstport;
6395 	boolean_t	mapped_addr;
6396 	struct sockaddr_storage ss;
6397 	sin_t		*sin;
6398 	sin6_t		*sin6;
6399 	struct sockaddr	*addr;
6400 	socklen_t	addrlen;
6401 	int		error;
6402 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
6403 
6404 	/* M_DATA for connected socket */
6405 
6406 	ASSERT(udp->udp_issocket);
6407 	UDP_DBGSTAT(us, udp_data_conn);
6408 
6409 	mutex_enter(&connp->conn_lock);
6410 	if (udp->udp_state != TS_DATA_XFER) {
6411 		mutex_exit(&connp->conn_lock);
6412 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6413 		UDP_STAT(us, udp_out_err_notconn);
6414 		freemsg(mp);
6415 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6416 		    "udp_wput_end: connp %p (%S)", connp,
6417 		    "not-connected; address required");
6418 		return;
6419 	}
6420 
6421 	mapped_addr = IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst);
6422 	if (mapped_addr)
6423 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
6424 
6425 	/* Initialize addr and addrlen as if they're passed in */
6426 	if (udp->udp_family == AF_INET) {
6427 		sin = (sin_t *)&ss;
6428 		sin->sin_family = AF_INET;
6429 		dstport = sin->sin_port = udp->udp_dstport;
6430 		ASSERT(mapped_addr);
6431 		sin->sin_addr.s_addr = v4dst;
6432 		addr = (struct sockaddr *)sin;
6433 		addrlen = sizeof (*sin);
6434 	} else {
6435 		sin6 = (sin6_t *)&ss;
6436 		sin6->sin6_family = AF_INET6;
6437 		dstport = sin6->sin6_port = udp->udp_dstport;
6438 		sin6->sin6_flowinfo = udp->udp_flowinfo;
6439 		sin6->sin6_addr = udp->udp_v6dst;
6440 		sin6->sin6_scope_id = 0;
6441 		sin6->__sin6_src_id = 0;
6442 		addr = (struct sockaddr *)sin6;
6443 		addrlen = sizeof (*sin6);
6444 	}
6445 	mutex_exit(&connp->conn_lock);
6446 
6447 	if (mapped_addr) {
6448 		/*
6449 		 * Handle both AF_INET and AF_INET6; the latter
6450 		 * for IPV4 mapped destination addresses.  Note
6451 		 * here that both addr and addrlen point to the
6452 		 * corresponding struct depending on the address
6453 		 * family of the socket.
6454 		 */
6455 		mp = udp_output_v4(connp, mp, v4dst, dstport, 0, &error,
6456 		    insert_spi);
6457 	} else {
6458 		mp = udp_output_v6(connp, mp, sin6, &error);
6459 	}
6460 	if (error == 0) {
6461 		ASSERT(mp == NULL);
6462 		return;
6463 	}
6464 
6465 	UDP_STAT(us, udp_out_err_output);
6466 	ASSERT(mp != NULL);
6467 	/* mp is freed by the following routine */
6468 	udp_ud_err(connp->conn_wq, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6469 	    (t_scalar_t)error);
6470 }
6471 
6472 /*
6473  * This routine handles all messages passed downstream.  It either
6474  * consumes the message or passes it downstream; it never queues a
6475  * a message.
6476  *
6477  * Also entry point for sockfs when udp is in "direct sockfs" mode.  This mode
6478  * is valid when we are directly beneath the stream head, and thus sockfs
6479  * is able to bypass STREAMS and directly call us, passing along the sockaddr
6480  * structure without the cumbersome T_UNITDATA_REQ interface for the case of
6481  * connected endpoints.
6482  */
6483 void
6484 udp_wput(queue_t *q, mblk_t *mp)
6485 {
6486 	sin6_t		*sin6;
6487 	sin_t		*sin;
6488 	ipaddr_t	v4dst;
6489 	uint16_t	port;
6490 	uint_t		srcid;
6491 	conn_t		*connp = Q_TO_CONN(q);
6492 	udp_t		*udp = connp->conn_udp;
6493 	int		error = 0;
6494 	struct sockaddr	*addr;
6495 	socklen_t	addrlen;
6496 	udp_stack_t *us = udp->udp_us;
6497 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
6498 
6499 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
6500 	    "udp_wput_start: queue %p mp %p", q, mp);
6501 
6502 	/*
6503 	 * We directly handle several cases here: T_UNITDATA_REQ message
6504 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for connected
6505 	 * socket.
6506 	 */
6507 	switch (DB_TYPE(mp)) {
6508 	case M_DATA:
6509 		/*
6510 		 * Quick check for error cases. Checks will be done again
6511 		 * under the lock later on
6512 		 */
6513 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
6514 			/* Not connected; address is required */
6515 			BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6516 			UDP_STAT(us, udp_out_err_notconn);
6517 			freemsg(mp);
6518 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6519 			    "udp_wput_end: connp %p (%S)", connp,
6520 			    "not-connected; address required");
6521 			return;
6522 		}
6523 		udp_output_connected(connp, mp);
6524 		return;
6525 
6526 	case M_PROTO:
6527 	case M_PCPROTO: {
6528 		struct T_unitdata_req *tudr;
6529 
6530 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
6531 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6532 
6533 		/* Handle valid T_UNITDATA_REQ here */
6534 		if (MBLKL(mp) >= sizeof (*tudr) &&
6535 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
6536 			if (mp->b_cont == NULL) {
6537 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6538 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6539 				error = EPROTO;
6540 				goto ud_error;
6541 			}
6542 
6543 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
6544 			    tudr->DEST_length)) {
6545 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6546 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6547 				error = EADDRNOTAVAIL;
6548 				goto ud_error;
6549 			}
6550 			/*
6551 			 * If a port has not been bound to the stream, fail.
6552 			 * This is not a problem when sockfs is directly
6553 			 * above us, because it will ensure that the socket
6554 			 * is first bound before allowing data to be sent.
6555 			 */
6556 			if (udp->udp_state == TS_UNBND) {
6557 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6558 				    "udp_wput_end: q %p (%S)", q, "outstate");
6559 				error = EPROTO;
6560 				goto ud_error;
6561 			}
6562 			addr = (struct sockaddr *)
6563 			    &mp->b_rptr[tudr->DEST_offset];
6564 			addrlen = tudr->DEST_length;
6565 			if (tudr->OPT_length != 0)
6566 				UDP_STAT(us, udp_out_opt);
6567 			break;
6568 		}
6569 		/* FALLTHRU */
6570 	}
6571 	default:
6572 		udp_wput_other(q, mp);
6573 		return;
6574 	}
6575 	ASSERT(addr != NULL);
6576 
6577 	switch (udp->udp_family) {
6578 	case AF_INET6:
6579 		sin6 = (sin6_t *)addr;
6580 		if (!OK_32PTR((char *)sin6) || (addrlen != sizeof (sin6_t)) ||
6581 		    (sin6->sin6_family != AF_INET6)) {
6582 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6583 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6584 			error = EADDRNOTAVAIL;
6585 			goto ud_error;
6586 		}
6587 
6588 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6589 			/*
6590 			 * Destination is a non-IPv4-compatible IPv6 address.
6591 			 * Send out an IPv6 format packet.
6592 			 */
6593 			mp = udp_output_v6(connp, mp, sin6, &error);
6594 			if (error != 0)
6595 				goto ud_error;
6596 
6597 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6598 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
6599 			return;
6600 		}
6601 		/*
6602 		 * If the local address is not zero or a mapped address
6603 		 * return an error.  It would be possible to send an IPv4
6604 		 * packet but the response would never make it back to the
6605 		 * application since it is bound to a non-mapped address.
6606 		 */
6607 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
6608 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
6609 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6610 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6611 			error = EADDRNOTAVAIL;
6612 			goto ud_error;
6613 		}
6614 		/* Send IPv4 packet without modifying udp_ipversion */
6615 		/* Extract port and ipaddr */
6616 		port = sin6->sin6_port;
6617 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
6618 		srcid = sin6->__sin6_src_id;
6619 		break;
6620 
6621 	case AF_INET:
6622 		sin = (sin_t *)addr;
6623 		if ((!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t)) ||
6624 		    (sin->sin_family != AF_INET)) {
6625 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6626 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6627 			error = EADDRNOTAVAIL;
6628 			goto ud_error;
6629 		}
6630 		/* Extract port and ipaddr */
6631 		port = sin->sin_port;
6632 		v4dst = sin->sin_addr.s_addr;
6633 		srcid = 0;
6634 		break;
6635 	}
6636 
6637 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error, insert_spi);
6638 	if (error != 0) {
6639 ud_error:
6640 		UDP_STAT(us, udp_out_err_output);
6641 		ASSERT(mp != NULL);
6642 		/* mp is freed by the following routine */
6643 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6644 		    (t_scalar_t)error);
6645 	}
6646 }
6647 
6648 /*
6649  * udp_output_v6():
6650  * Assumes that udp_wput did some sanity checking on the destination
6651  * address.
6652  */
6653 static mblk_t *
6654 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error)
6655 {
6656 	ip6_t		*ip6h;
6657 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
6658 	mblk_t		*mp1 = mp;
6659 	mblk_t		*mp2;
6660 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
6661 	size_t		ip_len;
6662 	udpha_t		*udph;
6663 	udp_t		*udp = connp->conn_udp;
6664 	queue_t		*q = connp->conn_wq;
6665 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
6666 	ip6_pkt_t	*ipp = &ipp_s;
6667 	ip6_pkt_t	*tipp;	/* temporary ipp */
6668 	uint32_t	csum = 0;
6669 	uint_t		ignore = 0;
6670 	uint_t		option_exists = 0, is_sticky = 0;
6671 	uint8_t		*cp;
6672 	uint8_t		*nxthdr_ptr;
6673 	in6_addr_t	ip6_dst;
6674 	udpattrs_t	attrs;
6675 	boolean_t	opt_present;
6676 	ip6_hbh_t	*hopoptsptr = NULL;
6677 	uint_t		hopoptslen = 0;
6678 	boolean_t	is_ancillary = B_FALSE;
6679 	udp_stack_t	*us = udp->udp_us;
6680 	size_t		sth_wroff = 0;
6681 
6682 	*error = 0;
6683 
6684 	/*
6685 	 * If the local address is a mapped address return
6686 	 * an error.
6687 	 * It would be possible to send an IPv6 packet but the
6688 	 * response would never make it back to the application
6689 	 * since it is bound to a mapped address.
6690 	 */
6691 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
6692 		*error = EADDRNOTAVAIL;
6693 		goto done;
6694 	}
6695 
6696 	ipp->ipp_fields = 0;
6697 	ipp->ipp_sticky_ignored = 0;
6698 
6699 	/*
6700 	 * If TPI options passed in, feed it for verification and handling
6701 	 */
6702 	attrs.udpattr_credset = B_FALSE;
6703 	opt_present = B_FALSE;
6704 	if (DB_TYPE(mp) != M_DATA) {
6705 		mp1 = mp->b_cont;
6706 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
6707 			attrs.udpattr_ipp6 = ipp;
6708 			attrs.udpattr_mb = mp;
6709 			if (udp_unitdata_opt_process(q, mp, error,
6710 			    &attrs) < 0) {
6711 				goto done;
6712 			}
6713 			ASSERT(*error == 0);
6714 			opt_present = B_TRUE;
6715 		}
6716 	}
6717 	rw_enter(&udp->udp_rwlock, RW_READER);
6718 	ignore = ipp->ipp_sticky_ignored;
6719 
6720 	/* mp1 points to the M_DATA mblk carrying the packet */
6721 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6722 
6723 	if (sin6->sin6_scope_id != 0 &&
6724 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
6725 		/*
6726 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
6727 		 * option nor ancillary data.  It needs to be
6728 		 * explicitly set in options_exists.
6729 		 */
6730 		option_exists |= IPPF_SCOPE_ID;
6731 	}
6732 
6733 	/*
6734 	 * Compute the destination address
6735 	 */
6736 	ip6_dst = sin6->sin6_addr;
6737 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
6738 		ip6_dst = ipv6_loopback;
6739 
6740 	/*
6741 	 * If we're not going to the same destination as last time, then
6742 	 * recompute the label required.  This is done in a separate routine to
6743 	 * avoid blowing up our stack here.
6744 	 *
6745 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
6746 	 * to different destination may require different labels,
6747 	 * or worse, UDP packets to same IP address may require
6748 	 * different labels due to use of shared all-zones address.
6749 	 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts,
6750 	 * and sticky ipp_hopoptslen are consistent for the current
6751 	 * destination and are updated atomically.
6752 	 */
6753 	mutex_enter(&connp->conn_lock);
6754 	if (is_system_labeled()) {
6755 		/* Using UDP MLP requires SCM_UCRED from user */
6756 		if (connp->conn_mlp_type != mlptSingle &&
6757 		    !attrs.udpattr_credset) {
6758 			DTRACE_PROBE4(
6759 			    tx__ip__log__info__output__udp6,
6760 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
6761 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
6762 			*error = ECONNREFUSED;
6763 			rw_exit(&udp->udp_rwlock);
6764 			mutex_exit(&connp->conn_lock);
6765 			goto done;
6766 		}
6767 		/*
6768 		 * update label option for this UDP socket if
6769 		 * - the destination has changed, or
6770 		 * - the UDP socket is MLP
6771 		 */
6772 		if ((opt_present ||
6773 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst) ||
6774 		    connp->conn_mlp_type != mlptSingle) &&
6775 		    (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) {
6776 			rw_exit(&udp->udp_rwlock);
6777 			mutex_exit(&connp->conn_lock);
6778 			goto done;
6779 		}
6780 	}
6781 
6782 	/*
6783 	 * If there's a security label here, then we ignore any options the
6784 	 * user may try to set.  We keep the peer's label as a hidden sticky
6785 	 * option. We make a private copy of this label before releasing the
6786 	 * lock so that label is kept consistent with the destination addr.
6787 	 */
6788 	if (udp->udp_label_len_v6 > 0) {
6789 		ignore &= ~IPPF_HOPOPTS;
6790 		ipp->ipp_fields &= ~IPPF_HOPOPTS;
6791 	}
6792 
6793 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
6794 		/* No sticky options nor ancillary data. */
6795 		mutex_exit(&connp->conn_lock);
6796 		goto no_options;
6797 	}
6798 
6799 	/*
6800 	 * Go through the options figuring out where each is going to
6801 	 * come from and build two masks.  The first mask indicates if
6802 	 * the option exists at all.  The second mask indicates if the
6803 	 * option is sticky or ancillary.
6804 	 */
6805 	if (!(ignore & IPPF_HOPOPTS)) {
6806 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
6807 			option_exists |= IPPF_HOPOPTS;
6808 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
6809 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
6810 			option_exists |= IPPF_HOPOPTS;
6811 			is_sticky |= IPPF_HOPOPTS;
6812 			ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0);
6813 			hopoptsptr = kmem_alloc(
6814 			    udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP);
6815 			if (hopoptsptr == NULL) {
6816 				*error = ENOMEM;
6817 				mutex_exit(&connp->conn_lock);
6818 				goto done;
6819 			}
6820 			hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen;
6821 			bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr,
6822 			    hopoptslen);
6823 			udp_ip_hdr_len += hopoptslen;
6824 		}
6825 	}
6826 	mutex_exit(&connp->conn_lock);
6827 
6828 	if (!(ignore & IPPF_RTHDR)) {
6829 		if (ipp->ipp_fields & IPPF_RTHDR) {
6830 			option_exists |= IPPF_RTHDR;
6831 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
6832 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
6833 			option_exists |= IPPF_RTHDR;
6834 			is_sticky |= IPPF_RTHDR;
6835 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
6836 		}
6837 	}
6838 
6839 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
6840 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
6841 			option_exists |= IPPF_RTDSTOPTS;
6842 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
6843 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
6844 			option_exists |= IPPF_RTDSTOPTS;
6845 			is_sticky |= IPPF_RTDSTOPTS;
6846 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
6847 		}
6848 	}
6849 
6850 	if (!(ignore & IPPF_DSTOPTS)) {
6851 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
6852 			option_exists |= IPPF_DSTOPTS;
6853 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
6854 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
6855 			option_exists |= IPPF_DSTOPTS;
6856 			is_sticky |= IPPF_DSTOPTS;
6857 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
6858 		}
6859 	}
6860 
6861 	if (!(ignore & IPPF_IFINDEX)) {
6862 		if (ipp->ipp_fields & IPPF_IFINDEX) {
6863 			option_exists |= IPPF_IFINDEX;
6864 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
6865 			option_exists |= IPPF_IFINDEX;
6866 			is_sticky |= IPPF_IFINDEX;
6867 		}
6868 	}
6869 
6870 	if (!(ignore & IPPF_ADDR)) {
6871 		if (ipp->ipp_fields & IPPF_ADDR) {
6872 			option_exists |= IPPF_ADDR;
6873 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
6874 			option_exists |= IPPF_ADDR;
6875 			is_sticky |= IPPF_ADDR;
6876 		}
6877 	}
6878 
6879 	if (!(ignore & IPPF_DONTFRAG)) {
6880 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
6881 			option_exists |= IPPF_DONTFRAG;
6882 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
6883 			option_exists |= IPPF_DONTFRAG;
6884 			is_sticky |= IPPF_DONTFRAG;
6885 		}
6886 	}
6887 
6888 	if (!(ignore & IPPF_USE_MIN_MTU)) {
6889 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
6890 			option_exists |= IPPF_USE_MIN_MTU;
6891 		} else if (udp->udp_sticky_ipp.ipp_fields &
6892 		    IPPF_USE_MIN_MTU) {
6893 			option_exists |= IPPF_USE_MIN_MTU;
6894 			is_sticky |= IPPF_USE_MIN_MTU;
6895 		}
6896 	}
6897 
6898 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
6899 		option_exists |= IPPF_HOPLIMIT;
6900 	/* IPV6_HOPLIMIT can never be sticky */
6901 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
6902 
6903 	if (!(ignore & IPPF_UNICAST_HOPS) &&
6904 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
6905 		option_exists |= IPPF_UNICAST_HOPS;
6906 		is_sticky |= IPPF_UNICAST_HOPS;
6907 	}
6908 
6909 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
6910 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
6911 		option_exists |= IPPF_MULTICAST_HOPS;
6912 		is_sticky |= IPPF_MULTICAST_HOPS;
6913 	}
6914 
6915 	if (!(ignore & IPPF_TCLASS)) {
6916 		if (ipp->ipp_fields & IPPF_TCLASS) {
6917 			option_exists |= IPPF_TCLASS;
6918 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
6919 			option_exists |= IPPF_TCLASS;
6920 			is_sticky |= IPPF_TCLASS;
6921 		}
6922 	}
6923 
6924 	if (!(ignore & IPPF_NEXTHOP) &&
6925 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) {
6926 		option_exists |= IPPF_NEXTHOP;
6927 		is_sticky |= IPPF_NEXTHOP;
6928 	}
6929 
6930 no_options:
6931 
6932 	/*
6933 	 * If any options carried in the ip6i_t were specified, we
6934 	 * need to account for the ip6i_t in the data we'll be sending
6935 	 * down.
6936 	 */
6937 	if (option_exists & IPPF_HAS_IP6I)
6938 		udp_ip_hdr_len += sizeof (ip6i_t);
6939 
6940 	/* check/fix buffer config, setup pointers into it */
6941 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
6942 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
6943 	    !OK_32PTR(ip6h)) {
6944 
6945 		/* Try to get everything in a single mblk next time */
6946 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
6947 			udp->udp_max_hdr_len = udp_ip_hdr_len;
6948 			sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
6949 		}
6950 
6951 		mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO);
6952 		if (mp2 == NULL) {
6953 			*error = ENOMEM;
6954 			rw_exit(&udp->udp_rwlock);
6955 			goto done;
6956 		}
6957 		mp2->b_wptr = DB_LIM(mp2);
6958 		mp2->b_cont = mp1;
6959 		mp1 = mp2;
6960 		if (DB_TYPE(mp) != M_DATA)
6961 			mp->b_cont = mp1;
6962 		else
6963 			mp = mp1;
6964 
6965 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
6966 	}
6967 	mp1->b_rptr = (unsigned char *)ip6h;
6968 	ip6i = (ip6i_t *)ip6h;
6969 
6970 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
6971 	if (option_exists & IPPF_HAS_IP6I) {
6972 		ip6h = (ip6_t *)&ip6i[1];
6973 		ip6i->ip6i_flags = 0;
6974 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
6975 
6976 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
6977 		if (option_exists & IPPF_SCOPE_ID) {
6978 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6979 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
6980 		} else if (option_exists & IPPF_IFINDEX) {
6981 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
6982 			ASSERT(tipp->ipp_ifindex != 0);
6983 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6984 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
6985 		}
6986 
6987 		if (option_exists & IPPF_ADDR) {
6988 			/*
6989 			 * Enable per-packet source address verification if
6990 			 * IPV6_PKTINFO specified the source address.
6991 			 * ip6_src is set in the transport's _wput function.
6992 			 */
6993 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
6994 		}
6995 
6996 		if (option_exists & IPPF_DONTFRAG) {
6997 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
6998 		}
6999 
7000 		if (option_exists & IPPF_USE_MIN_MTU) {
7001 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
7002 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
7003 		}
7004 
7005 		if (option_exists & IPPF_NEXTHOP) {
7006 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
7007 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
7008 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
7009 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
7010 		}
7011 
7012 		/*
7013 		 * tell IP this is an ip6i_t private header
7014 		 */
7015 		ip6i->ip6i_nxt = IPPROTO_RAW;
7016 	}
7017 
7018 	/* Initialize IPv6 header */
7019 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7020 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
7021 
7022 	/* Set the hoplimit of the outgoing packet. */
7023 	if (option_exists & IPPF_HOPLIMIT) {
7024 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
7025 		ip6h->ip6_hops = ipp->ipp_hoplimit;
7026 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7027 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
7028 		ip6h->ip6_hops = udp->udp_multicast_ttl;
7029 		if (option_exists & IPPF_MULTICAST_HOPS)
7030 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7031 	} else {
7032 		ip6h->ip6_hops = udp->udp_ttl;
7033 		if (option_exists & IPPF_UNICAST_HOPS)
7034 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7035 	}
7036 
7037 	if (option_exists & IPPF_ADDR) {
7038 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
7039 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
7040 		ip6h->ip6_src = tipp->ipp_addr;
7041 	} else {
7042 		/*
7043 		 * The source address was not set using IPV6_PKTINFO.
7044 		 * First look at the bound source.
7045 		 * If unspecified fallback to __sin6_src_id.
7046 		 */
7047 		ip6h->ip6_src = udp->udp_v6src;
7048 		if (sin6->__sin6_src_id != 0 &&
7049 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
7050 			ip_srcid_find_id(sin6->__sin6_src_id,
7051 			    &ip6h->ip6_src, connp->conn_zoneid,
7052 			    us->us_netstack);
7053 		}
7054 	}
7055 
7056 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
7057 	cp = (uint8_t *)&ip6h[1];
7058 
7059 	/*
7060 	 * Here's where we have to start stringing together
7061 	 * any extension headers in the right order:
7062 	 * Hop-by-hop, destination, routing, and final destination opts.
7063 	 */
7064 	if (option_exists & IPPF_HOPOPTS) {
7065 		/* Hop-by-hop options */
7066 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
7067 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
7068 		if (hopoptslen == 0) {
7069 			hopoptsptr = tipp->ipp_hopopts;
7070 			hopoptslen = tipp->ipp_hopoptslen;
7071 			is_ancillary = B_TRUE;
7072 		}
7073 
7074 		*nxthdr_ptr = IPPROTO_HOPOPTS;
7075 		nxthdr_ptr = &hbh->ip6h_nxt;
7076 
7077 		bcopy(hopoptsptr, cp, hopoptslen);
7078 		cp += hopoptslen;
7079 
7080 		if (hopoptsptr != NULL && !is_ancillary) {
7081 			kmem_free(hopoptsptr, hopoptslen);
7082 			hopoptsptr = NULL;
7083 			hopoptslen = 0;
7084 		}
7085 	}
7086 	/*
7087 	 * En-route destination options
7088 	 * Only do them if there's a routing header as well
7089 	 */
7090 	if (option_exists & IPPF_RTDSTOPTS) {
7091 		ip6_dest_t *dst = (ip6_dest_t *)cp;
7092 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
7093 
7094 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7095 		nxthdr_ptr = &dst->ip6d_nxt;
7096 
7097 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
7098 		cp += tipp->ipp_rtdstoptslen;
7099 	}
7100 	/*
7101 	 * Routing header next
7102 	 */
7103 	if (option_exists & IPPF_RTHDR) {
7104 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
7105 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
7106 
7107 		*nxthdr_ptr = IPPROTO_ROUTING;
7108 		nxthdr_ptr = &rt->ip6r_nxt;
7109 
7110 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
7111 		cp += tipp->ipp_rthdrlen;
7112 	}
7113 	/*
7114 	 * Do ultimate destination options
7115 	 */
7116 	if (option_exists & IPPF_DSTOPTS) {
7117 		ip6_dest_t *dest = (ip6_dest_t *)cp;
7118 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
7119 
7120 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7121 		nxthdr_ptr = &dest->ip6d_nxt;
7122 
7123 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
7124 		cp += tipp->ipp_dstoptslen;
7125 	}
7126 	/*
7127 	 * Now set the last header pointer to the proto passed in
7128 	 */
7129 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
7130 	*nxthdr_ptr = IPPROTO_UDP;
7131 
7132 	/* Update UDP header */
7133 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
7134 	udph->uha_dst_port = sin6->sin6_port;
7135 	udph->uha_src_port = udp->udp_port;
7136 
7137 	/*
7138 	 * Copy in the destination address
7139 	 */
7140 	ip6h->ip6_dst = ip6_dst;
7141 
7142 	ip6h->ip6_vcf =
7143 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
7144 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
7145 
7146 	if (option_exists & IPPF_TCLASS) {
7147 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
7148 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
7149 		    tipp->ipp_tclass);
7150 	}
7151 	rw_exit(&udp->udp_rwlock);
7152 
7153 	if (option_exists & IPPF_RTHDR) {
7154 		ip6_rthdr_t	*rth;
7155 
7156 		/*
7157 		 * Perform any processing needed for source routing.
7158 		 * We know that all extension headers will be in the same mblk
7159 		 * as the IPv6 header.
7160 		 */
7161 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
7162 		if (rth != NULL && rth->ip6r_segleft != 0) {
7163 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
7164 				/*
7165 				 * Drop packet - only support Type 0 routing.
7166 				 * Notify the application as well.
7167 				 */
7168 				*error = EPROTO;
7169 				goto done;
7170 			}
7171 
7172 			/*
7173 			 * rth->ip6r_len is twice the number of
7174 			 * addresses in the header. Thus it must be even.
7175 			 */
7176 			if (rth->ip6r_len & 0x1) {
7177 				*error = EPROTO;
7178 				goto done;
7179 			}
7180 			/*
7181 			 * Shuffle the routing header and ip6_dst
7182 			 * addresses, and get the checksum difference
7183 			 * between the first hop (in ip6_dst) and
7184 			 * the destination (in the last routing hdr entry).
7185 			 */
7186 			csum = ip_massage_options_v6(ip6h, rth,
7187 			    us->us_netstack);
7188 			/*
7189 			 * Verify that the first hop isn't a mapped address.
7190 			 * Routers along the path need to do this verification
7191 			 * for subsequent hops.
7192 			 */
7193 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
7194 				*error = EADDRNOTAVAIL;
7195 				goto done;
7196 			}
7197 
7198 			cp += (rth->ip6r_len + 1)*8;
7199 		}
7200 	}
7201 
7202 	/* count up length of UDP packet */
7203 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
7204 	if ((mp2 = mp1->b_cont) != NULL) {
7205 		do {
7206 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
7207 			ip_len += (uint32_t)MBLKL(mp2);
7208 		} while ((mp2 = mp2->b_cont) != NULL);
7209 	}
7210 
7211 	/*
7212 	 * If the size of the packet is greater than the maximum allowed by
7213 	 * ip, return an error. Passing this down could cause panics because
7214 	 * the size will have wrapped and be inconsistent with the msg size.
7215 	 */
7216 	if (ip_len > IP_MAXPACKET) {
7217 		*error = EMSGSIZE;
7218 		goto done;
7219 	}
7220 
7221 	/* Store the UDP length. Subtract length of extension hdrs */
7222 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
7223 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
7224 
7225 	/*
7226 	 * We make it easy for IP to include our pseudo header
7227 	 * by putting our length in uh_checksum, modified (if
7228 	 * we have a routing header) by the checksum difference
7229 	 * between the ultimate destination and first hop addresses.
7230 	 * Note: UDP over IPv6 must always checksum the packet.
7231 	 */
7232 	csum += udph->uha_length;
7233 	csum = (csum & 0xFFFF) + (csum >> 16);
7234 	udph->uha_checksum = (uint16_t)csum;
7235 
7236 #ifdef _LITTLE_ENDIAN
7237 	ip_len = htons(ip_len);
7238 #endif
7239 	ip6h->ip6_plen = ip_len;
7240 	if (DB_CRED(mp) != NULL)
7241 		mblk_setcred(mp1, DB_CRED(mp));
7242 
7243 	if (DB_TYPE(mp) != M_DATA) {
7244 		ASSERT(mp != mp1);
7245 		freeb(mp);
7246 	}
7247 
7248 	/* mp has been consumed and we'll return success */
7249 	ASSERT(*error == 0);
7250 	mp = NULL;
7251 
7252 	/* We're done. Pass the packet to IP */
7253 	BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
7254 	ip_output_v6(connp, mp1, q, IP_WPUT);
7255 
7256 done:
7257 	if (sth_wroff != 0) {
7258 		(void) mi_set_sth_wroff(RD(q),
7259 		    udp->udp_max_hdr_len + us->us_wroff_extra);
7260 	}
7261 	if (hopoptsptr != NULL && !is_ancillary) {
7262 		kmem_free(hopoptsptr, hopoptslen);
7263 		hopoptsptr = NULL;
7264 	}
7265 	if (*error != 0) {
7266 		ASSERT(mp != NULL);
7267 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
7268 	}
7269 	return (mp);
7270 }
7271 
7272 static void
7273 udp_wput_other(queue_t *q, mblk_t *mp)
7274 {
7275 	uchar_t	*rptr = mp->b_rptr;
7276 	struct datab *db;
7277 	struct iocblk *iocp;
7278 	cred_t	*cr;
7279 	conn_t	*connp = Q_TO_CONN(q);
7280 	udp_t	*udp = connp->conn_udp;
7281 	udp_stack_t *us;
7282 
7283 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7284 	    "udp_wput_other_start: q %p", q);
7285 
7286 	us = udp->udp_us;
7287 	db = mp->b_datap;
7288 
7289 	cr = DB_CREDDEF(mp, connp->conn_cred);
7290 
7291 	switch (db->db_type) {
7292 	case M_PROTO:
7293 	case M_PCPROTO:
7294 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7295 			freemsg(mp);
7296 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7297 			    "udp_wput_other_end: q %p (%S)", q, "protoshort");
7298 			return;
7299 		}
7300 		switch (((t_primp_t)rptr)->type) {
7301 		case T_ADDR_REQ:
7302 			udp_addr_req(q, mp);
7303 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7304 			    "udp_wput_other_end: q %p (%S)", q, "addrreq");
7305 			return;
7306 		case O_T_BIND_REQ:
7307 		case T_BIND_REQ:
7308 			udp_bind(q, mp);
7309 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7310 			    "udp_wput_other_end: q %p (%S)", q, "bindreq");
7311 			return;
7312 		case T_CONN_REQ:
7313 			udp_connect(q, mp);
7314 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7315 			    "udp_wput_other_end: q %p (%S)", q, "connreq");
7316 			return;
7317 		case T_CAPABILITY_REQ:
7318 			udp_capability_req(q, mp);
7319 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7320 			    "udp_wput_other_end: q %p (%S)", q, "capabreq");
7321 			return;
7322 		case T_INFO_REQ:
7323 			udp_info_req(q, mp);
7324 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7325 			    "udp_wput_other_end: q %p (%S)", q, "inforeq");
7326 			return;
7327 		case T_UNITDATA_REQ:
7328 			/*
7329 			 * If a T_UNITDATA_REQ gets here, the address must
7330 			 * be bad.  Valid T_UNITDATA_REQs are handled
7331 			 * in udp_wput.
7332 			 */
7333 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7334 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7335 			    "udp_wput_other_end: q %p (%S)", q, "unitdatareq");
7336 			return;
7337 		case T_UNBIND_REQ:
7338 			udp_unbind(q, mp);
7339 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7340 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7341 			return;
7342 		case T_SVR4_OPTMGMT_REQ:
7343 			if (!snmpcom_req(q, mp, udp_snmp_set, ip_snmp_get,
7344 			    cr)) {
7345 				(void) svr4_optcom_req(q,
7346 				    mp, cr, &udp_opt_obj, B_TRUE);
7347 			}
7348 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7349 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7350 			return;
7351 
7352 		case T_OPTMGMT_REQ:
7353 			(void) tpi_optcom_req(q, mp, cr, &udp_opt_obj, B_TRUE);
7354 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7355 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7356 			return;
7357 
7358 		case T_DISCON_REQ:
7359 			udp_disconnect(q, mp);
7360 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7361 			    "udp_wput_other_end: q %p (%S)", q, "disconreq");
7362 			return;
7363 
7364 		/* The following TPI message is not supported by udp. */
7365 		case O_T_CONN_RES:
7366 		case T_CONN_RES:
7367 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7368 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7369 			    "udp_wput_other_end: q %p (%S)", q,
7370 			    "connres/disconreq");
7371 			return;
7372 
7373 		/* The following 3 TPI messages are illegal for udp. */
7374 		case T_DATA_REQ:
7375 		case T_EXDATA_REQ:
7376 		case T_ORDREL_REQ:
7377 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7378 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7379 			    "udp_wput_other_end: q %p (%S)", q,
7380 			    "data/exdata/ordrel");
7381 			return;
7382 		default:
7383 			break;
7384 		}
7385 		break;
7386 	case M_FLUSH:
7387 		if (*rptr & FLUSHW)
7388 			flushq(q, FLUSHDATA);
7389 		break;
7390 	case M_IOCTL:
7391 		iocp = (struct iocblk *)mp->b_rptr;
7392 		switch (iocp->ioc_cmd) {
7393 		case TI_GETPEERNAME:
7394 			if (udp->udp_state != TS_DATA_XFER) {
7395 				/*
7396 				 * If a default destination address has not
7397 				 * been associated with the stream, then we
7398 				 * don't know the peer's name.
7399 				 */
7400 				iocp->ioc_error = ENOTCONN;
7401 				iocp->ioc_count = 0;
7402 				mp->b_datap->db_type = M_IOCACK;
7403 				qreply(q, mp);
7404 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7405 				    "udp_wput_other_end: q %p (%S)", q,
7406 				    "getpeername");
7407 				return;
7408 			}
7409 			/* FALLTHRU */
7410 		case TI_GETMYNAME: {
7411 			/*
7412 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
7413 			 * need to copyin the user's strbuf structure.
7414 			 * Processing will continue in the M_IOCDATA case
7415 			 * below.
7416 			 */
7417 			mi_copyin(q, mp, NULL,
7418 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
7419 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7420 			    "udp_wput_other_end: q %p (%S)", q, "getmyname");
7421 			return;
7422 			}
7423 		case ND_SET:
7424 			/* nd_getset performs the necessary checking */
7425 		case ND_GET:
7426 			if (nd_getset(q, us->us_nd, mp)) {
7427 				qreply(q, mp);
7428 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7429 				    "udp_wput_other_end: q %p (%S)", q, "get");
7430 				return;
7431 			}
7432 			break;
7433 		case _SIOCSOCKFALLBACK:
7434 			/*
7435 			 * Either sockmod is about to be popped and the
7436 			 * socket would now be treated as a plain stream,
7437 			 * or a module is about to be pushed so we could
7438 			 * no longer use read-side synchronous stream.
7439 			 * Drain any queued data and disable direct sockfs
7440 			 * interface from now on.
7441 			 */
7442 			if (!udp->udp_issocket) {
7443 				DB_TYPE(mp) = M_IOCNAK;
7444 				iocp->ioc_error = EINVAL;
7445 			} else {
7446 				udp->udp_issocket = B_FALSE;
7447 				if (udp->udp_direct_sockfs) {
7448 					/*
7449 					 * Disable read-side synchronous
7450 					 * stream interface and drain any
7451 					 * queued data.
7452 					 */
7453 					udp_rcv_drain(RD(q), udp,
7454 					    B_FALSE);
7455 					ASSERT(!udp->udp_direct_sockfs);
7456 					UDP_STAT(us, udp_sock_fallback);
7457 				}
7458 				DB_TYPE(mp) = M_IOCACK;
7459 				iocp->ioc_error = 0;
7460 			}
7461 			iocp->ioc_count = 0;
7462 			iocp->ioc_rval = 0;
7463 			qreply(q, mp);
7464 			return;
7465 		default:
7466 			break;
7467 		}
7468 		break;
7469 	case M_IOCDATA:
7470 		udp_wput_iocdata(q, mp);
7471 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7472 		    "udp_wput_other_end: q %p (%S)", q, "iocdata");
7473 		return;
7474 	default:
7475 		/* Unrecognized messages are passed through without change. */
7476 		break;
7477 	}
7478 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7479 	    "udp_wput_other_end: q %p (%S)", q, "end");
7480 	ip_output(connp, mp, q, IP_WPUT);
7481 }
7482 
7483 /*
7484  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
7485  * messages.
7486  */
7487 static void
7488 udp_wput_iocdata(queue_t *q, mblk_t *mp)
7489 {
7490 	mblk_t	*mp1;
7491 	STRUCT_HANDLE(strbuf, sb);
7492 	uint16_t port;
7493 	in6_addr_t	v6addr;
7494 	ipaddr_t	v4addr;
7495 	uint32_t	flowinfo = 0;
7496 	int		addrlen;
7497 	udp_t		*udp = Q_TO_UDP(q);
7498 
7499 	/* Make sure it is one of ours. */
7500 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7501 	case TI_GETMYNAME:
7502 	case TI_GETPEERNAME:
7503 		break;
7504 	default:
7505 		ip_output(udp->udp_connp, mp, q, IP_WPUT);
7506 		return;
7507 	}
7508 
7509 	switch (mi_copy_state(q, mp, &mp1)) {
7510 	case -1:
7511 		return;
7512 	case MI_COPY_CASE(MI_COPY_IN, 1):
7513 		break;
7514 	case MI_COPY_CASE(MI_COPY_OUT, 1):
7515 		/*
7516 		 * The address has been copied out, so now
7517 		 * copyout the strbuf.
7518 		 */
7519 		mi_copyout(q, mp);
7520 		return;
7521 	case MI_COPY_CASE(MI_COPY_OUT, 2):
7522 		/*
7523 		 * The address and strbuf have been copied out.
7524 		 * We're done, so just acknowledge the original
7525 		 * M_IOCTL.
7526 		 */
7527 		mi_copy_done(q, mp, 0);
7528 		return;
7529 	default:
7530 		/*
7531 		 * Something strange has happened, so acknowledge
7532 		 * the original M_IOCTL with an EPROTO error.
7533 		 */
7534 		mi_copy_done(q, mp, EPROTO);
7535 		return;
7536 	}
7537 
7538 	/*
7539 	 * Now we have the strbuf structure for TI_GETMYNAME
7540 	 * and TI_GETPEERNAME.  Next we copyout the requested
7541 	 * address and then we'll copyout the strbuf.
7542 	 */
7543 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
7544 	    (void *)mp1->b_rptr);
7545 	if (udp->udp_family == AF_INET)
7546 		addrlen = sizeof (sin_t);
7547 	else
7548 		addrlen = sizeof (sin6_t);
7549 
7550 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
7551 		mi_copy_done(q, mp, EINVAL);
7552 		return;
7553 	}
7554 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7555 	case TI_GETMYNAME:
7556 		if (udp->udp_family == AF_INET) {
7557 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7558 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
7559 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7560 				v4addr = V4_PART_OF_V6(udp->udp_v6src);
7561 			} else {
7562 				/*
7563 				 * INADDR_ANY
7564 				 * udp_v6src is not set, we might be bound to
7565 				 * broadcast/multicast. Use udp_bound_v6src as
7566 				 * local address instead (that could
7567 				 * also still be INADDR_ANY)
7568 				 */
7569 				v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
7570 			}
7571 		} else {
7572 			/* udp->udp_family == AF_INET6 */
7573 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7574 				v6addr = udp->udp_v6src;
7575 			} else {
7576 				/*
7577 				 * UNSPECIFIED
7578 				 * udp_v6src is not set, we might be bound to
7579 				 * broadcast/multicast. Use udp_bound_v6src as
7580 				 * local address instead (that could
7581 				 * also still be UNSPECIFIED)
7582 				 */
7583 				v6addr = udp->udp_bound_v6src;
7584 			}
7585 		}
7586 		port = udp->udp_port;
7587 		break;
7588 	case TI_GETPEERNAME:
7589 		if (udp->udp_state != TS_DATA_XFER) {
7590 			mi_copy_done(q, mp, ENOTCONN);
7591 			return;
7592 		}
7593 		if (udp->udp_family == AF_INET) {
7594 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7595 			v4addr = V4_PART_OF_V6(udp->udp_v6dst);
7596 		} else {
7597 			/* udp->udp_family == AF_INET6) */
7598 			v6addr = udp->udp_v6dst;
7599 			flowinfo = udp->udp_flowinfo;
7600 		}
7601 		port = udp->udp_dstport;
7602 		break;
7603 	default:
7604 		mi_copy_done(q, mp, EPROTO);
7605 		return;
7606 	}
7607 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
7608 	if (!mp1)
7609 		return;
7610 
7611 	if (udp->udp_family == AF_INET) {
7612 		sin_t *sin;
7613 
7614 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
7615 		sin = (sin_t *)mp1->b_rptr;
7616 		mp1->b_wptr = (uchar_t *)&sin[1];
7617 		*sin = sin_null;
7618 		sin->sin_family = AF_INET;
7619 		sin->sin_addr.s_addr = v4addr;
7620 		sin->sin_port = port;
7621 	} else {
7622 		/* udp->udp_family == AF_INET6 */
7623 		sin6_t *sin6;
7624 
7625 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
7626 		sin6 = (sin6_t *)mp1->b_rptr;
7627 		mp1->b_wptr = (uchar_t *)&sin6[1];
7628 		*sin6 = sin6_null;
7629 		sin6->sin6_family = AF_INET6;
7630 		sin6->sin6_flowinfo = flowinfo;
7631 		sin6->sin6_addr = v6addr;
7632 		sin6->sin6_port = port;
7633 	}
7634 	/* Copy out the address */
7635 	mi_copyout(q, mp);
7636 }
7637 
7638 
7639 static int
7640 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
7641     udpattrs_t *udpattrs)
7642 {
7643 	struct T_unitdata_req *udreqp;
7644 	int is_absreq_failure;
7645 	cred_t *cr;
7646 	conn_t	*connp = Q_TO_CONN(q);
7647 
7648 	ASSERT(((t_primp_t)mp->b_rptr)->type);
7649 
7650 	cr = DB_CREDDEF(mp, connp->conn_cred);
7651 
7652 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
7653 
7654 	*errorp = tpi_optcom_buf(q, mp, &udreqp->OPT_length,
7655 	    udreqp->OPT_offset, cr, &udp_opt_obj,
7656 	    udpattrs, &is_absreq_failure);
7657 
7658 	if (*errorp != 0) {
7659 		/*
7660 		 * Note: No special action needed in this
7661 		 * module for "is_absreq_failure"
7662 		 */
7663 		return (-1);		/* failure */
7664 	}
7665 	ASSERT(is_absreq_failure == 0);
7666 	return (0);	/* success */
7667 }
7668 
7669 void
7670 udp_ddi_init(void)
7671 {
7672 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
7673 	    udp_opt_obj.odb_opt_arr_cnt);
7674 
7675 	/*
7676 	 * We want to be informed each time a stack is created or
7677 	 * destroyed in the kernel, so we can maintain the
7678 	 * set of udp_stack_t's.
7679 	 */
7680 	netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini);
7681 }
7682 
7683 void
7684 udp_ddi_destroy(void)
7685 {
7686 	netstack_unregister(NS_UDP);
7687 }
7688 
7689 /*
7690  * Initialize the UDP stack instance.
7691  */
7692 static void *
7693 udp_stack_init(netstackid_t stackid, netstack_t *ns)
7694 {
7695 	udp_stack_t	*us;
7696 	udpparam_t	*pa;
7697 	int		i;
7698 
7699 	us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP);
7700 	us->us_netstack = ns;
7701 
7702 	us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
7703 	us->us_epriv_ports[0] = 2049;
7704 	us->us_epriv_ports[1] = 4045;
7705 
7706 	/*
7707 	 * The smallest anonymous port in the priviledged port range which UDP
7708 	 * looks for free port.  Use in the option UDP_ANONPRIVBIND.
7709 	 */
7710 	us->us_min_anonpriv_port = 512;
7711 
7712 	us->us_bind_fanout_size = udp_bind_fanout_size;
7713 
7714 	/* Roundup variable that might have been modified in /etc/system */
7715 	if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) {
7716 		/* Not a power of two. Round up to nearest power of two */
7717 		for (i = 0; i < 31; i++) {
7718 			if (us->us_bind_fanout_size < (1 << i))
7719 				break;
7720 		}
7721 		us->us_bind_fanout_size = 1 << i;
7722 	}
7723 	us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size *
7724 	    sizeof (udp_fanout_t), KM_SLEEP);
7725 	for (i = 0; i < us->us_bind_fanout_size; i++) {
7726 		mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
7727 		    NULL);
7728 	}
7729 
7730 	pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP);
7731 
7732 	us->us_param_arr = pa;
7733 	bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr));
7734 
7735 	(void) udp_param_register(&us->us_nd,
7736 	    us->us_param_arr, A_CNT(udp_param_arr));
7737 
7738 	us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics);
7739 	us->us_mibkp = udp_kstat_init(stackid);
7740 	return (us);
7741 }
7742 
7743 /*
7744  * Free the UDP stack instance.
7745  */
7746 static void
7747 udp_stack_fini(netstackid_t stackid, void *arg)
7748 {
7749 	udp_stack_t *us = (udp_stack_t *)arg;
7750 	int i;
7751 
7752 	for (i = 0; i < us->us_bind_fanout_size; i++) {
7753 		mutex_destroy(&us->us_bind_fanout[i].uf_lock);
7754 	}
7755 
7756 	kmem_free(us->us_bind_fanout, us->us_bind_fanout_size *
7757 	    sizeof (udp_fanout_t));
7758 
7759 	us->us_bind_fanout = NULL;
7760 
7761 	nd_free(&us->us_nd);
7762 	kmem_free(us->us_param_arr, sizeof (udp_param_arr));
7763 	us->us_param_arr = NULL;
7764 
7765 	udp_kstat_fini(stackid, us->us_mibkp);
7766 	us->us_mibkp = NULL;
7767 
7768 	udp_kstat2_fini(stackid, us->us_kstat);
7769 	us->us_kstat = NULL;
7770 	bzero(&us->us_statistics, sizeof (us->us_statistics));
7771 	kmem_free(us, sizeof (*us));
7772 }
7773 
7774 static void *
7775 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp)
7776 {
7777 	kstat_t *ksp;
7778 
7779 	udp_stat_t template = {
7780 		{ "udp_ip_send",		KSTAT_DATA_UINT64 },
7781 		{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
7782 		{ "udp_ire_null",		KSTAT_DATA_UINT64 },
7783 		{ "udp_drain",			KSTAT_DATA_UINT64 },
7784 		{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
7785 		{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
7786 		{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
7787 		{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
7788 		{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
7789 		{ "udp_out_opt",		KSTAT_DATA_UINT64 },
7790 		{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
7791 		{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
7792 		{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
7793 		{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
7794 		{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
7795 		{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
7796 		{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
7797 		{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
7798 		{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
7799 		{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
7800 		{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
7801 		{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
7802 		{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
7803 		{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
7804 		{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
7805 		{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
7806 		{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
7807 		{ "udp_in_timestamp",		KSTAT_DATA_UINT64 },
7808 #ifdef DEBUG
7809 		{ "udp_data_conn",		KSTAT_DATA_UINT64 },
7810 		{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
7811 #endif
7812 	};
7813 
7814 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net",
7815 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
7816 	    KSTAT_FLAG_VIRTUAL, stackid);
7817 
7818 	if (ksp == NULL)
7819 		return (NULL);
7820 
7821 	bcopy(&template, us_statisticsp, sizeof (template));
7822 	ksp->ks_data = (void *)us_statisticsp;
7823 	ksp->ks_private = (void *)(uintptr_t)stackid;
7824 
7825 	kstat_install(ksp);
7826 	return (ksp);
7827 }
7828 
7829 static void
7830 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
7831 {
7832 	if (ksp != NULL) {
7833 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
7834 		kstat_delete_netstack(ksp, stackid);
7835 	}
7836 }
7837 
7838 static void *
7839 udp_kstat_init(netstackid_t stackid)
7840 {
7841 	kstat_t	*ksp;
7842 
7843 	udp_named_kstat_t template = {
7844 		{ "inDatagrams",	KSTAT_DATA_UINT64, 0 },
7845 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
7846 		{ "outDatagrams",	KSTAT_DATA_UINT64, 0 },
7847 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
7848 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
7849 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
7850 	};
7851 
7852 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2",
7853 	    KSTAT_TYPE_NAMED,
7854 	    NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid);
7855 
7856 	if (ksp == NULL || ksp->ks_data == NULL)
7857 		return (NULL);
7858 
7859 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
7860 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
7861 
7862 	bcopy(&template, ksp->ks_data, sizeof (template));
7863 	ksp->ks_update = udp_kstat_update;
7864 	ksp->ks_private = (void *)(uintptr_t)stackid;
7865 
7866 	kstat_install(ksp);
7867 	return (ksp);
7868 }
7869 
7870 static void
7871 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
7872 {
7873 	if (ksp != NULL) {
7874 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
7875 		kstat_delete_netstack(ksp, stackid);
7876 	}
7877 }
7878 
7879 static int
7880 udp_kstat_update(kstat_t *kp, int rw)
7881 {
7882 	udp_named_kstat_t *udpkp;
7883 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
7884 	netstack_t	*ns;
7885 	udp_stack_t	*us;
7886 
7887 	if ((kp == NULL) || (kp->ks_data == NULL))
7888 		return (EIO);
7889 
7890 	if (rw == KSTAT_WRITE)
7891 		return (EACCES);
7892 
7893 	ns = netstack_find_by_stackid(stackid);
7894 	if (ns == NULL)
7895 		return (-1);
7896 	us = ns->netstack_udp;
7897 	if (us == NULL) {
7898 		netstack_rele(ns);
7899 		return (-1);
7900 	}
7901 	udpkp = (udp_named_kstat_t *)kp->ks_data;
7902 
7903 	udpkp->inDatagrams.value.ui64 =	us->us_udp_mib.udpHCInDatagrams;
7904 	udpkp->inErrors.value.ui32 =	us->us_udp_mib.udpInErrors;
7905 	udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams;
7906 	udpkp->outErrors.value.ui32 =	us->us_udp_mib.udpOutErrors;
7907 	netstack_rele(ns);
7908 	return (0);
7909 }
7910 
7911 /*
7912  * Read-side synchronous stream info entry point, called as a
7913  * result of handling certain STREAMS ioctl operations.
7914  */
7915 static int
7916 udp_rinfop(queue_t *q, infod_t *dp)
7917 {
7918 	mblk_t	*mp;
7919 	uint_t	cmd = dp->d_cmd;
7920 	int	res = 0;
7921 	int	error = 0;
7922 	udp_t	*udp = Q_TO_UDP(q);
7923 	struct stdata *stp = STREAM(q);
7924 
7925 	mutex_enter(&udp->udp_drain_lock);
7926 	/* If shutdown on read has happened, return nothing */
7927 	mutex_enter(&stp->sd_lock);
7928 	if (stp->sd_flag & STREOF) {
7929 		mutex_exit(&stp->sd_lock);
7930 		goto done;
7931 	}
7932 	mutex_exit(&stp->sd_lock);
7933 
7934 	if ((mp = udp->udp_rcv_list_head) == NULL)
7935 		goto done;
7936 
7937 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
7938 
7939 	if (cmd & INFOD_COUNT) {
7940 		/*
7941 		 * Return the number of messages.
7942 		 */
7943 		dp->d_count += udp->udp_rcv_msgcnt;
7944 		res |= INFOD_COUNT;
7945 	}
7946 	if (cmd & INFOD_BYTES) {
7947 		/*
7948 		 * Return size of all data messages.
7949 		 */
7950 		dp->d_bytes += udp->udp_rcv_cnt;
7951 		res |= INFOD_BYTES;
7952 	}
7953 	if (cmd & INFOD_FIRSTBYTES) {
7954 		/*
7955 		 * Return size of first data message.
7956 		 */
7957 		dp->d_bytes = msgdsize(mp);
7958 		res |= INFOD_FIRSTBYTES;
7959 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
7960 	}
7961 	if (cmd & INFOD_COPYOUT) {
7962 		mblk_t *mp1 = mp->b_cont;
7963 		int n;
7964 		/*
7965 		 * Return data contents of first message.
7966 		 */
7967 		ASSERT(DB_TYPE(mp1) == M_DATA);
7968 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
7969 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
7970 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
7971 			    UIO_READ, dp->d_uiop)) != 0) {
7972 				goto done;
7973 			}
7974 			mp1 = mp1->b_cont;
7975 		}
7976 		res |= INFOD_COPYOUT;
7977 		dp->d_cmd &= ~INFOD_COPYOUT;
7978 	}
7979 done:
7980 	mutex_exit(&udp->udp_drain_lock);
7981 
7982 	dp->d_res |= res;
7983 
7984 	return (error);
7985 }
7986 
7987 /*
7988  * Read-side synchronous stream entry point.  This is called as a result
7989  * of recv/read operation done at sockfs, and is guaranteed to execute
7990  * outside of the interrupt thread context.  It returns a single datagram
7991  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
7992  */
7993 static int
7994 udp_rrw(queue_t *q, struiod_t *dp)
7995 {
7996 	mblk_t	*mp;
7997 	udp_t	*udp = Q_TO_UDP(q);
7998 	udp_stack_t *us = udp->udp_us;
7999 
8000 	/*
8001 	 * Dequeue datagram from the head of the list and return
8002 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
8003 	 * set/cleared depending on whether or not there's data
8004 	 * remaining in the list.
8005 	 */
8006 	mutex_enter(&udp->udp_drain_lock);
8007 	if (!udp->udp_direct_sockfs) {
8008 		mutex_exit(&udp->udp_drain_lock);
8009 		UDP_STAT(us, udp_rrw_busy);
8010 		return (EBUSY);
8011 	}
8012 	if ((mp = udp->udp_rcv_list_head) != NULL) {
8013 		uint_t size = msgdsize(mp);
8014 
8015 		/* Last datagram in the list? */
8016 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
8017 			udp->udp_rcv_list_tail = NULL;
8018 		mp->b_next = NULL;
8019 
8020 		udp->udp_rcv_cnt -= size;
8021 		udp->udp_rcv_msgcnt--;
8022 		UDP_STAT(us, udp_rrw_msgcnt);
8023 
8024 		/* No longer flow-controlling? */
8025 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
8026 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
8027 			udp->udp_drain_qfull = B_FALSE;
8028 	}
8029 	if (udp->udp_rcv_list_head == NULL) {
8030 		/*
8031 		 * Either we just dequeued the last datagram or
8032 		 * we get here from sockfs and have nothing to
8033 		 * return; in this case clear RSLEEP.
8034 		 */
8035 		ASSERT(udp->udp_rcv_cnt == 0);
8036 		ASSERT(udp->udp_rcv_msgcnt == 0);
8037 		ASSERT(udp->udp_rcv_list_tail == NULL);
8038 		STR_WAKEUP_CLEAR(STREAM(q));
8039 	} else {
8040 		/*
8041 		 * More data follows; we need udp_rrw() to be
8042 		 * called in future to pick up the rest.
8043 		 */
8044 		STR_WAKEUP_SET(STREAM(q));
8045 	}
8046 	mutex_exit(&udp->udp_drain_lock);
8047 	dp->d_mp = mp;
8048 	return (0);
8049 }
8050 
8051 /*
8052  * Enqueue a completely-built T_UNITDATA_IND message into the receive
8053  * list; this is typically executed within the interrupt thread context
8054  * and so we do things as quickly as possible.
8055  */
8056 static void
8057 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
8058 {
8059 	ASSERT(q == RD(q));
8060 	ASSERT(pkt_len == msgdsize(mp));
8061 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
8062 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
8063 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
8064 
8065 	mutex_enter(&udp->udp_drain_lock);
8066 	/*
8067 	 * Wake up and signal the receiving app; it is okay to do this
8068 	 * before enqueueing the mp because we are holding the drain lock.
8069 	 * One of the advantages of synchronous stream is the ability for
8070 	 * us to find out when the application performs a read on the
8071 	 * socket by way of udp_rrw() entry point being called.  We need
8072 	 * to generate SIGPOLL/SIGIO for each received data in the case
8073 	 * of asynchronous socket just as in the strrput() case.  However,
8074 	 * we only wake the application up when necessary, i.e. during the
8075 	 * first enqueue.  When udp_rrw() is called, we send up a single
8076 	 * datagram upstream and call STR_WAKEUP_SET() again when there
8077 	 * are still data remaining in our receive queue.
8078 	 */
8079 	if (udp->udp_rcv_list_head == NULL) {
8080 		STR_WAKEUP_SET(STREAM(q));
8081 		udp->udp_rcv_list_head = mp;
8082 	} else {
8083 		udp->udp_rcv_list_tail->b_next = mp;
8084 	}
8085 	udp->udp_rcv_list_tail = mp;
8086 	udp->udp_rcv_cnt += pkt_len;
8087 	udp->udp_rcv_msgcnt++;
8088 
8089 	/* Need to flow-control? */
8090 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
8091 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
8092 		udp->udp_drain_qfull = B_TRUE;
8093 
8094 	/* Update poll events and send SIGPOLL/SIGIO if necessary */
8095 	STR_SENDSIG(STREAM(q));
8096 	mutex_exit(&udp->udp_drain_lock);
8097 }
8098 
8099 /*
8100  * Drain the contents of receive list to the module upstream; we do
8101  * this during close or when we fallback to the slow mode due to
8102  * sockmod being popped or a module being pushed on top of us.
8103  */
8104 static void
8105 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
8106 {
8107 	mblk_t *mp;
8108 	udp_stack_t *us = udp->udp_us;
8109 
8110 	ASSERT(q == RD(q));
8111 
8112 	mutex_enter(&udp->udp_drain_lock);
8113 	/*
8114 	 * There is no race with a concurrent udp_input() sending
8115 	 * up packets using putnext() after we have cleared the
8116 	 * udp_direct_sockfs flag but before we have completed
8117 	 * sending up the packets in udp_rcv_list, since we are
8118 	 * either a writer or we have quiesced the conn.
8119 	 */
8120 	udp->udp_direct_sockfs = B_FALSE;
8121 	mutex_exit(&udp->udp_drain_lock);
8122 
8123 	if (udp->udp_rcv_list_head != NULL)
8124 		UDP_STAT(us, udp_drain);
8125 
8126 	/*
8127 	 * Send up everything via putnext(); note here that we
8128 	 * don't need the udp_drain_lock to protect us since
8129 	 * nothing can enter udp_rrw() and that we currently
8130 	 * have exclusive access to this udp.
8131 	 */
8132 	while ((mp = udp->udp_rcv_list_head) != NULL) {
8133 		udp->udp_rcv_list_head = mp->b_next;
8134 		mp->b_next = NULL;
8135 		udp->udp_rcv_cnt -= msgdsize(mp);
8136 		udp->udp_rcv_msgcnt--;
8137 		if (closing) {
8138 			freemsg(mp);
8139 		} else {
8140 			putnext(q, mp);
8141 		}
8142 	}
8143 	ASSERT(udp->udp_rcv_cnt == 0);
8144 	ASSERT(udp->udp_rcv_msgcnt == 0);
8145 	ASSERT(udp->udp_rcv_list_head == NULL);
8146 	udp->udp_rcv_list_tail = NULL;
8147 	udp->udp_drain_qfull = B_FALSE;
8148 }
8149 
8150 static size_t
8151 udp_set_rcv_hiwat(udp_t *udp, size_t size)
8152 {
8153 	udp_stack_t *us = udp->udp_us;
8154 
8155 	/* We add a bit of extra buffering */
8156 	size += size >> 1;
8157 	if (size > us->us_max_buf)
8158 		size = us->us_max_buf;
8159 
8160 	udp->udp_rcv_hiwat = size;
8161 	return (size);
8162 }
8163 
8164 /*
8165  * For the lower queue so that UDP can be a dummy mux.
8166  * Nobody should be sending
8167  * packets up this stream
8168  */
8169 static void
8170 udp_lrput(queue_t *q, mblk_t *mp)
8171 {
8172 	mblk_t *mp1;
8173 
8174 	switch (mp->b_datap->db_type) {
8175 	case M_FLUSH:
8176 		/* Turn around */
8177 		if (*mp->b_rptr & FLUSHW) {
8178 			*mp->b_rptr &= ~FLUSHR;
8179 			qreply(q, mp);
8180 			return;
8181 		}
8182 		break;
8183 	}
8184 	/* Could receive messages that passed through ar_rput */
8185 	for (mp1 = mp; mp1; mp1 = mp1->b_cont)
8186 		mp1->b_prev = mp1->b_next = NULL;
8187 	freemsg(mp);
8188 }
8189 
8190 /*
8191  * For the lower queue so that UDP can be a dummy mux.
8192  * Nobody should be sending packets down this stream.
8193  */
8194 /* ARGSUSED */
8195 void
8196 udp_lwput(queue_t *q, mblk_t *mp)
8197 {
8198 	freemsg(mp);
8199 }
8200