xref: /titanic_50/usr/src/uts/common/inet/udp/udp.c (revision 8010d9e557fe2108d9938e61b0562f4aaf6eb452)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 const char udp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/pattr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/time.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/strsubr.h>
45 #include <sys/suntpi.h>
46 #include <sys/xti_inet.h>
47 #include <sys/cmn_err.h>
48 #include <sys/kmem.h>
49 #include <sys/policy.h>
50 #include <sys/ucred.h>
51 #include <sys/zone.h>
52 
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/vtrace.h>
56 #include <sys/debug.h>
57 #include <sys/isa_defs.h>
58 #include <sys/random.h>
59 #include <netinet/in.h>
60 #include <netinet/ip6.h>
61 #include <netinet/icmp6.h>
62 #include <netinet/udp.h>
63 #include <net/if.h>
64 #include <net/route.h>
65 
66 #include <inet/common.h>
67 #include <inet/ip.h>
68 #include <inet/ip_impl.h>
69 #include <inet/ip6.h>
70 #include <inet/ip_ire.h>
71 #include <inet/ip_if.h>
72 #include <inet/ip_multi.h>
73 #include <inet/mi.h>
74 #include <inet/mib2.h>
75 #include <inet/nd.h>
76 #include <inet/optcom.h>
77 #include <inet/snmpcom.h>
78 #include <inet/kstatcom.h>
79 #include <inet/udp_impl.h>
80 #include <inet/ipclassifier.h>
81 #include <inet/ipsec_impl.h>
82 #include <inet/ipp_common.h>
83 
84 /*
85  * The ipsec_info.h header file is here since it has the definition for the
86  * M_CTL message types used by IP to convey information to the ULP. The
87  * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence.
88  */
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 
92 #include <sys/tsol/label.h>
93 #include <sys/tsol/tnet.h>
94 #include <rpc/pmap_prot.h>
95 
96 /*
97  * Synchronization notes:
98  *
99  * UDP uses a combination of its internal perimeter, a global lock and
100  * a set of bind hash locks to protect its data structures.  Please see
101  * the note above udp_mode_assertions for details about the internal
102  * perimeter.
103  *
104  * When a UDP endpoint is bound to a local port, it is inserted into
105  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
106  * The size of the array is controlled by the udp_bind_fanout_size variable.
107  * This variable can be changed in /etc/system if the default value is
108  * not large enough.  Each bind hash bucket is protected by a per bucket
109  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
110  * structure.  An UDP endpoint is removed from the bind hash list only
111  * when it is being unbound or being closed.  The per bucket lock also
112  * protects a UDP endpoint's state changes.
113  *
114  * Plumbing notes:
115  *
116  * Both udp and ip are merged, but the streams plumbing is kept unchanged
117  * in that udp is always pushed atop /dev/ip.  This is done to preserve
118  * backwards compatibility for certain applications which rely on such
119  * plumbing geometry to do things such as issuing I_POP on the stream
120  * in order to obtain direct access to /dev/ip, etc.
121  *
122  * All UDP processings happen in the /dev/ip instance; the udp module
123  * instance does not possess any state about the endpoint, and merely
124  * acts as a dummy module whose presence is to keep the streams plumbing
125  * appearance unchanged.  At open time /dev/ip allocates a conn_t that
126  * happens to embed a udp_t.  This stays dormant until the time udp is
127  * pushed, which indicates to /dev/ip that it must convert itself from
128  * an IP to a UDP endpoint.
129  *
130  * We only allow for the following plumbing cases:
131  *
132  * Normal:
133  *	/dev/ip is first opened and later udp is pushed directly on top.
134  *	This is the default action that happens when a udp socket or
135  *	/dev/udp is opened.  The conn_t created by /dev/ip instance is
136  *	now shared and is marked with IPCL_UDP.
137  *
138  * SNMP-only:
139  *	udp is pushed on top of a module other than /dev/ip.  When this
140  *	happens it will support only SNMP semantics.  A new conn_t is
141  *	allocated and marked with IPCL_UDPMOD.
142  *
143  * The above cases imply that we don't support any intermediate module to
144  * reside in between /dev/ip and udp -- in fact, we never supported such
145  * scenario in the past as the inter-layer communication semantics have
146  * always been private.  Also note that the normal case allows for SNMP
147  * requests to be processed in addition to the rest of UDP operations.
148  *
149  * The normal case plumbing is depicted by the following diagram:
150  *
151  *	+---------------+---------------+
152  *	|		|		| udp
153  *	|     udp_wq	|    udp_rq	|
154  *	|		|    UDP_RD	|
155  *	|		|		|
156  *	+---------------+---------------+
157  *		|		^
158  *		v		|
159  *	+---------------+---------------+
160  *	|		|		| /dev/ip
161  *	|     ip_wq	|     ip_rq	| conn_t
162  *	|     UDP_WR	|		|
163  *	|		|		|
164  *	+---------------+---------------+
165  *
166  * Messages arriving at udp_wq from above will end up in ip_wq before
167  * it gets processed, i.e. udp write entry points will advance udp_wq
168  * and use its q_next value as ip_wq in order to use the conn_t that
169  * is stored in its q_ptr.  Likewise, messages generated by ip to the
170  * module above udp will appear as if they are originated from udp_rq,
171  * i.e. putnext() calls to the module above udp is done using the
172  * udp_rq instead of ip_rq in order to avoid udp_rput() which does
173  * nothing more than calling putnext().
174  *
175  * The above implies the following rule of thumb:
176  *
177  *   1. udp_t is obtained from conn_t, which is created by the /dev/ip
178  *	instance and is stored in q_ptr of both ip_wq and ip_rq.  There
179  *	is no direct reference to conn_t from either udp_wq or udp_rq.
180  *
181  *   2. Write-side entry points of udp can obtain the conn_t via the
182  *	Q_TO_CONN() macro, using the queue value obtain from UDP_WR().
183  *
184  *   3. While in /dev/ip context, putnext() to the module above udp can
185  *	be done by supplying the queue value obtained from UDP_RD().
186  *
187  */
188 
189 static queue_t *UDP_WR(queue_t *);
190 static queue_t *UDP_RD(queue_t *);
191 
192 udp_stat_t udp_statistics = {
193 	{ "udp_ip_send",		KSTAT_DATA_UINT64 },
194 	{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
195 	{ "udp_ire_null",		KSTAT_DATA_UINT64 },
196 	{ "udp_drain",			KSTAT_DATA_UINT64 },
197 	{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
198 	{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
199 	{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
200 	{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
201 	{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
202 	{ "udp_out_opt",		KSTAT_DATA_UINT64 },
203 	{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
204 	{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
205 	{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
206 	{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
207 	{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
208 	{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
209 	{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
210 	{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
211 	{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
212 	{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
213 	{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
214 	{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
215 	{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
216 	{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
217 	{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
218 	{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
219 	{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
220 	{ "udp_in_timestamp",		KSTAT_DATA_UINT64 },
221 #ifdef DEBUG
222 	{ "udp_data_conn",		KSTAT_DATA_UINT64 },
223 	{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
224 #endif
225 };
226 
227 static kstat_t *udp_ksp;
228 struct kmem_cache *udp_cache;
229 
230 /*
231  * Bind hash list size and hash function.  It has to be a power of 2 for
232  * hashing.
233  */
234 #define	UDP_BIND_FANOUT_SIZE	512
235 #define	UDP_BIND_HASH(lport) \
236 	((ntohs((uint16_t)lport)) & (udp_bind_fanout_size - 1))
237 
238 /* UDP bind fanout hash structure. */
239 typedef struct udp_fanout_s {
240 	udp_t *uf_udp;
241 	kmutex_t uf_lock;
242 #if defined(_LP64) || defined(_I32LPx)
243 	char	uf_pad[48];
244 #else
245 	char	uf_pad[56];
246 #endif
247 } udp_fanout_t;
248 
249 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
250 /* udp_fanout_t *udp_bind_fanout. */
251 static udp_fanout_t *udp_bind_fanout;
252 
253 /*
254  * This controls the rate some ndd info report functions can be used
255  * by non-privileged users.  It stores the last time such info is
256  * requested.  When those report functions are called again, this
257  * is checked with the current time and compare with the ndd param
258  * udp_ndd_get_info_interval.
259  */
260 static clock_t udp_last_ndd_get_info_time;
261 #define	NDD_TOO_QUICK_MSG \
262 	"ndd get info rate too high for non-privileged users, try again " \
263 	"later.\n"
264 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
265 
266 /* Option processing attrs */
267 typedef struct udpattrs_s {
268 	ip6_pkt_t	*udpattr_ipp;
269 	mblk_t		*udpattr_mb;
270 	boolean_t	udpattr_credset;
271 } udpattrs_t;
272 
273 static void	udp_addr_req(queue_t *q, mblk_t *mp);
274 static void	udp_bind(queue_t *q, mblk_t *mp);
275 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
276 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
277 static int	udp_build_hdrs(queue_t *q, udp_t *udp);
278 static void	udp_capability_req(queue_t *q, mblk_t *mp);
279 static int	udp_close(queue_t *q);
280 static void	udp_connect(queue_t *q, mblk_t *mp);
281 static void	udp_disconnect(queue_t *q, mblk_t *mp);
282 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
283 		    int sys_error);
284 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
285 		    t_scalar_t tlierr, int unixerr);
286 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
287 		    cred_t *cr);
288 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
289 		    char *value, caddr_t cp, cred_t *cr);
290 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
291 		    char *value, caddr_t cp, cred_t *cr);
292 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
293 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
294 static void	udp_info_req(queue_t *q, mblk_t *mp);
295 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
296 		    t_scalar_t addr_length);
297 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
298 		    cred_t *credp);
299 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
300 		    int *errorp, udpattrs_t *udpattrs);
301 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
302 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
303 static boolean_t udp_param_register(udpparam_t *udppa, int cnt);
304 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
305 		    cred_t *cr);
306 static void	udp_report_item(mblk_t *mp, udp_t *udp);
307 static void	udp_rput(queue_t *q, mblk_t *mp);
308 static void	udp_rput_other(queue_t *, mblk_t *);
309 static int	udp_rinfop(queue_t *q, infod_t *dp);
310 static int	udp_rrw(queue_t *q, struiod_t *dp);
311 static	void	udp_rput_bind_ack(queue_t *q, mblk_t *mp);
312 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
313 		    cred_t *cr);
314 static void	udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha);
315 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
316 		    t_scalar_t destlen, t_scalar_t err);
317 static void	udp_unbind(queue_t *q, mblk_t *mp);
318 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
319     boolean_t random);
320 static void	udp_wput(queue_t *q, mblk_t *mp);
321 static mblk_t	*udp_output_v4(conn_t *, mblk_t *mp, ipaddr_t v4dst,
322 		    uint16_t port, uint_t srcid, int *error);
323 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
324 		    int *error);
325 static void	udp_wput_other(queue_t *q, mblk_t *mp);
326 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
327 static void	udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr,
328 		    socklen_t addrlen);
329 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
330 
331 static void	udp_kstat_init(void);
332 static void	udp_kstat_fini(void);
333 static int	udp_kstat_update(kstat_t *kp, int rw);
334 static void	udp_input_wrapper(void *arg, mblk_t *mp, void *arg2);
335 static void	udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
336 static void	udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2);
337 static void	udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2);
338 
339 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
340 		    uint_t pkt_len);
341 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
342 static void	udp_enter(conn_t *, mblk_t *, sqproc_t, uint8_t);
343 static void	udp_exit(conn_t *);
344 static void	udp_become_writer(conn_t *, mblk_t *, sqproc_t, uint8_t);
345 #ifdef DEBUG
346 static void	udp_mode_assertions(udp_t *, int);
347 #endif /* DEBUG */
348 
349 major_t UDP6_MAJ;
350 #define	UDP6 "udp6"
351 
352 #define	UDP_RECV_HIWATER	(56 * 1024)
353 #define	UDP_RECV_LOWATER	128
354 #define	UDP_XMIT_HIWATER	(56 * 1024)
355 #define	UDP_XMIT_LOWATER	1024
356 
357 static struct module_info udp_info =  {
358 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
359 };
360 
361 static struct qinit udp_rinit = {
362 	(pfi_t)udp_rput, NULL, udp_open, udp_close, NULL,
363 	&udp_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
364 };
365 
366 static struct qinit udp_winit = {
367 	(pfi_t)udp_wput, NULL, NULL, NULL, NULL,
368 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
369 };
370 
371 static struct qinit winit = {
372 	(pfi_t)putnext, NULL, NULL, NULL, NULL,
373 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
374 };
375 
376 /* Support for just SNMP if UDP is not pushed directly over device IP */
377 struct qinit udp_snmp_rinit = {
378 	(pfi_t)putnext, NULL, udp_open, ip_snmpmod_close, NULL,
379 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
380 };
381 
382 struct qinit udp_snmp_winit = {
383 	(pfi_t)ip_snmpmod_wput, NULL, udp_open, ip_snmpmod_close, NULL,
384 	&udp_info, NULL, NULL, NULL, STRUIOT_NONE
385 };
386 
387 struct streamtab udpinfo = {
388 	&udp_rinit, &winit
389 };
390 
391 static	sin_t	sin_null;	/* Zero address for quick clears */
392 static	sin6_t	sin6_null;	/* Zero address for quick clears */
393 
394 /* Hint not protected by any lock */
395 static in_port_t	udp_g_next_port_to_try;
396 
397 /*
398  * Extra privileged ports. In host byte order.
399  */
400 #define	UDP_NUM_EPRIV_PORTS	64
401 static int	udp_g_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
402 static in_port_t udp_g_epriv_ports[UDP_NUM_EPRIV_PORTS] = { 2049, 4045 };
403 
404 /* Only modified during _init and _fini thus no locking is needed. */
405 static IDP	udp_g_nd;	/* Points to table of UDP ND variables. */
406 
407 /* MIB-2 stuff for SNMP */
408 static mib2_udp_t	udp_mib;	/* SNMP fixed size info */
409 static kstat_t		*udp_mibkp;	/* kstat exporting udp_mib data */
410 
411 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
412 
413 /* Default structure copied into T_INFO_ACK messages */
414 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
415 	T_INFO_ACK,
416 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
417 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
418 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
419 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
420 	sizeof (sin_t),	/* ADDR_size. */
421 	0,		/* OPT_size - not initialized here */
422 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
423 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
424 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
425 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
426 };
427 
428 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
429 
430 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
431 	T_INFO_ACK,
432 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
433 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
434 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
435 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
436 	sizeof (sin6_t), /* ADDR_size. */
437 	0,		/* OPT_size - not initialized here */
438 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
439 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
440 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
441 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
442 };
443 
444 /* largest UDP port number */
445 #define	UDP_MAX_PORT	65535
446 
447 /*
448  * Table of ND variables supported by udp.  These are loaded into udp_g_nd
449  * in udp_open.
450  * All of these are alterable, within the min/max values given, at run time.
451  */
452 /* BEGIN CSTYLED */
453 udpparam_t udp_param_arr[] = {
454  /*min		max		value		name */
455  { 0L,		256,		32,		"udp_wroff_extra" },
456  { 1L,		255,		255,		"udp_ipv4_ttl" },
457  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
458  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
459  { 0,		1,		1,		"udp_do_checksum" },
460  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
461  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
462  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
463  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
464  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
465  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
466  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
467 };
468 /* END CSTYLED */
469 
470 /*
471  * The smallest anonymous port in the privileged port range which UDP
472  * looks for free port.  Use in the option UDP_ANONPRIVBIND.
473  */
474 static in_port_t udp_min_anonpriv_port = 512;
475 
476 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
477 uint32_t udp_random_anon_port = 1;
478 
479 /*
480  * Hook functions to enable cluster networking.
481  * On non-clustered systems these vectors must always be NULL
482  */
483 
484 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
485     uint8_t *laddrp, in_port_t lport) = NULL;
486 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
487     uint8_t *laddrp, in_port_t lport) = NULL;
488 
489 typedef union T_primitives *t_primp_t;
490 
491 #define	UDP_ENQUEUE_MP(udp, mp, proc, tag) {			\
492 	ASSERT((mp)->b_prev == NULL && (mp)->b_queue == NULL);	\
493 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
494 	(mp)->b_queue = (queue_t *)((uintptr_t)tag);		\
495 	(mp)->b_prev = (mblk_t *)proc;				\
496 	if ((udp)->udp_mphead == NULL)				\
497 		(udp)->udp_mphead = (mp);			\
498 	else							\
499 		(udp)->udp_mptail->b_next = (mp);		\
500 	(udp)->udp_mptail = (mp);				\
501 	(udp)->udp_mpcount++;					\
502 }
503 
504 #define	UDP_READERS_INCREF(udp) {				\
505 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
506 	(udp)->udp_reader_count++;				\
507 }
508 
509 #define	UDP_READERS_DECREF(udp) {				\
510 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
511 	(udp)->udp_reader_count--;				\
512 	if ((udp)->udp_reader_count == 0)			\
513 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
514 }
515 
516 #define	UDP_SQUEUE_DECREF(udp) {				\
517 	ASSERT(MUTEX_HELD(&(udp)->udp_connp->conn_lock));	\
518 	(udp)->udp_squeue_count--;				\
519 	if ((udp)->udp_squeue_count == 0)			\
520 		cv_broadcast(&(udp)->udp_connp->conn_cv);	\
521 }
522 
523 /*
524  * Notes on UDP endpoint synchronization:
525  *
526  * UDP needs exclusive operation on a per endpoint basis, when executing
527  * functions that modify the endpoint state.  udp_rput_other() deals with
528  * packets with IP options, and processing these packets end up having
529  * to update the endpoint's option related state.  udp_wput_other() deals
530  * with control operations from the top, e.g. connect() that needs to
531  * update the endpoint state.  These could be synchronized using locks,
532  * but the current version uses squeues for this purpose.  squeues may
533  * give performance improvement for certain cases such as connected UDP
534  * sockets; thus the framework allows for using squeues.
535  *
536  * The perimeter routines are described as follows:
537  *
538  * udp_enter():
539  *	Enter the UDP endpoint perimeter.
540  *
541  * udp_become_writer():
542  *	Become exclusive on the UDP endpoint.  Specifies a function
543  *	that will be called exclusively either immediately or later
544  *	when the perimeter is available exclusively.
545  *
546  * udp_exit():
547  *	Exit the UDP perimeter.
548  *
549  * Entering UDP from the top or from the bottom must be done using
550  * udp_enter().  No lock must be held while attempting to enter the UDP
551  * perimeter.  When finished, udp_exit() must be called to get out of
552  * the perimeter.
553  *
554  * UDP operates in either MT_HOT mode or in SQUEUE mode.  In MT_HOT mode,
555  * multiple threads may enter a UDP endpoint concurrently.  This is used
556  * for sending and/or receiving normal data.  Control operations and other
557  * special cases call udp_become_writer() to become exclusive on a per
558  * endpoint basis and this results in transitioning to SQUEUE mode.  squeue
559  * by definition serializes access to the conn_t.  When there are no more
560  * pending messages on the squeue for the UDP connection, the endpoint
561  * reverts to MT_HOT mode.  During the interregnum when not all MT threads
562  * of an endpoint have finished, messages are queued in the UDP endpoint
563  * and the UDP is in UDP_MT_QUEUED mode or UDP_QUEUED_SQUEUE mode.
564  *
565  * These modes have the following analogs:
566  *
567  *	UDP_MT_HOT/udp_reader_count==0		none
568  *	UDP_MT_HOT/udp_reader_count>0		RW_READ_LOCK
569  *	UDP_MT_QUEUED				RW_WRITE_WANTED
570  *	UDP_SQUEUE or UDP_QUEUED_SQUEUE		RW_WRITE_LOCKED
571  *
572  * Stable modes:	UDP_MT_HOT, UDP_SQUEUE
573  * Transient modes:	UDP_MT_QUEUED, UDP_QUEUED_SQUEUE
574  *
575  * While in stable modes, UDP keeps track of the number of threads
576  * operating on the endpoint.  The udp_reader_count variable represents
577  * the number of threads entering the endpoint as readers while it is
578  * in UDP_MT_HOT mode.  Transitioning to UDP_SQUEUE happens when there
579  * is only a single reader, i.e. when this counter drops to 1.  Likewise,
580  * udp_squeue_count represents the number of threads operating on the
581  * endpoint's squeue while it is in UDP_SQUEUE mode.  The mode transition
582  * to UDP_MT_HOT happens after the last thread exits the endpoint, i.e.
583  * when this counter drops to 0.
584  *
585  * The default mode is set to UDP_MT_HOT and UDP alternates between
586  * UDP_MT_HOT and UDP_SQUEUE as shown in the state transition below.
587  *
588  * Mode transition:
589  * ----------------------------------------------------------------
590  * old mode		Event				New mode
591  * ----------------------------------------------------------------
592  * UDP_MT_HOT		Call to udp_become_writer()	UDP_SQUEUE
593  *			and udp_reader_count == 1
594  *
595  * UDP_MT_HOT		Call to udp_become_writer()	UDP_MT_QUEUED
596  *			and udp_reader_count > 1
597  *
598  * UDP_MT_QUEUED	udp_reader_count drops to zero	UDP_QUEUED_SQUEUE
599  *
600  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_SQUEUE
601  *			internal UDP queue successfully
602  *			moved to squeue AND udp_squeue_count != 0
603  *
604  * UDP_QUEUED_SQUEUE	All messages enqueued on the	UDP_MT_HOT
605  *			internal UDP queue successfully
606  *			moved to squeue AND udp_squeue_count
607  *			drops to zero
608  *
609  * UDP_SQUEUE		udp_squeue_count drops to zero	UDP_MT_HOT
610  * ----------------------------------------------------------------
611  */
612 
613 static queue_t *
614 UDP_WR(queue_t *q)
615 {
616 	ASSERT(q->q_ptr == NULL && _OTHERQ(q)->q_ptr == NULL);
617 	ASSERT(WR(q)->q_next != NULL && WR(q)->q_next->q_ptr != NULL);
618 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(WR(q)->q_next)));
619 
620 	return (_WR(q)->q_next);
621 }
622 
623 static queue_t *
624 UDP_RD(queue_t *q)
625 {
626 	ASSERT(q->q_ptr != NULL && _OTHERQ(q)->q_ptr != NULL);
627 	ASSERT(IPCL_IS_UDP(Q_TO_CONN(q)));
628 	ASSERT(RD(q)->q_next != NULL && RD(q)->q_next->q_ptr == NULL);
629 
630 	return (_RD(q)->q_next);
631 }
632 
633 #ifdef DEBUG
634 #define	UDP_MODE_ASSERTIONS(udp, caller) udp_mode_assertions(udp, caller)
635 #else
636 #define	UDP_MODE_ASSERTIONS(udp, caller)
637 #endif
638 
639 /* Invariants */
640 #ifdef DEBUG
641 
642 uint32_t udp_count[4];
643 
644 /* Context of udp_mode_assertions */
645 #define	UDP_ENTER		1
646 #define	UDP_BECOME_WRITER	2
647 #define	UDP_EXIT		3
648 
649 static void
650 udp_mode_assertions(udp_t *udp, int caller)
651 {
652 	ASSERT(MUTEX_HELD(&udp->udp_connp->conn_lock));
653 
654 	switch (udp->udp_mode) {
655 	case UDP_MT_HOT:
656 		/*
657 		 * Messages have not yet been enqueued on the internal queue,
658 		 * otherwise we would have switched to UDP_MT_QUEUED. Likewise
659 		 * by definition, there can't be any messages enqueued on the
660 		 * squeue. The UDP could be quiescent, so udp_reader_count
661 		 * could be zero at entry.
662 		 */
663 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0 &&
664 		    udp->udp_squeue_count == 0);
665 		ASSERT(caller == UDP_ENTER || udp->udp_reader_count != 0);
666 		udp_count[0]++;
667 		break;
668 
669 	case UDP_MT_QUEUED:
670 		/*
671 		 * The last MT thread to exit the udp perimeter empties the
672 		 * internal queue and then switches the UDP to
673 		 * UDP_QUEUED_SQUEUE mode. Since we are still in UDP_MT_QUEUED
674 		 * mode, it means there must be at least 1 MT thread still in
675 		 * the perimeter and at least 1 message on the internal queue.
676 		 */
677 		ASSERT(udp->udp_reader_count >= 1 && udp->udp_mphead != NULL &&
678 		    udp->udp_mpcount != 0 && udp->udp_squeue_count == 0);
679 		udp_count[1]++;
680 		break;
681 
682 	case UDP_QUEUED_SQUEUE:
683 		/*
684 		 * The switch has happened from MT to SQUEUE. So there can't
685 		 * any MT threads. Messages could still pile up on the internal
686 		 * queue until the transition is complete and we move to
687 		 * UDP_SQUEUE mode. We can't assert on nonzero udp_squeue_count
688 		 * since the squeue could drain any time.
689 		 */
690 		ASSERT(udp->udp_reader_count == 0);
691 		udp_count[2]++;
692 		break;
693 
694 	case UDP_SQUEUE:
695 		/*
696 		 * The transition is complete. Thre can't be any messages on
697 		 * the internal queue. The udp could be quiescent or the squeue
698 		 * could drain any time, so we can't assert on nonzero
699 		 * udp_squeue_count during entry. Nor can we assert that
700 		 * udp_reader_count is zero, since, a reader thread could have
701 		 * directly become writer in line by calling udp_become_writer
702 		 * without going through the queued states.
703 		 */
704 		ASSERT(udp->udp_mphead == NULL && udp->udp_mpcount == 0);
705 		ASSERT(caller == UDP_ENTER || udp->udp_squeue_count != 0);
706 		udp_count[3]++;
707 		break;
708 	}
709 }
710 #endif
711 
712 #define	_UDP_ENTER(connp, mp, proc, tag) {				\
713 	udp_t *_udp = (connp)->conn_udp;				\
714 									\
715 	mutex_enter(&(connp)->conn_lock);				\
716 	if ((connp)->conn_state_flags & CONN_CLOSING) {			\
717 		mutex_exit(&(connp)->conn_lock);			\
718 		freemsg(mp);						\
719 	} else {							\
720 		UDP_MODE_ASSERTIONS(_udp, UDP_ENTER);			\
721 									\
722 		switch (_udp->udp_mode) {				\
723 		case UDP_MT_HOT:					\
724 			/* We can execute as reader right away. */	\
725 			UDP_READERS_INCREF(_udp);			\
726 			mutex_exit(&(connp)->conn_lock);		\
727 			(*(proc))(connp, mp, (connp)->conn_sqp);	\
728 			break;						\
729 									\
730 		case UDP_SQUEUE:					\
731 			/*						\
732 			 * We are in squeue mode, send the		\
733 			 * packet to the squeue				\
734 			 */						\
735 			_udp->udp_squeue_count++;			\
736 			CONN_INC_REF_LOCKED(connp);			\
737 			mutex_exit(&(connp)->conn_lock);		\
738 			squeue_enter((connp)->conn_sqp, mp, proc,	\
739 			    connp, tag);				\
740 			break;						\
741 									\
742 		case UDP_MT_QUEUED:					\
743 		case UDP_QUEUED_SQUEUE:					\
744 			/*						\
745 			 * Some messages may have been enqueued		\
746 			 * ahead of us.  Enqueue the new message	\
747 			 * at the tail of the internal queue to		\
748 			 * preserve message ordering.			\
749 			 */						\
750 			UDP_ENQUEUE_MP(_udp, mp, proc, tag);		\
751 			mutex_exit(&(connp)->conn_lock);		\
752 			break;						\
753 		}							\
754 	}								\
755 }
756 
757 static void
758 udp_enter(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
759 {
760 	_UDP_ENTER(connp, mp, proc, tag);
761 }
762 
763 static void
764 udp_become_writer(conn_t *connp, mblk_t *mp, sqproc_t proc, uint8_t tag)
765 {
766 	udp_t	*udp;
767 
768 	udp = connp->conn_udp;
769 
770 	mutex_enter(&connp->conn_lock);
771 
772 	UDP_MODE_ASSERTIONS(udp, UDP_BECOME_WRITER);
773 
774 	switch (udp->udp_mode) {
775 	case UDP_MT_HOT:
776 		if (udp->udp_reader_count == 1) {
777 			/*
778 			 * We are the only MT thread. Switch to squeue mode
779 			 * immediately.
780 			 */
781 			udp->udp_mode = UDP_SQUEUE;
782 			udp->udp_squeue_count = 1;
783 			CONN_INC_REF_LOCKED(connp);
784 			mutex_exit(&connp->conn_lock);
785 			squeue_enter(connp->conn_sqp, mp, proc, connp, tag);
786 			return;
787 		}
788 		/* FALLTHRU */
789 
790 	case UDP_MT_QUEUED:
791 		/* Enqueue the packet internally in UDP */
792 		udp->udp_mode = UDP_MT_QUEUED;
793 		UDP_ENQUEUE_MP(udp, mp, proc, tag);
794 		mutex_exit(&connp->conn_lock);
795 		return;
796 
797 	case UDP_SQUEUE:
798 	case UDP_QUEUED_SQUEUE:
799 		/*
800 		 * We are already exclusive. i.e. we are already
801 		 * writer. Simply call the desired function.
802 		 */
803 		udp->udp_squeue_count++;
804 		mutex_exit(&connp->conn_lock);
805 		(*proc)(connp, mp, connp->conn_sqp);
806 		return;
807 	}
808 }
809 
810 /*
811  * Transition from MT mode to SQUEUE mode, when the last MT thread
812  * is exiting the UDP perimeter. Move all messages from the internal
813  * udp queue to the squeue. A better way would be to move all the
814  * messages in one shot, this needs more support from the squeue framework
815  */
816 static void
817 udp_switch_to_squeue(udp_t *udp)
818 {
819 	mblk_t *mp;
820 	mblk_t	*mp_next;
821 	sqproc_t proc;
822 	uint8_t	tag;
823 	conn_t	*connp = udp->udp_connp;
824 
825 	ASSERT(MUTEX_HELD(&connp->conn_lock));
826 	ASSERT(udp->udp_mode == UDP_MT_QUEUED);
827 	while (udp->udp_mphead != NULL) {
828 		mp = udp->udp_mphead;
829 		udp->udp_mphead = NULL;
830 		udp->udp_mptail = NULL;
831 		udp->udp_mpcount = 0;
832 		udp->udp_mode = UDP_QUEUED_SQUEUE;
833 		mutex_exit(&connp->conn_lock);
834 		/*
835 		 * It is best not to hold any locks across the calls
836 		 * to squeue functions. Since we drop the lock we
837 		 * need to go back and check the udp_mphead once again
838 		 * after the squeue_fill and hence the while loop at
839 		 * the top of this function
840 		 */
841 		for (; mp != NULL; mp = mp_next) {
842 			mp_next = mp->b_next;
843 			proc = (sqproc_t)mp->b_prev;
844 			tag = (uint8_t)((uintptr_t)mp->b_queue);
845 			mp->b_next = NULL;
846 			mp->b_prev = NULL;
847 			mp->b_queue = NULL;
848 			CONN_INC_REF(connp);
849 			udp->udp_squeue_count++;
850 			squeue_fill(connp->conn_sqp, mp, proc, connp,
851 			    tag);
852 		}
853 		mutex_enter(&connp->conn_lock);
854 	}
855 	/*
856 	 * udp_squeue_count of zero implies that the squeue has drained
857 	 * even before we arrived here (i.e. after the squeue_fill above)
858 	 */
859 	udp->udp_mode = (udp->udp_squeue_count != 0) ?
860 	    UDP_SQUEUE : UDP_MT_HOT;
861 }
862 
863 #define	_UDP_EXIT(connp) {						\
864 	udp_t *_udp = (connp)->conn_udp;				\
865 									\
866 	mutex_enter(&(connp)->conn_lock);				\
867 	UDP_MODE_ASSERTIONS(_udp, UDP_EXIT);				\
868 									\
869 	switch (_udp->udp_mode) {					\
870 	case UDP_MT_HOT:						\
871 		UDP_READERS_DECREF(_udp);				\
872 		mutex_exit(&(connp)->conn_lock);			\
873 		break;							\
874 									\
875 	case UDP_SQUEUE:						\
876 		UDP_SQUEUE_DECREF(_udp);				\
877 		if (_udp->udp_squeue_count == 0)			\
878 		    _udp->udp_mode = UDP_MT_HOT;			\
879 		mutex_exit(&(connp)->conn_lock);			\
880 		break;							\
881 									\
882 	case UDP_MT_QUEUED:						\
883 		/*							\
884 		 * If this is the last MT thread, we need to		\
885 		 * switch to squeue mode				\
886 		 */							\
887 		UDP_READERS_DECREF(_udp);				\
888 		if (_udp->udp_reader_count == 0)			\
889 			udp_switch_to_squeue(_udp);			\
890 		mutex_exit(&(connp)->conn_lock);			\
891 		break;							\
892 									\
893 	case UDP_QUEUED_SQUEUE:						\
894 		UDP_SQUEUE_DECREF(_udp);				\
895 		/*							\
896 		 * Even if the udp_squeue_count drops to zero, we	\
897 		 * don't want to change udp_mode to UDP_MT_HOT here.	\
898 		 * The thread in udp_switch_to_squeue will take care	\
899 		 * of the transition to UDP_MT_HOT, after emptying	\
900 		 * any more new messages that have been enqueued in	\
901 		 * udp_mphead.						\
902 		 */							\
903 		mutex_exit(&(connp)->conn_lock);			\
904 		break;							\
905 	}								\
906 }
907 
908 static void
909 udp_exit(conn_t *connp)
910 {
911 	_UDP_EXIT(connp);
912 }
913 
914 /*
915  * Return the next anonymous port in the privileged port range for
916  * bind checking.
917  *
918  * Trusted Extension (TX) notes: TX allows administrator to mark or
919  * reserve ports as Multilevel ports (MLP). MLP has special function
920  * on TX systems. Once a port is made MLP, it's not available as
921  * ordinary port. This creates "holes" in the port name space. It
922  * may be necessary to skip the "holes" find a suitable anon port.
923  */
924 static in_port_t
925 udp_get_next_priv_port(udp_t *udp)
926 {
927 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
928 	in_port_t nextport;
929 	boolean_t restart = B_FALSE;
930 
931 retry:
932 	if (next_priv_port < udp_min_anonpriv_port ||
933 	    next_priv_port >= IPPORT_RESERVED) {
934 		next_priv_port = IPPORT_RESERVED - 1;
935 		if (restart)
936 			return (0);
937 		restart = B_TRUE;
938 	}
939 
940 	if (is_system_labeled() &&
941 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
942 	    next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
943 		next_priv_port = nextport;
944 		goto retry;
945 	}
946 
947 	return (next_priv_port--);
948 }
949 
950 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
951 /* ARGSUSED */
952 static int
953 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
954 {
955 	udp_fanout_t	*udpf;
956 	int		i;
957 	zoneid_t	zoneid;
958 	conn_t		*connp;
959 	udp_t		*udp;
960 
961 	connp = Q_TO_CONN(q);
962 	udp = connp->conn_udp;
963 
964 	/* Refer to comments in udp_status_report(). */
965 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
966 		if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
967 		    drv_usectohz(udp_ndd_get_info_interval * 1000)) {
968 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
969 			return (0);
970 		}
971 	}
972 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
973 		/* The following may work even if we cannot get a large buf. */
974 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
975 		return (0);
976 	}
977 
978 	(void) mi_mpprintf(mp,
979 	    "UDP     " MI_COL_HDRPAD_STR
980 	/*   12345678[89ABCDEF] */
981 	    " zone lport src addr        dest addr       port  state");
982 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
983 
984 	zoneid = connp->conn_zoneid;
985 
986 	for (i = 0; i < udp_bind_fanout_size; i++) {
987 		udpf = &udp_bind_fanout[i];
988 		mutex_enter(&udpf->uf_lock);
989 
990 		/* Print the hash index. */
991 		udp = udpf->uf_udp;
992 		if (zoneid != GLOBAL_ZONEID) {
993 			/* skip to first entry in this zone; might be none */
994 			while (udp != NULL &&
995 			    udp->udp_connp->conn_zoneid != zoneid)
996 				udp = udp->udp_bind_hash;
997 		}
998 		if (udp != NULL) {
999 			uint_t print_len, buf_len;
1000 
1001 			buf_len = mp->b_cont->b_datap->db_lim -
1002 			    mp->b_cont->b_wptr;
1003 			print_len = snprintf((char *)mp->b_cont->b_wptr,
1004 			    buf_len, "%d\n", i);
1005 			if (print_len < buf_len) {
1006 				mp->b_cont->b_wptr += print_len;
1007 			} else {
1008 				mp->b_cont->b_wptr += buf_len;
1009 			}
1010 			for (; udp != NULL; udp = udp->udp_bind_hash) {
1011 				if (zoneid == GLOBAL_ZONEID ||
1012 				    zoneid == udp->udp_connp->conn_zoneid)
1013 					udp_report_item(mp->b_cont, udp);
1014 			}
1015 		}
1016 		mutex_exit(&udpf->uf_lock);
1017 	}
1018 	udp_last_ndd_get_info_time = ddi_get_lbolt();
1019 	return (0);
1020 }
1021 
1022 /*
1023  * Hash list removal routine for udp_t structures.
1024  */
1025 static void
1026 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
1027 {
1028 	udp_t	*udpnext;
1029 	kmutex_t *lockp;
1030 
1031 	if (udp->udp_ptpbhn == NULL)
1032 		return;
1033 
1034 	/*
1035 	 * Extract the lock pointer in case there are concurrent
1036 	 * hash_remove's for this instance.
1037 	 */
1038 	ASSERT(udp->udp_port != 0);
1039 	if (!caller_holds_lock) {
1040 		lockp = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)].uf_lock;
1041 		ASSERT(lockp != NULL);
1042 		mutex_enter(lockp);
1043 	}
1044 	if (udp->udp_ptpbhn != NULL) {
1045 		udpnext = udp->udp_bind_hash;
1046 		if (udpnext != NULL) {
1047 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
1048 			udp->udp_bind_hash = NULL;
1049 		}
1050 		*udp->udp_ptpbhn = udpnext;
1051 		udp->udp_ptpbhn = NULL;
1052 	}
1053 	if (!caller_holds_lock) {
1054 		mutex_exit(lockp);
1055 	}
1056 }
1057 
1058 static void
1059 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
1060 {
1061 	udp_t	**udpp;
1062 	udp_t	*udpnext;
1063 
1064 	ASSERT(MUTEX_HELD(&uf->uf_lock));
1065 	if (udp->udp_ptpbhn != NULL) {
1066 		udp_bind_hash_remove(udp, B_TRUE);
1067 	}
1068 	udpp = &uf->uf_udp;
1069 	udpnext = udpp[0];
1070 	if (udpnext != NULL) {
1071 		/*
1072 		 * If the new udp bound to the INADDR_ANY address
1073 		 * and the first one in the list is not bound to
1074 		 * INADDR_ANY we skip all entries until we find the
1075 		 * first one bound to INADDR_ANY.
1076 		 * This makes sure that applications binding to a
1077 		 * specific address get preference over those binding to
1078 		 * INADDR_ANY.
1079 		 */
1080 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
1081 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
1082 			while ((udpnext = udpp[0]) != NULL &&
1083 			    !V6_OR_V4_INADDR_ANY(
1084 			    udpnext->udp_bound_v6src)) {
1085 				udpp = &(udpnext->udp_bind_hash);
1086 			}
1087 			if (udpnext != NULL)
1088 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1089 		} else {
1090 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
1091 		}
1092 	}
1093 	udp->udp_bind_hash = udpnext;
1094 	udp->udp_ptpbhn = udpp;
1095 	udpp[0] = udp;
1096 }
1097 
1098 /*
1099  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
1100  * passed to udp_wput.
1101  * It associates a port number and local address with the stream.
1102  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
1103  * protocol type (IPPROTO_UDP) placed in the message following the address.
1104  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
1105  * (Called as writer.)
1106  *
1107  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
1108  * without setting SO_REUSEADDR. This is needed so that they
1109  * can be viewed as two independent transport protocols.
1110  * However, anonymouns ports are allocated from the same range to avoid
1111  * duplicating the udp_g_next_port_to_try.
1112  */
1113 static void
1114 udp_bind(queue_t *q, mblk_t *mp)
1115 {
1116 	sin_t		*sin;
1117 	sin6_t		*sin6;
1118 	mblk_t		*mp1;
1119 	in_port_t	port;		/* Host byte order */
1120 	in_port_t	requested_port;	/* Host byte order */
1121 	struct T_bind_req *tbr;
1122 	int		count;
1123 	in6_addr_t	v6src;
1124 	boolean_t	bind_to_req_port_only;
1125 	int		loopmax;
1126 	udp_fanout_t	*udpf;
1127 	in_port_t	lport;		/* Network byte order */
1128 	zoneid_t	zoneid;
1129 	conn_t		*connp;
1130 	udp_t		*udp;
1131 	boolean_t	is_inaddr_any;
1132 	mlp_type_t	addrtype, mlptype;
1133 
1134 	connp = Q_TO_CONN(q);
1135 	udp = connp->conn_udp;
1136 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
1137 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1138 		    "udp_bind: bad req, len %u",
1139 		    (uint_t)(mp->b_wptr - mp->b_rptr));
1140 		udp_err_ack(q, mp, TPROTO, 0);
1141 		return;
1142 	}
1143 
1144 	if (udp->udp_state != TS_UNBND) {
1145 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1146 		    "udp_bind: bad state, %u", udp->udp_state);
1147 		udp_err_ack(q, mp, TOUTSTATE, 0);
1148 		return;
1149 	}
1150 	/*
1151 	 * Reallocate the message to make sure we have enough room for an
1152 	 * address and the protocol type.
1153 	 */
1154 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
1155 	if (!mp1) {
1156 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1157 		return;
1158 	}
1159 
1160 	mp = mp1;
1161 	tbr = (struct T_bind_req *)mp->b_rptr;
1162 	switch (tbr->ADDR_length) {
1163 	case 0:			/* Request for a generic port */
1164 		tbr->ADDR_offset = sizeof (struct T_bind_req);
1165 		if (udp->udp_family == AF_INET) {
1166 			tbr->ADDR_length = sizeof (sin_t);
1167 			sin = (sin_t *)&tbr[1];
1168 			*sin = sin_null;
1169 			sin->sin_family = AF_INET;
1170 			mp->b_wptr = (uchar_t *)&sin[1];
1171 		} else {
1172 			ASSERT(udp->udp_family == AF_INET6);
1173 			tbr->ADDR_length = sizeof (sin6_t);
1174 			sin6 = (sin6_t *)&tbr[1];
1175 			*sin6 = sin6_null;
1176 			sin6->sin6_family = AF_INET6;
1177 			mp->b_wptr = (uchar_t *)&sin6[1];
1178 		}
1179 		port = 0;
1180 		break;
1181 
1182 	case sizeof (sin_t):	/* Complete IPv4 address */
1183 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
1184 		    sizeof (sin_t));
1185 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1186 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1187 			return;
1188 		}
1189 		if (udp->udp_family != AF_INET ||
1190 		    sin->sin_family != AF_INET) {
1191 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1192 			return;
1193 		}
1194 		port = ntohs(sin->sin_port);
1195 		break;
1196 
1197 	case sizeof (sin6_t):	/* complete IPv6 address */
1198 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
1199 		    sizeof (sin6_t));
1200 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1201 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1202 			return;
1203 		}
1204 		if (udp->udp_family != AF_INET6 ||
1205 		    sin6->sin6_family != AF_INET6) {
1206 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1207 			return;
1208 		}
1209 		port = ntohs(sin6->sin6_port);
1210 		break;
1211 
1212 	default:		/* Invalid request */
1213 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1214 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
1215 		udp_err_ack(q, mp, TBADADDR, 0);
1216 		return;
1217 	}
1218 
1219 	requested_port = port;
1220 
1221 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
1222 		bind_to_req_port_only = B_FALSE;
1223 	else			/* T_BIND_REQ and requested_port != 0 */
1224 		bind_to_req_port_only = B_TRUE;
1225 
1226 	if (requested_port == 0) {
1227 		/*
1228 		 * If the application passed in zero for the port number, it
1229 		 * doesn't care which port number we bind to. Get one in the
1230 		 * valid range.
1231 		 */
1232 		if (udp->udp_anon_priv_bind) {
1233 			port = udp_get_next_priv_port(udp);
1234 		} else {
1235 			port = udp_update_next_port(udp,
1236 			    udp_g_next_port_to_try, B_TRUE);
1237 		}
1238 	} else {
1239 		/*
1240 		 * If the port is in the well-known privileged range,
1241 		 * make sure the caller was privileged.
1242 		 */
1243 		int i;
1244 		boolean_t priv = B_FALSE;
1245 
1246 		if (port < udp_smallest_nonpriv_port) {
1247 			priv = B_TRUE;
1248 		} else {
1249 			for (i = 0; i < udp_g_num_epriv_ports; i++) {
1250 				if (port == udp_g_epriv_ports[i]) {
1251 					priv = B_TRUE;
1252 					break;
1253 				}
1254 			}
1255 		}
1256 
1257 		if (priv) {
1258 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
1259 
1260 			if (secpolicy_net_privaddr(cr, port) != 0) {
1261 				udp_err_ack(q, mp, TACCES, 0);
1262 				return;
1263 			}
1264 		}
1265 	}
1266 
1267 	if (port == 0) {
1268 		udp_err_ack(q, mp, TNOADDR, 0);
1269 		return;
1270 	}
1271 
1272 	/*
1273 	 * Copy the source address into our udp structure. This address
1274 	 * may still be zero; if so, IP will fill in the correct address
1275 	 * each time an outbound packet is passed to it.
1276 	 */
1277 	if (udp->udp_family == AF_INET) {
1278 		ASSERT(sin != NULL);
1279 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1280 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1281 		    udp->udp_ip_snd_options_len;
1282 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
1283 	} else {
1284 		ASSERT(sin6 != NULL);
1285 		v6src = sin6->sin6_addr;
1286 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
1287 			udp->udp_ipversion = IPV4_VERSION;
1288 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1289 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1290 		} else {
1291 			udp->udp_ipversion = IPV6_VERSION;
1292 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1293 		}
1294 	}
1295 
1296 	/*
1297 	 * If udp_reuseaddr is not set, then we have to make sure that
1298 	 * the IP address and port number the application requested
1299 	 * (or we selected for the application) is not being used by
1300 	 * another stream.  If another stream is already using the
1301 	 * requested IP address and port, the behavior depends on
1302 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
1303 	 * search for any an unused port to bind to the the stream.
1304 	 *
1305 	 * As per the BSD semantics, as modified by the Deering multicast
1306 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
1307 	 * to the same port independent of the local IP address.
1308 	 *
1309 	 * This is slightly different than in SunOS 4.X which did not
1310 	 * support IP multicast. Note that the change implemented by the
1311 	 * Deering multicast code effects all binds - not only binding
1312 	 * to IP multicast addresses.
1313 	 *
1314 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
1315 	 * order to guarantee a unique port.
1316 	 */
1317 
1318 	count = 0;
1319 	if (udp->udp_anon_priv_bind) {
1320 		/* loopmax = (IPPORT_RESERVED-1) - udp_min_anonpriv_port + 1 */
1321 		loopmax = IPPORT_RESERVED - udp_min_anonpriv_port;
1322 	} else {
1323 		loopmax = udp_largest_anon_port - udp_smallest_anon_port + 1;
1324 	}
1325 
1326 	is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
1327 	zoneid = connp->conn_zoneid;
1328 
1329 	for (;;) {
1330 		udp_t		*udp1;
1331 		boolean_t	found_exclbind = B_FALSE;
1332 
1333 		/*
1334 		 * Walk through the list of udp streams bound to
1335 		 * requested port with the same IP address.
1336 		 */
1337 		lport = htons(port);
1338 		udpf = &udp_bind_fanout[UDP_BIND_HASH(lport)];
1339 		mutex_enter(&udpf->uf_lock);
1340 		for (udp1 = udpf->uf_udp; udp1 != NULL;
1341 		    udp1 = udp1->udp_bind_hash) {
1342 			if (lport != udp1->udp_port)
1343 				continue;
1344 
1345 			/*
1346 			 * On a labeled system, we must treat bindings to ports
1347 			 * on shared IP addresses by sockets with MAC exemption
1348 			 * privilege as being in all zones, as there's
1349 			 * otherwise no way to identify the right receiver.
1350 			 */
1351 			if (zoneid != udp1->udp_connp->conn_zoneid &&
1352 			    !udp->udp_mac_exempt && !udp1->udp_mac_exempt)
1353 				continue;
1354 
1355 			/*
1356 			 * If UDP_EXCLBIND is set for either the bound or
1357 			 * binding endpoint, the semantics of bind
1358 			 * is changed according to the following chart.
1359 			 *
1360 			 * spec = specified address (v4 or v6)
1361 			 * unspec = unspecified address (v4 or v6)
1362 			 * A = specified addresses are different for endpoints
1363 			 *
1364 			 * bound	bind to		allowed?
1365 			 * -------------------------------------
1366 			 * unspec	unspec		no
1367 			 * unspec	spec		no
1368 			 * spec		unspec		no
1369 			 * spec		spec		yes if A
1370 			 *
1371 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
1372 			 * as UDP_EXCLBIND, except that zoneid is ignored.
1373 			 */
1374 			if (udp1->udp_exclbind || udp->udp_exclbind ||
1375 			    udp1->udp_mac_exempt || udp->udp_mac_exempt) {
1376 				if (V6_OR_V4_INADDR_ANY(
1377 				    udp1->udp_bound_v6src) ||
1378 				    is_inaddr_any ||
1379 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1380 				    &v6src)) {
1381 					found_exclbind = B_TRUE;
1382 					break;
1383 				}
1384 				continue;
1385 			}
1386 
1387 			/*
1388 			 * Check ipversion to allow IPv4 and IPv6 sockets to
1389 			 * have disjoint port number spaces.
1390 			 */
1391 			if (udp->udp_ipversion != udp1->udp_ipversion)
1392 				continue;
1393 
1394 			/*
1395 			 * No difference depending on SO_REUSEADDR.
1396 			 *
1397 			 * If existing port is bound to a
1398 			 * non-wildcard IP address and
1399 			 * the requesting stream is bound to
1400 			 * a distinct different IP addresses
1401 			 * (non-wildcard, also), keep going.
1402 			 */
1403 			if (!is_inaddr_any &&
1404 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
1405 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
1406 			    &v6src)) {
1407 				continue;
1408 			}
1409 			break;
1410 		}
1411 
1412 		if (!found_exclbind &&
1413 		    (udp->udp_reuseaddr && requested_port != 0)) {
1414 			break;
1415 		}
1416 
1417 		if (udp1 == NULL) {
1418 			/*
1419 			 * No other stream has this IP address
1420 			 * and port number. We can use it.
1421 			 */
1422 			break;
1423 		}
1424 		mutex_exit(&udpf->uf_lock);
1425 		if (bind_to_req_port_only) {
1426 			/*
1427 			 * We get here only when requested port
1428 			 * is bound (and only first  of the for()
1429 			 * loop iteration).
1430 			 *
1431 			 * The semantics of this bind request
1432 			 * require it to fail so we return from
1433 			 * the routine (and exit the loop).
1434 			 *
1435 			 */
1436 			udp_err_ack(q, mp, TADDRBUSY, 0);
1437 			return;
1438 		}
1439 
1440 		if (udp->udp_anon_priv_bind) {
1441 			port = udp_get_next_priv_port(udp);
1442 		} else {
1443 			if ((count == 0) && (requested_port != 0)) {
1444 				/*
1445 				 * If the application wants us to find
1446 				 * a port, get one to start with. Set
1447 				 * requested_port to 0, so that we will
1448 				 * update udp_g_next_port_to_try below.
1449 				 */
1450 				port = udp_update_next_port(udp,
1451 				    udp_g_next_port_to_try, B_TRUE);
1452 				requested_port = 0;
1453 			} else {
1454 				port = udp_update_next_port(udp, port + 1,
1455 				    B_FALSE);
1456 			}
1457 		}
1458 
1459 		if (port == 0 || ++count >= loopmax) {
1460 			/*
1461 			 * We've tried every possible port number and
1462 			 * there are none available, so send an error
1463 			 * to the user.
1464 			 */
1465 			udp_err_ack(q, mp, TNOADDR, 0);
1466 			return;
1467 		}
1468 	}
1469 
1470 	/*
1471 	 * Copy the source address into our udp structure.  This address
1472 	 * may still be zero; if so, ip will fill in the correct address
1473 	 * each time an outbound packet is passed to it.
1474 	 * If we are binding to a broadcast or multicast address udp_rput
1475 	 * will clear the source address when it receives the T_BIND_ACK.
1476 	 */
1477 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
1478 	udp->udp_port = lport;
1479 	/*
1480 	 * Now reset the the next anonymous port if the application requested
1481 	 * an anonymous port, or we handed out the next anonymous port.
1482 	 */
1483 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
1484 		udp_g_next_port_to_try = port + 1;
1485 	}
1486 
1487 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
1488 	if (udp->udp_family == AF_INET) {
1489 		sin->sin_port = udp->udp_port;
1490 	} else {
1491 		int error;
1492 
1493 		sin6->sin6_port = udp->udp_port;
1494 		/* Rebuild the header template */
1495 		error = udp_build_hdrs(q, udp);
1496 		if (error != 0) {
1497 			mutex_exit(&udpf->uf_lock);
1498 			udp_err_ack(q, mp, TSYSERR, error);
1499 			return;
1500 		}
1501 	}
1502 	udp->udp_state = TS_IDLE;
1503 	udp_bind_hash_insert(udpf, udp);
1504 	mutex_exit(&udpf->uf_lock);
1505 
1506 	if (cl_inet_bind) {
1507 		/*
1508 		 * Running in cluster mode - register bind information
1509 		 */
1510 		if (udp->udp_ipversion == IPV4_VERSION) {
1511 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1512 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1513 			    (in_port_t)udp->udp_port);
1514 		} else {
1515 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1516 			    (uint8_t *)&(udp->udp_v6src),
1517 			    (in_port_t)udp->udp_port);
1518 		}
1519 
1520 	}
1521 
1522 	connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
1523 	if (is_system_labeled() && (!connp->conn_anon_port ||
1524 	    connp->conn_anon_mlp)) {
1525 		uint16_t mlpport;
1526 		cred_t *cr = connp->conn_cred;
1527 		zone_t *zone;
1528 
1529 		connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth :
1530 		    mlptSingle;
1531 		addrtype = tsol_mlp_addr_type(zoneid, IPV6_VERSION, &v6src);
1532 		if (addrtype == mlptSingle) {
1533 			udp_err_ack(q, mp, TNOADDR, 0);
1534 			connp->conn_anon_port = B_FALSE;
1535 			connp->conn_mlp_type = mlptSingle;
1536 			return;
1537 		}
1538 		mlpport = connp->conn_anon_port ? PMAPPORT : port;
1539 		zone = crgetzone(cr);
1540 		mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
1541 		    addrtype);
1542 		if (mlptype != mlptSingle &&
1543 		    (connp->conn_mlp_type == mlptSingle ||
1544 		    secpolicy_net_bindmlp(cr) != 0)) {
1545 			if (udp->udp_debug) {
1546 				(void) strlog(UDP_MOD_ID, 0, 1,
1547 				    SL_ERROR|SL_TRACE,
1548 				    "udp_bind: no priv for multilevel port %d",
1549 				    mlpport);
1550 			}
1551 			udp_err_ack(q, mp, TACCES, 0);
1552 			connp->conn_anon_port = B_FALSE;
1553 			connp->conn_mlp_type = mlptSingle;
1554 			return;
1555 		}
1556 
1557 		/*
1558 		 * If we're specifically binding a shared IP address and the
1559 		 * port is MLP on shared addresses, then check to see if this
1560 		 * zone actually owns the MLP.  Reject if not.
1561 		 */
1562 		if (mlptype == mlptShared && addrtype == mlptShared) {
1563 			zoneid_t mlpzone;
1564 
1565 			mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
1566 			    htons(mlpport));
1567 			if (connp->conn_zoneid != mlpzone) {
1568 				if (udp->udp_debug) {
1569 					(void) strlog(UDP_MOD_ID, 0, 1,
1570 					    SL_ERROR|SL_TRACE,
1571 					    "udp_bind: attempt to bind port "
1572 					    "%d on shared addr in zone %d "
1573 					    "(should be %d)",
1574 					    mlpport, connp->conn_zoneid,
1575 					    mlpzone);
1576 				}
1577 				udp_err_ack(q, mp, TACCES, 0);
1578 				connp->conn_anon_port = B_FALSE;
1579 				connp->conn_mlp_type = mlptSingle;
1580 				return;
1581 			}
1582 		}
1583 		if (connp->conn_anon_port) {
1584 			int error;
1585 
1586 			error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
1587 			    port, B_TRUE);
1588 			if (error != 0) {
1589 				if (udp->udp_debug) {
1590 					(void) strlog(UDP_MOD_ID, 0, 1,
1591 					    SL_ERROR|SL_TRACE,
1592 					    "udp_bind: cannot establish anon "
1593 					    "MLP for port %d", port);
1594 				}
1595 				udp_err_ack(q, mp, TACCES, 0);
1596 				connp->conn_anon_port = B_FALSE;
1597 				connp->conn_mlp_type = mlptSingle;
1598 				return;
1599 			}
1600 		}
1601 		connp->conn_mlp_type = mlptype;
1602 	}
1603 
1604 	/* Pass the protocol number in the message following the address. */
1605 	*mp->b_wptr++ = IPPROTO_UDP;
1606 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1607 		/*
1608 		 * Append a request for an IRE if udp_v6src not
1609 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1610 		 */
1611 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1612 		if (!mp->b_cont) {
1613 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1614 			return;
1615 		}
1616 		mp->b_cont->b_wptr += sizeof (ire_t);
1617 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1618 	}
1619 	if (udp->udp_family == AF_INET6)
1620 		mp = ip_bind_v6(q, mp, connp, NULL);
1621 	else
1622 		mp = ip_bind_v4(q, mp, connp);
1623 
1624 	if (mp != NULL)
1625 		udp_rput_other(_RD(q), mp);
1626 	else
1627 		CONN_INC_REF(connp);
1628 }
1629 
1630 
1631 void
1632 udp_resume_bind(conn_t *connp, mblk_t *mp)
1633 {
1634 	udp_enter(connp, mp, udp_resume_bind_cb, SQTAG_BIND_RETRY);
1635 }
1636 
1637 /*
1638  * This is called from ip_wput_nondata to resume a deferred UDP bind.
1639  */
1640 /* ARGSUSED */
1641 static void
1642 udp_resume_bind_cb(void *arg, mblk_t *mp, void *arg2)
1643 {
1644 	conn_t *connp = arg;
1645 
1646 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1647 
1648 	udp_rput_other(connp->conn_rq, mp);
1649 
1650 	CONN_OPER_PENDING_DONE(connp);
1651 	udp_exit(connp);
1652 }
1653 
1654 /*
1655  * This routine handles each T_CONN_REQ message passed to udp.  It
1656  * associates a default destination address with the stream.
1657  *
1658  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1659  *	T_BIND_REQ	- specifying local and remote address/port
1660  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1661  *	T_OK_ACK	- for the T_CONN_REQ
1662  *	T_CONN_CON	- to keep the TPI user happy
1663  *
1664  * The connect completes in udp_rput.
1665  * When a T_BIND_ACK is received information is extracted from the IRE
1666  * and the two appended messages are sent to the TPI user.
1667  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
1668  * it to an error ack for the appropriate primitive.
1669  */
1670 static void
1671 udp_connect(queue_t *q, mblk_t *mp)
1672 {
1673 	sin6_t	*sin6;
1674 	sin_t	*sin;
1675 	struct T_conn_req	*tcr;
1676 	in6_addr_t v6dst;
1677 	ipaddr_t v4dst;
1678 	uint16_t dstport;
1679 	uint32_t flowinfo;
1680 	mblk_t	*mp1, *mp2;
1681 	udp_fanout_t	*udpf;
1682 	udp_t	*udp, *udp1;
1683 
1684 	udp = Q_TO_UDP(q);
1685 
1686 	tcr = (struct T_conn_req *)mp->b_rptr;
1687 
1688 	/* A bit of sanity checking */
1689 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1690 		udp_err_ack(q, mp, TPROTO, 0);
1691 		return;
1692 	}
1693 	/*
1694 	 * This UDP must have bound to a port already before doing
1695 	 * a connect.
1696 	 */
1697 	if (udp->udp_state == TS_UNBND) {
1698 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1699 		    "udp_connect: bad state, %u", udp->udp_state);
1700 		udp_err_ack(q, mp, TOUTSTATE, 0);
1701 		return;
1702 	}
1703 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1704 
1705 	udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
1706 
1707 	if (udp->udp_state == TS_DATA_XFER) {
1708 		/* Already connected - clear out state */
1709 		mutex_enter(&udpf->uf_lock);
1710 		udp->udp_v6src = udp->udp_bound_v6src;
1711 		udp->udp_state = TS_IDLE;
1712 		mutex_exit(&udpf->uf_lock);
1713 	}
1714 
1715 	if (tcr->OPT_length != 0) {
1716 		udp_err_ack(q, mp, TBADOPT, 0);
1717 		return;
1718 	}
1719 
1720 	/*
1721 	 * Determine packet type based on type of address passed in
1722 	 * the request should contain an IPv4 or IPv6 address.
1723 	 * Make sure that address family matches the type of
1724 	 * family of the the address passed down
1725 	 */
1726 	switch (tcr->DEST_length) {
1727 	default:
1728 		udp_err_ack(q, mp, TBADADDR, 0);
1729 		return;
1730 
1731 	case sizeof (sin_t):
1732 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1733 		    sizeof (sin_t));
1734 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1735 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1736 			return;
1737 		}
1738 		if (udp->udp_family != AF_INET ||
1739 		    sin->sin_family != AF_INET) {
1740 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1741 			return;
1742 		}
1743 		v4dst = sin->sin_addr.s_addr;
1744 		dstport = sin->sin_port;
1745 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1746 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1747 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1748 		    udp->udp_ip_snd_options_len;
1749 		break;
1750 
1751 	case sizeof (sin6_t):
1752 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1753 		    sizeof (sin6_t));
1754 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1755 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1756 			return;
1757 		}
1758 		if (udp->udp_family != AF_INET6 ||
1759 		    sin6->sin6_family != AF_INET6) {
1760 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1761 			return;
1762 		}
1763 		v6dst = sin6->sin6_addr;
1764 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1765 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1766 			udp->udp_ipversion = IPV4_VERSION;
1767 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
1768 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
1769 			flowinfo = 0;
1770 		} else {
1771 			udp->udp_ipversion = IPV6_VERSION;
1772 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1773 			flowinfo = sin6->sin6_flowinfo;
1774 		}
1775 		dstport = sin6->sin6_port;
1776 		break;
1777 	}
1778 	if (dstport == 0) {
1779 		udp_err_ack(q, mp, TBADADDR, 0);
1780 		return;
1781 	}
1782 
1783 	/*
1784 	 * Create a default IP header with no IP options.
1785 	 */
1786 	udp->udp_dstport = dstport;
1787 	if (udp->udp_ipversion == IPV4_VERSION) {
1788 		/*
1789 		 * Interpret a zero destination to mean loopback.
1790 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1791 		 * generate the T_CONN_CON.
1792 		 */
1793 		if (v4dst == INADDR_ANY) {
1794 			v4dst = htonl(INADDR_LOOPBACK);
1795 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1796 			if (udp->udp_family == AF_INET) {
1797 				sin->sin_addr.s_addr = v4dst;
1798 			} else {
1799 				sin6->sin6_addr = v6dst;
1800 			}
1801 		}
1802 		udp->udp_v6dst = v6dst;
1803 		udp->udp_flowinfo = 0;
1804 
1805 		/*
1806 		 * If the destination address is multicast and
1807 		 * an outgoing multicast interface has been set,
1808 		 * use the address of that interface as our
1809 		 * source address if no source address has been set.
1810 		 */
1811 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1812 		    CLASSD(v4dst) &&
1813 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1814 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1815 			    &udp->udp_v6src);
1816 		}
1817 	} else {
1818 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1819 		/*
1820 		 * Interpret a zero destination to mean loopback.
1821 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1822 		 * generate the T_CONN_CON.
1823 		 */
1824 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1825 			v6dst = ipv6_loopback;
1826 			sin6->sin6_addr = v6dst;
1827 		}
1828 		udp->udp_v6dst = v6dst;
1829 		udp->udp_flowinfo = flowinfo;
1830 		/*
1831 		 * If the destination address is multicast and
1832 		 * an outgoing multicast interface has been set,
1833 		 * then the ip bind logic will pick the correct source
1834 		 * address (i.e. matching the outgoing multicast interface).
1835 		 */
1836 	}
1837 
1838 	/*
1839 	 * Verify that the src/port/dst/port is unique for all
1840 	 * connections in TS_DATA_XFER
1841 	 */
1842 	mutex_enter(&udpf->uf_lock);
1843 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1844 		if (udp1->udp_state != TS_DATA_XFER)
1845 			continue;
1846 		if (udp->udp_port != udp1->udp_port ||
1847 		    udp->udp_ipversion != udp1->udp_ipversion ||
1848 		    dstport != udp1->udp_dstport ||
1849 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1850 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst))
1851 			continue;
1852 		mutex_exit(&udpf->uf_lock);
1853 		udp_err_ack(q, mp, TBADADDR, 0);
1854 		return;
1855 	}
1856 	udp->udp_state = TS_DATA_XFER;
1857 	mutex_exit(&udpf->uf_lock);
1858 
1859 	/*
1860 	 * Send down bind to IP to verify that there is a route
1861 	 * and to determine the source address.
1862 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1863 	 */
1864 	if (udp->udp_family == AF_INET)
1865 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1866 	else
1867 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1868 	if (mp1 == NULL) {
1869 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1870 bind_failed:
1871 		mutex_enter(&udpf->uf_lock);
1872 		udp->udp_state = TS_IDLE;
1873 		mutex_exit(&udpf->uf_lock);
1874 		return;
1875 	}
1876 
1877 	/*
1878 	 * We also have to send a connection confirmation to
1879 	 * keep TLI happy. Prepare it for udp_rput.
1880 	 */
1881 	if (udp->udp_family == AF_INET)
1882 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1883 		    sizeof (*sin), NULL, 0);
1884 	else
1885 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1886 		    sizeof (*sin6), NULL, 0);
1887 	if (mp2 == NULL) {
1888 		freemsg(mp1);
1889 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1890 		goto bind_failed;
1891 	}
1892 
1893 	mp = mi_tpi_ok_ack_alloc(mp);
1894 	if (mp == NULL) {
1895 		/* Unable to reuse the T_CONN_REQ for the ack. */
1896 		freemsg(mp2);
1897 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1898 		goto bind_failed;
1899 	}
1900 
1901 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1902 	linkb(mp1, mp);
1903 	linkb(mp1, mp2);
1904 
1905 	mblk_setcred(mp1, udp->udp_connp->conn_cred);
1906 	if (udp->udp_family == AF_INET)
1907 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
1908 	else
1909 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
1910 
1911 	if (mp1 != NULL)
1912 		udp_rput_other(_RD(q), mp1);
1913 	else
1914 		CONN_INC_REF(udp->udp_connp);
1915 }
1916 
1917 static int
1918 udp_close(queue_t *q)
1919 {
1920 	conn_t	*connp = Q_TO_CONN(UDP_WR(q));
1921 	udp_t	*udp;
1922 	queue_t	*ip_rq = RD(UDP_WR(q));
1923 
1924 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1925 	udp = connp->conn_udp;
1926 
1927 	ip_quiesce_conn(connp);
1928 	/*
1929 	 * Disable read-side synchronous stream
1930 	 * interface and drain any queued data.
1931 	 */
1932 	udp_rcv_drain(q, udp, B_TRUE);
1933 	ASSERT(!udp->udp_direct_sockfs);
1934 
1935 	qprocsoff(q);
1936 
1937 	/* restore IP module's high and low water marks to default values */
1938 	ip_rq->q_hiwat = ip_rq->q_qinfo->qi_minfo->mi_hiwat;
1939 	WR(ip_rq)->q_hiwat = WR(ip_rq)->q_qinfo->qi_minfo->mi_hiwat;
1940 	WR(ip_rq)->q_lowat = WR(ip_rq)->q_qinfo->qi_minfo->mi_lowat;
1941 
1942 	ASSERT(udp->udp_rcv_cnt == 0);
1943 	ASSERT(udp->udp_rcv_msgcnt == 0);
1944 	ASSERT(udp->udp_rcv_list_head == NULL);
1945 	ASSERT(udp->udp_rcv_list_tail == NULL);
1946 
1947 	/* connp is now single threaded. */
1948 	udp_close_free(connp);
1949 	/*
1950 	 * Restore connp as an IP endpoint.  We don't need
1951 	 * any locks since we are now single threaded
1952 	 */
1953 	connp->conn_flags &= ~IPCL_UDP;
1954 	connp->conn_state_flags &=
1955 	    ~(CONN_CLOSING | CONN_CONDEMNED | CONN_QUIESCED);
1956 	connp->conn_ulp_labeled = B_FALSE;
1957 	return (0);
1958 }
1959 
1960 /*
1961  * Called in the close path from IP (ip_quiesce_conn) to quiesce the conn
1962  */
1963 void
1964 udp_quiesce_conn(conn_t *connp)
1965 {
1966 	udp_t	*udp = connp->conn_udp;
1967 
1968 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1969 		/*
1970 		 * Running in cluster mode - register unbind information
1971 		 */
1972 		if (udp->udp_ipversion == IPV4_VERSION) {
1973 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1974 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1975 			    (in_port_t)udp->udp_port);
1976 		} else {
1977 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1978 			    (uint8_t *)(&(udp->udp_v6src)),
1979 			    (in_port_t)udp->udp_port);
1980 		}
1981 	}
1982 
1983 	udp_bind_hash_remove(udp, B_FALSE);
1984 
1985 	mutex_enter(&connp->conn_lock);
1986 	while (udp->udp_reader_count != 0 || udp->udp_squeue_count != 0 ||
1987 	    udp->udp_mode != UDP_MT_HOT) {
1988 		cv_wait(&connp->conn_cv, &connp->conn_lock);
1989 	}
1990 	mutex_exit(&connp->conn_lock);
1991 }
1992 
1993 void
1994 udp_close_free(conn_t *connp)
1995 {
1996 	udp_t *udp = connp->conn_udp;
1997 
1998 	/* If there are any options associated with the stream, free them. */
1999 	if (udp->udp_ip_snd_options) {
2000 		mi_free((char *)udp->udp_ip_snd_options);
2001 		udp->udp_ip_snd_options = NULL;
2002 	}
2003 
2004 	if (udp->udp_ip_rcv_options) {
2005 		mi_free((char *)udp->udp_ip_rcv_options);
2006 		udp->udp_ip_rcv_options = NULL;
2007 	}
2008 
2009 	/* Free memory associated with sticky options */
2010 	if (udp->udp_sticky_hdrs_len != 0) {
2011 		kmem_free(udp->udp_sticky_hdrs,
2012 		    udp->udp_sticky_hdrs_len);
2013 		udp->udp_sticky_hdrs = NULL;
2014 		udp->udp_sticky_hdrs_len = 0;
2015 	}
2016 
2017 	ip6_pkt_free(&udp->udp_sticky_ipp);
2018 
2019 	udp->udp_connp = NULL;
2020 	connp->conn_udp = NULL;
2021 	kmem_cache_free(udp_cache, udp);
2022 }
2023 
2024 /*
2025  * This routine handles each T_DISCON_REQ message passed to udp
2026  * as an indicating that UDP is no longer connected. This results
2027  * in sending a T_BIND_REQ to IP to restore the binding to just
2028  * the local address/port.
2029  *
2030  * This routine sends down a T_BIND_REQ to IP with the following mblks:
2031  *	T_BIND_REQ	- specifying just the local address/port
2032  *	T_OK_ACK	- for the T_DISCON_REQ
2033  *
2034  * The disconnect completes in udp_rput.
2035  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
2036  * Should udp_rput receive T_ERROR_ACK for the T_BIND_REQ it will convert
2037  * it to an error ack for the appropriate primitive.
2038  */
2039 static void
2040 udp_disconnect(queue_t *q, mblk_t *mp)
2041 {
2042 	udp_t	*udp = Q_TO_UDP(q);
2043 	mblk_t	*mp1;
2044 	udp_fanout_t *udpf;
2045 
2046 	if (udp->udp_state != TS_DATA_XFER) {
2047 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
2048 		    "udp_disconnect: bad state, %u", udp->udp_state);
2049 		udp_err_ack(q, mp, TOUTSTATE, 0);
2050 		return;
2051 	}
2052 	udpf = &udp_bind_fanout[UDP_BIND_HASH(udp->udp_port)];
2053 	mutex_enter(&udpf->uf_lock);
2054 	udp->udp_v6src = udp->udp_bound_v6src;
2055 	udp->udp_state = TS_IDLE;
2056 	mutex_exit(&udpf->uf_lock);
2057 
2058 	/*
2059 	 * Send down bind to IP to remove the full binding and revert
2060 	 * to the local address binding.
2061 	 */
2062 	if (udp->udp_family == AF_INET)
2063 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
2064 	else
2065 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
2066 	if (mp1 == NULL) {
2067 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2068 		return;
2069 	}
2070 	mp = mi_tpi_ok_ack_alloc(mp);
2071 	if (mp == NULL) {
2072 		/* Unable to reuse the T_DISCON_REQ for the ack. */
2073 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
2074 		return;
2075 	}
2076 
2077 	if (udp->udp_family == AF_INET6) {
2078 		int error;
2079 
2080 		/* Rebuild the header template */
2081 		error = udp_build_hdrs(q, udp);
2082 		if (error != 0) {
2083 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
2084 			freemsg(mp1);
2085 			return;
2086 		}
2087 	}
2088 	mutex_enter(&udpf->uf_lock);
2089 	udp->udp_discon_pending = 1;
2090 	mutex_exit(&udpf->uf_lock);
2091 
2092 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_rput */
2093 	linkb(mp1, mp);
2094 
2095 	if (udp->udp_family == AF_INET6)
2096 		mp1 = ip_bind_v6(q, mp1, udp->udp_connp, NULL);
2097 	else
2098 		mp1 = ip_bind_v4(q, mp1, udp->udp_connp);
2099 
2100 	if (mp1 != NULL)
2101 		udp_rput_other(_RD(q), mp1);
2102 	else
2103 		CONN_INC_REF(udp->udp_connp);
2104 }
2105 
2106 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
2107 static void
2108 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
2109 {
2110 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
2111 		putnext(UDP_RD(q), mp);
2112 }
2113 
2114 /* Shorthand to generate and send TPI error acks to our client */
2115 static void
2116 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
2117     int sys_error)
2118 {
2119 	struct T_error_ack	*teackp;
2120 
2121 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
2122 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
2123 		teackp = (struct T_error_ack *)mp->b_rptr;
2124 		teackp->ERROR_prim = primitive;
2125 		teackp->TLI_error = t_error;
2126 		teackp->UNIX_error = sys_error;
2127 		putnext(UDP_RD(q), mp);
2128 	}
2129 }
2130 
2131 /*ARGSUSED*/
2132 static int
2133 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
2134 {
2135 	int i;
2136 
2137 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2138 		if (udp_g_epriv_ports[i] != 0)
2139 			(void) mi_mpprintf(mp, "%d ", udp_g_epriv_ports[i]);
2140 	}
2141 	return (0);
2142 }
2143 
2144 /* ARGSUSED */
2145 static int
2146 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2147     cred_t *cr)
2148 {
2149 	long	new_value;
2150 	int	i;
2151 
2152 	/*
2153 	 * Fail the request if the new value does not lie within the
2154 	 * port number limits.
2155 	 */
2156 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2157 	    new_value <= 0 || new_value >= 65536) {
2158 		return (EINVAL);
2159 	}
2160 
2161 	/* Check if the value is already in the list */
2162 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2163 		if (new_value == udp_g_epriv_ports[i]) {
2164 			return (EEXIST);
2165 		}
2166 	}
2167 	/* Find an empty slot */
2168 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2169 		if (udp_g_epriv_ports[i] == 0)
2170 			break;
2171 	}
2172 	if (i == udp_g_num_epriv_ports) {
2173 		return (EOVERFLOW);
2174 	}
2175 
2176 	/* Set the new value */
2177 	udp_g_epriv_ports[i] = (in_port_t)new_value;
2178 	return (0);
2179 }
2180 
2181 /* ARGSUSED */
2182 static int
2183 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
2184     cred_t *cr)
2185 {
2186 	long	new_value;
2187 	int	i;
2188 
2189 	/*
2190 	 * Fail the request if the new value does not lie within the
2191 	 * port number limits.
2192 	 */
2193 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
2194 	    new_value <= 0 || new_value >= 65536) {
2195 		return (EINVAL);
2196 	}
2197 
2198 	/* Check that the value is already in the list */
2199 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
2200 		if (udp_g_epriv_ports[i] == new_value)
2201 			break;
2202 	}
2203 	if (i == udp_g_num_epriv_ports) {
2204 		return (ESRCH);
2205 	}
2206 
2207 	/* Clear the value */
2208 	udp_g_epriv_ports[i] = 0;
2209 	return (0);
2210 }
2211 
2212 /* At minimum we need 4 bytes of UDP header */
2213 #define	ICMP_MIN_UDP_HDR	4
2214 
2215 /*
2216  * udp_icmp_error is called by udp_rput to process ICMP msgs. passed up by IP.
2217  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2218  * Assumes that IP has pulled up everything up to and including the ICMP header.
2219  * An M_CTL could potentially come here from some other module (i.e. if UDP
2220  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2221  * does not have enough ICMP information , following STREAMS conventions,
2222  * we send it upstream assuming it is an M_CTL we don't understand.
2223  */
2224 static void
2225 udp_icmp_error(queue_t *q, mblk_t *mp)
2226 {
2227 	icmph_t *icmph;
2228 	ipha_t	*ipha;
2229 	int	iph_hdr_length;
2230 	udpha_t	*udpha;
2231 	sin_t	sin;
2232 	sin6_t	sin6;
2233 	mblk_t	*mp1;
2234 	int	error = 0;
2235 	size_t	mp_size = MBLKL(mp);
2236 	udp_t	*udp = Q_TO_UDP(q);
2237 
2238 	/*
2239 	 * Assume IP provides aligned packets - otherwise toss
2240 	 */
2241 	if (!OK_32PTR(mp->b_rptr)) {
2242 		freemsg(mp);
2243 		return;
2244 	}
2245 
2246 	/*
2247 	 * Verify that we have a complete IP header and the application has
2248 	 * asked for errors. If not, send it upstream.
2249 	 */
2250 	if (!udp->udp_dgram_errind || mp_size < sizeof (ipha_t)) {
2251 noticmpv4:
2252 		putnext(UDP_RD(q), mp);
2253 		return;
2254 	}
2255 
2256 	ipha = (ipha_t *)mp->b_rptr;
2257 	/*
2258 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
2259 	 * upstream. ICMPv6  is handled in udp_icmp_error_ipv6.
2260 	 */
2261 	switch (IPH_HDR_VERSION(ipha)) {
2262 	case IPV6_VERSION:
2263 		udp_icmp_error_ipv6(q, mp);
2264 		return;
2265 	case IPV4_VERSION:
2266 		break;
2267 	default:
2268 		goto noticmpv4;
2269 	}
2270 
2271 	/* Skip past the outer IP and ICMP headers */
2272 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2273 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
2274 	/*
2275 	 * If we don't have the correct outer IP header length or if the ULP
2276 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
2277 	 * send the packet upstream.
2278 	 */
2279 	if (iph_hdr_length < sizeof (ipha_t) ||
2280 	    ipha->ipha_protocol != IPPROTO_ICMP ||
2281 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
2282 		goto noticmpv4;
2283 	}
2284 	ipha = (ipha_t *)&icmph[1];
2285 
2286 	/* Skip past the inner IP and find the ULP header */
2287 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
2288 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
2289 	/*
2290 	 * If we don't have the correct inner IP header length or if the ULP
2291 	 * is not IPPROTO_UDP or if we don't have at least ICMP_MIN_UDP_HDR
2292 	 * bytes of UDP header, send it upstream.
2293 	 */
2294 	if (iph_hdr_length < sizeof (ipha_t) ||
2295 	    ipha->ipha_protocol != IPPROTO_UDP ||
2296 	    (uchar_t *)udpha + ICMP_MIN_UDP_HDR > mp->b_wptr) {
2297 		goto noticmpv4;
2298 	}
2299 
2300 	switch (icmph->icmph_type) {
2301 	case ICMP_DEST_UNREACHABLE:
2302 		switch (icmph->icmph_code) {
2303 		case ICMP_FRAGMENTATION_NEEDED:
2304 			/*
2305 			 * IP has already adjusted the path MTU.
2306 			 * XXX Somehow pass MTU indication to application?
2307 			 */
2308 			break;
2309 		case ICMP_PORT_UNREACHABLE:
2310 		case ICMP_PROTOCOL_UNREACHABLE:
2311 			error = ECONNREFUSED;
2312 			break;
2313 		default:
2314 			/* Transient errors */
2315 			break;
2316 		}
2317 		break;
2318 	default:
2319 		/* Transient errors */
2320 		break;
2321 	}
2322 	if (error == 0) {
2323 		freemsg(mp);
2324 		return;
2325 	}
2326 
2327 	switch (udp->udp_family) {
2328 	case AF_INET:
2329 		sin = sin_null;
2330 		sin.sin_family = AF_INET;
2331 		sin.sin_addr.s_addr = ipha->ipha_dst;
2332 		sin.sin_port = udpha->uha_dst_port;
2333 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
2334 		    error);
2335 		break;
2336 	case AF_INET6:
2337 		sin6 = sin6_null;
2338 		sin6.sin6_family = AF_INET6;
2339 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
2340 		sin6.sin6_port = udpha->uha_dst_port;
2341 
2342 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
2343 		    NULL, 0, error);
2344 		break;
2345 	}
2346 	if (mp1)
2347 		putnext(UDP_RD(q), mp1);
2348 	freemsg(mp);
2349 }
2350 
2351 /*
2352  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
2353  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
2354  * Assumes that IP has pulled up all the extension headers as well as the
2355  * ICMPv6 header.
2356  * An M_CTL could potentially come here from some other module (i.e. if UDP
2357  * is pushed on some module other than IP). Thus, if we find that the M_CTL
2358  * does not have enough ICMP information , following STREAMS conventions,
2359  * we send it upstream assuming it is an M_CTL we don't understand. The reason
2360  * it might get here is if the non-ICMP M_CTL accidently has 6 in the version
2361  * field (when cast to ipha_t in udp_icmp_error).
2362  */
2363 static void
2364 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
2365 {
2366 	icmp6_t		*icmp6;
2367 	ip6_t		*ip6h, *outer_ip6h;
2368 	uint16_t	hdr_length;
2369 	uint8_t		*nexthdrp;
2370 	udpha_t		*udpha;
2371 	sin6_t		sin6;
2372 	mblk_t		*mp1;
2373 	int		error = 0;
2374 	size_t		mp_size = MBLKL(mp);
2375 	udp_t		*udp = Q_TO_UDP(q);
2376 
2377 	/*
2378 	 * Verify that we have a complete IP header. If not, send it upstream.
2379 	 */
2380 	if (mp_size < sizeof (ip6_t)) {
2381 noticmpv6:
2382 		putnext(UDP_RD(q), mp);
2383 		return;
2384 	}
2385 
2386 	outer_ip6h = (ip6_t *)mp->b_rptr;
2387 	/*
2388 	 * Verify this is an ICMPV6 packet, else send it upstream
2389 	 */
2390 	if (outer_ip6h->ip6_nxt == IPPROTO_ICMPV6) {
2391 		hdr_length = IPV6_HDR_LEN;
2392 	} else if (!ip_hdr_length_nexthdr_v6(mp, outer_ip6h, &hdr_length,
2393 	    &nexthdrp) ||
2394 	    *nexthdrp != IPPROTO_ICMPV6) {
2395 		goto noticmpv6;
2396 	}
2397 	icmp6 = (icmp6_t *)&mp->b_rptr[hdr_length];
2398 	ip6h = (ip6_t *)&icmp6[1];
2399 	/*
2400 	 * Verify we have a complete ICMP and inner IP header.
2401 	 */
2402 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
2403 		goto noticmpv6;
2404 
2405 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &hdr_length, &nexthdrp))
2406 		goto noticmpv6;
2407 	udpha = (udpha_t *)((char *)ip6h + hdr_length);
2408 	/*
2409 	 * Validate inner header. If the ULP is not IPPROTO_UDP or if we don't
2410 	 * have at least ICMP_MIN_UDP_HDR bytes of  UDP header send the
2411 	 * packet upstream.
2412 	 */
2413 	if ((*nexthdrp != IPPROTO_UDP) ||
2414 	    ((uchar_t *)udpha + ICMP_MIN_UDP_HDR) > mp->b_wptr) {
2415 		goto noticmpv6;
2416 	}
2417 
2418 	switch (icmp6->icmp6_type) {
2419 	case ICMP6_DST_UNREACH:
2420 		switch (icmp6->icmp6_code) {
2421 		case ICMP6_DST_UNREACH_NOPORT:
2422 			error = ECONNREFUSED;
2423 			break;
2424 		case ICMP6_DST_UNREACH_ADMIN:
2425 		case ICMP6_DST_UNREACH_NOROUTE:
2426 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
2427 		case ICMP6_DST_UNREACH_ADDR:
2428 			/* Transient errors */
2429 			break;
2430 		default:
2431 			break;
2432 		}
2433 		break;
2434 	case ICMP6_PACKET_TOO_BIG: {
2435 		struct T_unitdata_ind	*tudi;
2436 		struct T_opthdr		*toh;
2437 		size_t			udi_size;
2438 		mblk_t			*newmp;
2439 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
2440 		    sizeof (struct ip6_mtuinfo);
2441 		sin6_t			*sin6;
2442 		struct ip6_mtuinfo	*mtuinfo;
2443 
2444 		/*
2445 		 * If the application has requested to receive path mtu
2446 		 * information, send up an empty message containing an
2447 		 * IPV6_PATHMTU ancillary data item.
2448 		 */
2449 		if (!udp->udp_ipv6_recvpathmtu)
2450 			break;
2451 
2452 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
2453 		    opt_length;
2454 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
2455 			BUMP_MIB(&udp_mib, udpInErrors);
2456 			break;
2457 		}
2458 
2459 		/*
2460 		 * newmp->b_cont is left to NULL on purpose.  This is an
2461 		 * empty message containing only ancillary data.
2462 		 */
2463 		newmp->b_datap->db_type = M_PROTO;
2464 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
2465 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
2466 		tudi->PRIM_type = T_UNITDATA_IND;
2467 		tudi->SRC_length = sizeof (sin6_t);
2468 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
2469 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
2470 		tudi->OPT_length = opt_length;
2471 
2472 		sin6 = (sin6_t *)&tudi[1];
2473 		bzero(sin6, sizeof (sin6_t));
2474 		sin6->sin6_family = AF_INET6;
2475 		sin6->sin6_addr = udp->udp_v6dst;
2476 
2477 		toh = (struct T_opthdr *)&sin6[1];
2478 		toh->level = IPPROTO_IPV6;
2479 		toh->name = IPV6_PATHMTU;
2480 		toh->len = opt_length;
2481 		toh->status = 0;
2482 
2483 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
2484 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
2485 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
2486 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
2487 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
2488 		/*
2489 		 * We've consumed everything we need from the original
2490 		 * message.  Free it, then send our empty message.
2491 		 */
2492 		freemsg(mp);
2493 		putnext(UDP_RD(q), newmp);
2494 		return;
2495 	}
2496 	case ICMP6_TIME_EXCEEDED:
2497 		/* Transient errors */
2498 		break;
2499 	case ICMP6_PARAM_PROB:
2500 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
2501 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
2502 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
2503 		    (uchar_t *)nexthdrp) {
2504 			error = ECONNREFUSED;
2505 			break;
2506 		}
2507 		break;
2508 	}
2509 	if (error == 0) {
2510 		freemsg(mp);
2511 		return;
2512 	}
2513 
2514 	sin6 = sin6_null;
2515 	sin6.sin6_family = AF_INET6;
2516 	sin6.sin6_addr = ip6h->ip6_dst;
2517 	sin6.sin6_port = udpha->uha_dst_port;
2518 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2519 
2520 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2521 	    error);
2522 	if (mp1)
2523 		putnext(UDP_RD(q), mp1);
2524 	freemsg(mp);
2525 }
2526 
2527 /*
2528  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2529  * The local address is filled in if endpoint is bound. The remote address
2530  * is filled in if remote address has been precified ("connected endpoint")
2531  * (The concept of connected CLTS sockets is alien to published TPI
2532  *  but we support it anyway).
2533  */
2534 static void
2535 udp_addr_req(queue_t *q, mblk_t *mp)
2536 {
2537 	sin_t	*sin;
2538 	sin6_t	*sin6;
2539 	mblk_t	*ackmp;
2540 	struct T_addr_ack *taa;
2541 	udp_t	*udp = Q_TO_UDP(q);
2542 
2543 	/* Make it large enough for worst case */
2544 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2545 	    2 * sizeof (sin6_t), 1);
2546 	if (ackmp == NULL) {
2547 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2548 		return;
2549 	}
2550 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2551 
2552 	bzero(taa, sizeof (struct T_addr_ack));
2553 	ackmp->b_wptr = (uchar_t *)&taa[1];
2554 
2555 	taa->PRIM_type = T_ADDR_ACK;
2556 	ackmp->b_datap->db_type = M_PCPROTO;
2557 	/*
2558 	 * Note: Following code assumes 32 bit alignment of basic
2559 	 * data structures like sin_t and struct T_addr_ack.
2560 	 */
2561 	if (udp->udp_state != TS_UNBND) {
2562 		/*
2563 		 * Fill in local address first
2564 		 */
2565 		taa->LOCADDR_offset = sizeof (*taa);
2566 		if (udp->udp_family == AF_INET) {
2567 			taa->LOCADDR_length = sizeof (sin_t);
2568 			sin = (sin_t *)&taa[1];
2569 			/* Fill zeroes and then initialize non-zero fields */
2570 			*sin = sin_null;
2571 			sin->sin_family = AF_INET;
2572 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2573 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2574 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2575 				    sin->sin_addr.s_addr);
2576 			} else {
2577 				/*
2578 				 * INADDR_ANY
2579 				 * udp_v6src is not set, we might be bound to
2580 				 * broadcast/multicast. Use udp_bound_v6src as
2581 				 * local address instead (that could
2582 				 * also still be INADDR_ANY)
2583 				 */
2584 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2585 				    sin->sin_addr.s_addr);
2586 			}
2587 			sin->sin_port = udp->udp_port;
2588 			ackmp->b_wptr = (uchar_t *)&sin[1];
2589 			if (udp->udp_state == TS_DATA_XFER) {
2590 				/*
2591 				 * connected, fill remote address too
2592 				 */
2593 				taa->REMADDR_length = sizeof (sin_t);
2594 				/* assumed 32-bit alignment */
2595 				taa->REMADDR_offset = taa->LOCADDR_offset +
2596 				    taa->LOCADDR_length;
2597 
2598 				sin = (sin_t *)(ackmp->b_rptr +
2599 				    taa->REMADDR_offset);
2600 				/* initialize */
2601 				*sin = sin_null;
2602 				sin->sin_family = AF_INET;
2603 				sin->sin_addr.s_addr =
2604 				    V4_PART_OF_V6(udp->udp_v6dst);
2605 				sin->sin_port = udp->udp_dstport;
2606 				ackmp->b_wptr = (uchar_t *)&sin[1];
2607 			}
2608 		} else {
2609 			taa->LOCADDR_length = sizeof (sin6_t);
2610 			sin6 = (sin6_t *)&taa[1];
2611 			/* Fill zeroes and then initialize non-zero fields */
2612 			*sin6 = sin6_null;
2613 			sin6->sin6_family = AF_INET6;
2614 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2615 				sin6->sin6_addr = udp->udp_v6src;
2616 			} else {
2617 				/*
2618 				 * UNSPECIFIED
2619 				 * udp_v6src is not set, we might be bound to
2620 				 * broadcast/multicast. Use udp_bound_v6src as
2621 				 * local address instead (that could
2622 				 * also still be UNSPECIFIED)
2623 				 */
2624 				sin6->sin6_addr =
2625 				    udp->udp_bound_v6src;
2626 			}
2627 			sin6->sin6_port = udp->udp_port;
2628 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2629 			if (udp->udp_state == TS_DATA_XFER) {
2630 				/*
2631 				 * connected, fill remote address too
2632 				 */
2633 				taa->REMADDR_length = sizeof (sin6_t);
2634 				/* assumed 32-bit alignment */
2635 				taa->REMADDR_offset = taa->LOCADDR_offset +
2636 				    taa->LOCADDR_length;
2637 
2638 				sin6 = (sin6_t *)(ackmp->b_rptr +
2639 				    taa->REMADDR_offset);
2640 				/* initialize */
2641 				*sin6 = sin6_null;
2642 				sin6->sin6_family = AF_INET6;
2643 				sin6->sin6_addr = udp->udp_v6dst;
2644 				sin6->sin6_port =  udp->udp_dstport;
2645 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2646 			}
2647 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2648 		}
2649 	}
2650 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2651 	putnext(UDP_RD(q), ackmp);
2652 }
2653 
2654 static void
2655 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2656 {
2657 	if (udp->udp_family == AF_INET) {
2658 		*tap = udp_g_t_info_ack_ipv4;
2659 	} else {
2660 		*tap = udp_g_t_info_ack_ipv6;
2661 	}
2662 	tap->CURRENT_state = udp->udp_state;
2663 	tap->OPT_size = udp_max_optsize;
2664 }
2665 
2666 /*
2667  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2668  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2669  * udp_g_t_info_ack.  The current state of the stream is copied from
2670  * udp_state.
2671  */
2672 static void
2673 udp_capability_req(queue_t *q, mblk_t *mp)
2674 {
2675 	t_uscalar_t		cap_bits1;
2676 	struct T_capability_ack	*tcap;
2677 	udp_t	*udp = Q_TO_UDP(q);
2678 
2679 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2680 
2681 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2682 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2683 	if (!mp)
2684 		return;
2685 
2686 	tcap = (struct T_capability_ack *)mp->b_rptr;
2687 	tcap->CAP_bits1 = 0;
2688 
2689 	if (cap_bits1 & TC1_INFO) {
2690 		udp_copy_info(&tcap->INFO_ack, udp);
2691 		tcap->CAP_bits1 |= TC1_INFO;
2692 	}
2693 
2694 	putnext(UDP_RD(q), mp);
2695 }
2696 
2697 /*
2698  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2699  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2700  * The current state of the stream is copied from udp_state.
2701  */
2702 static void
2703 udp_info_req(queue_t *q, mblk_t *mp)
2704 {
2705 	udp_t *udp = Q_TO_UDP(q);
2706 
2707 	/* Create a T_INFO_ACK message. */
2708 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2709 	    T_INFO_ACK);
2710 	if (!mp)
2711 		return;
2712 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2713 	putnext(UDP_RD(q), mp);
2714 }
2715 
2716 /*
2717  * IP recognizes seven kinds of bind requests:
2718  *
2719  * - A zero-length address binds only to the protocol number.
2720  *
2721  * - A 4-byte address is treated as a request to
2722  * validate that the address is a valid local IPv4
2723  * address, appropriate for an application to bind to.
2724  * IP does the verification, but does not make any note
2725  * of the address at this time.
2726  *
2727  * - A 16-byte address contains is treated as a request
2728  * to validate a local IPv6 address, as the 4-byte
2729  * address case above.
2730  *
2731  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2732  * use it for the inbound fanout of packets.
2733  *
2734  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2735  * use it for the inbound fanout of packets.
2736  *
2737  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2738  * information consisting of local and remote addresses
2739  * and ports.  In this case, the addresses are both
2740  * validated as appropriate for this operation, and, if
2741  * so, the information is retained for use in the
2742  * inbound fanout.
2743  *
2744  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2745  * fanout information, like the 12-byte case above.
2746  *
2747  * IP will also fill in the IRE request mblk with information
2748  * regarding our peer.  In all cases, we notify IP of our protocol
2749  * type by appending a single protocol byte to the bind request.
2750  */
2751 static mblk_t *
2752 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2753 {
2754 	char	*cp;
2755 	mblk_t	*mp;
2756 	struct T_bind_req *tbr;
2757 	ipa_conn_t	*ac;
2758 	ipa6_conn_t	*ac6;
2759 	sin_t		*sin;
2760 	sin6_t		*sin6;
2761 
2762 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2763 
2764 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2765 	if (!mp)
2766 		return (mp);
2767 	mp->b_datap->db_type = M_PROTO;
2768 	tbr = (struct T_bind_req *)mp->b_rptr;
2769 	tbr->PRIM_type = bind_prim;
2770 	tbr->ADDR_offset = sizeof (*tbr);
2771 	tbr->CONIND_number = 0;
2772 	tbr->ADDR_length = addr_length;
2773 	cp = (char *)&tbr[1];
2774 	switch (addr_length) {
2775 	case sizeof (ipa_conn_t):
2776 		ASSERT(udp->udp_family == AF_INET);
2777 		/* Append a request for an IRE */
2778 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2779 		if (!mp->b_cont) {
2780 			freemsg(mp);
2781 			return (NULL);
2782 		}
2783 		mp->b_cont->b_wptr += sizeof (ire_t);
2784 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2785 
2786 		/* cp known to be 32 bit aligned */
2787 		ac = (ipa_conn_t *)cp;
2788 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2789 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2790 		ac->ac_fport = udp->udp_dstport;
2791 		ac->ac_lport = udp->udp_port;
2792 		break;
2793 
2794 	case sizeof (ipa6_conn_t):
2795 		ASSERT(udp->udp_family == AF_INET6);
2796 		/* Append a request for an IRE */
2797 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2798 		if (!mp->b_cont) {
2799 			freemsg(mp);
2800 			return (NULL);
2801 		}
2802 		mp->b_cont->b_wptr += sizeof (ire_t);
2803 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2804 
2805 		/* cp known to be 32 bit aligned */
2806 		ac6 = (ipa6_conn_t *)cp;
2807 		ac6->ac6_laddr = udp->udp_v6src;
2808 		ac6->ac6_faddr = udp->udp_v6dst;
2809 		ac6->ac6_fport = udp->udp_dstport;
2810 		ac6->ac6_lport = udp->udp_port;
2811 		break;
2812 
2813 	case sizeof (sin_t):
2814 		ASSERT(udp->udp_family == AF_INET);
2815 		/* Append a request for an IRE */
2816 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2817 		if (!mp->b_cont) {
2818 			freemsg(mp);
2819 			return (NULL);
2820 		}
2821 		mp->b_cont->b_wptr += sizeof (ire_t);
2822 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2823 
2824 		sin = (sin_t *)cp;
2825 		*sin = sin_null;
2826 		sin->sin_family = AF_INET;
2827 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2828 		sin->sin_port = udp->udp_port;
2829 		break;
2830 
2831 	case sizeof (sin6_t):
2832 		ASSERT(udp->udp_family == AF_INET6);
2833 		/* Append a request for an IRE */
2834 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2835 		if (!mp->b_cont) {
2836 			freemsg(mp);
2837 			return (NULL);
2838 		}
2839 		mp->b_cont->b_wptr += sizeof (ire_t);
2840 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2841 
2842 		sin6 = (sin6_t *)cp;
2843 		*sin6 = sin6_null;
2844 		sin6->sin6_family = AF_INET6;
2845 		sin6->sin6_addr = udp->udp_bound_v6src;
2846 		sin6->sin6_port = udp->udp_port;
2847 		break;
2848 	}
2849 	/* Add protocol number to end */
2850 	cp[addr_length] = (char)IPPROTO_UDP;
2851 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2852 	return (mp);
2853 }
2854 
2855 /*
2856  * This is the open routine for udp.  It allocates a udp_t structure for
2857  * the stream and, on the first open of the module, creates an ND table.
2858  */
2859 /* ARGSUSED */
2860 static int
2861 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2862 {
2863 	int	err;
2864 	udp_t	*udp;
2865 	conn_t *connp;
2866 	zoneid_t zoneid = getzoneid();
2867 	queue_t	*ip_wq;
2868 	char	*name;
2869 
2870 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2871 
2872 	/* If the stream is already open, return immediately. */
2873 	if (q->q_ptr != NULL)
2874 		return (0);
2875 
2876 	/* If this is not a push of udp as a module, fail. */
2877 	if (sflag != MODOPEN)
2878 		return (EINVAL);
2879 
2880 	q->q_hiwat = udp_recv_hiwat;
2881 	WR(q)->q_hiwat = udp_xmit_hiwat;
2882 	WR(q)->q_lowat = udp_xmit_lowat;
2883 
2884 	/* Insert ourselves in the stream since we're about to walk q_next */
2885 	qprocson(q);
2886 
2887 	udp = kmem_cache_alloc(udp_cache, KM_SLEEP);
2888 	bzero(udp, sizeof (*udp));
2889 
2890 	/*
2891 	 * UDP is supported only as a module and it has to be pushed directly
2892 	 * above the device instance of IP. If UDP is pushed anywhere else
2893 	 * on a stream, it will support just T_SVR4_OPTMGMT_REQ for the
2894 	 * sake of MIB browsers and fail everything else.
2895 	 */
2896 	ip_wq = WR(q)->q_next;
2897 	if (ip_wq->q_next != NULL ||
2898 	    (name = ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL ||
2899 	    strcmp(name, IP_MOD_NAME) != 0 ||
2900 	    ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) {
2901 		/* Support just SNMP for MIB browsers */
2902 		connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP);
2903 		connp->conn_rq = q;
2904 		connp->conn_wq = WR(q);
2905 		connp->conn_flags |= IPCL_UDPMOD;
2906 		connp->conn_cred = credp;
2907 		connp->conn_zoneid = zoneid;
2908 		connp->conn_udp = udp;
2909 		udp->udp_connp = connp;
2910 		q->q_ptr = WR(q)->q_ptr = connp;
2911 		crhold(credp);
2912 		q->q_qinfo = &udp_snmp_rinit;
2913 		WR(q)->q_qinfo = &udp_snmp_winit;
2914 		return (0);
2915 	}
2916 
2917 	/*
2918 	 * Initialize the udp_t structure for this stream.
2919 	 */
2920 	q = RD(ip_wq);
2921 	connp = Q_TO_CONN(q);
2922 	mutex_enter(&connp->conn_lock);
2923 	connp->conn_proto = IPPROTO_UDP;
2924 	connp->conn_flags |= IPCL_UDP;
2925 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
2926 	connp->conn_udp = udp;
2927 
2928 	/* Set the initial state of the stream and the privilege status. */
2929 	udp->udp_connp = connp;
2930 	udp->udp_state = TS_UNBND;
2931 	udp->udp_mode = UDP_MT_HOT;
2932 	if (getmajor(*devp) == (major_t)UDP6_MAJ) {
2933 		udp->udp_family = AF_INET6;
2934 		udp->udp_ipversion = IPV6_VERSION;
2935 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2936 		udp->udp_ttl = udp_ipv6_hoplimit;
2937 		connp->conn_af_isv6 = B_TRUE;
2938 		connp->conn_flags |= IPCL_ISV6;
2939 	} else {
2940 		udp->udp_family = AF_INET;
2941 		udp->udp_ipversion = IPV4_VERSION;
2942 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2943 		udp->udp_ttl = udp_ipv4_ttl;
2944 		connp->conn_af_isv6 = B_FALSE;
2945 		connp->conn_flags &= ~IPCL_ISV6;
2946 	}
2947 
2948 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2949 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2950 	connp->conn_zoneid = zoneid;
2951 
2952 	/*
2953 	 * If the caller has the process-wide flag set, then default to MAC
2954 	 * exempt mode.  This allows read-down to unlabeled hosts.
2955 	 */
2956 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2957 		udp->udp_mac_exempt = B_TRUE;
2958 
2959 	if (connp->conn_flags & IPCL_SOCKET) {
2960 		udp->udp_issocket = B_TRUE;
2961 		udp->udp_direct_sockfs = B_TRUE;
2962 	}
2963 
2964 	connp->conn_ulp_labeled = is_system_labeled();
2965 
2966 	mutex_exit(&connp->conn_lock);
2967 
2968 	/*
2969 	 * The transmit hiwat/lowat is only looked at on IP's queue.
2970 	 * Store in q_hiwat in order to return on SO_SNDBUF/SO_RCVBUF
2971 	 * getsockopts.
2972 	 */
2973 	q->q_hiwat = udp_recv_hiwat;
2974 	WR(q)->q_hiwat = udp_xmit_hiwat;
2975 	WR(q)->q_lowat = udp_xmit_lowat;
2976 
2977 	if (udp->udp_family == AF_INET6) {
2978 		/* Build initial header template for transmit */
2979 		if ((err = udp_build_hdrs(q, udp)) != 0) {
2980 error:
2981 			qprocsoff(UDP_RD(q));
2982 			udp->udp_connp = NULL;
2983 			connp->conn_udp = NULL;
2984 			kmem_cache_free(udp_cache, udp);
2985 			return (err);
2986 		}
2987 	}
2988 
2989 	/* Set the Stream head write offset and high watermark. */
2990 	(void) mi_set_sth_wroff(UDP_RD(q),
2991 	    udp->udp_max_hdr_len + udp_wroff_extra);
2992 	(void) mi_set_sth_hiwat(UDP_RD(q), udp_set_rcv_hiwat(udp, q->q_hiwat));
2993 
2994 	WR(UDP_RD(q))->q_qinfo = &udp_winit;
2995 
2996 	return (0);
2997 }
2998 
2999 /*
3000  * Which UDP options OK to set through T_UNITDATA_REQ...
3001  */
3002 /* ARGSUSED */
3003 static boolean_t
3004 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
3005 {
3006 	return (B_TRUE);
3007 }
3008 
3009 /*
3010  * This routine gets default values of certain options whose default
3011  * values are maintained by protcol specific code
3012  */
3013 /* ARGSUSED */
3014 int
3015 udp_opt_default(queue_t	*q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
3016 {
3017 	int *i1 = (int *)ptr;
3018 
3019 	switch (level) {
3020 	case IPPROTO_IP:
3021 		switch (name) {
3022 		case IP_MULTICAST_TTL:
3023 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
3024 			return (sizeof (uchar_t));
3025 		case IP_MULTICAST_LOOP:
3026 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
3027 			return (sizeof (uchar_t));
3028 		}
3029 		break;
3030 	case IPPROTO_IPV6:
3031 		switch (name) {
3032 		case IPV6_MULTICAST_HOPS:
3033 			*i1 = IP_DEFAULT_MULTICAST_TTL;
3034 			return (sizeof (int));
3035 		case IPV6_MULTICAST_LOOP:
3036 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
3037 			return (sizeof (int));
3038 		case IPV6_UNICAST_HOPS:
3039 			*i1 = udp_ipv6_hoplimit;
3040 			return (sizeof (int));
3041 		}
3042 		break;
3043 	}
3044 	return (-1);
3045 }
3046 
3047 /*
3048  * This routine retrieves the current status of socket options
3049  * and expects the caller to pass in the queue pointer of the
3050  * upper instance.  It returns the size of the option retrieved.
3051  */
3052 int
3053 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
3054 {
3055 	int	*i1 = (int *)ptr;
3056 	conn_t	*connp;
3057 	udp_t	*udp;
3058 	ip6_pkt_t *ipp;
3059 	int	len;
3060 
3061 	q = UDP_WR(q);
3062 	connp = Q_TO_CONN(q);
3063 	udp = connp->conn_udp;
3064 	ipp = &udp->udp_sticky_ipp;
3065 
3066 	switch (level) {
3067 	case SOL_SOCKET:
3068 		switch (name) {
3069 		case SO_DEBUG:
3070 			*i1 = udp->udp_debug;
3071 			break;	/* goto sizeof (int) option return */
3072 		case SO_REUSEADDR:
3073 			*i1 = udp->udp_reuseaddr;
3074 			break;	/* goto sizeof (int) option return */
3075 		case SO_TYPE:
3076 			*i1 = SOCK_DGRAM;
3077 			break;	/* goto sizeof (int) option return */
3078 
3079 		/*
3080 		 * The following three items are available here,
3081 		 * but are only meaningful to IP.
3082 		 */
3083 		case SO_DONTROUTE:
3084 			*i1 = udp->udp_dontroute;
3085 			break;	/* goto sizeof (int) option return */
3086 		case SO_USELOOPBACK:
3087 			*i1 = udp->udp_useloopback;
3088 			break;	/* goto sizeof (int) option return */
3089 		case SO_BROADCAST:
3090 			*i1 = udp->udp_broadcast;
3091 			break;	/* goto sizeof (int) option return */
3092 
3093 		case SO_SNDBUF:
3094 			*i1 = q->q_hiwat;
3095 			break;	/* goto sizeof (int) option return */
3096 		case SO_RCVBUF:
3097 			*i1 = RD(q)->q_hiwat;
3098 			break;	/* goto sizeof (int) option return */
3099 		case SO_DGRAM_ERRIND:
3100 			*i1 = udp->udp_dgram_errind;
3101 			break;	/* goto sizeof (int) option return */
3102 		case SO_RECVUCRED:
3103 			*i1 = udp->udp_recvucred;
3104 			break;	/* goto sizeof (int) option return */
3105 		case SO_TIMESTAMP:
3106 			*i1 = udp->udp_timestamp;
3107 			break;	/* goto sizeof (int) option return */
3108 		case SO_ANON_MLP:
3109 			*i1 = udp->udp_anon_mlp;
3110 			break;	/* goto sizeof (int) option return */
3111 		case SO_MAC_EXEMPT:
3112 			*i1 = udp->udp_mac_exempt;
3113 			break;	/* goto sizeof (int) option return */
3114 		case SO_ALLZONES:
3115 			*i1 = connp->conn_allzones;
3116 			break;	/* goto sizeof (int) option return */
3117 		default:
3118 			return (-1);
3119 		}
3120 		break;
3121 	case IPPROTO_IP:
3122 		if (udp->udp_family != AF_INET)
3123 			return (-1);
3124 		switch (name) {
3125 		case IP_OPTIONS:
3126 		case T_IP_OPTIONS:
3127 			len = udp->udp_ip_rcv_options_len - udp->udp_label_len;
3128 			if (len > 0) {
3129 				bcopy(udp->udp_ip_rcv_options +
3130 				    udp->udp_label_len, ptr, len);
3131 			}
3132 			return (len);
3133 		case IP_TOS:
3134 		case T_IP_TOS:
3135 			*i1 = (int)udp->udp_type_of_service;
3136 			break;	/* goto sizeof (int) option return */
3137 		case IP_TTL:
3138 			*i1 = (int)udp->udp_ttl;
3139 			break;	/* goto sizeof (int) option return */
3140 		case IP_NEXTHOP:
3141 			/* Handled at IP level */
3142 			return (-EINVAL);
3143 		case IP_MULTICAST_IF:
3144 			/* 0 address if not set */
3145 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
3146 			return (sizeof (ipaddr_t));
3147 		case IP_MULTICAST_TTL:
3148 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
3149 			return (sizeof (uchar_t));
3150 		case IP_MULTICAST_LOOP:
3151 			*ptr = connp->conn_multicast_loop;
3152 			return (sizeof (uint8_t));
3153 		case IP_RECVOPTS:
3154 			*i1 = udp->udp_recvopts;
3155 			break;	/* goto sizeof (int) option return */
3156 		case IP_RECVDSTADDR:
3157 			*i1 = udp->udp_recvdstaddr;
3158 			break;	/* goto sizeof (int) option return */
3159 		case IP_RECVIF:
3160 			*i1 = udp->udp_recvif;
3161 			break;	/* goto sizeof (int) option return */
3162 		case IP_RECVSLLA:
3163 			*i1 = udp->udp_recvslla;
3164 			break;	/* goto sizeof (int) option return */
3165 		case IP_RECVTTL:
3166 			*i1 = udp->udp_recvttl;
3167 			break;	/* goto sizeof (int) option return */
3168 		case IP_ADD_MEMBERSHIP:
3169 		case IP_DROP_MEMBERSHIP:
3170 		case IP_BLOCK_SOURCE:
3171 		case IP_UNBLOCK_SOURCE:
3172 		case IP_ADD_SOURCE_MEMBERSHIP:
3173 		case IP_DROP_SOURCE_MEMBERSHIP:
3174 		case MCAST_JOIN_GROUP:
3175 		case MCAST_LEAVE_GROUP:
3176 		case MCAST_BLOCK_SOURCE:
3177 		case MCAST_UNBLOCK_SOURCE:
3178 		case MCAST_JOIN_SOURCE_GROUP:
3179 		case MCAST_LEAVE_SOURCE_GROUP:
3180 		case IP_DONTFAILOVER_IF:
3181 			/* cannot "get" the value for these */
3182 			return (-1);
3183 		case IP_BOUND_IF:
3184 			/* Zero if not set */
3185 			*i1 = udp->udp_bound_if;
3186 			break;	/* goto sizeof (int) option return */
3187 		case IP_UNSPEC_SRC:
3188 			*i1 = udp->udp_unspec_source;
3189 			break;	/* goto sizeof (int) option return */
3190 		case IP_XMIT_IF:
3191 			*i1 = udp->udp_xmit_if;
3192 			break; /* goto sizeof (int) option return */
3193 		default:
3194 			return (-1);
3195 		}
3196 		break;
3197 	case IPPROTO_IPV6:
3198 		if (udp->udp_family != AF_INET6)
3199 			return (-1);
3200 		switch (name) {
3201 		case IPV6_UNICAST_HOPS:
3202 			*i1 = (unsigned int)udp->udp_ttl;
3203 			break;	/* goto sizeof (int) option return */
3204 		case IPV6_MULTICAST_IF:
3205 			/* 0 index if not set */
3206 			*i1 = udp->udp_multicast_if_index;
3207 			break;	/* goto sizeof (int) option return */
3208 		case IPV6_MULTICAST_HOPS:
3209 			*i1 = udp->udp_multicast_ttl;
3210 			break;	/* goto sizeof (int) option return */
3211 		case IPV6_MULTICAST_LOOP:
3212 			*i1 = connp->conn_multicast_loop;
3213 			break;	/* goto sizeof (int) option return */
3214 		case IPV6_JOIN_GROUP:
3215 		case IPV6_LEAVE_GROUP:
3216 		case MCAST_JOIN_GROUP:
3217 		case MCAST_LEAVE_GROUP:
3218 		case MCAST_BLOCK_SOURCE:
3219 		case MCAST_UNBLOCK_SOURCE:
3220 		case MCAST_JOIN_SOURCE_GROUP:
3221 		case MCAST_LEAVE_SOURCE_GROUP:
3222 			/* cannot "get" the value for these */
3223 			return (-1);
3224 		case IPV6_BOUND_IF:
3225 			/* Zero if not set */
3226 			*i1 = udp->udp_bound_if;
3227 			break;	/* goto sizeof (int) option return */
3228 		case IPV6_UNSPEC_SRC:
3229 			*i1 = udp->udp_unspec_source;
3230 			break;	/* goto sizeof (int) option return */
3231 		case IPV6_RECVPKTINFO:
3232 			*i1 = udp->udp_ipv6_recvpktinfo;
3233 			break;	/* goto sizeof (int) option return */
3234 		case IPV6_RECVTCLASS:
3235 			*i1 = udp->udp_ipv6_recvtclass;
3236 			break;	/* goto sizeof (int) option return */
3237 		case IPV6_RECVPATHMTU:
3238 			*i1 = udp->udp_ipv6_recvpathmtu;
3239 			break;	/* goto sizeof (int) option return */
3240 		case IPV6_RECVHOPLIMIT:
3241 			*i1 = udp->udp_ipv6_recvhoplimit;
3242 			break;	/* goto sizeof (int) option return */
3243 		case IPV6_RECVHOPOPTS:
3244 			*i1 = udp->udp_ipv6_recvhopopts;
3245 			break;	/* goto sizeof (int) option return */
3246 		case IPV6_RECVDSTOPTS:
3247 			*i1 = udp->udp_ipv6_recvdstopts;
3248 			break;	/* goto sizeof (int) option return */
3249 		case _OLD_IPV6_RECVDSTOPTS:
3250 			*i1 = udp->udp_old_ipv6_recvdstopts;
3251 			break;	/* goto sizeof (int) option return */
3252 		case IPV6_RECVRTHDRDSTOPTS:
3253 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
3254 			break;	/* goto sizeof (int) option return */
3255 		case IPV6_RECVRTHDR:
3256 			*i1 = udp->udp_ipv6_recvrthdr;
3257 			break;	/* goto sizeof (int) option return */
3258 		case IPV6_PKTINFO: {
3259 			/* XXX assumes that caller has room for max size! */
3260 			struct in6_pktinfo *pkti;
3261 
3262 			pkti = (struct in6_pktinfo *)ptr;
3263 			if (ipp->ipp_fields & IPPF_IFINDEX)
3264 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
3265 			else
3266 				pkti->ipi6_ifindex = 0;
3267 			if (ipp->ipp_fields & IPPF_ADDR)
3268 				pkti->ipi6_addr = ipp->ipp_addr;
3269 			else
3270 				pkti->ipi6_addr = ipv6_all_zeros;
3271 			return (sizeof (struct in6_pktinfo));
3272 		}
3273 		case IPV6_TCLASS:
3274 			if (ipp->ipp_fields & IPPF_TCLASS)
3275 				*i1 = ipp->ipp_tclass;
3276 			else
3277 				*i1 = IPV6_FLOW_TCLASS(
3278 				    IPV6_DEFAULT_VERS_AND_FLOW);
3279 			break;	/* goto sizeof (int) option return */
3280 		case IPV6_NEXTHOP: {
3281 			sin6_t *sin6 = (sin6_t *)ptr;
3282 
3283 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
3284 				return (0);
3285 			*sin6 = sin6_null;
3286 			sin6->sin6_family = AF_INET6;
3287 			sin6->sin6_addr = ipp->ipp_nexthop;
3288 			return (sizeof (sin6_t));
3289 		}
3290 		case IPV6_HOPOPTS:
3291 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
3292 				return (0);
3293 			if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6)
3294 				return (0);
3295 			/*
3296 			 * The cipso/label option is added by kernel.
3297 			 * User is not usually aware of this option.
3298 			 * We copy out the hbh opt after the label option.
3299 			 */
3300 			bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6,
3301 			    ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6);
3302 			if (udp->udp_label_len_v6 > 0) {
3303 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
3304 				ptr[1] = (ipp->ipp_hopoptslen -
3305 				    udp->udp_label_len_v6 + 7) / 8 - 1;
3306 			}
3307 			return (ipp->ipp_hopoptslen - udp->udp_label_len_v6);
3308 		case IPV6_RTHDRDSTOPTS:
3309 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
3310 				return (0);
3311 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
3312 			return (ipp->ipp_rtdstoptslen);
3313 		case IPV6_RTHDR:
3314 			if (!(ipp->ipp_fields & IPPF_RTHDR))
3315 				return (0);
3316 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
3317 			return (ipp->ipp_rthdrlen);
3318 		case IPV6_DSTOPTS:
3319 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
3320 				return (0);
3321 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
3322 			return (ipp->ipp_dstoptslen);
3323 		case IPV6_PATHMTU:
3324 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
3325 				udp->udp_dstport, (struct ip6_mtuinfo *)ptr));
3326 		default:
3327 			return (-1);
3328 		}
3329 		break;
3330 	case IPPROTO_UDP:
3331 		switch (name) {
3332 		case UDP_ANONPRIVBIND:
3333 			*i1 = udp->udp_anon_priv_bind;
3334 			break;
3335 		case UDP_EXCLBIND:
3336 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
3337 			break;
3338 		case UDP_RCVHDR:
3339 			*i1 = udp->udp_rcvhdr ? 1 : 0;
3340 			break;
3341 		default:
3342 			return (-1);
3343 		}
3344 		break;
3345 	default:
3346 		return (-1);
3347 	}
3348 	return (sizeof (int));
3349 }
3350 
3351 /*
3352  * This routine sets socket options; it expects the caller
3353  * to pass in the queue pointer of the upper instance.
3354  */
3355 /* ARGSUSED */
3356 int
3357 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3358     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3359     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3360 {
3361 	udpattrs_t *attrs = thisdg_attrs;
3362 	int	*i1 = (int *)invalp;
3363 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
3364 	boolean_t checkonly;
3365 	int	error;
3366 	conn_t	*connp;
3367 	udp_t	*udp;
3368 	uint_t	newlen;
3369 
3370 	q = UDP_WR(q);
3371 	connp = Q_TO_CONN(q);
3372 	udp = connp->conn_udp;
3373 
3374 	switch (optset_context) {
3375 	case SETFN_OPTCOM_CHECKONLY:
3376 		checkonly = B_TRUE;
3377 		/*
3378 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
3379 		 * inlen != 0 implies value supplied and
3380 		 * 	we have to "pretend" to set it.
3381 		 * inlen == 0 implies that there is no
3382 		 * 	value part in T_CHECK request and just validation
3383 		 * done elsewhere should be enough, we just return here.
3384 		 */
3385 		if (inlen == 0) {
3386 			*outlenp = 0;
3387 			return (0);
3388 		}
3389 		break;
3390 	case SETFN_OPTCOM_NEGOTIATE:
3391 		checkonly = B_FALSE;
3392 		break;
3393 	case SETFN_UD_NEGOTIATE:
3394 	case SETFN_CONN_NEGOTIATE:
3395 		checkonly = B_FALSE;
3396 		/*
3397 		 * Negotiating local and "association-related" options
3398 		 * through T_UNITDATA_REQ.
3399 		 *
3400 		 * Following routine can filter out ones we do not
3401 		 * want to be "set" this way.
3402 		 */
3403 		if (!udp_opt_allow_udr_set(level, name)) {
3404 			*outlenp = 0;
3405 			return (EINVAL);
3406 		}
3407 		break;
3408 	default:
3409 		/*
3410 		 * We should never get here
3411 		 */
3412 		*outlenp = 0;
3413 		return (EINVAL);
3414 	}
3415 
3416 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
3417 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
3418 
3419 	/*
3420 	 * For fixed length options, no sanity check
3421 	 * of passed in length is done. It is assumed *_optcom_req()
3422 	 * routines do the right thing.
3423 	 */
3424 
3425 	switch (level) {
3426 	case SOL_SOCKET:
3427 		switch (name) {
3428 		case SO_REUSEADDR:
3429 			if (!checkonly)
3430 				udp->udp_reuseaddr = onoff;
3431 			break;
3432 		case SO_DEBUG:
3433 			if (!checkonly)
3434 				udp->udp_debug = onoff;
3435 			break;
3436 		/*
3437 		 * The following three items are available here,
3438 		 * but are only meaningful to IP.
3439 		 */
3440 		case SO_DONTROUTE:
3441 			if (!checkonly)
3442 				udp->udp_dontroute = onoff;
3443 			break;
3444 		case SO_USELOOPBACK:
3445 			if (!checkonly)
3446 				udp->udp_useloopback = onoff;
3447 			break;
3448 		case SO_BROADCAST:
3449 			if (!checkonly)
3450 				udp->udp_broadcast = onoff;
3451 			break;
3452 
3453 		case SO_SNDBUF:
3454 			if (*i1 > udp_max_buf) {
3455 				*outlenp = 0;
3456 				return (ENOBUFS);
3457 			}
3458 			if (!checkonly) {
3459 				q->q_hiwat = *i1;
3460 				WR(UDP_RD(q))->q_hiwat = *i1;
3461 			}
3462 			break;
3463 		case SO_RCVBUF:
3464 			if (*i1 > udp_max_buf) {
3465 				*outlenp = 0;
3466 				return (ENOBUFS);
3467 			}
3468 			if (!checkonly) {
3469 				RD(q)->q_hiwat = *i1;
3470 				UDP_RD(q)->q_hiwat = *i1;
3471 				(void) mi_set_sth_hiwat(UDP_RD(q),
3472 				    udp_set_rcv_hiwat(udp, *i1));
3473 			}
3474 			break;
3475 		case SO_DGRAM_ERRIND:
3476 			if (!checkonly)
3477 				udp->udp_dgram_errind = onoff;
3478 			break;
3479 		case SO_RECVUCRED:
3480 			if (!checkonly)
3481 				udp->udp_recvucred = onoff;
3482 			break;
3483 		case SO_ALLZONES:
3484 			/*
3485 			 * "soft" error (negative)
3486 			 * option not handled at this level
3487 			 * Do not modify *outlenp.
3488 			 */
3489 			return (-EINVAL);
3490 		case SO_TIMESTAMP:
3491 			if (!checkonly)
3492 				udp->udp_timestamp = onoff;
3493 			break;
3494 		case SO_ANON_MLP:
3495 			if (!checkonly)
3496 				udp->udp_anon_mlp = onoff;
3497 			break;
3498 		case SO_MAC_EXEMPT:
3499 			if (secpolicy_net_mac_aware(cr) != 0 ||
3500 			    udp->udp_state != TS_UNBND)
3501 				return (EACCES);
3502 			if (!checkonly)
3503 				udp->udp_mac_exempt = onoff;
3504 			break;
3505 		case SCM_UCRED: {
3506 			struct ucred_s *ucr;
3507 			cred_t *cr, *newcr;
3508 			ts_label_t *tsl;
3509 
3510 			/*
3511 			 * Only sockets that have proper privileges and are
3512 			 * bound to MLPs will have any other value here, so
3513 			 * this implicitly tests for privilege to set label.
3514 			 */
3515 			if (connp->conn_mlp_type == mlptSingle)
3516 				break;
3517 			ucr = (struct ucred_s *)invalp;
3518 			if (inlen != ucredsize ||
3519 			    ucr->uc_labeloff < sizeof (*ucr) ||
3520 			    ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
3521 				return (EINVAL);
3522 			if (!checkonly) {
3523 				mblk_t *mb;
3524 
3525 				if (attrs == NULL ||
3526 				    (mb = attrs->udpattr_mb) == NULL)
3527 					return (EINVAL);
3528 				if ((cr = DB_CRED(mb)) == NULL)
3529 					cr = udp->udp_connp->conn_cred;
3530 				ASSERT(cr != NULL);
3531 				if ((tsl = crgetlabel(cr)) == NULL)
3532 					return (EINVAL);
3533 				newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
3534 				    tsl->tsl_doi, KM_NOSLEEP);
3535 				if (newcr == NULL)
3536 					return (ENOSR);
3537 				mblk_setcred(mb, newcr);
3538 				attrs->udpattr_credset = B_TRUE;
3539 				crfree(newcr);
3540 			}
3541 			break;
3542 		}
3543 		default:
3544 			*outlenp = 0;
3545 			return (EINVAL);
3546 		}
3547 		break;
3548 	case IPPROTO_IP:
3549 		if (udp->udp_family != AF_INET) {
3550 			*outlenp = 0;
3551 			return (ENOPROTOOPT);
3552 		}
3553 		switch (name) {
3554 		case IP_OPTIONS:
3555 		case T_IP_OPTIONS:
3556 			/* Save options for use by IP. */
3557 			newlen = inlen + udp->udp_label_len;
3558 			if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) {
3559 				*outlenp = 0;
3560 				return (EINVAL);
3561 			}
3562 			if (checkonly)
3563 				break;
3564 
3565 			if (!tsol_option_set(&udp->udp_ip_snd_options,
3566 			    &udp->udp_ip_snd_options_len,
3567 			    udp->udp_label_len, invalp, inlen)) {
3568 				*outlenp = 0;
3569 				return (ENOMEM);
3570 			}
3571 
3572 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3573 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3574 			(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
3575 			    udp_wroff_extra);
3576 			break;
3577 
3578 		case IP_TTL:
3579 			if (!checkonly) {
3580 				udp->udp_ttl = (uchar_t)*i1;
3581 			}
3582 			break;
3583 		case IP_TOS:
3584 		case T_IP_TOS:
3585 			if (!checkonly) {
3586 				udp->udp_type_of_service = (uchar_t)*i1;
3587 			}
3588 			break;
3589 		case IP_MULTICAST_IF: {
3590 			/*
3591 			 * TODO should check OPTMGMT reply and undo this if
3592 			 * there is an error.
3593 			 */
3594 			struct in_addr *inap = (struct in_addr *)invalp;
3595 			if (!checkonly) {
3596 				udp->udp_multicast_if_addr =
3597 				    inap->s_addr;
3598 			}
3599 			break;
3600 		}
3601 		case IP_MULTICAST_TTL:
3602 			if (!checkonly)
3603 				udp->udp_multicast_ttl = *invalp;
3604 			break;
3605 		case IP_MULTICAST_LOOP:
3606 			if (!checkonly)
3607 				connp->conn_multicast_loop = *invalp;
3608 			break;
3609 		case IP_RECVOPTS:
3610 			if (!checkonly)
3611 				udp->udp_recvopts = onoff;
3612 			break;
3613 		case IP_RECVDSTADDR:
3614 			if (!checkonly)
3615 				udp->udp_recvdstaddr = onoff;
3616 			break;
3617 		case IP_RECVIF:
3618 			if (!checkonly)
3619 				udp->udp_recvif = onoff;
3620 			break;
3621 		case IP_RECVSLLA:
3622 			if (!checkonly)
3623 				udp->udp_recvslla = onoff;
3624 			break;
3625 		case IP_RECVTTL:
3626 			if (!checkonly)
3627 				udp->udp_recvttl = onoff;
3628 			break;
3629 		case IP_ADD_MEMBERSHIP:
3630 		case IP_DROP_MEMBERSHIP:
3631 		case IP_BLOCK_SOURCE:
3632 		case IP_UNBLOCK_SOURCE:
3633 		case IP_ADD_SOURCE_MEMBERSHIP:
3634 		case IP_DROP_SOURCE_MEMBERSHIP:
3635 		case MCAST_JOIN_GROUP:
3636 		case MCAST_LEAVE_GROUP:
3637 		case MCAST_BLOCK_SOURCE:
3638 		case MCAST_UNBLOCK_SOURCE:
3639 		case MCAST_JOIN_SOURCE_GROUP:
3640 		case MCAST_LEAVE_SOURCE_GROUP:
3641 		case IP_SEC_OPT:
3642 		case IP_NEXTHOP:
3643 			/*
3644 			 * "soft" error (negative)
3645 			 * option not handled at this level
3646 			 * Do not modify *outlenp.
3647 			 */
3648 			return (-EINVAL);
3649 		case IP_BOUND_IF:
3650 			if (!checkonly)
3651 				udp->udp_bound_if = *i1;
3652 			break;
3653 		case IP_UNSPEC_SRC:
3654 			if (!checkonly)
3655 				udp->udp_unspec_source = onoff;
3656 			break;
3657 		case IP_XMIT_IF:
3658 			if (!checkonly)
3659 				udp->udp_xmit_if = *i1;
3660 			break;
3661 		default:
3662 			*outlenp = 0;
3663 			return (EINVAL);
3664 		}
3665 		break;
3666 	case IPPROTO_IPV6: {
3667 		ip6_pkt_t		*ipp;
3668 		boolean_t		sticky;
3669 
3670 		if (udp->udp_family != AF_INET6) {
3671 			*outlenp = 0;
3672 			return (ENOPROTOOPT);
3673 		}
3674 		/*
3675 		 * Deal with both sticky options and ancillary data
3676 		 */
3677 		sticky = B_FALSE;
3678 		if (attrs == NULL || (ipp = attrs->udpattr_ipp) == NULL) {
3679 			/* sticky options, or none */
3680 			ipp = &udp->udp_sticky_ipp;
3681 			sticky = B_TRUE;
3682 		}
3683 
3684 		switch (name) {
3685 		case IPV6_MULTICAST_IF:
3686 			if (!checkonly)
3687 				udp->udp_multicast_if_index = *i1;
3688 			break;
3689 		case IPV6_UNICAST_HOPS:
3690 			/* -1 means use default */
3691 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3692 				*outlenp = 0;
3693 				return (EINVAL);
3694 			}
3695 			if (!checkonly) {
3696 				if (*i1 == -1) {
3697 					udp->udp_ttl = ipp->ipp_unicast_hops =
3698 					    udp_ipv6_hoplimit;
3699 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3700 					/* Pass modified value to IP. */
3701 					*i1 = udp->udp_ttl;
3702 				} else {
3703 					udp->udp_ttl = ipp->ipp_unicast_hops =
3704 					    (uint8_t)*i1;
3705 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3706 				}
3707 				/* Rebuild the header template */
3708 				error = udp_build_hdrs(q, udp);
3709 				if (error != 0) {
3710 					*outlenp = 0;
3711 					return (error);
3712 				}
3713 			}
3714 			break;
3715 		case IPV6_MULTICAST_HOPS:
3716 			/* -1 means use default */
3717 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3718 				*outlenp = 0;
3719 				return (EINVAL);
3720 			}
3721 			if (!checkonly) {
3722 				if (*i1 == -1) {
3723 					udp->udp_multicast_ttl =
3724 					    ipp->ipp_multicast_hops =
3725 					    IP_DEFAULT_MULTICAST_TTL;
3726 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3727 					/* Pass modified value to IP. */
3728 					*i1 = udp->udp_multicast_ttl;
3729 				} else {
3730 					udp->udp_multicast_ttl =
3731 					    ipp->ipp_multicast_hops =
3732 					    (uint8_t)*i1;
3733 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3734 				}
3735 			}
3736 			break;
3737 		case IPV6_MULTICAST_LOOP:
3738 			if (*i1 != 0 && *i1 != 1) {
3739 				*outlenp = 0;
3740 				return (EINVAL);
3741 			}
3742 			if (!checkonly)
3743 				connp->conn_multicast_loop = *i1;
3744 			break;
3745 		case IPV6_JOIN_GROUP:
3746 		case IPV6_LEAVE_GROUP:
3747 		case MCAST_JOIN_GROUP:
3748 		case MCAST_LEAVE_GROUP:
3749 		case MCAST_BLOCK_SOURCE:
3750 		case MCAST_UNBLOCK_SOURCE:
3751 		case MCAST_JOIN_SOURCE_GROUP:
3752 		case MCAST_LEAVE_SOURCE_GROUP:
3753 			/*
3754 			 * "soft" error (negative)
3755 			 * option not handled at this level
3756 			 * Note: Do not modify *outlenp
3757 			 */
3758 			return (-EINVAL);
3759 		case IPV6_BOUND_IF:
3760 			if (!checkonly)
3761 				udp->udp_bound_if = *i1;
3762 			break;
3763 		case IPV6_UNSPEC_SRC:
3764 			if (!checkonly)
3765 				udp->udp_unspec_source = onoff;
3766 			break;
3767 		/*
3768 		 * Set boolean switches for ancillary data delivery
3769 		 */
3770 		case IPV6_RECVPKTINFO:
3771 			if (!checkonly)
3772 				udp->udp_ipv6_recvpktinfo = onoff;
3773 			break;
3774 		case IPV6_RECVTCLASS:
3775 			if (!checkonly) {
3776 				udp->udp_ipv6_recvtclass = onoff;
3777 			}
3778 			break;
3779 		case IPV6_RECVPATHMTU:
3780 			if (!checkonly) {
3781 				udp->udp_ipv6_recvpathmtu = onoff;
3782 			}
3783 			break;
3784 		case IPV6_RECVHOPLIMIT:
3785 			if (!checkonly)
3786 				udp->udp_ipv6_recvhoplimit = onoff;
3787 			break;
3788 		case IPV6_RECVHOPOPTS:
3789 			if (!checkonly)
3790 				udp->udp_ipv6_recvhopopts = onoff;
3791 			break;
3792 		case IPV6_RECVDSTOPTS:
3793 			if (!checkonly)
3794 				udp->udp_ipv6_recvdstopts = onoff;
3795 			break;
3796 		case _OLD_IPV6_RECVDSTOPTS:
3797 			if (!checkonly)
3798 				udp->udp_old_ipv6_recvdstopts = onoff;
3799 			break;
3800 		case IPV6_RECVRTHDRDSTOPTS:
3801 			if (!checkonly)
3802 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3803 			break;
3804 		case IPV6_RECVRTHDR:
3805 			if (!checkonly)
3806 				udp->udp_ipv6_recvrthdr = onoff;
3807 			break;
3808 		/*
3809 		 * Set sticky options or ancillary data.
3810 		 * If sticky options, (re)build any extension headers
3811 		 * that might be needed as a result.
3812 		 */
3813 		case IPV6_PKTINFO:
3814 			/*
3815 			 * The source address and ifindex are verified
3816 			 * in ip_opt_set(). For ancillary data the
3817 			 * source address is checked in ip_wput_v6.
3818 			 */
3819 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3820 				return (EINVAL);
3821 			if (checkonly)
3822 				break;
3823 
3824 			if (inlen == 0) {
3825 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3826 				ipp->ipp_sticky_ignored |=
3827 				    (IPPF_IFINDEX|IPPF_ADDR);
3828 			} else {
3829 				struct in6_pktinfo *pkti;
3830 
3831 				pkti = (struct in6_pktinfo *)invalp;
3832 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3833 				ipp->ipp_addr = pkti->ipi6_addr;
3834 				if (ipp->ipp_ifindex != 0)
3835 					ipp->ipp_fields |= IPPF_IFINDEX;
3836 				else
3837 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3838 				if (!IN6_IS_ADDR_UNSPECIFIED(
3839 				    &ipp->ipp_addr))
3840 					ipp->ipp_fields |= IPPF_ADDR;
3841 				else
3842 					ipp->ipp_fields &= ~IPPF_ADDR;
3843 			}
3844 			if (sticky) {
3845 				error = udp_build_hdrs(q, udp);
3846 				if (error != 0)
3847 					return (error);
3848 			}
3849 			break;
3850 		case IPV6_HOPLIMIT:
3851 			if (sticky)
3852 				return (EINVAL);
3853 			if (inlen != 0 && inlen != sizeof (int))
3854 				return (EINVAL);
3855 			if (checkonly)
3856 				break;
3857 
3858 			if (inlen == 0) {
3859 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3860 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3861 			} else {
3862 				if (*i1 > 255 || *i1 < -1)
3863 					return (EINVAL);
3864 				if (*i1 == -1)
3865 					ipp->ipp_hoplimit = udp_ipv6_hoplimit;
3866 				else
3867 					ipp->ipp_hoplimit = *i1;
3868 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3869 			}
3870 			break;
3871 		case IPV6_TCLASS:
3872 			if (inlen != 0 && inlen != sizeof (int))
3873 				return (EINVAL);
3874 			if (checkonly)
3875 				break;
3876 
3877 			if (inlen == 0) {
3878 				ipp->ipp_fields &= ~IPPF_TCLASS;
3879 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3880 			} else {
3881 				if (*i1 > 255 || *i1 < -1)
3882 					return (EINVAL);
3883 				if (*i1 == -1)
3884 					ipp->ipp_tclass = 0;
3885 				else
3886 					ipp->ipp_tclass = *i1;
3887 				ipp->ipp_fields |= IPPF_TCLASS;
3888 			}
3889 			if (sticky) {
3890 				error = udp_build_hdrs(q, udp);
3891 				if (error != 0)
3892 					return (error);
3893 			}
3894 			break;
3895 		case IPV6_NEXTHOP:
3896 			/*
3897 			 * IP will verify that the nexthop is reachable
3898 			 * and fail for sticky options.
3899 			 */
3900 			if (inlen != 0 && inlen != sizeof (sin6_t))
3901 				return (EINVAL);
3902 			if (checkonly)
3903 				break;
3904 
3905 			if (inlen == 0) {
3906 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3907 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3908 			} else {
3909 				sin6_t *sin6 = (sin6_t *)invalp;
3910 
3911 				if (sin6->sin6_family != AF_INET6)
3912 					return (EAFNOSUPPORT);
3913 				if (IN6_IS_ADDR_V4MAPPED(
3914 				    &sin6->sin6_addr))
3915 					return (EADDRNOTAVAIL);
3916 				ipp->ipp_nexthop = sin6->sin6_addr;
3917 				if (!IN6_IS_ADDR_UNSPECIFIED(
3918 				    &ipp->ipp_nexthop))
3919 					ipp->ipp_fields |= IPPF_NEXTHOP;
3920 				else
3921 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3922 			}
3923 			if (sticky) {
3924 				error = udp_build_hdrs(q, udp);
3925 				if (error != 0)
3926 					return (error);
3927 			}
3928 			break;
3929 		case IPV6_HOPOPTS: {
3930 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
3931 			/*
3932 			 * Sanity checks - minimum size, size a multiple of
3933 			 * eight bytes, and matching size passed in.
3934 			 */
3935 			if (inlen != 0 &&
3936 			    inlen != (8 * (hopts->ip6h_len + 1)))
3937 				return (EINVAL);
3938 
3939 			if (checkonly)
3940 				break;
3941 
3942 			error = optcom_pkt_set(invalp, inlen, sticky,
3943 			    (uchar_t **)&ipp->ipp_hopopts,
3944 			    &ipp->ipp_hopoptslen,
3945 			    sticky ? udp->udp_label_len_v6 : 0);
3946 			if (error != 0)
3947 				return (error);
3948 			if (ipp->ipp_hopoptslen == 0) {
3949 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
3950 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
3951 			} else {
3952 				ipp->ipp_fields |= IPPF_HOPOPTS;
3953 			}
3954 			if (sticky) {
3955 				error = udp_build_hdrs(q, udp);
3956 				if (error != 0)
3957 					return (error);
3958 			}
3959 			break;
3960 		}
3961 		case IPV6_RTHDRDSTOPTS: {
3962 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3963 
3964 			/*
3965 			 * Sanity checks - minimum size, size a multiple of
3966 			 * eight bytes, and matching size passed in.
3967 			 */
3968 			if (inlen != 0 &&
3969 			    inlen != (8 * (dopts->ip6d_len + 1)))
3970 				return (EINVAL);
3971 
3972 			if (checkonly)
3973 				break;
3974 
3975 			if (inlen == 0) {
3976 				if (sticky &&
3977 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
3978 					kmem_free(ipp->ipp_rtdstopts,
3979 					    ipp->ipp_rtdstoptslen);
3980 					ipp->ipp_rtdstopts = NULL;
3981 					ipp->ipp_rtdstoptslen = 0;
3982 				}
3983 
3984 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
3985 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
3986 			} else {
3987 				error = optcom_pkt_set(invalp, inlen, sticky,
3988 				    (uchar_t **)&ipp->ipp_rtdstopts,
3989 				    &ipp->ipp_rtdstoptslen, 0);
3990 				if (error != 0)
3991 					return (error);
3992 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
3993 			}
3994 			if (sticky) {
3995 				error = udp_build_hdrs(q, udp);
3996 				if (error != 0)
3997 					return (error);
3998 			}
3999 			break;
4000 		}
4001 		case IPV6_DSTOPTS: {
4002 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
4003 
4004 			/*
4005 			 * Sanity checks - minimum size, size a multiple of
4006 			 * eight bytes, and matching size passed in.
4007 			 */
4008 			if (inlen != 0 &&
4009 			    inlen != (8 * (dopts->ip6d_len + 1)))
4010 				return (EINVAL);
4011 
4012 			if (checkonly)
4013 				break;
4014 
4015 			if (inlen == 0) {
4016 				if (sticky &&
4017 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
4018 					kmem_free(ipp->ipp_dstopts,
4019 					    ipp->ipp_dstoptslen);
4020 					ipp->ipp_dstopts = NULL;
4021 					ipp->ipp_dstoptslen = 0;
4022 				}
4023 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
4024 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
4025 			} else {
4026 				error = optcom_pkt_set(invalp, inlen, sticky,
4027 				    (uchar_t **)&ipp->ipp_dstopts,
4028 				    &ipp->ipp_dstoptslen, 0);
4029 				if (error != 0)
4030 					return (error);
4031 				ipp->ipp_fields |= IPPF_DSTOPTS;
4032 			}
4033 			if (sticky) {
4034 				error = udp_build_hdrs(q, udp);
4035 				if (error != 0)
4036 					return (error);
4037 			}
4038 			break;
4039 		}
4040 		case IPV6_RTHDR: {
4041 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
4042 
4043 			/*
4044 			 * Sanity checks - minimum size, size a multiple of
4045 			 * eight bytes, and matching size passed in.
4046 			 */
4047 			if (inlen != 0 &&
4048 			    inlen != (8 * (rt->ip6r_len + 1)))
4049 				return (EINVAL);
4050 
4051 			if (checkonly)
4052 				break;
4053 
4054 			if (inlen == 0) {
4055 				if (sticky &&
4056 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
4057 					kmem_free(ipp->ipp_rthdr,
4058 					    ipp->ipp_rthdrlen);
4059 					ipp->ipp_rthdr = NULL;
4060 					ipp->ipp_rthdrlen = 0;
4061 				}
4062 				ipp->ipp_fields &= ~IPPF_RTHDR;
4063 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
4064 			} else {
4065 				error = optcom_pkt_set(invalp, inlen, sticky,
4066 				    (uchar_t **)&ipp->ipp_rthdr,
4067 				    &ipp->ipp_rthdrlen, 0);
4068 				if (error != 0)
4069 					return (error);
4070 				ipp->ipp_fields |= IPPF_RTHDR;
4071 			}
4072 			if (sticky) {
4073 				error = udp_build_hdrs(q, udp);
4074 				if (error != 0)
4075 					return (error);
4076 			}
4077 			break;
4078 		}
4079 
4080 		case IPV6_DONTFRAG:
4081 			if (checkonly)
4082 				break;
4083 
4084 			if (onoff) {
4085 				ipp->ipp_fields |= IPPF_DONTFRAG;
4086 			} else {
4087 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
4088 			}
4089 			break;
4090 
4091 		case IPV6_USE_MIN_MTU:
4092 			if (inlen != sizeof (int))
4093 				return (EINVAL);
4094 
4095 			if (*i1 < -1 || *i1 > 1)
4096 				return (EINVAL);
4097 
4098 			if (checkonly)
4099 				break;
4100 
4101 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
4102 			ipp->ipp_use_min_mtu = *i1;
4103 			break;
4104 
4105 		case IPV6_BOUND_PIF:
4106 		case IPV6_SEC_OPT:
4107 		case IPV6_DONTFAILOVER_IF:
4108 		case IPV6_SRC_PREFERENCES:
4109 		case IPV6_V6ONLY:
4110 			/* Handled at the IP level */
4111 			return (-EINVAL);
4112 		default:
4113 			*outlenp = 0;
4114 			return (EINVAL);
4115 		}
4116 		break;
4117 		}		/* end IPPROTO_IPV6 */
4118 	case IPPROTO_UDP:
4119 		switch (name) {
4120 		case UDP_ANONPRIVBIND:
4121 			if ((error = secpolicy_net_privaddr(cr, 0)) != 0) {
4122 				*outlenp = 0;
4123 				return (error);
4124 			}
4125 			if (!checkonly) {
4126 				udp->udp_anon_priv_bind = onoff;
4127 			}
4128 			break;
4129 		case UDP_EXCLBIND:
4130 			if (!checkonly)
4131 				udp->udp_exclbind = onoff;
4132 			break;
4133 		case UDP_RCVHDR:
4134 			if (!checkonly)
4135 				udp->udp_rcvhdr = onoff;
4136 			break;
4137 		default:
4138 			*outlenp = 0;
4139 			return (EINVAL);
4140 		}
4141 		break;
4142 	default:
4143 		*outlenp = 0;
4144 		return (EINVAL);
4145 	}
4146 	/*
4147 	 * Common case of OK return with outval same as inval.
4148 	 */
4149 	if (invalp != outvalp) {
4150 		/* don't trust bcopy for identical src/dst */
4151 		(void) bcopy(invalp, outvalp, inlen);
4152 	}
4153 	*outlenp = inlen;
4154 	return (0);
4155 }
4156 
4157 /*
4158  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
4159  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
4160  * headers, and the udp header.
4161  * Returns failure if can't allocate memory.
4162  */
4163 static int
4164 udp_build_hdrs(queue_t *q, udp_t *udp)
4165 {
4166 	uchar_t	*hdrs;
4167 	uint_t	hdrs_len;
4168 	ip6_t	*ip6h;
4169 	ip6i_t	*ip6i;
4170 	udpha_t	*udpha;
4171 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
4172 
4173 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
4174 	ASSERT(hdrs_len != 0);
4175 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
4176 		/* Need to reallocate */
4177 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
4178 		if (hdrs == NULL)
4179 			return (ENOMEM);
4180 
4181 		if (udp->udp_sticky_hdrs_len != 0) {
4182 			kmem_free(udp->udp_sticky_hdrs,
4183 			    udp->udp_sticky_hdrs_len);
4184 		}
4185 		udp->udp_sticky_hdrs = hdrs;
4186 		udp->udp_sticky_hdrs_len = hdrs_len;
4187 	}
4188 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
4189 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
4190 
4191 	/* Set header fields not in ipp */
4192 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
4193 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
4194 		ip6h = (ip6_t *)&ip6i[1];
4195 	} else {
4196 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
4197 	}
4198 
4199 	if (!(ipp->ipp_fields & IPPF_ADDR))
4200 		ip6h->ip6_src = udp->udp_v6src;
4201 
4202 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
4203 	udpha->uha_src_port = udp->udp_port;
4204 
4205 	/* Try to get everything in a single mblk */
4206 	if (hdrs_len > udp->udp_max_hdr_len) {
4207 		udp->udp_max_hdr_len = hdrs_len;
4208 		(void) mi_set_sth_wroff(RD(q), udp->udp_max_hdr_len +
4209 		    udp_wroff_extra);
4210 	}
4211 	return (0);
4212 }
4213 
4214 /*
4215  * This routine retrieves the value of an ND variable in a udpparam_t
4216  * structure.  It is called through nd_getset when a user reads the
4217  * variable.
4218  */
4219 /* ARGSUSED */
4220 static int
4221 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
4222 {
4223 	udpparam_t *udppa = (udpparam_t *)cp;
4224 
4225 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
4226 	return (0);
4227 }
4228 
4229 /*
4230  * Walk through the param array specified registering each element with the
4231  * named dispatch (ND) handler.
4232  */
4233 static boolean_t
4234 udp_param_register(udpparam_t *udppa, int cnt)
4235 {
4236 	for (; cnt-- > 0; udppa++) {
4237 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
4238 			if (!nd_load(&udp_g_nd, udppa->udp_param_name,
4239 			    udp_param_get, udp_param_set,
4240 			    (caddr_t)udppa)) {
4241 				nd_free(&udp_g_nd);
4242 				return (B_FALSE);
4243 			}
4244 		}
4245 	}
4246 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports",
4247 	    udp_extra_priv_ports_get, NULL, NULL)) {
4248 		nd_free(&udp_g_nd);
4249 		return (B_FALSE);
4250 	}
4251 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_add",
4252 	    NULL, udp_extra_priv_ports_add, NULL)) {
4253 		nd_free(&udp_g_nd);
4254 		return (B_FALSE);
4255 	}
4256 	if (!nd_load(&udp_g_nd, "udp_extra_priv_ports_del",
4257 	    NULL, udp_extra_priv_ports_del, NULL)) {
4258 		nd_free(&udp_g_nd);
4259 		return (B_FALSE);
4260 	}
4261 	if (!nd_load(&udp_g_nd, "udp_status", udp_status_report, NULL,
4262 	    NULL)) {
4263 		nd_free(&udp_g_nd);
4264 		return (B_FALSE);
4265 	}
4266 	if (!nd_load(&udp_g_nd, "udp_bind_hash", udp_bind_hash_report, NULL,
4267 	    NULL)) {
4268 		nd_free(&udp_g_nd);
4269 		return (B_FALSE);
4270 	}
4271 	return (B_TRUE);
4272 }
4273 
4274 /* This routine sets an ND variable in a udpparam_t structure. */
4275 /* ARGSUSED */
4276 static int
4277 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
4278 {
4279 	long		new_value;
4280 	udpparam_t	*udppa = (udpparam_t *)cp;
4281 
4282 	/*
4283 	 * Fail the request if the new value does not lie within the
4284 	 * required bounds.
4285 	 */
4286 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
4287 	    new_value < udppa->udp_param_min ||
4288 	    new_value > udppa->udp_param_max) {
4289 		return (EINVAL);
4290 	}
4291 
4292 	/* Set the new value */
4293 	udppa->udp_param_value = new_value;
4294 	return (0);
4295 }
4296 
4297 /*
4298  * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with
4299  * T_opthdr) and return the number of bytes copied.  'dbuf' may be NULL to
4300  * just count the length needed for allocation.  If 'dbuf' is non-NULL,
4301  * then it's assumed to be allocated to be large enough.
4302  *
4303  * Returns zero if trimming of the security option causes all options to go
4304  * away.
4305  */
4306 static size_t
4307 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf)
4308 {
4309 	struct T_opthdr *toh;
4310 	size_t hol = ipp->ipp_hopoptslen;
4311 	ip6_hbh_t *dstopt = NULL;
4312 	const ip6_hbh_t *srcopt = ipp->ipp_hopopts;
4313 	size_t tlen, olen, plen;
4314 	boolean_t deleting;
4315 	const struct ip6_opt *sopt, *lastpad;
4316 	struct ip6_opt *dopt;
4317 
4318 	if ((toh = (struct T_opthdr *)dbuf) != NULL) {
4319 		toh->level = IPPROTO_IPV6;
4320 		toh->name = IPV6_HOPOPTS;
4321 		toh->status = 0;
4322 		dstopt = (ip6_hbh_t *)(toh + 1);
4323 	}
4324 
4325 	/*
4326 	 * If labeling is enabled, then skip the label option
4327 	 * but get other options if there are any.
4328 	 */
4329 	if (is_system_labeled()) {
4330 		dopt = NULL;
4331 		if (dstopt != NULL) {
4332 			/* will fill in ip6h_len later */
4333 			dstopt->ip6h_nxt = srcopt->ip6h_nxt;
4334 			dopt = (struct ip6_opt *)(dstopt + 1);
4335 		}
4336 		sopt = (const struct ip6_opt *)(srcopt + 1);
4337 		hol -= sizeof (*srcopt);
4338 		tlen = sizeof (*dstopt);
4339 		lastpad = NULL;
4340 		deleting = B_FALSE;
4341 		/*
4342 		 * This loop finds the first (lastpad pointer) of any number of
4343 		 * pads that preceeds the security option, then treats the
4344 		 * security option as though it were a pad, and then finds the
4345 		 * next non-pad option (or end of list).
4346 		 *
4347 		 * It then treats the entire block as one big pad.  To preserve
4348 		 * alignment of any options that follow, or just the end of the
4349 		 * list, it computes a minimal new padding size that keeps the
4350 		 * same alignment for the next option.
4351 		 *
4352 		 * If it encounters just a sequence of pads with no security
4353 		 * option, those are copied as-is rather than collapsed.
4354 		 *
4355 		 * Note that to handle the end of list case, the code makes one
4356 		 * loop with 'hol' set to zero.
4357 		 */
4358 		for (;;) {
4359 			if (hol > 0) {
4360 				if (sopt->ip6o_type == IP6OPT_PAD1) {
4361 					if (lastpad == NULL)
4362 						lastpad = sopt;
4363 					sopt = (const struct ip6_opt *)
4364 					    &sopt->ip6o_len;
4365 					hol--;
4366 					continue;
4367 				}
4368 				olen = sopt->ip6o_len + sizeof (*sopt);
4369 				if (olen > hol)
4370 					olen = hol;
4371 				if (sopt->ip6o_type == IP6OPT_PADN ||
4372 				    sopt->ip6o_type == ip6opt_ls) {
4373 					if (sopt->ip6o_type == ip6opt_ls)
4374 						deleting = B_TRUE;
4375 					if (lastpad == NULL)
4376 						lastpad = sopt;
4377 					sopt = (const struct ip6_opt *)
4378 					    ((const char *)sopt + olen);
4379 					hol -= olen;
4380 					continue;
4381 				}
4382 			} else {
4383 				/* if nothing was copied at all, then delete */
4384 				if (tlen == sizeof (*dstopt))
4385 					return (0);
4386 				/* last pass; pick up any trailing padding */
4387 				olen = 0;
4388 			}
4389 			if (deleting) {
4390 				/*
4391 				 * compute aligning effect of deleted material
4392 				 * to reproduce with pad.
4393 				 */
4394 				plen = ((const char *)sopt -
4395 				    (const char *)lastpad) & 7;
4396 				tlen += plen;
4397 				if (dopt != NULL) {
4398 					if (plen == 1) {
4399 						dopt->ip6o_type = IP6OPT_PAD1;
4400 					} else if (plen > 1) {
4401 						plen -= sizeof (*dopt);
4402 						dopt->ip6o_type = IP6OPT_PADN;
4403 						dopt->ip6o_len = plen;
4404 						if (plen > 0)
4405 							bzero(dopt + 1, plen);
4406 					}
4407 					dopt = (struct ip6_opt *)
4408 					    ((char *)dopt + plen);
4409 				}
4410 				deleting = B_FALSE;
4411 				lastpad = NULL;
4412 			}
4413 			/* if there's uncopied padding, then copy that now */
4414 			if (lastpad != NULL) {
4415 				olen += (const char *)sopt -
4416 				    (const char *)lastpad;
4417 				sopt = lastpad;
4418 				lastpad = NULL;
4419 			}
4420 			if (dopt != NULL && olen > 0) {
4421 				bcopy(sopt, dopt, olen);
4422 				dopt = (struct ip6_opt *)((char *)dopt + olen);
4423 			}
4424 			if (hol == 0)
4425 				break;
4426 			tlen += olen;
4427 			sopt = (const struct ip6_opt *)
4428 			    ((const char *)sopt + olen);
4429 			hol -= olen;
4430 		}
4431 		/* go back and patch up the length value, rounded upward */
4432 		if (dstopt != NULL)
4433 			dstopt->ip6h_len = (tlen - 1) >> 3;
4434 	} else {
4435 		tlen = hol;
4436 		if (dstopt != NULL)
4437 			bcopy(srcopt, dstopt, hol);
4438 	}
4439 
4440 	tlen += sizeof (*toh);
4441 	if (toh != NULL)
4442 		toh->len = tlen;
4443 
4444 	return (tlen);
4445 }
4446 
4447 static void
4448 udp_input(conn_t *connp, mblk_t *mp)
4449 {
4450 	struct T_unitdata_ind	*tudi;
4451 	uchar_t			*rptr;		/* Pointer to IP header */
4452 	int			hdr_length;	/* Length of IP+UDP headers */
4453 	int			udi_size;	/* Size of T_unitdata_ind */
4454 	int			mp_len;
4455 	udp_t			*udp;
4456 	udpha_t			*udpha;
4457 	int			ipversion;
4458 	ip6_pkt_t		ipp;
4459 	ip6_t			*ip6h;
4460 	ip6i_t			*ip6i;
4461 	mblk_t			*mp1;
4462 	mblk_t			*options_mp = NULL;
4463 	in_pktinfo_t		*pinfo = NULL;
4464 	cred_t			*cr = NULL;
4465 	queue_t			*q = connp->conn_rq;
4466 	pid_t			cpid;
4467 	cred_t			*rcr = connp->conn_cred;
4468 
4469 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
4470 	    "udp_rput_start: q %p mp %p", q, mp);
4471 
4472 	udp = connp->conn_udp;
4473 	rptr = mp->b_rptr;
4474 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4475 	ASSERT(OK_32PTR(rptr));
4476 
4477 	/*
4478 	 * IP should have prepended the options data in an M_CTL
4479 	 * Check M_CTL "type" to make sure are not here bcos of
4480 	 * a valid ICMP message
4481 	 */
4482 	if (DB_TYPE(mp) == M_CTL) {
4483 		if (MBLKL(mp) == sizeof (in_pktinfo_t) &&
4484 		    ((in_pktinfo_t *)mp->b_rptr)->in_pkt_ulp_type ==
4485 		    IN_PKTINFO) {
4486 			/*
4487 			 * IP_RECVIF or IP_RECVSLLA information has been
4488 			 * appended to the packet by IP. We need to
4489 			 * extract the mblk and adjust the rptr
4490 			 */
4491 			pinfo = (in_pktinfo_t *)mp->b_rptr;
4492 			options_mp = mp;
4493 			mp = mp->b_cont;
4494 			rptr = mp->b_rptr;
4495 			UDP_STAT(udp_in_pktinfo);
4496 		} else {
4497 			/*
4498 			 * ICMP messages.
4499 			 */
4500 			udp_icmp_error(q, mp);
4501 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4502 				"udp_rput_end: q %p (%S)", q, "m_ctl");
4503 			return;
4504 		}
4505 	}
4506 
4507 	mp_len = msgdsize(mp);
4508 	/*
4509 	 * This is the inbound data path.
4510 	 * First, we check to make sure the IP version number is correct,
4511 	 * and then pull the IP and UDP headers into the first mblk.
4512 	 * Assume IP provides aligned packets - otherwise toss.
4513 	 * Also, check if we have a complete IP header.
4514 	 */
4515 
4516 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4517 	ipp.ipp_fields = 0;
4518 
4519 	ipversion = IPH_HDR_VERSION(rptr);
4520 	switch (ipversion) {
4521 	case IPV4_VERSION:
4522 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4523 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4524 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4525 		if ((hdr_length > IP_SIMPLE_HDR_LENGTH + UDPH_SIZE) ||
4526 		    (udp->udp_ip_rcv_options_len)) {
4527 			/*
4528 			 * Handle IPv4 packets with options outside of the
4529 			 * main data path. Not needed for AF_INET6 sockets
4530 			 * since they don't support a getsockopt of IP_OPTIONS.
4531 			 */
4532 			if (udp->udp_family == AF_INET6)
4533 				break;
4534 			/*
4535 			 * UDP length check performed for IPv4 packets with
4536 			 * options to check whether UDP length specified in
4537 			 * the header is the same as the physical length of
4538 			 * the packet.
4539 			 */
4540 			udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4541 			if (mp_len != (ntohs(udpha->uha_length) +
4542 			    hdr_length - UDPH_SIZE)) {
4543 				goto tossit;
4544 			}
4545 			/*
4546 			 * Handle the case where the packet has IP options
4547 			 * and the IP_RECVSLLA & IP_RECVIF are set
4548 			 */
4549 			if (pinfo != NULL)
4550 				mp = options_mp;
4551 			udp_become_writer(connp, mp, udp_rput_other_wrapper,
4552 			    SQTAG_UDP_INPUT);
4553 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4554 				"udp_rput_end: q %p (%S)", q, "end");
4555 			return;
4556 		}
4557 
4558 		/* Handle IPV6_RECVHOPLIMIT. */
4559 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4560 		    udp->udp_ipv6_recvpktinfo) {
4561 			if (pinfo->in_pkt_flags & IPF_RECVIF) {
4562 				ipp.ipp_fields |= IPPF_IFINDEX;
4563 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
4564 			}
4565 		}
4566 		break;
4567 	case IPV6_VERSION:
4568 		/*
4569 		 * IPv6 packets can only be received by applications
4570 		 * that are prepared to receive IPv6 addresses.
4571 		 * The IP fanout must ensure this.
4572 		 */
4573 		ASSERT(udp->udp_family == AF_INET6);
4574 
4575 		ip6h = (ip6_t *)rptr;
4576 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4577 
4578 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4579 			uint8_t nexthdrp;
4580 			/* Look for ifindex information */
4581 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4582 				ip6i = (ip6i_t *)ip6h;
4583 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4584 					goto tossit;
4585 
4586 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4587 					ASSERT(ip6i->ip6i_ifindex != 0);
4588 					ipp.ipp_fields |= IPPF_IFINDEX;
4589 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4590 				}
4591 				rptr = (uchar_t *)&ip6i[1];
4592 				mp->b_rptr = rptr;
4593 				if (rptr == mp->b_wptr) {
4594 					mp1 = mp->b_cont;
4595 					freeb(mp);
4596 					mp = mp1;
4597 					rptr = mp->b_rptr;
4598 				}
4599 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4600 					goto tossit;
4601 				ip6h = (ip6_t *)rptr;
4602 				mp_len = msgdsize(mp);
4603 			}
4604 			/*
4605 			 * Find any potentially interesting extension headers
4606 			 * as well as the length of the IPv6 + extension
4607 			 * headers.
4608 			 */
4609 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4610 			    UDPH_SIZE;
4611 			ASSERT(nexthdrp == IPPROTO_UDP);
4612 		} else {
4613 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4614 			ip6i = NULL;
4615 		}
4616 		break;
4617 	default:
4618 		ASSERT(0);
4619 	}
4620 
4621 	/*
4622 	 * IP inspected the UDP header thus all of it must be in the mblk.
4623 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4624 	 * without options to check if the size of the packet as specified
4625 	 * by the header is the same as the physical size of the packet.
4626 	 */
4627 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4628 	if ((MBLKL(mp) < hdr_length) ||
4629 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4630 		goto tossit;
4631 	}
4632 
4633 	/* Walk past the headers. */
4634 	if (!udp->udp_rcvhdr) {
4635 		mp->b_rptr = rptr + hdr_length;
4636 		mp_len -= hdr_length;
4637 	}
4638 
4639 	/*
4640 	 * This is the inbound data path.  Packets are passed upstream as
4641 	 * T_UNITDATA_IND messages with full IP headers still attached.
4642 	 */
4643 	if (udp->udp_family == AF_INET) {
4644 		sin_t *sin;
4645 
4646 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4647 
4648 		/*
4649 		 * Normally only send up the address.
4650 		 * If IP_RECVDSTADDR is set we include the destination IP
4651 		 * address as an option. With IP_RECVOPTS we include all
4652 		 * the IP options. Only ip_rput_other() handles packets
4653 		 * that contain IP options.
4654 		 */
4655 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4656 		if (udp->udp_recvdstaddr) {
4657 			udi_size += sizeof (struct T_opthdr) +
4658 			    sizeof (struct in_addr);
4659 			UDP_STAT(udp_in_recvdstaddr);
4660 		}
4661 
4662 		/*
4663 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4664 		 * space accordingly
4665 		 */
4666 		if (udp->udp_recvif && (pinfo != NULL) &&
4667 		    (pinfo->in_pkt_flags & IPF_RECVIF)) {
4668 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4669 			UDP_STAT(udp_in_recvif);
4670 		}
4671 
4672 		if (udp->udp_recvslla && (pinfo != NULL) &&
4673 		    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
4674 			udi_size += sizeof (struct T_opthdr) +
4675 			    sizeof (struct sockaddr_dl);
4676 			UDP_STAT(udp_in_recvslla);
4677 		}
4678 
4679 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
4680 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4681 			cpid = DB_CPID(mp);
4682 			UDP_STAT(udp_in_recvucred);
4683 		}
4684 		/*
4685 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4686 		 */
4687 		if (udp->udp_recvttl) {
4688 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4689 			UDP_STAT(udp_in_recvttl);
4690 		}
4691 		/*
4692 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4693 		 * buffer. Since gethrestime() expects a pointer aligned
4694 		 * argument, we allocate space necessary for extra
4695 		 * alignment (even though it might not be used).
4696 		 */
4697 		if (udp->udp_timestamp) {
4698 			udi_size += sizeof (struct T_opthdr) +
4699 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4700 			UDP_STAT(udp_in_timestamp);
4701 		}
4702 		ASSERT(IPH_HDR_LENGTH((ipha_t *)rptr) == IP_SIMPLE_HDR_LENGTH);
4703 
4704 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4705 		mp1 = allocb(udi_size, BPRI_MED);
4706 		if (mp1 == NULL) {
4707 			freemsg(mp);
4708 			if (options_mp != NULL)
4709 				freeb(options_mp);
4710 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4711 				"udp_rput_end: q %p (%S)", q, "allocbfail");
4712 			BUMP_MIB(&udp_mib, udpInErrors);
4713 			return;
4714 		}
4715 		mp1->b_cont = mp;
4716 		mp = mp1;
4717 		mp->b_datap->db_type = M_PROTO;
4718 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4719 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4720 		tudi->PRIM_type = T_UNITDATA_IND;
4721 		tudi->SRC_length = sizeof (sin_t);
4722 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4723 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4724 		    sizeof (sin_t);
4725 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4726 		tudi->OPT_length = udi_size;
4727 		sin = (sin_t *)&tudi[1];
4728 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4729 		sin->sin_port =	udpha->uha_src_port;
4730 		sin->sin_family = udp->udp_family;
4731 		*(uint32_t *)&sin->sin_zero[0] = 0;
4732 		*(uint32_t *)&sin->sin_zero[4] = 0;
4733 
4734 		/*
4735 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4736 		 * IP_RECVTTL has been set.
4737 		 */
4738 		if (udi_size != 0) {
4739 			/*
4740 			 * Copy in destination address before options to avoid
4741 			 * any padding issues.
4742 			 */
4743 			char *dstopt;
4744 
4745 			dstopt = (char *)&sin[1];
4746 			if (udp->udp_recvdstaddr) {
4747 				struct T_opthdr *toh;
4748 				ipaddr_t *dstptr;
4749 
4750 				toh = (struct T_opthdr *)dstopt;
4751 				toh->level = IPPROTO_IP;
4752 				toh->name = IP_RECVDSTADDR;
4753 				toh->len = sizeof (struct T_opthdr) +
4754 				    sizeof (ipaddr_t);
4755 				toh->status = 0;
4756 				dstopt += sizeof (struct T_opthdr);
4757 				dstptr = (ipaddr_t *)dstopt;
4758 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4759 				dstopt += sizeof (ipaddr_t);
4760 				udi_size -= toh->len;
4761 			}
4762 
4763 			if (udp->udp_recvslla && (pinfo != NULL) &&
4764 			    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
4765 
4766 				struct T_opthdr *toh;
4767 				struct sockaddr_dl	*dstptr;
4768 
4769 				toh = (struct T_opthdr *)dstopt;
4770 				toh->level = IPPROTO_IP;
4771 				toh->name = IP_RECVSLLA;
4772 				toh->len = sizeof (struct T_opthdr) +
4773 					sizeof (struct sockaddr_dl);
4774 				toh->status = 0;
4775 				dstopt += sizeof (struct T_opthdr);
4776 				dstptr = (struct sockaddr_dl *)dstopt;
4777 				bcopy(&pinfo->in_pkt_slla, dstptr,
4778 				    sizeof (struct sockaddr_dl));
4779 				dstopt += sizeof (struct sockaddr_dl);
4780 				udi_size -= toh->len;
4781 			}
4782 
4783 			if (udp->udp_recvif && (pinfo != NULL) &&
4784 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
4785 
4786 				struct T_opthdr *toh;
4787 				uint_t		*dstptr;
4788 
4789 				toh = (struct T_opthdr *)dstopt;
4790 				toh->level = IPPROTO_IP;
4791 				toh->name = IP_RECVIF;
4792 				toh->len = sizeof (struct T_opthdr) +
4793 					sizeof (uint_t);
4794 				toh->status = 0;
4795 				dstopt += sizeof (struct T_opthdr);
4796 				dstptr = (uint_t *)dstopt;
4797 				*dstptr = pinfo->in_pkt_ifindex;
4798 				dstopt += sizeof (uint_t);
4799 				udi_size -= toh->len;
4800 			}
4801 
4802 			if (cr != NULL) {
4803 				struct T_opthdr *toh;
4804 
4805 				toh = (struct T_opthdr *)dstopt;
4806 				toh->level = SOL_SOCKET;
4807 				toh->name = SCM_UCRED;
4808 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4809 				toh->status = 0;
4810 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
4811 				dstopt += toh->len;
4812 				udi_size -= toh->len;
4813 			}
4814 
4815 			if (udp->udp_recvttl) {
4816 				struct	T_opthdr *toh;
4817 				uint8_t	*dstptr;
4818 
4819 				toh = (struct T_opthdr *)dstopt;
4820 				toh->level = IPPROTO_IP;
4821 				toh->name = IP_RECVTTL;
4822 				toh->len = sizeof (struct T_opthdr) +
4823 				    sizeof (uint8_t);
4824 				toh->status = 0;
4825 				dstopt += sizeof (struct T_opthdr);
4826 				dstptr = (uint8_t *)dstopt;
4827 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4828 				dstopt += sizeof (uint8_t);
4829 				udi_size -= toh->len;
4830 			}
4831 			if (udp->udp_timestamp) {
4832 				struct	T_opthdr *toh;
4833 
4834 				toh = (struct T_opthdr *)dstopt;
4835 				toh->level = SOL_SOCKET;
4836 				toh->name = SCM_TIMESTAMP;
4837 				toh->len = sizeof (struct T_opthdr) +
4838 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4839 				toh->status = 0;
4840 				dstopt += sizeof (struct T_opthdr);
4841 				/* Align for gethrestime() */
4842 				dstopt = (char *)P2ROUNDUP((intptr_t)dstopt,
4843 				    sizeof (intptr_t));
4844 				gethrestime((timestruc_t *)dstopt);
4845 				dstopt += sizeof (timestruc_t);
4846 				udi_size -= toh->len;
4847 			}
4848 
4849 			/* Consumed all of allocated space */
4850 			ASSERT(udi_size == 0);
4851 		}
4852 	} else {
4853 		sin6_t *sin6;
4854 
4855 		/*
4856 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
4857 		 *
4858 		 * Normally we only send up the address. If receiving of any
4859 		 * optional receive side information is enabled, we also send
4860 		 * that up as options.
4861 		 * [ Only udp_rput_other() handles packets that contain IP
4862 		 * options so code to account for does not appear immediately
4863 		 * below but elsewhere ]
4864 		 */
4865 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
4866 
4867 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
4868 		    IPPF_RTHDR|IPPF_IFINDEX)) {
4869 			if (udp->udp_ipv6_recvhopopts &&
4870 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4871 				size_t hlen;
4872 
4873 				UDP_STAT(udp_in_recvhopopts);
4874 				hlen = copy_hop_opts(&ipp, NULL);
4875 				if (hlen == 0)
4876 					ipp.ipp_fields &= ~IPPF_HOPOPTS;
4877 				udi_size += hlen;
4878 			}
4879 			if ((udp->udp_ipv6_recvdstopts ||
4880 				udp->udp_old_ipv6_recvdstopts) &&
4881 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4882 				udi_size += sizeof (struct T_opthdr) +
4883 				    ipp.ipp_dstoptslen;
4884 				UDP_STAT(udp_in_recvdstopts);
4885 			}
4886 			if (((udp->udp_ipv6_recvdstopts &&
4887 			    udp->udp_ipv6_recvrthdr &&
4888 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
4889 			    udp->udp_ipv6_recvrthdrdstopts) &&
4890 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4891 				udi_size += sizeof (struct T_opthdr) +
4892 				    ipp.ipp_rtdstoptslen;
4893 				UDP_STAT(udp_in_recvrtdstopts);
4894 			}
4895 			if (udp->udp_ipv6_recvrthdr &&
4896 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4897 				udi_size += sizeof (struct T_opthdr) +
4898 				    ipp.ipp_rthdrlen;
4899 				UDP_STAT(udp_in_recvrthdr);
4900 			}
4901 			if (udp->udp_ipv6_recvpktinfo &&
4902 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4903 				udi_size += sizeof (struct T_opthdr) +
4904 				    sizeof (struct in6_pktinfo);
4905 				UDP_STAT(udp_in_recvpktinfo);
4906 			}
4907 
4908 		}
4909 		if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
4910 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4911 			cpid = DB_CPID(mp);
4912 			UDP_STAT(udp_in_recvucred);
4913 		}
4914 
4915 		if (udp->udp_ipv6_recvhoplimit) {
4916 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4917 			UDP_STAT(udp_in_recvhoplimit);
4918 		}
4919 
4920 		if (udp->udp_ipv6_recvtclass) {
4921 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4922 			UDP_STAT(udp_in_recvtclass);
4923 		}
4924 
4925 		mp1 = allocb(udi_size, BPRI_MED);
4926 		if (mp1 == NULL) {
4927 			freemsg(mp);
4928 			if (options_mp != NULL)
4929 				freeb(options_mp);
4930 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
4931 				"udp_rput_end: q %p (%S)", q, "allocbfail");
4932 			BUMP_MIB(&udp_mib, udpInErrors);
4933 			return;
4934 		}
4935 		mp1->b_cont = mp;
4936 		mp = mp1;
4937 		mp->b_datap->db_type = M_PROTO;
4938 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4939 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4940 		tudi->PRIM_type = T_UNITDATA_IND;
4941 		tudi->SRC_length = sizeof (sin6_t);
4942 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4943 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4944 		    sizeof (sin6_t);
4945 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
4946 		tudi->OPT_length = udi_size;
4947 		sin6 = (sin6_t *)&tudi[1];
4948 		if (ipversion == IPV4_VERSION) {
4949 			in6_addr_t v6dst;
4950 
4951 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
4952 			    &sin6->sin6_addr);
4953 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
4954 			    &v6dst);
4955 			sin6->sin6_flowinfo = 0;
4956 			sin6->sin6_scope_id = 0;
4957 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
4958 			    connp->conn_zoneid);
4959 		} else {
4960 			sin6->sin6_addr = ip6h->ip6_src;
4961 			/* No sin6_flowinfo per API */
4962 			sin6->sin6_flowinfo = 0;
4963 			/* For link-scope source pass up scope id */
4964 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
4965 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4966 				sin6->sin6_scope_id = ipp.ipp_ifindex;
4967 			else
4968 				sin6->sin6_scope_id = 0;
4969 			sin6->__sin6_src_id = ip_srcid_find_addr(
4970 			    &ip6h->ip6_dst, connp->conn_zoneid);
4971 		}
4972 		sin6->sin6_port = udpha->uha_src_port;
4973 		sin6->sin6_family = udp->udp_family;
4974 
4975 		if (udi_size != 0) {
4976 			uchar_t *dstopt;
4977 
4978 			dstopt = (uchar_t *)&sin6[1];
4979 			if (udp->udp_ipv6_recvpktinfo &&
4980 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4981 				struct T_opthdr *toh;
4982 				struct in6_pktinfo *pkti;
4983 
4984 				toh = (struct T_opthdr *)dstopt;
4985 				toh->level = IPPROTO_IPV6;
4986 				toh->name = IPV6_PKTINFO;
4987 				toh->len = sizeof (struct T_opthdr) +
4988 				    sizeof (*pkti);
4989 				toh->status = 0;
4990 				dstopt += sizeof (struct T_opthdr);
4991 				pkti = (struct in6_pktinfo *)dstopt;
4992 				if (ipversion == IPV6_VERSION)
4993 					pkti->ipi6_addr = ip6h->ip6_dst;
4994 				else
4995 					IN6_IPADDR_TO_V4MAPPED(
4996 						((ipha_t *)rptr)->ipha_dst,
4997 						    &pkti->ipi6_addr);
4998 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
4999 				dstopt += sizeof (*pkti);
5000 				udi_size -= toh->len;
5001 			}
5002 			if (udp->udp_ipv6_recvhoplimit) {
5003 				struct T_opthdr *toh;
5004 
5005 				toh = (struct T_opthdr *)dstopt;
5006 				toh->level = IPPROTO_IPV6;
5007 				toh->name = IPV6_HOPLIMIT;
5008 				toh->len = sizeof (struct T_opthdr) +
5009 				    sizeof (uint_t);
5010 				toh->status = 0;
5011 				dstopt += sizeof (struct T_opthdr);
5012 				if (ipversion == IPV6_VERSION)
5013 					*(uint_t *)dstopt = ip6h->ip6_hops;
5014 				else
5015 					*(uint_t *)dstopt =
5016 					    ((ipha_t *)rptr)->ipha_ttl;
5017 				dstopt += sizeof (uint_t);
5018 				udi_size -= toh->len;
5019 			}
5020 			if (udp->udp_ipv6_recvtclass) {
5021 				struct T_opthdr *toh;
5022 
5023 				toh = (struct T_opthdr *)dstopt;
5024 				toh->level = IPPROTO_IPV6;
5025 				toh->name = IPV6_TCLASS;
5026 				toh->len = sizeof (struct T_opthdr) +
5027 				    sizeof (uint_t);
5028 				toh->status = 0;
5029 				dstopt += sizeof (struct T_opthdr);
5030 				if (ipversion == IPV6_VERSION) {
5031 					*(uint_t *)dstopt =
5032 					IPV6_FLOW_TCLASS(ip6h->ip6_flow);
5033 				} else {
5034 					ipha_t *ipha = (ipha_t *)rptr;
5035 					*(uint_t *)dstopt =
5036 					    ipha->ipha_type_of_service;
5037 				}
5038 				dstopt += sizeof (uint_t);
5039 				udi_size -= toh->len;
5040 			}
5041 			if (udp->udp_ipv6_recvhopopts &&
5042 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
5043 				size_t hlen;
5044 
5045 				hlen = copy_hop_opts(&ipp, dstopt);
5046 				dstopt += hlen;
5047 				udi_size -= hlen;
5048 			}
5049 			if (udp->udp_ipv6_recvdstopts &&
5050 			    udp->udp_ipv6_recvrthdr &&
5051 			    (ipp.ipp_fields & IPPF_RTHDR) &&
5052 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
5053 				struct T_opthdr *toh;
5054 
5055 				toh = (struct T_opthdr *)dstopt;
5056 				toh->level = IPPROTO_IPV6;
5057 				toh->name = IPV6_DSTOPTS;
5058 				toh->len = sizeof (struct T_opthdr) +
5059 				    ipp.ipp_rtdstoptslen;
5060 				toh->status = 0;
5061 				dstopt += sizeof (struct T_opthdr);
5062 				bcopy(ipp.ipp_rtdstopts, dstopt,
5063 				    ipp.ipp_rtdstoptslen);
5064 				dstopt += ipp.ipp_rtdstoptslen;
5065 				udi_size -= toh->len;
5066 			}
5067 			if (udp->udp_ipv6_recvrthdr &&
5068 			    (ipp.ipp_fields & IPPF_RTHDR)) {
5069 				struct T_opthdr *toh;
5070 
5071 				toh = (struct T_opthdr *)dstopt;
5072 				toh->level = IPPROTO_IPV6;
5073 				toh->name = IPV6_RTHDR;
5074 				toh->len = sizeof (struct T_opthdr) +
5075 				    ipp.ipp_rthdrlen;
5076 				toh->status = 0;
5077 				dstopt += sizeof (struct T_opthdr);
5078 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
5079 				dstopt += ipp.ipp_rthdrlen;
5080 				udi_size -= toh->len;
5081 			}
5082 			if (udp->udp_ipv6_recvdstopts &&
5083 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
5084 				struct T_opthdr *toh;
5085 
5086 				toh = (struct T_opthdr *)dstopt;
5087 				toh->level = IPPROTO_IPV6;
5088 				toh->name = IPV6_DSTOPTS;
5089 				toh->len = sizeof (struct T_opthdr) +
5090 				    ipp.ipp_dstoptslen;
5091 				toh->status = 0;
5092 				dstopt += sizeof (struct T_opthdr);
5093 				bcopy(ipp.ipp_dstopts, dstopt,
5094 				    ipp.ipp_dstoptslen);
5095 				dstopt += ipp.ipp_dstoptslen;
5096 				udi_size -= toh->len;
5097 			}
5098 
5099 			if (cr != NULL) {
5100 				struct T_opthdr *toh;
5101 
5102 				toh = (struct T_opthdr *)dstopt;
5103 				toh->level = SOL_SOCKET;
5104 				toh->name = SCM_UCRED;
5105 				toh->len = sizeof (struct T_opthdr) + ucredsize;
5106 				toh->status = 0;
5107 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
5108 				dstopt += toh->len;
5109 				udi_size -= toh->len;
5110 			}
5111 			/* Consumed all of allocated space */
5112 			ASSERT(udi_size == 0);
5113 		}
5114 #undef	sin6
5115 		/* No IP_RECVDSTADDR for IPv6. */
5116 	}
5117 
5118 	BUMP_MIB(&udp_mib, udpInDatagrams);
5119 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5120 		"udp_rput_end: q %p (%S)", q, "end");
5121 	if (options_mp != NULL)
5122 		freeb(options_mp);
5123 
5124 	if (udp->udp_direct_sockfs) {
5125 		/*
5126 		 * There is nothing above us except for the stream head;
5127 		 * use the read-side synchronous stream interface in
5128 		 * order to reduce the time spent in interrupt thread.
5129 		 */
5130 		ASSERT(udp->udp_issocket);
5131 		udp_rcv_enqueue(UDP_RD(q), udp, mp, mp_len);
5132 	} else {
5133 		/*
5134 		 * Use regular STREAMS interface to pass data upstream
5135 		 * if this is not a socket endpoint, or if we have
5136 		 * switched over to the slow mode due to sockmod being
5137 		 * popped or a module being pushed on top of us.
5138 		 */
5139 		putnext(UDP_RD(q), mp);
5140 	}
5141 	return;
5142 
5143 tossit:
5144 	freemsg(mp);
5145 	if (options_mp != NULL)
5146 		freeb(options_mp);
5147 	BUMP_MIB(&udp_mib, udpInErrors);
5148 }
5149 
5150 void
5151 udp_conn_recv(conn_t *connp, mblk_t *mp)
5152 {
5153 	_UDP_ENTER(connp, mp, udp_input_wrapper, SQTAG_UDP_FANOUT);
5154 }
5155 
5156 /* ARGSUSED */
5157 static void
5158 udp_input_wrapper(void *arg, mblk_t *mp, void *arg2)
5159 {
5160 	udp_input((conn_t *)arg, mp);
5161 	_UDP_EXIT((conn_t *)arg);
5162 }
5163 
5164 /*
5165  * Process non-M_DATA messages as well as M_DATA messages that requires
5166  * modifications to udp_ip_rcv_options i.e. IPv4 packets with IP options.
5167  */
5168 static void
5169 udp_rput_other(queue_t *q, mblk_t *mp)
5170 {
5171 	struct T_unitdata_ind	*tudi;
5172 	mblk_t			*mp1;
5173 	uchar_t			*rptr;
5174 	uchar_t			*new_rptr;
5175 	int			hdr_length;
5176 	int			udi_size;	/* Size of T_unitdata_ind */
5177 	int			opt_len;	/* Length of IP options */
5178 	sin_t			*sin;
5179 	struct T_error_ack	*tea;
5180 	mblk_t			*options_mp = NULL;
5181 	in_pktinfo_t		*pinfo;
5182 	boolean_t		recv_on = B_FALSE;
5183 	cred_t			*cr = NULL;
5184 	udp_t			*udp = Q_TO_UDP(q);
5185 	pid_t			cpid;
5186 	cred_t			*rcr = udp->udp_connp->conn_cred;
5187 
5188 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_START,
5189 	    "udp_rput_other: q %p mp %p", q, mp);
5190 
5191 	ASSERT(OK_32PTR(mp->b_rptr));
5192 	rptr = mp->b_rptr;
5193 
5194 	switch (mp->b_datap->db_type) {
5195 	case M_CTL:
5196 		/*
5197 		 * We are here only if IP_RECVSLLA and/or IP_RECVIF are set
5198 		 */
5199 		recv_on = B_TRUE;
5200 		options_mp = mp;
5201 		pinfo = (in_pktinfo_t *)options_mp->b_rptr;
5202 
5203 		/*
5204 		 * The actual data is in mp->b_cont
5205 		 */
5206 		mp = mp->b_cont;
5207 		ASSERT(OK_32PTR(mp->b_rptr));
5208 		rptr = mp->b_rptr;
5209 		break;
5210 	case M_DATA:
5211 		/*
5212 		 * M_DATA messages contain IPv4 datagrams.  They are handled
5213 		 * after this switch.
5214 		 */
5215 		break;
5216 	case M_PROTO:
5217 	case M_PCPROTO:
5218 		/* M_PROTO messages contain some type of TPI message. */
5219 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
5220 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
5221 			freemsg(mp);
5222 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5223 			    "udp_rput_other_end: q %p (%S)", q, "protoshort");
5224 			return;
5225 		}
5226 		tea = (struct T_error_ack *)rptr;
5227 
5228 		switch (tea->PRIM_type) {
5229 		case T_ERROR_ACK:
5230 			switch (tea->ERROR_prim) {
5231 			case O_T_BIND_REQ:
5232 			case T_BIND_REQ: {
5233 				/*
5234 				 * If our O_T_BIND_REQ/T_BIND_REQ fails,
5235 				 * clear out the associated port and source
5236 				 * address before passing the message
5237 				 * upstream. If this was caused by a T_CONN_REQ
5238 				 * revert back to bound state.
5239 				 */
5240 				udp_fanout_t	*udpf;
5241 
5242 				udpf = &udp_bind_fanout[
5243 				    UDP_BIND_HASH(udp->udp_port)];
5244 				mutex_enter(&udpf->uf_lock);
5245 				if (udp->udp_state == TS_DATA_XFER) {
5246 					/* Connect failed */
5247 					tea->ERROR_prim = T_CONN_REQ;
5248 					/* Revert back to the bound source */
5249 					udp->udp_v6src = udp->udp_bound_v6src;
5250 					udp->udp_state = TS_IDLE;
5251 					mutex_exit(&udpf->uf_lock);
5252 					if (udp->udp_family == AF_INET6)
5253 						(void) udp_build_hdrs(q, udp);
5254 					break;
5255 				}
5256 
5257 				if (udp->udp_discon_pending) {
5258 					tea->ERROR_prim = T_DISCON_REQ;
5259 					udp->udp_discon_pending = 0;
5260 				}
5261 				V6_SET_ZERO(udp->udp_v6src);
5262 				V6_SET_ZERO(udp->udp_bound_v6src);
5263 				udp->udp_state = TS_UNBND;
5264 				udp_bind_hash_remove(udp, B_TRUE);
5265 				udp->udp_port = 0;
5266 				mutex_exit(&udpf->uf_lock);
5267 				if (udp->udp_family == AF_INET6)
5268 					(void) udp_build_hdrs(q, udp);
5269 				break;
5270 			}
5271 			default:
5272 				break;
5273 			}
5274 			break;
5275 		case T_BIND_ACK:
5276 			udp_rput_bind_ack(q, mp);
5277 			return;
5278 
5279 		case T_OPTMGMT_ACK:
5280 		case T_OK_ACK:
5281 			break;
5282 		default:
5283 			freemsg(mp);
5284 			return;
5285 		}
5286 		putnext(UDP_RD(q), mp);
5287 		return;
5288 	}
5289 
5290 	/*
5291 	 * This is the inbound data path.
5292 	 * First, we make sure the data contains both IP and UDP headers.
5293 	 *
5294 	 * This handle IPv4 packets for only AF_INET sockets.
5295 	 * AF_INET6 sockets can never access udp_ip_rcv_options thus there
5296 	 * is no need saving the options.
5297 	 */
5298 	ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
5299 	hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
5300 	if (mp->b_wptr - rptr < hdr_length) {
5301 		if (!pullupmsg(mp, hdr_length)) {
5302 			freemsg(mp);
5303 			if (options_mp != NULL)
5304 				freeb(options_mp);
5305 			BUMP_MIB(&udp_mib, udpInErrors);
5306 			TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5307 			    "udp_rput_other_end: q %p (%S)", q, "hdrshort");
5308 			BUMP_MIB(&udp_mib, udpInErrors);
5309 			return;
5310 		}
5311 		rptr = mp->b_rptr;
5312 	}
5313 	/* Walk past the headers. */
5314 	new_rptr = rptr + hdr_length;
5315 	if (!udp->udp_rcvhdr)
5316 		mp->b_rptr = new_rptr;
5317 
5318 	/* Save the options if any */
5319 	opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
5320 	if (opt_len > 0) {
5321 		if (opt_len > udp->udp_ip_rcv_options_len) {
5322 			if (udp->udp_ip_rcv_options_len)
5323 				mi_free((char *)udp->udp_ip_rcv_options);
5324 			udp->udp_ip_rcv_options_len = 0;
5325 			udp->udp_ip_rcv_options =
5326 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
5327 			if (udp->udp_ip_rcv_options)
5328 				udp->udp_ip_rcv_options_len = opt_len;
5329 		}
5330 		if (udp->udp_ip_rcv_options_len) {
5331 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH,
5332 			    udp->udp_ip_rcv_options, opt_len);
5333 			/* Adjust length if we are resusing the space */
5334 			udp->udp_ip_rcv_options_len = opt_len;
5335 		}
5336 	} else if (udp->udp_ip_rcv_options_len) {
5337 		mi_free((char *)udp->udp_ip_rcv_options);
5338 		udp->udp_ip_rcv_options = NULL;
5339 		udp->udp_ip_rcv_options_len = 0;
5340 	}
5341 
5342 	/*
5343 	 * Normally only send up the address.
5344 	 * If IP_RECVDSTADDR is set we include the destination IP
5345 	 * address as an option. With IP_RECVOPTS we include all
5346 	 * the IP options.
5347 	 */
5348 	udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5349 	if (udp->udp_recvdstaddr) {
5350 		udi_size += sizeof (struct T_opthdr) + sizeof (struct in_addr);
5351 		UDP_STAT(udp_in_recvdstaddr);
5352 	}
5353 	if (udp->udp_recvopts && opt_len > 0) {
5354 		udi_size += sizeof (struct T_opthdr) + opt_len;
5355 		UDP_STAT(udp_in_recvopts);
5356 	}
5357 
5358 	/*
5359 	 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
5360 	 * space accordingly
5361 	 */
5362 	if (udp->udp_recvif && recv_on &&
5363 	    (pinfo->in_pkt_flags & IPF_RECVIF)) {
5364 		udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
5365 		UDP_STAT(udp_in_recvif);
5366 	}
5367 
5368 	if (udp->udp_recvslla && recv_on &&
5369 	    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
5370 		udi_size += sizeof (struct T_opthdr) +
5371 		    sizeof (struct sockaddr_dl);
5372 		UDP_STAT(udp_in_recvslla);
5373 	}
5374 
5375 	if (udp->udp_recvucred && (cr = DB_CRED(mp)) != NULL) {
5376 		udi_size += sizeof (struct T_opthdr) + ucredsize;
5377 		cpid = DB_CPID(mp);
5378 		UDP_STAT(udp_in_recvucred);
5379 	}
5380 	/*
5381 	 * If IP_RECVTTL is set allocate the appropriate sized buffer
5382 	 */
5383 	if (udp->udp_recvttl) {
5384 		udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
5385 		UDP_STAT(udp_in_recvttl);
5386 	}
5387 
5388 	/* Allocate a message block for the T_UNITDATA_IND structure. */
5389 	mp1 = allocb(udi_size, BPRI_MED);
5390 	if (mp1 == NULL) {
5391 		freemsg(mp);
5392 		if (options_mp != NULL)
5393 			freeb(options_mp);
5394 		TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5395 			"udp_rput_other_end: q %p (%S)", q, "allocbfail");
5396 		BUMP_MIB(&udp_mib, udpInErrors);
5397 		return;
5398 	}
5399 	mp1->b_cont = mp;
5400 	mp = mp1;
5401 	mp->b_datap->db_type = M_PROTO;
5402 	tudi = (struct T_unitdata_ind *)mp->b_rptr;
5403 	mp->b_wptr = (uchar_t *)tudi + udi_size;
5404 	tudi->PRIM_type = T_UNITDATA_IND;
5405 	tudi->SRC_length = sizeof (sin_t);
5406 	tudi->SRC_offset = sizeof (struct T_unitdata_ind);
5407 	tudi->OPT_offset = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
5408 	udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
5409 	tudi->OPT_length = udi_size;
5410 
5411 	sin = (sin_t *)&tudi[1];
5412 	sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
5413 	sin->sin_port =	((in_port_t *)
5414 	    new_rptr)[-(UDPH_SIZE/sizeof (in_port_t))];
5415 	sin->sin_family = AF_INET;
5416 	*(uint32_t *)&sin->sin_zero[0] = 0;
5417 	*(uint32_t *)&sin->sin_zero[4] = 0;
5418 
5419 	/*
5420 	 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
5421 	 * IP_RECVTTL has been set.
5422 	 */
5423 	if (udi_size != 0) {
5424 		/*
5425 		 * Copy in destination address before options to avoid any
5426 		 * padding issues.
5427 		 */
5428 		char *dstopt;
5429 
5430 		dstopt = (char *)&sin[1];
5431 		if (udp->udp_recvdstaddr) {
5432 			struct T_opthdr *toh;
5433 			ipaddr_t *dstptr;
5434 
5435 			toh = (struct T_opthdr *)dstopt;
5436 			toh->level = IPPROTO_IP;
5437 			toh->name = IP_RECVDSTADDR;
5438 			toh->len = sizeof (struct T_opthdr) + sizeof (ipaddr_t);
5439 			toh->status = 0;
5440 			dstopt += sizeof (struct T_opthdr);
5441 			dstptr = (ipaddr_t *)dstopt;
5442 			*dstptr = (((ipaddr_t *)rptr)[4]);
5443 			dstopt += sizeof (ipaddr_t);
5444 			udi_size -= toh->len;
5445 		}
5446 		if (udp->udp_recvopts && udi_size != 0) {
5447 			struct T_opthdr *toh;
5448 
5449 			toh = (struct T_opthdr *)dstopt;
5450 			toh->level = IPPROTO_IP;
5451 			toh->name = IP_RECVOPTS;
5452 			toh->len = sizeof (struct T_opthdr) + opt_len;
5453 			toh->status = 0;
5454 			dstopt += sizeof (struct T_opthdr);
5455 			bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, opt_len);
5456 			dstopt += opt_len;
5457 			udi_size -= toh->len;
5458 		}
5459 
5460 		if (udp->udp_recvslla && recv_on &&
5461 		    (pinfo->in_pkt_flags & IPF_RECVSLLA)) {
5462 
5463 			struct T_opthdr *toh;
5464 			struct sockaddr_dl	*dstptr;
5465 
5466 			toh = (struct T_opthdr *)dstopt;
5467 			toh->level = IPPROTO_IP;
5468 			toh->name = IP_RECVSLLA;
5469 			toh->len = sizeof (struct T_opthdr) +
5470 			    sizeof (struct sockaddr_dl);
5471 			toh->status = 0;
5472 			dstopt += sizeof (struct T_opthdr);
5473 			dstptr = (struct sockaddr_dl *)dstopt;
5474 			bcopy(&pinfo->in_pkt_slla, dstptr,
5475 			    sizeof (struct sockaddr_dl));
5476 			dstopt += sizeof (struct sockaddr_dl);
5477 			udi_size -= toh->len;
5478 		}
5479 
5480 		if (udp->udp_recvif && recv_on &&
5481 		    (pinfo->in_pkt_flags & IPF_RECVIF)) {
5482 
5483 			struct T_opthdr *toh;
5484 			uint_t		*dstptr;
5485 
5486 			toh = (struct T_opthdr *)dstopt;
5487 			toh->level = IPPROTO_IP;
5488 			toh->name = IP_RECVIF;
5489 			toh->len = sizeof (struct T_opthdr) +
5490 			    sizeof (uint_t);
5491 			toh->status = 0;
5492 			dstopt += sizeof (struct T_opthdr);
5493 			dstptr = (uint_t *)dstopt;
5494 			*dstptr = pinfo->in_pkt_ifindex;
5495 			dstopt += sizeof (uint_t);
5496 			udi_size -= toh->len;
5497 		}
5498 
5499 		if (cr != NULL) {
5500 			struct T_opthdr *toh;
5501 
5502 			toh = (struct T_opthdr *)dstopt;
5503 			toh->level = SOL_SOCKET;
5504 			toh->name = SCM_UCRED;
5505 			toh->len = sizeof (struct T_opthdr) + ucredsize;
5506 			toh->status = 0;
5507 			(void) cred2ucred(cr, cpid, &toh[1], rcr);
5508 			dstopt += toh->len;
5509 			udi_size -= toh->len;
5510 		}
5511 
5512 		if (udp->udp_recvttl) {
5513 			struct	T_opthdr *toh;
5514 			uint8_t	*dstptr;
5515 
5516 			toh = (struct T_opthdr *)dstopt;
5517 			toh->level = IPPROTO_IP;
5518 			toh->name = IP_RECVTTL;
5519 			toh->len = sizeof (struct T_opthdr) +
5520 			    sizeof (uint8_t);
5521 			toh->status = 0;
5522 			dstopt += sizeof (struct T_opthdr);
5523 			dstptr = (uint8_t *)dstopt;
5524 			*dstptr = ((ipha_t *)rptr)->ipha_ttl;
5525 			dstopt += sizeof (uint8_t);
5526 			udi_size -= toh->len;
5527 		}
5528 
5529 		ASSERT(udi_size == 0);	/* "Consumed" all of allocated space */
5530 	}
5531 	BUMP_MIB(&udp_mib, udpInDatagrams);
5532 	TRACE_2(TR_FAC_UDP, TR_UDP_RPUT_END,
5533 	    "udp_rput_other_end: q %p (%S)", q, "end");
5534 	if (options_mp != NULL)
5535 		freeb(options_mp);
5536 
5537 	if (udp->udp_direct_sockfs) {
5538 		/*
5539 		 * There is nothing above us except for the stream head;
5540 		 * use the read-side synchronous stream interface in
5541 		 * order to reduce the time spent in interrupt thread.
5542 		 */
5543 		ASSERT(udp->udp_issocket);
5544 		udp_rcv_enqueue(UDP_RD(q), udp, mp, msgdsize(mp));
5545 	} else {
5546 		/*
5547 		 * Use regular STREAMS interface to pass data upstream
5548 		 * if this is not a socket endpoint, or if we have
5549 		 * switched over to the slow mode due to sockmod being
5550 		 * popped or a module being pushed on top of us.
5551 		 */
5552 		putnext(UDP_RD(q), mp);
5553 	}
5554 }
5555 
5556 /* ARGSUSED */
5557 static void
5558 udp_rput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
5559 {
5560 	conn_t *connp = arg;
5561 
5562 	udp_rput_other(connp->conn_rq, mp);
5563 	udp_exit(connp);
5564 }
5565 
5566 /*
5567  * Process a T_BIND_ACK
5568  */
5569 static void
5570 udp_rput_bind_ack(queue_t *q, mblk_t *mp)
5571 {
5572 	udp_t	*udp = Q_TO_UDP(q);
5573 	mblk_t	*mp1;
5574 	ire_t	*ire;
5575 	struct T_bind_ack *tba;
5576 	uchar_t *addrp;
5577 	ipa_conn_t	*ac;
5578 	ipa6_conn_t	*ac6;
5579 
5580 	if (udp->udp_discon_pending)
5581 		udp->udp_discon_pending = 0;
5582 
5583 	/*
5584 	 * If a broadcast/multicast address was bound set
5585 	 * the source address to 0.
5586 	 * This ensures no datagrams with broadcast address
5587 	 * as source address are emitted (which would violate
5588 	 * RFC1122 - Hosts requirements)
5589 	 *
5590 	 * Note that when connecting the returned IRE is
5591 	 * for the destination address and we only perform
5592 	 * the broadcast check for the source address (it
5593 	 * is OK to connect to a broadcast/multicast address.)
5594 	 */
5595 	mp1 = mp->b_cont;
5596 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
5597 		ire = (ire_t *)mp1->b_rptr;
5598 
5599 		/*
5600 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
5601 		 * local address.
5602 		 */
5603 		if (ire->ire_type == IRE_BROADCAST &&
5604 		    udp->udp_state != TS_DATA_XFER) {
5605 			/* This was just a local bind to a broadcast addr */
5606 			V6_SET_ZERO(udp->udp_v6src);
5607 			if (udp->udp_family == AF_INET6)
5608 				(void) udp_build_hdrs(q, udp);
5609 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
5610 			/*
5611 			 * Local address not yet set - pick it from the
5612 			 * T_bind_ack
5613 			 */
5614 			tba = (struct T_bind_ack *)mp->b_rptr;
5615 			addrp = &mp->b_rptr[tba->ADDR_offset];
5616 			switch (udp->udp_family) {
5617 			case AF_INET:
5618 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5619 					ac = (ipa_conn_t *)addrp;
5620 				} else {
5621 					ASSERT(tba->ADDR_length ==
5622 					    sizeof (ipa_conn_x_t));
5623 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5624 				}
5625 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5626 				    &udp->udp_v6src);
5627 				break;
5628 			case AF_INET6:
5629 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5630 					ac6 = (ipa6_conn_t *)addrp;
5631 				} else {
5632 					ASSERT(tba->ADDR_length ==
5633 					    sizeof (ipa6_conn_x_t));
5634 					ac6 = &((ipa6_conn_x_t *)
5635 					    addrp)->ac6x_conn;
5636 				}
5637 				udp->udp_v6src = ac6->ac6_laddr;
5638 				(void) udp_build_hdrs(q, udp);
5639 				break;
5640 			}
5641 		}
5642 		mp1 = mp1->b_cont;
5643 	}
5644 	/*
5645 	 * Look for one or more appended ACK message added by
5646 	 * udp_connect or udp_disconnect.
5647 	 * If none found just send up the T_BIND_ACK.
5648 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5649 	 * udp_disconnect has appended a T_OK_ACK.
5650 	 */
5651 	if (mp1 != NULL) {
5652 		if (mp->b_cont == mp1)
5653 			mp->b_cont = NULL;
5654 		else {
5655 			ASSERT(mp->b_cont->b_cont == mp1);
5656 			mp->b_cont->b_cont = NULL;
5657 		}
5658 		freemsg(mp);
5659 		mp = mp1;
5660 		while (mp != NULL) {
5661 			mp1 = mp->b_cont;
5662 			mp->b_cont = NULL;
5663 			putnext(UDP_RD(q), mp);
5664 			mp = mp1;
5665 		}
5666 		return;
5667 	}
5668 	freemsg(mp->b_cont);
5669 	mp->b_cont = NULL;
5670 	putnext(UDP_RD(q), mp);
5671 }
5672 
5673 /*
5674  * return SNMP stuff in buffer in mpdata
5675  */
5676 int
5677 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5678 {
5679 	mblk_t			*mpdata;
5680 	mblk_t			*mp_conn_ctl;
5681 	mblk_t			*mp_attr_ctl;
5682 	mblk_t			*mp6_conn_ctl;
5683 	mblk_t			*mp6_attr_ctl;
5684 	mblk_t			*mp_conn_tail;
5685 	mblk_t			*mp_attr_tail;
5686 	mblk_t			*mp6_conn_tail;
5687 	mblk_t			*mp6_attr_tail;
5688 	struct opthdr		*optp;
5689 	mib2_udpEntry_t		ude;
5690 	mib2_udp6Entry_t	ude6;
5691 	mib2_transportMLPEntry_t mlp;
5692 	int			state;
5693 	zoneid_t		zoneid;
5694 	int			i;
5695 	connf_t			*connfp;
5696 	conn_t			*connp = Q_TO_CONN(q);
5697 	udp_t			*udp = connp->conn_udp;
5698 	int			v4_conn_idx;
5699 	int			v6_conn_idx;
5700 	boolean_t		needattr;
5701 
5702 	mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
5703 	if (mpctl == NULL ||
5704 	    (mpdata = mpctl->b_cont) == NULL ||
5705 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5706 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
5707 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
5708 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
5709 		freemsg(mp_conn_ctl);
5710 		freemsg(mp_attr_ctl);
5711 		freemsg(mp6_conn_ctl);
5712 		return (0);
5713 	}
5714 
5715 	zoneid = connp->conn_zoneid;
5716 
5717 	/* fixed length structure for IPv4 and IPv6 counters */
5718 	SET_MIB(udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5719 	SET_MIB(udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5720 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5721 	optp->level = MIB2_UDP;
5722 	optp->name = 0;
5723 	(void) snmp_append_data(mpdata, (char *)&udp_mib, sizeof (udp_mib));
5724 	optp->len = msgdsize(mpdata);
5725 	qreply(q, mpctl);
5726 
5727 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
5728 	v4_conn_idx = v6_conn_idx = 0;
5729 
5730 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5731 		connfp = &ipcl_globalhash_fanout[i];
5732 		connp = NULL;
5733 
5734 		while ((connp = ipcl_get_next_conn(connfp, connp,
5735 		    IPCL_UDP))) {
5736 			udp = connp->conn_udp;
5737 			if (zoneid != connp->conn_zoneid)
5738 				continue;
5739 
5740 			/*
5741 			 * Note that the port numbers are sent in
5742 			 * host byte order
5743 			 */
5744 
5745 			if (udp->udp_state == TS_UNBND)
5746 				state = MIB2_UDP_unbound;
5747 			else if (udp->udp_state == TS_IDLE)
5748 				state = MIB2_UDP_idle;
5749 			else if (udp->udp_state == TS_DATA_XFER)
5750 				state = MIB2_UDP_connected;
5751 			else
5752 				state = MIB2_UDP_unknown;
5753 
5754 			needattr = B_FALSE;
5755 			bzero(&mlp, sizeof (mlp));
5756 			if (connp->conn_mlp_type != mlptSingle) {
5757 				if (connp->conn_mlp_type == mlptShared ||
5758 				    connp->conn_mlp_type == mlptBoth)
5759 					mlp.tme_flags |= MIB2_TMEF_SHARED;
5760 				if (connp->conn_mlp_type == mlptPrivate ||
5761 				    connp->conn_mlp_type == mlptBoth)
5762 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
5763 				needattr = B_TRUE;
5764 			}
5765 
5766 			/*
5767 			 * Create an IPv4 table entry for IPv4 entries and also
5768 			 * any IPv6 entries which are bound to in6addr_any
5769 			 * (i.e. anything a IPv4 peer could connect/send to).
5770 			 */
5771 			if (udp->udp_ipversion == IPV4_VERSION ||
5772 			    (udp->udp_state <= TS_IDLE &&
5773 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5774 				ude.udpEntryInfo.ue_state = state;
5775 				/*
5776 				 * If in6addr_any this will set it to
5777 				 * INADDR_ANY
5778 				 */
5779 				ude.udpLocalAddress =
5780 				    V4_PART_OF_V6(udp->udp_v6src);
5781 				ude.udpLocalPort = ntohs(udp->udp_port);
5782 				if (udp->udp_state == TS_DATA_XFER) {
5783 					/*
5784 					 * Can potentially get here for
5785 					 * v6 socket if another process
5786 					 * (say, ping) has just done a
5787 					 * sendto(), changing the state
5788 					 * from the TS_IDLE above to
5789 					 * TS_DATA_XFER by the time we hit
5790 					 * this part of the code.
5791 					 */
5792 					ude.udpEntryInfo.ue_RemoteAddress =
5793 					    V4_PART_OF_V6(udp->udp_v6dst);
5794 					ude.udpEntryInfo.ue_RemotePort =
5795 					    ntohs(udp->udp_dstport);
5796 				} else {
5797 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5798 					ude.udpEntryInfo.ue_RemotePort = 0;
5799 				}
5800 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
5801 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
5802 				mlp.tme_connidx = v4_conn_idx++;
5803 				if (needattr)
5804 					(void) snmp_append_data2(
5805 					    mp_attr_ctl->b_cont, &mp_attr_tail,
5806 					    (char *)&mlp, sizeof (mlp));
5807 			}
5808 			if (udp->udp_ipversion == IPV6_VERSION) {
5809 				ude6.udp6EntryInfo.ue_state  = state;
5810 				ude6.udp6LocalAddress = udp->udp_v6src;
5811 				ude6.udp6LocalPort = ntohs(udp->udp_port);
5812 				ude6.udp6IfIndex = udp->udp_bound_if;
5813 				if (udp->udp_state == TS_DATA_XFER) {
5814 					ude6.udp6EntryInfo.ue_RemoteAddress =
5815 					    udp->udp_v6dst;
5816 					ude6.udp6EntryInfo.ue_RemotePort =
5817 					    ntohs(udp->udp_dstport);
5818 				} else {
5819 					ude6.udp6EntryInfo.ue_RemoteAddress =
5820 					    sin6_null.sin6_addr;
5821 					ude6.udp6EntryInfo.ue_RemotePort = 0;
5822 				}
5823 				(void) snmp_append_data2(mp6_conn_ctl->b_cont,
5824 				    &mp6_conn_tail, (char *)&ude6,
5825 				    sizeof (ude6));
5826 				mlp.tme_connidx = v6_conn_idx++;
5827 				if (needattr)
5828 					(void) snmp_append_data2(
5829 					    mp6_attr_ctl->b_cont,
5830 					    &mp6_attr_tail, (char *)&mlp,
5831 					    sizeof (mlp));
5832 			}
5833 		}
5834 	}
5835 
5836 	/* IPv4 UDP endpoints */
5837 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
5838 	    sizeof (struct T_optmgmt_ack)];
5839 	optp->level = MIB2_UDP;
5840 	optp->name = MIB2_UDP_ENTRY;
5841 	optp->len = msgdsize(mp_conn_ctl->b_cont);
5842 	qreply(q, mp_conn_ctl);
5843 
5844 	/* table of MLP attributes... */
5845 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
5846 	    sizeof (struct T_optmgmt_ack)];
5847 	optp->level = MIB2_UDP;
5848 	optp->name = EXPER_XPORT_MLP;
5849 	optp->len = msgdsize(mp_attr_ctl->b_cont);
5850 	if (optp->len == 0)
5851 		freemsg(mp_attr_ctl);
5852 	else
5853 		qreply(q, mp_attr_ctl);
5854 
5855 	/* IPv6 UDP endpoints */
5856 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
5857 	    sizeof (struct T_optmgmt_ack)];
5858 	optp->level = MIB2_UDP6;
5859 	optp->name = MIB2_UDP6_ENTRY;
5860 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
5861 	qreply(q, mp6_conn_ctl);
5862 
5863 	/* table of MLP attributes... */
5864 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
5865 	    sizeof (struct T_optmgmt_ack)];
5866 	optp->level = MIB2_UDP6;
5867 	optp->name = EXPER_XPORT_MLP;
5868 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
5869 	if (optp->len == 0)
5870 		freemsg(mp6_attr_ctl);
5871 	else
5872 		qreply(q, mp6_attr_ctl);
5873 
5874 	return (1);
5875 }
5876 
5877 /*
5878  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
5879  * NOTE: Per MIB-II, UDP has no writable data.
5880  * TODO:  If this ever actually tries to set anything, it needs to be
5881  * to do the appropriate locking.
5882  */
5883 /* ARGSUSED */
5884 int
5885 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
5886     uchar_t *ptr, int len)
5887 {
5888 	switch (level) {
5889 	case MIB2_UDP:
5890 		return (0);
5891 	default:
5892 		return (1);
5893 	}
5894 }
5895 
5896 static void
5897 udp_report_item(mblk_t *mp, udp_t *udp)
5898 {
5899 	char *state;
5900 	char addrbuf1[INET6_ADDRSTRLEN];
5901 	char addrbuf2[INET6_ADDRSTRLEN];
5902 	uint_t print_len, buf_len;
5903 
5904 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
5905 	ASSERT(buf_len >= 0);
5906 	if (buf_len == 0)
5907 		return;
5908 
5909 	if (udp->udp_state == TS_UNBND)
5910 		state = "UNBOUND";
5911 	else if (udp->udp_state == TS_IDLE)
5912 		state = "IDLE";
5913 	else if (udp->udp_state == TS_DATA_XFER)
5914 		state = "CONNECTED";
5915 	else
5916 		state = "UnkState";
5917 	print_len = snprintf((char *)mp->b_wptr, buf_len,
5918 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
5919 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
5920 	    inet_ntop(AF_INET6, &udp->udp_v6src,
5921 		addrbuf1, sizeof (addrbuf1)),
5922 	    inet_ntop(AF_INET6, &udp->udp_v6dst,
5923 		addrbuf2, sizeof (addrbuf2)),
5924 	    ntohs(udp->udp_dstport), state);
5925 	if (print_len < buf_len) {
5926 		mp->b_wptr += print_len;
5927 	} else {
5928 		mp->b_wptr += buf_len;
5929 	}
5930 }
5931 
5932 /* Report for ndd "udp_status" */
5933 /* ARGSUSED */
5934 static int
5935 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5936 {
5937 	zoneid_t zoneid;
5938 	connf_t	*connfp;
5939 	conn_t	*connp = Q_TO_CONN(q);
5940 	udp_t	*udp = connp->conn_udp;
5941 	int	i;
5942 
5943 	/*
5944 	 * Because of the ndd constraint, at most we can have 64K buffer
5945 	 * to put in all UDP info.  So to be more efficient, just
5946 	 * allocate a 64K buffer here, assuming we need that large buffer.
5947 	 * This may be a problem as any user can read udp_status.  Therefore
5948 	 * we limit the rate of doing this using udp_ndd_get_info_interval.
5949 	 * This should be OK as normal users should not do this too often.
5950 	 */
5951 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
5952 		if (ddi_get_lbolt() - udp_last_ndd_get_info_time <
5953 		    drv_usectohz(udp_ndd_get_info_interval * 1000)) {
5954 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
5955 			return (0);
5956 		}
5957 	}
5958 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
5959 		/* The following may work even if we cannot get a large buf. */
5960 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
5961 		return (0);
5962 	}
5963 	(void) mi_mpprintf(mp,
5964 	    "UDP     " MI_COL_HDRPAD_STR
5965 	/*   12345678[89ABCDEF] */
5966 	    " zone lport src addr        dest addr       port  state");
5967 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
5968 
5969 	zoneid = connp->conn_zoneid;
5970 
5971 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5972 		connfp = &ipcl_globalhash_fanout[i];
5973 		connp = NULL;
5974 
5975 		while ((connp = ipcl_get_next_conn(connfp, connp,
5976 		    IPCL_UDP))) {
5977 			udp = connp->conn_udp;
5978 			if (zoneid != GLOBAL_ZONEID &&
5979 			    zoneid != connp->conn_zoneid)
5980 				continue;
5981 
5982 			udp_report_item(mp->b_cont, udp);
5983 		}
5984 	}
5985 	udp_last_ndd_get_info_time = ddi_get_lbolt();
5986 	return (0);
5987 }
5988 
5989 /*
5990  * This routine creates a T_UDERROR_IND message and passes it upstream.
5991  * The address and options are copied from the T_UNITDATA_REQ message
5992  * passed in mp.  This message is freed.
5993  */
5994 static void
5995 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
5996     t_scalar_t err)
5997 {
5998 	struct T_unitdata_req *tudr;
5999 	mblk_t	*mp1;
6000 	uchar_t	*optaddr;
6001 	t_scalar_t optlen;
6002 
6003 	if (DB_TYPE(mp) == M_DATA) {
6004 		ASSERT(destaddr != NULL && destlen != 0);
6005 		optaddr = NULL;
6006 		optlen = 0;
6007 	} else {
6008 		if ((mp->b_wptr < mp->b_rptr) ||
6009 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
6010 			goto done;
6011 		}
6012 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6013 		destaddr = mp->b_rptr + tudr->DEST_offset;
6014 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
6015 		    destaddr + tudr->DEST_length < mp->b_rptr ||
6016 		    destaddr + tudr->DEST_length > mp->b_wptr) {
6017 			goto done;
6018 		}
6019 		optaddr = mp->b_rptr + tudr->OPT_offset;
6020 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
6021 		    optaddr + tudr->OPT_length < mp->b_rptr ||
6022 		    optaddr + tudr->OPT_length > mp->b_wptr) {
6023 			goto done;
6024 		}
6025 		destlen = tudr->DEST_length;
6026 		optlen = tudr->OPT_length;
6027 	}
6028 
6029 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
6030 	    (char *)optaddr, optlen, err);
6031 	if (mp1 != NULL)
6032 		putnext(UDP_RD(q), mp1);
6033 
6034 done:
6035 	freemsg(mp);
6036 }
6037 
6038 /*
6039  * This routine removes a port number association from a stream.  It
6040  * is called by udp_wput to handle T_UNBIND_REQ messages.
6041  */
6042 static void
6043 udp_unbind(queue_t *q, mblk_t *mp)
6044 {
6045 	udp_t *udp = Q_TO_UDP(q);
6046 
6047 	/* If a bind has not been done, we can't unbind. */
6048 	if (udp->udp_state == TS_UNBND) {
6049 		udp_err_ack(q, mp, TOUTSTATE, 0);
6050 		return;
6051 	}
6052 	if (cl_inet_unbind != NULL) {
6053 		/*
6054 		 * Running in cluster mode - register unbind information
6055 		 */
6056 		if (udp->udp_ipversion == IPV4_VERSION) {
6057 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
6058 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
6059 			    (in_port_t)udp->udp_port);
6060 		} else {
6061 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
6062 			    (uint8_t *)&(udp->udp_v6src),
6063 			    (in_port_t)udp->udp_port);
6064 		}
6065 	}
6066 
6067 	udp_bind_hash_remove(udp, B_FALSE);
6068 	V6_SET_ZERO(udp->udp_v6src);
6069 	V6_SET_ZERO(udp->udp_bound_v6src);
6070 	udp->udp_port = 0;
6071 	udp->udp_state = TS_UNBND;
6072 
6073 	if (udp->udp_family == AF_INET6) {
6074 		int error;
6075 
6076 		/* Rebuild the header template */
6077 		error = udp_build_hdrs(q, udp);
6078 		if (error != 0) {
6079 			udp_err_ack(q, mp, TSYSERR, error);
6080 			return;
6081 		}
6082 	}
6083 	/*
6084 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
6085 	 * and therefore ip_unbind must never return NULL.
6086 	 */
6087 	mp = ip_unbind(q, mp);
6088 	ASSERT(mp != NULL);
6089 	putnext(UDP_RD(q), mp);
6090 }
6091 
6092 /*
6093  * Don't let port fall into the privileged range.
6094  * Since the extra privileged ports can be arbitrary we also
6095  * ensure that we exclude those from consideration.
6096  * udp_g_epriv_ports is not sorted thus we loop over it until
6097  * there are no changes.
6098  */
6099 static in_port_t
6100 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
6101 {
6102 	int i;
6103 	in_port_t nextport;
6104 	boolean_t restart = B_FALSE;
6105 
6106 	if (random && udp_random_anon_port != 0) {
6107 		(void) random_get_pseudo_bytes((uint8_t *)&port,
6108 		    sizeof (in_port_t));
6109 		/*
6110 		 * Unless changed by a sys admin, the smallest anon port
6111 		 * is 32768 and the largest anon port is 65535.  It is
6112 		 * very likely (50%) for the random port to be smaller
6113 		 * than the smallest anon port.  When that happens,
6114 		 * add port % (anon port range) to the smallest anon
6115 		 * port to get the random port.  It should fall into the
6116 		 * valid anon port range.
6117 		 */
6118 		if (port < udp_smallest_anon_port) {
6119 			port = udp_smallest_anon_port +
6120 			    port % (udp_largest_anon_port -
6121 			    udp_smallest_anon_port);
6122 		}
6123 	}
6124 
6125 retry:
6126 	if (port < udp_smallest_anon_port)
6127 		port = udp_smallest_anon_port;
6128 
6129 	if (port > udp_largest_anon_port) {
6130 		port = udp_smallest_anon_port;
6131 		if (restart)
6132 			return (0);
6133 		restart = B_TRUE;
6134 	}
6135 
6136 	if (port < udp_smallest_nonpriv_port)
6137 		port = udp_smallest_nonpriv_port;
6138 
6139 	for (i = 0; i < udp_g_num_epriv_ports; i++) {
6140 		if (port == udp_g_epriv_ports[i]) {
6141 			port++;
6142 			/*
6143 			 * Make sure that the port is in the
6144 			 * valid range.
6145 			 */
6146 			goto retry;
6147 		}
6148 	}
6149 
6150 	if (is_system_labeled() &&
6151 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
6152 	    port, IPPROTO_UDP, B_TRUE)) != 0) {
6153 		port = nextport;
6154 		goto retry;
6155 	}
6156 
6157 	return (port);
6158 }
6159 
6160 static int
6161 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst)
6162 {
6163 	int err;
6164 	uchar_t opt_storage[IP_MAX_OPT_LENGTH];
6165 	udp_t *udp = Q_TO_UDP(wq);
6166 
6167 	err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst,
6168 	    opt_storage, udp->udp_mac_exempt);
6169 	if (err == 0) {
6170 		err = tsol_update_options(&udp->udp_ip_snd_options,
6171 		    &udp->udp_ip_snd_options_len, &udp->udp_label_len,
6172 		    opt_storage);
6173 	}
6174 	if (err != 0) {
6175 		DTRACE_PROBE4(
6176 		    tx__ip__log__info__updatelabel__udp,
6177 		    char *, "queue(1) failed to update options(2) on mp(3)",
6178 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6179 	} else {
6180 		IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst);
6181 	}
6182 	return (err);
6183 }
6184 
6185 static mblk_t *
6186 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
6187     uint_t srcid, int *error)
6188 {
6189 	udp_t	*udp = connp->conn_udp;
6190 	queue_t	*q = connp->conn_wq;
6191 	mblk_t	*mp1 = mp;
6192 	mblk_t	*mp2;
6193 	ipha_t	*ipha;
6194 	int	ip_hdr_length;
6195 	uint32_t ip_len;
6196 	udpha_t	*udpha;
6197 	udpattrs_t	attrs;
6198 
6199 	*error = 0;
6200 
6201 	if (v4dst == INADDR_ANY)
6202 		v4dst = htonl(INADDR_LOOPBACK);
6203 
6204 	/*
6205 	 * If options passed in, feed it for verification and handling
6206 	 */
6207 	attrs.udpattr_credset = B_FALSE;
6208 	if (DB_TYPE(mp) != M_DATA) {
6209 		mp1 = mp->b_cont;
6210 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
6211 			attrs.udpattr_ipp = NULL;
6212 			attrs.udpattr_mb = mp;
6213 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
6214 				goto done;
6215 			/*
6216 			 * Note: success in processing options.
6217 			 * mp option buffer represented by
6218 			 * OPT_length/offset now potentially modified
6219 			 * and contain option setting results
6220 			 */
6221 			ASSERT(*error == 0);
6222 		}
6223 	}
6224 
6225 	/* mp1 points to the M_DATA mblk carrying the packet */
6226 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6227 
6228 	/* Check if our saved options are valid; update if not */
6229 	if (is_system_labeled()) {
6230 		/* Using UDP MLP requires SCM_UCRED from user */
6231 		if (connp->conn_mlp_type != mlptSingle &&
6232 		    !attrs.udpattr_credset) {
6233 			DTRACE_PROBE4(
6234 			    tx__ip__log__info__output__udp,
6235 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
6236 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
6237 			*error = ECONNREFUSED;
6238 			goto done;
6239 		}
6240 		if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) ||
6241 		    V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst) &&
6242 		    (*error = udp_update_label(q, mp, v4dst)) != 0)
6243 			goto done;
6244 	}
6245 
6246 	/* Add an IP header */
6247 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
6248 	    udp->udp_ip_snd_options_len;
6249 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
6250 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
6251 	    !OK_32PTR(ipha)) {
6252 		mp2 = allocb(ip_hdr_length + udp_wroff_extra, BPRI_LO);
6253 		if (mp2 == NULL) {
6254 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6255 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
6256 			*error = ENOMEM;
6257 			goto done;
6258 		}
6259 		mp2->b_wptr = DB_LIM(mp2);
6260 		mp2->b_cont = mp1;
6261 		mp1 = mp2;
6262 		if (DB_TYPE(mp) != M_DATA)
6263 			mp->b_cont = mp1;
6264 		else
6265 			mp = mp1;
6266 
6267 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
6268 	}
6269 	ip_hdr_length -= UDPH_SIZE;
6270 #ifdef	_BIG_ENDIAN
6271 	/* Set version, header length, and tos */
6272 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
6273 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
6274 		udp->udp_type_of_service);
6275 	/* Set ttl and protocol */
6276 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
6277 #else
6278 	/* Set version, header length, and tos */
6279 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
6280 		((udp->udp_type_of_service << 8) |
6281 		    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
6282 	/* Set ttl and protocol */
6283 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
6284 #endif
6285 	/*
6286 	 * Copy our address into the packet.  If this is zero,
6287 	 * first look at __sin6_src_id for a hint. If we leave the source
6288 	 * as INADDR_ANY then ip will fill in the real source address.
6289 	 */
6290 	IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
6291 	if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
6292 		in6_addr_t v6src;
6293 
6294 		ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid);
6295 		IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
6296 	}
6297 
6298 	ipha->ipha_fragment_offset_and_flags = 0;
6299 	ipha->ipha_ident = 0;
6300 
6301 	mp1->b_rptr = (uchar_t *)ipha;
6302 
6303 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
6304 	    (uintptr_t)UINT_MAX);
6305 
6306 	/* Determine length of packet */
6307 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
6308 	if ((mp2 = mp1->b_cont) != NULL) {
6309 		do {
6310 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
6311 			ip_len += (uint32_t)MBLKL(mp2);
6312 		} while ((mp2 = mp2->b_cont) != NULL);
6313 	}
6314 	/*
6315 	 * If the size of the packet is greater than the maximum allowed by
6316 	 * ip, return an error. Passing this down could cause panics because
6317 	 * the size will have wrapped and be inconsistent with the msg size.
6318 	 */
6319 	if (ip_len > IP_MAXPACKET) {
6320 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6321 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
6322 		*error = EMSGSIZE;
6323 		goto done;
6324 	}
6325 	ipha->ipha_length = htons((uint16_t)ip_len);
6326 	ip_len -= ip_hdr_length;
6327 	ip_len = htons((uint16_t)ip_len);
6328 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
6329 
6330 	/*
6331 	 * Copy in the destination address
6332 	 */
6333 	ipha->ipha_dst = v4dst;
6334 
6335 	/*
6336 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
6337 	 */
6338 	if (CLASSD(v4dst))
6339 		ipha->ipha_ttl = udp->udp_multicast_ttl;
6340 
6341 	udpha->uha_dst_port = port;
6342 	udpha->uha_src_port = udp->udp_port;
6343 
6344 	if (ip_hdr_length > IP_SIMPLE_HDR_LENGTH) {
6345 		uint32_t	cksum;
6346 
6347 		bcopy(udp->udp_ip_snd_options, &ipha[1],
6348 		    udp->udp_ip_snd_options_len);
6349 		/*
6350 		 * Massage source route putting first source route in ipha_dst.
6351 		 * Ignore the destination in T_unitdata_req.
6352 		 * Create a checksum adjustment for a source route, if any.
6353 		 */
6354 		cksum = ip_massage_options(ipha);
6355 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6356 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
6357 		    (ipha->ipha_dst & 0xFFFF);
6358 		if ((int)cksum < 0)
6359 			cksum--;
6360 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6361 		/*
6362 		 * IP does the checksum if uha_checksum is non-zero,
6363 		 * We make it easy for IP to include our pseudo header
6364 		 * by putting our length in uha_checksum.
6365 		 */
6366 		cksum += ip_len;
6367 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6368 		/* There might be a carry. */
6369 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
6370 #ifdef _LITTLE_ENDIAN
6371 		if (udp_do_checksum)
6372 			ip_len = (cksum << 16) | ip_len;
6373 #else
6374 		if (udp_do_checksum)
6375 			ip_len = (ip_len << 16) | cksum;
6376 		else
6377 			ip_len <<= 16;
6378 #endif
6379 	} else {
6380 		/*
6381 		 * IP does the checksum if uha_checksum is non-zero,
6382 		 * We make it easy for IP to include our pseudo header
6383 		 * by putting our length in uha_checksum.
6384 		 */
6385 		if (udp_do_checksum)
6386 			ip_len |= (ip_len << 16);
6387 #ifndef _LITTLE_ENDIAN
6388 		else
6389 			ip_len <<= 16;
6390 #endif
6391 	}
6392 	/* Set UDP length and checksum */
6393 	*((uint32_t *)&udpha->uha_length) = ip_len;
6394 	if (DB_CRED(mp) != NULL)
6395 		mblk_setcred(mp1, DB_CRED(mp));
6396 
6397 	if (DB_TYPE(mp) != M_DATA) {
6398 		ASSERT(mp != mp1);
6399 		freeb(mp);
6400 	}
6401 
6402 	/* mp has been consumed and we'll return success */
6403 	ASSERT(*error == 0);
6404 	mp = NULL;
6405 
6406 	/* We're done.  Pass the packet to ip. */
6407 	BUMP_MIB(&udp_mib, udpOutDatagrams);
6408 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6409 		"udp_wput_end: q %p (%S)", q, "end");
6410 
6411 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
6412 	    CONN_OUTBOUND_POLICY_PRESENT(connp) ||
6413 	    connp->conn_dontroute || connp->conn_xmit_if_ill != NULL ||
6414 	    connp->conn_nofailover_ill != NULL ||
6415 	    connp->conn_outgoing_ill != NULL ||
6416 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
6417 	    IPP_ENABLED(IPP_LOCAL_OUT) || ip_g_mrouter != NULL) {
6418 		UDP_STAT(udp_ip_send);
6419 		ip_output(connp, mp1, connp->conn_wq, IP_WPUT);
6420 	} else {
6421 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
6422 	}
6423 
6424 done:
6425 	if (*error != 0) {
6426 		ASSERT(mp != NULL);
6427 		BUMP_MIB(&udp_mib, udpOutErrors);
6428 	}
6429 	return (mp);
6430 }
6431 
6432 static void
6433 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
6434 {
6435 	conn_t	*connp = udp->udp_connp;
6436 	ipaddr_t src, dst;
6437 	ill_t	*ill;
6438 	ire_t	*ire;
6439 	ipif_t	*ipif = NULL;
6440 	mblk_t	*ire_fp_mp;
6441 	uint_t	ire_fp_mp_len;
6442 	uint16_t *up;
6443 	uint32_t cksum, hcksum_txflags;
6444 	queue_t	*dev_q;
6445 	boolean_t retry_caching;
6446 
6447 	dst = ipha->ipha_dst;
6448 	src = ipha->ipha_src;
6449 	ASSERT(ipha->ipha_ident == 0);
6450 
6451 	if (CLASSD(dst)) {
6452 		int err;
6453 
6454 		ipif = conn_get_held_ipif(connp,
6455 		    &connp->conn_multicast_ipif, &err);
6456 
6457 		if (ipif == NULL || ipif->ipif_isv6 ||
6458 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
6459 		    PHYI_LOOPBACK)) {
6460 			if (ipif != NULL)
6461 				ipif_refrele(ipif);
6462 			UDP_STAT(udp_ip_send);
6463 			ip_output(connp, mp, q, IP_WPUT);
6464 			return;
6465 		}
6466 	}
6467 
6468 	retry_caching = B_FALSE;
6469 	mutex_enter(&connp->conn_lock);
6470 	ire = connp->conn_ire_cache;
6471 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
6472 
6473 	if (ire == NULL || ire->ire_addr != dst ||
6474 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
6475 		retry_caching = B_TRUE;
6476 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
6477 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
6478 
6479 		ASSERT(ipif != NULL);
6480 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
6481 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
6482 			retry_caching = B_TRUE;
6483 	}
6484 
6485 	if (!retry_caching) {
6486 		ASSERT(ire != NULL);
6487 		IRE_REFHOLD(ire);
6488 		mutex_exit(&connp->conn_lock);
6489 	} else {
6490 		boolean_t cached = B_FALSE;
6491 
6492 		connp->conn_ire_cache = NULL;
6493 		mutex_exit(&connp->conn_lock);
6494 
6495 		/* Release the old ire */
6496 		if (ire != NULL) {
6497 			IRE_REFRELE_NOTR(ire);
6498 			ire = NULL;
6499 		}
6500 
6501 		if (CLASSD(dst)) {
6502 			ASSERT(ipif != NULL);
6503 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6504 			    connp->conn_zoneid, MBLK_GETLABEL(mp),
6505 			    MATCH_IRE_ILL_GROUP);
6506 		} else {
6507 			ASSERT(ipif == NULL);
6508 			ire = ire_cache_lookup(dst, connp->conn_zoneid,
6509 			    MBLK_GETLABEL(mp));
6510 		}
6511 
6512 		if (ire == NULL) {
6513 			if (ipif != NULL)
6514 				ipif_refrele(ipif);
6515 			UDP_STAT(udp_ire_null);
6516 			ip_output(connp, mp, q, IP_WPUT);
6517 			return;
6518 		}
6519 		IRE_REFHOLD_NOTR(ire);
6520 
6521 		mutex_enter(&connp->conn_lock);
6522 		if (!(connp->conn_state_flags & CONN_CLOSING) &&
6523 		    connp->conn_ire_cache == NULL) {
6524 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
6525 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6526 				connp->conn_ire_cache = ire;
6527 				cached = B_TRUE;
6528 			}
6529 			rw_exit(&ire->ire_bucket->irb_lock);
6530 		}
6531 		mutex_exit(&connp->conn_lock);
6532 
6533 		/*
6534 		 * We can continue to use the ire but since it was not
6535 		 * cached, we should drop the extra reference.
6536 		 */
6537 		if (!cached)
6538 			IRE_REFRELE_NOTR(ire);
6539 	}
6540 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6541 	ASSERT(!CLASSD(dst) || ipif != NULL);
6542 
6543 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6544 	    (ire->ire_flags & RTF_MULTIRT) || ire->ire_stq == NULL ||
6545 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
6546 	    (ire_fp_mp = ire->ire_fp_mp) == NULL ||
6547 	    (connp->conn_nexthop_set) ||
6548 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
6549 		if (ipif != NULL)
6550 			ipif_refrele(ipif);
6551 		UDP_STAT(udp_ip_ire_send);
6552 		IRE_REFRELE(ire);
6553 		ip_output(connp, mp, q, IP_WPUT);
6554 		return;
6555 	}
6556 
6557 	BUMP_MIB(&ip_mib, ipOutRequests);
6558 
6559 	ill = ire_to_ill(ire);
6560 	ASSERT(ill != NULL);
6561 
6562 	dev_q = ire->ire_stq->q_next;
6563 	ASSERT(dev_q != NULL);
6564 	/*
6565 	 * If the service thread is already running, or if the driver
6566 	 * queue is currently flow-controlled, queue this packet.
6567 	 */
6568 	if ((q->q_first != NULL || connp->conn_draining) ||
6569 	    ((dev_q->q_next || dev_q->q_first) && !canput(dev_q))) {
6570 		if (ip_output_queue) {
6571 			(void) putq(q, mp);
6572 		} else {
6573 			BUMP_MIB(&ip_mib, ipOutDiscards);
6574 			freemsg(mp);
6575 		}
6576 		if (ipif != NULL)
6577 			ipif_refrele(ipif);
6578 		IRE_REFRELE(ire);
6579 		return;
6580 	}
6581 
6582 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6583 #ifndef _BIG_ENDIAN
6584 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6585 #endif
6586 
6587 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6588 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6589 			src = ipha->ipha_src = ipif->ipif_src_addr;
6590 		else
6591 			src = ipha->ipha_src = ire->ire_src_addr;
6592 	}
6593 
6594 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6595 		ASSERT(ill->ill_hcksum_capab != NULL);
6596 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6597 	} else {
6598 		hcksum_txflags = 0;
6599 	}
6600 
6601 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6602 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6603 
6604 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6605 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6606 	if (*up != 0) {
6607 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6608 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6609 		    ntohs(ipha->ipha_length), cksum);
6610 
6611 		/* Software checksum? */
6612 		if (DB_CKSUMFLAGS(mp) == 0) {
6613 			UDP_STAT(udp_out_sw_cksum);
6614 			UDP_STAT_UPDATE(udp_out_sw_cksum_bytes,
6615 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6616 		}
6617 	}
6618 
6619 	ipha->ipha_fragment_offset_and_flags |=
6620 	    (uint32_t)htons(ire->ire_frag_flag);
6621 
6622 	/* Calculate IP header checksum if hardware isn't capable */
6623 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6624 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6625 		    ((uint16_t *)ipha)[4]);
6626 	}
6627 
6628 	if (CLASSD(dst)) {
6629 		ilm_t *ilm;
6630 
6631 		ILM_WALKER_HOLD(ill);
6632 		ilm = ilm_lookup_ill(ill, dst, ALL_ZONES);
6633 		ILM_WALKER_RELE(ill);
6634 		if (ilm != NULL) {
6635 			ip_multicast_loopback(q, ill, mp,
6636 			    connp->conn_multicast_loop ? 0 :
6637 			    IP_FF_NO_MCAST_LOOP, connp->conn_zoneid);
6638 		}
6639 
6640 		/* If multicast TTL is 0 then we are done */
6641 		if (ipha->ipha_ttl == 0) {
6642 			if (ipif != NULL)
6643 				ipif_refrele(ipif);
6644 			freemsg(mp);
6645 			IRE_REFRELE(ire);
6646 			return;
6647 		}
6648 	}
6649 
6650 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6651 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6652 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6653 
6654 	UPDATE_OB_PKT_COUNT(ire);
6655 	ire->ire_last_used_time = lbolt;
6656 
6657 	if (ILL_DLS_CAPABLE(ill)) {
6658 		/*
6659 		 * Send the packet directly to DLD, where it may be queued
6660 		 * depending on the availability of transmit resources at
6661 		 * the media layer.
6662 		 */
6663 		IP_DLS_ILL_TX(ill, mp);
6664 	} else {
6665 		putnext(ire->ire_stq, mp);
6666 	}
6667 
6668 	if (ipif != NULL)
6669 		ipif_refrele(ipif);
6670 	IRE_REFRELE(ire);
6671 }
6672 
6673 static boolean_t
6674 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst)
6675 {
6676 	udp_t *udp = Q_TO_UDP(wq);
6677 	int err;
6678 	uchar_t opt_storage[TSOL_MAX_IPV6_OPTION];
6679 
6680 	err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred),
6681 	    dst, opt_storage, udp->udp_mac_exempt);
6682 	if (err == 0) {
6683 		err = tsol_update_sticky(&udp->udp_sticky_ipp,
6684 		    &udp->udp_label_len_v6, opt_storage);
6685 	}
6686 	if (err != 0) {
6687 		DTRACE_PROBE4(
6688 		    tx__ip__log__drop__updatelabel__udp6,
6689 		    char *, "queue(1) failed to update options(2) on mp(3)",
6690 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6691 	} else {
6692 		udp->udp_v6lastdst = *dst;
6693 	}
6694 	return (err);
6695 }
6696 
6697 /*
6698  * This routine handles all messages passed downstream.  It either
6699  * consumes the message or passes it downstream; it never queues a
6700  * a message.
6701  */
6702 static void
6703 udp_output(conn_t *connp, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
6704 {
6705 	sin6_t		*sin6;
6706 	sin_t		*sin;
6707 	ipaddr_t	v4dst;
6708 	uint16_t	port;
6709 	uint_t		srcid;
6710 	queue_t		*q = connp->conn_wq;
6711 	udp_t		*udp = connp->conn_udp;
6712 	int		error = 0;
6713 	struct sockaddr_storage ss;
6714 
6715 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
6716 	    "udp_wput_start: connp %p mp %p", connp, mp);
6717 
6718 	/*
6719 	 * We directly handle several cases here: T_UNITDATA_REQ message
6720 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for both
6721 	 * connected and non-connected socket.  The latter carries the
6722 	 * address structure along when this routine gets called.
6723 	 */
6724 	switch (DB_TYPE(mp)) {
6725 	case M_DATA:
6726 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
6727 			if (!udp->udp_direct_sockfs ||
6728 			    addr == NULL || addrlen == 0) {
6729 				/* Not connected; address is required */
6730 				BUMP_MIB(&udp_mib, udpOutErrors);
6731 				UDP_STAT(udp_out_err_notconn);
6732 				freemsg(mp);
6733 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6734 				    "udp_wput_end: connp %p (%S)", connp,
6735 				    "not-connected; address required");
6736 				return;
6737 			}
6738 			ASSERT(udp->udp_issocket);
6739 			UDP_DBGSTAT(udp_data_notconn);
6740 			/* Not connected; do some more checks below */
6741 			break;
6742 		}
6743 		/* M_DATA for connected socket */
6744 		UDP_DBGSTAT(udp_data_conn);
6745 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
6746 
6747 		/* Initialize addr and addrlen as if they're passed in */
6748 		if (udp->udp_family == AF_INET) {
6749 			sin = (sin_t *)&ss;
6750 			sin->sin_family = AF_INET;
6751 			sin->sin_port = udp->udp_dstport;
6752 			sin->sin_addr.s_addr = v4dst;
6753 			addr = (struct sockaddr *)sin;
6754 			addrlen = sizeof (*sin);
6755 		} else {
6756 			sin6 = (sin6_t *)&ss;
6757 			sin6->sin6_family = AF_INET6;
6758 			sin6->sin6_port = udp->udp_dstport;
6759 			sin6->sin6_flowinfo = udp->udp_flowinfo;
6760 			sin6->sin6_addr = udp->udp_v6dst;
6761 			sin6->sin6_scope_id = 0;
6762 			sin6->__sin6_src_id = 0;
6763 			addr = (struct sockaddr *)sin6;
6764 			addrlen = sizeof (*sin6);
6765 		}
6766 
6767 		if (udp->udp_family == AF_INET ||
6768 		    IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst)) {
6769 			/*
6770 			 * Handle both AF_INET and AF_INET6; the latter
6771 			 * for IPV4 mapped destination addresses.  Note
6772 			 * here that both addr and addrlen point to the
6773 			 * corresponding struct depending on the address
6774 			 * family of the socket.
6775 			 */
6776 			mp = udp_output_v4(connp, mp, v4dst,
6777 			    udp->udp_dstport, 0, &error);
6778 		} else {
6779 			mp = udp_output_v6(connp, mp, sin6, &error);
6780 		}
6781 		if (error != 0) {
6782 			ASSERT(addr != NULL && addrlen != 0);
6783 			goto ud_error;
6784 		}
6785 		return;
6786 	case M_PROTO:
6787 	case M_PCPROTO: {
6788 		struct T_unitdata_req *tudr;
6789 
6790 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
6791 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6792 
6793 		/* Handle valid T_UNITDATA_REQ here */
6794 		if (MBLKL(mp) >= sizeof (*tudr) &&
6795 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
6796 			if (mp->b_cont == NULL) {
6797 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6798 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6799 				error = EPROTO;
6800 				goto ud_error;
6801 			}
6802 
6803 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
6804 			    tudr->DEST_length)) {
6805 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6806 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6807 				error = EADDRNOTAVAIL;
6808 				goto ud_error;
6809 			}
6810 			/*
6811 			 * If a port has not been bound to the stream, fail.
6812 			 * This is not a problem when sockfs is directly
6813 			 * above us, because it will ensure that the socket
6814 			 * is first bound before allowing data to be sent.
6815 			 */
6816 			if (udp->udp_state == TS_UNBND) {
6817 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6818 				    "udp_wput_end: q %p (%S)", q, "outstate");
6819 				error = EPROTO;
6820 				goto ud_error;
6821 			}
6822 			addr = (struct sockaddr *)
6823 			    &mp->b_rptr[tudr->DEST_offset];
6824 			addrlen = tudr->DEST_length;
6825 			if (tudr->OPT_length != 0)
6826 				UDP_STAT(udp_out_opt);
6827 			break;
6828 		}
6829 		/* FALLTHRU */
6830 	}
6831 	default:
6832 		udp_become_writer(connp, mp, udp_wput_other_wrapper,
6833 		    SQTAG_UDP_OUTPUT);
6834 		return;
6835 	}
6836 	ASSERT(addr != NULL);
6837 
6838 	switch (udp->udp_family) {
6839 	case AF_INET6:
6840 		sin6 = (sin6_t *)addr;
6841 		if (!OK_32PTR((char *)sin6) || addrlen != sizeof (sin6_t) ||
6842 		    sin6->sin6_family != AF_INET6) {
6843 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6844 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6845 			error = EADDRNOTAVAIL;
6846 			goto ud_error;
6847 		}
6848 
6849 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6850 			/*
6851 			 * Destination is a non-IPv4-compatible IPv6 address.
6852 			 * Send out an IPv6 format packet.
6853 			 */
6854 			mp = udp_output_v6(connp, mp, sin6, &error);
6855 			if (error != 0)
6856 				goto ud_error;
6857 
6858 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6859 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
6860 			return;
6861 		}
6862 		/*
6863 		 * If the local address is not zero or a mapped address
6864 		 * return an error.  It would be possible to send an IPv4
6865 		 * packet but the response would never make it back to the
6866 		 * application since it is bound to a non-mapped address.
6867 		 */
6868 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
6869 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
6870 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6871 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6872 			error = EADDRNOTAVAIL;
6873 			goto ud_error;
6874 		}
6875 		/* Send IPv4 packet without modifying udp_ipversion */
6876 		/* Extract port and ipaddr */
6877 		port = sin6->sin6_port;
6878 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
6879 		srcid = sin6->__sin6_src_id;
6880 		break;
6881 
6882 	case AF_INET:
6883 		sin = (sin_t *)addr;
6884 		if (!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t) ||
6885 		    sin->sin_family != AF_INET) {
6886 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6887 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6888 			error = EADDRNOTAVAIL;
6889 			goto ud_error;
6890 		}
6891 		/* Extract port and ipaddr */
6892 		port = sin->sin_port;
6893 		v4dst = sin->sin_addr.s_addr;
6894 		srcid = 0;
6895 		break;
6896 	}
6897 
6898 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error);
6899 	if (error != 0) {
6900 ud_error:
6901 		UDP_STAT(udp_out_err_output);
6902 		ASSERT(mp != NULL);
6903 		/* mp is freed by the following routine */
6904 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6905 		    (t_scalar_t)error);
6906 	}
6907 }
6908 
6909 /* ARGSUSED */
6910 static void
6911 udp_output_wrapper(void *arg, mblk_t *mp, void *arg2)
6912 {
6913 	udp_output((conn_t *)arg, mp, NULL, 0);
6914 	_UDP_EXIT((conn_t *)arg);
6915 }
6916 
6917 static void
6918 udp_wput(queue_t *q, mblk_t *mp)
6919 {
6920 	_UDP_ENTER(Q_TO_CONN(UDP_WR(q)), mp, udp_output_wrapper,
6921 	    SQTAG_UDP_WPUT);
6922 }
6923 
6924 /*
6925  * Allocate and prepare a T_UNITDATA_REQ message.
6926  */
6927 static mblk_t *
6928 udp_tudr_alloc(struct sockaddr *addr, socklen_t addrlen)
6929 {
6930 	struct T_unitdata_req *tudr;
6931 	mblk_t *mp;
6932 
6933 	mp = allocb(sizeof (*tudr) + addrlen, BPRI_MED);
6934 	if (mp != NULL) {
6935 		mp->b_wptr += sizeof (*tudr) + addrlen;
6936 		DB_TYPE(mp) = M_PROTO;
6937 
6938 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6939 		tudr->PRIM_type = T_UNITDATA_REQ;
6940 		tudr->DEST_length = addrlen;
6941 		tudr->DEST_offset = (t_scalar_t)sizeof (*tudr);
6942 		tudr->OPT_length = 0;
6943 		tudr->OPT_offset = 0;
6944 		bcopy(addr, tudr+1, addrlen);
6945 	}
6946 	return (mp);
6947 }
6948 
6949 /*
6950  * Entry point for sockfs when udp is in "direct sockfs" mode.  This mode
6951  * is valid when we are directly beneath the stream head, and thus sockfs
6952  * is able to bypass STREAMS and directly call us, passing along the sockaddr
6953  * structure without the cumbersome T_UNITDATA_REQ interface.  Note that
6954  * this is done for both connected and non-connected endpoint.
6955  */
6956 void
6957 udp_wput_data(queue_t *q, mblk_t *mp, struct sockaddr *addr, socklen_t addrlen)
6958 {
6959 	conn_t	*connp;
6960 	udp_t	*udp;
6961 
6962 	q = UDP_WR(q);
6963 	connp = Q_TO_CONN(q);
6964 	udp = connp->conn_udp;
6965 
6966 	/* udpsockfs should only send down M_DATA for this entry point */
6967 	ASSERT(DB_TYPE(mp) == M_DATA);
6968 
6969 	mutex_enter(&connp->conn_lock);
6970 	UDP_MODE_ASSERTIONS(udp, UDP_ENTER);
6971 
6972 	if (udp->udp_mode != UDP_MT_HOT) {
6973 		/*
6974 		 * We can't enter this conn right away because another
6975 		 * thread is currently executing as writer; therefore we
6976 		 * need to deposit the message into the squeue to be
6977 		 * drained later.  If a socket address is present, we
6978 		 * need to create a T_UNITDATA_REQ message as placeholder.
6979 		 */
6980 		if (addr != NULL && addrlen != 0) {
6981 			mblk_t *tudr_mp = udp_tudr_alloc(addr, addrlen);
6982 
6983 			if (tudr_mp == NULL) {
6984 				mutex_exit(&connp->conn_lock);
6985 				BUMP_MIB(&udp_mib, udpOutErrors);
6986 				UDP_STAT(udp_out_err_tudr);
6987 				freemsg(mp);
6988 				return;
6989 			}
6990 			/* Tag the packet with T_UNITDATA_REQ */
6991 			tudr_mp->b_cont = mp;
6992 			mp = tudr_mp;
6993 		}
6994 		mutex_exit(&connp->conn_lock);
6995 		udp_enter(connp, mp, udp_output_wrapper, SQTAG_UDP_WPUT);
6996 		return;
6997 	}
6998 
6999 	/* We can execute as reader right away. */
7000 	UDP_READERS_INCREF(udp);
7001 	mutex_exit(&connp->conn_lock);
7002 
7003 	udp_output(connp, mp, addr, addrlen);
7004 
7005 	udp_exit(connp);
7006 }
7007 
7008 /*
7009  * udp_output_v6():
7010  * Assumes that udp_wput did some sanity checking on the destination
7011  * address.
7012  */
7013 static mblk_t *
7014 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error)
7015 {
7016 	ip6_t		*ip6h;
7017 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
7018 	mblk_t		*mp1 = mp;
7019 	mblk_t		*mp2;
7020 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
7021 	size_t		ip_len;
7022 	udpha_t		*udph;
7023 	udp_t		*udp = connp->conn_udp;
7024 	queue_t		*q = connp->conn_wq;
7025 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
7026 	ip6_pkt_t	*ipp = &ipp_s;
7027 	ip6_pkt_t	*tipp;	/* temporary ipp */
7028 	uint32_t	csum = 0;
7029 	uint_t		ignore = 0;
7030 	uint_t		option_exists = 0, is_sticky = 0;
7031 	uint8_t		*cp;
7032 	uint8_t		*nxthdr_ptr;
7033 	in6_addr_t	ip6_dst;
7034 	udpattrs_t	attrs;
7035 	boolean_t	opt_present;
7036 
7037 	*error = 0;
7038 
7039 	/*
7040 	 * If the local address is a mapped address return
7041 	 * an error.
7042 	 * It would be possible to send an IPv6 packet but the
7043 	 * response would never make it back to the application
7044 	 * since it is bound to a mapped address.
7045 	 */
7046 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
7047 		*error = EADDRNOTAVAIL;
7048 		goto done;
7049 	}
7050 
7051 	ipp->ipp_fields = 0;
7052 	ipp->ipp_sticky_ignored = 0;
7053 
7054 	/*
7055 	 * If TPI options passed in, feed it for verification and handling
7056 	 */
7057 	attrs.udpattr_credset = B_FALSE;
7058 	opt_present = B_FALSE;
7059 	if (DB_TYPE(mp) != M_DATA) {
7060 		mp1 = mp->b_cont;
7061 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
7062 			attrs.udpattr_ipp = ipp;
7063 			attrs.udpattr_mb = mp;
7064 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
7065 				goto done;
7066 			ASSERT(*error == 0);
7067 			opt_present = B_TRUE;
7068 		}
7069 	}
7070 	ignore = ipp->ipp_sticky_ignored;
7071 
7072 	/* mp1 points to the M_DATA mblk carrying the packet */
7073 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
7074 
7075 	if (sin6->sin6_scope_id != 0 &&
7076 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
7077 		/*
7078 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
7079 		 * option nor ancillary data.  It needs to be
7080 		 * explicitly set in options_exists.
7081 		 */
7082 		option_exists |= IPPF_SCOPE_ID;
7083 	}
7084 
7085 	/*
7086 	 * Compute the destination address
7087 	 */
7088 	ip6_dst = sin6->sin6_addr;
7089 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
7090 		ip6_dst = ipv6_loopback;
7091 
7092 	/*
7093 	 * If we're not going to the same destination as last time, then
7094 	 * recompute the label required.  This is done in a separate routine to
7095 	 * avoid blowing up our stack here.
7096 	 */
7097 	if (is_system_labeled()) {
7098 		/* Using UDP MLP requires SCM_UCRED from user */
7099 		if (connp->conn_mlp_type != mlptSingle &&
7100 		    !attrs.udpattr_credset) {
7101 			DTRACE_PROBE4(
7102 			    tx__ip__log__info__output__udp6,
7103 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
7104 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
7105 			*error = ECONNREFUSED;
7106 			goto done;
7107 		}
7108 		if ((opt_present ||
7109 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst)) &&
7110 		    (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0)
7111 			goto done;
7112 	}
7113 
7114 	/*
7115 	 * If there's a security label here, then we ignore any options the
7116 	 * user may try to set.  We keep the peer's label as a hidden sticky
7117 	 * option.
7118 	 */
7119 	if (udp->udp_label_len_v6 > 0) {
7120 		ignore &= ~IPPF_HOPOPTS;
7121 		ipp->ipp_fields &= ~IPPF_HOPOPTS;
7122 	}
7123 
7124 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
7125 		/* No sticky options nor ancillary data. */
7126 		goto no_options;
7127 	}
7128 
7129 	/*
7130 	 * Go through the options figuring out where each is going to
7131 	 * come from and build two masks.  The first mask indicates if
7132 	 * the option exists at all.  The second mask indicates if the
7133 	 * option is sticky or ancillary.
7134 	 */
7135 	if (!(ignore & IPPF_HOPOPTS)) {
7136 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
7137 			option_exists |= IPPF_HOPOPTS;
7138 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
7139 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
7140 			option_exists |= IPPF_HOPOPTS;
7141 			is_sticky |= IPPF_HOPOPTS;
7142 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_hopoptslen;
7143 		}
7144 	}
7145 
7146 	if (!(ignore & IPPF_RTHDR)) {
7147 		if (ipp->ipp_fields & IPPF_RTHDR) {
7148 			option_exists |= IPPF_RTHDR;
7149 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
7150 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
7151 			option_exists |= IPPF_RTHDR;
7152 			is_sticky |= IPPF_RTHDR;
7153 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
7154 		}
7155 	}
7156 
7157 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
7158 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
7159 			option_exists |= IPPF_RTDSTOPTS;
7160 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
7161 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
7162 			option_exists |= IPPF_RTDSTOPTS;
7163 			is_sticky |= IPPF_RTDSTOPTS;
7164 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
7165 		}
7166 	}
7167 
7168 	if (!(ignore & IPPF_DSTOPTS)) {
7169 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
7170 			option_exists |= IPPF_DSTOPTS;
7171 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
7172 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
7173 			option_exists |= IPPF_DSTOPTS;
7174 			is_sticky |= IPPF_DSTOPTS;
7175 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
7176 		}
7177 	}
7178 
7179 	if (!(ignore & IPPF_IFINDEX)) {
7180 		if (ipp->ipp_fields & IPPF_IFINDEX) {
7181 			option_exists |= IPPF_IFINDEX;
7182 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
7183 			option_exists |= IPPF_IFINDEX;
7184 			is_sticky |= IPPF_IFINDEX;
7185 		}
7186 	}
7187 
7188 	if (!(ignore & IPPF_ADDR)) {
7189 		if (ipp->ipp_fields & IPPF_ADDR) {
7190 			option_exists |= IPPF_ADDR;
7191 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
7192 			option_exists |= IPPF_ADDR;
7193 			is_sticky |= IPPF_ADDR;
7194 		}
7195 	}
7196 
7197 	if (!(ignore & IPPF_DONTFRAG)) {
7198 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
7199 			option_exists |= IPPF_DONTFRAG;
7200 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
7201 			option_exists |= IPPF_DONTFRAG;
7202 			is_sticky |= IPPF_DONTFRAG;
7203 		}
7204 	}
7205 
7206 	if (!(ignore & IPPF_USE_MIN_MTU)) {
7207 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
7208 			option_exists |= IPPF_USE_MIN_MTU;
7209 		} else if (udp->udp_sticky_ipp.ipp_fields &
7210 		    IPPF_USE_MIN_MTU) {
7211 			option_exists |= IPPF_USE_MIN_MTU;
7212 			is_sticky |= IPPF_USE_MIN_MTU;
7213 		}
7214 	}
7215 
7216 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
7217 		option_exists |= IPPF_HOPLIMIT;
7218 	/* IPV6_HOPLIMIT can never be sticky */
7219 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
7220 
7221 	if (!(ignore & IPPF_UNICAST_HOPS) &&
7222 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
7223 		option_exists |= IPPF_UNICAST_HOPS;
7224 		is_sticky |= IPPF_UNICAST_HOPS;
7225 	}
7226 
7227 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
7228 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
7229 		option_exists |= IPPF_MULTICAST_HOPS;
7230 		is_sticky |= IPPF_MULTICAST_HOPS;
7231 	}
7232 
7233 	if (!(ignore & IPPF_TCLASS)) {
7234 		if (ipp->ipp_fields & IPPF_TCLASS) {
7235 			option_exists |= IPPF_TCLASS;
7236 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
7237 			option_exists |= IPPF_TCLASS;
7238 			is_sticky |= IPPF_TCLASS;
7239 		}
7240 	}
7241 
7242 no_options:
7243 
7244 	/*
7245 	 * If any options carried in the ip6i_t were specified, we
7246 	 * need to account for the ip6i_t in the data we'll be sending
7247 	 * down.
7248 	 */
7249 	if (option_exists & IPPF_HAS_IP6I)
7250 		udp_ip_hdr_len += sizeof (ip6i_t);
7251 
7252 	/* check/fix buffer config, setup pointers into it */
7253 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
7254 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
7255 	    !OK_32PTR(ip6h)) {
7256 		/* Try to get everything in a single mblk next time */
7257 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
7258 			udp->udp_max_hdr_len = udp_ip_hdr_len;
7259 			(void) mi_set_sth_wroff(UDP_RD(q),
7260 			    udp->udp_max_hdr_len + udp_wroff_extra);
7261 		}
7262 		mp2 = allocb(udp_ip_hdr_len + udp_wroff_extra, BPRI_LO);
7263 		if (mp2 == NULL) {
7264 			*error = ENOMEM;
7265 			goto done;
7266 		}
7267 		mp2->b_wptr = DB_LIM(mp2);
7268 		mp2->b_cont = mp1;
7269 		mp1 = mp2;
7270 		if (DB_TYPE(mp) != M_DATA)
7271 			mp->b_cont = mp1;
7272 		else
7273 			mp = mp1;
7274 
7275 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
7276 	}
7277 	mp1->b_rptr = (unsigned char *)ip6h;
7278 	ip6i = (ip6i_t *)ip6h;
7279 
7280 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
7281 	if (option_exists & IPPF_HAS_IP6I) {
7282 		ip6h = (ip6_t *)&ip6i[1];
7283 		ip6i->ip6i_flags = 0;
7284 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7285 
7286 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
7287 		if (option_exists & IPPF_SCOPE_ID) {
7288 			ip6i->ip6i_flags |= IP6I_IFINDEX;
7289 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
7290 		} else if (option_exists & IPPF_IFINDEX) {
7291 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
7292 			ASSERT(tipp->ipp_ifindex != 0);
7293 			ip6i->ip6i_flags |= IP6I_IFINDEX;
7294 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
7295 		}
7296 
7297 		if (option_exists & IPPF_ADDR) {
7298 			/*
7299 			 * Enable per-packet source address verification if
7300 			 * IPV6_PKTINFO specified the source address.
7301 			 * ip6_src is set in the transport's _wput function.
7302 			 */
7303 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
7304 		}
7305 
7306 		if (option_exists & IPPF_DONTFRAG) {
7307 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
7308 		}
7309 
7310 		if (option_exists & IPPF_USE_MIN_MTU) {
7311 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
7312 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
7313 		}
7314 
7315 		if (option_exists & IPPF_NEXTHOP) {
7316 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
7317 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
7318 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
7319 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
7320 		}
7321 
7322 		/*
7323 		 * tell IP this is an ip6i_t private header
7324 		 */
7325 		ip6i->ip6i_nxt = IPPROTO_RAW;
7326 	}
7327 
7328 	/* Initialize IPv6 header */
7329 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7330 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
7331 
7332 	/* Set the hoplimit of the outgoing packet. */
7333 	if (option_exists & IPPF_HOPLIMIT) {
7334 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
7335 		ip6h->ip6_hops = ipp->ipp_hoplimit;
7336 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7337 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
7338 		ip6h->ip6_hops = udp->udp_multicast_ttl;
7339 		if (option_exists & IPPF_MULTICAST_HOPS)
7340 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7341 	} else {
7342 		ip6h->ip6_hops = udp->udp_ttl;
7343 		if (option_exists & IPPF_UNICAST_HOPS)
7344 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7345 	}
7346 
7347 	if (option_exists & IPPF_ADDR) {
7348 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
7349 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
7350 		ip6h->ip6_src = tipp->ipp_addr;
7351 	} else {
7352 		/*
7353 		 * The source address was not set using IPV6_PKTINFO.
7354 		 * First look at the bound source.
7355 		 * If unspecified fallback to __sin6_src_id.
7356 		 */
7357 		ip6h->ip6_src = udp->udp_v6src;
7358 		if (sin6->__sin6_src_id != 0 &&
7359 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
7360 			ip_srcid_find_id(sin6->__sin6_src_id,
7361 			    &ip6h->ip6_src, connp->conn_zoneid);
7362 		}
7363 	}
7364 
7365 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
7366 	cp = (uint8_t *)&ip6h[1];
7367 
7368 	/*
7369 	 * Here's where we have to start stringing together
7370 	 * any extension headers in the right order:
7371 	 * Hop-by-hop, destination, routing, and final destination opts.
7372 	 */
7373 	if (option_exists & IPPF_HOPOPTS) {
7374 		/* Hop-by-hop options */
7375 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
7376 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
7377 
7378 		*nxthdr_ptr = IPPROTO_HOPOPTS;
7379 		nxthdr_ptr = &hbh->ip6h_nxt;
7380 
7381 		bcopy(tipp->ipp_hopopts, cp, tipp->ipp_hopoptslen);
7382 		cp += tipp->ipp_hopoptslen;
7383 	}
7384 	/*
7385 	 * En-route destination options
7386 	 * Only do them if there's a routing header as well
7387 	 */
7388 	if (option_exists & IPPF_RTDSTOPTS) {
7389 		ip6_dest_t *dst = (ip6_dest_t *)cp;
7390 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
7391 
7392 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7393 		nxthdr_ptr = &dst->ip6d_nxt;
7394 
7395 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
7396 		cp += tipp->ipp_rtdstoptslen;
7397 	}
7398 	/*
7399 	 * Routing header next
7400 	 */
7401 	if (option_exists & IPPF_RTHDR) {
7402 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
7403 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
7404 
7405 		*nxthdr_ptr = IPPROTO_ROUTING;
7406 		nxthdr_ptr = &rt->ip6r_nxt;
7407 
7408 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
7409 		cp += tipp->ipp_rthdrlen;
7410 	}
7411 	/*
7412 	 * Do ultimate destination options
7413 	 */
7414 	if (option_exists & IPPF_DSTOPTS) {
7415 		ip6_dest_t *dest = (ip6_dest_t *)cp;
7416 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
7417 
7418 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7419 		nxthdr_ptr = &dest->ip6d_nxt;
7420 
7421 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
7422 		cp += tipp->ipp_dstoptslen;
7423 	}
7424 	/*
7425 	 * Now set the last header pointer to the proto passed in
7426 	 */
7427 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
7428 	*nxthdr_ptr = IPPROTO_UDP;
7429 
7430 	/* Update UDP header */
7431 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
7432 	udph->uha_dst_port = sin6->sin6_port;
7433 	udph->uha_src_port = udp->udp_port;
7434 
7435 	/*
7436 	 * Copy in the destination address
7437 	 */
7438 	ip6h->ip6_dst = ip6_dst;
7439 
7440 	ip6h->ip6_vcf =
7441 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
7442 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
7443 
7444 	if (option_exists & IPPF_TCLASS) {
7445 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
7446 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
7447 		    tipp->ipp_tclass);
7448 	}
7449 
7450 	if (option_exists & IPPF_RTHDR) {
7451 		ip6_rthdr_t	*rth;
7452 
7453 		/*
7454 		 * Perform any processing needed for source routing.
7455 		 * We know that all extension headers will be in the same mblk
7456 		 * as the IPv6 header.
7457 		 */
7458 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
7459 		if (rth != NULL && rth->ip6r_segleft != 0) {
7460 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
7461 				/*
7462 				 * Drop packet - only support Type 0 routing.
7463 				 * Notify the application as well.
7464 				 */
7465 				*error = EPROTO;
7466 				goto done;
7467 			}
7468 
7469 			/*
7470 			 * rth->ip6r_len is twice the number of
7471 			 * addresses in the header. Thus it must be even.
7472 			 */
7473 			if (rth->ip6r_len & 0x1) {
7474 				*error = EPROTO;
7475 				goto done;
7476 			}
7477 			/*
7478 			 * Shuffle the routing header and ip6_dst
7479 			 * addresses, and get the checksum difference
7480 			 * between the first hop (in ip6_dst) and
7481 			 * the destination (in the last routing hdr entry).
7482 			 */
7483 			csum = ip_massage_options_v6(ip6h, rth);
7484 			/*
7485 			 * Verify that the first hop isn't a mapped address.
7486 			 * Routers along the path need to do this verification
7487 			 * for subsequent hops.
7488 			 */
7489 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
7490 				*error = EADDRNOTAVAIL;
7491 				goto done;
7492 			}
7493 
7494 			cp += (rth->ip6r_len + 1)*8;
7495 		}
7496 	}
7497 
7498 	/* count up length of UDP packet */
7499 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
7500 	if ((mp2 = mp1->b_cont) != NULL) {
7501 		do {
7502 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
7503 			ip_len += (uint32_t)MBLKL(mp2);
7504 		} while ((mp2 = mp2->b_cont) != NULL);
7505 	}
7506 
7507 	/*
7508 	 * If the size of the packet is greater than the maximum allowed by
7509 	 * ip, return an error. Passing this down could cause panics because
7510 	 * the size will have wrapped and be inconsistent with the msg size.
7511 	 */
7512 	if (ip_len > IP_MAXPACKET) {
7513 		*error = EMSGSIZE;
7514 		goto done;
7515 	}
7516 
7517 	/* Store the UDP length. Subtract length of extension hdrs */
7518 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
7519 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
7520 
7521 	/*
7522 	 * We make it easy for IP to include our pseudo header
7523 	 * by putting our length in uh_checksum, modified (if
7524 	 * we have a routing header) by the checksum difference
7525 	 * between the ultimate destination and first hop addresses.
7526 	 * Note: UDP over IPv6 must always checksum the packet.
7527 	 */
7528 	csum += udph->uha_length;
7529 	csum = (csum & 0xFFFF) + (csum >> 16);
7530 	udph->uha_checksum = (uint16_t)csum;
7531 
7532 #ifdef _LITTLE_ENDIAN
7533 	ip_len = htons(ip_len);
7534 #endif
7535 	ip6h->ip6_plen = ip_len;
7536 	if (DB_CRED(mp) != NULL)
7537 		mblk_setcred(mp1, DB_CRED(mp));
7538 
7539 	if (DB_TYPE(mp) != M_DATA) {
7540 		ASSERT(mp != mp1);
7541 		freeb(mp);
7542 	}
7543 
7544 	/* mp has been consumed and we'll return success */
7545 	ASSERT(*error == 0);
7546 	mp = NULL;
7547 
7548 	/* We're done. Pass the packet to IP */
7549 	BUMP_MIB(&udp_mib, udpOutDatagrams);
7550 	ip_output_v6(connp, mp1, q, IP_WPUT);
7551 
7552 done:
7553 	if (*error != 0) {
7554 		ASSERT(mp != NULL);
7555 		BUMP_MIB(&udp_mib, udpOutErrors);
7556 	}
7557 	return (mp);
7558 }
7559 
7560 static void
7561 udp_wput_other(queue_t *q, mblk_t *mp)
7562 {
7563 	uchar_t	*rptr = mp->b_rptr;
7564 	struct datab *db;
7565 	struct iocblk *iocp;
7566 	cred_t	*cr;
7567 	conn_t	*connp = Q_TO_CONN(q);
7568 	udp_t	*udp = connp->conn_udp;
7569 
7570 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7571 		"udp_wput_other_start: q %p", q);
7572 
7573 	db = mp->b_datap;
7574 
7575 	cr = DB_CREDDEF(mp, connp->conn_cred);
7576 
7577 	switch (db->db_type) {
7578 	case M_PROTO:
7579 	case M_PCPROTO:
7580 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7581 			freemsg(mp);
7582 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7583 				"udp_wput_other_end: q %p (%S)",
7584 				q, "protoshort");
7585 			return;
7586 		}
7587 		switch (((t_primp_t)rptr)->type) {
7588 		case T_ADDR_REQ:
7589 			udp_addr_req(q, mp);
7590 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7591 				"udp_wput_other_end: q %p (%S)", q, "addrreq");
7592 			return;
7593 		case O_T_BIND_REQ:
7594 		case T_BIND_REQ:
7595 			udp_bind(q, mp);
7596 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7597 				"udp_wput_other_end: q %p (%S)", q, "bindreq");
7598 			return;
7599 		case T_CONN_REQ:
7600 			udp_connect(q, mp);
7601 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7602 				"udp_wput_other_end: q %p (%S)", q, "connreq");
7603 			return;
7604 		case T_CAPABILITY_REQ:
7605 			udp_capability_req(q, mp);
7606 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7607 				"udp_wput_other_end: q %p (%S)", q, "capabreq");
7608 			return;
7609 		case T_INFO_REQ:
7610 			udp_info_req(q, mp);
7611 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7612 				"udp_wput_other_end: q %p (%S)", q, "inforeq");
7613 			return;
7614 		case T_UNITDATA_REQ:
7615 			/*
7616 			 * If a T_UNITDATA_REQ gets here, the address must
7617 			 * be bad.  Valid T_UNITDATA_REQs are handled
7618 			 * in udp_wput.
7619 			 */
7620 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7621 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7622 				"udp_wput_other_end: q %p (%S)",
7623 				q, "unitdatareq");
7624 			return;
7625 		case T_UNBIND_REQ:
7626 			udp_unbind(q, mp);
7627 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7628 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7629 			return;
7630 		case T_SVR4_OPTMGMT_REQ:
7631 			if (!snmpcom_req(q, mp, udp_snmp_set, udp_snmp_get, cr))
7632 				/*
7633 				 * Use upper queue for option processing in
7634 				 * case the request is not handled at this
7635 				 * level and needs to be passed down to IP.
7636 				 */
7637 				(void) svr4_optcom_req(_WR(UDP_RD(q)),
7638 				    mp, cr, &udp_opt_obj);
7639 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7640 			    "udp_wput_other_end: q %p (%S)",
7641 			    q, "optmgmtreq");
7642 			return;
7643 
7644 		case T_OPTMGMT_REQ:
7645 			/*
7646 			 * Use upper queue for option processing in
7647 			 * case the request is not handled at this
7648 			 * level and needs to be passed down to IP.
7649 			 */
7650 			(void) tpi_optcom_req(_WR(UDP_RD(q)),
7651 			    mp, cr, &udp_opt_obj);
7652 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7653 				"udp_wput_other_end: q %p (%S)",
7654 				q, "optmgmtreq");
7655 			return;
7656 
7657 		case T_DISCON_REQ:
7658 			udp_disconnect(q, mp);
7659 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7660 				"udp_wput_other_end: q %p (%S)",
7661 				q, "disconreq");
7662 			return;
7663 
7664 		/* The following TPI message is not supported by udp. */
7665 		case O_T_CONN_RES:
7666 		case T_CONN_RES:
7667 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7668 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7669 				"udp_wput_other_end: q %p (%S)",
7670 				q, "connres/disconreq");
7671 			return;
7672 
7673 		/* The following 3 TPI messages are illegal for udp. */
7674 		case T_DATA_REQ:
7675 		case T_EXDATA_REQ:
7676 		case T_ORDREL_REQ:
7677 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7678 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7679 				"udp_wput_other_end: q %p (%S)",
7680 				q, "data/exdata/ordrel");
7681 			return;
7682 		default:
7683 			break;
7684 		}
7685 		break;
7686 	case M_FLUSH:
7687 		if (*rptr & FLUSHW)
7688 			flushq(q, FLUSHDATA);
7689 		break;
7690 	case M_IOCTL:
7691 		iocp = (struct iocblk *)mp->b_rptr;
7692 		switch (iocp->ioc_cmd) {
7693 		case TI_GETPEERNAME:
7694 			if (udp->udp_state != TS_DATA_XFER) {
7695 				/*
7696 				 * If a default destination address has not
7697 				 * been associated with the stream, then we
7698 				 * don't know the peer's name.
7699 				 */
7700 				iocp->ioc_error = ENOTCONN;
7701 				iocp->ioc_count = 0;
7702 				mp->b_datap->db_type = M_IOCACK;
7703 				putnext(UDP_RD(q), mp);
7704 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7705 					"udp_wput_other_end: q %p (%S)",
7706 					q, "getpeername");
7707 				return;
7708 			}
7709 			/* FALLTHRU */
7710 		case TI_GETMYNAME: {
7711 			/*
7712 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
7713 			 * need to copyin the user's strbuf structure.
7714 			 * Processing will continue in the M_IOCDATA case
7715 			 * below.
7716 			 */
7717 			mi_copyin(q, mp, NULL,
7718 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
7719 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7720 				"udp_wput_other_end: q %p (%S)",
7721 				q, "getmyname");
7722 			return;
7723 			}
7724 		case ND_SET:
7725 			/* nd_getset performs the necessary checking */
7726 		case ND_GET:
7727 			if (nd_getset(q, udp_g_nd, mp)) {
7728 				putnext(UDP_RD(q), mp);
7729 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7730 					"udp_wput_other_end: q %p (%S)",
7731 					q, "get");
7732 				return;
7733 			}
7734 			break;
7735 		case _SIOCSOCKFALLBACK:
7736 			/*
7737 			 * Either sockmod is about to be popped and the
7738 			 * socket would now be treated as a plain stream,
7739 			 * or a module is about to be pushed so we could
7740 			 * no longer use read-side synchronous stream.
7741 			 * Drain any queued data and disable direct sockfs
7742 			 * interface from now on.
7743 			 */
7744 			if (!udp->udp_issocket) {
7745 				DB_TYPE(mp) = M_IOCNAK;
7746 				iocp->ioc_error = EINVAL;
7747 			} else {
7748 				udp->udp_issocket = B_FALSE;
7749 				if (udp->udp_direct_sockfs) {
7750 					/*
7751 					 * Disable read-side synchronous
7752 					 * stream interface and drain any
7753 					 * queued data.
7754 					 */
7755 					udp_rcv_drain(UDP_RD(q), udp,
7756 					    B_FALSE);
7757 					ASSERT(!udp->udp_direct_sockfs);
7758 					UDP_STAT(udp_sock_fallback);
7759 				}
7760 				DB_TYPE(mp) = M_IOCACK;
7761 				iocp->ioc_error = 0;
7762 			}
7763 			iocp->ioc_count = 0;
7764 			iocp->ioc_rval = 0;
7765 			putnext(UDP_RD(q), mp);
7766 			return;
7767 		default:
7768 			break;
7769 		}
7770 		break;
7771 	case M_IOCDATA:
7772 		udp_wput_iocdata(q, mp);
7773 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7774 			"udp_wput_other_end: q %p (%S)", q, "iocdata");
7775 		return;
7776 	default:
7777 		/* Unrecognized messages are passed through without change. */
7778 		break;
7779 	}
7780 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7781 		"udp_wput_other_end: q %p (%S)", q, "end");
7782 	ip_output(connp, mp, q, IP_WPUT);
7783 }
7784 
7785 /* ARGSUSED */
7786 static void
7787 udp_wput_other_wrapper(void *arg, mblk_t *mp, void *arg2)
7788 {
7789 	udp_wput_other(((conn_t *)arg)->conn_wq, mp);
7790 	udp_exit((conn_t *)arg);
7791 }
7792 
7793 /*
7794  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
7795  * messages.
7796  */
7797 static void
7798 udp_wput_iocdata(queue_t *q, mblk_t *mp)
7799 {
7800 	mblk_t	*mp1;
7801 	STRUCT_HANDLE(strbuf, sb);
7802 	uint16_t port;
7803 	in6_addr_t	v6addr;
7804 	ipaddr_t	v4addr;
7805 	uint32_t	flowinfo = 0;
7806 	int		addrlen;
7807 	udp_t		*udp = Q_TO_UDP(q);
7808 
7809 	/* Make sure it is one of ours. */
7810 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7811 	case TI_GETMYNAME:
7812 	case TI_GETPEERNAME:
7813 		break;
7814 	default:
7815 		ip_output(Q_TO_CONN(q), mp, q, IP_WPUT);
7816 		return;
7817 	}
7818 
7819 	q = WR(UDP_RD(q));
7820 	switch (mi_copy_state(q, mp, &mp1)) {
7821 	case -1:
7822 		return;
7823 	case MI_COPY_CASE(MI_COPY_IN, 1):
7824 		break;
7825 	case MI_COPY_CASE(MI_COPY_OUT, 1):
7826 		/*
7827 		 * The address has been copied out, so now
7828 		 * copyout the strbuf.
7829 		 */
7830 		mi_copyout(q, mp);
7831 		return;
7832 	case MI_COPY_CASE(MI_COPY_OUT, 2):
7833 		/*
7834 		 * The address and strbuf have been copied out.
7835 		 * We're done, so just acknowledge the original
7836 		 * M_IOCTL.
7837 		 */
7838 		mi_copy_done(q, mp, 0);
7839 		return;
7840 	default:
7841 		/*
7842 		 * Something strange has happened, so acknowledge
7843 		 * the original M_IOCTL with an EPROTO error.
7844 		 */
7845 		mi_copy_done(q, mp, EPROTO);
7846 		return;
7847 	}
7848 
7849 	/*
7850 	 * Now we have the strbuf structure for TI_GETMYNAME
7851 	 * and TI_GETPEERNAME.  Next we copyout the requested
7852 	 * address and then we'll copyout the strbuf.
7853 	 */
7854 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
7855 	    (void *)mp1->b_rptr);
7856 	if (udp->udp_family == AF_INET)
7857 		addrlen = sizeof (sin_t);
7858 	else
7859 		addrlen = sizeof (sin6_t);
7860 
7861 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
7862 		mi_copy_done(q, mp, EINVAL);
7863 		return;
7864 	}
7865 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7866 	case TI_GETMYNAME:
7867 		if (udp->udp_family == AF_INET) {
7868 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7869 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
7870 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7871 				v4addr = V4_PART_OF_V6(udp->udp_v6src);
7872 			} else {
7873 				/*
7874 				 * INADDR_ANY
7875 				 * udp_v6src is not set, we might be bound to
7876 				 * broadcast/multicast. Use udp_bound_v6src as
7877 				 * local address instead (that could
7878 				 * also still be INADDR_ANY)
7879 				 */
7880 				v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
7881 			}
7882 		} else {
7883 			/* udp->udp_family == AF_INET6 */
7884 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7885 				v6addr = udp->udp_v6src;
7886 			} else {
7887 				/*
7888 				 * UNSPECIFIED
7889 				 * udp_v6src is not set, we might be bound to
7890 				 * broadcast/multicast. Use udp_bound_v6src as
7891 				 * local address instead (that could
7892 				 * also still be UNSPECIFIED)
7893 				 */
7894 				v6addr = udp->udp_bound_v6src;
7895 			}
7896 		}
7897 		port = udp->udp_port;
7898 		break;
7899 	case TI_GETPEERNAME:
7900 		if (udp->udp_state != TS_DATA_XFER) {
7901 			mi_copy_done(q, mp, ENOTCONN);
7902 			return;
7903 		}
7904 		if (udp->udp_family == AF_INET) {
7905 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7906 			v4addr = V4_PART_OF_V6(udp->udp_v6dst);
7907 		} else {
7908 			/* udp->udp_family == AF_INET6) */
7909 			v6addr = udp->udp_v6dst;
7910 			flowinfo = udp->udp_flowinfo;
7911 		}
7912 		port = udp->udp_dstport;
7913 		break;
7914 	default:
7915 		mi_copy_done(q, mp, EPROTO);
7916 		return;
7917 	}
7918 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
7919 	if (!mp1)
7920 		return;
7921 
7922 	if (udp->udp_family == AF_INET) {
7923 		sin_t *sin;
7924 
7925 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
7926 		sin = (sin_t *)mp1->b_rptr;
7927 		mp1->b_wptr = (uchar_t *)&sin[1];
7928 		*sin = sin_null;
7929 		sin->sin_family = AF_INET;
7930 		sin->sin_addr.s_addr = v4addr;
7931 		sin->sin_port = port;
7932 	} else {
7933 		/* udp->udp_family == AF_INET6 */
7934 		sin6_t *sin6;
7935 
7936 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
7937 		sin6 = (sin6_t *)mp1->b_rptr;
7938 		mp1->b_wptr = (uchar_t *)&sin6[1];
7939 		*sin6 = sin6_null;
7940 		sin6->sin6_family = AF_INET6;
7941 		sin6->sin6_flowinfo = flowinfo;
7942 		sin6->sin6_addr = v6addr;
7943 		sin6->sin6_port = port;
7944 	}
7945 	/* Copy out the address */
7946 	mi_copyout(q, mp);
7947 }
7948 
7949 
7950 static int
7951 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
7952     udpattrs_t *udpattrs)
7953 {
7954 	struct T_unitdata_req *udreqp;
7955 	int is_absreq_failure;
7956 	cred_t *cr;
7957 	conn_t	*connp = Q_TO_CONN(q);
7958 
7959 	ASSERT(((t_primp_t)mp->b_rptr)->type);
7960 
7961 	cr = DB_CREDDEF(mp, connp->conn_cred);
7962 
7963 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
7964 
7965 	/*
7966 	 * Use upper queue for option processing since the callback
7967 	 * routines expect to be called in UDP instance instead of IP.
7968 	 */
7969 	*errorp = tpi_optcom_buf(_WR(UDP_RD(q)), mp, &udreqp->OPT_length,
7970 	    udreqp->OPT_offset, cr, &udp_opt_obj,
7971 	    udpattrs, &is_absreq_failure);
7972 
7973 	if (*errorp != 0) {
7974 		/*
7975 		 * Note: No special action needed in this
7976 		 * module for "is_absreq_failure"
7977 		 */
7978 		return (-1);		/* failure */
7979 	}
7980 	ASSERT(is_absreq_failure == 0);
7981 	return (0);	/* success */
7982 }
7983 
7984 void
7985 udp_ddi_init(void)
7986 {
7987 	int i;
7988 
7989 	UDP6_MAJ = ddi_name_to_major(UDP6);
7990 
7991 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
7992 	    udp_opt_obj.odb_opt_arr_cnt);
7993 
7994 	if (udp_bind_fanout_size & (udp_bind_fanout_size - 1)) {
7995 		/* Not a power of two. Round up to nearest power of two */
7996 		for (i = 0; i < 31; i++) {
7997 			if (udp_bind_fanout_size < (1 << i))
7998 				break;
7999 		}
8000 		udp_bind_fanout_size = 1 << i;
8001 	}
8002 	udp_bind_fanout = kmem_zalloc(udp_bind_fanout_size *
8003 	    sizeof (udp_fanout_t), KM_SLEEP);
8004 	for (i = 0; i < udp_bind_fanout_size; i++) {
8005 		mutex_init(&udp_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
8006 		    NULL);
8007 	}
8008 	(void) udp_param_register(udp_param_arr, A_CNT(udp_param_arr));
8009 
8010 	udp_kstat_init();
8011 
8012 	udp_cache = kmem_cache_create("udp_cache", sizeof (udp_t),
8013 	    CACHE_ALIGN_SIZE, NULL, NULL, NULL, NULL, NULL, 0);
8014 }
8015 
8016 void
8017 udp_ddi_destroy(void)
8018 {
8019 	int i;
8020 
8021 	nd_free(&udp_g_nd);
8022 
8023 	for (i = 0; i < udp_bind_fanout_size; i++) {
8024 		mutex_destroy(&udp_bind_fanout[i].uf_lock);
8025 	}
8026 
8027 	kmem_free(udp_bind_fanout, udp_bind_fanout_size *
8028 	    sizeof (udp_fanout_t));
8029 
8030 	udp_kstat_fini();
8031 
8032 	kmem_cache_destroy(udp_cache);
8033 }
8034 
8035 static void
8036 udp_kstat_init(void)
8037 {
8038 	udp_named_kstat_t template = {
8039 		{ "inDatagrams",	KSTAT_DATA_UINT32, 0 },
8040 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
8041 		{ "outDatagrams",	KSTAT_DATA_UINT32, 0 },
8042 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
8043 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
8044 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
8045 	};
8046 
8047 	udp_mibkp = kstat_create(UDP_MOD_NAME, 0, UDP_MOD_NAME,
8048 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(udp_named_kstat_t), 0);
8049 
8050 	if (udp_mibkp == NULL)
8051 		return;
8052 
8053 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
8054 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
8055 
8056 	bcopy(&template, udp_mibkp->ks_data, sizeof (template));
8057 
8058 	udp_mibkp->ks_update = udp_kstat_update;
8059 
8060 	kstat_install(udp_mibkp);
8061 
8062 	if ((udp_ksp = kstat_create(UDP_MOD_NAME, 0, "udpstat",
8063 	    "net", KSTAT_TYPE_NAMED,
8064 	    sizeof (udp_statistics) / sizeof (kstat_named_t),
8065 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
8066 		udp_ksp->ks_data = &udp_statistics;
8067 		kstat_install(udp_ksp);
8068 	}
8069 }
8070 
8071 static void
8072 udp_kstat_fini(void)
8073 {
8074 	if (udp_ksp != NULL) {
8075 		kstat_delete(udp_ksp);
8076 		udp_ksp = NULL;
8077 	}
8078 	if (udp_mibkp != NULL) {
8079 		kstat_delete(udp_mibkp);
8080 		udp_mibkp = NULL;
8081 	}
8082 }
8083 
8084 static int
8085 udp_kstat_update(kstat_t *kp, int rw)
8086 {
8087 	udp_named_kstat_t *udpkp;
8088 
8089 	if ((kp == NULL) || (kp->ks_data == NULL))
8090 		return (EIO);
8091 
8092 	if (rw == KSTAT_WRITE)
8093 		return (EACCES);
8094 
8095 	udpkp = (udp_named_kstat_t *)kp->ks_data;
8096 
8097 	udpkp->inDatagrams.value.ui32 =	udp_mib.udpInDatagrams;
8098 	udpkp->inErrors.value.ui32 =	udp_mib.udpInErrors;
8099 	udpkp->outDatagrams.value.ui32 = udp_mib.udpOutDatagrams;
8100 	udpkp->outErrors.value.ui32 =	udp_mib.udpOutErrors;
8101 
8102 	return (0);
8103 }
8104 
8105 /* ARGSUSED */
8106 static void
8107 udp_rput(queue_t *q, mblk_t *mp)
8108 {
8109 	/*
8110 	 * We get here whenever we do qreply() from IP,
8111 	 * i.e as part of handlings ioctls, etc.
8112 	 */
8113 	putnext(q, mp);
8114 }
8115 
8116 /*
8117  * Read-side synchronous stream info entry point, called as a
8118  * result of handling certain STREAMS ioctl operations.
8119  */
8120 static int
8121 udp_rinfop(queue_t *q, infod_t *dp)
8122 {
8123 	mblk_t	*mp;
8124 	uint_t	cmd = dp->d_cmd;
8125 	int	res = 0;
8126 	int	error = 0;
8127 	udp_t	*udp = Q_TO_UDP(RD(UDP_WR(q)));
8128 	struct stdata *stp = STREAM(q);
8129 
8130 	mutex_enter(&udp->udp_drain_lock);
8131 	/* If shutdown on read has happened, return nothing */
8132 	mutex_enter(&stp->sd_lock);
8133 	if (stp->sd_flag & STREOF) {
8134 		mutex_exit(&stp->sd_lock);
8135 		goto done;
8136 	}
8137 	mutex_exit(&stp->sd_lock);
8138 
8139 	if ((mp = udp->udp_rcv_list_head) == NULL)
8140 		goto done;
8141 
8142 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
8143 
8144 	if (cmd & INFOD_COUNT) {
8145 		/*
8146 		 * Return the number of messages.
8147 		 */
8148 		dp->d_count += udp->udp_rcv_msgcnt;
8149 		res |= INFOD_COUNT;
8150 	}
8151 	if (cmd & INFOD_BYTES) {
8152 		/*
8153 		 * Return size of all data messages.
8154 		 */
8155 		dp->d_bytes += udp->udp_rcv_cnt;
8156 		res |= INFOD_BYTES;
8157 	}
8158 	if (cmd & INFOD_FIRSTBYTES) {
8159 		/*
8160 		 * Return size of first data message.
8161 		 */
8162 		dp->d_bytes = msgdsize(mp);
8163 		res |= INFOD_FIRSTBYTES;
8164 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
8165 	}
8166 	if (cmd & INFOD_COPYOUT) {
8167 		mblk_t *mp1 = mp->b_cont;
8168 		int n;
8169 		/*
8170 		 * Return data contents of first message.
8171 		 */
8172 		ASSERT(DB_TYPE(mp1) == M_DATA);
8173 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
8174 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
8175 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
8176 			    UIO_READ, dp->d_uiop)) != 0) {
8177 				goto done;
8178 			}
8179 			mp1 = mp1->b_cont;
8180 		}
8181 		res |= INFOD_COPYOUT;
8182 		dp->d_cmd &= ~INFOD_COPYOUT;
8183 	}
8184 done:
8185 	mutex_exit(&udp->udp_drain_lock);
8186 
8187 	dp->d_res |= res;
8188 
8189 	return (error);
8190 }
8191 
8192 /*
8193  * Read-side synchronous stream entry point.  This is called as a result
8194  * of recv/read operation done at sockfs, and is guaranteed to execute
8195  * outside of the interrupt thread context.  It returns a single datagram
8196  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
8197  */
8198 static int
8199 udp_rrw(queue_t *q, struiod_t *dp)
8200 {
8201 	mblk_t	*mp;
8202 	udp_t	*udp = Q_TO_UDP(_RD(UDP_WR(q)));
8203 
8204 	/* We should never get here when we're in SNMP mode */
8205 	ASSERT(!(udp->udp_connp->conn_flags & IPCL_UDPMOD));
8206 
8207 	/*
8208 	 * Dequeue datagram from the head of the list and return
8209 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
8210 	 * set/cleared depending on whether or not there's data
8211 	 * remaining in the list.
8212 	 */
8213 	mutex_enter(&udp->udp_drain_lock);
8214 	if (!udp->udp_direct_sockfs) {
8215 		mutex_exit(&udp->udp_drain_lock);
8216 		UDP_STAT(udp_rrw_busy);
8217 		return (EBUSY);
8218 	}
8219 	if ((mp = udp->udp_rcv_list_head) != NULL) {
8220 		uint_t size = msgdsize(mp);
8221 
8222 		/* Last datagram in the list? */
8223 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
8224 			udp->udp_rcv_list_tail = NULL;
8225 		mp->b_next = NULL;
8226 
8227 		udp->udp_rcv_cnt -= size;
8228 		udp->udp_rcv_msgcnt--;
8229 		UDP_STAT(udp_rrw_msgcnt);
8230 
8231 		/* No longer flow-controlling? */
8232 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
8233 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
8234 			udp->udp_drain_qfull = B_FALSE;
8235 	}
8236 	if (udp->udp_rcv_list_head == NULL) {
8237 		/*
8238 		 * Either we just dequeued the last datagram or
8239 		 * we get here from sockfs and have nothing to
8240 		 * return; in this case clear RSLEEP.
8241 		 */
8242 		ASSERT(udp->udp_rcv_cnt == 0);
8243 		ASSERT(udp->udp_rcv_msgcnt == 0);
8244 		ASSERT(udp->udp_rcv_list_tail == NULL);
8245 		STR_WAKEUP_CLEAR(STREAM(q));
8246 	} else {
8247 		/*
8248 		 * More data follows; we need udp_rrw() to be
8249 		 * called in future to pick up the rest.
8250 		 */
8251 		STR_WAKEUP_SET(STREAM(q));
8252 	}
8253 	mutex_exit(&udp->udp_drain_lock);
8254 	dp->d_mp = mp;
8255 	return (0);
8256 }
8257 
8258 /*
8259  * Enqueue a completely-built T_UNITDATA_IND message into the receive
8260  * list; this is typically executed within the interrupt thread context
8261  * and so we do things as quickly as possible.
8262  */
8263 static void
8264 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
8265 {
8266 	ASSERT(q == RD(q));
8267 	ASSERT(pkt_len == msgdsize(mp));
8268 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
8269 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
8270 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
8271 
8272 	mutex_enter(&udp->udp_drain_lock);
8273 	/*
8274 	 * Wake up and signal the receiving app; it is okay to do this
8275 	 * before enqueueing the mp because we are holding the drain lock.
8276 	 * One of the advantages of synchronous stream is the ability for
8277 	 * us to find out when the application performs a read on the
8278 	 * socket by way of udp_rrw() entry point being called.  We need
8279 	 * to generate SIGPOLL/SIGIO for each received data in the case
8280 	 * of asynchronous socket just as in the strrput() case.  However,
8281 	 * we only wake the application up when necessary, i.e. during the
8282 	 * first enqueue.  When udp_rrw() is called, we send up a single
8283 	 * datagram upstream and call STR_WAKEUP_SET() again when there
8284 	 * are still data remaining in our receive queue.
8285 	 */
8286 	if (udp->udp_rcv_list_head == NULL) {
8287 		STR_WAKEUP_SET(STREAM(q));
8288 		udp->udp_rcv_list_head = mp;
8289 	} else {
8290 		udp->udp_rcv_list_tail->b_next = mp;
8291 	}
8292 	udp->udp_rcv_list_tail = mp;
8293 	udp->udp_rcv_cnt += pkt_len;
8294 	udp->udp_rcv_msgcnt++;
8295 
8296 	/* Need to flow-control? */
8297 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
8298 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
8299 		udp->udp_drain_qfull = B_TRUE;
8300 
8301 	/* Update poll events and send SIGPOLL/SIGIO if necessary */
8302 	STR_SENDSIG(STREAM(q));
8303 	mutex_exit(&udp->udp_drain_lock);
8304 }
8305 
8306 /*
8307  * Drain the contents of receive list to the module upstream; we do
8308  * this during close or when we fallback to the slow mode due to
8309  * sockmod being popped or a module being pushed on top of us.
8310  */
8311 static void
8312 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
8313 {
8314 	mblk_t *mp;
8315 
8316 	ASSERT(q == RD(q));
8317 
8318 	mutex_enter(&udp->udp_drain_lock);
8319 	/*
8320 	 * There is no race with a concurrent udp_input() sending
8321 	 * up packets using putnext() after we have cleared the
8322 	 * udp_direct_sockfs flag but before we have completed
8323 	 * sending up the packets in udp_rcv_list, since we are
8324 	 * either a writer or we have quiesced the conn.
8325 	 */
8326 	udp->udp_direct_sockfs = B_FALSE;
8327 	mutex_exit(&udp->udp_drain_lock);
8328 
8329 	if (udp->udp_rcv_list_head != NULL)
8330 		UDP_STAT(udp_drain);
8331 
8332 	/*
8333 	 * Send up everything via putnext(); note here that we
8334 	 * don't need the udp_drain_lock to protect us since
8335 	 * nothing can enter udp_rrw() and that we currently
8336 	 * have exclusive access to this udp.
8337 	 */
8338 	while ((mp = udp->udp_rcv_list_head) != NULL) {
8339 		udp->udp_rcv_list_head = mp->b_next;
8340 		mp->b_next = NULL;
8341 		udp->udp_rcv_cnt -= msgdsize(mp);
8342 		udp->udp_rcv_msgcnt--;
8343 		if (closing) {
8344 			freemsg(mp);
8345 		} else {
8346 			putnext(q, mp);
8347 		}
8348 	}
8349 	ASSERT(udp->udp_rcv_cnt == 0);
8350 	ASSERT(udp->udp_rcv_msgcnt == 0);
8351 	ASSERT(udp->udp_rcv_list_head == NULL);
8352 	udp->udp_rcv_list_tail = NULL;
8353 	udp->udp_drain_qfull = B_FALSE;
8354 }
8355 
8356 static size_t
8357 udp_set_rcv_hiwat(udp_t *udp, size_t size)
8358 {
8359 	/* We add a bit of extra buffering */
8360 	size += size >> 1;
8361 	if (size > udp_max_buf)
8362 		size = udp_max_buf;
8363 
8364 	udp->udp_rcv_hiwat = size;
8365 	return (size);
8366 }
8367 
8368 /*
8369  * Little helper for IPsec's NAT-T processing.
8370  */
8371 boolean_t
8372 udp_compute_checksum(void)
8373 {
8374 	return (udp_do_checksum);
8375 }
8376