1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 const char udp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/pattr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #include <sys/strsun.h> 38 #include <sys/time.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/strsubr.h> 45 #include <sys/suntpi.h> 46 #include <sys/xti_inet.h> 47 #include <sys/cmn_err.h> 48 #include <sys/kmem.h> 49 #include <sys/policy.h> 50 #include <sys/ucred.h> 51 #include <sys/zone.h> 52 53 #include <sys/socket.h> 54 #include <sys/sockio.h> 55 #include <sys/vtrace.h> 56 #include <sys/sdt.h> 57 #include <sys/debug.h> 58 #include <sys/isa_defs.h> 59 #include <sys/random.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/udp.h> 64 #include <net/if.h> 65 #include <net/route.h> 66 67 #include <inet/common.h> 68 #include <inet/ip.h> 69 #include <inet/ip_impl.h> 70 #include <inet/ip6.h> 71 #include <inet/ip_ire.h> 72 #include <inet/ip_if.h> 73 #include <inet/ip_multi.h> 74 #include <inet/ip_ndp.h> 75 #include <inet/mi.h> 76 #include <inet/mib2.h> 77 #include <inet/nd.h> 78 #include <inet/optcom.h> 79 #include <inet/snmpcom.h> 80 #include <inet/kstatcom.h> 81 #include <inet/udp_impl.h> 82 #include <inet/ipclassifier.h> 83 #include <inet/ipsec_impl.h> 84 #include <inet/ipp_common.h> 85 86 /* 87 * The ipsec_info.h header file is here since it has the definition for the 88 * M_CTL message types used by IP to convey information to the ULP. The 89 * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence. 90 */ 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 94 #include <sys/tsol/label.h> 95 #include <sys/tsol/tnet.h> 96 #include <rpc/pmap_prot.h> 97 98 /* 99 * Synchronization notes: 100 * 101 * UDP is MT and uses the usual kernel synchronization primitives. There are 2 102 * locks, the fanout lock (uf_lock) and the udp endpoint lock udp_rwlock. 103 * We also use conn_lock when updating things that affect the IP classifier 104 * lookup. 105 * The lock order is udp_rwlock -> uf_lock and is udp_rwlock -> conn_lock. 106 * 107 * The fanout lock uf_lock: 108 * When a UDP endpoint is bound to a local port, it is inserted into 109 * a bind hash list. The list consists of an array of udp_fanout_t buckets. 110 * The size of the array is controlled by the udp_bind_fanout_size variable. 111 * This variable can be changed in /etc/system if the default value is 112 * not large enough. Each bind hash bucket is protected by a per bucket 113 * lock. It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t 114 * structure and a few other fields in the udp_t. A UDP endpoint is removed 115 * from the bind hash list only when it is being unbound or being closed. 116 * The per bucket lock also protects a UDP endpoint's state changes. 117 * 118 * The udp_rwlock: 119 * This protects most of the other fields in the udp_t. The exact list of 120 * fields which are protected by each of the above locks is documented in 121 * the udp_t structure definition. 122 * 123 * Plumbing notes: 124 * UDP is always a device driver. For compatibility with mibopen() code 125 * it is possible to I_PUSH "udp", but that results in pushing a passthrough 126 * dummy module. 127 * 128 * The above implies that we don't support any intermediate module to 129 * reside in between /dev/ip and udp -- in fact, we never supported such 130 * scenario in the past as the inter-layer communication semantics have 131 * always been private. 132 */ 133 134 /* For /etc/system control */ 135 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE; 136 137 #define NDD_TOO_QUICK_MSG \ 138 "ndd get info rate too high for non-privileged users, try again " \ 139 "later.\n" 140 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 141 142 /* Option processing attrs */ 143 typedef struct udpattrs_s { 144 union { 145 ip6_pkt_t *udpattr_ipp6; /* For V6 */ 146 ip4_pkt_t *udpattr_ipp4; /* For V4 */ 147 } udpattr_ippu; 148 #define udpattr_ipp6 udpattr_ippu.udpattr_ipp6 149 #define udpattr_ipp4 udpattr_ippu.udpattr_ipp4 150 mblk_t *udpattr_mb; 151 boolean_t udpattr_credset; 152 } udpattrs_t; 153 154 static void udp_addr_req(queue_t *q, mblk_t *mp); 155 static void udp_bind(queue_t *q, mblk_t *mp); 156 static void udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp); 157 static void udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock); 158 static void udp_bind_result(conn_t *, mblk_t *); 159 static void udp_bind_ack(conn_t *, mblk_t *mp); 160 static void udp_bind_error(conn_t *, mblk_t *mp); 161 static int udp_build_hdrs(udp_t *udp); 162 static void udp_capability_req(queue_t *q, mblk_t *mp); 163 static int udp_close(queue_t *q); 164 static void udp_connect(queue_t *q, mblk_t *mp); 165 static void udp_disconnect(queue_t *q, mblk_t *mp); 166 static void udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, 167 int sys_error); 168 static void udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, 169 t_scalar_t tlierr, int unixerr); 170 static int udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 171 cred_t *cr); 172 static int udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 173 char *value, caddr_t cp, cred_t *cr); 174 static int udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 175 char *value, caddr_t cp, cred_t *cr); 176 static void udp_icmp_error(queue_t *q, mblk_t *mp); 177 static void udp_icmp_error_ipv6(queue_t *q, mblk_t *mp); 178 static void udp_info_req(queue_t *q, mblk_t *mp); 179 static void udp_input(void *, mblk_t *, void *); 180 static mblk_t *udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, 181 t_scalar_t addr_length); 182 static void udp_lrput(queue_t *, mblk_t *); 183 static void udp_lwput(queue_t *, mblk_t *); 184 static int udp_open(queue_t *q, dev_t *devp, int flag, int sflag, 185 cred_t *credp, boolean_t isv6); 186 static int udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, 187 cred_t *credp); 188 static int udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, 189 cred_t *credp); 190 static int udp_unitdata_opt_process(queue_t *q, mblk_t *mp, 191 int *errorp, udpattrs_t *udpattrs); 192 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name); 193 static int udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 194 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt); 195 static int udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 196 cred_t *cr); 197 static void udp_report_item(mblk_t *mp, udp_t *udp); 198 static int udp_rinfop(queue_t *q, infod_t *dp); 199 static int udp_rrw(queue_t *q, struiod_t *dp); 200 static int udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 201 cred_t *cr); 202 static void udp_send_data(udp_t *, queue_t *, mblk_t *, ipha_t *); 203 static void udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, 204 t_scalar_t destlen, t_scalar_t err); 205 static void udp_unbind(queue_t *q, mblk_t *mp); 206 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port, 207 boolean_t random); 208 static mblk_t *udp_output_v4(conn_t *, mblk_t *, ipaddr_t, uint16_t, uint_t, 209 int *, boolean_t); 210 static mblk_t *udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, 211 int *error); 212 static void udp_wput_other(queue_t *q, mblk_t *mp); 213 static void udp_wput_iocdata(queue_t *q, mblk_t *mp); 214 static size_t udp_set_rcv_hiwat(udp_t *udp, size_t size); 215 216 static void *udp_stack_init(netstackid_t stackid, netstack_t *ns); 217 static void udp_stack_fini(netstackid_t stackid, void *arg); 218 219 static void *udp_kstat_init(netstackid_t stackid); 220 static void udp_kstat_fini(netstackid_t stackid, kstat_t *ksp); 221 static void *udp_kstat2_init(netstackid_t, udp_stat_t *); 222 static void udp_kstat2_fini(netstackid_t, kstat_t *); 223 static int udp_kstat_update(kstat_t *kp, int rw); 224 225 static void udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, 226 uint_t pkt_len); 227 static void udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing); 228 static void udp_xmit(queue_t *, mblk_t *, ire_t *ire, conn_t *, zoneid_t); 229 230 #define UDP_RECV_HIWATER (56 * 1024) 231 #define UDP_RECV_LOWATER 128 232 #define UDP_XMIT_HIWATER (56 * 1024) 233 #define UDP_XMIT_LOWATER 1024 234 235 static struct module_info udp_mod_info = { 236 UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER 237 }; 238 239 /* 240 * Entry points for UDP as a device. 241 * We have separate open functions for the /dev/udp and /dev/udp6 devices. 242 */ 243 static struct qinit udp_rinitv4 = { 244 NULL, NULL, udp_openv4, udp_close, NULL, 245 &udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD 246 }; 247 248 static struct qinit udp_rinitv6 = { 249 NULL, NULL, udp_openv6, udp_close, NULL, 250 &udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD 251 }; 252 253 static struct qinit udp_winit = { 254 (pfi_t)udp_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL, 255 &udp_mod_info, NULL, NULL, NULL, STRUIOT_NONE 256 }; 257 258 /* 259 * UDP needs to handle I_LINK and I_PLINK since ifconfig 260 * likes to use it as a place to hang the various streams. 261 */ 262 static struct qinit udp_lrinit = { 263 (pfi_t)udp_lrput, NULL, udp_openv4, udp_close, NULL, 264 &udp_mod_info 265 }; 266 267 static struct qinit udp_lwinit = { 268 (pfi_t)udp_lwput, NULL, udp_openv4, udp_close, NULL, 269 &udp_mod_info 270 }; 271 272 /* For AF_INET aka /dev/udp */ 273 struct streamtab udpinfov4 = { 274 &udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit 275 }; 276 277 /* For AF_INET6 aka /dev/udp6 */ 278 struct streamtab udpinfov6 = { 279 &udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit 280 }; 281 282 static sin_t sin_null; /* Zero address for quick clears */ 283 static sin6_t sin6_null; /* Zero address for quick clears */ 284 285 #define UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH) 286 287 /* Default structure copied into T_INFO_ACK messages */ 288 static struct T_info_ack udp_g_t_info_ack_ipv4 = { 289 T_INFO_ACK, 290 UDP_MAXPACKET_IPV4, /* TSDU_size. Excl. headers */ 291 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 292 T_INVALID, /* CDATA_size. udp does not support connect data. */ 293 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 294 sizeof (sin_t), /* ADDR_size. */ 295 0, /* OPT_size - not initialized here */ 296 UDP_MAXPACKET_IPV4, /* TIDU_size. Excl. headers */ 297 T_CLTS, /* SERV_type. udp supports connection-less. */ 298 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 299 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 300 }; 301 302 #define UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN) 303 304 static struct T_info_ack udp_g_t_info_ack_ipv6 = { 305 T_INFO_ACK, 306 UDP_MAXPACKET_IPV6, /* TSDU_size. Excl. headers */ 307 T_INVALID, /* ETSU_size. udp does not support expedited data. */ 308 T_INVALID, /* CDATA_size. udp does not support connect data. */ 309 T_INVALID, /* DDATA_size. udp does not support disconnect data. */ 310 sizeof (sin6_t), /* ADDR_size. */ 311 0, /* OPT_size - not initialized here */ 312 UDP_MAXPACKET_IPV6, /* TIDU_size. Excl. headers */ 313 T_CLTS, /* SERV_type. udp supports connection-less. */ 314 TS_UNBND, /* CURRENT_state. This is set from udp_state. */ 315 (XPG4_1|SENDZERO) /* PROVIDER_flag */ 316 }; 317 318 /* largest UDP port number */ 319 #define UDP_MAX_PORT 65535 320 321 /* 322 * Table of ND variables supported by udp. These are loaded into us_nd 323 * in udp_open. 324 * All of these are alterable, within the min/max values given, at run time. 325 */ 326 /* BEGIN CSTYLED */ 327 udpparam_t udp_param_arr[] = { 328 /*min max value name */ 329 { 0L, 256, 32, "udp_wroff_extra" }, 330 { 1L, 255, 255, "udp_ipv4_ttl" }, 331 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"}, 332 { 1024, (32 * 1024), 1024, "udp_smallest_nonpriv_port" }, 333 { 0, 1, 1, "udp_do_checksum" }, 334 { 1024, UDP_MAX_PORT, (32 * 1024), "udp_smallest_anon_port" }, 335 { 1024, UDP_MAX_PORT, UDP_MAX_PORT, "udp_largest_anon_port" }, 336 { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER, "udp_xmit_hiwat"}, 337 { 0, (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"}, 338 { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER, "udp_recv_hiwat"}, 339 { 65536, (1<<30), 2*1024*1024, "udp_max_buf"}, 340 { 100, 60000, 1000, "udp_ndd_get_info_interval"}, 341 }; 342 /* END CSTYLED */ 343 344 /* Setable in /etc/system */ 345 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 346 uint32_t udp_random_anon_port = 1; 347 348 /* 349 * Hook functions to enable cluster networking. 350 * On non-clustered systems these vectors must always be NULL 351 */ 352 353 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family, 354 uint8_t *laddrp, in_port_t lport) = NULL; 355 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family, 356 uint8_t *laddrp, in_port_t lport) = NULL; 357 358 typedef union T_primitives *t_primp_t; 359 360 /* 361 * Return the next anonymous port in the privileged port range for 362 * bind checking. 363 * 364 * Trusted Extension (TX) notes: TX allows administrator to mark or 365 * reserve ports as Multilevel ports (MLP). MLP has special function 366 * on TX systems. Once a port is made MLP, it's not available as 367 * ordinary port. This creates "holes" in the port name space. It 368 * may be necessary to skip the "holes" find a suitable anon port. 369 */ 370 static in_port_t 371 udp_get_next_priv_port(udp_t *udp) 372 { 373 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 374 in_port_t nextport; 375 boolean_t restart = B_FALSE; 376 udp_stack_t *us = udp->udp_us; 377 378 retry: 379 if (next_priv_port < us->us_min_anonpriv_port || 380 next_priv_port >= IPPORT_RESERVED) { 381 next_priv_port = IPPORT_RESERVED - 1; 382 if (restart) 383 return (0); 384 restart = B_TRUE; 385 } 386 387 if (is_system_labeled() && 388 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 389 next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) { 390 next_priv_port = nextport; 391 goto retry; 392 } 393 394 return (next_priv_port--); 395 } 396 397 /* UDP bind hash report triggered via the Named Dispatch mechanism. */ 398 /* ARGSUSED */ 399 static int 400 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 401 { 402 udp_fanout_t *udpf; 403 int i; 404 zoneid_t zoneid; 405 conn_t *connp; 406 udp_t *udp; 407 udp_stack_t *us; 408 409 connp = Q_TO_CONN(q); 410 udp = connp->conn_udp; 411 us = udp->udp_us; 412 413 /* Refer to comments in udp_status_report(). */ 414 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 415 if (ddi_get_lbolt() - us->us_last_ndd_get_info_time < 416 drv_usectohz(us->us_ndd_get_info_interval * 1000)) { 417 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 418 return (0); 419 } 420 } 421 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 422 /* The following may work even if we cannot get a large buf. */ 423 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 424 return (0); 425 } 426 427 (void) mi_mpprintf(mp, 428 "UDP " MI_COL_HDRPAD_STR 429 /* 12345678[89ABCDEF] */ 430 " zone lport src addr dest addr port state"); 431 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 432 433 zoneid = connp->conn_zoneid; 434 435 for (i = 0; i < us->us_bind_fanout_size; i++) { 436 udpf = &us->us_bind_fanout[i]; 437 mutex_enter(&udpf->uf_lock); 438 439 /* Print the hash index. */ 440 udp = udpf->uf_udp; 441 if (zoneid != GLOBAL_ZONEID) { 442 /* skip to first entry in this zone; might be none */ 443 while (udp != NULL && 444 udp->udp_connp->conn_zoneid != zoneid) 445 udp = udp->udp_bind_hash; 446 } 447 if (udp != NULL) { 448 uint_t print_len, buf_len; 449 450 buf_len = mp->b_cont->b_datap->db_lim - 451 mp->b_cont->b_wptr; 452 print_len = snprintf((char *)mp->b_cont->b_wptr, 453 buf_len, "%d\n", i); 454 if (print_len < buf_len) { 455 mp->b_cont->b_wptr += print_len; 456 } else { 457 mp->b_cont->b_wptr += buf_len; 458 } 459 for (; udp != NULL; udp = udp->udp_bind_hash) { 460 if (zoneid == GLOBAL_ZONEID || 461 zoneid == udp->udp_connp->conn_zoneid) 462 udp_report_item(mp->b_cont, udp); 463 } 464 } 465 mutex_exit(&udpf->uf_lock); 466 } 467 us->us_last_ndd_get_info_time = ddi_get_lbolt(); 468 return (0); 469 } 470 471 /* 472 * Hash list removal routine for udp_t structures. 473 */ 474 static void 475 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock) 476 { 477 udp_t *udpnext; 478 kmutex_t *lockp; 479 udp_stack_t *us = udp->udp_us; 480 481 if (udp->udp_ptpbhn == NULL) 482 return; 483 484 /* 485 * Extract the lock pointer in case there are concurrent 486 * hash_remove's for this instance. 487 */ 488 ASSERT(udp->udp_port != 0); 489 if (!caller_holds_lock) { 490 lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 491 us->us_bind_fanout_size)].uf_lock; 492 ASSERT(lockp != NULL); 493 mutex_enter(lockp); 494 } 495 if (udp->udp_ptpbhn != NULL) { 496 udpnext = udp->udp_bind_hash; 497 if (udpnext != NULL) { 498 udpnext->udp_ptpbhn = udp->udp_ptpbhn; 499 udp->udp_bind_hash = NULL; 500 } 501 *udp->udp_ptpbhn = udpnext; 502 udp->udp_ptpbhn = NULL; 503 } 504 if (!caller_holds_lock) { 505 mutex_exit(lockp); 506 } 507 } 508 509 static void 510 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp) 511 { 512 udp_t **udpp; 513 udp_t *udpnext; 514 515 ASSERT(MUTEX_HELD(&uf->uf_lock)); 516 ASSERT(udp->udp_ptpbhn == NULL); 517 udpp = &uf->uf_udp; 518 udpnext = udpp[0]; 519 if (udpnext != NULL) { 520 /* 521 * If the new udp bound to the INADDR_ANY address 522 * and the first one in the list is not bound to 523 * INADDR_ANY we skip all entries until we find the 524 * first one bound to INADDR_ANY. 525 * This makes sure that applications binding to a 526 * specific address get preference over those binding to 527 * INADDR_ANY. 528 */ 529 if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) && 530 !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) { 531 while ((udpnext = udpp[0]) != NULL && 532 !V6_OR_V4_INADDR_ANY( 533 udpnext->udp_bound_v6src)) { 534 udpp = &(udpnext->udp_bind_hash); 535 } 536 if (udpnext != NULL) 537 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 538 } else { 539 udpnext->udp_ptpbhn = &udp->udp_bind_hash; 540 } 541 } 542 udp->udp_bind_hash = udpnext; 543 udp->udp_ptpbhn = udpp; 544 udpp[0] = udp; 545 } 546 547 /* 548 * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message 549 * passed to udp_wput. 550 * It associates a port number and local address with the stream. 551 * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP 552 * protocol type (IPPROTO_UDP) placed in the message following the address. 553 * A T_BIND_ACK message is passed upstream when ip acknowledges the request. 554 * (Called as writer.) 555 * 556 * Note that UDP over IPv4 and IPv6 sockets can use the same port number 557 * without setting SO_REUSEADDR. This is needed so that they 558 * can be viewed as two independent transport protocols. 559 * However, anonymouns ports are allocated from the same range to avoid 560 * duplicating the us->us_next_port_to_try. 561 */ 562 static void 563 udp_bind(queue_t *q, mblk_t *mp) 564 { 565 sin_t *sin; 566 sin6_t *sin6; 567 mblk_t *mp1; 568 in_port_t port; /* Host byte order */ 569 in_port_t requested_port; /* Host byte order */ 570 struct T_bind_req *tbr; 571 int count; 572 in6_addr_t v6src; 573 boolean_t bind_to_req_port_only; 574 int loopmax; 575 udp_fanout_t *udpf; 576 in_port_t lport; /* Network byte order */ 577 zoneid_t zoneid; 578 conn_t *connp; 579 udp_t *udp; 580 boolean_t is_inaddr_any; 581 mlp_type_t addrtype, mlptype; 582 udp_stack_t *us; 583 584 connp = Q_TO_CONN(q); 585 udp = connp->conn_udp; 586 us = udp->udp_us; 587 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 588 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 589 "udp_bind: bad req, len %u", 590 (uint_t)(mp->b_wptr - mp->b_rptr)); 591 udp_err_ack(q, mp, TPROTO, 0); 592 return; 593 } 594 if (udp->udp_state != TS_UNBND) { 595 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 596 "udp_bind: bad state, %u", udp->udp_state); 597 udp_err_ack(q, mp, TOUTSTATE, 0); 598 return; 599 } 600 /* 601 * Reallocate the message to make sure we have enough room for an 602 * address and the protocol type. 603 */ 604 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 605 if (!mp1) { 606 udp_err_ack(q, mp, TSYSERR, ENOMEM); 607 return; 608 } 609 610 mp = mp1; 611 tbr = (struct T_bind_req *)mp->b_rptr; 612 switch (tbr->ADDR_length) { 613 case 0: /* Request for a generic port */ 614 tbr->ADDR_offset = sizeof (struct T_bind_req); 615 if (udp->udp_family == AF_INET) { 616 tbr->ADDR_length = sizeof (sin_t); 617 sin = (sin_t *)&tbr[1]; 618 *sin = sin_null; 619 sin->sin_family = AF_INET; 620 mp->b_wptr = (uchar_t *)&sin[1]; 621 } else { 622 ASSERT(udp->udp_family == AF_INET6); 623 tbr->ADDR_length = sizeof (sin6_t); 624 sin6 = (sin6_t *)&tbr[1]; 625 *sin6 = sin6_null; 626 sin6->sin6_family = AF_INET6; 627 mp->b_wptr = (uchar_t *)&sin6[1]; 628 } 629 port = 0; 630 break; 631 632 case sizeof (sin_t): /* Complete IPv4 address */ 633 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 634 sizeof (sin_t)); 635 if (sin == NULL || !OK_32PTR((char *)sin)) { 636 udp_err_ack(q, mp, TSYSERR, EINVAL); 637 return; 638 } 639 if (udp->udp_family != AF_INET || 640 sin->sin_family != AF_INET) { 641 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 642 return; 643 } 644 port = ntohs(sin->sin_port); 645 break; 646 647 case sizeof (sin6_t): /* complete IPv6 address */ 648 sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset, 649 sizeof (sin6_t)); 650 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 651 udp_err_ack(q, mp, TSYSERR, EINVAL); 652 return; 653 } 654 if (udp->udp_family != AF_INET6 || 655 sin6->sin6_family != AF_INET6) { 656 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 657 return; 658 } 659 port = ntohs(sin6->sin6_port); 660 break; 661 662 default: /* Invalid request */ 663 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 664 "udp_bind: bad ADDR_length length %u", tbr->ADDR_length); 665 udp_err_ack(q, mp, TBADADDR, 0); 666 return; 667 } 668 669 requested_port = port; 670 671 if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ) 672 bind_to_req_port_only = B_FALSE; 673 else /* T_BIND_REQ and requested_port != 0 */ 674 bind_to_req_port_only = B_TRUE; 675 676 if (requested_port == 0) { 677 /* 678 * If the application passed in zero for the port number, it 679 * doesn't care which port number we bind to. Get one in the 680 * valid range. 681 */ 682 if (udp->udp_anon_priv_bind) { 683 port = udp_get_next_priv_port(udp); 684 } else { 685 port = udp_update_next_port(udp, 686 us->us_next_port_to_try, B_TRUE); 687 } 688 } else { 689 /* 690 * If the port is in the well-known privileged range, 691 * make sure the caller was privileged. 692 */ 693 int i; 694 boolean_t priv = B_FALSE; 695 696 if (port < us->us_smallest_nonpriv_port) { 697 priv = B_TRUE; 698 } else { 699 for (i = 0; i < us->us_num_epriv_ports; i++) { 700 if (port == us->us_epriv_ports[i]) { 701 priv = B_TRUE; 702 break; 703 } 704 } 705 } 706 707 if (priv) { 708 cred_t *cr = DB_CREDDEF(mp, connp->conn_cred); 709 710 if (secpolicy_net_privaddr(cr, port, 711 IPPROTO_UDP) != 0) { 712 udp_err_ack(q, mp, TACCES, 0); 713 return; 714 } 715 } 716 } 717 718 if (port == 0) { 719 udp_err_ack(q, mp, TNOADDR, 0); 720 return; 721 } 722 723 /* 724 * The state must be TS_UNBND. TPI mandates that users must send 725 * TPI primitives only 1 at a time and wait for the response before 726 * sending the next primitive. 727 */ 728 rw_enter(&udp->udp_rwlock, RW_WRITER); 729 if (udp->udp_state != TS_UNBND || udp->udp_pending_op != -1) { 730 rw_exit(&udp->udp_rwlock); 731 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 732 "udp_bind: bad state, %u", udp->udp_state); 733 udp_err_ack(q, mp, TOUTSTATE, 0); 734 return; 735 } 736 udp->udp_pending_op = tbr->PRIM_type; 737 /* 738 * Copy the source address into our udp structure. This address 739 * may still be zero; if so, IP will fill in the correct address 740 * each time an outbound packet is passed to it. Since the udp is 741 * not yet in the bind hash list, we don't grab the uf_lock to 742 * change udp_ipversion 743 */ 744 if (udp->udp_family == AF_INET) { 745 ASSERT(sin != NULL); 746 ASSERT(udp->udp_ipversion == IPV4_VERSION); 747 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 748 udp->udp_ip_snd_options_len; 749 IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src); 750 } else { 751 ASSERT(sin6 != NULL); 752 v6src = sin6->sin6_addr; 753 if (IN6_IS_ADDR_V4MAPPED(&v6src)) { 754 /* 755 * no need to hold the uf_lock to set the udp_ipversion 756 * since we are not yet in the fanout list 757 */ 758 udp->udp_ipversion = IPV4_VERSION; 759 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 760 UDPH_SIZE + udp->udp_ip_snd_options_len; 761 } else { 762 udp->udp_ipversion = IPV6_VERSION; 763 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 764 } 765 } 766 767 /* 768 * If udp_reuseaddr is not set, then we have to make sure that 769 * the IP address and port number the application requested 770 * (or we selected for the application) is not being used by 771 * another stream. If another stream is already using the 772 * requested IP address and port, the behavior depends on 773 * "bind_to_req_port_only". If set the bind fails; otherwise we 774 * search for any an unused port to bind to the the stream. 775 * 776 * As per the BSD semantics, as modified by the Deering multicast 777 * changes, if udp_reuseaddr is set, then we allow multiple binds 778 * to the same port independent of the local IP address. 779 * 780 * This is slightly different than in SunOS 4.X which did not 781 * support IP multicast. Note that the change implemented by the 782 * Deering multicast code effects all binds - not only binding 783 * to IP multicast addresses. 784 * 785 * Note that when binding to port zero we ignore SO_REUSEADDR in 786 * order to guarantee a unique port. 787 */ 788 789 count = 0; 790 if (udp->udp_anon_priv_bind) { 791 /* 792 * loopmax = (IPPORT_RESERVED-1) - 793 * us->us_min_anonpriv_port + 1 794 */ 795 loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port; 796 } else { 797 loopmax = us->us_largest_anon_port - 798 us->us_smallest_anon_port + 1; 799 } 800 801 is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src); 802 zoneid = connp->conn_zoneid; 803 804 for (;;) { 805 udp_t *udp1; 806 boolean_t found_exclbind = B_FALSE; 807 808 /* 809 * Walk through the list of udp streams bound to 810 * requested port with the same IP address. 811 */ 812 lport = htons(port); 813 udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport, 814 us->us_bind_fanout_size)]; 815 mutex_enter(&udpf->uf_lock); 816 for (udp1 = udpf->uf_udp; udp1 != NULL; 817 udp1 = udp1->udp_bind_hash) { 818 if (lport != udp1->udp_port) 819 continue; 820 821 /* 822 * On a labeled system, we must treat bindings to ports 823 * on shared IP addresses by sockets with MAC exemption 824 * privilege as being in all zones, as there's 825 * otherwise no way to identify the right receiver. 826 */ 827 if (!(IPCL_ZONE_MATCH(udp1->udp_connp, zoneid) || 828 IPCL_ZONE_MATCH(connp, 829 udp1->udp_connp->conn_zoneid)) && 830 !connp->conn_mac_exempt && \ 831 !udp1->udp_connp->conn_mac_exempt) 832 continue; 833 834 /* 835 * If UDP_EXCLBIND is set for either the bound or 836 * binding endpoint, the semantics of bind 837 * is changed according to the following chart. 838 * 839 * spec = specified address (v4 or v6) 840 * unspec = unspecified address (v4 or v6) 841 * A = specified addresses are different for endpoints 842 * 843 * bound bind to allowed? 844 * ------------------------------------- 845 * unspec unspec no 846 * unspec spec no 847 * spec unspec no 848 * spec spec yes if A 849 * 850 * For labeled systems, SO_MAC_EXEMPT behaves the same 851 * as UDP_EXCLBIND, except that zoneid is ignored. 852 */ 853 if (udp1->udp_exclbind || udp->udp_exclbind || 854 udp1->udp_connp->conn_mac_exempt || 855 connp->conn_mac_exempt) { 856 if (V6_OR_V4_INADDR_ANY( 857 udp1->udp_bound_v6src) || 858 is_inaddr_any || 859 IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 860 &v6src)) { 861 found_exclbind = B_TRUE; 862 break; 863 } 864 continue; 865 } 866 867 /* 868 * Check ipversion to allow IPv4 and IPv6 sockets to 869 * have disjoint port number spaces. 870 */ 871 if (udp->udp_ipversion != udp1->udp_ipversion) { 872 873 /* 874 * On the first time through the loop, if the 875 * the user intentionally specified a 876 * particular port number, then ignore any 877 * bindings of the other protocol that may 878 * conflict. This allows the user to bind IPv6 879 * alone and get both v4 and v6, or bind both 880 * both and get each seperately. On subsequent 881 * times through the loop, we're checking a 882 * port that we chose (not the user) and thus 883 * we do not allow casual duplicate bindings. 884 */ 885 if (count == 0 && requested_port != 0) 886 continue; 887 } 888 889 /* 890 * No difference depending on SO_REUSEADDR. 891 * 892 * If existing port is bound to a 893 * non-wildcard IP address and 894 * the requesting stream is bound to 895 * a distinct different IP addresses 896 * (non-wildcard, also), keep going. 897 */ 898 if (!is_inaddr_any && 899 !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) && 900 !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src, 901 &v6src)) { 902 continue; 903 } 904 break; 905 } 906 907 if (!found_exclbind && 908 (udp->udp_reuseaddr && requested_port != 0)) { 909 break; 910 } 911 912 if (udp1 == NULL) { 913 /* 914 * No other stream has this IP address 915 * and port number. We can use it. 916 */ 917 break; 918 } 919 mutex_exit(&udpf->uf_lock); 920 if (bind_to_req_port_only) { 921 /* 922 * We get here only when requested port 923 * is bound (and only first of the for() 924 * loop iteration). 925 * 926 * The semantics of this bind request 927 * require it to fail so we return from 928 * the routine (and exit the loop). 929 * 930 */ 931 udp->udp_pending_op = -1; 932 rw_exit(&udp->udp_rwlock); 933 udp_err_ack(q, mp, TADDRBUSY, 0); 934 return; 935 } 936 937 if (udp->udp_anon_priv_bind) { 938 port = udp_get_next_priv_port(udp); 939 } else { 940 if ((count == 0) && (requested_port != 0)) { 941 /* 942 * If the application wants us to find 943 * a port, get one to start with. Set 944 * requested_port to 0, so that we will 945 * update us->us_next_port_to_try below. 946 */ 947 port = udp_update_next_port(udp, 948 us->us_next_port_to_try, B_TRUE); 949 requested_port = 0; 950 } else { 951 port = udp_update_next_port(udp, port + 1, 952 B_FALSE); 953 } 954 } 955 956 if (port == 0 || ++count >= loopmax) { 957 /* 958 * We've tried every possible port number and 959 * there are none available, so send an error 960 * to the user. 961 */ 962 udp->udp_pending_op = -1; 963 rw_exit(&udp->udp_rwlock); 964 udp_err_ack(q, mp, TNOADDR, 0); 965 return; 966 } 967 } 968 969 /* 970 * Copy the source address into our udp structure. This address 971 * may still be zero; if so, ip will fill in the correct address 972 * each time an outbound packet is passed to it. 973 * If we are binding to a broadcast or multicast address then 974 * udp_bind_ack will clear the source address when it receives 975 * the T_BIND_ACK. 976 */ 977 udp->udp_v6src = udp->udp_bound_v6src = v6src; 978 udp->udp_port = lport; 979 /* 980 * Now reset the the next anonymous port if the application requested 981 * an anonymous port, or we handed out the next anonymous port. 982 */ 983 if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) { 984 us->us_next_port_to_try = port + 1; 985 } 986 987 /* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */ 988 if (udp->udp_family == AF_INET) { 989 sin->sin_port = udp->udp_port; 990 } else { 991 int error; 992 993 sin6->sin6_port = udp->udp_port; 994 /* Rebuild the header template */ 995 error = udp_build_hdrs(udp); 996 if (error != 0) { 997 udp->udp_pending_op = -1; 998 rw_exit(&udp->udp_rwlock); 999 mutex_exit(&udpf->uf_lock); 1000 udp_err_ack(q, mp, TSYSERR, error); 1001 return; 1002 } 1003 } 1004 udp->udp_state = TS_IDLE; 1005 udp_bind_hash_insert(udpf, udp); 1006 mutex_exit(&udpf->uf_lock); 1007 rw_exit(&udp->udp_rwlock); 1008 1009 if (cl_inet_bind) { 1010 /* 1011 * Running in cluster mode - register bind information 1012 */ 1013 if (udp->udp_ipversion == IPV4_VERSION) { 1014 (*cl_inet_bind)(IPPROTO_UDP, AF_INET, 1015 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 1016 (in_port_t)udp->udp_port); 1017 } else { 1018 (*cl_inet_bind)(IPPROTO_UDP, AF_INET6, 1019 (uint8_t *)&(udp->udp_v6src), 1020 (in_port_t)udp->udp_port); 1021 } 1022 1023 } 1024 1025 connp->conn_anon_port = (is_system_labeled() && requested_port == 0); 1026 if (is_system_labeled() && (!connp->conn_anon_port || 1027 connp->conn_anon_mlp)) { 1028 uint16_t mlpport; 1029 cred_t *cr = connp->conn_cred; 1030 zone_t *zone; 1031 1032 zone = crgetzone(cr); 1033 connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth : 1034 mlptSingle; 1035 addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION, 1036 &v6src, us->us_netstack->netstack_ip); 1037 if (addrtype == mlptSingle) { 1038 rw_enter(&udp->udp_rwlock, RW_WRITER); 1039 udp->udp_pending_op = -1; 1040 rw_exit(&udp->udp_rwlock); 1041 udp_err_ack(q, mp, TNOADDR, 0); 1042 connp->conn_anon_port = B_FALSE; 1043 connp->conn_mlp_type = mlptSingle; 1044 return; 1045 } 1046 mlpport = connp->conn_anon_port ? PMAPPORT : port; 1047 mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport, 1048 addrtype); 1049 if (mlptype != mlptSingle && 1050 (connp->conn_mlp_type == mlptSingle || 1051 secpolicy_net_bindmlp(cr) != 0)) { 1052 if (udp->udp_debug) { 1053 (void) strlog(UDP_MOD_ID, 0, 1, 1054 SL_ERROR|SL_TRACE, 1055 "udp_bind: no priv for multilevel port %d", 1056 mlpport); 1057 } 1058 rw_enter(&udp->udp_rwlock, RW_WRITER); 1059 udp->udp_pending_op = -1; 1060 rw_exit(&udp->udp_rwlock); 1061 udp_err_ack(q, mp, TACCES, 0); 1062 connp->conn_anon_port = B_FALSE; 1063 connp->conn_mlp_type = mlptSingle; 1064 return; 1065 } 1066 1067 /* 1068 * If we're specifically binding a shared IP address and the 1069 * port is MLP on shared addresses, then check to see if this 1070 * zone actually owns the MLP. Reject if not. 1071 */ 1072 if (mlptype == mlptShared && addrtype == mlptShared) { 1073 /* 1074 * No need to handle exclusive-stack zones since 1075 * ALL_ZONES only applies to the shared stack. 1076 */ 1077 zoneid_t mlpzone; 1078 1079 mlpzone = tsol_mlp_findzone(IPPROTO_UDP, 1080 htons(mlpport)); 1081 if (connp->conn_zoneid != mlpzone) { 1082 if (udp->udp_debug) { 1083 (void) strlog(UDP_MOD_ID, 0, 1, 1084 SL_ERROR|SL_TRACE, 1085 "udp_bind: attempt to bind port " 1086 "%d on shared addr in zone %d " 1087 "(should be %d)", 1088 mlpport, connp->conn_zoneid, 1089 mlpzone); 1090 } 1091 rw_enter(&udp->udp_rwlock, RW_WRITER); 1092 udp->udp_pending_op = -1; 1093 rw_exit(&udp->udp_rwlock); 1094 udp_err_ack(q, mp, TACCES, 0); 1095 connp->conn_anon_port = B_FALSE; 1096 connp->conn_mlp_type = mlptSingle; 1097 return; 1098 } 1099 } 1100 if (connp->conn_anon_port) { 1101 int error; 1102 1103 error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 1104 port, B_TRUE); 1105 if (error != 0) { 1106 if (udp->udp_debug) { 1107 (void) strlog(UDP_MOD_ID, 0, 1, 1108 SL_ERROR|SL_TRACE, 1109 "udp_bind: cannot establish anon " 1110 "MLP for port %d", port); 1111 } 1112 rw_enter(&udp->udp_rwlock, RW_WRITER); 1113 udp->udp_pending_op = -1; 1114 rw_exit(&udp->udp_rwlock); 1115 udp_err_ack(q, mp, TACCES, 0); 1116 connp->conn_anon_port = B_FALSE; 1117 connp->conn_mlp_type = mlptSingle; 1118 return; 1119 } 1120 } 1121 connp->conn_mlp_type = mlptype; 1122 } 1123 1124 /* Pass the protocol number in the message following the address. */ 1125 *mp->b_wptr++ = IPPROTO_UDP; 1126 if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 1127 /* 1128 * Append a request for an IRE if udp_v6src not 1129 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address). 1130 */ 1131 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 1132 if (!mp->b_cont) { 1133 rw_enter(&udp->udp_rwlock, RW_WRITER); 1134 udp->udp_pending_op = -1; 1135 rw_exit(&udp->udp_rwlock); 1136 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1137 return; 1138 } 1139 mp->b_cont->b_wptr += sizeof (ire_t); 1140 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 1141 } 1142 if (udp->udp_family == AF_INET6) 1143 mp = ip_bind_v6(q, mp, connp, NULL); 1144 else 1145 mp = ip_bind_v4(q, mp, connp); 1146 1147 /* The above return NULL if the bind needs to be deferred */ 1148 if (mp != NULL) 1149 udp_bind_result(connp, mp); 1150 else 1151 CONN_INC_REF(connp); 1152 } 1153 1154 /* 1155 * This is called from ip_wput_nondata to handle the results of a 1156 * deferred UDP bind. It is called once the bind has been completed. 1157 */ 1158 void 1159 udp_resume_bind(conn_t *connp, mblk_t *mp) 1160 { 1161 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1162 1163 udp_bind_result(connp, mp); 1164 1165 CONN_OPER_PENDING_DONE(connp); 1166 } 1167 1168 /* 1169 * This routine handles each T_CONN_REQ message passed to udp. It 1170 * associates a default destination address with the stream. 1171 * 1172 * This routine sends down a T_BIND_REQ to IP with the following mblks: 1173 * T_BIND_REQ - specifying local and remote address/port 1174 * IRE_DB_REQ_TYPE - to get an IRE back containing ire_type and src 1175 * T_OK_ACK - for the T_CONN_REQ 1176 * T_CONN_CON - to keep the TPI user happy 1177 * 1178 * The connect completes in udp_bind_result. 1179 * When a T_BIND_ACK is received information is extracted from the IRE 1180 * and the two appended messages are sent to the TPI user. 1181 * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will 1182 * convert it to an error ack for the appropriate primitive. 1183 */ 1184 static void 1185 udp_connect(queue_t *q, mblk_t *mp) 1186 { 1187 sin6_t *sin6; 1188 sin_t *sin; 1189 struct T_conn_req *tcr; 1190 in6_addr_t v6dst; 1191 ipaddr_t v4dst; 1192 uint16_t dstport; 1193 uint32_t flowinfo; 1194 mblk_t *mp1, *mp2; 1195 udp_fanout_t *udpf; 1196 udp_t *udp, *udp1; 1197 ushort_t ipversion; 1198 udp_stack_t *us; 1199 conn_t *connp = Q_TO_CONN(q); 1200 1201 udp = connp->conn_udp; 1202 tcr = (struct T_conn_req *)mp->b_rptr; 1203 us = udp->udp_us; 1204 1205 /* A bit of sanity checking */ 1206 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) { 1207 udp_err_ack(q, mp, TPROTO, 0); 1208 return; 1209 } 1210 1211 if (tcr->OPT_length != 0) { 1212 udp_err_ack(q, mp, TBADOPT, 0); 1213 return; 1214 } 1215 1216 /* 1217 * Determine packet type based on type of address passed in 1218 * the request should contain an IPv4 or IPv6 address. 1219 * Make sure that address family matches the type of 1220 * family of the the address passed down 1221 */ 1222 switch (tcr->DEST_length) { 1223 default: 1224 udp_err_ack(q, mp, TBADADDR, 0); 1225 return; 1226 1227 case sizeof (sin_t): 1228 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 1229 sizeof (sin_t)); 1230 if (sin == NULL || !OK_32PTR((char *)sin)) { 1231 udp_err_ack(q, mp, TSYSERR, EINVAL); 1232 return; 1233 } 1234 if (udp->udp_family != AF_INET || 1235 sin->sin_family != AF_INET) { 1236 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1237 return; 1238 } 1239 v4dst = sin->sin_addr.s_addr; 1240 dstport = sin->sin_port; 1241 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1242 ASSERT(udp->udp_ipversion == IPV4_VERSION); 1243 ipversion = IPV4_VERSION; 1244 break; 1245 1246 case sizeof (sin6_t): 1247 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 1248 sizeof (sin6_t)); 1249 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 1250 udp_err_ack(q, mp, TSYSERR, EINVAL); 1251 return; 1252 } 1253 if (udp->udp_family != AF_INET6 || 1254 sin6->sin6_family != AF_INET6) { 1255 udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT); 1256 return; 1257 } 1258 v6dst = sin6->sin6_addr; 1259 dstport = sin6->sin6_port; 1260 if (IN6_IS_ADDR_V4MAPPED(&v6dst)) { 1261 IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst); 1262 ipversion = IPV4_VERSION; 1263 flowinfo = 0; 1264 } else { 1265 ipversion = IPV6_VERSION; 1266 flowinfo = sin6->sin6_flowinfo; 1267 } 1268 break; 1269 } 1270 if (dstport == 0) { 1271 udp_err_ack(q, mp, TBADADDR, 0); 1272 return; 1273 } 1274 1275 rw_enter(&udp->udp_rwlock, RW_WRITER); 1276 1277 /* 1278 * This UDP must have bound to a port already before doing a connect. 1279 * TPI mandates that users must send TPI primitives only 1 at a time 1280 * and wait for the response before sending the next primitive. 1281 */ 1282 if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) { 1283 rw_exit(&udp->udp_rwlock); 1284 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1285 "udp_connect: bad state, %u", udp->udp_state); 1286 udp_err_ack(q, mp, TOUTSTATE, 0); 1287 return; 1288 } 1289 udp->udp_pending_op = T_CONN_REQ; 1290 ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL); 1291 1292 if (ipversion == IPV4_VERSION) { 1293 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + 1294 udp->udp_ip_snd_options_len; 1295 } else { 1296 udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len; 1297 } 1298 1299 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 1300 us->us_bind_fanout_size)]; 1301 1302 mutex_enter(&udpf->uf_lock); 1303 if (udp->udp_state == TS_DATA_XFER) { 1304 /* Already connected - clear out state */ 1305 udp->udp_v6src = udp->udp_bound_v6src; 1306 udp->udp_state = TS_IDLE; 1307 } 1308 1309 /* 1310 * Create a default IP header with no IP options. 1311 */ 1312 udp->udp_dstport = dstport; 1313 udp->udp_ipversion = ipversion; 1314 if (ipversion == IPV4_VERSION) { 1315 /* 1316 * Interpret a zero destination to mean loopback. 1317 * Update the T_CONN_REQ (sin/sin6) since it is used to 1318 * generate the T_CONN_CON. 1319 */ 1320 if (v4dst == INADDR_ANY) { 1321 v4dst = htonl(INADDR_LOOPBACK); 1322 IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst); 1323 if (udp->udp_family == AF_INET) { 1324 sin->sin_addr.s_addr = v4dst; 1325 } else { 1326 sin6->sin6_addr = v6dst; 1327 } 1328 } 1329 udp->udp_v6dst = v6dst; 1330 udp->udp_flowinfo = 0; 1331 1332 /* 1333 * If the destination address is multicast and 1334 * an outgoing multicast interface has been set, 1335 * use the address of that interface as our 1336 * source address if no source address has been set. 1337 */ 1338 if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY && 1339 CLASSD(v4dst) && 1340 udp->udp_multicast_if_addr != INADDR_ANY) { 1341 IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr, 1342 &udp->udp_v6src); 1343 } 1344 } else { 1345 ASSERT(udp->udp_ipversion == IPV6_VERSION); 1346 /* 1347 * Interpret a zero destination to mean loopback. 1348 * Update the T_CONN_REQ (sin/sin6) since it is used to 1349 * generate the T_CONN_CON. 1350 */ 1351 if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) { 1352 v6dst = ipv6_loopback; 1353 sin6->sin6_addr = v6dst; 1354 } 1355 udp->udp_v6dst = v6dst; 1356 udp->udp_flowinfo = flowinfo; 1357 /* 1358 * If the destination address is multicast and 1359 * an outgoing multicast interface has been set, 1360 * then the ip bind logic will pick the correct source 1361 * address (i.e. matching the outgoing multicast interface). 1362 */ 1363 } 1364 1365 /* 1366 * Verify that the src/port/dst/port is unique for all 1367 * connections in TS_DATA_XFER 1368 */ 1369 for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) { 1370 if (udp1->udp_state != TS_DATA_XFER) 1371 continue; 1372 if (udp->udp_port != udp1->udp_port || 1373 udp->udp_ipversion != udp1->udp_ipversion || 1374 dstport != udp1->udp_dstport || 1375 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) || 1376 !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst) || 1377 !(IPCL_ZONE_MATCH(udp->udp_connp, 1378 udp1->udp_connp->conn_zoneid) || 1379 IPCL_ZONE_MATCH(udp1->udp_connp, 1380 udp->udp_connp->conn_zoneid))) 1381 continue; 1382 mutex_exit(&udpf->uf_lock); 1383 udp->udp_pending_op = -1; 1384 rw_exit(&udp->udp_rwlock); 1385 udp_err_ack(q, mp, TBADADDR, 0); 1386 return; 1387 } 1388 udp->udp_state = TS_DATA_XFER; 1389 mutex_exit(&udpf->uf_lock); 1390 1391 /* 1392 * Send down bind to IP to verify that there is a route 1393 * and to determine the source address. 1394 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput. 1395 */ 1396 if (udp->udp_family == AF_INET) 1397 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t)); 1398 else 1399 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 1400 if (mp1 == NULL) { 1401 bind_failed: 1402 mutex_enter(&udpf->uf_lock); 1403 udp->udp_state = TS_IDLE; 1404 udp->udp_pending_op = -1; 1405 mutex_exit(&udpf->uf_lock); 1406 rw_exit(&udp->udp_rwlock); 1407 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1408 return; 1409 } 1410 1411 rw_exit(&udp->udp_rwlock); 1412 /* 1413 * We also have to send a connection confirmation to 1414 * keep TLI happy. Prepare it for udp_bind_result. 1415 */ 1416 if (udp->udp_family == AF_INET) 1417 mp2 = mi_tpi_conn_con(NULL, (char *)sin, 1418 sizeof (*sin), NULL, 0); 1419 else 1420 mp2 = mi_tpi_conn_con(NULL, (char *)sin6, 1421 sizeof (*sin6), NULL, 0); 1422 if (mp2 == NULL) { 1423 freemsg(mp1); 1424 rw_enter(&udp->udp_rwlock, RW_WRITER); 1425 goto bind_failed; 1426 } 1427 1428 mp = mi_tpi_ok_ack_alloc(mp); 1429 if (mp == NULL) { 1430 /* Unable to reuse the T_CONN_REQ for the ack. */ 1431 freemsg(mp2); 1432 rw_enter(&udp->udp_rwlock, RW_WRITER); 1433 mutex_enter(&udpf->uf_lock); 1434 udp->udp_state = TS_IDLE; 1435 udp->udp_pending_op = -1; 1436 mutex_exit(&udpf->uf_lock); 1437 rw_exit(&udp->udp_rwlock); 1438 udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM); 1439 return; 1440 } 1441 1442 /* Hang onto the T_OK_ACK and T_CONN_CON for later. */ 1443 linkb(mp1, mp); 1444 linkb(mp1, mp2); 1445 1446 mblk_setcred(mp1, connp->conn_cred); 1447 if (udp->udp_family == AF_INET) 1448 mp1 = ip_bind_v4(q, mp1, connp); 1449 else 1450 mp1 = ip_bind_v6(q, mp1, connp, NULL); 1451 1452 /* The above return NULL if the bind needs to be deferred */ 1453 if (mp1 != NULL) 1454 udp_bind_result(connp, mp1); 1455 else 1456 CONN_INC_REF(connp); 1457 } 1458 1459 static int 1460 udp_close(queue_t *q) 1461 { 1462 conn_t *connp = (conn_t *)q->q_ptr; 1463 udp_t *udp; 1464 1465 ASSERT(connp != NULL && IPCL_IS_UDP(connp)); 1466 udp = connp->conn_udp; 1467 1468 udp_quiesce_conn(connp); 1469 ip_quiesce_conn(connp); 1470 /* 1471 * Disable read-side synchronous stream 1472 * interface and drain any queued data. 1473 */ 1474 udp_rcv_drain(q, udp, B_TRUE); 1475 ASSERT(!udp->udp_direct_sockfs); 1476 1477 qprocsoff(q); 1478 1479 ASSERT(udp->udp_rcv_cnt == 0); 1480 ASSERT(udp->udp_rcv_msgcnt == 0); 1481 ASSERT(udp->udp_rcv_list_head == NULL); 1482 ASSERT(udp->udp_rcv_list_tail == NULL); 1483 1484 udp_close_free(connp); 1485 1486 /* 1487 * Now we are truly single threaded on this stream, and can 1488 * delete the things hanging off the connp, and finally the connp. 1489 * We removed this connp from the fanout list, it cannot be 1490 * accessed thru the fanouts, and we already waited for the 1491 * conn_ref to drop to 0. We are already in close, so 1492 * there cannot be any other thread from the top. qprocsoff 1493 * has completed, and service has completed or won't run in 1494 * future. 1495 */ 1496 ASSERT(connp->conn_ref == 1); 1497 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 1498 connp->conn_ref--; 1499 ipcl_conn_destroy(connp); 1500 1501 q->q_ptr = WR(q)->q_ptr = NULL; 1502 return (0); 1503 } 1504 1505 /* 1506 * Called in the close path to quiesce the conn 1507 */ 1508 void 1509 udp_quiesce_conn(conn_t *connp) 1510 { 1511 udp_t *udp = connp->conn_udp; 1512 1513 if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) { 1514 /* 1515 * Running in cluster mode - register unbind information 1516 */ 1517 if (udp->udp_ipversion == IPV4_VERSION) { 1518 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 1519 (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))), 1520 (in_port_t)udp->udp_port); 1521 } else { 1522 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 1523 (uint8_t *)(&(udp->udp_v6src)), 1524 (in_port_t)udp->udp_port); 1525 } 1526 } 1527 1528 udp_bind_hash_remove(udp, B_FALSE); 1529 1530 } 1531 1532 void 1533 udp_close_free(conn_t *connp) 1534 { 1535 udp_t *udp = connp->conn_udp; 1536 1537 /* If there are any options associated with the stream, free them. */ 1538 if (udp->udp_ip_snd_options != NULL) { 1539 mi_free((char *)udp->udp_ip_snd_options); 1540 udp->udp_ip_snd_options = NULL; 1541 udp->udp_ip_snd_options_len = 0; 1542 } 1543 1544 if (udp->udp_ip_rcv_options != NULL) { 1545 mi_free((char *)udp->udp_ip_rcv_options); 1546 udp->udp_ip_rcv_options = NULL; 1547 udp->udp_ip_rcv_options_len = 0; 1548 } 1549 1550 /* Free memory associated with sticky options */ 1551 if (udp->udp_sticky_hdrs_len != 0) { 1552 kmem_free(udp->udp_sticky_hdrs, 1553 udp->udp_sticky_hdrs_len); 1554 udp->udp_sticky_hdrs = NULL; 1555 udp->udp_sticky_hdrs_len = 0; 1556 } 1557 1558 ip6_pkt_free(&udp->udp_sticky_ipp); 1559 1560 /* 1561 * Clear any fields which the kmem_cache constructor clears. 1562 * Only udp_connp needs to be preserved. 1563 * TBD: We should make this more efficient to avoid clearing 1564 * everything. 1565 */ 1566 ASSERT(udp->udp_connp == connp); 1567 bzero(udp, sizeof (udp_t)); 1568 udp->udp_connp = connp; 1569 } 1570 1571 /* 1572 * This routine handles each T_DISCON_REQ message passed to udp 1573 * as an indicating that UDP is no longer connected. This results 1574 * in sending a T_BIND_REQ to IP to restore the binding to just 1575 * the local address/port. 1576 * 1577 * This routine sends down a T_BIND_REQ to IP with the following mblks: 1578 * T_BIND_REQ - specifying just the local address/port 1579 * T_OK_ACK - for the T_DISCON_REQ 1580 * 1581 * The disconnect completes in udp_bind_result. 1582 * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user. 1583 * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will 1584 * convert it to an error ack for the appropriate primitive. 1585 */ 1586 static void 1587 udp_disconnect(queue_t *q, mblk_t *mp) 1588 { 1589 udp_t *udp; 1590 mblk_t *mp1; 1591 udp_fanout_t *udpf; 1592 udp_stack_t *us; 1593 conn_t *connp = Q_TO_CONN(q); 1594 1595 udp = connp->conn_udp; 1596 us = udp->udp_us; 1597 rw_enter(&udp->udp_rwlock, RW_WRITER); 1598 if (udp->udp_state != TS_DATA_XFER || udp->udp_pending_op != -1) { 1599 rw_exit(&udp->udp_rwlock); 1600 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE, 1601 "udp_disconnect: bad state, %u", udp->udp_state); 1602 udp_err_ack(q, mp, TOUTSTATE, 0); 1603 return; 1604 } 1605 udp->udp_pending_op = T_DISCON_REQ; 1606 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 1607 us->us_bind_fanout_size)]; 1608 mutex_enter(&udpf->uf_lock); 1609 udp->udp_v6src = udp->udp_bound_v6src; 1610 udp->udp_state = TS_IDLE; 1611 mutex_exit(&udpf->uf_lock); 1612 1613 /* 1614 * Send down bind to IP to remove the full binding and revert 1615 * to the local address binding. 1616 */ 1617 if (udp->udp_family == AF_INET) 1618 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t)); 1619 else 1620 mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t)); 1621 if (mp1 == NULL) { 1622 udp->udp_pending_op = -1; 1623 rw_exit(&udp->udp_rwlock); 1624 udp_err_ack(q, mp, TSYSERR, ENOMEM); 1625 return; 1626 } 1627 mp = mi_tpi_ok_ack_alloc(mp); 1628 if (mp == NULL) { 1629 /* Unable to reuse the T_DISCON_REQ for the ack. */ 1630 udp->udp_pending_op = -1; 1631 rw_exit(&udp->udp_rwlock); 1632 udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM); 1633 return; 1634 } 1635 1636 if (udp->udp_family == AF_INET6) { 1637 int error; 1638 1639 /* Rebuild the header template */ 1640 error = udp_build_hdrs(udp); 1641 if (error != 0) { 1642 udp->udp_pending_op = -1; 1643 rw_exit(&udp->udp_rwlock); 1644 udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error); 1645 freemsg(mp1); 1646 return; 1647 } 1648 } 1649 1650 rw_exit(&udp->udp_rwlock); 1651 /* Append the T_OK_ACK to the T_BIND_REQ for udp_bind_ack */ 1652 linkb(mp1, mp); 1653 1654 if (udp->udp_family == AF_INET6) 1655 mp1 = ip_bind_v6(q, mp1, connp, NULL); 1656 else 1657 mp1 = ip_bind_v4(q, mp1, connp); 1658 1659 /* The above return NULL if the bind needs to be deferred */ 1660 if (mp1 != NULL) 1661 udp_bind_result(connp, mp1); 1662 else 1663 CONN_INC_REF(connp); 1664 } 1665 1666 /* This routine creates a T_ERROR_ACK message and passes it upstream. */ 1667 static void 1668 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error) 1669 { 1670 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 1671 qreply(q, mp); 1672 } 1673 1674 /* Shorthand to generate and send TPI error acks to our client */ 1675 static void 1676 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error, 1677 int sys_error) 1678 { 1679 struct T_error_ack *teackp; 1680 1681 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 1682 M_PCPROTO, T_ERROR_ACK)) != NULL) { 1683 teackp = (struct T_error_ack *)mp->b_rptr; 1684 teackp->ERROR_prim = primitive; 1685 teackp->TLI_error = t_error; 1686 teackp->UNIX_error = sys_error; 1687 qreply(q, mp); 1688 } 1689 } 1690 1691 /*ARGSUSED*/ 1692 static int 1693 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 1694 { 1695 int i; 1696 udp_t *udp = Q_TO_UDP(q); 1697 udp_stack_t *us = udp->udp_us; 1698 1699 for (i = 0; i < us->us_num_epriv_ports; i++) { 1700 if (us->us_epriv_ports[i] != 0) 1701 (void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]); 1702 } 1703 return (0); 1704 } 1705 1706 /* ARGSUSED */ 1707 static int 1708 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 1709 cred_t *cr) 1710 { 1711 long new_value; 1712 int i; 1713 udp_t *udp = Q_TO_UDP(q); 1714 udp_stack_t *us = udp->udp_us; 1715 1716 /* 1717 * Fail the request if the new value does not lie within the 1718 * port number limits. 1719 */ 1720 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 1721 new_value <= 0 || new_value >= 65536) { 1722 return (EINVAL); 1723 } 1724 1725 /* Check if the value is already in the list */ 1726 for (i = 0; i < us->us_num_epriv_ports; i++) { 1727 if (new_value == us->us_epriv_ports[i]) { 1728 return (EEXIST); 1729 } 1730 } 1731 /* Find an empty slot */ 1732 for (i = 0; i < us->us_num_epriv_ports; i++) { 1733 if (us->us_epriv_ports[i] == 0) 1734 break; 1735 } 1736 if (i == us->us_num_epriv_ports) { 1737 return (EOVERFLOW); 1738 } 1739 1740 /* Set the new value */ 1741 us->us_epriv_ports[i] = (in_port_t)new_value; 1742 return (0); 1743 } 1744 1745 /* ARGSUSED */ 1746 static int 1747 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 1748 cred_t *cr) 1749 { 1750 long new_value; 1751 int i; 1752 udp_t *udp = Q_TO_UDP(q); 1753 udp_stack_t *us = udp->udp_us; 1754 1755 /* 1756 * Fail the request if the new value does not lie within the 1757 * port number limits. 1758 */ 1759 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 1760 new_value <= 0 || new_value >= 65536) { 1761 return (EINVAL); 1762 } 1763 1764 /* Check that the value is already in the list */ 1765 for (i = 0; i < us->us_num_epriv_ports; i++) { 1766 if (us->us_epriv_ports[i] == new_value) 1767 break; 1768 } 1769 if (i == us->us_num_epriv_ports) { 1770 return (ESRCH); 1771 } 1772 1773 /* Clear the value */ 1774 us->us_epriv_ports[i] = 0; 1775 return (0); 1776 } 1777 1778 /* At minimum we need 4 bytes of UDP header */ 1779 #define ICMP_MIN_UDP_HDR 4 1780 1781 /* 1782 * udp_icmp_error is called by udp_input to process ICMP msgs. passed up by IP. 1783 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 1784 * Assumes that IP has pulled up everything up to and including the ICMP header. 1785 */ 1786 static void 1787 udp_icmp_error(queue_t *q, mblk_t *mp) 1788 { 1789 icmph_t *icmph; 1790 ipha_t *ipha; 1791 int iph_hdr_length; 1792 udpha_t *udpha; 1793 sin_t sin; 1794 sin6_t sin6; 1795 mblk_t *mp1; 1796 int error = 0; 1797 udp_t *udp = Q_TO_UDP(q); 1798 1799 ipha = (ipha_t *)mp->b_rptr; 1800 1801 ASSERT(OK_32PTR(mp->b_rptr)); 1802 1803 if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) { 1804 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION); 1805 udp_icmp_error_ipv6(q, mp); 1806 return; 1807 } 1808 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 1809 1810 /* Skip past the outer IP and ICMP headers */ 1811 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1812 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 1813 ipha = (ipha_t *)&icmph[1]; 1814 1815 /* Skip past the inner IP and find the ULP header */ 1816 iph_hdr_length = IPH_HDR_LENGTH(ipha); 1817 udpha = (udpha_t *)((char *)ipha + iph_hdr_length); 1818 1819 switch (icmph->icmph_type) { 1820 case ICMP_DEST_UNREACHABLE: 1821 switch (icmph->icmph_code) { 1822 case ICMP_FRAGMENTATION_NEEDED: 1823 /* 1824 * IP has already adjusted the path MTU. 1825 */ 1826 break; 1827 case ICMP_PORT_UNREACHABLE: 1828 case ICMP_PROTOCOL_UNREACHABLE: 1829 error = ECONNREFUSED; 1830 break; 1831 default: 1832 /* Transient errors */ 1833 break; 1834 } 1835 break; 1836 default: 1837 /* Transient errors */ 1838 break; 1839 } 1840 if (error == 0) { 1841 freemsg(mp); 1842 return; 1843 } 1844 1845 /* 1846 * Deliver T_UDERROR_IND when the application has asked for it. 1847 * The socket layer enables this automatically when connected. 1848 */ 1849 if (!udp->udp_dgram_errind) { 1850 freemsg(mp); 1851 return; 1852 } 1853 1854 switch (udp->udp_family) { 1855 case AF_INET: 1856 sin = sin_null; 1857 sin.sin_family = AF_INET; 1858 sin.sin_addr.s_addr = ipha->ipha_dst; 1859 sin.sin_port = udpha->uha_dst_port; 1860 mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0, 1861 error); 1862 break; 1863 case AF_INET6: 1864 sin6 = sin6_null; 1865 sin6.sin6_family = AF_INET6; 1866 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr); 1867 sin6.sin6_port = udpha->uha_dst_port; 1868 1869 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), 1870 NULL, 0, error); 1871 break; 1872 } 1873 if (mp1) 1874 putnext(q, mp1); 1875 freemsg(mp); 1876 } 1877 1878 /* 1879 * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6. 1880 * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors. 1881 * Assumes that IP has pulled up all the extension headers as well as the 1882 * ICMPv6 header. 1883 */ 1884 static void 1885 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp) 1886 { 1887 icmp6_t *icmp6; 1888 ip6_t *ip6h, *outer_ip6h; 1889 uint16_t iph_hdr_length; 1890 uint8_t *nexthdrp; 1891 udpha_t *udpha; 1892 sin6_t sin6; 1893 mblk_t *mp1; 1894 int error = 0; 1895 udp_t *udp = Q_TO_UDP(q); 1896 udp_stack_t *us = udp->udp_us; 1897 1898 outer_ip6h = (ip6_t *)mp->b_rptr; 1899 if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6) 1900 iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h); 1901 else 1902 iph_hdr_length = IPV6_HDR_LEN; 1903 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 1904 ip6h = (ip6_t *)&icmp6[1]; 1905 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) { 1906 freemsg(mp); 1907 return; 1908 } 1909 udpha = (udpha_t *)((char *)ip6h + iph_hdr_length); 1910 1911 switch (icmp6->icmp6_type) { 1912 case ICMP6_DST_UNREACH: 1913 switch (icmp6->icmp6_code) { 1914 case ICMP6_DST_UNREACH_NOPORT: 1915 error = ECONNREFUSED; 1916 break; 1917 case ICMP6_DST_UNREACH_ADMIN: 1918 case ICMP6_DST_UNREACH_NOROUTE: 1919 case ICMP6_DST_UNREACH_BEYONDSCOPE: 1920 case ICMP6_DST_UNREACH_ADDR: 1921 /* Transient errors */ 1922 break; 1923 default: 1924 break; 1925 } 1926 break; 1927 case ICMP6_PACKET_TOO_BIG: { 1928 struct T_unitdata_ind *tudi; 1929 struct T_opthdr *toh; 1930 size_t udi_size; 1931 mblk_t *newmp; 1932 t_scalar_t opt_length = sizeof (struct T_opthdr) + 1933 sizeof (struct ip6_mtuinfo); 1934 sin6_t *sin6; 1935 struct ip6_mtuinfo *mtuinfo; 1936 1937 /* 1938 * If the application has requested to receive path mtu 1939 * information, send up an empty message containing an 1940 * IPV6_PATHMTU ancillary data item. 1941 */ 1942 if (!udp->udp_ipv6_recvpathmtu) 1943 break; 1944 1945 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) + 1946 opt_length; 1947 if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) { 1948 BUMP_MIB(&us->us_udp_mib, udpInErrors); 1949 break; 1950 } 1951 1952 /* 1953 * newmp->b_cont is left to NULL on purpose. This is an 1954 * empty message containing only ancillary data. 1955 */ 1956 newmp->b_datap->db_type = M_PROTO; 1957 tudi = (struct T_unitdata_ind *)newmp->b_rptr; 1958 newmp->b_wptr = (uchar_t *)tudi + udi_size; 1959 tudi->PRIM_type = T_UNITDATA_IND; 1960 tudi->SRC_length = sizeof (sin6_t); 1961 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 1962 tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t); 1963 tudi->OPT_length = opt_length; 1964 1965 sin6 = (sin6_t *)&tudi[1]; 1966 bzero(sin6, sizeof (sin6_t)); 1967 sin6->sin6_family = AF_INET6; 1968 sin6->sin6_addr = udp->udp_v6dst; 1969 1970 toh = (struct T_opthdr *)&sin6[1]; 1971 toh->level = IPPROTO_IPV6; 1972 toh->name = IPV6_PATHMTU; 1973 toh->len = opt_length; 1974 toh->status = 0; 1975 1976 mtuinfo = (struct ip6_mtuinfo *)&toh[1]; 1977 bzero(mtuinfo, sizeof (struct ip6_mtuinfo)); 1978 mtuinfo->ip6m_addr.sin6_family = AF_INET6; 1979 mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst; 1980 mtuinfo->ip6m_mtu = icmp6->icmp6_mtu; 1981 /* 1982 * We've consumed everything we need from the original 1983 * message. Free it, then send our empty message. 1984 */ 1985 freemsg(mp); 1986 putnext(q, newmp); 1987 return; 1988 } 1989 case ICMP6_TIME_EXCEEDED: 1990 /* Transient errors */ 1991 break; 1992 case ICMP6_PARAM_PROB: 1993 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 1994 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 1995 (uchar_t *)ip6h + icmp6->icmp6_pptr == 1996 (uchar_t *)nexthdrp) { 1997 error = ECONNREFUSED; 1998 break; 1999 } 2000 break; 2001 } 2002 if (error == 0) { 2003 freemsg(mp); 2004 return; 2005 } 2006 2007 /* 2008 * Deliver T_UDERROR_IND when the application has asked for it. 2009 * The socket layer enables this automatically when connected. 2010 */ 2011 if (!udp->udp_dgram_errind) { 2012 freemsg(mp); 2013 return; 2014 } 2015 2016 sin6 = sin6_null; 2017 sin6.sin6_family = AF_INET6; 2018 sin6.sin6_addr = ip6h->ip6_dst; 2019 sin6.sin6_port = udpha->uha_dst_port; 2020 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 2021 2022 mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0, 2023 error); 2024 if (mp1) 2025 putnext(q, mp1); 2026 freemsg(mp); 2027 } 2028 2029 /* 2030 * This routine responds to T_ADDR_REQ messages. It is called by udp_wput. 2031 * The local address is filled in if endpoint is bound. The remote address 2032 * is filled in if remote address has been precified ("connected endpoint") 2033 * (The concept of connected CLTS sockets is alien to published TPI 2034 * but we support it anyway). 2035 */ 2036 static void 2037 udp_addr_req(queue_t *q, mblk_t *mp) 2038 { 2039 sin_t *sin; 2040 sin6_t *sin6; 2041 mblk_t *ackmp; 2042 struct T_addr_ack *taa; 2043 udp_t *udp = Q_TO_UDP(q); 2044 2045 /* Make it large enough for worst case */ 2046 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 2047 2 * sizeof (sin6_t), 1); 2048 if (ackmp == NULL) { 2049 udp_err_ack(q, mp, TSYSERR, ENOMEM); 2050 return; 2051 } 2052 taa = (struct T_addr_ack *)ackmp->b_rptr; 2053 2054 bzero(taa, sizeof (struct T_addr_ack)); 2055 ackmp->b_wptr = (uchar_t *)&taa[1]; 2056 2057 taa->PRIM_type = T_ADDR_ACK; 2058 ackmp->b_datap->db_type = M_PCPROTO; 2059 rw_enter(&udp->udp_rwlock, RW_READER); 2060 /* 2061 * Note: Following code assumes 32 bit alignment of basic 2062 * data structures like sin_t and struct T_addr_ack. 2063 */ 2064 if (udp->udp_state != TS_UNBND) { 2065 /* 2066 * Fill in local address first 2067 */ 2068 taa->LOCADDR_offset = sizeof (*taa); 2069 if (udp->udp_family == AF_INET) { 2070 taa->LOCADDR_length = sizeof (sin_t); 2071 sin = (sin_t *)&taa[1]; 2072 /* Fill zeroes and then initialize non-zero fields */ 2073 *sin = sin_null; 2074 sin->sin_family = AF_INET; 2075 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 2076 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2077 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, 2078 sin->sin_addr.s_addr); 2079 } else { 2080 /* 2081 * INADDR_ANY 2082 * udp_v6src is not set, we might be bound to 2083 * broadcast/multicast. Use udp_bound_v6src as 2084 * local address instead (that could 2085 * also still be INADDR_ANY) 2086 */ 2087 IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src, 2088 sin->sin_addr.s_addr); 2089 } 2090 sin->sin_port = udp->udp_port; 2091 ackmp->b_wptr = (uchar_t *)&sin[1]; 2092 if (udp->udp_state == TS_DATA_XFER) { 2093 /* 2094 * connected, fill remote address too 2095 */ 2096 taa->REMADDR_length = sizeof (sin_t); 2097 /* assumed 32-bit alignment */ 2098 taa->REMADDR_offset = taa->LOCADDR_offset + 2099 taa->LOCADDR_length; 2100 2101 sin = (sin_t *)(ackmp->b_rptr + 2102 taa->REMADDR_offset); 2103 /* initialize */ 2104 *sin = sin_null; 2105 sin->sin_family = AF_INET; 2106 sin->sin_addr.s_addr = 2107 V4_PART_OF_V6(udp->udp_v6dst); 2108 sin->sin_port = udp->udp_dstport; 2109 ackmp->b_wptr = (uchar_t *)&sin[1]; 2110 } 2111 } else { 2112 taa->LOCADDR_length = sizeof (sin6_t); 2113 sin6 = (sin6_t *)&taa[1]; 2114 /* Fill zeroes and then initialize non-zero fields */ 2115 *sin6 = sin6_null; 2116 sin6->sin6_family = AF_INET6; 2117 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 2118 sin6->sin6_addr = udp->udp_v6src; 2119 } else { 2120 /* 2121 * UNSPECIFIED 2122 * udp_v6src is not set, we might be bound to 2123 * broadcast/multicast. Use udp_bound_v6src as 2124 * local address instead (that could 2125 * also still be UNSPECIFIED) 2126 */ 2127 sin6->sin6_addr = 2128 udp->udp_bound_v6src; 2129 } 2130 sin6->sin6_port = udp->udp_port; 2131 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2132 if (udp->udp_state == TS_DATA_XFER) { 2133 /* 2134 * connected, fill remote address too 2135 */ 2136 taa->REMADDR_length = sizeof (sin6_t); 2137 /* assumed 32-bit alignment */ 2138 taa->REMADDR_offset = taa->LOCADDR_offset + 2139 taa->LOCADDR_length; 2140 2141 sin6 = (sin6_t *)(ackmp->b_rptr + 2142 taa->REMADDR_offset); 2143 /* initialize */ 2144 *sin6 = sin6_null; 2145 sin6->sin6_family = AF_INET6; 2146 sin6->sin6_addr = udp->udp_v6dst; 2147 sin6->sin6_port = udp->udp_dstport; 2148 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2149 } 2150 ackmp->b_wptr = (uchar_t *)&sin6[1]; 2151 } 2152 } 2153 rw_exit(&udp->udp_rwlock); 2154 ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim); 2155 qreply(q, ackmp); 2156 } 2157 2158 static void 2159 udp_copy_info(struct T_info_ack *tap, udp_t *udp) 2160 { 2161 if (udp->udp_family == AF_INET) { 2162 *tap = udp_g_t_info_ack_ipv4; 2163 } else { 2164 *tap = udp_g_t_info_ack_ipv6; 2165 } 2166 tap->CURRENT_state = udp->udp_state; 2167 tap->OPT_size = udp_max_optsize; 2168 } 2169 2170 /* 2171 * This routine responds to T_CAPABILITY_REQ messages. It is called by 2172 * udp_wput. Much of the T_CAPABILITY_ACK information is copied from 2173 * udp_g_t_info_ack. The current state of the stream is copied from 2174 * udp_state. 2175 */ 2176 static void 2177 udp_capability_req(queue_t *q, mblk_t *mp) 2178 { 2179 t_uscalar_t cap_bits1; 2180 struct T_capability_ack *tcap; 2181 udp_t *udp = Q_TO_UDP(q); 2182 2183 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 2184 2185 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 2186 mp->b_datap->db_type, T_CAPABILITY_ACK); 2187 if (!mp) 2188 return; 2189 2190 tcap = (struct T_capability_ack *)mp->b_rptr; 2191 tcap->CAP_bits1 = 0; 2192 2193 if (cap_bits1 & TC1_INFO) { 2194 udp_copy_info(&tcap->INFO_ack, udp); 2195 tcap->CAP_bits1 |= TC1_INFO; 2196 } 2197 2198 qreply(q, mp); 2199 } 2200 2201 /* 2202 * This routine responds to T_INFO_REQ messages. It is called by udp_wput. 2203 * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack. 2204 * The current state of the stream is copied from udp_state. 2205 */ 2206 static void 2207 udp_info_req(queue_t *q, mblk_t *mp) 2208 { 2209 udp_t *udp = Q_TO_UDP(q); 2210 2211 /* Create a T_INFO_ACK message. */ 2212 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 2213 T_INFO_ACK); 2214 if (!mp) 2215 return; 2216 udp_copy_info((struct T_info_ack *)mp->b_rptr, udp); 2217 qreply(q, mp); 2218 } 2219 2220 /* 2221 * IP recognizes seven kinds of bind requests: 2222 * 2223 * - A zero-length address binds only to the protocol number. 2224 * 2225 * - A 4-byte address is treated as a request to 2226 * validate that the address is a valid local IPv4 2227 * address, appropriate for an application to bind to. 2228 * IP does the verification, but does not make any note 2229 * of the address at this time. 2230 * 2231 * - A 16-byte address contains is treated as a request 2232 * to validate a local IPv6 address, as the 4-byte 2233 * address case above. 2234 * 2235 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 2236 * use it for the inbound fanout of packets. 2237 * 2238 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 2239 * use it for the inbound fanout of packets. 2240 * 2241 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 2242 * information consisting of local and remote addresses 2243 * and ports. In this case, the addresses are both 2244 * validated as appropriate for this operation, and, if 2245 * so, the information is retained for use in the 2246 * inbound fanout. 2247 * 2248 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 2249 * fanout information, like the 12-byte case above. 2250 * 2251 * IP will also fill in the IRE request mblk with information 2252 * regarding our peer. In all cases, we notify IP of our protocol 2253 * type by appending a single protocol byte to the bind request. 2254 */ 2255 static mblk_t * 2256 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length) 2257 { 2258 char *cp; 2259 mblk_t *mp; 2260 struct T_bind_req *tbr; 2261 ipa_conn_t *ac; 2262 ipa6_conn_t *ac6; 2263 sin_t *sin; 2264 sin6_t *sin6; 2265 2266 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 2267 ASSERT(RW_LOCK_HELD(&udp->udp_rwlock)); 2268 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 2269 if (!mp) 2270 return (mp); 2271 mp->b_datap->db_type = M_PROTO; 2272 tbr = (struct T_bind_req *)mp->b_rptr; 2273 tbr->PRIM_type = bind_prim; 2274 tbr->ADDR_offset = sizeof (*tbr); 2275 tbr->CONIND_number = 0; 2276 tbr->ADDR_length = addr_length; 2277 cp = (char *)&tbr[1]; 2278 switch (addr_length) { 2279 case sizeof (ipa_conn_t): 2280 ASSERT(udp->udp_family == AF_INET); 2281 /* Append a request for an IRE */ 2282 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2283 if (!mp->b_cont) { 2284 freemsg(mp); 2285 return (NULL); 2286 } 2287 mp->b_cont->b_wptr += sizeof (ire_t); 2288 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2289 2290 /* cp known to be 32 bit aligned */ 2291 ac = (ipa_conn_t *)cp; 2292 ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src); 2293 ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst); 2294 ac->ac_fport = udp->udp_dstport; 2295 ac->ac_lport = udp->udp_port; 2296 break; 2297 2298 case sizeof (ipa6_conn_t): 2299 ASSERT(udp->udp_family == AF_INET6); 2300 /* Append a request for an IRE */ 2301 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2302 if (!mp->b_cont) { 2303 freemsg(mp); 2304 return (NULL); 2305 } 2306 mp->b_cont->b_wptr += sizeof (ire_t); 2307 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2308 2309 /* cp known to be 32 bit aligned */ 2310 ac6 = (ipa6_conn_t *)cp; 2311 ac6->ac6_laddr = udp->udp_v6src; 2312 ac6->ac6_faddr = udp->udp_v6dst; 2313 ac6->ac6_fport = udp->udp_dstport; 2314 ac6->ac6_lport = udp->udp_port; 2315 break; 2316 2317 case sizeof (sin_t): 2318 ASSERT(udp->udp_family == AF_INET); 2319 /* Append a request for an IRE */ 2320 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2321 if (!mp->b_cont) { 2322 freemsg(mp); 2323 return (NULL); 2324 } 2325 mp->b_cont->b_wptr += sizeof (ire_t); 2326 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2327 2328 sin = (sin_t *)cp; 2329 *sin = sin_null; 2330 sin->sin_family = AF_INET; 2331 sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src); 2332 sin->sin_port = udp->udp_port; 2333 break; 2334 2335 case sizeof (sin6_t): 2336 ASSERT(udp->udp_family == AF_INET6); 2337 /* Append a request for an IRE */ 2338 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 2339 if (!mp->b_cont) { 2340 freemsg(mp); 2341 return (NULL); 2342 } 2343 mp->b_cont->b_wptr += sizeof (ire_t); 2344 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 2345 2346 sin6 = (sin6_t *)cp; 2347 *sin6 = sin6_null; 2348 sin6->sin6_family = AF_INET6; 2349 sin6->sin6_addr = udp->udp_bound_v6src; 2350 sin6->sin6_port = udp->udp_port; 2351 break; 2352 } 2353 /* Add protocol number to end */ 2354 cp[addr_length] = (char)IPPROTO_UDP; 2355 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 2356 return (mp); 2357 } 2358 2359 /* For /dev/udp aka AF_INET open */ 2360 static int 2361 udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2362 { 2363 return (udp_open(q, devp, flag, sflag, credp, B_FALSE)); 2364 } 2365 2366 /* For /dev/udp6 aka AF_INET6 open */ 2367 static int 2368 udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2369 { 2370 return (udp_open(q, devp, flag, sflag, credp, B_TRUE)); 2371 } 2372 2373 /* 2374 * This is the open routine for udp. It allocates a udp_t structure for 2375 * the stream and, on the first open of the module, creates an ND table. 2376 */ 2377 /*ARGSUSED2*/ 2378 static int 2379 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2380 boolean_t isv6) 2381 { 2382 int err; 2383 udp_t *udp; 2384 conn_t *connp; 2385 dev_t conn_dev; 2386 zoneid_t zoneid; 2387 netstack_t *ns; 2388 udp_stack_t *us; 2389 vmem_t *minor_arena; 2390 2391 TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q); 2392 2393 /* If the stream is already open, return immediately. */ 2394 if (q->q_ptr != NULL) 2395 return (0); 2396 2397 if (sflag == MODOPEN) 2398 return (EINVAL); 2399 2400 ns = netstack_find_by_cred(credp); 2401 ASSERT(ns != NULL); 2402 us = ns->netstack_udp; 2403 ASSERT(us != NULL); 2404 2405 /* 2406 * For exclusive stacks we set the zoneid to zero 2407 * to make UDP operate as if in the global zone. 2408 */ 2409 if (ns->netstack_stackid != GLOBAL_NETSTACKID) 2410 zoneid = GLOBAL_ZONEID; 2411 else 2412 zoneid = crgetzoneid(credp); 2413 2414 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2415 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2416 minor_arena = ip_minor_arena_la; 2417 } else { 2418 /* 2419 * Either minor numbers in the large arena were exhausted 2420 * or a non socket application is doing the open. 2421 * Try to allocate from the small arena. 2422 */ 2423 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2424 netstack_rele(ns); 2425 return (EBUSY); 2426 } 2427 minor_arena = ip_minor_arena_sa; 2428 } 2429 2430 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 2431 2432 connp = ipcl_conn_create(IPCL_UDPCONN, KM_SLEEP, ns); 2433 connp->conn_dev = conn_dev; 2434 connp->conn_minor_arena = minor_arena; 2435 udp = connp->conn_udp; 2436 2437 /* 2438 * ipcl_conn_create did a netstack_hold. Undo the hold that was 2439 * done by netstack_find_by_cred() 2440 */ 2441 netstack_rele(ns); 2442 2443 /* 2444 * Initialize the udp_t structure for this stream. 2445 */ 2446 q->q_ptr = connp; 2447 WR(q)->q_ptr = connp; 2448 connp->conn_rq = q; 2449 connp->conn_wq = WR(q); 2450 2451 rw_enter(&udp->udp_rwlock, RW_WRITER); 2452 ASSERT(connp->conn_ulp == IPPROTO_UDP); 2453 ASSERT(connp->conn_udp == udp); 2454 ASSERT(udp->udp_connp == connp); 2455 2456 /* Set the initial state of the stream and the privilege status. */ 2457 udp->udp_state = TS_UNBND; 2458 if (isv6) { 2459 udp->udp_family = AF_INET6; 2460 udp->udp_ipversion = IPV6_VERSION; 2461 udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 2462 udp->udp_ttl = us->us_ipv6_hoplimit; 2463 connp->conn_af_isv6 = B_TRUE; 2464 connp->conn_flags |= IPCL_ISV6; 2465 } else { 2466 udp->udp_family = AF_INET; 2467 udp->udp_ipversion = IPV4_VERSION; 2468 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE; 2469 udp->udp_ttl = us->us_ipv4_ttl; 2470 connp->conn_af_isv6 = B_FALSE; 2471 connp->conn_flags &= ~IPCL_ISV6; 2472 } 2473 2474 udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 2475 udp->udp_pending_op = -1; 2476 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 2477 connp->conn_zoneid = zoneid; 2478 2479 udp->udp_open_time = lbolt64; 2480 udp->udp_open_pid = curproc->p_pid; 2481 2482 /* 2483 * If the caller has the process-wide flag set, then default to MAC 2484 * exempt mode. This allows read-down to unlabeled hosts. 2485 */ 2486 if (getpflags(NET_MAC_AWARE, credp) != 0) 2487 connp->conn_mac_exempt = B_TRUE; 2488 2489 if (flag & SO_SOCKSTR) { 2490 connp->conn_flags |= IPCL_SOCKET; 2491 udp->udp_issocket = B_TRUE; 2492 udp->udp_direct_sockfs = B_TRUE; 2493 } 2494 2495 connp->conn_ulp_labeled = is_system_labeled(); 2496 2497 udp->udp_us = us; 2498 2499 q->q_hiwat = us->us_recv_hiwat; 2500 WR(q)->q_hiwat = us->us_xmit_hiwat; 2501 WR(q)->q_lowat = us->us_xmit_lowat; 2502 2503 connp->conn_recv = udp_input; 2504 crhold(credp); 2505 connp->conn_cred = credp; 2506 2507 mutex_enter(&connp->conn_lock); 2508 connp->conn_state_flags &= ~CONN_INCIPIENT; 2509 mutex_exit(&connp->conn_lock); 2510 2511 qprocson(q); 2512 2513 if (udp->udp_family == AF_INET6) { 2514 /* Build initial header template for transmit */ 2515 if ((err = udp_build_hdrs(udp)) != 0) { 2516 rw_exit(&udp->udp_rwlock); 2517 qprocsoff(q); 2518 ipcl_conn_destroy(connp); 2519 return (err); 2520 } 2521 } 2522 rw_exit(&udp->udp_rwlock); 2523 2524 /* Set the Stream head write offset and high watermark. */ 2525 (void) mi_set_sth_wroff(q, 2526 udp->udp_max_hdr_len + us->us_wroff_extra); 2527 (void) mi_set_sth_hiwat(q, udp_set_rcv_hiwat(udp, q->q_hiwat)); 2528 2529 return (0); 2530 } 2531 2532 /* 2533 * Which UDP options OK to set through T_UNITDATA_REQ... 2534 */ 2535 /* ARGSUSED */ 2536 static boolean_t 2537 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name) 2538 { 2539 return (B_TRUE); 2540 } 2541 2542 /* 2543 * This routine gets default values of certain options whose default 2544 * values are maintained by protcol specific code 2545 */ 2546 /* ARGSUSED */ 2547 int 2548 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 2549 { 2550 udp_t *udp = Q_TO_UDP(q); 2551 udp_stack_t *us = udp->udp_us; 2552 int *i1 = (int *)ptr; 2553 2554 switch (level) { 2555 case IPPROTO_IP: 2556 switch (name) { 2557 case IP_MULTICAST_TTL: 2558 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL; 2559 return (sizeof (uchar_t)); 2560 case IP_MULTICAST_LOOP: 2561 *ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP; 2562 return (sizeof (uchar_t)); 2563 } 2564 break; 2565 case IPPROTO_IPV6: 2566 switch (name) { 2567 case IPV6_MULTICAST_HOPS: 2568 *i1 = IP_DEFAULT_MULTICAST_TTL; 2569 return (sizeof (int)); 2570 case IPV6_MULTICAST_LOOP: 2571 *i1 = IP_DEFAULT_MULTICAST_LOOP; 2572 return (sizeof (int)); 2573 case IPV6_UNICAST_HOPS: 2574 *i1 = us->us_ipv6_hoplimit; 2575 return (sizeof (int)); 2576 } 2577 break; 2578 } 2579 return (-1); 2580 } 2581 2582 /* 2583 * This routine retrieves the current status of socket options. 2584 * It returns the size of the option retrieved. 2585 */ 2586 int 2587 udp_opt_get_locked(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 2588 { 2589 int *i1 = (int *)ptr; 2590 conn_t *connp; 2591 udp_t *udp; 2592 ip6_pkt_t *ipp; 2593 int len; 2594 udp_stack_t *us; 2595 2596 connp = Q_TO_CONN(q); 2597 udp = connp->conn_udp; 2598 ipp = &udp->udp_sticky_ipp; 2599 us = udp->udp_us; 2600 2601 switch (level) { 2602 case SOL_SOCKET: 2603 switch (name) { 2604 case SO_DEBUG: 2605 *i1 = udp->udp_debug; 2606 break; /* goto sizeof (int) option return */ 2607 case SO_REUSEADDR: 2608 *i1 = udp->udp_reuseaddr; 2609 break; /* goto sizeof (int) option return */ 2610 case SO_TYPE: 2611 *i1 = SOCK_DGRAM; 2612 break; /* goto sizeof (int) option return */ 2613 2614 /* 2615 * The following three items are available here, 2616 * but are only meaningful to IP. 2617 */ 2618 case SO_DONTROUTE: 2619 *i1 = udp->udp_dontroute; 2620 break; /* goto sizeof (int) option return */ 2621 case SO_USELOOPBACK: 2622 *i1 = udp->udp_useloopback; 2623 break; /* goto sizeof (int) option return */ 2624 case SO_BROADCAST: 2625 *i1 = udp->udp_broadcast; 2626 break; /* goto sizeof (int) option return */ 2627 2628 case SO_SNDBUF: 2629 *i1 = q->q_hiwat; 2630 break; /* goto sizeof (int) option return */ 2631 case SO_RCVBUF: 2632 *i1 = RD(q)->q_hiwat; 2633 break; /* goto sizeof (int) option return */ 2634 case SO_DGRAM_ERRIND: 2635 *i1 = udp->udp_dgram_errind; 2636 break; /* goto sizeof (int) option return */ 2637 case SO_RECVUCRED: 2638 *i1 = udp->udp_recvucred; 2639 break; /* goto sizeof (int) option return */ 2640 case SO_TIMESTAMP: 2641 *i1 = udp->udp_timestamp; 2642 break; /* goto sizeof (int) option return */ 2643 case SO_ANON_MLP: 2644 *i1 = connp->conn_anon_mlp; 2645 break; /* goto sizeof (int) option return */ 2646 case SO_MAC_EXEMPT: 2647 *i1 = connp->conn_mac_exempt; 2648 break; /* goto sizeof (int) option return */ 2649 case SO_ALLZONES: 2650 *i1 = connp->conn_allzones; 2651 break; /* goto sizeof (int) option return */ 2652 case SO_EXCLBIND: 2653 *i1 = udp->udp_exclbind ? SO_EXCLBIND : 0; 2654 break; 2655 case SO_PROTOTYPE: 2656 *i1 = IPPROTO_UDP; 2657 break; 2658 case SO_DOMAIN: 2659 *i1 = udp->udp_family; 2660 break; 2661 default: 2662 return (-1); 2663 } 2664 break; 2665 case IPPROTO_IP: 2666 if (udp->udp_family != AF_INET) 2667 return (-1); 2668 switch (name) { 2669 case IP_OPTIONS: 2670 case T_IP_OPTIONS: 2671 len = udp->udp_ip_rcv_options_len - udp->udp_label_len; 2672 if (len > 0) { 2673 bcopy(udp->udp_ip_rcv_options + 2674 udp->udp_label_len, ptr, len); 2675 } 2676 return (len); 2677 case IP_TOS: 2678 case T_IP_TOS: 2679 *i1 = (int)udp->udp_type_of_service; 2680 break; /* goto sizeof (int) option return */ 2681 case IP_TTL: 2682 *i1 = (int)udp->udp_ttl; 2683 break; /* goto sizeof (int) option return */ 2684 case IP_DHCPINIT_IF: 2685 return (-EINVAL); 2686 case IP_NEXTHOP: 2687 case IP_RECVPKTINFO: 2688 /* 2689 * This also handles IP_PKTINFO. 2690 * IP_PKTINFO and IP_RECVPKTINFO have the same value. 2691 * Differentiation is based on the size of the argument 2692 * passed in. 2693 * This option is handled in IP which will return an 2694 * error for IP_PKTINFO as it's not supported as a 2695 * sticky option. 2696 */ 2697 return (-EINVAL); 2698 case IP_MULTICAST_IF: 2699 /* 0 address if not set */ 2700 *(ipaddr_t *)ptr = udp->udp_multicast_if_addr; 2701 return (sizeof (ipaddr_t)); 2702 case IP_MULTICAST_TTL: 2703 *(uchar_t *)ptr = udp->udp_multicast_ttl; 2704 return (sizeof (uchar_t)); 2705 case IP_MULTICAST_LOOP: 2706 *ptr = connp->conn_multicast_loop; 2707 return (sizeof (uint8_t)); 2708 case IP_RECVOPTS: 2709 *i1 = udp->udp_recvopts; 2710 break; /* goto sizeof (int) option return */ 2711 case IP_RECVDSTADDR: 2712 *i1 = udp->udp_recvdstaddr; 2713 break; /* goto sizeof (int) option return */ 2714 case IP_RECVIF: 2715 *i1 = udp->udp_recvif; 2716 break; /* goto sizeof (int) option return */ 2717 case IP_RECVSLLA: 2718 *i1 = udp->udp_recvslla; 2719 break; /* goto sizeof (int) option return */ 2720 case IP_RECVTTL: 2721 *i1 = udp->udp_recvttl; 2722 break; /* goto sizeof (int) option return */ 2723 case IP_ADD_MEMBERSHIP: 2724 case IP_DROP_MEMBERSHIP: 2725 case IP_BLOCK_SOURCE: 2726 case IP_UNBLOCK_SOURCE: 2727 case IP_ADD_SOURCE_MEMBERSHIP: 2728 case IP_DROP_SOURCE_MEMBERSHIP: 2729 case MCAST_JOIN_GROUP: 2730 case MCAST_LEAVE_GROUP: 2731 case MCAST_BLOCK_SOURCE: 2732 case MCAST_UNBLOCK_SOURCE: 2733 case MCAST_JOIN_SOURCE_GROUP: 2734 case MCAST_LEAVE_SOURCE_GROUP: 2735 case IP_DONTFAILOVER_IF: 2736 /* cannot "get" the value for these */ 2737 return (-1); 2738 case IP_BOUND_IF: 2739 /* Zero if not set */ 2740 *i1 = udp->udp_bound_if; 2741 break; /* goto sizeof (int) option return */ 2742 case IP_UNSPEC_SRC: 2743 *i1 = udp->udp_unspec_source; 2744 break; /* goto sizeof (int) option return */ 2745 case IP_BROADCAST_TTL: 2746 *(uchar_t *)ptr = connp->conn_broadcast_ttl; 2747 return (sizeof (uchar_t)); 2748 default: 2749 return (-1); 2750 } 2751 break; 2752 case IPPROTO_IPV6: 2753 if (udp->udp_family != AF_INET6) 2754 return (-1); 2755 switch (name) { 2756 case IPV6_UNICAST_HOPS: 2757 *i1 = (unsigned int)udp->udp_ttl; 2758 break; /* goto sizeof (int) option return */ 2759 case IPV6_MULTICAST_IF: 2760 /* 0 index if not set */ 2761 *i1 = udp->udp_multicast_if_index; 2762 break; /* goto sizeof (int) option return */ 2763 case IPV6_MULTICAST_HOPS: 2764 *i1 = udp->udp_multicast_ttl; 2765 break; /* goto sizeof (int) option return */ 2766 case IPV6_MULTICAST_LOOP: 2767 *i1 = connp->conn_multicast_loop; 2768 break; /* goto sizeof (int) option return */ 2769 case IPV6_JOIN_GROUP: 2770 case IPV6_LEAVE_GROUP: 2771 case MCAST_JOIN_GROUP: 2772 case MCAST_LEAVE_GROUP: 2773 case MCAST_BLOCK_SOURCE: 2774 case MCAST_UNBLOCK_SOURCE: 2775 case MCAST_JOIN_SOURCE_GROUP: 2776 case MCAST_LEAVE_SOURCE_GROUP: 2777 /* cannot "get" the value for these */ 2778 return (-1); 2779 case IPV6_BOUND_IF: 2780 /* Zero if not set */ 2781 *i1 = udp->udp_bound_if; 2782 break; /* goto sizeof (int) option return */ 2783 case IPV6_UNSPEC_SRC: 2784 *i1 = udp->udp_unspec_source; 2785 break; /* goto sizeof (int) option return */ 2786 case IPV6_RECVPKTINFO: 2787 *i1 = udp->udp_ip_recvpktinfo; 2788 break; /* goto sizeof (int) option return */ 2789 case IPV6_RECVTCLASS: 2790 *i1 = udp->udp_ipv6_recvtclass; 2791 break; /* goto sizeof (int) option return */ 2792 case IPV6_RECVPATHMTU: 2793 *i1 = udp->udp_ipv6_recvpathmtu; 2794 break; /* goto sizeof (int) option return */ 2795 case IPV6_RECVHOPLIMIT: 2796 *i1 = udp->udp_ipv6_recvhoplimit; 2797 break; /* goto sizeof (int) option return */ 2798 case IPV6_RECVHOPOPTS: 2799 *i1 = udp->udp_ipv6_recvhopopts; 2800 break; /* goto sizeof (int) option return */ 2801 case IPV6_RECVDSTOPTS: 2802 *i1 = udp->udp_ipv6_recvdstopts; 2803 break; /* goto sizeof (int) option return */ 2804 case _OLD_IPV6_RECVDSTOPTS: 2805 *i1 = udp->udp_old_ipv6_recvdstopts; 2806 break; /* goto sizeof (int) option return */ 2807 case IPV6_RECVRTHDRDSTOPTS: 2808 *i1 = udp->udp_ipv6_recvrthdrdstopts; 2809 break; /* goto sizeof (int) option return */ 2810 case IPV6_RECVRTHDR: 2811 *i1 = udp->udp_ipv6_recvrthdr; 2812 break; /* goto sizeof (int) option return */ 2813 case IPV6_PKTINFO: { 2814 /* XXX assumes that caller has room for max size! */ 2815 struct in6_pktinfo *pkti; 2816 2817 pkti = (struct in6_pktinfo *)ptr; 2818 if (ipp->ipp_fields & IPPF_IFINDEX) 2819 pkti->ipi6_ifindex = ipp->ipp_ifindex; 2820 else 2821 pkti->ipi6_ifindex = 0; 2822 if (ipp->ipp_fields & IPPF_ADDR) 2823 pkti->ipi6_addr = ipp->ipp_addr; 2824 else 2825 pkti->ipi6_addr = ipv6_all_zeros; 2826 return (sizeof (struct in6_pktinfo)); 2827 } 2828 case IPV6_TCLASS: 2829 if (ipp->ipp_fields & IPPF_TCLASS) 2830 *i1 = ipp->ipp_tclass; 2831 else 2832 *i1 = IPV6_FLOW_TCLASS( 2833 IPV6_DEFAULT_VERS_AND_FLOW); 2834 break; /* goto sizeof (int) option return */ 2835 case IPV6_NEXTHOP: { 2836 sin6_t *sin6 = (sin6_t *)ptr; 2837 2838 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 2839 return (0); 2840 *sin6 = sin6_null; 2841 sin6->sin6_family = AF_INET6; 2842 sin6->sin6_addr = ipp->ipp_nexthop; 2843 return (sizeof (sin6_t)); 2844 } 2845 case IPV6_HOPOPTS: 2846 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 2847 return (0); 2848 if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6) 2849 return (0); 2850 /* 2851 * The cipso/label option is added by kernel. 2852 * User is not usually aware of this option. 2853 * We copy out the hbh opt after the label option. 2854 */ 2855 bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6, 2856 ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6); 2857 if (udp->udp_label_len_v6 > 0) { 2858 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 2859 ptr[1] = (ipp->ipp_hopoptslen - 2860 udp->udp_label_len_v6 + 7) / 8 - 1; 2861 } 2862 return (ipp->ipp_hopoptslen - udp->udp_label_len_v6); 2863 case IPV6_RTHDRDSTOPTS: 2864 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 2865 return (0); 2866 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 2867 return (ipp->ipp_rtdstoptslen); 2868 case IPV6_RTHDR: 2869 if (!(ipp->ipp_fields & IPPF_RTHDR)) 2870 return (0); 2871 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 2872 return (ipp->ipp_rthdrlen); 2873 case IPV6_DSTOPTS: 2874 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 2875 return (0); 2876 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 2877 return (ipp->ipp_dstoptslen); 2878 case IPV6_PATHMTU: 2879 return (ip_fill_mtuinfo(&udp->udp_v6dst, 2880 udp->udp_dstport, (struct ip6_mtuinfo *)ptr, 2881 us->us_netstack)); 2882 default: 2883 return (-1); 2884 } 2885 break; 2886 case IPPROTO_UDP: 2887 switch (name) { 2888 case UDP_ANONPRIVBIND: 2889 *i1 = udp->udp_anon_priv_bind; 2890 break; 2891 case UDP_EXCLBIND: 2892 *i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0; 2893 break; 2894 case UDP_RCVHDR: 2895 *i1 = udp->udp_rcvhdr ? 1 : 0; 2896 break; 2897 case UDP_NAT_T_ENDPOINT: 2898 *i1 = udp->udp_nat_t_endpoint; 2899 break; 2900 default: 2901 return (-1); 2902 } 2903 break; 2904 default: 2905 return (-1); 2906 } 2907 return (sizeof (int)); 2908 } 2909 2910 int 2911 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr) 2912 { 2913 udp_t *udp; 2914 int err; 2915 2916 udp = Q_TO_UDP(q); 2917 2918 rw_enter(&udp->udp_rwlock, RW_READER); 2919 err = udp_opt_get_locked(q, level, name, ptr); 2920 rw_exit(&udp->udp_rwlock); 2921 return (err); 2922 } 2923 2924 /* 2925 * This routine sets socket options. 2926 */ 2927 /* ARGSUSED */ 2928 int 2929 udp_opt_set_locked(queue_t *q, uint_t optset_context, int level, 2930 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 2931 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 2932 { 2933 udpattrs_t *attrs = thisdg_attrs; 2934 int *i1 = (int *)invalp; 2935 boolean_t onoff = (*i1 == 0) ? 0 : 1; 2936 boolean_t checkonly; 2937 int error; 2938 conn_t *connp; 2939 udp_t *udp; 2940 uint_t newlen; 2941 udp_stack_t *us; 2942 size_t sth_wroff; 2943 2944 connp = Q_TO_CONN(q); 2945 udp = connp->conn_udp; 2946 us = udp->udp_us; 2947 2948 switch (optset_context) { 2949 case SETFN_OPTCOM_CHECKONLY: 2950 checkonly = B_TRUE; 2951 /* 2952 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 2953 * inlen != 0 implies value supplied and 2954 * we have to "pretend" to set it. 2955 * inlen == 0 implies that there is no 2956 * value part in T_CHECK request and just validation 2957 * done elsewhere should be enough, we just return here. 2958 */ 2959 if (inlen == 0) { 2960 *outlenp = 0; 2961 return (0); 2962 } 2963 break; 2964 case SETFN_OPTCOM_NEGOTIATE: 2965 checkonly = B_FALSE; 2966 break; 2967 case SETFN_UD_NEGOTIATE: 2968 case SETFN_CONN_NEGOTIATE: 2969 checkonly = B_FALSE; 2970 /* 2971 * Negotiating local and "association-related" options 2972 * through T_UNITDATA_REQ. 2973 * 2974 * Following routine can filter out ones we do not 2975 * want to be "set" this way. 2976 */ 2977 if (!udp_opt_allow_udr_set(level, name)) { 2978 *outlenp = 0; 2979 return (EINVAL); 2980 } 2981 break; 2982 default: 2983 /* 2984 * We should never get here 2985 */ 2986 *outlenp = 0; 2987 return (EINVAL); 2988 } 2989 2990 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 2991 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 2992 2993 /* 2994 * For fixed length options, no sanity check 2995 * of passed in length is done. It is assumed *_optcom_req() 2996 * routines do the right thing. 2997 */ 2998 2999 switch (level) { 3000 case SOL_SOCKET: 3001 switch (name) { 3002 case SO_REUSEADDR: 3003 if (!checkonly) 3004 udp->udp_reuseaddr = onoff; 3005 break; 3006 case SO_DEBUG: 3007 if (!checkonly) 3008 udp->udp_debug = onoff; 3009 break; 3010 /* 3011 * The following three items are available here, 3012 * but are only meaningful to IP. 3013 */ 3014 case SO_DONTROUTE: 3015 if (!checkonly) 3016 udp->udp_dontroute = onoff; 3017 break; 3018 case SO_USELOOPBACK: 3019 if (!checkonly) 3020 udp->udp_useloopback = onoff; 3021 break; 3022 case SO_BROADCAST: 3023 if (!checkonly) 3024 udp->udp_broadcast = onoff; 3025 break; 3026 3027 case SO_SNDBUF: 3028 if (*i1 > us->us_max_buf) { 3029 *outlenp = 0; 3030 return (ENOBUFS); 3031 } 3032 if (!checkonly) { 3033 q->q_hiwat = *i1; 3034 } 3035 break; 3036 case SO_RCVBUF: 3037 if (*i1 > us->us_max_buf) { 3038 *outlenp = 0; 3039 return (ENOBUFS); 3040 } 3041 if (!checkonly) { 3042 RD(q)->q_hiwat = *i1; 3043 rw_exit(&udp->udp_rwlock); 3044 (void) mi_set_sth_hiwat(RD(q), 3045 udp_set_rcv_hiwat(udp, *i1)); 3046 rw_enter(&udp->udp_rwlock, RW_WRITER); 3047 } 3048 break; 3049 case SO_DGRAM_ERRIND: 3050 if (!checkonly) 3051 udp->udp_dgram_errind = onoff; 3052 break; 3053 case SO_RECVUCRED: 3054 if (!checkonly) 3055 udp->udp_recvucred = onoff; 3056 break; 3057 case SO_ALLZONES: 3058 /* 3059 * "soft" error (negative) 3060 * option not handled at this level 3061 * Do not modify *outlenp. 3062 */ 3063 return (-EINVAL); 3064 case SO_TIMESTAMP: 3065 if (!checkonly) 3066 udp->udp_timestamp = onoff; 3067 break; 3068 case SO_ANON_MLP: 3069 /* Pass option along to IP level for handling */ 3070 return (-EINVAL); 3071 case SO_MAC_EXEMPT: 3072 /* Pass option along to IP level for handling */ 3073 return (-EINVAL); 3074 case SCM_UCRED: { 3075 struct ucred_s *ucr; 3076 cred_t *cr, *newcr; 3077 ts_label_t *tsl; 3078 3079 /* 3080 * Only sockets that have proper privileges and are 3081 * bound to MLPs will have any other value here, so 3082 * this implicitly tests for privilege to set label. 3083 */ 3084 if (connp->conn_mlp_type == mlptSingle) 3085 break; 3086 ucr = (struct ucred_s *)invalp; 3087 if (inlen != ucredsize || 3088 ucr->uc_labeloff < sizeof (*ucr) || 3089 ucr->uc_labeloff + sizeof (bslabel_t) > inlen) 3090 return (EINVAL); 3091 if (!checkonly) { 3092 mblk_t *mb; 3093 3094 if (attrs == NULL || 3095 (mb = attrs->udpattr_mb) == NULL) 3096 return (EINVAL); 3097 if ((cr = DB_CRED(mb)) == NULL) 3098 cr = udp->udp_connp->conn_cred; 3099 ASSERT(cr != NULL); 3100 if ((tsl = crgetlabel(cr)) == NULL) 3101 return (EINVAL); 3102 newcr = copycred_from_bslabel(cr, UCLABEL(ucr), 3103 tsl->tsl_doi, KM_NOSLEEP); 3104 if (newcr == NULL) 3105 return (ENOSR); 3106 mblk_setcred(mb, newcr); 3107 attrs->udpattr_credset = B_TRUE; 3108 crfree(newcr); 3109 } 3110 break; 3111 } 3112 case SO_EXCLBIND: 3113 if (!checkonly) 3114 udp->udp_exclbind = onoff; 3115 break; 3116 default: 3117 *outlenp = 0; 3118 return (EINVAL); 3119 } 3120 break; 3121 case IPPROTO_IP: 3122 if (udp->udp_family != AF_INET) { 3123 *outlenp = 0; 3124 return (ENOPROTOOPT); 3125 } 3126 switch (name) { 3127 case IP_OPTIONS: 3128 case T_IP_OPTIONS: 3129 /* Save options for use by IP. */ 3130 newlen = inlen + udp->udp_label_len; 3131 if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) { 3132 *outlenp = 0; 3133 return (EINVAL); 3134 } 3135 if (checkonly) 3136 break; 3137 3138 /* 3139 * Update the stored options taking into account 3140 * any CIPSO option which we should not overwrite. 3141 */ 3142 if (!tsol_option_set(&udp->udp_ip_snd_options, 3143 &udp->udp_ip_snd_options_len, 3144 udp->udp_label_len, invalp, inlen)) { 3145 *outlenp = 0; 3146 return (ENOMEM); 3147 } 3148 3149 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 3150 UDPH_SIZE + udp->udp_ip_snd_options_len; 3151 sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra; 3152 rw_exit(&udp->udp_rwlock); 3153 (void) mi_set_sth_wroff(RD(q), sth_wroff); 3154 rw_enter(&udp->udp_rwlock, RW_WRITER); 3155 break; 3156 3157 case IP_TTL: 3158 if (!checkonly) { 3159 udp->udp_ttl = (uchar_t)*i1; 3160 } 3161 break; 3162 case IP_TOS: 3163 case T_IP_TOS: 3164 if (!checkonly) { 3165 udp->udp_type_of_service = (uchar_t)*i1; 3166 } 3167 break; 3168 case IP_MULTICAST_IF: { 3169 /* 3170 * TODO should check OPTMGMT reply and undo this if 3171 * there is an error. 3172 */ 3173 struct in_addr *inap = (struct in_addr *)invalp; 3174 if (!checkonly) { 3175 udp->udp_multicast_if_addr = 3176 inap->s_addr; 3177 } 3178 break; 3179 } 3180 case IP_MULTICAST_TTL: 3181 if (!checkonly) 3182 udp->udp_multicast_ttl = *invalp; 3183 break; 3184 case IP_MULTICAST_LOOP: 3185 if (!checkonly) 3186 connp->conn_multicast_loop = *invalp; 3187 break; 3188 case IP_RECVOPTS: 3189 if (!checkonly) 3190 udp->udp_recvopts = onoff; 3191 break; 3192 case IP_RECVDSTADDR: 3193 if (!checkonly) 3194 udp->udp_recvdstaddr = onoff; 3195 break; 3196 case IP_RECVIF: 3197 if (!checkonly) 3198 udp->udp_recvif = onoff; 3199 break; 3200 case IP_RECVSLLA: 3201 if (!checkonly) 3202 udp->udp_recvslla = onoff; 3203 break; 3204 case IP_RECVTTL: 3205 if (!checkonly) 3206 udp->udp_recvttl = onoff; 3207 break; 3208 case IP_PKTINFO: { 3209 /* 3210 * This also handles IP_RECVPKTINFO. 3211 * IP_PKTINFO and IP_RECVPKTINFO have same value. 3212 * Differentiation is based on the size of the 3213 * argument passed in. 3214 */ 3215 struct in_pktinfo *pktinfop; 3216 ip4_pkt_t *attr_pktinfop; 3217 3218 if (checkonly) 3219 break; 3220 3221 if (inlen == sizeof (int)) { 3222 /* 3223 * This is IP_RECVPKTINFO option. 3224 * Keep a local copy of whether this option is 3225 * set or not and pass it down to IP for 3226 * processing. 3227 */ 3228 3229 udp->udp_ip_recvpktinfo = onoff; 3230 return (-EINVAL); 3231 } 3232 3233 if (attrs == NULL || 3234 (attr_pktinfop = attrs->udpattr_ipp4) == NULL) { 3235 /* 3236 * sticky option or no buffer to return 3237 * the results. 3238 */ 3239 return (EINVAL); 3240 } 3241 3242 if (inlen != sizeof (struct in_pktinfo)) 3243 return (EINVAL); 3244 3245 pktinfop = (struct in_pktinfo *)invalp; 3246 3247 /* 3248 * At least one of the values should be specified 3249 */ 3250 if (pktinfop->ipi_ifindex == 0 && 3251 pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) { 3252 return (EINVAL); 3253 } 3254 3255 attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr; 3256 attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex; 3257 3258 break; 3259 } 3260 case IP_ADD_MEMBERSHIP: 3261 case IP_DROP_MEMBERSHIP: 3262 case IP_BLOCK_SOURCE: 3263 case IP_UNBLOCK_SOURCE: 3264 case IP_ADD_SOURCE_MEMBERSHIP: 3265 case IP_DROP_SOURCE_MEMBERSHIP: 3266 case MCAST_JOIN_GROUP: 3267 case MCAST_LEAVE_GROUP: 3268 case MCAST_BLOCK_SOURCE: 3269 case MCAST_UNBLOCK_SOURCE: 3270 case MCAST_JOIN_SOURCE_GROUP: 3271 case MCAST_LEAVE_SOURCE_GROUP: 3272 case IP_SEC_OPT: 3273 case IP_NEXTHOP: 3274 case IP_DHCPINIT_IF: 3275 /* 3276 * "soft" error (negative) 3277 * option not handled at this level 3278 * Do not modify *outlenp. 3279 */ 3280 return (-EINVAL); 3281 case IP_BOUND_IF: 3282 if (!checkonly) 3283 udp->udp_bound_if = *i1; 3284 break; 3285 case IP_UNSPEC_SRC: 3286 if (!checkonly) 3287 udp->udp_unspec_source = onoff; 3288 break; 3289 case IP_BROADCAST_TTL: 3290 if (!checkonly) 3291 connp->conn_broadcast_ttl = *invalp; 3292 break; 3293 default: 3294 *outlenp = 0; 3295 return (EINVAL); 3296 } 3297 break; 3298 case IPPROTO_IPV6: { 3299 ip6_pkt_t *ipp; 3300 boolean_t sticky; 3301 3302 if (udp->udp_family != AF_INET6) { 3303 *outlenp = 0; 3304 return (ENOPROTOOPT); 3305 } 3306 /* 3307 * Deal with both sticky options and ancillary data 3308 */ 3309 sticky = B_FALSE; 3310 if (attrs == NULL || (ipp = attrs->udpattr_ipp6) == 3311 NULL) { 3312 /* sticky options, or none */ 3313 ipp = &udp->udp_sticky_ipp; 3314 sticky = B_TRUE; 3315 } 3316 3317 switch (name) { 3318 case IPV6_MULTICAST_IF: 3319 if (!checkonly) 3320 udp->udp_multicast_if_index = *i1; 3321 break; 3322 case IPV6_UNICAST_HOPS: 3323 /* -1 means use default */ 3324 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3325 *outlenp = 0; 3326 return (EINVAL); 3327 } 3328 if (!checkonly) { 3329 if (*i1 == -1) { 3330 udp->udp_ttl = ipp->ipp_unicast_hops = 3331 us->us_ipv6_hoplimit; 3332 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 3333 /* Pass modified value to IP. */ 3334 *i1 = udp->udp_ttl; 3335 } else { 3336 udp->udp_ttl = ipp->ipp_unicast_hops = 3337 (uint8_t)*i1; 3338 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 3339 } 3340 /* Rebuild the header template */ 3341 error = udp_build_hdrs(udp); 3342 if (error != 0) { 3343 *outlenp = 0; 3344 return (error); 3345 } 3346 } 3347 break; 3348 case IPV6_MULTICAST_HOPS: 3349 /* -1 means use default */ 3350 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 3351 *outlenp = 0; 3352 return (EINVAL); 3353 } 3354 if (!checkonly) { 3355 if (*i1 == -1) { 3356 udp->udp_multicast_ttl = 3357 ipp->ipp_multicast_hops = 3358 IP_DEFAULT_MULTICAST_TTL; 3359 ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS; 3360 /* Pass modified value to IP. */ 3361 *i1 = udp->udp_multicast_ttl; 3362 } else { 3363 udp->udp_multicast_ttl = 3364 ipp->ipp_multicast_hops = 3365 (uint8_t)*i1; 3366 ipp->ipp_fields |= IPPF_MULTICAST_HOPS; 3367 } 3368 } 3369 break; 3370 case IPV6_MULTICAST_LOOP: 3371 if (*i1 != 0 && *i1 != 1) { 3372 *outlenp = 0; 3373 return (EINVAL); 3374 } 3375 if (!checkonly) 3376 connp->conn_multicast_loop = *i1; 3377 break; 3378 case IPV6_JOIN_GROUP: 3379 case IPV6_LEAVE_GROUP: 3380 case MCAST_JOIN_GROUP: 3381 case MCAST_LEAVE_GROUP: 3382 case MCAST_BLOCK_SOURCE: 3383 case MCAST_UNBLOCK_SOURCE: 3384 case MCAST_JOIN_SOURCE_GROUP: 3385 case MCAST_LEAVE_SOURCE_GROUP: 3386 /* 3387 * "soft" error (negative) 3388 * option not handled at this level 3389 * Note: Do not modify *outlenp 3390 */ 3391 return (-EINVAL); 3392 case IPV6_BOUND_IF: 3393 if (!checkonly) 3394 udp->udp_bound_if = *i1; 3395 break; 3396 case IPV6_UNSPEC_SRC: 3397 if (!checkonly) 3398 udp->udp_unspec_source = onoff; 3399 break; 3400 /* 3401 * Set boolean switches for ancillary data delivery 3402 */ 3403 case IPV6_RECVPKTINFO: 3404 if (!checkonly) 3405 udp->udp_ip_recvpktinfo = onoff; 3406 break; 3407 case IPV6_RECVTCLASS: 3408 if (!checkonly) { 3409 udp->udp_ipv6_recvtclass = onoff; 3410 } 3411 break; 3412 case IPV6_RECVPATHMTU: 3413 if (!checkonly) { 3414 udp->udp_ipv6_recvpathmtu = onoff; 3415 } 3416 break; 3417 case IPV6_RECVHOPLIMIT: 3418 if (!checkonly) 3419 udp->udp_ipv6_recvhoplimit = onoff; 3420 break; 3421 case IPV6_RECVHOPOPTS: 3422 if (!checkonly) 3423 udp->udp_ipv6_recvhopopts = onoff; 3424 break; 3425 case IPV6_RECVDSTOPTS: 3426 if (!checkonly) 3427 udp->udp_ipv6_recvdstopts = onoff; 3428 break; 3429 case _OLD_IPV6_RECVDSTOPTS: 3430 if (!checkonly) 3431 udp->udp_old_ipv6_recvdstopts = onoff; 3432 break; 3433 case IPV6_RECVRTHDRDSTOPTS: 3434 if (!checkonly) 3435 udp->udp_ipv6_recvrthdrdstopts = onoff; 3436 break; 3437 case IPV6_RECVRTHDR: 3438 if (!checkonly) 3439 udp->udp_ipv6_recvrthdr = onoff; 3440 break; 3441 /* 3442 * Set sticky options or ancillary data. 3443 * If sticky options, (re)build any extension headers 3444 * that might be needed as a result. 3445 */ 3446 case IPV6_PKTINFO: 3447 /* 3448 * The source address and ifindex are verified 3449 * in ip_opt_set(). For ancillary data the 3450 * source address is checked in ip_wput_v6. 3451 */ 3452 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 3453 return (EINVAL); 3454 if (checkonly) 3455 break; 3456 3457 if (inlen == 0) { 3458 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 3459 ipp->ipp_sticky_ignored |= 3460 (IPPF_IFINDEX|IPPF_ADDR); 3461 } else { 3462 struct in6_pktinfo *pkti; 3463 3464 pkti = (struct in6_pktinfo *)invalp; 3465 ipp->ipp_ifindex = pkti->ipi6_ifindex; 3466 ipp->ipp_addr = pkti->ipi6_addr; 3467 if (ipp->ipp_ifindex != 0) 3468 ipp->ipp_fields |= IPPF_IFINDEX; 3469 else 3470 ipp->ipp_fields &= ~IPPF_IFINDEX; 3471 if (!IN6_IS_ADDR_UNSPECIFIED( 3472 &ipp->ipp_addr)) 3473 ipp->ipp_fields |= IPPF_ADDR; 3474 else 3475 ipp->ipp_fields &= ~IPPF_ADDR; 3476 } 3477 if (sticky) { 3478 error = udp_build_hdrs(udp); 3479 if (error != 0) 3480 return (error); 3481 } 3482 break; 3483 case IPV6_HOPLIMIT: 3484 if (sticky) 3485 return (EINVAL); 3486 if (inlen != 0 && inlen != sizeof (int)) 3487 return (EINVAL); 3488 if (checkonly) 3489 break; 3490 3491 if (inlen == 0) { 3492 ipp->ipp_fields &= ~IPPF_HOPLIMIT; 3493 ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT; 3494 } else { 3495 if (*i1 > 255 || *i1 < -1) 3496 return (EINVAL); 3497 if (*i1 == -1) 3498 ipp->ipp_hoplimit = 3499 us->us_ipv6_hoplimit; 3500 else 3501 ipp->ipp_hoplimit = *i1; 3502 ipp->ipp_fields |= IPPF_HOPLIMIT; 3503 } 3504 break; 3505 case IPV6_TCLASS: 3506 if (inlen != 0 && inlen != sizeof (int)) 3507 return (EINVAL); 3508 if (checkonly) 3509 break; 3510 3511 if (inlen == 0) { 3512 ipp->ipp_fields &= ~IPPF_TCLASS; 3513 ipp->ipp_sticky_ignored |= IPPF_TCLASS; 3514 } else { 3515 if (*i1 > 255 || *i1 < -1) 3516 return (EINVAL); 3517 if (*i1 == -1) 3518 ipp->ipp_tclass = 0; 3519 else 3520 ipp->ipp_tclass = *i1; 3521 ipp->ipp_fields |= IPPF_TCLASS; 3522 } 3523 if (sticky) { 3524 error = udp_build_hdrs(udp); 3525 if (error != 0) 3526 return (error); 3527 } 3528 break; 3529 case IPV6_NEXTHOP: 3530 /* 3531 * IP will verify that the nexthop is reachable 3532 * and fail for sticky options. 3533 */ 3534 if (inlen != 0 && inlen != sizeof (sin6_t)) 3535 return (EINVAL); 3536 if (checkonly) 3537 break; 3538 3539 if (inlen == 0) { 3540 ipp->ipp_fields &= ~IPPF_NEXTHOP; 3541 ipp->ipp_sticky_ignored |= IPPF_NEXTHOP; 3542 } else { 3543 sin6_t *sin6 = (sin6_t *)invalp; 3544 3545 if (sin6->sin6_family != AF_INET6) 3546 return (EAFNOSUPPORT); 3547 if (IN6_IS_ADDR_V4MAPPED( 3548 &sin6->sin6_addr)) 3549 return (EADDRNOTAVAIL); 3550 ipp->ipp_nexthop = sin6->sin6_addr; 3551 if (!IN6_IS_ADDR_UNSPECIFIED( 3552 &ipp->ipp_nexthop)) 3553 ipp->ipp_fields |= IPPF_NEXTHOP; 3554 else 3555 ipp->ipp_fields &= ~IPPF_NEXTHOP; 3556 } 3557 if (sticky) { 3558 error = udp_build_hdrs(udp); 3559 if (error != 0) 3560 return (error); 3561 } 3562 break; 3563 case IPV6_HOPOPTS: { 3564 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 3565 /* 3566 * Sanity checks - minimum size, size a multiple of 3567 * eight bytes, and matching size passed in. 3568 */ 3569 if (inlen != 0 && 3570 inlen != (8 * (hopts->ip6h_len + 1))) 3571 return (EINVAL); 3572 3573 if (checkonly) 3574 break; 3575 3576 error = optcom_pkt_set(invalp, inlen, sticky, 3577 (uchar_t **)&ipp->ipp_hopopts, 3578 &ipp->ipp_hopoptslen, 3579 sticky ? udp->udp_label_len_v6 : 0); 3580 if (error != 0) 3581 return (error); 3582 if (ipp->ipp_hopoptslen == 0) { 3583 ipp->ipp_fields &= ~IPPF_HOPOPTS; 3584 ipp->ipp_sticky_ignored |= IPPF_HOPOPTS; 3585 } else { 3586 ipp->ipp_fields |= IPPF_HOPOPTS; 3587 } 3588 if (sticky) { 3589 error = udp_build_hdrs(udp); 3590 if (error != 0) 3591 return (error); 3592 } 3593 break; 3594 } 3595 case IPV6_RTHDRDSTOPTS: { 3596 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 3597 3598 /* 3599 * Sanity checks - minimum size, size a multiple of 3600 * eight bytes, and matching size passed in. 3601 */ 3602 if (inlen != 0 && 3603 inlen != (8 * (dopts->ip6d_len + 1))) 3604 return (EINVAL); 3605 3606 if (checkonly) 3607 break; 3608 3609 if (inlen == 0) { 3610 if (sticky && 3611 (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 3612 kmem_free(ipp->ipp_rtdstopts, 3613 ipp->ipp_rtdstoptslen); 3614 ipp->ipp_rtdstopts = NULL; 3615 ipp->ipp_rtdstoptslen = 0; 3616 } 3617 3618 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 3619 ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS; 3620 } else { 3621 error = optcom_pkt_set(invalp, inlen, sticky, 3622 (uchar_t **)&ipp->ipp_rtdstopts, 3623 &ipp->ipp_rtdstoptslen, 0); 3624 if (error != 0) 3625 return (error); 3626 ipp->ipp_fields |= IPPF_RTDSTOPTS; 3627 } 3628 if (sticky) { 3629 error = udp_build_hdrs(udp); 3630 if (error != 0) 3631 return (error); 3632 } 3633 break; 3634 } 3635 case IPV6_DSTOPTS: { 3636 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 3637 3638 /* 3639 * Sanity checks - minimum size, size a multiple of 3640 * eight bytes, and matching size passed in. 3641 */ 3642 if (inlen != 0 && 3643 inlen != (8 * (dopts->ip6d_len + 1))) 3644 return (EINVAL); 3645 3646 if (checkonly) 3647 break; 3648 3649 if (inlen == 0) { 3650 if (sticky && 3651 (ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 3652 kmem_free(ipp->ipp_dstopts, 3653 ipp->ipp_dstoptslen); 3654 ipp->ipp_dstopts = NULL; 3655 ipp->ipp_dstoptslen = 0; 3656 } 3657 ipp->ipp_fields &= ~IPPF_DSTOPTS; 3658 ipp->ipp_sticky_ignored |= IPPF_DSTOPTS; 3659 } else { 3660 error = optcom_pkt_set(invalp, inlen, sticky, 3661 (uchar_t **)&ipp->ipp_dstopts, 3662 &ipp->ipp_dstoptslen, 0); 3663 if (error != 0) 3664 return (error); 3665 ipp->ipp_fields |= IPPF_DSTOPTS; 3666 } 3667 if (sticky) { 3668 error = udp_build_hdrs(udp); 3669 if (error != 0) 3670 return (error); 3671 } 3672 break; 3673 } 3674 case IPV6_RTHDR: { 3675 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 3676 3677 /* 3678 * Sanity checks - minimum size, size a multiple of 3679 * eight bytes, and matching size passed in. 3680 */ 3681 if (inlen != 0 && 3682 inlen != (8 * (rt->ip6r_len + 1))) 3683 return (EINVAL); 3684 3685 if (checkonly) 3686 break; 3687 3688 if (inlen == 0) { 3689 if (sticky && 3690 (ipp->ipp_fields & IPPF_RTHDR) != 0) { 3691 kmem_free(ipp->ipp_rthdr, 3692 ipp->ipp_rthdrlen); 3693 ipp->ipp_rthdr = NULL; 3694 ipp->ipp_rthdrlen = 0; 3695 } 3696 ipp->ipp_fields &= ~IPPF_RTHDR; 3697 ipp->ipp_sticky_ignored |= IPPF_RTHDR; 3698 } else { 3699 error = optcom_pkt_set(invalp, inlen, sticky, 3700 (uchar_t **)&ipp->ipp_rthdr, 3701 &ipp->ipp_rthdrlen, 0); 3702 if (error != 0) 3703 return (error); 3704 ipp->ipp_fields |= IPPF_RTHDR; 3705 } 3706 if (sticky) { 3707 error = udp_build_hdrs(udp); 3708 if (error != 0) 3709 return (error); 3710 } 3711 break; 3712 } 3713 3714 case IPV6_DONTFRAG: 3715 if (checkonly) 3716 break; 3717 3718 if (onoff) { 3719 ipp->ipp_fields |= IPPF_DONTFRAG; 3720 } else { 3721 ipp->ipp_fields &= ~IPPF_DONTFRAG; 3722 } 3723 break; 3724 3725 case IPV6_USE_MIN_MTU: 3726 if (inlen != sizeof (int)) 3727 return (EINVAL); 3728 3729 if (*i1 < -1 || *i1 > 1) 3730 return (EINVAL); 3731 3732 if (checkonly) 3733 break; 3734 3735 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 3736 ipp->ipp_use_min_mtu = *i1; 3737 break; 3738 3739 case IPV6_BOUND_PIF: 3740 case IPV6_SEC_OPT: 3741 case IPV6_DONTFAILOVER_IF: 3742 case IPV6_SRC_PREFERENCES: 3743 case IPV6_V6ONLY: 3744 /* Handled at the IP level */ 3745 return (-EINVAL); 3746 default: 3747 *outlenp = 0; 3748 return (EINVAL); 3749 } 3750 break; 3751 } /* end IPPROTO_IPV6 */ 3752 case IPPROTO_UDP: 3753 switch (name) { 3754 case UDP_ANONPRIVBIND: 3755 if ((error = secpolicy_net_privaddr(cr, 0, 3756 IPPROTO_UDP)) != 0) { 3757 *outlenp = 0; 3758 return (error); 3759 } 3760 if (!checkonly) { 3761 udp->udp_anon_priv_bind = onoff; 3762 } 3763 break; 3764 case UDP_EXCLBIND: 3765 if (!checkonly) 3766 udp->udp_exclbind = onoff; 3767 break; 3768 case UDP_RCVHDR: 3769 if (!checkonly) 3770 udp->udp_rcvhdr = onoff; 3771 break; 3772 case UDP_NAT_T_ENDPOINT: 3773 if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) { 3774 *outlenp = 0; 3775 return (error); 3776 } 3777 3778 /* 3779 * Use udp_family instead so we can avoid ambiguitites 3780 * with AF_INET6 sockets that may switch from IPv4 3781 * to IPv6. 3782 */ 3783 if (udp->udp_family != AF_INET) { 3784 *outlenp = 0; 3785 return (EAFNOSUPPORT); 3786 } 3787 3788 if (!checkonly) { 3789 udp->udp_nat_t_endpoint = onoff; 3790 3791 udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + 3792 UDPH_SIZE + udp->udp_ip_snd_options_len; 3793 3794 /* Also, adjust wroff */ 3795 if (onoff) { 3796 udp->udp_max_hdr_len += 3797 sizeof (uint32_t); 3798 } 3799 (void) mi_set_sth_wroff(RD(q), 3800 udp->udp_max_hdr_len + us->us_wroff_extra); 3801 } 3802 break; 3803 default: 3804 *outlenp = 0; 3805 return (EINVAL); 3806 } 3807 break; 3808 default: 3809 *outlenp = 0; 3810 return (EINVAL); 3811 } 3812 /* 3813 * Common case of OK return with outval same as inval. 3814 */ 3815 if (invalp != outvalp) { 3816 /* don't trust bcopy for identical src/dst */ 3817 (void) bcopy(invalp, outvalp, inlen); 3818 } 3819 *outlenp = inlen; 3820 return (0); 3821 } 3822 3823 int 3824 udp_opt_set(queue_t *q, uint_t optset_context, int level, 3825 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 3826 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 3827 { 3828 udp_t *udp; 3829 int err; 3830 3831 udp = Q_TO_UDP(q); 3832 3833 rw_enter(&udp->udp_rwlock, RW_WRITER); 3834 err = udp_opt_set_locked(q, optset_context, level, name, inlen, invalp, 3835 outlenp, outvalp, thisdg_attrs, cr, mblk); 3836 rw_exit(&udp->udp_rwlock); 3837 return (err); 3838 } 3839 3840 /* 3841 * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl. 3842 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 3843 * headers, and the udp header. 3844 * Returns failure if can't allocate memory. 3845 */ 3846 static int 3847 udp_build_hdrs(udp_t *udp) 3848 { 3849 udp_stack_t *us = udp->udp_us; 3850 uchar_t *hdrs; 3851 uint_t hdrs_len; 3852 ip6_t *ip6h; 3853 ip6i_t *ip6i; 3854 udpha_t *udpha; 3855 ip6_pkt_t *ipp = &udp->udp_sticky_ipp; 3856 size_t sth_wroff; 3857 3858 ASSERT(RW_WRITE_HELD(&udp->udp_rwlock)); 3859 hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE; 3860 ASSERT(hdrs_len != 0); 3861 if (hdrs_len != udp->udp_sticky_hdrs_len) { 3862 /* Need to reallocate */ 3863 hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP); 3864 if (hdrs == NULL) 3865 return (ENOMEM); 3866 3867 if (udp->udp_sticky_hdrs_len != 0) { 3868 kmem_free(udp->udp_sticky_hdrs, 3869 udp->udp_sticky_hdrs_len); 3870 } 3871 udp->udp_sticky_hdrs = hdrs; 3872 udp->udp_sticky_hdrs_len = hdrs_len; 3873 } 3874 ip_build_hdrs_v6(udp->udp_sticky_hdrs, 3875 udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP); 3876 3877 /* Set header fields not in ipp */ 3878 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 3879 ip6i = (ip6i_t *)udp->udp_sticky_hdrs; 3880 ip6h = (ip6_t *)&ip6i[1]; 3881 } else { 3882 ip6h = (ip6_t *)udp->udp_sticky_hdrs; 3883 } 3884 3885 if (!(ipp->ipp_fields & IPPF_ADDR)) 3886 ip6h->ip6_src = udp->udp_v6src; 3887 3888 udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE); 3889 udpha->uha_src_port = udp->udp_port; 3890 3891 /* Try to get everything in a single mblk */ 3892 if (hdrs_len > udp->udp_max_hdr_len) { 3893 udp->udp_max_hdr_len = hdrs_len; 3894 sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra; 3895 rw_exit(&udp->udp_rwlock); 3896 (void) mi_set_sth_wroff(udp->udp_connp->conn_rq, sth_wroff); 3897 rw_enter(&udp->udp_rwlock, RW_WRITER); 3898 } 3899 return (0); 3900 } 3901 3902 /* 3903 * This routine retrieves the value of an ND variable in a udpparam_t 3904 * structure. It is called through nd_getset when a user reads the 3905 * variable. 3906 */ 3907 /* ARGSUSED */ 3908 static int 3909 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 3910 { 3911 udpparam_t *udppa = (udpparam_t *)cp; 3912 3913 (void) mi_mpprintf(mp, "%d", udppa->udp_param_value); 3914 return (0); 3915 } 3916 3917 /* 3918 * Walk through the param array specified registering each element with the 3919 * named dispatch (ND) handler. 3920 */ 3921 static boolean_t 3922 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt) 3923 { 3924 for (; cnt-- > 0; udppa++) { 3925 if (udppa->udp_param_name && udppa->udp_param_name[0]) { 3926 if (!nd_load(ndp, udppa->udp_param_name, 3927 udp_param_get, udp_param_set, 3928 (caddr_t)udppa)) { 3929 nd_free(ndp); 3930 return (B_FALSE); 3931 } 3932 } 3933 } 3934 if (!nd_load(ndp, "udp_extra_priv_ports", 3935 udp_extra_priv_ports_get, NULL, NULL)) { 3936 nd_free(ndp); 3937 return (B_FALSE); 3938 } 3939 if (!nd_load(ndp, "udp_extra_priv_ports_add", 3940 NULL, udp_extra_priv_ports_add, NULL)) { 3941 nd_free(ndp); 3942 return (B_FALSE); 3943 } 3944 if (!nd_load(ndp, "udp_extra_priv_ports_del", 3945 NULL, udp_extra_priv_ports_del, NULL)) { 3946 nd_free(ndp); 3947 return (B_FALSE); 3948 } 3949 if (!nd_load(ndp, "udp_status", udp_status_report, NULL, 3950 NULL)) { 3951 nd_free(ndp); 3952 return (B_FALSE); 3953 } 3954 if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL, 3955 NULL)) { 3956 nd_free(ndp); 3957 return (B_FALSE); 3958 } 3959 return (B_TRUE); 3960 } 3961 3962 /* This routine sets an ND variable in a udpparam_t structure. */ 3963 /* ARGSUSED */ 3964 static int 3965 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 3966 { 3967 long new_value; 3968 udpparam_t *udppa = (udpparam_t *)cp; 3969 3970 /* 3971 * Fail the request if the new value does not lie within the 3972 * required bounds. 3973 */ 3974 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 3975 new_value < udppa->udp_param_min || 3976 new_value > udppa->udp_param_max) { 3977 return (EINVAL); 3978 } 3979 3980 /* Set the new value */ 3981 udppa->udp_param_value = new_value; 3982 return (0); 3983 } 3984 3985 /* 3986 * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with 3987 * T_opthdr) and return the number of bytes copied. 'dbuf' may be NULL to 3988 * just count the length needed for allocation. If 'dbuf' is non-NULL, 3989 * then it's assumed to be allocated to be large enough. 3990 * 3991 * Returns zero if trimming of the security option causes all options to go 3992 * away. 3993 */ 3994 static size_t 3995 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf) 3996 { 3997 struct T_opthdr *toh; 3998 size_t hol = ipp->ipp_hopoptslen; 3999 ip6_hbh_t *dstopt = NULL; 4000 const ip6_hbh_t *srcopt = ipp->ipp_hopopts; 4001 size_t tlen, olen, plen; 4002 boolean_t deleting; 4003 const struct ip6_opt *sopt, *lastpad; 4004 struct ip6_opt *dopt; 4005 4006 if ((toh = (struct T_opthdr *)dbuf) != NULL) { 4007 toh->level = IPPROTO_IPV6; 4008 toh->name = IPV6_HOPOPTS; 4009 toh->status = 0; 4010 dstopt = (ip6_hbh_t *)(toh + 1); 4011 } 4012 4013 /* 4014 * If labeling is enabled, then skip the label option 4015 * but get other options if there are any. 4016 */ 4017 if (is_system_labeled()) { 4018 dopt = NULL; 4019 if (dstopt != NULL) { 4020 /* will fill in ip6h_len later */ 4021 dstopt->ip6h_nxt = srcopt->ip6h_nxt; 4022 dopt = (struct ip6_opt *)(dstopt + 1); 4023 } 4024 sopt = (const struct ip6_opt *)(srcopt + 1); 4025 hol -= sizeof (*srcopt); 4026 tlen = sizeof (*dstopt); 4027 lastpad = NULL; 4028 deleting = B_FALSE; 4029 /* 4030 * This loop finds the first (lastpad pointer) of any number of 4031 * pads that preceeds the security option, then treats the 4032 * security option as though it were a pad, and then finds the 4033 * next non-pad option (or end of list). 4034 * 4035 * It then treats the entire block as one big pad. To preserve 4036 * alignment of any options that follow, or just the end of the 4037 * list, it computes a minimal new padding size that keeps the 4038 * same alignment for the next option. 4039 * 4040 * If it encounters just a sequence of pads with no security 4041 * option, those are copied as-is rather than collapsed. 4042 * 4043 * Note that to handle the end of list case, the code makes one 4044 * loop with 'hol' set to zero. 4045 */ 4046 for (;;) { 4047 if (hol > 0) { 4048 if (sopt->ip6o_type == IP6OPT_PAD1) { 4049 if (lastpad == NULL) 4050 lastpad = sopt; 4051 sopt = (const struct ip6_opt *) 4052 &sopt->ip6o_len; 4053 hol--; 4054 continue; 4055 } 4056 olen = sopt->ip6o_len + sizeof (*sopt); 4057 if (olen > hol) 4058 olen = hol; 4059 if (sopt->ip6o_type == IP6OPT_PADN || 4060 sopt->ip6o_type == ip6opt_ls) { 4061 if (sopt->ip6o_type == ip6opt_ls) 4062 deleting = B_TRUE; 4063 if (lastpad == NULL) 4064 lastpad = sopt; 4065 sopt = (const struct ip6_opt *) 4066 ((const char *)sopt + olen); 4067 hol -= olen; 4068 continue; 4069 } 4070 } else { 4071 /* if nothing was copied at all, then delete */ 4072 if (tlen == sizeof (*dstopt)) 4073 return (0); 4074 /* last pass; pick up any trailing padding */ 4075 olen = 0; 4076 } 4077 if (deleting) { 4078 /* 4079 * compute aligning effect of deleted material 4080 * to reproduce with pad. 4081 */ 4082 plen = ((const char *)sopt - 4083 (const char *)lastpad) & 7; 4084 tlen += plen; 4085 if (dopt != NULL) { 4086 if (plen == 1) { 4087 dopt->ip6o_type = IP6OPT_PAD1; 4088 } else if (plen > 1) { 4089 plen -= sizeof (*dopt); 4090 dopt->ip6o_type = IP6OPT_PADN; 4091 dopt->ip6o_len = plen; 4092 if (plen > 0) 4093 bzero(dopt + 1, plen); 4094 } 4095 dopt = (struct ip6_opt *) 4096 ((char *)dopt + plen); 4097 } 4098 deleting = B_FALSE; 4099 lastpad = NULL; 4100 } 4101 /* if there's uncopied padding, then copy that now */ 4102 if (lastpad != NULL) { 4103 olen += (const char *)sopt - 4104 (const char *)lastpad; 4105 sopt = lastpad; 4106 lastpad = NULL; 4107 } 4108 if (dopt != NULL && olen > 0) { 4109 bcopy(sopt, dopt, olen); 4110 dopt = (struct ip6_opt *)((char *)dopt + olen); 4111 } 4112 if (hol == 0) 4113 break; 4114 tlen += olen; 4115 sopt = (const struct ip6_opt *) 4116 ((const char *)sopt + olen); 4117 hol -= olen; 4118 } 4119 /* go back and patch up the length value, rounded upward */ 4120 if (dstopt != NULL) 4121 dstopt->ip6h_len = (tlen - 1) >> 3; 4122 } else { 4123 tlen = hol; 4124 if (dstopt != NULL) 4125 bcopy(srcopt, dstopt, hol); 4126 } 4127 4128 tlen += sizeof (*toh); 4129 if (toh != NULL) 4130 toh->len = tlen; 4131 4132 return (tlen); 4133 } 4134 4135 /* 4136 * Update udp_rcv_opt_len from the packet. 4137 * Called when options received, and when no options received but 4138 * udp_ip_recv_opt_len has previously recorded options. 4139 */ 4140 static void 4141 udp_save_ip_rcv_opt(udp_t *udp, void *opt, int opt_len) 4142 { 4143 /* Save the options if any */ 4144 if (opt_len > 0) { 4145 if (opt_len > udp->udp_ip_rcv_options_len) { 4146 /* Need to allocate larger buffer */ 4147 if (udp->udp_ip_rcv_options_len != 0) 4148 mi_free((char *)udp->udp_ip_rcv_options); 4149 udp->udp_ip_rcv_options_len = 0; 4150 udp->udp_ip_rcv_options = 4151 (uchar_t *)mi_alloc(opt_len, BPRI_HI); 4152 if (udp->udp_ip_rcv_options != NULL) 4153 udp->udp_ip_rcv_options_len = opt_len; 4154 } 4155 if (udp->udp_ip_rcv_options_len != 0) { 4156 bcopy(opt, udp->udp_ip_rcv_options, opt_len); 4157 /* Adjust length if we are resusing the space */ 4158 udp->udp_ip_rcv_options_len = opt_len; 4159 } 4160 } else if (udp->udp_ip_rcv_options_len != 0) { 4161 /* Clear out previously recorded options */ 4162 mi_free((char *)udp->udp_ip_rcv_options); 4163 udp->udp_ip_rcv_options = NULL; 4164 udp->udp_ip_rcv_options_len = 0; 4165 } 4166 } 4167 4168 /* ARGSUSED2 */ 4169 static void 4170 udp_input(void *arg1, mblk_t *mp, void *arg2) 4171 { 4172 conn_t *connp = (conn_t *)arg1; 4173 struct T_unitdata_ind *tudi; 4174 uchar_t *rptr; /* Pointer to IP header */ 4175 int hdr_length; /* Length of IP+UDP headers */ 4176 int opt_len; 4177 int udi_size; /* Size of T_unitdata_ind */ 4178 int mp_len; 4179 udp_t *udp; 4180 udpha_t *udpha; 4181 int ipversion; 4182 ip6_pkt_t ipp; 4183 ip6_t *ip6h; 4184 ip6i_t *ip6i; 4185 mblk_t *mp1; 4186 mblk_t *options_mp = NULL; 4187 ip_pktinfo_t *pinfo = NULL; 4188 cred_t *cr = NULL; 4189 pid_t cpid; 4190 uint32_t udp_ip_rcv_options_len; 4191 udp_bits_t udp_bits; 4192 cred_t *rcr = connp->conn_cred; 4193 udp_stack_t *us; 4194 4195 ASSERT(connp->conn_flags & IPCL_UDPCONN); 4196 4197 udp = connp->conn_udp; 4198 us = udp->udp_us; 4199 rptr = mp->b_rptr; 4200 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL); 4201 ASSERT(OK_32PTR(rptr)); 4202 4203 /* 4204 * IP should have prepended the options data in an M_CTL 4205 * Check M_CTL "type" to make sure are not here bcos of 4206 * a valid ICMP message 4207 */ 4208 if (DB_TYPE(mp) == M_CTL) { 4209 if (MBLKL(mp) == sizeof (ip_pktinfo_t) && 4210 ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type == 4211 IN_PKTINFO) { 4212 /* 4213 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information 4214 * has been prepended to the packet by IP. We need to 4215 * extract the mblk and adjust the rptr 4216 */ 4217 pinfo = (ip_pktinfo_t *)mp->b_rptr; 4218 options_mp = mp; 4219 mp = mp->b_cont; 4220 rptr = mp->b_rptr; 4221 UDP_STAT(us, udp_in_pktinfo); 4222 } else { 4223 /* 4224 * ICMP messages. 4225 */ 4226 udp_icmp_error(connp->conn_rq, mp); 4227 return; 4228 } 4229 } 4230 4231 mp_len = msgdsize(mp); 4232 /* 4233 * This is the inbound data path. 4234 * First, we check to make sure the IP version number is correct, 4235 * and then pull the IP and UDP headers into the first mblk. 4236 */ 4237 4238 /* Initialize regardless if ipversion is IPv4 or IPv6 */ 4239 ipp.ipp_fields = 0; 4240 4241 ipversion = IPH_HDR_VERSION(rptr); 4242 4243 rw_enter(&udp->udp_rwlock, RW_READER); 4244 udp_ip_rcv_options_len = udp->udp_ip_rcv_options_len; 4245 udp_bits = udp->udp_bits; 4246 rw_exit(&udp->udp_rwlock); 4247 4248 switch (ipversion) { 4249 case IPV4_VERSION: 4250 ASSERT(MBLKL(mp) >= sizeof (ipha_t)); 4251 ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP); 4252 hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE; 4253 opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE); 4254 if ((opt_len > 0 || udp_ip_rcv_options_len > 0) && 4255 udp->udp_family == AF_INET) { 4256 /* 4257 * Record/update udp_ip_rcv_options with the lock 4258 * held. Not needed for AF_INET6 sockets 4259 * since they don't support a getsockopt of IP_OPTIONS. 4260 */ 4261 rw_enter(&udp->udp_rwlock, RW_WRITER); 4262 udp_save_ip_rcv_opt(udp, rptr + IP_SIMPLE_HDR_LENGTH, 4263 opt_len); 4264 rw_exit(&udp->udp_rwlock); 4265 } 4266 /* Handle IPV6_RECVPKTINFO even for IPv4 packet. */ 4267 if ((udp->udp_family == AF_INET6) && (pinfo != NULL) && 4268 udp->udp_ip_recvpktinfo) { 4269 if (pinfo->ip_pkt_flags & IPF_RECVIF) { 4270 ipp.ipp_fields |= IPPF_IFINDEX; 4271 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 4272 } 4273 } 4274 break; 4275 case IPV6_VERSION: 4276 /* 4277 * IPv6 packets can only be received by applications 4278 * that are prepared to receive IPv6 addresses. 4279 * The IP fanout must ensure this. 4280 */ 4281 ASSERT(udp->udp_family == AF_INET6); 4282 4283 ip6h = (ip6_t *)rptr; 4284 ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr); 4285 4286 if (ip6h->ip6_nxt != IPPROTO_UDP) { 4287 uint8_t nexthdrp; 4288 /* Look for ifindex information */ 4289 if (ip6h->ip6_nxt == IPPROTO_RAW) { 4290 ip6i = (ip6i_t *)ip6h; 4291 if ((uchar_t *)&ip6i[1] > mp->b_wptr) 4292 goto tossit; 4293 4294 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 4295 ASSERT(ip6i->ip6i_ifindex != 0); 4296 ipp.ipp_fields |= IPPF_IFINDEX; 4297 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 4298 } 4299 rptr = (uchar_t *)&ip6i[1]; 4300 mp->b_rptr = rptr; 4301 if (rptr == mp->b_wptr) { 4302 mp1 = mp->b_cont; 4303 freeb(mp); 4304 mp = mp1; 4305 rptr = mp->b_rptr; 4306 } 4307 if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE)) 4308 goto tossit; 4309 ip6h = (ip6_t *)rptr; 4310 mp_len = msgdsize(mp); 4311 } 4312 /* 4313 * Find any potentially interesting extension headers 4314 * as well as the length of the IPv6 + extension 4315 * headers. 4316 */ 4317 hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) + 4318 UDPH_SIZE; 4319 ASSERT(nexthdrp == IPPROTO_UDP); 4320 } else { 4321 hdr_length = IPV6_HDR_LEN + UDPH_SIZE; 4322 ip6i = NULL; 4323 } 4324 break; 4325 default: 4326 ASSERT(0); 4327 } 4328 4329 /* 4330 * IP inspected the UDP header thus all of it must be in the mblk. 4331 * UDP length check is performed for IPv6 packets and IPv4 packets 4332 * to check if the size of the packet as specified 4333 * by the header is the same as the physical size of the packet. 4334 * FIXME? Didn't IP already check this? 4335 */ 4336 udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE)); 4337 if ((MBLKL(mp) < hdr_length) || 4338 (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) { 4339 goto tossit; 4340 } 4341 4342 4343 /* Walk past the headers unless IP_RECVHDR was set. */ 4344 if (!udp_bits.udpb_rcvhdr) { 4345 mp->b_rptr = rptr + hdr_length; 4346 mp_len -= hdr_length; 4347 } 4348 4349 /* 4350 * This is the inbound data path. Packets are passed upstream as 4351 * T_UNITDATA_IND messages with full IP headers still attached. 4352 */ 4353 if (udp->udp_family == AF_INET) { 4354 sin_t *sin; 4355 4356 ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION); 4357 4358 /* 4359 * Normally only send up the source address. 4360 * If IP_RECVDSTADDR is set we include the destination IP 4361 * address as an option. With IP_RECVOPTS we include all 4362 * the IP options. 4363 */ 4364 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t); 4365 if (udp_bits.udpb_recvdstaddr) { 4366 udi_size += sizeof (struct T_opthdr) + 4367 sizeof (struct in_addr); 4368 UDP_STAT(us, udp_in_recvdstaddr); 4369 } 4370 4371 if (udp_bits.udpb_ip_recvpktinfo && (pinfo != NULL) && 4372 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 4373 udi_size += sizeof (struct T_opthdr) + 4374 sizeof (struct in_pktinfo); 4375 UDP_STAT(us, udp_ip_rcvpktinfo); 4376 } 4377 4378 if ((udp_bits.udpb_recvopts) && opt_len > 0) { 4379 udi_size += sizeof (struct T_opthdr) + opt_len; 4380 UDP_STAT(us, udp_in_recvopts); 4381 } 4382 4383 /* 4384 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate 4385 * space accordingly 4386 */ 4387 if ((udp_bits.udpb_recvif) && (pinfo != NULL) && 4388 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 4389 udi_size += sizeof (struct T_opthdr) + sizeof (uint_t); 4390 UDP_STAT(us, udp_in_recvif); 4391 } 4392 4393 if ((udp_bits.udpb_recvslla) && (pinfo != NULL) && 4394 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 4395 udi_size += sizeof (struct T_opthdr) + 4396 sizeof (struct sockaddr_dl); 4397 UDP_STAT(us, udp_in_recvslla); 4398 } 4399 4400 if ((udp_bits.udpb_recvucred) && 4401 (cr = DB_CRED(mp)) != NULL) { 4402 udi_size += sizeof (struct T_opthdr) + ucredsize; 4403 cpid = DB_CPID(mp); 4404 UDP_STAT(us, udp_in_recvucred); 4405 } 4406 4407 /* 4408 * If SO_TIMESTAMP is set allocate the appropriate sized 4409 * buffer. Since gethrestime() expects a pointer aligned 4410 * argument, we allocate space necessary for extra 4411 * alignment (even though it might not be used). 4412 */ 4413 if (udp_bits.udpb_timestamp) { 4414 udi_size += sizeof (struct T_opthdr) + 4415 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4416 UDP_STAT(us, udp_in_timestamp); 4417 } 4418 4419 /* 4420 * If IP_RECVTTL is set allocate the appropriate sized buffer 4421 */ 4422 if (udp_bits.udpb_recvttl) { 4423 udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t); 4424 UDP_STAT(us, udp_in_recvttl); 4425 } 4426 4427 /* Allocate a message block for the T_UNITDATA_IND structure. */ 4428 mp1 = allocb(udi_size, BPRI_MED); 4429 if (mp1 == NULL) { 4430 freemsg(mp); 4431 if (options_mp != NULL) 4432 freeb(options_mp); 4433 BUMP_MIB(&us->us_udp_mib, udpInErrors); 4434 return; 4435 } 4436 mp1->b_cont = mp; 4437 mp = mp1; 4438 mp->b_datap->db_type = M_PROTO; 4439 tudi = (struct T_unitdata_ind *)mp->b_rptr; 4440 mp->b_wptr = (uchar_t *)tudi + udi_size; 4441 tudi->PRIM_type = T_UNITDATA_IND; 4442 tudi->SRC_length = sizeof (sin_t); 4443 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 4444 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 4445 sizeof (sin_t); 4446 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t)); 4447 tudi->OPT_length = udi_size; 4448 sin = (sin_t *)&tudi[1]; 4449 sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src; 4450 sin->sin_port = udpha->uha_src_port; 4451 sin->sin_family = udp->udp_family; 4452 *(uint32_t *)&sin->sin_zero[0] = 0; 4453 *(uint32_t *)&sin->sin_zero[4] = 0; 4454 4455 /* 4456 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or 4457 * IP_RECVTTL has been set. 4458 */ 4459 if (udi_size != 0) { 4460 /* 4461 * Copy in destination address before options to avoid 4462 * any padding issues. 4463 */ 4464 char *dstopt; 4465 4466 dstopt = (char *)&sin[1]; 4467 if (udp_bits.udpb_recvdstaddr) { 4468 struct T_opthdr *toh; 4469 ipaddr_t *dstptr; 4470 4471 toh = (struct T_opthdr *)dstopt; 4472 toh->level = IPPROTO_IP; 4473 toh->name = IP_RECVDSTADDR; 4474 toh->len = sizeof (struct T_opthdr) + 4475 sizeof (ipaddr_t); 4476 toh->status = 0; 4477 dstopt += sizeof (struct T_opthdr); 4478 dstptr = (ipaddr_t *)dstopt; 4479 *dstptr = ((ipha_t *)rptr)->ipha_dst; 4480 dstopt += sizeof (ipaddr_t); 4481 udi_size -= toh->len; 4482 } 4483 4484 if (udp_bits.udpb_recvopts && opt_len > 0) { 4485 struct T_opthdr *toh; 4486 4487 toh = (struct T_opthdr *)dstopt; 4488 toh->level = IPPROTO_IP; 4489 toh->name = IP_RECVOPTS; 4490 toh->len = sizeof (struct T_opthdr) + opt_len; 4491 toh->status = 0; 4492 dstopt += sizeof (struct T_opthdr); 4493 bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt, 4494 opt_len); 4495 dstopt += opt_len; 4496 udi_size -= toh->len; 4497 } 4498 4499 if ((udp_bits.udpb_ip_recvpktinfo) && (pinfo != NULL) && 4500 (pinfo->ip_pkt_flags & IPF_RECVADDR)) { 4501 struct T_opthdr *toh; 4502 struct in_pktinfo *pktinfop; 4503 4504 toh = (struct T_opthdr *)dstopt; 4505 toh->level = IPPROTO_IP; 4506 toh->name = IP_PKTINFO; 4507 toh->len = sizeof (struct T_opthdr) + 4508 sizeof (*pktinfop); 4509 toh->status = 0; 4510 dstopt += sizeof (struct T_opthdr); 4511 pktinfop = (struct in_pktinfo *)dstopt; 4512 pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex; 4513 pktinfop->ipi_spec_dst = 4514 pinfo->ip_pkt_match_addr; 4515 pktinfop->ipi_addr.s_addr = 4516 ((ipha_t *)rptr)->ipha_dst; 4517 4518 dstopt += sizeof (struct in_pktinfo); 4519 udi_size -= toh->len; 4520 } 4521 4522 if ((udp_bits.udpb_recvslla) && (pinfo != NULL) && 4523 (pinfo->ip_pkt_flags & IPF_RECVSLLA)) { 4524 4525 struct T_opthdr *toh; 4526 struct sockaddr_dl *dstptr; 4527 4528 toh = (struct T_opthdr *)dstopt; 4529 toh->level = IPPROTO_IP; 4530 toh->name = IP_RECVSLLA; 4531 toh->len = sizeof (struct T_opthdr) + 4532 sizeof (struct sockaddr_dl); 4533 toh->status = 0; 4534 dstopt += sizeof (struct T_opthdr); 4535 dstptr = (struct sockaddr_dl *)dstopt; 4536 bcopy(&pinfo->ip_pkt_slla, dstptr, 4537 sizeof (struct sockaddr_dl)); 4538 dstopt += sizeof (struct sockaddr_dl); 4539 udi_size -= toh->len; 4540 } 4541 4542 if ((udp_bits.udpb_recvif) && (pinfo != NULL) && 4543 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 4544 4545 struct T_opthdr *toh; 4546 uint_t *dstptr; 4547 4548 toh = (struct T_opthdr *)dstopt; 4549 toh->level = IPPROTO_IP; 4550 toh->name = IP_RECVIF; 4551 toh->len = sizeof (struct T_opthdr) + 4552 sizeof (uint_t); 4553 toh->status = 0; 4554 dstopt += sizeof (struct T_opthdr); 4555 dstptr = (uint_t *)dstopt; 4556 *dstptr = pinfo->ip_pkt_ifindex; 4557 dstopt += sizeof (uint_t); 4558 udi_size -= toh->len; 4559 } 4560 4561 if (cr != NULL) { 4562 struct T_opthdr *toh; 4563 4564 toh = (struct T_opthdr *)dstopt; 4565 toh->level = SOL_SOCKET; 4566 toh->name = SCM_UCRED; 4567 toh->len = sizeof (struct T_opthdr) + ucredsize; 4568 toh->status = 0; 4569 dstopt += sizeof (struct T_opthdr); 4570 (void) cred2ucred(cr, cpid, dstopt, rcr); 4571 dstopt += ucredsize; 4572 udi_size -= toh->len; 4573 } 4574 4575 if (udp_bits.udpb_timestamp) { 4576 struct T_opthdr *toh; 4577 4578 toh = (struct T_opthdr *)dstopt; 4579 toh->level = SOL_SOCKET; 4580 toh->name = SCM_TIMESTAMP; 4581 toh->len = sizeof (struct T_opthdr) + 4582 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4583 toh->status = 0; 4584 dstopt += sizeof (struct T_opthdr); 4585 /* Align for gethrestime() */ 4586 dstopt = (char *)P2ROUNDUP((intptr_t)dstopt, 4587 sizeof (intptr_t)); 4588 gethrestime((timestruc_t *)dstopt); 4589 dstopt = (char *)toh + toh->len; 4590 udi_size -= toh->len; 4591 } 4592 4593 /* 4594 * CAUTION: 4595 * Due to aligment issues 4596 * Processing of IP_RECVTTL option 4597 * should always be the last. Adding 4598 * any option processing after this will 4599 * cause alignment panic. 4600 */ 4601 if (udp_bits.udpb_recvttl) { 4602 struct T_opthdr *toh; 4603 uint8_t *dstptr; 4604 4605 toh = (struct T_opthdr *)dstopt; 4606 toh->level = IPPROTO_IP; 4607 toh->name = IP_RECVTTL; 4608 toh->len = sizeof (struct T_opthdr) + 4609 sizeof (uint8_t); 4610 toh->status = 0; 4611 dstopt += sizeof (struct T_opthdr); 4612 dstptr = (uint8_t *)dstopt; 4613 *dstptr = ((ipha_t *)rptr)->ipha_ttl; 4614 dstopt += sizeof (uint8_t); 4615 udi_size -= toh->len; 4616 } 4617 4618 /* Consumed all of allocated space */ 4619 ASSERT(udi_size == 0); 4620 } 4621 } else { 4622 sin6_t *sin6; 4623 4624 /* 4625 * Handle both IPv4 and IPv6 packets for IPv6 sockets. 4626 * 4627 * Normally we only send up the address. If receiving of any 4628 * optional receive side information is enabled, we also send 4629 * that up as options. 4630 */ 4631 udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t); 4632 4633 if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS| 4634 IPPF_RTHDR|IPPF_IFINDEX)) { 4635 if ((udp_bits.udpb_ipv6_recvhopopts) && 4636 (ipp.ipp_fields & IPPF_HOPOPTS)) { 4637 size_t hlen; 4638 4639 UDP_STAT(us, udp_in_recvhopopts); 4640 hlen = copy_hop_opts(&ipp, NULL); 4641 if (hlen == 0) 4642 ipp.ipp_fields &= ~IPPF_HOPOPTS; 4643 udi_size += hlen; 4644 } 4645 if (((udp_bits.udpb_ipv6_recvdstopts) || 4646 udp_bits.udpb_old_ipv6_recvdstopts) && 4647 (ipp.ipp_fields & IPPF_DSTOPTS)) { 4648 udi_size += sizeof (struct T_opthdr) + 4649 ipp.ipp_dstoptslen; 4650 UDP_STAT(us, udp_in_recvdstopts); 4651 } 4652 if ((((udp_bits.udpb_ipv6_recvdstopts) && 4653 udp_bits.udpb_ipv6_recvrthdr && 4654 (ipp.ipp_fields & IPPF_RTHDR)) || 4655 (udp_bits.udpb_ipv6_recvrthdrdstopts)) && 4656 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 4657 udi_size += sizeof (struct T_opthdr) + 4658 ipp.ipp_rtdstoptslen; 4659 UDP_STAT(us, udp_in_recvrtdstopts); 4660 } 4661 if ((udp_bits.udpb_ipv6_recvrthdr) && 4662 (ipp.ipp_fields & IPPF_RTHDR)) { 4663 udi_size += sizeof (struct T_opthdr) + 4664 ipp.ipp_rthdrlen; 4665 UDP_STAT(us, udp_in_recvrthdr); 4666 } 4667 if ((udp_bits.udpb_ip_recvpktinfo) && 4668 (ipp.ipp_fields & IPPF_IFINDEX)) { 4669 udi_size += sizeof (struct T_opthdr) + 4670 sizeof (struct in6_pktinfo); 4671 UDP_STAT(us, udp_in_recvpktinfo); 4672 } 4673 4674 } 4675 if ((udp_bits.udpb_recvucred) && 4676 (cr = DB_CRED(mp)) != NULL) { 4677 udi_size += sizeof (struct T_opthdr) + ucredsize; 4678 cpid = DB_CPID(mp); 4679 UDP_STAT(us, udp_in_recvucred); 4680 } 4681 4682 /* 4683 * If SO_TIMESTAMP is set allocate the appropriate sized 4684 * buffer. Since gethrestime() expects a pointer aligned 4685 * argument, we allocate space necessary for extra 4686 * alignment (even though it might not be used). 4687 */ 4688 if (udp_bits.udpb_timestamp) { 4689 udi_size += sizeof (struct T_opthdr) + 4690 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4691 UDP_STAT(us, udp_in_timestamp); 4692 } 4693 4694 if (udp_bits.udpb_ipv6_recvhoplimit) { 4695 udi_size += sizeof (struct T_opthdr) + sizeof (int); 4696 UDP_STAT(us, udp_in_recvhoplimit); 4697 } 4698 4699 if (udp_bits.udpb_ipv6_recvtclass) { 4700 udi_size += sizeof (struct T_opthdr) + sizeof (int); 4701 UDP_STAT(us, udp_in_recvtclass); 4702 } 4703 4704 mp1 = allocb(udi_size, BPRI_MED); 4705 if (mp1 == NULL) { 4706 freemsg(mp); 4707 if (options_mp != NULL) 4708 freeb(options_mp); 4709 BUMP_MIB(&us->us_udp_mib, udpInErrors); 4710 return; 4711 } 4712 mp1->b_cont = mp; 4713 mp = mp1; 4714 mp->b_datap->db_type = M_PROTO; 4715 tudi = (struct T_unitdata_ind *)mp->b_rptr; 4716 mp->b_wptr = (uchar_t *)tudi + udi_size; 4717 tudi->PRIM_type = T_UNITDATA_IND; 4718 tudi->SRC_length = sizeof (sin6_t); 4719 tudi->SRC_offset = sizeof (struct T_unitdata_ind); 4720 tudi->OPT_offset = sizeof (struct T_unitdata_ind) + 4721 sizeof (sin6_t); 4722 udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t)); 4723 tudi->OPT_length = udi_size; 4724 sin6 = (sin6_t *)&tudi[1]; 4725 if (ipversion == IPV4_VERSION) { 4726 in6_addr_t v6dst; 4727 4728 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src, 4729 &sin6->sin6_addr); 4730 IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst, 4731 &v6dst); 4732 sin6->sin6_flowinfo = 0; 4733 sin6->sin6_scope_id = 0; 4734 sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst, 4735 connp->conn_zoneid, us->us_netstack); 4736 } else { 4737 sin6->sin6_addr = ip6h->ip6_src; 4738 /* No sin6_flowinfo per API */ 4739 sin6->sin6_flowinfo = 0; 4740 /* For link-scope source pass up scope id */ 4741 if ((ipp.ipp_fields & IPPF_IFINDEX) && 4742 IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4743 sin6->sin6_scope_id = ipp.ipp_ifindex; 4744 else 4745 sin6->sin6_scope_id = 0; 4746 sin6->__sin6_src_id = ip_srcid_find_addr( 4747 &ip6h->ip6_dst, connp->conn_zoneid, 4748 us->us_netstack); 4749 } 4750 sin6->sin6_port = udpha->uha_src_port; 4751 sin6->sin6_family = udp->udp_family; 4752 4753 if (udi_size != 0) { 4754 uchar_t *dstopt; 4755 4756 dstopt = (uchar_t *)&sin6[1]; 4757 if ((udp_bits.udpb_ip_recvpktinfo) && 4758 (ipp.ipp_fields & IPPF_IFINDEX)) { 4759 struct T_opthdr *toh; 4760 struct in6_pktinfo *pkti; 4761 4762 toh = (struct T_opthdr *)dstopt; 4763 toh->level = IPPROTO_IPV6; 4764 toh->name = IPV6_PKTINFO; 4765 toh->len = sizeof (struct T_opthdr) + 4766 sizeof (*pkti); 4767 toh->status = 0; 4768 dstopt += sizeof (struct T_opthdr); 4769 pkti = (struct in6_pktinfo *)dstopt; 4770 if (ipversion == IPV6_VERSION) 4771 pkti->ipi6_addr = ip6h->ip6_dst; 4772 else 4773 IN6_IPADDR_TO_V4MAPPED( 4774 ((ipha_t *)rptr)->ipha_dst, 4775 &pkti->ipi6_addr); 4776 pkti->ipi6_ifindex = ipp.ipp_ifindex; 4777 dstopt += sizeof (*pkti); 4778 udi_size -= toh->len; 4779 } 4780 if (udp_bits.udpb_ipv6_recvhoplimit) { 4781 struct T_opthdr *toh; 4782 4783 toh = (struct T_opthdr *)dstopt; 4784 toh->level = IPPROTO_IPV6; 4785 toh->name = IPV6_HOPLIMIT; 4786 toh->len = sizeof (struct T_opthdr) + 4787 sizeof (uint_t); 4788 toh->status = 0; 4789 dstopt += sizeof (struct T_opthdr); 4790 if (ipversion == IPV6_VERSION) 4791 *(uint_t *)dstopt = ip6h->ip6_hops; 4792 else 4793 *(uint_t *)dstopt = 4794 ((ipha_t *)rptr)->ipha_ttl; 4795 dstopt += sizeof (uint_t); 4796 udi_size -= toh->len; 4797 } 4798 if (udp_bits.udpb_ipv6_recvtclass) { 4799 struct T_opthdr *toh; 4800 4801 toh = (struct T_opthdr *)dstopt; 4802 toh->level = IPPROTO_IPV6; 4803 toh->name = IPV6_TCLASS; 4804 toh->len = sizeof (struct T_opthdr) + 4805 sizeof (uint_t); 4806 toh->status = 0; 4807 dstopt += sizeof (struct T_opthdr); 4808 if (ipversion == IPV6_VERSION) { 4809 *(uint_t *)dstopt = 4810 IPV6_FLOW_TCLASS(ip6h->ip6_flow); 4811 } else { 4812 ipha_t *ipha = (ipha_t *)rptr; 4813 *(uint_t *)dstopt = 4814 ipha->ipha_type_of_service; 4815 } 4816 dstopt += sizeof (uint_t); 4817 udi_size -= toh->len; 4818 } 4819 if ((udp_bits.udpb_ipv6_recvhopopts) && 4820 (ipp.ipp_fields & IPPF_HOPOPTS)) { 4821 size_t hlen; 4822 4823 hlen = copy_hop_opts(&ipp, dstopt); 4824 dstopt += hlen; 4825 udi_size -= hlen; 4826 } 4827 if ((udp_bits.udpb_ipv6_recvdstopts) && 4828 (udp_bits.udpb_ipv6_recvrthdr) && 4829 (ipp.ipp_fields & IPPF_RTHDR) && 4830 (ipp.ipp_fields & IPPF_RTDSTOPTS)) { 4831 struct T_opthdr *toh; 4832 4833 toh = (struct T_opthdr *)dstopt; 4834 toh->level = IPPROTO_IPV6; 4835 toh->name = IPV6_DSTOPTS; 4836 toh->len = sizeof (struct T_opthdr) + 4837 ipp.ipp_rtdstoptslen; 4838 toh->status = 0; 4839 dstopt += sizeof (struct T_opthdr); 4840 bcopy(ipp.ipp_rtdstopts, dstopt, 4841 ipp.ipp_rtdstoptslen); 4842 dstopt += ipp.ipp_rtdstoptslen; 4843 udi_size -= toh->len; 4844 } 4845 if ((udp_bits.udpb_ipv6_recvrthdr) && 4846 (ipp.ipp_fields & IPPF_RTHDR)) { 4847 struct T_opthdr *toh; 4848 4849 toh = (struct T_opthdr *)dstopt; 4850 toh->level = IPPROTO_IPV6; 4851 toh->name = IPV6_RTHDR; 4852 toh->len = sizeof (struct T_opthdr) + 4853 ipp.ipp_rthdrlen; 4854 toh->status = 0; 4855 dstopt += sizeof (struct T_opthdr); 4856 bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen); 4857 dstopt += ipp.ipp_rthdrlen; 4858 udi_size -= toh->len; 4859 } 4860 if ((udp_bits.udpb_ipv6_recvdstopts) && 4861 (ipp.ipp_fields & IPPF_DSTOPTS)) { 4862 struct T_opthdr *toh; 4863 4864 toh = (struct T_opthdr *)dstopt; 4865 toh->level = IPPROTO_IPV6; 4866 toh->name = IPV6_DSTOPTS; 4867 toh->len = sizeof (struct T_opthdr) + 4868 ipp.ipp_dstoptslen; 4869 toh->status = 0; 4870 dstopt += sizeof (struct T_opthdr); 4871 bcopy(ipp.ipp_dstopts, dstopt, 4872 ipp.ipp_dstoptslen); 4873 dstopt += ipp.ipp_dstoptslen; 4874 udi_size -= toh->len; 4875 } 4876 4877 if (cr != NULL) { 4878 struct T_opthdr *toh; 4879 4880 toh = (struct T_opthdr *)dstopt; 4881 toh->level = SOL_SOCKET; 4882 toh->name = SCM_UCRED; 4883 toh->len = sizeof (struct T_opthdr) + ucredsize; 4884 toh->status = 0; 4885 (void) cred2ucred(cr, cpid, &toh[1], rcr); 4886 dstopt += toh->len; 4887 udi_size -= toh->len; 4888 } 4889 if (udp_bits.udpb_timestamp) { 4890 struct T_opthdr *toh; 4891 4892 toh = (struct T_opthdr *)dstopt; 4893 toh->level = SOL_SOCKET; 4894 toh->name = SCM_TIMESTAMP; 4895 toh->len = sizeof (struct T_opthdr) + 4896 sizeof (timestruc_t) + _POINTER_ALIGNMENT; 4897 toh->status = 0; 4898 dstopt += sizeof (struct T_opthdr); 4899 /* Align for gethrestime() */ 4900 dstopt = (uchar_t *)P2ROUNDUP((intptr_t)dstopt, 4901 sizeof (intptr_t)); 4902 gethrestime((timestruc_t *)dstopt); 4903 dstopt = (uchar_t *)toh + toh->len; 4904 udi_size -= toh->len; 4905 } 4906 4907 /* Consumed all of allocated space */ 4908 ASSERT(udi_size == 0); 4909 } 4910 #undef sin6 4911 /* No IP_RECVDSTADDR for IPv6. */ 4912 } 4913 4914 BUMP_MIB(&us->us_udp_mib, udpHCInDatagrams); 4915 if (options_mp != NULL) 4916 freeb(options_mp); 4917 4918 if (udp_bits.udpb_direct_sockfs) { 4919 /* 4920 * There is nothing above us except for the stream head; 4921 * use the read-side synchronous stream interface in 4922 * order to reduce the time spent in interrupt thread. 4923 */ 4924 ASSERT(udp->udp_issocket); 4925 udp_rcv_enqueue(connp->conn_rq, udp, mp, mp_len); 4926 } else { 4927 /* 4928 * Use regular STREAMS interface to pass data upstream 4929 * if this is not a socket endpoint, or if we have 4930 * switched over to the slow mode due to sockmod being 4931 * popped or a module being pushed on top of us. 4932 */ 4933 putnext(connp->conn_rq, mp); 4934 } 4935 return; 4936 4937 tossit: 4938 freemsg(mp); 4939 if (options_mp != NULL) 4940 freeb(options_mp); 4941 BUMP_MIB(&us->us_udp_mib, udpInErrors); 4942 } 4943 4944 /* 4945 * Handle the results of a T_BIND_REQ whether deferred by IP or handled 4946 * immediately. 4947 */ 4948 static void 4949 udp_bind_result(conn_t *connp, mblk_t *mp) 4950 { 4951 struct T_error_ack *tea; 4952 4953 switch (mp->b_datap->db_type) { 4954 case M_PROTO: 4955 case M_PCPROTO: 4956 /* M_PROTO messages contain some type of TPI message. */ 4957 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 4958 (uintptr_t)INT_MAX); 4959 if (mp->b_wptr - mp->b_rptr < sizeof (t_scalar_t)) { 4960 freemsg(mp); 4961 return; 4962 } 4963 tea = (struct T_error_ack *)mp->b_rptr; 4964 4965 switch (tea->PRIM_type) { 4966 case T_ERROR_ACK: 4967 switch (tea->ERROR_prim) { 4968 case O_T_BIND_REQ: 4969 case T_BIND_REQ: 4970 udp_bind_error(connp, mp); 4971 return; 4972 default: 4973 break; 4974 } 4975 ASSERT(0); 4976 freemsg(mp); 4977 return; 4978 4979 case T_BIND_ACK: 4980 udp_bind_ack(connp, mp); 4981 return; 4982 4983 default: 4984 break; 4985 } 4986 freemsg(mp); 4987 return; 4988 default: 4989 /* FIXME: other cases? */ 4990 ASSERT(0); 4991 freemsg(mp); 4992 return; 4993 } 4994 } 4995 4996 /* 4997 * Process a T_BIND_ACK 4998 */ 4999 static void 5000 udp_bind_ack(conn_t *connp, mblk_t *mp) 5001 { 5002 udp_t *udp = connp->conn_udp; 5003 mblk_t *mp1; 5004 ire_t *ire; 5005 struct T_bind_ack *tba; 5006 uchar_t *addrp; 5007 ipa_conn_t *ac; 5008 ipa6_conn_t *ac6; 5009 udp_fanout_t *udpf; 5010 udp_stack_t *us = udp->udp_us; 5011 5012 ASSERT(udp->udp_pending_op != -1); 5013 rw_enter(&udp->udp_rwlock, RW_WRITER); 5014 /* 5015 * If a broadcast/multicast address was bound set 5016 * the source address to 0. 5017 * This ensures no datagrams with broadcast address 5018 * as source address are emitted (which would violate 5019 * RFC1122 - Hosts requirements) 5020 * 5021 * Note that when connecting the returned IRE is 5022 * for the destination address and we only perform 5023 * the broadcast check for the source address (it 5024 * is OK to connect to a broadcast/multicast address.) 5025 */ 5026 mp1 = mp->b_cont; 5027 if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) { 5028 ire = (ire_t *)mp1->b_rptr; 5029 5030 /* 5031 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast 5032 * local address. 5033 */ 5034 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 5035 us->us_bind_fanout_size)]; 5036 if (ire->ire_type == IRE_BROADCAST && 5037 udp->udp_state != TS_DATA_XFER) { 5038 ASSERT(udp->udp_pending_op == T_BIND_REQ || 5039 udp->udp_pending_op == O_T_BIND_REQ); 5040 /* This was just a local bind to a broadcast addr */ 5041 mutex_enter(&udpf->uf_lock); 5042 V6_SET_ZERO(udp->udp_v6src); 5043 mutex_exit(&udpf->uf_lock); 5044 if (udp->udp_family == AF_INET6) 5045 (void) udp_build_hdrs(udp); 5046 } else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) { 5047 /* 5048 * Local address not yet set - pick it from the 5049 * T_bind_ack 5050 */ 5051 tba = (struct T_bind_ack *)mp->b_rptr; 5052 addrp = &mp->b_rptr[tba->ADDR_offset]; 5053 switch (udp->udp_family) { 5054 case AF_INET: 5055 if (tba->ADDR_length == sizeof (ipa_conn_t)) { 5056 ac = (ipa_conn_t *)addrp; 5057 } else { 5058 ASSERT(tba->ADDR_length == 5059 sizeof (ipa_conn_x_t)); 5060 ac = &((ipa_conn_x_t *)addrp)->acx_conn; 5061 } 5062 mutex_enter(&udpf->uf_lock); 5063 IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr, 5064 &udp->udp_v6src); 5065 mutex_exit(&udpf->uf_lock); 5066 break; 5067 case AF_INET6: 5068 if (tba->ADDR_length == sizeof (ipa6_conn_t)) { 5069 ac6 = (ipa6_conn_t *)addrp; 5070 } else { 5071 ASSERT(tba->ADDR_length == 5072 sizeof (ipa6_conn_x_t)); 5073 ac6 = &((ipa6_conn_x_t *) 5074 addrp)->ac6x_conn; 5075 } 5076 mutex_enter(&udpf->uf_lock); 5077 udp->udp_v6src = ac6->ac6_laddr; 5078 mutex_exit(&udpf->uf_lock); 5079 (void) udp_build_hdrs(udp); 5080 break; 5081 } 5082 } 5083 mp1 = mp1->b_cont; 5084 } 5085 udp->udp_pending_op = -1; 5086 rw_exit(&udp->udp_rwlock); 5087 /* 5088 * Look for one or more appended ACK message added by 5089 * udp_connect or udp_disconnect. 5090 * If none found just send up the T_BIND_ACK. 5091 * udp_connect has appended a T_OK_ACK and a T_CONN_CON. 5092 * udp_disconnect has appended a T_OK_ACK. 5093 */ 5094 if (mp1 != NULL) { 5095 if (mp->b_cont == mp1) 5096 mp->b_cont = NULL; 5097 else { 5098 ASSERT(mp->b_cont->b_cont == mp1); 5099 mp->b_cont->b_cont = NULL; 5100 } 5101 freemsg(mp); 5102 mp = mp1; 5103 while (mp != NULL) { 5104 mp1 = mp->b_cont; 5105 mp->b_cont = NULL; 5106 putnext(connp->conn_rq, mp); 5107 mp = mp1; 5108 } 5109 return; 5110 } 5111 freemsg(mp->b_cont); 5112 mp->b_cont = NULL; 5113 putnext(connp->conn_rq, mp); 5114 } 5115 5116 static void 5117 udp_bind_error(conn_t *connp, mblk_t *mp) 5118 { 5119 udp_t *udp = connp->conn_udp; 5120 struct T_error_ack *tea; 5121 udp_fanout_t *udpf; 5122 udp_stack_t *us = udp->udp_us; 5123 5124 tea = (struct T_error_ack *)mp->b_rptr; 5125 5126 /* 5127 * If our O_T_BIND_REQ/T_BIND_REQ fails, 5128 * clear out the associated port and source 5129 * address before passing the message 5130 * upstream. If this was caused by a T_CONN_REQ 5131 * revert back to bound state. 5132 */ 5133 5134 rw_enter(&udp->udp_rwlock, RW_WRITER); 5135 ASSERT(udp->udp_pending_op != -1); 5136 tea->ERROR_prim = udp->udp_pending_op; 5137 udp->udp_pending_op = -1; 5138 udpf = &us->us_bind_fanout[ 5139 UDP_BIND_HASH(udp->udp_port, 5140 us->us_bind_fanout_size)]; 5141 mutex_enter(&udpf->uf_lock); 5142 5143 switch (tea->ERROR_prim) { 5144 case T_CONN_REQ: 5145 ASSERT(udp->udp_state == TS_DATA_XFER); 5146 /* Connect failed */ 5147 /* Revert back to the bound source */ 5148 udp->udp_v6src = udp->udp_bound_v6src; 5149 udp->udp_state = TS_IDLE; 5150 mutex_exit(&udpf->uf_lock); 5151 if (udp->udp_family == AF_INET6) 5152 (void) udp_build_hdrs(udp); 5153 rw_exit(&udp->udp_rwlock); 5154 break; 5155 5156 case T_DISCON_REQ: 5157 case T_BIND_REQ: 5158 case O_T_BIND_REQ: 5159 V6_SET_ZERO(udp->udp_v6src); 5160 V6_SET_ZERO(udp->udp_bound_v6src); 5161 udp->udp_state = TS_UNBND; 5162 udp_bind_hash_remove(udp, B_TRUE); 5163 udp->udp_port = 0; 5164 mutex_exit(&udpf->uf_lock); 5165 if (udp->udp_family == AF_INET6) 5166 (void) udp_build_hdrs(udp); 5167 rw_exit(&udp->udp_rwlock); 5168 break; 5169 5170 default: 5171 mutex_exit(&udpf->uf_lock); 5172 rw_exit(&udp->udp_rwlock); 5173 (void) mi_strlog(connp->conn_rq, 1, 5174 SL_ERROR|SL_TRACE, 5175 "udp_input_other: bad ERROR_prim, " 5176 "len %d", tea->ERROR_prim); 5177 } 5178 putnext(connp->conn_rq, mp); 5179 } 5180 5181 /* 5182 * return SNMP stuff in buffer in mpdata. We don't hold any lock and report 5183 * information that can be changing beneath us. 5184 */ 5185 mblk_t * 5186 udp_snmp_get(queue_t *q, mblk_t *mpctl) 5187 { 5188 mblk_t *mpdata; 5189 mblk_t *mp_conn_ctl; 5190 mblk_t *mp_attr_ctl; 5191 mblk_t *mp6_conn_ctl; 5192 mblk_t *mp6_attr_ctl; 5193 mblk_t *mp_conn_tail; 5194 mblk_t *mp_attr_tail; 5195 mblk_t *mp6_conn_tail; 5196 mblk_t *mp6_attr_tail; 5197 struct opthdr *optp; 5198 mib2_udpEntry_t ude; 5199 mib2_udp6Entry_t ude6; 5200 mib2_transportMLPEntry_t mlp; 5201 int state; 5202 zoneid_t zoneid; 5203 int i; 5204 connf_t *connfp; 5205 conn_t *connp = Q_TO_CONN(q); 5206 int v4_conn_idx; 5207 int v6_conn_idx; 5208 boolean_t needattr; 5209 udp_t *udp; 5210 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 5211 udp_stack_t *us = connp->conn_netstack->netstack_udp; 5212 mblk_t *mp2ctl; 5213 5214 /* 5215 * make a copy of the original message 5216 */ 5217 mp2ctl = copymsg(mpctl); 5218 5219 mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL; 5220 if (mpctl == NULL || 5221 (mpdata = mpctl->b_cont) == NULL || 5222 (mp_conn_ctl = copymsg(mpctl)) == NULL || 5223 (mp_attr_ctl = copymsg(mpctl)) == NULL || 5224 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 5225 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 5226 freemsg(mp_conn_ctl); 5227 freemsg(mp_attr_ctl); 5228 freemsg(mp6_conn_ctl); 5229 freemsg(mpctl); 5230 freemsg(mp2ctl); 5231 return (0); 5232 } 5233 5234 zoneid = connp->conn_zoneid; 5235 5236 /* fixed length structure for IPv4 and IPv6 counters */ 5237 SET_MIB(us->us_udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t)); 5238 SET_MIB(us->us_udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t)); 5239 /* synchronize 64- and 32-bit counters */ 5240 SYNC32_MIB(&us->us_udp_mib, udpInDatagrams, udpHCInDatagrams); 5241 SYNC32_MIB(&us->us_udp_mib, udpOutDatagrams, udpHCOutDatagrams); 5242 5243 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 5244 optp->level = MIB2_UDP; 5245 optp->name = 0; 5246 (void) snmp_append_data(mpdata, (char *)&us->us_udp_mib, 5247 sizeof (us->us_udp_mib)); 5248 optp->len = msgdsize(mpdata); 5249 qreply(q, mpctl); 5250 5251 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 5252 v4_conn_idx = v6_conn_idx = 0; 5253 5254 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 5255 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 5256 connp = NULL; 5257 5258 while ((connp = ipcl_get_next_conn(connfp, connp, 5259 IPCL_UDPCONN))) { 5260 udp = connp->conn_udp; 5261 if (zoneid != connp->conn_zoneid) 5262 continue; 5263 5264 /* 5265 * Note that the port numbers are sent in 5266 * host byte order 5267 */ 5268 5269 if (udp->udp_state == TS_UNBND) 5270 state = MIB2_UDP_unbound; 5271 else if (udp->udp_state == TS_IDLE) 5272 state = MIB2_UDP_idle; 5273 else if (udp->udp_state == TS_DATA_XFER) 5274 state = MIB2_UDP_connected; 5275 else 5276 state = MIB2_UDP_unknown; 5277 5278 needattr = B_FALSE; 5279 bzero(&mlp, sizeof (mlp)); 5280 if (connp->conn_mlp_type != mlptSingle) { 5281 if (connp->conn_mlp_type == mlptShared || 5282 connp->conn_mlp_type == mlptBoth) 5283 mlp.tme_flags |= MIB2_TMEF_SHARED; 5284 if (connp->conn_mlp_type == mlptPrivate || 5285 connp->conn_mlp_type == mlptBoth) 5286 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 5287 needattr = B_TRUE; 5288 } 5289 5290 /* 5291 * Create an IPv4 table entry for IPv4 entries and also 5292 * any IPv6 entries which are bound to in6addr_any 5293 * (i.e. anything a IPv4 peer could connect/send to). 5294 */ 5295 if (udp->udp_ipversion == IPV4_VERSION || 5296 (udp->udp_state <= TS_IDLE && 5297 IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) { 5298 ude.udpEntryInfo.ue_state = state; 5299 /* 5300 * If in6addr_any this will set it to 5301 * INADDR_ANY 5302 */ 5303 ude.udpLocalAddress = 5304 V4_PART_OF_V6(udp->udp_v6src); 5305 ude.udpLocalPort = ntohs(udp->udp_port); 5306 if (udp->udp_state == TS_DATA_XFER) { 5307 /* 5308 * Can potentially get here for 5309 * v6 socket if another process 5310 * (say, ping) has just done a 5311 * sendto(), changing the state 5312 * from the TS_IDLE above to 5313 * TS_DATA_XFER by the time we hit 5314 * this part of the code. 5315 */ 5316 ude.udpEntryInfo.ue_RemoteAddress = 5317 V4_PART_OF_V6(udp->udp_v6dst); 5318 ude.udpEntryInfo.ue_RemotePort = 5319 ntohs(udp->udp_dstport); 5320 } else { 5321 ude.udpEntryInfo.ue_RemoteAddress = 0; 5322 ude.udpEntryInfo.ue_RemotePort = 0; 5323 } 5324 5325 /* 5326 * We make the assumption that all udp_t 5327 * structs will be created within an address 5328 * region no larger than 32-bits. 5329 */ 5330 ude.udpInstance = (uint32_t)(uintptr_t)udp; 5331 ude.udpCreationProcess = 5332 (udp->udp_open_pid < 0) ? 5333 MIB2_UNKNOWN_PROCESS : 5334 udp->udp_open_pid; 5335 ude.udpCreationTime = udp->udp_open_time; 5336 5337 (void) snmp_append_data2(mp_conn_ctl->b_cont, 5338 &mp_conn_tail, (char *)&ude, sizeof (ude)); 5339 mlp.tme_connidx = v4_conn_idx++; 5340 if (needattr) 5341 (void) snmp_append_data2( 5342 mp_attr_ctl->b_cont, &mp_attr_tail, 5343 (char *)&mlp, sizeof (mlp)); 5344 } 5345 if (udp->udp_ipversion == IPV6_VERSION) { 5346 ude6.udp6EntryInfo.ue_state = state; 5347 ude6.udp6LocalAddress = udp->udp_v6src; 5348 ude6.udp6LocalPort = ntohs(udp->udp_port); 5349 ude6.udp6IfIndex = udp->udp_bound_if; 5350 if (udp->udp_state == TS_DATA_XFER) { 5351 ude6.udp6EntryInfo.ue_RemoteAddress = 5352 udp->udp_v6dst; 5353 ude6.udp6EntryInfo.ue_RemotePort = 5354 ntohs(udp->udp_dstport); 5355 } else { 5356 ude6.udp6EntryInfo.ue_RemoteAddress = 5357 sin6_null.sin6_addr; 5358 ude6.udp6EntryInfo.ue_RemotePort = 0; 5359 } 5360 /* 5361 * We make the assumption that all udp_t 5362 * structs will be created within an address 5363 * region no larger than 32-bits. 5364 */ 5365 ude6.udp6Instance = (uint32_t)(uintptr_t)udp; 5366 ude6.udp6CreationProcess = 5367 (udp->udp_open_pid < 0) ? 5368 MIB2_UNKNOWN_PROCESS : 5369 udp->udp_open_pid; 5370 ude6.udp6CreationTime = udp->udp_open_time; 5371 5372 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 5373 &mp6_conn_tail, (char *)&ude6, 5374 sizeof (ude6)); 5375 mlp.tme_connidx = v6_conn_idx++; 5376 if (needattr) 5377 (void) snmp_append_data2( 5378 mp6_attr_ctl->b_cont, 5379 &mp6_attr_tail, (char *)&mlp, 5380 sizeof (mlp)); 5381 } 5382 } 5383 } 5384 5385 /* IPv4 UDP endpoints */ 5386 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 5387 sizeof (struct T_optmgmt_ack)]; 5388 optp->level = MIB2_UDP; 5389 optp->name = MIB2_UDP_ENTRY; 5390 optp->len = msgdsize(mp_conn_ctl->b_cont); 5391 qreply(q, mp_conn_ctl); 5392 5393 /* table of MLP attributes... */ 5394 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 5395 sizeof (struct T_optmgmt_ack)]; 5396 optp->level = MIB2_UDP; 5397 optp->name = EXPER_XPORT_MLP; 5398 optp->len = msgdsize(mp_attr_ctl->b_cont); 5399 if (optp->len == 0) 5400 freemsg(mp_attr_ctl); 5401 else 5402 qreply(q, mp_attr_ctl); 5403 5404 /* IPv6 UDP endpoints */ 5405 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 5406 sizeof (struct T_optmgmt_ack)]; 5407 optp->level = MIB2_UDP6; 5408 optp->name = MIB2_UDP6_ENTRY; 5409 optp->len = msgdsize(mp6_conn_ctl->b_cont); 5410 qreply(q, mp6_conn_ctl); 5411 5412 /* table of MLP attributes... */ 5413 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 5414 sizeof (struct T_optmgmt_ack)]; 5415 optp->level = MIB2_UDP6; 5416 optp->name = EXPER_XPORT_MLP; 5417 optp->len = msgdsize(mp6_attr_ctl->b_cont); 5418 if (optp->len == 0) 5419 freemsg(mp6_attr_ctl); 5420 else 5421 qreply(q, mp6_attr_ctl); 5422 5423 return (mp2ctl); 5424 } 5425 5426 /* 5427 * Return 0 if invalid set request, 1 otherwise, including non-udp requests. 5428 * NOTE: Per MIB-II, UDP has no writable data. 5429 * TODO: If this ever actually tries to set anything, it needs to be 5430 * to do the appropriate locking. 5431 */ 5432 /* ARGSUSED */ 5433 int 5434 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name, 5435 uchar_t *ptr, int len) 5436 { 5437 switch (level) { 5438 case MIB2_UDP: 5439 return (0); 5440 default: 5441 return (1); 5442 } 5443 } 5444 5445 static void 5446 udp_report_item(mblk_t *mp, udp_t *udp) 5447 { 5448 char *state; 5449 char addrbuf1[INET6_ADDRSTRLEN]; 5450 char addrbuf2[INET6_ADDRSTRLEN]; 5451 uint_t print_len, buf_len; 5452 5453 buf_len = mp->b_datap->db_lim - mp->b_wptr; 5454 ASSERT(buf_len >= 0); 5455 if (buf_len == 0) 5456 return; 5457 5458 if (udp->udp_state == TS_UNBND) 5459 state = "UNBOUND"; 5460 else if (udp->udp_state == TS_IDLE) 5461 state = "IDLE"; 5462 else if (udp->udp_state == TS_DATA_XFER) 5463 state = "CONNECTED"; 5464 else 5465 state = "UnkState"; 5466 print_len = snprintf((char *)mp->b_wptr, buf_len, 5467 MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n", 5468 (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port), 5469 inet_ntop(AF_INET6, &udp->udp_v6src, addrbuf1, sizeof (addrbuf1)), 5470 inet_ntop(AF_INET6, &udp->udp_v6dst, addrbuf2, sizeof (addrbuf2)), 5471 ntohs(udp->udp_dstport), state); 5472 if (print_len < buf_len) { 5473 mp->b_wptr += print_len; 5474 } else { 5475 mp->b_wptr += buf_len; 5476 } 5477 } 5478 5479 /* Report for ndd "udp_status" */ 5480 /* ARGSUSED */ 5481 static int 5482 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 5483 { 5484 zoneid_t zoneid; 5485 connf_t *connfp; 5486 conn_t *connp = Q_TO_CONN(q); 5487 udp_t *udp = connp->conn_udp; 5488 int i; 5489 udp_stack_t *us = udp->udp_us; 5490 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 5491 5492 /* 5493 * Because of the ndd constraint, at most we can have 64K buffer 5494 * to put in all UDP info. So to be more efficient, just 5495 * allocate a 64K buffer here, assuming we need that large buffer. 5496 * This may be a problem as any user can read udp_status. Therefore 5497 * we limit the rate of doing this using us_ndd_get_info_interval. 5498 * This should be OK as normal users should not do this too often. 5499 */ 5500 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 5501 if (ddi_get_lbolt() - us->us_last_ndd_get_info_time < 5502 drv_usectohz(us->us_ndd_get_info_interval * 1000)) { 5503 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 5504 return (0); 5505 } 5506 } 5507 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 5508 /* The following may work even if we cannot get a large buf. */ 5509 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 5510 return (0); 5511 } 5512 (void) mi_mpprintf(mp, 5513 "UDP " MI_COL_HDRPAD_STR 5514 /* 12345678[89ABCDEF] */ 5515 " zone lport src addr dest addr port state"); 5516 /* 1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */ 5517 5518 zoneid = connp->conn_zoneid; 5519 5520 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 5521 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 5522 connp = NULL; 5523 5524 while ((connp = ipcl_get_next_conn(connfp, connp, 5525 IPCL_UDPCONN))) { 5526 udp = connp->conn_udp; 5527 if (zoneid != GLOBAL_ZONEID && 5528 zoneid != connp->conn_zoneid) 5529 continue; 5530 5531 udp_report_item(mp->b_cont, udp); 5532 } 5533 } 5534 us->us_last_ndd_get_info_time = ddi_get_lbolt(); 5535 return (0); 5536 } 5537 5538 /* 5539 * This routine creates a T_UDERROR_IND message and passes it upstream. 5540 * The address and options are copied from the T_UNITDATA_REQ message 5541 * passed in mp. This message is freed. 5542 */ 5543 static void 5544 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen, 5545 t_scalar_t err) 5546 { 5547 struct T_unitdata_req *tudr; 5548 mblk_t *mp1; 5549 uchar_t *optaddr; 5550 t_scalar_t optlen; 5551 5552 if (DB_TYPE(mp) == M_DATA) { 5553 ASSERT(destaddr != NULL && destlen != 0); 5554 optaddr = NULL; 5555 optlen = 0; 5556 } else { 5557 if ((mp->b_wptr < mp->b_rptr) || 5558 (MBLKL(mp)) < sizeof (struct T_unitdata_req)) { 5559 goto done; 5560 } 5561 tudr = (struct T_unitdata_req *)mp->b_rptr; 5562 destaddr = mp->b_rptr + tudr->DEST_offset; 5563 if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr || 5564 destaddr + tudr->DEST_length < mp->b_rptr || 5565 destaddr + tudr->DEST_length > mp->b_wptr) { 5566 goto done; 5567 } 5568 optaddr = mp->b_rptr + tudr->OPT_offset; 5569 if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr || 5570 optaddr + tudr->OPT_length < mp->b_rptr || 5571 optaddr + tudr->OPT_length > mp->b_wptr) { 5572 goto done; 5573 } 5574 destlen = tudr->DEST_length; 5575 optlen = tudr->OPT_length; 5576 } 5577 5578 mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen, 5579 (char *)optaddr, optlen, err); 5580 if (mp1 != NULL) 5581 qreply(q, mp1); 5582 5583 done: 5584 freemsg(mp); 5585 } 5586 5587 /* 5588 * This routine removes a port number association from a stream. It 5589 * is called by udp_wput to handle T_UNBIND_REQ messages. 5590 */ 5591 static void 5592 udp_unbind(queue_t *q, mblk_t *mp) 5593 { 5594 udp_t *udp = Q_TO_UDP(q); 5595 udp_fanout_t *udpf; 5596 udp_stack_t *us = udp->udp_us; 5597 5598 if (cl_inet_unbind != NULL) { 5599 /* 5600 * Running in cluster mode - register unbind information 5601 */ 5602 if (udp->udp_ipversion == IPV4_VERSION) { 5603 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET, 5604 (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)), 5605 (in_port_t)udp->udp_port); 5606 } else { 5607 (*cl_inet_unbind)(IPPROTO_UDP, AF_INET6, 5608 (uint8_t *)&(udp->udp_v6src), 5609 (in_port_t)udp->udp_port); 5610 } 5611 } 5612 5613 rw_enter(&udp->udp_rwlock, RW_WRITER); 5614 if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) { 5615 rw_exit(&udp->udp_rwlock); 5616 udp_err_ack(q, mp, TOUTSTATE, 0); 5617 return; 5618 } 5619 udp->udp_pending_op = T_UNBIND_REQ; 5620 rw_exit(&udp->udp_rwlock); 5621 5622 /* 5623 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK 5624 * and therefore ip_unbind must never return NULL. 5625 */ 5626 mp = ip_unbind(q, mp); 5627 ASSERT(mp != NULL); 5628 ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK); 5629 5630 /* 5631 * Once we're unbound from IP, the pending operation may be cleared 5632 * here. 5633 */ 5634 rw_enter(&udp->udp_rwlock, RW_WRITER); 5635 udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port, 5636 us->us_bind_fanout_size)]; 5637 mutex_enter(&udpf->uf_lock); 5638 udp_bind_hash_remove(udp, B_TRUE); 5639 V6_SET_ZERO(udp->udp_v6src); 5640 V6_SET_ZERO(udp->udp_bound_v6src); 5641 udp->udp_port = 0; 5642 mutex_exit(&udpf->uf_lock); 5643 5644 udp->udp_pending_op = -1; 5645 udp->udp_state = TS_UNBND; 5646 if (udp->udp_family == AF_INET6) 5647 (void) udp_build_hdrs(udp); 5648 rw_exit(&udp->udp_rwlock); 5649 5650 qreply(q, mp); 5651 } 5652 5653 /* 5654 * Don't let port fall into the privileged range. 5655 * Since the extra privileged ports can be arbitrary we also 5656 * ensure that we exclude those from consideration. 5657 * us->us_epriv_ports is not sorted thus we loop over it until 5658 * there are no changes. 5659 */ 5660 static in_port_t 5661 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random) 5662 { 5663 int i; 5664 in_port_t nextport; 5665 boolean_t restart = B_FALSE; 5666 udp_stack_t *us = udp->udp_us; 5667 5668 if (random && udp_random_anon_port != 0) { 5669 (void) random_get_pseudo_bytes((uint8_t *)&port, 5670 sizeof (in_port_t)); 5671 /* 5672 * Unless changed by a sys admin, the smallest anon port 5673 * is 32768 and the largest anon port is 65535. It is 5674 * very likely (50%) for the random port to be smaller 5675 * than the smallest anon port. When that happens, 5676 * add port % (anon port range) to the smallest anon 5677 * port to get the random port. It should fall into the 5678 * valid anon port range. 5679 */ 5680 if (port < us->us_smallest_anon_port) { 5681 port = us->us_smallest_anon_port + 5682 port % (us->us_largest_anon_port - 5683 us->us_smallest_anon_port); 5684 } 5685 } 5686 5687 retry: 5688 if (port < us->us_smallest_anon_port) 5689 port = us->us_smallest_anon_port; 5690 5691 if (port > us->us_largest_anon_port) { 5692 port = us->us_smallest_anon_port; 5693 if (restart) 5694 return (0); 5695 restart = B_TRUE; 5696 } 5697 5698 if (port < us->us_smallest_nonpriv_port) 5699 port = us->us_smallest_nonpriv_port; 5700 5701 for (i = 0; i < us->us_num_epriv_ports; i++) { 5702 if (port == us->us_epriv_ports[i]) { 5703 port++; 5704 /* 5705 * Make sure that the port is in the 5706 * valid range. 5707 */ 5708 goto retry; 5709 } 5710 } 5711 5712 if (is_system_labeled() && 5713 (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred), 5714 port, IPPROTO_UDP, B_TRUE)) != 0) { 5715 port = nextport; 5716 goto retry; 5717 } 5718 5719 return (port); 5720 } 5721 5722 static int 5723 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst) 5724 { 5725 int err; 5726 uchar_t opt_storage[IP_MAX_OPT_LENGTH]; 5727 udp_t *udp = Q_TO_UDP(wq); 5728 udp_stack_t *us = udp->udp_us; 5729 5730 err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst, 5731 opt_storage, udp->udp_connp->conn_mac_exempt, 5732 us->us_netstack->netstack_ip); 5733 if (err == 0) { 5734 err = tsol_update_options(&udp->udp_ip_snd_options, 5735 &udp->udp_ip_snd_options_len, &udp->udp_label_len, 5736 opt_storage); 5737 } 5738 if (err != 0) { 5739 DTRACE_PROBE4( 5740 tx__ip__log__info__updatelabel__udp, 5741 char *, "queue(1) failed to update options(2) on mp(3)", 5742 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 5743 } else { 5744 IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst); 5745 } 5746 return (err); 5747 } 5748 5749 static mblk_t * 5750 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port, 5751 uint_t srcid, int *error, boolean_t insert_spi) 5752 { 5753 udp_t *udp = connp->conn_udp; 5754 queue_t *q = connp->conn_wq; 5755 mblk_t *mp1 = mp; 5756 mblk_t *mp2; 5757 ipha_t *ipha; 5758 int ip_hdr_length; 5759 uint32_t ip_len; 5760 udpha_t *udpha; 5761 boolean_t lock_held = B_FALSE; 5762 in_port_t uha_src_port; 5763 udpattrs_t attrs; 5764 uchar_t ip_snd_opt[IP_MAX_OPT_LENGTH]; 5765 uint32_t ip_snd_opt_len = 0; 5766 ip4_pkt_t pktinfo; 5767 ip4_pkt_t *pktinfop = &pktinfo; 5768 ip_opt_info_t optinfo; 5769 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 5770 udp_stack_t *us = udp->udp_us; 5771 ipsec_stack_t *ipss = ipst->ips_netstack->netstack_ipsec; 5772 5773 5774 *error = 0; 5775 pktinfop->ip4_ill_index = 0; 5776 pktinfop->ip4_addr = INADDR_ANY; 5777 optinfo.ip_opt_flags = 0; 5778 optinfo.ip_opt_ill_index = 0; 5779 5780 if (v4dst == INADDR_ANY) 5781 v4dst = htonl(INADDR_LOOPBACK); 5782 5783 /* 5784 * If options passed in, feed it for verification and handling 5785 */ 5786 attrs.udpattr_credset = B_FALSE; 5787 if (DB_TYPE(mp) != M_DATA) { 5788 mp1 = mp->b_cont; 5789 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 5790 attrs.udpattr_ipp4 = pktinfop; 5791 attrs.udpattr_mb = mp; 5792 if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0) 5793 goto done; 5794 /* 5795 * Note: success in processing options. 5796 * mp option buffer represented by 5797 * OPT_length/offset now potentially modified 5798 * and contain option setting results 5799 */ 5800 ASSERT(*error == 0); 5801 } 5802 } 5803 5804 /* mp1 points to the M_DATA mblk carrying the packet */ 5805 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 5806 5807 rw_enter(&udp->udp_rwlock, RW_READER); 5808 lock_held = B_TRUE; 5809 /* 5810 * Check if our saved options are valid; update if not. 5811 * TSOL Note: Since we are not in WRITER mode, UDP packets 5812 * to different destination may require different labels, 5813 * or worse, UDP packets to same IP address may require 5814 * different labels due to use of shared all-zones address. 5815 * We use conn_lock to ensure that lastdst, ip_snd_options, 5816 * and ip_snd_options_len are consistent for the current 5817 * destination and are updated atomically. 5818 */ 5819 mutex_enter(&connp->conn_lock); 5820 if (is_system_labeled()) { 5821 /* Using UDP MLP requires SCM_UCRED from user */ 5822 if (connp->conn_mlp_type != mlptSingle && 5823 !attrs.udpattr_credset) { 5824 mutex_exit(&connp->conn_lock); 5825 DTRACE_PROBE4( 5826 tx__ip__log__info__output__udp, 5827 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 5828 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 5829 *error = ECONNREFUSED; 5830 goto done; 5831 } 5832 /* 5833 * update label option for this UDP socket if 5834 * - the destination has changed, or 5835 * - the UDP socket is MLP 5836 */ 5837 if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) || 5838 V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst || 5839 connp->conn_mlp_type != mlptSingle) && 5840 (*error = udp_update_label(q, mp, v4dst)) != 0) { 5841 mutex_exit(&connp->conn_lock); 5842 goto done; 5843 } 5844 } 5845 if (udp->udp_ip_snd_options_len > 0) { 5846 ip_snd_opt_len = udp->udp_ip_snd_options_len; 5847 bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len); 5848 } 5849 mutex_exit(&connp->conn_lock); 5850 5851 /* Add an IP header */ 5852 ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len + 5853 (insert_spi ? sizeof (uint32_t) : 0); 5854 ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length]; 5855 if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) || 5856 !OK_32PTR(ipha)) { 5857 mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO); 5858 if (mp2 == NULL) { 5859 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 5860 "udp_wput_end: q %p (%S)", q, "allocbfail2"); 5861 *error = ENOMEM; 5862 goto done; 5863 } 5864 mp2->b_wptr = DB_LIM(mp2); 5865 mp2->b_cont = mp1; 5866 mp1 = mp2; 5867 if (DB_TYPE(mp) != M_DATA) 5868 mp->b_cont = mp1; 5869 else 5870 mp = mp1; 5871 5872 ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length); 5873 } 5874 ip_hdr_length -= (UDPH_SIZE + (insert_spi ? sizeof (uint32_t) : 0)); 5875 #ifdef _BIG_ENDIAN 5876 /* Set version, header length, and tos */ 5877 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 5878 ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) | 5879 udp->udp_type_of_service); 5880 /* Set ttl and protocol */ 5881 *(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP; 5882 #else 5883 /* Set version, header length, and tos */ 5884 *(uint16_t *)&ipha->ipha_version_and_hdr_length = 5885 ((udp->udp_type_of_service << 8) | 5886 ((IP_VERSION << 4) | (ip_hdr_length>>2))); 5887 /* Set ttl and protocol */ 5888 *(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl; 5889 #endif 5890 if (pktinfop->ip4_addr != INADDR_ANY) { 5891 ipha->ipha_src = pktinfop->ip4_addr; 5892 optinfo.ip_opt_flags = IP_VERIFY_SRC; 5893 } else { 5894 /* 5895 * Copy our address into the packet. If this is zero, 5896 * first look at __sin6_src_id for a hint. If we leave the 5897 * source as INADDR_ANY then ip will fill in the real source 5898 * address. 5899 */ 5900 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src); 5901 if (srcid != 0 && ipha->ipha_src == INADDR_ANY) { 5902 in6_addr_t v6src; 5903 5904 ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid, 5905 us->us_netstack); 5906 IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src); 5907 } 5908 } 5909 uha_src_port = udp->udp_port; 5910 if (ip_hdr_length == IP_SIMPLE_HDR_LENGTH) { 5911 rw_exit(&udp->udp_rwlock); 5912 lock_held = B_FALSE; 5913 } 5914 5915 if (pktinfop->ip4_ill_index != 0) { 5916 optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index; 5917 } 5918 5919 ipha->ipha_fragment_offset_and_flags = 0; 5920 ipha->ipha_ident = 0; 5921 5922 mp1->b_rptr = (uchar_t *)ipha; 5923 5924 ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <= 5925 (uintptr_t)UINT_MAX); 5926 5927 /* Determine length of packet */ 5928 ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha); 5929 if ((mp2 = mp1->b_cont) != NULL) { 5930 do { 5931 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 5932 ip_len += (uint32_t)MBLKL(mp2); 5933 } while ((mp2 = mp2->b_cont) != NULL); 5934 } 5935 /* 5936 * If the size of the packet is greater than the maximum allowed by 5937 * ip, return an error. Passing this down could cause panics because 5938 * the size will have wrapped and be inconsistent with the msg size. 5939 */ 5940 if (ip_len > IP_MAXPACKET) { 5941 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 5942 "udp_wput_end: q %p (%S)", q, "IP length exceeded"); 5943 *error = EMSGSIZE; 5944 goto done; 5945 } 5946 ipha->ipha_length = htons((uint16_t)ip_len); 5947 ip_len -= ip_hdr_length; 5948 ip_len = htons((uint16_t)ip_len); 5949 udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length); 5950 5951 /* Insert all-0s SPI now. */ 5952 if (insert_spi) 5953 *((uint32_t *)(udpha + 1)) = 0; 5954 5955 /* 5956 * Copy in the destination address 5957 */ 5958 ipha->ipha_dst = v4dst; 5959 5960 /* 5961 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic. 5962 */ 5963 if (CLASSD(v4dst)) 5964 ipha->ipha_ttl = udp->udp_multicast_ttl; 5965 5966 udpha->uha_dst_port = port; 5967 udpha->uha_src_port = uha_src_port; 5968 5969 if (ip_snd_opt_len > 0) { 5970 uint32_t cksum; 5971 5972 bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len); 5973 lock_held = B_FALSE; 5974 rw_exit(&udp->udp_rwlock); 5975 /* 5976 * Massage source route putting first source route in ipha_dst. 5977 * Ignore the destination in T_unitdata_req. 5978 * Create a checksum adjustment for a source route, if any. 5979 */ 5980 cksum = ip_massage_options(ipha, us->us_netstack); 5981 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5982 cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) + 5983 (ipha->ipha_dst & 0xFFFF); 5984 if ((int)cksum < 0) 5985 cksum--; 5986 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5987 /* 5988 * IP does the checksum if uha_checksum is non-zero, 5989 * We make it easy for IP to include our pseudo header 5990 * by putting our length in uha_checksum. 5991 */ 5992 cksum += ip_len; 5993 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5994 /* There might be a carry. */ 5995 cksum = (cksum & 0xFFFF) + (cksum >> 16); 5996 #ifdef _LITTLE_ENDIAN 5997 if (us->us_do_checksum) 5998 ip_len = (cksum << 16) | ip_len; 5999 #else 6000 if (us->us_do_checksum) 6001 ip_len = (ip_len << 16) | cksum; 6002 else 6003 ip_len <<= 16; 6004 #endif 6005 } else { 6006 /* 6007 * IP does the checksum if uha_checksum is non-zero, 6008 * We make it easy for IP to include our pseudo header 6009 * by putting our length in uha_checksum. 6010 */ 6011 if (us->us_do_checksum) 6012 ip_len |= (ip_len << 16); 6013 #ifndef _LITTLE_ENDIAN 6014 else 6015 ip_len <<= 16; 6016 #endif 6017 } 6018 ASSERT(!lock_held); 6019 /* Set UDP length and checksum */ 6020 *((uint32_t *)&udpha->uha_length) = ip_len; 6021 if (DB_CRED(mp) != NULL) 6022 mblk_setcred(mp1, DB_CRED(mp)); 6023 6024 if (DB_TYPE(mp) != M_DATA) { 6025 ASSERT(mp != mp1); 6026 freeb(mp); 6027 } 6028 6029 /* mp has been consumed and we'll return success */ 6030 ASSERT(*error == 0); 6031 mp = NULL; 6032 6033 /* We're done. Pass the packet to ip. */ 6034 BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams); 6035 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6036 "udp_wput_end: q %p (%S)", q, "end"); 6037 6038 if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 6039 CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) || 6040 connp->conn_dontroute || 6041 connp->conn_nofailover_ill != NULL || 6042 connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 || 6043 optinfo.ip_opt_ill_index != 0 || 6044 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 6045 IPP_ENABLED(IPP_LOCAL_OUT, ipst) || 6046 ipst->ips_ip_g_mrouter != NULL) { 6047 UDP_STAT(us, udp_ip_send); 6048 ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT, 6049 &optinfo); 6050 } else { 6051 udp_send_data(udp, connp->conn_wq, mp1, ipha); 6052 } 6053 6054 done: 6055 if (lock_held) 6056 rw_exit(&udp->udp_rwlock); 6057 if (*error != 0) { 6058 ASSERT(mp != NULL); 6059 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 6060 } 6061 return (mp); 6062 } 6063 6064 static void 6065 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha) 6066 { 6067 conn_t *connp = udp->udp_connp; 6068 ipaddr_t src, dst; 6069 ire_t *ire; 6070 ipif_t *ipif = NULL; 6071 mblk_t *ire_fp_mp; 6072 boolean_t retry_caching; 6073 udp_stack_t *us = udp->udp_us; 6074 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6075 6076 dst = ipha->ipha_dst; 6077 src = ipha->ipha_src; 6078 ASSERT(ipha->ipha_ident == 0); 6079 6080 if (CLASSD(dst)) { 6081 int err; 6082 6083 ipif = conn_get_held_ipif(connp, 6084 &connp->conn_multicast_ipif, &err); 6085 6086 if (ipif == NULL || ipif->ipif_isv6 || 6087 (ipif->ipif_ill->ill_phyint->phyint_flags & 6088 PHYI_LOOPBACK)) { 6089 if (ipif != NULL) 6090 ipif_refrele(ipif); 6091 UDP_STAT(us, udp_ip_send); 6092 ip_output(connp, mp, q, IP_WPUT); 6093 return; 6094 } 6095 } 6096 6097 retry_caching = B_FALSE; 6098 mutex_enter(&connp->conn_lock); 6099 ire = connp->conn_ire_cache; 6100 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 6101 6102 if (ire == NULL || ire->ire_addr != dst || 6103 (ire->ire_marks & IRE_MARK_CONDEMNED)) { 6104 retry_caching = B_TRUE; 6105 } else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) { 6106 ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr; 6107 6108 ASSERT(ipif != NULL); 6109 if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL || 6110 stq_ill->ill_group != ipif->ipif_ill->ill_group)) 6111 retry_caching = B_TRUE; 6112 } 6113 6114 if (!retry_caching) { 6115 ASSERT(ire != NULL); 6116 IRE_REFHOLD(ire); 6117 mutex_exit(&connp->conn_lock); 6118 } else { 6119 boolean_t cached = B_FALSE; 6120 6121 connp->conn_ire_cache = NULL; 6122 mutex_exit(&connp->conn_lock); 6123 6124 /* Release the old ire */ 6125 if (ire != NULL) { 6126 IRE_REFRELE_NOTR(ire); 6127 ire = NULL; 6128 } 6129 6130 if (CLASSD(dst)) { 6131 ASSERT(ipif != NULL); 6132 ire = ire_ctable_lookup(dst, 0, 0, ipif, 6133 connp->conn_zoneid, MBLK_GETLABEL(mp), 6134 MATCH_IRE_ILL_GROUP, ipst); 6135 } else { 6136 ASSERT(ipif == NULL); 6137 ire = ire_cache_lookup(dst, connp->conn_zoneid, 6138 MBLK_GETLABEL(mp), ipst); 6139 } 6140 6141 if (ire == NULL) { 6142 if (ipif != NULL) 6143 ipif_refrele(ipif); 6144 UDP_STAT(us, udp_ire_null); 6145 ip_output(connp, mp, q, IP_WPUT); 6146 return; 6147 } 6148 IRE_REFHOLD_NOTR(ire); 6149 6150 mutex_enter(&connp->conn_lock); 6151 if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL && 6152 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 6153 irb_t *irb = ire->ire_bucket; 6154 6155 /* 6156 * IRE's created for non-connection oriented transports 6157 * are normally initialized with IRE_MARK_TEMPORARY set 6158 * in the ire_marks. These IRE's are preferentially 6159 * reaped when the hash chain length in the cache 6160 * bucket exceeds the maximum value specified in 6161 * ip[6]_ire_max_bucket_cnt. This can severely affect 6162 * UDP performance if IRE cache entries that we need 6163 * to reuse are continually removed. To remedy this, 6164 * when we cache the IRE in the conn_t, we remove the 6165 * IRE_MARK_TEMPORARY bit from the ire_marks if it was 6166 * set. 6167 */ 6168 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 6169 rw_enter(&irb->irb_lock, RW_WRITER); 6170 if (ire->ire_marks & IRE_MARK_TEMPORARY) { 6171 ire->ire_marks &= ~IRE_MARK_TEMPORARY; 6172 irb->irb_tmp_ire_cnt--; 6173 } 6174 rw_exit(&irb->irb_lock); 6175 } 6176 connp->conn_ire_cache = ire; 6177 cached = B_TRUE; 6178 } 6179 mutex_exit(&connp->conn_lock); 6180 6181 /* 6182 * We can continue to use the ire but since it was not 6183 * cached, we should drop the extra reference. 6184 */ 6185 if (!cached) 6186 IRE_REFRELE_NOTR(ire); 6187 } 6188 ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION); 6189 ASSERT(!CLASSD(dst) || ipif != NULL); 6190 6191 /* 6192 * Check if we can take the fast-path. 6193 * Note that "incomplete" ire's (where the link-layer for next hop 6194 * is not resolved, or where the fast-path header in nce_fp_mp is not 6195 * available yet) are sent down the legacy (slow) path 6196 */ 6197 if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) || 6198 (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) || 6199 (ire->ire_max_frag < ntohs(ipha->ipha_length)) || 6200 ((ire->ire_nce == NULL) || 6201 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL)) || 6202 connp->conn_nexthop_set || (MBLKL(ire_fp_mp) > MBLKHEAD(mp))) { 6203 if (ipif != NULL) 6204 ipif_refrele(ipif); 6205 UDP_STAT(us, udp_ip_ire_send); 6206 IRE_REFRELE(ire); 6207 ip_output(connp, mp, q, IP_WPUT); 6208 return; 6209 } 6210 6211 if (src == INADDR_ANY && !connp->conn_unspec_src) { 6212 if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC)) 6213 ipha->ipha_src = ipif->ipif_src_addr; 6214 else 6215 ipha->ipha_src = ire->ire_src_addr; 6216 } 6217 6218 if (ipif != NULL) 6219 ipif_refrele(ipif); 6220 6221 udp_xmit(connp->conn_wq, mp, ire, connp, connp->conn_zoneid); 6222 } 6223 6224 static void 6225 udp_xmit(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, zoneid_t zoneid) 6226 { 6227 ipaddr_t src, dst; 6228 ill_t *ill; 6229 mblk_t *ire_fp_mp; 6230 uint_t ire_fp_mp_len; 6231 uint16_t *up; 6232 uint32_t cksum, hcksum_txflags; 6233 queue_t *dev_q; 6234 udp_t *udp = connp->conn_udp; 6235 ipha_t *ipha = (ipha_t *)mp->b_rptr; 6236 udp_stack_t *us = udp->udp_us; 6237 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6238 boolean_t ll_multicast = B_FALSE; 6239 6240 dev_q = ire->ire_stq->q_next; 6241 ASSERT(dev_q != NULL); 6242 6243 6244 if (DEV_Q_IS_FLOW_CTLED(dev_q)) { 6245 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsHCOutRequests); 6246 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards); 6247 if (ipst->ips_ip_output_queue) 6248 (void) putq(connp->conn_wq, mp); 6249 else 6250 freemsg(mp); 6251 ire_refrele(ire); 6252 return; 6253 } 6254 6255 ire_fp_mp = ire->ire_nce->nce_fp_mp; 6256 ire_fp_mp_len = MBLKL(ire_fp_mp); 6257 ASSERT(MBLKHEAD(mp) >= ire_fp_mp_len); 6258 6259 dst = ipha->ipha_dst; 6260 src = ipha->ipha_src; 6261 6262 ill = ire_to_ill(ire); 6263 ASSERT(ill != NULL); 6264 6265 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 6266 6267 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 6268 #ifndef _BIG_ENDIAN 6269 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 6270 #endif 6271 6272 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 6273 ASSERT(ill->ill_hcksum_capab != NULL); 6274 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 6275 } else { 6276 hcksum_txflags = 0; 6277 } 6278 6279 /* pseudo-header checksum (do it in parts for IP header checksum) */ 6280 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 6281 6282 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 6283 up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 6284 if (*up != 0) { 6285 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, 6286 mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH, 6287 ntohs(ipha->ipha_length), cksum); 6288 6289 /* Software checksum? */ 6290 if (DB_CKSUMFLAGS(mp) == 0) { 6291 UDP_STAT(us, udp_out_sw_cksum); 6292 UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes, 6293 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 6294 } 6295 } 6296 6297 if (!CLASSD(dst)) { 6298 ipha->ipha_fragment_offset_and_flags |= 6299 (uint32_t)htons(ire->ire_frag_flag); 6300 } 6301 6302 /* Calculate IP header checksum if hardware isn't capable */ 6303 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 6304 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 6305 ((uint16_t *)ipha)[4]); 6306 } 6307 6308 if (CLASSD(dst)) { 6309 boolean_t ilm_exists; 6310 6311 ILM_WALKER_HOLD(ill); 6312 ilm_exists = (ilm_lookup_ill(ill, dst, ALL_ZONES) != NULL); 6313 ILM_WALKER_RELE(ill); 6314 if (ilm_exists) { 6315 ip_multicast_loopback(q, ill, mp, 6316 connp->conn_multicast_loop ? 0 : 6317 IP_FF_NO_MCAST_LOOP, zoneid); 6318 } 6319 6320 /* If multicast TTL is 0 then we are done */ 6321 if (ipha->ipha_ttl == 0) { 6322 freemsg(mp); 6323 ire_refrele(ire); 6324 return; 6325 } 6326 ll_multicast = B_TRUE; 6327 } 6328 6329 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 6330 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 6331 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 6332 6333 UPDATE_OB_PKT_COUNT(ire); 6334 ire->ire_last_used_time = lbolt; 6335 6336 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 6337 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 6338 ntohs(ipha->ipha_length)); 6339 6340 if (ILL_DLS_CAPABLE(ill)) { 6341 /* 6342 * Send the packet directly to DLD, where it may be queued 6343 * depending on the availability of transmit resources at 6344 * the media layer. 6345 */ 6346 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 6347 } else { 6348 DTRACE_PROBE4(ip4__physical__out__start, 6349 ill_t *, NULL, ill_t *, ill, 6350 ipha_t *, ipha, mblk_t *, mp); 6351 FW_HOOKS(ipst->ips_ip4_physical_out_event, 6352 ipst->ips_ipv4firewall_physical_out, 6353 NULL, ill, ipha, mp, mp, ll_multicast, ipst); 6354 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 6355 if (mp != NULL) { 6356 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, 6357 void_ip_t *, ipha, __dtrace_ipsr_ill_t *, ill, 6358 ipha_t *, ipha, ip6_t *, NULL, int, 0); 6359 putnext(ire->ire_stq, mp); 6360 } 6361 } 6362 6363 IRE_REFRELE(ire); 6364 } 6365 6366 static boolean_t 6367 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst) 6368 { 6369 udp_t *udp = Q_TO_UDP(wq); 6370 int err; 6371 uchar_t opt_storage[TSOL_MAX_IPV6_OPTION]; 6372 udp_stack_t *us = udp->udp_us; 6373 6374 err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred), 6375 dst, opt_storage, udp->udp_connp->conn_mac_exempt, 6376 us->us_netstack->netstack_ip); 6377 if (err == 0) { 6378 err = tsol_update_sticky(&udp->udp_sticky_ipp, 6379 &udp->udp_label_len_v6, opt_storage); 6380 } 6381 if (err != 0) { 6382 DTRACE_PROBE4( 6383 tx__ip__log__drop__updatelabel__udp6, 6384 char *, "queue(1) failed to update options(2) on mp(3)", 6385 queue_t *, wq, char *, opt_storage, mblk_t *, mp); 6386 } else { 6387 udp->udp_v6lastdst = *dst; 6388 } 6389 return (err); 6390 } 6391 6392 void 6393 udp_output_connected(void *arg, mblk_t *mp) 6394 { 6395 conn_t *connp = (conn_t *)arg; 6396 udp_t *udp = connp->conn_udp; 6397 udp_stack_t *us = udp->udp_us; 6398 ipaddr_t v4dst; 6399 in_port_t dstport; 6400 boolean_t mapped_addr; 6401 struct sockaddr_storage ss; 6402 sin_t *sin; 6403 sin6_t *sin6; 6404 struct sockaddr *addr; 6405 socklen_t addrlen; 6406 int error; 6407 boolean_t insert_spi = udp->udp_nat_t_endpoint; 6408 6409 /* M_DATA for connected socket */ 6410 6411 ASSERT(udp->udp_issocket); 6412 UDP_DBGSTAT(us, udp_data_conn); 6413 6414 mutex_enter(&connp->conn_lock); 6415 if (udp->udp_state != TS_DATA_XFER) { 6416 mutex_exit(&connp->conn_lock); 6417 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 6418 UDP_STAT(us, udp_out_err_notconn); 6419 freemsg(mp); 6420 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6421 "udp_wput_end: connp %p (%S)", connp, 6422 "not-connected; address required"); 6423 return; 6424 } 6425 6426 mapped_addr = IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst); 6427 if (mapped_addr) 6428 IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst); 6429 6430 /* Initialize addr and addrlen as if they're passed in */ 6431 if (udp->udp_family == AF_INET) { 6432 sin = (sin_t *)&ss; 6433 sin->sin_family = AF_INET; 6434 dstport = sin->sin_port = udp->udp_dstport; 6435 ASSERT(mapped_addr); 6436 sin->sin_addr.s_addr = v4dst; 6437 addr = (struct sockaddr *)sin; 6438 addrlen = sizeof (*sin); 6439 } else { 6440 sin6 = (sin6_t *)&ss; 6441 sin6->sin6_family = AF_INET6; 6442 dstport = sin6->sin6_port = udp->udp_dstport; 6443 sin6->sin6_flowinfo = udp->udp_flowinfo; 6444 sin6->sin6_addr = udp->udp_v6dst; 6445 sin6->sin6_scope_id = 0; 6446 sin6->__sin6_src_id = 0; 6447 addr = (struct sockaddr *)sin6; 6448 addrlen = sizeof (*sin6); 6449 } 6450 mutex_exit(&connp->conn_lock); 6451 6452 if (mapped_addr) { 6453 /* 6454 * Handle both AF_INET and AF_INET6; the latter 6455 * for IPV4 mapped destination addresses. Note 6456 * here that both addr and addrlen point to the 6457 * corresponding struct depending on the address 6458 * family of the socket. 6459 */ 6460 mp = udp_output_v4(connp, mp, v4dst, dstport, 0, &error, 6461 insert_spi); 6462 } else { 6463 mp = udp_output_v6(connp, mp, sin6, &error); 6464 } 6465 if (error == 0) { 6466 ASSERT(mp == NULL); 6467 return; 6468 } 6469 6470 UDP_STAT(us, udp_out_err_output); 6471 ASSERT(mp != NULL); 6472 /* mp is freed by the following routine */ 6473 udp_ud_err(connp->conn_wq, mp, (uchar_t *)addr, (t_scalar_t)addrlen, 6474 (t_scalar_t)error); 6475 } 6476 6477 /* 6478 * This routine handles all messages passed downstream. It either 6479 * consumes the message or passes it downstream; it never queues a 6480 * a message. 6481 * 6482 * Also entry point for sockfs when udp is in "direct sockfs" mode. This mode 6483 * is valid when we are directly beneath the stream head, and thus sockfs 6484 * is able to bypass STREAMS and directly call us, passing along the sockaddr 6485 * structure without the cumbersome T_UNITDATA_REQ interface for the case of 6486 * connected endpoints. 6487 */ 6488 void 6489 udp_wput(queue_t *q, mblk_t *mp) 6490 { 6491 sin6_t *sin6; 6492 sin_t *sin; 6493 ipaddr_t v4dst; 6494 uint16_t port; 6495 uint_t srcid; 6496 conn_t *connp = Q_TO_CONN(q); 6497 udp_t *udp = connp->conn_udp; 6498 int error = 0; 6499 struct sockaddr *addr; 6500 socklen_t addrlen; 6501 udp_stack_t *us = udp->udp_us; 6502 boolean_t insert_spi = udp->udp_nat_t_endpoint; 6503 6504 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START, 6505 "udp_wput_start: queue %p mp %p", q, mp); 6506 6507 /* 6508 * We directly handle several cases here: T_UNITDATA_REQ message 6509 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for connected 6510 * socket. 6511 */ 6512 switch (DB_TYPE(mp)) { 6513 case M_DATA: 6514 /* 6515 * Quick check for error cases. Checks will be done again 6516 * under the lock later on 6517 */ 6518 if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) { 6519 /* Not connected; address is required */ 6520 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 6521 UDP_STAT(us, udp_out_err_notconn); 6522 freemsg(mp); 6523 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6524 "udp_wput_end: connp %p (%S)", connp, 6525 "not-connected; address required"); 6526 return; 6527 } 6528 udp_output_connected(connp, mp); 6529 return; 6530 6531 case M_PROTO: 6532 case M_PCPROTO: { 6533 struct T_unitdata_req *tudr; 6534 6535 ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX); 6536 tudr = (struct T_unitdata_req *)mp->b_rptr; 6537 6538 /* Handle valid T_UNITDATA_REQ here */ 6539 if (MBLKL(mp) >= sizeof (*tudr) && 6540 ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) { 6541 if (mp->b_cont == NULL) { 6542 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6543 "udp_wput_end: q %p (%S)", q, "badaddr"); 6544 error = EPROTO; 6545 goto ud_error; 6546 } 6547 6548 if (!MBLKIN(mp, 0, tudr->DEST_offset + 6549 tudr->DEST_length)) { 6550 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6551 "udp_wput_end: q %p (%S)", q, "badaddr"); 6552 error = EADDRNOTAVAIL; 6553 goto ud_error; 6554 } 6555 /* 6556 * If a port has not been bound to the stream, fail. 6557 * This is not a problem when sockfs is directly 6558 * above us, because it will ensure that the socket 6559 * is first bound before allowing data to be sent. 6560 */ 6561 if (udp->udp_state == TS_UNBND) { 6562 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6563 "udp_wput_end: q %p (%S)", q, "outstate"); 6564 error = EPROTO; 6565 goto ud_error; 6566 } 6567 addr = (struct sockaddr *) 6568 &mp->b_rptr[tudr->DEST_offset]; 6569 addrlen = tudr->DEST_length; 6570 if (tudr->OPT_length != 0) 6571 UDP_STAT(us, udp_out_opt); 6572 break; 6573 } 6574 /* FALLTHRU */ 6575 } 6576 default: 6577 udp_wput_other(q, mp); 6578 return; 6579 } 6580 ASSERT(addr != NULL); 6581 6582 switch (udp->udp_family) { 6583 case AF_INET6: 6584 sin6 = (sin6_t *)addr; 6585 if (!OK_32PTR((char *)sin6) || (addrlen != sizeof (sin6_t)) || 6586 (sin6->sin6_family != AF_INET6)) { 6587 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6588 "udp_wput_end: q %p (%S)", q, "badaddr"); 6589 error = EADDRNOTAVAIL; 6590 goto ud_error; 6591 } 6592 6593 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6594 /* 6595 * Destination is a non-IPv4-compatible IPv6 address. 6596 * Send out an IPv6 format packet. 6597 */ 6598 mp = udp_output_v6(connp, mp, sin6, &error); 6599 if (error != 0) 6600 goto ud_error; 6601 6602 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6603 "udp_wput_end: q %p (%S)", q, "udp_output_v6"); 6604 return; 6605 } 6606 /* 6607 * If the local address is not zero or a mapped address 6608 * return an error. It would be possible to send an IPv4 6609 * packet but the response would never make it back to the 6610 * application since it is bound to a non-mapped address. 6611 */ 6612 if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) && 6613 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 6614 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6615 "udp_wput_end: q %p (%S)", q, "badaddr"); 6616 error = EADDRNOTAVAIL; 6617 goto ud_error; 6618 } 6619 /* Send IPv4 packet without modifying udp_ipversion */ 6620 /* Extract port and ipaddr */ 6621 port = sin6->sin6_port; 6622 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst); 6623 srcid = sin6->__sin6_src_id; 6624 break; 6625 6626 case AF_INET: 6627 sin = (sin_t *)addr; 6628 if ((!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t)) || 6629 (sin->sin_family != AF_INET)) { 6630 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END, 6631 "udp_wput_end: q %p (%S)", q, "badaddr"); 6632 error = EADDRNOTAVAIL; 6633 goto ud_error; 6634 } 6635 /* Extract port and ipaddr */ 6636 port = sin->sin_port; 6637 v4dst = sin->sin_addr.s_addr; 6638 srcid = 0; 6639 break; 6640 } 6641 6642 mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error, insert_spi); 6643 if (error != 0) { 6644 ud_error: 6645 UDP_STAT(us, udp_out_err_output); 6646 ASSERT(mp != NULL); 6647 /* mp is freed by the following routine */ 6648 udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen, 6649 (t_scalar_t)error); 6650 } 6651 } 6652 6653 /* 6654 * udp_output_v6(): 6655 * Assumes that udp_wput did some sanity checking on the destination 6656 * address. 6657 */ 6658 static mblk_t * 6659 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error) 6660 { 6661 ip6_t *ip6h; 6662 ip6i_t *ip6i; /* mp1->b_rptr even if no ip6i_t */ 6663 mblk_t *mp1 = mp; 6664 mblk_t *mp2; 6665 int udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE; 6666 size_t ip_len; 6667 udpha_t *udph; 6668 udp_t *udp = connp->conn_udp; 6669 queue_t *q = connp->conn_wq; 6670 ip6_pkt_t ipp_s; /* For ancillary data options */ 6671 ip6_pkt_t *ipp = &ipp_s; 6672 ip6_pkt_t *tipp; /* temporary ipp */ 6673 uint32_t csum = 0; 6674 uint_t ignore = 0; 6675 uint_t option_exists = 0, is_sticky = 0; 6676 uint8_t *cp; 6677 uint8_t *nxthdr_ptr; 6678 in6_addr_t ip6_dst; 6679 udpattrs_t attrs; 6680 boolean_t opt_present; 6681 ip6_hbh_t *hopoptsptr = NULL; 6682 uint_t hopoptslen = 0; 6683 boolean_t is_ancillary = B_FALSE; 6684 udp_stack_t *us = udp->udp_us; 6685 size_t sth_wroff = 0; 6686 6687 *error = 0; 6688 6689 /* 6690 * If the local address is a mapped address return 6691 * an error. 6692 * It would be possible to send an IPv6 packet but the 6693 * response would never make it back to the application 6694 * since it is bound to a mapped address. 6695 */ 6696 if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) { 6697 *error = EADDRNOTAVAIL; 6698 goto done; 6699 } 6700 6701 ipp->ipp_fields = 0; 6702 ipp->ipp_sticky_ignored = 0; 6703 6704 /* 6705 * If TPI options passed in, feed it for verification and handling 6706 */ 6707 attrs.udpattr_credset = B_FALSE; 6708 opt_present = B_FALSE; 6709 if (DB_TYPE(mp) != M_DATA) { 6710 mp1 = mp->b_cont; 6711 if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) { 6712 attrs.udpattr_ipp6 = ipp; 6713 attrs.udpattr_mb = mp; 6714 if (udp_unitdata_opt_process(q, mp, error, 6715 &attrs) < 0) { 6716 goto done; 6717 } 6718 ASSERT(*error == 0); 6719 opt_present = B_TRUE; 6720 } 6721 } 6722 rw_enter(&udp->udp_rwlock, RW_READER); 6723 ignore = ipp->ipp_sticky_ignored; 6724 6725 /* mp1 points to the M_DATA mblk carrying the packet */ 6726 ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA); 6727 6728 if (sin6->sin6_scope_id != 0 && 6729 IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) { 6730 /* 6731 * IPPF_SCOPE_ID is special. It's neither a sticky 6732 * option nor ancillary data. It needs to be 6733 * explicitly set in options_exists. 6734 */ 6735 option_exists |= IPPF_SCOPE_ID; 6736 } 6737 6738 /* 6739 * Compute the destination address 6740 */ 6741 ip6_dst = sin6->sin6_addr; 6742 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) 6743 ip6_dst = ipv6_loopback; 6744 6745 /* 6746 * If we're not going to the same destination as last time, then 6747 * recompute the label required. This is done in a separate routine to 6748 * avoid blowing up our stack here. 6749 * 6750 * TSOL Note: Since we are not in WRITER mode, UDP packets 6751 * to different destination may require different labels, 6752 * or worse, UDP packets to same IP address may require 6753 * different labels due to use of shared all-zones address. 6754 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts, 6755 * and sticky ipp_hopoptslen are consistent for the current 6756 * destination and are updated atomically. 6757 */ 6758 mutex_enter(&connp->conn_lock); 6759 if (is_system_labeled()) { 6760 /* Using UDP MLP requires SCM_UCRED from user */ 6761 if (connp->conn_mlp_type != mlptSingle && 6762 !attrs.udpattr_credset) { 6763 DTRACE_PROBE4( 6764 tx__ip__log__info__output__udp6, 6765 char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)", 6766 mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q); 6767 *error = ECONNREFUSED; 6768 rw_exit(&udp->udp_rwlock); 6769 mutex_exit(&connp->conn_lock); 6770 goto done; 6771 } 6772 /* 6773 * update label option for this UDP socket if 6774 * - the destination has changed, or 6775 * - the UDP socket is MLP 6776 */ 6777 if ((opt_present || 6778 !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst) || 6779 connp->conn_mlp_type != mlptSingle) && 6780 (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) { 6781 rw_exit(&udp->udp_rwlock); 6782 mutex_exit(&connp->conn_lock); 6783 goto done; 6784 } 6785 } 6786 6787 /* 6788 * If there's a security label here, then we ignore any options the 6789 * user may try to set. We keep the peer's label as a hidden sticky 6790 * option. We make a private copy of this label before releasing the 6791 * lock so that label is kept consistent with the destination addr. 6792 */ 6793 if (udp->udp_label_len_v6 > 0) { 6794 ignore &= ~IPPF_HOPOPTS; 6795 ipp->ipp_fields &= ~IPPF_HOPOPTS; 6796 } 6797 6798 if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) { 6799 /* No sticky options nor ancillary data. */ 6800 mutex_exit(&connp->conn_lock); 6801 goto no_options; 6802 } 6803 6804 /* 6805 * Go through the options figuring out where each is going to 6806 * come from and build two masks. The first mask indicates if 6807 * the option exists at all. The second mask indicates if the 6808 * option is sticky or ancillary. 6809 */ 6810 if (!(ignore & IPPF_HOPOPTS)) { 6811 if (ipp->ipp_fields & IPPF_HOPOPTS) { 6812 option_exists |= IPPF_HOPOPTS; 6813 udp_ip_hdr_len += ipp->ipp_hopoptslen; 6814 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) { 6815 option_exists |= IPPF_HOPOPTS; 6816 is_sticky |= IPPF_HOPOPTS; 6817 ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0); 6818 hopoptsptr = kmem_alloc( 6819 udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP); 6820 if (hopoptsptr == NULL) { 6821 *error = ENOMEM; 6822 mutex_exit(&connp->conn_lock); 6823 goto done; 6824 } 6825 hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen; 6826 bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr, 6827 hopoptslen); 6828 udp_ip_hdr_len += hopoptslen; 6829 } 6830 } 6831 mutex_exit(&connp->conn_lock); 6832 6833 if (!(ignore & IPPF_RTHDR)) { 6834 if (ipp->ipp_fields & IPPF_RTHDR) { 6835 option_exists |= IPPF_RTHDR; 6836 udp_ip_hdr_len += ipp->ipp_rthdrlen; 6837 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) { 6838 option_exists |= IPPF_RTHDR; 6839 is_sticky |= IPPF_RTHDR; 6840 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen; 6841 } 6842 } 6843 6844 if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) { 6845 if (ipp->ipp_fields & IPPF_RTDSTOPTS) { 6846 option_exists |= IPPF_RTDSTOPTS; 6847 udp_ip_hdr_len += ipp->ipp_rtdstoptslen; 6848 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) { 6849 option_exists |= IPPF_RTDSTOPTS; 6850 is_sticky |= IPPF_RTDSTOPTS; 6851 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen; 6852 } 6853 } 6854 6855 if (!(ignore & IPPF_DSTOPTS)) { 6856 if (ipp->ipp_fields & IPPF_DSTOPTS) { 6857 option_exists |= IPPF_DSTOPTS; 6858 udp_ip_hdr_len += ipp->ipp_dstoptslen; 6859 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) { 6860 option_exists |= IPPF_DSTOPTS; 6861 is_sticky |= IPPF_DSTOPTS; 6862 udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen; 6863 } 6864 } 6865 6866 if (!(ignore & IPPF_IFINDEX)) { 6867 if (ipp->ipp_fields & IPPF_IFINDEX) { 6868 option_exists |= IPPF_IFINDEX; 6869 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) { 6870 option_exists |= IPPF_IFINDEX; 6871 is_sticky |= IPPF_IFINDEX; 6872 } 6873 } 6874 6875 if (!(ignore & IPPF_ADDR)) { 6876 if (ipp->ipp_fields & IPPF_ADDR) { 6877 option_exists |= IPPF_ADDR; 6878 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) { 6879 option_exists |= IPPF_ADDR; 6880 is_sticky |= IPPF_ADDR; 6881 } 6882 } 6883 6884 if (!(ignore & IPPF_DONTFRAG)) { 6885 if (ipp->ipp_fields & IPPF_DONTFRAG) { 6886 option_exists |= IPPF_DONTFRAG; 6887 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) { 6888 option_exists |= IPPF_DONTFRAG; 6889 is_sticky |= IPPF_DONTFRAG; 6890 } 6891 } 6892 6893 if (!(ignore & IPPF_USE_MIN_MTU)) { 6894 if (ipp->ipp_fields & IPPF_USE_MIN_MTU) { 6895 option_exists |= IPPF_USE_MIN_MTU; 6896 } else if (udp->udp_sticky_ipp.ipp_fields & 6897 IPPF_USE_MIN_MTU) { 6898 option_exists |= IPPF_USE_MIN_MTU; 6899 is_sticky |= IPPF_USE_MIN_MTU; 6900 } 6901 } 6902 6903 if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT)) 6904 option_exists |= IPPF_HOPLIMIT; 6905 /* IPV6_HOPLIMIT can never be sticky */ 6906 ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT)); 6907 6908 if (!(ignore & IPPF_UNICAST_HOPS) && 6909 (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) { 6910 option_exists |= IPPF_UNICAST_HOPS; 6911 is_sticky |= IPPF_UNICAST_HOPS; 6912 } 6913 6914 if (!(ignore & IPPF_MULTICAST_HOPS) && 6915 (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) { 6916 option_exists |= IPPF_MULTICAST_HOPS; 6917 is_sticky |= IPPF_MULTICAST_HOPS; 6918 } 6919 6920 if (!(ignore & IPPF_TCLASS)) { 6921 if (ipp->ipp_fields & IPPF_TCLASS) { 6922 option_exists |= IPPF_TCLASS; 6923 } else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) { 6924 option_exists |= IPPF_TCLASS; 6925 is_sticky |= IPPF_TCLASS; 6926 } 6927 } 6928 6929 if (!(ignore & IPPF_NEXTHOP) && 6930 (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) { 6931 option_exists |= IPPF_NEXTHOP; 6932 is_sticky |= IPPF_NEXTHOP; 6933 } 6934 6935 no_options: 6936 6937 /* 6938 * If any options carried in the ip6i_t were specified, we 6939 * need to account for the ip6i_t in the data we'll be sending 6940 * down. 6941 */ 6942 if (option_exists & IPPF_HAS_IP6I) 6943 udp_ip_hdr_len += sizeof (ip6i_t); 6944 6945 /* check/fix buffer config, setup pointers into it */ 6946 ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len]; 6947 if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) || 6948 !OK_32PTR(ip6h)) { 6949 6950 /* Try to get everything in a single mblk next time */ 6951 if (udp_ip_hdr_len > udp->udp_max_hdr_len) { 6952 udp->udp_max_hdr_len = udp_ip_hdr_len; 6953 sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra; 6954 } 6955 6956 mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO); 6957 if (mp2 == NULL) { 6958 *error = ENOMEM; 6959 rw_exit(&udp->udp_rwlock); 6960 goto done; 6961 } 6962 mp2->b_wptr = DB_LIM(mp2); 6963 mp2->b_cont = mp1; 6964 mp1 = mp2; 6965 if (DB_TYPE(mp) != M_DATA) 6966 mp->b_cont = mp1; 6967 else 6968 mp = mp1; 6969 6970 ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len); 6971 } 6972 mp1->b_rptr = (unsigned char *)ip6h; 6973 ip6i = (ip6i_t *)ip6h; 6974 6975 #define ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp) 6976 if (option_exists & IPPF_HAS_IP6I) { 6977 ip6h = (ip6_t *)&ip6i[1]; 6978 ip6i->ip6i_flags = 0; 6979 ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 6980 6981 /* sin6_scope_id takes precendence over IPPF_IFINDEX */ 6982 if (option_exists & IPPF_SCOPE_ID) { 6983 ip6i->ip6i_flags |= IP6I_IFINDEX; 6984 ip6i->ip6i_ifindex = sin6->sin6_scope_id; 6985 } else if (option_exists & IPPF_IFINDEX) { 6986 tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX); 6987 ASSERT(tipp->ipp_ifindex != 0); 6988 ip6i->ip6i_flags |= IP6I_IFINDEX; 6989 ip6i->ip6i_ifindex = tipp->ipp_ifindex; 6990 } 6991 6992 if (option_exists & IPPF_ADDR) { 6993 /* 6994 * Enable per-packet source address verification if 6995 * IPV6_PKTINFO specified the source address. 6996 * ip6_src is set in the transport's _wput function. 6997 */ 6998 ip6i->ip6i_flags |= IP6I_VERIFY_SRC; 6999 } 7000 7001 if (option_exists & IPPF_DONTFRAG) { 7002 ip6i->ip6i_flags |= IP6I_DONTFRAG; 7003 } 7004 7005 if (option_exists & IPPF_USE_MIN_MTU) { 7006 ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU( 7007 ip6i->ip6i_flags, ipp->ipp_use_min_mtu); 7008 } 7009 7010 if (option_exists & IPPF_NEXTHOP) { 7011 tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP); 7012 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop)); 7013 ip6i->ip6i_flags |= IP6I_NEXTHOP; 7014 ip6i->ip6i_nexthop = tipp->ipp_nexthop; 7015 } 7016 7017 /* 7018 * tell IP this is an ip6i_t private header 7019 */ 7020 ip6i->ip6i_nxt = IPPROTO_RAW; 7021 } 7022 7023 /* Initialize IPv6 header */ 7024 ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7025 bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src)); 7026 7027 /* Set the hoplimit of the outgoing packet. */ 7028 if (option_exists & IPPF_HOPLIMIT) { 7029 /* IPV6_HOPLIMIT ancillary data overrides all other settings. */ 7030 ip6h->ip6_hops = ipp->ipp_hoplimit; 7031 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7032 } else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { 7033 ip6h->ip6_hops = udp->udp_multicast_ttl; 7034 if (option_exists & IPPF_MULTICAST_HOPS) 7035 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7036 } else { 7037 ip6h->ip6_hops = udp->udp_ttl; 7038 if (option_exists & IPPF_UNICAST_HOPS) 7039 ip6i->ip6i_flags |= IP6I_HOPLIMIT; 7040 } 7041 7042 if (option_exists & IPPF_ADDR) { 7043 tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR); 7044 ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr)); 7045 ip6h->ip6_src = tipp->ipp_addr; 7046 } else { 7047 /* 7048 * The source address was not set using IPV6_PKTINFO. 7049 * First look at the bound source. 7050 * If unspecified fallback to __sin6_src_id. 7051 */ 7052 ip6h->ip6_src = udp->udp_v6src; 7053 if (sin6->__sin6_src_id != 0 && 7054 IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) { 7055 ip_srcid_find_id(sin6->__sin6_src_id, 7056 &ip6h->ip6_src, connp->conn_zoneid, 7057 us->us_netstack); 7058 } 7059 } 7060 7061 nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt; 7062 cp = (uint8_t *)&ip6h[1]; 7063 7064 /* 7065 * Here's where we have to start stringing together 7066 * any extension headers in the right order: 7067 * Hop-by-hop, destination, routing, and final destination opts. 7068 */ 7069 if (option_exists & IPPF_HOPOPTS) { 7070 /* Hop-by-hop options */ 7071 ip6_hbh_t *hbh = (ip6_hbh_t *)cp; 7072 tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS); 7073 if (hopoptslen == 0) { 7074 hopoptsptr = tipp->ipp_hopopts; 7075 hopoptslen = tipp->ipp_hopoptslen; 7076 is_ancillary = B_TRUE; 7077 } 7078 7079 *nxthdr_ptr = IPPROTO_HOPOPTS; 7080 nxthdr_ptr = &hbh->ip6h_nxt; 7081 7082 bcopy(hopoptsptr, cp, hopoptslen); 7083 cp += hopoptslen; 7084 7085 if (hopoptsptr != NULL && !is_ancillary) { 7086 kmem_free(hopoptsptr, hopoptslen); 7087 hopoptsptr = NULL; 7088 hopoptslen = 0; 7089 } 7090 } 7091 /* 7092 * En-route destination options 7093 * Only do them if there's a routing header as well 7094 */ 7095 if (option_exists & IPPF_RTDSTOPTS) { 7096 ip6_dest_t *dst = (ip6_dest_t *)cp; 7097 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS); 7098 7099 *nxthdr_ptr = IPPROTO_DSTOPTS; 7100 nxthdr_ptr = &dst->ip6d_nxt; 7101 7102 bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen); 7103 cp += tipp->ipp_rtdstoptslen; 7104 } 7105 /* 7106 * Routing header next 7107 */ 7108 if (option_exists & IPPF_RTHDR) { 7109 ip6_rthdr_t *rt = (ip6_rthdr_t *)cp; 7110 tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR); 7111 7112 *nxthdr_ptr = IPPROTO_ROUTING; 7113 nxthdr_ptr = &rt->ip6r_nxt; 7114 7115 bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen); 7116 cp += tipp->ipp_rthdrlen; 7117 } 7118 /* 7119 * Do ultimate destination options 7120 */ 7121 if (option_exists & IPPF_DSTOPTS) { 7122 ip6_dest_t *dest = (ip6_dest_t *)cp; 7123 tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS); 7124 7125 *nxthdr_ptr = IPPROTO_DSTOPTS; 7126 nxthdr_ptr = &dest->ip6d_nxt; 7127 7128 bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen); 7129 cp += tipp->ipp_dstoptslen; 7130 } 7131 /* 7132 * Now set the last header pointer to the proto passed in 7133 */ 7134 ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE)); 7135 *nxthdr_ptr = IPPROTO_UDP; 7136 7137 /* Update UDP header */ 7138 udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE); 7139 udph->uha_dst_port = sin6->sin6_port; 7140 udph->uha_src_port = udp->udp_port; 7141 7142 /* 7143 * Copy in the destination address 7144 */ 7145 ip6h->ip6_dst = ip6_dst; 7146 7147 ip6h->ip6_vcf = 7148 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 7149 (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 7150 7151 if (option_exists & IPPF_TCLASS) { 7152 tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS); 7153 ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf, 7154 tipp->ipp_tclass); 7155 } 7156 rw_exit(&udp->udp_rwlock); 7157 7158 if (option_exists & IPPF_RTHDR) { 7159 ip6_rthdr_t *rth; 7160 7161 /* 7162 * Perform any processing needed for source routing. 7163 * We know that all extension headers will be in the same mblk 7164 * as the IPv6 header. 7165 */ 7166 rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr); 7167 if (rth != NULL && rth->ip6r_segleft != 0) { 7168 if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) { 7169 /* 7170 * Drop packet - only support Type 0 routing. 7171 * Notify the application as well. 7172 */ 7173 *error = EPROTO; 7174 goto done; 7175 } 7176 7177 /* 7178 * rth->ip6r_len is twice the number of 7179 * addresses in the header. Thus it must be even. 7180 */ 7181 if (rth->ip6r_len & 0x1) { 7182 *error = EPROTO; 7183 goto done; 7184 } 7185 /* 7186 * Shuffle the routing header and ip6_dst 7187 * addresses, and get the checksum difference 7188 * between the first hop (in ip6_dst) and 7189 * the destination (in the last routing hdr entry). 7190 */ 7191 csum = ip_massage_options_v6(ip6h, rth, 7192 us->us_netstack); 7193 /* 7194 * Verify that the first hop isn't a mapped address. 7195 * Routers along the path need to do this verification 7196 * for subsequent hops. 7197 */ 7198 if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) { 7199 *error = EADDRNOTAVAIL; 7200 goto done; 7201 } 7202 7203 cp += (rth->ip6r_len + 1)*8; 7204 } 7205 } 7206 7207 /* count up length of UDP packet */ 7208 ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN; 7209 if ((mp2 = mp1->b_cont) != NULL) { 7210 do { 7211 ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX); 7212 ip_len += (uint32_t)MBLKL(mp2); 7213 } while ((mp2 = mp2->b_cont) != NULL); 7214 } 7215 7216 /* 7217 * If the size of the packet is greater than the maximum allowed by 7218 * ip, return an error. Passing this down could cause panics because 7219 * the size will have wrapped and be inconsistent with the msg size. 7220 */ 7221 if (ip_len > IP_MAXPACKET) { 7222 *error = EMSGSIZE; 7223 goto done; 7224 } 7225 7226 /* Store the UDP length. Subtract length of extension hdrs */ 7227 udph->uha_length = htons(ip_len + IPV6_HDR_LEN - 7228 (int)((uchar_t *)udph - (uchar_t *)ip6h)); 7229 7230 /* 7231 * We make it easy for IP to include our pseudo header 7232 * by putting our length in uh_checksum, modified (if 7233 * we have a routing header) by the checksum difference 7234 * between the ultimate destination and first hop addresses. 7235 * Note: UDP over IPv6 must always checksum the packet. 7236 */ 7237 csum += udph->uha_length; 7238 csum = (csum & 0xFFFF) + (csum >> 16); 7239 udph->uha_checksum = (uint16_t)csum; 7240 7241 #ifdef _LITTLE_ENDIAN 7242 ip_len = htons(ip_len); 7243 #endif 7244 ip6h->ip6_plen = ip_len; 7245 if (DB_CRED(mp) != NULL) 7246 mblk_setcred(mp1, DB_CRED(mp)); 7247 7248 if (DB_TYPE(mp) != M_DATA) { 7249 ASSERT(mp != mp1); 7250 freeb(mp); 7251 } 7252 7253 /* mp has been consumed and we'll return success */ 7254 ASSERT(*error == 0); 7255 mp = NULL; 7256 7257 /* We're done. Pass the packet to IP */ 7258 BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams); 7259 ip_output_v6(connp, mp1, q, IP_WPUT); 7260 7261 done: 7262 if (sth_wroff != 0) { 7263 (void) mi_set_sth_wroff(RD(q), 7264 udp->udp_max_hdr_len + us->us_wroff_extra); 7265 } 7266 if (hopoptsptr != NULL && !is_ancillary) { 7267 kmem_free(hopoptsptr, hopoptslen); 7268 hopoptsptr = NULL; 7269 } 7270 if (*error != 0) { 7271 ASSERT(mp != NULL); 7272 BUMP_MIB(&us->us_udp_mib, udpOutErrors); 7273 } 7274 return (mp); 7275 } 7276 7277 7278 static int 7279 udp_getpeername(udp_t *udp, struct sockaddr *sa, uint_t *salenp) 7280 { 7281 sin_t *sin = (sin_t *)sa; 7282 sin6_t *sin6 = (sin6_t *)sa; 7283 7284 ASSERT(RW_LOCK_HELD(&udp->udp_rwlock)); 7285 7286 if (udp->udp_state != TS_DATA_XFER) 7287 return (ENOTCONN); 7288 7289 switch (udp->udp_family) { 7290 case AF_INET: 7291 ASSERT(udp->udp_ipversion == IPV4_VERSION); 7292 7293 if (*salenp < sizeof (sin_t)) 7294 return (EINVAL); 7295 7296 *salenp = sizeof (sin_t); 7297 *sin = sin_null; 7298 sin->sin_family = AF_INET; 7299 sin->sin_port = udp->udp_dstport; 7300 sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_v6dst); 7301 break; 7302 7303 case AF_INET6: 7304 if (*salenp < sizeof (sin6_t)) 7305 return (EINVAL); 7306 7307 *salenp = sizeof (sin6_t); 7308 *sin6 = sin6_null; 7309 sin6->sin6_family = AF_INET6; 7310 sin6->sin6_port = udp->udp_dstport; 7311 sin6->sin6_addr = udp->udp_v6dst; 7312 sin6->sin6_flowinfo = udp->udp_flowinfo; 7313 break; 7314 } 7315 7316 return (0); 7317 } 7318 7319 static int 7320 udp_getmyname(udp_t *udp, struct sockaddr *sa, uint_t *salenp) 7321 { 7322 sin_t *sin = (sin_t *)sa; 7323 sin6_t *sin6 = (sin6_t *)sa; 7324 7325 ASSERT(RW_LOCK_HELD(&udp->udp_rwlock)); 7326 7327 switch (udp->udp_family) { 7328 case AF_INET: 7329 ASSERT(udp->udp_ipversion == IPV4_VERSION); 7330 7331 if (*salenp < sizeof (sin_t)) 7332 return (EINVAL); 7333 7334 *salenp = sizeof (sin_t); 7335 *sin = sin_null; 7336 sin->sin_family = AF_INET; 7337 sin->sin_port = udp->udp_port; 7338 7339 /* 7340 * If udp_v6src is unspecified, we might be bound to broadcast 7341 * / multicast. Use udp_bound_v6src as local address instead 7342 * (that could also still be unspecified). 7343 */ 7344 if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) && 7345 !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) { 7346 sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_v6src); 7347 } else { 7348 sin->sin_addr.s_addr = 7349 V4_PART_OF_V6(udp->udp_bound_v6src); 7350 } 7351 break; 7352 7353 case AF_INET6: 7354 if (*salenp < sizeof (sin6_t)) 7355 return (EINVAL); 7356 7357 *salenp = sizeof (sin6_t); 7358 *sin6 = sin6_null; 7359 sin6->sin6_family = AF_INET6; 7360 sin6->sin6_port = udp->udp_port; 7361 sin6->sin6_flowinfo = udp->udp_flowinfo; 7362 7363 /* 7364 * If udp_v6src is unspecified, we might be bound to broadcast 7365 * / multicast. Use udp_bound_v6src as local address instead 7366 * (that could also still be unspecified). 7367 */ 7368 if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) 7369 sin6->sin6_addr = udp->udp_v6src; 7370 else 7371 sin6->sin6_addr = udp->udp_bound_v6src; 7372 break; 7373 } 7374 7375 return (0); 7376 } 7377 7378 /* 7379 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 7380 */ 7381 static void 7382 udp_wput_cmdblk(queue_t *q, mblk_t *mp) 7383 { 7384 void *data; 7385 mblk_t *datamp = mp->b_cont; 7386 udp_t *udp = Q_TO_UDP(q); 7387 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 7388 7389 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 7390 cmdp->cb_error = EPROTO; 7391 qreply(q, mp); 7392 return; 7393 } 7394 data = datamp->b_rptr; 7395 7396 rw_enter(&udp->udp_rwlock, RW_READER); 7397 switch (cmdp->cb_cmd) { 7398 case TI_GETPEERNAME: 7399 cmdp->cb_error = udp_getpeername(udp, data, &cmdp->cb_len); 7400 break; 7401 case TI_GETMYNAME: 7402 cmdp->cb_error = udp_getmyname(udp, data, &cmdp->cb_len); 7403 break; 7404 default: 7405 cmdp->cb_error = EINVAL; 7406 break; 7407 } 7408 rw_exit(&udp->udp_rwlock); 7409 7410 qreply(q, mp); 7411 } 7412 7413 static void 7414 udp_wput_other(queue_t *q, mblk_t *mp) 7415 { 7416 uchar_t *rptr = mp->b_rptr; 7417 struct datab *db; 7418 struct iocblk *iocp; 7419 cred_t *cr; 7420 conn_t *connp = Q_TO_CONN(q); 7421 udp_t *udp = connp->conn_udp; 7422 udp_stack_t *us; 7423 7424 TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START, 7425 "udp_wput_other_start: q %p", q); 7426 7427 us = udp->udp_us; 7428 db = mp->b_datap; 7429 7430 cr = DB_CREDDEF(mp, connp->conn_cred); 7431 7432 switch (db->db_type) { 7433 case M_CMD: 7434 udp_wput_cmdblk(q, mp); 7435 return; 7436 7437 case M_PROTO: 7438 case M_PCPROTO: 7439 if (mp->b_wptr - rptr < sizeof (t_scalar_t)) { 7440 freemsg(mp); 7441 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7442 "udp_wput_other_end: q %p (%S)", q, "protoshort"); 7443 return; 7444 } 7445 switch (((t_primp_t)rptr)->type) { 7446 case T_ADDR_REQ: 7447 udp_addr_req(q, mp); 7448 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7449 "udp_wput_other_end: q %p (%S)", q, "addrreq"); 7450 return; 7451 case O_T_BIND_REQ: 7452 case T_BIND_REQ: 7453 udp_bind(q, mp); 7454 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7455 "udp_wput_other_end: q %p (%S)", q, "bindreq"); 7456 return; 7457 case T_CONN_REQ: 7458 udp_connect(q, mp); 7459 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7460 "udp_wput_other_end: q %p (%S)", q, "connreq"); 7461 return; 7462 case T_CAPABILITY_REQ: 7463 udp_capability_req(q, mp); 7464 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7465 "udp_wput_other_end: q %p (%S)", q, "capabreq"); 7466 return; 7467 case T_INFO_REQ: 7468 udp_info_req(q, mp); 7469 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7470 "udp_wput_other_end: q %p (%S)", q, "inforeq"); 7471 return; 7472 case T_UNITDATA_REQ: 7473 /* 7474 * If a T_UNITDATA_REQ gets here, the address must 7475 * be bad. Valid T_UNITDATA_REQs are handled 7476 * in udp_wput. 7477 */ 7478 udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL); 7479 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7480 "udp_wput_other_end: q %p (%S)", q, "unitdatareq"); 7481 return; 7482 case T_UNBIND_REQ: 7483 udp_unbind(q, mp); 7484 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7485 "udp_wput_other_end: q %p (%S)", q, "unbindreq"); 7486 return; 7487 case T_SVR4_OPTMGMT_REQ: 7488 if (!snmpcom_req(q, mp, udp_snmp_set, ip_snmp_get, 7489 cr)) { 7490 (void) svr4_optcom_req(q, 7491 mp, cr, &udp_opt_obj, B_TRUE); 7492 } 7493 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7494 "udp_wput_other_end: q %p (%S)", q, "optmgmtreq"); 7495 return; 7496 7497 case T_OPTMGMT_REQ: 7498 (void) tpi_optcom_req(q, mp, cr, &udp_opt_obj, B_TRUE); 7499 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7500 "udp_wput_other_end: q %p (%S)", q, "optmgmtreq"); 7501 return; 7502 7503 case T_DISCON_REQ: 7504 udp_disconnect(q, mp); 7505 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7506 "udp_wput_other_end: q %p (%S)", q, "disconreq"); 7507 return; 7508 7509 /* The following TPI message is not supported by udp. */ 7510 case O_T_CONN_RES: 7511 case T_CONN_RES: 7512 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7513 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7514 "udp_wput_other_end: q %p (%S)", q, 7515 "connres/disconreq"); 7516 return; 7517 7518 /* The following 3 TPI messages are illegal for udp. */ 7519 case T_DATA_REQ: 7520 case T_EXDATA_REQ: 7521 case T_ORDREL_REQ: 7522 udp_err_ack(q, mp, TNOTSUPPORT, 0); 7523 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7524 "udp_wput_other_end: q %p (%S)", q, 7525 "data/exdata/ordrel"); 7526 return; 7527 default: 7528 break; 7529 } 7530 break; 7531 case M_FLUSH: 7532 if (*rptr & FLUSHW) 7533 flushq(q, FLUSHDATA); 7534 break; 7535 case M_IOCTL: 7536 iocp = (struct iocblk *)mp->b_rptr; 7537 switch (iocp->ioc_cmd) { 7538 case TI_GETPEERNAME: 7539 if (udp->udp_state != TS_DATA_XFER) { 7540 /* 7541 * If a default destination address has not 7542 * been associated with the stream, then we 7543 * don't know the peer's name. 7544 */ 7545 iocp->ioc_error = ENOTCONN; 7546 iocp->ioc_count = 0; 7547 mp->b_datap->db_type = M_IOCACK; 7548 qreply(q, mp); 7549 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7550 "udp_wput_other_end: q %p (%S)", q, 7551 "getpeername"); 7552 return; 7553 } 7554 /* FALLTHRU */ 7555 case TI_GETMYNAME: { 7556 /* 7557 * For TI_GETPEERNAME and TI_GETMYNAME, we first 7558 * need to copyin the user's strbuf structure. 7559 * Processing will continue in the M_IOCDATA case 7560 * below. 7561 */ 7562 mi_copyin(q, mp, NULL, 7563 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 7564 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7565 "udp_wput_other_end: q %p (%S)", q, "getmyname"); 7566 return; 7567 } 7568 case ND_SET: 7569 /* nd_getset performs the necessary checking */ 7570 case ND_GET: 7571 if (nd_getset(q, us->us_nd, mp)) { 7572 qreply(q, mp); 7573 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7574 "udp_wput_other_end: q %p (%S)", q, "get"); 7575 return; 7576 } 7577 break; 7578 case _SIOCSOCKFALLBACK: 7579 /* 7580 * Either sockmod is about to be popped and the 7581 * socket would now be treated as a plain stream, 7582 * or a module is about to be pushed so we could 7583 * no longer use read-side synchronous stream. 7584 * Drain any queued data and disable direct sockfs 7585 * interface from now on. 7586 */ 7587 if (!udp->udp_issocket) { 7588 DB_TYPE(mp) = M_IOCNAK; 7589 iocp->ioc_error = EINVAL; 7590 } else { 7591 udp->udp_issocket = B_FALSE; 7592 if (udp->udp_direct_sockfs) { 7593 /* 7594 * Disable read-side synchronous 7595 * stream interface and drain any 7596 * queued data. 7597 */ 7598 udp_rcv_drain(RD(q), udp, 7599 B_FALSE); 7600 ASSERT(!udp->udp_direct_sockfs); 7601 UDP_STAT(us, udp_sock_fallback); 7602 } 7603 DB_TYPE(mp) = M_IOCACK; 7604 iocp->ioc_error = 0; 7605 } 7606 iocp->ioc_count = 0; 7607 iocp->ioc_rval = 0; 7608 qreply(q, mp); 7609 return; 7610 default: 7611 break; 7612 } 7613 break; 7614 case M_IOCDATA: 7615 udp_wput_iocdata(q, mp); 7616 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7617 "udp_wput_other_end: q %p (%S)", q, "iocdata"); 7618 return; 7619 default: 7620 /* Unrecognized messages are passed through without change. */ 7621 break; 7622 } 7623 TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END, 7624 "udp_wput_other_end: q %p (%S)", q, "end"); 7625 ip_output(connp, mp, q, IP_WPUT); 7626 } 7627 7628 /* 7629 * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA 7630 * messages. 7631 */ 7632 static void 7633 udp_wput_iocdata(queue_t *q, mblk_t *mp) 7634 { 7635 mblk_t *mp1; 7636 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7637 STRUCT_HANDLE(strbuf, sb); 7638 udp_t *udp = Q_TO_UDP(q); 7639 int error; 7640 uint_t addrlen; 7641 7642 /* Make sure it is one of ours. */ 7643 switch (iocp->ioc_cmd) { 7644 case TI_GETMYNAME: 7645 case TI_GETPEERNAME: 7646 break; 7647 default: 7648 ip_output(udp->udp_connp, mp, q, IP_WPUT); 7649 return; 7650 } 7651 7652 switch (mi_copy_state(q, mp, &mp1)) { 7653 case -1: 7654 return; 7655 case MI_COPY_CASE(MI_COPY_IN, 1): 7656 break; 7657 case MI_COPY_CASE(MI_COPY_OUT, 1): 7658 /* 7659 * The address has been copied out, so now 7660 * copyout the strbuf. 7661 */ 7662 mi_copyout(q, mp); 7663 return; 7664 case MI_COPY_CASE(MI_COPY_OUT, 2): 7665 /* 7666 * The address and strbuf have been copied out. 7667 * We're done, so just acknowledge the original 7668 * M_IOCTL. 7669 */ 7670 mi_copy_done(q, mp, 0); 7671 return; 7672 default: 7673 /* 7674 * Something strange has happened, so acknowledge 7675 * the original M_IOCTL with an EPROTO error. 7676 */ 7677 mi_copy_done(q, mp, EPROTO); 7678 return; 7679 } 7680 7681 /* 7682 * Now we have the strbuf structure for TI_GETMYNAME 7683 * and TI_GETPEERNAME. Next we copyout the requested 7684 * address and then we'll copyout the strbuf. 7685 */ 7686 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 7687 addrlen = udp->udp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 7688 if (STRUCT_FGET(sb, maxlen) < addrlen) { 7689 mi_copy_done(q, mp, EINVAL); 7690 return; 7691 } 7692 7693 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 7694 if (mp1 == NULL) 7695 return; 7696 7697 rw_enter(&udp->udp_rwlock, RW_READER); 7698 switch (iocp->ioc_cmd) { 7699 case TI_GETMYNAME: 7700 error = udp_getmyname(udp, (void *)mp1->b_rptr, &addrlen); 7701 break; 7702 case TI_GETPEERNAME: 7703 error = udp_getpeername(udp, (void *)mp1->b_rptr, &addrlen); 7704 break; 7705 } 7706 rw_exit(&udp->udp_rwlock); 7707 7708 if (error != 0) { 7709 mi_copy_done(q, mp, error); 7710 } else { 7711 mp1->b_wptr += addrlen; 7712 STRUCT_FSET(sb, len, addrlen); 7713 7714 /* Copy out the address */ 7715 mi_copyout(q, mp); 7716 } 7717 } 7718 7719 static int 7720 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp, 7721 udpattrs_t *udpattrs) 7722 { 7723 struct T_unitdata_req *udreqp; 7724 int is_absreq_failure; 7725 cred_t *cr; 7726 conn_t *connp = Q_TO_CONN(q); 7727 7728 ASSERT(((t_primp_t)mp->b_rptr)->type); 7729 7730 cr = DB_CREDDEF(mp, connp->conn_cred); 7731 7732 udreqp = (struct T_unitdata_req *)mp->b_rptr; 7733 7734 *errorp = tpi_optcom_buf(q, mp, &udreqp->OPT_length, 7735 udreqp->OPT_offset, cr, &udp_opt_obj, 7736 udpattrs, &is_absreq_failure); 7737 7738 if (*errorp != 0) { 7739 /* 7740 * Note: No special action needed in this 7741 * module for "is_absreq_failure" 7742 */ 7743 return (-1); /* failure */ 7744 } 7745 ASSERT(is_absreq_failure == 0); 7746 return (0); /* success */ 7747 } 7748 7749 void 7750 udp_ddi_init(void) 7751 { 7752 udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr, 7753 udp_opt_obj.odb_opt_arr_cnt); 7754 7755 /* 7756 * We want to be informed each time a stack is created or 7757 * destroyed in the kernel, so we can maintain the 7758 * set of udp_stack_t's. 7759 */ 7760 netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini); 7761 } 7762 7763 void 7764 udp_ddi_destroy(void) 7765 { 7766 netstack_unregister(NS_UDP); 7767 } 7768 7769 /* 7770 * Initialize the UDP stack instance. 7771 */ 7772 static void * 7773 udp_stack_init(netstackid_t stackid, netstack_t *ns) 7774 { 7775 udp_stack_t *us; 7776 udpparam_t *pa; 7777 int i; 7778 7779 us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP); 7780 us->us_netstack = ns; 7781 7782 us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS; 7783 us->us_epriv_ports[0] = 2049; 7784 us->us_epriv_ports[1] = 4045; 7785 7786 /* 7787 * The smallest anonymous port in the priviledged port range which UDP 7788 * looks for free port. Use in the option UDP_ANONPRIVBIND. 7789 */ 7790 us->us_min_anonpriv_port = 512; 7791 7792 us->us_bind_fanout_size = udp_bind_fanout_size; 7793 7794 /* Roundup variable that might have been modified in /etc/system */ 7795 if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) { 7796 /* Not a power of two. Round up to nearest power of two */ 7797 for (i = 0; i < 31; i++) { 7798 if (us->us_bind_fanout_size < (1 << i)) 7799 break; 7800 } 7801 us->us_bind_fanout_size = 1 << i; 7802 } 7803 us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size * 7804 sizeof (udp_fanout_t), KM_SLEEP); 7805 for (i = 0; i < us->us_bind_fanout_size; i++) { 7806 mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT, 7807 NULL); 7808 } 7809 7810 pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP); 7811 7812 us->us_param_arr = pa; 7813 bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr)); 7814 7815 (void) udp_param_register(&us->us_nd, 7816 us->us_param_arr, A_CNT(udp_param_arr)); 7817 7818 us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics); 7819 us->us_mibkp = udp_kstat_init(stackid); 7820 return (us); 7821 } 7822 7823 /* 7824 * Free the UDP stack instance. 7825 */ 7826 static void 7827 udp_stack_fini(netstackid_t stackid, void *arg) 7828 { 7829 udp_stack_t *us = (udp_stack_t *)arg; 7830 int i; 7831 7832 for (i = 0; i < us->us_bind_fanout_size; i++) { 7833 mutex_destroy(&us->us_bind_fanout[i].uf_lock); 7834 } 7835 7836 kmem_free(us->us_bind_fanout, us->us_bind_fanout_size * 7837 sizeof (udp_fanout_t)); 7838 7839 us->us_bind_fanout = NULL; 7840 7841 nd_free(&us->us_nd); 7842 kmem_free(us->us_param_arr, sizeof (udp_param_arr)); 7843 us->us_param_arr = NULL; 7844 7845 udp_kstat_fini(stackid, us->us_mibkp); 7846 us->us_mibkp = NULL; 7847 7848 udp_kstat2_fini(stackid, us->us_kstat); 7849 us->us_kstat = NULL; 7850 bzero(&us->us_statistics, sizeof (us->us_statistics)); 7851 kmem_free(us, sizeof (*us)); 7852 } 7853 7854 static void * 7855 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp) 7856 { 7857 kstat_t *ksp; 7858 7859 udp_stat_t template = { 7860 { "udp_ip_send", KSTAT_DATA_UINT64 }, 7861 { "udp_ip_ire_send", KSTAT_DATA_UINT64 }, 7862 { "udp_ire_null", KSTAT_DATA_UINT64 }, 7863 { "udp_drain", KSTAT_DATA_UINT64 }, 7864 { "udp_sock_fallback", KSTAT_DATA_UINT64 }, 7865 { "udp_rrw_busy", KSTAT_DATA_UINT64 }, 7866 { "udp_rrw_msgcnt", KSTAT_DATA_UINT64 }, 7867 { "udp_out_sw_cksum", KSTAT_DATA_UINT64 }, 7868 { "udp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 7869 { "udp_out_opt", KSTAT_DATA_UINT64 }, 7870 { "udp_out_err_notconn", KSTAT_DATA_UINT64 }, 7871 { "udp_out_err_output", KSTAT_DATA_UINT64 }, 7872 { "udp_out_err_tudr", KSTAT_DATA_UINT64 }, 7873 { "udp_in_pktinfo", KSTAT_DATA_UINT64 }, 7874 { "udp_in_recvdstaddr", KSTAT_DATA_UINT64 }, 7875 { "udp_in_recvopts", KSTAT_DATA_UINT64 }, 7876 { "udp_in_recvif", KSTAT_DATA_UINT64 }, 7877 { "udp_in_recvslla", KSTAT_DATA_UINT64 }, 7878 { "udp_in_recvucred", KSTAT_DATA_UINT64 }, 7879 { "udp_in_recvttl", KSTAT_DATA_UINT64 }, 7880 { "udp_in_recvhopopts", KSTAT_DATA_UINT64 }, 7881 { "udp_in_recvhoplimit", KSTAT_DATA_UINT64 }, 7882 { "udp_in_recvdstopts", KSTAT_DATA_UINT64 }, 7883 { "udp_in_recvrtdstopts", KSTAT_DATA_UINT64 }, 7884 { "udp_in_recvrthdr", KSTAT_DATA_UINT64 }, 7885 { "udp_in_recvpktinfo", KSTAT_DATA_UINT64 }, 7886 { "udp_in_recvtclass", KSTAT_DATA_UINT64 }, 7887 { "udp_in_timestamp", KSTAT_DATA_UINT64 }, 7888 #ifdef DEBUG 7889 { "udp_data_conn", KSTAT_DATA_UINT64 }, 7890 { "udp_data_notconn", KSTAT_DATA_UINT64 }, 7891 #endif 7892 }; 7893 7894 ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net", 7895 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 7896 KSTAT_FLAG_VIRTUAL, stackid); 7897 7898 if (ksp == NULL) 7899 return (NULL); 7900 7901 bcopy(&template, us_statisticsp, sizeof (template)); 7902 ksp->ks_data = (void *)us_statisticsp; 7903 ksp->ks_private = (void *)(uintptr_t)stackid; 7904 7905 kstat_install(ksp); 7906 return (ksp); 7907 } 7908 7909 static void 7910 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 7911 { 7912 if (ksp != NULL) { 7913 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 7914 kstat_delete_netstack(ksp, stackid); 7915 } 7916 } 7917 7918 static void * 7919 udp_kstat_init(netstackid_t stackid) 7920 { 7921 kstat_t *ksp; 7922 7923 udp_named_kstat_t template = { 7924 { "inDatagrams", KSTAT_DATA_UINT64, 0 }, 7925 { "inErrors", KSTAT_DATA_UINT32, 0 }, 7926 { "outDatagrams", KSTAT_DATA_UINT64, 0 }, 7927 { "entrySize", KSTAT_DATA_INT32, 0 }, 7928 { "entry6Size", KSTAT_DATA_INT32, 0 }, 7929 { "outErrors", KSTAT_DATA_UINT32, 0 }, 7930 }; 7931 7932 ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2", 7933 KSTAT_TYPE_NAMED, 7934 NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid); 7935 7936 if (ksp == NULL || ksp->ks_data == NULL) 7937 return (NULL); 7938 7939 template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t); 7940 template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t); 7941 7942 bcopy(&template, ksp->ks_data, sizeof (template)); 7943 ksp->ks_update = udp_kstat_update; 7944 ksp->ks_private = (void *)(uintptr_t)stackid; 7945 7946 kstat_install(ksp); 7947 return (ksp); 7948 } 7949 7950 static void 7951 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 7952 { 7953 if (ksp != NULL) { 7954 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 7955 kstat_delete_netstack(ksp, stackid); 7956 } 7957 } 7958 7959 static int 7960 udp_kstat_update(kstat_t *kp, int rw) 7961 { 7962 udp_named_kstat_t *udpkp; 7963 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 7964 netstack_t *ns; 7965 udp_stack_t *us; 7966 7967 if ((kp == NULL) || (kp->ks_data == NULL)) 7968 return (EIO); 7969 7970 if (rw == KSTAT_WRITE) 7971 return (EACCES); 7972 7973 ns = netstack_find_by_stackid(stackid); 7974 if (ns == NULL) 7975 return (-1); 7976 us = ns->netstack_udp; 7977 if (us == NULL) { 7978 netstack_rele(ns); 7979 return (-1); 7980 } 7981 udpkp = (udp_named_kstat_t *)kp->ks_data; 7982 7983 udpkp->inDatagrams.value.ui64 = us->us_udp_mib.udpHCInDatagrams; 7984 udpkp->inErrors.value.ui32 = us->us_udp_mib.udpInErrors; 7985 udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams; 7986 udpkp->outErrors.value.ui32 = us->us_udp_mib.udpOutErrors; 7987 netstack_rele(ns); 7988 return (0); 7989 } 7990 7991 /* 7992 * Read-side synchronous stream info entry point, called as a 7993 * result of handling certain STREAMS ioctl operations. 7994 */ 7995 static int 7996 udp_rinfop(queue_t *q, infod_t *dp) 7997 { 7998 mblk_t *mp; 7999 uint_t cmd = dp->d_cmd; 8000 int res = 0; 8001 int error = 0; 8002 udp_t *udp = Q_TO_UDP(q); 8003 struct stdata *stp = STREAM(q); 8004 8005 mutex_enter(&udp->udp_drain_lock); 8006 /* If shutdown on read has happened, return nothing */ 8007 mutex_enter(&stp->sd_lock); 8008 if (stp->sd_flag & STREOF) { 8009 mutex_exit(&stp->sd_lock); 8010 goto done; 8011 } 8012 mutex_exit(&stp->sd_lock); 8013 8014 if ((mp = udp->udp_rcv_list_head) == NULL) 8015 goto done; 8016 8017 ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL); 8018 8019 if (cmd & INFOD_COUNT) { 8020 /* 8021 * Return the number of messages. 8022 */ 8023 dp->d_count += udp->udp_rcv_msgcnt; 8024 res |= INFOD_COUNT; 8025 } 8026 if (cmd & INFOD_BYTES) { 8027 /* 8028 * Return size of all data messages. 8029 */ 8030 dp->d_bytes += udp->udp_rcv_cnt; 8031 res |= INFOD_BYTES; 8032 } 8033 if (cmd & INFOD_FIRSTBYTES) { 8034 /* 8035 * Return size of first data message. 8036 */ 8037 dp->d_bytes = msgdsize(mp); 8038 res |= INFOD_FIRSTBYTES; 8039 dp->d_cmd &= ~INFOD_FIRSTBYTES; 8040 } 8041 if (cmd & INFOD_COPYOUT) { 8042 mblk_t *mp1 = mp->b_cont; 8043 int n; 8044 /* 8045 * Return data contents of first message. 8046 */ 8047 ASSERT(DB_TYPE(mp1) == M_DATA); 8048 while (mp1 != NULL && dp->d_uiop->uio_resid > 0) { 8049 n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1)); 8050 if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n, 8051 UIO_READ, dp->d_uiop)) != 0) { 8052 goto done; 8053 } 8054 mp1 = mp1->b_cont; 8055 } 8056 res |= INFOD_COPYOUT; 8057 dp->d_cmd &= ~INFOD_COPYOUT; 8058 } 8059 done: 8060 mutex_exit(&udp->udp_drain_lock); 8061 8062 dp->d_res |= res; 8063 8064 return (error); 8065 } 8066 8067 /* 8068 * Read-side synchronous stream entry point. This is called as a result 8069 * of recv/read operation done at sockfs, and is guaranteed to execute 8070 * outside of the interrupt thread context. It returns a single datagram 8071 * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer. 8072 */ 8073 static int 8074 udp_rrw(queue_t *q, struiod_t *dp) 8075 { 8076 mblk_t *mp; 8077 udp_t *udp = Q_TO_UDP(q); 8078 udp_stack_t *us = udp->udp_us; 8079 8080 /* 8081 * Dequeue datagram from the head of the list and return 8082 * it to caller; also ensure that RSLEEP sd_wakeq flag is 8083 * set/cleared depending on whether or not there's data 8084 * remaining in the list. 8085 */ 8086 mutex_enter(&udp->udp_drain_lock); 8087 if (!udp->udp_direct_sockfs) { 8088 mutex_exit(&udp->udp_drain_lock); 8089 UDP_STAT(us, udp_rrw_busy); 8090 return (EBUSY); 8091 } 8092 if ((mp = udp->udp_rcv_list_head) != NULL) { 8093 uint_t size = msgdsize(mp); 8094 8095 /* Last datagram in the list? */ 8096 if ((udp->udp_rcv_list_head = mp->b_next) == NULL) 8097 udp->udp_rcv_list_tail = NULL; 8098 mp->b_next = NULL; 8099 8100 udp->udp_rcv_cnt -= size; 8101 udp->udp_rcv_msgcnt--; 8102 UDP_STAT(us, udp_rrw_msgcnt); 8103 8104 /* No longer flow-controlling? */ 8105 if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat && 8106 udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat) 8107 udp->udp_drain_qfull = B_FALSE; 8108 } 8109 if (udp->udp_rcv_list_head == NULL) { 8110 /* 8111 * Either we just dequeued the last datagram or 8112 * we get here from sockfs and have nothing to 8113 * return; in this case clear RSLEEP. 8114 */ 8115 ASSERT(udp->udp_rcv_cnt == 0); 8116 ASSERT(udp->udp_rcv_msgcnt == 0); 8117 ASSERT(udp->udp_rcv_list_tail == NULL); 8118 STR_WAKEUP_CLEAR(STREAM(q)); 8119 } else { 8120 /* 8121 * More data follows; we need udp_rrw() to be 8122 * called in future to pick up the rest. 8123 */ 8124 STR_WAKEUP_SET(STREAM(q)); 8125 } 8126 mutex_exit(&udp->udp_drain_lock); 8127 dp->d_mp = mp; 8128 return (0); 8129 } 8130 8131 /* 8132 * Enqueue a completely-built T_UNITDATA_IND message into the receive 8133 * list; this is typically executed within the interrupt thread context 8134 * and so we do things as quickly as possible. 8135 */ 8136 static void 8137 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len) 8138 { 8139 ASSERT(q == RD(q)); 8140 ASSERT(pkt_len == msgdsize(mp)); 8141 ASSERT(mp->b_next == NULL && mp->b_cont != NULL); 8142 ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA); 8143 ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind)); 8144 8145 mutex_enter(&udp->udp_drain_lock); 8146 /* 8147 * Wake up and signal the receiving app; it is okay to do this 8148 * before enqueueing the mp because we are holding the drain lock. 8149 * One of the advantages of synchronous stream is the ability for 8150 * us to find out when the application performs a read on the 8151 * socket by way of udp_rrw() entry point being called. We need 8152 * to generate SIGPOLL/SIGIO for each received data in the case 8153 * of asynchronous socket just as in the strrput() case. However, 8154 * we only wake the application up when necessary, i.e. during the 8155 * first enqueue. When udp_rrw() is called, we send up a single 8156 * datagram upstream and call STR_WAKEUP_SET() again when there 8157 * are still data remaining in our receive queue. 8158 */ 8159 if (udp->udp_rcv_list_head == NULL) { 8160 STR_WAKEUP_SET(STREAM(q)); 8161 udp->udp_rcv_list_head = mp; 8162 } else { 8163 udp->udp_rcv_list_tail->b_next = mp; 8164 } 8165 udp->udp_rcv_list_tail = mp; 8166 udp->udp_rcv_cnt += pkt_len; 8167 udp->udp_rcv_msgcnt++; 8168 8169 /* Need to flow-control? */ 8170 if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat || 8171 udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat) 8172 udp->udp_drain_qfull = B_TRUE; 8173 8174 /* Update poll events and send SIGPOLL/SIGIO if necessary */ 8175 STR_SENDSIG(STREAM(q)); 8176 mutex_exit(&udp->udp_drain_lock); 8177 } 8178 8179 /* 8180 * Drain the contents of receive list to the module upstream; we do 8181 * this during close or when we fallback to the slow mode due to 8182 * sockmod being popped or a module being pushed on top of us. 8183 */ 8184 static void 8185 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing) 8186 { 8187 mblk_t *mp; 8188 udp_stack_t *us = udp->udp_us; 8189 8190 ASSERT(q == RD(q)); 8191 8192 mutex_enter(&udp->udp_drain_lock); 8193 /* 8194 * There is no race with a concurrent udp_input() sending 8195 * up packets using putnext() after we have cleared the 8196 * udp_direct_sockfs flag but before we have completed 8197 * sending up the packets in udp_rcv_list, since we are 8198 * either a writer or we have quiesced the conn. 8199 */ 8200 udp->udp_direct_sockfs = B_FALSE; 8201 mutex_exit(&udp->udp_drain_lock); 8202 8203 if (udp->udp_rcv_list_head != NULL) 8204 UDP_STAT(us, udp_drain); 8205 8206 /* 8207 * Send up everything via putnext(); note here that we 8208 * don't need the udp_drain_lock to protect us since 8209 * nothing can enter udp_rrw() and that we currently 8210 * have exclusive access to this udp. 8211 */ 8212 while ((mp = udp->udp_rcv_list_head) != NULL) { 8213 udp->udp_rcv_list_head = mp->b_next; 8214 mp->b_next = NULL; 8215 udp->udp_rcv_cnt -= msgdsize(mp); 8216 udp->udp_rcv_msgcnt--; 8217 if (closing) { 8218 freemsg(mp); 8219 } else { 8220 putnext(q, mp); 8221 } 8222 } 8223 ASSERT(udp->udp_rcv_cnt == 0); 8224 ASSERT(udp->udp_rcv_msgcnt == 0); 8225 ASSERT(udp->udp_rcv_list_head == NULL); 8226 udp->udp_rcv_list_tail = NULL; 8227 udp->udp_drain_qfull = B_FALSE; 8228 } 8229 8230 static size_t 8231 udp_set_rcv_hiwat(udp_t *udp, size_t size) 8232 { 8233 udp_stack_t *us = udp->udp_us; 8234 8235 /* We add a bit of extra buffering */ 8236 size += size >> 1; 8237 if (size > us->us_max_buf) 8238 size = us->us_max_buf; 8239 8240 udp->udp_rcv_hiwat = size; 8241 return (size); 8242 } 8243 8244 /* 8245 * For the lower queue so that UDP can be a dummy mux. 8246 * Nobody should be sending 8247 * packets up this stream 8248 */ 8249 static void 8250 udp_lrput(queue_t *q, mblk_t *mp) 8251 { 8252 mblk_t *mp1; 8253 8254 switch (mp->b_datap->db_type) { 8255 case M_FLUSH: 8256 /* Turn around */ 8257 if (*mp->b_rptr & FLUSHW) { 8258 *mp->b_rptr &= ~FLUSHR; 8259 qreply(q, mp); 8260 return; 8261 } 8262 break; 8263 } 8264 /* Could receive messages that passed through ar_rput */ 8265 for (mp1 = mp; mp1; mp1 = mp1->b_cont) 8266 mp1->b_prev = mp1->b_next = NULL; 8267 freemsg(mp); 8268 } 8269 8270 /* 8271 * For the lower queue so that UDP can be a dummy mux. 8272 * Nobody should be sending packets down this stream. 8273 */ 8274 /* ARGSUSED */ 8275 void 8276 udp_lwput(queue_t *q, mblk_t *mp) 8277 { 8278 freemsg(mp); 8279 } 8280