xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision ce67301fa82625f5594913e8ab6abf9e0aa461d0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsun.h>
29 #include <sys/strsubr.h>
30 #include <sys/debug.h>
31 #include <sys/sdt.h>
32 #include <sys/cmn_err.h>
33 #include <sys/tihdr.h>
34 
35 #include <inet/common.h>
36 #include <inet/optcom.h>
37 #include <inet/ip.h>
38 #include <inet/ip_if.h>
39 #include <inet/ip_impl.h>
40 #include <inet/tcp.h>
41 #include <inet/tcp_impl.h>
42 #include <inet/ipsec_impl.h>
43 #include <inet/ipclassifier.h>
44 #include <inet/ipp_common.h>
45 #include <inet/ip_if.h>
46 
47 /*
48  * This file implements TCP fusion - a protocol-less data path for TCP
49  * loopback connections.  The fusion of two local TCP endpoints occurs
50  * at connection establishment time.  Various conditions (see details
51  * in tcp_fuse()) need to be met for fusion to be successful.  If it
52  * fails, we fall back to the regular TCP data path; if it succeeds,
53  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
54  * tcp_fuse_output() enqueues application data directly onto the peer's
55  * receive queue; no protocol processing is involved.
56  *
57  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
58  * One of the requirements for fusion to succeed is that both endpoints
59  * need to be using the same squeue.  This ensures that neither side
60  * can disappear while the other side is still sending data. Flow
61  * control information is manipulated outside the squeue, so the
62  * tcp_non_sq_lock must be held when touching tcp_flow_stopped.
63  */
64 
65 /*
66  * Setting this to false means we disable fusion altogether and
67  * loopback connections would go through the protocol paths.
68  */
69 boolean_t do_tcp_fusion = B_TRUE;
70 
71 /*
72  * Return true if this connection needs some IP functionality
73  */
74 static boolean_t
75 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
76 {
77 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
78 
79 	/*
80 	 * If ire is not cached, do not use fusion
81 	 */
82 	if (tcp->tcp_connp->conn_ire_cache == NULL) {
83 		/*
84 		 * There is no need to hold conn_lock here because when called
85 		 * from tcp_fuse() there can be no window where conn_ire_cache
86 		 * can change. This is not true when called from
87 		 * tcp_fuse_output() as conn_ire_cache can become null just
88 		 * after the check. It will be necessary to recheck for a NULL
89 		 * conn_ire_cache in tcp_fuse_output() to avoid passing a
90 		 * stale ill pointer to FW_HOOKS.
91 		 */
92 		return (B_TRUE);
93 	}
94 	if (tcp->tcp_ipversion == IPV4_VERSION) {
95 		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
96 			return (B_TRUE);
97 		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
98 			return (B_TRUE);
99 		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
100 			return (B_TRUE);
101 	} else {
102 		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
103 			return (B_TRUE);
104 		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
105 			return (B_TRUE);
106 		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
107 			return (B_TRUE);
108 	}
109 	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
110 		return (B_TRUE);
111 	return (B_FALSE);
112 }
113 
114 
115 /*
116  * This routine gets called by the eager tcp upon changing state from
117  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
118  * and the active connect tcp such that the regular tcp processings
119  * may be bypassed under allowable circumstances.  Because the fusion
120  * requires both endpoints to be in the same squeue, it does not work
121  * for simultaneous active connects because there is no easy way to
122  * switch from one squeue to another once the connection is created.
123  * This is different from the eager tcp case where we assign it the
124  * same squeue as the one given to the active connect tcp during open.
125  */
126 void
127 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
128 {
129 	conn_t *peer_connp, *connp = tcp->tcp_connp;
130 	tcp_t *peer_tcp;
131 	tcp_stack_t	*tcps = tcp->tcp_tcps;
132 	netstack_t	*ns;
133 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
134 
135 	ASSERT(!tcp->tcp_fused);
136 	ASSERT(tcp->tcp_loopback);
137 	ASSERT(tcp->tcp_loopback_peer == NULL);
138 	/*
139 	 * We need to inherit q_hiwat of the listener tcp, but we can't
140 	 * really use tcp_listener since we get here after sending up
141 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
142 	 * at which point tcp_listener is cleared; this is why we use
143 	 * tcp_saved_listener.  The listener itself is guaranteed to be
144 	 * around until tcp_accept_finish() is called on this eager --
145 	 * this won't happen until we're done since we're inside the
146 	 * eager's perimeter now.
147 	 *
148 	 * We can also get called in the case were a connection needs
149 	 * to be re-fused. In this case tcp_saved_listener will be
150 	 * NULL but tcp_refuse will be true.
151 	 */
152 	ASSERT(tcp->tcp_saved_listener != NULL || tcp->tcp_refuse);
153 	/*
154 	 * Lookup peer endpoint; search for the remote endpoint having
155 	 * the reversed address-port quadruplet in ESTABLISHED state,
156 	 * which is guaranteed to be unique in the system.  Zone check
157 	 * is applied accordingly for loopback address, but not for
158 	 * local address since we want fusion to happen across Zones.
159 	 */
160 	if (tcp->tcp_ipversion == IPV4_VERSION) {
161 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
162 		    (ipha_t *)iphdr, tcph, ipst);
163 	} else {
164 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
165 		    (ip6_t *)iphdr, tcph, ipst);
166 	}
167 
168 	/*
169 	 * We can only proceed if peer exists, resides in the same squeue
170 	 * as our conn and is not raw-socket. We also restrict fusion to
171 	 * endpoints of the same type (STREAMS or non-STREAMS). The squeue
172 	 * assignment of this eager tcp was done earlier at the time of SYN
173 	 * processing in ip_fanout_tcp{_v6}.  Note that similar squeues by
174 	 * itself doesn't guarantee a safe condition to fuse, hence we perform
175 	 * additional tests below.
176 	 */
177 	ASSERT(peer_connp == NULL || peer_connp != connp);
178 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
179 	    !IPCL_IS_TCP(peer_connp) ||
180 	    IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
181 		if (peer_connp != NULL) {
182 			TCP_STAT(tcps, tcp_fusion_unqualified);
183 			CONN_DEC_REF(peer_connp);
184 		}
185 		return;
186 	}
187 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
188 
189 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
190 	ASSERT(peer_tcp->tcp_loopback_peer == NULL);
191 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
192 
193 	/*
194 	 * Due to IRE changes the peer and us might not agree on tcp_loopback.
195 	 * We bail in that case.
196 	 */
197 	if (!peer_tcp->tcp_loopback) {
198 		TCP_STAT(tcps, tcp_fusion_unqualified);
199 		CONN_DEC_REF(peer_connp);
200 		return;
201 	}
202 	/*
203 	 * Fuse the endpoints; we perform further checks against both
204 	 * tcp endpoints to ensure that a fusion is allowed to happen.
205 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
206 	 * IPQoS policy/kernel SSL exists. We also need to check if
207 	 * the connection is quiescent to cover the case when we are
208 	 * trying to re-enable fusion after IPobservability is turned off.
209 	 */
210 	ns = tcps->tcps_netstack;
211 	ipst = ns->netstack_ip;
212 
213 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
214 	    !tcp_loopback_needs_ip(tcp, ns) &&
215 	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
216 	    tcp->tcp_kssl_ent == NULL &&
217 	    tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL &&
218 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
219 		mblk_t *mp;
220 		queue_t *peer_rq = peer_tcp->tcp_rq;
221 
222 		ASSERT(!TCP_IS_DETACHED(peer_tcp));
223 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL ||
224 		    (!IPCL_IS_NONSTR(connp) && tcp->tcp_refuse));
225 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL ||
226 		    (!IPCL_IS_NONSTR(peer_connp) && peer_tcp->tcp_refuse));
227 		ASSERT(tcp->tcp_kssl_ctx == NULL);
228 
229 		/*
230 		 * We need to drain data on both endpoints during unfuse.
231 		 * If we need to send up SIGURG at the time of draining,
232 		 * we want to be sure that an mblk is readily available.
233 		 * This is why we pre-allocate the M_PCSIG mblks for both
234 		 * endpoints which will only be used during/after unfuse.
235 		 * The mblk might already exist if we are doing a re-fuse.
236 		 */
237 		if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
238 			ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));
239 
240 			if (tcp->tcp_fused_sigurg_mp == NULL) {
241 				if ((mp = allocb(1, BPRI_HI)) == NULL)
242 					goto failed;
243 				tcp->tcp_fused_sigurg_mp = mp;
244 			}
245 
246 			if (peer_tcp->tcp_fused_sigurg_mp == NULL) {
247 				if ((mp = allocb(1, BPRI_HI)) == NULL)
248 					goto failed;
249 				peer_tcp->tcp_fused_sigurg_mp = mp;
250 			}
251 
252 			if ((mp = allocb(sizeof (struct stroptions),
253 			    BPRI_HI)) == NULL)
254 				goto failed;
255 		}
256 
257 		/* Fuse both endpoints */
258 		peer_tcp->tcp_loopback_peer = tcp;
259 		tcp->tcp_loopback_peer = peer_tcp;
260 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
261 
262 		/*
263 		 * We never use regular tcp paths in fusion and should
264 		 * therefore clear tcp_unsent on both endpoints.  Having
265 		 * them set to non-zero values means asking for trouble
266 		 * especially after unfuse, where we may end up sending
267 		 * through regular tcp paths which expect xmit_list and
268 		 * friends to be correctly setup.
269 		 */
270 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
271 
272 		tcp_timers_stop(tcp);
273 		tcp_timers_stop(peer_tcp);
274 
275 		/*
276 		 * At this point we are a detached eager tcp and therefore
277 		 * don't have a queue assigned to us until accept happens.
278 		 * In the mean time the peer endpoint may immediately send
279 		 * us data as soon as fusion is finished, and we need to be
280 		 * able to flow control it in case it sends down huge amount
281 		 * of data while we're still detached.  To prevent that we
282 		 * inherit the listener's recv_hiwater value; this is temporary
283 		 * since we'll repeat the process in tcp_accept_finish().
284 		 */
285 		if (!tcp->tcp_refuse) {
286 			(void) tcp_fuse_set_rcv_hiwat(tcp,
287 			    tcp->tcp_saved_listener->tcp_recv_hiwater);
288 
289 			/*
290 			 * Set the stream head's write offset value to zero
291 			 * since we won't be needing any room for TCP/IP
292 			 * headers; tell it to not break up the writes (this
293 			 * would reduce the amount of work done by kmem); and
294 			 * configure our receive buffer. Note that we can only
295 			 * do this for the active connect tcp since our eager is
296 			 * still detached; it will be dealt with later in
297 			 * tcp_accept_finish().
298 			 */
299 			if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
300 				struct stroptions *stropt;
301 
302 				DB_TYPE(mp) = M_SETOPTS;
303 				mp->b_wptr += sizeof (*stropt);
304 
305 				stropt = (struct stroptions *)mp->b_rptr;
306 				stropt->so_flags = SO_MAXBLK|SO_WROFF|SO_HIWAT;
307 				stropt->so_maxblk = tcp_maxpsz_set(peer_tcp,
308 				    B_FALSE);
309 				stropt->so_wroff = 0;
310 
311 				/*
312 				 * Record the stream head's high water mark for
313 				 * peer endpoint; this is used for flow-control
314 				 * purposes in tcp_fuse_output().
315 				 */
316 				stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(
317 				    peer_tcp, peer_rq->q_hiwat);
318 
319 				/* Send the options up */
320 				putnext(peer_rq, mp);
321 			} else {
322 				struct sock_proto_props sopp;
323 
324 				/* The peer is a non-STREAMS end point */
325 				ASSERT(IPCL_IS_TCP(peer_connp));
326 
327 				(void) tcp_fuse_set_rcv_hiwat(tcp,
328 				    tcp->tcp_saved_listener->tcp_recv_hiwater);
329 
330 				sopp.sopp_flags = SOCKOPT_MAXBLK |
331 				    SOCKOPT_WROFF | SOCKOPT_RCVHIWAT;
332 				sopp.sopp_maxblk = tcp_maxpsz_set(peer_tcp,
333 				    B_FALSE);
334 				sopp.sopp_wroff = 0;
335 				sopp.sopp_rxhiwat = tcp_fuse_set_rcv_hiwat(
336 				    peer_tcp, peer_tcp->tcp_recv_hiwater);
337 				(*peer_connp->conn_upcalls->su_set_proto_props)
338 				    (peer_connp->conn_upper_handle, &sopp);
339 			}
340 		} else {
341 			/*
342 			 * Endpoints are being re-fused, so options will not
343 			 * be sent up. In case of STREAMS, free the stroptions
344 			 * mblk.
345 			 */
346 			if (!IPCL_IS_NONSTR(connp))
347 				freemsg(mp);
348 		}
349 		tcp->tcp_refuse = B_FALSE;
350 		peer_tcp->tcp_refuse = B_FALSE;
351 	} else {
352 		TCP_STAT(tcps, tcp_fusion_unqualified);
353 	}
354 	CONN_DEC_REF(peer_connp);
355 	return;
356 
357 failed:
358 	if (tcp->tcp_fused_sigurg_mp != NULL) {
359 		freeb(tcp->tcp_fused_sigurg_mp);
360 		tcp->tcp_fused_sigurg_mp = NULL;
361 	}
362 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
363 		freeb(peer_tcp->tcp_fused_sigurg_mp);
364 		peer_tcp->tcp_fused_sigurg_mp = NULL;
365 	}
366 	CONN_DEC_REF(peer_connp);
367 }
368 
369 /*
370  * Unfuse a previously-fused pair of tcp loopback endpoints.
371  */
372 void
373 tcp_unfuse(tcp_t *tcp)
374 {
375 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
376 	tcp_stack_t *tcps = tcp->tcp_tcps;
377 
378 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
379 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
380 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
381 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
382 
383 	/*
384 	 * Cancel any pending push timers.
385 	 */
386 	if (tcp->tcp_push_tid != 0) {
387 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
388 		tcp->tcp_push_tid = 0;
389 	}
390 	if (peer_tcp->tcp_push_tid != 0) {
391 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
392 		peer_tcp->tcp_push_tid = 0;
393 	}
394 
395 	/*
396 	 * Drain any pending data; Note that in case of a detached tcp, the
397 	 * draining will happen later after the tcp is unfused.  For non-
398 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
399 	 * If we have urgent data sitting in the receive list, we will
400 	 * need to send up a SIGURG signal first before draining the data.
401 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
402 	 * when called from tcp_rcv_drain().
403 	 */
404 	if (!TCP_IS_DETACHED(tcp)) {
405 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
406 		    &tcp->tcp_fused_sigurg_mp);
407 	}
408 	if (!TCP_IS_DETACHED(peer_tcp)) {
409 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
410 		    &peer_tcp->tcp_fused_sigurg_mp);
411 	}
412 
413 	/* Lift up any flow-control conditions */
414 	mutex_enter(&tcp->tcp_non_sq_lock);
415 	if (tcp->tcp_flow_stopped) {
416 		tcp_clrqfull(tcp);
417 		TCP_STAT(tcps, tcp_fusion_backenabled);
418 	}
419 	mutex_exit(&tcp->tcp_non_sq_lock);
420 
421 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
422 	if (peer_tcp->tcp_flow_stopped) {
423 		tcp_clrqfull(peer_tcp);
424 		TCP_STAT(tcps, tcp_fusion_backenabled);
425 	}
426 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
427 
428 	/*
429 	 * Update th_seq and th_ack in the header template
430 	 */
431 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
432 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
433 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
434 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
435 
436 	/* Unfuse the endpoints */
437 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
438 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
439 }
440 
441 /*
442  * Fusion output routine used to handle urgent data sent by STREAMS based
443  * endpoints. This routine is called by tcp_fuse_output() for handling
444  * non-M_DATA mblks.
445  */
446 void
447 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
448 {
449 	mblk_t *mp1;
450 	struct T_exdata_ind *tei;
451 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
452 	mblk_t *head, *prev_head = NULL;
453 	tcp_stack_t	*tcps = tcp->tcp_tcps;
454 
455 	ASSERT(tcp->tcp_fused);
456 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
457 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
458 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
459 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
460 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
461 
462 	/*
463 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
464 	 * Each occurence denotes a new urgent pointer.  For each new
465 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
466 	 * that it needs to go into urgent mode.  This is similar to the
467 	 * urgent data handling in the regular tcp.  We don't need to keep
468 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
469 	 * "advances" the urgent pointer for us.
470 	 *
471 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
472 	 * by a T_EXDATA_IND before being enqueued behind any existing data
473 	 * destined for the receiving app.  There is only a single urgent
474 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
475 	 * data arrives before the receiving app reads some existing urgent
476 	 * data, the previous marker is lost.  This behavior is emulated
477 	 * accordingly below, by removing any existing T_EXDATA_IND messages
478 	 * and essentially converting old urgent data into non-urgent.
479 	 */
480 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
481 	/* Let sender get out of urgent mode */
482 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
483 
484 	/*
485 	 * This flag indicates that a signal needs to be sent up.
486 	 * This flag will only get cleared once SIGURG is delivered and
487 	 * is not affected by the tcp_fused flag -- delivery will still
488 	 * happen even after an endpoint is unfused, to handle the case
489 	 * where the sending endpoint immediately closes/unfuses after
490 	 * sending urgent data and the accept is not yet finished.
491 	 */
492 	peer_tcp->tcp_fused_sigurg = B_TRUE;
493 
494 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
495 	DB_TYPE(mp) = M_PROTO;
496 	tei = (struct T_exdata_ind *)mp->b_rptr;
497 	tei->PRIM_type = T_EXDATA_IND;
498 	tei->MORE_flag = 0;
499 	mp->b_wptr = (uchar_t *)&tei[1];
500 
501 	TCP_STAT(tcps, tcp_fusion_urg);
502 	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
503 
504 	head = peer_tcp->tcp_rcv_list;
505 	while (head != NULL) {
506 		/*
507 		 * Remove existing T_EXDATA_IND, keep the data which follows
508 		 * it and relink our list.  Note that we don't modify the
509 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
510 		 */
511 		if (DB_TYPE(head) != M_DATA) {
512 			mp1 = head;
513 
514 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
515 			head = mp1->b_cont;
516 			mp1->b_cont = NULL;
517 			head->b_next = mp1->b_next;
518 			mp1->b_next = NULL;
519 			if (prev_head != NULL)
520 				prev_head->b_next = head;
521 			if (peer_tcp->tcp_rcv_list == mp1)
522 				peer_tcp->tcp_rcv_list = head;
523 			if (peer_tcp->tcp_rcv_last_head == mp1)
524 				peer_tcp->tcp_rcv_last_head = head;
525 			freeb(mp1);
526 		}
527 		prev_head = head;
528 		head = head->b_next;
529 	}
530 }
531 
532 /*
533  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
534  * If we are modifying any member that can be changed outside the squeue,
535  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
536  */
537 boolean_t
538 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
539 {
540 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
541 	boolean_t flow_stopped, peer_data_queued = B_FALSE;
542 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
543 	boolean_t push = B_TRUE;
544 	mblk_t *mp1 = mp;
545 	ill_t *ilp, *olp;
546 	ipif_t *iifp, *oifp;
547 	ipha_t *ipha;
548 	ip6_t *ip6h;
549 	tcph_t *tcph;
550 	uint_t ip_hdr_len;
551 	uint32_t seq;
552 	uint32_t recv_size = send_size;
553 	tcp_stack_t	*tcps = tcp->tcp_tcps;
554 	netstack_t	*ns = tcps->tcps_netstack;
555 	ip_stack_t	*ipst = ns->netstack_ip;
556 
557 	ASSERT(tcp->tcp_fused);
558 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
559 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
560 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
561 	    DB_TYPE(mp) == M_PCPROTO);
562 
563 	/* If this connection requires IP, unfuse and use regular path */
564 	if (tcp_loopback_needs_ip(tcp, ns) ||
565 	    tcp_loopback_needs_ip(peer_tcp, ns) ||
566 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst) ||
567 	    list_head(&ipst->ips_ipobs_cb_list) != NULL) {
568 		TCP_STAT(tcps, tcp_fusion_aborted);
569 		tcp->tcp_refuse = B_TRUE;
570 		peer_tcp->tcp_refuse = B_TRUE;
571 
572 		bcopy(peer_tcp->tcp_tcph, &tcp->tcp_saved_tcph,
573 		    sizeof (tcph_t));
574 		bcopy(tcp->tcp_tcph, &peer_tcp->tcp_saved_tcph,
575 		    sizeof (tcph_t));
576 		if (tcp->tcp_ipversion == IPV4_VERSION) {
577 			bcopy(peer_tcp->tcp_ipha, &tcp->tcp_saved_ipha,
578 			    sizeof (ipha_t));
579 			bcopy(tcp->tcp_ipha, &peer_tcp->tcp_saved_ipha,
580 			    sizeof (ipha_t));
581 		} else {
582 			bcopy(peer_tcp->tcp_ip6h, &tcp->tcp_saved_ip6h,
583 			    sizeof (ip6_t));
584 			bcopy(tcp->tcp_ip6h, &peer_tcp->tcp_saved_ip6h,
585 			    sizeof (ip6_t));
586 		}
587 		goto unfuse;
588 	}
589 
590 	if (send_size == 0) {
591 		freemsg(mp);
592 		return (B_TRUE);
593 	}
594 
595 	/*
596 	 * Handle urgent data; we either send up SIGURG to the peer now
597 	 * or do it later when we drain, in case the peer is detached
598 	 * or if we're short of memory for M_PCSIG mblk.
599 	 */
600 	if (urgent) {
601 		tcp_fuse_output_urg(tcp, mp);
602 
603 		mp1 = mp->b_cont;
604 	}
605 
606 	if (tcp->tcp_ipversion == IPV4_VERSION &&
607 	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
608 	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
609 	    tcp->tcp_ipversion == IPV6_VERSION &&
610 	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
611 	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
612 		/*
613 		 * Build ip and tcp header to satisfy FW_HOOKS.
614 		 * We only build it when any hook is present.
615 		 */
616 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
617 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
618 			/* If tcp_xmit_mp fails, use regular path */
619 			goto unfuse;
620 
621 		/*
622 		 * The ipif and ill can be safely referenced under the
623 		 * protection of conn_lock - see head of function comment for
624 		 * conn_get_held_ipif(). It is necessary to check that both
625 		 * the ipif and ill can be looked up (i.e. not condemned). If
626 		 * not, bail out and unfuse this connection.
627 		 */
628 		mutex_enter(&peer_tcp->tcp_connp->conn_lock);
629 		if ((peer_tcp->tcp_connp->conn_ire_cache == NULL) ||
630 		    (peer_tcp->tcp_connp->conn_ire_cache->ire_marks &
631 		    IRE_MARK_CONDEMNED) ||
632 		    ((oifp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif)
633 		    == NULL) ||
634 		    (!IPIF_CAN_LOOKUP(oifp)) ||
635 		    ((olp = oifp->ipif_ill) == NULL) ||
636 		    (ill_check_and_refhold(olp) != 0)) {
637 			mutex_exit(&peer_tcp->tcp_connp->conn_lock);
638 			goto unfuse;
639 		}
640 		mutex_exit(&peer_tcp->tcp_connp->conn_lock);
641 
642 		/* PFHooks: LOOPBACK_OUT */
643 		if (tcp->tcp_ipversion == IPV4_VERSION) {
644 			ipha = (ipha_t *)mp1->b_rptr;
645 
646 			DTRACE_PROBE4(ip4__loopback__out__start,
647 			    ill_t *, NULL, ill_t *, olp,
648 			    ipha_t *, ipha, mblk_t *, mp1);
649 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
650 			    ipst->ips_ipv4firewall_loopback_out,
651 			    NULL, olp, ipha, mp1, mp1, 0, ipst);
652 			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
653 		} else {
654 			ip6h = (ip6_t *)mp1->b_rptr;
655 
656 			DTRACE_PROBE4(ip6__loopback__out__start,
657 			    ill_t *, NULL, ill_t *, olp,
658 			    ip6_t *, ip6h, mblk_t *, mp1);
659 			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
660 			    ipst->ips_ipv6firewall_loopback_out,
661 			    NULL, olp, ip6h, mp1, mp1, 0, ipst);
662 			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
663 		}
664 		ill_refrele(olp);
665 
666 		if (mp1 == NULL)
667 			goto unfuse;
668 
669 		/*
670 		 * The ipif and ill can be safely referenced under the
671 		 * protection of conn_lock - see head of function comment for
672 		 * conn_get_held_ipif(). It is necessary to check that both
673 		 * the ipif and ill can be looked up (i.e. not condemned). If
674 		 * not, bail out and unfuse this connection.
675 		 */
676 		mutex_enter(&tcp->tcp_connp->conn_lock);
677 		if ((tcp->tcp_connp->conn_ire_cache == NULL) ||
678 		    (tcp->tcp_connp->conn_ire_cache->ire_marks &
679 		    IRE_MARK_CONDEMNED) ||
680 		    ((iifp = tcp->tcp_connp->conn_ire_cache->ire_ipif)
681 		    == NULL) ||
682 		    (!IPIF_CAN_LOOKUP(iifp)) ||
683 		    ((ilp = iifp->ipif_ill) == NULL) ||
684 		    (ill_check_and_refhold(ilp) != 0)) {
685 			mutex_exit(&tcp->tcp_connp->conn_lock);
686 			goto unfuse;
687 		}
688 		mutex_exit(&tcp->tcp_connp->conn_lock);
689 
690 		/* PFHooks: LOOPBACK_IN */
691 		if (tcp->tcp_ipversion == IPV4_VERSION) {
692 			DTRACE_PROBE4(ip4__loopback__in__start,
693 			    ill_t *, ilp, ill_t *, NULL,
694 			    ipha_t *, ipha, mblk_t *, mp1);
695 			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
696 			    ipst->ips_ipv4firewall_loopback_in,
697 			    ilp, NULL, ipha, mp1, mp1, 0, ipst);
698 			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
699 			ill_refrele(ilp);
700 			if (mp1 == NULL)
701 				goto unfuse;
702 
703 			ip_hdr_len = IPH_HDR_LENGTH(ipha);
704 		} else {
705 			DTRACE_PROBE4(ip6__loopback__in__start,
706 			    ill_t *, ilp, ill_t *, NULL,
707 			    ip6_t *, ip6h, mblk_t *, mp1);
708 			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
709 			    ipst->ips_ipv6firewall_loopback_in,
710 			    ilp, NULL, ip6h, mp1, mp1, 0, ipst);
711 			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
712 			ill_refrele(ilp);
713 			if (mp1 == NULL)
714 				goto unfuse;
715 
716 			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
717 		}
718 
719 		/* Data length might be changed by FW_HOOKS */
720 		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
721 		seq = ABE32_TO_U32(tcph->th_seq);
722 		recv_size += seq - tcp->tcp_snxt;
723 
724 		/*
725 		 * The message duplicated by tcp_xmit_mp is freed.
726 		 * Note: the original message passed in remains unchanged.
727 		 */
728 		freemsg(mp1);
729 	}
730 
731 	/*
732 	 * Enqueue data into the peer's receive list; we may or may not
733 	 * drain the contents depending on the conditions below.
734 	 *
735 	 * For non-STREAMS sockets we normally queue data directly in the
736 	 * socket by calling the su_recv upcall. However, if the peer is
737 	 * detached we use tcp_rcv_enqueue() instead. Queued data will be
738 	 * drained when the accept completes (in tcp_accept_finish()).
739 	 */
740 	if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
741 	    !TCP_IS_DETACHED(peer_tcp)) {
742 		int error;
743 		int flags = 0;
744 
745 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
746 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
747 			flags = MSG_OOB;
748 			(*peer_tcp->tcp_connp->conn_upcalls->su_signal_oob)
749 			    (peer_tcp->tcp_connp->conn_upper_handle, 0);
750 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
751 		}
752 		if ((*peer_tcp->tcp_connp->conn_upcalls->su_recv)(
753 		    peer_tcp->tcp_connp->conn_upper_handle, mp, recv_size,
754 		    flags, &error, &push) < 0) {
755 			ASSERT(error != EOPNOTSUPP);
756 			peer_data_queued = B_TRUE;
757 		}
758 	} else {
759 		if (IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
760 		    (tcp->tcp_valid_bits & TCP_URG_VALID) &&
761 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
762 			/*
763 			 * Can not deal with urgent pointers
764 			 * that arrive before the connection has been
765 			 * accept()ed.
766 			 */
767 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
768 			freemsg(mp);
769 			return (B_TRUE);
770 		}
771 
772 		tcp_rcv_enqueue(peer_tcp, mp, recv_size);
773 
774 		/* In case it wrapped around and also to keep it constant */
775 		peer_tcp->tcp_rwnd += recv_size;
776 	}
777 
778 	/*
779 	 * Exercise flow-control when needed; we will get back-enabled
780 	 * in either tcp_accept_finish(), tcp_unfuse(), or when data is
781 	 * consumed. If peer endpoint is detached, we emulate streams flow
782 	 * control by checking the peer's queue size and high water mark;
783 	 * otherwise we simply use canputnext() to decide if we need to stop
784 	 * our flow.
785 	 *
786 	 * Since we are accessing our tcp_flow_stopped and might modify it,
787 	 * we need to take tcp->tcp_non_sq_lock.
788 	 */
789 	mutex_enter(&tcp->tcp_non_sq_lock);
790 	flow_stopped = tcp->tcp_flow_stopped;
791 	if ((TCP_IS_DETACHED(peer_tcp) &&
792 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater)) ||
793 	    (!TCP_IS_DETACHED(peer_tcp) &&
794 	    !IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
795 	    !canputnext(peer_tcp->tcp_rq))) {
796 		peer_data_queued = B_TRUE;
797 	}
798 
799 	if (!flow_stopped && (peer_data_queued ||
800 	    (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) {
801 		tcp_setqfull(tcp);
802 		flow_stopped = B_TRUE;
803 		TCP_STAT(tcps, tcp_fusion_flowctl);
804 		DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
805 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
806 	} else if (flow_stopped && !peer_data_queued &&
807 	    (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) {
808 		tcp_clrqfull(tcp);
809 		TCP_STAT(tcps, tcp_fusion_backenabled);
810 		flow_stopped = B_FALSE;
811 	}
812 	mutex_exit(&tcp->tcp_non_sq_lock);
813 
814 	ipst->ips_loopback_packets++;
815 	tcp->tcp_last_sent_len = send_size;
816 
817 	/* Need to adjust the following SNMP MIB-related variables */
818 	tcp->tcp_snxt += send_size;
819 	tcp->tcp_suna = tcp->tcp_snxt;
820 	peer_tcp->tcp_rnxt += recv_size;
821 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
822 
823 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
824 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
825 
826 	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
827 	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
828 	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
829 
830 	BUMP_LOCAL(tcp->tcp_obsegs);
831 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
832 
833 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
834 
835 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
836 	    !TCP_IS_DETACHED(peer_tcp)) {
837 		/*
838 		 * Drain the peer's receive queue it has urgent data or if
839 		 * we're not flow-controlled.
840 		 */
841 		if (urgent || !flow_stopped) {
842 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
843 			/*
844 			 * For TLI-based streams, a thread in tcp_accept_swap()
845 			 * can race with us.  That thread will ensure that the
846 			 * correct peer_tcp->tcp_rq is globally visible before
847 			 * peer_tcp->tcp_detached is visible as clear, but we
848 			 * must also ensure that the load of tcp_rq cannot be
849 			 * reordered to be before the tcp_detached check.
850 			 */
851 			membar_consumer();
852 			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
853 			    NULL);
854 		}
855 	}
856 	return (B_TRUE);
857 unfuse:
858 	tcp_unfuse(tcp);
859 	return (B_FALSE);
860 }
861 
862 /*
863  * This routine gets called to deliver data upstream on a fused or
864  * previously fused tcp loopback endpoint; the latter happens only
865  * when there is a pending SIGURG signal plus urgent data that can't
866  * be sent upstream in the past.
867  */
868 boolean_t
869 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
870 {
871 	mblk_t *mp;
872 	conn_t	*connp = tcp->tcp_connp;
873 
874 #ifdef DEBUG
875 	uint_t cnt = 0;
876 #endif
877 	tcp_stack_t	*tcps = tcp->tcp_tcps;
878 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
879 
880 	ASSERT(tcp->tcp_loopback);
881 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
882 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
883 	ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
884 
885 	/* No need for the push timer now, in case it was scheduled */
886 	if (tcp->tcp_push_tid != 0) {
887 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
888 		tcp->tcp_push_tid = 0;
889 	}
890 	/*
891 	 * If there's urgent data sitting in receive list and we didn't
892 	 * get a chance to send up a SIGURG signal, make sure we send
893 	 * it first before draining in order to ensure that SIOCATMARK
894 	 * works properly.
895 	 */
896 	if (tcp->tcp_fused_sigurg) {
897 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
898 
899 		tcp->tcp_fused_sigurg = B_FALSE;
900 		/*
901 		 * sigurg_mpp is normally NULL, i.e. when we're still
902 		 * fused and didn't get here because of tcp_unfuse().
903 		 * In this case try hard to allocate the M_PCSIG mblk.
904 		 */
905 		if (sigurg_mpp == NULL &&
906 		    (mp = allocb(1, BPRI_HI)) == NULL &&
907 		    (mp = allocb_tryhard(1)) == NULL) {
908 			/* Alloc failed; try again next time */
909 			tcp->tcp_push_tid = TCP_TIMER(tcp,
910 			    tcp_push_timer,
911 			    MSEC_TO_TICK(
912 			    tcps->tcps_push_timer_interval));
913 			return (B_TRUE);
914 		} else if (sigurg_mpp != NULL) {
915 			/*
916 			 * Use the supplied M_PCSIG mblk; it means we're
917 			 * either unfused or in the process of unfusing,
918 			 * and the drain must happen now.
919 			 */
920 			mp = *sigurg_mpp;
921 			*sigurg_mpp = NULL;
922 		}
923 		ASSERT(mp != NULL);
924 
925 		/* Send up the signal */
926 		DB_TYPE(mp) = M_PCSIG;
927 		*mp->b_wptr++ = (uchar_t)SIGURG;
928 		putnext(q, mp);
929 
930 		/*
931 		 * Let the regular tcp_rcv_drain() path handle
932 		 * draining the data if we're no longer fused.
933 		 */
934 		if (!tcp->tcp_fused)
935 			return (B_FALSE);
936 	}
937 
938 	/* Drain the data */
939 	while ((mp = tcp->tcp_rcv_list) != NULL) {
940 		tcp->tcp_rcv_list = mp->b_next;
941 		mp->b_next = NULL;
942 #ifdef DEBUG
943 		cnt += msgdsize(mp);
944 #endif
945 		ASSERT(!IPCL_IS_NONSTR(connp));
946 		putnext(q, mp);
947 		TCP_STAT(tcps, tcp_fusion_putnext);
948 	}
949 
950 #ifdef DEBUG
951 	ASSERT(cnt == tcp->tcp_rcv_cnt);
952 #endif
953 	tcp->tcp_rcv_last_head = NULL;
954 	tcp->tcp_rcv_last_tail = NULL;
955 	tcp->tcp_rcv_cnt = 0;
956 	tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
957 
958 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
959 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
960 	    peer_tcp->tcp_xmit_lowater)) {
961 		tcp_clrqfull(peer_tcp);
962 		TCP_STAT(tcps, tcp_fusion_backenabled);
963 	}
964 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
965 
966 	return (B_TRUE);
967 }
968 
969 /*
970  * Calculate the size of receive buffer for a fused tcp endpoint.
971  */
972 size_t
973 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
974 {
975 	tcp_stack_t	*tcps = tcp->tcp_tcps;
976 
977 	ASSERT(tcp->tcp_fused);
978 
979 	/* Ensure that value is within the maximum upper bound */
980 	if (rwnd > tcps->tcps_max_buf)
981 		rwnd = tcps->tcps_max_buf;
982 
983 	/* Obey the absolute minimum tcp receive high water mark */
984 	if (rwnd < tcps->tcps_sth_rcv_hiwat)
985 		rwnd = tcps->tcps_sth_rcv_hiwat;
986 
987 	/*
988 	 * Round up to system page size in case SO_RCVBUF is modified
989 	 * after SO_SNDBUF; the latter is also similarly rounded up.
990 	 */
991 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
992 	tcp->tcp_fuse_rcv_hiwater = rwnd;
993 	return (rwnd);
994 }
995 
996 /*
997  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
998  */
999 int
1000 tcp_fuse_maxpsz_set(tcp_t *tcp)
1001 {
1002 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1003 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1004 	uint_t maxpsz = sndbuf;
1005 
1006 	ASSERT(tcp->tcp_fused);
1007 	ASSERT(peer_tcp != NULL);
1008 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1009 	/*
1010 	 * In the fused loopback case, we want the stream head to split
1011 	 * up larger writes into smaller chunks for a more accurate flow-
1012 	 * control accounting.  Our maxpsz is half of the sender's send
1013 	 * buffer or the receiver's receive buffer, whichever is smaller.
1014 	 * We round up the buffer to system page size due to the lack of
1015 	 * TCP MSS concept in Fusion.
1016 	 */
1017 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1018 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1019 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1020 
1021 	return (maxpsz);
1022 }
1023 
1024 /*
1025  * Called to release flow control.
1026  */
1027 void
1028 tcp_fuse_backenable(tcp_t *tcp)
1029 {
1030 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1031 
1032 	ASSERT(tcp->tcp_fused);
1033 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
1034 	ASSERT(peer_tcp->tcp_loopback_peer == tcp);
1035 	ASSERT(!TCP_IS_DETACHED(tcp));
1036 	ASSERT(tcp->tcp_connp->conn_sqp ==
1037 	    peer_tcp->tcp_connp->conn_sqp);
1038 
1039 	if (tcp->tcp_rcv_list != NULL)
1040 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp, NULL);
1041 
1042 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
1043 	if (peer_tcp->tcp_flow_stopped &&
1044 	    (TCP_UNSENT_BYTES(peer_tcp) <=
1045 	    peer_tcp->tcp_xmit_lowater)) {
1046 		tcp_clrqfull(peer_tcp);
1047 	}
1048 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
1049 
1050 	TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
1051 }
1052