xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 4470e6878e514c52138797efb506203d656b695f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/debug.h>
33 #include <sys/sdt.h>
34 #include <sys/cmn_err.h>
35 #include <sys/tihdr.h>
36 
37 #include <inet/common.h>
38 #include <inet/ip.h>
39 #include <inet/ip_impl.h>
40 #include <inet/tcp.h>
41 #include <inet/tcp_impl.h>
42 #include <inet/ipsec_impl.h>
43 #include <inet/ipclassifier.h>
44 #include <inet/ipp_common.h>
45 
46 /*
47  * This file implements TCP fusion - a protocol-less data path for TCP
48  * loopback connections.  The fusion of two local TCP endpoints occurs
49  * at connection establishment time.  Various conditions (see details
50  * in tcp_fuse()) need to be met for fusion to be successful.  If it
51  * fails, we fall back to the regular TCP data path; if it succeeds,
52  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
53  * tcp_fuse_output() enqueues application data directly onto the peer's
54  * receive queue; no protocol processing is involved.  After enqueueing
55  * the data, the sender can either push (putnext) data up the receiver's
56  * read queue; or the sender can simply return and let the receiver
57  * retrieve the enqueued data via the synchronous streams entry point
58  * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
59  * enabled (the default).  It is disabled if sockfs no longer resides
60  * directly on top of tcp module due to a module insertion or removal.
61  * It also needs to be temporarily disabled when sending urgent data
62  * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
63  * by strsock_proto() hook.
64  *
65  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
66  * One of the requirements for fusion to succeed is that both endpoints
67  * need to be using the same squeue.  This ensures that neither side
68  * can disappear while the other side is still sending data.  By itself,
69  * squeue is not sufficient for guaranteeing safety when synchronous
70  * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
71  * the squeue and its access to tcp_rcv_list and other fusion-related
72  * fields needs to be sychronized with the sender.  tcp_non_sq_lock is
73  * used for this purpose.  When there is urgent data, the sender needs
74  * to push the data up the receiver's streams read queue.  In order to
75  * avoid holding the tcp_non_sq_lock across putnext(), the sender sets
76  * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock
77  * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()).  If tcp_fuse_rrw() enters
78  * after this point, it will see that synchronous streams is plugged and
79  * will wait on tcp_fuse_plugcv.  After the sender has finished pushing up
80  * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using
81  * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN().  This will cause any threads waiting
82  * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call
83  * getq_noenab() to dequeue data from the stream head instead.  Once the
84  * data on the stream head has been consumed, tcp_fuse_rrw() may again
85  * be used to process tcp_rcv_list.  However, if TCP_FUSE_SYNCSTR_STOP()
86  * has been called, all future calls to tcp_fuse_rrw() will return EBUSY,
87  * effectively disabling synchronous streams.
88  *
89  * The following note applies only to the synchronous streams mode.
90  *
91  * Flow control is done by checking the size of receive buffer and
92  * the number of data blocks, both set to different limits.  This is
93  * different than regular streams flow control where cumulative size
94  * check dominates block count check -- streams queue high water mark
95  * typically represents bytes.  Each enqueue triggers notifications
96  * to the receiving process; a build up of data blocks indicates a
97  * slow receiver and the sender should be blocked or informed at the
98  * earliest moment instead of further wasting system resources.  In
99  * effect, this is equivalent to limiting the number of outstanding
100  * segments in flight.
101  */
102 
103 /*
104  * Setting this to false means we disable fusion altogether and
105  * loopback connections would go through the protocol paths.
106  */
107 boolean_t do_tcp_fusion = B_TRUE;
108 
109 /*
110  * Enabling this flag allows sockfs to retrieve data directly
111  * from a fused tcp endpoint using synchronous streams interface.
112  */
113 boolean_t do_tcp_direct_sockfs = B_TRUE;
114 
115 /*
116  * This is the minimum amount of outstanding writes allowed on
117  * a synchronous streams-enabled receiving endpoint before the
118  * sender gets flow-controlled.  Setting this value to 0 means
119  * that the data block limit is equivalent to the byte count
120  * limit, which essentially disables the check.
121  */
122 #define	TCP_FUSION_RCV_UNREAD_MIN	8
123 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
124 
125 static void	tcp_fuse_syncstr_enable(tcp_t *);
126 static void	tcp_fuse_syncstr_disable(tcp_t *);
127 static void	strrput_sig(queue_t *, boolean_t);
128 
129 /*
130  * Return true if this connection needs some IP functionality
131  */
132 static boolean_t
133 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
134 {
135 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
136 
137 	/*
138 	 * If ire is not cached, do not use fusion
139 	 */
140 	if (tcp->tcp_connp->conn_ire_cache == NULL) {
141 		/*
142 		 * There is no need to hold conn_lock here because when called
143 		 * from tcp_fuse() there can be no window where conn_ire_cache
144 		 * can change. This is not true whe called from
145 		 * tcp_fuse_output(). conn_ire_cache can become null just
146 		 * after the check, but it's ok if a few packets are delivered
147 		 * in the fused state.
148 		 */
149 		return (B_TRUE);
150 	}
151 	if (tcp->tcp_ipversion == IPV4_VERSION) {
152 		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
153 			return (B_TRUE);
154 		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
155 			return (B_TRUE);
156 		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
157 			return (B_TRUE);
158 	} else {
159 		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
160 			return (B_TRUE);
161 		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
162 			return (B_TRUE);
163 		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
164 			return (B_TRUE);
165 	}
166 	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
167 		return (B_TRUE);
168 	return (B_FALSE);
169 }
170 
171 
172 /*
173  * This routine gets called by the eager tcp upon changing state from
174  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
175  * and the active connect tcp such that the regular tcp processings
176  * may be bypassed under allowable circumstances.  Because the fusion
177  * requires both endpoints to be in the same squeue, it does not work
178  * for simultaneous active connects because there is no easy way to
179  * switch from one squeue to another once the connection is created.
180  * This is different from the eager tcp case where we assign it the
181  * same squeue as the one given to the active connect tcp during open.
182  */
183 void
184 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
185 {
186 	conn_t *peer_connp, *connp = tcp->tcp_connp;
187 	tcp_t *peer_tcp;
188 	tcp_stack_t	*tcps = tcp->tcp_tcps;
189 	netstack_t	*ns;
190 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
191 
192 	ASSERT(!tcp->tcp_fused);
193 	ASSERT(tcp->tcp_loopback);
194 	ASSERT(tcp->tcp_loopback_peer == NULL);
195 	/*
196 	 * We need to inherit q_hiwat of the listener tcp, but we can't
197 	 * really use tcp_listener since we get here after sending up
198 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
199 	 * at which point tcp_listener is cleared; this is why we use
200 	 * tcp_saved_listener.  The listener itself is guaranteed to be
201 	 * around until tcp_accept_finish() is called on this eager --
202 	 * this won't happen until we're done since we're inside the
203 	 * eager's perimeter now.
204 	 */
205 	ASSERT(tcp->tcp_saved_listener != NULL);
206 
207 	/*
208 	 * Lookup peer endpoint; search for the remote endpoint having
209 	 * the reversed address-port quadruplet in ESTABLISHED state,
210 	 * which is guaranteed to be unique in the system.  Zone check
211 	 * is applied accordingly for loopback address, but not for
212 	 * local address since we want fusion to happen across Zones.
213 	 */
214 	if (tcp->tcp_ipversion == IPV4_VERSION) {
215 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
216 		    (ipha_t *)iphdr, tcph, ipst);
217 	} else {
218 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
219 		    (ip6_t *)iphdr, tcph, ipst);
220 	}
221 
222 	/*
223 	 * We can only proceed if peer exists, resides in the same squeue
224 	 * as our conn and is not raw-socket.  The squeue assignment of
225 	 * this eager tcp was done earlier at the time of SYN processing
226 	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
227 	 * doesn't guarantee a safe condition to fuse, hence we perform
228 	 * additional tests below.
229 	 */
230 	ASSERT(peer_connp == NULL || peer_connp != connp);
231 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
232 	    !IPCL_IS_TCP(peer_connp)) {
233 		if (peer_connp != NULL) {
234 			TCP_STAT(tcps, tcp_fusion_unqualified);
235 			CONN_DEC_REF(peer_connp);
236 		}
237 		return;
238 	}
239 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
240 
241 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
242 	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
243 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
244 
245 	/*
246 	 * Fuse the endpoints; we perform further checks against both
247 	 * tcp endpoints to ensure that a fusion is allowed to happen.
248 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
249 	 * IPQoS policy/kernel SSL exists.
250 	 */
251 	ns = tcps->tcps_netstack;
252 	ipst = ns->netstack_ip;
253 
254 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
255 	    !tcp_loopback_needs_ip(tcp, ns) &&
256 	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
257 	    tcp->tcp_kssl_ent == NULL &&
258 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
259 		mblk_t *mp;
260 		struct stroptions *stropt;
261 		queue_t *peer_rq = peer_tcp->tcp_rq;
262 
263 		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
264 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
265 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
266 		ASSERT(tcp->tcp_kssl_ctx == NULL);
267 
268 		/*
269 		 * We need to drain data on both endpoints during unfuse.
270 		 * If we need to send up SIGURG at the time of draining,
271 		 * we want to be sure that an mblk is readily available.
272 		 * This is why we pre-allocate the M_PCSIG mblks for both
273 		 * endpoints which will only be used during/after unfuse.
274 		 */
275 		if ((mp = allocb(1, BPRI_HI)) == NULL)
276 			goto failed;
277 
278 		tcp->tcp_fused_sigurg_mp = mp;
279 
280 		if ((mp = allocb(1, BPRI_HI)) == NULL)
281 			goto failed;
282 
283 		peer_tcp->tcp_fused_sigurg_mp = mp;
284 
285 		/* Allocate M_SETOPTS mblk */
286 		if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
287 			goto failed;
288 
289 		/* Fuse both endpoints */
290 		peer_tcp->tcp_loopback_peer = tcp;
291 		tcp->tcp_loopback_peer = peer_tcp;
292 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
293 
294 		/*
295 		 * We never use regular tcp paths in fusion and should
296 		 * therefore clear tcp_unsent on both endpoints.  Having
297 		 * them set to non-zero values means asking for trouble
298 		 * especially after unfuse, where we may end up sending
299 		 * through regular tcp paths which expect xmit_list and
300 		 * friends to be correctly setup.
301 		 */
302 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
303 
304 		tcp_timers_stop(tcp);
305 		tcp_timers_stop(peer_tcp);
306 
307 		/*
308 		 * At this point we are a detached eager tcp and therefore
309 		 * don't have a queue assigned to us until accept happens.
310 		 * In the mean time the peer endpoint may immediately send
311 		 * us data as soon as fusion is finished, and we need to be
312 		 * able to flow control it in case it sends down huge amount
313 		 * of data while we're still detached.  To prevent that we
314 		 * inherit the listener's q_hiwat value; this is temporary
315 		 * since we'll repeat the process in tcp_accept_finish().
316 		 */
317 		(void) tcp_fuse_set_rcv_hiwat(tcp,
318 		    tcp->tcp_saved_listener->tcp_rq->q_hiwat);
319 
320 		/*
321 		 * Set the stream head's write offset value to zero since we
322 		 * won't be needing any room for TCP/IP headers; tell it to
323 		 * not break up the writes (this would reduce the amount of
324 		 * work done by kmem); and configure our receive buffer.
325 		 * Note that we can only do this for the active connect tcp
326 		 * since our eager is still detached; it will be dealt with
327 		 * later in tcp_accept_finish().
328 		 */
329 		DB_TYPE(mp) = M_SETOPTS;
330 		mp->b_wptr += sizeof (*stropt);
331 
332 		stropt = (struct stroptions *)mp->b_rptr;
333 		stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
334 		stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
335 		stropt->so_wroff = 0;
336 
337 		/*
338 		 * Record the stream head's high water mark for
339 		 * peer endpoint; this is used for flow-control
340 		 * purposes in tcp_fuse_output().
341 		 */
342 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
343 		    peer_rq->q_hiwat);
344 
345 		/* Send the options up */
346 		putnext(peer_rq, mp);
347 	} else {
348 		TCP_STAT(tcps, tcp_fusion_unqualified);
349 	}
350 	CONN_DEC_REF(peer_connp);
351 	return;
352 
353 failed:
354 	if (tcp->tcp_fused_sigurg_mp != NULL) {
355 		freeb(tcp->tcp_fused_sigurg_mp);
356 		tcp->tcp_fused_sigurg_mp = NULL;
357 	}
358 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
359 		freeb(peer_tcp->tcp_fused_sigurg_mp);
360 		peer_tcp->tcp_fused_sigurg_mp = NULL;
361 	}
362 	CONN_DEC_REF(peer_connp);
363 }
364 
365 /*
366  * Unfuse a previously-fused pair of tcp loopback endpoints.
367  */
368 void
369 tcp_unfuse(tcp_t *tcp)
370 {
371 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
372 
373 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
374 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
375 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
376 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
377 	ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
378 	ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
379 
380 	/*
381 	 * We disable synchronous streams, drain any queued data and
382 	 * clear tcp_direct_sockfs.  The synchronous streams entry
383 	 * points will become no-ops after this point.
384 	 */
385 	tcp_fuse_disable_pair(tcp, B_TRUE);
386 
387 	/*
388 	 * Update th_seq and th_ack in the header template
389 	 */
390 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
391 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
392 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
393 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
394 
395 	/* Unfuse the endpoints */
396 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
397 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
398 }
399 
400 /*
401  * Fusion output routine for urgent data.  This routine is called by
402  * tcp_fuse_output() for handling non-M_DATA mblks.
403  */
404 void
405 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
406 {
407 	mblk_t *mp1;
408 	struct T_exdata_ind *tei;
409 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
410 	mblk_t *head, *prev_head = NULL;
411 	tcp_stack_t	*tcps = tcp->tcp_tcps;
412 
413 	ASSERT(tcp->tcp_fused);
414 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
415 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
416 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
417 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
418 
419 	/*
420 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
421 	 * Each occurence denotes a new urgent pointer.  For each new
422 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
423 	 * that it needs to go into urgent mode.  This is similar to the
424 	 * urgent data handling in the regular tcp.  We don't need to keep
425 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
426 	 * "advances" the urgent pointer for us.
427 	 *
428 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
429 	 * by a T_EXDATA_IND before being enqueued behind any existing data
430 	 * destined for the receiving app.  There is only a single urgent
431 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
432 	 * data arrives before the receiving app reads some existing urgent
433 	 * data, the previous marker is lost.  This behavior is emulated
434 	 * accordingly below, by removing any existing T_EXDATA_IND messages
435 	 * and essentially converting old urgent data into non-urgent.
436 	 */
437 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
438 	/* Let sender get out of urgent mode */
439 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
440 
441 	/*
442 	 * This flag indicates that a signal needs to be sent up.
443 	 * This flag will only get cleared once SIGURG is delivered and
444 	 * is not affected by the tcp_fused flag -- delivery will still
445 	 * happen even after an endpoint is unfused, to handle the case
446 	 * where the sending endpoint immediately closes/unfuses after
447 	 * sending urgent data and the accept is not yet finished.
448 	 */
449 	peer_tcp->tcp_fused_sigurg = B_TRUE;
450 
451 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
452 	DB_TYPE(mp) = M_PROTO;
453 	tei = (struct T_exdata_ind *)mp->b_rptr;
454 	tei->PRIM_type = T_EXDATA_IND;
455 	tei->MORE_flag = 0;
456 	mp->b_wptr = (uchar_t *)&tei[1];
457 
458 	TCP_STAT(tcps, tcp_fusion_urg);
459 	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
460 
461 	head = peer_tcp->tcp_rcv_list;
462 	while (head != NULL) {
463 		/*
464 		 * Remove existing T_EXDATA_IND, keep the data which follows
465 		 * it and relink our list.  Note that we don't modify the
466 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
467 		 */
468 		if (DB_TYPE(head) != M_DATA) {
469 			mp1 = head;
470 
471 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
472 			head = mp1->b_cont;
473 			mp1->b_cont = NULL;
474 			head->b_next = mp1->b_next;
475 			mp1->b_next = NULL;
476 			if (prev_head != NULL)
477 				prev_head->b_next = head;
478 			if (peer_tcp->tcp_rcv_list == mp1)
479 				peer_tcp->tcp_rcv_list = head;
480 			if (peer_tcp->tcp_rcv_last_head == mp1)
481 				peer_tcp->tcp_rcv_last_head = head;
482 			freeb(mp1);
483 		}
484 		prev_head = head;
485 		head = head->b_next;
486 	}
487 }
488 
489 /*
490  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
491  * If we are modifying any member that can be changed outside the squeue,
492  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
493  */
494 boolean_t
495 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
496 {
497 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
498 	uint_t max_unread;
499 	boolean_t flow_stopped, peer_data_queued = B_FALSE;
500 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
501 	mblk_t *mp1 = mp;
502 	ill_t *ilp, *olp;
503 	ipha_t *ipha;
504 	ip6_t *ip6h;
505 	tcph_t *tcph;
506 	uint_t ip_hdr_len;
507 	uint32_t seq;
508 	uint32_t recv_size = send_size;
509 	tcp_stack_t	*tcps = tcp->tcp_tcps;
510 	netstack_t	*ns = tcps->tcps_netstack;
511 	ip_stack_t	*ipst = ns->netstack_ip;
512 
513 	ASSERT(tcp->tcp_fused);
514 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
515 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
516 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
517 	    DB_TYPE(mp) == M_PCPROTO);
518 
519 	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
520 
521 	/* If this connection requires IP, unfuse and use regular path */
522 	if (tcp_loopback_needs_ip(tcp, ns) ||
523 	    tcp_loopback_needs_ip(peer_tcp, ns) ||
524 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
525 		TCP_STAT(tcps, tcp_fusion_aborted);
526 		goto unfuse;
527 	}
528 
529 	if (send_size == 0) {
530 		freemsg(mp);
531 		return (B_TRUE);
532 	}
533 
534 	/*
535 	 * Handle urgent data; we either send up SIGURG to the peer now
536 	 * or do it later when we drain, in case the peer is detached
537 	 * or if we're short of memory for M_PCSIG mblk.
538 	 */
539 	if (urgent) {
540 		/*
541 		 * We stop synchronous streams when we have urgent data
542 		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
543 		 * for some reasons the urgent data can't be delivered
544 		 * below, synchronous streams will remain stopped until
545 		 * someone drains the tcp_rcv_list.
546 		 */
547 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
548 		tcp_fuse_output_urg(tcp, mp);
549 
550 		mp1 = mp->b_cont;
551 	}
552 
553 	if (tcp->tcp_ipversion == IPV4_VERSION &&
554 	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
555 	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
556 	    tcp->tcp_ipversion == IPV6_VERSION &&
557 	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
558 	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
559 		/*
560 		 * Build ip and tcp header to satisfy FW_HOOKS.
561 		 * We only build it when any hook is present.
562 		 */
563 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
564 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
565 			/* If tcp_xmit_mp fails, use regular path */
566 			goto unfuse;
567 
568 		ASSERT(peer_tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
569 		olp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
570 		/* PFHooks: LOOPBACK_OUT */
571 		if (tcp->tcp_ipversion == IPV4_VERSION) {
572 			ipha = (ipha_t *)mp1->b_rptr;
573 
574 			DTRACE_PROBE4(ip4__loopback__out__start,
575 			    ill_t *, NULL, ill_t *, olp,
576 			    ipha_t *, ipha, mblk_t *, mp1);
577 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
578 			    ipst->ips_ipv4firewall_loopback_out,
579 			    NULL, olp, ipha, mp1, mp1, ipst);
580 			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
581 		} else {
582 			ip6h = (ip6_t *)mp1->b_rptr;
583 
584 			DTRACE_PROBE4(ip6__loopback__out__start,
585 			    ill_t *, NULL, ill_t *, olp,
586 			    ip6_t *, ip6h, mblk_t *, mp1);
587 			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
588 			    ipst->ips_ipv6firewall_loopback_out,
589 			    NULL, olp, ip6h, mp1, mp1, ipst);
590 			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
591 		}
592 		if (mp1 == NULL)
593 			goto unfuse;
594 
595 
596 		/* PFHooks: LOOPBACK_IN */
597 		ASSERT(tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
598 		ilp = tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
599 
600 		if (tcp->tcp_ipversion == IPV4_VERSION) {
601 			DTRACE_PROBE4(ip4__loopback__in__start,
602 			    ill_t *, ilp, ill_t *, NULL,
603 			    ipha_t *, ipha, mblk_t *, mp1);
604 			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
605 			    ipst->ips_ipv4firewall_loopback_in,
606 			    ilp, NULL, ipha, mp1, mp1, ipst);
607 			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
608 			if (mp1 == NULL)
609 				goto unfuse;
610 
611 			ip_hdr_len = IPH_HDR_LENGTH(ipha);
612 		} else {
613 			DTRACE_PROBE4(ip6__loopback__in__start,
614 			    ill_t *, ilp, ill_t *, NULL,
615 			    ip6_t *, ip6h, mblk_t *, mp1);
616 			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
617 			    ipst->ips_ipv6firewall_loopback_in,
618 			    ilp, NULL, ip6h, mp1, mp1, ipst);
619 			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
620 			if (mp1 == NULL)
621 				goto unfuse;
622 
623 			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
624 		}
625 
626 		/* Data length might be changed by FW_HOOKS */
627 		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
628 		seq = ABE32_TO_U32(tcph->th_seq);
629 		recv_size += seq - tcp->tcp_snxt;
630 
631 		/*
632 		 * The message duplicated by tcp_xmit_mp is freed.
633 		 * Note: the original message passed in remains unchanged.
634 		 */
635 		freemsg(mp1);
636 	}
637 
638 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
639 	/*
640 	 * Wake up and signal the peer; it is okay to do this before
641 	 * enqueueing because we are holding the lock.  One of the
642 	 * advantages of synchronous streams is the ability for us to
643 	 * find out when the application performs a read on the socket,
644 	 * by way of tcp_fuse_rrw() entry point being called.  Every
645 	 * data that gets enqueued onto the receiver is treated as if
646 	 * it has arrived at the receiving endpoint, thus generating
647 	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
648 	 * case.  However, we only wake up the application when necessary,
649 	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
650 	 * it will send everything upstream.
651 	 */
652 	if (peer_tcp->tcp_direct_sockfs && !urgent &&
653 	    !TCP_IS_DETACHED(peer_tcp)) {
654 		if (peer_tcp->tcp_rcv_list == NULL)
655 			STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq));
656 		/* Update poll events and send SIGPOLL/SIGIO if necessary */
657 		STR_SENDSIG(STREAM(peer_tcp->tcp_rq));
658 	}
659 
660 	/*
661 	 * Enqueue data into the peer's receive list; we may or may not
662 	 * drain the contents depending on the conditions below.
663 	 */
664 	tcp_rcv_enqueue(peer_tcp, mp, recv_size);
665 
666 	/* In case it wrapped around and also to keep it constant */
667 	peer_tcp->tcp_rwnd += recv_size;
668 
669 	/*
670 	 * Exercise flow-control when needed; we will get back-enabled
671 	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
672 	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
673 	 * we emulate streams flow control by checking the peer's queue
674 	 * size and high water mark; otherwise we simply use canputnext()
675 	 * to decide if we need to stop our flow.
676 	 *
677 	 * The outstanding unread data block check does not apply for a
678 	 * detached receiver; this is to avoid unnecessary blocking of the
679 	 * sender while the accept is currently in progress and is quite
680 	 * similar to the regular tcp.
681 	 */
682 	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
683 		max_unread = UINT_MAX;
684 
685 	/*
686 	 * Since we are accessing our tcp_flow_stopped and might modify it,
687 	 * we need to take tcp->tcp_non_sq_lock. The lock for the highest
688 	 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should
689 	 * not be an issue here since we are within the squeue and the peer
690 	 * won't disappear.
691 	 */
692 	if (tcp > peer_tcp) {
693 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
694 		mutex_enter(&tcp->tcp_non_sq_lock);
695 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
696 	} else {
697 		mutex_enter(&tcp->tcp_non_sq_lock);
698 	}
699 	flow_stopped = tcp->tcp_flow_stopped;
700 	if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
701 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
702 	    ++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
703 	    (!peer_tcp->tcp_direct_sockfs &&
704 	    !TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq))) {
705 		peer_data_queued = B_TRUE;
706 	}
707 
708 	if (!flow_stopped && (peer_data_queued ||
709 	    (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) {
710 		tcp_setqfull(tcp);
711 		flow_stopped = B_TRUE;
712 		TCP_STAT(tcps, tcp_fusion_flowctl);
713 		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
714 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
715 		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
716 	} else if (flow_stopped && !peer_data_queued &&
717 	    (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) {
718 		tcp_clrqfull(tcp);
719 		flow_stopped = B_FALSE;
720 	}
721 	mutex_exit(&tcp->tcp_non_sq_lock);
722 	ipst->ips_loopback_packets++;
723 	tcp->tcp_last_sent_len = send_size;
724 
725 	/* Need to adjust the following SNMP MIB-related variables */
726 	tcp->tcp_snxt += send_size;
727 	tcp->tcp_suna = tcp->tcp_snxt;
728 	peer_tcp->tcp_rnxt += recv_size;
729 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
730 
731 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
732 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
733 
734 	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
735 	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
736 	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
737 
738 	BUMP_LOCAL(tcp->tcp_obsegs);
739 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
740 
741 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
742 
743 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
744 
745 	if (!TCP_IS_DETACHED(peer_tcp)) {
746 		/*
747 		 * Drain the peer's receive queue it has urgent data or if
748 		 * we're not flow-controlled.  There is no need for draining
749 		 * normal data when tcp_direct_sockfs is on because the peer
750 		 * will pull the data via tcp_fuse_rrw().
751 		 */
752 		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
753 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
754 			/*
755 			 * For TLI-based streams, a thread in tcp_accept_swap()
756 			 * can race with us.  That thread will ensure that the
757 			 * correct peer_tcp->tcp_rq is globally visible before
758 			 * peer_tcp->tcp_detached is visible as clear, but we
759 			 * must also ensure that the load of tcp_rq cannot be
760 			 * reordered to be before the tcp_detached check.
761 			 */
762 			membar_consumer();
763 			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
764 			    NULL);
765 			/*
766 			 * If synchronous streams was stopped above due
767 			 * to the presence of urgent data, re-enable it.
768 			 */
769 			if (urgent)
770 				TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
771 		}
772 	}
773 	return (B_TRUE);
774 unfuse:
775 	tcp_unfuse(tcp);
776 	return (B_FALSE);
777 }
778 
779 /*
780  * This routine gets called to deliver data upstream on a fused or
781  * previously fused tcp loopback endpoint; the latter happens only
782  * when there is a pending SIGURG signal plus urgent data that can't
783  * be sent upstream in the past.
784  */
785 boolean_t
786 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
787 {
788 	mblk_t *mp;
789 #ifdef DEBUG
790 	uint_t cnt = 0;
791 #endif
792 	tcp_stack_t	*tcps = tcp->tcp_tcps;
793 
794 	ASSERT(tcp->tcp_loopback);
795 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
796 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
797 	ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
798 
799 	/* No need for the push timer now, in case it was scheduled */
800 	if (tcp->tcp_push_tid != 0) {
801 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
802 		tcp->tcp_push_tid = 0;
803 	}
804 	/*
805 	 * If there's urgent data sitting in receive list and we didn't
806 	 * get a chance to send up a SIGURG signal, make sure we send
807 	 * it first before draining in order to ensure that SIOCATMARK
808 	 * works properly.
809 	 */
810 	if (tcp->tcp_fused_sigurg) {
811 		/*
812 		 * sigurg_mpp is normally NULL, i.e. when we're still
813 		 * fused and didn't get here because of tcp_unfuse().
814 		 * In this case try hard to allocate the M_PCSIG mblk.
815 		 */
816 		if (sigurg_mpp == NULL &&
817 		    (mp = allocb(1, BPRI_HI)) == NULL &&
818 		    (mp = allocb_tryhard(1)) == NULL) {
819 			/* Alloc failed; try again next time */
820 			tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
821 			    MSEC_TO_TICK(tcps->tcps_push_timer_interval));
822 			return (B_TRUE);
823 		} else if (sigurg_mpp != NULL) {
824 			/*
825 			 * Use the supplied M_PCSIG mblk; it means we're
826 			 * either unfused or in the process of unfusing,
827 			 * and the drain must happen now.
828 			 */
829 			mp = *sigurg_mpp;
830 			*sigurg_mpp = NULL;
831 		}
832 		ASSERT(mp != NULL);
833 
834 		tcp->tcp_fused_sigurg = B_FALSE;
835 		/* Send up the signal */
836 		DB_TYPE(mp) = M_PCSIG;
837 		*mp->b_wptr++ = (uchar_t)SIGURG;
838 		putnext(q, mp);
839 		/*
840 		 * Let the regular tcp_rcv_drain() path handle
841 		 * draining the data if we're no longer fused.
842 		 */
843 		if (!tcp->tcp_fused)
844 			return (B_FALSE);
845 	}
846 
847 	/*
848 	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
849 	 * each M_DATA that gets enqueued onto the receiver.  At this point
850 	 * we are about to drain any queued data via putnext().  In order
851 	 * to avoid extraneous signal generation from strrput(), we set
852 	 * STRGETINPROG flag at the stream head prior to the draining and
853 	 * restore it afterwards.  This masks out signal generation only
854 	 * for M_DATA messages and does not affect urgent data.
855 	 */
856 	if (tcp->tcp_direct_sockfs)
857 		strrput_sig(q, B_FALSE);
858 
859 	/* Drain the data */
860 	while ((mp = tcp->tcp_rcv_list) != NULL) {
861 		tcp->tcp_rcv_list = mp->b_next;
862 		mp->b_next = NULL;
863 #ifdef DEBUG
864 		cnt += msgdsize(mp);
865 #endif
866 		putnext(q, mp);
867 		TCP_STAT(tcps, tcp_fusion_putnext);
868 	}
869 
870 	if (tcp->tcp_direct_sockfs)
871 		strrput_sig(q, B_TRUE);
872 
873 	ASSERT(cnt == tcp->tcp_rcv_cnt);
874 	tcp->tcp_rcv_last_head = NULL;
875 	tcp->tcp_rcv_last_tail = NULL;
876 	tcp->tcp_rcv_cnt = 0;
877 	tcp->tcp_fuse_rcv_unread_cnt = 0;
878 	tcp->tcp_rwnd = q->q_hiwat;
879 
880 	return (B_TRUE);
881 }
882 
883 /*
884  * Synchronous stream entry point for sockfs to retrieve
885  * data directly from tcp_rcv_list.
886  * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped,
887  * for which it  must take the tcp_non_sq_lock of the peer as well
888  * making any change. The order of taking the locks is based on
889  * the TCP pointer itself. Before we get the peer we need to take
890  * our tcp_non_sq_lock so that the peer doesn't disappear. However,
891  * we cannot drop the lock if we have to grab the peer's lock (because
892  * of ordering), since the peer might disappear in the interim. So,
893  * we take our tcp_non_sq_lock, get the peer, increment the ref on the
894  * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the
895  * desired order. Incrementing the conn ref on the peer means that the
896  * peer won't disappear when we drop our tcp_non_sq_lock.
897  */
898 int
899 tcp_fuse_rrw(queue_t *q, struiod_t *dp)
900 {
901 	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
902 	mblk_t *mp;
903 	tcp_t *peer_tcp;
904 	tcp_stack_t	*tcps = tcp->tcp_tcps;
905 
906 	mutex_enter(&tcp->tcp_non_sq_lock);
907 
908 	/*
909 	 * If tcp_fuse_syncstr_plugged is set, then another thread is moving
910 	 * the underlying data to the stream head.  We need to wait until it's
911 	 * done, then return EBUSY so that strget() will dequeue data from the
912 	 * stream head to ensure data is drained in-order.
913 	 */
914 plugged:
915 	if (tcp->tcp_fuse_syncstr_plugged) {
916 		do {
917 			cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock);
918 		} while (tcp->tcp_fuse_syncstr_plugged);
919 
920 		mutex_exit(&tcp->tcp_non_sq_lock);
921 		TCP_STAT(tcps, tcp_fusion_rrw_plugged);
922 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
923 		return (EBUSY);
924 	}
925 
926 	peer_tcp = tcp->tcp_loopback_peer;
927 
928 	/*
929 	 * If someone had turned off tcp_direct_sockfs or if synchronous
930 	 * streams is stopped, we return EBUSY.  This causes strget() to
931 	 * dequeue data from the stream head instead.
932 	 */
933 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
934 		mutex_exit(&tcp->tcp_non_sq_lock);
935 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
936 		return (EBUSY);
937 	}
938 
939 	/*
940 	 * Grab lock in order. The highest addressed tcp is locked first.
941 	 * We don't do this within the tcp_rcv_list check since if we
942 	 * have to drop the lock, for ordering, then the tcp_rcv_list
943 	 * could change.
944 	 */
945 	if (peer_tcp > tcp) {
946 		CONN_INC_REF(peer_tcp->tcp_connp);
947 		mutex_exit(&tcp->tcp_non_sq_lock);
948 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
949 		mutex_enter(&tcp->tcp_non_sq_lock);
950 		CONN_DEC_REF(peer_tcp->tcp_connp);
951 		/* This might have changed in the interim */
952 		if (tcp->tcp_fuse_syncstr_plugged) {
953 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
954 			goto plugged;
955 		}
956 	} else {
957 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
958 	}
959 
960 	if ((mp = tcp->tcp_rcv_list) != NULL) {
961 
962 		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
963 		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
964 
965 		tcp->tcp_rcv_list = NULL;
966 		TCP_STAT(tcps, tcp_fusion_rrw_msgcnt);
967 
968 		/*
969 		 * At this point nothing should be left in tcp_rcv_list.
970 		 * The only possible case where we would have a chain of
971 		 * b_next-linked messages is urgent data, but we wouldn't
972 		 * be here if that's true since urgent data is delivered
973 		 * via putnext() and synchronous streams is stopped until
974 		 * tcp_fuse_rcv_drain() is finished.
975 		 */
976 		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
977 
978 		tcp->tcp_rcv_last_head = NULL;
979 		tcp->tcp_rcv_last_tail = NULL;
980 		tcp->tcp_rcv_cnt = 0;
981 		tcp->tcp_fuse_rcv_unread_cnt = 0;
982 
983 		if (peer_tcp->tcp_flow_stopped &&
984 		    (TCP_UNSENT_BYTES(peer_tcp) <=
985 		    peer_tcp->tcp_xmit_lowater)) {
986 			tcp_clrqfull(peer_tcp);
987 			TCP_STAT(tcps, tcp_fusion_backenabled);
988 		}
989 	}
990 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
991 	/*
992 	 * Either we just dequeued everything or we get here from sockfs
993 	 * and have nothing to return; in this case clear RSLEEP.
994 	 */
995 	ASSERT(tcp->tcp_rcv_last_head == NULL);
996 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
997 	ASSERT(tcp->tcp_rcv_cnt == 0);
998 	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
999 	STR_WAKEUP_CLEAR(STREAM(q));
1000 
1001 	mutex_exit(&tcp->tcp_non_sq_lock);
1002 	dp->d_mp = mp;
1003 	return (0);
1004 }
1005 
1006 /*
1007  * Synchronous stream entry point used by certain ioctls to retrieve
1008  * information about or peek into the tcp_rcv_list.
1009  */
1010 int
1011 tcp_fuse_rinfop(queue_t *q, infod_t *dp)
1012 {
1013 	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
1014 	mblk_t	*mp;
1015 	uint_t	cmd = dp->d_cmd;
1016 	int	res = 0;
1017 	int	error = 0;
1018 	struct stdata *stp = STREAM(q);
1019 
1020 	mutex_enter(&tcp->tcp_non_sq_lock);
1021 	/* If shutdown on read has happened, return nothing */
1022 	mutex_enter(&stp->sd_lock);
1023 	if (stp->sd_flag & STREOF) {
1024 		mutex_exit(&stp->sd_lock);
1025 		goto done;
1026 	}
1027 	mutex_exit(&stp->sd_lock);
1028 
1029 	/*
1030 	 * It is OK not to return an answer if tcp_rcv_list is
1031 	 * currently not accessible.
1032 	 */
1033 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
1034 	    tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL)
1035 		goto done;
1036 
1037 	if (cmd & INFOD_COUNT) {
1038 		/*
1039 		 * We have at least one message and
1040 		 * could return only one at a time.
1041 		 */
1042 		dp->d_count++;
1043 		res |= INFOD_COUNT;
1044 	}
1045 	if (cmd & INFOD_BYTES) {
1046 		/*
1047 		 * Return size of all data messages.
1048 		 */
1049 		dp->d_bytes += tcp->tcp_rcv_cnt;
1050 		res |= INFOD_BYTES;
1051 	}
1052 	if (cmd & INFOD_FIRSTBYTES) {
1053 		/*
1054 		 * Return size of first data message.
1055 		 */
1056 		dp->d_bytes = msgdsize(mp);
1057 		res |= INFOD_FIRSTBYTES;
1058 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
1059 	}
1060 	if (cmd & INFOD_COPYOUT) {
1061 		mblk_t *mp1;
1062 		int n;
1063 
1064 		if (DB_TYPE(mp) == M_DATA) {
1065 			mp1 = mp;
1066 		} else {
1067 			mp1 = mp->b_cont;
1068 			ASSERT(mp1 != NULL);
1069 		}
1070 
1071 		/*
1072 		 * Return data contents of first message.
1073 		 */
1074 		ASSERT(DB_TYPE(mp1) == M_DATA);
1075 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
1076 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
1077 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
1078 			    UIO_READ, dp->d_uiop)) != 0) {
1079 				goto done;
1080 			}
1081 			mp1 = mp1->b_cont;
1082 		}
1083 		res |= INFOD_COPYOUT;
1084 		dp->d_cmd &= ~INFOD_COPYOUT;
1085 	}
1086 done:
1087 	mutex_exit(&tcp->tcp_non_sq_lock);
1088 
1089 	dp->d_res |= res;
1090 
1091 	return (error);
1092 }
1093 
1094 /*
1095  * Enable synchronous streams on a fused tcp loopback endpoint.
1096  */
1097 static void
1098 tcp_fuse_syncstr_enable(tcp_t *tcp)
1099 {
1100 	queue_t *rq = tcp->tcp_rq;
1101 	struct stdata *stp = STREAM(rq);
1102 
1103 	/* We can only enable synchronous streams for sockfs mode */
1104 	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
1105 
1106 	if (!tcp->tcp_direct_sockfs)
1107 		return;
1108 
1109 	mutex_enter(&stp->sd_lock);
1110 	mutex_enter(QLOCK(rq));
1111 
1112 	/*
1113 	 * We replace our q_qinfo with one that has the qi_rwp entry point.
1114 	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
1115 	 * for every enqueued data in tcp_fuse_output().
1116 	 */
1117 	rq->q_qinfo = &tcp_loopback_rinit;
1118 	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
1119 	stp->sd_struiordq = rq;
1120 	stp->sd_rput_opt &= ~SR_SIGALLDATA;
1121 
1122 	mutex_exit(QLOCK(rq));
1123 	mutex_exit(&stp->sd_lock);
1124 }
1125 
1126 /*
1127  * Disable synchronous streams on a fused tcp loopback endpoint.
1128  */
1129 static void
1130 tcp_fuse_syncstr_disable(tcp_t *tcp)
1131 {
1132 	queue_t *rq = tcp->tcp_rq;
1133 	struct stdata *stp = STREAM(rq);
1134 
1135 	if (!tcp->tcp_direct_sockfs)
1136 		return;
1137 
1138 	mutex_enter(&stp->sd_lock);
1139 	mutex_enter(QLOCK(rq));
1140 
1141 	/*
1142 	 * Reset q_qinfo to point to the default tcp entry points.
1143 	 * Also restore SR_SIGALLDATA so that strrput() can generate
1144 	 * the signals again for future M_DATA messages.
1145 	 */
1146 	rq->q_qinfo = &tcp_rinit;
1147 	rq->q_struiot = tcp_rinit.qi_struiot;
1148 	stp->sd_struiordq = NULL;
1149 	stp->sd_rput_opt |= SR_SIGALLDATA;
1150 	tcp->tcp_direct_sockfs = B_FALSE;
1151 
1152 	mutex_exit(QLOCK(rq));
1153 	mutex_exit(&stp->sd_lock);
1154 }
1155 
1156 /*
1157  * Enable synchronous streams on a pair of fused tcp endpoints.
1158  */
1159 void
1160 tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
1161 {
1162 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1163 
1164 	ASSERT(tcp->tcp_fused);
1165 	ASSERT(peer_tcp != NULL);
1166 
1167 	tcp_fuse_syncstr_enable(tcp);
1168 	tcp_fuse_syncstr_enable(peer_tcp);
1169 }
1170 
1171 /*
1172  * Allow or disallow signals to be generated by strrput().
1173  */
1174 static void
1175 strrput_sig(queue_t *q, boolean_t on)
1176 {
1177 	struct stdata *stp = STREAM(q);
1178 
1179 	mutex_enter(&stp->sd_lock);
1180 	if (on)
1181 		stp->sd_flag &= ~STRGETINPROG;
1182 	else
1183 		stp->sd_flag |= STRGETINPROG;
1184 	mutex_exit(&stp->sd_lock);
1185 }
1186 
1187 /*
1188  * Disable synchronous streams on a pair of fused tcp endpoints and drain
1189  * any queued data; called either during unfuse or upon transitioning from
1190  * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
1191  */
1192 void
1193 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
1194 {
1195 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1196 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1197 
1198 	ASSERT(tcp->tcp_fused);
1199 	ASSERT(peer_tcp != NULL);
1200 
1201 	/*
1202 	 * Force any tcp_fuse_rrw() calls to block until we've moved the data
1203 	 * onto the stream head.
1204 	 */
1205 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
1206 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
1207 
1208 	/*
1209 	 * Drain any pending data; the detached check is needed because
1210 	 * we may be called as a result of a tcp_unfuse() triggered by
1211 	 * tcp_fuse_output().  Note that in case of a detached tcp, the
1212 	 * draining will happen later after the tcp is unfused.  For non-
1213 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
1214 	 * If we have urgent data sitting in the receive list, we will
1215 	 * need to send up a SIGURG signal first before draining the data.
1216 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
1217 	 * when called from tcp_rcv_drain().
1218 	 */
1219 	if (!TCP_IS_DETACHED(tcp)) {
1220 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
1221 		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
1222 	}
1223 	if (!TCP_IS_DETACHED(peer_tcp)) {
1224 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
1225 		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
1226 	}
1227 
1228 	/*
1229 	 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY.
1230 	 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(),
1231 	 * a given stream must be stopped prior to being unplugged (but the
1232 	 * ordering of operations between the streams is unimportant).
1233 	 */
1234 	TCP_FUSE_SYNCSTR_STOP(tcp);
1235 	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
1236 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
1237 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
1238 
1239 	/* Lift up any flow-control conditions */
1240 	if (tcp->tcp_flow_stopped) {
1241 		tcp_clrqfull(tcp);
1242 		TCP_STAT(tcps, tcp_fusion_backenabled);
1243 	}
1244 	if (peer_tcp->tcp_flow_stopped) {
1245 		tcp_clrqfull(peer_tcp);
1246 		TCP_STAT(tcps, tcp_fusion_backenabled);
1247 	}
1248 
1249 	/* Disable synchronous streams */
1250 	tcp_fuse_syncstr_disable(tcp);
1251 	tcp_fuse_syncstr_disable(peer_tcp);
1252 }
1253 
1254 /*
1255  * Calculate the size of receive buffer for a fused tcp endpoint.
1256  */
1257 size_t
1258 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
1259 {
1260 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1261 
1262 	ASSERT(tcp->tcp_fused);
1263 
1264 	/* Ensure that value is within the maximum upper bound */
1265 	if (rwnd > tcps->tcps_max_buf)
1266 		rwnd = tcps->tcps_max_buf;
1267 
1268 	/* Obey the absolute minimum tcp receive high water mark */
1269 	if (rwnd < tcps->tcps_sth_rcv_hiwat)
1270 		rwnd = tcps->tcps_sth_rcv_hiwat;
1271 
1272 	/*
1273 	 * Round up to system page size in case SO_RCVBUF is modified
1274 	 * after SO_SNDBUF; the latter is also similarly rounded up.
1275 	 */
1276 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
1277 	tcp->tcp_fuse_rcv_hiwater = rwnd;
1278 	return (rwnd);
1279 }
1280 
1281 /*
1282  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
1283  */
1284 int
1285 tcp_fuse_maxpsz_set(tcp_t *tcp)
1286 {
1287 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1288 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1289 	uint_t maxpsz = sndbuf;
1290 
1291 	ASSERT(tcp->tcp_fused);
1292 	ASSERT(peer_tcp != NULL);
1293 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1294 	/*
1295 	 * In the fused loopback case, we want the stream head to split
1296 	 * up larger writes into smaller chunks for a more accurate flow-
1297 	 * control accounting.  Our maxpsz is half of the sender's send
1298 	 * buffer or the receiver's receive buffer, whichever is smaller.
1299 	 * We round up the buffer to system page size due to the lack of
1300 	 * TCP MSS concept in Fusion.
1301 	 */
1302 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1303 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1304 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1305 
1306 	/*
1307 	 * Calculate the peer's limit for the number of outstanding unread
1308 	 * data block.  This is the amount of data blocks that are allowed
1309 	 * to reside in the receiver's queue before the sender gets flow
1310 	 * controlled.  It is used only in the synchronous streams mode as
1311 	 * a way to throttle the sender when it performs consecutive writes
1312 	 * faster than can be read.  The value is derived from SO_SNDBUF in
1313 	 * order to give the sender some control; we divide it with a large
1314 	 * value (16KB) to produce a fairly low initial limit.
1315 	 */
1316 	if (tcp_fusion_rcv_unread_min == 0) {
1317 		/* A value of 0 means that we disable the check */
1318 		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
1319 	} else {
1320 		peer_tcp->tcp_fuse_rcv_unread_hiwater =
1321 		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
1322 	}
1323 	return (maxpsz);
1324 }
1325