1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/uio.h> 66 #include <sys/systm.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/proto_set.h> 81 #include <inet/mib2.h> 82 #include <inet/nd.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/udp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 /* 237 * Values for squeue switch: 238 * 1: SQ_NODRAIN 239 * 2: SQ_PROCESS 240 * 3: SQ_FILL 241 */ 242 int tcp_squeue_wput = 2; /* /etc/systems */ 243 int tcp_squeue_flag; 244 245 /* 246 * This controls how tiny a write must be before we try to copy it 247 * into the the mblk on the tail of the transmit queue. Not much 248 * speedup is observed for values larger than sixteen. Zero will 249 * disable the optimisation. 250 */ 251 int tcp_tx_pull_len = 16; 252 253 /* 254 * TCP Statistics. 255 * 256 * How TCP statistics work. 257 * 258 * There are two types of statistics invoked by two macros. 259 * 260 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 261 * supposed to be used in non MT-hot paths of the code. 262 * 263 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 264 * supposed to be used for DEBUG purposes and may be used on a hot path. 265 * 266 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 267 * (use "kstat tcp" to get them). 268 * 269 * There is also additional debugging facility that marks tcp_clean_death() 270 * instances and saves them in tcp_t structure. It is triggered by 271 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 272 * tcp_clean_death() calls that counts the number of times each tag was hit. It 273 * is triggered by TCP_CLD_COUNTERS define. 274 * 275 * How to add new counters. 276 * 277 * 1) Add a field in the tcp_stat structure describing your counter. 278 * 2) Add a line in the template in tcp_kstat2_init() with the name 279 * of the counter. 280 * 281 * IMPORTANT!! - make sure that both are in sync !! 282 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 283 * 284 * Please avoid using private counters which are not kstat-exported. 285 * 286 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 287 * in tcp_t structure. 288 * 289 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 290 */ 291 292 #ifndef TCP_DEBUG_COUNTER 293 #ifdef DEBUG 294 #define TCP_DEBUG_COUNTER 1 295 #else 296 #define TCP_DEBUG_COUNTER 0 297 #endif 298 #endif 299 300 #define TCP_CLD_COUNTERS 0 301 302 #define TCP_TAG_CLEAN_DEATH 1 303 #define TCP_MAX_CLEAN_DEATH_TAG 32 304 305 #ifdef lint 306 static int _lint_dummy_; 307 #endif 308 309 #if TCP_CLD_COUNTERS 310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 311 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 312 #elif defined(lint) 313 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 314 #else 315 #define TCP_CLD_STAT(x) 316 #endif 317 318 #if TCP_DEBUG_COUNTER 319 #define TCP_DBGSTAT(tcps, x) \ 320 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 321 #define TCP_G_DBGSTAT(x) \ 322 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 323 #elif defined(lint) 324 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 325 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(tcps, x) 328 #define TCP_G_DBGSTAT(x) 329 #endif 330 331 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 332 333 tcp_g_stat_t tcp_g_statistics; 334 kstat_t *tcp_g_kstat; 335 336 /* 337 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 338 * tcp write side. 339 */ 340 #define CALL_IP_WPUT(connp, q, mp) { \ 341 ASSERT(((q)->q_flag & QREADR) == 0); \ 342 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 343 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 344 } 345 346 /* Macros for timestamp comparisons */ 347 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 348 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 349 350 /* 351 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 352 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 353 * by adding three components: a time component which grows by 1 every 4096 354 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 355 * a per-connection component which grows by 125000 for every new connection; 356 * and an "extra" component that grows by a random amount centered 357 * approximately on 64000. This causes the the ISS generator to cycle every 358 * 4.89 hours if no TCP connections are made, and faster if connections are 359 * made. 360 * 361 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 362 * components: a time component which grows by 250000 every second; and 363 * a per-connection component which grows by 125000 for every new connections. 364 * 365 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 366 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 367 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 368 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 369 * password. 370 */ 371 #define ISS_INCR 250000 372 #define ISS_NSEC_SHT 12 373 374 static sin_t sin_null; /* Zero address for quick clears */ 375 static sin6_t sin6_null; /* Zero address for quick clears */ 376 377 /* 378 * This implementation follows the 4.3BSD interpretation of the urgent 379 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 380 * incompatible changes in protocols like telnet and rlogin. 381 */ 382 #define TCP_OLD_URP_INTERPRETATION 1 383 384 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 385 (TCP_IS_DETACHED(tcp) && \ 386 (!(tcp)->tcp_hard_binding)) 387 388 /* 389 * TCP reassembly macros. We hide starting and ending sequence numbers in 390 * b_next and b_prev of messages on the reassembly queue. The messages are 391 * chained using b_cont. These macros are used in tcp_reass() so we don't 392 * have to see the ugly casts and assignments. 393 */ 394 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 395 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 396 (mblk_t *)(uintptr_t)(u)) 397 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 398 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 399 (mblk_t *)(uintptr_t)(u)) 400 401 /* 402 * Implementation of TCP Timers. 403 * ============================= 404 * 405 * INTERFACE: 406 * 407 * There are two basic functions dealing with tcp timers: 408 * 409 * timeout_id_t tcp_timeout(connp, func, time) 410 * clock_t tcp_timeout_cancel(connp, timeout_id) 411 * TCP_TIMER_RESTART(tcp, intvl) 412 * 413 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 414 * after 'time' ticks passed. The function called by timeout() must adhere to 415 * the same restrictions as a driver soft interrupt handler - it must not sleep 416 * or call other functions that might sleep. The value returned is the opaque 417 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 418 * cancel the request. The call to tcp_timeout() may fail in which case it 419 * returns zero. This is different from the timeout(9F) function which never 420 * fails. 421 * 422 * The call-back function 'func' always receives 'connp' as its single 423 * argument. It is always executed in the squeue corresponding to the tcp 424 * structure. The tcp structure is guaranteed to be present at the time the 425 * call-back is called. 426 * 427 * NOTE: The call-back function 'func' is never called if tcp is in 428 * the TCPS_CLOSED state. 429 * 430 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 431 * request. locks acquired by the call-back routine should not be held across 432 * the call to tcp_timeout_cancel() or a deadlock may result. 433 * 434 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 435 * Otherwise, it returns an integer value greater than or equal to 0. In 436 * particular, if the call-back function is already placed on the squeue, it can 437 * not be canceled. 438 * 439 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 440 * within squeue context corresponding to the tcp instance. Since the 441 * call-back is also called via the same squeue, there are no race 442 * conditions described in untimeout(9F) manual page since all calls are 443 * strictly serialized. 444 * 445 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 446 * stored in tcp_timer_tid and starts a new one using 447 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 448 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 449 * field. 450 * 451 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 452 * call-back may still be called, so it is possible tcp_timer() will be 453 * called several times. This should not be a problem since tcp_timer() 454 * should always check the tcp instance state. 455 * 456 * 457 * IMPLEMENTATION: 458 * 459 * TCP timers are implemented using three-stage process. The call to 460 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 461 * when the timer expires. The tcp_timer_callback() arranges the call of the 462 * tcp_timer_handler() function via squeue corresponding to the tcp 463 * instance. The tcp_timer_handler() calls actual requested timeout call-back 464 * and passes tcp instance as an argument to it. Information is passed between 465 * stages using the tcp_timer_t structure which contains the connp pointer, the 466 * tcp call-back to call and the timeout id returned by the timeout(9F). 467 * 468 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 469 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 470 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 471 * returns the pointer to this mblk. 472 * 473 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 474 * looks like a normal mblk without actual dblk attached to it. 475 * 476 * To optimize performance each tcp instance holds a small cache of timer 477 * mblocks. In the current implementation it caches up to two timer mblocks per 478 * tcp instance. The cache is preserved over tcp frees and is only freed when 479 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 480 * timer processing happens on a corresponding squeue, the cache manipulation 481 * does not require any locks. Experiments show that majority of timer mblocks 482 * allocations are satisfied from the tcp cache and do not involve kmem calls. 483 * 484 * The tcp_timeout() places a refhold on the connp instance which guarantees 485 * that it will be present at the time the call-back function fires. The 486 * tcp_timer_handler() drops the reference after calling the call-back, so the 487 * call-back function does not need to manipulate the references explicitly. 488 */ 489 490 typedef struct tcp_timer_s { 491 conn_t *connp; 492 void (*tcpt_proc)(void *); 493 callout_id_t tcpt_tid; 494 } tcp_timer_t; 495 496 static kmem_cache_t *tcp_timercache; 497 kmem_cache_t *tcp_sack_info_cache; 498 kmem_cache_t *tcp_iphc_cache; 499 500 /* 501 * For scalability, we must not run a timer for every TCP connection 502 * in TIME_WAIT state. To see why, consider (for time wait interval of 503 * 4 minutes): 504 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 505 * 506 * This list is ordered by time, so you need only delete from the head 507 * until you get to entries which aren't old enough to delete yet. 508 * The list consists of only the detached TIME_WAIT connections. 509 * 510 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 511 * becomes detached TIME_WAIT (either by changing the state and already 512 * being detached or the other way around). This means that the TIME_WAIT 513 * state can be extended (up to doubled) if the connection doesn't become 514 * detached for a long time. 515 * 516 * The list manipulations (including tcp_time_wait_next/prev) 517 * are protected by the tcp_time_wait_lock. The content of the 518 * detached TIME_WAIT connections is protected by the normal perimeters. 519 * 520 * This list is per squeue and squeues are shared across the tcp_stack_t's. 521 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 522 * and conn_netstack. 523 * The tcp_t's that are added to tcp_free_list are disassociated and 524 * have NULL tcp_tcps and conn_netstack pointers. 525 */ 526 typedef struct tcp_squeue_priv_s { 527 kmutex_t tcp_time_wait_lock; 528 callout_id_t tcp_time_wait_tid; 529 tcp_t *tcp_time_wait_head; 530 tcp_t *tcp_time_wait_tail; 531 tcp_t *tcp_free_list; 532 uint_t tcp_free_list_cnt; 533 } tcp_squeue_priv_t; 534 535 /* 536 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 537 * Running it every 5 seconds seems to give the best results. 538 */ 539 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 540 541 /* 542 * To prevent memory hog, limit the number of entries in tcp_free_list 543 * to 1% of available memory / number of cpus 544 */ 545 uint_t tcp_free_list_max_cnt = 0; 546 547 #define TCP_XMIT_LOWATER 4096 548 #define TCP_XMIT_HIWATER 49152 549 #define TCP_RECV_LOWATER 2048 550 #define TCP_RECV_HIWATER 49152 551 552 /* 553 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 554 */ 555 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 556 557 #define TIDUSZ 4096 /* transport interface data unit size */ 558 559 /* 560 * Bind hash list size and has function. It has to be a power of 2 for 561 * hashing. 562 */ 563 #define TCP_BIND_FANOUT_SIZE 512 564 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 565 /* 566 * Size of listen and acceptor hash list. It has to be a power of 2 for 567 * hashing. 568 */ 569 #define TCP_FANOUT_SIZE 256 570 571 #ifdef _ILP32 572 #define TCP_ACCEPTOR_HASH(accid) \ 573 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 574 #else 575 #define TCP_ACCEPTOR_HASH(accid) \ 576 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 577 #endif /* _ILP32 */ 578 579 #define IP_ADDR_CACHE_SIZE 2048 580 #define IP_ADDR_CACHE_HASH(faddr) \ 581 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 582 583 /* 584 * TCP options struct returned from tcp_parse_options. 585 */ 586 typedef struct tcp_opt_s { 587 uint32_t tcp_opt_mss; 588 uint32_t tcp_opt_wscale; 589 uint32_t tcp_opt_ts_val; 590 uint32_t tcp_opt_ts_ecr; 591 tcp_t *tcp; 592 } tcp_opt_t; 593 594 /* 595 * TCP option struct passing information b/w lisenter and eager. 596 */ 597 struct tcp_options { 598 uint_t to_flags; 599 ssize_t to_boundif; /* IPV6_BOUND_IF */ 600 }; 601 602 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 603 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 604 605 /* 606 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 607 */ 608 609 #ifdef _BIG_ENDIAN 610 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 611 (TCPOPT_TSTAMP << 8) | 10) 612 #else 613 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 614 (TCPOPT_NOP << 8) | TCPOPT_NOP) 615 #endif 616 617 /* 618 * Flags returned from tcp_parse_options. 619 */ 620 #define TCP_OPT_MSS_PRESENT 1 621 #define TCP_OPT_WSCALE_PRESENT 2 622 #define TCP_OPT_TSTAMP_PRESENT 4 623 #define TCP_OPT_SACK_OK_PRESENT 8 624 #define TCP_OPT_SACK_PRESENT 16 625 626 /* TCP option length */ 627 #define TCPOPT_NOP_LEN 1 628 #define TCPOPT_MAXSEG_LEN 4 629 #define TCPOPT_WS_LEN 3 630 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 631 #define TCPOPT_TSTAMP_LEN 10 632 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 633 #define TCPOPT_SACK_OK_LEN 2 634 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 635 #define TCPOPT_REAL_SACK_LEN 4 636 #define TCPOPT_MAX_SACK_LEN 36 637 #define TCPOPT_HEADER_LEN 2 638 639 /* TCP cwnd burst factor. */ 640 #define TCP_CWND_INFINITE 65535 641 #define TCP_CWND_SS 3 642 #define TCP_CWND_NORMAL 5 643 644 /* Maximum TCP initial cwin (start/restart). */ 645 #define TCP_MAX_INIT_CWND 8 646 647 /* 648 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 649 * either tcp_slow_start_initial or tcp_slow_start_after idle 650 * depending on the caller. If the upper layer has not used the 651 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 652 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 653 * If the upper layer has changed set the tcp_init_cwnd, just use 654 * it to calculate the tcp_cwnd. 655 */ 656 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 657 { \ 658 if ((tcp)->tcp_init_cwnd == 0) { \ 659 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 660 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 661 } else { \ 662 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 663 } \ 664 tcp->tcp_cwnd_cnt = 0; \ 665 } 666 667 /* TCP Timer control structure */ 668 typedef struct tcpt_s { 669 pfv_t tcpt_pfv; /* The routine we are to call */ 670 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 671 } tcpt_t; 672 673 /* 674 * Functions called directly via squeue having a prototype of edesc_t. 675 */ 676 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 677 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 678 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 679 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 680 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 681 void tcp_input(void *arg, mblk_t *mp, void *arg2); 682 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 683 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 684 void tcp_output(void *arg, mblk_t *mp, void *arg2); 685 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 686 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 687 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 688 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 689 690 691 /* Prototype for TCP functions */ 692 static void tcp_random_init(void); 693 int tcp_random(void); 694 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 695 static int tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 696 tcp_t *eager); 697 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 699 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 700 boolean_t user_specified); 701 static void tcp_closei_local(tcp_t *tcp); 702 static void tcp_close_detached(tcp_t *tcp); 703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 704 mblk_t *idmp, mblk_t **defermp); 705 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 706 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 707 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 708 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 709 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 710 uint32_t scope_id, cred_t *cr, pid_t pid); 711 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 712 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 713 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 714 static char *tcp_display(tcp_t *tcp, char *, char); 715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 716 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 717 static void tcp_eager_unlink(tcp_t *tcp); 718 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 719 int unixerr); 720 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 721 int tlierr, int unixerr); 722 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 723 cred_t *cr); 724 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 725 char *value, caddr_t cp, cred_t *cr); 726 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 727 char *value, caddr_t cp, cred_t *cr); 728 static int tcp_tpistate(tcp_t *tcp); 729 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 730 int caller_holds_lock); 731 static void tcp_bind_hash_remove(tcp_t *tcp); 732 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 733 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 734 static void tcp_acceptor_hash_remove(tcp_t *tcp); 735 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 736 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 737 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 738 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 739 void tcp_g_q_setup(tcp_stack_t *); 740 void tcp_g_q_create(tcp_stack_t *); 741 void tcp_g_q_destroy(tcp_stack_t *); 742 static int tcp_header_init_ipv4(tcp_t *tcp); 743 static int tcp_header_init_ipv6(tcp_t *tcp); 744 int tcp_init(tcp_t *tcp, queue_t *q); 745 static int tcp_init_values(tcp_t *tcp); 746 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 747 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 748 static void tcp_ip_notify(tcp_t *tcp); 749 static mblk_t *tcp_ire_mp(mblk_t **mpp); 750 static void tcp_iss_init(tcp_t *tcp); 751 static void tcp_keepalive_killer(void *arg); 752 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 753 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 754 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 755 int *do_disconnectp, int *t_errorp, int *sys_errorp); 756 static boolean_t tcp_allow_connopt_set(int level, int name); 757 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 758 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 759 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 760 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 761 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 762 mblk_t *mblk); 763 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 764 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 765 uchar_t *ptr, uint_t len); 766 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 768 tcp_stack_t *); 769 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 770 caddr_t cp, cred_t *cr); 771 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 772 caddr_t cp, cred_t *cr); 773 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 774 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 775 caddr_t cp, cred_t *cr); 776 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 777 static void tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt); 778 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 779 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 780 static void tcp_reinit(tcp_t *tcp); 781 static void tcp_reinit_values(tcp_t *tcp); 782 783 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 784 static uint_t tcp_rcv_drain(tcp_t *tcp); 785 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 786 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 787 static void tcp_ss_rexmit(tcp_t *tcp); 788 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 789 static void tcp_process_options(tcp_t *, tcph_t *); 790 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 791 static void tcp_rsrv(queue_t *q); 792 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 793 static int tcp_snmp_state(tcp_t *tcp); 794 static void tcp_timer(void *arg); 795 static void tcp_timer_callback(void *); 796 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 797 boolean_t random); 798 static in_port_t tcp_get_next_priv_port(const tcp_t *); 799 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 800 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 801 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 802 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 803 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 804 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 805 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 806 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 807 const int num_sack_blk, int *usable, uint_t *snxt, 808 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 809 const int mdt_thres); 810 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 811 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 812 const int num_sack_blk, int *usable, uint_t *snxt, 813 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 814 const int mdt_thres); 815 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 816 int num_sack_blk); 817 static void tcp_wsrv(queue_t *q); 818 static int tcp_xmit_end(tcp_t *tcp); 819 static void tcp_ack_timer(void *arg); 820 static mblk_t *tcp_ack_mp(tcp_t *tcp); 821 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 822 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 823 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 824 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 825 uint32_t ack, int ctl); 826 static int setmaxps(queue_t *q, int maxpsz); 827 static void tcp_set_rto(tcp_t *, time_t); 828 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 829 boolean_t, boolean_t); 830 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 831 boolean_t ipsec_mctl); 832 static int tcp_build_hdrs(tcp_t *); 833 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 834 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 835 tcph_t *tcph); 836 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 837 static mblk_t *tcp_mdt_info_mp(mblk_t *); 838 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 839 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 840 const boolean_t, const uint32_t, const uint32_t, 841 const uint32_t, const uint32_t, tcp_stack_t *); 842 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 843 const uint_t, const uint_t, boolean_t *); 844 static mblk_t *tcp_lso_info_mp(mblk_t *); 845 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 846 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 847 extern mblk_t *tcp_timermp_alloc(int); 848 extern void tcp_timermp_free(tcp_t *); 849 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 850 static void tcp_stop_lingering(tcp_t *tcp); 851 static void tcp_close_linger_timeout(void *arg); 852 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 853 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 854 static void tcp_stack_fini(netstackid_t stackid, void *arg); 855 static void *tcp_g_kstat_init(tcp_g_stat_t *); 856 static void tcp_g_kstat_fini(kstat_t *); 857 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 858 static void tcp_kstat_fini(netstackid_t, kstat_t *); 859 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 860 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 861 static int tcp_kstat_update(kstat_t *kp, int rw); 862 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 863 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 864 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 865 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 866 tcph_t *tcph, mblk_t *idmp); 867 static int tcp_squeue_switch(int); 868 869 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 870 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 871 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 872 static int tcp_tpi_close(queue_t *, int); 873 static int tcp_tpi_close_accept(queue_t *); 874 875 static void tcp_squeue_add(squeue_t *); 876 static boolean_t tcp_zcopy_check(tcp_t *); 877 static void tcp_zcopy_notify(tcp_t *); 878 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 879 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 880 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 881 882 extern void tcp_kssl_input(tcp_t *, mblk_t *); 883 884 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 885 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 886 887 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 888 sock_upper_handle_t, cred_t *); 889 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 890 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 891 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 892 boolean_t); 893 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 894 cred_t *, pid_t); 895 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 896 boolean_t); 897 static int tcp_do_unbind(conn_t *); 898 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 899 boolean_t); 900 901 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 902 903 /* 904 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 905 * 906 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 907 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 908 * (defined in tcp.h) needs to be filled in and passed into the kernel 909 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 910 * structure contains the four-tuple of a TCP connection and a range of TCP 911 * states (specified by ac_start and ac_end). The use of wildcard addresses 912 * and ports is allowed. Connections with a matching four tuple and a state 913 * within the specified range will be aborted. The valid states for the 914 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 915 * inclusive. 916 * 917 * An application which has its connection aborted by this ioctl will receive 918 * an error that is dependent on the connection state at the time of the abort. 919 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 920 * though a RST packet has been received. If the connection state is equal to 921 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 922 * and all resources associated with the connection will be freed. 923 */ 924 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 925 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 926 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 927 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 928 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 929 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 930 boolean_t, tcp_stack_t *); 931 932 static struct module_info tcp_rinfo = { 933 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 934 }; 935 936 static struct module_info tcp_winfo = { 937 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 938 }; 939 940 /* 941 * Entry points for TCP as a device. The normal case which supports 942 * the TCP functionality. 943 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 944 */ 945 struct qinit tcp_rinitv4 = { 946 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 947 }; 948 949 struct qinit tcp_rinitv6 = { 950 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 951 }; 952 953 struct qinit tcp_winit = { 954 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 955 }; 956 957 /* Initial entry point for TCP in socket mode. */ 958 struct qinit tcp_sock_winit = { 959 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 960 }; 961 962 /* TCP entry point during fallback */ 963 struct qinit tcp_fallback_sock_winit = { 964 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 965 }; 966 967 /* 968 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 969 * an accept. Avoid allocating data structures since eager has already 970 * been created. 971 */ 972 struct qinit tcp_acceptor_rinit = { 973 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 974 }; 975 976 struct qinit tcp_acceptor_winit = { 977 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 978 }; 979 980 /* For AF_INET aka /dev/tcp */ 981 struct streamtab tcpinfov4 = { 982 &tcp_rinitv4, &tcp_winit 983 }; 984 985 /* For AF_INET6 aka /dev/tcp6 */ 986 struct streamtab tcpinfov6 = { 987 &tcp_rinitv6, &tcp_winit 988 }; 989 990 sock_downcalls_t sock_tcp_downcalls; 991 992 /* 993 * Have to ensure that tcp_g_q_close is not done by an 994 * interrupt thread. 995 */ 996 static taskq_t *tcp_taskq; 997 998 /* Setable only in /etc/system. Move to ndd? */ 999 boolean_t tcp_icmp_source_quench = B_FALSE; 1000 1001 /* 1002 * Following assumes TPI alignment requirements stay along 32 bit 1003 * boundaries 1004 */ 1005 #define ROUNDUP32(x) \ 1006 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1007 1008 /* Template for response to info request. */ 1009 static struct T_info_ack tcp_g_t_info_ack = { 1010 T_INFO_ACK, /* PRIM_type */ 1011 0, /* TSDU_size */ 1012 T_INFINITE, /* ETSDU_size */ 1013 T_INVALID, /* CDATA_size */ 1014 T_INVALID, /* DDATA_size */ 1015 sizeof (sin_t), /* ADDR_size */ 1016 0, /* OPT_size - not initialized here */ 1017 TIDUSZ, /* TIDU_size */ 1018 T_COTS_ORD, /* SERV_type */ 1019 TCPS_IDLE, /* CURRENT_state */ 1020 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1021 }; 1022 1023 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1024 T_INFO_ACK, /* PRIM_type */ 1025 0, /* TSDU_size */ 1026 T_INFINITE, /* ETSDU_size */ 1027 T_INVALID, /* CDATA_size */ 1028 T_INVALID, /* DDATA_size */ 1029 sizeof (sin6_t), /* ADDR_size */ 1030 0, /* OPT_size - not initialized here */ 1031 TIDUSZ, /* TIDU_size */ 1032 T_COTS_ORD, /* SERV_type */ 1033 TCPS_IDLE, /* CURRENT_state */ 1034 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1035 }; 1036 1037 #define MS 1L 1038 #define SECONDS (1000 * MS) 1039 #define MINUTES (60 * SECONDS) 1040 #define HOURS (60 * MINUTES) 1041 #define DAYS (24 * HOURS) 1042 1043 #define PARAM_MAX (~(uint32_t)0) 1044 1045 /* Max size IP datagram is 64k - 1 */ 1046 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1047 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1048 /* Max of the above */ 1049 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1050 1051 /* Largest TCP port number */ 1052 #define TCP_MAX_PORT (64 * 1024 - 1) 1053 1054 /* 1055 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1056 * layer header. It has to be a multiple of 4. 1057 */ 1058 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1059 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1060 1061 /* 1062 * All of these are alterable, within the min/max values given, at run time. 1063 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1064 * per the TCP spec. 1065 */ 1066 /* BEGIN CSTYLED */ 1067 static tcpparam_t lcl_tcp_param_arr[] = { 1068 /*min max value name */ 1069 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1070 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1071 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1072 { 1, 1024, 1, "tcp_conn_req_min" }, 1073 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1074 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1075 { 0, 10, 0, "tcp_debug" }, 1076 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1077 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1078 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1079 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1080 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1081 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1082 { 1, 255, 64, "tcp_ipv4_ttl"}, 1083 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1084 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1085 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1086 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1087 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1088 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1089 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1090 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1091 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1092 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1093 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1094 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1095 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1096 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1097 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1098 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1099 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1100 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1101 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1102 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1103 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1104 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1105 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1106 /* 1107 * Question: What default value should I set for tcp_strong_iss? 1108 */ 1109 { 0, 2, 1, "tcp_strong_iss"}, 1110 { 0, 65536, 20, "tcp_rtt_updates"}, 1111 { 0, 1, 1, "tcp_wscale_always"}, 1112 { 0, 1, 0, "tcp_tstamp_always"}, 1113 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1114 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1115 { 0, 16, 2, "tcp_deferred_acks_max"}, 1116 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1117 { 1, 4, 4, "tcp_slow_start_initial"}, 1118 { 0, 2, 2, "tcp_sack_permitted"}, 1119 { 0, 1, 1, "tcp_compression_enabled"}, 1120 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1121 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1122 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1123 { 0, 1, 0, "tcp_rev_src_routes"}, 1124 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1125 { 0, 16, 8, "tcp_local_dacks_max"}, 1126 { 0, 2, 1, "tcp_ecn_permitted"}, 1127 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1128 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1129 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1130 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1131 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1132 }; 1133 /* END CSTYLED */ 1134 1135 /* 1136 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1137 * each header fragment in the header buffer. Each parameter value has 1138 * to be a multiple of 4 (32-bit aligned). 1139 */ 1140 static tcpparam_t lcl_tcp_mdt_head_param = 1141 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1142 static tcpparam_t lcl_tcp_mdt_tail_param = 1143 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1144 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1145 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1146 1147 /* 1148 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1149 * the maximum number of payload buffers associated per Multidata. 1150 */ 1151 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1152 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1153 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1154 1155 /* Round up the value to the nearest mss. */ 1156 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1157 1158 /* 1159 * Set ECN capable transport (ECT) code point in IP header. 1160 * 1161 * Note that there are 2 ECT code points '01' and '10', which are called 1162 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1163 * point ECT(0) for TCP as described in RFC 2481. 1164 */ 1165 #define SET_ECT(tcp, iph) \ 1166 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1167 /* We need to clear the code point first. */ \ 1168 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1169 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1170 } else { \ 1171 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1172 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1173 } 1174 1175 /* 1176 * The format argument to pass to tcp_display(). 1177 * DISP_PORT_ONLY means that the returned string has only port info. 1178 * DISP_ADDR_AND_PORT means that the returned string also contains the 1179 * remote and local IP address. 1180 */ 1181 #define DISP_PORT_ONLY 1 1182 #define DISP_ADDR_AND_PORT 2 1183 1184 #define IS_VMLOANED_MBLK(mp) \ 1185 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1186 1187 1188 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1189 boolean_t tcp_mdt_chain = B_TRUE; 1190 1191 /* 1192 * MDT threshold in the form of effective send MSS multiplier; we take 1193 * the MDT path if the amount of unsent data exceeds the threshold value 1194 * (default threshold is 1*SMSS). 1195 */ 1196 uint_t tcp_mdt_smss_threshold = 1; 1197 1198 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1199 1200 /* 1201 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1202 * tunable settable via NDD. Otherwise, the per-connection behavior is 1203 * determined dynamically during tcp_adapt_ire(), which is the default. 1204 */ 1205 boolean_t tcp_static_maxpsz = B_FALSE; 1206 1207 /* Setable in /etc/system */ 1208 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1209 uint32_t tcp_random_anon_port = 1; 1210 1211 /* 1212 * To reach to an eager in Q0 which can be dropped due to an incoming 1213 * new SYN request when Q0 is full, a new doubly linked list is 1214 * introduced. This list allows to select an eager from Q0 in O(1) time. 1215 * This is needed to avoid spending too much time walking through the 1216 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1217 * this new list has to be a member of Q0. 1218 * This list is headed by listener's tcp_t. When the list is empty, 1219 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1220 * of listener's tcp_t point to listener's tcp_t itself. 1221 * 1222 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1223 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1224 * These macros do not affect the eager's membership to Q0. 1225 */ 1226 1227 1228 #define MAKE_DROPPABLE(listener, eager) \ 1229 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1230 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1231 = (eager); \ 1232 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1233 (eager)->tcp_eager_next_drop_q0 = \ 1234 (listener)->tcp_eager_next_drop_q0; \ 1235 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1236 } 1237 1238 #define MAKE_UNDROPPABLE(eager) \ 1239 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1240 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1241 = (eager)->tcp_eager_prev_drop_q0; \ 1242 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1243 = (eager)->tcp_eager_next_drop_q0; \ 1244 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1245 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1246 } 1247 1248 /* 1249 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1250 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1251 * data, TCP will not respond with an ACK. RFC 793 requires that 1252 * TCP responds with an ACK for such a bogus ACK. By not following 1253 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1254 * an attacker successfully spoofs an acceptable segment to our 1255 * peer; or when our peer is "confused." 1256 */ 1257 uint32_t tcp_drop_ack_unsent_cnt = 10; 1258 1259 /* 1260 * Hook functions to enable cluster networking 1261 * On non-clustered systems these vectors must always be NULL. 1262 */ 1263 1264 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1265 sa_family_t addr_family, uint8_t *laddrp, 1266 in_port_t lport, void *args) = NULL; 1267 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1268 sa_family_t addr_family, uint8_t *laddrp, 1269 in_port_t lport, void *args) = NULL; 1270 1271 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1272 boolean_t is_outgoing, 1273 sa_family_t addr_family, 1274 uint8_t *laddrp, in_port_t lport, 1275 uint8_t *faddrp, in_port_t fport, 1276 void *args) = NULL; 1277 1278 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1279 sa_family_t addr_family, uint8_t *laddrp, 1280 in_port_t lport, uint8_t *faddrp, 1281 in_port_t fport, void *args) = NULL; 1282 1283 /* 1284 * The following are defined in ip.c 1285 */ 1286 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1287 sa_family_t addr_family, uint8_t *laddrp, 1288 void *args); 1289 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1290 sa_family_t addr_family, uint8_t *laddrp, 1291 uint8_t *faddrp, void *args); 1292 1293 1294 /* 1295 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1296 */ 1297 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1298 (err) = 0; \ 1299 if (cl_inet_connect2 != NULL) { \ 1300 /* \ 1301 * Running in cluster mode - register active connection \ 1302 * information \ 1303 */ \ 1304 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1305 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1306 (err) = (*cl_inet_connect2)( \ 1307 (connp)->conn_netstack->netstack_stackid,\ 1308 IPPROTO_TCP, is_outgoing, AF_INET, \ 1309 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1310 (in_port_t)(tcp)->tcp_lport, \ 1311 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1312 (in_port_t)(tcp)->tcp_fport, NULL); \ 1313 } \ 1314 } else { \ 1315 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1316 &(tcp)->tcp_ip6h->ip6_src)) { \ 1317 (err) = (*cl_inet_connect2)( \ 1318 (connp)->conn_netstack->netstack_stackid,\ 1319 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1320 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1321 (in_port_t)(tcp)->tcp_lport, \ 1322 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1323 (in_port_t)(tcp)->tcp_fport, NULL); \ 1324 } \ 1325 } \ 1326 } \ 1327 } 1328 1329 #define CL_INET_DISCONNECT(connp, tcp) { \ 1330 if (cl_inet_disconnect != NULL) { \ 1331 /* \ 1332 * Running in cluster mode - deregister active \ 1333 * connection information \ 1334 */ \ 1335 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1336 if ((tcp)->tcp_ip_src != 0) { \ 1337 (*cl_inet_disconnect)( \ 1338 (connp)->conn_netstack->netstack_stackid,\ 1339 IPPROTO_TCP, AF_INET, \ 1340 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1341 (in_port_t)(tcp)->tcp_lport, \ 1342 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1343 (in_port_t)(tcp)->tcp_fport, NULL); \ 1344 } \ 1345 } else { \ 1346 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1347 &(tcp)->tcp_ip_src_v6)) { \ 1348 (*cl_inet_disconnect)( \ 1349 (connp)->conn_netstack->netstack_stackid,\ 1350 IPPROTO_TCP, AF_INET6, \ 1351 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1352 (in_port_t)(tcp)->tcp_lport, \ 1353 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1354 (in_port_t)(tcp)->tcp_fport, NULL); \ 1355 } \ 1356 } \ 1357 } \ 1358 } 1359 1360 /* 1361 * Cluster networking hook for traversing current connection list. 1362 * This routine is used to extract the current list of live connections 1363 * which must continue to to be dispatched to this node. 1364 */ 1365 int cl_tcp_walk_list(netstackid_t stack_id, 1366 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1367 1368 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1369 void *arg, tcp_stack_t *tcps); 1370 1371 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1372 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1373 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1374 ip6_t *, ip6h, int, 0); 1375 1376 /* 1377 * Figure out the value of window scale opton. Note that the rwnd is 1378 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1379 * We cannot find the scale value and then do a round up of tcp_rwnd 1380 * because the scale value may not be correct after that. 1381 * 1382 * Set the compiler flag to make this function inline. 1383 */ 1384 static void 1385 tcp_set_ws_value(tcp_t *tcp) 1386 { 1387 int i; 1388 uint32_t rwnd = tcp->tcp_rwnd; 1389 1390 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1391 i++, rwnd >>= 1) 1392 ; 1393 tcp->tcp_rcv_ws = i; 1394 } 1395 1396 /* 1397 * Remove a connection from the list of detached TIME_WAIT connections. 1398 * It returns B_FALSE if it can't remove the connection from the list 1399 * as the connection has already been removed from the list due to an 1400 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1401 */ 1402 static boolean_t 1403 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1404 { 1405 boolean_t locked = B_FALSE; 1406 1407 if (tcp_time_wait == NULL) { 1408 tcp_time_wait = *((tcp_squeue_priv_t **) 1409 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1410 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1411 locked = B_TRUE; 1412 } else { 1413 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1414 } 1415 1416 if (tcp->tcp_time_wait_expire == 0) { 1417 ASSERT(tcp->tcp_time_wait_next == NULL); 1418 ASSERT(tcp->tcp_time_wait_prev == NULL); 1419 if (locked) 1420 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1421 return (B_FALSE); 1422 } 1423 ASSERT(TCP_IS_DETACHED(tcp)); 1424 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1425 1426 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1427 ASSERT(tcp->tcp_time_wait_prev == NULL); 1428 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1429 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1430 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1431 NULL; 1432 } else { 1433 tcp_time_wait->tcp_time_wait_tail = NULL; 1434 } 1435 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1436 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1437 ASSERT(tcp->tcp_time_wait_next == NULL); 1438 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1439 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1440 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1441 } else { 1442 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1443 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1444 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1445 tcp->tcp_time_wait_next; 1446 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1447 tcp->tcp_time_wait_prev; 1448 } 1449 tcp->tcp_time_wait_next = NULL; 1450 tcp->tcp_time_wait_prev = NULL; 1451 tcp->tcp_time_wait_expire = 0; 1452 1453 if (locked) 1454 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1455 return (B_TRUE); 1456 } 1457 1458 /* 1459 * Add a connection to the list of detached TIME_WAIT connections 1460 * and set its time to expire. 1461 */ 1462 static void 1463 tcp_time_wait_append(tcp_t *tcp) 1464 { 1465 tcp_stack_t *tcps = tcp->tcp_tcps; 1466 tcp_squeue_priv_t *tcp_time_wait = 1467 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1468 SQPRIVATE_TCP)); 1469 1470 tcp_timers_stop(tcp); 1471 1472 /* Freed above */ 1473 ASSERT(tcp->tcp_timer_tid == 0); 1474 ASSERT(tcp->tcp_ack_tid == 0); 1475 1476 /* must have happened at the time of detaching the tcp */ 1477 ASSERT(tcp->tcp_ptpahn == NULL); 1478 ASSERT(tcp->tcp_flow_stopped == 0); 1479 ASSERT(tcp->tcp_time_wait_next == NULL); 1480 ASSERT(tcp->tcp_time_wait_prev == NULL); 1481 ASSERT(tcp->tcp_time_wait_expire == NULL); 1482 ASSERT(tcp->tcp_listener == NULL); 1483 1484 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1485 /* 1486 * The value computed below in tcp->tcp_time_wait_expire may 1487 * appear negative or wrap around. That is ok since our 1488 * interest is only in the difference between the current lbolt 1489 * value and tcp->tcp_time_wait_expire. But the value should not 1490 * be zero, since it means the tcp is not in the TIME_WAIT list. 1491 * The corresponding comparison in tcp_time_wait_collector() uses 1492 * modular arithmetic. 1493 */ 1494 tcp->tcp_time_wait_expire += 1495 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1496 if (tcp->tcp_time_wait_expire == 0) 1497 tcp->tcp_time_wait_expire = 1; 1498 1499 ASSERT(TCP_IS_DETACHED(tcp)); 1500 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1501 ASSERT(tcp->tcp_time_wait_next == NULL); 1502 ASSERT(tcp->tcp_time_wait_prev == NULL); 1503 TCP_DBGSTAT(tcps, tcp_time_wait); 1504 1505 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1506 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1507 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1508 tcp_time_wait->tcp_time_wait_head = tcp; 1509 } else { 1510 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1511 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1512 TCPS_TIME_WAIT); 1513 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1514 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1515 } 1516 tcp_time_wait->tcp_time_wait_tail = tcp; 1517 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1518 } 1519 1520 /* ARGSUSED */ 1521 void 1522 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1523 { 1524 conn_t *connp = (conn_t *)arg; 1525 tcp_t *tcp = connp->conn_tcp; 1526 tcp_stack_t *tcps = tcp->tcp_tcps; 1527 1528 ASSERT(tcp != NULL); 1529 if (tcp->tcp_state == TCPS_CLOSED) { 1530 return; 1531 } 1532 1533 ASSERT((tcp->tcp_family == AF_INET && 1534 tcp->tcp_ipversion == IPV4_VERSION) || 1535 (tcp->tcp_family == AF_INET6 && 1536 (tcp->tcp_ipversion == IPV4_VERSION || 1537 tcp->tcp_ipversion == IPV6_VERSION))); 1538 ASSERT(!tcp->tcp_listener); 1539 1540 TCP_STAT(tcps, tcp_time_wait_reap); 1541 ASSERT(TCP_IS_DETACHED(tcp)); 1542 1543 /* 1544 * Because they have no upstream client to rebind or tcp_close() 1545 * them later, we axe the connection here and now. 1546 */ 1547 tcp_close_detached(tcp); 1548 } 1549 1550 /* 1551 * Remove cached/latched IPsec references. 1552 */ 1553 void 1554 tcp_ipsec_cleanup(tcp_t *tcp) 1555 { 1556 conn_t *connp = tcp->tcp_connp; 1557 1558 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1559 1560 if (connp->conn_latch != NULL) { 1561 IPLATCH_REFRELE(connp->conn_latch, 1562 connp->conn_netstack); 1563 connp->conn_latch = NULL; 1564 } 1565 if (connp->conn_policy != NULL) { 1566 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1567 connp->conn_policy = NULL; 1568 } 1569 } 1570 1571 /* 1572 * Cleaup before placing on free list. 1573 * Disassociate from the netstack/tcp_stack_t since the freelist 1574 * is per squeue and not per netstack. 1575 */ 1576 void 1577 tcp_cleanup(tcp_t *tcp) 1578 { 1579 mblk_t *mp; 1580 char *tcp_iphc; 1581 int tcp_iphc_len; 1582 int tcp_hdr_grown; 1583 tcp_sack_info_t *tcp_sack_info; 1584 conn_t *connp = tcp->tcp_connp; 1585 tcp_stack_t *tcps = tcp->tcp_tcps; 1586 netstack_t *ns = tcps->tcps_netstack; 1587 mblk_t *tcp_rsrv_mp; 1588 1589 tcp_bind_hash_remove(tcp); 1590 1591 /* Cleanup that which needs the netstack first */ 1592 tcp_ipsec_cleanup(tcp); 1593 1594 tcp_free(tcp); 1595 1596 /* Release any SSL context */ 1597 if (tcp->tcp_kssl_ent != NULL) { 1598 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1599 tcp->tcp_kssl_ent = NULL; 1600 } 1601 1602 if (tcp->tcp_kssl_ctx != NULL) { 1603 kssl_release_ctx(tcp->tcp_kssl_ctx); 1604 tcp->tcp_kssl_ctx = NULL; 1605 } 1606 tcp->tcp_kssl_pending = B_FALSE; 1607 1608 conn_delete_ire(connp, NULL); 1609 1610 /* 1611 * Since we will bzero the entire structure, we need to 1612 * remove it and reinsert it in global hash list. We 1613 * know the walkers can't get to this conn because we 1614 * had set CONDEMNED flag earlier and checked reference 1615 * under conn_lock so walker won't pick it and when we 1616 * go the ipcl_globalhash_remove() below, no walker 1617 * can get to it. 1618 */ 1619 ipcl_globalhash_remove(connp); 1620 1621 /* 1622 * Now it is safe to decrement the reference counts. 1623 * This might be the last reference on the netstack and TCPS 1624 * in which case it will cause the tcp_g_q_close and 1625 * the freeing of the IP Instance. 1626 */ 1627 connp->conn_netstack = NULL; 1628 netstack_rele(ns); 1629 ASSERT(tcps != NULL); 1630 tcp->tcp_tcps = NULL; 1631 TCPS_REFRELE(tcps); 1632 1633 /* Save some state */ 1634 mp = tcp->tcp_timercache; 1635 1636 tcp_sack_info = tcp->tcp_sack_info; 1637 tcp_iphc = tcp->tcp_iphc; 1638 tcp_iphc_len = tcp->tcp_iphc_len; 1639 tcp_hdr_grown = tcp->tcp_hdr_grown; 1640 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1641 1642 if (connp->conn_cred != NULL) { 1643 crfree(connp->conn_cred); 1644 connp->conn_cred = NULL; 1645 } 1646 if (connp->conn_effective_cred != NULL) { 1647 crfree(connp->conn_effective_cred); 1648 connp->conn_effective_cred = NULL; 1649 } 1650 ipcl_conn_cleanup(connp); 1651 connp->conn_flags = IPCL_TCPCONN; 1652 bzero(tcp, sizeof (tcp_t)); 1653 1654 /* restore the state */ 1655 tcp->tcp_timercache = mp; 1656 1657 tcp->tcp_sack_info = tcp_sack_info; 1658 tcp->tcp_iphc = tcp_iphc; 1659 tcp->tcp_iphc_len = tcp_iphc_len; 1660 tcp->tcp_hdr_grown = tcp_hdr_grown; 1661 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1662 1663 tcp->tcp_connp = connp; 1664 1665 ASSERT(connp->conn_tcp == tcp); 1666 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1667 connp->conn_state_flags = CONN_INCIPIENT; 1668 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1669 ASSERT(connp->conn_ref == 1); 1670 } 1671 1672 /* 1673 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1674 * is done forwards from the head. 1675 * This walks all stack instances since 1676 * tcp_time_wait remains global across all stacks. 1677 */ 1678 /* ARGSUSED */ 1679 void 1680 tcp_time_wait_collector(void *arg) 1681 { 1682 tcp_t *tcp; 1683 clock_t now; 1684 mblk_t *mp; 1685 conn_t *connp; 1686 kmutex_t *lock; 1687 boolean_t removed; 1688 1689 squeue_t *sqp = (squeue_t *)arg; 1690 tcp_squeue_priv_t *tcp_time_wait = 1691 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1692 1693 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1694 tcp_time_wait->tcp_time_wait_tid = 0; 1695 1696 if (tcp_time_wait->tcp_free_list != NULL && 1697 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1698 TCP_G_STAT(tcp_freelist_cleanup); 1699 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1700 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1701 tcp->tcp_time_wait_next = NULL; 1702 tcp_time_wait->tcp_free_list_cnt--; 1703 ASSERT(tcp->tcp_tcps == NULL); 1704 CONN_DEC_REF(tcp->tcp_connp); 1705 } 1706 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1707 } 1708 1709 /* 1710 * In order to reap time waits reliably, we should use a 1711 * source of time that is not adjustable by the user -- hence 1712 * the call to ddi_get_lbolt(). 1713 */ 1714 now = ddi_get_lbolt(); 1715 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1716 /* 1717 * Compare times using modular arithmetic, since 1718 * lbolt can wrapover. 1719 */ 1720 if ((now - tcp->tcp_time_wait_expire) < 0) { 1721 break; 1722 } 1723 1724 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1725 ASSERT(removed); 1726 1727 connp = tcp->tcp_connp; 1728 ASSERT(connp->conn_fanout != NULL); 1729 lock = &connp->conn_fanout->connf_lock; 1730 /* 1731 * This is essentially a TW reclaim fast path optimization for 1732 * performance where the timewait collector checks under the 1733 * fanout lock (so that no one else can get access to the 1734 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1735 * the classifier hash list. If ref count is indeed 2, we can 1736 * just remove the conn under the fanout lock and avoid 1737 * cleaning up the conn under the squeue, provided that 1738 * clustering callbacks are not enabled. If clustering is 1739 * enabled, we need to make the clustering callback before 1740 * setting the CONDEMNED flag and after dropping all locks and 1741 * so we forego this optimization and fall back to the slow 1742 * path. Also please see the comments in tcp_closei_local 1743 * regarding the refcnt logic. 1744 * 1745 * Since we are holding the tcp_time_wait_lock, its better 1746 * not to block on the fanout_lock because other connections 1747 * can't add themselves to time_wait list. So we do a 1748 * tryenter instead of mutex_enter. 1749 */ 1750 if (mutex_tryenter(lock)) { 1751 mutex_enter(&connp->conn_lock); 1752 if ((connp->conn_ref == 2) && 1753 (cl_inet_disconnect == NULL)) { 1754 ipcl_hash_remove_locked(connp, 1755 connp->conn_fanout); 1756 /* 1757 * Set the CONDEMNED flag now itself so that 1758 * the refcnt cannot increase due to any 1759 * walker. But we have still not cleaned up 1760 * conn_ire_cache. This is still ok since 1761 * we are going to clean it up in tcp_cleanup 1762 * immediately and any interface unplumb 1763 * thread will wait till the ire is blown away 1764 */ 1765 connp->conn_state_flags |= CONN_CONDEMNED; 1766 mutex_exit(lock); 1767 mutex_exit(&connp->conn_lock); 1768 if (tcp_time_wait->tcp_free_list_cnt < 1769 tcp_free_list_max_cnt) { 1770 /* Add to head of tcp_free_list */ 1771 mutex_exit( 1772 &tcp_time_wait->tcp_time_wait_lock); 1773 tcp_cleanup(tcp); 1774 ASSERT(connp->conn_latch == NULL); 1775 ASSERT(connp->conn_policy == NULL); 1776 ASSERT(tcp->tcp_tcps == NULL); 1777 ASSERT(connp->conn_netstack == NULL); 1778 1779 mutex_enter( 1780 &tcp_time_wait->tcp_time_wait_lock); 1781 tcp->tcp_time_wait_next = 1782 tcp_time_wait->tcp_free_list; 1783 tcp_time_wait->tcp_free_list = tcp; 1784 tcp_time_wait->tcp_free_list_cnt++; 1785 continue; 1786 } else { 1787 /* Do not add to tcp_free_list */ 1788 mutex_exit( 1789 &tcp_time_wait->tcp_time_wait_lock); 1790 tcp_bind_hash_remove(tcp); 1791 conn_delete_ire(tcp->tcp_connp, NULL); 1792 tcp_ipsec_cleanup(tcp); 1793 CONN_DEC_REF(tcp->tcp_connp); 1794 } 1795 } else { 1796 CONN_INC_REF_LOCKED(connp); 1797 mutex_exit(lock); 1798 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1799 mutex_exit(&connp->conn_lock); 1800 /* 1801 * We can reuse the closemp here since conn has 1802 * detached (otherwise we wouldn't even be in 1803 * time_wait list). tcp_closemp_used can safely 1804 * be changed without taking a lock as no other 1805 * thread can concurrently access it at this 1806 * point in the connection lifecycle. 1807 */ 1808 1809 if (tcp->tcp_closemp.b_prev == NULL) 1810 tcp->tcp_closemp_used = B_TRUE; 1811 else 1812 cmn_err(CE_PANIC, 1813 "tcp_timewait_collector: " 1814 "concurrent use of tcp_closemp: " 1815 "connp %p tcp %p\n", (void *)connp, 1816 (void *)tcp); 1817 1818 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1819 mp = &tcp->tcp_closemp; 1820 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1821 tcp_timewait_output, connp, 1822 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1823 } 1824 } else { 1825 mutex_enter(&connp->conn_lock); 1826 CONN_INC_REF_LOCKED(connp); 1827 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1828 mutex_exit(&connp->conn_lock); 1829 /* 1830 * We can reuse the closemp here since conn has 1831 * detached (otherwise we wouldn't even be in 1832 * time_wait list). tcp_closemp_used can safely 1833 * be changed without taking a lock as no other 1834 * thread can concurrently access it at this 1835 * point in the connection lifecycle. 1836 */ 1837 1838 if (tcp->tcp_closemp.b_prev == NULL) 1839 tcp->tcp_closemp_used = B_TRUE; 1840 else 1841 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1842 "concurrent use of tcp_closemp: " 1843 "connp %p tcp %p\n", (void *)connp, 1844 (void *)tcp); 1845 1846 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1847 mp = &tcp->tcp_closemp; 1848 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1849 tcp_timewait_output, connp, 1850 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1851 } 1852 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1853 } 1854 1855 if (tcp_time_wait->tcp_free_list != NULL) 1856 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1857 1858 tcp_time_wait->tcp_time_wait_tid = 1859 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1860 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1861 CALLOUT_FLAG_ROUNDUP); 1862 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1863 } 1864 1865 /* 1866 * Reply to a clients T_CONN_RES TPI message. This function 1867 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1868 * on the acceptor STREAM and processed in tcp_wput_accept(). 1869 * Read the block comment on top of tcp_conn_request(). 1870 */ 1871 static void 1872 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1873 { 1874 tcp_t *acceptor; 1875 tcp_t *eager; 1876 tcp_t *tcp; 1877 struct T_conn_res *tcr; 1878 t_uscalar_t acceptor_id; 1879 t_scalar_t seqnum; 1880 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1881 struct tcp_options *tcpopt; 1882 mblk_t *ok_mp; 1883 mblk_t *mp1; 1884 tcp_stack_t *tcps = listener->tcp_tcps; 1885 int error; 1886 1887 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1888 tcp_err_ack(listener, mp, TPROTO, 0); 1889 return; 1890 } 1891 tcr = (struct T_conn_res *)mp->b_rptr; 1892 1893 /* 1894 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1895 * read side queue of the streams device underneath us i.e. the 1896 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1897 * look it up in the queue_hash. Under LP64 it sends down the 1898 * minor_t of the accepting endpoint. 1899 * 1900 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1901 * fanout hash lock is held. 1902 * This prevents any thread from entering the acceptor queue from 1903 * below (since it has not been hard bound yet i.e. any inbound 1904 * packets will arrive on the listener or default tcp queue and 1905 * go through tcp_lookup). 1906 * The CONN_INC_REF will prevent the acceptor from closing. 1907 * 1908 * XXX It is still possible for a tli application to send down data 1909 * on the accepting stream while another thread calls t_accept. 1910 * This should not be a problem for well-behaved applications since 1911 * the T_OK_ACK is sent after the queue swapping is completed. 1912 * 1913 * If the accepting fd is the same as the listening fd, avoid 1914 * queue hash lookup since that will return an eager listener in a 1915 * already established state. 1916 */ 1917 acceptor_id = tcr->ACCEPTOR_id; 1918 mutex_enter(&listener->tcp_eager_lock); 1919 if (listener->tcp_acceptor_id == acceptor_id) { 1920 eager = listener->tcp_eager_next_q; 1921 /* only count how many T_CONN_INDs so don't count q0 */ 1922 if ((listener->tcp_conn_req_cnt_q != 1) || 1923 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1924 mutex_exit(&listener->tcp_eager_lock); 1925 tcp_err_ack(listener, mp, TBADF, 0); 1926 return; 1927 } 1928 if (listener->tcp_conn_req_cnt_q0 != 0) { 1929 /* Throw away all the eagers on q0. */ 1930 tcp_eager_cleanup(listener, 1); 1931 } 1932 if (listener->tcp_syn_defense) { 1933 listener->tcp_syn_defense = B_FALSE; 1934 if (listener->tcp_ip_addr_cache != NULL) { 1935 kmem_free(listener->tcp_ip_addr_cache, 1936 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1937 listener->tcp_ip_addr_cache = NULL; 1938 } 1939 } 1940 /* 1941 * Transfer tcp_conn_req_max to the eager so that when 1942 * a disconnect occurs we can revert the endpoint to the 1943 * listen state. 1944 */ 1945 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1946 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1947 /* 1948 * Get a reference on the acceptor just like the 1949 * tcp_acceptor_hash_lookup below. 1950 */ 1951 acceptor = listener; 1952 CONN_INC_REF(acceptor->tcp_connp); 1953 } else { 1954 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1955 if (acceptor == NULL) { 1956 if (listener->tcp_debug) { 1957 (void) strlog(TCP_MOD_ID, 0, 1, 1958 SL_ERROR|SL_TRACE, 1959 "tcp_accept: did not find acceptor 0x%x\n", 1960 acceptor_id); 1961 } 1962 mutex_exit(&listener->tcp_eager_lock); 1963 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1964 return; 1965 } 1966 /* 1967 * Verify acceptor state. The acceptable states for an acceptor 1968 * include TCPS_IDLE and TCPS_BOUND. 1969 */ 1970 switch (acceptor->tcp_state) { 1971 case TCPS_IDLE: 1972 /* FALLTHRU */ 1973 case TCPS_BOUND: 1974 break; 1975 default: 1976 CONN_DEC_REF(acceptor->tcp_connp); 1977 mutex_exit(&listener->tcp_eager_lock); 1978 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1979 return; 1980 } 1981 } 1982 1983 /* The listener must be in TCPS_LISTEN */ 1984 if (listener->tcp_state != TCPS_LISTEN) { 1985 CONN_DEC_REF(acceptor->tcp_connp); 1986 mutex_exit(&listener->tcp_eager_lock); 1987 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1988 return; 1989 } 1990 1991 /* 1992 * Rendezvous with an eager connection request packet hanging off 1993 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 1994 * tcp structure when the connection packet arrived in 1995 * tcp_conn_request(). 1996 */ 1997 seqnum = tcr->SEQ_number; 1998 eager = listener; 1999 do { 2000 eager = eager->tcp_eager_next_q; 2001 if (eager == NULL) { 2002 CONN_DEC_REF(acceptor->tcp_connp); 2003 mutex_exit(&listener->tcp_eager_lock); 2004 tcp_err_ack(listener, mp, TBADSEQ, 0); 2005 return; 2006 } 2007 } while (eager->tcp_conn_req_seqnum != seqnum); 2008 mutex_exit(&listener->tcp_eager_lock); 2009 2010 /* 2011 * At this point, both acceptor and listener have 2 ref 2012 * that they begin with. Acceptor has one additional ref 2013 * we placed in lookup while listener has 3 additional 2014 * ref for being behind the squeue (tcp_accept() is 2015 * done on listener's squeue); being in classifier hash; 2016 * and eager's ref on listener. 2017 */ 2018 ASSERT(listener->tcp_connp->conn_ref >= 5); 2019 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2020 2021 /* 2022 * The eager at this point is set in its own squeue and 2023 * could easily have been killed (tcp_accept_finish will 2024 * deal with that) because of a TH_RST so we can only 2025 * ASSERT for a single ref. 2026 */ 2027 ASSERT(eager->tcp_connp->conn_ref >= 1); 2028 2029 /* Pre allocate the stroptions mblk also */ 2030 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2031 sizeof (struct T_conn_res)), BPRI_HI); 2032 if (opt_mp == NULL) { 2033 CONN_DEC_REF(acceptor->tcp_connp); 2034 CONN_DEC_REF(eager->tcp_connp); 2035 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2036 return; 2037 } 2038 DB_TYPE(opt_mp) = M_SETOPTS; 2039 opt_mp->b_wptr += sizeof (struct tcp_options); 2040 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2041 tcpopt->to_flags = 0; 2042 2043 /* 2044 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2045 * from listener to acceptor. 2046 */ 2047 if (listener->tcp_bound_if != 0) { 2048 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2049 tcpopt->to_boundif = listener->tcp_bound_if; 2050 } 2051 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2052 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2053 } 2054 2055 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2056 if ((mp1 = copymsg(mp)) == NULL) { 2057 CONN_DEC_REF(acceptor->tcp_connp); 2058 CONN_DEC_REF(eager->tcp_connp); 2059 freemsg(opt_mp); 2060 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2061 return; 2062 } 2063 2064 tcr = (struct T_conn_res *)mp1->b_rptr; 2065 2066 /* 2067 * This is an expanded version of mi_tpi_ok_ack_alloc() 2068 * which allocates a larger mblk and appends the new 2069 * local address to the ok_ack. The address is copied by 2070 * soaccept() for getsockname(). 2071 */ 2072 { 2073 int extra; 2074 2075 extra = (eager->tcp_family == AF_INET) ? 2076 sizeof (sin_t) : sizeof (sin6_t); 2077 2078 /* 2079 * Try to re-use mp, if possible. Otherwise, allocate 2080 * an mblk and return it as ok_mp. In any case, mp 2081 * is no longer usable upon return. 2082 */ 2083 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2084 CONN_DEC_REF(acceptor->tcp_connp); 2085 CONN_DEC_REF(eager->tcp_connp); 2086 freemsg(opt_mp); 2087 /* Original mp has been freed by now, so use mp1 */ 2088 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2089 return; 2090 } 2091 2092 mp = NULL; /* We should never use mp after this point */ 2093 2094 switch (extra) { 2095 case sizeof (sin_t): { 2096 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2097 2098 ok_mp->b_wptr += extra; 2099 sin->sin_family = AF_INET; 2100 sin->sin_port = eager->tcp_lport; 2101 sin->sin_addr.s_addr = 2102 eager->tcp_ipha->ipha_src; 2103 break; 2104 } 2105 case sizeof (sin6_t): { 2106 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2107 2108 ok_mp->b_wptr += extra; 2109 sin6->sin6_family = AF_INET6; 2110 sin6->sin6_port = eager->tcp_lport; 2111 if (eager->tcp_ipversion == IPV4_VERSION) { 2112 sin6->sin6_flowinfo = 0; 2113 IN6_IPADDR_TO_V4MAPPED( 2114 eager->tcp_ipha->ipha_src, 2115 &sin6->sin6_addr); 2116 } else { 2117 ASSERT(eager->tcp_ip6h != NULL); 2118 sin6->sin6_flowinfo = 2119 eager->tcp_ip6h->ip6_vcf & 2120 ~IPV6_VERS_AND_FLOW_MASK; 2121 sin6->sin6_addr = 2122 eager->tcp_ip6h->ip6_src; 2123 } 2124 sin6->sin6_scope_id = 0; 2125 sin6->__sin6_src_id = 0; 2126 break; 2127 } 2128 default: 2129 break; 2130 } 2131 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2132 } 2133 2134 /* 2135 * If there are no options we know that the T_CONN_RES will 2136 * succeed. However, we can't send the T_OK_ACK upstream until 2137 * the tcp_accept_swap is done since it would be dangerous to 2138 * let the application start using the new fd prior to the swap. 2139 */ 2140 error = tcp_accept_swap(listener, acceptor, eager); 2141 if (error != 0) { 2142 CONN_DEC_REF(acceptor->tcp_connp); 2143 CONN_DEC_REF(eager->tcp_connp); 2144 freemsg(ok_mp); 2145 /* Original mp has been freed by now, so use mp1 */ 2146 tcp_err_ack(listener, mp1, TSYSERR, error); 2147 return; 2148 } 2149 2150 /* 2151 * tcp_accept_swap unlinks eager from listener but does not drop 2152 * the eager's reference on the listener. 2153 */ 2154 ASSERT(eager->tcp_listener == NULL); 2155 ASSERT(listener->tcp_connp->conn_ref >= 5); 2156 2157 /* 2158 * The eager is now associated with its own queue. Insert in 2159 * the hash so that the connection can be reused for a future 2160 * T_CONN_RES. 2161 */ 2162 tcp_acceptor_hash_insert(acceptor_id, eager); 2163 2164 /* 2165 * We now do the processing of options with T_CONN_RES. 2166 * We delay till now since we wanted to have queue to pass to 2167 * option processing routines that points back to the right 2168 * instance structure which does not happen until after 2169 * tcp_accept_swap(). 2170 * 2171 * Note: 2172 * The sanity of the logic here assumes that whatever options 2173 * are appropriate to inherit from listner=>eager are done 2174 * before this point, and whatever were to be overridden (or not) 2175 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2176 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2177 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2178 * This may not be true at this point in time but can be fixed 2179 * independently. This option processing code starts with 2180 * the instantiated acceptor instance and the final queue at 2181 * this point. 2182 */ 2183 2184 if (tcr->OPT_length != 0) { 2185 /* Options to process */ 2186 int t_error = 0; 2187 int sys_error = 0; 2188 int do_disconnect = 0; 2189 2190 if (tcp_conprim_opt_process(eager, mp1, 2191 &do_disconnect, &t_error, &sys_error) < 0) { 2192 eager->tcp_accept_error = 1; 2193 if (do_disconnect) { 2194 /* 2195 * An option failed which does not allow 2196 * connection to be accepted. 2197 * 2198 * We allow T_CONN_RES to succeed and 2199 * put a T_DISCON_IND on the eager queue. 2200 */ 2201 ASSERT(t_error == 0 && sys_error == 0); 2202 eager->tcp_send_discon_ind = 1; 2203 } else { 2204 ASSERT(t_error != 0); 2205 freemsg(ok_mp); 2206 /* 2207 * Original mp was either freed or set 2208 * to ok_mp above, so use mp1 instead. 2209 */ 2210 tcp_err_ack(listener, mp1, t_error, sys_error); 2211 goto finish; 2212 } 2213 } 2214 /* 2215 * Most likely success in setting options (except if 2216 * eager->tcp_send_discon_ind set). 2217 * mp1 option buffer represented by OPT_length/offset 2218 * potentially modified and contains results of setting 2219 * options at this point 2220 */ 2221 } 2222 2223 /* We no longer need mp1, since all options processing has passed */ 2224 freemsg(mp1); 2225 2226 putnext(listener->tcp_rq, ok_mp); 2227 2228 mutex_enter(&listener->tcp_eager_lock); 2229 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2230 tcp_t *tail; 2231 mblk_t *conn_ind; 2232 2233 /* 2234 * This path should not be executed if listener and 2235 * acceptor streams are the same. 2236 */ 2237 ASSERT(listener != acceptor); 2238 2239 tcp = listener->tcp_eager_prev_q0; 2240 /* 2241 * listener->tcp_eager_prev_q0 points to the TAIL of the 2242 * deferred T_conn_ind queue. We need to get to the head of 2243 * the queue in order to send up T_conn_ind the same order as 2244 * how the 3WHS is completed. 2245 */ 2246 while (tcp != listener) { 2247 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2248 break; 2249 else 2250 tcp = tcp->tcp_eager_prev_q0; 2251 } 2252 ASSERT(tcp != listener); 2253 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2254 ASSERT(conn_ind != NULL); 2255 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2256 2257 /* Move from q0 to q */ 2258 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2259 listener->tcp_conn_req_cnt_q0--; 2260 listener->tcp_conn_req_cnt_q++; 2261 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2262 tcp->tcp_eager_prev_q0; 2263 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2264 tcp->tcp_eager_next_q0; 2265 tcp->tcp_eager_prev_q0 = NULL; 2266 tcp->tcp_eager_next_q0 = NULL; 2267 tcp->tcp_conn_def_q0 = B_FALSE; 2268 2269 /* Make sure the tcp isn't in the list of droppables */ 2270 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2271 tcp->tcp_eager_prev_drop_q0 == NULL); 2272 2273 /* 2274 * Insert at end of the queue because sockfs sends 2275 * down T_CONN_RES in chronological order. Leaving 2276 * the older conn indications at front of the queue 2277 * helps reducing search time. 2278 */ 2279 tail = listener->tcp_eager_last_q; 2280 if (tail != NULL) 2281 tail->tcp_eager_next_q = tcp; 2282 else 2283 listener->tcp_eager_next_q = tcp; 2284 listener->tcp_eager_last_q = tcp; 2285 tcp->tcp_eager_next_q = NULL; 2286 mutex_exit(&listener->tcp_eager_lock); 2287 putnext(tcp->tcp_rq, conn_ind); 2288 } else { 2289 mutex_exit(&listener->tcp_eager_lock); 2290 } 2291 2292 /* 2293 * Done with the acceptor - free it 2294 * 2295 * Note: from this point on, no access to listener should be made 2296 * as listener can be equal to acceptor. 2297 */ 2298 finish: 2299 ASSERT(acceptor->tcp_detached); 2300 ASSERT(tcps->tcps_g_q != NULL); 2301 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2302 acceptor->tcp_rq = tcps->tcps_g_q; 2303 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2304 (void) tcp_clean_death(acceptor, 0, 2); 2305 CONN_DEC_REF(acceptor->tcp_connp); 2306 2307 /* 2308 * In case we already received a FIN we have to make tcp_rput send 2309 * the ordrel_ind. This will also send up a window update if the window 2310 * has opened up. 2311 * 2312 * In the normal case of a successful connection acceptance 2313 * we give the O_T_BIND_REQ to the read side put procedure as an 2314 * indication that this was just accepted. This tells tcp_rput to 2315 * pass up any data queued in tcp_rcv_list. 2316 * 2317 * In the fringe case where options sent with T_CONN_RES failed and 2318 * we required, we would be indicating a T_DISCON_IND to blow 2319 * away this connection. 2320 */ 2321 2322 /* 2323 * XXX: we currently have a problem if XTI application closes the 2324 * acceptor stream in between. This problem exists in on10-gate also 2325 * and is well know but nothing can be done short of major rewrite 2326 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2327 * eager same squeue as listener (we can distinguish non socket 2328 * listeners at the time of handling a SYN in tcp_conn_request) 2329 * and do most of the work that tcp_accept_finish does here itself 2330 * and then get behind the acceptor squeue to access the acceptor 2331 * queue. 2332 */ 2333 /* 2334 * We already have a ref on tcp so no need to do one before squeue_enter 2335 */ 2336 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2337 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2338 } 2339 2340 /* 2341 * Swap information between the eager and acceptor for a TLI/XTI client. 2342 * The sockfs accept is done on the acceptor stream and control goes 2343 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2344 * called. In either case, both the eager and listener are in their own 2345 * perimeter (squeue) and the code has to deal with potential race. 2346 * 2347 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2348 */ 2349 static int 2350 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2351 { 2352 conn_t *econnp, *aconnp; 2353 cred_t *effective_cred = NULL; 2354 2355 ASSERT(eager->tcp_rq == listener->tcp_rq); 2356 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2357 ASSERT(!eager->tcp_hard_bound); 2358 ASSERT(!TCP_IS_SOCKET(acceptor)); 2359 ASSERT(!TCP_IS_SOCKET(eager)); 2360 ASSERT(!TCP_IS_SOCKET(listener)); 2361 2362 econnp = eager->tcp_connp; 2363 aconnp = acceptor->tcp_connp; 2364 2365 /* 2366 * Trusted Extensions may need to use a security label that is 2367 * different from the acceptor's label on MLP and MAC-Exempt 2368 * sockets. If this is the case, the required security label 2369 * already exists in econnp->conn_effective_cred. Use this label 2370 * to generate a new effective cred for the acceptor. 2371 * 2372 * We allow for potential application level retry attempts by 2373 * checking for transient errors before modifying eager. 2374 */ 2375 if (is_system_labeled() && 2376 aconnp->conn_cred != NULL && econnp->conn_effective_cred != NULL) { 2377 effective_cred = copycred_from_tslabel(aconnp->conn_cred, 2378 crgetlabel(econnp->conn_effective_cred), KM_NOSLEEP); 2379 if (effective_cred == NULL) 2380 return (ENOMEM); 2381 } 2382 2383 acceptor->tcp_detached = B_TRUE; 2384 /* 2385 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2386 * the acceptor id. 2387 */ 2388 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2389 2390 /* remove eager from listen list... */ 2391 mutex_enter(&listener->tcp_eager_lock); 2392 tcp_eager_unlink(eager); 2393 ASSERT(eager->tcp_eager_next_q == NULL && 2394 eager->tcp_eager_last_q == NULL); 2395 ASSERT(eager->tcp_eager_next_q0 == NULL && 2396 eager->tcp_eager_prev_q0 == NULL); 2397 mutex_exit(&listener->tcp_eager_lock); 2398 eager->tcp_rq = acceptor->tcp_rq; 2399 eager->tcp_wq = acceptor->tcp_wq; 2400 2401 eager->tcp_rq->q_ptr = econnp; 2402 eager->tcp_wq->q_ptr = econnp; 2403 2404 /* 2405 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2406 * which might be a different squeue from our peer TCP instance. 2407 * For TCP Fusion, the peer expects that whenever tcp_detached is 2408 * clear, our TCP queues point to the acceptor's queues. Thus, use 2409 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2410 * above reach global visibility prior to the clearing of tcp_detached. 2411 */ 2412 membar_producer(); 2413 eager->tcp_detached = B_FALSE; 2414 2415 ASSERT(eager->tcp_ack_tid == 0); 2416 2417 econnp->conn_dev = aconnp->conn_dev; 2418 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2419 2420 ASSERT(econnp->conn_minor_arena != NULL); 2421 if (eager->tcp_cred != NULL) 2422 crfree(eager->tcp_cred); 2423 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2424 if (econnp->conn_effective_cred != NULL) 2425 crfree(econnp->conn_effective_cred); 2426 econnp->conn_effective_cred = effective_cred; 2427 aconnp->conn_cred = NULL; 2428 ASSERT(aconnp->conn_effective_cred == NULL); 2429 2430 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2431 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2432 2433 econnp->conn_zoneid = aconnp->conn_zoneid; 2434 econnp->conn_allzones = aconnp->conn_allzones; 2435 2436 aconnp->conn_mac_exempt = B_FALSE; 2437 2438 /* Do the IPC initialization */ 2439 CONN_INC_REF(econnp); 2440 2441 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2442 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2443 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2444 2445 /* Done with old IPC. Drop its ref on its connp */ 2446 CONN_DEC_REF(aconnp); 2447 return (0); 2448 } 2449 2450 2451 /* 2452 * Adapt to the information, such as rtt and rtt_sd, provided from the 2453 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2454 * 2455 * Checks for multicast and broadcast destination address. 2456 * Returns zero on failure; non-zero if ok. 2457 * 2458 * Note that the MSS calculation here is based on the info given in 2459 * the IRE. We do not do any calculation based on TCP options. They 2460 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2461 * knows which options to use. 2462 * 2463 * Note on how TCP gets its parameters for a connection. 2464 * 2465 * When a tcp_t structure is allocated, it gets all the default parameters. 2466 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2467 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2468 * default. 2469 * 2470 * An incoming SYN with a multicast or broadcast destination address, is dropped 2471 * in 1 of 2 places. 2472 * 2473 * 1. If the packet was received over the wire it is dropped in 2474 * ip_rput_process_broadcast() 2475 * 2476 * 2. If the packet was received through internal IP loopback, i.e. the packet 2477 * was generated and received on the same machine, it is dropped in 2478 * ip_wput_local() 2479 * 2480 * An incoming SYN with a multicast or broadcast source address is always 2481 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2482 * reject an attempt to connect to a broadcast or multicast (destination) 2483 * address. 2484 */ 2485 static int 2486 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2487 { 2488 ire_t *ire; 2489 ire_t *sire = NULL; 2490 iulp_t *ire_uinfo = NULL; 2491 uint32_t mss_max; 2492 uint32_t mss; 2493 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2494 conn_t *connp = tcp->tcp_connp; 2495 boolean_t ire_cacheable = B_FALSE; 2496 zoneid_t zoneid = connp->conn_zoneid; 2497 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2498 MATCH_IRE_SECATTR; 2499 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2500 ill_t *ill = NULL; 2501 boolean_t incoming = (ire_mp == NULL); 2502 tcp_stack_t *tcps = tcp->tcp_tcps; 2503 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2504 2505 ASSERT(connp->conn_ire_cache == NULL); 2506 2507 if (tcp->tcp_ipversion == IPV4_VERSION) { 2508 2509 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2510 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2511 return (0); 2512 } 2513 /* 2514 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2515 * for the destination with the nexthop as gateway. 2516 * ire_ctable_lookup() is used because this particular 2517 * ire, if it exists, will be marked private. 2518 * If that is not available, use the interface ire 2519 * for the nexthop. 2520 * 2521 * TSol: tcp_update_label will detect label mismatches based 2522 * only on the destination's label, but that would not 2523 * detect label mismatches based on the security attributes 2524 * of routes or next hop gateway. Hence we need to pass the 2525 * label to ire_ftable_lookup below in order to locate the 2526 * right prefix (and/or) ire cache. Similarly we also need 2527 * pass the label to the ire_cache_lookup below to locate 2528 * the right ire that also matches on the label. 2529 */ 2530 if (tcp->tcp_connp->conn_nexthop_set) { 2531 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2532 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2533 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2534 ipst); 2535 if (ire == NULL) { 2536 ire = ire_ftable_lookup( 2537 tcp->tcp_connp->conn_nexthop_v4, 2538 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2539 tsl, match_flags, ipst); 2540 if (ire == NULL) 2541 return (0); 2542 } else { 2543 ire_uinfo = &ire->ire_uinfo; 2544 } 2545 } else { 2546 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2547 zoneid, tsl, ipst); 2548 if (ire != NULL) { 2549 ire_cacheable = B_TRUE; 2550 ire_uinfo = (ire_mp != NULL) ? 2551 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2552 &ire->ire_uinfo; 2553 2554 } else { 2555 if (ire_mp == NULL) { 2556 ire = ire_ftable_lookup( 2557 tcp->tcp_connp->conn_rem, 2558 0, 0, 0, NULL, &sire, zoneid, 0, 2559 tsl, (MATCH_IRE_RECURSIVE | 2560 MATCH_IRE_DEFAULT), ipst); 2561 if (ire == NULL) 2562 return (0); 2563 ire_uinfo = (sire != NULL) ? 2564 &sire->ire_uinfo : 2565 &ire->ire_uinfo; 2566 } else { 2567 ire = (ire_t *)ire_mp->b_rptr; 2568 ire_uinfo = 2569 &((ire_t *) 2570 ire_mp->b_rptr)->ire_uinfo; 2571 } 2572 } 2573 } 2574 ASSERT(ire != NULL); 2575 2576 if ((ire->ire_src_addr == INADDR_ANY) || 2577 (ire->ire_type & IRE_BROADCAST)) { 2578 /* 2579 * ire->ire_mp is non null when ire_mp passed in is used 2580 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2581 */ 2582 if (ire->ire_mp == NULL) 2583 ire_refrele(ire); 2584 if (sire != NULL) 2585 ire_refrele(sire); 2586 return (0); 2587 } 2588 2589 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2590 ipaddr_t src_addr; 2591 2592 /* 2593 * ip_bind_connected() has stored the correct source 2594 * address in conn_src. 2595 */ 2596 src_addr = tcp->tcp_connp->conn_src; 2597 tcp->tcp_ipha->ipha_src = src_addr; 2598 /* 2599 * Copy of the src addr. in tcp_t is needed 2600 * for the lookup funcs. 2601 */ 2602 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2603 } 2604 /* 2605 * Set the fragment bit so that IP will tell us if the MTU 2606 * should change. IP tells us the latest setting of 2607 * ip_path_mtu_discovery through ire_frag_flag. 2608 */ 2609 if (ipst->ips_ip_path_mtu_discovery) { 2610 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2611 htons(IPH_DF); 2612 } 2613 /* 2614 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2615 * for IP_NEXTHOP. No cache ire has been found for the 2616 * destination and we are working with the nexthop's 2617 * interface ire. Since we need to forward all packets 2618 * to the nexthop first, we "blindly" set tcp_localnet 2619 * to false, eventhough the destination may also be 2620 * onlink. 2621 */ 2622 if (ire_uinfo == NULL) 2623 tcp->tcp_localnet = 0; 2624 else 2625 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2626 } else { 2627 /* 2628 * For incoming connection ire_mp = NULL 2629 * For outgoing connection ire_mp != NULL 2630 * Technically we should check conn_incoming_ill 2631 * when ire_mp is NULL and conn_outgoing_ill when 2632 * ire_mp is non-NULL. But this is performance 2633 * critical path and for IPV*_BOUND_IF, outgoing 2634 * and incoming ill are always set to the same value. 2635 */ 2636 ill_t *dst_ill = NULL; 2637 ipif_t *dst_ipif = NULL; 2638 2639 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2640 2641 if (connp->conn_outgoing_ill != NULL) { 2642 /* Outgoing or incoming path */ 2643 int err; 2644 2645 dst_ill = conn_get_held_ill(connp, 2646 &connp->conn_outgoing_ill, &err); 2647 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2648 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2649 return (0); 2650 } 2651 match_flags |= MATCH_IRE_ILL; 2652 dst_ipif = dst_ill->ill_ipif; 2653 } 2654 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2655 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2656 2657 if (ire != NULL) { 2658 ire_cacheable = B_TRUE; 2659 ire_uinfo = (ire_mp != NULL) ? 2660 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2661 &ire->ire_uinfo; 2662 } else { 2663 if (ire_mp == NULL) { 2664 ire = ire_ftable_lookup_v6( 2665 &tcp->tcp_connp->conn_remv6, 2666 0, 0, 0, dst_ipif, &sire, zoneid, 2667 0, tsl, match_flags, ipst); 2668 if (ire == NULL) { 2669 if (dst_ill != NULL) 2670 ill_refrele(dst_ill); 2671 return (0); 2672 } 2673 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2674 &ire->ire_uinfo; 2675 } else { 2676 ire = (ire_t *)ire_mp->b_rptr; 2677 ire_uinfo = 2678 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2679 } 2680 } 2681 if (dst_ill != NULL) 2682 ill_refrele(dst_ill); 2683 2684 ASSERT(ire != NULL); 2685 ASSERT(ire_uinfo != NULL); 2686 2687 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2688 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2689 /* 2690 * ire->ire_mp is non null when ire_mp passed in is used 2691 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2692 */ 2693 if (ire->ire_mp == NULL) 2694 ire_refrele(ire); 2695 if (sire != NULL) 2696 ire_refrele(sire); 2697 return (0); 2698 } 2699 2700 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2701 in6_addr_t src_addr; 2702 2703 /* 2704 * ip_bind_connected_v6() has stored the correct source 2705 * address per IPv6 addr. selection policy in 2706 * conn_src_v6. 2707 */ 2708 src_addr = tcp->tcp_connp->conn_srcv6; 2709 2710 tcp->tcp_ip6h->ip6_src = src_addr; 2711 /* 2712 * Copy of the src addr. in tcp_t is needed 2713 * for the lookup funcs. 2714 */ 2715 tcp->tcp_ip_src_v6 = src_addr; 2716 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2717 &connp->conn_srcv6)); 2718 } 2719 tcp->tcp_localnet = 2720 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2721 } 2722 2723 /* 2724 * This allows applications to fail quickly when connections are made 2725 * to dead hosts. Hosts can be labeled dead by adding a reject route 2726 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2727 */ 2728 if ((ire->ire_flags & RTF_REJECT) && 2729 (ire->ire_flags & RTF_PRIVATE)) 2730 goto error; 2731 2732 /* 2733 * Make use of the cached rtt and rtt_sd values to calculate the 2734 * initial RTO. Note that they are already initialized in 2735 * tcp_init_values(). 2736 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2737 * IP_NEXTHOP, but instead are using the interface ire for the 2738 * nexthop, then we do not use the ire_uinfo from that ire to 2739 * do any initializations. 2740 */ 2741 if (ire_uinfo != NULL) { 2742 if (ire_uinfo->iulp_rtt != 0) { 2743 clock_t rto; 2744 2745 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2746 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2747 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2748 tcps->tcps_rexmit_interval_extra + 2749 (tcp->tcp_rtt_sa >> 5); 2750 2751 if (rto > tcps->tcps_rexmit_interval_max) { 2752 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2753 } else if (rto < tcps->tcps_rexmit_interval_min) { 2754 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2755 } else { 2756 tcp->tcp_rto = rto; 2757 } 2758 } 2759 if (ire_uinfo->iulp_ssthresh != 0) 2760 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2761 else 2762 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2763 if (ire_uinfo->iulp_spipe > 0) { 2764 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2765 tcps->tcps_max_buf); 2766 if (tcps->tcps_snd_lowat_fraction != 0) 2767 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2768 tcps->tcps_snd_lowat_fraction; 2769 (void) tcp_maxpsz_set(tcp, B_TRUE); 2770 } 2771 /* 2772 * Note that up till now, acceptor always inherits receive 2773 * window from the listener. But if there is a metrics 2774 * associated with a host, we should use that instead of 2775 * inheriting it from listener. Thus we need to pass this 2776 * info back to the caller. 2777 */ 2778 if (ire_uinfo->iulp_rpipe > 0) { 2779 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2780 tcps->tcps_max_buf); 2781 } 2782 2783 if (ire_uinfo->iulp_rtomax > 0) { 2784 tcp->tcp_second_timer_threshold = 2785 ire_uinfo->iulp_rtomax; 2786 } 2787 2788 /* 2789 * Use the metric option settings, iulp_tstamp_ok and 2790 * iulp_wscale_ok, only for active open. What this means 2791 * is that if the other side uses timestamp or window 2792 * scale option, TCP will also use those options. That 2793 * is for passive open. If the application sets a 2794 * large window, window scale is enabled regardless of 2795 * the value in iulp_wscale_ok. This is the behavior 2796 * since 2.6. So we keep it. 2797 * The only case left in passive open processing is the 2798 * check for SACK. 2799 * For ECN, it should probably be like SACK. But the 2800 * current value is binary, so we treat it like the other 2801 * cases. The metric only controls active open.For passive 2802 * open, the ndd param, tcp_ecn_permitted, controls the 2803 * behavior. 2804 */ 2805 if (!tcp_detached) { 2806 /* 2807 * The if check means that the following can only 2808 * be turned on by the metrics only IRE, but not off. 2809 */ 2810 if (ire_uinfo->iulp_tstamp_ok) 2811 tcp->tcp_snd_ts_ok = B_TRUE; 2812 if (ire_uinfo->iulp_wscale_ok) 2813 tcp->tcp_snd_ws_ok = B_TRUE; 2814 if (ire_uinfo->iulp_sack == 2) 2815 tcp->tcp_snd_sack_ok = B_TRUE; 2816 if (ire_uinfo->iulp_ecn_ok) 2817 tcp->tcp_ecn_ok = B_TRUE; 2818 } else { 2819 /* 2820 * Passive open. 2821 * 2822 * As above, the if check means that SACK can only be 2823 * turned on by the metric only IRE. 2824 */ 2825 if (ire_uinfo->iulp_sack > 0) { 2826 tcp->tcp_snd_sack_ok = B_TRUE; 2827 } 2828 } 2829 } 2830 2831 2832 /* 2833 * XXX: Note that currently, ire_max_frag can be as small as 68 2834 * because of PMTUd. So tcp_mss may go to negative if combined 2835 * length of all those options exceeds 28 bytes. But because 2836 * of the tcp_mss_min check below, we may not have a problem if 2837 * tcp_mss_min is of a reasonable value. The default is 1 so 2838 * the negative problem still exists. And the check defeats PMTUd. 2839 * In fact, if PMTUd finds that the MSS should be smaller than 2840 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2841 * value. 2842 * 2843 * We do not deal with that now. All those problems related to 2844 * PMTUd will be fixed later. 2845 */ 2846 ASSERT(ire->ire_max_frag != 0); 2847 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2848 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2849 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2850 mss = MIN(mss, IPV6_MIN_MTU); 2851 } 2852 } 2853 2854 /* Sanity check for MSS value. */ 2855 if (tcp->tcp_ipversion == IPV4_VERSION) 2856 mss_max = tcps->tcps_mss_max_ipv4; 2857 else 2858 mss_max = tcps->tcps_mss_max_ipv6; 2859 2860 if (tcp->tcp_ipversion == IPV6_VERSION && 2861 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2862 /* 2863 * After receiving an ICMPv6 "packet too big" message with a 2864 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2865 * will insert a 8-byte fragment header in every packet; we 2866 * reduce the MSS by that amount here. 2867 */ 2868 mss -= sizeof (ip6_frag_t); 2869 } 2870 2871 if (tcp->tcp_ipsec_overhead == 0) 2872 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2873 2874 mss -= tcp->tcp_ipsec_overhead; 2875 2876 if (mss < tcps->tcps_mss_min) 2877 mss = tcps->tcps_mss_min; 2878 if (mss > mss_max) 2879 mss = mss_max; 2880 2881 /* Note that this is the maximum MSS, excluding all options. */ 2882 tcp->tcp_mss = mss; 2883 2884 /* 2885 * Initialize the ISS here now that we have the full connection ID. 2886 * The RFC 1948 method of initial sequence number generation requires 2887 * knowledge of the full connection ID before setting the ISS. 2888 */ 2889 2890 tcp_iss_init(tcp); 2891 2892 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2893 tcp->tcp_loopback = B_TRUE; 2894 2895 if (sire != NULL) 2896 IRE_REFRELE(sire); 2897 2898 /* 2899 * If we got an IRE_CACHE and an ILL, go through their properties; 2900 * otherwise, this is deferred until later when we have an IRE_CACHE. 2901 */ 2902 if (tcp->tcp_loopback || 2903 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2904 /* 2905 * For incoming, see if this tcp may be MDT-capable. For 2906 * outgoing, this process has been taken care of through 2907 * tcp_rput_other. 2908 */ 2909 tcp_ire_ill_check(tcp, ire, ill, incoming); 2910 tcp->tcp_ire_ill_check_done = B_TRUE; 2911 } 2912 2913 mutex_enter(&connp->conn_lock); 2914 /* 2915 * Make sure that conn is not marked incipient 2916 * for incoming connections. A blind 2917 * removal of incipient flag is cheaper than 2918 * check and removal. 2919 */ 2920 connp->conn_state_flags &= ~CONN_INCIPIENT; 2921 2922 /* 2923 * Must not cache forwarding table routes 2924 * or recache an IRE after the conn_t has 2925 * had conn_ire_cache cleared and is flagged 2926 * unusable, (see the CONN_CACHE_IRE() macro). 2927 */ 2928 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2929 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2930 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2931 connp->conn_ire_cache = ire; 2932 IRE_UNTRACE_REF(ire); 2933 rw_exit(&ire->ire_bucket->irb_lock); 2934 mutex_exit(&connp->conn_lock); 2935 return (1); 2936 } 2937 rw_exit(&ire->ire_bucket->irb_lock); 2938 } 2939 mutex_exit(&connp->conn_lock); 2940 2941 if (ire->ire_mp == NULL) 2942 ire_refrele(ire); 2943 return (1); 2944 2945 error: 2946 if (ire->ire_mp == NULL) 2947 ire_refrele(ire); 2948 if (sire != NULL) 2949 ire_refrele(sire); 2950 return (0); 2951 } 2952 2953 static void 2954 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2955 { 2956 int error; 2957 conn_t *connp = tcp->tcp_connp; 2958 struct sockaddr *sa; 2959 mblk_t *mp1; 2960 struct T_bind_req *tbr; 2961 int backlog; 2962 socklen_t len; 2963 sin_t *sin; 2964 sin6_t *sin6; 2965 cred_t *cr; 2966 2967 /* 2968 * All Solaris components should pass a db_credp 2969 * for this TPI message, hence we ASSERT. 2970 * But in case there is some other M_PROTO that looks 2971 * like a TPI message sent by some other kernel 2972 * component, we check and return an error. 2973 */ 2974 cr = msg_getcred(mp, NULL); 2975 ASSERT(cr != NULL); 2976 if (cr == NULL) { 2977 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2978 return; 2979 } 2980 2981 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2982 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2983 if (tcp->tcp_debug) { 2984 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2985 "tcp_tpi_bind: bad req, len %u", 2986 (uint_t)(mp->b_wptr - mp->b_rptr)); 2987 } 2988 tcp_err_ack(tcp, mp, TPROTO, 0); 2989 return; 2990 } 2991 /* Make sure the largest address fits */ 2992 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 2993 if (mp1 == NULL) { 2994 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2995 return; 2996 } 2997 mp = mp1; 2998 tbr = (struct T_bind_req *)mp->b_rptr; 2999 3000 backlog = tbr->CONIND_number; 3001 len = tbr->ADDR_length; 3002 3003 switch (len) { 3004 case 0: /* request for a generic port */ 3005 tbr->ADDR_offset = sizeof (struct T_bind_req); 3006 if (tcp->tcp_family == AF_INET) { 3007 tbr->ADDR_length = sizeof (sin_t); 3008 sin = (sin_t *)&tbr[1]; 3009 *sin = sin_null; 3010 sin->sin_family = AF_INET; 3011 sa = (struct sockaddr *)sin; 3012 len = sizeof (sin_t); 3013 mp->b_wptr = (uchar_t *)&sin[1]; 3014 } else { 3015 ASSERT(tcp->tcp_family == AF_INET6); 3016 tbr->ADDR_length = sizeof (sin6_t); 3017 sin6 = (sin6_t *)&tbr[1]; 3018 *sin6 = sin6_null; 3019 sin6->sin6_family = AF_INET6; 3020 sa = (struct sockaddr *)sin6; 3021 len = sizeof (sin6_t); 3022 mp->b_wptr = (uchar_t *)&sin6[1]; 3023 } 3024 break; 3025 3026 case sizeof (sin_t): /* Complete IPv4 address */ 3027 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3028 sizeof (sin_t)); 3029 break; 3030 3031 case sizeof (sin6_t): /* Complete IPv6 address */ 3032 sa = (struct sockaddr *)mi_offset_param(mp, 3033 tbr->ADDR_offset, sizeof (sin6_t)); 3034 break; 3035 3036 default: 3037 if (tcp->tcp_debug) { 3038 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3039 "tcp_tpi_bind: bad address length, %d", 3040 tbr->ADDR_length); 3041 } 3042 tcp_err_ack(tcp, mp, TBADADDR, 0); 3043 return; 3044 } 3045 3046 if (backlog > 0) { 3047 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 3048 tbr->PRIM_type != O_T_BIND_REQ); 3049 } else { 3050 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 3051 tbr->PRIM_type != O_T_BIND_REQ); 3052 } 3053 done: 3054 if (error > 0) { 3055 tcp_err_ack(tcp, mp, TSYSERR, error); 3056 } else if (error < 0) { 3057 tcp_err_ack(tcp, mp, -error, 0); 3058 } else { 3059 /* 3060 * Update port information as sockfs/tpi needs it for checking 3061 */ 3062 if (tcp->tcp_family == AF_INET) { 3063 sin = (sin_t *)sa; 3064 sin->sin_port = tcp->tcp_lport; 3065 } else { 3066 sin6 = (sin6_t *)sa; 3067 sin6->sin6_port = tcp->tcp_lport; 3068 } 3069 mp->b_datap->db_type = M_PCPROTO; 3070 tbr->PRIM_type = T_BIND_ACK; 3071 putnext(tcp->tcp_rq, mp); 3072 } 3073 } 3074 3075 /* 3076 * If the "bind_to_req_port_only" parameter is set, if the requested port 3077 * number is available, return it, If not return 0 3078 * 3079 * If "bind_to_req_port_only" parameter is not set and 3080 * If the requested port number is available, return it. If not, return 3081 * the first anonymous port we happen across. If no anonymous ports are 3082 * available, return 0. addr is the requested local address, if any. 3083 * 3084 * In either case, when succeeding update the tcp_t to record the port number 3085 * and insert it in the bind hash table. 3086 * 3087 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3088 * without setting SO_REUSEADDR. This is needed so that they 3089 * can be viewed as two independent transport protocols. 3090 */ 3091 static in_port_t 3092 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3093 int reuseaddr, boolean_t quick_connect, 3094 boolean_t bind_to_req_port_only, boolean_t user_specified) 3095 { 3096 /* number of times we have run around the loop */ 3097 int count = 0; 3098 /* maximum number of times to run around the loop */ 3099 int loopmax; 3100 conn_t *connp = tcp->tcp_connp; 3101 zoneid_t zoneid = connp->conn_zoneid; 3102 tcp_stack_t *tcps = tcp->tcp_tcps; 3103 3104 /* 3105 * Lookup for free addresses is done in a loop and "loopmax" 3106 * influences how long we spin in the loop 3107 */ 3108 if (bind_to_req_port_only) { 3109 /* 3110 * If the requested port is busy, don't bother to look 3111 * for a new one. Setting loop maximum count to 1 has 3112 * that effect. 3113 */ 3114 loopmax = 1; 3115 } else { 3116 /* 3117 * If the requested port is busy, look for a free one 3118 * in the anonymous port range. 3119 * Set loopmax appropriately so that one does not look 3120 * forever in the case all of the anonymous ports are in use. 3121 */ 3122 if (tcp->tcp_anon_priv_bind) { 3123 /* 3124 * loopmax = 3125 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3126 */ 3127 loopmax = IPPORT_RESERVED - 3128 tcps->tcps_min_anonpriv_port; 3129 } else { 3130 loopmax = (tcps->tcps_largest_anon_port - 3131 tcps->tcps_smallest_anon_port + 1); 3132 } 3133 } 3134 do { 3135 uint16_t lport; 3136 tf_t *tbf; 3137 tcp_t *ltcp; 3138 conn_t *lconnp; 3139 3140 lport = htons(port); 3141 3142 /* 3143 * Ensure that the tcp_t is not currently in the bind hash. 3144 * Hold the lock on the hash bucket to ensure that 3145 * the duplicate check plus the insertion is an atomic 3146 * operation. 3147 * 3148 * This function does an inline lookup on the bind hash list 3149 * Make sure that we access only members of tcp_t 3150 * and that we don't look at tcp_tcp, since we are not 3151 * doing a CONN_INC_REF. 3152 */ 3153 tcp_bind_hash_remove(tcp); 3154 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3155 mutex_enter(&tbf->tf_lock); 3156 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3157 ltcp = ltcp->tcp_bind_hash) { 3158 if (lport == ltcp->tcp_lport) 3159 break; 3160 } 3161 3162 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3163 boolean_t not_socket; 3164 boolean_t exclbind; 3165 3166 lconnp = ltcp->tcp_connp; 3167 3168 /* 3169 * On a labeled system, we must treat bindings to ports 3170 * on shared IP addresses by sockets with MAC exemption 3171 * privilege as being in all zones, as there's 3172 * otherwise no way to identify the right receiver. 3173 */ 3174 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3175 IPCL_ZONE_MATCH(connp, 3176 ltcp->tcp_connp->conn_zoneid)) && 3177 !lconnp->conn_mac_exempt && 3178 !connp->conn_mac_exempt) 3179 continue; 3180 3181 /* 3182 * If TCP_EXCLBIND is set for either the bound or 3183 * binding endpoint, the semantics of bind 3184 * is changed according to the following. 3185 * 3186 * spec = specified address (v4 or v6) 3187 * unspec = unspecified address (v4 or v6) 3188 * A = specified addresses are different for endpoints 3189 * 3190 * bound bind to allowed 3191 * ------------------------------------- 3192 * unspec unspec no 3193 * unspec spec no 3194 * spec unspec no 3195 * spec spec yes if A 3196 * 3197 * For labeled systems, SO_MAC_EXEMPT behaves the same 3198 * as TCP_EXCLBIND, except that zoneid is ignored. 3199 * 3200 * Note: 3201 * 3202 * 1. Because of TLI semantics, an endpoint can go 3203 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3204 * TCPS_BOUND, depending on whether it is originally 3205 * a listener or not. That is why we need to check 3206 * for states greater than or equal to TCPS_BOUND 3207 * here. 3208 * 3209 * 2. Ideally, we should only check for state equals 3210 * to TCPS_LISTEN. And the following check should be 3211 * added. 3212 * 3213 * if (ltcp->tcp_state == TCPS_LISTEN || 3214 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3215 * ... 3216 * } 3217 * 3218 * The semantics will be changed to this. If the 3219 * endpoint on the list is in state not equal to 3220 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3221 * set, let the bind succeed. 3222 * 3223 * Because of (1), we cannot do that for TLI 3224 * endpoints. But we can do that for socket endpoints. 3225 * If in future, we can change this going back 3226 * semantics, we can use the above check for TLI also. 3227 */ 3228 not_socket = !(TCP_IS_SOCKET(ltcp) && 3229 TCP_IS_SOCKET(tcp)); 3230 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3231 3232 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3233 (exclbind && (not_socket || 3234 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3235 if (V6_OR_V4_INADDR_ANY( 3236 ltcp->tcp_bound_source_v6) || 3237 V6_OR_V4_INADDR_ANY(*laddr) || 3238 IN6_ARE_ADDR_EQUAL(laddr, 3239 <cp->tcp_bound_source_v6)) { 3240 break; 3241 } 3242 continue; 3243 } 3244 3245 /* 3246 * Check ipversion to allow IPv4 and IPv6 sockets to 3247 * have disjoint port number spaces, if *_EXCLBIND 3248 * is not set and only if the application binds to a 3249 * specific port. We use the same autoassigned port 3250 * number space for IPv4 and IPv6 sockets. 3251 */ 3252 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3253 bind_to_req_port_only) 3254 continue; 3255 3256 /* 3257 * Ideally, we should make sure that the source 3258 * address, remote address, and remote port in the 3259 * four tuple for this tcp-connection is unique. 3260 * However, trying to find out the local source 3261 * address would require too much code duplication 3262 * with IP, since IP needs needs to have that code 3263 * to support userland TCP implementations. 3264 */ 3265 if (quick_connect && 3266 (ltcp->tcp_state > TCPS_LISTEN) && 3267 ((tcp->tcp_fport != ltcp->tcp_fport) || 3268 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3269 <cp->tcp_remote_v6))) 3270 continue; 3271 3272 if (!reuseaddr) { 3273 /* 3274 * No socket option SO_REUSEADDR. 3275 * If existing port is bound to 3276 * a non-wildcard IP address 3277 * and the requesting stream is 3278 * bound to a distinct 3279 * different IP addresses 3280 * (non-wildcard, also), keep 3281 * going. 3282 */ 3283 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3284 !V6_OR_V4_INADDR_ANY( 3285 ltcp->tcp_bound_source_v6) && 3286 !IN6_ARE_ADDR_EQUAL(laddr, 3287 <cp->tcp_bound_source_v6)) 3288 continue; 3289 if (ltcp->tcp_state >= TCPS_BOUND) { 3290 /* 3291 * This port is being used and 3292 * its state is >= TCPS_BOUND, 3293 * so we can't bind to it. 3294 */ 3295 break; 3296 } 3297 } else { 3298 /* 3299 * socket option SO_REUSEADDR is set on the 3300 * binding tcp_t. 3301 * 3302 * If two streams are bound to 3303 * same IP address or both addr 3304 * and bound source are wildcards 3305 * (INADDR_ANY), we want to stop 3306 * searching. 3307 * We have found a match of IP source 3308 * address and source port, which is 3309 * refused regardless of the 3310 * SO_REUSEADDR setting, so we break. 3311 */ 3312 if (IN6_ARE_ADDR_EQUAL(laddr, 3313 <cp->tcp_bound_source_v6) && 3314 (ltcp->tcp_state == TCPS_LISTEN || 3315 ltcp->tcp_state == TCPS_BOUND)) 3316 break; 3317 } 3318 } 3319 if (ltcp != NULL) { 3320 /* The port number is busy */ 3321 mutex_exit(&tbf->tf_lock); 3322 } else { 3323 /* 3324 * This port is ours. Insert in fanout and mark as 3325 * bound to prevent others from getting the port 3326 * number. 3327 */ 3328 tcp->tcp_state = TCPS_BOUND; 3329 tcp->tcp_lport = htons(port); 3330 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3331 3332 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3333 tcp->tcp_lport)] == tbf); 3334 tcp_bind_hash_insert(tbf, tcp, 1); 3335 3336 mutex_exit(&tbf->tf_lock); 3337 3338 /* 3339 * We don't want tcp_next_port_to_try to "inherit" 3340 * a port number supplied by the user in a bind. 3341 */ 3342 if (user_specified) 3343 return (port); 3344 3345 /* 3346 * This is the only place where tcp_next_port_to_try 3347 * is updated. After the update, it may or may not 3348 * be in the valid range. 3349 */ 3350 if (!tcp->tcp_anon_priv_bind) 3351 tcps->tcps_next_port_to_try = port + 1; 3352 return (port); 3353 } 3354 3355 if (tcp->tcp_anon_priv_bind) { 3356 port = tcp_get_next_priv_port(tcp); 3357 } else { 3358 if (count == 0 && user_specified) { 3359 /* 3360 * We may have to return an anonymous port. So 3361 * get one to start with. 3362 */ 3363 port = 3364 tcp_update_next_port( 3365 tcps->tcps_next_port_to_try, 3366 tcp, B_TRUE); 3367 user_specified = B_FALSE; 3368 } else { 3369 port = tcp_update_next_port(port + 1, tcp, 3370 B_FALSE); 3371 } 3372 } 3373 if (port == 0) 3374 break; 3375 3376 /* 3377 * Don't let this loop run forever in the case where 3378 * all of the anonymous ports are in use. 3379 */ 3380 } while (++count < loopmax); 3381 return (0); 3382 } 3383 3384 /* 3385 * tcp_clean_death / tcp_close_detached must not be called more than once 3386 * on a tcp. Thus every function that potentially calls tcp_clean_death 3387 * must check for the tcp state before calling tcp_clean_death. 3388 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3389 * tcp_timer_handler, all check for the tcp state. 3390 */ 3391 /* ARGSUSED */ 3392 void 3393 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3394 { 3395 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3396 3397 freemsg(mp); 3398 if (tcp->tcp_state > TCPS_BOUND) 3399 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3400 ETIMEDOUT, 5); 3401 } 3402 3403 /* 3404 * We are dying for some reason. Try to do it gracefully. (May be called 3405 * as writer.) 3406 * 3407 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3408 * done by a service procedure). 3409 * TBD - Should the return value distinguish between the tcp_t being 3410 * freed and it being reinitialized? 3411 */ 3412 static int 3413 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3414 { 3415 mblk_t *mp; 3416 queue_t *q; 3417 conn_t *connp = tcp->tcp_connp; 3418 tcp_stack_t *tcps = tcp->tcp_tcps; 3419 3420 TCP_CLD_STAT(tag); 3421 3422 #if TCP_TAG_CLEAN_DEATH 3423 tcp->tcp_cleandeathtag = tag; 3424 #endif 3425 3426 if (tcp->tcp_fused) 3427 tcp_unfuse(tcp); 3428 3429 if (tcp->tcp_linger_tid != 0 && 3430 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3431 tcp_stop_lingering(tcp); 3432 } 3433 3434 ASSERT(tcp != NULL); 3435 ASSERT((tcp->tcp_family == AF_INET && 3436 tcp->tcp_ipversion == IPV4_VERSION) || 3437 (tcp->tcp_family == AF_INET6 && 3438 (tcp->tcp_ipversion == IPV4_VERSION || 3439 tcp->tcp_ipversion == IPV6_VERSION))); 3440 3441 if (TCP_IS_DETACHED(tcp)) { 3442 if (tcp->tcp_hard_binding) { 3443 /* 3444 * Its an eager that we are dealing with. We close the 3445 * eager but in case a conn_ind has already gone to the 3446 * listener, let tcp_accept_finish() send a discon_ind 3447 * to the listener and drop the last reference. If the 3448 * listener doesn't even know about the eager i.e. the 3449 * conn_ind hasn't gone up, blow away the eager and drop 3450 * the last reference as well. If the conn_ind has gone 3451 * up, state should be BOUND. tcp_accept_finish 3452 * will figure out that the connection has received a 3453 * RST and will send a DISCON_IND to the application. 3454 */ 3455 tcp_closei_local(tcp); 3456 if (!tcp->tcp_tconnind_started) { 3457 CONN_DEC_REF(connp); 3458 } else { 3459 tcp->tcp_state = TCPS_BOUND; 3460 } 3461 } else { 3462 tcp_close_detached(tcp); 3463 } 3464 return (0); 3465 } 3466 3467 TCP_STAT(tcps, tcp_clean_death_nondetached); 3468 3469 q = tcp->tcp_rq; 3470 3471 /* Trash all inbound data */ 3472 if (!IPCL_IS_NONSTR(connp)) { 3473 ASSERT(q != NULL); 3474 flushq(q, FLUSHALL); 3475 } 3476 3477 /* 3478 * If we are at least part way open and there is error 3479 * (err==0 implies no error) 3480 * notify our client by a T_DISCON_IND. 3481 */ 3482 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3483 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3484 !TCP_IS_SOCKET(tcp)) { 3485 /* 3486 * Send M_FLUSH according to TPI. Because sockets will 3487 * (and must) ignore FLUSHR we do that only for TPI 3488 * endpoints and sockets in STREAMS mode. 3489 */ 3490 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3491 } 3492 if (tcp->tcp_debug) { 3493 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3494 "tcp_clean_death: discon err %d", err); 3495 } 3496 if (IPCL_IS_NONSTR(connp)) { 3497 /* Direct socket, use upcall */ 3498 (*connp->conn_upcalls->su_disconnected)( 3499 connp->conn_upper_handle, tcp->tcp_connid, err); 3500 } else { 3501 mp = mi_tpi_discon_ind(NULL, err, 0); 3502 if (mp != NULL) { 3503 putnext(q, mp); 3504 } else { 3505 if (tcp->tcp_debug) { 3506 (void) strlog(TCP_MOD_ID, 0, 1, 3507 SL_ERROR|SL_TRACE, 3508 "tcp_clean_death, sending M_ERROR"); 3509 } 3510 (void) putnextctl1(q, M_ERROR, EPROTO); 3511 } 3512 } 3513 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3514 /* SYN_SENT or SYN_RCVD */ 3515 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3516 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3517 /* ESTABLISHED or CLOSE_WAIT */ 3518 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3519 } 3520 } 3521 3522 tcp_reinit(tcp); 3523 if (IPCL_IS_NONSTR(connp)) 3524 (void) tcp_do_unbind(connp); 3525 3526 return (-1); 3527 } 3528 3529 /* 3530 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3531 * to expire, stop the wait and finish the close. 3532 */ 3533 static void 3534 tcp_stop_lingering(tcp_t *tcp) 3535 { 3536 clock_t delta = 0; 3537 tcp_stack_t *tcps = tcp->tcp_tcps; 3538 3539 tcp->tcp_linger_tid = 0; 3540 if (tcp->tcp_state > TCPS_LISTEN) { 3541 tcp_acceptor_hash_remove(tcp); 3542 mutex_enter(&tcp->tcp_non_sq_lock); 3543 if (tcp->tcp_flow_stopped) { 3544 tcp_clrqfull(tcp); 3545 } 3546 mutex_exit(&tcp->tcp_non_sq_lock); 3547 3548 if (tcp->tcp_timer_tid != 0) { 3549 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3550 tcp->tcp_timer_tid = 0; 3551 } 3552 /* 3553 * Need to cancel those timers which will not be used when 3554 * TCP is detached. This has to be done before the tcp_wq 3555 * is set to the global queue. 3556 */ 3557 tcp_timers_stop(tcp); 3558 3559 tcp->tcp_detached = B_TRUE; 3560 ASSERT(tcps->tcps_g_q != NULL); 3561 tcp->tcp_rq = tcps->tcps_g_q; 3562 tcp->tcp_wq = WR(tcps->tcps_g_q); 3563 3564 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3565 tcp_time_wait_append(tcp); 3566 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3567 goto finish; 3568 } 3569 3570 /* 3571 * If delta is zero the timer event wasn't executed and was 3572 * successfully canceled. In this case we need to restart it 3573 * with the minimal delta possible. 3574 */ 3575 if (delta >= 0) { 3576 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3577 delta ? delta : 1); 3578 } 3579 } else { 3580 tcp_closei_local(tcp); 3581 CONN_DEC_REF(tcp->tcp_connp); 3582 } 3583 finish: 3584 /* Signal closing thread that it can complete close */ 3585 mutex_enter(&tcp->tcp_closelock); 3586 tcp->tcp_detached = B_TRUE; 3587 ASSERT(tcps->tcps_g_q != NULL); 3588 3589 tcp->tcp_rq = tcps->tcps_g_q; 3590 tcp->tcp_wq = WR(tcps->tcps_g_q); 3591 3592 tcp->tcp_closed = 1; 3593 cv_signal(&tcp->tcp_closecv); 3594 mutex_exit(&tcp->tcp_closelock); 3595 } 3596 3597 /* 3598 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3599 * expires. 3600 */ 3601 static void 3602 tcp_close_linger_timeout(void *arg) 3603 { 3604 conn_t *connp = (conn_t *)arg; 3605 tcp_t *tcp = connp->conn_tcp; 3606 3607 tcp->tcp_client_errno = ETIMEDOUT; 3608 tcp_stop_lingering(tcp); 3609 } 3610 3611 static void 3612 tcp_close_common(conn_t *connp, int flags) 3613 { 3614 tcp_t *tcp = connp->conn_tcp; 3615 mblk_t *mp = &tcp->tcp_closemp; 3616 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3617 mblk_t *bp; 3618 3619 ASSERT(connp->conn_ref >= 2); 3620 3621 /* 3622 * Mark the conn as closing. ill_pending_mp_add will not 3623 * add any mp to the pending mp list, after this conn has 3624 * started closing. Same for sq_pending_mp_add 3625 */ 3626 mutex_enter(&connp->conn_lock); 3627 connp->conn_state_flags |= CONN_CLOSING; 3628 if (connp->conn_oper_pending_ill != NULL) 3629 conn_ioctl_cleanup_reqd = B_TRUE; 3630 CONN_INC_REF_LOCKED(connp); 3631 mutex_exit(&connp->conn_lock); 3632 tcp->tcp_closeflags = (uint8_t)flags; 3633 ASSERT(connp->conn_ref >= 3); 3634 3635 /* 3636 * tcp_closemp_used is used below without any protection of a lock 3637 * as we don't expect any one else to use it concurrently at this 3638 * point otherwise it would be a major defect. 3639 */ 3640 3641 if (mp->b_prev == NULL) 3642 tcp->tcp_closemp_used = B_TRUE; 3643 else 3644 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3645 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3646 3647 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3648 3649 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3650 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3651 3652 mutex_enter(&tcp->tcp_closelock); 3653 while (!tcp->tcp_closed) { 3654 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3655 /* 3656 * The cv_wait_sig() was interrupted. We now do the 3657 * following: 3658 * 3659 * 1) If the endpoint was lingering, we allow this 3660 * to be interrupted by cancelling the linger timeout 3661 * and closing normally. 3662 * 3663 * 2) Revert to calling cv_wait() 3664 * 3665 * We revert to using cv_wait() to avoid an 3666 * infinite loop which can occur if the calling 3667 * thread is higher priority than the squeue worker 3668 * thread and is bound to the same cpu. 3669 */ 3670 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3671 mutex_exit(&tcp->tcp_closelock); 3672 /* Entering squeue, bump ref count. */ 3673 CONN_INC_REF(connp); 3674 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3675 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3676 tcp_linger_interrupted, connp, 3677 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3678 mutex_enter(&tcp->tcp_closelock); 3679 } 3680 break; 3681 } 3682 } 3683 while (!tcp->tcp_closed) 3684 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3685 mutex_exit(&tcp->tcp_closelock); 3686 3687 /* 3688 * In the case of listener streams that have eagers in the q or q0 3689 * we wait for the eagers to drop their reference to us. tcp_rq and 3690 * tcp_wq of the eagers point to our queues. By waiting for the 3691 * refcnt to drop to 1, we are sure that the eagers have cleaned 3692 * up their queue pointers and also dropped their references to us. 3693 */ 3694 if (tcp->tcp_wait_for_eagers) { 3695 mutex_enter(&connp->conn_lock); 3696 while (connp->conn_ref != 1) { 3697 cv_wait(&connp->conn_cv, &connp->conn_lock); 3698 } 3699 mutex_exit(&connp->conn_lock); 3700 } 3701 /* 3702 * ioctl cleanup. The mp is queued in the 3703 * ill_pending_mp or in the sq_pending_mp. 3704 */ 3705 if (conn_ioctl_cleanup_reqd) 3706 conn_ioctl_cleanup(connp); 3707 3708 tcp->tcp_cpid = -1; 3709 } 3710 3711 static int 3712 tcp_tpi_close(queue_t *q, int flags) 3713 { 3714 conn_t *connp; 3715 3716 ASSERT(WR(q)->q_next == NULL); 3717 3718 if (flags & SO_FALLBACK) { 3719 /* 3720 * stream is being closed while in fallback 3721 * simply free the resources that were allocated 3722 */ 3723 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3724 qprocsoff(q); 3725 goto done; 3726 } 3727 3728 connp = Q_TO_CONN(q); 3729 /* 3730 * We are being closed as /dev/tcp or /dev/tcp6. 3731 */ 3732 tcp_close_common(connp, flags); 3733 3734 qprocsoff(q); 3735 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3736 3737 /* 3738 * Drop IP's reference on the conn. This is the last reference 3739 * on the connp if the state was less than established. If the 3740 * connection has gone into timewait state, then we will have 3741 * one ref for the TCP and one more ref (total of two) for the 3742 * classifier connected hash list (a timewait connections stays 3743 * in connected hash till closed). 3744 * 3745 * We can't assert the references because there might be other 3746 * transient reference places because of some walkers or queued 3747 * packets in squeue for the timewait state. 3748 */ 3749 CONN_DEC_REF(connp); 3750 done: 3751 q->q_ptr = WR(q)->q_ptr = NULL; 3752 return (0); 3753 } 3754 3755 static int 3756 tcp_tpi_close_accept(queue_t *q) 3757 { 3758 vmem_t *minor_arena; 3759 dev_t conn_dev; 3760 3761 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3762 3763 /* 3764 * We had opened an acceptor STREAM for sockfs which is 3765 * now being closed due to some error. 3766 */ 3767 qprocsoff(q); 3768 3769 minor_arena = (vmem_t *)WR(q)->q_ptr; 3770 conn_dev = (dev_t)RD(q)->q_ptr; 3771 ASSERT(minor_arena != NULL); 3772 ASSERT(conn_dev != 0); 3773 inet_minor_free(minor_arena, conn_dev); 3774 q->q_ptr = WR(q)->q_ptr = NULL; 3775 return (0); 3776 } 3777 3778 /* 3779 * Called by tcp_close() routine via squeue when lingering is 3780 * interrupted by a signal. 3781 */ 3782 3783 /* ARGSUSED */ 3784 static void 3785 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3786 { 3787 conn_t *connp = (conn_t *)arg; 3788 tcp_t *tcp = connp->conn_tcp; 3789 3790 freeb(mp); 3791 if (tcp->tcp_linger_tid != 0 && 3792 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3793 tcp_stop_lingering(tcp); 3794 tcp->tcp_client_errno = EINTR; 3795 } 3796 } 3797 3798 /* 3799 * Called by streams close routine via squeues when our client blows off her 3800 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3801 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3802 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3803 * acked. 3804 * 3805 * NOTE: tcp_close potentially returns error when lingering. 3806 * However, the stream head currently does not pass these errors 3807 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3808 * errors to the application (from tsleep()) and not errors 3809 * like ECONNRESET caused by receiving a reset packet. 3810 */ 3811 3812 /* ARGSUSED */ 3813 static void 3814 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3815 { 3816 char *msg; 3817 conn_t *connp = (conn_t *)arg; 3818 tcp_t *tcp = connp->conn_tcp; 3819 clock_t delta = 0; 3820 tcp_stack_t *tcps = tcp->tcp_tcps; 3821 3822 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3823 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3824 3825 mutex_enter(&tcp->tcp_eager_lock); 3826 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3827 /* Cleanup for listener */ 3828 tcp_eager_cleanup(tcp, 0); 3829 tcp->tcp_wait_for_eagers = 1; 3830 } 3831 mutex_exit(&tcp->tcp_eager_lock); 3832 3833 connp->conn_mdt_ok = B_FALSE; 3834 tcp->tcp_mdt = B_FALSE; 3835 3836 connp->conn_lso_ok = B_FALSE; 3837 tcp->tcp_lso = B_FALSE; 3838 3839 msg = NULL; 3840 switch (tcp->tcp_state) { 3841 case TCPS_CLOSED: 3842 case TCPS_IDLE: 3843 case TCPS_BOUND: 3844 case TCPS_LISTEN: 3845 break; 3846 case TCPS_SYN_SENT: 3847 msg = "tcp_close, during connect"; 3848 break; 3849 case TCPS_SYN_RCVD: 3850 /* 3851 * Close during the connect 3-way handshake 3852 * but here there may or may not be pending data 3853 * already on queue. Process almost same as in 3854 * the ESTABLISHED state. 3855 */ 3856 /* FALLTHRU */ 3857 default: 3858 if (tcp->tcp_fused) 3859 tcp_unfuse(tcp); 3860 3861 /* 3862 * If SO_LINGER has set a zero linger time, abort the 3863 * connection with a reset. 3864 */ 3865 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3866 msg = "tcp_close, zero lingertime"; 3867 break; 3868 } 3869 3870 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3871 /* 3872 * Abort connection if there is unread data queued. 3873 */ 3874 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3875 msg = "tcp_close, unread data"; 3876 break; 3877 } 3878 /* 3879 * tcp_hard_bound is now cleared thus all packets go through 3880 * tcp_lookup. This fact is used by tcp_detach below. 3881 * 3882 * We have done a qwait() above which could have possibly 3883 * drained more messages in turn causing transition to a 3884 * different state. Check whether we have to do the rest 3885 * of the processing or not. 3886 */ 3887 if (tcp->tcp_state <= TCPS_LISTEN) 3888 break; 3889 3890 /* 3891 * Transmit the FIN before detaching the tcp_t. 3892 * After tcp_detach returns this queue/perimeter 3893 * no longer owns the tcp_t thus others can modify it. 3894 */ 3895 (void) tcp_xmit_end(tcp); 3896 3897 /* 3898 * If lingering on close then wait until the fin is acked, 3899 * the SO_LINGER time passes, or a reset is sent/received. 3900 */ 3901 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3902 !(tcp->tcp_fin_acked) && 3903 tcp->tcp_state >= TCPS_ESTABLISHED) { 3904 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3905 tcp->tcp_client_errno = EWOULDBLOCK; 3906 } else if (tcp->tcp_client_errno == 0) { 3907 3908 ASSERT(tcp->tcp_linger_tid == 0); 3909 3910 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3911 tcp_close_linger_timeout, 3912 tcp->tcp_lingertime * hz); 3913 3914 /* tcp_close_linger_timeout will finish close */ 3915 if (tcp->tcp_linger_tid == 0) 3916 tcp->tcp_client_errno = ENOSR; 3917 else 3918 return; 3919 } 3920 3921 /* 3922 * Check if we need to detach or just close 3923 * the instance. 3924 */ 3925 if (tcp->tcp_state <= TCPS_LISTEN) 3926 break; 3927 } 3928 3929 /* 3930 * Make sure that no other thread will access the tcp_rq of 3931 * this instance (through lookups etc.) as tcp_rq will go 3932 * away shortly. 3933 */ 3934 tcp_acceptor_hash_remove(tcp); 3935 3936 mutex_enter(&tcp->tcp_non_sq_lock); 3937 if (tcp->tcp_flow_stopped) { 3938 tcp_clrqfull(tcp); 3939 } 3940 mutex_exit(&tcp->tcp_non_sq_lock); 3941 3942 if (tcp->tcp_timer_tid != 0) { 3943 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3944 tcp->tcp_timer_tid = 0; 3945 } 3946 /* 3947 * Need to cancel those timers which will not be used when 3948 * TCP is detached. This has to be done before the tcp_wq 3949 * is set to the global queue. 3950 */ 3951 tcp_timers_stop(tcp); 3952 3953 tcp->tcp_detached = B_TRUE; 3954 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3955 tcp_time_wait_append(tcp); 3956 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3957 ASSERT(connp->conn_ref >= 3); 3958 goto finish; 3959 } 3960 3961 /* 3962 * If delta is zero the timer event wasn't executed and was 3963 * successfully canceled. In this case we need to restart it 3964 * with the minimal delta possible. 3965 */ 3966 if (delta >= 0) 3967 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3968 delta ? delta : 1); 3969 3970 ASSERT(connp->conn_ref >= 3); 3971 goto finish; 3972 } 3973 3974 /* Detach did not complete. Still need to remove q from stream. */ 3975 if (msg) { 3976 if (tcp->tcp_state == TCPS_ESTABLISHED || 3977 tcp->tcp_state == TCPS_CLOSE_WAIT) 3978 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3979 if (tcp->tcp_state == TCPS_SYN_SENT || 3980 tcp->tcp_state == TCPS_SYN_RCVD) 3981 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3982 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3983 } 3984 3985 tcp_closei_local(tcp); 3986 CONN_DEC_REF(connp); 3987 ASSERT(connp->conn_ref >= 2); 3988 3989 finish: 3990 /* 3991 * Although packets are always processed on the correct 3992 * tcp's perimeter and access is serialized via squeue's, 3993 * IP still needs a queue when sending packets in time_wait 3994 * state so use WR(tcps_g_q) till ip_output() can be 3995 * changed to deal with just connp. For read side, we 3996 * could have set tcp_rq to NULL but there are some cases 3997 * in tcp_rput_data() from early days of this code which 3998 * do a putnext without checking if tcp is closed. Those 3999 * need to be identified before both tcp_rq and tcp_wq 4000 * can be set to NULL and tcps_g_q can disappear forever. 4001 */ 4002 mutex_enter(&tcp->tcp_closelock); 4003 /* 4004 * Don't change the queues in the case of a listener that has 4005 * eagers in its q or q0. It could surprise the eagers. 4006 * Instead wait for the eagers outside the squeue. 4007 */ 4008 if (!tcp->tcp_wait_for_eagers) { 4009 tcp->tcp_detached = B_TRUE; 4010 /* 4011 * When default queue is closing we set tcps_g_q to NULL 4012 * after the close is done. 4013 */ 4014 ASSERT(tcps->tcps_g_q != NULL); 4015 tcp->tcp_rq = tcps->tcps_g_q; 4016 tcp->tcp_wq = WR(tcps->tcps_g_q); 4017 } 4018 4019 /* Signal tcp_close() to finish closing. */ 4020 tcp->tcp_closed = 1; 4021 cv_signal(&tcp->tcp_closecv); 4022 mutex_exit(&tcp->tcp_closelock); 4023 } 4024 4025 /* 4026 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4027 * Some stream heads get upset if they see these later on as anything but NULL. 4028 */ 4029 static void 4030 tcp_close_mpp(mblk_t **mpp) 4031 { 4032 mblk_t *mp; 4033 4034 if ((mp = *mpp) != NULL) { 4035 do { 4036 mp->b_next = NULL; 4037 mp->b_prev = NULL; 4038 } while ((mp = mp->b_cont) != NULL); 4039 4040 mp = *mpp; 4041 *mpp = NULL; 4042 freemsg(mp); 4043 } 4044 } 4045 4046 /* Do detached close. */ 4047 static void 4048 tcp_close_detached(tcp_t *tcp) 4049 { 4050 if (tcp->tcp_fused) 4051 tcp_unfuse(tcp); 4052 4053 /* 4054 * Clustering code serializes TCP disconnect callbacks and 4055 * cluster tcp list walks by blocking a TCP disconnect callback 4056 * if a cluster tcp list walk is in progress. This ensures 4057 * accurate accounting of TCPs in the cluster code even though 4058 * the TCP list walk itself is not atomic. 4059 */ 4060 tcp_closei_local(tcp); 4061 CONN_DEC_REF(tcp->tcp_connp); 4062 } 4063 4064 /* 4065 * Stop all TCP timers, and free the timer mblks if requested. 4066 */ 4067 void 4068 tcp_timers_stop(tcp_t *tcp) 4069 { 4070 if (tcp->tcp_timer_tid != 0) { 4071 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4072 tcp->tcp_timer_tid = 0; 4073 } 4074 if (tcp->tcp_ka_tid != 0) { 4075 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4076 tcp->tcp_ka_tid = 0; 4077 } 4078 if (tcp->tcp_ack_tid != 0) { 4079 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4080 tcp->tcp_ack_tid = 0; 4081 } 4082 if (tcp->tcp_push_tid != 0) { 4083 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4084 tcp->tcp_push_tid = 0; 4085 } 4086 } 4087 4088 /* 4089 * The tcp_t is going away. Remove it from all lists and set it 4090 * to TCPS_CLOSED. The freeing up of memory is deferred until 4091 * tcp_inactive. This is needed since a thread in tcp_rput might have 4092 * done a CONN_INC_REF on this structure before it was removed from the 4093 * hashes. 4094 */ 4095 static void 4096 tcp_closei_local(tcp_t *tcp) 4097 { 4098 ire_t *ire; 4099 conn_t *connp = tcp->tcp_connp; 4100 tcp_stack_t *tcps = tcp->tcp_tcps; 4101 4102 if (!TCP_IS_SOCKET(tcp)) 4103 tcp_acceptor_hash_remove(tcp); 4104 4105 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4106 tcp->tcp_ibsegs = 0; 4107 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4108 tcp->tcp_obsegs = 0; 4109 4110 /* 4111 * If we are an eager connection hanging off a listener that 4112 * hasn't formally accepted the connection yet, get off his 4113 * list and blow off any data that we have accumulated. 4114 */ 4115 if (tcp->tcp_listener != NULL) { 4116 tcp_t *listener = tcp->tcp_listener; 4117 mutex_enter(&listener->tcp_eager_lock); 4118 /* 4119 * tcp_tconnind_started == B_TRUE means that the 4120 * conn_ind has already gone to listener. At 4121 * this point, eager will be closed but we 4122 * leave it in listeners eager list so that 4123 * if listener decides to close without doing 4124 * accept, we can clean this up. In tcp_wput_accept 4125 * we take care of the case of accept on closed 4126 * eager. 4127 */ 4128 if (!tcp->tcp_tconnind_started) { 4129 tcp_eager_unlink(tcp); 4130 mutex_exit(&listener->tcp_eager_lock); 4131 /* 4132 * We don't want to have any pointers to the 4133 * listener queue, after we have released our 4134 * reference on the listener 4135 */ 4136 ASSERT(tcps->tcps_g_q != NULL); 4137 tcp->tcp_rq = tcps->tcps_g_q; 4138 tcp->tcp_wq = WR(tcps->tcps_g_q); 4139 CONN_DEC_REF(listener->tcp_connp); 4140 } else { 4141 mutex_exit(&listener->tcp_eager_lock); 4142 } 4143 } 4144 4145 /* Stop all the timers */ 4146 tcp_timers_stop(tcp); 4147 4148 if (tcp->tcp_state == TCPS_LISTEN) { 4149 if (tcp->tcp_ip_addr_cache) { 4150 kmem_free((void *)tcp->tcp_ip_addr_cache, 4151 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4152 tcp->tcp_ip_addr_cache = NULL; 4153 } 4154 } 4155 mutex_enter(&tcp->tcp_non_sq_lock); 4156 if (tcp->tcp_flow_stopped) 4157 tcp_clrqfull(tcp); 4158 mutex_exit(&tcp->tcp_non_sq_lock); 4159 4160 tcp_bind_hash_remove(tcp); 4161 /* 4162 * If the tcp_time_wait_collector (which runs outside the squeue) 4163 * is trying to remove this tcp from the time wait list, we will 4164 * block in tcp_time_wait_remove while trying to acquire the 4165 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4166 * requires the ipcl_hash_remove to be ordered after the 4167 * tcp_time_wait_remove for the refcnt checks to work correctly. 4168 */ 4169 if (tcp->tcp_state == TCPS_TIME_WAIT) 4170 (void) tcp_time_wait_remove(tcp, NULL); 4171 CL_INET_DISCONNECT(connp, tcp); 4172 ipcl_hash_remove(connp); 4173 4174 /* 4175 * Delete the cached ire in conn_ire_cache and also mark 4176 * the conn as CONDEMNED 4177 */ 4178 mutex_enter(&connp->conn_lock); 4179 connp->conn_state_flags |= CONN_CONDEMNED; 4180 ire = connp->conn_ire_cache; 4181 connp->conn_ire_cache = NULL; 4182 mutex_exit(&connp->conn_lock); 4183 if (ire != NULL) 4184 IRE_REFRELE_NOTR(ire); 4185 4186 /* Need to cleanup any pending ioctls */ 4187 ASSERT(tcp->tcp_time_wait_next == NULL); 4188 ASSERT(tcp->tcp_time_wait_prev == NULL); 4189 ASSERT(tcp->tcp_time_wait_expire == 0); 4190 tcp->tcp_state = TCPS_CLOSED; 4191 4192 /* Release any SSL context */ 4193 if (tcp->tcp_kssl_ent != NULL) { 4194 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4195 tcp->tcp_kssl_ent = NULL; 4196 } 4197 if (tcp->tcp_kssl_ctx != NULL) { 4198 kssl_release_ctx(tcp->tcp_kssl_ctx); 4199 tcp->tcp_kssl_ctx = NULL; 4200 } 4201 tcp->tcp_kssl_pending = B_FALSE; 4202 4203 tcp_ipsec_cleanup(tcp); 4204 } 4205 4206 /* 4207 * tcp is dying (called from ipcl_conn_destroy and error cases). 4208 * Free the tcp_t in either case. 4209 */ 4210 void 4211 tcp_free(tcp_t *tcp) 4212 { 4213 mblk_t *mp; 4214 ip6_pkt_t *ipp; 4215 4216 ASSERT(tcp != NULL); 4217 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4218 4219 tcp->tcp_rq = NULL; 4220 tcp->tcp_wq = NULL; 4221 4222 tcp_close_mpp(&tcp->tcp_xmit_head); 4223 tcp_close_mpp(&tcp->tcp_reass_head); 4224 if (tcp->tcp_rcv_list != NULL) { 4225 /* Free b_next chain */ 4226 tcp_close_mpp(&tcp->tcp_rcv_list); 4227 } 4228 if ((mp = tcp->tcp_urp_mp) != NULL) { 4229 freemsg(mp); 4230 } 4231 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4232 freemsg(mp); 4233 } 4234 4235 if (tcp->tcp_fused_sigurg_mp != NULL) { 4236 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4237 freeb(tcp->tcp_fused_sigurg_mp); 4238 tcp->tcp_fused_sigurg_mp = NULL; 4239 } 4240 4241 if (tcp->tcp_ordrel_mp != NULL) { 4242 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4243 freeb(tcp->tcp_ordrel_mp); 4244 tcp->tcp_ordrel_mp = NULL; 4245 } 4246 4247 if (tcp->tcp_sack_info != NULL) { 4248 if (tcp->tcp_notsack_list != NULL) { 4249 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 4250 tcp); 4251 } 4252 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4253 } 4254 4255 if (tcp->tcp_hopopts != NULL) { 4256 mi_free(tcp->tcp_hopopts); 4257 tcp->tcp_hopopts = NULL; 4258 tcp->tcp_hopoptslen = 0; 4259 } 4260 ASSERT(tcp->tcp_hopoptslen == 0); 4261 if (tcp->tcp_dstopts != NULL) { 4262 mi_free(tcp->tcp_dstopts); 4263 tcp->tcp_dstopts = NULL; 4264 tcp->tcp_dstoptslen = 0; 4265 } 4266 ASSERT(tcp->tcp_dstoptslen == 0); 4267 if (tcp->tcp_rtdstopts != NULL) { 4268 mi_free(tcp->tcp_rtdstopts); 4269 tcp->tcp_rtdstopts = NULL; 4270 tcp->tcp_rtdstoptslen = 0; 4271 } 4272 ASSERT(tcp->tcp_rtdstoptslen == 0); 4273 if (tcp->tcp_rthdr != NULL) { 4274 mi_free(tcp->tcp_rthdr); 4275 tcp->tcp_rthdr = NULL; 4276 tcp->tcp_rthdrlen = 0; 4277 } 4278 ASSERT(tcp->tcp_rthdrlen == 0); 4279 4280 ipp = &tcp->tcp_sticky_ipp; 4281 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4282 IPPF_RTHDR)) 4283 ip6_pkt_free(ipp); 4284 4285 /* 4286 * Free memory associated with the tcp/ip header template. 4287 */ 4288 4289 if (tcp->tcp_iphc != NULL) 4290 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4291 4292 /* 4293 * Following is really a blowing away a union. 4294 * It happens to have exactly two members of identical size 4295 * the following code is enough. 4296 */ 4297 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4298 } 4299 4300 4301 /* 4302 * Put a connection confirmation message upstream built from the 4303 * address information within 'iph' and 'tcph'. Report our success or failure. 4304 */ 4305 static boolean_t 4306 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4307 mblk_t **defermp) 4308 { 4309 sin_t sin; 4310 sin6_t sin6; 4311 mblk_t *mp; 4312 char *optp = NULL; 4313 int optlen = 0; 4314 4315 if (defermp != NULL) 4316 *defermp = NULL; 4317 4318 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4319 /* 4320 * Return in T_CONN_CON results of option negotiation through 4321 * the T_CONN_REQ. Note: If there is an real end-to-end option 4322 * negotiation, then what is received from remote end needs 4323 * to be taken into account but there is no such thing (yet?) 4324 * in our TCP/IP. 4325 * Note: We do not use mi_offset_param() here as 4326 * tcp_opts_conn_req contents do not directly come from 4327 * an application and are either generated in kernel or 4328 * from user input that was already verified. 4329 */ 4330 mp = tcp->tcp_conn.tcp_opts_conn_req; 4331 optp = (char *)(mp->b_rptr + 4332 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4333 optlen = (int) 4334 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4335 } 4336 4337 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4338 ipha_t *ipha = (ipha_t *)iphdr; 4339 4340 /* packet is IPv4 */ 4341 if (tcp->tcp_family == AF_INET) { 4342 sin = sin_null; 4343 sin.sin_addr.s_addr = ipha->ipha_src; 4344 sin.sin_port = *(uint16_t *)tcph->th_lport; 4345 sin.sin_family = AF_INET; 4346 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4347 (int)sizeof (sin_t), optp, optlen); 4348 } else { 4349 sin6 = sin6_null; 4350 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4351 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4352 sin6.sin6_family = AF_INET6; 4353 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4354 (int)sizeof (sin6_t), optp, optlen); 4355 4356 } 4357 } else { 4358 ip6_t *ip6h = (ip6_t *)iphdr; 4359 4360 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4361 ASSERT(tcp->tcp_family == AF_INET6); 4362 sin6 = sin6_null; 4363 sin6.sin6_addr = ip6h->ip6_src; 4364 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4365 sin6.sin6_family = AF_INET6; 4366 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4367 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4368 (int)sizeof (sin6_t), optp, optlen); 4369 } 4370 4371 if (!mp) 4372 return (B_FALSE); 4373 4374 mblk_copycred(mp, idmp); 4375 4376 if (defermp == NULL) { 4377 conn_t *connp = tcp->tcp_connp; 4378 if (IPCL_IS_NONSTR(connp)) { 4379 cred_t *cr; 4380 pid_t cpid; 4381 4382 cr = msg_getcred(mp, &cpid); 4383 (*connp->conn_upcalls->su_connected) 4384 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4385 cpid); 4386 freemsg(mp); 4387 } else { 4388 putnext(tcp->tcp_rq, mp); 4389 } 4390 } else { 4391 *defermp = mp; 4392 } 4393 4394 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4395 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4396 return (B_TRUE); 4397 } 4398 4399 /* 4400 * Defense for the SYN attack - 4401 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4402 * one from the list of droppable eagers. This list is a subset of q0. 4403 * see comments before the definition of MAKE_DROPPABLE(). 4404 * 2. Don't drop a SYN request before its first timeout. This gives every 4405 * request at least til the first timeout to complete its 3-way handshake. 4406 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4407 * requests currently on the queue that has timed out. This will be used 4408 * as an indicator of whether an attack is under way, so that appropriate 4409 * actions can be taken. (It's incremented in tcp_timer() and decremented 4410 * either when eager goes into ESTABLISHED, or gets freed up.) 4411 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4412 * # of timeout drops back to <= q0len/32 => SYN alert off 4413 */ 4414 static boolean_t 4415 tcp_drop_q0(tcp_t *tcp) 4416 { 4417 tcp_t *eager; 4418 mblk_t *mp; 4419 tcp_stack_t *tcps = tcp->tcp_tcps; 4420 4421 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4422 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4423 4424 /* Pick oldest eager from the list of droppable eagers */ 4425 eager = tcp->tcp_eager_prev_drop_q0; 4426 4427 /* If list is empty. return B_FALSE */ 4428 if (eager == tcp) { 4429 return (B_FALSE); 4430 } 4431 4432 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4433 if ((mp = allocb(0, BPRI_HI)) == NULL) 4434 return (B_FALSE); 4435 4436 /* 4437 * Take this eager out from the list of droppable eagers since we are 4438 * going to drop it. 4439 */ 4440 MAKE_UNDROPPABLE(eager); 4441 4442 if (tcp->tcp_debug) { 4443 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4444 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4445 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4446 tcp->tcp_conn_req_cnt_q0, 4447 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4448 } 4449 4450 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4451 4452 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4453 CONN_INC_REF(eager->tcp_connp); 4454 4455 /* Mark the IRE created for this SYN request temporary */ 4456 tcp_ip_ire_mark_advice(eager); 4457 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4458 tcp_clean_death_wrapper, eager->tcp_connp, 4459 SQ_FILL, SQTAG_TCP_DROP_Q0); 4460 4461 return (B_TRUE); 4462 } 4463 4464 int 4465 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4466 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4467 { 4468 tcp_t *ltcp = lconnp->conn_tcp; 4469 tcp_t *tcp = connp->conn_tcp; 4470 mblk_t *tpi_mp; 4471 ipha_t *ipha; 4472 ip6_t *ip6h; 4473 sin6_t sin6; 4474 in6_addr_t v6dst; 4475 int err; 4476 int ifindex = 0; 4477 tcp_stack_t *tcps = tcp->tcp_tcps; 4478 4479 if (ipvers == IPV4_VERSION) { 4480 ipha = (ipha_t *)mp->b_rptr; 4481 4482 connp->conn_send = ip_output; 4483 connp->conn_recv = tcp_input; 4484 4485 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4486 &connp->conn_bound_source_v6); 4487 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4488 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4489 4490 sin6 = sin6_null; 4491 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4492 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4493 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4494 sin6.sin6_family = AF_INET6; 4495 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4496 lconnp->conn_zoneid, tcps->tcps_netstack); 4497 if (tcp->tcp_recvdstaddr) { 4498 sin6_t sin6d; 4499 4500 sin6d = sin6_null; 4501 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4502 &sin6d.sin6_addr); 4503 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4504 sin6d.sin6_family = AF_INET; 4505 tpi_mp = mi_tpi_extconn_ind(NULL, 4506 (char *)&sin6d, sizeof (sin6_t), 4507 (char *)&tcp, 4508 (t_scalar_t)sizeof (intptr_t), 4509 (char *)&sin6d, sizeof (sin6_t), 4510 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4511 } else { 4512 tpi_mp = mi_tpi_conn_ind(NULL, 4513 (char *)&sin6, sizeof (sin6_t), 4514 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4515 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4516 } 4517 } else { 4518 ip6h = (ip6_t *)mp->b_rptr; 4519 4520 connp->conn_send = ip_output_v6; 4521 connp->conn_recv = tcp_input; 4522 4523 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4524 connp->conn_srcv6 = ip6h->ip6_dst; 4525 connp->conn_remv6 = ip6h->ip6_src; 4526 4527 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4528 ifindex = (int)DB_CKSUMSTUFF(mp); 4529 DB_CKSUMSTUFF(mp) = 0; 4530 4531 sin6 = sin6_null; 4532 sin6.sin6_addr = ip6h->ip6_src; 4533 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4534 sin6.sin6_family = AF_INET6; 4535 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4536 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4537 lconnp->conn_zoneid, tcps->tcps_netstack); 4538 4539 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4540 /* Pass up the scope_id of remote addr */ 4541 sin6.sin6_scope_id = ifindex; 4542 } else { 4543 sin6.sin6_scope_id = 0; 4544 } 4545 if (tcp->tcp_recvdstaddr) { 4546 sin6_t sin6d; 4547 4548 sin6d = sin6_null; 4549 sin6.sin6_addr = ip6h->ip6_dst; 4550 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4551 sin6d.sin6_family = AF_INET; 4552 tpi_mp = mi_tpi_extconn_ind(NULL, 4553 (char *)&sin6d, sizeof (sin6_t), 4554 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4555 (char *)&sin6d, sizeof (sin6_t), 4556 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4557 } else { 4558 tpi_mp = mi_tpi_conn_ind(NULL, 4559 (char *)&sin6, sizeof (sin6_t), 4560 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4561 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4562 } 4563 } 4564 4565 if (tpi_mp == NULL) 4566 return (ENOMEM); 4567 4568 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4569 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4570 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4571 connp->conn_fully_bound = B_FALSE; 4572 4573 /* Inherit information from the "parent" */ 4574 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4575 tcp->tcp_family = ltcp->tcp_family; 4576 4577 tcp->tcp_wq = ltcp->tcp_wq; 4578 tcp->tcp_rq = ltcp->tcp_rq; 4579 4580 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4581 tcp->tcp_detached = B_TRUE; 4582 SOCK_CONNID_INIT(tcp->tcp_connid); 4583 if ((err = tcp_init_values(tcp)) != 0) { 4584 freemsg(tpi_mp); 4585 return (err); 4586 } 4587 4588 if (ipvers == IPV4_VERSION) { 4589 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4590 freemsg(tpi_mp); 4591 return (err); 4592 } 4593 ASSERT(tcp->tcp_ipha != NULL); 4594 } else { 4595 /* ifindex must be already set */ 4596 ASSERT(ifindex != 0); 4597 4598 if (ltcp->tcp_bound_if != 0) 4599 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4600 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4601 tcp->tcp_bound_if = ifindex; 4602 4603 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4604 tcp->tcp_recvifindex = 0; 4605 tcp->tcp_recvhops = 0xffffffffU; 4606 ASSERT(tcp->tcp_ip6h != NULL); 4607 } 4608 4609 tcp->tcp_lport = ltcp->tcp_lport; 4610 4611 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4612 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4613 /* 4614 * Listener had options of some sort; eager inherits. 4615 * Free up the eager template and allocate one 4616 * of the right size. 4617 */ 4618 if (tcp->tcp_hdr_grown) { 4619 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4620 } else { 4621 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4622 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4623 } 4624 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4625 KM_NOSLEEP); 4626 if (tcp->tcp_iphc == NULL) { 4627 tcp->tcp_iphc_len = 0; 4628 freemsg(tpi_mp); 4629 return (ENOMEM); 4630 } 4631 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4632 tcp->tcp_hdr_grown = B_TRUE; 4633 } 4634 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4635 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4636 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4637 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4638 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4639 4640 /* 4641 * Copy the IP+TCP header template from listener to eager 4642 */ 4643 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4644 if (tcp->tcp_ipversion == IPV6_VERSION) { 4645 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4646 IPPROTO_RAW) { 4647 tcp->tcp_ip6h = 4648 (ip6_t *)(tcp->tcp_iphc + 4649 sizeof (ip6i_t)); 4650 } else { 4651 tcp->tcp_ip6h = 4652 (ip6_t *)(tcp->tcp_iphc); 4653 } 4654 tcp->tcp_ipha = NULL; 4655 } else { 4656 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4657 tcp->tcp_ip6h = NULL; 4658 } 4659 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4660 tcp->tcp_ip_hdr_len); 4661 } else { 4662 /* 4663 * only valid case when ipversion of listener and 4664 * eager differ is when listener is IPv6 and 4665 * eager is IPv4. 4666 * Eager header template has been initialized to the 4667 * maximum v4 header sizes, which includes space for 4668 * TCP and IP options. 4669 */ 4670 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4671 (tcp->tcp_ipversion == IPV4_VERSION)); 4672 ASSERT(tcp->tcp_iphc_len >= 4673 TCP_MAX_COMBINED_HEADER_LENGTH); 4674 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4675 /* copy IP header fields individually */ 4676 tcp->tcp_ipha->ipha_ttl = 4677 ltcp->tcp_ip6h->ip6_hops; 4678 bcopy(ltcp->tcp_tcph->th_lport, 4679 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4680 } 4681 4682 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4683 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4684 sizeof (in_port_t)); 4685 4686 if (ltcp->tcp_lport == 0) { 4687 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4688 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4689 sizeof (in_port_t)); 4690 } 4691 4692 if (tcp->tcp_ipversion == IPV4_VERSION) { 4693 ASSERT(ipha != NULL); 4694 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4695 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4696 4697 /* Source routing option copyover (reverse it) */ 4698 if (tcps->tcps_rev_src_routes) 4699 tcp_opt_reverse(tcp, ipha); 4700 } else { 4701 ASSERT(ip6h != NULL); 4702 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4703 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4704 } 4705 4706 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4707 ASSERT(!tcp->tcp_tconnind_started); 4708 /* 4709 * If the SYN contains a credential, it's a loopback packet; attach 4710 * the credential to the TPI message. 4711 */ 4712 mblk_copycred(tpi_mp, idmp); 4713 4714 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4715 4716 /* Inherit the listener's SSL protection state */ 4717 4718 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4719 kssl_hold_ent(tcp->tcp_kssl_ent); 4720 tcp->tcp_kssl_pending = B_TRUE; 4721 } 4722 4723 /* Inherit the listener's non-STREAMS flag */ 4724 if (IPCL_IS_NONSTR(lconnp)) { 4725 connp->conn_flags |= IPCL_NONSTR; 4726 } 4727 4728 return (0); 4729 } 4730 4731 4732 int 4733 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4734 tcph_t *tcph, mblk_t *idmp) 4735 { 4736 tcp_t *ltcp = lconnp->conn_tcp; 4737 tcp_t *tcp = connp->conn_tcp; 4738 sin_t sin; 4739 mblk_t *tpi_mp = NULL; 4740 int err; 4741 tcp_stack_t *tcps = tcp->tcp_tcps; 4742 4743 sin = sin_null; 4744 sin.sin_addr.s_addr = ipha->ipha_src; 4745 sin.sin_port = *(uint16_t *)tcph->th_lport; 4746 sin.sin_family = AF_INET; 4747 if (ltcp->tcp_recvdstaddr) { 4748 sin_t sind; 4749 4750 sind = sin_null; 4751 sind.sin_addr.s_addr = ipha->ipha_dst; 4752 sind.sin_port = *(uint16_t *)tcph->th_fport; 4753 sind.sin_family = AF_INET; 4754 tpi_mp = mi_tpi_extconn_ind(NULL, 4755 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4756 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4757 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4758 } else { 4759 tpi_mp = mi_tpi_conn_ind(NULL, 4760 (char *)&sin, sizeof (sin_t), 4761 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4762 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4763 } 4764 4765 if (tpi_mp == NULL) { 4766 return (ENOMEM); 4767 } 4768 4769 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4770 connp->conn_send = ip_output; 4771 connp->conn_recv = tcp_input; 4772 connp->conn_fully_bound = B_FALSE; 4773 4774 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4775 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4776 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4777 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4778 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4779 4780 /* Inherit information from the "parent" */ 4781 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4782 tcp->tcp_family = ltcp->tcp_family; 4783 tcp->tcp_wq = ltcp->tcp_wq; 4784 tcp->tcp_rq = ltcp->tcp_rq; 4785 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4786 tcp->tcp_detached = B_TRUE; 4787 SOCK_CONNID_INIT(tcp->tcp_connid); 4788 if ((err = tcp_init_values(tcp)) != 0) { 4789 freemsg(tpi_mp); 4790 return (err); 4791 } 4792 4793 /* 4794 * Let's make sure that eager tcp template has enough space to 4795 * copy IPv4 listener's tcp template. Since the conn_t structure is 4796 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4797 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4798 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4799 * extension headers or with ip6i_t struct). Note that bcopy() below 4800 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4801 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4802 */ 4803 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4804 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4805 4806 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4807 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4808 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4809 tcp->tcp_ttl = ltcp->tcp_ttl; 4810 tcp->tcp_tos = ltcp->tcp_tos; 4811 4812 /* Copy the IP+TCP header template from listener to eager */ 4813 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4814 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4815 tcp->tcp_ip6h = NULL; 4816 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4817 tcp->tcp_ip_hdr_len); 4818 4819 /* Initialize the IP addresses and Ports */ 4820 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4821 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4822 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4823 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4824 4825 /* Source routing option copyover (reverse it) */ 4826 if (tcps->tcps_rev_src_routes) 4827 tcp_opt_reverse(tcp, ipha); 4828 4829 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4830 ASSERT(!tcp->tcp_tconnind_started); 4831 4832 /* 4833 * If the SYN contains a credential, it's a loopback packet; attach 4834 * the credential to the TPI message. 4835 */ 4836 mblk_copycred(tpi_mp, idmp); 4837 4838 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4839 4840 /* Inherit the listener's SSL protection state */ 4841 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4842 kssl_hold_ent(tcp->tcp_kssl_ent); 4843 tcp->tcp_kssl_pending = B_TRUE; 4844 } 4845 4846 /* Inherit the listener's non-STREAMS flag */ 4847 if (IPCL_IS_NONSTR(lconnp)) { 4848 connp->conn_flags |= IPCL_NONSTR; 4849 } 4850 4851 return (0); 4852 } 4853 4854 /* 4855 * sets up conn for ipsec. 4856 * if the first mblk is M_CTL it is consumed and mpp is updated. 4857 * in case of error mpp is freed. 4858 */ 4859 conn_t * 4860 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4861 { 4862 conn_t *connp = tcp->tcp_connp; 4863 conn_t *econnp; 4864 squeue_t *new_sqp; 4865 mblk_t *first_mp = *mpp; 4866 mblk_t *mp = *mpp; 4867 boolean_t mctl_present = B_FALSE; 4868 uint_t ipvers; 4869 4870 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4871 if (econnp == NULL) { 4872 freemsg(first_mp); 4873 return (NULL); 4874 } 4875 if (DB_TYPE(mp) == M_CTL) { 4876 if (mp->b_cont == NULL || 4877 mp->b_cont->b_datap->db_type != M_DATA) { 4878 freemsg(first_mp); 4879 return (NULL); 4880 } 4881 mp = mp->b_cont; 4882 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4883 freemsg(first_mp); 4884 return (NULL); 4885 } 4886 4887 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4888 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4889 mctl_present = B_TRUE; 4890 } else { 4891 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4892 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4893 } 4894 4895 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4896 DB_CKSUMSTART(mp) = 0; 4897 4898 ASSERT(OK_32PTR(mp->b_rptr)); 4899 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4900 if (ipvers == IPV4_VERSION) { 4901 uint16_t *up; 4902 uint32_t ports; 4903 ipha_t *ipha; 4904 4905 ipha = (ipha_t *)mp->b_rptr; 4906 up = (uint16_t *)((uchar_t *)ipha + 4907 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4908 ports = *(uint32_t *)up; 4909 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4910 ipha->ipha_dst, ipha->ipha_src, ports); 4911 } else { 4912 uint16_t *up; 4913 uint32_t ports; 4914 uint16_t ip_hdr_len; 4915 uint8_t *nexthdrp; 4916 ip6_t *ip6h; 4917 tcph_t *tcph; 4918 4919 ip6h = (ip6_t *)mp->b_rptr; 4920 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4921 ip_hdr_len = IPV6_HDR_LEN; 4922 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4923 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4924 CONN_DEC_REF(econnp); 4925 freemsg(first_mp); 4926 return (NULL); 4927 } 4928 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4929 up = (uint16_t *)tcph->th_lport; 4930 ports = *(uint32_t *)up; 4931 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4932 ip6h->ip6_dst, ip6h->ip6_src, ports); 4933 } 4934 4935 /* 4936 * The caller already ensured that there is a sqp present. 4937 */ 4938 econnp->conn_sqp = new_sqp; 4939 econnp->conn_initial_sqp = new_sqp; 4940 4941 if (connp->conn_policy != NULL) { 4942 ipsec_in_t *ii; 4943 ii = (ipsec_in_t *)(first_mp->b_rptr); 4944 ASSERT(ii->ipsec_in_policy == NULL); 4945 IPPH_REFHOLD(connp->conn_policy); 4946 ii->ipsec_in_policy = connp->conn_policy; 4947 4948 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4949 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4950 CONN_DEC_REF(econnp); 4951 freemsg(first_mp); 4952 return (NULL); 4953 } 4954 } 4955 4956 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4957 CONN_DEC_REF(econnp); 4958 freemsg(first_mp); 4959 return (NULL); 4960 } 4961 4962 /* 4963 * If we know we have some policy, pass the "IPSEC" 4964 * options size TCP uses this adjust the MSS. 4965 */ 4966 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4967 if (mctl_present) { 4968 freeb(first_mp); 4969 *mpp = mp; 4970 } 4971 4972 return (econnp); 4973 } 4974 4975 /* 4976 * tcp_get_conn/tcp_free_conn 4977 * 4978 * tcp_get_conn is used to get a clean tcp connection structure. 4979 * It tries to reuse the connections put on the freelist by the 4980 * time_wait_collector failing which it goes to kmem_cache. This 4981 * way has two benefits compared to just allocating from and 4982 * freeing to kmem_cache. 4983 * 1) The time_wait_collector can free (which includes the cleanup) 4984 * outside the squeue. So when the interrupt comes, we have a clean 4985 * connection sitting in the freelist. Obviously, this buys us 4986 * performance. 4987 * 4988 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 4989 * has multiple disadvantages - tying up the squeue during alloc, and the 4990 * fact that IPSec policy initialization has to happen here which 4991 * requires us sending a M_CTL and checking for it i.e. real ugliness. 4992 * But allocating the conn/tcp in IP land is also not the best since 4993 * we can't check the 'q' and 'q0' which are protected by squeue and 4994 * blindly allocate memory which might have to be freed here if we are 4995 * not allowed to accept the connection. By using the freelist and 4996 * putting the conn/tcp back in freelist, we don't pay a penalty for 4997 * allocating memory without checking 'q/q0' and freeing it if we can't 4998 * accept the connection. 4999 * 5000 * Care should be taken to put the conn back in the same squeue's freelist 5001 * from which it was allocated. Best results are obtained if conn is 5002 * allocated from listener's squeue and freed to the same. Time wait 5003 * collector will free up the freelist is the connection ends up sitting 5004 * there for too long. 5005 */ 5006 void * 5007 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5008 { 5009 tcp_t *tcp = NULL; 5010 conn_t *connp = NULL; 5011 squeue_t *sqp = (squeue_t *)arg; 5012 tcp_squeue_priv_t *tcp_time_wait; 5013 netstack_t *ns; 5014 mblk_t *tcp_rsrv_mp = NULL; 5015 5016 tcp_time_wait = 5017 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5018 5019 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5020 tcp = tcp_time_wait->tcp_free_list; 5021 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5022 if (tcp != NULL) { 5023 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5024 tcp_time_wait->tcp_free_list_cnt--; 5025 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5026 tcp->tcp_time_wait_next = NULL; 5027 connp = tcp->tcp_connp; 5028 connp->conn_flags |= IPCL_REUSED; 5029 5030 ASSERT(tcp->tcp_tcps == NULL); 5031 ASSERT(connp->conn_netstack == NULL); 5032 ASSERT(tcp->tcp_rsrv_mp != NULL); 5033 ns = tcps->tcps_netstack; 5034 netstack_hold(ns); 5035 connp->conn_netstack = ns; 5036 tcp->tcp_tcps = tcps; 5037 TCPS_REFHOLD(tcps); 5038 ipcl_globalhash_insert(connp); 5039 return ((void *)connp); 5040 } 5041 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5042 /* 5043 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 5044 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5045 */ 5046 tcp_rsrv_mp = allocb(0, BPRI_HI); 5047 if (tcp_rsrv_mp == NULL) 5048 return (NULL); 5049 5050 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5051 tcps->tcps_netstack)) == NULL) { 5052 freeb(tcp_rsrv_mp); 5053 return (NULL); 5054 } 5055 5056 tcp = connp->conn_tcp; 5057 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 5058 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5059 5060 tcp->tcp_tcps = tcps; 5061 TCPS_REFHOLD(tcps); 5062 5063 return ((void *)connp); 5064 } 5065 5066 /* 5067 * Update the cached label for the given tcp_t. This should be called once per 5068 * connection, and before any packets are sent or tcp_process_options is 5069 * invoked. Returns B_FALSE if the correct label could not be constructed. 5070 */ 5071 static boolean_t 5072 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5073 { 5074 conn_t *connp = tcp->tcp_connp; 5075 5076 if (tcp->tcp_ipversion == IPV4_VERSION) { 5077 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5078 int added; 5079 5080 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5081 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5082 return (B_FALSE); 5083 5084 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5085 if (added == -1) 5086 return (B_FALSE); 5087 tcp->tcp_hdr_len += added; 5088 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5089 tcp->tcp_ip_hdr_len += added; 5090 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5091 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5092 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5093 tcp->tcp_hdr_len); 5094 if (added == -1) 5095 return (B_FALSE); 5096 tcp->tcp_hdr_len += added; 5097 tcp->tcp_tcph = (tcph_t *) 5098 ((uchar_t *)tcp->tcp_tcph + added); 5099 tcp->tcp_ip_hdr_len += added; 5100 } 5101 } else { 5102 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5103 5104 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5105 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5106 return (B_FALSE); 5107 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5108 &tcp->tcp_label_len, optbuf) != 0) 5109 return (B_FALSE); 5110 if (tcp_build_hdrs(tcp) != 0) 5111 return (B_FALSE); 5112 } 5113 5114 connp->conn_ulp_labeled = 1; 5115 5116 return (B_TRUE); 5117 } 5118 5119 /* BEGIN CSTYLED */ 5120 /* 5121 * 5122 * The sockfs ACCEPT path: 5123 * ======================= 5124 * 5125 * The eager is now established in its own perimeter as soon as SYN is 5126 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5127 * completes the accept processing on the acceptor STREAM. The sending 5128 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5129 * listener but a TLI/XTI listener completes the accept processing 5130 * on the listener perimeter. 5131 * 5132 * Common control flow for 3 way handshake: 5133 * ---------------------------------------- 5134 * 5135 * incoming SYN (listener perimeter) -> tcp_rput_data() 5136 * -> tcp_conn_request() 5137 * 5138 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5139 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5140 * 5141 * Sockfs ACCEPT Path: 5142 * ------------------- 5143 * 5144 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5145 * as STREAM entry point) 5146 * 5147 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5148 * 5149 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5150 * association (we are not behind eager's squeue but sockfs is protecting us 5151 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5152 * is changed to point at tcp_wput(). 5153 * 5154 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5155 * listener (done on listener's perimeter). 5156 * 5157 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5158 * accept. 5159 * 5160 * TLI/XTI client ACCEPT path: 5161 * --------------------------- 5162 * 5163 * soaccept() sends T_CONN_RES on the listener STREAM. 5164 * 5165 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5166 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5167 * 5168 * Locks: 5169 * ====== 5170 * 5171 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5172 * and listeners->tcp_eager_next_q. 5173 * 5174 * Referencing: 5175 * ============ 5176 * 5177 * 1) We start out in tcp_conn_request by eager placing a ref on 5178 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5179 * 5180 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5181 * doing so we place a ref on the eager. This ref is finally dropped at the 5182 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5183 * reference is dropped by the squeue framework. 5184 * 5185 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5186 * 5187 * The reference must be released by the same entity that added the reference 5188 * In the above scheme, the eager is the entity that adds and releases the 5189 * references. Note that tcp_accept_finish executes in the squeue of the eager 5190 * (albeit after it is attached to the acceptor stream). Though 1. executes 5191 * in the listener's squeue, the eager is nascent at this point and the 5192 * reference can be considered to have been added on behalf of the eager. 5193 * 5194 * Eager getting a Reset or listener closing: 5195 * ========================================== 5196 * 5197 * Once the listener and eager are linked, the listener never does the unlink. 5198 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5199 * a message on all eager perimeter. The eager then does the unlink, clears 5200 * any pointers to the listener's queue and drops the reference to the 5201 * listener. The listener waits in tcp_close outside the squeue until its 5202 * refcount has dropped to 1. This ensures that the listener has waited for 5203 * all eagers to clear their association with the listener. 5204 * 5205 * Similarly, if eager decides to go away, it can unlink itself and close. 5206 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5207 * the reference to eager is still valid because of the extra ref we put 5208 * in tcp_send_conn_ind. 5209 * 5210 * Listener can always locate the eager under the protection 5211 * of the listener->tcp_eager_lock, and then do a refhold 5212 * on the eager during the accept processing. 5213 * 5214 * The acceptor stream accesses the eager in the accept processing 5215 * based on the ref placed on eager before sending T_conn_ind. 5216 * The only entity that can negate this refhold is a listener close 5217 * which is mutually exclusive with an active acceptor stream. 5218 * 5219 * Eager's reference on the listener 5220 * =================================== 5221 * 5222 * If the accept happens (even on a closed eager) the eager drops its 5223 * reference on the listener at the start of tcp_accept_finish. If the 5224 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5225 * the reference is dropped in tcp_closei_local. If the listener closes, 5226 * the reference is dropped in tcp_eager_kill. In all cases the reference 5227 * is dropped while executing in the eager's context (squeue). 5228 */ 5229 /* END CSTYLED */ 5230 5231 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5232 5233 /* 5234 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5235 * tcp_rput_data will not see any SYN packets. 5236 */ 5237 /* ARGSUSED */ 5238 void 5239 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5240 { 5241 tcph_t *tcph; 5242 uint32_t seg_seq; 5243 tcp_t *eager; 5244 uint_t ipvers; 5245 ipha_t *ipha; 5246 ip6_t *ip6h; 5247 int err; 5248 conn_t *econnp = NULL; 5249 squeue_t *new_sqp; 5250 mblk_t *mp1; 5251 uint_t ip_hdr_len; 5252 conn_t *connp = (conn_t *)arg; 5253 tcp_t *tcp = connp->conn_tcp; 5254 cred_t *credp; 5255 tcp_stack_t *tcps = tcp->tcp_tcps; 5256 ip_stack_t *ipst; 5257 5258 if (tcp->tcp_state != TCPS_LISTEN) 5259 goto error2; 5260 5261 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5262 5263 mutex_enter(&tcp->tcp_eager_lock); 5264 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5265 mutex_exit(&tcp->tcp_eager_lock); 5266 TCP_STAT(tcps, tcp_listendrop); 5267 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5268 if (tcp->tcp_debug) { 5269 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5270 "tcp_conn_request: listen backlog (max=%d) " 5271 "overflow (%d pending) on %s", 5272 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5273 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5274 } 5275 goto error2; 5276 } 5277 5278 if (tcp->tcp_conn_req_cnt_q0 >= 5279 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5280 /* 5281 * Q0 is full. Drop a pending half-open req from the queue 5282 * to make room for the new SYN req. Also mark the time we 5283 * drop a SYN. 5284 * 5285 * A more aggressive defense against SYN attack will 5286 * be to set the "tcp_syn_defense" flag now. 5287 */ 5288 TCP_STAT(tcps, tcp_listendropq0); 5289 tcp->tcp_last_rcv_lbolt = lbolt64; 5290 if (!tcp_drop_q0(tcp)) { 5291 mutex_exit(&tcp->tcp_eager_lock); 5292 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5293 if (tcp->tcp_debug) { 5294 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5295 "tcp_conn_request: listen half-open queue " 5296 "(max=%d) full (%d pending) on %s", 5297 tcps->tcps_conn_req_max_q0, 5298 tcp->tcp_conn_req_cnt_q0, 5299 tcp_display(tcp, NULL, 5300 DISP_PORT_ONLY)); 5301 } 5302 goto error2; 5303 } 5304 } 5305 mutex_exit(&tcp->tcp_eager_lock); 5306 5307 /* 5308 * IP adds STRUIO_EAGER and ensures that the received packet is 5309 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5310 * link local address. If IPSec is enabled, db_struioflag has 5311 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5312 * otherwise an error case if neither of them is set. 5313 */ 5314 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5315 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5316 DB_CKSUMSTART(mp) = 0; 5317 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5318 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5319 if (econnp == NULL) 5320 goto error2; 5321 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5322 econnp->conn_sqp = new_sqp; 5323 econnp->conn_initial_sqp = new_sqp; 5324 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5325 /* 5326 * mp is updated in tcp_get_ipsec_conn(). 5327 */ 5328 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5329 if (econnp == NULL) { 5330 /* 5331 * mp freed by tcp_get_ipsec_conn. 5332 */ 5333 return; 5334 } 5335 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5336 } else { 5337 goto error2; 5338 } 5339 5340 ASSERT(DB_TYPE(mp) == M_DATA); 5341 5342 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5343 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5344 ASSERT(OK_32PTR(mp->b_rptr)); 5345 if (ipvers == IPV4_VERSION) { 5346 ipha = (ipha_t *)mp->b_rptr; 5347 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5348 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5349 } else { 5350 ip6h = (ip6_t *)mp->b_rptr; 5351 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5352 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5353 } 5354 5355 if (tcp->tcp_family == AF_INET) { 5356 ASSERT(ipvers == IPV4_VERSION); 5357 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5358 } else { 5359 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5360 } 5361 5362 if (err) 5363 goto error3; 5364 5365 eager = econnp->conn_tcp; 5366 ASSERT(eager->tcp_ordrel_mp == NULL); 5367 5368 if (!IPCL_IS_NONSTR(econnp)) { 5369 /* 5370 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 5371 * at close time, we will always have that to send up. 5372 * Otherwise, we need to do special handling in case the 5373 * allocation fails at that time. 5374 */ 5375 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5376 goto error3; 5377 } 5378 /* Inherit various TCP parameters from the listener */ 5379 eager->tcp_naglim = tcp->tcp_naglim; 5380 eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold; 5381 eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold; 5382 5383 eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold; 5384 eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold; 5385 5386 /* 5387 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5388 * If it does not, the eager's receive window will be set to the 5389 * listener's receive window later in this function. 5390 */ 5391 eager->tcp_rwnd = 0; 5392 5393 /* 5394 * Inherit listener's tcp_init_cwnd. Need to do this before 5395 * calling tcp_process_options() where tcp_mss_set() is called 5396 * to set the initial cwnd. 5397 */ 5398 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5399 5400 /* 5401 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5402 * zone id before the accept is completed in tcp_wput_accept(). 5403 */ 5404 econnp->conn_zoneid = connp->conn_zoneid; 5405 econnp->conn_allzones = connp->conn_allzones; 5406 5407 /* Copy nexthop information from listener to eager */ 5408 if (connp->conn_nexthop_set) { 5409 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5410 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5411 } 5412 5413 /* 5414 * TSOL: tsol_input_proc() needs the eager's cred before the 5415 * eager is accepted 5416 */ 5417 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5418 crhold(credp); 5419 5420 ASSERT(econnp->conn_effective_cred == NULL); 5421 if (is_system_labeled()) { 5422 cred_t *cr; 5423 ts_label_t *tsl; 5424 5425 /* 5426 * If this is an MLP connection or a MAC-Exempt connection 5427 * with an unlabeled node, packets are to be 5428 * exchanged using the security label of the received 5429 * SYN packet instead of the server application's label. 5430 */ 5431 if ((cr = msg_getcred(mp, NULL)) != NULL && 5432 (tsl = crgetlabel(cr)) != NULL && 5433 (connp->conn_mlp_type != mlptSingle || 5434 (connp->conn_mac_exempt == B_TRUE && 5435 (tsl->tsl_flags & TSLF_UNLABELED)))) { 5436 if ((econnp->conn_effective_cred = 5437 copycred_from_tslabel(econnp->conn_cred, 5438 tsl, KM_NOSLEEP)) != NULL) { 5439 DTRACE_PROBE2( 5440 syn_accept_peerlabel, 5441 conn_t *, econnp, cred_t *, 5442 econnp->conn_effective_cred); 5443 } else { 5444 DTRACE_PROBE3( 5445 tx__ip__log__error__set__eagercred__tcp, 5446 char *, 5447 "SYN mp(1) label on eager connp(2) failed", 5448 mblk_t *, mp, conn_t *, econnp); 5449 goto error3; 5450 } 5451 } else { 5452 DTRACE_PROBE2(syn_accept, conn_t *, 5453 econnp, cred_t *, econnp->conn_cred) 5454 } 5455 5456 /* 5457 * Verify the destination is allowed to receive packets 5458 * at the security label of the SYN-ACK we are generating. 5459 * tsol_check_dest() may create a new effective cred for 5460 * this connection with a modified label or label flags. 5461 */ 5462 if (IN6_IS_ADDR_V4MAPPED(&econnp->conn_remv6)) { 5463 uint32_t dst; 5464 IN6_V4MAPPED_TO_IPADDR(&econnp->conn_remv6, dst); 5465 err = tsol_check_dest(CONN_CRED(econnp), &dst, 5466 IPV4_VERSION, B_FALSE, &cr); 5467 } else { 5468 err = tsol_check_dest(CONN_CRED(econnp), 5469 &econnp->conn_remv6, IPV6_VERSION, 5470 B_FALSE, &cr); 5471 } 5472 if (err != 0) 5473 goto error3; 5474 if (cr != NULL) { 5475 if (econnp->conn_effective_cred != NULL) 5476 crfree(econnp->conn_effective_cred); 5477 econnp->conn_effective_cred = cr; 5478 } 5479 5480 /* 5481 * Generate the security label to be used in the text of 5482 * this connection's outgoing packets. 5483 */ 5484 if (!tcp_update_label(eager, CONN_CRED(econnp))) { 5485 DTRACE_PROBE3( 5486 tx__ip__log__error__connrequest__tcp, 5487 char *, "eager connp(1) label on SYN mp(2) failed", 5488 conn_t *, econnp, mblk_t *, mp); 5489 goto error3; 5490 } 5491 } 5492 5493 eager->tcp_hard_binding = B_TRUE; 5494 5495 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5496 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5497 5498 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5499 if (err != 0) { 5500 tcp_bind_hash_remove(eager); 5501 goto error3; 5502 } 5503 5504 /* 5505 * No need to check for multicast destination since ip will only pass 5506 * up multicasts to those that have expressed interest 5507 * TODO: what about rejecting broadcasts? 5508 * Also check that source is not a multicast or broadcast address. 5509 */ 5510 eager->tcp_state = TCPS_SYN_RCVD; 5511 5512 5513 /* 5514 * There should be no ire in the mp as we are being called after 5515 * receiving the SYN. 5516 */ 5517 ASSERT(tcp_ire_mp(&mp) == NULL); 5518 5519 /* 5520 * Adapt our mss, ttl, ... according to information provided in IRE. 5521 */ 5522 5523 if (tcp_adapt_ire(eager, NULL) == 0) { 5524 /* Undo the bind_hash_insert */ 5525 tcp_bind_hash_remove(eager); 5526 goto error3; 5527 } 5528 5529 /* Process all TCP options. */ 5530 tcp_process_options(eager, tcph); 5531 5532 /* Is the other end ECN capable? */ 5533 if (tcps->tcps_ecn_permitted >= 1 && 5534 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5535 eager->tcp_ecn_ok = B_TRUE; 5536 } 5537 5538 /* 5539 * listener->tcp_rq->q_hiwat should be the default window size or a 5540 * window size changed via SO_RCVBUF option. First round up the 5541 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5542 * scale option value if needed. Call tcp_rwnd_set() to finish the 5543 * setting. 5544 * 5545 * Note if there is a rpipe metric associated with the remote host, 5546 * we should not inherit receive window size from listener. 5547 */ 5548 eager->tcp_rwnd = MSS_ROUNDUP( 5549 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5550 eager->tcp_rwnd), eager->tcp_mss); 5551 if (eager->tcp_snd_ws_ok) 5552 tcp_set_ws_value(eager); 5553 /* 5554 * Note that this is the only place tcp_rwnd_set() is called for 5555 * accepting a connection. We need to call it here instead of 5556 * after the 3-way handshake because we need to tell the other 5557 * side our rwnd in the SYN-ACK segment. 5558 */ 5559 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5560 5561 /* 5562 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5563 * via soaccept()->soinheritoptions() which essentially applies 5564 * all the listener options to the new STREAM. The options that we 5565 * need to take care of are: 5566 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5567 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5568 * SO_SNDBUF, SO_RCVBUF. 5569 * 5570 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5571 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5572 * tcp_maxpsz_set() gets called later from 5573 * tcp_accept_finish(), the option takes effect. 5574 * 5575 */ 5576 /* Set the TCP options */ 5577 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5578 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5579 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5580 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5581 eager->tcp_oobinline = tcp->tcp_oobinline; 5582 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5583 eager->tcp_broadcast = tcp->tcp_broadcast; 5584 eager->tcp_useloopback = tcp->tcp_useloopback; 5585 eager->tcp_dontroute = tcp->tcp_dontroute; 5586 eager->tcp_debug = tcp->tcp_debug; 5587 eager->tcp_linger = tcp->tcp_linger; 5588 eager->tcp_lingertime = tcp->tcp_lingertime; 5589 if (tcp->tcp_ka_enabled) 5590 eager->tcp_ka_enabled = 1; 5591 5592 /* Set the IP options */ 5593 econnp->conn_broadcast = connp->conn_broadcast; 5594 econnp->conn_loopback = connp->conn_loopback; 5595 econnp->conn_dontroute = connp->conn_dontroute; 5596 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5597 5598 /* Put a ref on the listener for the eager. */ 5599 CONN_INC_REF(connp); 5600 mutex_enter(&tcp->tcp_eager_lock); 5601 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5602 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5603 tcp->tcp_eager_next_q0 = eager; 5604 eager->tcp_eager_prev_q0 = tcp; 5605 5606 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5607 eager->tcp_listener = tcp; 5608 eager->tcp_saved_listener = tcp; 5609 5610 /* 5611 * Tag this detached tcp vector for later retrieval 5612 * by our listener client in tcp_accept(). 5613 */ 5614 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5615 tcp->tcp_conn_req_cnt_q0++; 5616 if (++tcp->tcp_conn_req_seqnum == -1) { 5617 /* 5618 * -1 is "special" and defined in TPI as something 5619 * that should never be used in T_CONN_IND 5620 */ 5621 ++tcp->tcp_conn_req_seqnum; 5622 } 5623 mutex_exit(&tcp->tcp_eager_lock); 5624 5625 if (tcp->tcp_syn_defense) { 5626 /* Don't drop the SYN that comes from a good IP source */ 5627 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5628 if (addr_cache != NULL && eager->tcp_remote == 5629 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5630 eager->tcp_dontdrop = B_TRUE; 5631 } 5632 } 5633 5634 /* 5635 * We need to insert the eager in its own perimeter but as soon 5636 * as we do that, we expose the eager to the classifier and 5637 * should not touch any field outside the eager's perimeter. 5638 * So do all the work necessary before inserting the eager 5639 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5640 * will succeed but undo everything if it fails. 5641 */ 5642 seg_seq = ABE32_TO_U32(tcph->th_seq); 5643 eager->tcp_irs = seg_seq; 5644 eager->tcp_rack = seg_seq; 5645 eager->tcp_rnxt = seg_seq + 1; 5646 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5647 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5648 eager->tcp_state = TCPS_SYN_RCVD; 5649 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5650 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5651 if (mp1 == NULL) { 5652 /* 5653 * Increment the ref count as we are going to 5654 * enqueueing an mp in squeue 5655 */ 5656 CONN_INC_REF(econnp); 5657 goto error; 5658 } 5659 5660 /* 5661 * Note that in theory this should use the current pid 5662 * so that getpeerucred on the client returns the actual listener 5663 * that does accept. But accept() hasn't been called yet. We could use 5664 * the pid of the process that did bind/listen on the server. 5665 * However, with common usage like inetd() the bind/listen can be done 5666 * by a different process than the accept(). 5667 * Hence we do the simple thing of using the open pid here. 5668 * Note that db_credp is set later in tcp_send_data(). 5669 */ 5670 mblk_setcred(mp1, credp, tcp->tcp_cpid); 5671 eager->tcp_cpid = tcp->tcp_cpid; 5672 eager->tcp_open_time = lbolt64; 5673 5674 /* 5675 * We need to start the rto timer. In normal case, we start 5676 * the timer after sending the packet on the wire (or at 5677 * least believing that packet was sent by waiting for 5678 * CALL_IP_WPUT() to return). Since this is the first packet 5679 * being sent on the wire for the eager, our initial tcp_rto 5680 * is at least tcp_rexmit_interval_min which is a fairly 5681 * large value to allow the algorithm to adjust slowly to large 5682 * fluctuations of RTT during first few transmissions. 5683 * 5684 * Starting the timer first and then sending the packet in this 5685 * case shouldn't make much difference since tcp_rexmit_interval_min 5686 * is of the order of several 100ms and starting the timer 5687 * first and then sending the packet will result in difference 5688 * of few micro seconds. 5689 * 5690 * Without this optimization, we are forced to hold the fanout 5691 * lock across the ipcl_bind_insert() and sending the packet 5692 * so that we don't race against an incoming packet (maybe RST) 5693 * for this eager. 5694 * 5695 * It is necessary to acquire an extra reference on the eager 5696 * at this point and hold it until after tcp_send_data() to 5697 * ensure against an eager close race. 5698 */ 5699 5700 CONN_INC_REF(eager->tcp_connp); 5701 5702 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5703 5704 /* 5705 * Insert the eager in its own perimeter now. We are ready to deal 5706 * with any packets on eager. 5707 */ 5708 if (eager->tcp_ipversion == IPV4_VERSION) { 5709 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5710 goto error; 5711 } 5712 } else { 5713 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5714 goto error; 5715 } 5716 } 5717 5718 /* mark conn as fully-bound */ 5719 econnp->conn_fully_bound = B_TRUE; 5720 5721 /* Send the SYN-ACK */ 5722 tcp_send_data(eager, eager->tcp_wq, mp1); 5723 CONN_DEC_REF(eager->tcp_connp); 5724 freemsg(mp); 5725 5726 return; 5727 error: 5728 freemsg(mp1); 5729 eager->tcp_closemp_used = B_TRUE; 5730 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5731 mp1 = &eager->tcp_closemp; 5732 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5733 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5734 5735 /* 5736 * If a connection already exists, send the mp to that connections so 5737 * that it can be appropriately dealt with. 5738 */ 5739 ipst = tcps->tcps_netstack->netstack_ip; 5740 5741 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5742 if (!IPCL_IS_CONNECTED(econnp)) { 5743 /* 5744 * Something bad happened. ipcl_conn_insert() 5745 * failed because a connection already existed 5746 * in connected hash but we can't find it 5747 * anymore (someone blew it away). Just 5748 * free this message and hopefully remote 5749 * will retransmit at which time the SYN can be 5750 * treated as a new connection or dealth with 5751 * a TH_RST if a connection already exists. 5752 */ 5753 CONN_DEC_REF(econnp); 5754 freemsg(mp); 5755 } else { 5756 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5757 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5758 } 5759 } else { 5760 /* Nobody wants this packet */ 5761 freemsg(mp); 5762 } 5763 return; 5764 error3: 5765 CONN_DEC_REF(econnp); 5766 error2: 5767 freemsg(mp); 5768 } 5769 5770 /* 5771 * In an ideal case of vertical partition in NUMA architecture, its 5772 * beneficial to have the listener and all the incoming connections 5773 * tied to the same squeue. The other constraint is that incoming 5774 * connections should be tied to the squeue attached to interrupted 5775 * CPU for obvious locality reason so this leaves the listener to 5776 * be tied to the same squeue. Our only problem is that when listener 5777 * is binding, the CPU that will get interrupted by the NIC whose 5778 * IP address the listener is binding to is not even known. So 5779 * the code below allows us to change that binding at the time the 5780 * CPU is interrupted by virtue of incoming connection's squeue. 5781 * 5782 * This is usefull only in case of a listener bound to a specific IP 5783 * address. For other kind of listeners, they get bound the 5784 * very first time and there is no attempt to rebind them. 5785 */ 5786 void 5787 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5788 { 5789 conn_t *connp = (conn_t *)arg; 5790 squeue_t *sqp = (squeue_t *)arg2; 5791 squeue_t *new_sqp; 5792 uint32_t conn_flags; 5793 5794 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5795 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5796 } else { 5797 goto done; 5798 } 5799 5800 if (connp->conn_fanout == NULL) 5801 goto done; 5802 5803 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5804 mutex_enter(&connp->conn_fanout->connf_lock); 5805 mutex_enter(&connp->conn_lock); 5806 /* 5807 * No one from read or write side can access us now 5808 * except for already queued packets on this squeue. 5809 * But since we haven't changed the squeue yet, they 5810 * can't execute. If they are processed after we have 5811 * changed the squeue, they are sent back to the 5812 * correct squeue down below. 5813 * But a listner close can race with processing of 5814 * incoming SYN. If incoming SYN processing changes 5815 * the squeue then the listener close which is waiting 5816 * to enter the squeue would operate on the wrong 5817 * squeue. Hence we don't change the squeue here unless 5818 * the refcount is exactly the minimum refcount. The 5819 * minimum refcount of 4 is counted as - 1 each for 5820 * TCP and IP, 1 for being in the classifier hash, and 5821 * 1 for the mblk being processed. 5822 */ 5823 5824 if (connp->conn_ref != 4 || 5825 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5826 mutex_exit(&connp->conn_lock); 5827 mutex_exit(&connp->conn_fanout->connf_lock); 5828 goto done; 5829 } 5830 if (connp->conn_sqp != new_sqp) { 5831 while (connp->conn_sqp != new_sqp) 5832 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5833 } 5834 5835 do { 5836 conn_flags = connp->conn_flags; 5837 conn_flags |= IPCL_FULLY_BOUND; 5838 (void) cas32(&connp->conn_flags, connp->conn_flags, 5839 conn_flags); 5840 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5841 5842 mutex_exit(&connp->conn_fanout->connf_lock); 5843 mutex_exit(&connp->conn_lock); 5844 } 5845 5846 done: 5847 if (connp->conn_sqp != sqp) { 5848 CONN_INC_REF(connp); 5849 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5850 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5851 } else { 5852 tcp_conn_request(connp, mp, sqp); 5853 } 5854 } 5855 5856 /* 5857 * Successful connect request processing begins when our client passes 5858 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5859 * our T_OK_ACK reply message upstream. The control flow looks like this: 5860 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5861 * upstream <- tcp_rput() <- IP 5862 * After various error checks are completed, tcp_tpi_connect() lays 5863 * the target address and port into the composite header template, 5864 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5865 * request followed by an IRE request, and passes the three mblk message 5866 * down to IP looking like this: 5867 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5868 * Processing continues in tcp_rput() when we receive the following message: 5869 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5870 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5871 * to fire off the connection request, and then passes the T_OK_ACK mblk 5872 * upstream that we filled in below. There are, of course, numerous 5873 * error conditions along the way which truncate the processing described 5874 * above. 5875 */ 5876 static void 5877 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5878 { 5879 sin_t *sin; 5880 queue_t *q = tcp->tcp_wq; 5881 struct T_conn_req *tcr; 5882 struct sockaddr *sa; 5883 socklen_t len; 5884 int error; 5885 cred_t *cr; 5886 pid_t cpid; 5887 5888 /* 5889 * All Solaris components should pass a db_credp 5890 * for this TPI message, hence we ASSERT. 5891 * But in case there is some other M_PROTO that looks 5892 * like a TPI message sent by some other kernel 5893 * component, we check and return an error. 5894 */ 5895 cr = msg_getcred(mp, &cpid); 5896 ASSERT(cr != NULL); 5897 if (cr == NULL) { 5898 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5899 return; 5900 } 5901 5902 tcr = (struct T_conn_req *)mp->b_rptr; 5903 5904 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5905 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5906 tcp_err_ack(tcp, mp, TPROTO, 0); 5907 return; 5908 } 5909 5910 /* 5911 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5912 * will always have that to send up. Otherwise, we need to do 5913 * special handling in case the allocation fails at that time. 5914 * If the end point is TPI, the tcp_t can be reused and the 5915 * tcp_ordrel_mp may be allocated already. 5916 */ 5917 if (tcp->tcp_ordrel_mp == NULL) { 5918 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5919 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5920 return; 5921 } 5922 } 5923 5924 /* 5925 * Determine packet type based on type of address passed in 5926 * the request should contain an IPv4 or IPv6 address. 5927 * Make sure that address family matches the type of 5928 * family of the the address passed down 5929 */ 5930 switch (tcr->DEST_length) { 5931 default: 5932 tcp_err_ack(tcp, mp, TBADADDR, 0); 5933 return; 5934 5935 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5936 /* 5937 * XXX: The check for valid DEST_length was not there 5938 * in earlier releases and some buggy 5939 * TLI apps (e.g Sybase) got away with not feeding 5940 * in sin_zero part of address. 5941 * We allow that bug to keep those buggy apps humming. 5942 * Test suites require the check on DEST_length. 5943 * We construct a new mblk with valid DEST_length 5944 * free the original so the rest of the code does 5945 * not have to keep track of this special shorter 5946 * length address case. 5947 */ 5948 mblk_t *nmp; 5949 struct T_conn_req *ntcr; 5950 sin_t *nsin; 5951 5952 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5953 tcr->OPT_length, BPRI_HI); 5954 if (nmp == NULL) { 5955 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5956 return; 5957 } 5958 ntcr = (struct T_conn_req *)nmp->b_rptr; 5959 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5960 ntcr->PRIM_type = T_CONN_REQ; 5961 ntcr->DEST_length = sizeof (sin_t); 5962 ntcr->DEST_offset = sizeof (struct T_conn_req); 5963 5964 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5965 *nsin = sin_null; 5966 /* Get pointer to shorter address to copy from original mp */ 5967 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5968 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5969 if (sin == NULL || !OK_32PTR((char *)sin)) { 5970 freemsg(nmp); 5971 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5972 return; 5973 } 5974 nsin->sin_family = sin->sin_family; 5975 nsin->sin_port = sin->sin_port; 5976 nsin->sin_addr = sin->sin_addr; 5977 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5978 nmp->b_wptr = (uchar_t *)&nsin[1]; 5979 if (tcr->OPT_length != 0) { 5980 ntcr->OPT_length = tcr->OPT_length; 5981 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5982 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5983 (uchar_t *)ntcr + ntcr->OPT_offset, 5984 tcr->OPT_length); 5985 nmp->b_wptr += tcr->OPT_length; 5986 } 5987 freemsg(mp); /* original mp freed */ 5988 mp = nmp; /* re-initialize original variables */ 5989 tcr = ntcr; 5990 } 5991 /* FALLTHRU */ 5992 5993 case sizeof (sin_t): 5994 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 5995 sizeof (sin_t)); 5996 len = sizeof (sin_t); 5997 break; 5998 5999 case sizeof (sin6_t): 6000 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6001 sizeof (sin6_t)); 6002 len = sizeof (sin6_t); 6003 break; 6004 } 6005 6006 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6007 if (error != 0) { 6008 tcp_err_ack(tcp, mp, TSYSERR, error); 6009 return; 6010 } 6011 6012 /* 6013 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6014 * should key on their sequence number and cut them loose. 6015 */ 6016 6017 /* 6018 * If options passed in, feed it for verification and handling 6019 */ 6020 if (tcr->OPT_length != 0) { 6021 mblk_t *ok_mp; 6022 mblk_t *discon_mp; 6023 mblk_t *conn_opts_mp; 6024 int t_error, sys_error, do_disconnect; 6025 6026 conn_opts_mp = NULL; 6027 6028 if (tcp_conprim_opt_process(tcp, mp, 6029 &do_disconnect, &t_error, &sys_error) < 0) { 6030 if (do_disconnect) { 6031 ASSERT(t_error == 0 && sys_error == 0); 6032 discon_mp = mi_tpi_discon_ind(NULL, 6033 ECONNREFUSED, 0); 6034 if (!discon_mp) { 6035 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6036 TSYSERR, ENOMEM); 6037 return; 6038 } 6039 ok_mp = mi_tpi_ok_ack_alloc(mp); 6040 if (!ok_mp) { 6041 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6042 TSYSERR, ENOMEM); 6043 return; 6044 } 6045 qreply(q, ok_mp); 6046 qreply(q, discon_mp); /* no flush! */ 6047 } else { 6048 ASSERT(t_error != 0); 6049 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6050 sys_error); 6051 } 6052 return; 6053 } 6054 /* 6055 * Success in setting options, the mp option buffer represented 6056 * by OPT_length/offset has been potentially modified and 6057 * contains results of option processing. We copy it in 6058 * another mp to save it for potentially influencing returning 6059 * it in T_CONN_CONN. 6060 */ 6061 if (tcr->OPT_length != 0) { /* there are resulting options */ 6062 conn_opts_mp = copyb(mp); 6063 if (!conn_opts_mp) { 6064 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6065 TSYSERR, ENOMEM); 6066 return; 6067 } 6068 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6069 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6070 /* 6071 * Note: 6072 * These resulting option negotiation can include any 6073 * end-to-end negotiation options but there no such 6074 * thing (yet?) in our TCP/IP. 6075 */ 6076 } 6077 } 6078 6079 /* call the non-TPI version */ 6080 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 6081 if (error < 0) { 6082 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6083 } else if (error > 0) { 6084 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6085 } else { 6086 mp = mi_tpi_ok_ack_alloc(mp); 6087 } 6088 6089 /* 6090 * Note: Code below is the "failure" case 6091 */ 6092 /* return error ack and blow away saved option results if any */ 6093 connect_failed: 6094 if (mp != NULL) 6095 putnext(tcp->tcp_rq, mp); 6096 else { 6097 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6098 TSYSERR, ENOMEM); 6099 } 6100 } 6101 6102 /* 6103 * Handle connect to IPv4 destinations, including connections for AF_INET6 6104 * sockets connecting to IPv4 mapped IPv6 destinations. 6105 */ 6106 static int 6107 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6108 uint_t srcid, cred_t *cr, pid_t pid) 6109 { 6110 tcph_t *tcph; 6111 mblk_t *mp; 6112 ipaddr_t dstaddr = *dstaddrp; 6113 int32_t oldstate; 6114 uint16_t lport; 6115 int error = 0; 6116 tcp_stack_t *tcps = tcp->tcp_tcps; 6117 6118 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6119 6120 /* Check for attempt to connect to INADDR_ANY */ 6121 if (dstaddr == INADDR_ANY) { 6122 /* 6123 * SunOS 4.x and 4.3 BSD allow an application 6124 * to connect a TCP socket to INADDR_ANY. 6125 * When they do this, the kernel picks the 6126 * address of one interface and uses it 6127 * instead. The kernel usually ends up 6128 * picking the address of the loopback 6129 * interface. This is an undocumented feature. 6130 * However, we provide the same thing here 6131 * in order to have source and binary 6132 * compatibility with SunOS 4.x. 6133 * Update the T_CONN_REQ (sin/sin6) since it is used to 6134 * generate the T_CONN_CON. 6135 */ 6136 dstaddr = htonl(INADDR_LOOPBACK); 6137 *dstaddrp = dstaddr; 6138 } 6139 6140 /* Handle __sin6_src_id if socket not bound to an IP address */ 6141 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6142 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6143 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6144 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6145 tcp->tcp_ipha->ipha_src); 6146 } 6147 6148 /* 6149 * Don't let an endpoint connect to itself. Note that 6150 * the test here does not catch the case where the 6151 * source IP addr was left unspecified by the user. In 6152 * this case, the source addr is set in tcp_adapt_ire() 6153 * using the reply to the T_BIND message that we send 6154 * down to IP here and the check is repeated in tcp_rput_other. 6155 */ 6156 if (dstaddr == tcp->tcp_ipha->ipha_src && 6157 dstport == tcp->tcp_lport) { 6158 error = -TBADADDR; 6159 goto failed; 6160 } 6161 6162 /* 6163 * Verify the destination is allowed to receive packets 6164 * at the security label of the connection we are initiating. 6165 * tsol_check_dest() may create a new effective cred for this 6166 * connection with a modified label or label flags. 6167 */ 6168 if (is_system_labeled()) { 6169 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6170 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6171 &dstaddr, IPV4_VERSION, tcp->tcp_connp->conn_mac_exempt, 6172 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6173 if (error != EHOSTUNREACH) 6174 error = -TSYSERR; 6175 goto failed; 6176 } 6177 } 6178 6179 tcp->tcp_ipha->ipha_dst = dstaddr; 6180 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6181 6182 /* 6183 * Massage a source route if any putting the first hop 6184 * in iph_dst. Compute a starting value for the checksum which 6185 * takes into account that the original iph_dst should be 6186 * included in the checksum but that ip will include the 6187 * first hop in the source route in the tcp checksum. 6188 */ 6189 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6190 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6191 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6192 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6193 if ((int)tcp->tcp_sum < 0) 6194 tcp->tcp_sum--; 6195 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6196 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6197 (tcp->tcp_sum >> 16)); 6198 tcph = tcp->tcp_tcph; 6199 *(uint16_t *)tcph->th_fport = dstport; 6200 tcp->tcp_fport = dstport; 6201 6202 oldstate = tcp->tcp_state; 6203 /* 6204 * At this point the remote destination address and remote port fields 6205 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6206 * have to see which state tcp was in so we can take apropriate action. 6207 */ 6208 if (oldstate == TCPS_IDLE) { 6209 /* 6210 * We support a quick connect capability here, allowing 6211 * clients to transition directly from IDLE to SYN_SENT 6212 * tcp_bindi will pick an unused port, insert the connection 6213 * in the bind hash and transition to BOUND state. 6214 */ 6215 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6216 tcp, B_TRUE); 6217 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6218 B_FALSE, B_FALSE); 6219 if (lport == 0) { 6220 error = -TNOADDR; 6221 goto failed; 6222 } 6223 } 6224 tcp->tcp_state = TCPS_SYN_SENT; 6225 6226 mp = allocb(sizeof (ire_t), BPRI_HI); 6227 if (mp == NULL) { 6228 tcp->tcp_state = oldstate; 6229 error = ENOMEM; 6230 goto failed; 6231 } 6232 6233 mp->b_wptr += sizeof (ire_t); 6234 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6235 tcp->tcp_hard_binding = 1; 6236 6237 /* 6238 * We need to make sure that the conn_recv is set to a non-null 6239 * value before we insert the conn_t into the classifier table. 6240 * This is to avoid a race with an incoming packet which does 6241 * an ipcl_classify(). 6242 */ 6243 tcp->tcp_connp->conn_recv = tcp_input; 6244 6245 if (tcp->tcp_family == AF_INET) { 6246 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6247 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6248 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6249 } else { 6250 in6_addr_t v6src; 6251 if (tcp->tcp_ipversion == IPV4_VERSION) { 6252 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6253 } else { 6254 v6src = tcp->tcp_ip6h->ip6_src; 6255 } 6256 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6257 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6258 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6259 } 6260 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6261 tcp->tcp_active_open = 1; 6262 6263 6264 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6265 failed: 6266 /* return error ack and blow away saved option results if any */ 6267 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6268 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6269 return (error); 6270 } 6271 6272 /* 6273 * Handle connect to IPv6 destinations. 6274 */ 6275 static int 6276 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6277 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6278 { 6279 tcph_t *tcph; 6280 mblk_t *mp; 6281 ip6_rthdr_t *rth; 6282 int32_t oldstate; 6283 uint16_t lport; 6284 tcp_stack_t *tcps = tcp->tcp_tcps; 6285 int error = 0; 6286 conn_t *connp = tcp->tcp_connp; 6287 6288 ASSERT(tcp->tcp_family == AF_INET6); 6289 6290 /* 6291 * If we're here, it means that the destination address is a native 6292 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6293 * reason why it might not be IPv6 is if the socket was bound to an 6294 * IPv4-mapped IPv6 address. 6295 */ 6296 if (tcp->tcp_ipversion != IPV6_VERSION) { 6297 return (-TBADADDR); 6298 } 6299 6300 /* 6301 * Interpret a zero destination to mean loopback. 6302 * Update the T_CONN_REQ (sin/sin6) since it is used to 6303 * generate the T_CONN_CON. 6304 */ 6305 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6306 *dstaddrp = ipv6_loopback; 6307 } 6308 6309 /* Handle __sin6_src_id if socket not bound to an IP address */ 6310 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6311 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6312 connp->conn_zoneid, tcps->tcps_netstack); 6313 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6314 } 6315 6316 /* 6317 * Take care of the scope_id now and add ip6i_t 6318 * if ip6i_t is not already allocated through TCP 6319 * sticky options. At this point tcp_ip6h does not 6320 * have dst info, thus use dstaddrp. 6321 */ 6322 if (scope_id != 0 && 6323 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6324 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6325 ip6i_t *ip6i; 6326 6327 ipp->ipp_ifindex = scope_id; 6328 ip6i = (ip6i_t *)tcp->tcp_iphc; 6329 6330 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6331 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6332 /* Already allocated */ 6333 ip6i->ip6i_flags |= IP6I_IFINDEX; 6334 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6335 ipp->ipp_fields |= IPPF_SCOPE_ID; 6336 } else { 6337 int reterr; 6338 6339 ipp->ipp_fields |= IPPF_SCOPE_ID; 6340 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6341 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6342 reterr = tcp_build_hdrs(tcp); 6343 if (reterr != 0) 6344 goto failed; 6345 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6346 } 6347 } 6348 6349 /* 6350 * Don't let an endpoint connect to itself. Note that 6351 * the test here does not catch the case where the 6352 * source IP addr was left unspecified by the user. In 6353 * this case, the source addr is set in tcp_adapt_ire() 6354 * using the reply to the T_BIND message that we send 6355 * down to IP here and the check is repeated in tcp_rput_other. 6356 */ 6357 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6358 (dstport == tcp->tcp_lport)) { 6359 error = -TBADADDR; 6360 goto failed; 6361 } 6362 6363 /* 6364 * Verify the destination is allowed to receive packets 6365 * at the security label of the connection we are initiating. 6366 * check_dest may create a new effective cred for this 6367 * connection with a modified label or label flags. 6368 */ 6369 if (is_system_labeled()) { 6370 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6371 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6372 dstaddrp, IPV6_VERSION, tcp->tcp_connp->conn_mac_exempt, 6373 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6374 if (error != EHOSTUNREACH) 6375 error = -TSYSERR; 6376 goto failed; 6377 } 6378 } 6379 6380 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6381 tcp->tcp_remote_v6 = *dstaddrp; 6382 tcp->tcp_ip6h->ip6_vcf = 6383 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6384 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6385 6386 /* 6387 * Massage a routing header (if present) putting the first hop 6388 * in ip6_dst. Compute a starting value for the checksum which 6389 * takes into account that the original ip6_dst should be 6390 * included in the checksum but that ip will include the 6391 * first hop in the source route in the tcp checksum. 6392 */ 6393 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6394 if (rth != NULL) { 6395 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6396 tcps->tcps_netstack); 6397 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6398 (tcp->tcp_sum >> 16)); 6399 } else { 6400 tcp->tcp_sum = 0; 6401 } 6402 6403 tcph = tcp->tcp_tcph; 6404 *(uint16_t *)tcph->th_fport = dstport; 6405 tcp->tcp_fport = dstport; 6406 6407 oldstate = tcp->tcp_state; 6408 /* 6409 * At this point the remote destination address and remote port fields 6410 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6411 * have to see which state tcp was in so we can take apropriate action. 6412 */ 6413 if (oldstate == TCPS_IDLE) { 6414 /* 6415 * We support a quick connect capability here, allowing 6416 * clients to transition directly from IDLE to SYN_SENT 6417 * tcp_bindi will pick an unused port, insert the connection 6418 * in the bind hash and transition to BOUND state. 6419 */ 6420 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6421 tcp, B_TRUE); 6422 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6423 B_FALSE, B_FALSE); 6424 if (lport == 0) { 6425 error = -TNOADDR; 6426 goto failed; 6427 } 6428 } 6429 tcp->tcp_state = TCPS_SYN_SENT; 6430 6431 mp = allocb(sizeof (ire_t), BPRI_HI); 6432 if (mp != NULL) { 6433 in6_addr_t v6src; 6434 6435 mp->b_wptr += sizeof (ire_t); 6436 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6437 6438 tcp->tcp_hard_binding = 1; 6439 6440 /* 6441 * We need to make sure that the conn_recv is set to a non-null 6442 * value before we insert the conn_t into the classifier table. 6443 * This is to avoid a race with an incoming packet which does 6444 * an ipcl_classify(). 6445 */ 6446 tcp->tcp_connp->conn_recv = tcp_input; 6447 6448 if (tcp->tcp_ipversion == IPV4_VERSION) { 6449 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6450 } else { 6451 v6src = tcp->tcp_ip6h->ip6_src; 6452 } 6453 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6454 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6455 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6456 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6457 tcp->tcp_active_open = 1; 6458 6459 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6460 } 6461 /* Error case */ 6462 tcp->tcp_state = oldstate; 6463 error = ENOMEM; 6464 6465 failed: 6466 /* return error ack and blow away saved option results if any */ 6467 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6468 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6469 return (error); 6470 } 6471 6472 /* 6473 * We need a stream q for detached closing tcp connections 6474 * to use. Our client hereby indicates that this q is the 6475 * one to use. 6476 */ 6477 static void 6478 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6479 { 6480 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6481 queue_t *q = tcp->tcp_wq; 6482 tcp_stack_t *tcps = tcp->tcp_tcps; 6483 6484 #ifdef NS_DEBUG 6485 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6486 tcps->tcps_netstack->netstack_stackid); 6487 #endif 6488 mp->b_datap->db_type = M_IOCACK; 6489 iocp->ioc_count = 0; 6490 mutex_enter(&tcps->tcps_g_q_lock); 6491 if (tcps->tcps_g_q != NULL) { 6492 mutex_exit(&tcps->tcps_g_q_lock); 6493 iocp->ioc_error = EALREADY; 6494 } else { 6495 int error = 0; 6496 conn_t *connp = tcp->tcp_connp; 6497 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6498 6499 tcps->tcps_g_q = tcp->tcp_rq; 6500 mutex_exit(&tcps->tcps_g_q_lock); 6501 iocp->ioc_error = 0; 6502 iocp->ioc_rval = 0; 6503 /* 6504 * We are passing tcp_sticky_ipp as NULL 6505 * as it is not useful for tcp_default queue 6506 * 6507 * Set conn_recv just in case. 6508 */ 6509 tcp->tcp_connp->conn_recv = tcp_conn_request; 6510 6511 ASSERT(connp->conn_af_isv6); 6512 connp->conn_ulp = IPPROTO_TCP; 6513 6514 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6515 NULL || connp->conn_mac_exempt) { 6516 error = -TBADADDR; 6517 } else { 6518 connp->conn_srcv6 = ipv6_all_zeros; 6519 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6520 } 6521 6522 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6523 } 6524 qreply(q, mp); 6525 } 6526 6527 static int 6528 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6529 { 6530 tcp_t *ltcp = NULL; 6531 conn_t *connp; 6532 tcp_stack_t *tcps = tcp->tcp_tcps; 6533 6534 /* 6535 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6536 * when the stream is in BOUND state. Do not send a reset, 6537 * since the destination IP address is not valid, and it can 6538 * be the initialized value of all zeros (broadcast address). 6539 * 6540 * XXX There won't be any pending bind request to IP. 6541 */ 6542 if (tcp->tcp_state <= TCPS_BOUND) { 6543 if (tcp->tcp_debug) { 6544 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6545 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6546 } 6547 return (TOUTSTATE); 6548 } 6549 6550 6551 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6552 6553 /* 6554 * According to TPI, for non-listeners, ignore seqnum 6555 * and disconnect. 6556 * Following interpretation of -1 seqnum is historical 6557 * and implied TPI ? (TPI only states that for T_CONN_IND, 6558 * a valid seqnum should not be -1). 6559 * 6560 * -1 means disconnect everything 6561 * regardless even on a listener. 6562 */ 6563 6564 int old_state = tcp->tcp_state; 6565 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6566 6567 /* 6568 * The connection can't be on the tcp_time_wait_head list 6569 * since it is not detached. 6570 */ 6571 ASSERT(tcp->tcp_time_wait_next == NULL); 6572 ASSERT(tcp->tcp_time_wait_prev == NULL); 6573 ASSERT(tcp->tcp_time_wait_expire == 0); 6574 ltcp = NULL; 6575 /* 6576 * If it used to be a listener, check to make sure no one else 6577 * has taken the port before switching back to LISTEN state. 6578 */ 6579 if (tcp->tcp_ipversion == IPV4_VERSION) { 6580 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6581 tcp->tcp_ipha->ipha_src, 6582 tcp->tcp_connp->conn_zoneid, ipst); 6583 if (connp != NULL) 6584 ltcp = connp->conn_tcp; 6585 } else { 6586 /* Allow tcp_bound_if listeners? */ 6587 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6588 &tcp->tcp_ip6h->ip6_src, 0, 6589 tcp->tcp_connp->conn_zoneid, ipst); 6590 if (connp != NULL) 6591 ltcp = connp->conn_tcp; 6592 } 6593 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6594 tcp->tcp_state = TCPS_LISTEN; 6595 } else if (old_state > TCPS_BOUND) { 6596 tcp->tcp_conn_req_max = 0; 6597 tcp->tcp_state = TCPS_BOUND; 6598 } 6599 if (ltcp != NULL) 6600 CONN_DEC_REF(ltcp->tcp_connp); 6601 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6602 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6603 } else if (old_state == TCPS_ESTABLISHED || 6604 old_state == TCPS_CLOSE_WAIT) { 6605 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6606 } 6607 6608 if (tcp->tcp_fused) 6609 tcp_unfuse(tcp); 6610 6611 mutex_enter(&tcp->tcp_eager_lock); 6612 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6613 (tcp->tcp_conn_req_cnt_q != 0)) { 6614 tcp_eager_cleanup(tcp, 0); 6615 } 6616 mutex_exit(&tcp->tcp_eager_lock); 6617 6618 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6619 tcp->tcp_rnxt, TH_RST | TH_ACK); 6620 6621 tcp_reinit(tcp); 6622 6623 return (0); 6624 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6625 return (TBADSEQ); 6626 } 6627 return (0); 6628 } 6629 6630 /* 6631 * Our client hereby directs us to reject the connection request 6632 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6633 * of sending the appropriate RST, not an ICMP error. 6634 */ 6635 static void 6636 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6637 { 6638 t_scalar_t seqnum; 6639 int error; 6640 6641 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6642 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6643 tcp_err_ack(tcp, mp, TPROTO, 0); 6644 return; 6645 } 6646 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6647 error = tcp_disconnect_common(tcp, seqnum); 6648 if (error != 0) 6649 tcp_err_ack(tcp, mp, error, 0); 6650 else { 6651 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6652 /* Send M_FLUSH according to TPI */ 6653 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6654 } 6655 mp = mi_tpi_ok_ack_alloc(mp); 6656 if (mp) 6657 putnext(tcp->tcp_rq, mp); 6658 } 6659 } 6660 6661 /* 6662 * Diagnostic routine used to return a string associated with the tcp state. 6663 * Note that if the caller does not supply a buffer, it will use an internal 6664 * static string. This means that if multiple threads call this function at 6665 * the same time, output can be corrupted... Note also that this function 6666 * does not check the size of the supplied buffer. The caller has to make 6667 * sure that it is big enough. 6668 */ 6669 static char * 6670 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6671 { 6672 char buf1[30]; 6673 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6674 char *buf; 6675 char *cp; 6676 in6_addr_t local, remote; 6677 char local_addrbuf[INET6_ADDRSTRLEN]; 6678 char remote_addrbuf[INET6_ADDRSTRLEN]; 6679 6680 if (sup_buf != NULL) 6681 buf = sup_buf; 6682 else 6683 buf = priv_buf; 6684 6685 if (tcp == NULL) 6686 return ("NULL_TCP"); 6687 switch (tcp->tcp_state) { 6688 case TCPS_CLOSED: 6689 cp = "TCP_CLOSED"; 6690 break; 6691 case TCPS_IDLE: 6692 cp = "TCP_IDLE"; 6693 break; 6694 case TCPS_BOUND: 6695 cp = "TCP_BOUND"; 6696 break; 6697 case TCPS_LISTEN: 6698 cp = "TCP_LISTEN"; 6699 break; 6700 case TCPS_SYN_SENT: 6701 cp = "TCP_SYN_SENT"; 6702 break; 6703 case TCPS_SYN_RCVD: 6704 cp = "TCP_SYN_RCVD"; 6705 break; 6706 case TCPS_ESTABLISHED: 6707 cp = "TCP_ESTABLISHED"; 6708 break; 6709 case TCPS_CLOSE_WAIT: 6710 cp = "TCP_CLOSE_WAIT"; 6711 break; 6712 case TCPS_FIN_WAIT_1: 6713 cp = "TCP_FIN_WAIT_1"; 6714 break; 6715 case TCPS_CLOSING: 6716 cp = "TCP_CLOSING"; 6717 break; 6718 case TCPS_LAST_ACK: 6719 cp = "TCP_LAST_ACK"; 6720 break; 6721 case TCPS_FIN_WAIT_2: 6722 cp = "TCP_FIN_WAIT_2"; 6723 break; 6724 case TCPS_TIME_WAIT: 6725 cp = "TCP_TIME_WAIT"; 6726 break; 6727 default: 6728 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6729 cp = buf1; 6730 break; 6731 } 6732 switch (format) { 6733 case DISP_ADDR_AND_PORT: 6734 if (tcp->tcp_ipversion == IPV4_VERSION) { 6735 /* 6736 * Note that we use the remote address in the tcp_b 6737 * structure. This means that it will print out 6738 * the real destination address, not the next hop's 6739 * address if source routing is used. 6740 */ 6741 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6742 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6743 6744 } else { 6745 local = tcp->tcp_ip_src_v6; 6746 remote = tcp->tcp_remote_v6; 6747 } 6748 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6749 sizeof (local_addrbuf)); 6750 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6751 sizeof (remote_addrbuf)); 6752 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6753 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6754 ntohs(tcp->tcp_fport), cp); 6755 break; 6756 case DISP_PORT_ONLY: 6757 default: 6758 (void) mi_sprintf(buf, "[%u, %u] %s", 6759 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6760 break; 6761 } 6762 6763 return (buf); 6764 } 6765 6766 /* 6767 * Called via squeue to get on to eager's perimeter. It sends a 6768 * TH_RST if eager is in the fanout table. The listener wants the 6769 * eager to disappear either by means of tcp_eager_blowoff() or 6770 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6771 * called (via squeue) if the eager cannot be inserted in the 6772 * fanout table in tcp_conn_request(). 6773 */ 6774 /* ARGSUSED */ 6775 void 6776 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6777 { 6778 conn_t *econnp = (conn_t *)arg; 6779 tcp_t *eager = econnp->conn_tcp; 6780 tcp_t *listener = eager->tcp_listener; 6781 tcp_stack_t *tcps = eager->tcp_tcps; 6782 6783 /* 6784 * We could be called because listener is closing. Since 6785 * the eager is using listener's queue's, its not safe. 6786 * Better use the default queue just to send the TH_RST 6787 * out. 6788 */ 6789 ASSERT(tcps->tcps_g_q != NULL); 6790 eager->tcp_rq = tcps->tcps_g_q; 6791 eager->tcp_wq = WR(tcps->tcps_g_q); 6792 6793 /* 6794 * An eager's conn_fanout will be NULL if it's a duplicate 6795 * for an existing 4-tuples in the conn fanout table. 6796 * We don't want to send an RST out in such case. 6797 */ 6798 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6799 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6800 eager, eager->tcp_snxt, 0, TH_RST); 6801 } 6802 6803 /* We are here because listener wants this eager gone */ 6804 if (listener != NULL) { 6805 mutex_enter(&listener->tcp_eager_lock); 6806 tcp_eager_unlink(eager); 6807 if (eager->tcp_tconnind_started) { 6808 /* 6809 * The eager has sent a conn_ind up to the 6810 * listener but listener decides to close 6811 * instead. We need to drop the extra ref 6812 * placed on eager in tcp_rput_data() before 6813 * sending the conn_ind to listener. 6814 */ 6815 CONN_DEC_REF(econnp); 6816 } 6817 mutex_exit(&listener->tcp_eager_lock); 6818 CONN_DEC_REF(listener->tcp_connp); 6819 } 6820 6821 if (eager->tcp_state != TCPS_CLOSED) 6822 tcp_close_detached(eager); 6823 } 6824 6825 /* 6826 * Reset any eager connection hanging off this listener marked 6827 * with 'seqnum' and then reclaim it's resources. 6828 */ 6829 static boolean_t 6830 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6831 { 6832 tcp_t *eager; 6833 mblk_t *mp; 6834 tcp_stack_t *tcps = listener->tcp_tcps; 6835 6836 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6837 eager = listener; 6838 mutex_enter(&listener->tcp_eager_lock); 6839 do { 6840 eager = eager->tcp_eager_next_q; 6841 if (eager == NULL) { 6842 mutex_exit(&listener->tcp_eager_lock); 6843 return (B_FALSE); 6844 } 6845 } while (eager->tcp_conn_req_seqnum != seqnum); 6846 6847 if (eager->tcp_closemp_used) { 6848 mutex_exit(&listener->tcp_eager_lock); 6849 return (B_TRUE); 6850 } 6851 eager->tcp_closemp_used = B_TRUE; 6852 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6853 CONN_INC_REF(eager->tcp_connp); 6854 mutex_exit(&listener->tcp_eager_lock); 6855 mp = &eager->tcp_closemp; 6856 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6857 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6858 return (B_TRUE); 6859 } 6860 6861 /* 6862 * Reset any eager connection hanging off this listener 6863 * and then reclaim it's resources. 6864 */ 6865 static void 6866 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6867 { 6868 tcp_t *eager; 6869 mblk_t *mp; 6870 tcp_stack_t *tcps = listener->tcp_tcps; 6871 6872 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6873 6874 if (!q0_only) { 6875 /* First cleanup q */ 6876 TCP_STAT(tcps, tcp_eager_blowoff_q); 6877 eager = listener->tcp_eager_next_q; 6878 while (eager != NULL) { 6879 if (!eager->tcp_closemp_used) { 6880 eager->tcp_closemp_used = B_TRUE; 6881 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6882 CONN_INC_REF(eager->tcp_connp); 6883 mp = &eager->tcp_closemp; 6884 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6885 tcp_eager_kill, eager->tcp_connp, 6886 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6887 } 6888 eager = eager->tcp_eager_next_q; 6889 } 6890 } 6891 /* Then cleanup q0 */ 6892 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6893 eager = listener->tcp_eager_next_q0; 6894 while (eager != listener) { 6895 if (!eager->tcp_closemp_used) { 6896 eager->tcp_closemp_used = B_TRUE; 6897 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6898 CONN_INC_REF(eager->tcp_connp); 6899 mp = &eager->tcp_closemp; 6900 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6901 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6902 SQTAG_TCP_EAGER_CLEANUP_Q0); 6903 } 6904 eager = eager->tcp_eager_next_q0; 6905 } 6906 } 6907 6908 /* 6909 * If we are an eager connection hanging off a listener that hasn't 6910 * formally accepted the connection yet, get off his list and blow off 6911 * any data that we have accumulated. 6912 */ 6913 static void 6914 tcp_eager_unlink(tcp_t *tcp) 6915 { 6916 tcp_t *listener = tcp->tcp_listener; 6917 6918 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6919 ASSERT(listener != NULL); 6920 if (tcp->tcp_eager_next_q0 != NULL) { 6921 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6922 6923 /* Remove the eager tcp from q0 */ 6924 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6925 tcp->tcp_eager_prev_q0; 6926 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6927 tcp->tcp_eager_next_q0; 6928 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6929 listener->tcp_conn_req_cnt_q0--; 6930 6931 tcp->tcp_eager_next_q0 = NULL; 6932 tcp->tcp_eager_prev_q0 = NULL; 6933 6934 /* 6935 * Take the eager out, if it is in the list of droppable 6936 * eagers. 6937 */ 6938 MAKE_UNDROPPABLE(tcp); 6939 6940 if (tcp->tcp_syn_rcvd_timeout != 0) { 6941 /* we have timed out before */ 6942 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6943 listener->tcp_syn_rcvd_timeout--; 6944 } 6945 } else { 6946 tcp_t **tcpp = &listener->tcp_eager_next_q; 6947 tcp_t *prev = NULL; 6948 6949 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6950 if (tcpp[0] == tcp) { 6951 if (listener->tcp_eager_last_q == tcp) { 6952 /* 6953 * If we are unlinking the last 6954 * element on the list, adjust 6955 * tail pointer. Set tail pointer 6956 * to nil when list is empty. 6957 */ 6958 ASSERT(tcp->tcp_eager_next_q == NULL); 6959 if (listener->tcp_eager_last_q == 6960 listener->tcp_eager_next_q) { 6961 listener->tcp_eager_last_q = 6962 NULL; 6963 } else { 6964 /* 6965 * We won't get here if there 6966 * is only one eager in the 6967 * list. 6968 */ 6969 ASSERT(prev != NULL); 6970 listener->tcp_eager_last_q = 6971 prev; 6972 } 6973 } 6974 tcpp[0] = tcp->tcp_eager_next_q; 6975 tcp->tcp_eager_next_q = NULL; 6976 tcp->tcp_eager_last_q = NULL; 6977 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6978 listener->tcp_conn_req_cnt_q--; 6979 break; 6980 } 6981 prev = tcpp[0]; 6982 } 6983 } 6984 tcp->tcp_listener = NULL; 6985 } 6986 6987 /* Shorthand to generate and send TPI error acks to our client */ 6988 static void 6989 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6990 { 6991 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6992 putnext(tcp->tcp_rq, mp); 6993 } 6994 6995 /* Shorthand to generate and send TPI error acks to our client */ 6996 static void 6997 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6998 int t_error, int sys_error) 6999 { 7000 struct T_error_ack *teackp; 7001 7002 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7003 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7004 teackp = (struct T_error_ack *)mp->b_rptr; 7005 teackp->ERROR_prim = primitive; 7006 teackp->TLI_error = t_error; 7007 teackp->UNIX_error = sys_error; 7008 putnext(tcp->tcp_rq, mp); 7009 } 7010 } 7011 7012 /* 7013 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7014 * but instead the code relies on: 7015 * - the fact that the address of the array and its size never changes 7016 * - the atomic assignment of the elements of the array 7017 */ 7018 /* ARGSUSED */ 7019 static int 7020 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7021 { 7022 int i; 7023 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7024 7025 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7026 if (tcps->tcps_g_epriv_ports[i] != 0) 7027 (void) mi_mpprintf(mp, "%d ", 7028 tcps->tcps_g_epriv_ports[i]); 7029 } 7030 return (0); 7031 } 7032 7033 /* 7034 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7035 * threads from changing it at the same time. 7036 */ 7037 /* ARGSUSED */ 7038 static int 7039 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7040 cred_t *cr) 7041 { 7042 long new_value; 7043 int i; 7044 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7045 7046 /* 7047 * Fail the request if the new value does not lie within the 7048 * port number limits. 7049 */ 7050 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7051 new_value <= 0 || new_value >= 65536) { 7052 return (EINVAL); 7053 } 7054 7055 mutex_enter(&tcps->tcps_epriv_port_lock); 7056 /* Check if the value is already in the list */ 7057 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7058 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7059 mutex_exit(&tcps->tcps_epriv_port_lock); 7060 return (EEXIST); 7061 } 7062 } 7063 /* Find an empty slot */ 7064 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7065 if (tcps->tcps_g_epriv_ports[i] == 0) 7066 break; 7067 } 7068 if (i == tcps->tcps_g_num_epriv_ports) { 7069 mutex_exit(&tcps->tcps_epriv_port_lock); 7070 return (EOVERFLOW); 7071 } 7072 /* Set the new value */ 7073 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7074 mutex_exit(&tcps->tcps_epriv_port_lock); 7075 return (0); 7076 } 7077 7078 /* 7079 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7080 * threads from changing it at the same time. 7081 */ 7082 /* ARGSUSED */ 7083 static int 7084 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7085 cred_t *cr) 7086 { 7087 long new_value; 7088 int i; 7089 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7090 7091 /* 7092 * Fail the request if the new value does not lie within the 7093 * port number limits. 7094 */ 7095 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7096 new_value >= 65536) { 7097 return (EINVAL); 7098 } 7099 7100 mutex_enter(&tcps->tcps_epriv_port_lock); 7101 /* Check that the value is already in the list */ 7102 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7103 if (tcps->tcps_g_epriv_ports[i] == new_value) 7104 break; 7105 } 7106 if (i == tcps->tcps_g_num_epriv_ports) { 7107 mutex_exit(&tcps->tcps_epriv_port_lock); 7108 return (ESRCH); 7109 } 7110 /* Clear the value */ 7111 tcps->tcps_g_epriv_ports[i] = 0; 7112 mutex_exit(&tcps->tcps_epriv_port_lock); 7113 return (0); 7114 } 7115 7116 /* Return the TPI/TLI equivalent of our current tcp_state */ 7117 static int 7118 tcp_tpistate(tcp_t *tcp) 7119 { 7120 switch (tcp->tcp_state) { 7121 case TCPS_IDLE: 7122 return (TS_UNBND); 7123 case TCPS_LISTEN: 7124 /* 7125 * Return whether there are outstanding T_CONN_IND waiting 7126 * for the matching T_CONN_RES. Therefore don't count q0. 7127 */ 7128 if (tcp->tcp_conn_req_cnt_q > 0) 7129 return (TS_WRES_CIND); 7130 else 7131 return (TS_IDLE); 7132 case TCPS_BOUND: 7133 return (TS_IDLE); 7134 case TCPS_SYN_SENT: 7135 return (TS_WCON_CREQ); 7136 case TCPS_SYN_RCVD: 7137 /* 7138 * Note: assumption: this has to the active open SYN_RCVD. 7139 * The passive instance is detached in SYN_RCVD stage of 7140 * incoming connection processing so we cannot get request 7141 * for T_info_ack on it. 7142 */ 7143 return (TS_WACK_CRES); 7144 case TCPS_ESTABLISHED: 7145 return (TS_DATA_XFER); 7146 case TCPS_CLOSE_WAIT: 7147 return (TS_WREQ_ORDREL); 7148 case TCPS_FIN_WAIT_1: 7149 return (TS_WIND_ORDREL); 7150 case TCPS_FIN_WAIT_2: 7151 return (TS_WIND_ORDREL); 7152 7153 case TCPS_CLOSING: 7154 case TCPS_LAST_ACK: 7155 case TCPS_TIME_WAIT: 7156 case TCPS_CLOSED: 7157 /* 7158 * Following TS_WACK_DREQ7 is a rendition of "not 7159 * yet TS_IDLE" TPI state. There is no best match to any 7160 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7161 * choose a value chosen that will map to TLI/XTI level 7162 * state of TSTATECHNG (state is process of changing) which 7163 * captures what this dummy state represents. 7164 */ 7165 return (TS_WACK_DREQ7); 7166 default: 7167 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7168 tcp->tcp_state, tcp_display(tcp, NULL, 7169 DISP_PORT_ONLY)); 7170 return (TS_UNBND); 7171 } 7172 } 7173 7174 static void 7175 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7176 { 7177 tcp_stack_t *tcps = tcp->tcp_tcps; 7178 7179 if (tcp->tcp_family == AF_INET6) 7180 *tia = tcp_g_t_info_ack_v6; 7181 else 7182 *tia = tcp_g_t_info_ack; 7183 tia->CURRENT_state = tcp_tpistate(tcp); 7184 tia->OPT_size = tcp_max_optsize; 7185 if (tcp->tcp_mss == 0) { 7186 /* Not yet set - tcp_open does not set mss */ 7187 if (tcp->tcp_ipversion == IPV4_VERSION) 7188 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7189 else 7190 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7191 } else { 7192 tia->TIDU_size = tcp->tcp_mss; 7193 } 7194 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7195 } 7196 7197 static void 7198 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7199 t_uscalar_t cap_bits1) 7200 { 7201 tcap->CAP_bits1 = 0; 7202 7203 if (cap_bits1 & TC1_INFO) { 7204 tcp_copy_info(&tcap->INFO_ack, tcp); 7205 tcap->CAP_bits1 |= TC1_INFO; 7206 } 7207 7208 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7209 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7210 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7211 } 7212 7213 } 7214 7215 /* 7216 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7217 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7218 * tcp_g_t_info_ack. The current state of the stream is copied from 7219 * tcp_state. 7220 */ 7221 static void 7222 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7223 { 7224 t_uscalar_t cap_bits1; 7225 struct T_capability_ack *tcap; 7226 7227 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7228 freemsg(mp); 7229 return; 7230 } 7231 7232 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7233 7234 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7235 mp->b_datap->db_type, T_CAPABILITY_ACK); 7236 if (mp == NULL) 7237 return; 7238 7239 tcap = (struct T_capability_ack *)mp->b_rptr; 7240 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7241 7242 putnext(tcp->tcp_rq, mp); 7243 } 7244 7245 /* 7246 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7247 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7248 * The current state of the stream is copied from tcp_state. 7249 */ 7250 static void 7251 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7252 { 7253 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7254 T_INFO_ACK); 7255 if (!mp) { 7256 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7257 return; 7258 } 7259 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7260 putnext(tcp->tcp_rq, mp); 7261 } 7262 7263 /* Respond to the TPI addr request */ 7264 static void 7265 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7266 { 7267 sin_t *sin; 7268 mblk_t *ackmp; 7269 struct T_addr_ack *taa; 7270 7271 /* Make it large enough for worst case */ 7272 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7273 2 * sizeof (sin6_t), 1); 7274 if (ackmp == NULL) { 7275 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7276 return; 7277 } 7278 7279 if (tcp->tcp_ipversion == IPV6_VERSION) { 7280 tcp_addr_req_ipv6(tcp, ackmp); 7281 return; 7282 } 7283 taa = (struct T_addr_ack *)ackmp->b_rptr; 7284 7285 bzero(taa, sizeof (struct T_addr_ack)); 7286 ackmp->b_wptr = (uchar_t *)&taa[1]; 7287 7288 taa->PRIM_type = T_ADDR_ACK; 7289 ackmp->b_datap->db_type = M_PCPROTO; 7290 7291 /* 7292 * Note: Following code assumes 32 bit alignment of basic 7293 * data structures like sin_t and struct T_addr_ack. 7294 */ 7295 if (tcp->tcp_state >= TCPS_BOUND) { 7296 /* 7297 * Fill in local address 7298 */ 7299 taa->LOCADDR_length = sizeof (sin_t); 7300 taa->LOCADDR_offset = sizeof (*taa); 7301 7302 sin = (sin_t *)&taa[1]; 7303 7304 /* Fill zeroes and then intialize non-zero fields */ 7305 *sin = sin_null; 7306 7307 sin->sin_family = AF_INET; 7308 7309 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7310 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7311 7312 ackmp->b_wptr = (uchar_t *)&sin[1]; 7313 7314 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7315 /* 7316 * Fill in Remote address 7317 */ 7318 taa->REMADDR_length = sizeof (sin_t); 7319 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7320 taa->LOCADDR_length); 7321 7322 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7323 *sin = sin_null; 7324 sin->sin_family = AF_INET; 7325 sin->sin_addr.s_addr = tcp->tcp_remote; 7326 sin->sin_port = tcp->tcp_fport; 7327 7328 ackmp->b_wptr = (uchar_t *)&sin[1]; 7329 } 7330 } 7331 putnext(tcp->tcp_rq, ackmp); 7332 } 7333 7334 /* Assumes that tcp_addr_req gets enough space and alignment */ 7335 static void 7336 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7337 { 7338 sin6_t *sin6; 7339 struct T_addr_ack *taa; 7340 7341 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7342 ASSERT(OK_32PTR(ackmp->b_rptr)); 7343 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7344 2 * sizeof (sin6_t)); 7345 7346 taa = (struct T_addr_ack *)ackmp->b_rptr; 7347 7348 bzero(taa, sizeof (struct T_addr_ack)); 7349 ackmp->b_wptr = (uchar_t *)&taa[1]; 7350 7351 taa->PRIM_type = T_ADDR_ACK; 7352 ackmp->b_datap->db_type = M_PCPROTO; 7353 7354 /* 7355 * Note: Following code assumes 32 bit alignment of basic 7356 * data structures like sin6_t and struct T_addr_ack. 7357 */ 7358 if (tcp->tcp_state >= TCPS_BOUND) { 7359 /* 7360 * Fill in local address 7361 */ 7362 taa->LOCADDR_length = sizeof (sin6_t); 7363 taa->LOCADDR_offset = sizeof (*taa); 7364 7365 sin6 = (sin6_t *)&taa[1]; 7366 *sin6 = sin6_null; 7367 7368 sin6->sin6_family = AF_INET6; 7369 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7370 sin6->sin6_port = tcp->tcp_lport; 7371 7372 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7373 7374 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7375 /* 7376 * Fill in Remote address 7377 */ 7378 taa->REMADDR_length = sizeof (sin6_t); 7379 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7380 taa->LOCADDR_length); 7381 7382 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7383 *sin6 = sin6_null; 7384 sin6->sin6_family = AF_INET6; 7385 sin6->sin6_flowinfo = 7386 tcp->tcp_ip6h->ip6_vcf & 7387 ~IPV6_VERS_AND_FLOW_MASK; 7388 sin6->sin6_addr = tcp->tcp_remote_v6; 7389 sin6->sin6_port = tcp->tcp_fport; 7390 7391 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7392 } 7393 } 7394 putnext(tcp->tcp_rq, ackmp); 7395 } 7396 7397 /* 7398 * Handle reinitialization of a tcp structure. 7399 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7400 */ 7401 static void 7402 tcp_reinit(tcp_t *tcp) 7403 { 7404 mblk_t *mp; 7405 int err; 7406 tcp_stack_t *tcps = tcp->tcp_tcps; 7407 7408 TCP_STAT(tcps, tcp_reinit_calls); 7409 7410 /* tcp_reinit should never be called for detached tcp_t's */ 7411 ASSERT(tcp->tcp_listener == NULL); 7412 ASSERT((tcp->tcp_family == AF_INET && 7413 tcp->tcp_ipversion == IPV4_VERSION) || 7414 (tcp->tcp_family == AF_INET6 && 7415 (tcp->tcp_ipversion == IPV4_VERSION || 7416 tcp->tcp_ipversion == IPV6_VERSION))); 7417 7418 /* Cancel outstanding timers */ 7419 tcp_timers_stop(tcp); 7420 7421 /* 7422 * Reset everything in the state vector, after updating global 7423 * MIB data from instance counters. 7424 */ 7425 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7426 tcp->tcp_ibsegs = 0; 7427 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7428 tcp->tcp_obsegs = 0; 7429 7430 tcp_close_mpp(&tcp->tcp_xmit_head); 7431 if (tcp->tcp_snd_zcopy_aware) 7432 tcp_zcopy_notify(tcp); 7433 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7434 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7435 mutex_enter(&tcp->tcp_non_sq_lock); 7436 if (tcp->tcp_flow_stopped && 7437 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7438 tcp_clrqfull(tcp); 7439 } 7440 mutex_exit(&tcp->tcp_non_sq_lock); 7441 tcp_close_mpp(&tcp->tcp_reass_head); 7442 tcp->tcp_reass_tail = NULL; 7443 if (tcp->tcp_rcv_list != NULL) { 7444 /* Free b_next chain */ 7445 tcp_close_mpp(&tcp->tcp_rcv_list); 7446 tcp->tcp_rcv_last_head = NULL; 7447 tcp->tcp_rcv_last_tail = NULL; 7448 tcp->tcp_rcv_cnt = 0; 7449 } 7450 tcp->tcp_rcv_last_tail = NULL; 7451 7452 if ((mp = tcp->tcp_urp_mp) != NULL) { 7453 freemsg(mp); 7454 tcp->tcp_urp_mp = NULL; 7455 } 7456 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7457 freemsg(mp); 7458 tcp->tcp_urp_mark_mp = NULL; 7459 } 7460 if (tcp->tcp_fused_sigurg_mp != NULL) { 7461 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7462 freeb(tcp->tcp_fused_sigurg_mp); 7463 tcp->tcp_fused_sigurg_mp = NULL; 7464 } 7465 if (tcp->tcp_ordrel_mp != NULL) { 7466 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7467 freeb(tcp->tcp_ordrel_mp); 7468 tcp->tcp_ordrel_mp = NULL; 7469 } 7470 7471 /* 7472 * Following is a union with two members which are 7473 * identical types and size so the following cleanup 7474 * is enough. 7475 */ 7476 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7477 7478 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7479 7480 /* 7481 * The connection can't be on the tcp_time_wait_head list 7482 * since it is not detached. 7483 */ 7484 ASSERT(tcp->tcp_time_wait_next == NULL); 7485 ASSERT(tcp->tcp_time_wait_prev == NULL); 7486 ASSERT(tcp->tcp_time_wait_expire == 0); 7487 7488 if (tcp->tcp_kssl_pending) { 7489 tcp->tcp_kssl_pending = B_FALSE; 7490 7491 /* Don't reset if the initialized by bind. */ 7492 if (tcp->tcp_kssl_ent != NULL) { 7493 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7494 KSSL_NO_PROXY); 7495 } 7496 } 7497 if (tcp->tcp_kssl_ctx != NULL) { 7498 kssl_release_ctx(tcp->tcp_kssl_ctx); 7499 tcp->tcp_kssl_ctx = NULL; 7500 } 7501 7502 /* 7503 * Reset/preserve other values 7504 */ 7505 tcp_reinit_values(tcp); 7506 ipcl_hash_remove(tcp->tcp_connp); 7507 conn_delete_ire(tcp->tcp_connp, NULL); 7508 tcp_ipsec_cleanup(tcp); 7509 7510 if (tcp->tcp_connp->conn_effective_cred != NULL) { 7511 crfree(tcp->tcp_connp->conn_effective_cred); 7512 tcp->tcp_connp->conn_effective_cred = NULL; 7513 } 7514 7515 if (tcp->tcp_conn_req_max != 0) { 7516 /* 7517 * This is the case when a TLI program uses the same 7518 * transport end point to accept a connection. This 7519 * makes the TCP both a listener and acceptor. When 7520 * this connection is closed, we need to set the state 7521 * back to TCPS_LISTEN. Make sure that the eager list 7522 * is reinitialized. 7523 * 7524 * Note that this stream is still bound to the four 7525 * tuples of the previous connection in IP. If a new 7526 * SYN with different foreign address comes in, IP will 7527 * not find it and will send it to the global queue. In 7528 * the global queue, TCP will do a tcp_lookup_listener() 7529 * to find this stream. This works because this stream 7530 * is only removed from connected hash. 7531 * 7532 */ 7533 tcp->tcp_state = TCPS_LISTEN; 7534 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7535 tcp->tcp_eager_next_drop_q0 = tcp; 7536 tcp->tcp_eager_prev_drop_q0 = tcp; 7537 tcp->tcp_connp->conn_recv = tcp_conn_request; 7538 if (tcp->tcp_family == AF_INET6) { 7539 ASSERT(tcp->tcp_connp->conn_af_isv6); 7540 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7541 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7542 } else { 7543 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7544 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7545 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7546 } 7547 } else { 7548 tcp->tcp_state = TCPS_BOUND; 7549 } 7550 7551 /* 7552 * Initialize to default values 7553 * Can't fail since enough header template space already allocated 7554 * at open(). 7555 */ 7556 err = tcp_init_values(tcp); 7557 ASSERT(err == 0); 7558 /* Restore state in tcp_tcph */ 7559 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7560 if (tcp->tcp_ipversion == IPV4_VERSION) 7561 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7562 else 7563 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7564 /* 7565 * Copy of the src addr. in tcp_t is needed in tcp_t 7566 * since the lookup funcs can only lookup on tcp_t 7567 */ 7568 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7569 7570 ASSERT(tcp->tcp_ptpbhn != NULL); 7571 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 7572 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7573 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7574 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7575 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7576 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7577 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7578 } 7579 7580 /* 7581 * Force values to zero that need be zero. 7582 * Do not touch values asociated with the BOUND or LISTEN state 7583 * since the connection will end up in that state after the reinit. 7584 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7585 * structure! 7586 */ 7587 static void 7588 tcp_reinit_values(tcp) 7589 tcp_t *tcp; 7590 { 7591 tcp_stack_t *tcps = tcp->tcp_tcps; 7592 7593 #ifndef lint 7594 #define DONTCARE(x) 7595 #define PRESERVE(x) 7596 #else 7597 #define DONTCARE(x) ((x) = (x)) 7598 #define PRESERVE(x) ((x) = (x)) 7599 #endif /* lint */ 7600 7601 PRESERVE(tcp->tcp_bind_hash_port); 7602 PRESERVE(tcp->tcp_bind_hash); 7603 PRESERVE(tcp->tcp_ptpbhn); 7604 PRESERVE(tcp->tcp_acceptor_hash); 7605 PRESERVE(tcp->tcp_ptpahn); 7606 7607 /* Should be ASSERT NULL on these with new code! */ 7608 ASSERT(tcp->tcp_time_wait_next == NULL); 7609 ASSERT(tcp->tcp_time_wait_prev == NULL); 7610 ASSERT(tcp->tcp_time_wait_expire == 0); 7611 PRESERVE(tcp->tcp_state); 7612 PRESERVE(tcp->tcp_rq); 7613 PRESERVE(tcp->tcp_wq); 7614 7615 ASSERT(tcp->tcp_xmit_head == NULL); 7616 ASSERT(tcp->tcp_xmit_last == NULL); 7617 ASSERT(tcp->tcp_unsent == 0); 7618 ASSERT(tcp->tcp_xmit_tail == NULL); 7619 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7620 7621 tcp->tcp_snxt = 0; /* Displayed in mib */ 7622 tcp->tcp_suna = 0; /* Displayed in mib */ 7623 tcp->tcp_swnd = 0; 7624 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7625 7626 ASSERT(tcp->tcp_ibsegs == 0); 7627 ASSERT(tcp->tcp_obsegs == 0); 7628 7629 if (tcp->tcp_iphc != NULL) { 7630 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7631 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7632 } 7633 7634 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7635 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7636 DONTCARE(tcp->tcp_ipha); 7637 DONTCARE(tcp->tcp_ip6h); 7638 DONTCARE(tcp->tcp_ip_hdr_len); 7639 DONTCARE(tcp->tcp_tcph); 7640 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7641 tcp->tcp_valid_bits = 0; 7642 7643 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7644 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7645 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7646 tcp->tcp_last_rcv_lbolt = 0; 7647 7648 tcp->tcp_init_cwnd = 0; 7649 7650 tcp->tcp_urp_last_valid = 0; 7651 tcp->tcp_hard_binding = 0; 7652 tcp->tcp_hard_bound = 0; 7653 PRESERVE(tcp->tcp_cred); 7654 PRESERVE(tcp->tcp_cpid); 7655 PRESERVE(tcp->tcp_open_time); 7656 PRESERVE(tcp->tcp_exclbind); 7657 7658 tcp->tcp_fin_acked = 0; 7659 tcp->tcp_fin_rcvd = 0; 7660 tcp->tcp_fin_sent = 0; 7661 tcp->tcp_ordrel_done = 0; 7662 7663 tcp->tcp_debug = 0; 7664 tcp->tcp_dontroute = 0; 7665 tcp->tcp_broadcast = 0; 7666 7667 tcp->tcp_useloopback = 0; 7668 tcp->tcp_reuseaddr = 0; 7669 tcp->tcp_oobinline = 0; 7670 tcp->tcp_dgram_errind = 0; 7671 7672 tcp->tcp_detached = 0; 7673 tcp->tcp_bind_pending = 0; 7674 tcp->tcp_unbind_pending = 0; 7675 7676 tcp->tcp_snd_ws_ok = B_FALSE; 7677 tcp->tcp_snd_ts_ok = B_FALSE; 7678 tcp->tcp_linger = 0; 7679 tcp->tcp_ka_enabled = 0; 7680 tcp->tcp_zero_win_probe = 0; 7681 7682 tcp->tcp_loopback = 0; 7683 tcp->tcp_refuse = 0; 7684 tcp->tcp_localnet = 0; 7685 tcp->tcp_syn_defense = 0; 7686 tcp->tcp_set_timer = 0; 7687 7688 tcp->tcp_active_open = 0; 7689 tcp->tcp_rexmit = B_FALSE; 7690 tcp->tcp_xmit_zc_clean = B_FALSE; 7691 7692 tcp->tcp_snd_sack_ok = B_FALSE; 7693 PRESERVE(tcp->tcp_recvdstaddr); 7694 tcp->tcp_hwcksum = B_FALSE; 7695 7696 tcp->tcp_ire_ill_check_done = B_FALSE; 7697 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7698 7699 tcp->tcp_mdt = B_FALSE; 7700 tcp->tcp_mdt_hdr_head = 0; 7701 tcp->tcp_mdt_hdr_tail = 0; 7702 7703 tcp->tcp_conn_def_q0 = 0; 7704 tcp->tcp_ip_forward_progress = B_FALSE; 7705 tcp->tcp_anon_priv_bind = 0; 7706 tcp->tcp_ecn_ok = B_FALSE; 7707 7708 tcp->tcp_cwr = B_FALSE; 7709 tcp->tcp_ecn_echo_on = B_FALSE; 7710 tcp->tcp_is_wnd_shrnk = B_FALSE; 7711 7712 if (tcp->tcp_sack_info != NULL) { 7713 if (tcp->tcp_notsack_list != NULL) { 7714 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 7715 tcp); 7716 } 7717 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7718 tcp->tcp_sack_info = NULL; 7719 } 7720 7721 tcp->tcp_rcv_ws = 0; 7722 tcp->tcp_snd_ws = 0; 7723 tcp->tcp_ts_recent = 0; 7724 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7725 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7726 tcp->tcp_if_mtu = 0; 7727 7728 ASSERT(tcp->tcp_reass_head == NULL); 7729 ASSERT(tcp->tcp_reass_tail == NULL); 7730 7731 tcp->tcp_cwnd_cnt = 0; 7732 7733 ASSERT(tcp->tcp_rcv_list == NULL); 7734 ASSERT(tcp->tcp_rcv_last_head == NULL); 7735 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7736 ASSERT(tcp->tcp_rcv_cnt == 0); 7737 7738 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7739 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7740 tcp->tcp_csuna = 0; 7741 7742 tcp->tcp_rto = 0; /* Displayed in MIB */ 7743 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7744 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7745 tcp->tcp_rtt_update = 0; 7746 7747 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7748 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7749 7750 tcp->tcp_rack = 0; /* Displayed in mib */ 7751 tcp->tcp_rack_cnt = 0; 7752 tcp->tcp_rack_cur_max = 0; 7753 tcp->tcp_rack_abs_max = 0; 7754 7755 tcp->tcp_max_swnd = 0; 7756 7757 ASSERT(tcp->tcp_listener == NULL); 7758 7759 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7760 7761 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7762 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7763 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7764 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7765 7766 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7767 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7768 PRESERVE(tcp->tcp_conn_req_max); 7769 PRESERVE(tcp->tcp_conn_req_seqnum); 7770 7771 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7772 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7773 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7774 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7775 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7776 7777 tcp->tcp_lingertime = 0; 7778 7779 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7780 ASSERT(tcp->tcp_urp_mp == NULL); 7781 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7782 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7783 7784 ASSERT(tcp->tcp_eager_next_q == NULL); 7785 ASSERT(tcp->tcp_eager_last_q == NULL); 7786 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7787 tcp->tcp_eager_prev_q0 == NULL) || 7788 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7789 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7790 7791 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7792 tcp->tcp_eager_prev_drop_q0 == NULL) || 7793 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7794 7795 tcp->tcp_client_errno = 0; 7796 7797 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7798 7799 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7800 7801 PRESERVE(tcp->tcp_bound_source_v6); 7802 tcp->tcp_last_sent_len = 0; 7803 tcp->tcp_dupack_cnt = 0; 7804 7805 tcp->tcp_fport = 0; /* Displayed in MIB */ 7806 PRESERVE(tcp->tcp_lport); 7807 7808 PRESERVE(tcp->tcp_acceptor_lockp); 7809 7810 ASSERT(tcp->tcp_ordrel_mp == NULL); 7811 PRESERVE(tcp->tcp_acceptor_id); 7812 DONTCARE(tcp->tcp_ipsec_overhead); 7813 7814 PRESERVE(tcp->tcp_family); 7815 if (tcp->tcp_family == AF_INET6) { 7816 tcp->tcp_ipversion = IPV6_VERSION; 7817 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7818 } else { 7819 tcp->tcp_ipversion = IPV4_VERSION; 7820 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7821 } 7822 7823 tcp->tcp_bound_if = 0; 7824 tcp->tcp_ipv6_recvancillary = 0; 7825 tcp->tcp_recvifindex = 0; 7826 tcp->tcp_recvhops = 0; 7827 tcp->tcp_closed = 0; 7828 tcp->tcp_cleandeathtag = 0; 7829 if (tcp->tcp_hopopts != NULL) { 7830 mi_free(tcp->tcp_hopopts); 7831 tcp->tcp_hopopts = NULL; 7832 tcp->tcp_hopoptslen = 0; 7833 } 7834 ASSERT(tcp->tcp_hopoptslen == 0); 7835 if (tcp->tcp_dstopts != NULL) { 7836 mi_free(tcp->tcp_dstopts); 7837 tcp->tcp_dstopts = NULL; 7838 tcp->tcp_dstoptslen = 0; 7839 } 7840 ASSERT(tcp->tcp_dstoptslen == 0); 7841 if (tcp->tcp_rtdstopts != NULL) { 7842 mi_free(tcp->tcp_rtdstopts); 7843 tcp->tcp_rtdstopts = NULL; 7844 tcp->tcp_rtdstoptslen = 0; 7845 } 7846 ASSERT(tcp->tcp_rtdstoptslen == 0); 7847 if (tcp->tcp_rthdr != NULL) { 7848 mi_free(tcp->tcp_rthdr); 7849 tcp->tcp_rthdr = NULL; 7850 tcp->tcp_rthdrlen = 0; 7851 } 7852 ASSERT(tcp->tcp_rthdrlen == 0); 7853 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7854 7855 /* Reset fusion-related fields */ 7856 tcp->tcp_fused = B_FALSE; 7857 tcp->tcp_unfusable = B_FALSE; 7858 tcp->tcp_fused_sigurg = B_FALSE; 7859 tcp->tcp_loopback_peer = NULL; 7860 tcp->tcp_fuse_rcv_hiwater = 0; 7861 7862 tcp->tcp_lso = B_FALSE; 7863 7864 tcp->tcp_in_ack_unsent = 0; 7865 tcp->tcp_cork = B_FALSE; 7866 tcp->tcp_tconnind_started = B_FALSE; 7867 7868 PRESERVE(tcp->tcp_squeue_bytes); 7869 7870 ASSERT(tcp->tcp_kssl_ctx == NULL); 7871 ASSERT(!tcp->tcp_kssl_pending); 7872 PRESERVE(tcp->tcp_kssl_ent); 7873 7874 tcp->tcp_closemp_used = B_FALSE; 7875 7876 PRESERVE(tcp->tcp_rsrv_mp); 7877 PRESERVE(tcp->tcp_rsrv_mp_lock); 7878 7879 #ifdef DEBUG 7880 DONTCARE(tcp->tcmp_stk[0]); 7881 #endif 7882 7883 PRESERVE(tcp->tcp_connid); 7884 7885 7886 #undef DONTCARE 7887 #undef PRESERVE 7888 } 7889 7890 /* 7891 * Allocate necessary resources and initialize state vector. 7892 * Guaranteed not to fail so that when an error is returned, 7893 * the caller doesn't need to do any additional cleanup. 7894 */ 7895 int 7896 tcp_init(tcp_t *tcp, queue_t *q) 7897 { 7898 int err; 7899 7900 tcp->tcp_rq = q; 7901 tcp->tcp_wq = WR(q); 7902 tcp->tcp_state = TCPS_IDLE; 7903 if ((err = tcp_init_values(tcp)) != 0) 7904 tcp_timers_stop(tcp); 7905 return (err); 7906 } 7907 7908 static int 7909 tcp_init_values(tcp_t *tcp) 7910 { 7911 int err; 7912 tcp_stack_t *tcps = tcp->tcp_tcps; 7913 7914 ASSERT((tcp->tcp_family == AF_INET && 7915 tcp->tcp_ipversion == IPV4_VERSION) || 7916 (tcp->tcp_family == AF_INET6 && 7917 (tcp->tcp_ipversion == IPV4_VERSION || 7918 tcp->tcp_ipversion == IPV6_VERSION))); 7919 7920 /* 7921 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7922 * will be close to tcp_rexmit_interval_initial. By doing this, we 7923 * allow the algorithm to adjust slowly to large fluctuations of RTT 7924 * during first few transmissions of a connection as seen in slow 7925 * links. 7926 */ 7927 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7928 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7929 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7930 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7931 tcps->tcps_conn_grace_period; 7932 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7933 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7934 tcp->tcp_timer_backoff = 0; 7935 tcp->tcp_ms_we_have_waited = 0; 7936 tcp->tcp_last_recv_time = lbolt; 7937 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7938 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7939 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7940 7941 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7942 7943 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7944 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7945 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7946 /* 7947 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7948 * passive open. 7949 */ 7950 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7951 7952 tcp->tcp_naglim = tcps->tcps_naglim_def; 7953 7954 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7955 7956 tcp->tcp_mdt_hdr_head = 0; 7957 tcp->tcp_mdt_hdr_tail = 0; 7958 7959 /* Reset fusion-related fields */ 7960 tcp->tcp_fused = B_FALSE; 7961 tcp->tcp_unfusable = B_FALSE; 7962 tcp->tcp_fused_sigurg = B_FALSE; 7963 tcp->tcp_loopback_peer = NULL; 7964 tcp->tcp_fuse_rcv_hiwater = 0; 7965 7966 /* Initialize the header template */ 7967 if (tcp->tcp_ipversion == IPV4_VERSION) { 7968 err = tcp_header_init_ipv4(tcp); 7969 } else { 7970 err = tcp_header_init_ipv6(tcp); 7971 } 7972 if (err) 7973 return (err); 7974 7975 /* 7976 * Init the window scale to the max so tcp_rwnd_set() won't pare 7977 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7978 */ 7979 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7980 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7981 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7982 7983 tcp->tcp_cork = B_FALSE; 7984 /* 7985 * Init the tcp_debug option. This value determines whether TCP 7986 * calls strlog() to print out debug messages. Doing this 7987 * initialization here means that this value is not inherited thru 7988 * tcp_reinit(). 7989 */ 7990 tcp->tcp_debug = tcps->tcps_dbg; 7991 7992 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 7993 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 7994 7995 return (0); 7996 } 7997 7998 /* 7999 * Initialize the IPv4 header. Loses any record of any IP options. 8000 */ 8001 static int 8002 tcp_header_init_ipv4(tcp_t *tcp) 8003 { 8004 tcph_t *tcph; 8005 uint32_t sum; 8006 conn_t *connp; 8007 tcp_stack_t *tcps = tcp->tcp_tcps; 8008 8009 /* 8010 * This is a simple initialization. If there's 8011 * already a template, it should never be too small, 8012 * so reuse it. Otherwise, allocate space for the new one. 8013 */ 8014 if (tcp->tcp_iphc == NULL) { 8015 ASSERT(tcp->tcp_iphc_len == 0); 8016 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8017 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8018 if (tcp->tcp_iphc == NULL) { 8019 tcp->tcp_iphc_len = 0; 8020 return (ENOMEM); 8021 } 8022 } 8023 8024 /* options are gone; may need a new label */ 8025 connp = tcp->tcp_connp; 8026 connp->conn_mlp_type = mlptSingle; 8027 connp->conn_ulp_labeled = !is_system_labeled(); 8028 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8029 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8030 tcp->tcp_ip6h = NULL; 8031 tcp->tcp_ipversion = IPV4_VERSION; 8032 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8033 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8034 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8035 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8036 tcp->tcp_ipha->ipha_version_and_hdr_length 8037 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8038 tcp->tcp_ipha->ipha_ident = 0; 8039 8040 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8041 tcp->tcp_tos = 0; 8042 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8043 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8044 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8045 8046 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8047 tcp->tcp_tcph = tcph; 8048 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8049 /* 8050 * IP wants our header length in the checksum field to 8051 * allow it to perform a single pseudo-header+checksum 8052 * calculation on behalf of TCP. 8053 * Include the adjustment for a source route once IP_OPTIONS is set. 8054 */ 8055 sum = sizeof (tcph_t) + tcp->tcp_sum; 8056 sum = (sum >> 16) + (sum & 0xFFFF); 8057 U16_TO_ABE16(sum, tcph->th_sum); 8058 return (0); 8059 } 8060 8061 /* 8062 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8063 */ 8064 static int 8065 tcp_header_init_ipv6(tcp_t *tcp) 8066 { 8067 tcph_t *tcph; 8068 uint32_t sum; 8069 conn_t *connp; 8070 tcp_stack_t *tcps = tcp->tcp_tcps; 8071 8072 /* 8073 * This is a simple initialization. If there's 8074 * already a template, it should never be too small, 8075 * so reuse it. Otherwise, allocate space for the new one. 8076 * Ensure that there is enough space to "downgrade" the tcp_t 8077 * to an IPv4 tcp_t. This requires having space for a full load 8078 * of IPv4 options, as well as a full load of TCP options 8079 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8080 * than a v6 header and a TCP header with a full load of TCP options 8081 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8082 * We want to avoid reallocation in the "downgraded" case when 8083 * processing outbound IPv4 options. 8084 */ 8085 if (tcp->tcp_iphc == NULL) { 8086 ASSERT(tcp->tcp_iphc_len == 0); 8087 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8088 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8089 if (tcp->tcp_iphc == NULL) { 8090 tcp->tcp_iphc_len = 0; 8091 return (ENOMEM); 8092 } 8093 } 8094 8095 /* options are gone; may need a new label */ 8096 connp = tcp->tcp_connp; 8097 connp->conn_mlp_type = mlptSingle; 8098 connp->conn_ulp_labeled = !is_system_labeled(); 8099 8100 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8101 tcp->tcp_ipversion = IPV6_VERSION; 8102 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8103 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8104 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8105 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8106 tcp->tcp_ipha = NULL; 8107 8108 /* Initialize the header template */ 8109 8110 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8111 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8112 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8113 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8114 8115 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8116 tcp->tcp_tcph = tcph; 8117 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8118 /* 8119 * IP wants our header length in the checksum field to 8120 * allow it to perform a single psuedo-header+checksum 8121 * calculation on behalf of TCP. 8122 * Include the adjustment for a source route when IPV6_RTHDR is set. 8123 */ 8124 sum = sizeof (tcph_t) + tcp->tcp_sum; 8125 sum = (sum >> 16) + (sum & 0xFFFF); 8126 U16_TO_ABE16(sum, tcph->th_sum); 8127 return (0); 8128 } 8129 8130 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8131 #define ICMP_MIN_TCP_HDR 8 8132 8133 /* 8134 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8135 * passed up by IP. The message is always received on the correct tcp_t. 8136 * Assumes that IP has pulled up everything up to and including the ICMP header. 8137 */ 8138 void 8139 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8140 { 8141 icmph_t *icmph; 8142 ipha_t *ipha; 8143 int iph_hdr_length; 8144 tcph_t *tcph; 8145 boolean_t ipsec_mctl = B_FALSE; 8146 boolean_t secure; 8147 mblk_t *first_mp = mp; 8148 int32_t new_mss; 8149 uint32_t ratio; 8150 size_t mp_size = MBLKL(mp); 8151 uint32_t seg_seq; 8152 tcp_stack_t *tcps = tcp->tcp_tcps; 8153 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8154 8155 /* Assume IP provides aligned packets - otherwise toss */ 8156 if (!OK_32PTR(mp->b_rptr)) { 8157 freemsg(mp); 8158 return; 8159 } 8160 8161 /* 8162 * Since ICMP errors are normal data marked with M_CTL when sent 8163 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8164 * packets starting with an ipsec_info_t, see ipsec_info.h. 8165 */ 8166 if ((mp_size == sizeof (ipsec_info_t)) && 8167 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8168 ASSERT(mp->b_cont != NULL); 8169 mp = mp->b_cont; 8170 /* IP should have done this */ 8171 ASSERT(OK_32PTR(mp->b_rptr)); 8172 mp_size = MBLKL(mp); 8173 ipsec_mctl = B_TRUE; 8174 } 8175 8176 /* 8177 * Verify that we have a complete outer IP header. If not, drop it. 8178 */ 8179 if (mp_size < sizeof (ipha_t)) { 8180 noticmpv4: 8181 freemsg(first_mp); 8182 return; 8183 } 8184 8185 ipha = (ipha_t *)mp->b_rptr; 8186 /* 8187 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8188 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8189 */ 8190 switch (IPH_HDR_VERSION(ipha)) { 8191 case IPV6_VERSION: 8192 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8193 return; 8194 case IPV4_VERSION: 8195 break; 8196 default: 8197 goto noticmpv4; 8198 } 8199 8200 /* Skip past the outer IP and ICMP headers */ 8201 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8202 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8203 /* 8204 * If we don't have the correct outer IP header length or if the ULP 8205 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8206 * send it upstream. 8207 */ 8208 if (iph_hdr_length < sizeof (ipha_t) || 8209 ipha->ipha_protocol != IPPROTO_ICMP || 8210 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8211 goto noticmpv4; 8212 } 8213 ipha = (ipha_t *)&icmph[1]; 8214 8215 /* Skip past the inner IP and find the ULP header */ 8216 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8217 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8218 /* 8219 * If we don't have the correct inner IP header length or if the ULP 8220 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8221 * bytes of TCP header, drop it. 8222 */ 8223 if (iph_hdr_length < sizeof (ipha_t) || 8224 ipha->ipha_protocol != IPPROTO_TCP || 8225 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8226 goto noticmpv4; 8227 } 8228 8229 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8230 if (ipsec_mctl) { 8231 secure = ipsec_in_is_secure(first_mp); 8232 } else { 8233 secure = B_FALSE; 8234 } 8235 if (secure) { 8236 /* 8237 * If we are willing to accept this in clear 8238 * we don't have to verify policy. 8239 */ 8240 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8241 if (!tcp_check_policy(tcp, first_mp, 8242 ipha, NULL, secure, ipsec_mctl)) { 8243 /* 8244 * tcp_check_policy called 8245 * ip_drop_packet() on failure. 8246 */ 8247 return; 8248 } 8249 } 8250 } 8251 } else if (ipsec_mctl) { 8252 /* 8253 * This is a hard_bound connection. IP has already 8254 * verified policy. We don't have to do it again. 8255 */ 8256 freeb(first_mp); 8257 first_mp = mp; 8258 ipsec_mctl = B_FALSE; 8259 } 8260 8261 seg_seq = ABE32_TO_U32(tcph->th_seq); 8262 /* 8263 * TCP SHOULD check that the TCP sequence number contained in 8264 * payload of the ICMP error message is within the range 8265 * SND.UNA <= SEG.SEQ < SND.NXT. 8266 */ 8267 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8268 /* 8269 * The ICMP message is bogus, just drop it. But if this is 8270 * an ICMP too big message, IP has already changed 8271 * the ire_max_frag to the bogus value. We need to change 8272 * it back. 8273 */ 8274 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8275 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8276 conn_t *connp = tcp->tcp_connp; 8277 ire_t *ire; 8278 int flag; 8279 8280 if (tcp->tcp_ipversion == IPV4_VERSION) { 8281 flag = tcp->tcp_ipha-> 8282 ipha_fragment_offset_and_flags; 8283 } else { 8284 flag = 0; 8285 } 8286 mutex_enter(&connp->conn_lock); 8287 if ((ire = connp->conn_ire_cache) != NULL) { 8288 mutex_enter(&ire->ire_lock); 8289 mutex_exit(&connp->conn_lock); 8290 ire->ire_max_frag = tcp->tcp_if_mtu; 8291 ire->ire_frag_flag |= flag; 8292 mutex_exit(&ire->ire_lock); 8293 } else { 8294 mutex_exit(&connp->conn_lock); 8295 } 8296 } 8297 goto noticmpv4; 8298 } 8299 8300 switch (icmph->icmph_type) { 8301 case ICMP_DEST_UNREACHABLE: 8302 switch (icmph->icmph_code) { 8303 case ICMP_FRAGMENTATION_NEEDED: 8304 /* 8305 * Reduce the MSS based on the new MTU. This will 8306 * eliminate any fragmentation locally. 8307 * N.B. There may well be some funny side-effects on 8308 * the local send policy and the remote receive policy. 8309 * Pending further research, we provide 8310 * tcp_ignore_path_mtu just in case this proves 8311 * disastrous somewhere. 8312 * 8313 * After updating the MSS, retransmit part of the 8314 * dropped segment using the new mss by calling 8315 * tcp_wput_data(). Need to adjust all those 8316 * params to make sure tcp_wput_data() work properly. 8317 */ 8318 if (tcps->tcps_ignore_path_mtu || 8319 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8320 break; 8321 8322 /* 8323 * Decrease the MSS by time stamp options 8324 * IP options and IPSEC options. tcp_hdr_len 8325 * includes time stamp option and IP option 8326 * length. Note that new_mss may be negative 8327 * if tcp_ipsec_overhead is large and the 8328 * icmph_du_mtu is the minimum value, which is 68. 8329 */ 8330 new_mss = ntohs(icmph->icmph_du_mtu) - 8331 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8332 8333 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8334 new_mss); 8335 8336 /* 8337 * Only update the MSS if the new one is 8338 * smaller than the previous one. This is 8339 * to avoid problems when getting multiple 8340 * ICMP errors for the same MTU. 8341 */ 8342 if (new_mss >= tcp->tcp_mss) 8343 break; 8344 8345 /* 8346 * Note that we are using the template header's DF 8347 * bit in the fast path sending. So we need to compare 8348 * the new mss with both tcps_mss_min and ip_pmtu_min. 8349 * And stop doing IPv4 PMTUd if new_mss is less than 8350 * MAX(tcps_mss_min, ip_pmtu_min). 8351 */ 8352 if (new_mss < tcps->tcps_mss_min || 8353 new_mss < ipst->ips_ip_pmtu_min) { 8354 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8355 0; 8356 } 8357 8358 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8359 ASSERT(ratio >= 1); 8360 tcp_mss_set(tcp, new_mss, B_TRUE); 8361 8362 /* 8363 * Make sure we have something to 8364 * send. 8365 */ 8366 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8367 (tcp->tcp_xmit_head != NULL)) { 8368 /* 8369 * Shrink tcp_cwnd in 8370 * proportion to the old MSS/new MSS. 8371 */ 8372 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8373 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8374 (tcp->tcp_unsent == 0)) { 8375 tcp->tcp_rexmit_max = tcp->tcp_fss; 8376 } else { 8377 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8378 } 8379 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8380 tcp->tcp_rexmit = B_TRUE; 8381 tcp->tcp_dupack_cnt = 0; 8382 tcp->tcp_snd_burst = TCP_CWND_SS; 8383 tcp_ss_rexmit(tcp); 8384 } 8385 break; 8386 case ICMP_PORT_UNREACHABLE: 8387 case ICMP_PROTOCOL_UNREACHABLE: 8388 switch (tcp->tcp_state) { 8389 case TCPS_SYN_SENT: 8390 case TCPS_SYN_RCVD: 8391 /* 8392 * ICMP can snipe away incipient 8393 * TCP connections as long as 8394 * seq number is same as initial 8395 * send seq number. 8396 */ 8397 if (seg_seq == tcp->tcp_iss) { 8398 (void) tcp_clean_death(tcp, 8399 ECONNREFUSED, 6); 8400 } 8401 break; 8402 } 8403 break; 8404 case ICMP_HOST_UNREACHABLE: 8405 case ICMP_NET_UNREACHABLE: 8406 /* Record the error in case we finally time out. */ 8407 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8408 tcp->tcp_client_errno = EHOSTUNREACH; 8409 else 8410 tcp->tcp_client_errno = ENETUNREACH; 8411 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8412 if (tcp->tcp_listener != NULL && 8413 tcp->tcp_listener->tcp_syn_defense) { 8414 /* 8415 * Ditch the half-open connection if we 8416 * suspect a SYN attack is under way. 8417 */ 8418 tcp_ip_ire_mark_advice(tcp); 8419 (void) tcp_clean_death(tcp, 8420 tcp->tcp_client_errno, 7); 8421 } 8422 } 8423 break; 8424 default: 8425 break; 8426 } 8427 break; 8428 case ICMP_SOURCE_QUENCH: { 8429 /* 8430 * use a global boolean to control 8431 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8432 * The default is false. 8433 */ 8434 if (tcp_icmp_source_quench) { 8435 /* 8436 * Reduce the sending rate as if we got a 8437 * retransmit timeout 8438 */ 8439 uint32_t npkt; 8440 8441 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8442 tcp->tcp_mss; 8443 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8444 tcp->tcp_cwnd = tcp->tcp_mss; 8445 tcp->tcp_cwnd_cnt = 0; 8446 } 8447 break; 8448 } 8449 } 8450 freemsg(first_mp); 8451 } 8452 8453 /* 8454 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8455 * error messages passed up by IP. 8456 * Assumes that IP has pulled up all the extension headers as well 8457 * as the ICMPv6 header. 8458 */ 8459 static void 8460 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8461 { 8462 icmp6_t *icmp6; 8463 ip6_t *ip6h; 8464 uint16_t iph_hdr_length; 8465 tcpha_t *tcpha; 8466 uint8_t *nexthdrp; 8467 uint32_t new_mss; 8468 uint32_t ratio; 8469 boolean_t secure; 8470 mblk_t *first_mp = mp; 8471 size_t mp_size; 8472 uint32_t seg_seq; 8473 tcp_stack_t *tcps = tcp->tcp_tcps; 8474 8475 /* 8476 * The caller has determined if this is an IPSEC_IN packet and 8477 * set ipsec_mctl appropriately (see tcp_icmp_error). 8478 */ 8479 if (ipsec_mctl) 8480 mp = mp->b_cont; 8481 8482 mp_size = MBLKL(mp); 8483 8484 /* 8485 * Verify that we have a complete IP header. If not, send it upstream. 8486 */ 8487 if (mp_size < sizeof (ip6_t)) { 8488 noticmpv6: 8489 freemsg(first_mp); 8490 return; 8491 } 8492 8493 /* 8494 * Verify this is an ICMPV6 packet, else send it upstream. 8495 */ 8496 ip6h = (ip6_t *)mp->b_rptr; 8497 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8498 iph_hdr_length = IPV6_HDR_LEN; 8499 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8500 &nexthdrp) || 8501 *nexthdrp != IPPROTO_ICMPV6) { 8502 goto noticmpv6; 8503 } 8504 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8505 ip6h = (ip6_t *)&icmp6[1]; 8506 /* 8507 * Verify if we have a complete ICMP and inner IP header. 8508 */ 8509 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8510 goto noticmpv6; 8511 8512 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8513 goto noticmpv6; 8514 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8515 /* 8516 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8517 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8518 * packet. 8519 */ 8520 if ((*nexthdrp != IPPROTO_TCP) || 8521 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8522 goto noticmpv6; 8523 } 8524 8525 /* 8526 * ICMP errors come on the right queue or come on 8527 * listener/global queue for detached connections and 8528 * get switched to the right queue. If it comes on the 8529 * right queue, policy check has already been done by IP 8530 * and thus free the first_mp without verifying the policy. 8531 * If it has come for a non-hard bound connection, we need 8532 * to verify policy as IP may not have done it. 8533 */ 8534 if (!tcp->tcp_hard_bound) { 8535 if (ipsec_mctl) { 8536 secure = ipsec_in_is_secure(first_mp); 8537 } else { 8538 secure = B_FALSE; 8539 } 8540 if (secure) { 8541 /* 8542 * If we are willing to accept this in clear 8543 * we don't have to verify policy. 8544 */ 8545 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8546 if (!tcp_check_policy(tcp, first_mp, 8547 NULL, ip6h, secure, ipsec_mctl)) { 8548 /* 8549 * tcp_check_policy called 8550 * ip_drop_packet() on failure. 8551 */ 8552 return; 8553 } 8554 } 8555 } 8556 } else if (ipsec_mctl) { 8557 /* 8558 * This is a hard_bound connection. IP has already 8559 * verified policy. We don't have to do it again. 8560 */ 8561 freeb(first_mp); 8562 first_mp = mp; 8563 ipsec_mctl = B_FALSE; 8564 } 8565 8566 seg_seq = ntohl(tcpha->tha_seq); 8567 /* 8568 * TCP SHOULD check that the TCP sequence number contained in 8569 * payload of the ICMP error message is within the range 8570 * SND.UNA <= SEG.SEQ < SND.NXT. 8571 */ 8572 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8573 /* 8574 * If the ICMP message is bogus, should we kill the 8575 * connection, or should we just drop the bogus ICMP 8576 * message? It would probably make more sense to just 8577 * drop the message so that if this one managed to get 8578 * in, the real connection should not suffer. 8579 */ 8580 goto noticmpv6; 8581 } 8582 8583 switch (icmp6->icmp6_type) { 8584 case ICMP6_PACKET_TOO_BIG: 8585 /* 8586 * Reduce the MSS based on the new MTU. This will 8587 * eliminate any fragmentation locally. 8588 * N.B. There may well be some funny side-effects on 8589 * the local send policy and the remote receive policy. 8590 * Pending further research, we provide 8591 * tcp_ignore_path_mtu just in case this proves 8592 * disastrous somewhere. 8593 * 8594 * After updating the MSS, retransmit part of the 8595 * dropped segment using the new mss by calling 8596 * tcp_wput_data(). Need to adjust all those 8597 * params to make sure tcp_wput_data() work properly. 8598 */ 8599 if (tcps->tcps_ignore_path_mtu) 8600 break; 8601 8602 /* 8603 * Decrease the MSS by time stamp options 8604 * IP options and IPSEC options. tcp_hdr_len 8605 * includes time stamp option and IP option 8606 * length. 8607 */ 8608 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8609 tcp->tcp_ipsec_overhead; 8610 8611 /* 8612 * Only update the MSS if the new one is 8613 * smaller than the previous one. This is 8614 * to avoid problems when getting multiple 8615 * ICMP errors for the same MTU. 8616 */ 8617 if (new_mss >= tcp->tcp_mss) 8618 break; 8619 8620 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8621 ASSERT(ratio >= 1); 8622 tcp_mss_set(tcp, new_mss, B_TRUE); 8623 8624 /* 8625 * Make sure we have something to 8626 * send. 8627 */ 8628 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8629 (tcp->tcp_xmit_head != NULL)) { 8630 /* 8631 * Shrink tcp_cwnd in 8632 * proportion to the old MSS/new MSS. 8633 */ 8634 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8635 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8636 (tcp->tcp_unsent == 0)) { 8637 tcp->tcp_rexmit_max = tcp->tcp_fss; 8638 } else { 8639 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8640 } 8641 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8642 tcp->tcp_rexmit = B_TRUE; 8643 tcp->tcp_dupack_cnt = 0; 8644 tcp->tcp_snd_burst = TCP_CWND_SS; 8645 tcp_ss_rexmit(tcp); 8646 } 8647 break; 8648 8649 case ICMP6_DST_UNREACH: 8650 switch (icmp6->icmp6_code) { 8651 case ICMP6_DST_UNREACH_NOPORT: 8652 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8653 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8654 (seg_seq == tcp->tcp_iss)) { 8655 (void) tcp_clean_death(tcp, 8656 ECONNREFUSED, 8); 8657 } 8658 break; 8659 8660 case ICMP6_DST_UNREACH_ADMIN: 8661 case ICMP6_DST_UNREACH_NOROUTE: 8662 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8663 case ICMP6_DST_UNREACH_ADDR: 8664 /* Record the error in case we finally time out. */ 8665 tcp->tcp_client_errno = EHOSTUNREACH; 8666 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8667 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8668 (seg_seq == tcp->tcp_iss)) { 8669 if (tcp->tcp_listener != NULL && 8670 tcp->tcp_listener->tcp_syn_defense) { 8671 /* 8672 * Ditch the half-open connection if we 8673 * suspect a SYN attack is under way. 8674 */ 8675 tcp_ip_ire_mark_advice(tcp); 8676 (void) tcp_clean_death(tcp, 8677 tcp->tcp_client_errno, 9); 8678 } 8679 } 8680 8681 8682 break; 8683 default: 8684 break; 8685 } 8686 break; 8687 8688 case ICMP6_PARAM_PROB: 8689 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8690 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8691 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8692 (uchar_t *)nexthdrp) { 8693 if (tcp->tcp_state == TCPS_SYN_SENT || 8694 tcp->tcp_state == TCPS_SYN_RCVD) { 8695 (void) tcp_clean_death(tcp, 8696 ECONNREFUSED, 10); 8697 } 8698 break; 8699 } 8700 break; 8701 8702 case ICMP6_TIME_EXCEEDED: 8703 default: 8704 break; 8705 } 8706 freemsg(first_mp); 8707 } 8708 8709 /* 8710 * Notify IP that we are having trouble with this connection. IP should 8711 * blow the IRE away and start over. 8712 */ 8713 static void 8714 tcp_ip_notify(tcp_t *tcp) 8715 { 8716 struct iocblk *iocp; 8717 ipid_t *ipid; 8718 mblk_t *mp; 8719 8720 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8721 if (tcp->tcp_ipversion == IPV6_VERSION) 8722 return; 8723 8724 mp = mkiocb(IP_IOCTL); 8725 if (mp == NULL) 8726 return; 8727 8728 iocp = (struct iocblk *)mp->b_rptr; 8729 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8730 8731 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8732 if (!mp->b_cont) { 8733 freeb(mp); 8734 return; 8735 } 8736 8737 ipid = (ipid_t *)mp->b_cont->b_rptr; 8738 mp->b_cont->b_wptr += iocp->ioc_count; 8739 bzero(ipid, sizeof (*ipid)); 8740 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8741 ipid->ipid_ire_type = IRE_CACHE; 8742 ipid->ipid_addr_offset = sizeof (ipid_t); 8743 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8744 /* 8745 * Note: in the case of source routing we want to blow away the 8746 * route to the first source route hop. 8747 */ 8748 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8749 sizeof (tcp->tcp_ipha->ipha_dst)); 8750 8751 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8752 } 8753 8754 /* Unlink and return any mblk that looks like it contains an ire */ 8755 static mblk_t * 8756 tcp_ire_mp(mblk_t **mpp) 8757 { 8758 mblk_t *mp = *mpp; 8759 mblk_t *prev_mp = NULL; 8760 8761 for (;;) { 8762 switch (DB_TYPE(mp)) { 8763 case IRE_DB_TYPE: 8764 case IRE_DB_REQ_TYPE: 8765 if (mp == *mpp) { 8766 *mpp = mp->b_cont; 8767 } else { 8768 prev_mp->b_cont = mp->b_cont; 8769 } 8770 mp->b_cont = NULL; 8771 return (mp); 8772 default: 8773 break; 8774 } 8775 prev_mp = mp; 8776 mp = mp->b_cont; 8777 if (mp == NULL) 8778 break; 8779 } 8780 return (mp); 8781 } 8782 8783 /* 8784 * Timer callback routine for keepalive probe. We do a fake resend of 8785 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8786 * check to see if we have heard anything from the other end for the last 8787 * RTO period. If we have, set the timer to expire for another 8788 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8789 * RTO << 1 and check again when it expires. Keep exponentially increasing 8790 * the timeout if we have not heard from the other side. If for more than 8791 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8792 * kill the connection unless the keepalive abort threshold is 0. In 8793 * that case, we will probe "forever." 8794 */ 8795 static void 8796 tcp_keepalive_killer(void *arg) 8797 { 8798 mblk_t *mp; 8799 conn_t *connp = (conn_t *)arg; 8800 tcp_t *tcp = connp->conn_tcp; 8801 int32_t firetime; 8802 int32_t idletime; 8803 int32_t ka_intrvl; 8804 tcp_stack_t *tcps = tcp->tcp_tcps; 8805 8806 tcp->tcp_ka_tid = 0; 8807 8808 if (tcp->tcp_fused) 8809 return; 8810 8811 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8812 ka_intrvl = tcp->tcp_ka_interval; 8813 8814 /* 8815 * Keepalive probe should only be sent if the application has not 8816 * done a close on the connection. 8817 */ 8818 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8819 return; 8820 } 8821 /* Timer fired too early, restart it. */ 8822 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8823 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8824 MSEC_TO_TICK(ka_intrvl)); 8825 return; 8826 } 8827 8828 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8829 /* 8830 * If we have not heard from the other side for a long 8831 * time, kill the connection unless the keepalive abort 8832 * threshold is 0. In that case, we will probe "forever." 8833 */ 8834 if (tcp->tcp_ka_abort_thres != 0 && 8835 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8836 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8837 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8838 tcp->tcp_client_errno : ETIMEDOUT, 11); 8839 return; 8840 } 8841 8842 if (tcp->tcp_snxt == tcp->tcp_suna && 8843 idletime >= ka_intrvl) { 8844 /* Fake resend of last ACKed byte. */ 8845 mblk_t *mp1 = allocb(1, BPRI_LO); 8846 8847 if (mp1 != NULL) { 8848 *mp1->b_wptr++ = '\0'; 8849 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8850 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8851 freeb(mp1); 8852 /* 8853 * if allocation failed, fall through to start the 8854 * timer back. 8855 */ 8856 if (mp != NULL) { 8857 tcp_send_data(tcp, tcp->tcp_wq, mp); 8858 BUMP_MIB(&tcps->tcps_mib, 8859 tcpTimKeepaliveProbe); 8860 if (tcp->tcp_ka_last_intrvl != 0) { 8861 int max; 8862 /* 8863 * We should probe again at least 8864 * in ka_intrvl, but not more than 8865 * tcp_rexmit_interval_max. 8866 */ 8867 max = tcps->tcps_rexmit_interval_max; 8868 firetime = MIN(ka_intrvl - 1, 8869 tcp->tcp_ka_last_intrvl << 1); 8870 if (firetime > max) 8871 firetime = max; 8872 } else { 8873 firetime = tcp->tcp_rto; 8874 } 8875 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8876 tcp_keepalive_killer, 8877 MSEC_TO_TICK(firetime)); 8878 tcp->tcp_ka_last_intrvl = firetime; 8879 return; 8880 } 8881 } 8882 } else { 8883 tcp->tcp_ka_last_intrvl = 0; 8884 } 8885 8886 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8887 if ((firetime = ka_intrvl - idletime) < 0) { 8888 firetime = ka_intrvl; 8889 } 8890 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8891 MSEC_TO_TICK(firetime)); 8892 } 8893 8894 int 8895 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8896 { 8897 queue_t *q = tcp->tcp_rq; 8898 int32_t mss = tcp->tcp_mss; 8899 int maxpsz; 8900 conn_t *connp = tcp->tcp_connp; 8901 8902 if (TCP_IS_DETACHED(tcp)) 8903 return (mss); 8904 if (tcp->tcp_fused) { 8905 maxpsz = tcp_fuse_maxpsz_set(tcp); 8906 mss = INFPSZ; 8907 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8908 /* 8909 * Set the sd_qn_maxpsz according to the socket send buffer 8910 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8911 * instruct the stream head to copyin user data into contiguous 8912 * kernel-allocated buffers without breaking it up into smaller 8913 * chunks. We round up the buffer size to the nearest SMSS. 8914 */ 8915 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8916 if (tcp->tcp_kssl_ctx == NULL) 8917 mss = INFPSZ; 8918 else 8919 mss = SSL3_MAX_RECORD_LEN; 8920 } else { 8921 /* 8922 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8923 * (and a multiple of the mss). This instructs the stream 8924 * head to break down larger than SMSS writes into SMSS- 8925 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8926 */ 8927 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8928 maxpsz = tcp->tcp_maxpsz * mss; 8929 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8930 maxpsz = tcp->tcp_xmit_hiwater/2; 8931 /* Round up to nearest mss */ 8932 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8933 } 8934 } 8935 8936 (void) proto_set_maxpsz(q, connp, maxpsz); 8937 if (!(IPCL_IS_NONSTR(connp))) { 8938 /* XXX do it in set_maxpsz()? */ 8939 tcp->tcp_wq->q_maxpsz = maxpsz; 8940 } 8941 8942 if (set_maxblk) 8943 (void) proto_set_tx_maxblk(q, connp, mss); 8944 return (mss); 8945 } 8946 8947 /* 8948 * Extract option values from a tcp header. We put any found values into the 8949 * tcpopt struct and return a bitmask saying which options were found. 8950 */ 8951 static int 8952 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8953 { 8954 uchar_t *endp; 8955 int len; 8956 uint32_t mss; 8957 uchar_t *up = (uchar_t *)tcph; 8958 int found = 0; 8959 int32_t sack_len; 8960 tcp_seq sack_begin, sack_end; 8961 tcp_t *tcp; 8962 8963 endp = up + TCP_HDR_LENGTH(tcph); 8964 up += TCP_MIN_HEADER_LENGTH; 8965 while (up < endp) { 8966 len = endp - up; 8967 switch (*up) { 8968 case TCPOPT_EOL: 8969 break; 8970 8971 case TCPOPT_NOP: 8972 up++; 8973 continue; 8974 8975 case TCPOPT_MAXSEG: 8976 if (len < TCPOPT_MAXSEG_LEN || 8977 up[1] != TCPOPT_MAXSEG_LEN) 8978 break; 8979 8980 mss = BE16_TO_U16(up+2); 8981 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8982 tcpopt->tcp_opt_mss = mss; 8983 found |= TCP_OPT_MSS_PRESENT; 8984 8985 up += TCPOPT_MAXSEG_LEN; 8986 continue; 8987 8988 case TCPOPT_WSCALE: 8989 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8990 break; 8991 8992 if (up[2] > TCP_MAX_WINSHIFT) 8993 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8994 else 8995 tcpopt->tcp_opt_wscale = up[2]; 8996 found |= TCP_OPT_WSCALE_PRESENT; 8997 8998 up += TCPOPT_WS_LEN; 8999 continue; 9000 9001 case TCPOPT_SACK_PERMITTED: 9002 if (len < TCPOPT_SACK_OK_LEN || 9003 up[1] != TCPOPT_SACK_OK_LEN) 9004 break; 9005 found |= TCP_OPT_SACK_OK_PRESENT; 9006 up += TCPOPT_SACK_OK_LEN; 9007 continue; 9008 9009 case TCPOPT_SACK: 9010 if (len <= 2 || up[1] <= 2 || len < up[1]) 9011 break; 9012 9013 /* If TCP is not interested in SACK blks... */ 9014 if ((tcp = tcpopt->tcp) == NULL) { 9015 up += up[1]; 9016 continue; 9017 } 9018 sack_len = up[1] - TCPOPT_HEADER_LEN; 9019 up += TCPOPT_HEADER_LEN; 9020 9021 /* 9022 * If the list is empty, allocate one and assume 9023 * nothing is sack'ed. 9024 */ 9025 ASSERT(tcp->tcp_sack_info != NULL); 9026 if (tcp->tcp_notsack_list == NULL) { 9027 tcp_notsack_update(&(tcp->tcp_notsack_list), 9028 tcp->tcp_suna, tcp->tcp_snxt, 9029 &(tcp->tcp_num_notsack_blk), 9030 &(tcp->tcp_cnt_notsack_list)); 9031 9032 /* 9033 * Make sure tcp_notsack_list is not NULL. 9034 * This happens when kmem_alloc(KM_NOSLEEP) 9035 * returns NULL. 9036 */ 9037 if (tcp->tcp_notsack_list == NULL) { 9038 up += sack_len; 9039 continue; 9040 } 9041 tcp->tcp_fack = tcp->tcp_suna; 9042 } 9043 9044 while (sack_len > 0) { 9045 if (up + 8 > endp) { 9046 up = endp; 9047 break; 9048 } 9049 sack_begin = BE32_TO_U32(up); 9050 up += 4; 9051 sack_end = BE32_TO_U32(up); 9052 up += 4; 9053 sack_len -= 8; 9054 /* 9055 * Bounds checking. Make sure the SACK 9056 * info is within tcp_suna and tcp_snxt. 9057 * If this SACK blk is out of bound, ignore 9058 * it but continue to parse the following 9059 * blks. 9060 */ 9061 if (SEQ_LEQ(sack_end, sack_begin) || 9062 SEQ_LT(sack_begin, tcp->tcp_suna) || 9063 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9064 continue; 9065 } 9066 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9067 sack_begin, sack_end, 9068 &(tcp->tcp_num_notsack_blk), 9069 &(tcp->tcp_cnt_notsack_list)); 9070 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9071 tcp->tcp_fack = sack_end; 9072 } 9073 } 9074 found |= TCP_OPT_SACK_PRESENT; 9075 continue; 9076 9077 case TCPOPT_TSTAMP: 9078 if (len < TCPOPT_TSTAMP_LEN || 9079 up[1] != TCPOPT_TSTAMP_LEN) 9080 break; 9081 9082 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9083 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9084 9085 found |= TCP_OPT_TSTAMP_PRESENT; 9086 9087 up += TCPOPT_TSTAMP_LEN; 9088 continue; 9089 9090 default: 9091 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9092 break; 9093 up += up[1]; 9094 continue; 9095 } 9096 break; 9097 } 9098 return (found); 9099 } 9100 9101 /* 9102 * Set the mss associated with a particular tcp based on its current value, 9103 * and a new one passed in. Observe minimums and maximums, and reset 9104 * other state variables that we want to view as multiples of mss. 9105 * 9106 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9107 * highwater marks etc. need to be initialized or adjusted. 9108 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9109 * packet arrives. 9110 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9111 * ICMP6_PACKET_TOO_BIG arrives. 9112 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9113 * to increase the MSS to use the extra bytes available. 9114 * 9115 * Callers except tcp_paws_check() ensure that they only reduce mss. 9116 */ 9117 static void 9118 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9119 { 9120 uint32_t mss_max; 9121 tcp_stack_t *tcps = tcp->tcp_tcps; 9122 9123 if (tcp->tcp_ipversion == IPV4_VERSION) 9124 mss_max = tcps->tcps_mss_max_ipv4; 9125 else 9126 mss_max = tcps->tcps_mss_max_ipv6; 9127 9128 if (mss < tcps->tcps_mss_min) 9129 mss = tcps->tcps_mss_min; 9130 if (mss > mss_max) 9131 mss = mss_max; 9132 /* 9133 * Unless naglim has been set by our client to 9134 * a non-mss value, force naglim to track mss. 9135 * This can help to aggregate small writes. 9136 */ 9137 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9138 tcp->tcp_naglim = mss; 9139 /* 9140 * TCP should be able to buffer at least 4 MSS data for obvious 9141 * performance reason. 9142 */ 9143 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9144 tcp->tcp_xmit_hiwater = mss << 2; 9145 9146 /* 9147 * Set the xmit_lowater to at least twice of MSS. 9148 */ 9149 if ((mss << 1) > tcp->tcp_xmit_lowater) 9150 tcp->tcp_xmit_lowater = mss << 1; 9151 9152 if (do_ss) { 9153 /* 9154 * Either the tcp_cwnd is as yet uninitialized, or mss is 9155 * changing due to a reduction in MTU, presumably as a 9156 * result of a new path component, reset cwnd to its 9157 * "initial" value, as a multiple of the new mss. 9158 */ 9159 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9160 } else { 9161 /* 9162 * Called by tcp_paws_check(), the mss increased 9163 * marginally to allow use of space previously taken 9164 * by the timestamp option. It would be inappropriate 9165 * to apply slow start or tcp_init_cwnd values to 9166 * tcp_cwnd, simply adjust to a multiple of the new mss. 9167 */ 9168 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9169 tcp->tcp_cwnd_cnt = 0; 9170 } 9171 tcp->tcp_mss = mss; 9172 (void) tcp_maxpsz_set(tcp, B_TRUE); 9173 } 9174 9175 /* For /dev/tcp aka AF_INET open */ 9176 static int 9177 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9178 { 9179 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9180 } 9181 9182 /* For /dev/tcp6 aka AF_INET6 open */ 9183 static int 9184 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9185 { 9186 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9187 } 9188 9189 static conn_t * 9190 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9191 boolean_t issocket, int *errorp) 9192 { 9193 tcp_t *tcp = NULL; 9194 conn_t *connp; 9195 int err; 9196 zoneid_t zoneid; 9197 tcp_stack_t *tcps; 9198 squeue_t *sqp; 9199 9200 ASSERT(errorp != NULL); 9201 /* 9202 * Find the proper zoneid and netstack. 9203 */ 9204 /* 9205 * Special case for install: miniroot needs to be able to 9206 * access files via NFS as though it were always in the 9207 * global zone. 9208 */ 9209 if (credp == kcred && nfs_global_client_only != 0) { 9210 zoneid = GLOBAL_ZONEID; 9211 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9212 netstack_tcp; 9213 ASSERT(tcps != NULL); 9214 } else { 9215 netstack_t *ns; 9216 9217 ns = netstack_find_by_cred(credp); 9218 ASSERT(ns != NULL); 9219 tcps = ns->netstack_tcp; 9220 ASSERT(tcps != NULL); 9221 9222 /* 9223 * For exclusive stacks we set the zoneid to zero 9224 * to make TCP operate as if in the global zone. 9225 */ 9226 if (tcps->tcps_netstack->netstack_stackid != 9227 GLOBAL_NETSTACKID) 9228 zoneid = GLOBAL_ZONEID; 9229 else 9230 zoneid = crgetzoneid(credp); 9231 } 9232 /* 9233 * For stackid zero this is done from strplumb.c, but 9234 * non-zero stackids are handled here. 9235 */ 9236 if (tcps->tcps_g_q == NULL && 9237 tcps->tcps_netstack->netstack_stackid != 9238 GLOBAL_NETSTACKID) { 9239 tcp_g_q_setup(tcps); 9240 } 9241 9242 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9243 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9244 /* 9245 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9246 * so we drop it by one. 9247 */ 9248 netstack_rele(tcps->tcps_netstack); 9249 if (connp == NULL) { 9250 *errorp = ENOSR; 9251 return (NULL); 9252 } 9253 connp->conn_sqp = sqp; 9254 connp->conn_initial_sqp = connp->conn_sqp; 9255 tcp = connp->conn_tcp; 9256 9257 if (isv6) { 9258 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9259 connp->conn_send = ip_output_v6; 9260 connp->conn_af_isv6 = B_TRUE; 9261 connp->conn_pkt_isv6 = B_TRUE; 9262 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9263 tcp->tcp_ipversion = IPV6_VERSION; 9264 tcp->tcp_family = AF_INET6; 9265 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9266 } else { 9267 connp->conn_flags |= IPCL_TCP4; 9268 connp->conn_send = ip_output; 9269 connp->conn_af_isv6 = B_FALSE; 9270 connp->conn_pkt_isv6 = B_FALSE; 9271 tcp->tcp_ipversion = IPV4_VERSION; 9272 tcp->tcp_family = AF_INET; 9273 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9274 } 9275 9276 /* 9277 * TCP keeps a copy of cred for cache locality reasons but 9278 * we put a reference only once. If connp->conn_cred 9279 * becomes invalid, tcp_cred should also be set to NULL. 9280 */ 9281 tcp->tcp_cred = connp->conn_cred = credp; 9282 crhold(connp->conn_cred); 9283 tcp->tcp_cpid = curproc->p_pid; 9284 tcp->tcp_open_time = lbolt64; 9285 connp->conn_zoneid = zoneid; 9286 connp->conn_mlp_type = mlptSingle; 9287 connp->conn_ulp_labeled = !is_system_labeled(); 9288 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9289 ASSERT(tcp->tcp_tcps == tcps); 9290 9291 /* 9292 * If the caller has the process-wide flag set, then default to MAC 9293 * exempt mode. This allows read-down to unlabeled hosts. 9294 */ 9295 if (getpflags(NET_MAC_AWARE, credp) != 0) 9296 connp->conn_mac_exempt = B_TRUE; 9297 9298 connp->conn_dev = NULL; 9299 if (issocket) { 9300 connp->conn_flags |= IPCL_SOCKET; 9301 tcp->tcp_issocket = 1; 9302 } 9303 9304 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9305 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9306 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9307 9308 /* Non-zero default values */ 9309 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9310 9311 if (q == NULL) { 9312 /* 9313 * Create a helper stream for non-STREAMS socket. 9314 */ 9315 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9316 if (err != 0) { 9317 ip1dbg(("tcp_create_common: create of IP helper stream " 9318 "failed\n")); 9319 CONN_DEC_REF(connp); 9320 *errorp = err; 9321 return (NULL); 9322 } 9323 q = connp->conn_rq; 9324 } else { 9325 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9326 } 9327 9328 SOCK_CONNID_INIT(tcp->tcp_connid); 9329 err = tcp_init(tcp, q); 9330 if (err != 0) { 9331 CONN_DEC_REF(connp); 9332 *errorp = err; 9333 return (NULL); 9334 } 9335 9336 return (connp); 9337 } 9338 9339 static int 9340 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9341 boolean_t isv6) 9342 { 9343 tcp_t *tcp = NULL; 9344 conn_t *connp = NULL; 9345 int err; 9346 vmem_t *minor_arena = NULL; 9347 dev_t conn_dev; 9348 boolean_t issocket; 9349 9350 if (q->q_ptr != NULL) 9351 return (0); 9352 9353 if (sflag == MODOPEN) 9354 return (EINVAL); 9355 9356 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9357 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9358 minor_arena = ip_minor_arena_la; 9359 } else { 9360 /* 9361 * Either minor numbers in the large arena were exhausted 9362 * or a non socket application is doing the open. 9363 * Try to allocate from the small arena. 9364 */ 9365 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9366 return (EBUSY); 9367 } 9368 minor_arena = ip_minor_arena_sa; 9369 } 9370 9371 ASSERT(minor_arena != NULL); 9372 9373 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9374 9375 if (flag & SO_FALLBACK) { 9376 /* 9377 * Non streams socket needs a stream to fallback to 9378 */ 9379 RD(q)->q_ptr = (void *)conn_dev; 9380 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9381 WR(q)->q_ptr = (void *)minor_arena; 9382 qprocson(q); 9383 return (0); 9384 } else if (flag & SO_ACCEPTOR) { 9385 q->q_qinfo = &tcp_acceptor_rinit; 9386 /* 9387 * the conn_dev and minor_arena will be subsequently used by 9388 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out 9389 * the minor device number for this connection from the q_ptr. 9390 */ 9391 RD(q)->q_ptr = (void *)conn_dev; 9392 WR(q)->q_qinfo = &tcp_acceptor_winit; 9393 WR(q)->q_ptr = (void *)minor_arena; 9394 qprocson(q); 9395 return (0); 9396 } 9397 9398 issocket = flag & SO_SOCKSTR; 9399 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9400 9401 if (connp == NULL) { 9402 inet_minor_free(minor_arena, conn_dev); 9403 q->q_ptr = WR(q)->q_ptr = NULL; 9404 return (err); 9405 } 9406 9407 q->q_ptr = WR(q)->q_ptr = connp; 9408 9409 connp->conn_dev = conn_dev; 9410 connp->conn_minor_arena = minor_arena; 9411 9412 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9413 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9414 9415 tcp = connp->conn_tcp; 9416 9417 if (issocket) { 9418 WR(q)->q_qinfo = &tcp_sock_winit; 9419 } else { 9420 #ifdef _ILP32 9421 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9422 #else 9423 tcp->tcp_acceptor_id = conn_dev; 9424 #endif /* _ILP32 */ 9425 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9426 } 9427 9428 /* 9429 * Put the ref for TCP. Ref for IP was already put 9430 * by ipcl_conn_create. Also Make the conn_t globally 9431 * visible to walkers 9432 */ 9433 mutex_enter(&connp->conn_lock); 9434 CONN_INC_REF_LOCKED(connp); 9435 ASSERT(connp->conn_ref == 2); 9436 connp->conn_state_flags &= ~CONN_INCIPIENT; 9437 mutex_exit(&connp->conn_lock); 9438 9439 qprocson(q); 9440 return (0); 9441 } 9442 9443 /* 9444 * Some TCP options can be "set" by requesting them in the option 9445 * buffer. This is needed for XTI feature test though we do not 9446 * allow it in general. We interpret that this mechanism is more 9447 * applicable to OSI protocols and need not be allowed in general. 9448 * This routine filters out options for which it is not allowed (most) 9449 * and lets through those (few) for which it is. [ The XTI interface 9450 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9451 * ever implemented will have to be allowed here ]. 9452 */ 9453 static boolean_t 9454 tcp_allow_connopt_set(int level, int name) 9455 { 9456 9457 switch (level) { 9458 case IPPROTO_TCP: 9459 switch (name) { 9460 case TCP_NODELAY: 9461 return (B_TRUE); 9462 default: 9463 return (B_FALSE); 9464 } 9465 /*NOTREACHED*/ 9466 default: 9467 return (B_FALSE); 9468 } 9469 /*NOTREACHED*/ 9470 } 9471 9472 /* 9473 * this routine gets default values of certain options whose default 9474 * values are maintained by protocol specific code 9475 */ 9476 /* ARGSUSED */ 9477 int 9478 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9479 { 9480 int32_t *i1 = (int32_t *)ptr; 9481 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9482 9483 switch (level) { 9484 case IPPROTO_TCP: 9485 switch (name) { 9486 case TCP_NOTIFY_THRESHOLD: 9487 *i1 = tcps->tcps_ip_notify_interval; 9488 break; 9489 case TCP_ABORT_THRESHOLD: 9490 *i1 = tcps->tcps_ip_abort_interval; 9491 break; 9492 case TCP_CONN_NOTIFY_THRESHOLD: 9493 *i1 = tcps->tcps_ip_notify_cinterval; 9494 break; 9495 case TCP_CONN_ABORT_THRESHOLD: 9496 *i1 = tcps->tcps_ip_abort_cinterval; 9497 break; 9498 default: 9499 return (-1); 9500 } 9501 break; 9502 case IPPROTO_IP: 9503 switch (name) { 9504 case IP_TTL: 9505 *i1 = tcps->tcps_ipv4_ttl; 9506 break; 9507 default: 9508 return (-1); 9509 } 9510 break; 9511 case IPPROTO_IPV6: 9512 switch (name) { 9513 case IPV6_UNICAST_HOPS: 9514 *i1 = tcps->tcps_ipv6_hoplimit; 9515 break; 9516 default: 9517 return (-1); 9518 } 9519 break; 9520 default: 9521 return (-1); 9522 } 9523 return (sizeof (int)); 9524 } 9525 9526 static int 9527 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9528 { 9529 int *i1 = (int *)ptr; 9530 tcp_t *tcp = connp->conn_tcp; 9531 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9532 9533 switch (level) { 9534 case SOL_SOCKET: 9535 switch (name) { 9536 case SO_LINGER: { 9537 struct linger *lgr = (struct linger *)ptr; 9538 9539 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9540 lgr->l_linger = tcp->tcp_lingertime; 9541 } 9542 return (sizeof (struct linger)); 9543 case SO_DEBUG: 9544 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9545 break; 9546 case SO_KEEPALIVE: 9547 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9548 break; 9549 case SO_DONTROUTE: 9550 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9551 break; 9552 case SO_USELOOPBACK: 9553 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9554 break; 9555 case SO_BROADCAST: 9556 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9557 break; 9558 case SO_REUSEADDR: 9559 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9560 break; 9561 case SO_OOBINLINE: 9562 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9563 break; 9564 case SO_DGRAM_ERRIND: 9565 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9566 break; 9567 case SO_TYPE: 9568 *i1 = SOCK_STREAM; 9569 break; 9570 case SO_SNDBUF: 9571 *i1 = tcp->tcp_xmit_hiwater; 9572 break; 9573 case SO_RCVBUF: 9574 *i1 = tcp->tcp_recv_hiwater; 9575 break; 9576 case SO_SND_COPYAVOID: 9577 *i1 = tcp->tcp_snd_zcopy_on ? 9578 SO_SND_COPYAVOID : 0; 9579 break; 9580 case SO_ALLZONES: 9581 *i1 = connp->conn_allzones ? 1 : 0; 9582 break; 9583 case SO_ANON_MLP: 9584 *i1 = connp->conn_anon_mlp; 9585 break; 9586 case SO_MAC_EXEMPT: 9587 *i1 = connp->conn_mac_exempt; 9588 break; 9589 case SO_EXCLBIND: 9590 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9591 break; 9592 case SO_PROTOTYPE: 9593 *i1 = IPPROTO_TCP; 9594 break; 9595 case SO_DOMAIN: 9596 *i1 = tcp->tcp_family; 9597 break; 9598 case SO_ACCEPTCONN: 9599 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9600 default: 9601 return (-1); 9602 } 9603 break; 9604 case IPPROTO_TCP: 9605 switch (name) { 9606 case TCP_NODELAY: 9607 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9608 break; 9609 case TCP_MAXSEG: 9610 *i1 = tcp->tcp_mss; 9611 break; 9612 case TCP_NOTIFY_THRESHOLD: 9613 *i1 = (int)tcp->tcp_first_timer_threshold; 9614 break; 9615 case TCP_ABORT_THRESHOLD: 9616 *i1 = tcp->tcp_second_timer_threshold; 9617 break; 9618 case TCP_CONN_NOTIFY_THRESHOLD: 9619 *i1 = tcp->tcp_first_ctimer_threshold; 9620 break; 9621 case TCP_CONN_ABORT_THRESHOLD: 9622 *i1 = tcp->tcp_second_ctimer_threshold; 9623 break; 9624 case TCP_RECVDSTADDR: 9625 *i1 = tcp->tcp_recvdstaddr; 9626 break; 9627 case TCP_ANONPRIVBIND: 9628 *i1 = tcp->tcp_anon_priv_bind; 9629 break; 9630 case TCP_EXCLBIND: 9631 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9632 break; 9633 case TCP_INIT_CWND: 9634 *i1 = tcp->tcp_init_cwnd; 9635 break; 9636 case TCP_KEEPALIVE_THRESHOLD: 9637 *i1 = tcp->tcp_ka_interval; 9638 break; 9639 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9640 *i1 = tcp->tcp_ka_abort_thres; 9641 break; 9642 case TCP_CORK: 9643 *i1 = tcp->tcp_cork; 9644 break; 9645 default: 9646 return (-1); 9647 } 9648 break; 9649 case IPPROTO_IP: 9650 if (tcp->tcp_family != AF_INET) 9651 return (-1); 9652 switch (name) { 9653 case IP_OPTIONS: 9654 case T_IP_OPTIONS: { 9655 /* 9656 * This is compatible with BSD in that in only return 9657 * the reverse source route with the final destination 9658 * as the last entry. The first 4 bytes of the option 9659 * will contain the final destination. 9660 */ 9661 int opt_len; 9662 9663 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9664 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9665 ASSERT(opt_len >= 0); 9666 /* Caller ensures enough space */ 9667 if (opt_len > 0) { 9668 /* 9669 * TODO: Do we have to handle getsockopt on an 9670 * initiator as well? 9671 */ 9672 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9673 } 9674 return (0); 9675 } 9676 case IP_TOS: 9677 case T_IP_TOS: 9678 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9679 break; 9680 case IP_TTL: 9681 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9682 break; 9683 case IP_NEXTHOP: 9684 /* Handled at IP level */ 9685 return (-EINVAL); 9686 default: 9687 return (-1); 9688 } 9689 break; 9690 case IPPROTO_IPV6: 9691 /* 9692 * IPPROTO_IPV6 options are only supported for sockets 9693 * that are using IPv6 on the wire. 9694 */ 9695 if (tcp->tcp_ipversion != IPV6_VERSION) { 9696 return (-1); 9697 } 9698 switch (name) { 9699 case IPV6_UNICAST_HOPS: 9700 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9701 break; /* goto sizeof (int) option return */ 9702 case IPV6_BOUND_IF: 9703 /* Zero if not set */ 9704 *i1 = tcp->tcp_bound_if; 9705 break; /* goto sizeof (int) option return */ 9706 case IPV6_RECVPKTINFO: 9707 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9708 *i1 = 1; 9709 else 9710 *i1 = 0; 9711 break; /* goto sizeof (int) option return */ 9712 case IPV6_RECVTCLASS: 9713 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9714 *i1 = 1; 9715 else 9716 *i1 = 0; 9717 break; /* goto sizeof (int) option return */ 9718 case IPV6_RECVHOPLIMIT: 9719 if (tcp->tcp_ipv6_recvancillary & 9720 TCP_IPV6_RECVHOPLIMIT) 9721 *i1 = 1; 9722 else 9723 *i1 = 0; 9724 break; /* goto sizeof (int) option return */ 9725 case IPV6_RECVHOPOPTS: 9726 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9727 *i1 = 1; 9728 else 9729 *i1 = 0; 9730 break; /* goto sizeof (int) option return */ 9731 case IPV6_RECVDSTOPTS: 9732 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9733 *i1 = 1; 9734 else 9735 *i1 = 0; 9736 break; /* goto sizeof (int) option return */ 9737 case _OLD_IPV6_RECVDSTOPTS: 9738 if (tcp->tcp_ipv6_recvancillary & 9739 TCP_OLD_IPV6_RECVDSTOPTS) 9740 *i1 = 1; 9741 else 9742 *i1 = 0; 9743 break; /* goto sizeof (int) option return */ 9744 case IPV6_RECVRTHDR: 9745 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9746 *i1 = 1; 9747 else 9748 *i1 = 0; 9749 break; /* goto sizeof (int) option return */ 9750 case IPV6_RECVRTHDRDSTOPTS: 9751 if (tcp->tcp_ipv6_recvancillary & 9752 TCP_IPV6_RECVRTDSTOPTS) 9753 *i1 = 1; 9754 else 9755 *i1 = 0; 9756 break; /* goto sizeof (int) option return */ 9757 case IPV6_PKTINFO: { 9758 /* XXX assumes that caller has room for max size! */ 9759 struct in6_pktinfo *pkti; 9760 9761 pkti = (struct in6_pktinfo *)ptr; 9762 if (ipp->ipp_fields & IPPF_IFINDEX) 9763 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9764 else 9765 pkti->ipi6_ifindex = 0; 9766 if (ipp->ipp_fields & IPPF_ADDR) 9767 pkti->ipi6_addr = ipp->ipp_addr; 9768 else 9769 pkti->ipi6_addr = ipv6_all_zeros; 9770 return (sizeof (struct in6_pktinfo)); 9771 } 9772 case IPV6_TCLASS: 9773 if (ipp->ipp_fields & IPPF_TCLASS) 9774 *i1 = ipp->ipp_tclass; 9775 else 9776 *i1 = IPV6_FLOW_TCLASS( 9777 IPV6_DEFAULT_VERS_AND_FLOW); 9778 break; /* goto sizeof (int) option return */ 9779 case IPV6_NEXTHOP: { 9780 sin6_t *sin6 = (sin6_t *)ptr; 9781 9782 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9783 return (0); 9784 *sin6 = sin6_null; 9785 sin6->sin6_family = AF_INET6; 9786 sin6->sin6_addr = ipp->ipp_nexthop; 9787 return (sizeof (sin6_t)); 9788 } 9789 case IPV6_HOPOPTS: 9790 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9791 return (0); 9792 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9793 return (0); 9794 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9795 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9796 if (tcp->tcp_label_len > 0) { 9797 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9798 ptr[1] = (ipp->ipp_hopoptslen - 9799 tcp->tcp_label_len + 7) / 8 - 1; 9800 } 9801 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9802 case IPV6_RTHDRDSTOPTS: 9803 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9804 return (0); 9805 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9806 return (ipp->ipp_rtdstoptslen); 9807 case IPV6_RTHDR: 9808 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9809 return (0); 9810 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9811 return (ipp->ipp_rthdrlen); 9812 case IPV6_DSTOPTS: 9813 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9814 return (0); 9815 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9816 return (ipp->ipp_dstoptslen); 9817 case IPV6_SRC_PREFERENCES: 9818 return (ip6_get_src_preferences(connp, 9819 (uint32_t *)ptr)); 9820 case IPV6_PATHMTU: { 9821 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9822 9823 if (tcp->tcp_state < TCPS_ESTABLISHED) 9824 return (-1); 9825 9826 return (ip_fill_mtuinfo(&connp->conn_remv6, 9827 connp->conn_fport, mtuinfo, 9828 connp->conn_netstack)); 9829 } 9830 default: 9831 return (-1); 9832 } 9833 break; 9834 default: 9835 return (-1); 9836 } 9837 return (sizeof (int)); 9838 } 9839 9840 /* 9841 * TCP routine to get the values of options. 9842 */ 9843 int 9844 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9845 { 9846 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9847 } 9848 9849 /* returns UNIX error, the optlen is a value-result arg */ 9850 int 9851 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9852 void *optvalp, socklen_t *optlen, cred_t *cr) 9853 { 9854 conn_t *connp = (conn_t *)proto_handle; 9855 squeue_t *sqp = connp->conn_sqp; 9856 int error; 9857 t_uscalar_t max_optbuf_len; 9858 void *optvalp_buf; 9859 int len; 9860 9861 ASSERT(connp->conn_upper_handle != NULL); 9862 9863 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9864 tcp_opt_obj.odb_opt_des_arr, 9865 tcp_opt_obj.odb_opt_arr_cnt, 9866 tcp_opt_obj.odb_topmost_tpiprovider, 9867 B_FALSE, B_TRUE, cr); 9868 if (error != 0) { 9869 if (error < 0) { 9870 error = proto_tlitosyserr(-error); 9871 } 9872 return (error); 9873 } 9874 9875 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9876 9877 error = squeue_synch_enter(sqp, connp, NULL); 9878 if (error == ENOMEM) { 9879 return (ENOMEM); 9880 } 9881 9882 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9883 squeue_synch_exit(sqp, connp); 9884 9885 if (len < 0) { 9886 /* 9887 * Pass on to IP 9888 */ 9889 kmem_free(optvalp_buf, max_optbuf_len); 9890 return (ip_get_options(connp, level, option_name, 9891 optvalp, optlen, cr)); 9892 } else { 9893 /* 9894 * update optlen and copy option value 9895 */ 9896 t_uscalar_t size = MIN(len, *optlen); 9897 bcopy(optvalp_buf, optvalp, size); 9898 bcopy(&size, optlen, sizeof (size)); 9899 9900 kmem_free(optvalp_buf, max_optbuf_len); 9901 return (0); 9902 } 9903 } 9904 9905 /* 9906 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9907 * Parameters are assumed to be verified by the caller. 9908 */ 9909 /* ARGSUSED */ 9910 int 9911 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9912 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9913 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9914 { 9915 tcp_t *tcp = connp->conn_tcp; 9916 int *i1 = (int *)invalp; 9917 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9918 boolean_t checkonly; 9919 int reterr; 9920 tcp_stack_t *tcps = tcp->tcp_tcps; 9921 9922 switch (optset_context) { 9923 case SETFN_OPTCOM_CHECKONLY: 9924 checkonly = B_TRUE; 9925 /* 9926 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9927 * inlen != 0 implies value supplied and 9928 * we have to "pretend" to set it. 9929 * inlen == 0 implies that there is no 9930 * value part in T_CHECK request and just validation 9931 * done elsewhere should be enough, we just return here. 9932 */ 9933 if (inlen == 0) { 9934 *outlenp = 0; 9935 return (0); 9936 } 9937 break; 9938 case SETFN_OPTCOM_NEGOTIATE: 9939 checkonly = B_FALSE; 9940 break; 9941 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9942 case SETFN_CONN_NEGOTIATE: 9943 checkonly = B_FALSE; 9944 /* 9945 * Negotiating local and "association-related" options 9946 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9947 * primitives is allowed by XTI, but we choose 9948 * to not implement this style negotiation for Internet 9949 * protocols (We interpret it is a must for OSI world but 9950 * optional for Internet protocols) for all options. 9951 * [ Will do only for the few options that enable test 9952 * suites that our XTI implementation of this feature 9953 * works for transports that do allow it ] 9954 */ 9955 if (!tcp_allow_connopt_set(level, name)) { 9956 *outlenp = 0; 9957 return (EINVAL); 9958 } 9959 break; 9960 default: 9961 /* 9962 * We should never get here 9963 */ 9964 *outlenp = 0; 9965 return (EINVAL); 9966 } 9967 9968 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9969 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9970 9971 /* 9972 * For TCP, we should have no ancillary data sent down 9973 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9974 * has to be zero. 9975 */ 9976 ASSERT(thisdg_attrs == NULL); 9977 9978 /* 9979 * For fixed length options, no sanity check 9980 * of passed in length is done. It is assumed *_optcom_req() 9981 * routines do the right thing. 9982 */ 9983 switch (level) { 9984 case SOL_SOCKET: 9985 switch (name) { 9986 case SO_LINGER: { 9987 struct linger *lgr = (struct linger *)invalp; 9988 9989 if (!checkonly) { 9990 if (lgr->l_onoff) { 9991 tcp->tcp_linger = 1; 9992 tcp->tcp_lingertime = lgr->l_linger; 9993 } else { 9994 tcp->tcp_linger = 0; 9995 tcp->tcp_lingertime = 0; 9996 } 9997 /* struct copy */ 9998 *(struct linger *)outvalp = *lgr; 9999 } else { 10000 if (!lgr->l_onoff) { 10001 ((struct linger *) 10002 outvalp)->l_onoff = 0; 10003 ((struct linger *) 10004 outvalp)->l_linger = 0; 10005 } else { 10006 /* struct copy */ 10007 *(struct linger *)outvalp = *lgr; 10008 } 10009 } 10010 *outlenp = sizeof (struct linger); 10011 return (0); 10012 } 10013 case SO_DEBUG: 10014 if (!checkonly) 10015 tcp->tcp_debug = onoff; 10016 break; 10017 case SO_KEEPALIVE: 10018 if (checkonly) { 10019 /* check only case */ 10020 break; 10021 } 10022 10023 if (!onoff) { 10024 if (tcp->tcp_ka_enabled) { 10025 if (tcp->tcp_ka_tid != 0) { 10026 (void) TCP_TIMER_CANCEL(tcp, 10027 tcp->tcp_ka_tid); 10028 tcp->tcp_ka_tid = 0; 10029 } 10030 tcp->tcp_ka_enabled = 0; 10031 } 10032 break; 10033 } 10034 if (!tcp->tcp_ka_enabled) { 10035 /* Crank up the keepalive timer */ 10036 tcp->tcp_ka_last_intrvl = 0; 10037 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10038 tcp_keepalive_killer, 10039 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10040 tcp->tcp_ka_enabled = 1; 10041 } 10042 break; 10043 case SO_DONTROUTE: 10044 /* 10045 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10046 * only of interest to IP. We track them here only so 10047 * that we can report their current value. 10048 */ 10049 if (!checkonly) { 10050 tcp->tcp_dontroute = onoff; 10051 tcp->tcp_connp->conn_dontroute = onoff; 10052 } 10053 break; 10054 case SO_USELOOPBACK: 10055 if (!checkonly) { 10056 tcp->tcp_useloopback = onoff; 10057 tcp->tcp_connp->conn_loopback = onoff; 10058 } 10059 break; 10060 case SO_BROADCAST: 10061 if (!checkonly) { 10062 tcp->tcp_broadcast = onoff; 10063 tcp->tcp_connp->conn_broadcast = onoff; 10064 } 10065 break; 10066 case SO_REUSEADDR: 10067 if (!checkonly) { 10068 tcp->tcp_reuseaddr = onoff; 10069 tcp->tcp_connp->conn_reuseaddr = onoff; 10070 } 10071 break; 10072 case SO_OOBINLINE: 10073 if (!checkonly) { 10074 tcp->tcp_oobinline = onoff; 10075 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10076 proto_set_rx_oob_opt(connp, onoff); 10077 } 10078 break; 10079 case SO_DGRAM_ERRIND: 10080 if (!checkonly) 10081 tcp->tcp_dgram_errind = onoff; 10082 break; 10083 case SO_SNDBUF: { 10084 if (*i1 > tcps->tcps_max_buf) { 10085 *outlenp = 0; 10086 return (ENOBUFS); 10087 } 10088 if (checkonly) 10089 break; 10090 10091 tcp->tcp_xmit_hiwater = *i1; 10092 if (tcps->tcps_snd_lowat_fraction != 0) 10093 tcp->tcp_xmit_lowater = 10094 tcp->tcp_xmit_hiwater / 10095 tcps->tcps_snd_lowat_fraction; 10096 (void) tcp_maxpsz_set(tcp, B_TRUE); 10097 /* 10098 * If we are flow-controlled, recheck the condition. 10099 * There are apps that increase SO_SNDBUF size when 10100 * flow-controlled (EWOULDBLOCK), and expect the flow 10101 * control condition to be lifted right away. 10102 */ 10103 mutex_enter(&tcp->tcp_non_sq_lock); 10104 if (tcp->tcp_flow_stopped && 10105 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10106 tcp_clrqfull(tcp); 10107 } 10108 mutex_exit(&tcp->tcp_non_sq_lock); 10109 break; 10110 } 10111 case SO_RCVBUF: 10112 if (*i1 > tcps->tcps_max_buf) { 10113 *outlenp = 0; 10114 return (ENOBUFS); 10115 } 10116 /* Silently ignore zero */ 10117 if (!checkonly && *i1 != 0) { 10118 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10119 (void) tcp_rwnd_set(tcp, *i1); 10120 } 10121 /* 10122 * XXX should we return the rwnd here 10123 * and tcp_opt_get ? 10124 */ 10125 break; 10126 case SO_SND_COPYAVOID: 10127 if (!checkonly) { 10128 /* we only allow enable at most once for now */ 10129 if (tcp->tcp_loopback || 10130 (tcp->tcp_kssl_ctx != NULL) || 10131 (!tcp->tcp_snd_zcopy_aware && 10132 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10133 *outlenp = 0; 10134 return (EOPNOTSUPP); 10135 } 10136 tcp->tcp_snd_zcopy_aware = 1; 10137 } 10138 break; 10139 case SO_RCVTIMEO: 10140 case SO_SNDTIMEO: 10141 /* 10142 * Pass these two options in order for third part 10143 * protocol usage. Here just return directly. 10144 */ 10145 return (0); 10146 case SO_ALLZONES: 10147 /* Pass option along to IP level for handling */ 10148 return (-EINVAL); 10149 case SO_ANON_MLP: 10150 /* Pass option along to IP level for handling */ 10151 return (-EINVAL); 10152 case SO_MAC_EXEMPT: 10153 /* Pass option along to IP level for handling */ 10154 return (-EINVAL); 10155 case SO_EXCLBIND: 10156 if (!checkonly) 10157 tcp->tcp_exclbind = onoff; 10158 break; 10159 default: 10160 *outlenp = 0; 10161 return (EINVAL); 10162 } 10163 break; 10164 case IPPROTO_TCP: 10165 switch (name) { 10166 case TCP_NODELAY: 10167 if (!checkonly) 10168 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10169 break; 10170 case TCP_NOTIFY_THRESHOLD: 10171 if (!checkonly) 10172 tcp->tcp_first_timer_threshold = *i1; 10173 break; 10174 case TCP_ABORT_THRESHOLD: 10175 if (!checkonly) 10176 tcp->tcp_second_timer_threshold = *i1; 10177 break; 10178 case TCP_CONN_NOTIFY_THRESHOLD: 10179 if (!checkonly) 10180 tcp->tcp_first_ctimer_threshold = *i1; 10181 break; 10182 case TCP_CONN_ABORT_THRESHOLD: 10183 if (!checkonly) 10184 tcp->tcp_second_ctimer_threshold = *i1; 10185 break; 10186 case TCP_RECVDSTADDR: 10187 if (tcp->tcp_state > TCPS_LISTEN) 10188 return (EOPNOTSUPP); 10189 if (!checkonly) 10190 tcp->tcp_recvdstaddr = onoff; 10191 break; 10192 case TCP_ANONPRIVBIND: 10193 if ((reterr = secpolicy_net_privaddr(cr, 0, 10194 IPPROTO_TCP)) != 0) { 10195 *outlenp = 0; 10196 return (reterr); 10197 } 10198 if (!checkonly) { 10199 tcp->tcp_anon_priv_bind = onoff; 10200 } 10201 break; 10202 case TCP_EXCLBIND: 10203 if (!checkonly) 10204 tcp->tcp_exclbind = onoff; 10205 break; /* goto sizeof (int) option return */ 10206 case TCP_INIT_CWND: { 10207 uint32_t init_cwnd = *((uint32_t *)invalp); 10208 10209 if (checkonly) 10210 break; 10211 10212 /* 10213 * Only allow socket with network configuration 10214 * privilege to set the initial cwnd to be larger 10215 * than allowed by RFC 3390. 10216 */ 10217 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10218 tcp->tcp_init_cwnd = init_cwnd; 10219 break; 10220 } 10221 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10222 *outlenp = 0; 10223 return (reterr); 10224 } 10225 if (init_cwnd > TCP_MAX_INIT_CWND) { 10226 *outlenp = 0; 10227 return (EINVAL); 10228 } 10229 tcp->tcp_init_cwnd = init_cwnd; 10230 break; 10231 } 10232 case TCP_KEEPALIVE_THRESHOLD: 10233 if (checkonly) 10234 break; 10235 10236 if (*i1 < tcps->tcps_keepalive_interval_low || 10237 *i1 > tcps->tcps_keepalive_interval_high) { 10238 *outlenp = 0; 10239 return (EINVAL); 10240 } 10241 if (*i1 != tcp->tcp_ka_interval) { 10242 tcp->tcp_ka_interval = *i1; 10243 /* 10244 * Check if we need to restart the 10245 * keepalive timer. 10246 */ 10247 if (tcp->tcp_ka_tid != 0) { 10248 ASSERT(tcp->tcp_ka_enabled); 10249 (void) TCP_TIMER_CANCEL(tcp, 10250 tcp->tcp_ka_tid); 10251 tcp->tcp_ka_last_intrvl = 0; 10252 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10253 tcp_keepalive_killer, 10254 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10255 } 10256 } 10257 break; 10258 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10259 if (!checkonly) { 10260 if (*i1 < 10261 tcps->tcps_keepalive_abort_interval_low || 10262 *i1 > 10263 tcps->tcps_keepalive_abort_interval_high) { 10264 *outlenp = 0; 10265 return (EINVAL); 10266 } 10267 tcp->tcp_ka_abort_thres = *i1; 10268 } 10269 break; 10270 case TCP_CORK: 10271 if (!checkonly) { 10272 /* 10273 * if tcp->tcp_cork was set and is now 10274 * being unset, we have to make sure that 10275 * the remaining data gets sent out. Also 10276 * unset tcp->tcp_cork so that tcp_wput_data() 10277 * can send data even if it is less than mss 10278 */ 10279 if (tcp->tcp_cork && onoff == 0 && 10280 tcp->tcp_unsent > 0) { 10281 tcp->tcp_cork = B_FALSE; 10282 tcp_wput_data(tcp, NULL, B_FALSE); 10283 } 10284 tcp->tcp_cork = onoff; 10285 } 10286 break; 10287 default: 10288 *outlenp = 0; 10289 return (EINVAL); 10290 } 10291 break; 10292 case IPPROTO_IP: 10293 if (tcp->tcp_family != AF_INET) { 10294 *outlenp = 0; 10295 return (ENOPROTOOPT); 10296 } 10297 switch (name) { 10298 case IP_OPTIONS: 10299 case T_IP_OPTIONS: 10300 reterr = tcp_opt_set_header(tcp, checkonly, 10301 invalp, inlen); 10302 if (reterr) { 10303 *outlenp = 0; 10304 return (reterr); 10305 } 10306 /* OK return - copy input buffer into output buffer */ 10307 if (invalp != outvalp) { 10308 /* don't trust bcopy for identical src/dst */ 10309 bcopy(invalp, outvalp, inlen); 10310 } 10311 *outlenp = inlen; 10312 return (0); 10313 case IP_TOS: 10314 case T_IP_TOS: 10315 if (!checkonly) { 10316 tcp->tcp_ipha->ipha_type_of_service = 10317 (uchar_t)*i1; 10318 tcp->tcp_tos = (uchar_t)*i1; 10319 } 10320 break; 10321 case IP_TTL: 10322 if (!checkonly) { 10323 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10324 tcp->tcp_ttl = (uchar_t)*i1; 10325 } 10326 break; 10327 case IP_BOUND_IF: 10328 case IP_NEXTHOP: 10329 /* Handled at the IP level */ 10330 return (-EINVAL); 10331 case IP_SEC_OPT: 10332 /* 10333 * We should not allow policy setting after 10334 * we start listening for connections. 10335 */ 10336 if (tcp->tcp_state == TCPS_LISTEN) { 10337 return (EINVAL); 10338 } else { 10339 /* Handled at the IP level */ 10340 return (-EINVAL); 10341 } 10342 default: 10343 *outlenp = 0; 10344 return (EINVAL); 10345 } 10346 break; 10347 case IPPROTO_IPV6: { 10348 ip6_pkt_t *ipp; 10349 10350 /* 10351 * IPPROTO_IPV6 options are only supported for sockets 10352 * that are using IPv6 on the wire. 10353 */ 10354 if (tcp->tcp_ipversion != IPV6_VERSION) { 10355 *outlenp = 0; 10356 return (ENOPROTOOPT); 10357 } 10358 /* 10359 * Only sticky options; no ancillary data 10360 */ 10361 ipp = &tcp->tcp_sticky_ipp; 10362 10363 switch (name) { 10364 case IPV6_UNICAST_HOPS: 10365 /* -1 means use default */ 10366 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10367 *outlenp = 0; 10368 return (EINVAL); 10369 } 10370 if (!checkonly) { 10371 if (*i1 == -1) { 10372 tcp->tcp_ip6h->ip6_hops = 10373 ipp->ipp_unicast_hops = 10374 (uint8_t)tcps->tcps_ipv6_hoplimit; 10375 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10376 /* Pass modified value to IP. */ 10377 *i1 = tcp->tcp_ip6h->ip6_hops; 10378 } else { 10379 tcp->tcp_ip6h->ip6_hops = 10380 ipp->ipp_unicast_hops = 10381 (uint8_t)*i1; 10382 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10383 } 10384 reterr = tcp_build_hdrs(tcp); 10385 if (reterr != 0) 10386 return (reterr); 10387 } 10388 break; 10389 case IPV6_BOUND_IF: 10390 if (!checkonly) { 10391 tcp->tcp_bound_if = *i1; 10392 PASS_OPT_TO_IP(connp); 10393 } 10394 break; 10395 /* 10396 * Set boolean switches for ancillary data delivery 10397 */ 10398 case IPV6_RECVPKTINFO: 10399 if (!checkonly) { 10400 if (onoff) 10401 tcp->tcp_ipv6_recvancillary |= 10402 TCP_IPV6_RECVPKTINFO; 10403 else 10404 tcp->tcp_ipv6_recvancillary &= 10405 ~TCP_IPV6_RECVPKTINFO; 10406 /* Force it to be sent up with the next msg */ 10407 tcp->tcp_recvifindex = 0; 10408 PASS_OPT_TO_IP(connp); 10409 } 10410 break; 10411 case IPV6_RECVTCLASS: 10412 if (!checkonly) { 10413 if (onoff) 10414 tcp->tcp_ipv6_recvancillary |= 10415 TCP_IPV6_RECVTCLASS; 10416 else 10417 tcp->tcp_ipv6_recvancillary &= 10418 ~TCP_IPV6_RECVTCLASS; 10419 PASS_OPT_TO_IP(connp); 10420 } 10421 break; 10422 case IPV6_RECVHOPLIMIT: 10423 if (!checkonly) { 10424 if (onoff) 10425 tcp->tcp_ipv6_recvancillary |= 10426 TCP_IPV6_RECVHOPLIMIT; 10427 else 10428 tcp->tcp_ipv6_recvancillary &= 10429 ~TCP_IPV6_RECVHOPLIMIT; 10430 /* Force it to be sent up with the next msg */ 10431 tcp->tcp_recvhops = 0xffffffffU; 10432 PASS_OPT_TO_IP(connp); 10433 } 10434 break; 10435 case IPV6_RECVHOPOPTS: 10436 if (!checkonly) { 10437 if (onoff) 10438 tcp->tcp_ipv6_recvancillary |= 10439 TCP_IPV6_RECVHOPOPTS; 10440 else 10441 tcp->tcp_ipv6_recvancillary &= 10442 ~TCP_IPV6_RECVHOPOPTS; 10443 PASS_OPT_TO_IP(connp); 10444 } 10445 break; 10446 case IPV6_RECVDSTOPTS: 10447 if (!checkonly) { 10448 if (onoff) 10449 tcp->tcp_ipv6_recvancillary |= 10450 TCP_IPV6_RECVDSTOPTS; 10451 else 10452 tcp->tcp_ipv6_recvancillary &= 10453 ~TCP_IPV6_RECVDSTOPTS; 10454 PASS_OPT_TO_IP(connp); 10455 } 10456 break; 10457 case _OLD_IPV6_RECVDSTOPTS: 10458 if (!checkonly) { 10459 if (onoff) 10460 tcp->tcp_ipv6_recvancillary |= 10461 TCP_OLD_IPV6_RECVDSTOPTS; 10462 else 10463 tcp->tcp_ipv6_recvancillary &= 10464 ~TCP_OLD_IPV6_RECVDSTOPTS; 10465 } 10466 break; 10467 case IPV6_RECVRTHDR: 10468 if (!checkonly) { 10469 if (onoff) 10470 tcp->tcp_ipv6_recvancillary |= 10471 TCP_IPV6_RECVRTHDR; 10472 else 10473 tcp->tcp_ipv6_recvancillary &= 10474 ~TCP_IPV6_RECVRTHDR; 10475 PASS_OPT_TO_IP(connp); 10476 } 10477 break; 10478 case IPV6_RECVRTHDRDSTOPTS: 10479 if (!checkonly) { 10480 if (onoff) 10481 tcp->tcp_ipv6_recvancillary |= 10482 TCP_IPV6_RECVRTDSTOPTS; 10483 else 10484 tcp->tcp_ipv6_recvancillary &= 10485 ~TCP_IPV6_RECVRTDSTOPTS; 10486 PASS_OPT_TO_IP(connp); 10487 } 10488 break; 10489 case IPV6_PKTINFO: 10490 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10491 return (EINVAL); 10492 if (checkonly) 10493 break; 10494 10495 if (inlen == 0) { 10496 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10497 } else { 10498 struct in6_pktinfo *pkti; 10499 10500 pkti = (struct in6_pktinfo *)invalp; 10501 /* 10502 * RFC 3542 states that ipi6_addr must be 10503 * the unspecified address when setting the 10504 * IPV6_PKTINFO sticky socket option on a 10505 * TCP socket. 10506 */ 10507 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10508 return (EINVAL); 10509 /* 10510 * IP will validate the source address and 10511 * interface index. 10512 */ 10513 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10514 reterr = ip_set_options(tcp->tcp_connp, 10515 level, name, invalp, inlen, cr); 10516 } else { 10517 reterr = ip6_set_pktinfo(cr, 10518 tcp->tcp_connp, pkti); 10519 } 10520 if (reterr != 0) 10521 return (reterr); 10522 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10523 ipp->ipp_addr = pkti->ipi6_addr; 10524 if (ipp->ipp_ifindex != 0) 10525 ipp->ipp_fields |= IPPF_IFINDEX; 10526 else 10527 ipp->ipp_fields &= ~IPPF_IFINDEX; 10528 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10529 ipp->ipp_fields |= IPPF_ADDR; 10530 else 10531 ipp->ipp_fields &= ~IPPF_ADDR; 10532 } 10533 reterr = tcp_build_hdrs(tcp); 10534 if (reterr != 0) 10535 return (reterr); 10536 break; 10537 case IPV6_TCLASS: 10538 if (inlen != 0 && inlen != sizeof (int)) 10539 return (EINVAL); 10540 if (checkonly) 10541 break; 10542 10543 if (inlen == 0) { 10544 ipp->ipp_fields &= ~IPPF_TCLASS; 10545 } else { 10546 if (*i1 > 255 || *i1 < -1) 10547 return (EINVAL); 10548 if (*i1 == -1) { 10549 ipp->ipp_tclass = 0; 10550 *i1 = 0; 10551 } else { 10552 ipp->ipp_tclass = *i1; 10553 } 10554 ipp->ipp_fields |= IPPF_TCLASS; 10555 } 10556 reterr = tcp_build_hdrs(tcp); 10557 if (reterr != 0) 10558 return (reterr); 10559 break; 10560 case IPV6_NEXTHOP: 10561 /* 10562 * IP will verify that the nexthop is reachable 10563 * and fail for sticky options. 10564 */ 10565 if (inlen != 0 && inlen != sizeof (sin6_t)) 10566 return (EINVAL); 10567 if (checkonly) 10568 break; 10569 10570 if (inlen == 0) { 10571 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10572 } else { 10573 sin6_t *sin6 = (sin6_t *)invalp; 10574 10575 if (sin6->sin6_family != AF_INET6) 10576 return (EAFNOSUPPORT); 10577 if (IN6_IS_ADDR_V4MAPPED( 10578 &sin6->sin6_addr)) 10579 return (EADDRNOTAVAIL); 10580 ipp->ipp_nexthop = sin6->sin6_addr; 10581 if (!IN6_IS_ADDR_UNSPECIFIED( 10582 &ipp->ipp_nexthop)) 10583 ipp->ipp_fields |= IPPF_NEXTHOP; 10584 else 10585 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10586 } 10587 reterr = tcp_build_hdrs(tcp); 10588 if (reterr != 0) 10589 return (reterr); 10590 PASS_OPT_TO_IP(connp); 10591 break; 10592 case IPV6_HOPOPTS: { 10593 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10594 10595 /* 10596 * Sanity checks - minimum size, size a multiple of 10597 * eight bytes, and matching size passed in. 10598 */ 10599 if (inlen != 0 && 10600 inlen != (8 * (hopts->ip6h_len + 1))) 10601 return (EINVAL); 10602 10603 if (checkonly) 10604 break; 10605 10606 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10607 (uchar_t **)&ipp->ipp_hopopts, 10608 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10609 if (reterr != 0) 10610 return (reterr); 10611 if (ipp->ipp_hopoptslen == 0) 10612 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10613 else 10614 ipp->ipp_fields |= IPPF_HOPOPTS; 10615 reterr = tcp_build_hdrs(tcp); 10616 if (reterr != 0) 10617 return (reterr); 10618 break; 10619 } 10620 case IPV6_RTHDRDSTOPTS: { 10621 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10622 10623 /* 10624 * Sanity checks - minimum size, size a multiple of 10625 * eight bytes, and matching size passed in. 10626 */ 10627 if (inlen != 0 && 10628 inlen != (8 * (dopts->ip6d_len + 1))) 10629 return (EINVAL); 10630 10631 if (checkonly) 10632 break; 10633 10634 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10635 (uchar_t **)&ipp->ipp_rtdstopts, 10636 &ipp->ipp_rtdstoptslen, 0); 10637 if (reterr != 0) 10638 return (reterr); 10639 if (ipp->ipp_rtdstoptslen == 0) 10640 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10641 else 10642 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10643 reterr = tcp_build_hdrs(tcp); 10644 if (reterr != 0) 10645 return (reterr); 10646 break; 10647 } 10648 case IPV6_DSTOPTS: { 10649 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10650 10651 /* 10652 * Sanity checks - minimum size, size a multiple of 10653 * eight bytes, and matching size passed in. 10654 */ 10655 if (inlen != 0 && 10656 inlen != (8 * (dopts->ip6d_len + 1))) 10657 return (EINVAL); 10658 10659 if (checkonly) 10660 break; 10661 10662 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10663 (uchar_t **)&ipp->ipp_dstopts, 10664 &ipp->ipp_dstoptslen, 0); 10665 if (reterr != 0) 10666 return (reterr); 10667 if (ipp->ipp_dstoptslen == 0) 10668 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10669 else 10670 ipp->ipp_fields |= IPPF_DSTOPTS; 10671 reterr = tcp_build_hdrs(tcp); 10672 if (reterr != 0) 10673 return (reterr); 10674 break; 10675 } 10676 case IPV6_RTHDR: { 10677 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10678 10679 /* 10680 * Sanity checks - minimum size, size a multiple of 10681 * eight bytes, and matching size passed in. 10682 */ 10683 if (inlen != 0 && 10684 inlen != (8 * (rt->ip6r_len + 1))) 10685 return (EINVAL); 10686 10687 if (checkonly) 10688 break; 10689 10690 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10691 (uchar_t **)&ipp->ipp_rthdr, 10692 &ipp->ipp_rthdrlen, 0); 10693 if (reterr != 0) 10694 return (reterr); 10695 if (ipp->ipp_rthdrlen == 0) 10696 ipp->ipp_fields &= ~IPPF_RTHDR; 10697 else 10698 ipp->ipp_fields |= IPPF_RTHDR; 10699 reterr = tcp_build_hdrs(tcp); 10700 if (reterr != 0) 10701 return (reterr); 10702 break; 10703 } 10704 case IPV6_V6ONLY: 10705 if (!checkonly) { 10706 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10707 } 10708 break; 10709 case IPV6_USE_MIN_MTU: 10710 if (inlen != sizeof (int)) 10711 return (EINVAL); 10712 10713 if (*i1 < -1 || *i1 > 1) 10714 return (EINVAL); 10715 10716 if (checkonly) 10717 break; 10718 10719 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10720 ipp->ipp_use_min_mtu = *i1; 10721 break; 10722 case IPV6_SEC_OPT: 10723 /* 10724 * We should not allow policy setting after 10725 * we start listening for connections. 10726 */ 10727 if (tcp->tcp_state == TCPS_LISTEN) { 10728 return (EINVAL); 10729 } else { 10730 /* Handled at the IP level */ 10731 return (-EINVAL); 10732 } 10733 case IPV6_SRC_PREFERENCES: 10734 if (inlen != sizeof (uint32_t)) 10735 return (EINVAL); 10736 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10737 *(uint32_t *)invalp); 10738 if (reterr != 0) { 10739 *outlenp = 0; 10740 return (reterr); 10741 } 10742 break; 10743 default: 10744 *outlenp = 0; 10745 return (EINVAL); 10746 } 10747 break; 10748 } /* end IPPROTO_IPV6 */ 10749 default: 10750 *outlenp = 0; 10751 return (EINVAL); 10752 } 10753 /* 10754 * Common case of OK return with outval same as inval 10755 */ 10756 if (invalp != outvalp) { 10757 /* don't trust bcopy for identical src/dst */ 10758 (void) bcopy(invalp, outvalp, inlen); 10759 } 10760 *outlenp = inlen; 10761 return (0); 10762 } 10763 10764 /* ARGSUSED */ 10765 int 10766 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10767 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10768 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10769 { 10770 conn_t *connp = Q_TO_CONN(q); 10771 10772 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10773 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10774 } 10775 10776 int 10777 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10778 const void *optvalp, socklen_t optlen, cred_t *cr) 10779 { 10780 conn_t *connp = (conn_t *)proto_handle; 10781 squeue_t *sqp = connp->conn_sqp; 10782 int error; 10783 10784 ASSERT(connp->conn_upper_handle != NULL); 10785 /* 10786 * Entering the squeue synchronously can result in a context switch, 10787 * which can cause a rather sever performance degradation. So we try to 10788 * handle whatever options we can without entering the squeue. 10789 */ 10790 if (level == IPPROTO_TCP) { 10791 switch (option_name) { 10792 case TCP_NODELAY: 10793 if (optlen != sizeof (int32_t)) 10794 return (EINVAL); 10795 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10796 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10797 connp->conn_tcp->tcp_mss; 10798 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10799 return (0); 10800 default: 10801 break; 10802 } 10803 } 10804 10805 error = squeue_synch_enter(sqp, connp, NULL); 10806 if (error == ENOMEM) { 10807 return (ENOMEM); 10808 } 10809 10810 error = proto_opt_check(level, option_name, optlen, NULL, 10811 tcp_opt_obj.odb_opt_des_arr, 10812 tcp_opt_obj.odb_opt_arr_cnt, 10813 tcp_opt_obj.odb_topmost_tpiprovider, 10814 B_TRUE, B_FALSE, cr); 10815 10816 if (error != 0) { 10817 if (error < 0) { 10818 error = proto_tlitosyserr(-error); 10819 } 10820 squeue_synch_exit(sqp, connp); 10821 return (error); 10822 } 10823 10824 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10825 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10826 NULL, cr, NULL); 10827 squeue_synch_exit(sqp, connp); 10828 10829 if (error < 0) { 10830 /* 10831 * Pass on to ip 10832 */ 10833 error = ip_set_options(connp, level, option_name, optvalp, 10834 optlen, cr); 10835 } 10836 return (error); 10837 } 10838 10839 /* 10840 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10841 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10842 * headers, and the maximum size tcp header (to avoid reallocation 10843 * on the fly for additional tcp options). 10844 * Returns failure if can't allocate memory. 10845 */ 10846 static int 10847 tcp_build_hdrs(tcp_t *tcp) 10848 { 10849 char *hdrs; 10850 uint_t hdrs_len; 10851 ip6i_t *ip6i; 10852 char buf[TCP_MAX_HDR_LENGTH]; 10853 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10854 in6_addr_t src, dst; 10855 tcp_stack_t *tcps = tcp->tcp_tcps; 10856 conn_t *connp = tcp->tcp_connp; 10857 10858 /* 10859 * save the existing tcp header and source/dest IP addresses 10860 */ 10861 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10862 src = tcp->tcp_ip6h->ip6_src; 10863 dst = tcp->tcp_ip6h->ip6_dst; 10864 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10865 ASSERT(hdrs_len != 0); 10866 if (hdrs_len > tcp->tcp_iphc_len) { 10867 /* Need to reallocate */ 10868 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10869 if (hdrs == NULL) 10870 return (ENOMEM); 10871 if (tcp->tcp_iphc != NULL) { 10872 if (tcp->tcp_hdr_grown) { 10873 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10874 } else { 10875 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10876 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10877 } 10878 tcp->tcp_iphc_len = 0; 10879 } 10880 ASSERT(tcp->tcp_iphc_len == 0); 10881 tcp->tcp_iphc = hdrs; 10882 tcp->tcp_iphc_len = hdrs_len; 10883 tcp->tcp_hdr_grown = B_TRUE; 10884 } 10885 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10886 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10887 10888 /* Set header fields not in ipp */ 10889 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10890 ip6i = (ip6i_t *)tcp->tcp_iphc; 10891 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10892 } else { 10893 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10894 } 10895 /* 10896 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10897 * 10898 * tcp->tcp_tcp_hdr_len doesn't change here. 10899 */ 10900 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10901 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10902 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10903 10904 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10905 10906 tcp->tcp_ip6h->ip6_src = src; 10907 tcp->tcp_ip6h->ip6_dst = dst; 10908 10909 /* 10910 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10911 * the default value for TCP. 10912 */ 10913 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10914 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10915 10916 /* 10917 * If we're setting extension headers after a connection 10918 * has been established, and if we have a routing header 10919 * among the extension headers, call ip_massage_options_v6 to 10920 * manipulate the routing header/ip6_dst set the checksum 10921 * difference in the tcp header template. 10922 * (This happens in tcp_connect_ipv6 if the routing header 10923 * is set prior to the connect.) 10924 * Set the tcp_sum to zero first in case we've cleared a 10925 * routing header or don't have one at all. 10926 */ 10927 tcp->tcp_sum = 0; 10928 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10929 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10930 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10931 (uint8_t *)tcp->tcp_tcph); 10932 if (rth != NULL) { 10933 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10934 rth, tcps->tcps_netstack); 10935 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10936 (tcp->tcp_sum >> 16)); 10937 } 10938 } 10939 10940 /* Try to get everything in a single mblk */ 10941 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10942 hdrs_len + tcps->tcps_wroff_xtra); 10943 return (0); 10944 } 10945 10946 /* 10947 * Transfer any source route option from ipha to buf/dst in reversed form. 10948 */ 10949 static int 10950 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10951 { 10952 ipoptp_t opts; 10953 uchar_t *opt; 10954 uint8_t optval; 10955 uint8_t optlen; 10956 uint32_t len = 0; 10957 10958 for (optval = ipoptp_first(&opts, ipha); 10959 optval != IPOPT_EOL; 10960 optval = ipoptp_next(&opts)) { 10961 opt = opts.ipoptp_cur; 10962 optlen = opts.ipoptp_len; 10963 switch (optval) { 10964 int off1, off2; 10965 case IPOPT_SSRR: 10966 case IPOPT_LSRR: 10967 10968 /* Reverse source route */ 10969 /* 10970 * First entry should be the next to last one in the 10971 * current source route (the last entry is our 10972 * address.) 10973 * The last entry should be the final destination. 10974 */ 10975 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10976 buf[IPOPT_OLEN] = (uint8_t)optlen; 10977 off1 = IPOPT_MINOFF_SR - 1; 10978 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10979 if (off2 < 0) { 10980 /* No entries in source route */ 10981 break; 10982 } 10983 bcopy(opt + off2, dst, IP_ADDR_LEN); 10984 /* 10985 * Note: use src since ipha has not had its src 10986 * and dst reversed (it is in the state it was 10987 * received. 10988 */ 10989 bcopy(&ipha->ipha_src, buf + off2, 10990 IP_ADDR_LEN); 10991 off2 -= IP_ADDR_LEN; 10992 10993 while (off2 > 0) { 10994 bcopy(opt + off2, buf + off1, 10995 IP_ADDR_LEN); 10996 off1 += IP_ADDR_LEN; 10997 off2 -= IP_ADDR_LEN; 10998 } 10999 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11000 buf += optlen; 11001 len += optlen; 11002 break; 11003 } 11004 } 11005 done: 11006 /* Pad the resulting options */ 11007 while (len & 0x3) { 11008 *buf++ = IPOPT_EOL; 11009 len++; 11010 } 11011 return (len); 11012 } 11013 11014 11015 /* 11016 * Extract and revert a source route from ipha (if any) 11017 * and then update the relevant fields in both tcp_t and the standard header. 11018 */ 11019 static void 11020 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11021 { 11022 char buf[TCP_MAX_HDR_LENGTH]; 11023 uint_t tcph_len; 11024 int len; 11025 11026 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11027 len = IPH_HDR_LENGTH(ipha); 11028 if (len == IP_SIMPLE_HDR_LENGTH) 11029 /* Nothing to do */ 11030 return; 11031 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11032 (len & 0x3)) 11033 return; 11034 11035 tcph_len = tcp->tcp_tcp_hdr_len; 11036 bcopy(tcp->tcp_tcph, buf, tcph_len); 11037 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11038 (tcp->tcp_ipha->ipha_dst & 0xffff); 11039 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11040 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11041 len += IP_SIMPLE_HDR_LENGTH; 11042 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11043 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11044 if ((int)tcp->tcp_sum < 0) 11045 tcp->tcp_sum--; 11046 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11047 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11048 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11049 bcopy(buf, tcp->tcp_tcph, tcph_len); 11050 tcp->tcp_ip_hdr_len = len; 11051 tcp->tcp_ipha->ipha_version_and_hdr_length = 11052 (IP_VERSION << 4) | (len >> 2); 11053 len += tcph_len; 11054 tcp->tcp_hdr_len = len; 11055 } 11056 11057 /* 11058 * Copy the standard header into its new location, 11059 * lay in the new options and then update the relevant 11060 * fields in both tcp_t and the standard header. 11061 */ 11062 static int 11063 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11064 { 11065 uint_t tcph_len; 11066 uint8_t *ip_optp; 11067 tcph_t *new_tcph; 11068 tcp_stack_t *tcps = tcp->tcp_tcps; 11069 conn_t *connp = tcp->tcp_connp; 11070 11071 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11072 return (EINVAL); 11073 11074 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11075 return (EINVAL); 11076 11077 if (checkonly) { 11078 /* 11079 * do not really set, just pretend to - T_CHECK 11080 */ 11081 return (0); 11082 } 11083 11084 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11085 if (tcp->tcp_label_len > 0) { 11086 int padlen; 11087 uint8_t opt; 11088 11089 /* convert list termination to no-ops */ 11090 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11091 ip_optp += ip_optp[IPOPT_OLEN]; 11092 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11093 while (--padlen >= 0) 11094 *ip_optp++ = opt; 11095 } 11096 tcph_len = tcp->tcp_tcp_hdr_len; 11097 new_tcph = (tcph_t *)(ip_optp + len); 11098 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11099 tcp->tcp_tcph = new_tcph; 11100 bcopy(ptr, ip_optp, len); 11101 11102 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11103 11104 tcp->tcp_ip_hdr_len = len; 11105 tcp->tcp_ipha->ipha_version_and_hdr_length = 11106 (IP_VERSION << 4) | (len >> 2); 11107 tcp->tcp_hdr_len = len + tcph_len; 11108 if (!TCP_IS_DETACHED(tcp)) { 11109 /* Always allocate room for all options. */ 11110 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11111 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11112 } 11113 return (0); 11114 } 11115 11116 /* Get callback routine passed to nd_load by tcp_param_register */ 11117 /* ARGSUSED */ 11118 static int 11119 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11120 { 11121 tcpparam_t *tcppa = (tcpparam_t *)cp; 11122 11123 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11124 return (0); 11125 } 11126 11127 /* 11128 * Walk through the param array specified registering each element with the 11129 * named dispatch handler. 11130 */ 11131 static boolean_t 11132 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11133 { 11134 for (; cnt-- > 0; tcppa++) { 11135 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11136 if (!nd_load(ndp, tcppa->tcp_param_name, 11137 tcp_param_get, tcp_param_set, 11138 (caddr_t)tcppa)) { 11139 nd_free(ndp); 11140 return (B_FALSE); 11141 } 11142 } 11143 } 11144 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11145 KM_SLEEP); 11146 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11147 sizeof (tcpparam_t)); 11148 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11149 tcp_param_get, tcp_param_set_aligned, 11150 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11151 nd_free(ndp); 11152 return (B_FALSE); 11153 } 11154 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11155 KM_SLEEP); 11156 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11157 sizeof (tcpparam_t)); 11158 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11159 tcp_param_get, tcp_param_set_aligned, 11160 (caddr_t)tcps->tcps_mdt_head_param)) { 11161 nd_free(ndp); 11162 return (B_FALSE); 11163 } 11164 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11165 KM_SLEEP); 11166 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11167 sizeof (tcpparam_t)); 11168 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11169 tcp_param_get, tcp_param_set_aligned, 11170 (caddr_t)tcps->tcps_mdt_tail_param)) { 11171 nd_free(ndp); 11172 return (B_FALSE); 11173 } 11174 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11175 KM_SLEEP); 11176 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11177 sizeof (tcpparam_t)); 11178 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11179 tcp_param_get, tcp_param_set_aligned, 11180 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11181 nd_free(ndp); 11182 return (B_FALSE); 11183 } 11184 if (!nd_load(ndp, "tcp_extra_priv_ports", 11185 tcp_extra_priv_ports_get, NULL, NULL)) { 11186 nd_free(ndp); 11187 return (B_FALSE); 11188 } 11189 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11190 NULL, tcp_extra_priv_ports_add, NULL)) { 11191 nd_free(ndp); 11192 return (B_FALSE); 11193 } 11194 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11195 NULL, tcp_extra_priv_ports_del, NULL)) { 11196 nd_free(ndp); 11197 return (B_FALSE); 11198 } 11199 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11200 tcp_1948_phrase_set, NULL)) { 11201 nd_free(ndp); 11202 return (B_FALSE); 11203 } 11204 /* 11205 * Dummy ndd variables - only to convey obsolescence information 11206 * through printing of their name (no get or set routines) 11207 * XXX Remove in future releases ? 11208 */ 11209 if (!nd_load(ndp, 11210 "tcp_close_wait_interval(obsoleted - " 11211 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11212 nd_free(ndp); 11213 return (B_FALSE); 11214 } 11215 return (B_TRUE); 11216 } 11217 11218 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11219 /* ARGSUSED */ 11220 static int 11221 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11222 cred_t *cr) 11223 { 11224 long new_value; 11225 tcpparam_t *tcppa = (tcpparam_t *)cp; 11226 11227 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11228 new_value < tcppa->tcp_param_min || 11229 new_value > tcppa->tcp_param_max) { 11230 return (EINVAL); 11231 } 11232 /* 11233 * Need to make sure new_value is a multiple of 4. If it is not, 11234 * round it up. For future 64 bit requirement, we actually make it 11235 * a multiple of 8. 11236 */ 11237 if (new_value & 0x7) { 11238 new_value = (new_value & ~0x7) + 0x8; 11239 } 11240 tcppa->tcp_param_val = new_value; 11241 return (0); 11242 } 11243 11244 /* Set callback routine passed to nd_load by tcp_param_register */ 11245 /* ARGSUSED */ 11246 static int 11247 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11248 { 11249 long new_value; 11250 tcpparam_t *tcppa = (tcpparam_t *)cp; 11251 11252 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11253 new_value < tcppa->tcp_param_min || 11254 new_value > tcppa->tcp_param_max) { 11255 return (EINVAL); 11256 } 11257 tcppa->tcp_param_val = new_value; 11258 return (0); 11259 } 11260 11261 /* 11262 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11263 * is filled, return as much as we can. The message passed in may be 11264 * multi-part, chained using b_cont. "start" is the starting sequence 11265 * number for this piece. 11266 */ 11267 static mblk_t * 11268 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11269 { 11270 uint32_t end; 11271 mblk_t *mp1; 11272 mblk_t *mp2; 11273 mblk_t *next_mp; 11274 uint32_t u1; 11275 tcp_stack_t *tcps = tcp->tcp_tcps; 11276 11277 /* Walk through all the new pieces. */ 11278 do { 11279 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11280 (uintptr_t)INT_MAX); 11281 end = start + (int)(mp->b_wptr - mp->b_rptr); 11282 next_mp = mp->b_cont; 11283 if (start == end) { 11284 /* Empty. Blast it. */ 11285 freeb(mp); 11286 continue; 11287 } 11288 mp->b_cont = NULL; 11289 TCP_REASS_SET_SEQ(mp, start); 11290 TCP_REASS_SET_END(mp, end); 11291 mp1 = tcp->tcp_reass_tail; 11292 if (!mp1) { 11293 tcp->tcp_reass_tail = mp; 11294 tcp->tcp_reass_head = mp; 11295 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11296 UPDATE_MIB(&tcps->tcps_mib, 11297 tcpInDataUnorderBytes, end - start); 11298 continue; 11299 } 11300 /* New stuff completely beyond tail? */ 11301 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11302 /* Link it on end. */ 11303 mp1->b_cont = mp; 11304 tcp->tcp_reass_tail = mp; 11305 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11306 UPDATE_MIB(&tcps->tcps_mib, 11307 tcpInDataUnorderBytes, end - start); 11308 continue; 11309 } 11310 mp1 = tcp->tcp_reass_head; 11311 u1 = TCP_REASS_SEQ(mp1); 11312 /* New stuff at the front? */ 11313 if (SEQ_LT(start, u1)) { 11314 /* Yes... Check for overlap. */ 11315 mp->b_cont = mp1; 11316 tcp->tcp_reass_head = mp; 11317 tcp_reass_elim_overlap(tcp, mp); 11318 continue; 11319 } 11320 /* 11321 * The new piece fits somewhere between the head and tail. 11322 * We find our slot, where mp1 precedes us and mp2 trails. 11323 */ 11324 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11325 u1 = TCP_REASS_SEQ(mp2); 11326 if (SEQ_LEQ(start, u1)) 11327 break; 11328 } 11329 /* Link ourselves in */ 11330 mp->b_cont = mp2; 11331 mp1->b_cont = mp; 11332 11333 /* Trim overlap with following mblk(s) first */ 11334 tcp_reass_elim_overlap(tcp, mp); 11335 11336 /* Trim overlap with preceding mblk */ 11337 tcp_reass_elim_overlap(tcp, mp1); 11338 11339 } while (start = end, mp = next_mp); 11340 mp1 = tcp->tcp_reass_head; 11341 /* Anything ready to go? */ 11342 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11343 return (NULL); 11344 /* Eat what we can off the queue */ 11345 for (;;) { 11346 mp = mp1->b_cont; 11347 end = TCP_REASS_END(mp1); 11348 TCP_REASS_SET_SEQ(mp1, 0); 11349 TCP_REASS_SET_END(mp1, 0); 11350 if (!mp) { 11351 tcp->tcp_reass_tail = NULL; 11352 break; 11353 } 11354 if (end != TCP_REASS_SEQ(mp)) { 11355 mp1->b_cont = NULL; 11356 break; 11357 } 11358 mp1 = mp; 11359 } 11360 mp1 = tcp->tcp_reass_head; 11361 tcp->tcp_reass_head = mp; 11362 return (mp1); 11363 } 11364 11365 /* Eliminate any overlap that mp may have over later mblks */ 11366 static void 11367 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11368 { 11369 uint32_t end; 11370 mblk_t *mp1; 11371 uint32_t u1; 11372 tcp_stack_t *tcps = tcp->tcp_tcps; 11373 11374 end = TCP_REASS_END(mp); 11375 while ((mp1 = mp->b_cont) != NULL) { 11376 u1 = TCP_REASS_SEQ(mp1); 11377 if (!SEQ_GT(end, u1)) 11378 break; 11379 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11380 mp->b_wptr -= end - u1; 11381 TCP_REASS_SET_END(mp, u1); 11382 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11383 UPDATE_MIB(&tcps->tcps_mib, 11384 tcpInDataPartDupBytes, end - u1); 11385 break; 11386 } 11387 mp->b_cont = mp1->b_cont; 11388 TCP_REASS_SET_SEQ(mp1, 0); 11389 TCP_REASS_SET_END(mp1, 0); 11390 freeb(mp1); 11391 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11392 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11393 } 11394 if (!mp1) 11395 tcp->tcp_reass_tail = mp; 11396 } 11397 11398 static uint_t 11399 tcp_rwnd_reopen(tcp_t *tcp) 11400 { 11401 uint_t ret = 0; 11402 uint_t thwin; 11403 11404 /* Learn the latest rwnd information that we sent to the other side. */ 11405 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11406 << tcp->tcp_rcv_ws; 11407 /* This is peer's calculated send window (our receive window). */ 11408 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11409 /* 11410 * Increase the receive window to max. But we need to do receiver 11411 * SWS avoidance. This means that we need to check the increase of 11412 * of receive window is at least 1 MSS. 11413 */ 11414 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11415 /* 11416 * If the window that the other side knows is less than max 11417 * deferred acks segments, send an update immediately. 11418 */ 11419 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11420 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11421 ret = TH_ACK_NEEDED; 11422 } 11423 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11424 } 11425 return (ret); 11426 } 11427 11428 /* 11429 * Send up all messages queued on tcp_rcv_list. 11430 */ 11431 static uint_t 11432 tcp_rcv_drain(tcp_t *tcp) 11433 { 11434 mblk_t *mp; 11435 uint_t ret = 0; 11436 #ifdef DEBUG 11437 uint_t cnt = 0; 11438 #endif 11439 queue_t *q = tcp->tcp_rq; 11440 11441 /* Can't drain on an eager connection */ 11442 if (tcp->tcp_listener != NULL) 11443 return (ret); 11444 11445 /* Can't be a non-STREAMS connection */ 11446 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 11447 11448 /* No need for the push timer now. */ 11449 if (tcp->tcp_push_tid != 0) { 11450 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11451 tcp->tcp_push_tid = 0; 11452 } 11453 11454 /* 11455 * Handle two cases here: we are currently fused or we were 11456 * previously fused and have some urgent data to be delivered 11457 * upstream. The latter happens because we either ran out of 11458 * memory or were detached and therefore sending the SIGURG was 11459 * deferred until this point. In either case we pass control 11460 * over to tcp_fuse_rcv_drain() since it may need to complete 11461 * some work. 11462 */ 11463 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11464 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11465 tcp->tcp_fused_sigurg_mp != NULL); 11466 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11467 &tcp->tcp_fused_sigurg_mp)) 11468 return (ret); 11469 } 11470 11471 while ((mp = tcp->tcp_rcv_list) != NULL) { 11472 tcp->tcp_rcv_list = mp->b_next; 11473 mp->b_next = NULL; 11474 #ifdef DEBUG 11475 cnt += msgdsize(mp); 11476 #endif 11477 /* Does this need SSL processing first? */ 11478 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11479 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11480 mblk_t *, mp); 11481 tcp_kssl_input(tcp, mp); 11482 continue; 11483 } 11484 putnext(q, mp); 11485 } 11486 #ifdef DEBUG 11487 ASSERT(cnt == tcp->tcp_rcv_cnt); 11488 #endif 11489 tcp->tcp_rcv_last_head = NULL; 11490 tcp->tcp_rcv_last_tail = NULL; 11491 tcp->tcp_rcv_cnt = 0; 11492 11493 if (canputnext(q)) 11494 return (tcp_rwnd_reopen(tcp)); 11495 11496 return (ret); 11497 } 11498 11499 /* 11500 * Queue data on tcp_rcv_list which is a b_next chain. 11501 * tcp_rcv_last_head/tail is the last element of this chain. 11502 * Each element of the chain is a b_cont chain. 11503 * 11504 * M_DATA messages are added to the current element. 11505 * Other messages are added as new (b_next) elements. 11506 */ 11507 void 11508 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11509 { 11510 ASSERT(seg_len == msgdsize(mp)); 11511 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11512 11513 if (tcp->tcp_rcv_list == NULL) { 11514 ASSERT(tcp->tcp_rcv_last_head == NULL); 11515 tcp->tcp_rcv_list = mp; 11516 tcp->tcp_rcv_last_head = mp; 11517 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11518 tcp->tcp_rcv_last_tail->b_cont = mp; 11519 } else { 11520 tcp->tcp_rcv_last_head->b_next = mp; 11521 tcp->tcp_rcv_last_head = mp; 11522 } 11523 11524 while (mp->b_cont) 11525 mp = mp->b_cont; 11526 11527 tcp->tcp_rcv_last_tail = mp; 11528 tcp->tcp_rcv_cnt += seg_len; 11529 tcp->tcp_rwnd -= seg_len; 11530 } 11531 11532 /* 11533 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11534 * 11535 * This is the default entry function into TCP on the read side. TCP is 11536 * always entered via squeue i.e. using squeue's for mutual exclusion. 11537 * When classifier does a lookup to find the tcp, it also puts a reference 11538 * on the conn structure associated so the tcp is guaranteed to exist 11539 * when we come here. We still need to check the state because it might 11540 * as well has been closed. The squeue processing function i.e. squeue_enter, 11541 * is responsible for doing the CONN_DEC_REF. 11542 * 11543 * Apart from the default entry point, IP also sends packets directly to 11544 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11545 * connections. 11546 */ 11547 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11548 void 11549 tcp_input(void *arg, mblk_t *mp, void *arg2) 11550 { 11551 conn_t *connp = (conn_t *)arg; 11552 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11553 11554 /* arg2 is the sqp */ 11555 ASSERT(arg2 != NULL); 11556 ASSERT(mp != NULL); 11557 11558 /* 11559 * Don't accept any input on a closed tcp as this TCP logically does 11560 * not exist on the system. Don't proceed further with this TCP. 11561 * For eg. this packet could trigger another close of this tcp 11562 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11563 * tcp_clean_death / tcp_closei_local must be called at most once 11564 * on a TCP. In this case we need to refeed the packet into the 11565 * classifier and figure out where the packet should go. Need to 11566 * preserve the recv_ill somehow. Until we figure that out, for 11567 * now just drop the packet if we can't classify the packet. 11568 */ 11569 if (tcp->tcp_state == TCPS_CLOSED || 11570 tcp->tcp_state == TCPS_BOUND) { 11571 conn_t *new_connp; 11572 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11573 11574 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11575 if (new_connp != NULL) { 11576 tcp_reinput(new_connp, mp, arg2); 11577 return; 11578 } 11579 /* We failed to classify. For now just drop the packet */ 11580 freemsg(mp); 11581 return; 11582 } 11583 11584 if (DB_TYPE(mp) != M_DATA) { 11585 tcp_rput_common(tcp, mp); 11586 return; 11587 } 11588 11589 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11590 squeue_t *final_sqp; 11591 11592 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11593 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11594 DB_CKSUMSTART(mp) = 0; 11595 if (tcp->tcp_state == TCPS_SYN_SENT && 11596 connp->conn_final_sqp == NULL && 11597 tcp_outbound_squeue_switch) { 11598 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11599 connp->conn_final_sqp = final_sqp; 11600 if (connp->conn_final_sqp != connp->conn_sqp) { 11601 CONN_INC_REF(connp); 11602 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11603 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11604 tcp_rput_data, connp, ip_squeue_flag, 11605 SQTAG_CONNECT_FINISH); 11606 return; 11607 } 11608 } 11609 } 11610 tcp_rput_data(connp, mp, arg2); 11611 } 11612 11613 /* 11614 * The read side put procedure. 11615 * The packets passed up by ip are assume to be aligned according to 11616 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11617 */ 11618 static void 11619 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11620 { 11621 /* 11622 * tcp_rput_data() does not expect M_CTL except for the case 11623 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11624 * type. Need to make sure that any other M_CTLs don't make 11625 * it to tcp_rput_data since it is not expecting any and doesn't 11626 * check for it. 11627 */ 11628 if (DB_TYPE(mp) == M_CTL) { 11629 switch (*(uint32_t *)(mp->b_rptr)) { 11630 case TCP_IOC_ABORT_CONN: 11631 /* 11632 * Handle connection abort request. 11633 */ 11634 tcp_ioctl_abort_handler(tcp, mp); 11635 return; 11636 case IPSEC_IN: 11637 /* 11638 * Only secure icmp arrive in TCP and they 11639 * don't go through data path. 11640 */ 11641 tcp_icmp_error(tcp, mp); 11642 return; 11643 case IN_PKTINFO: 11644 /* 11645 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11646 * sockets that are receiving IPv4 traffic. tcp 11647 */ 11648 ASSERT(tcp->tcp_family == AF_INET6); 11649 ASSERT(tcp->tcp_ipv6_recvancillary & 11650 TCP_IPV6_RECVPKTINFO); 11651 tcp_rput_data(tcp->tcp_connp, mp, 11652 tcp->tcp_connp->conn_sqp); 11653 return; 11654 case MDT_IOC_INFO_UPDATE: 11655 /* 11656 * Handle Multidata information update; the 11657 * following routine will free the message. 11658 */ 11659 if (tcp->tcp_connp->conn_mdt_ok) { 11660 tcp_mdt_update(tcp, 11661 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11662 B_FALSE); 11663 } 11664 freemsg(mp); 11665 return; 11666 case LSO_IOC_INFO_UPDATE: 11667 /* 11668 * Handle LSO information update; the following 11669 * routine will free the message. 11670 */ 11671 if (tcp->tcp_connp->conn_lso_ok) { 11672 tcp_lso_update(tcp, 11673 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11674 } 11675 freemsg(mp); 11676 return; 11677 default: 11678 /* 11679 * tcp_icmp_err() will process the M_CTL packets. 11680 * Non-ICMP packets, if any, will be discarded in 11681 * tcp_icmp_err(). We will process the ICMP packet 11682 * even if we are TCP_IS_DETACHED_NONEAGER as the 11683 * incoming ICMP packet may result in changing 11684 * the tcp_mss, which we would need if we have 11685 * packets to retransmit. 11686 */ 11687 tcp_icmp_error(tcp, mp); 11688 return; 11689 } 11690 } 11691 11692 /* No point processing the message if tcp is already closed */ 11693 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11694 freemsg(mp); 11695 return; 11696 } 11697 11698 tcp_rput_other(tcp, mp); 11699 } 11700 11701 11702 /* The minimum of smoothed mean deviation in RTO calculation. */ 11703 #define TCP_SD_MIN 400 11704 11705 /* 11706 * Set RTO for this connection. The formula is from Jacobson and Karels' 11707 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11708 * are the same as those in Appendix A.2 of that paper. 11709 * 11710 * m = new measurement 11711 * sa = smoothed RTT average (8 * average estimates). 11712 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11713 */ 11714 static void 11715 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11716 { 11717 long m = TICK_TO_MSEC(rtt); 11718 clock_t sa = tcp->tcp_rtt_sa; 11719 clock_t sv = tcp->tcp_rtt_sd; 11720 clock_t rto; 11721 tcp_stack_t *tcps = tcp->tcp_tcps; 11722 11723 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11724 tcp->tcp_rtt_update++; 11725 11726 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11727 if (sa != 0) { 11728 /* 11729 * Update average estimator: 11730 * new rtt = 7/8 old rtt + 1/8 Error 11731 */ 11732 11733 /* m is now Error in estimate. */ 11734 m -= sa >> 3; 11735 if ((sa += m) <= 0) { 11736 /* 11737 * Don't allow the smoothed average to be negative. 11738 * We use 0 to denote reinitialization of the 11739 * variables. 11740 */ 11741 sa = 1; 11742 } 11743 11744 /* 11745 * Update deviation estimator: 11746 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11747 */ 11748 if (m < 0) 11749 m = -m; 11750 m -= sv >> 2; 11751 sv += m; 11752 } else { 11753 /* 11754 * This follows BSD's implementation. So the reinitialized 11755 * RTO is 3 * m. We cannot go less than 2 because if the 11756 * link is bandwidth dominated, doubling the window size 11757 * during slow start means doubling the RTT. We want to be 11758 * more conservative when we reinitialize our estimates. 3 11759 * is just a convenient number. 11760 */ 11761 sa = m << 3; 11762 sv = m << 1; 11763 } 11764 if (sv < TCP_SD_MIN) { 11765 /* 11766 * We do not know that if sa captures the delay ACK 11767 * effect as in a long train of segments, a receiver 11768 * does not delay its ACKs. So set the minimum of sv 11769 * to be TCP_SD_MIN, which is default to 400 ms, twice 11770 * of BSD DATO. That means the minimum of mean 11771 * deviation is 100 ms. 11772 * 11773 */ 11774 sv = TCP_SD_MIN; 11775 } 11776 tcp->tcp_rtt_sa = sa; 11777 tcp->tcp_rtt_sd = sv; 11778 /* 11779 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11780 * 11781 * Add tcp_rexmit_interval extra in case of extreme environment 11782 * where the algorithm fails to work. The default value of 11783 * tcp_rexmit_interval_extra should be 0. 11784 * 11785 * As we use a finer grained clock than BSD and update 11786 * RTO for every ACKs, add in another .25 of RTT to the 11787 * deviation of RTO to accomodate burstiness of 1/4 of 11788 * window size. 11789 */ 11790 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11791 11792 if (rto > tcps->tcps_rexmit_interval_max) { 11793 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11794 } else if (rto < tcps->tcps_rexmit_interval_min) { 11795 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11796 } else { 11797 tcp->tcp_rto = rto; 11798 } 11799 11800 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11801 tcp->tcp_timer_backoff = 0; 11802 } 11803 11804 /* 11805 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11806 * send queue which starts at the given sequence number. If the given 11807 * sequence number is equal to last valid sequence number (tcp_snxt), the 11808 * returned mblk is the last valid mblk, and off is set to the length of 11809 * that mblk. 11810 * 11811 * send queue which starts at the given seq. no. 11812 * 11813 * Parameters: 11814 * tcp_t *tcp: the tcp instance pointer. 11815 * uint32_t seq: the starting seq. no of the requested segment. 11816 * int32_t *off: after the execution, *off will be the offset to 11817 * the returned mblk which points to the requested seq no. 11818 * It is the caller's responsibility to send in a non-null off. 11819 * 11820 * Return: 11821 * A mblk_t pointer pointing to the requested segment in send queue. 11822 */ 11823 static mblk_t * 11824 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11825 { 11826 int32_t cnt; 11827 mblk_t *mp; 11828 11829 /* Defensive coding. Make sure we don't send incorrect data. */ 11830 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GT(seq, tcp->tcp_snxt)) 11831 return (NULL); 11832 11833 cnt = seq - tcp->tcp_suna; 11834 mp = tcp->tcp_xmit_head; 11835 while (cnt > 0 && mp != NULL) { 11836 cnt -= mp->b_wptr - mp->b_rptr; 11837 if (cnt <= 0) { 11838 cnt += mp->b_wptr - mp->b_rptr; 11839 break; 11840 } 11841 mp = mp->b_cont; 11842 } 11843 ASSERT(mp != NULL); 11844 *off = cnt; 11845 return (mp); 11846 } 11847 11848 /* 11849 * This function handles all retransmissions if SACK is enabled for this 11850 * connection. First it calculates how many segments can be retransmitted 11851 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11852 * segments. A segment is eligible if sack_cnt for that segment is greater 11853 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11854 * all eligible segments, it checks to see if TCP can send some new segments 11855 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11856 * 11857 * Parameters: 11858 * tcp_t *tcp: the tcp structure of the connection. 11859 * uint_t *flags: in return, appropriate value will be set for 11860 * tcp_rput_data(). 11861 */ 11862 static void 11863 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11864 { 11865 notsack_blk_t *notsack_blk; 11866 int32_t usable_swnd; 11867 int32_t mss; 11868 uint32_t seg_len; 11869 mblk_t *xmit_mp; 11870 tcp_stack_t *tcps = tcp->tcp_tcps; 11871 11872 ASSERT(tcp->tcp_sack_info != NULL); 11873 ASSERT(tcp->tcp_notsack_list != NULL); 11874 ASSERT(tcp->tcp_rexmit == B_FALSE); 11875 11876 /* Defensive coding in case there is a bug... */ 11877 if (tcp->tcp_notsack_list == NULL) { 11878 return; 11879 } 11880 notsack_blk = tcp->tcp_notsack_list; 11881 mss = tcp->tcp_mss; 11882 11883 /* 11884 * Limit the num of outstanding data in the network to be 11885 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11886 */ 11887 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11888 11889 /* At least retransmit 1 MSS of data. */ 11890 if (usable_swnd <= 0) { 11891 usable_swnd = mss; 11892 } 11893 11894 /* Make sure no new RTT samples will be taken. */ 11895 tcp->tcp_csuna = tcp->tcp_snxt; 11896 11897 notsack_blk = tcp->tcp_notsack_list; 11898 while (usable_swnd > 0) { 11899 mblk_t *snxt_mp, *tmp_mp; 11900 tcp_seq begin = tcp->tcp_sack_snxt; 11901 tcp_seq end; 11902 int32_t off; 11903 11904 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11905 if (SEQ_GT(notsack_blk->end, begin) && 11906 (notsack_blk->sack_cnt >= 11907 tcps->tcps_dupack_fast_retransmit)) { 11908 end = notsack_blk->end; 11909 if (SEQ_LT(begin, notsack_blk->begin)) { 11910 begin = notsack_blk->begin; 11911 } 11912 break; 11913 } 11914 } 11915 /* 11916 * All holes are filled. Manipulate tcp_cwnd to send more 11917 * if we can. Note that after the SACK recovery, tcp_cwnd is 11918 * set to tcp_cwnd_ssthresh. 11919 */ 11920 if (notsack_blk == NULL) { 11921 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11922 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11923 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11924 ASSERT(tcp->tcp_cwnd > 0); 11925 return; 11926 } else { 11927 usable_swnd = usable_swnd / mss; 11928 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11929 MAX(usable_swnd * mss, mss); 11930 *flags |= TH_XMIT_NEEDED; 11931 return; 11932 } 11933 } 11934 11935 /* 11936 * Note that we may send more than usable_swnd allows here 11937 * because of round off, but no more than 1 MSS of data. 11938 */ 11939 seg_len = end - begin; 11940 if (seg_len > mss) 11941 seg_len = mss; 11942 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11943 ASSERT(snxt_mp != NULL); 11944 /* This should not happen. Defensive coding again... */ 11945 if (snxt_mp == NULL) { 11946 return; 11947 } 11948 11949 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11950 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11951 if (xmit_mp == NULL) 11952 return; 11953 11954 usable_swnd -= seg_len; 11955 tcp->tcp_pipe += seg_len; 11956 tcp->tcp_sack_snxt = begin + seg_len; 11957 11958 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11959 11960 /* 11961 * Update the send timestamp to avoid false retransmission. 11962 */ 11963 snxt_mp->b_prev = (mblk_t *)lbolt; 11964 11965 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 11966 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 11967 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 11968 /* 11969 * Update tcp_rexmit_max to extend this SACK recovery phase. 11970 * This happens when new data sent during fast recovery is 11971 * also lost. If TCP retransmits those new data, it needs 11972 * to extend SACK recover phase to avoid starting another 11973 * fast retransmit/recovery unnecessarily. 11974 */ 11975 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11976 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11977 } 11978 } 11979 } 11980 11981 /* 11982 * This function handles policy checking at TCP level for non-hard_bound/ 11983 * detached connections. 11984 */ 11985 static boolean_t 11986 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11987 boolean_t secure, boolean_t mctl_present) 11988 { 11989 ipsec_latch_t *ipl = NULL; 11990 ipsec_action_t *act = NULL; 11991 mblk_t *data_mp; 11992 ipsec_in_t *ii; 11993 const char *reason; 11994 kstat_named_t *counter; 11995 tcp_stack_t *tcps = tcp->tcp_tcps; 11996 ipsec_stack_t *ipss; 11997 ip_stack_t *ipst; 11998 11999 ASSERT(mctl_present || !secure); 12000 12001 ASSERT((ipha == NULL && ip6h != NULL) || 12002 (ip6h == NULL && ipha != NULL)); 12003 12004 /* 12005 * We don't necessarily have an ipsec_in_act action to verify 12006 * policy because of assymetrical policy where we have only 12007 * outbound policy and no inbound policy (possible with global 12008 * policy). 12009 */ 12010 if (!secure) { 12011 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12012 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12013 return (B_TRUE); 12014 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12015 "tcp_check_policy", ipha, ip6h, secure, 12016 tcps->tcps_netstack); 12017 ipss = tcps->tcps_netstack->netstack_ipsec; 12018 12019 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12020 DROPPER(ipss, ipds_tcp_clear), 12021 &tcps->tcps_dropper); 12022 return (B_FALSE); 12023 } 12024 12025 /* 12026 * We have a secure packet. 12027 */ 12028 if (act == NULL) { 12029 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12030 "tcp_check_policy", ipha, ip6h, secure, 12031 tcps->tcps_netstack); 12032 ipss = tcps->tcps_netstack->netstack_ipsec; 12033 12034 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12035 DROPPER(ipss, ipds_tcp_secure), 12036 &tcps->tcps_dropper); 12037 return (B_FALSE); 12038 } 12039 12040 /* 12041 * XXX This whole routine is currently incorrect. ipl should 12042 * be set to the latch pointer, but is currently not set, so 12043 * we initialize it to NULL to avoid picking up random garbage. 12044 */ 12045 if (ipl == NULL) 12046 return (B_TRUE); 12047 12048 data_mp = first_mp->b_cont; 12049 12050 ii = (ipsec_in_t *)first_mp->b_rptr; 12051 12052 ipst = tcps->tcps_netstack->netstack_ip; 12053 12054 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12055 &counter, tcp->tcp_connp)) { 12056 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12057 return (B_TRUE); 12058 } 12059 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12060 "tcp inbound policy mismatch: %s, packet dropped\n", 12061 reason); 12062 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12063 12064 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12065 &tcps->tcps_dropper); 12066 return (B_FALSE); 12067 } 12068 12069 /* 12070 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12071 * retransmission after a timeout. 12072 * 12073 * To limit the number of duplicate segments, we limit the number of segment 12074 * to be sent in one time to tcp_snd_burst, the burst variable. 12075 */ 12076 static void 12077 tcp_ss_rexmit(tcp_t *tcp) 12078 { 12079 uint32_t snxt; 12080 uint32_t smax; 12081 int32_t win; 12082 int32_t mss; 12083 int32_t off; 12084 int32_t burst = tcp->tcp_snd_burst; 12085 mblk_t *snxt_mp; 12086 tcp_stack_t *tcps = tcp->tcp_tcps; 12087 12088 /* 12089 * Note that tcp_rexmit can be set even though TCP has retransmitted 12090 * all unack'ed segments. 12091 */ 12092 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12093 smax = tcp->tcp_rexmit_max; 12094 snxt = tcp->tcp_rexmit_nxt; 12095 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12096 snxt = tcp->tcp_suna; 12097 } 12098 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12099 win -= snxt - tcp->tcp_suna; 12100 mss = tcp->tcp_mss; 12101 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12102 12103 while (SEQ_LT(snxt, smax) && (win > 0) && 12104 (burst > 0) && (snxt_mp != NULL)) { 12105 mblk_t *xmit_mp; 12106 mblk_t *old_snxt_mp = snxt_mp; 12107 uint32_t cnt = mss; 12108 12109 if (win < cnt) { 12110 cnt = win; 12111 } 12112 if (SEQ_GT(snxt + cnt, smax)) { 12113 cnt = smax - snxt; 12114 } 12115 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12116 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12117 if (xmit_mp == NULL) 12118 return; 12119 12120 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12121 12122 snxt += cnt; 12123 win -= cnt; 12124 /* 12125 * Update the send timestamp to avoid false 12126 * retransmission. 12127 */ 12128 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12129 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12130 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12131 12132 tcp->tcp_rexmit_nxt = snxt; 12133 burst--; 12134 } 12135 /* 12136 * If we have transmitted all we have at the time 12137 * we started the retranmission, we can leave 12138 * the rest of the job to tcp_wput_data(). But we 12139 * need to check the send window first. If the 12140 * win is not 0, go on with tcp_wput_data(). 12141 */ 12142 if (SEQ_LT(snxt, smax) || win == 0) { 12143 return; 12144 } 12145 } 12146 /* Only call tcp_wput_data() if there is data to be sent. */ 12147 if (tcp->tcp_unsent) { 12148 tcp_wput_data(tcp, NULL, B_FALSE); 12149 } 12150 } 12151 12152 /* 12153 * Process all TCP option in SYN segment. Note that this function should 12154 * be called after tcp_adapt_ire() is called so that the necessary info 12155 * from IRE is already set in the tcp structure. 12156 * 12157 * This function sets up the correct tcp_mss value according to the 12158 * MSS option value and our header size. It also sets up the window scale 12159 * and timestamp values, and initialize SACK info blocks. But it does not 12160 * change receive window size after setting the tcp_mss value. The caller 12161 * should do the appropriate change. 12162 */ 12163 void 12164 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12165 { 12166 int options; 12167 tcp_opt_t tcpopt; 12168 uint32_t mss_max; 12169 char *tmp_tcph; 12170 tcp_stack_t *tcps = tcp->tcp_tcps; 12171 12172 tcpopt.tcp = NULL; 12173 options = tcp_parse_options(tcph, &tcpopt); 12174 12175 /* 12176 * Process MSS option. Note that MSS option value does not account 12177 * for IP or TCP options. This means that it is equal to MTU - minimum 12178 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12179 * IPv6. 12180 */ 12181 if (!(options & TCP_OPT_MSS_PRESENT)) { 12182 if (tcp->tcp_ipversion == IPV4_VERSION) 12183 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12184 else 12185 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12186 } else { 12187 if (tcp->tcp_ipversion == IPV4_VERSION) 12188 mss_max = tcps->tcps_mss_max_ipv4; 12189 else 12190 mss_max = tcps->tcps_mss_max_ipv6; 12191 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12192 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12193 else if (tcpopt.tcp_opt_mss > mss_max) 12194 tcpopt.tcp_opt_mss = mss_max; 12195 } 12196 12197 /* Process Window Scale option. */ 12198 if (options & TCP_OPT_WSCALE_PRESENT) { 12199 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12200 tcp->tcp_snd_ws_ok = B_TRUE; 12201 } else { 12202 tcp->tcp_snd_ws = B_FALSE; 12203 tcp->tcp_snd_ws_ok = B_FALSE; 12204 tcp->tcp_rcv_ws = B_FALSE; 12205 } 12206 12207 /* Process Timestamp option. */ 12208 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12209 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12210 tmp_tcph = (char *)tcp->tcp_tcph; 12211 12212 tcp->tcp_snd_ts_ok = B_TRUE; 12213 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12214 tcp->tcp_last_rcv_lbolt = lbolt64; 12215 ASSERT(OK_32PTR(tmp_tcph)); 12216 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12217 12218 /* Fill in our template header with basic timestamp option. */ 12219 tmp_tcph += tcp->tcp_tcp_hdr_len; 12220 tmp_tcph[0] = TCPOPT_NOP; 12221 tmp_tcph[1] = TCPOPT_NOP; 12222 tmp_tcph[2] = TCPOPT_TSTAMP; 12223 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12224 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12225 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12226 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12227 } else { 12228 tcp->tcp_snd_ts_ok = B_FALSE; 12229 } 12230 12231 /* 12232 * Process SACK options. If SACK is enabled for this connection, 12233 * then allocate the SACK info structure. Note the following ways 12234 * when tcp_snd_sack_ok is set to true. 12235 * 12236 * For active connection: in tcp_adapt_ire() called in 12237 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12238 * is checked. 12239 * 12240 * For passive connection: in tcp_adapt_ire() called in 12241 * tcp_accept_comm(). 12242 * 12243 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12244 * That check makes sure that if we did not send a SACK OK option, 12245 * we will not enable SACK for this connection even though the other 12246 * side sends us SACK OK option. For active connection, the SACK 12247 * info structure has already been allocated. So we need to free 12248 * it if SACK is disabled. 12249 */ 12250 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12251 (tcp->tcp_snd_sack_ok || 12252 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12253 /* This should be true only in the passive case. */ 12254 if (tcp->tcp_sack_info == NULL) { 12255 ASSERT(TCP_IS_DETACHED(tcp)); 12256 tcp->tcp_sack_info = 12257 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12258 } 12259 if (tcp->tcp_sack_info == NULL) { 12260 tcp->tcp_snd_sack_ok = B_FALSE; 12261 } else { 12262 tcp->tcp_snd_sack_ok = B_TRUE; 12263 if (tcp->tcp_snd_ts_ok) { 12264 tcp->tcp_max_sack_blk = 3; 12265 } else { 12266 tcp->tcp_max_sack_blk = 4; 12267 } 12268 } 12269 } else { 12270 /* 12271 * Resetting tcp_snd_sack_ok to B_FALSE so that 12272 * no SACK info will be used for this 12273 * connection. This assumes that SACK usage 12274 * permission is negotiated. This may need 12275 * to be changed once this is clarified. 12276 */ 12277 if (tcp->tcp_sack_info != NULL) { 12278 ASSERT(tcp->tcp_notsack_list == NULL); 12279 kmem_cache_free(tcp_sack_info_cache, 12280 tcp->tcp_sack_info); 12281 tcp->tcp_sack_info = NULL; 12282 } 12283 tcp->tcp_snd_sack_ok = B_FALSE; 12284 } 12285 12286 /* 12287 * Now we know the exact TCP/IP header length, subtract 12288 * that from tcp_mss to get our side's MSS. 12289 */ 12290 tcp->tcp_mss -= tcp->tcp_hdr_len; 12291 /* 12292 * Here we assume that the other side's header size will be equal to 12293 * our header size. We calculate the real MSS accordingly. Need to 12294 * take into additional stuffs IPsec puts in. 12295 * 12296 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12297 */ 12298 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12299 ((tcp->tcp_ipversion == IPV4_VERSION ? 12300 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12301 12302 /* 12303 * Set MSS to the smaller one of both ends of the connection. 12304 * We should not have called tcp_mss_set() before, but our 12305 * side of the MSS should have been set to a proper value 12306 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12307 * STREAM head parameters properly. 12308 * 12309 * If we have a larger-than-16-bit window but the other side 12310 * didn't want to do window scale, tcp_rwnd_set() will take 12311 * care of that. 12312 */ 12313 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12314 } 12315 12316 /* 12317 * Sends the T_CONN_IND to the listener. The caller calls this 12318 * functions via squeue to get inside the listener's perimeter 12319 * once the 3 way hand shake is done a T_CONN_IND needs to be 12320 * sent. As an optimization, the caller can call this directly 12321 * if listener's perimeter is same as eager's. 12322 */ 12323 /* ARGSUSED */ 12324 void 12325 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12326 { 12327 conn_t *lconnp = (conn_t *)arg; 12328 tcp_t *listener = lconnp->conn_tcp; 12329 tcp_t *tcp; 12330 struct T_conn_ind *conn_ind; 12331 ipaddr_t *addr_cache; 12332 boolean_t need_send_conn_ind = B_FALSE; 12333 tcp_stack_t *tcps = listener->tcp_tcps; 12334 12335 /* retrieve the eager */ 12336 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12337 ASSERT(conn_ind->OPT_offset != 0 && 12338 conn_ind->OPT_length == sizeof (intptr_t)); 12339 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12340 conn_ind->OPT_length); 12341 12342 /* 12343 * TLI/XTI applications will get confused by 12344 * sending eager as an option since it violates 12345 * the option semantics. So remove the eager as 12346 * option since TLI/XTI app doesn't need it anyway. 12347 */ 12348 if (!TCP_IS_SOCKET(listener)) { 12349 conn_ind->OPT_length = 0; 12350 conn_ind->OPT_offset = 0; 12351 } 12352 if (listener->tcp_state != TCPS_LISTEN) { 12353 /* 12354 * If listener has closed, it would have caused a 12355 * a cleanup/blowoff to happen for the eager. We 12356 * just need to return. 12357 */ 12358 freemsg(mp); 12359 return; 12360 } 12361 12362 12363 /* 12364 * if the conn_req_q is full defer passing up the 12365 * T_CONN_IND until space is availabe after t_accept() 12366 * processing 12367 */ 12368 mutex_enter(&listener->tcp_eager_lock); 12369 12370 /* 12371 * Take the eager out, if it is in the list of droppable eagers 12372 * as we are here because the 3W handshake is over. 12373 */ 12374 MAKE_UNDROPPABLE(tcp); 12375 12376 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12377 tcp_t *tail; 12378 12379 /* 12380 * The eager already has an extra ref put in tcp_rput_data 12381 * so that it stays till accept comes back even though it 12382 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12383 */ 12384 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12385 listener->tcp_conn_req_cnt_q0--; 12386 listener->tcp_conn_req_cnt_q++; 12387 12388 /* Move from SYN_RCVD to ESTABLISHED list */ 12389 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12390 tcp->tcp_eager_prev_q0; 12391 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12392 tcp->tcp_eager_next_q0; 12393 tcp->tcp_eager_prev_q0 = NULL; 12394 tcp->tcp_eager_next_q0 = NULL; 12395 12396 /* 12397 * Insert at end of the queue because sockfs 12398 * sends down T_CONN_RES in chronological 12399 * order. Leaving the older conn indications 12400 * at front of the queue helps reducing search 12401 * time. 12402 */ 12403 tail = listener->tcp_eager_last_q; 12404 if (tail != NULL) 12405 tail->tcp_eager_next_q = tcp; 12406 else 12407 listener->tcp_eager_next_q = tcp; 12408 listener->tcp_eager_last_q = tcp; 12409 tcp->tcp_eager_next_q = NULL; 12410 /* 12411 * Delay sending up the T_conn_ind until we are 12412 * done with the eager. Once we have have sent up 12413 * the T_conn_ind, the accept can potentially complete 12414 * any time and release the refhold we have on the eager. 12415 */ 12416 need_send_conn_ind = B_TRUE; 12417 } else { 12418 /* 12419 * Defer connection on q0 and set deferred 12420 * connection bit true 12421 */ 12422 tcp->tcp_conn_def_q0 = B_TRUE; 12423 12424 /* take tcp out of q0 ... */ 12425 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12426 tcp->tcp_eager_next_q0; 12427 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12428 tcp->tcp_eager_prev_q0; 12429 12430 /* ... and place it at the end of q0 */ 12431 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12432 tcp->tcp_eager_next_q0 = listener; 12433 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12434 listener->tcp_eager_prev_q0 = tcp; 12435 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12436 } 12437 12438 /* we have timed out before */ 12439 if (tcp->tcp_syn_rcvd_timeout != 0) { 12440 tcp->tcp_syn_rcvd_timeout = 0; 12441 listener->tcp_syn_rcvd_timeout--; 12442 if (listener->tcp_syn_defense && 12443 listener->tcp_syn_rcvd_timeout <= 12444 (tcps->tcps_conn_req_max_q0 >> 5) && 12445 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12446 listener->tcp_last_rcv_lbolt)) { 12447 /* 12448 * Turn off the defense mode if we 12449 * believe the SYN attack is over. 12450 */ 12451 listener->tcp_syn_defense = B_FALSE; 12452 if (listener->tcp_ip_addr_cache) { 12453 kmem_free((void *)listener->tcp_ip_addr_cache, 12454 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12455 listener->tcp_ip_addr_cache = NULL; 12456 } 12457 } 12458 } 12459 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12460 if (addr_cache != NULL) { 12461 /* 12462 * We have finished a 3-way handshake with this 12463 * remote host. This proves the IP addr is good. 12464 * Cache it! 12465 */ 12466 addr_cache[IP_ADDR_CACHE_HASH( 12467 tcp->tcp_remote)] = tcp->tcp_remote; 12468 } 12469 mutex_exit(&listener->tcp_eager_lock); 12470 if (need_send_conn_ind) 12471 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 12472 } 12473 12474 /* 12475 * Send the newconn notification to ulp. The eager is blown off if the 12476 * notification fails. 12477 */ 12478 static void 12479 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 12480 { 12481 if (IPCL_IS_NONSTR(lconnp)) { 12482 cred_t *cr; 12483 pid_t cpid; 12484 12485 cr = msg_getcred(mp, &cpid); 12486 12487 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 12488 ASSERT(econnp->conn_tcp->tcp_saved_listener == 12489 lconnp->conn_tcp); 12490 12491 /* Keep the message around in case of a fallback to TPI */ 12492 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 12493 12494 /* 12495 * Notify the ULP about the newconn. It is guaranteed that no 12496 * tcp_accept() call will be made for the eager if the 12497 * notification fails, so it's safe to blow it off in that 12498 * case. 12499 * 12500 * The upper handle will be assigned when tcp_accept() is 12501 * called. 12502 */ 12503 if ((*lconnp->conn_upcalls->su_newconn) 12504 (lconnp->conn_upper_handle, 12505 (sock_lower_handle_t)econnp, 12506 &sock_tcp_downcalls, cr, cpid, 12507 &econnp->conn_upcalls) == NULL) { 12508 /* Failed to allocate a socket */ 12509 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 12510 tcpEstabResets); 12511 (void) tcp_eager_blowoff(lconnp->conn_tcp, 12512 econnp->conn_tcp->tcp_conn_req_seqnum); 12513 } 12514 } else { 12515 putnext(lconnp->conn_tcp->tcp_rq, mp); 12516 } 12517 } 12518 12519 mblk_t * 12520 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12521 uint_t *ifindexp, ip6_pkt_t *ippp) 12522 { 12523 ip_pktinfo_t *pinfo; 12524 ip6_t *ip6h; 12525 uchar_t *rptr; 12526 mblk_t *first_mp = mp; 12527 boolean_t mctl_present = B_FALSE; 12528 uint_t ifindex = 0; 12529 ip6_pkt_t ipp; 12530 uint_t ipvers; 12531 uint_t ip_hdr_len; 12532 tcp_stack_t *tcps = tcp->tcp_tcps; 12533 12534 rptr = mp->b_rptr; 12535 ASSERT(OK_32PTR(rptr)); 12536 ASSERT(tcp != NULL); 12537 ipp.ipp_fields = 0; 12538 12539 switch DB_TYPE(mp) { 12540 case M_CTL: 12541 mp = mp->b_cont; 12542 if (mp == NULL) { 12543 freemsg(first_mp); 12544 return (NULL); 12545 } 12546 if (DB_TYPE(mp) != M_DATA) { 12547 freemsg(first_mp); 12548 return (NULL); 12549 } 12550 mctl_present = B_TRUE; 12551 break; 12552 case M_DATA: 12553 break; 12554 default: 12555 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12556 freemsg(mp); 12557 return (NULL); 12558 } 12559 ipvers = IPH_HDR_VERSION(rptr); 12560 if (ipvers == IPV4_VERSION) { 12561 if (tcp == NULL) { 12562 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12563 goto done; 12564 } 12565 12566 ipp.ipp_fields |= IPPF_HOPLIMIT; 12567 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12568 12569 /* 12570 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12571 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12572 */ 12573 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12574 mctl_present) { 12575 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12576 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12577 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12578 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12579 ipp.ipp_fields |= IPPF_IFINDEX; 12580 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12581 ifindex = pinfo->ip_pkt_ifindex; 12582 } 12583 freeb(first_mp); 12584 mctl_present = B_FALSE; 12585 } 12586 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12587 } else { 12588 ip6h = (ip6_t *)rptr; 12589 12590 ASSERT(ipvers == IPV6_VERSION); 12591 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12592 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12593 ipp.ipp_hoplimit = ip6h->ip6_hops; 12594 12595 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12596 uint8_t nexthdrp; 12597 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12598 12599 /* Look for ifindex information */ 12600 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12601 ip6i_t *ip6i = (ip6i_t *)ip6h; 12602 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12603 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12604 freemsg(first_mp); 12605 return (NULL); 12606 } 12607 12608 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12609 ASSERT(ip6i->ip6i_ifindex != 0); 12610 ipp.ipp_fields |= IPPF_IFINDEX; 12611 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12612 ifindex = ip6i->ip6i_ifindex; 12613 } 12614 rptr = (uchar_t *)&ip6i[1]; 12615 mp->b_rptr = rptr; 12616 if (rptr == mp->b_wptr) { 12617 mblk_t *mp1; 12618 mp1 = mp->b_cont; 12619 freeb(mp); 12620 mp = mp1; 12621 rptr = mp->b_rptr; 12622 } 12623 if (MBLKL(mp) < IPV6_HDR_LEN + 12624 sizeof (tcph_t)) { 12625 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12626 freemsg(first_mp); 12627 return (NULL); 12628 } 12629 ip6h = (ip6_t *)rptr; 12630 } 12631 12632 /* 12633 * Find any potentially interesting extension headers 12634 * as well as the length of the IPv6 + extension 12635 * headers. 12636 */ 12637 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12638 /* Verify if this is a TCP packet */ 12639 if (nexthdrp != IPPROTO_TCP) { 12640 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12641 freemsg(first_mp); 12642 return (NULL); 12643 } 12644 } else { 12645 ip_hdr_len = IPV6_HDR_LEN; 12646 } 12647 } 12648 12649 done: 12650 if (ipversp != NULL) 12651 *ipversp = ipvers; 12652 if (ip_hdr_lenp != NULL) 12653 *ip_hdr_lenp = ip_hdr_len; 12654 if (ippp != NULL) 12655 *ippp = ipp; 12656 if (ifindexp != NULL) 12657 *ifindexp = ifindex; 12658 if (mctl_present) { 12659 freeb(first_mp); 12660 } 12661 return (mp); 12662 } 12663 12664 /* 12665 * Handle M_DATA messages from IP. Its called directly from IP via 12666 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12667 * in this path. 12668 * 12669 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12670 * v4 and v6), we are called through tcp_input() and a M_CTL can 12671 * be present for options but tcp_find_pktinfo() deals with it. We 12672 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12673 * 12674 * The first argument is always the connp/tcp to which the mp belongs. 12675 * There are no exceptions to this rule. The caller has already put 12676 * a reference on this connp/tcp and once tcp_rput_data() returns, 12677 * the squeue will do the refrele. 12678 * 12679 * The TH_SYN for the listener directly go to tcp_conn_request via 12680 * squeue. 12681 * 12682 * sqp: NULL = recursive, sqp != NULL means called from squeue 12683 */ 12684 void 12685 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12686 { 12687 int32_t bytes_acked; 12688 int32_t gap; 12689 mblk_t *mp1; 12690 uint_t flags; 12691 uint32_t new_swnd = 0; 12692 uchar_t *iphdr; 12693 uchar_t *rptr; 12694 int32_t rgap; 12695 uint32_t seg_ack; 12696 int seg_len; 12697 uint_t ip_hdr_len; 12698 uint32_t seg_seq; 12699 tcph_t *tcph; 12700 int urp; 12701 tcp_opt_t tcpopt; 12702 uint_t ipvers; 12703 ip6_pkt_t ipp; 12704 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12705 uint32_t cwnd; 12706 uint32_t add; 12707 int npkt; 12708 int mss; 12709 conn_t *connp = (conn_t *)arg; 12710 squeue_t *sqp = (squeue_t *)arg2; 12711 tcp_t *tcp = connp->conn_tcp; 12712 tcp_stack_t *tcps = tcp->tcp_tcps; 12713 12714 /* 12715 * RST from fused tcp loopback peer should trigger an unfuse. 12716 */ 12717 if (tcp->tcp_fused) { 12718 TCP_STAT(tcps, tcp_fusion_aborted); 12719 tcp_unfuse(tcp); 12720 } 12721 12722 iphdr = mp->b_rptr; 12723 rptr = mp->b_rptr; 12724 ASSERT(OK_32PTR(rptr)); 12725 12726 /* 12727 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12728 * processing here. For rest call tcp_find_pktinfo to fill up the 12729 * necessary information. 12730 */ 12731 if (IPCL_IS_TCP4(connp)) { 12732 ipvers = IPV4_VERSION; 12733 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12734 } else { 12735 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12736 NULL, &ipp); 12737 if (mp == NULL) { 12738 TCP_STAT(tcps, tcp_rput_v6_error); 12739 return; 12740 } 12741 iphdr = mp->b_rptr; 12742 rptr = mp->b_rptr; 12743 } 12744 ASSERT(DB_TYPE(mp) == M_DATA); 12745 ASSERT(mp->b_next == NULL); 12746 12747 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12748 seg_seq = ABE32_TO_U32(tcph->th_seq); 12749 seg_ack = ABE32_TO_U32(tcph->th_ack); 12750 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12751 seg_len = (int)(mp->b_wptr - rptr) - 12752 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12753 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12754 do { 12755 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12756 (uintptr_t)INT_MAX); 12757 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12758 } while ((mp1 = mp1->b_cont) != NULL && 12759 mp1->b_datap->db_type == M_DATA); 12760 } 12761 12762 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12763 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12764 seg_len, tcph); 12765 return; 12766 } 12767 12768 if (sqp != NULL) { 12769 /* 12770 * This is the correct place to update tcp_last_recv_time. Note 12771 * that it is also updated for tcp structure that belongs to 12772 * global and listener queues which do not really need updating. 12773 * But that should not cause any harm. And it is updated for 12774 * all kinds of incoming segments, not only for data segments. 12775 */ 12776 tcp->tcp_last_recv_time = lbolt; 12777 } 12778 12779 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12780 12781 BUMP_LOCAL(tcp->tcp_ibsegs); 12782 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12783 12784 if ((flags & TH_URG) && sqp != NULL) { 12785 /* 12786 * TCP can't handle urgent pointers that arrive before 12787 * the connection has been accept()ed since it can't 12788 * buffer OOB data. Discard segment if this happens. 12789 * 12790 * We can't just rely on a non-null tcp_listener to indicate 12791 * that the accept() has completed since unlinking of the 12792 * eager and completion of the accept are not atomic. 12793 * tcp_detached, when it is not set (B_FALSE) indicates 12794 * that the accept() has completed. 12795 * 12796 * Nor can it reassemble urgent pointers, so discard 12797 * if it's not the next segment expected. 12798 * 12799 * Otherwise, collapse chain into one mblk (discard if 12800 * that fails). This makes sure the headers, retransmitted 12801 * data, and new data all are in the same mblk. 12802 */ 12803 ASSERT(mp != NULL); 12804 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12805 freemsg(mp); 12806 return; 12807 } 12808 /* Update pointers into message */ 12809 iphdr = rptr = mp->b_rptr; 12810 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12811 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12812 /* 12813 * Since we can't handle any data with this urgent 12814 * pointer that is out of sequence, we expunge 12815 * the data. This allows us to still register 12816 * the urgent mark and generate the M_PCSIG, 12817 * which we can do. 12818 */ 12819 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12820 seg_len = 0; 12821 } 12822 } 12823 12824 switch (tcp->tcp_state) { 12825 case TCPS_SYN_SENT: 12826 if (flags & TH_ACK) { 12827 /* 12828 * Note that our stack cannot send data before a 12829 * connection is established, therefore the 12830 * following check is valid. Otherwise, it has 12831 * to be changed. 12832 */ 12833 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12834 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12835 freemsg(mp); 12836 if (flags & TH_RST) 12837 return; 12838 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12839 tcp, seg_ack, 0, TH_RST); 12840 return; 12841 } 12842 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12843 } 12844 if (flags & TH_RST) { 12845 freemsg(mp); 12846 if (flags & TH_ACK) 12847 (void) tcp_clean_death(tcp, 12848 ECONNREFUSED, 13); 12849 return; 12850 } 12851 if (!(flags & TH_SYN)) { 12852 freemsg(mp); 12853 return; 12854 } 12855 12856 /* Process all TCP options. */ 12857 tcp_process_options(tcp, tcph); 12858 /* 12859 * The following changes our rwnd to be a multiple of the 12860 * MIN(peer MSS, our MSS) for performance reason. 12861 */ 12862 (void) tcp_rwnd_set(tcp, 12863 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 12864 12865 /* Is the other end ECN capable? */ 12866 if (tcp->tcp_ecn_ok) { 12867 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12868 tcp->tcp_ecn_ok = B_FALSE; 12869 } 12870 } 12871 /* 12872 * Clear ECN flags because it may interfere with later 12873 * processing. 12874 */ 12875 flags &= ~(TH_ECE|TH_CWR); 12876 12877 tcp->tcp_irs = seg_seq; 12878 tcp->tcp_rack = seg_seq; 12879 tcp->tcp_rnxt = seg_seq + 1; 12880 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12881 if (!TCP_IS_DETACHED(tcp)) { 12882 /* Allocate room for SACK options if needed. */ 12883 if (tcp->tcp_snd_sack_ok) { 12884 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12885 tcp->tcp_hdr_len + 12886 TCPOPT_MAX_SACK_LEN + 12887 (tcp->tcp_loopback ? 0 : 12888 tcps->tcps_wroff_xtra)); 12889 } else { 12890 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12891 tcp->tcp_hdr_len + 12892 (tcp->tcp_loopback ? 0 : 12893 tcps->tcps_wroff_xtra)); 12894 } 12895 } 12896 if (flags & TH_ACK) { 12897 /* 12898 * If we can't get the confirmation upstream, pretend 12899 * we didn't even see this one. 12900 * 12901 * XXX: how can we pretend we didn't see it if we 12902 * have updated rnxt et. al. 12903 * 12904 * For loopback we defer sending up the T_CONN_CON 12905 * until after some checks below. 12906 */ 12907 mp1 = NULL; 12908 /* 12909 * tcp_sendmsg() checks tcp_state without entering 12910 * the squeue so tcp_state should be updated before 12911 * sending up connection confirmation 12912 */ 12913 tcp->tcp_state = TCPS_ESTABLISHED; 12914 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12915 tcp->tcp_loopback ? &mp1 : NULL)) { 12916 tcp->tcp_state = TCPS_SYN_SENT; 12917 freemsg(mp); 12918 return; 12919 } 12920 /* SYN was acked - making progress */ 12921 if (tcp->tcp_ipversion == IPV6_VERSION) 12922 tcp->tcp_ip_forward_progress = B_TRUE; 12923 12924 /* One for the SYN */ 12925 tcp->tcp_suna = tcp->tcp_iss + 1; 12926 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12927 12928 /* 12929 * If SYN was retransmitted, need to reset all 12930 * retransmission info. This is because this 12931 * segment will be treated as a dup ACK. 12932 */ 12933 if (tcp->tcp_rexmit) { 12934 tcp->tcp_rexmit = B_FALSE; 12935 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12936 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12937 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12938 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12939 tcp->tcp_ms_we_have_waited = 0; 12940 12941 /* 12942 * Set tcp_cwnd back to 1 MSS, per 12943 * recommendation from 12944 * draft-floyd-incr-init-win-01.txt, 12945 * Increasing TCP's Initial Window. 12946 */ 12947 tcp->tcp_cwnd = tcp->tcp_mss; 12948 } 12949 12950 tcp->tcp_swl1 = seg_seq; 12951 tcp->tcp_swl2 = seg_ack; 12952 12953 new_swnd = BE16_TO_U16(tcph->th_win); 12954 tcp->tcp_swnd = new_swnd; 12955 if (new_swnd > tcp->tcp_max_swnd) 12956 tcp->tcp_max_swnd = new_swnd; 12957 12958 /* 12959 * Always send the three-way handshake ack immediately 12960 * in order to make the connection complete as soon as 12961 * possible on the accepting host. 12962 */ 12963 flags |= TH_ACK_NEEDED; 12964 12965 /* 12966 * Special case for loopback. At this point we have 12967 * received SYN-ACK from the remote endpoint. In 12968 * order to ensure that both endpoints reach the 12969 * fused state prior to any data exchange, the final 12970 * ACK needs to be sent before we indicate T_CONN_CON 12971 * to the module upstream. 12972 */ 12973 if (tcp->tcp_loopback) { 12974 mblk_t *ack_mp; 12975 12976 ASSERT(!tcp->tcp_unfusable); 12977 ASSERT(mp1 != NULL); 12978 /* 12979 * For loopback, we always get a pure SYN-ACK 12980 * and only need to send back the final ACK 12981 * with no data (this is because the other 12982 * tcp is ours and we don't do T/TCP). This 12983 * final ACK triggers the passive side to 12984 * perform fusion in ESTABLISHED state. 12985 */ 12986 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12987 if (tcp->tcp_ack_tid != 0) { 12988 (void) TCP_TIMER_CANCEL(tcp, 12989 tcp->tcp_ack_tid); 12990 tcp->tcp_ack_tid = 0; 12991 } 12992 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12993 BUMP_LOCAL(tcp->tcp_obsegs); 12994 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 12995 12996 if (!IPCL_IS_NONSTR(connp)) { 12997 /* Send up T_CONN_CON */ 12998 putnext(tcp->tcp_rq, mp1); 12999 } else { 13000 cred_t *cr; 13001 pid_t cpid; 13002 13003 cr = msg_getcred(mp1, &cpid); 13004 (*connp->conn_upcalls-> 13005 su_connected) 13006 (connp->conn_upper_handle, 13007 tcp->tcp_connid, cr, cpid); 13008 freemsg(mp1); 13009 } 13010 13011 freemsg(mp); 13012 return; 13013 } 13014 /* 13015 * Forget fusion; we need to handle more 13016 * complex cases below. Send the deferred 13017 * T_CONN_CON message upstream and proceed 13018 * as usual. Mark this tcp as not capable 13019 * of fusion. 13020 */ 13021 TCP_STAT(tcps, tcp_fusion_unfusable); 13022 tcp->tcp_unfusable = B_TRUE; 13023 if (!IPCL_IS_NONSTR(connp)) { 13024 putnext(tcp->tcp_rq, mp1); 13025 } else { 13026 cred_t *cr; 13027 pid_t cpid; 13028 13029 cr = msg_getcred(mp1, &cpid); 13030 (*connp->conn_upcalls->su_connected) 13031 (connp->conn_upper_handle, 13032 tcp->tcp_connid, cr, cpid); 13033 freemsg(mp1); 13034 } 13035 } 13036 13037 /* 13038 * Check to see if there is data to be sent. If 13039 * yes, set the transmit flag. Then check to see 13040 * if received data processing needs to be done. 13041 * If not, go straight to xmit_check. This short 13042 * cut is OK as we don't support T/TCP. 13043 */ 13044 if (tcp->tcp_unsent) 13045 flags |= TH_XMIT_NEEDED; 13046 13047 if (seg_len == 0 && !(flags & TH_URG)) { 13048 freemsg(mp); 13049 goto xmit_check; 13050 } 13051 13052 flags &= ~TH_SYN; 13053 seg_seq++; 13054 break; 13055 } 13056 tcp->tcp_state = TCPS_SYN_RCVD; 13057 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13058 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13059 if (mp1) { 13060 /* 13061 * See comment in tcp_conn_request() for why we use 13062 * the open() time pid here. 13063 */ 13064 DB_CPID(mp1) = tcp->tcp_cpid; 13065 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13066 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13067 } 13068 freemsg(mp); 13069 return; 13070 case TCPS_SYN_RCVD: 13071 if (flags & TH_ACK) { 13072 /* 13073 * In this state, a SYN|ACK packet is either bogus 13074 * because the other side must be ACKing our SYN which 13075 * indicates it has seen the ACK for their SYN and 13076 * shouldn't retransmit it or we're crossing SYNs 13077 * on active open. 13078 */ 13079 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13080 freemsg(mp); 13081 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13082 tcp, seg_ack, 0, TH_RST); 13083 return; 13084 } 13085 /* 13086 * NOTE: RFC 793 pg. 72 says this should be 13087 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13088 * but that would mean we have an ack that ignored 13089 * our SYN. 13090 */ 13091 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13092 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13093 freemsg(mp); 13094 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13095 tcp, seg_ack, 0, TH_RST); 13096 return; 13097 } 13098 } 13099 break; 13100 case TCPS_LISTEN: 13101 /* 13102 * Only a TLI listener can come through this path when a 13103 * acceptor is going back to be a listener and a packet 13104 * for the acceptor hits the classifier. For a socket 13105 * listener, this can never happen because a listener 13106 * can never accept connection on itself and hence a 13107 * socket acceptor can not go back to being a listener. 13108 */ 13109 ASSERT(!TCP_IS_SOCKET(tcp)); 13110 /*FALLTHRU*/ 13111 case TCPS_CLOSED: 13112 case TCPS_BOUND: { 13113 conn_t *new_connp; 13114 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13115 13116 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13117 if (new_connp != NULL) { 13118 tcp_reinput(new_connp, mp, connp->conn_sqp); 13119 return; 13120 } 13121 /* We failed to classify. For now just drop the packet */ 13122 freemsg(mp); 13123 return; 13124 } 13125 case TCPS_IDLE: 13126 /* 13127 * Handle the case where the tcp_clean_death() has happened 13128 * on a connection (application hasn't closed yet) but a packet 13129 * was already queued on squeue before tcp_clean_death() 13130 * was processed. Calling tcp_clean_death() twice on same 13131 * connection can result in weird behaviour. 13132 */ 13133 freemsg(mp); 13134 return; 13135 default: 13136 break; 13137 } 13138 13139 /* 13140 * Already on the correct queue/perimeter. 13141 * If this is a detached connection and not an eager 13142 * connection hanging off a listener then new data 13143 * (past the FIN) will cause a reset. 13144 * We do a special check here where it 13145 * is out of the main line, rather than check 13146 * if we are detached every time we see new 13147 * data down below. 13148 */ 13149 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13150 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13151 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13152 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13153 13154 freemsg(mp); 13155 /* 13156 * This could be an SSL closure alert. We're detached so just 13157 * acknowledge it this last time. 13158 */ 13159 if (tcp->tcp_kssl_ctx != NULL) { 13160 kssl_release_ctx(tcp->tcp_kssl_ctx); 13161 tcp->tcp_kssl_ctx = NULL; 13162 13163 tcp->tcp_rnxt += seg_len; 13164 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13165 flags |= TH_ACK_NEEDED; 13166 goto ack_check; 13167 } 13168 13169 tcp_xmit_ctl("new data when detached", tcp, 13170 tcp->tcp_snxt, 0, TH_RST); 13171 (void) tcp_clean_death(tcp, EPROTO, 12); 13172 return; 13173 } 13174 13175 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13176 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13177 new_swnd = BE16_TO_U16(tcph->th_win) << 13178 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13179 13180 if (tcp->tcp_snd_ts_ok) { 13181 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13182 /* 13183 * This segment is not acceptable. 13184 * Drop it and send back an ACK. 13185 */ 13186 freemsg(mp); 13187 flags |= TH_ACK_NEEDED; 13188 goto ack_check; 13189 } 13190 } else if (tcp->tcp_snd_sack_ok) { 13191 ASSERT(tcp->tcp_sack_info != NULL); 13192 tcpopt.tcp = tcp; 13193 /* 13194 * SACK info in already updated in tcp_parse_options. Ignore 13195 * all other TCP options... 13196 */ 13197 (void) tcp_parse_options(tcph, &tcpopt); 13198 } 13199 try_again:; 13200 mss = tcp->tcp_mss; 13201 gap = seg_seq - tcp->tcp_rnxt; 13202 rgap = tcp->tcp_rwnd - (gap + seg_len); 13203 /* 13204 * gap is the amount of sequence space between what we expect to see 13205 * and what we got for seg_seq. A positive value for gap means 13206 * something got lost. A negative value means we got some old stuff. 13207 */ 13208 if (gap < 0) { 13209 /* Old stuff present. Is the SYN in there? */ 13210 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13211 (seg_len != 0)) { 13212 flags &= ~TH_SYN; 13213 seg_seq++; 13214 urp--; 13215 /* Recompute the gaps after noting the SYN. */ 13216 goto try_again; 13217 } 13218 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13219 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13220 (seg_len > -gap ? -gap : seg_len)); 13221 /* Remove the old stuff from seg_len. */ 13222 seg_len += gap; 13223 /* 13224 * Anything left? 13225 * Make sure to check for unack'd FIN when rest of data 13226 * has been previously ack'd. 13227 */ 13228 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13229 /* 13230 * Resets are only valid if they lie within our offered 13231 * window. If the RST bit is set, we just ignore this 13232 * segment. 13233 */ 13234 if (flags & TH_RST) { 13235 freemsg(mp); 13236 return; 13237 } 13238 13239 /* 13240 * The arriving of dup data packets indicate that we 13241 * may have postponed an ack for too long, or the other 13242 * side's RTT estimate is out of shape. Start acking 13243 * more often. 13244 */ 13245 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13246 tcp->tcp_rack_cnt >= 1 && 13247 tcp->tcp_rack_abs_max > 2) { 13248 tcp->tcp_rack_abs_max--; 13249 } 13250 tcp->tcp_rack_cur_max = 1; 13251 13252 /* 13253 * This segment is "unacceptable". None of its 13254 * sequence space lies within our advertized window. 13255 * 13256 * Adjust seg_len to the original value for tracing. 13257 */ 13258 seg_len -= gap; 13259 if (tcp->tcp_debug) { 13260 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13261 "tcp_rput: unacceptable, gap %d, rgap %d, " 13262 "flags 0x%x, seg_seq %u, seg_ack %u, " 13263 "seg_len %d, rnxt %u, snxt %u, %s", 13264 gap, rgap, flags, seg_seq, seg_ack, 13265 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13266 tcp_display(tcp, NULL, 13267 DISP_ADDR_AND_PORT)); 13268 } 13269 13270 /* 13271 * Arrange to send an ACK in response to the 13272 * unacceptable segment per RFC 793 page 69. There 13273 * is only one small difference between ours and the 13274 * acceptability test in the RFC - we accept ACK-only 13275 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13276 * will be generated. 13277 * 13278 * Note that we have to ACK an ACK-only packet at least 13279 * for stacks that send 0-length keep-alives with 13280 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13281 * section 4.2.3.6. As long as we don't ever generate 13282 * an unacceptable packet in response to an incoming 13283 * packet that is unacceptable, it should not cause 13284 * "ACK wars". 13285 */ 13286 flags |= TH_ACK_NEEDED; 13287 13288 /* 13289 * Continue processing this segment in order to use the 13290 * ACK information it contains, but skip all other 13291 * sequence-number processing. Processing the ACK 13292 * information is necessary in order to 13293 * re-synchronize connections that may have lost 13294 * synchronization. 13295 * 13296 * We clear seg_len and flag fields related to 13297 * sequence number processing as they are not 13298 * to be trusted for an unacceptable segment. 13299 */ 13300 seg_len = 0; 13301 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13302 goto process_ack; 13303 } 13304 13305 /* Fix seg_seq, and chew the gap off the front. */ 13306 seg_seq = tcp->tcp_rnxt; 13307 urp += gap; 13308 do { 13309 mblk_t *mp2; 13310 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13311 (uintptr_t)UINT_MAX); 13312 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13313 if (gap > 0) { 13314 mp->b_rptr = mp->b_wptr - gap; 13315 break; 13316 } 13317 mp2 = mp; 13318 mp = mp->b_cont; 13319 freeb(mp2); 13320 } while (gap < 0); 13321 /* 13322 * If the urgent data has already been acknowledged, we 13323 * should ignore TH_URG below 13324 */ 13325 if (urp < 0) 13326 flags &= ~TH_URG; 13327 } 13328 /* 13329 * rgap is the amount of stuff received out of window. A negative 13330 * value is the amount out of window. 13331 */ 13332 if (rgap < 0) { 13333 mblk_t *mp2; 13334 13335 if (tcp->tcp_rwnd == 0) { 13336 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13337 } else { 13338 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13339 UPDATE_MIB(&tcps->tcps_mib, 13340 tcpInDataPastWinBytes, -rgap); 13341 } 13342 13343 /* 13344 * seg_len does not include the FIN, so if more than 13345 * just the FIN is out of window, we act like we don't 13346 * see it. (If just the FIN is out of window, rgap 13347 * will be zero and we will go ahead and acknowledge 13348 * the FIN.) 13349 */ 13350 flags &= ~TH_FIN; 13351 13352 /* Fix seg_len and make sure there is something left. */ 13353 seg_len += rgap; 13354 if (seg_len <= 0) { 13355 /* 13356 * Resets are only valid if they lie within our offered 13357 * window. If the RST bit is set, we just ignore this 13358 * segment. 13359 */ 13360 if (flags & TH_RST) { 13361 freemsg(mp); 13362 return; 13363 } 13364 13365 /* Per RFC 793, we need to send back an ACK. */ 13366 flags |= TH_ACK_NEEDED; 13367 13368 /* 13369 * Send SIGURG as soon as possible i.e. even 13370 * if the TH_URG was delivered in a window probe 13371 * packet (which will be unacceptable). 13372 * 13373 * We generate a signal if none has been generated 13374 * for this connection or if this is a new urgent 13375 * byte. Also send a zero-length "unmarked" message 13376 * to inform SIOCATMARK that this is not the mark. 13377 * 13378 * tcp_urp_last_valid is cleared when the T_exdata_ind 13379 * is sent up. This plus the check for old data 13380 * (gap >= 0) handles the wraparound of the sequence 13381 * number space without having to always track the 13382 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13383 * this max in its rcv_up variable). 13384 * 13385 * This prevents duplicate SIGURGS due to a "late" 13386 * zero-window probe when the T_EXDATA_IND has already 13387 * been sent up. 13388 */ 13389 if ((flags & TH_URG) && 13390 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13391 tcp->tcp_urp_last))) { 13392 if (IPCL_IS_NONSTR(connp)) { 13393 if (!TCP_IS_DETACHED(tcp)) { 13394 (*connp->conn_upcalls-> 13395 su_signal_oob) 13396 (connp->conn_upper_handle, 13397 urp); 13398 } 13399 } else { 13400 mp1 = allocb(0, BPRI_MED); 13401 if (mp1 == NULL) { 13402 freemsg(mp); 13403 return; 13404 } 13405 if (!TCP_IS_DETACHED(tcp) && 13406 !putnextctl1(tcp->tcp_rq, 13407 M_PCSIG, SIGURG)) { 13408 /* Try again on the rexmit. */ 13409 freemsg(mp1); 13410 freemsg(mp); 13411 return; 13412 } 13413 /* 13414 * If the next byte would be the mark 13415 * then mark with MARKNEXT else mark 13416 * with NOTMARKNEXT. 13417 */ 13418 if (gap == 0 && urp == 0) 13419 mp1->b_flag |= MSGMARKNEXT; 13420 else 13421 mp1->b_flag |= MSGNOTMARKNEXT; 13422 freemsg(tcp->tcp_urp_mark_mp); 13423 tcp->tcp_urp_mark_mp = mp1; 13424 flags |= TH_SEND_URP_MARK; 13425 } 13426 tcp->tcp_urp_last_valid = B_TRUE; 13427 tcp->tcp_urp_last = urp + seg_seq; 13428 } 13429 /* 13430 * If this is a zero window probe, continue to 13431 * process the ACK part. But we need to set seg_len 13432 * to 0 to avoid data processing. Otherwise just 13433 * drop the segment and send back an ACK. 13434 */ 13435 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13436 flags &= ~(TH_SYN | TH_URG); 13437 seg_len = 0; 13438 goto process_ack; 13439 } else { 13440 freemsg(mp); 13441 goto ack_check; 13442 } 13443 } 13444 /* Pitch out of window stuff off the end. */ 13445 rgap = seg_len; 13446 mp2 = mp; 13447 do { 13448 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13449 (uintptr_t)INT_MAX); 13450 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13451 if (rgap < 0) { 13452 mp2->b_wptr += rgap; 13453 if ((mp1 = mp2->b_cont) != NULL) { 13454 mp2->b_cont = NULL; 13455 freemsg(mp1); 13456 } 13457 break; 13458 } 13459 } while ((mp2 = mp2->b_cont) != NULL); 13460 } 13461 ok:; 13462 /* 13463 * TCP should check ECN info for segments inside the window only. 13464 * Therefore the check should be done here. 13465 */ 13466 if (tcp->tcp_ecn_ok) { 13467 if (flags & TH_CWR) { 13468 tcp->tcp_ecn_echo_on = B_FALSE; 13469 } 13470 /* 13471 * Note that both ECN_CE and CWR can be set in the 13472 * same segment. In this case, we once again turn 13473 * on ECN_ECHO. 13474 */ 13475 if (tcp->tcp_ipversion == IPV4_VERSION) { 13476 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13477 13478 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13479 tcp->tcp_ecn_echo_on = B_TRUE; 13480 } 13481 } else { 13482 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13483 13484 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13485 htonl(IPH_ECN_CE << 20)) { 13486 tcp->tcp_ecn_echo_on = B_TRUE; 13487 } 13488 } 13489 } 13490 13491 /* 13492 * Check whether we can update tcp_ts_recent. This test is 13493 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13494 * Extensions for High Performance: An Update", Internet Draft. 13495 */ 13496 if (tcp->tcp_snd_ts_ok && 13497 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13498 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13499 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13500 tcp->tcp_last_rcv_lbolt = lbolt64; 13501 } 13502 13503 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13504 /* 13505 * FIN in an out of order segment. We record this in 13506 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13507 * Clear the FIN so that any check on FIN flag will fail. 13508 * Remember that FIN also counts in the sequence number 13509 * space. So we need to ack out of order FIN only segments. 13510 */ 13511 if (flags & TH_FIN) { 13512 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13513 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13514 flags &= ~TH_FIN; 13515 flags |= TH_ACK_NEEDED; 13516 } 13517 if (seg_len > 0) { 13518 /* Fill in the SACK blk list. */ 13519 if (tcp->tcp_snd_sack_ok) { 13520 ASSERT(tcp->tcp_sack_info != NULL); 13521 tcp_sack_insert(tcp->tcp_sack_list, 13522 seg_seq, seg_seq + seg_len, 13523 &(tcp->tcp_num_sack_blk)); 13524 } 13525 13526 /* 13527 * Attempt reassembly and see if we have something 13528 * ready to go. 13529 */ 13530 mp = tcp_reass(tcp, mp, seg_seq); 13531 /* Always ack out of order packets */ 13532 flags |= TH_ACK_NEEDED | TH_PUSH; 13533 if (mp) { 13534 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13535 (uintptr_t)INT_MAX); 13536 seg_len = mp->b_cont ? msgdsize(mp) : 13537 (int)(mp->b_wptr - mp->b_rptr); 13538 seg_seq = tcp->tcp_rnxt; 13539 /* 13540 * A gap is filled and the seq num and len 13541 * of the gap match that of a previously 13542 * received FIN, put the FIN flag back in. 13543 */ 13544 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13545 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13546 flags |= TH_FIN; 13547 tcp->tcp_valid_bits &= 13548 ~TCP_OFO_FIN_VALID; 13549 } 13550 } else { 13551 /* 13552 * Keep going even with NULL mp. 13553 * There may be a useful ACK or something else 13554 * we don't want to miss. 13555 * 13556 * But TCP should not perform fast retransmit 13557 * because of the ack number. TCP uses 13558 * seg_len == 0 to determine if it is a pure 13559 * ACK. And this is not a pure ACK. 13560 */ 13561 seg_len = 0; 13562 ofo_seg = B_TRUE; 13563 } 13564 } 13565 } else if (seg_len > 0) { 13566 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13567 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13568 /* 13569 * If an out of order FIN was received before, and the seq 13570 * num and len of the new segment match that of the FIN, 13571 * put the FIN flag back in. 13572 */ 13573 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13574 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13575 flags |= TH_FIN; 13576 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13577 } 13578 } 13579 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13580 if (flags & TH_RST) { 13581 freemsg(mp); 13582 switch (tcp->tcp_state) { 13583 case TCPS_SYN_RCVD: 13584 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13585 break; 13586 case TCPS_ESTABLISHED: 13587 case TCPS_FIN_WAIT_1: 13588 case TCPS_FIN_WAIT_2: 13589 case TCPS_CLOSE_WAIT: 13590 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13591 break; 13592 case TCPS_CLOSING: 13593 case TCPS_LAST_ACK: 13594 (void) tcp_clean_death(tcp, 0, 16); 13595 break; 13596 default: 13597 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13598 (void) tcp_clean_death(tcp, ENXIO, 17); 13599 break; 13600 } 13601 return; 13602 } 13603 if (flags & TH_SYN) { 13604 /* 13605 * See RFC 793, Page 71 13606 * 13607 * The seq number must be in the window as it should 13608 * be "fixed" above. If it is outside window, it should 13609 * be already rejected. Note that we allow seg_seq to be 13610 * rnxt + rwnd because we want to accept 0 window probe. 13611 */ 13612 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13613 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13614 freemsg(mp); 13615 /* 13616 * If the ACK flag is not set, just use our snxt as the 13617 * seq number of the RST segment. 13618 */ 13619 if (!(flags & TH_ACK)) { 13620 seg_ack = tcp->tcp_snxt; 13621 } 13622 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13623 TH_RST|TH_ACK); 13624 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13625 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13626 return; 13627 } 13628 /* 13629 * urp could be -1 when the urp field in the packet is 0 13630 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13631 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13632 */ 13633 if (flags & TH_URG && urp >= 0) { 13634 if (!tcp->tcp_urp_last_valid || 13635 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13636 if (IPCL_IS_NONSTR(connp)) { 13637 if (!TCP_IS_DETACHED(tcp)) { 13638 (*connp->conn_upcalls->su_signal_oob) 13639 (connp->conn_upper_handle, urp); 13640 } 13641 } else { 13642 /* 13643 * If we haven't generated the signal yet for 13644 * this urgent pointer value, do it now. Also, 13645 * send up a zero-length M_DATA indicating 13646 * whether or not this is the mark. The latter 13647 * is not needed when a T_EXDATA_IND is sent up. 13648 * However, if there are allocation failures 13649 * this code relies on the sender retransmitting 13650 * and the socket code for determining the mark 13651 * should not block waiting for the peer to 13652 * transmit. Thus, for simplicity we always 13653 * send up the mark indication. 13654 */ 13655 mp1 = allocb(0, BPRI_MED); 13656 if (mp1 == NULL) { 13657 freemsg(mp); 13658 return; 13659 } 13660 if (!TCP_IS_DETACHED(tcp) && 13661 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13662 SIGURG)) { 13663 /* Try again on the rexmit. */ 13664 freemsg(mp1); 13665 freemsg(mp); 13666 return; 13667 } 13668 /* 13669 * Mark with NOTMARKNEXT for now. 13670 * The code below will change this to MARKNEXT 13671 * if we are at the mark. 13672 * 13673 * If there are allocation failures (e.g. in 13674 * dupmsg below) the next time tcp_rput_data 13675 * sees the urgent segment it will send up the 13676 * MSGMARKNEXT message. 13677 */ 13678 mp1->b_flag |= MSGNOTMARKNEXT; 13679 freemsg(tcp->tcp_urp_mark_mp); 13680 tcp->tcp_urp_mark_mp = mp1; 13681 flags |= TH_SEND_URP_MARK; 13682 #ifdef DEBUG 13683 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13684 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13685 "last %x, %s", 13686 seg_seq, urp, tcp->tcp_urp_last, 13687 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13688 #endif /* DEBUG */ 13689 } 13690 tcp->tcp_urp_last_valid = B_TRUE; 13691 tcp->tcp_urp_last = urp + seg_seq; 13692 } else if (tcp->tcp_urp_mark_mp != NULL) { 13693 /* 13694 * An allocation failure prevented the previous 13695 * tcp_rput_data from sending up the allocated 13696 * MSG*MARKNEXT message - send it up this time 13697 * around. 13698 */ 13699 flags |= TH_SEND_URP_MARK; 13700 } 13701 13702 /* 13703 * If the urgent byte is in this segment, make sure that it is 13704 * all by itself. This makes it much easier to deal with the 13705 * possibility of an allocation failure on the T_exdata_ind. 13706 * Note that seg_len is the number of bytes in the segment, and 13707 * urp is the offset into the segment of the urgent byte. 13708 * urp < seg_len means that the urgent byte is in this segment. 13709 */ 13710 if (urp < seg_len) { 13711 if (seg_len != 1) { 13712 uint32_t tmp_rnxt; 13713 /* 13714 * Break it up and feed it back in. 13715 * Re-attach the IP header. 13716 */ 13717 mp->b_rptr = iphdr; 13718 if (urp > 0) { 13719 /* 13720 * There is stuff before the urgent 13721 * byte. 13722 */ 13723 mp1 = dupmsg(mp); 13724 if (!mp1) { 13725 /* 13726 * Trim from urgent byte on. 13727 * The rest will come back. 13728 */ 13729 (void) adjmsg(mp, 13730 urp - seg_len); 13731 tcp_rput_data(connp, 13732 mp, NULL); 13733 return; 13734 } 13735 (void) adjmsg(mp1, urp - seg_len); 13736 /* Feed this piece back in. */ 13737 tmp_rnxt = tcp->tcp_rnxt; 13738 tcp_rput_data(connp, mp1, NULL); 13739 /* 13740 * If the data passed back in was not 13741 * processed (ie: bad ACK) sending 13742 * the remainder back in will cause a 13743 * loop. In this case, drop the 13744 * packet and let the sender try 13745 * sending a good packet. 13746 */ 13747 if (tmp_rnxt == tcp->tcp_rnxt) { 13748 freemsg(mp); 13749 return; 13750 } 13751 } 13752 if (urp != seg_len - 1) { 13753 uint32_t tmp_rnxt; 13754 /* 13755 * There is stuff after the urgent 13756 * byte. 13757 */ 13758 mp1 = dupmsg(mp); 13759 if (!mp1) { 13760 /* 13761 * Trim everything beyond the 13762 * urgent byte. The rest will 13763 * come back. 13764 */ 13765 (void) adjmsg(mp, 13766 urp + 1 - seg_len); 13767 tcp_rput_data(connp, 13768 mp, NULL); 13769 return; 13770 } 13771 (void) adjmsg(mp1, urp + 1 - seg_len); 13772 tmp_rnxt = tcp->tcp_rnxt; 13773 tcp_rput_data(connp, mp1, NULL); 13774 /* 13775 * If the data passed back in was not 13776 * processed (ie: bad ACK) sending 13777 * the remainder back in will cause a 13778 * loop. In this case, drop the 13779 * packet and let the sender try 13780 * sending a good packet. 13781 */ 13782 if (tmp_rnxt == tcp->tcp_rnxt) { 13783 freemsg(mp); 13784 return; 13785 } 13786 } 13787 tcp_rput_data(connp, mp, NULL); 13788 return; 13789 } 13790 /* 13791 * This segment contains only the urgent byte. We 13792 * have to allocate the T_exdata_ind, if we can. 13793 */ 13794 if (IPCL_IS_NONSTR(connp)) { 13795 int error; 13796 13797 (*connp->conn_upcalls->su_recv) 13798 (connp->conn_upper_handle, mp, seg_len, 13799 MSG_OOB, &error, NULL); 13800 /* 13801 * We should never be in middle of a 13802 * fallback, the squeue guarantees that. 13803 */ 13804 ASSERT(error != EOPNOTSUPP); 13805 mp = NULL; 13806 goto update_ack; 13807 } else if (!tcp->tcp_urp_mp) { 13808 struct T_exdata_ind *tei; 13809 mp1 = allocb(sizeof (struct T_exdata_ind), 13810 BPRI_MED); 13811 if (!mp1) { 13812 /* 13813 * Sigh... It'll be back. 13814 * Generate any MSG*MARK message now. 13815 */ 13816 freemsg(mp); 13817 seg_len = 0; 13818 if (flags & TH_SEND_URP_MARK) { 13819 13820 13821 ASSERT(tcp->tcp_urp_mark_mp); 13822 tcp->tcp_urp_mark_mp->b_flag &= 13823 ~MSGNOTMARKNEXT; 13824 tcp->tcp_urp_mark_mp->b_flag |= 13825 MSGMARKNEXT; 13826 } 13827 goto ack_check; 13828 } 13829 mp1->b_datap->db_type = M_PROTO; 13830 tei = (struct T_exdata_ind *)mp1->b_rptr; 13831 tei->PRIM_type = T_EXDATA_IND; 13832 tei->MORE_flag = 0; 13833 mp1->b_wptr = (uchar_t *)&tei[1]; 13834 tcp->tcp_urp_mp = mp1; 13835 #ifdef DEBUG 13836 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13837 "tcp_rput: allocated exdata_ind %s", 13838 tcp_display(tcp, NULL, 13839 DISP_PORT_ONLY)); 13840 #endif /* DEBUG */ 13841 /* 13842 * There is no need to send a separate MSG*MARK 13843 * message since the T_EXDATA_IND will be sent 13844 * now. 13845 */ 13846 flags &= ~TH_SEND_URP_MARK; 13847 freemsg(tcp->tcp_urp_mark_mp); 13848 tcp->tcp_urp_mark_mp = NULL; 13849 } 13850 /* 13851 * Now we are all set. On the next putnext upstream, 13852 * tcp_urp_mp will be non-NULL and will get prepended 13853 * to what has to be this piece containing the urgent 13854 * byte. If for any reason we abort this segment below, 13855 * if it comes back, we will have this ready, or it 13856 * will get blown off in close. 13857 */ 13858 } else if (urp == seg_len) { 13859 /* 13860 * The urgent byte is the next byte after this sequence 13861 * number. If there is data it is marked with 13862 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13863 * since it is not needed. Otherwise, if the code 13864 * above just allocated a zero-length tcp_urp_mark_mp 13865 * message, that message is tagged with MSGMARKNEXT. 13866 * Sending up these MSGMARKNEXT messages makes 13867 * SIOCATMARK work correctly even though 13868 * the T_EXDATA_IND will not be sent up until the 13869 * urgent byte arrives. 13870 */ 13871 if (seg_len != 0) { 13872 flags |= TH_MARKNEXT_NEEDED; 13873 freemsg(tcp->tcp_urp_mark_mp); 13874 tcp->tcp_urp_mark_mp = NULL; 13875 flags &= ~TH_SEND_URP_MARK; 13876 } else if (tcp->tcp_urp_mark_mp != NULL) { 13877 flags |= TH_SEND_URP_MARK; 13878 tcp->tcp_urp_mark_mp->b_flag &= 13879 ~MSGNOTMARKNEXT; 13880 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13881 } 13882 #ifdef DEBUG 13883 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13884 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13885 seg_len, flags, 13886 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13887 #endif /* DEBUG */ 13888 } 13889 #ifdef DEBUG 13890 else { 13891 /* Data left until we hit mark */ 13892 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13893 "tcp_rput: URP %d bytes left, %s", 13894 urp - seg_len, tcp_display(tcp, NULL, 13895 DISP_PORT_ONLY)); 13896 } 13897 #endif /* DEBUG */ 13898 } 13899 13900 process_ack: 13901 if (!(flags & TH_ACK)) { 13902 freemsg(mp); 13903 goto xmit_check; 13904 } 13905 } 13906 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13907 13908 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13909 tcp->tcp_ip_forward_progress = B_TRUE; 13910 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13911 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13912 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13913 /* 3-way handshake complete - pass up the T_CONN_IND */ 13914 tcp_t *listener = tcp->tcp_listener; 13915 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13916 13917 tcp->tcp_tconnind_started = B_TRUE; 13918 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13919 /* 13920 * We are here means eager is fine but it can 13921 * get a TH_RST at any point between now and till 13922 * accept completes and disappear. We need to 13923 * ensure that reference to eager is valid after 13924 * we get out of eager's perimeter. So we do 13925 * an extra refhold. 13926 */ 13927 CONN_INC_REF(connp); 13928 13929 /* 13930 * The listener also exists because of the refhold 13931 * done in tcp_conn_request. Its possible that it 13932 * might have closed. We will check that once we 13933 * get inside listeners context. 13934 */ 13935 CONN_INC_REF(listener->tcp_connp); 13936 if (listener->tcp_connp->conn_sqp == 13937 connp->conn_sqp) { 13938 /* 13939 * We optimize by not calling an SQUEUE_ENTER 13940 * on the listener since we know that the 13941 * listener and eager squeues are the same. 13942 * We are able to make this check safely only 13943 * because neither the eager nor the listener 13944 * can change its squeue. Only an active connect 13945 * can change its squeue 13946 */ 13947 tcp_send_conn_ind(listener->tcp_connp, mp, 13948 listener->tcp_connp->conn_sqp); 13949 CONN_DEC_REF(listener->tcp_connp); 13950 } else if (!tcp->tcp_loopback) { 13951 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 13952 mp, tcp_send_conn_ind, 13953 listener->tcp_connp, SQ_FILL, 13954 SQTAG_TCP_CONN_IND); 13955 } else { 13956 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 13957 mp, tcp_send_conn_ind, 13958 listener->tcp_connp, SQ_PROCESS, 13959 SQTAG_TCP_CONN_IND); 13960 } 13961 } 13962 13963 /* 13964 * We are seeing the final ack in the three way 13965 * hand shake of a active open'ed connection 13966 * so we must send up a T_CONN_CON 13967 * 13968 * tcp_sendmsg() checks tcp_state without entering 13969 * the squeue so tcp_state should be updated before 13970 * sending up connection confirmation. 13971 */ 13972 tcp->tcp_state = TCPS_ESTABLISHED; 13973 if (tcp->tcp_active_open) { 13974 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13975 freemsg(mp); 13976 tcp->tcp_state = TCPS_SYN_RCVD; 13977 return; 13978 } 13979 /* 13980 * Don't fuse the loopback endpoints for 13981 * simultaneous active opens. 13982 */ 13983 if (tcp->tcp_loopback) { 13984 TCP_STAT(tcps, tcp_fusion_unfusable); 13985 tcp->tcp_unfusable = B_TRUE; 13986 } 13987 } 13988 13989 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13990 bytes_acked--; 13991 /* SYN was acked - making progress */ 13992 if (tcp->tcp_ipversion == IPV6_VERSION) 13993 tcp->tcp_ip_forward_progress = B_TRUE; 13994 13995 /* 13996 * If SYN was retransmitted, need to reset all 13997 * retransmission info as this segment will be 13998 * treated as a dup ACK. 13999 */ 14000 if (tcp->tcp_rexmit) { 14001 tcp->tcp_rexmit = B_FALSE; 14002 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14003 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14004 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14005 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14006 tcp->tcp_ms_we_have_waited = 0; 14007 tcp->tcp_cwnd = mss; 14008 } 14009 14010 /* 14011 * We set the send window to zero here. 14012 * This is needed if there is data to be 14013 * processed already on the queue. 14014 * Later (at swnd_update label), the 14015 * "new_swnd > tcp_swnd" condition is satisfied 14016 * the XMIT_NEEDED flag is set in the current 14017 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14018 * called if there is already data on queue in 14019 * this state. 14020 */ 14021 tcp->tcp_swnd = 0; 14022 14023 if (new_swnd > tcp->tcp_max_swnd) 14024 tcp->tcp_max_swnd = new_swnd; 14025 tcp->tcp_swl1 = seg_seq; 14026 tcp->tcp_swl2 = seg_ack; 14027 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14028 14029 /* Fuse when both sides are in ESTABLISHED state */ 14030 if (tcp->tcp_loopback && do_tcp_fusion) 14031 tcp_fuse(tcp, iphdr, tcph); 14032 14033 } 14034 /* This code follows 4.4BSD-Lite2 mostly. */ 14035 if (bytes_acked < 0) 14036 goto est; 14037 14038 /* 14039 * If TCP is ECN capable and the congestion experience bit is 14040 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14041 * done once per window (or more loosely, per RTT). 14042 */ 14043 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14044 tcp->tcp_cwr = B_FALSE; 14045 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14046 if (!tcp->tcp_cwr) { 14047 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14048 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14049 tcp->tcp_cwnd = npkt * mss; 14050 /* 14051 * If the cwnd is 0, use the timer to clock out 14052 * new segments. This is required by the ECN spec. 14053 */ 14054 if (npkt == 0) { 14055 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14056 /* 14057 * This makes sure that when the ACK comes 14058 * back, we will increase tcp_cwnd by 1 MSS. 14059 */ 14060 tcp->tcp_cwnd_cnt = 0; 14061 } 14062 tcp->tcp_cwr = B_TRUE; 14063 /* 14064 * This marks the end of the current window of in 14065 * flight data. That is why we don't use 14066 * tcp_suna + tcp_swnd. Only data in flight can 14067 * provide ECN info. 14068 */ 14069 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14070 tcp->tcp_ecn_cwr_sent = B_FALSE; 14071 } 14072 } 14073 14074 mp1 = tcp->tcp_xmit_head; 14075 if (bytes_acked == 0) { 14076 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14077 int dupack_cnt; 14078 14079 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14080 /* 14081 * Fast retransmit. When we have seen exactly three 14082 * identical ACKs while we have unacked data 14083 * outstanding we take it as a hint that our peer 14084 * dropped something. 14085 * 14086 * If TCP is retransmitting, don't do fast retransmit. 14087 */ 14088 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14089 ! tcp->tcp_rexmit) { 14090 /* Do Limited Transmit */ 14091 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14092 tcps->tcps_dupack_fast_retransmit) { 14093 /* 14094 * RFC 3042 14095 * 14096 * What we need to do is temporarily 14097 * increase tcp_cwnd so that new 14098 * data can be sent if it is allowed 14099 * by the receive window (tcp_rwnd). 14100 * tcp_wput_data() will take care of 14101 * the rest. 14102 * 14103 * If the connection is SACK capable, 14104 * only do limited xmit when there 14105 * is SACK info. 14106 * 14107 * Note how tcp_cwnd is incremented. 14108 * The first dup ACK will increase 14109 * it by 1 MSS. The second dup ACK 14110 * will increase it by 2 MSS. This 14111 * means that only 1 new segment will 14112 * be sent for each dup ACK. 14113 */ 14114 if (tcp->tcp_unsent > 0 && 14115 (!tcp->tcp_snd_sack_ok || 14116 (tcp->tcp_snd_sack_ok && 14117 tcp->tcp_notsack_list != NULL))) { 14118 tcp->tcp_cwnd += mss << 14119 (tcp->tcp_dupack_cnt - 1); 14120 flags |= TH_LIMIT_XMIT; 14121 } 14122 } else if (dupack_cnt == 14123 tcps->tcps_dupack_fast_retransmit) { 14124 14125 /* 14126 * If we have reduced tcp_ssthresh 14127 * because of ECN, do not reduce it again 14128 * unless it is already one window of data 14129 * away. After one window of data, tcp_cwr 14130 * should then be cleared. Note that 14131 * for non ECN capable connection, tcp_cwr 14132 * should always be false. 14133 * 14134 * Adjust cwnd since the duplicate 14135 * ack indicates that a packet was 14136 * dropped (due to congestion.) 14137 */ 14138 if (!tcp->tcp_cwr) { 14139 npkt = ((tcp->tcp_snxt - 14140 tcp->tcp_suna) >> 1) / mss; 14141 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14142 mss; 14143 tcp->tcp_cwnd = (npkt + 14144 tcp->tcp_dupack_cnt) * mss; 14145 } 14146 if (tcp->tcp_ecn_ok) { 14147 tcp->tcp_cwr = B_TRUE; 14148 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14149 tcp->tcp_ecn_cwr_sent = B_FALSE; 14150 } 14151 14152 /* 14153 * We do Hoe's algorithm. Refer to her 14154 * paper "Improving the Start-up Behavior 14155 * of a Congestion Control Scheme for TCP," 14156 * appeared in SIGCOMM'96. 14157 * 14158 * Save highest seq no we have sent so far. 14159 * Be careful about the invisible FIN byte. 14160 */ 14161 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14162 (tcp->tcp_unsent == 0)) { 14163 tcp->tcp_rexmit_max = tcp->tcp_fss; 14164 } else { 14165 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14166 } 14167 14168 /* 14169 * Do not allow bursty traffic during. 14170 * fast recovery. Refer to Fall and Floyd's 14171 * paper "Simulation-based Comparisons of 14172 * Tahoe, Reno and SACK TCP" (in CCR?) 14173 * This is a best current practise. 14174 */ 14175 tcp->tcp_snd_burst = TCP_CWND_SS; 14176 14177 /* 14178 * For SACK: 14179 * Calculate tcp_pipe, which is the 14180 * estimated number of bytes in 14181 * network. 14182 * 14183 * tcp_fack is the highest sack'ed seq num 14184 * TCP has received. 14185 * 14186 * tcp_pipe is explained in the above quoted 14187 * Fall and Floyd's paper. tcp_fack is 14188 * explained in Mathis and Mahdavi's 14189 * "Forward Acknowledgment: Refining TCP 14190 * Congestion Control" in SIGCOMM '96. 14191 */ 14192 if (tcp->tcp_snd_sack_ok) { 14193 ASSERT(tcp->tcp_sack_info != NULL); 14194 if (tcp->tcp_notsack_list != NULL) { 14195 tcp->tcp_pipe = tcp->tcp_snxt - 14196 tcp->tcp_fack; 14197 tcp->tcp_sack_snxt = seg_ack; 14198 flags |= TH_NEED_SACK_REXMIT; 14199 } else { 14200 /* 14201 * Always initialize tcp_pipe 14202 * even though we don't have 14203 * any SACK info. If later 14204 * we get SACK info and 14205 * tcp_pipe is not initialized, 14206 * funny things will happen. 14207 */ 14208 tcp->tcp_pipe = 14209 tcp->tcp_cwnd_ssthresh; 14210 } 14211 } else { 14212 flags |= TH_REXMIT_NEEDED; 14213 } /* tcp_snd_sack_ok */ 14214 14215 } else { 14216 /* 14217 * Here we perform congestion 14218 * avoidance, but NOT slow start. 14219 * This is known as the Fast 14220 * Recovery Algorithm. 14221 */ 14222 if (tcp->tcp_snd_sack_ok && 14223 tcp->tcp_notsack_list != NULL) { 14224 flags |= TH_NEED_SACK_REXMIT; 14225 tcp->tcp_pipe -= mss; 14226 if (tcp->tcp_pipe < 0) 14227 tcp->tcp_pipe = 0; 14228 } else { 14229 /* 14230 * We know that one more packet has 14231 * left the pipe thus we can update 14232 * cwnd. 14233 */ 14234 cwnd = tcp->tcp_cwnd + mss; 14235 if (cwnd > tcp->tcp_cwnd_max) 14236 cwnd = tcp->tcp_cwnd_max; 14237 tcp->tcp_cwnd = cwnd; 14238 if (tcp->tcp_unsent > 0) 14239 flags |= TH_XMIT_NEEDED; 14240 } 14241 } 14242 } 14243 } else if (tcp->tcp_zero_win_probe) { 14244 /* 14245 * If the window has opened, need to arrange 14246 * to send additional data. 14247 */ 14248 if (new_swnd != 0) { 14249 /* tcp_suna != tcp_snxt */ 14250 /* Packet contains a window update */ 14251 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14252 tcp->tcp_zero_win_probe = 0; 14253 tcp->tcp_timer_backoff = 0; 14254 tcp->tcp_ms_we_have_waited = 0; 14255 14256 /* 14257 * Transmit starting with tcp_suna since 14258 * the one byte probe is not ack'ed. 14259 * If TCP has sent more than one identical 14260 * probe, tcp_rexmit will be set. That means 14261 * tcp_ss_rexmit() will send out the one 14262 * byte along with new data. Otherwise, 14263 * fake the retransmission. 14264 */ 14265 flags |= TH_XMIT_NEEDED; 14266 if (!tcp->tcp_rexmit) { 14267 tcp->tcp_rexmit = B_TRUE; 14268 tcp->tcp_dupack_cnt = 0; 14269 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14270 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14271 } 14272 } 14273 } 14274 goto swnd_update; 14275 } 14276 14277 /* 14278 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14279 * If the ACK value acks something that we have not yet sent, it might 14280 * be an old duplicate segment. Send an ACK to re-synchronize the 14281 * other side. 14282 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14283 * state is handled above, so we can always just drop the segment and 14284 * send an ACK here. 14285 * 14286 * In the case where the peer shrinks the window, we see the new window 14287 * update, but all the data sent previously is queued up by the peer. 14288 * To account for this, in tcp_process_shrunk_swnd(), the sequence 14289 * number, which was already sent, and within window, is recorded. 14290 * tcp_snxt is then updated. 14291 * 14292 * If the window has previously shrunk, and an ACK for data not yet 14293 * sent, according to tcp_snxt is recieved, it may still be valid. If 14294 * the ACK is for data within the window at the time the window was 14295 * shrunk, then the ACK is acceptable. In this case tcp_snxt is set to 14296 * the sequence number ACK'ed. 14297 * 14298 * If the ACK covers all the data sent at the time the window was 14299 * shrunk, we can now set tcp_is_wnd_shrnk to B_FALSE. 14300 * 14301 * Should we send ACKs in response to ACK only segments? 14302 */ 14303 14304 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14305 if ((tcp->tcp_is_wnd_shrnk) && 14306 (SEQ_LEQ(seg_ack, tcp->tcp_snxt_shrunk))) { 14307 uint32_t data_acked_ahead_snxt; 14308 14309 data_acked_ahead_snxt = seg_ack - tcp->tcp_snxt; 14310 tcp_update_xmit_tail(tcp, seg_ack); 14311 tcp->tcp_unsent -= data_acked_ahead_snxt; 14312 } else { 14313 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14314 /* drop the received segment */ 14315 freemsg(mp); 14316 14317 /* 14318 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14319 * greater than 0, check if the number of such 14320 * bogus ACks is greater than that count. If yes, 14321 * don't send back any ACK. This prevents TCP from 14322 * getting into an ACK storm if somehow an attacker 14323 * successfully spoofs an acceptable segment to our 14324 * peer. 14325 */ 14326 if (tcp_drop_ack_unsent_cnt > 0 && 14327 ++tcp->tcp_in_ack_unsent > 14328 tcp_drop_ack_unsent_cnt) { 14329 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14330 return; 14331 } 14332 mp = tcp_ack_mp(tcp); 14333 if (mp != NULL) { 14334 BUMP_LOCAL(tcp->tcp_obsegs); 14335 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14336 tcp_send_data(tcp, tcp->tcp_wq, mp); 14337 } 14338 return; 14339 } 14340 } else if (tcp->tcp_is_wnd_shrnk && SEQ_GEQ(seg_ack, 14341 tcp->tcp_snxt_shrunk)) { 14342 tcp->tcp_is_wnd_shrnk = B_FALSE; 14343 } 14344 14345 /* 14346 * TCP gets a new ACK, update the notsack'ed list to delete those 14347 * blocks that are covered by this ACK. 14348 */ 14349 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14350 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14351 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14352 } 14353 14354 /* 14355 * If we got an ACK after fast retransmit, check to see 14356 * if it is a partial ACK. If it is not and the congestion 14357 * window was inflated to account for the other side's 14358 * cached packets, retract it. If it is, do Hoe's algorithm. 14359 */ 14360 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14361 ASSERT(tcp->tcp_rexmit == B_FALSE); 14362 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14363 tcp->tcp_dupack_cnt = 0; 14364 /* 14365 * Restore the orig tcp_cwnd_ssthresh after 14366 * fast retransmit phase. 14367 */ 14368 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14369 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14370 } 14371 tcp->tcp_rexmit_max = seg_ack; 14372 tcp->tcp_cwnd_cnt = 0; 14373 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14374 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14375 14376 /* 14377 * Remove all notsack info to avoid confusion with 14378 * the next fast retrasnmit/recovery phase. 14379 */ 14380 if (tcp->tcp_snd_sack_ok && 14381 tcp->tcp_notsack_list != NULL) { 14382 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, 14383 tcp); 14384 } 14385 } else { 14386 if (tcp->tcp_snd_sack_ok && 14387 tcp->tcp_notsack_list != NULL) { 14388 flags |= TH_NEED_SACK_REXMIT; 14389 tcp->tcp_pipe -= mss; 14390 if (tcp->tcp_pipe < 0) 14391 tcp->tcp_pipe = 0; 14392 } else { 14393 /* 14394 * Hoe's algorithm: 14395 * 14396 * Retransmit the unack'ed segment and 14397 * restart fast recovery. Note that we 14398 * need to scale back tcp_cwnd to the 14399 * original value when we started fast 14400 * recovery. This is to prevent overly 14401 * aggressive behaviour in sending new 14402 * segments. 14403 */ 14404 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14405 tcps->tcps_dupack_fast_retransmit * mss; 14406 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14407 flags |= TH_REXMIT_NEEDED; 14408 } 14409 } 14410 } else { 14411 tcp->tcp_dupack_cnt = 0; 14412 if (tcp->tcp_rexmit) { 14413 /* 14414 * TCP is retranmitting. If the ACK ack's all 14415 * outstanding data, update tcp_rexmit_max and 14416 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14417 * to the correct value. 14418 * 14419 * Note that SEQ_LEQ() is used. This is to avoid 14420 * unnecessary fast retransmit caused by dup ACKs 14421 * received when TCP does slow start retransmission 14422 * after a time out. During this phase, TCP may 14423 * send out segments which are already received. 14424 * This causes dup ACKs to be sent back. 14425 */ 14426 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14427 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14428 tcp->tcp_rexmit_nxt = seg_ack; 14429 } 14430 if (seg_ack != tcp->tcp_rexmit_max) { 14431 flags |= TH_XMIT_NEEDED; 14432 } 14433 } else { 14434 tcp->tcp_rexmit = B_FALSE; 14435 tcp->tcp_xmit_zc_clean = B_FALSE; 14436 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14437 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14438 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14439 } 14440 tcp->tcp_ms_we_have_waited = 0; 14441 } 14442 } 14443 14444 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14445 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14446 tcp->tcp_suna = seg_ack; 14447 if (tcp->tcp_zero_win_probe != 0) { 14448 tcp->tcp_zero_win_probe = 0; 14449 tcp->tcp_timer_backoff = 0; 14450 } 14451 14452 /* 14453 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14454 * Note that it cannot be the SYN being ack'ed. The code flow 14455 * will not reach here. 14456 */ 14457 if (mp1 == NULL) { 14458 goto fin_acked; 14459 } 14460 14461 /* 14462 * Update the congestion window. 14463 * 14464 * If TCP is not ECN capable or TCP is ECN capable but the 14465 * congestion experience bit is not set, increase the tcp_cwnd as 14466 * usual. 14467 */ 14468 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14469 cwnd = tcp->tcp_cwnd; 14470 add = mss; 14471 14472 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14473 /* 14474 * This is to prevent an increase of less than 1 MSS of 14475 * tcp_cwnd. With partial increase, tcp_wput_data() 14476 * may send out tinygrams in order to preserve mblk 14477 * boundaries. 14478 * 14479 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14480 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14481 * increased by 1 MSS for every RTTs. 14482 */ 14483 if (tcp->tcp_cwnd_cnt <= 0) { 14484 tcp->tcp_cwnd_cnt = cwnd + add; 14485 } else { 14486 tcp->tcp_cwnd_cnt -= add; 14487 add = 0; 14488 } 14489 } 14490 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14491 } 14492 14493 /* See if the latest urgent data has been acknowledged */ 14494 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14495 SEQ_GT(seg_ack, tcp->tcp_urg)) 14496 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14497 14498 /* Can we update the RTT estimates? */ 14499 if (tcp->tcp_snd_ts_ok) { 14500 /* Ignore zero timestamp echo-reply. */ 14501 if (tcpopt.tcp_opt_ts_ecr != 0) { 14502 tcp_set_rto(tcp, (int32_t)lbolt - 14503 (int32_t)tcpopt.tcp_opt_ts_ecr); 14504 } 14505 14506 /* If needed, restart the timer. */ 14507 if (tcp->tcp_set_timer == 1) { 14508 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14509 tcp->tcp_set_timer = 0; 14510 } 14511 /* 14512 * Update tcp_csuna in case the other side stops sending 14513 * us timestamps. 14514 */ 14515 tcp->tcp_csuna = tcp->tcp_snxt; 14516 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14517 /* 14518 * An ACK sequence we haven't seen before, so get the RTT 14519 * and update the RTO. But first check if the timestamp is 14520 * valid to use. 14521 */ 14522 if ((mp1->b_next != NULL) && 14523 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14524 tcp_set_rto(tcp, (int32_t)lbolt - 14525 (int32_t)(intptr_t)mp1->b_prev); 14526 else 14527 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14528 14529 /* Remeber the last sequence to be ACKed */ 14530 tcp->tcp_csuna = seg_ack; 14531 if (tcp->tcp_set_timer == 1) { 14532 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14533 tcp->tcp_set_timer = 0; 14534 } 14535 } else { 14536 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14537 } 14538 14539 /* Eat acknowledged bytes off the xmit queue. */ 14540 for (;;) { 14541 mblk_t *mp2; 14542 uchar_t *wptr; 14543 14544 wptr = mp1->b_wptr; 14545 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14546 bytes_acked -= (int)(wptr - mp1->b_rptr); 14547 if (bytes_acked < 0) { 14548 mp1->b_rptr = wptr + bytes_acked; 14549 /* 14550 * Set a new timestamp if all the bytes timed by the 14551 * old timestamp have been ack'ed. 14552 */ 14553 if (SEQ_GT(seg_ack, 14554 (uint32_t)(uintptr_t)(mp1->b_next))) { 14555 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14556 mp1->b_next = NULL; 14557 } 14558 break; 14559 } 14560 mp1->b_next = NULL; 14561 mp1->b_prev = NULL; 14562 mp2 = mp1; 14563 mp1 = mp1->b_cont; 14564 14565 /* 14566 * This notification is required for some zero-copy 14567 * clients to maintain a copy semantic. After the data 14568 * is ack'ed, client is safe to modify or reuse the buffer. 14569 */ 14570 if (tcp->tcp_snd_zcopy_aware && 14571 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14572 tcp_zcopy_notify(tcp); 14573 freeb(mp2); 14574 if (bytes_acked == 0) { 14575 if (mp1 == NULL) { 14576 /* Everything is ack'ed, clear the tail. */ 14577 tcp->tcp_xmit_tail = NULL; 14578 /* 14579 * Cancel the timer unless we are still 14580 * waiting for an ACK for the FIN packet. 14581 */ 14582 if (tcp->tcp_timer_tid != 0 && 14583 tcp->tcp_snxt == tcp->tcp_suna) { 14584 (void) TCP_TIMER_CANCEL(tcp, 14585 tcp->tcp_timer_tid); 14586 tcp->tcp_timer_tid = 0; 14587 } 14588 goto pre_swnd_update; 14589 } 14590 if (mp2 != tcp->tcp_xmit_tail) 14591 break; 14592 tcp->tcp_xmit_tail = mp1; 14593 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14594 (uintptr_t)INT_MAX); 14595 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14596 mp1->b_rptr); 14597 break; 14598 } 14599 if (mp1 == NULL) { 14600 /* 14601 * More was acked but there is nothing more 14602 * outstanding. This means that the FIN was 14603 * just acked or that we're talking to a clown. 14604 */ 14605 fin_acked: 14606 ASSERT(tcp->tcp_fin_sent); 14607 tcp->tcp_xmit_tail = NULL; 14608 if (tcp->tcp_fin_sent) { 14609 /* FIN was acked - making progress */ 14610 if (tcp->tcp_ipversion == IPV6_VERSION && 14611 !tcp->tcp_fin_acked) 14612 tcp->tcp_ip_forward_progress = B_TRUE; 14613 tcp->tcp_fin_acked = B_TRUE; 14614 if (tcp->tcp_linger_tid != 0 && 14615 TCP_TIMER_CANCEL(tcp, 14616 tcp->tcp_linger_tid) >= 0) { 14617 tcp_stop_lingering(tcp); 14618 freemsg(mp); 14619 mp = NULL; 14620 } 14621 } else { 14622 /* 14623 * We should never get here because 14624 * we have already checked that the 14625 * number of bytes ack'ed should be 14626 * smaller than or equal to what we 14627 * have sent so far (it is the 14628 * acceptability check of the ACK). 14629 * We can only get here if the send 14630 * queue is corrupted. 14631 * 14632 * Terminate the connection and 14633 * panic the system. It is better 14634 * for us to panic instead of 14635 * continuing to avoid other disaster. 14636 */ 14637 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14638 tcp->tcp_rnxt, TH_RST|TH_ACK); 14639 panic("Memory corruption " 14640 "detected for connection %s.", 14641 tcp_display(tcp, NULL, 14642 DISP_ADDR_AND_PORT)); 14643 /*NOTREACHED*/ 14644 } 14645 goto pre_swnd_update; 14646 } 14647 ASSERT(mp2 != tcp->tcp_xmit_tail); 14648 } 14649 if (tcp->tcp_unsent) { 14650 flags |= TH_XMIT_NEEDED; 14651 } 14652 pre_swnd_update: 14653 tcp->tcp_xmit_head = mp1; 14654 swnd_update: 14655 /* 14656 * The following check is different from most other implementations. 14657 * For bi-directional transfer, when segments are dropped, the 14658 * "normal" check will not accept a window update in those 14659 * retransmitted segemnts. Failing to do that, TCP may send out 14660 * segments which are outside receiver's window. As TCP accepts 14661 * the ack in those retransmitted segments, if the window update in 14662 * the same segment is not accepted, TCP will incorrectly calculates 14663 * that it can send more segments. This can create a deadlock 14664 * with the receiver if its window becomes zero. 14665 */ 14666 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14667 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14668 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14669 /* 14670 * The criteria for update is: 14671 * 14672 * 1. the segment acknowledges some data. Or 14673 * 2. the segment is new, i.e. it has a higher seq num. Or 14674 * 3. the segment is not old and the advertised window is 14675 * larger than the previous advertised window. 14676 */ 14677 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14678 flags |= TH_XMIT_NEEDED; 14679 tcp->tcp_swnd = new_swnd; 14680 if (new_swnd > tcp->tcp_max_swnd) 14681 tcp->tcp_max_swnd = new_swnd; 14682 tcp->tcp_swl1 = seg_seq; 14683 tcp->tcp_swl2 = seg_ack; 14684 } 14685 est: 14686 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14687 14688 switch (tcp->tcp_state) { 14689 case TCPS_FIN_WAIT_1: 14690 if (tcp->tcp_fin_acked) { 14691 tcp->tcp_state = TCPS_FIN_WAIT_2; 14692 /* 14693 * We implement the non-standard BSD/SunOS 14694 * FIN_WAIT_2 flushing algorithm. 14695 * If there is no user attached to this 14696 * TCP endpoint, then this TCP struct 14697 * could hang around forever in FIN_WAIT_2 14698 * state if the peer forgets to send us 14699 * a FIN. To prevent this, we wait only 14700 * 2*MSL (a convenient time value) for 14701 * the FIN to arrive. If it doesn't show up, 14702 * we flush the TCP endpoint. This algorithm, 14703 * though a violation of RFC-793, has worked 14704 * for over 10 years in BSD systems. 14705 * Note: SunOS 4.x waits 675 seconds before 14706 * flushing the FIN_WAIT_2 connection. 14707 */ 14708 TCP_TIMER_RESTART(tcp, 14709 tcps->tcps_fin_wait_2_flush_interval); 14710 } 14711 break; 14712 case TCPS_FIN_WAIT_2: 14713 break; /* Shutdown hook? */ 14714 case TCPS_LAST_ACK: 14715 freemsg(mp); 14716 if (tcp->tcp_fin_acked) { 14717 (void) tcp_clean_death(tcp, 0, 19); 14718 return; 14719 } 14720 goto xmit_check; 14721 case TCPS_CLOSING: 14722 if (tcp->tcp_fin_acked) { 14723 tcp->tcp_state = TCPS_TIME_WAIT; 14724 /* 14725 * Unconditionally clear the exclusive binding 14726 * bit so this TIME-WAIT connection won't 14727 * interfere with new ones. 14728 */ 14729 tcp->tcp_exclbind = 0; 14730 if (!TCP_IS_DETACHED(tcp)) { 14731 TCP_TIMER_RESTART(tcp, 14732 tcps->tcps_time_wait_interval); 14733 } else { 14734 tcp_time_wait_append(tcp); 14735 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14736 } 14737 } 14738 /*FALLTHRU*/ 14739 case TCPS_CLOSE_WAIT: 14740 freemsg(mp); 14741 goto xmit_check; 14742 default: 14743 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14744 break; 14745 } 14746 } 14747 if (flags & TH_FIN) { 14748 /* Make sure we ack the fin */ 14749 flags |= TH_ACK_NEEDED; 14750 if (!tcp->tcp_fin_rcvd) { 14751 tcp->tcp_fin_rcvd = B_TRUE; 14752 tcp->tcp_rnxt++; 14753 tcph = tcp->tcp_tcph; 14754 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14755 14756 /* 14757 * Generate the ordrel_ind at the end unless we 14758 * are an eager guy. 14759 * In the eager case tcp_rsrv will do this when run 14760 * after tcp_accept is done. 14761 */ 14762 if (tcp->tcp_listener == NULL && 14763 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14764 flags |= TH_ORDREL_NEEDED; 14765 switch (tcp->tcp_state) { 14766 case TCPS_SYN_RCVD: 14767 case TCPS_ESTABLISHED: 14768 tcp->tcp_state = TCPS_CLOSE_WAIT; 14769 /* Keepalive? */ 14770 break; 14771 case TCPS_FIN_WAIT_1: 14772 if (!tcp->tcp_fin_acked) { 14773 tcp->tcp_state = TCPS_CLOSING; 14774 break; 14775 } 14776 /* FALLTHRU */ 14777 case TCPS_FIN_WAIT_2: 14778 tcp->tcp_state = TCPS_TIME_WAIT; 14779 /* 14780 * Unconditionally clear the exclusive binding 14781 * bit so this TIME-WAIT connection won't 14782 * interfere with new ones. 14783 */ 14784 tcp->tcp_exclbind = 0; 14785 if (!TCP_IS_DETACHED(tcp)) { 14786 TCP_TIMER_RESTART(tcp, 14787 tcps->tcps_time_wait_interval); 14788 } else { 14789 tcp_time_wait_append(tcp); 14790 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14791 } 14792 if (seg_len) { 14793 /* 14794 * implies data piggybacked on FIN. 14795 * break to handle data. 14796 */ 14797 break; 14798 } 14799 freemsg(mp); 14800 goto ack_check; 14801 } 14802 } 14803 } 14804 if (mp == NULL) 14805 goto xmit_check; 14806 if (seg_len == 0) { 14807 freemsg(mp); 14808 goto xmit_check; 14809 } 14810 if (mp->b_rptr == mp->b_wptr) { 14811 /* 14812 * The header has been consumed, so we remove the 14813 * zero-length mblk here. 14814 */ 14815 mp1 = mp; 14816 mp = mp->b_cont; 14817 freeb(mp1); 14818 } 14819 update_ack: 14820 tcph = tcp->tcp_tcph; 14821 tcp->tcp_rack_cnt++; 14822 { 14823 uint32_t cur_max; 14824 14825 cur_max = tcp->tcp_rack_cur_max; 14826 if (tcp->tcp_rack_cnt >= cur_max) { 14827 /* 14828 * We have more unacked data than we should - send 14829 * an ACK now. 14830 */ 14831 flags |= TH_ACK_NEEDED; 14832 cur_max++; 14833 if (cur_max > tcp->tcp_rack_abs_max) 14834 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14835 else 14836 tcp->tcp_rack_cur_max = cur_max; 14837 } else if (TCP_IS_DETACHED(tcp)) { 14838 /* We don't have an ACK timer for detached TCP. */ 14839 flags |= TH_ACK_NEEDED; 14840 } else if (seg_len < mss) { 14841 /* 14842 * If we get a segment that is less than an mss, and we 14843 * already have unacknowledged data, and the amount 14844 * unacknowledged is not a multiple of mss, then we 14845 * better generate an ACK now. Otherwise, this may be 14846 * the tail piece of a transaction, and we would rather 14847 * wait for the response. 14848 */ 14849 uint32_t udif; 14850 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14851 (uintptr_t)INT_MAX); 14852 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14853 if (udif && (udif % mss)) 14854 flags |= TH_ACK_NEEDED; 14855 else 14856 flags |= TH_ACK_TIMER_NEEDED; 14857 } else { 14858 /* Start delayed ack timer */ 14859 flags |= TH_ACK_TIMER_NEEDED; 14860 } 14861 } 14862 tcp->tcp_rnxt += seg_len; 14863 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14864 14865 if (mp == NULL) 14866 goto xmit_check; 14867 14868 /* Update SACK list */ 14869 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14870 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14871 &(tcp->tcp_num_sack_blk)); 14872 } 14873 14874 if (tcp->tcp_urp_mp) { 14875 tcp->tcp_urp_mp->b_cont = mp; 14876 mp = tcp->tcp_urp_mp; 14877 tcp->tcp_urp_mp = NULL; 14878 /* Ready for a new signal. */ 14879 tcp->tcp_urp_last_valid = B_FALSE; 14880 #ifdef DEBUG 14881 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14882 "tcp_rput: sending exdata_ind %s", 14883 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14884 #endif /* DEBUG */ 14885 } 14886 14887 /* 14888 * Check for ancillary data changes compared to last segment. 14889 */ 14890 if (tcp->tcp_ipv6_recvancillary != 0) { 14891 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14892 ASSERT(mp != NULL); 14893 } 14894 14895 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14896 /* 14897 * Side queue inbound data until the accept happens. 14898 * tcp_accept/tcp_rput drains this when the accept happens. 14899 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14900 * T_EXDATA_IND) it is queued on b_next. 14901 * XXX Make urgent data use this. Requires: 14902 * Removing tcp_listener check for TH_URG 14903 * Making M_PCPROTO and MARK messages skip the eager case 14904 */ 14905 14906 if (tcp->tcp_kssl_pending) { 14907 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 14908 mblk_t *, mp); 14909 tcp_kssl_input(tcp, mp); 14910 } else { 14911 tcp_rcv_enqueue(tcp, mp, seg_len); 14912 } 14913 } else { 14914 if (mp->b_datap->db_type != M_DATA || 14915 (flags & TH_MARKNEXT_NEEDED)) { 14916 if (IPCL_IS_NONSTR(connp)) { 14917 int error; 14918 14919 if ((*connp->conn_upcalls->su_recv) 14920 (connp->conn_upper_handle, mp, 14921 seg_len, 0, &error, NULL) <= 0) { 14922 /* 14923 * We should never be in middle of a 14924 * fallback, the squeue guarantees that. 14925 */ 14926 ASSERT(error != EOPNOTSUPP); 14927 if (error == ENOSPC) 14928 tcp->tcp_rwnd -= seg_len; 14929 } 14930 } else if (tcp->tcp_rcv_list != NULL) { 14931 flags |= tcp_rcv_drain(tcp); 14932 } 14933 ASSERT(tcp->tcp_rcv_list == NULL || 14934 tcp->tcp_fused_sigurg); 14935 14936 if (flags & TH_MARKNEXT_NEEDED) { 14937 #ifdef DEBUG 14938 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14939 "tcp_rput: sending MSGMARKNEXT %s", 14940 tcp_display(tcp, NULL, 14941 DISP_PORT_ONLY)); 14942 #endif /* DEBUG */ 14943 mp->b_flag |= MSGMARKNEXT; 14944 flags &= ~TH_MARKNEXT_NEEDED; 14945 } 14946 14947 /* Does this need SSL processing first? */ 14948 if ((tcp->tcp_kssl_ctx != NULL) && 14949 (DB_TYPE(mp) == M_DATA)) { 14950 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 14951 mblk_t *, mp); 14952 tcp_kssl_input(tcp, mp); 14953 } else if (!IPCL_IS_NONSTR(connp)) { 14954 /* Already handled non-STREAMS case. */ 14955 putnext(tcp->tcp_rq, mp); 14956 if (!canputnext(tcp->tcp_rq)) 14957 tcp->tcp_rwnd -= seg_len; 14958 } 14959 } else if ((tcp->tcp_kssl_ctx != NULL) && 14960 (DB_TYPE(mp) == M_DATA)) { 14961 /* Does this need SSL processing first? */ 14962 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 14963 tcp_kssl_input(tcp, mp); 14964 } else if (IPCL_IS_NONSTR(connp)) { 14965 /* Non-STREAMS socket */ 14966 boolean_t push = flags & (TH_PUSH|TH_FIN); 14967 int error; 14968 14969 if ((*connp->conn_upcalls->su_recv)( 14970 connp->conn_upper_handle, 14971 mp, seg_len, 0, &error, &push) <= 0) { 14972 /* 14973 * We should never be in middle of a 14974 * fallback, the squeue guarantees that. 14975 */ 14976 ASSERT(error != EOPNOTSUPP); 14977 if (error == ENOSPC) 14978 tcp->tcp_rwnd -= seg_len; 14979 } else if (push) { 14980 /* 14981 * PUSH bit set and sockfs is not 14982 * flow controlled 14983 */ 14984 flags |= tcp_rwnd_reopen(tcp); 14985 } 14986 } else if ((flags & (TH_PUSH|TH_FIN)) || 14987 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 14988 if (tcp->tcp_rcv_list != NULL) { 14989 /* 14990 * Enqueue the new segment first and then 14991 * call tcp_rcv_drain() to send all data 14992 * up. The other way to do this is to 14993 * send all queued data up and then call 14994 * putnext() to send the new segment up. 14995 * This way can remove the else part later 14996 * on. 14997 * 14998 * We don't do this to avoid one more call to 14999 * canputnext() as tcp_rcv_drain() needs to 15000 * call canputnext(). 15001 */ 15002 tcp_rcv_enqueue(tcp, mp, seg_len); 15003 flags |= tcp_rcv_drain(tcp); 15004 } else { 15005 putnext(tcp->tcp_rq, mp); 15006 if (!canputnext(tcp->tcp_rq)) 15007 tcp->tcp_rwnd -= seg_len; 15008 } 15009 } else { 15010 /* 15011 * Enqueue all packets when processing an mblk 15012 * from the co queue and also enqueue normal packets. 15013 */ 15014 tcp_rcv_enqueue(tcp, mp, seg_len); 15015 } 15016 /* 15017 * Make sure the timer is running if we have data waiting 15018 * for a push bit. This provides resiliency against 15019 * implementations that do not correctly generate push bits. 15020 */ 15021 if (!IPCL_IS_NONSTR(connp) && tcp->tcp_rcv_list != NULL && 15022 tcp->tcp_push_tid == 0) { 15023 /* 15024 * The connection may be closed at this point, so don't 15025 * do anything for a detached tcp. 15026 */ 15027 if (!TCP_IS_DETACHED(tcp)) 15028 tcp->tcp_push_tid = TCP_TIMER(tcp, 15029 tcp_push_timer, 15030 MSEC_TO_TICK( 15031 tcps->tcps_push_timer_interval)); 15032 } 15033 } 15034 15035 xmit_check: 15036 /* Is there anything left to do? */ 15037 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15038 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15039 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15040 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15041 goto done; 15042 15043 /* Any transmit work to do and a non-zero window? */ 15044 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15045 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15046 if (flags & TH_REXMIT_NEEDED) { 15047 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15048 15049 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15050 if (snd_size > mss) 15051 snd_size = mss; 15052 if (snd_size > tcp->tcp_swnd) 15053 snd_size = tcp->tcp_swnd; 15054 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15055 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15056 B_TRUE); 15057 15058 if (mp1 != NULL) { 15059 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15060 tcp->tcp_csuna = tcp->tcp_snxt; 15061 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15062 UPDATE_MIB(&tcps->tcps_mib, 15063 tcpRetransBytes, snd_size); 15064 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15065 } 15066 } 15067 if (flags & TH_NEED_SACK_REXMIT) { 15068 tcp_sack_rxmit(tcp, &flags); 15069 } 15070 /* 15071 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15072 * out new segment. Note that tcp_rexmit should not be 15073 * set, otherwise TH_LIMIT_XMIT should not be set. 15074 */ 15075 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15076 if (!tcp->tcp_rexmit) { 15077 tcp_wput_data(tcp, NULL, B_FALSE); 15078 } else { 15079 tcp_ss_rexmit(tcp); 15080 } 15081 } 15082 /* 15083 * Adjust tcp_cwnd back to normal value after sending 15084 * new data segments. 15085 */ 15086 if (flags & TH_LIMIT_XMIT) { 15087 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15088 /* 15089 * This will restart the timer. Restarting the 15090 * timer is used to avoid a timeout before the 15091 * limited transmitted segment's ACK gets back. 15092 */ 15093 if (tcp->tcp_xmit_head != NULL) 15094 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15095 } 15096 15097 /* Anything more to do? */ 15098 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15099 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15100 goto done; 15101 } 15102 ack_check: 15103 if (flags & TH_SEND_URP_MARK) { 15104 ASSERT(tcp->tcp_urp_mark_mp); 15105 ASSERT(!IPCL_IS_NONSTR(connp)); 15106 /* 15107 * Send up any queued data and then send the mark message 15108 */ 15109 if (tcp->tcp_rcv_list != NULL) { 15110 flags |= tcp_rcv_drain(tcp); 15111 15112 } 15113 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15114 mp1 = tcp->tcp_urp_mark_mp; 15115 tcp->tcp_urp_mark_mp = NULL; 15116 putnext(tcp->tcp_rq, mp1); 15117 #ifdef DEBUG 15118 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15119 "tcp_rput: sending zero-length %s %s", 15120 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15121 "MSGNOTMARKNEXT"), 15122 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15123 #endif /* DEBUG */ 15124 flags &= ~TH_SEND_URP_MARK; 15125 } 15126 if (flags & TH_ACK_NEEDED) { 15127 /* 15128 * Time to send an ack for some reason. 15129 */ 15130 mp1 = tcp_ack_mp(tcp); 15131 15132 if (mp1 != NULL) { 15133 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15134 BUMP_LOCAL(tcp->tcp_obsegs); 15135 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15136 } 15137 if (tcp->tcp_ack_tid != 0) { 15138 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15139 tcp->tcp_ack_tid = 0; 15140 } 15141 } 15142 if (flags & TH_ACK_TIMER_NEEDED) { 15143 /* 15144 * Arrange for deferred ACK or push wait timeout. 15145 * Start timer if it is not already running. 15146 */ 15147 if (tcp->tcp_ack_tid == 0) { 15148 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15149 MSEC_TO_TICK(tcp->tcp_localnet ? 15150 (clock_t)tcps->tcps_local_dack_interval : 15151 (clock_t)tcps->tcps_deferred_ack_interval)); 15152 } 15153 } 15154 if (flags & TH_ORDREL_NEEDED) { 15155 /* 15156 * Send up the ordrel_ind unless we are an eager guy. 15157 * In the eager case tcp_rsrv will do this when run 15158 * after tcp_accept is done. 15159 */ 15160 ASSERT(tcp->tcp_listener == NULL); 15161 15162 if (IPCL_IS_NONSTR(connp)) { 15163 ASSERT(tcp->tcp_ordrel_mp == NULL); 15164 tcp->tcp_ordrel_done = B_TRUE; 15165 (*connp->conn_upcalls->su_opctl) 15166 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15167 goto done; 15168 } 15169 15170 if (tcp->tcp_rcv_list != NULL) { 15171 /* 15172 * Push any mblk(s) enqueued from co processing. 15173 */ 15174 flags |= tcp_rcv_drain(tcp); 15175 } 15176 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15177 15178 mp1 = tcp->tcp_ordrel_mp; 15179 tcp->tcp_ordrel_mp = NULL; 15180 tcp->tcp_ordrel_done = B_TRUE; 15181 putnext(tcp->tcp_rq, mp1); 15182 } 15183 done: 15184 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15185 } 15186 15187 /* 15188 * This routine adjusts next-to-send sequence number variables, in the 15189 * case where the reciever has shrunk it's window. 15190 */ 15191 static void 15192 tcp_update_xmit_tail(tcp_t *tcp, uint32_t snxt) 15193 { 15194 mblk_t *xmit_tail; 15195 int32_t offset; 15196 15197 tcp->tcp_snxt = snxt; 15198 15199 /* Get the mblk, and the offset in it, as per the shrunk window */ 15200 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 15201 ASSERT(xmit_tail != NULL); 15202 tcp->tcp_xmit_tail = xmit_tail; 15203 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - 15204 xmit_tail->b_rptr - offset; 15205 } 15206 15207 /* 15208 * This function does PAWS protection check. Returns B_TRUE if the 15209 * segment passes the PAWS test, else returns B_FALSE. 15210 */ 15211 boolean_t 15212 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15213 { 15214 uint8_t flags; 15215 int options; 15216 uint8_t *up; 15217 15218 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15219 /* 15220 * If timestamp option is aligned nicely, get values inline, 15221 * otherwise call general routine to parse. Only do that 15222 * if timestamp is the only option. 15223 */ 15224 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15225 TCPOPT_REAL_TS_LEN && 15226 OK_32PTR((up = ((uint8_t *)tcph) + 15227 TCP_MIN_HEADER_LENGTH)) && 15228 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15229 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15230 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15231 15232 options = TCP_OPT_TSTAMP_PRESENT; 15233 } else { 15234 if (tcp->tcp_snd_sack_ok) { 15235 tcpoptp->tcp = tcp; 15236 } else { 15237 tcpoptp->tcp = NULL; 15238 } 15239 options = tcp_parse_options(tcph, tcpoptp); 15240 } 15241 15242 if (options & TCP_OPT_TSTAMP_PRESENT) { 15243 /* 15244 * Do PAWS per RFC 1323 section 4.2. Accept RST 15245 * regardless of the timestamp, page 18 RFC 1323.bis. 15246 */ 15247 if ((flags & TH_RST) == 0 && 15248 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15249 tcp->tcp_ts_recent)) { 15250 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15251 PAWS_TIMEOUT)) { 15252 /* This segment is not acceptable. */ 15253 return (B_FALSE); 15254 } else { 15255 /* 15256 * Connection has been idle for 15257 * too long. Reset the timestamp 15258 * and assume the segment is valid. 15259 */ 15260 tcp->tcp_ts_recent = 15261 tcpoptp->tcp_opt_ts_val; 15262 } 15263 } 15264 } else { 15265 /* 15266 * If we don't get a timestamp on every packet, we 15267 * figure we can't really trust 'em, so we stop sending 15268 * and parsing them. 15269 */ 15270 tcp->tcp_snd_ts_ok = B_FALSE; 15271 15272 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15273 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15274 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15275 /* 15276 * Adjust the tcp_mss accordingly. We also need to 15277 * adjust tcp_cwnd here in accordance with the new mss. 15278 * But we avoid doing a slow start here so as to not 15279 * to lose on the transfer rate built up so far. 15280 */ 15281 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15282 if (tcp->tcp_snd_sack_ok) { 15283 ASSERT(tcp->tcp_sack_info != NULL); 15284 tcp->tcp_max_sack_blk = 4; 15285 } 15286 } 15287 return (B_TRUE); 15288 } 15289 15290 /* 15291 * Attach ancillary data to a received TCP segments for the 15292 * ancillary pieces requested by the application that are 15293 * different than they were in the previous data segment. 15294 * 15295 * Save the "current" values once memory allocation is ok so that 15296 * when memory allocation fails we can just wait for the next data segment. 15297 */ 15298 static mblk_t * 15299 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15300 { 15301 struct T_optdata_ind *todi; 15302 int optlen; 15303 uchar_t *optptr; 15304 struct T_opthdr *toh; 15305 uint_t addflag; /* Which pieces to add */ 15306 mblk_t *mp1; 15307 15308 optlen = 0; 15309 addflag = 0; 15310 /* If app asked for pktinfo and the index has changed ... */ 15311 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15312 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15313 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15314 optlen += sizeof (struct T_opthdr) + 15315 sizeof (struct in6_pktinfo); 15316 addflag |= TCP_IPV6_RECVPKTINFO; 15317 } 15318 /* If app asked for hoplimit and it has changed ... */ 15319 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15320 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15321 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15322 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15323 addflag |= TCP_IPV6_RECVHOPLIMIT; 15324 } 15325 /* If app asked for tclass and it has changed ... */ 15326 if ((ipp->ipp_fields & IPPF_TCLASS) && 15327 ipp->ipp_tclass != tcp->tcp_recvtclass && 15328 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15329 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15330 addflag |= TCP_IPV6_RECVTCLASS; 15331 } 15332 /* 15333 * If app asked for hopbyhop headers and it has changed ... 15334 * For security labels, note that (1) security labels can't change on 15335 * a connected socket at all, (2) we're connected to at most one peer, 15336 * (3) if anything changes, then it must be some other extra option. 15337 */ 15338 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15339 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15340 (ipp->ipp_fields & IPPF_HOPOPTS), 15341 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15342 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15343 tcp->tcp_label_len; 15344 addflag |= TCP_IPV6_RECVHOPOPTS; 15345 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15346 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15347 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15348 return (mp); 15349 } 15350 /* If app asked for dst headers before routing headers ... */ 15351 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15352 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15353 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15354 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15355 optlen += sizeof (struct T_opthdr) + 15356 ipp->ipp_rtdstoptslen; 15357 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15358 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15359 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15360 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15361 return (mp); 15362 } 15363 /* If app asked for routing headers and it has changed ... */ 15364 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15365 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15366 (ipp->ipp_fields & IPPF_RTHDR), 15367 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15368 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15369 addflag |= TCP_IPV6_RECVRTHDR; 15370 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15371 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15372 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15373 return (mp); 15374 } 15375 /* If app asked for dest headers and it has changed ... */ 15376 if ((tcp->tcp_ipv6_recvancillary & 15377 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15378 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15379 (ipp->ipp_fields & IPPF_DSTOPTS), 15380 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15381 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15382 addflag |= TCP_IPV6_RECVDSTOPTS; 15383 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15384 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15385 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15386 return (mp); 15387 } 15388 15389 if (optlen == 0) { 15390 /* Nothing to add */ 15391 return (mp); 15392 } 15393 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15394 if (mp1 == NULL) { 15395 /* 15396 * Defer sending ancillary data until the next TCP segment 15397 * arrives. 15398 */ 15399 return (mp); 15400 } 15401 mp1->b_cont = mp; 15402 mp = mp1; 15403 mp->b_wptr += sizeof (*todi) + optlen; 15404 mp->b_datap->db_type = M_PROTO; 15405 todi = (struct T_optdata_ind *)mp->b_rptr; 15406 todi->PRIM_type = T_OPTDATA_IND; 15407 todi->DATA_flag = 1; /* MORE data */ 15408 todi->OPT_length = optlen; 15409 todi->OPT_offset = sizeof (*todi); 15410 optptr = (uchar_t *)&todi[1]; 15411 /* 15412 * If app asked for pktinfo and the index has changed ... 15413 * Note that the local address never changes for the connection. 15414 */ 15415 if (addflag & TCP_IPV6_RECVPKTINFO) { 15416 struct in6_pktinfo *pkti; 15417 15418 toh = (struct T_opthdr *)optptr; 15419 toh->level = IPPROTO_IPV6; 15420 toh->name = IPV6_PKTINFO; 15421 toh->len = sizeof (*toh) + sizeof (*pkti); 15422 toh->status = 0; 15423 optptr += sizeof (*toh); 15424 pkti = (struct in6_pktinfo *)optptr; 15425 if (tcp->tcp_ipversion == IPV6_VERSION) 15426 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15427 else 15428 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15429 &pkti->ipi6_addr); 15430 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15431 optptr += sizeof (*pkti); 15432 ASSERT(OK_32PTR(optptr)); 15433 /* Save as "last" value */ 15434 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15435 } 15436 /* If app asked for hoplimit and it has changed ... */ 15437 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15438 toh = (struct T_opthdr *)optptr; 15439 toh->level = IPPROTO_IPV6; 15440 toh->name = IPV6_HOPLIMIT; 15441 toh->len = sizeof (*toh) + sizeof (uint_t); 15442 toh->status = 0; 15443 optptr += sizeof (*toh); 15444 *(uint_t *)optptr = ipp->ipp_hoplimit; 15445 optptr += sizeof (uint_t); 15446 ASSERT(OK_32PTR(optptr)); 15447 /* Save as "last" value */ 15448 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15449 } 15450 /* If app asked for tclass and it has changed ... */ 15451 if (addflag & TCP_IPV6_RECVTCLASS) { 15452 toh = (struct T_opthdr *)optptr; 15453 toh->level = IPPROTO_IPV6; 15454 toh->name = IPV6_TCLASS; 15455 toh->len = sizeof (*toh) + sizeof (uint_t); 15456 toh->status = 0; 15457 optptr += sizeof (*toh); 15458 *(uint_t *)optptr = ipp->ipp_tclass; 15459 optptr += sizeof (uint_t); 15460 ASSERT(OK_32PTR(optptr)); 15461 /* Save as "last" value */ 15462 tcp->tcp_recvtclass = ipp->ipp_tclass; 15463 } 15464 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15465 toh = (struct T_opthdr *)optptr; 15466 toh->level = IPPROTO_IPV6; 15467 toh->name = IPV6_HOPOPTS; 15468 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15469 tcp->tcp_label_len; 15470 toh->status = 0; 15471 optptr += sizeof (*toh); 15472 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15473 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15474 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15475 ASSERT(OK_32PTR(optptr)); 15476 /* Save as last value */ 15477 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15478 (ipp->ipp_fields & IPPF_HOPOPTS), 15479 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15480 } 15481 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15482 toh = (struct T_opthdr *)optptr; 15483 toh->level = IPPROTO_IPV6; 15484 toh->name = IPV6_RTHDRDSTOPTS; 15485 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15486 toh->status = 0; 15487 optptr += sizeof (*toh); 15488 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15489 optptr += ipp->ipp_rtdstoptslen; 15490 ASSERT(OK_32PTR(optptr)); 15491 /* Save as last value */ 15492 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15493 &tcp->tcp_rtdstoptslen, 15494 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15495 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15496 } 15497 if (addflag & TCP_IPV6_RECVRTHDR) { 15498 toh = (struct T_opthdr *)optptr; 15499 toh->level = IPPROTO_IPV6; 15500 toh->name = IPV6_RTHDR; 15501 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15502 toh->status = 0; 15503 optptr += sizeof (*toh); 15504 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15505 optptr += ipp->ipp_rthdrlen; 15506 ASSERT(OK_32PTR(optptr)); 15507 /* Save as last value */ 15508 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15509 (ipp->ipp_fields & IPPF_RTHDR), 15510 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15511 } 15512 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15513 toh = (struct T_opthdr *)optptr; 15514 toh->level = IPPROTO_IPV6; 15515 toh->name = IPV6_DSTOPTS; 15516 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15517 toh->status = 0; 15518 optptr += sizeof (*toh); 15519 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15520 optptr += ipp->ipp_dstoptslen; 15521 ASSERT(OK_32PTR(optptr)); 15522 /* Save as last value */ 15523 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15524 (ipp->ipp_fields & IPPF_DSTOPTS), 15525 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15526 } 15527 ASSERT(optptr == mp->b_wptr); 15528 return (mp); 15529 } 15530 15531 /* 15532 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15533 * messages. 15534 */ 15535 void 15536 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15537 { 15538 uchar_t *rptr = mp->b_rptr; 15539 queue_t *q = tcp->tcp_rq; 15540 struct T_error_ack *tea; 15541 15542 switch (mp->b_datap->db_type) { 15543 case M_PROTO: 15544 case M_PCPROTO: 15545 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15546 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15547 break; 15548 tea = (struct T_error_ack *)rptr; 15549 ASSERT(tea->PRIM_type != T_BIND_ACK); 15550 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15551 tea->ERROR_prim != T_BIND_REQ); 15552 switch (tea->PRIM_type) { 15553 case T_ERROR_ACK: 15554 if (tcp->tcp_debug) { 15555 (void) strlog(TCP_MOD_ID, 0, 1, 15556 SL_TRACE|SL_ERROR, 15557 "tcp_rput_other: case T_ERROR_ACK, " 15558 "ERROR_prim == %d", 15559 tea->ERROR_prim); 15560 } 15561 switch (tea->ERROR_prim) { 15562 case T_SVR4_OPTMGMT_REQ: 15563 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15564 /* T_OPTMGMT_REQ generated by TCP */ 15565 printf("T_SVR4_OPTMGMT_REQ failed " 15566 "%d/%d - dropped (cnt %d)\n", 15567 tea->TLI_error, tea->UNIX_error, 15568 tcp->tcp_drop_opt_ack_cnt); 15569 freemsg(mp); 15570 tcp->tcp_drop_opt_ack_cnt--; 15571 return; 15572 } 15573 break; 15574 } 15575 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15576 tcp->tcp_drop_opt_ack_cnt > 0) { 15577 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15578 "- dropped (cnt %d)\n", 15579 tea->TLI_error, tea->UNIX_error, 15580 tcp->tcp_drop_opt_ack_cnt); 15581 freemsg(mp); 15582 tcp->tcp_drop_opt_ack_cnt--; 15583 return; 15584 } 15585 break; 15586 case T_OPTMGMT_ACK: 15587 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15588 /* T_OPTMGMT_REQ generated by TCP */ 15589 freemsg(mp); 15590 tcp->tcp_drop_opt_ack_cnt--; 15591 return; 15592 } 15593 break; 15594 default: 15595 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15596 break; 15597 } 15598 break; 15599 case M_FLUSH: 15600 if (*rptr & FLUSHR) 15601 flushq(q, FLUSHDATA); 15602 break; 15603 default: 15604 /* M_CTL will be directly sent to tcp_icmp_error() */ 15605 ASSERT(DB_TYPE(mp) != M_CTL); 15606 break; 15607 } 15608 /* 15609 * Make sure we set this bit before sending the ACK for 15610 * bind. Otherwise accept could possibly run and free 15611 * this tcp struct. 15612 */ 15613 ASSERT(q != NULL); 15614 putnext(q, mp); 15615 } 15616 15617 /* ARGSUSED */ 15618 static void 15619 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15620 { 15621 conn_t *connp = (conn_t *)arg; 15622 tcp_t *tcp = connp->conn_tcp; 15623 queue_t *q = tcp->tcp_rq; 15624 tcp_stack_t *tcps = tcp->tcp_tcps; 15625 15626 ASSERT(!IPCL_IS_NONSTR(connp)); 15627 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15628 tcp->tcp_rsrv_mp = mp; 15629 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15630 15631 TCP_STAT(tcps, tcp_rsrv_calls); 15632 15633 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15634 return; 15635 } 15636 15637 if (tcp->tcp_fused) { 15638 tcp_fuse_backenable(tcp); 15639 return; 15640 } 15641 15642 if (canputnext(q)) { 15643 /* Not flow-controlled, open rwnd */ 15644 tcp->tcp_rwnd = q->q_hiwat; 15645 15646 /* 15647 * Send back a window update immediately if TCP is above 15648 * ESTABLISHED state and the increase of the rcv window 15649 * that the other side knows is at least 1 MSS after flow 15650 * control is lifted. 15651 */ 15652 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15653 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 15654 tcp_xmit_ctl(NULL, tcp, 15655 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15656 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15657 } 15658 } 15659 } 15660 15661 /* 15662 * The read side service routine is called mostly when we get back-enabled as a 15663 * result of flow control relief. Since we don't actually queue anything in 15664 * TCP, we have no data to send out of here. What we do is clear the receive 15665 * window, and send out a window update. 15666 */ 15667 static void 15668 tcp_rsrv(queue_t *q) 15669 { 15670 conn_t *connp = Q_TO_CONN(q); 15671 tcp_t *tcp = connp->conn_tcp; 15672 mblk_t *mp; 15673 tcp_stack_t *tcps = tcp->tcp_tcps; 15674 15675 /* No code does a putq on the read side */ 15676 ASSERT(q->q_first == NULL); 15677 15678 /* Nothing to do for the default queue */ 15679 if (q == tcps->tcps_g_q) { 15680 return; 15681 } 15682 15683 /* 15684 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15685 * been run. So just return. 15686 */ 15687 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15688 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15689 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15690 return; 15691 } 15692 tcp->tcp_rsrv_mp = NULL; 15693 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15694 15695 CONN_INC_REF(connp); 15696 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15697 SQ_PROCESS, SQTAG_TCP_RSRV); 15698 } 15699 15700 /* 15701 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15702 * We do not allow the receive window to shrink. After setting rwnd, 15703 * set the flow control hiwat of the stream. 15704 * 15705 * This function is called in 2 cases: 15706 * 15707 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15708 * connection (passive open) and in tcp_rput_data() for active connect. 15709 * This is called after tcp_mss_set() when the desired MSS value is known. 15710 * This makes sure that our window size is a mutiple of the other side's 15711 * MSS. 15712 * 2) Handling SO_RCVBUF option. 15713 * 15714 * It is ASSUMED that the requested size is a multiple of the current MSS. 15715 * 15716 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15717 * user requests so. 15718 */ 15719 static int 15720 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15721 { 15722 uint32_t mss = tcp->tcp_mss; 15723 uint32_t old_max_rwnd; 15724 uint32_t max_transmittable_rwnd; 15725 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15726 tcp_stack_t *tcps = tcp->tcp_tcps; 15727 15728 if (tcp->tcp_fused) { 15729 size_t sth_hiwat; 15730 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15731 15732 ASSERT(peer_tcp != NULL); 15733 /* 15734 * Record the stream head's high water mark for 15735 * this endpoint; this is used for flow-control 15736 * purposes in tcp_fuse_output(). 15737 */ 15738 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15739 if (!tcp_detached) { 15740 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15741 sth_hiwat); 15742 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 15743 conn_t *connp = tcp->tcp_connp; 15744 struct sock_proto_props sopp; 15745 15746 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 15747 sopp.sopp_rcvthresh = sth_hiwat >> 3; 15748 15749 (*connp->conn_upcalls->su_set_proto_props) 15750 (connp->conn_upper_handle, &sopp); 15751 } 15752 } 15753 15754 /* 15755 * In the fusion case, the maxpsz stream head value of 15756 * our peer is set according to its send buffer size 15757 * and our receive buffer size; since the latter may 15758 * have changed we need to update the peer's maxpsz. 15759 */ 15760 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15761 return (rwnd); 15762 } 15763 15764 if (tcp_detached) { 15765 old_max_rwnd = tcp->tcp_rwnd; 15766 } else { 15767 old_max_rwnd = tcp->tcp_recv_hiwater; 15768 } 15769 15770 /* 15771 * Insist on a receive window that is at least 15772 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15773 * funny TCP interactions of Nagle algorithm, SWS avoidance 15774 * and delayed acknowledgement. 15775 */ 15776 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 15777 15778 /* 15779 * If window size info has already been exchanged, TCP should not 15780 * shrink the window. Shrinking window is doable if done carefully. 15781 * We may add that support later. But so far there is not a real 15782 * need to do that. 15783 */ 15784 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15785 /* MSS may have changed, do a round up again. */ 15786 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15787 } 15788 15789 /* 15790 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15791 * can be applied even before the window scale option is decided. 15792 */ 15793 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15794 if (rwnd > max_transmittable_rwnd) { 15795 rwnd = max_transmittable_rwnd - 15796 (max_transmittable_rwnd % mss); 15797 if (rwnd < mss) 15798 rwnd = max_transmittable_rwnd; 15799 /* 15800 * If we're over the limit we may have to back down tcp_rwnd. 15801 * The increment below won't work for us. So we set all three 15802 * here and the increment below will have no effect. 15803 */ 15804 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15805 } 15806 if (tcp->tcp_localnet) { 15807 tcp->tcp_rack_abs_max = 15808 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 15809 } else { 15810 /* 15811 * For a remote host on a different subnet (through a router), 15812 * we ack every other packet to be conforming to RFC1122. 15813 * tcp_deferred_acks_max is default to 2. 15814 */ 15815 tcp->tcp_rack_abs_max = 15816 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 15817 } 15818 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15819 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15820 else 15821 tcp->tcp_rack_cur_max = 0; 15822 /* 15823 * Increment the current rwnd by the amount the maximum grew (we 15824 * can not overwrite it since we might be in the middle of a 15825 * connection.) 15826 */ 15827 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15828 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15829 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15830 tcp->tcp_cwnd_max = rwnd; 15831 15832 if (tcp_detached) 15833 return (rwnd); 15834 /* 15835 * We set the maximum receive window into rq->q_hiwat if it is 15836 * a STREAMS socket. 15837 * This is not actually used for flow control. 15838 */ 15839 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 15840 tcp->tcp_rq->q_hiwat = rwnd; 15841 tcp->tcp_recv_hiwater = rwnd; 15842 /* 15843 * Set the STREAM head high water mark. This doesn't have to be 15844 * here, since we are simply using default values, but we would 15845 * prefer to choose these values algorithmically, with a likely 15846 * relationship to rwnd. 15847 */ 15848 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15849 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 15850 return (rwnd); 15851 } 15852 15853 /* 15854 * Return SNMP stuff in buffer in mpdata. 15855 */ 15856 mblk_t * 15857 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15858 { 15859 mblk_t *mpdata; 15860 mblk_t *mp_conn_ctl = NULL; 15861 mblk_t *mp_conn_tail; 15862 mblk_t *mp_attr_ctl = NULL; 15863 mblk_t *mp_attr_tail; 15864 mblk_t *mp6_conn_ctl = NULL; 15865 mblk_t *mp6_conn_tail; 15866 mblk_t *mp6_attr_ctl = NULL; 15867 mblk_t *mp6_attr_tail; 15868 struct opthdr *optp; 15869 mib2_tcpConnEntry_t tce; 15870 mib2_tcp6ConnEntry_t tce6; 15871 mib2_transportMLPEntry_t mlp; 15872 connf_t *connfp; 15873 int i; 15874 boolean_t ispriv; 15875 zoneid_t zoneid; 15876 int v4_conn_idx; 15877 int v6_conn_idx; 15878 conn_t *connp = Q_TO_CONN(q); 15879 tcp_stack_t *tcps; 15880 ip_stack_t *ipst; 15881 mblk_t *mp2ctl; 15882 15883 /* 15884 * make a copy of the original message 15885 */ 15886 mp2ctl = copymsg(mpctl); 15887 15888 if (mpctl == NULL || 15889 (mpdata = mpctl->b_cont) == NULL || 15890 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15891 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15892 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15893 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15894 freemsg(mp_conn_ctl); 15895 freemsg(mp_attr_ctl); 15896 freemsg(mp6_conn_ctl); 15897 freemsg(mp6_attr_ctl); 15898 freemsg(mpctl); 15899 freemsg(mp2ctl); 15900 return (NULL); 15901 } 15902 15903 ipst = connp->conn_netstack->netstack_ip; 15904 tcps = connp->conn_netstack->netstack_tcp; 15905 15906 /* build table of connections -- need count in fixed part */ 15907 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 15908 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 15909 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 15910 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 15911 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 15912 15913 ispriv = 15914 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15915 zoneid = Q_TO_CONN(q)->conn_zoneid; 15916 15917 v4_conn_idx = v6_conn_idx = 0; 15918 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15919 15920 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15921 ipst = tcps->tcps_netstack->netstack_ip; 15922 15923 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 15924 15925 connp = NULL; 15926 15927 while ((connp = 15928 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15929 tcp_t *tcp; 15930 boolean_t needattr; 15931 15932 if (connp->conn_zoneid != zoneid) 15933 continue; /* not in this zone */ 15934 15935 tcp = connp->conn_tcp; 15936 UPDATE_MIB(&tcps->tcps_mib, 15937 tcpHCInSegs, tcp->tcp_ibsegs); 15938 tcp->tcp_ibsegs = 0; 15939 UPDATE_MIB(&tcps->tcps_mib, 15940 tcpHCOutSegs, tcp->tcp_obsegs); 15941 tcp->tcp_obsegs = 0; 15942 15943 tce6.tcp6ConnState = tce.tcpConnState = 15944 tcp_snmp_state(tcp); 15945 if (tce.tcpConnState == MIB2_TCP_established || 15946 tce.tcpConnState == MIB2_TCP_closeWait) 15947 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 15948 15949 needattr = B_FALSE; 15950 bzero(&mlp, sizeof (mlp)); 15951 if (connp->conn_mlp_type != mlptSingle) { 15952 if (connp->conn_mlp_type == mlptShared || 15953 connp->conn_mlp_type == mlptBoth) 15954 mlp.tme_flags |= MIB2_TMEF_SHARED; 15955 if (connp->conn_mlp_type == mlptPrivate || 15956 connp->conn_mlp_type == mlptBoth) 15957 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15958 needattr = B_TRUE; 15959 } 15960 if (connp->conn_anon_mlp) { 15961 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 15962 needattr = B_TRUE; 15963 } 15964 if (connp->conn_mac_exempt) { 15965 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 15966 needattr = B_TRUE; 15967 } 15968 if (connp->conn_fully_bound && 15969 connp->conn_effective_cred != NULL) { 15970 ts_label_t *tsl; 15971 15972 tsl = crgetlabel(connp->conn_effective_cred); 15973 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 15974 mlp.tme_doi = label2doi(tsl); 15975 mlp.tme_label = *label2bslabel(tsl); 15976 needattr = B_TRUE; 15977 } 15978 15979 /* Create a message to report on IPv6 entries */ 15980 if (tcp->tcp_ipversion == IPV6_VERSION) { 15981 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15982 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15983 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15984 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15985 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15986 /* Don't want just anybody seeing these... */ 15987 if (ispriv) { 15988 tce6.tcp6ConnEntryInfo.ce_snxt = 15989 tcp->tcp_snxt; 15990 tce6.tcp6ConnEntryInfo.ce_suna = 15991 tcp->tcp_suna; 15992 tce6.tcp6ConnEntryInfo.ce_rnxt = 15993 tcp->tcp_rnxt; 15994 tce6.tcp6ConnEntryInfo.ce_rack = 15995 tcp->tcp_rack; 15996 } else { 15997 /* 15998 * Netstat, unfortunately, uses this to 15999 * get send/receive queue sizes. How to fix? 16000 * Why not compute the difference only? 16001 */ 16002 tce6.tcp6ConnEntryInfo.ce_snxt = 16003 tcp->tcp_snxt - tcp->tcp_suna; 16004 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16005 tce6.tcp6ConnEntryInfo.ce_rnxt = 16006 tcp->tcp_rnxt - tcp->tcp_rack; 16007 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16008 } 16009 16010 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16011 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16012 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16013 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16014 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16015 16016 tce6.tcp6ConnCreationProcess = 16017 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16018 tcp->tcp_cpid; 16019 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16020 16021 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16022 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16023 16024 mlp.tme_connidx = v6_conn_idx++; 16025 if (needattr) 16026 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16027 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16028 } 16029 /* 16030 * Create an IPv4 table entry for IPv4 entries and also 16031 * for IPv6 entries which are bound to in6addr_any 16032 * but don't have IPV6_V6ONLY set. 16033 * (i.e. anything an IPv4 peer could connect to) 16034 */ 16035 if (tcp->tcp_ipversion == IPV4_VERSION || 16036 (tcp->tcp_state <= TCPS_LISTEN && 16037 !tcp->tcp_connp->conn_ipv6_v6only && 16038 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16039 if (tcp->tcp_ipversion == IPV6_VERSION) { 16040 tce.tcpConnRemAddress = INADDR_ANY; 16041 tce.tcpConnLocalAddress = INADDR_ANY; 16042 } else { 16043 tce.tcpConnRemAddress = 16044 tcp->tcp_remote; 16045 tce.tcpConnLocalAddress = 16046 tcp->tcp_ip_src; 16047 } 16048 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16049 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16050 /* Don't want just anybody seeing these... */ 16051 if (ispriv) { 16052 tce.tcpConnEntryInfo.ce_snxt = 16053 tcp->tcp_snxt; 16054 tce.tcpConnEntryInfo.ce_suna = 16055 tcp->tcp_suna; 16056 tce.tcpConnEntryInfo.ce_rnxt = 16057 tcp->tcp_rnxt; 16058 tce.tcpConnEntryInfo.ce_rack = 16059 tcp->tcp_rack; 16060 } else { 16061 /* 16062 * Netstat, unfortunately, uses this to 16063 * get send/receive queue sizes. How 16064 * to fix? 16065 * Why not compute the difference only? 16066 */ 16067 tce.tcpConnEntryInfo.ce_snxt = 16068 tcp->tcp_snxt - tcp->tcp_suna; 16069 tce.tcpConnEntryInfo.ce_suna = 0; 16070 tce.tcpConnEntryInfo.ce_rnxt = 16071 tcp->tcp_rnxt - tcp->tcp_rack; 16072 tce.tcpConnEntryInfo.ce_rack = 0; 16073 } 16074 16075 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16076 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16077 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16078 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16079 tce.tcpConnEntryInfo.ce_state = 16080 tcp->tcp_state; 16081 16082 tce.tcpConnCreationProcess = 16083 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16084 tcp->tcp_cpid; 16085 tce.tcpConnCreationTime = tcp->tcp_open_time; 16086 16087 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16088 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16089 16090 mlp.tme_connidx = v4_conn_idx++; 16091 if (needattr) 16092 (void) snmp_append_data2( 16093 mp_attr_ctl->b_cont, 16094 &mp_attr_tail, (char *)&mlp, 16095 sizeof (mlp)); 16096 } 16097 } 16098 } 16099 16100 /* fixed length structure for IPv4 and IPv6 counters */ 16101 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16102 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16103 sizeof (mib2_tcp6ConnEntry_t)); 16104 /* synchronize 32- and 64-bit counters */ 16105 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16106 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16107 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16108 optp->level = MIB2_TCP; 16109 optp->name = 0; 16110 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16111 sizeof (tcps->tcps_mib)); 16112 optp->len = msgdsize(mpdata); 16113 qreply(q, mpctl); 16114 16115 /* table of connections... */ 16116 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16117 sizeof (struct T_optmgmt_ack)]; 16118 optp->level = MIB2_TCP; 16119 optp->name = MIB2_TCP_CONN; 16120 optp->len = msgdsize(mp_conn_ctl->b_cont); 16121 qreply(q, mp_conn_ctl); 16122 16123 /* table of MLP attributes... */ 16124 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16125 sizeof (struct T_optmgmt_ack)]; 16126 optp->level = MIB2_TCP; 16127 optp->name = EXPER_XPORT_MLP; 16128 optp->len = msgdsize(mp_attr_ctl->b_cont); 16129 if (optp->len == 0) 16130 freemsg(mp_attr_ctl); 16131 else 16132 qreply(q, mp_attr_ctl); 16133 16134 /* table of IPv6 connections... */ 16135 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16136 sizeof (struct T_optmgmt_ack)]; 16137 optp->level = MIB2_TCP6; 16138 optp->name = MIB2_TCP6_CONN; 16139 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16140 qreply(q, mp6_conn_ctl); 16141 16142 /* table of IPv6 MLP attributes... */ 16143 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16144 sizeof (struct T_optmgmt_ack)]; 16145 optp->level = MIB2_TCP6; 16146 optp->name = EXPER_XPORT_MLP; 16147 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16148 if (optp->len == 0) 16149 freemsg(mp6_attr_ctl); 16150 else 16151 qreply(q, mp6_attr_ctl); 16152 return (mp2ctl); 16153 } 16154 16155 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16156 /* ARGSUSED */ 16157 int 16158 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16159 { 16160 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16161 16162 switch (level) { 16163 case MIB2_TCP: 16164 switch (name) { 16165 case 13: 16166 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16167 return (0); 16168 /* TODO: delete entry defined by tce */ 16169 return (1); 16170 default: 16171 return (0); 16172 } 16173 default: 16174 return (1); 16175 } 16176 } 16177 16178 /* Translate TCP state to MIB2 TCP state. */ 16179 static int 16180 tcp_snmp_state(tcp_t *tcp) 16181 { 16182 if (tcp == NULL) 16183 return (0); 16184 16185 switch (tcp->tcp_state) { 16186 case TCPS_CLOSED: 16187 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16188 case TCPS_BOUND: 16189 return (MIB2_TCP_closed); 16190 case TCPS_LISTEN: 16191 return (MIB2_TCP_listen); 16192 case TCPS_SYN_SENT: 16193 return (MIB2_TCP_synSent); 16194 case TCPS_SYN_RCVD: 16195 return (MIB2_TCP_synReceived); 16196 case TCPS_ESTABLISHED: 16197 return (MIB2_TCP_established); 16198 case TCPS_CLOSE_WAIT: 16199 return (MIB2_TCP_closeWait); 16200 case TCPS_FIN_WAIT_1: 16201 return (MIB2_TCP_finWait1); 16202 case TCPS_CLOSING: 16203 return (MIB2_TCP_closing); 16204 case TCPS_LAST_ACK: 16205 return (MIB2_TCP_lastAck); 16206 case TCPS_FIN_WAIT_2: 16207 return (MIB2_TCP_finWait2); 16208 case TCPS_TIME_WAIT: 16209 return (MIB2_TCP_timeWait); 16210 default: 16211 return (0); 16212 } 16213 } 16214 16215 /* 16216 * tcp_timer is the timer service routine. It handles the retransmission, 16217 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16218 * from the state of the tcp instance what kind of action needs to be done 16219 * at the time it is called. 16220 */ 16221 static void 16222 tcp_timer(void *arg) 16223 { 16224 mblk_t *mp; 16225 clock_t first_threshold; 16226 clock_t second_threshold; 16227 clock_t ms; 16228 uint32_t mss; 16229 conn_t *connp = (conn_t *)arg; 16230 tcp_t *tcp = connp->conn_tcp; 16231 tcp_stack_t *tcps = tcp->tcp_tcps; 16232 16233 tcp->tcp_timer_tid = 0; 16234 16235 if (tcp->tcp_fused) 16236 return; 16237 16238 first_threshold = tcp->tcp_first_timer_threshold; 16239 second_threshold = tcp->tcp_second_timer_threshold; 16240 switch (tcp->tcp_state) { 16241 case TCPS_IDLE: 16242 case TCPS_BOUND: 16243 case TCPS_LISTEN: 16244 return; 16245 case TCPS_SYN_RCVD: { 16246 tcp_t *listener = tcp->tcp_listener; 16247 16248 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16249 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16250 /* it's our first timeout */ 16251 tcp->tcp_syn_rcvd_timeout = 1; 16252 mutex_enter(&listener->tcp_eager_lock); 16253 listener->tcp_syn_rcvd_timeout++; 16254 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16255 /* 16256 * Make this eager available for drop if we 16257 * need to drop one to accomodate a new 16258 * incoming SYN request. 16259 */ 16260 MAKE_DROPPABLE(listener, tcp); 16261 } 16262 if (!listener->tcp_syn_defense && 16263 (listener->tcp_syn_rcvd_timeout > 16264 (tcps->tcps_conn_req_max_q0 >> 2)) && 16265 (tcps->tcps_conn_req_max_q0 > 200)) { 16266 /* We may be under attack. Put on a defense. */ 16267 listener->tcp_syn_defense = B_TRUE; 16268 cmn_err(CE_WARN, "High TCP connect timeout " 16269 "rate! System (port %d) may be under a " 16270 "SYN flood attack!", 16271 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16272 16273 listener->tcp_ip_addr_cache = kmem_zalloc( 16274 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16275 KM_NOSLEEP); 16276 } 16277 mutex_exit(&listener->tcp_eager_lock); 16278 } else if (listener != NULL) { 16279 mutex_enter(&listener->tcp_eager_lock); 16280 tcp->tcp_syn_rcvd_timeout++; 16281 if (tcp->tcp_syn_rcvd_timeout > 1 && 16282 !tcp->tcp_closemp_used) { 16283 /* 16284 * This is our second timeout. Put the tcp in 16285 * the list of droppable eagers to allow it to 16286 * be dropped, if needed. We don't check 16287 * whether tcp_dontdrop is set or not to 16288 * protect ourselve from a SYN attack where a 16289 * remote host can spoof itself as one of the 16290 * good IP source and continue to hold 16291 * resources too long. 16292 */ 16293 MAKE_DROPPABLE(listener, tcp); 16294 } 16295 mutex_exit(&listener->tcp_eager_lock); 16296 } 16297 } 16298 /* FALLTHRU */ 16299 case TCPS_SYN_SENT: 16300 first_threshold = tcp->tcp_first_ctimer_threshold; 16301 second_threshold = tcp->tcp_second_ctimer_threshold; 16302 break; 16303 case TCPS_ESTABLISHED: 16304 case TCPS_FIN_WAIT_1: 16305 case TCPS_CLOSING: 16306 case TCPS_CLOSE_WAIT: 16307 case TCPS_LAST_ACK: 16308 /* If we have data to rexmit */ 16309 if (tcp->tcp_suna != tcp->tcp_snxt) { 16310 clock_t time_to_wait; 16311 16312 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16313 if (!tcp->tcp_xmit_head) 16314 break; 16315 time_to_wait = lbolt - 16316 (clock_t)tcp->tcp_xmit_head->b_prev; 16317 time_to_wait = tcp->tcp_rto - 16318 TICK_TO_MSEC(time_to_wait); 16319 /* 16320 * If the timer fires too early, 1 clock tick earlier, 16321 * restart the timer. 16322 */ 16323 if (time_to_wait > msec_per_tick) { 16324 TCP_STAT(tcps, tcp_timer_fire_early); 16325 TCP_TIMER_RESTART(tcp, time_to_wait); 16326 return; 16327 } 16328 /* 16329 * When we probe zero windows, we force the swnd open. 16330 * If our peer acks with a closed window swnd will be 16331 * set to zero by tcp_rput(). As long as we are 16332 * receiving acks tcp_rput will 16333 * reset 'tcp_ms_we_have_waited' so as not to trip the 16334 * first and second interval actions. NOTE: the timer 16335 * interval is allowed to continue its exponential 16336 * backoff. 16337 */ 16338 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16339 if (tcp->tcp_debug) { 16340 (void) strlog(TCP_MOD_ID, 0, 1, 16341 SL_TRACE, "tcp_timer: zero win"); 16342 } 16343 } else { 16344 /* 16345 * After retransmission, we need to do 16346 * slow start. Set the ssthresh to one 16347 * half of current effective window and 16348 * cwnd to one MSS. Also reset 16349 * tcp_cwnd_cnt. 16350 * 16351 * Note that if tcp_ssthresh is reduced because 16352 * of ECN, do not reduce it again unless it is 16353 * already one window of data away (tcp_cwr 16354 * should then be cleared) or this is a 16355 * timeout for a retransmitted segment. 16356 */ 16357 uint32_t npkt; 16358 16359 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16360 npkt = ((tcp->tcp_timer_backoff ? 16361 tcp->tcp_cwnd_ssthresh : 16362 tcp->tcp_snxt - 16363 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16364 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16365 tcp->tcp_mss; 16366 } 16367 tcp->tcp_cwnd = tcp->tcp_mss; 16368 tcp->tcp_cwnd_cnt = 0; 16369 if (tcp->tcp_ecn_ok) { 16370 tcp->tcp_cwr = B_TRUE; 16371 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16372 tcp->tcp_ecn_cwr_sent = B_FALSE; 16373 } 16374 } 16375 break; 16376 } 16377 /* 16378 * We have something to send yet we cannot send. The 16379 * reason can be: 16380 * 16381 * 1. Zero send window: we need to do zero window probe. 16382 * 2. Zero cwnd: because of ECN, we need to "clock out 16383 * segments. 16384 * 3. SWS avoidance: receiver may have shrunk window, 16385 * reset our knowledge. 16386 * 16387 * Note that condition 2 can happen with either 1 or 16388 * 3. But 1 and 3 are exclusive. 16389 */ 16390 if (tcp->tcp_unsent != 0) { 16391 if (tcp->tcp_cwnd == 0) { 16392 /* 16393 * Set tcp_cwnd to 1 MSS so that a 16394 * new segment can be sent out. We 16395 * are "clocking out" new data when 16396 * the network is really congested. 16397 */ 16398 ASSERT(tcp->tcp_ecn_ok); 16399 tcp->tcp_cwnd = tcp->tcp_mss; 16400 } 16401 if (tcp->tcp_swnd == 0) { 16402 /* Extend window for zero window probe */ 16403 tcp->tcp_swnd++; 16404 tcp->tcp_zero_win_probe = B_TRUE; 16405 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 16406 } else { 16407 /* 16408 * Handle timeout from sender SWS avoidance. 16409 * Reset our knowledge of the max send window 16410 * since the receiver might have reduced its 16411 * receive buffer. Avoid setting tcp_max_swnd 16412 * to one since that will essentially disable 16413 * the SWS checks. 16414 * 16415 * Note that since we don't have a SWS 16416 * state variable, if the timeout is set 16417 * for ECN but not for SWS, this 16418 * code will also be executed. This is 16419 * fine as tcp_max_swnd is updated 16420 * constantly and it will not affect 16421 * anything. 16422 */ 16423 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16424 } 16425 tcp_wput_data(tcp, NULL, B_FALSE); 16426 return; 16427 } 16428 /* Is there a FIN that needs to be to re retransmitted? */ 16429 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16430 !tcp->tcp_fin_acked) 16431 break; 16432 /* Nothing to do, return without restarting timer. */ 16433 TCP_STAT(tcps, tcp_timer_fire_miss); 16434 return; 16435 case TCPS_FIN_WAIT_2: 16436 /* 16437 * User closed the TCP endpoint and peer ACK'ed our FIN. 16438 * We waited some time for for peer's FIN, but it hasn't 16439 * arrived. We flush the connection now to avoid 16440 * case where the peer has rebooted. 16441 */ 16442 if (TCP_IS_DETACHED(tcp)) { 16443 (void) tcp_clean_death(tcp, 0, 23); 16444 } else { 16445 TCP_TIMER_RESTART(tcp, 16446 tcps->tcps_fin_wait_2_flush_interval); 16447 } 16448 return; 16449 case TCPS_TIME_WAIT: 16450 (void) tcp_clean_death(tcp, 0, 24); 16451 return; 16452 default: 16453 if (tcp->tcp_debug) { 16454 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16455 "tcp_timer: strange state (%d) %s", 16456 tcp->tcp_state, tcp_display(tcp, NULL, 16457 DISP_PORT_ONLY)); 16458 } 16459 return; 16460 } 16461 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16462 /* 16463 * For zero window probe, we need to send indefinitely, 16464 * unless we have not heard from the other side for some 16465 * time... 16466 */ 16467 if ((tcp->tcp_zero_win_probe == 0) || 16468 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16469 second_threshold)) { 16470 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 16471 /* 16472 * If TCP is in SYN_RCVD state, send back a 16473 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16474 * should be zero in TCPS_SYN_RCVD state. 16475 */ 16476 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16477 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16478 "in SYN_RCVD", 16479 tcp, tcp->tcp_snxt, 16480 tcp->tcp_rnxt, TH_RST | TH_ACK); 16481 } 16482 (void) tcp_clean_death(tcp, 16483 tcp->tcp_client_errno ? 16484 tcp->tcp_client_errno : ETIMEDOUT, 25); 16485 return; 16486 } else { 16487 /* 16488 * Set tcp_ms_we_have_waited to second_threshold 16489 * so that in next timeout, we will do the above 16490 * check (lbolt - tcp_last_recv_time). This is 16491 * also to avoid overflow. 16492 * 16493 * We don't need to decrement tcp_timer_backoff 16494 * to avoid overflow because it will be decremented 16495 * later if new timeout value is greater than 16496 * tcp_rexmit_interval_max. In the case when 16497 * tcp_rexmit_interval_max is greater than 16498 * second_threshold, it means that we will wait 16499 * longer than second_threshold to send the next 16500 * window probe. 16501 */ 16502 tcp->tcp_ms_we_have_waited = second_threshold; 16503 } 16504 } else if (ms > first_threshold) { 16505 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16506 tcp->tcp_xmit_head != NULL) { 16507 tcp->tcp_xmit_head = 16508 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16509 } 16510 /* 16511 * We have been retransmitting for too long... The RTT 16512 * we calculated is probably incorrect. Reinitialize it. 16513 * Need to compensate for 0 tcp_rtt_sa. Reset 16514 * tcp_rtt_update so that we won't accidentally cache a 16515 * bad value. But only do this if this is not a zero 16516 * window probe. 16517 */ 16518 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16519 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16520 (tcp->tcp_rtt_sa >> 5); 16521 tcp->tcp_rtt_sa = 0; 16522 tcp_ip_notify(tcp); 16523 tcp->tcp_rtt_update = 0; 16524 } 16525 } 16526 tcp->tcp_timer_backoff++; 16527 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16528 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16529 tcps->tcps_rexmit_interval_min) { 16530 /* 16531 * This means the original RTO is tcp_rexmit_interval_min. 16532 * So we will use tcp_rexmit_interval_min as the RTO value 16533 * and do the backoff. 16534 */ 16535 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 16536 } else { 16537 ms <<= tcp->tcp_timer_backoff; 16538 } 16539 if (ms > tcps->tcps_rexmit_interval_max) { 16540 ms = tcps->tcps_rexmit_interval_max; 16541 /* 16542 * ms is at max, decrement tcp_timer_backoff to avoid 16543 * overflow. 16544 */ 16545 tcp->tcp_timer_backoff--; 16546 } 16547 tcp->tcp_ms_we_have_waited += ms; 16548 if (tcp->tcp_zero_win_probe == 0) { 16549 tcp->tcp_rto = ms; 16550 } 16551 TCP_TIMER_RESTART(tcp, ms); 16552 /* 16553 * This is after a timeout and tcp_rto is backed off. Set 16554 * tcp_set_timer to 1 so that next time RTO is updated, we will 16555 * restart the timer with a correct value. 16556 */ 16557 tcp->tcp_set_timer = 1; 16558 mss = tcp->tcp_snxt - tcp->tcp_suna; 16559 if (mss > tcp->tcp_mss) 16560 mss = tcp->tcp_mss; 16561 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16562 mss = tcp->tcp_swnd; 16563 16564 if ((mp = tcp->tcp_xmit_head) != NULL) 16565 mp->b_prev = (mblk_t *)lbolt; 16566 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16567 B_TRUE); 16568 16569 /* 16570 * When slow start after retransmission begins, start with 16571 * this seq no. tcp_rexmit_max marks the end of special slow 16572 * start phase. tcp_snd_burst controls how many segments 16573 * can be sent because of an ack. 16574 */ 16575 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16576 tcp->tcp_snd_burst = TCP_CWND_SS; 16577 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16578 (tcp->tcp_unsent == 0)) { 16579 tcp->tcp_rexmit_max = tcp->tcp_fss; 16580 } else { 16581 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16582 } 16583 tcp->tcp_rexmit = B_TRUE; 16584 tcp->tcp_dupack_cnt = 0; 16585 16586 /* 16587 * Remove all rexmit SACK blk to start from fresh. 16588 */ 16589 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) 16590 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 16591 if (mp == NULL) { 16592 return; 16593 } 16594 /* 16595 * Attach credentials to retransmitted initial SYNs. 16596 * In theory we should use the credentials from the connect() 16597 * call to ensure that getpeerucred() on the peer will be correct. 16598 * But we assume that SYN's are not dropped for loopback connections. 16599 */ 16600 if (tcp->tcp_state == TCPS_SYN_SENT) { 16601 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp), tcp->tcp_cpid); 16602 } 16603 16604 tcp->tcp_csuna = tcp->tcp_snxt; 16605 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 16606 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 16607 tcp_send_data(tcp, tcp->tcp_wq, mp); 16608 16609 } 16610 16611 static int 16612 tcp_do_unbind(conn_t *connp) 16613 { 16614 tcp_t *tcp = connp->conn_tcp; 16615 int error = 0; 16616 16617 switch (tcp->tcp_state) { 16618 case TCPS_BOUND: 16619 case TCPS_LISTEN: 16620 break; 16621 default: 16622 return (-TOUTSTATE); 16623 } 16624 16625 /* 16626 * Need to clean up all the eagers since after the unbind, segments 16627 * will no longer be delivered to this listener stream. 16628 */ 16629 mutex_enter(&tcp->tcp_eager_lock); 16630 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16631 tcp_eager_cleanup(tcp, 0); 16632 } 16633 mutex_exit(&tcp->tcp_eager_lock); 16634 16635 if (tcp->tcp_ipversion == IPV4_VERSION) { 16636 tcp->tcp_ipha->ipha_src = 0; 16637 } else { 16638 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16639 } 16640 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16641 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16642 tcp_bind_hash_remove(tcp); 16643 tcp->tcp_state = TCPS_IDLE; 16644 tcp->tcp_mdt = B_FALSE; 16645 16646 connp = tcp->tcp_connp; 16647 connp->conn_mdt_ok = B_FALSE; 16648 ipcl_hash_remove(connp); 16649 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16650 16651 return (error); 16652 } 16653 16654 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16655 static void 16656 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 16657 { 16658 int error = tcp_do_unbind(tcp->tcp_connp); 16659 16660 if (error > 0) { 16661 tcp_err_ack(tcp, mp, TSYSERR, error); 16662 } else if (error < 0) { 16663 tcp_err_ack(tcp, mp, -error, 0); 16664 } else { 16665 /* Send M_FLUSH according to TPI */ 16666 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16667 16668 mp = mi_tpi_ok_ack_alloc(mp); 16669 putnext(tcp->tcp_rq, mp); 16670 } 16671 } 16672 16673 /* 16674 * Don't let port fall into the privileged range. 16675 * Since the extra privileged ports can be arbitrary we also 16676 * ensure that we exclude those from consideration. 16677 * tcp_g_epriv_ports is not sorted thus we loop over it until 16678 * there are no changes. 16679 * 16680 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16681 * but instead the code relies on: 16682 * - the fact that the address of the array and its size never changes 16683 * - the atomic assignment of the elements of the array 16684 * 16685 * Returns 0 if there are no more ports available. 16686 * 16687 * TS note: skip multilevel ports. 16688 */ 16689 static in_port_t 16690 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16691 { 16692 int i; 16693 boolean_t restart = B_FALSE; 16694 tcp_stack_t *tcps = tcp->tcp_tcps; 16695 16696 if (random && tcp_random_anon_port != 0) { 16697 (void) random_get_pseudo_bytes((uint8_t *)&port, 16698 sizeof (in_port_t)); 16699 /* 16700 * Unless changed by a sys admin, the smallest anon port 16701 * is 32768 and the largest anon port is 65535. It is 16702 * very likely (50%) for the random port to be smaller 16703 * than the smallest anon port. When that happens, 16704 * add port % (anon port range) to the smallest anon 16705 * port to get the random port. It should fall into the 16706 * valid anon port range. 16707 */ 16708 if (port < tcps->tcps_smallest_anon_port) { 16709 port = tcps->tcps_smallest_anon_port + 16710 port % (tcps->tcps_largest_anon_port - 16711 tcps->tcps_smallest_anon_port); 16712 } 16713 } 16714 16715 retry: 16716 if (port < tcps->tcps_smallest_anon_port) 16717 port = (in_port_t)tcps->tcps_smallest_anon_port; 16718 16719 if (port > tcps->tcps_largest_anon_port) { 16720 if (restart) 16721 return (0); 16722 restart = B_TRUE; 16723 port = (in_port_t)tcps->tcps_smallest_anon_port; 16724 } 16725 16726 if (port < tcps->tcps_smallest_nonpriv_port) 16727 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 16728 16729 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 16730 if (port == tcps->tcps_g_epriv_ports[i]) { 16731 port++; 16732 /* 16733 * Make sure whether the port is in the 16734 * valid range. 16735 */ 16736 goto retry; 16737 } 16738 } 16739 if (is_system_labeled() && 16740 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 16741 IPPROTO_TCP, B_TRUE)) != 0) { 16742 port = i; 16743 goto retry; 16744 } 16745 return (port); 16746 } 16747 16748 /* 16749 * Return the next anonymous port in the privileged port range for 16750 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16751 * downwards. This is the same behavior as documented in the userland 16752 * library call rresvport(3N). 16753 * 16754 * TS note: skip multilevel ports. 16755 */ 16756 static in_port_t 16757 tcp_get_next_priv_port(const tcp_t *tcp) 16758 { 16759 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16760 in_port_t nextport; 16761 boolean_t restart = B_FALSE; 16762 tcp_stack_t *tcps = tcp->tcp_tcps; 16763 retry: 16764 if (next_priv_port < tcps->tcps_min_anonpriv_port || 16765 next_priv_port >= IPPORT_RESERVED) { 16766 next_priv_port = IPPORT_RESERVED - 1; 16767 if (restart) 16768 return (0); 16769 restart = B_TRUE; 16770 } 16771 if (is_system_labeled() && 16772 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 16773 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 16774 next_priv_port = nextport; 16775 goto retry; 16776 } 16777 return (next_priv_port--); 16778 } 16779 16780 /* The write side r/w procedure. */ 16781 16782 #if CCS_STATS 16783 struct { 16784 struct { 16785 int64_t count, bytes; 16786 } tot, hit; 16787 } wrw_stats; 16788 #endif 16789 16790 /* 16791 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16792 * messages. 16793 */ 16794 /* ARGSUSED */ 16795 static void 16796 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16797 { 16798 conn_t *connp = (conn_t *)arg; 16799 tcp_t *tcp = connp->conn_tcp; 16800 queue_t *q = tcp->tcp_wq; 16801 16802 ASSERT(DB_TYPE(mp) != M_IOCTL); 16803 /* 16804 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16805 * Once the close starts, streamhead and sockfs will not let any data 16806 * packets come down (close ensures that there are no threads using the 16807 * queue and no new threads will come down) but since qprocsoff() 16808 * hasn't happened yet, a M_FLUSH or some non data message might 16809 * get reflected back (in response to our own FLUSHRW) and get 16810 * processed after tcp_close() is done. The conn would still be valid 16811 * because a ref would have added but we need to check the state 16812 * before actually processing the packet. 16813 */ 16814 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16815 freemsg(mp); 16816 return; 16817 } 16818 16819 switch (DB_TYPE(mp)) { 16820 case M_IOCDATA: 16821 tcp_wput_iocdata(tcp, mp); 16822 break; 16823 case M_FLUSH: 16824 tcp_wput_flush(tcp, mp); 16825 break; 16826 default: 16827 CALL_IP_WPUT(connp, q, mp); 16828 break; 16829 } 16830 } 16831 16832 /* 16833 * The TCP fast path write put procedure. 16834 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16835 */ 16836 /* ARGSUSED */ 16837 void 16838 tcp_output(void *arg, mblk_t *mp, void *arg2) 16839 { 16840 int len; 16841 int hdrlen; 16842 int plen; 16843 mblk_t *mp1; 16844 uchar_t *rptr; 16845 uint32_t snxt; 16846 tcph_t *tcph; 16847 struct datab *db; 16848 uint32_t suna; 16849 uint32_t mss; 16850 ipaddr_t *dst; 16851 ipaddr_t *src; 16852 uint32_t sum; 16853 int usable; 16854 conn_t *connp = (conn_t *)arg; 16855 tcp_t *tcp = connp->conn_tcp; 16856 uint32_t msize; 16857 tcp_stack_t *tcps = tcp->tcp_tcps; 16858 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 16859 16860 /* 16861 * Try and ASSERT the minimum possible references on the 16862 * conn early enough. Since we are executing on write side, 16863 * the connection is obviously not detached and that means 16864 * there is a ref each for TCP and IP. Since we are behind 16865 * the squeue, the minimum references needed are 3. If the 16866 * conn is in classifier hash list, there should be an 16867 * extra ref for that (we check both the possibilities). 16868 */ 16869 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16870 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16871 16872 ASSERT(DB_TYPE(mp) == M_DATA); 16873 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 16874 16875 mutex_enter(&tcp->tcp_non_sq_lock); 16876 tcp->tcp_squeue_bytes -= msize; 16877 mutex_exit(&tcp->tcp_non_sq_lock); 16878 16879 /* Check to see if this connection wants to be re-fused. */ 16880 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 16881 if (tcp->tcp_ipversion == IPV4_VERSION) { 16882 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 16883 &tcp->tcp_saved_tcph); 16884 } else { 16885 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 16886 &tcp->tcp_saved_tcph); 16887 } 16888 } 16889 /* Bypass tcp protocol for fused tcp loopback */ 16890 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 16891 return; 16892 16893 mss = tcp->tcp_mss; 16894 if (tcp->tcp_xmit_zc_clean) 16895 mp = tcp_zcopy_backoff(tcp, mp, 0); 16896 16897 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16898 len = (int)(mp->b_wptr - mp->b_rptr); 16899 16900 /* 16901 * Criteria for fast path: 16902 * 16903 * 1. no unsent data 16904 * 2. single mblk in request 16905 * 3. connection established 16906 * 4. data in mblk 16907 * 5. len <= mss 16908 * 6. no tcp_valid bits 16909 */ 16910 if ((tcp->tcp_unsent != 0) || 16911 (tcp->tcp_cork) || 16912 (mp->b_cont != NULL) || 16913 (tcp->tcp_state != TCPS_ESTABLISHED) || 16914 (len == 0) || 16915 (len > mss) || 16916 (tcp->tcp_valid_bits != 0)) { 16917 tcp_wput_data(tcp, mp, B_FALSE); 16918 return; 16919 } 16920 16921 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16922 ASSERT(tcp->tcp_fin_sent == 0); 16923 16924 /* queue new packet onto retransmission queue */ 16925 if (tcp->tcp_xmit_head == NULL) { 16926 tcp->tcp_xmit_head = mp; 16927 } else { 16928 tcp->tcp_xmit_last->b_cont = mp; 16929 } 16930 tcp->tcp_xmit_last = mp; 16931 tcp->tcp_xmit_tail = mp; 16932 16933 /* find out how much we can send */ 16934 /* BEGIN CSTYLED */ 16935 /* 16936 * un-acked usable 16937 * |--------------|-----------------| 16938 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16939 */ 16940 /* END CSTYLED */ 16941 16942 /* start sending from tcp_snxt */ 16943 snxt = tcp->tcp_snxt; 16944 16945 /* 16946 * Check to see if this connection has been idled for some 16947 * time and no ACK is expected. If it is, we need to slow 16948 * start again to get back the connection's "self-clock" as 16949 * described in VJ's paper. 16950 * 16951 * Refer to the comment in tcp_mss_set() for the calculation 16952 * of tcp_cwnd after idle. 16953 */ 16954 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16955 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16956 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 16957 } 16958 16959 usable = tcp->tcp_swnd; /* tcp window size */ 16960 if (usable > tcp->tcp_cwnd) 16961 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16962 usable -= snxt; /* subtract stuff already sent */ 16963 suna = tcp->tcp_suna; 16964 usable += suna; 16965 /* usable can be < 0 if the congestion window is smaller */ 16966 if (len > usable) { 16967 /* Can't send complete M_DATA in one shot */ 16968 goto slow; 16969 } 16970 16971 mutex_enter(&tcp->tcp_non_sq_lock); 16972 if (tcp->tcp_flow_stopped && 16973 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16974 tcp_clrqfull(tcp); 16975 } 16976 mutex_exit(&tcp->tcp_non_sq_lock); 16977 16978 /* 16979 * determine if anything to send (Nagle). 16980 * 16981 * 1. len < tcp_mss (i.e. small) 16982 * 2. unacknowledged data present 16983 * 3. len < nagle limit 16984 * 4. last packet sent < nagle limit (previous packet sent) 16985 */ 16986 if ((len < mss) && (snxt != suna) && 16987 (len < (int)tcp->tcp_naglim) && 16988 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 16989 /* 16990 * This was the first unsent packet and normally 16991 * mss < xmit_hiwater so there is no need to worry 16992 * about flow control. The next packet will go 16993 * through the flow control check in tcp_wput_data(). 16994 */ 16995 /* leftover work from above */ 16996 tcp->tcp_unsent = len; 16997 tcp->tcp_xmit_tail_unsent = len; 16998 16999 return; 17000 } 17001 17002 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17003 17004 if (snxt == suna) { 17005 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17006 } 17007 17008 /* we have always sent something */ 17009 tcp->tcp_rack_cnt = 0; 17010 17011 tcp->tcp_snxt = snxt + len; 17012 tcp->tcp_rack = tcp->tcp_rnxt; 17013 17014 if ((mp1 = dupb(mp)) == 0) 17015 goto no_memory; 17016 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17017 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17018 17019 /* adjust tcp header information */ 17020 tcph = tcp->tcp_tcph; 17021 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17022 17023 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17024 sum = (sum >> 16) + (sum & 0xFFFF); 17025 U16_TO_ABE16(sum, tcph->th_sum); 17026 17027 U32_TO_ABE32(snxt, tcph->th_seq); 17028 17029 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17030 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17031 BUMP_LOCAL(tcp->tcp_obsegs); 17032 17033 /* Update the latest receive window size in TCP header. */ 17034 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17035 tcph->th_win); 17036 17037 tcp->tcp_last_sent_len = (ushort_t)len; 17038 17039 plen = len + tcp->tcp_hdr_len; 17040 17041 if (tcp->tcp_ipversion == IPV4_VERSION) { 17042 tcp->tcp_ipha->ipha_length = htons(plen); 17043 } else { 17044 tcp->tcp_ip6h->ip6_plen = htons(plen - 17045 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17046 } 17047 17048 /* see if we need to allocate a mblk for the headers */ 17049 hdrlen = tcp->tcp_hdr_len; 17050 rptr = mp1->b_rptr - hdrlen; 17051 db = mp1->b_datap; 17052 if ((db->db_ref != 2) || rptr < db->db_base || 17053 (!OK_32PTR(rptr))) { 17054 /* NOTE: we assume allocb returns an OK_32PTR */ 17055 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17056 tcps->tcps_wroff_xtra, BPRI_MED); 17057 if (!mp) { 17058 freemsg(mp1); 17059 goto no_memory; 17060 } 17061 mp->b_cont = mp1; 17062 mp1 = mp; 17063 /* Leave room for Link Level header */ 17064 /* hdrlen = tcp->tcp_hdr_len; */ 17065 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17066 mp1->b_wptr = &rptr[hdrlen]; 17067 } 17068 mp1->b_rptr = rptr; 17069 17070 /* Fill in the timestamp option. */ 17071 if (tcp->tcp_snd_ts_ok) { 17072 U32_TO_BE32((uint32_t)lbolt, 17073 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17074 U32_TO_BE32(tcp->tcp_ts_recent, 17075 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17076 } else { 17077 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17078 } 17079 17080 /* copy header into outgoing packet */ 17081 dst = (ipaddr_t *)rptr; 17082 src = (ipaddr_t *)tcp->tcp_iphc; 17083 dst[0] = src[0]; 17084 dst[1] = src[1]; 17085 dst[2] = src[2]; 17086 dst[3] = src[3]; 17087 dst[4] = src[4]; 17088 dst[5] = src[5]; 17089 dst[6] = src[6]; 17090 dst[7] = src[7]; 17091 dst[8] = src[8]; 17092 dst[9] = src[9]; 17093 if (hdrlen -= 40) { 17094 hdrlen >>= 2; 17095 dst += 10; 17096 src += 10; 17097 do { 17098 *dst++ = *src++; 17099 } while (--hdrlen); 17100 } 17101 17102 /* 17103 * Set the ECN info in the TCP header. Note that this 17104 * is not the template header. 17105 */ 17106 if (tcp->tcp_ecn_ok) { 17107 SET_ECT(tcp, rptr); 17108 17109 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17110 if (tcp->tcp_ecn_echo_on) 17111 tcph->th_flags[0] |= TH_ECE; 17112 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17113 tcph->th_flags[0] |= TH_CWR; 17114 tcp->tcp_ecn_cwr_sent = B_TRUE; 17115 } 17116 } 17117 17118 if (tcp->tcp_ip_forward_progress) { 17119 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17120 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17121 tcp->tcp_ip_forward_progress = B_FALSE; 17122 } 17123 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17124 return; 17125 17126 /* 17127 * If we ran out of memory, we pretend to have sent the packet 17128 * and that it was lost on the wire. 17129 */ 17130 no_memory: 17131 return; 17132 17133 slow: 17134 /* leftover work from above */ 17135 tcp->tcp_unsent = len; 17136 tcp->tcp_xmit_tail_unsent = len; 17137 tcp_wput_data(tcp, NULL, B_FALSE); 17138 } 17139 17140 /* ARGSUSED */ 17141 void 17142 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17143 { 17144 conn_t *connp = (conn_t *)arg; 17145 tcp_t *tcp = connp->conn_tcp; 17146 queue_t *q = tcp->tcp_rq; 17147 struct tcp_options *tcpopt; 17148 tcp_stack_t *tcps = tcp->tcp_tcps; 17149 17150 /* socket options */ 17151 uint_t sopp_flags; 17152 ssize_t sopp_rxhiwat; 17153 ssize_t sopp_maxblk; 17154 ushort_t sopp_wroff; 17155 ushort_t sopp_tail; 17156 ushort_t sopp_copyopt; 17157 17158 tcpopt = (struct tcp_options *)mp->b_rptr; 17159 17160 /* 17161 * Drop the eager's ref on the listener, that was placed when 17162 * this eager began life in tcp_conn_request. 17163 */ 17164 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17165 if (IPCL_IS_NONSTR(connp)) { 17166 /* Safe to free conn_ind message */ 17167 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17168 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17169 } 17170 17171 tcp->tcp_detached = B_FALSE; 17172 17173 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17174 /* 17175 * Someone blewoff the eager before we could finish 17176 * the accept. 17177 * 17178 * The only reason eager exists it because we put in 17179 * a ref on it when conn ind went up. We need to send 17180 * a disconnect indication up while the last reference 17181 * on the eager will be dropped by the squeue when we 17182 * return. 17183 */ 17184 ASSERT(tcp->tcp_listener == NULL); 17185 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17186 if (IPCL_IS_NONSTR(connp)) { 17187 ASSERT(tcp->tcp_issocket); 17188 (*connp->conn_upcalls->su_disconnected)( 17189 connp->conn_upper_handle, tcp->tcp_connid, 17190 ECONNREFUSED); 17191 freemsg(mp); 17192 } else { 17193 struct T_discon_ind *tdi; 17194 17195 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17196 /* 17197 * Let us reuse the incoming mblk to avoid 17198 * memory allocation failure problems. We know 17199 * that the size of the incoming mblk i.e. 17200 * stroptions is greater than sizeof 17201 * T_discon_ind. So the reallocb below can't 17202 * fail. 17203 */ 17204 freemsg(mp->b_cont); 17205 mp->b_cont = NULL; 17206 ASSERT(DB_REF(mp) == 1); 17207 mp = reallocb(mp, sizeof (struct T_discon_ind), 17208 B_FALSE); 17209 ASSERT(mp != NULL); 17210 DB_TYPE(mp) = M_PROTO; 17211 ((union T_primitives *)mp->b_rptr)->type = 17212 T_DISCON_IND; 17213 tdi = (struct T_discon_ind *)mp->b_rptr; 17214 if (tcp->tcp_issocket) { 17215 tdi->DISCON_reason = ECONNREFUSED; 17216 tdi->SEQ_number = 0; 17217 } else { 17218 tdi->DISCON_reason = ENOPROTOOPT; 17219 tdi->SEQ_number = 17220 tcp->tcp_conn_req_seqnum; 17221 } 17222 mp->b_wptr = mp->b_rptr + 17223 sizeof (struct T_discon_ind); 17224 putnext(q, mp); 17225 return; 17226 } 17227 } 17228 if (tcp->tcp_hard_binding) { 17229 tcp->tcp_hard_binding = B_FALSE; 17230 tcp->tcp_hard_bound = B_TRUE; 17231 } 17232 return; 17233 } 17234 17235 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17236 int boundif = tcpopt->to_boundif; 17237 uint_t len = sizeof (int); 17238 17239 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17240 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17241 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17242 } 17243 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17244 uint_t on = 1; 17245 uint_t len = sizeof (uint_t); 17246 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17247 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17248 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17249 } 17250 17251 /* 17252 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17253 * properly. This is the first time we know of the acceptor' 17254 * queue. So we do it here. 17255 * 17256 * XXX 17257 */ 17258 if (tcp->tcp_rcv_list == NULL) { 17259 /* 17260 * Recv queue is empty, tcp_rwnd should not have changed. 17261 * That means it should be equal to the listener's tcp_rwnd. 17262 */ 17263 if (!IPCL_IS_NONSTR(connp)) 17264 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17265 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17266 } else { 17267 #ifdef DEBUG 17268 mblk_t *tmp; 17269 mblk_t *mp1; 17270 uint_t cnt = 0; 17271 17272 mp1 = tcp->tcp_rcv_list; 17273 while ((tmp = mp1) != NULL) { 17274 mp1 = tmp->b_next; 17275 cnt += msgdsize(tmp); 17276 } 17277 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17278 #endif 17279 /* There is some data, add them back to get the max. */ 17280 if (!IPCL_IS_NONSTR(connp)) 17281 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17282 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17283 } 17284 /* 17285 * This is the first time we run on the correct 17286 * queue after tcp_accept. So fix all the q parameters 17287 * here. 17288 */ 17289 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17290 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17291 17292 /* 17293 * Record the stream head's high water mark for this endpoint; 17294 * this is used for flow-control purposes. 17295 */ 17296 sopp_rxhiwat = tcp->tcp_fused ? 17297 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17298 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 17299 17300 /* 17301 * Determine what write offset value to use depending on SACK and 17302 * whether the endpoint is fused or not. 17303 */ 17304 if (tcp->tcp_fused) { 17305 ASSERT(tcp->tcp_loopback); 17306 ASSERT(tcp->tcp_loopback_peer != NULL); 17307 /* 17308 * For fused tcp loopback, set the stream head's write 17309 * offset value to zero since we won't be needing any room 17310 * for TCP/IP headers. This would also improve performance 17311 * since it would reduce the amount of work done by kmem. 17312 * Non-fused tcp loopback case is handled separately below. 17313 */ 17314 sopp_wroff = 0; 17315 /* 17316 * Update the peer's transmit parameters according to 17317 * our recently calculated high water mark value. 17318 */ 17319 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17320 } else if (tcp->tcp_snd_sack_ok) { 17321 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17322 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17323 } else { 17324 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17325 tcps->tcps_wroff_xtra); 17326 } 17327 17328 /* 17329 * If this is endpoint is handling SSL, then reserve extra 17330 * offset and space at the end. 17331 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17332 * overriding the previous setting. The extra cost of signing and 17333 * encrypting multiple MSS-size records (12 of them with Ethernet), 17334 * instead of a single contiguous one by the stream head 17335 * largely outweighs the statistical reduction of ACKs, when 17336 * applicable. The peer will also save on decryption and verification 17337 * costs. 17338 */ 17339 if (tcp->tcp_kssl_ctx != NULL) { 17340 sopp_wroff += SSL3_WROFFSET; 17341 17342 sopp_flags |= SOCKOPT_TAIL; 17343 sopp_tail = SSL3_MAX_TAIL_LEN; 17344 17345 sopp_flags |= SOCKOPT_ZCOPY; 17346 sopp_copyopt = ZCVMUNSAFE; 17347 17348 sopp_maxblk = SSL3_MAX_RECORD_LEN; 17349 } 17350 17351 /* Send the options up */ 17352 if (IPCL_IS_NONSTR(connp)) { 17353 struct sock_proto_props sopp; 17354 17355 sopp.sopp_flags = sopp_flags; 17356 sopp.sopp_wroff = sopp_wroff; 17357 sopp.sopp_maxblk = sopp_maxblk; 17358 sopp.sopp_rxhiwat = sopp_rxhiwat; 17359 if (sopp_flags & SOCKOPT_TAIL) { 17360 ASSERT(tcp->tcp_kssl_ctx != NULL); 17361 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 17362 sopp.sopp_tail = sopp_tail; 17363 sopp.sopp_zcopyflag = sopp_copyopt; 17364 } 17365 (*connp->conn_upcalls->su_set_proto_props) 17366 (connp->conn_upper_handle, &sopp); 17367 } else { 17368 struct stroptions *stropt; 17369 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17370 if (stropt_mp == NULL) { 17371 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 17372 return; 17373 } 17374 DB_TYPE(stropt_mp) = M_SETOPTS; 17375 stropt = (struct stroptions *)stropt_mp->b_rptr; 17376 stropt_mp->b_wptr += sizeof (struct stroptions); 17377 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 17378 stropt->so_hiwat = sopp_rxhiwat; 17379 stropt->so_wroff = sopp_wroff; 17380 stropt->so_maxblk = sopp_maxblk; 17381 17382 if (sopp_flags & SOCKOPT_TAIL) { 17383 ASSERT(tcp->tcp_kssl_ctx != NULL); 17384 17385 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 17386 stropt->so_tail = sopp_tail; 17387 stropt->so_copyopt = sopp_copyopt; 17388 } 17389 17390 /* Send the options up */ 17391 putnext(q, stropt_mp); 17392 } 17393 17394 freemsg(mp); 17395 /* 17396 * Pass up any data and/or a fin that has been received. 17397 * 17398 * Adjust receive window in case it had decreased 17399 * (because there is data <=> tcp_rcv_list != NULL) 17400 * while the connection was detached. Note that 17401 * in case the eager was flow-controlled, w/o this 17402 * code, the rwnd may never open up again! 17403 */ 17404 if (tcp->tcp_rcv_list != NULL) { 17405 if (IPCL_IS_NONSTR(connp)) { 17406 mblk_t *mp; 17407 int space_left; 17408 int error; 17409 boolean_t push = B_TRUE; 17410 17411 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 17412 (connp->conn_upper_handle, NULL, 0, 0, &error, 17413 &push) >= 0) { 17414 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17415 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17416 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17417 tcp_xmit_ctl(NULL, 17418 tcp, (tcp->tcp_swnd == 0) ? 17419 tcp->tcp_suna : tcp->tcp_snxt, 17420 tcp->tcp_rnxt, TH_ACK); 17421 } 17422 } 17423 while ((mp = tcp->tcp_rcv_list) != NULL) { 17424 push = B_TRUE; 17425 tcp->tcp_rcv_list = mp->b_next; 17426 mp->b_next = NULL; 17427 space_left = (*connp->conn_upcalls->su_recv) 17428 (connp->conn_upper_handle, mp, msgdsize(mp), 17429 0, &error, &push); 17430 if (space_left < 0) { 17431 /* 17432 * We should never be in middle of a 17433 * fallback, the squeue guarantees that. 17434 */ 17435 ASSERT(error != EOPNOTSUPP); 17436 } 17437 } 17438 tcp->tcp_rcv_last_head = NULL; 17439 tcp->tcp_rcv_last_tail = NULL; 17440 tcp->tcp_rcv_cnt = 0; 17441 } else { 17442 /* We drain directly in case of fused tcp loopback */ 17443 17444 if (!tcp->tcp_fused && canputnext(q)) { 17445 tcp->tcp_rwnd = q->q_hiwat; 17446 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17447 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17448 tcp_xmit_ctl(NULL, 17449 tcp, (tcp->tcp_swnd == 0) ? 17450 tcp->tcp_suna : tcp->tcp_snxt, 17451 tcp->tcp_rnxt, TH_ACK); 17452 } 17453 } 17454 17455 (void) tcp_rcv_drain(tcp); 17456 } 17457 17458 /* 17459 * For fused tcp loopback, back-enable peer endpoint 17460 * if it's currently flow-controlled. 17461 */ 17462 if (tcp->tcp_fused) { 17463 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17464 17465 ASSERT(peer_tcp != NULL); 17466 ASSERT(peer_tcp->tcp_fused); 17467 17468 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17469 if (peer_tcp->tcp_flow_stopped) { 17470 tcp_clrqfull(peer_tcp); 17471 TCP_STAT(tcps, tcp_fusion_backenabled); 17472 } 17473 mutex_exit(&peer_tcp->tcp_non_sq_lock); 17474 } 17475 } 17476 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17477 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17478 tcp->tcp_ordrel_done = B_TRUE; 17479 if (IPCL_IS_NONSTR(connp)) { 17480 ASSERT(tcp->tcp_ordrel_mp == NULL); 17481 (*connp->conn_upcalls->su_opctl)( 17482 connp->conn_upper_handle, 17483 SOCK_OPCTL_SHUT_RECV, 0); 17484 } else { 17485 mp = tcp->tcp_ordrel_mp; 17486 tcp->tcp_ordrel_mp = NULL; 17487 putnext(q, mp); 17488 } 17489 } 17490 if (tcp->tcp_hard_binding) { 17491 tcp->tcp_hard_binding = B_FALSE; 17492 tcp->tcp_hard_bound = B_TRUE; 17493 } 17494 17495 if (tcp->tcp_ka_enabled) { 17496 tcp->tcp_ka_last_intrvl = 0; 17497 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17498 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17499 } 17500 17501 /* 17502 * At this point, eager is fully established and will 17503 * have the following references - 17504 * 17505 * 2 references for connection to exist (1 for TCP and 1 for IP). 17506 * 1 reference for the squeue which will be dropped by the squeue as 17507 * soon as this function returns. 17508 * There will be 1 additonal reference for being in classifier 17509 * hash list provided something bad hasn't happened. 17510 */ 17511 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17512 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17513 } 17514 17515 /* 17516 * The function called through squeue to get behind listener's perimeter to 17517 * send a deffered conn_ind. 17518 */ 17519 /* ARGSUSED */ 17520 void 17521 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17522 { 17523 conn_t *connp = (conn_t *)arg; 17524 tcp_t *listener = connp->conn_tcp; 17525 struct T_conn_ind *conn_ind; 17526 tcp_t *tcp; 17527 17528 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17529 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17530 conn_ind->OPT_length); 17531 17532 if (listener->tcp_state != TCPS_LISTEN) { 17533 /* 17534 * If listener has closed, it would have caused a 17535 * a cleanup/blowoff to happen for the eager, so 17536 * we don't need to do anything more. 17537 */ 17538 freemsg(mp); 17539 return; 17540 } 17541 17542 tcp_ulp_newconn(connp, tcp->tcp_connp, mp); 17543 } 17544 17545 /* ARGSUSED */ 17546 static int 17547 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 17548 { 17549 tcp_t *listener, *eager; 17550 mblk_t *opt_mp; 17551 struct tcp_options *tcpopt; 17552 17553 listener = lconnp->conn_tcp; 17554 ASSERT(listener->tcp_state == TCPS_LISTEN); 17555 eager = econnp->conn_tcp; 17556 ASSERT(eager->tcp_listener != NULL); 17557 17558 ASSERT(eager->tcp_rq != NULL); 17559 17560 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 17561 if (opt_mp == NULL) { 17562 return (-TPROTO); 17563 } 17564 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 17565 eager->tcp_issocket = B_TRUE; 17566 17567 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17568 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 17569 ASSERT(econnp->conn_netstack == 17570 listener->tcp_connp->conn_netstack); 17571 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 17572 17573 /* Put the ref for IP */ 17574 CONN_INC_REF(econnp); 17575 17576 /* 17577 * We should have minimum of 3 references on the conn 17578 * at this point. One each for TCP and IP and one for 17579 * the T_conn_ind that was sent up when the 3-way handshake 17580 * completed. In the normal case we would also have another 17581 * reference (making a total of 4) for the conn being in the 17582 * classifier hash list. However the eager could have received 17583 * an RST subsequently and tcp_closei_local could have removed 17584 * the eager from the classifier hash list, hence we can't 17585 * assert that reference. 17586 */ 17587 ASSERT(econnp->conn_ref >= 3); 17588 17589 opt_mp->b_datap->db_type = M_SETOPTS; 17590 opt_mp->b_wptr += sizeof (struct tcp_options); 17591 17592 /* 17593 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17594 * from listener to acceptor. 17595 */ 17596 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 17597 tcpopt->to_flags = 0; 17598 17599 if (listener->tcp_bound_if != 0) { 17600 tcpopt->to_flags |= TCPOPT_BOUNDIF; 17601 tcpopt->to_boundif = listener->tcp_bound_if; 17602 } 17603 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17604 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 17605 } 17606 17607 mutex_enter(&listener->tcp_eager_lock); 17608 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17609 17610 tcp_t *tail; 17611 tcp_t *tcp; 17612 mblk_t *mp1; 17613 17614 tcp = listener->tcp_eager_prev_q0; 17615 /* 17616 * listener->tcp_eager_prev_q0 points to the TAIL of the 17617 * deferred T_conn_ind queue. We need to get to the head 17618 * of the queue in order to send up T_conn_ind the same 17619 * order as how the 3WHS is completed. 17620 */ 17621 while (tcp != listener) { 17622 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17623 !tcp->tcp_kssl_pending) 17624 break; 17625 else 17626 tcp = tcp->tcp_eager_prev_q0; 17627 } 17628 /* None of the pending eagers can be sent up now */ 17629 if (tcp == listener) 17630 goto no_more_eagers; 17631 17632 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17633 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17634 /* Move from q0 to q */ 17635 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17636 listener->tcp_conn_req_cnt_q0--; 17637 listener->tcp_conn_req_cnt_q++; 17638 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17639 tcp->tcp_eager_prev_q0; 17640 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17641 tcp->tcp_eager_next_q0; 17642 tcp->tcp_eager_prev_q0 = NULL; 17643 tcp->tcp_eager_next_q0 = NULL; 17644 tcp->tcp_conn_def_q0 = B_FALSE; 17645 17646 /* Make sure the tcp isn't in the list of droppables */ 17647 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 17648 tcp->tcp_eager_prev_drop_q0 == NULL); 17649 17650 /* 17651 * Insert at end of the queue because sockfs sends 17652 * down T_CONN_RES in chronological order. Leaving 17653 * the older conn indications at front of the queue 17654 * helps reducing search time. 17655 */ 17656 tail = listener->tcp_eager_last_q; 17657 if (tail != NULL) { 17658 tail->tcp_eager_next_q = tcp; 17659 } else { 17660 listener->tcp_eager_next_q = tcp; 17661 } 17662 listener->tcp_eager_last_q = tcp; 17663 tcp->tcp_eager_next_q = NULL; 17664 17665 /* Need to get inside the listener perimeter */ 17666 CONN_INC_REF(listener->tcp_connp); 17667 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 17668 tcp_send_pending, listener->tcp_connp, SQ_FILL, 17669 SQTAG_TCP_SEND_PENDING); 17670 } 17671 no_more_eagers: 17672 tcp_eager_unlink(eager); 17673 mutex_exit(&listener->tcp_eager_lock); 17674 17675 /* 17676 * At this point, the eager is detached from the listener 17677 * but we still have an extra refs on eager (apart from the 17678 * usual tcp references). The ref was placed in tcp_rput_data 17679 * before sending the conn_ind in tcp_send_conn_ind. 17680 * The ref will be dropped in tcp_accept_finish(). 17681 */ 17682 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 17683 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 17684 return (0); 17685 } 17686 17687 int 17688 tcp_accept(sock_lower_handle_t lproto_handle, 17689 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 17690 cred_t *cr) 17691 { 17692 conn_t *lconnp, *econnp; 17693 tcp_t *listener, *eager; 17694 tcp_stack_t *tcps; 17695 17696 lconnp = (conn_t *)lproto_handle; 17697 listener = lconnp->conn_tcp; 17698 ASSERT(listener->tcp_state == TCPS_LISTEN); 17699 econnp = (conn_t *)eproto_handle; 17700 eager = econnp->conn_tcp; 17701 ASSERT(eager->tcp_listener != NULL); 17702 tcps = eager->tcp_tcps; 17703 17704 /* 17705 * It is OK to manipulate these fields outside the eager's squeue 17706 * because they will not start being used until tcp_accept_finish 17707 * has been called. 17708 */ 17709 ASSERT(lconnp->conn_upper_handle != NULL); 17710 ASSERT(econnp->conn_upper_handle == NULL); 17711 econnp->conn_upper_handle = sock_handle; 17712 econnp->conn_upcalls = lconnp->conn_upcalls; 17713 ASSERT(IPCL_IS_NONSTR(econnp)); 17714 /* 17715 * Create helper stream if it is a non-TPI TCP connection. 17716 */ 17717 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 17718 ip1dbg(("tcp_accept: create of IP helper stream" 17719 " failed\n")); 17720 return (EPROTO); 17721 } 17722 eager->tcp_rq = econnp->conn_rq; 17723 eager->tcp_wq = econnp->conn_wq; 17724 17725 ASSERT(eager->tcp_rq != NULL); 17726 17727 return (tcp_accept_common(lconnp, econnp, cr)); 17728 } 17729 17730 17731 /* 17732 * This is the STREAMS entry point for T_CONN_RES coming down on 17733 * Acceptor STREAM when sockfs listener does accept processing. 17734 * Read the block comment on top of tcp_conn_request(). 17735 */ 17736 void 17737 tcp_tpi_accept(queue_t *q, mblk_t *mp) 17738 { 17739 queue_t *rq = RD(q); 17740 struct T_conn_res *conn_res; 17741 tcp_t *eager; 17742 tcp_t *listener; 17743 struct T_ok_ack *ok; 17744 t_scalar_t PRIM_type; 17745 conn_t *econnp; 17746 cred_t *cr; 17747 17748 ASSERT(DB_TYPE(mp) == M_PROTO); 17749 17750 /* 17751 * All Solaris components should pass a db_credp 17752 * for this TPI message, hence we ASSERT. 17753 * But in case there is some other M_PROTO that looks 17754 * like a TPI message sent by some other kernel 17755 * component, we check and return an error. 17756 */ 17757 cr = msg_getcred(mp, NULL); 17758 ASSERT(cr != NULL); 17759 if (cr == NULL) { 17760 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 17761 if (mp != NULL) 17762 putnext(rq, mp); 17763 return; 17764 } 17765 conn_res = (struct T_conn_res *)mp->b_rptr; 17766 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17767 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17768 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17769 if (mp != NULL) 17770 putnext(rq, mp); 17771 return; 17772 } 17773 switch (conn_res->PRIM_type) { 17774 case O_T_CONN_RES: 17775 case T_CONN_RES: 17776 /* 17777 * We pass up an err ack if allocb fails. This will 17778 * cause sockfs to issue a T_DISCON_REQ which will cause 17779 * tcp_eager_blowoff to be called. sockfs will then call 17780 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17781 * we need to do the allocb up here because we have to 17782 * make sure rq->q_qinfo->qi_qclose still points to the 17783 * correct function (tcp_tpi_close_accept) in case allocb 17784 * fails. 17785 */ 17786 bcopy(mp->b_rptr + conn_res->OPT_offset, 17787 &eager, conn_res->OPT_length); 17788 PRIM_type = conn_res->PRIM_type; 17789 mp->b_datap->db_type = M_PCPROTO; 17790 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17791 ok = (struct T_ok_ack *)mp->b_rptr; 17792 ok->PRIM_type = T_OK_ACK; 17793 ok->CORRECT_prim = PRIM_type; 17794 econnp = eager->tcp_connp; 17795 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 17796 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 17797 eager->tcp_rq = rq; 17798 eager->tcp_wq = q; 17799 rq->q_ptr = econnp; 17800 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 17801 q->q_ptr = econnp; 17802 q->q_qinfo = &tcp_winit; 17803 listener = eager->tcp_listener; 17804 17805 if (tcp_accept_common(listener->tcp_connp, 17806 econnp, cr) < 0) { 17807 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17808 if (mp != NULL) 17809 putnext(rq, mp); 17810 return; 17811 } 17812 17813 /* 17814 * Send the new local address also up to sockfs. There 17815 * should already be enough space in the mp that came 17816 * down from soaccept(). 17817 */ 17818 if (eager->tcp_family == AF_INET) { 17819 sin_t *sin; 17820 17821 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17822 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17823 sin = (sin_t *)mp->b_wptr; 17824 mp->b_wptr += sizeof (sin_t); 17825 sin->sin_family = AF_INET; 17826 sin->sin_port = eager->tcp_lport; 17827 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17828 } else { 17829 sin6_t *sin6; 17830 17831 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17832 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17833 sin6 = (sin6_t *)mp->b_wptr; 17834 mp->b_wptr += sizeof (sin6_t); 17835 sin6->sin6_family = AF_INET6; 17836 sin6->sin6_port = eager->tcp_lport; 17837 if (eager->tcp_ipversion == IPV4_VERSION) { 17838 sin6->sin6_flowinfo = 0; 17839 IN6_IPADDR_TO_V4MAPPED( 17840 eager->tcp_ipha->ipha_src, 17841 &sin6->sin6_addr); 17842 } else { 17843 ASSERT(eager->tcp_ip6h != NULL); 17844 sin6->sin6_flowinfo = 17845 eager->tcp_ip6h->ip6_vcf & 17846 ~IPV6_VERS_AND_FLOW_MASK; 17847 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17848 } 17849 sin6->sin6_scope_id = 0; 17850 sin6->__sin6_src_id = 0; 17851 } 17852 17853 putnext(rq, mp); 17854 return; 17855 default: 17856 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17857 if (mp != NULL) 17858 putnext(rq, mp); 17859 return; 17860 } 17861 } 17862 17863 static int 17864 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17865 { 17866 sin_t *sin = (sin_t *)sa; 17867 sin6_t *sin6 = (sin6_t *)sa; 17868 17869 switch (tcp->tcp_family) { 17870 case AF_INET: 17871 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17872 17873 if (*salenp < sizeof (sin_t)) 17874 return (EINVAL); 17875 17876 *sin = sin_null; 17877 sin->sin_family = AF_INET; 17878 if (tcp->tcp_state >= TCPS_BOUND) { 17879 sin->sin_port = tcp->tcp_lport; 17880 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 17881 } 17882 *salenp = sizeof (sin_t); 17883 break; 17884 17885 case AF_INET6: 17886 if (*salenp < sizeof (sin6_t)) 17887 return (EINVAL); 17888 17889 *sin6 = sin6_null; 17890 sin6->sin6_family = AF_INET6; 17891 if (tcp->tcp_state >= TCPS_BOUND) { 17892 sin6->sin6_port = tcp->tcp_lport; 17893 if (tcp->tcp_ipversion == IPV4_VERSION) { 17894 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 17895 &sin6->sin6_addr); 17896 } else { 17897 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 17898 } 17899 } 17900 *salenp = sizeof (sin6_t); 17901 break; 17902 } 17903 17904 return (0); 17905 } 17906 17907 static int 17908 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17909 { 17910 sin_t *sin = (sin_t *)sa; 17911 sin6_t *sin6 = (sin6_t *)sa; 17912 17913 if (tcp->tcp_state < TCPS_SYN_RCVD) 17914 return (ENOTCONN); 17915 17916 switch (tcp->tcp_family) { 17917 case AF_INET: 17918 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17919 17920 if (*salenp < sizeof (sin_t)) 17921 return (EINVAL); 17922 17923 *sin = sin_null; 17924 sin->sin_family = AF_INET; 17925 sin->sin_port = tcp->tcp_fport; 17926 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 17927 sin->sin_addr.s_addr); 17928 *salenp = sizeof (sin_t); 17929 break; 17930 17931 case AF_INET6: 17932 if (*salenp < sizeof (sin6_t)) 17933 return (EINVAL); 17934 17935 *sin6 = sin6_null; 17936 sin6->sin6_family = AF_INET6; 17937 sin6->sin6_port = tcp->tcp_fport; 17938 sin6->sin6_addr = tcp->tcp_remote_v6; 17939 if (tcp->tcp_ipversion == IPV6_VERSION) { 17940 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 17941 ~IPV6_VERS_AND_FLOW_MASK; 17942 } 17943 *salenp = sizeof (sin6_t); 17944 break; 17945 } 17946 17947 return (0); 17948 } 17949 17950 /* 17951 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 17952 */ 17953 static void 17954 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 17955 { 17956 void *data; 17957 mblk_t *datamp = mp->b_cont; 17958 tcp_t *tcp = Q_TO_TCP(q); 17959 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 17960 17961 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 17962 cmdp->cb_error = EPROTO; 17963 qreply(q, mp); 17964 return; 17965 } 17966 17967 data = datamp->b_rptr; 17968 17969 switch (cmdp->cb_cmd) { 17970 case TI_GETPEERNAME: 17971 cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len); 17972 break; 17973 case TI_GETMYNAME: 17974 cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len); 17975 break; 17976 default: 17977 cmdp->cb_error = EINVAL; 17978 break; 17979 } 17980 17981 qreply(q, mp); 17982 } 17983 17984 void 17985 tcp_wput(queue_t *q, mblk_t *mp) 17986 { 17987 conn_t *connp = Q_TO_CONN(q); 17988 tcp_t *tcp; 17989 void (*output_proc)(); 17990 t_scalar_t type; 17991 uchar_t *rptr; 17992 struct iocblk *iocp; 17993 size_t size; 17994 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17995 17996 ASSERT(connp->conn_ref >= 2); 17997 17998 switch (DB_TYPE(mp)) { 17999 case M_DATA: 18000 tcp = connp->conn_tcp; 18001 ASSERT(tcp != NULL); 18002 18003 size = msgdsize(mp); 18004 18005 mutex_enter(&tcp->tcp_non_sq_lock); 18006 tcp->tcp_squeue_bytes += size; 18007 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18008 tcp_setqfull(tcp); 18009 } 18010 mutex_exit(&tcp->tcp_non_sq_lock); 18011 18012 CONN_INC_REF(connp); 18013 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18014 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18015 return; 18016 18017 case M_CMD: 18018 tcp_wput_cmdblk(q, mp); 18019 return; 18020 18021 case M_PROTO: 18022 case M_PCPROTO: 18023 /* 18024 * if it is a snmp message, don't get behind the squeue 18025 */ 18026 tcp = connp->conn_tcp; 18027 rptr = mp->b_rptr; 18028 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18029 type = ((union T_primitives *)rptr)->type; 18030 } else { 18031 if (tcp->tcp_debug) { 18032 (void) strlog(TCP_MOD_ID, 0, 1, 18033 SL_ERROR|SL_TRACE, 18034 "tcp_wput_proto, dropping one..."); 18035 } 18036 freemsg(mp); 18037 return; 18038 } 18039 if (type == T_SVR4_OPTMGMT_REQ) { 18040 /* 18041 * All Solaris components should pass a db_credp 18042 * for this TPI message, hence we ASSERT. 18043 * But in case there is some other M_PROTO that looks 18044 * like a TPI message sent by some other kernel 18045 * component, we check and return an error. 18046 */ 18047 cred_t *cr = msg_getcred(mp, NULL); 18048 18049 ASSERT(cr != NULL); 18050 if (cr == NULL) { 18051 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 18052 return; 18053 } 18054 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18055 cr)) { 18056 /* 18057 * This was a SNMP request 18058 */ 18059 return; 18060 } else { 18061 output_proc = tcp_wput_proto; 18062 } 18063 } else { 18064 output_proc = tcp_wput_proto; 18065 } 18066 break; 18067 case M_IOCTL: 18068 /* 18069 * Most ioctls can be processed right away without going via 18070 * squeues - process them right here. Those that do require 18071 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18072 * are processed by tcp_wput_ioctl(). 18073 */ 18074 iocp = (struct iocblk *)mp->b_rptr; 18075 tcp = connp->conn_tcp; 18076 18077 switch (iocp->ioc_cmd) { 18078 case TCP_IOC_ABORT_CONN: 18079 tcp_ioctl_abort_conn(q, mp); 18080 return; 18081 case TI_GETPEERNAME: 18082 case TI_GETMYNAME: 18083 mi_copyin(q, mp, NULL, 18084 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18085 return; 18086 case ND_SET: 18087 /* nd_getset does the necessary checks */ 18088 case ND_GET: 18089 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18090 CALL_IP_WPUT(connp, q, mp); 18091 return; 18092 } 18093 qreply(q, mp); 18094 return; 18095 case TCP_IOC_DEFAULT_Q: 18096 /* 18097 * Wants to be the default wq. Check the credentials 18098 * first, the rest is executed via squeue. 18099 */ 18100 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18101 iocp->ioc_error = EPERM; 18102 iocp->ioc_count = 0; 18103 mp->b_datap->db_type = M_IOCACK; 18104 qreply(q, mp); 18105 return; 18106 } 18107 output_proc = tcp_wput_ioctl; 18108 break; 18109 default: 18110 output_proc = tcp_wput_ioctl; 18111 break; 18112 } 18113 break; 18114 default: 18115 output_proc = tcp_wput_nondata; 18116 break; 18117 } 18118 18119 CONN_INC_REF(connp); 18120 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18121 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18122 } 18123 18124 /* 18125 * Initial STREAMS write side put() procedure for sockets. It tries to 18126 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18127 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18128 * are handled by tcp_wput() as usual. 18129 * 18130 * All further messages will also be handled by tcp_wput() because we cannot 18131 * be sure that the above short cut is safe later. 18132 */ 18133 static void 18134 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18135 { 18136 conn_t *connp = Q_TO_CONN(wq); 18137 tcp_t *tcp = connp->conn_tcp; 18138 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18139 18140 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18141 wq->q_qinfo = &tcp_winit; 18142 18143 ASSERT(IPCL_IS_TCP(connp)); 18144 ASSERT(TCP_IS_SOCKET(tcp)); 18145 18146 if (DB_TYPE(mp) == M_PCPROTO && 18147 MBLKL(mp) == sizeof (struct T_capability_req) && 18148 car->PRIM_type == T_CAPABILITY_REQ) { 18149 tcp_capability_req(tcp, mp); 18150 return; 18151 } 18152 18153 tcp_wput(wq, mp); 18154 } 18155 18156 /* ARGSUSED */ 18157 static void 18158 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18159 { 18160 #ifdef DEBUG 18161 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18162 #endif 18163 freemsg(mp); 18164 } 18165 18166 static boolean_t 18167 tcp_zcopy_check(tcp_t *tcp) 18168 { 18169 conn_t *connp = tcp->tcp_connp; 18170 ire_t *ire; 18171 boolean_t zc_enabled = B_FALSE; 18172 tcp_stack_t *tcps = tcp->tcp_tcps; 18173 18174 if (do_tcpzcopy == 2) 18175 zc_enabled = B_TRUE; 18176 else if (tcp->tcp_ipversion == IPV4_VERSION && 18177 IPCL_IS_CONNECTED(connp) && 18178 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18179 connp->conn_dontroute == 0 && 18180 !connp->conn_nexthop_set && 18181 connp->conn_outgoing_ill == NULL && 18182 do_tcpzcopy == 1) { 18183 /* 18184 * the checks above closely resemble the fast path checks 18185 * in tcp_send_data(). 18186 */ 18187 mutex_enter(&connp->conn_lock); 18188 ire = connp->conn_ire_cache; 18189 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18190 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18191 IRE_REFHOLD(ire); 18192 if (ire->ire_stq != NULL) { 18193 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18194 18195 zc_enabled = ill && (ill->ill_capabilities & 18196 ILL_CAPAB_ZEROCOPY) && 18197 (ill->ill_zerocopy_capab-> 18198 ill_zerocopy_flags != 0); 18199 } 18200 IRE_REFRELE(ire); 18201 } 18202 mutex_exit(&connp->conn_lock); 18203 } 18204 tcp->tcp_snd_zcopy_on = zc_enabled; 18205 if (!TCP_IS_DETACHED(tcp)) { 18206 if (zc_enabled) { 18207 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18208 ZCVMSAFE); 18209 TCP_STAT(tcps, tcp_zcopy_on); 18210 } else { 18211 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18212 ZCVMUNSAFE); 18213 TCP_STAT(tcps, tcp_zcopy_off); 18214 } 18215 } 18216 return (zc_enabled); 18217 } 18218 18219 static mblk_t * 18220 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18221 { 18222 tcp_stack_t *tcps = tcp->tcp_tcps; 18223 18224 if (do_tcpzcopy == 2) 18225 return (bp); 18226 else if (tcp->tcp_snd_zcopy_on) { 18227 tcp->tcp_snd_zcopy_on = B_FALSE; 18228 if (!TCP_IS_DETACHED(tcp)) { 18229 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18230 ZCVMUNSAFE); 18231 TCP_STAT(tcps, tcp_zcopy_disable); 18232 } 18233 } 18234 return (tcp_zcopy_backoff(tcp, bp, 0)); 18235 } 18236 18237 /* 18238 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18239 * the original desballoca'ed segmapped mblk. 18240 */ 18241 static mblk_t * 18242 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18243 { 18244 mblk_t *head, *tail, *nbp; 18245 tcp_stack_t *tcps = tcp->tcp_tcps; 18246 18247 if (IS_VMLOANED_MBLK(bp)) { 18248 TCP_STAT(tcps, tcp_zcopy_backoff); 18249 if ((head = copyb(bp)) == NULL) { 18250 /* fail to backoff; leave it for the next backoff */ 18251 tcp->tcp_xmit_zc_clean = B_FALSE; 18252 return (bp); 18253 } 18254 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18255 if (fix_xmitlist) 18256 tcp_zcopy_notify(tcp); 18257 else 18258 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18259 } 18260 nbp = bp->b_cont; 18261 if (fix_xmitlist) { 18262 head->b_prev = bp->b_prev; 18263 head->b_next = bp->b_next; 18264 if (tcp->tcp_xmit_tail == bp) 18265 tcp->tcp_xmit_tail = head; 18266 } 18267 bp->b_next = NULL; 18268 bp->b_prev = NULL; 18269 freeb(bp); 18270 } else { 18271 head = bp; 18272 nbp = bp->b_cont; 18273 } 18274 tail = head; 18275 while (nbp) { 18276 if (IS_VMLOANED_MBLK(nbp)) { 18277 TCP_STAT(tcps, tcp_zcopy_backoff); 18278 if ((tail->b_cont = copyb(nbp)) == NULL) { 18279 tcp->tcp_xmit_zc_clean = B_FALSE; 18280 tail->b_cont = nbp; 18281 return (head); 18282 } 18283 tail = tail->b_cont; 18284 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18285 if (fix_xmitlist) 18286 tcp_zcopy_notify(tcp); 18287 else 18288 tail->b_datap->db_struioflag |= 18289 STRUIO_ZCNOTIFY; 18290 } 18291 bp = nbp; 18292 nbp = nbp->b_cont; 18293 if (fix_xmitlist) { 18294 tail->b_prev = bp->b_prev; 18295 tail->b_next = bp->b_next; 18296 if (tcp->tcp_xmit_tail == bp) 18297 tcp->tcp_xmit_tail = tail; 18298 } 18299 bp->b_next = NULL; 18300 bp->b_prev = NULL; 18301 freeb(bp); 18302 } else { 18303 tail->b_cont = nbp; 18304 tail = nbp; 18305 nbp = nbp->b_cont; 18306 } 18307 } 18308 if (fix_xmitlist) { 18309 tcp->tcp_xmit_last = tail; 18310 tcp->tcp_xmit_zc_clean = B_TRUE; 18311 } 18312 return (head); 18313 } 18314 18315 static void 18316 tcp_zcopy_notify(tcp_t *tcp) 18317 { 18318 struct stdata *stp; 18319 conn_t *connp; 18320 18321 if (tcp->tcp_detached) 18322 return; 18323 connp = tcp->tcp_connp; 18324 if (IPCL_IS_NONSTR(connp)) { 18325 (*connp->conn_upcalls->su_zcopy_notify) 18326 (connp->conn_upper_handle); 18327 return; 18328 } 18329 stp = STREAM(tcp->tcp_rq); 18330 mutex_enter(&stp->sd_lock); 18331 stp->sd_flag |= STZCNOTIFY; 18332 cv_broadcast(&stp->sd_zcopy_wait); 18333 mutex_exit(&stp->sd_lock); 18334 } 18335 18336 static boolean_t 18337 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18338 { 18339 ire_t *ire; 18340 conn_t *connp = tcp->tcp_connp; 18341 tcp_stack_t *tcps = tcp->tcp_tcps; 18342 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18343 18344 mutex_enter(&connp->conn_lock); 18345 ire = connp->conn_ire_cache; 18346 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18347 18348 if ((ire != NULL) && 18349 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18350 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18351 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18352 IRE_REFHOLD(ire); 18353 mutex_exit(&connp->conn_lock); 18354 } else { 18355 boolean_t cached = B_FALSE; 18356 ts_label_t *tsl; 18357 18358 /* force a recheck later on */ 18359 tcp->tcp_ire_ill_check_done = B_FALSE; 18360 18361 TCP_DBGSTAT(tcps, tcp_ire_null1); 18362 connp->conn_ire_cache = NULL; 18363 mutex_exit(&connp->conn_lock); 18364 18365 if (ire != NULL) 18366 IRE_REFRELE_NOTR(ire); 18367 18368 tsl = crgetlabel(CONN_CRED(connp)); 18369 ire = (dst ? 18370 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18371 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18372 connp->conn_zoneid, tsl, ipst)); 18373 18374 if (ire == NULL) { 18375 TCP_STAT(tcps, tcp_ire_null); 18376 return (B_FALSE); 18377 } 18378 18379 IRE_REFHOLD_NOTR(ire); 18380 18381 mutex_enter(&connp->conn_lock); 18382 if (CONN_CACHE_IRE(connp)) { 18383 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18384 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18385 TCP_CHECK_IREINFO(tcp, ire); 18386 connp->conn_ire_cache = ire; 18387 cached = B_TRUE; 18388 } 18389 rw_exit(&ire->ire_bucket->irb_lock); 18390 } 18391 mutex_exit(&connp->conn_lock); 18392 18393 /* 18394 * We can continue to use the ire but since it was 18395 * not cached, we should drop the extra reference. 18396 */ 18397 if (!cached) 18398 IRE_REFRELE_NOTR(ire); 18399 18400 /* 18401 * Rampart note: no need to select a new label here, since 18402 * labels are not allowed to change during the life of a TCP 18403 * connection. 18404 */ 18405 } 18406 18407 *irep = ire; 18408 18409 return (B_TRUE); 18410 } 18411 18412 /* 18413 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18414 * 18415 * 0 = success; 18416 * 1 = failed to find ire and ill. 18417 */ 18418 static boolean_t 18419 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18420 { 18421 ipha_t *ipha; 18422 ipaddr_t dst; 18423 ire_t *ire; 18424 ill_t *ill; 18425 mblk_t *ire_fp_mp; 18426 tcp_stack_t *tcps = tcp->tcp_tcps; 18427 18428 if (mp != NULL) 18429 ipha = (ipha_t *)mp->b_rptr; 18430 else 18431 ipha = tcp->tcp_ipha; 18432 dst = ipha->ipha_dst; 18433 18434 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18435 return (B_FALSE); 18436 18437 if ((ire->ire_flags & RTF_MULTIRT) || 18438 (ire->ire_stq == NULL) || 18439 (ire->ire_nce == NULL) || 18440 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18441 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18442 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18443 TCP_STAT(tcps, tcp_ip_ire_send); 18444 IRE_REFRELE(ire); 18445 return (B_FALSE); 18446 } 18447 18448 ill = ire_to_ill(ire); 18449 ASSERT(ill != NULL); 18450 18451 if (!tcp->tcp_ire_ill_check_done) { 18452 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18453 tcp->tcp_ire_ill_check_done = B_TRUE; 18454 } 18455 18456 *irep = ire; 18457 *illp = ill; 18458 18459 return (B_TRUE); 18460 } 18461 18462 static void 18463 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18464 { 18465 ipha_t *ipha; 18466 ipaddr_t src; 18467 ipaddr_t dst; 18468 uint32_t cksum; 18469 ire_t *ire; 18470 uint16_t *up; 18471 ill_t *ill; 18472 conn_t *connp = tcp->tcp_connp; 18473 uint32_t hcksum_txflags = 0; 18474 mblk_t *ire_fp_mp; 18475 uint_t ire_fp_mp_len; 18476 tcp_stack_t *tcps = tcp->tcp_tcps; 18477 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18478 cred_t *cr; 18479 pid_t cpid; 18480 18481 ASSERT(DB_TYPE(mp) == M_DATA); 18482 18483 /* 18484 * Here we need to handle the overloading of the cred_t for 18485 * both getpeerucred and TX. 18486 * If this is a SYN then the caller already set db_credp so 18487 * that getpeerucred will work. But if TX is in use we might have 18488 * a conn_effective_cred which is different, and we need to use that 18489 * cred to make TX use the correct label and label dependent route. 18490 */ 18491 if (is_system_labeled()) { 18492 cr = msg_getcred(mp, &cpid); 18493 if (cr == NULL || connp->conn_effective_cred != NULL) 18494 mblk_setcred(mp, CONN_CRED(connp), cpid); 18495 } 18496 18497 ipha = (ipha_t *)mp->b_rptr; 18498 src = ipha->ipha_src; 18499 dst = ipha->ipha_dst; 18500 18501 ASSERT(q != NULL); 18502 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 18503 18504 /* 18505 * Drop off fast path for IPv6 and also if options are present or 18506 * we need to resolve a TS label. 18507 */ 18508 if (tcp->tcp_ipversion != IPV4_VERSION || 18509 !IPCL_IS_CONNECTED(connp) || 18510 !CONN_IS_LSO_MD_FASTPATH(connp) || 18511 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18512 !connp->conn_ulp_labeled || 18513 ipha->ipha_ident == IP_HDR_INCLUDED || 18514 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18515 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18516 if (tcp->tcp_snd_zcopy_aware) 18517 mp = tcp_zcopy_disable(tcp, mp); 18518 TCP_STAT(tcps, tcp_ip_send); 18519 CALL_IP_WPUT(connp, q, mp); 18520 return; 18521 } 18522 18523 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18524 if (tcp->tcp_snd_zcopy_aware) 18525 mp = tcp_zcopy_backoff(tcp, mp, 0); 18526 CALL_IP_WPUT(connp, q, mp); 18527 return; 18528 } 18529 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18530 ire_fp_mp_len = MBLKL(ire_fp_mp); 18531 18532 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18533 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18534 #ifndef _BIG_ENDIAN 18535 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18536 #endif 18537 18538 /* 18539 * Check to see if we need to re-enable LSO/MDT for this connection 18540 * because it was previously disabled due to changes in the ill; 18541 * note that by doing it here, this re-enabling only applies when 18542 * the packet is not dispatched through CALL_IP_WPUT(). 18543 * 18544 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18545 * case, since that's how we ended up here. For IPv6, we do the 18546 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18547 */ 18548 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18549 /* 18550 * Restore LSO for this connection, so that next time around 18551 * it is eligible to go through tcp_lsosend() path again. 18552 */ 18553 TCP_STAT(tcps, tcp_lso_enabled); 18554 tcp->tcp_lso = B_TRUE; 18555 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18556 "interface %s\n", (void *)connp, ill->ill_name)); 18557 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18558 /* 18559 * Restore MDT for this connection, so that next time around 18560 * it is eligible to go through tcp_multisend() path again. 18561 */ 18562 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18563 tcp->tcp_mdt = B_TRUE; 18564 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18565 "interface %s\n", (void *)connp, ill->ill_name)); 18566 } 18567 18568 if (tcp->tcp_snd_zcopy_aware) { 18569 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18570 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18571 mp = tcp_zcopy_disable(tcp, mp); 18572 /* 18573 * we shouldn't need to reset ipha as the mp containing 18574 * ipha should never be a zero-copy mp. 18575 */ 18576 } 18577 18578 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18579 ASSERT(ill->ill_hcksum_capab != NULL); 18580 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18581 } 18582 18583 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18584 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18585 18586 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18587 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18588 18589 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18590 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18591 18592 /* Software checksum? */ 18593 if (DB_CKSUMFLAGS(mp) == 0) { 18594 TCP_STAT(tcps, tcp_out_sw_cksum); 18595 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18596 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18597 } 18598 18599 /* Calculate IP header checksum if hardware isn't capable */ 18600 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18601 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18602 ((uint16_t *)ipha)[4]); 18603 } 18604 18605 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18606 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18607 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18608 18609 UPDATE_OB_PKT_COUNT(ire); 18610 ire->ire_last_used_time = lbolt; 18611 18612 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18613 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18614 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18615 ntohs(ipha->ipha_length)); 18616 18617 DTRACE_PROBE4(ip4__physical__out__start, 18618 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 18619 FW_HOOKS(ipst->ips_ip4_physical_out_event, 18620 ipst->ips_ipv4firewall_physical_out, 18621 NULL, ill, ipha, mp, mp, 0, ipst); 18622 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18623 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 18624 18625 if (mp != NULL) { 18626 if (ipst->ips_ipobs_enabled) { 18627 zoneid_t szone; 18628 18629 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 18630 ipst, ALL_ZONES); 18631 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 18632 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 18633 } 18634 18635 ILL_SEND_TX(ill, ire, connp, mp, 0, NULL); 18636 } 18637 18638 IRE_REFRELE(ire); 18639 } 18640 18641 /* 18642 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18643 * if the receiver shrinks the window, i.e. moves the right window to the 18644 * left, the we should not send new data, but should retransmit normally the 18645 * old unacked data between suna and suna + swnd. We might has sent data 18646 * that is now outside the new window, pretend that we didn't send it. 18647 */ 18648 static void 18649 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18650 { 18651 uint32_t snxt = tcp->tcp_snxt; 18652 18653 ASSERT(shrunk_count > 0); 18654 18655 if (!tcp->tcp_is_wnd_shrnk) { 18656 tcp->tcp_snxt_shrunk = snxt; 18657 tcp->tcp_is_wnd_shrnk = B_TRUE; 18658 } else if (SEQ_GT(snxt, tcp->tcp_snxt_shrunk)) { 18659 tcp->tcp_snxt_shrunk = snxt; 18660 } 18661 18662 /* Pretend we didn't send the data outside the window */ 18663 snxt -= shrunk_count; 18664 18665 /* Reset all the values per the now shrunk window */ 18666 tcp_update_xmit_tail(tcp, snxt); 18667 tcp->tcp_unsent += shrunk_count; 18668 18669 /* 18670 * If the SACK option is set, delete the entire list of 18671 * notsack'ed blocks. 18672 */ 18673 if (tcp->tcp_sack_info != NULL) { 18674 if (tcp->tcp_notsack_list != NULL) 18675 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 18676 } 18677 18678 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18679 /* 18680 * Make sure the timer is running so that we will probe a zero 18681 * window. 18682 */ 18683 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18684 } 18685 18686 18687 /* 18688 * The TCP normal data output path. 18689 * NOTE: the logic of the fast path is duplicated from this function. 18690 */ 18691 static void 18692 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18693 { 18694 int len; 18695 mblk_t *local_time; 18696 mblk_t *mp1; 18697 uint32_t snxt; 18698 int tail_unsent; 18699 int tcpstate; 18700 int usable = 0; 18701 mblk_t *xmit_tail; 18702 queue_t *q = tcp->tcp_wq; 18703 int32_t mss; 18704 int32_t num_sack_blk = 0; 18705 int32_t tcp_hdr_len; 18706 int32_t tcp_tcp_hdr_len; 18707 int mdt_thres; 18708 int rc; 18709 tcp_stack_t *tcps = tcp->tcp_tcps; 18710 ip_stack_t *ipst; 18711 18712 tcpstate = tcp->tcp_state; 18713 if (mp == NULL) { 18714 /* 18715 * tcp_wput_data() with NULL mp should only be called when 18716 * there is unsent data. 18717 */ 18718 ASSERT(tcp->tcp_unsent > 0); 18719 /* Really tacky... but we need this for detached closes. */ 18720 len = tcp->tcp_unsent; 18721 goto data_null; 18722 } 18723 18724 #if CCS_STATS 18725 wrw_stats.tot.count++; 18726 wrw_stats.tot.bytes += msgdsize(mp); 18727 #endif 18728 ASSERT(mp->b_datap->db_type == M_DATA); 18729 /* 18730 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18731 * or before a connection attempt has begun. 18732 */ 18733 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18734 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18735 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18736 #ifdef DEBUG 18737 cmn_err(CE_WARN, 18738 "tcp_wput_data: data after ordrel, %s", 18739 tcp_display(tcp, NULL, 18740 DISP_ADDR_AND_PORT)); 18741 #else 18742 if (tcp->tcp_debug) { 18743 (void) strlog(TCP_MOD_ID, 0, 1, 18744 SL_TRACE|SL_ERROR, 18745 "tcp_wput_data: data after ordrel, %s\n", 18746 tcp_display(tcp, NULL, 18747 DISP_ADDR_AND_PORT)); 18748 } 18749 #endif /* DEBUG */ 18750 } 18751 if (tcp->tcp_snd_zcopy_aware && 18752 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18753 tcp_zcopy_notify(tcp); 18754 freemsg(mp); 18755 mutex_enter(&tcp->tcp_non_sq_lock); 18756 if (tcp->tcp_flow_stopped && 18757 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18758 tcp_clrqfull(tcp); 18759 } 18760 mutex_exit(&tcp->tcp_non_sq_lock); 18761 return; 18762 } 18763 18764 /* Strip empties */ 18765 for (;;) { 18766 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18767 (uintptr_t)INT_MAX); 18768 len = (int)(mp->b_wptr - mp->b_rptr); 18769 if (len > 0) 18770 break; 18771 mp1 = mp; 18772 mp = mp->b_cont; 18773 freeb(mp1); 18774 if (!mp) { 18775 return; 18776 } 18777 } 18778 18779 /* If we are the first on the list ... */ 18780 if (tcp->tcp_xmit_head == NULL) { 18781 tcp->tcp_xmit_head = mp; 18782 tcp->tcp_xmit_tail = mp; 18783 tcp->tcp_xmit_tail_unsent = len; 18784 } else { 18785 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18786 struct datab *dp; 18787 18788 mp1 = tcp->tcp_xmit_last; 18789 if (len < tcp_tx_pull_len && 18790 (dp = mp1->b_datap)->db_ref == 1 && 18791 dp->db_lim - mp1->b_wptr >= len) { 18792 ASSERT(len > 0); 18793 ASSERT(!mp1->b_cont); 18794 if (len == 1) { 18795 *mp1->b_wptr++ = *mp->b_rptr; 18796 } else { 18797 bcopy(mp->b_rptr, mp1->b_wptr, len); 18798 mp1->b_wptr += len; 18799 } 18800 if (mp1 == tcp->tcp_xmit_tail) 18801 tcp->tcp_xmit_tail_unsent += len; 18802 mp1->b_cont = mp->b_cont; 18803 if (tcp->tcp_snd_zcopy_aware && 18804 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18805 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18806 freeb(mp); 18807 mp = mp1; 18808 } else { 18809 tcp->tcp_xmit_last->b_cont = mp; 18810 } 18811 len += tcp->tcp_unsent; 18812 } 18813 18814 /* Tack on however many more positive length mblks we have */ 18815 if ((mp1 = mp->b_cont) != NULL) { 18816 do { 18817 int tlen; 18818 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18819 (uintptr_t)INT_MAX); 18820 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18821 if (tlen <= 0) { 18822 mp->b_cont = mp1->b_cont; 18823 freeb(mp1); 18824 } else { 18825 len += tlen; 18826 mp = mp1; 18827 } 18828 } while ((mp1 = mp->b_cont) != NULL); 18829 } 18830 tcp->tcp_xmit_last = mp; 18831 tcp->tcp_unsent = len; 18832 18833 if (urgent) 18834 usable = 1; 18835 18836 data_null: 18837 snxt = tcp->tcp_snxt; 18838 xmit_tail = tcp->tcp_xmit_tail; 18839 tail_unsent = tcp->tcp_xmit_tail_unsent; 18840 18841 /* 18842 * Note that tcp_mss has been adjusted to take into account the 18843 * timestamp option if applicable. Because SACK options do not 18844 * appear in every TCP segments and they are of variable lengths, 18845 * they cannot be included in tcp_mss. Thus we need to calculate 18846 * the actual segment length when we need to send a segment which 18847 * includes SACK options. 18848 */ 18849 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18850 int32_t opt_len; 18851 18852 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18853 tcp->tcp_num_sack_blk); 18854 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18855 2 + TCPOPT_HEADER_LEN; 18856 mss = tcp->tcp_mss - opt_len; 18857 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18858 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18859 } else { 18860 mss = tcp->tcp_mss; 18861 tcp_hdr_len = tcp->tcp_hdr_len; 18862 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18863 } 18864 18865 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18866 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18867 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 18868 } 18869 if (tcpstate == TCPS_SYN_RCVD) { 18870 /* 18871 * The three-way connection establishment handshake is not 18872 * complete yet. We want to queue the data for transmission 18873 * after entering ESTABLISHED state (RFC793). A jump to 18874 * "done" label effectively leaves data on the queue. 18875 */ 18876 goto done; 18877 } else { 18878 int usable_r; 18879 18880 /* 18881 * In the special case when cwnd is zero, which can only 18882 * happen if the connection is ECN capable, return now. 18883 * New segments is sent using tcp_timer(). The timer 18884 * is set in tcp_rput_data(). 18885 */ 18886 if (tcp->tcp_cwnd == 0) { 18887 /* 18888 * Note that tcp_cwnd is 0 before 3-way handshake is 18889 * finished. 18890 */ 18891 ASSERT(tcp->tcp_ecn_ok || 18892 tcp->tcp_state < TCPS_ESTABLISHED); 18893 return; 18894 } 18895 18896 /* NOTE: trouble if xmitting while SYN not acked? */ 18897 usable_r = snxt - tcp->tcp_suna; 18898 usable_r = tcp->tcp_swnd - usable_r; 18899 18900 /* 18901 * Check if the receiver has shrunk the window. If 18902 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18903 * cannot be set as there is unsent data, so FIN cannot 18904 * be sent out. Otherwise, we need to take into account 18905 * of FIN as it consumes an "invisible" sequence number. 18906 */ 18907 ASSERT(tcp->tcp_fin_sent == 0); 18908 if (usable_r < 0) { 18909 /* 18910 * The receiver has shrunk the window and we have sent 18911 * -usable_r date beyond the window, re-adjust. 18912 * 18913 * If TCP window scaling is enabled, there can be 18914 * round down error as the advertised receive window 18915 * is actually right shifted n bits. This means that 18916 * the lower n bits info is wiped out. It will look 18917 * like the window is shrunk. Do a check here to 18918 * see if the shrunk amount is actually within the 18919 * error in window calculation. If it is, just 18920 * return. Note that this check is inside the 18921 * shrunk window check. This makes sure that even 18922 * though tcp_process_shrunk_swnd() is not called, 18923 * we will stop further processing. 18924 */ 18925 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18926 tcp_process_shrunk_swnd(tcp, -usable_r); 18927 } 18928 return; 18929 } 18930 18931 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18932 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18933 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18934 18935 /* usable = MIN(usable, unsent) */ 18936 if (usable_r > len) 18937 usable_r = len; 18938 18939 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18940 if (usable_r > 0) { 18941 usable = usable_r; 18942 } else { 18943 /* Bypass all other unnecessary processing. */ 18944 goto done; 18945 } 18946 } 18947 18948 local_time = (mblk_t *)lbolt; 18949 18950 /* 18951 * "Our" Nagle Algorithm. This is not the same as in the old 18952 * BSD. This is more in line with the true intent of Nagle. 18953 * 18954 * The conditions are: 18955 * 1. The amount of unsent data (or amount of data which can be 18956 * sent, whichever is smaller) is less than Nagle limit. 18957 * 2. The last sent size is also less than Nagle limit. 18958 * 3. There is unack'ed data. 18959 * 4. Urgent pointer is not set. Send urgent data ignoring the 18960 * Nagle algorithm. This reduces the probability that urgent 18961 * bytes get "merged" together. 18962 * 5. The app has not closed the connection. This eliminates the 18963 * wait time of the receiving side waiting for the last piece of 18964 * (small) data. 18965 * 18966 * If all are satisified, exit without sending anything. Note 18967 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18968 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18969 * 4095). 18970 */ 18971 if (usable < (int)tcp->tcp_naglim && 18972 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18973 snxt != tcp->tcp_suna && 18974 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18975 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18976 goto done; 18977 } 18978 18979 /* 18980 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 18981 * is set, then we have to force TCP not to send partial segment 18982 * (smaller than MSS bytes). We are calculating the usable now 18983 * based on full mss and will save the rest of remaining data for 18984 * later. When tcp_zero_win_probe is set, TCP needs to send out 18985 * something to do zero window probe. 18986 */ 18987 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 18988 if (usable < mss) 18989 goto done; 18990 usable = (usable / mss) * mss; 18991 } 18992 18993 /* Update the latest receive window size in TCP header. */ 18994 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18995 tcp->tcp_tcph->th_win); 18996 18997 /* 18998 * Determine if it's worthwhile to attempt LSO or MDT, based on: 18999 * 19000 * 1. Simple TCP/IP{v4,v6} (no options). 19001 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19002 * 3. If the TCP connection is in ESTABLISHED state. 19003 * 4. The TCP is not detached. 19004 * 19005 * If any of the above conditions have changed during the 19006 * connection, stop using LSO/MDT and restore the stream head 19007 * parameters accordingly. 19008 */ 19009 ipst = tcps->tcps_netstack->netstack_ip; 19010 19011 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19012 ((tcp->tcp_ipversion == IPV4_VERSION && 19013 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19014 (tcp->tcp_ipversion == IPV6_VERSION && 19015 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19016 tcp->tcp_state != TCPS_ESTABLISHED || 19017 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19018 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19019 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19020 if (tcp->tcp_lso) { 19021 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19022 tcp->tcp_lso = B_FALSE; 19023 } else { 19024 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19025 tcp->tcp_mdt = B_FALSE; 19026 } 19027 19028 /* Anything other than detached is considered pathological */ 19029 if (!TCP_IS_DETACHED(tcp)) { 19030 if (tcp->tcp_lso) 19031 TCP_STAT(tcps, tcp_lso_disabled); 19032 else 19033 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19034 (void) tcp_maxpsz_set(tcp, B_TRUE); 19035 } 19036 } 19037 19038 /* Use MDT if sendable amount is greater than the threshold */ 19039 if (tcp->tcp_mdt && 19040 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19041 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19042 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19043 (tcp->tcp_valid_bits == 0 || 19044 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19045 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19046 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19047 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19048 local_time, mdt_thres); 19049 } else { 19050 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19051 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19052 local_time, INT_MAX); 19053 } 19054 19055 /* Pretend that all we were trying to send really got sent */ 19056 if (rc < 0 && tail_unsent < 0) { 19057 do { 19058 xmit_tail = xmit_tail->b_cont; 19059 xmit_tail->b_prev = local_time; 19060 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19061 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19062 tail_unsent += (int)(xmit_tail->b_wptr - 19063 xmit_tail->b_rptr); 19064 } while (tail_unsent < 0); 19065 } 19066 done:; 19067 tcp->tcp_xmit_tail = xmit_tail; 19068 tcp->tcp_xmit_tail_unsent = tail_unsent; 19069 len = tcp->tcp_snxt - snxt; 19070 if (len) { 19071 /* 19072 * If new data was sent, need to update the notsack 19073 * list, which is, afterall, data blocks that have 19074 * not been sack'ed by the receiver. New data is 19075 * not sack'ed. 19076 */ 19077 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19078 /* len is a negative value. */ 19079 tcp->tcp_pipe -= len; 19080 tcp_notsack_update(&(tcp->tcp_notsack_list), 19081 tcp->tcp_snxt, snxt, 19082 &(tcp->tcp_num_notsack_blk), 19083 &(tcp->tcp_cnt_notsack_list)); 19084 } 19085 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19086 tcp->tcp_rack = tcp->tcp_rnxt; 19087 tcp->tcp_rack_cnt = 0; 19088 if ((snxt + len) == tcp->tcp_suna) { 19089 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19090 } 19091 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19092 /* 19093 * Didn't send anything. Make sure the timer is running 19094 * so that we will probe a zero window. 19095 */ 19096 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19097 } 19098 /* Note that len is the amount we just sent but with a negative sign */ 19099 tcp->tcp_unsent += len; 19100 mutex_enter(&tcp->tcp_non_sq_lock); 19101 if (tcp->tcp_flow_stopped) { 19102 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19103 tcp_clrqfull(tcp); 19104 } 19105 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19106 tcp_setqfull(tcp); 19107 } 19108 mutex_exit(&tcp->tcp_non_sq_lock); 19109 } 19110 19111 /* 19112 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19113 * outgoing TCP header with the template header, as well as other 19114 * options such as time-stamp, ECN and/or SACK. 19115 */ 19116 static void 19117 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19118 { 19119 tcph_t *tcp_tmpl, *tcp_h; 19120 uint32_t *dst, *src; 19121 int hdrlen; 19122 19123 ASSERT(OK_32PTR(rptr)); 19124 19125 /* Template header */ 19126 tcp_tmpl = tcp->tcp_tcph; 19127 19128 /* Header of outgoing packet */ 19129 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19130 19131 /* dst and src are opaque 32-bit fields, used for copying */ 19132 dst = (uint32_t *)rptr; 19133 src = (uint32_t *)tcp->tcp_iphc; 19134 hdrlen = tcp->tcp_hdr_len; 19135 19136 /* Fill time-stamp option if needed */ 19137 if (tcp->tcp_snd_ts_ok) { 19138 U32_TO_BE32((uint32_t)now, 19139 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19140 U32_TO_BE32(tcp->tcp_ts_recent, 19141 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19142 } else { 19143 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19144 } 19145 19146 /* 19147 * Copy the template header; is this really more efficient than 19148 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19149 * but perhaps not for other scenarios. 19150 */ 19151 dst[0] = src[0]; 19152 dst[1] = src[1]; 19153 dst[2] = src[2]; 19154 dst[3] = src[3]; 19155 dst[4] = src[4]; 19156 dst[5] = src[5]; 19157 dst[6] = src[6]; 19158 dst[7] = src[7]; 19159 dst[8] = src[8]; 19160 dst[9] = src[9]; 19161 if (hdrlen -= 40) { 19162 hdrlen >>= 2; 19163 dst += 10; 19164 src += 10; 19165 do { 19166 *dst++ = *src++; 19167 } while (--hdrlen); 19168 } 19169 19170 /* 19171 * Set the ECN info in the TCP header if it is not a zero 19172 * window probe. Zero window probe is only sent in 19173 * tcp_wput_data() and tcp_timer(). 19174 */ 19175 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19176 SET_ECT(tcp, rptr); 19177 19178 if (tcp->tcp_ecn_echo_on) 19179 tcp_h->th_flags[0] |= TH_ECE; 19180 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19181 tcp_h->th_flags[0] |= TH_CWR; 19182 tcp->tcp_ecn_cwr_sent = B_TRUE; 19183 } 19184 } 19185 19186 /* Fill in SACK options */ 19187 if (num_sack_blk > 0) { 19188 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19189 sack_blk_t *tmp; 19190 int32_t i; 19191 19192 wptr[0] = TCPOPT_NOP; 19193 wptr[1] = TCPOPT_NOP; 19194 wptr[2] = TCPOPT_SACK; 19195 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19196 sizeof (sack_blk_t); 19197 wptr += TCPOPT_REAL_SACK_LEN; 19198 19199 tmp = tcp->tcp_sack_list; 19200 for (i = 0; i < num_sack_blk; i++) { 19201 U32_TO_BE32(tmp[i].begin, wptr); 19202 wptr += sizeof (tcp_seq); 19203 U32_TO_BE32(tmp[i].end, wptr); 19204 wptr += sizeof (tcp_seq); 19205 } 19206 tcp_h->th_offset_and_rsrvd[0] += 19207 ((num_sack_blk * 2 + 1) << 4); 19208 } 19209 } 19210 19211 /* 19212 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19213 * the destination address and SAP attribute, and if necessary, the 19214 * hardware checksum offload attribute to a Multidata message. 19215 */ 19216 static int 19217 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19218 const uint32_t start, const uint32_t stuff, const uint32_t end, 19219 const uint32_t flags, tcp_stack_t *tcps) 19220 { 19221 /* Add global destination address & SAP attribute */ 19222 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19223 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19224 "destination address+SAP\n")); 19225 19226 if (dlmp != NULL) 19227 TCP_STAT(tcps, tcp_mdt_allocfail); 19228 return (-1); 19229 } 19230 19231 /* Add global hwcksum attribute */ 19232 if (hwcksum && 19233 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19234 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19235 "checksum attribute\n")); 19236 19237 TCP_STAT(tcps, tcp_mdt_allocfail); 19238 return (-1); 19239 } 19240 19241 return (0); 19242 } 19243 19244 /* 19245 * Smaller and private version of pdescinfo_t used specifically for TCP, 19246 * which allows for only two payload spans per packet. 19247 */ 19248 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19249 19250 /* 19251 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19252 * scheme, and returns one the following: 19253 * 19254 * -1 = failed allocation. 19255 * 0 = success; burst count reached, or usable send window is too small, 19256 * and that we'd rather wait until later before sending again. 19257 */ 19258 static int 19259 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19260 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19261 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19262 const int mdt_thres) 19263 { 19264 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19265 multidata_t *mmd; 19266 uint_t obsegs, obbytes, hdr_frag_sz; 19267 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19268 int num_burst_seg, max_pld; 19269 pdesc_t *pkt; 19270 tcp_pdescinfo_t tcp_pkt_info; 19271 pdescinfo_t *pkt_info; 19272 int pbuf_idx, pbuf_idx_nxt; 19273 int seg_len, len, spill, af; 19274 boolean_t add_buffer, zcopy, clusterwide; 19275 boolean_t rconfirm = B_FALSE; 19276 boolean_t done = B_FALSE; 19277 uint32_t cksum; 19278 uint32_t hwcksum_flags; 19279 ire_t *ire = NULL; 19280 ill_t *ill; 19281 ipha_t *ipha; 19282 ip6_t *ip6h; 19283 ipaddr_t src, dst; 19284 ill_zerocopy_capab_t *zc_cap = NULL; 19285 uint16_t *up; 19286 int err; 19287 conn_t *connp; 19288 tcp_stack_t *tcps = tcp->tcp_tcps; 19289 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19290 int usable_mmd, tail_unsent_mmd; 19291 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19292 mblk_t *xmit_tail_mmd; 19293 netstackid_t stack_id; 19294 19295 #ifdef _BIG_ENDIAN 19296 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19297 #else 19298 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19299 #endif 19300 19301 #define PREP_NEW_MULTIDATA() { \ 19302 mmd = NULL; \ 19303 md_mp = md_hbuf = NULL; \ 19304 cur_hdr_off = 0; \ 19305 max_pld = tcp->tcp_mdt_max_pld; \ 19306 pbuf_idx = pbuf_idx_nxt = -1; \ 19307 add_buffer = B_TRUE; \ 19308 zcopy = B_FALSE; \ 19309 } 19310 19311 #define PREP_NEW_PBUF() { \ 19312 md_pbuf = md_pbuf_nxt = NULL; \ 19313 pbuf_idx = pbuf_idx_nxt = -1; \ 19314 cur_pld_off = 0; \ 19315 first_snxt = *snxt; \ 19316 ASSERT(*tail_unsent > 0); \ 19317 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19318 } 19319 19320 ASSERT(mdt_thres >= mss); 19321 ASSERT(*usable > 0 && *usable > mdt_thres); 19322 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19323 ASSERT(!TCP_IS_DETACHED(tcp)); 19324 ASSERT(tcp->tcp_valid_bits == 0 || 19325 tcp->tcp_valid_bits == TCP_FSS_VALID); 19326 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19327 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19328 (tcp->tcp_ipversion == IPV6_VERSION && 19329 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19330 19331 connp = tcp->tcp_connp; 19332 ASSERT(connp != NULL); 19333 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19334 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19335 19336 stack_id = connp->conn_netstack->netstack_stackid; 19337 19338 usable_mmd = tail_unsent_mmd = 0; 19339 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 19340 xmit_tail_mmd = NULL; 19341 /* 19342 * Note that tcp will only declare at most 2 payload spans per 19343 * packet, which is much lower than the maximum allowable number 19344 * of packet spans per Multidata. For this reason, we use the 19345 * privately declared and smaller descriptor info structure, in 19346 * order to save some stack space. 19347 */ 19348 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19349 19350 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19351 if (af == AF_INET) { 19352 dst = tcp->tcp_ipha->ipha_dst; 19353 src = tcp->tcp_ipha->ipha_src; 19354 ASSERT(!CLASSD(dst)); 19355 } 19356 ASSERT(af == AF_INET || 19357 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19358 19359 obsegs = obbytes = 0; 19360 num_burst_seg = tcp->tcp_snd_burst; 19361 md_mp_head = NULL; 19362 PREP_NEW_MULTIDATA(); 19363 19364 /* 19365 * Before we go on further, make sure there is an IRE that we can 19366 * use, and that the ILL supports MDT. Otherwise, there's no point 19367 * in proceeding any further, and we should just hand everything 19368 * off to the legacy path. 19369 */ 19370 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19371 goto legacy_send_no_md; 19372 19373 ASSERT(ire != NULL); 19374 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19375 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19376 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19377 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19378 /* 19379 * If we do support loopback for MDT (which requires modifications 19380 * to the receiving paths), the following assertions should go away, 19381 * and we would be sending the Multidata to loopback conn later on. 19382 */ 19383 ASSERT(!IRE_IS_LOCAL(ire)); 19384 ASSERT(ire->ire_stq != NULL); 19385 19386 ill = ire_to_ill(ire); 19387 ASSERT(ill != NULL); 19388 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19389 19390 if (!tcp->tcp_ire_ill_check_done) { 19391 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19392 tcp->tcp_ire_ill_check_done = B_TRUE; 19393 } 19394 19395 /* 19396 * If the underlying interface conditions have changed, or if the 19397 * new interface does not support MDT, go back to legacy path. 19398 */ 19399 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19400 /* don't go through this path anymore for this connection */ 19401 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19402 tcp->tcp_mdt = B_FALSE; 19403 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19404 "interface %s\n", (void *)connp, ill->ill_name)); 19405 /* IRE will be released prior to returning */ 19406 goto legacy_send_no_md; 19407 } 19408 19409 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19410 zc_cap = ill->ill_zerocopy_capab; 19411 19412 /* 19413 * Check if we can take tcp fast-path. Note that "incomplete" 19414 * ire's (where the link-layer for next hop is not resolved 19415 * or where the fast-path header in nce_fp_mp is not available 19416 * yet) are sent down the legacy (slow) path. 19417 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19418 */ 19419 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19420 /* IRE will be released prior to returning */ 19421 goto legacy_send_no_md; 19422 } 19423 19424 /* go to legacy path if interface doesn't support zerocopy */ 19425 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19426 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19427 /* IRE will be released prior to returning */ 19428 goto legacy_send_no_md; 19429 } 19430 19431 /* does the interface support hardware checksum offload? */ 19432 hwcksum_flags = 0; 19433 if (ILL_HCKSUM_CAPABLE(ill) && 19434 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19435 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19436 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19437 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19438 HCKSUM_IPHDRCKSUM) 19439 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19440 19441 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19442 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19443 hwcksum_flags |= HCK_FULLCKSUM; 19444 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19445 HCKSUM_INET_PARTIAL) 19446 hwcksum_flags |= HCK_PARTIALCKSUM; 19447 } 19448 19449 /* 19450 * Each header fragment consists of the leading extra space, 19451 * followed by the TCP/IP header, and the trailing extra space. 19452 * We make sure that each header fragment begins on a 32-bit 19453 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19454 * aligned in tcp_mdt_update). 19455 */ 19456 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19457 tcp->tcp_mdt_hdr_tail), 4); 19458 19459 /* are we starting from the beginning of data block? */ 19460 if (*tail_unsent == 0) { 19461 *xmit_tail = (*xmit_tail)->b_cont; 19462 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19463 *tail_unsent = (int)MBLKL(*xmit_tail); 19464 } 19465 19466 /* 19467 * Here we create one or more Multidata messages, each made up of 19468 * one header buffer and up to N payload buffers. This entire 19469 * operation is done within two loops: 19470 * 19471 * The outer loop mostly deals with creating the Multidata message, 19472 * as well as the header buffer that gets added to it. It also 19473 * links the Multidata messages together such that all of them can 19474 * be sent down to the lower layer in a single putnext call; this 19475 * linking behavior depends on the tcp_mdt_chain tunable. 19476 * 19477 * The inner loop takes an existing Multidata message, and adds 19478 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19479 * packetizes those buffers by filling up the corresponding header 19480 * buffer fragments with the proper IP and TCP headers, and by 19481 * describing the layout of each packet in the packet descriptors 19482 * that get added to the Multidata. 19483 */ 19484 do { 19485 /* 19486 * If usable send window is too small, or data blocks in 19487 * transmit list are smaller than our threshold (i.e. app 19488 * performs large writes followed by small ones), we hand 19489 * off the control over to the legacy path. Note that we'll 19490 * get back the control once it encounters a large block. 19491 */ 19492 if (*usable < mss || (*tail_unsent <= mdt_thres && 19493 (*xmit_tail)->b_cont != NULL && 19494 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19495 /* send down what we've got so far */ 19496 if (md_mp_head != NULL) { 19497 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19498 obsegs, obbytes, &rconfirm); 19499 } 19500 /* 19501 * Pass control over to tcp_send(), but tell it to 19502 * return to us once a large-size transmission is 19503 * possible. 19504 */ 19505 TCP_STAT(tcps, tcp_mdt_legacy_small); 19506 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19507 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19508 tail_unsent, xmit_tail, local_time, 19509 mdt_thres)) <= 0) { 19510 /* burst count reached, or alloc failed */ 19511 IRE_REFRELE(ire); 19512 return (err); 19513 } 19514 19515 /* tcp_send() may have sent everything, so check */ 19516 if (*usable <= 0) { 19517 IRE_REFRELE(ire); 19518 return (0); 19519 } 19520 19521 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19522 /* 19523 * We may have delivered the Multidata, so make sure 19524 * to re-initialize before the next round. 19525 */ 19526 md_mp_head = NULL; 19527 obsegs = obbytes = 0; 19528 num_burst_seg = tcp->tcp_snd_burst; 19529 PREP_NEW_MULTIDATA(); 19530 19531 /* are we starting from the beginning of data block? */ 19532 if (*tail_unsent == 0) { 19533 *xmit_tail = (*xmit_tail)->b_cont; 19534 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19535 (uintptr_t)INT_MAX); 19536 *tail_unsent = (int)MBLKL(*xmit_tail); 19537 } 19538 } 19539 /* 19540 * Record current values for parameters we may need to pass 19541 * to tcp_send() or tcp_multisend_data(). We checkpoint at 19542 * each iteration of the outer loop (each multidata message 19543 * creation). If we have a failure in the inner loop, we send 19544 * any complete multidata messages we have before reverting 19545 * to using the traditional non-md path. 19546 */ 19547 snxt_mmd = *snxt; 19548 usable_mmd = *usable; 19549 xmit_tail_mmd = *xmit_tail; 19550 tail_unsent_mmd = *tail_unsent; 19551 obsegs_mmd = obsegs; 19552 obbytes_mmd = obbytes; 19553 19554 /* 19555 * max_pld limits the number of mblks in tcp's transmit 19556 * queue that can be added to a Multidata message. Once 19557 * this counter reaches zero, no more additional mblks 19558 * can be added to it. What happens afterwards depends 19559 * on whether or not we are set to chain the Multidata 19560 * messages. If we are to link them together, reset 19561 * max_pld to its original value (tcp_mdt_max_pld) and 19562 * prepare to create a new Multidata message which will 19563 * get linked to md_mp_head. Else, leave it alone and 19564 * let the inner loop break on its own. 19565 */ 19566 if (tcp_mdt_chain && max_pld == 0) 19567 PREP_NEW_MULTIDATA(); 19568 19569 /* adding a payload buffer; re-initialize values */ 19570 if (add_buffer) 19571 PREP_NEW_PBUF(); 19572 19573 /* 19574 * If we don't have a Multidata, either because we just 19575 * (re)entered this outer loop, or after we branched off 19576 * to tcp_send above, setup the Multidata and header 19577 * buffer to be used. 19578 */ 19579 if (md_mp == NULL) { 19580 int md_hbuflen; 19581 uint32_t start, stuff; 19582 19583 /* 19584 * Calculate Multidata header buffer size large enough 19585 * to hold all of the headers that can possibly be 19586 * sent at this moment. We'd rather over-estimate 19587 * the size than running out of space; this is okay 19588 * since this buffer is small anyway. 19589 */ 19590 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19591 19592 /* 19593 * Start and stuff offset for partial hardware 19594 * checksum offload; these are currently for IPv4. 19595 * For full checksum offload, they are set to zero. 19596 */ 19597 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19598 if (af == AF_INET) { 19599 start = IP_SIMPLE_HDR_LENGTH; 19600 stuff = IP_SIMPLE_HDR_LENGTH + 19601 TCP_CHECKSUM_OFFSET; 19602 } else { 19603 start = IPV6_HDR_LEN; 19604 stuff = IPV6_HDR_LEN + 19605 TCP_CHECKSUM_OFFSET; 19606 } 19607 } else { 19608 start = stuff = 0; 19609 } 19610 19611 /* 19612 * Create the header buffer, Multidata, as well as 19613 * any necessary attributes (destination address, 19614 * SAP and hardware checksum offload) that should 19615 * be associated with the Multidata message. 19616 */ 19617 ASSERT(cur_hdr_off == 0); 19618 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19619 ((md_hbuf->b_wptr += md_hbuflen), 19620 (mmd = mmd_alloc(md_hbuf, &md_mp, 19621 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19622 /* fastpath mblk */ 19623 ire->ire_nce->nce_res_mp, 19624 /* hardware checksum enabled */ 19625 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19626 /* hardware checksum offsets */ 19627 start, stuff, 0, 19628 /* hardware checksum flag */ 19629 hwcksum_flags, tcps) != 0)) { 19630 legacy_send: 19631 /* 19632 * We arrive here from a failure within the 19633 * inner (packetizer) loop or we fail one of 19634 * the conditionals above. We restore the 19635 * previously checkpointed values for: 19636 * xmit_tail 19637 * usable 19638 * tail_unsent 19639 * snxt 19640 * obbytes 19641 * obsegs 19642 * We should then be able to dispatch any 19643 * complete multidata before reverting to the 19644 * traditional path with consistent parameters 19645 * (the inner loop updates these as it 19646 * iterates). 19647 */ 19648 *xmit_tail = xmit_tail_mmd; 19649 *usable = usable_mmd; 19650 *tail_unsent = tail_unsent_mmd; 19651 *snxt = snxt_mmd; 19652 obbytes = obbytes_mmd; 19653 obsegs = obsegs_mmd; 19654 if (md_mp != NULL) { 19655 /* Unlink message from the chain */ 19656 if (md_mp_head != NULL) { 19657 err = (intptr_t)rmvb(md_mp_head, 19658 md_mp); 19659 /* 19660 * We can't assert that rmvb 19661 * did not return -1, since we 19662 * may get here before linkb 19663 * happens. We do, however, 19664 * check if we just removed the 19665 * only element in the list. 19666 */ 19667 if (err == 0) 19668 md_mp_head = NULL; 19669 } 19670 /* md_hbuf gets freed automatically */ 19671 TCP_STAT(tcps, tcp_mdt_discarded); 19672 freeb(md_mp); 19673 } else { 19674 /* Either allocb or mmd_alloc failed */ 19675 TCP_STAT(tcps, tcp_mdt_allocfail); 19676 if (md_hbuf != NULL) 19677 freeb(md_hbuf); 19678 } 19679 19680 /* send down what we've got so far */ 19681 if (md_mp_head != NULL) { 19682 tcp_multisend_data(tcp, ire, ill, 19683 md_mp_head, obsegs, obbytes, 19684 &rconfirm); 19685 } 19686 legacy_send_no_md: 19687 if (ire != NULL) 19688 IRE_REFRELE(ire); 19689 /* 19690 * Too bad; let the legacy path handle this. 19691 * We specify INT_MAX for the threshold, since 19692 * we gave up with the Multidata processings 19693 * and let the old path have it all. 19694 */ 19695 TCP_STAT(tcps, tcp_mdt_legacy_all); 19696 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19697 tcp_tcp_hdr_len, num_sack_blk, usable, 19698 snxt, tail_unsent, xmit_tail, local_time, 19699 INT_MAX)); 19700 } 19701 19702 /* link to any existing ones, if applicable */ 19703 TCP_STAT(tcps, tcp_mdt_allocd); 19704 if (md_mp_head == NULL) { 19705 md_mp_head = md_mp; 19706 } else if (tcp_mdt_chain) { 19707 TCP_STAT(tcps, tcp_mdt_linked); 19708 linkb(md_mp_head, md_mp); 19709 } 19710 } 19711 19712 ASSERT(md_mp_head != NULL); 19713 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19714 ASSERT(md_mp != NULL && mmd != NULL); 19715 ASSERT(md_hbuf != NULL); 19716 19717 /* 19718 * Packetize the transmittable portion of the data block; 19719 * each data block is essentially added to the Multidata 19720 * as a payload buffer. We also deal with adding more 19721 * than one payload buffers, which happens when the remaining 19722 * packetized portion of the current payload buffer is less 19723 * than MSS, while the next data block in transmit queue 19724 * has enough data to make up for one. This "spillover" 19725 * case essentially creates a split-packet, where portions 19726 * of the packet's payload fragments may span across two 19727 * virtually discontiguous address blocks. 19728 */ 19729 seg_len = mss; 19730 do { 19731 len = seg_len; 19732 19733 /* one must remain NULL for DTRACE_IP_FASTPATH */ 19734 ipha = NULL; 19735 ip6h = NULL; 19736 19737 ASSERT(len > 0); 19738 ASSERT(max_pld >= 0); 19739 ASSERT(!add_buffer || cur_pld_off == 0); 19740 19741 /* 19742 * First time around for this payload buffer; note 19743 * in the case of a spillover, the following has 19744 * been done prior to adding the split-packet 19745 * descriptor to Multidata, and we don't want to 19746 * repeat the process. 19747 */ 19748 if (add_buffer) { 19749 ASSERT(mmd != NULL); 19750 ASSERT(md_pbuf == NULL); 19751 ASSERT(md_pbuf_nxt == NULL); 19752 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19753 19754 /* 19755 * Have we reached the limit? We'd get to 19756 * this case when we're not chaining the 19757 * Multidata messages together, and since 19758 * we're done, terminate this loop. 19759 */ 19760 if (max_pld == 0) 19761 break; /* done */ 19762 19763 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19764 TCP_STAT(tcps, tcp_mdt_allocfail); 19765 goto legacy_send; /* out_of_mem */ 19766 } 19767 19768 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19769 zc_cap != NULL) { 19770 if (!ip_md_zcopy_attr(mmd, NULL, 19771 zc_cap->ill_zerocopy_flags)) { 19772 freeb(md_pbuf); 19773 TCP_STAT(tcps, 19774 tcp_mdt_allocfail); 19775 /* out_of_mem */ 19776 goto legacy_send; 19777 } 19778 zcopy = B_TRUE; 19779 } 19780 19781 md_pbuf->b_rptr += base_pld_off; 19782 19783 /* 19784 * Add a payload buffer to the Multidata; this 19785 * operation must not fail, or otherwise our 19786 * logic in this routine is broken. There 19787 * is no memory allocation done by the 19788 * routine, so any returned failure simply 19789 * tells us that we've done something wrong. 19790 * 19791 * A failure tells us that either we're adding 19792 * the same payload buffer more than once, or 19793 * we're trying to add more buffers than 19794 * allowed (max_pld calculation is wrong). 19795 * None of the above cases should happen, and 19796 * we panic because either there's horrible 19797 * heap corruption, and/or programming mistake. 19798 */ 19799 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19800 if (pbuf_idx < 0) { 19801 cmn_err(CE_PANIC, "tcp_multisend: " 19802 "payload buffer logic error " 19803 "detected for tcp %p mmd %p " 19804 "pbuf %p (%d)\n", 19805 (void *)tcp, (void *)mmd, 19806 (void *)md_pbuf, pbuf_idx); 19807 } 19808 19809 ASSERT(max_pld > 0); 19810 --max_pld; 19811 add_buffer = B_FALSE; 19812 } 19813 19814 ASSERT(md_mp_head != NULL); 19815 ASSERT(md_pbuf != NULL); 19816 ASSERT(md_pbuf_nxt == NULL); 19817 ASSERT(pbuf_idx != -1); 19818 ASSERT(pbuf_idx_nxt == -1); 19819 ASSERT(*usable > 0); 19820 19821 /* 19822 * We spillover to the next payload buffer only 19823 * if all of the following is true: 19824 * 19825 * 1. There is not enough data on the current 19826 * payload buffer to make up `len', 19827 * 2. We are allowed to send `len', 19828 * 3. The next payload buffer length is large 19829 * enough to accomodate `spill'. 19830 */ 19831 if ((spill = len - *tail_unsent) > 0 && 19832 *usable >= len && 19833 MBLKL((*xmit_tail)->b_cont) >= spill && 19834 max_pld > 0) { 19835 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19836 if (md_pbuf_nxt == NULL) { 19837 TCP_STAT(tcps, tcp_mdt_allocfail); 19838 goto legacy_send; /* out_of_mem */ 19839 } 19840 19841 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19842 zc_cap != NULL) { 19843 if (!ip_md_zcopy_attr(mmd, NULL, 19844 zc_cap->ill_zerocopy_flags)) { 19845 freeb(md_pbuf_nxt); 19846 TCP_STAT(tcps, 19847 tcp_mdt_allocfail); 19848 /* out_of_mem */ 19849 goto legacy_send; 19850 } 19851 zcopy = B_TRUE; 19852 } 19853 19854 /* 19855 * See comments above on the first call to 19856 * mmd_addpldbuf for explanation on the panic. 19857 */ 19858 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19859 if (pbuf_idx_nxt < 0) { 19860 panic("tcp_multisend: " 19861 "next payload buffer logic error " 19862 "detected for tcp %p mmd %p " 19863 "pbuf %p (%d)\n", 19864 (void *)tcp, (void *)mmd, 19865 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19866 } 19867 19868 ASSERT(max_pld > 0); 19869 --max_pld; 19870 } else if (spill > 0) { 19871 /* 19872 * If there's a spillover, but the following 19873 * xmit_tail couldn't give us enough octets 19874 * to reach "len", then stop the current 19875 * Multidata creation and let the legacy 19876 * tcp_send() path take over. We don't want 19877 * to send the tiny segment as part of this 19878 * Multidata for performance reasons; instead, 19879 * we let the legacy path deal with grouping 19880 * it with the subsequent small mblks. 19881 */ 19882 if (*usable >= len && 19883 MBLKL((*xmit_tail)->b_cont) < spill) { 19884 max_pld = 0; 19885 break; /* done */ 19886 } 19887 19888 /* 19889 * We can't spillover, and we are near 19890 * the end of the current payload buffer, 19891 * so send what's left. 19892 */ 19893 ASSERT(*tail_unsent > 0); 19894 len = *tail_unsent; 19895 } 19896 19897 /* tail_unsent is negated if there is a spillover */ 19898 *tail_unsent -= len; 19899 *usable -= len; 19900 ASSERT(*usable >= 0); 19901 19902 if (*usable < mss) 19903 seg_len = *usable; 19904 /* 19905 * Sender SWS avoidance; see comments in tcp_send(); 19906 * everything else is the same, except that we only 19907 * do this here if there is no more data to be sent 19908 * following the current xmit_tail. We don't check 19909 * for 1-byte urgent data because we shouldn't get 19910 * here if TCP_URG_VALID is set. 19911 */ 19912 if (*usable > 0 && *usable < mss && 19913 ((md_pbuf_nxt == NULL && 19914 (*xmit_tail)->b_cont == NULL) || 19915 (md_pbuf_nxt != NULL && 19916 (*xmit_tail)->b_cont->b_cont == NULL)) && 19917 seg_len < (tcp->tcp_max_swnd >> 1) && 19918 (tcp->tcp_unsent - 19919 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19920 !tcp->tcp_zero_win_probe) { 19921 if ((*snxt + len) == tcp->tcp_snxt && 19922 (*snxt + len) == tcp->tcp_suna) { 19923 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19924 } 19925 done = B_TRUE; 19926 } 19927 19928 /* 19929 * Prime pump for IP's checksumming on our behalf; 19930 * include the adjustment for a source route if any. 19931 * Do this only for software/partial hardware checksum 19932 * offload, as this field gets zeroed out later for 19933 * the full hardware checksum offload case. 19934 */ 19935 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19936 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19937 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19938 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19939 } 19940 19941 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19942 *snxt += len; 19943 19944 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19945 /* 19946 * We set the PUSH bit only if TCP has no more buffered 19947 * data to be transmitted (or if sender SWS avoidance 19948 * takes place), as opposed to setting it for every 19949 * last packet in the burst. 19950 */ 19951 if (done || 19952 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19953 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19954 19955 /* 19956 * Set FIN bit if this is our last segment; snxt 19957 * already includes its length, and it will not 19958 * be adjusted after this point. 19959 */ 19960 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19961 *snxt == tcp->tcp_fss) { 19962 if (!tcp->tcp_fin_acked) { 19963 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19964 BUMP_MIB(&tcps->tcps_mib, 19965 tcpOutControl); 19966 } 19967 if (!tcp->tcp_fin_sent) { 19968 tcp->tcp_fin_sent = B_TRUE; 19969 /* 19970 * tcp state must be ESTABLISHED 19971 * in order for us to get here in 19972 * the first place. 19973 */ 19974 tcp->tcp_state = TCPS_FIN_WAIT_1; 19975 19976 /* 19977 * Upon returning from this routine, 19978 * tcp_wput_data() will set tcp_snxt 19979 * to be equal to snxt + tcp_fin_sent. 19980 * This is essentially the same as 19981 * setting it to tcp_fss + 1. 19982 */ 19983 } 19984 } 19985 19986 tcp->tcp_last_sent_len = (ushort_t)len; 19987 19988 len += tcp_hdr_len; 19989 if (tcp->tcp_ipversion == IPV4_VERSION) 19990 tcp->tcp_ipha->ipha_length = htons(len); 19991 else 19992 tcp->tcp_ip6h->ip6_plen = htons(len - 19993 ((char *)&tcp->tcp_ip6h[1] - 19994 tcp->tcp_iphc)); 19995 19996 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19997 19998 /* setup header fragment */ 19999 PDESC_HDR_ADD(pkt_info, 20000 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20001 tcp->tcp_mdt_hdr_head, /* head room */ 20002 tcp_hdr_len, /* len */ 20003 tcp->tcp_mdt_hdr_tail); /* tail room */ 20004 20005 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20006 hdr_frag_sz); 20007 ASSERT(MBLKIN(md_hbuf, 20008 (pkt_info->hdr_base - md_hbuf->b_rptr), 20009 PDESC_HDRSIZE(pkt_info))); 20010 20011 /* setup first payload fragment */ 20012 PDESC_PLD_INIT(pkt_info); 20013 PDESC_PLD_SPAN_ADD(pkt_info, 20014 pbuf_idx, /* index */ 20015 md_pbuf->b_rptr + cur_pld_off, /* start */ 20016 tcp->tcp_last_sent_len); /* len */ 20017 20018 /* create a split-packet in case of a spillover */ 20019 if (md_pbuf_nxt != NULL) { 20020 ASSERT(spill > 0); 20021 ASSERT(pbuf_idx_nxt > pbuf_idx); 20022 ASSERT(!add_buffer); 20023 20024 md_pbuf = md_pbuf_nxt; 20025 md_pbuf_nxt = NULL; 20026 pbuf_idx = pbuf_idx_nxt; 20027 pbuf_idx_nxt = -1; 20028 cur_pld_off = spill; 20029 20030 /* trim out first payload fragment */ 20031 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20032 20033 /* setup second payload fragment */ 20034 PDESC_PLD_SPAN_ADD(pkt_info, 20035 pbuf_idx, /* index */ 20036 md_pbuf->b_rptr, /* start */ 20037 spill); /* len */ 20038 20039 if ((*xmit_tail)->b_next == NULL) { 20040 /* 20041 * Store the lbolt used for RTT 20042 * estimation. We can only record one 20043 * timestamp per mblk so we do it when 20044 * we reach the end of the payload 20045 * buffer. Also we only take a new 20046 * timestamp sample when the previous 20047 * timed data from the same mblk has 20048 * been ack'ed. 20049 */ 20050 (*xmit_tail)->b_prev = local_time; 20051 (*xmit_tail)->b_next = 20052 (mblk_t *)(uintptr_t)first_snxt; 20053 } 20054 20055 first_snxt = *snxt - spill; 20056 20057 /* 20058 * Advance xmit_tail; usable could be 0 by 20059 * the time we got here, but we made sure 20060 * above that we would only spillover to 20061 * the next data block if usable includes 20062 * the spilled-over amount prior to the 20063 * subtraction. Therefore, we are sure 20064 * that xmit_tail->b_cont can't be NULL. 20065 */ 20066 ASSERT((*xmit_tail)->b_cont != NULL); 20067 *xmit_tail = (*xmit_tail)->b_cont; 20068 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20069 (uintptr_t)INT_MAX); 20070 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20071 } else { 20072 cur_pld_off += tcp->tcp_last_sent_len; 20073 } 20074 20075 /* 20076 * Fill in the header using the template header, and 20077 * add options such as time-stamp, ECN and/or SACK, 20078 * as needed. 20079 */ 20080 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20081 (clock_t)local_time, num_sack_blk); 20082 20083 /* take care of some IP header businesses */ 20084 if (af == AF_INET) { 20085 ipha = (ipha_t *)pkt_info->hdr_rptr; 20086 20087 ASSERT(OK_32PTR((uchar_t *)ipha)); 20088 ASSERT(PDESC_HDRL(pkt_info) >= 20089 IP_SIMPLE_HDR_LENGTH); 20090 ASSERT(ipha->ipha_version_and_hdr_length == 20091 IP_SIMPLE_HDR_VERSION); 20092 20093 /* 20094 * Assign ident value for current packet; see 20095 * related comments in ip_wput_ire() about the 20096 * contract private interface with clustering 20097 * group. 20098 */ 20099 clusterwide = B_FALSE; 20100 if (cl_inet_ipident != NULL) { 20101 ASSERT(cl_inet_isclusterwide != NULL); 20102 if ((*cl_inet_isclusterwide)(stack_id, 20103 IPPROTO_IP, AF_INET, 20104 (uint8_t *)(uintptr_t)src, NULL)) { 20105 ipha->ipha_ident = 20106 (*cl_inet_ipident)(stack_id, 20107 IPPROTO_IP, AF_INET, 20108 (uint8_t *)(uintptr_t)src, 20109 (uint8_t *)(uintptr_t)dst, 20110 NULL); 20111 clusterwide = B_TRUE; 20112 } 20113 } 20114 20115 if (!clusterwide) { 20116 ipha->ipha_ident = (uint16_t) 20117 atomic_add_32_nv( 20118 &ire->ire_ident, 1); 20119 } 20120 #ifndef _BIG_ENDIAN 20121 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20122 (ipha->ipha_ident >> 8); 20123 #endif 20124 } else { 20125 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20126 20127 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20128 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20129 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20130 ASSERT(PDESC_HDRL(pkt_info) >= 20131 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20132 TCP_CHECKSUM_SIZE)); 20133 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20134 20135 if (tcp->tcp_ip_forward_progress) { 20136 rconfirm = B_TRUE; 20137 tcp->tcp_ip_forward_progress = B_FALSE; 20138 } 20139 } 20140 20141 /* at least one payload span, and at most two */ 20142 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20143 20144 /* add the packet descriptor to Multidata */ 20145 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20146 KM_NOSLEEP)) == NULL) { 20147 /* 20148 * Any failure other than ENOMEM indicates 20149 * that we have passed in invalid pkt_info 20150 * or parameters to mmd_addpdesc, which must 20151 * not happen. 20152 * 20153 * EINVAL is a result of failure on boundary 20154 * checks against the pkt_info contents. It 20155 * should not happen, and we panic because 20156 * either there's horrible heap corruption, 20157 * and/or programming mistake. 20158 */ 20159 if (err != ENOMEM) { 20160 cmn_err(CE_PANIC, "tcp_multisend: " 20161 "pdesc logic error detected for " 20162 "tcp %p mmd %p pinfo %p (%d)\n", 20163 (void *)tcp, (void *)mmd, 20164 (void *)pkt_info, err); 20165 } 20166 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20167 goto legacy_send; /* out_of_mem */ 20168 } 20169 ASSERT(pkt != NULL); 20170 20171 /* calculate IP header and TCP checksums */ 20172 if (af == AF_INET) { 20173 /* calculate pseudo-header checksum */ 20174 cksum = (dst >> 16) + (dst & 0xFFFF) + 20175 (src >> 16) + (src & 0xFFFF); 20176 20177 /* offset for TCP header checksum */ 20178 up = IPH_TCPH_CHECKSUMP(ipha, 20179 IP_SIMPLE_HDR_LENGTH); 20180 } else { 20181 up = (uint16_t *)&ip6h->ip6_src; 20182 20183 /* calculate pseudo-header checksum */ 20184 cksum = up[0] + up[1] + up[2] + up[3] + 20185 up[4] + up[5] + up[6] + up[7] + 20186 up[8] + up[9] + up[10] + up[11] + 20187 up[12] + up[13] + up[14] + up[15]; 20188 20189 /* Fold the initial sum */ 20190 cksum = (cksum & 0xffff) + (cksum >> 16); 20191 20192 up = (uint16_t *)(((uchar_t *)ip6h) + 20193 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20194 } 20195 20196 if (hwcksum_flags & HCK_FULLCKSUM) { 20197 /* clear checksum field for hardware */ 20198 *up = 0; 20199 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20200 uint32_t sum; 20201 20202 /* pseudo-header checksumming */ 20203 sum = *up + cksum + IP_TCP_CSUM_COMP; 20204 sum = (sum & 0xFFFF) + (sum >> 16); 20205 *up = (sum & 0xFFFF) + (sum >> 16); 20206 } else { 20207 /* software checksumming */ 20208 TCP_STAT(tcps, tcp_out_sw_cksum); 20209 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20210 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20211 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20212 cksum + IP_TCP_CSUM_COMP); 20213 if (*up == 0) 20214 *up = 0xFFFF; 20215 } 20216 20217 /* IPv4 header checksum */ 20218 if (af == AF_INET) { 20219 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20220 ipha->ipha_hdr_checksum = 0; 20221 } else { 20222 IP_HDR_CKSUM(ipha, cksum, 20223 ((uint32_t *)ipha)[0], 20224 ((uint16_t *)ipha)[4]); 20225 } 20226 } 20227 20228 if (af == AF_INET && 20229 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20230 af == AF_INET6 && 20231 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20232 mblk_t *mp, *mp1; 20233 uchar_t *hdr_rptr, *hdr_wptr; 20234 uchar_t *pld_rptr, *pld_wptr; 20235 20236 /* 20237 * We reconstruct a pseudo packet for the hooks 20238 * framework using mmd_transform_link(). 20239 * If it is a split packet we pullup the 20240 * payload. FW_HOOKS expects a pkt comprising 20241 * of two mblks: a header and the payload. 20242 */ 20243 if ((mp = mmd_transform_link(pkt)) == NULL) { 20244 TCP_STAT(tcps, tcp_mdt_allocfail); 20245 goto legacy_send; 20246 } 20247 20248 if (pkt_info->pld_cnt > 1) { 20249 /* split payload, more than one pld */ 20250 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20251 NULL) { 20252 freemsg(mp); 20253 TCP_STAT(tcps, 20254 tcp_mdt_allocfail); 20255 goto legacy_send; 20256 } 20257 freemsg(mp->b_cont); 20258 mp->b_cont = mp1; 20259 } else { 20260 mp1 = mp->b_cont; 20261 } 20262 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20263 20264 /* 20265 * Remember the message offsets. This is so we 20266 * can detect changes when we return from the 20267 * FW_HOOKS callbacks. 20268 */ 20269 hdr_rptr = mp->b_rptr; 20270 hdr_wptr = mp->b_wptr; 20271 pld_rptr = mp->b_cont->b_rptr; 20272 pld_wptr = mp->b_cont->b_wptr; 20273 20274 if (af == AF_INET) { 20275 DTRACE_PROBE4( 20276 ip4__physical__out__start, 20277 ill_t *, NULL, 20278 ill_t *, ill, 20279 ipha_t *, ipha, 20280 mblk_t *, mp); 20281 FW_HOOKS( 20282 ipst->ips_ip4_physical_out_event, 20283 ipst->ips_ipv4firewall_physical_out, 20284 NULL, ill, ipha, mp, mp, 0, ipst); 20285 DTRACE_PROBE1( 20286 ip4__physical__out__end, 20287 mblk_t *, mp); 20288 } else { 20289 DTRACE_PROBE4( 20290 ip6__physical__out_start, 20291 ill_t *, NULL, 20292 ill_t *, ill, 20293 ip6_t *, ip6h, 20294 mblk_t *, mp); 20295 FW_HOOKS6( 20296 ipst->ips_ip6_physical_out_event, 20297 ipst->ips_ipv6firewall_physical_out, 20298 NULL, ill, ip6h, mp, mp, 0, ipst); 20299 DTRACE_PROBE1( 20300 ip6__physical__out__end, 20301 mblk_t *, mp); 20302 } 20303 20304 if (mp == NULL || 20305 (mp1 = mp->b_cont) == NULL || 20306 mp->b_rptr != hdr_rptr || 20307 mp->b_wptr != hdr_wptr || 20308 mp1->b_rptr != pld_rptr || 20309 mp1->b_wptr != pld_wptr || 20310 mp1->b_cont != NULL) { 20311 /* 20312 * We abandon multidata processing and 20313 * return to the normal path, either 20314 * when a packet is blocked, or when 20315 * the boundaries of header buffer or 20316 * payload buffer have been changed by 20317 * FW_HOOKS[6]. 20318 */ 20319 if (mp != NULL) 20320 freemsg(mp); 20321 goto legacy_send; 20322 } 20323 /* Finished with the pseudo packet */ 20324 freemsg(mp); 20325 } 20326 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 20327 ill, ipha, ip6h); 20328 /* advance header offset */ 20329 cur_hdr_off += hdr_frag_sz; 20330 20331 obbytes += tcp->tcp_last_sent_len; 20332 ++obsegs; 20333 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20334 *tail_unsent > 0); 20335 20336 if ((*xmit_tail)->b_next == NULL) { 20337 /* 20338 * Store the lbolt used for RTT estimation. We can only 20339 * record one timestamp per mblk so we do it when we 20340 * reach the end of the payload buffer. Also we only 20341 * take a new timestamp sample when the previous timed 20342 * data from the same mblk has been ack'ed. 20343 */ 20344 (*xmit_tail)->b_prev = local_time; 20345 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20346 } 20347 20348 ASSERT(*tail_unsent >= 0); 20349 if (*tail_unsent > 0) { 20350 /* 20351 * We got here because we broke out of the above 20352 * loop due to of one of the following cases: 20353 * 20354 * 1. len < adjusted MSS (i.e. small), 20355 * 2. Sender SWS avoidance, 20356 * 3. max_pld is zero. 20357 * 20358 * We are done for this Multidata, so trim our 20359 * last payload buffer (if any) accordingly. 20360 */ 20361 if (md_pbuf != NULL) 20362 md_pbuf->b_wptr -= *tail_unsent; 20363 } else if (*usable > 0) { 20364 *xmit_tail = (*xmit_tail)->b_cont; 20365 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20366 (uintptr_t)INT_MAX); 20367 *tail_unsent = (int)MBLKL(*xmit_tail); 20368 add_buffer = B_TRUE; 20369 } 20370 } while (!done && *usable > 0 && num_burst_seg > 0 && 20371 (tcp_mdt_chain || max_pld > 0)); 20372 20373 if (md_mp_head != NULL) { 20374 /* send everything down */ 20375 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20376 &rconfirm); 20377 } 20378 20379 #undef PREP_NEW_MULTIDATA 20380 #undef PREP_NEW_PBUF 20381 #undef IPVER 20382 20383 IRE_REFRELE(ire); 20384 return (0); 20385 } 20386 20387 /* 20388 * A wrapper function for sending one or more Multidata messages down to 20389 * the module below ip; this routine does not release the reference of the 20390 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20391 */ 20392 static void 20393 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20394 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20395 { 20396 uint64_t delta; 20397 nce_t *nce; 20398 tcp_stack_t *tcps = tcp->tcp_tcps; 20399 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20400 20401 ASSERT(ire != NULL && ill != NULL); 20402 ASSERT(ire->ire_stq != NULL); 20403 ASSERT(md_mp_head != NULL); 20404 ASSERT(rconfirm != NULL); 20405 20406 /* adjust MIBs and IRE timestamp */ 20407 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 20408 tcp->tcp_obsegs += obsegs; 20409 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20410 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20411 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20412 20413 if (tcp->tcp_ipversion == IPV4_VERSION) { 20414 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20415 } else { 20416 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20417 } 20418 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20419 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20420 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20421 20422 ire->ire_ob_pkt_count += obsegs; 20423 if (ire->ire_ipif != NULL) 20424 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20425 ire->ire_last_used_time = lbolt; 20426 20427 if (ipst->ips_ipobs_enabled) { 20428 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 20429 pdesc_t *dl_pkt; 20430 pdescinfo_t pinfo; 20431 mblk_t *nmp; 20432 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 20433 20434 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 20435 (dl_pkt != NULL); 20436 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 20437 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 20438 continue; 20439 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 20440 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 20441 freemsg(nmp); 20442 } 20443 } 20444 20445 /* send it down */ 20446 putnext(ire->ire_stq, md_mp_head); 20447 20448 /* we're done for TCP/IPv4 */ 20449 if (tcp->tcp_ipversion == IPV4_VERSION) 20450 return; 20451 20452 nce = ire->ire_nce; 20453 20454 ASSERT(nce != NULL); 20455 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20456 ASSERT(nce->nce_state != ND_INCOMPLETE); 20457 20458 /* reachability confirmation? */ 20459 if (*rconfirm) { 20460 nce->nce_last = TICK_TO_MSEC(lbolt64); 20461 if (nce->nce_state != ND_REACHABLE) { 20462 mutex_enter(&nce->nce_lock); 20463 nce->nce_state = ND_REACHABLE; 20464 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20465 mutex_exit(&nce->nce_lock); 20466 (void) untimeout(nce->nce_timeout_id); 20467 if (ip_debug > 2) { 20468 /* ip1dbg */ 20469 pr_addr_dbg("tcp_multisend_data: state " 20470 "for %s changed to REACHABLE\n", 20471 AF_INET6, &ire->ire_addr_v6); 20472 } 20473 } 20474 /* reset transport reachability confirmation */ 20475 *rconfirm = B_FALSE; 20476 } 20477 20478 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20479 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20480 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20481 20482 if (delta > (uint64_t)ill->ill_reachable_time) { 20483 mutex_enter(&nce->nce_lock); 20484 switch (nce->nce_state) { 20485 case ND_REACHABLE: 20486 case ND_STALE: 20487 /* 20488 * ND_REACHABLE is identical to ND_STALE in this 20489 * specific case. If reachable time has expired for 20490 * this neighbor (delta is greater than reachable 20491 * time), conceptually, the neighbor cache is no 20492 * longer in REACHABLE state, but already in STALE 20493 * state. So the correct transition here is to 20494 * ND_DELAY. 20495 */ 20496 nce->nce_state = ND_DELAY; 20497 mutex_exit(&nce->nce_lock); 20498 NDP_RESTART_TIMER(nce, 20499 ipst->ips_delay_first_probe_time); 20500 if (ip_debug > 3) { 20501 /* ip2dbg */ 20502 pr_addr_dbg("tcp_multisend_data: state " 20503 "for %s changed to DELAY\n", 20504 AF_INET6, &ire->ire_addr_v6); 20505 } 20506 break; 20507 case ND_DELAY: 20508 case ND_PROBE: 20509 mutex_exit(&nce->nce_lock); 20510 /* Timers have already started */ 20511 break; 20512 case ND_UNREACHABLE: 20513 /* 20514 * ndp timer has detected that this nce is 20515 * unreachable and initiated deleting this nce 20516 * and all its associated IREs. This is a race 20517 * where we found the ire before it was deleted 20518 * and have just sent out a packet using this 20519 * unreachable nce. 20520 */ 20521 mutex_exit(&nce->nce_lock); 20522 break; 20523 default: 20524 ASSERT(0); 20525 } 20526 } 20527 } 20528 20529 /* 20530 * Derived from tcp_send_data(). 20531 */ 20532 static void 20533 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20534 int num_lso_seg) 20535 { 20536 ipha_t *ipha; 20537 mblk_t *ire_fp_mp; 20538 uint_t ire_fp_mp_len; 20539 uint32_t hcksum_txflags = 0; 20540 ipaddr_t src; 20541 ipaddr_t dst; 20542 uint32_t cksum; 20543 uint16_t *up; 20544 tcp_stack_t *tcps = tcp->tcp_tcps; 20545 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20546 20547 ASSERT(DB_TYPE(mp) == M_DATA); 20548 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20549 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20550 ASSERT(tcp->tcp_connp != NULL); 20551 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20552 20553 ipha = (ipha_t *)mp->b_rptr; 20554 src = ipha->ipha_src; 20555 dst = ipha->ipha_dst; 20556 20557 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 20558 20559 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20560 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20561 num_lso_seg); 20562 #ifndef _BIG_ENDIAN 20563 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20564 #endif 20565 if (tcp->tcp_snd_zcopy_aware) { 20566 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20567 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20568 mp = tcp_zcopy_disable(tcp, mp); 20569 } 20570 20571 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20572 ASSERT(ill->ill_hcksum_capab != NULL); 20573 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20574 } 20575 20576 /* 20577 * Since the TCP checksum should be recalculated by h/w, we can just 20578 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20579 * pseudo-header checksum for HCK_PARTIALCKSUM. 20580 * The partial pseudo-header excludes TCP length, that was calculated 20581 * in tcp_send(), so to zero *up before further processing. 20582 */ 20583 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20584 20585 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20586 *up = 0; 20587 20588 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20589 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20590 20591 /* 20592 * Append LSO flags and mss to the mp. 20593 */ 20594 lso_info_set(mp, mss, HW_LSO); 20595 20596 ipha->ipha_fragment_offset_and_flags |= 20597 (uint32_t)htons(ire->ire_frag_flag); 20598 20599 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20600 ire_fp_mp_len = MBLKL(ire_fp_mp); 20601 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20602 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20603 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20604 20605 UPDATE_OB_PKT_COUNT(ire); 20606 ire->ire_last_used_time = lbolt; 20607 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20608 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20609 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20610 ntohs(ipha->ipha_length)); 20611 20612 DTRACE_PROBE4(ip4__physical__out__start, 20613 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 20614 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20615 ipst->ips_ipv4firewall_physical_out, NULL, 20616 ill, ipha, mp, mp, 0, ipst); 20617 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20618 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 20619 20620 if (mp != NULL) { 20621 if (ipst->ips_ipobs_enabled) { 20622 zoneid_t szone; 20623 20624 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 20625 ipst, ALL_ZONES); 20626 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 20627 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 20628 } 20629 20630 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL); 20631 } 20632 } 20633 20634 /* 20635 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20636 * scheme, and returns one of the following: 20637 * 20638 * -1 = failed allocation. 20639 * 0 = success; burst count reached, or usable send window is too small, 20640 * and that we'd rather wait until later before sending again. 20641 * 1 = success; we are called from tcp_multisend(), and both usable send 20642 * window and tail_unsent are greater than the MDT threshold, and thus 20643 * Multidata Transmit should be used instead. 20644 */ 20645 static int 20646 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20647 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20648 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20649 const int mdt_thres) 20650 { 20651 int num_burst_seg = tcp->tcp_snd_burst; 20652 ire_t *ire = NULL; 20653 ill_t *ill = NULL; 20654 mblk_t *ire_fp_mp = NULL; 20655 uint_t ire_fp_mp_len = 0; 20656 int num_lso_seg = 1; 20657 uint_t lso_usable; 20658 boolean_t do_lso_send = B_FALSE; 20659 tcp_stack_t *tcps = tcp->tcp_tcps; 20660 20661 /* 20662 * Check LSO capability before any further work. And the similar check 20663 * need to be done in for(;;) loop. 20664 * LSO will be deployed when therer is more than one mss of available 20665 * data and a burst transmission is allowed. 20666 */ 20667 if (tcp->tcp_lso && 20668 (tcp->tcp_valid_bits == 0 || 20669 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20670 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20671 /* 20672 * Try to find usable IRE/ILL and do basic check to the ILL. 20673 * Double check LSO usability before going further, since the 20674 * underlying interface could have been changed. In case of any 20675 * change of LSO capability, set tcp_ire_ill_check_done to 20676 * B_FALSE to force to check the ILL with the next send. 20677 */ 20678 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) && 20679 tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 20680 /* 20681 * Enable LSO with this transmission. 20682 * Since IRE has been hold in tcp_send_find_ire_ill(), 20683 * IRE_REFRELE(ire) should be called before return. 20684 */ 20685 do_lso_send = B_TRUE; 20686 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20687 ire_fp_mp_len = MBLKL(ire_fp_mp); 20688 /* Round up to multiple of 4 */ 20689 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20690 } else { 20691 tcp->tcp_lso = B_FALSE; 20692 tcp->tcp_ire_ill_check_done = B_FALSE; 20693 do_lso_send = B_FALSE; 20694 ill = NULL; 20695 } 20696 } 20697 20698 for (;;) { 20699 struct datab *db; 20700 tcph_t *tcph; 20701 uint32_t sum; 20702 mblk_t *mp, *mp1; 20703 uchar_t *rptr; 20704 int len; 20705 20706 /* 20707 * If we're called by tcp_multisend(), and the amount of 20708 * sendable data as well as the size of current xmit_tail 20709 * is beyond the MDT threshold, return to the caller and 20710 * let the large data transmit be done using MDT. 20711 */ 20712 if (*usable > 0 && *usable > mdt_thres && 20713 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20714 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20715 ASSERT(tcp->tcp_mdt); 20716 return (1); /* success; do large send */ 20717 } 20718 20719 if (num_burst_seg == 0) 20720 break; /* success; burst count reached */ 20721 20722 /* 20723 * Calculate the maximum payload length we can send in *one* 20724 * time. 20725 */ 20726 if (do_lso_send) { 20727 /* 20728 * Check whether need to do LSO any more. 20729 */ 20730 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20731 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20732 lso_usable = MIN(lso_usable, 20733 num_burst_seg * mss); 20734 20735 num_lso_seg = lso_usable / mss; 20736 if (lso_usable % mss) { 20737 num_lso_seg++; 20738 tcp->tcp_last_sent_len = (ushort_t) 20739 (lso_usable % mss); 20740 } else { 20741 tcp->tcp_last_sent_len = (ushort_t)mss; 20742 } 20743 } else { 20744 do_lso_send = B_FALSE; 20745 num_lso_seg = 1; 20746 lso_usable = mss; 20747 } 20748 } 20749 20750 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20751 20752 /* 20753 * Adjust num_burst_seg here. 20754 */ 20755 num_burst_seg -= num_lso_seg; 20756 20757 len = mss; 20758 if (len > *usable) { 20759 ASSERT(do_lso_send == B_FALSE); 20760 20761 len = *usable; 20762 if (len <= 0) { 20763 /* Terminate the loop */ 20764 break; /* success; too small */ 20765 } 20766 /* 20767 * Sender silly-window avoidance. 20768 * Ignore this if we are going to send a 20769 * zero window probe out. 20770 * 20771 * TODO: force data into microscopic window? 20772 * ==> (!pushed || (unsent > usable)) 20773 */ 20774 if (len < (tcp->tcp_max_swnd >> 1) && 20775 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20776 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20777 len == 1) && (! tcp->tcp_zero_win_probe)) { 20778 /* 20779 * If the retransmit timer is not running 20780 * we start it so that we will retransmit 20781 * in the case when the the receiver has 20782 * decremented the window. 20783 */ 20784 if (*snxt == tcp->tcp_snxt && 20785 *snxt == tcp->tcp_suna) { 20786 /* 20787 * We are not supposed to send 20788 * anything. So let's wait a little 20789 * bit longer before breaking SWS 20790 * avoidance. 20791 * 20792 * What should the value be? 20793 * Suggestion: MAX(init rexmit time, 20794 * tcp->tcp_rto) 20795 */ 20796 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20797 } 20798 break; /* success; too small */ 20799 } 20800 } 20801 20802 tcph = tcp->tcp_tcph; 20803 20804 /* 20805 * The reason to adjust len here is that we need to set flags 20806 * and calculate checksum. 20807 */ 20808 if (do_lso_send) 20809 len = lso_usable; 20810 20811 *usable -= len; /* Approximate - can be adjusted later */ 20812 if (*usable > 0) 20813 tcph->th_flags[0] = TH_ACK; 20814 else 20815 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20816 20817 /* 20818 * Prime pump for IP's checksumming on our behalf 20819 * Include the adjustment for a source route if any. 20820 */ 20821 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20822 sum = (sum >> 16) + (sum & 0xFFFF); 20823 U16_TO_ABE16(sum, tcph->th_sum); 20824 20825 U32_TO_ABE32(*snxt, tcph->th_seq); 20826 20827 /* 20828 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20829 * set. For the case when TCP_FSS_VALID is the only valid 20830 * bit (normal active close), branch off only when we think 20831 * that the FIN flag needs to be set. Note for this case, 20832 * that (snxt + len) may not reflect the actual seg_len, 20833 * as len may be further reduced in tcp_xmit_mp(). If len 20834 * gets modified, we will end up here again. 20835 */ 20836 if (tcp->tcp_valid_bits != 0 && 20837 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20838 ((*snxt + len) == tcp->tcp_fss))) { 20839 uchar_t *prev_rptr; 20840 uint32_t prev_snxt = tcp->tcp_snxt; 20841 20842 if (*tail_unsent == 0) { 20843 ASSERT((*xmit_tail)->b_cont != NULL); 20844 *xmit_tail = (*xmit_tail)->b_cont; 20845 prev_rptr = (*xmit_tail)->b_rptr; 20846 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20847 (*xmit_tail)->b_rptr); 20848 } else { 20849 prev_rptr = (*xmit_tail)->b_rptr; 20850 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20851 *tail_unsent; 20852 } 20853 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20854 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20855 /* Restore tcp_snxt so we get amount sent right. */ 20856 tcp->tcp_snxt = prev_snxt; 20857 if (prev_rptr == (*xmit_tail)->b_rptr) { 20858 /* 20859 * If the previous timestamp is still in use, 20860 * don't stomp on it. 20861 */ 20862 if ((*xmit_tail)->b_next == NULL) { 20863 (*xmit_tail)->b_prev = local_time; 20864 (*xmit_tail)->b_next = 20865 (mblk_t *)(uintptr_t)(*snxt); 20866 } 20867 } else 20868 (*xmit_tail)->b_rptr = prev_rptr; 20869 20870 if (mp == NULL) { 20871 if (ire != NULL) 20872 IRE_REFRELE(ire); 20873 return (-1); 20874 } 20875 mp1 = mp->b_cont; 20876 20877 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20878 tcp->tcp_last_sent_len = (ushort_t)len; 20879 while (mp1->b_cont) { 20880 *xmit_tail = (*xmit_tail)->b_cont; 20881 (*xmit_tail)->b_prev = local_time; 20882 (*xmit_tail)->b_next = 20883 (mblk_t *)(uintptr_t)(*snxt); 20884 mp1 = mp1->b_cont; 20885 } 20886 *snxt += len; 20887 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20888 BUMP_LOCAL(tcp->tcp_obsegs); 20889 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20890 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20891 tcp_send_data(tcp, q, mp); 20892 continue; 20893 } 20894 20895 *snxt += len; /* Adjust later if we don't send all of len */ 20896 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20897 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20898 20899 if (*tail_unsent) { 20900 /* Are the bytes above us in flight? */ 20901 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20902 if (rptr != (*xmit_tail)->b_rptr) { 20903 *tail_unsent -= len; 20904 if (len <= mss) /* LSO is unusable */ 20905 tcp->tcp_last_sent_len = (ushort_t)len; 20906 len += tcp_hdr_len; 20907 if (tcp->tcp_ipversion == IPV4_VERSION) 20908 tcp->tcp_ipha->ipha_length = htons(len); 20909 else 20910 tcp->tcp_ip6h->ip6_plen = 20911 htons(len - 20912 ((char *)&tcp->tcp_ip6h[1] - 20913 tcp->tcp_iphc)); 20914 mp = dupb(*xmit_tail); 20915 if (mp == NULL) { 20916 if (ire != NULL) 20917 IRE_REFRELE(ire); 20918 return (-1); /* out_of_mem */ 20919 } 20920 mp->b_rptr = rptr; 20921 /* 20922 * If the old timestamp is no longer in use, 20923 * sample a new timestamp now. 20924 */ 20925 if ((*xmit_tail)->b_next == NULL) { 20926 (*xmit_tail)->b_prev = local_time; 20927 (*xmit_tail)->b_next = 20928 (mblk_t *)(uintptr_t)(*snxt-len); 20929 } 20930 goto must_alloc; 20931 } 20932 } else { 20933 *xmit_tail = (*xmit_tail)->b_cont; 20934 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20935 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20936 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20937 (*xmit_tail)->b_rptr); 20938 } 20939 20940 (*xmit_tail)->b_prev = local_time; 20941 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20942 20943 *tail_unsent -= len; 20944 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20945 tcp->tcp_last_sent_len = (ushort_t)len; 20946 20947 len += tcp_hdr_len; 20948 if (tcp->tcp_ipversion == IPV4_VERSION) 20949 tcp->tcp_ipha->ipha_length = htons(len); 20950 else 20951 tcp->tcp_ip6h->ip6_plen = htons(len - 20952 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20953 20954 mp = dupb(*xmit_tail); 20955 if (mp == NULL) { 20956 if (ire != NULL) 20957 IRE_REFRELE(ire); 20958 return (-1); /* out_of_mem */ 20959 } 20960 20961 len = tcp_hdr_len; 20962 /* 20963 * There are four reasons to allocate a new hdr mblk: 20964 * 1) The bytes above us are in use by another packet 20965 * 2) We don't have good alignment 20966 * 3) The mblk is being shared 20967 * 4) We don't have enough room for a header 20968 */ 20969 rptr = mp->b_rptr - len; 20970 if (!OK_32PTR(rptr) || 20971 ((db = mp->b_datap), db->db_ref != 2) || 20972 rptr < db->db_base + ire_fp_mp_len) { 20973 /* NOTE: we assume allocb returns an OK_32PTR */ 20974 20975 must_alloc:; 20976 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20977 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 20978 if (mp1 == NULL) { 20979 freemsg(mp); 20980 if (ire != NULL) 20981 IRE_REFRELE(ire); 20982 return (-1); /* out_of_mem */ 20983 } 20984 mp1->b_cont = mp; 20985 mp = mp1; 20986 /* Leave room for Link Level header */ 20987 len = tcp_hdr_len; 20988 rptr = 20989 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 20990 mp->b_wptr = &rptr[len]; 20991 } 20992 20993 /* 20994 * Fill in the header using the template header, and add 20995 * options such as time-stamp, ECN and/or SACK, as needed. 20996 */ 20997 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20998 20999 mp->b_rptr = rptr; 21000 21001 if (*tail_unsent) { 21002 int spill = *tail_unsent; 21003 21004 mp1 = mp->b_cont; 21005 if (mp1 == NULL) 21006 mp1 = mp; 21007 21008 /* 21009 * If we're a little short, tack on more mblks until 21010 * there is no more spillover. 21011 */ 21012 while (spill < 0) { 21013 mblk_t *nmp; 21014 int nmpsz; 21015 21016 nmp = (*xmit_tail)->b_cont; 21017 nmpsz = MBLKL(nmp); 21018 21019 /* 21020 * Excess data in mblk; can we split it? 21021 * If MDT is enabled for the connection, 21022 * keep on splitting as this is a transient 21023 * send path. 21024 */ 21025 if (!do_lso_send && !tcp->tcp_mdt && 21026 (spill + nmpsz > 0)) { 21027 /* 21028 * Don't split if stream head was 21029 * told to break up larger writes 21030 * into smaller ones. 21031 */ 21032 if (tcp->tcp_maxpsz > 0) 21033 break; 21034 21035 /* 21036 * Next mblk is less than SMSS/2 21037 * rounded up to nearest 64-byte; 21038 * let it get sent as part of the 21039 * next segment. 21040 */ 21041 if (tcp->tcp_localnet && 21042 !tcp->tcp_cork && 21043 (nmpsz < roundup((mss >> 1), 64))) 21044 break; 21045 } 21046 21047 *xmit_tail = nmp; 21048 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21049 /* Stash for rtt use later */ 21050 (*xmit_tail)->b_prev = local_time; 21051 (*xmit_tail)->b_next = 21052 (mblk_t *)(uintptr_t)(*snxt - len); 21053 mp1->b_cont = dupb(*xmit_tail); 21054 mp1 = mp1->b_cont; 21055 21056 spill += nmpsz; 21057 if (mp1 == NULL) { 21058 *tail_unsent = spill; 21059 freemsg(mp); 21060 if (ire != NULL) 21061 IRE_REFRELE(ire); 21062 return (-1); /* out_of_mem */ 21063 } 21064 } 21065 21066 /* Trim back any surplus on the last mblk */ 21067 if (spill >= 0) { 21068 mp1->b_wptr -= spill; 21069 *tail_unsent = spill; 21070 } else { 21071 /* 21072 * We did not send everything we could in 21073 * order to remain within the b_cont limit. 21074 */ 21075 *usable -= spill; 21076 *snxt += spill; 21077 tcp->tcp_last_sent_len += spill; 21078 UPDATE_MIB(&tcps->tcps_mib, 21079 tcpOutDataBytes, spill); 21080 /* 21081 * Adjust the checksum 21082 */ 21083 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21084 sum += spill; 21085 sum = (sum >> 16) + (sum & 0xFFFF); 21086 U16_TO_ABE16(sum, tcph->th_sum); 21087 if (tcp->tcp_ipversion == IPV4_VERSION) { 21088 sum = ntohs( 21089 ((ipha_t *)rptr)->ipha_length) + 21090 spill; 21091 ((ipha_t *)rptr)->ipha_length = 21092 htons(sum); 21093 } else { 21094 sum = ntohs( 21095 ((ip6_t *)rptr)->ip6_plen) + 21096 spill; 21097 ((ip6_t *)rptr)->ip6_plen = 21098 htons(sum); 21099 } 21100 *tail_unsent = 0; 21101 } 21102 } 21103 if (tcp->tcp_ip_forward_progress) { 21104 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21105 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21106 tcp->tcp_ip_forward_progress = B_FALSE; 21107 } 21108 21109 if (do_lso_send) { 21110 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21111 num_lso_seg); 21112 tcp->tcp_obsegs += num_lso_seg; 21113 21114 TCP_STAT(tcps, tcp_lso_times); 21115 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21116 } else { 21117 tcp_send_data(tcp, q, mp); 21118 BUMP_LOCAL(tcp->tcp_obsegs); 21119 } 21120 } 21121 21122 if (ire != NULL) 21123 IRE_REFRELE(ire); 21124 return (0); 21125 } 21126 21127 /* Unlink and return any mblk that looks like it contains a MDT info */ 21128 static mblk_t * 21129 tcp_mdt_info_mp(mblk_t *mp) 21130 { 21131 mblk_t *prev_mp; 21132 21133 for (;;) { 21134 prev_mp = mp; 21135 /* no more to process? */ 21136 if ((mp = mp->b_cont) == NULL) 21137 break; 21138 21139 switch (DB_TYPE(mp)) { 21140 case M_CTL: 21141 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21142 continue; 21143 ASSERT(prev_mp != NULL); 21144 prev_mp->b_cont = mp->b_cont; 21145 mp->b_cont = NULL; 21146 return (mp); 21147 default: 21148 break; 21149 } 21150 } 21151 return (mp); 21152 } 21153 21154 /* MDT info update routine, called when IP notifies us about MDT */ 21155 static void 21156 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21157 { 21158 boolean_t prev_state; 21159 tcp_stack_t *tcps = tcp->tcp_tcps; 21160 21161 /* 21162 * IP is telling us to abort MDT on this connection? We know 21163 * this because the capability is only turned off when IP 21164 * encounters some pathological cases, e.g. link-layer change 21165 * where the new driver doesn't support MDT, or in situation 21166 * where MDT usage on the link-layer has been switched off. 21167 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21168 * if the link-layer doesn't support MDT, and if it does, it 21169 * will indicate that the feature is to be turned on. 21170 */ 21171 prev_state = tcp->tcp_mdt; 21172 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21173 if (!tcp->tcp_mdt && !first) { 21174 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21175 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21176 (void *)tcp->tcp_connp)); 21177 } 21178 21179 /* 21180 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21181 * so disable MDT otherwise. The checks are done here 21182 * and in tcp_wput_data(). 21183 */ 21184 if (tcp->tcp_mdt && 21185 (tcp->tcp_ipversion == IPV4_VERSION && 21186 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21187 (tcp->tcp_ipversion == IPV6_VERSION && 21188 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21189 tcp->tcp_mdt = B_FALSE; 21190 21191 if (tcp->tcp_mdt) { 21192 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21193 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21194 "version (%d), expected version is %d", 21195 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21196 tcp->tcp_mdt = B_FALSE; 21197 return; 21198 } 21199 21200 /* 21201 * We need the driver to be able to handle at least three 21202 * spans per packet in order for tcp MDT to be utilized. 21203 * The first is for the header portion, while the rest are 21204 * needed to handle a packet that straddles across two 21205 * virtually non-contiguous buffers; a typical tcp packet 21206 * therefore consists of only two spans. Note that we take 21207 * a zero as "don't care". 21208 */ 21209 if (mdt_capab->ill_mdt_span_limit > 0 && 21210 mdt_capab->ill_mdt_span_limit < 3) { 21211 tcp->tcp_mdt = B_FALSE; 21212 return; 21213 } 21214 21215 /* a zero means driver wants default value */ 21216 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21217 tcps->tcps_mdt_max_pbufs); 21218 if (tcp->tcp_mdt_max_pld == 0) 21219 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21220 21221 /* ensure 32-bit alignment */ 21222 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21223 mdt_capab->ill_mdt_hdr_head), 4); 21224 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21225 mdt_capab->ill_mdt_hdr_tail), 4); 21226 21227 if (!first && !prev_state) { 21228 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21229 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21230 (void *)tcp->tcp_connp)); 21231 } 21232 } 21233 } 21234 21235 /* Unlink and return any mblk that looks like it contains a LSO info */ 21236 static mblk_t * 21237 tcp_lso_info_mp(mblk_t *mp) 21238 { 21239 mblk_t *prev_mp; 21240 21241 for (;;) { 21242 prev_mp = mp; 21243 /* no more to process? */ 21244 if ((mp = mp->b_cont) == NULL) 21245 break; 21246 21247 switch (DB_TYPE(mp)) { 21248 case M_CTL: 21249 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21250 continue; 21251 ASSERT(prev_mp != NULL); 21252 prev_mp->b_cont = mp->b_cont; 21253 mp->b_cont = NULL; 21254 return (mp); 21255 default: 21256 break; 21257 } 21258 } 21259 21260 return (mp); 21261 } 21262 21263 /* LSO info update routine, called when IP notifies us about LSO */ 21264 static void 21265 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21266 { 21267 tcp_stack_t *tcps = tcp->tcp_tcps; 21268 21269 /* 21270 * IP is telling us to abort LSO on this connection? We know 21271 * this because the capability is only turned off when IP 21272 * encounters some pathological cases, e.g. link-layer change 21273 * where the new NIC/driver doesn't support LSO, or in situation 21274 * where LSO usage on the link-layer has been switched off. 21275 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21276 * if the link-layer doesn't support LSO, and if it does, it 21277 * will indicate that the feature is to be turned on. 21278 */ 21279 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21280 TCP_STAT(tcps, tcp_lso_enabled); 21281 21282 /* 21283 * We currently only support LSO on simple TCP/IPv4, 21284 * so disable LSO otherwise. The checks are done here 21285 * and in tcp_wput_data(). 21286 */ 21287 if (tcp->tcp_lso && 21288 (tcp->tcp_ipversion == IPV4_VERSION && 21289 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21290 (tcp->tcp_ipversion == IPV6_VERSION)) { 21291 tcp->tcp_lso = B_FALSE; 21292 TCP_STAT(tcps, tcp_lso_disabled); 21293 } else { 21294 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21295 lso_capab->ill_lso_max); 21296 } 21297 } 21298 21299 static void 21300 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21301 { 21302 conn_t *connp = tcp->tcp_connp; 21303 tcp_stack_t *tcps = tcp->tcp_tcps; 21304 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21305 21306 ASSERT(ire != NULL); 21307 21308 /* 21309 * We may be in the fastpath here, and although we essentially do 21310 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21311 * we try to keep things as brief as possible. After all, these 21312 * are only best-effort checks, and we do more thorough ones prior 21313 * to calling tcp_send()/tcp_multisend(). 21314 */ 21315 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21316 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21317 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21318 !(ire->ire_flags & RTF_MULTIRT) && 21319 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21320 CONN_IS_LSO_MD_FASTPATH(connp)) { 21321 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21322 /* Cache the result */ 21323 connp->conn_lso_ok = B_TRUE; 21324 21325 ASSERT(ill->ill_lso_capab != NULL); 21326 if (!ill->ill_lso_capab->ill_lso_on) { 21327 ill->ill_lso_capab->ill_lso_on = 1; 21328 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21329 "LSO for interface %s\n", (void *)connp, 21330 ill->ill_name)); 21331 } 21332 tcp_lso_update(tcp, ill->ill_lso_capab); 21333 } else if (ipst->ips_ip_multidata_outbound && 21334 ILL_MDT_CAPABLE(ill)) { 21335 /* Cache the result */ 21336 connp->conn_mdt_ok = B_TRUE; 21337 21338 ASSERT(ill->ill_mdt_capab != NULL); 21339 if (!ill->ill_mdt_capab->ill_mdt_on) { 21340 ill->ill_mdt_capab->ill_mdt_on = 1; 21341 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21342 "MDT for interface %s\n", (void *)connp, 21343 ill->ill_name)); 21344 } 21345 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21346 } 21347 } 21348 21349 /* 21350 * The goal is to reduce the number of generated tcp segments by 21351 * setting the maxpsz multiplier to 0; this will have an affect on 21352 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21353 * into each packet, up to SMSS bytes. Doing this reduces the number 21354 * of outbound segments and incoming ACKs, thus allowing for better 21355 * network and system performance. In contrast the legacy behavior 21356 * may result in sending less than SMSS size, because the last mblk 21357 * for some packets may have more data than needed to make up SMSS, 21358 * and the legacy code refused to "split" it. 21359 * 21360 * We apply the new behavior on following situations: 21361 * 21362 * 1) Loopback connections, 21363 * 2) Connections in which the remote peer is not on local subnet, 21364 * 3) Local subnet connections over the bge interface (see below). 21365 * 21366 * Ideally, we would like this behavior to apply for interfaces other 21367 * than bge. However, doing so would negatively impact drivers which 21368 * perform dynamic mapping and unmapping of DMA resources, which are 21369 * increased by setting the maxpsz multiplier to 0 (more mblks per 21370 * packet will be generated by tcp). The bge driver does not suffer 21371 * from this, as it copies the mblks into pre-mapped buffers, and 21372 * therefore does not require more I/O resources than before. 21373 * 21374 * Otherwise, this behavior is present on all network interfaces when 21375 * the destination endpoint is non-local, since reducing the number 21376 * of packets in general is good for the network. 21377 * 21378 * TODO We need to remove this hard-coded conditional for bge once 21379 * a better "self-tuning" mechanism, or a way to comprehend 21380 * the driver transmit strategy is devised. Until the solution 21381 * is found and well understood, we live with this hack. 21382 */ 21383 if (!tcp_static_maxpsz && 21384 (tcp->tcp_loopback || !tcp->tcp_localnet || 21385 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21386 /* override the default value */ 21387 tcp->tcp_maxpsz = 0; 21388 21389 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21390 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21391 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21392 } 21393 21394 /* set the stream head parameters accordingly */ 21395 (void) tcp_maxpsz_set(tcp, B_TRUE); 21396 } 21397 21398 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21399 static void 21400 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21401 { 21402 uchar_t fval = *mp->b_rptr; 21403 mblk_t *tail; 21404 queue_t *q = tcp->tcp_wq; 21405 21406 /* TODO: How should flush interact with urgent data? */ 21407 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21408 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21409 /* 21410 * Flush only data that has not yet been put on the wire. If 21411 * we flush data that we have already transmitted, life, as we 21412 * know it, may come to an end. 21413 */ 21414 tail = tcp->tcp_xmit_tail; 21415 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21416 tcp->tcp_xmit_tail_unsent = 0; 21417 tcp->tcp_unsent = 0; 21418 if (tail->b_wptr != tail->b_rptr) 21419 tail = tail->b_cont; 21420 if (tail) { 21421 mblk_t **excess = &tcp->tcp_xmit_head; 21422 for (;;) { 21423 mblk_t *mp1 = *excess; 21424 if (mp1 == tail) 21425 break; 21426 tcp->tcp_xmit_tail = mp1; 21427 tcp->tcp_xmit_last = mp1; 21428 excess = &mp1->b_cont; 21429 } 21430 *excess = NULL; 21431 tcp_close_mpp(&tail); 21432 if (tcp->tcp_snd_zcopy_aware) 21433 tcp_zcopy_notify(tcp); 21434 } 21435 /* 21436 * We have no unsent data, so unsent must be less than 21437 * tcp_xmit_lowater, so re-enable flow. 21438 */ 21439 mutex_enter(&tcp->tcp_non_sq_lock); 21440 if (tcp->tcp_flow_stopped) { 21441 tcp_clrqfull(tcp); 21442 } 21443 mutex_exit(&tcp->tcp_non_sq_lock); 21444 } 21445 /* 21446 * TODO: you can't just flush these, you have to increase rwnd for one 21447 * thing. For another, how should urgent data interact? 21448 */ 21449 if (fval & FLUSHR) { 21450 *mp->b_rptr = fval & ~FLUSHW; 21451 /* XXX */ 21452 qreply(q, mp); 21453 return; 21454 } 21455 freemsg(mp); 21456 } 21457 21458 /* 21459 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21460 * messages. 21461 */ 21462 static void 21463 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21464 { 21465 mblk_t *mp1; 21466 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 21467 STRUCT_HANDLE(strbuf, sb); 21468 queue_t *q = tcp->tcp_wq; 21469 int error; 21470 uint_t addrlen; 21471 21472 /* Make sure it is one of ours. */ 21473 switch (iocp->ioc_cmd) { 21474 case TI_GETMYNAME: 21475 case TI_GETPEERNAME: 21476 break; 21477 default: 21478 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21479 return; 21480 } 21481 switch (mi_copy_state(q, mp, &mp1)) { 21482 case -1: 21483 return; 21484 case MI_COPY_CASE(MI_COPY_IN, 1): 21485 break; 21486 case MI_COPY_CASE(MI_COPY_OUT, 1): 21487 /* Copy out the strbuf. */ 21488 mi_copyout(q, mp); 21489 return; 21490 case MI_COPY_CASE(MI_COPY_OUT, 2): 21491 /* All done. */ 21492 mi_copy_done(q, mp, 0); 21493 return; 21494 default: 21495 mi_copy_done(q, mp, EPROTO); 21496 return; 21497 } 21498 /* Check alignment of the strbuf */ 21499 if (!OK_32PTR(mp1->b_rptr)) { 21500 mi_copy_done(q, mp, EINVAL); 21501 return; 21502 } 21503 21504 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 21505 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21506 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21507 mi_copy_done(q, mp, EINVAL); 21508 return; 21509 } 21510 21511 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21512 if (mp1 == NULL) 21513 return; 21514 21515 switch (iocp->ioc_cmd) { 21516 case TI_GETMYNAME: 21517 error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen); 21518 break; 21519 case TI_GETPEERNAME: 21520 error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 21521 break; 21522 } 21523 21524 if (error != 0) { 21525 mi_copy_done(q, mp, error); 21526 } else { 21527 mp1->b_wptr += addrlen; 21528 STRUCT_FSET(sb, len, addrlen); 21529 21530 /* Copy out the address */ 21531 mi_copyout(q, mp); 21532 } 21533 } 21534 21535 static void 21536 tcp_use_pure_tpi(tcp_t *tcp) 21537 { 21538 #ifdef _ILP32 21539 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 21540 #else 21541 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21542 #endif 21543 /* 21544 * Insert this socket into the acceptor hash. 21545 * We might need it for T_CONN_RES message 21546 */ 21547 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21548 21549 tcp->tcp_issocket = B_FALSE; 21550 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 21551 } 21552 21553 /* 21554 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21555 * messages. 21556 */ 21557 /* ARGSUSED */ 21558 static void 21559 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21560 { 21561 conn_t *connp = (conn_t *)arg; 21562 tcp_t *tcp = connp->conn_tcp; 21563 queue_t *q = tcp->tcp_wq; 21564 struct iocblk *iocp; 21565 21566 ASSERT(DB_TYPE(mp) == M_IOCTL); 21567 /* 21568 * Try and ASSERT the minimum possible references on the 21569 * conn early enough. Since we are executing on write side, 21570 * the connection is obviously not detached and that means 21571 * there is a ref each for TCP and IP. Since we are behind 21572 * the squeue, the minimum references needed are 3. If the 21573 * conn is in classifier hash list, there should be an 21574 * extra ref for that (we check both the possibilities). 21575 */ 21576 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21577 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21578 21579 iocp = (struct iocblk *)mp->b_rptr; 21580 switch (iocp->ioc_cmd) { 21581 case TCP_IOC_DEFAULT_Q: 21582 /* Wants to be the default wq. */ 21583 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21584 iocp->ioc_error = EPERM; 21585 iocp->ioc_count = 0; 21586 mp->b_datap->db_type = M_IOCACK; 21587 qreply(q, mp); 21588 return; 21589 } 21590 tcp_def_q_set(tcp, mp); 21591 return; 21592 case _SIOCSOCKFALLBACK: 21593 /* 21594 * Either sockmod is about to be popped and the socket 21595 * would now be treated as a plain stream, or a module 21596 * is about to be pushed so we could no longer use read- 21597 * side synchronous streams for fused loopback tcp. 21598 * Drain any queued data and disable direct sockfs 21599 * interface from now on. 21600 */ 21601 if (!tcp->tcp_issocket) { 21602 DB_TYPE(mp) = M_IOCNAK; 21603 iocp->ioc_error = EINVAL; 21604 } else { 21605 tcp_use_pure_tpi(tcp); 21606 DB_TYPE(mp) = M_IOCACK; 21607 iocp->ioc_error = 0; 21608 } 21609 iocp->ioc_count = 0; 21610 iocp->ioc_rval = 0; 21611 qreply(q, mp); 21612 return; 21613 } 21614 CALL_IP_WPUT(connp, q, mp); 21615 } 21616 21617 /* 21618 * This routine is called by tcp_wput() to handle all TPI requests. 21619 */ 21620 /* ARGSUSED */ 21621 static void 21622 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21623 { 21624 conn_t *connp = (conn_t *)arg; 21625 tcp_t *tcp = connp->conn_tcp; 21626 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21627 uchar_t *rptr; 21628 t_scalar_t type; 21629 cred_t *cr; 21630 21631 /* 21632 * Try and ASSERT the minimum possible references on the 21633 * conn early enough. Since we are executing on write side, 21634 * the connection is obviously not detached and that means 21635 * there is a ref each for TCP and IP. Since we are behind 21636 * the squeue, the minimum references needed are 3. If the 21637 * conn is in classifier hash list, there should be an 21638 * extra ref for that (we check both the possibilities). 21639 */ 21640 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21641 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21642 21643 rptr = mp->b_rptr; 21644 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21645 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21646 type = ((union T_primitives *)rptr)->type; 21647 if (type == T_EXDATA_REQ) { 21648 tcp_output_urgent(connp, mp, arg2); 21649 } else if (type != T_DATA_REQ) { 21650 goto non_urgent_data; 21651 } else { 21652 /* TODO: options, flags, ... from user */ 21653 /* Set length to zero for reclamation below */ 21654 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21655 freeb(mp); 21656 } 21657 return; 21658 } else { 21659 if (tcp->tcp_debug) { 21660 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21661 "tcp_wput_proto, dropping one..."); 21662 } 21663 freemsg(mp); 21664 return; 21665 } 21666 21667 non_urgent_data: 21668 21669 switch ((int)tprim->type) { 21670 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21671 /* 21672 * save the kssl_ent_t from the next block, and convert this 21673 * back to a normal bind_req. 21674 */ 21675 if (mp->b_cont != NULL) { 21676 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21677 21678 if (tcp->tcp_kssl_ent != NULL) { 21679 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21680 KSSL_NO_PROXY); 21681 tcp->tcp_kssl_ent = NULL; 21682 } 21683 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21684 sizeof (kssl_ent_t)); 21685 kssl_hold_ent(tcp->tcp_kssl_ent); 21686 freemsg(mp->b_cont); 21687 mp->b_cont = NULL; 21688 } 21689 tprim->type = T_BIND_REQ; 21690 21691 /* FALLTHROUGH */ 21692 case O_T_BIND_REQ: /* bind request */ 21693 case T_BIND_REQ: /* new semantics bind request */ 21694 tcp_tpi_bind(tcp, mp); 21695 break; 21696 case T_UNBIND_REQ: /* unbind request */ 21697 tcp_tpi_unbind(tcp, mp); 21698 break; 21699 case O_T_CONN_RES: /* old connection response XXX */ 21700 case T_CONN_RES: /* connection response */ 21701 tcp_tli_accept(tcp, mp); 21702 break; 21703 case T_CONN_REQ: /* connection request */ 21704 tcp_tpi_connect(tcp, mp); 21705 break; 21706 case T_DISCON_REQ: /* disconnect request */ 21707 tcp_disconnect(tcp, mp); 21708 break; 21709 case T_CAPABILITY_REQ: 21710 tcp_capability_req(tcp, mp); /* capability request */ 21711 break; 21712 case T_INFO_REQ: /* information request */ 21713 tcp_info_req(tcp, mp); 21714 break; 21715 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21716 case T_OPTMGMT_REQ: 21717 /* 21718 * Note: no support for snmpcom_req() through new 21719 * T_OPTMGMT_REQ. See comments in ip.c 21720 */ 21721 21722 /* 21723 * All Solaris components should pass a db_credp 21724 * for this TPI message, hence we ASSERT. 21725 * But in case there is some other M_PROTO that looks 21726 * like a TPI message sent by some other kernel 21727 * component, we check and return an error. 21728 */ 21729 cr = msg_getcred(mp, NULL); 21730 ASSERT(cr != NULL); 21731 if (cr == NULL) { 21732 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 21733 return; 21734 } 21735 /* 21736 * If EINPROGRESS is returned, the request has been queued 21737 * for subsequent processing by ip_restart_optmgmt(), which 21738 * will do the CONN_DEC_REF(). 21739 */ 21740 CONN_INC_REF(connp); 21741 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 21742 if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21743 B_TRUE) != EINPROGRESS) { 21744 CONN_DEC_REF(connp); 21745 } 21746 } else { 21747 if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21748 B_TRUE) != EINPROGRESS) { 21749 CONN_DEC_REF(connp); 21750 } 21751 } 21752 break; 21753 21754 case T_UNITDATA_REQ: /* unitdata request */ 21755 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21756 break; 21757 case T_ORDREL_REQ: /* orderly release req */ 21758 freemsg(mp); 21759 21760 if (tcp->tcp_fused) 21761 tcp_unfuse(tcp); 21762 21763 if (tcp_xmit_end(tcp) != 0) { 21764 /* 21765 * We were crossing FINs and got a reset from 21766 * the other side. Just ignore it. 21767 */ 21768 if (tcp->tcp_debug) { 21769 (void) strlog(TCP_MOD_ID, 0, 1, 21770 SL_ERROR|SL_TRACE, 21771 "tcp_wput_proto, T_ORDREL_REQ out of " 21772 "state %s", 21773 tcp_display(tcp, NULL, 21774 DISP_ADDR_AND_PORT)); 21775 } 21776 } 21777 break; 21778 case T_ADDR_REQ: 21779 tcp_addr_req(tcp, mp); 21780 break; 21781 default: 21782 if (tcp->tcp_debug) { 21783 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21784 "tcp_wput_proto, bogus TPI msg, type %d", 21785 tprim->type); 21786 } 21787 /* 21788 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21789 * to recover. 21790 */ 21791 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21792 break; 21793 } 21794 } 21795 21796 /* 21797 * The TCP write service routine should never be called... 21798 */ 21799 /* ARGSUSED */ 21800 static void 21801 tcp_wsrv(queue_t *q) 21802 { 21803 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 21804 21805 TCP_STAT(tcps, tcp_wsrv_called); 21806 } 21807 21808 /* Non overlapping byte exchanger */ 21809 static void 21810 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21811 { 21812 uchar_t uch; 21813 21814 while (len-- > 0) { 21815 uch = a[len]; 21816 a[len] = b[len]; 21817 b[len] = uch; 21818 } 21819 } 21820 21821 /* 21822 * Send out a control packet on the tcp connection specified. This routine 21823 * is typically called where we need a simple ACK or RST generated. 21824 */ 21825 static void 21826 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21827 { 21828 uchar_t *rptr; 21829 tcph_t *tcph; 21830 ipha_t *ipha = NULL; 21831 ip6_t *ip6h = NULL; 21832 uint32_t sum; 21833 int tcp_hdr_len; 21834 int tcp_ip_hdr_len; 21835 mblk_t *mp; 21836 tcp_stack_t *tcps = tcp->tcp_tcps; 21837 21838 /* 21839 * Save sum for use in source route later. 21840 */ 21841 ASSERT(tcp != NULL); 21842 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21843 tcp_hdr_len = tcp->tcp_hdr_len; 21844 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21845 21846 /* If a text string is passed in with the request, pass it to strlog. */ 21847 if (str != NULL && tcp->tcp_debug) { 21848 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21849 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21850 str, seq, ack, ctl); 21851 } 21852 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 21853 BPRI_MED); 21854 if (mp == NULL) { 21855 return; 21856 } 21857 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 21858 mp->b_rptr = rptr; 21859 mp->b_wptr = &rptr[tcp_hdr_len]; 21860 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21861 21862 if (tcp->tcp_ipversion == IPV4_VERSION) { 21863 ipha = (ipha_t *)rptr; 21864 ipha->ipha_length = htons(tcp_hdr_len); 21865 } else { 21866 ip6h = (ip6_t *)rptr; 21867 ASSERT(tcp != NULL); 21868 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21869 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21870 } 21871 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21872 tcph->th_flags[0] = (uint8_t)ctl; 21873 if (ctl & TH_RST) { 21874 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 21875 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 21876 /* 21877 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21878 */ 21879 if (tcp->tcp_snd_ts_ok && 21880 tcp->tcp_state > TCPS_SYN_SENT) { 21881 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21882 *(mp->b_wptr) = TCPOPT_EOL; 21883 if (tcp->tcp_ipversion == IPV4_VERSION) { 21884 ipha->ipha_length = htons(tcp_hdr_len - 21885 TCPOPT_REAL_TS_LEN); 21886 } else { 21887 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21888 TCPOPT_REAL_TS_LEN); 21889 } 21890 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21891 sum -= TCPOPT_REAL_TS_LEN; 21892 } 21893 } 21894 if (ctl & TH_ACK) { 21895 if (tcp->tcp_snd_ts_ok) { 21896 U32_TO_BE32(lbolt, 21897 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21898 U32_TO_BE32(tcp->tcp_ts_recent, 21899 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21900 } 21901 21902 /* Update the latest receive window size in TCP header. */ 21903 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21904 tcph->th_win); 21905 tcp->tcp_rack = ack; 21906 tcp->tcp_rack_cnt = 0; 21907 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 21908 } 21909 BUMP_LOCAL(tcp->tcp_obsegs); 21910 U32_TO_BE32(seq, tcph->th_seq); 21911 U32_TO_BE32(ack, tcph->th_ack); 21912 /* 21913 * Include the adjustment for a source route if any. 21914 */ 21915 sum = (sum >> 16) + (sum & 0xFFFF); 21916 U16_TO_BE16(sum, tcph->th_sum); 21917 tcp_send_data(tcp, tcp->tcp_wq, mp); 21918 } 21919 21920 /* 21921 * If this routine returns B_TRUE, TCP can generate a RST in response 21922 * to a segment. If it returns B_FALSE, TCP should not respond. 21923 */ 21924 static boolean_t 21925 tcp_send_rst_chk(tcp_stack_t *tcps) 21926 { 21927 clock_t now; 21928 21929 /* 21930 * TCP needs to protect itself from generating too many RSTs. 21931 * This can be a DoS attack by sending us random segments 21932 * soliciting RSTs. 21933 * 21934 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21935 * in each 1 second interval. In this way, TCP still generate 21936 * RSTs in normal cases but when under attack, the impact is 21937 * limited. 21938 */ 21939 if (tcps->tcps_rst_sent_rate_enabled != 0) { 21940 now = lbolt; 21941 /* lbolt can wrap around. */ 21942 if ((tcps->tcps_last_rst_intrvl > now) || 21943 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 21944 1*SECONDS)) { 21945 tcps->tcps_last_rst_intrvl = now; 21946 tcps->tcps_rst_cnt = 1; 21947 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 21948 return (B_FALSE); 21949 } 21950 } 21951 return (B_TRUE); 21952 } 21953 21954 /* 21955 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21956 */ 21957 static void 21958 tcp_ip_ire_mark_advice(tcp_t *tcp) 21959 { 21960 mblk_t *mp; 21961 ipic_t *ipic; 21962 21963 if (tcp->tcp_ipversion == IPV4_VERSION) { 21964 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21965 &ipic); 21966 } else { 21967 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21968 &ipic); 21969 } 21970 if (mp == NULL) 21971 return; 21972 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21973 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21974 } 21975 21976 /* 21977 * Return an IP advice ioctl mblk and set ipic to be the pointer 21978 * to the advice structure. 21979 */ 21980 static mblk_t * 21981 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21982 { 21983 struct iocblk *ioc; 21984 mblk_t *mp, *mp1; 21985 21986 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21987 if (mp == NULL) 21988 return (NULL); 21989 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21990 *ipic = (ipic_t *)mp->b_rptr; 21991 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21992 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21993 21994 bcopy(addr, *ipic + 1, addr_len); 21995 21996 (*ipic)->ipic_addr_length = addr_len; 21997 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21998 21999 mp1 = mkiocb(IP_IOCTL); 22000 if (mp1 == NULL) { 22001 freemsg(mp); 22002 return (NULL); 22003 } 22004 mp1->b_cont = mp; 22005 ioc = (struct iocblk *)mp1->b_rptr; 22006 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22007 22008 return (mp1); 22009 } 22010 22011 /* 22012 * Generate a reset based on an inbound packet, connp is set by caller 22013 * when RST is in response to an unexpected inbound packet for which 22014 * there is active tcp state in the system. 22015 * 22016 * IPSEC NOTE : Try to send the reply with the same protection as it came 22017 * in. We still have the ipsec_mp that the packet was attached to. Thus 22018 * the packet will go out at the same level of protection as it came in by 22019 * converting the IPSEC_IN to IPSEC_OUT. 22020 */ 22021 static void 22022 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22023 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22024 tcp_stack_t *tcps, conn_t *connp) 22025 { 22026 ipha_t *ipha = NULL; 22027 ip6_t *ip6h = NULL; 22028 ushort_t len; 22029 tcph_t *tcph; 22030 int i; 22031 mblk_t *ipsec_mp; 22032 boolean_t mctl_present; 22033 ipic_t *ipic; 22034 ipaddr_t v4addr; 22035 in6_addr_t v6addr; 22036 int addr_len; 22037 void *addr; 22038 queue_t *q = tcps->tcps_g_q; 22039 tcp_t *tcp; 22040 cred_t *cr; 22041 pid_t pid; 22042 mblk_t *nmp; 22043 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22044 22045 if (tcps->tcps_g_q == NULL) { 22046 /* 22047 * For non-zero stackids the default queue isn't created 22048 * until the first open, thus there can be a need to send 22049 * a reset before then. But we can't do that, hence we just 22050 * drop the packet. Later during boot, when the default queue 22051 * has been setup, a retransmitted packet from the peer 22052 * will result in a reset. 22053 */ 22054 ASSERT(tcps->tcps_netstack->netstack_stackid != 22055 GLOBAL_NETSTACKID); 22056 freemsg(mp); 22057 return; 22058 } 22059 22060 if (connp != NULL) 22061 tcp = connp->conn_tcp; 22062 else 22063 tcp = Q_TO_TCP(q); 22064 22065 if (!tcp_send_rst_chk(tcps)) { 22066 tcps->tcps_rst_unsent++; 22067 freemsg(mp); 22068 return; 22069 } 22070 22071 if (mp->b_datap->db_type == M_CTL) { 22072 ipsec_mp = mp; 22073 mp = mp->b_cont; 22074 mctl_present = B_TRUE; 22075 } else { 22076 ipsec_mp = mp; 22077 mctl_present = B_FALSE; 22078 } 22079 22080 if (str && q && tcps->tcps_dbg) { 22081 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22082 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22083 "flags 0x%x", 22084 str, seq, ack, ctl); 22085 } 22086 if (mp->b_datap->db_ref != 1) { 22087 mblk_t *mp1 = copyb(mp); 22088 freemsg(mp); 22089 mp = mp1; 22090 if (!mp) { 22091 if (mctl_present) 22092 freeb(ipsec_mp); 22093 return; 22094 } else { 22095 if (mctl_present) { 22096 ipsec_mp->b_cont = mp; 22097 } else { 22098 ipsec_mp = mp; 22099 } 22100 } 22101 } else if (mp->b_cont) { 22102 freemsg(mp->b_cont); 22103 mp->b_cont = NULL; 22104 } 22105 /* 22106 * We skip reversing source route here. 22107 * (for now we replace all IP options with EOL) 22108 */ 22109 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22110 ipha = (ipha_t *)mp->b_rptr; 22111 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22112 mp->b_rptr[i] = IPOPT_EOL; 22113 /* 22114 * Make sure that src address isn't flagrantly invalid. 22115 * Not all broadcast address checking for the src address 22116 * is possible, since we don't know the netmask of the src 22117 * addr. No check for destination address is done, since 22118 * IP will not pass up a packet with a broadcast dest 22119 * address to TCP. Similar checks are done below for IPv6. 22120 */ 22121 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22122 CLASSD(ipha->ipha_src)) { 22123 freemsg(ipsec_mp); 22124 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22125 return; 22126 } 22127 } else { 22128 ip6h = (ip6_t *)mp->b_rptr; 22129 22130 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22131 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22132 freemsg(ipsec_mp); 22133 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22134 return; 22135 } 22136 22137 /* Remove any extension headers assuming partial overlay */ 22138 if (ip_hdr_len > IPV6_HDR_LEN) { 22139 uint8_t *to; 22140 22141 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22142 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22143 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22144 ip_hdr_len = IPV6_HDR_LEN; 22145 ip6h = (ip6_t *)mp->b_rptr; 22146 ip6h->ip6_nxt = IPPROTO_TCP; 22147 } 22148 } 22149 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22150 if (tcph->th_flags[0] & TH_RST) { 22151 freemsg(ipsec_mp); 22152 return; 22153 } 22154 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22155 len = ip_hdr_len + sizeof (tcph_t); 22156 mp->b_wptr = &mp->b_rptr[len]; 22157 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22158 ipha->ipha_length = htons(len); 22159 /* Swap addresses */ 22160 v4addr = ipha->ipha_src; 22161 ipha->ipha_src = ipha->ipha_dst; 22162 ipha->ipha_dst = v4addr; 22163 ipha->ipha_ident = 0; 22164 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22165 addr_len = IP_ADDR_LEN; 22166 addr = &v4addr; 22167 } else { 22168 /* No ip6i_t in this case */ 22169 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22170 /* Swap addresses */ 22171 v6addr = ip6h->ip6_src; 22172 ip6h->ip6_src = ip6h->ip6_dst; 22173 ip6h->ip6_dst = v6addr; 22174 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22175 addr_len = IPV6_ADDR_LEN; 22176 addr = &v6addr; 22177 } 22178 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22179 U32_TO_BE32(ack, tcph->th_ack); 22180 U32_TO_BE32(seq, tcph->th_seq); 22181 U16_TO_BE16(0, tcph->th_win); 22182 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22183 tcph->th_flags[0] = (uint8_t)ctl; 22184 if (ctl & TH_RST) { 22185 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22186 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22187 } 22188 22189 /* IP trusts us to set up labels when required. */ 22190 if (is_system_labeled() && (cr = msg_getcred(mp, &pid)) != NULL && 22191 crgetlabel(cr) != NULL) { 22192 int err; 22193 22194 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22195 err = tsol_check_label(cr, &mp, 22196 tcp->tcp_connp->conn_mac_exempt, 22197 tcps->tcps_netstack->netstack_ip, pid); 22198 else 22199 err = tsol_check_label_v6(cr, &mp, 22200 tcp->tcp_connp->conn_mac_exempt, 22201 tcps->tcps_netstack->netstack_ip, pid); 22202 if (mctl_present) 22203 ipsec_mp->b_cont = mp; 22204 else 22205 ipsec_mp = mp; 22206 if (err != 0) { 22207 freemsg(ipsec_mp); 22208 return; 22209 } 22210 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22211 ipha = (ipha_t *)mp->b_rptr; 22212 } else { 22213 ip6h = (ip6_t *)mp->b_rptr; 22214 } 22215 } 22216 22217 if (mctl_present) { 22218 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22219 22220 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22221 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22222 return; 22223 } 22224 } 22225 if (zoneid == ALL_ZONES) 22226 zoneid = GLOBAL_ZONEID; 22227 22228 /* Add the zoneid so ip_output routes it properly */ 22229 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22230 freemsg(ipsec_mp); 22231 return; 22232 } 22233 ipsec_mp = nmp; 22234 22235 /* 22236 * NOTE: one might consider tracing a TCP packet here, but 22237 * this function has no active TCP state and no tcp structure 22238 * that has a trace buffer. If we traced here, we would have 22239 * to keep a local trace buffer in tcp_record_trace(). 22240 * 22241 * TSol note: The mblk that contains the incoming packet was 22242 * reused by tcp_xmit_listener_reset, so it already contains 22243 * the right credentials and we don't need to call mblk_setcred. 22244 * Also the conn's cred is not right since it is associated 22245 * with tcps_g_q. 22246 */ 22247 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22248 22249 /* 22250 * Tell IP to mark the IRE used for this destination temporary. 22251 * This way, we can limit our exposure to DoS attack because IP 22252 * creates an IRE for each destination. If there are too many, 22253 * the time to do any routing lookup will be extremely long. And 22254 * the lookup can be in interrupt context. 22255 * 22256 * Note that in normal circumstances, this marking should not 22257 * affect anything. It would be nice if only 1 message is 22258 * needed to inform IP that the IRE created for this RST should 22259 * not be added to the cache table. But there is currently 22260 * not such communication mechanism between TCP and IP. So 22261 * the best we can do now is to send the advice ioctl to IP 22262 * to mark the IRE temporary. 22263 */ 22264 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22265 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22266 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22267 } 22268 } 22269 22270 /* 22271 * Initiate closedown sequence on an active connection. (May be called as 22272 * writer.) Return value zero for OK return, non-zero for error return. 22273 */ 22274 static int 22275 tcp_xmit_end(tcp_t *tcp) 22276 { 22277 ipic_t *ipic; 22278 mblk_t *mp; 22279 tcp_stack_t *tcps = tcp->tcp_tcps; 22280 22281 if (tcp->tcp_state < TCPS_SYN_RCVD || 22282 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22283 /* 22284 * Invalid state, only states TCPS_SYN_RCVD, 22285 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22286 */ 22287 return (-1); 22288 } 22289 22290 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22291 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22292 /* 22293 * If there is nothing more unsent, send the FIN now. 22294 * Otherwise, it will go out with the last segment. 22295 */ 22296 if (tcp->tcp_unsent == 0) { 22297 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22298 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22299 22300 if (mp) { 22301 tcp_send_data(tcp, tcp->tcp_wq, mp); 22302 } else { 22303 /* 22304 * Couldn't allocate msg. Pretend we got it out. 22305 * Wait for rexmit timeout. 22306 */ 22307 tcp->tcp_snxt = tcp->tcp_fss + 1; 22308 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22309 } 22310 22311 /* 22312 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22313 * changed. 22314 */ 22315 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22316 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22317 } 22318 } else { 22319 /* 22320 * If tcp->tcp_cork is set, then the data will not get sent, 22321 * so we have to check that and unset it first. 22322 */ 22323 if (tcp->tcp_cork) 22324 tcp->tcp_cork = B_FALSE; 22325 tcp_wput_data(tcp, NULL, B_FALSE); 22326 } 22327 22328 /* 22329 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22330 * is 0, don't update the cache. 22331 */ 22332 if (tcps->tcps_rtt_updates == 0 || 22333 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22334 return (0); 22335 22336 /* 22337 * NOTE: should not update if source routes i.e. if tcp_remote if 22338 * different from the destination. 22339 */ 22340 if (tcp->tcp_ipversion == IPV4_VERSION) { 22341 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22342 return (0); 22343 } 22344 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22345 &ipic); 22346 } else { 22347 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22348 &tcp->tcp_ip6h->ip6_dst))) { 22349 return (0); 22350 } 22351 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22352 &ipic); 22353 } 22354 22355 /* Record route attributes in the IRE for use by future connections. */ 22356 if (mp == NULL) 22357 return (0); 22358 22359 /* 22360 * We do not have a good algorithm to update ssthresh at this time. 22361 * So don't do any update. 22362 */ 22363 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22364 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22365 22366 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22367 22368 return (0); 22369 } 22370 22371 /* ARGSUSED */ 22372 void 22373 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2) 22374 { 22375 conn_t *connp = (conn_t *)arg; 22376 mblk_t *mp1; 22377 tcp_t *tcp = connp->conn_tcp; 22378 tcp_xmit_reset_event_t *eventp; 22379 22380 ASSERT(mp->b_datap->db_type == M_PROTO && 22381 MBLKL(mp) == sizeof (tcp_xmit_reset_event_t)); 22382 22383 if (tcp->tcp_state != TCPS_LISTEN) { 22384 freemsg(mp); 22385 return; 22386 } 22387 22388 mp1 = mp->b_cont; 22389 mp->b_cont = NULL; 22390 eventp = (tcp_xmit_reset_event_t *)mp->b_rptr; 22391 ASSERT(eventp->tcp_xre_tcps->tcps_netstack == 22392 connp->conn_netstack); 22393 22394 tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen, 22395 eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp); 22396 freemsg(mp); 22397 } 22398 22399 /* 22400 * Generate a "no listener here" RST in response to an "unknown" segment. 22401 * connp is set by caller when RST is in response to an unexpected 22402 * inbound packet for which there is active tcp state in the system. 22403 * Note that we are reusing the incoming mp to construct the outgoing RST. 22404 */ 22405 void 22406 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22407 tcp_stack_t *tcps, conn_t *connp) 22408 { 22409 uchar_t *rptr; 22410 uint32_t seg_len; 22411 tcph_t *tcph; 22412 uint32_t seg_seq; 22413 uint32_t seg_ack; 22414 uint_t flags; 22415 mblk_t *ipsec_mp; 22416 ipha_t *ipha; 22417 ip6_t *ip6h; 22418 boolean_t mctl_present = B_FALSE; 22419 boolean_t check = B_TRUE; 22420 boolean_t policy_present; 22421 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22422 22423 TCP_STAT(tcps, tcp_no_listener); 22424 22425 ipsec_mp = mp; 22426 22427 if (mp->b_datap->db_type == M_CTL) { 22428 ipsec_in_t *ii; 22429 22430 mctl_present = B_TRUE; 22431 mp = mp->b_cont; 22432 22433 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22434 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22435 if (ii->ipsec_in_dont_check) { 22436 check = B_FALSE; 22437 if (!ii->ipsec_in_secure) { 22438 freeb(ipsec_mp); 22439 mctl_present = B_FALSE; 22440 ipsec_mp = mp; 22441 } 22442 } 22443 } 22444 22445 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22446 policy_present = ipss->ipsec_inbound_v4_policy_present; 22447 ipha = (ipha_t *)mp->b_rptr; 22448 ip6h = NULL; 22449 } else { 22450 policy_present = ipss->ipsec_inbound_v6_policy_present; 22451 ipha = NULL; 22452 ip6h = (ip6_t *)mp->b_rptr; 22453 } 22454 22455 if (check && policy_present) { 22456 /* 22457 * The conn_t parameter is NULL because we already know 22458 * nobody's home. 22459 */ 22460 ipsec_mp = ipsec_check_global_policy( 22461 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22462 tcps->tcps_netstack); 22463 if (ipsec_mp == NULL) 22464 return; 22465 } 22466 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22467 DTRACE_PROBE2( 22468 tx__ip__log__error__nolistener__tcp, 22469 char *, "Could not reply with RST to mp(1)", 22470 mblk_t *, mp); 22471 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22472 freemsg(ipsec_mp); 22473 return; 22474 } 22475 22476 rptr = mp->b_rptr; 22477 22478 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22479 seg_seq = BE32_TO_U32(tcph->th_seq); 22480 seg_ack = BE32_TO_U32(tcph->th_ack); 22481 flags = tcph->th_flags[0]; 22482 22483 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22484 if (flags & TH_RST) { 22485 freemsg(ipsec_mp); 22486 } else if (flags & TH_ACK) { 22487 tcp_xmit_early_reset("no tcp, reset", 22488 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22489 connp); 22490 } else { 22491 if (flags & TH_SYN) { 22492 seg_len++; 22493 } else { 22494 /* 22495 * Here we violate the RFC. Note that a normal 22496 * TCP will never send a segment without the ACK 22497 * flag, except for RST or SYN segment. This 22498 * segment is neither. Just drop it on the 22499 * floor. 22500 */ 22501 freemsg(ipsec_mp); 22502 tcps->tcps_rst_unsent++; 22503 return; 22504 } 22505 22506 tcp_xmit_early_reset("no tcp, reset/ack", 22507 ipsec_mp, 0, seg_seq + seg_len, 22508 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22509 } 22510 } 22511 22512 /* 22513 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22514 * ip and tcp header ready to pass down to IP. If the mp passed in is 22515 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22516 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22517 * otherwise it will dup partial mblks.) 22518 * Otherwise, an appropriate ACK packet will be generated. This 22519 * routine is not usually called to send new data for the first time. It 22520 * is mostly called out of the timer for retransmits, and to generate ACKs. 22521 * 22522 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22523 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22524 * of the original mblk chain will be returned in *offset and *end_mp. 22525 */ 22526 mblk_t * 22527 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22528 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22529 boolean_t rexmit) 22530 { 22531 int data_length; 22532 int32_t off = 0; 22533 uint_t flags; 22534 mblk_t *mp1; 22535 mblk_t *mp2; 22536 uchar_t *rptr; 22537 tcph_t *tcph; 22538 int32_t num_sack_blk = 0; 22539 int32_t sack_opt_len = 0; 22540 tcp_stack_t *tcps = tcp->tcp_tcps; 22541 22542 /* Allocate for our maximum TCP header + link-level */ 22543 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22544 tcps->tcps_wroff_xtra, BPRI_MED); 22545 if (!mp1) 22546 return (NULL); 22547 data_length = 0; 22548 22549 /* 22550 * Note that tcp_mss has been adjusted to take into account the 22551 * timestamp option if applicable. Because SACK options do not 22552 * appear in every TCP segments and they are of variable lengths, 22553 * they cannot be included in tcp_mss. Thus we need to calculate 22554 * the actual segment length when we need to send a segment which 22555 * includes SACK options. 22556 */ 22557 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22558 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22559 tcp->tcp_num_sack_blk); 22560 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22561 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22562 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22563 max_to_send -= sack_opt_len; 22564 } 22565 22566 if (offset != NULL) { 22567 off = *offset; 22568 /* We use offset as an indicator that end_mp is not NULL. */ 22569 *end_mp = NULL; 22570 } 22571 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22572 /* This could be faster with cooperation from downstream */ 22573 if (mp2 != mp1 && !sendall && 22574 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22575 max_to_send) 22576 /* 22577 * Don't send the next mblk since the whole mblk 22578 * does not fit. 22579 */ 22580 break; 22581 mp2->b_cont = dupb(mp); 22582 mp2 = mp2->b_cont; 22583 if (!mp2) { 22584 freemsg(mp1); 22585 return (NULL); 22586 } 22587 mp2->b_rptr += off; 22588 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22589 (uintptr_t)INT_MAX); 22590 22591 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22592 if (data_length > max_to_send) { 22593 mp2->b_wptr -= data_length - max_to_send; 22594 data_length = max_to_send; 22595 off = mp2->b_wptr - mp->b_rptr; 22596 break; 22597 } else { 22598 off = 0; 22599 } 22600 } 22601 if (offset != NULL) { 22602 *offset = off; 22603 *end_mp = mp; 22604 } 22605 if (seg_len != NULL) { 22606 *seg_len = data_length; 22607 } 22608 22609 /* Update the latest receive window size in TCP header. */ 22610 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22611 tcp->tcp_tcph->th_win); 22612 22613 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22614 mp1->b_rptr = rptr; 22615 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22616 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22617 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22618 U32_TO_ABE32(seq, tcph->th_seq); 22619 22620 /* 22621 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22622 * that this function was called from tcp_wput_data. Thus, when called 22623 * to retransmit data the setting of the PUSH bit may appear some 22624 * what random in that it might get set when it should not. This 22625 * should not pose any performance issues. 22626 */ 22627 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22628 tcp->tcp_unsent == data_length)) { 22629 flags = TH_ACK | TH_PUSH; 22630 } else { 22631 flags = TH_ACK; 22632 } 22633 22634 if (tcp->tcp_ecn_ok) { 22635 if (tcp->tcp_ecn_echo_on) 22636 flags |= TH_ECE; 22637 22638 /* 22639 * Only set ECT bit and ECN_CWR if a segment contains new data. 22640 * There is no TCP flow control for non-data segments, and 22641 * only data segment is transmitted reliably. 22642 */ 22643 if (data_length > 0 && !rexmit) { 22644 SET_ECT(tcp, rptr); 22645 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22646 flags |= TH_CWR; 22647 tcp->tcp_ecn_cwr_sent = B_TRUE; 22648 } 22649 } 22650 } 22651 22652 if (tcp->tcp_valid_bits) { 22653 uint32_t u1; 22654 22655 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22656 seq == tcp->tcp_iss) { 22657 uchar_t *wptr; 22658 22659 /* 22660 * If TCP_ISS_VALID and the seq number is tcp_iss, 22661 * TCP can only be in SYN-SENT, SYN-RCVD or 22662 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22663 * our SYN is not ack'ed but the app closes this 22664 * TCP connection. 22665 */ 22666 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22667 tcp->tcp_state == TCPS_SYN_RCVD || 22668 tcp->tcp_state == TCPS_FIN_WAIT_1); 22669 22670 /* 22671 * Tack on the MSS option. It is always needed 22672 * for both active and passive open. 22673 * 22674 * MSS option value should be interface MTU - MIN 22675 * TCP/IP header according to RFC 793 as it means 22676 * the maximum segment size TCP can receive. But 22677 * to get around some broken middle boxes/end hosts 22678 * out there, we allow the option value to be the 22679 * same as the MSS option size on the peer side. 22680 * In this way, the other side will not send 22681 * anything larger than they can receive. 22682 * 22683 * Note that for SYN_SENT state, the ndd param 22684 * tcp_use_smss_as_mss_opt has no effect as we 22685 * don't know the peer's MSS option value. So 22686 * the only case we need to take care of is in 22687 * SYN_RCVD state, which is done later. 22688 */ 22689 wptr = mp1->b_wptr; 22690 wptr[0] = TCPOPT_MAXSEG; 22691 wptr[1] = TCPOPT_MAXSEG_LEN; 22692 wptr += 2; 22693 u1 = tcp->tcp_if_mtu - 22694 (tcp->tcp_ipversion == IPV4_VERSION ? 22695 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22696 TCP_MIN_HEADER_LENGTH; 22697 U16_TO_BE16(u1, wptr); 22698 mp1->b_wptr = wptr + 2; 22699 /* Update the offset to cover the additional word */ 22700 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22701 22702 /* 22703 * Note that the following way of filling in 22704 * TCP options are not optimal. Some NOPs can 22705 * be saved. But there is no need at this time 22706 * to optimize it. When it is needed, we will 22707 * do it. 22708 */ 22709 switch (tcp->tcp_state) { 22710 case TCPS_SYN_SENT: 22711 flags = TH_SYN; 22712 22713 if (tcp->tcp_snd_ts_ok) { 22714 uint32_t llbolt = (uint32_t)lbolt; 22715 22716 wptr = mp1->b_wptr; 22717 wptr[0] = TCPOPT_NOP; 22718 wptr[1] = TCPOPT_NOP; 22719 wptr[2] = TCPOPT_TSTAMP; 22720 wptr[3] = TCPOPT_TSTAMP_LEN; 22721 wptr += 4; 22722 U32_TO_BE32(llbolt, wptr); 22723 wptr += 4; 22724 ASSERT(tcp->tcp_ts_recent == 0); 22725 U32_TO_BE32(0L, wptr); 22726 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22727 tcph->th_offset_and_rsrvd[0] += 22728 (3 << 4); 22729 } 22730 22731 /* 22732 * Set up all the bits to tell other side 22733 * we are ECN capable. 22734 */ 22735 if (tcp->tcp_ecn_ok) { 22736 flags |= (TH_ECE | TH_CWR); 22737 } 22738 break; 22739 case TCPS_SYN_RCVD: 22740 flags |= TH_SYN; 22741 22742 /* 22743 * Reset the MSS option value to be SMSS 22744 * We should probably add back the bytes 22745 * for timestamp option and IPsec. We 22746 * don't do that as this is a workaround 22747 * for broken middle boxes/end hosts, it 22748 * is better for us to be more cautious. 22749 * They may not take these things into 22750 * account in their SMSS calculation. Thus 22751 * the peer's calculated SMSS may be smaller 22752 * than what it can be. This should be OK. 22753 */ 22754 if (tcps->tcps_use_smss_as_mss_opt) { 22755 u1 = tcp->tcp_mss; 22756 U16_TO_BE16(u1, wptr); 22757 } 22758 22759 /* 22760 * If the other side is ECN capable, reply 22761 * that we are also ECN capable. 22762 */ 22763 if (tcp->tcp_ecn_ok) 22764 flags |= TH_ECE; 22765 break; 22766 default: 22767 /* 22768 * The above ASSERT() makes sure that this 22769 * must be FIN-WAIT-1 state. Our SYN has 22770 * not been ack'ed so retransmit it. 22771 */ 22772 flags |= TH_SYN; 22773 break; 22774 } 22775 22776 if (tcp->tcp_snd_ws_ok) { 22777 wptr = mp1->b_wptr; 22778 wptr[0] = TCPOPT_NOP; 22779 wptr[1] = TCPOPT_WSCALE; 22780 wptr[2] = TCPOPT_WS_LEN; 22781 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22782 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22783 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22784 } 22785 22786 if (tcp->tcp_snd_sack_ok) { 22787 wptr = mp1->b_wptr; 22788 wptr[0] = TCPOPT_NOP; 22789 wptr[1] = TCPOPT_NOP; 22790 wptr[2] = TCPOPT_SACK_PERMITTED; 22791 wptr[3] = TCPOPT_SACK_OK_LEN; 22792 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22793 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22794 } 22795 22796 /* allocb() of adequate mblk assures space */ 22797 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22798 (uintptr_t)INT_MAX); 22799 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22800 /* 22801 * Get IP set to checksum on our behalf 22802 * Include the adjustment for a source route if any. 22803 */ 22804 u1 += tcp->tcp_sum; 22805 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22806 U16_TO_BE16(u1, tcph->th_sum); 22807 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22808 } 22809 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22810 (seq + data_length) == tcp->tcp_fss) { 22811 if (!tcp->tcp_fin_acked) { 22812 flags |= TH_FIN; 22813 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22814 } 22815 if (!tcp->tcp_fin_sent) { 22816 tcp->tcp_fin_sent = B_TRUE; 22817 switch (tcp->tcp_state) { 22818 case TCPS_SYN_RCVD: 22819 case TCPS_ESTABLISHED: 22820 tcp->tcp_state = TCPS_FIN_WAIT_1; 22821 break; 22822 case TCPS_CLOSE_WAIT: 22823 tcp->tcp_state = TCPS_LAST_ACK; 22824 break; 22825 } 22826 if (tcp->tcp_suna == tcp->tcp_snxt) 22827 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22828 tcp->tcp_snxt = tcp->tcp_fss + 1; 22829 } 22830 } 22831 /* 22832 * Note the trick here. u1 is unsigned. When tcp_urg 22833 * is smaller than seq, u1 will become a very huge value. 22834 * So the comparison will fail. Also note that tcp_urp 22835 * should be positive, see RFC 793 page 17. 22836 */ 22837 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22838 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22839 u1 < (uint32_t)(64 * 1024)) { 22840 flags |= TH_URG; 22841 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 22842 U32_TO_ABE16(u1, tcph->th_urp); 22843 } 22844 } 22845 tcph->th_flags[0] = (uchar_t)flags; 22846 tcp->tcp_rack = tcp->tcp_rnxt; 22847 tcp->tcp_rack_cnt = 0; 22848 22849 if (tcp->tcp_snd_ts_ok) { 22850 if (tcp->tcp_state != TCPS_SYN_SENT) { 22851 uint32_t llbolt = (uint32_t)lbolt; 22852 22853 U32_TO_BE32(llbolt, 22854 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22855 U32_TO_BE32(tcp->tcp_ts_recent, 22856 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22857 } 22858 } 22859 22860 if (num_sack_blk > 0) { 22861 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22862 sack_blk_t *tmp; 22863 int32_t i; 22864 22865 wptr[0] = TCPOPT_NOP; 22866 wptr[1] = TCPOPT_NOP; 22867 wptr[2] = TCPOPT_SACK; 22868 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22869 sizeof (sack_blk_t); 22870 wptr += TCPOPT_REAL_SACK_LEN; 22871 22872 tmp = tcp->tcp_sack_list; 22873 for (i = 0; i < num_sack_blk; i++) { 22874 U32_TO_BE32(tmp[i].begin, wptr); 22875 wptr += sizeof (tcp_seq); 22876 U32_TO_BE32(tmp[i].end, wptr); 22877 wptr += sizeof (tcp_seq); 22878 } 22879 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22880 } 22881 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22882 data_length += (int)(mp1->b_wptr - rptr); 22883 if (tcp->tcp_ipversion == IPV4_VERSION) { 22884 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22885 } else { 22886 ip6_t *ip6 = (ip6_t *)(rptr + 22887 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22888 sizeof (ip6i_t) : 0)); 22889 22890 ip6->ip6_plen = htons(data_length - 22891 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22892 } 22893 22894 /* 22895 * Prime pump for IP 22896 * Include the adjustment for a source route if any. 22897 */ 22898 data_length -= tcp->tcp_ip_hdr_len; 22899 data_length += tcp->tcp_sum; 22900 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22901 U16_TO_ABE16(data_length, tcph->th_sum); 22902 if (tcp->tcp_ip_forward_progress) { 22903 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22904 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22905 tcp->tcp_ip_forward_progress = B_FALSE; 22906 } 22907 return (mp1); 22908 } 22909 22910 /* This function handles the push timeout. */ 22911 void 22912 tcp_push_timer(void *arg) 22913 { 22914 conn_t *connp = (conn_t *)arg; 22915 tcp_t *tcp = connp->conn_tcp; 22916 22917 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 22918 22919 ASSERT(tcp->tcp_listener == NULL); 22920 22921 ASSERT(!IPCL_IS_NONSTR(connp)); 22922 22923 tcp->tcp_push_tid = 0; 22924 22925 if (tcp->tcp_rcv_list != NULL && 22926 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 22927 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22928 } 22929 22930 /* 22931 * This function handles delayed ACK timeout. 22932 */ 22933 static void 22934 tcp_ack_timer(void *arg) 22935 { 22936 conn_t *connp = (conn_t *)arg; 22937 tcp_t *tcp = connp->conn_tcp; 22938 mblk_t *mp; 22939 tcp_stack_t *tcps = tcp->tcp_tcps; 22940 22941 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 22942 22943 tcp->tcp_ack_tid = 0; 22944 22945 if (tcp->tcp_fused) 22946 return; 22947 22948 /* 22949 * Do not send ACK if there is no outstanding unack'ed data. 22950 */ 22951 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22952 return; 22953 } 22954 22955 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22956 /* 22957 * Make sure we don't allow deferred ACKs to result in 22958 * timer-based ACKing. If we have held off an ACK 22959 * when there was more than an mss here, and the timer 22960 * goes off, we have to worry about the possibility 22961 * that the sender isn't doing slow-start, or is out 22962 * of step with us for some other reason. We fall 22963 * permanently back in the direction of 22964 * ACK-every-other-packet as suggested in RFC 1122. 22965 */ 22966 if (tcp->tcp_rack_abs_max > 2) 22967 tcp->tcp_rack_abs_max--; 22968 tcp->tcp_rack_cur_max = 2; 22969 } 22970 mp = tcp_ack_mp(tcp); 22971 22972 if (mp != NULL) { 22973 BUMP_LOCAL(tcp->tcp_obsegs); 22974 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22975 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 22976 tcp_send_data(tcp, tcp->tcp_wq, mp); 22977 } 22978 } 22979 22980 22981 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22982 static mblk_t * 22983 tcp_ack_mp(tcp_t *tcp) 22984 { 22985 uint32_t seq_no; 22986 tcp_stack_t *tcps = tcp->tcp_tcps; 22987 22988 /* 22989 * There are a few cases to be considered while setting the sequence no. 22990 * Essentially, we can come here while processing an unacceptable pkt 22991 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 22992 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 22993 * If we are here for a zero window probe, stick with suna. In all 22994 * other cases, we check if suna + swnd encompasses snxt and set 22995 * the sequence number to snxt, if so. If snxt falls outside the 22996 * window (the receiver probably shrunk its window), we will go with 22997 * suna + swnd, otherwise the sequence no will be unacceptable to the 22998 * receiver. 22999 */ 23000 if (tcp->tcp_zero_win_probe) { 23001 seq_no = tcp->tcp_suna; 23002 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23003 ASSERT(tcp->tcp_swnd == 0); 23004 seq_no = tcp->tcp_snxt; 23005 } else { 23006 seq_no = SEQ_GT(tcp->tcp_snxt, 23007 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23008 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23009 } 23010 23011 if (tcp->tcp_valid_bits) { 23012 /* 23013 * For the complex case where we have to send some 23014 * controls (FIN or SYN), let tcp_xmit_mp do it. 23015 */ 23016 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23017 NULL, B_FALSE)); 23018 } else { 23019 /* Generate a simple ACK */ 23020 int data_length; 23021 uchar_t *rptr; 23022 tcph_t *tcph; 23023 mblk_t *mp1; 23024 int32_t tcp_hdr_len; 23025 int32_t tcp_tcp_hdr_len; 23026 int32_t num_sack_blk = 0; 23027 int32_t sack_opt_len; 23028 23029 /* 23030 * Allocate space for TCP + IP headers 23031 * and link-level header 23032 */ 23033 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23034 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23035 tcp->tcp_num_sack_blk); 23036 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23037 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23038 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23039 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23040 } else { 23041 tcp_hdr_len = tcp->tcp_hdr_len; 23042 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23043 } 23044 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23045 if (!mp1) 23046 return (NULL); 23047 23048 /* Update the latest receive window size in TCP header. */ 23049 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23050 tcp->tcp_tcph->th_win); 23051 /* copy in prototype TCP + IP header */ 23052 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23053 mp1->b_rptr = rptr; 23054 mp1->b_wptr = rptr + tcp_hdr_len; 23055 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23056 23057 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23058 23059 /* Set the TCP sequence number. */ 23060 U32_TO_ABE32(seq_no, tcph->th_seq); 23061 23062 /* Set up the TCP flag field. */ 23063 tcph->th_flags[0] = (uchar_t)TH_ACK; 23064 if (tcp->tcp_ecn_echo_on) 23065 tcph->th_flags[0] |= TH_ECE; 23066 23067 tcp->tcp_rack = tcp->tcp_rnxt; 23068 tcp->tcp_rack_cnt = 0; 23069 23070 /* fill in timestamp option if in use */ 23071 if (tcp->tcp_snd_ts_ok) { 23072 uint32_t llbolt = (uint32_t)lbolt; 23073 23074 U32_TO_BE32(llbolt, 23075 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23076 U32_TO_BE32(tcp->tcp_ts_recent, 23077 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23078 } 23079 23080 /* Fill in SACK options */ 23081 if (num_sack_blk > 0) { 23082 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23083 sack_blk_t *tmp; 23084 int32_t i; 23085 23086 wptr[0] = TCPOPT_NOP; 23087 wptr[1] = TCPOPT_NOP; 23088 wptr[2] = TCPOPT_SACK; 23089 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23090 sizeof (sack_blk_t); 23091 wptr += TCPOPT_REAL_SACK_LEN; 23092 23093 tmp = tcp->tcp_sack_list; 23094 for (i = 0; i < num_sack_blk; i++) { 23095 U32_TO_BE32(tmp[i].begin, wptr); 23096 wptr += sizeof (tcp_seq); 23097 U32_TO_BE32(tmp[i].end, wptr); 23098 wptr += sizeof (tcp_seq); 23099 } 23100 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23101 << 4); 23102 } 23103 23104 if (tcp->tcp_ipversion == IPV4_VERSION) { 23105 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23106 } else { 23107 /* Check for ip6i_t header in sticky hdrs */ 23108 ip6_t *ip6 = (ip6_t *)(rptr + 23109 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23110 sizeof (ip6i_t) : 0)); 23111 23112 ip6->ip6_plen = htons(tcp_hdr_len - 23113 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23114 } 23115 23116 /* 23117 * Prime pump for checksum calculation in IP. Include the 23118 * adjustment for a source route if any. 23119 */ 23120 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23121 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23122 U16_TO_ABE16(data_length, tcph->th_sum); 23123 23124 if (tcp->tcp_ip_forward_progress) { 23125 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23126 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23127 tcp->tcp_ip_forward_progress = B_FALSE; 23128 } 23129 return (mp1); 23130 } 23131 } 23132 23133 /* 23134 * Hash list insertion routine for tcp_t structures. Each hash bucket 23135 * contains a list of tcp_t entries, and each entry is bound to a unique 23136 * port. If there are multiple tcp_t's that are bound to the same port, then 23137 * one of them will be linked into the hash bucket list, and the rest will 23138 * hang off of that one entry. For each port, entries bound to a specific IP 23139 * address will be inserted before those those bound to INADDR_ANY. 23140 */ 23141 static void 23142 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23143 { 23144 tcp_t **tcpp; 23145 tcp_t *tcpnext; 23146 tcp_t *tcphash; 23147 23148 if (tcp->tcp_ptpbhn != NULL) { 23149 ASSERT(!caller_holds_lock); 23150 tcp_bind_hash_remove(tcp); 23151 } 23152 tcpp = &tbf->tf_tcp; 23153 if (!caller_holds_lock) { 23154 mutex_enter(&tbf->tf_lock); 23155 } else { 23156 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23157 } 23158 tcphash = tcpp[0]; 23159 tcpnext = NULL; 23160 if (tcphash != NULL) { 23161 /* Look for an entry using the same port */ 23162 while ((tcphash = tcpp[0]) != NULL && 23163 tcp->tcp_lport != tcphash->tcp_lport) 23164 tcpp = &(tcphash->tcp_bind_hash); 23165 23166 /* The port was not found, just add to the end */ 23167 if (tcphash == NULL) 23168 goto insert; 23169 23170 /* 23171 * OK, there already exists an entry bound to the 23172 * same port. 23173 * 23174 * If the new tcp bound to the INADDR_ANY address 23175 * and the first one in the list is not bound to 23176 * INADDR_ANY we skip all entries until we find the 23177 * first one bound to INADDR_ANY. 23178 * This makes sure that applications binding to a 23179 * specific address get preference over those binding to 23180 * INADDR_ANY. 23181 */ 23182 tcpnext = tcphash; 23183 tcphash = NULL; 23184 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23185 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23186 while ((tcpnext = tcpp[0]) != NULL && 23187 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23188 tcpp = &(tcpnext->tcp_bind_hash_port); 23189 23190 if (tcpnext) { 23191 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23192 tcphash = tcpnext->tcp_bind_hash; 23193 if (tcphash != NULL) { 23194 tcphash->tcp_ptpbhn = 23195 &(tcp->tcp_bind_hash); 23196 tcpnext->tcp_bind_hash = NULL; 23197 } 23198 } 23199 } else { 23200 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23201 tcphash = tcpnext->tcp_bind_hash; 23202 if (tcphash != NULL) { 23203 tcphash->tcp_ptpbhn = 23204 &(tcp->tcp_bind_hash); 23205 tcpnext->tcp_bind_hash = NULL; 23206 } 23207 } 23208 } 23209 insert: 23210 tcp->tcp_bind_hash_port = tcpnext; 23211 tcp->tcp_bind_hash = tcphash; 23212 tcp->tcp_ptpbhn = tcpp; 23213 tcpp[0] = tcp; 23214 if (!caller_holds_lock) 23215 mutex_exit(&tbf->tf_lock); 23216 } 23217 23218 /* 23219 * Hash list removal routine for tcp_t structures. 23220 */ 23221 static void 23222 tcp_bind_hash_remove(tcp_t *tcp) 23223 { 23224 tcp_t *tcpnext; 23225 kmutex_t *lockp; 23226 tcp_stack_t *tcps = tcp->tcp_tcps; 23227 23228 if (tcp->tcp_ptpbhn == NULL) 23229 return; 23230 23231 /* 23232 * Extract the lock pointer in case there are concurrent 23233 * hash_remove's for this instance. 23234 */ 23235 ASSERT(tcp->tcp_lport != 0); 23236 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23237 23238 ASSERT(lockp != NULL); 23239 mutex_enter(lockp); 23240 if (tcp->tcp_ptpbhn) { 23241 tcpnext = tcp->tcp_bind_hash_port; 23242 if (tcpnext != NULL) { 23243 tcp->tcp_bind_hash_port = NULL; 23244 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23245 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23246 if (tcpnext->tcp_bind_hash != NULL) { 23247 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23248 &(tcpnext->tcp_bind_hash); 23249 tcp->tcp_bind_hash = NULL; 23250 } 23251 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23252 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23253 tcp->tcp_bind_hash = NULL; 23254 } 23255 *tcp->tcp_ptpbhn = tcpnext; 23256 tcp->tcp_ptpbhn = NULL; 23257 } 23258 mutex_exit(lockp); 23259 } 23260 23261 23262 /* 23263 * Hash list lookup routine for tcp_t structures. 23264 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23265 */ 23266 static tcp_t * 23267 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23268 { 23269 tf_t *tf; 23270 tcp_t *tcp; 23271 23272 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23273 mutex_enter(&tf->tf_lock); 23274 for (tcp = tf->tf_tcp; tcp != NULL; 23275 tcp = tcp->tcp_acceptor_hash) { 23276 if (tcp->tcp_acceptor_id == id) { 23277 CONN_INC_REF(tcp->tcp_connp); 23278 mutex_exit(&tf->tf_lock); 23279 return (tcp); 23280 } 23281 } 23282 mutex_exit(&tf->tf_lock); 23283 return (NULL); 23284 } 23285 23286 23287 /* 23288 * Hash list insertion routine for tcp_t structures. 23289 */ 23290 void 23291 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23292 { 23293 tf_t *tf; 23294 tcp_t **tcpp; 23295 tcp_t *tcpnext; 23296 tcp_stack_t *tcps = tcp->tcp_tcps; 23297 23298 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23299 23300 if (tcp->tcp_ptpahn != NULL) 23301 tcp_acceptor_hash_remove(tcp); 23302 tcpp = &tf->tf_tcp; 23303 mutex_enter(&tf->tf_lock); 23304 tcpnext = tcpp[0]; 23305 if (tcpnext) 23306 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23307 tcp->tcp_acceptor_hash = tcpnext; 23308 tcp->tcp_ptpahn = tcpp; 23309 tcpp[0] = tcp; 23310 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23311 mutex_exit(&tf->tf_lock); 23312 } 23313 23314 /* 23315 * Hash list removal routine for tcp_t structures. 23316 */ 23317 static void 23318 tcp_acceptor_hash_remove(tcp_t *tcp) 23319 { 23320 tcp_t *tcpnext; 23321 kmutex_t *lockp; 23322 23323 /* 23324 * Extract the lock pointer in case there are concurrent 23325 * hash_remove's for this instance. 23326 */ 23327 lockp = tcp->tcp_acceptor_lockp; 23328 23329 if (tcp->tcp_ptpahn == NULL) 23330 return; 23331 23332 ASSERT(lockp != NULL); 23333 mutex_enter(lockp); 23334 if (tcp->tcp_ptpahn) { 23335 tcpnext = tcp->tcp_acceptor_hash; 23336 if (tcpnext) { 23337 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23338 tcp->tcp_acceptor_hash = NULL; 23339 } 23340 *tcp->tcp_ptpahn = tcpnext; 23341 tcp->tcp_ptpahn = NULL; 23342 } 23343 mutex_exit(lockp); 23344 tcp->tcp_acceptor_lockp = NULL; 23345 } 23346 23347 /* 23348 * Type three generator adapted from the random() function in 4.4 BSD: 23349 */ 23350 23351 /* 23352 * Copyright (c) 1983, 1993 23353 * The Regents of the University of California. All rights reserved. 23354 * 23355 * Redistribution and use in source and binary forms, with or without 23356 * modification, are permitted provided that the following conditions 23357 * are met: 23358 * 1. Redistributions of source code must retain the above copyright 23359 * notice, this list of conditions and the following disclaimer. 23360 * 2. Redistributions in binary form must reproduce the above copyright 23361 * notice, this list of conditions and the following disclaimer in the 23362 * documentation and/or other materials provided with the distribution. 23363 * 3. All advertising materials mentioning features or use of this software 23364 * must display the following acknowledgement: 23365 * This product includes software developed by the University of 23366 * California, Berkeley and its contributors. 23367 * 4. Neither the name of the University nor the names of its contributors 23368 * may be used to endorse or promote products derived from this software 23369 * without specific prior written permission. 23370 * 23371 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23372 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23373 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23374 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23375 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23376 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23377 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23378 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23379 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23380 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23381 * SUCH DAMAGE. 23382 */ 23383 23384 /* Type 3 -- x**31 + x**3 + 1 */ 23385 #define DEG_3 31 23386 #define SEP_3 3 23387 23388 23389 /* Protected by tcp_random_lock */ 23390 static int tcp_randtbl[DEG_3 + 1]; 23391 23392 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23393 static int *tcp_random_rptr = &tcp_randtbl[1]; 23394 23395 static int *tcp_random_state = &tcp_randtbl[1]; 23396 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23397 23398 kmutex_t tcp_random_lock; 23399 23400 void 23401 tcp_random_init(void) 23402 { 23403 int i; 23404 hrtime_t hrt; 23405 time_t wallclock; 23406 uint64_t result; 23407 23408 /* 23409 * Use high-res timer and current time for seed. Gethrtime() returns 23410 * a longlong, which may contain resolution down to nanoseconds. 23411 * The current time will either be a 32-bit or a 64-bit quantity. 23412 * XOR the two together in a 64-bit result variable. 23413 * Convert the result to a 32-bit value by multiplying the high-order 23414 * 32-bits by the low-order 32-bits. 23415 */ 23416 23417 hrt = gethrtime(); 23418 (void) drv_getparm(TIME, &wallclock); 23419 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23420 mutex_enter(&tcp_random_lock); 23421 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23422 (result & 0xffffffff); 23423 23424 for (i = 1; i < DEG_3; i++) 23425 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23426 + 12345; 23427 tcp_random_fptr = &tcp_random_state[SEP_3]; 23428 tcp_random_rptr = &tcp_random_state[0]; 23429 mutex_exit(&tcp_random_lock); 23430 for (i = 0; i < 10 * DEG_3; i++) 23431 (void) tcp_random(); 23432 } 23433 23434 /* 23435 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23436 * This range is selected to be approximately centered on TCP_ISS / 2, 23437 * and easy to compute. We get this value by generating a 32-bit random 23438 * number, selecting out the high-order 17 bits, and then adding one so 23439 * that we never return zero. 23440 */ 23441 int 23442 tcp_random(void) 23443 { 23444 int i; 23445 23446 mutex_enter(&tcp_random_lock); 23447 *tcp_random_fptr += *tcp_random_rptr; 23448 23449 /* 23450 * The high-order bits are more random than the low-order bits, 23451 * so we select out the high-order 17 bits and add one so that 23452 * we never return zero. 23453 */ 23454 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23455 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23456 tcp_random_fptr = tcp_random_state; 23457 ++tcp_random_rptr; 23458 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23459 tcp_random_rptr = tcp_random_state; 23460 23461 mutex_exit(&tcp_random_lock); 23462 return (i); 23463 } 23464 23465 static int 23466 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23467 int *t_errorp, int *sys_errorp) 23468 { 23469 int error; 23470 int is_absreq_failure; 23471 t_scalar_t *opt_lenp; 23472 t_scalar_t opt_offset; 23473 int prim_type; 23474 struct T_conn_req *tcreqp; 23475 struct T_conn_res *tcresp; 23476 cred_t *cr; 23477 23478 /* 23479 * All Solaris components should pass a db_credp 23480 * for this TPI message, hence we ASSERT. 23481 * But in case there is some other M_PROTO that looks 23482 * like a TPI message sent by some other kernel 23483 * component, we check and return an error. 23484 */ 23485 cr = msg_getcred(mp, NULL); 23486 ASSERT(cr != NULL); 23487 if (cr == NULL) 23488 return (-1); 23489 23490 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23491 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23492 prim_type == T_CONN_RES); 23493 23494 switch (prim_type) { 23495 case T_CONN_REQ: 23496 tcreqp = (struct T_conn_req *)mp->b_rptr; 23497 opt_offset = tcreqp->OPT_offset; 23498 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23499 break; 23500 case O_T_CONN_RES: 23501 case T_CONN_RES: 23502 tcresp = (struct T_conn_res *)mp->b_rptr; 23503 opt_offset = tcresp->OPT_offset; 23504 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23505 break; 23506 } 23507 23508 *t_errorp = 0; 23509 *sys_errorp = 0; 23510 *do_disconnectp = 0; 23511 23512 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23513 opt_offset, cr, &tcp_opt_obj, 23514 NULL, &is_absreq_failure); 23515 23516 switch (error) { 23517 case 0: /* no error */ 23518 ASSERT(is_absreq_failure == 0); 23519 return (0); 23520 case ENOPROTOOPT: 23521 *t_errorp = TBADOPT; 23522 break; 23523 case EACCES: 23524 *t_errorp = TACCES; 23525 break; 23526 default: 23527 *t_errorp = TSYSERR; *sys_errorp = error; 23528 break; 23529 } 23530 if (is_absreq_failure != 0) { 23531 /* 23532 * The connection request should get the local ack 23533 * T_OK_ACK and then a T_DISCON_IND. 23534 */ 23535 *do_disconnectp = 1; 23536 } 23537 return (-1); 23538 } 23539 23540 /* 23541 * Split this function out so that if the secret changes, I'm okay. 23542 * 23543 * Initialize the tcp_iss_cookie and tcp_iss_key. 23544 */ 23545 23546 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23547 23548 static void 23549 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 23550 { 23551 struct { 23552 int32_t current_time; 23553 uint32_t randnum; 23554 uint16_t pad; 23555 uint8_t ether[6]; 23556 uint8_t passwd[PASSWD_SIZE]; 23557 } tcp_iss_cookie; 23558 time_t t; 23559 23560 /* 23561 * Start with the current absolute time. 23562 */ 23563 (void) drv_getparm(TIME, &t); 23564 tcp_iss_cookie.current_time = t; 23565 23566 /* 23567 * XXX - Need a more random number per RFC 1750, not this crap. 23568 * OTOH, if what follows is pretty random, then I'm in better shape. 23569 */ 23570 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23571 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23572 23573 /* 23574 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23575 * as a good template. 23576 */ 23577 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23578 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23579 23580 /* 23581 * The pass-phrase. Normally this is supplied by user-called NDD. 23582 */ 23583 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23584 23585 /* 23586 * See 4010593 if this section becomes a problem again, 23587 * but the local ethernet address is useful here. 23588 */ 23589 (void) localetheraddr(NULL, 23590 (struct ether_addr *)&tcp_iss_cookie.ether); 23591 23592 /* 23593 * Hash 'em all together. The MD5Final is called per-connection. 23594 */ 23595 mutex_enter(&tcps->tcps_iss_key_lock); 23596 MD5Init(&tcps->tcps_iss_key); 23597 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 23598 sizeof (tcp_iss_cookie)); 23599 mutex_exit(&tcps->tcps_iss_key_lock); 23600 } 23601 23602 /* 23603 * Set the RFC 1948 pass phrase 23604 */ 23605 /* ARGSUSED */ 23606 static int 23607 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23608 cred_t *cr) 23609 { 23610 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23611 23612 /* 23613 * Basically, value contains a new pass phrase. Pass it along! 23614 */ 23615 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 23616 return (0); 23617 } 23618 23619 /* ARGSUSED */ 23620 static int 23621 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23622 { 23623 bzero(buf, sizeof (tcp_sack_info_t)); 23624 return (0); 23625 } 23626 23627 /* ARGSUSED */ 23628 static int 23629 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23630 { 23631 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23632 return (0); 23633 } 23634 23635 /* 23636 * Make sure we wait until the default queue is setup, yet allow 23637 * tcp_g_q_create() to open a TCP stream. 23638 * We need to allow tcp_g_q_create() do do an open 23639 * of tcp, hence we compare curhread. 23640 * All others have to wait until the tcps_g_q has been 23641 * setup. 23642 */ 23643 void 23644 tcp_g_q_setup(tcp_stack_t *tcps) 23645 { 23646 mutex_enter(&tcps->tcps_g_q_lock); 23647 if (tcps->tcps_g_q != NULL) { 23648 mutex_exit(&tcps->tcps_g_q_lock); 23649 return; 23650 } 23651 if (tcps->tcps_g_q_creator == NULL) { 23652 /* This thread will set it up */ 23653 tcps->tcps_g_q_creator = curthread; 23654 mutex_exit(&tcps->tcps_g_q_lock); 23655 tcp_g_q_create(tcps); 23656 mutex_enter(&tcps->tcps_g_q_lock); 23657 ASSERT(tcps->tcps_g_q_creator == curthread); 23658 tcps->tcps_g_q_creator = NULL; 23659 cv_signal(&tcps->tcps_g_q_cv); 23660 ASSERT(tcps->tcps_g_q != NULL); 23661 mutex_exit(&tcps->tcps_g_q_lock); 23662 return; 23663 } 23664 /* Everybody but the creator has to wait */ 23665 if (tcps->tcps_g_q_creator != curthread) { 23666 while (tcps->tcps_g_q == NULL) 23667 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 23668 } 23669 mutex_exit(&tcps->tcps_g_q_lock); 23670 } 23671 23672 #define IP "ip" 23673 23674 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 23675 23676 /* 23677 * Create a default tcp queue here instead of in strplumb 23678 */ 23679 void 23680 tcp_g_q_create(tcp_stack_t *tcps) 23681 { 23682 int error; 23683 ldi_handle_t lh = NULL; 23684 ldi_ident_t li = NULL; 23685 int rval; 23686 cred_t *cr; 23687 major_t IP_MAJ; 23688 23689 #ifdef NS_DEBUG 23690 (void) printf("tcp_g_q_create()\n"); 23691 #endif 23692 23693 IP_MAJ = ddi_name_to_major(IP); 23694 23695 ASSERT(tcps->tcps_g_q_creator == curthread); 23696 23697 error = ldi_ident_from_major(IP_MAJ, &li); 23698 if (error) { 23699 #ifdef DEBUG 23700 printf("tcp_g_q_create: lyr ident get failed error %d\n", 23701 error); 23702 #endif 23703 return; 23704 } 23705 23706 cr = zone_get_kcred(netstackid_to_zoneid( 23707 tcps->tcps_netstack->netstack_stackid)); 23708 ASSERT(cr != NULL); 23709 /* 23710 * We set the tcp default queue to IPv6 because IPv4 falls 23711 * back to IPv6 when it can't find a client, but 23712 * IPv6 does not fall back to IPv4. 23713 */ 23714 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 23715 if (error) { 23716 #ifdef DEBUG 23717 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 23718 error); 23719 #endif 23720 goto out; 23721 } 23722 23723 /* 23724 * This ioctl causes the tcp framework to cache a pointer to 23725 * this stream, so we don't want to close the stream after 23726 * this operation. 23727 * Use the kernel credentials that are for the zone we're in. 23728 */ 23729 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 23730 (intptr_t)0, FKIOCTL, cr, &rval); 23731 if (error) { 23732 #ifdef DEBUG 23733 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 23734 "error %d\n", error); 23735 #endif 23736 goto out; 23737 } 23738 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 23739 lh = NULL; 23740 out: 23741 /* Close layered handles */ 23742 if (li) 23743 ldi_ident_release(li); 23744 /* Keep cred around until _inactive needs it */ 23745 tcps->tcps_g_q_cr = cr; 23746 } 23747 23748 /* 23749 * We keep tcp_g_q set until all other tcp_t's in the zone 23750 * has gone away, and then when tcp_g_q_inactive() is called 23751 * we clear it. 23752 */ 23753 void 23754 tcp_g_q_destroy(tcp_stack_t *tcps) 23755 { 23756 #ifdef NS_DEBUG 23757 (void) printf("tcp_g_q_destroy()for stack %d\n", 23758 tcps->tcps_netstack->netstack_stackid); 23759 #endif 23760 23761 if (tcps->tcps_g_q == NULL) { 23762 return; /* Nothing to cleanup */ 23763 } 23764 /* 23765 * Drop reference corresponding to the default queue. 23766 * This reference was added from tcp_open when the default queue 23767 * was created, hence we compensate for this extra drop in 23768 * tcp_g_q_close. If the refcnt drops to zero here it means 23769 * the default queue was the last one to be open, in which 23770 * case, then tcp_g_q_inactive will be 23771 * called as a result of the refrele. 23772 */ 23773 TCPS_REFRELE(tcps); 23774 } 23775 23776 /* 23777 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23778 * Run by tcp_q_q_inactive using a taskq. 23779 */ 23780 static void 23781 tcp_g_q_close(void *arg) 23782 { 23783 tcp_stack_t *tcps = arg; 23784 int error; 23785 ldi_handle_t lh = NULL; 23786 ldi_ident_t li = NULL; 23787 cred_t *cr; 23788 major_t IP_MAJ; 23789 23790 IP_MAJ = ddi_name_to_major(IP); 23791 23792 #ifdef NS_DEBUG 23793 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 23794 tcps->tcps_netstack->netstack_stackid, 23795 tcps->tcps_netstack->netstack_refcnt); 23796 #endif 23797 lh = tcps->tcps_g_q_lh; 23798 if (lh == NULL) 23799 return; /* Nothing to cleanup */ 23800 23801 ASSERT(tcps->tcps_refcnt == 1); 23802 ASSERT(tcps->tcps_g_q != NULL); 23803 23804 error = ldi_ident_from_major(IP_MAJ, &li); 23805 if (error) { 23806 #ifdef DEBUG 23807 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 23808 error); 23809 #endif 23810 return; 23811 } 23812 23813 cr = tcps->tcps_g_q_cr; 23814 tcps->tcps_g_q_cr = NULL; 23815 ASSERT(cr != NULL); 23816 23817 /* 23818 * Make sure we can break the recursion when tcp_close decrements 23819 * the reference count causing g_q_inactive to be called again. 23820 */ 23821 tcps->tcps_g_q_lh = NULL; 23822 23823 /* close the default queue */ 23824 (void) ldi_close(lh, FREAD|FWRITE, cr); 23825 /* 23826 * At this point in time tcps and the rest of netstack_t might 23827 * have been deleted. 23828 */ 23829 tcps = NULL; 23830 23831 /* Close layered handles */ 23832 ldi_ident_release(li); 23833 crfree(cr); 23834 } 23835 23836 /* 23837 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23838 * 23839 * Have to ensure that the ldi routines are not used by an 23840 * interrupt thread by using a taskq. 23841 */ 23842 void 23843 tcp_g_q_inactive(tcp_stack_t *tcps) 23844 { 23845 if (tcps->tcps_g_q_lh == NULL) 23846 return; /* Nothing to cleanup */ 23847 23848 ASSERT(tcps->tcps_refcnt == 0); 23849 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 23850 23851 if (servicing_interrupt()) { 23852 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 23853 (void *) tcps, TQ_SLEEP); 23854 } else { 23855 tcp_g_q_close(tcps); 23856 } 23857 } 23858 23859 /* 23860 * Called by IP when IP is loaded into the kernel 23861 */ 23862 void 23863 tcp_ddi_g_init(void) 23864 { 23865 tcp_timercache = kmem_cache_create("tcp_timercache", 23866 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23867 NULL, NULL, NULL, NULL, NULL, 0); 23868 23869 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23870 sizeof (tcp_sack_info_t), 0, 23871 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23872 23873 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23874 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23875 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23876 23877 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23878 23879 /* Initialize the random number generator */ 23880 tcp_random_init(); 23881 23882 /* A single callback independently of how many netstacks we have */ 23883 ip_squeue_init(tcp_squeue_add); 23884 23885 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 23886 23887 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 23888 TASKQ_PREPOPULATE); 23889 23890 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 23891 23892 /* 23893 * We want to be informed each time a stack is created or 23894 * destroyed in the kernel, so we can maintain the 23895 * set of tcp_stack_t's. 23896 */ 23897 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 23898 tcp_stack_fini); 23899 } 23900 23901 23902 #define INET_NAME "ip" 23903 23904 /* 23905 * Initialize the TCP stack instance. 23906 */ 23907 static void * 23908 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 23909 { 23910 tcp_stack_t *tcps; 23911 tcpparam_t *pa; 23912 int i; 23913 int error = 0; 23914 major_t major; 23915 23916 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 23917 tcps->tcps_netstack = ns; 23918 23919 /* Initialize locks */ 23920 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23921 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 23922 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23923 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23924 23925 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 23926 tcps->tcps_g_epriv_ports[0] = 2049; 23927 tcps->tcps_g_epriv_ports[1] = 4045; 23928 tcps->tcps_min_anonpriv_port = 512; 23929 23930 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 23931 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 23932 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 23933 TCP_FANOUT_SIZE, KM_SLEEP); 23934 23935 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 23936 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 23937 MUTEX_DEFAULT, NULL); 23938 } 23939 23940 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 23941 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 23942 MUTEX_DEFAULT, NULL); 23943 } 23944 23945 /* TCP's IPsec code calls the packet dropper. */ 23946 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 23947 23948 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 23949 tcps->tcps_params = pa; 23950 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 23951 23952 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 23953 A_CNT(lcl_tcp_param_arr), tcps); 23954 23955 /* 23956 * Note: To really walk the device tree you need the devinfo 23957 * pointer to your device which is only available after probe/attach. 23958 * The following is safe only because it uses ddi_root_node() 23959 */ 23960 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23961 tcp_opt_obj.odb_opt_arr_cnt); 23962 23963 /* 23964 * Initialize RFC 1948 secret values. This will probably be reset once 23965 * by the boot scripts. 23966 * 23967 * Use NULL name, as the name is caught by the new lockstats. 23968 * 23969 * Initialize with some random, non-guessable string, like the global 23970 * T_INFO_ACK. 23971 */ 23972 23973 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23974 sizeof (tcp_g_t_info_ack), tcps); 23975 23976 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 23977 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 23978 23979 major = mod_name_to_major(INET_NAME); 23980 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 23981 ASSERT(error == 0); 23982 return (tcps); 23983 } 23984 23985 /* 23986 * Called when the IP module is about to be unloaded. 23987 */ 23988 void 23989 tcp_ddi_g_destroy(void) 23990 { 23991 tcp_g_kstat_fini(tcp_g_kstat); 23992 tcp_g_kstat = NULL; 23993 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 23994 23995 mutex_destroy(&tcp_random_lock); 23996 23997 kmem_cache_destroy(tcp_timercache); 23998 kmem_cache_destroy(tcp_sack_info_cache); 23999 kmem_cache_destroy(tcp_iphc_cache); 24000 24001 netstack_unregister(NS_TCP); 24002 taskq_destroy(tcp_taskq); 24003 } 24004 24005 /* 24006 * Shut down the TCP stack instance. 24007 */ 24008 /* ARGSUSED */ 24009 static void 24010 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24011 { 24012 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24013 24014 tcp_g_q_destroy(tcps); 24015 } 24016 24017 /* 24018 * Free the TCP stack instance. 24019 */ 24020 static void 24021 tcp_stack_fini(netstackid_t stackid, void *arg) 24022 { 24023 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24024 int i; 24025 24026 nd_free(&tcps->tcps_g_nd); 24027 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24028 tcps->tcps_params = NULL; 24029 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24030 tcps->tcps_wroff_xtra_param = NULL; 24031 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24032 tcps->tcps_mdt_head_param = NULL; 24033 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24034 tcps->tcps_mdt_tail_param = NULL; 24035 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24036 tcps->tcps_mdt_max_pbufs_param = NULL; 24037 24038 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24039 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24040 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24041 } 24042 24043 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24044 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24045 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24046 } 24047 24048 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24049 tcps->tcps_bind_fanout = NULL; 24050 24051 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24052 tcps->tcps_acceptor_fanout = NULL; 24053 24054 mutex_destroy(&tcps->tcps_iss_key_lock); 24055 mutex_destroy(&tcps->tcps_g_q_lock); 24056 cv_destroy(&tcps->tcps_g_q_cv); 24057 mutex_destroy(&tcps->tcps_epriv_port_lock); 24058 24059 ip_drop_unregister(&tcps->tcps_dropper); 24060 24061 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24062 tcps->tcps_kstat = NULL; 24063 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24064 24065 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24066 tcps->tcps_mibkp = NULL; 24067 24068 ldi_ident_release(tcps->tcps_ldi_ident); 24069 kmem_free(tcps, sizeof (*tcps)); 24070 } 24071 24072 /* 24073 * Generate ISS, taking into account NDD changes may happen halfway through. 24074 * (If the iss is not zero, set it.) 24075 */ 24076 24077 static void 24078 tcp_iss_init(tcp_t *tcp) 24079 { 24080 MD5_CTX context; 24081 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24082 uint32_t answer[4]; 24083 tcp_stack_t *tcps = tcp->tcp_tcps; 24084 24085 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24086 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24087 switch (tcps->tcps_strong_iss) { 24088 case 2: 24089 mutex_enter(&tcps->tcps_iss_key_lock); 24090 context = tcps->tcps_iss_key; 24091 mutex_exit(&tcps->tcps_iss_key_lock); 24092 arg.ports = tcp->tcp_ports; 24093 if (tcp->tcp_ipversion == IPV4_VERSION) { 24094 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24095 &arg.src); 24096 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24097 &arg.dst); 24098 } else { 24099 arg.src = tcp->tcp_ip6h->ip6_src; 24100 arg.dst = tcp->tcp_ip6h->ip6_dst; 24101 } 24102 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24103 MD5Final((uchar_t *)answer, &context); 24104 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24105 /* 24106 * Now that we've hashed into a unique per-connection sequence 24107 * space, add a random increment per strong_iss == 1. So I 24108 * guess we'll have to... 24109 */ 24110 /* FALLTHRU */ 24111 case 1: 24112 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24113 break; 24114 default: 24115 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24116 break; 24117 } 24118 tcp->tcp_valid_bits = TCP_ISS_VALID; 24119 tcp->tcp_fss = tcp->tcp_iss - 1; 24120 tcp->tcp_suna = tcp->tcp_iss; 24121 tcp->tcp_snxt = tcp->tcp_iss + 1; 24122 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24123 tcp->tcp_csuna = tcp->tcp_snxt; 24124 } 24125 24126 /* 24127 * Exported routine for extracting active tcp connection status. 24128 * 24129 * This is used by the Solaris Cluster Networking software to 24130 * gather a list of connections that need to be forwarded to 24131 * specific nodes in the cluster when configuration changes occur. 24132 * 24133 * The callback is invoked for each tcp_t structure from all netstacks, 24134 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24135 * from the netstack with the specified stack_id. Returning 24136 * non-zero from the callback routine terminates the search. 24137 */ 24138 int 24139 cl_tcp_walk_list(netstackid_t stack_id, 24140 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24141 { 24142 netstack_handle_t nh; 24143 netstack_t *ns; 24144 int ret = 0; 24145 24146 if (stack_id >= 0) { 24147 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 24148 return (EINVAL); 24149 24150 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24151 ns->netstack_tcp); 24152 netstack_rele(ns); 24153 return (ret); 24154 } 24155 24156 netstack_next_init(&nh); 24157 while ((ns = netstack_next(&nh)) != NULL) { 24158 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24159 ns->netstack_tcp); 24160 netstack_rele(ns); 24161 } 24162 netstack_next_fini(&nh); 24163 return (ret); 24164 } 24165 24166 static int 24167 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 24168 tcp_stack_t *tcps) 24169 { 24170 tcp_t *tcp; 24171 cl_tcp_info_t cl_tcpi; 24172 connf_t *connfp; 24173 conn_t *connp; 24174 int i; 24175 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24176 24177 ASSERT(callback != NULL); 24178 24179 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24180 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 24181 connp = NULL; 24182 24183 while ((connp = 24184 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24185 24186 tcp = connp->conn_tcp; 24187 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24188 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24189 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24190 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24191 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24192 /* 24193 * The macros tcp_laddr and tcp_faddr give the IPv4 24194 * addresses. They are copied implicitly below as 24195 * mapped addresses. 24196 */ 24197 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24198 if (tcp->tcp_ipversion == IPV4_VERSION) { 24199 cl_tcpi.cl_tcpi_faddr = 24200 tcp->tcp_ipha->ipha_dst; 24201 } else { 24202 cl_tcpi.cl_tcpi_faddr_v6 = 24203 tcp->tcp_ip6h->ip6_dst; 24204 } 24205 24206 /* 24207 * If the callback returns non-zero 24208 * we terminate the traversal. 24209 */ 24210 if ((*callback)(&cl_tcpi, arg) != 0) { 24211 CONN_DEC_REF(tcp->tcp_connp); 24212 return (1); 24213 } 24214 } 24215 } 24216 24217 return (0); 24218 } 24219 24220 /* 24221 * Macros used for accessing the different types of sockaddr 24222 * structures inside a tcp_ioc_abort_conn_t. 24223 */ 24224 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24225 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24226 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24227 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24228 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24229 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24230 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24231 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24232 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24233 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24234 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24235 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24236 24237 /* 24238 * Return the correct error code to mimic the behavior 24239 * of a connection reset. 24240 */ 24241 #define TCP_AC_GET_ERRCODE(state, err) { \ 24242 switch ((state)) { \ 24243 case TCPS_SYN_SENT: \ 24244 case TCPS_SYN_RCVD: \ 24245 (err) = ECONNREFUSED; \ 24246 break; \ 24247 case TCPS_ESTABLISHED: \ 24248 case TCPS_FIN_WAIT_1: \ 24249 case TCPS_FIN_WAIT_2: \ 24250 case TCPS_CLOSE_WAIT: \ 24251 (err) = ECONNRESET; \ 24252 break; \ 24253 case TCPS_CLOSING: \ 24254 case TCPS_LAST_ACK: \ 24255 case TCPS_TIME_WAIT: \ 24256 (err) = 0; \ 24257 break; \ 24258 default: \ 24259 (err) = ENXIO; \ 24260 } \ 24261 } 24262 24263 /* 24264 * Check if a tcp structure matches the info in acp. 24265 */ 24266 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24267 (((acp)->ac_local.ss_family == AF_INET) ? \ 24268 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24269 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24270 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24271 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24272 (TCP_AC_V4LPORT((acp)) == 0 || \ 24273 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24274 (TCP_AC_V4RPORT((acp)) == 0 || \ 24275 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24276 (acp)->ac_start <= (tcp)->tcp_state && \ 24277 (acp)->ac_end >= (tcp)->tcp_state) : \ 24278 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24279 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24280 &(tcp)->tcp_ip_src_v6)) && \ 24281 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24282 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24283 &(tcp)->tcp_remote_v6)) && \ 24284 (TCP_AC_V6LPORT((acp)) == 0 || \ 24285 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24286 (TCP_AC_V6RPORT((acp)) == 0 || \ 24287 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24288 (acp)->ac_start <= (tcp)->tcp_state && \ 24289 (acp)->ac_end >= (tcp)->tcp_state)) 24290 24291 #define TCP_AC_MATCH(acp, tcp) \ 24292 (((acp)->ac_zoneid == ALL_ZONES || \ 24293 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24294 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24295 24296 /* 24297 * Build a message containing a tcp_ioc_abort_conn_t structure 24298 * which is filled in with information from acp and tp. 24299 */ 24300 static mblk_t * 24301 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24302 { 24303 mblk_t *mp; 24304 tcp_ioc_abort_conn_t *tacp; 24305 24306 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24307 if (mp == NULL) 24308 return (NULL); 24309 24310 mp->b_datap->db_type = M_CTL; 24311 24312 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24313 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24314 sizeof (uint32_t)); 24315 24316 tacp->ac_start = acp->ac_start; 24317 tacp->ac_end = acp->ac_end; 24318 tacp->ac_zoneid = acp->ac_zoneid; 24319 24320 if (acp->ac_local.ss_family == AF_INET) { 24321 tacp->ac_local.ss_family = AF_INET; 24322 tacp->ac_remote.ss_family = AF_INET; 24323 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24324 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24325 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24326 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24327 } else { 24328 tacp->ac_local.ss_family = AF_INET6; 24329 tacp->ac_remote.ss_family = AF_INET6; 24330 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24331 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24332 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24333 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24334 } 24335 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24336 return (mp); 24337 } 24338 24339 /* 24340 * Print a tcp_ioc_abort_conn_t structure. 24341 */ 24342 static void 24343 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24344 { 24345 char lbuf[128]; 24346 char rbuf[128]; 24347 sa_family_t af; 24348 in_port_t lport, rport; 24349 ushort_t logflags; 24350 24351 af = acp->ac_local.ss_family; 24352 24353 if (af == AF_INET) { 24354 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24355 lbuf, 128); 24356 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24357 rbuf, 128); 24358 lport = ntohs(TCP_AC_V4LPORT(acp)); 24359 rport = ntohs(TCP_AC_V4RPORT(acp)); 24360 } else { 24361 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24362 lbuf, 128); 24363 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24364 rbuf, 128); 24365 lport = ntohs(TCP_AC_V6LPORT(acp)); 24366 rport = ntohs(TCP_AC_V6RPORT(acp)); 24367 } 24368 24369 logflags = SL_TRACE | SL_NOTE; 24370 /* 24371 * Don't print this message to the console if the operation was done 24372 * to a non-global zone. 24373 */ 24374 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24375 logflags |= SL_CONSOLE; 24376 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24377 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24378 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24379 acp->ac_start, acp->ac_end); 24380 } 24381 24382 /* 24383 * Called inside tcp_rput when a message built using 24384 * tcp_ioctl_abort_build_msg is put into a queue. 24385 * Note that when we get here there is no wildcard in acp any more. 24386 */ 24387 static void 24388 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24389 { 24390 tcp_ioc_abort_conn_t *acp; 24391 24392 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24393 if (tcp->tcp_state <= acp->ac_end) { 24394 /* 24395 * If we get here, we are already on the correct 24396 * squeue. This ioctl follows the following path 24397 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24398 * ->tcp_ioctl_abort->squeue_enter (if on a 24399 * different squeue) 24400 */ 24401 int errcode; 24402 24403 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24404 (void) tcp_clean_death(tcp, errcode, 26); 24405 } 24406 freemsg(mp); 24407 } 24408 24409 /* 24410 * Abort all matching connections on a hash chain. 24411 */ 24412 static int 24413 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24414 boolean_t exact, tcp_stack_t *tcps) 24415 { 24416 int nmatch, err = 0; 24417 tcp_t *tcp; 24418 MBLKP mp, last, listhead = NULL; 24419 conn_t *tconnp; 24420 connf_t *connfp; 24421 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24422 24423 connfp = &ipst->ips_ipcl_conn_fanout[index]; 24424 24425 startover: 24426 nmatch = 0; 24427 24428 mutex_enter(&connfp->connf_lock); 24429 for (tconnp = connfp->connf_head; tconnp != NULL; 24430 tconnp = tconnp->conn_next) { 24431 tcp = tconnp->conn_tcp; 24432 if (TCP_AC_MATCH(acp, tcp)) { 24433 CONN_INC_REF(tcp->tcp_connp); 24434 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24435 if (mp == NULL) { 24436 err = ENOMEM; 24437 CONN_DEC_REF(tcp->tcp_connp); 24438 break; 24439 } 24440 mp->b_prev = (mblk_t *)tcp; 24441 24442 if (listhead == NULL) { 24443 listhead = mp; 24444 last = mp; 24445 } else { 24446 last->b_next = mp; 24447 last = mp; 24448 } 24449 nmatch++; 24450 if (exact) 24451 break; 24452 } 24453 24454 /* Avoid holding lock for too long. */ 24455 if (nmatch >= 500) 24456 break; 24457 } 24458 mutex_exit(&connfp->connf_lock); 24459 24460 /* Pass mp into the correct tcp */ 24461 while ((mp = listhead) != NULL) { 24462 listhead = listhead->b_next; 24463 tcp = (tcp_t *)mp->b_prev; 24464 mp->b_next = mp->b_prev = NULL; 24465 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 24466 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 24467 } 24468 24469 *count += nmatch; 24470 if (nmatch >= 500 && err == 0) 24471 goto startover; 24472 return (err); 24473 } 24474 24475 /* 24476 * Abort all connections that matches the attributes specified in acp. 24477 */ 24478 static int 24479 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 24480 { 24481 sa_family_t af; 24482 uint32_t ports; 24483 uint16_t *pports; 24484 int err = 0, count = 0; 24485 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24486 int index = -1; 24487 ushort_t logflags; 24488 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24489 24490 af = acp->ac_local.ss_family; 24491 24492 if (af == AF_INET) { 24493 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24494 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24495 pports = (uint16_t *)&ports; 24496 pports[1] = TCP_AC_V4LPORT(acp); 24497 pports[0] = TCP_AC_V4RPORT(acp); 24498 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24499 } 24500 } else { 24501 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24502 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24503 pports = (uint16_t *)&ports; 24504 pports[1] = TCP_AC_V6LPORT(acp); 24505 pports[0] = TCP_AC_V6RPORT(acp); 24506 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24507 } 24508 } 24509 24510 /* 24511 * For cases where remote addr, local port, and remote port are non- 24512 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24513 */ 24514 if (index != -1) { 24515 err = tcp_ioctl_abort_bucket(acp, index, 24516 &count, exact, tcps); 24517 } else { 24518 /* 24519 * loop through all entries for wildcard case 24520 */ 24521 for (index = 0; 24522 index < ipst->ips_ipcl_conn_fanout_size; 24523 index++) { 24524 err = tcp_ioctl_abort_bucket(acp, index, 24525 &count, exact, tcps); 24526 if (err != 0) 24527 break; 24528 } 24529 } 24530 24531 logflags = SL_TRACE | SL_NOTE; 24532 /* 24533 * Don't print this message to the console if the operation was done 24534 * to a non-global zone. 24535 */ 24536 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24537 logflags |= SL_CONSOLE; 24538 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24539 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24540 if (err == 0 && count == 0) 24541 err = ENOENT; 24542 return (err); 24543 } 24544 24545 /* 24546 * Process the TCP_IOC_ABORT_CONN ioctl request. 24547 */ 24548 static void 24549 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24550 { 24551 int err; 24552 IOCP iocp; 24553 MBLKP mp1; 24554 sa_family_t laf, raf; 24555 tcp_ioc_abort_conn_t *acp; 24556 zone_t *zptr; 24557 conn_t *connp = Q_TO_CONN(q); 24558 zoneid_t zoneid = connp->conn_zoneid; 24559 tcp_t *tcp = connp->conn_tcp; 24560 tcp_stack_t *tcps = tcp->tcp_tcps; 24561 24562 iocp = (IOCP)mp->b_rptr; 24563 24564 if ((mp1 = mp->b_cont) == NULL || 24565 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24566 err = EINVAL; 24567 goto out; 24568 } 24569 24570 /* check permissions */ 24571 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 24572 err = EPERM; 24573 goto out; 24574 } 24575 24576 if (mp1->b_cont != NULL) { 24577 freemsg(mp1->b_cont); 24578 mp1->b_cont = NULL; 24579 } 24580 24581 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24582 laf = acp->ac_local.ss_family; 24583 raf = acp->ac_remote.ss_family; 24584 24585 /* check that a zone with the supplied zoneid exists */ 24586 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24587 zptr = zone_find_by_id(zoneid); 24588 if (zptr != NULL) { 24589 zone_rele(zptr); 24590 } else { 24591 err = EINVAL; 24592 goto out; 24593 } 24594 } 24595 24596 /* 24597 * For exclusive stacks we set the zoneid to zero 24598 * to make TCP operate as if in the global zone. 24599 */ 24600 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 24601 acp->ac_zoneid = GLOBAL_ZONEID; 24602 24603 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24604 acp->ac_start > acp->ac_end || laf != raf || 24605 (laf != AF_INET && laf != AF_INET6)) { 24606 err = EINVAL; 24607 goto out; 24608 } 24609 24610 tcp_ioctl_abort_dump(acp); 24611 err = tcp_ioctl_abort(acp, tcps); 24612 24613 out: 24614 if (mp1 != NULL) { 24615 freemsg(mp1); 24616 mp->b_cont = NULL; 24617 } 24618 24619 if (err != 0) 24620 miocnak(q, mp, 0, err); 24621 else 24622 miocack(q, mp, 0, 0); 24623 } 24624 24625 /* 24626 * tcp_time_wait_processing() handles processing of incoming packets when 24627 * the tcp is in the TIME_WAIT state. 24628 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24629 * on the time wait list. 24630 */ 24631 void 24632 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24633 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24634 { 24635 int32_t bytes_acked; 24636 int32_t gap; 24637 int32_t rgap; 24638 tcp_opt_t tcpopt; 24639 uint_t flags; 24640 uint32_t new_swnd = 0; 24641 conn_t *connp; 24642 tcp_stack_t *tcps = tcp->tcp_tcps; 24643 24644 BUMP_LOCAL(tcp->tcp_ibsegs); 24645 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 24646 24647 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24648 new_swnd = BE16_TO_U16(tcph->th_win) << 24649 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24650 if (tcp->tcp_snd_ts_ok) { 24651 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24652 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24653 tcp->tcp_rnxt, TH_ACK); 24654 goto done; 24655 } 24656 } 24657 gap = seg_seq - tcp->tcp_rnxt; 24658 rgap = tcp->tcp_rwnd - (gap + seg_len); 24659 if (gap < 0) { 24660 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 24661 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 24662 (seg_len > -gap ? -gap : seg_len)); 24663 seg_len += gap; 24664 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24665 if (flags & TH_RST) { 24666 goto done; 24667 } 24668 if ((flags & TH_FIN) && seg_len == -1) { 24669 /* 24670 * When TCP receives a duplicate FIN in 24671 * TIME_WAIT state, restart the 2 MSL timer. 24672 * See page 73 in RFC 793. Make sure this TCP 24673 * is already on the TIME_WAIT list. If not, 24674 * just restart the timer. 24675 */ 24676 if (TCP_IS_DETACHED(tcp)) { 24677 if (tcp_time_wait_remove(tcp, NULL) == 24678 B_TRUE) { 24679 tcp_time_wait_append(tcp); 24680 TCP_DBGSTAT(tcps, 24681 tcp_rput_time_wait); 24682 } 24683 } else { 24684 ASSERT(tcp != NULL); 24685 TCP_TIMER_RESTART(tcp, 24686 tcps->tcps_time_wait_interval); 24687 } 24688 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24689 tcp->tcp_rnxt, TH_ACK); 24690 goto done; 24691 } 24692 flags |= TH_ACK_NEEDED; 24693 seg_len = 0; 24694 goto process_ack; 24695 } 24696 24697 /* Fix seg_seq, and chew the gap off the front. */ 24698 seg_seq = tcp->tcp_rnxt; 24699 } 24700 24701 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24702 /* 24703 * Make sure that when we accept the connection, pick 24704 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24705 * old connection. 24706 * 24707 * The next ISS generated is equal to tcp_iss_incr_extra 24708 * + ISS_INCR/2 + other components depending on the 24709 * value of tcp_strong_iss. We pre-calculate the new 24710 * ISS here and compare with tcp_snxt to determine if 24711 * we need to make adjustment to tcp_iss_incr_extra. 24712 * 24713 * The above calculation is ugly and is a 24714 * waste of CPU cycles... 24715 */ 24716 uint32_t new_iss = tcps->tcps_iss_incr_extra; 24717 int32_t adj; 24718 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24719 24720 switch (tcps->tcps_strong_iss) { 24721 case 2: { 24722 /* Add time and MD5 components. */ 24723 uint32_t answer[4]; 24724 struct { 24725 uint32_t ports; 24726 in6_addr_t src; 24727 in6_addr_t dst; 24728 } arg; 24729 MD5_CTX context; 24730 24731 mutex_enter(&tcps->tcps_iss_key_lock); 24732 context = tcps->tcps_iss_key; 24733 mutex_exit(&tcps->tcps_iss_key_lock); 24734 arg.ports = tcp->tcp_ports; 24735 /* We use MAPPED addresses in tcp_iss_init */ 24736 arg.src = tcp->tcp_ip_src_v6; 24737 if (tcp->tcp_ipversion == IPV4_VERSION) { 24738 IN6_IPADDR_TO_V4MAPPED( 24739 tcp->tcp_ipha->ipha_dst, 24740 &arg.dst); 24741 } else { 24742 arg.dst = 24743 tcp->tcp_ip6h->ip6_dst; 24744 } 24745 MD5Update(&context, (uchar_t *)&arg, 24746 sizeof (arg)); 24747 MD5Final((uchar_t *)answer, &context); 24748 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24749 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24750 break; 24751 } 24752 case 1: 24753 /* Add time component and min random (i.e. 1). */ 24754 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24755 break; 24756 default: 24757 /* Add only time component. */ 24758 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24759 break; 24760 } 24761 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24762 /* 24763 * New ISS not guaranteed to be ISS_INCR/2 24764 * ahead of the current tcp_snxt, so add the 24765 * difference to tcp_iss_incr_extra. 24766 */ 24767 tcps->tcps_iss_incr_extra += adj; 24768 } 24769 /* 24770 * If tcp_clean_death() can not perform the task now, 24771 * drop the SYN packet and let the other side re-xmit. 24772 * Otherwise pass the SYN packet back in, since the 24773 * old tcp state has been cleaned up or freed. 24774 */ 24775 if (tcp_clean_death(tcp, 0, 27) == -1) 24776 goto done; 24777 /* 24778 * We will come back to tcp_rput_data 24779 * on the global queue. Packets destined 24780 * for the global queue will be checked 24781 * with global policy. But the policy for 24782 * this packet has already been checked as 24783 * this was destined for the detached 24784 * connection. We need to bypass policy 24785 * check this time by attaching a dummy 24786 * ipsec_in with ipsec_in_dont_check set. 24787 */ 24788 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 24789 if (connp != NULL) { 24790 TCP_STAT(tcps, tcp_time_wait_syn_success); 24791 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24792 return; 24793 } 24794 goto done; 24795 } 24796 24797 /* 24798 * rgap is the amount of stuff received out of window. A negative 24799 * value is the amount out of window. 24800 */ 24801 if (rgap < 0) { 24802 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 24803 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 24804 /* Fix seg_len and make sure there is something left. */ 24805 seg_len += rgap; 24806 if (seg_len <= 0) { 24807 if (flags & TH_RST) { 24808 goto done; 24809 } 24810 flags |= TH_ACK_NEEDED; 24811 seg_len = 0; 24812 goto process_ack; 24813 } 24814 } 24815 /* 24816 * Check whether we can update tcp_ts_recent. This test is 24817 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24818 * Extensions for High Performance: An Update", Internet Draft. 24819 */ 24820 if (tcp->tcp_snd_ts_ok && 24821 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24822 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24823 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24824 tcp->tcp_last_rcv_lbolt = lbolt64; 24825 } 24826 24827 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24828 /* Always ack out of order packets */ 24829 flags |= TH_ACK_NEEDED; 24830 seg_len = 0; 24831 } else if (seg_len > 0) { 24832 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 24833 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 24834 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 24835 } 24836 if (flags & TH_RST) { 24837 (void) tcp_clean_death(tcp, 0, 28); 24838 goto done; 24839 } 24840 if (flags & TH_SYN) { 24841 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24842 TH_RST|TH_ACK); 24843 /* 24844 * Do not delete the TCP structure if it is in 24845 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24846 */ 24847 goto done; 24848 } 24849 process_ack: 24850 if (flags & TH_ACK) { 24851 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24852 if (bytes_acked <= 0) { 24853 if (bytes_acked == 0 && seg_len == 0 && 24854 new_swnd == tcp->tcp_swnd) 24855 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 24856 } else { 24857 /* Acks something not sent */ 24858 flags |= TH_ACK_NEEDED; 24859 } 24860 } 24861 if (flags & TH_ACK_NEEDED) { 24862 /* 24863 * Time to send an ack for some reason. 24864 */ 24865 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24866 tcp->tcp_rnxt, TH_ACK); 24867 } 24868 done: 24869 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24870 DB_CKSUMSTART(mp) = 0; 24871 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24872 TCP_STAT(tcps, tcp_time_wait_syn_fail); 24873 } 24874 freemsg(mp); 24875 } 24876 24877 /* 24878 * TCP Timers Implementation. 24879 */ 24880 timeout_id_t 24881 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24882 { 24883 mblk_t *mp; 24884 tcp_timer_t *tcpt; 24885 tcp_t *tcp = connp->conn_tcp; 24886 24887 ASSERT(connp->conn_sqp != NULL); 24888 24889 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 24890 24891 if (tcp->tcp_timercache == NULL) { 24892 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24893 } else { 24894 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 24895 mp = tcp->tcp_timercache; 24896 tcp->tcp_timercache = mp->b_next; 24897 mp->b_next = NULL; 24898 ASSERT(mp->b_wptr == NULL); 24899 } 24900 24901 CONN_INC_REF(connp); 24902 tcpt = (tcp_timer_t *)mp->b_rptr; 24903 tcpt->connp = connp; 24904 tcpt->tcpt_proc = f; 24905 /* 24906 * TCP timers are normal timeouts. Plus, they do not require more than 24907 * a 10 millisecond resolution. By choosing a coarser resolution and by 24908 * rounding up the expiration to the next resolution boundary, we can 24909 * batch timers in the callout subsystem to make TCP timers more 24910 * efficient. The roundup also protects short timers from expiring too 24911 * early before they have a chance to be cancelled. 24912 */ 24913 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 24914 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 24915 24916 return ((timeout_id_t)mp); 24917 } 24918 24919 static void 24920 tcp_timer_callback(void *arg) 24921 { 24922 mblk_t *mp = (mblk_t *)arg; 24923 tcp_timer_t *tcpt; 24924 conn_t *connp; 24925 24926 tcpt = (tcp_timer_t *)mp->b_rptr; 24927 connp = tcpt->connp; 24928 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 24929 SQ_FILL, SQTAG_TCP_TIMER); 24930 } 24931 24932 static void 24933 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24934 { 24935 tcp_timer_t *tcpt; 24936 conn_t *connp = (conn_t *)arg; 24937 tcp_t *tcp = connp->conn_tcp; 24938 24939 tcpt = (tcp_timer_t *)mp->b_rptr; 24940 ASSERT(connp == tcpt->connp); 24941 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24942 24943 /* 24944 * If the TCP has reached the closed state, don't proceed any 24945 * further. This TCP logically does not exist on the system. 24946 * tcpt_proc could for example access queues, that have already 24947 * been qprocoff'ed off. Also see comments at the start of tcp_input 24948 */ 24949 if (tcp->tcp_state != TCPS_CLOSED) { 24950 (*tcpt->tcpt_proc)(connp); 24951 } else { 24952 tcp->tcp_timer_tid = 0; 24953 } 24954 tcp_timer_free(connp->conn_tcp, mp); 24955 } 24956 24957 /* 24958 * There is potential race with untimeout and the handler firing at the same 24959 * time. The mblock may be freed by the handler while we are trying to use 24960 * it. But since both should execute on the same squeue, this race should not 24961 * occur. 24962 */ 24963 clock_t 24964 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24965 { 24966 mblk_t *mp = (mblk_t *)id; 24967 tcp_timer_t *tcpt; 24968 clock_t delta; 24969 24970 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 24971 24972 if (mp == NULL) 24973 return (-1); 24974 24975 tcpt = (tcp_timer_t *)mp->b_rptr; 24976 ASSERT(tcpt->connp == connp); 24977 24978 delta = untimeout_default(tcpt->tcpt_tid, 0); 24979 24980 if (delta >= 0) { 24981 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 24982 tcp_timer_free(connp->conn_tcp, mp); 24983 CONN_DEC_REF(connp); 24984 } 24985 24986 return (delta); 24987 } 24988 24989 /* 24990 * Allocate space for the timer event. The allocation looks like mblk, but it is 24991 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24992 * 24993 * Dealing with failures: If we can't allocate from the timer cache we try 24994 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24995 * points to b_rptr. 24996 * If we can't allocate anything using allocb_tryhard(), we perform a last 24997 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24998 * save the actual allocation size in b_datap. 24999 */ 25000 mblk_t * 25001 tcp_timermp_alloc(int kmflags) 25002 { 25003 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25004 kmflags & ~KM_PANIC); 25005 25006 if (mp != NULL) { 25007 mp->b_next = mp->b_prev = NULL; 25008 mp->b_rptr = (uchar_t *)(&mp[1]); 25009 mp->b_wptr = NULL; 25010 mp->b_datap = NULL; 25011 mp->b_queue = NULL; 25012 mp->b_cont = NULL; 25013 } else if (kmflags & KM_PANIC) { 25014 /* 25015 * Failed to allocate memory for the timer. Try allocating from 25016 * dblock caches. 25017 */ 25018 /* ipclassifier calls this from a constructor - hence no tcps */ 25019 TCP_G_STAT(tcp_timermp_allocfail); 25020 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25021 if (mp == NULL) { 25022 size_t size = 0; 25023 /* 25024 * Memory is really low. Try tryhard allocation. 25025 * 25026 * ipclassifier calls this from a constructor - 25027 * hence no tcps 25028 */ 25029 TCP_G_STAT(tcp_timermp_allocdblfail); 25030 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25031 sizeof (tcp_timer_t), &size, kmflags); 25032 mp->b_rptr = (uchar_t *)(&mp[1]); 25033 mp->b_next = mp->b_prev = NULL; 25034 mp->b_wptr = (uchar_t *)-1; 25035 mp->b_datap = (dblk_t *)size; 25036 mp->b_queue = NULL; 25037 mp->b_cont = NULL; 25038 } 25039 ASSERT(mp->b_wptr != NULL); 25040 } 25041 /* ipclassifier calls this from a constructor - hence no tcps */ 25042 TCP_G_DBGSTAT(tcp_timermp_alloced); 25043 25044 return (mp); 25045 } 25046 25047 /* 25048 * Free per-tcp timer cache. 25049 * It can only contain entries from tcp_timercache. 25050 */ 25051 void 25052 tcp_timermp_free(tcp_t *tcp) 25053 { 25054 mblk_t *mp; 25055 25056 while ((mp = tcp->tcp_timercache) != NULL) { 25057 ASSERT(mp->b_wptr == NULL); 25058 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25059 kmem_cache_free(tcp_timercache, mp); 25060 } 25061 } 25062 25063 /* 25064 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25065 * events there already (currently at most two events are cached). 25066 * If the event is not allocated from the timer cache, free it right away. 25067 */ 25068 static void 25069 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25070 { 25071 mblk_t *mp1 = tcp->tcp_timercache; 25072 25073 if (mp->b_wptr != NULL) { 25074 /* 25075 * This allocation is not from a timer cache, free it right 25076 * away. 25077 */ 25078 if (mp->b_wptr != (uchar_t *)-1) 25079 freeb(mp); 25080 else 25081 kmem_free(mp, (size_t)mp->b_datap); 25082 } else if (mp1 == NULL || mp1->b_next == NULL) { 25083 /* Cache this timer block for future allocations */ 25084 mp->b_rptr = (uchar_t *)(&mp[1]); 25085 mp->b_next = mp1; 25086 tcp->tcp_timercache = mp; 25087 } else { 25088 kmem_cache_free(tcp_timercache, mp); 25089 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25090 } 25091 } 25092 25093 /* 25094 * End of TCP Timers implementation. 25095 */ 25096 25097 /* 25098 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25099 * on the specified backing STREAMS q. Note, the caller may make the 25100 * decision to call based on the tcp_t.tcp_flow_stopped value which 25101 * when check outside the q's lock is only an advisory check ... 25102 */ 25103 void 25104 tcp_setqfull(tcp_t *tcp) 25105 { 25106 tcp_stack_t *tcps = tcp->tcp_tcps; 25107 conn_t *connp = tcp->tcp_connp; 25108 25109 if (tcp->tcp_closed) 25110 return; 25111 25112 if (IPCL_IS_NONSTR(connp)) { 25113 (*connp->conn_upcalls->su_txq_full) 25114 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25115 tcp->tcp_flow_stopped = B_TRUE; 25116 } else { 25117 queue_t *q = tcp->tcp_wq; 25118 25119 if (!(q->q_flag & QFULL)) { 25120 mutex_enter(QLOCK(q)); 25121 if (!(q->q_flag & QFULL)) { 25122 /* still need to set QFULL */ 25123 q->q_flag |= QFULL; 25124 tcp->tcp_flow_stopped = B_TRUE; 25125 mutex_exit(QLOCK(q)); 25126 TCP_STAT(tcps, tcp_flwctl_on); 25127 } else { 25128 mutex_exit(QLOCK(q)); 25129 } 25130 } 25131 } 25132 } 25133 25134 void 25135 tcp_clrqfull(tcp_t *tcp) 25136 { 25137 conn_t *connp = tcp->tcp_connp; 25138 25139 if (tcp->tcp_closed) 25140 return; 25141 25142 if (IPCL_IS_NONSTR(connp)) { 25143 (*connp->conn_upcalls->su_txq_full) 25144 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 25145 tcp->tcp_flow_stopped = B_FALSE; 25146 } else { 25147 queue_t *q = tcp->tcp_wq; 25148 25149 if (q->q_flag & QFULL) { 25150 mutex_enter(QLOCK(q)); 25151 if (q->q_flag & QFULL) { 25152 q->q_flag &= ~QFULL; 25153 tcp->tcp_flow_stopped = B_FALSE; 25154 mutex_exit(QLOCK(q)); 25155 if (q->q_flag & QWANTW) 25156 qbackenable(q, 0); 25157 } else { 25158 mutex_exit(QLOCK(q)); 25159 } 25160 } 25161 } 25162 } 25163 25164 /* 25165 * kstats related to squeues i.e. not per IP instance 25166 */ 25167 static void * 25168 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 25169 { 25170 kstat_t *ksp; 25171 25172 tcp_g_stat_t template = { 25173 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 25174 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 25175 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 25176 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 25177 }; 25178 25179 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 25180 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25181 KSTAT_FLAG_VIRTUAL); 25182 25183 if (ksp == NULL) 25184 return (NULL); 25185 25186 bcopy(&template, tcp_g_statp, sizeof (template)); 25187 ksp->ks_data = (void *)tcp_g_statp; 25188 25189 kstat_install(ksp); 25190 return (ksp); 25191 } 25192 25193 static void 25194 tcp_g_kstat_fini(kstat_t *ksp) 25195 { 25196 if (ksp != NULL) { 25197 kstat_delete(ksp); 25198 } 25199 } 25200 25201 25202 static void * 25203 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 25204 { 25205 kstat_t *ksp; 25206 25207 tcp_stat_t template = { 25208 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 25209 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 25210 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 25211 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 25212 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 25213 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 25214 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 25215 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 25216 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 25217 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 25218 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 25219 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 25220 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 25221 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 25222 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 25223 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 25224 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 25225 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 25226 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 25227 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 25228 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 25229 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 25230 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 25231 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 25232 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 25233 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 25234 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 25235 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 25236 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 25237 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 25238 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 25239 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 25240 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 25241 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 25242 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 25243 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 25244 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 25245 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 25246 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 25247 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 25248 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 25249 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 25250 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 25251 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 25252 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 25253 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 25254 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 25255 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 25256 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 25257 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 25258 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 25259 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 25260 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 25261 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 25262 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 25263 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 25264 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 25265 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 25266 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 25267 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 25268 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 25269 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 25270 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 25271 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 25272 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 25273 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 25274 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 25275 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 25276 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 25277 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 25278 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 25279 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 25280 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 25281 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 25282 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 25283 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 25284 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 25285 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 25286 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 25287 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 25288 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 25289 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 25290 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 25291 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 25292 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 25293 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 25294 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 25295 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 25296 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 25297 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 25298 }; 25299 25300 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 25301 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25302 KSTAT_FLAG_VIRTUAL, stackid); 25303 25304 if (ksp == NULL) 25305 return (NULL); 25306 25307 bcopy(&template, tcps_statisticsp, sizeof (template)); 25308 ksp->ks_data = (void *)tcps_statisticsp; 25309 ksp->ks_private = (void *)(uintptr_t)stackid; 25310 25311 kstat_install(ksp); 25312 return (ksp); 25313 } 25314 25315 static void 25316 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 25317 { 25318 if (ksp != NULL) { 25319 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25320 kstat_delete_netstack(ksp, stackid); 25321 } 25322 } 25323 25324 /* 25325 * TCP Kstats implementation 25326 */ 25327 static void * 25328 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 25329 { 25330 kstat_t *ksp; 25331 25332 tcp_named_kstat_t template = { 25333 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25334 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25335 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25336 { "maxConn", KSTAT_DATA_INT32, 0 }, 25337 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25338 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25339 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25340 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25341 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25342 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25343 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25344 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25345 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25346 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25347 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25348 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25349 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25350 { "outAck", KSTAT_DATA_UINT32, 0 }, 25351 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25352 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25353 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25354 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25355 { "outControl", KSTAT_DATA_UINT32, 0 }, 25356 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25357 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25358 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25359 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25360 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25361 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25362 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25363 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25364 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25365 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25366 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25367 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25368 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25369 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25370 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25371 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25372 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25373 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25374 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25375 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25376 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25377 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25378 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25379 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25380 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25381 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25382 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25383 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25384 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25385 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25386 }; 25387 25388 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 25389 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 25390 25391 if (ksp == NULL) 25392 return (NULL); 25393 25394 template.rtoAlgorithm.value.ui32 = 4; 25395 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 25396 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 25397 template.maxConn.value.i32 = -1; 25398 25399 bcopy(&template, ksp->ks_data, sizeof (template)); 25400 ksp->ks_update = tcp_kstat_update; 25401 ksp->ks_private = (void *)(uintptr_t)stackid; 25402 25403 kstat_install(ksp); 25404 return (ksp); 25405 } 25406 25407 static void 25408 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 25409 { 25410 if (ksp != NULL) { 25411 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25412 kstat_delete_netstack(ksp, stackid); 25413 } 25414 } 25415 25416 static int 25417 tcp_kstat_update(kstat_t *kp, int rw) 25418 { 25419 tcp_named_kstat_t *tcpkp; 25420 tcp_t *tcp; 25421 connf_t *connfp; 25422 conn_t *connp; 25423 int i; 25424 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 25425 netstack_t *ns; 25426 tcp_stack_t *tcps; 25427 ip_stack_t *ipst; 25428 25429 if ((kp == NULL) || (kp->ks_data == NULL)) 25430 return (EIO); 25431 25432 if (rw == KSTAT_WRITE) 25433 return (EACCES); 25434 25435 ns = netstack_find_by_stackid(stackid); 25436 if (ns == NULL) 25437 return (-1); 25438 tcps = ns->netstack_tcp; 25439 if (tcps == NULL) { 25440 netstack_rele(ns); 25441 return (-1); 25442 } 25443 25444 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25445 25446 tcpkp->currEstab.value.ui32 = 0; 25447 25448 ipst = ns->netstack_ip; 25449 25450 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25451 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25452 connp = NULL; 25453 while ((connp = 25454 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25455 tcp = connp->conn_tcp; 25456 switch (tcp_snmp_state(tcp)) { 25457 case MIB2_TCP_established: 25458 case MIB2_TCP_closeWait: 25459 tcpkp->currEstab.value.ui32++; 25460 break; 25461 } 25462 } 25463 } 25464 25465 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 25466 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 25467 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 25468 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 25469 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 25470 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 25471 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 25472 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 25473 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 25474 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 25475 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 25476 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 25477 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 25478 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 25479 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 25480 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 25481 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 25482 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 25483 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 25484 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 25485 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 25486 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 25487 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 25488 tcpkp->inDataInorderSegs.value.ui32 = 25489 tcps->tcps_mib.tcpInDataInorderSegs; 25490 tcpkp->inDataInorderBytes.value.ui32 = 25491 tcps->tcps_mib.tcpInDataInorderBytes; 25492 tcpkp->inDataUnorderSegs.value.ui32 = 25493 tcps->tcps_mib.tcpInDataUnorderSegs; 25494 tcpkp->inDataUnorderBytes.value.ui32 = 25495 tcps->tcps_mib.tcpInDataUnorderBytes; 25496 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 25497 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 25498 tcpkp->inDataPartDupSegs.value.ui32 = 25499 tcps->tcps_mib.tcpInDataPartDupSegs; 25500 tcpkp->inDataPartDupBytes.value.ui32 = 25501 tcps->tcps_mib.tcpInDataPartDupBytes; 25502 tcpkp->inDataPastWinSegs.value.ui32 = 25503 tcps->tcps_mib.tcpInDataPastWinSegs; 25504 tcpkp->inDataPastWinBytes.value.ui32 = 25505 tcps->tcps_mib.tcpInDataPastWinBytes; 25506 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 25507 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 25508 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 25509 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 25510 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 25511 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 25512 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 25513 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 25514 tcpkp->timKeepaliveProbe.value.ui32 = 25515 tcps->tcps_mib.tcpTimKeepaliveProbe; 25516 tcpkp->timKeepaliveDrop.value.ui32 = 25517 tcps->tcps_mib.tcpTimKeepaliveDrop; 25518 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 25519 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 25520 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 25521 tcpkp->outSackRetransSegs.value.ui32 = 25522 tcps->tcps_mib.tcpOutSackRetransSegs; 25523 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 25524 25525 netstack_rele(ns); 25526 return (0); 25527 } 25528 25529 void 25530 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25531 { 25532 uint16_t hdr_len; 25533 ipha_t *ipha; 25534 uint8_t *nexthdrp; 25535 tcph_t *tcph; 25536 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 25537 25538 /* Already has an eager */ 25539 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25540 TCP_STAT(tcps, tcp_reinput_syn); 25541 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25542 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 25543 return; 25544 } 25545 25546 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25547 case IPV4_VERSION: 25548 ipha = (ipha_t *)mp->b_rptr; 25549 hdr_len = IPH_HDR_LENGTH(ipha); 25550 break; 25551 case IPV6_VERSION: 25552 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25553 &hdr_len, &nexthdrp)) { 25554 CONN_DEC_REF(connp); 25555 freemsg(mp); 25556 return; 25557 } 25558 break; 25559 } 25560 25561 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25562 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25563 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25564 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25565 } 25566 25567 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25568 SQ_FILL, SQTAG_TCP_REINPUT); 25569 } 25570 25571 static int 25572 tcp_squeue_switch(int val) 25573 { 25574 int rval = SQ_FILL; 25575 25576 switch (val) { 25577 case 1: 25578 rval = SQ_NODRAIN; 25579 break; 25580 case 2: 25581 rval = SQ_PROCESS; 25582 break; 25583 default: 25584 break; 25585 } 25586 return (rval); 25587 } 25588 25589 /* 25590 * This is called once for each squeue - globally for all stack 25591 * instances. 25592 */ 25593 static void 25594 tcp_squeue_add(squeue_t *sqp) 25595 { 25596 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25597 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25598 25599 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25600 tcp_time_wait->tcp_time_wait_tid = 25601 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 25602 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 25603 CALLOUT_FLAG_ROUNDUP); 25604 if (tcp_free_list_max_cnt == 0) { 25605 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25606 max_ncpus : boot_max_ncpus); 25607 25608 /* 25609 * Limit number of entries to 1% of availble memory / tcp_ncpus 25610 */ 25611 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25612 (tcp_ncpus * sizeof (tcp_t) * 100); 25613 } 25614 tcp_time_wait->tcp_free_list_cnt = 0; 25615 } 25616 25617 static int 25618 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 25619 { 25620 mblk_t *ire_mp = NULL; 25621 mblk_t *syn_mp; 25622 mblk_t *mdti; 25623 mblk_t *lsoi; 25624 int retval; 25625 tcph_t *tcph; 25626 cred_t *ecr; 25627 ts_label_t *tsl; 25628 uint32_t mss; 25629 queue_t *q = tcp->tcp_rq; 25630 conn_t *connp = tcp->tcp_connp; 25631 tcp_stack_t *tcps = tcp->tcp_tcps; 25632 25633 if (error == 0) { 25634 /* 25635 * Adapt Multidata information, if any. The 25636 * following tcp_mdt_update routine will free 25637 * the message. 25638 */ 25639 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 25640 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 25641 b_rptr)->mdt_capab, B_TRUE); 25642 freemsg(mdti); 25643 } 25644 25645 /* 25646 * Check to update LSO information with tcp, and 25647 * tcp_lso_update routine will free the message. 25648 */ 25649 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 25650 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 25651 b_rptr)->lso_capab); 25652 freemsg(lsoi); 25653 } 25654 25655 /* Get the IRE, if we had requested for it */ 25656 if (mp != NULL) 25657 ire_mp = tcp_ire_mp(&mp); 25658 25659 if (tcp->tcp_hard_binding) { 25660 tcp->tcp_hard_binding = B_FALSE; 25661 tcp->tcp_hard_bound = B_TRUE; 25662 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 25663 if (retval != 0) { 25664 error = EADDRINUSE; 25665 goto bind_failed; 25666 } 25667 } else { 25668 if (ire_mp != NULL) 25669 freeb(ire_mp); 25670 goto after_syn_sent; 25671 } 25672 25673 retval = tcp_adapt_ire(tcp, ire_mp); 25674 if (ire_mp != NULL) 25675 freeb(ire_mp); 25676 if (retval == 0) { 25677 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 25678 ENETUNREACH : EADDRNOTAVAIL); 25679 goto ipcl_rm; 25680 } 25681 /* 25682 * Don't let an endpoint connect to itself. 25683 * Also checked in tcp_connect() but that 25684 * check can't handle the case when the 25685 * local IP address is INADDR_ANY. 25686 */ 25687 if (tcp->tcp_ipversion == IPV4_VERSION) { 25688 if ((tcp->tcp_ipha->ipha_dst == 25689 tcp->tcp_ipha->ipha_src) && 25690 (BE16_EQL(tcp->tcp_tcph->th_lport, 25691 tcp->tcp_tcph->th_fport))) { 25692 error = EADDRNOTAVAIL; 25693 goto ipcl_rm; 25694 } 25695 } else { 25696 if (IN6_ARE_ADDR_EQUAL( 25697 &tcp->tcp_ip6h->ip6_dst, 25698 &tcp->tcp_ip6h->ip6_src) && 25699 (BE16_EQL(tcp->tcp_tcph->th_lport, 25700 tcp->tcp_tcph->th_fport))) { 25701 error = EADDRNOTAVAIL; 25702 goto ipcl_rm; 25703 } 25704 } 25705 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 25706 /* 25707 * This should not be possible! Just for 25708 * defensive coding... 25709 */ 25710 if (tcp->tcp_state != TCPS_SYN_SENT) 25711 goto after_syn_sent; 25712 25713 if (is_system_labeled() && 25714 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 25715 error = EHOSTUNREACH; 25716 goto ipcl_rm; 25717 } 25718 25719 /* 25720 * tcp_adapt_ire() does not adjust 25721 * for TCP/IP header length. 25722 */ 25723 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 25724 25725 /* 25726 * Just make sure our rwnd is at 25727 * least tcp_recv_hiwat_mss * MSS 25728 * large, and round up to the nearest 25729 * MSS. 25730 * 25731 * We do the round up here because 25732 * we need to get the interface 25733 * MTU first before we can do the 25734 * round up. 25735 */ 25736 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 25737 tcps->tcps_recv_hiwat_minmss * mss); 25738 if (!IPCL_IS_NONSTR(connp)) 25739 q->q_hiwat = tcp->tcp_rwnd; 25740 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 25741 tcp_set_ws_value(tcp); 25742 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 25743 tcp->tcp_tcph->th_win); 25744 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 25745 tcp->tcp_snd_ws_ok = B_TRUE; 25746 25747 /* 25748 * Set tcp_snd_ts_ok to true 25749 * so that tcp_xmit_mp will 25750 * include the timestamp 25751 * option in the SYN segment. 25752 */ 25753 if (tcps->tcps_tstamp_always || 25754 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 25755 tcp->tcp_snd_ts_ok = B_TRUE; 25756 } 25757 25758 /* 25759 * tcp_snd_sack_ok can be set in 25760 * tcp_adapt_ire() if the sack metric 25761 * is set. So check it here also. 25762 */ 25763 if (tcps->tcps_sack_permitted == 2 || 25764 tcp->tcp_snd_sack_ok) { 25765 if (tcp->tcp_sack_info == NULL) { 25766 tcp->tcp_sack_info = 25767 kmem_cache_alloc(tcp_sack_info_cache, 25768 KM_SLEEP); 25769 } 25770 tcp->tcp_snd_sack_ok = B_TRUE; 25771 } 25772 25773 /* 25774 * Should we use ECN? Note that the current 25775 * default value (SunOS 5.9) of tcp_ecn_permitted 25776 * is 1. The reason for doing this is that there 25777 * are equipments out there that will drop ECN 25778 * enabled IP packets. Setting it to 1 avoids 25779 * compatibility problems. 25780 */ 25781 if (tcps->tcps_ecn_permitted == 2) 25782 tcp->tcp_ecn_ok = B_TRUE; 25783 25784 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 25785 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 25786 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 25787 if (syn_mp) { 25788 /* 25789 * cr contains the cred from the thread calling 25790 * connect(). 25791 * 25792 * If no thread cred is available, use the 25793 * socket creator's cred instead. If still no 25794 * cred, drop the request rather than risk a 25795 * panic on production systems. 25796 */ 25797 if (cr == NULL) { 25798 cr = CONN_CRED(connp); 25799 pid = tcp->tcp_cpid; 25800 ASSERT(cr != NULL); 25801 if (cr != NULL) { 25802 mblk_setcred(syn_mp, cr, pid); 25803 } else { 25804 error = ECONNABORTED; 25805 goto ipcl_rm; 25806 } 25807 25808 /* 25809 * If an effective security label exists for 25810 * the connection, create a copy of the thread's 25811 * cred but with the effective label attached. 25812 */ 25813 } else if (is_system_labeled() && 25814 connp->conn_effective_cred != NULL && 25815 (tsl = crgetlabel(connp-> 25816 conn_effective_cred)) != NULL) { 25817 if ((ecr = copycred_from_tslabel(cr, 25818 tsl, KM_NOSLEEP)) == NULL) { 25819 error = ENOMEM; 25820 goto ipcl_rm; 25821 } 25822 mblk_setcred(syn_mp, ecr, pid); 25823 crfree(ecr); 25824 25825 /* 25826 * Default to using the thread's cred unchanged. 25827 */ 25828 } else { 25829 mblk_setcred(syn_mp, cr, pid); 25830 } 25831 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 25832 } 25833 after_syn_sent: 25834 if (mp != NULL) { 25835 ASSERT(mp->b_cont == NULL); 25836 freeb(mp); 25837 } 25838 return (error); 25839 } else { 25840 /* error */ 25841 if (tcp->tcp_debug) { 25842 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 25843 "tcp_post_ip_bind: error == %d", error); 25844 } 25845 if (mp != NULL) { 25846 freeb(mp); 25847 } 25848 } 25849 25850 ipcl_rm: 25851 /* 25852 * Need to unbind with classifier since we were just 25853 * told that our bind succeeded. a.k.a error == 0 at the entry. 25854 */ 25855 tcp->tcp_hard_bound = B_FALSE; 25856 tcp->tcp_hard_binding = B_FALSE; 25857 25858 ipcl_hash_remove(connp); 25859 25860 bind_failed: 25861 tcp->tcp_state = TCPS_IDLE; 25862 if (tcp->tcp_ipversion == IPV4_VERSION) 25863 tcp->tcp_ipha->ipha_src = 0; 25864 else 25865 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 25866 /* 25867 * Copy of the src addr. in tcp_t is needed since 25868 * the lookup funcs. can only look at tcp_t 25869 */ 25870 V6_SET_ZERO(tcp->tcp_ip_src_v6); 25871 25872 tcph = tcp->tcp_tcph; 25873 tcph->th_lport[0] = 0; 25874 tcph->th_lport[1] = 0; 25875 tcp_bind_hash_remove(tcp); 25876 bzero(&connp->u_port, sizeof (connp->u_port)); 25877 /* blow away saved option results if any */ 25878 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 25879 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 25880 25881 conn_delete_ire(tcp->tcp_connp, NULL); 25882 25883 return (error); 25884 } 25885 25886 static int 25887 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 25888 boolean_t bind_to_req_port_only, cred_t *cr) 25889 { 25890 in_port_t mlp_port; 25891 mlp_type_t addrtype, mlptype; 25892 boolean_t user_specified; 25893 in_port_t allocated_port; 25894 in_port_t requested_port = *requested_port_ptr; 25895 conn_t *connp; 25896 zone_t *zone; 25897 tcp_stack_t *tcps = tcp->tcp_tcps; 25898 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 25899 25900 /* 25901 * XXX It's up to the caller to specify bind_to_req_port_only or not. 25902 */ 25903 if (cr == NULL) 25904 cr = tcp->tcp_cred; 25905 /* 25906 * Get a valid port (within the anonymous range and should not 25907 * be a privileged one) to use if the user has not given a port. 25908 * If multiple threads are here, they may all start with 25909 * with the same initial port. But, it should be fine as long as 25910 * tcp_bindi will ensure that no two threads will be assigned 25911 * the same port. 25912 * 25913 * NOTE: XXX If a privileged process asks for an anonymous port, we 25914 * still check for ports only in the range > tcp_smallest_non_priv_port, 25915 * unless TCP_ANONPRIVBIND option is set. 25916 */ 25917 mlptype = mlptSingle; 25918 mlp_port = requested_port; 25919 if (requested_port == 0) { 25920 requested_port = tcp->tcp_anon_priv_bind ? 25921 tcp_get_next_priv_port(tcp) : 25922 tcp_update_next_port(tcps->tcps_next_port_to_try, 25923 tcp, B_TRUE); 25924 if (requested_port == 0) { 25925 return (-TNOADDR); 25926 } 25927 user_specified = B_FALSE; 25928 25929 /* 25930 * If the user went through one of the RPC interfaces to create 25931 * this socket and RPC is MLP in this zone, then give him an 25932 * anonymous MLP. 25933 */ 25934 connp = tcp->tcp_connp; 25935 if (connp->conn_anon_mlp && is_system_labeled()) { 25936 zone = crgetzone(cr); 25937 addrtype = tsol_mlp_addr_type(zone->zone_id, 25938 IPV6_VERSION, &v6addr, 25939 tcps->tcps_netstack->netstack_ip); 25940 if (addrtype == mlptSingle) { 25941 return (-TNOADDR); 25942 } 25943 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25944 PMAPPORT, addrtype); 25945 mlp_port = PMAPPORT; 25946 } 25947 } else { 25948 int i; 25949 boolean_t priv = B_FALSE; 25950 25951 /* 25952 * If the requested_port is in the well-known privileged range, 25953 * verify that the stream was opened by a privileged user. 25954 * Note: No locks are held when inspecting tcp_g_*epriv_ports 25955 * but instead the code relies on: 25956 * - the fact that the address of the array and its size never 25957 * changes 25958 * - the atomic assignment of the elements of the array 25959 */ 25960 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 25961 priv = B_TRUE; 25962 } else { 25963 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 25964 if (requested_port == 25965 tcps->tcps_g_epriv_ports[i]) { 25966 priv = B_TRUE; 25967 break; 25968 } 25969 } 25970 } 25971 if (priv) { 25972 if (secpolicy_net_privaddr(cr, requested_port, 25973 IPPROTO_TCP) != 0) { 25974 if (tcp->tcp_debug) { 25975 (void) strlog(TCP_MOD_ID, 0, 1, 25976 SL_ERROR|SL_TRACE, 25977 "tcp_bind: no priv for port %d", 25978 requested_port); 25979 } 25980 return (-TACCES); 25981 } 25982 } 25983 user_specified = B_TRUE; 25984 25985 connp = tcp->tcp_connp; 25986 if (is_system_labeled()) { 25987 zone = crgetzone(cr); 25988 addrtype = tsol_mlp_addr_type(zone->zone_id, 25989 IPV6_VERSION, &v6addr, 25990 tcps->tcps_netstack->netstack_ip); 25991 if (addrtype == mlptSingle) { 25992 return (-TNOADDR); 25993 } 25994 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25995 requested_port, addrtype); 25996 } 25997 } 25998 25999 if (mlptype != mlptSingle) { 26000 if (secpolicy_net_bindmlp(cr) != 0) { 26001 if (tcp->tcp_debug) { 26002 (void) strlog(TCP_MOD_ID, 0, 1, 26003 SL_ERROR|SL_TRACE, 26004 "tcp_bind: no priv for multilevel port %d", 26005 requested_port); 26006 } 26007 return (-TACCES); 26008 } 26009 26010 /* 26011 * If we're specifically binding a shared IP address and the 26012 * port is MLP on shared addresses, then check to see if this 26013 * zone actually owns the MLP. Reject if not. 26014 */ 26015 if (mlptype == mlptShared && addrtype == mlptShared) { 26016 /* 26017 * No need to handle exclusive-stack zones since 26018 * ALL_ZONES only applies to the shared stack. 26019 */ 26020 zoneid_t mlpzone; 26021 26022 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26023 htons(mlp_port)); 26024 if (connp->conn_zoneid != mlpzone) { 26025 if (tcp->tcp_debug) { 26026 (void) strlog(TCP_MOD_ID, 0, 1, 26027 SL_ERROR|SL_TRACE, 26028 "tcp_bind: attempt to bind port " 26029 "%d on shared addr in zone %d " 26030 "(should be %d)", 26031 mlp_port, connp->conn_zoneid, 26032 mlpzone); 26033 } 26034 return (-TACCES); 26035 } 26036 } 26037 26038 if (!user_specified) { 26039 int err; 26040 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26041 requested_port, B_TRUE); 26042 if (err != 0) { 26043 if (tcp->tcp_debug) { 26044 (void) strlog(TCP_MOD_ID, 0, 1, 26045 SL_ERROR|SL_TRACE, 26046 "tcp_bind: cannot establish anon " 26047 "MLP for port %d", 26048 requested_port); 26049 } 26050 return (err); 26051 } 26052 connp->conn_anon_port = B_TRUE; 26053 } 26054 connp->conn_mlp_type = mlptype; 26055 } 26056 26057 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26058 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26059 26060 if (allocated_port == 0) { 26061 connp->conn_mlp_type = mlptSingle; 26062 if (connp->conn_anon_port) { 26063 connp->conn_anon_port = B_FALSE; 26064 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26065 requested_port, B_FALSE); 26066 } 26067 if (bind_to_req_port_only) { 26068 if (tcp->tcp_debug) { 26069 (void) strlog(TCP_MOD_ID, 0, 1, 26070 SL_ERROR|SL_TRACE, 26071 "tcp_bind: requested addr busy"); 26072 } 26073 return (-TADDRBUSY); 26074 } else { 26075 /* If we are out of ports, fail the bind. */ 26076 if (tcp->tcp_debug) { 26077 (void) strlog(TCP_MOD_ID, 0, 1, 26078 SL_ERROR|SL_TRACE, 26079 "tcp_bind: out of ports?"); 26080 } 26081 return (-TNOADDR); 26082 } 26083 } 26084 26085 /* Pass the allocated port back */ 26086 *requested_port_ptr = allocated_port; 26087 return (0); 26088 } 26089 26090 static int 26091 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26092 boolean_t bind_to_req_port_only) 26093 { 26094 tcp_t *tcp = connp->conn_tcp; 26095 sin_t *sin; 26096 sin6_t *sin6; 26097 in_port_t requested_port; 26098 ipaddr_t v4addr; 26099 in6_addr_t v6addr; 26100 uint_t origipversion; 26101 int error = 0; 26102 26103 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26104 26105 if (tcp->tcp_state == TCPS_BOUND) { 26106 return (0); 26107 } else if (tcp->tcp_state > TCPS_BOUND) { 26108 if (tcp->tcp_debug) { 26109 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26110 "tcp_bind: bad state, %d", tcp->tcp_state); 26111 } 26112 return (-TOUTSTATE); 26113 } 26114 origipversion = tcp->tcp_ipversion; 26115 26116 ASSERT(sa != NULL && len != 0); 26117 26118 if (!OK_32PTR((char *)sa)) { 26119 if (tcp->tcp_debug) { 26120 (void) strlog(TCP_MOD_ID, 0, 1, 26121 SL_ERROR|SL_TRACE, 26122 "tcp_bind: bad address parameter, " 26123 "address %p, len %d", 26124 (void *)sa, len); 26125 } 26126 return (-TPROTO); 26127 } 26128 26129 switch (len) { 26130 case sizeof (sin_t): /* Complete IPv4 address */ 26131 sin = (sin_t *)sa; 26132 /* 26133 * With sockets sockfs will accept bogus sin_family in 26134 * bind() and replace it with the family used in the socket 26135 * call. 26136 */ 26137 if (sin->sin_family != AF_INET || 26138 tcp->tcp_family != AF_INET) { 26139 return (EAFNOSUPPORT); 26140 } 26141 requested_port = ntohs(sin->sin_port); 26142 tcp->tcp_ipversion = IPV4_VERSION; 26143 v4addr = sin->sin_addr.s_addr; 26144 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26145 break; 26146 26147 case sizeof (sin6_t): /* Complete IPv6 address */ 26148 sin6 = (sin6_t *)sa; 26149 if (sin6->sin6_family != AF_INET6 || 26150 tcp->tcp_family != AF_INET6) { 26151 return (EAFNOSUPPORT); 26152 } 26153 requested_port = ntohs(sin6->sin6_port); 26154 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26155 IPV4_VERSION : IPV6_VERSION; 26156 v6addr = sin6->sin6_addr; 26157 break; 26158 26159 default: 26160 if (tcp->tcp_debug) { 26161 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26162 "tcp_bind: bad address length, %d", len); 26163 } 26164 return (EAFNOSUPPORT); 26165 /* return (-TBADADDR); */ 26166 } 26167 26168 tcp->tcp_bound_source_v6 = v6addr; 26169 26170 /* Check for change in ipversion */ 26171 if (origipversion != tcp->tcp_ipversion) { 26172 ASSERT(tcp->tcp_family == AF_INET6); 26173 error = tcp->tcp_ipversion == IPV6_VERSION ? 26174 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 26175 if (error) { 26176 return (ENOMEM); 26177 } 26178 } 26179 26180 /* 26181 * Initialize family specific fields. Copy of the src addr. 26182 * in tcp_t is needed for the lookup funcs. 26183 */ 26184 if (tcp->tcp_ipversion == IPV6_VERSION) { 26185 tcp->tcp_ip6h->ip6_src = v6addr; 26186 } else { 26187 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 26188 } 26189 tcp->tcp_ip_src_v6 = v6addr; 26190 26191 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 26192 26193 error = tcp_bind_select_lport(tcp, &requested_port, 26194 bind_to_req_port_only, cr); 26195 26196 return (error); 26197 } 26198 26199 /* 26200 * Return unix error is tli error is TSYSERR, otherwise return a negative 26201 * tli error. 26202 */ 26203 int 26204 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26205 boolean_t bind_to_req_port_only) 26206 { 26207 int error; 26208 tcp_t *tcp = connp->conn_tcp; 26209 26210 if (tcp->tcp_state >= TCPS_BOUND) { 26211 if (tcp->tcp_debug) { 26212 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26213 "tcp_bind: bad state, %d", tcp->tcp_state); 26214 } 26215 return (-TOUTSTATE); 26216 } 26217 26218 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 26219 if (error != 0) 26220 return (error); 26221 26222 ASSERT(tcp->tcp_state == TCPS_BOUND); 26223 26224 tcp->tcp_conn_req_max = 0; 26225 26226 if (tcp->tcp_family == AF_INET6) { 26227 ASSERT(tcp->tcp_connp->conn_af_isv6); 26228 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 26229 &tcp->tcp_bound_source_v6, 0, B_FALSE); 26230 } else { 26231 ASSERT(!tcp->tcp_connp->conn_af_isv6); 26232 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 26233 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 26234 } 26235 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 26236 } 26237 26238 int 26239 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 26240 socklen_t len, cred_t *cr) 26241 { 26242 int error; 26243 conn_t *connp = (conn_t *)proto_handle; 26244 squeue_t *sqp = connp->conn_sqp; 26245 26246 /* All Solaris components should pass a cred for this operation. */ 26247 ASSERT(cr != NULL); 26248 26249 ASSERT(sqp != NULL); 26250 ASSERT(connp->conn_upper_handle != NULL); 26251 26252 error = squeue_synch_enter(sqp, connp, NULL); 26253 if (error != 0) { 26254 /* failed to enter */ 26255 return (ENOSR); 26256 } 26257 26258 /* binding to a NULL address really means unbind */ 26259 if (sa == NULL) { 26260 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 26261 error = tcp_do_unbind(connp); 26262 else 26263 error = EINVAL; 26264 } else { 26265 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 26266 } 26267 26268 squeue_synch_exit(sqp, connp); 26269 26270 if (error < 0) { 26271 if (error == -TOUTSTATE) 26272 error = EINVAL; 26273 else 26274 error = proto_tlitosyserr(-error); 26275 } 26276 26277 return (error); 26278 } 26279 26280 /* 26281 * If the return value from this function is positive, it's a UNIX error. 26282 * Otherwise, if it's negative, then the absolute value is a TLI error. 26283 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 26284 */ 26285 int 26286 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 26287 cred_t *cr, pid_t pid) 26288 { 26289 tcp_t *tcp = connp->conn_tcp; 26290 sin_t *sin = (sin_t *)sa; 26291 sin6_t *sin6 = (sin6_t *)sa; 26292 ipaddr_t *dstaddrp; 26293 in_port_t dstport; 26294 uint_t srcid; 26295 int error = 0; 26296 26297 switch (len) { 26298 default: 26299 /* 26300 * Should never happen 26301 */ 26302 return (EINVAL); 26303 26304 case sizeof (sin_t): 26305 sin = (sin_t *)sa; 26306 if (sin->sin_port == 0) { 26307 return (-TBADADDR); 26308 } 26309 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 26310 return (EAFNOSUPPORT); 26311 } 26312 break; 26313 26314 case sizeof (sin6_t): 26315 sin6 = (sin6_t *)sa; 26316 if (sin6->sin6_port == 0) { 26317 return (-TBADADDR); 26318 } 26319 break; 26320 } 26321 /* 26322 * If we're connecting to an IPv4-mapped IPv6 address, we need to 26323 * make sure that the template IP header in the tcp structure is an 26324 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 26325 * need to this before we call tcp_bindi() so that the port lookup 26326 * code will look for ports in the correct port space (IPv4 and 26327 * IPv6 have separate port spaces). 26328 */ 26329 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 26330 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26331 int err = 0; 26332 26333 err = tcp_header_init_ipv4(tcp); 26334 if (err != 0) { 26335 error = ENOMEM; 26336 goto connect_failed; 26337 } 26338 if (tcp->tcp_lport != 0) 26339 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 26340 } 26341 26342 switch (tcp->tcp_state) { 26343 case TCPS_LISTEN: 26344 /* 26345 * Listening sockets are not allowed to issue connect(). 26346 */ 26347 if (IPCL_IS_NONSTR(connp)) 26348 return (EOPNOTSUPP); 26349 /* FALLTHRU */ 26350 case TCPS_IDLE: 26351 /* 26352 * We support quick connect, refer to comments in 26353 * tcp_connect_*() 26354 */ 26355 /* FALLTHRU */ 26356 case TCPS_BOUND: 26357 /* 26358 * We must bump the generation before the operation start. 26359 * This is done to ensure that any upcall made later on sends 26360 * up the right generation to the socket. 26361 */ 26362 SOCK_CONNID_BUMP(tcp->tcp_connid); 26363 26364 if (tcp->tcp_family == AF_INET6) { 26365 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26366 return (tcp_connect_ipv6(tcp, 26367 &sin6->sin6_addr, 26368 sin6->sin6_port, sin6->sin6_flowinfo, 26369 sin6->__sin6_src_id, sin6->sin6_scope_id, 26370 cr, pid)); 26371 } 26372 /* 26373 * Destination adress is mapped IPv6 address. 26374 * Source bound address should be unspecified or 26375 * IPv6 mapped address as well. 26376 */ 26377 if (!IN6_IS_ADDR_UNSPECIFIED( 26378 &tcp->tcp_bound_source_v6) && 26379 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 26380 return (EADDRNOTAVAIL); 26381 } 26382 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 26383 dstport = sin6->sin6_port; 26384 srcid = sin6->__sin6_src_id; 26385 } else { 26386 dstaddrp = &sin->sin_addr.s_addr; 26387 dstport = sin->sin_port; 26388 srcid = 0; 26389 } 26390 26391 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 26392 pid); 26393 break; 26394 default: 26395 return (-TOUTSTATE); 26396 } 26397 /* 26398 * Note: Code below is the "failure" case 26399 */ 26400 connect_failed: 26401 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26402 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26403 return (error); 26404 } 26405 26406 int 26407 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 26408 socklen_t len, sock_connid_t *id, cred_t *cr) 26409 { 26410 conn_t *connp = (conn_t *)proto_handle; 26411 tcp_t *tcp = connp->conn_tcp; 26412 squeue_t *sqp = connp->conn_sqp; 26413 int error; 26414 26415 ASSERT(connp->conn_upper_handle != NULL); 26416 26417 /* All Solaris components should pass a cred for this operation. */ 26418 ASSERT(cr != NULL); 26419 26420 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 26421 if (error != 0) { 26422 return (error); 26423 } 26424 26425 error = squeue_synch_enter(sqp, connp, NULL); 26426 if (error != 0) { 26427 /* failed to enter */ 26428 return (ENOSR); 26429 } 26430 26431 /* 26432 * TCP supports quick connect, so no need to do an implicit bind 26433 */ 26434 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 26435 if (error == 0) { 26436 *id = connp->conn_tcp->tcp_connid; 26437 } else if (error < 0) { 26438 if (error == -TOUTSTATE) { 26439 switch (connp->conn_tcp->tcp_state) { 26440 case TCPS_SYN_SENT: 26441 error = EALREADY; 26442 break; 26443 case TCPS_ESTABLISHED: 26444 error = EISCONN; 26445 break; 26446 case TCPS_LISTEN: 26447 error = EOPNOTSUPP; 26448 break; 26449 default: 26450 error = EINVAL; 26451 break; 26452 } 26453 } else { 26454 error = proto_tlitosyserr(-error); 26455 } 26456 } 26457 done: 26458 squeue_synch_exit(sqp, connp); 26459 26460 return ((error == 0) ? EINPROGRESS : error); 26461 } 26462 26463 /* ARGSUSED */ 26464 sock_lower_handle_t 26465 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 26466 uint_t *smodep, int *errorp, int flags, cred_t *credp) 26467 { 26468 conn_t *connp; 26469 boolean_t isv6 = family == AF_INET6; 26470 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 26471 (proto != 0 && proto != IPPROTO_TCP)) { 26472 *errorp = EPROTONOSUPPORT; 26473 return (NULL); 26474 } 26475 26476 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 26477 if (connp == NULL) { 26478 return (NULL); 26479 } 26480 26481 /* 26482 * Put the ref for TCP. Ref for IP was already put 26483 * by ipcl_conn_create. Also Make the conn_t globally 26484 * visible to walkers 26485 */ 26486 mutex_enter(&connp->conn_lock); 26487 CONN_INC_REF_LOCKED(connp); 26488 ASSERT(connp->conn_ref == 2); 26489 connp->conn_state_flags &= ~CONN_INCIPIENT; 26490 26491 connp->conn_flags |= IPCL_NONSTR; 26492 mutex_exit(&connp->conn_lock); 26493 26494 ASSERT(errorp != NULL); 26495 *errorp = 0; 26496 *sock_downcalls = &sock_tcp_downcalls; 26497 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 26498 SM_SENDFILESUPP; 26499 26500 return ((sock_lower_handle_t)connp); 26501 } 26502 26503 /* ARGSUSED */ 26504 void 26505 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 26506 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 26507 { 26508 conn_t *connp = (conn_t *)proto_handle; 26509 struct sock_proto_props sopp; 26510 26511 ASSERT(connp->conn_upper_handle == NULL); 26512 26513 /* All Solaris components should pass a cred for this operation. */ 26514 ASSERT(cr != NULL); 26515 26516 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 26517 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 26518 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 26519 26520 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 26521 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 26522 sopp.sopp_maxpsz = INFPSZ; 26523 sopp.sopp_maxblk = INFPSZ; 26524 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 26525 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 26526 sopp.sopp_maxaddrlen = sizeof (sin6_t); 26527 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 26528 tcp_rinfo.mi_minpsz; 26529 26530 connp->conn_upcalls = sock_upcalls; 26531 connp->conn_upper_handle = sock_handle; 26532 26533 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 26534 } 26535 26536 /* ARGSUSED */ 26537 int 26538 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 26539 { 26540 conn_t *connp = (conn_t *)proto_handle; 26541 26542 ASSERT(connp->conn_upper_handle != NULL); 26543 26544 /* All Solaris components should pass a cred for this operation. */ 26545 ASSERT(cr != NULL); 26546 26547 tcp_close_common(connp, flags); 26548 26549 ip_free_helper_stream(connp); 26550 26551 /* 26552 * Drop IP's reference on the conn. This is the last reference 26553 * on the connp if the state was less than established. If the 26554 * connection has gone into timewait state, then we will have 26555 * one ref for the TCP and one more ref (total of two) for the 26556 * classifier connected hash list (a timewait connections stays 26557 * in connected hash till closed). 26558 * 26559 * We can't assert the references because there might be other 26560 * transient reference places because of some walkers or queued 26561 * packets in squeue for the timewait state. 26562 */ 26563 CONN_DEC_REF(connp); 26564 return (0); 26565 } 26566 26567 /* ARGSUSED */ 26568 int 26569 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 26570 cred_t *cr) 26571 { 26572 tcp_t *tcp; 26573 uint32_t msize; 26574 conn_t *connp = (conn_t *)proto_handle; 26575 int32_t tcpstate; 26576 26577 /* All Solaris components should pass a cred for this operation. */ 26578 ASSERT(cr != NULL); 26579 26580 ASSERT(connp->conn_ref >= 2); 26581 ASSERT(connp->conn_upper_handle != NULL); 26582 26583 if (msg->msg_controllen != 0) { 26584 return (EOPNOTSUPP); 26585 26586 } 26587 switch (DB_TYPE(mp)) { 26588 case M_DATA: 26589 tcp = connp->conn_tcp; 26590 ASSERT(tcp != NULL); 26591 26592 tcpstate = tcp->tcp_state; 26593 if (tcpstate < TCPS_ESTABLISHED) { 26594 freemsg(mp); 26595 return (ENOTCONN); 26596 } else if (tcpstate > TCPS_CLOSE_WAIT) { 26597 freemsg(mp); 26598 return (EPIPE); 26599 } 26600 26601 msize = msgdsize(mp); 26602 26603 mutex_enter(&tcp->tcp_non_sq_lock); 26604 tcp->tcp_squeue_bytes += msize; 26605 /* 26606 * Squeue Flow Control 26607 */ 26608 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 26609 tcp_setqfull(tcp); 26610 } 26611 mutex_exit(&tcp->tcp_non_sq_lock); 26612 26613 /* 26614 * The application may pass in an address in the msghdr, but 26615 * we ignore the address on connection-oriented sockets. 26616 * Just like BSD this code does not generate an error for 26617 * TCP (a CONNREQUIRED socket) when sending to an address 26618 * passed in with sendto/sendmsg. Instead the data is 26619 * delivered on the connection as if no address had been 26620 * supplied. 26621 */ 26622 CONN_INC_REF(connp); 26623 26624 if (msg != NULL && msg->msg_flags & MSG_OOB) { 26625 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 26626 tcp_output_urgent, connp, tcp_squeue_flag, 26627 SQTAG_TCP_OUTPUT); 26628 } else { 26629 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 26630 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 26631 } 26632 26633 return (0); 26634 26635 default: 26636 ASSERT(0); 26637 } 26638 26639 freemsg(mp); 26640 return (0); 26641 } 26642 26643 /* ARGSUSED */ 26644 void 26645 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 26646 { 26647 int len; 26648 uint32_t msize; 26649 conn_t *connp = (conn_t *)arg; 26650 tcp_t *tcp = connp->conn_tcp; 26651 26652 msize = msgdsize(mp); 26653 26654 len = msize - 1; 26655 if (len < 0) { 26656 freemsg(mp); 26657 return; 26658 } 26659 26660 /* 26661 * Try to force urgent data out on the wire. Even if we have unsent 26662 * data this will at least send the urgent flag. 26663 * XXX does not handle more flag correctly. 26664 */ 26665 len += tcp->tcp_unsent; 26666 len += tcp->tcp_snxt; 26667 tcp->tcp_urg = len; 26668 tcp->tcp_valid_bits |= TCP_URG_VALID; 26669 26670 /* Bypass tcp protocol for fused tcp loopback */ 26671 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 26672 return; 26673 26674 /* Strip off the T_EXDATA_REQ if the data is from TPI */ 26675 if (DB_TYPE(mp) != M_DATA) { 26676 mblk_t *mp1 = mp; 26677 ASSERT(!IPCL_IS_NONSTR(connp)); 26678 mp = mp->b_cont; 26679 freeb(mp1); 26680 } 26681 tcp_wput_data(tcp, mp, B_TRUE); 26682 } 26683 26684 /* ARGSUSED */ 26685 int 26686 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26687 socklen_t *addrlenp, cred_t *cr) 26688 { 26689 conn_t *connp = (conn_t *)proto_handle; 26690 tcp_t *tcp = connp->conn_tcp; 26691 26692 ASSERT(connp->conn_upper_handle != NULL); 26693 /* All Solaris components should pass a cred for this operation. */ 26694 ASSERT(cr != NULL); 26695 26696 ASSERT(tcp != NULL); 26697 26698 return (tcp_do_getpeername(tcp, addr, addrlenp)); 26699 } 26700 26701 /* ARGSUSED */ 26702 int 26703 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26704 socklen_t *addrlenp, cred_t *cr) 26705 { 26706 conn_t *connp = (conn_t *)proto_handle; 26707 tcp_t *tcp = connp->conn_tcp; 26708 26709 /* All Solaris components should pass a cred for this operation. */ 26710 ASSERT(cr != NULL); 26711 26712 ASSERT(connp->conn_upper_handle != NULL); 26713 26714 return (tcp_do_getsockname(tcp, addr, addrlenp)); 26715 } 26716 26717 /* 26718 * tcp_fallback 26719 * 26720 * A direct socket is falling back to using STREAMS. The queue 26721 * that is being passed down was created using tcp_open() with 26722 * the SO_FALLBACK flag set. As a result, the queue is not 26723 * associated with a conn, and the q_ptrs instead contain the 26724 * dev and minor area that should be used. 26725 * 26726 * The 'issocket' flag indicates whether the FireEngine 26727 * optimizations should be used. The common case would be that 26728 * optimizations are enabled, and they might be subsequently 26729 * disabled using the _SIOCSOCKFALLBACK ioctl. 26730 */ 26731 26732 /* 26733 * An active connection is falling back to TPI. Gather all the information 26734 * required by the STREAM head and TPI sonode and send it up. 26735 */ 26736 void 26737 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 26738 boolean_t issocket, so_proto_quiesced_cb_t quiesced_cb) 26739 { 26740 conn_t *connp = tcp->tcp_connp; 26741 struct stroptions *stropt; 26742 struct T_capability_ack tca; 26743 struct sockaddr_in6 laddr, faddr; 26744 socklen_t laddrlen, faddrlen; 26745 short opts; 26746 int error; 26747 mblk_t *mp; 26748 26749 connp->conn_dev = (dev_t)RD(q)->q_ptr; 26750 connp->conn_minor_arena = WR(q)->q_ptr; 26751 26752 RD(q)->q_ptr = WR(q)->q_ptr = connp; 26753 26754 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 26755 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 26756 26757 WR(q)->q_qinfo = &tcp_sock_winit; 26758 26759 if (!issocket) 26760 tcp_use_pure_tpi(tcp); 26761 26762 /* 26763 * free the helper stream 26764 */ 26765 ip_free_helper_stream(connp); 26766 26767 /* 26768 * Notify the STREAM head about options 26769 */ 26770 DB_TYPE(stropt_mp) = M_SETOPTS; 26771 stropt = (struct stroptions *)stropt_mp->b_rptr; 26772 stropt_mp->b_wptr += sizeof (struct stroptions); 26773 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 26774 26775 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 26776 tcp->tcp_tcps->tcps_wroff_xtra); 26777 if (tcp->tcp_snd_sack_ok) 26778 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 26779 stropt->so_hiwat = tcp->tcp_fused ? 26780 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 26781 MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat); 26782 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 26783 26784 putnext(RD(q), stropt_mp); 26785 26786 /* 26787 * Collect the information needed to sync with the sonode 26788 */ 26789 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 26790 26791 laddrlen = faddrlen = sizeof (sin6_t); 26792 (void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen); 26793 error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen); 26794 if (error != 0) 26795 faddrlen = 0; 26796 26797 opts = 0; 26798 if (tcp->tcp_oobinline) 26799 opts |= SO_OOBINLINE; 26800 if (tcp->tcp_dontroute) 26801 opts |= SO_DONTROUTE; 26802 26803 /* 26804 * Notify the socket that the protocol is now quiescent, 26805 * and it's therefore safe move data from the socket 26806 * to the stream head. 26807 */ 26808 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 26809 (struct sockaddr *)&laddr, laddrlen, 26810 (struct sockaddr *)&faddr, faddrlen, opts); 26811 26812 while ((mp = tcp->tcp_rcv_list) != NULL) { 26813 tcp->tcp_rcv_list = mp->b_next; 26814 mp->b_next = NULL; 26815 putnext(q, mp); 26816 } 26817 tcp->tcp_rcv_last_head = NULL; 26818 tcp->tcp_rcv_last_tail = NULL; 26819 tcp->tcp_rcv_cnt = 0; 26820 } 26821 26822 /* 26823 * An eager is falling back to TPI. All we have to do is send 26824 * up a T_CONN_IND. 26825 */ 26826 void 26827 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 26828 { 26829 tcp_t *listener = eager->tcp_listener; 26830 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 26831 26832 ASSERT(listener != NULL); 26833 ASSERT(mp != NULL); 26834 26835 eager->tcp_conn.tcp_eager_conn_ind = NULL; 26836 26837 /* 26838 * TLI/XTI applications will get confused by 26839 * sending eager as an option since it violates 26840 * the option semantics. So remove the eager as 26841 * option since TLI/XTI app doesn't need it anyway. 26842 */ 26843 if (!direct_sockfs) { 26844 struct T_conn_ind *conn_ind; 26845 26846 conn_ind = (struct T_conn_ind *)mp->b_rptr; 26847 conn_ind->OPT_length = 0; 26848 conn_ind->OPT_offset = 0; 26849 } 26850 26851 /* 26852 * Sockfs guarantees that the listener will not be closed 26853 * during fallback. So we can safely use the listener's queue. 26854 */ 26855 putnext(listener->tcp_rq, mp); 26856 } 26857 26858 int 26859 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 26860 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 26861 { 26862 tcp_t *tcp; 26863 conn_t *connp = (conn_t *)proto_handle; 26864 int error; 26865 mblk_t *stropt_mp; 26866 mblk_t *ordrel_mp; 26867 26868 tcp = connp->conn_tcp; 26869 26870 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 26871 NULL); 26872 26873 /* Pre-allocate the T_ordrel_ind mblk. */ 26874 ASSERT(tcp->tcp_ordrel_mp == NULL); 26875 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 26876 STR_NOSIG, NULL); 26877 ordrel_mp->b_datap->db_type = M_PROTO; 26878 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 26879 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 26880 26881 /* 26882 * Enter the squeue so that no new packets can come in 26883 */ 26884 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 26885 if (error != 0) { 26886 /* failed to enter, free all the pre-allocated messages. */ 26887 freeb(stropt_mp); 26888 freeb(ordrel_mp); 26889 /* 26890 * We cannot process the eager, so at least send out a 26891 * RST so the peer can reconnect. 26892 */ 26893 if (tcp->tcp_listener != NULL) { 26894 (void) tcp_eager_blowoff(tcp->tcp_listener, 26895 tcp->tcp_conn_req_seqnum); 26896 } 26897 return (ENOMEM); 26898 } 26899 26900 /* 26901 * Both endpoints must be of the same type (either STREAMS or 26902 * non-STREAMS) for fusion to be enabled. So if we are fused, 26903 * we have to unfuse. 26904 */ 26905 if (tcp->tcp_fused) 26906 tcp_unfuse(tcp); 26907 26908 /* 26909 * No longer a direct socket 26910 */ 26911 connp->conn_flags &= ~IPCL_NONSTR; 26912 tcp->tcp_ordrel_mp = ordrel_mp; 26913 26914 if (tcp->tcp_listener != NULL) { 26915 /* The eager will deal with opts when accept() is called */ 26916 freeb(stropt_mp); 26917 tcp_fallback_eager(tcp, direct_sockfs); 26918 } else { 26919 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 26920 quiesced_cb); 26921 } 26922 26923 /* 26924 * There should be atleast two ref's (IP + TCP) 26925 */ 26926 ASSERT(connp->conn_ref >= 2); 26927 squeue_synch_exit(connp->conn_sqp, connp); 26928 26929 return (0); 26930 } 26931 26932 /* ARGSUSED */ 26933 static void 26934 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 26935 { 26936 conn_t *connp = (conn_t *)arg; 26937 tcp_t *tcp = connp->conn_tcp; 26938 26939 freemsg(mp); 26940 26941 if (tcp->tcp_fused) 26942 tcp_unfuse(tcp); 26943 26944 if (tcp_xmit_end(tcp) != 0) { 26945 /* 26946 * We were crossing FINs and got a reset from 26947 * the other side. Just ignore it. 26948 */ 26949 if (tcp->tcp_debug) { 26950 (void) strlog(TCP_MOD_ID, 0, 1, 26951 SL_ERROR|SL_TRACE, 26952 "tcp_shutdown_output() out of state %s", 26953 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 26954 } 26955 } 26956 } 26957 26958 /* ARGSUSED */ 26959 int 26960 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 26961 { 26962 conn_t *connp = (conn_t *)proto_handle; 26963 tcp_t *tcp = connp->conn_tcp; 26964 26965 ASSERT(connp->conn_upper_handle != NULL); 26966 26967 /* All Solaris components should pass a cred for this operation. */ 26968 ASSERT(cr != NULL); 26969 26970 /* 26971 * X/Open requires that we check the connected state. 26972 */ 26973 if (tcp->tcp_state < TCPS_SYN_SENT) 26974 return (ENOTCONN); 26975 26976 /* shutdown the send side */ 26977 if (how != SHUT_RD) { 26978 mblk_t *bp; 26979 26980 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 26981 CONN_INC_REF(connp); 26982 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 26983 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 26984 26985 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 26986 SOCK_OPCTL_SHUT_SEND, 0); 26987 } 26988 26989 /* shutdown the recv side */ 26990 if (how != SHUT_WR) 26991 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 26992 SOCK_OPCTL_SHUT_RECV, 0); 26993 26994 return (0); 26995 } 26996 26997 /* 26998 * SOP_LISTEN() calls into tcp_listen(). 26999 */ 27000 /* ARGSUSED */ 27001 int 27002 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27003 { 27004 conn_t *connp = (conn_t *)proto_handle; 27005 int error; 27006 squeue_t *sqp = connp->conn_sqp; 27007 27008 ASSERT(connp->conn_upper_handle != NULL); 27009 27010 /* All Solaris components should pass a cred for this operation. */ 27011 ASSERT(cr != NULL); 27012 27013 error = squeue_synch_enter(sqp, connp, NULL); 27014 if (error != 0) { 27015 /* failed to enter */ 27016 return (ENOBUFS); 27017 } 27018 27019 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 27020 if (error == 0) { 27021 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27022 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27023 } else if (error < 0) { 27024 if (error == -TOUTSTATE) 27025 error = EINVAL; 27026 else 27027 error = proto_tlitosyserr(-error); 27028 } 27029 squeue_synch_exit(sqp, connp); 27030 return (error); 27031 } 27032 27033 static int 27034 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 27035 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 27036 { 27037 tcp_t *tcp = connp->conn_tcp; 27038 int error = 0; 27039 tcp_stack_t *tcps = tcp->tcp_tcps; 27040 27041 /* All Solaris components should pass a cred for this operation. */ 27042 ASSERT(cr != NULL); 27043 27044 if (tcp->tcp_state >= TCPS_BOUND) { 27045 if ((tcp->tcp_state == TCPS_BOUND || 27046 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27047 /* 27048 * Handle listen() increasing backlog. 27049 * This is more "liberal" then what the TPI spec 27050 * requires but is needed to avoid a t_unbind 27051 * when handling listen() since the port number 27052 * might be "stolen" between the unbind and bind. 27053 */ 27054 goto do_listen; 27055 } 27056 if (tcp->tcp_debug) { 27057 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27058 "tcp_listen: bad state, %d", tcp->tcp_state); 27059 } 27060 return (-TOUTSTATE); 27061 } else { 27062 if (sa == NULL) { 27063 sin6_t addr; 27064 sin_t *sin; 27065 sin6_t *sin6; 27066 27067 ASSERT(IPCL_IS_NONSTR(connp)); 27068 27069 /* Do an implicit bind: Request for a generic port. */ 27070 if (tcp->tcp_family == AF_INET) { 27071 len = sizeof (sin_t); 27072 sin = (sin_t *)&addr; 27073 *sin = sin_null; 27074 sin->sin_family = AF_INET; 27075 tcp->tcp_ipversion = IPV4_VERSION; 27076 } else { 27077 ASSERT(tcp->tcp_family == AF_INET6); 27078 len = sizeof (sin6_t); 27079 sin6 = (sin6_t *)&addr; 27080 *sin6 = sin6_null; 27081 sin6->sin6_family = AF_INET6; 27082 tcp->tcp_ipversion = IPV6_VERSION; 27083 } 27084 sa = (struct sockaddr *)&addr; 27085 } 27086 27087 error = tcp_bind_check(connp, sa, len, cr, 27088 bind_to_req_port_only); 27089 if (error) 27090 return (error); 27091 /* Fall through and do the fanout insertion */ 27092 } 27093 27094 do_listen: 27095 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27096 tcp->tcp_conn_req_max = backlog; 27097 if (tcp->tcp_conn_req_max) { 27098 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27099 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27100 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27101 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27102 /* 27103 * If this is a listener, do not reset the eager list 27104 * and other stuffs. Note that we don't check if the 27105 * existing eager list meets the new tcp_conn_req_max 27106 * requirement. 27107 */ 27108 if (tcp->tcp_state != TCPS_LISTEN) { 27109 tcp->tcp_state = TCPS_LISTEN; 27110 /* Initialize the chain. Don't need the eager_lock */ 27111 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27112 tcp->tcp_eager_next_drop_q0 = tcp; 27113 tcp->tcp_eager_prev_drop_q0 = tcp; 27114 tcp->tcp_second_ctimer_threshold = 27115 tcps->tcps_ip_abort_linterval; 27116 } 27117 } 27118 27119 /* 27120 * We can call ip_bind directly, the processing continues 27121 * in tcp_post_ip_bind(). 27122 * 27123 * We need to make sure that the conn_recv is set to a non-null 27124 * value before we insert the conn into the classifier table. 27125 * This is to avoid a race with an incoming packet which does an 27126 * ipcl_classify(). 27127 */ 27128 connp->conn_recv = tcp_conn_request; 27129 if (tcp->tcp_family == AF_INET) { 27130 error = ip_proto_bind_laddr_v4(connp, NULL, 27131 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27132 } else { 27133 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27134 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27135 } 27136 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27137 } 27138 27139 void 27140 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27141 { 27142 conn_t *connp = (conn_t *)proto_handle; 27143 tcp_t *tcp = connp->conn_tcp; 27144 mblk_t *mp; 27145 int error; 27146 27147 ASSERT(connp->conn_upper_handle != NULL); 27148 27149 /* 27150 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 27151 * is currently running. 27152 */ 27153 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27154 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 27155 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27156 return; 27157 } 27158 tcp->tcp_rsrv_mp = NULL; 27159 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27160 27161 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 27162 ASSERT(error == 0); 27163 27164 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27165 tcp->tcp_rsrv_mp = mp; 27166 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27167 27168 if (tcp->tcp_fused) { 27169 tcp_fuse_backenable(tcp); 27170 } else { 27171 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27172 /* 27173 * Send back a window update immediately if TCP is above 27174 * ESTABLISHED state and the increase of the rcv window 27175 * that the other side knows is at least 1 MSS after flow 27176 * control is lifted. 27177 */ 27178 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27179 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 27180 tcp_xmit_ctl(NULL, tcp, 27181 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27182 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27183 } 27184 } 27185 27186 squeue_synch_exit(connp->conn_sqp, connp); 27187 } 27188 27189 /* ARGSUSED */ 27190 int 27191 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 27192 int mode, int32_t *rvalp, cred_t *cr) 27193 { 27194 conn_t *connp = (conn_t *)proto_handle; 27195 int error; 27196 27197 ASSERT(connp->conn_upper_handle != NULL); 27198 27199 /* All Solaris components should pass a cred for this operation. */ 27200 ASSERT(cr != NULL); 27201 27202 switch (cmd) { 27203 case ND_SET: 27204 case ND_GET: 27205 case TCP_IOC_DEFAULT_Q: 27206 case _SIOCSOCKFALLBACK: 27207 case TCP_IOC_ABORT_CONN: 27208 case TI_GETPEERNAME: 27209 case TI_GETMYNAME: 27210 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 27211 cmd)); 27212 error = EINVAL; 27213 break; 27214 default: 27215 /* 27216 * Pass on to IP using helper stream 27217 */ 27218 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 27219 cmd, arg, mode, cr, rvalp); 27220 break; 27221 } 27222 return (error); 27223 } 27224 27225 sock_downcalls_t sock_tcp_downcalls = { 27226 tcp_activate, 27227 tcp_accept, 27228 tcp_bind, 27229 tcp_listen, 27230 tcp_connect, 27231 tcp_getpeername, 27232 tcp_getsockname, 27233 tcp_getsockopt, 27234 tcp_setsockopt, 27235 tcp_sendmsg, 27236 NULL, 27237 NULL, 27238 NULL, 27239 tcp_shutdown, 27240 tcp_clr_flowctrl, 27241 tcp_ioctl, 27242 tcp_close, 27243 }; 27244