xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision 3d510dea19df8bee8460d94652524f78c4e07003)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/stream.h>
28 #include <sys/strsun.h>
29 #include <sys/strsubr.h>
30 #include <sys/debug.h>
31 #include <sys/sdt.h>
32 #include <sys/cmn_err.h>
33 #include <sys/tihdr.h>
34 
35 #include <inet/common.h>
36 #include <inet/optcom.h>
37 #include <inet/ip.h>
38 #include <inet/ip_impl.h>
39 #include <inet/tcp.h>
40 #include <inet/tcp_impl.h>
41 #include <inet/ipsec_impl.h>
42 #include <inet/ipclassifier.h>
43 #include <inet/ipp_common.h>
44 
45 /*
46  * This file implements TCP fusion - a protocol-less data path for TCP
47  * loopback connections.  The fusion of two local TCP endpoints occurs
48  * at connection establishment time.  Various conditions (see details
49  * in tcp_fuse()) need to be met for fusion to be successful.  If it
50  * fails, we fall back to the regular TCP data path; if it succeeds,
51  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
52  * tcp_fuse_output() enqueues application data directly onto the peer's
53  * receive queue; no protocol processing is involved.  After enqueueing
54  * the data, the sender can either push (putnext) data up the receiver's
55  * read queue; or the sender can simply return and let the receiver
56  * retrieve the enqueued data via the synchronous streams entry point
57  * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
58  * enabled (the default).  It is disabled if sockfs no longer resides
59  * directly on top of tcp module due to a module insertion or removal.
60  * It also needs to be temporarily disabled when sending urgent data
61  * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
62  * by strsock_proto() hook.
63  *
64  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
65  * One of the requirements for fusion to succeed is that both endpoints
66  * need to be using the same squeue.  This ensures that neither side
67  * can disappear while the other side is still sending data.  By itself,
68  * squeue is not sufficient for guaranteeing safety when synchronous
69  * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
70  * the squeue and its access to tcp_rcv_list and other fusion-related
71  * fields needs to be sychronized with the sender.  tcp_non_sq_lock is
72  * used for this purpose.  When there is urgent data, the sender needs
73  * to push the data up the receiver's streams read queue.  In order to
74  * avoid holding the tcp_non_sq_lock across putnext(), the sender sets
75  * the peer tcp's tcp_fuse_syncstr_plugged bit and releases tcp_non_sq_lock
76  * (see macro TCP_FUSE_SYNCSTR_PLUG_DRAIN()).  If tcp_fuse_rrw() enters
77  * after this point, it will see that synchronous streams is plugged and
78  * will wait on tcp_fuse_plugcv.  After the sender has finished pushing up
79  * all urgent data, it will clear the tcp_fuse_syncstr_plugged bit using
80  * TCP_FUSE_SYNCSTR_UNPLUG_DRAIN().  This will cause any threads waiting
81  * on tcp_fuse_plugcv to return EBUSY, and in turn cause strget() to call
82  * getq_noenab() to dequeue data from the stream head instead.  Once the
83  * data on the stream head has been consumed, tcp_fuse_rrw() may again
84  * be used to process tcp_rcv_list.  However, if TCP_FUSE_SYNCSTR_STOP()
85  * has been called, all future calls to tcp_fuse_rrw() will return EBUSY,
86  * effectively disabling synchronous streams.
87  *
88  * The following note applies only to the synchronous streams mode.
89  *
90  * Flow control is done by checking the size of receive buffer and
91  * the number of data blocks, both set to different limits.  This is
92  * different than regular streams flow control where cumulative size
93  * check dominates block count check -- streams queue high water mark
94  * typically represents bytes.  Each enqueue triggers notifications
95  * to the receiving process; a build up of data blocks indicates a
96  * slow receiver and the sender should be blocked or informed at the
97  * earliest moment instead of further wasting system resources.  In
98  * effect, this is equivalent to limiting the number of outstanding
99  * segments in flight.
100  */
101 
102 /*
103  * Setting this to false means we disable fusion altogether and
104  * loopback connections would go through the protocol paths.
105  */
106 boolean_t do_tcp_fusion = B_TRUE;
107 
108 /*
109  * Enabling this flag allows sockfs to retrieve data directly
110  * from a fused tcp endpoint using synchronous streams interface.
111  */
112 boolean_t do_tcp_direct_sockfs = B_TRUE;
113 
114 /*
115  * This is the minimum amount of outstanding writes allowed on
116  * a synchronous streams-enabled receiving endpoint before the
117  * sender gets flow-controlled.  Setting this value to 0 means
118  * that the data block limit is equivalent to the byte count
119  * limit, which essentially disables the check.
120  */
121 #define	TCP_FUSION_RCV_UNREAD_MIN	8
122 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
123 
124 static void		tcp_fuse_syncstr_enable(tcp_t *);
125 static void		tcp_fuse_syncstr_disable(tcp_t *);
126 static boolean_t	strrput_sig(queue_t *, boolean_t);
127 
128 /*
129  * Return true if this connection needs some IP functionality
130  */
131 static boolean_t
132 tcp_loopback_needs_ip(tcp_t *tcp, netstack_t *ns)
133 {
134 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
135 
136 	/*
137 	 * If ire is not cached, do not use fusion
138 	 */
139 	if (tcp->tcp_connp->conn_ire_cache == NULL) {
140 		/*
141 		 * There is no need to hold conn_lock here because when called
142 		 * from tcp_fuse() there can be no window where conn_ire_cache
143 		 * can change. This is not true whe called from
144 		 * tcp_fuse_output(). conn_ire_cache can become null just
145 		 * after the check, but it's ok if a few packets are delivered
146 		 * in the fused state.
147 		 */
148 		return (B_TRUE);
149 	}
150 	if (tcp->tcp_ipversion == IPV4_VERSION) {
151 		if (tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH)
152 			return (B_TRUE);
153 		if (CONN_OUTBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
154 			return (B_TRUE);
155 		if (CONN_INBOUND_POLICY_PRESENT(tcp->tcp_connp, ipss))
156 			return (B_TRUE);
157 	} else {
158 		if (tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)
159 			return (B_TRUE);
160 		if (CONN_OUTBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
161 			return (B_TRUE);
162 		if (CONN_INBOUND_POLICY_PRESENT_V6(tcp->tcp_connp, ipss))
163 			return (B_TRUE);
164 	}
165 	if (!CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp))
166 		return (B_TRUE);
167 	return (B_FALSE);
168 }
169 
170 
171 /*
172  * This routine gets called by the eager tcp upon changing state from
173  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
174  * and the active connect tcp such that the regular tcp processings
175  * may be bypassed under allowable circumstances.  Because the fusion
176  * requires both endpoints to be in the same squeue, it does not work
177  * for simultaneous active connects because there is no easy way to
178  * switch from one squeue to another once the connection is created.
179  * This is different from the eager tcp case where we assign it the
180  * same squeue as the one given to the active connect tcp during open.
181  */
182 void
183 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
184 {
185 	conn_t *peer_connp, *connp = tcp->tcp_connp;
186 	tcp_t *peer_tcp;
187 	tcp_stack_t	*tcps = tcp->tcp_tcps;
188 	netstack_t	*ns;
189 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
190 
191 	ASSERT(!tcp->tcp_fused);
192 	ASSERT(tcp->tcp_loopback);
193 	ASSERT(tcp->tcp_loopback_peer == NULL);
194 	/*
195 	 * We need to inherit q_hiwat of the listener tcp, but we can't
196 	 * really use tcp_listener since we get here after sending up
197 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
198 	 * at which point tcp_listener is cleared; this is why we use
199 	 * tcp_saved_listener.  The listener itself is guaranteed to be
200 	 * around until tcp_accept_finish() is called on this eager --
201 	 * this won't happen until we're done since we're inside the
202 	 * eager's perimeter now.
203 	 */
204 	ASSERT(tcp->tcp_saved_listener != NULL);
205 
206 	/*
207 	 * Lookup peer endpoint; search for the remote endpoint having
208 	 * the reversed address-port quadruplet in ESTABLISHED state,
209 	 * which is guaranteed to be unique in the system.  Zone check
210 	 * is applied accordingly for loopback address, but not for
211 	 * local address since we want fusion to happen across Zones.
212 	 */
213 	if (tcp->tcp_ipversion == IPV4_VERSION) {
214 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
215 		    (ipha_t *)iphdr, tcph, ipst);
216 	} else {
217 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
218 		    (ip6_t *)iphdr, tcph, ipst);
219 	}
220 
221 	/*
222 	 * We can only proceed if peer exists, resides in the same squeue
223 	 * as our conn and is not raw-socket.  The squeue assignment of
224 	 * this eager tcp was done earlier at the time of SYN processing
225 	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
226 	 * doesn't guarantee a safe condition to fuse, hence we perform
227 	 * additional tests below.
228 	 */
229 	ASSERT(peer_connp == NULL || peer_connp != connp);
230 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
231 	    !IPCL_IS_TCP(peer_connp)) {
232 		if (peer_connp != NULL) {
233 			TCP_STAT(tcps, tcp_fusion_unqualified);
234 			CONN_DEC_REF(peer_connp);
235 		}
236 		return;
237 	}
238 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
239 
240 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
241 	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
242 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
243 
244 	/*
245 	 * Fuse the endpoints; we perform further checks against both
246 	 * tcp endpoints to ensure that a fusion is allowed to happen.
247 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
248 	 * IPQoS policy/kernel SSL exists.
249 	 */
250 	ns = tcps->tcps_netstack;
251 	ipst = ns->netstack_ip;
252 
253 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
254 	    !tcp_loopback_needs_ip(tcp, ns) &&
255 	    !tcp_loopback_needs_ip(peer_tcp, ns) &&
256 	    tcp->tcp_kssl_ent == NULL &&
257 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
258 		mblk_t *mp;
259 		struct stroptions *stropt;
260 		queue_t *peer_rq = peer_tcp->tcp_rq;
261 
262 		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
263 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
264 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
265 		ASSERT(tcp->tcp_kssl_ctx == NULL);
266 
267 		/*
268 		 * We need to drain data on both endpoints during unfuse.
269 		 * If we need to send up SIGURG at the time of draining,
270 		 * we want to be sure that an mblk is readily available.
271 		 * This is why we pre-allocate the M_PCSIG mblks for both
272 		 * endpoints which will only be used during/after unfuse.
273 		 */
274 		if ((mp = allocb(1, BPRI_HI)) == NULL)
275 			goto failed;
276 
277 		tcp->tcp_fused_sigurg_mp = mp;
278 
279 		if ((mp = allocb(1, BPRI_HI)) == NULL)
280 			goto failed;
281 
282 		peer_tcp->tcp_fused_sigurg_mp = mp;
283 
284 		/* Allocate M_SETOPTS mblk */
285 		if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
286 			goto failed;
287 
288 		/* If either tcp or peer_tcp sodirect enabled then disable */
289 		if (tcp->tcp_sodirect != NULL) {
290 			mutex_enter(tcp->tcp_sodirect->sod_lockp);
291 			SOD_DISABLE(tcp->tcp_sodirect);
292 			mutex_exit(tcp->tcp_sodirect->sod_lockp);
293 			tcp->tcp_sodirect = NULL;
294 		}
295 		if (peer_tcp->tcp_sodirect != NULL) {
296 			mutex_enter(peer_tcp->tcp_sodirect->sod_lockp);
297 			SOD_DISABLE(peer_tcp->tcp_sodirect);
298 			mutex_exit(peer_tcp->tcp_sodirect->sod_lockp);
299 			peer_tcp->tcp_sodirect = NULL;
300 		}
301 
302 		/* Fuse both endpoints */
303 		peer_tcp->tcp_loopback_peer = tcp;
304 		tcp->tcp_loopback_peer = peer_tcp;
305 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
306 
307 		/*
308 		 * We never use regular tcp paths in fusion and should
309 		 * therefore clear tcp_unsent on both endpoints.  Having
310 		 * them set to non-zero values means asking for trouble
311 		 * especially after unfuse, where we may end up sending
312 		 * through regular tcp paths which expect xmit_list and
313 		 * friends to be correctly setup.
314 		 */
315 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
316 
317 		tcp_timers_stop(tcp);
318 		tcp_timers_stop(peer_tcp);
319 
320 		/*
321 		 * At this point we are a detached eager tcp and therefore
322 		 * don't have a queue assigned to us until accept happens.
323 		 * In the mean time the peer endpoint may immediately send
324 		 * us data as soon as fusion is finished, and we need to be
325 		 * able to flow control it in case it sends down huge amount
326 		 * of data while we're still detached.  To prevent that we
327 		 * inherit the listener's q_hiwat value; this is temporary
328 		 * since we'll repeat the process in tcp_accept_finish().
329 		 */
330 		(void) tcp_fuse_set_rcv_hiwat(tcp,
331 		    tcp->tcp_saved_listener->tcp_rq->q_hiwat);
332 
333 		/*
334 		 * Set the stream head's write offset value to zero since we
335 		 * won't be needing any room for TCP/IP headers; tell it to
336 		 * not break up the writes (this would reduce the amount of
337 		 * work done by kmem); and configure our receive buffer.
338 		 * Note that we can only do this for the active connect tcp
339 		 * since our eager is still detached; it will be dealt with
340 		 * later in tcp_accept_finish().
341 		 */
342 		DB_TYPE(mp) = M_SETOPTS;
343 		mp->b_wptr += sizeof (*stropt);
344 
345 		stropt = (struct stroptions *)mp->b_rptr;
346 		stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
347 		stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
348 		stropt->so_wroff = 0;
349 
350 		/*
351 		 * Record the stream head's high water mark for
352 		 * peer endpoint; this is used for flow-control
353 		 * purposes in tcp_fuse_output().
354 		 */
355 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
356 		    peer_rq->q_hiwat);
357 
358 		/* Send the options up */
359 		putnext(peer_rq, mp);
360 	} else {
361 		TCP_STAT(tcps, tcp_fusion_unqualified);
362 	}
363 	CONN_DEC_REF(peer_connp);
364 	return;
365 
366 failed:
367 	if (tcp->tcp_fused_sigurg_mp != NULL) {
368 		freeb(tcp->tcp_fused_sigurg_mp);
369 		tcp->tcp_fused_sigurg_mp = NULL;
370 	}
371 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
372 		freeb(peer_tcp->tcp_fused_sigurg_mp);
373 		peer_tcp->tcp_fused_sigurg_mp = NULL;
374 	}
375 	CONN_DEC_REF(peer_connp);
376 }
377 
378 /*
379  * Unfuse a previously-fused pair of tcp loopback endpoints.
380  */
381 void
382 tcp_unfuse(tcp_t *tcp)
383 {
384 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
385 
386 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
387 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
388 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
389 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
390 	ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
391 	ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
392 
393 	/*
394 	 * We disable synchronous streams, drain any queued data and
395 	 * clear tcp_direct_sockfs.  The synchronous streams entry
396 	 * points will become no-ops after this point.
397 	 */
398 	tcp_fuse_disable_pair(tcp, B_TRUE);
399 
400 	/*
401 	 * Update th_seq and th_ack in the header template
402 	 */
403 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
404 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
405 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
406 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
407 
408 	/* Unfuse the endpoints */
409 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
410 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
411 }
412 
413 /*
414  * Fusion output routine for urgent data.  This routine is called by
415  * tcp_fuse_output() for handling non-M_DATA mblks.
416  */
417 void
418 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
419 {
420 	mblk_t *mp1;
421 	struct T_exdata_ind *tei;
422 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
423 	mblk_t *head, *prev_head = NULL;
424 	tcp_stack_t	*tcps = tcp->tcp_tcps;
425 
426 	ASSERT(tcp->tcp_fused);
427 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
428 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
429 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
430 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
431 
432 	/*
433 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
434 	 * Each occurence denotes a new urgent pointer.  For each new
435 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
436 	 * that it needs to go into urgent mode.  This is similar to the
437 	 * urgent data handling in the regular tcp.  We don't need to keep
438 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
439 	 * "advances" the urgent pointer for us.
440 	 *
441 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
442 	 * by a T_EXDATA_IND before being enqueued behind any existing data
443 	 * destined for the receiving app.  There is only a single urgent
444 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
445 	 * data arrives before the receiving app reads some existing urgent
446 	 * data, the previous marker is lost.  This behavior is emulated
447 	 * accordingly below, by removing any existing T_EXDATA_IND messages
448 	 * and essentially converting old urgent data into non-urgent.
449 	 */
450 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
451 	/* Let sender get out of urgent mode */
452 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
453 
454 	/*
455 	 * This flag indicates that a signal needs to be sent up.
456 	 * This flag will only get cleared once SIGURG is delivered and
457 	 * is not affected by the tcp_fused flag -- delivery will still
458 	 * happen even after an endpoint is unfused, to handle the case
459 	 * where the sending endpoint immediately closes/unfuses after
460 	 * sending urgent data and the accept is not yet finished.
461 	 */
462 	peer_tcp->tcp_fused_sigurg = B_TRUE;
463 
464 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
465 	DB_TYPE(mp) = M_PROTO;
466 	tei = (struct T_exdata_ind *)mp->b_rptr;
467 	tei->PRIM_type = T_EXDATA_IND;
468 	tei->MORE_flag = 0;
469 	mp->b_wptr = (uchar_t *)&tei[1];
470 
471 	TCP_STAT(tcps, tcp_fusion_urg);
472 	BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
473 
474 	head = peer_tcp->tcp_rcv_list;
475 	while (head != NULL) {
476 		/*
477 		 * Remove existing T_EXDATA_IND, keep the data which follows
478 		 * it and relink our list.  Note that we don't modify the
479 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
480 		 */
481 		if (DB_TYPE(head) != M_DATA) {
482 			mp1 = head;
483 
484 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
485 			head = mp1->b_cont;
486 			mp1->b_cont = NULL;
487 			head->b_next = mp1->b_next;
488 			mp1->b_next = NULL;
489 			if (prev_head != NULL)
490 				prev_head->b_next = head;
491 			if (peer_tcp->tcp_rcv_list == mp1)
492 				peer_tcp->tcp_rcv_list = head;
493 			if (peer_tcp->tcp_rcv_last_head == mp1)
494 				peer_tcp->tcp_rcv_last_head = head;
495 			freeb(mp1);
496 		}
497 		prev_head = head;
498 		head = head->b_next;
499 	}
500 }
501 
502 /*
503  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
504  * If we are modifying any member that can be changed outside the squeue,
505  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
506  */
507 boolean_t
508 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
509 {
510 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
511 	uint_t max_unread;
512 	boolean_t flow_stopped, peer_data_queued = B_FALSE;
513 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
514 	mblk_t *mp1 = mp;
515 	ill_t *ilp, *olp;
516 	ipha_t *ipha;
517 	ip6_t *ip6h;
518 	tcph_t *tcph;
519 	uint_t ip_hdr_len;
520 	uint32_t seq;
521 	uint32_t recv_size = send_size;
522 	tcp_stack_t	*tcps = tcp->tcp_tcps;
523 	netstack_t	*ns = tcps->tcps_netstack;
524 	ip_stack_t	*ipst = ns->netstack_ip;
525 
526 	ASSERT(tcp->tcp_fused);
527 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
528 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
529 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
530 	    DB_TYPE(mp) == M_PCPROTO);
531 
532 
533 	/* If this connection requires IP, unfuse and use regular path */
534 	if (tcp_loopback_needs_ip(tcp, ns) ||
535 	    tcp_loopback_needs_ip(peer_tcp, ns) ||
536 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN, ipst)) {
537 		TCP_STAT(tcps, tcp_fusion_aborted);
538 		goto unfuse;
539 	}
540 
541 	if (send_size == 0) {
542 		freemsg(mp);
543 		return (B_TRUE);
544 	}
545 	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
546 
547 	/*
548 	 * Handle urgent data; we either send up SIGURG to the peer now
549 	 * or do it later when we drain, in case the peer is detached
550 	 * or if we're short of memory for M_PCSIG mblk.
551 	 */
552 	if (urgent) {
553 		/*
554 		 * We stop synchronous streams when we have urgent data
555 		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
556 		 * for some reasons the urgent data can't be delivered
557 		 * below, synchronous streams will remain stopped until
558 		 * someone drains the tcp_rcv_list.
559 		 */
560 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
561 		tcp_fuse_output_urg(tcp, mp);
562 
563 		mp1 = mp->b_cont;
564 	}
565 
566 	if (tcp->tcp_ipversion == IPV4_VERSION &&
567 	    (HOOKS4_INTERESTED_LOOPBACK_IN(ipst) ||
568 	    HOOKS4_INTERESTED_LOOPBACK_OUT(ipst)) ||
569 	    tcp->tcp_ipversion == IPV6_VERSION &&
570 	    (HOOKS6_INTERESTED_LOOPBACK_IN(ipst) ||
571 	    HOOKS6_INTERESTED_LOOPBACK_OUT(ipst))) {
572 		/*
573 		 * Build ip and tcp header to satisfy FW_HOOKS.
574 		 * We only build it when any hook is present.
575 		 */
576 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
577 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
578 			/* If tcp_xmit_mp fails, use regular path */
579 			goto unfuse;
580 
581 		ASSERT(peer_tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
582 		olp = peer_tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
583 		/* PFHooks: LOOPBACK_OUT */
584 		if (tcp->tcp_ipversion == IPV4_VERSION) {
585 			ipha = (ipha_t *)mp1->b_rptr;
586 
587 			DTRACE_PROBE4(ip4__loopback__out__start,
588 			    ill_t *, NULL, ill_t *, olp,
589 			    ipha_t *, ipha, mblk_t *, mp1);
590 			FW_HOOKS(ipst->ips_ip4_loopback_out_event,
591 			    ipst->ips_ipv4firewall_loopback_out,
592 			    NULL, olp, ipha, mp1, mp1, 0, ipst);
593 			DTRACE_PROBE1(ip4__loopback__out__end, mblk_t *, mp1);
594 		} else {
595 			ip6h = (ip6_t *)mp1->b_rptr;
596 
597 			DTRACE_PROBE4(ip6__loopback__out__start,
598 			    ill_t *, NULL, ill_t *, olp,
599 			    ip6_t *, ip6h, mblk_t *, mp1);
600 			FW_HOOKS6(ipst->ips_ip6_loopback_out_event,
601 			    ipst->ips_ipv6firewall_loopback_out,
602 			    NULL, olp, ip6h, mp1, mp1, 0, ipst);
603 			DTRACE_PROBE1(ip6__loopback__out__end, mblk_t *, mp1);
604 		}
605 		if (mp1 == NULL)
606 			goto unfuse;
607 
608 
609 		/* PFHooks: LOOPBACK_IN */
610 		ASSERT(tcp->tcp_connp->conn_ire_cache->ire_ipif != NULL);
611 		ilp = tcp->tcp_connp->conn_ire_cache->ire_ipif->ipif_ill;
612 
613 		if (tcp->tcp_ipversion == IPV4_VERSION) {
614 			DTRACE_PROBE4(ip4__loopback__in__start,
615 			    ill_t *, ilp, ill_t *, NULL,
616 			    ipha_t *, ipha, mblk_t *, mp1);
617 			FW_HOOKS(ipst->ips_ip4_loopback_in_event,
618 			    ipst->ips_ipv4firewall_loopback_in,
619 			    ilp, NULL, ipha, mp1, mp1, 0, ipst);
620 			DTRACE_PROBE1(ip4__loopback__in__end, mblk_t *, mp1);
621 			if (mp1 == NULL)
622 				goto unfuse;
623 
624 			ip_hdr_len = IPH_HDR_LENGTH(ipha);
625 		} else {
626 			DTRACE_PROBE4(ip6__loopback__in__start,
627 			    ill_t *, ilp, ill_t *, NULL,
628 			    ip6_t *, ip6h, mblk_t *, mp1);
629 			FW_HOOKS6(ipst->ips_ip6_loopback_in_event,
630 			    ipst->ips_ipv6firewall_loopback_in,
631 			    ilp, NULL, ip6h, mp1, mp1, 0, ipst);
632 			DTRACE_PROBE1(ip6__loopback__in__end, mblk_t *, mp1);
633 			if (mp1 == NULL)
634 				goto unfuse;
635 
636 			ip_hdr_len = ip_hdr_length_v6(mp1, ip6h);
637 		}
638 
639 		/* Data length might be changed by FW_HOOKS */
640 		tcph = (tcph_t *)&mp1->b_rptr[ip_hdr_len];
641 		seq = ABE32_TO_U32(tcph->th_seq);
642 		recv_size += seq - tcp->tcp_snxt;
643 
644 		/*
645 		 * The message duplicated by tcp_xmit_mp is freed.
646 		 * Note: the original message passed in remains unchanged.
647 		 */
648 		freemsg(mp1);
649 	}
650 
651 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
652 	/*
653 	 * Wake up and signal the peer; it is okay to do this before
654 	 * enqueueing because we are holding the lock.  One of the
655 	 * advantages of synchronous streams is the ability for us to
656 	 * find out when the application performs a read on the socket,
657 	 * by way of tcp_fuse_rrw() entry point being called.  Every
658 	 * data that gets enqueued onto the receiver is treated as if
659 	 * it has arrived at the receiving endpoint, thus generating
660 	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
661 	 * case.  However, we only wake up the application when necessary,
662 	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
663 	 * it will send everything upstream.
664 	 */
665 	if (peer_tcp->tcp_direct_sockfs && !urgent &&
666 	    !TCP_IS_DETACHED(peer_tcp)) {
667 		/* Update poll events and send SIGPOLL/SIGIO if necessary */
668 		STR_WAKEUP_SENDSIG(STREAM(peer_tcp->tcp_rq),
669 		    peer_tcp->tcp_rcv_list);
670 	}
671 
672 	/*
673 	 * Enqueue data into the peer's receive list; we may or may not
674 	 * drain the contents depending on the conditions below.
675 	 */
676 	tcp_rcv_enqueue(peer_tcp, mp, recv_size);
677 
678 	/* In case it wrapped around and also to keep it constant */
679 	peer_tcp->tcp_rwnd += recv_size;
680 	/*
681 	 * We increase the peer's unread message count here whilst still
682 	 * holding it's tcp_non_sq_lock. This ensures that the increment
683 	 * occurs in the same lock acquisition perimeter as the enqueue.
684 	 * Depending on lock hierarchy, we can release these locks which
685 	 * creates a window in which we can race with tcp_fuse_rrw()
686 	 */
687 	peer_tcp->tcp_fuse_rcv_unread_cnt++;
688 
689 	/*
690 	 * Exercise flow-control when needed; we will get back-enabled
691 	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
692 	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
693 	 * we emulate streams flow control by checking the peer's queue
694 	 * size and high water mark; otherwise we simply use canputnext()
695 	 * to decide if we need to stop our flow.
696 	 *
697 	 * The outstanding unread data block check does not apply for a
698 	 * detached receiver; this is to avoid unnecessary blocking of the
699 	 * sender while the accept is currently in progress and is quite
700 	 * similar to the regular tcp.
701 	 */
702 	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
703 		max_unread = UINT_MAX;
704 
705 	/*
706 	 * Since we are accessing our tcp_flow_stopped and might modify it,
707 	 * we need to take tcp->tcp_non_sq_lock. The lock for the highest
708 	 * address is held first. Dropping peer_tcp->tcp_non_sq_lock should
709 	 * not be an issue here since we are within the squeue and the peer
710 	 * won't disappear.
711 	 */
712 	if (tcp > peer_tcp) {
713 		mutex_exit(&peer_tcp->tcp_non_sq_lock);
714 		mutex_enter(&tcp->tcp_non_sq_lock);
715 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
716 	} else {
717 		mutex_enter(&tcp->tcp_non_sq_lock);
718 	}
719 	flow_stopped = tcp->tcp_flow_stopped;
720 	if (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
721 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
722 	    peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
723 	    (!peer_tcp->tcp_direct_sockfs && !TCP_IS_DETACHED(peer_tcp) &&
724 	    !canputnext(peer_tcp->tcp_rq))) {
725 		peer_data_queued = B_TRUE;
726 	}
727 
728 	if (!flow_stopped && (peer_data_queued ||
729 	    (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater))) {
730 		tcp_setqfull(tcp);
731 		flow_stopped = B_TRUE;
732 		TCP_STAT(tcps, tcp_fusion_flowctl);
733 		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
734 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
735 		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
736 	} else if (flow_stopped && !peer_data_queued &&
737 	    (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater)) {
738 		tcp_clrqfull(tcp);
739 		TCP_STAT(tcps, tcp_fusion_backenabled);
740 		flow_stopped = B_FALSE;
741 	}
742 	mutex_exit(&tcp->tcp_non_sq_lock);
743 
744 	/*
745 	 * If we are in synchronous streams mode and the peer read queue is
746 	 * not full then schedule a push timer if one is not scheduled
747 	 * already. This is needed for applications which use MSG_PEEK to
748 	 * determine the number of bytes available before issuing a 'real'
749 	 * read. It also makes flow control more deterministic, particularly
750 	 * for smaller message sizes.
751 	 */
752 	if (!urgent && peer_tcp->tcp_direct_sockfs &&
753 	    peer_tcp->tcp_push_tid == 0 && !TCP_IS_DETACHED(peer_tcp) &&
754 	    canputnext(peer_tcp->tcp_rq)) {
755 		peer_tcp->tcp_push_tid = TCP_TIMER(peer_tcp, tcp_push_timer,
756 		    MSEC_TO_TICK(tcps->tcps_push_timer_interval));
757 	}
758 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
759 	ipst->ips_loopback_packets++;
760 	tcp->tcp_last_sent_len = send_size;
761 
762 	/* Need to adjust the following SNMP MIB-related variables */
763 	tcp->tcp_snxt += send_size;
764 	tcp->tcp_suna = tcp->tcp_snxt;
765 	peer_tcp->tcp_rnxt += recv_size;
766 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
767 
768 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
769 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, send_size);
770 
771 	BUMP_MIB(&tcps->tcps_mib, tcpInSegs);
772 	BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
773 	UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, send_size);
774 
775 	BUMP_LOCAL(tcp->tcp_obsegs);
776 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
777 
778 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
779 
780 	if (!TCP_IS_DETACHED(peer_tcp)) {
781 		/*
782 		 * Drain the peer's receive queue it has urgent data or if
783 		 * we're not flow-controlled.  There is no need for draining
784 		 * normal data when tcp_direct_sockfs is on because the peer
785 		 * will pull the data via tcp_fuse_rrw().
786 		 */
787 		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
788 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
789 			/*
790 			 * For TLI-based streams, a thread in tcp_accept_swap()
791 			 * can race with us.  That thread will ensure that the
792 			 * correct peer_tcp->tcp_rq is globally visible before
793 			 * peer_tcp->tcp_detached is visible as clear, but we
794 			 * must also ensure that the load of tcp_rq cannot be
795 			 * reordered to be before the tcp_detached check.
796 			 */
797 			membar_consumer();
798 			(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
799 			    NULL);
800 			/*
801 			 * If synchronous streams was stopped above due
802 			 * to the presence of urgent data, re-enable it.
803 			 */
804 			if (urgent)
805 				TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
806 		}
807 	}
808 	return (B_TRUE);
809 unfuse:
810 	tcp_unfuse(tcp);
811 	return (B_FALSE);
812 }
813 
814 /*
815  * This routine gets called to deliver data upstream on a fused or
816  * previously fused tcp loopback endpoint; the latter happens only
817  * when there is a pending SIGURG signal plus urgent data that can't
818  * be sent upstream in the past.
819  */
820 boolean_t
821 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
822 {
823 	mblk_t *mp;
824 #ifdef DEBUG
825 	uint_t cnt = 0;
826 #endif
827 	tcp_stack_t	*tcps = tcp->tcp_tcps;
828 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
829 	boolean_t	sd_rd_eof = B_FALSE;
830 
831 	ASSERT(tcp->tcp_loopback);
832 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
833 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
834 	ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
835 
836 	/* No need for the push timer now, in case it was scheduled */
837 	if (tcp->tcp_push_tid != 0) {
838 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
839 		tcp->tcp_push_tid = 0;
840 	}
841 	/*
842 	 * If there's urgent data sitting in receive list and we didn't
843 	 * get a chance to send up a SIGURG signal, make sure we send
844 	 * it first before draining in order to ensure that SIOCATMARK
845 	 * works properly.
846 	 */
847 	if (tcp->tcp_fused_sigurg) {
848 		/*
849 		 * sigurg_mpp is normally NULL, i.e. when we're still
850 		 * fused and didn't get here because of tcp_unfuse().
851 		 * In this case try hard to allocate the M_PCSIG mblk.
852 		 */
853 		if (sigurg_mpp == NULL &&
854 		    (mp = allocb(1, BPRI_HI)) == NULL &&
855 		    (mp = allocb_tryhard(1)) == NULL) {
856 			/* Alloc failed; try again next time */
857 			tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
858 			    MSEC_TO_TICK(tcps->tcps_push_timer_interval));
859 			return (B_TRUE);
860 		} else if (sigurg_mpp != NULL) {
861 			/*
862 			 * Use the supplied M_PCSIG mblk; it means we're
863 			 * either unfused or in the process of unfusing,
864 			 * and the drain must happen now.
865 			 */
866 			mp = *sigurg_mpp;
867 			*sigurg_mpp = NULL;
868 		}
869 		ASSERT(mp != NULL);
870 
871 		tcp->tcp_fused_sigurg = B_FALSE;
872 		/* Send up the signal */
873 		DB_TYPE(mp) = M_PCSIG;
874 		*mp->b_wptr++ = (uchar_t)SIGURG;
875 		putnext(q, mp);
876 		/*
877 		 * Let the regular tcp_rcv_drain() path handle
878 		 * draining the data if we're no longer fused.
879 		 */
880 		if (!tcp->tcp_fused)
881 			return (B_FALSE);
882 	}
883 
884 	/*
885 	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
886 	 * each M_DATA that gets enqueued onto the receiver.  At this point
887 	 * we are about to drain any queued data via putnext().  In order
888 	 * to avoid extraneous signal generation from strrput(), we set
889 	 * STRGETINPROG flag at the stream head prior to the draining and
890 	 * restore it afterwards.  This masks out signal generation only
891 	 * for M_DATA messages and does not affect urgent data. We only do
892 	 * this if the STREOF flag is not set which can happen if the
893 	 * application shuts down the read side of a stream. In this case
894 	 * we simply free these messages to approximate the flushq behavior
895 	 * which normally occurs when STREOF is on the stream head read queue.
896 	 */
897 	if (tcp->tcp_direct_sockfs)
898 		sd_rd_eof = strrput_sig(q, B_FALSE);
899 
900 	/* Drain the data */
901 	while ((mp = tcp->tcp_rcv_list) != NULL) {
902 		tcp->tcp_rcv_list = mp->b_next;
903 		mp->b_next = NULL;
904 #ifdef DEBUG
905 		cnt += msgdsize(mp);
906 #endif
907 		if (sd_rd_eof) {
908 			freemsg(mp);
909 		} else {
910 			putnext(q, mp);
911 			TCP_STAT(tcps, tcp_fusion_putnext);
912 		}
913 	}
914 
915 	if (tcp->tcp_direct_sockfs && !sd_rd_eof)
916 		(void) strrput_sig(q, B_TRUE);
917 
918 	ASSERT(cnt == tcp->tcp_rcv_cnt);
919 	tcp->tcp_rcv_last_head = NULL;
920 	tcp->tcp_rcv_last_tail = NULL;
921 	tcp->tcp_rcv_cnt = 0;
922 	tcp->tcp_fuse_rcv_unread_cnt = 0;
923 	tcp->tcp_rwnd = q->q_hiwat;
924 
925 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
926 	    peer_tcp->tcp_xmit_lowater)) {
927 		tcp_clrqfull(peer_tcp);
928 		TCP_STAT(tcps, tcp_fusion_backenabled);
929 	}
930 
931 	return (B_TRUE);
932 }
933 
934 /*
935  * Synchronous stream entry point for sockfs to retrieve
936  * data directly from tcp_rcv_list.
937  * tcp_fuse_rrw() might end up modifying the peer's tcp_flow_stopped,
938  * for which it  must take the tcp_non_sq_lock of the peer as well
939  * making any change. The order of taking the locks is based on
940  * the TCP pointer itself. Before we get the peer we need to take
941  * our tcp_non_sq_lock so that the peer doesn't disappear. However,
942  * we cannot drop the lock if we have to grab the peer's lock (because
943  * of ordering), since the peer might disappear in the interim. So,
944  * we take our tcp_non_sq_lock, get the peer, increment the ref on the
945  * peer's conn, drop all the locks and then take the tcp_non_sq_lock in the
946  * desired order. Incrementing the conn ref on the peer means that the
947  * peer won't disappear when we drop our tcp_non_sq_lock.
948  */
949 int
950 tcp_fuse_rrw(queue_t *q, struiod_t *dp)
951 {
952 	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
953 	mblk_t *mp;
954 	tcp_t *peer_tcp;
955 	tcp_stack_t	*tcps = tcp->tcp_tcps;
956 
957 	mutex_enter(&tcp->tcp_non_sq_lock);
958 
959 	/*
960 	 * If tcp_fuse_syncstr_plugged is set, then another thread is moving
961 	 * the underlying data to the stream head.  We need to wait until it's
962 	 * done, then return EBUSY so that strget() will dequeue data from the
963 	 * stream head to ensure data is drained in-order.
964 	 */
965 plugged:
966 	if (tcp->tcp_fuse_syncstr_plugged) {
967 		do {
968 			cv_wait(&tcp->tcp_fuse_plugcv, &tcp->tcp_non_sq_lock);
969 		} while (tcp->tcp_fuse_syncstr_plugged);
970 
971 		mutex_exit(&tcp->tcp_non_sq_lock);
972 		TCP_STAT(tcps, tcp_fusion_rrw_plugged);
973 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
974 		return (EBUSY);
975 	}
976 
977 	peer_tcp = tcp->tcp_loopback_peer;
978 
979 	/*
980 	 * If someone had turned off tcp_direct_sockfs or if synchronous
981 	 * streams is stopped, we return EBUSY.  This causes strget() to
982 	 * dequeue data from the stream head instead.
983 	 */
984 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
985 		mutex_exit(&tcp->tcp_non_sq_lock);
986 		TCP_STAT(tcps, tcp_fusion_rrw_busy);
987 		return (EBUSY);
988 	}
989 
990 	/*
991 	 * Grab lock in order. The highest addressed tcp is locked first.
992 	 * We don't do this within the tcp_rcv_list check since if we
993 	 * have to drop the lock, for ordering, then the tcp_rcv_list
994 	 * could change.
995 	 */
996 	if (peer_tcp > tcp) {
997 		CONN_INC_REF(peer_tcp->tcp_connp);
998 		mutex_exit(&tcp->tcp_non_sq_lock);
999 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
1000 		mutex_enter(&tcp->tcp_non_sq_lock);
1001 		/*
1002 		 * This might have changed in the interim
1003 		 * Once read-side tcp_non_sq_lock is dropped above
1004 		 * anything can happen, we need to check all
1005 		 * known conditions again once we reaquire
1006 		 * read-side tcp_non_sq_lock.
1007 		 */
1008 		if (tcp->tcp_fuse_syncstr_plugged) {
1009 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
1010 			CONN_DEC_REF(peer_tcp->tcp_connp);
1011 			goto plugged;
1012 		}
1013 		if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
1014 			mutex_exit(&tcp->tcp_non_sq_lock);
1015 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
1016 			CONN_DEC_REF(peer_tcp->tcp_connp);
1017 			TCP_STAT(tcps, tcp_fusion_rrw_busy);
1018 			return (EBUSY);
1019 		}
1020 		CONN_DEC_REF(peer_tcp->tcp_connp);
1021 	} else {
1022 		mutex_enter(&peer_tcp->tcp_non_sq_lock);
1023 	}
1024 
1025 	if ((mp = tcp->tcp_rcv_list) != NULL) {
1026 
1027 		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
1028 		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
1029 
1030 		tcp->tcp_rcv_list = NULL;
1031 		TCP_STAT(tcps, tcp_fusion_rrw_msgcnt);
1032 
1033 		/*
1034 		 * At this point nothing should be left in tcp_rcv_list.
1035 		 * The only possible case where we would have a chain of
1036 		 * b_next-linked messages is urgent data, but we wouldn't
1037 		 * be here if that's true since urgent data is delivered
1038 		 * via putnext() and synchronous streams is stopped until
1039 		 * tcp_fuse_rcv_drain() is finished.
1040 		 */
1041 		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
1042 
1043 		tcp->tcp_rcv_last_head = NULL;
1044 		tcp->tcp_rcv_last_tail = NULL;
1045 		tcp->tcp_rcv_cnt = 0;
1046 		tcp->tcp_fuse_rcv_unread_cnt = 0;
1047 
1048 		if (peer_tcp->tcp_flow_stopped &&
1049 		    (TCP_UNSENT_BYTES(peer_tcp) <=
1050 		    peer_tcp->tcp_xmit_lowater)) {
1051 			tcp_clrqfull(peer_tcp);
1052 			TCP_STAT(tcps, tcp_fusion_backenabled);
1053 		}
1054 	}
1055 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
1056 	/*
1057 	 * Either we just dequeued everything or we get here from sockfs
1058 	 * and have nothing to return; in this case clear RSLEEP.
1059 	 */
1060 	ASSERT(tcp->tcp_rcv_last_head == NULL);
1061 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
1062 	ASSERT(tcp->tcp_rcv_cnt == 0);
1063 	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
1064 	STR_WAKEUP_CLEAR(STREAM(q));
1065 
1066 	mutex_exit(&tcp->tcp_non_sq_lock);
1067 	dp->d_mp = mp;
1068 	return (0);
1069 }
1070 
1071 /*
1072  * Synchronous stream entry point used by certain ioctls to retrieve
1073  * information about or peek into the tcp_rcv_list.
1074  */
1075 int
1076 tcp_fuse_rinfop(queue_t *q, infod_t *dp)
1077 {
1078 	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
1079 	mblk_t	*mp;
1080 	uint_t	cmd = dp->d_cmd;
1081 	int	res = 0;
1082 	int	error = 0;
1083 	struct stdata *stp = STREAM(q);
1084 
1085 	mutex_enter(&tcp->tcp_non_sq_lock);
1086 	/* If shutdown on read has happened, return nothing */
1087 	mutex_enter(&stp->sd_lock);
1088 	if (stp->sd_flag & STREOF) {
1089 		mutex_exit(&stp->sd_lock);
1090 		goto done;
1091 	}
1092 	mutex_exit(&stp->sd_lock);
1093 
1094 	/*
1095 	 * It is OK not to return an answer if tcp_rcv_list is
1096 	 * currently not accessible.
1097 	 */
1098 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
1099 	    tcp->tcp_fuse_syncstr_plugged || (mp = tcp->tcp_rcv_list) == NULL)
1100 		goto done;
1101 
1102 	if (cmd & INFOD_COUNT) {
1103 		/*
1104 		 * We have at least one message and
1105 		 * could return only one at a time.
1106 		 */
1107 		dp->d_count++;
1108 		res |= INFOD_COUNT;
1109 	}
1110 	if (cmd & INFOD_BYTES) {
1111 		/*
1112 		 * Return size of all data messages.
1113 		 */
1114 		dp->d_bytes += tcp->tcp_rcv_cnt;
1115 		res |= INFOD_BYTES;
1116 	}
1117 	if (cmd & INFOD_FIRSTBYTES) {
1118 		/*
1119 		 * Return size of first data message.
1120 		 */
1121 		dp->d_bytes = msgdsize(mp);
1122 		res |= INFOD_FIRSTBYTES;
1123 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
1124 	}
1125 	if (cmd & INFOD_COPYOUT) {
1126 		mblk_t *mp1;
1127 		int n;
1128 
1129 		if (DB_TYPE(mp) == M_DATA) {
1130 			mp1 = mp;
1131 		} else {
1132 			mp1 = mp->b_cont;
1133 			ASSERT(mp1 != NULL);
1134 		}
1135 
1136 		/*
1137 		 * Return data contents of first message.
1138 		 */
1139 		ASSERT(DB_TYPE(mp1) == M_DATA);
1140 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
1141 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
1142 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
1143 			    UIO_READ, dp->d_uiop)) != 0) {
1144 				goto done;
1145 			}
1146 			mp1 = mp1->b_cont;
1147 		}
1148 		res |= INFOD_COPYOUT;
1149 		dp->d_cmd &= ~INFOD_COPYOUT;
1150 	}
1151 done:
1152 	mutex_exit(&tcp->tcp_non_sq_lock);
1153 
1154 	dp->d_res |= res;
1155 
1156 	return (error);
1157 }
1158 
1159 /*
1160  * Enable synchronous streams on a fused tcp loopback endpoint.
1161  */
1162 static void
1163 tcp_fuse_syncstr_enable(tcp_t *tcp)
1164 {
1165 	queue_t *rq = tcp->tcp_rq;
1166 	struct stdata *stp = STREAM(rq);
1167 
1168 	/* We can only enable synchronous streams for sockfs mode */
1169 	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
1170 
1171 	if (!tcp->tcp_direct_sockfs)
1172 		return;
1173 
1174 	mutex_enter(&stp->sd_lock);
1175 	mutex_enter(QLOCK(rq));
1176 
1177 	/*
1178 	 * We replace our q_qinfo with one that has the qi_rwp entry point.
1179 	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
1180 	 * for every enqueued data in tcp_fuse_output().
1181 	 */
1182 	rq->q_qinfo = &tcp_loopback_rinit;
1183 	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
1184 	stp->sd_struiordq = rq;
1185 	stp->sd_rput_opt &= ~SR_SIGALLDATA;
1186 
1187 	mutex_exit(QLOCK(rq));
1188 	mutex_exit(&stp->sd_lock);
1189 }
1190 
1191 /*
1192  * Disable synchronous streams on a fused tcp loopback endpoint.
1193  */
1194 static void
1195 tcp_fuse_syncstr_disable(tcp_t *tcp)
1196 {
1197 	queue_t *rq = tcp->tcp_rq;
1198 	struct stdata *stp = STREAM(rq);
1199 
1200 	if (!tcp->tcp_direct_sockfs)
1201 		return;
1202 
1203 	mutex_enter(&stp->sd_lock);
1204 	mutex_enter(QLOCK(rq));
1205 
1206 	/*
1207 	 * Reset q_qinfo to point to the default tcp entry points.
1208 	 * Also restore SR_SIGALLDATA so that strrput() can generate
1209 	 * the signals again for future M_DATA messages.
1210 	 */
1211 	rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
1212 	rq->q_struiot = tcp_rinitv4.qi_struiot;
1213 	stp->sd_struiordq = NULL;
1214 	stp->sd_rput_opt |= SR_SIGALLDATA;
1215 	tcp->tcp_direct_sockfs = B_FALSE;
1216 
1217 	mutex_exit(QLOCK(rq));
1218 	mutex_exit(&stp->sd_lock);
1219 }
1220 
1221 /*
1222  * Enable synchronous streams on a pair of fused tcp endpoints.
1223  */
1224 void
1225 tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
1226 {
1227 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1228 
1229 	ASSERT(tcp->tcp_fused);
1230 	ASSERT(peer_tcp != NULL);
1231 
1232 	tcp_fuse_syncstr_enable(tcp);
1233 	tcp_fuse_syncstr_enable(peer_tcp);
1234 }
1235 
1236 /*
1237  * Used to enable/disable signal generation at the stream head. We already
1238  * generated the signal(s) for these messages when they were enqueued on the
1239  * receiver. We also check if STREOF is set here. If it is, we return false
1240  * and let the caller decide what to do.
1241  */
1242 static boolean_t
1243 strrput_sig(queue_t *q, boolean_t on)
1244 {
1245 	struct stdata *stp = STREAM(q);
1246 
1247 	mutex_enter(&stp->sd_lock);
1248 	if (stp->sd_flag == STREOF) {
1249 		mutex_exit(&stp->sd_lock);
1250 		return (B_TRUE);
1251 	}
1252 	if (on)
1253 		stp->sd_flag &= ~STRGETINPROG;
1254 	else
1255 		stp->sd_flag |= STRGETINPROG;
1256 	mutex_exit(&stp->sd_lock);
1257 
1258 	return (B_FALSE);
1259 }
1260 
1261 /*
1262  * Disable synchronous streams on a pair of fused tcp endpoints and drain
1263  * any queued data; called either during unfuse or upon transitioning from
1264  * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
1265  */
1266 void
1267 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
1268 {
1269 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1270 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1271 
1272 	ASSERT(tcp->tcp_fused);
1273 	ASSERT(peer_tcp != NULL);
1274 
1275 	/*
1276 	 * Force any tcp_fuse_rrw() calls to block until we've moved the data
1277 	 * onto the stream head.
1278 	 */
1279 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
1280 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(peer_tcp);
1281 
1282 	/*
1283 	 * Cancel any pending push timers.
1284 	 */
1285 	if (tcp->tcp_push_tid != 0) {
1286 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
1287 		tcp->tcp_push_tid = 0;
1288 	}
1289 	if (peer_tcp->tcp_push_tid != 0) {
1290 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
1291 		peer_tcp->tcp_push_tid = 0;
1292 	}
1293 
1294 	/*
1295 	 * Drain any pending data; the detached check is needed because
1296 	 * we may be called as a result of a tcp_unfuse() triggered by
1297 	 * tcp_fuse_output().  Note that in case of a detached tcp, the
1298 	 * draining will happen later after the tcp is unfused.  For non-
1299 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
1300 	 * If we have urgent data sitting in the receive list, we will
1301 	 * need to send up a SIGURG signal first before draining the data.
1302 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
1303 	 * when called from tcp_rcv_drain().
1304 	 */
1305 	if (!TCP_IS_DETACHED(tcp)) {
1306 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
1307 		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
1308 	}
1309 	if (!TCP_IS_DETACHED(peer_tcp)) {
1310 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
1311 		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
1312 	}
1313 
1314 	/*
1315 	 * Make all current and future tcp_fuse_rrw() calls fail with EBUSY.
1316 	 * To ensure threads don't sneak past the checks in tcp_fuse_rrw(),
1317 	 * a given stream must be stopped prior to being unplugged (but the
1318 	 * ordering of operations between the streams is unimportant).
1319 	 */
1320 	TCP_FUSE_SYNCSTR_STOP(tcp);
1321 	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
1322 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
1323 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(peer_tcp);
1324 
1325 	/* Lift up any flow-control conditions */
1326 	if (tcp->tcp_flow_stopped) {
1327 		tcp_clrqfull(tcp);
1328 		TCP_STAT(tcps, tcp_fusion_backenabled);
1329 	}
1330 	if (peer_tcp->tcp_flow_stopped) {
1331 		tcp_clrqfull(peer_tcp);
1332 		TCP_STAT(tcps, tcp_fusion_backenabled);
1333 	}
1334 
1335 	/* Disable synchronous streams */
1336 	tcp_fuse_syncstr_disable(tcp);
1337 	tcp_fuse_syncstr_disable(peer_tcp);
1338 }
1339 
1340 /*
1341  * Calculate the size of receive buffer for a fused tcp endpoint.
1342  */
1343 size_t
1344 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
1345 {
1346 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1347 
1348 	ASSERT(tcp->tcp_fused);
1349 
1350 	/* Ensure that value is within the maximum upper bound */
1351 	if (rwnd > tcps->tcps_max_buf)
1352 		rwnd = tcps->tcps_max_buf;
1353 
1354 	/* Obey the absolute minimum tcp receive high water mark */
1355 	if (rwnd < tcps->tcps_sth_rcv_hiwat)
1356 		rwnd = tcps->tcps_sth_rcv_hiwat;
1357 
1358 	/*
1359 	 * Round up to system page size in case SO_RCVBUF is modified
1360 	 * after SO_SNDBUF; the latter is also similarly rounded up.
1361 	 */
1362 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
1363 	tcp->tcp_fuse_rcv_hiwater = rwnd;
1364 	return (rwnd);
1365 }
1366 
1367 /*
1368  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
1369  */
1370 int
1371 tcp_fuse_maxpsz_set(tcp_t *tcp)
1372 {
1373 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1374 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
1375 	uint_t maxpsz = sndbuf;
1376 
1377 	ASSERT(tcp->tcp_fused);
1378 	ASSERT(peer_tcp != NULL);
1379 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
1380 	/*
1381 	 * In the fused loopback case, we want the stream head to split
1382 	 * up larger writes into smaller chunks for a more accurate flow-
1383 	 * control accounting.  Our maxpsz is half of the sender's send
1384 	 * buffer or the receiver's receive buffer, whichever is smaller.
1385 	 * We round up the buffer to system page size due to the lack of
1386 	 * TCP MSS concept in Fusion.
1387 	 */
1388 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
1389 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
1390 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
1391 
1392 	/*
1393 	 * Calculate the peer's limit for the number of outstanding unread
1394 	 * data block.  This is the amount of data blocks that are allowed
1395 	 * to reside in the receiver's queue before the sender gets flow
1396 	 * controlled.  It is used only in the synchronous streams mode as
1397 	 * a way to throttle the sender when it performs consecutive writes
1398 	 * faster than can be read.  The value is derived from SO_SNDBUF in
1399 	 * order to give the sender some control; we divide it with a large
1400 	 * value (16KB) to produce a fairly low initial limit.
1401 	 */
1402 	if (tcp_fusion_rcv_unread_min == 0) {
1403 		/* A value of 0 means that we disable the check */
1404 		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
1405 	} else {
1406 		peer_tcp->tcp_fuse_rcv_unread_hiwater =
1407 		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
1408 	}
1409 	return (maxpsz);
1410 }
1411