xref: /titanic_50/usr/src/uts/common/inet/udp/udp.c (revision 567cc2e6a4ceb0e421e1cf9bead0f43c55603d27)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 const char udp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/pattr.h>
35 #include <sys/stropts.h>
36 #include <sys/strlog.h>
37 #include <sys/strsun.h>
38 #include <sys/time.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/strsubr.h>
45 #include <sys/suntpi.h>
46 #include <sys/xti_inet.h>
47 #include <sys/cmn_err.h>
48 #include <sys/kmem.h>
49 #include <sys/policy.h>
50 #include <sys/ucred.h>
51 #include <sys/zone.h>
52 
53 #include <sys/socket.h>
54 #include <sys/sockio.h>
55 #include <sys/vtrace.h>
56 #include <sys/sdt.h>
57 #include <sys/debug.h>
58 #include <sys/isa_defs.h>
59 #include <sys/random.h>
60 #include <netinet/in.h>
61 #include <netinet/ip6.h>
62 #include <netinet/icmp6.h>
63 #include <netinet/udp.h>
64 #include <net/if.h>
65 #include <net/route.h>
66 
67 #include <inet/common.h>
68 #include <inet/ip.h>
69 #include <inet/ip_impl.h>
70 #include <inet/ip6.h>
71 #include <inet/ip_ire.h>
72 #include <inet/ip_if.h>
73 #include <inet/ip_multi.h>
74 #include <inet/ip_ndp.h>
75 #include <inet/mi.h>
76 #include <inet/mib2.h>
77 #include <inet/nd.h>
78 #include <inet/optcom.h>
79 #include <inet/snmpcom.h>
80 #include <inet/kstatcom.h>
81 #include <inet/udp_impl.h>
82 #include <inet/ipclassifier.h>
83 #include <inet/ipsec_impl.h>
84 #include <inet/ipp_common.h>
85 
86 /*
87  * The ipsec_info.h header file is here since it has the definition for the
88  * M_CTL message types used by IP to convey information to the ULP. The
89  * ipsec_info.h needs the pfkeyv2.h, hence the latter's presence.
90  */
91 #include <net/pfkeyv2.h>
92 #include <inet/ipsec_info.h>
93 
94 #include <sys/tsol/label.h>
95 #include <sys/tsol/tnet.h>
96 #include <rpc/pmap_prot.h>
97 
98 /*
99  * Synchronization notes:
100  *
101  * UDP is MT and uses the usual kernel synchronization primitives. There are 2
102  * locks, the fanout lock (uf_lock) and the udp endpoint lock udp_rwlock.
103  * We also use conn_lock when updating things that affect the IP classifier
104  * lookup.
105  * The lock order is udp_rwlock -> uf_lock and is udp_rwlock -> conn_lock.
106  *
107  * The fanout lock uf_lock:
108  * When a UDP endpoint is bound to a local port, it is inserted into
109  * a bind hash list.  The list consists of an array of udp_fanout_t buckets.
110  * The size of the array is controlled by the udp_bind_fanout_size variable.
111  * This variable can be changed in /etc/system if the default value is
112  * not large enough.  Each bind hash bucket is protected by a per bucket
113  * lock.  It protects the udp_bind_hash and udp_ptpbhn fields in the udp_t
114  * structure and a few other fields in the udp_t. A UDP endpoint is removed
115  * from the bind hash list only when it is being unbound or being closed.
116  * The per bucket lock also protects a UDP endpoint's state changes.
117  *
118  * The udp_rwlock:
119  * This protects most of the other fields in the udp_t. The exact list of
120  * fields which are protected by each of the above locks is documented in
121  * the udp_t structure definition.
122  *
123  * Plumbing notes:
124  * UDP is always a device driver. For compatibility with mibopen() code
125  * it is possible to I_PUSH "udp", but that results in pushing a passthrough
126  * dummy module.
127  *
128  * The above implies that we don't support any intermediate module to
129  * reside in between /dev/ip and udp -- in fact, we never supported such
130  * scenario in the past as the inter-layer communication semantics have
131  * always been private.
132  */
133 
134 /* For /etc/system control */
135 uint_t udp_bind_fanout_size = UDP_BIND_FANOUT_SIZE;
136 
137 #define	NDD_TOO_QUICK_MSG \
138 	"ndd get info rate too high for non-privileged users, try again " \
139 	"later.\n"
140 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
141 
142 /* Option processing attrs */
143 typedef struct udpattrs_s {
144 	union {
145 		ip6_pkt_t	*udpattr_ipp6;	/* For V6 */
146 		ip4_pkt_t 	*udpattr_ipp4;	/* For V4 */
147 	} udpattr_ippu;
148 #define	udpattr_ipp6 udpattr_ippu.udpattr_ipp6
149 #define	udpattr_ipp4 udpattr_ippu.udpattr_ipp4
150 	mblk_t		*udpattr_mb;
151 	boolean_t	udpattr_credset;
152 } udpattrs_t;
153 
154 static void	udp_addr_req(queue_t *q, mblk_t *mp);
155 static void	udp_bind(queue_t *q, mblk_t *mp);
156 static void	udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp);
157 static void	udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock);
158 static void	udp_bind_result(conn_t *, mblk_t *);
159 static void	udp_bind_ack(conn_t *, mblk_t *mp);
160 static void	udp_bind_error(conn_t *, mblk_t *mp);
161 static int	udp_build_hdrs(udp_t *udp);
162 static void	udp_capability_req(queue_t *q, mblk_t *mp);
163 static int	udp_close(queue_t *q);
164 static void	udp_connect(queue_t *q, mblk_t *mp);
165 static void	udp_disconnect(queue_t *q, mblk_t *mp);
166 static void	udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error,
167 		    int sys_error);
168 static void	udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive,
169 		    t_scalar_t tlierr, int unixerr);
170 static int	udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
171 		    cred_t *cr);
172 static int	udp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
173 		    char *value, caddr_t cp, cred_t *cr);
174 static int	udp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
175 		    char *value, caddr_t cp, cred_t *cr);
176 static void	udp_icmp_error(queue_t *q, mblk_t *mp);
177 static void	udp_icmp_error_ipv6(queue_t *q, mblk_t *mp);
178 static void	udp_info_req(queue_t *q, mblk_t *mp);
179 static void	udp_input(void *, mblk_t *, void *);
180 static mblk_t	*udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim,
181 		    t_scalar_t addr_length);
182 static void	udp_lrput(queue_t *, mblk_t *);
183 static void	udp_lwput(queue_t *, mblk_t *);
184 static int	udp_open(queue_t *q, dev_t *devp, int flag, int sflag,
185 		    cred_t *credp, boolean_t isv6);
186 static int	udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag,
187 		    cred_t *credp);
188 static int	udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag,
189 		    cred_t *credp);
190 static  int	udp_unitdata_opt_process(queue_t *q, mblk_t *mp,
191 		    int *errorp, udpattrs_t *udpattrs);
192 static boolean_t udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name);
193 static int	udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
194 static boolean_t udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt);
195 static int	udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
196 		    cred_t *cr);
197 static void	udp_report_item(mblk_t *mp, udp_t *udp);
198 static int	udp_rinfop(queue_t *q, infod_t *dp);
199 static int	udp_rrw(queue_t *q, struiod_t *dp);
200 static int	udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
201 		    cred_t *cr);
202 static void	udp_send_data(udp_t *, queue_t *, mblk_t *, ipha_t *);
203 static void	udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr,
204 		    t_scalar_t destlen, t_scalar_t err);
205 static void	udp_unbind(queue_t *q, mblk_t *mp);
206 static in_port_t udp_update_next_port(udp_t *udp, in_port_t port,
207     boolean_t random);
208 static mblk_t	*udp_output_v4(conn_t *, mblk_t *, ipaddr_t, uint16_t, uint_t,
209 		    int *, boolean_t);
210 static mblk_t	*udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6,
211 		    int *error);
212 static void	udp_wput_other(queue_t *q, mblk_t *mp);
213 static void	udp_wput_iocdata(queue_t *q, mblk_t *mp);
214 static size_t	udp_set_rcv_hiwat(udp_t *udp, size_t size);
215 
216 static void	*udp_stack_init(netstackid_t stackid, netstack_t *ns);
217 static void	udp_stack_fini(netstackid_t stackid, void *arg);
218 
219 static void	*udp_kstat_init(netstackid_t stackid);
220 static void	udp_kstat_fini(netstackid_t stackid, kstat_t *ksp);
221 static void	*udp_kstat2_init(netstackid_t, udp_stat_t *);
222 static void	udp_kstat2_fini(netstackid_t, kstat_t *);
223 static int	udp_kstat_update(kstat_t *kp, int rw);
224 
225 static void	udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp,
226 		    uint_t pkt_len);
227 static void	udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing);
228 static void	udp_xmit(queue_t *, mblk_t *, ire_t *ire, conn_t *, zoneid_t);
229 
230 #define	UDP_RECV_HIWATER	(56 * 1024)
231 #define	UDP_RECV_LOWATER	128
232 #define	UDP_XMIT_HIWATER	(56 * 1024)
233 #define	UDP_XMIT_LOWATER	1024
234 
235 static struct module_info udp_mod_info =  {
236 	UDP_MOD_ID, UDP_MOD_NAME, 1, INFPSZ, UDP_RECV_HIWATER, UDP_RECV_LOWATER
237 };
238 
239 /*
240  * Entry points for UDP as a device.
241  * We have separate open functions for the /dev/udp and /dev/udp6 devices.
242  */
243 static struct qinit udp_rinitv4 = {
244 	NULL, NULL, udp_openv4, udp_close, NULL,
245 	&udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
246 };
247 
248 static struct qinit udp_rinitv6 = {
249 	NULL, NULL, udp_openv6, udp_close, NULL,
250 	&udp_mod_info, NULL, udp_rrw, udp_rinfop, STRUIOT_STANDARD
251 };
252 
253 static struct qinit udp_winit = {
254 	(pfi_t)udp_wput, (pfi_t)ip_wsrv, NULL, NULL, NULL,
255 	&udp_mod_info, NULL, NULL, NULL, STRUIOT_NONE
256 };
257 
258 /*
259  * UDP needs to handle I_LINK and I_PLINK since ifconfig
260  * likes to use it as a place to hang the various streams.
261  */
262 static struct qinit udp_lrinit = {
263 	(pfi_t)udp_lrput, NULL, udp_openv4, udp_close, NULL,
264 	&udp_mod_info
265 };
266 
267 static struct qinit udp_lwinit = {
268 	(pfi_t)udp_lwput, NULL, udp_openv4, udp_close, NULL,
269 	&udp_mod_info
270 };
271 
272 /* For AF_INET aka /dev/udp */
273 struct streamtab udpinfov4 = {
274 	&udp_rinitv4, &udp_winit, &udp_lrinit, &udp_lwinit
275 };
276 
277 /* For AF_INET6 aka /dev/udp6 */
278 struct streamtab udpinfov6 = {
279 	&udp_rinitv6, &udp_winit, &udp_lrinit, &udp_lwinit
280 };
281 
282 static	sin_t	sin_null;	/* Zero address for quick clears */
283 static	sin6_t	sin6_null;	/* Zero address for quick clears */
284 
285 #define	UDP_MAXPACKET_IPV4 (IP_MAXPACKET - UDPH_SIZE - IP_SIMPLE_HDR_LENGTH)
286 
287 /* Default structure copied into T_INFO_ACK messages */
288 static struct T_info_ack udp_g_t_info_ack_ipv4 = {
289 	T_INFO_ACK,
290 	UDP_MAXPACKET_IPV4,	/* TSDU_size. Excl. headers */
291 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
292 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
293 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
294 	sizeof (sin_t),	/* ADDR_size. */
295 	0,		/* OPT_size - not initialized here */
296 	UDP_MAXPACKET_IPV4,	/* TIDU_size.  Excl. headers */
297 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
298 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
299 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
300 };
301 
302 #define	UDP_MAXPACKET_IPV6 (IP_MAXPACKET - UDPH_SIZE - IPV6_HDR_LEN)
303 
304 static	struct T_info_ack udp_g_t_info_ack_ipv6 = {
305 	T_INFO_ACK,
306 	UDP_MAXPACKET_IPV6,	/* TSDU_size.  Excl. headers */
307 	T_INVALID,	/* ETSU_size.  udp does not support expedited data. */
308 	T_INVALID,	/* CDATA_size. udp does not support connect data. */
309 	T_INVALID,	/* DDATA_size. udp does not support disconnect data. */
310 	sizeof (sin6_t), /* ADDR_size. */
311 	0,		/* OPT_size - not initialized here */
312 	UDP_MAXPACKET_IPV6,	/* TIDU_size. Excl. headers */
313 	T_CLTS,		/* SERV_type.  udp supports connection-less. */
314 	TS_UNBND,	/* CURRENT_state.  This is set from udp_state. */
315 	(XPG4_1|SENDZERO) /* PROVIDER_flag */
316 };
317 
318 /* largest UDP port number */
319 #define	UDP_MAX_PORT	65535
320 
321 /*
322  * Table of ND variables supported by udp.  These are loaded into us_nd
323  * in udp_open.
324  * All of these are alterable, within the min/max values given, at run time.
325  */
326 /* BEGIN CSTYLED */
327 udpparam_t udp_param_arr[] = {
328  /*min		max		value		name */
329  { 0L,		256,		32,		"udp_wroff_extra" },
330  { 1L,		255,		255,		"udp_ipv4_ttl" },
331  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS, "udp_ipv6_hoplimit"},
332  { 1024,	(32 * 1024),	1024,		"udp_smallest_nonpriv_port" },
333  { 0,		1,		1,		"udp_do_checksum" },
334  { 1024,	UDP_MAX_PORT,	(32 * 1024),	"udp_smallest_anon_port" },
335  { 1024,	UDP_MAX_PORT,	UDP_MAX_PORT,	"udp_largest_anon_port" },
336  { UDP_XMIT_LOWATER, (1<<30), UDP_XMIT_HIWATER,	"udp_xmit_hiwat"},
337  { 0,		     (1<<30), UDP_XMIT_LOWATER, "udp_xmit_lowat"},
338  { UDP_RECV_LOWATER, (1<<30), UDP_RECV_HIWATER,	"udp_recv_hiwat"},
339  { 65536,	(1<<30),	2*1024*1024,	"udp_max_buf"},
340  { 100,		60000,		1000,		"udp_ndd_get_info_interval"},
341 };
342 /* END CSTYLED */
343 
344 /* Setable in /etc/system */
345 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
346 uint32_t udp_random_anon_port = 1;
347 
348 /*
349  * Hook functions to enable cluster networking.
350  * On non-clustered systems these vectors must always be NULL
351  */
352 
353 void (*cl_inet_bind)(uchar_t protocol, sa_family_t addr_family,
354     uint8_t *laddrp, in_port_t lport) = NULL;
355 void (*cl_inet_unbind)(uint8_t protocol, sa_family_t addr_family,
356     uint8_t *laddrp, in_port_t lport) = NULL;
357 
358 typedef union T_primitives *t_primp_t;
359 
360 /*
361  * Return the next anonymous port in the privileged port range for
362  * bind checking.
363  *
364  * Trusted Extension (TX) notes: TX allows administrator to mark or
365  * reserve ports as Multilevel ports (MLP). MLP has special function
366  * on TX systems. Once a port is made MLP, it's not available as
367  * ordinary port. This creates "holes" in the port name space. It
368  * may be necessary to skip the "holes" find a suitable anon port.
369  */
370 static in_port_t
371 udp_get_next_priv_port(udp_t *udp)
372 {
373 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
374 	in_port_t nextport;
375 	boolean_t restart = B_FALSE;
376 	udp_stack_t *us = udp->udp_us;
377 
378 retry:
379 	if (next_priv_port < us->us_min_anonpriv_port ||
380 	    next_priv_port >= IPPORT_RESERVED) {
381 		next_priv_port = IPPORT_RESERVED - 1;
382 		if (restart)
383 			return (0);
384 		restart = B_TRUE;
385 	}
386 
387 	if (is_system_labeled() &&
388 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
389 	    next_priv_port, IPPROTO_UDP, B_FALSE)) != 0) {
390 		next_priv_port = nextport;
391 		goto retry;
392 	}
393 
394 	return (next_priv_port--);
395 }
396 
397 /* UDP bind hash report triggered via the Named Dispatch mechanism. */
398 /* ARGSUSED */
399 static int
400 udp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
401 {
402 	udp_fanout_t	*udpf;
403 	int		i;
404 	zoneid_t	zoneid;
405 	conn_t		*connp;
406 	udp_t		*udp;
407 	udp_stack_t	*us;
408 
409 	connp = Q_TO_CONN(q);
410 	udp = connp->conn_udp;
411 	us = udp->udp_us;
412 
413 	/* Refer to comments in udp_status_report(). */
414 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
415 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
416 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
417 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
418 			return (0);
419 		}
420 	}
421 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
422 		/* The following may work even if we cannot get a large buf. */
423 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
424 		return (0);
425 	}
426 
427 	(void) mi_mpprintf(mp,
428 	    "UDP     " MI_COL_HDRPAD_STR
429 	/*   12345678[89ABCDEF] */
430 	    " zone lport src addr        dest addr       port  state");
431 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
432 
433 	zoneid = connp->conn_zoneid;
434 
435 	for (i = 0; i < us->us_bind_fanout_size; i++) {
436 		udpf = &us->us_bind_fanout[i];
437 		mutex_enter(&udpf->uf_lock);
438 
439 		/* Print the hash index. */
440 		udp = udpf->uf_udp;
441 		if (zoneid != GLOBAL_ZONEID) {
442 			/* skip to first entry in this zone; might be none */
443 			while (udp != NULL &&
444 			    udp->udp_connp->conn_zoneid != zoneid)
445 				udp = udp->udp_bind_hash;
446 		}
447 		if (udp != NULL) {
448 			uint_t print_len, buf_len;
449 
450 			buf_len = mp->b_cont->b_datap->db_lim -
451 			    mp->b_cont->b_wptr;
452 			print_len = snprintf((char *)mp->b_cont->b_wptr,
453 			    buf_len, "%d\n", i);
454 			if (print_len < buf_len) {
455 				mp->b_cont->b_wptr += print_len;
456 			} else {
457 				mp->b_cont->b_wptr += buf_len;
458 			}
459 			for (; udp != NULL; udp = udp->udp_bind_hash) {
460 				if (zoneid == GLOBAL_ZONEID ||
461 				    zoneid == udp->udp_connp->conn_zoneid)
462 					udp_report_item(mp->b_cont, udp);
463 			}
464 		}
465 		mutex_exit(&udpf->uf_lock);
466 	}
467 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
468 	return (0);
469 }
470 
471 /*
472  * Hash list removal routine for udp_t structures.
473  */
474 static void
475 udp_bind_hash_remove(udp_t *udp, boolean_t caller_holds_lock)
476 {
477 	udp_t	*udpnext;
478 	kmutex_t *lockp;
479 	udp_stack_t *us = udp->udp_us;
480 
481 	if (udp->udp_ptpbhn == NULL)
482 		return;
483 
484 	/*
485 	 * Extract the lock pointer in case there are concurrent
486 	 * hash_remove's for this instance.
487 	 */
488 	ASSERT(udp->udp_port != 0);
489 	if (!caller_holds_lock) {
490 		lockp = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
491 		    us->us_bind_fanout_size)].uf_lock;
492 		ASSERT(lockp != NULL);
493 		mutex_enter(lockp);
494 	}
495 	if (udp->udp_ptpbhn != NULL) {
496 		udpnext = udp->udp_bind_hash;
497 		if (udpnext != NULL) {
498 			udpnext->udp_ptpbhn = udp->udp_ptpbhn;
499 			udp->udp_bind_hash = NULL;
500 		}
501 		*udp->udp_ptpbhn = udpnext;
502 		udp->udp_ptpbhn = NULL;
503 	}
504 	if (!caller_holds_lock) {
505 		mutex_exit(lockp);
506 	}
507 }
508 
509 static void
510 udp_bind_hash_insert(udp_fanout_t *uf, udp_t *udp)
511 {
512 	udp_t	**udpp;
513 	udp_t	*udpnext;
514 
515 	ASSERT(MUTEX_HELD(&uf->uf_lock));
516 	ASSERT(udp->udp_ptpbhn == NULL);
517 	udpp = &uf->uf_udp;
518 	udpnext = udpp[0];
519 	if (udpnext != NULL) {
520 		/*
521 		 * If the new udp bound to the INADDR_ANY address
522 		 * and the first one in the list is not bound to
523 		 * INADDR_ANY we skip all entries until we find the
524 		 * first one bound to INADDR_ANY.
525 		 * This makes sure that applications binding to a
526 		 * specific address get preference over those binding to
527 		 * INADDR_ANY.
528 		 */
529 		if (V6_OR_V4_INADDR_ANY(udp->udp_bound_v6src) &&
530 		    !V6_OR_V4_INADDR_ANY(udpnext->udp_bound_v6src)) {
531 			while ((udpnext = udpp[0]) != NULL &&
532 			    !V6_OR_V4_INADDR_ANY(
533 			    udpnext->udp_bound_v6src)) {
534 				udpp = &(udpnext->udp_bind_hash);
535 			}
536 			if (udpnext != NULL)
537 				udpnext->udp_ptpbhn = &udp->udp_bind_hash;
538 		} else {
539 			udpnext->udp_ptpbhn = &udp->udp_bind_hash;
540 		}
541 	}
542 	udp->udp_bind_hash = udpnext;
543 	udp->udp_ptpbhn = udpp;
544 	udpp[0] = udp;
545 }
546 
547 /*
548  * This routine is called to handle each O_T_BIND_REQ/T_BIND_REQ message
549  * passed to udp_wput.
550  * It associates a port number and local address with the stream.
551  * The O_T_BIND_REQ/T_BIND_REQ is passed downstream to ip with the UDP
552  * protocol type (IPPROTO_UDP) placed in the message following the address.
553  * A T_BIND_ACK message is passed upstream when ip acknowledges the request.
554  * (Called as writer.)
555  *
556  * Note that UDP over IPv4 and IPv6 sockets can use the same port number
557  * without setting SO_REUSEADDR. This is needed so that they
558  * can be viewed as two independent transport protocols.
559  * However, anonymouns ports are allocated from the same range to avoid
560  * duplicating the us->us_next_port_to_try.
561  */
562 static void
563 udp_bind(queue_t *q, mblk_t *mp)
564 {
565 	sin_t		*sin;
566 	sin6_t		*sin6;
567 	mblk_t		*mp1;
568 	in_port_t	port;		/* Host byte order */
569 	in_port_t	requested_port;	/* Host byte order */
570 	struct T_bind_req *tbr;
571 	int		count;
572 	in6_addr_t	v6src;
573 	boolean_t	bind_to_req_port_only;
574 	int		loopmax;
575 	udp_fanout_t	*udpf;
576 	in_port_t	lport;		/* Network byte order */
577 	zoneid_t	zoneid;
578 	conn_t		*connp;
579 	udp_t		*udp;
580 	boolean_t	is_inaddr_any;
581 	mlp_type_t	addrtype, mlptype;
582 	udp_stack_t	*us;
583 
584 	connp = Q_TO_CONN(q);
585 	udp = connp->conn_udp;
586 	us = udp->udp_us;
587 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
588 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
589 		    "udp_bind: bad req, len %u",
590 		    (uint_t)(mp->b_wptr - mp->b_rptr));
591 		udp_err_ack(q, mp, TPROTO, 0);
592 		return;
593 	}
594 	if (udp->udp_state != TS_UNBND) {
595 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
596 		    "udp_bind: bad state, %u", udp->udp_state);
597 		udp_err_ack(q, mp, TOUTSTATE, 0);
598 		return;
599 	}
600 	/*
601 	 * Reallocate the message to make sure we have enough room for an
602 	 * address and the protocol type.
603 	 */
604 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
605 	if (!mp1) {
606 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
607 		return;
608 	}
609 
610 	mp = mp1;
611 	tbr = (struct T_bind_req *)mp->b_rptr;
612 	switch (tbr->ADDR_length) {
613 	case 0:			/* Request for a generic port */
614 		tbr->ADDR_offset = sizeof (struct T_bind_req);
615 		if (udp->udp_family == AF_INET) {
616 			tbr->ADDR_length = sizeof (sin_t);
617 			sin = (sin_t *)&tbr[1];
618 			*sin = sin_null;
619 			sin->sin_family = AF_INET;
620 			mp->b_wptr = (uchar_t *)&sin[1];
621 		} else {
622 			ASSERT(udp->udp_family == AF_INET6);
623 			tbr->ADDR_length = sizeof (sin6_t);
624 			sin6 = (sin6_t *)&tbr[1];
625 			*sin6 = sin6_null;
626 			sin6->sin6_family = AF_INET6;
627 			mp->b_wptr = (uchar_t *)&sin6[1];
628 		}
629 		port = 0;
630 		break;
631 
632 	case sizeof (sin_t):	/* Complete IPv4 address */
633 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
634 		    sizeof (sin_t));
635 		if (sin == NULL || !OK_32PTR((char *)sin)) {
636 			udp_err_ack(q, mp, TSYSERR, EINVAL);
637 			return;
638 		}
639 		if (udp->udp_family != AF_INET ||
640 		    sin->sin_family != AF_INET) {
641 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
642 			return;
643 		}
644 		port = ntohs(sin->sin_port);
645 		break;
646 
647 	case sizeof (sin6_t):	/* complete IPv6 address */
648 		sin6 = (sin6_t *)mi_offset_param(mp, tbr->ADDR_offset,
649 		    sizeof (sin6_t));
650 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
651 			udp_err_ack(q, mp, TSYSERR, EINVAL);
652 			return;
653 		}
654 		if (udp->udp_family != AF_INET6 ||
655 		    sin6->sin6_family != AF_INET6) {
656 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
657 			return;
658 		}
659 		port = ntohs(sin6->sin6_port);
660 		break;
661 
662 	default:		/* Invalid request */
663 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
664 		    "udp_bind: bad ADDR_length length %u", tbr->ADDR_length);
665 		udp_err_ack(q, mp, TBADADDR, 0);
666 		return;
667 	}
668 
669 	requested_port = port;
670 
671 	if (requested_port == 0 || tbr->PRIM_type == O_T_BIND_REQ)
672 		bind_to_req_port_only = B_FALSE;
673 	else			/* T_BIND_REQ and requested_port != 0 */
674 		bind_to_req_port_only = B_TRUE;
675 
676 	if (requested_port == 0) {
677 		/*
678 		 * If the application passed in zero for the port number, it
679 		 * doesn't care which port number we bind to. Get one in the
680 		 * valid range.
681 		 */
682 		if (udp->udp_anon_priv_bind) {
683 			port = udp_get_next_priv_port(udp);
684 		} else {
685 			port = udp_update_next_port(udp,
686 			    us->us_next_port_to_try, B_TRUE);
687 		}
688 	} else {
689 		/*
690 		 * If the port is in the well-known privileged range,
691 		 * make sure the caller was privileged.
692 		 */
693 		int i;
694 		boolean_t priv = B_FALSE;
695 
696 		if (port < us->us_smallest_nonpriv_port) {
697 			priv = B_TRUE;
698 		} else {
699 			for (i = 0; i < us->us_num_epriv_ports; i++) {
700 				if (port == us->us_epriv_ports[i]) {
701 					priv = B_TRUE;
702 					break;
703 				}
704 			}
705 		}
706 
707 		if (priv) {
708 			cred_t *cr = DB_CREDDEF(mp, connp->conn_cred);
709 
710 			if (secpolicy_net_privaddr(cr, port,
711 			    IPPROTO_UDP) != 0) {
712 				udp_err_ack(q, mp, TACCES, 0);
713 				return;
714 			}
715 		}
716 	}
717 
718 	if (port == 0) {
719 		udp_err_ack(q, mp, TNOADDR, 0);
720 		return;
721 	}
722 
723 	/*
724 	 * The state must be TS_UNBND. TPI mandates that users must send
725 	 * TPI primitives only 1 at a time and wait for the response before
726 	 * sending the next primitive.
727 	 */
728 	rw_enter(&udp->udp_rwlock, RW_WRITER);
729 	if (udp->udp_state != TS_UNBND || udp->udp_pending_op != -1) {
730 		rw_exit(&udp->udp_rwlock);
731 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
732 		    "udp_bind: bad state, %u", udp->udp_state);
733 		udp_err_ack(q, mp, TOUTSTATE, 0);
734 		return;
735 	}
736 	udp->udp_pending_op = tbr->PRIM_type;
737 	/*
738 	 * Copy the source address into our udp structure. This address
739 	 * may still be zero; if so, IP will fill in the correct address
740 	 * each time an outbound packet is passed to it. Since the udp is
741 	 * not yet in the bind hash list, we don't grab the uf_lock to
742 	 * change udp_ipversion
743 	 */
744 	if (udp->udp_family == AF_INET) {
745 		ASSERT(sin != NULL);
746 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
747 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
748 		    udp->udp_ip_snd_options_len;
749 		IN6_IPADDR_TO_V4MAPPED(sin->sin_addr.s_addr, &v6src);
750 	} else {
751 		ASSERT(sin6 != NULL);
752 		v6src = sin6->sin6_addr;
753 		if (IN6_IS_ADDR_V4MAPPED(&v6src)) {
754 			/*
755 			 * no need to hold the uf_lock to set the udp_ipversion
756 			 * since we are not yet in the fanout list
757 			 */
758 			udp->udp_ipversion = IPV4_VERSION;
759 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
760 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
761 		} else {
762 			udp->udp_ipversion = IPV6_VERSION;
763 			udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
764 		}
765 	}
766 
767 	/*
768 	 * If udp_reuseaddr is not set, then we have to make sure that
769 	 * the IP address and port number the application requested
770 	 * (or we selected for the application) is not being used by
771 	 * another stream.  If another stream is already using the
772 	 * requested IP address and port, the behavior depends on
773 	 * "bind_to_req_port_only". If set the bind fails; otherwise we
774 	 * search for any an unused port to bind to the the stream.
775 	 *
776 	 * As per the BSD semantics, as modified by the Deering multicast
777 	 * changes, if udp_reuseaddr is set, then we allow multiple binds
778 	 * to the same port independent of the local IP address.
779 	 *
780 	 * This is slightly different than in SunOS 4.X which did not
781 	 * support IP multicast. Note that the change implemented by the
782 	 * Deering multicast code effects all binds - not only binding
783 	 * to IP multicast addresses.
784 	 *
785 	 * Note that when binding to port zero we ignore SO_REUSEADDR in
786 	 * order to guarantee a unique port.
787 	 */
788 
789 	count = 0;
790 	if (udp->udp_anon_priv_bind) {
791 		/*
792 		 * loopmax = (IPPORT_RESERVED-1) -
793 		 *    us->us_min_anonpriv_port + 1
794 		 */
795 		loopmax = IPPORT_RESERVED - us->us_min_anonpriv_port;
796 	} else {
797 		loopmax = us->us_largest_anon_port -
798 		    us->us_smallest_anon_port + 1;
799 	}
800 
801 	is_inaddr_any = V6_OR_V4_INADDR_ANY(v6src);
802 	zoneid = connp->conn_zoneid;
803 
804 	for (;;) {
805 		udp_t		*udp1;
806 		boolean_t	found_exclbind = B_FALSE;
807 
808 		/*
809 		 * Walk through the list of udp streams bound to
810 		 * requested port with the same IP address.
811 		 */
812 		lport = htons(port);
813 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(lport,
814 		    us->us_bind_fanout_size)];
815 		mutex_enter(&udpf->uf_lock);
816 		for (udp1 = udpf->uf_udp; udp1 != NULL;
817 		    udp1 = udp1->udp_bind_hash) {
818 			if (lport != udp1->udp_port)
819 				continue;
820 
821 			/*
822 			 * On a labeled system, we must treat bindings to ports
823 			 * on shared IP addresses by sockets with MAC exemption
824 			 * privilege as being in all zones, as there's
825 			 * otherwise no way to identify the right receiver.
826 			 */
827 			if (!(IPCL_ZONE_MATCH(udp1->udp_connp, zoneid) ||
828 			    IPCL_ZONE_MATCH(connp,
829 			    udp1->udp_connp->conn_zoneid)) &&
830 			    !udp->udp_mac_exempt && !udp1->udp_mac_exempt)
831 				continue;
832 
833 			/*
834 			 * If UDP_EXCLBIND is set for either the bound or
835 			 * binding endpoint, the semantics of bind
836 			 * is changed according to the following chart.
837 			 *
838 			 * spec = specified address (v4 or v6)
839 			 * unspec = unspecified address (v4 or v6)
840 			 * A = specified addresses are different for endpoints
841 			 *
842 			 * bound	bind to		allowed?
843 			 * -------------------------------------
844 			 * unspec	unspec		no
845 			 * unspec	spec		no
846 			 * spec		unspec		no
847 			 * spec		spec		yes if A
848 			 *
849 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
850 			 * as UDP_EXCLBIND, except that zoneid is ignored.
851 			 */
852 			if (udp1->udp_exclbind || udp->udp_exclbind ||
853 			    udp1->udp_mac_exempt || udp->udp_mac_exempt) {
854 				if (V6_OR_V4_INADDR_ANY(
855 				    udp1->udp_bound_v6src) ||
856 				    is_inaddr_any ||
857 				    IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
858 				    &v6src)) {
859 					found_exclbind = B_TRUE;
860 					break;
861 				}
862 				continue;
863 			}
864 
865 			/*
866 			 * Check ipversion to allow IPv4 and IPv6 sockets to
867 			 * have disjoint port number spaces.
868 			 */
869 			if (udp->udp_ipversion != udp1->udp_ipversion) {
870 
871 				/*
872 				 * On the first time through the loop, if the
873 				 * the user intentionally specified a
874 				 * particular port number, then ignore any
875 				 * bindings of the other protocol that may
876 				 * conflict. This allows the user to bind IPv6
877 				 * alone and get both v4 and v6, or bind both
878 				 * both and get each seperately. On subsequent
879 				 * times through the loop, we're checking a
880 				 * port that we chose (not the user) and thus
881 				 * we do not allow casual duplicate bindings.
882 				 */
883 				if (count == 0 && requested_port != 0)
884 					continue;
885 			}
886 
887 			/*
888 			 * No difference depending on SO_REUSEADDR.
889 			 *
890 			 * If existing port is bound to a
891 			 * non-wildcard IP address and
892 			 * the requesting stream is bound to
893 			 * a distinct different IP addresses
894 			 * (non-wildcard, also), keep going.
895 			 */
896 			if (!is_inaddr_any &&
897 			    !V6_OR_V4_INADDR_ANY(udp1->udp_bound_v6src) &&
898 			    !IN6_ARE_ADDR_EQUAL(&udp1->udp_bound_v6src,
899 			    &v6src)) {
900 				continue;
901 			}
902 			break;
903 		}
904 
905 		if (!found_exclbind &&
906 		    (udp->udp_reuseaddr && requested_port != 0)) {
907 			break;
908 		}
909 
910 		if (udp1 == NULL) {
911 			/*
912 			 * No other stream has this IP address
913 			 * and port number. We can use it.
914 			 */
915 			break;
916 		}
917 		mutex_exit(&udpf->uf_lock);
918 		if (bind_to_req_port_only) {
919 			/*
920 			 * We get here only when requested port
921 			 * is bound (and only first  of the for()
922 			 * loop iteration).
923 			 *
924 			 * The semantics of this bind request
925 			 * require it to fail so we return from
926 			 * the routine (and exit the loop).
927 			 *
928 			 */
929 			udp->udp_pending_op = -1;
930 			rw_exit(&udp->udp_rwlock);
931 			udp_err_ack(q, mp, TADDRBUSY, 0);
932 			return;
933 		}
934 
935 		if (udp->udp_anon_priv_bind) {
936 			port = udp_get_next_priv_port(udp);
937 		} else {
938 			if ((count == 0) && (requested_port != 0)) {
939 				/*
940 				 * If the application wants us to find
941 				 * a port, get one to start with. Set
942 				 * requested_port to 0, so that we will
943 				 * update us->us_next_port_to_try below.
944 				 */
945 				port = udp_update_next_port(udp,
946 				    us->us_next_port_to_try, B_TRUE);
947 				requested_port = 0;
948 			} else {
949 				port = udp_update_next_port(udp, port + 1,
950 				    B_FALSE);
951 			}
952 		}
953 
954 		if (port == 0 || ++count >= loopmax) {
955 			/*
956 			 * We've tried every possible port number and
957 			 * there are none available, so send an error
958 			 * to the user.
959 			 */
960 			udp->udp_pending_op = -1;
961 			rw_exit(&udp->udp_rwlock);
962 			udp_err_ack(q, mp, TNOADDR, 0);
963 			return;
964 		}
965 	}
966 
967 	/*
968 	 * Copy the source address into our udp structure.  This address
969 	 * may still be zero; if so, ip will fill in the correct address
970 	 * each time an outbound packet is passed to it.
971 	 * If we are binding to a broadcast or multicast address then
972 	 * udp_bind_ack will clear the source address when it receives
973 	 * the T_BIND_ACK.
974 	 */
975 	udp->udp_v6src = udp->udp_bound_v6src = v6src;
976 	udp->udp_port = lport;
977 	/*
978 	 * Now reset the the next anonymous port if the application requested
979 	 * an anonymous port, or we handed out the next anonymous port.
980 	 */
981 	if ((requested_port == 0) && (!udp->udp_anon_priv_bind)) {
982 		us->us_next_port_to_try = port + 1;
983 	}
984 
985 	/* Initialize the O_T_BIND_REQ/T_BIND_REQ for ip. */
986 	if (udp->udp_family == AF_INET) {
987 		sin->sin_port = udp->udp_port;
988 	} else {
989 		int error;
990 
991 		sin6->sin6_port = udp->udp_port;
992 		/* Rebuild the header template */
993 		error = udp_build_hdrs(udp);
994 		if (error != 0) {
995 			udp->udp_pending_op = -1;
996 			rw_exit(&udp->udp_rwlock);
997 			mutex_exit(&udpf->uf_lock);
998 			udp_err_ack(q, mp, TSYSERR, error);
999 			return;
1000 		}
1001 	}
1002 	udp->udp_state = TS_IDLE;
1003 	udp_bind_hash_insert(udpf, udp);
1004 	mutex_exit(&udpf->uf_lock);
1005 	rw_exit(&udp->udp_rwlock);
1006 
1007 	if (cl_inet_bind) {
1008 		/*
1009 		 * Running in cluster mode - register bind information
1010 		 */
1011 		if (udp->udp_ipversion == IPV4_VERSION) {
1012 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET,
1013 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
1014 			    (in_port_t)udp->udp_port);
1015 		} else {
1016 			(*cl_inet_bind)(IPPROTO_UDP, AF_INET6,
1017 			    (uint8_t *)&(udp->udp_v6src),
1018 			    (in_port_t)udp->udp_port);
1019 		}
1020 
1021 	}
1022 
1023 	connp->conn_anon_port = (is_system_labeled() && requested_port == 0);
1024 	if (is_system_labeled() && (!connp->conn_anon_port ||
1025 	    connp->conn_anon_mlp)) {
1026 		uint16_t mlpport;
1027 		cred_t *cr = connp->conn_cred;
1028 		zone_t *zone;
1029 
1030 		zone = crgetzone(cr);
1031 		connp->conn_mlp_type = udp->udp_recvucred ? mlptBoth :
1032 		    mlptSingle;
1033 		addrtype = tsol_mlp_addr_type(zone->zone_id, IPV6_VERSION,
1034 		    &v6src, us->us_netstack->netstack_ip);
1035 		if (addrtype == mlptSingle) {
1036 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1037 			udp->udp_pending_op = -1;
1038 			rw_exit(&udp->udp_rwlock);
1039 			udp_err_ack(q, mp, TNOADDR, 0);
1040 			connp->conn_anon_port = B_FALSE;
1041 			connp->conn_mlp_type = mlptSingle;
1042 			return;
1043 		}
1044 		mlpport = connp->conn_anon_port ? PMAPPORT : port;
1045 		mlptype = tsol_mlp_port_type(zone, IPPROTO_UDP, mlpport,
1046 		    addrtype);
1047 		if (mlptype != mlptSingle &&
1048 		    (connp->conn_mlp_type == mlptSingle ||
1049 		    secpolicy_net_bindmlp(cr) != 0)) {
1050 			if (udp->udp_debug) {
1051 				(void) strlog(UDP_MOD_ID, 0, 1,
1052 				    SL_ERROR|SL_TRACE,
1053 				    "udp_bind: no priv for multilevel port %d",
1054 				    mlpport);
1055 			}
1056 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1057 			udp->udp_pending_op = -1;
1058 			rw_exit(&udp->udp_rwlock);
1059 			udp_err_ack(q, mp, TACCES, 0);
1060 			connp->conn_anon_port = B_FALSE;
1061 			connp->conn_mlp_type = mlptSingle;
1062 			return;
1063 		}
1064 
1065 		/*
1066 		 * If we're specifically binding a shared IP address and the
1067 		 * port is MLP on shared addresses, then check to see if this
1068 		 * zone actually owns the MLP.  Reject if not.
1069 		 */
1070 		if (mlptype == mlptShared && addrtype == mlptShared) {
1071 			/*
1072 			 * No need to handle exclusive-stack zones since
1073 			 * ALL_ZONES only applies to the shared stack.
1074 			 */
1075 			zoneid_t mlpzone;
1076 
1077 			mlpzone = tsol_mlp_findzone(IPPROTO_UDP,
1078 			    htons(mlpport));
1079 			if (connp->conn_zoneid != mlpzone) {
1080 				if (udp->udp_debug) {
1081 					(void) strlog(UDP_MOD_ID, 0, 1,
1082 					    SL_ERROR|SL_TRACE,
1083 					    "udp_bind: attempt to bind port "
1084 					    "%d on shared addr in zone %d "
1085 					    "(should be %d)",
1086 					    mlpport, connp->conn_zoneid,
1087 					    mlpzone);
1088 				}
1089 				rw_enter(&udp->udp_rwlock, RW_WRITER);
1090 				udp->udp_pending_op = -1;
1091 				rw_exit(&udp->udp_rwlock);
1092 				udp_err_ack(q, mp, TACCES, 0);
1093 				connp->conn_anon_port = B_FALSE;
1094 				connp->conn_mlp_type = mlptSingle;
1095 				return;
1096 			}
1097 		}
1098 		if (connp->conn_anon_port) {
1099 			int error;
1100 
1101 			error = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
1102 			    port, B_TRUE);
1103 			if (error != 0) {
1104 				if (udp->udp_debug) {
1105 					(void) strlog(UDP_MOD_ID, 0, 1,
1106 					    SL_ERROR|SL_TRACE,
1107 					    "udp_bind: cannot establish anon "
1108 					    "MLP for port %d", port);
1109 				}
1110 				rw_enter(&udp->udp_rwlock, RW_WRITER);
1111 				udp->udp_pending_op = -1;
1112 				rw_exit(&udp->udp_rwlock);
1113 				udp_err_ack(q, mp, TACCES, 0);
1114 				connp->conn_anon_port = B_FALSE;
1115 				connp->conn_mlp_type = mlptSingle;
1116 				return;
1117 			}
1118 		}
1119 		connp->conn_mlp_type = mlptype;
1120 	}
1121 
1122 	/* Pass the protocol number in the message following the address. */
1123 	*mp->b_wptr++ = IPPROTO_UDP;
1124 	if (!V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
1125 		/*
1126 		 * Append a request for an IRE if udp_v6src not
1127 		 * zero (IPv4 - INADDR_ANY, or IPv6 - all-zeroes address).
1128 		 */
1129 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
1130 		if (!mp->b_cont) {
1131 			rw_enter(&udp->udp_rwlock, RW_WRITER);
1132 			udp->udp_pending_op = -1;
1133 			rw_exit(&udp->udp_rwlock);
1134 			udp_err_ack(q, mp, TSYSERR, ENOMEM);
1135 			return;
1136 		}
1137 		mp->b_cont->b_wptr += sizeof (ire_t);
1138 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
1139 	}
1140 	if (udp->udp_family == AF_INET6)
1141 		mp = ip_bind_v6(q, mp, connp, NULL);
1142 	else
1143 		mp = ip_bind_v4(q, mp, connp);
1144 
1145 	/* The above return NULL if the bind needs to be deferred */
1146 	if (mp != NULL)
1147 		udp_bind_result(connp, mp);
1148 	else
1149 		CONN_INC_REF(connp);
1150 }
1151 
1152 /*
1153  * This is called from ip_wput_nondata to handle the results of a
1154  * deferred UDP bind. It is called once the bind has been completed.
1155  */
1156 void
1157 udp_resume_bind(conn_t *connp, mblk_t *mp)
1158 {
1159 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1160 
1161 	udp_bind_result(connp, mp);
1162 
1163 	CONN_OPER_PENDING_DONE(connp);
1164 }
1165 
1166 /*
1167  * This routine handles each T_CONN_REQ message passed to udp.  It
1168  * associates a default destination address with the stream.
1169  *
1170  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1171  *	T_BIND_REQ	- specifying local and remote address/port
1172  *	IRE_DB_REQ_TYPE	- to get an IRE back containing ire_type and src
1173  *	T_OK_ACK	- for the T_CONN_REQ
1174  *	T_CONN_CON	- to keep the TPI user happy
1175  *
1176  * The connect completes in udp_bind_result.
1177  * When a T_BIND_ACK is received information is extracted from the IRE
1178  * and the two appended messages are sent to the TPI user.
1179  * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will
1180  * convert it to an error ack for the appropriate primitive.
1181  */
1182 static void
1183 udp_connect(queue_t *q, mblk_t *mp)
1184 {
1185 	sin6_t	*sin6;
1186 	sin_t	*sin;
1187 	struct T_conn_req	*tcr;
1188 	in6_addr_t v6dst;
1189 	ipaddr_t v4dst;
1190 	uint16_t dstport;
1191 	uint32_t flowinfo;
1192 	mblk_t	*mp1, *mp2;
1193 	udp_fanout_t	*udpf;
1194 	udp_t	*udp, *udp1;
1195 	ushort_t	ipversion;
1196 	udp_stack_t	*us;
1197 	conn_t		*connp = Q_TO_CONN(q);
1198 
1199 	udp = connp->conn_udp;
1200 	tcr = (struct T_conn_req *)mp->b_rptr;
1201 	us = udp->udp_us;
1202 
1203 	/* A bit of sanity checking */
1204 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_req)) {
1205 		udp_err_ack(q, mp, TPROTO, 0);
1206 		return;
1207 	}
1208 
1209 	if (tcr->OPT_length != 0) {
1210 		udp_err_ack(q, mp, TBADOPT, 0);
1211 		return;
1212 	}
1213 
1214 	/*
1215 	 * Determine packet type based on type of address passed in
1216 	 * the request should contain an IPv4 or IPv6 address.
1217 	 * Make sure that address family matches the type of
1218 	 * family of the the address passed down
1219 	 */
1220 	switch (tcr->DEST_length) {
1221 	default:
1222 		udp_err_ack(q, mp, TBADADDR, 0);
1223 		return;
1224 
1225 	case sizeof (sin_t):
1226 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
1227 		    sizeof (sin_t));
1228 		if (sin == NULL || !OK_32PTR((char *)sin)) {
1229 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1230 			return;
1231 		}
1232 		if (udp->udp_family != AF_INET ||
1233 		    sin->sin_family != AF_INET) {
1234 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1235 			return;
1236 		}
1237 		v4dst = sin->sin_addr.s_addr;
1238 		dstport = sin->sin_port;
1239 		IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1240 		ASSERT(udp->udp_ipversion == IPV4_VERSION);
1241 		ipversion = IPV4_VERSION;
1242 		break;
1243 
1244 	case sizeof (sin6_t):
1245 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
1246 		    sizeof (sin6_t));
1247 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
1248 			udp_err_ack(q, mp, TSYSERR, EINVAL);
1249 			return;
1250 		}
1251 		if (udp->udp_family != AF_INET6 ||
1252 		    sin6->sin6_family != AF_INET6) {
1253 			udp_err_ack(q, mp, TSYSERR, EAFNOSUPPORT);
1254 			return;
1255 		}
1256 		v6dst = sin6->sin6_addr;
1257 		dstport = sin6->sin6_port;
1258 		if (IN6_IS_ADDR_V4MAPPED(&v6dst)) {
1259 			IN6_V4MAPPED_TO_IPADDR(&v6dst, v4dst);
1260 			ipversion = IPV4_VERSION;
1261 			flowinfo = 0;
1262 		} else {
1263 			ipversion = IPV6_VERSION;
1264 			flowinfo = sin6->sin6_flowinfo;
1265 		}
1266 		break;
1267 	}
1268 	if (dstport == 0) {
1269 		udp_err_ack(q, mp, TBADADDR, 0);
1270 		return;
1271 	}
1272 
1273 	rw_enter(&udp->udp_rwlock, RW_WRITER);
1274 
1275 	/*
1276 	 * This UDP must have bound to a port already before doing a connect.
1277 	 * TPI mandates that users must send TPI primitives only 1 at a time
1278 	 * and wait for the response before sending the next primitive.
1279 	 */
1280 	if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) {
1281 		rw_exit(&udp->udp_rwlock);
1282 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1283 		    "udp_connect: bad state, %u", udp->udp_state);
1284 		udp_err_ack(q, mp, TOUTSTATE, 0);
1285 		return;
1286 	}
1287 	udp->udp_pending_op = T_CONN_REQ;
1288 	ASSERT(udp->udp_port != 0 && udp->udp_ptpbhn != NULL);
1289 
1290 	if (ipversion == IPV4_VERSION) {
1291 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE +
1292 		    udp->udp_ip_snd_options_len;
1293 	} else {
1294 		udp->udp_max_hdr_len = udp->udp_sticky_hdrs_len;
1295 	}
1296 
1297 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1298 	    us->us_bind_fanout_size)];
1299 
1300 	mutex_enter(&udpf->uf_lock);
1301 	if (udp->udp_state == TS_DATA_XFER) {
1302 		/* Already connected - clear out state */
1303 		udp->udp_v6src = udp->udp_bound_v6src;
1304 		udp->udp_state = TS_IDLE;
1305 	}
1306 
1307 	/*
1308 	 * Create a default IP header with no IP options.
1309 	 */
1310 	udp->udp_dstport = dstport;
1311 	udp->udp_ipversion = ipversion;
1312 	if (ipversion == IPV4_VERSION) {
1313 		/*
1314 		 * Interpret a zero destination to mean loopback.
1315 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1316 		 * generate the T_CONN_CON.
1317 		 */
1318 		if (v4dst == INADDR_ANY) {
1319 			v4dst = htonl(INADDR_LOOPBACK);
1320 			IN6_IPADDR_TO_V4MAPPED(v4dst, &v6dst);
1321 			if (udp->udp_family == AF_INET) {
1322 				sin->sin_addr.s_addr = v4dst;
1323 			} else {
1324 				sin6->sin6_addr = v6dst;
1325 			}
1326 		}
1327 		udp->udp_v6dst = v6dst;
1328 		udp->udp_flowinfo = 0;
1329 
1330 		/*
1331 		 * If the destination address is multicast and
1332 		 * an outgoing multicast interface has been set,
1333 		 * use the address of that interface as our
1334 		 * source address if no source address has been set.
1335 		 */
1336 		if (V4_PART_OF_V6(udp->udp_v6src) == INADDR_ANY &&
1337 		    CLASSD(v4dst) &&
1338 		    udp->udp_multicast_if_addr != INADDR_ANY) {
1339 			IN6_IPADDR_TO_V4MAPPED(udp->udp_multicast_if_addr,
1340 			    &udp->udp_v6src);
1341 		}
1342 	} else {
1343 		ASSERT(udp->udp_ipversion == IPV6_VERSION);
1344 		/*
1345 		 * Interpret a zero destination to mean loopback.
1346 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
1347 		 * generate the T_CONN_CON.
1348 		 */
1349 		if (IN6_IS_ADDR_UNSPECIFIED(&v6dst)) {
1350 			v6dst = ipv6_loopback;
1351 			sin6->sin6_addr = v6dst;
1352 		}
1353 		udp->udp_v6dst = v6dst;
1354 		udp->udp_flowinfo = flowinfo;
1355 		/*
1356 		 * If the destination address is multicast and
1357 		 * an outgoing multicast interface has been set,
1358 		 * then the ip bind logic will pick the correct source
1359 		 * address (i.e. matching the outgoing multicast interface).
1360 		 */
1361 	}
1362 
1363 	/*
1364 	 * Verify that the src/port/dst/port is unique for all
1365 	 * connections in TS_DATA_XFER
1366 	 */
1367 	for (udp1 = udpf->uf_udp; udp1 != NULL; udp1 = udp1->udp_bind_hash) {
1368 		if (udp1->udp_state != TS_DATA_XFER)
1369 			continue;
1370 		if (udp->udp_port != udp1->udp_port ||
1371 		    udp->udp_ipversion != udp1->udp_ipversion ||
1372 		    dstport != udp1->udp_dstport ||
1373 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6src, &udp1->udp_v6src) ||
1374 		    !IN6_ARE_ADDR_EQUAL(&v6dst, &udp1->udp_v6dst) ||
1375 		    !(IPCL_ZONE_MATCH(udp->udp_connp,
1376 		    udp1->udp_connp->conn_zoneid) ||
1377 		    IPCL_ZONE_MATCH(udp1->udp_connp,
1378 		    udp->udp_connp->conn_zoneid)))
1379 			continue;
1380 		mutex_exit(&udpf->uf_lock);
1381 		udp->udp_pending_op = -1;
1382 		rw_exit(&udp->udp_rwlock);
1383 		udp_err_ack(q, mp, TBADADDR, 0);
1384 		return;
1385 	}
1386 	udp->udp_state = TS_DATA_XFER;
1387 	mutex_exit(&udpf->uf_lock);
1388 
1389 	/*
1390 	 * Send down bind to IP to verify that there is a route
1391 	 * and to determine the source address.
1392 	 * This will come back as T_BIND_ACK with an IRE_DB_TYPE in rput.
1393 	 */
1394 	if (udp->udp_family == AF_INET)
1395 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa_conn_t));
1396 	else
1397 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
1398 	if (mp1 == NULL) {
1399 bind_failed:
1400 		mutex_enter(&udpf->uf_lock);
1401 		udp->udp_state = TS_IDLE;
1402 		udp->udp_pending_op = -1;
1403 		mutex_exit(&udpf->uf_lock);
1404 		rw_exit(&udp->udp_rwlock);
1405 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1406 		return;
1407 	}
1408 
1409 	rw_exit(&udp->udp_rwlock);
1410 	/*
1411 	 * We also have to send a connection confirmation to
1412 	 * keep TLI happy. Prepare it for udp_bind_result.
1413 	 */
1414 	if (udp->udp_family == AF_INET)
1415 		mp2 = mi_tpi_conn_con(NULL, (char *)sin,
1416 		    sizeof (*sin), NULL, 0);
1417 	else
1418 		mp2 = mi_tpi_conn_con(NULL, (char *)sin6,
1419 		    sizeof (*sin6), NULL, 0);
1420 	if (mp2 == NULL) {
1421 		freemsg(mp1);
1422 		rw_enter(&udp->udp_rwlock, RW_WRITER);
1423 		goto bind_failed;
1424 	}
1425 
1426 	mp = mi_tpi_ok_ack_alloc(mp);
1427 	if (mp == NULL) {
1428 		/* Unable to reuse the T_CONN_REQ for the ack. */
1429 		freemsg(mp2);
1430 		rw_enter(&udp->udp_rwlock, RW_WRITER);
1431 		mutex_enter(&udpf->uf_lock);
1432 		udp->udp_state = TS_IDLE;
1433 		udp->udp_pending_op = -1;
1434 		mutex_exit(&udpf->uf_lock);
1435 		rw_exit(&udp->udp_rwlock);
1436 		udp_err_ack_prim(q, mp1, T_CONN_REQ, TSYSERR, ENOMEM);
1437 		return;
1438 	}
1439 
1440 	/* Hang onto the T_OK_ACK and T_CONN_CON for later. */
1441 	linkb(mp1, mp);
1442 	linkb(mp1, mp2);
1443 
1444 	mblk_setcred(mp1, connp->conn_cred);
1445 	if (udp->udp_family == AF_INET)
1446 		mp1 = ip_bind_v4(q, mp1, connp);
1447 	else
1448 		mp1 = ip_bind_v6(q, mp1, connp, NULL);
1449 
1450 	/* The above return NULL if the bind needs to be deferred */
1451 	if (mp1 != NULL)
1452 		udp_bind_result(connp, mp1);
1453 	else
1454 		CONN_INC_REF(connp);
1455 }
1456 
1457 static int
1458 udp_close(queue_t *q)
1459 {
1460 	conn_t	*connp = (conn_t *)q->q_ptr;
1461 	udp_t	*udp;
1462 
1463 	ASSERT(connp != NULL && IPCL_IS_UDP(connp));
1464 	udp = connp->conn_udp;
1465 
1466 	udp_quiesce_conn(connp);
1467 	ip_quiesce_conn(connp);
1468 	/*
1469 	 * Disable read-side synchronous stream
1470 	 * interface and drain any queued data.
1471 	 */
1472 	udp_rcv_drain(q, udp, B_TRUE);
1473 	ASSERT(!udp->udp_direct_sockfs);
1474 
1475 	qprocsoff(q);
1476 
1477 	ASSERT(udp->udp_rcv_cnt == 0);
1478 	ASSERT(udp->udp_rcv_msgcnt == 0);
1479 	ASSERT(udp->udp_rcv_list_head == NULL);
1480 	ASSERT(udp->udp_rcv_list_tail == NULL);
1481 
1482 	udp_close_free(connp);
1483 
1484 	/*
1485 	 * Now we are truly single threaded on this stream, and can
1486 	 * delete the things hanging off the connp, and finally the connp.
1487 	 * We removed this connp from the fanout list, it cannot be
1488 	 * accessed thru the fanouts, and we already waited for the
1489 	 * conn_ref to drop to 0. We are already in close, so
1490 	 * there cannot be any other thread from the top. qprocsoff
1491 	 * has completed, and service has completed or won't run in
1492 	 * future.
1493 	 */
1494 	ASSERT(connp->conn_ref == 1);
1495 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
1496 	connp->conn_ref--;
1497 	ipcl_conn_destroy(connp);
1498 
1499 	q->q_ptr = WR(q)->q_ptr = NULL;
1500 	return (0);
1501 }
1502 
1503 /*
1504  * Called in the close path to quiesce the conn
1505  */
1506 void
1507 udp_quiesce_conn(conn_t *connp)
1508 {
1509 	udp_t	*udp = connp->conn_udp;
1510 
1511 	if (cl_inet_unbind != NULL && udp->udp_state == TS_IDLE) {
1512 		/*
1513 		 * Running in cluster mode - register unbind information
1514 		 */
1515 		if (udp->udp_ipversion == IPV4_VERSION) {
1516 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
1517 			    (uint8_t *)(&(V4_PART_OF_V6(udp->udp_v6src))),
1518 			    (in_port_t)udp->udp_port);
1519 		} else {
1520 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
1521 			    (uint8_t *)(&(udp->udp_v6src)),
1522 			    (in_port_t)udp->udp_port);
1523 		}
1524 	}
1525 
1526 	udp_bind_hash_remove(udp, B_FALSE);
1527 
1528 }
1529 
1530 void
1531 udp_close_free(conn_t *connp)
1532 {
1533 	udp_t *udp = connp->conn_udp;
1534 
1535 	/* If there are any options associated with the stream, free them. */
1536 	if (udp->udp_ip_snd_options != NULL) {
1537 		mi_free((char *)udp->udp_ip_snd_options);
1538 		udp->udp_ip_snd_options = NULL;
1539 		udp->udp_ip_snd_options_len = 0;
1540 	}
1541 
1542 	if (udp->udp_ip_rcv_options != NULL) {
1543 		mi_free((char *)udp->udp_ip_rcv_options);
1544 		udp->udp_ip_rcv_options = NULL;
1545 		udp->udp_ip_rcv_options_len = 0;
1546 	}
1547 
1548 	/* Free memory associated with sticky options */
1549 	if (udp->udp_sticky_hdrs_len != 0) {
1550 		kmem_free(udp->udp_sticky_hdrs,
1551 		    udp->udp_sticky_hdrs_len);
1552 		udp->udp_sticky_hdrs = NULL;
1553 		udp->udp_sticky_hdrs_len = 0;
1554 	}
1555 
1556 	ip6_pkt_free(&udp->udp_sticky_ipp);
1557 
1558 	/*
1559 	 * Clear any fields which the kmem_cache constructor clears.
1560 	 * Only udp_connp needs to be preserved.
1561 	 * TBD: We should make this more efficient to avoid clearing
1562 	 * everything.
1563 	 */
1564 	ASSERT(udp->udp_connp == connp);
1565 	bzero(udp, sizeof (udp_t));
1566 	udp->udp_connp = connp;
1567 }
1568 
1569 /*
1570  * This routine handles each T_DISCON_REQ message passed to udp
1571  * as an indicating that UDP is no longer connected. This results
1572  * in sending a T_BIND_REQ to IP to restore the binding to just
1573  * the local address/port.
1574  *
1575  * This routine sends down a T_BIND_REQ to IP with the following mblks:
1576  *	T_BIND_REQ	- specifying just the local address/port
1577  *	T_OK_ACK	- for the T_DISCON_REQ
1578  *
1579  * The disconnect completes in udp_bind_result.
1580  * When a T_BIND_ACK is received the appended T_OK_ACK is sent to the TPI user.
1581  * Should udp_bind_result receive T_ERROR_ACK for the T_BIND_REQ it will
1582  * convert it to an error ack for the appropriate primitive.
1583  */
1584 static void
1585 udp_disconnect(queue_t *q, mblk_t *mp)
1586 {
1587 	udp_t	*udp;
1588 	mblk_t	*mp1;
1589 	udp_fanout_t *udpf;
1590 	udp_stack_t *us;
1591 	conn_t	*connp = Q_TO_CONN(q);
1592 
1593 	udp = connp->conn_udp;
1594 	us = udp->udp_us;
1595 	rw_enter(&udp->udp_rwlock, RW_WRITER);
1596 	if (udp->udp_state != TS_DATA_XFER || udp->udp_pending_op != -1) {
1597 		rw_exit(&udp->udp_rwlock);
1598 		(void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
1599 		    "udp_disconnect: bad state, %u", udp->udp_state);
1600 		udp_err_ack(q, mp, TOUTSTATE, 0);
1601 		return;
1602 	}
1603 	udp->udp_pending_op = T_DISCON_REQ;
1604 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
1605 	    us->us_bind_fanout_size)];
1606 	mutex_enter(&udpf->uf_lock);
1607 	udp->udp_v6src = udp->udp_bound_v6src;
1608 	udp->udp_state = TS_IDLE;
1609 	mutex_exit(&udpf->uf_lock);
1610 
1611 	/*
1612 	 * Send down bind to IP to remove the full binding and revert
1613 	 * to the local address binding.
1614 	 */
1615 	if (udp->udp_family == AF_INET)
1616 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin_t));
1617 	else
1618 		mp1 = udp_ip_bind_mp(udp, O_T_BIND_REQ, sizeof (sin6_t));
1619 	if (mp1 == NULL) {
1620 		udp->udp_pending_op = -1;
1621 		rw_exit(&udp->udp_rwlock);
1622 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
1623 		return;
1624 	}
1625 	mp = mi_tpi_ok_ack_alloc(mp);
1626 	if (mp == NULL) {
1627 		/* Unable to reuse the T_DISCON_REQ for the ack. */
1628 		udp->udp_pending_op = -1;
1629 		rw_exit(&udp->udp_rwlock);
1630 		udp_err_ack_prim(q, mp1, T_DISCON_REQ, TSYSERR, ENOMEM);
1631 		return;
1632 	}
1633 
1634 	if (udp->udp_family == AF_INET6) {
1635 		int error;
1636 
1637 		/* Rebuild the header template */
1638 		error = udp_build_hdrs(udp);
1639 		if (error != 0) {
1640 			udp->udp_pending_op = -1;
1641 			rw_exit(&udp->udp_rwlock);
1642 			udp_err_ack_prim(q, mp, T_DISCON_REQ, TSYSERR, error);
1643 			freemsg(mp1);
1644 			return;
1645 		}
1646 	}
1647 
1648 	rw_exit(&udp->udp_rwlock);
1649 	/* Append the T_OK_ACK to the T_BIND_REQ for udp_bind_ack */
1650 	linkb(mp1, mp);
1651 
1652 	if (udp->udp_family == AF_INET6)
1653 		mp1 = ip_bind_v6(q, mp1, connp, NULL);
1654 	else
1655 		mp1 = ip_bind_v4(q, mp1, connp);
1656 
1657 	/* The above return NULL if the bind needs to be deferred */
1658 	if (mp1 != NULL)
1659 		udp_bind_result(connp, mp1);
1660 	else
1661 		CONN_INC_REF(connp);
1662 }
1663 
1664 /* This routine creates a T_ERROR_ACK message and passes it upstream. */
1665 static void
1666 udp_err_ack(queue_t *q, mblk_t *mp, t_scalar_t t_error, int sys_error)
1667 {
1668 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
1669 		qreply(q, mp);
1670 }
1671 
1672 /* Shorthand to generate and send TPI error acks to our client */
1673 static void
1674 udp_err_ack_prim(queue_t *q, mblk_t *mp, int primitive, t_scalar_t t_error,
1675     int sys_error)
1676 {
1677 	struct T_error_ack	*teackp;
1678 
1679 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
1680 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
1681 		teackp = (struct T_error_ack *)mp->b_rptr;
1682 		teackp->ERROR_prim = primitive;
1683 		teackp->TLI_error = t_error;
1684 		teackp->UNIX_error = sys_error;
1685 		qreply(q, mp);
1686 	}
1687 }
1688 
1689 /*ARGSUSED*/
1690 static int
1691 udp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
1692 {
1693 	int i;
1694 	udp_t		*udp = Q_TO_UDP(q);
1695 	udp_stack_t *us = udp->udp_us;
1696 
1697 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1698 		if (us->us_epriv_ports[i] != 0)
1699 			(void) mi_mpprintf(mp, "%d ", us->us_epriv_ports[i]);
1700 	}
1701 	return (0);
1702 }
1703 
1704 /* ARGSUSED */
1705 static int
1706 udp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
1707     cred_t *cr)
1708 {
1709 	long	new_value;
1710 	int	i;
1711 	udp_t		*udp = Q_TO_UDP(q);
1712 	udp_stack_t *us = udp->udp_us;
1713 
1714 	/*
1715 	 * Fail the request if the new value does not lie within the
1716 	 * port number limits.
1717 	 */
1718 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
1719 	    new_value <= 0 || new_value >= 65536) {
1720 		return (EINVAL);
1721 	}
1722 
1723 	/* Check if the value is already in the list */
1724 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1725 		if (new_value == us->us_epriv_ports[i]) {
1726 			return (EEXIST);
1727 		}
1728 	}
1729 	/* Find an empty slot */
1730 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1731 		if (us->us_epriv_ports[i] == 0)
1732 			break;
1733 	}
1734 	if (i == us->us_num_epriv_ports) {
1735 		return (EOVERFLOW);
1736 	}
1737 
1738 	/* Set the new value */
1739 	us->us_epriv_ports[i] = (in_port_t)new_value;
1740 	return (0);
1741 }
1742 
1743 /* ARGSUSED */
1744 static int
1745 udp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
1746     cred_t *cr)
1747 {
1748 	long	new_value;
1749 	int	i;
1750 	udp_t		*udp = Q_TO_UDP(q);
1751 	udp_stack_t *us = udp->udp_us;
1752 
1753 	/*
1754 	 * Fail the request if the new value does not lie within the
1755 	 * port number limits.
1756 	 */
1757 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
1758 	    new_value <= 0 || new_value >= 65536) {
1759 		return (EINVAL);
1760 	}
1761 
1762 	/* Check that the value is already in the list */
1763 	for (i = 0; i < us->us_num_epriv_ports; i++) {
1764 		if (us->us_epriv_ports[i] == new_value)
1765 			break;
1766 	}
1767 	if (i == us->us_num_epriv_ports) {
1768 		return (ESRCH);
1769 	}
1770 
1771 	/* Clear the value */
1772 	us->us_epriv_ports[i] = 0;
1773 	return (0);
1774 }
1775 
1776 /* At minimum we need 4 bytes of UDP header */
1777 #define	ICMP_MIN_UDP_HDR	4
1778 
1779 /*
1780  * udp_icmp_error is called by udp_input to process ICMP msgs. passed up by IP.
1781  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
1782  * Assumes that IP has pulled up everything up to and including the ICMP header.
1783  */
1784 static void
1785 udp_icmp_error(queue_t *q, mblk_t *mp)
1786 {
1787 	icmph_t *icmph;
1788 	ipha_t	*ipha;
1789 	int	iph_hdr_length;
1790 	udpha_t	*udpha;
1791 	sin_t	sin;
1792 	sin6_t	sin6;
1793 	mblk_t	*mp1;
1794 	int	error = 0;
1795 	udp_t	*udp = Q_TO_UDP(q);
1796 
1797 	ipha = (ipha_t *)mp->b_rptr;
1798 
1799 	ASSERT(OK_32PTR(mp->b_rptr));
1800 
1801 	if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
1802 		ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
1803 		udp_icmp_error_ipv6(q, mp);
1804 		return;
1805 	}
1806 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
1807 
1808 	/* Skip past the outer IP and ICMP headers */
1809 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1810 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
1811 	ipha = (ipha_t *)&icmph[1];
1812 
1813 	/* Skip past the inner IP and find the ULP header */
1814 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
1815 	udpha = (udpha_t *)((char *)ipha + iph_hdr_length);
1816 
1817 	switch (icmph->icmph_type) {
1818 	case ICMP_DEST_UNREACHABLE:
1819 		switch (icmph->icmph_code) {
1820 		case ICMP_FRAGMENTATION_NEEDED:
1821 			/*
1822 			 * IP has already adjusted the path MTU.
1823 			 */
1824 			break;
1825 		case ICMP_PORT_UNREACHABLE:
1826 		case ICMP_PROTOCOL_UNREACHABLE:
1827 			error = ECONNREFUSED;
1828 			break;
1829 		default:
1830 			/* Transient errors */
1831 			break;
1832 		}
1833 		break;
1834 	default:
1835 		/* Transient errors */
1836 		break;
1837 	}
1838 	if (error == 0) {
1839 		freemsg(mp);
1840 		return;
1841 	}
1842 
1843 	/*
1844 	 * Deliver T_UDERROR_IND when the application has asked for it.
1845 	 * The socket layer enables this automatically when connected.
1846 	 */
1847 	if (!udp->udp_dgram_errind) {
1848 		freemsg(mp);
1849 		return;
1850 	}
1851 
1852 	switch (udp->udp_family) {
1853 	case AF_INET:
1854 		sin = sin_null;
1855 		sin.sin_family = AF_INET;
1856 		sin.sin_addr.s_addr = ipha->ipha_dst;
1857 		sin.sin_port = udpha->uha_dst_port;
1858 		mp1 = mi_tpi_uderror_ind((char *)&sin, sizeof (sin_t), NULL, 0,
1859 		    error);
1860 		break;
1861 	case AF_INET6:
1862 		sin6 = sin6_null;
1863 		sin6.sin6_family = AF_INET6;
1864 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &sin6.sin6_addr);
1865 		sin6.sin6_port = udpha->uha_dst_port;
1866 
1867 		mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t),
1868 		    NULL, 0, error);
1869 		break;
1870 	}
1871 	if (mp1)
1872 		putnext(q, mp1);
1873 	freemsg(mp);
1874 }
1875 
1876 /*
1877  * udp_icmp_error_ipv6 is called by udp_icmp_error to process ICMP for IPv6.
1878  * Generates the appropriate T_UDERROR_IND for permanent (non-transient) errors.
1879  * Assumes that IP has pulled up all the extension headers as well as the
1880  * ICMPv6 header.
1881  */
1882 static void
1883 udp_icmp_error_ipv6(queue_t *q, mblk_t *mp)
1884 {
1885 	icmp6_t		*icmp6;
1886 	ip6_t		*ip6h, *outer_ip6h;
1887 	uint16_t	iph_hdr_length;
1888 	uint8_t		*nexthdrp;
1889 	udpha_t		*udpha;
1890 	sin6_t		sin6;
1891 	mblk_t		*mp1;
1892 	int		error = 0;
1893 	udp_t		*udp = Q_TO_UDP(q);
1894 	udp_stack_t	*us = udp->udp_us;
1895 
1896 	outer_ip6h = (ip6_t *)mp->b_rptr;
1897 	if (outer_ip6h->ip6_nxt != IPPROTO_ICMPV6)
1898 		iph_hdr_length = ip_hdr_length_v6(mp, outer_ip6h);
1899 	else
1900 		iph_hdr_length = IPV6_HDR_LEN;
1901 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
1902 	ip6h = (ip6_t *)&icmp6[1];
1903 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) {
1904 		freemsg(mp);
1905 		return;
1906 	}
1907 	udpha = (udpha_t *)((char *)ip6h + iph_hdr_length);
1908 
1909 	switch (icmp6->icmp6_type) {
1910 	case ICMP6_DST_UNREACH:
1911 		switch (icmp6->icmp6_code) {
1912 		case ICMP6_DST_UNREACH_NOPORT:
1913 			error = ECONNREFUSED;
1914 			break;
1915 		case ICMP6_DST_UNREACH_ADMIN:
1916 		case ICMP6_DST_UNREACH_NOROUTE:
1917 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
1918 		case ICMP6_DST_UNREACH_ADDR:
1919 			/* Transient errors */
1920 			break;
1921 		default:
1922 			break;
1923 		}
1924 		break;
1925 	case ICMP6_PACKET_TOO_BIG: {
1926 		struct T_unitdata_ind	*tudi;
1927 		struct T_opthdr		*toh;
1928 		size_t			udi_size;
1929 		mblk_t			*newmp;
1930 		t_scalar_t		opt_length = sizeof (struct T_opthdr) +
1931 		    sizeof (struct ip6_mtuinfo);
1932 		sin6_t			*sin6;
1933 		struct ip6_mtuinfo	*mtuinfo;
1934 
1935 		/*
1936 		 * If the application has requested to receive path mtu
1937 		 * information, send up an empty message containing an
1938 		 * IPV6_PATHMTU ancillary data item.
1939 		 */
1940 		if (!udp->udp_ipv6_recvpathmtu)
1941 			break;
1942 
1943 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t) +
1944 		    opt_length;
1945 		if ((newmp = allocb(udi_size, BPRI_MED)) == NULL) {
1946 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
1947 			break;
1948 		}
1949 
1950 		/*
1951 		 * newmp->b_cont is left to NULL on purpose.  This is an
1952 		 * empty message containing only ancillary data.
1953 		 */
1954 		newmp->b_datap->db_type = M_PROTO;
1955 		tudi = (struct T_unitdata_ind *)newmp->b_rptr;
1956 		newmp->b_wptr = (uchar_t *)tudi + udi_size;
1957 		tudi->PRIM_type = T_UNITDATA_IND;
1958 		tudi->SRC_length = sizeof (sin6_t);
1959 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
1960 		tudi->OPT_offset = tudi->SRC_offset + sizeof (sin6_t);
1961 		tudi->OPT_length = opt_length;
1962 
1963 		sin6 = (sin6_t *)&tudi[1];
1964 		bzero(sin6, sizeof (sin6_t));
1965 		sin6->sin6_family = AF_INET6;
1966 		sin6->sin6_addr = udp->udp_v6dst;
1967 
1968 		toh = (struct T_opthdr *)&sin6[1];
1969 		toh->level = IPPROTO_IPV6;
1970 		toh->name = IPV6_PATHMTU;
1971 		toh->len = opt_length;
1972 		toh->status = 0;
1973 
1974 		mtuinfo = (struct ip6_mtuinfo *)&toh[1];
1975 		bzero(mtuinfo, sizeof (struct ip6_mtuinfo));
1976 		mtuinfo->ip6m_addr.sin6_family = AF_INET6;
1977 		mtuinfo->ip6m_addr.sin6_addr = ip6h->ip6_dst;
1978 		mtuinfo->ip6m_mtu = icmp6->icmp6_mtu;
1979 		/*
1980 		 * We've consumed everything we need from the original
1981 		 * message.  Free it, then send our empty message.
1982 		 */
1983 		freemsg(mp);
1984 		putnext(q, newmp);
1985 		return;
1986 	}
1987 	case ICMP6_TIME_EXCEEDED:
1988 		/* Transient errors */
1989 		break;
1990 	case ICMP6_PARAM_PROB:
1991 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
1992 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
1993 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
1994 		    (uchar_t *)nexthdrp) {
1995 			error = ECONNREFUSED;
1996 			break;
1997 		}
1998 		break;
1999 	}
2000 	if (error == 0) {
2001 		freemsg(mp);
2002 		return;
2003 	}
2004 
2005 	/*
2006 	 * Deliver T_UDERROR_IND when the application has asked for it.
2007 	 * The socket layer enables this automatically when connected.
2008 	 */
2009 	if (!udp->udp_dgram_errind) {
2010 		freemsg(mp);
2011 		return;
2012 	}
2013 
2014 	sin6 = sin6_null;
2015 	sin6.sin6_family = AF_INET6;
2016 	sin6.sin6_addr = ip6h->ip6_dst;
2017 	sin6.sin6_port = udpha->uha_dst_port;
2018 	sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
2019 
2020 	mp1 = mi_tpi_uderror_ind((char *)&sin6, sizeof (sin6_t), NULL, 0,
2021 	    error);
2022 	if (mp1)
2023 		putnext(q, mp1);
2024 	freemsg(mp);
2025 }
2026 
2027 /*
2028  * This routine responds to T_ADDR_REQ messages.  It is called by udp_wput.
2029  * The local address is filled in if endpoint is bound. The remote address
2030  * is filled in if remote address has been precified ("connected endpoint")
2031  * (The concept of connected CLTS sockets is alien to published TPI
2032  *  but we support it anyway).
2033  */
2034 static void
2035 udp_addr_req(queue_t *q, mblk_t *mp)
2036 {
2037 	sin_t	*sin;
2038 	sin6_t	*sin6;
2039 	mblk_t	*ackmp;
2040 	struct T_addr_ack *taa;
2041 	udp_t	*udp = Q_TO_UDP(q);
2042 
2043 	/* Make it large enough for worst case */
2044 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
2045 	    2 * sizeof (sin6_t), 1);
2046 	if (ackmp == NULL) {
2047 		udp_err_ack(q, mp, TSYSERR, ENOMEM);
2048 		return;
2049 	}
2050 	taa = (struct T_addr_ack *)ackmp->b_rptr;
2051 
2052 	bzero(taa, sizeof (struct T_addr_ack));
2053 	ackmp->b_wptr = (uchar_t *)&taa[1];
2054 
2055 	taa->PRIM_type = T_ADDR_ACK;
2056 	ackmp->b_datap->db_type = M_PCPROTO;
2057 	rw_enter(&udp->udp_rwlock, RW_READER);
2058 	/*
2059 	 * Note: Following code assumes 32 bit alignment of basic
2060 	 * data structures like sin_t and struct T_addr_ack.
2061 	 */
2062 	if (udp->udp_state != TS_UNBND) {
2063 		/*
2064 		 * Fill in local address first
2065 		 */
2066 		taa->LOCADDR_offset = sizeof (*taa);
2067 		if (udp->udp_family == AF_INET) {
2068 			taa->LOCADDR_length = sizeof (sin_t);
2069 			sin = (sin_t *)&taa[1];
2070 			/* Fill zeroes and then initialize non-zero fields */
2071 			*sin = sin_null;
2072 			sin->sin_family = AF_INET;
2073 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
2074 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2075 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src,
2076 				    sin->sin_addr.s_addr);
2077 			} else {
2078 				/*
2079 				 * INADDR_ANY
2080 				 * udp_v6src is not set, we might be bound to
2081 				 * broadcast/multicast. Use udp_bound_v6src as
2082 				 * local address instead (that could
2083 				 * also still be INADDR_ANY)
2084 				 */
2085 				IN6_V4MAPPED_TO_IPADDR(&udp->udp_bound_v6src,
2086 				    sin->sin_addr.s_addr);
2087 			}
2088 			sin->sin_port = udp->udp_port;
2089 			ackmp->b_wptr = (uchar_t *)&sin[1];
2090 			if (udp->udp_state == TS_DATA_XFER) {
2091 				/*
2092 				 * connected, fill remote address too
2093 				 */
2094 				taa->REMADDR_length = sizeof (sin_t);
2095 				/* assumed 32-bit alignment */
2096 				taa->REMADDR_offset = taa->LOCADDR_offset +
2097 				    taa->LOCADDR_length;
2098 
2099 				sin = (sin_t *)(ackmp->b_rptr +
2100 				    taa->REMADDR_offset);
2101 				/* initialize */
2102 				*sin = sin_null;
2103 				sin->sin_family = AF_INET;
2104 				sin->sin_addr.s_addr =
2105 				    V4_PART_OF_V6(udp->udp_v6dst);
2106 				sin->sin_port = udp->udp_dstport;
2107 				ackmp->b_wptr = (uchar_t *)&sin[1];
2108 			}
2109 		} else {
2110 			taa->LOCADDR_length = sizeof (sin6_t);
2111 			sin6 = (sin6_t *)&taa[1];
2112 			/* Fill zeroes and then initialize non-zero fields */
2113 			*sin6 = sin6_null;
2114 			sin6->sin6_family = AF_INET6;
2115 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
2116 				sin6->sin6_addr = udp->udp_v6src;
2117 			} else {
2118 				/*
2119 				 * UNSPECIFIED
2120 				 * udp_v6src is not set, we might be bound to
2121 				 * broadcast/multicast. Use udp_bound_v6src as
2122 				 * local address instead (that could
2123 				 * also still be UNSPECIFIED)
2124 				 */
2125 				sin6->sin6_addr =
2126 				    udp->udp_bound_v6src;
2127 			}
2128 			sin6->sin6_port = udp->udp_port;
2129 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2130 			if (udp->udp_state == TS_DATA_XFER) {
2131 				/*
2132 				 * connected, fill remote address too
2133 				 */
2134 				taa->REMADDR_length = sizeof (sin6_t);
2135 				/* assumed 32-bit alignment */
2136 				taa->REMADDR_offset = taa->LOCADDR_offset +
2137 				    taa->LOCADDR_length;
2138 
2139 				sin6 = (sin6_t *)(ackmp->b_rptr +
2140 				    taa->REMADDR_offset);
2141 				/* initialize */
2142 				*sin6 = sin6_null;
2143 				sin6->sin6_family = AF_INET6;
2144 				sin6->sin6_addr = udp->udp_v6dst;
2145 				sin6->sin6_port =  udp->udp_dstport;
2146 				ackmp->b_wptr = (uchar_t *)&sin6[1];
2147 			}
2148 			ackmp->b_wptr = (uchar_t *)&sin6[1];
2149 		}
2150 	}
2151 	rw_exit(&udp->udp_rwlock);
2152 	ASSERT(ackmp->b_wptr <= ackmp->b_datap->db_lim);
2153 	qreply(q, ackmp);
2154 }
2155 
2156 static void
2157 udp_copy_info(struct T_info_ack *tap, udp_t *udp)
2158 {
2159 	if (udp->udp_family == AF_INET) {
2160 		*tap = udp_g_t_info_ack_ipv4;
2161 	} else {
2162 		*tap = udp_g_t_info_ack_ipv6;
2163 	}
2164 	tap->CURRENT_state = udp->udp_state;
2165 	tap->OPT_size = udp_max_optsize;
2166 }
2167 
2168 /*
2169  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
2170  * udp_wput.  Much of the T_CAPABILITY_ACK information is copied from
2171  * udp_g_t_info_ack.  The current state of the stream is copied from
2172  * udp_state.
2173  */
2174 static void
2175 udp_capability_req(queue_t *q, mblk_t *mp)
2176 {
2177 	t_uscalar_t		cap_bits1;
2178 	struct T_capability_ack	*tcap;
2179 	udp_t	*udp = Q_TO_UDP(q);
2180 
2181 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
2182 
2183 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
2184 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
2185 	if (!mp)
2186 		return;
2187 
2188 	tcap = (struct T_capability_ack *)mp->b_rptr;
2189 	tcap->CAP_bits1 = 0;
2190 
2191 	if (cap_bits1 & TC1_INFO) {
2192 		udp_copy_info(&tcap->INFO_ack, udp);
2193 		tcap->CAP_bits1 |= TC1_INFO;
2194 	}
2195 
2196 	qreply(q, mp);
2197 }
2198 
2199 /*
2200  * This routine responds to T_INFO_REQ messages.  It is called by udp_wput.
2201  * Most of the T_INFO_ACK information is copied from udp_g_t_info_ack.
2202  * The current state of the stream is copied from udp_state.
2203  */
2204 static void
2205 udp_info_req(queue_t *q, mblk_t *mp)
2206 {
2207 	udp_t *udp = Q_TO_UDP(q);
2208 
2209 	/* Create a T_INFO_ACK message. */
2210 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
2211 	    T_INFO_ACK);
2212 	if (!mp)
2213 		return;
2214 	udp_copy_info((struct T_info_ack *)mp->b_rptr, udp);
2215 	qreply(q, mp);
2216 }
2217 
2218 /*
2219  * IP recognizes seven kinds of bind requests:
2220  *
2221  * - A zero-length address binds only to the protocol number.
2222  *
2223  * - A 4-byte address is treated as a request to
2224  * validate that the address is a valid local IPv4
2225  * address, appropriate for an application to bind to.
2226  * IP does the verification, but does not make any note
2227  * of the address at this time.
2228  *
2229  * - A 16-byte address contains is treated as a request
2230  * to validate a local IPv6 address, as the 4-byte
2231  * address case above.
2232  *
2233  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
2234  * use it for the inbound fanout of packets.
2235  *
2236  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
2237  * use it for the inbound fanout of packets.
2238  *
2239  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
2240  * information consisting of local and remote addresses
2241  * and ports.  In this case, the addresses are both
2242  * validated as appropriate for this operation, and, if
2243  * so, the information is retained for use in the
2244  * inbound fanout.
2245  *
2246  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
2247  * fanout information, like the 12-byte case above.
2248  *
2249  * IP will also fill in the IRE request mblk with information
2250  * regarding our peer.  In all cases, we notify IP of our protocol
2251  * type by appending a single protocol byte to the bind request.
2252  */
2253 static mblk_t *
2254 udp_ip_bind_mp(udp_t *udp, t_scalar_t bind_prim, t_scalar_t addr_length)
2255 {
2256 	char	*cp;
2257 	mblk_t	*mp;
2258 	struct T_bind_req *tbr;
2259 	ipa_conn_t	*ac;
2260 	ipa6_conn_t	*ac6;
2261 	sin_t		*sin;
2262 	sin6_t		*sin6;
2263 
2264 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
2265 	ASSERT(RW_LOCK_HELD(&udp->udp_rwlock));
2266 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
2267 	if (!mp)
2268 		return (mp);
2269 	mp->b_datap->db_type = M_PROTO;
2270 	tbr = (struct T_bind_req *)mp->b_rptr;
2271 	tbr->PRIM_type = bind_prim;
2272 	tbr->ADDR_offset = sizeof (*tbr);
2273 	tbr->CONIND_number = 0;
2274 	tbr->ADDR_length = addr_length;
2275 	cp = (char *)&tbr[1];
2276 	switch (addr_length) {
2277 	case sizeof (ipa_conn_t):
2278 		ASSERT(udp->udp_family == AF_INET);
2279 		/* Append a request for an IRE */
2280 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2281 		if (!mp->b_cont) {
2282 			freemsg(mp);
2283 			return (NULL);
2284 		}
2285 		mp->b_cont->b_wptr += sizeof (ire_t);
2286 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2287 
2288 		/* cp known to be 32 bit aligned */
2289 		ac = (ipa_conn_t *)cp;
2290 		ac->ac_laddr = V4_PART_OF_V6(udp->udp_v6src);
2291 		ac->ac_faddr = V4_PART_OF_V6(udp->udp_v6dst);
2292 		ac->ac_fport = udp->udp_dstport;
2293 		ac->ac_lport = udp->udp_port;
2294 		break;
2295 
2296 	case sizeof (ipa6_conn_t):
2297 		ASSERT(udp->udp_family == AF_INET6);
2298 		/* Append a request for an IRE */
2299 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2300 		if (!mp->b_cont) {
2301 			freemsg(mp);
2302 			return (NULL);
2303 		}
2304 		mp->b_cont->b_wptr += sizeof (ire_t);
2305 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2306 
2307 		/* cp known to be 32 bit aligned */
2308 		ac6 = (ipa6_conn_t *)cp;
2309 		ac6->ac6_laddr = udp->udp_v6src;
2310 		ac6->ac6_faddr = udp->udp_v6dst;
2311 		ac6->ac6_fport = udp->udp_dstport;
2312 		ac6->ac6_lport = udp->udp_port;
2313 		break;
2314 
2315 	case sizeof (sin_t):
2316 		ASSERT(udp->udp_family == AF_INET);
2317 		/* Append a request for an IRE */
2318 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2319 		if (!mp->b_cont) {
2320 			freemsg(mp);
2321 			return (NULL);
2322 		}
2323 		mp->b_cont->b_wptr += sizeof (ire_t);
2324 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2325 
2326 		sin = (sin_t *)cp;
2327 		*sin = sin_null;
2328 		sin->sin_family = AF_INET;
2329 		sin->sin_addr.s_addr = V4_PART_OF_V6(udp->udp_bound_v6src);
2330 		sin->sin_port = udp->udp_port;
2331 		break;
2332 
2333 	case sizeof (sin6_t):
2334 		ASSERT(udp->udp_family == AF_INET6);
2335 		/* Append a request for an IRE */
2336 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
2337 		if (!mp->b_cont) {
2338 			freemsg(mp);
2339 			return (NULL);
2340 		}
2341 		mp->b_cont->b_wptr += sizeof (ire_t);
2342 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
2343 
2344 		sin6 = (sin6_t *)cp;
2345 		*sin6 = sin6_null;
2346 		sin6->sin6_family = AF_INET6;
2347 		sin6->sin6_addr = udp->udp_bound_v6src;
2348 		sin6->sin6_port = udp->udp_port;
2349 		break;
2350 	}
2351 	/* Add protocol number to end */
2352 	cp[addr_length] = (char)IPPROTO_UDP;
2353 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
2354 	return (mp);
2355 }
2356 
2357 /* For /dev/udp aka AF_INET open */
2358 static int
2359 udp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2360 {
2361 	return (udp_open(q, devp, flag, sflag, credp, B_FALSE));
2362 }
2363 
2364 /* For /dev/udp6 aka AF_INET6 open */
2365 static int
2366 udp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
2367 {
2368 	return (udp_open(q, devp, flag, sflag, credp, B_TRUE));
2369 }
2370 
2371 /*
2372  * This is the open routine for udp.  It allocates a udp_t structure for
2373  * the stream and, on the first open of the module, creates an ND table.
2374  */
2375 /*ARGSUSED2*/
2376 static int
2377 udp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
2378     boolean_t isv6)
2379 {
2380 	int		err;
2381 	udp_t		*udp;
2382 	conn_t		*connp;
2383 	dev_t		conn_dev;
2384 	zoneid_t	zoneid;
2385 	netstack_t	*ns;
2386 	udp_stack_t	*us;
2387 	vmem_t		*minor_arena;
2388 
2389 	TRACE_1(TR_FAC_UDP, TR_UDP_OPEN, "udp_open: q %p", q);
2390 
2391 	/* If the stream is already open, return immediately. */
2392 	if (q->q_ptr != NULL)
2393 		return (0);
2394 
2395 	if (sflag == MODOPEN)
2396 		return (EINVAL);
2397 
2398 	ns = netstack_find_by_cred(credp);
2399 	ASSERT(ns != NULL);
2400 	us = ns->netstack_udp;
2401 	ASSERT(us != NULL);
2402 
2403 	/*
2404 	 * For exclusive stacks we set the zoneid to zero
2405 	 * to make UDP operate as if in the global zone.
2406 	 */
2407 	if (ns->netstack_stackid != GLOBAL_NETSTACKID)
2408 		zoneid = GLOBAL_ZONEID;
2409 	else
2410 		zoneid = crgetzoneid(credp);
2411 
2412 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
2413 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
2414 		minor_arena = ip_minor_arena_la;
2415 	} else {
2416 		/*
2417 		 * Either minor numbers in the large arena were exhausted
2418 		 * or a non socket application is doing the open.
2419 		 * Try to allocate from the small arena.
2420 		 */
2421 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
2422 			netstack_rele(ns);
2423 			return (EBUSY);
2424 		}
2425 		minor_arena = ip_minor_arena_sa;
2426 	}
2427 
2428 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
2429 
2430 	connp = ipcl_conn_create(IPCL_UDPCONN, KM_SLEEP, ns);
2431 	connp->conn_dev = conn_dev;
2432 	connp->conn_minor_arena = minor_arena;
2433 	udp = connp->conn_udp;
2434 
2435 	/*
2436 	 * ipcl_conn_create did a netstack_hold. Undo the hold that was
2437 	 * done by netstack_find_by_cred()
2438 	 */
2439 	netstack_rele(ns);
2440 
2441 	/*
2442 	 * Initialize the udp_t structure for this stream.
2443 	 */
2444 	q->q_ptr = connp;
2445 	WR(q)->q_ptr = connp;
2446 	connp->conn_rq = q;
2447 	connp->conn_wq = WR(q);
2448 
2449 	rw_enter(&udp->udp_rwlock, RW_WRITER);
2450 	ASSERT(connp->conn_ulp == IPPROTO_UDP);
2451 	ASSERT(connp->conn_udp == udp);
2452 	ASSERT(udp->udp_connp == connp);
2453 
2454 	/* Set the initial state of the stream and the privilege status. */
2455 	udp->udp_state = TS_UNBND;
2456 	if (isv6) {
2457 		udp->udp_family = AF_INET6;
2458 		udp->udp_ipversion = IPV6_VERSION;
2459 		udp->udp_max_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
2460 		udp->udp_ttl = us->us_ipv6_hoplimit;
2461 		connp->conn_af_isv6 = B_TRUE;
2462 		connp->conn_flags |= IPCL_ISV6;
2463 	} else {
2464 		udp->udp_family = AF_INET;
2465 		udp->udp_ipversion = IPV4_VERSION;
2466 		udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE;
2467 		udp->udp_ttl = us->us_ipv4_ttl;
2468 		connp->conn_af_isv6 = B_FALSE;
2469 		connp->conn_flags &= ~IPCL_ISV6;
2470 	}
2471 
2472 	udp->udp_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2473 	udp->udp_pending_op = -1;
2474 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
2475 	connp->conn_zoneid = zoneid;
2476 
2477 	udp->udp_open_time = lbolt64;
2478 	udp->udp_open_pid = curproc->p_pid;
2479 
2480 	/*
2481 	 * If the caller has the process-wide flag set, then default to MAC
2482 	 * exempt mode.  This allows read-down to unlabeled hosts.
2483 	 */
2484 	if (getpflags(NET_MAC_AWARE, credp) != 0)
2485 		udp->udp_mac_exempt = B_TRUE;
2486 
2487 	if (flag & SO_SOCKSTR) {
2488 		connp->conn_flags |= IPCL_SOCKET;
2489 		udp->udp_issocket = B_TRUE;
2490 		udp->udp_direct_sockfs = B_TRUE;
2491 	}
2492 
2493 	connp->conn_ulp_labeled = is_system_labeled();
2494 
2495 	udp->udp_us = us;
2496 
2497 	q->q_hiwat = us->us_recv_hiwat;
2498 	WR(q)->q_hiwat = us->us_xmit_hiwat;
2499 	WR(q)->q_lowat = us->us_xmit_lowat;
2500 
2501 	connp->conn_recv = udp_input;
2502 	crhold(credp);
2503 	connp->conn_cred = credp;
2504 
2505 	mutex_enter(&connp->conn_lock);
2506 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2507 	mutex_exit(&connp->conn_lock);
2508 
2509 	qprocson(q);
2510 
2511 	if (udp->udp_family == AF_INET6) {
2512 		/* Build initial header template for transmit */
2513 		if ((err = udp_build_hdrs(udp)) != 0) {
2514 			rw_exit(&udp->udp_rwlock);
2515 			qprocsoff(q);
2516 			ipcl_conn_destroy(connp);
2517 			return (err);
2518 		}
2519 	}
2520 	rw_exit(&udp->udp_rwlock);
2521 
2522 	/* Set the Stream head write offset and high watermark. */
2523 	(void) mi_set_sth_wroff(q,
2524 	    udp->udp_max_hdr_len + us->us_wroff_extra);
2525 	(void) mi_set_sth_hiwat(q, udp_set_rcv_hiwat(udp, q->q_hiwat));
2526 
2527 	return (0);
2528 }
2529 
2530 /*
2531  * Which UDP options OK to set through T_UNITDATA_REQ...
2532  */
2533 /* ARGSUSED */
2534 static boolean_t
2535 udp_opt_allow_udr_set(t_scalar_t level, t_scalar_t name)
2536 {
2537 	return (B_TRUE);
2538 }
2539 
2540 /*
2541  * This routine gets default values of certain options whose default
2542  * values are maintained by protcol specific code
2543  */
2544 /* ARGSUSED */
2545 int
2546 udp_opt_default(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2547 {
2548 	udp_t		*udp = Q_TO_UDP(q);
2549 	udp_stack_t *us = udp->udp_us;
2550 	int *i1 = (int *)ptr;
2551 
2552 	switch (level) {
2553 	case IPPROTO_IP:
2554 		switch (name) {
2555 		case IP_MULTICAST_TTL:
2556 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_TTL;
2557 			return (sizeof (uchar_t));
2558 		case IP_MULTICAST_LOOP:
2559 			*ptr = (uchar_t)IP_DEFAULT_MULTICAST_LOOP;
2560 			return (sizeof (uchar_t));
2561 		}
2562 		break;
2563 	case IPPROTO_IPV6:
2564 		switch (name) {
2565 		case IPV6_MULTICAST_HOPS:
2566 			*i1 = IP_DEFAULT_MULTICAST_TTL;
2567 			return (sizeof (int));
2568 		case IPV6_MULTICAST_LOOP:
2569 			*i1 = IP_DEFAULT_MULTICAST_LOOP;
2570 			return (sizeof (int));
2571 		case IPV6_UNICAST_HOPS:
2572 			*i1 = us->us_ipv6_hoplimit;
2573 			return (sizeof (int));
2574 		}
2575 		break;
2576 	}
2577 	return (-1);
2578 }
2579 
2580 /*
2581  * This routine retrieves the current status of socket options.
2582  * It returns the size of the option retrieved.
2583  */
2584 int
2585 udp_opt_get_locked(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2586 {
2587 	int	*i1 = (int *)ptr;
2588 	conn_t	*connp;
2589 	udp_t	*udp;
2590 	ip6_pkt_t *ipp;
2591 	int	len;
2592 	udp_stack_t	*us;
2593 
2594 	connp = Q_TO_CONN(q);
2595 	udp = connp->conn_udp;
2596 	ipp = &udp->udp_sticky_ipp;
2597 	us = udp->udp_us;
2598 
2599 	switch (level) {
2600 	case SOL_SOCKET:
2601 		switch (name) {
2602 		case SO_DEBUG:
2603 			*i1 = udp->udp_debug;
2604 			break;	/* goto sizeof (int) option return */
2605 		case SO_REUSEADDR:
2606 			*i1 = udp->udp_reuseaddr;
2607 			break;	/* goto sizeof (int) option return */
2608 		case SO_TYPE:
2609 			*i1 = SOCK_DGRAM;
2610 			break;	/* goto sizeof (int) option return */
2611 
2612 		/*
2613 		 * The following three items are available here,
2614 		 * but are only meaningful to IP.
2615 		 */
2616 		case SO_DONTROUTE:
2617 			*i1 = udp->udp_dontroute;
2618 			break;	/* goto sizeof (int) option return */
2619 		case SO_USELOOPBACK:
2620 			*i1 = udp->udp_useloopback;
2621 			break;	/* goto sizeof (int) option return */
2622 		case SO_BROADCAST:
2623 			*i1 = udp->udp_broadcast;
2624 			break;	/* goto sizeof (int) option return */
2625 
2626 		case SO_SNDBUF:
2627 			*i1 = q->q_hiwat;
2628 			break;	/* goto sizeof (int) option return */
2629 		case SO_RCVBUF:
2630 			*i1 = RD(q)->q_hiwat;
2631 			break;	/* goto sizeof (int) option return */
2632 		case SO_DGRAM_ERRIND:
2633 			*i1 = udp->udp_dgram_errind;
2634 			break;	/* goto sizeof (int) option return */
2635 		case SO_RECVUCRED:
2636 			*i1 = udp->udp_recvucred;
2637 			break;	/* goto sizeof (int) option return */
2638 		case SO_TIMESTAMP:
2639 			*i1 = udp->udp_timestamp;
2640 			break;	/* goto sizeof (int) option return */
2641 		case SO_ANON_MLP:
2642 			*i1 = udp->udp_anon_mlp;
2643 			break;	/* goto sizeof (int) option return */
2644 		case SO_MAC_EXEMPT:
2645 			*i1 = udp->udp_mac_exempt;
2646 			break;	/* goto sizeof (int) option return */
2647 		case SO_ALLZONES:
2648 			*i1 = connp->conn_allzones;
2649 			break;	/* goto sizeof (int) option return */
2650 		case SO_EXCLBIND:
2651 			*i1 = udp->udp_exclbind ? SO_EXCLBIND : 0;
2652 			break;
2653 		case SO_PROTOTYPE:
2654 			*i1 = IPPROTO_UDP;
2655 			break;
2656 		case SO_DOMAIN:
2657 			*i1 = udp->udp_family;
2658 			break;
2659 		default:
2660 			return (-1);
2661 		}
2662 		break;
2663 	case IPPROTO_IP:
2664 		if (udp->udp_family != AF_INET)
2665 			return (-1);
2666 		switch (name) {
2667 		case IP_OPTIONS:
2668 		case T_IP_OPTIONS:
2669 			len = udp->udp_ip_rcv_options_len - udp->udp_label_len;
2670 			if (len > 0) {
2671 				bcopy(udp->udp_ip_rcv_options +
2672 				    udp->udp_label_len, ptr, len);
2673 			}
2674 			return (len);
2675 		case IP_TOS:
2676 		case T_IP_TOS:
2677 			*i1 = (int)udp->udp_type_of_service;
2678 			break;	/* goto sizeof (int) option return */
2679 		case IP_TTL:
2680 			*i1 = (int)udp->udp_ttl;
2681 			break;	/* goto sizeof (int) option return */
2682 		case IP_DHCPINIT_IF:
2683 			return (-EINVAL);
2684 		case IP_NEXTHOP:
2685 		case IP_RECVPKTINFO:
2686 			/*
2687 			 * This also handles IP_PKTINFO.
2688 			 * IP_PKTINFO and IP_RECVPKTINFO have the same value.
2689 			 * Differentiation is based on the size of the argument
2690 			 * passed in.
2691 			 * This option is handled in IP which will return an
2692 			 * error for IP_PKTINFO as it's not supported as a
2693 			 * sticky option.
2694 			 */
2695 			return (-EINVAL);
2696 		case IP_MULTICAST_IF:
2697 			/* 0 address if not set */
2698 			*(ipaddr_t *)ptr = udp->udp_multicast_if_addr;
2699 			return (sizeof (ipaddr_t));
2700 		case IP_MULTICAST_TTL:
2701 			*(uchar_t *)ptr = udp->udp_multicast_ttl;
2702 			return (sizeof (uchar_t));
2703 		case IP_MULTICAST_LOOP:
2704 			*ptr = connp->conn_multicast_loop;
2705 			return (sizeof (uint8_t));
2706 		case IP_RECVOPTS:
2707 			*i1 = udp->udp_recvopts;
2708 			break;	/* goto sizeof (int) option return */
2709 		case IP_RECVDSTADDR:
2710 			*i1 = udp->udp_recvdstaddr;
2711 			break;	/* goto sizeof (int) option return */
2712 		case IP_RECVIF:
2713 			*i1 = udp->udp_recvif;
2714 			break;	/* goto sizeof (int) option return */
2715 		case IP_RECVSLLA:
2716 			*i1 = udp->udp_recvslla;
2717 			break;	/* goto sizeof (int) option return */
2718 		case IP_RECVTTL:
2719 			*i1 = udp->udp_recvttl;
2720 			break;	/* goto sizeof (int) option return */
2721 		case IP_ADD_MEMBERSHIP:
2722 		case IP_DROP_MEMBERSHIP:
2723 		case IP_BLOCK_SOURCE:
2724 		case IP_UNBLOCK_SOURCE:
2725 		case IP_ADD_SOURCE_MEMBERSHIP:
2726 		case IP_DROP_SOURCE_MEMBERSHIP:
2727 		case MCAST_JOIN_GROUP:
2728 		case MCAST_LEAVE_GROUP:
2729 		case MCAST_BLOCK_SOURCE:
2730 		case MCAST_UNBLOCK_SOURCE:
2731 		case MCAST_JOIN_SOURCE_GROUP:
2732 		case MCAST_LEAVE_SOURCE_GROUP:
2733 		case IP_DONTFAILOVER_IF:
2734 			/* cannot "get" the value for these */
2735 			return (-1);
2736 		case IP_BOUND_IF:
2737 			/* Zero if not set */
2738 			*i1 = udp->udp_bound_if;
2739 			break;	/* goto sizeof (int) option return */
2740 		case IP_UNSPEC_SRC:
2741 			*i1 = udp->udp_unspec_source;
2742 			break;	/* goto sizeof (int) option return */
2743 		case IP_BROADCAST_TTL:
2744 			*(uchar_t *)ptr = connp->conn_broadcast_ttl;
2745 			return (sizeof (uchar_t));
2746 		default:
2747 			return (-1);
2748 		}
2749 		break;
2750 	case IPPROTO_IPV6:
2751 		if (udp->udp_family != AF_INET6)
2752 			return (-1);
2753 		switch (name) {
2754 		case IPV6_UNICAST_HOPS:
2755 			*i1 = (unsigned int)udp->udp_ttl;
2756 			break;	/* goto sizeof (int) option return */
2757 		case IPV6_MULTICAST_IF:
2758 			/* 0 index if not set */
2759 			*i1 = udp->udp_multicast_if_index;
2760 			break;	/* goto sizeof (int) option return */
2761 		case IPV6_MULTICAST_HOPS:
2762 			*i1 = udp->udp_multicast_ttl;
2763 			break;	/* goto sizeof (int) option return */
2764 		case IPV6_MULTICAST_LOOP:
2765 			*i1 = connp->conn_multicast_loop;
2766 			break;	/* goto sizeof (int) option return */
2767 		case IPV6_JOIN_GROUP:
2768 		case IPV6_LEAVE_GROUP:
2769 		case MCAST_JOIN_GROUP:
2770 		case MCAST_LEAVE_GROUP:
2771 		case MCAST_BLOCK_SOURCE:
2772 		case MCAST_UNBLOCK_SOURCE:
2773 		case MCAST_JOIN_SOURCE_GROUP:
2774 		case MCAST_LEAVE_SOURCE_GROUP:
2775 			/* cannot "get" the value for these */
2776 			return (-1);
2777 		case IPV6_BOUND_IF:
2778 			/* Zero if not set */
2779 			*i1 = udp->udp_bound_if;
2780 			break;	/* goto sizeof (int) option return */
2781 		case IPV6_UNSPEC_SRC:
2782 			*i1 = udp->udp_unspec_source;
2783 			break;	/* goto sizeof (int) option return */
2784 		case IPV6_RECVPKTINFO:
2785 			*i1 = udp->udp_ip_recvpktinfo;
2786 			break;	/* goto sizeof (int) option return */
2787 		case IPV6_RECVTCLASS:
2788 			*i1 = udp->udp_ipv6_recvtclass;
2789 			break;	/* goto sizeof (int) option return */
2790 		case IPV6_RECVPATHMTU:
2791 			*i1 = udp->udp_ipv6_recvpathmtu;
2792 			break;	/* goto sizeof (int) option return */
2793 		case IPV6_RECVHOPLIMIT:
2794 			*i1 = udp->udp_ipv6_recvhoplimit;
2795 			break;	/* goto sizeof (int) option return */
2796 		case IPV6_RECVHOPOPTS:
2797 			*i1 = udp->udp_ipv6_recvhopopts;
2798 			break;	/* goto sizeof (int) option return */
2799 		case IPV6_RECVDSTOPTS:
2800 			*i1 = udp->udp_ipv6_recvdstopts;
2801 			break;	/* goto sizeof (int) option return */
2802 		case _OLD_IPV6_RECVDSTOPTS:
2803 			*i1 = udp->udp_old_ipv6_recvdstopts;
2804 			break;	/* goto sizeof (int) option return */
2805 		case IPV6_RECVRTHDRDSTOPTS:
2806 			*i1 = udp->udp_ipv6_recvrthdrdstopts;
2807 			break;	/* goto sizeof (int) option return */
2808 		case IPV6_RECVRTHDR:
2809 			*i1 = udp->udp_ipv6_recvrthdr;
2810 			break;	/* goto sizeof (int) option return */
2811 		case IPV6_PKTINFO: {
2812 			/* XXX assumes that caller has room for max size! */
2813 			struct in6_pktinfo *pkti;
2814 
2815 			pkti = (struct in6_pktinfo *)ptr;
2816 			if (ipp->ipp_fields & IPPF_IFINDEX)
2817 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
2818 			else
2819 				pkti->ipi6_ifindex = 0;
2820 			if (ipp->ipp_fields & IPPF_ADDR)
2821 				pkti->ipi6_addr = ipp->ipp_addr;
2822 			else
2823 				pkti->ipi6_addr = ipv6_all_zeros;
2824 			return (sizeof (struct in6_pktinfo));
2825 		}
2826 		case IPV6_TCLASS:
2827 			if (ipp->ipp_fields & IPPF_TCLASS)
2828 				*i1 = ipp->ipp_tclass;
2829 			else
2830 				*i1 = IPV6_FLOW_TCLASS(
2831 				    IPV6_DEFAULT_VERS_AND_FLOW);
2832 			break;	/* goto sizeof (int) option return */
2833 		case IPV6_NEXTHOP: {
2834 			sin6_t *sin6 = (sin6_t *)ptr;
2835 
2836 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
2837 				return (0);
2838 			*sin6 = sin6_null;
2839 			sin6->sin6_family = AF_INET6;
2840 			sin6->sin6_addr = ipp->ipp_nexthop;
2841 			return (sizeof (sin6_t));
2842 		}
2843 		case IPV6_HOPOPTS:
2844 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
2845 				return (0);
2846 			if (ipp->ipp_hopoptslen <= udp->udp_label_len_v6)
2847 				return (0);
2848 			/*
2849 			 * The cipso/label option is added by kernel.
2850 			 * User is not usually aware of this option.
2851 			 * We copy out the hbh opt after the label option.
2852 			 */
2853 			bcopy((char *)ipp->ipp_hopopts + udp->udp_label_len_v6,
2854 			    ptr, ipp->ipp_hopoptslen - udp->udp_label_len_v6);
2855 			if (udp->udp_label_len_v6 > 0) {
2856 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
2857 				ptr[1] = (ipp->ipp_hopoptslen -
2858 				    udp->udp_label_len_v6 + 7) / 8 - 1;
2859 			}
2860 			return (ipp->ipp_hopoptslen - udp->udp_label_len_v6);
2861 		case IPV6_RTHDRDSTOPTS:
2862 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
2863 				return (0);
2864 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
2865 			return (ipp->ipp_rtdstoptslen);
2866 		case IPV6_RTHDR:
2867 			if (!(ipp->ipp_fields & IPPF_RTHDR))
2868 				return (0);
2869 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
2870 			return (ipp->ipp_rthdrlen);
2871 		case IPV6_DSTOPTS:
2872 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
2873 				return (0);
2874 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
2875 			return (ipp->ipp_dstoptslen);
2876 		case IPV6_PATHMTU:
2877 			return (ip_fill_mtuinfo(&udp->udp_v6dst,
2878 			    udp->udp_dstport, (struct ip6_mtuinfo *)ptr,
2879 			    us->us_netstack));
2880 		default:
2881 			return (-1);
2882 		}
2883 		break;
2884 	case IPPROTO_UDP:
2885 		switch (name) {
2886 		case UDP_ANONPRIVBIND:
2887 			*i1 = udp->udp_anon_priv_bind;
2888 			break;
2889 		case UDP_EXCLBIND:
2890 			*i1 = udp->udp_exclbind ? UDP_EXCLBIND : 0;
2891 			break;
2892 		case UDP_RCVHDR:
2893 			*i1 = udp->udp_rcvhdr ? 1 : 0;
2894 			break;
2895 		case UDP_NAT_T_ENDPOINT:
2896 			*i1 = udp->udp_nat_t_endpoint;
2897 			break;
2898 		default:
2899 			return (-1);
2900 		}
2901 		break;
2902 	default:
2903 		return (-1);
2904 	}
2905 	return (sizeof (int));
2906 }
2907 
2908 int
2909 udp_opt_get(queue_t *q, t_scalar_t level, t_scalar_t name, uchar_t *ptr)
2910 {
2911 	udp_t	*udp;
2912 	int	err;
2913 
2914 	udp = Q_TO_UDP(q);
2915 
2916 	rw_enter(&udp->udp_rwlock, RW_READER);
2917 	err = udp_opt_get_locked(q, level, name, ptr);
2918 	rw_exit(&udp->udp_rwlock);
2919 	return (err);
2920 }
2921 
2922 /*
2923  * This routine sets socket options.
2924  */
2925 /* ARGSUSED */
2926 int
2927 udp_opt_set_locked(queue_t *q, uint_t optset_context, int level,
2928     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
2929     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
2930 {
2931 	udpattrs_t *attrs = thisdg_attrs;
2932 	int	*i1 = (int *)invalp;
2933 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
2934 	boolean_t checkonly;
2935 	int	error;
2936 	conn_t	*connp;
2937 	udp_t	*udp;
2938 	uint_t	newlen;
2939 	udp_stack_t *us;
2940 	size_t	sth_wroff;
2941 
2942 	connp = Q_TO_CONN(q);
2943 	udp = connp->conn_udp;
2944 	us = udp->udp_us;
2945 
2946 	switch (optset_context) {
2947 	case SETFN_OPTCOM_CHECKONLY:
2948 		checkonly = B_TRUE;
2949 		/*
2950 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
2951 		 * inlen != 0 implies value supplied and
2952 		 * 	we have to "pretend" to set it.
2953 		 * inlen == 0 implies that there is no
2954 		 * 	value part in T_CHECK request and just validation
2955 		 * done elsewhere should be enough, we just return here.
2956 		 */
2957 		if (inlen == 0) {
2958 			*outlenp = 0;
2959 			return (0);
2960 		}
2961 		break;
2962 	case SETFN_OPTCOM_NEGOTIATE:
2963 		checkonly = B_FALSE;
2964 		break;
2965 	case SETFN_UD_NEGOTIATE:
2966 	case SETFN_CONN_NEGOTIATE:
2967 		checkonly = B_FALSE;
2968 		/*
2969 		 * Negotiating local and "association-related" options
2970 		 * through T_UNITDATA_REQ.
2971 		 *
2972 		 * Following routine can filter out ones we do not
2973 		 * want to be "set" this way.
2974 		 */
2975 		if (!udp_opt_allow_udr_set(level, name)) {
2976 			*outlenp = 0;
2977 			return (EINVAL);
2978 		}
2979 		break;
2980 	default:
2981 		/*
2982 		 * We should never get here
2983 		 */
2984 		*outlenp = 0;
2985 		return (EINVAL);
2986 	}
2987 
2988 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
2989 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
2990 
2991 	/*
2992 	 * For fixed length options, no sanity check
2993 	 * of passed in length is done. It is assumed *_optcom_req()
2994 	 * routines do the right thing.
2995 	 */
2996 
2997 	switch (level) {
2998 	case SOL_SOCKET:
2999 		switch (name) {
3000 		case SO_REUSEADDR:
3001 			if (!checkonly)
3002 				udp->udp_reuseaddr = onoff;
3003 			break;
3004 		case SO_DEBUG:
3005 			if (!checkonly)
3006 				udp->udp_debug = onoff;
3007 			break;
3008 		/*
3009 		 * The following three items are available here,
3010 		 * but are only meaningful to IP.
3011 		 */
3012 		case SO_DONTROUTE:
3013 			if (!checkonly)
3014 				udp->udp_dontroute = onoff;
3015 			break;
3016 		case SO_USELOOPBACK:
3017 			if (!checkonly)
3018 				udp->udp_useloopback = onoff;
3019 			break;
3020 		case SO_BROADCAST:
3021 			if (!checkonly)
3022 				udp->udp_broadcast = onoff;
3023 			break;
3024 
3025 		case SO_SNDBUF:
3026 			if (*i1 > us->us_max_buf) {
3027 				*outlenp = 0;
3028 				return (ENOBUFS);
3029 			}
3030 			if (!checkonly) {
3031 				q->q_hiwat = *i1;
3032 			}
3033 			break;
3034 		case SO_RCVBUF:
3035 			if (*i1 > us->us_max_buf) {
3036 				*outlenp = 0;
3037 				return (ENOBUFS);
3038 			}
3039 			if (!checkonly) {
3040 				RD(q)->q_hiwat = *i1;
3041 				rw_exit(&udp->udp_rwlock);
3042 				(void) mi_set_sth_hiwat(RD(q),
3043 				    udp_set_rcv_hiwat(udp, *i1));
3044 				rw_enter(&udp->udp_rwlock, RW_WRITER);
3045 			}
3046 			break;
3047 		case SO_DGRAM_ERRIND:
3048 			if (!checkonly)
3049 				udp->udp_dgram_errind = onoff;
3050 			break;
3051 		case SO_RECVUCRED:
3052 			if (!checkonly)
3053 				udp->udp_recvucred = onoff;
3054 			break;
3055 		case SO_ALLZONES:
3056 			/*
3057 			 * "soft" error (negative)
3058 			 * option not handled at this level
3059 			 * Do not modify *outlenp.
3060 			 */
3061 			return (-EINVAL);
3062 		case SO_TIMESTAMP:
3063 			if (!checkonly)
3064 				udp->udp_timestamp = onoff;
3065 			break;
3066 		case SO_ANON_MLP:
3067 			if (!checkonly)
3068 				udp->udp_anon_mlp = onoff;
3069 			break;
3070 		case SO_MAC_EXEMPT:
3071 			if (secpolicy_net_mac_aware(cr) != 0 ||
3072 			    udp->udp_state != TS_UNBND)
3073 				return (EACCES);
3074 			if (!checkonly)
3075 				udp->udp_mac_exempt = onoff;
3076 			break;
3077 		case SCM_UCRED: {
3078 			struct ucred_s *ucr;
3079 			cred_t *cr, *newcr;
3080 			ts_label_t *tsl;
3081 
3082 			/*
3083 			 * Only sockets that have proper privileges and are
3084 			 * bound to MLPs will have any other value here, so
3085 			 * this implicitly tests for privilege to set label.
3086 			 */
3087 			if (connp->conn_mlp_type == mlptSingle)
3088 				break;
3089 			ucr = (struct ucred_s *)invalp;
3090 			if (inlen != ucredsize ||
3091 			    ucr->uc_labeloff < sizeof (*ucr) ||
3092 			    ucr->uc_labeloff + sizeof (bslabel_t) > inlen)
3093 				return (EINVAL);
3094 			if (!checkonly) {
3095 				mblk_t *mb;
3096 
3097 				if (attrs == NULL ||
3098 				    (mb = attrs->udpattr_mb) == NULL)
3099 					return (EINVAL);
3100 				if ((cr = DB_CRED(mb)) == NULL)
3101 					cr = udp->udp_connp->conn_cred;
3102 				ASSERT(cr != NULL);
3103 				if ((tsl = crgetlabel(cr)) == NULL)
3104 					return (EINVAL);
3105 				newcr = copycred_from_bslabel(cr, UCLABEL(ucr),
3106 				    tsl->tsl_doi, KM_NOSLEEP);
3107 				if (newcr == NULL)
3108 					return (ENOSR);
3109 				mblk_setcred(mb, newcr);
3110 				attrs->udpattr_credset = B_TRUE;
3111 				crfree(newcr);
3112 			}
3113 			break;
3114 		}
3115 		case SO_EXCLBIND:
3116 			if (!checkonly)
3117 				udp->udp_exclbind = onoff;
3118 			break;
3119 		default:
3120 			*outlenp = 0;
3121 			return (EINVAL);
3122 		}
3123 		break;
3124 	case IPPROTO_IP:
3125 		if (udp->udp_family != AF_INET) {
3126 			*outlenp = 0;
3127 			return (ENOPROTOOPT);
3128 		}
3129 		switch (name) {
3130 		case IP_OPTIONS:
3131 		case T_IP_OPTIONS:
3132 			/* Save options for use by IP. */
3133 			newlen = inlen + udp->udp_label_len;
3134 			if ((inlen & 0x3) || newlen > IP_MAX_OPT_LENGTH) {
3135 				*outlenp = 0;
3136 				return (EINVAL);
3137 			}
3138 			if (checkonly)
3139 				break;
3140 
3141 			/*
3142 			 * Update the stored options taking into account
3143 			 * any CIPSO option which we should not overwrite.
3144 			 */
3145 			if (!tsol_option_set(&udp->udp_ip_snd_options,
3146 			    &udp->udp_ip_snd_options_len,
3147 			    udp->udp_label_len, invalp, inlen)) {
3148 				*outlenp = 0;
3149 				return (ENOMEM);
3150 			}
3151 
3152 			udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3153 			    UDPH_SIZE + udp->udp_ip_snd_options_len;
3154 			sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
3155 			rw_exit(&udp->udp_rwlock);
3156 			(void) mi_set_sth_wroff(RD(q), sth_wroff);
3157 			rw_enter(&udp->udp_rwlock, RW_WRITER);
3158 			break;
3159 
3160 		case IP_TTL:
3161 			if (!checkonly) {
3162 				udp->udp_ttl = (uchar_t)*i1;
3163 			}
3164 			break;
3165 		case IP_TOS:
3166 		case T_IP_TOS:
3167 			if (!checkonly) {
3168 				udp->udp_type_of_service = (uchar_t)*i1;
3169 			}
3170 			break;
3171 		case IP_MULTICAST_IF: {
3172 			/*
3173 			 * TODO should check OPTMGMT reply and undo this if
3174 			 * there is an error.
3175 			 */
3176 			struct in_addr *inap = (struct in_addr *)invalp;
3177 			if (!checkonly) {
3178 				udp->udp_multicast_if_addr =
3179 				    inap->s_addr;
3180 			}
3181 			break;
3182 		}
3183 		case IP_MULTICAST_TTL:
3184 			if (!checkonly)
3185 				udp->udp_multicast_ttl = *invalp;
3186 			break;
3187 		case IP_MULTICAST_LOOP:
3188 			if (!checkonly)
3189 				connp->conn_multicast_loop = *invalp;
3190 			break;
3191 		case IP_RECVOPTS:
3192 			if (!checkonly)
3193 				udp->udp_recvopts = onoff;
3194 			break;
3195 		case IP_RECVDSTADDR:
3196 			if (!checkonly)
3197 				udp->udp_recvdstaddr = onoff;
3198 			break;
3199 		case IP_RECVIF:
3200 			if (!checkonly)
3201 				udp->udp_recvif = onoff;
3202 			break;
3203 		case IP_RECVSLLA:
3204 			if (!checkonly)
3205 				udp->udp_recvslla = onoff;
3206 			break;
3207 		case IP_RECVTTL:
3208 			if (!checkonly)
3209 				udp->udp_recvttl = onoff;
3210 			break;
3211 		case IP_PKTINFO: {
3212 			/*
3213 			 * This also handles IP_RECVPKTINFO.
3214 			 * IP_PKTINFO and IP_RECVPKTINFO have same value.
3215 			 * Differentiation is based on the size of the
3216 			 * argument passed in.
3217 			 */
3218 			struct in_pktinfo *pktinfop;
3219 			ip4_pkt_t *attr_pktinfop;
3220 
3221 			if (checkonly)
3222 				break;
3223 
3224 			if (inlen == sizeof (int)) {
3225 				/*
3226 				 * This is IP_RECVPKTINFO option.
3227 				 * Keep a local copy of whether this option is
3228 				 * set or not and pass it down to IP for
3229 				 * processing.
3230 				 */
3231 
3232 				udp->udp_ip_recvpktinfo = onoff;
3233 				return (-EINVAL);
3234 			}
3235 
3236 			if (attrs == NULL ||
3237 			    (attr_pktinfop = attrs->udpattr_ipp4) == NULL) {
3238 				/*
3239 				 * sticky option or no buffer to return
3240 				 * the results.
3241 				 */
3242 				return (EINVAL);
3243 			}
3244 
3245 			if (inlen != sizeof (struct in_pktinfo))
3246 				return (EINVAL);
3247 
3248 			pktinfop = (struct in_pktinfo *)invalp;
3249 
3250 			/*
3251 			 * At least one of the values should be specified
3252 			 */
3253 			if (pktinfop->ipi_ifindex == 0 &&
3254 			    pktinfop->ipi_spec_dst.s_addr == INADDR_ANY) {
3255 				return (EINVAL);
3256 			}
3257 
3258 			attr_pktinfop->ip4_addr = pktinfop->ipi_spec_dst.s_addr;
3259 			attr_pktinfop->ip4_ill_index = pktinfop->ipi_ifindex;
3260 
3261 			break;
3262 		}
3263 		case IP_ADD_MEMBERSHIP:
3264 		case IP_DROP_MEMBERSHIP:
3265 		case IP_BLOCK_SOURCE:
3266 		case IP_UNBLOCK_SOURCE:
3267 		case IP_ADD_SOURCE_MEMBERSHIP:
3268 		case IP_DROP_SOURCE_MEMBERSHIP:
3269 		case MCAST_JOIN_GROUP:
3270 		case MCAST_LEAVE_GROUP:
3271 		case MCAST_BLOCK_SOURCE:
3272 		case MCAST_UNBLOCK_SOURCE:
3273 		case MCAST_JOIN_SOURCE_GROUP:
3274 		case MCAST_LEAVE_SOURCE_GROUP:
3275 		case IP_SEC_OPT:
3276 		case IP_NEXTHOP:
3277 		case IP_DHCPINIT_IF:
3278 			/*
3279 			 * "soft" error (negative)
3280 			 * option not handled at this level
3281 			 * Do not modify *outlenp.
3282 			 */
3283 			return (-EINVAL);
3284 		case IP_BOUND_IF:
3285 			if (!checkonly)
3286 				udp->udp_bound_if = *i1;
3287 			break;
3288 		case IP_UNSPEC_SRC:
3289 			if (!checkonly)
3290 				udp->udp_unspec_source = onoff;
3291 			break;
3292 		case IP_BROADCAST_TTL:
3293 			if (!checkonly)
3294 				connp->conn_broadcast_ttl = *invalp;
3295 			break;
3296 		default:
3297 			*outlenp = 0;
3298 			return (EINVAL);
3299 		}
3300 		break;
3301 	case IPPROTO_IPV6: {
3302 		ip6_pkt_t		*ipp;
3303 		boolean_t		sticky;
3304 
3305 		if (udp->udp_family != AF_INET6) {
3306 			*outlenp = 0;
3307 			return (ENOPROTOOPT);
3308 		}
3309 		/*
3310 		 * Deal with both sticky options and ancillary data
3311 		 */
3312 		sticky = B_FALSE;
3313 		if (attrs == NULL || (ipp = attrs->udpattr_ipp6) ==
3314 		    NULL) {
3315 			/* sticky options, or none */
3316 			ipp = &udp->udp_sticky_ipp;
3317 			sticky = B_TRUE;
3318 		}
3319 
3320 		switch (name) {
3321 		case IPV6_MULTICAST_IF:
3322 			if (!checkonly)
3323 				udp->udp_multicast_if_index = *i1;
3324 			break;
3325 		case IPV6_UNICAST_HOPS:
3326 			/* -1 means use default */
3327 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3328 				*outlenp = 0;
3329 				return (EINVAL);
3330 			}
3331 			if (!checkonly) {
3332 				if (*i1 == -1) {
3333 					udp->udp_ttl = ipp->ipp_unicast_hops =
3334 					    us->us_ipv6_hoplimit;
3335 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
3336 					/* Pass modified value to IP. */
3337 					*i1 = udp->udp_ttl;
3338 				} else {
3339 					udp->udp_ttl = ipp->ipp_unicast_hops =
3340 					    (uint8_t)*i1;
3341 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
3342 				}
3343 				/* Rebuild the header template */
3344 				error = udp_build_hdrs(udp);
3345 				if (error != 0) {
3346 					*outlenp = 0;
3347 					return (error);
3348 				}
3349 			}
3350 			break;
3351 		case IPV6_MULTICAST_HOPS:
3352 			/* -1 means use default */
3353 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
3354 				*outlenp = 0;
3355 				return (EINVAL);
3356 			}
3357 			if (!checkonly) {
3358 				if (*i1 == -1) {
3359 					udp->udp_multicast_ttl =
3360 					    ipp->ipp_multicast_hops =
3361 					    IP_DEFAULT_MULTICAST_TTL;
3362 					ipp->ipp_fields &= ~IPPF_MULTICAST_HOPS;
3363 					/* Pass modified value to IP. */
3364 					*i1 = udp->udp_multicast_ttl;
3365 				} else {
3366 					udp->udp_multicast_ttl =
3367 					    ipp->ipp_multicast_hops =
3368 					    (uint8_t)*i1;
3369 					ipp->ipp_fields |= IPPF_MULTICAST_HOPS;
3370 				}
3371 			}
3372 			break;
3373 		case IPV6_MULTICAST_LOOP:
3374 			if (*i1 != 0 && *i1 != 1) {
3375 				*outlenp = 0;
3376 				return (EINVAL);
3377 			}
3378 			if (!checkonly)
3379 				connp->conn_multicast_loop = *i1;
3380 			break;
3381 		case IPV6_JOIN_GROUP:
3382 		case IPV6_LEAVE_GROUP:
3383 		case MCAST_JOIN_GROUP:
3384 		case MCAST_LEAVE_GROUP:
3385 		case MCAST_BLOCK_SOURCE:
3386 		case MCAST_UNBLOCK_SOURCE:
3387 		case MCAST_JOIN_SOURCE_GROUP:
3388 		case MCAST_LEAVE_SOURCE_GROUP:
3389 			/*
3390 			 * "soft" error (negative)
3391 			 * option not handled at this level
3392 			 * Note: Do not modify *outlenp
3393 			 */
3394 			return (-EINVAL);
3395 		case IPV6_BOUND_IF:
3396 			if (!checkonly)
3397 				udp->udp_bound_if = *i1;
3398 			break;
3399 		case IPV6_UNSPEC_SRC:
3400 			if (!checkonly)
3401 				udp->udp_unspec_source = onoff;
3402 			break;
3403 		/*
3404 		 * Set boolean switches for ancillary data delivery
3405 		 */
3406 		case IPV6_RECVPKTINFO:
3407 			if (!checkonly)
3408 				udp->udp_ip_recvpktinfo = onoff;
3409 			break;
3410 		case IPV6_RECVTCLASS:
3411 			if (!checkonly) {
3412 				udp->udp_ipv6_recvtclass = onoff;
3413 			}
3414 			break;
3415 		case IPV6_RECVPATHMTU:
3416 			if (!checkonly) {
3417 				udp->udp_ipv6_recvpathmtu = onoff;
3418 			}
3419 			break;
3420 		case IPV6_RECVHOPLIMIT:
3421 			if (!checkonly)
3422 				udp->udp_ipv6_recvhoplimit = onoff;
3423 			break;
3424 		case IPV6_RECVHOPOPTS:
3425 			if (!checkonly)
3426 				udp->udp_ipv6_recvhopopts = onoff;
3427 			break;
3428 		case IPV6_RECVDSTOPTS:
3429 			if (!checkonly)
3430 				udp->udp_ipv6_recvdstopts = onoff;
3431 			break;
3432 		case _OLD_IPV6_RECVDSTOPTS:
3433 			if (!checkonly)
3434 				udp->udp_old_ipv6_recvdstopts = onoff;
3435 			break;
3436 		case IPV6_RECVRTHDRDSTOPTS:
3437 			if (!checkonly)
3438 				udp->udp_ipv6_recvrthdrdstopts = onoff;
3439 			break;
3440 		case IPV6_RECVRTHDR:
3441 			if (!checkonly)
3442 				udp->udp_ipv6_recvrthdr = onoff;
3443 			break;
3444 		/*
3445 		 * Set sticky options or ancillary data.
3446 		 * If sticky options, (re)build any extension headers
3447 		 * that might be needed as a result.
3448 		 */
3449 		case IPV6_PKTINFO:
3450 			/*
3451 			 * The source address and ifindex are verified
3452 			 * in ip_opt_set(). For ancillary data the
3453 			 * source address is checked in ip_wput_v6.
3454 			 */
3455 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
3456 				return (EINVAL);
3457 			if (checkonly)
3458 				break;
3459 
3460 			if (inlen == 0) {
3461 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
3462 				ipp->ipp_sticky_ignored |=
3463 				    (IPPF_IFINDEX|IPPF_ADDR);
3464 			} else {
3465 				struct in6_pktinfo *pkti;
3466 
3467 				pkti = (struct in6_pktinfo *)invalp;
3468 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
3469 				ipp->ipp_addr = pkti->ipi6_addr;
3470 				if (ipp->ipp_ifindex != 0)
3471 					ipp->ipp_fields |= IPPF_IFINDEX;
3472 				else
3473 					ipp->ipp_fields &= ~IPPF_IFINDEX;
3474 				if (!IN6_IS_ADDR_UNSPECIFIED(
3475 				    &ipp->ipp_addr))
3476 					ipp->ipp_fields |= IPPF_ADDR;
3477 				else
3478 					ipp->ipp_fields &= ~IPPF_ADDR;
3479 			}
3480 			if (sticky) {
3481 				error = udp_build_hdrs(udp);
3482 				if (error != 0)
3483 					return (error);
3484 			}
3485 			break;
3486 		case IPV6_HOPLIMIT:
3487 			if (sticky)
3488 				return (EINVAL);
3489 			if (inlen != 0 && inlen != sizeof (int))
3490 				return (EINVAL);
3491 			if (checkonly)
3492 				break;
3493 
3494 			if (inlen == 0) {
3495 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
3496 				ipp->ipp_sticky_ignored |= IPPF_HOPLIMIT;
3497 			} else {
3498 				if (*i1 > 255 || *i1 < -1)
3499 					return (EINVAL);
3500 				if (*i1 == -1)
3501 					ipp->ipp_hoplimit =
3502 					    us->us_ipv6_hoplimit;
3503 				else
3504 					ipp->ipp_hoplimit = *i1;
3505 				ipp->ipp_fields |= IPPF_HOPLIMIT;
3506 			}
3507 			break;
3508 		case IPV6_TCLASS:
3509 			if (inlen != 0 && inlen != sizeof (int))
3510 				return (EINVAL);
3511 			if (checkonly)
3512 				break;
3513 
3514 			if (inlen == 0) {
3515 				ipp->ipp_fields &= ~IPPF_TCLASS;
3516 				ipp->ipp_sticky_ignored |= IPPF_TCLASS;
3517 			} else {
3518 				if (*i1 > 255 || *i1 < -1)
3519 					return (EINVAL);
3520 				if (*i1 == -1)
3521 					ipp->ipp_tclass = 0;
3522 				else
3523 					ipp->ipp_tclass = *i1;
3524 				ipp->ipp_fields |= IPPF_TCLASS;
3525 			}
3526 			if (sticky) {
3527 				error = udp_build_hdrs(udp);
3528 				if (error != 0)
3529 					return (error);
3530 			}
3531 			break;
3532 		case IPV6_NEXTHOP:
3533 			/*
3534 			 * IP will verify that the nexthop is reachable
3535 			 * and fail for sticky options.
3536 			 */
3537 			if (inlen != 0 && inlen != sizeof (sin6_t))
3538 				return (EINVAL);
3539 			if (checkonly)
3540 				break;
3541 
3542 			if (inlen == 0) {
3543 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
3544 				ipp->ipp_sticky_ignored |= IPPF_NEXTHOP;
3545 			} else {
3546 				sin6_t *sin6 = (sin6_t *)invalp;
3547 
3548 				if (sin6->sin6_family != AF_INET6)
3549 					return (EAFNOSUPPORT);
3550 				if (IN6_IS_ADDR_V4MAPPED(
3551 				    &sin6->sin6_addr))
3552 					return (EADDRNOTAVAIL);
3553 				ipp->ipp_nexthop = sin6->sin6_addr;
3554 				if (!IN6_IS_ADDR_UNSPECIFIED(
3555 				    &ipp->ipp_nexthop))
3556 					ipp->ipp_fields |= IPPF_NEXTHOP;
3557 				else
3558 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
3559 			}
3560 			if (sticky) {
3561 				error = udp_build_hdrs(udp);
3562 				if (error != 0)
3563 					return (error);
3564 			}
3565 			break;
3566 		case IPV6_HOPOPTS: {
3567 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
3568 			/*
3569 			 * Sanity checks - minimum size, size a multiple of
3570 			 * eight bytes, and matching size passed in.
3571 			 */
3572 			if (inlen != 0 &&
3573 			    inlen != (8 * (hopts->ip6h_len + 1)))
3574 				return (EINVAL);
3575 
3576 			if (checkonly)
3577 				break;
3578 
3579 			error = optcom_pkt_set(invalp, inlen, sticky,
3580 			    (uchar_t **)&ipp->ipp_hopopts,
3581 			    &ipp->ipp_hopoptslen,
3582 			    sticky ? udp->udp_label_len_v6 : 0);
3583 			if (error != 0)
3584 				return (error);
3585 			if (ipp->ipp_hopoptslen == 0) {
3586 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
3587 				ipp->ipp_sticky_ignored |= IPPF_HOPOPTS;
3588 			} else {
3589 				ipp->ipp_fields |= IPPF_HOPOPTS;
3590 			}
3591 			if (sticky) {
3592 				error = udp_build_hdrs(udp);
3593 				if (error != 0)
3594 					return (error);
3595 			}
3596 			break;
3597 		}
3598 		case IPV6_RTHDRDSTOPTS: {
3599 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3600 
3601 			/*
3602 			 * Sanity checks - minimum size, size a multiple of
3603 			 * eight bytes, and matching size passed in.
3604 			 */
3605 			if (inlen != 0 &&
3606 			    inlen != (8 * (dopts->ip6d_len + 1)))
3607 				return (EINVAL);
3608 
3609 			if (checkonly)
3610 				break;
3611 
3612 			if (inlen == 0) {
3613 				if (sticky &&
3614 				    (ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
3615 					kmem_free(ipp->ipp_rtdstopts,
3616 					    ipp->ipp_rtdstoptslen);
3617 					ipp->ipp_rtdstopts = NULL;
3618 					ipp->ipp_rtdstoptslen = 0;
3619 				}
3620 
3621 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
3622 				ipp->ipp_sticky_ignored |= IPPF_RTDSTOPTS;
3623 			} else {
3624 				error = optcom_pkt_set(invalp, inlen, sticky,
3625 				    (uchar_t **)&ipp->ipp_rtdstopts,
3626 				    &ipp->ipp_rtdstoptslen, 0);
3627 				if (error != 0)
3628 					return (error);
3629 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
3630 			}
3631 			if (sticky) {
3632 				error = udp_build_hdrs(udp);
3633 				if (error != 0)
3634 					return (error);
3635 			}
3636 			break;
3637 		}
3638 		case IPV6_DSTOPTS: {
3639 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
3640 
3641 			/*
3642 			 * Sanity checks - minimum size, size a multiple of
3643 			 * eight bytes, and matching size passed in.
3644 			 */
3645 			if (inlen != 0 &&
3646 			    inlen != (8 * (dopts->ip6d_len + 1)))
3647 				return (EINVAL);
3648 
3649 			if (checkonly)
3650 				break;
3651 
3652 			if (inlen == 0) {
3653 				if (sticky &&
3654 				    (ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
3655 					kmem_free(ipp->ipp_dstopts,
3656 					    ipp->ipp_dstoptslen);
3657 					ipp->ipp_dstopts = NULL;
3658 					ipp->ipp_dstoptslen = 0;
3659 				}
3660 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
3661 				ipp->ipp_sticky_ignored |= IPPF_DSTOPTS;
3662 			} else {
3663 				error = optcom_pkt_set(invalp, inlen, sticky,
3664 				    (uchar_t **)&ipp->ipp_dstopts,
3665 				    &ipp->ipp_dstoptslen, 0);
3666 				if (error != 0)
3667 					return (error);
3668 				ipp->ipp_fields |= IPPF_DSTOPTS;
3669 			}
3670 			if (sticky) {
3671 				error = udp_build_hdrs(udp);
3672 				if (error != 0)
3673 					return (error);
3674 			}
3675 			break;
3676 		}
3677 		case IPV6_RTHDR: {
3678 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
3679 
3680 			/*
3681 			 * Sanity checks - minimum size, size a multiple of
3682 			 * eight bytes, and matching size passed in.
3683 			 */
3684 			if (inlen != 0 &&
3685 			    inlen != (8 * (rt->ip6r_len + 1)))
3686 				return (EINVAL);
3687 
3688 			if (checkonly)
3689 				break;
3690 
3691 			if (inlen == 0) {
3692 				if (sticky &&
3693 				    (ipp->ipp_fields & IPPF_RTHDR) != 0) {
3694 					kmem_free(ipp->ipp_rthdr,
3695 					    ipp->ipp_rthdrlen);
3696 					ipp->ipp_rthdr = NULL;
3697 					ipp->ipp_rthdrlen = 0;
3698 				}
3699 				ipp->ipp_fields &= ~IPPF_RTHDR;
3700 				ipp->ipp_sticky_ignored |= IPPF_RTHDR;
3701 			} else {
3702 				error = optcom_pkt_set(invalp, inlen, sticky,
3703 				    (uchar_t **)&ipp->ipp_rthdr,
3704 				    &ipp->ipp_rthdrlen, 0);
3705 				if (error != 0)
3706 					return (error);
3707 				ipp->ipp_fields |= IPPF_RTHDR;
3708 			}
3709 			if (sticky) {
3710 				error = udp_build_hdrs(udp);
3711 				if (error != 0)
3712 					return (error);
3713 			}
3714 			break;
3715 		}
3716 
3717 		case IPV6_DONTFRAG:
3718 			if (checkonly)
3719 				break;
3720 
3721 			if (onoff) {
3722 				ipp->ipp_fields |= IPPF_DONTFRAG;
3723 			} else {
3724 				ipp->ipp_fields &= ~IPPF_DONTFRAG;
3725 			}
3726 			break;
3727 
3728 		case IPV6_USE_MIN_MTU:
3729 			if (inlen != sizeof (int))
3730 				return (EINVAL);
3731 
3732 			if (*i1 < -1 || *i1 > 1)
3733 				return (EINVAL);
3734 
3735 			if (checkonly)
3736 				break;
3737 
3738 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
3739 			ipp->ipp_use_min_mtu = *i1;
3740 			break;
3741 
3742 		case IPV6_BOUND_PIF:
3743 		case IPV6_SEC_OPT:
3744 		case IPV6_DONTFAILOVER_IF:
3745 		case IPV6_SRC_PREFERENCES:
3746 		case IPV6_V6ONLY:
3747 			/* Handled at the IP level */
3748 			return (-EINVAL);
3749 		default:
3750 			*outlenp = 0;
3751 			return (EINVAL);
3752 		}
3753 		break;
3754 		}		/* end IPPROTO_IPV6 */
3755 	case IPPROTO_UDP:
3756 		switch (name) {
3757 		case UDP_ANONPRIVBIND:
3758 			if ((error = secpolicy_net_privaddr(cr, 0,
3759 			    IPPROTO_UDP)) != 0) {
3760 				*outlenp = 0;
3761 				return (error);
3762 			}
3763 			if (!checkonly) {
3764 				udp->udp_anon_priv_bind = onoff;
3765 			}
3766 			break;
3767 		case UDP_EXCLBIND:
3768 			if (!checkonly)
3769 				udp->udp_exclbind = onoff;
3770 			break;
3771 		case UDP_RCVHDR:
3772 			if (!checkonly)
3773 				udp->udp_rcvhdr = onoff;
3774 			break;
3775 		case UDP_NAT_T_ENDPOINT:
3776 			if ((error = secpolicy_ip_config(cr, B_FALSE)) != 0) {
3777 				*outlenp = 0;
3778 				return (error);
3779 			}
3780 
3781 			/*
3782 			 * Use udp_family instead so we can avoid ambiguitites
3783 			 * with AF_INET6 sockets that may switch from IPv4
3784 			 * to IPv6.
3785 			 */
3786 			if (udp->udp_family != AF_INET) {
3787 				*outlenp = 0;
3788 				return (EAFNOSUPPORT);
3789 			}
3790 
3791 			if (!checkonly) {
3792 				udp->udp_nat_t_endpoint = onoff;
3793 
3794 				udp->udp_max_hdr_len = IP_SIMPLE_HDR_LENGTH +
3795 				    UDPH_SIZE + udp->udp_ip_snd_options_len;
3796 
3797 				/* Also, adjust wroff */
3798 				if (onoff) {
3799 					udp->udp_max_hdr_len +=
3800 					    sizeof (uint32_t);
3801 				}
3802 				(void) mi_set_sth_wroff(RD(q),
3803 				    udp->udp_max_hdr_len + us->us_wroff_extra);
3804 			}
3805 			break;
3806 		default:
3807 			*outlenp = 0;
3808 			return (EINVAL);
3809 		}
3810 		break;
3811 	default:
3812 		*outlenp = 0;
3813 		return (EINVAL);
3814 	}
3815 	/*
3816 	 * Common case of OK return with outval same as inval.
3817 	 */
3818 	if (invalp != outvalp) {
3819 		/* don't trust bcopy for identical src/dst */
3820 		(void) bcopy(invalp, outvalp, inlen);
3821 	}
3822 	*outlenp = inlen;
3823 	return (0);
3824 }
3825 
3826 int
3827 udp_opt_set(queue_t *q, uint_t optset_context, int level,
3828     int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
3829     uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
3830 {
3831 	udp_t	*udp;
3832 	int	err;
3833 
3834 	udp = Q_TO_UDP(q);
3835 
3836 	rw_enter(&udp->udp_rwlock, RW_WRITER);
3837 	err = udp_opt_set_locked(q, optset_context, level, name, inlen, invalp,
3838 	    outlenp, outvalp, thisdg_attrs, cr, mblk);
3839 	rw_exit(&udp->udp_rwlock);
3840 	return (err);
3841 }
3842 
3843 /*
3844  * Update udp_sticky_hdrs based on udp_sticky_ipp, udp_v6src, and udp_ttl.
3845  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
3846  * headers, and the udp header.
3847  * Returns failure if can't allocate memory.
3848  */
3849 static int
3850 udp_build_hdrs(udp_t *udp)
3851 {
3852 	udp_stack_t *us = udp->udp_us;
3853 	uchar_t	*hdrs;
3854 	uint_t	hdrs_len;
3855 	ip6_t	*ip6h;
3856 	ip6i_t	*ip6i;
3857 	udpha_t	*udpha;
3858 	ip6_pkt_t *ipp = &udp->udp_sticky_ipp;
3859 	size_t	sth_wroff;
3860 
3861 	ASSERT(RW_WRITE_HELD(&udp->udp_rwlock));
3862 	hdrs_len = ip_total_hdrs_len_v6(ipp) + UDPH_SIZE;
3863 	ASSERT(hdrs_len != 0);
3864 	if (hdrs_len != udp->udp_sticky_hdrs_len) {
3865 		/* Need to reallocate */
3866 		hdrs = kmem_alloc(hdrs_len, KM_NOSLEEP);
3867 		if (hdrs == NULL)
3868 			return (ENOMEM);
3869 
3870 		if (udp->udp_sticky_hdrs_len != 0) {
3871 			kmem_free(udp->udp_sticky_hdrs,
3872 			    udp->udp_sticky_hdrs_len);
3873 		}
3874 		udp->udp_sticky_hdrs = hdrs;
3875 		udp->udp_sticky_hdrs_len = hdrs_len;
3876 	}
3877 	ip_build_hdrs_v6(udp->udp_sticky_hdrs,
3878 	    udp->udp_sticky_hdrs_len - UDPH_SIZE, ipp, IPPROTO_UDP);
3879 
3880 	/* Set header fields not in ipp */
3881 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
3882 		ip6i = (ip6i_t *)udp->udp_sticky_hdrs;
3883 		ip6h = (ip6_t *)&ip6i[1];
3884 	} else {
3885 		ip6h = (ip6_t *)udp->udp_sticky_hdrs;
3886 	}
3887 
3888 	if (!(ipp->ipp_fields & IPPF_ADDR))
3889 		ip6h->ip6_src = udp->udp_v6src;
3890 
3891 	udpha = (udpha_t *)(udp->udp_sticky_hdrs + hdrs_len - UDPH_SIZE);
3892 	udpha->uha_src_port = udp->udp_port;
3893 
3894 	/* Try to get everything in a single mblk */
3895 	if (hdrs_len > udp->udp_max_hdr_len) {
3896 		udp->udp_max_hdr_len = hdrs_len;
3897 		sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
3898 		rw_exit(&udp->udp_rwlock);
3899 		(void) mi_set_sth_wroff(udp->udp_connp->conn_rq, sth_wroff);
3900 		rw_enter(&udp->udp_rwlock, RW_WRITER);
3901 	}
3902 	return (0);
3903 }
3904 
3905 /*
3906  * This routine retrieves the value of an ND variable in a udpparam_t
3907  * structure.  It is called through nd_getset when a user reads the
3908  * variable.
3909  */
3910 /* ARGSUSED */
3911 static int
3912 udp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
3913 {
3914 	udpparam_t *udppa = (udpparam_t *)cp;
3915 
3916 	(void) mi_mpprintf(mp, "%d", udppa->udp_param_value);
3917 	return (0);
3918 }
3919 
3920 /*
3921  * Walk through the param array specified registering each element with the
3922  * named dispatch (ND) handler.
3923  */
3924 static boolean_t
3925 udp_param_register(IDP *ndp, udpparam_t *udppa, int cnt)
3926 {
3927 	for (; cnt-- > 0; udppa++) {
3928 		if (udppa->udp_param_name && udppa->udp_param_name[0]) {
3929 			if (!nd_load(ndp, udppa->udp_param_name,
3930 			    udp_param_get, udp_param_set,
3931 			    (caddr_t)udppa)) {
3932 				nd_free(ndp);
3933 				return (B_FALSE);
3934 			}
3935 		}
3936 	}
3937 	if (!nd_load(ndp, "udp_extra_priv_ports",
3938 	    udp_extra_priv_ports_get, NULL, NULL)) {
3939 		nd_free(ndp);
3940 		return (B_FALSE);
3941 	}
3942 	if (!nd_load(ndp, "udp_extra_priv_ports_add",
3943 	    NULL, udp_extra_priv_ports_add, NULL)) {
3944 		nd_free(ndp);
3945 		return (B_FALSE);
3946 	}
3947 	if (!nd_load(ndp, "udp_extra_priv_ports_del",
3948 	    NULL, udp_extra_priv_ports_del, NULL)) {
3949 		nd_free(ndp);
3950 		return (B_FALSE);
3951 	}
3952 	if (!nd_load(ndp, "udp_status", udp_status_report, NULL,
3953 	    NULL)) {
3954 		nd_free(ndp);
3955 		return (B_FALSE);
3956 	}
3957 	if (!nd_load(ndp, "udp_bind_hash", udp_bind_hash_report, NULL,
3958 	    NULL)) {
3959 		nd_free(ndp);
3960 		return (B_FALSE);
3961 	}
3962 	return (B_TRUE);
3963 }
3964 
3965 /* This routine sets an ND variable in a udpparam_t structure. */
3966 /* ARGSUSED */
3967 static int
3968 udp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
3969 {
3970 	long		new_value;
3971 	udpparam_t	*udppa = (udpparam_t *)cp;
3972 
3973 	/*
3974 	 * Fail the request if the new value does not lie within the
3975 	 * required bounds.
3976 	 */
3977 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
3978 	    new_value < udppa->udp_param_min ||
3979 	    new_value > udppa->udp_param_max) {
3980 		return (EINVAL);
3981 	}
3982 
3983 	/* Set the new value */
3984 	udppa->udp_param_value = new_value;
3985 	return (0);
3986 }
3987 
3988 /*
3989  * Copy hop-by-hop option from ipp->ipp_hopopts to the buffer provided (with
3990  * T_opthdr) and return the number of bytes copied.  'dbuf' may be NULL to
3991  * just count the length needed for allocation.  If 'dbuf' is non-NULL,
3992  * then it's assumed to be allocated to be large enough.
3993  *
3994  * Returns zero if trimming of the security option causes all options to go
3995  * away.
3996  */
3997 static size_t
3998 copy_hop_opts(const ip6_pkt_t *ipp, uchar_t *dbuf)
3999 {
4000 	struct T_opthdr *toh;
4001 	size_t hol = ipp->ipp_hopoptslen;
4002 	ip6_hbh_t *dstopt = NULL;
4003 	const ip6_hbh_t *srcopt = ipp->ipp_hopopts;
4004 	size_t tlen, olen, plen;
4005 	boolean_t deleting;
4006 	const struct ip6_opt *sopt, *lastpad;
4007 	struct ip6_opt *dopt;
4008 
4009 	if ((toh = (struct T_opthdr *)dbuf) != NULL) {
4010 		toh->level = IPPROTO_IPV6;
4011 		toh->name = IPV6_HOPOPTS;
4012 		toh->status = 0;
4013 		dstopt = (ip6_hbh_t *)(toh + 1);
4014 	}
4015 
4016 	/*
4017 	 * If labeling is enabled, then skip the label option
4018 	 * but get other options if there are any.
4019 	 */
4020 	if (is_system_labeled()) {
4021 		dopt = NULL;
4022 		if (dstopt != NULL) {
4023 			/* will fill in ip6h_len later */
4024 			dstopt->ip6h_nxt = srcopt->ip6h_nxt;
4025 			dopt = (struct ip6_opt *)(dstopt + 1);
4026 		}
4027 		sopt = (const struct ip6_opt *)(srcopt + 1);
4028 		hol -= sizeof (*srcopt);
4029 		tlen = sizeof (*dstopt);
4030 		lastpad = NULL;
4031 		deleting = B_FALSE;
4032 		/*
4033 		 * This loop finds the first (lastpad pointer) of any number of
4034 		 * pads that preceeds the security option, then treats the
4035 		 * security option as though it were a pad, and then finds the
4036 		 * next non-pad option (or end of list).
4037 		 *
4038 		 * It then treats the entire block as one big pad.  To preserve
4039 		 * alignment of any options that follow, or just the end of the
4040 		 * list, it computes a minimal new padding size that keeps the
4041 		 * same alignment for the next option.
4042 		 *
4043 		 * If it encounters just a sequence of pads with no security
4044 		 * option, those are copied as-is rather than collapsed.
4045 		 *
4046 		 * Note that to handle the end of list case, the code makes one
4047 		 * loop with 'hol' set to zero.
4048 		 */
4049 		for (;;) {
4050 			if (hol > 0) {
4051 				if (sopt->ip6o_type == IP6OPT_PAD1) {
4052 					if (lastpad == NULL)
4053 						lastpad = sopt;
4054 					sopt = (const struct ip6_opt *)
4055 					    &sopt->ip6o_len;
4056 					hol--;
4057 					continue;
4058 				}
4059 				olen = sopt->ip6o_len + sizeof (*sopt);
4060 				if (olen > hol)
4061 					olen = hol;
4062 				if (sopt->ip6o_type == IP6OPT_PADN ||
4063 				    sopt->ip6o_type == ip6opt_ls) {
4064 					if (sopt->ip6o_type == ip6opt_ls)
4065 						deleting = B_TRUE;
4066 					if (lastpad == NULL)
4067 						lastpad = sopt;
4068 					sopt = (const struct ip6_opt *)
4069 					    ((const char *)sopt + olen);
4070 					hol -= olen;
4071 					continue;
4072 				}
4073 			} else {
4074 				/* if nothing was copied at all, then delete */
4075 				if (tlen == sizeof (*dstopt))
4076 					return (0);
4077 				/* last pass; pick up any trailing padding */
4078 				olen = 0;
4079 			}
4080 			if (deleting) {
4081 				/*
4082 				 * compute aligning effect of deleted material
4083 				 * to reproduce with pad.
4084 				 */
4085 				plen = ((const char *)sopt -
4086 				    (const char *)lastpad) & 7;
4087 				tlen += plen;
4088 				if (dopt != NULL) {
4089 					if (plen == 1) {
4090 						dopt->ip6o_type = IP6OPT_PAD1;
4091 					} else if (plen > 1) {
4092 						plen -= sizeof (*dopt);
4093 						dopt->ip6o_type = IP6OPT_PADN;
4094 						dopt->ip6o_len = plen;
4095 						if (plen > 0)
4096 							bzero(dopt + 1, plen);
4097 					}
4098 					dopt = (struct ip6_opt *)
4099 					    ((char *)dopt + plen);
4100 				}
4101 				deleting = B_FALSE;
4102 				lastpad = NULL;
4103 			}
4104 			/* if there's uncopied padding, then copy that now */
4105 			if (lastpad != NULL) {
4106 				olen += (const char *)sopt -
4107 				    (const char *)lastpad;
4108 				sopt = lastpad;
4109 				lastpad = NULL;
4110 			}
4111 			if (dopt != NULL && olen > 0) {
4112 				bcopy(sopt, dopt, olen);
4113 				dopt = (struct ip6_opt *)((char *)dopt + olen);
4114 			}
4115 			if (hol == 0)
4116 				break;
4117 			tlen += olen;
4118 			sopt = (const struct ip6_opt *)
4119 			    ((const char *)sopt + olen);
4120 			hol -= olen;
4121 		}
4122 		/* go back and patch up the length value, rounded upward */
4123 		if (dstopt != NULL)
4124 			dstopt->ip6h_len = (tlen - 1) >> 3;
4125 	} else {
4126 		tlen = hol;
4127 		if (dstopt != NULL)
4128 			bcopy(srcopt, dstopt, hol);
4129 	}
4130 
4131 	tlen += sizeof (*toh);
4132 	if (toh != NULL)
4133 		toh->len = tlen;
4134 
4135 	return (tlen);
4136 }
4137 
4138 /*
4139  * Update udp_rcv_opt_len from the packet.
4140  * Called when options received, and when no options received but
4141  * udp_ip_recv_opt_len has previously recorded options.
4142  */
4143 static void
4144 udp_save_ip_rcv_opt(udp_t *udp, void *opt, int opt_len)
4145 {
4146 	/* Save the options if any */
4147 	if (opt_len > 0) {
4148 		if (opt_len > udp->udp_ip_rcv_options_len) {
4149 			/* Need to allocate larger buffer */
4150 			if (udp->udp_ip_rcv_options_len != 0)
4151 				mi_free((char *)udp->udp_ip_rcv_options);
4152 			udp->udp_ip_rcv_options_len = 0;
4153 			udp->udp_ip_rcv_options =
4154 			    (uchar_t *)mi_alloc(opt_len, BPRI_HI);
4155 			if (udp->udp_ip_rcv_options != NULL)
4156 				udp->udp_ip_rcv_options_len = opt_len;
4157 		}
4158 		if (udp->udp_ip_rcv_options_len != 0) {
4159 			bcopy(opt, udp->udp_ip_rcv_options, opt_len);
4160 			/* Adjust length if we are resusing the space */
4161 			udp->udp_ip_rcv_options_len = opt_len;
4162 		}
4163 	} else if (udp->udp_ip_rcv_options_len != 0) {
4164 		/* Clear out previously recorded options */
4165 		mi_free((char *)udp->udp_ip_rcv_options);
4166 		udp->udp_ip_rcv_options = NULL;
4167 		udp->udp_ip_rcv_options_len = 0;
4168 	}
4169 }
4170 
4171 /* ARGSUSED2 */
4172 static void
4173 udp_input(void *arg1, mblk_t *mp, void *arg2)
4174 {
4175 	conn_t *connp = (conn_t *)arg1;
4176 	struct T_unitdata_ind	*tudi;
4177 	uchar_t			*rptr;		/* Pointer to IP header */
4178 	int			hdr_length;	/* Length of IP+UDP headers */
4179 	int			opt_len;
4180 	int			udi_size;	/* Size of T_unitdata_ind */
4181 	int			mp_len;
4182 	udp_t			*udp;
4183 	udpha_t			*udpha;
4184 	int			ipversion;
4185 	ip6_pkt_t		ipp;
4186 	ip6_t			*ip6h;
4187 	ip6i_t			*ip6i;
4188 	mblk_t			*mp1;
4189 	mblk_t			*options_mp = NULL;
4190 	ip_pktinfo_t		*pinfo = NULL;
4191 	cred_t			*cr = NULL;
4192 	pid_t			cpid;
4193 	uint32_t		udp_ip_rcv_options_len;
4194 	udp_bits_t		udp_bits;
4195 	cred_t			*rcr = connp->conn_cred;
4196 	udp_stack_t *us;
4197 
4198 	ASSERT(connp->conn_flags & IPCL_UDPCONN);
4199 
4200 	udp = connp->conn_udp;
4201 	us = udp->udp_us;
4202 	rptr = mp->b_rptr;
4203 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_CTL);
4204 	ASSERT(OK_32PTR(rptr));
4205 
4206 	/*
4207 	 * IP should have prepended the options data in an M_CTL
4208 	 * Check M_CTL "type" to make sure are not here bcos of
4209 	 * a valid ICMP message
4210 	 */
4211 	if (DB_TYPE(mp) == M_CTL) {
4212 		if (MBLKL(mp) == sizeof (ip_pktinfo_t) &&
4213 		    ((ip_pktinfo_t *)mp->b_rptr)->ip_pkt_ulp_type ==
4214 		    IN_PKTINFO) {
4215 			/*
4216 			 * IP_RECVIF or IP_RECVSLLA or IPF_RECVADDR information
4217 			 * has been prepended to the packet by IP. We need to
4218 			 * extract the mblk and adjust the rptr
4219 			 */
4220 			pinfo = (ip_pktinfo_t *)mp->b_rptr;
4221 			options_mp = mp;
4222 			mp = mp->b_cont;
4223 			rptr = mp->b_rptr;
4224 			UDP_STAT(us, udp_in_pktinfo);
4225 		} else {
4226 			/*
4227 			 * ICMP messages.
4228 			 */
4229 			udp_icmp_error(connp->conn_rq, mp);
4230 			return;
4231 		}
4232 	}
4233 
4234 	mp_len = msgdsize(mp);
4235 	/*
4236 	 * This is the inbound data path.
4237 	 * First, we check to make sure the IP version number is correct,
4238 	 * and then pull the IP and UDP headers into the first mblk.
4239 	 */
4240 
4241 	/* Initialize regardless if ipversion is IPv4 or IPv6 */
4242 	ipp.ipp_fields = 0;
4243 
4244 	ipversion = IPH_HDR_VERSION(rptr);
4245 
4246 	rw_enter(&udp->udp_rwlock, RW_READER);
4247 	udp_ip_rcv_options_len = udp->udp_ip_rcv_options_len;
4248 	udp_bits = udp->udp_bits;
4249 	rw_exit(&udp->udp_rwlock);
4250 
4251 	switch (ipversion) {
4252 	case IPV4_VERSION:
4253 		ASSERT(MBLKL(mp) >= sizeof (ipha_t));
4254 		ASSERT(((ipha_t *)rptr)->ipha_protocol == IPPROTO_UDP);
4255 		hdr_length = IPH_HDR_LENGTH(rptr) + UDPH_SIZE;
4256 		opt_len = hdr_length - (IP_SIMPLE_HDR_LENGTH + UDPH_SIZE);
4257 		if ((opt_len > 0 || udp_ip_rcv_options_len > 0) &&
4258 		    udp->udp_family == AF_INET) {
4259 			/*
4260 			 * Record/update udp_ip_rcv_options with the lock
4261 			 * held. Not needed for AF_INET6 sockets
4262 			 * since they don't support a getsockopt of IP_OPTIONS.
4263 			 */
4264 			rw_enter(&udp->udp_rwlock, RW_WRITER);
4265 			udp_save_ip_rcv_opt(udp, rptr + IP_SIMPLE_HDR_LENGTH,
4266 			    opt_len);
4267 			rw_exit(&udp->udp_rwlock);
4268 		}
4269 		/* Handle IPV6_RECVPKTINFO even for IPv4 packet. */
4270 		if ((udp->udp_family == AF_INET6) && (pinfo != NULL) &&
4271 		    udp->udp_ip_recvpktinfo) {
4272 			if (pinfo->ip_pkt_flags & IPF_RECVIF) {
4273 				ipp.ipp_fields |= IPPF_IFINDEX;
4274 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
4275 			}
4276 		}
4277 		break;
4278 	case IPV6_VERSION:
4279 		/*
4280 		 * IPv6 packets can only be received by applications
4281 		 * that are prepared to receive IPv6 addresses.
4282 		 * The IP fanout must ensure this.
4283 		 */
4284 		ASSERT(udp->udp_family == AF_INET6);
4285 
4286 		ip6h = (ip6_t *)rptr;
4287 		ASSERT((uchar_t *)&ip6h[1] <= mp->b_wptr);
4288 
4289 		if (ip6h->ip6_nxt != IPPROTO_UDP) {
4290 			uint8_t nexthdrp;
4291 			/* Look for ifindex information */
4292 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
4293 				ip6i = (ip6i_t *)ip6h;
4294 				if ((uchar_t *)&ip6i[1] > mp->b_wptr)
4295 					goto tossit;
4296 
4297 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
4298 					ASSERT(ip6i->ip6i_ifindex != 0);
4299 					ipp.ipp_fields |= IPPF_IFINDEX;
4300 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
4301 				}
4302 				rptr = (uchar_t *)&ip6i[1];
4303 				mp->b_rptr = rptr;
4304 				if (rptr == mp->b_wptr) {
4305 					mp1 = mp->b_cont;
4306 					freeb(mp);
4307 					mp = mp1;
4308 					rptr = mp->b_rptr;
4309 				}
4310 				if (MBLKL(mp) < (IPV6_HDR_LEN + UDPH_SIZE))
4311 					goto tossit;
4312 				ip6h = (ip6_t *)rptr;
4313 				mp_len = msgdsize(mp);
4314 			}
4315 			/*
4316 			 * Find any potentially interesting extension headers
4317 			 * as well as the length of the IPv6 + extension
4318 			 * headers.
4319 			 */
4320 			hdr_length = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp) +
4321 			    UDPH_SIZE;
4322 			ASSERT(nexthdrp == IPPROTO_UDP);
4323 		} else {
4324 			hdr_length = IPV6_HDR_LEN + UDPH_SIZE;
4325 			ip6i = NULL;
4326 		}
4327 		break;
4328 	default:
4329 		ASSERT(0);
4330 	}
4331 
4332 	/*
4333 	 * IP inspected the UDP header thus all of it must be in the mblk.
4334 	 * UDP length check is performed for IPv6 packets and IPv4 packets
4335 	 * to check if the size of the packet as specified
4336 	 * by the header is the same as the physical size of the packet.
4337 	 * FIXME? Didn't IP already check this?
4338 	 */
4339 	udpha = (udpha_t *)(rptr + (hdr_length - UDPH_SIZE));
4340 	if ((MBLKL(mp) < hdr_length) ||
4341 	    (mp_len != (ntohs(udpha->uha_length) + hdr_length - UDPH_SIZE))) {
4342 		goto tossit;
4343 	}
4344 
4345 
4346 	/* Walk past the headers unless IP_RECVHDR was set. */
4347 	if (!udp_bits.udpb_rcvhdr) {
4348 		mp->b_rptr = rptr + hdr_length;
4349 		mp_len -= hdr_length;
4350 	}
4351 
4352 	/*
4353 	 * This is the inbound data path.  Packets are passed upstream as
4354 	 * T_UNITDATA_IND messages with full IP headers still attached.
4355 	 */
4356 	if (udp->udp_family == AF_INET) {
4357 		sin_t *sin;
4358 
4359 		ASSERT(IPH_HDR_VERSION((ipha_t *)rptr) == IPV4_VERSION);
4360 
4361 		/*
4362 		 * Normally only send up the source address.
4363 		 * If IP_RECVDSTADDR is set we include the destination IP
4364 		 * address as an option. With IP_RECVOPTS we include all
4365 		 * the IP options.
4366 		 */
4367 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin_t);
4368 		if (udp_bits.udpb_recvdstaddr) {
4369 			udi_size += sizeof (struct T_opthdr) +
4370 			    sizeof (struct in_addr);
4371 			UDP_STAT(us, udp_in_recvdstaddr);
4372 		}
4373 
4374 		if (udp_bits.udpb_ip_recvpktinfo && (pinfo != NULL) &&
4375 		    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4376 			udi_size += sizeof (struct T_opthdr) +
4377 			    sizeof (struct in_pktinfo);
4378 			UDP_STAT(us, udp_ip_rcvpktinfo);
4379 		}
4380 
4381 		if ((udp_bits.udpb_recvopts) && opt_len > 0) {
4382 			udi_size += sizeof (struct T_opthdr) + opt_len;
4383 			UDP_STAT(us, udp_in_recvopts);
4384 		}
4385 
4386 		/*
4387 		 * If the IP_RECVSLLA or the IP_RECVIF is set then allocate
4388 		 * space accordingly
4389 		 */
4390 		if ((udp_bits.udpb_recvif) && (pinfo != NULL) &&
4391 		    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4392 			udi_size += sizeof (struct T_opthdr) + sizeof (uint_t);
4393 			UDP_STAT(us, udp_in_recvif);
4394 		}
4395 
4396 		if ((udp_bits.udpb_recvslla) && (pinfo != NULL) &&
4397 		    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4398 			udi_size += sizeof (struct T_opthdr) +
4399 			    sizeof (struct sockaddr_dl);
4400 			UDP_STAT(us, udp_in_recvslla);
4401 		}
4402 
4403 		if ((udp_bits.udpb_recvucred) &&
4404 		    (cr = DB_CRED(mp)) != NULL) {
4405 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4406 			cpid = DB_CPID(mp);
4407 			UDP_STAT(us, udp_in_recvucred);
4408 		}
4409 
4410 		/*
4411 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4412 		 * buffer. Since gethrestime() expects a pointer aligned
4413 		 * argument, we allocate space necessary for extra
4414 		 * alignment (even though it might not be used).
4415 		 */
4416 		if (udp_bits.udpb_timestamp) {
4417 			udi_size += sizeof (struct T_opthdr) +
4418 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4419 			UDP_STAT(us, udp_in_timestamp);
4420 		}
4421 
4422 		/*
4423 		 * If IP_RECVTTL is set allocate the appropriate sized buffer
4424 		 */
4425 		if (udp_bits.udpb_recvttl) {
4426 			udi_size += sizeof (struct T_opthdr) + sizeof (uint8_t);
4427 			UDP_STAT(us, udp_in_recvttl);
4428 		}
4429 
4430 		/* Allocate a message block for the T_UNITDATA_IND structure. */
4431 		mp1 = allocb(udi_size, BPRI_MED);
4432 		if (mp1 == NULL) {
4433 			freemsg(mp);
4434 			if (options_mp != NULL)
4435 				freeb(options_mp);
4436 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
4437 			return;
4438 		}
4439 		mp1->b_cont = mp;
4440 		mp = mp1;
4441 		mp->b_datap->db_type = M_PROTO;
4442 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4443 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4444 		tudi->PRIM_type = T_UNITDATA_IND;
4445 		tudi->SRC_length = sizeof (sin_t);
4446 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4447 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4448 		    sizeof (sin_t);
4449 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin_t));
4450 		tudi->OPT_length = udi_size;
4451 		sin = (sin_t *)&tudi[1];
4452 		sin->sin_addr.s_addr = ((ipha_t *)rptr)->ipha_src;
4453 		sin->sin_port =	udpha->uha_src_port;
4454 		sin->sin_family = udp->udp_family;
4455 		*(uint32_t *)&sin->sin_zero[0] = 0;
4456 		*(uint32_t *)&sin->sin_zero[4] = 0;
4457 
4458 		/*
4459 		 * Add options if IP_RECVDSTADDR, IP_RECVIF, IP_RECVSLLA or
4460 		 * IP_RECVTTL has been set.
4461 		 */
4462 		if (udi_size != 0) {
4463 			/*
4464 			 * Copy in destination address before options to avoid
4465 			 * any padding issues.
4466 			 */
4467 			char *dstopt;
4468 
4469 			dstopt = (char *)&sin[1];
4470 			if (udp_bits.udpb_recvdstaddr) {
4471 				struct T_opthdr *toh;
4472 				ipaddr_t *dstptr;
4473 
4474 				toh = (struct T_opthdr *)dstopt;
4475 				toh->level = IPPROTO_IP;
4476 				toh->name = IP_RECVDSTADDR;
4477 				toh->len = sizeof (struct T_opthdr) +
4478 				    sizeof (ipaddr_t);
4479 				toh->status = 0;
4480 				dstopt += sizeof (struct T_opthdr);
4481 				dstptr = (ipaddr_t *)dstopt;
4482 				*dstptr = ((ipha_t *)rptr)->ipha_dst;
4483 				dstopt += sizeof (ipaddr_t);
4484 				udi_size -= toh->len;
4485 			}
4486 
4487 			if (udp_bits.udpb_recvopts && opt_len > 0) {
4488 				struct T_opthdr *toh;
4489 
4490 				toh = (struct T_opthdr *)dstopt;
4491 				toh->level = IPPROTO_IP;
4492 				toh->name = IP_RECVOPTS;
4493 				toh->len = sizeof (struct T_opthdr) + opt_len;
4494 				toh->status = 0;
4495 				dstopt += sizeof (struct T_opthdr);
4496 				bcopy(rptr + IP_SIMPLE_HDR_LENGTH, dstopt,
4497 				    opt_len);
4498 				dstopt += opt_len;
4499 				udi_size -= toh->len;
4500 			}
4501 
4502 			if ((udp_bits.udpb_ip_recvpktinfo) && (pinfo != NULL) &&
4503 			    (pinfo->ip_pkt_flags & IPF_RECVADDR)) {
4504 				struct T_opthdr *toh;
4505 				struct in_pktinfo *pktinfop;
4506 
4507 				toh = (struct T_opthdr *)dstopt;
4508 				toh->level = IPPROTO_IP;
4509 				toh->name = IP_PKTINFO;
4510 				toh->len = sizeof (struct T_opthdr) +
4511 				    sizeof (*pktinfop);
4512 				toh->status = 0;
4513 				dstopt += sizeof (struct T_opthdr);
4514 				pktinfop = (struct in_pktinfo *)dstopt;
4515 				pktinfop->ipi_ifindex = pinfo->ip_pkt_ifindex;
4516 				pktinfop->ipi_spec_dst =
4517 				    pinfo->ip_pkt_match_addr;
4518 				pktinfop->ipi_addr.s_addr =
4519 				    ((ipha_t *)rptr)->ipha_dst;
4520 
4521 				dstopt += sizeof (struct in_pktinfo);
4522 				udi_size -= toh->len;
4523 			}
4524 
4525 			if ((udp_bits.udpb_recvslla) && (pinfo != NULL) &&
4526 			    (pinfo->ip_pkt_flags & IPF_RECVSLLA)) {
4527 
4528 				struct T_opthdr *toh;
4529 				struct sockaddr_dl	*dstptr;
4530 
4531 				toh = (struct T_opthdr *)dstopt;
4532 				toh->level = IPPROTO_IP;
4533 				toh->name = IP_RECVSLLA;
4534 				toh->len = sizeof (struct T_opthdr) +
4535 				    sizeof (struct sockaddr_dl);
4536 				toh->status = 0;
4537 				dstopt += sizeof (struct T_opthdr);
4538 				dstptr = (struct sockaddr_dl *)dstopt;
4539 				bcopy(&pinfo->ip_pkt_slla, dstptr,
4540 				    sizeof (struct sockaddr_dl));
4541 				dstopt += sizeof (struct sockaddr_dl);
4542 				udi_size -= toh->len;
4543 			}
4544 
4545 			if ((udp_bits.udpb_recvif) && (pinfo != NULL) &&
4546 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
4547 
4548 				struct T_opthdr *toh;
4549 				uint_t		*dstptr;
4550 
4551 				toh = (struct T_opthdr *)dstopt;
4552 				toh->level = IPPROTO_IP;
4553 				toh->name = IP_RECVIF;
4554 				toh->len = sizeof (struct T_opthdr) +
4555 				    sizeof (uint_t);
4556 				toh->status = 0;
4557 				dstopt += sizeof (struct T_opthdr);
4558 				dstptr = (uint_t *)dstopt;
4559 				*dstptr = pinfo->ip_pkt_ifindex;
4560 				dstopt += sizeof (uint_t);
4561 				udi_size -= toh->len;
4562 			}
4563 
4564 			if (cr != NULL) {
4565 				struct T_opthdr *toh;
4566 
4567 				toh = (struct T_opthdr *)dstopt;
4568 				toh->level = SOL_SOCKET;
4569 				toh->name = SCM_UCRED;
4570 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4571 				toh->status = 0;
4572 				dstopt += sizeof (struct T_opthdr);
4573 				(void) cred2ucred(cr, cpid, dstopt, rcr);
4574 				dstopt += ucredsize;
4575 				udi_size -= toh->len;
4576 			}
4577 
4578 			if (udp_bits.udpb_timestamp) {
4579 				struct	T_opthdr *toh;
4580 
4581 				toh = (struct T_opthdr *)dstopt;
4582 				toh->level = SOL_SOCKET;
4583 				toh->name = SCM_TIMESTAMP;
4584 				toh->len = sizeof (struct T_opthdr) +
4585 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4586 				toh->status = 0;
4587 				dstopt += sizeof (struct T_opthdr);
4588 				/* Align for gethrestime() */
4589 				dstopt = (char *)P2ROUNDUP((intptr_t)dstopt,
4590 				    sizeof (intptr_t));
4591 				gethrestime((timestruc_t *)dstopt);
4592 				dstopt = (char *)toh + toh->len;
4593 				udi_size -= toh->len;
4594 			}
4595 
4596 			/*
4597 			 * CAUTION:
4598 			 * Due to aligment issues
4599 			 * Processing of IP_RECVTTL option
4600 			 * should always be the last. Adding
4601 			 * any option processing after this will
4602 			 * cause alignment panic.
4603 			 */
4604 			if (udp_bits.udpb_recvttl) {
4605 				struct	T_opthdr *toh;
4606 				uint8_t	*dstptr;
4607 
4608 				toh = (struct T_opthdr *)dstopt;
4609 				toh->level = IPPROTO_IP;
4610 				toh->name = IP_RECVTTL;
4611 				toh->len = sizeof (struct T_opthdr) +
4612 				    sizeof (uint8_t);
4613 				toh->status = 0;
4614 				dstopt += sizeof (struct T_opthdr);
4615 				dstptr = (uint8_t *)dstopt;
4616 				*dstptr = ((ipha_t *)rptr)->ipha_ttl;
4617 				dstopt += sizeof (uint8_t);
4618 				udi_size -= toh->len;
4619 			}
4620 
4621 			/* Consumed all of allocated space */
4622 			ASSERT(udi_size == 0);
4623 		}
4624 	} else {
4625 		sin6_t *sin6;
4626 
4627 		/*
4628 		 * Handle both IPv4 and IPv6 packets for IPv6 sockets.
4629 		 *
4630 		 * Normally we only send up the address. If receiving of any
4631 		 * optional receive side information is enabled, we also send
4632 		 * that up as options.
4633 		 */
4634 		udi_size = sizeof (struct T_unitdata_ind) + sizeof (sin6_t);
4635 
4636 		if (ipp.ipp_fields & (IPPF_HOPOPTS|IPPF_DSTOPTS|IPPF_RTDSTOPTS|
4637 		    IPPF_RTHDR|IPPF_IFINDEX)) {
4638 			if ((udp_bits.udpb_ipv6_recvhopopts) &&
4639 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4640 				size_t hlen;
4641 
4642 				UDP_STAT(us, udp_in_recvhopopts);
4643 				hlen = copy_hop_opts(&ipp, NULL);
4644 				if (hlen == 0)
4645 					ipp.ipp_fields &= ~IPPF_HOPOPTS;
4646 				udi_size += hlen;
4647 			}
4648 			if (((udp_bits.udpb_ipv6_recvdstopts) ||
4649 			    udp_bits.udpb_old_ipv6_recvdstopts) &&
4650 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4651 				udi_size += sizeof (struct T_opthdr) +
4652 				    ipp.ipp_dstoptslen;
4653 				UDP_STAT(us, udp_in_recvdstopts);
4654 			}
4655 			if ((((udp_bits.udpb_ipv6_recvdstopts) &&
4656 			    udp_bits.udpb_ipv6_recvrthdr &&
4657 			    (ipp.ipp_fields & IPPF_RTHDR)) ||
4658 			    (udp_bits.udpb_ipv6_recvrthdrdstopts)) &&
4659 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4660 				udi_size += sizeof (struct T_opthdr) +
4661 				    ipp.ipp_rtdstoptslen;
4662 				UDP_STAT(us, udp_in_recvrtdstopts);
4663 			}
4664 			if ((udp_bits.udpb_ipv6_recvrthdr) &&
4665 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4666 				udi_size += sizeof (struct T_opthdr) +
4667 				    ipp.ipp_rthdrlen;
4668 				UDP_STAT(us, udp_in_recvrthdr);
4669 			}
4670 			if ((udp_bits.udpb_ip_recvpktinfo) &&
4671 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4672 				udi_size += sizeof (struct T_opthdr) +
4673 				    sizeof (struct in6_pktinfo);
4674 				UDP_STAT(us, udp_in_recvpktinfo);
4675 			}
4676 
4677 		}
4678 		if ((udp_bits.udpb_recvucred) &&
4679 		    (cr = DB_CRED(mp)) != NULL) {
4680 			udi_size += sizeof (struct T_opthdr) + ucredsize;
4681 			cpid = DB_CPID(mp);
4682 			UDP_STAT(us, udp_in_recvucred);
4683 		}
4684 
4685 		/*
4686 		 * If SO_TIMESTAMP is set allocate the appropriate sized
4687 		 * buffer. Since gethrestime() expects a pointer aligned
4688 		 * argument, we allocate space necessary for extra
4689 		 * alignment (even though it might not be used).
4690 		 */
4691 		if (udp_bits.udpb_timestamp) {
4692 			udi_size += sizeof (struct T_opthdr) +
4693 			    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4694 			UDP_STAT(us, udp_in_timestamp);
4695 		}
4696 
4697 		if (udp_bits.udpb_ipv6_recvhoplimit) {
4698 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4699 			UDP_STAT(us, udp_in_recvhoplimit);
4700 		}
4701 
4702 		if (udp_bits.udpb_ipv6_recvtclass) {
4703 			udi_size += sizeof (struct T_opthdr) + sizeof (int);
4704 			UDP_STAT(us, udp_in_recvtclass);
4705 		}
4706 
4707 		mp1 = allocb(udi_size, BPRI_MED);
4708 		if (mp1 == NULL) {
4709 			freemsg(mp);
4710 			if (options_mp != NULL)
4711 				freeb(options_mp);
4712 			BUMP_MIB(&us->us_udp_mib, udpInErrors);
4713 			return;
4714 		}
4715 		mp1->b_cont = mp;
4716 		mp = mp1;
4717 		mp->b_datap->db_type = M_PROTO;
4718 		tudi = (struct T_unitdata_ind *)mp->b_rptr;
4719 		mp->b_wptr = (uchar_t *)tudi + udi_size;
4720 		tudi->PRIM_type = T_UNITDATA_IND;
4721 		tudi->SRC_length = sizeof (sin6_t);
4722 		tudi->SRC_offset = sizeof (struct T_unitdata_ind);
4723 		tudi->OPT_offset = sizeof (struct T_unitdata_ind) +
4724 		    sizeof (sin6_t);
4725 		udi_size -= (sizeof (struct T_unitdata_ind) + sizeof (sin6_t));
4726 		tudi->OPT_length = udi_size;
4727 		sin6 = (sin6_t *)&tudi[1];
4728 		if (ipversion == IPV4_VERSION) {
4729 			in6_addr_t v6dst;
4730 
4731 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_src,
4732 			    &sin6->sin6_addr);
4733 			IN6_IPADDR_TO_V4MAPPED(((ipha_t *)rptr)->ipha_dst,
4734 			    &v6dst);
4735 			sin6->sin6_flowinfo = 0;
4736 			sin6->sin6_scope_id = 0;
4737 			sin6->__sin6_src_id = ip_srcid_find_addr(&v6dst,
4738 			    connp->conn_zoneid, us->us_netstack);
4739 		} else {
4740 			sin6->sin6_addr = ip6h->ip6_src;
4741 			/* No sin6_flowinfo per API */
4742 			sin6->sin6_flowinfo = 0;
4743 			/* For link-scope source pass up scope id */
4744 			if ((ipp.ipp_fields & IPPF_IFINDEX) &&
4745 			    IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4746 				sin6->sin6_scope_id = ipp.ipp_ifindex;
4747 			else
4748 				sin6->sin6_scope_id = 0;
4749 			sin6->__sin6_src_id = ip_srcid_find_addr(
4750 			    &ip6h->ip6_dst, connp->conn_zoneid,
4751 			    us->us_netstack);
4752 		}
4753 		sin6->sin6_port = udpha->uha_src_port;
4754 		sin6->sin6_family = udp->udp_family;
4755 
4756 		if (udi_size != 0) {
4757 			uchar_t *dstopt;
4758 
4759 			dstopt = (uchar_t *)&sin6[1];
4760 			if ((udp_bits.udpb_ip_recvpktinfo) &&
4761 			    (ipp.ipp_fields & IPPF_IFINDEX)) {
4762 				struct T_opthdr *toh;
4763 				struct in6_pktinfo *pkti;
4764 
4765 				toh = (struct T_opthdr *)dstopt;
4766 				toh->level = IPPROTO_IPV6;
4767 				toh->name = IPV6_PKTINFO;
4768 				toh->len = sizeof (struct T_opthdr) +
4769 				    sizeof (*pkti);
4770 				toh->status = 0;
4771 				dstopt += sizeof (struct T_opthdr);
4772 				pkti = (struct in6_pktinfo *)dstopt;
4773 				if (ipversion == IPV6_VERSION)
4774 					pkti->ipi6_addr = ip6h->ip6_dst;
4775 				else
4776 					IN6_IPADDR_TO_V4MAPPED(
4777 					    ((ipha_t *)rptr)->ipha_dst,
4778 					    &pkti->ipi6_addr);
4779 				pkti->ipi6_ifindex = ipp.ipp_ifindex;
4780 				dstopt += sizeof (*pkti);
4781 				udi_size -= toh->len;
4782 			}
4783 			if (udp_bits.udpb_ipv6_recvhoplimit) {
4784 				struct T_opthdr *toh;
4785 
4786 				toh = (struct T_opthdr *)dstopt;
4787 				toh->level = IPPROTO_IPV6;
4788 				toh->name = IPV6_HOPLIMIT;
4789 				toh->len = sizeof (struct T_opthdr) +
4790 				    sizeof (uint_t);
4791 				toh->status = 0;
4792 				dstopt += sizeof (struct T_opthdr);
4793 				if (ipversion == IPV6_VERSION)
4794 					*(uint_t *)dstopt = ip6h->ip6_hops;
4795 				else
4796 					*(uint_t *)dstopt =
4797 					    ((ipha_t *)rptr)->ipha_ttl;
4798 				dstopt += sizeof (uint_t);
4799 				udi_size -= toh->len;
4800 			}
4801 			if (udp_bits.udpb_ipv6_recvtclass) {
4802 				struct T_opthdr *toh;
4803 
4804 				toh = (struct T_opthdr *)dstopt;
4805 				toh->level = IPPROTO_IPV6;
4806 				toh->name = IPV6_TCLASS;
4807 				toh->len = sizeof (struct T_opthdr) +
4808 				    sizeof (uint_t);
4809 				toh->status = 0;
4810 				dstopt += sizeof (struct T_opthdr);
4811 				if (ipversion == IPV6_VERSION) {
4812 					*(uint_t *)dstopt =
4813 					    IPV6_FLOW_TCLASS(ip6h->ip6_flow);
4814 				} else {
4815 					ipha_t *ipha = (ipha_t *)rptr;
4816 					*(uint_t *)dstopt =
4817 					    ipha->ipha_type_of_service;
4818 				}
4819 				dstopt += sizeof (uint_t);
4820 				udi_size -= toh->len;
4821 			}
4822 			if ((udp_bits.udpb_ipv6_recvhopopts) &&
4823 			    (ipp.ipp_fields & IPPF_HOPOPTS)) {
4824 				size_t hlen;
4825 
4826 				hlen = copy_hop_opts(&ipp, dstopt);
4827 				dstopt += hlen;
4828 				udi_size -= hlen;
4829 			}
4830 			if ((udp_bits.udpb_ipv6_recvdstopts) &&
4831 			    (udp_bits.udpb_ipv6_recvrthdr) &&
4832 			    (ipp.ipp_fields & IPPF_RTHDR) &&
4833 			    (ipp.ipp_fields & IPPF_RTDSTOPTS)) {
4834 				struct T_opthdr *toh;
4835 
4836 				toh = (struct T_opthdr *)dstopt;
4837 				toh->level = IPPROTO_IPV6;
4838 				toh->name = IPV6_DSTOPTS;
4839 				toh->len = sizeof (struct T_opthdr) +
4840 				    ipp.ipp_rtdstoptslen;
4841 				toh->status = 0;
4842 				dstopt += sizeof (struct T_opthdr);
4843 				bcopy(ipp.ipp_rtdstopts, dstopt,
4844 				    ipp.ipp_rtdstoptslen);
4845 				dstopt += ipp.ipp_rtdstoptslen;
4846 				udi_size -= toh->len;
4847 			}
4848 			if ((udp_bits.udpb_ipv6_recvrthdr) &&
4849 			    (ipp.ipp_fields & IPPF_RTHDR)) {
4850 				struct T_opthdr *toh;
4851 
4852 				toh = (struct T_opthdr *)dstopt;
4853 				toh->level = IPPROTO_IPV6;
4854 				toh->name = IPV6_RTHDR;
4855 				toh->len = sizeof (struct T_opthdr) +
4856 				    ipp.ipp_rthdrlen;
4857 				toh->status = 0;
4858 				dstopt += sizeof (struct T_opthdr);
4859 				bcopy(ipp.ipp_rthdr, dstopt, ipp.ipp_rthdrlen);
4860 				dstopt += ipp.ipp_rthdrlen;
4861 				udi_size -= toh->len;
4862 			}
4863 			if ((udp_bits.udpb_ipv6_recvdstopts) &&
4864 			    (ipp.ipp_fields & IPPF_DSTOPTS)) {
4865 				struct T_opthdr *toh;
4866 
4867 				toh = (struct T_opthdr *)dstopt;
4868 				toh->level = IPPROTO_IPV6;
4869 				toh->name = IPV6_DSTOPTS;
4870 				toh->len = sizeof (struct T_opthdr) +
4871 				    ipp.ipp_dstoptslen;
4872 				toh->status = 0;
4873 				dstopt += sizeof (struct T_opthdr);
4874 				bcopy(ipp.ipp_dstopts, dstopt,
4875 				    ipp.ipp_dstoptslen);
4876 				dstopt += ipp.ipp_dstoptslen;
4877 				udi_size -= toh->len;
4878 			}
4879 
4880 			if (cr != NULL) {
4881 				struct T_opthdr *toh;
4882 
4883 				toh = (struct T_opthdr *)dstopt;
4884 				toh->level = SOL_SOCKET;
4885 				toh->name = SCM_UCRED;
4886 				toh->len = sizeof (struct T_opthdr) + ucredsize;
4887 				toh->status = 0;
4888 				(void) cred2ucred(cr, cpid, &toh[1], rcr);
4889 				dstopt += toh->len;
4890 				udi_size -= toh->len;
4891 			}
4892 			if (udp_bits.udpb_timestamp) {
4893 				struct	T_opthdr *toh;
4894 
4895 				toh = (struct T_opthdr *)dstopt;
4896 				toh->level = SOL_SOCKET;
4897 				toh->name = SCM_TIMESTAMP;
4898 				toh->len = sizeof (struct T_opthdr) +
4899 				    sizeof (timestruc_t) + _POINTER_ALIGNMENT;
4900 				toh->status = 0;
4901 				dstopt += sizeof (struct T_opthdr);
4902 				/* Align for gethrestime() */
4903 				dstopt = (uchar_t *)P2ROUNDUP((intptr_t)dstopt,
4904 				    sizeof (intptr_t));
4905 				gethrestime((timestruc_t *)dstopt);
4906 				dstopt = (uchar_t *)toh + toh->len;
4907 				udi_size -= toh->len;
4908 			}
4909 
4910 			/* Consumed all of allocated space */
4911 			ASSERT(udi_size == 0);
4912 		}
4913 #undef	sin6
4914 		/* No IP_RECVDSTADDR for IPv6. */
4915 	}
4916 
4917 	BUMP_MIB(&us->us_udp_mib, udpHCInDatagrams);
4918 	if (options_mp != NULL)
4919 		freeb(options_mp);
4920 
4921 	if (udp_bits.udpb_direct_sockfs) {
4922 		/*
4923 		 * There is nothing above us except for the stream head;
4924 		 * use the read-side synchronous stream interface in
4925 		 * order to reduce the time spent in interrupt thread.
4926 		 */
4927 		ASSERT(udp->udp_issocket);
4928 		udp_rcv_enqueue(connp->conn_rq, udp, mp, mp_len);
4929 	} else {
4930 		/*
4931 		 * Use regular STREAMS interface to pass data upstream
4932 		 * if this is not a socket endpoint, or if we have
4933 		 * switched over to the slow mode due to sockmod being
4934 		 * popped or a module being pushed on top of us.
4935 		 */
4936 		putnext(connp->conn_rq, mp);
4937 	}
4938 	return;
4939 
4940 tossit:
4941 	freemsg(mp);
4942 	if (options_mp != NULL)
4943 		freeb(options_mp);
4944 	BUMP_MIB(&us->us_udp_mib, udpInErrors);
4945 }
4946 
4947 /*
4948  * Handle the results of a T_BIND_REQ whether deferred by IP or handled
4949  * immediately.
4950  */
4951 static void
4952 udp_bind_result(conn_t *connp, mblk_t *mp)
4953 {
4954 	struct T_error_ack	*tea;
4955 
4956 	switch (mp->b_datap->db_type) {
4957 	case M_PROTO:
4958 	case M_PCPROTO:
4959 		/* M_PROTO messages contain some type of TPI message. */
4960 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
4961 		    (uintptr_t)INT_MAX);
4962 		if (mp->b_wptr - mp->b_rptr < sizeof (t_scalar_t)) {
4963 			freemsg(mp);
4964 			return;
4965 		}
4966 		tea = (struct T_error_ack *)mp->b_rptr;
4967 
4968 		switch (tea->PRIM_type) {
4969 		case T_ERROR_ACK:
4970 			switch (tea->ERROR_prim) {
4971 			case O_T_BIND_REQ:
4972 			case T_BIND_REQ:
4973 				udp_bind_error(connp, mp);
4974 				return;
4975 			default:
4976 				break;
4977 			}
4978 			ASSERT(0);
4979 			freemsg(mp);
4980 			return;
4981 
4982 		case T_BIND_ACK:
4983 			udp_bind_ack(connp, mp);
4984 			return;
4985 
4986 		default:
4987 			break;
4988 		}
4989 		freemsg(mp);
4990 		return;
4991 	default:
4992 		/* FIXME: other cases? */
4993 		ASSERT(0);
4994 		freemsg(mp);
4995 		return;
4996 	}
4997 }
4998 
4999 /*
5000  * Process a T_BIND_ACK
5001  */
5002 static void
5003 udp_bind_ack(conn_t *connp, mblk_t *mp)
5004 {
5005 	udp_t	*udp = connp->conn_udp;
5006 	mblk_t	*mp1;
5007 	ire_t	*ire;
5008 	struct T_bind_ack *tba;
5009 	uchar_t *addrp;
5010 	ipa_conn_t	*ac;
5011 	ipa6_conn_t	*ac6;
5012 	udp_fanout_t	*udpf;
5013 	udp_stack_t	*us = udp->udp_us;
5014 
5015 	ASSERT(udp->udp_pending_op != -1);
5016 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5017 	/*
5018 	 * If a broadcast/multicast address was bound set
5019 	 * the source address to 0.
5020 	 * This ensures no datagrams with broadcast address
5021 	 * as source address are emitted (which would violate
5022 	 * RFC1122 - Hosts requirements)
5023 	 *
5024 	 * Note that when connecting the returned IRE is
5025 	 * for the destination address and we only perform
5026 	 * the broadcast check for the source address (it
5027 	 * is OK to connect to a broadcast/multicast address.)
5028 	 */
5029 	mp1 = mp->b_cont;
5030 	if (mp1 != NULL && mp1->b_datap->db_type == IRE_DB_TYPE) {
5031 		ire = (ire_t *)mp1->b_rptr;
5032 
5033 		/*
5034 		 * Note: we get IRE_BROADCAST for IPv6 to "mark" a multicast
5035 		 * local address.
5036 		 */
5037 		udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
5038 		    us->us_bind_fanout_size)];
5039 		if (ire->ire_type == IRE_BROADCAST &&
5040 		    udp->udp_state != TS_DATA_XFER) {
5041 			ASSERT(udp->udp_pending_op == T_BIND_REQ ||
5042 			    udp->udp_pending_op == O_T_BIND_REQ);
5043 			/* This was just a local bind to a broadcast addr */
5044 			mutex_enter(&udpf->uf_lock);
5045 			V6_SET_ZERO(udp->udp_v6src);
5046 			mutex_exit(&udpf->uf_lock);
5047 			if (udp->udp_family == AF_INET6)
5048 				(void) udp_build_hdrs(udp);
5049 		} else if (V6_OR_V4_INADDR_ANY(udp->udp_v6src)) {
5050 			/*
5051 			 * Local address not yet set - pick it from the
5052 			 * T_bind_ack
5053 			 */
5054 			tba = (struct T_bind_ack *)mp->b_rptr;
5055 			addrp = &mp->b_rptr[tba->ADDR_offset];
5056 			switch (udp->udp_family) {
5057 			case AF_INET:
5058 				if (tba->ADDR_length == sizeof (ipa_conn_t)) {
5059 					ac = (ipa_conn_t *)addrp;
5060 				} else {
5061 					ASSERT(tba->ADDR_length ==
5062 					    sizeof (ipa_conn_x_t));
5063 					ac = &((ipa_conn_x_t *)addrp)->acx_conn;
5064 				}
5065 				mutex_enter(&udpf->uf_lock);
5066 				IN6_IPADDR_TO_V4MAPPED(ac->ac_laddr,
5067 				    &udp->udp_v6src);
5068 				mutex_exit(&udpf->uf_lock);
5069 				break;
5070 			case AF_INET6:
5071 				if (tba->ADDR_length == sizeof (ipa6_conn_t)) {
5072 					ac6 = (ipa6_conn_t *)addrp;
5073 				} else {
5074 					ASSERT(tba->ADDR_length ==
5075 					    sizeof (ipa6_conn_x_t));
5076 					ac6 = &((ipa6_conn_x_t *)
5077 					    addrp)->ac6x_conn;
5078 				}
5079 				mutex_enter(&udpf->uf_lock);
5080 				udp->udp_v6src = ac6->ac6_laddr;
5081 				mutex_exit(&udpf->uf_lock);
5082 				(void) udp_build_hdrs(udp);
5083 				break;
5084 			}
5085 		}
5086 		mp1 = mp1->b_cont;
5087 	}
5088 	udp->udp_pending_op = -1;
5089 	rw_exit(&udp->udp_rwlock);
5090 	/*
5091 	 * Look for one or more appended ACK message added by
5092 	 * udp_connect or udp_disconnect.
5093 	 * If none found just send up the T_BIND_ACK.
5094 	 * udp_connect has appended a T_OK_ACK and a T_CONN_CON.
5095 	 * udp_disconnect has appended a T_OK_ACK.
5096 	 */
5097 	if (mp1 != NULL) {
5098 		if (mp->b_cont == mp1)
5099 			mp->b_cont = NULL;
5100 		else {
5101 			ASSERT(mp->b_cont->b_cont == mp1);
5102 			mp->b_cont->b_cont = NULL;
5103 		}
5104 		freemsg(mp);
5105 		mp = mp1;
5106 		while (mp != NULL) {
5107 			mp1 = mp->b_cont;
5108 			mp->b_cont = NULL;
5109 			putnext(connp->conn_rq, mp);
5110 			mp = mp1;
5111 		}
5112 		return;
5113 	}
5114 	freemsg(mp->b_cont);
5115 	mp->b_cont = NULL;
5116 	putnext(connp->conn_rq, mp);
5117 }
5118 
5119 static void
5120 udp_bind_error(conn_t *connp, mblk_t *mp)
5121 {
5122 	udp_t	*udp = connp->conn_udp;
5123 	struct T_error_ack *tea;
5124 	udp_fanout_t	*udpf;
5125 	udp_stack_t	*us = udp->udp_us;
5126 
5127 	tea = (struct T_error_ack *)mp->b_rptr;
5128 
5129 	/*
5130 	 * If our O_T_BIND_REQ/T_BIND_REQ fails,
5131 	 * clear out the associated port and source
5132 	 * address before passing the message
5133 	 * upstream. If this was caused by a T_CONN_REQ
5134 	 * revert back to bound state.
5135 	 */
5136 
5137 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5138 	ASSERT(udp->udp_pending_op != -1);
5139 	tea->ERROR_prim = udp->udp_pending_op;
5140 	udp->udp_pending_op = -1;
5141 	udpf = &us->us_bind_fanout[
5142 	    UDP_BIND_HASH(udp->udp_port,
5143 	    us->us_bind_fanout_size)];
5144 	mutex_enter(&udpf->uf_lock);
5145 
5146 	switch (tea->ERROR_prim) {
5147 	case T_CONN_REQ:
5148 		ASSERT(udp->udp_state == TS_DATA_XFER);
5149 		/* Connect failed */
5150 		/* Revert back to the bound source */
5151 		udp->udp_v6src = udp->udp_bound_v6src;
5152 		udp->udp_state = TS_IDLE;
5153 		mutex_exit(&udpf->uf_lock);
5154 		if (udp->udp_family == AF_INET6)
5155 			(void) udp_build_hdrs(udp);
5156 		rw_exit(&udp->udp_rwlock);
5157 		break;
5158 
5159 	case T_DISCON_REQ:
5160 	case T_BIND_REQ:
5161 	case O_T_BIND_REQ:
5162 		V6_SET_ZERO(udp->udp_v6src);
5163 		V6_SET_ZERO(udp->udp_bound_v6src);
5164 		udp->udp_state = TS_UNBND;
5165 		udp_bind_hash_remove(udp, B_TRUE);
5166 		udp->udp_port = 0;
5167 		mutex_exit(&udpf->uf_lock);
5168 		if (udp->udp_family == AF_INET6)
5169 			(void) udp_build_hdrs(udp);
5170 		rw_exit(&udp->udp_rwlock);
5171 		break;
5172 
5173 	default:
5174 		mutex_exit(&udpf->uf_lock);
5175 		rw_exit(&udp->udp_rwlock);
5176 		(void) mi_strlog(connp->conn_rq, 1,
5177 		    SL_ERROR|SL_TRACE,
5178 		    "udp_input_other: bad ERROR_prim, "
5179 		    "len %d", tea->ERROR_prim);
5180 	}
5181 	putnext(connp->conn_rq, mp);
5182 }
5183 
5184 /*
5185  * return SNMP stuff in buffer in mpdata. We don't hold any lock and report
5186  * information that can be changing beneath us.
5187  */
5188 mblk_t *
5189 udp_snmp_get(queue_t *q, mblk_t *mpctl)
5190 {
5191 	mblk_t			*mpdata;
5192 	mblk_t			*mp_conn_ctl;
5193 	mblk_t			*mp_attr_ctl;
5194 	mblk_t			*mp6_conn_ctl;
5195 	mblk_t			*mp6_attr_ctl;
5196 	mblk_t			*mp_conn_tail;
5197 	mblk_t			*mp_attr_tail;
5198 	mblk_t			*mp6_conn_tail;
5199 	mblk_t			*mp6_attr_tail;
5200 	struct opthdr		*optp;
5201 	mib2_udpEntry_t		ude;
5202 	mib2_udp6Entry_t	ude6;
5203 	mib2_transportMLPEntry_t mlp;
5204 	int			state;
5205 	zoneid_t		zoneid;
5206 	int			i;
5207 	connf_t			*connfp;
5208 	conn_t			*connp = Q_TO_CONN(q);
5209 	int			v4_conn_idx;
5210 	int			v6_conn_idx;
5211 	boolean_t		needattr;
5212 	udp_t			*udp;
5213 	ip_stack_t		*ipst = connp->conn_netstack->netstack_ip;
5214 	udp_stack_t		*us = connp->conn_netstack->netstack_udp;
5215 	mblk_t			*mp2ctl;
5216 
5217 	/*
5218 	 * make a copy of the original message
5219 	 */
5220 	mp2ctl = copymsg(mpctl);
5221 
5222 	mp_conn_ctl = mp_attr_ctl = mp6_conn_ctl = NULL;
5223 	if (mpctl == NULL ||
5224 	    (mpdata = mpctl->b_cont) == NULL ||
5225 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
5226 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
5227 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
5228 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
5229 		freemsg(mp_conn_ctl);
5230 		freemsg(mp_attr_ctl);
5231 		freemsg(mp6_conn_ctl);
5232 		freemsg(mpctl);
5233 		freemsg(mp2ctl);
5234 		return (0);
5235 	}
5236 
5237 	zoneid = connp->conn_zoneid;
5238 
5239 	/* fixed length structure for IPv4 and IPv6 counters */
5240 	SET_MIB(us->us_udp_mib.udpEntrySize, sizeof (mib2_udpEntry_t));
5241 	SET_MIB(us->us_udp_mib.udp6EntrySize, sizeof (mib2_udp6Entry_t));
5242 	/* synchronize 64- and 32-bit counters */
5243 	SYNC32_MIB(&us->us_udp_mib, udpInDatagrams, udpHCInDatagrams);
5244 	SYNC32_MIB(&us->us_udp_mib, udpOutDatagrams, udpHCOutDatagrams);
5245 
5246 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
5247 	optp->level = MIB2_UDP;
5248 	optp->name = 0;
5249 	(void) snmp_append_data(mpdata, (char *)&us->us_udp_mib,
5250 	    sizeof (us->us_udp_mib));
5251 	optp->len = msgdsize(mpdata);
5252 	qreply(q, mpctl);
5253 
5254 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
5255 	v4_conn_idx = v6_conn_idx = 0;
5256 
5257 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5258 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5259 		connp = NULL;
5260 
5261 		while ((connp = ipcl_get_next_conn(connfp, connp,
5262 		    IPCL_UDPCONN))) {
5263 			udp = connp->conn_udp;
5264 			if (zoneid != connp->conn_zoneid)
5265 				continue;
5266 
5267 			/*
5268 			 * Note that the port numbers are sent in
5269 			 * host byte order
5270 			 */
5271 
5272 			if (udp->udp_state == TS_UNBND)
5273 				state = MIB2_UDP_unbound;
5274 			else if (udp->udp_state == TS_IDLE)
5275 				state = MIB2_UDP_idle;
5276 			else if (udp->udp_state == TS_DATA_XFER)
5277 				state = MIB2_UDP_connected;
5278 			else
5279 				state = MIB2_UDP_unknown;
5280 
5281 			needattr = B_FALSE;
5282 			bzero(&mlp, sizeof (mlp));
5283 			if (connp->conn_mlp_type != mlptSingle) {
5284 				if (connp->conn_mlp_type == mlptShared ||
5285 				    connp->conn_mlp_type == mlptBoth)
5286 					mlp.tme_flags |= MIB2_TMEF_SHARED;
5287 				if (connp->conn_mlp_type == mlptPrivate ||
5288 				    connp->conn_mlp_type == mlptBoth)
5289 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
5290 				needattr = B_TRUE;
5291 			}
5292 
5293 			/*
5294 			 * Create an IPv4 table entry for IPv4 entries and also
5295 			 * any IPv6 entries which are bound to in6addr_any
5296 			 * (i.e. anything a IPv4 peer could connect/send to).
5297 			 */
5298 			if (udp->udp_ipversion == IPV4_VERSION ||
5299 			    (udp->udp_state <= TS_IDLE &&
5300 			    IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src))) {
5301 				ude.udpEntryInfo.ue_state = state;
5302 				/*
5303 				 * If in6addr_any this will set it to
5304 				 * INADDR_ANY
5305 				 */
5306 				ude.udpLocalAddress =
5307 				    V4_PART_OF_V6(udp->udp_v6src);
5308 				ude.udpLocalPort = ntohs(udp->udp_port);
5309 				if (udp->udp_state == TS_DATA_XFER) {
5310 					/*
5311 					 * Can potentially get here for
5312 					 * v6 socket if another process
5313 					 * (say, ping) has just done a
5314 					 * sendto(), changing the state
5315 					 * from the TS_IDLE above to
5316 					 * TS_DATA_XFER by the time we hit
5317 					 * this part of the code.
5318 					 */
5319 					ude.udpEntryInfo.ue_RemoteAddress =
5320 					    V4_PART_OF_V6(udp->udp_v6dst);
5321 					ude.udpEntryInfo.ue_RemotePort =
5322 					    ntohs(udp->udp_dstport);
5323 				} else {
5324 					ude.udpEntryInfo.ue_RemoteAddress = 0;
5325 					ude.udpEntryInfo.ue_RemotePort = 0;
5326 				}
5327 
5328 				/*
5329 				 * We make the assumption that all udp_t
5330 				 * structs will be created within an address
5331 				 * region no larger than 32-bits.
5332 				 */
5333 				ude.udpInstance = (uint32_t)(uintptr_t)udp;
5334 				ude.udpCreationProcess =
5335 				    (udp->udp_open_pid < 0) ?
5336 				    MIB2_UNKNOWN_PROCESS :
5337 				    udp->udp_open_pid;
5338 				ude.udpCreationTime = udp->udp_open_time;
5339 
5340 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
5341 				    &mp_conn_tail, (char *)&ude, sizeof (ude));
5342 				mlp.tme_connidx = v4_conn_idx++;
5343 				if (needattr)
5344 					(void) snmp_append_data2(
5345 					    mp_attr_ctl->b_cont, &mp_attr_tail,
5346 					    (char *)&mlp, sizeof (mlp));
5347 			}
5348 			if (udp->udp_ipversion == IPV6_VERSION) {
5349 				ude6.udp6EntryInfo.ue_state  = state;
5350 				ude6.udp6LocalAddress = udp->udp_v6src;
5351 				ude6.udp6LocalPort = ntohs(udp->udp_port);
5352 				ude6.udp6IfIndex = udp->udp_bound_if;
5353 				if (udp->udp_state == TS_DATA_XFER) {
5354 					ude6.udp6EntryInfo.ue_RemoteAddress =
5355 					    udp->udp_v6dst;
5356 					ude6.udp6EntryInfo.ue_RemotePort =
5357 					    ntohs(udp->udp_dstport);
5358 				} else {
5359 					ude6.udp6EntryInfo.ue_RemoteAddress =
5360 					    sin6_null.sin6_addr;
5361 					ude6.udp6EntryInfo.ue_RemotePort = 0;
5362 				}
5363 				/*
5364 				 * We make the assumption that all udp_t
5365 				 * structs will be created within an address
5366 				 * region no larger than 32-bits.
5367 				 */
5368 				ude6.udp6Instance = (uint32_t)(uintptr_t)udp;
5369 				ude6.udp6CreationProcess =
5370 				    (udp->udp_open_pid < 0) ?
5371 				    MIB2_UNKNOWN_PROCESS :
5372 				    udp->udp_open_pid;
5373 				ude6.udp6CreationTime = udp->udp_open_time;
5374 
5375 				(void) snmp_append_data2(mp6_conn_ctl->b_cont,
5376 				    &mp6_conn_tail, (char *)&ude6,
5377 				    sizeof (ude6));
5378 				mlp.tme_connidx = v6_conn_idx++;
5379 				if (needattr)
5380 					(void) snmp_append_data2(
5381 					    mp6_attr_ctl->b_cont,
5382 					    &mp6_attr_tail, (char *)&mlp,
5383 					    sizeof (mlp));
5384 			}
5385 		}
5386 	}
5387 
5388 	/* IPv4 UDP endpoints */
5389 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
5390 	    sizeof (struct T_optmgmt_ack)];
5391 	optp->level = MIB2_UDP;
5392 	optp->name = MIB2_UDP_ENTRY;
5393 	optp->len = msgdsize(mp_conn_ctl->b_cont);
5394 	qreply(q, mp_conn_ctl);
5395 
5396 	/* table of MLP attributes... */
5397 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
5398 	    sizeof (struct T_optmgmt_ack)];
5399 	optp->level = MIB2_UDP;
5400 	optp->name = EXPER_XPORT_MLP;
5401 	optp->len = msgdsize(mp_attr_ctl->b_cont);
5402 	if (optp->len == 0)
5403 		freemsg(mp_attr_ctl);
5404 	else
5405 		qreply(q, mp_attr_ctl);
5406 
5407 	/* IPv6 UDP endpoints */
5408 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
5409 	    sizeof (struct T_optmgmt_ack)];
5410 	optp->level = MIB2_UDP6;
5411 	optp->name = MIB2_UDP6_ENTRY;
5412 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
5413 	qreply(q, mp6_conn_ctl);
5414 
5415 	/* table of MLP attributes... */
5416 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
5417 	    sizeof (struct T_optmgmt_ack)];
5418 	optp->level = MIB2_UDP6;
5419 	optp->name = EXPER_XPORT_MLP;
5420 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
5421 	if (optp->len == 0)
5422 		freemsg(mp6_attr_ctl);
5423 	else
5424 		qreply(q, mp6_attr_ctl);
5425 
5426 	return (mp2ctl);
5427 }
5428 
5429 /*
5430  * Return 0 if invalid set request, 1 otherwise, including non-udp requests.
5431  * NOTE: Per MIB-II, UDP has no writable data.
5432  * TODO:  If this ever actually tries to set anything, it needs to be
5433  * to do the appropriate locking.
5434  */
5435 /* ARGSUSED */
5436 int
5437 udp_snmp_set(queue_t *q, t_scalar_t level, t_scalar_t name,
5438     uchar_t *ptr, int len)
5439 {
5440 	switch (level) {
5441 	case MIB2_UDP:
5442 		return (0);
5443 	default:
5444 		return (1);
5445 	}
5446 }
5447 
5448 static void
5449 udp_report_item(mblk_t *mp, udp_t *udp)
5450 {
5451 	char *state;
5452 	char addrbuf1[INET6_ADDRSTRLEN];
5453 	char addrbuf2[INET6_ADDRSTRLEN];
5454 	uint_t print_len, buf_len;
5455 
5456 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
5457 	ASSERT(buf_len >= 0);
5458 	if (buf_len == 0)
5459 		return;
5460 
5461 	if (udp->udp_state == TS_UNBND)
5462 		state = "UNBOUND";
5463 	else if (udp->udp_state == TS_IDLE)
5464 		state = "IDLE";
5465 	else if (udp->udp_state == TS_DATA_XFER)
5466 		state = "CONNECTED";
5467 	else
5468 		state = "UnkState";
5469 	print_len = snprintf((char *)mp->b_wptr, buf_len,
5470 	    MI_COL_PTRFMT_STR "%4d %5u %s %s %5u %s\n",
5471 	    (void *)udp, udp->udp_connp->conn_zoneid, ntohs(udp->udp_port),
5472 	    inet_ntop(AF_INET6, &udp->udp_v6src, addrbuf1, sizeof (addrbuf1)),
5473 	    inet_ntop(AF_INET6, &udp->udp_v6dst, addrbuf2, sizeof (addrbuf2)),
5474 	    ntohs(udp->udp_dstport), state);
5475 	if (print_len < buf_len) {
5476 		mp->b_wptr += print_len;
5477 	} else {
5478 		mp->b_wptr += buf_len;
5479 	}
5480 }
5481 
5482 /* Report for ndd "udp_status" */
5483 /* ARGSUSED */
5484 static int
5485 udp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
5486 {
5487 	zoneid_t zoneid;
5488 	connf_t	*connfp;
5489 	conn_t	*connp = Q_TO_CONN(q);
5490 	udp_t	*udp = connp->conn_udp;
5491 	int	i;
5492 	udp_stack_t *us = udp->udp_us;
5493 	ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
5494 
5495 	/*
5496 	 * Because of the ndd constraint, at most we can have 64K buffer
5497 	 * to put in all UDP info.  So to be more efficient, just
5498 	 * allocate a 64K buffer here, assuming we need that large buffer.
5499 	 * This may be a problem as any user can read udp_status.  Therefore
5500 	 * we limit the rate of doing this using us_ndd_get_info_interval.
5501 	 * This should be OK as normal users should not do this too often.
5502 	 */
5503 	if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) {
5504 		if (ddi_get_lbolt() - us->us_last_ndd_get_info_time <
5505 		    drv_usectohz(us->us_ndd_get_info_interval * 1000)) {
5506 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
5507 			return (0);
5508 		}
5509 	}
5510 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
5511 		/* The following may work even if we cannot get a large buf. */
5512 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
5513 		return (0);
5514 	}
5515 	(void) mi_mpprintf(mp,
5516 	    "UDP     " MI_COL_HDRPAD_STR
5517 	/*   12345678[89ABCDEF] */
5518 	    " zone lport src addr        dest addr       port  state");
5519 	/*    1234 12345 xxx.xxx.xxx.xxx xxx.xxx.xxx.xxx 12345 UNBOUND */
5520 
5521 	zoneid = connp->conn_zoneid;
5522 
5523 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
5524 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
5525 		connp = NULL;
5526 
5527 		while ((connp = ipcl_get_next_conn(connfp, connp,
5528 		    IPCL_UDPCONN))) {
5529 			udp = connp->conn_udp;
5530 			if (zoneid != GLOBAL_ZONEID &&
5531 			    zoneid != connp->conn_zoneid)
5532 				continue;
5533 
5534 			udp_report_item(mp->b_cont, udp);
5535 		}
5536 	}
5537 	us->us_last_ndd_get_info_time = ddi_get_lbolt();
5538 	return (0);
5539 }
5540 
5541 /*
5542  * This routine creates a T_UDERROR_IND message and passes it upstream.
5543  * The address and options are copied from the T_UNITDATA_REQ message
5544  * passed in mp.  This message is freed.
5545  */
5546 static void
5547 udp_ud_err(queue_t *q, mblk_t *mp, uchar_t *destaddr, t_scalar_t destlen,
5548     t_scalar_t err)
5549 {
5550 	struct T_unitdata_req *tudr;
5551 	mblk_t	*mp1;
5552 	uchar_t	*optaddr;
5553 	t_scalar_t optlen;
5554 
5555 	if (DB_TYPE(mp) == M_DATA) {
5556 		ASSERT(destaddr != NULL && destlen != 0);
5557 		optaddr = NULL;
5558 		optlen = 0;
5559 	} else {
5560 		if ((mp->b_wptr < mp->b_rptr) ||
5561 		    (MBLKL(mp)) < sizeof (struct T_unitdata_req)) {
5562 			goto done;
5563 		}
5564 		tudr = (struct T_unitdata_req *)mp->b_rptr;
5565 		destaddr = mp->b_rptr + tudr->DEST_offset;
5566 		if (destaddr < mp->b_rptr || destaddr >= mp->b_wptr ||
5567 		    destaddr + tudr->DEST_length < mp->b_rptr ||
5568 		    destaddr + tudr->DEST_length > mp->b_wptr) {
5569 			goto done;
5570 		}
5571 		optaddr = mp->b_rptr + tudr->OPT_offset;
5572 		if (optaddr < mp->b_rptr || optaddr >= mp->b_wptr ||
5573 		    optaddr + tudr->OPT_length < mp->b_rptr ||
5574 		    optaddr + tudr->OPT_length > mp->b_wptr) {
5575 			goto done;
5576 		}
5577 		destlen = tudr->DEST_length;
5578 		optlen = tudr->OPT_length;
5579 	}
5580 
5581 	mp1 = mi_tpi_uderror_ind((char *)destaddr, destlen,
5582 	    (char *)optaddr, optlen, err);
5583 	if (mp1 != NULL)
5584 		qreply(q, mp1);
5585 
5586 done:
5587 	freemsg(mp);
5588 }
5589 
5590 /*
5591  * This routine removes a port number association from a stream.  It
5592  * is called by udp_wput to handle T_UNBIND_REQ messages.
5593  */
5594 static void
5595 udp_unbind(queue_t *q, mblk_t *mp)
5596 {
5597 	udp_t *udp = Q_TO_UDP(q);
5598 	udp_fanout_t	*udpf;
5599 	udp_stack_t	*us = udp->udp_us;
5600 
5601 	if (cl_inet_unbind != NULL) {
5602 		/*
5603 		 * Running in cluster mode - register unbind information
5604 		 */
5605 		if (udp->udp_ipversion == IPV4_VERSION) {
5606 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET,
5607 			    (uint8_t *)(&V4_PART_OF_V6(udp->udp_v6src)),
5608 			    (in_port_t)udp->udp_port);
5609 		} else {
5610 			(*cl_inet_unbind)(IPPROTO_UDP, AF_INET6,
5611 			    (uint8_t *)&(udp->udp_v6src),
5612 			    (in_port_t)udp->udp_port);
5613 		}
5614 	}
5615 
5616 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5617 	if (udp->udp_state == TS_UNBND || udp->udp_pending_op != -1) {
5618 		rw_exit(&udp->udp_rwlock);
5619 		udp_err_ack(q, mp, TOUTSTATE, 0);
5620 		return;
5621 	}
5622 	udp->udp_pending_op = T_UNBIND_REQ;
5623 	rw_exit(&udp->udp_rwlock);
5624 
5625 	/*
5626 	 * Pass the unbind to IP; T_UNBIND_REQ is larger than T_OK_ACK
5627 	 * and therefore ip_unbind must never return NULL.
5628 	 */
5629 	mp = ip_unbind(q, mp);
5630 	ASSERT(mp != NULL);
5631 	ASSERT(((struct T_ok_ack *)mp->b_rptr)->PRIM_type == T_OK_ACK);
5632 
5633 	/*
5634 	 * Once we're unbound from IP, the pending operation may be cleared
5635 	 * here.
5636 	 */
5637 	rw_enter(&udp->udp_rwlock, RW_WRITER);
5638 	udpf = &us->us_bind_fanout[UDP_BIND_HASH(udp->udp_port,
5639 	    us->us_bind_fanout_size)];
5640 	mutex_enter(&udpf->uf_lock);
5641 	udp_bind_hash_remove(udp, B_TRUE);
5642 	V6_SET_ZERO(udp->udp_v6src);
5643 	V6_SET_ZERO(udp->udp_bound_v6src);
5644 	udp->udp_port = 0;
5645 	mutex_exit(&udpf->uf_lock);
5646 
5647 	udp->udp_pending_op = -1;
5648 	udp->udp_state = TS_UNBND;
5649 	if (udp->udp_family == AF_INET6)
5650 		(void) udp_build_hdrs(udp);
5651 	rw_exit(&udp->udp_rwlock);
5652 
5653 	qreply(q, mp);
5654 }
5655 
5656 /*
5657  * Don't let port fall into the privileged range.
5658  * Since the extra privileged ports can be arbitrary we also
5659  * ensure that we exclude those from consideration.
5660  * us->us_epriv_ports is not sorted thus we loop over it until
5661  * there are no changes.
5662  */
5663 static in_port_t
5664 udp_update_next_port(udp_t *udp, in_port_t port, boolean_t random)
5665 {
5666 	int i;
5667 	in_port_t nextport;
5668 	boolean_t restart = B_FALSE;
5669 	udp_stack_t *us = udp->udp_us;
5670 
5671 	if (random && udp_random_anon_port != 0) {
5672 		(void) random_get_pseudo_bytes((uint8_t *)&port,
5673 		    sizeof (in_port_t));
5674 		/*
5675 		 * Unless changed by a sys admin, the smallest anon port
5676 		 * is 32768 and the largest anon port is 65535.  It is
5677 		 * very likely (50%) for the random port to be smaller
5678 		 * than the smallest anon port.  When that happens,
5679 		 * add port % (anon port range) to the smallest anon
5680 		 * port to get the random port.  It should fall into the
5681 		 * valid anon port range.
5682 		 */
5683 		if (port < us->us_smallest_anon_port) {
5684 			port = us->us_smallest_anon_port +
5685 			    port % (us->us_largest_anon_port -
5686 			    us->us_smallest_anon_port);
5687 		}
5688 	}
5689 
5690 retry:
5691 	if (port < us->us_smallest_anon_port)
5692 		port = us->us_smallest_anon_port;
5693 
5694 	if (port > us->us_largest_anon_port) {
5695 		port = us->us_smallest_anon_port;
5696 		if (restart)
5697 			return (0);
5698 		restart = B_TRUE;
5699 	}
5700 
5701 	if (port < us->us_smallest_nonpriv_port)
5702 		port = us->us_smallest_nonpriv_port;
5703 
5704 	for (i = 0; i < us->us_num_epriv_ports; i++) {
5705 		if (port == us->us_epriv_ports[i]) {
5706 			port++;
5707 			/*
5708 			 * Make sure that the port is in the
5709 			 * valid range.
5710 			 */
5711 			goto retry;
5712 		}
5713 	}
5714 
5715 	if (is_system_labeled() &&
5716 	    (nextport = tsol_next_port(crgetzone(udp->udp_connp->conn_cred),
5717 	    port, IPPROTO_UDP, B_TRUE)) != 0) {
5718 		port = nextport;
5719 		goto retry;
5720 	}
5721 
5722 	return (port);
5723 }
5724 
5725 static int
5726 udp_update_label(queue_t *wq, mblk_t *mp, ipaddr_t dst)
5727 {
5728 	int err;
5729 	uchar_t opt_storage[IP_MAX_OPT_LENGTH];
5730 	udp_t *udp = Q_TO_UDP(wq);
5731 	udp_stack_t	*us = udp->udp_us;
5732 
5733 	err = tsol_compute_label(DB_CREDDEF(mp, udp->udp_connp->conn_cred), dst,
5734 	    opt_storage, udp->udp_mac_exempt,
5735 	    us->us_netstack->netstack_ip);
5736 	if (err == 0) {
5737 		err = tsol_update_options(&udp->udp_ip_snd_options,
5738 		    &udp->udp_ip_snd_options_len, &udp->udp_label_len,
5739 		    opt_storage);
5740 	}
5741 	if (err != 0) {
5742 		DTRACE_PROBE4(
5743 		    tx__ip__log__info__updatelabel__udp,
5744 		    char *, "queue(1) failed to update options(2) on mp(3)",
5745 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
5746 	} else {
5747 		IN6_IPADDR_TO_V4MAPPED(dst, &udp->udp_v6lastdst);
5748 	}
5749 	return (err);
5750 }
5751 
5752 static mblk_t *
5753 udp_output_v4(conn_t *connp, mblk_t *mp, ipaddr_t v4dst, uint16_t port,
5754     uint_t srcid, int *error, boolean_t insert_spi)
5755 {
5756 	udp_t	*udp = connp->conn_udp;
5757 	queue_t	*q = connp->conn_wq;
5758 	mblk_t	*mp1 = mp;
5759 	mblk_t	*mp2;
5760 	ipha_t	*ipha;
5761 	int	ip_hdr_length;
5762 	uint32_t ip_len;
5763 	udpha_t	*udpha;
5764 	boolean_t lock_held = B_FALSE;
5765 	in_port_t	uha_src_port;
5766 	udpattrs_t	attrs;
5767 	uchar_t	ip_snd_opt[IP_MAX_OPT_LENGTH];
5768 	uint32_t	ip_snd_opt_len = 0;
5769 	ip4_pkt_t  pktinfo;
5770 	ip4_pkt_t  *pktinfop = &pktinfo;
5771 	ip_opt_info_t optinfo;
5772 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
5773 	udp_stack_t	*us = udp->udp_us;
5774 	ipsec_stack_t	*ipss = ipst->ips_netstack->netstack_ipsec;
5775 
5776 
5777 	*error = 0;
5778 	pktinfop->ip4_ill_index = 0;
5779 	pktinfop->ip4_addr = INADDR_ANY;
5780 	optinfo.ip_opt_flags = 0;
5781 	optinfo.ip_opt_ill_index = 0;
5782 
5783 	if (v4dst == INADDR_ANY)
5784 		v4dst = htonl(INADDR_LOOPBACK);
5785 
5786 	/*
5787 	 * If options passed in, feed it for verification and handling
5788 	 */
5789 	attrs.udpattr_credset = B_FALSE;
5790 	if (DB_TYPE(mp) != M_DATA) {
5791 		mp1 = mp->b_cont;
5792 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
5793 			attrs.udpattr_ipp4 = pktinfop;
5794 			attrs.udpattr_mb = mp;
5795 			if (udp_unitdata_opt_process(q, mp, error, &attrs) < 0)
5796 				goto done;
5797 			/*
5798 			 * Note: success in processing options.
5799 			 * mp option buffer represented by
5800 			 * OPT_length/offset now potentially modified
5801 			 * and contain option setting results
5802 			 */
5803 			ASSERT(*error == 0);
5804 		}
5805 	}
5806 
5807 	/* mp1 points to the M_DATA mblk carrying the packet */
5808 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
5809 
5810 	rw_enter(&udp->udp_rwlock, RW_READER);
5811 	lock_held = B_TRUE;
5812 	/*
5813 	 * Check if our saved options are valid; update if not.
5814 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
5815 	 * to different destination may require different labels,
5816 	 * or worse, UDP packets to same IP address may require
5817 	 * different labels due to use of shared all-zones address.
5818 	 * We use conn_lock to ensure that lastdst, ip_snd_options,
5819 	 * and ip_snd_options_len are consistent for the current
5820 	 * destination and are updated atomically.
5821 	 */
5822 	mutex_enter(&connp->conn_lock);
5823 	if (is_system_labeled()) {
5824 		/* Using UDP MLP requires SCM_UCRED from user */
5825 		if (connp->conn_mlp_type != mlptSingle &&
5826 		    !attrs.udpattr_credset) {
5827 			mutex_exit(&connp->conn_lock);
5828 			DTRACE_PROBE4(
5829 			    tx__ip__log__info__output__udp,
5830 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
5831 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
5832 			*error = ECONNREFUSED;
5833 			goto done;
5834 		}
5835 		/*
5836 		 * update label option for this UDP socket if
5837 		 * - the destination has changed, or
5838 		 * - the UDP socket is MLP
5839 		 */
5840 		if ((!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6lastdst) ||
5841 		    V4_PART_OF_V6(udp->udp_v6lastdst) != v4dst ||
5842 		    connp->conn_mlp_type != mlptSingle) &&
5843 		    (*error = udp_update_label(q, mp, v4dst)) != 0) {
5844 			mutex_exit(&connp->conn_lock);
5845 			goto done;
5846 		}
5847 	}
5848 	if (udp->udp_ip_snd_options_len > 0) {
5849 		ip_snd_opt_len = udp->udp_ip_snd_options_len;
5850 		bcopy(udp->udp_ip_snd_options, ip_snd_opt, ip_snd_opt_len);
5851 	}
5852 	mutex_exit(&connp->conn_lock);
5853 
5854 	/* Add an IP header */
5855 	ip_hdr_length = IP_SIMPLE_HDR_LENGTH + UDPH_SIZE + ip_snd_opt_len +
5856 	    (insert_spi ? sizeof (uint32_t) : 0);
5857 	ipha = (ipha_t *)&mp1->b_rptr[-ip_hdr_length];
5858 	if (DB_REF(mp1) != 1 || (uchar_t *)ipha < DB_BASE(mp1) ||
5859 	    !OK_32PTR(ipha)) {
5860 		mp2 = allocb(ip_hdr_length + us->us_wroff_extra, BPRI_LO);
5861 		if (mp2 == NULL) {
5862 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5863 			    "udp_wput_end: q %p (%S)", q, "allocbfail2");
5864 			*error = ENOMEM;
5865 			goto done;
5866 		}
5867 		mp2->b_wptr = DB_LIM(mp2);
5868 		mp2->b_cont = mp1;
5869 		mp1 = mp2;
5870 		if (DB_TYPE(mp) != M_DATA)
5871 			mp->b_cont = mp1;
5872 		else
5873 			mp = mp1;
5874 
5875 		ipha = (ipha_t *)(mp1->b_wptr - ip_hdr_length);
5876 	}
5877 	ip_hdr_length -= (UDPH_SIZE + (insert_spi ? sizeof (uint32_t) : 0));
5878 #ifdef	_BIG_ENDIAN
5879 	/* Set version, header length, and tos */
5880 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5881 	    ((((IP_VERSION << 4) | (ip_hdr_length>>2)) << 8) |
5882 	    udp->udp_type_of_service);
5883 	/* Set ttl and protocol */
5884 	*(uint16_t *)&ipha->ipha_ttl = (udp->udp_ttl << 8) | IPPROTO_UDP;
5885 #else
5886 	/* Set version, header length, and tos */
5887 	*(uint16_t *)&ipha->ipha_version_and_hdr_length =
5888 	    ((udp->udp_type_of_service << 8) |
5889 	    ((IP_VERSION << 4) | (ip_hdr_length>>2)));
5890 	/* Set ttl and protocol */
5891 	*(uint16_t *)&ipha->ipha_ttl = (IPPROTO_UDP << 8) | udp->udp_ttl;
5892 #endif
5893 	if (pktinfop->ip4_addr != INADDR_ANY) {
5894 		ipha->ipha_src = pktinfop->ip4_addr;
5895 		optinfo.ip_opt_flags = IP_VERIFY_SRC;
5896 	} else {
5897 		/*
5898 		 * Copy our address into the packet.  If this is zero,
5899 		 * first look at __sin6_src_id for a hint. If we leave the
5900 		 * source as INADDR_ANY then ip will fill in the real source
5901 		 * address.
5902 		 */
5903 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6src, ipha->ipha_src);
5904 		if (srcid != 0 && ipha->ipha_src == INADDR_ANY) {
5905 			in6_addr_t v6src;
5906 
5907 			ip_srcid_find_id(srcid, &v6src, connp->conn_zoneid,
5908 			    us->us_netstack);
5909 			IN6_V4MAPPED_TO_IPADDR(&v6src, ipha->ipha_src);
5910 		}
5911 	}
5912 	uha_src_port = udp->udp_port;
5913 	if (ip_hdr_length == IP_SIMPLE_HDR_LENGTH) {
5914 		rw_exit(&udp->udp_rwlock);
5915 		lock_held = B_FALSE;
5916 	}
5917 
5918 	if (pktinfop->ip4_ill_index != 0) {
5919 		optinfo.ip_opt_ill_index = pktinfop->ip4_ill_index;
5920 	}
5921 
5922 	ipha->ipha_fragment_offset_and_flags = 0;
5923 	ipha->ipha_ident = 0;
5924 
5925 	mp1->b_rptr = (uchar_t *)ipha;
5926 
5927 	ASSERT((uintptr_t)(mp1->b_wptr - (uchar_t *)ipha) <=
5928 	    (uintptr_t)UINT_MAX);
5929 
5930 	/* Determine length of packet */
5931 	ip_len = (uint32_t)(mp1->b_wptr - (uchar_t *)ipha);
5932 	if ((mp2 = mp1->b_cont) != NULL) {
5933 		do {
5934 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
5935 			ip_len += (uint32_t)MBLKL(mp2);
5936 		} while ((mp2 = mp2->b_cont) != NULL);
5937 	}
5938 	/*
5939 	 * If the size of the packet is greater than the maximum allowed by
5940 	 * ip, return an error. Passing this down could cause panics because
5941 	 * the size will have wrapped and be inconsistent with the msg size.
5942 	 */
5943 	if (ip_len > IP_MAXPACKET) {
5944 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
5945 		    "udp_wput_end: q %p (%S)", q, "IP length exceeded");
5946 		*error = EMSGSIZE;
5947 		goto done;
5948 	}
5949 	ipha->ipha_length = htons((uint16_t)ip_len);
5950 	ip_len -= ip_hdr_length;
5951 	ip_len = htons((uint16_t)ip_len);
5952 	udpha = (udpha_t *)(((uchar_t *)ipha) + ip_hdr_length);
5953 
5954 	/* Insert all-0s SPI now. */
5955 	if (insert_spi)
5956 		*((uint32_t *)(udpha + 1)) = 0;
5957 
5958 	/*
5959 	 * Copy in the destination address
5960 	 */
5961 	ipha->ipha_dst = v4dst;
5962 
5963 	/*
5964 	 * Set ttl based on IP_MULTICAST_TTL to match IPv6 logic.
5965 	 */
5966 	if (CLASSD(v4dst))
5967 		ipha->ipha_ttl = udp->udp_multicast_ttl;
5968 
5969 	udpha->uha_dst_port = port;
5970 	udpha->uha_src_port = uha_src_port;
5971 
5972 	if (ip_snd_opt_len > 0) {
5973 		uint32_t	cksum;
5974 
5975 		bcopy(ip_snd_opt, &ipha[1], ip_snd_opt_len);
5976 		lock_held = B_FALSE;
5977 		rw_exit(&udp->udp_rwlock);
5978 		/*
5979 		 * Massage source route putting first source route in ipha_dst.
5980 		 * Ignore the destination in T_unitdata_req.
5981 		 * Create a checksum adjustment for a source route, if any.
5982 		 */
5983 		cksum = ip_massage_options(ipha, us->us_netstack);
5984 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5985 		cksum -= ((ipha->ipha_dst >> 16) & 0xFFFF) +
5986 		    (ipha->ipha_dst & 0xFFFF);
5987 		if ((int)cksum < 0)
5988 			cksum--;
5989 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5990 		/*
5991 		 * IP does the checksum if uha_checksum is non-zero,
5992 		 * We make it easy for IP to include our pseudo header
5993 		 * by putting our length in uha_checksum.
5994 		 */
5995 		cksum += ip_len;
5996 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5997 		/* There might be a carry. */
5998 		cksum = (cksum & 0xFFFF) + (cksum >> 16);
5999 #ifdef _LITTLE_ENDIAN
6000 		if (us->us_do_checksum)
6001 			ip_len = (cksum << 16) | ip_len;
6002 #else
6003 		if (us->us_do_checksum)
6004 			ip_len = (ip_len << 16) | cksum;
6005 		else
6006 			ip_len <<= 16;
6007 #endif
6008 	} else {
6009 		/*
6010 		 * IP does the checksum if uha_checksum is non-zero,
6011 		 * We make it easy for IP to include our pseudo header
6012 		 * by putting our length in uha_checksum.
6013 		 */
6014 		if (us->us_do_checksum)
6015 			ip_len |= (ip_len << 16);
6016 #ifndef _LITTLE_ENDIAN
6017 		else
6018 			ip_len <<= 16;
6019 #endif
6020 	}
6021 	ASSERT(!lock_held);
6022 	/* Set UDP length and checksum */
6023 	*((uint32_t *)&udpha->uha_length) = ip_len;
6024 	if (DB_CRED(mp) != NULL)
6025 		mblk_setcred(mp1, DB_CRED(mp));
6026 
6027 	if (DB_TYPE(mp) != M_DATA) {
6028 		ASSERT(mp != mp1);
6029 		freeb(mp);
6030 	}
6031 
6032 	/* mp has been consumed and we'll return success */
6033 	ASSERT(*error == 0);
6034 	mp = NULL;
6035 
6036 	/* We're done.  Pass the packet to ip. */
6037 	BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
6038 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6039 	    "udp_wput_end: q %p (%S)", q, "end");
6040 
6041 	if ((connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
6042 	    CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) ||
6043 	    connp->conn_dontroute ||
6044 	    connp->conn_nofailover_ill != NULL ||
6045 	    connp->conn_outgoing_ill != NULL || optinfo.ip_opt_flags != 0 ||
6046 	    optinfo.ip_opt_ill_index != 0 ||
6047 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
6048 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst) ||
6049 	    ipst->ips_ip_g_mrouter != NULL) {
6050 		UDP_STAT(us, udp_ip_send);
6051 		ip_output_options(connp, mp1, connp->conn_wq, IP_WPUT,
6052 		    &optinfo);
6053 	} else {
6054 		udp_send_data(udp, connp->conn_wq, mp1, ipha);
6055 	}
6056 
6057 done:
6058 	if (lock_held)
6059 		rw_exit(&udp->udp_rwlock);
6060 	if (*error != 0) {
6061 		ASSERT(mp != NULL);
6062 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6063 	}
6064 	return (mp);
6065 }
6066 
6067 static void
6068 udp_send_data(udp_t *udp, queue_t *q, mblk_t *mp, ipha_t *ipha)
6069 {
6070 	conn_t	*connp = udp->udp_connp;
6071 	ipaddr_t src, dst;
6072 	ire_t	*ire;
6073 	ipif_t	*ipif = NULL;
6074 	mblk_t	*ire_fp_mp;
6075 	boolean_t retry_caching;
6076 	udp_stack_t *us = udp->udp_us;
6077 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6078 
6079 	dst = ipha->ipha_dst;
6080 	src = ipha->ipha_src;
6081 	ASSERT(ipha->ipha_ident == 0);
6082 
6083 	if (CLASSD(dst)) {
6084 		int err;
6085 
6086 		ipif = conn_get_held_ipif(connp,
6087 		    &connp->conn_multicast_ipif, &err);
6088 
6089 		if (ipif == NULL || ipif->ipif_isv6 ||
6090 		    (ipif->ipif_ill->ill_phyint->phyint_flags &
6091 		    PHYI_LOOPBACK)) {
6092 			if (ipif != NULL)
6093 				ipif_refrele(ipif);
6094 			UDP_STAT(us, udp_ip_send);
6095 			ip_output(connp, mp, q, IP_WPUT);
6096 			return;
6097 		}
6098 	}
6099 
6100 	retry_caching = B_FALSE;
6101 	mutex_enter(&connp->conn_lock);
6102 	ire = connp->conn_ire_cache;
6103 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
6104 
6105 	if (ire == NULL || ire->ire_addr != dst ||
6106 	    (ire->ire_marks & IRE_MARK_CONDEMNED)) {
6107 		retry_caching = B_TRUE;
6108 	} else if (CLASSD(dst) && (ire->ire_type & IRE_CACHE)) {
6109 		ill_t *stq_ill = (ill_t *)ire->ire_stq->q_ptr;
6110 
6111 		ASSERT(ipif != NULL);
6112 		if (stq_ill != ipif->ipif_ill && (stq_ill->ill_group == NULL ||
6113 		    stq_ill->ill_group != ipif->ipif_ill->ill_group))
6114 			retry_caching = B_TRUE;
6115 	}
6116 
6117 	if (!retry_caching) {
6118 		ASSERT(ire != NULL);
6119 		IRE_REFHOLD(ire);
6120 		mutex_exit(&connp->conn_lock);
6121 	} else {
6122 		boolean_t cached = B_FALSE;
6123 
6124 		connp->conn_ire_cache = NULL;
6125 		mutex_exit(&connp->conn_lock);
6126 
6127 		/* Release the old ire */
6128 		if (ire != NULL) {
6129 			IRE_REFRELE_NOTR(ire);
6130 			ire = NULL;
6131 		}
6132 
6133 		if (CLASSD(dst)) {
6134 			ASSERT(ipif != NULL);
6135 			ire = ire_ctable_lookup(dst, 0, 0, ipif,
6136 			    connp->conn_zoneid, MBLK_GETLABEL(mp),
6137 			    MATCH_IRE_ILL_GROUP, ipst);
6138 		} else {
6139 			ASSERT(ipif == NULL);
6140 			ire = ire_cache_lookup(dst, connp->conn_zoneid,
6141 			    MBLK_GETLABEL(mp), ipst);
6142 		}
6143 
6144 		if (ire == NULL) {
6145 			if (ipif != NULL)
6146 				ipif_refrele(ipif);
6147 			UDP_STAT(us, udp_ire_null);
6148 			ip_output(connp, mp, q, IP_WPUT);
6149 			return;
6150 		}
6151 		IRE_REFHOLD_NOTR(ire);
6152 
6153 		mutex_enter(&connp->conn_lock);
6154 		if (CONN_CACHE_IRE(connp) && connp->conn_ire_cache == NULL &&
6155 		    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
6156 			irb_t		*irb = ire->ire_bucket;
6157 
6158 			/*
6159 			 * IRE's created for non-connection oriented transports
6160 			 * are normally initialized with IRE_MARK_TEMPORARY set
6161 			 * in the ire_marks. These IRE's are preferentially
6162 			 * reaped when the hash chain length in the cache
6163 			 * bucket exceeds the maximum value specified in
6164 			 * ip[6]_ire_max_bucket_cnt. This can severely affect
6165 			 * UDP performance if IRE cache entries that we need
6166 			 * to reuse are continually removed. To remedy this,
6167 			 * when we cache the IRE in the conn_t, we remove the
6168 			 * IRE_MARK_TEMPORARY bit from the ire_marks if it was
6169 			 * set.
6170 			 */
6171 			if (ire->ire_marks & IRE_MARK_TEMPORARY) {
6172 				rw_enter(&irb->irb_lock, RW_WRITER);
6173 				if (ire->ire_marks & IRE_MARK_TEMPORARY) {
6174 					ire->ire_marks &= ~IRE_MARK_TEMPORARY;
6175 					irb->irb_tmp_ire_cnt--;
6176 				}
6177 				rw_exit(&irb->irb_lock);
6178 			}
6179 			connp->conn_ire_cache = ire;
6180 			cached = B_TRUE;
6181 		}
6182 		mutex_exit(&connp->conn_lock);
6183 
6184 		/*
6185 		 * We can continue to use the ire but since it was not
6186 		 * cached, we should drop the extra reference.
6187 		 */
6188 		if (!cached)
6189 			IRE_REFRELE_NOTR(ire);
6190 	}
6191 	ASSERT(ire != NULL && ire->ire_ipversion == IPV4_VERSION);
6192 	ASSERT(!CLASSD(dst) || ipif != NULL);
6193 
6194 	/*
6195 	 * Check if we can take the fast-path.
6196 	 * Note that "incomplete" ire's (where the link-layer for next hop
6197 	 * is not resolved, or where the fast-path header in nce_fp_mp is not
6198 	 * available yet) are sent down the legacy (slow) path
6199 	 */
6200 	if ((ire->ire_type & (IRE_BROADCAST|IRE_LOCAL|IRE_LOOPBACK)) ||
6201 	    (ire->ire_flags & RTF_MULTIRT) || (ire->ire_stq == NULL) ||
6202 	    (ire->ire_max_frag < ntohs(ipha->ipha_length)) ||
6203 	    ((ire->ire_nce == NULL) ||
6204 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL)) ||
6205 	    connp->conn_nexthop_set || (MBLKL(ire_fp_mp) > MBLKHEAD(mp))) {
6206 		if (ipif != NULL)
6207 			ipif_refrele(ipif);
6208 		UDP_STAT(us, udp_ip_ire_send);
6209 		IRE_REFRELE(ire);
6210 		ip_output(connp, mp, q, IP_WPUT);
6211 		return;
6212 	}
6213 
6214 	if (src == INADDR_ANY && !connp->conn_unspec_src) {
6215 		if (CLASSD(dst) && !(ire->ire_flags & RTF_SETSRC))
6216 			ipha->ipha_src = ipif->ipif_src_addr;
6217 		else
6218 			ipha->ipha_src = ire->ire_src_addr;
6219 	}
6220 
6221 	if (ipif != NULL)
6222 		ipif_refrele(ipif);
6223 
6224 	udp_xmit(connp->conn_wq, mp, ire, connp, connp->conn_zoneid);
6225 }
6226 
6227 static void
6228 udp_xmit(queue_t *q, mblk_t *mp, ire_t *ire, conn_t *connp, zoneid_t zoneid)
6229 {
6230 	ipaddr_t src, dst;
6231 	ill_t	*ill;
6232 	mblk_t	*ire_fp_mp;
6233 	uint_t	ire_fp_mp_len;
6234 	uint16_t *up;
6235 	uint32_t cksum, hcksum_txflags;
6236 	queue_t	*dev_q;
6237 	udp_t	*udp = connp->conn_udp;
6238 	ipha_t	*ipha = (ipha_t *)mp->b_rptr;
6239 	udp_stack_t	*us = udp->udp_us;
6240 	ip_stack_t	*ipst = connp->conn_netstack->netstack_ip;
6241 	boolean_t ll_multicast = B_FALSE;
6242 
6243 	dev_q = ire->ire_stq->q_next;
6244 	ASSERT(dev_q != NULL);
6245 
6246 
6247 	if (DEV_Q_IS_FLOW_CTLED(dev_q)) {
6248 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsHCOutRequests);
6249 		BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
6250 		if (ipst->ips_ip_output_queue)
6251 			(void) putq(connp->conn_wq, mp);
6252 		else
6253 			freemsg(mp);
6254 		ire_refrele(ire);
6255 		return;
6256 	}
6257 
6258 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
6259 	ire_fp_mp_len = MBLKL(ire_fp_mp);
6260 	ASSERT(MBLKHEAD(mp) >= ire_fp_mp_len);
6261 
6262 	dst = ipha->ipha_dst;
6263 	src = ipha->ipha_src;
6264 
6265 	ill = ire_to_ill(ire);
6266 	ASSERT(ill != NULL);
6267 
6268 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
6269 
6270 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
6271 #ifndef _BIG_ENDIAN
6272 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
6273 #endif
6274 
6275 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
6276 		ASSERT(ill->ill_hcksum_capab != NULL);
6277 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
6278 	} else {
6279 		hcksum_txflags = 0;
6280 	}
6281 
6282 	/* pseudo-header checksum (do it in parts for IP header checksum) */
6283 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
6284 
6285 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
6286 	up = IPH_UDPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
6287 	if (*up != 0) {
6288 		IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags,
6289 		    mp, ipha, up, IPPROTO_UDP, IP_SIMPLE_HDR_LENGTH,
6290 		    ntohs(ipha->ipha_length), cksum);
6291 
6292 		/* Software checksum? */
6293 		if (DB_CKSUMFLAGS(mp) == 0) {
6294 			UDP_STAT(us, udp_out_sw_cksum);
6295 			UDP_STAT_UPDATE(us, udp_out_sw_cksum_bytes,
6296 			    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
6297 		}
6298 	}
6299 
6300 	if (!CLASSD(dst)) {
6301 		ipha->ipha_fragment_offset_and_flags |=
6302 		    (uint32_t)htons(ire->ire_frag_flag);
6303 	}
6304 
6305 	/* Calculate IP header checksum if hardware isn't capable */
6306 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
6307 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
6308 		    ((uint16_t *)ipha)[4]);
6309 	}
6310 
6311 	if (CLASSD(dst)) {
6312 		ilm_t *ilm;
6313 
6314 		ILM_WALKER_HOLD(ill);
6315 		ilm = ilm_lookup_ill(ill, dst, ALL_ZONES);
6316 		ILM_WALKER_RELE(ill);
6317 		if (ilm != NULL) {
6318 			ip_multicast_loopback(q, ill, mp,
6319 			    connp->conn_multicast_loop ? 0 :
6320 			    IP_FF_NO_MCAST_LOOP, zoneid);
6321 		}
6322 
6323 		/* If multicast TTL is 0 then we are done */
6324 		if (ipha->ipha_ttl == 0) {
6325 			freemsg(mp);
6326 			ire_refrele(ire);
6327 			return;
6328 		}
6329 		ll_multicast = B_TRUE;
6330 	}
6331 
6332 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
6333 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
6334 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
6335 
6336 	UPDATE_OB_PKT_COUNT(ire);
6337 	ire->ire_last_used_time = lbolt;
6338 
6339 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
6340 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
6341 	    ntohs(ipha->ipha_length));
6342 
6343 	if (ILL_DLS_CAPABLE(ill)) {
6344 		/*
6345 		 * Send the packet directly to DLD, where it may be queued
6346 		 * depending on the availability of transmit resources at
6347 		 * the media layer.
6348 		 */
6349 		IP_DLS_ILL_TX(ill, ipha, mp, ipst);
6350 	} else {
6351 		DTRACE_PROBE4(ip4__physical__out__start,
6352 		    ill_t *, NULL, ill_t *, ill,
6353 		    ipha_t *, ipha, mblk_t *, mp);
6354 		FW_HOOKS(ipst->ips_ip4_physical_out_event,
6355 		    ipst->ips_ipv4firewall_physical_out,
6356 		    NULL, ill, ipha, mp, mp, ll_multicast, ipst);
6357 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
6358 		if (mp != NULL)
6359 			putnext(ire->ire_stq, mp);
6360 	}
6361 
6362 	IRE_REFRELE(ire);
6363 }
6364 
6365 static boolean_t
6366 udp_update_label_v6(queue_t *wq, mblk_t *mp, in6_addr_t *dst)
6367 {
6368 	udp_t *udp = Q_TO_UDP(wq);
6369 	int err;
6370 	uchar_t opt_storage[TSOL_MAX_IPV6_OPTION];
6371 	udp_stack_t		*us = udp->udp_us;
6372 
6373 	err = tsol_compute_label_v6(DB_CREDDEF(mp, udp->udp_connp->conn_cred),
6374 	    dst, opt_storage, udp->udp_mac_exempt,
6375 	    us->us_netstack->netstack_ip);
6376 	if (err == 0) {
6377 		err = tsol_update_sticky(&udp->udp_sticky_ipp,
6378 		    &udp->udp_label_len_v6, opt_storage);
6379 	}
6380 	if (err != 0) {
6381 		DTRACE_PROBE4(
6382 		    tx__ip__log__drop__updatelabel__udp6,
6383 		    char *, "queue(1) failed to update options(2) on mp(3)",
6384 		    queue_t *, wq, char *, opt_storage, mblk_t *, mp);
6385 	} else {
6386 		udp->udp_v6lastdst = *dst;
6387 	}
6388 	return (err);
6389 }
6390 
6391 void
6392 udp_output_connected(void *arg, mblk_t *mp)
6393 {
6394 	conn_t	*connp = (conn_t *)arg;
6395 	udp_t	*udp = connp->conn_udp;
6396 	udp_stack_t	*us = udp->udp_us;
6397 	ipaddr_t	v4dst;
6398 	in_port_t	dstport;
6399 	boolean_t	mapped_addr;
6400 	struct sockaddr_storage ss;
6401 	sin_t		*sin;
6402 	sin6_t		*sin6;
6403 	struct sockaddr	*addr;
6404 	socklen_t	addrlen;
6405 	int		error;
6406 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
6407 
6408 	/* M_DATA for connected socket */
6409 
6410 	ASSERT(udp->udp_issocket);
6411 	UDP_DBGSTAT(us, udp_data_conn);
6412 
6413 	mutex_enter(&connp->conn_lock);
6414 	if (udp->udp_state != TS_DATA_XFER) {
6415 		mutex_exit(&connp->conn_lock);
6416 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6417 		UDP_STAT(us, udp_out_err_notconn);
6418 		freemsg(mp);
6419 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6420 		    "udp_wput_end: connp %p (%S)", connp,
6421 		    "not-connected; address required");
6422 		return;
6423 	}
6424 
6425 	mapped_addr = IN6_IS_ADDR_V4MAPPED(&udp->udp_v6dst);
6426 	if (mapped_addr)
6427 		IN6_V4MAPPED_TO_IPADDR(&udp->udp_v6dst, v4dst);
6428 
6429 	/* Initialize addr and addrlen as if they're passed in */
6430 	if (udp->udp_family == AF_INET) {
6431 		sin = (sin_t *)&ss;
6432 		sin->sin_family = AF_INET;
6433 		dstport = sin->sin_port = udp->udp_dstport;
6434 		ASSERT(mapped_addr);
6435 		sin->sin_addr.s_addr = v4dst;
6436 		addr = (struct sockaddr *)sin;
6437 		addrlen = sizeof (*sin);
6438 	} else {
6439 		sin6 = (sin6_t *)&ss;
6440 		sin6->sin6_family = AF_INET6;
6441 		dstport = sin6->sin6_port = udp->udp_dstport;
6442 		sin6->sin6_flowinfo = udp->udp_flowinfo;
6443 		sin6->sin6_addr = udp->udp_v6dst;
6444 		sin6->sin6_scope_id = 0;
6445 		sin6->__sin6_src_id = 0;
6446 		addr = (struct sockaddr *)sin6;
6447 		addrlen = sizeof (*sin6);
6448 	}
6449 	mutex_exit(&connp->conn_lock);
6450 
6451 	if (mapped_addr) {
6452 		/*
6453 		 * Handle both AF_INET and AF_INET6; the latter
6454 		 * for IPV4 mapped destination addresses.  Note
6455 		 * here that both addr and addrlen point to the
6456 		 * corresponding struct depending on the address
6457 		 * family of the socket.
6458 		 */
6459 		mp = udp_output_v4(connp, mp, v4dst, dstport, 0, &error,
6460 		    insert_spi);
6461 	} else {
6462 		mp = udp_output_v6(connp, mp, sin6, &error);
6463 	}
6464 	if (error == 0) {
6465 		ASSERT(mp == NULL);
6466 		return;
6467 	}
6468 
6469 	UDP_STAT(us, udp_out_err_output);
6470 	ASSERT(mp != NULL);
6471 	/* mp is freed by the following routine */
6472 	udp_ud_err(connp->conn_wq, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6473 	    (t_scalar_t)error);
6474 }
6475 
6476 /*
6477  * This routine handles all messages passed downstream.  It either
6478  * consumes the message or passes it downstream; it never queues a
6479  * a message.
6480  *
6481  * Also entry point for sockfs when udp is in "direct sockfs" mode.  This mode
6482  * is valid when we are directly beneath the stream head, and thus sockfs
6483  * is able to bypass STREAMS and directly call us, passing along the sockaddr
6484  * structure without the cumbersome T_UNITDATA_REQ interface for the case of
6485  * connected endpoints.
6486  */
6487 void
6488 udp_wput(queue_t *q, mblk_t *mp)
6489 {
6490 	sin6_t		*sin6;
6491 	sin_t		*sin;
6492 	ipaddr_t	v4dst;
6493 	uint16_t	port;
6494 	uint_t		srcid;
6495 	conn_t		*connp = Q_TO_CONN(q);
6496 	udp_t		*udp = connp->conn_udp;
6497 	int		error = 0;
6498 	struct sockaddr	*addr;
6499 	socklen_t	addrlen;
6500 	udp_stack_t *us = udp->udp_us;
6501 	boolean_t	insert_spi = udp->udp_nat_t_endpoint;
6502 
6503 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_START,
6504 	    "udp_wput_start: queue %p mp %p", q, mp);
6505 
6506 	/*
6507 	 * We directly handle several cases here: T_UNITDATA_REQ message
6508 	 * coming down as M_PROTO/M_PCPROTO and M_DATA messages for connected
6509 	 * socket.
6510 	 */
6511 	switch (DB_TYPE(mp)) {
6512 	case M_DATA:
6513 		/*
6514 		 * Quick check for error cases. Checks will be done again
6515 		 * under the lock later on
6516 		 */
6517 		if (!udp->udp_direct_sockfs || udp->udp_state != TS_DATA_XFER) {
6518 			/* Not connected; address is required */
6519 			BUMP_MIB(&us->us_udp_mib, udpOutErrors);
6520 			UDP_STAT(us, udp_out_err_notconn);
6521 			freemsg(mp);
6522 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6523 			    "udp_wput_end: connp %p (%S)", connp,
6524 			    "not-connected; address required");
6525 			return;
6526 		}
6527 		udp_output_connected(connp, mp);
6528 		return;
6529 
6530 	case M_PROTO:
6531 	case M_PCPROTO: {
6532 		struct T_unitdata_req *tudr;
6533 
6534 		ASSERT((uintptr_t)MBLKL(mp) <= (uintptr_t)INT_MAX);
6535 		tudr = (struct T_unitdata_req *)mp->b_rptr;
6536 
6537 		/* Handle valid T_UNITDATA_REQ here */
6538 		if (MBLKL(mp) >= sizeof (*tudr) &&
6539 		    ((t_primp_t)mp->b_rptr)->type == T_UNITDATA_REQ) {
6540 			if (mp->b_cont == NULL) {
6541 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6542 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6543 				error = EPROTO;
6544 				goto ud_error;
6545 			}
6546 
6547 			if (!MBLKIN(mp, 0, tudr->DEST_offset +
6548 			    tudr->DEST_length)) {
6549 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6550 				    "udp_wput_end: q %p (%S)", q, "badaddr");
6551 				error = EADDRNOTAVAIL;
6552 				goto ud_error;
6553 			}
6554 			/*
6555 			 * If a port has not been bound to the stream, fail.
6556 			 * This is not a problem when sockfs is directly
6557 			 * above us, because it will ensure that the socket
6558 			 * is first bound before allowing data to be sent.
6559 			 */
6560 			if (udp->udp_state == TS_UNBND) {
6561 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6562 				    "udp_wput_end: q %p (%S)", q, "outstate");
6563 				error = EPROTO;
6564 				goto ud_error;
6565 			}
6566 			addr = (struct sockaddr *)
6567 			    &mp->b_rptr[tudr->DEST_offset];
6568 			addrlen = tudr->DEST_length;
6569 			if (tudr->OPT_length != 0)
6570 				UDP_STAT(us, udp_out_opt);
6571 			break;
6572 		}
6573 		/* FALLTHRU */
6574 	}
6575 	default:
6576 		udp_wput_other(q, mp);
6577 		return;
6578 	}
6579 	ASSERT(addr != NULL);
6580 
6581 	switch (udp->udp_family) {
6582 	case AF_INET6:
6583 		sin6 = (sin6_t *)addr;
6584 		if (!OK_32PTR((char *)sin6) || (addrlen != sizeof (sin6_t)) ||
6585 		    (sin6->sin6_family != AF_INET6)) {
6586 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6587 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6588 			error = EADDRNOTAVAIL;
6589 			goto ud_error;
6590 		}
6591 
6592 		if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6593 			/*
6594 			 * Destination is a non-IPv4-compatible IPv6 address.
6595 			 * Send out an IPv6 format packet.
6596 			 */
6597 			mp = udp_output_v6(connp, mp, sin6, &error);
6598 			if (error != 0)
6599 				goto ud_error;
6600 
6601 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6602 			    "udp_wput_end: q %p (%S)", q, "udp_output_v6");
6603 			return;
6604 		}
6605 		/*
6606 		 * If the local address is not zero or a mapped address
6607 		 * return an error.  It would be possible to send an IPv4
6608 		 * packet but the response would never make it back to the
6609 		 * application since it is bound to a non-mapped address.
6610 		 */
6611 		if (!IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src) &&
6612 		    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
6613 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6614 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6615 			error = EADDRNOTAVAIL;
6616 			goto ud_error;
6617 		}
6618 		/* Send IPv4 packet without modifying udp_ipversion */
6619 		/* Extract port and ipaddr */
6620 		port = sin6->sin6_port;
6621 		IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, v4dst);
6622 		srcid = sin6->__sin6_src_id;
6623 		break;
6624 
6625 	case AF_INET:
6626 		sin = (sin_t *)addr;
6627 		if ((!OK_32PTR((char *)sin) || addrlen != sizeof (sin_t)) ||
6628 		    (sin->sin_family != AF_INET)) {
6629 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_END,
6630 			    "udp_wput_end: q %p (%S)", q, "badaddr");
6631 			error = EADDRNOTAVAIL;
6632 			goto ud_error;
6633 		}
6634 		/* Extract port and ipaddr */
6635 		port = sin->sin_port;
6636 		v4dst = sin->sin_addr.s_addr;
6637 		srcid = 0;
6638 		break;
6639 	}
6640 
6641 	mp = udp_output_v4(connp, mp, v4dst, port, srcid, &error, insert_spi);
6642 	if (error != 0) {
6643 ud_error:
6644 		UDP_STAT(us, udp_out_err_output);
6645 		ASSERT(mp != NULL);
6646 		/* mp is freed by the following routine */
6647 		udp_ud_err(q, mp, (uchar_t *)addr, (t_scalar_t)addrlen,
6648 		    (t_scalar_t)error);
6649 	}
6650 }
6651 
6652 /*
6653  * udp_output_v6():
6654  * Assumes that udp_wput did some sanity checking on the destination
6655  * address.
6656  */
6657 static mblk_t *
6658 udp_output_v6(conn_t *connp, mblk_t *mp, sin6_t *sin6, int *error)
6659 {
6660 	ip6_t		*ip6h;
6661 	ip6i_t		*ip6i;	/* mp1->b_rptr even if no ip6i_t */
6662 	mblk_t		*mp1 = mp;
6663 	mblk_t		*mp2;
6664 	int		udp_ip_hdr_len = IPV6_HDR_LEN + UDPH_SIZE;
6665 	size_t		ip_len;
6666 	udpha_t		*udph;
6667 	udp_t		*udp = connp->conn_udp;
6668 	queue_t		*q = connp->conn_wq;
6669 	ip6_pkt_t	ipp_s;	/* For ancillary data options */
6670 	ip6_pkt_t	*ipp = &ipp_s;
6671 	ip6_pkt_t	*tipp;	/* temporary ipp */
6672 	uint32_t	csum = 0;
6673 	uint_t		ignore = 0;
6674 	uint_t		option_exists = 0, is_sticky = 0;
6675 	uint8_t		*cp;
6676 	uint8_t		*nxthdr_ptr;
6677 	in6_addr_t	ip6_dst;
6678 	udpattrs_t	attrs;
6679 	boolean_t	opt_present;
6680 	ip6_hbh_t	*hopoptsptr = NULL;
6681 	uint_t		hopoptslen = 0;
6682 	boolean_t	is_ancillary = B_FALSE;
6683 	udp_stack_t	*us = udp->udp_us;
6684 	size_t		sth_wroff = 0;
6685 
6686 	*error = 0;
6687 
6688 	/*
6689 	 * If the local address is a mapped address return
6690 	 * an error.
6691 	 * It would be possible to send an IPv6 packet but the
6692 	 * response would never make it back to the application
6693 	 * since it is bound to a mapped address.
6694 	 */
6695 	if (IN6_IS_ADDR_V4MAPPED(&udp->udp_v6src)) {
6696 		*error = EADDRNOTAVAIL;
6697 		goto done;
6698 	}
6699 
6700 	ipp->ipp_fields = 0;
6701 	ipp->ipp_sticky_ignored = 0;
6702 
6703 	/*
6704 	 * If TPI options passed in, feed it for verification and handling
6705 	 */
6706 	attrs.udpattr_credset = B_FALSE;
6707 	opt_present = B_FALSE;
6708 	if (DB_TYPE(mp) != M_DATA) {
6709 		mp1 = mp->b_cont;
6710 		if (((struct T_unitdata_req *)mp->b_rptr)->OPT_length != 0) {
6711 			attrs.udpattr_ipp6 = ipp;
6712 			attrs.udpattr_mb = mp;
6713 			if (udp_unitdata_opt_process(q, mp, error,
6714 			    &attrs) < 0) {
6715 				goto done;
6716 			}
6717 			ASSERT(*error == 0);
6718 			opt_present = B_TRUE;
6719 		}
6720 	}
6721 	rw_enter(&udp->udp_rwlock, RW_READER);
6722 	ignore = ipp->ipp_sticky_ignored;
6723 
6724 	/* mp1 points to the M_DATA mblk carrying the packet */
6725 	ASSERT(mp1 != NULL && DB_TYPE(mp1) == M_DATA);
6726 
6727 	if (sin6->sin6_scope_id != 0 &&
6728 	    IN6_IS_ADDR_LINKLOCAL(&sin6->sin6_addr)) {
6729 		/*
6730 		 * IPPF_SCOPE_ID is special.  It's neither a sticky
6731 		 * option nor ancillary data.  It needs to be
6732 		 * explicitly set in options_exists.
6733 		 */
6734 		option_exists |= IPPF_SCOPE_ID;
6735 	}
6736 
6737 	/*
6738 	 * Compute the destination address
6739 	 */
6740 	ip6_dst = sin6->sin6_addr;
6741 	if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
6742 		ip6_dst = ipv6_loopback;
6743 
6744 	/*
6745 	 * If we're not going to the same destination as last time, then
6746 	 * recompute the label required.  This is done in a separate routine to
6747 	 * avoid blowing up our stack here.
6748 	 *
6749 	 * TSOL Note: Since we are not in WRITER mode, UDP packets
6750 	 * to different destination may require different labels,
6751 	 * or worse, UDP packets to same IP address may require
6752 	 * different labels due to use of shared all-zones address.
6753 	 * We use conn_lock to ensure that lastdst, sticky ipp_hopopts,
6754 	 * and sticky ipp_hopoptslen are consistent for the current
6755 	 * destination and are updated atomically.
6756 	 */
6757 	mutex_enter(&connp->conn_lock);
6758 	if (is_system_labeled()) {
6759 		/* Using UDP MLP requires SCM_UCRED from user */
6760 		if (connp->conn_mlp_type != mlptSingle &&
6761 		    !attrs.udpattr_credset) {
6762 			DTRACE_PROBE4(
6763 			    tx__ip__log__info__output__udp6,
6764 			    char *, "MLP mp(1) lacks SCM_UCRED attr(2) on q(3)",
6765 			    mblk_t *, mp1, udpattrs_t *, &attrs, queue_t *, q);
6766 			*error = ECONNREFUSED;
6767 			rw_exit(&udp->udp_rwlock);
6768 			mutex_exit(&connp->conn_lock);
6769 			goto done;
6770 		}
6771 		/*
6772 		 * update label option for this UDP socket if
6773 		 * - the destination has changed, or
6774 		 * - the UDP socket is MLP
6775 		 */
6776 		if ((opt_present ||
6777 		    !IN6_ARE_ADDR_EQUAL(&udp->udp_v6lastdst, &ip6_dst) ||
6778 		    connp->conn_mlp_type != mlptSingle) &&
6779 		    (*error = udp_update_label_v6(q, mp, &ip6_dst)) != 0) {
6780 			rw_exit(&udp->udp_rwlock);
6781 			mutex_exit(&connp->conn_lock);
6782 			goto done;
6783 		}
6784 	}
6785 
6786 	/*
6787 	 * If there's a security label here, then we ignore any options the
6788 	 * user may try to set.  We keep the peer's label as a hidden sticky
6789 	 * option. We make a private copy of this label before releasing the
6790 	 * lock so that label is kept consistent with the destination addr.
6791 	 */
6792 	if (udp->udp_label_len_v6 > 0) {
6793 		ignore &= ~IPPF_HOPOPTS;
6794 		ipp->ipp_fields &= ~IPPF_HOPOPTS;
6795 	}
6796 
6797 	if ((udp->udp_sticky_ipp.ipp_fields == 0) && (ipp->ipp_fields == 0)) {
6798 		/* No sticky options nor ancillary data. */
6799 		mutex_exit(&connp->conn_lock);
6800 		goto no_options;
6801 	}
6802 
6803 	/*
6804 	 * Go through the options figuring out where each is going to
6805 	 * come from and build two masks.  The first mask indicates if
6806 	 * the option exists at all.  The second mask indicates if the
6807 	 * option is sticky or ancillary.
6808 	 */
6809 	if (!(ignore & IPPF_HOPOPTS)) {
6810 		if (ipp->ipp_fields & IPPF_HOPOPTS) {
6811 			option_exists |= IPPF_HOPOPTS;
6812 			udp_ip_hdr_len += ipp->ipp_hopoptslen;
6813 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_HOPOPTS) {
6814 			option_exists |= IPPF_HOPOPTS;
6815 			is_sticky |= IPPF_HOPOPTS;
6816 			ASSERT(udp->udp_sticky_ipp.ipp_hopoptslen != 0);
6817 			hopoptsptr = kmem_alloc(
6818 			    udp->udp_sticky_ipp.ipp_hopoptslen, KM_NOSLEEP);
6819 			if (hopoptsptr == NULL) {
6820 				*error = ENOMEM;
6821 				mutex_exit(&connp->conn_lock);
6822 				goto done;
6823 			}
6824 			hopoptslen = udp->udp_sticky_ipp.ipp_hopoptslen;
6825 			bcopy(udp->udp_sticky_ipp.ipp_hopopts, hopoptsptr,
6826 			    hopoptslen);
6827 			udp_ip_hdr_len += hopoptslen;
6828 		}
6829 	}
6830 	mutex_exit(&connp->conn_lock);
6831 
6832 	if (!(ignore & IPPF_RTHDR)) {
6833 		if (ipp->ipp_fields & IPPF_RTHDR) {
6834 			option_exists |= IPPF_RTHDR;
6835 			udp_ip_hdr_len += ipp->ipp_rthdrlen;
6836 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTHDR) {
6837 			option_exists |= IPPF_RTHDR;
6838 			is_sticky |= IPPF_RTHDR;
6839 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rthdrlen;
6840 		}
6841 	}
6842 
6843 	if (!(ignore & IPPF_RTDSTOPTS) && (option_exists & IPPF_RTHDR)) {
6844 		if (ipp->ipp_fields & IPPF_RTDSTOPTS) {
6845 			option_exists |= IPPF_RTDSTOPTS;
6846 			udp_ip_hdr_len += ipp->ipp_rtdstoptslen;
6847 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_RTDSTOPTS) {
6848 			option_exists |= IPPF_RTDSTOPTS;
6849 			is_sticky |= IPPF_RTDSTOPTS;
6850 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_rtdstoptslen;
6851 		}
6852 	}
6853 
6854 	if (!(ignore & IPPF_DSTOPTS)) {
6855 		if (ipp->ipp_fields & IPPF_DSTOPTS) {
6856 			option_exists |= IPPF_DSTOPTS;
6857 			udp_ip_hdr_len += ipp->ipp_dstoptslen;
6858 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DSTOPTS) {
6859 			option_exists |= IPPF_DSTOPTS;
6860 			is_sticky |= IPPF_DSTOPTS;
6861 			udp_ip_hdr_len += udp->udp_sticky_ipp.ipp_dstoptslen;
6862 		}
6863 	}
6864 
6865 	if (!(ignore & IPPF_IFINDEX)) {
6866 		if (ipp->ipp_fields & IPPF_IFINDEX) {
6867 			option_exists |= IPPF_IFINDEX;
6868 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_IFINDEX) {
6869 			option_exists |= IPPF_IFINDEX;
6870 			is_sticky |= IPPF_IFINDEX;
6871 		}
6872 	}
6873 
6874 	if (!(ignore & IPPF_ADDR)) {
6875 		if (ipp->ipp_fields & IPPF_ADDR) {
6876 			option_exists |= IPPF_ADDR;
6877 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_ADDR) {
6878 			option_exists |= IPPF_ADDR;
6879 			is_sticky |= IPPF_ADDR;
6880 		}
6881 	}
6882 
6883 	if (!(ignore & IPPF_DONTFRAG)) {
6884 		if (ipp->ipp_fields & IPPF_DONTFRAG) {
6885 			option_exists |= IPPF_DONTFRAG;
6886 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_DONTFRAG) {
6887 			option_exists |= IPPF_DONTFRAG;
6888 			is_sticky |= IPPF_DONTFRAG;
6889 		}
6890 	}
6891 
6892 	if (!(ignore & IPPF_USE_MIN_MTU)) {
6893 		if (ipp->ipp_fields & IPPF_USE_MIN_MTU) {
6894 			option_exists |= IPPF_USE_MIN_MTU;
6895 		} else if (udp->udp_sticky_ipp.ipp_fields &
6896 		    IPPF_USE_MIN_MTU) {
6897 			option_exists |= IPPF_USE_MIN_MTU;
6898 			is_sticky |= IPPF_USE_MIN_MTU;
6899 		}
6900 	}
6901 
6902 	if (!(ignore & IPPF_HOPLIMIT) && (ipp->ipp_fields & IPPF_HOPLIMIT))
6903 		option_exists |= IPPF_HOPLIMIT;
6904 	/* IPV6_HOPLIMIT can never be sticky */
6905 	ASSERT(!(udp->udp_sticky_ipp.ipp_fields & IPPF_HOPLIMIT));
6906 
6907 	if (!(ignore & IPPF_UNICAST_HOPS) &&
6908 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_UNICAST_HOPS)) {
6909 		option_exists |= IPPF_UNICAST_HOPS;
6910 		is_sticky |= IPPF_UNICAST_HOPS;
6911 	}
6912 
6913 	if (!(ignore & IPPF_MULTICAST_HOPS) &&
6914 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_MULTICAST_HOPS)) {
6915 		option_exists |= IPPF_MULTICAST_HOPS;
6916 		is_sticky |= IPPF_MULTICAST_HOPS;
6917 	}
6918 
6919 	if (!(ignore & IPPF_TCLASS)) {
6920 		if (ipp->ipp_fields & IPPF_TCLASS) {
6921 			option_exists |= IPPF_TCLASS;
6922 		} else if (udp->udp_sticky_ipp.ipp_fields & IPPF_TCLASS) {
6923 			option_exists |= IPPF_TCLASS;
6924 			is_sticky |= IPPF_TCLASS;
6925 		}
6926 	}
6927 
6928 	if (!(ignore & IPPF_NEXTHOP) &&
6929 	    (udp->udp_sticky_ipp.ipp_fields & IPPF_NEXTHOP)) {
6930 		option_exists |= IPPF_NEXTHOP;
6931 		is_sticky |= IPPF_NEXTHOP;
6932 	}
6933 
6934 no_options:
6935 
6936 	/*
6937 	 * If any options carried in the ip6i_t were specified, we
6938 	 * need to account for the ip6i_t in the data we'll be sending
6939 	 * down.
6940 	 */
6941 	if (option_exists & IPPF_HAS_IP6I)
6942 		udp_ip_hdr_len += sizeof (ip6i_t);
6943 
6944 	/* check/fix buffer config, setup pointers into it */
6945 	ip6h = (ip6_t *)&mp1->b_rptr[-udp_ip_hdr_len];
6946 	if (DB_REF(mp1) != 1 || ((unsigned char *)ip6h < DB_BASE(mp1)) ||
6947 	    !OK_32PTR(ip6h)) {
6948 
6949 		/* Try to get everything in a single mblk next time */
6950 		if (udp_ip_hdr_len > udp->udp_max_hdr_len) {
6951 			udp->udp_max_hdr_len = udp_ip_hdr_len;
6952 			sth_wroff = udp->udp_max_hdr_len + us->us_wroff_extra;
6953 		}
6954 
6955 		mp2 = allocb(udp_ip_hdr_len + us->us_wroff_extra, BPRI_LO);
6956 		if (mp2 == NULL) {
6957 			*error = ENOMEM;
6958 			rw_exit(&udp->udp_rwlock);
6959 			goto done;
6960 		}
6961 		mp2->b_wptr = DB_LIM(mp2);
6962 		mp2->b_cont = mp1;
6963 		mp1 = mp2;
6964 		if (DB_TYPE(mp) != M_DATA)
6965 			mp->b_cont = mp1;
6966 		else
6967 			mp = mp1;
6968 
6969 		ip6h = (ip6_t *)(mp1->b_wptr - udp_ip_hdr_len);
6970 	}
6971 	mp1->b_rptr = (unsigned char *)ip6h;
6972 	ip6i = (ip6i_t *)ip6h;
6973 
6974 #define	ANCIL_OR_STICKY_PTR(f) ((is_sticky & f) ? &udp->udp_sticky_ipp : ipp)
6975 	if (option_exists & IPPF_HAS_IP6I) {
6976 		ip6h = (ip6_t *)&ip6i[1];
6977 		ip6i->ip6i_flags = 0;
6978 		ip6i->ip6i_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
6979 
6980 		/* sin6_scope_id takes precendence over IPPF_IFINDEX */
6981 		if (option_exists & IPPF_SCOPE_ID) {
6982 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6983 			ip6i->ip6i_ifindex = sin6->sin6_scope_id;
6984 		} else if (option_exists & IPPF_IFINDEX) {
6985 			tipp = ANCIL_OR_STICKY_PTR(IPPF_IFINDEX);
6986 			ASSERT(tipp->ipp_ifindex != 0);
6987 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6988 			ip6i->ip6i_ifindex = tipp->ipp_ifindex;
6989 		}
6990 
6991 		if (option_exists & IPPF_ADDR) {
6992 			/*
6993 			 * Enable per-packet source address verification if
6994 			 * IPV6_PKTINFO specified the source address.
6995 			 * ip6_src is set in the transport's _wput function.
6996 			 */
6997 			ip6i->ip6i_flags |= IP6I_VERIFY_SRC;
6998 		}
6999 
7000 		if (option_exists & IPPF_DONTFRAG) {
7001 			ip6i->ip6i_flags |= IP6I_DONTFRAG;
7002 		}
7003 
7004 		if (option_exists & IPPF_USE_MIN_MTU) {
7005 			ip6i->ip6i_flags = IP6I_API_USE_MIN_MTU(
7006 			    ip6i->ip6i_flags, ipp->ipp_use_min_mtu);
7007 		}
7008 
7009 		if (option_exists & IPPF_NEXTHOP) {
7010 			tipp = ANCIL_OR_STICKY_PTR(IPPF_NEXTHOP);
7011 			ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_nexthop));
7012 			ip6i->ip6i_flags |= IP6I_NEXTHOP;
7013 			ip6i->ip6i_nexthop = tipp->ipp_nexthop;
7014 		}
7015 
7016 		/*
7017 		 * tell IP this is an ip6i_t private header
7018 		 */
7019 		ip6i->ip6i_nxt = IPPROTO_RAW;
7020 	}
7021 
7022 	/* Initialize IPv6 header */
7023 	ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
7024 	bzero(&ip6h->ip6_src, sizeof (ip6h->ip6_src));
7025 
7026 	/* Set the hoplimit of the outgoing packet. */
7027 	if (option_exists & IPPF_HOPLIMIT) {
7028 		/* IPV6_HOPLIMIT ancillary data overrides all other settings. */
7029 		ip6h->ip6_hops = ipp->ipp_hoplimit;
7030 		ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7031 	} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
7032 		ip6h->ip6_hops = udp->udp_multicast_ttl;
7033 		if (option_exists & IPPF_MULTICAST_HOPS)
7034 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7035 	} else {
7036 		ip6h->ip6_hops = udp->udp_ttl;
7037 		if (option_exists & IPPF_UNICAST_HOPS)
7038 			ip6i->ip6i_flags |= IP6I_HOPLIMIT;
7039 	}
7040 
7041 	if (option_exists & IPPF_ADDR) {
7042 		tipp = ANCIL_OR_STICKY_PTR(IPPF_ADDR);
7043 		ASSERT(!IN6_IS_ADDR_UNSPECIFIED(&tipp->ipp_addr));
7044 		ip6h->ip6_src = tipp->ipp_addr;
7045 	} else {
7046 		/*
7047 		 * The source address was not set using IPV6_PKTINFO.
7048 		 * First look at the bound source.
7049 		 * If unspecified fallback to __sin6_src_id.
7050 		 */
7051 		ip6h->ip6_src = udp->udp_v6src;
7052 		if (sin6->__sin6_src_id != 0 &&
7053 		    IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src)) {
7054 			ip_srcid_find_id(sin6->__sin6_src_id,
7055 			    &ip6h->ip6_src, connp->conn_zoneid,
7056 			    us->us_netstack);
7057 		}
7058 	}
7059 
7060 	nxthdr_ptr = (uint8_t *)&ip6h->ip6_nxt;
7061 	cp = (uint8_t *)&ip6h[1];
7062 
7063 	/*
7064 	 * Here's where we have to start stringing together
7065 	 * any extension headers in the right order:
7066 	 * Hop-by-hop, destination, routing, and final destination opts.
7067 	 */
7068 	if (option_exists & IPPF_HOPOPTS) {
7069 		/* Hop-by-hop options */
7070 		ip6_hbh_t *hbh = (ip6_hbh_t *)cp;
7071 		tipp = ANCIL_OR_STICKY_PTR(IPPF_HOPOPTS);
7072 		if (hopoptslen == 0) {
7073 			hopoptsptr = tipp->ipp_hopopts;
7074 			hopoptslen = tipp->ipp_hopoptslen;
7075 			is_ancillary = B_TRUE;
7076 		}
7077 
7078 		*nxthdr_ptr = IPPROTO_HOPOPTS;
7079 		nxthdr_ptr = &hbh->ip6h_nxt;
7080 
7081 		bcopy(hopoptsptr, cp, hopoptslen);
7082 		cp += hopoptslen;
7083 
7084 		if (hopoptsptr != NULL && !is_ancillary) {
7085 			kmem_free(hopoptsptr, hopoptslen);
7086 			hopoptsptr = NULL;
7087 			hopoptslen = 0;
7088 		}
7089 	}
7090 	/*
7091 	 * En-route destination options
7092 	 * Only do them if there's a routing header as well
7093 	 */
7094 	if (option_exists & IPPF_RTDSTOPTS) {
7095 		ip6_dest_t *dst = (ip6_dest_t *)cp;
7096 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTDSTOPTS);
7097 
7098 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7099 		nxthdr_ptr = &dst->ip6d_nxt;
7100 
7101 		bcopy(tipp->ipp_rtdstopts, cp, tipp->ipp_rtdstoptslen);
7102 		cp += tipp->ipp_rtdstoptslen;
7103 	}
7104 	/*
7105 	 * Routing header next
7106 	 */
7107 	if (option_exists & IPPF_RTHDR) {
7108 		ip6_rthdr_t *rt = (ip6_rthdr_t *)cp;
7109 		tipp = ANCIL_OR_STICKY_PTR(IPPF_RTHDR);
7110 
7111 		*nxthdr_ptr = IPPROTO_ROUTING;
7112 		nxthdr_ptr = &rt->ip6r_nxt;
7113 
7114 		bcopy(tipp->ipp_rthdr, cp, tipp->ipp_rthdrlen);
7115 		cp += tipp->ipp_rthdrlen;
7116 	}
7117 	/*
7118 	 * Do ultimate destination options
7119 	 */
7120 	if (option_exists & IPPF_DSTOPTS) {
7121 		ip6_dest_t *dest = (ip6_dest_t *)cp;
7122 		tipp = ANCIL_OR_STICKY_PTR(IPPF_DSTOPTS);
7123 
7124 		*nxthdr_ptr = IPPROTO_DSTOPTS;
7125 		nxthdr_ptr = &dest->ip6d_nxt;
7126 
7127 		bcopy(tipp->ipp_dstopts, cp, tipp->ipp_dstoptslen);
7128 		cp += tipp->ipp_dstoptslen;
7129 	}
7130 	/*
7131 	 * Now set the last header pointer to the proto passed in
7132 	 */
7133 	ASSERT((int)(cp - (uint8_t *)ip6i) == (udp_ip_hdr_len - UDPH_SIZE));
7134 	*nxthdr_ptr = IPPROTO_UDP;
7135 
7136 	/* Update UDP header */
7137 	udph = (udpha_t *)((uchar_t *)ip6i + udp_ip_hdr_len - UDPH_SIZE);
7138 	udph->uha_dst_port = sin6->sin6_port;
7139 	udph->uha_src_port = udp->udp_port;
7140 
7141 	/*
7142 	 * Copy in the destination address
7143 	 */
7144 	ip6h->ip6_dst = ip6_dst;
7145 
7146 	ip6h->ip6_vcf =
7147 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
7148 	    (sin6->sin6_flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
7149 
7150 	if (option_exists & IPPF_TCLASS) {
7151 		tipp = ANCIL_OR_STICKY_PTR(IPPF_TCLASS);
7152 		ip6h->ip6_vcf = IPV6_TCLASS_FLOW(ip6h->ip6_vcf,
7153 		    tipp->ipp_tclass);
7154 	}
7155 	rw_exit(&udp->udp_rwlock);
7156 
7157 	if (option_exists & IPPF_RTHDR) {
7158 		ip6_rthdr_t	*rth;
7159 
7160 		/*
7161 		 * Perform any processing needed for source routing.
7162 		 * We know that all extension headers will be in the same mblk
7163 		 * as the IPv6 header.
7164 		 */
7165 		rth = ip_find_rthdr_v6(ip6h, mp1->b_wptr);
7166 		if (rth != NULL && rth->ip6r_segleft != 0) {
7167 			if (rth->ip6r_type != IPV6_RTHDR_TYPE_0) {
7168 				/*
7169 				 * Drop packet - only support Type 0 routing.
7170 				 * Notify the application as well.
7171 				 */
7172 				*error = EPROTO;
7173 				goto done;
7174 			}
7175 
7176 			/*
7177 			 * rth->ip6r_len is twice the number of
7178 			 * addresses in the header. Thus it must be even.
7179 			 */
7180 			if (rth->ip6r_len & 0x1) {
7181 				*error = EPROTO;
7182 				goto done;
7183 			}
7184 			/*
7185 			 * Shuffle the routing header and ip6_dst
7186 			 * addresses, and get the checksum difference
7187 			 * between the first hop (in ip6_dst) and
7188 			 * the destination (in the last routing hdr entry).
7189 			 */
7190 			csum = ip_massage_options_v6(ip6h, rth,
7191 			    us->us_netstack);
7192 			/*
7193 			 * Verify that the first hop isn't a mapped address.
7194 			 * Routers along the path need to do this verification
7195 			 * for subsequent hops.
7196 			 */
7197 			if (IN6_IS_ADDR_V4MAPPED(&ip6h->ip6_dst)) {
7198 				*error = EADDRNOTAVAIL;
7199 				goto done;
7200 			}
7201 
7202 			cp += (rth->ip6r_len + 1)*8;
7203 		}
7204 	}
7205 
7206 	/* count up length of UDP packet */
7207 	ip_len = (mp1->b_wptr - (unsigned char *)ip6h) - IPV6_HDR_LEN;
7208 	if ((mp2 = mp1->b_cont) != NULL) {
7209 		do {
7210 			ASSERT((uintptr_t)MBLKL(mp2) <= (uintptr_t)UINT_MAX);
7211 			ip_len += (uint32_t)MBLKL(mp2);
7212 		} while ((mp2 = mp2->b_cont) != NULL);
7213 	}
7214 
7215 	/*
7216 	 * If the size of the packet is greater than the maximum allowed by
7217 	 * ip, return an error. Passing this down could cause panics because
7218 	 * the size will have wrapped and be inconsistent with the msg size.
7219 	 */
7220 	if (ip_len > IP_MAXPACKET) {
7221 		*error = EMSGSIZE;
7222 		goto done;
7223 	}
7224 
7225 	/* Store the UDP length. Subtract length of extension hdrs */
7226 	udph->uha_length = htons(ip_len + IPV6_HDR_LEN -
7227 	    (int)((uchar_t *)udph - (uchar_t *)ip6h));
7228 
7229 	/*
7230 	 * We make it easy for IP to include our pseudo header
7231 	 * by putting our length in uh_checksum, modified (if
7232 	 * we have a routing header) by the checksum difference
7233 	 * between the ultimate destination and first hop addresses.
7234 	 * Note: UDP over IPv6 must always checksum the packet.
7235 	 */
7236 	csum += udph->uha_length;
7237 	csum = (csum & 0xFFFF) + (csum >> 16);
7238 	udph->uha_checksum = (uint16_t)csum;
7239 
7240 #ifdef _LITTLE_ENDIAN
7241 	ip_len = htons(ip_len);
7242 #endif
7243 	ip6h->ip6_plen = ip_len;
7244 	if (DB_CRED(mp) != NULL)
7245 		mblk_setcred(mp1, DB_CRED(mp));
7246 
7247 	if (DB_TYPE(mp) != M_DATA) {
7248 		ASSERT(mp != mp1);
7249 		freeb(mp);
7250 	}
7251 
7252 	/* mp has been consumed and we'll return success */
7253 	ASSERT(*error == 0);
7254 	mp = NULL;
7255 
7256 	/* We're done. Pass the packet to IP */
7257 	BUMP_MIB(&us->us_udp_mib, udpHCOutDatagrams);
7258 	ip_output_v6(connp, mp1, q, IP_WPUT);
7259 
7260 done:
7261 	if (sth_wroff != 0) {
7262 		(void) mi_set_sth_wroff(RD(q),
7263 		    udp->udp_max_hdr_len + us->us_wroff_extra);
7264 	}
7265 	if (hopoptsptr != NULL && !is_ancillary) {
7266 		kmem_free(hopoptsptr, hopoptslen);
7267 		hopoptsptr = NULL;
7268 	}
7269 	if (*error != 0) {
7270 		ASSERT(mp != NULL);
7271 		BUMP_MIB(&us->us_udp_mib, udpOutErrors);
7272 	}
7273 	return (mp);
7274 }
7275 
7276 static void
7277 udp_wput_other(queue_t *q, mblk_t *mp)
7278 {
7279 	uchar_t	*rptr = mp->b_rptr;
7280 	struct datab *db;
7281 	struct iocblk *iocp;
7282 	cred_t	*cr;
7283 	conn_t	*connp = Q_TO_CONN(q);
7284 	udp_t	*udp = connp->conn_udp;
7285 	udp_stack_t *us;
7286 
7287 	TRACE_1(TR_FAC_UDP, TR_UDP_WPUT_OTHER_START,
7288 	    "udp_wput_other_start: q %p", q);
7289 
7290 	us = udp->udp_us;
7291 	db = mp->b_datap;
7292 
7293 	cr = DB_CREDDEF(mp, connp->conn_cred);
7294 
7295 	switch (db->db_type) {
7296 	case M_PROTO:
7297 	case M_PCPROTO:
7298 		if (mp->b_wptr - rptr < sizeof (t_scalar_t)) {
7299 			freemsg(mp);
7300 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7301 			    "udp_wput_other_end: q %p (%S)", q, "protoshort");
7302 			return;
7303 		}
7304 		switch (((t_primp_t)rptr)->type) {
7305 		case T_ADDR_REQ:
7306 			udp_addr_req(q, mp);
7307 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7308 			    "udp_wput_other_end: q %p (%S)", q, "addrreq");
7309 			return;
7310 		case O_T_BIND_REQ:
7311 		case T_BIND_REQ:
7312 			udp_bind(q, mp);
7313 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7314 			    "udp_wput_other_end: q %p (%S)", q, "bindreq");
7315 			return;
7316 		case T_CONN_REQ:
7317 			udp_connect(q, mp);
7318 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7319 			    "udp_wput_other_end: q %p (%S)", q, "connreq");
7320 			return;
7321 		case T_CAPABILITY_REQ:
7322 			udp_capability_req(q, mp);
7323 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7324 			    "udp_wput_other_end: q %p (%S)", q, "capabreq");
7325 			return;
7326 		case T_INFO_REQ:
7327 			udp_info_req(q, mp);
7328 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7329 			    "udp_wput_other_end: q %p (%S)", q, "inforeq");
7330 			return;
7331 		case T_UNITDATA_REQ:
7332 			/*
7333 			 * If a T_UNITDATA_REQ gets here, the address must
7334 			 * be bad.  Valid T_UNITDATA_REQs are handled
7335 			 * in udp_wput.
7336 			 */
7337 			udp_ud_err(q, mp, NULL, 0, EADDRNOTAVAIL);
7338 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7339 			    "udp_wput_other_end: q %p (%S)", q, "unitdatareq");
7340 			return;
7341 		case T_UNBIND_REQ:
7342 			udp_unbind(q, mp);
7343 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7344 			    "udp_wput_other_end: q %p (%S)", q, "unbindreq");
7345 			return;
7346 		case T_SVR4_OPTMGMT_REQ:
7347 			if (!snmpcom_req(q, mp, udp_snmp_set, ip_snmp_get,
7348 			    cr)) {
7349 				(void) svr4_optcom_req(q,
7350 				    mp, cr, &udp_opt_obj, B_TRUE);
7351 			}
7352 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7353 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7354 			return;
7355 
7356 		case T_OPTMGMT_REQ:
7357 			(void) tpi_optcom_req(q, mp, cr, &udp_opt_obj, B_TRUE);
7358 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7359 			    "udp_wput_other_end: q %p (%S)", q, "optmgmtreq");
7360 			return;
7361 
7362 		case T_DISCON_REQ:
7363 			udp_disconnect(q, mp);
7364 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7365 			    "udp_wput_other_end: q %p (%S)", q, "disconreq");
7366 			return;
7367 
7368 		/* The following TPI message is not supported by udp. */
7369 		case O_T_CONN_RES:
7370 		case T_CONN_RES:
7371 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7372 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7373 			    "udp_wput_other_end: q %p (%S)", q,
7374 			    "connres/disconreq");
7375 			return;
7376 
7377 		/* The following 3 TPI messages are illegal for udp. */
7378 		case T_DATA_REQ:
7379 		case T_EXDATA_REQ:
7380 		case T_ORDREL_REQ:
7381 			udp_err_ack(q, mp, TNOTSUPPORT, 0);
7382 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7383 			    "udp_wput_other_end: q %p (%S)", q,
7384 			    "data/exdata/ordrel");
7385 			return;
7386 		default:
7387 			break;
7388 		}
7389 		break;
7390 	case M_FLUSH:
7391 		if (*rptr & FLUSHW)
7392 			flushq(q, FLUSHDATA);
7393 		break;
7394 	case M_IOCTL:
7395 		iocp = (struct iocblk *)mp->b_rptr;
7396 		switch (iocp->ioc_cmd) {
7397 		case TI_GETPEERNAME:
7398 			if (udp->udp_state != TS_DATA_XFER) {
7399 				/*
7400 				 * If a default destination address has not
7401 				 * been associated with the stream, then we
7402 				 * don't know the peer's name.
7403 				 */
7404 				iocp->ioc_error = ENOTCONN;
7405 				iocp->ioc_count = 0;
7406 				mp->b_datap->db_type = M_IOCACK;
7407 				qreply(q, mp);
7408 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7409 				    "udp_wput_other_end: q %p (%S)", q,
7410 				    "getpeername");
7411 				return;
7412 			}
7413 			/* FALLTHRU */
7414 		case TI_GETMYNAME: {
7415 			/*
7416 			 * For TI_GETPEERNAME and TI_GETMYNAME, we first
7417 			 * need to copyin the user's strbuf structure.
7418 			 * Processing will continue in the M_IOCDATA case
7419 			 * below.
7420 			 */
7421 			mi_copyin(q, mp, NULL,
7422 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
7423 			TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7424 			    "udp_wput_other_end: q %p (%S)", q, "getmyname");
7425 			return;
7426 			}
7427 		case ND_SET:
7428 			/* nd_getset performs the necessary checking */
7429 		case ND_GET:
7430 			if (nd_getset(q, us->us_nd, mp)) {
7431 				qreply(q, mp);
7432 				TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7433 				    "udp_wput_other_end: q %p (%S)", q, "get");
7434 				return;
7435 			}
7436 			break;
7437 		case _SIOCSOCKFALLBACK:
7438 			/*
7439 			 * Either sockmod is about to be popped and the
7440 			 * socket would now be treated as a plain stream,
7441 			 * or a module is about to be pushed so we could
7442 			 * no longer use read-side synchronous stream.
7443 			 * Drain any queued data and disable direct sockfs
7444 			 * interface from now on.
7445 			 */
7446 			if (!udp->udp_issocket) {
7447 				DB_TYPE(mp) = M_IOCNAK;
7448 				iocp->ioc_error = EINVAL;
7449 			} else {
7450 				udp->udp_issocket = B_FALSE;
7451 				if (udp->udp_direct_sockfs) {
7452 					/*
7453 					 * Disable read-side synchronous
7454 					 * stream interface and drain any
7455 					 * queued data.
7456 					 */
7457 					udp_rcv_drain(RD(q), udp,
7458 					    B_FALSE);
7459 					ASSERT(!udp->udp_direct_sockfs);
7460 					UDP_STAT(us, udp_sock_fallback);
7461 				}
7462 				DB_TYPE(mp) = M_IOCACK;
7463 				iocp->ioc_error = 0;
7464 			}
7465 			iocp->ioc_count = 0;
7466 			iocp->ioc_rval = 0;
7467 			qreply(q, mp);
7468 			return;
7469 		default:
7470 			break;
7471 		}
7472 		break;
7473 	case M_IOCDATA:
7474 		udp_wput_iocdata(q, mp);
7475 		TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7476 		    "udp_wput_other_end: q %p (%S)", q, "iocdata");
7477 		return;
7478 	default:
7479 		/* Unrecognized messages are passed through without change. */
7480 		break;
7481 	}
7482 	TRACE_2(TR_FAC_UDP, TR_UDP_WPUT_OTHER_END,
7483 	    "udp_wput_other_end: q %p (%S)", q, "end");
7484 	ip_output(connp, mp, q, IP_WPUT);
7485 }
7486 
7487 /*
7488  * udp_wput_iocdata is called by udp_wput_other to handle all M_IOCDATA
7489  * messages.
7490  */
7491 static void
7492 udp_wput_iocdata(queue_t *q, mblk_t *mp)
7493 {
7494 	mblk_t	*mp1;
7495 	STRUCT_HANDLE(strbuf, sb);
7496 	uint16_t port;
7497 	in6_addr_t	v6addr;
7498 	ipaddr_t	v4addr;
7499 	uint32_t	flowinfo = 0;
7500 	int		addrlen;
7501 	udp_t		*udp = Q_TO_UDP(q);
7502 
7503 	/* Make sure it is one of ours. */
7504 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7505 	case TI_GETMYNAME:
7506 	case TI_GETPEERNAME:
7507 		break;
7508 	default:
7509 		ip_output(udp->udp_connp, mp, q, IP_WPUT);
7510 		return;
7511 	}
7512 
7513 	switch (mi_copy_state(q, mp, &mp1)) {
7514 	case -1:
7515 		return;
7516 	case MI_COPY_CASE(MI_COPY_IN, 1):
7517 		break;
7518 	case MI_COPY_CASE(MI_COPY_OUT, 1):
7519 		/*
7520 		 * The address has been copied out, so now
7521 		 * copyout the strbuf.
7522 		 */
7523 		mi_copyout(q, mp);
7524 		return;
7525 	case MI_COPY_CASE(MI_COPY_OUT, 2):
7526 		/*
7527 		 * The address and strbuf have been copied out.
7528 		 * We're done, so just acknowledge the original
7529 		 * M_IOCTL.
7530 		 */
7531 		mi_copy_done(q, mp, 0);
7532 		return;
7533 	default:
7534 		/*
7535 		 * Something strange has happened, so acknowledge
7536 		 * the original M_IOCTL with an EPROTO error.
7537 		 */
7538 		mi_copy_done(q, mp, EPROTO);
7539 		return;
7540 	}
7541 
7542 	/*
7543 	 * Now we have the strbuf structure for TI_GETMYNAME
7544 	 * and TI_GETPEERNAME.  Next we copyout the requested
7545 	 * address and then we'll copyout the strbuf.
7546 	 */
7547 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
7548 	    (void *)mp1->b_rptr);
7549 	if (udp->udp_family == AF_INET)
7550 		addrlen = sizeof (sin_t);
7551 	else
7552 		addrlen = sizeof (sin6_t);
7553 
7554 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
7555 		mi_copy_done(q, mp, EINVAL);
7556 		return;
7557 	}
7558 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
7559 	case TI_GETMYNAME:
7560 		if (udp->udp_family == AF_INET) {
7561 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7562 			if (!IN6_IS_ADDR_V4MAPPED_ANY(&udp->udp_v6src) &&
7563 			    !IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7564 				v4addr = V4_PART_OF_V6(udp->udp_v6src);
7565 			} else {
7566 				/*
7567 				 * INADDR_ANY
7568 				 * udp_v6src is not set, we might be bound to
7569 				 * broadcast/multicast. Use udp_bound_v6src as
7570 				 * local address instead (that could
7571 				 * also still be INADDR_ANY)
7572 				 */
7573 				v4addr = V4_PART_OF_V6(udp->udp_bound_v6src);
7574 			}
7575 		} else {
7576 			/* udp->udp_family == AF_INET6 */
7577 			if (!IN6_IS_ADDR_UNSPECIFIED(&udp->udp_v6src)) {
7578 				v6addr = udp->udp_v6src;
7579 			} else {
7580 				/*
7581 				 * UNSPECIFIED
7582 				 * udp_v6src is not set, we might be bound to
7583 				 * broadcast/multicast. Use udp_bound_v6src as
7584 				 * local address instead (that could
7585 				 * also still be UNSPECIFIED)
7586 				 */
7587 				v6addr = udp->udp_bound_v6src;
7588 			}
7589 		}
7590 		port = udp->udp_port;
7591 		break;
7592 	case TI_GETPEERNAME:
7593 		if (udp->udp_state != TS_DATA_XFER) {
7594 			mi_copy_done(q, mp, ENOTCONN);
7595 			return;
7596 		}
7597 		if (udp->udp_family == AF_INET) {
7598 			ASSERT(udp->udp_ipversion == IPV4_VERSION);
7599 			v4addr = V4_PART_OF_V6(udp->udp_v6dst);
7600 		} else {
7601 			/* udp->udp_family == AF_INET6) */
7602 			v6addr = udp->udp_v6dst;
7603 			flowinfo = udp->udp_flowinfo;
7604 		}
7605 		port = udp->udp_dstport;
7606 		break;
7607 	default:
7608 		mi_copy_done(q, mp, EPROTO);
7609 		return;
7610 	}
7611 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
7612 	if (!mp1)
7613 		return;
7614 
7615 	if (udp->udp_family == AF_INET) {
7616 		sin_t *sin;
7617 
7618 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
7619 		sin = (sin_t *)mp1->b_rptr;
7620 		mp1->b_wptr = (uchar_t *)&sin[1];
7621 		*sin = sin_null;
7622 		sin->sin_family = AF_INET;
7623 		sin->sin_addr.s_addr = v4addr;
7624 		sin->sin_port = port;
7625 	} else {
7626 		/* udp->udp_family == AF_INET6 */
7627 		sin6_t *sin6;
7628 
7629 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
7630 		sin6 = (sin6_t *)mp1->b_rptr;
7631 		mp1->b_wptr = (uchar_t *)&sin6[1];
7632 		*sin6 = sin6_null;
7633 		sin6->sin6_family = AF_INET6;
7634 		sin6->sin6_flowinfo = flowinfo;
7635 		sin6->sin6_addr = v6addr;
7636 		sin6->sin6_port = port;
7637 	}
7638 	/* Copy out the address */
7639 	mi_copyout(q, mp);
7640 }
7641 
7642 
7643 static int
7644 udp_unitdata_opt_process(queue_t *q, mblk_t *mp, int *errorp,
7645     udpattrs_t *udpattrs)
7646 {
7647 	struct T_unitdata_req *udreqp;
7648 	int is_absreq_failure;
7649 	cred_t *cr;
7650 	conn_t	*connp = Q_TO_CONN(q);
7651 
7652 	ASSERT(((t_primp_t)mp->b_rptr)->type);
7653 
7654 	cr = DB_CREDDEF(mp, connp->conn_cred);
7655 
7656 	udreqp = (struct T_unitdata_req *)mp->b_rptr;
7657 
7658 	*errorp = tpi_optcom_buf(q, mp, &udreqp->OPT_length,
7659 	    udreqp->OPT_offset, cr, &udp_opt_obj,
7660 	    udpattrs, &is_absreq_failure);
7661 
7662 	if (*errorp != 0) {
7663 		/*
7664 		 * Note: No special action needed in this
7665 		 * module for "is_absreq_failure"
7666 		 */
7667 		return (-1);		/* failure */
7668 	}
7669 	ASSERT(is_absreq_failure == 0);
7670 	return (0);	/* success */
7671 }
7672 
7673 void
7674 udp_ddi_init(void)
7675 {
7676 	udp_max_optsize = optcom_max_optsize(udp_opt_obj.odb_opt_des_arr,
7677 	    udp_opt_obj.odb_opt_arr_cnt);
7678 
7679 	/*
7680 	 * We want to be informed each time a stack is created or
7681 	 * destroyed in the kernel, so we can maintain the
7682 	 * set of udp_stack_t's.
7683 	 */
7684 	netstack_register(NS_UDP, udp_stack_init, NULL, udp_stack_fini);
7685 }
7686 
7687 void
7688 udp_ddi_destroy(void)
7689 {
7690 	netstack_unregister(NS_UDP);
7691 }
7692 
7693 /*
7694  * Initialize the UDP stack instance.
7695  */
7696 static void *
7697 udp_stack_init(netstackid_t stackid, netstack_t *ns)
7698 {
7699 	udp_stack_t	*us;
7700 	udpparam_t	*pa;
7701 	int		i;
7702 
7703 	us = (udp_stack_t *)kmem_zalloc(sizeof (*us), KM_SLEEP);
7704 	us->us_netstack = ns;
7705 
7706 	us->us_num_epriv_ports = UDP_NUM_EPRIV_PORTS;
7707 	us->us_epriv_ports[0] = 2049;
7708 	us->us_epriv_ports[1] = 4045;
7709 
7710 	/*
7711 	 * The smallest anonymous port in the priviledged port range which UDP
7712 	 * looks for free port.  Use in the option UDP_ANONPRIVBIND.
7713 	 */
7714 	us->us_min_anonpriv_port = 512;
7715 
7716 	us->us_bind_fanout_size = udp_bind_fanout_size;
7717 
7718 	/* Roundup variable that might have been modified in /etc/system */
7719 	if (us->us_bind_fanout_size & (us->us_bind_fanout_size - 1)) {
7720 		/* Not a power of two. Round up to nearest power of two */
7721 		for (i = 0; i < 31; i++) {
7722 			if (us->us_bind_fanout_size < (1 << i))
7723 				break;
7724 		}
7725 		us->us_bind_fanout_size = 1 << i;
7726 	}
7727 	us->us_bind_fanout = kmem_zalloc(us->us_bind_fanout_size *
7728 	    sizeof (udp_fanout_t), KM_SLEEP);
7729 	for (i = 0; i < us->us_bind_fanout_size; i++) {
7730 		mutex_init(&us->us_bind_fanout[i].uf_lock, NULL, MUTEX_DEFAULT,
7731 		    NULL);
7732 	}
7733 
7734 	pa = (udpparam_t *)kmem_alloc(sizeof (udp_param_arr), KM_SLEEP);
7735 
7736 	us->us_param_arr = pa;
7737 	bcopy(udp_param_arr, us->us_param_arr, sizeof (udp_param_arr));
7738 
7739 	(void) udp_param_register(&us->us_nd,
7740 	    us->us_param_arr, A_CNT(udp_param_arr));
7741 
7742 	us->us_kstat = udp_kstat2_init(stackid, &us->us_statistics);
7743 	us->us_mibkp = udp_kstat_init(stackid);
7744 	return (us);
7745 }
7746 
7747 /*
7748  * Free the UDP stack instance.
7749  */
7750 static void
7751 udp_stack_fini(netstackid_t stackid, void *arg)
7752 {
7753 	udp_stack_t *us = (udp_stack_t *)arg;
7754 	int i;
7755 
7756 	for (i = 0; i < us->us_bind_fanout_size; i++) {
7757 		mutex_destroy(&us->us_bind_fanout[i].uf_lock);
7758 	}
7759 
7760 	kmem_free(us->us_bind_fanout, us->us_bind_fanout_size *
7761 	    sizeof (udp_fanout_t));
7762 
7763 	us->us_bind_fanout = NULL;
7764 
7765 	nd_free(&us->us_nd);
7766 	kmem_free(us->us_param_arr, sizeof (udp_param_arr));
7767 	us->us_param_arr = NULL;
7768 
7769 	udp_kstat_fini(stackid, us->us_mibkp);
7770 	us->us_mibkp = NULL;
7771 
7772 	udp_kstat2_fini(stackid, us->us_kstat);
7773 	us->us_kstat = NULL;
7774 	bzero(&us->us_statistics, sizeof (us->us_statistics));
7775 	kmem_free(us, sizeof (*us));
7776 }
7777 
7778 static void *
7779 udp_kstat2_init(netstackid_t stackid, udp_stat_t *us_statisticsp)
7780 {
7781 	kstat_t *ksp;
7782 
7783 	udp_stat_t template = {
7784 		{ "udp_ip_send",		KSTAT_DATA_UINT64 },
7785 		{ "udp_ip_ire_send",		KSTAT_DATA_UINT64 },
7786 		{ "udp_ire_null",		KSTAT_DATA_UINT64 },
7787 		{ "udp_drain",			KSTAT_DATA_UINT64 },
7788 		{ "udp_sock_fallback",		KSTAT_DATA_UINT64 },
7789 		{ "udp_rrw_busy",		KSTAT_DATA_UINT64 },
7790 		{ "udp_rrw_msgcnt",		KSTAT_DATA_UINT64 },
7791 		{ "udp_out_sw_cksum",		KSTAT_DATA_UINT64 },
7792 		{ "udp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
7793 		{ "udp_out_opt",		KSTAT_DATA_UINT64 },
7794 		{ "udp_out_err_notconn",	KSTAT_DATA_UINT64 },
7795 		{ "udp_out_err_output",		KSTAT_DATA_UINT64 },
7796 		{ "udp_out_err_tudr",		KSTAT_DATA_UINT64 },
7797 		{ "udp_in_pktinfo",		KSTAT_DATA_UINT64 },
7798 		{ "udp_in_recvdstaddr",		KSTAT_DATA_UINT64 },
7799 		{ "udp_in_recvopts",		KSTAT_DATA_UINT64 },
7800 		{ "udp_in_recvif",		KSTAT_DATA_UINT64 },
7801 		{ "udp_in_recvslla",		KSTAT_DATA_UINT64 },
7802 		{ "udp_in_recvucred",		KSTAT_DATA_UINT64 },
7803 		{ "udp_in_recvttl",		KSTAT_DATA_UINT64 },
7804 		{ "udp_in_recvhopopts",		KSTAT_DATA_UINT64 },
7805 		{ "udp_in_recvhoplimit",	KSTAT_DATA_UINT64 },
7806 		{ "udp_in_recvdstopts",		KSTAT_DATA_UINT64 },
7807 		{ "udp_in_recvrtdstopts",	KSTAT_DATA_UINT64 },
7808 		{ "udp_in_recvrthdr",		KSTAT_DATA_UINT64 },
7809 		{ "udp_in_recvpktinfo",		KSTAT_DATA_UINT64 },
7810 		{ "udp_in_recvtclass",		KSTAT_DATA_UINT64 },
7811 		{ "udp_in_timestamp",		KSTAT_DATA_UINT64 },
7812 #ifdef DEBUG
7813 		{ "udp_data_conn",		KSTAT_DATA_UINT64 },
7814 		{ "udp_data_notconn",		KSTAT_DATA_UINT64 },
7815 #endif
7816 	};
7817 
7818 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, "udpstat", "net",
7819 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
7820 	    KSTAT_FLAG_VIRTUAL, stackid);
7821 
7822 	if (ksp == NULL)
7823 		return (NULL);
7824 
7825 	bcopy(&template, us_statisticsp, sizeof (template));
7826 	ksp->ks_data = (void *)us_statisticsp;
7827 	ksp->ks_private = (void *)(uintptr_t)stackid;
7828 
7829 	kstat_install(ksp);
7830 	return (ksp);
7831 }
7832 
7833 static void
7834 udp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
7835 {
7836 	if (ksp != NULL) {
7837 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
7838 		kstat_delete_netstack(ksp, stackid);
7839 	}
7840 }
7841 
7842 static void *
7843 udp_kstat_init(netstackid_t stackid)
7844 {
7845 	kstat_t	*ksp;
7846 
7847 	udp_named_kstat_t template = {
7848 		{ "inDatagrams",	KSTAT_DATA_UINT64, 0 },
7849 		{ "inErrors",		KSTAT_DATA_UINT32, 0 },
7850 		{ "outDatagrams",	KSTAT_DATA_UINT64, 0 },
7851 		{ "entrySize",		KSTAT_DATA_INT32, 0 },
7852 		{ "entry6Size",		KSTAT_DATA_INT32, 0 },
7853 		{ "outErrors",		KSTAT_DATA_UINT32, 0 },
7854 	};
7855 
7856 	ksp = kstat_create_netstack(UDP_MOD_NAME, 0, UDP_MOD_NAME, "mib2",
7857 	    KSTAT_TYPE_NAMED,
7858 	    NUM_OF_FIELDS(udp_named_kstat_t), 0, stackid);
7859 
7860 	if (ksp == NULL || ksp->ks_data == NULL)
7861 		return (NULL);
7862 
7863 	template.entrySize.value.ui32 = sizeof (mib2_udpEntry_t);
7864 	template.entry6Size.value.ui32 = sizeof (mib2_udp6Entry_t);
7865 
7866 	bcopy(&template, ksp->ks_data, sizeof (template));
7867 	ksp->ks_update = udp_kstat_update;
7868 	ksp->ks_private = (void *)(uintptr_t)stackid;
7869 
7870 	kstat_install(ksp);
7871 	return (ksp);
7872 }
7873 
7874 static void
7875 udp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
7876 {
7877 	if (ksp != NULL) {
7878 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
7879 		kstat_delete_netstack(ksp, stackid);
7880 	}
7881 }
7882 
7883 static int
7884 udp_kstat_update(kstat_t *kp, int rw)
7885 {
7886 	udp_named_kstat_t *udpkp;
7887 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
7888 	netstack_t	*ns;
7889 	udp_stack_t	*us;
7890 
7891 	if ((kp == NULL) || (kp->ks_data == NULL))
7892 		return (EIO);
7893 
7894 	if (rw == KSTAT_WRITE)
7895 		return (EACCES);
7896 
7897 	ns = netstack_find_by_stackid(stackid);
7898 	if (ns == NULL)
7899 		return (-1);
7900 	us = ns->netstack_udp;
7901 	if (us == NULL) {
7902 		netstack_rele(ns);
7903 		return (-1);
7904 	}
7905 	udpkp = (udp_named_kstat_t *)kp->ks_data;
7906 
7907 	udpkp->inDatagrams.value.ui64 =	us->us_udp_mib.udpHCInDatagrams;
7908 	udpkp->inErrors.value.ui32 =	us->us_udp_mib.udpInErrors;
7909 	udpkp->outDatagrams.value.ui64 = us->us_udp_mib.udpHCOutDatagrams;
7910 	udpkp->outErrors.value.ui32 =	us->us_udp_mib.udpOutErrors;
7911 	netstack_rele(ns);
7912 	return (0);
7913 }
7914 
7915 /*
7916  * Read-side synchronous stream info entry point, called as a
7917  * result of handling certain STREAMS ioctl operations.
7918  */
7919 static int
7920 udp_rinfop(queue_t *q, infod_t *dp)
7921 {
7922 	mblk_t	*mp;
7923 	uint_t	cmd = dp->d_cmd;
7924 	int	res = 0;
7925 	int	error = 0;
7926 	udp_t	*udp = Q_TO_UDP(q);
7927 	struct stdata *stp = STREAM(q);
7928 
7929 	mutex_enter(&udp->udp_drain_lock);
7930 	/* If shutdown on read has happened, return nothing */
7931 	mutex_enter(&stp->sd_lock);
7932 	if (stp->sd_flag & STREOF) {
7933 		mutex_exit(&stp->sd_lock);
7934 		goto done;
7935 	}
7936 	mutex_exit(&stp->sd_lock);
7937 
7938 	if ((mp = udp->udp_rcv_list_head) == NULL)
7939 		goto done;
7940 
7941 	ASSERT(DB_TYPE(mp) != M_DATA && mp->b_cont != NULL);
7942 
7943 	if (cmd & INFOD_COUNT) {
7944 		/*
7945 		 * Return the number of messages.
7946 		 */
7947 		dp->d_count += udp->udp_rcv_msgcnt;
7948 		res |= INFOD_COUNT;
7949 	}
7950 	if (cmd & INFOD_BYTES) {
7951 		/*
7952 		 * Return size of all data messages.
7953 		 */
7954 		dp->d_bytes += udp->udp_rcv_cnt;
7955 		res |= INFOD_BYTES;
7956 	}
7957 	if (cmd & INFOD_FIRSTBYTES) {
7958 		/*
7959 		 * Return size of first data message.
7960 		 */
7961 		dp->d_bytes = msgdsize(mp);
7962 		res |= INFOD_FIRSTBYTES;
7963 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
7964 	}
7965 	if (cmd & INFOD_COPYOUT) {
7966 		mblk_t *mp1 = mp->b_cont;
7967 		int n;
7968 		/*
7969 		 * Return data contents of first message.
7970 		 */
7971 		ASSERT(DB_TYPE(mp1) == M_DATA);
7972 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
7973 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
7974 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
7975 			    UIO_READ, dp->d_uiop)) != 0) {
7976 				goto done;
7977 			}
7978 			mp1 = mp1->b_cont;
7979 		}
7980 		res |= INFOD_COPYOUT;
7981 		dp->d_cmd &= ~INFOD_COPYOUT;
7982 	}
7983 done:
7984 	mutex_exit(&udp->udp_drain_lock);
7985 
7986 	dp->d_res |= res;
7987 
7988 	return (error);
7989 }
7990 
7991 /*
7992  * Read-side synchronous stream entry point.  This is called as a result
7993  * of recv/read operation done at sockfs, and is guaranteed to execute
7994  * outside of the interrupt thread context.  It returns a single datagram
7995  * (b_cont chain of T_UNITDATA_IND plus data) to the upper layer.
7996  */
7997 static int
7998 udp_rrw(queue_t *q, struiod_t *dp)
7999 {
8000 	mblk_t	*mp;
8001 	udp_t	*udp = Q_TO_UDP(q);
8002 	udp_stack_t *us = udp->udp_us;
8003 
8004 	/*
8005 	 * Dequeue datagram from the head of the list and return
8006 	 * it to caller; also ensure that RSLEEP sd_wakeq flag is
8007 	 * set/cleared depending on whether or not there's data
8008 	 * remaining in the list.
8009 	 */
8010 	mutex_enter(&udp->udp_drain_lock);
8011 	if (!udp->udp_direct_sockfs) {
8012 		mutex_exit(&udp->udp_drain_lock);
8013 		UDP_STAT(us, udp_rrw_busy);
8014 		return (EBUSY);
8015 	}
8016 	if ((mp = udp->udp_rcv_list_head) != NULL) {
8017 		uint_t size = msgdsize(mp);
8018 
8019 		/* Last datagram in the list? */
8020 		if ((udp->udp_rcv_list_head = mp->b_next) == NULL)
8021 			udp->udp_rcv_list_tail = NULL;
8022 		mp->b_next = NULL;
8023 
8024 		udp->udp_rcv_cnt -= size;
8025 		udp->udp_rcv_msgcnt--;
8026 		UDP_STAT(us, udp_rrw_msgcnt);
8027 
8028 		/* No longer flow-controlling? */
8029 		if (udp->udp_rcv_cnt < udp->udp_rcv_hiwat &&
8030 		    udp->udp_rcv_msgcnt < udp->udp_rcv_hiwat)
8031 			udp->udp_drain_qfull = B_FALSE;
8032 	}
8033 	if (udp->udp_rcv_list_head == NULL) {
8034 		/*
8035 		 * Either we just dequeued the last datagram or
8036 		 * we get here from sockfs and have nothing to
8037 		 * return; in this case clear RSLEEP.
8038 		 */
8039 		ASSERT(udp->udp_rcv_cnt == 0);
8040 		ASSERT(udp->udp_rcv_msgcnt == 0);
8041 		ASSERT(udp->udp_rcv_list_tail == NULL);
8042 		STR_WAKEUP_CLEAR(STREAM(q));
8043 	} else {
8044 		/*
8045 		 * More data follows; we need udp_rrw() to be
8046 		 * called in future to pick up the rest.
8047 		 */
8048 		STR_WAKEUP_SET(STREAM(q));
8049 	}
8050 	mutex_exit(&udp->udp_drain_lock);
8051 	dp->d_mp = mp;
8052 	return (0);
8053 }
8054 
8055 /*
8056  * Enqueue a completely-built T_UNITDATA_IND message into the receive
8057  * list; this is typically executed within the interrupt thread context
8058  * and so we do things as quickly as possible.
8059  */
8060 static void
8061 udp_rcv_enqueue(queue_t *q, udp_t *udp, mblk_t *mp, uint_t pkt_len)
8062 {
8063 	ASSERT(q == RD(q));
8064 	ASSERT(pkt_len == msgdsize(mp));
8065 	ASSERT(mp->b_next == NULL && mp->b_cont != NULL);
8066 	ASSERT(DB_TYPE(mp) == M_PROTO && DB_TYPE(mp->b_cont) == M_DATA);
8067 	ASSERT(MBLKL(mp) >= sizeof (struct T_unitdata_ind));
8068 
8069 	mutex_enter(&udp->udp_drain_lock);
8070 	/*
8071 	 * Wake up and signal the receiving app; it is okay to do this
8072 	 * before enqueueing the mp because we are holding the drain lock.
8073 	 * One of the advantages of synchronous stream is the ability for
8074 	 * us to find out when the application performs a read on the
8075 	 * socket by way of udp_rrw() entry point being called.  We need
8076 	 * to generate SIGPOLL/SIGIO for each received data in the case
8077 	 * of asynchronous socket just as in the strrput() case.  However,
8078 	 * we only wake the application up when necessary, i.e. during the
8079 	 * first enqueue.  When udp_rrw() is called, we send up a single
8080 	 * datagram upstream and call STR_WAKEUP_SET() again when there
8081 	 * are still data remaining in our receive queue.
8082 	 */
8083 	if (udp->udp_rcv_list_head == NULL) {
8084 		STR_WAKEUP_SET(STREAM(q));
8085 		udp->udp_rcv_list_head = mp;
8086 	} else {
8087 		udp->udp_rcv_list_tail->b_next = mp;
8088 	}
8089 	udp->udp_rcv_list_tail = mp;
8090 	udp->udp_rcv_cnt += pkt_len;
8091 	udp->udp_rcv_msgcnt++;
8092 
8093 	/* Need to flow-control? */
8094 	if (udp->udp_rcv_cnt >= udp->udp_rcv_hiwat ||
8095 	    udp->udp_rcv_msgcnt >= udp->udp_rcv_hiwat)
8096 		udp->udp_drain_qfull = B_TRUE;
8097 
8098 	/* Update poll events and send SIGPOLL/SIGIO if necessary */
8099 	STR_SENDSIG(STREAM(q));
8100 	mutex_exit(&udp->udp_drain_lock);
8101 }
8102 
8103 /*
8104  * Drain the contents of receive list to the module upstream; we do
8105  * this during close or when we fallback to the slow mode due to
8106  * sockmod being popped or a module being pushed on top of us.
8107  */
8108 static void
8109 udp_rcv_drain(queue_t *q, udp_t *udp, boolean_t closing)
8110 {
8111 	mblk_t *mp;
8112 	udp_stack_t *us = udp->udp_us;
8113 
8114 	ASSERT(q == RD(q));
8115 
8116 	mutex_enter(&udp->udp_drain_lock);
8117 	/*
8118 	 * There is no race with a concurrent udp_input() sending
8119 	 * up packets using putnext() after we have cleared the
8120 	 * udp_direct_sockfs flag but before we have completed
8121 	 * sending up the packets in udp_rcv_list, since we are
8122 	 * either a writer or we have quiesced the conn.
8123 	 */
8124 	udp->udp_direct_sockfs = B_FALSE;
8125 	mutex_exit(&udp->udp_drain_lock);
8126 
8127 	if (udp->udp_rcv_list_head != NULL)
8128 		UDP_STAT(us, udp_drain);
8129 
8130 	/*
8131 	 * Send up everything via putnext(); note here that we
8132 	 * don't need the udp_drain_lock to protect us since
8133 	 * nothing can enter udp_rrw() and that we currently
8134 	 * have exclusive access to this udp.
8135 	 */
8136 	while ((mp = udp->udp_rcv_list_head) != NULL) {
8137 		udp->udp_rcv_list_head = mp->b_next;
8138 		mp->b_next = NULL;
8139 		udp->udp_rcv_cnt -= msgdsize(mp);
8140 		udp->udp_rcv_msgcnt--;
8141 		if (closing) {
8142 			freemsg(mp);
8143 		} else {
8144 			putnext(q, mp);
8145 		}
8146 	}
8147 	ASSERT(udp->udp_rcv_cnt == 0);
8148 	ASSERT(udp->udp_rcv_msgcnt == 0);
8149 	ASSERT(udp->udp_rcv_list_head == NULL);
8150 	udp->udp_rcv_list_tail = NULL;
8151 	udp->udp_drain_qfull = B_FALSE;
8152 }
8153 
8154 static size_t
8155 udp_set_rcv_hiwat(udp_t *udp, size_t size)
8156 {
8157 	udp_stack_t *us = udp->udp_us;
8158 
8159 	/* We add a bit of extra buffering */
8160 	size += size >> 1;
8161 	if (size > us->us_max_buf)
8162 		size = us->us_max_buf;
8163 
8164 	udp->udp_rcv_hiwat = size;
8165 	return (size);
8166 }
8167 
8168 /*
8169  * For the lower queue so that UDP can be a dummy mux.
8170  * Nobody should be sending
8171  * packets up this stream
8172  */
8173 static void
8174 udp_lrput(queue_t *q, mblk_t *mp)
8175 {
8176 	mblk_t *mp1;
8177 
8178 	switch (mp->b_datap->db_type) {
8179 	case M_FLUSH:
8180 		/* Turn around */
8181 		if (*mp->b_rptr & FLUSHW) {
8182 			*mp->b_rptr &= ~FLUSHR;
8183 			qreply(q, mp);
8184 			return;
8185 		}
8186 		break;
8187 	}
8188 	/* Could receive messages that passed through ar_rput */
8189 	for (mp1 = mp; mp1; mp1 = mp1->b_cont)
8190 		mp1->b_prev = mp1->b_next = NULL;
8191 	freemsg(mp);
8192 }
8193 
8194 /*
8195  * For the lower queue so that UDP can be a dummy mux.
8196  * Nobody should be sending packets down this stream.
8197  */
8198 /* ARGSUSED */
8199 void
8200 udp_lwput(queue_t *q, mblk_t *mp)
8201 {
8202 	freemsg(mp);
8203 }
8204