1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 const char udp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/pattr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/time.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/strsubr.h> 45 #include <sys/suntpi.h> 46 #include <sys/xti_inet.h> 47 #include <sys/cmn_err.h> 48 #include <sys/kmem.h> 49 #include <sys/policy.h> 50 #include <sys/ucred.h> 51 #include <sys/zone.h> 52 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/vtrace.h> 56 #include <sys/sdt.h> 57 #include <sys/debug.h> 58 #include <sys/isa_defs.h> 59 #include <sys/random.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/udp.h> 64 #include <net/if.h> 65 #include <net/route.h> 66 67 #include <inet/common.h> 68 #include <inet/ip.h> 69 #include <inet/ip_impl.h> 70 #include <inet/ip6.h> 71 #include <inet/ip_ire.h> 72 #include <inet/ip_if.h> 73 #include <inet/ip_multi.h> 74 #include <inet/ip_ndp.h> 75 #include <inet/mi.h> 76 #include <inet/mib2.h> 77 #include <inet/nd.h> 78 #include <inet/optcom.h> 79 #include <inet/snmpcom.h> 80 #include <inet/kstatcom.h> 81 #include <inet/udp_impl.h> 82 #include <inet/ipclassifier.h> 83 #include <inet/ipsec_impl.h> 84 #include <inet/ipp_common.h> 85 86 /* 87 * The ipsec_info.h header file is here since it has the definition for the 88 * M_CTL message types used by IP to convey information to the ULP. The 89 * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence. 90 */ 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 94 #include <sys/tsol/label.h> 95 #include <sys/tsol/tnet.h> 96 #include <rpc/pmap_prot.h> 97 98 /* 99 * Synchronization notes: 100 * 101 * UDP is MT and uses the usual kernel synchronization primitives. There are 2 102 * locks, the fanout lock (uf_lock) and the udp endpoint lock udp_rwlock. 103 * We also use conn_lock when updating things that affect the IP classifier 104 * lookup. 105 * The lock order is udp_rwlock -> uf_lock and is udp_rwlock -> conn_lock. 106 * 107 * The fanout lock uf_lock: 108 * When a UDP endpoint is bound to a local port, it is inserted into 109 * a bind hash list. The list consists of an array of udp_fanout_t buckets. 110 * The size of the array is controlled by the udp_bind_fanout_size variable. 111 * This variable can be changed in /etc/system if the default value is 112 * not large enough. Each bind hash bucket is protected by a per bucket 113 * lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t 114 * structure and a few other fields in the udp_t. A UDP endpoint is removed 115 * from the bind hash list only when it is being unbound or being closed. 116 * The per bucket lock also protects a UDP endpoint's state changes. 117 * 118 * The udp_rwlock: 119 * This protects most of the other fields in the udp_t. The exact list of 120 * fields which are protected by each of the above locks is documented in 121 * the udp_t structure definition. 122 * 123 * Plumbing notes: 124 * UDP is always a device driver. For compatibility with mibopen() code 125 * it is possible to I_PUSH "udp", but that results in pushing a passthrough 126 * dummy module. 127 * 128 * The above implies that we don't support any intermediate module to 129 * reside in between /dev/ip and udp -- in fact, we never supported such 130 * scenario in the past as the inter-layer communication semantics have 131 * always been private. 132 */ 133 134 /* For /etc/system control */ 135 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE; 136 137 #define NDD_TOO_QUICK_MSG \ 138 "ndd get info rate too high for non-privileged users, try again " \ 139 "later.\n" 140 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 141 142 /* Option processing attrs */ 143 typedef struct udpattrs_s { 144 union { 145 ip6_pkt_t *udpattr_ipp6; /* For V6 */ 146 ip4_pkt_t *udpattr_ipp4; /* For V4 */ 147 } udpattr_ippu; 148 #define udpattr_ipp6 udpattr_ippu.udpattr_ipp6 149 #define udpattr_ipp4 udpattr_ippu.udpattr_ipp4 150 mblk_t *udpattr_mb; 151 boolean_t udpattr_credset; 152 } udpattrs_t; 153 154 static void udp_addr_req(queue_t *q, mblk_t *mp); 155 static void udp_bind(queue_t *q, mblk_t *mp); 156 static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp); 157 static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock); 158 static void udp_bind_result(conn_t *, mblk_t *); 159 static void udp_bind_ack(conn_t *, mblk_t *mp); 160 static void udp_bind_error(conn_t *, mblk_t *mp); 161 static int udp_build_hdrs(udp_t *udp); 162 static void udp_capability_req(queue_t *q, mblk_t *mp); 163 static int udp_close(queue_t *q); 164 static void udp_connect(queue_t *q, mblk_t *mp); 165 static void udp_disconnect(queue_t *q, mblk_t *mp); 166 static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 167 int sys_error); 168 static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, 169 t_scalar_t tlierr, int unixerr); 170 static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 171 cred_t *cr); 172 static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 173 char *value, caddr_t cp, cred_t *cr); 174 static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 175 char *value, caddr_t cp, cred_t *cr); 176 static void udp_icmp_error(queue_t *q, mblk_t *mp); 177 static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp); 178 static void udp_info_req(queue_t *q, mblk_t *mp); 179 static void udp_input(void *, mblk_t *, void *); 180 static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, 181 t_scalar_t addr_length); 182 static void udp_lrput(queue_t *, mblk_t *); 183 static void udp_lwput(queue_t *, mblk_t *); 184 static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, 185 cred_t *credp, boolean_t isv6); 186 static int udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, 187 cred_t *credp); 188 static int udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, 189 cred_t *credp); 190 static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp, 191 int *errorp, udpattrs_t *udpattrs); 192 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); 193 static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 194 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt); 195 static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 196 cred_t *cr); 197 static void udp_report_item(mblk_t *mp, udp_t *udp); 198 static int udp_rinfop(queue_t *q, infod_t *dp); 199 static int udp_rrw(queue_t *q, struiod_t *dp); 200 static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 201 cred_t *cr); 202 static void udp_send_data(udp_t *, queue_t *, mblk_t *, ipha_t *); 203 static void udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, 204 t_scalar_t destlen, t_scalar_t err); 205 static void udp_unbind(queue_t *q, mblk_t *mp); 206 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port, 207 boolean_t random); 208 static mblk_t *udp_output_v4(conn_t *, mblk_t *, ipaddr_t, uint16_t, uint_t, 209 int *, boolean_t); 210 static mblk_t *udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, 211 int *error); 212 static void udp_wput_other(queue_t *q, mblk_t *mp); 213 static void udp_wput_iocdata(queue_t *q, mblk_t *mp); 214 static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size); 215 216 static void *udp_stack_init(netstackid_t stackid, netstack_t *ns); 217 static void udp_stack_fini(netstackid_t stackid, void *arg); 218 219 static void *udp_kstat_init(netstackid_t stackid); 220 static void udp_kstat_fini(netstackid_t stackid, kstat_t *ksp); 221 static void *udp_kstat2_init(netstackid_t, udp_stat_t *); 222 static void udp_kstat2_fini(netstackid_t, kstat_t *); 223 static int udp_kstat_update(kstat_t *kp, int rw); 224 225 static void udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, 226 uint_t pkt_len); 227 static void udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing); 228 static void udp_xmit(queue_t *, mblk_t *, ire_t *ire, conn_t *, zoneid_t); 229 230 #define UDP_RECV_HIWATER (56 * 1024) 231 #define UDP_RECV_LOWATER 128 232 #define UDP_XMIT_HIWATER (56 * 1024) 233 #define UDP_XMIT_LOWATER 1024 234 235 static struct module_info udp_mod_info = { 236 UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER 237 }; 238 239 /* 240 * Entry points for UDP as a device. 241 * We have separate open functions for the /dev/udp and /dev/udp6 devices. 242 */ 243 static struct qinit udp_rinitv4 = { 244 NULL, NULL, udp_openv4, udp_close, NULL, 245 &udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD 246 }; 247 248 static struct qinit udp_rinitv6 = { 249 NULL, NULL, udp_openv6, udp_close, NULL, 250 &udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD 251 }; 252 253 static struct qinit udp_winit = { 254 (pfi_t)udp_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 255 &udp_mod_info, NULL, NULL, NULL, STRUIOT_NONE 256 }; 257 258 /* 259 * UDP needs to handle I_LINK and I_PLINK since ifconfig 260 * likes to use it as a place to hang the various streams. 261 */ 262 static struct qinit udp_lrinit = { 263 (pfi_t)udp_lrput, NULL, udp_openv4, udp_close, NULL, 264 &udp_mod_info 265 }; 266 267 static struct qinit udp_lwinit = { 268 (pfi_t)udp_lwput, NULL, udp_openv4, udp_close, NULL, 269 &udp_mod_info 270 }; 271 272 /* For AF_INET aka /dev/udp */ 273 struct streamtab udpinfov4 = { 274 &udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit 275 }; 276 277 /* For AF_INET6 aka /dev/udp6 */ 278 struct streamtab udpinfov6 = { 279 &udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit 280 }; 281 282 static sin_t sin_null; /* Zero address for quick clears */ 283 static sin6_t sin6_null; /* Zero address for quick clears */ 284 285 #define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH) 286 287 /* Default structure copied into T_INFO_ACK messages */ 288 static struct T_info_ack udp_g_t_info_ack_ipv4 = { 289 T_INFO_ACK, 290 UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */ 291 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 292 T_INVALID, /* CDATA_size. udp does not support connect data. */ 293 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 294 sizeof (sin_t), /* ADDR_size. */ 295 0, /* OPT_size - not initialized here */ 296 UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */ 297 T_CLTS, /* SERV_type. udp supports connection-less. */ 298 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 299 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 300 }; 301 302 #define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN) 303 304 static struct T_info_ack udp_g_t_info_ack_ipv6 = { 305 T_INFO_ACK, 306 UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */ 307 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 308 T_INVALID, /* CDATA_size. udp does not support connect data. */ 309 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 310 sizeof (sin6_t), /* ADDR_size. */ 311 0, /* OPT_size - not initialized here */ 312 UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */ 313 T_CLTS, /* SERV_type. udp supports connection-less. */ 314 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 315 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 316 }; 317 318 /* largest UDP port number */ 319 #define UDP_MAX_PORT 65535 320 321 /* 322 * Table of ND variables supported by udp. These are loaded into us_nd 323 * in udp_open. 324 * All of these are alterable, within the min/max values given, at run time. 325 */ 326 /* BEGIN CSTYLED */ 327 udpparam_t udp_param_arr[] = { 328 /*min max value name */ 329 { 0L, 256, 32, "udp_wroff_extra" }, 330 { 1L, 255, 255, "udp_ipv4_ttl" }, 331 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"}, 332 { 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" }, 333 { 0, 1, 1, "udp_do_checksum" }, 334 { 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" }, 335 { 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" }, 336 { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"}, 337 { 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"}, 338 { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"}, 339 { 65536, (1<<30), 2*1024*1024, "udp_max_buf"}, 340 { 100, 60000, 1000, "udp_ndd_get_info_interval"}, 341 }; 342 /* END CSTYLED */ 343 344 /* Setable in /etc/system */ 345 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 346 uint32_t udp_random_anon_port = 1; 347 348 /* 349 * Hook functions to enable cluster networking. 350 * On non-clustered systems these vectors must always be NULL 351 */ 352 353 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family, 354 uint8_t *laddrp, in_port_t lport) = NULL; 355 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family, 356 uint8_t *laddrp, in_port_t lport) = NULL; 357 358 typedef union T_primitives *t_primp_t; 359 360 /* 361 * Return the next anonymous port in the privileged port range for 362 * bind checking. 363 * 364 * Trusted Extension (TX) notes: TX allows administrator to mark or 365 * reserve ports as Multilevel ports (MLP). MLP has special function 366 * on TX systems. Once a port is made MLP, it's not available as 367 * ordinary port. This creates "holes" in the port name space. It 368 * may be necessary to skip the "holes" find a suitable anon port. 369 */ 370 static in_port_t 371 udp_get_next_priv_port(udp_t *udp) 372 { 373 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 374 in_port_t nextport; 375 boolean_t restart = B_FALSE; 376 udp_stack_t *us = udp->udp_us; 377 378 retry: 379 if (next_priv_port < us->us_min_anonpriv_port || 380 next_priv_port >= IPPORT_RESERVED) { 381 next_priv_port = IPPORT_RESERVED - 1; 382 if (restart) 383 return (0); 384 restart = B_TRUE; 385 } 386 387 if (is_system_labeled() && 388 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 389 next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) { 390 next_priv_port = nextport; 391 goto retry; 392 } 393 394 return (next_priv_port--); 395 } 396 397 /* UDP bind hash report triggered via the Named Dispatch mechanism. */ 398 /* ARGSUSED */ 399 static int 400 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 401 { 402 udp_fanout_t *udpf; 403 int i; 404 zoneid_t zoneid; 405 conn_t *connp; 406 udp_t *udp; 407 udp_stack_t *us; 408 409 connp = Q_TO_CONN(q); 410 udp = connp->conn_udp; 411 us = udp->udp_us; 412 413 /* Refer to comments in udp_status_report(). */ 414 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 415 if (ddi_get_lbolt() - us->us_last_ndd_get_info_time < 416 drv_usectohz(us->us_ndd_get_info_interval * 1000)) { 417 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 418 return (0); 419 } 420 } 421 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 422 /* The following may work even if we cannot get a large buf. */ 423 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 424 return (0); 425 } 426 427 (void) mi_mpprintf(mp, 428 "UDP " MI_COL_HDRPAD_STR 429 /* 12345678[89ABCDEF] */ 430 " zone lport src addr dest addr port state"); 431 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 432 433 zoneid = connp->conn_zoneid; 434 435 for (i = 0; i < us->us_bind_fanout_size; i++) { 436 udpf = &us->us_bind_fanout[i]; 437 mutex_enter(&udpf->uf_lock); 438 439 /* Print the hash index. */ 440 udp = udpf->uf_udp; 441 if (zoneid != GLOBAL_ZONEID) { 442 /* skip to first entry in this zone; might be none */ 443 while (udp != NULL && 444 udp->udp_connp->conn_zoneid != zoneid) 445 udp = udp->udp_bind_hash; 446 } 447 if (udp != NULL) { 448 uint_t print_len, buf_len; 449 450 buf_len = mp->b_cont->b_datap->db_lim - 451 mp->b_cont->b_wptr; 452 print_len = snprintf((char *)mp->b_cont->b_wptr, 453 buf_len, "%d\n", i); 454 if (print_len < buf_len) { 455 mp->b_cont->b_wptr += print_len; 456 } else { 457 mp->b_cont->b_wptr += buf_len; 458 } 459 for (; udp != NULL; udp = udp->udp_bind_hash) { 460 if (zoneid == GLOBAL_ZONEID || 461 zoneid == udp->udp_connp->conn_zoneid) 462 udp_report_item(mp->b_cont, udp); 463 } 464 } 465 mutex_exit(&udpf->uf_lock); 466 } 467 us->us_last_ndd_get_info_time = ddi_get_lbolt(); 468 return (0); 469 } 470 471 /* 472 * Hash list removal routine for udp_t structures. 473 */ 474 static void 475 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock) 476 { 477 udp_t *udpnext; 478 kmutex_t *lockp; 479 udp_stack_t *us = udp->udp_us; 480 481 if (udp->udp_ptpbhn == NULL) 482 return; 483 484 /* 485 * Extract the lock pointer in case there are concurrent 486 * hash_remove's for this instance. 487 */ 488 ASSERT(udp->udp_port != 0); 489 if (!caller_holds_lock) { 490 lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 491 us->us_bind_fanout_size)].uf_lock; 492 ASSERT(lockp != NULL); 493 mutex_enter(lockp); 494 } 495 if (udp->udp_ptpbhn != NULL) { 496 udpnext = udp->udp_bind_hash; 497 if (udpnext != NULL) { 498 udpnext->udp_ptpbhn = udp->udp_ptpbhn; 499 udp->udp_bind_hash = NULL; 500 } 501 *udp->udp_ptpbhn = udpnext; 502 udp->udp_ptpbhn = NULL; 503 } 504 if (!caller_holds_lock) { 505 mutex_exit(lockp); 506 } 507 } 508 509 static void 510 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp) 511 { 512 udp_t **udpp; 513 udp_t *udpnext; 514 515 ASSERT(MUTEX_HELD(&uf->uf_lock)); 516 ASSERT(udp->udp_ptpbhn == NULL); 517 udpp = &uf->uf_udp; 518 udpnext = udpp[0]; 519 if (udpnext != NULL) { 520 /* 521 * If the new udp bound to the INADDR_ANY address 522 * and the first one in the list is not bound to 523 * INADDR_ANY we skip all entries until we find the 524 * first one bound to INADDR_ANY. 525 * This makes sure that applications binding to a 526 * specific address get preference over those binding to 527 * INADDR_ANY. 528 */ 529 if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) && 530 !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) { 531 while ((udpnext = udpp[0]) != NULL && 532 !V6_OR_V4_INADDR_ANY( 533 udpnext->udp_bound_v6src)) { 534 udpp = &(udpnext->udp_bind_hash); 535 } 536 if (udpnext != NULL) 537 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 538 } else { 539 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 540 } 541 } 542 udp->udp_bind_hash = udpnext; 543 udp->udp_ptpbhn = udpp; 544 udpp[0] = udp; 545 } 546 547 /* 548 * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message 549 * passed to udp_wput. 550 * It associates a port number and local address with the stream. 551 * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP 552 * protocol type (IPPROTO_UDP) placed in the message following the address. 553 * A T_BIND_ACK message is passed upstream when ip acknowledges the request. 554 * (Called as writer.) 555 * 556 * Note that UDP over IPv4 and IPv6 sockets can use the same port number 557 * without setting SO_REUSEADDR. This is needed so that they 558 * can be viewed as two independent transport protocols. 559 * However, anonymouns ports are allocated from the same range to avoid 560 * duplicating the us->us_next_port_to_try. 561 */ 562 static void 563 udp_bind(queue_t *q, mblk_t *mp) 564 { 565 sin_t *sin; 566 sin6_t *sin6; 567 mblk_t *mp1; 568 in_port_t port; /* Host byte order */ 569 in_port_t requested_port; /* Host byte order */ 570 struct T_bind_req *tbr; 571 int count; 572 in6_addr_t v6src; 573 boolean_t bind_to_req_port_only; 574 int loopmax; 575 udp_fanout_t *udpf; 576 in_port_t lport; /* Network byte order */ 577 zoneid_t zoneid; 578 conn_t *connp; 579 udp_t *udp; 580 boolean_t is_inaddr_any; 581 mlp_type_t addrtype, mlptype; 582 udp_stack_t *us; 583 584 connp = Q_TO_CONN(q); 585 udp = connp->conn_udp; 586 us = udp->udp_us; 587 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 588 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 589 "udp_bind: bad req, len %u", 590 (uint_t)(mp->b_wptr - mp->b_rptr)); 591 udp_err_ack(q, mp, TPROTO, 0); 592 return; 593 } 594 if (udp->udp_state != TS_UNBND) { 595 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 596 "udp_bind: bad state, %u", udp->udp_state); 597 udp_err_ack(q, mp, TOUTSTATE, 0); 598 return; 599 } 600 /* 601 * Reallocate the message to make sure we have enough room for an 602 * address and the protocol type. 603 */ 604 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 605 if (!mp1) { 606 udp_err_ack(q, mp, TSYSERR, ENOMEM); 607 return; 608 } 609 610 mp = mp1; 611 tbr = (struct T_bind_req *)mp->b_rptr; 612 switch (tbr->ADDR_length) { 613 case 0: /* Request for a generic port */ 614 tbr->ADDR_offset = sizeof (struct T_bind_req); 615 if (udp->udp_family == AF_INET) { 616 tbr->ADDR_length = sizeof (sin_t); 617 sin = (sin_t *)&tbr[1]; 618 *sin = sin_null; 619 sin->sin_family = AF_INET; 620 mp->b_wptr = (uchar_t *)&sin[1]; 621 } else { 622 ASSERT(udp->udp_family == AF_INET6); 623 tbr->ADDR_length = sizeof (sin6_t); 624 sin6 = (sin6_t *)&tbr[1]; 625 *sin6 = sin6_null; 626 sin6->sin6_family = AF_INET6; 627 mp->b_wptr = (uchar_t *)&sin6[1]; 628 } 629 port = 0; 630 break; 631 632 case sizeof (sin_t): /* Complete IPv4 address */ 633 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 634 sizeof (sin_t)); 635 if (sin == NULL || !OK_32PTR((char *)sin)) { 636 udp_err_ack(q, mp, TSYSERR, EINVAL); 637 return; 638 } 639 if (udp->udp_family != AF_INET || 640 sin->sin_family != AF_INET) { 641 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 642 return; 643 } 644 port = ntohs(sin->sin_port); 645 break; 646 647 case sizeof (sin6_t): /* complete IPv6 address */ 648 sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, 649 sizeof (sin6_t)); 650 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 651 udp_err_ack(q, mp, TSYSERR, EINVAL); 652 return; 653 } 654 if (udp->udp_family != AF_INET6 || 655 sin6->sin6_family != AF_INET6) { 656 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 657 return; 658 } 659 port = ntohs(sin6->sin6_port); 660 break; 661 662 default: /* Invalid request */ 663 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 664 "udp_bind: bad ADDR_length length %u", tbr->ADDR_length); 665 udp_err_ack(q, mp, TBADADDR, 0); 666 return; 667 } 668 669 requested_port = port; 670 671 if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ) 672 bind_to_req_port_only = B_FALSE; 673 else /* T_BIND_REQ and requested_port != 0 */ 674 bind_to_req_port_only = B_TRUE; 675 676 if (requested_port == 0) { 677 /* 678 * If the application passed in zero for the port number, it 679 * doesn't care which port number we bind to. Get one in the 680 * valid range. 681 */ 682 if (udp->udp_anon_priv_bind) { 683 port = udp_get_next_priv_port(udp); 684 } else { 685 port = udp_update_next_port(udp, 686 us->us_next_port_to_try, B_TRUE); 687 } 688 } else { 689 /* 690 * If the port is in the well-known privileged range, 691 * make sure the caller was privileged. 692 */ 693 int i; 694 boolean_t priv = B_FALSE; 695 696 if (port < us->us_smallest_nonpriv_port) { 697 priv = B_TRUE; 698 } else { 699 for (i = 0; i < us->us_num_epriv_ports; i++) { 700 if (port == us->us_epriv_ports[i]) { 701 priv = B_TRUE; 702 break; 703 } 704 } 705 } 706 707 if (priv) { 708 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 709 710 if (secpolicy_net_privaddr(cr, port) != 0) { 711 udp_err_ack(q, mp, TACCES, 0); 712 return; 713 } 714 } 715 } 716 717 if (port == 0) { 718 udp_err_ack(q, mp, TNOADDR, 0); 719 return; 720 } 721 722 /* 723 * The state must be TS_UNBND. TPI mandates that users must send 724 * TPI primitives only 1 at a time and wait for the response before 725 * sending the next primitive. 726 */ 727 rw_enter(&udp->udp_rwlock, RW_WRITER); 728 if (udp->udp_state != TS_UNBND || udp->udp_pending_op != -1) { 729 rw_exit(&udp->udp_rwlock); 730 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 731 "udp_bind: bad state, %u", udp->udp_state); 732 udp_err_ack(q, mp, TOUTSTATE, 0); 733 return; 734 } 735 udp->udp_pending_op = tbr->PRIM_type; 736 /* 737 * Copy the source address into our udp structure. This address 738 * may still be zero; if so, IP will fill in the correct address 739 * each time an outbound packet is passed to it. Since the udp is 740 * not yet in the bind hash list, we don't grab the uf_lock to 741 * change udp_ipversion 742 */ 743 if (udp->udp_family == AF_INET) { 744 ASSERT(sin != NULL); 745 ASSERT(udp->udp_ipversion == IPV4_VERSION); 746 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 747 udp->udp_ip_snd_options_len; 748 IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src); 749 } else { 750 ASSERT(sin6 != NULL); 751 v6src = sin6->sin6_addr; 752 if (IN6_IS_ADDR_V4MAPPED(&v6src)) { 753 /* 754 * no need to hold the uf_lock to set the udp_ipversion 755 * since we are not yet in the fanout list 756 */ 757 udp->udp_ipversion = IPV4_VERSION; 758 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 759 UDPH_SIZE + udp->udp_ip_snd_options_len; 760 } else { 761 udp->udp_ipversion = IPV6_VERSION; 762 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 763 } 764 } 765 766 /* 767 * If udp_reuseaddr is not set, then we have to make sure that 768 * the IP address and port number the application requested 769 * (or we selected for the application) is not being used by 770 * another stream. If another stream is already using the 771 * requested IP address and port, the behavior depends on 772 * "bind_to_req_port_only". If set the bind fails; otherwise we 773 * search for any an unused port to bind to the the stream. 774 * 775 * As per the BSD semantics, as modified by the Deering multicast 776 * changes, if udp_reuseaddr is set, then we allow multiple binds 777 * to the same port independent of the local IP address. 778 * 779 * This is slightly different than in SunOS 4.X which did not 780 * support IP multicast. Note that the change implemented by the 781 * Deering multicast code effects all binds - not only binding 782 * to IP multicast addresses. 783 * 784 * Note that when binding to port zero we ignore SO_REUSEADDR in 785 * order to guarantee a unique port. 786 */ 787 788 count = 0; 789 if (udp->udp_anon_priv_bind) { 790 /* 791 * loopmax = (IPPORT_RESERVED-1) - 792 * us->us_min_anonpriv_port + 1 793 */ 794 loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port; 795 } else { 796 loopmax = us->us_largest_anon_port - 797 us->us_smallest_anon_port + 1; 798 } 799 800 is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src); 801 zoneid = connp->conn_zoneid; 802 803 for (;;) { 804 udp_t *udp1; 805 boolean_t found_exclbind = B_FALSE; 806 807 /* 808 * Walk through the list of udp streams bound to 809 * requested port with the same IP address. 810 */ 811 lport = htons(port); 812 udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport, 813 us->us_bind_fanout_size)]; 814 mutex_enter(&udpf->uf_lock); 815 for (udp1 = udpf->uf_udp; udp1 != NULL; 816 udp1 = udp1->udp_bind_hash) { 817 if (lport != udp1->udp_port) 818 continue; 819 820 /* 821 * On a labeled system, we must treat bindings to ports 822 * on shared IP addresses by sockets with MAC exemption 823 * privilege as being in all zones, as there's 824 * otherwise no way to identify the right receiver. 825 */ 826 if (!(IPCL_ZONE_MATCH(udp1->udp_connp, zoneid) || 827 IPCL_ZONE_MATCH(connp, 828 udp1->udp_connp->conn_zoneid)) && 829 !udp->udp_mac_exempt && !udp1->udp_mac_exempt) 830 continue; 831 832 /* 833 * If UDP_EXCLBIND is set for either the bound or 834 * binding endpoint, the semantics of bind 835 * is changed according to the following chart. 836 * 837 * spec = specified address (v4 or v6) 838 * unspec = unspecified address (v4 or v6) 839 * A = specified addresses are different for endpoints 840 * 841 * bound bind to allowed? 842 * ------------------------------------- 843 * unspec unspec no 844 * unspec spec no 845 * spec unspec no 846 * spec spec yes if A 847 * 848 * For labeled systems, SO_MAC_EXEMPT behaves the same 849 * as UDP_EXCLBIND, except that zoneid is ignored. 850 */ 851 if (udp1->udp_exclbind || udp->udp_exclbind || 852 udp1->udp_mac_exempt || udp->udp_mac_exempt) { 853 if (V6_OR_V4_INADDR_ANY( 854 udp1->udp_bound_v6src) || 855 is_inaddr_any || 856 IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 857 &v6src)) { 858 found_exclbind = B_TRUE; 859 break; 860 } 861 continue; 862 } 863 864 /* 865 * Check ipversion to allow IPv4 and IPv6 sockets to 866 * have disjoint port number spaces. 867 */ 868 if (udp->udp_ipversion != udp1->udp_ipversion) { 869 870 /* 871 * On the first time through the loop, if the 872 * the user intentionally specified a 873 * particular port number, then ignore any 874 * bindings of the other protocol that may 875 * conflict. This allows the user to bind IPv6 876 * alone and get both v4 and v6, or bind both 877 * both and get each seperately. On subsequent 878 * times through the loop, we're checking a 879 * port that we chose (not the user) and thus 880 * we do not allow casual duplicate bindings. 881 */ 882 if (count == 0 && requested_port != 0) 883 continue; 884 } 885 886 /* 887 * No difference depending on SO_REUSEADDR. 888 * 889 * If existing port is bound to a 890 * non-wildcard IP address and 891 * the requesting stream is bound to 892 * a distinct different IP addresses 893 * (non-wildcard, also), keep going. 894 */ 895 if (!is_inaddr_any && 896 !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) && 897 !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 898 &v6src)) { 899 continue; 900 } 901 break; 902 } 903 904 if (!found_exclbind && 905 (udp->udp_reuseaddr && requested_port != 0)) { 906 break; 907 } 908 909 if (udp1 == NULL) { 910 /* 911 * No other stream has this IP address 912 * and port number. We can use it. 913 */ 914 break; 915 } 916 mutex_exit(&udpf->uf_lock); 917 if (bind_to_req_port_only) { 918 /* 919 * We get here only when requested port 920 * is bound (and only first of the for() 921 * loop iteration). 922 * 923 * The semantics of this bind request 924 * require it to fail so we return from 925 * the routine (and exit the loop). 926 * 927 */ 928 udp->udp_pending_op = -1; 929 rw_exit(&udp->udp_rwlock); 930 udp_err_ack(q, mp, TADDRBUSY, 0); 931 return; 932 } 933 934 if (udp->udp_anon_priv_bind) { 935 port = udp_get_next_priv_port(udp); 936 } else { 937 if ((count == 0) && (requested_port != 0)) { 938 /* 939 * If the application wants us to find 940 * a port, get one to start with. Set 941 * requested_port to 0, so that we will 942 * update us->us_next_port_to_try below. 943 */ 944 port = udp_update_next_port(udp, 945 us->us_next_port_to_try, B_TRUE); 946 requested_port = 0; 947 } else { 948 port = udp_update_next_port(udp, port + 1, 949 B_FALSE); 950 } 951 } 952 953 if (port == 0 || ++count >= loopmax) { 954 /* 955 * We've tried every possible port number and 956 * there are none available, so send an error 957 * to the user. 958 */ 959 udp->udp_pending_op = -1; 960 rw_exit(&udp->udp_rwlock); 961 udp_err_ack(q, mp, TNOADDR, 0); 962 return; 963 } 964 } 965 966 /* 967 * Copy the source address into our udp structure. This address 968 * may still be zero; if so, ip will fill in the correct address 969 * each time an outbound packet is passed to it. 970 * If we are binding to a broadcast or multicast address then 971 * udp_bind_ack will clear the source address when it receives 972 * the T_BIND_ACK. 973 */ 974 udp->udp_v6src = udp->udp_bound_v6src = v6src; 975 udp->udp_port = lport; 976 /* 977 * Now reset the the next anonymous port if the application requested 978 * an anonymous port, or we handed out the next anonymous port. 979 */ 980 if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) { 981 us->us_next_port_to_try = port + 1; 982 } 983 984 /* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */ 985 if (udp->udp_family == AF_INET) { 986 sin->sin_port = udp->udp_port; 987 } else { 988 int error; 989 990 sin6->sin6_port = udp->udp_port; 991 /* Rebuild the header template */ 992 error = udp_build_hdrs(udp); 993 if (error != 0) { 994 udp->udp_pending_op = -1; 995 rw_exit(&udp->udp_rwlock); 996 mutex_exit(&udpf->uf_lock); 997 udp_err_ack(q, mp, TSYSERR, error); 998 return; 999 } 1000 } 1001 udp->udp_state = TS_IDLE; 1002 udp_bind_hash_insert(udpf, udp); 1003 mutex_exit(&udpf->uf_lock); 1004 rw_exit(&udp->udp_rwlock); 1005 1006 if (cl_inet_bind) { 1007 /* 1008 * Running in cluster mode - register bind information 1009 */ 1010 if (udp->udp_ipversion == IPV4_VERSION) { 1011 (*cl_inet_bind)(IPPROTO_UDP, AF_INET, 1012 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 1013 (in_port_t)udp->udp_port); 1014 } else { 1015 (*cl_inet_bind)(IPPROTO_UDP, AF_INET6, 1016 (uint8_t *)&(udp->udp_v6src), 1017 (in_port_t)udp->udp_port); 1018 } 1019 1020 } 1021 1022 connp->conn_anon_port = (is_system_labeled() && requested_port == 0); 1023 if (is_system_labeled() && (!connp->conn_anon_port || 1024 connp->conn_anon_mlp)) { 1025 uint16_t mlpport; 1026 cred_t *cr = connp->conn_cred; 1027 zone_t *zone; 1028 1029 zone = crgetzone(cr); 1030 connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth : 1031 mlptSingle; 1032 addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION, 1033 &v6src, us->us_netstack->netstack_ip); 1034 if (addrtype == mlptSingle) { 1035 rw_enter(&udp->udp_rwlock, RW_WRITER); 1036 udp->udp_pending_op = -1; 1037 rw_exit(&udp->udp_rwlock); 1038 udp_err_ack(q, mp, TNOADDR, 0); 1039 connp->conn_anon_port = B_FALSE; 1040 connp->conn_mlp_type = mlptSingle; 1041 return; 1042 } 1043 mlpport = connp->conn_anon_port ? PMAPPORT : port; 1044 mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport, 1045 addrtype); 1046 if (mlptype != mlptSingle && 1047 (connp->conn_mlp_type == mlptSingle || 1048 secpolicy_net_bindmlp(cr) != 0)) { 1049 if (udp->udp_debug) { 1050 (void) strlog(UDP_MOD_ID, 0, 1, 1051 SL_ERROR|SL_TRACE, 1052 "udp_bind: no priv for multilevel port %d", 1053 mlpport); 1054 } 1055 rw_enter(&udp->udp_rwlock, RW_WRITER); 1056 udp->udp_pending_op = -1; 1057 rw_exit(&udp->udp_rwlock); 1058 udp_err_ack(q, mp, TACCES, 0); 1059 connp->conn_anon_port = B_FALSE; 1060 connp->conn_mlp_type = mlptSingle; 1061 return; 1062 } 1063 1064 /* 1065 * If we're specifically binding a shared IP address and the 1066 * port is MLP on shared addresses, then check to see if this 1067 * zone actually owns the MLP. Reject if not. 1068 */ 1069 if (mlptype == mlptShared && addrtype == mlptShared) { 1070 /* 1071 * No need to handle exclusive-stack zones since 1072 * ALL_ZONES only applies to the shared stack. 1073 */ 1074 zoneid_t mlpzone; 1075 1076 mlpzone = tsol_mlp_findzone(IPPROTO_UDP, 1077 htons(mlpport)); 1078 if (connp->conn_zoneid != mlpzone) { 1079 if (udp->udp_debug) { 1080 (void) strlog(UDP_MOD_ID, 0, 1, 1081 SL_ERROR|SL_TRACE, 1082 "udp_bind: attempt to bind port " 1083 "%d on shared addr in zone %d " 1084 "(should be %d)", 1085 mlpport, connp->conn_zoneid, 1086 mlpzone); 1087 } 1088 rw_enter(&udp->udp_rwlock, RW_WRITER); 1089 udp->udp_pending_op = -1; 1090 rw_exit(&udp->udp_rwlock); 1091 udp_err_ack(q, mp, TACCES, 0); 1092 connp->conn_anon_port = B_FALSE; 1093 connp->conn_mlp_type = mlptSingle; 1094 return; 1095 } 1096 } 1097 if (connp->conn_anon_port) { 1098 int error; 1099 1100 error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 1101 port, B_TRUE); 1102 if (error != 0) { 1103 if (udp->udp_debug) { 1104 (void) strlog(UDP_MOD_ID, 0, 1, 1105 SL_ERROR|SL_TRACE, 1106 "udp_bind: cannot establish anon " 1107 "MLP for port %d", port); 1108 } 1109 rw_enter(&udp->udp_rwlock, RW_WRITER); 1110 udp->udp_pending_op = -1; 1111 rw_exit(&udp->udp_rwlock); 1112 udp_err_ack(q, mp, TACCES, 0); 1113 connp->conn_anon_port = B_FALSE; 1114 connp->conn_mlp_type = mlptSingle; 1115 return; 1116 } 1117 } 1118 connp->conn_mlp_type = mlptype; 1119 } 1120 1121 /* Pass the protocol number in the message following the address. */ 1122 *mp->b_wptr++ = IPPROTO_UDP; 1123 if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 1124 /* 1125 * Append a request for an IRE if udp_v6src not 1126 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address). 1127 */ 1128 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 1129 if (!mp->b_cont) { 1130 rw_enter(&udp->udp_rwlock, RW_WRITER); 1131 udp->udp_pending_op = -1; 1132 rw_exit(&udp->udp_rwlock); 1133 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1134 return; 1135 } 1136 mp->b_cont->b_wptr += sizeof (ire_t); 1137 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 1138 } 1139 if (udp->udp_family == AF_INET6) 1140 mp = ip_bind_v6(q, mp, connp, NULL); 1141 else 1142 mp = ip_bind_v4(q, mp, connp); 1143 1144 /* The above return NULL if the bind needs to be deferred */ 1145 if (mp != NULL) 1146 udp_bind_result(connp, mp); 1147 else 1148 CONN_INC_REF(connp); 1149 } 1150 1151 /* 1152 * This is called from ip_wput_nondata to handle the results of a 1153 * deferred UDP bind. It is called once the bind has been completed. 1154 */ 1155 void 1156 udp_resume_bind(conn_t *connp, mblk_t *mp) 1157 { 1158 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1159 1160 udp_bind_result(connp, mp); 1161 1162 CONN_OPER_PENDING_DONE(connp); 1163 } 1164 1165 /* 1166 * This routine handles each T_CONN_REQ message passed to udp. It 1167 * associates a default destination address with the stream. 1168 * 1169 * This routine sends down a T_BIND_REQ to IP with the following mblks: 1170 * T_BIND_REQ - specifying local and remote address/port 1171 * IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src 1172 * T_OK_ACK - for the T_CONN_REQ 1173 * T_CONN_CON - to keep the TPI user happy 1174 * 1175 * The connect completes in udp_bind_result. 1176 * When a T_BIND_ACK is received information is extracted from the IRE 1177 * and the two appended messages are sent to the TPI user. 1178 * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will 1179 * convert it to an error ack for the appropriate primitive. 1180 */ 1181 static void 1182 udp_connect(queue_t *q, mblk_t *mp) 1183 { 1184 sin6_t *sin6; 1185 sin_t *sin; 1186 struct T_conn_req *tcr; 1187 in6_addr_t v6dst; 1188 ipaddr_t v4dst; 1189 uint16_t dstport; 1190 uint32_t flowinfo; 1191 mblk_t *mp1, *mp2; 1192 udp_fanout_t *udpf; 1193 udp_t *udp, *udp1; 1194 ushort_t ipversion; 1195 udp_stack_t *us; 1196 conn_t *connp = Q_TO_CONN(q); 1197 1198 udp = connp->conn_udp; 1199 tcr = (struct T_conn_req *)mp->b_rptr; 1200 us = udp->udp_us; 1201 1202 /* A bit of sanity checking */ 1203 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { 1204 udp_err_ack(q, mp, TPROTO, 0); 1205 return; 1206 } 1207 1208 if (tcr->OPT_length != 0) { 1209 udp_err_ack(q, mp, TBADOPT, 0); 1210 return; 1211 } 1212 1213 /* 1214 * Determine packet type based on type of address passed in 1215 * the request should contain an IPv4 or IPv6 address. 1216 * Make sure that address family matches the type of 1217 * family of the the address passed down 1218 */ 1219 switch (tcr->DEST_length) { 1220 default: 1221 udp_err_ack(q, mp, TBADADDR, 0); 1222 return; 1223 1224 case sizeof (sin_t): 1225 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 1226 sizeof (sin_t)); 1227 if (sin == NULL || !OK_32PTR((char *)sin)) { 1228 udp_err_ack(q, mp, TSYSERR, EINVAL); 1229 return; 1230 } 1231 if (udp->udp_family != AF_INET || 1232 sin->sin_family != AF_INET) { 1233 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1234 return; 1235 } 1236 v4dst = sin->sin_addr.s_addr; 1237 dstport = sin->sin_port; 1238 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1239 ASSERT(udp->udp_ipversion == IPV4_VERSION); 1240 ipversion = IPV4_VERSION; 1241 break; 1242 1243 case sizeof (sin6_t): 1244 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 1245 sizeof (sin6_t)); 1246 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 1247 udp_err_ack(q, mp, TSYSERR, EINVAL); 1248 return; 1249 } 1250 if (udp->udp_family != AF_INET6 || 1251 sin6->sin6_family != AF_INET6) { 1252 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1253 return; 1254 } 1255 v6dst = sin6->sin6_addr; 1256 dstport = sin6->sin6_port; 1257 if (IN6_IS_ADDR_V4MAPPED(&v6dst)) { 1258 IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst); 1259 ipversion = IPV4_VERSION; 1260 flowinfo = 0; 1261 } else { 1262 ipversion = IPV6_VERSION; 1263 flowinfo = sin6->sin6_flowinfo; 1264 } 1265 break; 1266 } 1267 if (dstport == 0) { 1268 udp_err_ack(q, mp, TBADADDR, 0); 1269 return; 1270 } 1271 1272 rw_enter(&udp->udp_rwlock, RW_WRITER); 1273 1274 /* 1275 * This UDP must have bound to a port already before doing a connect. 1276 * TPI mandates that users must send TPI primitives only 1 at a time 1277 * and wait for the response before sending the next primitive. 1278 */ 1279 if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) { 1280 rw_exit(&udp->udp_rwlock); 1281 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1282 "udp_connect: bad state, %u", udp->udp_state); 1283 udp_err_ack(q, mp, TOUTSTATE, 0); 1284 return; 1285 } 1286 udp->udp_pending_op = T_CONN_REQ; 1287 ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL); 1288 1289 if (ipversion == IPV4_VERSION) { 1290 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 1291 udp->udp_ip_snd_options_len; 1292 } else { 1293 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 1294 } 1295 1296 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 1297 us->us_bind_fanout_size)]; 1298 1299 mutex_enter(&udpf->uf_lock); 1300 if (udp->udp_state == TS_DATA_XFER) { 1301 /* Already connected - clear out state */ 1302 udp->udp_v6src = udp->udp_bound_v6src; 1303 udp->udp_state = TS_IDLE; 1304 } 1305 1306 /* 1307 * Create a default IP header with no IP options. 1308 */ 1309 udp->udp_dstport = dstport; 1310 udp->udp_ipversion = ipversion; 1311 if (ipversion == IPV4_VERSION) { 1312 /* 1313 * Interpret a zero destination to mean loopback. 1314 * Update the T_CONN_REQ (sin/sin6) since it is used to 1315 * generate the T_CONN_CON. 1316 */ 1317 if (v4dst == INADDR_ANY) { 1318 v4dst = htonl(INADDR_LOOPBACK); 1319 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1320 if (udp->udp_family == AF_INET) { 1321 sin->sin_addr.s_addr = v4dst; 1322 } else { 1323 sin6->sin6_addr = v6dst; 1324 } 1325 } 1326 udp->udp_v6dst = v6dst; 1327 udp->udp_flowinfo = 0; 1328 1329 /* 1330 * If the destination address is multicast and 1331 * an outgoing multicast interface has been set, 1332 * use the address of that interface as our 1333 * source address if no source address has been set. 1334 */ 1335 if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY && 1336 CLASSD(v4dst) && 1337 udp->udp_multicast_if_addr != INADDR_ANY) { 1338 IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr, 1339 &udp->udp_v6src); 1340 } 1341 } else { 1342 ASSERT(udp->udp_ipversion == IPV6_VERSION); 1343 /* 1344 * Interpret a zero destination to mean loopback. 1345 * Update the T_CONN_REQ (sin/sin6) since it is used to 1346 * generate the T_CONN_CON. 1347 */ 1348 if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { 1349 v6dst = ipv6_loopback; 1350 sin6->sin6_addr = v6dst; 1351 } 1352 udp->udp_v6dst = v6dst; 1353 udp->udp_flowinfo = flowinfo; 1354 /* 1355 * If the destination address is multicast and 1356 * an outgoing multicast interface has been set, 1357 * then the ip bind logic will pick the correct source 1358 * address (i.e. matching the outgoing multicast interface). 1359 */ 1360 } 1361 1362 /* 1363 * Verify that the src/port/dst/port is unique for all 1364 * connections in TS_DATA_XFER 1365 */ 1366 for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { 1367 if (udp1->udp_state != TS_DATA_XFER) 1368 continue; 1369 if (udp->udp_port != udp1->udp_port || 1370 udp->udp_ipversion != udp1->udp_ipversion || 1371 dstport != udp1->udp_dstport || 1372 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) || 1373 !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst) || 1374 !(IPCL_ZONE_MATCH(udp->udp_connp, 1375 udp1->udp_connp->conn_zoneid) || 1376 IPCL_ZONE_MATCH(udp1->udp_connp, 1377 udp->udp_connp->conn_zoneid))) 1378 continue; 1379 mutex_exit(&udpf->uf_lock); 1380 udp->udp_pending_op = -1; 1381 rw_exit(&udp->udp_rwlock); 1382 udp_err_ack(q, mp, TBADADDR, 0); 1383 return; 1384 } 1385 udp->udp_state = TS_DATA_XFER; 1386 mutex_exit(&udpf->uf_lock); 1387 1388 /* 1389 * Send down bind to IP to verify that there is a route 1390 * and to determine the source address. 1391 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput. 1392 */ 1393 if (udp->udp_family == AF_INET) 1394 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t)); 1395 else 1396 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 1397 if (mp1 == NULL) { 1398 bind_failed: 1399 mutex_enter(&udpf->uf_lock); 1400 udp->udp_state = TS_IDLE; 1401 udp->udp_pending_op = -1; 1402 mutex_exit(&udpf->uf_lock); 1403 rw_exit(&udp->udp_rwlock); 1404 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1405 return; 1406 } 1407 1408 rw_exit(&udp->udp_rwlock); 1409 /* 1410 * We also have to send a connection confirmation to 1411 * keep TLI happy. Prepare it for udp_bind_result. 1412 */ 1413 if (udp->udp_family == AF_INET) 1414 mp2 = mi_tpi_conn_con(NULL, (char *)sin, 1415 sizeof (*sin), NULL, 0); 1416 else 1417 mp2 = mi_tpi_conn_con(NULL, (char *)sin6, 1418 sizeof (*sin6), NULL, 0); 1419 if (mp2 == NULL) { 1420 freemsg(mp1); 1421 rw_enter(&udp->udp_rwlock, RW_WRITER); 1422 goto bind_failed; 1423 } 1424 1425 mp = mi_tpi_ok_ack_alloc(mp); 1426 if (mp == NULL) { 1427 /* Unable to reuse the T_CONN_REQ for the ack. */ 1428 freemsg(mp2); 1429 rw_enter(&udp->udp_rwlock, RW_WRITER); 1430 mutex_enter(&udpf->uf_lock); 1431 udp->udp_state = TS_IDLE; 1432 udp->udp_pending_op = -1; 1433 mutex_exit(&udpf->uf_lock); 1434 rw_exit(&udp->udp_rwlock); 1435 udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); 1436 return; 1437 } 1438 1439 /* Hang onto the T_OK_ACK and T_CONN_CON for later. */ 1440 linkb(mp1, mp); 1441 linkb(mp1, mp2); 1442 1443 mblk_setcred(mp1, connp->conn_cred); 1444 if (udp->udp_family == AF_INET) 1445 mp1 = ip_bind_v4(q, mp1, connp); 1446 else 1447 mp1 = ip_bind_v6(q, mp1, connp, NULL); 1448 1449 /* The above return NULL if the bind needs to be deferred */ 1450 if (mp1 != NULL) 1451 udp_bind_result(connp, mp1); 1452 else 1453 CONN_INC_REF(connp); 1454 } 1455 1456 static int 1457 udp_close(queue_t *q) 1458 { 1459 conn_t *connp = (conn_t *)q->q_ptr; 1460 udp_t *udp; 1461 1462 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1463 udp = connp->conn_udp; 1464 1465 udp_quiesce_conn(connp); 1466 ip_quiesce_conn(connp); 1467 /* 1468 * Disable read-side synchronous stream 1469 * interface and drain any queued data. 1470 */ 1471 udp_rcv_drain(q, udp, B_TRUE); 1472 ASSERT(!udp->udp_direct_sockfs); 1473 1474 qprocsoff(q); 1475 1476 ASSERT(udp->udp_rcv_cnt == 0); 1477 ASSERT(udp->udp_rcv_msgcnt == 0); 1478 ASSERT(udp->udp_rcv_list_head == NULL); 1479 ASSERT(udp->udp_rcv_list_tail == NULL); 1480 1481 udp_close_free(connp); 1482 1483 /* 1484 * Now we are truly single threaded on this stream, and can 1485 * delete the things hanging off the connp, and finally the connp. 1486 * We removed this connp from the fanout list, it cannot be 1487 * accessed thru the fanouts, and we already waited for the 1488 * conn_ref to drop to 0. We are already in close, so 1489 * there cannot be any other thread from the top. qprocsoff 1490 * has completed, and service has completed or won't run in 1491 * future. 1492 */ 1493 ASSERT(connp->conn_ref == 1); 1494 1495 inet_minor_free(ip_minor_arena, connp->conn_dev); 1496 1497 connp->conn_ref--; 1498 ipcl_conn_destroy(connp); 1499 1500 q->q_ptr = WR(q)->q_ptr = NULL; 1501 return (0); 1502 } 1503 1504 /* 1505 * Called in the close path to quiesce the conn 1506 */ 1507 void 1508 udp_quiesce_conn(conn_t *connp) 1509 { 1510 udp_t *udp = connp->conn_udp; 1511 1512 if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) { 1513 /* 1514 * Running in cluster mode - register unbind information 1515 */ 1516 if (udp->udp_ipversion == IPV4_VERSION) { 1517 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 1518 (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))), 1519 (in_port_t)udp->udp_port); 1520 } else { 1521 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 1522 (uint8_t *)(&(udp->udp_v6src)), 1523 (in_port_t)udp->udp_port); 1524 } 1525 } 1526 1527 udp_bind_hash_remove(udp, B_FALSE); 1528 1529 } 1530 1531 void 1532 udp_close_free(conn_t *connp) 1533 { 1534 udp_t *udp = connp->conn_udp; 1535 1536 /* If there are any options associated with the stream, free them. */ 1537 if (udp->udp_ip_snd_options != NULL) { 1538 mi_free((char *)udp->udp_ip_snd_options); 1539 udp->udp_ip_snd_options = NULL; 1540 udp->udp_ip_snd_options_len = 0; 1541 } 1542 1543 if (udp->udp_ip_rcv_options != NULL) { 1544 mi_free((char *)udp->udp_ip_rcv_options); 1545 udp->udp_ip_rcv_options = NULL; 1546 udp->udp_ip_rcv_options_len = 0; 1547 } 1548 1549 /* Free memory associated with sticky options */ 1550 if (udp->udp_sticky_hdrs_len != 0) { 1551 kmem_free(udp->udp_sticky_hdrs, 1552 udp->udp_sticky_hdrs_len); 1553 udp->udp_sticky_hdrs = NULL; 1554 udp->udp_sticky_hdrs_len = 0; 1555 } 1556 1557 ip6_pkt_free(&udp->udp_sticky_ipp); 1558 1559 /* 1560 * Clear any fields which the kmem_cache constructor clears. 1561 * Only udp_connp needs to be preserved. 1562 * TBD: We should make this more efficient to avoid clearing 1563 * everything. 1564 */ 1565 ASSERT(udp->udp_connp == connp); 1566 bzero(udp, sizeof (udp_t)); 1567 udp->udp_connp = connp; 1568 } 1569 1570 /* 1571 * This routine handles each T_DISCON_REQ message passed to udp 1572 * as an indicating that UDP is no longer connected. This results 1573 * in sending a T_BIND_REQ to IP to restore the binding to just 1574 * the local address/port. 1575 * 1576 * This routine sends down a T_BIND_REQ to IP with the following mblks: 1577 * T_BIND_REQ - specifying just the local address/port 1578 * T_OK_ACK - for the T_DISCON_REQ 1579 * 1580 * The disconnect completes in udp_bind_result. 1581 * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user. 1582 * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will 1583 * convert it to an error ack for the appropriate primitive. 1584 */ 1585 static void 1586 udp_disconnect(queue_t *q, mblk_t *mp) 1587 { 1588 udp_t *udp; 1589 mblk_t *mp1; 1590 udp_fanout_t *udpf; 1591 udp_stack_t *us; 1592 conn_t *connp = Q_TO_CONN(q); 1593 1594 udp = connp->conn_udp; 1595 us = udp->udp_us; 1596 rw_enter(&udp->udp_rwlock, RW_WRITER); 1597 if (udp->udp_state != TS_DATA_XFER || udp->udp_pending_op != -1) { 1598 rw_exit(&udp->udp_rwlock); 1599 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1600 "udp_disconnect: bad state, %u", udp->udp_state); 1601 udp_err_ack(q, mp, TOUTSTATE, 0); 1602 return; 1603 } 1604 udp->udp_pending_op = T_DISCON_REQ; 1605 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 1606 us->us_bind_fanout_size)]; 1607 mutex_enter(&udpf->uf_lock); 1608 udp->udp_v6src = udp->udp_bound_v6src; 1609 udp->udp_state = TS_IDLE; 1610 mutex_exit(&udpf->uf_lock); 1611 1612 /* 1613 * Send down bind to IP to remove the full binding and revert 1614 * to the local address binding. 1615 */ 1616 if (udp->udp_family == AF_INET) 1617 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t)); 1618 else 1619 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t)); 1620 if (mp1 == NULL) { 1621 udp->udp_pending_op = -1; 1622 rw_exit(&udp->udp_rwlock); 1623 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1624 return; 1625 } 1626 mp = mi_tpi_ok_ack_alloc(mp); 1627 if (mp == NULL) { 1628 /* Unable to reuse the T_DISCON_REQ for the ack. */ 1629 udp->udp_pending_op = -1; 1630 rw_exit(&udp->udp_rwlock); 1631 udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM); 1632 return; 1633 } 1634 1635 if (udp->udp_family == AF_INET6) { 1636 int error; 1637 1638 /* Rebuild the header template */ 1639 error = udp_build_hdrs(udp); 1640 if (error != 0) { 1641 udp->udp_pending_op = -1; 1642 rw_exit(&udp->udp_rwlock); 1643 udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error); 1644 freemsg(mp1); 1645 return; 1646 } 1647 } 1648 1649 rw_exit(&udp->udp_rwlock); 1650 /* Append the T_OK_ACK to the T_BIND_REQ for udp_bind_ack */ 1651 linkb(mp1, mp); 1652 1653 if (udp->udp_family == AF_INET6) 1654 mp1 = ip_bind_v6(q, mp1, connp, NULL); 1655 else 1656 mp1 = ip_bind_v4(q, mp1, connp); 1657 1658 /* The above return NULL if the bind needs to be deferred */ 1659 if (mp1 != NULL) 1660 udp_bind_result(connp, mp1); 1661 else 1662 CONN_INC_REF(connp); 1663 } 1664 1665 /* This routine creates a T_ERROR_ACK message and passes it upstream. */ 1666 static void 1667 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 1668 { 1669 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 1670 qreply(q, mp); 1671 } 1672 1673 /* Shorthand to generate and send TPI error acks to our client */ 1674 static void 1675 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error, 1676 int sys_error) 1677 { 1678 struct T_error_ack *teackp; 1679 1680 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 1681 M_PCPROTO, T_ERROR_ACK)) != NULL) { 1682 teackp = (struct T_error_ack *)mp->b_rptr; 1683 teackp->ERROR_prim = primitive; 1684 teackp->TLI_error = t_error; 1685 teackp->UNIX_error = sys_error; 1686 qreply(q, mp); 1687 } 1688 } 1689 1690 /*ARGSUSED*/ 1691 static int 1692 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 1693 { 1694 int i; 1695 udp_t *udp = Q_TO_UDP(q); 1696 udp_stack_t *us = udp->udp_us; 1697 1698 for (i = 0; i < us->us_num_epriv_ports; i++) { 1699 if (us->us_epriv_ports[i] != 0) 1700 (void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]); 1701 } 1702 return (0); 1703 } 1704 1705 /* ARGSUSED */ 1706 static int 1707 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 1708 cred_t *cr) 1709 { 1710 long new_value; 1711 int i; 1712 udp_t *udp = Q_TO_UDP(q); 1713 udp_stack_t *us = udp->udp_us; 1714 1715 /* 1716 * Fail the request if the new value does not lie within the 1717 * port number limits. 1718 */ 1719 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 1720 new_value <= 0 || new_value >= 65536) { 1721 return (EINVAL); 1722 } 1723 1724 /* Check if the value is already in the list */ 1725 for (i = 0; i < us->us_num_epriv_ports; i++) { 1726 if (new_value == us->us_epriv_ports[i]) { 1727 return (EEXIST); 1728 } 1729 } 1730 /* Find an empty slot */ 1731 for (i = 0; i < us->us_num_epriv_ports; i++) { 1732 if (us->us_epriv_ports[i] == 0) 1733 break; 1734 } 1735 if (i == us->us_num_epriv_ports) { 1736 return (EOVERFLOW); 1737 } 1738 1739 /* Set the new value */ 1740 us->us_epriv_ports[i] = (in_port_t)new_value; 1741 return (0); 1742 } 1743 1744 /* ARGSUSED */ 1745 static int 1746 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 1747 cred_t *cr) 1748 { 1749 long new_value; 1750 int i; 1751 udp_t *udp = Q_TO_UDP(q); 1752 udp_stack_t *us = udp->udp_us; 1753 1754 /* 1755 * Fail the request if the new value does not lie within the 1756 * port number limits. 1757 */ 1758 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 1759 new_value <= 0 || new_value >= 65536) { 1760 return (EINVAL); 1761 } 1762 1763 /* Check that the value is already in the list */ 1764 for (i = 0; i < us->us_num_epriv_ports; i++) { 1765 if (us->us_epriv_ports[i] == new_value) 1766 break; 1767 } 1768 if (i == us->us_num_epriv_ports) { 1769 return (ESRCH); 1770 } 1771 1772 /* Clear the value */ 1773 us->us_epriv_ports[i] = 0; 1774 return (0); 1775 } 1776 1777 /* At minimum we need 4 bytes of UDP header */ 1778 #define ICMP_MIN_UDP_HDR 4 1779 1780 /* 1781 * udp_icmp_error is called by udp_input to process ICMP msgs. passed up by IP. 1782 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 1783 * Assumes that IP has pulled up everything up to and including the ICMP header. 1784 */ 1785 static void 1786 udp_icmp_error(queue_t *q, mblk_t *mp) 1787 { 1788 icmph_t *icmph; 1789 ipha_t *ipha; 1790 int iph_hdr_length; 1791 udpha_t *udpha; 1792 sin_t sin; 1793 sin6_t sin6; 1794 mblk_t *mp1; 1795 int error = 0; 1796 udp_t *udp = Q_TO_UDP(q); 1797 1798 ipha = (ipha_t *)mp->b_rptr; 1799 1800 ASSERT(OK_32PTR(mp->b_rptr)); 1801 1802 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 1803 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 1804 udp_icmp_error_ipv6(q, mp); 1805 return; 1806 } 1807 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 1808 1809 /* Skip past the outer IP and ICMP headers */ 1810 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1811 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1812 ipha = (ipha_t *)&icmph[1]; 1813 1814 /* Skip past the inner IP and find the ULP header */ 1815 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1816 udpha = (udpha_t *)((char *)ipha + iph_hdr_length); 1817 1818 switch (icmph->icmph_type) { 1819 case ICMP_DEST_UNREACHABLE: 1820 switch (icmph->icmph_code) { 1821 case ICMP_FRAGMENTATION_NEEDED: 1822 /* 1823 * IP has already adjusted the path MTU. 1824 */ 1825 break; 1826 case ICMP_PORT_UNREACHABLE: 1827 case ICMP_PROTOCOL_UNREACHABLE: 1828 error = ECONNREFUSED; 1829 break; 1830 default: 1831 /* Transient errors */ 1832 break; 1833 } 1834 break; 1835 default: 1836 /* Transient errors */ 1837 break; 1838 } 1839 if (error == 0) { 1840 freemsg(mp); 1841 return; 1842 } 1843 1844 /* 1845 * Deliver T_UDERROR_IND when the application has asked for it. 1846 * The socket layer enables this automatically when connected. 1847 */ 1848 if (!udp->udp_dgram_errind) { 1849 freemsg(mp); 1850 return; 1851 } 1852 1853 switch (udp->udp_family) { 1854 case AF_INET: 1855 sin = sin_null; 1856 sin.sin_family = AF_INET; 1857 sin.sin_addr.s_addr = ipha->ipha_dst; 1858 sin.sin_port = udpha->uha_dst_port; 1859 mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, 1860 error); 1861 break; 1862 case AF_INET6: 1863 sin6 = sin6_null; 1864 sin6.sin6_family = AF_INET6; 1865 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); 1866 sin6.sin6_port = udpha->uha_dst_port; 1867 1868 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), 1869 NULL, 0, error); 1870 break; 1871 } 1872 if (mp1) 1873 putnext(q, mp1); 1874 freemsg(mp); 1875 } 1876 1877 /* 1878 * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6. 1879 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 1880 * Assumes that IP has pulled up all the extension headers as well as the 1881 * ICMPv6 header. 1882 */ 1883 static void 1884 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp) 1885 { 1886 icmp6_t *icmp6; 1887 ip6_t *ip6h, *outer_ip6h; 1888 uint16_t iph_hdr_length; 1889 uint8_t *nexthdrp; 1890 udpha_t *udpha; 1891 sin6_t sin6; 1892 mblk_t *mp1; 1893 int error = 0; 1894 udp_t *udp = Q_TO_UDP(q); 1895 udp_stack_t *us = udp->udp_us; 1896 1897 outer_ip6h = (ip6_t *)mp->b_rptr; 1898 if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6) 1899 iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h); 1900 else 1901 iph_hdr_length = IPV6_HDR_LEN; 1902 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 1903 ip6h = (ip6_t *)&icmp6[1]; 1904 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) { 1905 freemsg(mp); 1906 return; 1907 } 1908 udpha = (udpha_t *)((char *)ip6h + iph_hdr_length); 1909 1910 switch (icmp6->icmp6_type) { 1911 case ICMP6_DST_UNREACH: 1912 switch (icmp6->icmp6_code) { 1913 case ICMP6_DST_UNREACH_NOPORT: 1914 error = ECONNREFUSED; 1915 break; 1916 case ICMP6_DST_UNREACH_ADMIN: 1917 case ICMP6_DST_UNREACH_NOROUTE: 1918 case ICMP6_DST_UNREACH_BEYONDSCOPE: 1919 case ICMP6_DST_UNREACH_ADDR: 1920 /* Transient errors */ 1921 break; 1922 default: 1923 break; 1924 } 1925 break; 1926 case ICMP6_PACKET_TOO_BIG: { 1927 struct T_unitdata_ind *tudi; 1928 struct T_opthdr *toh; 1929 size_t udi_size; 1930 mblk_t *newmp; 1931 t_scalar_t opt_length = sizeof (struct T_opthdr) + 1932 sizeof (struct ip6_mtuinfo); 1933 sin6_t *sin6; 1934 struct ip6_mtuinfo *mtuinfo; 1935 1936 /* 1937 * If the application has requested to receive path mtu 1938 * information, send up an empty message containing an 1939 * IPV6_PATHMTU ancillary data item. 1940 */ 1941 if (!udp->udp_ipv6_recvpathmtu) 1942 break; 1943 1944 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + 1945 opt_length; 1946 if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { 1947 BUMP_MIB(&us->us_udp_mib, udpInErrors); 1948 break; 1949 } 1950 1951 /* 1952 * newmp->b_cont is left to NULL on purpose. This is an 1953 * empty message containing only ancillary data. 1954 */ 1955 newmp->b_datap->db_type = M_PROTO; 1956 tudi = (struct T_unitdata_ind *)newmp->b_rptr; 1957 newmp->b_wptr = (uchar_t *)tudi + udi_size; 1958 tudi->PRIM_type = T_UNITDATA_IND; 1959 tudi->SRC_length = sizeof (sin6_t); 1960 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 1961 tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); 1962 tudi->OPT_length = opt_length; 1963 1964 sin6 = (sin6_t *)&tudi[1]; 1965 bzero(sin6, sizeof (sin6_t)); 1966 sin6->sin6_family = AF_INET6; 1967 sin6->sin6_addr = udp->udp_v6dst; 1968 1969 toh = (struct T_opthdr *)&sin6[1]; 1970 toh->level = IPPROTO_IPV6; 1971 toh->name = IPV6_PATHMTU; 1972 toh->len = opt_length; 1973 toh->status = 0; 1974 1975 mtuinfo = (struct ip6_mtuinfo *)&toh[1]; 1976 bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); 1977 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 1978 mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; 1979 mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; 1980 /* 1981 * We've consumed everything we need from the original 1982 * message. Free it, then send our empty message. 1983 */ 1984 freemsg(mp); 1985 putnext(q, newmp); 1986 return; 1987 } 1988 case ICMP6_TIME_EXCEEDED: 1989 /* Transient errors */ 1990 break; 1991 case ICMP6_PARAM_PROB: 1992 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 1993 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 1994 (uchar_t *)ip6h + icmp6->icmp6_pptr == 1995 (uchar_t *)nexthdrp) { 1996 error = ECONNREFUSED; 1997 break; 1998 } 1999 break; 2000 } 2001 if (error == 0) { 2002 freemsg(mp); 2003 return; 2004 } 2005 2006 /* 2007 * Deliver T_UDERROR_IND when the application has asked for it. 2008 * The socket layer enables this automatically when connected. 2009 */ 2010 if (!udp->udp_dgram_errind) { 2011 freemsg(mp); 2012 return; 2013 } 2014 2015 sin6 = sin6_null; 2016 sin6.sin6_family = AF_INET6; 2017 sin6.sin6_addr = ip6h->ip6_dst; 2018 sin6.sin6_port = udpha->uha_dst_port; 2019 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 2020 2021 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, 2022 error); 2023 if (mp1) 2024 putnext(q, mp1); 2025 freemsg(mp); 2026 } 2027 2028 /* 2029 * This routine responds to T_ADDR_REQ messages. It is called by udp_wput. 2030 * The local address is filled in if endpoint is bound. The remote address 2031 * is filled in if remote address has been precified ("connected endpoint") 2032 * (The concept of connected CLTS sockets is alien to published TPI 2033 * but we support it anyway). 2034 */ 2035 static void 2036 udp_addr_req(queue_t *q, mblk_t *mp) 2037 { 2038 sin_t *sin; 2039 sin6_t *sin6; 2040 mblk_t *ackmp; 2041 struct T_addr_ack *taa; 2042 udp_t *udp = Q_TO_UDP(q); 2043 2044 /* Make it large enough for worst case */ 2045 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2046 2 * sizeof (sin6_t), 1); 2047 if (ackmp == NULL) { 2048 udp_err_ack(q, mp, TSYSERR, ENOMEM); 2049 return; 2050 } 2051 taa = (struct T_addr_ack *)ackmp->b_rptr; 2052 2053 bzero(taa, sizeof (struct T_addr_ack)); 2054 ackmp->b_wptr = (uchar_t *)&taa[1]; 2055 2056 taa->PRIM_type = T_ADDR_ACK; 2057 ackmp->b_datap->db_type = M_PCPROTO; 2058 rw_enter(&udp->udp_rwlock, RW_READER); 2059 /* 2060 * Note: Following code assumes 32 bit alignment of basic 2061 * data structures like sin_t and struct T_addr_ack. 2062 */ 2063 if (udp->udp_state != TS_UNBND) { 2064 /* 2065 * Fill in local address first 2066 */ 2067 taa->LOCADDR_offset = sizeof (*taa); 2068 if (udp->udp_family == AF_INET) { 2069 taa->LOCADDR_length = sizeof (sin_t); 2070 sin = (sin_t *)&taa[1]; 2071 /* Fill zeroes and then initialize non-zero fields */ 2072 *sin = sin_null; 2073 sin->sin_family = AF_INET; 2074 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 2075 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2076 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, 2077 sin->sin_addr.s_addr); 2078 } else { 2079 /* 2080 * INADDR_ANY 2081 * udp_v6src is not set, we might be bound to 2082 * broadcast/multicast. Use udp_bound_v6src as 2083 * local address instead (that could 2084 * also still be INADDR_ANY) 2085 */ 2086 IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src, 2087 sin->sin_addr.s_addr); 2088 } 2089 sin->sin_port = udp->udp_port; 2090 ackmp->b_wptr = (uchar_t *)&sin[1]; 2091 if (udp->udp_state == TS_DATA_XFER) { 2092 /* 2093 * connected, fill remote address too 2094 */ 2095 taa->REMADDR_length = sizeof (sin_t); 2096 /* assumed 32-bit alignment */ 2097 taa->REMADDR_offset = taa->LOCADDR_offset + 2098 taa->LOCADDR_length; 2099 2100 sin = (sin_t *)(ackmp->b_rptr + 2101 taa->REMADDR_offset); 2102 /* initialize */ 2103 *sin = sin_null; 2104 sin->sin_family = AF_INET; 2105 sin->sin_addr.s_addr = 2106 V4_PART_OF_V6(udp->udp_v6dst); 2107 sin->sin_port = udp->udp_dstport; 2108 ackmp->b_wptr = (uchar_t *)&sin[1]; 2109 } 2110 } else { 2111 taa->LOCADDR_length = sizeof (sin6_t); 2112 sin6 = (sin6_t *)&taa[1]; 2113 /* Fill zeroes and then initialize non-zero fields */ 2114 *sin6 = sin6_null; 2115 sin6->sin6_family = AF_INET6; 2116 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2117 sin6->sin6_addr = udp->udp_v6src; 2118 } else { 2119 /* 2120 * UNSPECIFIED 2121 * udp_v6src is not set, we might be bound to 2122 * broadcast/multicast. Use udp_bound_v6src as 2123 * local address instead (that could 2124 * also still be UNSPECIFIED) 2125 */ 2126 sin6->sin6_addr = 2127 udp->udp_bound_v6src; 2128 } 2129 sin6->sin6_port = udp->udp_port; 2130 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2131 if (udp->udp_state == TS_DATA_XFER) { 2132 /* 2133 * connected, fill remote address too 2134 */ 2135 taa->REMADDR_length = sizeof (sin6_t); 2136 /* assumed 32-bit alignment */ 2137 taa->REMADDR_offset = taa->LOCADDR_offset + 2138 taa->LOCADDR_length; 2139 2140 sin6 = (sin6_t *)(ackmp->b_rptr + 2141 taa->REMADDR_offset); 2142 /* initialize */ 2143 *sin6 = sin6_null; 2144 sin6->sin6_family = AF_INET6; 2145 sin6->sin6_addr = udp->udp_v6dst; 2146 sin6->sin6_port = udp->udp_dstport; 2147 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2148 } 2149 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2150 } 2151 } 2152 rw_exit(&udp->udp_rwlock); 2153 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 2154 qreply(q, ackmp); 2155 } 2156 2157 static void 2158 udp_copy_info(struct T_info_ack *tap, udp_t *udp) 2159 { 2160 if (udp->udp_family == AF_INET) { 2161 *tap = udp_g_t_info_ack_ipv4; 2162 } else { 2163 *tap = udp_g_t_info_ack_ipv6; 2164 } 2165 tap->CURRENT_state = udp->udp_state; 2166 tap->OPT_size = udp_max_optsize; 2167 } 2168 2169 /* 2170 * This routine responds to T_CAPABILITY_REQ messages. It is called by 2171 * udp_wput. Much of the T_CAPABILITY_ACK information is copied from 2172 * udp_g_t_info_ack. The current state of the stream is copied from 2173 * udp_state. 2174 */ 2175 static void 2176 udp_capability_req(queue_t *q, mblk_t *mp) 2177 { 2178 t_uscalar_t cap_bits1; 2179 struct T_capability_ack *tcap; 2180 udp_t *udp = Q_TO_UDP(q); 2181 2182 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 2183 2184 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 2185 mp->b_datap->db_type, T_CAPABILITY_ACK); 2186 if (!mp) 2187 return; 2188 2189 tcap = (struct T_capability_ack *)mp->b_rptr; 2190 tcap->CAP_bits1 = 0; 2191 2192 if (cap_bits1 & TC1_INFO) { 2193 udp_copy_info(&tcap->INFO_ack, udp); 2194 tcap->CAP_bits1 |= TC1_INFO; 2195 } 2196 2197 qreply(q, mp); 2198 } 2199 2200 /* 2201 * This routine responds to T_INFO_REQ messages. It is called by udp_wput. 2202 * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack. 2203 * The current state of the stream is copied from udp_state. 2204 */ 2205 static void 2206 udp_info_req(queue_t *q, mblk_t *mp) 2207 { 2208 udp_t *udp = Q_TO_UDP(q); 2209 2210 /* Create a T_INFO_ACK message. */ 2211 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 2212 T_INFO_ACK); 2213 if (!mp) 2214 return; 2215 udp_copy_info((struct T_info_ack *)mp->b_rptr, udp); 2216 qreply(q, mp); 2217 } 2218 2219 /* 2220 * IP recognizes seven kinds of bind requests: 2221 * 2222 * - A zero-length address binds only to the protocol number. 2223 * 2224 * - A 4-byte address is treated as a request to 2225 * validate that the address is a valid local IPv4 2226 * address, appropriate for an application to bind to. 2227 * IP does the verification, but does not make any note 2228 * of the address at this time. 2229 * 2230 * - A 16-byte address contains is treated as a request 2231 * to validate a local IPv6 address, as the 4-byte 2232 * address case above. 2233 * 2234 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 2235 * use it for the inbound fanout of packets. 2236 * 2237 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 2238 * use it for the inbound fanout of packets. 2239 * 2240 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 2241 * information consisting of local and remote addresses 2242 * and ports. In this case, the addresses are both 2243 * validated as appropriate for this operation, and, if 2244 * so, the information is retained for use in the 2245 * inbound fanout. 2246 * 2247 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 2248 * fanout information, like the 12-byte case above. 2249 * 2250 * IP will also fill in the IRE request mblk with information 2251 * regarding our peer. In all cases, we notify IP of our protocol 2252 * type by appending a single protocol byte to the bind request. 2253 */ 2254 static mblk_t * 2255 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length) 2256 { 2257 char *cp; 2258 mblk_t *mp; 2259 struct T_bind_req *tbr; 2260 ipa_conn_t *ac; 2261 ipa6_conn_t *ac6; 2262 sin_t *sin; 2263 sin6_t *sin6; 2264 2265 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 2266 ASSERT(RW_LOCK_HELD(&udp->udp_rwlock)); 2267 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 2268 if (!mp) 2269 return (mp); 2270 mp->b_datap->db_type = M_PROTO; 2271 tbr = (struct T_bind_req *)mp->b_rptr; 2272 tbr->PRIM_type = bind_prim; 2273 tbr->ADDR_offset = sizeof (*tbr); 2274 tbr->CONIND_number = 0; 2275 tbr->ADDR_length = addr_length; 2276 cp = (char *)&tbr[1]; 2277 switch (addr_length) { 2278 case sizeof (ipa_conn_t): 2279 ASSERT(udp->udp_family == AF_INET); 2280 /* Append a request for an IRE */ 2281 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2282 if (!mp->b_cont) { 2283 freemsg(mp); 2284 return (NULL); 2285 } 2286 mp->b_cont->b_wptr += sizeof (ire_t); 2287 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2288 2289 /* cp known to be 32 bit aligned */ 2290 ac = (ipa_conn_t *)cp; 2291 ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src); 2292 ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst); 2293 ac->ac_fport = udp->udp_dstport; 2294 ac->ac_lport = udp->udp_port; 2295 break; 2296 2297 case sizeof (ipa6_conn_t): 2298 ASSERT(udp->udp_family == AF_INET6); 2299 /* Append a request for an IRE */ 2300 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2301 if (!mp->b_cont) { 2302 freemsg(mp); 2303 return (NULL); 2304 } 2305 mp->b_cont->b_wptr += sizeof (ire_t); 2306 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2307 2308 /* cp known to be 32 bit aligned */ 2309 ac6 = (ipa6_conn_t *)cp; 2310 ac6->ac6_laddr = udp->udp_v6src; 2311 ac6->ac6_faddr = udp->udp_v6dst; 2312 ac6->ac6_fport = udp->udp_dstport; 2313 ac6->ac6_lport = udp->udp_port; 2314 break; 2315 2316 case sizeof (sin_t): 2317 ASSERT(udp->udp_family == AF_INET); 2318 /* Append a request for an IRE */ 2319 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2320 if (!mp->b_cont) { 2321 freemsg(mp); 2322 return (NULL); 2323 } 2324 mp->b_cont->b_wptr += sizeof (ire_t); 2325 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2326 2327 sin = (sin_t *)cp; 2328 *sin = sin_null; 2329 sin->sin_family = AF_INET; 2330 sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src); 2331 sin->sin_port = udp->udp_port; 2332 break; 2333 2334 case sizeof (sin6_t): 2335 ASSERT(udp->udp_family == AF_INET6); 2336 /* Append a request for an IRE */ 2337 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2338 if (!mp->b_cont) { 2339 freemsg(mp); 2340 return (NULL); 2341 } 2342 mp->b_cont->b_wptr += sizeof (ire_t); 2343 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2344 2345 sin6 = (sin6_t *)cp; 2346 *sin6 = sin6_null; 2347 sin6->sin6_family = AF_INET6; 2348 sin6->sin6_addr = udp->udp_bound_v6src; 2349 sin6->sin6_port = udp->udp_port; 2350 break; 2351 } 2352 /* Add protocol number to end */ 2353 cp[addr_length] = (char)IPPROTO_UDP; 2354 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 2355 return (mp); 2356 } 2357 2358 /* For /dev/udp aka AF_INET open */ 2359 static int 2360 udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2361 { 2362 return (udp_open(q, devp, flag, sflag, credp, B_FALSE)); 2363 } 2364 2365 /* For /dev/udp6 aka AF_INET6 open */ 2366 static int 2367 udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2368 { 2369 return (udp_open(q, devp, flag, sflag, credp, B_TRUE)); 2370 } 2371 2372 /* 2373 * This is the open routine for udp. It allocates a udp_t structure for 2374 * the stream and, on the first open of the module, creates an ND table. 2375 */ 2376 /*ARGSUSED2*/ 2377 static int 2378 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2379 boolean_t isv6) 2380 { 2381 int err; 2382 udp_t *udp; 2383 conn_t *connp; 2384 dev_t conn_dev; 2385 zoneid_t zoneid; 2386 netstack_t *ns; 2387 udp_stack_t *us; 2388 2389 TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q); 2390 2391 /* If the stream is already open, return immediately. */ 2392 if (q->q_ptr != NULL) 2393 return (0); 2394 2395 if (sflag == MODOPEN) 2396 return (EINVAL); 2397 2398 ns = netstack_find_by_cred(credp); 2399 ASSERT(ns != NULL); 2400 us = ns->netstack_udp; 2401 ASSERT(us != NULL); 2402 2403 /* 2404 * For exclusive stacks we set the zoneid to zero 2405 * to make UDP operate as if in the global zone. 2406 */ 2407 if (ns->netstack_stackid != GLOBAL_NETSTACKID) 2408 zoneid = GLOBAL_ZONEID; 2409 else 2410 zoneid = crgetzoneid(credp); 2411 2412 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) { 2413 netstack_rele(ns); 2414 return (EBUSY); 2415 } 2416 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 2417 2418 connp = ipcl_conn_create(IPCL_UDPCONN, KM_SLEEP, ns); 2419 connp->conn_dev = conn_dev; 2420 udp = connp->conn_udp; 2421 2422 /* 2423 * ipcl_conn_create did a netstack_hold. Undo the hold that was 2424 * done by netstack_find_by_cred() 2425 */ 2426 netstack_rele(ns); 2427 2428 /* 2429 * Initialize the udp_t structure for this stream. 2430 */ 2431 q->q_ptr = connp; 2432 WR(q)->q_ptr = connp; 2433 connp->conn_rq = q; 2434 connp->conn_wq = WR(q); 2435 2436 rw_enter(&udp->udp_rwlock, RW_WRITER); 2437 ASSERT(connp->conn_ulp == IPPROTO_UDP); 2438 ASSERT(connp->conn_udp == udp); 2439 ASSERT(udp->udp_connp == connp); 2440 2441 /* Set the initial state of the stream and the privilege status. */ 2442 udp->udp_state = TS_UNBND; 2443 if (isv6) { 2444 udp->udp_family = AF_INET6; 2445 udp->udp_ipversion = IPV6_VERSION; 2446 udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 2447 udp->udp_ttl = us->us_ipv6_hoplimit; 2448 connp->conn_af_isv6 = B_TRUE; 2449 connp->conn_flags |= IPCL_ISV6; 2450 } else { 2451 udp->udp_family = AF_INET; 2452 udp->udp_ipversion = IPV4_VERSION; 2453 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE; 2454 udp->udp_ttl = us->us_ipv4_ttl; 2455 connp->conn_af_isv6 = B_FALSE; 2456 connp->conn_flags &= ~IPCL_ISV6; 2457 } 2458 2459 udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2460 udp->udp_pending_op = -1; 2461 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 2462 connp->conn_zoneid = zoneid; 2463 2464 udp->udp_open_time = lbolt64; 2465 udp->udp_open_pid = curproc->p_pid; 2466 2467 /* 2468 * If the caller has the process-wide flag set, then default to MAC 2469 * exempt mode. This allows read-down to unlabeled hosts. 2470 */ 2471 if (getpflags(NET_MAC_AWARE, credp) != 0) 2472 udp->udp_mac_exempt = B_TRUE; 2473 2474 if (flag & SO_SOCKSTR) { 2475 connp->conn_flags |= IPCL_SOCKET; 2476 udp->udp_issocket = B_TRUE; 2477 udp->udp_direct_sockfs = B_TRUE; 2478 } 2479 2480 connp->conn_ulp_labeled = is_system_labeled(); 2481 2482 udp->udp_us = us; 2483 2484 q->q_hiwat = us->us_recv_hiwat; 2485 WR(q)->q_hiwat = us->us_xmit_hiwat; 2486 WR(q)->q_lowat = us->us_xmit_lowat; 2487 2488 connp->conn_recv = udp_input; 2489 crhold(credp); 2490 connp->conn_cred = credp; 2491 2492 mutex_enter(&connp->conn_lock); 2493 connp->conn_state_flags &= ~CONN_INCIPIENT; 2494 mutex_exit(&connp->conn_lock); 2495 2496 qprocson(q); 2497 2498 if (udp->udp_family == AF_INET6) { 2499 /* Build initial header template for transmit */ 2500 if ((err = udp_build_hdrs(udp)) != 0) { 2501 rw_exit(&udp->udp_rwlock); 2502 qprocsoff(q); 2503 ipcl_conn_destroy(connp); 2504 return (err); 2505 } 2506 } 2507 rw_exit(&udp->udp_rwlock); 2508 2509 /* Set the Stream head write offset and high watermark. */ 2510 (void) mi_set_sth_wroff(q, 2511 udp->udp_max_hdr_len + us->us_wroff_extra); 2512 (void) mi_set_sth_hiwat(q, udp_set_rcv_hiwat(udp, q->q_hiwat)); 2513 2514 return (0); 2515 } 2516 2517 /* 2518 * Which UDP options OK to set through T_UNITDATA_REQ... 2519 */ 2520 /* ARGSUSED */ 2521 static boolean_t 2522 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name) 2523 { 2524 return (B_TRUE); 2525 } 2526 2527 /* 2528 * This routine gets default values of certain options whose default 2529 * values are maintained by protcol specific code 2530 */ 2531 /* ARGSUSED */ 2532 int 2533 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 2534 { 2535 udp_t *udp = Q_TO_UDP(q); 2536 udp_stack_t *us = udp->udp_us; 2537 int *i1 = (int *)ptr; 2538 2539 switch (level) { 2540 case IPPROTO_IP: 2541 switch (name) { 2542 case IP_MULTICAST_TTL: 2543 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 2544 return (sizeof (uchar_t)); 2545 case IP_MULTICAST_LOOP: 2546 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 2547 return (sizeof (uchar_t)); 2548 } 2549 break; 2550 case IPPROTO_IPV6: 2551 switch (name) { 2552 case IPV6_MULTICAST_HOPS: 2553 *i1 = IP_DEFAULT_MULTICAST_TTL; 2554 return (sizeof (int)); 2555 case IPV6_MULTICAST_LOOP: 2556 *i1 = IP_DEFAULT_MULTICAST_LOOP; 2557 return (sizeof (int)); 2558 case IPV6_UNICAST_HOPS: 2559 *i1 = us->us_ipv6_hoplimit; 2560 return (sizeof (int)); 2561 } 2562 break; 2563 } 2564 return (-1); 2565 } 2566 2567 /* 2568 * This routine retrieves the current status of socket options. 2569 * It returns the size of the option retrieved. 2570 */ 2571 int 2572 udp_opt_get_locked(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 2573 { 2574 int *i1 = (int *)ptr; 2575 conn_t *connp; 2576 udp_t *udp; 2577 ip6_pkt_t *ipp; 2578 int len; 2579 udp_stack_t *us; 2580 2581 connp = Q_TO_CONN(q); 2582 udp = connp->conn_udp; 2583 ipp = &udp->udp_sticky_ipp; 2584 us = udp->udp_us; 2585 2586 switch (level) { 2587 case SOL_SOCKET: 2588 switch (name) { 2589 case SO_DEBUG: 2590 *i1 = udp->udp_debug; 2591 break; /* goto sizeof (int) option return */ 2592 case SO_REUSEADDR: 2593 *i1 = udp->udp_reuseaddr; 2594 break; /* goto sizeof (int) option return */ 2595 case SO_TYPE: 2596 *i1 = SOCK_DGRAM; 2597 break; /* goto sizeof (int) option return */ 2598 2599 /* 2600 * The following three items are available here, 2601 * but are only meaningful to IP. 2602 */ 2603 case SO_DONTROUTE: 2604 *i1 = udp->udp_dontroute; 2605 break; /* goto sizeof (int) option return */ 2606 case SO_USELOOPBACK: 2607 *i1 = udp->udp_useloopback; 2608 break; /* goto sizeof (int) option return */ 2609 case SO_BROADCAST: 2610 *i1 = udp->udp_broadcast; 2611 break; /* goto sizeof (int) option return */ 2612 2613 case SO_SNDBUF: 2614 *i1 = q->q_hiwat; 2615 break; /* goto sizeof (int) option return */ 2616 case SO_RCVBUF: 2617 *i1 = RD(q)->q_hiwat; 2618 break; /* goto sizeof (int) option return */ 2619 case SO_DGRAM_ERRIND: 2620 *i1 = udp->udp_dgram_errind; 2621 break; /* goto sizeof (int) option return */ 2622 case SO_RECVUCRED: 2623 *i1 = udp->udp_recvucred; 2624 break; /* goto sizeof (int) option return */ 2625 case SO_TIMESTAMP: 2626 *i1 = udp->udp_timestamp; 2627 break; /* goto sizeof (int) option return */ 2628 case SO_ANON_MLP: 2629 *i1 = udp->udp_anon_mlp; 2630 break; /* goto sizeof (int) option return */ 2631 case SO_MAC_EXEMPT: 2632 *i1 = udp->udp_mac_exempt; 2633 break; /* goto sizeof (int) option return */ 2634 case SO_ALLZONES: 2635 *i1 = connp->conn_allzones; 2636 break; /* goto sizeof (int) option return */ 2637 case SO_EXCLBIND: 2638 *i1 = udp->udp_exclbind ? SO_EXCLBIND : 0; 2639 break; 2640 case SO_PROTOTYPE: 2641 *i1 = IPPROTO_UDP; 2642 break; 2643 case SO_DOMAIN: 2644 *i1 = udp->udp_family; 2645 break; 2646 default: 2647 return (-1); 2648 } 2649 break; 2650 case IPPROTO_IP: 2651 if (udp->udp_family != AF_INET) 2652 return (-1); 2653 switch (name) { 2654 case IP_OPTIONS: 2655 case T_IP_OPTIONS: 2656 len = udp->udp_ip_rcv_options_len - udp->udp_label_len; 2657 if (len > 0) { 2658 bcopy(udp->udp_ip_rcv_options + 2659 udp->udp_label_len, ptr, len); 2660 } 2661 return (len); 2662 case IP_TOS: 2663 case T_IP_TOS: 2664 *i1 = (int)udp->udp_type_of_service; 2665 break; /* goto sizeof (int) option return */ 2666 case IP_TTL: 2667 *i1 = (int)udp->udp_ttl; 2668 break; /* goto sizeof (int) option return */ 2669 case IP_DHCPINIT_IF: 2670 return (-EINVAL); 2671 case IP_NEXTHOP: 2672 case IP_RECVPKTINFO: 2673 /* 2674 * This also handles IP_PKTINFO. 2675 * IP_PKTINFO and IP_RECVPKTINFO have the same value. 2676 * Differentiation is based on the size of the argument 2677 * passed in. 2678 * This option is handled in IP which will return an 2679 * error for IP_PKTINFO as it's not supported as a 2680 * sticky option. 2681 */ 2682 return (-EINVAL); 2683 case IP_MULTICAST_IF: 2684 /* 0 address if not set */ 2685 *(ipaddr_t *)ptr = udp->udp_multicast_if_addr; 2686 return (sizeof (ipaddr_t)); 2687 case IP_MULTICAST_TTL: 2688 *(uchar_t *)ptr = udp->udp_multicast_ttl; 2689 return (sizeof (uchar_t)); 2690 case IP_MULTICAST_LOOP: 2691 *ptr = connp->conn_multicast_loop; 2692 return (sizeof (uint8_t)); 2693 case IP_RECVOPTS: 2694 *i1 = udp->udp_recvopts; 2695 break; /* goto sizeof (int) option return */ 2696 case IP_RECVDSTADDR: 2697 *i1 = udp->udp_recvdstaddr; 2698 break; /* goto sizeof (int) option return */ 2699 case IP_RECVIF: 2700 *i1 = udp->udp_recvif; 2701 break; /* goto sizeof (int) option return */ 2702 case IP_RECVSLLA: 2703 *i1 = udp->udp_recvslla; 2704 break; /* goto sizeof (int) option return */ 2705 case IP_RECVTTL: 2706 *i1 = udp->udp_recvttl; 2707 break; /* goto sizeof (int) option return */ 2708 case IP_ADD_MEMBERSHIP: 2709 case IP_DROP_MEMBERSHIP: 2710 case IP_BLOCK_SOURCE: 2711 case IP_UNBLOCK_SOURCE: 2712 case IP_ADD_SOURCE_MEMBERSHIP: 2713 case IP_DROP_SOURCE_MEMBERSHIP: 2714 case MCAST_JOIN_GROUP: 2715 case MCAST_LEAVE_GROUP: 2716 case MCAST_BLOCK_SOURCE: 2717 case MCAST_UNBLOCK_SOURCE: 2718 case MCAST_JOIN_SOURCE_GROUP: 2719 case MCAST_LEAVE_SOURCE_GROUP: 2720 case IP_DONTFAILOVER_IF: 2721 /* cannot "get" the value for these */ 2722 return (-1); 2723 case IP_BOUND_IF: 2724 /* Zero if not set */ 2725 *i1 = udp->udp_bound_if; 2726 break; /* goto sizeof (int) option return */ 2727 case IP_UNSPEC_SRC: 2728 *i1 = udp->udp_unspec_source; 2729 break; /* goto sizeof (int) option return */ 2730 default: 2731 return (-1); 2732 } 2733 break; 2734 case IPPROTO_IPV6: 2735 if (udp->udp_family != AF_INET6) 2736 return (-1); 2737 switch (name) { 2738 case IPV6_UNICAST_HOPS: 2739 *i1 = (unsigned int)udp->udp_ttl; 2740 break; /* goto sizeof (int) option return */ 2741 case IPV6_MULTICAST_IF: 2742 /* 0 index if not set */ 2743 *i1 = udp->udp_multicast_if_index; 2744 break; /* goto sizeof (int) option return */ 2745 case IPV6_MULTICAST_HOPS: 2746 *i1 = udp->udp_multicast_ttl; 2747 break; /* goto sizeof (int) option return */ 2748 case IPV6_MULTICAST_LOOP: 2749 *i1 = connp->conn_multicast_loop; 2750 break; /* goto sizeof (int) option return */ 2751 case IPV6_JOIN_GROUP: 2752 case IPV6_LEAVE_GROUP: 2753 case MCAST_JOIN_GROUP: 2754 case MCAST_LEAVE_GROUP: 2755 case MCAST_BLOCK_SOURCE: 2756 case MCAST_UNBLOCK_SOURCE: 2757 case MCAST_JOIN_SOURCE_GROUP: 2758 case MCAST_LEAVE_SOURCE_GROUP: 2759 /* cannot "get" the value for these */ 2760 return (-1); 2761 case IPV6_BOUND_IF: 2762 /* Zero if not set */ 2763 *i1 = udp->udp_bound_if; 2764 break; /* goto sizeof (int) option return */ 2765 case IPV6_UNSPEC_SRC: 2766 *i1 = udp->udp_unspec_source; 2767 break; /* goto sizeof (int) option return */ 2768 case IPV6_RECVPKTINFO: 2769 *i1 = udp->udp_ip_recvpktinfo; 2770 break; /* goto sizeof (int) option return */ 2771 case IPV6_RECVTCLASS: 2772 *i1 = udp->udp_ipv6_recvtclass; 2773 break; /* goto sizeof (int) option return */ 2774 case IPV6_RECVPATHMTU: 2775 *i1 = udp->udp_ipv6_recvpathmtu; 2776 break; /* goto sizeof (int) option return */ 2777 case IPV6_RECVHOPLIMIT: 2778 *i1 = udp->udp_ipv6_recvhoplimit; 2779 break; /* goto sizeof (int) option return */ 2780 case IPV6_RECVHOPOPTS: 2781 *i1 = udp->udp_ipv6_recvhopopts; 2782 break; /* goto sizeof (int) option return */ 2783 case IPV6_RECVDSTOPTS: 2784 *i1 = udp->udp_ipv6_recvdstopts; 2785 break; /* goto sizeof (int) option return */ 2786 case _OLD_IPV6_RECVDSTOPTS: 2787 *i1 = udp->udp_old_ipv6_recvdstopts; 2788 break; /* goto sizeof (int) option return */ 2789 case IPV6_RECVRTHDRDSTOPTS: 2790 *i1 = udp->udp_ipv6_recvrthdrdstopts; 2791 break; /* goto sizeof (int) option return */ 2792 case IPV6_RECVRTHDR: 2793 *i1 = udp->udp_ipv6_recvrthdr; 2794 break; /* goto sizeof (int) option return */ 2795 case IPV6_PKTINFO: { 2796 /* XXX assumes that caller has room for max size! */ 2797 struct in6_pktinfo *pkti; 2798 2799 pkti = (struct in6_pktinfo *)ptr; 2800 if (ipp->ipp_fields & IPPF_IFINDEX) 2801 pkti->ipi6_ifindex = ipp->ipp_ifindex; 2802 else 2803 pkti->ipi6_ifindex = 0; 2804 if (ipp->ipp_fields & IPPF_ADDR) 2805 pkti->ipi6_addr = ipp->ipp_addr; 2806 else 2807 pkti->ipi6_addr = ipv6_all_zeros; 2808 return (sizeof (struct in6_pktinfo)); 2809 } 2810 case IPV6_TCLASS: 2811 if (ipp->ipp_fields & IPPF_TCLASS) 2812 *i1 = ipp->ipp_tclass; 2813 else 2814 *i1 = IPV6_FLOW_TCLASS( 2815 IPV6_DEFAULT_VERS_AND_FLOW); 2816 break; /* goto sizeof (int) option return */ 2817 case IPV6_NEXTHOP: { 2818 sin6_t *sin6 = (sin6_t *)ptr; 2819 2820 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 2821 return (0); 2822 *sin6 = sin6_null; 2823 sin6->sin6_family = AF_INET6; 2824 sin6->sin6_addr = ipp->ipp_nexthop; 2825 return (sizeof (sin6_t)); 2826 } 2827 case IPV6_HOPOPTS: 2828 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 2829 return (0); 2830 if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6) 2831 return (0); 2832 /* 2833 * The cipso/label option is added by kernel. 2834 * User is not usually aware of this option. 2835 * We copy out the hbh opt after the label option. 2836 */ 2837 bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6, 2838 ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6); 2839 if (udp->udp_label_len_v6 > 0) { 2840 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 2841 ptr[1] = (ipp->ipp_hopoptslen - 2842 udp->udp_label_len_v6 + 7) / 8 - 1; 2843 } 2844 return (ipp->ipp_hopoptslen - udp->udp_label_len_v6); 2845 case IPV6_RTHDRDSTOPTS: 2846 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 2847 return (0); 2848 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 2849 return (ipp->ipp_rtdstoptslen); 2850 case IPV6_RTHDR: 2851 if (!(ipp->ipp_fields & IPPF_RTHDR)) 2852 return (0); 2853 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 2854 return (ipp->ipp_rthdrlen); 2855 case IPV6_DSTOPTS: 2856 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 2857 return (0); 2858 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 2859 return (ipp->ipp_dstoptslen); 2860 case IPV6_PATHMTU: 2861 return (ip_fill_mtuinfo(&udp->udp_v6dst, 2862 udp->udp_dstport, (struct ip6_mtuinfo *)ptr, 2863 us->us_netstack)); 2864 default: 2865 return (-1); 2866 } 2867 break; 2868 case IPPROTO_UDP: 2869 switch (name) { 2870 case UDP_ANONPRIVBIND: 2871 *i1 = udp->udp_anon_priv_bind; 2872 break; 2873 case UDP_EXCLBIND: 2874 *i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0; 2875 break; 2876 case UDP_RCVHDR: 2877 *i1 = udp->udp_rcvhdr ? 1 : 0; 2878 break; 2879 case UDP_NAT_T_ENDPOINT: 2880 *i1 = udp->udp_nat_t_endpoint; 2881 break; 2882 default: 2883 return (-1); 2884 } 2885 break; 2886 default: 2887 return (-1); 2888 } 2889 return (sizeof (int)); 2890 } 2891 2892 int 2893 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 2894 { 2895 udp_t *udp; 2896 int err; 2897 2898 udp = Q_TO_UDP(q); 2899 2900 rw_enter(&udp->udp_rwlock, RW_READER); 2901 err = udp_opt_get_locked(q, level, name, ptr); 2902 rw_exit(&udp->udp_rwlock); 2903 return (err); 2904 } 2905 2906 /* 2907 * This routine sets socket options. 2908 */ 2909 /* ARGSUSED */ 2910 int 2911 udp_opt_set_locked(queue_t *q, uint_t optset_context, int level, 2912 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 2913 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 2914 { 2915 udpattrs_t *attrs = thisdg_attrs; 2916 int *i1 = (int *)invalp; 2917 boolean_t onoff = (*i1 == 0) ? 0 : 1; 2918 boolean_t checkonly; 2919 int error; 2920 conn_t *connp; 2921 udp_t *udp; 2922 uint_t newlen; 2923 udp_stack_t *us; 2924 size_t sth_wroff; 2925 2926 connp = Q_TO_CONN(q); 2927 udp = connp->conn_udp; 2928 us = udp->udp_us; 2929 2930 switch (optset_context) { 2931 case SETFN_OPTCOM_CHECKONLY: 2932 checkonly = B_TRUE; 2933 /* 2934 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 2935 * inlen != 0 implies value supplied and 2936 * we have to "pretend" to set it. 2937 * inlen == 0 implies that there is no 2938 * value part in T_CHECK request and just validation 2939 * done elsewhere should be enough, we just return here. 2940 */ 2941 if (inlen == 0) { 2942 *outlenp = 0; 2943 return (0); 2944 } 2945 break; 2946 case SETFN_OPTCOM_NEGOTIATE: 2947 checkonly = B_FALSE; 2948 break; 2949 case SETFN_UD_NEGOTIATE: 2950 case SETFN_CONN_NEGOTIATE: 2951 checkonly = B_FALSE; 2952 /* 2953 * Negotiating local and "association-related" options 2954 * through T_UNITDATA_REQ. 2955 * 2956 * Following routine can filter out ones we do not 2957 * want to be "set" this way. 2958 */ 2959 if (!udp_opt_allow_udr_set(level, name)) { 2960 *outlenp = 0; 2961 return (EINVAL); 2962 } 2963 break; 2964 default: 2965 /* 2966 * We should never get here 2967 */ 2968 *outlenp = 0; 2969 return (EINVAL); 2970 } 2971 2972 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 2973 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 2974 2975 /* 2976 * For fixed length options, no sanity check 2977 * of passed in length is done. It is assumed *_optcom_req() 2978 * routines do the right thing. 2979 */ 2980 2981 switch (level) { 2982 case SOL_SOCKET: 2983 switch (name) { 2984 case SO_REUSEADDR: 2985 if (!checkonly) 2986 udp->udp_reuseaddr = onoff; 2987 break; 2988 case SO_DEBUG: 2989 if (!checkonly) 2990 udp->udp_debug = onoff; 2991 break; 2992 /* 2993 * The following three items are available here, 2994 * but are only meaningful to IP. 2995 */ 2996 case SO_DONTROUTE: 2997 if (!checkonly) 2998 udp->udp_dontroute = onoff; 2999 break; 3000 case SO_USELOOPBACK: 3001 if (!checkonly) 3002 udp->udp_useloopback = onoff; 3003 break; 3004 case SO_BROADCAST: 3005 if (!checkonly) 3006 udp->udp_broadcast = onoff; 3007 break; 3008 3009 case SO_SNDBUF: 3010 if (*i1 > us->us_max_buf) { 3011 *outlenp = 0; 3012 return (ENOBUFS); 3013 } 3014 if (!checkonly) { 3015 q->q_hiwat = *i1; 3016 } 3017 break; 3018 case SO_RCVBUF: 3019 if (*i1 > us->us_max_buf) { 3020 *outlenp = 0; 3021 return (ENOBUFS); 3022 } 3023 if (!checkonly) { 3024 RD(q)->q_hiwat = *i1; 3025 rw_exit(&udp->udp_rwlock); 3026 (void) mi_set_sth_hiwat(RD(q), 3027 udp_set_rcv_hiwat(udp, *i1)); 3028 rw_enter(&udp->udp_rwlock, RW_WRITER); 3029 } 3030 break; 3031 case SO_DGRAM_ERRIND: 3032 if (!checkonly) 3033 udp->udp_dgram_errind = onoff; 3034 break; 3035 case SO_RECVUCRED: 3036 if (!checkonly) 3037 udp->udp_recvucred = onoff; 3038 break; 3039 case SO_ALLZONES: 3040 /* 3041 * "soft" error (negative) 3042 * option not handled at this level 3043 * Do not modify *outlenp. 3044 */ 3045 return (-EINVAL); 3046 case SO_TIMESTAMP: 3047 if (!checkonly) 3048 udp->udp_timestamp = onoff; 3049 break; 3050 case SO_ANON_MLP: 3051 if (!checkonly) 3052 udp->udp_anon_mlp = onoff; 3053 break; 3054 case SO_MAC_EXEMPT: 3055 if (secpolicy_net_mac_aware(cr) != 0 || 3056 udp->udp_state != TS_UNBND) 3057 return (EACCES); 3058 if (!checkonly) 3059 udp->udp_mac_exempt = onoff; 3060 break; 3061 case SCM_UCRED: { 3062 struct ucred_s *ucr; 3063 cred_t *cr, *newcr; 3064 ts_label_t *tsl; 3065 3066 /* 3067 * Only sockets that have proper privileges and are 3068 * bound to MLPs will have any other value here, so 3069 * this implicitly tests for privilege to set label. 3070 */ 3071 if (connp->conn_mlp_type == mlptSingle) 3072 break; 3073 ucr = (struct ucred_s *)invalp; 3074 if (inlen != ucredsize || 3075 ucr->uc_labeloff < sizeof (*ucr) || 3076 ucr->uc_labeloff + sizeof (bslabel_t) > inlen) 3077 return (EINVAL); 3078 if (!checkonly) { 3079 mblk_t *mb; 3080 3081 if (attrs == NULL || 3082 (mb = attrs->udpattr_mb) == NULL) 3083 return (EINVAL); 3084 if ((cr = DB_CRED(mb)) == NULL) 3085 cr = udp->udp_connp->conn_cred; 3086 ASSERT(cr != NULL); 3087 if ((tsl = crgetlabel(cr)) == NULL) 3088 return (EINVAL); 3089 newcr = copycred_from_bslabel(cr, UCLABEL(ucr), 3090 tsl->tsl_doi, KM_NOSLEEP); 3091 if (newcr == NULL) 3092 return (ENOSR); 3093 mblk_setcred(mb, newcr); 3094 attrs->udpattr_credset = B_TRUE; 3095 crfree(newcr); 3096 } 3097 break; 3098 } 3099 case SO_EXCLBIND: 3100 if (!checkonly) 3101 udp->udp_exclbind = onoff; 3102 break; 3103 default: 3104 *outlenp = 0; 3105 return (EINVAL); 3106 } 3107 break; 3108 case IPPROTO_IP: 3109 if (udp->udp_family != AF_INET) { 3110 *outlenp = 0; 3111 return (ENOPROTOOPT); 3112 } 3113 switch (name) { 3114 case IP_OPTIONS: 3115 case T_IP_OPTIONS: 3116 /* Save options for use by IP. */ 3117 newlen = inlen + udp->udp_label_len; 3118 if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) { 3119 *outlenp = 0; 3120 return (EINVAL); 3121 } 3122 if (checkonly) 3123 break; 3124 3125 /* 3126 * Update the stored options taking into account 3127 * any CIPSO option which we should not overwrite. 3128 */ 3129 if (!tsol_option_set(&udp->udp_ip_snd_options, 3130 &udp->udp_ip_snd_options_len, 3131 udp->udp_label_len, invalp, inlen)) { 3132 *outlenp = 0; 3133 return (ENOMEM); 3134 } 3135 3136 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 3137 UDPH_SIZE + udp->udp_ip_snd_options_len; 3138 sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra; 3139 rw_exit(&udp->udp_rwlock); 3140 (void) mi_set_sth_wroff(RD(q), sth_wroff); 3141 rw_enter(&udp->udp_rwlock, RW_WRITER); 3142 break; 3143 3144 case IP_TTL: 3145 if (!checkonly) { 3146 udp->udp_ttl = (uchar_t)*i1; 3147 } 3148 break; 3149 case IP_TOS: 3150 case T_IP_TOS: 3151 if (!checkonly) { 3152 udp->udp_type_of_service = (uchar_t)*i1; 3153 } 3154 break; 3155 case IP_MULTICAST_IF: { 3156 /* 3157 * TODO should check OPTMGMT reply and undo this if 3158 * there is an error. 3159 */ 3160 struct in_addr *inap = (struct in_addr *)invalp; 3161 if (!checkonly) { 3162 udp->udp_multicast_if_addr = 3163 inap->s_addr; 3164 } 3165 break; 3166 } 3167 case IP_MULTICAST_TTL: 3168 if (!checkonly) 3169 udp->udp_multicast_ttl = *invalp; 3170 break; 3171 case IP_MULTICAST_LOOP: 3172 if (!checkonly) 3173 connp->conn_multicast_loop = *invalp; 3174 break; 3175 case IP_RECVOPTS: 3176 if (!checkonly) 3177 udp->udp_recvopts = onoff; 3178 break; 3179 case IP_RECVDSTADDR: 3180 if (!checkonly) 3181 udp->udp_recvdstaddr = onoff; 3182 break; 3183 case IP_RECVIF: 3184 if (!checkonly) 3185 udp->udp_recvif = onoff; 3186 break; 3187 case IP_RECVSLLA: 3188 if (!checkonly) 3189 udp->udp_recvslla = onoff; 3190 break; 3191 case IP_RECVTTL: 3192 if (!checkonly) 3193 udp->udp_recvttl = onoff; 3194 break; 3195 case IP_PKTINFO: { 3196 /* 3197 * This also handles IP_RECVPKTINFO. 3198 * IP_PKTINFO and IP_RECVPKTINFO have same value. 3199 * Differentiation is based on the size of the 3200 * argument passed in. 3201 */ 3202 struct in_pktinfo *pktinfop; 3203 ip4_pkt_t *attr_pktinfop; 3204 3205 if (checkonly) 3206 break; 3207 3208 if (inlen == sizeof (int)) { 3209 /* 3210 * This is IP_RECVPKTINFO option. 3211 * Keep a local copy of whether this option is 3212 * set or not and pass it down to IP for 3213 * processing. 3214 */ 3215 3216 udp->udp_ip_recvpktinfo = onoff; 3217 return (-EINVAL); 3218 } 3219 3220 if (attrs == NULL || 3221 (attr_pktinfop = attrs->udpattr_ipp4) == NULL) { 3222 /* 3223 * sticky option or no buffer to return 3224 * the results. 3225 */ 3226 return (EINVAL); 3227 } 3228 3229 if (inlen != sizeof (struct in_pktinfo)) 3230 return (EINVAL); 3231 3232 pktinfop = (struct in_pktinfo *)invalp; 3233 3234 /* 3235 * At least one of the values should be specified 3236 */ 3237 if (pktinfop->ipi_ifindex == 0 && 3238 pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) { 3239 return (EINVAL); 3240 } 3241 3242 attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr; 3243 attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex; 3244 3245 break; 3246 } 3247 case IP_ADD_MEMBERSHIP: 3248 case IP_DROP_MEMBERSHIP: 3249 case IP_BLOCK_SOURCE: 3250 case IP_UNBLOCK_SOURCE: 3251 case IP_ADD_SOURCE_MEMBERSHIP: 3252 case IP_DROP_SOURCE_MEMBERSHIP: 3253 case MCAST_JOIN_GROUP: 3254 case MCAST_LEAVE_GROUP: 3255 case MCAST_BLOCK_SOURCE: 3256 case MCAST_UNBLOCK_SOURCE: 3257 case MCAST_JOIN_SOURCE_GROUP: 3258 case MCAST_LEAVE_SOURCE_GROUP: 3259 case IP_SEC_OPT: 3260 case IP_NEXTHOP: 3261 case IP_DHCPINIT_IF: 3262 /* 3263 * "soft" error (negative) 3264 * option not handled at this level 3265 * Do not modify *outlenp. 3266 */ 3267 return (-EINVAL); 3268 case IP_BOUND_IF: 3269 if (!checkonly) 3270 udp->udp_bound_if = *i1; 3271 break; 3272 case IP_UNSPEC_SRC: 3273 if (!checkonly) 3274 udp->udp_unspec_source = onoff; 3275 break; 3276 default: 3277 *outlenp = 0; 3278 return (EINVAL); 3279 } 3280 break; 3281 case IPPROTO_IPV6: { 3282 ip6_pkt_t *ipp; 3283 boolean_t sticky; 3284 3285 if (udp->udp_family != AF_INET6) { 3286 *outlenp = 0; 3287 return (ENOPROTOOPT); 3288 } 3289 /* 3290 * Deal with both sticky options and ancillary data 3291 */ 3292 sticky = B_FALSE; 3293 if (attrs == NULL || (ipp = attrs->udpattr_ipp6) == 3294 NULL) { 3295 /* sticky options, or none */ 3296 ipp = &udp->udp_sticky_ipp; 3297 sticky = B_TRUE; 3298 } 3299 3300 switch (name) { 3301 case IPV6_MULTICAST_IF: 3302 if (!checkonly) 3303 udp->udp_multicast_if_index = *i1; 3304 break; 3305 case IPV6_UNICAST_HOPS: 3306 /* -1 means use default */ 3307 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3308 *outlenp = 0; 3309 return (EINVAL); 3310 } 3311 if (!checkonly) { 3312 if (*i1 == -1) { 3313 udp->udp_ttl = ipp->ipp_unicast_hops = 3314 us->us_ipv6_hoplimit; 3315 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 3316 /* Pass modified value to IP. */ 3317 *i1 = udp->udp_ttl; 3318 } else { 3319 udp->udp_ttl = ipp->ipp_unicast_hops = 3320 (uint8_t)*i1; 3321 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 3322 } 3323 /* Rebuild the header template */ 3324 error = udp_build_hdrs(udp); 3325 if (error != 0) { 3326 *outlenp = 0; 3327 return (error); 3328 } 3329 } 3330 break; 3331 case IPV6_MULTICAST_HOPS: 3332 /* -1 means use default */ 3333 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3334 *outlenp = 0; 3335 return (EINVAL); 3336 } 3337 if (!checkonly) { 3338 if (*i1 == -1) { 3339 udp->udp_multicast_ttl = 3340 ipp->ipp_multicast_hops = 3341 IP_DEFAULT_MULTICAST_TTL; 3342 ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS; 3343 /* Pass modified value to IP. */ 3344 *i1 = udp->udp_multicast_ttl; 3345 } else { 3346 udp->udp_multicast_ttl = 3347 ipp->ipp_multicast_hops = 3348 (uint8_t)*i1; 3349 ipp->ipp_fields |= IPPF_MULTICAST_HOPS; 3350 } 3351 } 3352 break; 3353 case IPV6_MULTICAST_LOOP: 3354 if (*i1 != 0 && *i1 != 1) { 3355 *outlenp = 0; 3356 return (EINVAL); 3357 } 3358 if (!checkonly) 3359 connp->conn_multicast_loop = *i1; 3360 break; 3361 case IPV6_JOIN_GROUP: 3362 case IPV6_LEAVE_GROUP: 3363 case MCAST_JOIN_GROUP: 3364 case MCAST_LEAVE_GROUP: 3365 case MCAST_BLOCK_SOURCE: 3366 case MCAST_UNBLOCK_SOURCE: 3367 case MCAST_JOIN_SOURCE_GROUP: 3368 case MCAST_LEAVE_SOURCE_GROUP: 3369 /* 3370 * "soft" error (negative) 3371 * option not handled at this level 3372 * Note: Do not modify *outlenp 3373 */ 3374 return (-EINVAL); 3375 case IPV6_BOUND_IF: 3376 if (!checkonly) 3377 udp->udp_bound_if = *i1; 3378 break; 3379 case IPV6_UNSPEC_SRC: 3380 if (!checkonly) 3381 udp->udp_unspec_source = onoff; 3382 break; 3383 /* 3384 * Set boolean switches for ancillary data delivery 3385 */ 3386 case IPV6_RECVPKTINFO: 3387 if (!checkonly) 3388 udp->udp_ip_recvpktinfo = onoff; 3389 break; 3390 case IPV6_RECVTCLASS: 3391 if (!checkonly) { 3392 udp->udp_ipv6_recvtclass = onoff; 3393 } 3394 break; 3395 case IPV6_RECVPATHMTU: 3396 if (!checkonly) { 3397 udp->udp_ipv6_recvpathmtu = onoff; 3398 } 3399 break; 3400 case IPV6_RECVHOPLIMIT: 3401 if (!checkonly) 3402 udp->udp_ipv6_recvhoplimit = onoff; 3403 break; 3404 case IPV6_RECVHOPOPTS: 3405 if (!checkonly) 3406 udp->udp_ipv6_recvhopopts = onoff; 3407 break; 3408 case IPV6_RECVDSTOPTS: 3409 if (!checkonly) 3410 udp->udp_ipv6_recvdstopts = onoff; 3411 break; 3412 case _OLD_IPV6_RECVDSTOPTS: 3413 if (!checkonly) 3414 udp->udp_old_ipv6_recvdstopts = onoff; 3415 break; 3416 case IPV6_RECVRTHDRDSTOPTS: 3417 if (!checkonly) 3418 udp->udp_ipv6_recvrthdrdstopts = onoff; 3419 break; 3420 case IPV6_RECVRTHDR: 3421 if (!checkonly) 3422 udp->udp_ipv6_recvrthdr = onoff; 3423 break; 3424 /* 3425 * Set sticky options or ancillary data. 3426 * If sticky options, (re)build any extension headers 3427 * that might be needed as a result. 3428 */ 3429 case IPV6_PKTINFO: 3430 /* 3431 * The source address and ifindex are verified 3432 * in ip_opt_set(). For ancillary data the 3433 * source address is checked in ip_wput_v6. 3434 */ 3435 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 3436 return (EINVAL); 3437 if (checkonly) 3438 break; 3439 3440 if (inlen == 0) { 3441 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 3442 ipp->ipp_sticky_ignored |= 3443 (IPPF_IFINDEX|IPPF_ADDR); 3444 } else { 3445 struct in6_pktinfo *pkti; 3446 3447 pkti = (struct in6_pktinfo *)invalp; 3448 ipp->ipp_ifindex = pkti->ipi6_ifindex; 3449 ipp->ipp_addr = pkti->ipi6_addr; 3450 if (ipp->ipp_ifindex != 0) 3451 ipp->ipp_fields |= IPPF_IFINDEX; 3452 else 3453 ipp->ipp_fields &= ~IPPF_IFINDEX; 3454 if (!IN6_IS_ADDR_UNSPECIFIED( 3455 &ipp->ipp_addr)) 3456 ipp->ipp_fields |= IPPF_ADDR; 3457 else 3458 ipp->ipp_fields &= ~IPPF_ADDR; 3459 } 3460 if (sticky) { 3461 error = udp_build_hdrs(udp); 3462 if (error != 0) 3463 return (error); 3464 } 3465 break; 3466 case IPV6_HOPLIMIT: 3467 if (sticky) 3468 return (EINVAL); 3469 if (inlen != 0 && inlen != sizeof (int)) 3470 return (EINVAL); 3471 if (checkonly) 3472 break; 3473 3474 if (inlen == 0) { 3475 ipp->ipp_fields &= ~IPPF_HOPLIMIT; 3476 ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT; 3477 } else { 3478 if (*i1 > 255 || *i1 < -1) 3479 return (EINVAL); 3480 if (*i1 == -1) 3481 ipp->ipp_hoplimit = 3482 us->us_ipv6_hoplimit; 3483 else 3484 ipp->ipp_hoplimit = *i1; 3485 ipp->ipp_fields |= IPPF_HOPLIMIT; 3486 } 3487 break; 3488 case IPV6_TCLASS: 3489 if (inlen != 0 && inlen != sizeof (int)) 3490 return (EINVAL); 3491 if (checkonly) 3492 break; 3493 3494 if (inlen == 0) { 3495 ipp->ipp_fields &= ~IPPF_TCLASS; 3496 ipp->ipp_sticky_ignored |= IPPF_TCLASS; 3497 } else { 3498 if (*i1 > 255 || *i1 < -1) 3499 return (EINVAL); 3500 if (*i1 == -1) 3501 ipp->ipp_tclass = 0; 3502 else 3503 ipp->ipp_tclass = *i1; 3504 ipp->ipp_fields |= IPPF_TCLASS; 3505 } 3506 if (sticky) { 3507 error = udp_build_hdrs(udp); 3508 if (error != 0) 3509 return (error); 3510 } 3511 break; 3512 case IPV6_NEXTHOP: 3513 /* 3514 * IP will verify that the nexthop is reachable 3515 * and fail for sticky options. 3516 */ 3517 if (inlen != 0 && inlen != sizeof (sin6_t)) 3518 return (EINVAL); 3519 if (checkonly) 3520 break; 3521 3522 if (inlen == 0) { 3523 ipp->ipp_fields &= ~IPPF_NEXTHOP; 3524 ipp->ipp_sticky_ignored |= IPPF_NEXTHOP; 3525 } else { 3526 sin6_t *sin6 = (sin6_t *)invalp; 3527 3528 if (sin6->sin6_family != AF_INET6) 3529 return (EAFNOSUPPORT); 3530 if (IN6_IS_ADDR_V4MAPPED( 3531 &sin6->sin6_addr)) 3532 return (EADDRNOTAVAIL); 3533 ipp->ipp_nexthop = sin6->sin6_addr; 3534 if (!IN6_IS_ADDR_UNSPECIFIED( 3535 &ipp->ipp_nexthop)) 3536 ipp->ipp_fields |= IPPF_NEXTHOP; 3537 else 3538 ipp->ipp_fields &= ~IPPF_NEXTHOP; 3539 } 3540 if (sticky) { 3541 error = udp_build_hdrs(udp); 3542 if (error != 0) 3543 return (error); 3544 } 3545 break; 3546 case IPV6_HOPOPTS: { 3547 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 3548 /* 3549 * Sanity checks - minimum size, size a multiple of 3550 * eight bytes, and matching size passed in. 3551 */ 3552 if (inlen != 0 && 3553 inlen != (8 * (hopts->ip6h_len + 1))) 3554 return (EINVAL); 3555 3556 if (checkonly) 3557 break; 3558 3559 error = optcom_pkt_set(invalp, inlen, sticky, 3560 (uchar_t **)&ipp->ipp_hopopts, 3561 &ipp->ipp_hopoptslen, 3562 sticky ? udp->udp_label_len_v6 : 0); 3563 if (error != 0) 3564 return (error); 3565 if (ipp->ipp_hopoptslen == 0) { 3566 ipp->ipp_fields &= ~IPPF_HOPOPTS; 3567 ipp->ipp_sticky_ignored |= IPPF_HOPOPTS; 3568 } else { 3569 ipp->ipp_fields |= IPPF_HOPOPTS; 3570 } 3571 if (sticky) { 3572 error = udp_build_hdrs(udp); 3573 if (error != 0) 3574 return (error); 3575 } 3576 break; 3577 } 3578 case IPV6_RTHDRDSTOPTS: { 3579 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 3580 3581 /* 3582 * Sanity checks - minimum size, size a multiple of 3583 * eight bytes, and matching size passed in. 3584 */ 3585 if (inlen != 0 && 3586 inlen != (8 * (dopts->ip6d_len + 1))) 3587 return (EINVAL); 3588 3589 if (checkonly) 3590 break; 3591 3592 if (inlen == 0) { 3593 if (sticky && 3594 (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 3595 kmem_free(ipp->ipp_rtdstopts, 3596 ipp->ipp_rtdstoptslen); 3597 ipp->ipp_rtdstopts = NULL; 3598 ipp->ipp_rtdstoptslen = 0; 3599 } 3600 3601 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 3602 ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS; 3603 } else { 3604 error = optcom_pkt_set(invalp, inlen, sticky, 3605 (uchar_t **)&ipp->ipp_rtdstopts, 3606 &ipp->ipp_rtdstoptslen, 0); 3607 if (error != 0) 3608 return (error); 3609 ipp->ipp_fields |= IPPF_RTDSTOPTS; 3610 } 3611 if (sticky) { 3612 error = udp_build_hdrs(udp); 3613 if (error != 0) 3614 return (error); 3615 } 3616 break; 3617 } 3618 case IPV6_DSTOPTS: { 3619 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 3620 3621 /* 3622 * Sanity checks - minimum size, size a multiple of 3623 * eight bytes, and matching size passed in. 3624 */ 3625 if (inlen != 0 && 3626 inlen != (8 * (dopts->ip6d_len + 1))) 3627 return (EINVAL); 3628 3629 if (checkonly) 3630 break; 3631 3632 if (inlen == 0) { 3633 if (sticky && 3634 (ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 3635 kmem_free(ipp->ipp_dstopts, 3636 ipp->ipp_dstoptslen); 3637 ipp->ipp_dstopts = NULL; 3638 ipp->ipp_dstoptslen = 0; 3639 } 3640 ipp->ipp_fields &= ~IPPF_DSTOPTS; 3641 ipp->ipp_sticky_ignored |= IPPF_DSTOPTS; 3642 } else { 3643 error = optcom_pkt_set(invalp, inlen, sticky, 3644 (uchar_t **)&ipp->ipp_dstopts, 3645 &ipp->ipp_dstoptslen, 0); 3646 if (error != 0) 3647 return (error); 3648 ipp->ipp_fields |= IPPF_DSTOPTS; 3649 } 3650 if (sticky) { 3651 error = udp_build_hdrs(udp); 3652 if (error != 0) 3653 return (error); 3654 } 3655 break; 3656 } 3657 case IPV6_RTHDR: { 3658 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 3659 3660 /* 3661 * Sanity checks - minimum size, size a multiple of 3662 * eight bytes, and matching size passed in. 3663 */ 3664 if (inlen != 0 && 3665 inlen != (8 * (rt->ip6r_len + 1))) 3666 return (EINVAL); 3667 3668 if (checkonly) 3669 break; 3670 3671 if (inlen == 0) { 3672 if (sticky && 3673 (ipp->ipp_fields & IPPF_RTHDR) != 0) { 3674 kmem_free(ipp->ipp_rthdr, 3675 ipp->ipp_rthdrlen); 3676 ipp->ipp_rthdr = NULL; 3677 ipp->ipp_rthdrlen = 0; 3678 } 3679 ipp->ipp_fields &= ~IPPF_RTHDR; 3680 ipp->ipp_sticky_ignored |= IPPF_RTHDR; 3681 } else { 3682 error = optcom_pkt_set(invalp, inlen, sticky, 3683 (uchar_t **)&ipp->ipp_rthdr, 3684 &ipp->ipp_rthdrlen, 0); 3685 if (error != 0) 3686 return (error); 3687 ipp->ipp_fields |= IPPF_RTHDR; 3688 } 3689 if (sticky) { 3690 error = udp_build_hdrs(udp); 3691 if (error != 0) 3692 return (error); 3693 } 3694 break; 3695 } 3696 3697 case IPV6_DONTFRAG: 3698 if (checkonly) 3699 break; 3700 3701 if (onoff) { 3702 ipp->ipp_fields |= IPPF_DONTFRAG; 3703 } else { 3704 ipp->ipp_fields &= ~IPPF_DONTFRAG; 3705 } 3706 break; 3707 3708 case IPV6_USE_MIN_MTU: 3709 if (inlen != sizeof (int)) 3710 return (EINVAL); 3711 3712 if (*i1 < -1 || *i1 > 1) 3713 return (EINVAL); 3714 3715 if (checkonly) 3716 break; 3717 3718 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 3719 ipp->ipp_use_min_mtu = *i1; 3720 break; 3721 3722 case IPV6_BOUND_PIF: 3723 case IPV6_SEC_OPT: 3724 case IPV6_DONTFAILOVER_IF: 3725 case IPV6_SRC_PREFERENCES: 3726 case IPV6_V6ONLY: 3727 /* Handled at the IP level */ 3728 return (-EINVAL); 3729 default: 3730 *outlenp = 0; 3731 return (EINVAL); 3732 } 3733 break; 3734 } /* end IPPROTO_IPV6 */ 3735 case IPPROTO_UDP: 3736 switch (name) { 3737 case UDP_ANONPRIVBIND: 3738 if ((error = secpolicy_net_privaddr(cr, 0)) != 0) { 3739 *outlenp = 0; 3740 return (error); 3741 } 3742 if (!checkonly) { 3743 udp->udp_anon_priv_bind = onoff; 3744 } 3745 break; 3746 case UDP_EXCLBIND: 3747 if (!checkonly) 3748 udp->udp_exclbind = onoff; 3749 break; 3750 case UDP_RCVHDR: 3751 if (!checkonly) 3752 udp->udp_rcvhdr = onoff; 3753 break; 3754 case UDP_NAT_T_ENDPOINT: 3755 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 3756 *outlenp = 0; 3757 return (error); 3758 } 3759 3760 /* 3761 * Use udp_family instead so we can avoid ambiguitites 3762 * with AF_INET6 sockets that may switch from IPv4 3763 * to IPv6. 3764 */ 3765 if (udp->udp_family != AF_INET) { 3766 *outlenp = 0; 3767 return (EAFNOSUPPORT); 3768 } 3769 3770 if (!checkonly) { 3771 udp->udp_nat_t_endpoint = onoff; 3772 3773 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 3774 UDPH_SIZE + udp->udp_ip_snd_options_len; 3775 3776 /* Also, adjust wroff */ 3777 if (onoff) { 3778 udp->udp_max_hdr_len += 3779 sizeof (uint32_t); 3780 } 3781 (void) mi_set_sth_wroff(RD(q), 3782 udp->udp_max_hdr_len + us->us_wroff_extra); 3783 } 3784 break; 3785 default: 3786 *outlenp = 0; 3787 return (EINVAL); 3788 } 3789 break; 3790 default: 3791 *outlenp = 0; 3792 return (EINVAL); 3793 } 3794 /* 3795 * Common case of OK return with outval same as inval. 3796 */ 3797 if (invalp != outvalp) { 3798 /* don't trust bcopy for identical src/dst */ 3799 (void) bcopy(invalp, outvalp, inlen); 3800 } 3801 *outlenp = inlen; 3802 return (0); 3803 } 3804 3805 int 3806 udp_opt_set(queue_t *q, uint_t optset_context, int level, 3807 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 3808 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 3809 { 3810 udp_t *udp; 3811 int err; 3812 3813 udp = Q_TO_UDP(q); 3814 3815 rw_enter(&udp->udp_rwlock, RW_WRITER); 3816 err = udp_opt_set_locked(q, optset_context, level, name, inlen, invalp, 3817 outlenp, outvalp, thisdg_attrs, cr, mblk); 3818 rw_exit(&udp->udp_rwlock); 3819 return (err); 3820 } 3821 3822 /* 3823 * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl. 3824 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 3825 * headers, and the udp header. 3826 * Returns failure if can't allocate memory. 3827 */ 3828 static int 3829 udp_build_hdrs(udp_t *udp) 3830 { 3831 udp_stack_t *us = udp->udp_us; 3832 uchar_t *hdrs; 3833 uint_t hdrs_len; 3834 ip6_t *ip6h; 3835 ip6i_t *ip6i; 3836 udpha_t *udpha; 3837 ip6_pkt_t *ipp = &udp->udp_sticky_ipp; 3838 size_t sth_wroff; 3839 3840 ASSERT(RW_WRITE_HELD(&udp->udp_rwlock)); 3841 hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE; 3842 ASSERT(hdrs_len != 0); 3843 if (hdrs_len != udp->udp_sticky_hdrs_len) { 3844 /* Need to reallocate */ 3845 hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP); 3846 if (hdrs == NULL) 3847 return (ENOMEM); 3848 3849 if (udp->udp_sticky_hdrs_len != 0) { 3850 kmem_free(udp->udp_sticky_hdrs, 3851 udp->udp_sticky_hdrs_len); 3852 } 3853 udp->udp_sticky_hdrs = hdrs; 3854 udp->udp_sticky_hdrs_len = hdrs_len; 3855 } 3856 ip_build_hdrs_v6(udp->udp_sticky_hdrs, 3857 udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP); 3858 3859 /* Set header fields not in ipp */ 3860 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 3861 ip6i = (ip6i_t *)udp->udp_sticky_hdrs; 3862 ip6h = (ip6_t *)&ip6i[1]; 3863 } else { 3864 ip6h = (ip6_t *)udp->udp_sticky_hdrs; 3865 } 3866 3867 if (!(ipp->ipp_fields & IPPF_ADDR)) 3868 ip6h->ip6_src = udp->udp_v6src; 3869 3870 udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE); 3871 udpha->uha_src_port = udp->udp_port; 3872 3873 /* Try to get everything in a single mblk */ 3874 if (hdrs_len > udp->udp_max_hdr_len) { 3875 udp->udp_max_hdr_len = hdrs_len; 3876 sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra; 3877 rw_exit(&udp->udp_rwlock); 3878 (void) mi_set_sth_wroff(udp->udp_connp->conn_rq, sth_wroff); 3879 rw_enter(&udp->udp_rwlock, RW_WRITER); 3880 } 3881 return (0); 3882 } 3883 3884 /* 3885 * This routine retrieves the value of an ND variable in a udpparam_t 3886 * structure. It is called through nd_getset when a user reads the 3887 * variable. 3888 */ 3889 /* ARGSUSED */ 3890 static int 3891 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 3892 { 3893 udpparam_t *udppa = (udpparam_t *)cp; 3894 3895 (void) mi_mpprintf(mp, "%d", udppa->udp_param_value); 3896 return (0); 3897 } 3898 3899 /* 3900 * Walk through the param array specified registering each element with the 3901 * named dispatch (ND) handler. 3902 */ 3903 static boolean_t 3904 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt) 3905 { 3906 for (; cnt-- > 0; udppa++) { 3907 if (udppa->udp_param_name && udppa->udp_param_name[0]) { 3908 if (!nd_load(ndp, udppa->udp_param_name, 3909 udp_param_get, udp_param_set, 3910 (caddr_t)udppa)) { 3911 nd_free(ndp); 3912 return (B_FALSE); 3913 } 3914 } 3915 } 3916 if (!nd_load(ndp, "udp_extra_priv_ports", 3917 udp_extra_priv_ports_get, NULL, NULL)) { 3918 nd_free(ndp); 3919 return (B_FALSE); 3920 } 3921 if (!nd_load(ndp, "udp_extra_priv_ports_add", 3922 NULL, udp_extra_priv_ports_add, NULL)) { 3923 nd_free(ndp); 3924 return (B_FALSE); 3925 } 3926 if (!nd_load(ndp, "udp_extra_priv_ports_del", 3927 NULL, udp_extra_priv_ports_del, NULL)) { 3928 nd_free(ndp); 3929 return (B_FALSE); 3930 } 3931 if (!nd_load(ndp, "udp_status", udp_status_report, NULL, 3932 NULL)) { 3933 nd_free(ndp); 3934 return (B_FALSE); 3935 } 3936 if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL, 3937 NULL)) { 3938 nd_free(ndp); 3939 return (B_FALSE); 3940 } 3941 return (B_TRUE); 3942 } 3943 3944 /* This routine sets an ND variable in a udpparam_t structure. */ 3945 /* ARGSUSED */ 3946 static int 3947 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 3948 { 3949 long new_value; 3950 udpparam_t *udppa = (udpparam_t *)cp; 3951 3952 /* 3953 * Fail the request if the new value does not lie within the 3954 * required bounds. 3955 */ 3956 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 3957 new_value < udppa->udp_param_min || 3958 new_value > udppa->udp_param_max) { 3959 return (EINVAL); 3960 } 3961 3962 /* Set the new value */ 3963 udppa->udp_param_value = new_value; 3964 return (0); 3965 } 3966 3967 /* 3968 * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with 3969 * T_opthdr) and return the number of bytes copied. 'dbuf' may be NULL to 3970 * just count the length needed for allocation. If 'dbuf' is non-NULL, 3971 * then it's assumed to be allocated to be large enough. 3972 * 3973 * Returns zero if trimming of the security option causes all options to go 3974 * away. 3975 */ 3976 static size_t 3977 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf) 3978 { 3979 struct T_opthdr *toh; 3980 size_t hol = ipp->ipp_hopoptslen; 3981 ip6_hbh_t *dstopt = NULL; 3982 const ip6_hbh_t *srcopt = ipp->ipp_hopopts; 3983 size_t tlen, olen, plen; 3984 boolean_t deleting; 3985 const struct ip6_opt *sopt, *lastpad; 3986 struct ip6_opt *dopt; 3987 3988 if ((toh = (struct T_opthdr *)dbuf) != NULL) { 3989 toh->level = IPPROTO_IPV6; 3990 toh->name = IPV6_HOPOPTS; 3991 toh->status = 0; 3992 dstopt = (ip6_hbh_t *)(toh + 1); 3993 } 3994 3995 /* 3996 * If labeling is enabled, then skip the label option 3997 * but get other options if there are any. 3998 */ 3999 if (is_system_labeled()) { 4000 dopt = NULL; 4001 if (dstopt != NULL) { 4002 /* will fill in ip6h_len later */ 4003 dstopt->ip6h_nxt = srcopt->ip6h_nxt; 4004 dopt = (struct ip6_opt *)(dstopt + 1); 4005 } 4006 sopt = (const struct ip6_opt *)(srcopt + 1); 4007 hol -= sizeof (*srcopt); 4008 tlen = sizeof (*dstopt); 4009 lastpad = NULL; 4010 deleting = B_FALSE; 4011 /* 4012 * This loop finds the first (lastpad pointer) of any number of 4013 * pads that preceeds the security option, then treats the 4014 * security option as though it were a pad, and then finds the 4015 * next non-pad option (or end of list). 4016 * 4017 * It then treats the entire block as one big pad. To preserve 4018 * alignment of any options that follow, or just the end of the 4019 * list, it computes a minimal new padding size that keeps the 4020 * same alignment for the next option. 4021 * 4022 * If it encounters just a sequence of pads with no security 4023 * option, those are copied as-is rather than collapsed. 4024 * 4025 * Note that to handle the end of list case, the code makes one 4026 * loop with 'hol' set to zero. 4027 */ 4028 for (;;) { 4029 if (hol > 0) { 4030 if (sopt->ip6o_type == IP6OPT_PAD1) { 4031 if (lastpad == NULL) 4032 lastpad = sopt; 4033 sopt = (const struct ip6_opt *) 4034 &sopt->ip6o_len; 4035 hol--; 4036 continue; 4037 } 4038 olen = sopt->ip6o_len + sizeof (*sopt); 4039 if (olen > hol) 4040 olen = hol; 4041 if (sopt->ip6o_type == IP6OPT_PADN || 4042 sopt->ip6o_type == ip6opt_ls) { 4043 if (sopt->ip6o_type == ip6opt_ls) 4044 deleting = B_TRUE; 4045 if (lastpad == NULL) 4046 lastpad = sopt; 4047 sopt = (const struct ip6_opt *) 4048 ((const char *)sopt + olen); 4049 hol -= olen; 4050 continue; 4051 } 4052 } else { 4053 /* if nothing was copied at all, then delete */ 4054 if (tlen == sizeof (*dstopt)) 4055 return (0); 4056 /* last pass; pick up any trailing padding */ 4057 olen = 0; 4058 } 4059 if (deleting) { 4060 /* 4061 * compute aligning effect of deleted material 4062 * to reproduce with pad. 4063 */ 4064 plen = ((const char *)sopt - 4065 (const char *)lastpad) & 7; 4066 tlen += plen; 4067 if (dopt != NULL) { 4068 if (plen == 1) { 4069 dopt->ip6o_type = IP6OPT_PAD1; 4070 } else if (plen > 1) { 4071 plen -= sizeof (*dopt); 4072 dopt->ip6o_type = IP6OPT_PADN; 4073 dopt->ip6o_len = plen; 4074 if (plen > 0) 4075 bzero(dopt + 1, plen); 4076 } 4077 dopt = (struct ip6_opt *) 4078 ((char *)dopt + plen); 4079 } 4080 deleting = B_FALSE; 4081 lastpad = NULL; 4082 } 4083 /* if there's uncopied padding, then copy that now */ 4084 if (lastpad != NULL) { 4085 olen += (const char *)sopt - 4086 (const char *)lastpad; 4087 sopt = lastpad; 4088 lastpad = NULL; 4089 } 4090 if (dopt != NULL && olen > 0) { 4091 bcopy(sopt, dopt, olen); 4092 dopt = (struct ip6_opt *)((char *)dopt + olen); 4093 } 4094 if (hol == 0) 4095 break; 4096 tlen += olen; 4097 sopt = (const struct ip6_opt *) 4098 ((const char *)sopt + olen); 4099 hol -= olen; 4100 } 4101 /* go back and patch up the length value, rounded upward */ 4102 if (dstopt != NULL) 4103 dstopt->ip6h_len = (tlen - 1) >> 3; 4104 } else { 4105 tlen = hol; 4106 if (dstopt != NULL) 4107 bcopy(srcopt, dstopt, hol); 4108 } 4109 4110 tlen += sizeof (*toh); 4111 if (toh != NULL) 4112 toh->len = tlen; 4113 4114 return (tlen); 4115 } 4116 4117 /* 4118 * Update udp_rcv_opt_len from the packet. 4119 * Called when options received, and when no options received but 4120 * udp_ip_recv_opt_len has previously recorded options. 4121 */ 4122 static void 4123 udp_save_ip_rcv_opt(udp_t *udp, void *opt, int opt_len) 4124 { 4125 /* Save the options if any */ 4126 if (opt_len > 0) { 4127 if (opt_len > udp->udp_ip_rcv_options_len) { 4128 /* Need to allocate larger buffer */ 4129 if (udp->udp_ip_rcv_options_len != 0) 4130 mi_free((char *)udp->udp_ip_rcv_options); 4131 udp->udp_ip_rcv_options_len = 0; 4132 udp->udp_ip_rcv_options = 4133 (uchar_t *)mi_alloc(opt_len, BPRI_HI); 4134 if (udp->udp_ip_rcv_options != NULL) 4135 udp->udp_ip_rcv_options_len = opt_len; 4136 } 4137 if (udp->udp_ip_rcv_options_len != 0) { 4138 bcopy(opt, udp->udp_ip_rcv_options, opt_len); 4139 /* Adjust length if we are resusing the space */ 4140 udp->udp_ip_rcv_options_len = opt_len; 4141 } 4142 } else if (udp->udp_ip_rcv_options_len != 0) { 4143 /* Clear out previously recorded options */ 4144 mi_free((char *)udp->udp_ip_rcv_options); 4145 udp->udp_ip_rcv_options = NULL; 4146 udp->udp_ip_rcv_options_len = 0; 4147 } 4148 } 4149 4150 /* ARGSUSED2 */ 4151 static void 4152 udp_input(void *arg1, mblk_t *mp, void *arg2) 4153 { 4154 conn_t *connp = (conn_t *)arg1; 4155 struct T_unitdata_ind *tudi; 4156 uchar_t *rptr; /* Pointer to IP header */ 4157 int hdr_length; /* Length of IP+UDP headers */ 4158 int opt_len; 4159 int udi_size; /* Size of T_unitdata_ind */ 4160 int mp_len; 4161 udp_t *udp; 4162 udpha_t *udpha; 4163 int ipversion; 4164 ip6_pkt_t ipp; 4165 ip6_t *ip6h; 4166 ip6i_t *ip6i; 4167 mblk_t *mp1; 4168 mblk_t *options_mp = NULL; 4169 ip_pktinfo_t *pinfo = NULL; 4170 cred_t *cr = NULL; 4171 pid_t cpid; 4172 uint32_t udp_ip_rcv_options_len; 4173 udp_bits_t udp_bits; 4174 cred_t *rcr = connp->conn_cred; 4175 udp_stack_t *us; 4176 4177 ASSERT(connp->conn_flags & IPCL_UDPCONN); 4178 4179 udp = connp->conn_udp; 4180 us = udp->udp_us; 4181 rptr = mp->b_rptr; 4182 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL); 4183 ASSERT(OK_32PTR(rptr)); 4184 4185 /* 4186 * IP should have prepended the options data in an M_CTL 4187 * Check M_CTL "type" to make sure are not here bcos of 4188 * a valid ICMP message 4189 */ 4190 if (DB_TYPE(mp) == M_CTL) { 4191 if (MBLKL(mp) == sizeof (ip_pktinfo_t) && 4192 ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type == 4193 IN_PKTINFO) { 4194 /* 4195 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information 4196 * has been prepended to the packet by IP. We need to 4197 * extract the mblk and adjust the rptr 4198 */ 4199 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4200 options_mp = mp; 4201 mp = mp->b_cont; 4202 rptr = mp->b_rptr; 4203 UDP_STAT(us, udp_in_pktinfo); 4204 } else { 4205 /* 4206 * ICMP messages. 4207 */ 4208 udp_icmp_error(connp->conn_rq, mp); 4209 return; 4210 } 4211 } 4212 4213 mp_len = msgdsize(mp); 4214 /* 4215 * This is the inbound data path. 4216 * First, we check to make sure the IP version number is correct, 4217 * and then pull the IP and UDP headers into the first mblk. 4218 */ 4219 4220 /* Initialize regardless if ipversion is IPv4 or IPv6 */ 4221 ipp.ipp_fields = 0; 4222 4223 ipversion = IPH_HDR_VERSION(rptr); 4224 4225 rw_enter(&udp->udp_rwlock, RW_READER); 4226 udp_ip_rcv_options_len = udp->udp_ip_rcv_options_len; 4227 udp_bits = udp->udp_bits; 4228 rw_exit(&udp->udp_rwlock); 4229 4230 switch (ipversion) { 4231 case IPV4_VERSION: 4232 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 4233 ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP); 4234 hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; 4235 opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE); 4236 if ((opt_len > 0 || udp_ip_rcv_options_len > 0) && 4237 udp->udp_family == AF_INET) { 4238 /* 4239 * Record/update udp_ip_rcv_options with the lock 4240 * held. Not needed for AF_INET6 sockets 4241 * since they don't support a getsockopt of IP_OPTIONS. 4242 */ 4243 rw_enter(&udp->udp_rwlock, RW_WRITER); 4244 udp_save_ip_rcv_opt(udp, rptr + IP_SIMPLE_HDR_LENGTH, 4245 opt_len); 4246 rw_exit(&udp->udp_rwlock); 4247 } 4248 /* Handle IPV6_RECVPKTINFO even for IPv4 packet. */ 4249 if ((udp->udp_family == AF_INET6) && (pinfo != NULL) && 4250 udp->udp_ip_recvpktinfo) { 4251 if (pinfo->ip_pkt_flags & IPF_RECVIF) { 4252 ipp.ipp_fields |= IPPF_IFINDEX; 4253 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 4254 } 4255 } 4256 break; 4257 case IPV6_VERSION: 4258 /* 4259 * IPv6 packets can only be received by applications 4260 * that are prepared to receive IPv6 addresses. 4261 * The IP fanout must ensure this. 4262 */ 4263 ASSERT(udp->udp_family == AF_INET6); 4264 4265 ip6h = (ip6_t *)rptr; 4266 ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr); 4267 4268 if (ip6h->ip6_nxt != IPPROTO_UDP) { 4269 uint8_t nexthdrp; 4270 /* Look for ifindex information */ 4271 if (ip6h->ip6_nxt == IPPROTO_RAW) { 4272 ip6i = (ip6i_t *)ip6h; 4273 if ((uchar_t *)&ip6i[1] > mp->b_wptr) 4274 goto tossit; 4275 4276 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 4277 ASSERT(ip6i->ip6i_ifindex != 0); 4278 ipp.ipp_fields |= IPPF_IFINDEX; 4279 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 4280 } 4281 rptr = (uchar_t *)&ip6i[1]; 4282 mp->b_rptr = rptr; 4283 if (rptr == mp->b_wptr) { 4284 mp1 = mp->b_cont; 4285 freeb(mp); 4286 mp = mp1; 4287 rptr = mp->b_rptr; 4288 } 4289 if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE)) 4290 goto tossit; 4291 ip6h = (ip6_t *)rptr; 4292 mp_len = msgdsize(mp); 4293 } 4294 /* 4295 * Find any potentially interesting extension headers 4296 * as well as the length of the IPv6 + extension 4297 * headers. 4298 */ 4299 hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) + 4300 UDPH_SIZE; 4301 ASSERT(nexthdrp == IPPROTO_UDP); 4302 } else { 4303 hdr_length = IPV6_HDR_LEN + UDPH_SIZE; 4304 ip6i = NULL; 4305 } 4306 break; 4307 default: 4308 ASSERT(0); 4309 } 4310 4311 /* 4312 * IP inspected the UDP header thus all of it must be in the mblk. 4313 * UDP length check is performed for IPv6 packets and IPv4 packets 4314 * to check if the size of the packet as specified 4315 * by the header is the same as the physical size of the packet. 4316 * FIXME? Didn't IP already check this? 4317 */ 4318 udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); 4319 if ((MBLKL(mp) < hdr_length) || 4320 (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) { 4321 goto tossit; 4322 } 4323 4324 4325 /* Walk past the headers unless IP_RECVHDR was set. */ 4326 if (!udp_bits.udpb_rcvhdr) { 4327 mp->b_rptr = rptr + hdr_length; 4328 mp_len -= hdr_length; 4329 } 4330 4331 /* 4332 * This is the inbound data path. Packets are passed upstream as 4333 * T_UNITDATA_IND messages with full IP headers still attached. 4334 */ 4335 if (udp->udp_family == AF_INET) { 4336 sin_t *sin; 4337 4338 ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); 4339 4340 /* 4341 * Normally only send up the source address. 4342 * If IP_RECVDSTADDR is set we include the destination IP 4343 * address as an option. With IP_RECVOPTS we include all 4344 * the IP options. 4345 */ 4346 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 4347 if (udp_bits.udpb_recvdstaddr) { 4348 udi_size += sizeof (struct T_opthdr) + 4349 sizeof (struct in_addr); 4350 UDP_STAT(us, udp_in_recvdstaddr); 4351 } 4352 4353 if (udp_bits.udpb_ip_recvpktinfo && (pinfo != NULL) && 4354 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 4355 udi_size += sizeof (struct T_opthdr) + 4356 sizeof (struct in_pktinfo); 4357 UDP_STAT(us, udp_ip_rcvpktinfo); 4358 } 4359 4360 if ((udp_bits.udpb_recvopts) && opt_len > 0) { 4361 udi_size += sizeof (struct T_opthdr) + opt_len; 4362 UDP_STAT(us, udp_in_recvopts); 4363 } 4364 4365 /* 4366 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate 4367 * space accordingly 4368 */ 4369 if ((udp_bits.udpb_recvif) && (pinfo != NULL) && 4370 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 4371 udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); 4372 UDP_STAT(us, udp_in_recvif); 4373 } 4374 4375 if ((udp_bits.udpb_recvslla) && (pinfo != NULL) && 4376 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 4377 udi_size += sizeof (struct T_opthdr) + 4378 sizeof (struct sockaddr_dl); 4379 UDP_STAT(us, udp_in_recvslla); 4380 } 4381 4382 if ((udp_bits.udpb_recvucred) && 4383 (cr = DB_CRED(mp)) != NULL) { 4384 udi_size += sizeof (struct T_opthdr) + ucredsize; 4385 cpid = DB_CPID(mp); 4386 UDP_STAT(us, udp_in_recvucred); 4387 } 4388 4389 /* XXX FIXME: apply to AF_INET6 as well */ 4390 /* 4391 * If SO_TIMESTAMP is set allocate the appropriate sized 4392 * buffer. Since gethrestime() expects a pointer aligned 4393 * argument, we allocate space necessary for extra 4394 * alignment (even though it might not be used). 4395 */ 4396 if (udp_bits.udpb_timestamp) { 4397 udi_size += sizeof (struct T_opthdr) + 4398 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4399 UDP_STAT(us, udp_in_timestamp); 4400 } 4401 4402 /* 4403 * If IP_RECVTTL is set allocate the appropriate sized buffer 4404 */ 4405 if (udp_bits.udpb_recvttl) { 4406 udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); 4407 UDP_STAT(us, udp_in_recvttl); 4408 } 4409 4410 /* Allocate a message block for the T_UNITDATA_IND structure. */ 4411 mp1 = allocb(udi_size, BPRI_MED); 4412 if (mp1 == NULL) { 4413 freemsg(mp); 4414 if (options_mp != NULL) 4415 freeb(options_mp); 4416 BUMP_MIB(&us->us_udp_mib, udpInErrors); 4417 return; 4418 } 4419 mp1->b_cont = mp; 4420 mp = mp1; 4421 mp->b_datap->db_type = M_PROTO; 4422 tudi = (struct T_unitdata_ind *)mp->b_rptr; 4423 mp->b_wptr = (uchar_t *)tudi + udi_size; 4424 tudi->PRIM_type = T_UNITDATA_IND; 4425 tudi->SRC_length = sizeof (sin_t); 4426 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 4427 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 4428 sizeof (sin_t); 4429 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); 4430 tudi->OPT_length = udi_size; 4431 sin = (sin_t *)&tudi[1]; 4432 sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; 4433 sin->sin_port = udpha->uha_src_port; 4434 sin->sin_family = udp->udp_family; 4435 *(uint32_t *)&sin->sin_zero[0] = 0; 4436 *(uint32_t *)&sin->sin_zero[4] = 0; 4437 4438 /* 4439 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or 4440 * IP_RECVTTL has been set. 4441 */ 4442 if (udi_size != 0) { 4443 /* 4444 * Copy in destination address before options to avoid 4445 * any padding issues. 4446 */ 4447 char *dstopt; 4448 4449 dstopt = (char *)&sin[1]; 4450 if (udp_bits.udpb_recvdstaddr) { 4451 struct T_opthdr *toh; 4452 ipaddr_t *dstptr; 4453 4454 toh = (struct T_opthdr *)dstopt; 4455 toh->level = IPPROTO_IP; 4456 toh->name = IP_RECVDSTADDR; 4457 toh->len = sizeof (struct T_opthdr) + 4458 sizeof (ipaddr_t); 4459 toh->status = 0; 4460 dstopt += sizeof (struct T_opthdr); 4461 dstptr = (ipaddr_t *)dstopt; 4462 *dstptr = ((ipha_t *)rptr)->ipha_dst; 4463 dstopt += sizeof (ipaddr_t); 4464 udi_size -= toh->len; 4465 } 4466 4467 if (udp_bits.udpb_recvopts && opt_len > 0) { 4468 struct T_opthdr *toh; 4469 4470 toh = (struct T_opthdr *)dstopt; 4471 toh->level = IPPROTO_IP; 4472 toh->name = IP_RECVOPTS; 4473 toh->len = sizeof (struct T_opthdr) + opt_len; 4474 toh->status = 0; 4475 dstopt += sizeof (struct T_opthdr); 4476 bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, 4477 opt_len); 4478 dstopt += opt_len; 4479 udi_size -= toh->len; 4480 } 4481 4482 if ((udp_bits.udpb_ip_recvpktinfo) && (pinfo != NULL) && 4483 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 4484 struct T_opthdr *toh; 4485 struct in_pktinfo *pktinfop; 4486 4487 toh = (struct T_opthdr *)dstopt; 4488 toh->level = IPPROTO_IP; 4489 toh->name = IP_PKTINFO; 4490 toh->len = sizeof (struct T_opthdr) + 4491 sizeof (*pktinfop); 4492 toh->status = 0; 4493 dstopt += sizeof (struct T_opthdr); 4494 pktinfop = (struct in_pktinfo *)dstopt; 4495 pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex; 4496 pktinfop->ipi_spec_dst = 4497 pinfo->ip_pkt_match_addr; 4498 pktinfop->ipi_addr.s_addr = 4499 ((ipha_t *)rptr)->ipha_dst; 4500 4501 dstopt += sizeof (struct in_pktinfo); 4502 udi_size -= toh->len; 4503 } 4504 4505 if ((udp_bits.udpb_recvslla) && (pinfo != NULL) && 4506 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 4507 4508 struct T_opthdr *toh; 4509 struct sockaddr_dl *dstptr; 4510 4511 toh = (struct T_opthdr *)dstopt; 4512 toh->level = IPPROTO_IP; 4513 toh->name = IP_RECVSLLA; 4514 toh->len = sizeof (struct T_opthdr) + 4515 sizeof (struct sockaddr_dl); 4516 toh->status = 0; 4517 dstopt += sizeof (struct T_opthdr); 4518 dstptr = (struct sockaddr_dl *)dstopt; 4519 bcopy(&pinfo->ip_pkt_slla, dstptr, 4520 sizeof (struct sockaddr_dl)); 4521 dstopt += sizeof (struct sockaddr_dl); 4522 udi_size -= toh->len; 4523 } 4524 4525 if ((udp_bits.udpb_recvif) && (pinfo != NULL) && 4526 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 4527 4528 struct T_opthdr *toh; 4529 uint_t *dstptr; 4530 4531 toh = (struct T_opthdr *)dstopt; 4532 toh->level = IPPROTO_IP; 4533 toh->name = IP_RECVIF; 4534 toh->len = sizeof (struct T_opthdr) + 4535 sizeof (uint_t); 4536 toh->status = 0; 4537 dstopt += sizeof (struct T_opthdr); 4538 dstptr = (uint_t *)dstopt; 4539 *dstptr = pinfo->ip_pkt_ifindex; 4540 dstopt += sizeof (uint_t); 4541 udi_size -= toh->len; 4542 } 4543 4544 if (cr != NULL) { 4545 struct T_opthdr *toh; 4546 4547 toh = (struct T_opthdr *)dstopt; 4548 toh->level = SOL_SOCKET; 4549 toh->name = SCM_UCRED; 4550 toh->len = sizeof (struct T_opthdr) + ucredsize; 4551 toh->status = 0; 4552 dstopt += sizeof (struct T_opthdr); 4553 (void) cred2ucred(cr, cpid, dstopt, rcr); 4554 dstopt += ucredsize; 4555 udi_size -= toh->len; 4556 } 4557 4558 if (udp_bits.udpb_timestamp) { 4559 struct T_opthdr *toh; 4560 4561 toh = (struct T_opthdr *)dstopt; 4562 toh->level = SOL_SOCKET; 4563 toh->name = SCM_TIMESTAMP; 4564 toh->len = sizeof (struct T_opthdr) + 4565 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4566 toh->status = 0; 4567 dstopt += sizeof (struct T_opthdr); 4568 /* Align for gethrestime() */ 4569 dstopt = (char *)P2ROUNDUP((intptr_t)dstopt, 4570 sizeof (intptr_t)); 4571 gethrestime((timestruc_t *)dstopt); 4572 dstopt = (char *)toh + toh->len; 4573 udi_size -= toh->len; 4574 } 4575 4576 /* 4577 * CAUTION: 4578 * Due to aligment issues 4579 * Processing of IP_RECVTTL option 4580 * should always be the last. Adding 4581 * any option processing after this will 4582 * cause alignment panic. 4583 */ 4584 if (udp_bits.udpb_recvttl) { 4585 struct T_opthdr *toh; 4586 uint8_t *dstptr; 4587 4588 toh = (struct T_opthdr *)dstopt; 4589 toh->level = IPPROTO_IP; 4590 toh->name = IP_RECVTTL; 4591 toh->len = sizeof (struct T_opthdr) + 4592 sizeof (uint8_t); 4593 toh->status = 0; 4594 dstopt += sizeof (struct T_opthdr); 4595 dstptr = (uint8_t *)dstopt; 4596 *dstptr = ((ipha_t *)rptr)->ipha_ttl; 4597 dstopt += sizeof (uint8_t); 4598 udi_size -= toh->len; 4599 } 4600 4601 /* Consumed all of allocated space */ 4602 ASSERT(udi_size == 0); 4603 } 4604 } else { 4605 sin6_t *sin6; 4606 4607 /* 4608 * Handle both IPv4 and IPv6 packets for IPv6 sockets. 4609 * 4610 * Normally we only send up the address. If receiving of any 4611 * optional receive side information is enabled, we also send 4612 * that up as options. 4613 */ 4614 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); 4615 4616 if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS| 4617 IPPF_RTHDR|IPPF_IFINDEX)) { 4618 if ((udp_bits.udpb_ipv6_recvhopopts) && 4619 (ipp.ipp_fields & IPPF_HOPOPTS)) { 4620 size_t hlen; 4621 4622 UDP_STAT(us, udp_in_recvhopopts); 4623 hlen = copy_hop_opts(&ipp, NULL); 4624 if (hlen == 0) 4625 ipp.ipp_fields &= ~IPPF_HOPOPTS; 4626 udi_size += hlen; 4627 } 4628 if (((udp_bits.udpb_ipv6_recvdstopts) || 4629 udp_bits.udpb_old_ipv6_recvdstopts) && 4630 (ipp.ipp_fields & IPPF_DSTOPTS)) { 4631 udi_size += sizeof (struct T_opthdr) + 4632 ipp.ipp_dstoptslen; 4633 UDP_STAT(us, udp_in_recvdstopts); 4634 } 4635 if ((((udp_bits.udpb_ipv6_recvdstopts) && 4636 udp_bits.udpb_ipv6_recvrthdr && 4637 (ipp.ipp_fields & IPPF_RTHDR)) || 4638 (udp_bits.udpb_ipv6_recvrthdrdstopts)) && 4639 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 4640 udi_size += sizeof (struct T_opthdr) + 4641 ipp.ipp_rtdstoptslen; 4642 UDP_STAT(us, udp_in_recvrtdstopts); 4643 } 4644 if ((udp_bits.udpb_ipv6_recvrthdr) && 4645 (ipp.ipp_fields & IPPF_RTHDR)) { 4646 udi_size += sizeof (struct T_opthdr) + 4647 ipp.ipp_rthdrlen; 4648 UDP_STAT(us, udp_in_recvrthdr); 4649 } 4650 if ((udp_bits.udpb_ip_recvpktinfo) && 4651 (ipp.ipp_fields & IPPF_IFINDEX)) { 4652 udi_size += sizeof (struct T_opthdr) + 4653 sizeof (struct in6_pktinfo); 4654 UDP_STAT(us, udp_in_recvpktinfo); 4655 } 4656 4657 } 4658 if ((udp_bits.udpb_recvucred) && 4659 (cr = DB_CRED(mp)) != NULL) { 4660 udi_size += sizeof (struct T_opthdr) + ucredsize; 4661 cpid = DB_CPID(mp); 4662 UDP_STAT(us, udp_in_recvucred); 4663 } 4664 4665 if (udp_bits.udpb_ipv6_recvhoplimit) { 4666 udi_size += sizeof (struct T_opthdr) + sizeof (int); 4667 UDP_STAT(us, udp_in_recvhoplimit); 4668 } 4669 4670 if (udp_bits.udpb_ipv6_recvtclass) { 4671 udi_size += sizeof (struct T_opthdr) + sizeof (int); 4672 UDP_STAT(us, udp_in_recvtclass); 4673 } 4674 4675 mp1 = allocb(udi_size, BPRI_MED); 4676 if (mp1 == NULL) { 4677 freemsg(mp); 4678 if (options_mp != NULL) 4679 freeb(options_mp); 4680 BUMP_MIB(&us->us_udp_mib, udpInErrors); 4681 return; 4682 } 4683 mp1->b_cont = mp; 4684 mp = mp1; 4685 mp->b_datap->db_type = M_PROTO; 4686 tudi = (struct T_unitdata_ind *)mp->b_rptr; 4687 mp->b_wptr = (uchar_t *)tudi + udi_size; 4688 tudi->PRIM_type = T_UNITDATA_IND; 4689 tudi->SRC_length = sizeof (sin6_t); 4690 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 4691 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 4692 sizeof (sin6_t); 4693 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t)); 4694 tudi->OPT_length = udi_size; 4695 sin6 = (sin6_t *)&tudi[1]; 4696 if (ipversion == IPV4_VERSION) { 4697 in6_addr_t v6dst; 4698 4699 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src, 4700 &sin6->sin6_addr); 4701 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst, 4702 &v6dst); 4703 sin6->sin6_flowinfo = 0; 4704 sin6->sin6_scope_id = 0; 4705 sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst, 4706 connp->conn_zoneid, us->us_netstack); 4707 } else { 4708 sin6->sin6_addr = ip6h->ip6_src; 4709 /* No sin6_flowinfo per API */ 4710 sin6->sin6_flowinfo = 0; 4711 /* For link-scope source pass up scope id */ 4712 if ((ipp.ipp_fields & IPPF_IFINDEX) && 4713 IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4714 sin6->sin6_scope_id = ipp.ipp_ifindex; 4715 else 4716 sin6->sin6_scope_id = 0; 4717 sin6->__sin6_src_id = ip_srcid_find_addr( 4718 &ip6h->ip6_dst, connp->conn_zoneid, 4719 us->us_netstack); 4720 } 4721 sin6->sin6_port = udpha->uha_src_port; 4722 sin6->sin6_family = udp->udp_family; 4723 4724 if (udi_size != 0) { 4725 uchar_t *dstopt; 4726 4727 dstopt = (uchar_t *)&sin6[1]; 4728 if ((udp_bits.udpb_ip_recvpktinfo) && 4729 (ipp.ipp_fields & IPPF_IFINDEX)) { 4730 struct T_opthdr *toh; 4731 struct in6_pktinfo *pkti; 4732 4733 toh = (struct T_opthdr *)dstopt; 4734 toh->level = IPPROTO_IPV6; 4735 toh->name = IPV6_PKTINFO; 4736 toh->len = sizeof (struct T_opthdr) + 4737 sizeof (*pkti); 4738 toh->status = 0; 4739 dstopt += sizeof (struct T_opthdr); 4740 pkti = (struct in6_pktinfo *)dstopt; 4741 if (ipversion == IPV6_VERSION) 4742 pkti->ipi6_addr = ip6h->ip6_dst; 4743 else 4744 IN6_IPADDR_TO_V4MAPPED( 4745 ((ipha_t *)rptr)->ipha_dst, 4746 &pkti->ipi6_addr); 4747 pkti->ipi6_ifindex = ipp.ipp_ifindex; 4748 dstopt += sizeof (*pkti); 4749 udi_size -= toh->len; 4750 } 4751 if (udp_bits.udpb_ipv6_recvhoplimit) { 4752 struct T_opthdr *toh; 4753 4754 toh = (struct T_opthdr *)dstopt; 4755 toh->level = IPPROTO_IPV6; 4756 toh->name = IPV6_HOPLIMIT; 4757 toh->len = sizeof (struct T_opthdr) + 4758 sizeof (uint_t); 4759 toh->status = 0; 4760 dstopt += sizeof (struct T_opthdr); 4761 if (ipversion == IPV6_VERSION) 4762 *(uint_t *)dstopt = ip6h->ip6_hops; 4763 else 4764 *(uint_t *)dstopt = 4765 ((ipha_t *)rptr)->ipha_ttl; 4766 dstopt += sizeof (uint_t); 4767 udi_size -= toh->len; 4768 } 4769 if (udp_bits.udpb_ipv6_recvtclass) { 4770 struct T_opthdr *toh; 4771 4772 toh = (struct T_opthdr *)dstopt; 4773 toh->level = IPPROTO_IPV6; 4774 toh->name = IPV6_TCLASS; 4775 toh->len = sizeof (struct T_opthdr) + 4776 sizeof (uint_t); 4777 toh->status = 0; 4778 dstopt += sizeof (struct T_opthdr); 4779 if (ipversion == IPV6_VERSION) { 4780 *(uint_t *)dstopt = 4781 IPV6_FLOW_TCLASS(ip6h->ip6_flow); 4782 } else { 4783 ipha_t *ipha = (ipha_t *)rptr; 4784 *(uint_t *)dstopt = 4785 ipha->ipha_type_of_service; 4786 } 4787 dstopt += sizeof (uint_t); 4788 udi_size -= toh->len; 4789 } 4790 if ((udp_bits.udpb_ipv6_recvhopopts) && 4791 (ipp.ipp_fields & IPPF_HOPOPTS)) { 4792 size_t hlen; 4793 4794 hlen = copy_hop_opts(&ipp, dstopt); 4795 dstopt += hlen; 4796 udi_size -= hlen; 4797 } 4798 if ((udp_bits.udpb_ipv6_recvdstopts) && 4799 (udp_bits.udpb_ipv6_recvrthdr) && 4800 (ipp.ipp_fields & IPPF_RTHDR) && 4801 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 4802 struct T_opthdr *toh; 4803 4804 toh = (struct T_opthdr *)dstopt; 4805 toh->level = IPPROTO_IPV6; 4806 toh->name = IPV6_DSTOPTS; 4807 toh->len = sizeof (struct T_opthdr) + 4808 ipp.ipp_rtdstoptslen; 4809 toh->status = 0; 4810 dstopt += sizeof (struct T_opthdr); 4811 bcopy(ipp.ipp_rtdstopts, dstopt, 4812 ipp.ipp_rtdstoptslen); 4813 dstopt += ipp.ipp_rtdstoptslen; 4814 udi_size -= toh->len; 4815 } 4816 if ((udp_bits.udpb_ipv6_recvrthdr) && 4817 (ipp.ipp_fields & IPPF_RTHDR)) { 4818 struct T_opthdr *toh; 4819 4820 toh = (struct T_opthdr *)dstopt; 4821 toh->level = IPPROTO_IPV6; 4822 toh->name = IPV6_RTHDR; 4823 toh->len = sizeof (struct T_opthdr) + 4824 ipp.ipp_rthdrlen; 4825 toh->status = 0; 4826 dstopt += sizeof (struct T_opthdr); 4827 bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen); 4828 dstopt += ipp.ipp_rthdrlen; 4829 udi_size -= toh->len; 4830 } 4831 if ((udp_bits.udpb_ipv6_recvdstopts) && 4832 (ipp.ipp_fields & IPPF_DSTOPTS)) { 4833 struct T_opthdr *toh; 4834 4835 toh = (struct T_opthdr *)dstopt; 4836 toh->level = IPPROTO_IPV6; 4837 toh->name = IPV6_DSTOPTS; 4838 toh->len = sizeof (struct T_opthdr) + 4839 ipp.ipp_dstoptslen; 4840 toh->status = 0; 4841 dstopt += sizeof (struct T_opthdr); 4842 bcopy(ipp.ipp_dstopts, dstopt, 4843 ipp.ipp_dstoptslen); 4844 dstopt += ipp.ipp_dstoptslen; 4845 udi_size -= toh->len; 4846 } 4847 4848 if (cr != NULL) { 4849 struct T_opthdr *toh; 4850 4851 toh = (struct T_opthdr *)dstopt; 4852 toh->level = SOL_SOCKET; 4853 toh->name = SCM_UCRED; 4854 toh->len = sizeof (struct T_opthdr) + ucredsize; 4855 toh->status = 0; 4856 (void) cred2ucred(cr, cpid, &toh[1], rcr); 4857 dstopt += toh->len; 4858 udi_size -= toh->len; 4859 } 4860 /* Consumed all of allocated space */ 4861 ASSERT(udi_size == 0); 4862 } 4863 #undef sin6 4864 /* No IP_RECVDSTADDR for IPv6. */ 4865 } 4866 4867 BUMP_MIB(&us->us_udp_mib, udpHCInDatagrams); 4868 if (options_mp != NULL) 4869 freeb(options_mp); 4870 4871 if (udp_bits.udpb_direct_sockfs) { 4872 /* 4873 * There is nothing above us except for the stream head; 4874 * use the read-side synchronous stream interface in 4875 * order to reduce the time spent in interrupt thread. 4876 */ 4877 ASSERT(udp->udp_issocket); 4878 udp_rcv_enqueue(connp->conn_rq, udp, mp, mp_len); 4879 } else { 4880 /* 4881 * Use regular STREAMS interface to pass data upstream 4882 * if this is not a socket endpoint, or if we have 4883 * switched over to the slow mode due to sockmod being 4884 * popped or a module being pushed on top of us. 4885 */ 4886 putnext(connp->conn_rq, mp); 4887 } 4888 return; 4889 4890 tossit: 4891 freemsg(mp); 4892 if (options_mp != NULL) 4893 freeb(options_mp); 4894 BUMP_MIB(&us->us_udp_mib, udpInErrors); 4895 } 4896 4897 /* 4898 * Handle the results of a T_BIND_REQ whether deferred by IP or handled 4899 * immediately. 4900 */ 4901 static void 4902 udp_bind_result(conn_t *connp, mblk_t *mp) 4903 { 4904 struct T_error_ack *tea; 4905 4906 switch (mp->b_datap->db_type) { 4907 case M_PROTO: 4908 case M_PCPROTO: 4909 /* M_PROTO messages contain some type of TPI message. */ 4910 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 4911 (uintptr_t)INT_MAX); 4912 if (mp->b_wptr - mp->b_rptr < sizeof (t_scalar_t)) { 4913 freemsg(mp); 4914 return; 4915 } 4916 tea = (struct T_error_ack *)mp->b_rptr; 4917 4918 switch (tea->PRIM_type) { 4919 case T_ERROR_ACK: 4920 switch (tea->ERROR_prim) { 4921 case O_T_BIND_REQ: 4922 case T_BIND_REQ: 4923 udp_bind_error(connp, mp); 4924 return; 4925 default: 4926 break; 4927 } 4928 ASSERT(0); 4929 freemsg(mp); 4930 return; 4931 4932 case T_BIND_ACK: 4933 udp_bind_ack(connp, mp); 4934 return; 4935 4936 default: 4937 break; 4938 } 4939 freemsg(mp); 4940 return; 4941 default: 4942 /* FIXME: other cases? */ 4943 ASSERT(0); 4944 freemsg(mp); 4945 return; 4946 } 4947 } 4948 4949 /* 4950 * Process a T_BIND_ACK 4951 */ 4952 static void 4953 udp_bind_ack(conn_t *connp, mblk_t *mp) 4954 { 4955 udp_t *udp = connp->conn_udp; 4956 mblk_t *mp1; 4957 ire_t *ire; 4958 struct T_bind_ack *tba; 4959 uchar_t *addrp; 4960 ipa_conn_t *ac; 4961 ipa6_conn_t *ac6; 4962 udp_fanout_t *udpf; 4963 udp_stack_t *us = udp->udp_us; 4964 4965 ASSERT(udp->udp_pending_op != -1); 4966 rw_enter(&udp->udp_rwlock, RW_WRITER); 4967 /* 4968 * If a broadcast/multicast address was bound set 4969 * the source address to 0. 4970 * This ensures no datagrams with broadcast address 4971 * as source address are emitted (which would violate 4972 * RFC1122 - Hosts requirements) 4973 * 4974 * Note that when connecting the returned IRE is 4975 * for the destination address and we only perform 4976 * the broadcast check for the source address (it 4977 * is OK to connect to a broadcast/multicast address.) 4978 */ 4979 mp1 = mp->b_cont; 4980 if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) { 4981 ire = (ire_t *)mp1->b_rptr; 4982 4983 /* 4984 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast 4985 * local address. 4986 */ 4987 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 4988 us->us_bind_fanout_size)]; 4989 if (ire->ire_type == IRE_BROADCAST && 4990 udp->udp_state != TS_DATA_XFER) { 4991 ASSERT(udp->udp_pending_op == T_BIND_REQ || 4992 udp->udp_pending_op == O_T_BIND_REQ); 4993 /* This was just a local bind to a broadcast addr */ 4994 mutex_enter(&udpf->uf_lock); 4995 V6_SET_ZERO(udp->udp_v6src); 4996 mutex_exit(&udpf->uf_lock); 4997 if (udp->udp_family == AF_INET6) 4998 (void) udp_build_hdrs(udp); 4999 } else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 5000 /* 5001 * Local address not yet set - pick it from the 5002 * T_bind_ack 5003 */ 5004 tba = (struct T_bind_ack *)mp->b_rptr; 5005 addrp = &mp->b_rptr[tba->ADDR_offset]; 5006 switch (udp->udp_family) { 5007 case AF_INET: 5008 if (tba->ADDR_length == sizeof (ipa_conn_t)) { 5009 ac = (ipa_conn_t *)addrp; 5010 } else { 5011 ASSERT(tba->ADDR_length == 5012 sizeof (ipa_conn_x_t)); 5013 ac = &((ipa_conn_x_t *)addrp)->acx_conn; 5014 } 5015 mutex_enter(&udpf->uf_lock); 5016 IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr, 5017 &udp->udp_v6src); 5018 mutex_exit(&udpf->uf_lock); 5019 break; 5020 case AF_INET6: 5021 if (tba->ADDR_length == sizeof (ipa6_conn_t)) { 5022 ac6 = (ipa6_conn_t *)addrp; 5023 } else { 5024 ASSERT(tba->ADDR_length == 5025 sizeof (ipa6_conn_x_t)); 5026 ac6 = &((ipa6_conn_x_t *) 5027 addrp)->ac6x_conn; 5028 } 5029 mutex_enter(&udpf->uf_lock); 5030 udp->udp_v6src = ac6->ac6_laddr; 5031 mutex_exit(&udpf->uf_lock); 5032 (void) udp_build_hdrs(udp); 5033 break; 5034 } 5035 } 5036 mp1 = mp1->b_cont; 5037 } 5038 udp->udp_pending_op = -1; 5039 rw_exit(&udp->udp_rwlock); 5040 /* 5041 * Look for one or more appended ACK message added by 5042 * udp_connect or udp_disconnect. 5043 * If none found just send up the T_BIND_ACK. 5044 * udp_connect has appended a T_OK_ACK and a T_CONN_CON. 5045 * udp_disconnect has appended a T_OK_ACK. 5046 */ 5047 if (mp1 != NULL) { 5048 if (mp->b_cont == mp1) 5049 mp->b_cont = NULL; 5050 else { 5051 ASSERT(mp->b_cont->b_cont == mp1); 5052 mp->b_cont->b_cont = NULL; 5053 } 5054 freemsg(mp); 5055 mp = mp1; 5056 while (mp != NULL) { 5057 mp1 = mp->b_cont; 5058 mp->b_cont = NULL; 5059 putnext(connp->conn_rq, mp); 5060 mp = mp1; 5061 } 5062 return; 5063 } 5064 freemsg(mp->b_cont); 5065 mp->b_cont = NULL; 5066 putnext(connp->conn_rq, mp); 5067 } 5068 5069 static void 5070 udp_bind_error(conn_t *connp, mblk_t *mp) 5071 { 5072 udp_t *udp = connp->conn_udp; 5073 struct T_error_ack *tea; 5074 udp_fanout_t *udpf; 5075 udp_stack_t *us = udp->udp_us; 5076 5077 tea = (struct T_error_ack *)mp->b_rptr; 5078 5079 /* 5080 * If our O_T_BIND_REQ/T_BIND_REQ fails, 5081 * clear out the associated port and source 5082 * address before passing the message 5083 * upstream. If this was caused by a T_CONN_REQ 5084 * revert back to bound state. 5085 */ 5086 5087 rw_enter(&udp->udp_rwlock, RW_WRITER); 5088 ASSERT(udp->udp_pending_op != -1); 5089 tea->ERROR_prim = udp->udp_pending_op; 5090 udp->udp_pending_op = -1; 5091 udpf = &us->us_bind_fanout[ 5092 UDP_BIND_HASH(udp->udp_port, 5093 us->us_bind_fanout_size)]; 5094 mutex_enter(&udpf->uf_lock); 5095 5096 switch (tea->ERROR_prim) { 5097 case T_CONN_REQ: 5098 ASSERT(udp->udp_state == TS_DATA_XFER); 5099 /* Connect failed */ 5100 /* Revert back to the bound source */ 5101 udp->udp_v6src = udp->udp_bound_v6src; 5102 udp->udp_state = TS_IDLE; 5103 mutex_exit(&udpf->uf_lock); 5104 if (udp->udp_family == AF_INET6) 5105 (void) udp_build_hdrs(udp); 5106 rw_exit(&udp->udp_rwlock); 5107 break; 5108 5109 case T_DISCON_REQ: 5110 case T_BIND_REQ: 5111 case O_T_BIND_REQ: 5112 V6_SET_ZERO(udp->udp_v6src); 5113 V6_SET_ZERO(udp->udp_bound_v6src); 5114 udp->udp_state = TS_UNBND; 5115 udp_bind_hash_remove(udp, B_TRUE); 5116 udp->udp_port = 0; 5117 mutex_exit(&udpf->uf_lock); 5118 if (udp->udp_family == AF_INET6) 5119 (void) udp_build_hdrs(udp); 5120 rw_exit(&udp->udp_rwlock); 5121 break; 5122 5123 default: 5124 mutex_exit(&udpf->uf_lock); 5125 rw_exit(&udp->udp_rwlock); 5126 (void) mi_strlog(connp->conn_rq, 1, 5127 SL_ERROR|SL_TRACE, 5128 "udp_input_other: bad ERROR_prim, " 5129 "len %d", tea->ERROR_prim); 5130 } 5131 putnext(connp->conn_rq, mp); 5132 } 5133 5134 /* 5135 * return SNMP stuff in buffer in mpdata. We don't hold any lock and report 5136 * information that can be changing beneath us. 5137 */ 5138 mblk_t * 5139 udp_snmp_get(queue_t *q, mblk_t *mpctl) 5140 { 5141 mblk_t *mpdata; 5142 mblk_t *mp_conn_ctl; 5143 mblk_t *mp_attr_ctl; 5144 mblk_t *mp6_conn_ctl; 5145 mblk_t *mp6_attr_ctl; 5146 mblk_t *mp_conn_tail; 5147 mblk_t *mp_attr_tail; 5148 mblk_t *mp6_conn_tail; 5149 mblk_t *mp6_attr_tail; 5150 struct opthdr *optp; 5151 mib2_udpEntry_t ude; 5152 mib2_udp6Entry_t ude6; 5153 mib2_transportMLPEntry_t mlp; 5154 int state; 5155 zoneid_t zoneid; 5156 int i; 5157 connf_t *connfp; 5158 conn_t *connp = Q_TO_CONN(q); 5159 int v4_conn_idx; 5160 int v6_conn_idx; 5161 boolean_t needattr; 5162 udp_t *udp; 5163 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 5164 udp_stack_t *us = connp->conn_netstack->netstack_udp; 5165 mblk_t *mp2ctl; 5166 5167 /* 5168 * make a copy of the original message 5169 */ 5170 mp2ctl = copymsg(mpctl); 5171 5172 mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL; 5173 if (mpctl == NULL || 5174 (mpdata = mpctl->b_cont) == NULL || 5175 (mp_conn_ctl = copymsg(mpctl)) == NULL || 5176 (mp_attr_ctl = copymsg(mpctl)) == NULL || 5177 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 5178 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 5179 freemsg(mp_conn_ctl); 5180 freemsg(mp_attr_ctl); 5181 freemsg(mp6_conn_ctl); 5182 freemsg(mpctl); 5183 freemsg(mp2ctl); 5184 return (0); 5185 } 5186 5187 zoneid = connp->conn_zoneid; 5188 5189 /* fixed length structure for IPv4 and IPv6 counters */ 5190 SET_MIB(us->us_udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t)); 5191 SET_MIB(us->us_udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t)); 5192 /* synchronize 64- and 32-bit counters */ 5193 SYNC32_MIB(&us->us_udp_mib, udpInDatagrams, udpHCInDatagrams); 5194 SYNC32_MIB(&us->us_udp_mib, udpOutDatagrams, udpHCOutDatagrams); 5195 5196 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 5197 optp->level = MIB2_UDP; 5198 optp->name = 0; 5199 (void) snmp_append_data(mpdata, (char *)&us->us_udp_mib, 5200 sizeof (us->us_udp_mib)); 5201 optp->len = msgdsize(mpdata); 5202 qreply(q, mpctl); 5203 5204 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 5205 v4_conn_idx = v6_conn_idx = 0; 5206 5207 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 5208 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 5209 connp = NULL; 5210 5211 while ((connp = ipcl_get_next_conn(connfp, connp, 5212 IPCL_UDPCONN))) { 5213 udp = connp->conn_udp; 5214 if (zoneid != connp->conn_zoneid) 5215 continue; 5216 5217 /* 5218 * Note that the port numbers are sent in 5219 * host byte order 5220 */ 5221 5222 if (udp->udp_state == TS_UNBND) 5223 state = MIB2_UDP_unbound; 5224 else if (udp->udp_state == TS_IDLE) 5225 state = MIB2_UDP_idle; 5226 else if (udp->udp_state == TS_DATA_XFER) 5227 state = MIB2_UDP_connected; 5228 else 5229 state = MIB2_UDP_unknown; 5230 5231 needattr = B_FALSE; 5232 bzero(&mlp, sizeof (mlp)); 5233 if (connp->conn_mlp_type != mlptSingle) { 5234 if (connp->conn_mlp_type == mlptShared || 5235 connp->conn_mlp_type == mlptBoth) 5236 mlp.tme_flags |= MIB2_TMEF_SHARED; 5237 if (connp->conn_mlp_type == mlptPrivate || 5238 connp->conn_mlp_type == mlptBoth) 5239 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 5240 needattr = B_TRUE; 5241 } 5242 5243 /* 5244 * Create an IPv4 table entry for IPv4 entries and also 5245 * any IPv6 entries which are bound to in6addr_any 5246 * (i.e. anything a IPv4 peer could connect/send to). 5247 */ 5248 if (udp->udp_ipversion == IPV4_VERSION || 5249 (udp->udp_state <= TS_IDLE && 5250 IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) { 5251 ude.udpEntryInfo.ue_state = state; 5252 /* 5253 * If in6addr_any this will set it to 5254 * INADDR_ANY 5255 */ 5256 ude.udpLocalAddress = 5257 V4_PART_OF_V6(udp->udp_v6src); 5258 ude.udpLocalPort = ntohs(udp->udp_port); 5259 if (udp->udp_state == TS_DATA_XFER) { 5260 /* 5261 * Can potentially get here for 5262 * v6 socket if another process 5263 * (say, ping) has just done a 5264 * sendto(), changing the state 5265 * from the TS_IDLE above to 5266 * TS_DATA_XFER by the time we hit 5267 * this part of the code. 5268 */ 5269 ude.udpEntryInfo.ue_RemoteAddress = 5270 V4_PART_OF_V6(udp->udp_v6dst); 5271 ude.udpEntryInfo.ue_RemotePort = 5272 ntohs(udp->udp_dstport); 5273 } else { 5274 ude.udpEntryInfo.ue_RemoteAddress = 0; 5275 ude.udpEntryInfo.ue_RemotePort = 0; 5276 } 5277 5278 /* 5279 * We make the assumption that all udp_t 5280 * structs will be created within an address 5281 * region no larger than 32-bits. 5282 */ 5283 ude.udpInstance = (uint32_t)(uintptr_t)udp; 5284 ude.udpCreationProcess = 5285 (udp->udp_open_pid < 0) ? 5286 MIB2_UNKNOWN_PROCESS : 5287 udp->udp_open_pid; 5288 ude.udpCreationTime = udp->udp_open_time; 5289 5290 (void) snmp_append_data2(mp_conn_ctl->b_cont, 5291 &mp_conn_tail, (char *)&ude, sizeof (ude)); 5292 mlp.tme_connidx = v4_conn_idx++; 5293 if (needattr) 5294 (void) snmp_append_data2( 5295 mp_attr_ctl->b_cont, &mp_attr_tail, 5296 (char *)&mlp, sizeof (mlp)); 5297 } 5298 if (udp->udp_ipversion == IPV6_VERSION) { 5299 ude6.udp6EntryInfo.ue_state = state; 5300 ude6.udp6LocalAddress = udp->udp_v6src; 5301 ude6.udp6LocalPort = ntohs(udp->udp_port); 5302 ude6.udp6IfIndex = udp->udp_bound_if; 5303 if (udp->udp_state == TS_DATA_XFER) { 5304 ude6.udp6EntryInfo.ue_RemoteAddress = 5305 udp->udp_v6dst; 5306 ude6.udp6EntryInfo.ue_RemotePort = 5307 ntohs(udp->udp_dstport); 5308 } else { 5309 ude6.udp6EntryInfo.ue_RemoteAddress = 5310 sin6_null.sin6_addr; 5311 ude6.udp6EntryInfo.ue_RemotePort = 0; 5312 } 5313 /* 5314 * We make the assumption that all udp_t 5315 * structs will be created within an address 5316 * region no larger than 32-bits. 5317 */ 5318 ude6.udp6Instance = (uint32_t)(uintptr_t)udp; 5319 ude6.udp6CreationProcess = 5320 (udp->udp_open_pid < 0) ? 5321 MIB2_UNKNOWN_PROCESS : 5322 udp->udp_open_pid; 5323 ude6.udp6CreationTime = udp->udp_open_time; 5324 5325 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 5326 &mp6_conn_tail, (char *)&ude6, 5327 sizeof (ude6)); 5328 mlp.tme_connidx = v6_conn_idx++; 5329 if (needattr) 5330 (void) snmp_append_data2( 5331 mp6_attr_ctl->b_cont, 5332 &mp6_attr_tail, (char *)&mlp, 5333 sizeof (mlp)); 5334 } 5335 } 5336 } 5337 5338 /* IPv4 UDP endpoints */ 5339 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 5340 sizeof (struct T_optmgmt_ack)]; 5341 optp->level = MIB2_UDP; 5342 optp->name = MIB2_UDP_ENTRY; 5343 optp->len = msgdsize(mp_conn_ctl->b_cont); 5344 qreply(q, mp_conn_ctl); 5345 5346 /* table of MLP attributes... */ 5347 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 5348 sizeof (struct T_optmgmt_ack)]; 5349 optp->level = MIB2_UDP; 5350 optp->name = EXPER_XPORT_MLP; 5351 optp->len = msgdsize(mp_attr_ctl->b_cont); 5352 if (optp->len == 0) 5353 freemsg(mp_attr_ctl); 5354 else 5355 qreply(q, mp_attr_ctl); 5356 5357 /* IPv6 UDP endpoints */ 5358 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 5359 sizeof (struct T_optmgmt_ack)]; 5360 optp->level = MIB2_UDP6; 5361 optp->name = MIB2_UDP6_ENTRY; 5362 optp->len = msgdsize(mp6_conn_ctl->b_cont); 5363 qreply(q, mp6_conn_ctl); 5364 5365 /* table of MLP attributes... */ 5366 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 5367 sizeof (struct T_optmgmt_ack)]; 5368 optp->level = MIB2_UDP6; 5369 optp->name = EXPER_XPORT_MLP; 5370 optp->len = msgdsize(mp6_attr_ctl->b_cont); 5371 if (optp->len == 0) 5372 freemsg(mp6_attr_ctl); 5373 else 5374 qreply(q, mp6_attr_ctl); 5375 5376 return (mp2ctl); 5377 } 5378 5379 /* 5380 * Return 0 if invalid set request, 1 otherwise, including non-udp requests. 5381 * NOTE: Per MIB-II, UDP has no writable data. 5382 * TODO: If this ever actually tries to set anything, it needs to be 5383 * to do the appropriate locking. 5384 */ 5385 /* ARGSUSED */ 5386 int 5387 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, 5388 uchar_t *ptr, int len) 5389 { 5390 switch (level) { 5391 case MIB2_UDP: 5392 return (0); 5393 default: 5394 return (1); 5395 } 5396 } 5397 5398 static void 5399 udp_report_item(mblk_t *mp, udp_t *udp) 5400 { 5401 char *state; 5402 char addrbuf1[INET6_ADDRSTRLEN]; 5403 char addrbuf2[INET6_ADDRSTRLEN]; 5404 uint_t print_len, buf_len; 5405 5406 buf_len = mp->b_datap->db_lim - mp->b_wptr; 5407 ASSERT(buf_len >= 0); 5408 if (buf_len == 0) 5409 return; 5410 5411 if (udp->udp_state == TS_UNBND) 5412 state = "UNBOUND"; 5413 else if (udp->udp_state == TS_IDLE) 5414 state = "IDLE"; 5415 else if (udp->udp_state == TS_DATA_XFER) 5416 state = "CONNECTED"; 5417 else 5418 state = "UnkState"; 5419 print_len = snprintf((char *)mp->b_wptr, buf_len, 5420 MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n", 5421 (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port), 5422 inet_ntop(AF_INET6, &udp->udp_v6src, addrbuf1, sizeof (addrbuf1)), 5423 inet_ntop(AF_INET6, &udp->udp_v6dst, addrbuf2, sizeof (addrbuf2)), 5424 ntohs(udp->udp_dstport), state); 5425 if (print_len < buf_len) { 5426 mp->b_wptr += print_len; 5427 } else { 5428 mp->b_wptr += buf_len; 5429 } 5430 } 5431 5432 /* Report for ndd "udp_status" */ 5433 /* ARGSUSED */ 5434 static int 5435 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 5436 { 5437 zoneid_t zoneid; 5438 connf_t *connfp; 5439 conn_t *connp = Q_TO_CONN(q); 5440 udp_t *udp = connp->conn_udp; 5441 int i; 5442 udp_stack_t *us = udp->udp_us; 5443 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 5444 5445 /* 5446 * Because of the ndd constraint, at most we can have 64K buffer 5447 * to put in all UDP info. So to be more efficient, just 5448 * allocate a 64K buffer here, assuming we need that large buffer. 5449 * This may be a problem as any user can read udp_status. Therefore 5450 * we limit the rate of doing this using us_ndd_get_info_interval. 5451 * This should be OK as normal users should not do this too often. 5452 */ 5453 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 5454 if (ddi_get_lbolt() - us->us_last_ndd_get_info_time < 5455 drv_usectohz(us->us_ndd_get_info_interval * 1000)) { 5456 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 5457 return (0); 5458 } 5459 } 5460 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 5461 /* The following may work even if we cannot get a large buf. */ 5462 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 5463 return (0); 5464 } 5465 (void) mi_mpprintf(mp, 5466 "UDP " MI_COL_HDRPAD_STR 5467 /* 12345678[89ABCDEF] */ 5468 " zone lport src addr dest addr port state"); 5469 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 5470 5471 zoneid = connp->conn_zoneid; 5472 5473 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 5474 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 5475 connp = NULL; 5476 5477 while ((connp = ipcl_get_next_conn(connfp, connp, 5478 IPCL_UDPCONN))) { 5479 udp = connp->conn_udp; 5480 if (zoneid != GLOBAL_ZONEID && 5481 zoneid != connp->conn_zoneid) 5482 continue; 5483 5484 udp_report_item(mp->b_cont, udp); 5485 } 5486 } 5487 us->us_last_ndd_get_info_time = ddi_get_lbolt(); 5488 return (0); 5489 } 5490 5491 /* 5492 * This routine creates a T_UDERROR_IND message and passes it upstream. 5493 * The address and options are copied from the T_UNITDATA_REQ message 5494 * passed in mp. This message is freed. 5495 */ 5496 static void 5497 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen, 5498 t_scalar_t err) 5499 { 5500 struct T_unitdata_req *tudr; 5501 mblk_t *mp1; 5502 uchar_t *optaddr; 5503 t_scalar_t optlen; 5504 5505 if (DB_TYPE(mp) == M_DATA) { 5506 ASSERT(destaddr != NULL && destlen != 0); 5507 optaddr = NULL; 5508 optlen = 0; 5509 } else { 5510 if ((mp->b_wptr < mp->b_rptr) || 5511 (MBLKL(mp)) < sizeof (struct T_unitdata_req)) { 5512 goto done; 5513 } 5514 tudr = (struct T_unitdata_req *)mp->b_rptr; 5515 destaddr = mp->b_rptr + tudr->DEST_offset; 5516 if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr || 5517 destaddr + tudr->DEST_length < mp->b_rptr || 5518 destaddr + tudr->DEST_length > mp->b_wptr) { 5519 goto done; 5520 } 5521 optaddr = mp->b_rptr + tudr->OPT_offset; 5522 if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr || 5523 optaddr + tudr->OPT_length < mp->b_rptr || 5524 optaddr + tudr->OPT_length > mp->b_wptr) { 5525 goto done; 5526 } 5527 destlen = tudr->DEST_length; 5528 optlen = tudr->OPT_length; 5529 } 5530 5531 mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen, 5532 (char *)optaddr, optlen, err); 5533 if (mp1 != NULL) 5534 qreply(q, mp1); 5535 5536 done: 5537 freemsg(mp); 5538 } 5539 5540 /* 5541 * This routine removes a port number association from a stream. It 5542 * is called by udp_wput to handle T_UNBIND_REQ messages. 5543 */ 5544 static void 5545 udp_unbind(queue_t *q, mblk_t *mp) 5546 { 5547 udp_t *udp = Q_TO_UDP(q); 5548 udp_fanout_t *udpf; 5549 udp_stack_t *us = udp->udp_us; 5550 5551 if (cl_inet_unbind != NULL) { 5552 /* 5553 * Running in cluster mode - register unbind information 5554 */ 5555 if (udp->udp_ipversion == IPV4_VERSION) { 5556 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 5557 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 5558 (in_port_t)udp->udp_port); 5559 } else { 5560 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 5561 (uint8_t *)&(udp->udp_v6src), 5562 (in_port_t)udp->udp_port); 5563 } 5564 } 5565 5566 rw_enter(&udp->udp_rwlock, RW_WRITER); 5567 if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) { 5568 rw_exit(&udp->udp_rwlock); 5569 udp_err_ack(q, mp, TOUTSTATE, 0); 5570 return; 5571 } 5572 udp->udp_pending_op = T_UNBIND_REQ; 5573 rw_exit(&udp->udp_rwlock); 5574 5575 /* 5576 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK 5577 * and therefore ip_unbind must never return NULL. 5578 */ 5579 mp = ip_unbind(q, mp); 5580 ASSERT(mp != NULL); 5581 ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK); 5582 5583 /* 5584 * Once we're unbound from IP, the pending operation may be cleared 5585 * here. 5586 */ 5587 rw_enter(&udp->udp_rwlock, RW_WRITER); 5588 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 5589 us->us_bind_fanout_size)]; 5590 mutex_enter(&udpf->uf_lock); 5591 udp_bind_hash_remove(udp, B_TRUE); 5592 V6_SET_ZERO(udp->udp_v6src); 5593 V6_SET_ZERO(udp->udp_bound_v6src); 5594 udp->udp_port = 0; 5595 mutex_exit(&udpf->uf_lock); 5596 5597 udp->udp_pending_op = -1; 5598 udp->udp_state = TS_UNBND; 5599 if (udp->udp_family == AF_INET6) 5600 (void) udp_build_hdrs(udp); 5601 rw_exit(&udp->udp_rwlock); 5602 5603 qreply(q, mp); 5604 } 5605 5606 /* 5607 * Don't let port fall into the privileged range. 5608 * Since the extra privileged ports can be arbitrary we also 5609 * ensure that we exclude those from consideration. 5610 * us->us_epriv_ports is not sorted thus we loop over it until 5611 * there are no changes. 5612 */ 5613 static in_port_t 5614 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random) 5615 { 5616 int i; 5617 in_port_t nextport; 5618 boolean_t restart = B_FALSE; 5619 udp_stack_t *us = udp->udp_us; 5620 5621 if (random && udp_random_anon_port != 0) { 5622 (void) random_get_pseudo_bytes((uint8_t *)&port, 5623 sizeof (in_port_t)); 5624 /* 5625 * Unless changed by a sys admin, the smallest anon port 5626 * is 32768 and the largest anon port is 65535. It is 5627 * very likely (50%) for the random port to be smaller 5628 * than the smallest anon port. When that happens, 5629 * add port % (anon port range) to the smallest anon 5630 * port to get the random port. It should fall into the 5631 * valid anon port range. 5632 */ 5633 if (port < us->us_smallest_anon_port) { 5634 port = us->us_smallest_anon_port + 5635 port % (us->us_largest_anon_port - 5636 us->us_smallest_anon_port); 5637 } 5638 } 5639 5640 retry: 5641 if (port < us->us_smallest_anon_port) 5642 port = us->us_smallest_anon_port; 5643 5644 if (port > us->us_largest_anon_port) { 5645 port = us->us_smallest_anon_port; 5646 if (restart) 5647 return (0); 5648 restart = B_TRUE; 5649 } 5650 5651 if (port < us->us_smallest_nonpriv_port) 5652 port = us->us_smallest_nonpriv_port; 5653 5654 for (i = 0; i < us->us_num_epriv_ports; i++) { 5655 if (port == us->us_epriv_ports[i]) { 5656 port++; 5657 /* 5658 * Make sure that the port is in the 5659 * valid range. 5660 */ 5661 goto retry; 5662 } 5663 } 5664 5665 if (is_system_labeled() && 5666 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 5667 port, IPPROTO_UDP, B_TRUE)) != 0) { 5668 port = nextport; 5669 goto retry; 5670 } 5671 5672 return (port); 5673 } 5674 5675 static int 5676 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst) 5677 { 5678 int err; 5679 uchar_t opt_storage[IP_MAX_OPT_LENGTH]; 5680 udp_t *udp = Q_TO_UDP(wq); 5681 udp_stack_t *us = udp->udp_us; 5682 5683 err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst, 5684 opt_storage, udp->udp_mac_exempt, 5685 us->us_netstack->netstack_ip); 5686 if (err == 0) { 5687 err = tsol_update_options(&udp->udp_ip_snd_options, 5688 &udp->udp_ip_snd_options_len, &udp->udp_label_len, 5689 opt_storage); 5690 } 5691 if (err != 0) { 5692 DTRACE_PROBE4( 5693 tx__ip__log__info__updatelabel__udp, 5694 char *, "queue(1) failed to update options(2) on mp(3)", 5695 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 5696 } else { 5697 IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst); 5698 } 5699 return (err); 5700 } 5701 5702 static mblk_t * 5703 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port, 5704 uint_t srcid, int *error, boolean_t insert_spi) 5705 { 5706 udp_t *udp = connp->conn_udp; 5707 queue_t *q = connp->conn_wq; 5708 mblk_t *mp1 = mp; 5709 mblk_t *mp2; 5710 ipha_t *ipha; 5711 int ip_hdr_length; 5712 uint32_t ip_len; 5713 udpha_t *udpha; 5714 boolean_t lock_held = B_FALSE; 5715 in_port_t uha_src_port; 5716 udpattrs_t attrs; 5717 uchar_t ip_snd_opt[IP_MAX_OPT_LENGTH]; 5718 uint32_t ip_snd_opt_len = 0; 5719 ip4_pkt_t pktinfo; 5720 ip4_pkt_t *pktinfop = &pktinfo; 5721 ip_opt_info_t optinfo; 5722 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 5723 udp_stack_t *us = udp->udp_us; 5724 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5725 5726 5727 *error = 0; 5728 pktinfop->ip4_ill_index = 0; 5729 pktinfop->ip4_addr = INADDR_ANY; 5730 optinfo.ip_opt_flags = 0; 5731 optinfo.ip_opt_ill_index = 0; 5732 5733 if (v4dst == INADDR_ANY) 5734 v4dst = htonl(INADDR_LOOPBACK); 5735 5736 /* 5737 * If options passed in, feed it for verification and handling 5738 */ 5739 attrs.udpattr_credset = B_FALSE; 5740 if (DB_TYPE(mp) != M_DATA) { 5741 mp1 = mp->b_cont; 5742 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 5743 attrs.udpattr_ipp4 = pktinfop; 5744 attrs.udpattr_mb = mp; 5745 if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0) 5746 goto done; 5747 /* 5748 * Note: success in processing options. 5749 * mp option buffer represented by 5750 * OPT_length/offset now potentially modified 5751 * and contain option setting results 5752 */ 5753 ASSERT(*error == 0); 5754 } 5755 } 5756 5757 /* mp1 points to the M_DATA mblk carrying the packet */ 5758 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 5759 5760 rw_enter(&udp->udp_rwlock, RW_READER); 5761 lock_held = B_TRUE; 5762 /* 5763 * Check if our saved options are valid; update if not. 5764 * TSOL Note: Since we are not in WRITER mode, UDP packets 5765 * to different destination may require different labels, 5766 * or worse, UDP packets to same IP address may require 5767 * different labels due to use of shared all-zones address. 5768 * We use conn_lock to ensure that lastdst, ip_snd_options, 5769 * and ip_snd_options_len are consistent for the current 5770 * destination and are updated atomically. 5771 */ 5772 mutex_enter(&connp->conn_lock); 5773 if (is_system_labeled()) { 5774 /* Using UDP MLP requires SCM_UCRED from user */ 5775 if (connp->conn_mlp_type != mlptSingle && 5776 !attrs.udpattr_credset) { 5777 mutex_exit(&connp->conn_lock); 5778 DTRACE_PROBE4( 5779 tx__ip__log__info__output__udp, 5780 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 5781 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 5782 *error = ECONNREFUSED; 5783 goto done; 5784 } 5785 /* 5786 * update label option for this UDP socket if 5787 * - the destination has changed, or 5788 * - the UDP socket is MLP 5789 */ 5790 if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) || 5791 V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst || 5792 connp->conn_mlp_type != mlptSingle) && 5793 (*error = udp_update_label(q, mp, v4dst)) != 0) { 5794 mutex_exit(&connp->conn_lock); 5795 goto done; 5796 } 5797 } 5798 if (udp->udp_ip_snd_options_len > 0) { 5799 ip_snd_opt_len = udp->udp_ip_snd_options_len; 5800 bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len); 5801 } 5802 mutex_exit(&connp->conn_lock); 5803 5804 /* Add an IP header */ 5805 ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len + 5806 (insert_spi ? sizeof (uint32_t) : 0); 5807 ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length]; 5808 if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) || 5809 !OK_32PTR(ipha)) { 5810 mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO); 5811 if (mp2 == NULL) { 5812 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 5813 "udp_wput_end: q %p (%S)", q, "allocbfail2"); 5814 *error = ENOMEM; 5815 goto done; 5816 } 5817 mp2->b_wptr = DB_LIM(mp2); 5818 mp2->b_cont = mp1; 5819 mp1 = mp2; 5820 if (DB_TYPE(mp) != M_DATA) 5821 mp->b_cont = mp1; 5822 else 5823 mp = mp1; 5824 5825 ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length); 5826 } 5827 ip_hdr_length -= (UDPH_SIZE + (insert_spi ? sizeof (uint32_t) : 0)); 5828 #ifdef _BIG_ENDIAN 5829 /* Set version, header length, and tos */ 5830 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 5831 ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) | 5832 udp->udp_type_of_service); 5833 /* Set ttl and protocol */ 5834 *(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP; 5835 #else 5836 /* Set version, header length, and tos */ 5837 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 5838 ((udp->udp_type_of_service << 8) | 5839 ((IP_VERSION << 4) | (ip_hdr_length>>2))); 5840 /* Set ttl and protocol */ 5841 *(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl; 5842 #endif 5843 if (pktinfop->ip4_addr != INADDR_ANY) { 5844 ipha->ipha_src = pktinfop->ip4_addr; 5845 optinfo.ip_opt_flags = IP_VERIFY_SRC; 5846 } else { 5847 /* 5848 * Copy our address into the packet. If this is zero, 5849 * first look at __sin6_src_id for a hint. If we leave the 5850 * source as INADDR_ANY then ip will fill in the real source 5851 * address. 5852 */ 5853 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src); 5854 if (srcid != 0 && ipha->ipha_src == INADDR_ANY) { 5855 in6_addr_t v6src; 5856 5857 ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid, 5858 us->us_netstack); 5859 IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src); 5860 } 5861 } 5862 uha_src_port = udp->udp_port; 5863 if (ip_hdr_length == IP_SIMPLE_HDR_LENGTH) { 5864 rw_exit(&udp->udp_rwlock); 5865 lock_held = B_FALSE; 5866 } 5867 5868 if (pktinfop->ip4_ill_index != 0) { 5869 optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index; 5870 } 5871 5872 ipha->ipha_fragment_offset_and_flags = 0; 5873 ipha->ipha_ident = 0; 5874 5875 mp1->b_rptr = (uchar_t *)ipha; 5876 5877 ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <= 5878 (uintptr_t)UINT_MAX); 5879 5880 /* Determine length of packet */ 5881 ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha); 5882 if ((mp2 = mp1->b_cont) != NULL) { 5883 do { 5884 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 5885 ip_len += (uint32_t)MBLKL(mp2); 5886 } while ((mp2 = mp2->b_cont) != NULL); 5887 } 5888 /* 5889 * If the size of the packet is greater than the maximum allowed by 5890 * ip, return an error. Passing this down could cause panics because 5891 * the size will have wrapped and be inconsistent with the msg size. 5892 */ 5893 if (ip_len > IP_MAXPACKET) { 5894 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 5895 "udp_wput_end: q %p (%S)", q, "IP length exceeded"); 5896 *error = EMSGSIZE; 5897 goto done; 5898 } 5899 ipha->ipha_length = htons((uint16_t)ip_len); 5900 ip_len -= ip_hdr_length; 5901 ip_len = htons((uint16_t)ip_len); 5902 udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length); 5903 5904 /* Insert all-0s SPI now. */ 5905 if (insert_spi) 5906 *((uint32_t *)(udpha + 1)) = 0; 5907 5908 /* 5909 * Copy in the destination address 5910 */ 5911 ipha->ipha_dst = v4dst; 5912 5913 /* 5914 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic. 5915 */ 5916 if (CLASSD(v4dst)) 5917 ipha->ipha_ttl = udp->udp_multicast_ttl; 5918 5919 udpha->uha_dst_port = port; 5920 udpha->uha_src_port = uha_src_port; 5921 5922 if (ip_snd_opt_len > 0) { 5923 uint32_t cksum; 5924 5925 bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len); 5926 lock_held = B_FALSE; 5927 rw_exit(&udp->udp_rwlock); 5928 /* 5929 * Massage source route putting first source route in ipha_dst. 5930 * Ignore the destination in T_unitdata_req. 5931 * Create a checksum adjustment for a source route, if any. 5932 */ 5933 cksum = ip_massage_options(ipha, us->us_netstack); 5934 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5935 cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) + 5936 (ipha->ipha_dst & 0xFFFF); 5937 if ((int)cksum < 0) 5938 cksum--; 5939 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5940 /* 5941 * IP does the checksum if uha_checksum is non-zero, 5942 * We make it easy for IP to include our pseudo header 5943 * by putting our length in uha_checksum. 5944 */ 5945 cksum += ip_len; 5946 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5947 /* There might be a carry. */ 5948 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5949 #ifdef _LITTLE_ENDIAN 5950 if (us->us_do_checksum) 5951 ip_len = (cksum << 16) | ip_len; 5952 #else 5953 if (us->us_do_checksum) 5954 ip_len = (ip_len << 16) | cksum; 5955 else 5956 ip_len <<= 16; 5957 #endif 5958 } else { 5959 /* 5960 * IP does the checksum if uha_checksum is non-zero, 5961 * We make it easy for IP to include our pseudo header 5962 * by putting our length in uha_checksum. 5963 */ 5964 if (us->us_do_checksum) 5965 ip_len |= (ip_len << 16); 5966 #ifndef _LITTLE_ENDIAN 5967 else 5968 ip_len <<= 16; 5969 #endif 5970 } 5971 ASSERT(!lock_held); 5972 /* Set UDP length and checksum */ 5973 *((uint32_t *)&udpha->uha_length) = ip_len; 5974 if (DB_CRED(mp) != NULL) 5975 mblk_setcred(mp1, DB_CRED(mp)); 5976 5977 if (DB_TYPE(mp) != M_DATA) { 5978 ASSERT(mp != mp1); 5979 freeb(mp); 5980 } 5981 5982 /* mp has been consumed and we'll return success */ 5983 ASSERT(*error == 0); 5984 mp = NULL; 5985 5986 /* We're done. Pass the packet to ip. */ 5987 BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams); 5988 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 5989 "udp_wput_end: q %p (%S)", q, "end"); 5990 5991 if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 5992 CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) || 5993 connp->conn_dontroute || 5994 connp->conn_nofailover_ill != NULL || 5995 connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 || 5996 optinfo.ip_opt_ill_index != 0 || 5997 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 5998 IPP_ENABLED(IPP_LOCAL_OUT, ipst) || 5999 ipst->ips_ip_g_mrouter != NULL) { 6000 UDP_STAT(us, udp_ip_send); 6001 ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT, 6002 &optinfo); 6003 } else { 6004 udp_send_data(udp, connp->conn_wq, mp1, ipha); 6005 } 6006 6007 done: 6008 if (lock_held) 6009 rw_exit(&udp->udp_rwlock); 6010 if (*error != 0) { 6011 ASSERT(mp != NULL); 6012 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 6013 } 6014 return (mp); 6015 } 6016 6017 static void 6018 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha) 6019 { 6020 conn_t *connp = udp->udp_connp; 6021 ipaddr_t src, dst; 6022 ire_t *ire; 6023 ipif_t *ipif = NULL; 6024 mblk_t *ire_fp_mp; 6025 boolean_t retry_caching; 6026 udp_stack_t *us = udp->udp_us; 6027 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6028 6029 dst = ipha->ipha_dst; 6030 src = ipha->ipha_src; 6031 ASSERT(ipha->ipha_ident == 0); 6032 6033 if (CLASSD(dst)) { 6034 int err; 6035 6036 ipif = conn_get_held_ipif(connp, 6037 &connp->conn_multicast_ipif, &err); 6038 6039 if (ipif == NULL || ipif->ipif_isv6 || 6040 (ipif->ipif_ill->ill_phyint->phyint_flags & 6041 PHYI_LOOPBACK)) { 6042 if (ipif != NULL) 6043 ipif_refrele(ipif); 6044 UDP_STAT(us, udp_ip_send); 6045 ip_output(connp, mp, q, IP_WPUT); 6046 return; 6047 } 6048 } 6049 6050 retry_caching = B_FALSE; 6051 mutex_enter(&connp->conn_lock); 6052 ire = connp->conn_ire_cache; 6053 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 6054 6055 if (ire == NULL || ire->ire_addr != dst || 6056 (ire->ire_marks & IRE_MARK_CONDEMNED)) { 6057 retry_caching = B_TRUE; 6058 } else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) { 6059 ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr; 6060 6061 ASSERT(ipif != NULL); 6062 if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL || 6063 stq_ill->ill_group != ipif->ipif_ill->ill_group)) 6064 retry_caching = B_TRUE; 6065 } 6066 6067 if (!retry_caching) { 6068 ASSERT(ire != NULL); 6069 IRE_REFHOLD(ire); 6070 mutex_exit(&connp->conn_lock); 6071 } else { 6072 boolean_t cached = B_FALSE; 6073 6074 connp->conn_ire_cache = NULL; 6075 mutex_exit(&connp->conn_lock); 6076 6077 /* Release the old ire */ 6078 if (ire != NULL) { 6079 IRE_REFRELE_NOTR(ire); 6080 ire = NULL; 6081 } 6082 6083 if (CLASSD(dst)) { 6084 ASSERT(ipif != NULL); 6085 ire = ire_ctable_lookup(dst, 0, 0, ipif, 6086 connp->conn_zoneid, MBLK_GETLABEL(mp), 6087 MATCH_IRE_ILL_GROUP, ipst); 6088 } else { 6089 ASSERT(ipif == NULL); 6090 ire = ire_cache_lookup(dst, connp->conn_zoneid, 6091 MBLK_GETLABEL(mp), ipst); 6092 } 6093 6094 if (ire == NULL) { 6095 if (ipif != NULL) 6096 ipif_refrele(ipif); 6097 UDP_STAT(us, udp_ire_null); 6098 ip_output(connp, mp, q, IP_WPUT); 6099 return; 6100 } 6101 IRE_REFHOLD_NOTR(ire); 6102 6103 mutex_enter(&connp->conn_lock); 6104 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL) { 6105 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 6106 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 6107 connp->conn_ire_cache = ire; 6108 cached = B_TRUE; 6109 } 6110 rw_exit(&ire->ire_bucket->irb_lock); 6111 } 6112 mutex_exit(&connp->conn_lock); 6113 6114 /* 6115 * We can continue to use the ire but since it was not 6116 * cached, we should drop the extra reference. 6117 */ 6118 if (!cached) 6119 IRE_REFRELE_NOTR(ire); 6120 } 6121 ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION); 6122 ASSERT(!CLASSD(dst) || ipif != NULL); 6123 6124 /* 6125 * Check if we can take the fast-path. 6126 * Note that "incomplete" ire's (where the link-layer for next hop 6127 * is not resolved, or where the fast-path header in nce_fp_mp is not 6128 * available yet) are sent down the legacy (slow) path 6129 */ 6130 if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) || 6131 (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) || 6132 (ire->ire_max_frag < ntohs(ipha->ipha_length)) || 6133 ((ire->ire_nce == NULL) || 6134 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL)) || 6135 connp->conn_nexthop_set || (MBLKL(ire_fp_mp) > MBLKHEAD(mp))) { 6136 if (ipif != NULL) 6137 ipif_refrele(ipif); 6138 UDP_STAT(us, udp_ip_ire_send); 6139 IRE_REFRELE(ire); 6140 ip_output(connp, mp, q, IP_WPUT); 6141 return; 6142 } 6143 6144 if (src == INADDR_ANY && !connp->conn_unspec_src) { 6145 if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC)) 6146 ipha->ipha_src = ipif->ipif_src_addr; 6147 else 6148 ipha->ipha_src = ire->ire_src_addr; 6149 } 6150 6151 if (ipif != NULL) 6152 ipif_refrele(ipif); 6153 6154 udp_xmit(connp->conn_wq, mp, ire, connp, connp->conn_zoneid); 6155 } 6156 6157 static void 6158 udp_xmit(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, zoneid_t zoneid) 6159 { 6160 ipaddr_t src, dst; 6161 ill_t *ill; 6162 mblk_t *ire_fp_mp; 6163 uint_t ire_fp_mp_len; 6164 uint16_t *up; 6165 uint32_t cksum, hcksum_txflags; 6166 queue_t *dev_q; 6167 udp_t *udp = connp->conn_udp; 6168 ipha_t *ipha = (ipha_t *)mp->b_rptr; 6169 udp_stack_t *us = udp->udp_us; 6170 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6171 6172 dev_q = ire->ire_stq->q_next; 6173 ASSERT(dev_q != NULL); 6174 6175 6176 if (DEV_Q_IS_FLOW_CTLED(dev_q)) { 6177 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsHCOutRequests); 6178 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 6179 if (ipst->ips_ip_output_queue) 6180 (void) putq(connp->conn_wq, mp); 6181 else 6182 freemsg(mp); 6183 ire_refrele(ire); 6184 return; 6185 } 6186 6187 ire_fp_mp = ire->ire_nce->nce_fp_mp; 6188 ire_fp_mp_len = MBLKL(ire_fp_mp); 6189 ASSERT(MBLKHEAD(mp) >= ire_fp_mp_len); 6190 6191 dst = ipha->ipha_dst; 6192 src = ipha->ipha_src; 6193 6194 ill = ire_to_ill(ire); 6195 ASSERT(ill != NULL); 6196 6197 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 6198 6199 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 6200 #ifndef _BIG_ENDIAN 6201 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 6202 #endif 6203 6204 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 6205 ASSERT(ill->ill_hcksum_capab != NULL); 6206 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 6207 } else { 6208 hcksum_txflags = 0; 6209 } 6210 6211 /* pseudo-header checksum (do it in parts for IP header checksum) */ 6212 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 6213 6214 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 6215 up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 6216 if (*up != 0) { 6217 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, 6218 mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 6219 ntohs(ipha->ipha_length), cksum); 6220 6221 /* Software checksum? */ 6222 if (DB_CKSUMFLAGS(mp) == 0) { 6223 UDP_STAT(us, udp_out_sw_cksum); 6224 UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes, 6225 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 6226 } 6227 } 6228 6229 if (!CLASSD(dst)) { 6230 ipha->ipha_fragment_offset_and_flags |= 6231 (uint32_t)htons(ire->ire_frag_flag); 6232 } 6233 6234 /* Calculate IP header checksum if hardware isn't capable */ 6235 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 6236 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 6237 ((uint16_t *)ipha)[4]); 6238 } 6239 6240 if (CLASSD(dst)) { 6241 ilm_t *ilm; 6242 6243 ILM_WALKER_HOLD(ill); 6244 ilm = ilm_lookup_ill(ill, dst, ALL_ZONES); 6245 ILM_WALKER_RELE(ill); 6246 if (ilm != NULL) { 6247 ip_multicast_loopback(q, ill, mp, 6248 connp->conn_multicast_loop ? 0 : 6249 IP_FF_NO_MCAST_LOOP, zoneid); 6250 } 6251 6252 /* If multicast TTL is 0 then we are done */ 6253 if (ipha->ipha_ttl == 0) { 6254 freemsg(mp); 6255 ire_refrele(ire); 6256 return; 6257 } 6258 } 6259 6260 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 6261 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 6262 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 6263 6264 UPDATE_OB_PKT_COUNT(ire); 6265 ire->ire_last_used_time = lbolt; 6266 6267 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 6268 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 6269 ntohs(ipha->ipha_length)); 6270 6271 if (ILL_DLS_CAPABLE(ill)) { 6272 /* 6273 * Send the packet directly to DLD, where it may be queued 6274 * depending on the availability of transmit resources at 6275 * the media layer. 6276 */ 6277 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 6278 } else { 6279 DTRACE_PROBE4(ip4__physical__out__start, 6280 ill_t *, NULL, ill_t *, ill, 6281 ipha_t *, ipha, mblk_t *, mp); 6282 FW_HOOKS(ipst->ips_ip4_physical_out_event, 6283 ipst->ips_ipv4firewall_physical_out, 6284 NULL, ill, ipha, mp, mp, ipst); 6285 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 6286 if (mp != NULL) 6287 putnext(ire->ire_stq, mp); 6288 } 6289 6290 IRE_REFRELE(ire); 6291 } 6292 6293 static boolean_t 6294 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst) 6295 { 6296 udp_t *udp = Q_TO_UDP(wq); 6297 int err; 6298 uchar_t opt_storage[TSOL_MAX_IPV6_OPTION]; 6299 udp_stack_t *us = udp->udp_us; 6300 6301 err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred), 6302 dst, opt_storage, udp->udp_mac_exempt, 6303 us->us_netstack->netstack_ip); 6304 if (err == 0) { 6305 err = tsol_update_sticky(&udp->udp_sticky_ipp, 6306 &udp->udp_label_len_v6, opt_storage); 6307 } 6308 if (err != 0) { 6309 DTRACE_PROBE4( 6310 tx__ip__log__drop__updatelabel__udp6, 6311 char *, "queue(1) failed to update options(2) on mp(3)", 6312 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 6313 } else { 6314 udp->udp_v6lastdst = *dst; 6315 } 6316 return (err); 6317 } 6318 6319 void 6320 udp_output_connected(void *arg, mblk_t *mp) 6321 { 6322 conn_t *connp = (conn_t *)arg; 6323 udp_t *udp = connp->conn_udp; 6324 udp_stack_t *us = udp->udp_us; 6325 ipaddr_t v4dst; 6326 in_port_t dstport; 6327 boolean_t mapped_addr; 6328 struct sockaddr_storage ss; 6329 sin_t *sin; 6330 sin6_t *sin6; 6331 struct sockaddr *addr; 6332 socklen_t addrlen; 6333 int error; 6334 boolean_t insert_spi = udp->udp_nat_t_endpoint; 6335 6336 /* M_DATA for connected socket */ 6337 6338 ASSERT(udp->udp_issocket); 6339 UDP_DBGSTAT(us, udp_data_conn); 6340 6341 mutex_enter(&connp->conn_lock); 6342 if (udp->udp_state != TS_DATA_XFER) { 6343 mutex_exit(&connp->conn_lock); 6344 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 6345 UDP_STAT(us, udp_out_err_notconn); 6346 freemsg(mp); 6347 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6348 "udp_wput_end: connp %p (%S)", connp, 6349 "not-connected; address required"); 6350 return; 6351 } 6352 6353 mapped_addr = IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst); 6354 if (mapped_addr) 6355 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst); 6356 6357 /* Initialize addr and addrlen as if they're passed in */ 6358 if (udp->udp_family == AF_INET) { 6359 sin = (sin_t *)&ss; 6360 sin->sin_family = AF_INET; 6361 dstport = sin->sin_port = udp->udp_dstport; 6362 ASSERT(mapped_addr); 6363 sin->sin_addr.s_addr = v4dst; 6364 addr = (struct sockaddr *)sin; 6365 addrlen = sizeof (*sin); 6366 } else { 6367 sin6 = (sin6_t *)&ss; 6368 sin6->sin6_family = AF_INET6; 6369 dstport = sin6->sin6_port = udp->udp_dstport; 6370 sin6->sin6_flowinfo = udp->udp_flowinfo; 6371 sin6->sin6_addr = udp->udp_v6dst; 6372 sin6->sin6_scope_id = 0; 6373 sin6->__sin6_src_id = 0; 6374 addr = (struct sockaddr *)sin6; 6375 addrlen = sizeof (*sin6); 6376 } 6377 mutex_exit(&connp->conn_lock); 6378 6379 if (mapped_addr) { 6380 /* 6381 * Handle both AF_INET and AF_INET6; the latter 6382 * for IPV4 mapped destination addresses. Note 6383 * here that both addr and addrlen point to the 6384 * corresponding struct depending on the address 6385 * family of the socket. 6386 */ 6387 mp = udp_output_v4(connp, mp, v4dst, dstport, 0, &error, 6388 insert_spi); 6389 } else { 6390 mp = udp_output_v6(connp, mp, sin6, &error); 6391 } 6392 if (error == 0) { 6393 ASSERT(mp == NULL); 6394 return; 6395 } 6396 6397 UDP_STAT(us, udp_out_err_output); 6398 ASSERT(mp != NULL); 6399 /* mp is freed by the following routine */ 6400 udp_ud_err(connp->conn_wq, mp, (uchar_t *)addr, (t_scalar_t)addrlen, 6401 (t_scalar_t)error); 6402 } 6403 6404 /* 6405 * This routine handles all messages passed downstream. It either 6406 * consumes the message or passes it downstream; it never queues a 6407 * a message. 6408 * 6409 * Also entry point for sockfs when udp is in "direct sockfs" mode. This mode 6410 * is valid when we are directly beneath the stream head, and thus sockfs 6411 * is able to bypass STREAMS and directly call us, passing along the sockaddr 6412 * structure without the cumbersome T_UNITDATA_REQ interface for the case of 6413 * connected endpoints. 6414 */ 6415 void 6416 udp_wput(queue_t *q, mblk_t *mp) 6417 { 6418 sin6_t *sin6; 6419 sin_t *sin; 6420 ipaddr_t v4dst; 6421 uint16_t port; 6422 uint_t srcid; 6423 conn_t *connp = Q_TO_CONN(q); 6424 udp_t *udp = connp->conn_udp; 6425 int error = 0; 6426 struct sockaddr *addr; 6427 socklen_t addrlen; 6428 udp_stack_t *us = udp->udp_us; 6429 boolean_t insert_spi = udp->udp_nat_t_endpoint; 6430 6431 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START, 6432 "udp_wput_start: queue %p mp %p", q, mp); 6433 6434 /* 6435 * We directly handle several cases here: T_UNITDATA_REQ message 6436 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for connected 6437 * socket. 6438 */ 6439 switch (DB_TYPE(mp)) { 6440 case M_DATA: 6441 /* 6442 * Quick check for error cases. Checks will be done again 6443 * under the lock later on 6444 */ 6445 if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) { 6446 /* Not connected; address is required */ 6447 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 6448 UDP_STAT(us, udp_out_err_notconn); 6449 freemsg(mp); 6450 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6451 "udp_wput_end: connp %p (%S)", connp, 6452 "not-connected; address required"); 6453 return; 6454 } 6455 udp_output_connected(connp, mp); 6456 return; 6457 6458 case M_PROTO: 6459 case M_PCPROTO: { 6460 struct T_unitdata_req *tudr; 6461 6462 ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX); 6463 tudr = (struct T_unitdata_req *)mp->b_rptr; 6464 6465 /* Handle valid T_UNITDATA_REQ here */ 6466 if (MBLKL(mp) >= sizeof (*tudr) && 6467 ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) { 6468 if (mp->b_cont == NULL) { 6469 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6470 "udp_wput_end: q %p (%S)", q, "badaddr"); 6471 error = EPROTO; 6472 goto ud_error; 6473 } 6474 6475 if (!MBLKIN(mp, 0, tudr->DEST_offset + 6476 tudr->DEST_length)) { 6477 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6478 "udp_wput_end: q %p (%S)", q, "badaddr"); 6479 error = EADDRNOTAVAIL; 6480 goto ud_error; 6481 } 6482 /* 6483 * If a port has not been bound to the stream, fail. 6484 * This is not a problem when sockfs is directly 6485 * above us, because it will ensure that the socket 6486 * is first bound before allowing data to be sent. 6487 */ 6488 if (udp->udp_state == TS_UNBND) { 6489 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6490 "udp_wput_end: q %p (%S)", q, "outstate"); 6491 error = EPROTO; 6492 goto ud_error; 6493 } 6494 addr = (struct sockaddr *) 6495 &mp->b_rptr[tudr->DEST_offset]; 6496 addrlen = tudr->DEST_length; 6497 if (tudr->OPT_length != 0) 6498 UDP_STAT(us, udp_out_opt); 6499 break; 6500 } 6501 /* FALLTHRU */ 6502 } 6503 default: 6504 udp_wput_other(q, mp); 6505 return; 6506 } 6507 ASSERT(addr != NULL); 6508 6509 switch (udp->udp_family) { 6510 case AF_INET6: 6511 sin6 = (sin6_t *)addr; 6512 if (!OK_32PTR((char *)sin6) || (addrlen != sizeof (sin6_t)) || 6513 (sin6->sin6_family != AF_INET6)) { 6514 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6515 "udp_wput_end: q %p (%S)", q, "badaddr"); 6516 error = EADDRNOTAVAIL; 6517 goto ud_error; 6518 } 6519 6520 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6521 /* 6522 * Destination is a non-IPv4-compatible IPv6 address. 6523 * Send out an IPv6 format packet. 6524 */ 6525 mp = udp_output_v6(connp, mp, sin6, &error); 6526 if (error != 0) 6527 goto ud_error; 6528 6529 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6530 "udp_wput_end: q %p (%S)", q, "udp_output_v6"); 6531 return; 6532 } 6533 /* 6534 * If the local address is not zero or a mapped address 6535 * return an error. It would be possible to send an IPv4 6536 * packet but the response would never make it back to the 6537 * application since it is bound to a non-mapped address. 6538 */ 6539 if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) && 6540 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 6541 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6542 "udp_wput_end: q %p (%S)", q, "badaddr"); 6543 error = EADDRNOTAVAIL; 6544 goto ud_error; 6545 } 6546 /* Send IPv4 packet without modifying udp_ipversion */ 6547 /* Extract port and ipaddr */ 6548 port = sin6->sin6_port; 6549 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst); 6550 srcid = sin6->__sin6_src_id; 6551 break; 6552 6553 case AF_INET: 6554 sin = (sin_t *)addr; 6555 if ((!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t)) || 6556 (sin->sin_family != AF_INET)) { 6557 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6558 "udp_wput_end: q %p (%S)", q, "badaddr"); 6559 error = EADDRNOTAVAIL; 6560 goto ud_error; 6561 } 6562 /* Extract port and ipaddr */ 6563 port = sin->sin_port; 6564 v4dst = sin->sin_addr.s_addr; 6565 srcid = 0; 6566 break; 6567 } 6568 6569 mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error, insert_spi); 6570 if (error != 0) { 6571 ud_error: 6572 UDP_STAT(us, udp_out_err_output); 6573 ASSERT(mp != NULL); 6574 /* mp is freed by the following routine */ 6575 udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen, 6576 (t_scalar_t)error); 6577 } 6578 } 6579 6580 /* 6581 * udp_output_v6(): 6582 * Assumes that udp_wput did some sanity checking on the destination 6583 * address. 6584 */ 6585 static mblk_t * 6586 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error) 6587 { 6588 ip6_t *ip6h; 6589 ip6i_t *ip6i; /* mp1->b_rptr even if no ip6i_t */ 6590 mblk_t *mp1 = mp; 6591 mblk_t *mp2; 6592 int udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 6593 size_t ip_len; 6594 udpha_t *udph; 6595 udp_t *udp = connp->conn_udp; 6596 queue_t *q = connp->conn_wq; 6597 ip6_pkt_t ipp_s; /* For ancillary data options */ 6598 ip6_pkt_t *ipp = &ipp_s; 6599 ip6_pkt_t *tipp; /* temporary ipp */ 6600 uint32_t csum = 0; 6601 uint_t ignore = 0; 6602 uint_t option_exists = 0, is_sticky = 0; 6603 uint8_t *cp; 6604 uint8_t *nxthdr_ptr; 6605 in6_addr_t ip6_dst; 6606 udpattrs_t attrs; 6607 boolean_t opt_present; 6608 ip6_hbh_t *hopoptsptr = NULL; 6609 uint_t hopoptslen = 0; 6610 boolean_t is_ancillary = B_FALSE; 6611 udp_stack_t *us = udp->udp_us; 6612 size_t sth_wroff = 0; 6613 6614 *error = 0; 6615 6616 /* 6617 * If the local address is a mapped address return 6618 * an error. 6619 * It would be possible to send an IPv6 packet but the 6620 * response would never make it back to the application 6621 * since it is bound to a mapped address. 6622 */ 6623 if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) { 6624 *error = EADDRNOTAVAIL; 6625 goto done; 6626 } 6627 6628 ipp->ipp_fields = 0; 6629 ipp->ipp_sticky_ignored = 0; 6630 6631 /* 6632 * If TPI options passed in, feed it for verification and handling 6633 */ 6634 attrs.udpattr_credset = B_FALSE; 6635 opt_present = B_FALSE; 6636 if (DB_TYPE(mp) != M_DATA) { 6637 mp1 = mp->b_cont; 6638 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 6639 attrs.udpattr_ipp6 = ipp; 6640 attrs.udpattr_mb = mp; 6641 if (udp_unitdata_opt_process(q, mp, error, 6642 &attrs) < 0) { 6643 goto done; 6644 } 6645 ASSERT(*error == 0); 6646 opt_present = B_TRUE; 6647 } 6648 } 6649 rw_enter(&udp->udp_rwlock, RW_READER); 6650 ignore = ipp->ipp_sticky_ignored; 6651 6652 /* mp1 points to the M_DATA mblk carrying the packet */ 6653 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 6654 6655 if (sin6->sin6_scope_id != 0 && 6656 IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 6657 /* 6658 * IPPF_SCOPE_ID is special. It's neither a sticky 6659 * option nor ancillary data. It needs to be 6660 * explicitly set in options_exists. 6661 */ 6662 option_exists |= IPPF_SCOPE_ID; 6663 } 6664 6665 /* 6666 * Compute the destination address 6667 */ 6668 ip6_dst = sin6->sin6_addr; 6669 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 6670 ip6_dst = ipv6_loopback; 6671 6672 /* 6673 * If we're not going to the same destination as last time, then 6674 * recompute the label required. This is done in a separate routine to 6675 * avoid blowing up our stack here. 6676 * 6677 * TSOL Note: Since we are not in WRITER mode, UDP packets 6678 * to different destination may require different labels, 6679 * or worse, UDP packets to same IP address may require 6680 * different labels due to use of shared all-zones address. 6681 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts, 6682 * and sticky ipp_hopoptslen are consistent for the current 6683 * destination and are updated atomically. 6684 */ 6685 mutex_enter(&connp->conn_lock); 6686 if (is_system_labeled()) { 6687 /* Using UDP MLP requires SCM_UCRED from user */ 6688 if (connp->conn_mlp_type != mlptSingle && 6689 !attrs.udpattr_credset) { 6690 DTRACE_PROBE4( 6691 tx__ip__log__info__output__udp6, 6692 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 6693 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 6694 *error = ECONNREFUSED; 6695 rw_exit(&udp->udp_rwlock); 6696 mutex_exit(&connp->conn_lock); 6697 goto done; 6698 } 6699 /* 6700 * update label option for this UDP socket if 6701 * - the destination has changed, or 6702 * - the UDP socket is MLP 6703 */ 6704 if ((opt_present || 6705 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst) || 6706 connp->conn_mlp_type != mlptSingle) && 6707 (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) { 6708 rw_exit(&udp->udp_rwlock); 6709 mutex_exit(&connp->conn_lock); 6710 goto done; 6711 } 6712 } 6713 6714 /* 6715 * If there's a security label here, then we ignore any options the 6716 * user may try to set. We keep the peer's label as a hidden sticky 6717 * option. We make a private copy of this label before releasing the 6718 * lock so that label is kept consistent with the destination addr. 6719 */ 6720 if (udp->udp_label_len_v6 > 0) { 6721 ignore &= ~IPPF_HOPOPTS; 6722 ipp->ipp_fields &= ~IPPF_HOPOPTS; 6723 } 6724 6725 if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) { 6726 /* No sticky options nor ancillary data. */ 6727 mutex_exit(&connp->conn_lock); 6728 goto no_options; 6729 } 6730 6731 /* 6732 * Go through the options figuring out where each is going to 6733 * come from and build two masks. The first mask indicates if 6734 * the option exists at all. The second mask indicates if the 6735 * option is sticky or ancillary. 6736 */ 6737 if (!(ignore & IPPF_HOPOPTS)) { 6738 if (ipp->ipp_fields & IPPF_HOPOPTS) { 6739 option_exists |= IPPF_HOPOPTS; 6740 udp_ip_hdr_len += ipp->ipp_hopoptslen; 6741 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) { 6742 option_exists |= IPPF_HOPOPTS; 6743 is_sticky |= IPPF_HOPOPTS; 6744 ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0); 6745 hopoptsptr = kmem_alloc( 6746 udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP); 6747 if (hopoptsptr == NULL) { 6748 *error = ENOMEM; 6749 mutex_exit(&connp->conn_lock); 6750 goto done; 6751 } 6752 hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen; 6753 bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr, 6754 hopoptslen); 6755 udp_ip_hdr_len += hopoptslen; 6756 } 6757 } 6758 mutex_exit(&connp->conn_lock); 6759 6760 if (!(ignore & IPPF_RTHDR)) { 6761 if (ipp->ipp_fields & IPPF_RTHDR) { 6762 option_exists |= IPPF_RTHDR; 6763 udp_ip_hdr_len += ipp->ipp_rthdrlen; 6764 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) { 6765 option_exists |= IPPF_RTHDR; 6766 is_sticky |= IPPF_RTHDR; 6767 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen; 6768 } 6769 } 6770 6771 if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) { 6772 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 6773 option_exists |= IPPF_RTDSTOPTS; 6774 udp_ip_hdr_len += ipp->ipp_rtdstoptslen; 6775 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) { 6776 option_exists |= IPPF_RTDSTOPTS; 6777 is_sticky |= IPPF_RTDSTOPTS; 6778 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen; 6779 } 6780 } 6781 6782 if (!(ignore & IPPF_DSTOPTS)) { 6783 if (ipp->ipp_fields & IPPF_DSTOPTS) { 6784 option_exists |= IPPF_DSTOPTS; 6785 udp_ip_hdr_len += ipp->ipp_dstoptslen; 6786 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) { 6787 option_exists |= IPPF_DSTOPTS; 6788 is_sticky |= IPPF_DSTOPTS; 6789 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen; 6790 } 6791 } 6792 6793 if (!(ignore & IPPF_IFINDEX)) { 6794 if (ipp->ipp_fields & IPPF_IFINDEX) { 6795 option_exists |= IPPF_IFINDEX; 6796 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) { 6797 option_exists |= IPPF_IFINDEX; 6798 is_sticky |= IPPF_IFINDEX; 6799 } 6800 } 6801 6802 if (!(ignore & IPPF_ADDR)) { 6803 if (ipp->ipp_fields & IPPF_ADDR) { 6804 option_exists |= IPPF_ADDR; 6805 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) { 6806 option_exists |= IPPF_ADDR; 6807 is_sticky |= IPPF_ADDR; 6808 } 6809 } 6810 6811 if (!(ignore & IPPF_DONTFRAG)) { 6812 if (ipp->ipp_fields & IPPF_DONTFRAG) { 6813 option_exists |= IPPF_DONTFRAG; 6814 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) { 6815 option_exists |= IPPF_DONTFRAG; 6816 is_sticky |= IPPF_DONTFRAG; 6817 } 6818 } 6819 6820 if (!(ignore & IPPF_USE_MIN_MTU)) { 6821 if (ipp->ipp_fields & IPPF_USE_MIN_MTU) { 6822 option_exists |= IPPF_USE_MIN_MTU; 6823 } else if (udp->udp_sticky_ipp.ipp_fields & 6824 IPPF_USE_MIN_MTU) { 6825 option_exists |= IPPF_USE_MIN_MTU; 6826 is_sticky |= IPPF_USE_MIN_MTU; 6827 } 6828 } 6829 6830 if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT)) 6831 option_exists |= IPPF_HOPLIMIT; 6832 /* IPV6_HOPLIMIT can never be sticky */ 6833 ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT)); 6834 6835 if (!(ignore & IPPF_UNICAST_HOPS) && 6836 (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) { 6837 option_exists |= IPPF_UNICAST_HOPS; 6838 is_sticky |= IPPF_UNICAST_HOPS; 6839 } 6840 6841 if (!(ignore & IPPF_MULTICAST_HOPS) && 6842 (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) { 6843 option_exists |= IPPF_MULTICAST_HOPS; 6844 is_sticky |= IPPF_MULTICAST_HOPS; 6845 } 6846 6847 if (!(ignore & IPPF_TCLASS)) { 6848 if (ipp->ipp_fields & IPPF_TCLASS) { 6849 option_exists |= IPPF_TCLASS; 6850 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) { 6851 option_exists |= IPPF_TCLASS; 6852 is_sticky |= IPPF_TCLASS; 6853 } 6854 } 6855 6856 if (!(ignore & IPPF_NEXTHOP) && 6857 (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) { 6858 option_exists |= IPPF_NEXTHOP; 6859 is_sticky |= IPPF_NEXTHOP; 6860 } 6861 6862 no_options: 6863 6864 /* 6865 * If any options carried in the ip6i_t were specified, we 6866 * need to account for the ip6i_t in the data we'll be sending 6867 * down. 6868 */ 6869 if (option_exists & IPPF_HAS_IP6I) 6870 udp_ip_hdr_len += sizeof (ip6i_t); 6871 6872 /* check/fix buffer config, setup pointers into it */ 6873 ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len]; 6874 if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) || 6875 !OK_32PTR(ip6h)) { 6876 6877 /* Try to get everything in a single mblk next time */ 6878 if (udp_ip_hdr_len > udp->udp_max_hdr_len) { 6879 udp->udp_max_hdr_len = udp_ip_hdr_len; 6880 sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra; 6881 } 6882 6883 mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO); 6884 if (mp2 == NULL) { 6885 *error = ENOMEM; 6886 rw_exit(&udp->udp_rwlock); 6887 goto done; 6888 } 6889 mp2->b_wptr = DB_LIM(mp2); 6890 mp2->b_cont = mp1; 6891 mp1 = mp2; 6892 if (DB_TYPE(mp) != M_DATA) 6893 mp->b_cont = mp1; 6894 else 6895 mp = mp1; 6896 6897 ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len); 6898 } 6899 mp1->b_rptr = (unsigned char *)ip6h; 6900 ip6i = (ip6i_t *)ip6h; 6901 6902 #define ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp) 6903 if (option_exists & IPPF_HAS_IP6I) { 6904 ip6h = (ip6_t *)&ip6i[1]; 6905 ip6i->ip6i_flags = 0; 6906 ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 6907 6908 /* sin6_scope_id takes precendence over IPPF_IFINDEX */ 6909 if (option_exists & IPPF_SCOPE_ID) { 6910 ip6i->ip6i_flags |= IP6I_IFINDEX; 6911 ip6i->ip6i_ifindex = sin6->sin6_scope_id; 6912 } else if (option_exists & IPPF_IFINDEX) { 6913 tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX); 6914 ASSERT(tipp->ipp_ifindex != 0); 6915 ip6i->ip6i_flags |= IP6I_IFINDEX; 6916 ip6i->ip6i_ifindex = tipp->ipp_ifindex; 6917 } 6918 6919 if (option_exists & IPPF_ADDR) { 6920 /* 6921 * Enable per-packet source address verification if 6922 * IPV6_PKTINFO specified the source address. 6923 * ip6_src is set in the transport's _wput function. 6924 */ 6925 ip6i->ip6i_flags |= IP6I_VERIFY_SRC; 6926 } 6927 6928 if (option_exists & IPPF_DONTFRAG) { 6929 ip6i->ip6i_flags |= IP6I_DONTFRAG; 6930 } 6931 6932 if (option_exists & IPPF_USE_MIN_MTU) { 6933 ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU( 6934 ip6i->ip6i_flags, ipp->ipp_use_min_mtu); 6935 } 6936 6937 if (option_exists & IPPF_NEXTHOP) { 6938 tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP); 6939 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop)); 6940 ip6i->ip6i_flags |= IP6I_NEXTHOP; 6941 ip6i->ip6i_nexthop = tipp->ipp_nexthop; 6942 } 6943 6944 /* 6945 * tell IP this is an ip6i_t private header 6946 */ 6947 ip6i->ip6i_nxt = IPPROTO_RAW; 6948 } 6949 6950 /* Initialize IPv6 header */ 6951 ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 6952 bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src)); 6953 6954 /* Set the hoplimit of the outgoing packet. */ 6955 if (option_exists & IPPF_HOPLIMIT) { 6956 /* IPV6_HOPLIMIT ancillary data overrides all other settings. */ 6957 ip6h->ip6_hops = ipp->ipp_hoplimit; 6958 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 6959 } else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { 6960 ip6h->ip6_hops = udp->udp_multicast_ttl; 6961 if (option_exists & IPPF_MULTICAST_HOPS) 6962 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 6963 } else { 6964 ip6h->ip6_hops = udp->udp_ttl; 6965 if (option_exists & IPPF_UNICAST_HOPS) 6966 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 6967 } 6968 6969 if (option_exists & IPPF_ADDR) { 6970 tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR); 6971 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr)); 6972 ip6h->ip6_src = tipp->ipp_addr; 6973 } else { 6974 /* 6975 * The source address was not set using IPV6_PKTINFO. 6976 * First look at the bound source. 6977 * If unspecified fallback to __sin6_src_id. 6978 */ 6979 ip6h->ip6_src = udp->udp_v6src; 6980 if (sin6->__sin6_src_id != 0 && 6981 IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { 6982 ip_srcid_find_id(sin6->__sin6_src_id, 6983 &ip6h->ip6_src, connp->conn_zoneid, 6984 us->us_netstack); 6985 } 6986 } 6987 6988 nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt; 6989 cp = (uint8_t *)&ip6h[1]; 6990 6991 /* 6992 * Here's where we have to start stringing together 6993 * any extension headers in the right order: 6994 * Hop-by-hop, destination, routing, and final destination opts. 6995 */ 6996 if (option_exists & IPPF_HOPOPTS) { 6997 /* Hop-by-hop options */ 6998 ip6_hbh_t *hbh = (ip6_hbh_t *)cp; 6999 tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS); 7000 if (hopoptslen == 0) { 7001 hopoptsptr = tipp->ipp_hopopts; 7002 hopoptslen = tipp->ipp_hopoptslen; 7003 is_ancillary = B_TRUE; 7004 } 7005 7006 *nxthdr_ptr = IPPROTO_HOPOPTS; 7007 nxthdr_ptr = &hbh->ip6h_nxt; 7008 7009 bcopy(hopoptsptr, cp, hopoptslen); 7010 cp += hopoptslen; 7011 7012 if (hopoptsptr != NULL && !is_ancillary) { 7013 kmem_free(hopoptsptr, hopoptslen); 7014 hopoptsptr = NULL; 7015 hopoptslen = 0; 7016 } 7017 } 7018 /* 7019 * En-route destination options 7020 * Only do them if there's a routing header as well 7021 */ 7022 if (option_exists & IPPF_RTDSTOPTS) { 7023 ip6_dest_t *dst = (ip6_dest_t *)cp; 7024 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS); 7025 7026 *nxthdr_ptr = IPPROTO_DSTOPTS; 7027 nxthdr_ptr = &dst->ip6d_nxt; 7028 7029 bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen); 7030 cp += tipp->ipp_rtdstoptslen; 7031 } 7032 /* 7033 * Routing header next 7034 */ 7035 if (option_exists & IPPF_RTHDR) { 7036 ip6_rthdr_t *rt = (ip6_rthdr_t *)cp; 7037 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR); 7038 7039 *nxthdr_ptr = IPPROTO_ROUTING; 7040 nxthdr_ptr = &rt->ip6r_nxt; 7041 7042 bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen); 7043 cp += tipp->ipp_rthdrlen; 7044 } 7045 /* 7046 * Do ultimate destination options 7047 */ 7048 if (option_exists & IPPF_DSTOPTS) { 7049 ip6_dest_t *dest = (ip6_dest_t *)cp; 7050 tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS); 7051 7052 *nxthdr_ptr = IPPROTO_DSTOPTS; 7053 nxthdr_ptr = &dest->ip6d_nxt; 7054 7055 bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen); 7056 cp += tipp->ipp_dstoptslen; 7057 } 7058 /* 7059 * Now set the last header pointer to the proto passed in 7060 */ 7061 ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE)); 7062 *nxthdr_ptr = IPPROTO_UDP; 7063 7064 /* Update UDP header */ 7065 udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE); 7066 udph->uha_dst_port = sin6->sin6_port; 7067 udph->uha_src_port = udp->udp_port; 7068 7069 /* 7070 * Copy in the destination address 7071 */ 7072 ip6h->ip6_dst = ip6_dst; 7073 7074 ip6h->ip6_vcf = 7075 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 7076 (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 7077 7078 if (option_exists & IPPF_TCLASS) { 7079 tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS); 7080 ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf, 7081 tipp->ipp_tclass); 7082 } 7083 rw_exit(&udp->udp_rwlock); 7084 7085 if (option_exists & IPPF_RTHDR) { 7086 ip6_rthdr_t *rth; 7087 7088 /* 7089 * Perform any processing needed for source routing. 7090 * We know that all extension headers will be in the same mblk 7091 * as the IPv6 header. 7092 */ 7093 rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr); 7094 if (rth != NULL && rth->ip6r_segleft != 0) { 7095 if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) { 7096 /* 7097 * Drop packet - only support Type 0 routing. 7098 * Notify the application as well. 7099 */ 7100 *error = EPROTO; 7101 goto done; 7102 } 7103 7104 /* 7105 * rth->ip6r_len is twice the number of 7106 * addresses in the header. Thus it must be even. 7107 */ 7108 if (rth->ip6r_len & 0x1) { 7109 *error = EPROTO; 7110 goto done; 7111 } 7112 /* 7113 * Shuffle the routing header and ip6_dst 7114 * addresses, and get the checksum difference 7115 * between the first hop (in ip6_dst) and 7116 * the destination (in the last routing hdr entry). 7117 */ 7118 csum = ip_massage_options_v6(ip6h, rth, 7119 us->us_netstack); 7120 /* 7121 * Verify that the first hop isn't a mapped address. 7122 * Routers along the path need to do this verification 7123 * for subsequent hops. 7124 */ 7125 if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) { 7126 *error = EADDRNOTAVAIL; 7127 goto done; 7128 } 7129 7130 cp += (rth->ip6r_len + 1)*8; 7131 } 7132 } 7133 7134 /* count up length of UDP packet */ 7135 ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN; 7136 if ((mp2 = mp1->b_cont) != NULL) { 7137 do { 7138 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 7139 ip_len += (uint32_t)MBLKL(mp2); 7140 } while ((mp2 = mp2->b_cont) != NULL); 7141 } 7142 7143 /* 7144 * If the size of the packet is greater than the maximum allowed by 7145 * ip, return an error. Passing this down could cause panics because 7146 * the size will have wrapped and be inconsistent with the msg size. 7147 */ 7148 if (ip_len > IP_MAXPACKET) { 7149 *error = EMSGSIZE; 7150 goto done; 7151 } 7152 7153 /* Store the UDP length. Subtract length of extension hdrs */ 7154 udph->uha_length = htons(ip_len + IPV6_HDR_LEN - 7155 (int)((uchar_t *)udph - (uchar_t *)ip6h)); 7156 7157 /* 7158 * We make it easy for IP to include our pseudo header 7159 * by putting our length in uh_checksum, modified (if 7160 * we have a routing header) by the checksum difference 7161 * between the ultimate destination and first hop addresses. 7162 * Note: UDP over IPv6 must always checksum the packet. 7163 */ 7164 csum += udph->uha_length; 7165 csum = (csum & 0xFFFF) + (csum >> 16); 7166 udph->uha_checksum = (uint16_t)csum; 7167 7168 #ifdef _LITTLE_ENDIAN 7169 ip_len = htons(ip_len); 7170 #endif 7171 ip6h->ip6_plen = ip_len; 7172 if (DB_CRED(mp) != NULL) 7173 mblk_setcred(mp1, DB_CRED(mp)); 7174 7175 if (DB_TYPE(mp) != M_DATA) { 7176 ASSERT(mp != mp1); 7177 freeb(mp); 7178 } 7179 7180 /* mp has been consumed and we'll return success */ 7181 ASSERT(*error == 0); 7182 mp = NULL; 7183 7184 /* We're done. Pass the packet to IP */ 7185 BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams); 7186 ip_output_v6(connp, mp1, q, IP_WPUT); 7187 7188 done: 7189 if (sth_wroff != 0) { 7190 (void) mi_set_sth_wroff(RD(q), 7191 udp->udp_max_hdr_len + us->us_wroff_extra); 7192 } 7193 if (hopoptsptr != NULL && !is_ancillary) { 7194 kmem_free(hopoptsptr, hopoptslen); 7195 hopoptsptr = NULL; 7196 } 7197 if (*error != 0) { 7198 ASSERT(mp != NULL); 7199 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 7200 } 7201 return (mp); 7202 } 7203 7204 static void 7205 udp_wput_other(queue_t *q, mblk_t *mp) 7206 { 7207 uchar_t *rptr = mp->b_rptr; 7208 struct datab *db; 7209 struct iocblk *iocp; 7210 cred_t *cr; 7211 conn_t *connp = Q_TO_CONN(q); 7212 udp_t *udp = connp->conn_udp; 7213 udp_stack_t *us; 7214 7215 TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START, 7216 "udp_wput_other_start: q %p", q); 7217 7218 us = udp->udp_us; 7219 db = mp->b_datap; 7220 7221 cr = DB_CREDDEF(mp, connp->conn_cred); 7222 7223 switch (db->db_type) { 7224 case M_PROTO: 7225 case M_PCPROTO: 7226 if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { 7227 freemsg(mp); 7228 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7229 "udp_wput_other_end: q %p (%S)", q, "protoshort"); 7230 return; 7231 } 7232 switch (((t_primp_t)rptr)->type) { 7233 case T_ADDR_REQ: 7234 udp_addr_req(q, mp); 7235 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7236 "udp_wput_other_end: q %p (%S)", q, "addrreq"); 7237 return; 7238 case O_T_BIND_REQ: 7239 case T_BIND_REQ: 7240 udp_bind(q, mp); 7241 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7242 "udp_wput_other_end: q %p (%S)", q, "bindreq"); 7243 return; 7244 case T_CONN_REQ: 7245 udp_connect(q, mp); 7246 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7247 "udp_wput_other_end: q %p (%S)", q, "connreq"); 7248 return; 7249 case T_CAPABILITY_REQ: 7250 udp_capability_req(q, mp); 7251 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7252 "udp_wput_other_end: q %p (%S)", q, "capabreq"); 7253 return; 7254 case T_INFO_REQ: 7255 udp_info_req(q, mp); 7256 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7257 "udp_wput_other_end: q %p (%S)", q, "inforeq"); 7258 return; 7259 case T_UNITDATA_REQ: 7260 /* 7261 * If a T_UNITDATA_REQ gets here, the address must 7262 * be bad. Valid T_UNITDATA_REQs are handled 7263 * in udp_wput. 7264 */ 7265 udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL); 7266 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7267 "udp_wput_other_end: q %p (%S)", q, "unitdatareq"); 7268 return; 7269 case T_UNBIND_REQ: 7270 udp_unbind(q, mp); 7271 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7272 "udp_wput_other_end: q %p (%S)", q, "unbindreq"); 7273 return; 7274 case T_SVR4_OPTMGMT_REQ: 7275 if (!snmpcom_req(q, mp, udp_snmp_set, ip_snmp_get, 7276 cr)) { 7277 (void) svr4_optcom_req(q, 7278 mp, cr, &udp_opt_obj, B_TRUE); 7279 } 7280 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7281 "udp_wput_other_end: q %p (%S)", q, "optmgmtreq"); 7282 return; 7283 7284 case T_OPTMGMT_REQ: 7285 (void) tpi_optcom_req(q, mp, cr, &udp_opt_obj, B_TRUE); 7286 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7287 "udp_wput_other_end: q %p (%S)", q, "optmgmtreq"); 7288 return; 7289 7290 case T_DISCON_REQ: 7291 udp_disconnect(q, mp); 7292 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7293 "udp_wput_other_end: q %p (%S)", q, "disconreq"); 7294 return; 7295 7296 /* The following TPI message is not supported by udp. */ 7297 case O_T_CONN_RES: 7298 case T_CONN_RES: 7299 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7300 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7301 "udp_wput_other_end: q %p (%S)", q, 7302 "connres/disconreq"); 7303 return; 7304 7305 /* The following 3 TPI messages are illegal for udp. */ 7306 case T_DATA_REQ: 7307 case T_EXDATA_REQ: 7308 case T_ORDREL_REQ: 7309 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7310 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7311 "udp_wput_other_end: q %p (%S)", q, 7312 "data/exdata/ordrel"); 7313 return; 7314 default: 7315 break; 7316 } 7317 break; 7318 case M_FLUSH: 7319 if (*rptr & FLUSHW) 7320 flushq(q, FLUSHDATA); 7321 break; 7322 case M_IOCTL: 7323 iocp = (struct iocblk *)mp->b_rptr; 7324 switch (iocp->ioc_cmd) { 7325 case TI_GETPEERNAME: 7326 if (udp->udp_state != TS_DATA_XFER) { 7327 /* 7328 * If a default destination address has not 7329 * been associated with the stream, then we 7330 * don't know the peer's name. 7331 */ 7332 iocp->ioc_error = ENOTCONN; 7333 iocp->ioc_count = 0; 7334 mp->b_datap->db_type = M_IOCACK; 7335 qreply(q, mp); 7336 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7337 "udp_wput_other_end: q %p (%S)", q, 7338 "getpeername"); 7339 return; 7340 } 7341 /* FALLTHRU */ 7342 case TI_GETMYNAME: { 7343 /* 7344 * For TI_GETPEERNAME and TI_GETMYNAME, we first 7345 * need to copyin the user's strbuf structure. 7346 * Processing will continue in the M_IOCDATA case 7347 * below. 7348 */ 7349 mi_copyin(q, mp, NULL, 7350 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 7351 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7352 "udp_wput_other_end: q %p (%S)", q, "getmyname"); 7353 return; 7354 } 7355 case ND_SET: 7356 /* nd_getset performs the necessary checking */ 7357 case ND_GET: 7358 if (nd_getset(q, us->us_nd, mp)) { 7359 qreply(q, mp); 7360 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7361 "udp_wput_other_end: q %p (%S)", q, "get"); 7362 return; 7363 } 7364 break; 7365 case _SIOCSOCKFALLBACK: 7366 /* 7367 * Either sockmod is about to be popped and the 7368 * socket would now be treated as a plain stream, 7369 * or a module is about to be pushed so we could 7370 * no longer use read-side synchronous stream. 7371 * Drain any queued data and disable direct sockfs 7372 * interface from now on. 7373 */ 7374 if (!udp->udp_issocket) { 7375 DB_TYPE(mp) = M_IOCNAK; 7376 iocp->ioc_error = EINVAL; 7377 } else { 7378 udp->udp_issocket = B_FALSE; 7379 if (udp->udp_direct_sockfs) { 7380 /* 7381 * Disable read-side synchronous 7382 * stream interface and drain any 7383 * queued data. 7384 */ 7385 udp_rcv_drain(RD(q), udp, 7386 B_FALSE); 7387 ASSERT(!udp->udp_direct_sockfs); 7388 UDP_STAT(us, udp_sock_fallback); 7389 } 7390 DB_TYPE(mp) = M_IOCACK; 7391 iocp->ioc_error = 0; 7392 } 7393 iocp->ioc_count = 0; 7394 iocp->ioc_rval = 0; 7395 qreply(q, mp); 7396 return; 7397 default: 7398 break; 7399 } 7400 break; 7401 case M_IOCDATA: 7402 udp_wput_iocdata(q, mp); 7403 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7404 "udp_wput_other_end: q %p (%S)", q, "iocdata"); 7405 return; 7406 default: 7407 /* Unrecognized messages are passed through without change. */ 7408 break; 7409 } 7410 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7411 "udp_wput_other_end: q %p (%S)", q, "end"); 7412 ip_output(connp, mp, q, IP_WPUT); 7413 } 7414 7415 /* 7416 * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA 7417 * messages. 7418 */ 7419 static void 7420 udp_wput_iocdata(queue_t *q, mblk_t *mp) 7421 { 7422 mblk_t *mp1; 7423 STRUCT_HANDLE(strbuf, sb); 7424 uint16_t port; 7425 in6_addr_t v6addr; 7426 ipaddr_t v4addr; 7427 uint32_t flowinfo = 0; 7428 int addrlen; 7429 udp_t *udp = Q_TO_UDP(q); 7430 7431 /* Make sure it is one of ours. */ 7432 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 7433 case TI_GETMYNAME: 7434 case TI_GETPEERNAME: 7435 break; 7436 default: 7437 ip_output(udp->udp_connp, mp, q, IP_WPUT); 7438 return; 7439 } 7440 7441 switch (mi_copy_state(q, mp, &mp1)) { 7442 case -1: 7443 return; 7444 case MI_COPY_CASE(MI_COPY_IN, 1): 7445 break; 7446 case MI_COPY_CASE(MI_COPY_OUT, 1): 7447 /* 7448 * The address has been copied out, so now 7449 * copyout the strbuf. 7450 */ 7451 mi_copyout(q, mp); 7452 return; 7453 case MI_COPY_CASE(MI_COPY_OUT, 2): 7454 /* 7455 * The address and strbuf have been copied out. 7456 * We're done, so just acknowledge the original 7457 * M_IOCTL. 7458 */ 7459 mi_copy_done(q, mp, 0); 7460 return; 7461 default: 7462 /* 7463 * Something strange has happened, so acknowledge 7464 * the original M_IOCTL with an EPROTO error. 7465 */ 7466 mi_copy_done(q, mp, EPROTO); 7467 return; 7468 } 7469 7470 /* 7471 * Now we have the strbuf structure for TI_GETMYNAME 7472 * and TI_GETPEERNAME. Next we copyout the requested 7473 * address and then we'll copyout the strbuf. 7474 */ 7475 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 7476 (void *)mp1->b_rptr); 7477 if (udp->udp_family == AF_INET) 7478 addrlen = sizeof (sin_t); 7479 else 7480 addrlen = sizeof (sin6_t); 7481 7482 if (STRUCT_FGET(sb, maxlen) < addrlen) { 7483 mi_copy_done(q, mp, EINVAL); 7484 return; 7485 } 7486 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 7487 case TI_GETMYNAME: 7488 if (udp->udp_family == AF_INET) { 7489 ASSERT(udp->udp_ipversion == IPV4_VERSION); 7490 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 7491 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 7492 v4addr = V4_PART_OF_V6(udp->udp_v6src); 7493 } else { 7494 /* 7495 * INADDR_ANY 7496 * udp_v6src is not set, we might be bound to 7497 * broadcast/multicast. Use udp_bound_v6src as 7498 * local address instead (that could 7499 * also still be INADDR_ANY) 7500 */ 7501 v4addr = V4_PART_OF_V6(udp->udp_bound_v6src); 7502 } 7503 } else { 7504 /* udp->udp_family == AF_INET6 */ 7505 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 7506 v6addr = udp->udp_v6src; 7507 } else { 7508 /* 7509 * UNSPECIFIED 7510 * udp_v6src is not set, we might be bound to 7511 * broadcast/multicast. Use udp_bound_v6src as 7512 * local address instead (that could 7513 * also still be UNSPECIFIED) 7514 */ 7515 v6addr = udp->udp_bound_v6src; 7516 } 7517 } 7518 port = udp->udp_port; 7519 break; 7520 case TI_GETPEERNAME: 7521 if (udp->udp_state != TS_DATA_XFER) { 7522 mi_copy_done(q, mp, ENOTCONN); 7523 return; 7524 } 7525 if (udp->udp_family == AF_INET) { 7526 ASSERT(udp->udp_ipversion == IPV4_VERSION); 7527 v4addr = V4_PART_OF_V6(udp->udp_v6dst); 7528 } else { 7529 /* udp->udp_family == AF_INET6) */ 7530 v6addr = udp->udp_v6dst; 7531 flowinfo = udp->udp_flowinfo; 7532 } 7533 port = udp->udp_dstport; 7534 break; 7535 default: 7536 mi_copy_done(q, mp, EPROTO); 7537 return; 7538 } 7539 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 7540 if (!mp1) 7541 return; 7542 7543 if (udp->udp_family == AF_INET) { 7544 sin_t *sin; 7545 7546 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 7547 sin = (sin_t *)mp1->b_rptr; 7548 mp1->b_wptr = (uchar_t *)&sin[1]; 7549 *sin = sin_null; 7550 sin->sin_family = AF_INET; 7551 sin->sin_addr.s_addr = v4addr; 7552 sin->sin_port = port; 7553 } else { 7554 /* udp->udp_family == AF_INET6 */ 7555 sin6_t *sin6; 7556 7557 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 7558 sin6 = (sin6_t *)mp1->b_rptr; 7559 mp1->b_wptr = (uchar_t *)&sin6[1]; 7560 *sin6 = sin6_null; 7561 sin6->sin6_family = AF_INET6; 7562 sin6->sin6_flowinfo = flowinfo; 7563 sin6->sin6_addr = v6addr; 7564 sin6->sin6_port = port; 7565 } 7566 /* Copy out the address */ 7567 mi_copyout(q, mp); 7568 } 7569 7570 7571 static int 7572 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp, 7573 udpattrs_t *udpattrs) 7574 { 7575 struct T_unitdata_req *udreqp; 7576 int is_absreq_failure; 7577 cred_t *cr; 7578 conn_t *connp = Q_TO_CONN(q); 7579 7580 ASSERT(((t_primp_t)mp->b_rptr)->type); 7581 7582 cr = DB_CREDDEF(mp, connp->conn_cred); 7583 7584 udreqp = (struct T_unitdata_req *)mp->b_rptr; 7585 7586 *errorp = tpi_optcom_buf(q, mp, &udreqp->OPT_length, 7587 udreqp->OPT_offset, cr, &udp_opt_obj, 7588 udpattrs, &is_absreq_failure); 7589 7590 if (*errorp != 0) { 7591 /* 7592 * Note: No special action needed in this 7593 * module for "is_absreq_failure" 7594 */ 7595 return (-1); /* failure */ 7596 } 7597 ASSERT(is_absreq_failure == 0); 7598 return (0); /* success */ 7599 } 7600 7601 void 7602 udp_ddi_init(void) 7603 { 7604 udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr, 7605 udp_opt_obj.odb_opt_arr_cnt); 7606 7607 /* 7608 * We want to be informed each time a stack is created or 7609 * destroyed in the kernel, so we can maintain the 7610 * set of udp_stack_t's. 7611 */ 7612 netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini); 7613 } 7614 7615 void 7616 udp_ddi_destroy(void) 7617 { 7618 netstack_unregister(NS_UDP); 7619 } 7620 7621 /* 7622 * Initialize the UDP stack instance. 7623 */ 7624 static void * 7625 udp_stack_init(netstackid_t stackid, netstack_t *ns) 7626 { 7627 udp_stack_t *us; 7628 udpparam_t *pa; 7629 int i; 7630 7631 us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP); 7632 us->us_netstack = ns; 7633 7634 us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS; 7635 us->us_epriv_ports[0] = 2049; 7636 us->us_epriv_ports[1] = 4045; 7637 7638 /* 7639 * The smallest anonymous port in the priviledged port range which UDP 7640 * looks for free port. Use in the option UDP_ANONPRIVBIND. 7641 */ 7642 us->us_min_anonpriv_port = 512; 7643 7644 us->us_bind_fanout_size = udp_bind_fanout_size; 7645 7646 /* Roundup variable that might have been modified in /etc/system */ 7647 if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) { 7648 /* Not a power of two. Round up to nearest power of two */ 7649 for (i = 0; i < 31; i++) { 7650 if (us->us_bind_fanout_size < (1 << i)) 7651 break; 7652 } 7653 us->us_bind_fanout_size = 1 << i; 7654 } 7655 us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size * 7656 sizeof (udp_fanout_t), KM_SLEEP); 7657 for (i = 0; i < us->us_bind_fanout_size; i++) { 7658 mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT, 7659 NULL); 7660 } 7661 7662 pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP); 7663 7664 us->us_param_arr = pa; 7665 bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr)); 7666 7667 (void) udp_param_register(&us->us_nd, 7668 us->us_param_arr, A_CNT(udp_param_arr)); 7669 7670 us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics); 7671 us->us_mibkp = udp_kstat_init(stackid); 7672 return (us); 7673 } 7674 7675 /* 7676 * Free the UDP stack instance. 7677 */ 7678 static void 7679 udp_stack_fini(netstackid_t stackid, void *arg) 7680 { 7681 udp_stack_t *us = (udp_stack_t *)arg; 7682 int i; 7683 7684 for (i = 0; i < us->us_bind_fanout_size; i++) { 7685 mutex_destroy(&us->us_bind_fanout[i].uf_lock); 7686 } 7687 7688 kmem_free(us->us_bind_fanout, us->us_bind_fanout_size * 7689 sizeof (udp_fanout_t)); 7690 7691 us->us_bind_fanout = NULL; 7692 7693 nd_free(&us->us_nd); 7694 kmem_free(us->us_param_arr, sizeof (udp_param_arr)); 7695 us->us_param_arr = NULL; 7696 7697 udp_kstat_fini(stackid, us->us_mibkp); 7698 us->us_mibkp = NULL; 7699 7700 udp_kstat2_fini(stackid, us->us_kstat); 7701 us->us_kstat = NULL; 7702 bzero(&us->us_statistics, sizeof (us->us_statistics)); 7703 kmem_free(us, sizeof (*us)); 7704 } 7705 7706 static void * 7707 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp) 7708 { 7709 kstat_t *ksp; 7710 7711 udp_stat_t template = { 7712 { "udp_ip_send", KSTAT_DATA_UINT64 }, 7713 { "udp_ip_ire_send", KSTAT_DATA_UINT64 }, 7714 { "udp_ire_null", KSTAT_DATA_UINT64 }, 7715 { "udp_drain", KSTAT_DATA_UINT64 }, 7716 { "udp_sock_fallback", KSTAT_DATA_UINT64 }, 7717 { "udp_rrw_busy", KSTAT_DATA_UINT64 }, 7718 { "udp_rrw_msgcnt", KSTAT_DATA_UINT64 }, 7719 { "udp_out_sw_cksum", KSTAT_DATA_UINT64 }, 7720 { "udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 7721 { "udp_out_opt", KSTAT_DATA_UINT64 }, 7722 { "udp_out_err_notconn", KSTAT_DATA_UINT64 }, 7723 { "udp_out_err_output", KSTAT_DATA_UINT64 }, 7724 { "udp_out_err_tudr", KSTAT_DATA_UINT64 }, 7725 { "udp_in_pktinfo", KSTAT_DATA_UINT64 }, 7726 { "udp_in_recvdstaddr", KSTAT_DATA_UINT64 }, 7727 { "udp_in_recvopts", KSTAT_DATA_UINT64 }, 7728 { "udp_in_recvif", KSTAT_DATA_UINT64 }, 7729 { "udp_in_recvslla", KSTAT_DATA_UINT64 }, 7730 { "udp_in_recvucred", KSTAT_DATA_UINT64 }, 7731 { "udp_in_recvttl", KSTAT_DATA_UINT64 }, 7732 { "udp_in_recvhopopts", KSTAT_DATA_UINT64 }, 7733 { "udp_in_recvhoplimit", KSTAT_DATA_UINT64 }, 7734 { "udp_in_recvdstopts", KSTAT_DATA_UINT64 }, 7735 { "udp_in_recvrtdstopts", KSTAT_DATA_UINT64 }, 7736 { "udp_in_recvrthdr", KSTAT_DATA_UINT64 }, 7737 { "udp_in_recvpktinfo", KSTAT_DATA_UINT64 }, 7738 { "udp_in_recvtclass", KSTAT_DATA_UINT64 }, 7739 { "udp_in_timestamp", KSTAT_DATA_UINT64 }, 7740 #ifdef DEBUG 7741 { "udp_data_conn", KSTAT_DATA_UINT64 }, 7742 { "udp_data_notconn", KSTAT_DATA_UINT64 }, 7743 #endif 7744 }; 7745 7746 ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net", 7747 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 7748 KSTAT_FLAG_VIRTUAL, stackid); 7749 7750 if (ksp == NULL) 7751 return (NULL); 7752 7753 bcopy(&template, us_statisticsp, sizeof (template)); 7754 ksp->ks_data = (void *)us_statisticsp; 7755 ksp->ks_private = (void *)(uintptr_t)stackid; 7756 7757 kstat_install(ksp); 7758 return (ksp); 7759 } 7760 7761 static void 7762 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 7763 { 7764 if (ksp != NULL) { 7765 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 7766 kstat_delete_netstack(ksp, stackid); 7767 } 7768 } 7769 7770 static void * 7771 udp_kstat_init(netstackid_t stackid) 7772 { 7773 kstat_t *ksp; 7774 7775 udp_named_kstat_t template = { 7776 { "inDatagrams", KSTAT_DATA_UINT64, 0 }, 7777 { "inErrors", KSTAT_DATA_UINT32, 0 }, 7778 { "outDatagrams", KSTAT_DATA_UINT64, 0 }, 7779 { "entrySize", KSTAT_DATA_INT32, 0 }, 7780 { "entry6Size", KSTAT_DATA_INT32, 0 }, 7781 { "outErrors", KSTAT_DATA_UINT32, 0 }, 7782 }; 7783 7784 ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2", 7785 KSTAT_TYPE_NAMED, 7786 NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid); 7787 7788 if (ksp == NULL || ksp->ks_data == NULL) 7789 return (NULL); 7790 7791 template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t); 7792 template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t); 7793 7794 bcopy(&template, ksp->ks_data, sizeof (template)); 7795 ksp->ks_update = udp_kstat_update; 7796 ksp->ks_private = (void *)(uintptr_t)stackid; 7797 7798 kstat_install(ksp); 7799 return (ksp); 7800 } 7801 7802 static void 7803 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 7804 { 7805 if (ksp != NULL) { 7806 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 7807 kstat_delete_netstack(ksp, stackid); 7808 } 7809 } 7810 7811 static int 7812 udp_kstat_update(kstat_t *kp, int rw) 7813 { 7814 udp_named_kstat_t *udpkp; 7815 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 7816 netstack_t *ns; 7817 udp_stack_t *us; 7818 7819 if ((kp == NULL) || (kp->ks_data == NULL)) 7820 return (EIO); 7821 7822 if (rw == KSTAT_WRITE) 7823 return (EACCES); 7824 7825 ns = netstack_find_by_stackid(stackid); 7826 if (ns == NULL) 7827 return (-1); 7828 us = ns->netstack_udp; 7829 if (us == NULL) { 7830 netstack_rele(ns); 7831 return (-1); 7832 } 7833 udpkp = (udp_named_kstat_t *)kp->ks_data; 7834 7835 udpkp->inDatagrams.value.ui64 = us->us_udp_mib.udpHCInDatagrams; 7836 udpkp->inErrors.value.ui32 = us->us_udp_mib.udpInErrors; 7837 udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams; 7838 udpkp->outErrors.value.ui32 = us->us_udp_mib.udpOutErrors; 7839 netstack_rele(ns); 7840 return (0); 7841 } 7842 7843 /* 7844 * Read-side synchronous stream info entry point, called as a 7845 * result of handling certain STREAMS ioctl operations. 7846 */ 7847 static int 7848 udp_rinfop(queue_t *q, infod_t *dp) 7849 { 7850 mblk_t *mp; 7851 uint_t cmd = dp->d_cmd; 7852 int res = 0; 7853 int error = 0; 7854 udp_t *udp = Q_TO_UDP(q); 7855 struct stdata *stp = STREAM(q); 7856 7857 mutex_enter(&udp->udp_drain_lock); 7858 /* If shutdown on read has happened, return nothing */ 7859 mutex_enter(&stp->sd_lock); 7860 if (stp->sd_flag & STREOF) { 7861 mutex_exit(&stp->sd_lock); 7862 goto done; 7863 } 7864 mutex_exit(&stp->sd_lock); 7865 7866 if ((mp = udp->udp_rcv_list_head) == NULL) 7867 goto done; 7868 7869 ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL); 7870 7871 if (cmd & INFOD_COUNT) { 7872 /* 7873 * Return the number of messages. 7874 */ 7875 dp->d_count += udp->udp_rcv_msgcnt; 7876 res |= INFOD_COUNT; 7877 } 7878 if (cmd & INFOD_BYTES) { 7879 /* 7880 * Return size of all data messages. 7881 */ 7882 dp->d_bytes += udp->udp_rcv_cnt; 7883 res |= INFOD_BYTES; 7884 } 7885 if (cmd & INFOD_FIRSTBYTES) { 7886 /* 7887 * Return size of first data message. 7888 */ 7889 dp->d_bytes = msgdsize(mp); 7890 res |= INFOD_FIRSTBYTES; 7891 dp->d_cmd &= ~INFOD_FIRSTBYTES; 7892 } 7893 if (cmd & INFOD_COPYOUT) { 7894 mblk_t *mp1 = mp->b_cont; 7895 int n; 7896 /* 7897 * Return data contents of first message. 7898 */ 7899 ASSERT(DB_TYPE(mp1) == M_DATA); 7900 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 7901 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 7902 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 7903 UIO_READ, dp->d_uiop)) != 0) { 7904 goto done; 7905 } 7906 mp1 = mp1->b_cont; 7907 } 7908 res |= INFOD_COPYOUT; 7909 dp->d_cmd &= ~INFOD_COPYOUT; 7910 } 7911 done: 7912 mutex_exit(&udp->udp_drain_lock); 7913 7914 dp->d_res |= res; 7915 7916 return (error); 7917 } 7918 7919 /* 7920 * Read-side synchronous stream entry point. This is called as a result 7921 * of recv/read operation done at sockfs, and is guaranteed to execute 7922 * outside of the interrupt thread context. It returns a single datagram 7923 * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer. 7924 */ 7925 static int 7926 udp_rrw(queue_t *q, struiod_t *dp) 7927 { 7928 mblk_t *mp; 7929 udp_t *udp = Q_TO_UDP(q); 7930 udp_stack_t *us = udp->udp_us; 7931 7932 /* 7933 * Dequeue datagram from the head of the list and return 7934 * it to caller; also ensure that RSLEEP sd_wakeq flag is 7935 * set/cleared depending on whether or not there's data 7936 * remaining in the list. 7937 */ 7938 mutex_enter(&udp->udp_drain_lock); 7939 if (!udp->udp_direct_sockfs) { 7940 mutex_exit(&udp->udp_drain_lock); 7941 UDP_STAT(us, udp_rrw_busy); 7942 return (EBUSY); 7943 } 7944 if ((mp = udp->udp_rcv_list_head) != NULL) { 7945 uint_t size = msgdsize(mp); 7946 7947 /* Last datagram in the list? */ 7948 if ((udp->udp_rcv_list_head = mp->b_next) == NULL) 7949 udp->udp_rcv_list_tail = NULL; 7950 mp->b_next = NULL; 7951 7952 udp->udp_rcv_cnt -= size; 7953 udp->udp_rcv_msgcnt--; 7954 UDP_STAT(us, udp_rrw_msgcnt); 7955 7956 /* No longer flow-controlling? */ 7957 if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat && 7958 udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat) 7959 udp->udp_drain_qfull = B_FALSE; 7960 } 7961 if (udp->udp_rcv_list_head == NULL) { 7962 /* 7963 * Either we just dequeued the last datagram or 7964 * we get here from sockfs and have nothing to 7965 * return; in this case clear RSLEEP. 7966 */ 7967 ASSERT(udp->udp_rcv_cnt == 0); 7968 ASSERT(udp->udp_rcv_msgcnt == 0); 7969 ASSERT(udp->udp_rcv_list_tail == NULL); 7970 STR_WAKEUP_CLEAR(STREAM(q)); 7971 } else { 7972 /* 7973 * More data follows; we need udp_rrw() to be 7974 * called in future to pick up the rest. 7975 */ 7976 STR_WAKEUP_SET(STREAM(q)); 7977 } 7978 mutex_exit(&udp->udp_drain_lock); 7979 dp->d_mp = mp; 7980 return (0); 7981 } 7982 7983 /* 7984 * Enqueue a completely-built T_UNITDATA_IND message into the receive 7985 * list; this is typically executed within the interrupt thread context 7986 * and so we do things as quickly as possible. 7987 */ 7988 static void 7989 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len) 7990 { 7991 ASSERT(q == RD(q)); 7992 ASSERT(pkt_len == msgdsize(mp)); 7993 ASSERT(mp->b_next == NULL && mp->b_cont != NULL); 7994 ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA); 7995 ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind)); 7996 7997 mutex_enter(&udp->udp_drain_lock); 7998 /* 7999 * Wake up and signal the receiving app; it is okay to do this 8000 * before enqueueing the mp because we are holding the drain lock. 8001 * One of the advantages of synchronous stream is the ability for 8002 * us to find out when the application performs a read on the 8003 * socket by way of udp_rrw() entry point being called. We need 8004 * to generate SIGPOLL/SIGIO for each received data in the case 8005 * of asynchronous socket just as in the strrput() case. However, 8006 * we only wake the application up when necessary, i.e. during the 8007 * first enqueue. When udp_rrw() is called, we send up a single 8008 * datagram upstream and call STR_WAKEUP_SET() again when there 8009 * are still data remaining in our receive queue. 8010 */ 8011 if (udp->udp_rcv_list_head == NULL) { 8012 STR_WAKEUP_SET(STREAM(q)); 8013 udp->udp_rcv_list_head = mp; 8014 } else { 8015 udp->udp_rcv_list_tail->b_next = mp; 8016 } 8017 udp->udp_rcv_list_tail = mp; 8018 udp->udp_rcv_cnt += pkt_len; 8019 udp->udp_rcv_msgcnt++; 8020 8021 /* Need to flow-control? */ 8022 if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat || 8023 udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat) 8024 udp->udp_drain_qfull = B_TRUE; 8025 8026 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 8027 STR_SENDSIG(STREAM(q)); 8028 mutex_exit(&udp->udp_drain_lock); 8029 } 8030 8031 /* 8032 * Drain the contents of receive list to the module upstream; we do 8033 * this during close or when we fallback to the slow mode due to 8034 * sockmod being popped or a module being pushed on top of us. 8035 */ 8036 static void 8037 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing) 8038 { 8039 mblk_t *mp; 8040 udp_stack_t *us = udp->udp_us; 8041 8042 ASSERT(q == RD(q)); 8043 8044 mutex_enter(&udp->udp_drain_lock); 8045 /* 8046 * There is no race with a concurrent udp_input() sending 8047 * up packets using putnext() after we have cleared the 8048 * udp_direct_sockfs flag but before we have completed 8049 * sending up the packets in udp_rcv_list, since we are 8050 * either a writer or we have quiesced the conn. 8051 */ 8052 udp->udp_direct_sockfs = B_FALSE; 8053 mutex_exit(&udp->udp_drain_lock); 8054 8055 if (udp->udp_rcv_list_head != NULL) 8056 UDP_STAT(us, udp_drain); 8057 8058 /* 8059 * Send up everything via putnext(); note here that we 8060 * don't need the udp_drain_lock to protect us since 8061 * nothing can enter udp_rrw() and that we currently 8062 * have exclusive access to this udp. 8063 */ 8064 while ((mp = udp->udp_rcv_list_head) != NULL) { 8065 udp->udp_rcv_list_head = mp->b_next; 8066 mp->b_next = NULL; 8067 udp->udp_rcv_cnt -= msgdsize(mp); 8068 udp->udp_rcv_msgcnt--; 8069 if (closing) { 8070 freemsg(mp); 8071 } else { 8072 putnext(q, mp); 8073 } 8074 } 8075 ASSERT(udp->udp_rcv_cnt == 0); 8076 ASSERT(udp->udp_rcv_msgcnt == 0); 8077 ASSERT(udp->udp_rcv_list_head == NULL); 8078 udp->udp_rcv_list_tail = NULL; 8079 udp->udp_drain_qfull = B_FALSE; 8080 } 8081 8082 static size_t 8083 udp_set_rcv_hiwat(udp_t *udp, size_t size) 8084 { 8085 udp_stack_t *us = udp->udp_us; 8086 8087 /* We add a bit of extra buffering */ 8088 size += size >> 1; 8089 if (size > us->us_max_buf) 8090 size = us->us_max_buf; 8091 8092 udp->udp_rcv_hiwat = size; 8093 return (size); 8094 } 8095 8096 /* 8097 * For the lower queue so that UDP can be a dummy mux. 8098 * Nobody should be sending 8099 * packets up this stream 8100 */ 8101 static void 8102 udp_lrput(queue_t *q, mblk_t *mp) 8103 { 8104 mblk_t *mp1; 8105 8106 switch (mp->b_datap->db_type) { 8107 case M_FLUSH: 8108 /* Turn around */ 8109 if (*mp->b_rptr & FLUSHW) { 8110 *mp->b_rptr &= ~FLUSHR; 8111 qreply(q, mp); 8112 return; 8113 } 8114 break; 8115 } 8116 /* Could receive messages that passed through ar_rput */ 8117 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 8118 mp1->b_prev = mp1->b_next = NULL; 8119 freemsg(mp); 8120 } 8121 8122 /* 8123 * For the lower queue so that UDP can be a dummy mux. 8124 * Nobody should be sending packets down this stream. 8125 */ 8126 /* ARGSUSED */ 8127 void 8128 udp_lwput(queue_t *q, mblk_t *mp) 8129 { 8130 freemsg(mp); 8131 } 8132