1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #include <sys/strsun.h> 35 #define _SUN_TPI_VERSION 2 36 #include <sys/tihdr.h> 37 #include <sys/timod.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/suntpi.h> 41 #include <sys/xti_inet.h> 42 #include <sys/cmn_err.h> 43 #include <sys/debug.h> 44 #include <sys/sdt.h> 45 #include <sys/vtrace.h> 46 #include <sys/kmem.h> 47 #include <sys/ethernet.h> 48 #include <sys/cpuvar.h> 49 #include <sys/dlpi.h> 50 #include <sys/multidata.h> 51 #include <sys/multidata_impl.h> 52 #include <sys/pattr.h> 53 #include <sys/policy.h> 54 #include <sys/priv.h> 55 #include <sys/zone.h> 56 #include <sys/sunldi.h> 57 58 #include <sys/errno.h> 59 #include <sys/signal.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <sys/sodirect.h> 67 #include <sys/uio.h> 68 #include <sys/systm.h> 69 #include <netinet/in.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip6.h> 72 #include <netinet/icmp6.h> 73 #include <net/if.h> 74 #include <net/route.h> 75 #include <inet/ipsec_impl.h> 76 77 #include <inet/common.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/proto_set.h> 83 #include <inet/mib2.h> 84 #include <inet/nd.h> 85 #include <inet/optcom.h> 86 #include <inet/snmpcom.h> 87 #include <inet/kstatcom.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue_impl.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <rpc/pmap_prot.h> 106 #include <sys/callo.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 130 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_conn_request(). But briefly, the squeue is picked by 177 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 203 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 204 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 205 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 206 * check to send packets directly to tcp_rput_data via squeue. Everyone 207 * else comes through tcp_input() on the read side. 208 * 209 * We also make special provisions for sockfs by marking tcp_issocket 210 * whenever we have only sockfs on top of TCP. This allows us to skip 211 * putting the tcp in acceptor hash since a sockfs listener can never 212 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 213 * since eager has already been allocated and the accept now happens 214 * on acceptor STREAM. There is a big blob of comment on top of 215 * tcp_conn_request explaining the new accept. When socket is POP'd, 216 * sockfs sends us an ioctl to mark the fact and we go back to old 217 * behaviour. Once tcp_issocket is unset, its never set for the 218 * life of that connection. 219 * 220 * In support of on-board asynchronous DMA hardware (e.g. Intel I/OAT) 221 * two consoldiation private KAPIs are used to enqueue M_DATA mblk_t's 222 * directly to the socket (sodirect) and start an asynchronous copyout 223 * to a user-land receive-side buffer (uioa) when a blocking socket read 224 * (e.g. read, recv, ...) is pending. 225 * 226 * This is accomplished when tcp_issocket is set and tcp_sodirect is not 227 * NULL so points to an sodirect_t and if marked enabled then we enqueue 228 * all mblk_t's directly to the socket. 229 * 230 * Further, if the sodirect_t sod_uioa and if marked enabled (due to a 231 * blocking socket read, e.g. user-land read, recv, ...) then an asynchronous 232 * copyout will be started directly to the user-land uio buffer. Also, as we 233 * have a pending read, TCP's push logic can take into account the number of 234 * bytes to be received and only awake the blocked read()er when the uioa_t 235 * byte count has been satisfied. 236 * 237 * IPsec notes : 238 * 239 * Since a packet is always executed on the correct TCP perimeter 240 * all IPsec processing is defered to IP including checking new 241 * connections and setting IPSEC policies for new connection. The 242 * only exception is tcp_xmit_listeners_reset() which is called 243 * directly from IP and needs to policy check to see if TH_RST 244 * can be sent out. 245 * 246 * PFHooks notes : 247 * 248 * For mdt case, one meta buffer contains multiple packets. Mblks for every 249 * packet are assembled and passed to the hooks. When packets are blocked, 250 * or boundary of any packet is changed, the mdt processing is stopped, and 251 * packets of the meta buffer are send to the IP path one by one. 252 */ 253 254 /* 255 * Values for squeue switch: 256 * 1: SQ_NODRAIN 257 * 2: SQ_PROCESS 258 * 3: SQ_FILL 259 */ 260 int tcp_squeue_wput = 2; /* /etc/systems */ 261 int tcp_squeue_flag; 262 263 /* 264 * Macros for sodirect: 265 * 266 * SOD_PTR_ENTER(tcp, sodp) - for the tcp_t pointer "tcp" set the 267 * sodirect_t pointer "sodp" to the socket/tcp shared sodirect_t 268 * if it exists and is enabled, else to NULL. Note, in the current 269 * sodirect implementation the sod_lockp must not be held across any 270 * STREAMS call (e.g. putnext) else a "recursive mutex_enter" PANIC 271 * will result as sod_lockp is the streamhead stdata.sd_lock. 272 * 273 * SOD_NOT_ENABLED(tcp) - return true if not a sodirect tcp_t or the 274 * sodirect_t isn't enabled, usefull for ASSERT()ing that a recieve 275 * side tcp code path dealing with a tcp_rcv_list or putnext() isn't 276 * being used when sodirect code paths should be. 277 */ 278 279 #define SOD_PTR_ENTER(tcp, sodp) \ 280 (sodp) = (tcp)->tcp_sodirect; \ 281 \ 282 if ((sodp) != NULL) { \ 283 mutex_enter((sodp)->sod_lockp); \ 284 if (!((sodp)->sod_state & SOD_ENABLED)) { \ 285 mutex_exit((sodp)->sod_lockp); \ 286 (sodp) = NULL; \ 287 } \ 288 } 289 290 #define SOD_NOT_ENABLED(tcp) \ 291 ((tcp)->tcp_sodirect == NULL || \ 292 !((tcp)->tcp_sodirect->sod_state & SOD_ENABLED)) 293 294 /* 295 * This controls how tiny a write must be before we try to copy it 296 * into the the mblk on the tail of the transmit queue. Not much 297 * speedup is observed for values larger than sixteen. Zero will 298 * disable the optimisation. 299 */ 300 int tcp_tx_pull_len = 16; 301 302 /* 303 * TCP Statistics. 304 * 305 * How TCP statistics work. 306 * 307 * There are two types of statistics invoked by two macros. 308 * 309 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 310 * supposed to be used in non MT-hot paths of the code. 311 * 312 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 313 * supposed to be used for DEBUG purposes and may be used on a hot path. 314 * 315 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 316 * (use "kstat tcp" to get them). 317 * 318 * There is also additional debugging facility that marks tcp_clean_death() 319 * instances and saves them in tcp_t structure. It is triggered by 320 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 321 * tcp_clean_death() calls that counts the number of times each tag was hit. It 322 * is triggered by TCP_CLD_COUNTERS define. 323 * 324 * How to add new counters. 325 * 326 * 1) Add a field in the tcp_stat structure describing your counter. 327 * 2) Add a line in the template in tcp_kstat2_init() with the name 328 * of the counter. 329 * 330 * IMPORTANT!! - make sure that both are in sync !! 331 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 332 * 333 * Please avoid using private counters which are not kstat-exported. 334 * 335 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 336 * in tcp_t structure. 337 * 338 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 339 */ 340 341 #ifndef TCP_DEBUG_COUNTER 342 #ifdef DEBUG 343 #define TCP_DEBUG_COUNTER 1 344 #else 345 #define TCP_DEBUG_COUNTER 0 346 #endif 347 #endif 348 349 #define TCP_CLD_COUNTERS 0 350 351 #define TCP_TAG_CLEAN_DEATH 1 352 #define TCP_MAX_CLEAN_DEATH_TAG 32 353 354 #ifdef lint 355 static int _lint_dummy_; 356 #endif 357 358 #if TCP_CLD_COUNTERS 359 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 360 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 361 #elif defined(lint) 362 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 363 #else 364 #define TCP_CLD_STAT(x) 365 #endif 366 367 #if TCP_DEBUG_COUNTER 368 #define TCP_DBGSTAT(tcps, x) \ 369 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 370 #define TCP_G_DBGSTAT(x) \ 371 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 372 #elif defined(lint) 373 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 374 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 375 #else 376 #define TCP_DBGSTAT(tcps, x) 377 #define TCP_G_DBGSTAT(x) 378 #endif 379 380 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 381 382 tcp_g_stat_t tcp_g_statistics; 383 kstat_t *tcp_g_kstat; 384 385 /* 386 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 387 * tcp write side. 388 */ 389 #define CALL_IP_WPUT(connp, q, mp) { \ 390 ASSERT(((q)->q_flag & QREADR) == 0); \ 391 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 392 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 393 } 394 395 /* Macros for timestamp comparisons */ 396 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 397 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 398 399 /* 400 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 401 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 402 * by adding three components: a time component which grows by 1 every 4096 403 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 404 * a per-connection component which grows by 125000 for every new connection; 405 * and an "extra" component that grows by a random amount centered 406 * approximately on 64000. This causes the the ISS generator to cycle every 407 * 4.89 hours if no TCP connections are made, and faster if connections are 408 * made. 409 * 410 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 411 * components: a time component which grows by 250000 every second; and 412 * a per-connection component which grows by 125000 for every new connections. 413 * 414 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 415 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 416 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 417 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 418 * password. 419 */ 420 #define ISS_INCR 250000 421 #define ISS_NSEC_SHT 12 422 423 static sin_t sin_null; /* Zero address for quick clears */ 424 static sin6_t sin6_null; /* Zero address for quick clears */ 425 426 /* 427 * This implementation follows the 4.3BSD interpretation of the urgent 428 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 429 * incompatible changes in protocols like telnet and rlogin. 430 */ 431 #define TCP_OLD_URP_INTERPRETATION 1 432 433 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 434 (TCP_IS_DETACHED(tcp) && \ 435 (!(tcp)->tcp_hard_binding)) 436 437 /* 438 * TCP reassembly macros. We hide starting and ending sequence numbers in 439 * b_next and b_prev of messages on the reassembly queue. The messages are 440 * chained using b_cont. These macros are used in tcp_reass() so we don't 441 * have to see the ugly casts and assignments. 442 */ 443 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 444 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 445 (mblk_t *)(uintptr_t)(u)) 446 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 447 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 448 (mblk_t *)(uintptr_t)(u)) 449 450 /* 451 * Implementation of TCP Timers. 452 * ============================= 453 * 454 * INTERFACE: 455 * 456 * There are two basic functions dealing with tcp timers: 457 * 458 * timeout_id_t tcp_timeout(connp, func, time) 459 * clock_t tcp_timeout_cancel(connp, timeout_id) 460 * TCP_TIMER_RESTART(tcp, intvl) 461 * 462 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 463 * after 'time' ticks passed. The function called by timeout() must adhere to 464 * the same restrictions as a driver soft interrupt handler - it must not sleep 465 * or call other functions that might sleep. The value returned is the opaque 466 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 467 * cancel the request. The call to tcp_timeout() may fail in which case it 468 * returns zero. This is different from the timeout(9F) function which never 469 * fails. 470 * 471 * The call-back function 'func' always receives 'connp' as its single 472 * argument. It is always executed in the squeue corresponding to the tcp 473 * structure. The tcp structure is guaranteed to be present at the time the 474 * call-back is called. 475 * 476 * NOTE: The call-back function 'func' is never called if tcp is in 477 * the TCPS_CLOSED state. 478 * 479 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 480 * request. locks acquired by the call-back routine should not be held across 481 * the call to tcp_timeout_cancel() or a deadlock may result. 482 * 483 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 484 * Otherwise, it returns an integer value greater than or equal to 0. In 485 * particular, if the call-back function is already placed on the squeue, it can 486 * not be canceled. 487 * 488 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 489 * within squeue context corresponding to the tcp instance. Since the 490 * call-back is also called via the same squeue, there are no race 491 * conditions described in untimeout(9F) manual page since all calls are 492 * strictly serialized. 493 * 494 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 495 * stored in tcp_timer_tid and starts a new one using 496 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 497 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 498 * field. 499 * 500 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 501 * call-back may still be called, so it is possible tcp_timer() will be 502 * called several times. This should not be a problem since tcp_timer() 503 * should always check the tcp instance state. 504 * 505 * 506 * IMPLEMENTATION: 507 * 508 * TCP timers are implemented using three-stage process. The call to 509 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 510 * when the timer expires. The tcp_timer_callback() arranges the call of the 511 * tcp_timer_handler() function via squeue corresponding to the tcp 512 * instance. The tcp_timer_handler() calls actual requested timeout call-back 513 * and passes tcp instance as an argument to it. Information is passed between 514 * stages using the tcp_timer_t structure which contains the connp pointer, the 515 * tcp call-back to call and the timeout id returned by the timeout(9F). 516 * 517 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 518 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 519 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 520 * returns the pointer to this mblk. 521 * 522 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 523 * looks like a normal mblk without actual dblk attached to it. 524 * 525 * To optimize performance each tcp instance holds a small cache of timer 526 * mblocks. In the current implementation it caches up to two timer mblocks per 527 * tcp instance. The cache is preserved over tcp frees and is only freed when 528 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 529 * timer processing happens on a corresponding squeue, the cache manipulation 530 * does not require any locks. Experiments show that majority of timer mblocks 531 * allocations are satisfied from the tcp cache and do not involve kmem calls. 532 * 533 * The tcp_timeout() places a refhold on the connp instance which guarantees 534 * that it will be present at the time the call-back function fires. The 535 * tcp_timer_handler() drops the reference after calling the call-back, so the 536 * call-back function does not need to manipulate the references explicitly. 537 */ 538 539 typedef struct tcp_timer_s { 540 conn_t *connp; 541 void (*tcpt_proc)(void *); 542 callout_id_t tcpt_tid; 543 } tcp_timer_t; 544 545 static kmem_cache_t *tcp_timercache; 546 kmem_cache_t *tcp_sack_info_cache; 547 kmem_cache_t *tcp_iphc_cache; 548 549 /* 550 * For scalability, we must not run a timer for every TCP connection 551 * in TIME_WAIT state. To see why, consider (for time wait interval of 552 * 4 minutes): 553 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 554 * 555 * This list is ordered by time, so you need only delete from the head 556 * until you get to entries which aren't old enough to delete yet. 557 * The list consists of only the detached TIME_WAIT connections. 558 * 559 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 560 * becomes detached TIME_WAIT (either by changing the state and already 561 * being detached or the other way around). This means that the TIME_WAIT 562 * state can be extended (up to doubled) if the connection doesn't become 563 * detached for a long time. 564 * 565 * The list manipulations (including tcp_time_wait_next/prev) 566 * are protected by the tcp_time_wait_lock. The content of the 567 * detached TIME_WAIT connections is protected by the normal perimeters. 568 * 569 * This list is per squeue and squeues are shared across the tcp_stack_t's. 570 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 571 * and conn_netstack. 572 * The tcp_t's that are added to tcp_free_list are disassociated and 573 * have NULL tcp_tcps and conn_netstack pointers. 574 */ 575 typedef struct tcp_squeue_priv_s { 576 kmutex_t tcp_time_wait_lock; 577 callout_id_t tcp_time_wait_tid; 578 tcp_t *tcp_time_wait_head; 579 tcp_t *tcp_time_wait_tail; 580 tcp_t *tcp_free_list; 581 uint_t tcp_free_list_cnt; 582 } tcp_squeue_priv_t; 583 584 /* 585 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 586 * Running it every 5 seconds seems to give the best results. 587 */ 588 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 589 590 /* 591 * To prevent memory hog, limit the number of entries in tcp_free_list 592 * to 1% of available memory / number of cpus 593 */ 594 uint_t tcp_free_list_max_cnt = 0; 595 596 #define TCP_XMIT_LOWATER 4096 597 #define TCP_XMIT_HIWATER 49152 598 #define TCP_RECV_LOWATER 2048 599 #define TCP_RECV_HIWATER 49152 600 601 /* 602 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 603 */ 604 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 605 606 #define TIDUSZ 4096 /* transport interface data unit size */ 607 608 /* 609 * Bind hash list size and has function. It has to be a power of 2 for 610 * hashing. 611 */ 612 #define TCP_BIND_FANOUT_SIZE 512 613 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 614 /* 615 * Size of listen and acceptor hash list. It has to be a power of 2 for 616 * hashing. 617 */ 618 #define TCP_FANOUT_SIZE 256 619 620 #ifdef _ILP32 621 #define TCP_ACCEPTOR_HASH(accid) \ 622 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 623 #else 624 #define TCP_ACCEPTOR_HASH(accid) \ 625 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 626 #endif /* _ILP32 */ 627 628 #define IP_ADDR_CACHE_SIZE 2048 629 #define IP_ADDR_CACHE_HASH(faddr) \ 630 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 631 632 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 633 #define TCP_HSP_HASH_SIZE 256 634 635 #define TCP_HSP_HASH(addr) \ 636 (((addr>>24) ^ (addr >>16) ^ \ 637 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 638 639 /* 640 * TCP options struct returned from tcp_parse_options. 641 */ 642 typedef struct tcp_opt_s { 643 uint32_t tcp_opt_mss; 644 uint32_t tcp_opt_wscale; 645 uint32_t tcp_opt_ts_val; 646 uint32_t tcp_opt_ts_ecr; 647 tcp_t *tcp; 648 } tcp_opt_t; 649 650 /* 651 * TCP option struct passing information b/w lisenter and eager. 652 */ 653 struct tcp_options { 654 uint_t to_flags; 655 ssize_t to_boundif; /* IPV6_BOUND_IF */ 656 sock_upper_handle_t to_handle; 657 }; 658 659 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 660 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 661 #define TCPOPT_UPPERHANDLE 0x00000004 /* set upper handle */ 662 663 /* 664 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 665 */ 666 667 #ifdef _BIG_ENDIAN 668 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 669 (TCPOPT_TSTAMP << 8) | 10) 670 #else 671 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 672 (TCPOPT_NOP << 8) | TCPOPT_NOP) 673 #endif 674 675 /* 676 * Flags returned from tcp_parse_options. 677 */ 678 #define TCP_OPT_MSS_PRESENT 1 679 #define TCP_OPT_WSCALE_PRESENT 2 680 #define TCP_OPT_TSTAMP_PRESENT 4 681 #define TCP_OPT_SACK_OK_PRESENT 8 682 #define TCP_OPT_SACK_PRESENT 16 683 684 /* TCP option length */ 685 #define TCPOPT_NOP_LEN 1 686 #define TCPOPT_MAXSEG_LEN 4 687 #define TCPOPT_WS_LEN 3 688 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 689 #define TCPOPT_TSTAMP_LEN 10 690 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 691 #define TCPOPT_SACK_OK_LEN 2 692 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 693 #define TCPOPT_REAL_SACK_LEN 4 694 #define TCPOPT_MAX_SACK_LEN 36 695 #define TCPOPT_HEADER_LEN 2 696 697 /* TCP cwnd burst factor. */ 698 #define TCP_CWND_INFINITE 65535 699 #define TCP_CWND_SS 3 700 #define TCP_CWND_NORMAL 5 701 702 /* Maximum TCP initial cwin (start/restart). */ 703 #define TCP_MAX_INIT_CWND 8 704 705 /* 706 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 707 * either tcp_slow_start_initial or tcp_slow_start_after idle 708 * depending on the caller. If the upper layer has not used the 709 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 710 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 711 * If the upper layer has changed set the tcp_init_cwnd, just use 712 * it to calculate the tcp_cwnd. 713 */ 714 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 715 { \ 716 if ((tcp)->tcp_init_cwnd == 0) { \ 717 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 718 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 719 } else { \ 720 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 721 } \ 722 tcp->tcp_cwnd_cnt = 0; \ 723 } 724 725 /* TCP Timer control structure */ 726 typedef struct tcpt_s { 727 pfv_t tcpt_pfv; /* The routine we are to call */ 728 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 729 } tcpt_t; 730 731 /* Host Specific Parameter structure */ 732 typedef struct tcp_hsp { 733 struct tcp_hsp *tcp_hsp_next; 734 in6_addr_t tcp_hsp_addr_v6; 735 in6_addr_t tcp_hsp_subnet_v6; 736 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 737 int32_t tcp_hsp_sendspace; 738 int32_t tcp_hsp_recvspace; 739 int32_t tcp_hsp_tstamp; 740 } tcp_hsp_t; 741 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 742 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 743 744 /* 745 * Functions called directly via squeue having a prototype of edesc_t. 746 */ 747 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 748 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 749 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 750 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 751 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 752 void tcp_input(void *arg, mblk_t *mp, void *arg2); 753 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 754 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 755 void tcp_output(void *arg, mblk_t *mp, void *arg2); 756 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 757 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 758 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 759 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 760 761 762 /* Prototype for TCP functions */ 763 static void tcp_random_init(void); 764 int tcp_random(void); 765 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 766 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 767 tcp_t *eager); 768 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 769 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 770 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 771 boolean_t user_specified); 772 static void tcp_closei_local(tcp_t *tcp); 773 static void tcp_close_detached(tcp_t *tcp); 774 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 775 mblk_t *idmp, mblk_t **defermp); 776 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 777 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 778 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 779 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 780 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 781 uint32_t scope_id, cred_t *cr, pid_t pid); 782 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 783 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 784 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 785 static char *tcp_display(tcp_t *tcp, char *, char); 786 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 787 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 788 static void tcp_eager_unlink(tcp_t *tcp); 789 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 790 int unixerr); 791 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 792 int tlierr, int unixerr); 793 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 794 cred_t *cr); 795 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 796 char *value, caddr_t cp, cred_t *cr); 797 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 798 char *value, caddr_t cp, cred_t *cr); 799 static int tcp_tpistate(tcp_t *tcp); 800 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 801 int caller_holds_lock); 802 static void tcp_bind_hash_remove(tcp_t *tcp); 803 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 804 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 805 static void tcp_acceptor_hash_remove(tcp_t *tcp); 806 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 807 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 808 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 809 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 810 void tcp_g_q_setup(tcp_stack_t *); 811 void tcp_g_q_create(tcp_stack_t *); 812 void tcp_g_q_destroy(tcp_stack_t *); 813 static int tcp_header_init_ipv4(tcp_t *tcp); 814 static int tcp_header_init_ipv6(tcp_t *tcp); 815 int tcp_init(tcp_t *tcp, queue_t *q); 816 static int tcp_init_values(tcp_t *tcp); 817 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 818 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 819 static void tcp_ip_notify(tcp_t *tcp); 820 static mblk_t *tcp_ire_mp(mblk_t **mpp); 821 static void tcp_iss_init(tcp_t *tcp); 822 static void tcp_keepalive_killer(void *arg); 823 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 824 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 825 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 826 int *do_disconnectp, int *t_errorp, int *sys_errorp); 827 static boolean_t tcp_allow_connopt_set(int level, int name); 828 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 829 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 830 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 831 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 832 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 833 mblk_t *mblk); 834 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 835 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 836 uchar_t *ptr, uint_t len); 837 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 838 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 839 tcp_stack_t *); 840 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 841 caddr_t cp, cred_t *cr); 842 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 843 caddr_t cp, cred_t *cr); 844 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 845 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 846 caddr_t cp, cred_t *cr); 847 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 848 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 849 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 850 static void tcp_reinit(tcp_t *tcp); 851 static void tcp_reinit_values(tcp_t *tcp); 852 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 853 tcp_t *thisstream, cred_t *cr); 854 855 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 856 static uint_t tcp_rcv_drain(tcp_t *tcp); 857 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 858 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 859 static void tcp_ss_rexmit(tcp_t *tcp); 860 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 861 static void tcp_process_options(tcp_t *, tcph_t *); 862 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 863 static void tcp_rsrv(queue_t *q); 864 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 865 static int tcp_snmp_state(tcp_t *tcp); 866 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 867 cred_t *cr); 868 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 869 cred_t *cr); 870 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 871 cred_t *cr); 872 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 873 cred_t *cr); 874 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 875 cred_t *cr); 876 static void tcp_timer(void *arg); 877 static void tcp_timer_callback(void *); 878 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 879 boolean_t random); 880 static in_port_t tcp_get_next_priv_port(const tcp_t *); 881 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 882 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 883 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 884 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 885 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 886 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 887 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 888 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 889 const int num_sack_blk, int *usable, uint_t *snxt, 890 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 891 const int mdt_thres); 892 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 893 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 894 const int num_sack_blk, int *usable, uint_t *snxt, 895 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 896 const int mdt_thres); 897 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 898 int num_sack_blk); 899 static void tcp_wsrv(queue_t *q); 900 static int tcp_xmit_end(tcp_t *tcp); 901 static void tcp_ack_timer(void *arg); 902 static mblk_t *tcp_ack_mp(tcp_t *tcp); 903 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 904 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 905 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 906 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 907 uint32_t ack, int ctl); 908 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 909 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 910 static int setmaxps(queue_t *q, int maxpsz); 911 static void tcp_set_rto(tcp_t *, time_t); 912 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 913 boolean_t, boolean_t); 914 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 915 boolean_t ipsec_mctl); 916 static int tcp_build_hdrs(tcp_t *); 917 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 918 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 919 tcph_t *tcph); 920 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 921 static mblk_t *tcp_mdt_info_mp(mblk_t *); 922 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 923 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 924 const boolean_t, const uint32_t, const uint32_t, 925 const uint32_t, const uint32_t, tcp_stack_t *); 926 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 927 const uint_t, const uint_t, boolean_t *); 928 static mblk_t *tcp_lso_info_mp(mblk_t *); 929 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 930 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 931 extern mblk_t *tcp_timermp_alloc(int); 932 extern void tcp_timermp_free(tcp_t *); 933 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 934 static void tcp_stop_lingering(tcp_t *tcp); 935 static void tcp_close_linger_timeout(void *arg); 936 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 937 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 938 static void tcp_stack_fini(netstackid_t stackid, void *arg); 939 static void *tcp_g_kstat_init(tcp_g_stat_t *); 940 static void tcp_g_kstat_fini(kstat_t *); 941 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 942 static void tcp_kstat_fini(netstackid_t, kstat_t *); 943 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 944 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 945 static int tcp_kstat_update(kstat_t *kp, int rw); 946 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 947 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 948 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 949 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 950 tcph_t *tcph, mblk_t *idmp); 951 static int tcp_squeue_switch(int); 952 953 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 954 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 955 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 956 static int tcp_tpi_close(queue_t *, int); 957 static int tcpclose_accept(queue_t *); 958 959 static void tcp_squeue_add(squeue_t *); 960 static boolean_t tcp_zcopy_check(tcp_t *); 961 static void tcp_zcopy_notify(tcp_t *); 962 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 963 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 964 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 965 966 extern void tcp_kssl_input(tcp_t *, mblk_t *); 967 968 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 969 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 970 971 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 972 sock_upper_handle_t, cred_t *); 973 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 974 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int); 975 static int tcp_do_listen(conn_t *, int, cred_t *); 976 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 977 cred_t *, pid_t); 978 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 979 boolean_t); 980 static int tcp_do_unbind(conn_t *); 981 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 982 boolean_t); 983 984 /* 985 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 986 * 987 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 988 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 989 * (defined in tcp.h) needs to be filled in and passed into the kernel 990 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 991 * structure contains the four-tuple of a TCP connection and a range of TCP 992 * states (specified by ac_start and ac_end). The use of wildcard addresses 993 * and ports is allowed. Connections with a matching four tuple and a state 994 * within the specified range will be aborted. The valid states for the 995 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 996 * inclusive. 997 * 998 * An application which has its connection aborted by this ioctl will receive 999 * an error that is dependent on the connection state at the time of the abort. 1000 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1001 * though a RST packet has been received. If the connection state is equal to 1002 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1003 * and all resources associated with the connection will be freed. 1004 */ 1005 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1006 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1007 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1008 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 1009 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1010 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1011 boolean_t, tcp_stack_t *); 1012 1013 static struct module_info tcp_rinfo = { 1014 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1015 }; 1016 1017 static struct module_info tcp_winfo = { 1018 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1019 }; 1020 1021 /* 1022 * Entry points for TCP as a device. The normal case which supports 1023 * the TCP functionality. 1024 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 1025 */ 1026 struct qinit tcp_rinitv4 = { 1027 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 1028 }; 1029 1030 struct qinit tcp_rinitv6 = { 1031 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 1032 }; 1033 1034 struct qinit tcp_winit = { 1035 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1036 }; 1037 1038 /* Initial entry point for TCP in socket mode. */ 1039 struct qinit tcp_sock_winit = { 1040 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1041 }; 1042 1043 /* TCP entry point during fallback */ 1044 struct qinit tcp_fallback_sock_winit = { 1045 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 1046 }; 1047 1048 /* 1049 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1050 * an accept. Avoid allocating data structures since eager has already 1051 * been created. 1052 */ 1053 struct qinit tcp_acceptor_rinit = { 1054 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1055 }; 1056 1057 struct qinit tcp_acceptor_winit = { 1058 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1059 }; 1060 1061 /* 1062 * Entry points for TCP loopback (read side only) 1063 * The open routine is only used for reopens, thus no need to 1064 * have a separate one for tcp_openv6. 1065 */ 1066 struct qinit tcp_loopback_rinit = { 1067 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0, 1068 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1069 }; 1070 1071 /* For AF_INET aka /dev/tcp */ 1072 struct streamtab tcpinfov4 = { 1073 &tcp_rinitv4, &tcp_winit 1074 }; 1075 1076 /* For AF_INET6 aka /dev/tcp6 */ 1077 struct streamtab tcpinfov6 = { 1078 &tcp_rinitv6, &tcp_winit 1079 }; 1080 1081 sock_downcalls_t sock_tcp_downcalls; 1082 1083 /* 1084 * Have to ensure that tcp_g_q_close is not done by an 1085 * interrupt thread. 1086 */ 1087 static taskq_t *tcp_taskq; 1088 1089 /* Setable only in /etc/system. Move to ndd? */ 1090 boolean_t tcp_icmp_source_quench = B_FALSE; 1091 1092 /* 1093 * Following assumes TPI alignment requirements stay along 32 bit 1094 * boundaries 1095 */ 1096 #define ROUNDUP32(x) \ 1097 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1098 1099 /* Template for response to info request. */ 1100 static struct T_info_ack tcp_g_t_info_ack = { 1101 T_INFO_ACK, /* PRIM_type */ 1102 0, /* TSDU_size */ 1103 T_INFINITE, /* ETSDU_size */ 1104 T_INVALID, /* CDATA_size */ 1105 T_INVALID, /* DDATA_size */ 1106 sizeof (sin_t), /* ADDR_size */ 1107 0, /* OPT_size - not initialized here */ 1108 TIDUSZ, /* TIDU_size */ 1109 T_COTS_ORD, /* SERV_type */ 1110 TCPS_IDLE, /* CURRENT_state */ 1111 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1112 }; 1113 1114 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1115 T_INFO_ACK, /* PRIM_type */ 1116 0, /* TSDU_size */ 1117 T_INFINITE, /* ETSDU_size */ 1118 T_INVALID, /* CDATA_size */ 1119 T_INVALID, /* DDATA_size */ 1120 sizeof (sin6_t), /* ADDR_size */ 1121 0, /* OPT_size - not initialized here */ 1122 TIDUSZ, /* TIDU_size */ 1123 T_COTS_ORD, /* SERV_type */ 1124 TCPS_IDLE, /* CURRENT_state */ 1125 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1126 }; 1127 1128 #define MS 1L 1129 #define SECONDS (1000 * MS) 1130 #define MINUTES (60 * SECONDS) 1131 #define HOURS (60 * MINUTES) 1132 #define DAYS (24 * HOURS) 1133 1134 #define PARAM_MAX (~(uint32_t)0) 1135 1136 /* Max size IP datagram is 64k - 1 */ 1137 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1138 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1139 /* Max of the above */ 1140 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1141 1142 /* Largest TCP port number */ 1143 #define TCP_MAX_PORT (64 * 1024 - 1) 1144 1145 /* 1146 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1147 * layer header. It has to be a multiple of 4. 1148 */ 1149 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1150 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1151 1152 /* 1153 * All of these are alterable, within the min/max values given, at run time. 1154 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1155 * per the TCP spec. 1156 */ 1157 /* BEGIN CSTYLED */ 1158 static tcpparam_t lcl_tcp_param_arr[] = { 1159 /*min max value name */ 1160 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1161 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1162 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1163 { 1, 1024, 1, "tcp_conn_req_min" }, 1164 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1165 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1166 { 0, 10, 0, "tcp_debug" }, 1167 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1168 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1169 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1170 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1171 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1172 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1173 { 1, 255, 64, "tcp_ipv4_ttl"}, 1174 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1175 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1176 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1177 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1178 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1179 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1180 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1181 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1182 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1183 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1184 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1185 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1186 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1187 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1188 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1189 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1190 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1191 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1192 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1193 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1194 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1195 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1196 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1197 /* 1198 * Question: What default value should I set for tcp_strong_iss? 1199 */ 1200 { 0, 2, 1, "tcp_strong_iss"}, 1201 { 0, 65536, 20, "tcp_rtt_updates"}, 1202 { 0, 1, 1, "tcp_wscale_always"}, 1203 { 0, 1, 0, "tcp_tstamp_always"}, 1204 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1205 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1206 { 0, 16, 2, "tcp_deferred_acks_max"}, 1207 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1208 { 1, 4, 4, "tcp_slow_start_initial"}, 1209 { 0, 2, 2, "tcp_sack_permitted"}, 1210 { 0, 1, 1, "tcp_compression_enabled"}, 1211 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1212 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1213 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1214 { 0, 1, 0, "tcp_rev_src_routes"}, 1215 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1216 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1217 { 0, 16, 8, "tcp_local_dacks_max"}, 1218 { 0, 2, 1, "tcp_ecn_permitted"}, 1219 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1220 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1221 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1222 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1223 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1224 }; 1225 /* END CSTYLED */ 1226 1227 /* 1228 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1229 * each header fragment in the header buffer. Each parameter value has 1230 * to be a multiple of 4 (32-bit aligned). 1231 */ 1232 static tcpparam_t lcl_tcp_mdt_head_param = 1233 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1234 static tcpparam_t lcl_tcp_mdt_tail_param = 1235 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1236 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1237 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1238 1239 /* 1240 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1241 * the maximum number of payload buffers associated per Multidata. 1242 */ 1243 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1244 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1245 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1246 1247 /* Round up the value to the nearest mss. */ 1248 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1249 1250 /* 1251 * Set ECN capable transport (ECT) code point in IP header. 1252 * 1253 * Note that there are 2 ECT code points '01' and '10', which are called 1254 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1255 * point ECT(0) for TCP as described in RFC 2481. 1256 */ 1257 #define SET_ECT(tcp, iph) \ 1258 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1259 /* We need to clear the code point first. */ \ 1260 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1261 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1262 } else { \ 1263 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1264 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1265 } 1266 1267 /* 1268 * The format argument to pass to tcp_display(). 1269 * DISP_PORT_ONLY means that the returned string has only port info. 1270 * DISP_ADDR_AND_PORT means that the returned string also contains the 1271 * remote and local IP address. 1272 */ 1273 #define DISP_PORT_ONLY 1 1274 #define DISP_ADDR_AND_PORT 2 1275 1276 #define NDD_TOO_QUICK_MSG \ 1277 "ndd get info rate too high for non-privileged users, try again " \ 1278 "later.\n" 1279 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1280 1281 #define IS_VMLOANED_MBLK(mp) \ 1282 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1283 1284 1285 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1286 boolean_t tcp_mdt_chain = B_TRUE; 1287 1288 /* 1289 * MDT threshold in the form of effective send MSS multiplier; we take 1290 * the MDT path if the amount of unsent data exceeds the threshold value 1291 * (default threshold is 1*SMSS). 1292 */ 1293 uint_t tcp_mdt_smss_threshold = 1; 1294 1295 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1296 1297 /* 1298 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1299 * tunable settable via NDD. Otherwise, the per-connection behavior is 1300 * determined dynamically during tcp_adapt_ire(), which is the default. 1301 */ 1302 boolean_t tcp_static_maxpsz = B_FALSE; 1303 1304 /* Setable in /etc/system */ 1305 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1306 uint32_t tcp_random_anon_port = 1; 1307 1308 /* 1309 * To reach to an eager in Q0 which can be dropped due to an incoming 1310 * new SYN request when Q0 is full, a new doubly linked list is 1311 * introduced. This list allows to select an eager from Q0 in O(1) time. 1312 * This is needed to avoid spending too much time walking through the 1313 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1314 * this new list has to be a member of Q0. 1315 * This list is headed by listener's tcp_t. When the list is empty, 1316 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1317 * of listener's tcp_t point to listener's tcp_t itself. 1318 * 1319 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1320 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1321 * These macros do not affect the eager's membership to Q0. 1322 */ 1323 1324 1325 #define MAKE_DROPPABLE(listener, eager) \ 1326 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1327 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1328 = (eager); \ 1329 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1330 (eager)->tcp_eager_next_drop_q0 = \ 1331 (listener)->tcp_eager_next_drop_q0; \ 1332 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1333 } 1334 1335 #define MAKE_UNDROPPABLE(eager) \ 1336 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1337 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1338 = (eager)->tcp_eager_prev_drop_q0; \ 1339 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1340 = (eager)->tcp_eager_next_drop_q0; \ 1341 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1342 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1343 } 1344 1345 /* 1346 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1347 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1348 * data, TCP will not respond with an ACK. RFC 793 requires that 1349 * TCP responds with an ACK for such a bogus ACK. By not following 1350 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1351 * an attacker successfully spoofs an acceptable segment to our 1352 * peer; or when our peer is "confused." 1353 */ 1354 uint32_t tcp_drop_ack_unsent_cnt = 10; 1355 1356 /* 1357 * Hook functions to enable cluster networking 1358 * On non-clustered systems these vectors must always be NULL. 1359 */ 1360 1361 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1362 uint8_t *laddrp, in_port_t lport) = NULL; 1363 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1364 uint8_t *laddrp, in_port_t lport) = NULL; 1365 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1366 uint8_t *laddrp, in_port_t lport, 1367 uint8_t *faddrp, in_port_t fport) = NULL; 1368 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1369 uint8_t *laddrp, in_port_t lport, 1370 uint8_t *faddrp, in_port_t fport) = NULL; 1371 1372 /* 1373 * The following are defined in ip.c 1374 */ 1375 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1376 uint8_t *laddrp); 1377 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1378 uint8_t *laddrp, uint8_t *faddrp); 1379 1380 #define CL_INET_CONNECT(tcp) { \ 1381 if (cl_inet_connect != NULL) { \ 1382 /* \ 1383 * Running in cluster mode - register active connection \ 1384 * information \ 1385 */ \ 1386 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1387 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1388 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1389 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1390 (in_port_t)(tcp)->tcp_lport, \ 1391 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1392 (in_port_t)(tcp)->tcp_fport); \ 1393 } \ 1394 } else { \ 1395 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1396 &(tcp)->tcp_ip6h->ip6_src)) {\ 1397 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1398 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1399 (in_port_t)(tcp)->tcp_lport, \ 1400 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1401 (in_port_t)(tcp)->tcp_fport); \ 1402 } \ 1403 } \ 1404 } \ 1405 } 1406 1407 #define CL_INET_DISCONNECT(tcp) { \ 1408 if (cl_inet_disconnect != NULL) { \ 1409 /* \ 1410 * Running in cluster mode - deregister active \ 1411 * connection information \ 1412 */ \ 1413 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1414 if ((tcp)->tcp_ip_src != 0) { \ 1415 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1416 AF_INET, \ 1417 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1418 (in_port_t)(tcp)->tcp_lport, \ 1419 (uint8_t *) \ 1420 (&((tcp)->tcp_ipha->ipha_dst)),\ 1421 (in_port_t)(tcp)->tcp_fport); \ 1422 } \ 1423 } else { \ 1424 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1425 &(tcp)->tcp_ip_src_v6)) { \ 1426 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1427 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1428 (in_port_t)(tcp)->tcp_lport, \ 1429 (uint8_t *) \ 1430 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1431 (in_port_t)(tcp)->tcp_fport); \ 1432 } \ 1433 } \ 1434 } \ 1435 } 1436 1437 /* 1438 * Cluster networking hook for traversing current connection list. 1439 * This routine is used to extract the current list of live connections 1440 * which must continue to to be dispatched to this node. 1441 */ 1442 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1443 1444 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1445 void *arg, tcp_stack_t *tcps); 1446 1447 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1448 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1449 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1450 ip6_t *, ip6h, int, 0); 1451 1452 /* 1453 * Figure out the value of window scale opton. Note that the rwnd is 1454 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1455 * We cannot find the scale value and then do a round up of tcp_rwnd 1456 * because the scale value may not be correct after that. 1457 * 1458 * Set the compiler flag to make this function inline. 1459 */ 1460 static void 1461 tcp_set_ws_value(tcp_t *tcp) 1462 { 1463 int i; 1464 uint32_t rwnd = tcp->tcp_rwnd; 1465 1466 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1467 i++, rwnd >>= 1) 1468 ; 1469 tcp->tcp_rcv_ws = i; 1470 } 1471 1472 /* 1473 * Remove a connection from the list of detached TIME_WAIT connections. 1474 * It returns B_FALSE if it can't remove the connection from the list 1475 * as the connection has already been removed from the list due to an 1476 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1477 */ 1478 static boolean_t 1479 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1480 { 1481 boolean_t locked = B_FALSE; 1482 1483 if (tcp_time_wait == NULL) { 1484 tcp_time_wait = *((tcp_squeue_priv_t **) 1485 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1486 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1487 locked = B_TRUE; 1488 } else { 1489 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1490 } 1491 1492 if (tcp->tcp_time_wait_expire == 0) { 1493 ASSERT(tcp->tcp_time_wait_next == NULL); 1494 ASSERT(tcp->tcp_time_wait_prev == NULL); 1495 if (locked) 1496 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1497 return (B_FALSE); 1498 } 1499 ASSERT(TCP_IS_DETACHED(tcp)); 1500 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1501 1502 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1503 ASSERT(tcp->tcp_time_wait_prev == NULL); 1504 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1505 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1506 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1507 NULL; 1508 } else { 1509 tcp_time_wait->tcp_time_wait_tail = NULL; 1510 } 1511 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1512 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1513 ASSERT(tcp->tcp_time_wait_next == NULL); 1514 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1515 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1516 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1517 } else { 1518 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1519 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1520 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1521 tcp->tcp_time_wait_next; 1522 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1523 tcp->tcp_time_wait_prev; 1524 } 1525 tcp->tcp_time_wait_next = NULL; 1526 tcp->tcp_time_wait_prev = NULL; 1527 tcp->tcp_time_wait_expire = 0; 1528 1529 if (locked) 1530 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1531 return (B_TRUE); 1532 } 1533 1534 /* 1535 * Add a connection to the list of detached TIME_WAIT connections 1536 * and set its time to expire. 1537 */ 1538 static void 1539 tcp_time_wait_append(tcp_t *tcp) 1540 { 1541 tcp_stack_t *tcps = tcp->tcp_tcps; 1542 tcp_squeue_priv_t *tcp_time_wait = 1543 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1544 SQPRIVATE_TCP)); 1545 1546 tcp_timers_stop(tcp); 1547 1548 /* Freed above */ 1549 ASSERT(tcp->tcp_timer_tid == 0); 1550 ASSERT(tcp->tcp_ack_tid == 0); 1551 1552 /* must have happened at the time of detaching the tcp */ 1553 ASSERT(tcp->tcp_ptpahn == NULL); 1554 ASSERT(tcp->tcp_flow_stopped == 0); 1555 ASSERT(tcp->tcp_time_wait_next == NULL); 1556 ASSERT(tcp->tcp_time_wait_prev == NULL); 1557 ASSERT(tcp->tcp_time_wait_expire == NULL); 1558 ASSERT(tcp->tcp_listener == NULL); 1559 1560 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1561 /* 1562 * The value computed below in tcp->tcp_time_wait_expire may 1563 * appear negative or wrap around. That is ok since our 1564 * interest is only in the difference between the current lbolt 1565 * value and tcp->tcp_time_wait_expire. But the value should not 1566 * be zero, since it means the tcp is not in the TIME_WAIT list. 1567 * The corresponding comparison in tcp_time_wait_collector() uses 1568 * modular arithmetic. 1569 */ 1570 tcp->tcp_time_wait_expire += 1571 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1572 if (tcp->tcp_time_wait_expire == 0) 1573 tcp->tcp_time_wait_expire = 1; 1574 1575 ASSERT(TCP_IS_DETACHED(tcp)); 1576 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1577 ASSERT(tcp->tcp_time_wait_next == NULL); 1578 ASSERT(tcp->tcp_time_wait_prev == NULL); 1579 TCP_DBGSTAT(tcps, tcp_time_wait); 1580 1581 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1582 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1583 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1584 tcp_time_wait->tcp_time_wait_head = tcp; 1585 } else { 1586 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1587 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1588 TCPS_TIME_WAIT); 1589 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1590 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1591 } 1592 tcp_time_wait->tcp_time_wait_tail = tcp; 1593 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1594 } 1595 1596 /* ARGSUSED */ 1597 void 1598 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1599 { 1600 conn_t *connp = (conn_t *)arg; 1601 tcp_t *tcp = connp->conn_tcp; 1602 tcp_stack_t *tcps = tcp->tcp_tcps; 1603 1604 ASSERT(tcp != NULL); 1605 if (tcp->tcp_state == TCPS_CLOSED) { 1606 return; 1607 } 1608 1609 ASSERT((tcp->tcp_family == AF_INET && 1610 tcp->tcp_ipversion == IPV4_VERSION) || 1611 (tcp->tcp_family == AF_INET6 && 1612 (tcp->tcp_ipversion == IPV4_VERSION || 1613 tcp->tcp_ipversion == IPV6_VERSION))); 1614 ASSERT(!tcp->tcp_listener); 1615 1616 TCP_STAT(tcps, tcp_time_wait_reap); 1617 ASSERT(TCP_IS_DETACHED(tcp)); 1618 1619 /* 1620 * Because they have no upstream client to rebind or tcp_close() 1621 * them later, we axe the connection here and now. 1622 */ 1623 tcp_close_detached(tcp); 1624 } 1625 1626 /* 1627 * Remove cached/latched IPsec references. 1628 */ 1629 void 1630 tcp_ipsec_cleanup(tcp_t *tcp) 1631 { 1632 conn_t *connp = tcp->tcp_connp; 1633 1634 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1635 1636 if (connp->conn_latch != NULL) { 1637 IPLATCH_REFRELE(connp->conn_latch, 1638 connp->conn_netstack); 1639 connp->conn_latch = NULL; 1640 } 1641 if (connp->conn_policy != NULL) { 1642 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1643 connp->conn_policy = NULL; 1644 } 1645 } 1646 1647 /* 1648 * Cleaup before placing on free list. 1649 * Disassociate from the netstack/tcp_stack_t since the freelist 1650 * is per squeue and not per netstack. 1651 */ 1652 void 1653 tcp_cleanup(tcp_t *tcp) 1654 { 1655 mblk_t *mp; 1656 char *tcp_iphc; 1657 int tcp_iphc_len; 1658 int tcp_hdr_grown; 1659 tcp_sack_info_t *tcp_sack_info; 1660 conn_t *connp = tcp->tcp_connp; 1661 tcp_stack_t *tcps = tcp->tcp_tcps; 1662 netstack_t *ns = tcps->tcps_netstack; 1663 mblk_t *tcp_rsrv_mp; 1664 1665 tcp_bind_hash_remove(tcp); 1666 1667 /* Cleanup that which needs the netstack first */ 1668 tcp_ipsec_cleanup(tcp); 1669 1670 tcp_free(tcp); 1671 1672 /* Release any SSL context */ 1673 if (tcp->tcp_kssl_ent != NULL) { 1674 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1675 tcp->tcp_kssl_ent = NULL; 1676 } 1677 1678 if (tcp->tcp_kssl_ctx != NULL) { 1679 kssl_release_ctx(tcp->tcp_kssl_ctx); 1680 tcp->tcp_kssl_ctx = NULL; 1681 } 1682 tcp->tcp_kssl_pending = B_FALSE; 1683 1684 conn_delete_ire(connp, NULL); 1685 1686 /* 1687 * Since we will bzero the entire structure, we need to 1688 * remove it and reinsert it in global hash list. We 1689 * know the walkers can't get to this conn because we 1690 * had set CONDEMNED flag earlier and checked reference 1691 * under conn_lock so walker won't pick it and when we 1692 * go the ipcl_globalhash_remove() below, no walker 1693 * can get to it. 1694 */ 1695 ipcl_globalhash_remove(connp); 1696 1697 /* 1698 * Now it is safe to decrement the reference counts. 1699 * This might be the last reference on the netstack and TCPS 1700 * in which case it will cause the tcp_g_q_close and 1701 * the freeing of the IP Instance. 1702 */ 1703 connp->conn_netstack = NULL; 1704 netstack_rele(ns); 1705 ASSERT(tcps != NULL); 1706 tcp->tcp_tcps = NULL; 1707 TCPS_REFRELE(tcps); 1708 1709 /* Save some state */ 1710 mp = tcp->tcp_timercache; 1711 1712 tcp_sack_info = tcp->tcp_sack_info; 1713 tcp_iphc = tcp->tcp_iphc; 1714 tcp_iphc_len = tcp->tcp_iphc_len; 1715 tcp_hdr_grown = tcp->tcp_hdr_grown; 1716 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1717 1718 if (connp->conn_cred != NULL) { 1719 crfree(connp->conn_cred); 1720 connp->conn_cred = NULL; 1721 } 1722 if (connp->conn_peercred != NULL) { 1723 crfree(connp->conn_peercred); 1724 connp->conn_peercred = NULL; 1725 } 1726 ipcl_conn_cleanup(connp); 1727 connp->conn_flags = IPCL_TCPCONN; 1728 bzero(tcp, sizeof (tcp_t)); 1729 1730 /* restore the state */ 1731 tcp->tcp_timercache = mp; 1732 1733 tcp->tcp_sack_info = tcp_sack_info; 1734 tcp->tcp_iphc = tcp_iphc; 1735 tcp->tcp_iphc_len = tcp_iphc_len; 1736 tcp->tcp_hdr_grown = tcp_hdr_grown; 1737 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1738 1739 tcp->tcp_connp = connp; 1740 1741 ASSERT(connp->conn_tcp == tcp); 1742 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1743 connp->conn_state_flags = CONN_INCIPIENT; 1744 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1745 ASSERT(connp->conn_ref == 1); 1746 } 1747 1748 /* 1749 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1750 * is done forwards from the head. 1751 * This walks all stack instances since 1752 * tcp_time_wait remains global across all stacks. 1753 */ 1754 /* ARGSUSED */ 1755 void 1756 tcp_time_wait_collector(void *arg) 1757 { 1758 tcp_t *tcp; 1759 clock_t now; 1760 mblk_t *mp; 1761 conn_t *connp; 1762 kmutex_t *lock; 1763 boolean_t removed; 1764 1765 squeue_t *sqp = (squeue_t *)arg; 1766 tcp_squeue_priv_t *tcp_time_wait = 1767 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1768 1769 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1770 tcp_time_wait->tcp_time_wait_tid = 0; 1771 1772 if (tcp_time_wait->tcp_free_list != NULL && 1773 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1774 TCP_G_STAT(tcp_freelist_cleanup); 1775 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1776 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1777 tcp->tcp_time_wait_next = NULL; 1778 tcp_time_wait->tcp_free_list_cnt--; 1779 ASSERT(tcp->tcp_tcps == NULL); 1780 CONN_DEC_REF(tcp->tcp_connp); 1781 } 1782 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1783 } 1784 1785 /* 1786 * In order to reap time waits reliably, we should use a 1787 * source of time that is not adjustable by the user -- hence 1788 * the call to ddi_get_lbolt(). 1789 */ 1790 now = ddi_get_lbolt(); 1791 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1792 /* 1793 * Compare times using modular arithmetic, since 1794 * lbolt can wrapover. 1795 */ 1796 if ((now - tcp->tcp_time_wait_expire) < 0) { 1797 break; 1798 } 1799 1800 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1801 ASSERT(removed); 1802 1803 connp = tcp->tcp_connp; 1804 ASSERT(connp->conn_fanout != NULL); 1805 lock = &connp->conn_fanout->connf_lock; 1806 /* 1807 * This is essentially a TW reclaim fast path optimization for 1808 * performance where the timewait collector checks under the 1809 * fanout lock (so that no one else can get access to the 1810 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1811 * the classifier hash list. If ref count is indeed 2, we can 1812 * just remove the conn under the fanout lock and avoid 1813 * cleaning up the conn under the squeue, provided that 1814 * clustering callbacks are not enabled. If clustering is 1815 * enabled, we need to make the clustering callback before 1816 * setting the CONDEMNED flag and after dropping all locks and 1817 * so we forego this optimization and fall back to the slow 1818 * path. Also please see the comments in tcp_closei_local 1819 * regarding the refcnt logic. 1820 * 1821 * Since we are holding the tcp_time_wait_lock, its better 1822 * not to block on the fanout_lock because other connections 1823 * can't add themselves to time_wait list. So we do a 1824 * tryenter instead of mutex_enter. 1825 */ 1826 if (mutex_tryenter(lock)) { 1827 mutex_enter(&connp->conn_lock); 1828 if ((connp->conn_ref == 2) && 1829 (cl_inet_disconnect == NULL)) { 1830 ipcl_hash_remove_locked(connp, 1831 connp->conn_fanout); 1832 /* 1833 * Set the CONDEMNED flag now itself so that 1834 * the refcnt cannot increase due to any 1835 * walker. But we have still not cleaned up 1836 * conn_ire_cache. This is still ok since 1837 * we are going to clean it up in tcp_cleanup 1838 * immediately and any interface unplumb 1839 * thread will wait till the ire is blown away 1840 */ 1841 connp->conn_state_flags |= CONN_CONDEMNED; 1842 mutex_exit(lock); 1843 mutex_exit(&connp->conn_lock); 1844 if (tcp_time_wait->tcp_free_list_cnt < 1845 tcp_free_list_max_cnt) { 1846 /* Add to head of tcp_free_list */ 1847 mutex_exit( 1848 &tcp_time_wait->tcp_time_wait_lock); 1849 tcp_cleanup(tcp); 1850 ASSERT(connp->conn_latch == NULL); 1851 ASSERT(connp->conn_policy == NULL); 1852 ASSERT(tcp->tcp_tcps == NULL); 1853 ASSERT(connp->conn_netstack == NULL); 1854 1855 mutex_enter( 1856 &tcp_time_wait->tcp_time_wait_lock); 1857 tcp->tcp_time_wait_next = 1858 tcp_time_wait->tcp_free_list; 1859 tcp_time_wait->tcp_free_list = tcp; 1860 tcp_time_wait->tcp_free_list_cnt++; 1861 continue; 1862 } else { 1863 /* Do not add to tcp_free_list */ 1864 mutex_exit( 1865 &tcp_time_wait->tcp_time_wait_lock); 1866 tcp_bind_hash_remove(tcp); 1867 conn_delete_ire(tcp->tcp_connp, NULL); 1868 tcp_ipsec_cleanup(tcp); 1869 CONN_DEC_REF(tcp->tcp_connp); 1870 } 1871 } else { 1872 CONN_INC_REF_LOCKED(connp); 1873 mutex_exit(lock); 1874 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1875 mutex_exit(&connp->conn_lock); 1876 /* 1877 * We can reuse the closemp here since conn has 1878 * detached (otherwise we wouldn't even be in 1879 * time_wait list). tcp_closemp_used can safely 1880 * be changed without taking a lock as no other 1881 * thread can concurrently access it at this 1882 * point in the connection lifecycle. 1883 */ 1884 1885 if (tcp->tcp_closemp.b_prev == NULL) 1886 tcp->tcp_closemp_used = B_TRUE; 1887 else 1888 cmn_err(CE_PANIC, 1889 "tcp_timewait_collector: " 1890 "concurrent use of tcp_closemp: " 1891 "connp %p tcp %p\n", (void *)connp, 1892 (void *)tcp); 1893 1894 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1895 mp = &tcp->tcp_closemp; 1896 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1897 tcp_timewait_output, connp, 1898 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1899 } 1900 } else { 1901 mutex_enter(&connp->conn_lock); 1902 CONN_INC_REF_LOCKED(connp); 1903 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1904 mutex_exit(&connp->conn_lock); 1905 /* 1906 * We can reuse the closemp here since conn has 1907 * detached (otherwise we wouldn't even be in 1908 * time_wait list). tcp_closemp_used can safely 1909 * be changed without taking a lock as no other 1910 * thread can concurrently access it at this 1911 * point in the connection lifecycle. 1912 */ 1913 1914 if (tcp->tcp_closemp.b_prev == NULL) 1915 tcp->tcp_closemp_used = B_TRUE; 1916 else 1917 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1918 "concurrent use of tcp_closemp: " 1919 "connp %p tcp %p\n", (void *)connp, 1920 (void *)tcp); 1921 1922 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1923 mp = &tcp->tcp_closemp; 1924 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1925 tcp_timewait_output, connp, 1926 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1927 } 1928 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1929 } 1930 1931 if (tcp_time_wait->tcp_free_list != NULL) 1932 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1933 1934 tcp_time_wait->tcp_time_wait_tid = 1935 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1936 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1937 CALLOUT_FLAG_ROUNDUP); 1938 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1939 } 1940 1941 /* 1942 * Reply to a clients T_CONN_RES TPI message. This function 1943 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1944 * on the acceptor STREAM and processed in tcp_wput_accept(). 1945 * Read the block comment on top of tcp_conn_request(). 1946 */ 1947 static void 1948 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1949 { 1950 tcp_t *acceptor; 1951 tcp_t *eager; 1952 tcp_t *tcp; 1953 struct T_conn_res *tcr; 1954 t_uscalar_t acceptor_id; 1955 t_scalar_t seqnum; 1956 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1957 struct tcp_options *tcpopt; 1958 mblk_t *ok_mp; 1959 mblk_t *mp1; 1960 tcp_stack_t *tcps = listener->tcp_tcps; 1961 1962 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1963 tcp_err_ack(listener, mp, TPROTO, 0); 1964 return; 1965 } 1966 tcr = (struct T_conn_res *)mp->b_rptr; 1967 1968 /* 1969 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1970 * read side queue of the streams device underneath us i.e. the 1971 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1972 * look it up in the queue_hash. Under LP64 it sends down the 1973 * minor_t of the accepting endpoint. 1974 * 1975 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1976 * fanout hash lock is held. 1977 * This prevents any thread from entering the acceptor queue from 1978 * below (since it has not been hard bound yet i.e. any inbound 1979 * packets will arrive on the listener or default tcp queue and 1980 * go through tcp_lookup). 1981 * The CONN_INC_REF will prevent the acceptor from closing. 1982 * 1983 * XXX It is still possible for a tli application to send down data 1984 * on the accepting stream while another thread calls t_accept. 1985 * This should not be a problem for well-behaved applications since 1986 * the T_OK_ACK is sent after the queue swapping is completed. 1987 * 1988 * If the accepting fd is the same as the listening fd, avoid 1989 * queue hash lookup since that will return an eager listener in a 1990 * already established state. 1991 */ 1992 acceptor_id = tcr->ACCEPTOR_id; 1993 mutex_enter(&listener->tcp_eager_lock); 1994 if (listener->tcp_acceptor_id == acceptor_id) { 1995 eager = listener->tcp_eager_next_q; 1996 /* only count how many T_CONN_INDs so don't count q0 */ 1997 if ((listener->tcp_conn_req_cnt_q != 1) || 1998 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1999 mutex_exit(&listener->tcp_eager_lock); 2000 tcp_err_ack(listener, mp, TBADF, 0); 2001 return; 2002 } 2003 if (listener->tcp_conn_req_cnt_q0 != 0) { 2004 /* Throw away all the eagers on q0. */ 2005 tcp_eager_cleanup(listener, 1); 2006 } 2007 if (listener->tcp_syn_defense) { 2008 listener->tcp_syn_defense = B_FALSE; 2009 if (listener->tcp_ip_addr_cache != NULL) { 2010 kmem_free(listener->tcp_ip_addr_cache, 2011 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2012 listener->tcp_ip_addr_cache = NULL; 2013 } 2014 } 2015 /* 2016 * Transfer tcp_conn_req_max to the eager so that when 2017 * a disconnect occurs we can revert the endpoint to the 2018 * listen state. 2019 */ 2020 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2021 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2022 /* 2023 * Get a reference on the acceptor just like the 2024 * tcp_acceptor_hash_lookup below. 2025 */ 2026 acceptor = listener; 2027 CONN_INC_REF(acceptor->tcp_connp); 2028 } else { 2029 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 2030 if (acceptor == NULL) { 2031 if (listener->tcp_debug) { 2032 (void) strlog(TCP_MOD_ID, 0, 1, 2033 SL_ERROR|SL_TRACE, 2034 "tcp_accept: did not find acceptor 0x%x\n", 2035 acceptor_id); 2036 } 2037 mutex_exit(&listener->tcp_eager_lock); 2038 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2039 return; 2040 } 2041 /* 2042 * Verify acceptor state. The acceptable states for an acceptor 2043 * include TCPS_IDLE and TCPS_BOUND. 2044 */ 2045 switch (acceptor->tcp_state) { 2046 case TCPS_IDLE: 2047 /* FALLTHRU */ 2048 case TCPS_BOUND: 2049 break; 2050 default: 2051 CONN_DEC_REF(acceptor->tcp_connp); 2052 mutex_exit(&listener->tcp_eager_lock); 2053 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2054 return; 2055 } 2056 } 2057 2058 /* The listener must be in TCPS_LISTEN */ 2059 if (listener->tcp_state != TCPS_LISTEN) { 2060 CONN_DEC_REF(acceptor->tcp_connp); 2061 mutex_exit(&listener->tcp_eager_lock); 2062 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2063 return; 2064 } 2065 2066 /* 2067 * Rendezvous with an eager connection request packet hanging off 2068 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2069 * tcp structure when the connection packet arrived in 2070 * tcp_conn_request(). 2071 */ 2072 seqnum = tcr->SEQ_number; 2073 eager = listener; 2074 do { 2075 eager = eager->tcp_eager_next_q; 2076 if (eager == NULL) { 2077 CONN_DEC_REF(acceptor->tcp_connp); 2078 mutex_exit(&listener->tcp_eager_lock); 2079 tcp_err_ack(listener, mp, TBADSEQ, 0); 2080 return; 2081 } 2082 } while (eager->tcp_conn_req_seqnum != seqnum); 2083 mutex_exit(&listener->tcp_eager_lock); 2084 2085 /* 2086 * At this point, both acceptor and listener have 2 ref 2087 * that they begin with. Acceptor has one additional ref 2088 * we placed in lookup while listener has 3 additional 2089 * ref for being behind the squeue (tcp_accept() is 2090 * done on listener's squeue); being in classifier hash; 2091 * and eager's ref on listener. 2092 */ 2093 ASSERT(listener->tcp_connp->conn_ref >= 5); 2094 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2095 2096 /* 2097 * The eager at this point is set in its own squeue and 2098 * could easily have been killed (tcp_accept_finish will 2099 * deal with that) because of a TH_RST so we can only 2100 * ASSERT for a single ref. 2101 */ 2102 ASSERT(eager->tcp_connp->conn_ref >= 1); 2103 2104 /* Pre allocate the stroptions mblk also */ 2105 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2106 sizeof (struct T_conn_res)), BPRI_HI); 2107 if (opt_mp == NULL) { 2108 CONN_DEC_REF(acceptor->tcp_connp); 2109 CONN_DEC_REF(eager->tcp_connp); 2110 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2111 return; 2112 } 2113 DB_TYPE(opt_mp) = M_SETOPTS; 2114 opt_mp->b_wptr += sizeof (struct tcp_options); 2115 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2116 tcpopt->to_flags = 0; 2117 2118 /* 2119 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2120 * from listener to acceptor. 2121 */ 2122 if (listener->tcp_bound_if != 0) { 2123 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2124 tcpopt->to_boundif = listener->tcp_bound_if; 2125 } 2126 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2127 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2128 } 2129 2130 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2131 if ((mp1 = copymsg(mp)) == NULL) { 2132 CONN_DEC_REF(acceptor->tcp_connp); 2133 CONN_DEC_REF(eager->tcp_connp); 2134 freemsg(opt_mp); 2135 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2136 return; 2137 } 2138 2139 tcr = (struct T_conn_res *)mp1->b_rptr; 2140 2141 /* 2142 * This is an expanded version of mi_tpi_ok_ack_alloc() 2143 * which allocates a larger mblk and appends the new 2144 * local address to the ok_ack. The address is copied by 2145 * soaccept() for getsockname(). 2146 */ 2147 { 2148 int extra; 2149 2150 extra = (eager->tcp_family == AF_INET) ? 2151 sizeof (sin_t) : sizeof (sin6_t); 2152 2153 /* 2154 * Try to re-use mp, if possible. Otherwise, allocate 2155 * an mblk and return it as ok_mp. In any case, mp 2156 * is no longer usable upon return. 2157 */ 2158 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2159 CONN_DEC_REF(acceptor->tcp_connp); 2160 CONN_DEC_REF(eager->tcp_connp); 2161 freemsg(opt_mp); 2162 /* Original mp has been freed by now, so use mp1 */ 2163 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2164 return; 2165 } 2166 2167 mp = NULL; /* We should never use mp after this point */ 2168 2169 switch (extra) { 2170 case sizeof (sin_t): { 2171 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2172 2173 ok_mp->b_wptr += extra; 2174 sin->sin_family = AF_INET; 2175 sin->sin_port = eager->tcp_lport; 2176 sin->sin_addr.s_addr = 2177 eager->tcp_ipha->ipha_src; 2178 break; 2179 } 2180 case sizeof (sin6_t): { 2181 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2182 2183 ok_mp->b_wptr += extra; 2184 sin6->sin6_family = AF_INET6; 2185 sin6->sin6_port = eager->tcp_lport; 2186 if (eager->tcp_ipversion == IPV4_VERSION) { 2187 sin6->sin6_flowinfo = 0; 2188 IN6_IPADDR_TO_V4MAPPED( 2189 eager->tcp_ipha->ipha_src, 2190 &sin6->sin6_addr); 2191 } else { 2192 ASSERT(eager->tcp_ip6h != NULL); 2193 sin6->sin6_flowinfo = 2194 eager->tcp_ip6h->ip6_vcf & 2195 ~IPV6_VERS_AND_FLOW_MASK; 2196 sin6->sin6_addr = 2197 eager->tcp_ip6h->ip6_src; 2198 } 2199 sin6->sin6_scope_id = 0; 2200 sin6->__sin6_src_id = 0; 2201 break; 2202 } 2203 default: 2204 break; 2205 } 2206 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2207 } 2208 2209 /* 2210 * If there are no options we know that the T_CONN_RES will 2211 * succeed. However, we can't send the T_OK_ACK upstream until 2212 * the tcp_accept_swap is done since it would be dangerous to 2213 * let the application start using the new fd prior to the swap. 2214 */ 2215 tcp_accept_swap(listener, acceptor, eager); 2216 2217 /* 2218 * tcp_accept_swap unlinks eager from listener but does not drop 2219 * the eager's reference on the listener. 2220 */ 2221 ASSERT(eager->tcp_listener == NULL); 2222 ASSERT(listener->tcp_connp->conn_ref >= 5); 2223 2224 /* 2225 * The eager is now associated with its own queue. Insert in 2226 * the hash so that the connection can be reused for a future 2227 * T_CONN_RES. 2228 */ 2229 tcp_acceptor_hash_insert(acceptor_id, eager); 2230 2231 /* 2232 * We now do the processing of options with T_CONN_RES. 2233 * We delay till now since we wanted to have queue to pass to 2234 * option processing routines that points back to the right 2235 * instance structure which does not happen until after 2236 * tcp_accept_swap(). 2237 * 2238 * Note: 2239 * The sanity of the logic here assumes that whatever options 2240 * are appropriate to inherit from listner=>eager are done 2241 * before this point, and whatever were to be overridden (or not) 2242 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2243 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2244 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2245 * This may not be true at this point in time but can be fixed 2246 * independently. This option processing code starts with 2247 * the instantiated acceptor instance and the final queue at 2248 * this point. 2249 */ 2250 2251 if (tcr->OPT_length != 0) { 2252 /* Options to process */ 2253 int t_error = 0; 2254 int sys_error = 0; 2255 int do_disconnect = 0; 2256 2257 if (tcp_conprim_opt_process(eager, mp1, 2258 &do_disconnect, &t_error, &sys_error) < 0) { 2259 eager->tcp_accept_error = 1; 2260 if (do_disconnect) { 2261 /* 2262 * An option failed which does not allow 2263 * connection to be accepted. 2264 * 2265 * We allow T_CONN_RES to succeed and 2266 * put a T_DISCON_IND on the eager queue. 2267 */ 2268 ASSERT(t_error == 0 && sys_error == 0); 2269 eager->tcp_send_discon_ind = 1; 2270 } else { 2271 ASSERT(t_error != 0); 2272 freemsg(ok_mp); 2273 /* 2274 * Original mp was either freed or set 2275 * to ok_mp above, so use mp1 instead. 2276 */ 2277 tcp_err_ack(listener, mp1, t_error, sys_error); 2278 goto finish; 2279 } 2280 } 2281 /* 2282 * Most likely success in setting options (except if 2283 * eager->tcp_send_discon_ind set). 2284 * mp1 option buffer represented by OPT_length/offset 2285 * potentially modified and contains results of setting 2286 * options at this point 2287 */ 2288 } 2289 2290 /* We no longer need mp1, since all options processing has passed */ 2291 freemsg(mp1); 2292 2293 putnext(listener->tcp_rq, ok_mp); 2294 2295 mutex_enter(&listener->tcp_eager_lock); 2296 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2297 tcp_t *tail; 2298 mblk_t *conn_ind; 2299 2300 /* 2301 * This path should not be executed if listener and 2302 * acceptor streams are the same. 2303 */ 2304 ASSERT(listener != acceptor); 2305 2306 tcp = listener->tcp_eager_prev_q0; 2307 /* 2308 * listener->tcp_eager_prev_q0 points to the TAIL of the 2309 * deferred T_conn_ind queue. We need to get to the head of 2310 * the queue in order to send up T_conn_ind the same order as 2311 * how the 3WHS is completed. 2312 */ 2313 while (tcp != listener) { 2314 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2315 break; 2316 else 2317 tcp = tcp->tcp_eager_prev_q0; 2318 } 2319 ASSERT(tcp != listener); 2320 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2321 ASSERT(conn_ind != NULL); 2322 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2323 2324 /* Move from q0 to q */ 2325 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2326 listener->tcp_conn_req_cnt_q0--; 2327 listener->tcp_conn_req_cnt_q++; 2328 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2329 tcp->tcp_eager_prev_q0; 2330 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2331 tcp->tcp_eager_next_q0; 2332 tcp->tcp_eager_prev_q0 = NULL; 2333 tcp->tcp_eager_next_q0 = NULL; 2334 tcp->tcp_conn_def_q0 = B_FALSE; 2335 2336 /* Make sure the tcp isn't in the list of droppables */ 2337 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2338 tcp->tcp_eager_prev_drop_q0 == NULL); 2339 2340 /* 2341 * Insert at end of the queue because sockfs sends 2342 * down T_CONN_RES in chronological order. Leaving 2343 * the older conn indications at front of the queue 2344 * helps reducing search time. 2345 */ 2346 tail = listener->tcp_eager_last_q; 2347 if (tail != NULL) 2348 tail->tcp_eager_next_q = tcp; 2349 else 2350 listener->tcp_eager_next_q = tcp; 2351 listener->tcp_eager_last_q = tcp; 2352 tcp->tcp_eager_next_q = NULL; 2353 mutex_exit(&listener->tcp_eager_lock); 2354 putnext(tcp->tcp_rq, conn_ind); 2355 } else { 2356 mutex_exit(&listener->tcp_eager_lock); 2357 } 2358 2359 /* 2360 * Done with the acceptor - free it 2361 * 2362 * Note: from this point on, no access to listener should be made 2363 * as listener can be equal to acceptor. 2364 */ 2365 finish: 2366 ASSERT(acceptor->tcp_detached); 2367 ASSERT(tcps->tcps_g_q != NULL); 2368 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2369 acceptor->tcp_rq = tcps->tcps_g_q; 2370 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2371 (void) tcp_clean_death(acceptor, 0, 2); 2372 CONN_DEC_REF(acceptor->tcp_connp); 2373 2374 /* 2375 * In case we already received a FIN we have to make tcp_rput send 2376 * the ordrel_ind. This will also send up a window update if the window 2377 * has opened up. 2378 * 2379 * In the normal case of a successful connection acceptance 2380 * we give the O_T_BIND_REQ to the read side put procedure as an 2381 * indication that this was just accepted. This tells tcp_rput to 2382 * pass up any data queued in tcp_rcv_list. 2383 * 2384 * In the fringe case where options sent with T_CONN_RES failed and 2385 * we required, we would be indicating a T_DISCON_IND to blow 2386 * away this connection. 2387 */ 2388 2389 /* 2390 * XXX: we currently have a problem if XTI application closes the 2391 * acceptor stream in between. This problem exists in on10-gate also 2392 * and is well know but nothing can be done short of major rewrite 2393 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2394 * eager same squeue as listener (we can distinguish non socket 2395 * listeners at the time of handling a SYN in tcp_conn_request) 2396 * and do most of the work that tcp_accept_finish does here itself 2397 * and then get behind the acceptor squeue to access the acceptor 2398 * queue. 2399 */ 2400 /* 2401 * We already have a ref on tcp so no need to do one before squeue_enter 2402 */ 2403 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2404 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2405 } 2406 2407 /* 2408 * Swap information between the eager and acceptor for a TLI/XTI client. 2409 * The sockfs accept is done on the acceptor stream and control goes 2410 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2411 * called. In either case, both the eager and listener are in their own 2412 * perimeter (squeue) and the code has to deal with potential race. 2413 * 2414 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2415 */ 2416 static void 2417 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2418 { 2419 conn_t *econnp, *aconnp; 2420 2421 ASSERT(eager->tcp_rq == listener->tcp_rq); 2422 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2423 ASSERT(!eager->tcp_hard_bound); 2424 ASSERT(!TCP_IS_SOCKET(acceptor)); 2425 ASSERT(!TCP_IS_SOCKET(eager)); 2426 ASSERT(!TCP_IS_SOCKET(listener)); 2427 2428 acceptor->tcp_detached = B_TRUE; 2429 /* 2430 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2431 * the acceptor id. 2432 */ 2433 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2434 2435 /* remove eager from listen list... */ 2436 mutex_enter(&listener->tcp_eager_lock); 2437 tcp_eager_unlink(eager); 2438 ASSERT(eager->tcp_eager_next_q == NULL && 2439 eager->tcp_eager_last_q == NULL); 2440 ASSERT(eager->tcp_eager_next_q0 == NULL && 2441 eager->tcp_eager_prev_q0 == NULL); 2442 mutex_exit(&listener->tcp_eager_lock); 2443 eager->tcp_rq = acceptor->tcp_rq; 2444 eager->tcp_wq = acceptor->tcp_wq; 2445 2446 econnp = eager->tcp_connp; 2447 aconnp = acceptor->tcp_connp; 2448 2449 eager->tcp_rq->q_ptr = econnp; 2450 eager->tcp_wq->q_ptr = econnp; 2451 2452 /* 2453 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2454 * which might be a different squeue from our peer TCP instance. 2455 * For TCP Fusion, the peer expects that whenever tcp_detached is 2456 * clear, our TCP queues point to the acceptor's queues. Thus, use 2457 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2458 * above reach global visibility prior to the clearing of tcp_detached. 2459 */ 2460 membar_producer(); 2461 eager->tcp_detached = B_FALSE; 2462 2463 ASSERT(eager->tcp_ack_tid == 0); 2464 2465 econnp->conn_dev = aconnp->conn_dev; 2466 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2467 ASSERT(econnp->conn_minor_arena != NULL); 2468 if (eager->tcp_cred != NULL) 2469 crfree(eager->tcp_cred); 2470 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2471 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2472 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2473 2474 aconnp->conn_cred = NULL; 2475 2476 econnp->conn_zoneid = aconnp->conn_zoneid; 2477 econnp->conn_allzones = aconnp->conn_allzones; 2478 2479 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2480 aconnp->conn_mac_exempt = B_FALSE; 2481 2482 ASSERT(aconnp->conn_peercred == NULL); 2483 2484 /* Do the IPC initialization */ 2485 CONN_INC_REF(econnp); 2486 2487 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2488 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2489 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2490 2491 /* Done with old IPC. Drop its ref on its connp */ 2492 CONN_DEC_REF(aconnp); 2493 } 2494 2495 2496 /* 2497 * Adapt to the information, such as rtt and rtt_sd, provided from the 2498 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2499 * 2500 * Checks for multicast and broadcast destination address. 2501 * Returns zero on failure; non-zero if ok. 2502 * 2503 * Note that the MSS calculation here is based on the info given in 2504 * the IRE. We do not do any calculation based on TCP options. They 2505 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2506 * knows which options to use. 2507 * 2508 * Note on how TCP gets its parameters for a connection. 2509 * 2510 * When a tcp_t structure is allocated, it gets all the default parameters. 2511 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2512 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2513 * default. 2514 * 2515 * An incoming SYN with a multicast or broadcast destination address, is dropped 2516 * in 1 of 2 places. 2517 * 2518 * 1. If the packet was received over the wire it is dropped in 2519 * ip_rput_process_broadcast() 2520 * 2521 * 2. If the packet was received through internal IP loopback, i.e. the packet 2522 * was generated and received on the same machine, it is dropped in 2523 * ip_wput_local() 2524 * 2525 * An incoming SYN with a multicast or broadcast source address is always 2526 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2527 * reject an attempt to connect to a broadcast or multicast (destination) 2528 * address. 2529 */ 2530 static int 2531 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2532 { 2533 tcp_hsp_t *hsp; 2534 ire_t *ire; 2535 ire_t *sire = NULL; 2536 iulp_t *ire_uinfo = NULL; 2537 uint32_t mss_max; 2538 uint32_t mss; 2539 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2540 conn_t *connp = tcp->tcp_connp; 2541 boolean_t ire_cacheable = B_FALSE; 2542 zoneid_t zoneid = connp->conn_zoneid; 2543 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2544 MATCH_IRE_SECATTR; 2545 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2546 ill_t *ill = NULL; 2547 boolean_t incoming = (ire_mp == NULL); 2548 tcp_stack_t *tcps = tcp->tcp_tcps; 2549 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2550 2551 ASSERT(connp->conn_ire_cache == NULL); 2552 2553 if (tcp->tcp_ipversion == IPV4_VERSION) { 2554 2555 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2556 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2557 return (0); 2558 } 2559 /* 2560 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2561 * for the destination with the nexthop as gateway. 2562 * ire_ctable_lookup() is used because this particular 2563 * ire, if it exists, will be marked private. 2564 * If that is not available, use the interface ire 2565 * for the nexthop. 2566 * 2567 * TSol: tcp_update_label will detect label mismatches based 2568 * only on the destination's label, but that would not 2569 * detect label mismatches based on the security attributes 2570 * of routes or next hop gateway. Hence we need to pass the 2571 * label to ire_ftable_lookup below in order to locate the 2572 * right prefix (and/or) ire cache. Similarly we also need 2573 * pass the label to the ire_cache_lookup below to locate 2574 * the right ire that also matches on the label. 2575 */ 2576 if (tcp->tcp_connp->conn_nexthop_set) { 2577 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2578 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2579 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2580 ipst); 2581 if (ire == NULL) { 2582 ire = ire_ftable_lookup( 2583 tcp->tcp_connp->conn_nexthop_v4, 2584 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2585 tsl, match_flags, ipst); 2586 if (ire == NULL) 2587 return (0); 2588 } else { 2589 ire_uinfo = &ire->ire_uinfo; 2590 } 2591 } else { 2592 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2593 zoneid, tsl, ipst); 2594 if (ire != NULL) { 2595 ire_cacheable = B_TRUE; 2596 ire_uinfo = (ire_mp != NULL) ? 2597 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2598 &ire->ire_uinfo; 2599 2600 } else { 2601 if (ire_mp == NULL) { 2602 ire = ire_ftable_lookup( 2603 tcp->tcp_connp->conn_rem, 2604 0, 0, 0, NULL, &sire, zoneid, 0, 2605 tsl, (MATCH_IRE_RECURSIVE | 2606 MATCH_IRE_DEFAULT), ipst); 2607 if (ire == NULL) 2608 return (0); 2609 ire_uinfo = (sire != NULL) ? 2610 &sire->ire_uinfo : 2611 &ire->ire_uinfo; 2612 } else { 2613 ire = (ire_t *)ire_mp->b_rptr; 2614 ire_uinfo = 2615 &((ire_t *) 2616 ire_mp->b_rptr)->ire_uinfo; 2617 } 2618 } 2619 } 2620 ASSERT(ire != NULL); 2621 2622 if ((ire->ire_src_addr == INADDR_ANY) || 2623 (ire->ire_type & IRE_BROADCAST)) { 2624 /* 2625 * ire->ire_mp is non null when ire_mp passed in is used 2626 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2627 */ 2628 if (ire->ire_mp == NULL) 2629 ire_refrele(ire); 2630 if (sire != NULL) 2631 ire_refrele(sire); 2632 return (0); 2633 } 2634 2635 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2636 ipaddr_t src_addr; 2637 2638 /* 2639 * ip_bind_connected() has stored the correct source 2640 * address in conn_src. 2641 */ 2642 src_addr = tcp->tcp_connp->conn_src; 2643 tcp->tcp_ipha->ipha_src = src_addr; 2644 /* 2645 * Copy of the src addr. in tcp_t is needed 2646 * for the lookup funcs. 2647 */ 2648 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2649 } 2650 /* 2651 * Set the fragment bit so that IP will tell us if the MTU 2652 * should change. IP tells us the latest setting of 2653 * ip_path_mtu_discovery through ire_frag_flag. 2654 */ 2655 if (ipst->ips_ip_path_mtu_discovery) { 2656 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2657 htons(IPH_DF); 2658 } 2659 /* 2660 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2661 * for IP_NEXTHOP. No cache ire has been found for the 2662 * destination and we are working with the nexthop's 2663 * interface ire. Since we need to forward all packets 2664 * to the nexthop first, we "blindly" set tcp_localnet 2665 * to false, eventhough the destination may also be 2666 * onlink. 2667 */ 2668 if (ire_uinfo == NULL) 2669 tcp->tcp_localnet = 0; 2670 else 2671 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2672 } else { 2673 /* 2674 * For incoming connection ire_mp = NULL 2675 * For outgoing connection ire_mp != NULL 2676 * Technically we should check conn_incoming_ill 2677 * when ire_mp is NULL and conn_outgoing_ill when 2678 * ire_mp is non-NULL. But this is performance 2679 * critical path and for IPV*_BOUND_IF, outgoing 2680 * and incoming ill are always set to the same value. 2681 */ 2682 ill_t *dst_ill = NULL; 2683 ipif_t *dst_ipif = NULL; 2684 2685 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2686 2687 if (connp->conn_outgoing_ill != NULL) { 2688 /* Outgoing or incoming path */ 2689 int err; 2690 2691 dst_ill = conn_get_held_ill(connp, 2692 &connp->conn_outgoing_ill, &err); 2693 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2694 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2695 return (0); 2696 } 2697 match_flags |= MATCH_IRE_ILL; 2698 dst_ipif = dst_ill->ill_ipif; 2699 } 2700 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2701 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2702 2703 if (ire != NULL) { 2704 ire_cacheable = B_TRUE; 2705 ire_uinfo = (ire_mp != NULL) ? 2706 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2707 &ire->ire_uinfo; 2708 } else { 2709 if (ire_mp == NULL) { 2710 ire = ire_ftable_lookup_v6( 2711 &tcp->tcp_connp->conn_remv6, 2712 0, 0, 0, dst_ipif, &sire, zoneid, 2713 0, tsl, match_flags, ipst); 2714 if (ire == NULL) { 2715 if (dst_ill != NULL) 2716 ill_refrele(dst_ill); 2717 return (0); 2718 } 2719 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2720 &ire->ire_uinfo; 2721 } else { 2722 ire = (ire_t *)ire_mp->b_rptr; 2723 ire_uinfo = 2724 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2725 } 2726 } 2727 if (dst_ill != NULL) 2728 ill_refrele(dst_ill); 2729 2730 ASSERT(ire != NULL); 2731 ASSERT(ire_uinfo != NULL); 2732 2733 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2734 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2735 /* 2736 * ire->ire_mp is non null when ire_mp passed in is used 2737 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2738 */ 2739 if (ire->ire_mp == NULL) 2740 ire_refrele(ire); 2741 if (sire != NULL) 2742 ire_refrele(sire); 2743 return (0); 2744 } 2745 2746 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2747 in6_addr_t src_addr; 2748 2749 /* 2750 * ip_bind_connected_v6() has stored the correct source 2751 * address per IPv6 addr. selection policy in 2752 * conn_src_v6. 2753 */ 2754 src_addr = tcp->tcp_connp->conn_srcv6; 2755 2756 tcp->tcp_ip6h->ip6_src = src_addr; 2757 /* 2758 * Copy of the src addr. in tcp_t is needed 2759 * for the lookup funcs. 2760 */ 2761 tcp->tcp_ip_src_v6 = src_addr; 2762 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2763 &connp->conn_srcv6)); 2764 } 2765 tcp->tcp_localnet = 2766 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2767 } 2768 2769 /* 2770 * This allows applications to fail quickly when connections are made 2771 * to dead hosts. Hosts can be labeled dead by adding a reject route 2772 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2773 */ 2774 if ((ire->ire_flags & RTF_REJECT) && 2775 (ire->ire_flags & RTF_PRIVATE)) 2776 goto error; 2777 2778 /* 2779 * Make use of the cached rtt and rtt_sd values to calculate the 2780 * initial RTO. Note that they are already initialized in 2781 * tcp_init_values(). 2782 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2783 * IP_NEXTHOP, but instead are using the interface ire for the 2784 * nexthop, then we do not use the ire_uinfo from that ire to 2785 * do any initializations. 2786 */ 2787 if (ire_uinfo != NULL) { 2788 if (ire_uinfo->iulp_rtt != 0) { 2789 clock_t rto; 2790 2791 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2792 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2793 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2794 tcps->tcps_rexmit_interval_extra + 2795 (tcp->tcp_rtt_sa >> 5); 2796 2797 if (rto > tcps->tcps_rexmit_interval_max) { 2798 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2799 } else if (rto < tcps->tcps_rexmit_interval_min) { 2800 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2801 } else { 2802 tcp->tcp_rto = rto; 2803 } 2804 } 2805 if (ire_uinfo->iulp_ssthresh != 0) 2806 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2807 else 2808 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2809 if (ire_uinfo->iulp_spipe > 0) { 2810 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2811 tcps->tcps_max_buf); 2812 if (tcps->tcps_snd_lowat_fraction != 0) 2813 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2814 tcps->tcps_snd_lowat_fraction; 2815 (void) tcp_maxpsz_set(tcp, B_TRUE); 2816 } 2817 /* 2818 * Note that up till now, acceptor always inherits receive 2819 * window from the listener. But if there is a metrics 2820 * associated with a host, we should use that instead of 2821 * inheriting it from listener. Thus we need to pass this 2822 * info back to the caller. 2823 */ 2824 if (ire_uinfo->iulp_rpipe > 0) { 2825 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2826 tcps->tcps_max_buf); 2827 } 2828 2829 if (ire_uinfo->iulp_rtomax > 0) { 2830 tcp->tcp_second_timer_threshold = 2831 ire_uinfo->iulp_rtomax; 2832 } 2833 2834 /* 2835 * Use the metric option settings, iulp_tstamp_ok and 2836 * iulp_wscale_ok, only for active open. What this means 2837 * is that if the other side uses timestamp or window 2838 * scale option, TCP will also use those options. That 2839 * is for passive open. If the application sets a 2840 * large window, window scale is enabled regardless of 2841 * the value in iulp_wscale_ok. This is the behavior 2842 * since 2.6. So we keep it. 2843 * The only case left in passive open processing is the 2844 * check for SACK. 2845 * For ECN, it should probably be like SACK. But the 2846 * current value is binary, so we treat it like the other 2847 * cases. The metric only controls active open.For passive 2848 * open, the ndd param, tcp_ecn_permitted, controls the 2849 * behavior. 2850 */ 2851 if (!tcp_detached) { 2852 /* 2853 * The if check means that the following can only 2854 * be turned on by the metrics only IRE, but not off. 2855 */ 2856 if (ire_uinfo->iulp_tstamp_ok) 2857 tcp->tcp_snd_ts_ok = B_TRUE; 2858 if (ire_uinfo->iulp_wscale_ok) 2859 tcp->tcp_snd_ws_ok = B_TRUE; 2860 if (ire_uinfo->iulp_sack == 2) 2861 tcp->tcp_snd_sack_ok = B_TRUE; 2862 if (ire_uinfo->iulp_ecn_ok) 2863 tcp->tcp_ecn_ok = B_TRUE; 2864 } else { 2865 /* 2866 * Passive open. 2867 * 2868 * As above, the if check means that SACK can only be 2869 * turned on by the metric only IRE. 2870 */ 2871 if (ire_uinfo->iulp_sack > 0) { 2872 tcp->tcp_snd_sack_ok = B_TRUE; 2873 } 2874 } 2875 } 2876 2877 2878 /* 2879 * XXX: Note that currently, ire_max_frag can be as small as 68 2880 * because of PMTUd. So tcp_mss may go to negative if combined 2881 * length of all those options exceeds 28 bytes. But because 2882 * of the tcp_mss_min check below, we may not have a problem if 2883 * tcp_mss_min is of a reasonable value. The default is 1 so 2884 * the negative problem still exists. And the check defeats PMTUd. 2885 * In fact, if PMTUd finds that the MSS should be smaller than 2886 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2887 * value. 2888 * 2889 * We do not deal with that now. All those problems related to 2890 * PMTUd will be fixed later. 2891 */ 2892 ASSERT(ire->ire_max_frag != 0); 2893 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2894 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2895 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2896 mss = MIN(mss, IPV6_MIN_MTU); 2897 } 2898 } 2899 2900 /* Sanity check for MSS value. */ 2901 if (tcp->tcp_ipversion == IPV4_VERSION) 2902 mss_max = tcps->tcps_mss_max_ipv4; 2903 else 2904 mss_max = tcps->tcps_mss_max_ipv6; 2905 2906 if (tcp->tcp_ipversion == IPV6_VERSION && 2907 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2908 /* 2909 * After receiving an ICMPv6 "packet too big" message with a 2910 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2911 * will insert a 8-byte fragment header in every packet; we 2912 * reduce the MSS by that amount here. 2913 */ 2914 mss -= sizeof (ip6_frag_t); 2915 } 2916 2917 if (tcp->tcp_ipsec_overhead == 0) 2918 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2919 2920 mss -= tcp->tcp_ipsec_overhead; 2921 2922 if (mss < tcps->tcps_mss_min) 2923 mss = tcps->tcps_mss_min; 2924 if (mss > mss_max) 2925 mss = mss_max; 2926 2927 /* Note that this is the maximum MSS, excluding all options. */ 2928 tcp->tcp_mss = mss; 2929 2930 /* 2931 * Initialize the ISS here now that we have the full connection ID. 2932 * The RFC 1948 method of initial sequence number generation requires 2933 * knowledge of the full connection ID before setting the ISS. 2934 */ 2935 2936 tcp_iss_init(tcp); 2937 2938 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2939 tcp->tcp_loopback = B_TRUE; 2940 2941 if (tcp->tcp_ipversion == IPV4_VERSION) { 2942 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2943 } else { 2944 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2945 } 2946 2947 if (hsp != NULL) { 2948 /* Only modify if we're going to make them bigger */ 2949 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2950 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2951 if (tcps->tcps_snd_lowat_fraction != 0) 2952 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2953 tcps->tcps_snd_lowat_fraction; 2954 } 2955 2956 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2957 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2958 } 2959 2960 /* Copy timestamp flag only for active open */ 2961 if (!tcp_detached) 2962 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2963 } 2964 2965 if (sire != NULL) 2966 IRE_REFRELE(sire); 2967 2968 /* 2969 * If we got an IRE_CACHE and an ILL, go through their properties; 2970 * otherwise, this is deferred until later when we have an IRE_CACHE. 2971 */ 2972 if (tcp->tcp_loopback || 2973 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2974 /* 2975 * For incoming, see if this tcp may be MDT-capable. For 2976 * outgoing, this process has been taken care of through 2977 * tcp_rput_other. 2978 */ 2979 tcp_ire_ill_check(tcp, ire, ill, incoming); 2980 tcp->tcp_ire_ill_check_done = B_TRUE; 2981 } 2982 2983 mutex_enter(&connp->conn_lock); 2984 /* 2985 * Make sure that conn is not marked incipient 2986 * for incoming connections. A blind 2987 * removal of incipient flag is cheaper than 2988 * check and removal. 2989 */ 2990 connp->conn_state_flags &= ~CONN_INCIPIENT; 2991 2992 /* 2993 * Must not cache forwarding table routes 2994 * or recache an IRE after the conn_t has 2995 * had conn_ire_cache cleared and is flagged 2996 * unusable, (see the CONN_CACHE_IRE() macro). 2997 */ 2998 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2999 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3000 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3001 connp->conn_ire_cache = ire; 3002 IRE_UNTRACE_REF(ire); 3003 rw_exit(&ire->ire_bucket->irb_lock); 3004 mutex_exit(&connp->conn_lock); 3005 return (1); 3006 } 3007 rw_exit(&ire->ire_bucket->irb_lock); 3008 } 3009 mutex_exit(&connp->conn_lock); 3010 3011 if (ire->ire_mp == NULL) 3012 ire_refrele(ire); 3013 return (1); 3014 3015 error: 3016 if (ire->ire_mp == NULL) 3017 ire_refrele(ire); 3018 if (sire != NULL) 3019 ire_refrele(sire); 3020 return (0); 3021 } 3022 3023 static void 3024 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 3025 { 3026 int error; 3027 conn_t *connp = tcp->tcp_connp; 3028 struct sockaddr *sa; 3029 mblk_t *mp1; 3030 struct T_bind_req *tbr; 3031 int backlog; 3032 socklen_t len; 3033 sin_t *sin; 3034 sin6_t *sin6; 3035 3036 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3037 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3038 if (tcp->tcp_debug) { 3039 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3040 "tcp_tpi_bind: bad req, len %u", 3041 (uint_t)(mp->b_wptr - mp->b_rptr)); 3042 } 3043 tcp_err_ack(tcp, mp, TPROTO, 0); 3044 return; 3045 } 3046 /* Make sure the largest address fits */ 3047 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3048 if (mp1 == NULL) { 3049 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3050 return; 3051 } 3052 mp = mp1; 3053 tbr = (struct T_bind_req *)mp->b_rptr; 3054 3055 backlog = tbr->CONIND_number; 3056 len = tbr->ADDR_length; 3057 3058 switch (len) { 3059 case 0: /* request for a generic port */ 3060 tbr->ADDR_offset = sizeof (struct T_bind_req); 3061 if (tcp->tcp_family == AF_INET) { 3062 tbr->ADDR_length = sizeof (sin_t); 3063 sin = (sin_t *)&tbr[1]; 3064 *sin = sin_null; 3065 sin->sin_family = AF_INET; 3066 sa = (struct sockaddr *)sin; 3067 len = sizeof (sin_t); 3068 mp->b_wptr = (uchar_t *)&sin[1]; 3069 } else { 3070 ASSERT(tcp->tcp_family == AF_INET6); 3071 tbr->ADDR_length = sizeof (sin6_t); 3072 sin6 = (sin6_t *)&tbr[1]; 3073 *sin6 = sin6_null; 3074 sin6->sin6_family = AF_INET6; 3075 sa = (struct sockaddr *)sin6; 3076 len = sizeof (sin6_t); 3077 mp->b_wptr = (uchar_t *)&sin6[1]; 3078 } 3079 break; 3080 3081 case sizeof (sin_t): /* Complete IPv4 address */ 3082 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3083 sizeof (sin_t)); 3084 break; 3085 3086 case sizeof (sin6_t): /* Complete IPv6 address */ 3087 sa = (struct sockaddr *)mi_offset_param(mp, 3088 tbr->ADDR_offset, sizeof (sin6_t)); 3089 break; 3090 3091 default: 3092 if (tcp->tcp_debug) { 3093 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3094 "tcp_tpi_bind: bad address length, %d", 3095 tbr->ADDR_length); 3096 } 3097 tcp_err_ack(tcp, mp, TBADADDR, 0); 3098 return; 3099 } 3100 3101 error = tcp_bind_check(connp, sa, len, DB_CRED(mp), 3102 tbr->PRIM_type != O_T_BIND_REQ); 3103 if (error == 0) { 3104 if (tcp->tcp_family == AF_INET) { 3105 sin = (sin_t *)sa; 3106 sin->sin_port = tcp->tcp_lport; 3107 } else { 3108 sin6 = (sin6_t *)sa; 3109 sin6->sin6_port = tcp->tcp_lport; 3110 } 3111 3112 if (backlog > 0) { 3113 error = tcp_do_listen(connp, backlog, DB_CRED(mp)); 3114 } 3115 } 3116 done: 3117 if (error > 0) { 3118 tcp_err_ack(tcp, mp, TSYSERR, error); 3119 } else if (error < 0) { 3120 tcp_err_ack(tcp, mp, -error, 0); 3121 } else { 3122 mp->b_datap->db_type = M_PCPROTO; 3123 tbr->PRIM_type = T_BIND_ACK; 3124 putnext(tcp->tcp_rq, mp); 3125 } 3126 } 3127 3128 /* 3129 * If the "bind_to_req_port_only" parameter is set, if the requested port 3130 * number is available, return it, If not return 0 3131 * 3132 * If "bind_to_req_port_only" parameter is not set and 3133 * If the requested port number is available, return it. If not, return 3134 * the first anonymous port we happen across. If no anonymous ports are 3135 * available, return 0. addr is the requested local address, if any. 3136 * 3137 * In either case, when succeeding update the tcp_t to record the port number 3138 * and insert it in the bind hash table. 3139 * 3140 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3141 * without setting SO_REUSEADDR. This is needed so that they 3142 * can be viewed as two independent transport protocols. 3143 */ 3144 static in_port_t 3145 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3146 int reuseaddr, boolean_t quick_connect, 3147 boolean_t bind_to_req_port_only, boolean_t user_specified) 3148 { 3149 /* number of times we have run around the loop */ 3150 int count = 0; 3151 /* maximum number of times to run around the loop */ 3152 int loopmax; 3153 conn_t *connp = tcp->tcp_connp; 3154 zoneid_t zoneid = connp->conn_zoneid; 3155 tcp_stack_t *tcps = tcp->tcp_tcps; 3156 3157 /* 3158 * Lookup for free addresses is done in a loop and "loopmax" 3159 * influences how long we spin in the loop 3160 */ 3161 if (bind_to_req_port_only) { 3162 /* 3163 * If the requested port is busy, don't bother to look 3164 * for a new one. Setting loop maximum count to 1 has 3165 * that effect. 3166 */ 3167 loopmax = 1; 3168 } else { 3169 /* 3170 * If the requested port is busy, look for a free one 3171 * in the anonymous port range. 3172 * Set loopmax appropriately so that one does not look 3173 * forever in the case all of the anonymous ports are in use. 3174 */ 3175 if (tcp->tcp_anon_priv_bind) { 3176 /* 3177 * loopmax = 3178 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3179 */ 3180 loopmax = IPPORT_RESERVED - 3181 tcps->tcps_min_anonpriv_port; 3182 } else { 3183 loopmax = (tcps->tcps_largest_anon_port - 3184 tcps->tcps_smallest_anon_port + 1); 3185 } 3186 } 3187 do { 3188 uint16_t lport; 3189 tf_t *tbf; 3190 tcp_t *ltcp; 3191 conn_t *lconnp; 3192 3193 lport = htons(port); 3194 3195 /* 3196 * Ensure that the tcp_t is not currently in the bind hash. 3197 * Hold the lock on the hash bucket to ensure that 3198 * the duplicate check plus the insertion is an atomic 3199 * operation. 3200 * 3201 * This function does an inline lookup on the bind hash list 3202 * Make sure that we access only members of tcp_t 3203 * and that we don't look at tcp_tcp, since we are not 3204 * doing a CONN_INC_REF. 3205 */ 3206 tcp_bind_hash_remove(tcp); 3207 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3208 mutex_enter(&tbf->tf_lock); 3209 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3210 ltcp = ltcp->tcp_bind_hash) { 3211 if (lport == ltcp->tcp_lport) 3212 break; 3213 } 3214 3215 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3216 boolean_t not_socket; 3217 boolean_t exclbind; 3218 3219 lconnp = ltcp->tcp_connp; 3220 3221 /* 3222 * On a labeled system, we must treat bindings to ports 3223 * on shared IP addresses by sockets with MAC exemption 3224 * privilege as being in all zones, as there's 3225 * otherwise no way to identify the right receiver. 3226 */ 3227 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3228 IPCL_ZONE_MATCH(connp, 3229 ltcp->tcp_connp->conn_zoneid)) && 3230 !lconnp->conn_mac_exempt && 3231 !connp->conn_mac_exempt) 3232 continue; 3233 3234 /* 3235 * If TCP_EXCLBIND is set for either the bound or 3236 * binding endpoint, the semantics of bind 3237 * is changed according to the following. 3238 * 3239 * spec = specified address (v4 or v6) 3240 * unspec = unspecified address (v4 or v6) 3241 * A = specified addresses are different for endpoints 3242 * 3243 * bound bind to allowed 3244 * ------------------------------------- 3245 * unspec unspec no 3246 * unspec spec no 3247 * spec unspec no 3248 * spec spec yes if A 3249 * 3250 * For labeled systems, SO_MAC_EXEMPT behaves the same 3251 * as TCP_EXCLBIND, except that zoneid is ignored. 3252 * 3253 * Note: 3254 * 3255 * 1. Because of TLI semantics, an endpoint can go 3256 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3257 * TCPS_BOUND, depending on whether it is originally 3258 * a listener or not. That is why we need to check 3259 * for states greater than or equal to TCPS_BOUND 3260 * here. 3261 * 3262 * 2. Ideally, we should only check for state equals 3263 * to TCPS_LISTEN. And the following check should be 3264 * added. 3265 * 3266 * if (ltcp->tcp_state == TCPS_LISTEN || 3267 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3268 * ... 3269 * } 3270 * 3271 * The semantics will be changed to this. If the 3272 * endpoint on the list is in state not equal to 3273 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3274 * set, let the bind succeed. 3275 * 3276 * Because of (1), we cannot do that for TLI 3277 * endpoints. But we can do that for socket endpoints. 3278 * If in future, we can change this going back 3279 * semantics, we can use the above check for TLI also. 3280 */ 3281 not_socket = !(TCP_IS_SOCKET(ltcp) && 3282 TCP_IS_SOCKET(tcp)); 3283 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3284 3285 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3286 (exclbind && (not_socket || 3287 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3288 if (V6_OR_V4_INADDR_ANY( 3289 ltcp->tcp_bound_source_v6) || 3290 V6_OR_V4_INADDR_ANY(*laddr) || 3291 IN6_ARE_ADDR_EQUAL(laddr, 3292 <cp->tcp_bound_source_v6)) { 3293 break; 3294 } 3295 continue; 3296 } 3297 3298 /* 3299 * Check ipversion to allow IPv4 and IPv6 sockets to 3300 * have disjoint port number spaces, if *_EXCLBIND 3301 * is not set and only if the application binds to a 3302 * specific port. We use the same autoassigned port 3303 * number space for IPv4 and IPv6 sockets. 3304 */ 3305 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3306 bind_to_req_port_only) 3307 continue; 3308 3309 /* 3310 * Ideally, we should make sure that the source 3311 * address, remote address, and remote port in the 3312 * four tuple for this tcp-connection is unique. 3313 * However, trying to find out the local source 3314 * address would require too much code duplication 3315 * with IP, since IP needs needs to have that code 3316 * to support userland TCP implementations. 3317 */ 3318 if (quick_connect && 3319 (ltcp->tcp_state > TCPS_LISTEN) && 3320 ((tcp->tcp_fport != ltcp->tcp_fport) || 3321 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3322 <cp->tcp_remote_v6))) 3323 continue; 3324 3325 if (!reuseaddr) { 3326 /* 3327 * No socket option SO_REUSEADDR. 3328 * If existing port is bound to 3329 * a non-wildcard IP address 3330 * and the requesting stream is 3331 * bound to a distinct 3332 * different IP addresses 3333 * (non-wildcard, also), keep 3334 * going. 3335 */ 3336 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3337 !V6_OR_V4_INADDR_ANY( 3338 ltcp->tcp_bound_source_v6) && 3339 !IN6_ARE_ADDR_EQUAL(laddr, 3340 <cp->tcp_bound_source_v6)) 3341 continue; 3342 if (ltcp->tcp_state >= TCPS_BOUND) { 3343 /* 3344 * This port is being used and 3345 * its state is >= TCPS_BOUND, 3346 * so we can't bind to it. 3347 */ 3348 break; 3349 } 3350 } else { 3351 /* 3352 * socket option SO_REUSEADDR is set on the 3353 * binding tcp_t. 3354 * 3355 * If two streams are bound to 3356 * same IP address or both addr 3357 * and bound source are wildcards 3358 * (INADDR_ANY), we want to stop 3359 * searching. 3360 * We have found a match of IP source 3361 * address and source port, which is 3362 * refused regardless of the 3363 * SO_REUSEADDR setting, so we break. 3364 */ 3365 if (IN6_ARE_ADDR_EQUAL(laddr, 3366 <cp->tcp_bound_source_v6) && 3367 (ltcp->tcp_state == TCPS_LISTEN || 3368 ltcp->tcp_state == TCPS_BOUND)) 3369 break; 3370 } 3371 } 3372 if (ltcp != NULL) { 3373 /* The port number is busy */ 3374 mutex_exit(&tbf->tf_lock); 3375 } else { 3376 /* 3377 * This port is ours. Insert in fanout and mark as 3378 * bound to prevent others from getting the port 3379 * number. 3380 */ 3381 tcp->tcp_state = TCPS_BOUND; 3382 tcp->tcp_lport = htons(port); 3383 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3384 3385 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3386 tcp->tcp_lport)] == tbf); 3387 tcp_bind_hash_insert(tbf, tcp, 1); 3388 3389 mutex_exit(&tbf->tf_lock); 3390 3391 /* 3392 * We don't want tcp_next_port_to_try to "inherit" 3393 * a port number supplied by the user in a bind. 3394 */ 3395 if (user_specified) 3396 return (port); 3397 3398 /* 3399 * This is the only place where tcp_next_port_to_try 3400 * is updated. After the update, it may or may not 3401 * be in the valid range. 3402 */ 3403 if (!tcp->tcp_anon_priv_bind) 3404 tcps->tcps_next_port_to_try = port + 1; 3405 return (port); 3406 } 3407 3408 if (tcp->tcp_anon_priv_bind) { 3409 port = tcp_get_next_priv_port(tcp); 3410 } else { 3411 if (count == 0 && user_specified) { 3412 /* 3413 * We may have to return an anonymous port. So 3414 * get one to start with. 3415 */ 3416 port = 3417 tcp_update_next_port( 3418 tcps->tcps_next_port_to_try, 3419 tcp, B_TRUE); 3420 user_specified = B_FALSE; 3421 } else { 3422 port = tcp_update_next_port(port + 1, tcp, 3423 B_FALSE); 3424 } 3425 } 3426 if (port == 0) 3427 break; 3428 3429 /* 3430 * Don't let this loop run forever in the case where 3431 * all of the anonymous ports are in use. 3432 */ 3433 } while (++count < loopmax); 3434 return (0); 3435 } 3436 3437 /* 3438 * tcp_clean_death / tcp_close_detached must not be called more than once 3439 * on a tcp. Thus every function that potentially calls tcp_clean_death 3440 * must check for the tcp state before calling tcp_clean_death. 3441 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3442 * tcp_timer_handler, all check for the tcp state. 3443 */ 3444 /* ARGSUSED */ 3445 void 3446 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3447 { 3448 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3449 3450 freemsg(mp); 3451 if (tcp->tcp_state > TCPS_BOUND) 3452 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3453 ETIMEDOUT, 5); 3454 } 3455 3456 /* 3457 * We are dying for some reason. Try to do it gracefully. (May be called 3458 * as writer.) 3459 * 3460 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3461 * done by a service procedure). 3462 * TBD - Should the return value distinguish between the tcp_t being 3463 * freed and it being reinitialized? 3464 */ 3465 static int 3466 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3467 { 3468 mblk_t *mp; 3469 queue_t *q; 3470 conn_t *connp = tcp->tcp_connp; 3471 tcp_stack_t *tcps = tcp->tcp_tcps; 3472 sodirect_t *sodp; 3473 3474 TCP_CLD_STAT(tag); 3475 3476 #if TCP_TAG_CLEAN_DEATH 3477 tcp->tcp_cleandeathtag = tag; 3478 #endif 3479 3480 if (tcp->tcp_fused) 3481 tcp_unfuse(tcp); 3482 3483 if (tcp->tcp_linger_tid != 0 && 3484 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3485 tcp_stop_lingering(tcp); 3486 } 3487 3488 ASSERT(tcp != NULL); 3489 ASSERT((tcp->tcp_family == AF_INET && 3490 tcp->tcp_ipversion == IPV4_VERSION) || 3491 (tcp->tcp_family == AF_INET6 && 3492 (tcp->tcp_ipversion == IPV4_VERSION || 3493 tcp->tcp_ipversion == IPV6_VERSION))); 3494 3495 if (TCP_IS_DETACHED(tcp)) { 3496 if (tcp->tcp_hard_binding) { 3497 /* 3498 * Its an eager that we are dealing with. We close the 3499 * eager but in case a conn_ind has already gone to the 3500 * listener, let tcp_accept_finish() send a discon_ind 3501 * to the listener and drop the last reference. If the 3502 * listener doesn't even know about the eager i.e. the 3503 * conn_ind hasn't gone up, blow away the eager and drop 3504 * the last reference as well. If the conn_ind has gone 3505 * up, state should be BOUND. tcp_accept_finish 3506 * will figure out that the connection has received a 3507 * RST and will send a DISCON_IND to the application. 3508 */ 3509 tcp_closei_local(tcp); 3510 if (!tcp->tcp_tconnind_started) { 3511 CONN_DEC_REF(connp); 3512 } else { 3513 tcp->tcp_state = TCPS_BOUND; 3514 } 3515 } else { 3516 tcp_close_detached(tcp); 3517 } 3518 return (0); 3519 } 3520 3521 TCP_STAT(tcps, tcp_clean_death_nondetached); 3522 3523 /* If sodirect, not anymore */ 3524 SOD_PTR_ENTER(tcp, sodp); 3525 if (sodp != NULL) { 3526 tcp->tcp_sodirect = NULL; 3527 mutex_exit(sodp->sod_lockp); 3528 } 3529 3530 q = tcp->tcp_rq; 3531 3532 /* Trash all inbound data */ 3533 if (!IPCL_IS_NONSTR(connp)) { 3534 ASSERT(q != NULL); 3535 flushq(q, FLUSHALL); 3536 } 3537 3538 /* 3539 * If we are at least part way open and there is error 3540 * (err==0 implies no error) 3541 * notify our client by a T_DISCON_IND. 3542 */ 3543 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3544 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3545 !TCP_IS_SOCKET(tcp)) { 3546 /* 3547 * Send M_FLUSH according to TPI. Because sockets will 3548 * (and must) ignore FLUSHR we do that only for TPI 3549 * endpoints and sockets in STREAMS mode. 3550 */ 3551 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3552 } 3553 if (tcp->tcp_debug) { 3554 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3555 "tcp_clean_death: discon err %d", err); 3556 } 3557 if (IPCL_IS_NONSTR(connp)) { 3558 /* Direct socket, use upcall */ 3559 (*connp->conn_upcalls->su_disconnected)( 3560 connp->conn_upper_handle, tcp->tcp_connid, err); 3561 } else { 3562 mp = mi_tpi_discon_ind(NULL, err, 0); 3563 if (mp != NULL) { 3564 putnext(q, mp); 3565 } else { 3566 if (tcp->tcp_debug) { 3567 (void) strlog(TCP_MOD_ID, 0, 1, 3568 SL_ERROR|SL_TRACE, 3569 "tcp_clean_death, sending M_ERROR"); 3570 } 3571 (void) putnextctl1(q, M_ERROR, EPROTO); 3572 } 3573 } 3574 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3575 /* SYN_SENT or SYN_RCVD */ 3576 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3577 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3578 /* ESTABLISHED or CLOSE_WAIT */ 3579 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3580 } 3581 } 3582 3583 tcp_reinit(tcp); 3584 if (IPCL_IS_NONSTR(connp)) 3585 (void) tcp_do_unbind(connp); 3586 3587 return (-1); 3588 } 3589 3590 /* 3591 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3592 * to expire, stop the wait and finish the close. 3593 */ 3594 static void 3595 tcp_stop_lingering(tcp_t *tcp) 3596 { 3597 clock_t delta = 0; 3598 tcp_stack_t *tcps = tcp->tcp_tcps; 3599 3600 tcp->tcp_linger_tid = 0; 3601 if (tcp->tcp_state > TCPS_LISTEN) { 3602 tcp_acceptor_hash_remove(tcp); 3603 mutex_enter(&tcp->tcp_non_sq_lock); 3604 if (tcp->tcp_flow_stopped) { 3605 tcp_clrqfull(tcp); 3606 } 3607 mutex_exit(&tcp->tcp_non_sq_lock); 3608 3609 if (tcp->tcp_timer_tid != 0) { 3610 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3611 tcp->tcp_timer_tid = 0; 3612 } 3613 /* 3614 * Need to cancel those timers which will not be used when 3615 * TCP is detached. This has to be done before the tcp_wq 3616 * is set to the global queue. 3617 */ 3618 tcp_timers_stop(tcp); 3619 3620 tcp->tcp_detached = B_TRUE; 3621 ASSERT(tcps->tcps_g_q != NULL); 3622 tcp->tcp_rq = tcps->tcps_g_q; 3623 tcp->tcp_wq = WR(tcps->tcps_g_q); 3624 3625 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3626 tcp_time_wait_append(tcp); 3627 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3628 goto finish; 3629 } 3630 3631 /* 3632 * If delta is zero the timer event wasn't executed and was 3633 * successfully canceled. In this case we need to restart it 3634 * with the minimal delta possible. 3635 */ 3636 if (delta >= 0) { 3637 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3638 delta ? delta : 1); 3639 } 3640 } else { 3641 tcp_closei_local(tcp); 3642 CONN_DEC_REF(tcp->tcp_connp); 3643 } 3644 finish: 3645 /* Signal closing thread that it can complete close */ 3646 mutex_enter(&tcp->tcp_closelock); 3647 tcp->tcp_detached = B_TRUE; 3648 ASSERT(tcps->tcps_g_q != NULL); 3649 3650 tcp->tcp_rq = tcps->tcps_g_q; 3651 tcp->tcp_wq = WR(tcps->tcps_g_q); 3652 3653 tcp->tcp_closed = 1; 3654 cv_signal(&tcp->tcp_closecv); 3655 mutex_exit(&tcp->tcp_closelock); 3656 } 3657 3658 /* 3659 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3660 * expires. 3661 */ 3662 static void 3663 tcp_close_linger_timeout(void *arg) 3664 { 3665 conn_t *connp = (conn_t *)arg; 3666 tcp_t *tcp = connp->conn_tcp; 3667 3668 tcp->tcp_client_errno = ETIMEDOUT; 3669 tcp_stop_lingering(tcp); 3670 } 3671 3672 static void 3673 tcp_close_common(conn_t *connp, int flags) 3674 { 3675 tcp_t *tcp = connp->conn_tcp; 3676 mblk_t *mp = &tcp->tcp_closemp; 3677 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3678 mblk_t *bp; 3679 3680 ASSERT(connp->conn_ref >= 2); 3681 3682 /* 3683 * Mark the conn as closing. ill_pending_mp_add will not 3684 * add any mp to the pending mp list, after this conn has 3685 * started closing. Same for sq_pending_mp_add 3686 */ 3687 mutex_enter(&connp->conn_lock); 3688 connp->conn_state_flags |= CONN_CLOSING; 3689 if (connp->conn_oper_pending_ill != NULL) 3690 conn_ioctl_cleanup_reqd = B_TRUE; 3691 CONN_INC_REF_LOCKED(connp); 3692 mutex_exit(&connp->conn_lock); 3693 tcp->tcp_closeflags = (uint8_t)flags; 3694 ASSERT(connp->conn_ref >= 3); 3695 3696 /* 3697 * tcp_closemp_used is used below without any protection of a lock 3698 * as we don't expect any one else to use it concurrently at this 3699 * point otherwise it would be a major defect. 3700 */ 3701 3702 if (mp->b_prev == NULL) 3703 tcp->tcp_closemp_used = B_TRUE; 3704 else 3705 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3706 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3707 3708 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3709 3710 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3711 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3712 3713 mutex_enter(&tcp->tcp_closelock); 3714 while (!tcp->tcp_closed) { 3715 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3716 /* 3717 * The cv_wait_sig() was interrupted. We now do the 3718 * following: 3719 * 3720 * 1) If the endpoint was lingering, we allow this 3721 * to be interrupted by cancelling the linger timeout 3722 * and closing normally. 3723 * 3724 * 2) Revert to calling cv_wait() 3725 * 3726 * We revert to using cv_wait() to avoid an 3727 * infinite loop which can occur if the calling 3728 * thread is higher priority than the squeue worker 3729 * thread and is bound to the same cpu. 3730 */ 3731 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3732 mutex_exit(&tcp->tcp_closelock); 3733 /* Entering squeue, bump ref count. */ 3734 CONN_INC_REF(connp); 3735 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3736 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3737 tcp_linger_interrupted, connp, 3738 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3739 mutex_enter(&tcp->tcp_closelock); 3740 } 3741 break; 3742 } 3743 } 3744 while (!tcp->tcp_closed) 3745 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3746 mutex_exit(&tcp->tcp_closelock); 3747 3748 /* 3749 * In the case of listener streams that have eagers in the q or q0 3750 * we wait for the eagers to drop their reference to us. tcp_rq and 3751 * tcp_wq of the eagers point to our queues. By waiting for the 3752 * refcnt to drop to 1, we are sure that the eagers have cleaned 3753 * up their queue pointers and also dropped their references to us. 3754 */ 3755 if (tcp->tcp_wait_for_eagers) { 3756 mutex_enter(&connp->conn_lock); 3757 while (connp->conn_ref != 1) { 3758 cv_wait(&connp->conn_cv, &connp->conn_lock); 3759 } 3760 mutex_exit(&connp->conn_lock); 3761 } 3762 /* 3763 * ioctl cleanup. The mp is queued in the 3764 * ill_pending_mp or in the sq_pending_mp. 3765 */ 3766 if (conn_ioctl_cleanup_reqd) 3767 conn_ioctl_cleanup(connp); 3768 3769 tcp->tcp_cpid = -1; 3770 } 3771 3772 static int 3773 tcp_tpi_close(queue_t *q, int flags) 3774 { 3775 conn_t *connp; 3776 3777 ASSERT(WR(q)->q_next == NULL); 3778 3779 if (flags & SO_FALLBACK) { 3780 /* 3781 * stream is being closed while in fallback 3782 * simply free the resources that were allocated 3783 */ 3784 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3785 qprocsoff(q); 3786 goto done; 3787 } 3788 3789 connp = Q_TO_CONN(q); 3790 /* 3791 * We are being closed as /dev/tcp or /dev/tcp6. 3792 */ 3793 tcp_close_common(connp, flags); 3794 3795 qprocsoff(q); 3796 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3797 3798 /* 3799 * Drop IP's reference on the conn. This is the last reference 3800 * on the connp if the state was less than established. If the 3801 * connection has gone into timewait state, then we will have 3802 * one ref for the TCP and one more ref (total of two) for the 3803 * classifier connected hash list (a timewait connections stays 3804 * in connected hash till closed). 3805 * 3806 * We can't assert the references because there might be other 3807 * transient reference places because of some walkers or queued 3808 * packets in squeue for the timewait state. 3809 */ 3810 CONN_DEC_REF(connp); 3811 done: 3812 q->q_ptr = WR(q)->q_ptr = NULL; 3813 return (0); 3814 } 3815 3816 static int 3817 tcpclose_accept(queue_t *q) 3818 { 3819 vmem_t *minor_arena; 3820 dev_t conn_dev; 3821 3822 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3823 3824 /* 3825 * We had opened an acceptor STREAM for sockfs which is 3826 * now being closed due to some error. 3827 */ 3828 qprocsoff(q); 3829 3830 minor_arena = (vmem_t *)WR(q)->q_ptr; 3831 conn_dev = (dev_t)RD(q)->q_ptr; 3832 ASSERT(minor_arena != NULL); 3833 ASSERT(conn_dev != 0); 3834 inet_minor_free(minor_arena, conn_dev); 3835 q->q_ptr = WR(q)->q_ptr = NULL; 3836 return (0); 3837 } 3838 3839 /* 3840 * Called by tcp_close() routine via squeue when lingering is 3841 * interrupted by a signal. 3842 */ 3843 3844 /* ARGSUSED */ 3845 static void 3846 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3847 { 3848 conn_t *connp = (conn_t *)arg; 3849 tcp_t *tcp = connp->conn_tcp; 3850 3851 freeb(mp); 3852 if (tcp->tcp_linger_tid != 0 && 3853 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3854 tcp_stop_lingering(tcp); 3855 tcp->tcp_client_errno = EINTR; 3856 } 3857 } 3858 3859 /* 3860 * Called by streams close routine via squeues when our client blows off her 3861 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3862 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3863 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3864 * acked. 3865 * 3866 * NOTE: tcp_close potentially returns error when lingering. 3867 * However, the stream head currently does not pass these errors 3868 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3869 * errors to the application (from tsleep()) and not errors 3870 * like ECONNRESET caused by receiving a reset packet. 3871 */ 3872 3873 /* ARGSUSED */ 3874 static void 3875 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3876 { 3877 char *msg; 3878 conn_t *connp = (conn_t *)arg; 3879 tcp_t *tcp = connp->conn_tcp; 3880 clock_t delta = 0; 3881 tcp_stack_t *tcps = tcp->tcp_tcps; 3882 3883 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3884 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3885 3886 mutex_enter(&tcp->tcp_eager_lock); 3887 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3888 /* Cleanup for listener */ 3889 tcp_eager_cleanup(tcp, 0); 3890 tcp->tcp_wait_for_eagers = 1; 3891 } 3892 mutex_exit(&tcp->tcp_eager_lock); 3893 3894 connp->conn_mdt_ok = B_FALSE; 3895 tcp->tcp_mdt = B_FALSE; 3896 3897 connp->conn_lso_ok = B_FALSE; 3898 tcp->tcp_lso = B_FALSE; 3899 3900 msg = NULL; 3901 switch (tcp->tcp_state) { 3902 case TCPS_CLOSED: 3903 case TCPS_IDLE: 3904 case TCPS_BOUND: 3905 case TCPS_LISTEN: 3906 break; 3907 case TCPS_SYN_SENT: 3908 msg = "tcp_close, during connect"; 3909 break; 3910 case TCPS_SYN_RCVD: 3911 /* 3912 * Close during the connect 3-way handshake 3913 * but here there may or may not be pending data 3914 * already on queue. Process almost same as in 3915 * the ESTABLISHED state. 3916 */ 3917 /* FALLTHRU */ 3918 default: 3919 if (tcp->tcp_sodirect != NULL) { 3920 /* Ok, no more sodirect */ 3921 tcp->tcp_sodirect = NULL; 3922 } 3923 3924 if (tcp->tcp_fused) 3925 tcp_unfuse(tcp); 3926 3927 /* 3928 * If SO_LINGER has set a zero linger time, abort the 3929 * connection with a reset. 3930 */ 3931 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3932 msg = "tcp_close, zero lingertime"; 3933 break; 3934 } 3935 3936 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3937 /* 3938 * Abort connection if there is unread data queued. 3939 */ 3940 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3941 msg = "tcp_close, unread data"; 3942 break; 3943 } 3944 /* 3945 * tcp_hard_bound is now cleared thus all packets go through 3946 * tcp_lookup. This fact is used by tcp_detach below. 3947 * 3948 * We have done a qwait() above which could have possibly 3949 * drained more messages in turn causing transition to a 3950 * different state. Check whether we have to do the rest 3951 * of the processing or not. 3952 */ 3953 if (tcp->tcp_state <= TCPS_LISTEN) 3954 break; 3955 3956 /* 3957 * Transmit the FIN before detaching the tcp_t. 3958 * After tcp_detach returns this queue/perimeter 3959 * no longer owns the tcp_t thus others can modify it. 3960 */ 3961 (void) tcp_xmit_end(tcp); 3962 3963 /* 3964 * If lingering on close then wait until the fin is acked, 3965 * the SO_LINGER time passes, or a reset is sent/received. 3966 */ 3967 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3968 !(tcp->tcp_fin_acked) && 3969 tcp->tcp_state >= TCPS_ESTABLISHED) { 3970 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3971 tcp->tcp_client_errno = EWOULDBLOCK; 3972 } else if (tcp->tcp_client_errno == 0) { 3973 3974 ASSERT(tcp->tcp_linger_tid == 0); 3975 3976 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3977 tcp_close_linger_timeout, 3978 tcp->tcp_lingertime * hz); 3979 3980 /* tcp_close_linger_timeout will finish close */ 3981 if (tcp->tcp_linger_tid == 0) 3982 tcp->tcp_client_errno = ENOSR; 3983 else 3984 return; 3985 } 3986 3987 /* 3988 * Check if we need to detach or just close 3989 * the instance. 3990 */ 3991 if (tcp->tcp_state <= TCPS_LISTEN) 3992 break; 3993 } 3994 3995 /* 3996 * Make sure that no other thread will access the tcp_rq of 3997 * this instance (through lookups etc.) as tcp_rq will go 3998 * away shortly. 3999 */ 4000 tcp_acceptor_hash_remove(tcp); 4001 4002 mutex_enter(&tcp->tcp_non_sq_lock); 4003 if (tcp->tcp_flow_stopped) { 4004 tcp_clrqfull(tcp); 4005 } 4006 mutex_exit(&tcp->tcp_non_sq_lock); 4007 4008 if (tcp->tcp_timer_tid != 0) { 4009 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4010 tcp->tcp_timer_tid = 0; 4011 } 4012 /* 4013 * Need to cancel those timers which will not be used when 4014 * TCP is detached. This has to be done before the tcp_wq 4015 * is set to the global queue. 4016 */ 4017 tcp_timers_stop(tcp); 4018 4019 tcp->tcp_detached = B_TRUE; 4020 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4021 tcp_time_wait_append(tcp); 4022 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4023 ASSERT(connp->conn_ref >= 3); 4024 goto finish; 4025 } 4026 4027 /* 4028 * If delta is zero the timer event wasn't executed and was 4029 * successfully canceled. In this case we need to restart it 4030 * with the minimal delta possible. 4031 */ 4032 if (delta >= 0) 4033 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4034 delta ? delta : 1); 4035 4036 ASSERT(connp->conn_ref >= 3); 4037 goto finish; 4038 } 4039 4040 /* Detach did not complete. Still need to remove q from stream. */ 4041 if (msg) { 4042 if (tcp->tcp_state == TCPS_ESTABLISHED || 4043 tcp->tcp_state == TCPS_CLOSE_WAIT) 4044 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4045 if (tcp->tcp_state == TCPS_SYN_SENT || 4046 tcp->tcp_state == TCPS_SYN_RCVD) 4047 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4048 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4049 } 4050 4051 tcp_closei_local(tcp); 4052 CONN_DEC_REF(connp); 4053 ASSERT(connp->conn_ref >= 2); 4054 4055 finish: 4056 /* 4057 * Although packets are always processed on the correct 4058 * tcp's perimeter and access is serialized via squeue's, 4059 * IP still needs a queue when sending packets in time_wait 4060 * state so use WR(tcps_g_q) till ip_output() can be 4061 * changed to deal with just connp. For read side, we 4062 * could have set tcp_rq to NULL but there are some cases 4063 * in tcp_rput_data() from early days of this code which 4064 * do a putnext without checking if tcp is closed. Those 4065 * need to be identified before both tcp_rq and tcp_wq 4066 * can be set to NULL and tcps_g_q can disappear forever. 4067 */ 4068 mutex_enter(&tcp->tcp_closelock); 4069 /* 4070 * Don't change the queues in the case of a listener that has 4071 * eagers in its q or q0. It could surprise the eagers. 4072 * Instead wait for the eagers outside the squeue. 4073 */ 4074 if (!tcp->tcp_wait_for_eagers) { 4075 tcp->tcp_detached = B_TRUE; 4076 /* 4077 * When default queue is closing we set tcps_g_q to NULL 4078 * after the close is done. 4079 */ 4080 ASSERT(tcps->tcps_g_q != NULL); 4081 tcp->tcp_rq = tcps->tcps_g_q; 4082 tcp->tcp_wq = WR(tcps->tcps_g_q); 4083 } 4084 4085 /* Signal tcp_close() to finish closing. */ 4086 tcp->tcp_closed = 1; 4087 cv_signal(&tcp->tcp_closecv); 4088 mutex_exit(&tcp->tcp_closelock); 4089 } 4090 4091 4092 /* 4093 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4094 * Some stream heads get upset if they see these later on as anything but NULL. 4095 */ 4096 static void 4097 tcp_close_mpp(mblk_t **mpp) 4098 { 4099 mblk_t *mp; 4100 4101 if ((mp = *mpp) != NULL) { 4102 do { 4103 mp->b_next = NULL; 4104 mp->b_prev = NULL; 4105 } while ((mp = mp->b_cont) != NULL); 4106 4107 mp = *mpp; 4108 *mpp = NULL; 4109 freemsg(mp); 4110 } 4111 } 4112 4113 /* Do detached close. */ 4114 static void 4115 tcp_close_detached(tcp_t *tcp) 4116 { 4117 if (tcp->tcp_fused) 4118 tcp_unfuse(tcp); 4119 4120 /* 4121 * Clustering code serializes TCP disconnect callbacks and 4122 * cluster tcp list walks by blocking a TCP disconnect callback 4123 * if a cluster tcp list walk is in progress. This ensures 4124 * accurate accounting of TCPs in the cluster code even though 4125 * the TCP list walk itself is not atomic. 4126 */ 4127 tcp_closei_local(tcp); 4128 CONN_DEC_REF(tcp->tcp_connp); 4129 } 4130 4131 /* 4132 * Stop all TCP timers, and free the timer mblks if requested. 4133 */ 4134 void 4135 tcp_timers_stop(tcp_t *tcp) 4136 { 4137 if (tcp->tcp_timer_tid != 0) { 4138 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4139 tcp->tcp_timer_tid = 0; 4140 } 4141 if (tcp->tcp_ka_tid != 0) { 4142 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4143 tcp->tcp_ka_tid = 0; 4144 } 4145 if (tcp->tcp_ack_tid != 0) { 4146 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4147 tcp->tcp_ack_tid = 0; 4148 } 4149 if (tcp->tcp_push_tid != 0) { 4150 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4151 tcp->tcp_push_tid = 0; 4152 } 4153 } 4154 4155 /* 4156 * The tcp_t is going away. Remove it from all lists and set it 4157 * to TCPS_CLOSED. The freeing up of memory is deferred until 4158 * tcp_inactive. This is needed since a thread in tcp_rput might have 4159 * done a CONN_INC_REF on this structure before it was removed from the 4160 * hashes. 4161 */ 4162 static void 4163 tcp_closei_local(tcp_t *tcp) 4164 { 4165 ire_t *ire; 4166 conn_t *connp = tcp->tcp_connp; 4167 tcp_stack_t *tcps = tcp->tcp_tcps; 4168 4169 if (!TCP_IS_SOCKET(tcp)) 4170 tcp_acceptor_hash_remove(tcp); 4171 4172 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4173 tcp->tcp_ibsegs = 0; 4174 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4175 tcp->tcp_obsegs = 0; 4176 4177 /* 4178 * If we are an eager connection hanging off a listener that 4179 * hasn't formally accepted the connection yet, get off his 4180 * list and blow off any data that we have accumulated. 4181 */ 4182 if (tcp->tcp_listener != NULL) { 4183 tcp_t *listener = tcp->tcp_listener; 4184 mutex_enter(&listener->tcp_eager_lock); 4185 /* 4186 * tcp_tconnind_started == B_TRUE means that the 4187 * conn_ind has already gone to listener. At 4188 * this point, eager will be closed but we 4189 * leave it in listeners eager list so that 4190 * if listener decides to close without doing 4191 * accept, we can clean this up. In tcp_wput_accept 4192 * we take care of the case of accept on closed 4193 * eager. 4194 */ 4195 if (!tcp->tcp_tconnind_started) { 4196 tcp_eager_unlink(tcp); 4197 mutex_exit(&listener->tcp_eager_lock); 4198 /* 4199 * We don't want to have any pointers to the 4200 * listener queue, after we have released our 4201 * reference on the listener 4202 */ 4203 ASSERT(tcps->tcps_g_q != NULL); 4204 tcp->tcp_rq = tcps->tcps_g_q; 4205 tcp->tcp_wq = WR(tcps->tcps_g_q); 4206 CONN_DEC_REF(listener->tcp_connp); 4207 } else { 4208 mutex_exit(&listener->tcp_eager_lock); 4209 } 4210 } 4211 4212 /* Stop all the timers */ 4213 tcp_timers_stop(tcp); 4214 4215 if (tcp->tcp_state == TCPS_LISTEN) { 4216 if (tcp->tcp_ip_addr_cache) { 4217 kmem_free((void *)tcp->tcp_ip_addr_cache, 4218 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4219 tcp->tcp_ip_addr_cache = NULL; 4220 } 4221 } 4222 mutex_enter(&tcp->tcp_non_sq_lock); 4223 if (tcp->tcp_flow_stopped) 4224 tcp_clrqfull(tcp); 4225 mutex_exit(&tcp->tcp_non_sq_lock); 4226 4227 tcp_bind_hash_remove(tcp); 4228 /* 4229 * If the tcp_time_wait_collector (which runs outside the squeue) 4230 * is trying to remove this tcp from the time wait list, we will 4231 * block in tcp_time_wait_remove while trying to acquire the 4232 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4233 * requires the ipcl_hash_remove to be ordered after the 4234 * tcp_time_wait_remove for the refcnt checks to work correctly. 4235 */ 4236 if (tcp->tcp_state == TCPS_TIME_WAIT) 4237 (void) tcp_time_wait_remove(tcp, NULL); 4238 CL_INET_DISCONNECT(tcp); 4239 ipcl_hash_remove(connp); 4240 4241 /* 4242 * Delete the cached ire in conn_ire_cache and also mark 4243 * the conn as CONDEMNED 4244 */ 4245 mutex_enter(&connp->conn_lock); 4246 connp->conn_state_flags |= CONN_CONDEMNED; 4247 ire = connp->conn_ire_cache; 4248 connp->conn_ire_cache = NULL; 4249 mutex_exit(&connp->conn_lock); 4250 if (ire != NULL) 4251 IRE_REFRELE_NOTR(ire); 4252 4253 /* Need to cleanup any pending ioctls */ 4254 ASSERT(tcp->tcp_time_wait_next == NULL); 4255 ASSERT(tcp->tcp_time_wait_prev == NULL); 4256 ASSERT(tcp->tcp_time_wait_expire == 0); 4257 tcp->tcp_state = TCPS_CLOSED; 4258 4259 /* Release any SSL context */ 4260 if (tcp->tcp_kssl_ent != NULL) { 4261 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4262 tcp->tcp_kssl_ent = NULL; 4263 } 4264 if (tcp->tcp_kssl_ctx != NULL) { 4265 kssl_release_ctx(tcp->tcp_kssl_ctx); 4266 tcp->tcp_kssl_ctx = NULL; 4267 } 4268 tcp->tcp_kssl_pending = B_FALSE; 4269 4270 tcp_ipsec_cleanup(tcp); 4271 } 4272 4273 /* 4274 * tcp is dying (called from ipcl_conn_destroy and error cases). 4275 * Free the tcp_t in either case. 4276 */ 4277 void 4278 tcp_free(tcp_t *tcp) 4279 { 4280 mblk_t *mp; 4281 ip6_pkt_t *ipp; 4282 4283 ASSERT(tcp != NULL); 4284 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4285 4286 tcp->tcp_rq = NULL; 4287 tcp->tcp_wq = NULL; 4288 4289 tcp_close_mpp(&tcp->tcp_xmit_head); 4290 tcp_close_mpp(&tcp->tcp_reass_head); 4291 if (tcp->tcp_rcv_list != NULL) { 4292 /* Free b_next chain */ 4293 tcp_close_mpp(&tcp->tcp_rcv_list); 4294 } 4295 if ((mp = tcp->tcp_urp_mp) != NULL) { 4296 freemsg(mp); 4297 } 4298 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4299 freemsg(mp); 4300 } 4301 4302 if (tcp->tcp_fused_sigurg_mp != NULL) { 4303 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4304 freeb(tcp->tcp_fused_sigurg_mp); 4305 tcp->tcp_fused_sigurg_mp = NULL; 4306 } 4307 4308 if (tcp->tcp_ordrel_mp != NULL) { 4309 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4310 freeb(tcp->tcp_ordrel_mp); 4311 tcp->tcp_ordrel_mp = NULL; 4312 } 4313 4314 if (tcp->tcp_ordrel_mp != NULL) { 4315 freeb(tcp->tcp_ordrel_mp); 4316 tcp->tcp_ordrel_mp = NULL; 4317 } 4318 4319 if (tcp->tcp_sack_info != NULL) { 4320 if (tcp->tcp_notsack_list != NULL) { 4321 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4322 } 4323 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4324 } 4325 4326 if (tcp->tcp_hopopts != NULL) { 4327 mi_free(tcp->tcp_hopopts); 4328 tcp->tcp_hopopts = NULL; 4329 tcp->tcp_hopoptslen = 0; 4330 } 4331 ASSERT(tcp->tcp_hopoptslen == 0); 4332 if (tcp->tcp_dstopts != NULL) { 4333 mi_free(tcp->tcp_dstopts); 4334 tcp->tcp_dstopts = NULL; 4335 tcp->tcp_dstoptslen = 0; 4336 } 4337 ASSERT(tcp->tcp_dstoptslen == 0); 4338 if (tcp->tcp_rtdstopts != NULL) { 4339 mi_free(tcp->tcp_rtdstopts); 4340 tcp->tcp_rtdstopts = NULL; 4341 tcp->tcp_rtdstoptslen = 0; 4342 } 4343 ASSERT(tcp->tcp_rtdstoptslen == 0); 4344 if (tcp->tcp_rthdr != NULL) { 4345 mi_free(tcp->tcp_rthdr); 4346 tcp->tcp_rthdr = NULL; 4347 tcp->tcp_rthdrlen = 0; 4348 } 4349 ASSERT(tcp->tcp_rthdrlen == 0); 4350 4351 ipp = &tcp->tcp_sticky_ipp; 4352 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4353 IPPF_RTHDR)) 4354 ip6_pkt_free(ipp); 4355 4356 /* 4357 * Free memory associated with the tcp/ip header template. 4358 */ 4359 4360 if (tcp->tcp_iphc != NULL) 4361 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4362 4363 /* 4364 * Following is really a blowing away a union. 4365 * It happens to have exactly two members of identical size 4366 * the following code is enough. 4367 */ 4368 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4369 } 4370 4371 4372 /* 4373 * Put a connection confirmation message upstream built from the 4374 * address information within 'iph' and 'tcph'. Report our success or failure. 4375 */ 4376 static boolean_t 4377 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4378 mblk_t **defermp) 4379 { 4380 sin_t sin; 4381 sin6_t sin6; 4382 mblk_t *mp; 4383 char *optp = NULL; 4384 int optlen = 0; 4385 cred_t *cr; 4386 4387 if (defermp != NULL) 4388 *defermp = NULL; 4389 4390 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4391 /* 4392 * Return in T_CONN_CON results of option negotiation through 4393 * the T_CONN_REQ. Note: If there is an real end-to-end option 4394 * negotiation, then what is received from remote end needs 4395 * to be taken into account but there is no such thing (yet?) 4396 * in our TCP/IP. 4397 * Note: We do not use mi_offset_param() here as 4398 * tcp_opts_conn_req contents do not directly come from 4399 * an application and are either generated in kernel or 4400 * from user input that was already verified. 4401 */ 4402 mp = tcp->tcp_conn.tcp_opts_conn_req; 4403 optp = (char *)(mp->b_rptr + 4404 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4405 optlen = (int) 4406 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4407 } 4408 4409 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4410 ipha_t *ipha = (ipha_t *)iphdr; 4411 4412 /* packet is IPv4 */ 4413 if (tcp->tcp_family == AF_INET) { 4414 sin = sin_null; 4415 sin.sin_addr.s_addr = ipha->ipha_src; 4416 sin.sin_port = *(uint16_t *)tcph->th_lport; 4417 sin.sin_family = AF_INET; 4418 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4419 (int)sizeof (sin_t), optp, optlen); 4420 } else { 4421 sin6 = sin6_null; 4422 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4423 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4424 sin6.sin6_family = AF_INET6; 4425 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4426 (int)sizeof (sin6_t), optp, optlen); 4427 4428 } 4429 } else { 4430 ip6_t *ip6h = (ip6_t *)iphdr; 4431 4432 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4433 ASSERT(tcp->tcp_family == AF_INET6); 4434 sin6 = sin6_null; 4435 sin6.sin6_addr = ip6h->ip6_src; 4436 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4437 sin6.sin6_family = AF_INET6; 4438 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4439 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4440 (int)sizeof (sin6_t), optp, optlen); 4441 } 4442 4443 if (!mp) 4444 return (B_FALSE); 4445 4446 if ((cr = DB_CRED(idmp)) != NULL) { 4447 mblk_setcred(mp, cr); 4448 DB_CPID(mp) = DB_CPID(idmp); 4449 } 4450 4451 if (defermp == NULL) { 4452 conn_t *connp = tcp->tcp_connp; 4453 if (IPCL_IS_NONSTR(connp)) { 4454 (*connp->conn_upcalls->su_connected) 4455 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4456 DB_CPID(mp)); 4457 freemsg(mp); 4458 } else { 4459 putnext(tcp->tcp_rq, mp); 4460 } 4461 } else { 4462 *defermp = mp; 4463 } 4464 4465 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4466 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4467 return (B_TRUE); 4468 } 4469 4470 /* 4471 * Defense for the SYN attack - 4472 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4473 * one from the list of droppable eagers. This list is a subset of q0. 4474 * see comments before the definition of MAKE_DROPPABLE(). 4475 * 2. Don't drop a SYN request before its first timeout. This gives every 4476 * request at least til the first timeout to complete its 3-way handshake. 4477 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4478 * requests currently on the queue that has timed out. This will be used 4479 * as an indicator of whether an attack is under way, so that appropriate 4480 * actions can be taken. (It's incremented in tcp_timer() and decremented 4481 * either when eager goes into ESTABLISHED, or gets freed up.) 4482 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4483 * # of timeout drops back to <= q0len/32 => SYN alert off 4484 */ 4485 static boolean_t 4486 tcp_drop_q0(tcp_t *tcp) 4487 { 4488 tcp_t *eager; 4489 mblk_t *mp; 4490 tcp_stack_t *tcps = tcp->tcp_tcps; 4491 4492 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4493 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4494 4495 /* Pick oldest eager from the list of droppable eagers */ 4496 eager = tcp->tcp_eager_prev_drop_q0; 4497 4498 /* If list is empty. return B_FALSE */ 4499 if (eager == tcp) { 4500 return (B_FALSE); 4501 } 4502 4503 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4504 if ((mp = allocb(0, BPRI_HI)) == NULL) 4505 return (B_FALSE); 4506 4507 /* 4508 * Take this eager out from the list of droppable eagers since we are 4509 * going to drop it. 4510 */ 4511 MAKE_UNDROPPABLE(eager); 4512 4513 if (tcp->tcp_debug) { 4514 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4515 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4516 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4517 tcp->tcp_conn_req_cnt_q0, 4518 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4519 } 4520 4521 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4522 4523 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4524 CONN_INC_REF(eager->tcp_connp); 4525 4526 /* Mark the IRE created for this SYN request temporary */ 4527 tcp_ip_ire_mark_advice(eager); 4528 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4529 tcp_clean_death_wrapper, eager->tcp_connp, 4530 SQ_FILL, SQTAG_TCP_DROP_Q0); 4531 4532 return (B_TRUE); 4533 } 4534 4535 int 4536 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4537 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4538 { 4539 tcp_t *ltcp = lconnp->conn_tcp; 4540 tcp_t *tcp = connp->conn_tcp; 4541 mblk_t *tpi_mp; 4542 ipha_t *ipha; 4543 ip6_t *ip6h; 4544 sin6_t sin6; 4545 in6_addr_t v6dst; 4546 int err; 4547 int ifindex = 0; 4548 cred_t *cr; 4549 tcp_stack_t *tcps = tcp->tcp_tcps; 4550 4551 if (ipvers == IPV4_VERSION) { 4552 ipha = (ipha_t *)mp->b_rptr; 4553 4554 connp->conn_send = ip_output; 4555 connp->conn_recv = tcp_input; 4556 4557 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4558 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4559 4560 sin6 = sin6_null; 4561 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4562 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4563 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4564 sin6.sin6_family = AF_INET6; 4565 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4566 lconnp->conn_zoneid, tcps->tcps_netstack); 4567 if (tcp->tcp_recvdstaddr) { 4568 sin6_t sin6d; 4569 4570 sin6d = sin6_null; 4571 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4572 &sin6d.sin6_addr); 4573 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4574 sin6d.sin6_family = AF_INET; 4575 tpi_mp = mi_tpi_extconn_ind(NULL, 4576 (char *)&sin6d, sizeof (sin6_t), 4577 (char *)&tcp, 4578 (t_scalar_t)sizeof (intptr_t), 4579 (char *)&sin6d, sizeof (sin6_t), 4580 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4581 } else { 4582 tpi_mp = mi_tpi_conn_ind(NULL, 4583 (char *)&sin6, sizeof (sin6_t), 4584 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4585 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4586 } 4587 } else { 4588 ip6h = (ip6_t *)mp->b_rptr; 4589 4590 connp->conn_send = ip_output_v6; 4591 connp->conn_recv = tcp_input; 4592 4593 connp->conn_srcv6 = ip6h->ip6_dst; 4594 connp->conn_remv6 = ip6h->ip6_src; 4595 4596 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4597 ifindex = (int)DB_CKSUMSTUFF(mp); 4598 DB_CKSUMSTUFF(mp) = 0; 4599 4600 sin6 = sin6_null; 4601 sin6.sin6_addr = ip6h->ip6_src; 4602 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4603 sin6.sin6_family = AF_INET6; 4604 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4605 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4606 lconnp->conn_zoneid, tcps->tcps_netstack); 4607 4608 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4609 /* Pass up the scope_id of remote addr */ 4610 sin6.sin6_scope_id = ifindex; 4611 } else { 4612 sin6.sin6_scope_id = 0; 4613 } 4614 if (tcp->tcp_recvdstaddr) { 4615 sin6_t sin6d; 4616 4617 sin6d = sin6_null; 4618 sin6.sin6_addr = ip6h->ip6_dst; 4619 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4620 sin6d.sin6_family = AF_INET; 4621 tpi_mp = mi_tpi_extconn_ind(NULL, 4622 (char *)&sin6d, sizeof (sin6_t), 4623 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4624 (char *)&sin6d, sizeof (sin6_t), 4625 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4626 } else { 4627 tpi_mp = mi_tpi_conn_ind(NULL, 4628 (char *)&sin6, sizeof (sin6_t), 4629 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4630 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4631 } 4632 } 4633 4634 if (tpi_mp == NULL) 4635 return (ENOMEM); 4636 4637 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4638 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4639 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4640 connp->conn_fully_bound = B_FALSE; 4641 4642 /* Inherit information from the "parent" */ 4643 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4644 tcp->tcp_family = ltcp->tcp_family; 4645 4646 tcp->tcp_wq = ltcp->tcp_wq; 4647 tcp->tcp_rq = ltcp->tcp_rq; 4648 4649 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4650 tcp->tcp_detached = B_TRUE; 4651 SOCK_CONNID_INIT(tcp->tcp_connid); 4652 if ((err = tcp_init_values(tcp)) != 0) { 4653 freemsg(tpi_mp); 4654 return (err); 4655 } 4656 4657 if (ipvers == IPV4_VERSION) { 4658 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4659 freemsg(tpi_mp); 4660 return (err); 4661 } 4662 ASSERT(tcp->tcp_ipha != NULL); 4663 } else { 4664 /* ifindex must be already set */ 4665 ASSERT(ifindex != 0); 4666 4667 if (ltcp->tcp_bound_if != 0) { 4668 /* 4669 * Set newtcp's bound_if equal to 4670 * listener's value. If ifindex is 4671 * not the same as ltcp->tcp_bound_if, 4672 * it must be a packet for the ipmp group 4673 * of interfaces 4674 */ 4675 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4676 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4677 tcp->tcp_bound_if = ifindex; 4678 } 4679 4680 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4681 tcp->tcp_recvifindex = 0; 4682 tcp->tcp_recvhops = 0xffffffffU; 4683 ASSERT(tcp->tcp_ip6h != NULL); 4684 } 4685 4686 tcp->tcp_lport = ltcp->tcp_lport; 4687 4688 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4689 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4690 /* 4691 * Listener had options of some sort; eager inherits. 4692 * Free up the eager template and allocate one 4693 * of the right size. 4694 */ 4695 if (tcp->tcp_hdr_grown) { 4696 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4697 } else { 4698 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4699 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4700 } 4701 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4702 KM_NOSLEEP); 4703 if (tcp->tcp_iphc == NULL) { 4704 tcp->tcp_iphc_len = 0; 4705 freemsg(tpi_mp); 4706 return (ENOMEM); 4707 } 4708 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4709 tcp->tcp_hdr_grown = B_TRUE; 4710 } 4711 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4712 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4713 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4714 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4715 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4716 4717 /* 4718 * Copy the IP+TCP header template from listener to eager 4719 */ 4720 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4721 if (tcp->tcp_ipversion == IPV6_VERSION) { 4722 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4723 IPPROTO_RAW) { 4724 tcp->tcp_ip6h = 4725 (ip6_t *)(tcp->tcp_iphc + 4726 sizeof (ip6i_t)); 4727 } else { 4728 tcp->tcp_ip6h = 4729 (ip6_t *)(tcp->tcp_iphc); 4730 } 4731 tcp->tcp_ipha = NULL; 4732 } else { 4733 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4734 tcp->tcp_ip6h = NULL; 4735 } 4736 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4737 tcp->tcp_ip_hdr_len); 4738 } else { 4739 /* 4740 * only valid case when ipversion of listener and 4741 * eager differ is when listener is IPv6 and 4742 * eager is IPv4. 4743 * Eager header template has been initialized to the 4744 * maximum v4 header sizes, which includes space for 4745 * TCP and IP options. 4746 */ 4747 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4748 (tcp->tcp_ipversion == IPV4_VERSION)); 4749 ASSERT(tcp->tcp_iphc_len >= 4750 TCP_MAX_COMBINED_HEADER_LENGTH); 4751 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4752 /* copy IP header fields individually */ 4753 tcp->tcp_ipha->ipha_ttl = 4754 ltcp->tcp_ip6h->ip6_hops; 4755 bcopy(ltcp->tcp_tcph->th_lport, 4756 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4757 } 4758 4759 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4760 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4761 sizeof (in_port_t)); 4762 4763 if (ltcp->tcp_lport == 0) { 4764 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4765 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4766 sizeof (in_port_t)); 4767 } 4768 4769 if (tcp->tcp_ipversion == IPV4_VERSION) { 4770 ASSERT(ipha != NULL); 4771 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4772 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4773 4774 /* Source routing option copyover (reverse it) */ 4775 if (tcps->tcps_rev_src_routes) 4776 tcp_opt_reverse(tcp, ipha); 4777 } else { 4778 ASSERT(ip6h != NULL); 4779 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4780 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4781 } 4782 4783 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4784 ASSERT(!tcp->tcp_tconnind_started); 4785 /* 4786 * If the SYN contains a credential, it's a loopback packet; attach 4787 * the credential to the TPI message. 4788 */ 4789 if ((cr = DB_CRED(idmp)) != NULL) { 4790 mblk_setcred(tpi_mp, cr); 4791 DB_CPID(tpi_mp) = DB_CPID(idmp); 4792 } 4793 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4794 4795 /* Inherit the listener's SSL protection state */ 4796 4797 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4798 kssl_hold_ent(tcp->tcp_kssl_ent); 4799 tcp->tcp_kssl_pending = B_TRUE; 4800 } 4801 4802 /* Inherit the listener's non-STREAMS flag */ 4803 if (IPCL_IS_NONSTR(lconnp)) { 4804 connp->conn_flags |= IPCL_NONSTR; 4805 connp->conn_upcalls = lconnp->conn_upcalls; 4806 } 4807 4808 return (0); 4809 } 4810 4811 4812 int 4813 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4814 tcph_t *tcph, mblk_t *idmp) 4815 { 4816 tcp_t *ltcp = lconnp->conn_tcp; 4817 tcp_t *tcp = connp->conn_tcp; 4818 sin_t sin; 4819 mblk_t *tpi_mp = NULL; 4820 int err; 4821 cred_t *cr; 4822 tcp_stack_t *tcps = tcp->tcp_tcps; 4823 4824 sin = sin_null; 4825 sin.sin_addr.s_addr = ipha->ipha_src; 4826 sin.sin_port = *(uint16_t *)tcph->th_lport; 4827 sin.sin_family = AF_INET; 4828 if (ltcp->tcp_recvdstaddr) { 4829 sin_t sind; 4830 4831 sind = sin_null; 4832 sind.sin_addr.s_addr = ipha->ipha_dst; 4833 sind.sin_port = *(uint16_t *)tcph->th_fport; 4834 sind.sin_family = AF_INET; 4835 tpi_mp = mi_tpi_extconn_ind(NULL, 4836 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4837 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4838 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4839 } else { 4840 tpi_mp = mi_tpi_conn_ind(NULL, 4841 (char *)&sin, sizeof (sin_t), 4842 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4843 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4844 } 4845 4846 if (tpi_mp == NULL) { 4847 return (ENOMEM); 4848 } 4849 4850 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4851 connp->conn_send = ip_output; 4852 connp->conn_recv = tcp_input; 4853 connp->conn_fully_bound = B_FALSE; 4854 4855 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4856 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4857 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4858 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4859 4860 /* Inherit information from the "parent" */ 4861 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4862 tcp->tcp_family = ltcp->tcp_family; 4863 tcp->tcp_wq = ltcp->tcp_wq; 4864 tcp->tcp_rq = ltcp->tcp_rq; 4865 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4866 tcp->tcp_detached = B_TRUE; 4867 SOCK_CONNID_INIT(tcp->tcp_connid); 4868 if ((err = tcp_init_values(tcp)) != 0) { 4869 freemsg(tpi_mp); 4870 return (err); 4871 } 4872 4873 /* 4874 * Let's make sure that eager tcp template has enough space to 4875 * copy IPv4 listener's tcp template. Since the conn_t structure is 4876 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4877 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4878 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4879 * extension headers or with ip6i_t struct). Note that bcopy() below 4880 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4881 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4882 */ 4883 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4884 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4885 4886 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4887 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4888 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4889 tcp->tcp_ttl = ltcp->tcp_ttl; 4890 tcp->tcp_tos = ltcp->tcp_tos; 4891 4892 /* Copy the IP+TCP header template from listener to eager */ 4893 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4894 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4895 tcp->tcp_ip6h = NULL; 4896 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4897 tcp->tcp_ip_hdr_len); 4898 4899 /* Initialize the IP addresses and Ports */ 4900 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4901 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4902 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4903 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4904 4905 /* Source routing option copyover (reverse it) */ 4906 if (tcps->tcps_rev_src_routes) 4907 tcp_opt_reverse(tcp, ipha); 4908 4909 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4910 ASSERT(!tcp->tcp_tconnind_started); 4911 4912 /* 4913 * If the SYN contains a credential, it's a loopback packet; attach 4914 * the credential to the TPI message. 4915 */ 4916 if ((cr = DB_CRED(idmp)) != NULL) { 4917 mblk_setcred(tpi_mp, cr); 4918 DB_CPID(tpi_mp) = DB_CPID(idmp); 4919 } 4920 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4921 4922 /* Inherit the listener's SSL protection state */ 4923 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4924 kssl_hold_ent(tcp->tcp_kssl_ent); 4925 tcp->tcp_kssl_pending = B_TRUE; 4926 } 4927 4928 /* Inherit the listener's non-STREAMS flag */ 4929 if (IPCL_IS_NONSTR(lconnp)) { 4930 connp->conn_flags |= IPCL_NONSTR; 4931 connp->conn_upcalls = lconnp->conn_upcalls; 4932 } 4933 4934 return (0); 4935 } 4936 4937 /* 4938 * sets up conn for ipsec. 4939 * if the first mblk is M_CTL it is consumed and mpp is updated. 4940 * in case of error mpp is freed. 4941 */ 4942 conn_t * 4943 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4944 { 4945 conn_t *connp = tcp->tcp_connp; 4946 conn_t *econnp; 4947 squeue_t *new_sqp; 4948 mblk_t *first_mp = *mpp; 4949 mblk_t *mp = *mpp; 4950 boolean_t mctl_present = B_FALSE; 4951 uint_t ipvers; 4952 4953 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4954 if (econnp == NULL) { 4955 freemsg(first_mp); 4956 return (NULL); 4957 } 4958 if (DB_TYPE(mp) == M_CTL) { 4959 if (mp->b_cont == NULL || 4960 mp->b_cont->b_datap->db_type != M_DATA) { 4961 freemsg(first_mp); 4962 return (NULL); 4963 } 4964 mp = mp->b_cont; 4965 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4966 freemsg(first_mp); 4967 return (NULL); 4968 } 4969 4970 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4971 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4972 mctl_present = B_TRUE; 4973 } else { 4974 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4975 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4976 } 4977 4978 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4979 DB_CKSUMSTART(mp) = 0; 4980 4981 ASSERT(OK_32PTR(mp->b_rptr)); 4982 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4983 if (ipvers == IPV4_VERSION) { 4984 uint16_t *up; 4985 uint32_t ports; 4986 ipha_t *ipha; 4987 4988 ipha = (ipha_t *)mp->b_rptr; 4989 up = (uint16_t *)((uchar_t *)ipha + 4990 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4991 ports = *(uint32_t *)up; 4992 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4993 ipha->ipha_dst, ipha->ipha_src, ports); 4994 } else { 4995 uint16_t *up; 4996 uint32_t ports; 4997 uint16_t ip_hdr_len; 4998 uint8_t *nexthdrp; 4999 ip6_t *ip6h; 5000 tcph_t *tcph; 5001 5002 ip6h = (ip6_t *)mp->b_rptr; 5003 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5004 ip_hdr_len = IPV6_HDR_LEN; 5005 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5006 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5007 CONN_DEC_REF(econnp); 5008 freemsg(first_mp); 5009 return (NULL); 5010 } 5011 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5012 up = (uint16_t *)tcph->th_lport; 5013 ports = *(uint32_t *)up; 5014 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5015 ip6h->ip6_dst, ip6h->ip6_src, ports); 5016 } 5017 5018 /* 5019 * The caller already ensured that there is a sqp present. 5020 */ 5021 econnp->conn_sqp = new_sqp; 5022 econnp->conn_initial_sqp = new_sqp; 5023 5024 if (connp->conn_policy != NULL) { 5025 ipsec_in_t *ii; 5026 ii = (ipsec_in_t *)(first_mp->b_rptr); 5027 ASSERT(ii->ipsec_in_policy == NULL); 5028 IPPH_REFHOLD(connp->conn_policy); 5029 ii->ipsec_in_policy = connp->conn_policy; 5030 5031 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5032 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5033 CONN_DEC_REF(econnp); 5034 freemsg(first_mp); 5035 return (NULL); 5036 } 5037 } 5038 5039 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5040 CONN_DEC_REF(econnp); 5041 freemsg(first_mp); 5042 return (NULL); 5043 } 5044 5045 /* 5046 * If we know we have some policy, pass the "IPSEC" 5047 * options size TCP uses this adjust the MSS. 5048 */ 5049 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5050 if (mctl_present) { 5051 freeb(first_mp); 5052 *mpp = mp; 5053 } 5054 5055 return (econnp); 5056 } 5057 5058 /* 5059 * tcp_get_conn/tcp_free_conn 5060 * 5061 * tcp_get_conn is used to get a clean tcp connection structure. 5062 * It tries to reuse the connections put on the freelist by the 5063 * time_wait_collector failing which it goes to kmem_cache. This 5064 * way has two benefits compared to just allocating from and 5065 * freeing to kmem_cache. 5066 * 1) The time_wait_collector can free (which includes the cleanup) 5067 * outside the squeue. So when the interrupt comes, we have a clean 5068 * connection sitting in the freelist. Obviously, this buys us 5069 * performance. 5070 * 5071 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5072 * has multiple disadvantages - tying up the squeue during alloc, and the 5073 * fact that IPSec policy initialization has to happen here which 5074 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5075 * But allocating the conn/tcp in IP land is also not the best since 5076 * we can't check the 'q' and 'q0' which are protected by squeue and 5077 * blindly allocate memory which might have to be freed here if we are 5078 * not allowed to accept the connection. By using the freelist and 5079 * putting the conn/tcp back in freelist, we don't pay a penalty for 5080 * allocating memory without checking 'q/q0' and freeing it if we can't 5081 * accept the connection. 5082 * 5083 * Care should be taken to put the conn back in the same squeue's freelist 5084 * from which it was allocated. Best results are obtained if conn is 5085 * allocated from listener's squeue and freed to the same. Time wait 5086 * collector will free up the freelist is the connection ends up sitting 5087 * there for too long. 5088 */ 5089 void * 5090 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5091 { 5092 tcp_t *tcp = NULL; 5093 conn_t *connp = NULL; 5094 squeue_t *sqp = (squeue_t *)arg; 5095 tcp_squeue_priv_t *tcp_time_wait; 5096 netstack_t *ns; 5097 5098 tcp_time_wait = 5099 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5100 5101 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5102 tcp = tcp_time_wait->tcp_free_list; 5103 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5104 if (tcp != NULL) { 5105 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5106 tcp_time_wait->tcp_free_list_cnt--; 5107 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5108 tcp->tcp_time_wait_next = NULL; 5109 connp = tcp->tcp_connp; 5110 connp->conn_flags |= IPCL_REUSED; 5111 5112 ASSERT(tcp->tcp_tcps == NULL); 5113 ASSERT(connp->conn_netstack == NULL); 5114 ASSERT(tcp->tcp_rsrv_mp != NULL); 5115 ns = tcps->tcps_netstack; 5116 netstack_hold(ns); 5117 connp->conn_netstack = ns; 5118 tcp->tcp_tcps = tcps; 5119 TCPS_REFHOLD(tcps); 5120 ipcl_globalhash_insert(connp); 5121 return ((void *)connp); 5122 } 5123 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5124 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5125 tcps->tcps_netstack)) == NULL) 5126 return (NULL); 5127 tcp = connp->conn_tcp; 5128 /* 5129 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed 5130 * until this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5131 */ 5132 if ((tcp->tcp_rsrv_mp = allocb(0, BPRI_HI)) == NULL) { 5133 ipcl_conn_destroy(connp); 5134 return (NULL); 5135 } 5136 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5137 tcp->tcp_tcps = tcps; 5138 TCPS_REFHOLD(tcps); 5139 5140 return ((void *)connp); 5141 } 5142 5143 /* 5144 * Update the cached label for the given tcp_t. This should be called once per 5145 * connection, and before any packets are sent or tcp_process_options is 5146 * invoked. Returns B_FALSE if the correct label could not be constructed. 5147 */ 5148 static boolean_t 5149 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5150 { 5151 conn_t *connp = tcp->tcp_connp; 5152 5153 if (tcp->tcp_ipversion == IPV4_VERSION) { 5154 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5155 int added; 5156 5157 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5158 connp->conn_mac_exempt, 5159 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5160 return (B_FALSE); 5161 5162 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5163 if (added == -1) 5164 return (B_FALSE); 5165 tcp->tcp_hdr_len += added; 5166 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5167 tcp->tcp_ip_hdr_len += added; 5168 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5169 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5170 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5171 tcp->tcp_hdr_len); 5172 if (added == -1) 5173 return (B_FALSE); 5174 tcp->tcp_hdr_len += added; 5175 tcp->tcp_tcph = (tcph_t *) 5176 ((uchar_t *)tcp->tcp_tcph + added); 5177 tcp->tcp_ip_hdr_len += added; 5178 } 5179 } else { 5180 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5181 5182 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5183 connp->conn_mac_exempt, 5184 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5185 return (B_FALSE); 5186 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5187 &tcp->tcp_label_len, optbuf) != 0) 5188 return (B_FALSE); 5189 if (tcp_build_hdrs(tcp) != 0) 5190 return (B_FALSE); 5191 } 5192 5193 connp->conn_ulp_labeled = 1; 5194 5195 return (B_TRUE); 5196 } 5197 5198 /* BEGIN CSTYLED */ 5199 /* 5200 * 5201 * The sockfs ACCEPT path: 5202 * ======================= 5203 * 5204 * The eager is now established in its own perimeter as soon as SYN is 5205 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5206 * completes the accept processing on the acceptor STREAM. The sending 5207 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5208 * listener but a TLI/XTI listener completes the accept processing 5209 * on the listener perimeter. 5210 * 5211 * Common control flow for 3 way handshake: 5212 * ---------------------------------------- 5213 * 5214 * incoming SYN (listener perimeter) -> tcp_rput_data() 5215 * -> tcp_conn_request() 5216 * 5217 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5218 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5219 * 5220 * Sockfs ACCEPT Path: 5221 * ------------------- 5222 * 5223 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5224 * as STREAM entry point) 5225 * 5226 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5227 * 5228 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5229 * association (we are not behind eager's squeue but sockfs is protecting us 5230 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5231 * is changed to point at tcp_wput(). 5232 * 5233 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5234 * listener (done on listener's perimeter). 5235 * 5236 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5237 * accept. 5238 * 5239 * TLI/XTI client ACCEPT path: 5240 * --------------------------- 5241 * 5242 * soaccept() sends T_CONN_RES on the listener STREAM. 5243 * 5244 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5245 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5246 * 5247 * Locks: 5248 * ====== 5249 * 5250 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5251 * and listeners->tcp_eager_next_q. 5252 * 5253 * Referencing: 5254 * ============ 5255 * 5256 * 1) We start out in tcp_conn_request by eager placing a ref on 5257 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5258 * 5259 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5260 * doing so we place a ref on the eager. This ref is finally dropped at the 5261 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5262 * reference is dropped by the squeue framework. 5263 * 5264 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5265 * 5266 * The reference must be released by the same entity that added the reference 5267 * In the above scheme, the eager is the entity that adds and releases the 5268 * references. Note that tcp_accept_finish executes in the squeue of the eager 5269 * (albeit after it is attached to the acceptor stream). Though 1. executes 5270 * in the listener's squeue, the eager is nascent at this point and the 5271 * reference can be considered to have been added on behalf of the eager. 5272 * 5273 * Eager getting a Reset or listener closing: 5274 * ========================================== 5275 * 5276 * Once the listener and eager are linked, the listener never does the unlink. 5277 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5278 * a message on all eager perimeter. The eager then does the unlink, clears 5279 * any pointers to the listener's queue and drops the reference to the 5280 * listener. The listener waits in tcp_close outside the squeue until its 5281 * refcount has dropped to 1. This ensures that the listener has waited for 5282 * all eagers to clear their association with the listener. 5283 * 5284 * Similarly, if eager decides to go away, it can unlink itself and close. 5285 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5286 * the reference to eager is still valid because of the extra ref we put 5287 * in tcp_send_conn_ind. 5288 * 5289 * Listener can always locate the eager under the protection 5290 * of the listener->tcp_eager_lock, and then do a refhold 5291 * on the eager during the accept processing. 5292 * 5293 * The acceptor stream accesses the eager in the accept processing 5294 * based on the ref placed on eager before sending T_conn_ind. 5295 * The only entity that can negate this refhold is a listener close 5296 * which is mutually exclusive with an active acceptor stream. 5297 * 5298 * Eager's reference on the listener 5299 * =================================== 5300 * 5301 * If the accept happens (even on a closed eager) the eager drops its 5302 * reference on the listener at the start of tcp_accept_finish. If the 5303 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5304 * the reference is dropped in tcp_closei_local. If the listener closes, 5305 * the reference is dropped in tcp_eager_kill. In all cases the reference 5306 * is dropped while executing in the eager's context (squeue). 5307 */ 5308 /* END CSTYLED */ 5309 5310 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5311 5312 /* 5313 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5314 * tcp_rput_data will not see any SYN packets. 5315 */ 5316 /* ARGSUSED */ 5317 void 5318 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5319 { 5320 tcph_t *tcph; 5321 uint32_t seg_seq; 5322 tcp_t *eager; 5323 uint_t ipvers; 5324 ipha_t *ipha; 5325 ip6_t *ip6h; 5326 int err; 5327 conn_t *econnp = NULL; 5328 squeue_t *new_sqp; 5329 mblk_t *mp1; 5330 uint_t ip_hdr_len; 5331 conn_t *connp = (conn_t *)arg; 5332 tcp_t *tcp = connp->conn_tcp; 5333 cred_t *credp; 5334 tcp_stack_t *tcps = tcp->tcp_tcps; 5335 ip_stack_t *ipst; 5336 5337 if (tcp->tcp_state != TCPS_LISTEN) 5338 goto error2; 5339 5340 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5341 5342 mutex_enter(&tcp->tcp_eager_lock); 5343 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5344 mutex_exit(&tcp->tcp_eager_lock); 5345 TCP_STAT(tcps, tcp_listendrop); 5346 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5347 if (tcp->tcp_debug) { 5348 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5349 "tcp_conn_request: listen backlog (max=%d) " 5350 "overflow (%d pending) on %s", 5351 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5352 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5353 } 5354 goto error2; 5355 } 5356 5357 if (tcp->tcp_conn_req_cnt_q0 >= 5358 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5359 /* 5360 * Q0 is full. Drop a pending half-open req from the queue 5361 * to make room for the new SYN req. Also mark the time we 5362 * drop a SYN. 5363 * 5364 * A more aggressive defense against SYN attack will 5365 * be to set the "tcp_syn_defense" flag now. 5366 */ 5367 TCP_STAT(tcps, tcp_listendropq0); 5368 tcp->tcp_last_rcv_lbolt = lbolt64; 5369 if (!tcp_drop_q0(tcp)) { 5370 mutex_exit(&tcp->tcp_eager_lock); 5371 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5372 if (tcp->tcp_debug) { 5373 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5374 "tcp_conn_request: listen half-open queue " 5375 "(max=%d) full (%d pending) on %s", 5376 tcps->tcps_conn_req_max_q0, 5377 tcp->tcp_conn_req_cnt_q0, 5378 tcp_display(tcp, NULL, 5379 DISP_PORT_ONLY)); 5380 } 5381 goto error2; 5382 } 5383 } 5384 mutex_exit(&tcp->tcp_eager_lock); 5385 5386 /* 5387 * IP adds STRUIO_EAGER and ensures that the received packet is 5388 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5389 * link local address. If IPSec is enabled, db_struioflag has 5390 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5391 * otherwise an error case if neither of them is set. 5392 */ 5393 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5394 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5395 DB_CKSUMSTART(mp) = 0; 5396 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5397 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5398 if (econnp == NULL) 5399 goto error2; 5400 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5401 econnp->conn_sqp = new_sqp; 5402 econnp->conn_initial_sqp = new_sqp; 5403 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5404 /* 5405 * mp is updated in tcp_get_ipsec_conn(). 5406 */ 5407 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5408 if (econnp == NULL) { 5409 /* 5410 * mp freed by tcp_get_ipsec_conn. 5411 */ 5412 return; 5413 } 5414 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5415 } else { 5416 goto error2; 5417 } 5418 5419 ASSERT(DB_TYPE(mp) == M_DATA); 5420 5421 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5422 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5423 ASSERT(OK_32PTR(mp->b_rptr)); 5424 if (ipvers == IPV4_VERSION) { 5425 ipha = (ipha_t *)mp->b_rptr; 5426 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5427 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5428 } else { 5429 ip6h = (ip6_t *)mp->b_rptr; 5430 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5431 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5432 } 5433 5434 if (tcp->tcp_family == AF_INET) { 5435 ASSERT(ipvers == IPV4_VERSION); 5436 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5437 } else { 5438 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5439 } 5440 5441 if (err) 5442 goto error3; 5443 5444 eager = econnp->conn_tcp; 5445 5446 /* 5447 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that at close 5448 * time, we will always have that to send up. Otherwise, we need to do 5449 * special handling in case the allocation fails at that time. 5450 */ 5451 ASSERT(eager->tcp_ordrel_mp == NULL); 5452 if (!IPCL_IS_NONSTR(econnp) && 5453 (eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5454 goto error3; 5455 5456 /* Inherit various TCP parameters from the listener */ 5457 eager->tcp_naglim = tcp->tcp_naglim; 5458 eager->tcp_first_timer_threshold = 5459 tcp->tcp_first_timer_threshold; 5460 eager->tcp_second_timer_threshold = 5461 tcp->tcp_second_timer_threshold; 5462 5463 eager->tcp_first_ctimer_threshold = 5464 tcp->tcp_first_ctimer_threshold; 5465 eager->tcp_second_ctimer_threshold = 5466 tcp->tcp_second_ctimer_threshold; 5467 5468 /* 5469 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5470 * If it does not, the eager's receive window will be set to the 5471 * listener's receive window later in this function. 5472 */ 5473 eager->tcp_rwnd = 0; 5474 5475 /* 5476 * Inherit listener's tcp_init_cwnd. Need to do this before 5477 * calling tcp_process_options() where tcp_mss_set() is called 5478 * to set the initial cwnd. 5479 */ 5480 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5481 5482 /* 5483 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5484 * zone id before the accept is completed in tcp_wput_accept(). 5485 */ 5486 econnp->conn_zoneid = connp->conn_zoneid; 5487 econnp->conn_allzones = connp->conn_allzones; 5488 5489 /* Copy nexthop information from listener to eager */ 5490 if (connp->conn_nexthop_set) { 5491 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5492 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5493 } 5494 5495 /* 5496 * TSOL: tsol_input_proc() needs the eager's cred before the 5497 * eager is accepted 5498 */ 5499 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5500 crhold(credp); 5501 5502 /* 5503 * If the caller has the process-wide flag set, then default to MAC 5504 * exempt mode. This allows read-down to unlabeled hosts. 5505 */ 5506 if (getpflags(NET_MAC_AWARE, credp) != 0) 5507 econnp->conn_mac_exempt = B_TRUE; 5508 5509 if (is_system_labeled()) { 5510 cred_t *cr; 5511 5512 if (connp->conn_mlp_type != mlptSingle) { 5513 cr = econnp->conn_peercred = DB_CRED(mp); 5514 if (cr != NULL) 5515 crhold(cr); 5516 else 5517 cr = econnp->conn_cred; 5518 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5519 econnp, cred_t *, cr) 5520 } else { 5521 cr = econnp->conn_cred; 5522 DTRACE_PROBE2(syn_accept, conn_t *, 5523 econnp, cred_t *, cr) 5524 } 5525 5526 if (!tcp_update_label(eager, cr)) { 5527 DTRACE_PROBE3( 5528 tx__ip__log__error__connrequest__tcp, 5529 char *, "eager connp(1) label on SYN mp(2) failed", 5530 conn_t *, econnp, mblk_t *, mp); 5531 goto error3; 5532 } 5533 } 5534 5535 eager->tcp_hard_binding = B_TRUE; 5536 5537 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5538 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5539 5540 CL_INET_CONNECT(eager); 5541 5542 /* 5543 * No need to check for multicast destination since ip will only pass 5544 * up multicasts to those that have expressed interest 5545 * TODO: what about rejecting broadcasts? 5546 * Also check that source is not a multicast or broadcast address. 5547 */ 5548 eager->tcp_state = TCPS_SYN_RCVD; 5549 5550 5551 /* 5552 * There should be no ire in the mp as we are being called after 5553 * receiving the SYN. 5554 */ 5555 ASSERT(tcp_ire_mp(&mp) == NULL); 5556 5557 /* 5558 * Adapt our mss, ttl, ... according to information provided in IRE. 5559 */ 5560 5561 if (tcp_adapt_ire(eager, NULL) == 0) { 5562 /* Undo the bind_hash_insert */ 5563 tcp_bind_hash_remove(eager); 5564 goto error3; 5565 } 5566 5567 /* Process all TCP options. */ 5568 tcp_process_options(eager, tcph); 5569 5570 /* Is the other end ECN capable? */ 5571 if (tcps->tcps_ecn_permitted >= 1 && 5572 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5573 eager->tcp_ecn_ok = B_TRUE; 5574 } 5575 5576 /* 5577 * listener->tcp_rq->q_hiwat should be the default window size or a 5578 * window size changed via SO_RCVBUF option. First round up the 5579 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5580 * scale option value if needed. Call tcp_rwnd_set() to finish the 5581 * setting. 5582 * 5583 * Note if there is a rpipe metric associated with the remote host, 5584 * we should not inherit receive window size from listener. 5585 */ 5586 eager->tcp_rwnd = MSS_ROUNDUP( 5587 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5588 eager->tcp_rwnd), eager->tcp_mss); 5589 if (eager->tcp_snd_ws_ok) 5590 tcp_set_ws_value(eager); 5591 /* 5592 * Note that this is the only place tcp_rwnd_set() is called for 5593 * accepting a connection. We need to call it here instead of 5594 * after the 3-way handshake because we need to tell the other 5595 * side our rwnd in the SYN-ACK segment. 5596 */ 5597 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5598 5599 /* 5600 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5601 * via soaccept()->soinheritoptions() which essentially applies 5602 * all the listener options to the new STREAM. The options that we 5603 * need to take care of are: 5604 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5605 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5606 * SO_SNDBUF, SO_RCVBUF. 5607 * 5608 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5609 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5610 * tcp_maxpsz_set() gets called later from 5611 * tcp_accept_finish(), the option takes effect. 5612 * 5613 */ 5614 /* Set the TCP options */ 5615 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5616 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5617 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5618 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5619 eager->tcp_oobinline = tcp->tcp_oobinline; 5620 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5621 eager->tcp_broadcast = tcp->tcp_broadcast; 5622 eager->tcp_useloopback = tcp->tcp_useloopback; 5623 eager->tcp_dontroute = tcp->tcp_dontroute; 5624 eager->tcp_debug = tcp->tcp_debug; 5625 eager->tcp_linger = tcp->tcp_linger; 5626 eager->tcp_lingertime = tcp->tcp_lingertime; 5627 if (tcp->tcp_ka_enabled) 5628 eager->tcp_ka_enabled = 1; 5629 5630 /* Set the IP options */ 5631 econnp->conn_broadcast = connp->conn_broadcast; 5632 econnp->conn_loopback = connp->conn_loopback; 5633 econnp->conn_dontroute = connp->conn_dontroute; 5634 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5635 5636 /* Put a ref on the listener for the eager. */ 5637 CONN_INC_REF(connp); 5638 mutex_enter(&tcp->tcp_eager_lock); 5639 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5640 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5641 tcp->tcp_eager_next_q0 = eager; 5642 eager->tcp_eager_prev_q0 = tcp; 5643 5644 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5645 eager->tcp_listener = tcp; 5646 eager->tcp_saved_listener = tcp; 5647 5648 /* 5649 * Tag this detached tcp vector for later retrieval 5650 * by our listener client in tcp_accept(). 5651 */ 5652 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5653 tcp->tcp_conn_req_cnt_q0++; 5654 if (++tcp->tcp_conn_req_seqnum == -1) { 5655 /* 5656 * -1 is "special" and defined in TPI as something 5657 * that should never be used in T_CONN_IND 5658 */ 5659 ++tcp->tcp_conn_req_seqnum; 5660 } 5661 mutex_exit(&tcp->tcp_eager_lock); 5662 5663 if (tcp->tcp_syn_defense) { 5664 /* Don't drop the SYN that comes from a good IP source */ 5665 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5666 if (addr_cache != NULL && eager->tcp_remote == 5667 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5668 eager->tcp_dontdrop = B_TRUE; 5669 } 5670 } 5671 5672 /* 5673 * We need to insert the eager in its own perimeter but as soon 5674 * as we do that, we expose the eager to the classifier and 5675 * should not touch any field outside the eager's perimeter. 5676 * So do all the work necessary before inserting the eager 5677 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5678 * will succeed but undo everything if it fails. 5679 */ 5680 seg_seq = ABE32_TO_U32(tcph->th_seq); 5681 eager->tcp_irs = seg_seq; 5682 eager->tcp_rack = seg_seq; 5683 eager->tcp_rnxt = seg_seq + 1; 5684 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5685 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5686 eager->tcp_state = TCPS_SYN_RCVD; 5687 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5688 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5689 if (mp1 == NULL) { 5690 /* 5691 * Increment the ref count as we are going to 5692 * enqueueing an mp in squeue 5693 */ 5694 CONN_INC_REF(econnp); 5695 goto error; 5696 } 5697 DB_CPID(mp1) = tcp->tcp_cpid; 5698 mblk_setcred(mp1, tcp->tcp_cred); 5699 eager->tcp_cpid = tcp->tcp_cpid; 5700 eager->tcp_open_time = lbolt64; 5701 5702 /* 5703 * We need to start the rto timer. In normal case, we start 5704 * the timer after sending the packet on the wire (or at 5705 * least believing that packet was sent by waiting for 5706 * CALL_IP_WPUT() to return). Since this is the first packet 5707 * being sent on the wire for the eager, our initial tcp_rto 5708 * is at least tcp_rexmit_interval_min which is a fairly 5709 * large value to allow the algorithm to adjust slowly to large 5710 * fluctuations of RTT during first few transmissions. 5711 * 5712 * Starting the timer first and then sending the packet in this 5713 * case shouldn't make much difference since tcp_rexmit_interval_min 5714 * is of the order of several 100ms and starting the timer 5715 * first and then sending the packet will result in difference 5716 * of few micro seconds. 5717 * 5718 * Without this optimization, we are forced to hold the fanout 5719 * lock across the ipcl_bind_insert() and sending the packet 5720 * so that we don't race against an incoming packet (maybe RST) 5721 * for this eager. 5722 * 5723 * It is necessary to acquire an extra reference on the eager 5724 * at this point and hold it until after tcp_send_data() to 5725 * ensure against an eager close race. 5726 */ 5727 5728 CONN_INC_REF(eager->tcp_connp); 5729 5730 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5731 5732 /* 5733 * Insert the eager in its own perimeter now. We are ready to deal 5734 * with any packets on eager. 5735 */ 5736 if (eager->tcp_ipversion == IPV4_VERSION) { 5737 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5738 goto error; 5739 } 5740 } else { 5741 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5742 goto error; 5743 } 5744 } 5745 5746 /* mark conn as fully-bound */ 5747 econnp->conn_fully_bound = B_TRUE; 5748 5749 /* Send the SYN-ACK */ 5750 tcp_send_data(eager, eager->tcp_wq, mp1); 5751 CONN_DEC_REF(eager->tcp_connp); 5752 freemsg(mp); 5753 5754 return; 5755 error: 5756 freemsg(mp1); 5757 eager->tcp_closemp_used = B_TRUE; 5758 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5759 mp1 = &eager->tcp_closemp; 5760 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5761 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5762 5763 /* 5764 * If a connection already exists, send the mp to that connections so 5765 * that it can be appropriately dealt with. 5766 */ 5767 ipst = tcps->tcps_netstack->netstack_ip; 5768 5769 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5770 if (!IPCL_IS_CONNECTED(econnp)) { 5771 /* 5772 * Something bad happened. ipcl_conn_insert() 5773 * failed because a connection already existed 5774 * in connected hash but we can't find it 5775 * anymore (someone blew it away). Just 5776 * free this message and hopefully remote 5777 * will retransmit at which time the SYN can be 5778 * treated as a new connection or dealth with 5779 * a TH_RST if a connection already exists. 5780 */ 5781 CONN_DEC_REF(econnp); 5782 freemsg(mp); 5783 } else { 5784 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5785 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5786 } 5787 } else { 5788 /* Nobody wants this packet */ 5789 freemsg(mp); 5790 } 5791 return; 5792 error3: 5793 CONN_DEC_REF(econnp); 5794 error2: 5795 freemsg(mp); 5796 } 5797 5798 /* 5799 * In an ideal case of vertical partition in NUMA architecture, its 5800 * beneficial to have the listener and all the incoming connections 5801 * tied to the same squeue. The other constraint is that incoming 5802 * connections should be tied to the squeue attached to interrupted 5803 * CPU for obvious locality reason so this leaves the listener to 5804 * be tied to the same squeue. Our only problem is that when listener 5805 * is binding, the CPU that will get interrupted by the NIC whose 5806 * IP address the listener is binding to is not even known. So 5807 * the code below allows us to change that binding at the time the 5808 * CPU is interrupted by virtue of incoming connection's squeue. 5809 * 5810 * This is usefull only in case of a listener bound to a specific IP 5811 * address. For other kind of listeners, they get bound the 5812 * very first time and there is no attempt to rebind them. 5813 */ 5814 void 5815 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5816 { 5817 conn_t *connp = (conn_t *)arg; 5818 squeue_t *sqp = (squeue_t *)arg2; 5819 squeue_t *new_sqp; 5820 uint32_t conn_flags; 5821 5822 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5823 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5824 } else { 5825 goto done; 5826 } 5827 5828 if (connp->conn_fanout == NULL) 5829 goto done; 5830 5831 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5832 mutex_enter(&connp->conn_fanout->connf_lock); 5833 mutex_enter(&connp->conn_lock); 5834 /* 5835 * No one from read or write side can access us now 5836 * except for already queued packets on this squeue. 5837 * But since we haven't changed the squeue yet, they 5838 * can't execute. If they are processed after we have 5839 * changed the squeue, they are sent back to the 5840 * correct squeue down below. 5841 * But a listner close can race with processing of 5842 * incoming SYN. If incoming SYN processing changes 5843 * the squeue then the listener close which is waiting 5844 * to enter the squeue would operate on the wrong 5845 * squeue. Hence we don't change the squeue here unless 5846 * the refcount is exactly the minimum refcount. The 5847 * minimum refcount of 4 is counted as - 1 each for 5848 * TCP and IP, 1 for being in the classifier hash, and 5849 * 1 for the mblk being processed. 5850 */ 5851 5852 if (connp->conn_ref != 4 || 5853 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5854 mutex_exit(&connp->conn_lock); 5855 mutex_exit(&connp->conn_fanout->connf_lock); 5856 goto done; 5857 } 5858 if (connp->conn_sqp != new_sqp) { 5859 while (connp->conn_sqp != new_sqp) 5860 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5861 } 5862 5863 do { 5864 conn_flags = connp->conn_flags; 5865 conn_flags |= IPCL_FULLY_BOUND; 5866 (void) cas32(&connp->conn_flags, connp->conn_flags, 5867 conn_flags); 5868 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5869 5870 mutex_exit(&connp->conn_fanout->connf_lock); 5871 mutex_exit(&connp->conn_lock); 5872 } 5873 5874 done: 5875 if (connp->conn_sqp != sqp) { 5876 CONN_INC_REF(connp); 5877 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5878 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5879 } else { 5880 tcp_conn_request(connp, mp, sqp); 5881 } 5882 } 5883 5884 /* 5885 * Successful connect request processing begins when our client passes 5886 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5887 * our T_OK_ACK reply message upstream. The control flow looks like this: 5888 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5889 * upstream <- tcp_rput() <- IP 5890 * After various error checks are completed, tcp_tpi_connect() lays 5891 * the target address and port into the composite header template, 5892 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5893 * request followed by an IRE request, and passes the three mblk message 5894 * down to IP looking like this: 5895 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5896 * Processing continues in tcp_rput() when we receive the following message: 5897 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5898 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5899 * to fire off the connection request, and then passes the T_OK_ACK mblk 5900 * upstream that we filled in below. There are, of course, numerous 5901 * error conditions along the way which truncate the processing described 5902 * above. 5903 */ 5904 static void 5905 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5906 { 5907 sin_t *sin; 5908 queue_t *q = tcp->tcp_wq; 5909 struct T_conn_req *tcr; 5910 struct sockaddr *sa; 5911 socklen_t len; 5912 int error; 5913 5914 tcr = (struct T_conn_req *)mp->b_rptr; 5915 5916 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5917 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5918 tcp_err_ack(tcp, mp, TPROTO, 0); 5919 return; 5920 } 5921 5922 /* 5923 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5924 * will always have that to send up. Otherwise, we need to do 5925 * special handling in case the allocation fails at that time. 5926 * If the end point is TPI, the tcp_t can be reused and the 5927 * tcp_ordrel_mp may be allocated already. 5928 */ 5929 if (tcp->tcp_ordrel_mp == NULL) { 5930 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5931 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5932 return; 5933 } 5934 } 5935 5936 /* 5937 * Determine packet type based on type of address passed in 5938 * the request should contain an IPv4 or IPv6 address. 5939 * Make sure that address family matches the type of 5940 * family of the the address passed down 5941 */ 5942 switch (tcr->DEST_length) { 5943 default: 5944 tcp_err_ack(tcp, mp, TBADADDR, 0); 5945 return; 5946 5947 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5948 /* 5949 * XXX: The check for valid DEST_length was not there 5950 * in earlier releases and some buggy 5951 * TLI apps (e.g Sybase) got away with not feeding 5952 * in sin_zero part of address. 5953 * We allow that bug to keep those buggy apps humming. 5954 * Test suites require the check on DEST_length. 5955 * We construct a new mblk with valid DEST_length 5956 * free the original so the rest of the code does 5957 * not have to keep track of this special shorter 5958 * length address case. 5959 */ 5960 mblk_t *nmp; 5961 struct T_conn_req *ntcr; 5962 sin_t *nsin; 5963 5964 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5965 tcr->OPT_length, BPRI_HI); 5966 if (nmp == NULL) { 5967 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5968 return; 5969 } 5970 ntcr = (struct T_conn_req *)nmp->b_rptr; 5971 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5972 ntcr->PRIM_type = T_CONN_REQ; 5973 ntcr->DEST_length = sizeof (sin_t); 5974 ntcr->DEST_offset = sizeof (struct T_conn_req); 5975 5976 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5977 *nsin = sin_null; 5978 /* Get pointer to shorter address to copy from original mp */ 5979 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5980 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5981 if (sin == NULL || !OK_32PTR((char *)sin)) { 5982 freemsg(nmp); 5983 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5984 return; 5985 } 5986 nsin->sin_family = sin->sin_family; 5987 nsin->sin_port = sin->sin_port; 5988 nsin->sin_addr = sin->sin_addr; 5989 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5990 nmp->b_wptr = (uchar_t *)&nsin[1]; 5991 if (tcr->OPT_length != 0) { 5992 ntcr->OPT_length = tcr->OPT_length; 5993 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5994 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5995 (uchar_t *)ntcr + ntcr->OPT_offset, 5996 tcr->OPT_length); 5997 nmp->b_wptr += tcr->OPT_length; 5998 } 5999 freemsg(mp); /* original mp freed */ 6000 mp = nmp; /* re-initialize original variables */ 6001 tcr = ntcr; 6002 } 6003 /* FALLTHRU */ 6004 6005 case sizeof (sin_t): 6006 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6007 sizeof (sin_t)); 6008 len = sizeof (sin_t); 6009 break; 6010 6011 case sizeof (sin6_t): 6012 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6013 sizeof (sin6_t)); 6014 len = sizeof (sin6_t); 6015 break; 6016 } 6017 6018 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6019 if (error != 0) { 6020 tcp_err_ack(tcp, mp, TSYSERR, error); 6021 return; 6022 } 6023 6024 /* 6025 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6026 * should key on their sequence number and cut them loose. 6027 */ 6028 6029 /* 6030 * If options passed in, feed it for verification and handling 6031 */ 6032 if (tcr->OPT_length != 0) { 6033 mblk_t *ok_mp; 6034 mblk_t *discon_mp; 6035 mblk_t *conn_opts_mp; 6036 int t_error, sys_error, do_disconnect; 6037 6038 conn_opts_mp = NULL; 6039 6040 if (tcp_conprim_opt_process(tcp, mp, 6041 &do_disconnect, &t_error, &sys_error) < 0) { 6042 if (do_disconnect) { 6043 ASSERT(t_error == 0 && sys_error == 0); 6044 discon_mp = mi_tpi_discon_ind(NULL, 6045 ECONNREFUSED, 0); 6046 if (!discon_mp) { 6047 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6048 TSYSERR, ENOMEM); 6049 return; 6050 } 6051 ok_mp = mi_tpi_ok_ack_alloc(mp); 6052 if (!ok_mp) { 6053 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6054 TSYSERR, ENOMEM); 6055 return; 6056 } 6057 qreply(q, ok_mp); 6058 qreply(q, discon_mp); /* no flush! */ 6059 } else { 6060 ASSERT(t_error != 0); 6061 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6062 sys_error); 6063 } 6064 return; 6065 } 6066 /* 6067 * Success in setting options, the mp option buffer represented 6068 * by OPT_length/offset has been potentially modified and 6069 * contains results of option processing. We copy it in 6070 * another mp to save it for potentially influencing returning 6071 * it in T_CONN_CONN. 6072 */ 6073 if (tcr->OPT_length != 0) { /* there are resulting options */ 6074 conn_opts_mp = copyb(mp); 6075 if (!conn_opts_mp) { 6076 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6077 TSYSERR, ENOMEM); 6078 return; 6079 } 6080 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6081 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6082 /* 6083 * Note: 6084 * These resulting option negotiation can include any 6085 * end-to-end negotiation options but there no such 6086 * thing (yet?) in our TCP/IP. 6087 */ 6088 } 6089 } 6090 6091 /* call the non-TPI version */ 6092 error = tcp_do_connect(tcp->tcp_connp, sa, len, DB_CRED(mp), 6093 DB_CPID(mp)); 6094 if (error < 0) { 6095 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6096 } else if (error > 0) { 6097 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6098 } else { 6099 mp = mi_tpi_ok_ack_alloc(mp); 6100 } 6101 6102 /* 6103 * Note: Code below is the "failure" case 6104 */ 6105 /* return error ack and blow away saved option results if any */ 6106 connect_failed: 6107 if (mp != NULL) 6108 putnext(tcp->tcp_rq, mp); 6109 else { 6110 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6111 TSYSERR, ENOMEM); 6112 } 6113 } 6114 6115 /* 6116 * Handle connect to IPv4 destinations, including connections for AF_INET6 6117 * sockets connecting to IPv4 mapped IPv6 destinations. 6118 */ 6119 static int 6120 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6121 uint_t srcid, cred_t *cr, pid_t pid) 6122 { 6123 tcph_t *tcph; 6124 mblk_t *mp; 6125 ipaddr_t dstaddr = *dstaddrp; 6126 int32_t oldstate; 6127 uint16_t lport; 6128 int error = 0; 6129 tcp_stack_t *tcps = tcp->tcp_tcps; 6130 6131 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6132 6133 /* Check for attempt to connect to INADDR_ANY */ 6134 if (dstaddr == INADDR_ANY) { 6135 /* 6136 * SunOS 4.x and 4.3 BSD allow an application 6137 * to connect a TCP socket to INADDR_ANY. 6138 * When they do this, the kernel picks the 6139 * address of one interface and uses it 6140 * instead. The kernel usually ends up 6141 * picking the address of the loopback 6142 * interface. This is an undocumented feature. 6143 * However, we provide the same thing here 6144 * in order to have source and binary 6145 * compatibility with SunOS 4.x. 6146 * Update the T_CONN_REQ (sin/sin6) since it is used to 6147 * generate the T_CONN_CON. 6148 */ 6149 dstaddr = htonl(INADDR_LOOPBACK); 6150 *dstaddrp = dstaddr; 6151 } 6152 6153 /* Handle __sin6_src_id if socket not bound to an IP address */ 6154 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6155 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6156 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6157 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6158 tcp->tcp_ipha->ipha_src); 6159 } 6160 6161 /* 6162 * Don't let an endpoint connect to itself. Note that 6163 * the test here does not catch the case where the 6164 * source IP addr was left unspecified by the user. In 6165 * this case, the source addr is set in tcp_adapt_ire() 6166 * using the reply to the T_BIND message that we send 6167 * down to IP here and the check is repeated in tcp_rput_other. 6168 */ 6169 if (dstaddr == tcp->tcp_ipha->ipha_src && 6170 dstport == tcp->tcp_lport) { 6171 error = -TBADADDR; 6172 goto failed; 6173 } 6174 6175 tcp->tcp_ipha->ipha_dst = dstaddr; 6176 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6177 6178 /* 6179 * Massage a source route if any putting the first hop 6180 * in iph_dst. Compute a starting value for the checksum which 6181 * takes into account that the original iph_dst should be 6182 * included in the checksum but that ip will include the 6183 * first hop in the source route in the tcp checksum. 6184 */ 6185 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6186 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6187 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6188 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6189 if ((int)tcp->tcp_sum < 0) 6190 tcp->tcp_sum--; 6191 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6192 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6193 (tcp->tcp_sum >> 16)); 6194 tcph = tcp->tcp_tcph; 6195 *(uint16_t *)tcph->th_fport = dstport; 6196 tcp->tcp_fport = dstport; 6197 6198 oldstate = tcp->tcp_state; 6199 /* 6200 * At this point the remote destination address and remote port fields 6201 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6202 * have to see which state tcp was in so we can take apropriate action. 6203 */ 6204 if (oldstate == TCPS_IDLE) { 6205 /* 6206 * We support a quick connect capability here, allowing 6207 * clients to transition directly from IDLE to SYN_SENT 6208 * tcp_bindi will pick an unused port, insert the connection 6209 * in the bind hash and transition to BOUND state. 6210 */ 6211 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6212 tcp, B_TRUE); 6213 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6214 B_FALSE, B_FALSE); 6215 if (lport == 0) { 6216 error = -TNOADDR; 6217 goto failed; 6218 } 6219 } 6220 tcp->tcp_state = TCPS_SYN_SENT; 6221 6222 mp = allocb(sizeof (ire_t), BPRI_HI); 6223 if (mp == NULL) { 6224 tcp->tcp_state = oldstate; 6225 error = ENOMEM; 6226 goto failed; 6227 } 6228 mp->b_wptr += sizeof (ire_t); 6229 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6230 tcp->tcp_hard_binding = 1; 6231 if (cr == NULL) { 6232 cr = tcp->tcp_cred; 6233 pid = tcp->tcp_cpid; 6234 } 6235 mblk_setcred(mp, cr); 6236 DB_CPID(mp) = pid; 6237 6238 /* 6239 * We need to make sure that the conn_recv is set to a non-null 6240 * value before we insert the conn_t into the classifier table. 6241 * This is to avoid a race with an incoming packet which does 6242 * an ipcl_classify(). 6243 */ 6244 tcp->tcp_connp->conn_recv = tcp_input; 6245 6246 if (tcp->tcp_family == AF_INET) { 6247 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6248 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6249 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE); 6250 } else { 6251 in6_addr_t v6src; 6252 if (tcp->tcp_ipversion == IPV4_VERSION) { 6253 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6254 } else { 6255 v6src = tcp->tcp_ip6h->ip6_src; 6256 } 6257 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6258 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6259 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE); 6260 } 6261 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6262 tcp->tcp_active_open = 1; 6263 6264 return (tcp_post_ip_bind(tcp, mp, error)); 6265 failed: 6266 /* return error ack and blow away saved option results if any */ 6267 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6268 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6269 return (error); 6270 } 6271 6272 /* 6273 * Handle connect to IPv6 destinations. 6274 */ 6275 static int 6276 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6277 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6278 { 6279 tcph_t *tcph; 6280 mblk_t *mp; 6281 ip6_rthdr_t *rth; 6282 int32_t oldstate; 6283 uint16_t lport; 6284 tcp_stack_t *tcps = tcp->tcp_tcps; 6285 int error = 0; 6286 conn_t *connp = tcp->tcp_connp; 6287 6288 ASSERT(tcp->tcp_family == AF_INET6); 6289 6290 /* 6291 * If we're here, it means that the destination address is a native 6292 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6293 * reason why it might not be IPv6 is if the socket was bound to an 6294 * IPv4-mapped IPv6 address. 6295 */ 6296 if (tcp->tcp_ipversion != IPV6_VERSION) { 6297 return (-TBADADDR); 6298 } 6299 6300 /* 6301 * Interpret a zero destination to mean loopback. 6302 * Update the T_CONN_REQ (sin/sin6) since it is used to 6303 * generate the T_CONN_CON. 6304 */ 6305 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6306 *dstaddrp = ipv6_loopback; 6307 } 6308 6309 /* Handle __sin6_src_id if socket not bound to an IP address */ 6310 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6311 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6312 connp->conn_zoneid, tcps->tcps_netstack); 6313 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6314 } 6315 6316 /* 6317 * Take care of the scope_id now and add ip6i_t 6318 * if ip6i_t is not already allocated through TCP 6319 * sticky options. At this point tcp_ip6h does not 6320 * have dst info, thus use dstaddrp. 6321 */ 6322 if (scope_id != 0 && 6323 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6324 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6325 ip6i_t *ip6i; 6326 6327 ipp->ipp_ifindex = scope_id; 6328 ip6i = (ip6i_t *)tcp->tcp_iphc; 6329 6330 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6331 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6332 /* Already allocated */ 6333 ip6i->ip6i_flags |= IP6I_IFINDEX; 6334 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6335 ipp->ipp_fields |= IPPF_SCOPE_ID; 6336 } else { 6337 int reterr; 6338 6339 ipp->ipp_fields |= IPPF_SCOPE_ID; 6340 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6341 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6342 reterr = tcp_build_hdrs(tcp); 6343 if (reterr != 0) 6344 goto failed; 6345 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6346 } 6347 } 6348 6349 /* 6350 * Don't let an endpoint connect to itself. Note that 6351 * the test here does not catch the case where the 6352 * source IP addr was left unspecified by the user. In 6353 * this case, the source addr is set in tcp_adapt_ire() 6354 * using the reply to the T_BIND message that we send 6355 * down to IP here and the check is repeated in tcp_rput_other. 6356 */ 6357 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6358 (dstport == tcp->tcp_lport)) { 6359 error = -TBADADDR; 6360 goto failed; 6361 } 6362 6363 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6364 tcp->tcp_remote_v6 = *dstaddrp; 6365 tcp->tcp_ip6h->ip6_vcf = 6366 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6367 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6368 6369 /* 6370 * Massage a routing header (if present) putting the first hop 6371 * in ip6_dst. Compute a starting value for the checksum which 6372 * takes into account that the original ip6_dst should be 6373 * included in the checksum but that ip will include the 6374 * first hop in the source route in the tcp checksum. 6375 */ 6376 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6377 if (rth != NULL) { 6378 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6379 tcps->tcps_netstack); 6380 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6381 (tcp->tcp_sum >> 16)); 6382 } else { 6383 tcp->tcp_sum = 0; 6384 } 6385 6386 tcph = tcp->tcp_tcph; 6387 *(uint16_t *)tcph->th_fport = dstport; 6388 tcp->tcp_fport = dstport; 6389 6390 oldstate = tcp->tcp_state; 6391 /* 6392 * At this point the remote destination address and remote port fields 6393 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6394 * have to see which state tcp was in so we can take apropriate action. 6395 */ 6396 if (oldstate == TCPS_IDLE) { 6397 /* 6398 * We support a quick connect capability here, allowing 6399 * clients to transition directly from IDLE to SYN_SENT 6400 * tcp_bindi will pick an unused port, insert the connection 6401 * in the bind hash and transition to BOUND state. 6402 */ 6403 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6404 tcp, B_TRUE); 6405 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6406 B_FALSE, B_FALSE); 6407 if (lport == 0) { 6408 error = -TNOADDR; 6409 goto failed; 6410 } 6411 } 6412 tcp->tcp_state = TCPS_SYN_SENT; 6413 6414 mp = allocb(sizeof (ire_t), BPRI_HI); 6415 if (mp != NULL) { 6416 in6_addr_t v6src; 6417 6418 mp->b_wptr += sizeof (ire_t); 6419 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6420 if (cr == NULL) { 6421 cr = tcp->tcp_cred; 6422 pid = tcp->tcp_cpid; 6423 } 6424 mblk_setcred(mp, cr); 6425 DB_CPID(mp) = pid; 6426 tcp->tcp_hard_binding = 1; 6427 6428 /* 6429 * We need to make sure that the conn_recv is set to a non-null 6430 * value before we insert the conn_t into the classifier table. 6431 * This is to avoid a race with an incoming packet which does 6432 * an ipcl_classify(). 6433 */ 6434 tcp->tcp_connp->conn_recv = tcp_input; 6435 6436 if (tcp->tcp_ipversion == IPV4_VERSION) { 6437 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6438 } else { 6439 v6src = tcp->tcp_ip6h->ip6_src; 6440 } 6441 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6442 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6443 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE); 6444 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6445 tcp->tcp_active_open = 1; 6446 6447 return (tcp_post_ip_bind(tcp, mp, error)); 6448 } 6449 /* Error case */ 6450 tcp->tcp_state = oldstate; 6451 error = ENOMEM; 6452 6453 failed: 6454 /* return error ack and blow away saved option results if any */ 6455 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6456 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6457 return (error); 6458 } 6459 6460 /* 6461 * We need a stream q for detached closing tcp connections 6462 * to use. Our client hereby indicates that this q is the 6463 * one to use. 6464 */ 6465 static void 6466 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6467 { 6468 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6469 queue_t *q = tcp->tcp_wq; 6470 tcp_stack_t *tcps = tcp->tcp_tcps; 6471 6472 #ifdef NS_DEBUG 6473 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6474 tcps->tcps_netstack->netstack_stackid); 6475 #endif 6476 mp->b_datap->db_type = M_IOCACK; 6477 iocp->ioc_count = 0; 6478 mutex_enter(&tcps->tcps_g_q_lock); 6479 if (tcps->tcps_g_q != NULL) { 6480 mutex_exit(&tcps->tcps_g_q_lock); 6481 iocp->ioc_error = EALREADY; 6482 } else { 6483 int error = 0; 6484 conn_t *connp = tcp->tcp_connp; 6485 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6486 6487 tcps->tcps_g_q = tcp->tcp_rq; 6488 mutex_exit(&tcps->tcps_g_q_lock); 6489 iocp->ioc_error = 0; 6490 iocp->ioc_rval = 0; 6491 /* 6492 * We are passing tcp_sticky_ipp as NULL 6493 * as it is not useful for tcp_default queue 6494 * 6495 * Set conn_recv just in case. 6496 */ 6497 tcp->tcp_connp->conn_recv = tcp_conn_request; 6498 6499 ASSERT(connp->conn_af_isv6); 6500 connp->conn_ulp = IPPROTO_TCP; 6501 6502 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6503 NULL || connp->conn_mac_exempt) { 6504 error = -TBADADDR; 6505 } else { 6506 connp->conn_srcv6 = ipv6_all_zeros; 6507 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6508 } 6509 6510 (void) tcp_post_ip_bind(tcp, NULL, error); 6511 } 6512 qreply(q, mp); 6513 } 6514 6515 static int 6516 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6517 { 6518 tcp_t *ltcp = NULL; 6519 conn_t *connp; 6520 tcp_stack_t *tcps = tcp->tcp_tcps; 6521 6522 /* 6523 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6524 * when the stream is in BOUND state. Do not send a reset, 6525 * since the destination IP address is not valid, and it can 6526 * be the initialized value of all zeros (broadcast address). 6527 * 6528 * XXX There won't be any pending bind request to IP. 6529 */ 6530 if (tcp->tcp_state <= TCPS_BOUND) { 6531 if (tcp->tcp_debug) { 6532 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6533 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6534 } 6535 return (TOUTSTATE); 6536 } 6537 6538 6539 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6540 6541 /* 6542 * According to TPI, for non-listeners, ignore seqnum 6543 * and disconnect. 6544 * Following interpretation of -1 seqnum is historical 6545 * and implied TPI ? (TPI only states that for T_CONN_IND, 6546 * a valid seqnum should not be -1). 6547 * 6548 * -1 means disconnect everything 6549 * regardless even on a listener. 6550 */ 6551 6552 int old_state = tcp->tcp_state; 6553 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6554 6555 /* 6556 * The connection can't be on the tcp_time_wait_head list 6557 * since it is not detached. 6558 */ 6559 ASSERT(tcp->tcp_time_wait_next == NULL); 6560 ASSERT(tcp->tcp_time_wait_prev == NULL); 6561 ASSERT(tcp->tcp_time_wait_expire == 0); 6562 ltcp = NULL; 6563 /* 6564 * If it used to be a listener, check to make sure no one else 6565 * has taken the port before switching back to LISTEN state. 6566 */ 6567 if (tcp->tcp_ipversion == IPV4_VERSION) { 6568 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6569 tcp->tcp_ipha->ipha_src, 6570 tcp->tcp_connp->conn_zoneid, ipst); 6571 if (connp != NULL) 6572 ltcp = connp->conn_tcp; 6573 } else { 6574 /* Allow tcp_bound_if listeners? */ 6575 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6576 &tcp->tcp_ip6h->ip6_src, 0, 6577 tcp->tcp_connp->conn_zoneid, ipst); 6578 if (connp != NULL) 6579 ltcp = connp->conn_tcp; 6580 } 6581 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6582 tcp->tcp_state = TCPS_LISTEN; 6583 } else if (old_state > TCPS_BOUND) { 6584 tcp->tcp_conn_req_max = 0; 6585 tcp->tcp_state = TCPS_BOUND; 6586 } 6587 if (ltcp != NULL) 6588 CONN_DEC_REF(ltcp->tcp_connp); 6589 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6590 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6591 } else if (old_state == TCPS_ESTABLISHED || 6592 old_state == TCPS_CLOSE_WAIT) { 6593 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6594 } 6595 6596 if (tcp->tcp_fused) 6597 tcp_unfuse(tcp); 6598 6599 mutex_enter(&tcp->tcp_eager_lock); 6600 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6601 (tcp->tcp_conn_req_cnt_q != 0)) { 6602 tcp_eager_cleanup(tcp, 0); 6603 } 6604 mutex_exit(&tcp->tcp_eager_lock); 6605 6606 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6607 tcp->tcp_rnxt, TH_RST | TH_ACK); 6608 6609 tcp_reinit(tcp); 6610 6611 return (0); 6612 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6613 return (TBADSEQ); 6614 } 6615 return (0); 6616 } 6617 6618 /* 6619 * Our client hereby directs us to reject the connection request 6620 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6621 * of sending the appropriate RST, not an ICMP error. 6622 */ 6623 static void 6624 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6625 { 6626 t_scalar_t seqnum; 6627 int error; 6628 6629 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6630 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6631 tcp_err_ack(tcp, mp, TPROTO, 0); 6632 return; 6633 } 6634 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6635 error = tcp_disconnect_common(tcp, seqnum); 6636 if (error != 0) 6637 tcp_err_ack(tcp, mp, error, 0); 6638 else { 6639 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6640 /* Send M_FLUSH according to TPI */ 6641 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6642 } 6643 mp = mi_tpi_ok_ack_alloc(mp); 6644 if (mp) 6645 putnext(tcp->tcp_rq, mp); 6646 } 6647 } 6648 6649 /* 6650 * Diagnostic routine used to return a string associated with the tcp state. 6651 * Note that if the caller does not supply a buffer, it will use an internal 6652 * static string. This means that if multiple threads call this function at 6653 * the same time, output can be corrupted... Note also that this function 6654 * does not check the size of the supplied buffer. The caller has to make 6655 * sure that it is big enough. 6656 */ 6657 static char * 6658 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6659 { 6660 char buf1[30]; 6661 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6662 char *buf; 6663 char *cp; 6664 in6_addr_t local, remote; 6665 char local_addrbuf[INET6_ADDRSTRLEN]; 6666 char remote_addrbuf[INET6_ADDRSTRLEN]; 6667 6668 if (sup_buf != NULL) 6669 buf = sup_buf; 6670 else 6671 buf = priv_buf; 6672 6673 if (tcp == NULL) 6674 return ("NULL_TCP"); 6675 switch (tcp->tcp_state) { 6676 case TCPS_CLOSED: 6677 cp = "TCP_CLOSED"; 6678 break; 6679 case TCPS_IDLE: 6680 cp = "TCP_IDLE"; 6681 break; 6682 case TCPS_BOUND: 6683 cp = "TCP_BOUND"; 6684 break; 6685 case TCPS_LISTEN: 6686 cp = "TCP_LISTEN"; 6687 break; 6688 case TCPS_SYN_SENT: 6689 cp = "TCP_SYN_SENT"; 6690 break; 6691 case TCPS_SYN_RCVD: 6692 cp = "TCP_SYN_RCVD"; 6693 break; 6694 case TCPS_ESTABLISHED: 6695 cp = "TCP_ESTABLISHED"; 6696 break; 6697 case TCPS_CLOSE_WAIT: 6698 cp = "TCP_CLOSE_WAIT"; 6699 break; 6700 case TCPS_FIN_WAIT_1: 6701 cp = "TCP_FIN_WAIT_1"; 6702 break; 6703 case TCPS_CLOSING: 6704 cp = "TCP_CLOSING"; 6705 break; 6706 case TCPS_LAST_ACK: 6707 cp = "TCP_LAST_ACK"; 6708 break; 6709 case TCPS_FIN_WAIT_2: 6710 cp = "TCP_FIN_WAIT_2"; 6711 break; 6712 case TCPS_TIME_WAIT: 6713 cp = "TCP_TIME_WAIT"; 6714 break; 6715 default: 6716 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6717 cp = buf1; 6718 break; 6719 } 6720 switch (format) { 6721 case DISP_ADDR_AND_PORT: 6722 if (tcp->tcp_ipversion == IPV4_VERSION) { 6723 /* 6724 * Note that we use the remote address in the tcp_b 6725 * structure. This means that it will print out 6726 * the real destination address, not the next hop's 6727 * address if source routing is used. 6728 */ 6729 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6730 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6731 6732 } else { 6733 local = tcp->tcp_ip_src_v6; 6734 remote = tcp->tcp_remote_v6; 6735 } 6736 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6737 sizeof (local_addrbuf)); 6738 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6739 sizeof (remote_addrbuf)); 6740 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6741 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6742 ntohs(tcp->tcp_fport), cp); 6743 break; 6744 case DISP_PORT_ONLY: 6745 default: 6746 (void) mi_sprintf(buf, "[%u, %u] %s", 6747 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6748 break; 6749 } 6750 6751 return (buf); 6752 } 6753 6754 /* 6755 * Called via squeue to get on to eager's perimeter. It sends a 6756 * TH_RST if eager is in the fanout table. The listener wants the 6757 * eager to disappear either by means of tcp_eager_blowoff() or 6758 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6759 * called (via squeue) if the eager cannot be inserted in the 6760 * fanout table in tcp_conn_request(). 6761 */ 6762 /* ARGSUSED */ 6763 void 6764 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6765 { 6766 conn_t *econnp = (conn_t *)arg; 6767 tcp_t *eager = econnp->conn_tcp; 6768 tcp_t *listener = eager->tcp_listener; 6769 tcp_stack_t *tcps = eager->tcp_tcps; 6770 6771 /* 6772 * We could be called because listener is closing. Since 6773 * the eager is using listener's queue's, its not safe. 6774 * Better use the default queue just to send the TH_RST 6775 * out. 6776 */ 6777 ASSERT(tcps->tcps_g_q != NULL); 6778 eager->tcp_rq = tcps->tcps_g_q; 6779 eager->tcp_wq = WR(tcps->tcps_g_q); 6780 6781 /* 6782 * An eager's conn_fanout will be NULL if it's a duplicate 6783 * for an existing 4-tuples in the conn fanout table. 6784 * We don't want to send an RST out in such case. 6785 */ 6786 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6787 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6788 eager, eager->tcp_snxt, 0, TH_RST); 6789 } 6790 6791 /* We are here because listener wants this eager gone */ 6792 if (listener != NULL) { 6793 mutex_enter(&listener->tcp_eager_lock); 6794 tcp_eager_unlink(eager); 6795 if (eager->tcp_tconnind_started) { 6796 /* 6797 * The eager has sent a conn_ind up to the 6798 * listener but listener decides to close 6799 * instead. We need to drop the extra ref 6800 * placed on eager in tcp_rput_data() before 6801 * sending the conn_ind to listener. 6802 */ 6803 CONN_DEC_REF(econnp); 6804 } 6805 mutex_exit(&listener->tcp_eager_lock); 6806 CONN_DEC_REF(listener->tcp_connp); 6807 } 6808 6809 if (eager->tcp_state > TCPS_BOUND) 6810 tcp_close_detached(eager); 6811 } 6812 6813 /* 6814 * Reset any eager connection hanging off this listener marked 6815 * with 'seqnum' and then reclaim it's resources. 6816 */ 6817 static boolean_t 6818 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6819 { 6820 tcp_t *eager; 6821 mblk_t *mp; 6822 tcp_stack_t *tcps = listener->tcp_tcps; 6823 6824 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6825 eager = listener; 6826 mutex_enter(&listener->tcp_eager_lock); 6827 do { 6828 eager = eager->tcp_eager_next_q; 6829 if (eager == NULL) { 6830 mutex_exit(&listener->tcp_eager_lock); 6831 return (B_FALSE); 6832 } 6833 } while (eager->tcp_conn_req_seqnum != seqnum); 6834 6835 if (eager->tcp_closemp_used) { 6836 mutex_exit(&listener->tcp_eager_lock); 6837 return (B_TRUE); 6838 } 6839 eager->tcp_closemp_used = B_TRUE; 6840 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6841 CONN_INC_REF(eager->tcp_connp); 6842 mutex_exit(&listener->tcp_eager_lock); 6843 mp = &eager->tcp_closemp; 6844 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6845 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6846 return (B_TRUE); 6847 } 6848 6849 /* 6850 * Reset any eager connection hanging off this listener 6851 * and then reclaim it's resources. 6852 */ 6853 static void 6854 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6855 { 6856 tcp_t *eager; 6857 mblk_t *mp; 6858 tcp_stack_t *tcps = listener->tcp_tcps; 6859 6860 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6861 6862 if (!q0_only) { 6863 /* First cleanup q */ 6864 TCP_STAT(tcps, tcp_eager_blowoff_q); 6865 eager = listener->tcp_eager_next_q; 6866 while (eager != NULL) { 6867 if (!eager->tcp_closemp_used) { 6868 eager->tcp_closemp_used = B_TRUE; 6869 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6870 CONN_INC_REF(eager->tcp_connp); 6871 mp = &eager->tcp_closemp; 6872 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6873 tcp_eager_kill, eager->tcp_connp, 6874 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6875 } 6876 eager = eager->tcp_eager_next_q; 6877 } 6878 } 6879 /* Then cleanup q0 */ 6880 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6881 eager = listener->tcp_eager_next_q0; 6882 while (eager != listener) { 6883 if (!eager->tcp_closemp_used) { 6884 eager->tcp_closemp_used = B_TRUE; 6885 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6886 CONN_INC_REF(eager->tcp_connp); 6887 mp = &eager->tcp_closemp; 6888 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6889 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6890 SQTAG_TCP_EAGER_CLEANUP_Q0); 6891 } 6892 eager = eager->tcp_eager_next_q0; 6893 } 6894 } 6895 6896 /* 6897 * If we are an eager connection hanging off a listener that hasn't 6898 * formally accepted the connection yet, get off his list and blow off 6899 * any data that we have accumulated. 6900 */ 6901 static void 6902 tcp_eager_unlink(tcp_t *tcp) 6903 { 6904 tcp_t *listener = tcp->tcp_listener; 6905 6906 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6907 ASSERT(listener != NULL); 6908 if (tcp->tcp_eager_next_q0 != NULL) { 6909 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6910 6911 /* Remove the eager tcp from q0 */ 6912 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6913 tcp->tcp_eager_prev_q0; 6914 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6915 tcp->tcp_eager_next_q0; 6916 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6917 listener->tcp_conn_req_cnt_q0--; 6918 6919 tcp->tcp_eager_next_q0 = NULL; 6920 tcp->tcp_eager_prev_q0 = NULL; 6921 6922 /* 6923 * Take the eager out, if it is in the list of droppable 6924 * eagers. 6925 */ 6926 MAKE_UNDROPPABLE(tcp); 6927 6928 if (tcp->tcp_syn_rcvd_timeout != 0) { 6929 /* we have timed out before */ 6930 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6931 listener->tcp_syn_rcvd_timeout--; 6932 } 6933 } else { 6934 tcp_t **tcpp = &listener->tcp_eager_next_q; 6935 tcp_t *prev = NULL; 6936 6937 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6938 if (tcpp[0] == tcp) { 6939 if (listener->tcp_eager_last_q == tcp) { 6940 /* 6941 * If we are unlinking the last 6942 * element on the list, adjust 6943 * tail pointer. Set tail pointer 6944 * to nil when list is empty. 6945 */ 6946 ASSERT(tcp->tcp_eager_next_q == NULL); 6947 if (listener->tcp_eager_last_q == 6948 listener->tcp_eager_next_q) { 6949 listener->tcp_eager_last_q = 6950 NULL; 6951 } else { 6952 /* 6953 * We won't get here if there 6954 * is only one eager in the 6955 * list. 6956 */ 6957 ASSERT(prev != NULL); 6958 listener->tcp_eager_last_q = 6959 prev; 6960 } 6961 } 6962 tcpp[0] = tcp->tcp_eager_next_q; 6963 tcp->tcp_eager_next_q = NULL; 6964 tcp->tcp_eager_last_q = NULL; 6965 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6966 listener->tcp_conn_req_cnt_q--; 6967 break; 6968 } 6969 prev = tcpp[0]; 6970 } 6971 } 6972 tcp->tcp_listener = NULL; 6973 } 6974 6975 /* Shorthand to generate and send TPI error acks to our client */ 6976 static void 6977 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6978 { 6979 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6980 putnext(tcp->tcp_rq, mp); 6981 } 6982 6983 /* Shorthand to generate and send TPI error acks to our client */ 6984 static void 6985 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6986 int t_error, int sys_error) 6987 { 6988 struct T_error_ack *teackp; 6989 6990 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6991 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6992 teackp = (struct T_error_ack *)mp->b_rptr; 6993 teackp->ERROR_prim = primitive; 6994 teackp->TLI_error = t_error; 6995 teackp->UNIX_error = sys_error; 6996 putnext(tcp->tcp_rq, mp); 6997 } 6998 } 6999 7000 /* 7001 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7002 * but instead the code relies on: 7003 * - the fact that the address of the array and its size never changes 7004 * - the atomic assignment of the elements of the array 7005 */ 7006 /* ARGSUSED */ 7007 static int 7008 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7009 { 7010 int i; 7011 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7012 7013 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7014 if (tcps->tcps_g_epriv_ports[i] != 0) 7015 (void) mi_mpprintf(mp, "%d ", 7016 tcps->tcps_g_epriv_ports[i]); 7017 } 7018 return (0); 7019 } 7020 7021 /* 7022 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7023 * threads from changing it at the same time. 7024 */ 7025 /* ARGSUSED */ 7026 static int 7027 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7028 cred_t *cr) 7029 { 7030 long new_value; 7031 int i; 7032 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7033 7034 /* 7035 * Fail the request if the new value does not lie within the 7036 * port number limits. 7037 */ 7038 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7039 new_value <= 0 || new_value >= 65536) { 7040 return (EINVAL); 7041 } 7042 7043 mutex_enter(&tcps->tcps_epriv_port_lock); 7044 /* Check if the value is already in the list */ 7045 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7046 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7047 mutex_exit(&tcps->tcps_epriv_port_lock); 7048 return (EEXIST); 7049 } 7050 } 7051 /* Find an empty slot */ 7052 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7053 if (tcps->tcps_g_epriv_ports[i] == 0) 7054 break; 7055 } 7056 if (i == tcps->tcps_g_num_epriv_ports) { 7057 mutex_exit(&tcps->tcps_epriv_port_lock); 7058 return (EOVERFLOW); 7059 } 7060 /* Set the new value */ 7061 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7062 mutex_exit(&tcps->tcps_epriv_port_lock); 7063 return (0); 7064 } 7065 7066 /* 7067 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7068 * threads from changing it at the same time. 7069 */ 7070 /* ARGSUSED */ 7071 static int 7072 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7073 cred_t *cr) 7074 { 7075 long new_value; 7076 int i; 7077 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7078 7079 /* 7080 * Fail the request if the new value does not lie within the 7081 * port number limits. 7082 */ 7083 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7084 new_value >= 65536) { 7085 return (EINVAL); 7086 } 7087 7088 mutex_enter(&tcps->tcps_epriv_port_lock); 7089 /* Check that the value is already in the list */ 7090 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7091 if (tcps->tcps_g_epriv_ports[i] == new_value) 7092 break; 7093 } 7094 if (i == tcps->tcps_g_num_epriv_ports) { 7095 mutex_exit(&tcps->tcps_epriv_port_lock); 7096 return (ESRCH); 7097 } 7098 /* Clear the value */ 7099 tcps->tcps_g_epriv_ports[i] = 0; 7100 mutex_exit(&tcps->tcps_epriv_port_lock); 7101 return (0); 7102 } 7103 7104 /* Return the TPI/TLI equivalent of our current tcp_state */ 7105 static int 7106 tcp_tpistate(tcp_t *tcp) 7107 { 7108 switch (tcp->tcp_state) { 7109 case TCPS_IDLE: 7110 return (TS_UNBND); 7111 case TCPS_LISTEN: 7112 /* 7113 * Return whether there are outstanding T_CONN_IND waiting 7114 * for the matching T_CONN_RES. Therefore don't count q0. 7115 */ 7116 if (tcp->tcp_conn_req_cnt_q > 0) 7117 return (TS_WRES_CIND); 7118 else 7119 return (TS_IDLE); 7120 case TCPS_BOUND: 7121 return (TS_IDLE); 7122 case TCPS_SYN_SENT: 7123 return (TS_WCON_CREQ); 7124 case TCPS_SYN_RCVD: 7125 /* 7126 * Note: assumption: this has to the active open SYN_RCVD. 7127 * The passive instance is detached in SYN_RCVD stage of 7128 * incoming connection processing so we cannot get request 7129 * for T_info_ack on it. 7130 */ 7131 return (TS_WACK_CRES); 7132 case TCPS_ESTABLISHED: 7133 return (TS_DATA_XFER); 7134 case TCPS_CLOSE_WAIT: 7135 return (TS_WREQ_ORDREL); 7136 case TCPS_FIN_WAIT_1: 7137 return (TS_WIND_ORDREL); 7138 case TCPS_FIN_WAIT_2: 7139 return (TS_WIND_ORDREL); 7140 7141 case TCPS_CLOSING: 7142 case TCPS_LAST_ACK: 7143 case TCPS_TIME_WAIT: 7144 case TCPS_CLOSED: 7145 /* 7146 * Following TS_WACK_DREQ7 is a rendition of "not 7147 * yet TS_IDLE" TPI state. There is no best match to any 7148 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7149 * choose a value chosen that will map to TLI/XTI level 7150 * state of TSTATECHNG (state is process of changing) which 7151 * captures what this dummy state represents. 7152 */ 7153 return (TS_WACK_DREQ7); 7154 default: 7155 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7156 tcp->tcp_state, tcp_display(tcp, NULL, 7157 DISP_PORT_ONLY)); 7158 return (TS_UNBND); 7159 } 7160 } 7161 7162 static void 7163 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7164 { 7165 tcp_stack_t *tcps = tcp->tcp_tcps; 7166 7167 if (tcp->tcp_family == AF_INET6) 7168 *tia = tcp_g_t_info_ack_v6; 7169 else 7170 *tia = tcp_g_t_info_ack; 7171 tia->CURRENT_state = tcp_tpistate(tcp); 7172 tia->OPT_size = tcp_max_optsize; 7173 if (tcp->tcp_mss == 0) { 7174 /* Not yet set - tcp_open does not set mss */ 7175 if (tcp->tcp_ipversion == IPV4_VERSION) 7176 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7177 else 7178 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7179 } else { 7180 tia->TIDU_size = tcp->tcp_mss; 7181 } 7182 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7183 } 7184 7185 static void 7186 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7187 t_uscalar_t cap_bits1) 7188 { 7189 tcap->CAP_bits1 = 0; 7190 7191 if (cap_bits1 & TC1_INFO) { 7192 tcp_copy_info(&tcap->INFO_ack, tcp); 7193 tcap->CAP_bits1 |= TC1_INFO; 7194 } 7195 7196 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7197 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7198 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7199 } 7200 7201 } 7202 7203 /* 7204 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7205 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7206 * tcp_g_t_info_ack. The current state of the stream is copied from 7207 * tcp_state. 7208 */ 7209 static void 7210 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7211 { 7212 t_uscalar_t cap_bits1; 7213 struct T_capability_ack *tcap; 7214 7215 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7216 freemsg(mp); 7217 return; 7218 } 7219 7220 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7221 7222 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7223 mp->b_datap->db_type, T_CAPABILITY_ACK); 7224 if (mp == NULL) 7225 return; 7226 7227 tcap = (struct T_capability_ack *)mp->b_rptr; 7228 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7229 7230 putnext(tcp->tcp_rq, mp); 7231 } 7232 7233 /* 7234 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7235 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7236 * The current state of the stream is copied from tcp_state. 7237 */ 7238 static void 7239 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7240 { 7241 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7242 T_INFO_ACK); 7243 if (!mp) { 7244 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7245 return; 7246 } 7247 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7248 putnext(tcp->tcp_rq, mp); 7249 } 7250 7251 /* Respond to the TPI addr request */ 7252 static void 7253 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7254 { 7255 sin_t *sin; 7256 mblk_t *ackmp; 7257 struct T_addr_ack *taa; 7258 7259 /* Make it large enough for worst case */ 7260 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7261 2 * sizeof (sin6_t), 1); 7262 if (ackmp == NULL) { 7263 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7264 return; 7265 } 7266 7267 if (tcp->tcp_ipversion == IPV6_VERSION) { 7268 tcp_addr_req_ipv6(tcp, ackmp); 7269 return; 7270 } 7271 taa = (struct T_addr_ack *)ackmp->b_rptr; 7272 7273 bzero(taa, sizeof (struct T_addr_ack)); 7274 ackmp->b_wptr = (uchar_t *)&taa[1]; 7275 7276 taa->PRIM_type = T_ADDR_ACK; 7277 ackmp->b_datap->db_type = M_PCPROTO; 7278 7279 /* 7280 * Note: Following code assumes 32 bit alignment of basic 7281 * data structures like sin_t and struct T_addr_ack. 7282 */ 7283 if (tcp->tcp_state >= TCPS_BOUND) { 7284 /* 7285 * Fill in local address 7286 */ 7287 taa->LOCADDR_length = sizeof (sin_t); 7288 taa->LOCADDR_offset = sizeof (*taa); 7289 7290 sin = (sin_t *)&taa[1]; 7291 7292 /* Fill zeroes and then intialize non-zero fields */ 7293 *sin = sin_null; 7294 7295 sin->sin_family = AF_INET; 7296 7297 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7298 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7299 7300 ackmp->b_wptr = (uchar_t *)&sin[1]; 7301 7302 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7303 /* 7304 * Fill in Remote address 7305 */ 7306 taa->REMADDR_length = sizeof (sin_t); 7307 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7308 taa->LOCADDR_length); 7309 7310 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7311 *sin = sin_null; 7312 sin->sin_family = AF_INET; 7313 sin->sin_addr.s_addr = tcp->tcp_remote; 7314 sin->sin_port = tcp->tcp_fport; 7315 7316 ackmp->b_wptr = (uchar_t *)&sin[1]; 7317 } 7318 } 7319 putnext(tcp->tcp_rq, ackmp); 7320 } 7321 7322 /* Assumes that tcp_addr_req gets enough space and alignment */ 7323 static void 7324 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7325 { 7326 sin6_t *sin6; 7327 struct T_addr_ack *taa; 7328 7329 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7330 ASSERT(OK_32PTR(ackmp->b_rptr)); 7331 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7332 2 * sizeof (sin6_t)); 7333 7334 taa = (struct T_addr_ack *)ackmp->b_rptr; 7335 7336 bzero(taa, sizeof (struct T_addr_ack)); 7337 ackmp->b_wptr = (uchar_t *)&taa[1]; 7338 7339 taa->PRIM_type = T_ADDR_ACK; 7340 ackmp->b_datap->db_type = M_PCPROTO; 7341 7342 /* 7343 * Note: Following code assumes 32 bit alignment of basic 7344 * data structures like sin6_t and struct T_addr_ack. 7345 */ 7346 if (tcp->tcp_state >= TCPS_BOUND) { 7347 /* 7348 * Fill in local address 7349 */ 7350 taa->LOCADDR_length = sizeof (sin6_t); 7351 taa->LOCADDR_offset = sizeof (*taa); 7352 7353 sin6 = (sin6_t *)&taa[1]; 7354 *sin6 = sin6_null; 7355 7356 sin6->sin6_family = AF_INET6; 7357 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7358 sin6->sin6_port = tcp->tcp_lport; 7359 7360 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7361 7362 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7363 /* 7364 * Fill in Remote address 7365 */ 7366 taa->REMADDR_length = sizeof (sin6_t); 7367 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7368 taa->LOCADDR_length); 7369 7370 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7371 *sin6 = sin6_null; 7372 sin6->sin6_family = AF_INET6; 7373 sin6->sin6_flowinfo = 7374 tcp->tcp_ip6h->ip6_vcf & 7375 ~IPV6_VERS_AND_FLOW_MASK; 7376 sin6->sin6_addr = tcp->tcp_remote_v6; 7377 sin6->sin6_port = tcp->tcp_fport; 7378 7379 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7380 } 7381 } 7382 putnext(tcp->tcp_rq, ackmp); 7383 } 7384 7385 /* 7386 * Handle reinitialization of a tcp structure. 7387 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7388 */ 7389 static void 7390 tcp_reinit(tcp_t *tcp) 7391 { 7392 mblk_t *mp; 7393 int err; 7394 tcp_stack_t *tcps = tcp->tcp_tcps; 7395 7396 TCP_STAT(tcps, tcp_reinit_calls); 7397 7398 /* tcp_reinit should never be called for detached tcp_t's */ 7399 ASSERT(tcp->tcp_listener == NULL); 7400 ASSERT((tcp->tcp_family == AF_INET && 7401 tcp->tcp_ipversion == IPV4_VERSION) || 7402 (tcp->tcp_family == AF_INET6 && 7403 (tcp->tcp_ipversion == IPV4_VERSION || 7404 tcp->tcp_ipversion == IPV6_VERSION))); 7405 7406 /* Cancel outstanding timers */ 7407 tcp_timers_stop(tcp); 7408 7409 /* 7410 * Reset everything in the state vector, after updating global 7411 * MIB data from instance counters. 7412 */ 7413 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7414 tcp->tcp_ibsegs = 0; 7415 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7416 tcp->tcp_obsegs = 0; 7417 7418 tcp_close_mpp(&tcp->tcp_xmit_head); 7419 if (tcp->tcp_snd_zcopy_aware) 7420 tcp_zcopy_notify(tcp); 7421 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7422 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7423 mutex_enter(&tcp->tcp_non_sq_lock); 7424 if (tcp->tcp_flow_stopped && 7425 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7426 tcp_clrqfull(tcp); 7427 } 7428 mutex_exit(&tcp->tcp_non_sq_lock); 7429 tcp_close_mpp(&tcp->tcp_reass_head); 7430 tcp->tcp_reass_tail = NULL; 7431 if (tcp->tcp_rcv_list != NULL) { 7432 /* Free b_next chain */ 7433 tcp_close_mpp(&tcp->tcp_rcv_list); 7434 tcp->tcp_rcv_last_head = NULL; 7435 tcp->tcp_rcv_last_tail = NULL; 7436 tcp->tcp_rcv_cnt = 0; 7437 } 7438 tcp->tcp_rcv_last_tail = NULL; 7439 7440 if ((mp = tcp->tcp_urp_mp) != NULL) { 7441 freemsg(mp); 7442 tcp->tcp_urp_mp = NULL; 7443 } 7444 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7445 freemsg(mp); 7446 tcp->tcp_urp_mark_mp = NULL; 7447 } 7448 if (tcp->tcp_fused_sigurg_mp != NULL) { 7449 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7450 freeb(tcp->tcp_fused_sigurg_mp); 7451 tcp->tcp_fused_sigurg_mp = NULL; 7452 } 7453 if (tcp->tcp_ordrel_mp != NULL) { 7454 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7455 freeb(tcp->tcp_ordrel_mp); 7456 tcp->tcp_ordrel_mp = NULL; 7457 } 7458 7459 /* 7460 * Following is a union with two members which are 7461 * identical types and size so the following cleanup 7462 * is enough. 7463 */ 7464 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7465 7466 CL_INET_DISCONNECT(tcp); 7467 7468 /* 7469 * The connection can't be on the tcp_time_wait_head list 7470 * since it is not detached. 7471 */ 7472 ASSERT(tcp->tcp_time_wait_next == NULL); 7473 ASSERT(tcp->tcp_time_wait_prev == NULL); 7474 ASSERT(tcp->tcp_time_wait_expire == 0); 7475 7476 if (tcp->tcp_kssl_pending) { 7477 tcp->tcp_kssl_pending = B_FALSE; 7478 7479 /* Don't reset if the initialized by bind. */ 7480 if (tcp->tcp_kssl_ent != NULL) { 7481 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7482 KSSL_NO_PROXY); 7483 } 7484 } 7485 if (tcp->tcp_kssl_ctx != NULL) { 7486 kssl_release_ctx(tcp->tcp_kssl_ctx); 7487 tcp->tcp_kssl_ctx = NULL; 7488 } 7489 7490 /* 7491 * Reset/preserve other values 7492 */ 7493 tcp_reinit_values(tcp); 7494 ipcl_hash_remove(tcp->tcp_connp); 7495 conn_delete_ire(tcp->tcp_connp, NULL); 7496 tcp_ipsec_cleanup(tcp); 7497 7498 if (tcp->tcp_conn_req_max != 0) { 7499 /* 7500 * This is the case when a TLI program uses the same 7501 * transport end point to accept a connection. This 7502 * makes the TCP both a listener and acceptor. When 7503 * this connection is closed, we need to set the state 7504 * back to TCPS_LISTEN. Make sure that the eager list 7505 * is reinitialized. 7506 * 7507 * Note that this stream is still bound to the four 7508 * tuples of the previous connection in IP. If a new 7509 * SYN with different foreign address comes in, IP will 7510 * not find it and will send it to the global queue. In 7511 * the global queue, TCP will do a tcp_lookup_listener() 7512 * to find this stream. This works because this stream 7513 * is only removed from connected hash. 7514 * 7515 */ 7516 tcp->tcp_state = TCPS_LISTEN; 7517 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7518 tcp->tcp_eager_next_drop_q0 = tcp; 7519 tcp->tcp_eager_prev_drop_q0 = tcp; 7520 tcp->tcp_connp->conn_recv = tcp_conn_request; 7521 if (tcp->tcp_family == AF_INET6) { 7522 ASSERT(tcp->tcp_connp->conn_af_isv6); 7523 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7524 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7525 } else { 7526 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7527 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7528 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7529 } 7530 } else { 7531 tcp->tcp_state = TCPS_BOUND; 7532 } 7533 7534 /* 7535 * Initialize to default values 7536 * Can't fail since enough header template space already allocated 7537 * at open(). 7538 */ 7539 err = tcp_init_values(tcp); 7540 ASSERT(err == 0); 7541 /* Restore state in tcp_tcph */ 7542 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7543 if (tcp->tcp_ipversion == IPV4_VERSION) 7544 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7545 else 7546 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7547 /* 7548 * Copy of the src addr. in tcp_t is needed in tcp_t 7549 * since the lookup funcs can only lookup on tcp_t 7550 */ 7551 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7552 7553 ASSERT(tcp->tcp_ptpbhn != NULL); 7554 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 7555 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7556 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7557 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7558 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7559 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7560 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7561 } 7562 7563 /* 7564 * Force values to zero that need be zero. 7565 * Do not touch values asociated with the BOUND or LISTEN state 7566 * since the connection will end up in that state after the reinit. 7567 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7568 * structure! 7569 */ 7570 static void 7571 tcp_reinit_values(tcp) 7572 tcp_t *tcp; 7573 { 7574 tcp_stack_t *tcps = tcp->tcp_tcps; 7575 7576 #ifndef lint 7577 #define DONTCARE(x) 7578 #define PRESERVE(x) 7579 #else 7580 #define DONTCARE(x) ((x) = (x)) 7581 #define PRESERVE(x) ((x) = (x)) 7582 #endif /* lint */ 7583 7584 PRESERVE(tcp->tcp_bind_hash_port); 7585 PRESERVE(tcp->tcp_bind_hash); 7586 PRESERVE(tcp->tcp_ptpbhn); 7587 PRESERVE(tcp->tcp_acceptor_hash); 7588 PRESERVE(tcp->tcp_ptpahn); 7589 7590 /* Should be ASSERT NULL on these with new code! */ 7591 ASSERT(tcp->tcp_time_wait_next == NULL); 7592 ASSERT(tcp->tcp_time_wait_prev == NULL); 7593 ASSERT(tcp->tcp_time_wait_expire == 0); 7594 PRESERVE(tcp->tcp_state); 7595 PRESERVE(tcp->tcp_rq); 7596 PRESERVE(tcp->tcp_wq); 7597 7598 ASSERT(tcp->tcp_xmit_head == NULL); 7599 ASSERT(tcp->tcp_xmit_last == NULL); 7600 ASSERT(tcp->tcp_unsent == 0); 7601 ASSERT(tcp->tcp_xmit_tail == NULL); 7602 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7603 7604 tcp->tcp_snxt = 0; /* Displayed in mib */ 7605 tcp->tcp_suna = 0; /* Displayed in mib */ 7606 tcp->tcp_swnd = 0; 7607 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7608 7609 ASSERT(tcp->tcp_ibsegs == 0); 7610 ASSERT(tcp->tcp_obsegs == 0); 7611 7612 if (tcp->tcp_iphc != NULL) { 7613 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7614 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7615 } 7616 7617 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7618 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7619 DONTCARE(tcp->tcp_ipha); 7620 DONTCARE(tcp->tcp_ip6h); 7621 DONTCARE(tcp->tcp_ip_hdr_len); 7622 DONTCARE(tcp->tcp_tcph); 7623 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7624 tcp->tcp_valid_bits = 0; 7625 7626 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7627 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7628 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7629 tcp->tcp_last_rcv_lbolt = 0; 7630 7631 tcp->tcp_init_cwnd = 0; 7632 7633 tcp->tcp_urp_last_valid = 0; 7634 tcp->tcp_hard_binding = 0; 7635 tcp->tcp_hard_bound = 0; 7636 PRESERVE(tcp->tcp_cred); 7637 PRESERVE(tcp->tcp_cpid); 7638 PRESERVE(tcp->tcp_open_time); 7639 PRESERVE(tcp->tcp_exclbind); 7640 7641 tcp->tcp_fin_acked = 0; 7642 tcp->tcp_fin_rcvd = 0; 7643 tcp->tcp_fin_sent = 0; 7644 tcp->tcp_ordrel_done = 0; 7645 7646 tcp->tcp_debug = 0; 7647 tcp->tcp_dontroute = 0; 7648 tcp->tcp_broadcast = 0; 7649 7650 tcp->tcp_useloopback = 0; 7651 tcp->tcp_reuseaddr = 0; 7652 tcp->tcp_oobinline = 0; 7653 tcp->tcp_dgram_errind = 0; 7654 7655 tcp->tcp_detached = 0; 7656 tcp->tcp_bind_pending = 0; 7657 tcp->tcp_unbind_pending = 0; 7658 7659 tcp->tcp_snd_ws_ok = B_FALSE; 7660 tcp->tcp_snd_ts_ok = B_FALSE; 7661 tcp->tcp_linger = 0; 7662 tcp->tcp_ka_enabled = 0; 7663 tcp->tcp_zero_win_probe = 0; 7664 7665 tcp->tcp_loopback = 0; 7666 tcp->tcp_refuse = 0; 7667 tcp->tcp_localnet = 0; 7668 tcp->tcp_syn_defense = 0; 7669 tcp->tcp_set_timer = 0; 7670 7671 tcp->tcp_active_open = 0; 7672 tcp->tcp_rexmit = B_FALSE; 7673 tcp->tcp_xmit_zc_clean = B_FALSE; 7674 7675 tcp->tcp_snd_sack_ok = B_FALSE; 7676 PRESERVE(tcp->tcp_recvdstaddr); 7677 tcp->tcp_hwcksum = B_FALSE; 7678 7679 tcp->tcp_ire_ill_check_done = B_FALSE; 7680 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7681 7682 tcp->tcp_mdt = B_FALSE; 7683 tcp->tcp_mdt_hdr_head = 0; 7684 tcp->tcp_mdt_hdr_tail = 0; 7685 7686 tcp->tcp_conn_def_q0 = 0; 7687 tcp->tcp_ip_forward_progress = B_FALSE; 7688 tcp->tcp_anon_priv_bind = 0; 7689 tcp->tcp_ecn_ok = B_FALSE; 7690 7691 tcp->tcp_cwr = B_FALSE; 7692 tcp->tcp_ecn_echo_on = B_FALSE; 7693 7694 if (tcp->tcp_sack_info != NULL) { 7695 if (tcp->tcp_notsack_list != NULL) { 7696 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7697 } 7698 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7699 tcp->tcp_sack_info = NULL; 7700 } 7701 7702 tcp->tcp_rcv_ws = 0; 7703 tcp->tcp_snd_ws = 0; 7704 tcp->tcp_ts_recent = 0; 7705 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7706 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7707 tcp->tcp_if_mtu = 0; 7708 7709 ASSERT(tcp->tcp_reass_head == NULL); 7710 ASSERT(tcp->tcp_reass_tail == NULL); 7711 7712 tcp->tcp_cwnd_cnt = 0; 7713 7714 ASSERT(tcp->tcp_rcv_list == NULL); 7715 ASSERT(tcp->tcp_rcv_last_head == NULL); 7716 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7717 ASSERT(tcp->tcp_rcv_cnt == 0); 7718 7719 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7720 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7721 tcp->tcp_csuna = 0; 7722 7723 tcp->tcp_rto = 0; /* Displayed in MIB */ 7724 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7725 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7726 tcp->tcp_rtt_update = 0; 7727 7728 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7729 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7730 7731 tcp->tcp_rack = 0; /* Displayed in mib */ 7732 tcp->tcp_rack_cnt = 0; 7733 tcp->tcp_rack_cur_max = 0; 7734 tcp->tcp_rack_abs_max = 0; 7735 7736 tcp->tcp_max_swnd = 0; 7737 7738 ASSERT(tcp->tcp_listener == NULL); 7739 7740 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7741 7742 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7743 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7744 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7745 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7746 7747 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7748 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7749 PRESERVE(tcp->tcp_conn_req_max); 7750 PRESERVE(tcp->tcp_conn_req_seqnum); 7751 7752 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7753 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7754 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7755 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7756 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7757 7758 tcp->tcp_lingertime = 0; 7759 7760 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7761 ASSERT(tcp->tcp_urp_mp == NULL); 7762 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7763 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7764 7765 ASSERT(tcp->tcp_eager_next_q == NULL); 7766 ASSERT(tcp->tcp_eager_last_q == NULL); 7767 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7768 tcp->tcp_eager_prev_q0 == NULL) || 7769 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7770 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7771 7772 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7773 tcp->tcp_eager_prev_drop_q0 == NULL) || 7774 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7775 7776 tcp->tcp_client_errno = 0; 7777 7778 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7779 7780 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7781 7782 PRESERVE(tcp->tcp_bound_source_v6); 7783 tcp->tcp_last_sent_len = 0; 7784 tcp->tcp_dupack_cnt = 0; 7785 7786 tcp->tcp_fport = 0; /* Displayed in MIB */ 7787 PRESERVE(tcp->tcp_lport); 7788 7789 PRESERVE(tcp->tcp_acceptor_lockp); 7790 7791 ASSERT(tcp->tcp_ordrel_mp == NULL); 7792 PRESERVE(tcp->tcp_acceptor_id); 7793 DONTCARE(tcp->tcp_ipsec_overhead); 7794 7795 PRESERVE(tcp->tcp_family); 7796 if (tcp->tcp_family == AF_INET6) { 7797 tcp->tcp_ipversion = IPV6_VERSION; 7798 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7799 } else { 7800 tcp->tcp_ipversion = IPV4_VERSION; 7801 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7802 } 7803 7804 tcp->tcp_bound_if = 0; 7805 tcp->tcp_ipv6_recvancillary = 0; 7806 tcp->tcp_recvifindex = 0; 7807 tcp->tcp_recvhops = 0; 7808 tcp->tcp_closed = 0; 7809 tcp->tcp_cleandeathtag = 0; 7810 if (tcp->tcp_hopopts != NULL) { 7811 mi_free(tcp->tcp_hopopts); 7812 tcp->tcp_hopopts = NULL; 7813 tcp->tcp_hopoptslen = 0; 7814 } 7815 ASSERT(tcp->tcp_hopoptslen == 0); 7816 if (tcp->tcp_dstopts != NULL) { 7817 mi_free(tcp->tcp_dstopts); 7818 tcp->tcp_dstopts = NULL; 7819 tcp->tcp_dstoptslen = 0; 7820 } 7821 ASSERT(tcp->tcp_dstoptslen == 0); 7822 if (tcp->tcp_rtdstopts != NULL) { 7823 mi_free(tcp->tcp_rtdstopts); 7824 tcp->tcp_rtdstopts = NULL; 7825 tcp->tcp_rtdstoptslen = 0; 7826 } 7827 ASSERT(tcp->tcp_rtdstoptslen == 0); 7828 if (tcp->tcp_rthdr != NULL) { 7829 mi_free(tcp->tcp_rthdr); 7830 tcp->tcp_rthdr = NULL; 7831 tcp->tcp_rthdrlen = 0; 7832 } 7833 ASSERT(tcp->tcp_rthdrlen == 0); 7834 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7835 7836 /* Reset fusion-related fields */ 7837 tcp->tcp_fused = B_FALSE; 7838 tcp->tcp_unfusable = B_FALSE; 7839 tcp->tcp_fused_sigurg = B_FALSE; 7840 tcp->tcp_direct_sockfs = B_FALSE; 7841 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7842 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7843 tcp->tcp_loopback_peer = NULL; 7844 tcp->tcp_fuse_rcv_hiwater = 0; 7845 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7846 tcp->tcp_fuse_rcv_unread_cnt = 0; 7847 7848 tcp->tcp_lso = B_FALSE; 7849 7850 tcp->tcp_in_ack_unsent = 0; 7851 tcp->tcp_cork = B_FALSE; 7852 tcp->tcp_tconnind_started = B_FALSE; 7853 7854 PRESERVE(tcp->tcp_squeue_bytes); 7855 7856 ASSERT(tcp->tcp_kssl_ctx == NULL); 7857 ASSERT(!tcp->tcp_kssl_pending); 7858 PRESERVE(tcp->tcp_kssl_ent); 7859 7860 /* Sodirect */ 7861 tcp->tcp_sodirect = NULL; 7862 7863 tcp->tcp_closemp_used = B_FALSE; 7864 7865 PRESERVE(tcp->tcp_rsrv_mp); 7866 PRESERVE(tcp->tcp_rsrv_mp_lock); 7867 7868 #ifdef DEBUG 7869 DONTCARE(tcp->tcmp_stk[0]); 7870 #endif 7871 7872 PRESERVE(tcp->tcp_connid); 7873 7874 7875 #undef DONTCARE 7876 #undef PRESERVE 7877 } 7878 7879 /* 7880 * Allocate necessary resources and initialize state vector. 7881 * Guaranteed not to fail so that when an error is returned, 7882 * the caller doesn't need to do any additional cleanup. 7883 */ 7884 int 7885 tcp_init(tcp_t *tcp, queue_t *q) 7886 { 7887 int err; 7888 7889 tcp->tcp_rq = q; 7890 tcp->tcp_wq = WR(q); 7891 tcp->tcp_state = TCPS_IDLE; 7892 if ((err = tcp_init_values(tcp)) != 0) 7893 tcp_timers_stop(tcp); 7894 return (err); 7895 } 7896 7897 static int 7898 tcp_init_values(tcp_t *tcp) 7899 { 7900 int err; 7901 tcp_stack_t *tcps = tcp->tcp_tcps; 7902 7903 ASSERT((tcp->tcp_family == AF_INET && 7904 tcp->tcp_ipversion == IPV4_VERSION) || 7905 (tcp->tcp_family == AF_INET6 && 7906 (tcp->tcp_ipversion == IPV4_VERSION || 7907 tcp->tcp_ipversion == IPV6_VERSION))); 7908 7909 /* 7910 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7911 * will be close to tcp_rexmit_interval_initial. By doing this, we 7912 * allow the algorithm to adjust slowly to large fluctuations of RTT 7913 * during first few transmissions of a connection as seen in slow 7914 * links. 7915 */ 7916 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7917 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7918 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7919 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7920 tcps->tcps_conn_grace_period; 7921 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7922 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7923 tcp->tcp_timer_backoff = 0; 7924 tcp->tcp_ms_we_have_waited = 0; 7925 tcp->tcp_last_recv_time = lbolt; 7926 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7927 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7928 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7929 7930 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7931 7932 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7933 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7934 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7935 /* 7936 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7937 * passive open. 7938 */ 7939 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7940 7941 tcp->tcp_naglim = tcps->tcps_naglim_def; 7942 7943 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7944 7945 tcp->tcp_mdt_hdr_head = 0; 7946 tcp->tcp_mdt_hdr_tail = 0; 7947 7948 /* Reset fusion-related fields */ 7949 tcp->tcp_fused = B_FALSE; 7950 tcp->tcp_unfusable = B_FALSE; 7951 tcp->tcp_fused_sigurg = B_FALSE; 7952 tcp->tcp_direct_sockfs = B_FALSE; 7953 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7954 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7955 tcp->tcp_loopback_peer = NULL; 7956 tcp->tcp_fuse_rcv_hiwater = 0; 7957 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7958 tcp->tcp_fuse_rcv_unread_cnt = 0; 7959 7960 /* Sodirect */ 7961 tcp->tcp_sodirect = NULL; 7962 7963 /* Initialize the header template */ 7964 if (tcp->tcp_ipversion == IPV4_VERSION) { 7965 err = tcp_header_init_ipv4(tcp); 7966 } else { 7967 err = tcp_header_init_ipv6(tcp); 7968 } 7969 if (err) 7970 return (err); 7971 7972 /* 7973 * Init the window scale to the max so tcp_rwnd_set() won't pare 7974 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7975 */ 7976 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7977 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7978 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7979 7980 tcp->tcp_cork = B_FALSE; 7981 /* 7982 * Init the tcp_debug option. This value determines whether TCP 7983 * calls strlog() to print out debug messages. Doing this 7984 * initialization here means that this value is not inherited thru 7985 * tcp_reinit(). 7986 */ 7987 tcp->tcp_debug = tcps->tcps_dbg; 7988 7989 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 7990 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 7991 7992 return (0); 7993 } 7994 7995 /* 7996 * Initialize the IPv4 header. Loses any record of any IP options. 7997 */ 7998 static int 7999 tcp_header_init_ipv4(tcp_t *tcp) 8000 { 8001 tcph_t *tcph; 8002 uint32_t sum; 8003 conn_t *connp; 8004 tcp_stack_t *tcps = tcp->tcp_tcps; 8005 8006 /* 8007 * This is a simple initialization. If there's 8008 * already a template, it should never be too small, 8009 * so reuse it. Otherwise, allocate space for the new one. 8010 */ 8011 if (tcp->tcp_iphc == NULL) { 8012 ASSERT(tcp->tcp_iphc_len == 0); 8013 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8014 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8015 if (tcp->tcp_iphc == NULL) { 8016 tcp->tcp_iphc_len = 0; 8017 return (ENOMEM); 8018 } 8019 } 8020 8021 /* options are gone; may need a new label */ 8022 connp = tcp->tcp_connp; 8023 connp->conn_mlp_type = mlptSingle; 8024 connp->conn_ulp_labeled = !is_system_labeled(); 8025 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8026 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8027 tcp->tcp_ip6h = NULL; 8028 tcp->tcp_ipversion = IPV4_VERSION; 8029 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8030 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8031 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8032 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8033 tcp->tcp_ipha->ipha_version_and_hdr_length 8034 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8035 tcp->tcp_ipha->ipha_ident = 0; 8036 8037 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8038 tcp->tcp_tos = 0; 8039 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8040 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8041 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8042 8043 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8044 tcp->tcp_tcph = tcph; 8045 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8046 /* 8047 * IP wants our header length in the checksum field to 8048 * allow it to perform a single pseudo-header+checksum 8049 * calculation on behalf of TCP. 8050 * Include the adjustment for a source route once IP_OPTIONS is set. 8051 */ 8052 sum = sizeof (tcph_t) + tcp->tcp_sum; 8053 sum = (sum >> 16) + (sum & 0xFFFF); 8054 U16_TO_ABE16(sum, tcph->th_sum); 8055 return (0); 8056 } 8057 8058 /* 8059 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8060 */ 8061 static int 8062 tcp_header_init_ipv6(tcp_t *tcp) 8063 { 8064 tcph_t *tcph; 8065 uint32_t sum; 8066 conn_t *connp; 8067 tcp_stack_t *tcps = tcp->tcp_tcps; 8068 8069 /* 8070 * This is a simple initialization. If there's 8071 * already a template, it should never be too small, 8072 * so reuse it. Otherwise, allocate space for the new one. 8073 * Ensure that there is enough space to "downgrade" the tcp_t 8074 * to an IPv4 tcp_t. This requires having space for a full load 8075 * of IPv4 options, as well as a full load of TCP options 8076 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8077 * than a v6 header and a TCP header with a full load of TCP options 8078 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8079 * We want to avoid reallocation in the "downgraded" case when 8080 * processing outbound IPv4 options. 8081 */ 8082 if (tcp->tcp_iphc == NULL) { 8083 ASSERT(tcp->tcp_iphc_len == 0); 8084 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8085 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8086 if (tcp->tcp_iphc == NULL) { 8087 tcp->tcp_iphc_len = 0; 8088 return (ENOMEM); 8089 } 8090 } 8091 8092 /* options are gone; may need a new label */ 8093 connp = tcp->tcp_connp; 8094 connp->conn_mlp_type = mlptSingle; 8095 connp->conn_ulp_labeled = !is_system_labeled(); 8096 8097 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8098 tcp->tcp_ipversion = IPV6_VERSION; 8099 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8100 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8101 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8102 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8103 tcp->tcp_ipha = NULL; 8104 8105 /* Initialize the header template */ 8106 8107 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8108 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8109 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8110 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8111 8112 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8113 tcp->tcp_tcph = tcph; 8114 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8115 /* 8116 * IP wants our header length in the checksum field to 8117 * allow it to perform a single psuedo-header+checksum 8118 * calculation on behalf of TCP. 8119 * Include the adjustment for a source route when IPV6_RTHDR is set. 8120 */ 8121 sum = sizeof (tcph_t) + tcp->tcp_sum; 8122 sum = (sum >> 16) + (sum & 0xFFFF); 8123 U16_TO_ABE16(sum, tcph->th_sum); 8124 return (0); 8125 } 8126 8127 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8128 #define ICMP_MIN_TCP_HDR 8 8129 8130 /* 8131 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8132 * passed up by IP. The message is always received on the correct tcp_t. 8133 * Assumes that IP has pulled up everything up to and including the ICMP header. 8134 */ 8135 void 8136 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8137 { 8138 icmph_t *icmph; 8139 ipha_t *ipha; 8140 int iph_hdr_length; 8141 tcph_t *tcph; 8142 boolean_t ipsec_mctl = B_FALSE; 8143 boolean_t secure; 8144 mblk_t *first_mp = mp; 8145 int32_t new_mss; 8146 uint32_t ratio; 8147 size_t mp_size = MBLKL(mp); 8148 uint32_t seg_seq; 8149 tcp_stack_t *tcps = tcp->tcp_tcps; 8150 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8151 8152 /* Assume IP provides aligned packets - otherwise toss */ 8153 if (!OK_32PTR(mp->b_rptr)) { 8154 freemsg(mp); 8155 return; 8156 } 8157 8158 /* 8159 * Since ICMP errors are normal data marked with M_CTL when sent 8160 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8161 * packets starting with an ipsec_info_t, see ipsec_info.h. 8162 */ 8163 if ((mp_size == sizeof (ipsec_info_t)) && 8164 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8165 ASSERT(mp->b_cont != NULL); 8166 mp = mp->b_cont; 8167 /* IP should have done this */ 8168 ASSERT(OK_32PTR(mp->b_rptr)); 8169 mp_size = MBLKL(mp); 8170 ipsec_mctl = B_TRUE; 8171 } 8172 8173 /* 8174 * Verify that we have a complete outer IP header. If not, drop it. 8175 */ 8176 if (mp_size < sizeof (ipha_t)) { 8177 noticmpv4: 8178 freemsg(first_mp); 8179 return; 8180 } 8181 8182 ipha = (ipha_t *)mp->b_rptr; 8183 /* 8184 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8185 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8186 */ 8187 switch (IPH_HDR_VERSION(ipha)) { 8188 case IPV6_VERSION: 8189 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8190 return; 8191 case IPV4_VERSION: 8192 break; 8193 default: 8194 goto noticmpv4; 8195 } 8196 8197 /* Skip past the outer IP and ICMP headers */ 8198 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8199 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8200 /* 8201 * If we don't have the correct outer IP header length or if the ULP 8202 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8203 * send it upstream. 8204 */ 8205 if (iph_hdr_length < sizeof (ipha_t) || 8206 ipha->ipha_protocol != IPPROTO_ICMP || 8207 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8208 goto noticmpv4; 8209 } 8210 ipha = (ipha_t *)&icmph[1]; 8211 8212 /* Skip past the inner IP and find the ULP header */ 8213 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8214 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8215 /* 8216 * If we don't have the correct inner IP header length or if the ULP 8217 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8218 * bytes of TCP header, drop it. 8219 */ 8220 if (iph_hdr_length < sizeof (ipha_t) || 8221 ipha->ipha_protocol != IPPROTO_TCP || 8222 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8223 goto noticmpv4; 8224 } 8225 8226 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8227 if (ipsec_mctl) { 8228 secure = ipsec_in_is_secure(first_mp); 8229 } else { 8230 secure = B_FALSE; 8231 } 8232 if (secure) { 8233 /* 8234 * If we are willing to accept this in clear 8235 * we don't have to verify policy. 8236 */ 8237 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8238 if (!tcp_check_policy(tcp, first_mp, 8239 ipha, NULL, secure, ipsec_mctl)) { 8240 /* 8241 * tcp_check_policy called 8242 * ip_drop_packet() on failure. 8243 */ 8244 return; 8245 } 8246 } 8247 } 8248 } else if (ipsec_mctl) { 8249 /* 8250 * This is a hard_bound connection. IP has already 8251 * verified policy. We don't have to do it again. 8252 */ 8253 freeb(first_mp); 8254 first_mp = mp; 8255 ipsec_mctl = B_FALSE; 8256 } 8257 8258 seg_seq = ABE32_TO_U32(tcph->th_seq); 8259 /* 8260 * TCP SHOULD check that the TCP sequence number contained in 8261 * payload of the ICMP error message is within the range 8262 * SND.UNA <= SEG.SEQ < SND.NXT. 8263 */ 8264 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8265 /* 8266 * The ICMP message is bogus, just drop it. But if this is 8267 * an ICMP too big message, IP has already changed 8268 * the ire_max_frag to the bogus value. We need to change 8269 * it back. 8270 */ 8271 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8272 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8273 conn_t *connp = tcp->tcp_connp; 8274 ire_t *ire; 8275 int flag; 8276 8277 if (tcp->tcp_ipversion == IPV4_VERSION) { 8278 flag = tcp->tcp_ipha-> 8279 ipha_fragment_offset_and_flags; 8280 } else { 8281 flag = 0; 8282 } 8283 mutex_enter(&connp->conn_lock); 8284 if ((ire = connp->conn_ire_cache) != NULL) { 8285 mutex_enter(&ire->ire_lock); 8286 mutex_exit(&connp->conn_lock); 8287 ire->ire_max_frag = tcp->tcp_if_mtu; 8288 ire->ire_frag_flag |= flag; 8289 mutex_exit(&ire->ire_lock); 8290 } else { 8291 mutex_exit(&connp->conn_lock); 8292 } 8293 } 8294 goto noticmpv4; 8295 } 8296 8297 switch (icmph->icmph_type) { 8298 case ICMP_DEST_UNREACHABLE: 8299 switch (icmph->icmph_code) { 8300 case ICMP_FRAGMENTATION_NEEDED: 8301 /* 8302 * Reduce the MSS based on the new MTU. This will 8303 * eliminate any fragmentation locally. 8304 * N.B. There may well be some funny side-effects on 8305 * the local send policy and the remote receive policy. 8306 * Pending further research, we provide 8307 * tcp_ignore_path_mtu just in case this proves 8308 * disastrous somewhere. 8309 * 8310 * After updating the MSS, retransmit part of the 8311 * dropped segment using the new mss by calling 8312 * tcp_wput_data(). Need to adjust all those 8313 * params to make sure tcp_wput_data() work properly. 8314 */ 8315 if (tcps->tcps_ignore_path_mtu || 8316 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8317 break; 8318 8319 /* 8320 * Decrease the MSS by time stamp options 8321 * IP options and IPSEC options. tcp_hdr_len 8322 * includes time stamp option and IP option 8323 * length. Note that new_mss may be negative 8324 * if tcp_ipsec_overhead is large and the 8325 * icmph_du_mtu is the minimum value, which is 68. 8326 */ 8327 new_mss = ntohs(icmph->icmph_du_mtu) - 8328 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8329 8330 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8331 new_mss); 8332 8333 /* 8334 * Only update the MSS if the new one is 8335 * smaller than the previous one. This is 8336 * to avoid problems when getting multiple 8337 * ICMP errors for the same MTU. 8338 */ 8339 if (new_mss >= tcp->tcp_mss) 8340 break; 8341 8342 /* 8343 * Note that we are using the template header's DF 8344 * bit in the fast path sending. So we need to compare 8345 * the new mss with both tcps_mss_min and ip_pmtu_min. 8346 * And stop doing IPv4 PMTUd if new_mss is less than 8347 * MAX(tcps_mss_min, ip_pmtu_min). 8348 */ 8349 if (new_mss < tcps->tcps_mss_min || 8350 new_mss < ipst->ips_ip_pmtu_min) { 8351 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8352 0; 8353 } 8354 8355 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8356 ASSERT(ratio >= 1); 8357 tcp_mss_set(tcp, new_mss, B_TRUE); 8358 8359 /* 8360 * Make sure we have something to 8361 * send. 8362 */ 8363 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8364 (tcp->tcp_xmit_head != NULL)) { 8365 /* 8366 * Shrink tcp_cwnd in 8367 * proportion to the old MSS/new MSS. 8368 */ 8369 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8370 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8371 (tcp->tcp_unsent == 0)) { 8372 tcp->tcp_rexmit_max = tcp->tcp_fss; 8373 } else { 8374 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8375 } 8376 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8377 tcp->tcp_rexmit = B_TRUE; 8378 tcp->tcp_dupack_cnt = 0; 8379 tcp->tcp_snd_burst = TCP_CWND_SS; 8380 tcp_ss_rexmit(tcp); 8381 } 8382 break; 8383 case ICMP_PORT_UNREACHABLE: 8384 case ICMP_PROTOCOL_UNREACHABLE: 8385 switch (tcp->tcp_state) { 8386 case TCPS_SYN_SENT: 8387 case TCPS_SYN_RCVD: 8388 /* 8389 * ICMP can snipe away incipient 8390 * TCP connections as long as 8391 * seq number is same as initial 8392 * send seq number. 8393 */ 8394 if (seg_seq == tcp->tcp_iss) { 8395 (void) tcp_clean_death(tcp, 8396 ECONNREFUSED, 6); 8397 } 8398 break; 8399 } 8400 break; 8401 case ICMP_HOST_UNREACHABLE: 8402 case ICMP_NET_UNREACHABLE: 8403 /* Record the error in case we finally time out. */ 8404 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8405 tcp->tcp_client_errno = EHOSTUNREACH; 8406 else 8407 tcp->tcp_client_errno = ENETUNREACH; 8408 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8409 if (tcp->tcp_listener != NULL && 8410 tcp->tcp_listener->tcp_syn_defense) { 8411 /* 8412 * Ditch the half-open connection if we 8413 * suspect a SYN attack is under way. 8414 */ 8415 tcp_ip_ire_mark_advice(tcp); 8416 (void) tcp_clean_death(tcp, 8417 tcp->tcp_client_errno, 7); 8418 } 8419 } 8420 break; 8421 default: 8422 break; 8423 } 8424 break; 8425 case ICMP_SOURCE_QUENCH: { 8426 /* 8427 * use a global boolean to control 8428 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8429 * The default is false. 8430 */ 8431 if (tcp_icmp_source_quench) { 8432 /* 8433 * Reduce the sending rate as if we got a 8434 * retransmit timeout 8435 */ 8436 uint32_t npkt; 8437 8438 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8439 tcp->tcp_mss; 8440 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8441 tcp->tcp_cwnd = tcp->tcp_mss; 8442 tcp->tcp_cwnd_cnt = 0; 8443 } 8444 break; 8445 } 8446 } 8447 freemsg(first_mp); 8448 } 8449 8450 /* 8451 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8452 * error messages passed up by IP. 8453 * Assumes that IP has pulled up all the extension headers as well 8454 * as the ICMPv6 header. 8455 */ 8456 static void 8457 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8458 { 8459 icmp6_t *icmp6; 8460 ip6_t *ip6h; 8461 uint16_t iph_hdr_length; 8462 tcpha_t *tcpha; 8463 uint8_t *nexthdrp; 8464 uint32_t new_mss; 8465 uint32_t ratio; 8466 boolean_t secure; 8467 mblk_t *first_mp = mp; 8468 size_t mp_size; 8469 uint32_t seg_seq; 8470 tcp_stack_t *tcps = tcp->tcp_tcps; 8471 8472 /* 8473 * The caller has determined if this is an IPSEC_IN packet and 8474 * set ipsec_mctl appropriately (see tcp_icmp_error). 8475 */ 8476 if (ipsec_mctl) 8477 mp = mp->b_cont; 8478 8479 mp_size = MBLKL(mp); 8480 8481 /* 8482 * Verify that we have a complete IP header. If not, send it upstream. 8483 */ 8484 if (mp_size < sizeof (ip6_t)) { 8485 noticmpv6: 8486 freemsg(first_mp); 8487 return; 8488 } 8489 8490 /* 8491 * Verify this is an ICMPV6 packet, else send it upstream. 8492 */ 8493 ip6h = (ip6_t *)mp->b_rptr; 8494 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8495 iph_hdr_length = IPV6_HDR_LEN; 8496 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8497 &nexthdrp) || 8498 *nexthdrp != IPPROTO_ICMPV6) { 8499 goto noticmpv6; 8500 } 8501 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8502 ip6h = (ip6_t *)&icmp6[1]; 8503 /* 8504 * Verify if we have a complete ICMP and inner IP header. 8505 */ 8506 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8507 goto noticmpv6; 8508 8509 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8510 goto noticmpv6; 8511 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8512 /* 8513 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8514 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8515 * packet. 8516 */ 8517 if ((*nexthdrp != IPPROTO_TCP) || 8518 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8519 goto noticmpv6; 8520 } 8521 8522 /* 8523 * ICMP errors come on the right queue or come on 8524 * listener/global queue for detached connections and 8525 * get switched to the right queue. If it comes on the 8526 * right queue, policy check has already been done by IP 8527 * and thus free the first_mp without verifying the policy. 8528 * If it has come for a non-hard bound connection, we need 8529 * to verify policy as IP may not have done it. 8530 */ 8531 if (!tcp->tcp_hard_bound) { 8532 if (ipsec_mctl) { 8533 secure = ipsec_in_is_secure(first_mp); 8534 } else { 8535 secure = B_FALSE; 8536 } 8537 if (secure) { 8538 /* 8539 * If we are willing to accept this in clear 8540 * we don't have to verify policy. 8541 */ 8542 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8543 if (!tcp_check_policy(tcp, first_mp, 8544 NULL, ip6h, secure, ipsec_mctl)) { 8545 /* 8546 * tcp_check_policy called 8547 * ip_drop_packet() on failure. 8548 */ 8549 return; 8550 } 8551 } 8552 } 8553 } else if (ipsec_mctl) { 8554 /* 8555 * This is a hard_bound connection. IP has already 8556 * verified policy. We don't have to do it again. 8557 */ 8558 freeb(first_mp); 8559 first_mp = mp; 8560 ipsec_mctl = B_FALSE; 8561 } 8562 8563 seg_seq = ntohl(tcpha->tha_seq); 8564 /* 8565 * TCP SHOULD check that the TCP sequence number contained in 8566 * payload of the ICMP error message is within the range 8567 * SND.UNA <= SEG.SEQ < SND.NXT. 8568 */ 8569 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8570 /* 8571 * If the ICMP message is bogus, should we kill the 8572 * connection, or should we just drop the bogus ICMP 8573 * message? It would probably make more sense to just 8574 * drop the message so that if this one managed to get 8575 * in, the real connection should not suffer. 8576 */ 8577 goto noticmpv6; 8578 } 8579 8580 switch (icmp6->icmp6_type) { 8581 case ICMP6_PACKET_TOO_BIG: 8582 /* 8583 * Reduce the MSS based on the new MTU. This will 8584 * eliminate any fragmentation locally. 8585 * N.B. There may well be some funny side-effects on 8586 * the local send policy and the remote receive policy. 8587 * Pending further research, we provide 8588 * tcp_ignore_path_mtu just in case this proves 8589 * disastrous somewhere. 8590 * 8591 * After updating the MSS, retransmit part of the 8592 * dropped segment using the new mss by calling 8593 * tcp_wput_data(). Need to adjust all those 8594 * params to make sure tcp_wput_data() work properly. 8595 */ 8596 if (tcps->tcps_ignore_path_mtu) 8597 break; 8598 8599 /* 8600 * Decrease the MSS by time stamp options 8601 * IP options and IPSEC options. tcp_hdr_len 8602 * includes time stamp option and IP option 8603 * length. 8604 */ 8605 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8606 tcp->tcp_ipsec_overhead; 8607 8608 /* 8609 * Only update the MSS if the new one is 8610 * smaller than the previous one. This is 8611 * to avoid problems when getting multiple 8612 * ICMP errors for the same MTU. 8613 */ 8614 if (new_mss >= tcp->tcp_mss) 8615 break; 8616 8617 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8618 ASSERT(ratio >= 1); 8619 tcp_mss_set(tcp, new_mss, B_TRUE); 8620 8621 /* 8622 * Make sure we have something to 8623 * send. 8624 */ 8625 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8626 (tcp->tcp_xmit_head != NULL)) { 8627 /* 8628 * Shrink tcp_cwnd in 8629 * proportion to the old MSS/new MSS. 8630 */ 8631 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8632 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8633 (tcp->tcp_unsent == 0)) { 8634 tcp->tcp_rexmit_max = tcp->tcp_fss; 8635 } else { 8636 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8637 } 8638 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8639 tcp->tcp_rexmit = B_TRUE; 8640 tcp->tcp_dupack_cnt = 0; 8641 tcp->tcp_snd_burst = TCP_CWND_SS; 8642 tcp_ss_rexmit(tcp); 8643 } 8644 break; 8645 8646 case ICMP6_DST_UNREACH: 8647 switch (icmp6->icmp6_code) { 8648 case ICMP6_DST_UNREACH_NOPORT: 8649 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8650 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8651 (seg_seq == tcp->tcp_iss)) { 8652 (void) tcp_clean_death(tcp, 8653 ECONNREFUSED, 8); 8654 } 8655 break; 8656 8657 case ICMP6_DST_UNREACH_ADMIN: 8658 case ICMP6_DST_UNREACH_NOROUTE: 8659 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8660 case ICMP6_DST_UNREACH_ADDR: 8661 /* Record the error in case we finally time out. */ 8662 tcp->tcp_client_errno = EHOSTUNREACH; 8663 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8664 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8665 (seg_seq == tcp->tcp_iss)) { 8666 if (tcp->tcp_listener != NULL && 8667 tcp->tcp_listener->tcp_syn_defense) { 8668 /* 8669 * Ditch the half-open connection if we 8670 * suspect a SYN attack is under way. 8671 */ 8672 tcp_ip_ire_mark_advice(tcp); 8673 (void) tcp_clean_death(tcp, 8674 tcp->tcp_client_errno, 9); 8675 } 8676 } 8677 8678 8679 break; 8680 default: 8681 break; 8682 } 8683 break; 8684 8685 case ICMP6_PARAM_PROB: 8686 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8687 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8688 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8689 (uchar_t *)nexthdrp) { 8690 if (tcp->tcp_state == TCPS_SYN_SENT || 8691 tcp->tcp_state == TCPS_SYN_RCVD) { 8692 (void) tcp_clean_death(tcp, 8693 ECONNREFUSED, 10); 8694 } 8695 break; 8696 } 8697 break; 8698 8699 case ICMP6_TIME_EXCEEDED: 8700 default: 8701 break; 8702 } 8703 freemsg(first_mp); 8704 } 8705 8706 /* 8707 * Notify IP that we are having trouble with this connection. IP should 8708 * blow the IRE away and start over. 8709 */ 8710 static void 8711 tcp_ip_notify(tcp_t *tcp) 8712 { 8713 struct iocblk *iocp; 8714 ipid_t *ipid; 8715 mblk_t *mp; 8716 8717 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8718 if (tcp->tcp_ipversion == IPV6_VERSION) 8719 return; 8720 8721 mp = mkiocb(IP_IOCTL); 8722 if (mp == NULL) 8723 return; 8724 8725 iocp = (struct iocblk *)mp->b_rptr; 8726 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8727 8728 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8729 if (!mp->b_cont) { 8730 freeb(mp); 8731 return; 8732 } 8733 8734 ipid = (ipid_t *)mp->b_cont->b_rptr; 8735 mp->b_cont->b_wptr += iocp->ioc_count; 8736 bzero(ipid, sizeof (*ipid)); 8737 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8738 ipid->ipid_ire_type = IRE_CACHE; 8739 ipid->ipid_addr_offset = sizeof (ipid_t); 8740 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8741 /* 8742 * Note: in the case of source routing we want to blow away the 8743 * route to the first source route hop. 8744 */ 8745 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8746 sizeof (tcp->tcp_ipha->ipha_dst)); 8747 8748 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8749 } 8750 8751 /* Unlink and return any mblk that looks like it contains an ire */ 8752 static mblk_t * 8753 tcp_ire_mp(mblk_t **mpp) 8754 { 8755 mblk_t *mp = *mpp; 8756 mblk_t *prev_mp = NULL; 8757 8758 for (;;) { 8759 switch (DB_TYPE(mp)) { 8760 case IRE_DB_TYPE: 8761 case IRE_DB_REQ_TYPE: 8762 if (mp == *mpp) { 8763 *mpp = mp->b_cont; 8764 } else { 8765 prev_mp->b_cont = mp->b_cont; 8766 } 8767 mp->b_cont = NULL; 8768 return (mp); 8769 default: 8770 break; 8771 } 8772 prev_mp = mp; 8773 mp = mp->b_cont; 8774 if (mp == NULL) 8775 break; 8776 } 8777 return (mp); 8778 } 8779 8780 /* 8781 * Timer callback routine for keepalive probe. We do a fake resend of 8782 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8783 * check to see if we have heard anything from the other end for the last 8784 * RTO period. If we have, set the timer to expire for another 8785 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8786 * RTO << 1 and check again when it expires. Keep exponentially increasing 8787 * the timeout if we have not heard from the other side. If for more than 8788 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8789 * kill the connection unless the keepalive abort threshold is 0. In 8790 * that case, we will probe "forever." 8791 */ 8792 static void 8793 tcp_keepalive_killer(void *arg) 8794 { 8795 mblk_t *mp; 8796 conn_t *connp = (conn_t *)arg; 8797 tcp_t *tcp = connp->conn_tcp; 8798 int32_t firetime; 8799 int32_t idletime; 8800 int32_t ka_intrvl; 8801 tcp_stack_t *tcps = tcp->tcp_tcps; 8802 8803 tcp->tcp_ka_tid = 0; 8804 8805 if (tcp->tcp_fused) 8806 return; 8807 8808 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8809 ka_intrvl = tcp->tcp_ka_interval; 8810 8811 /* 8812 * Keepalive probe should only be sent if the application has not 8813 * done a close on the connection. 8814 */ 8815 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8816 return; 8817 } 8818 /* Timer fired too early, restart it. */ 8819 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8820 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8821 MSEC_TO_TICK(ka_intrvl)); 8822 return; 8823 } 8824 8825 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8826 /* 8827 * If we have not heard from the other side for a long 8828 * time, kill the connection unless the keepalive abort 8829 * threshold is 0. In that case, we will probe "forever." 8830 */ 8831 if (tcp->tcp_ka_abort_thres != 0 && 8832 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8833 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8834 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8835 tcp->tcp_client_errno : ETIMEDOUT, 11); 8836 return; 8837 } 8838 8839 if (tcp->tcp_snxt == tcp->tcp_suna && 8840 idletime >= ka_intrvl) { 8841 /* Fake resend of last ACKed byte. */ 8842 mblk_t *mp1 = allocb(1, BPRI_LO); 8843 8844 if (mp1 != NULL) { 8845 *mp1->b_wptr++ = '\0'; 8846 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8847 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8848 freeb(mp1); 8849 /* 8850 * if allocation failed, fall through to start the 8851 * timer back. 8852 */ 8853 if (mp != NULL) { 8854 tcp_send_data(tcp, tcp->tcp_wq, mp); 8855 BUMP_MIB(&tcps->tcps_mib, 8856 tcpTimKeepaliveProbe); 8857 if (tcp->tcp_ka_last_intrvl != 0) { 8858 int max; 8859 /* 8860 * We should probe again at least 8861 * in ka_intrvl, but not more than 8862 * tcp_rexmit_interval_max. 8863 */ 8864 max = tcps->tcps_rexmit_interval_max; 8865 firetime = MIN(ka_intrvl - 1, 8866 tcp->tcp_ka_last_intrvl << 1); 8867 if (firetime > max) 8868 firetime = max; 8869 } else { 8870 firetime = tcp->tcp_rto; 8871 } 8872 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8873 tcp_keepalive_killer, 8874 MSEC_TO_TICK(firetime)); 8875 tcp->tcp_ka_last_intrvl = firetime; 8876 return; 8877 } 8878 } 8879 } else { 8880 tcp->tcp_ka_last_intrvl = 0; 8881 } 8882 8883 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8884 if ((firetime = ka_intrvl - idletime) < 0) { 8885 firetime = ka_intrvl; 8886 } 8887 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8888 MSEC_TO_TICK(firetime)); 8889 } 8890 8891 int 8892 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8893 { 8894 queue_t *q = tcp->tcp_rq; 8895 int32_t mss = tcp->tcp_mss; 8896 int maxpsz; 8897 conn_t *connp = tcp->tcp_connp; 8898 8899 if (TCP_IS_DETACHED(tcp)) 8900 return (mss); 8901 if (tcp->tcp_fused) { 8902 maxpsz = tcp_fuse_maxpsz_set(tcp); 8903 mss = INFPSZ; 8904 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8905 /* 8906 * Set the sd_qn_maxpsz according to the socket send buffer 8907 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8908 * instruct the stream head to copyin user data into contiguous 8909 * kernel-allocated buffers without breaking it up into smaller 8910 * chunks. We round up the buffer size to the nearest SMSS. 8911 */ 8912 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8913 if (tcp->tcp_kssl_ctx == NULL) 8914 mss = INFPSZ; 8915 else 8916 mss = SSL3_MAX_RECORD_LEN; 8917 } else { 8918 /* 8919 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8920 * (and a multiple of the mss). This instructs the stream 8921 * head to break down larger than SMSS writes into SMSS- 8922 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8923 */ 8924 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8925 maxpsz = tcp->tcp_maxpsz * mss; 8926 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8927 maxpsz = tcp->tcp_xmit_hiwater/2; 8928 /* Round up to nearest mss */ 8929 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8930 } 8931 } 8932 8933 (void) proto_set_maxpsz(q, connp, maxpsz); 8934 if (!(IPCL_IS_NONSTR(connp))) { 8935 /* XXX do it in set_maxpsz()? */ 8936 tcp->tcp_wq->q_maxpsz = maxpsz; 8937 } 8938 8939 if (set_maxblk) 8940 (void) proto_set_tx_maxblk(q, connp, mss); 8941 return (mss); 8942 } 8943 8944 /* 8945 * Extract option values from a tcp header. We put any found values into the 8946 * tcpopt struct and return a bitmask saying which options were found. 8947 */ 8948 static int 8949 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8950 { 8951 uchar_t *endp; 8952 int len; 8953 uint32_t mss; 8954 uchar_t *up = (uchar_t *)tcph; 8955 int found = 0; 8956 int32_t sack_len; 8957 tcp_seq sack_begin, sack_end; 8958 tcp_t *tcp; 8959 8960 endp = up + TCP_HDR_LENGTH(tcph); 8961 up += TCP_MIN_HEADER_LENGTH; 8962 while (up < endp) { 8963 len = endp - up; 8964 switch (*up) { 8965 case TCPOPT_EOL: 8966 break; 8967 8968 case TCPOPT_NOP: 8969 up++; 8970 continue; 8971 8972 case TCPOPT_MAXSEG: 8973 if (len < TCPOPT_MAXSEG_LEN || 8974 up[1] != TCPOPT_MAXSEG_LEN) 8975 break; 8976 8977 mss = BE16_TO_U16(up+2); 8978 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8979 tcpopt->tcp_opt_mss = mss; 8980 found |= TCP_OPT_MSS_PRESENT; 8981 8982 up += TCPOPT_MAXSEG_LEN; 8983 continue; 8984 8985 case TCPOPT_WSCALE: 8986 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8987 break; 8988 8989 if (up[2] > TCP_MAX_WINSHIFT) 8990 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8991 else 8992 tcpopt->tcp_opt_wscale = up[2]; 8993 found |= TCP_OPT_WSCALE_PRESENT; 8994 8995 up += TCPOPT_WS_LEN; 8996 continue; 8997 8998 case TCPOPT_SACK_PERMITTED: 8999 if (len < TCPOPT_SACK_OK_LEN || 9000 up[1] != TCPOPT_SACK_OK_LEN) 9001 break; 9002 found |= TCP_OPT_SACK_OK_PRESENT; 9003 up += TCPOPT_SACK_OK_LEN; 9004 continue; 9005 9006 case TCPOPT_SACK: 9007 if (len <= 2 || up[1] <= 2 || len < up[1]) 9008 break; 9009 9010 /* If TCP is not interested in SACK blks... */ 9011 if ((tcp = tcpopt->tcp) == NULL) { 9012 up += up[1]; 9013 continue; 9014 } 9015 sack_len = up[1] - TCPOPT_HEADER_LEN; 9016 up += TCPOPT_HEADER_LEN; 9017 9018 /* 9019 * If the list is empty, allocate one and assume 9020 * nothing is sack'ed. 9021 */ 9022 ASSERT(tcp->tcp_sack_info != NULL); 9023 if (tcp->tcp_notsack_list == NULL) { 9024 tcp_notsack_update(&(tcp->tcp_notsack_list), 9025 tcp->tcp_suna, tcp->tcp_snxt, 9026 &(tcp->tcp_num_notsack_blk), 9027 &(tcp->tcp_cnt_notsack_list)); 9028 9029 /* 9030 * Make sure tcp_notsack_list is not NULL. 9031 * This happens when kmem_alloc(KM_NOSLEEP) 9032 * returns NULL. 9033 */ 9034 if (tcp->tcp_notsack_list == NULL) { 9035 up += sack_len; 9036 continue; 9037 } 9038 tcp->tcp_fack = tcp->tcp_suna; 9039 } 9040 9041 while (sack_len > 0) { 9042 if (up + 8 > endp) { 9043 up = endp; 9044 break; 9045 } 9046 sack_begin = BE32_TO_U32(up); 9047 up += 4; 9048 sack_end = BE32_TO_U32(up); 9049 up += 4; 9050 sack_len -= 8; 9051 /* 9052 * Bounds checking. Make sure the SACK 9053 * info is within tcp_suna and tcp_snxt. 9054 * If this SACK blk is out of bound, ignore 9055 * it but continue to parse the following 9056 * blks. 9057 */ 9058 if (SEQ_LEQ(sack_end, sack_begin) || 9059 SEQ_LT(sack_begin, tcp->tcp_suna) || 9060 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9061 continue; 9062 } 9063 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9064 sack_begin, sack_end, 9065 &(tcp->tcp_num_notsack_blk), 9066 &(tcp->tcp_cnt_notsack_list)); 9067 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9068 tcp->tcp_fack = sack_end; 9069 } 9070 } 9071 found |= TCP_OPT_SACK_PRESENT; 9072 continue; 9073 9074 case TCPOPT_TSTAMP: 9075 if (len < TCPOPT_TSTAMP_LEN || 9076 up[1] != TCPOPT_TSTAMP_LEN) 9077 break; 9078 9079 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9080 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9081 9082 found |= TCP_OPT_TSTAMP_PRESENT; 9083 9084 up += TCPOPT_TSTAMP_LEN; 9085 continue; 9086 9087 default: 9088 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9089 break; 9090 up += up[1]; 9091 continue; 9092 } 9093 break; 9094 } 9095 return (found); 9096 } 9097 9098 /* 9099 * Set the mss associated with a particular tcp based on its current value, 9100 * and a new one passed in. Observe minimums and maximums, and reset 9101 * other state variables that we want to view as multiples of mss. 9102 * 9103 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9104 * highwater marks etc. need to be initialized or adjusted. 9105 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9106 * packet arrives. 9107 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9108 * ICMP6_PACKET_TOO_BIG arrives. 9109 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9110 * to increase the MSS to use the extra bytes available. 9111 * 9112 * Callers except tcp_paws_check() ensure that they only reduce mss. 9113 */ 9114 static void 9115 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9116 { 9117 uint32_t mss_max; 9118 tcp_stack_t *tcps = tcp->tcp_tcps; 9119 9120 if (tcp->tcp_ipversion == IPV4_VERSION) 9121 mss_max = tcps->tcps_mss_max_ipv4; 9122 else 9123 mss_max = tcps->tcps_mss_max_ipv6; 9124 9125 if (mss < tcps->tcps_mss_min) 9126 mss = tcps->tcps_mss_min; 9127 if (mss > mss_max) 9128 mss = mss_max; 9129 /* 9130 * Unless naglim has been set by our client to 9131 * a non-mss value, force naglim to track mss. 9132 * This can help to aggregate small writes. 9133 */ 9134 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9135 tcp->tcp_naglim = mss; 9136 /* 9137 * TCP should be able to buffer at least 4 MSS data for obvious 9138 * performance reason. 9139 */ 9140 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9141 tcp->tcp_xmit_hiwater = mss << 2; 9142 9143 if (do_ss) { 9144 /* 9145 * Either the tcp_cwnd is as yet uninitialized, or mss is 9146 * changing due to a reduction in MTU, presumably as a 9147 * result of a new path component, reset cwnd to its 9148 * "initial" value, as a multiple of the new mss. 9149 */ 9150 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9151 } else { 9152 /* 9153 * Called by tcp_paws_check(), the mss increased 9154 * marginally to allow use of space previously taken 9155 * by the timestamp option. It would be inappropriate 9156 * to apply slow start or tcp_init_cwnd values to 9157 * tcp_cwnd, simply adjust to a multiple of the new mss. 9158 */ 9159 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9160 tcp->tcp_cwnd_cnt = 0; 9161 } 9162 tcp->tcp_mss = mss; 9163 (void) tcp_maxpsz_set(tcp, B_TRUE); 9164 } 9165 9166 /* For /dev/tcp aka AF_INET open */ 9167 static int 9168 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9169 { 9170 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9171 } 9172 9173 /* For /dev/tcp6 aka AF_INET6 open */ 9174 static int 9175 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9176 { 9177 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9178 } 9179 9180 static conn_t * 9181 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9182 boolean_t issocket, int *errorp) 9183 { 9184 tcp_t *tcp = NULL; 9185 conn_t *connp; 9186 int err; 9187 zoneid_t zoneid; 9188 tcp_stack_t *tcps; 9189 squeue_t *sqp; 9190 9191 ASSERT(errorp != NULL); 9192 /* 9193 * Find the proper zoneid and netstack. 9194 */ 9195 /* 9196 * Special case for install: miniroot needs to be able to 9197 * access files via NFS as though it were always in the 9198 * global zone. 9199 */ 9200 if (credp == kcred && nfs_global_client_only != 0) { 9201 zoneid = GLOBAL_ZONEID; 9202 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9203 netstack_tcp; 9204 ASSERT(tcps != NULL); 9205 } else { 9206 netstack_t *ns; 9207 9208 ns = netstack_find_by_cred(credp); 9209 ASSERT(ns != NULL); 9210 tcps = ns->netstack_tcp; 9211 ASSERT(tcps != NULL); 9212 9213 /* 9214 * For exclusive stacks we set the zoneid to zero 9215 * to make TCP operate as if in the global zone. 9216 */ 9217 if (tcps->tcps_netstack->netstack_stackid != 9218 GLOBAL_NETSTACKID) 9219 zoneid = GLOBAL_ZONEID; 9220 else 9221 zoneid = crgetzoneid(credp); 9222 } 9223 /* 9224 * For stackid zero this is done from strplumb.c, but 9225 * non-zero stackids are handled here. 9226 */ 9227 if (tcps->tcps_g_q == NULL && 9228 tcps->tcps_netstack->netstack_stackid != 9229 GLOBAL_NETSTACKID) { 9230 tcp_g_q_setup(tcps); 9231 } 9232 9233 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9234 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9235 /* 9236 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9237 * so we drop it by one. 9238 */ 9239 netstack_rele(tcps->tcps_netstack); 9240 if (connp == NULL) { 9241 *errorp = ENOSR; 9242 return (NULL); 9243 } 9244 connp->conn_sqp = sqp; 9245 connp->conn_initial_sqp = connp->conn_sqp; 9246 tcp = connp->conn_tcp; 9247 9248 if (isv6) { 9249 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9250 connp->conn_send = ip_output_v6; 9251 connp->conn_af_isv6 = B_TRUE; 9252 connp->conn_pkt_isv6 = B_TRUE; 9253 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9254 tcp->tcp_ipversion = IPV6_VERSION; 9255 tcp->tcp_family = AF_INET6; 9256 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9257 } else { 9258 connp->conn_flags |= IPCL_TCP4; 9259 connp->conn_send = ip_output; 9260 connp->conn_af_isv6 = B_FALSE; 9261 connp->conn_pkt_isv6 = B_FALSE; 9262 tcp->tcp_ipversion = IPV4_VERSION; 9263 tcp->tcp_family = AF_INET; 9264 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9265 } 9266 9267 /* 9268 * TCP keeps a copy of cred for cache locality reasons but 9269 * we put a reference only once. If connp->conn_cred 9270 * becomes invalid, tcp_cred should also be set to NULL. 9271 */ 9272 tcp->tcp_cred = connp->conn_cred = credp; 9273 crhold(connp->conn_cred); 9274 tcp->tcp_cpid = curproc->p_pid; 9275 tcp->tcp_open_time = lbolt64; 9276 connp->conn_zoneid = zoneid; 9277 connp->conn_mlp_type = mlptSingle; 9278 connp->conn_ulp_labeled = !is_system_labeled(); 9279 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9280 ASSERT(tcp->tcp_tcps == tcps); 9281 9282 /* 9283 * If the caller has the process-wide flag set, then default to MAC 9284 * exempt mode. This allows read-down to unlabeled hosts. 9285 */ 9286 if (getpflags(NET_MAC_AWARE, credp) != 0) 9287 connp->conn_mac_exempt = B_TRUE; 9288 9289 connp->conn_dev = NULL; 9290 if (issocket) { 9291 connp->conn_flags |= IPCL_SOCKET; 9292 tcp->tcp_issocket = 1; 9293 } 9294 9295 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9296 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9297 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9298 9299 /* Non-zero default values */ 9300 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9301 9302 if (q == NULL) { 9303 /* 9304 * Create a helper stream for non-STREAMS socket. 9305 */ 9306 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9307 if (err != 0) { 9308 ip1dbg(("tcp_create: create of IP helper stream " 9309 "failed\n")); 9310 CONN_DEC_REF(connp); 9311 *errorp = err; 9312 return (NULL); 9313 } 9314 q = connp->conn_rq; 9315 } else { 9316 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9317 } 9318 9319 SOCK_CONNID_INIT(tcp->tcp_connid); 9320 err = tcp_init(tcp, q); 9321 if (err != 0) { 9322 CONN_DEC_REF(connp); 9323 *errorp = err; 9324 return (NULL); 9325 } 9326 9327 return (connp); 9328 } 9329 9330 static int 9331 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9332 boolean_t isv6) 9333 { 9334 tcp_t *tcp = NULL; 9335 conn_t *connp = NULL; 9336 int err; 9337 vmem_t *minor_arena = NULL; 9338 dev_t conn_dev; 9339 boolean_t issocket; 9340 9341 if (q->q_ptr != NULL) 9342 return (0); 9343 9344 if (sflag == MODOPEN) 9345 return (EINVAL); 9346 9347 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9348 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9349 minor_arena = ip_minor_arena_la; 9350 } else { 9351 /* 9352 * Either minor numbers in the large arena were exhausted 9353 * or a non socket application is doing the open. 9354 * Try to allocate from the small arena. 9355 */ 9356 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9357 return (EBUSY); 9358 } 9359 minor_arena = ip_minor_arena_sa; 9360 } 9361 9362 ASSERT(minor_arena != NULL); 9363 9364 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9365 9366 if (flag & SO_FALLBACK) { 9367 /* 9368 * Non streams socket needs a stream to fallback to 9369 */ 9370 RD(q)->q_ptr = (void *)conn_dev; 9371 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9372 WR(q)->q_ptr = (void *)minor_arena; 9373 qprocson(q); 9374 return (0); 9375 } else if (flag & SO_ACCEPTOR) { 9376 q->q_qinfo = &tcp_acceptor_rinit; 9377 /* 9378 * the conn_dev and minor_arena will be subsequently used by 9379 * tcp_wput_accept() and tcpclose_accept() to figure out the 9380 * minor device number for this connection from the q_ptr. 9381 */ 9382 RD(q)->q_ptr = (void *)conn_dev; 9383 WR(q)->q_qinfo = &tcp_acceptor_winit; 9384 WR(q)->q_ptr = (void *)minor_arena; 9385 qprocson(q); 9386 return (0); 9387 } 9388 9389 issocket = flag & SO_SOCKSTR; 9390 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9391 9392 if (connp == NULL) { 9393 inet_minor_free(minor_arena, conn_dev); 9394 q->q_ptr = WR(q)->q_ptr = NULL; 9395 return (err); 9396 } 9397 9398 q->q_ptr = WR(q)->q_ptr = connp; 9399 9400 connp->conn_dev = conn_dev; 9401 connp->conn_minor_arena = minor_arena; 9402 9403 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9404 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9405 9406 if (issocket) { 9407 WR(q)->q_qinfo = &tcp_sock_winit; 9408 } else { 9409 tcp = connp->conn_tcp; 9410 #ifdef _ILP32 9411 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9412 #else 9413 tcp->tcp_acceptor_id = conn_dev; 9414 #endif /* _ILP32 */ 9415 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9416 } 9417 9418 /* 9419 * Put the ref for TCP. Ref for IP was already put 9420 * by ipcl_conn_create. Also Make the conn_t globally 9421 * visible to walkers 9422 */ 9423 mutex_enter(&connp->conn_lock); 9424 CONN_INC_REF_LOCKED(connp); 9425 ASSERT(connp->conn_ref == 2); 9426 connp->conn_state_flags &= ~CONN_INCIPIENT; 9427 mutex_exit(&connp->conn_lock); 9428 9429 qprocson(q); 9430 return (0); 9431 } 9432 9433 /* 9434 * Some TCP options can be "set" by requesting them in the option 9435 * buffer. This is needed for XTI feature test though we do not 9436 * allow it in general. We interpret that this mechanism is more 9437 * applicable to OSI protocols and need not be allowed in general. 9438 * This routine filters out options for which it is not allowed (most) 9439 * and lets through those (few) for which it is. [ The XTI interface 9440 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9441 * ever implemented will have to be allowed here ]. 9442 */ 9443 static boolean_t 9444 tcp_allow_connopt_set(int level, int name) 9445 { 9446 9447 switch (level) { 9448 case IPPROTO_TCP: 9449 switch (name) { 9450 case TCP_NODELAY: 9451 return (B_TRUE); 9452 default: 9453 return (B_FALSE); 9454 } 9455 /*NOTREACHED*/ 9456 default: 9457 return (B_FALSE); 9458 } 9459 /*NOTREACHED*/ 9460 } 9461 9462 /* 9463 * this routine gets default values of certain options whose default 9464 * values are maintained by protocol specific code 9465 */ 9466 /* ARGSUSED */ 9467 int 9468 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9469 { 9470 int32_t *i1 = (int32_t *)ptr; 9471 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9472 9473 switch (level) { 9474 case IPPROTO_TCP: 9475 switch (name) { 9476 case TCP_NOTIFY_THRESHOLD: 9477 *i1 = tcps->tcps_ip_notify_interval; 9478 break; 9479 case TCP_ABORT_THRESHOLD: 9480 *i1 = tcps->tcps_ip_abort_interval; 9481 break; 9482 case TCP_CONN_NOTIFY_THRESHOLD: 9483 *i1 = tcps->tcps_ip_notify_cinterval; 9484 break; 9485 case TCP_CONN_ABORT_THRESHOLD: 9486 *i1 = tcps->tcps_ip_abort_cinterval; 9487 break; 9488 default: 9489 return (-1); 9490 } 9491 break; 9492 case IPPROTO_IP: 9493 switch (name) { 9494 case IP_TTL: 9495 *i1 = tcps->tcps_ipv4_ttl; 9496 break; 9497 default: 9498 return (-1); 9499 } 9500 break; 9501 case IPPROTO_IPV6: 9502 switch (name) { 9503 case IPV6_UNICAST_HOPS: 9504 *i1 = tcps->tcps_ipv6_hoplimit; 9505 break; 9506 default: 9507 return (-1); 9508 } 9509 break; 9510 default: 9511 return (-1); 9512 } 9513 return (sizeof (int)); 9514 } 9515 9516 static int 9517 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9518 { 9519 int *i1 = (int *)ptr; 9520 tcp_t *tcp = connp->conn_tcp; 9521 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9522 9523 switch (level) { 9524 case SOL_SOCKET: 9525 switch (name) { 9526 case SO_LINGER: { 9527 struct linger *lgr = (struct linger *)ptr; 9528 9529 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9530 lgr->l_linger = tcp->tcp_lingertime; 9531 } 9532 return (sizeof (struct linger)); 9533 case SO_DEBUG: 9534 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9535 break; 9536 case SO_KEEPALIVE: 9537 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9538 break; 9539 case SO_DONTROUTE: 9540 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9541 break; 9542 case SO_USELOOPBACK: 9543 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9544 break; 9545 case SO_BROADCAST: 9546 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9547 break; 9548 case SO_REUSEADDR: 9549 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9550 break; 9551 case SO_OOBINLINE: 9552 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9553 break; 9554 case SO_DGRAM_ERRIND: 9555 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9556 break; 9557 case SO_TYPE: 9558 *i1 = SOCK_STREAM; 9559 break; 9560 case SO_SNDBUF: 9561 *i1 = tcp->tcp_xmit_hiwater; 9562 break; 9563 case SO_RCVBUF: 9564 *i1 = tcp->tcp_recv_hiwater; 9565 break; 9566 case SO_SND_COPYAVOID: 9567 *i1 = tcp->tcp_snd_zcopy_on ? 9568 SO_SND_COPYAVOID : 0; 9569 break; 9570 case SO_ALLZONES: 9571 *i1 = connp->conn_allzones ? 1 : 0; 9572 break; 9573 case SO_ANON_MLP: 9574 *i1 = connp->conn_anon_mlp; 9575 break; 9576 case SO_MAC_EXEMPT: 9577 *i1 = connp->conn_mac_exempt; 9578 break; 9579 case SO_EXCLBIND: 9580 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9581 break; 9582 case SO_PROTOTYPE: 9583 *i1 = IPPROTO_TCP; 9584 break; 9585 case SO_DOMAIN: 9586 *i1 = tcp->tcp_family; 9587 break; 9588 case SO_ACCEPTCONN: 9589 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9590 default: 9591 return (-1); 9592 } 9593 break; 9594 case IPPROTO_TCP: 9595 switch (name) { 9596 case TCP_NODELAY: 9597 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9598 break; 9599 case TCP_MAXSEG: 9600 *i1 = tcp->tcp_mss; 9601 break; 9602 case TCP_NOTIFY_THRESHOLD: 9603 *i1 = (int)tcp->tcp_first_timer_threshold; 9604 break; 9605 case TCP_ABORT_THRESHOLD: 9606 *i1 = tcp->tcp_second_timer_threshold; 9607 break; 9608 case TCP_CONN_NOTIFY_THRESHOLD: 9609 *i1 = tcp->tcp_first_ctimer_threshold; 9610 break; 9611 case TCP_CONN_ABORT_THRESHOLD: 9612 *i1 = tcp->tcp_second_ctimer_threshold; 9613 break; 9614 case TCP_RECVDSTADDR: 9615 *i1 = tcp->tcp_recvdstaddr; 9616 break; 9617 case TCP_ANONPRIVBIND: 9618 *i1 = tcp->tcp_anon_priv_bind; 9619 break; 9620 case TCP_EXCLBIND: 9621 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9622 break; 9623 case TCP_INIT_CWND: 9624 *i1 = tcp->tcp_init_cwnd; 9625 break; 9626 case TCP_KEEPALIVE_THRESHOLD: 9627 *i1 = tcp->tcp_ka_interval; 9628 break; 9629 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9630 *i1 = tcp->tcp_ka_abort_thres; 9631 break; 9632 case TCP_CORK: 9633 *i1 = tcp->tcp_cork; 9634 break; 9635 default: 9636 return (-1); 9637 } 9638 break; 9639 case IPPROTO_IP: 9640 if (tcp->tcp_family != AF_INET) 9641 return (-1); 9642 switch (name) { 9643 case IP_OPTIONS: 9644 case T_IP_OPTIONS: { 9645 /* 9646 * This is compatible with BSD in that in only return 9647 * the reverse source route with the final destination 9648 * as the last entry. The first 4 bytes of the option 9649 * will contain the final destination. 9650 */ 9651 int opt_len; 9652 9653 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9654 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9655 ASSERT(opt_len >= 0); 9656 /* Caller ensures enough space */ 9657 if (opt_len > 0) { 9658 /* 9659 * TODO: Do we have to handle getsockopt on an 9660 * initiator as well? 9661 */ 9662 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9663 } 9664 return (0); 9665 } 9666 case IP_TOS: 9667 case T_IP_TOS: 9668 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9669 break; 9670 case IP_TTL: 9671 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9672 break; 9673 case IP_NEXTHOP: 9674 /* Handled at IP level */ 9675 return (-EINVAL); 9676 default: 9677 return (-1); 9678 } 9679 break; 9680 case IPPROTO_IPV6: 9681 /* 9682 * IPPROTO_IPV6 options are only supported for sockets 9683 * that are using IPv6 on the wire. 9684 */ 9685 if (tcp->tcp_ipversion != IPV6_VERSION) { 9686 return (-1); 9687 } 9688 switch (name) { 9689 case IPV6_UNICAST_HOPS: 9690 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9691 break; /* goto sizeof (int) option return */ 9692 case IPV6_BOUND_IF: 9693 /* Zero if not set */ 9694 *i1 = tcp->tcp_bound_if; 9695 break; /* goto sizeof (int) option return */ 9696 case IPV6_RECVPKTINFO: 9697 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9698 *i1 = 1; 9699 else 9700 *i1 = 0; 9701 break; /* goto sizeof (int) option return */ 9702 case IPV6_RECVTCLASS: 9703 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9704 *i1 = 1; 9705 else 9706 *i1 = 0; 9707 break; /* goto sizeof (int) option return */ 9708 case IPV6_RECVHOPLIMIT: 9709 if (tcp->tcp_ipv6_recvancillary & 9710 TCP_IPV6_RECVHOPLIMIT) 9711 *i1 = 1; 9712 else 9713 *i1 = 0; 9714 break; /* goto sizeof (int) option return */ 9715 case IPV6_RECVHOPOPTS: 9716 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9717 *i1 = 1; 9718 else 9719 *i1 = 0; 9720 break; /* goto sizeof (int) option return */ 9721 case IPV6_RECVDSTOPTS: 9722 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9723 *i1 = 1; 9724 else 9725 *i1 = 0; 9726 break; /* goto sizeof (int) option return */ 9727 case _OLD_IPV6_RECVDSTOPTS: 9728 if (tcp->tcp_ipv6_recvancillary & 9729 TCP_OLD_IPV6_RECVDSTOPTS) 9730 *i1 = 1; 9731 else 9732 *i1 = 0; 9733 break; /* goto sizeof (int) option return */ 9734 case IPV6_RECVRTHDR: 9735 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9736 *i1 = 1; 9737 else 9738 *i1 = 0; 9739 break; /* goto sizeof (int) option return */ 9740 case IPV6_RECVRTHDRDSTOPTS: 9741 if (tcp->tcp_ipv6_recvancillary & 9742 TCP_IPV6_RECVRTDSTOPTS) 9743 *i1 = 1; 9744 else 9745 *i1 = 0; 9746 break; /* goto sizeof (int) option return */ 9747 case IPV6_PKTINFO: { 9748 /* XXX assumes that caller has room for max size! */ 9749 struct in6_pktinfo *pkti; 9750 9751 pkti = (struct in6_pktinfo *)ptr; 9752 if (ipp->ipp_fields & IPPF_IFINDEX) 9753 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9754 else 9755 pkti->ipi6_ifindex = 0; 9756 if (ipp->ipp_fields & IPPF_ADDR) 9757 pkti->ipi6_addr = ipp->ipp_addr; 9758 else 9759 pkti->ipi6_addr = ipv6_all_zeros; 9760 return (sizeof (struct in6_pktinfo)); 9761 } 9762 case IPV6_TCLASS: 9763 if (ipp->ipp_fields & IPPF_TCLASS) 9764 *i1 = ipp->ipp_tclass; 9765 else 9766 *i1 = IPV6_FLOW_TCLASS( 9767 IPV6_DEFAULT_VERS_AND_FLOW); 9768 break; /* goto sizeof (int) option return */ 9769 case IPV6_NEXTHOP: { 9770 sin6_t *sin6 = (sin6_t *)ptr; 9771 9772 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9773 return (0); 9774 *sin6 = sin6_null; 9775 sin6->sin6_family = AF_INET6; 9776 sin6->sin6_addr = ipp->ipp_nexthop; 9777 return (sizeof (sin6_t)); 9778 } 9779 case IPV6_HOPOPTS: 9780 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9781 return (0); 9782 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9783 return (0); 9784 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9785 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9786 if (tcp->tcp_label_len > 0) { 9787 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9788 ptr[1] = (ipp->ipp_hopoptslen - 9789 tcp->tcp_label_len + 7) / 8 - 1; 9790 } 9791 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9792 case IPV6_RTHDRDSTOPTS: 9793 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9794 return (0); 9795 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9796 return (ipp->ipp_rtdstoptslen); 9797 case IPV6_RTHDR: 9798 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9799 return (0); 9800 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9801 return (ipp->ipp_rthdrlen); 9802 case IPV6_DSTOPTS: 9803 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9804 return (0); 9805 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9806 return (ipp->ipp_dstoptslen); 9807 case IPV6_SRC_PREFERENCES: 9808 return (ip6_get_src_preferences(connp, 9809 (uint32_t *)ptr)); 9810 case IPV6_PATHMTU: { 9811 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9812 9813 if (tcp->tcp_state < TCPS_ESTABLISHED) 9814 return (-1); 9815 9816 return (ip_fill_mtuinfo(&connp->conn_remv6, 9817 connp->conn_fport, mtuinfo, 9818 connp->conn_netstack)); 9819 } 9820 default: 9821 return (-1); 9822 } 9823 break; 9824 default: 9825 return (-1); 9826 } 9827 return (sizeof (int)); 9828 } 9829 9830 /* 9831 * TCP routine to get the values of options. 9832 */ 9833 int 9834 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9835 { 9836 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9837 } 9838 9839 /* returns UNIX error, the optlen is a value-result arg */ 9840 int 9841 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9842 void *optvalp, socklen_t *optlen, cred_t *cr) 9843 { 9844 conn_t *connp = (conn_t *)proto_handle; 9845 squeue_t *sqp = connp->conn_sqp; 9846 int error; 9847 t_uscalar_t max_optbuf_len; 9848 void *optvalp_buf; 9849 int len; 9850 9851 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9852 tcp_opt_obj.odb_opt_des_arr, 9853 tcp_opt_obj.odb_opt_arr_cnt, 9854 tcp_opt_obj.odb_topmost_tpiprovider, 9855 B_FALSE, B_TRUE, cr); 9856 if (error != 0) { 9857 if (error < 0) { 9858 error = proto_tlitosyserr(-error); 9859 } 9860 return (error); 9861 } 9862 9863 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9864 9865 error = squeue_synch_enter(sqp, connp, 0); 9866 if (error == ENOMEM) { 9867 return (ENOMEM); 9868 } 9869 9870 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9871 squeue_synch_exit(sqp, connp); 9872 9873 if (len < 0) { 9874 /* 9875 * Pass on to IP 9876 */ 9877 kmem_free(optvalp_buf, max_optbuf_len); 9878 return (ip_get_options(connp, level, option_name, 9879 optvalp, optlen, cr)); 9880 } else { 9881 /* 9882 * update optlen and copy option value 9883 */ 9884 t_uscalar_t size = MIN(len, *optlen); 9885 bcopy(optvalp_buf, optvalp, size); 9886 bcopy(&size, optlen, sizeof (size)); 9887 9888 kmem_free(optvalp_buf, max_optbuf_len); 9889 return (0); 9890 } 9891 } 9892 9893 /* 9894 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9895 * Parameters are assumed to be verified by the caller. 9896 */ 9897 /* ARGSUSED */ 9898 int 9899 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9900 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9901 void *thisdg_attrs, cred_t *cr) 9902 { 9903 tcp_t *tcp = connp->conn_tcp; 9904 int *i1 = (int *)invalp; 9905 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9906 boolean_t checkonly; 9907 int reterr; 9908 tcp_stack_t *tcps = tcp->tcp_tcps; 9909 9910 switch (optset_context) { 9911 case SETFN_OPTCOM_CHECKONLY: 9912 checkonly = B_TRUE; 9913 /* 9914 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9915 * inlen != 0 implies value supplied and 9916 * we have to "pretend" to set it. 9917 * inlen == 0 implies that there is no 9918 * value part in T_CHECK request and just validation 9919 * done elsewhere should be enough, we just return here. 9920 */ 9921 if (inlen == 0) { 9922 *outlenp = 0; 9923 return (0); 9924 } 9925 break; 9926 case SETFN_OPTCOM_NEGOTIATE: 9927 checkonly = B_FALSE; 9928 break; 9929 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9930 case SETFN_CONN_NEGOTIATE: 9931 checkonly = B_FALSE; 9932 /* 9933 * Negotiating local and "association-related" options 9934 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9935 * primitives is allowed by XTI, but we choose 9936 * to not implement this style negotiation for Internet 9937 * protocols (We interpret it is a must for OSI world but 9938 * optional for Internet protocols) for all options. 9939 * [ Will do only for the few options that enable test 9940 * suites that our XTI implementation of this feature 9941 * works for transports that do allow it ] 9942 */ 9943 if (!tcp_allow_connopt_set(level, name)) { 9944 *outlenp = 0; 9945 return (EINVAL); 9946 } 9947 break; 9948 default: 9949 /* 9950 * We should never get here 9951 */ 9952 *outlenp = 0; 9953 return (EINVAL); 9954 } 9955 9956 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9957 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9958 9959 /* 9960 * For TCP, we should have no ancillary data sent down 9961 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9962 * has to be zero. 9963 */ 9964 ASSERT(thisdg_attrs == NULL); 9965 9966 /* 9967 * For fixed length options, no sanity check 9968 * of passed in length is done. It is assumed *_optcom_req() 9969 * routines do the right thing. 9970 */ 9971 switch (level) { 9972 case SOL_SOCKET: 9973 switch (name) { 9974 case SO_LINGER: { 9975 struct linger *lgr = (struct linger *)invalp; 9976 9977 if (!checkonly) { 9978 if (lgr->l_onoff) { 9979 tcp->tcp_linger = 1; 9980 tcp->tcp_lingertime = lgr->l_linger; 9981 } else { 9982 tcp->tcp_linger = 0; 9983 tcp->tcp_lingertime = 0; 9984 } 9985 /* struct copy */ 9986 *(struct linger *)outvalp = *lgr; 9987 } else { 9988 if (!lgr->l_onoff) { 9989 ((struct linger *) 9990 outvalp)->l_onoff = 0; 9991 ((struct linger *) 9992 outvalp)->l_linger = 0; 9993 } else { 9994 /* struct copy */ 9995 *(struct linger *)outvalp = *lgr; 9996 } 9997 } 9998 *outlenp = sizeof (struct linger); 9999 return (0); 10000 } 10001 case SO_DEBUG: 10002 if (!checkonly) 10003 tcp->tcp_debug = onoff; 10004 break; 10005 case SO_KEEPALIVE: 10006 if (checkonly) { 10007 /* check only case */ 10008 break; 10009 } 10010 10011 if (!onoff) { 10012 if (tcp->tcp_ka_enabled) { 10013 if (tcp->tcp_ka_tid != 0) { 10014 (void) TCP_TIMER_CANCEL(tcp, 10015 tcp->tcp_ka_tid); 10016 tcp->tcp_ka_tid = 0; 10017 } 10018 tcp->tcp_ka_enabled = 0; 10019 } 10020 break; 10021 } 10022 if (!tcp->tcp_ka_enabled) { 10023 /* Crank up the keepalive timer */ 10024 tcp->tcp_ka_last_intrvl = 0; 10025 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10026 tcp_keepalive_killer, 10027 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10028 tcp->tcp_ka_enabled = 1; 10029 } 10030 break; 10031 case SO_DONTROUTE: 10032 /* 10033 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10034 * only of interest to IP. We track them here only so 10035 * that we can report their current value. 10036 */ 10037 if (!checkonly) { 10038 tcp->tcp_dontroute = onoff; 10039 tcp->tcp_connp->conn_dontroute = onoff; 10040 } 10041 break; 10042 case SO_USELOOPBACK: 10043 if (!checkonly) { 10044 tcp->tcp_useloopback = onoff; 10045 tcp->tcp_connp->conn_loopback = onoff; 10046 } 10047 break; 10048 case SO_BROADCAST: 10049 if (!checkonly) { 10050 tcp->tcp_broadcast = onoff; 10051 tcp->tcp_connp->conn_broadcast = onoff; 10052 } 10053 break; 10054 case SO_REUSEADDR: 10055 if (!checkonly) { 10056 tcp->tcp_reuseaddr = onoff; 10057 tcp->tcp_connp->conn_reuseaddr = onoff; 10058 } 10059 break; 10060 case SO_OOBINLINE: 10061 if (!checkonly) { 10062 tcp->tcp_oobinline = onoff; 10063 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10064 proto_set_rx_oob_opt(connp, onoff); 10065 } 10066 break; 10067 case SO_DGRAM_ERRIND: 10068 if (!checkonly) 10069 tcp->tcp_dgram_errind = onoff; 10070 break; 10071 case SO_SNDBUF: { 10072 if (*i1 > tcps->tcps_max_buf) { 10073 *outlenp = 0; 10074 return (ENOBUFS); 10075 } 10076 if (checkonly) 10077 break; 10078 10079 tcp->tcp_xmit_hiwater = *i1; 10080 if (tcps->tcps_snd_lowat_fraction != 0) 10081 tcp->tcp_xmit_lowater = 10082 tcp->tcp_xmit_hiwater / 10083 tcps->tcps_snd_lowat_fraction; 10084 (void) tcp_maxpsz_set(tcp, B_TRUE); 10085 /* 10086 * If we are flow-controlled, recheck the condition. 10087 * There are apps that increase SO_SNDBUF size when 10088 * flow-controlled (EWOULDBLOCK), and expect the flow 10089 * control condition to be lifted right away. 10090 */ 10091 mutex_enter(&tcp->tcp_non_sq_lock); 10092 if (tcp->tcp_flow_stopped && 10093 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10094 tcp_clrqfull(tcp); 10095 } 10096 mutex_exit(&tcp->tcp_non_sq_lock); 10097 break; 10098 } 10099 case SO_RCVBUF: 10100 if (*i1 > tcps->tcps_max_buf) { 10101 *outlenp = 0; 10102 return (ENOBUFS); 10103 } 10104 /* Silently ignore zero */ 10105 if (!checkonly && *i1 != 0) { 10106 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10107 (void) tcp_rwnd_set(tcp, *i1); 10108 } 10109 /* 10110 * XXX should we return the rwnd here 10111 * and tcp_opt_get ? 10112 */ 10113 break; 10114 case SO_SND_COPYAVOID: 10115 if (!checkonly) { 10116 /* we only allow enable at most once for now */ 10117 if (tcp->tcp_loopback || 10118 (tcp->tcp_kssl_ctx != NULL) || 10119 (!tcp->tcp_snd_zcopy_aware && 10120 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10121 *outlenp = 0; 10122 return (EOPNOTSUPP); 10123 } 10124 tcp->tcp_snd_zcopy_aware = 1; 10125 } 10126 break; 10127 case SO_ALLZONES: 10128 /* Pass option along to IP level for handling */ 10129 return (-EINVAL); 10130 case SO_ANON_MLP: 10131 /* Pass option along to IP level for handling */ 10132 return (-EINVAL); 10133 case SO_MAC_EXEMPT: 10134 /* Pass option along to IP level for handling */ 10135 return (-EINVAL); 10136 case SO_EXCLBIND: 10137 if (!checkonly) 10138 tcp->tcp_exclbind = onoff; 10139 break; 10140 default: 10141 *outlenp = 0; 10142 return (EINVAL); 10143 } 10144 break; 10145 case IPPROTO_TCP: 10146 switch (name) { 10147 case TCP_NODELAY: 10148 if (!checkonly) 10149 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10150 break; 10151 case TCP_NOTIFY_THRESHOLD: 10152 if (!checkonly) 10153 tcp->tcp_first_timer_threshold = *i1; 10154 break; 10155 case TCP_ABORT_THRESHOLD: 10156 if (!checkonly) 10157 tcp->tcp_second_timer_threshold = *i1; 10158 break; 10159 case TCP_CONN_NOTIFY_THRESHOLD: 10160 if (!checkonly) 10161 tcp->tcp_first_ctimer_threshold = *i1; 10162 break; 10163 case TCP_CONN_ABORT_THRESHOLD: 10164 if (!checkonly) 10165 tcp->tcp_second_ctimer_threshold = *i1; 10166 break; 10167 case TCP_RECVDSTADDR: 10168 if (tcp->tcp_state > TCPS_LISTEN) 10169 return (EOPNOTSUPP); 10170 if (!checkonly) 10171 tcp->tcp_recvdstaddr = onoff; 10172 break; 10173 case TCP_ANONPRIVBIND: 10174 if ((reterr = secpolicy_net_privaddr(cr, 0, 10175 IPPROTO_TCP)) != 0) { 10176 *outlenp = 0; 10177 return (reterr); 10178 } 10179 if (!checkonly) { 10180 tcp->tcp_anon_priv_bind = onoff; 10181 } 10182 break; 10183 case TCP_EXCLBIND: 10184 if (!checkonly) 10185 tcp->tcp_exclbind = onoff; 10186 break; /* goto sizeof (int) option return */ 10187 case TCP_INIT_CWND: { 10188 uint32_t init_cwnd = *((uint32_t *)invalp); 10189 10190 if (checkonly) 10191 break; 10192 10193 /* 10194 * Only allow socket with network configuration 10195 * privilege to set the initial cwnd to be larger 10196 * than allowed by RFC 3390. 10197 */ 10198 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10199 tcp->tcp_init_cwnd = init_cwnd; 10200 break; 10201 } 10202 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10203 *outlenp = 0; 10204 return (reterr); 10205 } 10206 if (init_cwnd > TCP_MAX_INIT_CWND) { 10207 *outlenp = 0; 10208 return (EINVAL); 10209 } 10210 tcp->tcp_init_cwnd = init_cwnd; 10211 break; 10212 } 10213 case TCP_KEEPALIVE_THRESHOLD: 10214 if (checkonly) 10215 break; 10216 10217 if (*i1 < tcps->tcps_keepalive_interval_low || 10218 *i1 > tcps->tcps_keepalive_interval_high) { 10219 *outlenp = 0; 10220 return (EINVAL); 10221 } 10222 if (*i1 != tcp->tcp_ka_interval) { 10223 tcp->tcp_ka_interval = *i1; 10224 /* 10225 * Check if we need to restart the 10226 * keepalive timer. 10227 */ 10228 if (tcp->tcp_ka_tid != 0) { 10229 ASSERT(tcp->tcp_ka_enabled); 10230 (void) TCP_TIMER_CANCEL(tcp, 10231 tcp->tcp_ka_tid); 10232 tcp->tcp_ka_last_intrvl = 0; 10233 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10234 tcp_keepalive_killer, 10235 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10236 } 10237 } 10238 break; 10239 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10240 if (!checkonly) { 10241 if (*i1 < 10242 tcps->tcps_keepalive_abort_interval_low || 10243 *i1 > 10244 tcps->tcps_keepalive_abort_interval_high) { 10245 *outlenp = 0; 10246 return (EINVAL); 10247 } 10248 tcp->tcp_ka_abort_thres = *i1; 10249 } 10250 break; 10251 case TCP_CORK: 10252 if (!checkonly) { 10253 /* 10254 * if tcp->tcp_cork was set and is now 10255 * being unset, we have to make sure that 10256 * the remaining data gets sent out. Also 10257 * unset tcp->tcp_cork so that tcp_wput_data() 10258 * can send data even if it is less than mss 10259 */ 10260 if (tcp->tcp_cork && onoff == 0 && 10261 tcp->tcp_unsent > 0) { 10262 tcp->tcp_cork = B_FALSE; 10263 tcp_wput_data(tcp, NULL, B_FALSE); 10264 } 10265 tcp->tcp_cork = onoff; 10266 } 10267 break; 10268 default: 10269 *outlenp = 0; 10270 return (EINVAL); 10271 } 10272 break; 10273 case IPPROTO_IP: 10274 if (tcp->tcp_family != AF_INET) { 10275 *outlenp = 0; 10276 return (ENOPROTOOPT); 10277 } 10278 switch (name) { 10279 case IP_OPTIONS: 10280 case T_IP_OPTIONS: 10281 reterr = tcp_opt_set_header(tcp, checkonly, 10282 invalp, inlen); 10283 if (reterr) { 10284 *outlenp = 0; 10285 return (reterr); 10286 } 10287 /* OK return - copy input buffer into output buffer */ 10288 if (invalp != outvalp) { 10289 /* don't trust bcopy for identical src/dst */ 10290 bcopy(invalp, outvalp, inlen); 10291 } 10292 *outlenp = inlen; 10293 return (0); 10294 case IP_TOS: 10295 case T_IP_TOS: 10296 if (!checkonly) { 10297 tcp->tcp_ipha->ipha_type_of_service = 10298 (uchar_t)*i1; 10299 tcp->tcp_tos = (uchar_t)*i1; 10300 } 10301 break; 10302 case IP_TTL: 10303 if (!checkonly) { 10304 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10305 tcp->tcp_ttl = (uchar_t)*i1; 10306 } 10307 break; 10308 case IP_BOUND_IF: 10309 case IP_NEXTHOP: 10310 /* Handled at the IP level */ 10311 return (-EINVAL); 10312 case IP_SEC_OPT: 10313 /* 10314 * We should not allow policy setting after 10315 * we start listening for connections. 10316 */ 10317 if (tcp->tcp_state == TCPS_LISTEN) { 10318 return (EINVAL); 10319 } else { 10320 /* Handled at the IP level */ 10321 return (-EINVAL); 10322 } 10323 default: 10324 *outlenp = 0; 10325 return (EINVAL); 10326 } 10327 break; 10328 case IPPROTO_IPV6: { 10329 ip6_pkt_t *ipp; 10330 10331 /* 10332 * IPPROTO_IPV6 options are only supported for sockets 10333 * that are using IPv6 on the wire. 10334 */ 10335 if (tcp->tcp_ipversion != IPV6_VERSION) { 10336 *outlenp = 0; 10337 return (ENOPROTOOPT); 10338 } 10339 /* 10340 * Only sticky options; no ancillary data 10341 */ 10342 ipp = &tcp->tcp_sticky_ipp; 10343 10344 switch (name) { 10345 case IPV6_UNICAST_HOPS: 10346 /* -1 means use default */ 10347 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10348 *outlenp = 0; 10349 return (EINVAL); 10350 } 10351 if (!checkonly) { 10352 if (*i1 == -1) { 10353 tcp->tcp_ip6h->ip6_hops = 10354 ipp->ipp_unicast_hops = 10355 (uint8_t)tcps->tcps_ipv6_hoplimit; 10356 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10357 /* Pass modified value to IP. */ 10358 *i1 = tcp->tcp_ip6h->ip6_hops; 10359 } else { 10360 tcp->tcp_ip6h->ip6_hops = 10361 ipp->ipp_unicast_hops = 10362 (uint8_t)*i1; 10363 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10364 } 10365 reterr = tcp_build_hdrs(tcp); 10366 if (reterr != 0) 10367 return (reterr); 10368 } 10369 break; 10370 case IPV6_BOUND_IF: 10371 if (!checkonly) { 10372 tcp->tcp_bound_if = *i1; 10373 PASS_OPT_TO_IP(connp); 10374 } 10375 break; 10376 /* 10377 * Set boolean switches for ancillary data delivery 10378 */ 10379 case IPV6_RECVPKTINFO: 10380 if (!checkonly) { 10381 if (onoff) 10382 tcp->tcp_ipv6_recvancillary |= 10383 TCP_IPV6_RECVPKTINFO; 10384 else 10385 tcp->tcp_ipv6_recvancillary &= 10386 ~TCP_IPV6_RECVPKTINFO; 10387 /* Force it to be sent up with the next msg */ 10388 tcp->tcp_recvifindex = 0; 10389 PASS_OPT_TO_IP(connp); 10390 } 10391 break; 10392 case IPV6_RECVTCLASS: 10393 if (!checkonly) { 10394 if (onoff) 10395 tcp->tcp_ipv6_recvancillary |= 10396 TCP_IPV6_RECVTCLASS; 10397 else 10398 tcp->tcp_ipv6_recvancillary &= 10399 ~TCP_IPV6_RECVTCLASS; 10400 PASS_OPT_TO_IP(connp); 10401 } 10402 break; 10403 case IPV6_RECVHOPLIMIT: 10404 if (!checkonly) { 10405 if (onoff) 10406 tcp->tcp_ipv6_recvancillary |= 10407 TCP_IPV6_RECVHOPLIMIT; 10408 else 10409 tcp->tcp_ipv6_recvancillary &= 10410 ~TCP_IPV6_RECVHOPLIMIT; 10411 /* Force it to be sent up with the next msg */ 10412 tcp->tcp_recvhops = 0xffffffffU; 10413 PASS_OPT_TO_IP(connp); 10414 } 10415 break; 10416 case IPV6_RECVHOPOPTS: 10417 if (!checkonly) { 10418 if (onoff) 10419 tcp->tcp_ipv6_recvancillary |= 10420 TCP_IPV6_RECVHOPOPTS; 10421 else 10422 tcp->tcp_ipv6_recvancillary &= 10423 ~TCP_IPV6_RECVHOPOPTS; 10424 PASS_OPT_TO_IP(connp); 10425 } 10426 break; 10427 case IPV6_RECVDSTOPTS: 10428 if (!checkonly) { 10429 if (onoff) 10430 tcp->tcp_ipv6_recvancillary |= 10431 TCP_IPV6_RECVDSTOPTS; 10432 else 10433 tcp->tcp_ipv6_recvancillary &= 10434 ~TCP_IPV6_RECVDSTOPTS; 10435 PASS_OPT_TO_IP(connp); 10436 } 10437 break; 10438 case _OLD_IPV6_RECVDSTOPTS: 10439 if (!checkonly) { 10440 if (onoff) 10441 tcp->tcp_ipv6_recvancillary |= 10442 TCP_OLD_IPV6_RECVDSTOPTS; 10443 else 10444 tcp->tcp_ipv6_recvancillary &= 10445 ~TCP_OLD_IPV6_RECVDSTOPTS; 10446 } 10447 break; 10448 case IPV6_RECVRTHDR: 10449 if (!checkonly) { 10450 if (onoff) 10451 tcp->tcp_ipv6_recvancillary |= 10452 TCP_IPV6_RECVRTHDR; 10453 else 10454 tcp->tcp_ipv6_recvancillary &= 10455 ~TCP_IPV6_RECVRTHDR; 10456 PASS_OPT_TO_IP(connp); 10457 } 10458 break; 10459 case IPV6_RECVRTHDRDSTOPTS: 10460 if (!checkonly) { 10461 if (onoff) 10462 tcp->tcp_ipv6_recvancillary |= 10463 TCP_IPV6_RECVRTDSTOPTS; 10464 else 10465 tcp->tcp_ipv6_recvancillary &= 10466 ~TCP_IPV6_RECVRTDSTOPTS; 10467 PASS_OPT_TO_IP(connp); 10468 } 10469 break; 10470 case IPV6_PKTINFO: 10471 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10472 return (EINVAL); 10473 if (checkonly) 10474 break; 10475 10476 if (inlen == 0) { 10477 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10478 } else { 10479 struct in6_pktinfo *pkti; 10480 10481 pkti = (struct in6_pktinfo *)invalp; 10482 /* 10483 * RFC 3542 states that ipi6_addr must be 10484 * the unspecified address when setting the 10485 * IPV6_PKTINFO sticky socket option on a 10486 * TCP socket. 10487 */ 10488 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10489 return (EINVAL); 10490 /* 10491 * IP will validate the source address and 10492 * interface index. 10493 */ 10494 reterr = ip_set_options(tcp->tcp_connp, level, 10495 name, invalp, inlen, cr); 10496 if (reterr != 0) 10497 return (reterr); 10498 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10499 ipp->ipp_addr = pkti->ipi6_addr; 10500 if (ipp->ipp_ifindex != 0) 10501 ipp->ipp_fields |= IPPF_IFINDEX; 10502 else 10503 ipp->ipp_fields &= ~IPPF_IFINDEX; 10504 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10505 ipp->ipp_fields |= IPPF_ADDR; 10506 else 10507 ipp->ipp_fields &= ~IPPF_ADDR; 10508 } 10509 reterr = tcp_build_hdrs(tcp); 10510 if (reterr != 0) 10511 return (reterr); 10512 PASS_OPT_TO_IP(connp); 10513 break; 10514 case IPV6_TCLASS: 10515 if (inlen != 0 && inlen != sizeof (int)) 10516 return (EINVAL); 10517 if (checkonly) 10518 break; 10519 10520 if (inlen == 0) { 10521 ipp->ipp_fields &= ~IPPF_TCLASS; 10522 } else { 10523 if (*i1 > 255 || *i1 < -1) 10524 return (EINVAL); 10525 if (*i1 == -1) { 10526 ipp->ipp_tclass = 0; 10527 *i1 = 0; 10528 } else { 10529 ipp->ipp_tclass = *i1; 10530 } 10531 ipp->ipp_fields |= IPPF_TCLASS; 10532 } 10533 reterr = tcp_build_hdrs(tcp); 10534 if (reterr != 0) 10535 return (reterr); 10536 break; 10537 case IPV6_NEXTHOP: 10538 /* 10539 * IP will verify that the nexthop is reachable 10540 * and fail for sticky options. 10541 */ 10542 if (inlen != 0 && inlen != sizeof (sin6_t)) 10543 return (EINVAL); 10544 if (checkonly) 10545 break; 10546 10547 if (inlen == 0) { 10548 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10549 } else { 10550 sin6_t *sin6 = (sin6_t *)invalp; 10551 10552 if (sin6->sin6_family != AF_INET6) 10553 return (EAFNOSUPPORT); 10554 if (IN6_IS_ADDR_V4MAPPED( 10555 &sin6->sin6_addr)) 10556 return (EADDRNOTAVAIL); 10557 ipp->ipp_nexthop = sin6->sin6_addr; 10558 if (!IN6_IS_ADDR_UNSPECIFIED( 10559 &ipp->ipp_nexthop)) 10560 ipp->ipp_fields |= IPPF_NEXTHOP; 10561 else 10562 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10563 } 10564 reterr = tcp_build_hdrs(tcp); 10565 if (reterr != 0) 10566 return (reterr); 10567 PASS_OPT_TO_IP(connp); 10568 break; 10569 case IPV6_HOPOPTS: { 10570 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10571 10572 /* 10573 * Sanity checks - minimum size, size a multiple of 10574 * eight bytes, and matching size passed in. 10575 */ 10576 if (inlen != 0 && 10577 inlen != (8 * (hopts->ip6h_len + 1))) 10578 return (EINVAL); 10579 10580 if (checkonly) 10581 break; 10582 10583 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10584 (uchar_t **)&ipp->ipp_hopopts, 10585 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10586 if (reterr != 0) 10587 return (reterr); 10588 if (ipp->ipp_hopoptslen == 0) 10589 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10590 else 10591 ipp->ipp_fields |= IPPF_HOPOPTS; 10592 reterr = tcp_build_hdrs(tcp); 10593 if (reterr != 0) 10594 return (reterr); 10595 break; 10596 } 10597 case IPV6_RTHDRDSTOPTS: { 10598 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10599 10600 /* 10601 * Sanity checks - minimum size, size a multiple of 10602 * eight bytes, and matching size passed in. 10603 */ 10604 if (inlen != 0 && 10605 inlen != (8 * (dopts->ip6d_len + 1))) 10606 return (EINVAL); 10607 10608 if (checkonly) 10609 break; 10610 10611 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10612 (uchar_t **)&ipp->ipp_rtdstopts, 10613 &ipp->ipp_rtdstoptslen, 0); 10614 if (reterr != 0) 10615 return (reterr); 10616 if (ipp->ipp_rtdstoptslen == 0) 10617 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10618 else 10619 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10620 reterr = tcp_build_hdrs(tcp); 10621 if (reterr != 0) 10622 return (reterr); 10623 break; 10624 } 10625 case IPV6_DSTOPTS: { 10626 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10627 10628 /* 10629 * Sanity checks - minimum size, size a multiple of 10630 * eight bytes, and matching size passed in. 10631 */ 10632 if (inlen != 0 && 10633 inlen != (8 * (dopts->ip6d_len + 1))) 10634 return (EINVAL); 10635 10636 if (checkonly) 10637 break; 10638 10639 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10640 (uchar_t **)&ipp->ipp_dstopts, 10641 &ipp->ipp_dstoptslen, 0); 10642 if (reterr != 0) 10643 return (reterr); 10644 if (ipp->ipp_dstoptslen == 0) 10645 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10646 else 10647 ipp->ipp_fields |= IPPF_DSTOPTS; 10648 reterr = tcp_build_hdrs(tcp); 10649 if (reterr != 0) 10650 return (reterr); 10651 break; 10652 } 10653 case IPV6_RTHDR: { 10654 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10655 10656 /* 10657 * Sanity checks - minimum size, size a multiple of 10658 * eight bytes, and matching size passed in. 10659 */ 10660 if (inlen != 0 && 10661 inlen != (8 * (rt->ip6r_len + 1))) 10662 return (EINVAL); 10663 10664 if (checkonly) 10665 break; 10666 10667 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10668 (uchar_t **)&ipp->ipp_rthdr, 10669 &ipp->ipp_rthdrlen, 0); 10670 if (reterr != 0) 10671 return (reterr); 10672 if (ipp->ipp_rthdrlen == 0) 10673 ipp->ipp_fields &= ~IPPF_RTHDR; 10674 else 10675 ipp->ipp_fields |= IPPF_RTHDR; 10676 reterr = tcp_build_hdrs(tcp); 10677 if (reterr != 0) 10678 return (reterr); 10679 break; 10680 } 10681 case IPV6_V6ONLY: 10682 if (!checkonly) { 10683 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10684 } 10685 break; 10686 case IPV6_USE_MIN_MTU: 10687 if (inlen != sizeof (int)) 10688 return (EINVAL); 10689 10690 if (*i1 < -1 || *i1 > 1) 10691 return (EINVAL); 10692 10693 if (checkonly) 10694 break; 10695 10696 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10697 ipp->ipp_use_min_mtu = *i1; 10698 break; 10699 case IPV6_BOUND_PIF: 10700 /* Handled at the IP level */ 10701 return (-EINVAL); 10702 case IPV6_SEC_OPT: 10703 /* 10704 * We should not allow policy setting after 10705 * we start listening for connections. 10706 */ 10707 if (tcp->tcp_state == TCPS_LISTEN) { 10708 return (EINVAL); 10709 } else { 10710 /* Handled at the IP level */ 10711 return (-EINVAL); 10712 } 10713 case IPV6_SRC_PREFERENCES: 10714 if (inlen != sizeof (uint32_t)) 10715 return (EINVAL); 10716 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10717 *(uint32_t *)invalp); 10718 if (reterr != 0) { 10719 *outlenp = 0; 10720 return (reterr); 10721 } 10722 break; 10723 default: 10724 *outlenp = 0; 10725 return (EINVAL); 10726 } 10727 break; 10728 } /* end IPPROTO_IPV6 */ 10729 default: 10730 *outlenp = 0; 10731 return (EINVAL); 10732 } 10733 /* 10734 * Common case of OK return with outval same as inval 10735 */ 10736 if (invalp != outvalp) { 10737 /* don't trust bcopy for identical src/dst */ 10738 (void) bcopy(invalp, outvalp, inlen); 10739 } 10740 *outlenp = inlen; 10741 return (0); 10742 } 10743 10744 /* ARGSUSED */ 10745 int 10746 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10747 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10748 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10749 { 10750 conn_t *connp = Q_TO_CONN(q); 10751 10752 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10753 outlenp, outvalp, thisdg_attrs, cr)); 10754 } 10755 10756 int 10757 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10758 const void *optvalp, socklen_t optlen, cred_t *cr) 10759 { 10760 conn_t *connp = (conn_t *)proto_handle; 10761 squeue_t *sqp = connp->conn_sqp; 10762 int error; 10763 10764 /* 10765 * Entering the squeue synchronously can result in a context switch, 10766 * which can cause a rather sever performance degradation. So we try to 10767 * handle whatever options we can without entering the squeue. 10768 */ 10769 if (level == IPPROTO_TCP) { 10770 switch (option_name) { 10771 case TCP_NODELAY: 10772 if (optlen != sizeof (int32_t)) 10773 return (EINVAL); 10774 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10775 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10776 connp->conn_tcp->tcp_mss; 10777 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10778 return (0); 10779 default: 10780 break; 10781 } 10782 } 10783 10784 error = squeue_synch_enter(sqp, connp, 0); 10785 if (error == ENOMEM) { 10786 return (ENOMEM); 10787 } 10788 10789 error = proto_opt_check(level, option_name, optlen, NULL, 10790 tcp_opt_obj.odb_opt_des_arr, 10791 tcp_opt_obj.odb_opt_arr_cnt, 10792 tcp_opt_obj.odb_topmost_tpiprovider, 10793 B_TRUE, B_FALSE, cr); 10794 10795 if (error != 0) { 10796 if (error < 0) { 10797 error = proto_tlitosyserr(-error); 10798 } 10799 squeue_synch_exit(sqp, connp); 10800 return (error); 10801 } 10802 10803 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10804 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10805 NULL, cr); 10806 squeue_synch_exit(sqp, connp); 10807 10808 if (error < 0) { 10809 /* 10810 * Pass on to ip 10811 */ 10812 error = ip_set_options(connp, level, option_name, optvalp, 10813 optlen, cr); 10814 } 10815 return (error); 10816 } 10817 10818 /* 10819 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10820 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10821 * headers, and the maximum size tcp header (to avoid reallocation 10822 * on the fly for additional tcp options). 10823 * Returns failure if can't allocate memory. 10824 */ 10825 static int 10826 tcp_build_hdrs(tcp_t *tcp) 10827 { 10828 char *hdrs; 10829 uint_t hdrs_len; 10830 ip6i_t *ip6i; 10831 char buf[TCP_MAX_HDR_LENGTH]; 10832 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10833 in6_addr_t src, dst; 10834 tcp_stack_t *tcps = tcp->tcp_tcps; 10835 conn_t *connp = tcp->tcp_connp; 10836 10837 /* 10838 * save the existing tcp header and source/dest IP addresses 10839 */ 10840 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10841 src = tcp->tcp_ip6h->ip6_src; 10842 dst = tcp->tcp_ip6h->ip6_dst; 10843 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10844 ASSERT(hdrs_len != 0); 10845 if (hdrs_len > tcp->tcp_iphc_len) { 10846 /* Need to reallocate */ 10847 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10848 if (hdrs == NULL) 10849 return (ENOMEM); 10850 if (tcp->tcp_iphc != NULL) { 10851 if (tcp->tcp_hdr_grown) { 10852 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10853 } else { 10854 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10855 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10856 } 10857 tcp->tcp_iphc_len = 0; 10858 } 10859 ASSERT(tcp->tcp_iphc_len == 0); 10860 tcp->tcp_iphc = hdrs; 10861 tcp->tcp_iphc_len = hdrs_len; 10862 tcp->tcp_hdr_grown = B_TRUE; 10863 } 10864 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10865 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10866 10867 /* Set header fields not in ipp */ 10868 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10869 ip6i = (ip6i_t *)tcp->tcp_iphc; 10870 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10871 } else { 10872 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10873 } 10874 /* 10875 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10876 * 10877 * tcp->tcp_tcp_hdr_len doesn't change here. 10878 */ 10879 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10880 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10881 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10882 10883 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10884 10885 tcp->tcp_ip6h->ip6_src = src; 10886 tcp->tcp_ip6h->ip6_dst = dst; 10887 10888 /* 10889 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10890 * the default value for TCP. 10891 */ 10892 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10893 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10894 10895 /* 10896 * If we're setting extension headers after a connection 10897 * has been established, and if we have a routing header 10898 * among the extension headers, call ip_massage_options_v6 to 10899 * manipulate the routing header/ip6_dst set the checksum 10900 * difference in the tcp header template. 10901 * (This happens in tcp_connect_ipv6 if the routing header 10902 * is set prior to the connect.) 10903 * Set the tcp_sum to zero first in case we've cleared a 10904 * routing header or don't have one at all. 10905 */ 10906 tcp->tcp_sum = 0; 10907 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10908 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10909 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10910 (uint8_t *)tcp->tcp_tcph); 10911 if (rth != NULL) { 10912 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10913 rth, tcps->tcps_netstack); 10914 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10915 (tcp->tcp_sum >> 16)); 10916 } 10917 } 10918 10919 /* Try to get everything in a single mblk */ 10920 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10921 hdrs_len + tcps->tcps_wroff_xtra); 10922 return (0); 10923 } 10924 10925 /* 10926 * Transfer any source route option from ipha to buf/dst in reversed form. 10927 */ 10928 static int 10929 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10930 { 10931 ipoptp_t opts; 10932 uchar_t *opt; 10933 uint8_t optval; 10934 uint8_t optlen; 10935 uint32_t len = 0; 10936 10937 for (optval = ipoptp_first(&opts, ipha); 10938 optval != IPOPT_EOL; 10939 optval = ipoptp_next(&opts)) { 10940 opt = opts.ipoptp_cur; 10941 optlen = opts.ipoptp_len; 10942 switch (optval) { 10943 int off1, off2; 10944 case IPOPT_SSRR: 10945 case IPOPT_LSRR: 10946 10947 /* Reverse source route */ 10948 /* 10949 * First entry should be the next to last one in the 10950 * current source route (the last entry is our 10951 * address.) 10952 * The last entry should be the final destination. 10953 */ 10954 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10955 buf[IPOPT_OLEN] = (uint8_t)optlen; 10956 off1 = IPOPT_MINOFF_SR - 1; 10957 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10958 if (off2 < 0) { 10959 /* No entries in source route */ 10960 break; 10961 } 10962 bcopy(opt + off2, dst, IP_ADDR_LEN); 10963 /* 10964 * Note: use src since ipha has not had its src 10965 * and dst reversed (it is in the state it was 10966 * received. 10967 */ 10968 bcopy(&ipha->ipha_src, buf + off2, 10969 IP_ADDR_LEN); 10970 off2 -= IP_ADDR_LEN; 10971 10972 while (off2 > 0) { 10973 bcopy(opt + off2, buf + off1, 10974 IP_ADDR_LEN); 10975 off1 += IP_ADDR_LEN; 10976 off2 -= IP_ADDR_LEN; 10977 } 10978 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10979 buf += optlen; 10980 len += optlen; 10981 break; 10982 } 10983 } 10984 done: 10985 /* Pad the resulting options */ 10986 while (len & 0x3) { 10987 *buf++ = IPOPT_EOL; 10988 len++; 10989 } 10990 return (len); 10991 } 10992 10993 10994 /* 10995 * Extract and revert a source route from ipha (if any) 10996 * and then update the relevant fields in both tcp_t and the standard header. 10997 */ 10998 static void 10999 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11000 { 11001 char buf[TCP_MAX_HDR_LENGTH]; 11002 uint_t tcph_len; 11003 int len; 11004 11005 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11006 len = IPH_HDR_LENGTH(ipha); 11007 if (len == IP_SIMPLE_HDR_LENGTH) 11008 /* Nothing to do */ 11009 return; 11010 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11011 (len & 0x3)) 11012 return; 11013 11014 tcph_len = tcp->tcp_tcp_hdr_len; 11015 bcopy(tcp->tcp_tcph, buf, tcph_len); 11016 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11017 (tcp->tcp_ipha->ipha_dst & 0xffff); 11018 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11019 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11020 len += IP_SIMPLE_HDR_LENGTH; 11021 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11022 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11023 if ((int)tcp->tcp_sum < 0) 11024 tcp->tcp_sum--; 11025 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11026 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11027 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11028 bcopy(buf, tcp->tcp_tcph, tcph_len); 11029 tcp->tcp_ip_hdr_len = len; 11030 tcp->tcp_ipha->ipha_version_and_hdr_length = 11031 (IP_VERSION << 4) | (len >> 2); 11032 len += tcph_len; 11033 tcp->tcp_hdr_len = len; 11034 } 11035 11036 /* 11037 * Copy the standard header into its new location, 11038 * lay in the new options and then update the relevant 11039 * fields in both tcp_t and the standard header. 11040 */ 11041 static int 11042 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11043 { 11044 uint_t tcph_len; 11045 uint8_t *ip_optp; 11046 tcph_t *new_tcph; 11047 tcp_stack_t *tcps = tcp->tcp_tcps; 11048 conn_t *connp = tcp->tcp_connp; 11049 11050 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11051 return (EINVAL); 11052 11053 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11054 return (EINVAL); 11055 11056 if (checkonly) { 11057 /* 11058 * do not really set, just pretend to - T_CHECK 11059 */ 11060 return (0); 11061 } 11062 11063 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11064 if (tcp->tcp_label_len > 0) { 11065 int padlen; 11066 uint8_t opt; 11067 11068 /* convert list termination to no-ops */ 11069 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11070 ip_optp += ip_optp[IPOPT_OLEN]; 11071 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11072 while (--padlen >= 0) 11073 *ip_optp++ = opt; 11074 } 11075 tcph_len = tcp->tcp_tcp_hdr_len; 11076 new_tcph = (tcph_t *)(ip_optp + len); 11077 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11078 tcp->tcp_tcph = new_tcph; 11079 bcopy(ptr, ip_optp, len); 11080 11081 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11082 11083 tcp->tcp_ip_hdr_len = len; 11084 tcp->tcp_ipha->ipha_version_and_hdr_length = 11085 (IP_VERSION << 4) | (len >> 2); 11086 tcp->tcp_hdr_len = len + tcph_len; 11087 if (!TCP_IS_DETACHED(tcp)) { 11088 /* Always allocate room for all options. */ 11089 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11090 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11091 } 11092 return (0); 11093 } 11094 11095 /* Get callback routine passed to nd_load by tcp_param_register */ 11096 /* ARGSUSED */ 11097 static int 11098 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11099 { 11100 tcpparam_t *tcppa = (tcpparam_t *)cp; 11101 11102 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11103 return (0); 11104 } 11105 11106 /* 11107 * Walk through the param array specified registering each element with the 11108 * named dispatch handler. 11109 */ 11110 static boolean_t 11111 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11112 { 11113 for (; cnt-- > 0; tcppa++) { 11114 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11115 if (!nd_load(ndp, tcppa->tcp_param_name, 11116 tcp_param_get, tcp_param_set, 11117 (caddr_t)tcppa)) { 11118 nd_free(ndp); 11119 return (B_FALSE); 11120 } 11121 } 11122 } 11123 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11124 KM_SLEEP); 11125 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11126 sizeof (tcpparam_t)); 11127 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11128 tcp_param_get, tcp_param_set_aligned, 11129 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11130 nd_free(ndp); 11131 return (B_FALSE); 11132 } 11133 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11134 KM_SLEEP); 11135 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11136 sizeof (tcpparam_t)); 11137 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11138 tcp_param_get, tcp_param_set_aligned, 11139 (caddr_t)tcps->tcps_mdt_head_param)) { 11140 nd_free(ndp); 11141 return (B_FALSE); 11142 } 11143 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11144 KM_SLEEP); 11145 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11146 sizeof (tcpparam_t)); 11147 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11148 tcp_param_get, tcp_param_set_aligned, 11149 (caddr_t)tcps->tcps_mdt_tail_param)) { 11150 nd_free(ndp); 11151 return (B_FALSE); 11152 } 11153 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11154 KM_SLEEP); 11155 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11156 sizeof (tcpparam_t)); 11157 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11158 tcp_param_get, tcp_param_set_aligned, 11159 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11160 nd_free(ndp); 11161 return (B_FALSE); 11162 } 11163 if (!nd_load(ndp, "tcp_extra_priv_ports", 11164 tcp_extra_priv_ports_get, NULL, NULL)) { 11165 nd_free(ndp); 11166 return (B_FALSE); 11167 } 11168 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11169 NULL, tcp_extra_priv_ports_add, NULL)) { 11170 nd_free(ndp); 11171 return (B_FALSE); 11172 } 11173 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11174 NULL, tcp_extra_priv_ports_del, NULL)) { 11175 nd_free(ndp); 11176 return (B_FALSE); 11177 } 11178 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11179 NULL)) { 11180 nd_free(ndp); 11181 return (B_FALSE); 11182 } 11183 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11184 NULL, NULL)) { 11185 nd_free(ndp); 11186 return (B_FALSE); 11187 } 11188 if (!nd_load(ndp, "tcp_listen_hash", 11189 tcp_listen_hash_report, NULL, NULL)) { 11190 nd_free(ndp); 11191 return (B_FALSE); 11192 } 11193 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11194 NULL, NULL)) { 11195 nd_free(ndp); 11196 return (B_FALSE); 11197 } 11198 if (!nd_load(ndp, "tcp_acceptor_hash", 11199 tcp_acceptor_hash_report, NULL, NULL)) { 11200 nd_free(ndp); 11201 return (B_FALSE); 11202 } 11203 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11204 tcp_1948_phrase_set, NULL)) { 11205 nd_free(ndp); 11206 return (B_FALSE); 11207 } 11208 /* 11209 * Dummy ndd variables - only to convey obsolescence information 11210 * through printing of their name (no get or set routines) 11211 * XXX Remove in future releases ? 11212 */ 11213 if (!nd_load(ndp, 11214 "tcp_close_wait_interval(obsoleted - " 11215 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11216 nd_free(ndp); 11217 return (B_FALSE); 11218 } 11219 return (B_TRUE); 11220 } 11221 11222 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11223 /* ARGSUSED */ 11224 static int 11225 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11226 cred_t *cr) 11227 { 11228 long new_value; 11229 tcpparam_t *tcppa = (tcpparam_t *)cp; 11230 11231 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11232 new_value < tcppa->tcp_param_min || 11233 new_value > tcppa->tcp_param_max) { 11234 return (EINVAL); 11235 } 11236 /* 11237 * Need to make sure new_value is a multiple of 4. If it is not, 11238 * round it up. For future 64 bit requirement, we actually make it 11239 * a multiple of 8. 11240 */ 11241 if (new_value & 0x7) { 11242 new_value = (new_value & ~0x7) + 0x8; 11243 } 11244 tcppa->tcp_param_val = new_value; 11245 return (0); 11246 } 11247 11248 /* Set callback routine passed to nd_load by tcp_param_register */ 11249 /* ARGSUSED */ 11250 static int 11251 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11252 { 11253 long new_value; 11254 tcpparam_t *tcppa = (tcpparam_t *)cp; 11255 11256 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11257 new_value < tcppa->tcp_param_min || 11258 new_value > tcppa->tcp_param_max) { 11259 return (EINVAL); 11260 } 11261 tcppa->tcp_param_val = new_value; 11262 return (0); 11263 } 11264 11265 /* 11266 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11267 * is filled, return as much as we can. The message passed in may be 11268 * multi-part, chained using b_cont. "start" is the starting sequence 11269 * number for this piece. 11270 */ 11271 static mblk_t * 11272 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11273 { 11274 uint32_t end; 11275 mblk_t *mp1; 11276 mblk_t *mp2; 11277 mblk_t *next_mp; 11278 uint32_t u1; 11279 tcp_stack_t *tcps = tcp->tcp_tcps; 11280 11281 /* Walk through all the new pieces. */ 11282 do { 11283 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11284 (uintptr_t)INT_MAX); 11285 end = start + (int)(mp->b_wptr - mp->b_rptr); 11286 next_mp = mp->b_cont; 11287 if (start == end) { 11288 /* Empty. Blast it. */ 11289 freeb(mp); 11290 continue; 11291 } 11292 mp->b_cont = NULL; 11293 TCP_REASS_SET_SEQ(mp, start); 11294 TCP_REASS_SET_END(mp, end); 11295 mp1 = tcp->tcp_reass_tail; 11296 if (!mp1) { 11297 tcp->tcp_reass_tail = mp; 11298 tcp->tcp_reass_head = mp; 11299 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11300 UPDATE_MIB(&tcps->tcps_mib, 11301 tcpInDataUnorderBytes, end - start); 11302 continue; 11303 } 11304 /* New stuff completely beyond tail? */ 11305 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11306 /* Link it on end. */ 11307 mp1->b_cont = mp; 11308 tcp->tcp_reass_tail = mp; 11309 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11310 UPDATE_MIB(&tcps->tcps_mib, 11311 tcpInDataUnorderBytes, end - start); 11312 continue; 11313 } 11314 mp1 = tcp->tcp_reass_head; 11315 u1 = TCP_REASS_SEQ(mp1); 11316 /* New stuff at the front? */ 11317 if (SEQ_LT(start, u1)) { 11318 /* Yes... Check for overlap. */ 11319 mp->b_cont = mp1; 11320 tcp->tcp_reass_head = mp; 11321 tcp_reass_elim_overlap(tcp, mp); 11322 continue; 11323 } 11324 /* 11325 * The new piece fits somewhere between the head and tail. 11326 * We find our slot, where mp1 precedes us and mp2 trails. 11327 */ 11328 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11329 u1 = TCP_REASS_SEQ(mp2); 11330 if (SEQ_LEQ(start, u1)) 11331 break; 11332 } 11333 /* Link ourselves in */ 11334 mp->b_cont = mp2; 11335 mp1->b_cont = mp; 11336 11337 /* Trim overlap with following mblk(s) first */ 11338 tcp_reass_elim_overlap(tcp, mp); 11339 11340 /* Trim overlap with preceding mblk */ 11341 tcp_reass_elim_overlap(tcp, mp1); 11342 11343 } while (start = end, mp = next_mp); 11344 mp1 = tcp->tcp_reass_head; 11345 /* Anything ready to go? */ 11346 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11347 return (NULL); 11348 /* Eat what we can off the queue */ 11349 for (;;) { 11350 mp = mp1->b_cont; 11351 end = TCP_REASS_END(mp1); 11352 TCP_REASS_SET_SEQ(mp1, 0); 11353 TCP_REASS_SET_END(mp1, 0); 11354 if (!mp) { 11355 tcp->tcp_reass_tail = NULL; 11356 break; 11357 } 11358 if (end != TCP_REASS_SEQ(mp)) { 11359 mp1->b_cont = NULL; 11360 break; 11361 } 11362 mp1 = mp; 11363 } 11364 mp1 = tcp->tcp_reass_head; 11365 tcp->tcp_reass_head = mp; 11366 return (mp1); 11367 } 11368 11369 /* Eliminate any overlap that mp may have over later mblks */ 11370 static void 11371 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11372 { 11373 uint32_t end; 11374 mblk_t *mp1; 11375 uint32_t u1; 11376 tcp_stack_t *tcps = tcp->tcp_tcps; 11377 11378 end = TCP_REASS_END(mp); 11379 while ((mp1 = mp->b_cont) != NULL) { 11380 u1 = TCP_REASS_SEQ(mp1); 11381 if (!SEQ_GT(end, u1)) 11382 break; 11383 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11384 mp->b_wptr -= end - u1; 11385 TCP_REASS_SET_END(mp, u1); 11386 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11387 UPDATE_MIB(&tcps->tcps_mib, 11388 tcpInDataPartDupBytes, end - u1); 11389 break; 11390 } 11391 mp->b_cont = mp1->b_cont; 11392 TCP_REASS_SET_SEQ(mp1, 0); 11393 TCP_REASS_SET_END(mp1, 0); 11394 freeb(mp1); 11395 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11396 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11397 } 11398 if (!mp1) 11399 tcp->tcp_reass_tail = mp; 11400 } 11401 11402 static uint_t 11403 tcp_rwnd_reopen(tcp_t *tcp) 11404 { 11405 uint_t ret = 0; 11406 uint_t thwin; 11407 11408 /* Learn the latest rwnd information that we sent to the other side. */ 11409 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11410 << tcp->tcp_rcv_ws; 11411 /* This is peer's calculated send window (our receive window). */ 11412 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11413 /* 11414 * Increase the receive window to max. But we need to do receiver 11415 * SWS avoidance. This means that we need to check the increase of 11416 * of receive window is at least 1 MSS. 11417 */ 11418 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11419 /* 11420 * If the window that the other side knows is less than max 11421 * deferred acks segments, send an update immediately. 11422 */ 11423 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11424 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11425 ret = TH_ACK_NEEDED; 11426 } 11427 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11428 } 11429 return (ret); 11430 } 11431 11432 /* 11433 * Send up all messages queued on tcp_rcv_list. 11434 */ 11435 static uint_t 11436 tcp_rcv_drain(tcp_t *tcp) 11437 { 11438 mblk_t *mp; 11439 uint_t ret = 0; 11440 #ifdef DEBUG 11441 uint_t cnt = 0; 11442 #endif 11443 queue_t *q = tcp->tcp_rq; 11444 11445 /* Can't drain on an eager connection */ 11446 if (tcp->tcp_listener != NULL) 11447 return (ret); 11448 11449 /* Can't be a non-STREAMS connection or sodirect enabled */ 11450 ASSERT((!IPCL_IS_NONSTR(tcp->tcp_connp)) && SOD_NOT_ENABLED(tcp)); 11451 11452 /* No need for the push timer now. */ 11453 if (tcp->tcp_push_tid != 0) { 11454 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11455 tcp->tcp_push_tid = 0; 11456 } 11457 11458 /* 11459 * Handle two cases here: we are currently fused or we were 11460 * previously fused and have some urgent data to be delivered 11461 * upstream. The latter happens because we either ran out of 11462 * memory or were detached and therefore sending the SIGURG was 11463 * deferred until this point. In either case we pass control 11464 * over to tcp_fuse_rcv_drain() since it may need to complete 11465 * some work. 11466 */ 11467 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11468 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11469 tcp->tcp_fused_sigurg_mp != NULL); 11470 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11471 &tcp->tcp_fused_sigurg_mp)) 11472 return (ret); 11473 } 11474 11475 while ((mp = tcp->tcp_rcv_list) != NULL) { 11476 tcp->tcp_rcv_list = mp->b_next; 11477 mp->b_next = NULL; 11478 #ifdef DEBUG 11479 cnt += msgdsize(mp); 11480 #endif 11481 /* Does this need SSL processing first? */ 11482 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11483 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11484 mblk_t *, mp); 11485 tcp_kssl_input(tcp, mp); 11486 continue; 11487 } 11488 putnext(q, mp); 11489 } 11490 #ifdef DEBUG 11491 ASSERT(cnt == tcp->tcp_rcv_cnt); 11492 #endif 11493 tcp->tcp_rcv_last_head = NULL; 11494 tcp->tcp_rcv_last_tail = NULL; 11495 tcp->tcp_rcv_cnt = 0; 11496 11497 if (canputnext(q)) 11498 return (tcp_rwnd_reopen(tcp)); 11499 11500 return (ret); 11501 } 11502 11503 /* 11504 * Queue data on tcp_rcv_list which is a b_next chain. 11505 * tcp_rcv_last_head/tail is the last element of this chain. 11506 * Each element of the chain is a b_cont chain. 11507 * 11508 * M_DATA messages are added to the current element. 11509 * Other messages are added as new (b_next) elements. 11510 */ 11511 void 11512 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11513 { 11514 ASSERT(seg_len == msgdsize(mp)); 11515 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11516 11517 if (tcp->tcp_rcv_list == NULL) { 11518 ASSERT(tcp->tcp_rcv_last_head == NULL); 11519 tcp->tcp_rcv_list = mp; 11520 tcp->tcp_rcv_last_head = mp; 11521 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11522 tcp->tcp_rcv_last_tail->b_cont = mp; 11523 } else { 11524 tcp->tcp_rcv_last_head->b_next = mp; 11525 tcp->tcp_rcv_last_head = mp; 11526 } 11527 11528 while (mp->b_cont) 11529 mp = mp->b_cont; 11530 11531 tcp->tcp_rcv_last_tail = mp; 11532 tcp->tcp_rcv_cnt += seg_len; 11533 tcp->tcp_rwnd -= seg_len; 11534 } 11535 11536 /* 11537 * The tcp_rcv_sod_XXX() functions enqueue data directly to the socket 11538 * above, in addition when uioa is enabled schedule an asynchronous uio 11539 * prior to enqueuing. They implement the combinhed semantics of the 11540 * tcp_rcv_XXX() functions, tcp_rcv_list push logic, and STREAMS putnext() 11541 * canputnext(), i.e. flow-control with backenable. 11542 * 11543 * tcp_sod_wakeup() is called where tcp_rcv_drain() would be called in the 11544 * non sodirect connection but as there are no tcp_tcv_list mblk_t's we deal 11545 * with the rcv_wnd and push timer and call the sodirect wakeup function. 11546 * 11547 * Must be called with sodp->sod_lockp held and will return with the lock 11548 * released. 11549 */ 11550 static uint_t 11551 tcp_rcv_sod_wakeup(tcp_t *tcp, sodirect_t *sodp) 11552 { 11553 queue_t *q = tcp->tcp_rq; 11554 uint_t thwin; 11555 tcp_stack_t *tcps = tcp->tcp_tcps; 11556 uint_t ret = 0; 11557 11558 /* Can't be an eager connection */ 11559 ASSERT(tcp->tcp_listener == NULL); 11560 11561 /* Caller must have lock held */ 11562 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11563 11564 /* Sodirect mode so must not be a tcp_rcv_list */ 11565 ASSERT(tcp->tcp_rcv_list == NULL); 11566 11567 if (SOD_QFULL(sodp)) { 11568 /* Q is full, mark Q for need backenable */ 11569 SOD_QSETBE(sodp); 11570 } 11571 /* Last advertised rwnd, i.e. rwnd last sent in a packet */ 11572 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11573 << tcp->tcp_rcv_ws; 11574 /* This is peer's calculated send window (our available rwnd). */ 11575 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11576 /* 11577 * Increase the receive window to max. But we need to do receiver 11578 * SWS avoidance. This means that we need to check the increase of 11579 * of receive window is at least 1 MSS. 11580 */ 11581 if (!SOD_QFULL(sodp) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11582 /* 11583 * If the window that the other side knows is less than max 11584 * deferred acks segments, send an update immediately. 11585 */ 11586 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11587 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11588 ret = TH_ACK_NEEDED; 11589 } 11590 tcp->tcp_rwnd = q->q_hiwat; 11591 } 11592 11593 if (!SOD_QEMPTY(sodp)) { 11594 /* Wakeup to socket */ 11595 sodp->sod_state &= SOD_WAKE_CLR; 11596 sodp->sod_state |= SOD_WAKE_DONE; 11597 (sodp->sod_wakeup)(sodp); 11598 /* wakeup() does the mutex_ext() */ 11599 } else { 11600 /* Q is empty, no need to wake */ 11601 sodp->sod_state &= SOD_WAKE_CLR; 11602 sodp->sod_state |= SOD_WAKE_NOT; 11603 mutex_exit(sodp->sod_lockp); 11604 } 11605 11606 /* No need for the push timer now. */ 11607 if (tcp->tcp_push_tid != 0) { 11608 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11609 tcp->tcp_push_tid = 0; 11610 } 11611 11612 return (ret); 11613 } 11614 11615 /* 11616 * Called where tcp_rcv_enqueue()/putnext(RD(q)) would be. For M_DATA 11617 * mblk_t's if uioa enabled then start a uioa asynchronous copy directly 11618 * to the user-land buffer and flag the mblk_t as such. 11619 * 11620 * Also, handle tcp_rwnd. 11621 */ 11622 uint_t 11623 tcp_rcv_sod_enqueue(tcp_t *tcp, sodirect_t *sodp, mblk_t *mp, uint_t seg_len) 11624 { 11625 uioa_t *uioap = &sodp->sod_uioa; 11626 boolean_t qfull; 11627 uint_t thwin; 11628 11629 /* Can't be an eager connection */ 11630 ASSERT(tcp->tcp_listener == NULL); 11631 11632 /* Caller must have lock held */ 11633 ASSERT(MUTEX_HELD(sodp->sod_lockp)); 11634 11635 /* Sodirect mode so must not be a tcp_rcv_list */ 11636 ASSERT(tcp->tcp_rcv_list == NULL); 11637 11638 /* Passed in segment length must be equal to mblk_t chain data size */ 11639 ASSERT(seg_len == msgdsize(mp)); 11640 11641 if (DB_TYPE(mp) != M_DATA) { 11642 /* Only process M_DATA mblk_t's */ 11643 goto enq; 11644 } 11645 if (uioap->uioa_state & UIOA_ENABLED) { 11646 /* Uioa is enabled */ 11647 mblk_t *mp1 = mp; 11648 mblk_t *lmp = NULL; 11649 11650 if (seg_len > uioap->uio_resid) { 11651 /* 11652 * There isn't enough uio space for the mblk_t chain 11653 * so disable uioa such that this and any additional 11654 * mblk_t data is handled by the socket and schedule 11655 * the socket for wakeup to finish this uioa. 11656 */ 11657 uioap->uioa_state &= UIOA_CLR; 11658 uioap->uioa_state |= UIOA_FINI; 11659 if (sodp->sod_state & SOD_WAKE_NOT) { 11660 sodp->sod_state &= SOD_WAKE_CLR; 11661 sodp->sod_state |= SOD_WAKE_NEED; 11662 } 11663 goto enq; 11664 } 11665 do { 11666 uint32_t len = MBLKL(mp1); 11667 11668 if (!uioamove(mp1->b_rptr, len, UIO_READ, uioap)) { 11669 /* Scheduled, mark dblk_t as such */ 11670 DB_FLAGS(mp1) |= DBLK_UIOA; 11671 } else { 11672 /* Error, turn off async processing */ 11673 uioap->uioa_state &= UIOA_CLR; 11674 uioap->uioa_state |= UIOA_FINI; 11675 break; 11676 } 11677 lmp = mp1; 11678 } while ((mp1 = mp1->b_cont) != NULL); 11679 11680 if (mp1 != NULL || uioap->uio_resid == 0) { 11681 /* 11682 * Not all mblk_t(s) uioamoved (error) or all uio 11683 * space has been consumed so schedule the socket 11684 * for wakeup to finish this uio. 11685 */ 11686 sodp->sod_state &= SOD_WAKE_CLR; 11687 sodp->sod_state |= SOD_WAKE_NEED; 11688 11689 /* Break the mblk chain if neccessary. */ 11690 if (mp1 != NULL && lmp != NULL) { 11691 mp->b_next = mp1; 11692 lmp->b_cont = NULL; 11693 } 11694 } 11695 } else if (uioap->uioa_state & UIOA_FINI) { 11696 /* 11697 * Post UIO_ENABLED waiting for socket to finish processing 11698 * so just enqueue and update tcp_rwnd. 11699 */ 11700 if (SOD_QFULL(sodp)) 11701 tcp->tcp_rwnd -= seg_len; 11702 } else if (sodp->sod_want > 0) { 11703 /* 11704 * Uioa isn't enabled but sodirect has a pending read(). 11705 */ 11706 if (SOD_QCNT(sodp) + seg_len >= sodp->sod_want) { 11707 if (sodp->sod_state & SOD_WAKE_NOT) { 11708 /* Schedule socket for wakeup */ 11709 sodp->sod_state &= SOD_WAKE_CLR; 11710 sodp->sod_state |= SOD_WAKE_NEED; 11711 } 11712 tcp->tcp_rwnd -= seg_len; 11713 } 11714 } else if (SOD_QCNT(sodp) + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 11715 /* 11716 * No pending sodirect read() so used the default 11717 * TCP push logic to guess that a push is needed. 11718 */ 11719 if (sodp->sod_state & SOD_WAKE_NOT) { 11720 /* Schedule socket for wakeup */ 11721 sodp->sod_state &= SOD_WAKE_CLR; 11722 sodp->sod_state |= SOD_WAKE_NEED; 11723 } 11724 tcp->tcp_rwnd -= seg_len; 11725 } else { 11726 /* Just update tcp_rwnd */ 11727 tcp->tcp_rwnd -= seg_len; 11728 } 11729 enq: 11730 qfull = SOD_QFULL(sodp); 11731 11732 (sodp->sod_enqueue)(sodp, mp); 11733 11734 if (! qfull && SOD_QFULL(sodp)) { 11735 /* Wasn't QFULL, now QFULL, need back-enable */ 11736 SOD_QSETBE(sodp); 11737 } 11738 11739 /* 11740 * Check to see if remote avail swnd < mss due to delayed ACK, 11741 * first get advertised rwnd. 11742 */ 11743 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)); 11744 /* Minus delayed ACK count */ 11745 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11746 if (thwin < tcp->tcp_mss) { 11747 /* Remote avail swnd < mss, need ACK now */ 11748 return (TH_ACK_NEEDED); 11749 } 11750 11751 return (0); 11752 } 11753 11754 /* 11755 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11756 * 11757 * This is the default entry function into TCP on the read side. TCP is 11758 * always entered via squeue i.e. using squeue's for mutual exclusion. 11759 * When classifier does a lookup to find the tcp, it also puts a reference 11760 * on the conn structure associated so the tcp is guaranteed to exist 11761 * when we come here. We still need to check the state because it might 11762 * as well has been closed. The squeue processing function i.e. squeue_enter, 11763 * is responsible for doing the CONN_DEC_REF. 11764 * 11765 * Apart from the default entry point, IP also sends packets directly to 11766 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11767 * connections. 11768 */ 11769 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11770 void 11771 tcp_input(void *arg, mblk_t *mp, void *arg2) 11772 { 11773 conn_t *connp = (conn_t *)arg; 11774 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11775 11776 /* arg2 is the sqp */ 11777 ASSERT(arg2 != NULL); 11778 ASSERT(mp != NULL); 11779 11780 /* 11781 * Don't accept any input on a closed tcp as this TCP logically does 11782 * not exist on the system. Don't proceed further with this TCP. 11783 * For eg. this packet could trigger another close of this tcp 11784 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11785 * tcp_clean_death / tcp_closei_local must be called at most once 11786 * on a TCP. In this case we need to refeed the packet into the 11787 * classifier and figure out where the packet should go. Need to 11788 * preserve the recv_ill somehow. Until we figure that out, for 11789 * now just drop the packet if we can't classify the packet. 11790 */ 11791 if (tcp->tcp_state == TCPS_CLOSED || 11792 tcp->tcp_state == TCPS_BOUND) { 11793 conn_t *new_connp; 11794 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11795 11796 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11797 if (new_connp != NULL) { 11798 tcp_reinput(new_connp, mp, arg2); 11799 return; 11800 } 11801 /* We failed to classify. For now just drop the packet */ 11802 freemsg(mp); 11803 return; 11804 } 11805 11806 if (DB_TYPE(mp) != M_DATA) { 11807 tcp_rput_common(tcp, mp); 11808 return; 11809 } 11810 11811 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11812 squeue_t *final_sqp; 11813 11814 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11815 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11816 DB_CKSUMSTART(mp) = 0; 11817 if (tcp->tcp_state == TCPS_SYN_SENT && 11818 connp->conn_final_sqp == NULL && 11819 tcp_outbound_squeue_switch) { 11820 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11821 connp->conn_final_sqp = final_sqp; 11822 if (connp->conn_final_sqp != connp->conn_sqp) { 11823 CONN_INC_REF(connp); 11824 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11825 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11826 tcp_rput_data, connp, ip_squeue_flag, 11827 SQTAG_CONNECT_FINISH); 11828 return; 11829 } 11830 } 11831 } 11832 tcp_rput_data(connp, mp, arg2); 11833 } 11834 11835 /* 11836 * The read side put procedure. 11837 * The packets passed up by ip are assume to be aligned according to 11838 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11839 */ 11840 static void 11841 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11842 { 11843 /* 11844 * tcp_rput_data() does not expect M_CTL except for the case 11845 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11846 * type. Need to make sure that any other M_CTLs don't make 11847 * it to tcp_rput_data since it is not expecting any and doesn't 11848 * check for it. 11849 */ 11850 if (DB_TYPE(mp) == M_CTL) { 11851 switch (*(uint32_t *)(mp->b_rptr)) { 11852 case TCP_IOC_ABORT_CONN: 11853 /* 11854 * Handle connection abort request. 11855 */ 11856 tcp_ioctl_abort_handler(tcp, mp); 11857 return; 11858 case IPSEC_IN: 11859 /* 11860 * Only secure icmp arrive in TCP and they 11861 * don't go through data path. 11862 */ 11863 tcp_icmp_error(tcp, mp); 11864 return; 11865 case IN_PKTINFO: 11866 /* 11867 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11868 * sockets that are receiving IPv4 traffic. tcp 11869 */ 11870 ASSERT(tcp->tcp_family == AF_INET6); 11871 ASSERT(tcp->tcp_ipv6_recvancillary & 11872 TCP_IPV6_RECVPKTINFO); 11873 tcp_rput_data(tcp->tcp_connp, mp, 11874 tcp->tcp_connp->conn_sqp); 11875 return; 11876 case MDT_IOC_INFO_UPDATE: 11877 /* 11878 * Handle Multidata information update; the 11879 * following routine will free the message. 11880 */ 11881 if (tcp->tcp_connp->conn_mdt_ok) { 11882 tcp_mdt_update(tcp, 11883 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11884 B_FALSE); 11885 } 11886 freemsg(mp); 11887 return; 11888 case LSO_IOC_INFO_UPDATE: 11889 /* 11890 * Handle LSO information update; the following 11891 * routine will free the message. 11892 */ 11893 if (tcp->tcp_connp->conn_lso_ok) { 11894 tcp_lso_update(tcp, 11895 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11896 } 11897 freemsg(mp); 11898 return; 11899 default: 11900 /* 11901 * tcp_icmp_err() will process the M_CTL packets. 11902 * Non-ICMP packets, if any, will be discarded in 11903 * tcp_icmp_err(). We will process the ICMP packet 11904 * even if we are TCP_IS_DETACHED_NONEAGER as the 11905 * incoming ICMP packet may result in changing 11906 * the tcp_mss, which we would need if we have 11907 * packets to retransmit. 11908 */ 11909 tcp_icmp_error(tcp, mp); 11910 return; 11911 } 11912 } 11913 11914 /* No point processing the message if tcp is already closed */ 11915 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11916 freemsg(mp); 11917 return; 11918 } 11919 11920 tcp_rput_other(tcp, mp); 11921 } 11922 11923 11924 /* The minimum of smoothed mean deviation in RTO calculation. */ 11925 #define TCP_SD_MIN 400 11926 11927 /* 11928 * Set RTO for this connection. The formula is from Jacobson and Karels' 11929 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11930 * are the same as those in Appendix A.2 of that paper. 11931 * 11932 * m = new measurement 11933 * sa = smoothed RTT average (8 * average estimates). 11934 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11935 */ 11936 static void 11937 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11938 { 11939 long m = TICK_TO_MSEC(rtt); 11940 clock_t sa = tcp->tcp_rtt_sa; 11941 clock_t sv = tcp->tcp_rtt_sd; 11942 clock_t rto; 11943 tcp_stack_t *tcps = tcp->tcp_tcps; 11944 11945 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11946 tcp->tcp_rtt_update++; 11947 11948 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11949 if (sa != 0) { 11950 /* 11951 * Update average estimator: 11952 * new rtt = 7/8 old rtt + 1/8 Error 11953 */ 11954 11955 /* m is now Error in estimate. */ 11956 m -= sa >> 3; 11957 if ((sa += m) <= 0) { 11958 /* 11959 * Don't allow the smoothed average to be negative. 11960 * We use 0 to denote reinitialization of the 11961 * variables. 11962 */ 11963 sa = 1; 11964 } 11965 11966 /* 11967 * Update deviation estimator: 11968 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11969 */ 11970 if (m < 0) 11971 m = -m; 11972 m -= sv >> 2; 11973 sv += m; 11974 } else { 11975 /* 11976 * This follows BSD's implementation. So the reinitialized 11977 * RTO is 3 * m. We cannot go less than 2 because if the 11978 * link is bandwidth dominated, doubling the window size 11979 * during slow start means doubling the RTT. We want to be 11980 * more conservative when we reinitialize our estimates. 3 11981 * is just a convenient number. 11982 */ 11983 sa = m << 3; 11984 sv = m << 1; 11985 } 11986 if (sv < TCP_SD_MIN) { 11987 /* 11988 * We do not know that if sa captures the delay ACK 11989 * effect as in a long train of segments, a receiver 11990 * does not delay its ACKs. So set the minimum of sv 11991 * to be TCP_SD_MIN, which is default to 400 ms, twice 11992 * of BSD DATO. That means the minimum of mean 11993 * deviation is 100 ms. 11994 * 11995 */ 11996 sv = TCP_SD_MIN; 11997 } 11998 tcp->tcp_rtt_sa = sa; 11999 tcp->tcp_rtt_sd = sv; 12000 /* 12001 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12002 * 12003 * Add tcp_rexmit_interval extra in case of extreme environment 12004 * where the algorithm fails to work. The default value of 12005 * tcp_rexmit_interval_extra should be 0. 12006 * 12007 * As we use a finer grained clock than BSD and update 12008 * RTO for every ACKs, add in another .25 of RTT to the 12009 * deviation of RTO to accomodate burstiness of 1/4 of 12010 * window size. 12011 */ 12012 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12013 12014 if (rto > tcps->tcps_rexmit_interval_max) { 12015 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12016 } else if (rto < tcps->tcps_rexmit_interval_min) { 12017 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12018 } else { 12019 tcp->tcp_rto = rto; 12020 } 12021 12022 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12023 tcp->tcp_timer_backoff = 0; 12024 } 12025 12026 /* 12027 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12028 * send queue which starts at the given seq. no. 12029 * 12030 * Parameters: 12031 * tcp_t *tcp: the tcp instance pointer. 12032 * uint32_t seq: the starting seq. no of the requested segment. 12033 * int32_t *off: after the execution, *off will be the offset to 12034 * the returned mblk which points to the requested seq no. 12035 * It is the caller's responsibility to send in a non-null off. 12036 * 12037 * Return: 12038 * A mblk_t pointer pointing to the requested segment in send queue. 12039 */ 12040 static mblk_t * 12041 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12042 { 12043 int32_t cnt; 12044 mblk_t *mp; 12045 12046 /* Defensive coding. Make sure we don't send incorrect data. */ 12047 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12048 return (NULL); 12049 12050 cnt = seq - tcp->tcp_suna; 12051 mp = tcp->tcp_xmit_head; 12052 while (cnt > 0 && mp != NULL) { 12053 cnt -= mp->b_wptr - mp->b_rptr; 12054 if (cnt < 0) { 12055 cnt += mp->b_wptr - mp->b_rptr; 12056 break; 12057 } 12058 mp = mp->b_cont; 12059 } 12060 ASSERT(mp != NULL); 12061 *off = cnt; 12062 return (mp); 12063 } 12064 12065 /* 12066 * This function handles all retransmissions if SACK is enabled for this 12067 * connection. First it calculates how many segments can be retransmitted 12068 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12069 * segments. A segment is eligible if sack_cnt for that segment is greater 12070 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12071 * all eligible segments, it checks to see if TCP can send some new segments 12072 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12073 * 12074 * Parameters: 12075 * tcp_t *tcp: the tcp structure of the connection. 12076 * uint_t *flags: in return, appropriate value will be set for 12077 * tcp_rput_data(). 12078 */ 12079 static void 12080 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12081 { 12082 notsack_blk_t *notsack_blk; 12083 int32_t usable_swnd; 12084 int32_t mss; 12085 uint32_t seg_len; 12086 mblk_t *xmit_mp; 12087 tcp_stack_t *tcps = tcp->tcp_tcps; 12088 12089 ASSERT(tcp->tcp_sack_info != NULL); 12090 ASSERT(tcp->tcp_notsack_list != NULL); 12091 ASSERT(tcp->tcp_rexmit == B_FALSE); 12092 12093 /* Defensive coding in case there is a bug... */ 12094 if (tcp->tcp_notsack_list == NULL) { 12095 return; 12096 } 12097 notsack_blk = tcp->tcp_notsack_list; 12098 mss = tcp->tcp_mss; 12099 12100 /* 12101 * Limit the num of outstanding data in the network to be 12102 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12103 */ 12104 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12105 12106 /* At least retransmit 1 MSS of data. */ 12107 if (usable_swnd <= 0) { 12108 usable_swnd = mss; 12109 } 12110 12111 /* Make sure no new RTT samples will be taken. */ 12112 tcp->tcp_csuna = tcp->tcp_snxt; 12113 12114 notsack_blk = tcp->tcp_notsack_list; 12115 while (usable_swnd > 0) { 12116 mblk_t *snxt_mp, *tmp_mp; 12117 tcp_seq begin = tcp->tcp_sack_snxt; 12118 tcp_seq end; 12119 int32_t off; 12120 12121 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12122 if (SEQ_GT(notsack_blk->end, begin) && 12123 (notsack_blk->sack_cnt >= 12124 tcps->tcps_dupack_fast_retransmit)) { 12125 end = notsack_blk->end; 12126 if (SEQ_LT(begin, notsack_blk->begin)) { 12127 begin = notsack_blk->begin; 12128 } 12129 break; 12130 } 12131 } 12132 /* 12133 * All holes are filled. Manipulate tcp_cwnd to send more 12134 * if we can. Note that after the SACK recovery, tcp_cwnd is 12135 * set to tcp_cwnd_ssthresh. 12136 */ 12137 if (notsack_blk == NULL) { 12138 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12139 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12140 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12141 ASSERT(tcp->tcp_cwnd > 0); 12142 return; 12143 } else { 12144 usable_swnd = usable_swnd / mss; 12145 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12146 MAX(usable_swnd * mss, mss); 12147 *flags |= TH_XMIT_NEEDED; 12148 return; 12149 } 12150 } 12151 12152 /* 12153 * Note that we may send more than usable_swnd allows here 12154 * because of round off, but no more than 1 MSS of data. 12155 */ 12156 seg_len = end - begin; 12157 if (seg_len > mss) 12158 seg_len = mss; 12159 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12160 ASSERT(snxt_mp != NULL); 12161 /* This should not happen. Defensive coding again... */ 12162 if (snxt_mp == NULL) { 12163 return; 12164 } 12165 12166 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12167 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12168 if (xmit_mp == NULL) 12169 return; 12170 12171 usable_swnd -= seg_len; 12172 tcp->tcp_pipe += seg_len; 12173 tcp->tcp_sack_snxt = begin + seg_len; 12174 12175 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12176 12177 /* 12178 * Update the send timestamp to avoid false retransmission. 12179 */ 12180 snxt_mp->b_prev = (mblk_t *)lbolt; 12181 12182 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12183 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12184 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12185 /* 12186 * Update tcp_rexmit_max to extend this SACK recovery phase. 12187 * This happens when new data sent during fast recovery is 12188 * also lost. If TCP retransmits those new data, it needs 12189 * to extend SACK recover phase to avoid starting another 12190 * fast retransmit/recovery unnecessarily. 12191 */ 12192 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12193 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12194 } 12195 } 12196 } 12197 12198 /* 12199 * This function handles policy checking at TCP level for non-hard_bound/ 12200 * detached connections. 12201 */ 12202 static boolean_t 12203 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12204 boolean_t secure, boolean_t mctl_present) 12205 { 12206 ipsec_latch_t *ipl = NULL; 12207 ipsec_action_t *act = NULL; 12208 mblk_t *data_mp; 12209 ipsec_in_t *ii; 12210 const char *reason; 12211 kstat_named_t *counter; 12212 tcp_stack_t *tcps = tcp->tcp_tcps; 12213 ipsec_stack_t *ipss; 12214 ip_stack_t *ipst; 12215 12216 ASSERT(mctl_present || !secure); 12217 12218 ASSERT((ipha == NULL && ip6h != NULL) || 12219 (ip6h == NULL && ipha != NULL)); 12220 12221 /* 12222 * We don't necessarily have an ipsec_in_act action to verify 12223 * policy because of assymetrical policy where we have only 12224 * outbound policy and no inbound policy (possible with global 12225 * policy). 12226 */ 12227 if (!secure) { 12228 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12229 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12230 return (B_TRUE); 12231 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12232 "tcp_check_policy", ipha, ip6h, secure, 12233 tcps->tcps_netstack); 12234 ipss = tcps->tcps_netstack->netstack_ipsec; 12235 12236 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12237 DROPPER(ipss, ipds_tcp_clear), 12238 &tcps->tcps_dropper); 12239 return (B_FALSE); 12240 } 12241 12242 /* 12243 * We have a secure packet. 12244 */ 12245 if (act == NULL) { 12246 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12247 "tcp_check_policy", ipha, ip6h, secure, 12248 tcps->tcps_netstack); 12249 ipss = tcps->tcps_netstack->netstack_ipsec; 12250 12251 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12252 DROPPER(ipss, ipds_tcp_secure), 12253 &tcps->tcps_dropper); 12254 return (B_FALSE); 12255 } 12256 12257 /* 12258 * XXX This whole routine is currently incorrect. ipl should 12259 * be set to the latch pointer, but is currently not set, so 12260 * we initialize it to NULL to avoid picking up random garbage. 12261 */ 12262 if (ipl == NULL) 12263 return (B_TRUE); 12264 12265 data_mp = first_mp->b_cont; 12266 12267 ii = (ipsec_in_t *)first_mp->b_rptr; 12268 12269 ipst = tcps->tcps_netstack->netstack_ip; 12270 12271 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12272 &counter, tcp->tcp_connp)) { 12273 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12274 return (B_TRUE); 12275 } 12276 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12277 "tcp inbound policy mismatch: %s, packet dropped\n", 12278 reason); 12279 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12280 12281 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12282 &tcps->tcps_dropper); 12283 return (B_FALSE); 12284 } 12285 12286 /* 12287 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12288 * retransmission after a timeout. 12289 * 12290 * To limit the number of duplicate segments, we limit the number of segment 12291 * to be sent in one time to tcp_snd_burst, the burst variable. 12292 */ 12293 static void 12294 tcp_ss_rexmit(tcp_t *tcp) 12295 { 12296 uint32_t snxt; 12297 uint32_t smax; 12298 int32_t win; 12299 int32_t mss; 12300 int32_t off; 12301 int32_t burst = tcp->tcp_snd_burst; 12302 mblk_t *snxt_mp; 12303 tcp_stack_t *tcps = tcp->tcp_tcps; 12304 12305 /* 12306 * Note that tcp_rexmit can be set even though TCP has retransmitted 12307 * all unack'ed segments. 12308 */ 12309 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12310 smax = tcp->tcp_rexmit_max; 12311 snxt = tcp->tcp_rexmit_nxt; 12312 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12313 snxt = tcp->tcp_suna; 12314 } 12315 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12316 win -= snxt - tcp->tcp_suna; 12317 mss = tcp->tcp_mss; 12318 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12319 12320 while (SEQ_LT(snxt, smax) && (win > 0) && 12321 (burst > 0) && (snxt_mp != NULL)) { 12322 mblk_t *xmit_mp; 12323 mblk_t *old_snxt_mp = snxt_mp; 12324 uint32_t cnt = mss; 12325 12326 if (win < cnt) { 12327 cnt = win; 12328 } 12329 if (SEQ_GT(snxt + cnt, smax)) { 12330 cnt = smax - snxt; 12331 } 12332 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12333 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12334 if (xmit_mp == NULL) 12335 return; 12336 12337 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12338 12339 snxt += cnt; 12340 win -= cnt; 12341 /* 12342 * Update the send timestamp to avoid false 12343 * retransmission. 12344 */ 12345 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12346 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12347 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12348 12349 tcp->tcp_rexmit_nxt = snxt; 12350 burst--; 12351 } 12352 /* 12353 * If we have transmitted all we have at the time 12354 * we started the retranmission, we can leave 12355 * the rest of the job to tcp_wput_data(). But we 12356 * need to check the send window first. If the 12357 * win is not 0, go on with tcp_wput_data(). 12358 */ 12359 if (SEQ_LT(snxt, smax) || win == 0) { 12360 return; 12361 } 12362 } 12363 /* Only call tcp_wput_data() if there is data to be sent. */ 12364 if (tcp->tcp_unsent) { 12365 tcp_wput_data(tcp, NULL, B_FALSE); 12366 } 12367 } 12368 12369 /* 12370 * Process all TCP option in SYN segment. Note that this function should 12371 * be called after tcp_adapt_ire() is called so that the necessary info 12372 * from IRE is already set in the tcp structure. 12373 * 12374 * This function sets up the correct tcp_mss value according to the 12375 * MSS option value and our header size. It also sets up the window scale 12376 * and timestamp values, and initialize SACK info blocks. But it does not 12377 * change receive window size after setting the tcp_mss value. The caller 12378 * should do the appropriate change. 12379 */ 12380 void 12381 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12382 { 12383 int options; 12384 tcp_opt_t tcpopt; 12385 uint32_t mss_max; 12386 char *tmp_tcph; 12387 tcp_stack_t *tcps = tcp->tcp_tcps; 12388 12389 tcpopt.tcp = NULL; 12390 options = tcp_parse_options(tcph, &tcpopt); 12391 12392 /* 12393 * Process MSS option. Note that MSS option value does not account 12394 * for IP or TCP options. This means that it is equal to MTU - minimum 12395 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12396 * IPv6. 12397 */ 12398 if (!(options & TCP_OPT_MSS_PRESENT)) { 12399 if (tcp->tcp_ipversion == IPV4_VERSION) 12400 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12401 else 12402 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12403 } else { 12404 if (tcp->tcp_ipversion == IPV4_VERSION) 12405 mss_max = tcps->tcps_mss_max_ipv4; 12406 else 12407 mss_max = tcps->tcps_mss_max_ipv6; 12408 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12409 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12410 else if (tcpopt.tcp_opt_mss > mss_max) 12411 tcpopt.tcp_opt_mss = mss_max; 12412 } 12413 12414 /* Process Window Scale option. */ 12415 if (options & TCP_OPT_WSCALE_PRESENT) { 12416 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12417 tcp->tcp_snd_ws_ok = B_TRUE; 12418 } else { 12419 tcp->tcp_snd_ws = B_FALSE; 12420 tcp->tcp_snd_ws_ok = B_FALSE; 12421 tcp->tcp_rcv_ws = B_FALSE; 12422 } 12423 12424 /* Process Timestamp option. */ 12425 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12426 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12427 tmp_tcph = (char *)tcp->tcp_tcph; 12428 12429 tcp->tcp_snd_ts_ok = B_TRUE; 12430 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12431 tcp->tcp_last_rcv_lbolt = lbolt64; 12432 ASSERT(OK_32PTR(tmp_tcph)); 12433 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12434 12435 /* Fill in our template header with basic timestamp option. */ 12436 tmp_tcph += tcp->tcp_tcp_hdr_len; 12437 tmp_tcph[0] = TCPOPT_NOP; 12438 tmp_tcph[1] = TCPOPT_NOP; 12439 tmp_tcph[2] = TCPOPT_TSTAMP; 12440 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12441 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12442 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12443 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12444 } else { 12445 tcp->tcp_snd_ts_ok = B_FALSE; 12446 } 12447 12448 /* 12449 * Process SACK options. If SACK is enabled for this connection, 12450 * then allocate the SACK info structure. Note the following ways 12451 * when tcp_snd_sack_ok is set to true. 12452 * 12453 * For active connection: in tcp_adapt_ire() called in 12454 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12455 * is checked. 12456 * 12457 * For passive connection: in tcp_adapt_ire() called in 12458 * tcp_accept_comm(). 12459 * 12460 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12461 * That check makes sure that if we did not send a SACK OK option, 12462 * we will not enable SACK for this connection even though the other 12463 * side sends us SACK OK option. For active connection, the SACK 12464 * info structure has already been allocated. So we need to free 12465 * it if SACK is disabled. 12466 */ 12467 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12468 (tcp->tcp_snd_sack_ok || 12469 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12470 /* This should be true only in the passive case. */ 12471 if (tcp->tcp_sack_info == NULL) { 12472 ASSERT(TCP_IS_DETACHED(tcp)); 12473 tcp->tcp_sack_info = 12474 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12475 } 12476 if (tcp->tcp_sack_info == NULL) { 12477 tcp->tcp_snd_sack_ok = B_FALSE; 12478 } else { 12479 tcp->tcp_snd_sack_ok = B_TRUE; 12480 if (tcp->tcp_snd_ts_ok) { 12481 tcp->tcp_max_sack_blk = 3; 12482 } else { 12483 tcp->tcp_max_sack_blk = 4; 12484 } 12485 } 12486 } else { 12487 /* 12488 * Resetting tcp_snd_sack_ok to B_FALSE so that 12489 * no SACK info will be used for this 12490 * connection. This assumes that SACK usage 12491 * permission is negotiated. This may need 12492 * to be changed once this is clarified. 12493 */ 12494 if (tcp->tcp_sack_info != NULL) { 12495 ASSERT(tcp->tcp_notsack_list == NULL); 12496 kmem_cache_free(tcp_sack_info_cache, 12497 tcp->tcp_sack_info); 12498 tcp->tcp_sack_info = NULL; 12499 } 12500 tcp->tcp_snd_sack_ok = B_FALSE; 12501 } 12502 12503 /* 12504 * Now we know the exact TCP/IP header length, subtract 12505 * that from tcp_mss to get our side's MSS. 12506 */ 12507 tcp->tcp_mss -= tcp->tcp_hdr_len; 12508 /* 12509 * Here we assume that the other side's header size will be equal to 12510 * our header size. We calculate the real MSS accordingly. Need to 12511 * take into additional stuffs IPsec puts in. 12512 * 12513 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12514 */ 12515 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12516 ((tcp->tcp_ipversion == IPV4_VERSION ? 12517 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12518 12519 /* 12520 * Set MSS to the smaller one of both ends of the connection. 12521 * We should not have called tcp_mss_set() before, but our 12522 * side of the MSS should have been set to a proper value 12523 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12524 * STREAM head parameters properly. 12525 * 12526 * If we have a larger-than-16-bit window but the other side 12527 * didn't want to do window scale, tcp_rwnd_set() will take 12528 * care of that. 12529 */ 12530 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12531 } 12532 12533 /* 12534 * Sends the T_CONN_IND to the listener. The caller calls this 12535 * functions via squeue to get inside the listener's perimeter 12536 * once the 3 way hand shake is done a T_CONN_IND needs to be 12537 * sent. As an optimization, the caller can call this directly 12538 * if listener's perimeter is same as eager's. 12539 */ 12540 /* ARGSUSED */ 12541 void 12542 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12543 { 12544 conn_t *lconnp = (conn_t *)arg; 12545 tcp_t *listener = lconnp->conn_tcp; 12546 tcp_t *tcp; 12547 struct T_conn_ind *conn_ind; 12548 ipaddr_t *addr_cache; 12549 boolean_t need_send_conn_ind = B_FALSE; 12550 tcp_stack_t *tcps = listener->tcp_tcps; 12551 12552 /* retrieve the eager */ 12553 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12554 ASSERT(conn_ind->OPT_offset != 0 && 12555 conn_ind->OPT_length == sizeof (intptr_t)); 12556 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12557 conn_ind->OPT_length); 12558 12559 /* 12560 * TLI/XTI applications will get confused by 12561 * sending eager as an option since it violates 12562 * the option semantics. So remove the eager as 12563 * option since TLI/XTI app doesn't need it anyway. 12564 */ 12565 if (!TCP_IS_SOCKET(listener)) { 12566 conn_ind->OPT_length = 0; 12567 conn_ind->OPT_offset = 0; 12568 } 12569 if (listener->tcp_state == TCPS_CLOSED || 12570 TCP_IS_DETACHED(listener)) { 12571 /* 12572 * If listener has closed, it would have caused a 12573 * a cleanup/blowoff to happen for the eager. We 12574 * just need to return. 12575 */ 12576 freemsg(mp); 12577 return; 12578 } 12579 12580 12581 /* 12582 * if the conn_req_q is full defer passing up the 12583 * T_CONN_IND until space is availabe after t_accept() 12584 * processing 12585 */ 12586 mutex_enter(&listener->tcp_eager_lock); 12587 12588 /* 12589 * Take the eager out, if it is in the list of droppable eagers 12590 * as we are here because the 3W handshake is over. 12591 */ 12592 MAKE_UNDROPPABLE(tcp); 12593 12594 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12595 tcp_t *tail; 12596 12597 /* 12598 * The eager already has an extra ref put in tcp_rput_data 12599 * so that it stays till accept comes back even though it 12600 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12601 */ 12602 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12603 listener->tcp_conn_req_cnt_q0--; 12604 listener->tcp_conn_req_cnt_q++; 12605 12606 /* Move from SYN_RCVD to ESTABLISHED list */ 12607 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12608 tcp->tcp_eager_prev_q0; 12609 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12610 tcp->tcp_eager_next_q0; 12611 tcp->tcp_eager_prev_q0 = NULL; 12612 tcp->tcp_eager_next_q0 = NULL; 12613 12614 /* 12615 * Insert at end of the queue because sockfs 12616 * sends down T_CONN_RES in chronological 12617 * order. Leaving the older conn indications 12618 * at front of the queue helps reducing search 12619 * time. 12620 */ 12621 tail = listener->tcp_eager_last_q; 12622 if (tail != NULL) 12623 tail->tcp_eager_next_q = tcp; 12624 else 12625 listener->tcp_eager_next_q = tcp; 12626 listener->tcp_eager_last_q = tcp; 12627 tcp->tcp_eager_next_q = NULL; 12628 /* 12629 * Delay sending up the T_conn_ind until we are 12630 * done with the eager. Once we have have sent up 12631 * the T_conn_ind, the accept can potentially complete 12632 * any time and release the refhold we have on the eager. 12633 */ 12634 need_send_conn_ind = B_TRUE; 12635 } else { 12636 /* 12637 * Defer connection on q0 and set deferred 12638 * connection bit true 12639 */ 12640 tcp->tcp_conn_def_q0 = B_TRUE; 12641 12642 /* take tcp out of q0 ... */ 12643 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12644 tcp->tcp_eager_next_q0; 12645 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12646 tcp->tcp_eager_prev_q0; 12647 12648 /* ... and place it at the end of q0 */ 12649 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12650 tcp->tcp_eager_next_q0 = listener; 12651 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12652 listener->tcp_eager_prev_q0 = tcp; 12653 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12654 } 12655 12656 /* we have timed out before */ 12657 if (tcp->tcp_syn_rcvd_timeout != 0) { 12658 tcp->tcp_syn_rcvd_timeout = 0; 12659 listener->tcp_syn_rcvd_timeout--; 12660 if (listener->tcp_syn_defense && 12661 listener->tcp_syn_rcvd_timeout <= 12662 (tcps->tcps_conn_req_max_q0 >> 5) && 12663 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12664 listener->tcp_last_rcv_lbolt)) { 12665 /* 12666 * Turn off the defense mode if we 12667 * believe the SYN attack is over. 12668 */ 12669 listener->tcp_syn_defense = B_FALSE; 12670 if (listener->tcp_ip_addr_cache) { 12671 kmem_free((void *)listener->tcp_ip_addr_cache, 12672 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12673 listener->tcp_ip_addr_cache = NULL; 12674 } 12675 } 12676 } 12677 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12678 if (addr_cache != NULL) { 12679 /* 12680 * We have finished a 3-way handshake with this 12681 * remote host. This proves the IP addr is good. 12682 * Cache it! 12683 */ 12684 addr_cache[IP_ADDR_CACHE_HASH( 12685 tcp->tcp_remote)] = tcp->tcp_remote; 12686 } 12687 mutex_exit(&listener->tcp_eager_lock); 12688 if (need_send_conn_ind) { 12689 if (IPCL_IS_NONSTR(lconnp)) { 12690 ASSERT(tcp->tcp_listener == listener); 12691 ASSERT(tcp->tcp_saved_listener == listener); 12692 if ((*lconnp->conn_upcalls->su_newconn) 12693 (lconnp->conn_upper_handle, 12694 (sock_lower_handle_t)tcp->tcp_connp, 12695 &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp), 12696 &tcp->tcp_connp->conn_upcalls) != NULL) { 12697 /* 12698 * Keep the message around 12699 * in case of fallback 12700 */ 12701 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12702 } else { 12703 freemsg(mp); 12704 } 12705 } else { 12706 putnext(listener->tcp_rq, mp); 12707 } 12708 } 12709 } 12710 12711 mblk_t * 12712 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12713 uint_t *ifindexp, ip6_pkt_t *ippp) 12714 { 12715 ip_pktinfo_t *pinfo; 12716 ip6_t *ip6h; 12717 uchar_t *rptr; 12718 mblk_t *first_mp = mp; 12719 boolean_t mctl_present = B_FALSE; 12720 uint_t ifindex = 0; 12721 ip6_pkt_t ipp; 12722 uint_t ipvers; 12723 uint_t ip_hdr_len; 12724 tcp_stack_t *tcps = tcp->tcp_tcps; 12725 12726 rptr = mp->b_rptr; 12727 ASSERT(OK_32PTR(rptr)); 12728 ASSERT(tcp != NULL); 12729 ipp.ipp_fields = 0; 12730 12731 switch DB_TYPE(mp) { 12732 case M_CTL: 12733 mp = mp->b_cont; 12734 if (mp == NULL) { 12735 freemsg(first_mp); 12736 return (NULL); 12737 } 12738 if (DB_TYPE(mp) != M_DATA) { 12739 freemsg(first_mp); 12740 return (NULL); 12741 } 12742 mctl_present = B_TRUE; 12743 break; 12744 case M_DATA: 12745 break; 12746 default: 12747 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12748 freemsg(mp); 12749 return (NULL); 12750 } 12751 ipvers = IPH_HDR_VERSION(rptr); 12752 if (ipvers == IPV4_VERSION) { 12753 if (tcp == NULL) { 12754 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12755 goto done; 12756 } 12757 12758 ipp.ipp_fields |= IPPF_HOPLIMIT; 12759 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12760 12761 /* 12762 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12763 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12764 */ 12765 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12766 mctl_present) { 12767 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12768 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12769 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12770 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12771 ipp.ipp_fields |= IPPF_IFINDEX; 12772 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12773 ifindex = pinfo->ip_pkt_ifindex; 12774 } 12775 freeb(first_mp); 12776 mctl_present = B_FALSE; 12777 } 12778 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12779 } else { 12780 ip6h = (ip6_t *)rptr; 12781 12782 ASSERT(ipvers == IPV6_VERSION); 12783 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12784 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12785 ipp.ipp_hoplimit = ip6h->ip6_hops; 12786 12787 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12788 uint8_t nexthdrp; 12789 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12790 12791 /* Look for ifindex information */ 12792 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12793 ip6i_t *ip6i = (ip6i_t *)ip6h; 12794 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12795 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12796 freemsg(first_mp); 12797 return (NULL); 12798 } 12799 12800 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12801 ASSERT(ip6i->ip6i_ifindex != 0); 12802 ipp.ipp_fields |= IPPF_IFINDEX; 12803 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12804 ifindex = ip6i->ip6i_ifindex; 12805 } 12806 rptr = (uchar_t *)&ip6i[1]; 12807 mp->b_rptr = rptr; 12808 if (rptr == mp->b_wptr) { 12809 mblk_t *mp1; 12810 mp1 = mp->b_cont; 12811 freeb(mp); 12812 mp = mp1; 12813 rptr = mp->b_rptr; 12814 } 12815 if (MBLKL(mp) < IPV6_HDR_LEN + 12816 sizeof (tcph_t)) { 12817 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12818 freemsg(first_mp); 12819 return (NULL); 12820 } 12821 ip6h = (ip6_t *)rptr; 12822 } 12823 12824 /* 12825 * Find any potentially interesting extension headers 12826 * as well as the length of the IPv6 + extension 12827 * headers. 12828 */ 12829 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12830 /* Verify if this is a TCP packet */ 12831 if (nexthdrp != IPPROTO_TCP) { 12832 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12833 freemsg(first_mp); 12834 return (NULL); 12835 } 12836 } else { 12837 ip_hdr_len = IPV6_HDR_LEN; 12838 } 12839 } 12840 12841 done: 12842 if (ipversp != NULL) 12843 *ipversp = ipvers; 12844 if (ip_hdr_lenp != NULL) 12845 *ip_hdr_lenp = ip_hdr_len; 12846 if (ippp != NULL) 12847 *ippp = ipp; 12848 if (ifindexp != NULL) 12849 *ifindexp = ifindex; 12850 if (mctl_present) { 12851 freeb(first_mp); 12852 } 12853 return (mp); 12854 } 12855 12856 /* 12857 * Handle M_DATA messages from IP. Its called directly from IP via 12858 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12859 * in this path. 12860 * 12861 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12862 * v4 and v6), we are called through tcp_input() and a M_CTL can 12863 * be present for options but tcp_find_pktinfo() deals with it. We 12864 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12865 * 12866 * The first argument is always the connp/tcp to which the mp belongs. 12867 * There are no exceptions to this rule. The caller has already put 12868 * a reference on this connp/tcp and once tcp_rput_data() returns, 12869 * the squeue will do the refrele. 12870 * 12871 * The TH_SYN for the listener directly go to tcp_conn_request via 12872 * squeue. 12873 * 12874 * sqp: NULL = recursive, sqp != NULL means called from squeue 12875 */ 12876 void 12877 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12878 { 12879 int32_t bytes_acked; 12880 int32_t gap; 12881 mblk_t *mp1; 12882 uint_t flags; 12883 uint32_t new_swnd = 0; 12884 uchar_t *iphdr; 12885 uchar_t *rptr; 12886 int32_t rgap; 12887 uint32_t seg_ack; 12888 int seg_len; 12889 uint_t ip_hdr_len; 12890 uint32_t seg_seq; 12891 tcph_t *tcph; 12892 int urp; 12893 tcp_opt_t tcpopt; 12894 uint_t ipvers; 12895 ip6_pkt_t ipp; 12896 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12897 uint32_t cwnd; 12898 uint32_t add; 12899 int npkt; 12900 int mss; 12901 conn_t *connp = (conn_t *)arg; 12902 squeue_t *sqp = (squeue_t *)arg2; 12903 tcp_t *tcp = connp->conn_tcp; 12904 tcp_stack_t *tcps = tcp->tcp_tcps; 12905 12906 /* 12907 * RST from fused tcp loopback peer should trigger an unfuse. 12908 */ 12909 if (tcp->tcp_fused) { 12910 TCP_STAT(tcps, tcp_fusion_aborted); 12911 tcp_unfuse(tcp); 12912 } 12913 12914 iphdr = mp->b_rptr; 12915 rptr = mp->b_rptr; 12916 ASSERT(OK_32PTR(rptr)); 12917 12918 /* 12919 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12920 * processing here. For rest call tcp_find_pktinfo to fill up the 12921 * necessary information. 12922 */ 12923 if (IPCL_IS_TCP4(connp)) { 12924 ipvers = IPV4_VERSION; 12925 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12926 } else { 12927 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12928 NULL, &ipp); 12929 if (mp == NULL) { 12930 TCP_STAT(tcps, tcp_rput_v6_error); 12931 return; 12932 } 12933 iphdr = mp->b_rptr; 12934 rptr = mp->b_rptr; 12935 } 12936 ASSERT(DB_TYPE(mp) == M_DATA); 12937 ASSERT(mp->b_next == NULL); 12938 12939 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12940 seg_seq = ABE32_TO_U32(tcph->th_seq); 12941 seg_ack = ABE32_TO_U32(tcph->th_ack); 12942 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12943 seg_len = (int)(mp->b_wptr - rptr) - 12944 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12945 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12946 do { 12947 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12948 (uintptr_t)INT_MAX); 12949 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12950 } while ((mp1 = mp1->b_cont) != NULL && 12951 mp1->b_datap->db_type == M_DATA); 12952 } 12953 12954 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12955 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12956 seg_len, tcph); 12957 return; 12958 } 12959 12960 if (sqp != NULL) { 12961 /* 12962 * This is the correct place to update tcp_last_recv_time. Note 12963 * that it is also updated for tcp structure that belongs to 12964 * global and listener queues which do not really need updating. 12965 * But that should not cause any harm. And it is updated for 12966 * all kinds of incoming segments, not only for data segments. 12967 */ 12968 tcp->tcp_last_recv_time = lbolt; 12969 } 12970 12971 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12972 12973 BUMP_LOCAL(tcp->tcp_ibsegs); 12974 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12975 12976 if ((flags & TH_URG) && sqp != NULL) { 12977 /* 12978 * TCP can't handle urgent pointers that arrive before 12979 * the connection has been accept()ed since it can't 12980 * buffer OOB data. Discard segment if this happens. 12981 * 12982 * We can't just rely on a non-null tcp_listener to indicate 12983 * that the accept() has completed since unlinking of the 12984 * eager and completion of the accept are not atomic. 12985 * tcp_detached, when it is not set (B_FALSE) indicates 12986 * that the accept() has completed. 12987 * 12988 * Nor can it reassemble urgent pointers, so discard 12989 * if it's not the next segment expected. 12990 * 12991 * Otherwise, collapse chain into one mblk (discard if 12992 * that fails). This makes sure the headers, retransmitted 12993 * data, and new data all are in the same mblk. 12994 */ 12995 ASSERT(mp != NULL); 12996 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12997 freemsg(mp); 12998 return; 12999 } 13000 /* Update pointers into message */ 13001 iphdr = rptr = mp->b_rptr; 13002 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13003 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13004 /* 13005 * Since we can't handle any data with this urgent 13006 * pointer that is out of sequence, we expunge 13007 * the data. This allows us to still register 13008 * the urgent mark and generate the M_PCSIG, 13009 * which we can do. 13010 */ 13011 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13012 seg_len = 0; 13013 } 13014 } 13015 13016 switch (tcp->tcp_state) { 13017 case TCPS_SYN_SENT: 13018 if (flags & TH_ACK) { 13019 /* 13020 * Note that our stack cannot send data before a 13021 * connection is established, therefore the 13022 * following check is valid. Otherwise, it has 13023 * to be changed. 13024 */ 13025 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13026 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13027 freemsg(mp); 13028 if (flags & TH_RST) 13029 return; 13030 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13031 tcp, seg_ack, 0, TH_RST); 13032 return; 13033 } 13034 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13035 } 13036 if (flags & TH_RST) { 13037 freemsg(mp); 13038 if (flags & TH_ACK) 13039 (void) tcp_clean_death(tcp, 13040 ECONNREFUSED, 13); 13041 return; 13042 } 13043 if (!(flags & TH_SYN)) { 13044 freemsg(mp); 13045 return; 13046 } 13047 13048 /* Process all TCP options. */ 13049 tcp_process_options(tcp, tcph); 13050 /* 13051 * The following changes our rwnd to be a multiple of the 13052 * MIN(peer MSS, our MSS) for performance reason. 13053 */ 13054 (void) tcp_rwnd_set(tcp, 13055 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 13056 13057 /* Is the other end ECN capable? */ 13058 if (tcp->tcp_ecn_ok) { 13059 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13060 tcp->tcp_ecn_ok = B_FALSE; 13061 } 13062 } 13063 /* 13064 * Clear ECN flags because it may interfere with later 13065 * processing. 13066 */ 13067 flags &= ~(TH_ECE|TH_CWR); 13068 13069 tcp->tcp_irs = seg_seq; 13070 tcp->tcp_rack = seg_seq; 13071 tcp->tcp_rnxt = seg_seq + 1; 13072 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13073 if (!TCP_IS_DETACHED(tcp)) { 13074 /* Allocate room for SACK options if needed. */ 13075 if (tcp->tcp_snd_sack_ok) { 13076 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13077 tcp->tcp_hdr_len + 13078 TCPOPT_MAX_SACK_LEN + 13079 (tcp->tcp_loopback ? 0 : 13080 tcps->tcps_wroff_xtra)); 13081 } else { 13082 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 13083 tcp->tcp_hdr_len + 13084 (tcp->tcp_loopback ? 0 : 13085 tcps->tcps_wroff_xtra)); 13086 } 13087 } 13088 if (flags & TH_ACK) { 13089 /* 13090 * If we can't get the confirmation upstream, pretend 13091 * we didn't even see this one. 13092 * 13093 * XXX: how can we pretend we didn't see it if we 13094 * have updated rnxt et. al. 13095 * 13096 * For loopback we defer sending up the T_CONN_CON 13097 * until after some checks below. 13098 */ 13099 mp1 = NULL; 13100 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13101 tcp->tcp_loopback ? &mp1 : NULL)) { 13102 freemsg(mp); 13103 return; 13104 } 13105 /* SYN was acked - making progress */ 13106 if (tcp->tcp_ipversion == IPV6_VERSION) 13107 tcp->tcp_ip_forward_progress = B_TRUE; 13108 13109 /* One for the SYN */ 13110 tcp->tcp_suna = tcp->tcp_iss + 1; 13111 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13112 tcp->tcp_state = TCPS_ESTABLISHED; 13113 13114 /* 13115 * If SYN was retransmitted, need to reset all 13116 * retransmission info. This is because this 13117 * segment will be treated as a dup ACK. 13118 */ 13119 if (tcp->tcp_rexmit) { 13120 tcp->tcp_rexmit = B_FALSE; 13121 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13122 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13123 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13124 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13125 tcp->tcp_ms_we_have_waited = 0; 13126 13127 /* 13128 * Set tcp_cwnd back to 1 MSS, per 13129 * recommendation from 13130 * draft-floyd-incr-init-win-01.txt, 13131 * Increasing TCP's Initial Window. 13132 */ 13133 tcp->tcp_cwnd = tcp->tcp_mss; 13134 } 13135 13136 tcp->tcp_swl1 = seg_seq; 13137 tcp->tcp_swl2 = seg_ack; 13138 13139 new_swnd = BE16_TO_U16(tcph->th_win); 13140 tcp->tcp_swnd = new_swnd; 13141 if (new_swnd > tcp->tcp_max_swnd) 13142 tcp->tcp_max_swnd = new_swnd; 13143 13144 /* 13145 * Always send the three-way handshake ack immediately 13146 * in order to make the connection complete as soon as 13147 * possible on the accepting host. 13148 */ 13149 flags |= TH_ACK_NEEDED; 13150 13151 /* 13152 * Special case for loopback. At this point we have 13153 * received SYN-ACK from the remote endpoint. In 13154 * order to ensure that both endpoints reach the 13155 * fused state prior to any data exchange, the final 13156 * ACK needs to be sent before we indicate T_CONN_CON 13157 * to the module upstream. 13158 */ 13159 if (tcp->tcp_loopback) { 13160 mblk_t *ack_mp; 13161 13162 ASSERT(!tcp->tcp_unfusable); 13163 ASSERT(mp1 != NULL); 13164 /* 13165 * For loopback, we always get a pure SYN-ACK 13166 * and only need to send back the final ACK 13167 * with no data (this is because the other 13168 * tcp is ours and we don't do T/TCP). This 13169 * final ACK triggers the passive side to 13170 * perform fusion in ESTABLISHED state. 13171 */ 13172 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13173 if (tcp->tcp_ack_tid != 0) { 13174 (void) TCP_TIMER_CANCEL(tcp, 13175 tcp->tcp_ack_tid); 13176 tcp->tcp_ack_tid = 0; 13177 } 13178 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13179 BUMP_LOCAL(tcp->tcp_obsegs); 13180 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13181 13182 if (!IPCL_IS_NONSTR(connp)) { 13183 /* Send up T_CONN_CON */ 13184 putnext(tcp->tcp_rq, mp1); 13185 } else { 13186 (*connp->conn_upcalls-> 13187 su_connected) 13188 (connp->conn_upper_handle, 13189 tcp->tcp_connid, 13190 DB_CRED(mp1), 13191 DB_CPID(mp1)); 13192 freemsg(mp1); 13193 } 13194 13195 freemsg(mp); 13196 return; 13197 } 13198 /* 13199 * Forget fusion; we need to handle more 13200 * complex cases below. Send the deferred 13201 * T_CONN_CON message upstream and proceed 13202 * as usual. Mark this tcp as not capable 13203 * of fusion. 13204 */ 13205 TCP_STAT(tcps, tcp_fusion_unfusable); 13206 tcp->tcp_unfusable = B_TRUE; 13207 if (!IPCL_IS_NONSTR(connp)) { 13208 putnext(tcp->tcp_rq, mp1); 13209 } else { 13210 (*connp->conn_upcalls->su_connected) 13211 (connp->conn_upper_handle, 13212 tcp->tcp_connid, DB_CRED(mp1), 13213 DB_CPID(mp1)); 13214 freemsg(mp1); 13215 } 13216 } 13217 13218 /* 13219 * Check to see if there is data to be sent. If 13220 * yes, set the transmit flag. Then check to see 13221 * if received data processing needs to be done. 13222 * If not, go straight to xmit_check. This short 13223 * cut is OK as we don't support T/TCP. 13224 */ 13225 if (tcp->tcp_unsent) 13226 flags |= TH_XMIT_NEEDED; 13227 13228 if (seg_len == 0 && !(flags & TH_URG)) { 13229 freemsg(mp); 13230 goto xmit_check; 13231 } 13232 13233 flags &= ~TH_SYN; 13234 seg_seq++; 13235 break; 13236 } 13237 tcp->tcp_state = TCPS_SYN_RCVD; 13238 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13239 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13240 if (mp1) { 13241 DB_CPID(mp1) = tcp->tcp_cpid; 13242 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13243 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13244 } 13245 freemsg(mp); 13246 return; 13247 case TCPS_SYN_RCVD: 13248 if (flags & TH_ACK) { 13249 /* 13250 * In this state, a SYN|ACK packet is either bogus 13251 * because the other side must be ACKing our SYN which 13252 * indicates it has seen the ACK for their SYN and 13253 * shouldn't retransmit it or we're crossing SYNs 13254 * on active open. 13255 */ 13256 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13257 freemsg(mp); 13258 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13259 tcp, seg_ack, 0, TH_RST); 13260 return; 13261 } 13262 /* 13263 * NOTE: RFC 793 pg. 72 says this should be 13264 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13265 * but that would mean we have an ack that ignored 13266 * our SYN. 13267 */ 13268 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13269 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13270 freemsg(mp); 13271 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13272 tcp, seg_ack, 0, TH_RST); 13273 return; 13274 } 13275 } 13276 break; 13277 case TCPS_LISTEN: 13278 /* 13279 * Only a TLI listener can come through this path when a 13280 * acceptor is going back to be a listener and a packet 13281 * for the acceptor hits the classifier. For a socket 13282 * listener, this can never happen because a listener 13283 * can never accept connection on itself and hence a 13284 * socket acceptor can not go back to being a listener. 13285 */ 13286 ASSERT(!TCP_IS_SOCKET(tcp)); 13287 /*FALLTHRU*/ 13288 case TCPS_CLOSED: 13289 case TCPS_BOUND: { 13290 conn_t *new_connp; 13291 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13292 13293 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13294 if (new_connp != NULL) { 13295 tcp_reinput(new_connp, mp, connp->conn_sqp); 13296 return; 13297 } 13298 /* We failed to classify. For now just drop the packet */ 13299 freemsg(mp); 13300 return; 13301 } 13302 case TCPS_IDLE: 13303 /* 13304 * Handle the case where the tcp_clean_death() has happened 13305 * on a connection (application hasn't closed yet) but a packet 13306 * was already queued on squeue before tcp_clean_death() 13307 * was processed. Calling tcp_clean_death() twice on same 13308 * connection can result in weird behaviour. 13309 */ 13310 freemsg(mp); 13311 return; 13312 default: 13313 break; 13314 } 13315 13316 /* 13317 * Already on the correct queue/perimeter. 13318 * If this is a detached connection and not an eager 13319 * connection hanging off a listener then new data 13320 * (past the FIN) will cause a reset. 13321 * We do a special check here where it 13322 * is out of the main line, rather than check 13323 * if we are detached every time we see new 13324 * data down below. 13325 */ 13326 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13327 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13328 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13329 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13330 13331 freemsg(mp); 13332 /* 13333 * This could be an SSL closure alert. We're detached so just 13334 * acknowledge it this last time. 13335 */ 13336 if (tcp->tcp_kssl_ctx != NULL) { 13337 kssl_release_ctx(tcp->tcp_kssl_ctx); 13338 tcp->tcp_kssl_ctx = NULL; 13339 13340 tcp->tcp_rnxt += seg_len; 13341 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13342 flags |= TH_ACK_NEEDED; 13343 goto ack_check; 13344 } 13345 13346 tcp_xmit_ctl("new data when detached", tcp, 13347 tcp->tcp_snxt, 0, TH_RST); 13348 (void) tcp_clean_death(tcp, EPROTO, 12); 13349 return; 13350 } 13351 13352 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13353 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13354 new_swnd = BE16_TO_U16(tcph->th_win) << 13355 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13356 13357 if (tcp->tcp_snd_ts_ok) { 13358 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13359 /* 13360 * This segment is not acceptable. 13361 * Drop it and send back an ACK. 13362 */ 13363 freemsg(mp); 13364 flags |= TH_ACK_NEEDED; 13365 goto ack_check; 13366 } 13367 } else if (tcp->tcp_snd_sack_ok) { 13368 ASSERT(tcp->tcp_sack_info != NULL); 13369 tcpopt.tcp = tcp; 13370 /* 13371 * SACK info in already updated in tcp_parse_options. Ignore 13372 * all other TCP options... 13373 */ 13374 (void) tcp_parse_options(tcph, &tcpopt); 13375 } 13376 try_again:; 13377 mss = tcp->tcp_mss; 13378 gap = seg_seq - tcp->tcp_rnxt; 13379 rgap = tcp->tcp_rwnd - (gap + seg_len); 13380 /* 13381 * gap is the amount of sequence space between what we expect to see 13382 * and what we got for seg_seq. A positive value for gap means 13383 * something got lost. A negative value means we got some old stuff. 13384 */ 13385 if (gap < 0) { 13386 /* Old stuff present. Is the SYN in there? */ 13387 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13388 (seg_len != 0)) { 13389 flags &= ~TH_SYN; 13390 seg_seq++; 13391 urp--; 13392 /* Recompute the gaps after noting the SYN. */ 13393 goto try_again; 13394 } 13395 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13396 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13397 (seg_len > -gap ? -gap : seg_len)); 13398 /* Remove the old stuff from seg_len. */ 13399 seg_len += gap; 13400 /* 13401 * Anything left? 13402 * Make sure to check for unack'd FIN when rest of data 13403 * has been previously ack'd. 13404 */ 13405 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13406 /* 13407 * Resets are only valid if they lie within our offered 13408 * window. If the RST bit is set, we just ignore this 13409 * segment. 13410 */ 13411 if (flags & TH_RST) { 13412 freemsg(mp); 13413 return; 13414 } 13415 13416 /* 13417 * The arriving of dup data packets indicate that we 13418 * may have postponed an ack for too long, or the other 13419 * side's RTT estimate is out of shape. Start acking 13420 * more often. 13421 */ 13422 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13423 tcp->tcp_rack_cnt >= 1 && 13424 tcp->tcp_rack_abs_max > 2) { 13425 tcp->tcp_rack_abs_max--; 13426 } 13427 tcp->tcp_rack_cur_max = 1; 13428 13429 /* 13430 * This segment is "unacceptable". None of its 13431 * sequence space lies within our advertized window. 13432 * 13433 * Adjust seg_len to the original value for tracing. 13434 */ 13435 seg_len -= gap; 13436 if (tcp->tcp_debug) { 13437 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13438 "tcp_rput: unacceptable, gap %d, rgap %d, " 13439 "flags 0x%x, seg_seq %u, seg_ack %u, " 13440 "seg_len %d, rnxt %u, snxt %u, %s", 13441 gap, rgap, flags, seg_seq, seg_ack, 13442 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13443 tcp_display(tcp, NULL, 13444 DISP_ADDR_AND_PORT)); 13445 } 13446 13447 /* 13448 * Arrange to send an ACK in response to the 13449 * unacceptable segment per RFC 793 page 69. There 13450 * is only one small difference between ours and the 13451 * acceptability test in the RFC - we accept ACK-only 13452 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13453 * will be generated. 13454 * 13455 * Note that we have to ACK an ACK-only packet at least 13456 * for stacks that send 0-length keep-alives with 13457 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13458 * section 4.2.3.6. As long as we don't ever generate 13459 * an unacceptable packet in response to an incoming 13460 * packet that is unacceptable, it should not cause 13461 * "ACK wars". 13462 */ 13463 flags |= TH_ACK_NEEDED; 13464 13465 /* 13466 * Continue processing this segment in order to use the 13467 * ACK information it contains, but skip all other 13468 * sequence-number processing. Processing the ACK 13469 * information is necessary in order to 13470 * re-synchronize connections that may have lost 13471 * synchronization. 13472 * 13473 * We clear seg_len and flag fields related to 13474 * sequence number processing as they are not 13475 * to be trusted for an unacceptable segment. 13476 */ 13477 seg_len = 0; 13478 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13479 goto process_ack; 13480 } 13481 13482 /* Fix seg_seq, and chew the gap off the front. */ 13483 seg_seq = tcp->tcp_rnxt; 13484 urp += gap; 13485 do { 13486 mblk_t *mp2; 13487 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13488 (uintptr_t)UINT_MAX); 13489 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13490 if (gap > 0) { 13491 mp->b_rptr = mp->b_wptr - gap; 13492 break; 13493 } 13494 mp2 = mp; 13495 mp = mp->b_cont; 13496 freeb(mp2); 13497 } while (gap < 0); 13498 /* 13499 * If the urgent data has already been acknowledged, we 13500 * should ignore TH_URG below 13501 */ 13502 if (urp < 0) 13503 flags &= ~TH_URG; 13504 } 13505 /* 13506 * rgap is the amount of stuff received out of window. A negative 13507 * value is the amount out of window. 13508 */ 13509 if (rgap < 0) { 13510 mblk_t *mp2; 13511 13512 if (tcp->tcp_rwnd == 0) { 13513 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13514 } else { 13515 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13516 UPDATE_MIB(&tcps->tcps_mib, 13517 tcpInDataPastWinBytes, -rgap); 13518 } 13519 13520 /* 13521 * seg_len does not include the FIN, so if more than 13522 * just the FIN is out of window, we act like we don't 13523 * see it. (If just the FIN is out of window, rgap 13524 * will be zero and we will go ahead and acknowledge 13525 * the FIN.) 13526 */ 13527 flags &= ~TH_FIN; 13528 13529 /* Fix seg_len and make sure there is something left. */ 13530 seg_len += rgap; 13531 if (seg_len <= 0) { 13532 /* 13533 * Resets are only valid if they lie within our offered 13534 * window. If the RST bit is set, we just ignore this 13535 * segment. 13536 */ 13537 if (flags & TH_RST) { 13538 freemsg(mp); 13539 return; 13540 } 13541 13542 /* Per RFC 793, we need to send back an ACK. */ 13543 flags |= TH_ACK_NEEDED; 13544 13545 /* 13546 * Send SIGURG as soon as possible i.e. even 13547 * if the TH_URG was delivered in a window probe 13548 * packet (which will be unacceptable). 13549 * 13550 * We generate a signal if none has been generated 13551 * for this connection or if this is a new urgent 13552 * byte. Also send a zero-length "unmarked" message 13553 * to inform SIOCATMARK that this is not the mark. 13554 * 13555 * tcp_urp_last_valid is cleared when the T_exdata_ind 13556 * is sent up. This plus the check for old data 13557 * (gap >= 0) handles the wraparound of the sequence 13558 * number space without having to always track the 13559 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13560 * this max in its rcv_up variable). 13561 * 13562 * This prevents duplicate SIGURGS due to a "late" 13563 * zero-window probe when the T_EXDATA_IND has already 13564 * been sent up. 13565 */ 13566 if ((flags & TH_URG) && 13567 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13568 tcp->tcp_urp_last))) { 13569 if (IPCL_IS_NONSTR(connp)) { 13570 if (!TCP_IS_DETACHED(tcp)) { 13571 (*connp->conn_upcalls-> 13572 su_signal_oob) 13573 (connp->conn_upper_handle, 13574 urp); 13575 } 13576 } else { 13577 mp1 = allocb(0, BPRI_MED); 13578 if (mp1 == NULL) { 13579 freemsg(mp); 13580 return; 13581 } 13582 if (!TCP_IS_DETACHED(tcp) && 13583 !putnextctl1(tcp->tcp_rq, 13584 M_PCSIG, SIGURG)) { 13585 /* Try again on the rexmit. */ 13586 freemsg(mp1); 13587 freemsg(mp); 13588 return; 13589 } 13590 /* 13591 * If the next byte would be the mark 13592 * then mark with MARKNEXT else mark 13593 * with NOTMARKNEXT. 13594 */ 13595 if (gap == 0 && urp == 0) 13596 mp1->b_flag |= MSGMARKNEXT; 13597 else 13598 mp1->b_flag |= MSGNOTMARKNEXT; 13599 freemsg(tcp->tcp_urp_mark_mp); 13600 tcp->tcp_urp_mark_mp = mp1; 13601 flags |= TH_SEND_URP_MARK; 13602 } 13603 tcp->tcp_urp_last_valid = B_TRUE; 13604 tcp->tcp_urp_last = urp + seg_seq; 13605 } 13606 /* 13607 * If this is a zero window probe, continue to 13608 * process the ACK part. But we need to set seg_len 13609 * to 0 to avoid data processing. Otherwise just 13610 * drop the segment and send back an ACK. 13611 */ 13612 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13613 flags &= ~(TH_SYN | TH_URG); 13614 seg_len = 0; 13615 goto process_ack; 13616 } else { 13617 freemsg(mp); 13618 goto ack_check; 13619 } 13620 } 13621 /* Pitch out of window stuff off the end. */ 13622 rgap = seg_len; 13623 mp2 = mp; 13624 do { 13625 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13626 (uintptr_t)INT_MAX); 13627 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13628 if (rgap < 0) { 13629 mp2->b_wptr += rgap; 13630 if ((mp1 = mp2->b_cont) != NULL) { 13631 mp2->b_cont = NULL; 13632 freemsg(mp1); 13633 } 13634 break; 13635 } 13636 } while ((mp2 = mp2->b_cont) != NULL); 13637 } 13638 ok:; 13639 /* 13640 * TCP should check ECN info for segments inside the window only. 13641 * Therefore the check should be done here. 13642 */ 13643 if (tcp->tcp_ecn_ok) { 13644 if (flags & TH_CWR) { 13645 tcp->tcp_ecn_echo_on = B_FALSE; 13646 } 13647 /* 13648 * Note that both ECN_CE and CWR can be set in the 13649 * same segment. In this case, we once again turn 13650 * on ECN_ECHO. 13651 */ 13652 if (tcp->tcp_ipversion == IPV4_VERSION) { 13653 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13654 13655 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13656 tcp->tcp_ecn_echo_on = B_TRUE; 13657 } 13658 } else { 13659 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13660 13661 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13662 htonl(IPH_ECN_CE << 20)) { 13663 tcp->tcp_ecn_echo_on = B_TRUE; 13664 } 13665 } 13666 } 13667 13668 /* 13669 * Check whether we can update tcp_ts_recent. This test is 13670 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13671 * Extensions for High Performance: An Update", Internet Draft. 13672 */ 13673 if (tcp->tcp_snd_ts_ok && 13674 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13675 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13676 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13677 tcp->tcp_last_rcv_lbolt = lbolt64; 13678 } 13679 13680 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13681 /* 13682 * FIN in an out of order segment. We record this in 13683 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13684 * Clear the FIN so that any check on FIN flag will fail. 13685 * Remember that FIN also counts in the sequence number 13686 * space. So we need to ack out of order FIN only segments. 13687 */ 13688 if (flags & TH_FIN) { 13689 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13690 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13691 flags &= ~TH_FIN; 13692 flags |= TH_ACK_NEEDED; 13693 } 13694 if (seg_len > 0) { 13695 /* Fill in the SACK blk list. */ 13696 if (tcp->tcp_snd_sack_ok) { 13697 ASSERT(tcp->tcp_sack_info != NULL); 13698 tcp_sack_insert(tcp->tcp_sack_list, 13699 seg_seq, seg_seq + seg_len, 13700 &(tcp->tcp_num_sack_blk)); 13701 } 13702 13703 /* 13704 * Attempt reassembly and see if we have something 13705 * ready to go. 13706 */ 13707 mp = tcp_reass(tcp, mp, seg_seq); 13708 /* Always ack out of order packets */ 13709 flags |= TH_ACK_NEEDED | TH_PUSH; 13710 if (mp) { 13711 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13712 (uintptr_t)INT_MAX); 13713 seg_len = mp->b_cont ? msgdsize(mp) : 13714 (int)(mp->b_wptr - mp->b_rptr); 13715 seg_seq = tcp->tcp_rnxt; 13716 /* 13717 * A gap is filled and the seq num and len 13718 * of the gap match that of a previously 13719 * received FIN, put the FIN flag back in. 13720 */ 13721 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13722 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13723 flags |= TH_FIN; 13724 tcp->tcp_valid_bits &= 13725 ~TCP_OFO_FIN_VALID; 13726 } 13727 } else { 13728 /* 13729 * Keep going even with NULL mp. 13730 * There may be a useful ACK or something else 13731 * we don't want to miss. 13732 * 13733 * But TCP should not perform fast retransmit 13734 * because of the ack number. TCP uses 13735 * seg_len == 0 to determine if it is a pure 13736 * ACK. And this is not a pure ACK. 13737 */ 13738 seg_len = 0; 13739 ofo_seg = B_TRUE; 13740 } 13741 } 13742 } else if (seg_len > 0) { 13743 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13744 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13745 /* 13746 * If an out of order FIN was received before, and the seq 13747 * num and len of the new segment match that of the FIN, 13748 * put the FIN flag back in. 13749 */ 13750 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13751 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13752 flags |= TH_FIN; 13753 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13754 } 13755 } 13756 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13757 if (flags & TH_RST) { 13758 freemsg(mp); 13759 switch (tcp->tcp_state) { 13760 case TCPS_SYN_RCVD: 13761 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13762 break; 13763 case TCPS_ESTABLISHED: 13764 case TCPS_FIN_WAIT_1: 13765 case TCPS_FIN_WAIT_2: 13766 case TCPS_CLOSE_WAIT: 13767 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13768 break; 13769 case TCPS_CLOSING: 13770 case TCPS_LAST_ACK: 13771 (void) tcp_clean_death(tcp, 0, 16); 13772 break; 13773 default: 13774 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13775 (void) tcp_clean_death(tcp, ENXIO, 17); 13776 break; 13777 } 13778 return; 13779 } 13780 if (flags & TH_SYN) { 13781 /* 13782 * See RFC 793, Page 71 13783 * 13784 * The seq number must be in the window as it should 13785 * be "fixed" above. If it is outside window, it should 13786 * be already rejected. Note that we allow seg_seq to be 13787 * rnxt + rwnd because we want to accept 0 window probe. 13788 */ 13789 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13790 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13791 freemsg(mp); 13792 /* 13793 * If the ACK flag is not set, just use our snxt as the 13794 * seq number of the RST segment. 13795 */ 13796 if (!(flags & TH_ACK)) { 13797 seg_ack = tcp->tcp_snxt; 13798 } 13799 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13800 TH_RST|TH_ACK); 13801 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13802 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13803 return; 13804 } 13805 /* 13806 * urp could be -1 when the urp field in the packet is 0 13807 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13808 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13809 */ 13810 if (flags & TH_URG && urp >= 0) { 13811 if (!tcp->tcp_urp_last_valid || 13812 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13813 if (IPCL_IS_NONSTR(connp)) { 13814 if (!TCP_IS_DETACHED(tcp)) { 13815 (*connp->conn_upcalls->su_signal_oob) 13816 (connp->conn_upper_handle, urp); 13817 } 13818 } else { 13819 /* 13820 * If we haven't generated the signal yet for 13821 * this urgent pointer value, do it now. Also, 13822 * send up a zero-length M_DATA indicating 13823 * whether or not this is the mark. The latter 13824 * is not needed when a T_EXDATA_IND is sent up. 13825 * However, if there are allocation failures 13826 * this code relies on the sender retransmitting 13827 * and the socket code for determining the mark 13828 * should not block waiting for the peer to 13829 * transmit. Thus, for simplicity we always 13830 * send up the mark indication. 13831 */ 13832 mp1 = allocb(0, BPRI_MED); 13833 if (mp1 == NULL) { 13834 freemsg(mp); 13835 return; 13836 } 13837 if (!TCP_IS_DETACHED(tcp) && 13838 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13839 SIGURG)) { 13840 /* Try again on the rexmit. */ 13841 freemsg(mp1); 13842 freemsg(mp); 13843 return; 13844 } 13845 /* 13846 * Mark with NOTMARKNEXT for now. 13847 * The code below will change this to MARKNEXT 13848 * if we are at the mark. 13849 * 13850 * If there are allocation failures (e.g. in 13851 * dupmsg below) the next time tcp_rput_data 13852 * sees the urgent segment it will send up the 13853 * MSGMARKNEXT message. 13854 */ 13855 mp1->b_flag |= MSGNOTMARKNEXT; 13856 freemsg(tcp->tcp_urp_mark_mp); 13857 tcp->tcp_urp_mark_mp = mp1; 13858 flags |= TH_SEND_URP_MARK; 13859 #ifdef DEBUG 13860 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13861 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13862 "last %x, %s", 13863 seg_seq, urp, tcp->tcp_urp_last, 13864 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13865 #endif /* DEBUG */ 13866 } 13867 tcp->tcp_urp_last_valid = B_TRUE; 13868 tcp->tcp_urp_last = urp + seg_seq; 13869 } else if (tcp->tcp_urp_mark_mp != NULL) { 13870 /* 13871 * An allocation failure prevented the previous 13872 * tcp_rput_data from sending up the allocated 13873 * MSG*MARKNEXT message - send it up this time 13874 * around. 13875 */ 13876 flags |= TH_SEND_URP_MARK; 13877 } 13878 13879 /* 13880 * If the urgent byte is in this segment, make sure that it is 13881 * all by itself. This makes it much easier to deal with the 13882 * possibility of an allocation failure on the T_exdata_ind. 13883 * Note that seg_len is the number of bytes in the segment, and 13884 * urp is the offset into the segment of the urgent byte. 13885 * urp < seg_len means that the urgent byte is in this segment. 13886 */ 13887 if (urp < seg_len) { 13888 if (seg_len != 1) { 13889 uint32_t tmp_rnxt; 13890 /* 13891 * Break it up and feed it back in. 13892 * Re-attach the IP header. 13893 */ 13894 mp->b_rptr = iphdr; 13895 if (urp > 0) { 13896 /* 13897 * There is stuff before the urgent 13898 * byte. 13899 */ 13900 mp1 = dupmsg(mp); 13901 if (!mp1) { 13902 /* 13903 * Trim from urgent byte on. 13904 * The rest will come back. 13905 */ 13906 (void) adjmsg(mp, 13907 urp - seg_len); 13908 tcp_rput_data(connp, 13909 mp, NULL); 13910 return; 13911 } 13912 (void) adjmsg(mp1, urp - seg_len); 13913 /* Feed this piece back in. */ 13914 tmp_rnxt = tcp->tcp_rnxt; 13915 tcp_rput_data(connp, mp1, NULL); 13916 /* 13917 * If the data passed back in was not 13918 * processed (ie: bad ACK) sending 13919 * the remainder back in will cause a 13920 * loop. In this case, drop the 13921 * packet and let the sender try 13922 * sending a good packet. 13923 */ 13924 if (tmp_rnxt == tcp->tcp_rnxt) { 13925 freemsg(mp); 13926 return; 13927 } 13928 } 13929 if (urp != seg_len - 1) { 13930 uint32_t tmp_rnxt; 13931 /* 13932 * There is stuff after the urgent 13933 * byte. 13934 */ 13935 mp1 = dupmsg(mp); 13936 if (!mp1) { 13937 /* 13938 * Trim everything beyond the 13939 * urgent byte. The rest will 13940 * come back. 13941 */ 13942 (void) adjmsg(mp, 13943 urp + 1 - seg_len); 13944 tcp_rput_data(connp, 13945 mp, NULL); 13946 return; 13947 } 13948 (void) adjmsg(mp1, urp + 1 - seg_len); 13949 tmp_rnxt = tcp->tcp_rnxt; 13950 tcp_rput_data(connp, mp1, NULL); 13951 /* 13952 * If the data passed back in was not 13953 * processed (ie: bad ACK) sending 13954 * the remainder back in will cause a 13955 * loop. In this case, drop the 13956 * packet and let the sender try 13957 * sending a good packet. 13958 */ 13959 if (tmp_rnxt == tcp->tcp_rnxt) { 13960 freemsg(mp); 13961 return; 13962 } 13963 } 13964 tcp_rput_data(connp, mp, NULL); 13965 return; 13966 } 13967 /* 13968 * This segment contains only the urgent byte. We 13969 * have to allocate the T_exdata_ind, if we can. 13970 */ 13971 if (IPCL_IS_NONSTR(connp)) { 13972 int error; 13973 13974 (*connp->conn_upcalls->su_recv) 13975 (connp->conn_upper_handle, mp, seg_len, 13976 MSG_OOB, &error, NULL); 13977 mp = NULL; 13978 goto update_ack; 13979 } else if (!tcp->tcp_urp_mp) { 13980 struct T_exdata_ind *tei; 13981 mp1 = allocb(sizeof (struct T_exdata_ind), 13982 BPRI_MED); 13983 if (!mp1) { 13984 /* 13985 * Sigh... It'll be back. 13986 * Generate any MSG*MARK message now. 13987 */ 13988 freemsg(mp); 13989 seg_len = 0; 13990 if (flags & TH_SEND_URP_MARK) { 13991 13992 13993 ASSERT(tcp->tcp_urp_mark_mp); 13994 tcp->tcp_urp_mark_mp->b_flag &= 13995 ~MSGNOTMARKNEXT; 13996 tcp->tcp_urp_mark_mp->b_flag |= 13997 MSGMARKNEXT; 13998 } 13999 goto ack_check; 14000 } 14001 mp1->b_datap->db_type = M_PROTO; 14002 tei = (struct T_exdata_ind *)mp1->b_rptr; 14003 tei->PRIM_type = T_EXDATA_IND; 14004 tei->MORE_flag = 0; 14005 mp1->b_wptr = (uchar_t *)&tei[1]; 14006 tcp->tcp_urp_mp = mp1; 14007 #ifdef DEBUG 14008 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14009 "tcp_rput: allocated exdata_ind %s", 14010 tcp_display(tcp, NULL, 14011 DISP_PORT_ONLY)); 14012 #endif /* DEBUG */ 14013 /* 14014 * There is no need to send a separate MSG*MARK 14015 * message since the T_EXDATA_IND will be sent 14016 * now. 14017 */ 14018 flags &= ~TH_SEND_URP_MARK; 14019 freemsg(tcp->tcp_urp_mark_mp); 14020 tcp->tcp_urp_mark_mp = NULL; 14021 } 14022 /* 14023 * Now we are all set. On the next putnext upstream, 14024 * tcp_urp_mp will be non-NULL and will get prepended 14025 * to what has to be this piece containing the urgent 14026 * byte. If for any reason we abort this segment below, 14027 * if it comes back, we will have this ready, or it 14028 * will get blown off in close. 14029 */ 14030 } else if (urp == seg_len) { 14031 /* 14032 * The urgent byte is the next byte after this sequence 14033 * number. If there is data it is marked with 14034 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 14035 * since it is not needed. Otherwise, if the code 14036 * above just allocated a zero-length tcp_urp_mark_mp 14037 * message, that message is tagged with MSGMARKNEXT. 14038 * Sending up these MSGMARKNEXT messages makes 14039 * SIOCATMARK work correctly even though 14040 * the T_EXDATA_IND will not be sent up until the 14041 * urgent byte arrives. 14042 */ 14043 if (seg_len != 0) { 14044 flags |= TH_MARKNEXT_NEEDED; 14045 freemsg(tcp->tcp_urp_mark_mp); 14046 tcp->tcp_urp_mark_mp = NULL; 14047 flags &= ~TH_SEND_URP_MARK; 14048 } else if (tcp->tcp_urp_mark_mp != NULL) { 14049 flags |= TH_SEND_URP_MARK; 14050 tcp->tcp_urp_mark_mp->b_flag &= 14051 ~MSGNOTMARKNEXT; 14052 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14053 } 14054 #ifdef DEBUG 14055 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14056 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14057 seg_len, flags, 14058 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14059 #endif /* DEBUG */ 14060 } 14061 #ifdef DEBUG 14062 else { 14063 /* Data left until we hit mark */ 14064 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14065 "tcp_rput: URP %d bytes left, %s", 14066 urp - seg_len, tcp_display(tcp, NULL, 14067 DISP_PORT_ONLY)); 14068 } 14069 #endif /* DEBUG */ 14070 } 14071 14072 process_ack: 14073 if (!(flags & TH_ACK)) { 14074 freemsg(mp); 14075 goto xmit_check; 14076 } 14077 } 14078 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14079 14080 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14081 tcp->tcp_ip_forward_progress = B_TRUE; 14082 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14083 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14084 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14085 /* 3-way handshake complete - pass up the T_CONN_IND */ 14086 tcp_t *listener = tcp->tcp_listener; 14087 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14088 14089 tcp->tcp_tconnind_started = B_TRUE; 14090 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14091 /* 14092 * We are here means eager is fine but it can 14093 * get a TH_RST at any point between now and till 14094 * accept completes and disappear. We need to 14095 * ensure that reference to eager is valid after 14096 * we get out of eager's perimeter. So we do 14097 * an extra refhold. 14098 */ 14099 CONN_INC_REF(connp); 14100 14101 /* 14102 * The listener also exists because of the refhold 14103 * done in tcp_conn_request. Its possible that it 14104 * might have closed. We will check that once we 14105 * get inside listeners context. 14106 */ 14107 CONN_INC_REF(listener->tcp_connp); 14108 if (listener->tcp_connp->conn_sqp == 14109 connp->conn_sqp) { 14110 /* 14111 * We optimize by not calling an SQUEUE_ENTER 14112 * on the listener since we know that the 14113 * listener and eager squeues are the same. 14114 * We are able to make this check safely only 14115 * because neither the eager nor the listener 14116 * can change its squeue. Only an active connect 14117 * can change its squeue 14118 */ 14119 tcp_send_conn_ind(listener->tcp_connp, mp, 14120 listener->tcp_connp->conn_sqp); 14121 CONN_DEC_REF(listener->tcp_connp); 14122 } else if (!tcp->tcp_loopback) { 14123 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14124 mp, tcp_send_conn_ind, 14125 listener->tcp_connp, SQ_FILL, 14126 SQTAG_TCP_CONN_IND); 14127 } else { 14128 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 14129 mp, tcp_send_conn_ind, 14130 listener->tcp_connp, SQ_PROCESS, 14131 SQTAG_TCP_CONN_IND); 14132 } 14133 } 14134 14135 if (tcp->tcp_active_open) { 14136 /* 14137 * We are seeing the final ack in the three way 14138 * hand shake of a active open'ed connection 14139 * so we must send up a T_CONN_CON 14140 */ 14141 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14142 freemsg(mp); 14143 return; 14144 } 14145 /* 14146 * Don't fuse the loopback endpoints for 14147 * simultaneous active opens. 14148 */ 14149 if (tcp->tcp_loopback) { 14150 TCP_STAT(tcps, tcp_fusion_unfusable); 14151 tcp->tcp_unfusable = B_TRUE; 14152 } 14153 } 14154 14155 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14156 bytes_acked--; 14157 /* SYN was acked - making progress */ 14158 if (tcp->tcp_ipversion == IPV6_VERSION) 14159 tcp->tcp_ip_forward_progress = B_TRUE; 14160 14161 /* 14162 * If SYN was retransmitted, need to reset all 14163 * retransmission info as this segment will be 14164 * treated as a dup ACK. 14165 */ 14166 if (tcp->tcp_rexmit) { 14167 tcp->tcp_rexmit = B_FALSE; 14168 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14169 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14170 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14171 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14172 tcp->tcp_ms_we_have_waited = 0; 14173 tcp->tcp_cwnd = mss; 14174 } 14175 14176 /* 14177 * We set the send window to zero here. 14178 * This is needed if there is data to be 14179 * processed already on the queue. 14180 * Later (at swnd_update label), the 14181 * "new_swnd > tcp_swnd" condition is satisfied 14182 * the XMIT_NEEDED flag is set in the current 14183 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14184 * called if there is already data on queue in 14185 * this state. 14186 */ 14187 tcp->tcp_swnd = 0; 14188 14189 if (new_swnd > tcp->tcp_max_swnd) 14190 tcp->tcp_max_swnd = new_swnd; 14191 tcp->tcp_swl1 = seg_seq; 14192 tcp->tcp_swl2 = seg_ack; 14193 tcp->tcp_state = TCPS_ESTABLISHED; 14194 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14195 14196 /* Fuse when both sides are in ESTABLISHED state */ 14197 if (tcp->tcp_loopback && do_tcp_fusion) 14198 tcp_fuse(tcp, iphdr, tcph); 14199 14200 } 14201 /* This code follows 4.4BSD-Lite2 mostly. */ 14202 if (bytes_acked < 0) 14203 goto est; 14204 14205 /* 14206 * If TCP is ECN capable and the congestion experience bit is 14207 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14208 * done once per window (or more loosely, per RTT). 14209 */ 14210 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14211 tcp->tcp_cwr = B_FALSE; 14212 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14213 if (!tcp->tcp_cwr) { 14214 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14215 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14216 tcp->tcp_cwnd = npkt * mss; 14217 /* 14218 * If the cwnd is 0, use the timer to clock out 14219 * new segments. This is required by the ECN spec. 14220 */ 14221 if (npkt == 0) { 14222 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14223 /* 14224 * This makes sure that when the ACK comes 14225 * back, we will increase tcp_cwnd by 1 MSS. 14226 */ 14227 tcp->tcp_cwnd_cnt = 0; 14228 } 14229 tcp->tcp_cwr = B_TRUE; 14230 /* 14231 * This marks the end of the current window of in 14232 * flight data. That is why we don't use 14233 * tcp_suna + tcp_swnd. Only data in flight can 14234 * provide ECN info. 14235 */ 14236 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14237 tcp->tcp_ecn_cwr_sent = B_FALSE; 14238 } 14239 } 14240 14241 mp1 = tcp->tcp_xmit_head; 14242 if (bytes_acked == 0) { 14243 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14244 int dupack_cnt; 14245 14246 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14247 /* 14248 * Fast retransmit. When we have seen exactly three 14249 * identical ACKs while we have unacked data 14250 * outstanding we take it as a hint that our peer 14251 * dropped something. 14252 * 14253 * If TCP is retransmitting, don't do fast retransmit. 14254 */ 14255 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14256 ! tcp->tcp_rexmit) { 14257 /* Do Limited Transmit */ 14258 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14259 tcps->tcps_dupack_fast_retransmit) { 14260 /* 14261 * RFC 3042 14262 * 14263 * What we need to do is temporarily 14264 * increase tcp_cwnd so that new 14265 * data can be sent if it is allowed 14266 * by the receive window (tcp_rwnd). 14267 * tcp_wput_data() will take care of 14268 * the rest. 14269 * 14270 * If the connection is SACK capable, 14271 * only do limited xmit when there 14272 * is SACK info. 14273 * 14274 * Note how tcp_cwnd is incremented. 14275 * The first dup ACK will increase 14276 * it by 1 MSS. The second dup ACK 14277 * will increase it by 2 MSS. This 14278 * means that only 1 new segment will 14279 * be sent for each dup ACK. 14280 */ 14281 if (tcp->tcp_unsent > 0 && 14282 (!tcp->tcp_snd_sack_ok || 14283 (tcp->tcp_snd_sack_ok && 14284 tcp->tcp_notsack_list != NULL))) { 14285 tcp->tcp_cwnd += mss << 14286 (tcp->tcp_dupack_cnt - 1); 14287 flags |= TH_LIMIT_XMIT; 14288 } 14289 } else if (dupack_cnt == 14290 tcps->tcps_dupack_fast_retransmit) { 14291 14292 /* 14293 * If we have reduced tcp_ssthresh 14294 * because of ECN, do not reduce it again 14295 * unless it is already one window of data 14296 * away. After one window of data, tcp_cwr 14297 * should then be cleared. Note that 14298 * for non ECN capable connection, tcp_cwr 14299 * should always be false. 14300 * 14301 * Adjust cwnd since the duplicate 14302 * ack indicates that a packet was 14303 * dropped (due to congestion.) 14304 */ 14305 if (!tcp->tcp_cwr) { 14306 npkt = ((tcp->tcp_snxt - 14307 tcp->tcp_suna) >> 1) / mss; 14308 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14309 mss; 14310 tcp->tcp_cwnd = (npkt + 14311 tcp->tcp_dupack_cnt) * mss; 14312 } 14313 if (tcp->tcp_ecn_ok) { 14314 tcp->tcp_cwr = B_TRUE; 14315 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14316 tcp->tcp_ecn_cwr_sent = B_FALSE; 14317 } 14318 14319 /* 14320 * We do Hoe's algorithm. Refer to her 14321 * paper "Improving the Start-up Behavior 14322 * of a Congestion Control Scheme for TCP," 14323 * appeared in SIGCOMM'96. 14324 * 14325 * Save highest seq no we have sent so far. 14326 * Be careful about the invisible FIN byte. 14327 */ 14328 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14329 (tcp->tcp_unsent == 0)) { 14330 tcp->tcp_rexmit_max = tcp->tcp_fss; 14331 } else { 14332 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14333 } 14334 14335 /* 14336 * Do not allow bursty traffic during. 14337 * fast recovery. Refer to Fall and Floyd's 14338 * paper "Simulation-based Comparisons of 14339 * Tahoe, Reno and SACK TCP" (in CCR?) 14340 * This is a best current practise. 14341 */ 14342 tcp->tcp_snd_burst = TCP_CWND_SS; 14343 14344 /* 14345 * For SACK: 14346 * Calculate tcp_pipe, which is the 14347 * estimated number of bytes in 14348 * network. 14349 * 14350 * tcp_fack is the highest sack'ed seq num 14351 * TCP has received. 14352 * 14353 * tcp_pipe is explained in the above quoted 14354 * Fall and Floyd's paper. tcp_fack is 14355 * explained in Mathis and Mahdavi's 14356 * "Forward Acknowledgment: Refining TCP 14357 * Congestion Control" in SIGCOMM '96. 14358 */ 14359 if (tcp->tcp_snd_sack_ok) { 14360 ASSERT(tcp->tcp_sack_info != NULL); 14361 if (tcp->tcp_notsack_list != NULL) { 14362 tcp->tcp_pipe = tcp->tcp_snxt - 14363 tcp->tcp_fack; 14364 tcp->tcp_sack_snxt = seg_ack; 14365 flags |= TH_NEED_SACK_REXMIT; 14366 } else { 14367 /* 14368 * Always initialize tcp_pipe 14369 * even though we don't have 14370 * any SACK info. If later 14371 * we get SACK info and 14372 * tcp_pipe is not initialized, 14373 * funny things will happen. 14374 */ 14375 tcp->tcp_pipe = 14376 tcp->tcp_cwnd_ssthresh; 14377 } 14378 } else { 14379 flags |= TH_REXMIT_NEEDED; 14380 } /* tcp_snd_sack_ok */ 14381 14382 } else { 14383 /* 14384 * Here we perform congestion 14385 * avoidance, but NOT slow start. 14386 * This is known as the Fast 14387 * Recovery Algorithm. 14388 */ 14389 if (tcp->tcp_snd_sack_ok && 14390 tcp->tcp_notsack_list != NULL) { 14391 flags |= TH_NEED_SACK_REXMIT; 14392 tcp->tcp_pipe -= mss; 14393 if (tcp->tcp_pipe < 0) 14394 tcp->tcp_pipe = 0; 14395 } else { 14396 /* 14397 * We know that one more packet has 14398 * left the pipe thus we can update 14399 * cwnd. 14400 */ 14401 cwnd = tcp->tcp_cwnd + mss; 14402 if (cwnd > tcp->tcp_cwnd_max) 14403 cwnd = tcp->tcp_cwnd_max; 14404 tcp->tcp_cwnd = cwnd; 14405 if (tcp->tcp_unsent > 0) 14406 flags |= TH_XMIT_NEEDED; 14407 } 14408 } 14409 } 14410 } else if (tcp->tcp_zero_win_probe) { 14411 /* 14412 * If the window has opened, need to arrange 14413 * to send additional data. 14414 */ 14415 if (new_swnd != 0) { 14416 /* tcp_suna != tcp_snxt */ 14417 /* Packet contains a window update */ 14418 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14419 tcp->tcp_zero_win_probe = 0; 14420 tcp->tcp_timer_backoff = 0; 14421 tcp->tcp_ms_we_have_waited = 0; 14422 14423 /* 14424 * Transmit starting with tcp_suna since 14425 * the one byte probe is not ack'ed. 14426 * If TCP has sent more than one identical 14427 * probe, tcp_rexmit will be set. That means 14428 * tcp_ss_rexmit() will send out the one 14429 * byte along with new data. Otherwise, 14430 * fake the retransmission. 14431 */ 14432 flags |= TH_XMIT_NEEDED; 14433 if (!tcp->tcp_rexmit) { 14434 tcp->tcp_rexmit = B_TRUE; 14435 tcp->tcp_dupack_cnt = 0; 14436 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14437 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14438 } 14439 } 14440 } 14441 goto swnd_update; 14442 } 14443 14444 /* 14445 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14446 * If the ACK value acks something that we have not yet sent, it might 14447 * be an old duplicate segment. Send an ACK to re-synchronize the 14448 * other side. 14449 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14450 * state is handled above, so we can always just drop the segment and 14451 * send an ACK here. 14452 * 14453 * Should we send ACKs in response to ACK only segments? 14454 */ 14455 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14456 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14457 /* drop the received segment */ 14458 freemsg(mp); 14459 14460 /* 14461 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14462 * greater than 0, check if the number of such 14463 * bogus ACks is greater than that count. If yes, 14464 * don't send back any ACK. This prevents TCP from 14465 * getting into an ACK storm if somehow an attacker 14466 * successfully spoofs an acceptable segment to our 14467 * peer. 14468 */ 14469 if (tcp_drop_ack_unsent_cnt > 0 && 14470 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14471 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14472 return; 14473 } 14474 mp = tcp_ack_mp(tcp); 14475 if (mp != NULL) { 14476 BUMP_LOCAL(tcp->tcp_obsegs); 14477 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14478 tcp_send_data(tcp, tcp->tcp_wq, mp); 14479 } 14480 return; 14481 } 14482 14483 /* 14484 * TCP gets a new ACK, update the notsack'ed list to delete those 14485 * blocks that are covered by this ACK. 14486 */ 14487 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14488 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14489 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14490 } 14491 14492 /* 14493 * If we got an ACK after fast retransmit, check to see 14494 * if it is a partial ACK. If it is not and the congestion 14495 * window was inflated to account for the other side's 14496 * cached packets, retract it. If it is, do Hoe's algorithm. 14497 */ 14498 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14499 ASSERT(tcp->tcp_rexmit == B_FALSE); 14500 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14501 tcp->tcp_dupack_cnt = 0; 14502 /* 14503 * Restore the orig tcp_cwnd_ssthresh after 14504 * fast retransmit phase. 14505 */ 14506 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14507 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14508 } 14509 tcp->tcp_rexmit_max = seg_ack; 14510 tcp->tcp_cwnd_cnt = 0; 14511 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14512 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14513 14514 /* 14515 * Remove all notsack info to avoid confusion with 14516 * the next fast retrasnmit/recovery phase. 14517 */ 14518 if (tcp->tcp_snd_sack_ok && 14519 tcp->tcp_notsack_list != NULL) { 14520 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14521 } 14522 } else { 14523 if (tcp->tcp_snd_sack_ok && 14524 tcp->tcp_notsack_list != NULL) { 14525 flags |= TH_NEED_SACK_REXMIT; 14526 tcp->tcp_pipe -= mss; 14527 if (tcp->tcp_pipe < 0) 14528 tcp->tcp_pipe = 0; 14529 } else { 14530 /* 14531 * Hoe's algorithm: 14532 * 14533 * Retransmit the unack'ed segment and 14534 * restart fast recovery. Note that we 14535 * need to scale back tcp_cwnd to the 14536 * original value when we started fast 14537 * recovery. This is to prevent overly 14538 * aggressive behaviour in sending new 14539 * segments. 14540 */ 14541 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14542 tcps->tcps_dupack_fast_retransmit * mss; 14543 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14544 flags |= TH_REXMIT_NEEDED; 14545 } 14546 } 14547 } else { 14548 tcp->tcp_dupack_cnt = 0; 14549 if (tcp->tcp_rexmit) { 14550 /* 14551 * TCP is retranmitting. If the ACK ack's all 14552 * outstanding data, update tcp_rexmit_max and 14553 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14554 * to the correct value. 14555 * 14556 * Note that SEQ_LEQ() is used. This is to avoid 14557 * unnecessary fast retransmit caused by dup ACKs 14558 * received when TCP does slow start retransmission 14559 * after a time out. During this phase, TCP may 14560 * send out segments which are already received. 14561 * This causes dup ACKs to be sent back. 14562 */ 14563 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14564 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14565 tcp->tcp_rexmit_nxt = seg_ack; 14566 } 14567 if (seg_ack != tcp->tcp_rexmit_max) { 14568 flags |= TH_XMIT_NEEDED; 14569 } 14570 } else { 14571 tcp->tcp_rexmit = B_FALSE; 14572 tcp->tcp_xmit_zc_clean = B_FALSE; 14573 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14574 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14575 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14576 } 14577 tcp->tcp_ms_we_have_waited = 0; 14578 } 14579 } 14580 14581 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14582 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14583 tcp->tcp_suna = seg_ack; 14584 if (tcp->tcp_zero_win_probe != 0) { 14585 tcp->tcp_zero_win_probe = 0; 14586 tcp->tcp_timer_backoff = 0; 14587 } 14588 14589 /* 14590 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14591 * Note that it cannot be the SYN being ack'ed. The code flow 14592 * will not reach here. 14593 */ 14594 if (mp1 == NULL) { 14595 goto fin_acked; 14596 } 14597 14598 /* 14599 * Update the congestion window. 14600 * 14601 * If TCP is not ECN capable or TCP is ECN capable but the 14602 * congestion experience bit is not set, increase the tcp_cwnd as 14603 * usual. 14604 */ 14605 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14606 cwnd = tcp->tcp_cwnd; 14607 add = mss; 14608 14609 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14610 /* 14611 * This is to prevent an increase of less than 1 MSS of 14612 * tcp_cwnd. With partial increase, tcp_wput_data() 14613 * may send out tinygrams in order to preserve mblk 14614 * boundaries. 14615 * 14616 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14617 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14618 * increased by 1 MSS for every RTTs. 14619 */ 14620 if (tcp->tcp_cwnd_cnt <= 0) { 14621 tcp->tcp_cwnd_cnt = cwnd + add; 14622 } else { 14623 tcp->tcp_cwnd_cnt -= add; 14624 add = 0; 14625 } 14626 } 14627 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14628 } 14629 14630 /* See if the latest urgent data has been acknowledged */ 14631 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14632 SEQ_GT(seg_ack, tcp->tcp_urg)) 14633 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14634 14635 /* Can we update the RTT estimates? */ 14636 if (tcp->tcp_snd_ts_ok) { 14637 /* Ignore zero timestamp echo-reply. */ 14638 if (tcpopt.tcp_opt_ts_ecr != 0) { 14639 tcp_set_rto(tcp, (int32_t)lbolt - 14640 (int32_t)tcpopt.tcp_opt_ts_ecr); 14641 } 14642 14643 /* If needed, restart the timer. */ 14644 if (tcp->tcp_set_timer == 1) { 14645 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14646 tcp->tcp_set_timer = 0; 14647 } 14648 /* 14649 * Update tcp_csuna in case the other side stops sending 14650 * us timestamps. 14651 */ 14652 tcp->tcp_csuna = tcp->tcp_snxt; 14653 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14654 /* 14655 * An ACK sequence we haven't seen before, so get the RTT 14656 * and update the RTO. But first check if the timestamp is 14657 * valid to use. 14658 */ 14659 if ((mp1->b_next != NULL) && 14660 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14661 tcp_set_rto(tcp, (int32_t)lbolt - 14662 (int32_t)(intptr_t)mp1->b_prev); 14663 else 14664 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14665 14666 /* Remeber the last sequence to be ACKed */ 14667 tcp->tcp_csuna = seg_ack; 14668 if (tcp->tcp_set_timer == 1) { 14669 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14670 tcp->tcp_set_timer = 0; 14671 } 14672 } else { 14673 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14674 } 14675 14676 /* Eat acknowledged bytes off the xmit queue. */ 14677 for (;;) { 14678 mblk_t *mp2; 14679 uchar_t *wptr; 14680 14681 wptr = mp1->b_wptr; 14682 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14683 bytes_acked -= (int)(wptr - mp1->b_rptr); 14684 if (bytes_acked < 0) { 14685 mp1->b_rptr = wptr + bytes_acked; 14686 /* 14687 * Set a new timestamp if all the bytes timed by the 14688 * old timestamp have been ack'ed. 14689 */ 14690 if (SEQ_GT(seg_ack, 14691 (uint32_t)(uintptr_t)(mp1->b_next))) { 14692 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14693 mp1->b_next = NULL; 14694 } 14695 break; 14696 } 14697 mp1->b_next = NULL; 14698 mp1->b_prev = NULL; 14699 mp2 = mp1; 14700 mp1 = mp1->b_cont; 14701 14702 /* 14703 * This notification is required for some zero-copy 14704 * clients to maintain a copy semantic. After the data 14705 * is ack'ed, client is safe to modify or reuse the buffer. 14706 */ 14707 if (tcp->tcp_snd_zcopy_aware && 14708 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14709 tcp_zcopy_notify(tcp); 14710 freeb(mp2); 14711 if (bytes_acked == 0) { 14712 if (mp1 == NULL) { 14713 /* Everything is ack'ed, clear the tail. */ 14714 tcp->tcp_xmit_tail = NULL; 14715 /* 14716 * Cancel the timer unless we are still 14717 * waiting for an ACK for the FIN packet. 14718 */ 14719 if (tcp->tcp_timer_tid != 0 && 14720 tcp->tcp_snxt == tcp->tcp_suna) { 14721 (void) TCP_TIMER_CANCEL(tcp, 14722 tcp->tcp_timer_tid); 14723 tcp->tcp_timer_tid = 0; 14724 } 14725 goto pre_swnd_update; 14726 } 14727 if (mp2 != tcp->tcp_xmit_tail) 14728 break; 14729 tcp->tcp_xmit_tail = mp1; 14730 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14731 (uintptr_t)INT_MAX); 14732 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14733 mp1->b_rptr); 14734 break; 14735 } 14736 if (mp1 == NULL) { 14737 /* 14738 * More was acked but there is nothing more 14739 * outstanding. This means that the FIN was 14740 * just acked or that we're talking to a clown. 14741 */ 14742 fin_acked: 14743 ASSERT(tcp->tcp_fin_sent); 14744 tcp->tcp_xmit_tail = NULL; 14745 if (tcp->tcp_fin_sent) { 14746 /* FIN was acked - making progress */ 14747 if (tcp->tcp_ipversion == IPV6_VERSION && 14748 !tcp->tcp_fin_acked) 14749 tcp->tcp_ip_forward_progress = B_TRUE; 14750 tcp->tcp_fin_acked = B_TRUE; 14751 if (tcp->tcp_linger_tid != 0 && 14752 TCP_TIMER_CANCEL(tcp, 14753 tcp->tcp_linger_tid) >= 0) { 14754 tcp_stop_lingering(tcp); 14755 freemsg(mp); 14756 mp = NULL; 14757 } 14758 } else { 14759 /* 14760 * We should never get here because 14761 * we have already checked that the 14762 * number of bytes ack'ed should be 14763 * smaller than or equal to what we 14764 * have sent so far (it is the 14765 * acceptability check of the ACK). 14766 * We can only get here if the send 14767 * queue is corrupted. 14768 * 14769 * Terminate the connection and 14770 * panic the system. It is better 14771 * for us to panic instead of 14772 * continuing to avoid other disaster. 14773 */ 14774 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14775 tcp->tcp_rnxt, TH_RST|TH_ACK); 14776 panic("Memory corruption " 14777 "detected for connection %s.", 14778 tcp_display(tcp, NULL, 14779 DISP_ADDR_AND_PORT)); 14780 /*NOTREACHED*/ 14781 } 14782 goto pre_swnd_update; 14783 } 14784 ASSERT(mp2 != tcp->tcp_xmit_tail); 14785 } 14786 if (tcp->tcp_unsent) { 14787 flags |= TH_XMIT_NEEDED; 14788 } 14789 pre_swnd_update: 14790 tcp->tcp_xmit_head = mp1; 14791 swnd_update: 14792 /* 14793 * The following check is different from most other implementations. 14794 * For bi-directional transfer, when segments are dropped, the 14795 * "normal" check will not accept a window update in those 14796 * retransmitted segemnts. Failing to do that, TCP may send out 14797 * segments which are outside receiver's window. As TCP accepts 14798 * the ack in those retransmitted segments, if the window update in 14799 * the same segment is not accepted, TCP will incorrectly calculates 14800 * that it can send more segments. This can create a deadlock 14801 * with the receiver if its window becomes zero. 14802 */ 14803 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14804 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14805 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14806 /* 14807 * The criteria for update is: 14808 * 14809 * 1. the segment acknowledges some data. Or 14810 * 2. the segment is new, i.e. it has a higher seq num. Or 14811 * 3. the segment is not old and the advertised window is 14812 * larger than the previous advertised window. 14813 */ 14814 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14815 flags |= TH_XMIT_NEEDED; 14816 tcp->tcp_swnd = new_swnd; 14817 if (new_swnd > tcp->tcp_max_swnd) 14818 tcp->tcp_max_swnd = new_swnd; 14819 tcp->tcp_swl1 = seg_seq; 14820 tcp->tcp_swl2 = seg_ack; 14821 } 14822 est: 14823 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14824 14825 switch (tcp->tcp_state) { 14826 case TCPS_FIN_WAIT_1: 14827 if (tcp->tcp_fin_acked) { 14828 tcp->tcp_state = TCPS_FIN_WAIT_2; 14829 /* 14830 * We implement the non-standard BSD/SunOS 14831 * FIN_WAIT_2 flushing algorithm. 14832 * If there is no user attached to this 14833 * TCP endpoint, then this TCP struct 14834 * could hang around forever in FIN_WAIT_2 14835 * state if the peer forgets to send us 14836 * a FIN. To prevent this, we wait only 14837 * 2*MSL (a convenient time value) for 14838 * the FIN to arrive. If it doesn't show up, 14839 * we flush the TCP endpoint. This algorithm, 14840 * though a violation of RFC-793, has worked 14841 * for over 10 years in BSD systems. 14842 * Note: SunOS 4.x waits 675 seconds before 14843 * flushing the FIN_WAIT_2 connection. 14844 */ 14845 TCP_TIMER_RESTART(tcp, 14846 tcps->tcps_fin_wait_2_flush_interval); 14847 } 14848 break; 14849 case TCPS_FIN_WAIT_2: 14850 break; /* Shutdown hook? */ 14851 case TCPS_LAST_ACK: 14852 freemsg(mp); 14853 if (tcp->tcp_fin_acked) { 14854 (void) tcp_clean_death(tcp, 0, 19); 14855 return; 14856 } 14857 goto xmit_check; 14858 case TCPS_CLOSING: 14859 if (tcp->tcp_fin_acked) { 14860 tcp->tcp_state = TCPS_TIME_WAIT; 14861 /* 14862 * Unconditionally clear the exclusive binding 14863 * bit so this TIME-WAIT connection won't 14864 * interfere with new ones. 14865 */ 14866 tcp->tcp_exclbind = 0; 14867 if (!TCP_IS_DETACHED(tcp)) { 14868 TCP_TIMER_RESTART(tcp, 14869 tcps->tcps_time_wait_interval); 14870 } else { 14871 tcp_time_wait_append(tcp); 14872 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14873 } 14874 } 14875 /*FALLTHRU*/ 14876 case TCPS_CLOSE_WAIT: 14877 freemsg(mp); 14878 goto xmit_check; 14879 default: 14880 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14881 break; 14882 } 14883 } 14884 if (flags & TH_FIN) { 14885 /* Make sure we ack the fin */ 14886 flags |= TH_ACK_NEEDED; 14887 if (!tcp->tcp_fin_rcvd) { 14888 tcp->tcp_fin_rcvd = B_TRUE; 14889 tcp->tcp_rnxt++; 14890 tcph = tcp->tcp_tcph; 14891 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14892 14893 /* 14894 * Generate the ordrel_ind at the end unless we 14895 * are an eager guy. 14896 * In the eager case tcp_rsrv will do this when run 14897 * after tcp_accept is done. 14898 */ 14899 if (tcp->tcp_listener == NULL && 14900 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14901 flags |= TH_ORDREL_NEEDED; 14902 switch (tcp->tcp_state) { 14903 case TCPS_SYN_RCVD: 14904 case TCPS_ESTABLISHED: 14905 tcp->tcp_state = TCPS_CLOSE_WAIT; 14906 /* Keepalive? */ 14907 break; 14908 case TCPS_FIN_WAIT_1: 14909 if (!tcp->tcp_fin_acked) { 14910 tcp->tcp_state = TCPS_CLOSING; 14911 break; 14912 } 14913 /* FALLTHRU */ 14914 case TCPS_FIN_WAIT_2: 14915 tcp->tcp_state = TCPS_TIME_WAIT; 14916 /* 14917 * Unconditionally clear the exclusive binding 14918 * bit so this TIME-WAIT connection won't 14919 * interfere with new ones. 14920 */ 14921 tcp->tcp_exclbind = 0; 14922 if (!TCP_IS_DETACHED(tcp)) { 14923 TCP_TIMER_RESTART(tcp, 14924 tcps->tcps_time_wait_interval); 14925 } else { 14926 tcp_time_wait_append(tcp); 14927 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14928 } 14929 if (seg_len) { 14930 /* 14931 * implies data piggybacked on FIN. 14932 * break to handle data. 14933 */ 14934 break; 14935 } 14936 freemsg(mp); 14937 goto ack_check; 14938 } 14939 } 14940 } 14941 if (mp == NULL) 14942 goto xmit_check; 14943 if (seg_len == 0) { 14944 freemsg(mp); 14945 goto xmit_check; 14946 } 14947 if (mp->b_rptr == mp->b_wptr) { 14948 /* 14949 * The header has been consumed, so we remove the 14950 * zero-length mblk here. 14951 */ 14952 mp1 = mp; 14953 mp = mp->b_cont; 14954 freeb(mp1); 14955 } 14956 update_ack: 14957 tcph = tcp->tcp_tcph; 14958 tcp->tcp_rack_cnt++; 14959 { 14960 uint32_t cur_max; 14961 14962 cur_max = tcp->tcp_rack_cur_max; 14963 if (tcp->tcp_rack_cnt >= cur_max) { 14964 /* 14965 * We have more unacked data than we should - send 14966 * an ACK now. 14967 */ 14968 flags |= TH_ACK_NEEDED; 14969 cur_max++; 14970 if (cur_max > tcp->tcp_rack_abs_max) 14971 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14972 else 14973 tcp->tcp_rack_cur_max = cur_max; 14974 } else if (TCP_IS_DETACHED(tcp)) { 14975 /* We don't have an ACK timer for detached TCP. */ 14976 flags |= TH_ACK_NEEDED; 14977 } else if (seg_len < mss) { 14978 /* 14979 * If we get a segment that is less than an mss, and we 14980 * already have unacknowledged data, and the amount 14981 * unacknowledged is not a multiple of mss, then we 14982 * better generate an ACK now. Otherwise, this may be 14983 * the tail piece of a transaction, and we would rather 14984 * wait for the response. 14985 */ 14986 uint32_t udif; 14987 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14988 (uintptr_t)INT_MAX); 14989 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14990 if (udif && (udif % mss)) 14991 flags |= TH_ACK_NEEDED; 14992 else 14993 flags |= TH_ACK_TIMER_NEEDED; 14994 } else { 14995 /* Start delayed ack timer */ 14996 flags |= TH_ACK_TIMER_NEEDED; 14997 } 14998 } 14999 tcp->tcp_rnxt += seg_len; 15000 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 15001 15002 if (mp == NULL) 15003 goto xmit_check; 15004 15005 /* Update SACK list */ 15006 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 15007 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 15008 &(tcp->tcp_num_sack_blk)); 15009 } 15010 15011 if (tcp->tcp_urp_mp) { 15012 tcp->tcp_urp_mp->b_cont = mp; 15013 mp = tcp->tcp_urp_mp; 15014 tcp->tcp_urp_mp = NULL; 15015 /* Ready for a new signal. */ 15016 tcp->tcp_urp_last_valid = B_FALSE; 15017 #ifdef DEBUG 15018 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15019 "tcp_rput: sending exdata_ind %s", 15020 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15021 #endif /* DEBUG */ 15022 } 15023 15024 /* 15025 * Check for ancillary data changes compared to last segment. 15026 */ 15027 if (tcp->tcp_ipv6_recvancillary != 0) { 15028 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 15029 ASSERT(mp != NULL); 15030 } 15031 15032 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 15033 /* 15034 * Side queue inbound data until the accept happens. 15035 * tcp_accept/tcp_rput drains this when the accept happens. 15036 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 15037 * T_EXDATA_IND) it is queued on b_next. 15038 * XXX Make urgent data use this. Requires: 15039 * Removing tcp_listener check for TH_URG 15040 * Making M_PCPROTO and MARK messages skip the eager case 15041 */ 15042 15043 if (tcp->tcp_kssl_pending) { 15044 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 15045 mblk_t *, mp); 15046 tcp_kssl_input(tcp, mp); 15047 } else { 15048 tcp_rcv_enqueue(tcp, mp, seg_len); 15049 } 15050 } else { 15051 sodirect_t *sodp = tcp->tcp_sodirect; 15052 15053 /* 15054 * If an sodirect connection and an enabled sodirect_t then 15055 * sodp will be set to point to the tcp_t/sonode_t shared 15056 * sodirect_t and the sodirect_t's lock will be held. 15057 */ 15058 if (sodp != NULL) { 15059 mutex_enter(sodp->sod_lockp); 15060 if (!(sodp->sod_state & SOD_ENABLED) || 15061 (tcp->tcp_kssl_ctx != NULL && 15062 DB_TYPE(mp) == M_DATA)) { 15063 sodp = NULL; 15064 } 15065 mutex_exit(sodp->sod_lockp); 15066 } 15067 if (mp->b_datap->db_type != M_DATA || 15068 (flags & TH_MARKNEXT_NEEDED)) { 15069 if (IPCL_IS_NONSTR(connp)) { 15070 int error; 15071 15072 if ((*connp->conn_upcalls->su_recv) 15073 (connp->conn_upper_handle, mp, 15074 seg_len, 0, &error, NULL) <= 0) { 15075 if (error == ENOSPC) { 15076 tcp->tcp_rwnd -= seg_len; 15077 } else if (error == EOPNOTSUPP) { 15078 tcp_rcv_enqueue(tcp, mp, 15079 seg_len); 15080 } 15081 } 15082 } else if (sodp != NULL) { 15083 mutex_enter(sodp->sod_lockp); 15084 SOD_UIOAFINI(sodp); 15085 if (!SOD_QEMPTY(sodp) && 15086 (sodp->sod_state & SOD_WAKE_NOT)) { 15087 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15088 /* sod_wakeup() did the mutex_exit() */ 15089 } else { 15090 mutex_exit(sodp->sod_lockp); 15091 } 15092 } else if (tcp->tcp_rcv_list != NULL) { 15093 flags |= tcp_rcv_drain(tcp); 15094 } 15095 ASSERT(tcp->tcp_rcv_list == NULL || 15096 tcp->tcp_fused_sigurg); 15097 15098 if (flags & TH_MARKNEXT_NEEDED) { 15099 #ifdef DEBUG 15100 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15101 "tcp_rput: sending MSGMARKNEXT %s", 15102 tcp_display(tcp, NULL, 15103 DISP_PORT_ONLY)); 15104 #endif /* DEBUG */ 15105 mp->b_flag |= MSGMARKNEXT; 15106 flags &= ~TH_MARKNEXT_NEEDED; 15107 } 15108 15109 /* Does this need SSL processing first? */ 15110 if ((tcp->tcp_kssl_ctx != NULL) && 15111 (DB_TYPE(mp) == M_DATA)) { 15112 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 15113 mblk_t *, mp); 15114 tcp_kssl_input(tcp, mp); 15115 } else if (!IPCL_IS_NONSTR(connp)) { 15116 /* Already handled non-STREAMS case. */ 15117 putnext(tcp->tcp_rq, mp); 15118 if (!canputnext(tcp->tcp_rq)) 15119 tcp->tcp_rwnd -= seg_len; 15120 } 15121 } else if ((tcp->tcp_kssl_ctx != NULL) && 15122 (DB_TYPE(mp) == M_DATA)) { 15123 /* Does this need SSL processing first? */ 15124 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 15125 tcp_kssl_input(tcp, mp); 15126 } else if (IPCL_IS_NONSTR(connp)) { 15127 /* Non-STREAMS socket */ 15128 boolean_t push = flags & (TH_PUSH|TH_FIN); 15129 int error; 15130 15131 if ((*connp->conn_upcalls->su_recv)( 15132 connp->conn_upper_handle, 15133 mp, seg_len, 0, &error, &push) <= 0) { 15134 if (error == ENOSPC) { 15135 tcp->tcp_rwnd -= seg_len; 15136 } else if (error == EOPNOTSUPP) { 15137 tcp_rcv_enqueue(tcp, mp, seg_len); 15138 } 15139 } else if (push) { 15140 /* 15141 * PUSH bit set and sockfs is not 15142 * flow controlled 15143 */ 15144 flags |= tcp_rwnd_reopen(tcp); 15145 } 15146 } else if (sodp != NULL) { 15147 /* 15148 * Sodirect so all mblk_t's are queued on the 15149 * socket directly, check for wakeup of blocked 15150 * reader (if any), and last if flow-controled. 15151 */ 15152 mutex_enter(sodp->sod_lockp); 15153 flags |= tcp_rcv_sod_enqueue(tcp, sodp, mp, seg_len); 15154 if ((sodp->sod_state & SOD_WAKE_NEED) || 15155 (flags & (TH_PUSH|TH_FIN))) { 15156 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15157 /* sod_wakeup() did the mutex_exit() */ 15158 } else { 15159 if (SOD_QFULL(sodp)) { 15160 /* Q is full, need backenable */ 15161 SOD_QSETBE(sodp); 15162 } 15163 mutex_exit(sodp->sod_lockp); 15164 } 15165 } else if ((flags & (TH_PUSH|TH_FIN)) || 15166 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 15167 if (tcp->tcp_rcv_list != NULL) { 15168 /* 15169 * Enqueue the new segment first and then 15170 * call tcp_rcv_drain() to send all data 15171 * up. The other way to do this is to 15172 * send all queued data up and then call 15173 * putnext() to send the new segment up. 15174 * This way can remove the else part later 15175 * on. 15176 * 15177 * We don't do this to avoid one more call to 15178 * canputnext() as tcp_rcv_drain() needs to 15179 * call canputnext(). 15180 */ 15181 tcp_rcv_enqueue(tcp, mp, seg_len); 15182 flags |= tcp_rcv_drain(tcp); 15183 } else { 15184 putnext(tcp->tcp_rq, mp); 15185 if (!canputnext(tcp->tcp_rq)) 15186 tcp->tcp_rwnd -= seg_len; 15187 } 15188 } else { 15189 /* 15190 * Enqueue all packets when processing an mblk 15191 * from the co queue and also enqueue normal packets. 15192 * For packets which belong to SSL stream do SSL 15193 * processing first. 15194 */ 15195 tcp_rcv_enqueue(tcp, mp, seg_len); 15196 } 15197 /* 15198 * Make sure the timer is running if we have data waiting 15199 * for a push bit. This provides resiliency against 15200 * implementations that do not correctly generate push bits. 15201 * 15202 * Note, for sodirect if Q isn't empty and there's not a 15203 * pending wakeup then we need a timer. Also note that sodp 15204 * is assumed to be still valid after exit()ing the sod_lockp 15205 * above and while the SOD state can change it can only change 15206 * such that the Q is empty now even though data was added 15207 * above. 15208 */ 15209 if (!IPCL_IS_NONSTR(connp) && 15210 ((sodp != NULL && !SOD_QEMPTY(sodp) && 15211 (sodp->sod_state & SOD_WAKE_NOT)) || 15212 (sodp == NULL && tcp->tcp_rcv_list != NULL)) && 15213 tcp->tcp_push_tid == 0) { 15214 /* 15215 * The connection may be closed at this point, so don't 15216 * do anything for a detached tcp. 15217 */ 15218 if (!TCP_IS_DETACHED(tcp)) 15219 tcp->tcp_push_tid = TCP_TIMER(tcp, 15220 tcp_push_timer, 15221 MSEC_TO_TICK( 15222 tcps->tcps_push_timer_interval)); 15223 } 15224 } 15225 15226 xmit_check: 15227 /* Is there anything left to do? */ 15228 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15229 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15230 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15231 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15232 goto done; 15233 15234 /* Any transmit work to do and a non-zero window? */ 15235 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15236 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15237 if (flags & TH_REXMIT_NEEDED) { 15238 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15239 15240 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15241 if (snd_size > mss) 15242 snd_size = mss; 15243 if (snd_size > tcp->tcp_swnd) 15244 snd_size = tcp->tcp_swnd; 15245 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15246 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15247 B_TRUE); 15248 15249 if (mp1 != NULL) { 15250 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15251 tcp->tcp_csuna = tcp->tcp_snxt; 15252 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15253 UPDATE_MIB(&tcps->tcps_mib, 15254 tcpRetransBytes, snd_size); 15255 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15256 } 15257 } 15258 if (flags & TH_NEED_SACK_REXMIT) { 15259 tcp_sack_rxmit(tcp, &flags); 15260 } 15261 /* 15262 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15263 * out new segment. Note that tcp_rexmit should not be 15264 * set, otherwise TH_LIMIT_XMIT should not be set. 15265 */ 15266 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15267 if (!tcp->tcp_rexmit) { 15268 tcp_wput_data(tcp, NULL, B_FALSE); 15269 } else { 15270 tcp_ss_rexmit(tcp); 15271 } 15272 } 15273 /* 15274 * Adjust tcp_cwnd back to normal value after sending 15275 * new data segments. 15276 */ 15277 if (flags & TH_LIMIT_XMIT) { 15278 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15279 /* 15280 * This will restart the timer. Restarting the 15281 * timer is used to avoid a timeout before the 15282 * limited transmitted segment's ACK gets back. 15283 */ 15284 if (tcp->tcp_xmit_head != NULL) 15285 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15286 } 15287 15288 /* Anything more to do? */ 15289 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15290 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15291 goto done; 15292 } 15293 ack_check: 15294 if (flags & TH_SEND_URP_MARK) { 15295 ASSERT(tcp->tcp_urp_mark_mp); 15296 ASSERT(!IPCL_IS_NONSTR(connp)); 15297 /* 15298 * Send up any queued data and then send the mark message 15299 */ 15300 sodirect_t *sodp; 15301 15302 SOD_PTR_ENTER(tcp, sodp); 15303 15304 mp1 = tcp->tcp_urp_mark_mp; 15305 tcp->tcp_urp_mark_mp = NULL; 15306 if (sodp != NULL) { 15307 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15308 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15309 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15310 } 15311 ASSERT(tcp->tcp_rcv_list == NULL); 15312 15313 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15314 /* sod_wakeup() does the mutex_exit() */ 15315 } else if (tcp->tcp_rcv_list != NULL) { 15316 flags |= tcp_rcv_drain(tcp); 15317 15318 ASSERT(tcp->tcp_rcv_list == NULL || 15319 tcp->tcp_fused_sigurg); 15320 15321 } 15322 putnext(tcp->tcp_rq, mp1); 15323 #ifdef DEBUG 15324 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15325 "tcp_rput: sending zero-length %s %s", 15326 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15327 "MSGNOTMARKNEXT"), 15328 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15329 #endif /* DEBUG */ 15330 flags &= ~TH_SEND_URP_MARK; 15331 } 15332 if (flags & TH_ACK_NEEDED) { 15333 /* 15334 * Time to send an ack for some reason. 15335 */ 15336 mp1 = tcp_ack_mp(tcp); 15337 15338 if (mp1 != NULL) { 15339 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15340 BUMP_LOCAL(tcp->tcp_obsegs); 15341 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15342 } 15343 if (tcp->tcp_ack_tid != 0) { 15344 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15345 tcp->tcp_ack_tid = 0; 15346 } 15347 } 15348 if (flags & TH_ACK_TIMER_NEEDED) { 15349 /* 15350 * Arrange for deferred ACK or push wait timeout. 15351 * Start timer if it is not already running. 15352 */ 15353 if (tcp->tcp_ack_tid == 0) { 15354 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15355 MSEC_TO_TICK(tcp->tcp_localnet ? 15356 (clock_t)tcps->tcps_local_dack_interval : 15357 (clock_t)tcps->tcps_deferred_ack_interval)); 15358 } 15359 } 15360 if (flags & TH_ORDREL_NEEDED) { 15361 /* 15362 * Send up the ordrel_ind unless we are an eager guy. 15363 * In the eager case tcp_rsrv will do this when run 15364 * after tcp_accept is done. 15365 */ 15366 sodirect_t *sodp; 15367 15368 ASSERT(tcp->tcp_listener == NULL); 15369 15370 if (IPCL_IS_NONSTR(connp)) { 15371 ASSERT(tcp->tcp_ordrel_mp == NULL); 15372 tcp->tcp_ordrel_done = B_TRUE; 15373 (*connp->conn_upcalls->su_opctl) 15374 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15375 goto done; 15376 } 15377 15378 SOD_PTR_ENTER(tcp, sodp); 15379 if (sodp != NULL) { 15380 if (sodp->sod_uioa.uioa_state & UIOA_ENABLED) { 15381 sodp->sod_uioa.uioa_state &= UIOA_CLR; 15382 sodp->sod_uioa.uioa_state |= UIOA_FINI; 15383 } 15384 /* No more sodirect */ 15385 tcp->tcp_sodirect = NULL; 15386 if (!SOD_QEMPTY(sodp)) { 15387 /* Mblk(s) to process, notify */ 15388 flags |= tcp_rcv_sod_wakeup(tcp, sodp); 15389 /* sod_wakeup() does the mutex_exit() */ 15390 } else { 15391 /* Nothing to process */ 15392 mutex_exit(sodp->sod_lockp); 15393 } 15394 } else if (tcp->tcp_rcv_list != NULL) { 15395 /* 15396 * Push any mblk(s) enqueued from co processing. 15397 */ 15398 flags |= tcp_rcv_drain(tcp); 15399 15400 ASSERT(tcp->tcp_rcv_list == NULL || 15401 tcp->tcp_fused_sigurg); 15402 } 15403 15404 mp1 = tcp->tcp_ordrel_mp; 15405 tcp->tcp_ordrel_mp = NULL; 15406 tcp->tcp_ordrel_done = B_TRUE; 15407 putnext(tcp->tcp_rq, mp1); 15408 } 15409 done: 15410 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15411 } 15412 15413 /* 15414 * This function does PAWS protection check. Returns B_TRUE if the 15415 * segment passes the PAWS test, else returns B_FALSE. 15416 */ 15417 boolean_t 15418 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15419 { 15420 uint8_t flags; 15421 int options; 15422 uint8_t *up; 15423 15424 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15425 /* 15426 * If timestamp option is aligned nicely, get values inline, 15427 * otherwise call general routine to parse. Only do that 15428 * if timestamp is the only option. 15429 */ 15430 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15431 TCPOPT_REAL_TS_LEN && 15432 OK_32PTR((up = ((uint8_t *)tcph) + 15433 TCP_MIN_HEADER_LENGTH)) && 15434 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15435 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15436 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15437 15438 options = TCP_OPT_TSTAMP_PRESENT; 15439 } else { 15440 if (tcp->tcp_snd_sack_ok) { 15441 tcpoptp->tcp = tcp; 15442 } else { 15443 tcpoptp->tcp = NULL; 15444 } 15445 options = tcp_parse_options(tcph, tcpoptp); 15446 } 15447 15448 if (options & TCP_OPT_TSTAMP_PRESENT) { 15449 /* 15450 * Do PAWS per RFC 1323 section 4.2. Accept RST 15451 * regardless of the timestamp, page 18 RFC 1323.bis. 15452 */ 15453 if ((flags & TH_RST) == 0 && 15454 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15455 tcp->tcp_ts_recent)) { 15456 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15457 PAWS_TIMEOUT)) { 15458 /* This segment is not acceptable. */ 15459 return (B_FALSE); 15460 } else { 15461 /* 15462 * Connection has been idle for 15463 * too long. Reset the timestamp 15464 * and assume the segment is valid. 15465 */ 15466 tcp->tcp_ts_recent = 15467 tcpoptp->tcp_opt_ts_val; 15468 } 15469 } 15470 } else { 15471 /* 15472 * If we don't get a timestamp on every packet, we 15473 * figure we can't really trust 'em, so we stop sending 15474 * and parsing them. 15475 */ 15476 tcp->tcp_snd_ts_ok = B_FALSE; 15477 15478 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15479 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15480 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15481 /* 15482 * Adjust the tcp_mss accordingly. We also need to 15483 * adjust tcp_cwnd here in accordance with the new mss. 15484 * But we avoid doing a slow start here so as to not 15485 * to lose on the transfer rate built up so far. 15486 */ 15487 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15488 if (tcp->tcp_snd_sack_ok) { 15489 ASSERT(tcp->tcp_sack_info != NULL); 15490 tcp->tcp_max_sack_blk = 4; 15491 } 15492 } 15493 return (B_TRUE); 15494 } 15495 15496 /* 15497 * Attach ancillary data to a received TCP segments for the 15498 * ancillary pieces requested by the application that are 15499 * different than they were in the previous data segment. 15500 * 15501 * Save the "current" values once memory allocation is ok so that 15502 * when memory allocation fails we can just wait for the next data segment. 15503 */ 15504 static mblk_t * 15505 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15506 { 15507 struct T_optdata_ind *todi; 15508 int optlen; 15509 uchar_t *optptr; 15510 struct T_opthdr *toh; 15511 uint_t addflag; /* Which pieces to add */ 15512 mblk_t *mp1; 15513 15514 optlen = 0; 15515 addflag = 0; 15516 /* If app asked for pktinfo and the index has changed ... */ 15517 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15518 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15519 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15520 optlen += sizeof (struct T_opthdr) + 15521 sizeof (struct in6_pktinfo); 15522 addflag |= TCP_IPV6_RECVPKTINFO; 15523 } 15524 /* If app asked for hoplimit and it has changed ... */ 15525 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15526 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15527 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15528 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15529 addflag |= TCP_IPV6_RECVHOPLIMIT; 15530 } 15531 /* If app asked for tclass and it has changed ... */ 15532 if ((ipp->ipp_fields & IPPF_TCLASS) && 15533 ipp->ipp_tclass != tcp->tcp_recvtclass && 15534 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15535 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15536 addflag |= TCP_IPV6_RECVTCLASS; 15537 } 15538 /* 15539 * If app asked for hopbyhop headers and it has changed ... 15540 * For security labels, note that (1) security labels can't change on 15541 * a connected socket at all, (2) we're connected to at most one peer, 15542 * (3) if anything changes, then it must be some other extra option. 15543 */ 15544 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15545 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15546 (ipp->ipp_fields & IPPF_HOPOPTS), 15547 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15548 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15549 tcp->tcp_label_len; 15550 addflag |= TCP_IPV6_RECVHOPOPTS; 15551 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15552 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15553 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15554 return (mp); 15555 } 15556 /* If app asked for dst headers before routing headers ... */ 15557 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15558 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15559 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15560 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15561 optlen += sizeof (struct T_opthdr) + 15562 ipp->ipp_rtdstoptslen; 15563 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15564 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15565 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15566 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15567 return (mp); 15568 } 15569 /* If app asked for routing headers and it has changed ... */ 15570 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15571 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15572 (ipp->ipp_fields & IPPF_RTHDR), 15573 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15574 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15575 addflag |= TCP_IPV6_RECVRTHDR; 15576 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15577 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15578 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15579 return (mp); 15580 } 15581 /* If app asked for dest headers and it has changed ... */ 15582 if ((tcp->tcp_ipv6_recvancillary & 15583 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15584 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15585 (ipp->ipp_fields & IPPF_DSTOPTS), 15586 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15587 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15588 addflag |= TCP_IPV6_RECVDSTOPTS; 15589 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15590 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15591 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15592 return (mp); 15593 } 15594 15595 if (optlen == 0) { 15596 /* Nothing to add */ 15597 return (mp); 15598 } 15599 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15600 if (mp1 == NULL) { 15601 /* 15602 * Defer sending ancillary data until the next TCP segment 15603 * arrives. 15604 */ 15605 return (mp); 15606 } 15607 mp1->b_cont = mp; 15608 mp = mp1; 15609 mp->b_wptr += sizeof (*todi) + optlen; 15610 mp->b_datap->db_type = M_PROTO; 15611 todi = (struct T_optdata_ind *)mp->b_rptr; 15612 todi->PRIM_type = T_OPTDATA_IND; 15613 todi->DATA_flag = 1; /* MORE data */ 15614 todi->OPT_length = optlen; 15615 todi->OPT_offset = sizeof (*todi); 15616 optptr = (uchar_t *)&todi[1]; 15617 /* 15618 * If app asked for pktinfo and the index has changed ... 15619 * Note that the local address never changes for the connection. 15620 */ 15621 if (addflag & TCP_IPV6_RECVPKTINFO) { 15622 struct in6_pktinfo *pkti; 15623 15624 toh = (struct T_opthdr *)optptr; 15625 toh->level = IPPROTO_IPV6; 15626 toh->name = IPV6_PKTINFO; 15627 toh->len = sizeof (*toh) + sizeof (*pkti); 15628 toh->status = 0; 15629 optptr += sizeof (*toh); 15630 pkti = (struct in6_pktinfo *)optptr; 15631 if (tcp->tcp_ipversion == IPV6_VERSION) 15632 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15633 else 15634 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15635 &pkti->ipi6_addr); 15636 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15637 optptr += sizeof (*pkti); 15638 ASSERT(OK_32PTR(optptr)); 15639 /* Save as "last" value */ 15640 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15641 } 15642 /* If app asked for hoplimit and it has changed ... */ 15643 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15644 toh = (struct T_opthdr *)optptr; 15645 toh->level = IPPROTO_IPV6; 15646 toh->name = IPV6_HOPLIMIT; 15647 toh->len = sizeof (*toh) + sizeof (uint_t); 15648 toh->status = 0; 15649 optptr += sizeof (*toh); 15650 *(uint_t *)optptr = ipp->ipp_hoplimit; 15651 optptr += sizeof (uint_t); 15652 ASSERT(OK_32PTR(optptr)); 15653 /* Save as "last" value */ 15654 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15655 } 15656 /* If app asked for tclass and it has changed ... */ 15657 if (addflag & TCP_IPV6_RECVTCLASS) { 15658 toh = (struct T_opthdr *)optptr; 15659 toh->level = IPPROTO_IPV6; 15660 toh->name = IPV6_TCLASS; 15661 toh->len = sizeof (*toh) + sizeof (uint_t); 15662 toh->status = 0; 15663 optptr += sizeof (*toh); 15664 *(uint_t *)optptr = ipp->ipp_tclass; 15665 optptr += sizeof (uint_t); 15666 ASSERT(OK_32PTR(optptr)); 15667 /* Save as "last" value */ 15668 tcp->tcp_recvtclass = ipp->ipp_tclass; 15669 } 15670 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15671 toh = (struct T_opthdr *)optptr; 15672 toh->level = IPPROTO_IPV6; 15673 toh->name = IPV6_HOPOPTS; 15674 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15675 tcp->tcp_label_len; 15676 toh->status = 0; 15677 optptr += sizeof (*toh); 15678 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15679 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15680 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15681 ASSERT(OK_32PTR(optptr)); 15682 /* Save as last value */ 15683 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15684 (ipp->ipp_fields & IPPF_HOPOPTS), 15685 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15686 } 15687 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15688 toh = (struct T_opthdr *)optptr; 15689 toh->level = IPPROTO_IPV6; 15690 toh->name = IPV6_RTHDRDSTOPTS; 15691 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15692 toh->status = 0; 15693 optptr += sizeof (*toh); 15694 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15695 optptr += ipp->ipp_rtdstoptslen; 15696 ASSERT(OK_32PTR(optptr)); 15697 /* Save as last value */ 15698 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15699 &tcp->tcp_rtdstoptslen, 15700 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15701 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15702 } 15703 if (addflag & TCP_IPV6_RECVRTHDR) { 15704 toh = (struct T_opthdr *)optptr; 15705 toh->level = IPPROTO_IPV6; 15706 toh->name = IPV6_RTHDR; 15707 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15708 toh->status = 0; 15709 optptr += sizeof (*toh); 15710 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15711 optptr += ipp->ipp_rthdrlen; 15712 ASSERT(OK_32PTR(optptr)); 15713 /* Save as last value */ 15714 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15715 (ipp->ipp_fields & IPPF_RTHDR), 15716 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15717 } 15718 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15719 toh = (struct T_opthdr *)optptr; 15720 toh->level = IPPROTO_IPV6; 15721 toh->name = IPV6_DSTOPTS; 15722 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15723 toh->status = 0; 15724 optptr += sizeof (*toh); 15725 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15726 optptr += ipp->ipp_dstoptslen; 15727 ASSERT(OK_32PTR(optptr)); 15728 /* Save as last value */ 15729 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15730 (ipp->ipp_fields & IPPF_DSTOPTS), 15731 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15732 } 15733 ASSERT(optptr == mp->b_wptr); 15734 return (mp); 15735 } 15736 15737 /* 15738 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15739 * or a "bad" IRE detected by tcp_adapt_ire. 15740 * We can't tell if the failure was due to the laddr or the faddr 15741 * thus we clear out all addresses and ports. 15742 */ 15743 static void 15744 tcp_tpi_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15745 { 15746 queue_t *q = tcp->tcp_rq; 15747 tcph_t *tcph; 15748 struct T_error_ack *tea; 15749 conn_t *connp = tcp->tcp_connp; 15750 15751 15752 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15753 15754 if (mp->b_cont) { 15755 freemsg(mp->b_cont); 15756 mp->b_cont = NULL; 15757 } 15758 tea = (struct T_error_ack *)mp->b_rptr; 15759 switch (tea->PRIM_type) { 15760 case T_BIND_ACK: 15761 /* 15762 * Need to unbind with classifier since we were just told that 15763 * our bind succeeded. 15764 */ 15765 tcp->tcp_hard_bound = B_FALSE; 15766 tcp->tcp_hard_binding = B_FALSE; 15767 15768 ipcl_hash_remove(connp); 15769 /* Reuse the mblk if possible */ 15770 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15771 sizeof (*tea)); 15772 mp->b_rptr = mp->b_datap->db_base; 15773 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15774 tea = (struct T_error_ack *)mp->b_rptr; 15775 tea->PRIM_type = T_ERROR_ACK; 15776 tea->TLI_error = TSYSERR; 15777 tea->UNIX_error = error; 15778 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15779 tea->ERROR_prim = T_CONN_REQ; 15780 } else { 15781 tea->ERROR_prim = O_T_BIND_REQ; 15782 } 15783 break; 15784 15785 case T_ERROR_ACK: 15786 if (tcp->tcp_state >= TCPS_SYN_SENT) 15787 tea->ERROR_prim = T_CONN_REQ; 15788 break; 15789 default: 15790 panic("tcp_tpi_bind_failed: unexpected TPI type"); 15791 /*NOTREACHED*/ 15792 } 15793 15794 tcp->tcp_state = TCPS_IDLE; 15795 if (tcp->tcp_ipversion == IPV4_VERSION) 15796 tcp->tcp_ipha->ipha_src = 0; 15797 else 15798 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15799 /* 15800 * Copy of the src addr. in tcp_t is needed since 15801 * the lookup funcs. can only look at tcp_t 15802 */ 15803 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15804 15805 tcph = tcp->tcp_tcph; 15806 tcph->th_lport[0] = 0; 15807 tcph->th_lport[1] = 0; 15808 tcp_bind_hash_remove(tcp); 15809 bzero(&connp->u_port, sizeof (connp->u_port)); 15810 /* blow away saved option results if any */ 15811 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15812 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15813 15814 conn_delete_ire(tcp->tcp_connp, NULL); 15815 putnext(q, mp); 15816 } 15817 15818 /* 15819 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15820 * messages. 15821 */ 15822 void 15823 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15824 { 15825 uchar_t *rptr = mp->b_rptr; 15826 queue_t *q = tcp->tcp_rq; 15827 struct T_error_ack *tea; 15828 15829 switch (mp->b_datap->db_type) { 15830 case M_PROTO: 15831 case M_PCPROTO: 15832 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15833 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15834 break; 15835 tea = (struct T_error_ack *)rptr; 15836 switch (tea->PRIM_type) { 15837 case T_BIND_ACK: 15838 /* 15839 * AF_INET socket should not be here. 15840 */ 15841 ASSERT(tcp->tcp_family != AF_INET && 15842 tcp->tcp_family != AF_INET6); 15843 (void) tcp_post_ip_bind(tcp, mp->b_cont, 0); 15844 return; 15845 case T_ERROR_ACK: 15846 if (tcp->tcp_debug) { 15847 (void) strlog(TCP_MOD_ID, 0, 1, 15848 SL_TRACE|SL_ERROR, 15849 "tcp_rput_other: case T_ERROR_ACK, " 15850 "ERROR_prim == %d", 15851 tea->ERROR_prim); 15852 } 15853 switch (tea->ERROR_prim) { 15854 case O_T_BIND_REQ: 15855 case T_BIND_REQ: 15856 ASSERT(tcp->tcp_family != AF_INET); 15857 tcp_tpi_bind_failed(tcp, mp, 15858 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15859 ENETUNREACH : EADDRNOTAVAIL)); 15860 return; 15861 case T_SVR4_OPTMGMT_REQ: 15862 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15863 /* T_OPTMGMT_REQ generated by TCP */ 15864 printf("T_SVR4_OPTMGMT_REQ failed " 15865 "%d/%d - dropped (cnt %d)\n", 15866 tea->TLI_error, tea->UNIX_error, 15867 tcp->tcp_drop_opt_ack_cnt); 15868 freemsg(mp); 15869 tcp->tcp_drop_opt_ack_cnt--; 15870 return; 15871 } 15872 break; 15873 } 15874 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15875 tcp->tcp_drop_opt_ack_cnt > 0) { 15876 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15877 "- dropped (cnt %d)\n", 15878 tea->TLI_error, tea->UNIX_error, 15879 tcp->tcp_drop_opt_ack_cnt); 15880 freemsg(mp); 15881 tcp->tcp_drop_opt_ack_cnt--; 15882 return; 15883 } 15884 break; 15885 case T_OPTMGMT_ACK: 15886 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15887 /* T_OPTMGMT_REQ generated by TCP */ 15888 freemsg(mp); 15889 tcp->tcp_drop_opt_ack_cnt--; 15890 return; 15891 } 15892 break; 15893 default: 15894 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15895 break; 15896 } 15897 break; 15898 case M_FLUSH: 15899 if (*rptr & FLUSHR) 15900 flushq(q, FLUSHDATA); 15901 break; 15902 default: 15903 /* M_CTL will be directly sent to tcp_icmp_error() */ 15904 ASSERT(DB_TYPE(mp) != M_CTL); 15905 break; 15906 } 15907 /* 15908 * Make sure we set this bit before sending the ACK for 15909 * bind. Otherwise accept could possibly run and free 15910 * this tcp struct. 15911 */ 15912 ASSERT(q != NULL); 15913 putnext(q, mp); 15914 } 15915 15916 /* ARGSUSED */ 15917 static void 15918 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15919 { 15920 conn_t *connp = (conn_t *)arg; 15921 tcp_t *tcp = connp->conn_tcp; 15922 queue_t *q = tcp->tcp_rq; 15923 uint_t thwin; 15924 tcp_stack_t *tcps = tcp->tcp_tcps; 15925 sodirect_t *sodp; 15926 boolean_t fc; 15927 15928 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15929 tcp->tcp_rsrv_mp = mp; 15930 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15931 15932 TCP_STAT(tcps, tcp_rsrv_calls); 15933 15934 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15935 return; 15936 } 15937 15938 if (tcp->tcp_fused) { 15939 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15940 15941 ASSERT(tcp->tcp_fused); 15942 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15943 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15944 ASSERT(!TCP_IS_DETACHED(tcp)); 15945 ASSERT(tcp->tcp_connp->conn_sqp == 15946 peer_tcp->tcp_connp->conn_sqp); 15947 15948 /* 15949 * Normally we would not get backenabled in synchronous 15950 * streams mode, but in case this happens, we need to plug 15951 * synchronous streams during our drain to prevent a race 15952 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15953 */ 15954 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15955 if (tcp->tcp_rcv_list != NULL) 15956 (void) tcp_rcv_drain(tcp); 15957 15958 if (peer_tcp > tcp) { 15959 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15960 mutex_enter(&tcp->tcp_non_sq_lock); 15961 } else { 15962 mutex_enter(&tcp->tcp_non_sq_lock); 15963 mutex_enter(&peer_tcp->tcp_non_sq_lock); 15964 } 15965 15966 if (peer_tcp->tcp_flow_stopped && 15967 (TCP_UNSENT_BYTES(peer_tcp) <= 15968 peer_tcp->tcp_xmit_lowater)) { 15969 tcp_clrqfull(peer_tcp); 15970 } 15971 mutex_exit(&peer_tcp->tcp_non_sq_lock); 15972 mutex_exit(&tcp->tcp_non_sq_lock); 15973 15974 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15975 TCP_STAT(tcps, tcp_fusion_backenabled); 15976 return; 15977 } 15978 15979 SOD_PTR_ENTER(tcp, sodp); 15980 if (sodp != NULL) { 15981 /* An sodirect connection */ 15982 if (SOD_QFULL(sodp)) { 15983 /* Flow-controlled, need another back-enable */ 15984 fc = B_TRUE; 15985 SOD_QSETBE(sodp); 15986 } else { 15987 /* Not flow-controlled */ 15988 fc = B_FALSE; 15989 } 15990 mutex_exit(sodp->sod_lockp); 15991 } else if (canputnext(q)) { 15992 /* STREAMS, not flow-controlled */ 15993 fc = B_FALSE; 15994 } else { 15995 /* STREAMS, flow-controlled */ 15996 fc = B_TRUE; 15997 } 15998 if (!fc) { 15999 /* Not flow-controlled, open rwnd */ 16000 tcp->tcp_rwnd = q->q_hiwat; 16001 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16002 << tcp->tcp_rcv_ws; 16003 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16004 /* 16005 * Send back a window update immediately if TCP is above 16006 * ESTABLISHED state and the increase of the rcv window 16007 * that the other side knows is at least 1 MSS after flow 16008 * control is lifted. 16009 */ 16010 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16011 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16012 tcp_xmit_ctl(NULL, tcp, 16013 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16014 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16015 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 16016 } 16017 } 16018 } 16019 16020 /* 16021 * The read side service routine is called mostly when we get back-enabled as a 16022 * result of flow control relief. Since we don't actually queue anything in 16023 * TCP, we have no data to send out of here. What we do is clear the receive 16024 * window, and send out a window update. 16025 */ 16026 static void 16027 tcp_rsrv(queue_t *q) 16028 { 16029 conn_t *connp = Q_TO_CONN(q); 16030 tcp_t *tcp = connp->conn_tcp; 16031 mblk_t *mp; 16032 tcp_stack_t *tcps = tcp->tcp_tcps; 16033 16034 /* No code does a putq on the read side */ 16035 ASSERT(q->q_first == NULL); 16036 16037 /* Nothing to do for the default queue */ 16038 if (q == tcps->tcps_g_q) { 16039 return; 16040 } 16041 16042 /* 16043 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 16044 * been run. So just return. 16045 */ 16046 mutex_enter(&tcp->tcp_rsrv_mp_lock); 16047 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 16048 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16049 return; 16050 } 16051 tcp->tcp_rsrv_mp = NULL; 16052 mutex_exit(&tcp->tcp_rsrv_mp_lock); 16053 16054 CONN_INC_REF(connp); 16055 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16056 SQ_PROCESS, SQTAG_TCP_RSRV); 16057 } 16058 16059 /* 16060 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16061 * We do not allow the receive window to shrink. After setting rwnd, 16062 * set the flow control hiwat of the stream. 16063 * 16064 * This function is called in 2 cases: 16065 * 16066 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16067 * connection (passive open) and in tcp_rput_data() for active connect. 16068 * This is called after tcp_mss_set() when the desired MSS value is known. 16069 * This makes sure that our window size is a mutiple of the other side's 16070 * MSS. 16071 * 2) Handling SO_RCVBUF option. 16072 * 16073 * It is ASSUMED that the requested size is a multiple of the current MSS. 16074 * 16075 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16076 * user requests so. 16077 */ 16078 static int 16079 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16080 { 16081 uint32_t mss = tcp->tcp_mss; 16082 uint32_t old_max_rwnd; 16083 uint32_t max_transmittable_rwnd; 16084 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16085 tcp_stack_t *tcps = tcp->tcp_tcps; 16086 16087 if (tcp->tcp_fused) { 16088 size_t sth_hiwat; 16089 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16090 16091 ASSERT(peer_tcp != NULL); 16092 /* 16093 * Record the stream head's high water mark for 16094 * this endpoint; this is used for flow-control 16095 * purposes in tcp_fuse_output(). 16096 */ 16097 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16098 if (!tcp_detached) { 16099 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16100 sth_hiwat); 16101 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 16102 conn_t *connp = tcp->tcp_connp; 16103 struct sock_proto_props sopp; 16104 16105 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 16106 sopp.sopp_rcvthresh = sth_hiwat >> 3; 16107 16108 (*connp->conn_upcalls->su_set_proto_props) 16109 (connp->conn_upper_handle, &sopp); 16110 } 16111 } 16112 16113 /* 16114 * In the fusion case, the maxpsz stream head value of 16115 * our peer is set according to its send buffer size 16116 * and our receive buffer size; since the latter may 16117 * have changed we need to update the peer's maxpsz. 16118 */ 16119 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16120 return (rwnd); 16121 } 16122 16123 if (tcp_detached) { 16124 old_max_rwnd = tcp->tcp_rwnd; 16125 } else { 16126 old_max_rwnd = tcp->tcp_recv_hiwater; 16127 } 16128 16129 /* 16130 * Insist on a receive window that is at least 16131 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16132 * funny TCP interactions of Nagle algorithm, SWS avoidance 16133 * and delayed acknowledgement. 16134 */ 16135 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16136 16137 /* 16138 * If window size info has already been exchanged, TCP should not 16139 * shrink the window. Shrinking window is doable if done carefully. 16140 * We may add that support later. But so far there is not a real 16141 * need to do that. 16142 */ 16143 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16144 /* MSS may have changed, do a round up again. */ 16145 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16146 } 16147 16148 /* 16149 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16150 * can be applied even before the window scale option is decided. 16151 */ 16152 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16153 if (rwnd > max_transmittable_rwnd) { 16154 rwnd = max_transmittable_rwnd - 16155 (max_transmittable_rwnd % mss); 16156 if (rwnd < mss) 16157 rwnd = max_transmittable_rwnd; 16158 /* 16159 * If we're over the limit we may have to back down tcp_rwnd. 16160 * The increment below won't work for us. So we set all three 16161 * here and the increment below will have no effect. 16162 */ 16163 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16164 } 16165 if (tcp->tcp_localnet) { 16166 tcp->tcp_rack_abs_max = 16167 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16168 } else { 16169 /* 16170 * For a remote host on a different subnet (through a router), 16171 * we ack every other packet to be conforming to RFC1122. 16172 * tcp_deferred_acks_max is default to 2. 16173 */ 16174 tcp->tcp_rack_abs_max = 16175 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16176 } 16177 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16178 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16179 else 16180 tcp->tcp_rack_cur_max = 0; 16181 /* 16182 * Increment the current rwnd by the amount the maximum grew (we 16183 * can not overwrite it since we might be in the middle of a 16184 * connection.) 16185 */ 16186 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16187 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16188 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16189 tcp->tcp_cwnd_max = rwnd; 16190 16191 if (tcp_detached) 16192 return (rwnd); 16193 /* 16194 * We set the maximum receive window into rq->q_hiwat if it is 16195 * a STREAMS socket. 16196 * This is not actually used for flow control. 16197 */ 16198 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 16199 tcp->tcp_rq->q_hiwat = rwnd; 16200 tcp->tcp_recv_hiwater = rwnd; 16201 /* 16202 * Set the STREAM head high water mark. This doesn't have to be 16203 * here, since we are simply using default values, but we would 16204 * prefer to choose these values algorithmically, with a likely 16205 * relationship to rwnd. 16206 */ 16207 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 16208 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16209 return (rwnd); 16210 } 16211 16212 /* 16213 * Return SNMP stuff in buffer in mpdata. 16214 */ 16215 mblk_t * 16216 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16217 { 16218 mblk_t *mpdata; 16219 mblk_t *mp_conn_ctl = NULL; 16220 mblk_t *mp_conn_tail; 16221 mblk_t *mp_attr_ctl = NULL; 16222 mblk_t *mp_attr_tail; 16223 mblk_t *mp6_conn_ctl = NULL; 16224 mblk_t *mp6_conn_tail; 16225 mblk_t *mp6_attr_ctl = NULL; 16226 mblk_t *mp6_attr_tail; 16227 struct opthdr *optp; 16228 mib2_tcpConnEntry_t tce; 16229 mib2_tcp6ConnEntry_t tce6; 16230 mib2_transportMLPEntry_t mlp; 16231 connf_t *connfp; 16232 int i; 16233 boolean_t ispriv; 16234 zoneid_t zoneid; 16235 int v4_conn_idx; 16236 int v6_conn_idx; 16237 conn_t *connp = Q_TO_CONN(q); 16238 tcp_stack_t *tcps; 16239 ip_stack_t *ipst; 16240 mblk_t *mp2ctl; 16241 16242 /* 16243 * make a copy of the original message 16244 */ 16245 mp2ctl = copymsg(mpctl); 16246 16247 if (mpctl == NULL || 16248 (mpdata = mpctl->b_cont) == NULL || 16249 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16250 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16251 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16252 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16253 freemsg(mp_conn_ctl); 16254 freemsg(mp_attr_ctl); 16255 freemsg(mp6_conn_ctl); 16256 freemsg(mp6_attr_ctl); 16257 freemsg(mpctl); 16258 freemsg(mp2ctl); 16259 return (NULL); 16260 } 16261 16262 ipst = connp->conn_netstack->netstack_ip; 16263 tcps = connp->conn_netstack->netstack_tcp; 16264 16265 /* build table of connections -- need count in fixed part */ 16266 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16267 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16268 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16269 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16270 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16271 16272 ispriv = 16273 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16274 zoneid = Q_TO_CONN(q)->conn_zoneid; 16275 16276 v4_conn_idx = v6_conn_idx = 0; 16277 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16278 16279 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16280 ipst = tcps->tcps_netstack->netstack_ip; 16281 16282 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16283 16284 connp = NULL; 16285 16286 while ((connp = 16287 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16288 tcp_t *tcp; 16289 boolean_t needattr; 16290 16291 if (connp->conn_zoneid != zoneid) 16292 continue; /* not in this zone */ 16293 16294 tcp = connp->conn_tcp; 16295 UPDATE_MIB(&tcps->tcps_mib, 16296 tcpHCInSegs, tcp->tcp_ibsegs); 16297 tcp->tcp_ibsegs = 0; 16298 UPDATE_MIB(&tcps->tcps_mib, 16299 tcpHCOutSegs, tcp->tcp_obsegs); 16300 tcp->tcp_obsegs = 0; 16301 16302 tce6.tcp6ConnState = tce.tcpConnState = 16303 tcp_snmp_state(tcp); 16304 if (tce.tcpConnState == MIB2_TCP_established || 16305 tce.tcpConnState == MIB2_TCP_closeWait) 16306 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16307 16308 needattr = B_FALSE; 16309 bzero(&mlp, sizeof (mlp)); 16310 if (connp->conn_mlp_type != mlptSingle) { 16311 if (connp->conn_mlp_type == mlptShared || 16312 connp->conn_mlp_type == mlptBoth) 16313 mlp.tme_flags |= MIB2_TMEF_SHARED; 16314 if (connp->conn_mlp_type == mlptPrivate || 16315 connp->conn_mlp_type == mlptBoth) 16316 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16317 needattr = B_TRUE; 16318 } 16319 if (connp->conn_peercred != NULL) { 16320 ts_label_t *tsl; 16321 16322 tsl = crgetlabel(connp->conn_peercred); 16323 mlp.tme_doi = label2doi(tsl); 16324 mlp.tme_label = *label2bslabel(tsl); 16325 needattr = B_TRUE; 16326 } 16327 16328 /* Create a message to report on IPv6 entries */ 16329 if (tcp->tcp_ipversion == IPV6_VERSION) { 16330 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16331 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16332 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16333 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16334 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16335 /* Don't want just anybody seeing these... */ 16336 if (ispriv) { 16337 tce6.tcp6ConnEntryInfo.ce_snxt = 16338 tcp->tcp_snxt; 16339 tce6.tcp6ConnEntryInfo.ce_suna = 16340 tcp->tcp_suna; 16341 tce6.tcp6ConnEntryInfo.ce_rnxt = 16342 tcp->tcp_rnxt; 16343 tce6.tcp6ConnEntryInfo.ce_rack = 16344 tcp->tcp_rack; 16345 } else { 16346 /* 16347 * Netstat, unfortunately, uses this to 16348 * get send/receive queue sizes. How to fix? 16349 * Why not compute the difference only? 16350 */ 16351 tce6.tcp6ConnEntryInfo.ce_snxt = 16352 tcp->tcp_snxt - tcp->tcp_suna; 16353 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16354 tce6.tcp6ConnEntryInfo.ce_rnxt = 16355 tcp->tcp_rnxt - tcp->tcp_rack; 16356 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16357 } 16358 16359 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16360 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16361 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16362 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16363 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16364 16365 tce6.tcp6ConnCreationProcess = 16366 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16367 tcp->tcp_cpid; 16368 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16369 16370 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16371 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16372 16373 mlp.tme_connidx = v6_conn_idx++; 16374 if (needattr) 16375 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16376 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16377 } 16378 /* 16379 * Create an IPv4 table entry for IPv4 entries and also 16380 * for IPv6 entries which are bound to in6addr_any 16381 * but don't have IPV6_V6ONLY set. 16382 * (i.e. anything an IPv4 peer could connect to) 16383 */ 16384 if (tcp->tcp_ipversion == IPV4_VERSION || 16385 (tcp->tcp_state <= TCPS_LISTEN && 16386 !tcp->tcp_connp->conn_ipv6_v6only && 16387 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16388 if (tcp->tcp_ipversion == IPV6_VERSION) { 16389 tce.tcpConnRemAddress = INADDR_ANY; 16390 tce.tcpConnLocalAddress = INADDR_ANY; 16391 } else { 16392 tce.tcpConnRemAddress = 16393 tcp->tcp_remote; 16394 tce.tcpConnLocalAddress = 16395 tcp->tcp_ip_src; 16396 } 16397 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16398 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16399 /* Don't want just anybody seeing these... */ 16400 if (ispriv) { 16401 tce.tcpConnEntryInfo.ce_snxt = 16402 tcp->tcp_snxt; 16403 tce.tcpConnEntryInfo.ce_suna = 16404 tcp->tcp_suna; 16405 tce.tcpConnEntryInfo.ce_rnxt = 16406 tcp->tcp_rnxt; 16407 tce.tcpConnEntryInfo.ce_rack = 16408 tcp->tcp_rack; 16409 } else { 16410 /* 16411 * Netstat, unfortunately, uses this to 16412 * get send/receive queue sizes. How 16413 * to fix? 16414 * Why not compute the difference only? 16415 */ 16416 tce.tcpConnEntryInfo.ce_snxt = 16417 tcp->tcp_snxt - tcp->tcp_suna; 16418 tce.tcpConnEntryInfo.ce_suna = 0; 16419 tce.tcpConnEntryInfo.ce_rnxt = 16420 tcp->tcp_rnxt - tcp->tcp_rack; 16421 tce.tcpConnEntryInfo.ce_rack = 0; 16422 } 16423 16424 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16425 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16426 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16427 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16428 tce.tcpConnEntryInfo.ce_state = 16429 tcp->tcp_state; 16430 16431 tce.tcpConnCreationProcess = 16432 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16433 tcp->tcp_cpid; 16434 tce.tcpConnCreationTime = tcp->tcp_open_time; 16435 16436 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16437 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16438 16439 mlp.tme_connidx = v4_conn_idx++; 16440 if (needattr) 16441 (void) snmp_append_data2( 16442 mp_attr_ctl->b_cont, 16443 &mp_attr_tail, (char *)&mlp, 16444 sizeof (mlp)); 16445 } 16446 } 16447 } 16448 16449 /* fixed length structure for IPv4 and IPv6 counters */ 16450 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16451 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16452 sizeof (mib2_tcp6ConnEntry_t)); 16453 /* synchronize 32- and 64-bit counters */ 16454 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16455 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16456 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16457 optp->level = MIB2_TCP; 16458 optp->name = 0; 16459 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16460 sizeof (tcps->tcps_mib)); 16461 optp->len = msgdsize(mpdata); 16462 qreply(q, mpctl); 16463 16464 /* table of connections... */ 16465 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16466 sizeof (struct T_optmgmt_ack)]; 16467 optp->level = MIB2_TCP; 16468 optp->name = MIB2_TCP_CONN; 16469 optp->len = msgdsize(mp_conn_ctl->b_cont); 16470 qreply(q, mp_conn_ctl); 16471 16472 /* table of MLP attributes... */ 16473 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16474 sizeof (struct T_optmgmt_ack)]; 16475 optp->level = MIB2_TCP; 16476 optp->name = EXPER_XPORT_MLP; 16477 optp->len = msgdsize(mp_attr_ctl->b_cont); 16478 if (optp->len == 0) 16479 freemsg(mp_attr_ctl); 16480 else 16481 qreply(q, mp_attr_ctl); 16482 16483 /* table of IPv6 connections... */ 16484 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16485 sizeof (struct T_optmgmt_ack)]; 16486 optp->level = MIB2_TCP6; 16487 optp->name = MIB2_TCP6_CONN; 16488 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16489 qreply(q, mp6_conn_ctl); 16490 16491 /* table of IPv6 MLP attributes... */ 16492 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16493 sizeof (struct T_optmgmt_ack)]; 16494 optp->level = MIB2_TCP6; 16495 optp->name = EXPER_XPORT_MLP; 16496 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16497 if (optp->len == 0) 16498 freemsg(mp6_attr_ctl); 16499 else 16500 qreply(q, mp6_attr_ctl); 16501 return (mp2ctl); 16502 } 16503 16504 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16505 /* ARGSUSED */ 16506 int 16507 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16508 { 16509 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16510 16511 switch (level) { 16512 case MIB2_TCP: 16513 switch (name) { 16514 case 13: 16515 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16516 return (0); 16517 /* TODO: delete entry defined by tce */ 16518 return (1); 16519 default: 16520 return (0); 16521 } 16522 default: 16523 return (1); 16524 } 16525 } 16526 16527 /* Translate TCP state to MIB2 TCP state. */ 16528 static int 16529 tcp_snmp_state(tcp_t *tcp) 16530 { 16531 if (tcp == NULL) 16532 return (0); 16533 16534 switch (tcp->tcp_state) { 16535 case TCPS_CLOSED: 16536 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16537 case TCPS_BOUND: 16538 return (MIB2_TCP_closed); 16539 case TCPS_LISTEN: 16540 return (MIB2_TCP_listen); 16541 case TCPS_SYN_SENT: 16542 return (MIB2_TCP_synSent); 16543 case TCPS_SYN_RCVD: 16544 return (MIB2_TCP_synReceived); 16545 case TCPS_ESTABLISHED: 16546 return (MIB2_TCP_established); 16547 case TCPS_CLOSE_WAIT: 16548 return (MIB2_TCP_closeWait); 16549 case TCPS_FIN_WAIT_1: 16550 return (MIB2_TCP_finWait1); 16551 case TCPS_CLOSING: 16552 return (MIB2_TCP_closing); 16553 case TCPS_LAST_ACK: 16554 return (MIB2_TCP_lastAck); 16555 case TCPS_FIN_WAIT_2: 16556 return (MIB2_TCP_finWait2); 16557 case TCPS_TIME_WAIT: 16558 return (MIB2_TCP_timeWait); 16559 default: 16560 return (0); 16561 } 16562 } 16563 16564 static char tcp_report_header[] = 16565 "TCP " MI_COL_HDRPAD_STR 16566 "zone dest snxt suna " 16567 "swnd rnxt rack rwnd rto mss w sw rw t " 16568 "recent [lport,fport] state"; 16569 16570 /* 16571 * TCP status report triggered via the Named Dispatch mechanism. 16572 */ 16573 /* ARGSUSED */ 16574 static void 16575 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16576 cred_t *cr) 16577 { 16578 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16579 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16580 char cflag; 16581 in6_addr_t v6dst; 16582 char buf[80]; 16583 uint_t print_len, buf_len; 16584 16585 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16586 if (buf_len <= 0) 16587 return; 16588 16589 if (hashval >= 0) 16590 (void) sprintf(hash, "%03d ", hashval); 16591 else 16592 hash[0] = '\0'; 16593 16594 /* 16595 * Note that we use the remote address in the tcp_b structure. 16596 * This means that it will print out the real destination address, 16597 * not the next hop's address if source routing is used. This 16598 * avoid the confusion on the output because user may not 16599 * know that source routing is used for a connection. 16600 */ 16601 if (tcp->tcp_ipversion == IPV4_VERSION) { 16602 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16603 } else { 16604 v6dst = tcp->tcp_remote_v6; 16605 } 16606 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16607 /* 16608 * the ispriv checks are so that normal users cannot determine 16609 * sequence number information using NDD. 16610 */ 16611 16612 if (TCP_IS_DETACHED(tcp)) 16613 cflag = '*'; 16614 else 16615 cflag = ' '; 16616 print_len = snprintf((char *)mp->b_wptr, buf_len, 16617 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16618 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16619 hash, 16620 (void *)tcp, 16621 tcp->tcp_connp->conn_zoneid, 16622 addrbuf, 16623 (ispriv) ? tcp->tcp_snxt : 0, 16624 (ispriv) ? tcp->tcp_suna : 0, 16625 tcp->tcp_swnd, 16626 (ispriv) ? tcp->tcp_rnxt : 0, 16627 (ispriv) ? tcp->tcp_rack : 0, 16628 tcp->tcp_rwnd, 16629 tcp->tcp_rto, 16630 tcp->tcp_mss, 16631 tcp->tcp_snd_ws_ok, 16632 tcp->tcp_snd_ws, 16633 tcp->tcp_rcv_ws, 16634 tcp->tcp_snd_ts_ok, 16635 tcp->tcp_ts_recent, 16636 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16637 if (print_len < buf_len) { 16638 ((mblk_t *)mp)->b_wptr += print_len; 16639 } else { 16640 ((mblk_t *)mp)->b_wptr += buf_len; 16641 } 16642 } 16643 16644 /* 16645 * TCP status report (for listeners only) triggered via the Named Dispatch 16646 * mechanism. 16647 */ 16648 /* ARGSUSED */ 16649 static void 16650 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16651 { 16652 char addrbuf[INET6_ADDRSTRLEN]; 16653 in6_addr_t v6dst; 16654 uint_t print_len, buf_len; 16655 16656 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16657 if (buf_len <= 0) 16658 return; 16659 16660 if (tcp->tcp_ipversion == IPV4_VERSION) { 16661 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16662 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16663 } else { 16664 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16665 addrbuf, sizeof (addrbuf)); 16666 } 16667 print_len = snprintf((char *)mp->b_wptr, buf_len, 16668 "%03d " 16669 MI_COL_PTRFMT_STR 16670 "%d %s %05u %08u %d/%d/%d%c\n", 16671 hashval, (void *)tcp, 16672 tcp->tcp_connp->conn_zoneid, 16673 addrbuf, 16674 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16675 tcp->tcp_conn_req_seqnum, 16676 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16677 tcp->tcp_conn_req_max, 16678 tcp->tcp_syn_defense ? '*' : ' '); 16679 if (print_len < buf_len) { 16680 ((mblk_t *)mp)->b_wptr += print_len; 16681 } else { 16682 ((mblk_t *)mp)->b_wptr += buf_len; 16683 } 16684 } 16685 16686 /* TCP status report triggered via the Named Dispatch mechanism. */ 16687 /* ARGSUSED */ 16688 static int 16689 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16690 { 16691 tcp_t *tcp; 16692 int i; 16693 conn_t *connp; 16694 connf_t *connfp; 16695 zoneid_t zoneid; 16696 tcp_stack_t *tcps; 16697 ip_stack_t *ipst; 16698 16699 zoneid = Q_TO_CONN(q)->conn_zoneid; 16700 tcps = Q_TO_TCP(q)->tcp_tcps; 16701 16702 /* 16703 * Because of the ndd constraint, at most we can have 64K buffer 16704 * to put in all TCP info. So to be more efficient, just 16705 * allocate a 64K buffer here, assuming we need that large buffer. 16706 * This may be a problem as any user can read tcp_status. Therefore 16707 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16708 * This should be OK as normal users should not do this too often. 16709 */ 16710 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16711 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16712 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16713 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16714 return (0); 16715 } 16716 } 16717 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16718 /* The following may work even if we cannot get a large buf. */ 16719 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16720 return (0); 16721 } 16722 16723 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16724 16725 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16726 16727 ipst = tcps->tcps_netstack->netstack_ip; 16728 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16729 16730 connp = NULL; 16731 16732 while ((connp = 16733 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16734 tcp = connp->conn_tcp; 16735 if (zoneid != GLOBAL_ZONEID && 16736 zoneid != connp->conn_zoneid) 16737 continue; 16738 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16739 cr); 16740 } 16741 16742 } 16743 16744 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16745 return (0); 16746 } 16747 16748 /* TCP status report triggered via the Named Dispatch mechanism. */ 16749 /* ARGSUSED */ 16750 static int 16751 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16752 { 16753 tf_t *tbf; 16754 tcp_t *tcp, *ltcp; 16755 int i; 16756 zoneid_t zoneid; 16757 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16758 16759 zoneid = Q_TO_CONN(q)->conn_zoneid; 16760 16761 /* Refer to comments in tcp_status_report(). */ 16762 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16763 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16764 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16765 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16766 return (0); 16767 } 16768 } 16769 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16770 /* The following may work even if we cannot get a large buf. */ 16771 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16772 return (0); 16773 } 16774 16775 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16776 16777 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16778 tbf = &tcps->tcps_bind_fanout[i]; 16779 mutex_enter(&tbf->tf_lock); 16780 for (ltcp = tbf->tf_tcp; ltcp != NULL; 16781 ltcp = ltcp->tcp_bind_hash) { 16782 for (tcp = ltcp; tcp != NULL; 16783 tcp = tcp->tcp_bind_hash_port) { 16784 if (zoneid != GLOBAL_ZONEID && 16785 zoneid != tcp->tcp_connp->conn_zoneid) 16786 continue; 16787 CONN_INC_REF(tcp->tcp_connp); 16788 tcp_report_item(mp->b_cont, tcp, i, 16789 Q_TO_TCP(q), cr); 16790 CONN_DEC_REF(tcp->tcp_connp); 16791 } 16792 } 16793 mutex_exit(&tbf->tf_lock); 16794 } 16795 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16796 return (0); 16797 } 16798 16799 /* TCP status report triggered via the Named Dispatch mechanism. */ 16800 /* ARGSUSED */ 16801 static int 16802 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16803 { 16804 connf_t *connfp; 16805 conn_t *connp; 16806 tcp_t *tcp; 16807 int i; 16808 zoneid_t zoneid; 16809 tcp_stack_t *tcps; 16810 ip_stack_t *ipst; 16811 16812 zoneid = Q_TO_CONN(q)->conn_zoneid; 16813 tcps = Q_TO_TCP(q)->tcp_tcps; 16814 16815 /* Refer to comments in tcp_status_report(). */ 16816 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16817 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16818 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16819 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16820 return (0); 16821 } 16822 } 16823 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16824 /* The following may work even if we cannot get a large buf. */ 16825 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16826 return (0); 16827 } 16828 16829 (void) mi_mpprintf(mp, 16830 " TCP " MI_COL_HDRPAD_STR 16831 "zone IP addr port seqnum backlog (q0/q/max)"); 16832 16833 ipst = tcps->tcps_netstack->netstack_ip; 16834 16835 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16836 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16837 connp = NULL; 16838 while ((connp = 16839 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16840 tcp = connp->conn_tcp; 16841 if (zoneid != GLOBAL_ZONEID && 16842 zoneid != connp->conn_zoneid) 16843 continue; 16844 tcp_report_listener(mp->b_cont, tcp, i); 16845 } 16846 } 16847 16848 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16849 return (0); 16850 } 16851 16852 /* TCP status report triggered via the Named Dispatch mechanism. */ 16853 /* ARGSUSED */ 16854 static int 16855 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16856 { 16857 connf_t *connfp; 16858 conn_t *connp; 16859 tcp_t *tcp; 16860 int i; 16861 zoneid_t zoneid; 16862 tcp_stack_t *tcps; 16863 ip_stack_t *ipst; 16864 16865 zoneid = Q_TO_CONN(q)->conn_zoneid; 16866 tcps = Q_TO_TCP(q)->tcp_tcps; 16867 ipst = tcps->tcps_netstack->netstack_ip; 16868 16869 /* Refer to comments in tcp_status_report(). */ 16870 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16871 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16872 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16873 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16874 return (0); 16875 } 16876 } 16877 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16878 /* The following may work even if we cannot get a large buf. */ 16879 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16880 return (0); 16881 } 16882 16883 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16884 ipst->ips_ipcl_conn_fanout_size); 16885 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16886 16887 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16888 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16889 connp = NULL; 16890 while ((connp = 16891 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16892 tcp = connp->conn_tcp; 16893 if (zoneid != GLOBAL_ZONEID && 16894 zoneid != connp->conn_zoneid) 16895 continue; 16896 tcp_report_item(mp->b_cont, tcp, i, 16897 Q_TO_TCP(q), cr); 16898 } 16899 } 16900 16901 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16902 return (0); 16903 } 16904 16905 /* TCP status report triggered via the Named Dispatch mechanism. */ 16906 /* ARGSUSED */ 16907 static int 16908 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16909 { 16910 tf_t *tf; 16911 tcp_t *tcp; 16912 int i; 16913 zoneid_t zoneid; 16914 tcp_stack_t *tcps; 16915 16916 zoneid = Q_TO_CONN(q)->conn_zoneid; 16917 tcps = Q_TO_TCP(q)->tcp_tcps; 16918 16919 /* Refer to comments in tcp_status_report(). */ 16920 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16921 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16922 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16923 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16924 return (0); 16925 } 16926 } 16927 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16928 /* The following may work even if we cannot get a large buf. */ 16929 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16930 return (0); 16931 } 16932 16933 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16934 16935 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16936 tf = &tcps->tcps_acceptor_fanout[i]; 16937 mutex_enter(&tf->tf_lock); 16938 for (tcp = tf->tf_tcp; tcp != NULL; 16939 tcp = tcp->tcp_acceptor_hash) { 16940 if (zoneid != GLOBAL_ZONEID && 16941 zoneid != tcp->tcp_connp->conn_zoneid) 16942 continue; 16943 tcp_report_item(mp->b_cont, tcp, i, 16944 Q_TO_TCP(q), cr); 16945 } 16946 mutex_exit(&tf->tf_lock); 16947 } 16948 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16949 return (0); 16950 } 16951 16952 /* 16953 * tcp_timer is the timer service routine. It handles the retransmission, 16954 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16955 * from the state of the tcp instance what kind of action needs to be done 16956 * at the time it is called. 16957 */ 16958 static void 16959 tcp_timer(void *arg) 16960 { 16961 mblk_t *mp; 16962 clock_t first_threshold; 16963 clock_t second_threshold; 16964 clock_t ms; 16965 uint32_t mss; 16966 conn_t *connp = (conn_t *)arg; 16967 tcp_t *tcp = connp->conn_tcp; 16968 tcp_stack_t *tcps = tcp->tcp_tcps; 16969 16970 tcp->tcp_timer_tid = 0; 16971 16972 if (tcp->tcp_fused) 16973 return; 16974 16975 first_threshold = tcp->tcp_first_timer_threshold; 16976 second_threshold = tcp->tcp_second_timer_threshold; 16977 switch (tcp->tcp_state) { 16978 case TCPS_IDLE: 16979 case TCPS_BOUND: 16980 case TCPS_LISTEN: 16981 return; 16982 case TCPS_SYN_RCVD: { 16983 tcp_t *listener = tcp->tcp_listener; 16984 16985 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16986 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16987 /* it's our first timeout */ 16988 tcp->tcp_syn_rcvd_timeout = 1; 16989 mutex_enter(&listener->tcp_eager_lock); 16990 listener->tcp_syn_rcvd_timeout++; 16991 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16992 /* 16993 * Make this eager available for drop if we 16994 * need to drop one to accomodate a new 16995 * incoming SYN request. 16996 */ 16997 MAKE_DROPPABLE(listener, tcp); 16998 } 16999 if (!listener->tcp_syn_defense && 17000 (listener->tcp_syn_rcvd_timeout > 17001 (tcps->tcps_conn_req_max_q0 >> 2)) && 17002 (tcps->tcps_conn_req_max_q0 > 200)) { 17003 /* We may be under attack. Put on a defense. */ 17004 listener->tcp_syn_defense = B_TRUE; 17005 cmn_err(CE_WARN, "High TCP connect timeout " 17006 "rate! System (port %d) may be under a " 17007 "SYN flood attack!", 17008 BE16_TO_U16(listener->tcp_tcph->th_lport)); 17009 17010 listener->tcp_ip_addr_cache = kmem_zalloc( 17011 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 17012 KM_NOSLEEP); 17013 } 17014 mutex_exit(&listener->tcp_eager_lock); 17015 } else if (listener != NULL) { 17016 mutex_enter(&listener->tcp_eager_lock); 17017 tcp->tcp_syn_rcvd_timeout++; 17018 if (tcp->tcp_syn_rcvd_timeout > 1 && 17019 !tcp->tcp_closemp_used) { 17020 /* 17021 * This is our second timeout. Put the tcp in 17022 * the list of droppable eagers to allow it to 17023 * be dropped, if needed. We don't check 17024 * whether tcp_dontdrop is set or not to 17025 * protect ourselve from a SYN attack where a 17026 * remote host can spoof itself as one of the 17027 * good IP source and continue to hold 17028 * resources too long. 17029 */ 17030 MAKE_DROPPABLE(listener, tcp); 17031 } 17032 mutex_exit(&listener->tcp_eager_lock); 17033 } 17034 } 17035 /* FALLTHRU */ 17036 case TCPS_SYN_SENT: 17037 first_threshold = tcp->tcp_first_ctimer_threshold; 17038 second_threshold = tcp->tcp_second_ctimer_threshold; 17039 break; 17040 case TCPS_ESTABLISHED: 17041 case TCPS_FIN_WAIT_1: 17042 case TCPS_CLOSING: 17043 case TCPS_CLOSE_WAIT: 17044 case TCPS_LAST_ACK: 17045 /* If we have data to rexmit */ 17046 if (tcp->tcp_suna != tcp->tcp_snxt) { 17047 clock_t time_to_wait; 17048 17049 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17050 if (!tcp->tcp_xmit_head) 17051 break; 17052 time_to_wait = lbolt - 17053 (clock_t)tcp->tcp_xmit_head->b_prev; 17054 time_to_wait = tcp->tcp_rto - 17055 TICK_TO_MSEC(time_to_wait); 17056 /* 17057 * If the timer fires too early, 1 clock tick earlier, 17058 * restart the timer. 17059 */ 17060 if (time_to_wait > msec_per_tick) { 17061 TCP_STAT(tcps, tcp_timer_fire_early); 17062 TCP_TIMER_RESTART(tcp, time_to_wait); 17063 return; 17064 } 17065 /* 17066 * When we probe zero windows, we force the swnd open. 17067 * If our peer acks with a closed window swnd will be 17068 * set to zero by tcp_rput(). As long as we are 17069 * receiving acks tcp_rput will 17070 * reset 'tcp_ms_we_have_waited' so as not to trip the 17071 * first and second interval actions. NOTE: the timer 17072 * interval is allowed to continue its exponential 17073 * backoff. 17074 */ 17075 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17076 if (tcp->tcp_debug) { 17077 (void) strlog(TCP_MOD_ID, 0, 1, 17078 SL_TRACE, "tcp_timer: zero win"); 17079 } 17080 } else { 17081 /* 17082 * After retransmission, we need to do 17083 * slow start. Set the ssthresh to one 17084 * half of current effective window and 17085 * cwnd to one MSS. Also reset 17086 * tcp_cwnd_cnt. 17087 * 17088 * Note that if tcp_ssthresh is reduced because 17089 * of ECN, do not reduce it again unless it is 17090 * already one window of data away (tcp_cwr 17091 * should then be cleared) or this is a 17092 * timeout for a retransmitted segment. 17093 */ 17094 uint32_t npkt; 17095 17096 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17097 npkt = ((tcp->tcp_timer_backoff ? 17098 tcp->tcp_cwnd_ssthresh : 17099 tcp->tcp_snxt - 17100 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17101 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17102 tcp->tcp_mss; 17103 } 17104 tcp->tcp_cwnd = tcp->tcp_mss; 17105 tcp->tcp_cwnd_cnt = 0; 17106 if (tcp->tcp_ecn_ok) { 17107 tcp->tcp_cwr = B_TRUE; 17108 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17109 tcp->tcp_ecn_cwr_sent = B_FALSE; 17110 } 17111 } 17112 break; 17113 } 17114 /* 17115 * We have something to send yet we cannot send. The 17116 * reason can be: 17117 * 17118 * 1. Zero send window: we need to do zero window probe. 17119 * 2. Zero cwnd: because of ECN, we need to "clock out 17120 * segments. 17121 * 3. SWS avoidance: receiver may have shrunk window, 17122 * reset our knowledge. 17123 * 17124 * Note that condition 2 can happen with either 1 or 17125 * 3. But 1 and 3 are exclusive. 17126 */ 17127 if (tcp->tcp_unsent != 0) { 17128 if (tcp->tcp_cwnd == 0) { 17129 /* 17130 * Set tcp_cwnd to 1 MSS so that a 17131 * new segment can be sent out. We 17132 * are "clocking out" new data when 17133 * the network is really congested. 17134 */ 17135 ASSERT(tcp->tcp_ecn_ok); 17136 tcp->tcp_cwnd = tcp->tcp_mss; 17137 } 17138 if (tcp->tcp_swnd == 0) { 17139 /* Extend window for zero window probe */ 17140 tcp->tcp_swnd++; 17141 tcp->tcp_zero_win_probe = B_TRUE; 17142 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17143 } else { 17144 /* 17145 * Handle timeout from sender SWS avoidance. 17146 * Reset our knowledge of the max send window 17147 * since the receiver might have reduced its 17148 * receive buffer. Avoid setting tcp_max_swnd 17149 * to one since that will essentially disable 17150 * the SWS checks. 17151 * 17152 * Note that since we don't have a SWS 17153 * state variable, if the timeout is set 17154 * for ECN but not for SWS, this 17155 * code will also be executed. This is 17156 * fine as tcp_max_swnd is updated 17157 * constantly and it will not affect 17158 * anything. 17159 */ 17160 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17161 } 17162 tcp_wput_data(tcp, NULL, B_FALSE); 17163 return; 17164 } 17165 /* Is there a FIN that needs to be to re retransmitted? */ 17166 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17167 !tcp->tcp_fin_acked) 17168 break; 17169 /* Nothing to do, return without restarting timer. */ 17170 TCP_STAT(tcps, tcp_timer_fire_miss); 17171 return; 17172 case TCPS_FIN_WAIT_2: 17173 /* 17174 * User closed the TCP endpoint and peer ACK'ed our FIN. 17175 * We waited some time for for peer's FIN, but it hasn't 17176 * arrived. We flush the connection now to avoid 17177 * case where the peer has rebooted. 17178 */ 17179 if (TCP_IS_DETACHED(tcp)) { 17180 (void) tcp_clean_death(tcp, 0, 23); 17181 } else { 17182 TCP_TIMER_RESTART(tcp, 17183 tcps->tcps_fin_wait_2_flush_interval); 17184 } 17185 return; 17186 case TCPS_TIME_WAIT: 17187 (void) tcp_clean_death(tcp, 0, 24); 17188 return; 17189 default: 17190 if (tcp->tcp_debug) { 17191 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17192 "tcp_timer: strange state (%d) %s", 17193 tcp->tcp_state, tcp_display(tcp, NULL, 17194 DISP_PORT_ONLY)); 17195 } 17196 return; 17197 } 17198 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17199 /* 17200 * For zero window probe, we need to send indefinitely, 17201 * unless we have not heard from the other side for some 17202 * time... 17203 */ 17204 if ((tcp->tcp_zero_win_probe == 0) || 17205 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17206 second_threshold)) { 17207 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17208 /* 17209 * If TCP is in SYN_RCVD state, send back a 17210 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17211 * should be zero in TCPS_SYN_RCVD state. 17212 */ 17213 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17214 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17215 "in SYN_RCVD", 17216 tcp, tcp->tcp_snxt, 17217 tcp->tcp_rnxt, TH_RST | TH_ACK); 17218 } 17219 (void) tcp_clean_death(tcp, 17220 tcp->tcp_client_errno ? 17221 tcp->tcp_client_errno : ETIMEDOUT, 25); 17222 return; 17223 } else { 17224 /* 17225 * Set tcp_ms_we_have_waited to second_threshold 17226 * so that in next timeout, we will do the above 17227 * check (lbolt - tcp_last_recv_time). This is 17228 * also to avoid overflow. 17229 * 17230 * We don't need to decrement tcp_timer_backoff 17231 * to avoid overflow because it will be decremented 17232 * later if new timeout value is greater than 17233 * tcp_rexmit_interval_max. In the case when 17234 * tcp_rexmit_interval_max is greater than 17235 * second_threshold, it means that we will wait 17236 * longer than second_threshold to send the next 17237 * window probe. 17238 */ 17239 tcp->tcp_ms_we_have_waited = second_threshold; 17240 } 17241 } else if (ms > first_threshold) { 17242 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17243 tcp->tcp_xmit_head != NULL) { 17244 tcp->tcp_xmit_head = 17245 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17246 } 17247 /* 17248 * We have been retransmitting for too long... The RTT 17249 * we calculated is probably incorrect. Reinitialize it. 17250 * Need to compensate for 0 tcp_rtt_sa. Reset 17251 * tcp_rtt_update so that we won't accidentally cache a 17252 * bad value. But only do this if this is not a zero 17253 * window probe. 17254 */ 17255 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17256 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17257 (tcp->tcp_rtt_sa >> 5); 17258 tcp->tcp_rtt_sa = 0; 17259 tcp_ip_notify(tcp); 17260 tcp->tcp_rtt_update = 0; 17261 } 17262 } 17263 tcp->tcp_timer_backoff++; 17264 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17265 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17266 tcps->tcps_rexmit_interval_min) { 17267 /* 17268 * This means the original RTO is tcp_rexmit_interval_min. 17269 * So we will use tcp_rexmit_interval_min as the RTO value 17270 * and do the backoff. 17271 */ 17272 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17273 } else { 17274 ms <<= tcp->tcp_timer_backoff; 17275 } 17276 if (ms > tcps->tcps_rexmit_interval_max) { 17277 ms = tcps->tcps_rexmit_interval_max; 17278 /* 17279 * ms is at max, decrement tcp_timer_backoff to avoid 17280 * overflow. 17281 */ 17282 tcp->tcp_timer_backoff--; 17283 } 17284 tcp->tcp_ms_we_have_waited += ms; 17285 if (tcp->tcp_zero_win_probe == 0) { 17286 tcp->tcp_rto = ms; 17287 } 17288 TCP_TIMER_RESTART(tcp, ms); 17289 /* 17290 * This is after a timeout and tcp_rto is backed off. Set 17291 * tcp_set_timer to 1 so that next time RTO is updated, we will 17292 * restart the timer with a correct value. 17293 */ 17294 tcp->tcp_set_timer = 1; 17295 mss = tcp->tcp_snxt - tcp->tcp_suna; 17296 if (mss > tcp->tcp_mss) 17297 mss = tcp->tcp_mss; 17298 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17299 mss = tcp->tcp_swnd; 17300 17301 if ((mp = tcp->tcp_xmit_head) != NULL) 17302 mp->b_prev = (mblk_t *)lbolt; 17303 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17304 B_TRUE); 17305 17306 /* 17307 * When slow start after retransmission begins, start with 17308 * this seq no. tcp_rexmit_max marks the end of special slow 17309 * start phase. tcp_snd_burst controls how many segments 17310 * can be sent because of an ack. 17311 */ 17312 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17313 tcp->tcp_snd_burst = TCP_CWND_SS; 17314 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17315 (tcp->tcp_unsent == 0)) { 17316 tcp->tcp_rexmit_max = tcp->tcp_fss; 17317 } else { 17318 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17319 } 17320 tcp->tcp_rexmit = B_TRUE; 17321 tcp->tcp_dupack_cnt = 0; 17322 17323 /* 17324 * Remove all rexmit SACK blk to start from fresh. 17325 */ 17326 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17327 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17328 tcp->tcp_num_notsack_blk = 0; 17329 tcp->tcp_cnt_notsack_list = 0; 17330 } 17331 if (mp == NULL) { 17332 return; 17333 } 17334 /* Attach credentials to retransmitted initial SYNs. */ 17335 if (tcp->tcp_state == TCPS_SYN_SENT) { 17336 mblk_setcred(mp, tcp->tcp_cred); 17337 DB_CPID(mp) = tcp->tcp_cpid; 17338 } 17339 17340 tcp->tcp_csuna = tcp->tcp_snxt; 17341 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17342 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17343 tcp_send_data(tcp, tcp->tcp_wq, mp); 17344 17345 } 17346 17347 static int 17348 tcp_do_unbind(conn_t *connp) 17349 { 17350 tcp_t *tcp = connp->conn_tcp; 17351 int error = 0; 17352 17353 switch (tcp->tcp_state) { 17354 case TCPS_BOUND: 17355 case TCPS_LISTEN: 17356 break; 17357 default: 17358 return (-TOUTSTATE); 17359 } 17360 17361 /* 17362 * Need to clean up all the eagers since after the unbind, segments 17363 * will no longer be delivered to this listener stream. 17364 */ 17365 mutex_enter(&tcp->tcp_eager_lock); 17366 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17367 tcp_eager_cleanup(tcp, 0); 17368 } 17369 mutex_exit(&tcp->tcp_eager_lock); 17370 17371 if (tcp->tcp_ipversion == IPV4_VERSION) { 17372 tcp->tcp_ipha->ipha_src = 0; 17373 } else { 17374 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17375 } 17376 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17377 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17378 tcp_bind_hash_remove(tcp); 17379 tcp->tcp_state = TCPS_IDLE; 17380 tcp->tcp_mdt = B_FALSE; 17381 17382 connp = tcp->tcp_connp; 17383 connp->conn_mdt_ok = B_FALSE; 17384 ipcl_hash_remove(connp); 17385 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17386 17387 return (error); 17388 } 17389 17390 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17391 static void 17392 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 17393 { 17394 int error = tcp_do_unbind(tcp->tcp_connp); 17395 17396 if (error > 0) { 17397 tcp_err_ack(tcp, mp, TSYSERR, error); 17398 } else if (error < 0) { 17399 tcp_err_ack(tcp, mp, -error, 0); 17400 } else { 17401 /* Send M_FLUSH according to TPI */ 17402 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17403 17404 mp = mi_tpi_ok_ack_alloc(mp); 17405 putnext(tcp->tcp_rq, mp); 17406 } 17407 } 17408 17409 /* 17410 * Don't let port fall into the privileged range. 17411 * Since the extra privileged ports can be arbitrary we also 17412 * ensure that we exclude those from consideration. 17413 * tcp_g_epriv_ports is not sorted thus we loop over it until 17414 * there are no changes. 17415 * 17416 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17417 * but instead the code relies on: 17418 * - the fact that the address of the array and its size never changes 17419 * - the atomic assignment of the elements of the array 17420 * 17421 * Returns 0 if there are no more ports available. 17422 * 17423 * TS note: skip multilevel ports. 17424 */ 17425 static in_port_t 17426 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17427 { 17428 int i; 17429 boolean_t restart = B_FALSE; 17430 tcp_stack_t *tcps = tcp->tcp_tcps; 17431 17432 if (random && tcp_random_anon_port != 0) { 17433 (void) random_get_pseudo_bytes((uint8_t *)&port, 17434 sizeof (in_port_t)); 17435 /* 17436 * Unless changed by a sys admin, the smallest anon port 17437 * is 32768 and the largest anon port is 65535. It is 17438 * very likely (50%) for the random port to be smaller 17439 * than the smallest anon port. When that happens, 17440 * add port % (anon port range) to the smallest anon 17441 * port to get the random port. It should fall into the 17442 * valid anon port range. 17443 */ 17444 if (port < tcps->tcps_smallest_anon_port) { 17445 port = tcps->tcps_smallest_anon_port + 17446 port % (tcps->tcps_largest_anon_port - 17447 tcps->tcps_smallest_anon_port); 17448 } 17449 } 17450 17451 retry: 17452 if (port < tcps->tcps_smallest_anon_port) 17453 port = (in_port_t)tcps->tcps_smallest_anon_port; 17454 17455 if (port > tcps->tcps_largest_anon_port) { 17456 if (restart) 17457 return (0); 17458 restart = B_TRUE; 17459 port = (in_port_t)tcps->tcps_smallest_anon_port; 17460 } 17461 17462 if (port < tcps->tcps_smallest_nonpriv_port) 17463 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17464 17465 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17466 if (port == tcps->tcps_g_epriv_ports[i]) { 17467 port++; 17468 /* 17469 * Make sure whether the port is in the 17470 * valid range. 17471 */ 17472 goto retry; 17473 } 17474 } 17475 if (is_system_labeled() && 17476 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17477 IPPROTO_TCP, B_TRUE)) != 0) { 17478 port = i; 17479 goto retry; 17480 } 17481 return (port); 17482 } 17483 17484 /* 17485 * Return the next anonymous port in the privileged port range for 17486 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17487 * downwards. This is the same behavior as documented in the userland 17488 * library call rresvport(3N). 17489 * 17490 * TS note: skip multilevel ports. 17491 */ 17492 static in_port_t 17493 tcp_get_next_priv_port(const tcp_t *tcp) 17494 { 17495 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17496 in_port_t nextport; 17497 boolean_t restart = B_FALSE; 17498 tcp_stack_t *tcps = tcp->tcp_tcps; 17499 retry: 17500 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17501 next_priv_port >= IPPORT_RESERVED) { 17502 next_priv_port = IPPORT_RESERVED - 1; 17503 if (restart) 17504 return (0); 17505 restart = B_TRUE; 17506 } 17507 if (is_system_labeled() && 17508 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17509 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17510 next_priv_port = nextport; 17511 goto retry; 17512 } 17513 return (next_priv_port--); 17514 } 17515 17516 /* The write side r/w procedure. */ 17517 17518 #if CCS_STATS 17519 struct { 17520 struct { 17521 int64_t count, bytes; 17522 } tot, hit; 17523 } wrw_stats; 17524 #endif 17525 17526 /* 17527 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17528 * messages. 17529 */ 17530 /* ARGSUSED */ 17531 static void 17532 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17533 { 17534 conn_t *connp = (conn_t *)arg; 17535 tcp_t *tcp = connp->conn_tcp; 17536 queue_t *q = tcp->tcp_wq; 17537 17538 ASSERT(DB_TYPE(mp) != M_IOCTL); 17539 /* 17540 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17541 * Once the close starts, streamhead and sockfs will not let any data 17542 * packets come down (close ensures that there are no threads using the 17543 * queue and no new threads will come down) but since qprocsoff() 17544 * hasn't happened yet, a M_FLUSH or some non data message might 17545 * get reflected back (in response to our own FLUSHRW) and get 17546 * processed after tcp_close() is done. The conn would still be valid 17547 * because a ref would have added but we need to check the state 17548 * before actually processing the packet. 17549 */ 17550 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17551 freemsg(mp); 17552 return; 17553 } 17554 17555 switch (DB_TYPE(mp)) { 17556 case M_IOCDATA: 17557 tcp_wput_iocdata(tcp, mp); 17558 break; 17559 case M_FLUSH: 17560 tcp_wput_flush(tcp, mp); 17561 break; 17562 default: 17563 CALL_IP_WPUT(connp, q, mp); 17564 break; 17565 } 17566 } 17567 17568 /* 17569 * The TCP fast path write put procedure. 17570 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17571 */ 17572 /* ARGSUSED */ 17573 void 17574 tcp_output(void *arg, mblk_t *mp, void *arg2) 17575 { 17576 int len; 17577 int hdrlen; 17578 int plen; 17579 mblk_t *mp1; 17580 uchar_t *rptr; 17581 uint32_t snxt; 17582 tcph_t *tcph; 17583 struct datab *db; 17584 uint32_t suna; 17585 uint32_t mss; 17586 ipaddr_t *dst; 17587 ipaddr_t *src; 17588 uint32_t sum; 17589 int usable; 17590 conn_t *connp = (conn_t *)arg; 17591 tcp_t *tcp = connp->conn_tcp; 17592 uint32_t msize; 17593 tcp_stack_t *tcps = tcp->tcp_tcps; 17594 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 17595 17596 /* 17597 * Try and ASSERT the minimum possible references on the 17598 * conn early enough. Since we are executing on write side, 17599 * the connection is obviously not detached and that means 17600 * there is a ref each for TCP and IP. Since we are behind 17601 * the squeue, the minimum references needed are 3. If the 17602 * conn is in classifier hash list, there should be an 17603 * extra ref for that (we check both the possibilities). 17604 */ 17605 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17606 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17607 17608 ASSERT(DB_TYPE(mp) == M_DATA); 17609 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17610 17611 mutex_enter(&tcp->tcp_non_sq_lock); 17612 tcp->tcp_squeue_bytes -= msize; 17613 mutex_exit(&tcp->tcp_non_sq_lock); 17614 17615 /* Check to see if this connection wants to be re-fused. */ 17616 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 17617 if (tcp->tcp_ipversion == IPV4_VERSION) { 17618 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 17619 &tcp->tcp_saved_tcph); 17620 } else { 17621 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 17622 &tcp->tcp_saved_tcph); 17623 } 17624 } 17625 /* Bypass tcp protocol for fused tcp loopback */ 17626 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17627 return; 17628 17629 mss = tcp->tcp_mss; 17630 if (tcp->tcp_xmit_zc_clean) 17631 mp = tcp_zcopy_backoff(tcp, mp, 0); 17632 17633 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17634 len = (int)(mp->b_wptr - mp->b_rptr); 17635 17636 /* 17637 * Criteria for fast path: 17638 * 17639 * 1. no unsent data 17640 * 2. single mblk in request 17641 * 3. connection established 17642 * 4. data in mblk 17643 * 5. len <= mss 17644 * 6. no tcp_valid bits 17645 */ 17646 if ((tcp->tcp_unsent != 0) || 17647 (tcp->tcp_cork) || 17648 (mp->b_cont != NULL) || 17649 (tcp->tcp_state != TCPS_ESTABLISHED) || 17650 (len == 0) || 17651 (len > mss) || 17652 (tcp->tcp_valid_bits != 0)) { 17653 tcp_wput_data(tcp, mp, B_FALSE); 17654 return; 17655 } 17656 17657 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17658 ASSERT(tcp->tcp_fin_sent == 0); 17659 17660 /* queue new packet onto retransmission queue */ 17661 if (tcp->tcp_xmit_head == NULL) { 17662 tcp->tcp_xmit_head = mp; 17663 } else { 17664 tcp->tcp_xmit_last->b_cont = mp; 17665 } 17666 tcp->tcp_xmit_last = mp; 17667 tcp->tcp_xmit_tail = mp; 17668 17669 /* find out how much we can send */ 17670 /* BEGIN CSTYLED */ 17671 /* 17672 * un-acked usable 17673 * |--------------|-----------------| 17674 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17675 */ 17676 /* END CSTYLED */ 17677 17678 /* start sending from tcp_snxt */ 17679 snxt = tcp->tcp_snxt; 17680 17681 /* 17682 * Check to see if this connection has been idled for some 17683 * time and no ACK is expected. If it is, we need to slow 17684 * start again to get back the connection's "self-clock" as 17685 * described in VJ's paper. 17686 * 17687 * Refer to the comment in tcp_mss_set() for the calculation 17688 * of tcp_cwnd after idle. 17689 */ 17690 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17691 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17692 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17693 } 17694 17695 usable = tcp->tcp_swnd; /* tcp window size */ 17696 if (usable > tcp->tcp_cwnd) 17697 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17698 usable -= snxt; /* subtract stuff already sent */ 17699 suna = tcp->tcp_suna; 17700 usable += suna; 17701 /* usable can be < 0 if the congestion window is smaller */ 17702 if (len > usable) { 17703 /* Can't send complete M_DATA in one shot */ 17704 goto slow; 17705 } 17706 17707 mutex_enter(&tcp->tcp_non_sq_lock); 17708 if (tcp->tcp_flow_stopped && 17709 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17710 tcp_clrqfull(tcp); 17711 } 17712 mutex_exit(&tcp->tcp_non_sq_lock); 17713 17714 /* 17715 * determine if anything to send (Nagle). 17716 * 17717 * 1. len < tcp_mss (i.e. small) 17718 * 2. unacknowledged data present 17719 * 3. len < nagle limit 17720 * 4. last packet sent < nagle limit (previous packet sent) 17721 */ 17722 if ((len < mss) && (snxt != suna) && 17723 (len < (int)tcp->tcp_naglim) && 17724 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17725 /* 17726 * This was the first unsent packet and normally 17727 * mss < xmit_hiwater so there is no need to worry 17728 * about flow control. The next packet will go 17729 * through the flow control check in tcp_wput_data(). 17730 */ 17731 /* leftover work from above */ 17732 tcp->tcp_unsent = len; 17733 tcp->tcp_xmit_tail_unsent = len; 17734 17735 return; 17736 } 17737 17738 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17739 17740 if (snxt == suna) { 17741 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17742 } 17743 17744 /* we have always sent something */ 17745 tcp->tcp_rack_cnt = 0; 17746 17747 tcp->tcp_snxt = snxt + len; 17748 tcp->tcp_rack = tcp->tcp_rnxt; 17749 17750 if ((mp1 = dupb(mp)) == 0) 17751 goto no_memory; 17752 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17753 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17754 17755 /* adjust tcp header information */ 17756 tcph = tcp->tcp_tcph; 17757 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17758 17759 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17760 sum = (sum >> 16) + (sum & 0xFFFF); 17761 U16_TO_ABE16(sum, tcph->th_sum); 17762 17763 U32_TO_ABE32(snxt, tcph->th_seq); 17764 17765 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17766 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17767 BUMP_LOCAL(tcp->tcp_obsegs); 17768 17769 /* Update the latest receive window size in TCP header. */ 17770 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17771 tcph->th_win); 17772 17773 tcp->tcp_last_sent_len = (ushort_t)len; 17774 17775 plen = len + tcp->tcp_hdr_len; 17776 17777 if (tcp->tcp_ipversion == IPV4_VERSION) { 17778 tcp->tcp_ipha->ipha_length = htons(plen); 17779 } else { 17780 tcp->tcp_ip6h->ip6_plen = htons(plen - 17781 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17782 } 17783 17784 /* see if we need to allocate a mblk for the headers */ 17785 hdrlen = tcp->tcp_hdr_len; 17786 rptr = mp1->b_rptr - hdrlen; 17787 db = mp1->b_datap; 17788 if ((db->db_ref != 2) || rptr < db->db_base || 17789 (!OK_32PTR(rptr))) { 17790 /* NOTE: we assume allocb returns an OK_32PTR */ 17791 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17792 tcps->tcps_wroff_xtra, BPRI_MED); 17793 if (!mp) { 17794 freemsg(mp1); 17795 goto no_memory; 17796 } 17797 mp->b_cont = mp1; 17798 mp1 = mp; 17799 /* Leave room for Link Level header */ 17800 /* hdrlen = tcp->tcp_hdr_len; */ 17801 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17802 mp1->b_wptr = &rptr[hdrlen]; 17803 } 17804 mp1->b_rptr = rptr; 17805 17806 /* Fill in the timestamp option. */ 17807 if (tcp->tcp_snd_ts_ok) { 17808 U32_TO_BE32((uint32_t)lbolt, 17809 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17810 U32_TO_BE32(tcp->tcp_ts_recent, 17811 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17812 } else { 17813 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17814 } 17815 17816 /* copy header into outgoing packet */ 17817 dst = (ipaddr_t *)rptr; 17818 src = (ipaddr_t *)tcp->tcp_iphc; 17819 dst[0] = src[0]; 17820 dst[1] = src[1]; 17821 dst[2] = src[2]; 17822 dst[3] = src[3]; 17823 dst[4] = src[4]; 17824 dst[5] = src[5]; 17825 dst[6] = src[6]; 17826 dst[7] = src[7]; 17827 dst[8] = src[8]; 17828 dst[9] = src[9]; 17829 if (hdrlen -= 40) { 17830 hdrlen >>= 2; 17831 dst += 10; 17832 src += 10; 17833 do { 17834 *dst++ = *src++; 17835 } while (--hdrlen); 17836 } 17837 17838 /* 17839 * Set the ECN info in the TCP header. Note that this 17840 * is not the template header. 17841 */ 17842 if (tcp->tcp_ecn_ok) { 17843 SET_ECT(tcp, rptr); 17844 17845 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17846 if (tcp->tcp_ecn_echo_on) 17847 tcph->th_flags[0] |= TH_ECE; 17848 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17849 tcph->th_flags[0] |= TH_CWR; 17850 tcp->tcp_ecn_cwr_sent = B_TRUE; 17851 } 17852 } 17853 17854 if (tcp->tcp_ip_forward_progress) { 17855 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17856 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17857 tcp->tcp_ip_forward_progress = B_FALSE; 17858 } 17859 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17860 return; 17861 17862 /* 17863 * If we ran out of memory, we pretend to have sent the packet 17864 * and that it was lost on the wire. 17865 */ 17866 no_memory: 17867 return; 17868 17869 slow: 17870 /* leftover work from above */ 17871 tcp->tcp_unsent = len; 17872 tcp->tcp_xmit_tail_unsent = len; 17873 tcp_wput_data(tcp, NULL, B_FALSE); 17874 } 17875 17876 /* ARGSUSED */ 17877 void 17878 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17879 { 17880 conn_t *connp = (conn_t *)arg; 17881 tcp_t *tcp = connp->conn_tcp; 17882 queue_t *q = tcp->tcp_rq; 17883 struct tcp_options *tcpopt; 17884 tcp_stack_t *tcps = tcp->tcp_tcps; 17885 17886 /* socket options */ 17887 uint_t sopp_flags; 17888 ssize_t sopp_rxhiwat; 17889 ssize_t sopp_maxblk; 17890 ushort_t sopp_wroff; 17891 ushort_t sopp_tail; 17892 ushort_t sopp_copyopt; 17893 17894 tcpopt = (struct tcp_options *)mp->b_rptr; 17895 17896 /* 17897 * Drop the eager's ref on the listener, that was placed when 17898 * this eager began life in tcp_conn_request. 17899 */ 17900 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17901 if (IPCL_IS_NONSTR(connp)) { 17902 /* Safe to free conn_ind message */ 17903 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17904 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17905 17906 /* The listener tells us which upper handle to use */ 17907 ASSERT(tcpopt->to_flags & TCPOPT_UPPERHANDLE); 17908 connp->conn_upper_handle = tcpopt->to_handle; 17909 } 17910 17911 tcp->tcp_detached = B_FALSE; 17912 17913 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17914 /* 17915 * Someone blewoff the eager before we could finish 17916 * the accept. 17917 * 17918 * The only reason eager exists it because we put in 17919 * a ref on it when conn ind went up. We need to send 17920 * a disconnect indication up while the last reference 17921 * on the eager will be dropped by the squeue when we 17922 * return. 17923 */ 17924 ASSERT(tcp->tcp_listener == NULL); 17925 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17926 if (IPCL_IS_NONSTR(connp)) { 17927 ASSERT(tcp->tcp_issocket); 17928 (*connp->conn_upcalls->su_disconnected)( 17929 connp->conn_upper_handle, tcp->tcp_connid, 17930 ECONNREFUSED); 17931 freemsg(mp); 17932 } else { 17933 struct T_discon_ind *tdi; 17934 17935 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17936 /* 17937 * Let us reuse the incoming mblk to avoid 17938 * memory allocation failure problems. We know 17939 * that the size of the incoming mblk i.e. 17940 * stroptions is greater than sizeof 17941 * T_discon_ind. So the reallocb below can't 17942 * fail. 17943 */ 17944 freemsg(mp->b_cont); 17945 mp->b_cont = NULL; 17946 ASSERT(DB_REF(mp) == 1); 17947 mp = reallocb(mp, sizeof (struct T_discon_ind), 17948 B_FALSE); 17949 ASSERT(mp != NULL); 17950 DB_TYPE(mp) = M_PROTO; 17951 ((union T_primitives *)mp->b_rptr)->type = 17952 T_DISCON_IND; 17953 tdi = (struct T_discon_ind *)mp->b_rptr; 17954 if (tcp->tcp_issocket) { 17955 tdi->DISCON_reason = ECONNREFUSED; 17956 tdi->SEQ_number = 0; 17957 } else { 17958 tdi->DISCON_reason = ENOPROTOOPT; 17959 tdi->SEQ_number = 17960 tcp->tcp_conn_req_seqnum; 17961 } 17962 mp->b_wptr = mp->b_rptr + 17963 sizeof (struct T_discon_ind); 17964 putnext(q, mp); 17965 return; 17966 } 17967 } 17968 if (tcp->tcp_hard_binding) { 17969 tcp->tcp_hard_binding = B_FALSE; 17970 tcp->tcp_hard_bound = B_TRUE; 17971 } 17972 return; 17973 } 17974 17975 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17976 int boundif = tcpopt->to_boundif; 17977 uint_t len = sizeof (int); 17978 17979 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17980 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17981 (uchar_t *)&boundif, NULL, tcp->tcp_cred); 17982 } 17983 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17984 uint_t on = 1; 17985 uint_t len = sizeof (uint_t); 17986 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17987 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17988 (uchar_t *)&on, NULL, tcp->tcp_cred); 17989 } 17990 17991 /* 17992 * For a loopback connection with tcp_direct_sockfs on, note that 17993 * we don't have to protect tcp_rcv_list yet because synchronous 17994 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17995 * possibly race with us. 17996 */ 17997 17998 /* 17999 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 18000 * properly. This is the first time we know of the acceptor' 18001 * queue. So we do it here. 18002 * 18003 * XXX 18004 */ 18005 if (tcp->tcp_rcv_list == NULL) { 18006 /* 18007 * Recv queue is empty, tcp_rwnd should not have changed. 18008 * That means it should be equal to the listener's tcp_rwnd. 18009 */ 18010 if (!IPCL_IS_NONSTR(connp)) 18011 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 18012 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 18013 } else { 18014 #ifdef DEBUG 18015 mblk_t *tmp; 18016 mblk_t *mp1; 18017 uint_t cnt = 0; 18018 18019 mp1 = tcp->tcp_rcv_list; 18020 while ((tmp = mp1) != NULL) { 18021 mp1 = tmp->b_next; 18022 cnt += msgdsize(tmp); 18023 } 18024 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 18025 #endif 18026 /* There is some data, add them back to get the max. */ 18027 if (!IPCL_IS_NONSTR(connp)) 18028 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18029 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18030 } 18031 /* 18032 * This is the first time we run on the correct 18033 * queue after tcp_accept. So fix all the q parameters 18034 * here. 18035 */ 18036 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 18037 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 18038 18039 /* 18040 * Record the stream head's high water mark for this endpoint; 18041 * this is used for flow-control purposes. 18042 */ 18043 sopp_rxhiwat = tcp->tcp_fused ? 18044 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 18045 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 18046 18047 /* 18048 * Determine what write offset value to use depending on SACK and 18049 * whether the endpoint is fused or not. 18050 */ 18051 if (tcp->tcp_fused) { 18052 ASSERT(tcp->tcp_loopback); 18053 ASSERT(tcp->tcp_loopback_peer != NULL); 18054 /* 18055 * For fused tcp loopback, set the stream head's write 18056 * offset value to zero since we won't be needing any room 18057 * for TCP/IP headers. This would also improve performance 18058 * since it would reduce the amount of work done by kmem. 18059 * Non-fused tcp loopback case is handled separately below. 18060 */ 18061 sopp_wroff = 0; 18062 /* 18063 * Update the peer's transmit parameters according to 18064 * our recently calculated high water mark value. 18065 */ 18066 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18067 } else if (tcp->tcp_snd_sack_ok) { 18068 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18069 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18070 } else { 18071 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18072 tcps->tcps_wroff_xtra); 18073 } 18074 18075 /* 18076 * If this is endpoint is handling SSL, then reserve extra 18077 * offset and space at the end. 18078 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18079 * overriding the previous setting. The extra cost of signing and 18080 * encrypting multiple MSS-size records (12 of them with Ethernet), 18081 * instead of a single contiguous one by the stream head 18082 * largely outweighs the statistical reduction of ACKs, when 18083 * applicable. The peer will also save on decryption and verification 18084 * costs. 18085 */ 18086 if (tcp->tcp_kssl_ctx != NULL) { 18087 sopp_wroff += SSL3_WROFFSET; 18088 18089 sopp_flags |= SOCKOPT_TAIL; 18090 sopp_tail = SSL3_MAX_TAIL_LEN; 18091 18092 sopp_flags |= SOCKOPT_ZCOPY; 18093 sopp_copyopt = ZCVMUNSAFE; 18094 18095 sopp_maxblk = SSL3_MAX_RECORD_LEN; 18096 } 18097 18098 /* Send the options up */ 18099 if (IPCL_IS_NONSTR(connp)) { 18100 struct sock_proto_props sopp; 18101 18102 sopp.sopp_flags = sopp_flags; 18103 sopp.sopp_wroff = sopp_wroff; 18104 sopp.sopp_maxblk = sopp_maxblk; 18105 sopp.sopp_rxhiwat = sopp_rxhiwat; 18106 if (sopp_flags & SOCKOPT_TAIL) { 18107 ASSERT(tcp->tcp_kssl_ctx != NULL); 18108 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 18109 sopp.sopp_tail = sopp_tail; 18110 sopp.sopp_zcopyflag = sopp_copyopt; 18111 } 18112 (*connp->conn_upcalls->su_set_proto_props) 18113 (connp->conn_upper_handle, &sopp); 18114 } else { 18115 struct stroptions *stropt; 18116 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18117 if (stropt_mp == NULL) { 18118 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 18119 return; 18120 } 18121 DB_TYPE(stropt_mp) = M_SETOPTS; 18122 stropt = (struct stroptions *)stropt_mp->b_rptr; 18123 stropt_mp->b_wptr += sizeof (struct stroptions); 18124 stropt = (struct stroptions *)stropt_mp->b_rptr; 18125 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 18126 stropt->so_hiwat = sopp_rxhiwat; 18127 stropt->so_wroff = sopp_wroff; 18128 stropt->so_maxblk = sopp_maxblk; 18129 18130 if (sopp_flags & SOCKOPT_TAIL) { 18131 ASSERT(tcp->tcp_kssl_ctx != NULL); 18132 18133 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 18134 stropt->so_tail = sopp_tail; 18135 stropt->so_copyopt = sopp_copyopt; 18136 } 18137 18138 /* Send the options up */ 18139 putnext(q, stropt_mp); 18140 } 18141 18142 freemsg(mp); 18143 /* 18144 * Pass up any data and/or a fin that has been received. 18145 * 18146 * Adjust receive window in case it had decreased 18147 * (because there is data <=> tcp_rcv_list != NULL) 18148 * while the connection was detached. Note that 18149 * in case the eager was flow-controlled, w/o this 18150 * code, the rwnd may never open up again! 18151 */ 18152 if (tcp->tcp_rcv_list != NULL) { 18153 if (IPCL_IS_NONSTR(connp)) { 18154 mblk_t *mp; 18155 int space_left; 18156 int error; 18157 boolean_t push = B_TRUE; 18158 18159 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 18160 (connp->conn_upper_handle, NULL, 0, 0, &error, 18161 &push) >= 0) { 18162 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 18163 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18164 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 18165 tcp_xmit_ctl(NULL, 18166 tcp, (tcp->tcp_swnd == 0) ? 18167 tcp->tcp_suna : tcp->tcp_snxt, 18168 tcp->tcp_rnxt, TH_ACK); 18169 } 18170 } 18171 while ((mp = tcp->tcp_rcv_list) != NULL) { 18172 push = B_TRUE; 18173 tcp->tcp_rcv_list = mp->b_next; 18174 mp->b_next = NULL; 18175 space_left = (*connp->conn_upcalls->su_recv) 18176 (connp->conn_upper_handle, mp, msgdsize(mp), 18177 0, &error, &push); 18178 if (space_left < 0) { 18179 /* 18180 * At this point the eager is not 18181 * visible to anyone, so fallback 18182 * can not happen. 18183 */ 18184 ASSERT(error != EOPNOTSUPP); 18185 } 18186 } 18187 tcp->tcp_rcv_last_head = NULL; 18188 tcp->tcp_rcv_last_tail = NULL; 18189 tcp->tcp_rcv_cnt = 0; 18190 } else { 18191 /* We drain directly in case of fused tcp loopback */ 18192 sodirect_t *sodp; 18193 18194 if (!tcp->tcp_fused && canputnext(q)) { 18195 tcp->tcp_rwnd = q->q_hiwat; 18196 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18197 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 18198 tcp_xmit_ctl(NULL, 18199 tcp, (tcp->tcp_swnd == 0) ? 18200 tcp->tcp_suna : tcp->tcp_snxt, 18201 tcp->tcp_rnxt, TH_ACK); 18202 } 18203 } 18204 18205 SOD_PTR_ENTER(tcp, sodp); 18206 if (sodp != NULL) { 18207 /* Sodirect, move from rcv_list */ 18208 ASSERT(!tcp->tcp_fused); 18209 while ((mp = tcp->tcp_rcv_list) != NULL) { 18210 tcp->tcp_rcv_list = mp->b_next; 18211 mp->b_next = NULL; 18212 (void) tcp_rcv_sod_enqueue(tcp, sodp, 18213 mp, msgdsize(mp)); 18214 } 18215 tcp->tcp_rcv_last_head = NULL; 18216 tcp->tcp_rcv_last_tail = NULL; 18217 tcp->tcp_rcv_cnt = 0; 18218 (void) tcp_rcv_sod_wakeup(tcp, sodp); 18219 /* sod_wakeup() did the mutex_exit() */ 18220 } else { 18221 /* Not sodirect, drain */ 18222 (void) tcp_rcv_drain(tcp); 18223 } 18224 } 18225 18226 /* 18227 * For fused tcp loopback, back-enable peer endpoint 18228 * if it's currently flow-controlled. 18229 */ 18230 if (tcp->tcp_fused) { 18231 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18232 18233 ASSERT(peer_tcp != NULL); 18234 ASSERT(peer_tcp->tcp_fused); 18235 /* 18236 * In order to change the peer's tcp_flow_stopped, 18237 * we need to take locks for both end points. The 18238 * highest address is taken first. 18239 */ 18240 if (peer_tcp > tcp) { 18241 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18242 mutex_enter(&tcp->tcp_non_sq_lock); 18243 } else { 18244 mutex_enter(&tcp->tcp_non_sq_lock); 18245 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18246 } 18247 if (peer_tcp->tcp_flow_stopped) { 18248 tcp_clrqfull(peer_tcp); 18249 TCP_STAT(tcps, tcp_fusion_backenabled); 18250 } 18251 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18252 mutex_exit(&tcp->tcp_non_sq_lock); 18253 } 18254 } 18255 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18256 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18257 tcp->tcp_ordrel_done = B_TRUE; 18258 if (IPCL_IS_NONSTR(connp)) { 18259 ASSERT(tcp->tcp_ordrel_mp == NULL); 18260 (*connp->conn_upcalls->su_opctl)( 18261 connp->conn_upper_handle, 18262 SOCK_OPCTL_SHUT_RECV, 0); 18263 } else { 18264 mp = tcp->tcp_ordrel_mp; 18265 tcp->tcp_ordrel_mp = NULL; 18266 putnext(q, mp); 18267 } 18268 } 18269 if (tcp->tcp_hard_binding) { 18270 tcp->tcp_hard_binding = B_FALSE; 18271 tcp->tcp_hard_bound = B_TRUE; 18272 } 18273 18274 /* We can enable synchronous streams for STREAMS tcp endpoint now */ 18275 if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) && 18276 tcp->tcp_loopback_peer != NULL && 18277 !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) { 18278 tcp_fuse_syncstr_enable_pair(tcp); 18279 } 18280 18281 if (tcp->tcp_ka_enabled) { 18282 tcp->tcp_ka_last_intrvl = 0; 18283 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18284 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18285 } 18286 18287 /* 18288 * At this point, eager is fully established and will 18289 * have the following references - 18290 * 18291 * 2 references for connection to exist (1 for TCP and 1 for IP). 18292 * 1 reference for the squeue which will be dropped by the squeue as 18293 * soon as this function returns. 18294 * There will be 1 additonal reference for being in classifier 18295 * hash list provided something bad hasn't happened. 18296 */ 18297 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18298 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18299 } 18300 18301 /* 18302 * The function called through squeue to get behind listener's perimeter to 18303 * send a deffered conn_ind. 18304 */ 18305 /* ARGSUSED */ 18306 void 18307 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18308 { 18309 conn_t *connp = (conn_t *)arg; 18310 tcp_t *listener = connp->conn_tcp; 18311 struct T_conn_ind *conn_ind; 18312 tcp_t *tcp; 18313 18314 if (listener->tcp_state == TCPS_CLOSED || 18315 TCP_IS_DETACHED(listener)) { 18316 /* 18317 * If listener has closed, it would have caused a 18318 * a cleanup/blowoff to happen for the eager. 18319 */ 18320 18321 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18322 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18323 conn_ind->OPT_length); 18324 /* 18325 * We need to drop the ref on eager that was put 18326 * tcp_rput_data() before trying to send the conn_ind 18327 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18328 * and tcp_wput_accept() is sending this deferred conn_ind but 18329 * listener is closed so we drop the ref. 18330 */ 18331 CONN_DEC_REF(tcp->tcp_connp); 18332 freemsg(mp); 18333 return; 18334 } 18335 if (IPCL_IS_NONSTR(connp)) { 18336 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18337 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18338 conn_ind->OPT_length); 18339 18340 if ((*connp->conn_upcalls->su_newconn) 18341 (connp->conn_upper_handle, 18342 (sock_lower_handle_t)tcp->tcp_connp, 18343 &sock_tcp_downcalls, DB_CRED(mp), DB_CPID(mp), 18344 &tcp->tcp_connp->conn_upcalls) != NULL) { 18345 /* Keep the message around in case of fallback */ 18346 tcp->tcp_conn.tcp_eager_conn_ind = mp; 18347 } else { 18348 freemsg(mp); 18349 } 18350 } else { 18351 putnext(listener->tcp_rq, mp); 18352 } 18353 } 18354 18355 /* ARGSUSED */ 18356 static int 18357 tcp_accept_common(conn_t *lconnp, conn_t *econnp, 18358 sock_upper_handle_t sock_handle, cred_t *cr) 18359 { 18360 tcp_t *listener, *eager; 18361 mblk_t *opt_mp; 18362 struct tcp_options *tcpopt; 18363 18364 listener = lconnp->conn_tcp; 18365 ASSERT(listener->tcp_state == TCPS_LISTEN); 18366 eager = econnp->conn_tcp; 18367 ASSERT(eager->tcp_listener != NULL); 18368 18369 ASSERT(eager->tcp_rq != NULL); 18370 18371 /* If tcp_fused and sodirect enabled disable it */ 18372 if (eager->tcp_fused && eager->tcp_sodirect != NULL) { 18373 /* Fused, disable sodirect */ 18374 mutex_enter(eager->tcp_sodirect->sod_lockp); 18375 SOD_DISABLE(eager->tcp_sodirect); 18376 mutex_exit(eager->tcp_sodirect->sod_lockp); 18377 eager->tcp_sodirect = NULL; 18378 } 18379 18380 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 18381 if (opt_mp == NULL) { 18382 return (-TPROTO); 18383 } 18384 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 18385 eager->tcp_issocket = B_TRUE; 18386 18387 econnp->conn_upcalls = lconnp->conn_upcalls; 18388 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18389 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18390 ASSERT(econnp->conn_netstack == 18391 listener->tcp_connp->conn_netstack); 18392 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18393 18394 /* Put the ref for IP */ 18395 CONN_INC_REF(econnp); 18396 18397 /* 18398 * We should have minimum of 3 references on the conn 18399 * at this point. One each for TCP and IP and one for 18400 * the T_conn_ind that was sent up when the 3-way handshake 18401 * completed. In the normal case we would also have another 18402 * reference (making a total of 4) for the conn being in the 18403 * classifier hash list. However the eager could have received 18404 * an RST subsequently and tcp_closei_local could have removed 18405 * the eager from the classifier hash list, hence we can't 18406 * assert that reference. 18407 */ 18408 ASSERT(econnp->conn_ref >= 3); 18409 18410 opt_mp->b_datap->db_type = M_SETOPTS; 18411 opt_mp->b_wptr += sizeof (struct tcp_options); 18412 18413 /* 18414 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18415 * from listener to acceptor. In case of non-STREAMS sockets, 18416 * we also need to pass the upper handle along. 18417 */ 18418 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 18419 tcpopt->to_flags = 0; 18420 18421 if (IPCL_IS_NONSTR(econnp)) { 18422 ASSERT(sock_handle != NULL); 18423 tcpopt->to_flags |= TCPOPT_UPPERHANDLE; 18424 tcpopt->to_handle = sock_handle; 18425 } 18426 if (listener->tcp_bound_if != 0) { 18427 tcpopt->to_flags |= TCPOPT_BOUNDIF; 18428 tcpopt->to_boundif = listener->tcp_bound_if; 18429 } 18430 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18431 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 18432 } 18433 18434 mutex_enter(&listener->tcp_eager_lock); 18435 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18436 18437 tcp_t *tail; 18438 tcp_t *tcp; 18439 mblk_t *mp1; 18440 18441 tcp = listener->tcp_eager_prev_q0; 18442 /* 18443 * listener->tcp_eager_prev_q0 points to the TAIL of the 18444 * deferred T_conn_ind queue. We need to get to the head 18445 * of the queue in order to send up T_conn_ind the same 18446 * order as how the 3WHS is completed. 18447 */ 18448 while (tcp != listener) { 18449 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18450 !tcp->tcp_kssl_pending) 18451 break; 18452 else 18453 tcp = tcp->tcp_eager_prev_q0; 18454 } 18455 /* None of the pending eagers can be sent up now */ 18456 if (tcp == listener) 18457 goto no_more_eagers; 18458 18459 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18460 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18461 /* Move from q0 to q */ 18462 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18463 listener->tcp_conn_req_cnt_q0--; 18464 listener->tcp_conn_req_cnt_q++; 18465 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18466 tcp->tcp_eager_prev_q0; 18467 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18468 tcp->tcp_eager_next_q0; 18469 tcp->tcp_eager_prev_q0 = NULL; 18470 tcp->tcp_eager_next_q0 = NULL; 18471 tcp->tcp_conn_def_q0 = B_FALSE; 18472 18473 /* Make sure the tcp isn't in the list of droppables */ 18474 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18475 tcp->tcp_eager_prev_drop_q0 == NULL); 18476 18477 /* 18478 * Insert at end of the queue because sockfs sends 18479 * down T_CONN_RES in chronological order. Leaving 18480 * the older conn indications at front of the queue 18481 * helps reducing search time. 18482 */ 18483 tail = listener->tcp_eager_last_q; 18484 if (tail != NULL) { 18485 tail->tcp_eager_next_q = tcp; 18486 } else { 18487 listener->tcp_eager_next_q = tcp; 18488 } 18489 listener->tcp_eager_last_q = tcp; 18490 tcp->tcp_eager_next_q = NULL; 18491 18492 /* Need to get inside the listener perimeter */ 18493 CONN_INC_REF(listener->tcp_connp); 18494 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 18495 tcp_send_pending, listener->tcp_connp, SQ_FILL, 18496 SQTAG_TCP_SEND_PENDING); 18497 } 18498 no_more_eagers: 18499 tcp_eager_unlink(eager); 18500 mutex_exit(&listener->tcp_eager_lock); 18501 18502 /* 18503 * At this point, the eager is detached from the listener 18504 * but we still have an extra refs on eager (apart from the 18505 * usual tcp references). The ref was placed in tcp_rput_data 18506 * before sending the conn_ind in tcp_send_conn_ind. 18507 * The ref will be dropped in tcp_accept_finish(). 18508 */ 18509 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 18510 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 18511 return (0); 18512 } 18513 18514 int 18515 tcp_accept(sock_lower_handle_t lproto_handle, 18516 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 18517 cred_t *cr) 18518 { 18519 conn_t *lconnp, *econnp; 18520 tcp_t *listener, *eager; 18521 tcp_stack_t *tcps; 18522 18523 lconnp = (conn_t *)lproto_handle; 18524 listener = lconnp->conn_tcp; 18525 ASSERT(listener->tcp_state == TCPS_LISTEN); 18526 econnp = (conn_t *)eproto_handle; 18527 eager = econnp->conn_tcp; 18528 ASSERT(eager->tcp_listener != NULL); 18529 tcps = eager->tcp_tcps; 18530 18531 ASSERT(IPCL_IS_NONSTR(econnp)); 18532 /* 18533 * Create helper stream if it is a non-TPI TCP connection. 18534 */ 18535 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 18536 ip1dbg(("tcp_accept: create of IP helper stream" 18537 " failed\n")); 18538 return (EPROTO); 18539 } 18540 eager->tcp_rq = econnp->conn_rq; 18541 eager->tcp_wq = econnp->conn_wq; 18542 18543 ASSERT(eager->tcp_rq != NULL); 18544 18545 eager->tcp_sodirect = SOD_SOTOSODP(sock_handle); 18546 return (tcp_accept_common(lconnp, econnp, sock_handle, cr)); 18547 } 18548 18549 18550 /* 18551 * This is the STREAMS entry point for T_CONN_RES coming down on 18552 * Acceptor STREAM when sockfs listener does accept processing. 18553 * Read the block comment on top of tcp_conn_request(). 18554 */ 18555 void 18556 tcp_tpi_accept(queue_t *q, mblk_t *mp) 18557 { 18558 queue_t *rq = RD(q); 18559 struct T_conn_res *conn_res; 18560 tcp_t *eager; 18561 tcp_t *listener; 18562 struct T_ok_ack *ok; 18563 t_scalar_t PRIM_type; 18564 conn_t *econnp; 18565 18566 ASSERT(DB_TYPE(mp) == M_PROTO); 18567 18568 conn_res = (struct T_conn_res *)mp->b_rptr; 18569 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18570 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18571 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18572 if (mp != NULL) 18573 putnext(rq, mp); 18574 return; 18575 } 18576 switch (conn_res->PRIM_type) { 18577 case O_T_CONN_RES: 18578 case T_CONN_RES: 18579 /* 18580 * We pass up an err ack if allocb fails. This will 18581 * cause sockfs to issue a T_DISCON_REQ which will cause 18582 * tcp_eager_blowoff to be called. sockfs will then call 18583 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18584 * we need to do the allocb up here because we have to 18585 * make sure rq->q_qinfo->qi_qclose still points to the 18586 * correct function (tcpclose_accept) in case allocb 18587 * fails. 18588 */ 18589 bcopy(mp->b_rptr + conn_res->OPT_offset, 18590 &eager, conn_res->OPT_length); 18591 PRIM_type = conn_res->PRIM_type; 18592 mp->b_datap->db_type = M_PCPROTO; 18593 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18594 ok = (struct T_ok_ack *)mp->b_rptr; 18595 ok->PRIM_type = T_OK_ACK; 18596 ok->CORRECT_prim = PRIM_type; 18597 econnp = eager->tcp_connp; 18598 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18599 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18600 eager->tcp_rq = rq; 18601 eager->tcp_wq = q; 18602 rq->q_ptr = econnp; 18603 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18604 q->q_ptr = econnp; 18605 q->q_qinfo = &tcp_winit; 18606 listener = eager->tcp_listener; 18607 18608 /* 18609 * TCP is _D_SODIRECT and sockfs is directly above so 18610 * save shared sodirect_t pointer (if any). 18611 */ 18612 eager->tcp_sodirect = SOD_QTOSODP(eager->tcp_rq); 18613 if (tcp_accept_common(listener->tcp_connp, 18614 econnp, NULL, CRED()) < 0) { 18615 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18616 if (mp != NULL) 18617 putnext(rq, mp); 18618 return; 18619 } 18620 18621 /* 18622 * Send the new local address also up to sockfs. There 18623 * should already be enough space in the mp that came 18624 * down from soaccept(). 18625 */ 18626 if (eager->tcp_family == AF_INET) { 18627 sin_t *sin; 18628 18629 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18630 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18631 sin = (sin_t *)mp->b_wptr; 18632 mp->b_wptr += sizeof (sin_t); 18633 sin->sin_family = AF_INET; 18634 sin->sin_port = eager->tcp_lport; 18635 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18636 } else { 18637 sin6_t *sin6; 18638 18639 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18640 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18641 sin6 = (sin6_t *)mp->b_wptr; 18642 mp->b_wptr += sizeof (sin6_t); 18643 sin6->sin6_family = AF_INET6; 18644 sin6->sin6_port = eager->tcp_lport; 18645 if (eager->tcp_ipversion == IPV4_VERSION) { 18646 sin6->sin6_flowinfo = 0; 18647 IN6_IPADDR_TO_V4MAPPED( 18648 eager->tcp_ipha->ipha_src, 18649 &sin6->sin6_addr); 18650 } else { 18651 ASSERT(eager->tcp_ip6h != NULL); 18652 sin6->sin6_flowinfo = 18653 eager->tcp_ip6h->ip6_vcf & 18654 ~IPV6_VERS_AND_FLOW_MASK; 18655 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18656 } 18657 sin6->sin6_scope_id = 0; 18658 sin6->__sin6_src_id = 0; 18659 } 18660 18661 putnext(rq, mp); 18662 return; 18663 default: 18664 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18665 if (mp != NULL) 18666 putnext(rq, mp); 18667 return; 18668 } 18669 } 18670 18671 static int 18672 tcp_getmyname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18673 { 18674 sin_t *sin = (sin_t *)sa; 18675 sin6_t *sin6 = (sin6_t *)sa; 18676 18677 switch (tcp->tcp_family) { 18678 case AF_INET: 18679 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18680 18681 if (*salenp < sizeof (sin_t)) 18682 return (EINVAL); 18683 18684 *sin = sin_null; 18685 sin->sin_family = AF_INET; 18686 sin->sin_port = tcp->tcp_lport; 18687 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 18688 break; 18689 18690 case AF_INET6: 18691 if (*salenp < sizeof (sin6_t)) 18692 return (EINVAL); 18693 18694 *sin6 = sin6_null; 18695 sin6->sin6_family = AF_INET6; 18696 sin6->sin6_port = tcp->tcp_lport; 18697 if (tcp->tcp_ipversion == IPV4_VERSION) { 18698 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 18699 &sin6->sin6_addr); 18700 } else { 18701 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 18702 } 18703 break; 18704 } 18705 18706 return (0); 18707 } 18708 18709 static int 18710 i_tcp_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 18711 { 18712 sin_t *sin = (sin_t *)sa; 18713 sin6_t *sin6 = (sin6_t *)sa; 18714 18715 if (tcp->tcp_state < TCPS_SYN_RCVD) 18716 return (ENOTCONN); 18717 18718 switch (tcp->tcp_family) { 18719 case AF_INET: 18720 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 18721 18722 if (*salenp < sizeof (sin_t)) 18723 return (EINVAL); 18724 18725 *sin = sin_null; 18726 sin->sin_family = AF_INET; 18727 sin->sin_port = tcp->tcp_fport; 18728 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 18729 sin->sin_addr.s_addr); 18730 *salenp = sizeof (sin_t); 18731 break; 18732 18733 case AF_INET6: 18734 if (*salenp < sizeof (sin6_t)) 18735 return (EINVAL); 18736 18737 *sin6 = sin6_null; 18738 sin6->sin6_family = AF_INET6; 18739 sin6->sin6_port = tcp->tcp_fport; 18740 sin6->sin6_addr = tcp->tcp_remote_v6; 18741 if (tcp->tcp_ipversion == IPV6_VERSION) { 18742 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 18743 ~IPV6_VERS_AND_FLOW_MASK; 18744 } 18745 *salenp = sizeof (sin6_t); 18746 break; 18747 } 18748 18749 return (0); 18750 } 18751 18752 /* 18753 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 18754 */ 18755 static void 18756 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 18757 { 18758 void *data; 18759 mblk_t *datamp = mp->b_cont; 18760 tcp_t *tcp = Q_TO_TCP(q); 18761 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 18762 18763 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 18764 cmdp->cb_error = EPROTO; 18765 qreply(q, mp); 18766 return; 18767 } 18768 18769 data = datamp->b_rptr; 18770 18771 switch (cmdp->cb_cmd) { 18772 case TI_GETPEERNAME: 18773 cmdp->cb_error = i_tcp_getpeername(tcp, data, &cmdp->cb_len); 18774 break; 18775 case TI_GETMYNAME: 18776 cmdp->cb_error = tcp_getmyname(tcp, data, &cmdp->cb_len); 18777 break; 18778 default: 18779 cmdp->cb_error = EINVAL; 18780 break; 18781 } 18782 18783 qreply(q, mp); 18784 } 18785 18786 void 18787 tcp_wput(queue_t *q, mblk_t *mp) 18788 { 18789 conn_t *connp = Q_TO_CONN(q); 18790 tcp_t *tcp; 18791 void (*output_proc)(); 18792 t_scalar_t type; 18793 uchar_t *rptr; 18794 struct iocblk *iocp; 18795 size_t size; 18796 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18797 18798 ASSERT(connp->conn_ref >= 2); 18799 18800 switch (DB_TYPE(mp)) { 18801 case M_DATA: 18802 tcp = connp->conn_tcp; 18803 ASSERT(tcp != NULL); 18804 18805 size = msgdsize(mp); 18806 18807 mutex_enter(&tcp->tcp_non_sq_lock); 18808 tcp->tcp_squeue_bytes += size; 18809 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18810 tcp_setqfull(tcp); 18811 } 18812 mutex_exit(&tcp->tcp_non_sq_lock); 18813 18814 if (DB_CRED(mp) == NULL && is_system_labeled()) 18815 msg_setcredpid(mp, CONN_CRED(connp), curproc->p_pid); 18816 18817 CONN_INC_REF(connp); 18818 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18819 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18820 return; 18821 18822 case M_CMD: 18823 tcp_wput_cmdblk(q, mp); 18824 return; 18825 18826 case M_PROTO: 18827 case M_PCPROTO: 18828 /* 18829 * if it is a snmp message, don't get behind the squeue 18830 */ 18831 tcp = connp->conn_tcp; 18832 rptr = mp->b_rptr; 18833 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18834 type = ((union T_primitives *)rptr)->type; 18835 } else { 18836 if (tcp->tcp_debug) { 18837 (void) strlog(TCP_MOD_ID, 0, 1, 18838 SL_ERROR|SL_TRACE, 18839 "tcp_wput_proto, dropping one..."); 18840 } 18841 freemsg(mp); 18842 return; 18843 } 18844 if (type == T_SVR4_OPTMGMT_REQ) { 18845 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18846 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18847 cr)) { 18848 /* 18849 * This was a SNMP request 18850 */ 18851 return; 18852 } else { 18853 output_proc = tcp_wput_proto; 18854 } 18855 } else { 18856 output_proc = tcp_wput_proto; 18857 } 18858 break; 18859 case M_IOCTL: 18860 /* 18861 * Most ioctls can be processed right away without going via 18862 * squeues - process them right here. Those that do require 18863 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18864 * are processed by tcp_wput_ioctl(). 18865 */ 18866 iocp = (struct iocblk *)mp->b_rptr; 18867 tcp = connp->conn_tcp; 18868 18869 switch (iocp->ioc_cmd) { 18870 case TCP_IOC_ABORT_CONN: 18871 tcp_ioctl_abort_conn(q, mp); 18872 return; 18873 case TI_GETPEERNAME: 18874 case TI_GETMYNAME: 18875 mi_copyin(q, mp, NULL, 18876 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18877 return; 18878 case ND_SET: 18879 /* nd_getset does the necessary checks */ 18880 case ND_GET: 18881 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18882 CALL_IP_WPUT(connp, q, mp); 18883 return; 18884 } 18885 qreply(q, mp); 18886 return; 18887 case TCP_IOC_DEFAULT_Q: 18888 /* 18889 * Wants to be the default wq. Check the credentials 18890 * first, the rest is executed via squeue. 18891 */ 18892 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18893 iocp->ioc_error = EPERM; 18894 iocp->ioc_count = 0; 18895 mp->b_datap->db_type = M_IOCACK; 18896 qreply(q, mp); 18897 return; 18898 } 18899 output_proc = tcp_wput_ioctl; 18900 break; 18901 default: 18902 output_proc = tcp_wput_ioctl; 18903 break; 18904 } 18905 break; 18906 default: 18907 output_proc = tcp_wput_nondata; 18908 break; 18909 } 18910 18911 CONN_INC_REF(connp); 18912 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18913 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18914 } 18915 18916 /* 18917 * Initial STREAMS write side put() procedure for sockets. It tries to 18918 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18919 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18920 * are handled by tcp_wput() as usual. 18921 * 18922 * All further messages will also be handled by tcp_wput() because we cannot 18923 * be sure that the above short cut is safe later. 18924 */ 18925 static void 18926 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18927 { 18928 conn_t *connp = Q_TO_CONN(wq); 18929 tcp_t *tcp = connp->conn_tcp; 18930 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18931 18932 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18933 wq->q_qinfo = &tcp_winit; 18934 18935 ASSERT(IPCL_IS_TCP(connp)); 18936 ASSERT(TCP_IS_SOCKET(tcp)); 18937 18938 if (DB_TYPE(mp) == M_PCPROTO && 18939 MBLKL(mp) == sizeof (struct T_capability_req) && 18940 car->PRIM_type == T_CAPABILITY_REQ) { 18941 tcp_capability_req(tcp, mp); 18942 return; 18943 } 18944 18945 tcp_wput(wq, mp); 18946 } 18947 18948 /* ARGSUSED */ 18949 static void 18950 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18951 { 18952 #ifdef DEBUG 18953 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18954 #endif 18955 freemsg(mp); 18956 } 18957 18958 static boolean_t 18959 tcp_zcopy_check(tcp_t *tcp) 18960 { 18961 conn_t *connp = tcp->tcp_connp; 18962 ire_t *ire; 18963 boolean_t zc_enabled = B_FALSE; 18964 tcp_stack_t *tcps = tcp->tcp_tcps; 18965 18966 if (do_tcpzcopy == 2) 18967 zc_enabled = B_TRUE; 18968 else if (tcp->tcp_ipversion == IPV4_VERSION && 18969 IPCL_IS_CONNECTED(connp) && 18970 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18971 connp->conn_dontroute == 0 && 18972 !connp->conn_nexthop_set && 18973 connp->conn_outgoing_ill == NULL && 18974 connp->conn_nofailover_ill == NULL && 18975 do_tcpzcopy == 1) { 18976 /* 18977 * the checks above closely resemble the fast path checks 18978 * in tcp_send_data(). 18979 */ 18980 mutex_enter(&connp->conn_lock); 18981 ire = connp->conn_ire_cache; 18982 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18983 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18984 IRE_REFHOLD(ire); 18985 if (ire->ire_stq != NULL) { 18986 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18987 18988 zc_enabled = ill && (ill->ill_capabilities & 18989 ILL_CAPAB_ZEROCOPY) && 18990 (ill->ill_zerocopy_capab-> 18991 ill_zerocopy_flags != 0); 18992 } 18993 IRE_REFRELE(ire); 18994 } 18995 mutex_exit(&connp->conn_lock); 18996 } 18997 tcp->tcp_snd_zcopy_on = zc_enabled; 18998 if (!TCP_IS_DETACHED(tcp)) { 18999 if (zc_enabled) { 19000 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 19001 ZCVMSAFE); 19002 TCP_STAT(tcps, tcp_zcopy_on); 19003 } else { 19004 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 19005 ZCVMUNSAFE); 19006 TCP_STAT(tcps, tcp_zcopy_off); 19007 } 19008 } 19009 return (zc_enabled); 19010 } 19011 19012 static mblk_t * 19013 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 19014 { 19015 tcp_stack_t *tcps = tcp->tcp_tcps; 19016 19017 if (do_tcpzcopy == 2) 19018 return (bp); 19019 else if (tcp->tcp_snd_zcopy_on) { 19020 tcp->tcp_snd_zcopy_on = B_FALSE; 19021 if (!TCP_IS_DETACHED(tcp)) { 19022 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 19023 ZCVMUNSAFE); 19024 TCP_STAT(tcps, tcp_zcopy_disable); 19025 } 19026 } 19027 return (tcp_zcopy_backoff(tcp, bp, 0)); 19028 } 19029 19030 /* 19031 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 19032 * the original desballoca'ed segmapped mblk. 19033 */ 19034 static mblk_t * 19035 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 19036 { 19037 mblk_t *head, *tail, *nbp; 19038 tcp_stack_t *tcps = tcp->tcp_tcps; 19039 19040 if (IS_VMLOANED_MBLK(bp)) { 19041 TCP_STAT(tcps, tcp_zcopy_backoff); 19042 if ((head = copyb(bp)) == NULL) { 19043 /* fail to backoff; leave it for the next backoff */ 19044 tcp->tcp_xmit_zc_clean = B_FALSE; 19045 return (bp); 19046 } 19047 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19048 if (fix_xmitlist) 19049 tcp_zcopy_notify(tcp); 19050 else 19051 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19052 } 19053 nbp = bp->b_cont; 19054 if (fix_xmitlist) { 19055 head->b_prev = bp->b_prev; 19056 head->b_next = bp->b_next; 19057 if (tcp->tcp_xmit_tail == bp) 19058 tcp->tcp_xmit_tail = head; 19059 } 19060 bp->b_next = NULL; 19061 bp->b_prev = NULL; 19062 freeb(bp); 19063 } else { 19064 head = bp; 19065 nbp = bp->b_cont; 19066 } 19067 tail = head; 19068 while (nbp) { 19069 if (IS_VMLOANED_MBLK(nbp)) { 19070 TCP_STAT(tcps, tcp_zcopy_backoff); 19071 if ((tail->b_cont = copyb(nbp)) == NULL) { 19072 tcp->tcp_xmit_zc_clean = B_FALSE; 19073 tail->b_cont = nbp; 19074 return (head); 19075 } 19076 tail = tail->b_cont; 19077 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 19078 if (fix_xmitlist) 19079 tcp_zcopy_notify(tcp); 19080 else 19081 tail->b_datap->db_struioflag |= 19082 STRUIO_ZCNOTIFY; 19083 } 19084 bp = nbp; 19085 nbp = nbp->b_cont; 19086 if (fix_xmitlist) { 19087 tail->b_prev = bp->b_prev; 19088 tail->b_next = bp->b_next; 19089 if (tcp->tcp_xmit_tail == bp) 19090 tcp->tcp_xmit_tail = tail; 19091 } 19092 bp->b_next = NULL; 19093 bp->b_prev = NULL; 19094 freeb(bp); 19095 } else { 19096 tail->b_cont = nbp; 19097 tail = nbp; 19098 nbp = nbp->b_cont; 19099 } 19100 } 19101 if (fix_xmitlist) { 19102 tcp->tcp_xmit_last = tail; 19103 tcp->tcp_xmit_zc_clean = B_TRUE; 19104 } 19105 return (head); 19106 } 19107 19108 static void 19109 tcp_zcopy_notify(tcp_t *tcp) 19110 { 19111 struct stdata *stp; 19112 conn_t *connp; 19113 19114 if (tcp->tcp_detached) 19115 return; 19116 connp = tcp->tcp_connp; 19117 if (IPCL_IS_NONSTR(connp)) { 19118 (*connp->conn_upcalls->su_zcopy_notify) 19119 (connp->conn_upper_handle); 19120 return; 19121 } 19122 stp = STREAM(tcp->tcp_rq); 19123 mutex_enter(&stp->sd_lock); 19124 stp->sd_flag |= STZCNOTIFY; 19125 cv_broadcast(&stp->sd_zcopy_wait); 19126 mutex_exit(&stp->sd_lock); 19127 } 19128 19129 static boolean_t 19130 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 19131 { 19132 ire_t *ire; 19133 conn_t *connp = tcp->tcp_connp; 19134 tcp_stack_t *tcps = tcp->tcp_tcps; 19135 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19136 19137 mutex_enter(&connp->conn_lock); 19138 ire = connp->conn_ire_cache; 19139 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 19140 19141 if ((ire != NULL) && 19142 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 19143 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 19144 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19145 IRE_REFHOLD(ire); 19146 mutex_exit(&connp->conn_lock); 19147 } else { 19148 boolean_t cached = B_FALSE; 19149 ts_label_t *tsl; 19150 19151 /* force a recheck later on */ 19152 tcp->tcp_ire_ill_check_done = B_FALSE; 19153 19154 TCP_DBGSTAT(tcps, tcp_ire_null1); 19155 connp->conn_ire_cache = NULL; 19156 mutex_exit(&connp->conn_lock); 19157 19158 if (ire != NULL) 19159 IRE_REFRELE_NOTR(ire); 19160 19161 tsl = crgetlabel(CONN_CRED(connp)); 19162 ire = (dst ? 19163 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 19164 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 19165 connp->conn_zoneid, tsl, ipst)); 19166 19167 if (ire == NULL) { 19168 TCP_STAT(tcps, tcp_ire_null); 19169 return (B_FALSE); 19170 } 19171 19172 IRE_REFHOLD_NOTR(ire); 19173 19174 mutex_enter(&connp->conn_lock); 19175 if (CONN_CACHE_IRE(connp)) { 19176 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 19177 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 19178 TCP_CHECK_IREINFO(tcp, ire); 19179 connp->conn_ire_cache = ire; 19180 cached = B_TRUE; 19181 } 19182 rw_exit(&ire->ire_bucket->irb_lock); 19183 } 19184 mutex_exit(&connp->conn_lock); 19185 19186 /* 19187 * We can continue to use the ire but since it was 19188 * not cached, we should drop the extra reference. 19189 */ 19190 if (!cached) 19191 IRE_REFRELE_NOTR(ire); 19192 19193 /* 19194 * Rampart note: no need to select a new label here, since 19195 * labels are not allowed to change during the life of a TCP 19196 * connection. 19197 */ 19198 } 19199 19200 *irep = ire; 19201 19202 return (B_TRUE); 19203 } 19204 19205 /* 19206 * Called from tcp_send() or tcp_send_data() to find workable IRE. 19207 * 19208 * 0 = success; 19209 * 1 = failed to find ire and ill. 19210 */ 19211 static boolean_t 19212 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 19213 { 19214 ipha_t *ipha; 19215 ipaddr_t dst; 19216 ire_t *ire; 19217 ill_t *ill; 19218 conn_t *connp = tcp->tcp_connp; 19219 mblk_t *ire_fp_mp; 19220 tcp_stack_t *tcps = tcp->tcp_tcps; 19221 19222 if (mp != NULL) 19223 ipha = (ipha_t *)mp->b_rptr; 19224 else 19225 ipha = tcp->tcp_ipha; 19226 dst = ipha->ipha_dst; 19227 19228 if (!tcp_send_find_ire(tcp, &dst, &ire)) 19229 return (B_FALSE); 19230 19231 if ((ire->ire_flags & RTF_MULTIRT) || 19232 (ire->ire_stq == NULL) || 19233 (ire->ire_nce == NULL) || 19234 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 19235 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 19236 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 19237 TCP_STAT(tcps, tcp_ip_ire_send); 19238 IRE_REFRELE(ire); 19239 return (B_FALSE); 19240 } 19241 19242 ill = ire_to_ill(ire); 19243 if (connp->conn_outgoing_ill != NULL) { 19244 ill_t *conn_outgoing_ill = NULL; 19245 /* 19246 * Choose a good ill in the group to send the packets on. 19247 */ 19248 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 19249 ill = ire_to_ill(ire); 19250 } 19251 ASSERT(ill != NULL); 19252 19253 if (!tcp->tcp_ire_ill_check_done) { 19254 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19255 tcp->tcp_ire_ill_check_done = B_TRUE; 19256 } 19257 19258 *irep = ire; 19259 *illp = ill; 19260 19261 return (B_TRUE); 19262 } 19263 19264 static void 19265 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 19266 { 19267 ipha_t *ipha; 19268 ipaddr_t src; 19269 ipaddr_t dst; 19270 uint32_t cksum; 19271 ire_t *ire; 19272 uint16_t *up; 19273 ill_t *ill; 19274 conn_t *connp = tcp->tcp_connp; 19275 uint32_t hcksum_txflags = 0; 19276 mblk_t *ire_fp_mp; 19277 uint_t ire_fp_mp_len; 19278 tcp_stack_t *tcps = tcp->tcp_tcps; 19279 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19280 19281 ASSERT(DB_TYPE(mp) == M_DATA); 19282 19283 if (is_system_labeled() && DB_CRED(mp) == NULL) 19284 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp)); 19285 19286 ipha = (ipha_t *)mp->b_rptr; 19287 src = ipha->ipha_src; 19288 dst = ipha->ipha_dst; 19289 19290 ASSERT(q != NULL); 19291 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 19292 19293 /* 19294 * Drop off fast path for IPv6 and also if options are present or 19295 * we need to resolve a TS label. 19296 */ 19297 if (tcp->tcp_ipversion != IPV4_VERSION || 19298 !IPCL_IS_CONNECTED(connp) || 19299 !CONN_IS_LSO_MD_FASTPATH(connp) || 19300 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 19301 !connp->conn_ulp_labeled || 19302 ipha->ipha_ident == IP_HDR_INCLUDED || 19303 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 19304 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 19305 if (tcp->tcp_snd_zcopy_aware) 19306 mp = tcp_zcopy_disable(tcp, mp); 19307 TCP_STAT(tcps, tcp_ip_send); 19308 CALL_IP_WPUT(connp, q, mp); 19309 return; 19310 } 19311 19312 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 19313 if (tcp->tcp_snd_zcopy_aware) 19314 mp = tcp_zcopy_backoff(tcp, mp, 0); 19315 CALL_IP_WPUT(connp, q, mp); 19316 return; 19317 } 19318 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19319 ire_fp_mp_len = MBLKL(ire_fp_mp); 19320 19321 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19322 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19323 #ifndef _BIG_ENDIAN 19324 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19325 #endif 19326 19327 /* 19328 * Check to see if we need to re-enable LSO/MDT for this connection 19329 * because it was previously disabled due to changes in the ill; 19330 * note that by doing it here, this re-enabling only applies when 19331 * the packet is not dispatched through CALL_IP_WPUT(). 19332 * 19333 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19334 * case, since that's how we ended up here. For IPv6, we do the 19335 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19336 */ 19337 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19338 /* 19339 * Restore LSO for this connection, so that next time around 19340 * it is eligible to go through tcp_lsosend() path again. 19341 */ 19342 TCP_STAT(tcps, tcp_lso_enabled); 19343 tcp->tcp_lso = B_TRUE; 19344 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19345 "interface %s\n", (void *)connp, ill->ill_name)); 19346 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19347 /* 19348 * Restore MDT for this connection, so that next time around 19349 * it is eligible to go through tcp_multisend() path again. 19350 */ 19351 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19352 tcp->tcp_mdt = B_TRUE; 19353 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19354 "interface %s\n", (void *)connp, ill->ill_name)); 19355 } 19356 19357 if (tcp->tcp_snd_zcopy_aware) { 19358 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19359 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19360 mp = tcp_zcopy_disable(tcp, mp); 19361 /* 19362 * we shouldn't need to reset ipha as the mp containing 19363 * ipha should never be a zero-copy mp. 19364 */ 19365 } 19366 19367 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19368 ASSERT(ill->ill_hcksum_capab != NULL); 19369 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19370 } 19371 19372 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19373 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19374 19375 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19376 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19377 19378 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19379 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19380 19381 /* Software checksum? */ 19382 if (DB_CKSUMFLAGS(mp) == 0) { 19383 TCP_STAT(tcps, tcp_out_sw_cksum); 19384 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19385 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19386 } 19387 19388 /* Calculate IP header checksum if hardware isn't capable */ 19389 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19390 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19391 ((uint16_t *)ipha)[4]); 19392 } 19393 19394 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19395 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19396 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19397 19398 UPDATE_OB_PKT_COUNT(ire); 19399 ire->ire_last_used_time = lbolt; 19400 19401 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19402 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19403 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19404 ntohs(ipha->ipha_length)); 19405 19406 DTRACE_PROBE4(ip4__physical__out__start, 19407 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 19408 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19409 ipst->ips_ipv4firewall_physical_out, 19410 NULL, ill, ipha, mp, mp, 0, ipst); 19411 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19412 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 19413 19414 if (mp != NULL) { 19415 if (ipst->ips_ipobs_enabled) { 19416 zoneid_t szone; 19417 19418 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 19419 ipst, ALL_ZONES); 19420 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 19421 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 19422 } 19423 19424 ILL_SEND_TX(ill, ire, connp, mp, 0); 19425 } 19426 19427 IRE_REFRELE(ire); 19428 } 19429 19430 /* 19431 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19432 * if the receiver shrinks the window, i.e. moves the right window to the 19433 * left, the we should not send new data, but should retransmit normally the 19434 * old unacked data between suna and suna + swnd. We might has sent data 19435 * that is now outside the new window, pretend that we didn't send it. 19436 */ 19437 static void 19438 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19439 { 19440 uint32_t snxt = tcp->tcp_snxt; 19441 mblk_t *xmit_tail; 19442 int32_t offset; 19443 19444 ASSERT(shrunk_count > 0); 19445 19446 /* Pretend we didn't send the data outside the window */ 19447 snxt -= shrunk_count; 19448 19449 /* Get the mblk and the offset in it per the shrunk window */ 19450 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19451 19452 ASSERT(xmit_tail != NULL); 19453 19454 /* Reset all the values per the now shrunk window */ 19455 tcp->tcp_snxt = snxt; 19456 tcp->tcp_xmit_tail = xmit_tail; 19457 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19458 offset; 19459 tcp->tcp_unsent += shrunk_count; 19460 19461 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19462 /* 19463 * Make sure the timer is running so that we will probe a zero 19464 * window. 19465 */ 19466 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19467 } 19468 19469 19470 /* 19471 * The TCP normal data output path. 19472 * NOTE: the logic of the fast path is duplicated from this function. 19473 */ 19474 static void 19475 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19476 { 19477 int len; 19478 mblk_t *local_time; 19479 mblk_t *mp1; 19480 uint32_t snxt; 19481 int tail_unsent; 19482 int tcpstate; 19483 int usable = 0; 19484 mblk_t *xmit_tail; 19485 queue_t *q = tcp->tcp_wq; 19486 int32_t mss; 19487 int32_t num_sack_blk = 0; 19488 int32_t tcp_hdr_len; 19489 int32_t tcp_tcp_hdr_len; 19490 int mdt_thres; 19491 int rc; 19492 tcp_stack_t *tcps = tcp->tcp_tcps; 19493 ip_stack_t *ipst; 19494 19495 tcpstate = tcp->tcp_state; 19496 if (mp == NULL) { 19497 /* 19498 * tcp_wput_data() with NULL mp should only be called when 19499 * there is unsent data. 19500 */ 19501 ASSERT(tcp->tcp_unsent > 0); 19502 /* Really tacky... but we need this for detached closes. */ 19503 len = tcp->tcp_unsent; 19504 goto data_null; 19505 } 19506 19507 #if CCS_STATS 19508 wrw_stats.tot.count++; 19509 wrw_stats.tot.bytes += msgdsize(mp); 19510 #endif 19511 ASSERT(mp->b_datap->db_type == M_DATA); 19512 /* 19513 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19514 * or before a connection attempt has begun. 19515 */ 19516 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19517 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19518 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19519 #ifdef DEBUG 19520 cmn_err(CE_WARN, 19521 "tcp_wput_data: data after ordrel, %s", 19522 tcp_display(tcp, NULL, 19523 DISP_ADDR_AND_PORT)); 19524 #else 19525 if (tcp->tcp_debug) { 19526 (void) strlog(TCP_MOD_ID, 0, 1, 19527 SL_TRACE|SL_ERROR, 19528 "tcp_wput_data: data after ordrel, %s\n", 19529 tcp_display(tcp, NULL, 19530 DISP_ADDR_AND_PORT)); 19531 } 19532 #endif /* DEBUG */ 19533 } 19534 if (tcp->tcp_snd_zcopy_aware && 19535 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19536 tcp_zcopy_notify(tcp); 19537 freemsg(mp); 19538 mutex_enter(&tcp->tcp_non_sq_lock); 19539 if (tcp->tcp_flow_stopped && 19540 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19541 tcp_clrqfull(tcp); 19542 } 19543 mutex_exit(&tcp->tcp_non_sq_lock); 19544 return; 19545 } 19546 19547 /* Strip empties */ 19548 for (;;) { 19549 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19550 (uintptr_t)INT_MAX); 19551 len = (int)(mp->b_wptr - mp->b_rptr); 19552 if (len > 0) 19553 break; 19554 mp1 = mp; 19555 mp = mp->b_cont; 19556 freeb(mp1); 19557 if (!mp) { 19558 return; 19559 } 19560 } 19561 19562 /* If we are the first on the list ... */ 19563 if (tcp->tcp_xmit_head == NULL) { 19564 tcp->tcp_xmit_head = mp; 19565 tcp->tcp_xmit_tail = mp; 19566 tcp->tcp_xmit_tail_unsent = len; 19567 } else { 19568 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19569 struct datab *dp; 19570 19571 mp1 = tcp->tcp_xmit_last; 19572 if (len < tcp_tx_pull_len && 19573 (dp = mp1->b_datap)->db_ref == 1 && 19574 dp->db_lim - mp1->b_wptr >= len) { 19575 ASSERT(len > 0); 19576 ASSERT(!mp1->b_cont); 19577 if (len == 1) { 19578 *mp1->b_wptr++ = *mp->b_rptr; 19579 } else { 19580 bcopy(mp->b_rptr, mp1->b_wptr, len); 19581 mp1->b_wptr += len; 19582 } 19583 if (mp1 == tcp->tcp_xmit_tail) 19584 tcp->tcp_xmit_tail_unsent += len; 19585 mp1->b_cont = mp->b_cont; 19586 if (tcp->tcp_snd_zcopy_aware && 19587 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19588 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19589 freeb(mp); 19590 mp = mp1; 19591 } else { 19592 tcp->tcp_xmit_last->b_cont = mp; 19593 } 19594 len += tcp->tcp_unsent; 19595 } 19596 19597 /* Tack on however many more positive length mblks we have */ 19598 if ((mp1 = mp->b_cont) != NULL) { 19599 do { 19600 int tlen; 19601 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19602 (uintptr_t)INT_MAX); 19603 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19604 if (tlen <= 0) { 19605 mp->b_cont = mp1->b_cont; 19606 freeb(mp1); 19607 } else { 19608 len += tlen; 19609 mp = mp1; 19610 } 19611 } while ((mp1 = mp->b_cont) != NULL); 19612 } 19613 tcp->tcp_xmit_last = mp; 19614 tcp->tcp_unsent = len; 19615 19616 if (urgent) 19617 usable = 1; 19618 19619 data_null: 19620 snxt = tcp->tcp_snxt; 19621 xmit_tail = tcp->tcp_xmit_tail; 19622 tail_unsent = tcp->tcp_xmit_tail_unsent; 19623 19624 /* 19625 * Note that tcp_mss has been adjusted to take into account the 19626 * timestamp option if applicable. Because SACK options do not 19627 * appear in every TCP segments and they are of variable lengths, 19628 * they cannot be included in tcp_mss. Thus we need to calculate 19629 * the actual segment length when we need to send a segment which 19630 * includes SACK options. 19631 */ 19632 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19633 int32_t opt_len; 19634 19635 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19636 tcp->tcp_num_sack_blk); 19637 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19638 2 + TCPOPT_HEADER_LEN; 19639 mss = tcp->tcp_mss - opt_len; 19640 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19641 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19642 } else { 19643 mss = tcp->tcp_mss; 19644 tcp_hdr_len = tcp->tcp_hdr_len; 19645 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19646 } 19647 19648 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19649 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19650 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19651 } 19652 if (tcpstate == TCPS_SYN_RCVD) { 19653 /* 19654 * The three-way connection establishment handshake is not 19655 * complete yet. We want to queue the data for transmission 19656 * after entering ESTABLISHED state (RFC793). A jump to 19657 * "done" label effectively leaves data on the queue. 19658 */ 19659 goto done; 19660 } else { 19661 int usable_r; 19662 19663 /* 19664 * In the special case when cwnd is zero, which can only 19665 * happen if the connection is ECN capable, return now. 19666 * New segments is sent using tcp_timer(). The timer 19667 * is set in tcp_rput_data(). 19668 */ 19669 if (tcp->tcp_cwnd == 0) { 19670 /* 19671 * Note that tcp_cwnd is 0 before 3-way handshake is 19672 * finished. 19673 */ 19674 ASSERT(tcp->tcp_ecn_ok || 19675 tcp->tcp_state < TCPS_ESTABLISHED); 19676 return; 19677 } 19678 19679 /* NOTE: trouble if xmitting while SYN not acked? */ 19680 usable_r = snxt - tcp->tcp_suna; 19681 usable_r = tcp->tcp_swnd - usable_r; 19682 19683 /* 19684 * Check if the receiver has shrunk the window. If 19685 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19686 * cannot be set as there is unsent data, so FIN cannot 19687 * be sent out. Otherwise, we need to take into account 19688 * of FIN as it consumes an "invisible" sequence number. 19689 */ 19690 ASSERT(tcp->tcp_fin_sent == 0); 19691 if (usable_r < 0) { 19692 /* 19693 * The receiver has shrunk the window and we have sent 19694 * -usable_r date beyond the window, re-adjust. 19695 * 19696 * If TCP window scaling is enabled, there can be 19697 * round down error as the advertised receive window 19698 * is actually right shifted n bits. This means that 19699 * the lower n bits info is wiped out. It will look 19700 * like the window is shrunk. Do a check here to 19701 * see if the shrunk amount is actually within the 19702 * error in window calculation. If it is, just 19703 * return. Note that this check is inside the 19704 * shrunk window check. This makes sure that even 19705 * though tcp_process_shrunk_swnd() is not called, 19706 * we will stop further processing. 19707 */ 19708 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19709 tcp_process_shrunk_swnd(tcp, -usable_r); 19710 } 19711 return; 19712 } 19713 19714 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19715 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19716 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19717 19718 /* usable = MIN(usable, unsent) */ 19719 if (usable_r > len) 19720 usable_r = len; 19721 19722 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19723 if (usable_r > 0) { 19724 usable = usable_r; 19725 } else { 19726 /* Bypass all other unnecessary processing. */ 19727 goto done; 19728 } 19729 } 19730 19731 local_time = (mblk_t *)lbolt; 19732 19733 /* 19734 * "Our" Nagle Algorithm. This is not the same as in the old 19735 * BSD. This is more in line with the true intent of Nagle. 19736 * 19737 * The conditions are: 19738 * 1. The amount of unsent data (or amount of data which can be 19739 * sent, whichever is smaller) is less than Nagle limit. 19740 * 2. The last sent size is also less than Nagle limit. 19741 * 3. There is unack'ed data. 19742 * 4. Urgent pointer is not set. Send urgent data ignoring the 19743 * Nagle algorithm. This reduces the probability that urgent 19744 * bytes get "merged" together. 19745 * 5. The app has not closed the connection. This eliminates the 19746 * wait time of the receiving side waiting for the last piece of 19747 * (small) data. 19748 * 19749 * If all are satisified, exit without sending anything. Note 19750 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19751 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19752 * 4095). 19753 */ 19754 if (usable < (int)tcp->tcp_naglim && 19755 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19756 snxt != tcp->tcp_suna && 19757 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19758 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19759 goto done; 19760 } 19761 19762 if (tcp->tcp_cork) { 19763 /* 19764 * if the tcp->tcp_cork option is set, then we have to force 19765 * TCP not to send partial segment (smaller than MSS bytes). 19766 * We are calculating the usable now based on full mss and 19767 * will save the rest of remaining data for later. 19768 */ 19769 if (usable < mss) 19770 goto done; 19771 usable = (usable / mss) * mss; 19772 } 19773 19774 /* Update the latest receive window size in TCP header. */ 19775 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19776 tcp->tcp_tcph->th_win); 19777 19778 /* 19779 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19780 * 19781 * 1. Simple TCP/IP{v4,v6} (no options). 19782 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19783 * 3. If the TCP connection is in ESTABLISHED state. 19784 * 4. The TCP is not detached. 19785 * 19786 * If any of the above conditions have changed during the 19787 * connection, stop using LSO/MDT and restore the stream head 19788 * parameters accordingly. 19789 */ 19790 ipst = tcps->tcps_netstack->netstack_ip; 19791 19792 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19793 ((tcp->tcp_ipversion == IPV4_VERSION && 19794 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19795 (tcp->tcp_ipversion == IPV6_VERSION && 19796 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19797 tcp->tcp_state != TCPS_ESTABLISHED || 19798 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19799 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19800 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19801 if (tcp->tcp_lso) { 19802 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19803 tcp->tcp_lso = B_FALSE; 19804 } else { 19805 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19806 tcp->tcp_mdt = B_FALSE; 19807 } 19808 19809 /* Anything other than detached is considered pathological */ 19810 if (!TCP_IS_DETACHED(tcp)) { 19811 if (tcp->tcp_lso) 19812 TCP_STAT(tcps, tcp_lso_disabled); 19813 else 19814 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19815 (void) tcp_maxpsz_set(tcp, B_TRUE); 19816 } 19817 } 19818 19819 /* Use MDT if sendable amount is greater than the threshold */ 19820 if (tcp->tcp_mdt && 19821 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19822 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19823 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19824 (tcp->tcp_valid_bits == 0 || 19825 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19826 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19827 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19828 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19829 local_time, mdt_thres); 19830 } else { 19831 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19832 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19833 local_time, INT_MAX); 19834 } 19835 19836 /* Pretend that all we were trying to send really got sent */ 19837 if (rc < 0 && tail_unsent < 0) { 19838 do { 19839 xmit_tail = xmit_tail->b_cont; 19840 xmit_tail->b_prev = local_time; 19841 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19842 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19843 tail_unsent += (int)(xmit_tail->b_wptr - 19844 xmit_tail->b_rptr); 19845 } while (tail_unsent < 0); 19846 } 19847 done:; 19848 tcp->tcp_xmit_tail = xmit_tail; 19849 tcp->tcp_xmit_tail_unsent = tail_unsent; 19850 len = tcp->tcp_snxt - snxt; 19851 if (len) { 19852 /* 19853 * If new data was sent, need to update the notsack 19854 * list, which is, afterall, data blocks that have 19855 * not been sack'ed by the receiver. New data is 19856 * not sack'ed. 19857 */ 19858 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19859 /* len is a negative value. */ 19860 tcp->tcp_pipe -= len; 19861 tcp_notsack_update(&(tcp->tcp_notsack_list), 19862 tcp->tcp_snxt, snxt, 19863 &(tcp->tcp_num_notsack_blk), 19864 &(tcp->tcp_cnt_notsack_list)); 19865 } 19866 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19867 tcp->tcp_rack = tcp->tcp_rnxt; 19868 tcp->tcp_rack_cnt = 0; 19869 if ((snxt + len) == tcp->tcp_suna) { 19870 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19871 } 19872 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19873 /* 19874 * Didn't send anything. Make sure the timer is running 19875 * so that we will probe a zero window. 19876 */ 19877 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19878 } 19879 /* Note that len is the amount we just sent but with a negative sign */ 19880 tcp->tcp_unsent += len; 19881 mutex_enter(&tcp->tcp_non_sq_lock); 19882 if (tcp->tcp_flow_stopped) { 19883 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19884 tcp_clrqfull(tcp); 19885 } 19886 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19887 tcp_setqfull(tcp); 19888 } 19889 mutex_exit(&tcp->tcp_non_sq_lock); 19890 } 19891 19892 /* 19893 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19894 * outgoing TCP header with the template header, as well as other 19895 * options such as time-stamp, ECN and/or SACK. 19896 */ 19897 static void 19898 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19899 { 19900 tcph_t *tcp_tmpl, *tcp_h; 19901 uint32_t *dst, *src; 19902 int hdrlen; 19903 19904 ASSERT(OK_32PTR(rptr)); 19905 19906 /* Template header */ 19907 tcp_tmpl = tcp->tcp_tcph; 19908 19909 /* Header of outgoing packet */ 19910 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19911 19912 /* dst and src are opaque 32-bit fields, used for copying */ 19913 dst = (uint32_t *)rptr; 19914 src = (uint32_t *)tcp->tcp_iphc; 19915 hdrlen = tcp->tcp_hdr_len; 19916 19917 /* Fill time-stamp option if needed */ 19918 if (tcp->tcp_snd_ts_ok) { 19919 U32_TO_BE32((uint32_t)now, 19920 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19921 U32_TO_BE32(tcp->tcp_ts_recent, 19922 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19923 } else { 19924 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19925 } 19926 19927 /* 19928 * Copy the template header; is this really more efficient than 19929 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19930 * but perhaps not for other scenarios. 19931 */ 19932 dst[0] = src[0]; 19933 dst[1] = src[1]; 19934 dst[2] = src[2]; 19935 dst[3] = src[3]; 19936 dst[4] = src[4]; 19937 dst[5] = src[5]; 19938 dst[6] = src[6]; 19939 dst[7] = src[7]; 19940 dst[8] = src[8]; 19941 dst[9] = src[9]; 19942 if (hdrlen -= 40) { 19943 hdrlen >>= 2; 19944 dst += 10; 19945 src += 10; 19946 do { 19947 *dst++ = *src++; 19948 } while (--hdrlen); 19949 } 19950 19951 /* 19952 * Set the ECN info in the TCP header if it is not a zero 19953 * window probe. Zero window probe is only sent in 19954 * tcp_wput_data() and tcp_timer(). 19955 */ 19956 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19957 SET_ECT(tcp, rptr); 19958 19959 if (tcp->tcp_ecn_echo_on) 19960 tcp_h->th_flags[0] |= TH_ECE; 19961 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19962 tcp_h->th_flags[0] |= TH_CWR; 19963 tcp->tcp_ecn_cwr_sent = B_TRUE; 19964 } 19965 } 19966 19967 /* Fill in SACK options */ 19968 if (num_sack_blk > 0) { 19969 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19970 sack_blk_t *tmp; 19971 int32_t i; 19972 19973 wptr[0] = TCPOPT_NOP; 19974 wptr[1] = TCPOPT_NOP; 19975 wptr[2] = TCPOPT_SACK; 19976 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19977 sizeof (sack_blk_t); 19978 wptr += TCPOPT_REAL_SACK_LEN; 19979 19980 tmp = tcp->tcp_sack_list; 19981 for (i = 0; i < num_sack_blk; i++) { 19982 U32_TO_BE32(tmp[i].begin, wptr); 19983 wptr += sizeof (tcp_seq); 19984 U32_TO_BE32(tmp[i].end, wptr); 19985 wptr += sizeof (tcp_seq); 19986 } 19987 tcp_h->th_offset_and_rsrvd[0] += 19988 ((num_sack_blk * 2 + 1) << 4); 19989 } 19990 } 19991 19992 /* 19993 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19994 * the destination address and SAP attribute, and if necessary, the 19995 * hardware checksum offload attribute to a Multidata message. 19996 */ 19997 static int 19998 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19999 const uint32_t start, const uint32_t stuff, const uint32_t end, 20000 const uint32_t flags, tcp_stack_t *tcps) 20001 { 20002 /* Add global destination address & SAP attribute */ 20003 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 20004 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 20005 "destination address+SAP\n")); 20006 20007 if (dlmp != NULL) 20008 TCP_STAT(tcps, tcp_mdt_allocfail); 20009 return (-1); 20010 } 20011 20012 /* Add global hwcksum attribute */ 20013 if (hwcksum && 20014 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 20015 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 20016 "checksum attribute\n")); 20017 20018 TCP_STAT(tcps, tcp_mdt_allocfail); 20019 return (-1); 20020 } 20021 20022 return (0); 20023 } 20024 20025 /* 20026 * Smaller and private version of pdescinfo_t used specifically for TCP, 20027 * which allows for only two payload spans per packet. 20028 */ 20029 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 20030 20031 /* 20032 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 20033 * scheme, and returns one the following: 20034 * 20035 * -1 = failed allocation. 20036 * 0 = success; burst count reached, or usable send window is too small, 20037 * and that we'd rather wait until later before sending again. 20038 */ 20039 static int 20040 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20041 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20042 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20043 const int mdt_thres) 20044 { 20045 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 20046 multidata_t *mmd; 20047 uint_t obsegs, obbytes, hdr_frag_sz; 20048 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 20049 int num_burst_seg, max_pld; 20050 pdesc_t *pkt; 20051 tcp_pdescinfo_t tcp_pkt_info; 20052 pdescinfo_t *pkt_info; 20053 int pbuf_idx, pbuf_idx_nxt; 20054 int seg_len, len, spill, af; 20055 boolean_t add_buffer, zcopy, clusterwide; 20056 boolean_t rconfirm = B_FALSE; 20057 boolean_t done = B_FALSE; 20058 uint32_t cksum; 20059 uint32_t hwcksum_flags; 20060 ire_t *ire = NULL; 20061 ill_t *ill; 20062 ipha_t *ipha; 20063 ip6_t *ip6h; 20064 ipaddr_t src, dst; 20065 ill_zerocopy_capab_t *zc_cap = NULL; 20066 uint16_t *up; 20067 int err; 20068 conn_t *connp; 20069 tcp_stack_t *tcps = tcp->tcp_tcps; 20070 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20071 int usable_mmd, tail_unsent_mmd; 20072 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 20073 mblk_t *xmit_tail_mmd; 20074 20075 #ifdef _BIG_ENDIAN 20076 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 20077 #else 20078 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 20079 #endif 20080 20081 #define PREP_NEW_MULTIDATA() { \ 20082 mmd = NULL; \ 20083 md_mp = md_hbuf = NULL; \ 20084 cur_hdr_off = 0; \ 20085 max_pld = tcp->tcp_mdt_max_pld; \ 20086 pbuf_idx = pbuf_idx_nxt = -1; \ 20087 add_buffer = B_TRUE; \ 20088 zcopy = B_FALSE; \ 20089 } 20090 20091 #define PREP_NEW_PBUF() { \ 20092 md_pbuf = md_pbuf_nxt = NULL; \ 20093 pbuf_idx = pbuf_idx_nxt = -1; \ 20094 cur_pld_off = 0; \ 20095 first_snxt = *snxt; \ 20096 ASSERT(*tail_unsent > 0); \ 20097 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 20098 } 20099 20100 ASSERT(mdt_thres >= mss); 20101 ASSERT(*usable > 0 && *usable > mdt_thres); 20102 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20103 ASSERT(!TCP_IS_DETACHED(tcp)); 20104 ASSERT(tcp->tcp_valid_bits == 0 || 20105 tcp->tcp_valid_bits == TCP_FSS_VALID); 20106 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 20107 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 20108 (tcp->tcp_ipversion == IPV6_VERSION && 20109 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 20110 20111 connp = tcp->tcp_connp; 20112 ASSERT(connp != NULL); 20113 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 20114 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 20115 20116 usable_mmd = tail_unsent_mmd = 0; 20117 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 20118 xmit_tail_mmd = NULL; 20119 /* 20120 * Note that tcp will only declare at most 2 payload spans per 20121 * packet, which is much lower than the maximum allowable number 20122 * of packet spans per Multidata. For this reason, we use the 20123 * privately declared and smaller descriptor info structure, in 20124 * order to save some stack space. 20125 */ 20126 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 20127 20128 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 20129 if (af == AF_INET) { 20130 dst = tcp->tcp_ipha->ipha_dst; 20131 src = tcp->tcp_ipha->ipha_src; 20132 ASSERT(!CLASSD(dst)); 20133 } 20134 ASSERT(af == AF_INET || 20135 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 20136 20137 obsegs = obbytes = 0; 20138 num_burst_seg = tcp->tcp_snd_burst; 20139 md_mp_head = NULL; 20140 PREP_NEW_MULTIDATA(); 20141 20142 /* 20143 * Before we go on further, make sure there is an IRE that we can 20144 * use, and that the ILL supports MDT. Otherwise, there's no point 20145 * in proceeding any further, and we should just hand everything 20146 * off to the legacy path. 20147 */ 20148 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 20149 goto legacy_send_no_md; 20150 20151 ASSERT(ire != NULL); 20152 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 20153 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 20154 ASSERT(af == AF_INET || ire->ire_nce != NULL); 20155 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 20156 /* 20157 * If we do support loopback for MDT (which requires modifications 20158 * to the receiving paths), the following assertions should go away, 20159 * and we would be sending the Multidata to loopback conn later on. 20160 */ 20161 ASSERT(!IRE_IS_LOCAL(ire)); 20162 ASSERT(ire->ire_stq != NULL); 20163 20164 ill = ire_to_ill(ire); 20165 ASSERT(ill != NULL); 20166 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 20167 20168 if (!tcp->tcp_ire_ill_check_done) { 20169 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 20170 tcp->tcp_ire_ill_check_done = B_TRUE; 20171 } 20172 20173 /* 20174 * If the underlying interface conditions have changed, or if the 20175 * new interface does not support MDT, go back to legacy path. 20176 */ 20177 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 20178 /* don't go through this path anymore for this connection */ 20179 TCP_STAT(tcps, tcp_mdt_conn_halted2); 20180 tcp->tcp_mdt = B_FALSE; 20181 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 20182 "interface %s\n", (void *)connp, ill->ill_name)); 20183 /* IRE will be released prior to returning */ 20184 goto legacy_send_no_md; 20185 } 20186 20187 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 20188 zc_cap = ill->ill_zerocopy_capab; 20189 20190 /* 20191 * Check if we can take tcp fast-path. Note that "incomplete" 20192 * ire's (where the link-layer for next hop is not resolved 20193 * or where the fast-path header in nce_fp_mp is not available 20194 * yet) are sent down the legacy (slow) path. 20195 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 20196 */ 20197 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 20198 /* IRE will be released prior to returning */ 20199 goto legacy_send_no_md; 20200 } 20201 20202 /* go to legacy path if interface doesn't support zerocopy */ 20203 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 20204 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 20205 /* IRE will be released prior to returning */ 20206 goto legacy_send_no_md; 20207 } 20208 20209 /* does the interface support hardware checksum offload? */ 20210 hwcksum_flags = 0; 20211 if (ILL_HCKSUM_CAPABLE(ill) && 20212 (ill->ill_hcksum_capab->ill_hcksum_txflags & 20213 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 20214 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 20215 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20216 HCKSUM_IPHDRCKSUM) 20217 hwcksum_flags = HCK_IPV4_HDRCKSUM; 20218 20219 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20220 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 20221 hwcksum_flags |= HCK_FULLCKSUM; 20222 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 20223 HCKSUM_INET_PARTIAL) 20224 hwcksum_flags |= HCK_PARTIALCKSUM; 20225 } 20226 20227 /* 20228 * Each header fragment consists of the leading extra space, 20229 * followed by the TCP/IP header, and the trailing extra space. 20230 * We make sure that each header fragment begins on a 32-bit 20231 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 20232 * aligned in tcp_mdt_update). 20233 */ 20234 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 20235 tcp->tcp_mdt_hdr_tail), 4); 20236 20237 /* are we starting from the beginning of data block? */ 20238 if (*tail_unsent == 0) { 20239 *xmit_tail = (*xmit_tail)->b_cont; 20240 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 20241 *tail_unsent = (int)MBLKL(*xmit_tail); 20242 } 20243 20244 /* 20245 * Here we create one or more Multidata messages, each made up of 20246 * one header buffer and up to N payload buffers. This entire 20247 * operation is done within two loops: 20248 * 20249 * The outer loop mostly deals with creating the Multidata message, 20250 * as well as the header buffer that gets added to it. It also 20251 * links the Multidata messages together such that all of them can 20252 * be sent down to the lower layer in a single putnext call; this 20253 * linking behavior depends on the tcp_mdt_chain tunable. 20254 * 20255 * The inner loop takes an existing Multidata message, and adds 20256 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 20257 * packetizes those buffers by filling up the corresponding header 20258 * buffer fragments with the proper IP and TCP headers, and by 20259 * describing the layout of each packet in the packet descriptors 20260 * that get added to the Multidata. 20261 */ 20262 do { 20263 /* 20264 * If usable send window is too small, or data blocks in 20265 * transmit list are smaller than our threshold (i.e. app 20266 * performs large writes followed by small ones), we hand 20267 * off the control over to the legacy path. Note that we'll 20268 * get back the control once it encounters a large block. 20269 */ 20270 if (*usable < mss || (*tail_unsent <= mdt_thres && 20271 (*xmit_tail)->b_cont != NULL && 20272 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 20273 /* send down what we've got so far */ 20274 if (md_mp_head != NULL) { 20275 tcp_multisend_data(tcp, ire, ill, md_mp_head, 20276 obsegs, obbytes, &rconfirm); 20277 } 20278 /* 20279 * Pass control over to tcp_send(), but tell it to 20280 * return to us once a large-size transmission is 20281 * possible. 20282 */ 20283 TCP_STAT(tcps, tcp_mdt_legacy_small); 20284 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 20285 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 20286 tail_unsent, xmit_tail, local_time, 20287 mdt_thres)) <= 0) { 20288 /* burst count reached, or alloc failed */ 20289 IRE_REFRELE(ire); 20290 return (err); 20291 } 20292 20293 /* tcp_send() may have sent everything, so check */ 20294 if (*usable <= 0) { 20295 IRE_REFRELE(ire); 20296 return (0); 20297 } 20298 20299 TCP_STAT(tcps, tcp_mdt_legacy_ret); 20300 /* 20301 * We may have delivered the Multidata, so make sure 20302 * to re-initialize before the next round. 20303 */ 20304 md_mp_head = NULL; 20305 obsegs = obbytes = 0; 20306 num_burst_seg = tcp->tcp_snd_burst; 20307 PREP_NEW_MULTIDATA(); 20308 20309 /* are we starting from the beginning of data block? */ 20310 if (*tail_unsent == 0) { 20311 *xmit_tail = (*xmit_tail)->b_cont; 20312 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20313 (uintptr_t)INT_MAX); 20314 *tail_unsent = (int)MBLKL(*xmit_tail); 20315 } 20316 } 20317 /* 20318 * Record current values for parameters we may need to pass 20319 * to tcp_send() or tcp_multisend_data(). We checkpoint at 20320 * each iteration of the outer loop (each multidata message 20321 * creation). If we have a failure in the inner loop, we send 20322 * any complete multidata messages we have before reverting 20323 * to using the traditional non-md path. 20324 */ 20325 snxt_mmd = *snxt; 20326 usable_mmd = *usable; 20327 xmit_tail_mmd = *xmit_tail; 20328 tail_unsent_mmd = *tail_unsent; 20329 obsegs_mmd = obsegs; 20330 obbytes_mmd = obbytes; 20331 20332 /* 20333 * max_pld limits the number of mblks in tcp's transmit 20334 * queue that can be added to a Multidata message. Once 20335 * this counter reaches zero, no more additional mblks 20336 * can be added to it. What happens afterwards depends 20337 * on whether or not we are set to chain the Multidata 20338 * messages. If we are to link them together, reset 20339 * max_pld to its original value (tcp_mdt_max_pld) and 20340 * prepare to create a new Multidata message which will 20341 * get linked to md_mp_head. Else, leave it alone and 20342 * let the inner loop break on its own. 20343 */ 20344 if (tcp_mdt_chain && max_pld == 0) 20345 PREP_NEW_MULTIDATA(); 20346 20347 /* adding a payload buffer; re-initialize values */ 20348 if (add_buffer) 20349 PREP_NEW_PBUF(); 20350 20351 /* 20352 * If we don't have a Multidata, either because we just 20353 * (re)entered this outer loop, or after we branched off 20354 * to tcp_send above, setup the Multidata and header 20355 * buffer to be used. 20356 */ 20357 if (md_mp == NULL) { 20358 int md_hbuflen; 20359 uint32_t start, stuff; 20360 20361 /* 20362 * Calculate Multidata header buffer size large enough 20363 * to hold all of the headers that can possibly be 20364 * sent at this moment. We'd rather over-estimate 20365 * the size than running out of space; this is okay 20366 * since this buffer is small anyway. 20367 */ 20368 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20369 20370 /* 20371 * Start and stuff offset for partial hardware 20372 * checksum offload; these are currently for IPv4. 20373 * For full checksum offload, they are set to zero. 20374 */ 20375 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20376 if (af == AF_INET) { 20377 start = IP_SIMPLE_HDR_LENGTH; 20378 stuff = IP_SIMPLE_HDR_LENGTH + 20379 TCP_CHECKSUM_OFFSET; 20380 } else { 20381 start = IPV6_HDR_LEN; 20382 stuff = IPV6_HDR_LEN + 20383 TCP_CHECKSUM_OFFSET; 20384 } 20385 } else { 20386 start = stuff = 0; 20387 } 20388 20389 /* 20390 * Create the header buffer, Multidata, as well as 20391 * any necessary attributes (destination address, 20392 * SAP and hardware checksum offload) that should 20393 * be associated with the Multidata message. 20394 */ 20395 ASSERT(cur_hdr_off == 0); 20396 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20397 ((md_hbuf->b_wptr += md_hbuflen), 20398 (mmd = mmd_alloc(md_hbuf, &md_mp, 20399 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20400 /* fastpath mblk */ 20401 ire->ire_nce->nce_res_mp, 20402 /* hardware checksum enabled */ 20403 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20404 /* hardware checksum offsets */ 20405 start, stuff, 0, 20406 /* hardware checksum flag */ 20407 hwcksum_flags, tcps) != 0)) { 20408 legacy_send: 20409 /* 20410 * We arrive here from a failure within the 20411 * inner (packetizer) loop or we fail one of 20412 * the conditionals above. We restore the 20413 * previously checkpointed values for: 20414 * xmit_tail 20415 * usable 20416 * tail_unsent 20417 * snxt 20418 * obbytes 20419 * obsegs 20420 * We should then be able to dispatch any 20421 * complete multidata before reverting to the 20422 * traditional path with consistent parameters 20423 * (the inner loop updates these as it 20424 * iterates). 20425 */ 20426 *xmit_tail = xmit_tail_mmd; 20427 *usable = usable_mmd; 20428 *tail_unsent = tail_unsent_mmd; 20429 *snxt = snxt_mmd; 20430 obbytes = obbytes_mmd; 20431 obsegs = obsegs_mmd; 20432 if (md_mp != NULL) { 20433 /* Unlink message from the chain */ 20434 if (md_mp_head != NULL) { 20435 err = (intptr_t)rmvb(md_mp_head, 20436 md_mp); 20437 /* 20438 * We can't assert that rmvb 20439 * did not return -1, since we 20440 * may get here before linkb 20441 * happens. We do, however, 20442 * check if we just removed the 20443 * only element in the list. 20444 */ 20445 if (err == 0) 20446 md_mp_head = NULL; 20447 } 20448 /* md_hbuf gets freed automatically */ 20449 TCP_STAT(tcps, tcp_mdt_discarded); 20450 freeb(md_mp); 20451 } else { 20452 /* Either allocb or mmd_alloc failed */ 20453 TCP_STAT(tcps, tcp_mdt_allocfail); 20454 if (md_hbuf != NULL) 20455 freeb(md_hbuf); 20456 } 20457 20458 /* send down what we've got so far */ 20459 if (md_mp_head != NULL) { 20460 tcp_multisend_data(tcp, ire, ill, 20461 md_mp_head, obsegs, obbytes, 20462 &rconfirm); 20463 } 20464 legacy_send_no_md: 20465 if (ire != NULL) 20466 IRE_REFRELE(ire); 20467 /* 20468 * Too bad; let the legacy path handle this. 20469 * We specify INT_MAX for the threshold, since 20470 * we gave up with the Multidata processings 20471 * and let the old path have it all. 20472 */ 20473 TCP_STAT(tcps, tcp_mdt_legacy_all); 20474 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20475 tcp_tcp_hdr_len, num_sack_blk, usable, 20476 snxt, tail_unsent, xmit_tail, local_time, 20477 INT_MAX)); 20478 } 20479 20480 /* link to any existing ones, if applicable */ 20481 TCP_STAT(tcps, tcp_mdt_allocd); 20482 if (md_mp_head == NULL) { 20483 md_mp_head = md_mp; 20484 } else if (tcp_mdt_chain) { 20485 TCP_STAT(tcps, tcp_mdt_linked); 20486 linkb(md_mp_head, md_mp); 20487 } 20488 } 20489 20490 ASSERT(md_mp_head != NULL); 20491 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20492 ASSERT(md_mp != NULL && mmd != NULL); 20493 ASSERT(md_hbuf != NULL); 20494 20495 /* 20496 * Packetize the transmittable portion of the data block; 20497 * each data block is essentially added to the Multidata 20498 * as a payload buffer. We also deal with adding more 20499 * than one payload buffers, which happens when the remaining 20500 * packetized portion of the current payload buffer is less 20501 * than MSS, while the next data block in transmit queue 20502 * has enough data to make up for one. This "spillover" 20503 * case essentially creates a split-packet, where portions 20504 * of the packet's payload fragments may span across two 20505 * virtually discontiguous address blocks. 20506 */ 20507 seg_len = mss; 20508 do { 20509 len = seg_len; 20510 20511 /* one must remain NULL for DTRACE_IP_FASTPATH */ 20512 ipha = NULL; 20513 ip6h = NULL; 20514 20515 ASSERT(len > 0); 20516 ASSERT(max_pld >= 0); 20517 ASSERT(!add_buffer || cur_pld_off == 0); 20518 20519 /* 20520 * First time around for this payload buffer; note 20521 * in the case of a spillover, the following has 20522 * been done prior to adding the split-packet 20523 * descriptor to Multidata, and we don't want to 20524 * repeat the process. 20525 */ 20526 if (add_buffer) { 20527 ASSERT(mmd != NULL); 20528 ASSERT(md_pbuf == NULL); 20529 ASSERT(md_pbuf_nxt == NULL); 20530 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20531 20532 /* 20533 * Have we reached the limit? We'd get to 20534 * this case when we're not chaining the 20535 * Multidata messages together, and since 20536 * we're done, terminate this loop. 20537 */ 20538 if (max_pld == 0) 20539 break; /* done */ 20540 20541 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20542 TCP_STAT(tcps, tcp_mdt_allocfail); 20543 goto legacy_send; /* out_of_mem */ 20544 } 20545 20546 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20547 zc_cap != NULL) { 20548 if (!ip_md_zcopy_attr(mmd, NULL, 20549 zc_cap->ill_zerocopy_flags)) { 20550 freeb(md_pbuf); 20551 TCP_STAT(tcps, 20552 tcp_mdt_allocfail); 20553 /* out_of_mem */ 20554 goto legacy_send; 20555 } 20556 zcopy = B_TRUE; 20557 } 20558 20559 md_pbuf->b_rptr += base_pld_off; 20560 20561 /* 20562 * Add a payload buffer to the Multidata; this 20563 * operation must not fail, or otherwise our 20564 * logic in this routine is broken. There 20565 * is no memory allocation done by the 20566 * routine, so any returned failure simply 20567 * tells us that we've done something wrong. 20568 * 20569 * A failure tells us that either we're adding 20570 * the same payload buffer more than once, or 20571 * we're trying to add more buffers than 20572 * allowed (max_pld calculation is wrong). 20573 * None of the above cases should happen, and 20574 * we panic because either there's horrible 20575 * heap corruption, and/or programming mistake. 20576 */ 20577 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20578 if (pbuf_idx < 0) { 20579 cmn_err(CE_PANIC, "tcp_multisend: " 20580 "payload buffer logic error " 20581 "detected for tcp %p mmd %p " 20582 "pbuf %p (%d)\n", 20583 (void *)tcp, (void *)mmd, 20584 (void *)md_pbuf, pbuf_idx); 20585 } 20586 20587 ASSERT(max_pld > 0); 20588 --max_pld; 20589 add_buffer = B_FALSE; 20590 } 20591 20592 ASSERT(md_mp_head != NULL); 20593 ASSERT(md_pbuf != NULL); 20594 ASSERT(md_pbuf_nxt == NULL); 20595 ASSERT(pbuf_idx != -1); 20596 ASSERT(pbuf_idx_nxt == -1); 20597 ASSERT(*usable > 0); 20598 20599 /* 20600 * We spillover to the next payload buffer only 20601 * if all of the following is true: 20602 * 20603 * 1. There is not enough data on the current 20604 * payload buffer to make up `len', 20605 * 2. We are allowed to send `len', 20606 * 3. The next payload buffer length is large 20607 * enough to accomodate `spill'. 20608 */ 20609 if ((spill = len - *tail_unsent) > 0 && 20610 *usable >= len && 20611 MBLKL((*xmit_tail)->b_cont) >= spill && 20612 max_pld > 0) { 20613 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20614 if (md_pbuf_nxt == NULL) { 20615 TCP_STAT(tcps, tcp_mdt_allocfail); 20616 goto legacy_send; /* out_of_mem */ 20617 } 20618 20619 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20620 zc_cap != NULL) { 20621 if (!ip_md_zcopy_attr(mmd, NULL, 20622 zc_cap->ill_zerocopy_flags)) { 20623 freeb(md_pbuf_nxt); 20624 TCP_STAT(tcps, 20625 tcp_mdt_allocfail); 20626 /* out_of_mem */ 20627 goto legacy_send; 20628 } 20629 zcopy = B_TRUE; 20630 } 20631 20632 /* 20633 * See comments above on the first call to 20634 * mmd_addpldbuf for explanation on the panic. 20635 */ 20636 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20637 if (pbuf_idx_nxt < 0) { 20638 panic("tcp_multisend: " 20639 "next payload buffer logic error " 20640 "detected for tcp %p mmd %p " 20641 "pbuf %p (%d)\n", 20642 (void *)tcp, (void *)mmd, 20643 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20644 } 20645 20646 ASSERT(max_pld > 0); 20647 --max_pld; 20648 } else if (spill > 0) { 20649 /* 20650 * If there's a spillover, but the following 20651 * xmit_tail couldn't give us enough octets 20652 * to reach "len", then stop the current 20653 * Multidata creation and let the legacy 20654 * tcp_send() path take over. We don't want 20655 * to send the tiny segment as part of this 20656 * Multidata for performance reasons; instead, 20657 * we let the legacy path deal with grouping 20658 * it with the subsequent small mblks. 20659 */ 20660 if (*usable >= len && 20661 MBLKL((*xmit_tail)->b_cont) < spill) { 20662 max_pld = 0; 20663 break; /* done */ 20664 } 20665 20666 /* 20667 * We can't spillover, and we are near 20668 * the end of the current payload buffer, 20669 * so send what's left. 20670 */ 20671 ASSERT(*tail_unsent > 0); 20672 len = *tail_unsent; 20673 } 20674 20675 /* tail_unsent is negated if there is a spillover */ 20676 *tail_unsent -= len; 20677 *usable -= len; 20678 ASSERT(*usable >= 0); 20679 20680 if (*usable < mss) 20681 seg_len = *usable; 20682 /* 20683 * Sender SWS avoidance; see comments in tcp_send(); 20684 * everything else is the same, except that we only 20685 * do this here if there is no more data to be sent 20686 * following the current xmit_tail. We don't check 20687 * for 1-byte urgent data because we shouldn't get 20688 * here if TCP_URG_VALID is set. 20689 */ 20690 if (*usable > 0 && *usable < mss && 20691 ((md_pbuf_nxt == NULL && 20692 (*xmit_tail)->b_cont == NULL) || 20693 (md_pbuf_nxt != NULL && 20694 (*xmit_tail)->b_cont->b_cont == NULL)) && 20695 seg_len < (tcp->tcp_max_swnd >> 1) && 20696 (tcp->tcp_unsent - 20697 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20698 !tcp->tcp_zero_win_probe) { 20699 if ((*snxt + len) == tcp->tcp_snxt && 20700 (*snxt + len) == tcp->tcp_suna) { 20701 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20702 } 20703 done = B_TRUE; 20704 } 20705 20706 /* 20707 * Prime pump for IP's checksumming on our behalf; 20708 * include the adjustment for a source route if any. 20709 * Do this only for software/partial hardware checksum 20710 * offload, as this field gets zeroed out later for 20711 * the full hardware checksum offload case. 20712 */ 20713 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20714 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20715 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20716 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20717 } 20718 20719 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20720 *snxt += len; 20721 20722 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20723 /* 20724 * We set the PUSH bit only if TCP has no more buffered 20725 * data to be transmitted (or if sender SWS avoidance 20726 * takes place), as opposed to setting it for every 20727 * last packet in the burst. 20728 */ 20729 if (done || 20730 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20731 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20732 20733 /* 20734 * Set FIN bit if this is our last segment; snxt 20735 * already includes its length, and it will not 20736 * be adjusted after this point. 20737 */ 20738 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20739 *snxt == tcp->tcp_fss) { 20740 if (!tcp->tcp_fin_acked) { 20741 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20742 BUMP_MIB(&tcps->tcps_mib, 20743 tcpOutControl); 20744 } 20745 if (!tcp->tcp_fin_sent) { 20746 tcp->tcp_fin_sent = B_TRUE; 20747 /* 20748 * tcp state must be ESTABLISHED 20749 * in order for us to get here in 20750 * the first place. 20751 */ 20752 tcp->tcp_state = TCPS_FIN_WAIT_1; 20753 20754 /* 20755 * Upon returning from this routine, 20756 * tcp_wput_data() will set tcp_snxt 20757 * to be equal to snxt + tcp_fin_sent. 20758 * This is essentially the same as 20759 * setting it to tcp_fss + 1. 20760 */ 20761 } 20762 } 20763 20764 tcp->tcp_last_sent_len = (ushort_t)len; 20765 20766 len += tcp_hdr_len; 20767 if (tcp->tcp_ipversion == IPV4_VERSION) 20768 tcp->tcp_ipha->ipha_length = htons(len); 20769 else 20770 tcp->tcp_ip6h->ip6_plen = htons(len - 20771 ((char *)&tcp->tcp_ip6h[1] - 20772 tcp->tcp_iphc)); 20773 20774 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20775 20776 /* setup header fragment */ 20777 PDESC_HDR_ADD(pkt_info, 20778 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20779 tcp->tcp_mdt_hdr_head, /* head room */ 20780 tcp_hdr_len, /* len */ 20781 tcp->tcp_mdt_hdr_tail); /* tail room */ 20782 20783 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20784 hdr_frag_sz); 20785 ASSERT(MBLKIN(md_hbuf, 20786 (pkt_info->hdr_base - md_hbuf->b_rptr), 20787 PDESC_HDRSIZE(pkt_info))); 20788 20789 /* setup first payload fragment */ 20790 PDESC_PLD_INIT(pkt_info); 20791 PDESC_PLD_SPAN_ADD(pkt_info, 20792 pbuf_idx, /* index */ 20793 md_pbuf->b_rptr + cur_pld_off, /* start */ 20794 tcp->tcp_last_sent_len); /* len */ 20795 20796 /* create a split-packet in case of a spillover */ 20797 if (md_pbuf_nxt != NULL) { 20798 ASSERT(spill > 0); 20799 ASSERT(pbuf_idx_nxt > pbuf_idx); 20800 ASSERT(!add_buffer); 20801 20802 md_pbuf = md_pbuf_nxt; 20803 md_pbuf_nxt = NULL; 20804 pbuf_idx = pbuf_idx_nxt; 20805 pbuf_idx_nxt = -1; 20806 cur_pld_off = spill; 20807 20808 /* trim out first payload fragment */ 20809 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20810 20811 /* setup second payload fragment */ 20812 PDESC_PLD_SPAN_ADD(pkt_info, 20813 pbuf_idx, /* index */ 20814 md_pbuf->b_rptr, /* start */ 20815 spill); /* len */ 20816 20817 if ((*xmit_tail)->b_next == NULL) { 20818 /* 20819 * Store the lbolt used for RTT 20820 * estimation. We can only record one 20821 * timestamp per mblk so we do it when 20822 * we reach the end of the payload 20823 * buffer. Also we only take a new 20824 * timestamp sample when the previous 20825 * timed data from the same mblk has 20826 * been ack'ed. 20827 */ 20828 (*xmit_tail)->b_prev = local_time; 20829 (*xmit_tail)->b_next = 20830 (mblk_t *)(uintptr_t)first_snxt; 20831 } 20832 20833 first_snxt = *snxt - spill; 20834 20835 /* 20836 * Advance xmit_tail; usable could be 0 by 20837 * the time we got here, but we made sure 20838 * above that we would only spillover to 20839 * the next data block if usable includes 20840 * the spilled-over amount prior to the 20841 * subtraction. Therefore, we are sure 20842 * that xmit_tail->b_cont can't be NULL. 20843 */ 20844 ASSERT((*xmit_tail)->b_cont != NULL); 20845 *xmit_tail = (*xmit_tail)->b_cont; 20846 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20847 (uintptr_t)INT_MAX); 20848 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20849 } else { 20850 cur_pld_off += tcp->tcp_last_sent_len; 20851 } 20852 20853 /* 20854 * Fill in the header using the template header, and 20855 * add options such as time-stamp, ECN and/or SACK, 20856 * as needed. 20857 */ 20858 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20859 (clock_t)local_time, num_sack_blk); 20860 20861 /* take care of some IP header businesses */ 20862 if (af == AF_INET) { 20863 ipha = (ipha_t *)pkt_info->hdr_rptr; 20864 20865 ASSERT(OK_32PTR((uchar_t *)ipha)); 20866 ASSERT(PDESC_HDRL(pkt_info) >= 20867 IP_SIMPLE_HDR_LENGTH); 20868 ASSERT(ipha->ipha_version_and_hdr_length == 20869 IP_SIMPLE_HDR_VERSION); 20870 20871 /* 20872 * Assign ident value for current packet; see 20873 * related comments in ip_wput_ire() about the 20874 * contract private interface with clustering 20875 * group. 20876 */ 20877 clusterwide = B_FALSE; 20878 if (cl_inet_ipident != NULL) { 20879 ASSERT(cl_inet_isclusterwide != NULL); 20880 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20881 AF_INET, 20882 (uint8_t *)(uintptr_t)src)) { 20883 ipha->ipha_ident = 20884 (*cl_inet_ipident) 20885 (IPPROTO_IP, AF_INET, 20886 (uint8_t *)(uintptr_t)src, 20887 (uint8_t *)(uintptr_t)dst); 20888 clusterwide = B_TRUE; 20889 } 20890 } 20891 20892 if (!clusterwide) { 20893 ipha->ipha_ident = (uint16_t) 20894 atomic_add_32_nv( 20895 &ire->ire_ident, 1); 20896 } 20897 #ifndef _BIG_ENDIAN 20898 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20899 (ipha->ipha_ident >> 8); 20900 #endif 20901 } else { 20902 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20903 20904 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20905 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20906 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20907 ASSERT(PDESC_HDRL(pkt_info) >= 20908 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20909 TCP_CHECKSUM_SIZE)); 20910 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20911 20912 if (tcp->tcp_ip_forward_progress) { 20913 rconfirm = B_TRUE; 20914 tcp->tcp_ip_forward_progress = B_FALSE; 20915 } 20916 } 20917 20918 /* at least one payload span, and at most two */ 20919 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20920 20921 /* add the packet descriptor to Multidata */ 20922 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20923 KM_NOSLEEP)) == NULL) { 20924 /* 20925 * Any failure other than ENOMEM indicates 20926 * that we have passed in invalid pkt_info 20927 * or parameters to mmd_addpdesc, which must 20928 * not happen. 20929 * 20930 * EINVAL is a result of failure on boundary 20931 * checks against the pkt_info contents. It 20932 * should not happen, and we panic because 20933 * either there's horrible heap corruption, 20934 * and/or programming mistake. 20935 */ 20936 if (err != ENOMEM) { 20937 cmn_err(CE_PANIC, "tcp_multisend: " 20938 "pdesc logic error detected for " 20939 "tcp %p mmd %p pinfo %p (%d)\n", 20940 (void *)tcp, (void *)mmd, 20941 (void *)pkt_info, err); 20942 } 20943 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20944 goto legacy_send; /* out_of_mem */ 20945 } 20946 ASSERT(pkt != NULL); 20947 20948 /* calculate IP header and TCP checksums */ 20949 if (af == AF_INET) { 20950 /* calculate pseudo-header checksum */ 20951 cksum = (dst >> 16) + (dst & 0xFFFF) + 20952 (src >> 16) + (src & 0xFFFF); 20953 20954 /* offset for TCP header checksum */ 20955 up = IPH_TCPH_CHECKSUMP(ipha, 20956 IP_SIMPLE_HDR_LENGTH); 20957 } else { 20958 up = (uint16_t *)&ip6h->ip6_src; 20959 20960 /* calculate pseudo-header checksum */ 20961 cksum = up[0] + up[1] + up[2] + up[3] + 20962 up[4] + up[5] + up[6] + up[7] + 20963 up[8] + up[9] + up[10] + up[11] + 20964 up[12] + up[13] + up[14] + up[15]; 20965 20966 /* Fold the initial sum */ 20967 cksum = (cksum & 0xffff) + (cksum >> 16); 20968 20969 up = (uint16_t *)(((uchar_t *)ip6h) + 20970 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20971 } 20972 20973 if (hwcksum_flags & HCK_FULLCKSUM) { 20974 /* clear checksum field for hardware */ 20975 *up = 0; 20976 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20977 uint32_t sum; 20978 20979 /* pseudo-header checksumming */ 20980 sum = *up + cksum + IP_TCP_CSUM_COMP; 20981 sum = (sum & 0xFFFF) + (sum >> 16); 20982 *up = (sum & 0xFFFF) + (sum >> 16); 20983 } else { 20984 /* software checksumming */ 20985 TCP_STAT(tcps, tcp_out_sw_cksum); 20986 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20987 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20988 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20989 cksum + IP_TCP_CSUM_COMP); 20990 if (*up == 0) 20991 *up = 0xFFFF; 20992 } 20993 20994 /* IPv4 header checksum */ 20995 if (af == AF_INET) { 20996 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20997 ipha->ipha_hdr_checksum = 0; 20998 } else { 20999 IP_HDR_CKSUM(ipha, cksum, 21000 ((uint32_t *)ipha)[0], 21001 ((uint16_t *)ipha)[4]); 21002 } 21003 } 21004 21005 if (af == AF_INET && 21006 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 21007 af == AF_INET6 && 21008 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 21009 mblk_t *mp, *mp1; 21010 uchar_t *hdr_rptr, *hdr_wptr; 21011 uchar_t *pld_rptr, *pld_wptr; 21012 21013 /* 21014 * We reconstruct a pseudo packet for the hooks 21015 * framework using mmd_transform_link(). 21016 * If it is a split packet we pullup the 21017 * payload. FW_HOOKS expects a pkt comprising 21018 * of two mblks: a header and the payload. 21019 */ 21020 if ((mp = mmd_transform_link(pkt)) == NULL) { 21021 TCP_STAT(tcps, tcp_mdt_allocfail); 21022 goto legacy_send; 21023 } 21024 21025 if (pkt_info->pld_cnt > 1) { 21026 /* split payload, more than one pld */ 21027 if ((mp1 = msgpullup(mp->b_cont, -1)) == 21028 NULL) { 21029 freemsg(mp); 21030 TCP_STAT(tcps, 21031 tcp_mdt_allocfail); 21032 goto legacy_send; 21033 } 21034 freemsg(mp->b_cont); 21035 mp->b_cont = mp1; 21036 } else { 21037 mp1 = mp->b_cont; 21038 } 21039 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 21040 21041 /* 21042 * Remember the message offsets. This is so we 21043 * can detect changes when we return from the 21044 * FW_HOOKS callbacks. 21045 */ 21046 hdr_rptr = mp->b_rptr; 21047 hdr_wptr = mp->b_wptr; 21048 pld_rptr = mp->b_cont->b_rptr; 21049 pld_wptr = mp->b_cont->b_wptr; 21050 21051 if (af == AF_INET) { 21052 DTRACE_PROBE4( 21053 ip4__physical__out__start, 21054 ill_t *, NULL, 21055 ill_t *, ill, 21056 ipha_t *, ipha, 21057 mblk_t *, mp); 21058 FW_HOOKS( 21059 ipst->ips_ip4_physical_out_event, 21060 ipst->ips_ipv4firewall_physical_out, 21061 NULL, ill, ipha, mp, mp, 0, ipst); 21062 DTRACE_PROBE1( 21063 ip4__physical__out__end, 21064 mblk_t *, mp); 21065 } else { 21066 DTRACE_PROBE4( 21067 ip6__physical__out_start, 21068 ill_t *, NULL, 21069 ill_t *, ill, 21070 ip6_t *, ip6h, 21071 mblk_t *, mp); 21072 FW_HOOKS6( 21073 ipst->ips_ip6_physical_out_event, 21074 ipst->ips_ipv6firewall_physical_out, 21075 NULL, ill, ip6h, mp, mp, 0, ipst); 21076 DTRACE_PROBE1( 21077 ip6__physical__out__end, 21078 mblk_t *, mp); 21079 } 21080 21081 if (mp == NULL || 21082 (mp1 = mp->b_cont) == NULL || 21083 mp->b_rptr != hdr_rptr || 21084 mp->b_wptr != hdr_wptr || 21085 mp1->b_rptr != pld_rptr || 21086 mp1->b_wptr != pld_wptr || 21087 mp1->b_cont != NULL) { 21088 /* 21089 * We abandon multidata processing and 21090 * return to the normal path, either 21091 * when a packet is blocked, or when 21092 * the boundaries of header buffer or 21093 * payload buffer have been changed by 21094 * FW_HOOKS[6]. 21095 */ 21096 if (mp != NULL) 21097 freemsg(mp); 21098 goto legacy_send; 21099 } 21100 /* Finished with the pseudo packet */ 21101 freemsg(mp); 21102 } 21103 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 21104 ill, ipha, ip6h); 21105 /* advance header offset */ 21106 cur_hdr_off += hdr_frag_sz; 21107 21108 obbytes += tcp->tcp_last_sent_len; 21109 ++obsegs; 21110 } while (!done && *usable > 0 && --num_burst_seg > 0 && 21111 *tail_unsent > 0); 21112 21113 if ((*xmit_tail)->b_next == NULL) { 21114 /* 21115 * Store the lbolt used for RTT estimation. We can only 21116 * record one timestamp per mblk so we do it when we 21117 * reach the end of the payload buffer. Also we only 21118 * take a new timestamp sample when the previous timed 21119 * data from the same mblk has been ack'ed. 21120 */ 21121 (*xmit_tail)->b_prev = local_time; 21122 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 21123 } 21124 21125 ASSERT(*tail_unsent >= 0); 21126 if (*tail_unsent > 0) { 21127 /* 21128 * We got here because we broke out of the above 21129 * loop due to of one of the following cases: 21130 * 21131 * 1. len < adjusted MSS (i.e. small), 21132 * 2. Sender SWS avoidance, 21133 * 3. max_pld is zero. 21134 * 21135 * We are done for this Multidata, so trim our 21136 * last payload buffer (if any) accordingly. 21137 */ 21138 if (md_pbuf != NULL) 21139 md_pbuf->b_wptr -= *tail_unsent; 21140 } else if (*usable > 0) { 21141 *xmit_tail = (*xmit_tail)->b_cont; 21142 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 21143 (uintptr_t)INT_MAX); 21144 *tail_unsent = (int)MBLKL(*xmit_tail); 21145 add_buffer = B_TRUE; 21146 } 21147 } while (!done && *usable > 0 && num_burst_seg > 0 && 21148 (tcp_mdt_chain || max_pld > 0)); 21149 21150 if (md_mp_head != NULL) { 21151 /* send everything down */ 21152 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 21153 &rconfirm); 21154 } 21155 21156 #undef PREP_NEW_MULTIDATA 21157 #undef PREP_NEW_PBUF 21158 #undef IPVER 21159 21160 IRE_REFRELE(ire); 21161 return (0); 21162 } 21163 21164 /* 21165 * A wrapper function for sending one or more Multidata messages down to 21166 * the module below ip; this routine does not release the reference of the 21167 * IRE (caller does that). This routine is analogous to tcp_send_data(). 21168 */ 21169 static void 21170 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 21171 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 21172 { 21173 uint64_t delta; 21174 nce_t *nce; 21175 tcp_stack_t *tcps = tcp->tcp_tcps; 21176 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21177 21178 ASSERT(ire != NULL && ill != NULL); 21179 ASSERT(ire->ire_stq != NULL); 21180 ASSERT(md_mp_head != NULL); 21181 ASSERT(rconfirm != NULL); 21182 21183 /* adjust MIBs and IRE timestamp */ 21184 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 21185 tcp->tcp_obsegs += obsegs; 21186 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 21187 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 21188 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 21189 21190 if (tcp->tcp_ipversion == IPV4_VERSION) { 21191 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 21192 } else { 21193 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 21194 } 21195 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 21196 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 21197 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 21198 21199 ire->ire_ob_pkt_count += obsegs; 21200 if (ire->ire_ipif != NULL) 21201 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 21202 ire->ire_last_used_time = lbolt; 21203 21204 if (ipst->ips_ipobs_enabled) { 21205 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 21206 pdesc_t *dl_pkt; 21207 pdescinfo_t pinfo; 21208 mblk_t *nmp; 21209 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 21210 21211 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 21212 (dl_pkt != NULL); 21213 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 21214 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 21215 continue; 21216 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 21217 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 21218 freemsg(nmp); 21219 } 21220 } 21221 21222 /* send it down */ 21223 putnext(ire->ire_stq, md_mp_head); 21224 21225 /* we're done for TCP/IPv4 */ 21226 if (tcp->tcp_ipversion == IPV4_VERSION) 21227 return; 21228 21229 nce = ire->ire_nce; 21230 21231 ASSERT(nce != NULL); 21232 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 21233 ASSERT(nce->nce_state != ND_INCOMPLETE); 21234 21235 /* reachability confirmation? */ 21236 if (*rconfirm) { 21237 nce->nce_last = TICK_TO_MSEC(lbolt64); 21238 if (nce->nce_state != ND_REACHABLE) { 21239 mutex_enter(&nce->nce_lock); 21240 nce->nce_state = ND_REACHABLE; 21241 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 21242 mutex_exit(&nce->nce_lock); 21243 (void) untimeout(nce->nce_timeout_id); 21244 if (ip_debug > 2) { 21245 /* ip1dbg */ 21246 pr_addr_dbg("tcp_multisend_data: state " 21247 "for %s changed to REACHABLE\n", 21248 AF_INET6, &ire->ire_addr_v6); 21249 } 21250 } 21251 /* reset transport reachability confirmation */ 21252 *rconfirm = B_FALSE; 21253 } 21254 21255 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 21256 ip1dbg(("tcp_multisend_data: delta = %" PRId64 21257 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 21258 21259 if (delta > (uint64_t)ill->ill_reachable_time) { 21260 mutex_enter(&nce->nce_lock); 21261 switch (nce->nce_state) { 21262 case ND_REACHABLE: 21263 case ND_STALE: 21264 /* 21265 * ND_REACHABLE is identical to ND_STALE in this 21266 * specific case. If reachable time has expired for 21267 * this neighbor (delta is greater than reachable 21268 * time), conceptually, the neighbor cache is no 21269 * longer in REACHABLE state, but already in STALE 21270 * state. So the correct transition here is to 21271 * ND_DELAY. 21272 */ 21273 nce->nce_state = ND_DELAY; 21274 mutex_exit(&nce->nce_lock); 21275 NDP_RESTART_TIMER(nce, 21276 ipst->ips_delay_first_probe_time); 21277 if (ip_debug > 3) { 21278 /* ip2dbg */ 21279 pr_addr_dbg("tcp_multisend_data: state " 21280 "for %s changed to DELAY\n", 21281 AF_INET6, &ire->ire_addr_v6); 21282 } 21283 break; 21284 case ND_DELAY: 21285 case ND_PROBE: 21286 mutex_exit(&nce->nce_lock); 21287 /* Timers have already started */ 21288 break; 21289 case ND_UNREACHABLE: 21290 /* 21291 * ndp timer has detected that this nce is 21292 * unreachable and initiated deleting this nce 21293 * and all its associated IREs. This is a race 21294 * where we found the ire before it was deleted 21295 * and have just sent out a packet using this 21296 * unreachable nce. 21297 */ 21298 mutex_exit(&nce->nce_lock); 21299 break; 21300 default: 21301 ASSERT(0); 21302 } 21303 } 21304 } 21305 21306 /* 21307 * Derived from tcp_send_data(). 21308 */ 21309 static void 21310 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 21311 int num_lso_seg) 21312 { 21313 ipha_t *ipha; 21314 mblk_t *ire_fp_mp; 21315 uint_t ire_fp_mp_len; 21316 uint32_t hcksum_txflags = 0; 21317 ipaddr_t src; 21318 ipaddr_t dst; 21319 uint32_t cksum; 21320 uint16_t *up; 21321 tcp_stack_t *tcps = tcp->tcp_tcps; 21322 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21323 21324 ASSERT(DB_TYPE(mp) == M_DATA); 21325 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 21326 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 21327 ASSERT(tcp->tcp_connp != NULL); 21328 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 21329 21330 ipha = (ipha_t *)mp->b_rptr; 21331 src = ipha->ipha_src; 21332 dst = ipha->ipha_dst; 21333 21334 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 21335 21336 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 21337 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 21338 num_lso_seg); 21339 #ifndef _BIG_ENDIAN 21340 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 21341 #endif 21342 if (tcp->tcp_snd_zcopy_aware) { 21343 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 21344 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 21345 mp = tcp_zcopy_disable(tcp, mp); 21346 } 21347 21348 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 21349 ASSERT(ill->ill_hcksum_capab != NULL); 21350 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 21351 } 21352 21353 /* 21354 * Since the TCP checksum should be recalculated by h/w, we can just 21355 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21356 * pseudo-header checksum for HCK_PARTIALCKSUM. 21357 * The partial pseudo-header excludes TCP length, that was calculated 21358 * in tcp_send(), so to zero *up before further processing. 21359 */ 21360 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21361 21362 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21363 *up = 0; 21364 21365 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21366 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21367 21368 /* 21369 * Append LSO flags and mss to the mp. 21370 */ 21371 lso_info_set(mp, mss, HW_LSO); 21372 21373 ipha->ipha_fragment_offset_and_flags |= 21374 (uint32_t)htons(ire->ire_frag_flag); 21375 21376 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21377 ire_fp_mp_len = MBLKL(ire_fp_mp); 21378 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21379 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21380 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21381 21382 UPDATE_OB_PKT_COUNT(ire); 21383 ire->ire_last_used_time = lbolt; 21384 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21385 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21386 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21387 ntohs(ipha->ipha_length)); 21388 21389 DTRACE_PROBE4(ip4__physical__out__start, 21390 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 21391 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21392 ipst->ips_ipv4firewall_physical_out, NULL, 21393 ill, ipha, mp, mp, 0, ipst); 21394 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21395 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 21396 21397 if (mp != NULL) { 21398 if (ipst->ips_ipobs_enabled) { 21399 zoneid_t szone; 21400 21401 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 21402 ipst, ALL_ZONES); 21403 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 21404 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 21405 } 21406 21407 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0); 21408 } 21409 } 21410 21411 /* 21412 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21413 * scheme, and returns one of the following: 21414 * 21415 * -1 = failed allocation. 21416 * 0 = success; burst count reached, or usable send window is too small, 21417 * and that we'd rather wait until later before sending again. 21418 * 1 = success; we are called from tcp_multisend(), and both usable send 21419 * window and tail_unsent are greater than the MDT threshold, and thus 21420 * Multidata Transmit should be used instead. 21421 */ 21422 static int 21423 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21424 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21425 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21426 const int mdt_thres) 21427 { 21428 int num_burst_seg = tcp->tcp_snd_burst; 21429 ire_t *ire = NULL; 21430 ill_t *ill = NULL; 21431 mblk_t *ire_fp_mp = NULL; 21432 uint_t ire_fp_mp_len = 0; 21433 int num_lso_seg = 1; 21434 uint_t lso_usable; 21435 boolean_t do_lso_send = B_FALSE; 21436 tcp_stack_t *tcps = tcp->tcp_tcps; 21437 21438 /* 21439 * Check LSO capability before any further work. And the similar check 21440 * need to be done in for(;;) loop. 21441 * LSO will be deployed when therer is more than one mss of available 21442 * data and a burst transmission is allowed. 21443 */ 21444 if (tcp->tcp_lso && 21445 (tcp->tcp_valid_bits == 0 || 21446 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21447 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21448 /* 21449 * Try to find usable IRE/ILL and do basic check to the ILL. 21450 */ 21451 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21452 /* 21453 * Enable LSO with this transmission. 21454 * Since IRE has been hold in 21455 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21456 * should be called before return. 21457 */ 21458 do_lso_send = B_TRUE; 21459 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21460 ire_fp_mp_len = MBLKL(ire_fp_mp); 21461 /* Round up to multiple of 4 */ 21462 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21463 } else { 21464 do_lso_send = B_FALSE; 21465 ill = NULL; 21466 } 21467 } 21468 21469 for (;;) { 21470 struct datab *db; 21471 tcph_t *tcph; 21472 uint32_t sum; 21473 mblk_t *mp, *mp1; 21474 uchar_t *rptr; 21475 int len; 21476 21477 /* 21478 * If we're called by tcp_multisend(), and the amount of 21479 * sendable data as well as the size of current xmit_tail 21480 * is beyond the MDT threshold, return to the caller and 21481 * let the large data transmit be done using MDT. 21482 */ 21483 if (*usable > 0 && *usable > mdt_thres && 21484 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21485 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21486 ASSERT(tcp->tcp_mdt); 21487 return (1); /* success; do large send */ 21488 } 21489 21490 if (num_burst_seg == 0) 21491 break; /* success; burst count reached */ 21492 21493 /* 21494 * Calculate the maximum payload length we can send in *one* 21495 * time. 21496 */ 21497 if (do_lso_send) { 21498 /* 21499 * Check whether need to do LSO any more. 21500 */ 21501 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21502 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21503 lso_usable = MIN(lso_usable, 21504 num_burst_seg * mss); 21505 21506 num_lso_seg = lso_usable / mss; 21507 if (lso_usable % mss) { 21508 num_lso_seg++; 21509 tcp->tcp_last_sent_len = (ushort_t) 21510 (lso_usable % mss); 21511 } else { 21512 tcp->tcp_last_sent_len = (ushort_t)mss; 21513 } 21514 } else { 21515 do_lso_send = B_FALSE; 21516 num_lso_seg = 1; 21517 lso_usable = mss; 21518 } 21519 } 21520 21521 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21522 21523 /* 21524 * Adjust num_burst_seg here. 21525 */ 21526 num_burst_seg -= num_lso_seg; 21527 21528 len = mss; 21529 if (len > *usable) { 21530 ASSERT(do_lso_send == B_FALSE); 21531 21532 len = *usable; 21533 if (len <= 0) { 21534 /* Terminate the loop */ 21535 break; /* success; too small */ 21536 } 21537 /* 21538 * Sender silly-window avoidance. 21539 * Ignore this if we are going to send a 21540 * zero window probe out. 21541 * 21542 * TODO: force data into microscopic window? 21543 * ==> (!pushed || (unsent > usable)) 21544 */ 21545 if (len < (tcp->tcp_max_swnd >> 1) && 21546 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21547 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21548 len == 1) && (! tcp->tcp_zero_win_probe)) { 21549 /* 21550 * If the retransmit timer is not running 21551 * we start it so that we will retransmit 21552 * in the case when the the receiver has 21553 * decremented the window. 21554 */ 21555 if (*snxt == tcp->tcp_snxt && 21556 *snxt == tcp->tcp_suna) { 21557 /* 21558 * We are not supposed to send 21559 * anything. So let's wait a little 21560 * bit longer before breaking SWS 21561 * avoidance. 21562 * 21563 * What should the value be? 21564 * Suggestion: MAX(init rexmit time, 21565 * tcp->tcp_rto) 21566 */ 21567 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21568 } 21569 break; /* success; too small */ 21570 } 21571 } 21572 21573 tcph = tcp->tcp_tcph; 21574 21575 /* 21576 * The reason to adjust len here is that we need to set flags 21577 * and calculate checksum. 21578 */ 21579 if (do_lso_send) 21580 len = lso_usable; 21581 21582 *usable -= len; /* Approximate - can be adjusted later */ 21583 if (*usable > 0) 21584 tcph->th_flags[0] = TH_ACK; 21585 else 21586 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21587 21588 /* 21589 * Prime pump for IP's checksumming on our behalf 21590 * Include the adjustment for a source route if any. 21591 */ 21592 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21593 sum = (sum >> 16) + (sum & 0xFFFF); 21594 U16_TO_ABE16(sum, tcph->th_sum); 21595 21596 U32_TO_ABE32(*snxt, tcph->th_seq); 21597 21598 /* 21599 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21600 * set. For the case when TCP_FSS_VALID is the only valid 21601 * bit (normal active close), branch off only when we think 21602 * that the FIN flag needs to be set. Note for this case, 21603 * that (snxt + len) may not reflect the actual seg_len, 21604 * as len may be further reduced in tcp_xmit_mp(). If len 21605 * gets modified, we will end up here again. 21606 */ 21607 if (tcp->tcp_valid_bits != 0 && 21608 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21609 ((*snxt + len) == tcp->tcp_fss))) { 21610 uchar_t *prev_rptr; 21611 uint32_t prev_snxt = tcp->tcp_snxt; 21612 21613 if (*tail_unsent == 0) { 21614 ASSERT((*xmit_tail)->b_cont != NULL); 21615 *xmit_tail = (*xmit_tail)->b_cont; 21616 prev_rptr = (*xmit_tail)->b_rptr; 21617 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21618 (*xmit_tail)->b_rptr); 21619 } else { 21620 prev_rptr = (*xmit_tail)->b_rptr; 21621 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21622 *tail_unsent; 21623 } 21624 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21625 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21626 /* Restore tcp_snxt so we get amount sent right. */ 21627 tcp->tcp_snxt = prev_snxt; 21628 if (prev_rptr == (*xmit_tail)->b_rptr) { 21629 /* 21630 * If the previous timestamp is still in use, 21631 * don't stomp on it. 21632 */ 21633 if ((*xmit_tail)->b_next == NULL) { 21634 (*xmit_tail)->b_prev = local_time; 21635 (*xmit_tail)->b_next = 21636 (mblk_t *)(uintptr_t)(*snxt); 21637 } 21638 } else 21639 (*xmit_tail)->b_rptr = prev_rptr; 21640 21641 if (mp == NULL) { 21642 if (ire != NULL) 21643 IRE_REFRELE(ire); 21644 return (-1); 21645 } 21646 mp1 = mp->b_cont; 21647 21648 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21649 tcp->tcp_last_sent_len = (ushort_t)len; 21650 while (mp1->b_cont) { 21651 *xmit_tail = (*xmit_tail)->b_cont; 21652 (*xmit_tail)->b_prev = local_time; 21653 (*xmit_tail)->b_next = 21654 (mblk_t *)(uintptr_t)(*snxt); 21655 mp1 = mp1->b_cont; 21656 } 21657 *snxt += len; 21658 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21659 BUMP_LOCAL(tcp->tcp_obsegs); 21660 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21661 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21662 tcp_send_data(tcp, q, mp); 21663 continue; 21664 } 21665 21666 *snxt += len; /* Adjust later if we don't send all of len */ 21667 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21668 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21669 21670 if (*tail_unsent) { 21671 /* Are the bytes above us in flight? */ 21672 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21673 if (rptr != (*xmit_tail)->b_rptr) { 21674 *tail_unsent -= len; 21675 if (len <= mss) /* LSO is unusable */ 21676 tcp->tcp_last_sent_len = (ushort_t)len; 21677 len += tcp_hdr_len; 21678 if (tcp->tcp_ipversion == IPV4_VERSION) 21679 tcp->tcp_ipha->ipha_length = htons(len); 21680 else 21681 tcp->tcp_ip6h->ip6_plen = 21682 htons(len - 21683 ((char *)&tcp->tcp_ip6h[1] - 21684 tcp->tcp_iphc)); 21685 mp = dupb(*xmit_tail); 21686 if (mp == NULL) { 21687 if (ire != NULL) 21688 IRE_REFRELE(ire); 21689 return (-1); /* out_of_mem */ 21690 } 21691 mp->b_rptr = rptr; 21692 /* 21693 * If the old timestamp is no longer in use, 21694 * sample a new timestamp now. 21695 */ 21696 if ((*xmit_tail)->b_next == NULL) { 21697 (*xmit_tail)->b_prev = local_time; 21698 (*xmit_tail)->b_next = 21699 (mblk_t *)(uintptr_t)(*snxt-len); 21700 } 21701 goto must_alloc; 21702 } 21703 } else { 21704 *xmit_tail = (*xmit_tail)->b_cont; 21705 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21706 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21707 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21708 (*xmit_tail)->b_rptr); 21709 } 21710 21711 (*xmit_tail)->b_prev = local_time; 21712 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21713 21714 *tail_unsent -= len; 21715 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21716 tcp->tcp_last_sent_len = (ushort_t)len; 21717 21718 len += tcp_hdr_len; 21719 if (tcp->tcp_ipversion == IPV4_VERSION) 21720 tcp->tcp_ipha->ipha_length = htons(len); 21721 else 21722 tcp->tcp_ip6h->ip6_plen = htons(len - 21723 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21724 21725 mp = dupb(*xmit_tail); 21726 if (mp == NULL) { 21727 if (ire != NULL) 21728 IRE_REFRELE(ire); 21729 return (-1); /* out_of_mem */ 21730 } 21731 21732 len = tcp_hdr_len; 21733 /* 21734 * There are four reasons to allocate a new hdr mblk: 21735 * 1) The bytes above us are in use by another packet 21736 * 2) We don't have good alignment 21737 * 3) The mblk is being shared 21738 * 4) We don't have enough room for a header 21739 */ 21740 rptr = mp->b_rptr - len; 21741 if (!OK_32PTR(rptr) || 21742 ((db = mp->b_datap), db->db_ref != 2) || 21743 rptr < db->db_base + ire_fp_mp_len) { 21744 /* NOTE: we assume allocb returns an OK_32PTR */ 21745 21746 must_alloc:; 21747 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21748 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21749 if (mp1 == NULL) { 21750 freemsg(mp); 21751 if (ire != NULL) 21752 IRE_REFRELE(ire); 21753 return (-1); /* out_of_mem */ 21754 } 21755 mp1->b_cont = mp; 21756 mp = mp1; 21757 /* Leave room for Link Level header */ 21758 len = tcp_hdr_len; 21759 rptr = 21760 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21761 mp->b_wptr = &rptr[len]; 21762 } 21763 21764 /* 21765 * Fill in the header using the template header, and add 21766 * options such as time-stamp, ECN and/or SACK, as needed. 21767 */ 21768 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21769 21770 mp->b_rptr = rptr; 21771 21772 if (*tail_unsent) { 21773 int spill = *tail_unsent; 21774 21775 mp1 = mp->b_cont; 21776 if (mp1 == NULL) 21777 mp1 = mp; 21778 21779 /* 21780 * If we're a little short, tack on more mblks until 21781 * there is no more spillover. 21782 */ 21783 while (spill < 0) { 21784 mblk_t *nmp; 21785 int nmpsz; 21786 21787 nmp = (*xmit_tail)->b_cont; 21788 nmpsz = MBLKL(nmp); 21789 21790 /* 21791 * Excess data in mblk; can we split it? 21792 * If MDT is enabled for the connection, 21793 * keep on splitting as this is a transient 21794 * send path. 21795 */ 21796 if (!do_lso_send && !tcp->tcp_mdt && 21797 (spill + nmpsz > 0)) { 21798 /* 21799 * Don't split if stream head was 21800 * told to break up larger writes 21801 * into smaller ones. 21802 */ 21803 if (tcp->tcp_maxpsz > 0) 21804 break; 21805 21806 /* 21807 * Next mblk is less than SMSS/2 21808 * rounded up to nearest 64-byte; 21809 * let it get sent as part of the 21810 * next segment. 21811 */ 21812 if (tcp->tcp_localnet && 21813 !tcp->tcp_cork && 21814 (nmpsz < roundup((mss >> 1), 64))) 21815 break; 21816 } 21817 21818 *xmit_tail = nmp; 21819 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21820 /* Stash for rtt use later */ 21821 (*xmit_tail)->b_prev = local_time; 21822 (*xmit_tail)->b_next = 21823 (mblk_t *)(uintptr_t)(*snxt - len); 21824 mp1->b_cont = dupb(*xmit_tail); 21825 mp1 = mp1->b_cont; 21826 21827 spill += nmpsz; 21828 if (mp1 == NULL) { 21829 *tail_unsent = spill; 21830 freemsg(mp); 21831 if (ire != NULL) 21832 IRE_REFRELE(ire); 21833 return (-1); /* out_of_mem */ 21834 } 21835 } 21836 21837 /* Trim back any surplus on the last mblk */ 21838 if (spill >= 0) { 21839 mp1->b_wptr -= spill; 21840 *tail_unsent = spill; 21841 } else { 21842 /* 21843 * We did not send everything we could in 21844 * order to remain within the b_cont limit. 21845 */ 21846 *usable -= spill; 21847 *snxt += spill; 21848 tcp->tcp_last_sent_len += spill; 21849 UPDATE_MIB(&tcps->tcps_mib, 21850 tcpOutDataBytes, spill); 21851 /* 21852 * Adjust the checksum 21853 */ 21854 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21855 sum += spill; 21856 sum = (sum >> 16) + (sum & 0xFFFF); 21857 U16_TO_ABE16(sum, tcph->th_sum); 21858 if (tcp->tcp_ipversion == IPV4_VERSION) { 21859 sum = ntohs( 21860 ((ipha_t *)rptr)->ipha_length) + 21861 spill; 21862 ((ipha_t *)rptr)->ipha_length = 21863 htons(sum); 21864 } else { 21865 sum = ntohs( 21866 ((ip6_t *)rptr)->ip6_plen) + 21867 spill; 21868 ((ip6_t *)rptr)->ip6_plen = 21869 htons(sum); 21870 } 21871 *tail_unsent = 0; 21872 } 21873 } 21874 if (tcp->tcp_ip_forward_progress) { 21875 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21876 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21877 tcp->tcp_ip_forward_progress = B_FALSE; 21878 } 21879 21880 if (do_lso_send) { 21881 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21882 num_lso_seg); 21883 tcp->tcp_obsegs += num_lso_seg; 21884 21885 TCP_STAT(tcps, tcp_lso_times); 21886 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21887 } else { 21888 tcp_send_data(tcp, q, mp); 21889 BUMP_LOCAL(tcp->tcp_obsegs); 21890 } 21891 } 21892 21893 if (ire != NULL) 21894 IRE_REFRELE(ire); 21895 return (0); 21896 } 21897 21898 /* Unlink and return any mblk that looks like it contains a MDT info */ 21899 static mblk_t * 21900 tcp_mdt_info_mp(mblk_t *mp) 21901 { 21902 mblk_t *prev_mp; 21903 21904 for (;;) { 21905 prev_mp = mp; 21906 /* no more to process? */ 21907 if ((mp = mp->b_cont) == NULL) 21908 break; 21909 21910 switch (DB_TYPE(mp)) { 21911 case M_CTL: 21912 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21913 continue; 21914 ASSERT(prev_mp != NULL); 21915 prev_mp->b_cont = mp->b_cont; 21916 mp->b_cont = NULL; 21917 return (mp); 21918 default: 21919 break; 21920 } 21921 } 21922 return (mp); 21923 } 21924 21925 /* MDT info update routine, called when IP notifies us about MDT */ 21926 static void 21927 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21928 { 21929 boolean_t prev_state; 21930 tcp_stack_t *tcps = tcp->tcp_tcps; 21931 21932 /* 21933 * IP is telling us to abort MDT on this connection? We know 21934 * this because the capability is only turned off when IP 21935 * encounters some pathological cases, e.g. link-layer change 21936 * where the new driver doesn't support MDT, or in situation 21937 * where MDT usage on the link-layer has been switched off. 21938 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21939 * if the link-layer doesn't support MDT, and if it does, it 21940 * will indicate that the feature is to be turned on. 21941 */ 21942 prev_state = tcp->tcp_mdt; 21943 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21944 if (!tcp->tcp_mdt && !first) { 21945 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21946 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21947 (void *)tcp->tcp_connp)); 21948 } 21949 21950 /* 21951 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21952 * so disable MDT otherwise. The checks are done here 21953 * and in tcp_wput_data(). 21954 */ 21955 if (tcp->tcp_mdt && 21956 (tcp->tcp_ipversion == IPV4_VERSION && 21957 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21958 (tcp->tcp_ipversion == IPV6_VERSION && 21959 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21960 tcp->tcp_mdt = B_FALSE; 21961 21962 if (tcp->tcp_mdt) { 21963 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21964 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21965 "version (%d), expected version is %d", 21966 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21967 tcp->tcp_mdt = B_FALSE; 21968 return; 21969 } 21970 21971 /* 21972 * We need the driver to be able to handle at least three 21973 * spans per packet in order for tcp MDT to be utilized. 21974 * The first is for the header portion, while the rest are 21975 * needed to handle a packet that straddles across two 21976 * virtually non-contiguous buffers; a typical tcp packet 21977 * therefore consists of only two spans. Note that we take 21978 * a zero as "don't care". 21979 */ 21980 if (mdt_capab->ill_mdt_span_limit > 0 && 21981 mdt_capab->ill_mdt_span_limit < 3) { 21982 tcp->tcp_mdt = B_FALSE; 21983 return; 21984 } 21985 21986 /* a zero means driver wants default value */ 21987 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21988 tcps->tcps_mdt_max_pbufs); 21989 if (tcp->tcp_mdt_max_pld == 0) 21990 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21991 21992 /* ensure 32-bit alignment */ 21993 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21994 mdt_capab->ill_mdt_hdr_head), 4); 21995 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21996 mdt_capab->ill_mdt_hdr_tail), 4); 21997 21998 if (!first && !prev_state) { 21999 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 22000 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 22001 (void *)tcp->tcp_connp)); 22002 } 22003 } 22004 } 22005 22006 /* Unlink and return any mblk that looks like it contains a LSO info */ 22007 static mblk_t * 22008 tcp_lso_info_mp(mblk_t *mp) 22009 { 22010 mblk_t *prev_mp; 22011 22012 for (;;) { 22013 prev_mp = mp; 22014 /* no more to process? */ 22015 if ((mp = mp->b_cont) == NULL) 22016 break; 22017 22018 switch (DB_TYPE(mp)) { 22019 case M_CTL: 22020 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 22021 continue; 22022 ASSERT(prev_mp != NULL); 22023 prev_mp->b_cont = mp->b_cont; 22024 mp->b_cont = NULL; 22025 return (mp); 22026 default: 22027 break; 22028 } 22029 } 22030 22031 return (mp); 22032 } 22033 22034 /* LSO info update routine, called when IP notifies us about LSO */ 22035 static void 22036 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 22037 { 22038 tcp_stack_t *tcps = tcp->tcp_tcps; 22039 22040 /* 22041 * IP is telling us to abort LSO on this connection? We know 22042 * this because the capability is only turned off when IP 22043 * encounters some pathological cases, e.g. link-layer change 22044 * where the new NIC/driver doesn't support LSO, or in situation 22045 * where LSO usage on the link-layer has been switched off. 22046 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 22047 * if the link-layer doesn't support LSO, and if it does, it 22048 * will indicate that the feature is to be turned on. 22049 */ 22050 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 22051 TCP_STAT(tcps, tcp_lso_enabled); 22052 22053 /* 22054 * We currently only support LSO on simple TCP/IPv4, 22055 * so disable LSO otherwise. The checks are done here 22056 * and in tcp_wput_data(). 22057 */ 22058 if (tcp->tcp_lso && 22059 (tcp->tcp_ipversion == IPV4_VERSION && 22060 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 22061 (tcp->tcp_ipversion == IPV6_VERSION)) { 22062 tcp->tcp_lso = B_FALSE; 22063 TCP_STAT(tcps, tcp_lso_disabled); 22064 } else { 22065 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 22066 lso_capab->ill_lso_max); 22067 } 22068 } 22069 22070 static void 22071 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 22072 { 22073 conn_t *connp = tcp->tcp_connp; 22074 tcp_stack_t *tcps = tcp->tcp_tcps; 22075 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22076 22077 ASSERT(ire != NULL); 22078 22079 /* 22080 * We may be in the fastpath here, and although we essentially do 22081 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 22082 * we try to keep things as brief as possible. After all, these 22083 * are only best-effort checks, and we do more thorough ones prior 22084 * to calling tcp_send()/tcp_multisend(). 22085 */ 22086 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 22087 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 22088 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 22089 !(ire->ire_flags & RTF_MULTIRT) && 22090 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 22091 CONN_IS_LSO_MD_FASTPATH(connp)) { 22092 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 22093 /* Cache the result */ 22094 connp->conn_lso_ok = B_TRUE; 22095 22096 ASSERT(ill->ill_lso_capab != NULL); 22097 if (!ill->ill_lso_capab->ill_lso_on) { 22098 ill->ill_lso_capab->ill_lso_on = 1; 22099 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22100 "LSO for interface %s\n", (void *)connp, 22101 ill->ill_name)); 22102 } 22103 tcp_lso_update(tcp, ill->ill_lso_capab); 22104 } else if (ipst->ips_ip_multidata_outbound && 22105 ILL_MDT_CAPABLE(ill)) { 22106 /* Cache the result */ 22107 connp->conn_mdt_ok = B_TRUE; 22108 22109 ASSERT(ill->ill_mdt_capab != NULL); 22110 if (!ill->ill_mdt_capab->ill_mdt_on) { 22111 ill->ill_mdt_capab->ill_mdt_on = 1; 22112 ip1dbg(("tcp_ire_ill_check: connp %p enables " 22113 "MDT for interface %s\n", (void *)connp, 22114 ill->ill_name)); 22115 } 22116 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 22117 } 22118 } 22119 22120 /* 22121 * The goal is to reduce the number of generated tcp segments by 22122 * setting the maxpsz multiplier to 0; this will have an affect on 22123 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 22124 * into each packet, up to SMSS bytes. Doing this reduces the number 22125 * of outbound segments and incoming ACKs, thus allowing for better 22126 * network and system performance. In contrast the legacy behavior 22127 * may result in sending less than SMSS size, because the last mblk 22128 * for some packets may have more data than needed to make up SMSS, 22129 * and the legacy code refused to "split" it. 22130 * 22131 * We apply the new behavior on following situations: 22132 * 22133 * 1) Loopback connections, 22134 * 2) Connections in which the remote peer is not on local subnet, 22135 * 3) Local subnet connections over the bge interface (see below). 22136 * 22137 * Ideally, we would like this behavior to apply for interfaces other 22138 * than bge. However, doing so would negatively impact drivers which 22139 * perform dynamic mapping and unmapping of DMA resources, which are 22140 * increased by setting the maxpsz multiplier to 0 (more mblks per 22141 * packet will be generated by tcp). The bge driver does not suffer 22142 * from this, as it copies the mblks into pre-mapped buffers, and 22143 * therefore does not require more I/O resources than before. 22144 * 22145 * Otherwise, this behavior is present on all network interfaces when 22146 * the destination endpoint is non-local, since reducing the number 22147 * of packets in general is good for the network. 22148 * 22149 * TODO We need to remove this hard-coded conditional for bge once 22150 * a better "self-tuning" mechanism, or a way to comprehend 22151 * the driver transmit strategy is devised. Until the solution 22152 * is found and well understood, we live with this hack. 22153 */ 22154 if (!tcp_static_maxpsz && 22155 (tcp->tcp_loopback || !tcp->tcp_localnet || 22156 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 22157 /* override the default value */ 22158 tcp->tcp_maxpsz = 0; 22159 22160 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 22161 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 22162 ill != NULL ? ill->ill_name : ipif_loopback_name)); 22163 } 22164 22165 /* set the stream head parameters accordingly */ 22166 (void) tcp_maxpsz_set(tcp, B_TRUE); 22167 } 22168 22169 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 22170 static void 22171 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 22172 { 22173 uchar_t fval = *mp->b_rptr; 22174 mblk_t *tail; 22175 queue_t *q = tcp->tcp_wq; 22176 22177 /* TODO: How should flush interact with urgent data? */ 22178 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 22179 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 22180 /* 22181 * Flush only data that has not yet been put on the wire. If 22182 * we flush data that we have already transmitted, life, as we 22183 * know it, may come to an end. 22184 */ 22185 tail = tcp->tcp_xmit_tail; 22186 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 22187 tcp->tcp_xmit_tail_unsent = 0; 22188 tcp->tcp_unsent = 0; 22189 if (tail->b_wptr != tail->b_rptr) 22190 tail = tail->b_cont; 22191 if (tail) { 22192 mblk_t **excess = &tcp->tcp_xmit_head; 22193 for (;;) { 22194 mblk_t *mp1 = *excess; 22195 if (mp1 == tail) 22196 break; 22197 tcp->tcp_xmit_tail = mp1; 22198 tcp->tcp_xmit_last = mp1; 22199 excess = &mp1->b_cont; 22200 } 22201 *excess = NULL; 22202 tcp_close_mpp(&tail); 22203 if (tcp->tcp_snd_zcopy_aware) 22204 tcp_zcopy_notify(tcp); 22205 } 22206 /* 22207 * We have no unsent data, so unsent must be less than 22208 * tcp_xmit_lowater, so re-enable flow. 22209 */ 22210 mutex_enter(&tcp->tcp_non_sq_lock); 22211 if (tcp->tcp_flow_stopped) { 22212 tcp_clrqfull(tcp); 22213 } 22214 mutex_exit(&tcp->tcp_non_sq_lock); 22215 } 22216 /* 22217 * TODO: you can't just flush these, you have to increase rwnd for one 22218 * thing. For another, how should urgent data interact? 22219 */ 22220 if (fval & FLUSHR) { 22221 *mp->b_rptr = fval & ~FLUSHW; 22222 /* XXX */ 22223 qreply(q, mp); 22224 return; 22225 } 22226 freemsg(mp); 22227 } 22228 22229 /* 22230 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 22231 * messages. 22232 */ 22233 static void 22234 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 22235 { 22236 mblk_t *mp1; 22237 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 22238 STRUCT_HANDLE(strbuf, sb); 22239 queue_t *q = tcp->tcp_wq; 22240 int error; 22241 uint_t addrlen; 22242 22243 /* Make sure it is one of ours. */ 22244 switch (iocp->ioc_cmd) { 22245 case TI_GETMYNAME: 22246 case TI_GETPEERNAME: 22247 break; 22248 default: 22249 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 22250 return; 22251 } 22252 switch (mi_copy_state(q, mp, &mp1)) { 22253 case -1: 22254 return; 22255 case MI_COPY_CASE(MI_COPY_IN, 1): 22256 break; 22257 case MI_COPY_CASE(MI_COPY_OUT, 1): 22258 /* Copy out the strbuf. */ 22259 mi_copyout(q, mp); 22260 return; 22261 case MI_COPY_CASE(MI_COPY_OUT, 2): 22262 /* All done. */ 22263 mi_copy_done(q, mp, 0); 22264 return; 22265 default: 22266 mi_copy_done(q, mp, EPROTO); 22267 return; 22268 } 22269 /* Check alignment of the strbuf */ 22270 if (!OK_32PTR(mp1->b_rptr)) { 22271 mi_copy_done(q, mp, EINVAL); 22272 return; 22273 } 22274 22275 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 22276 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 22277 if (STRUCT_FGET(sb, maxlen) < addrlen) { 22278 mi_copy_done(q, mp, EINVAL); 22279 return; 22280 } 22281 22282 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 22283 if (mp1 == NULL) 22284 return; 22285 22286 switch (iocp->ioc_cmd) { 22287 case TI_GETMYNAME: 22288 error = tcp_getmyname(tcp, (void *)mp1->b_rptr, &addrlen); 22289 break; 22290 case TI_GETPEERNAME: 22291 error = i_tcp_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 22292 break; 22293 } 22294 22295 if (error != 0) { 22296 mi_copy_done(q, mp, error); 22297 } else { 22298 mp1->b_wptr += addrlen; 22299 STRUCT_FSET(sb, len, addrlen); 22300 22301 /* Copy out the address */ 22302 mi_copyout(q, mp); 22303 } 22304 } 22305 22306 static void 22307 tcp_disable_direct_sockfs(tcp_t *tcp) 22308 { 22309 #ifdef _ILP32 22310 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 22311 #else 22312 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22313 #endif 22314 /* 22315 * Insert this socket into the acceptor hash. 22316 * We might need it for T_CONN_RES message 22317 */ 22318 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22319 22320 if (tcp->tcp_fused) { 22321 /* 22322 * This is a fused loopback tcp; disable 22323 * read-side synchronous streams interface 22324 * and drain any queued data. It is okay 22325 * to do this for non-synchronous streams 22326 * fused tcp as well. 22327 */ 22328 tcp_fuse_disable_pair(tcp, B_FALSE); 22329 } 22330 tcp->tcp_issocket = B_FALSE; 22331 tcp->tcp_sodirect = NULL; 22332 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 22333 } 22334 22335 /* 22336 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22337 * messages. 22338 */ 22339 /* ARGSUSED */ 22340 static void 22341 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22342 { 22343 conn_t *connp = (conn_t *)arg; 22344 tcp_t *tcp = connp->conn_tcp; 22345 queue_t *q = tcp->tcp_wq; 22346 struct iocblk *iocp; 22347 22348 ASSERT(DB_TYPE(mp) == M_IOCTL); 22349 /* 22350 * Try and ASSERT the minimum possible references on the 22351 * conn early enough. Since we are executing on write side, 22352 * the connection is obviously not detached and that means 22353 * there is a ref each for TCP and IP. Since we are behind 22354 * the squeue, the minimum references needed are 3. If the 22355 * conn is in classifier hash list, there should be an 22356 * extra ref for that (we check both the possibilities). 22357 */ 22358 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22359 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22360 22361 iocp = (struct iocblk *)mp->b_rptr; 22362 switch (iocp->ioc_cmd) { 22363 case TCP_IOC_DEFAULT_Q: 22364 /* Wants to be the default wq. */ 22365 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22366 iocp->ioc_error = EPERM; 22367 iocp->ioc_count = 0; 22368 mp->b_datap->db_type = M_IOCACK; 22369 qreply(q, mp); 22370 return; 22371 } 22372 tcp_def_q_set(tcp, mp); 22373 return; 22374 case _SIOCSOCKFALLBACK: 22375 /* 22376 * Either sockmod is about to be popped and the socket 22377 * would now be treated as a plain stream, or a module 22378 * is about to be pushed so we could no longer use read- 22379 * side synchronous streams for fused loopback tcp. 22380 * Drain any queued data and disable direct sockfs 22381 * interface from now on. 22382 */ 22383 if (!tcp->tcp_issocket) { 22384 DB_TYPE(mp) = M_IOCNAK; 22385 iocp->ioc_error = EINVAL; 22386 } else { 22387 tcp_disable_direct_sockfs(tcp); 22388 DB_TYPE(mp) = M_IOCACK; 22389 iocp->ioc_error = 0; 22390 } 22391 iocp->ioc_count = 0; 22392 iocp->ioc_rval = 0; 22393 qreply(q, mp); 22394 return; 22395 } 22396 CALL_IP_WPUT(connp, q, mp); 22397 } 22398 22399 /* 22400 * This routine is called by tcp_wput() to handle all TPI requests. 22401 */ 22402 /* ARGSUSED */ 22403 static void 22404 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22405 { 22406 conn_t *connp = (conn_t *)arg; 22407 tcp_t *tcp = connp->conn_tcp; 22408 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22409 uchar_t *rptr; 22410 t_scalar_t type; 22411 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22412 22413 /* 22414 * Try and ASSERT the minimum possible references on the 22415 * conn early enough. Since we are executing on write side, 22416 * the connection is obviously not detached and that means 22417 * there is a ref each for TCP and IP. Since we are behind 22418 * the squeue, the minimum references needed are 3. If the 22419 * conn is in classifier hash list, there should be an 22420 * extra ref for that (we check both the possibilities). 22421 */ 22422 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22423 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22424 22425 rptr = mp->b_rptr; 22426 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22427 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22428 type = ((union T_primitives *)rptr)->type; 22429 if (type == T_EXDATA_REQ) { 22430 tcp_output_urgent(connp, mp->b_cont, arg2); 22431 freeb(mp); 22432 } else if (type != T_DATA_REQ) { 22433 goto non_urgent_data; 22434 } else { 22435 /* TODO: options, flags, ... from user */ 22436 /* Set length to zero for reclamation below */ 22437 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22438 freeb(mp); 22439 } 22440 return; 22441 } else { 22442 if (tcp->tcp_debug) { 22443 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22444 "tcp_wput_proto, dropping one..."); 22445 } 22446 freemsg(mp); 22447 return; 22448 } 22449 22450 non_urgent_data: 22451 22452 switch ((int)tprim->type) { 22453 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22454 /* 22455 * save the kssl_ent_t from the next block, and convert this 22456 * back to a normal bind_req. 22457 */ 22458 if (mp->b_cont != NULL) { 22459 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22460 22461 if (tcp->tcp_kssl_ent != NULL) { 22462 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22463 KSSL_NO_PROXY); 22464 tcp->tcp_kssl_ent = NULL; 22465 } 22466 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22467 sizeof (kssl_ent_t)); 22468 kssl_hold_ent(tcp->tcp_kssl_ent); 22469 freemsg(mp->b_cont); 22470 mp->b_cont = NULL; 22471 } 22472 tprim->type = T_BIND_REQ; 22473 22474 /* FALLTHROUGH */ 22475 case O_T_BIND_REQ: /* bind request */ 22476 case T_BIND_REQ: /* new semantics bind request */ 22477 tcp_tpi_bind(tcp, mp); 22478 break; 22479 case T_UNBIND_REQ: /* unbind request */ 22480 tcp_tpi_unbind(tcp, mp); 22481 break; 22482 case O_T_CONN_RES: /* old connection response XXX */ 22483 case T_CONN_RES: /* connection response */ 22484 tcp_tli_accept(tcp, mp); 22485 break; 22486 case T_CONN_REQ: /* connection request */ 22487 tcp_tpi_connect(tcp, mp); 22488 break; 22489 case T_DISCON_REQ: /* disconnect request */ 22490 tcp_disconnect(tcp, mp); 22491 break; 22492 case T_CAPABILITY_REQ: 22493 tcp_capability_req(tcp, mp); /* capability request */ 22494 break; 22495 case T_INFO_REQ: /* information request */ 22496 tcp_info_req(tcp, mp); 22497 break; 22498 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22499 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22500 &tcp_opt_obj, B_TRUE); 22501 break; 22502 case T_OPTMGMT_REQ: 22503 /* 22504 * Note: no support for snmpcom_req() through new 22505 * T_OPTMGMT_REQ. See comments in ip.c 22506 */ 22507 /* Only IP is allowed to return meaningful value */ 22508 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22509 B_TRUE); 22510 break; 22511 22512 case T_UNITDATA_REQ: /* unitdata request */ 22513 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22514 break; 22515 case T_ORDREL_REQ: /* orderly release req */ 22516 freemsg(mp); 22517 22518 if (tcp->tcp_fused) 22519 tcp_unfuse(tcp); 22520 22521 if (tcp_xmit_end(tcp) != 0) { 22522 /* 22523 * We were crossing FINs and got a reset from 22524 * the other side. Just ignore it. 22525 */ 22526 if (tcp->tcp_debug) { 22527 (void) strlog(TCP_MOD_ID, 0, 1, 22528 SL_ERROR|SL_TRACE, 22529 "tcp_wput_proto, T_ORDREL_REQ out of " 22530 "state %s", 22531 tcp_display(tcp, NULL, 22532 DISP_ADDR_AND_PORT)); 22533 } 22534 } 22535 break; 22536 case T_ADDR_REQ: 22537 tcp_addr_req(tcp, mp); 22538 break; 22539 default: 22540 if (tcp->tcp_debug) { 22541 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22542 "tcp_wput_proto, bogus TPI msg, type %d", 22543 tprim->type); 22544 } 22545 /* 22546 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22547 * to recover. 22548 */ 22549 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22550 break; 22551 } 22552 } 22553 22554 /* 22555 * The TCP write service routine should never be called... 22556 */ 22557 /* ARGSUSED */ 22558 static void 22559 tcp_wsrv(queue_t *q) 22560 { 22561 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22562 22563 TCP_STAT(tcps, tcp_wsrv_called); 22564 } 22565 22566 /* Non overlapping byte exchanger */ 22567 static void 22568 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22569 { 22570 uchar_t uch; 22571 22572 while (len-- > 0) { 22573 uch = a[len]; 22574 a[len] = b[len]; 22575 b[len] = uch; 22576 } 22577 } 22578 22579 /* 22580 * Send out a control packet on the tcp connection specified. This routine 22581 * is typically called where we need a simple ACK or RST generated. 22582 */ 22583 static void 22584 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22585 { 22586 uchar_t *rptr; 22587 tcph_t *tcph; 22588 ipha_t *ipha = NULL; 22589 ip6_t *ip6h = NULL; 22590 uint32_t sum; 22591 int tcp_hdr_len; 22592 int tcp_ip_hdr_len; 22593 mblk_t *mp; 22594 tcp_stack_t *tcps = tcp->tcp_tcps; 22595 22596 /* 22597 * Save sum for use in source route later. 22598 */ 22599 ASSERT(tcp != NULL); 22600 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22601 tcp_hdr_len = tcp->tcp_hdr_len; 22602 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22603 22604 /* If a text string is passed in with the request, pass it to strlog. */ 22605 if (str != NULL && tcp->tcp_debug) { 22606 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22607 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22608 str, seq, ack, ctl); 22609 } 22610 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22611 BPRI_MED); 22612 if (mp == NULL) { 22613 return; 22614 } 22615 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22616 mp->b_rptr = rptr; 22617 mp->b_wptr = &rptr[tcp_hdr_len]; 22618 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22619 22620 if (tcp->tcp_ipversion == IPV4_VERSION) { 22621 ipha = (ipha_t *)rptr; 22622 ipha->ipha_length = htons(tcp_hdr_len); 22623 } else { 22624 ip6h = (ip6_t *)rptr; 22625 ASSERT(tcp != NULL); 22626 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22627 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22628 } 22629 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22630 tcph->th_flags[0] = (uint8_t)ctl; 22631 if (ctl & TH_RST) { 22632 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22633 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22634 /* 22635 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22636 */ 22637 if (tcp->tcp_snd_ts_ok && 22638 tcp->tcp_state > TCPS_SYN_SENT) { 22639 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22640 *(mp->b_wptr) = TCPOPT_EOL; 22641 if (tcp->tcp_ipversion == IPV4_VERSION) { 22642 ipha->ipha_length = htons(tcp_hdr_len - 22643 TCPOPT_REAL_TS_LEN); 22644 } else { 22645 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22646 TCPOPT_REAL_TS_LEN); 22647 } 22648 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22649 sum -= TCPOPT_REAL_TS_LEN; 22650 } 22651 } 22652 if (ctl & TH_ACK) { 22653 if (tcp->tcp_snd_ts_ok) { 22654 U32_TO_BE32(lbolt, 22655 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22656 U32_TO_BE32(tcp->tcp_ts_recent, 22657 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22658 } 22659 22660 /* Update the latest receive window size in TCP header. */ 22661 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22662 tcph->th_win); 22663 tcp->tcp_rack = ack; 22664 tcp->tcp_rack_cnt = 0; 22665 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22666 } 22667 BUMP_LOCAL(tcp->tcp_obsegs); 22668 U32_TO_BE32(seq, tcph->th_seq); 22669 U32_TO_BE32(ack, tcph->th_ack); 22670 /* 22671 * Include the adjustment for a source route if any. 22672 */ 22673 sum = (sum >> 16) + (sum & 0xFFFF); 22674 U16_TO_BE16(sum, tcph->th_sum); 22675 tcp_send_data(tcp, tcp->tcp_wq, mp); 22676 } 22677 22678 /* 22679 * If this routine returns B_TRUE, TCP can generate a RST in response 22680 * to a segment. If it returns B_FALSE, TCP should not respond. 22681 */ 22682 static boolean_t 22683 tcp_send_rst_chk(tcp_stack_t *tcps) 22684 { 22685 clock_t now; 22686 22687 /* 22688 * TCP needs to protect itself from generating too many RSTs. 22689 * This can be a DoS attack by sending us random segments 22690 * soliciting RSTs. 22691 * 22692 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22693 * in each 1 second interval. In this way, TCP still generate 22694 * RSTs in normal cases but when under attack, the impact is 22695 * limited. 22696 */ 22697 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22698 now = lbolt; 22699 /* lbolt can wrap around. */ 22700 if ((tcps->tcps_last_rst_intrvl > now) || 22701 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22702 1*SECONDS)) { 22703 tcps->tcps_last_rst_intrvl = now; 22704 tcps->tcps_rst_cnt = 1; 22705 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22706 return (B_FALSE); 22707 } 22708 } 22709 return (B_TRUE); 22710 } 22711 22712 /* 22713 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22714 */ 22715 static void 22716 tcp_ip_ire_mark_advice(tcp_t *tcp) 22717 { 22718 mblk_t *mp; 22719 ipic_t *ipic; 22720 22721 if (tcp->tcp_ipversion == IPV4_VERSION) { 22722 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22723 &ipic); 22724 } else { 22725 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22726 &ipic); 22727 } 22728 if (mp == NULL) 22729 return; 22730 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22731 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22732 } 22733 22734 /* 22735 * Return an IP advice ioctl mblk and set ipic to be the pointer 22736 * to the advice structure. 22737 */ 22738 static mblk_t * 22739 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22740 { 22741 struct iocblk *ioc; 22742 mblk_t *mp, *mp1; 22743 22744 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22745 if (mp == NULL) 22746 return (NULL); 22747 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22748 *ipic = (ipic_t *)mp->b_rptr; 22749 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22750 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22751 22752 bcopy(addr, *ipic + 1, addr_len); 22753 22754 (*ipic)->ipic_addr_length = addr_len; 22755 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22756 22757 mp1 = mkiocb(IP_IOCTL); 22758 if (mp1 == NULL) { 22759 freemsg(mp); 22760 return (NULL); 22761 } 22762 mp1->b_cont = mp; 22763 ioc = (struct iocblk *)mp1->b_rptr; 22764 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22765 22766 return (mp1); 22767 } 22768 22769 /* 22770 * Generate a reset based on an inbound packet, connp is set by caller 22771 * when RST is in response to an unexpected inbound packet for which 22772 * there is active tcp state in the system. 22773 * 22774 * IPSEC NOTE : Try to send the reply with the same protection as it came 22775 * in. We still have the ipsec_mp that the packet was attached to. Thus 22776 * the packet will go out at the same level of protection as it came in by 22777 * converting the IPSEC_IN to IPSEC_OUT. 22778 */ 22779 static void 22780 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22781 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22782 tcp_stack_t *tcps, conn_t *connp) 22783 { 22784 ipha_t *ipha = NULL; 22785 ip6_t *ip6h = NULL; 22786 ushort_t len; 22787 tcph_t *tcph; 22788 int i; 22789 mblk_t *ipsec_mp; 22790 boolean_t mctl_present; 22791 ipic_t *ipic; 22792 ipaddr_t v4addr; 22793 in6_addr_t v6addr; 22794 int addr_len; 22795 void *addr; 22796 queue_t *q = tcps->tcps_g_q; 22797 tcp_t *tcp; 22798 cred_t *cr; 22799 mblk_t *nmp; 22800 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22801 22802 if (tcps->tcps_g_q == NULL) { 22803 /* 22804 * For non-zero stackids the default queue isn't created 22805 * until the first open, thus there can be a need to send 22806 * a reset before then. But we can't do that, hence we just 22807 * drop the packet. Later during boot, when the default queue 22808 * has been setup, a retransmitted packet from the peer 22809 * will result in a reset. 22810 */ 22811 ASSERT(tcps->tcps_netstack->netstack_stackid != 22812 GLOBAL_NETSTACKID); 22813 freemsg(mp); 22814 return; 22815 } 22816 22817 if (connp != NULL) 22818 tcp = connp->conn_tcp; 22819 else 22820 tcp = Q_TO_TCP(q); 22821 22822 if (!tcp_send_rst_chk(tcps)) { 22823 tcps->tcps_rst_unsent++; 22824 freemsg(mp); 22825 return; 22826 } 22827 22828 if (mp->b_datap->db_type == M_CTL) { 22829 ipsec_mp = mp; 22830 mp = mp->b_cont; 22831 mctl_present = B_TRUE; 22832 } else { 22833 ipsec_mp = mp; 22834 mctl_present = B_FALSE; 22835 } 22836 22837 if (str && q && tcps->tcps_dbg) { 22838 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22839 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22840 "flags 0x%x", 22841 str, seq, ack, ctl); 22842 } 22843 if (mp->b_datap->db_ref != 1) { 22844 mblk_t *mp1 = copyb(mp); 22845 freemsg(mp); 22846 mp = mp1; 22847 if (!mp) { 22848 if (mctl_present) 22849 freeb(ipsec_mp); 22850 return; 22851 } else { 22852 if (mctl_present) { 22853 ipsec_mp->b_cont = mp; 22854 } else { 22855 ipsec_mp = mp; 22856 } 22857 } 22858 } else if (mp->b_cont) { 22859 freemsg(mp->b_cont); 22860 mp->b_cont = NULL; 22861 } 22862 /* 22863 * We skip reversing source route here. 22864 * (for now we replace all IP options with EOL) 22865 */ 22866 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22867 ipha = (ipha_t *)mp->b_rptr; 22868 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22869 mp->b_rptr[i] = IPOPT_EOL; 22870 /* 22871 * Make sure that src address isn't flagrantly invalid. 22872 * Not all broadcast address checking for the src address 22873 * is possible, since we don't know the netmask of the src 22874 * addr. No check for destination address is done, since 22875 * IP will not pass up a packet with a broadcast dest 22876 * address to TCP. Similar checks are done below for IPv6. 22877 */ 22878 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22879 CLASSD(ipha->ipha_src)) { 22880 freemsg(ipsec_mp); 22881 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22882 return; 22883 } 22884 } else { 22885 ip6h = (ip6_t *)mp->b_rptr; 22886 22887 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22888 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22889 freemsg(ipsec_mp); 22890 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22891 return; 22892 } 22893 22894 /* Remove any extension headers assuming partial overlay */ 22895 if (ip_hdr_len > IPV6_HDR_LEN) { 22896 uint8_t *to; 22897 22898 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22899 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22900 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22901 ip_hdr_len = IPV6_HDR_LEN; 22902 ip6h = (ip6_t *)mp->b_rptr; 22903 ip6h->ip6_nxt = IPPROTO_TCP; 22904 } 22905 } 22906 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22907 if (tcph->th_flags[0] & TH_RST) { 22908 freemsg(ipsec_mp); 22909 return; 22910 } 22911 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22912 len = ip_hdr_len + sizeof (tcph_t); 22913 mp->b_wptr = &mp->b_rptr[len]; 22914 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22915 ipha->ipha_length = htons(len); 22916 /* Swap addresses */ 22917 v4addr = ipha->ipha_src; 22918 ipha->ipha_src = ipha->ipha_dst; 22919 ipha->ipha_dst = v4addr; 22920 ipha->ipha_ident = 0; 22921 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22922 addr_len = IP_ADDR_LEN; 22923 addr = &v4addr; 22924 } else { 22925 /* No ip6i_t in this case */ 22926 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22927 /* Swap addresses */ 22928 v6addr = ip6h->ip6_src; 22929 ip6h->ip6_src = ip6h->ip6_dst; 22930 ip6h->ip6_dst = v6addr; 22931 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22932 addr_len = IPV6_ADDR_LEN; 22933 addr = &v6addr; 22934 } 22935 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22936 U32_TO_BE32(ack, tcph->th_ack); 22937 U32_TO_BE32(seq, tcph->th_seq); 22938 U16_TO_BE16(0, tcph->th_win); 22939 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22940 tcph->th_flags[0] = (uint8_t)ctl; 22941 if (ctl & TH_RST) { 22942 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22943 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22944 } 22945 22946 /* IP trusts us to set up labels when required. */ 22947 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22948 crgetlabel(cr) != NULL) { 22949 int err; 22950 22951 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22952 err = tsol_check_label(cr, &mp, 22953 tcp->tcp_connp->conn_mac_exempt, 22954 tcps->tcps_netstack->netstack_ip); 22955 else 22956 err = tsol_check_label_v6(cr, &mp, 22957 tcp->tcp_connp->conn_mac_exempt, 22958 tcps->tcps_netstack->netstack_ip); 22959 if (mctl_present) 22960 ipsec_mp->b_cont = mp; 22961 else 22962 ipsec_mp = mp; 22963 if (err != 0) { 22964 freemsg(ipsec_mp); 22965 return; 22966 } 22967 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22968 ipha = (ipha_t *)mp->b_rptr; 22969 } else { 22970 ip6h = (ip6_t *)mp->b_rptr; 22971 } 22972 } 22973 22974 if (mctl_present) { 22975 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22976 22977 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22978 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22979 return; 22980 } 22981 } 22982 if (zoneid == ALL_ZONES) 22983 zoneid = GLOBAL_ZONEID; 22984 22985 /* Add the zoneid so ip_output routes it properly */ 22986 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22987 freemsg(ipsec_mp); 22988 return; 22989 } 22990 ipsec_mp = nmp; 22991 22992 /* 22993 * NOTE: one might consider tracing a TCP packet here, but 22994 * this function has no active TCP state and no tcp structure 22995 * that has a trace buffer. If we traced here, we would have 22996 * to keep a local trace buffer in tcp_record_trace(). 22997 * 22998 * TSol note: The mblk that contains the incoming packet was 22999 * reused by tcp_xmit_listener_reset, so it already contains 23000 * the right credentials and we don't need to call mblk_setcred. 23001 * Also the conn's cred is not right since it is associated 23002 * with tcps_g_q. 23003 */ 23004 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 23005 23006 /* 23007 * Tell IP to mark the IRE used for this destination temporary. 23008 * This way, we can limit our exposure to DoS attack because IP 23009 * creates an IRE for each destination. If there are too many, 23010 * the time to do any routing lookup will be extremely long. And 23011 * the lookup can be in interrupt context. 23012 * 23013 * Note that in normal circumstances, this marking should not 23014 * affect anything. It would be nice if only 1 message is 23015 * needed to inform IP that the IRE created for this RST should 23016 * not be added to the cache table. But there is currently 23017 * not such communication mechanism between TCP and IP. So 23018 * the best we can do now is to send the advice ioctl to IP 23019 * to mark the IRE temporary. 23020 */ 23021 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 23022 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 23023 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23024 } 23025 } 23026 23027 /* 23028 * Initiate closedown sequence on an active connection. (May be called as 23029 * writer.) Return value zero for OK return, non-zero for error return. 23030 */ 23031 static int 23032 tcp_xmit_end(tcp_t *tcp) 23033 { 23034 ipic_t *ipic; 23035 mblk_t *mp; 23036 tcp_stack_t *tcps = tcp->tcp_tcps; 23037 23038 if (tcp->tcp_state < TCPS_SYN_RCVD || 23039 tcp->tcp_state > TCPS_CLOSE_WAIT) { 23040 /* 23041 * Invalid state, only states TCPS_SYN_RCVD, 23042 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 23043 */ 23044 return (-1); 23045 } 23046 23047 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 23048 tcp->tcp_valid_bits |= TCP_FSS_VALID; 23049 /* 23050 * If there is nothing more unsent, send the FIN now. 23051 * Otherwise, it will go out with the last segment. 23052 */ 23053 if (tcp->tcp_unsent == 0) { 23054 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 23055 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 23056 23057 if (mp) { 23058 tcp_send_data(tcp, tcp->tcp_wq, mp); 23059 } else { 23060 /* 23061 * Couldn't allocate msg. Pretend we got it out. 23062 * Wait for rexmit timeout. 23063 */ 23064 tcp->tcp_snxt = tcp->tcp_fss + 1; 23065 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23066 } 23067 23068 /* 23069 * If needed, update tcp_rexmit_snxt as tcp_snxt is 23070 * changed. 23071 */ 23072 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 23073 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23074 } 23075 } else { 23076 /* 23077 * If tcp->tcp_cork is set, then the data will not get sent, 23078 * so we have to check that and unset it first. 23079 */ 23080 if (tcp->tcp_cork) 23081 tcp->tcp_cork = B_FALSE; 23082 tcp_wput_data(tcp, NULL, B_FALSE); 23083 } 23084 23085 /* 23086 * If TCP does not get enough samples of RTT or tcp_rtt_updates 23087 * is 0, don't update the cache. 23088 */ 23089 if (tcps->tcps_rtt_updates == 0 || 23090 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 23091 return (0); 23092 23093 /* 23094 * NOTE: should not update if source routes i.e. if tcp_remote if 23095 * different from the destination. 23096 */ 23097 if (tcp->tcp_ipversion == IPV4_VERSION) { 23098 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 23099 return (0); 23100 } 23101 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 23102 &ipic); 23103 } else { 23104 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 23105 &tcp->tcp_ip6h->ip6_dst))) { 23106 return (0); 23107 } 23108 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 23109 &ipic); 23110 } 23111 23112 /* Record route attributes in the IRE for use by future connections. */ 23113 if (mp == NULL) 23114 return (0); 23115 23116 /* 23117 * We do not have a good algorithm to update ssthresh at this time. 23118 * So don't do any update. 23119 */ 23120 ipic->ipic_rtt = tcp->tcp_rtt_sa; 23121 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 23122 23123 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 23124 23125 return (0); 23126 } 23127 23128 /* 23129 * Generate a "no listener here" RST in response to an "unknown" segment. 23130 * connp is set by caller when RST is in response to an unexpected 23131 * inbound packet for which there is active tcp state in the system. 23132 * Note that we are reusing the incoming mp to construct the outgoing RST. 23133 */ 23134 void 23135 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 23136 tcp_stack_t *tcps, conn_t *connp) 23137 { 23138 uchar_t *rptr; 23139 uint32_t seg_len; 23140 tcph_t *tcph; 23141 uint32_t seg_seq; 23142 uint32_t seg_ack; 23143 uint_t flags; 23144 mblk_t *ipsec_mp; 23145 ipha_t *ipha; 23146 ip6_t *ip6h; 23147 boolean_t mctl_present = B_FALSE; 23148 boolean_t check = B_TRUE; 23149 boolean_t policy_present; 23150 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 23151 23152 TCP_STAT(tcps, tcp_no_listener); 23153 23154 ipsec_mp = mp; 23155 23156 if (mp->b_datap->db_type == M_CTL) { 23157 ipsec_in_t *ii; 23158 23159 mctl_present = B_TRUE; 23160 mp = mp->b_cont; 23161 23162 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 23163 ASSERT(ii->ipsec_in_type == IPSEC_IN); 23164 if (ii->ipsec_in_dont_check) { 23165 check = B_FALSE; 23166 if (!ii->ipsec_in_secure) { 23167 freeb(ipsec_mp); 23168 mctl_present = B_FALSE; 23169 ipsec_mp = mp; 23170 } 23171 } 23172 } 23173 23174 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 23175 policy_present = ipss->ipsec_inbound_v4_policy_present; 23176 ipha = (ipha_t *)mp->b_rptr; 23177 ip6h = NULL; 23178 } else { 23179 policy_present = ipss->ipsec_inbound_v6_policy_present; 23180 ipha = NULL; 23181 ip6h = (ip6_t *)mp->b_rptr; 23182 } 23183 23184 if (check && policy_present) { 23185 /* 23186 * The conn_t parameter is NULL because we already know 23187 * nobody's home. 23188 */ 23189 ipsec_mp = ipsec_check_global_policy( 23190 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 23191 tcps->tcps_netstack); 23192 if (ipsec_mp == NULL) 23193 return; 23194 } 23195 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 23196 DTRACE_PROBE2( 23197 tx__ip__log__error__nolistener__tcp, 23198 char *, "Could not reply with RST to mp(1)", 23199 mblk_t *, mp); 23200 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 23201 freemsg(ipsec_mp); 23202 return; 23203 } 23204 23205 rptr = mp->b_rptr; 23206 23207 tcph = (tcph_t *)&rptr[ip_hdr_len]; 23208 seg_seq = BE32_TO_U32(tcph->th_seq); 23209 seg_ack = BE32_TO_U32(tcph->th_ack); 23210 flags = tcph->th_flags[0]; 23211 23212 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 23213 if (flags & TH_RST) { 23214 freemsg(ipsec_mp); 23215 } else if (flags & TH_ACK) { 23216 tcp_xmit_early_reset("no tcp, reset", 23217 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 23218 connp); 23219 } else { 23220 if (flags & TH_SYN) { 23221 seg_len++; 23222 } else { 23223 /* 23224 * Here we violate the RFC. Note that a normal 23225 * TCP will never send a segment without the ACK 23226 * flag, except for RST or SYN segment. This 23227 * segment is neither. Just drop it on the 23228 * floor. 23229 */ 23230 freemsg(ipsec_mp); 23231 tcps->tcps_rst_unsent++; 23232 return; 23233 } 23234 23235 tcp_xmit_early_reset("no tcp, reset/ack", 23236 ipsec_mp, 0, seg_seq + seg_len, 23237 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 23238 } 23239 } 23240 23241 /* 23242 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 23243 * ip and tcp header ready to pass down to IP. If the mp passed in is 23244 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 23245 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 23246 * otherwise it will dup partial mblks.) 23247 * Otherwise, an appropriate ACK packet will be generated. This 23248 * routine is not usually called to send new data for the first time. It 23249 * is mostly called out of the timer for retransmits, and to generate ACKs. 23250 * 23251 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 23252 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 23253 * of the original mblk chain will be returned in *offset and *end_mp. 23254 */ 23255 mblk_t * 23256 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 23257 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 23258 boolean_t rexmit) 23259 { 23260 int data_length; 23261 int32_t off = 0; 23262 uint_t flags; 23263 mblk_t *mp1; 23264 mblk_t *mp2; 23265 uchar_t *rptr; 23266 tcph_t *tcph; 23267 int32_t num_sack_blk = 0; 23268 int32_t sack_opt_len = 0; 23269 tcp_stack_t *tcps = tcp->tcp_tcps; 23270 23271 /* Allocate for our maximum TCP header + link-level */ 23272 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 23273 tcps->tcps_wroff_xtra, BPRI_MED); 23274 if (!mp1) 23275 return (NULL); 23276 data_length = 0; 23277 23278 /* 23279 * Note that tcp_mss has been adjusted to take into account the 23280 * timestamp option if applicable. Because SACK options do not 23281 * appear in every TCP segments and they are of variable lengths, 23282 * they cannot be included in tcp_mss. Thus we need to calculate 23283 * the actual segment length when we need to send a segment which 23284 * includes SACK options. 23285 */ 23286 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23287 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23288 tcp->tcp_num_sack_blk); 23289 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23290 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23291 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23292 max_to_send -= sack_opt_len; 23293 } 23294 23295 if (offset != NULL) { 23296 off = *offset; 23297 /* We use offset as an indicator that end_mp is not NULL. */ 23298 *end_mp = NULL; 23299 } 23300 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23301 /* This could be faster with cooperation from downstream */ 23302 if (mp2 != mp1 && !sendall && 23303 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23304 max_to_send) 23305 /* 23306 * Don't send the next mblk since the whole mblk 23307 * does not fit. 23308 */ 23309 break; 23310 mp2->b_cont = dupb(mp); 23311 mp2 = mp2->b_cont; 23312 if (!mp2) { 23313 freemsg(mp1); 23314 return (NULL); 23315 } 23316 mp2->b_rptr += off; 23317 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23318 (uintptr_t)INT_MAX); 23319 23320 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23321 if (data_length > max_to_send) { 23322 mp2->b_wptr -= data_length - max_to_send; 23323 data_length = max_to_send; 23324 off = mp2->b_wptr - mp->b_rptr; 23325 break; 23326 } else { 23327 off = 0; 23328 } 23329 } 23330 if (offset != NULL) { 23331 *offset = off; 23332 *end_mp = mp; 23333 } 23334 if (seg_len != NULL) { 23335 *seg_len = data_length; 23336 } 23337 23338 /* Update the latest receive window size in TCP header. */ 23339 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23340 tcp->tcp_tcph->th_win); 23341 23342 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23343 mp1->b_rptr = rptr; 23344 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23345 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23346 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23347 U32_TO_ABE32(seq, tcph->th_seq); 23348 23349 /* 23350 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23351 * that this function was called from tcp_wput_data. Thus, when called 23352 * to retransmit data the setting of the PUSH bit may appear some 23353 * what random in that it might get set when it should not. This 23354 * should not pose any performance issues. 23355 */ 23356 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23357 tcp->tcp_unsent == data_length)) { 23358 flags = TH_ACK | TH_PUSH; 23359 } else { 23360 flags = TH_ACK; 23361 } 23362 23363 if (tcp->tcp_ecn_ok) { 23364 if (tcp->tcp_ecn_echo_on) 23365 flags |= TH_ECE; 23366 23367 /* 23368 * Only set ECT bit and ECN_CWR if a segment contains new data. 23369 * There is no TCP flow control for non-data segments, and 23370 * only data segment is transmitted reliably. 23371 */ 23372 if (data_length > 0 && !rexmit) { 23373 SET_ECT(tcp, rptr); 23374 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23375 flags |= TH_CWR; 23376 tcp->tcp_ecn_cwr_sent = B_TRUE; 23377 } 23378 } 23379 } 23380 23381 if (tcp->tcp_valid_bits) { 23382 uint32_t u1; 23383 23384 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23385 seq == tcp->tcp_iss) { 23386 uchar_t *wptr; 23387 23388 /* 23389 * If TCP_ISS_VALID and the seq number is tcp_iss, 23390 * TCP can only be in SYN-SENT, SYN-RCVD or 23391 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23392 * our SYN is not ack'ed but the app closes this 23393 * TCP connection. 23394 */ 23395 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23396 tcp->tcp_state == TCPS_SYN_RCVD || 23397 tcp->tcp_state == TCPS_FIN_WAIT_1); 23398 23399 /* 23400 * Tack on the MSS option. It is always needed 23401 * for both active and passive open. 23402 * 23403 * MSS option value should be interface MTU - MIN 23404 * TCP/IP header according to RFC 793 as it means 23405 * the maximum segment size TCP can receive. But 23406 * to get around some broken middle boxes/end hosts 23407 * out there, we allow the option value to be the 23408 * same as the MSS option size on the peer side. 23409 * In this way, the other side will not send 23410 * anything larger than they can receive. 23411 * 23412 * Note that for SYN_SENT state, the ndd param 23413 * tcp_use_smss_as_mss_opt has no effect as we 23414 * don't know the peer's MSS option value. So 23415 * the only case we need to take care of is in 23416 * SYN_RCVD state, which is done later. 23417 */ 23418 wptr = mp1->b_wptr; 23419 wptr[0] = TCPOPT_MAXSEG; 23420 wptr[1] = TCPOPT_MAXSEG_LEN; 23421 wptr += 2; 23422 u1 = tcp->tcp_if_mtu - 23423 (tcp->tcp_ipversion == IPV4_VERSION ? 23424 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23425 TCP_MIN_HEADER_LENGTH; 23426 U16_TO_BE16(u1, wptr); 23427 mp1->b_wptr = wptr + 2; 23428 /* Update the offset to cover the additional word */ 23429 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23430 23431 /* 23432 * Note that the following way of filling in 23433 * TCP options are not optimal. Some NOPs can 23434 * be saved. But there is no need at this time 23435 * to optimize it. When it is needed, we will 23436 * do it. 23437 */ 23438 switch (tcp->tcp_state) { 23439 case TCPS_SYN_SENT: 23440 flags = TH_SYN; 23441 23442 if (tcp->tcp_snd_ts_ok) { 23443 uint32_t llbolt = (uint32_t)lbolt; 23444 23445 wptr = mp1->b_wptr; 23446 wptr[0] = TCPOPT_NOP; 23447 wptr[1] = TCPOPT_NOP; 23448 wptr[2] = TCPOPT_TSTAMP; 23449 wptr[3] = TCPOPT_TSTAMP_LEN; 23450 wptr += 4; 23451 U32_TO_BE32(llbolt, wptr); 23452 wptr += 4; 23453 ASSERT(tcp->tcp_ts_recent == 0); 23454 U32_TO_BE32(0L, wptr); 23455 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23456 tcph->th_offset_and_rsrvd[0] += 23457 (3 << 4); 23458 } 23459 23460 /* 23461 * Set up all the bits to tell other side 23462 * we are ECN capable. 23463 */ 23464 if (tcp->tcp_ecn_ok) { 23465 flags |= (TH_ECE | TH_CWR); 23466 } 23467 break; 23468 case TCPS_SYN_RCVD: 23469 flags |= TH_SYN; 23470 23471 /* 23472 * Reset the MSS option value to be SMSS 23473 * We should probably add back the bytes 23474 * for timestamp option and IPsec. We 23475 * don't do that as this is a workaround 23476 * for broken middle boxes/end hosts, it 23477 * is better for us to be more cautious. 23478 * They may not take these things into 23479 * account in their SMSS calculation. Thus 23480 * the peer's calculated SMSS may be smaller 23481 * than what it can be. This should be OK. 23482 */ 23483 if (tcps->tcps_use_smss_as_mss_opt) { 23484 u1 = tcp->tcp_mss; 23485 U16_TO_BE16(u1, wptr); 23486 } 23487 23488 /* 23489 * If the other side is ECN capable, reply 23490 * that we are also ECN capable. 23491 */ 23492 if (tcp->tcp_ecn_ok) 23493 flags |= TH_ECE; 23494 break; 23495 default: 23496 /* 23497 * The above ASSERT() makes sure that this 23498 * must be FIN-WAIT-1 state. Our SYN has 23499 * not been ack'ed so retransmit it. 23500 */ 23501 flags |= TH_SYN; 23502 break; 23503 } 23504 23505 if (tcp->tcp_snd_ws_ok) { 23506 wptr = mp1->b_wptr; 23507 wptr[0] = TCPOPT_NOP; 23508 wptr[1] = TCPOPT_WSCALE; 23509 wptr[2] = TCPOPT_WS_LEN; 23510 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23511 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23512 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23513 } 23514 23515 if (tcp->tcp_snd_sack_ok) { 23516 wptr = mp1->b_wptr; 23517 wptr[0] = TCPOPT_NOP; 23518 wptr[1] = TCPOPT_NOP; 23519 wptr[2] = TCPOPT_SACK_PERMITTED; 23520 wptr[3] = TCPOPT_SACK_OK_LEN; 23521 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23522 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23523 } 23524 23525 /* allocb() of adequate mblk assures space */ 23526 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23527 (uintptr_t)INT_MAX); 23528 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23529 /* 23530 * Get IP set to checksum on our behalf 23531 * Include the adjustment for a source route if any. 23532 */ 23533 u1 += tcp->tcp_sum; 23534 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23535 U16_TO_BE16(u1, tcph->th_sum); 23536 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23537 } 23538 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23539 (seq + data_length) == tcp->tcp_fss) { 23540 if (!tcp->tcp_fin_acked) { 23541 flags |= TH_FIN; 23542 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23543 } 23544 if (!tcp->tcp_fin_sent) { 23545 tcp->tcp_fin_sent = B_TRUE; 23546 switch (tcp->tcp_state) { 23547 case TCPS_SYN_RCVD: 23548 case TCPS_ESTABLISHED: 23549 tcp->tcp_state = TCPS_FIN_WAIT_1; 23550 break; 23551 case TCPS_CLOSE_WAIT: 23552 tcp->tcp_state = TCPS_LAST_ACK; 23553 break; 23554 } 23555 if (tcp->tcp_suna == tcp->tcp_snxt) 23556 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23557 tcp->tcp_snxt = tcp->tcp_fss + 1; 23558 } 23559 } 23560 /* 23561 * Note the trick here. u1 is unsigned. When tcp_urg 23562 * is smaller than seq, u1 will become a very huge value. 23563 * So the comparison will fail. Also note that tcp_urp 23564 * should be positive, see RFC 793 page 17. 23565 */ 23566 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23567 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23568 u1 < (uint32_t)(64 * 1024)) { 23569 flags |= TH_URG; 23570 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23571 U32_TO_ABE16(u1, tcph->th_urp); 23572 } 23573 } 23574 tcph->th_flags[0] = (uchar_t)flags; 23575 tcp->tcp_rack = tcp->tcp_rnxt; 23576 tcp->tcp_rack_cnt = 0; 23577 23578 if (tcp->tcp_snd_ts_ok) { 23579 if (tcp->tcp_state != TCPS_SYN_SENT) { 23580 uint32_t llbolt = (uint32_t)lbolt; 23581 23582 U32_TO_BE32(llbolt, 23583 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23584 U32_TO_BE32(tcp->tcp_ts_recent, 23585 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23586 } 23587 } 23588 23589 if (num_sack_blk > 0) { 23590 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23591 sack_blk_t *tmp; 23592 int32_t i; 23593 23594 wptr[0] = TCPOPT_NOP; 23595 wptr[1] = TCPOPT_NOP; 23596 wptr[2] = TCPOPT_SACK; 23597 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23598 sizeof (sack_blk_t); 23599 wptr += TCPOPT_REAL_SACK_LEN; 23600 23601 tmp = tcp->tcp_sack_list; 23602 for (i = 0; i < num_sack_blk; i++) { 23603 U32_TO_BE32(tmp[i].begin, wptr); 23604 wptr += sizeof (tcp_seq); 23605 U32_TO_BE32(tmp[i].end, wptr); 23606 wptr += sizeof (tcp_seq); 23607 } 23608 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23609 } 23610 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23611 data_length += (int)(mp1->b_wptr - rptr); 23612 if (tcp->tcp_ipversion == IPV4_VERSION) { 23613 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23614 } else { 23615 ip6_t *ip6 = (ip6_t *)(rptr + 23616 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23617 sizeof (ip6i_t) : 0)); 23618 23619 ip6->ip6_plen = htons(data_length - 23620 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23621 } 23622 23623 /* 23624 * Prime pump for IP 23625 * Include the adjustment for a source route if any. 23626 */ 23627 data_length -= tcp->tcp_ip_hdr_len; 23628 data_length += tcp->tcp_sum; 23629 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23630 U16_TO_ABE16(data_length, tcph->th_sum); 23631 if (tcp->tcp_ip_forward_progress) { 23632 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23633 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23634 tcp->tcp_ip_forward_progress = B_FALSE; 23635 } 23636 return (mp1); 23637 } 23638 23639 /* This function handles the push timeout. */ 23640 void 23641 tcp_push_timer(void *arg) 23642 { 23643 conn_t *connp = (conn_t *)arg; 23644 tcp_t *tcp = connp->conn_tcp; 23645 uint_t flags; 23646 sodirect_t *sodp; 23647 23648 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 23649 23650 ASSERT(tcp->tcp_listener == NULL); 23651 23652 ASSERT(!IPCL_IS_NONSTR(connp)); 23653 23654 /* 23655 * We need to plug synchronous streams during our drain to prevent 23656 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23657 */ 23658 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23659 tcp->tcp_push_tid = 0; 23660 23661 SOD_PTR_ENTER(tcp, sodp); 23662 if (sodp != NULL) { 23663 flags = tcp_rcv_sod_wakeup(tcp, sodp); 23664 /* sod_wakeup() does the mutex_exit() */ 23665 } else if (tcp->tcp_rcv_list != NULL) { 23666 flags = tcp_rcv_drain(tcp); 23667 } 23668 if (flags == TH_ACK_NEEDED) 23669 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23670 23671 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23672 } 23673 23674 /* 23675 * This function handles delayed ACK timeout. 23676 */ 23677 static void 23678 tcp_ack_timer(void *arg) 23679 { 23680 conn_t *connp = (conn_t *)arg; 23681 tcp_t *tcp = connp->conn_tcp; 23682 mblk_t *mp; 23683 tcp_stack_t *tcps = tcp->tcp_tcps; 23684 23685 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23686 23687 tcp->tcp_ack_tid = 0; 23688 23689 if (tcp->tcp_fused) 23690 return; 23691 23692 /* 23693 * Do not send ACK if there is no outstanding unack'ed data. 23694 */ 23695 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23696 return; 23697 } 23698 23699 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23700 /* 23701 * Make sure we don't allow deferred ACKs to result in 23702 * timer-based ACKing. If we have held off an ACK 23703 * when there was more than an mss here, and the timer 23704 * goes off, we have to worry about the possibility 23705 * that the sender isn't doing slow-start, or is out 23706 * of step with us for some other reason. We fall 23707 * permanently back in the direction of 23708 * ACK-every-other-packet as suggested in RFC 1122. 23709 */ 23710 if (tcp->tcp_rack_abs_max > 2) 23711 tcp->tcp_rack_abs_max--; 23712 tcp->tcp_rack_cur_max = 2; 23713 } 23714 mp = tcp_ack_mp(tcp); 23715 23716 if (mp != NULL) { 23717 BUMP_LOCAL(tcp->tcp_obsegs); 23718 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23719 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23720 tcp_send_data(tcp, tcp->tcp_wq, mp); 23721 } 23722 } 23723 23724 23725 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23726 static mblk_t * 23727 tcp_ack_mp(tcp_t *tcp) 23728 { 23729 uint32_t seq_no; 23730 tcp_stack_t *tcps = tcp->tcp_tcps; 23731 23732 /* 23733 * There are a few cases to be considered while setting the sequence no. 23734 * Essentially, we can come here while processing an unacceptable pkt 23735 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23736 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23737 * If we are here for a zero window probe, stick with suna. In all 23738 * other cases, we check if suna + swnd encompasses snxt and set 23739 * the sequence number to snxt, if so. If snxt falls outside the 23740 * window (the receiver probably shrunk its window), we will go with 23741 * suna + swnd, otherwise the sequence no will be unacceptable to the 23742 * receiver. 23743 */ 23744 if (tcp->tcp_zero_win_probe) { 23745 seq_no = tcp->tcp_suna; 23746 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23747 ASSERT(tcp->tcp_swnd == 0); 23748 seq_no = tcp->tcp_snxt; 23749 } else { 23750 seq_no = SEQ_GT(tcp->tcp_snxt, 23751 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23752 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23753 } 23754 23755 if (tcp->tcp_valid_bits) { 23756 /* 23757 * For the complex case where we have to send some 23758 * controls (FIN or SYN), let tcp_xmit_mp do it. 23759 */ 23760 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23761 NULL, B_FALSE)); 23762 } else { 23763 /* Generate a simple ACK */ 23764 int data_length; 23765 uchar_t *rptr; 23766 tcph_t *tcph; 23767 mblk_t *mp1; 23768 int32_t tcp_hdr_len; 23769 int32_t tcp_tcp_hdr_len; 23770 int32_t num_sack_blk = 0; 23771 int32_t sack_opt_len; 23772 23773 /* 23774 * Allocate space for TCP + IP headers 23775 * and link-level header 23776 */ 23777 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23778 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23779 tcp->tcp_num_sack_blk); 23780 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23781 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23782 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23783 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23784 } else { 23785 tcp_hdr_len = tcp->tcp_hdr_len; 23786 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23787 } 23788 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23789 if (!mp1) 23790 return (NULL); 23791 23792 /* Update the latest receive window size in TCP header. */ 23793 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23794 tcp->tcp_tcph->th_win); 23795 /* copy in prototype TCP + IP header */ 23796 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23797 mp1->b_rptr = rptr; 23798 mp1->b_wptr = rptr + tcp_hdr_len; 23799 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23800 23801 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23802 23803 /* Set the TCP sequence number. */ 23804 U32_TO_ABE32(seq_no, tcph->th_seq); 23805 23806 /* Set up the TCP flag field. */ 23807 tcph->th_flags[0] = (uchar_t)TH_ACK; 23808 if (tcp->tcp_ecn_echo_on) 23809 tcph->th_flags[0] |= TH_ECE; 23810 23811 tcp->tcp_rack = tcp->tcp_rnxt; 23812 tcp->tcp_rack_cnt = 0; 23813 23814 /* fill in timestamp option if in use */ 23815 if (tcp->tcp_snd_ts_ok) { 23816 uint32_t llbolt = (uint32_t)lbolt; 23817 23818 U32_TO_BE32(llbolt, 23819 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23820 U32_TO_BE32(tcp->tcp_ts_recent, 23821 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23822 } 23823 23824 /* Fill in SACK options */ 23825 if (num_sack_blk > 0) { 23826 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23827 sack_blk_t *tmp; 23828 int32_t i; 23829 23830 wptr[0] = TCPOPT_NOP; 23831 wptr[1] = TCPOPT_NOP; 23832 wptr[2] = TCPOPT_SACK; 23833 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23834 sizeof (sack_blk_t); 23835 wptr += TCPOPT_REAL_SACK_LEN; 23836 23837 tmp = tcp->tcp_sack_list; 23838 for (i = 0; i < num_sack_blk; i++) { 23839 U32_TO_BE32(tmp[i].begin, wptr); 23840 wptr += sizeof (tcp_seq); 23841 U32_TO_BE32(tmp[i].end, wptr); 23842 wptr += sizeof (tcp_seq); 23843 } 23844 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23845 << 4); 23846 } 23847 23848 if (tcp->tcp_ipversion == IPV4_VERSION) { 23849 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23850 } else { 23851 /* Check for ip6i_t header in sticky hdrs */ 23852 ip6_t *ip6 = (ip6_t *)(rptr + 23853 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23854 sizeof (ip6i_t) : 0)); 23855 23856 ip6->ip6_plen = htons(tcp_hdr_len - 23857 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23858 } 23859 23860 /* 23861 * Prime pump for checksum calculation in IP. Include the 23862 * adjustment for a source route if any. 23863 */ 23864 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23865 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23866 U16_TO_ABE16(data_length, tcph->th_sum); 23867 23868 if (tcp->tcp_ip_forward_progress) { 23869 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23870 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23871 tcp->tcp_ip_forward_progress = B_FALSE; 23872 } 23873 return (mp1); 23874 } 23875 } 23876 23877 /* 23878 * Hash list insertion routine for tcp_t structures. Each hash bucket 23879 * contains a list of tcp_t entries, and each entry is bound to a unique 23880 * port. If there are multiple tcp_t's that are bound to the same port, then 23881 * one of them will be linked into the hash bucket list, and the rest will 23882 * hang off of that one entry. For each port, entries bound to a specific IP 23883 * address will be inserted before those those bound to INADDR_ANY. 23884 */ 23885 static void 23886 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23887 { 23888 tcp_t **tcpp; 23889 tcp_t *tcpnext; 23890 tcp_t *tcphash; 23891 23892 if (tcp->tcp_ptpbhn != NULL) { 23893 ASSERT(!caller_holds_lock); 23894 tcp_bind_hash_remove(tcp); 23895 } 23896 tcpp = &tbf->tf_tcp; 23897 if (!caller_holds_lock) { 23898 mutex_enter(&tbf->tf_lock); 23899 } else { 23900 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23901 } 23902 tcphash = tcpp[0]; 23903 tcpnext = NULL; 23904 if (tcphash != NULL) { 23905 /* Look for an entry using the same port */ 23906 while ((tcphash = tcpp[0]) != NULL && 23907 tcp->tcp_lport != tcphash->tcp_lport) 23908 tcpp = &(tcphash->tcp_bind_hash); 23909 23910 /* The port was not found, just add to the end */ 23911 if (tcphash == NULL) 23912 goto insert; 23913 23914 /* 23915 * OK, there already exists an entry bound to the 23916 * same port. 23917 * 23918 * If the new tcp bound to the INADDR_ANY address 23919 * and the first one in the list is not bound to 23920 * INADDR_ANY we skip all entries until we find the 23921 * first one bound to INADDR_ANY. 23922 * This makes sure that applications binding to a 23923 * specific address get preference over those binding to 23924 * INADDR_ANY. 23925 */ 23926 tcpnext = tcphash; 23927 tcphash = NULL; 23928 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23929 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23930 while ((tcpnext = tcpp[0]) != NULL && 23931 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23932 tcpp = &(tcpnext->tcp_bind_hash_port); 23933 23934 if (tcpnext) { 23935 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23936 tcphash = tcpnext->tcp_bind_hash; 23937 if (tcphash != NULL) { 23938 tcphash->tcp_ptpbhn = 23939 &(tcp->tcp_bind_hash); 23940 tcpnext->tcp_bind_hash = NULL; 23941 } 23942 } 23943 } else { 23944 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23945 tcphash = tcpnext->tcp_bind_hash; 23946 if (tcphash != NULL) { 23947 tcphash->tcp_ptpbhn = 23948 &(tcp->tcp_bind_hash); 23949 tcpnext->tcp_bind_hash = NULL; 23950 } 23951 } 23952 } 23953 insert: 23954 tcp->tcp_bind_hash_port = tcpnext; 23955 tcp->tcp_bind_hash = tcphash; 23956 tcp->tcp_ptpbhn = tcpp; 23957 tcpp[0] = tcp; 23958 if (!caller_holds_lock) 23959 mutex_exit(&tbf->tf_lock); 23960 } 23961 23962 /* 23963 * Hash list removal routine for tcp_t structures. 23964 */ 23965 static void 23966 tcp_bind_hash_remove(tcp_t *tcp) 23967 { 23968 tcp_t *tcpnext; 23969 kmutex_t *lockp; 23970 tcp_stack_t *tcps = tcp->tcp_tcps; 23971 23972 if (tcp->tcp_ptpbhn == NULL) 23973 return; 23974 23975 /* 23976 * Extract the lock pointer in case there are concurrent 23977 * hash_remove's for this instance. 23978 */ 23979 ASSERT(tcp->tcp_lport != 0); 23980 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23981 23982 ASSERT(lockp != NULL); 23983 mutex_enter(lockp); 23984 if (tcp->tcp_ptpbhn) { 23985 tcpnext = tcp->tcp_bind_hash_port; 23986 if (tcpnext != NULL) { 23987 tcp->tcp_bind_hash_port = NULL; 23988 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23989 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23990 if (tcpnext->tcp_bind_hash != NULL) { 23991 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23992 &(tcpnext->tcp_bind_hash); 23993 tcp->tcp_bind_hash = NULL; 23994 } 23995 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23996 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23997 tcp->tcp_bind_hash = NULL; 23998 } 23999 *tcp->tcp_ptpbhn = tcpnext; 24000 tcp->tcp_ptpbhn = NULL; 24001 } 24002 mutex_exit(lockp); 24003 } 24004 24005 24006 /* 24007 * Hash list lookup routine for tcp_t structures. 24008 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 24009 */ 24010 static tcp_t * 24011 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 24012 { 24013 tf_t *tf; 24014 tcp_t *tcp; 24015 24016 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24017 mutex_enter(&tf->tf_lock); 24018 for (tcp = tf->tf_tcp; tcp != NULL; 24019 tcp = tcp->tcp_acceptor_hash) { 24020 if (tcp->tcp_acceptor_id == id) { 24021 CONN_INC_REF(tcp->tcp_connp); 24022 mutex_exit(&tf->tf_lock); 24023 return (tcp); 24024 } 24025 } 24026 mutex_exit(&tf->tf_lock); 24027 return (NULL); 24028 } 24029 24030 24031 /* 24032 * Hash list insertion routine for tcp_t structures. 24033 */ 24034 void 24035 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24036 { 24037 tf_t *tf; 24038 tcp_t **tcpp; 24039 tcp_t *tcpnext; 24040 tcp_stack_t *tcps = tcp->tcp_tcps; 24041 24042 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24043 24044 if (tcp->tcp_ptpahn != NULL) 24045 tcp_acceptor_hash_remove(tcp); 24046 tcpp = &tf->tf_tcp; 24047 mutex_enter(&tf->tf_lock); 24048 tcpnext = tcpp[0]; 24049 if (tcpnext) 24050 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24051 tcp->tcp_acceptor_hash = tcpnext; 24052 tcp->tcp_ptpahn = tcpp; 24053 tcpp[0] = tcp; 24054 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24055 mutex_exit(&tf->tf_lock); 24056 } 24057 24058 /* 24059 * Hash list removal routine for tcp_t structures. 24060 */ 24061 static void 24062 tcp_acceptor_hash_remove(tcp_t *tcp) 24063 { 24064 tcp_t *tcpnext; 24065 kmutex_t *lockp; 24066 24067 /* 24068 * Extract the lock pointer in case there are concurrent 24069 * hash_remove's for this instance. 24070 */ 24071 lockp = tcp->tcp_acceptor_lockp; 24072 24073 if (tcp->tcp_ptpahn == NULL) 24074 return; 24075 24076 ASSERT(lockp != NULL); 24077 mutex_enter(lockp); 24078 if (tcp->tcp_ptpahn) { 24079 tcpnext = tcp->tcp_acceptor_hash; 24080 if (tcpnext) { 24081 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24082 tcp->tcp_acceptor_hash = NULL; 24083 } 24084 *tcp->tcp_ptpahn = tcpnext; 24085 tcp->tcp_ptpahn = NULL; 24086 } 24087 mutex_exit(lockp); 24088 tcp->tcp_acceptor_lockp = NULL; 24089 } 24090 24091 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24092 24093 static ipaddr_t netmasks[] = { 24094 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24095 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24096 }; 24097 24098 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24099 24100 /* 24101 * XXX This routine should go away and instead we should use the metrics 24102 * associated with the routes to determine the default sndspace and rcvspace. 24103 */ 24104 static tcp_hsp_t * 24105 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24106 { 24107 tcp_hsp_t *hsp = NULL; 24108 24109 /* Quick check without acquiring the lock. */ 24110 if (tcps->tcps_hsp_hash == NULL) 24111 return (NULL); 24112 24113 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24114 24115 /* This routine finds the best-matching HSP for address addr. */ 24116 24117 if (tcps->tcps_hsp_hash) { 24118 int i; 24119 ipaddr_t srchaddr; 24120 tcp_hsp_t *hsp_net; 24121 24122 /* We do three passes: host, network, and subnet. */ 24123 24124 srchaddr = addr; 24125 24126 for (i = 1; i <= 3; i++) { 24127 /* Look for exact match on srchaddr */ 24128 24129 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24130 while (hsp) { 24131 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24132 hsp->tcp_hsp_addr == srchaddr) 24133 break; 24134 hsp = hsp->tcp_hsp_next; 24135 } 24136 ASSERT(hsp == NULL || 24137 hsp->tcp_hsp_vers == IPV4_VERSION); 24138 24139 /* 24140 * If this is the first pass: 24141 * If we found a match, great, return it. 24142 * If not, search for the network on the second pass. 24143 */ 24144 24145 if (i == 1) 24146 if (hsp) 24147 break; 24148 else 24149 { 24150 srchaddr = addr & netmask(addr); 24151 continue; 24152 } 24153 24154 /* 24155 * If this is the second pass: 24156 * If we found a match, but there's a subnet mask, 24157 * save the match but try again using the subnet 24158 * mask on the third pass. 24159 * Otherwise, return whatever we found. 24160 */ 24161 24162 if (i == 2) { 24163 if (hsp && hsp->tcp_hsp_subnet) { 24164 hsp_net = hsp; 24165 srchaddr = addr & hsp->tcp_hsp_subnet; 24166 continue; 24167 } else { 24168 break; 24169 } 24170 } 24171 24172 /* 24173 * This must be the third pass. If we didn't find 24174 * anything, return the saved network HSP instead. 24175 */ 24176 24177 if (!hsp) 24178 hsp = hsp_net; 24179 } 24180 } 24181 24182 rw_exit(&tcps->tcps_hsp_lock); 24183 return (hsp); 24184 } 24185 24186 /* 24187 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24188 * match lookup. 24189 */ 24190 static tcp_hsp_t * 24191 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24192 { 24193 tcp_hsp_t *hsp = NULL; 24194 24195 /* Quick check without acquiring the lock. */ 24196 if (tcps->tcps_hsp_hash == NULL) 24197 return (NULL); 24198 24199 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24200 24201 /* This routine finds the best-matching HSP for address addr. */ 24202 24203 if (tcps->tcps_hsp_hash) { 24204 int i; 24205 in6_addr_t v6srchaddr; 24206 tcp_hsp_t *hsp_net; 24207 24208 /* We do three passes: host, network, and subnet. */ 24209 24210 v6srchaddr = *v6addr; 24211 24212 for (i = 1; i <= 3; i++) { 24213 /* Look for exact match on srchaddr */ 24214 24215 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24216 V4_PART_OF_V6(v6srchaddr))]; 24217 while (hsp) { 24218 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24219 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24220 &v6srchaddr)) 24221 break; 24222 hsp = hsp->tcp_hsp_next; 24223 } 24224 24225 /* 24226 * If this is the first pass: 24227 * If we found a match, great, return it. 24228 * If not, search for the network on the second pass. 24229 */ 24230 24231 if (i == 1) 24232 if (hsp) 24233 break; 24234 else { 24235 /* Assume a 64 bit mask */ 24236 v6srchaddr.s6_addr32[0] = 24237 v6addr->s6_addr32[0]; 24238 v6srchaddr.s6_addr32[1] = 24239 v6addr->s6_addr32[1]; 24240 v6srchaddr.s6_addr32[2] = 0; 24241 v6srchaddr.s6_addr32[3] = 0; 24242 continue; 24243 } 24244 24245 /* 24246 * If this is the second pass: 24247 * If we found a match, but there's a subnet mask, 24248 * save the match but try again using the subnet 24249 * mask on the third pass. 24250 * Otherwise, return whatever we found. 24251 */ 24252 24253 if (i == 2) { 24254 ASSERT(hsp == NULL || 24255 hsp->tcp_hsp_vers == IPV6_VERSION); 24256 if (hsp && 24257 !IN6_IS_ADDR_UNSPECIFIED( 24258 &hsp->tcp_hsp_subnet_v6)) { 24259 hsp_net = hsp; 24260 V6_MASK_COPY(*v6addr, 24261 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24262 continue; 24263 } else { 24264 break; 24265 } 24266 } 24267 24268 /* 24269 * This must be the third pass. If we didn't find 24270 * anything, return the saved network HSP instead. 24271 */ 24272 24273 if (!hsp) 24274 hsp = hsp_net; 24275 } 24276 } 24277 24278 rw_exit(&tcps->tcps_hsp_lock); 24279 return (hsp); 24280 } 24281 24282 /* 24283 * Type three generator adapted from the random() function in 4.4 BSD: 24284 */ 24285 24286 /* 24287 * Copyright (c) 1983, 1993 24288 * The Regents of the University of California. All rights reserved. 24289 * 24290 * Redistribution and use in source and binary forms, with or without 24291 * modification, are permitted provided that the following conditions 24292 * are met: 24293 * 1. Redistributions of source code must retain the above copyright 24294 * notice, this list of conditions and the following disclaimer. 24295 * 2. Redistributions in binary form must reproduce the above copyright 24296 * notice, this list of conditions and the following disclaimer in the 24297 * documentation and/or other materials provided with the distribution. 24298 * 3. All advertising materials mentioning features or use of this software 24299 * must display the following acknowledgement: 24300 * This product includes software developed by the University of 24301 * California, Berkeley and its contributors. 24302 * 4. Neither the name of the University nor the names of its contributors 24303 * may be used to endorse or promote products derived from this software 24304 * without specific prior written permission. 24305 * 24306 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24307 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24308 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24309 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24310 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24311 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24312 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24313 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24314 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24315 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24316 * SUCH DAMAGE. 24317 */ 24318 24319 /* Type 3 -- x**31 + x**3 + 1 */ 24320 #define DEG_3 31 24321 #define SEP_3 3 24322 24323 24324 /* Protected by tcp_random_lock */ 24325 static int tcp_randtbl[DEG_3 + 1]; 24326 24327 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24328 static int *tcp_random_rptr = &tcp_randtbl[1]; 24329 24330 static int *tcp_random_state = &tcp_randtbl[1]; 24331 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24332 24333 kmutex_t tcp_random_lock; 24334 24335 void 24336 tcp_random_init(void) 24337 { 24338 int i; 24339 hrtime_t hrt; 24340 time_t wallclock; 24341 uint64_t result; 24342 24343 /* 24344 * Use high-res timer and current time for seed. Gethrtime() returns 24345 * a longlong, which may contain resolution down to nanoseconds. 24346 * The current time will either be a 32-bit or a 64-bit quantity. 24347 * XOR the two together in a 64-bit result variable. 24348 * Convert the result to a 32-bit value by multiplying the high-order 24349 * 32-bits by the low-order 32-bits. 24350 */ 24351 24352 hrt = gethrtime(); 24353 (void) drv_getparm(TIME, &wallclock); 24354 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24355 mutex_enter(&tcp_random_lock); 24356 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24357 (result & 0xffffffff); 24358 24359 for (i = 1; i < DEG_3; i++) 24360 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24361 + 12345; 24362 tcp_random_fptr = &tcp_random_state[SEP_3]; 24363 tcp_random_rptr = &tcp_random_state[0]; 24364 mutex_exit(&tcp_random_lock); 24365 for (i = 0; i < 10 * DEG_3; i++) 24366 (void) tcp_random(); 24367 } 24368 24369 /* 24370 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24371 * This range is selected to be approximately centered on TCP_ISS / 2, 24372 * and easy to compute. We get this value by generating a 32-bit random 24373 * number, selecting out the high-order 17 bits, and then adding one so 24374 * that we never return zero. 24375 */ 24376 int 24377 tcp_random(void) 24378 { 24379 int i; 24380 24381 mutex_enter(&tcp_random_lock); 24382 *tcp_random_fptr += *tcp_random_rptr; 24383 24384 /* 24385 * The high-order bits are more random than the low-order bits, 24386 * so we select out the high-order 17 bits and add one so that 24387 * we never return zero. 24388 */ 24389 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24390 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24391 tcp_random_fptr = tcp_random_state; 24392 ++tcp_random_rptr; 24393 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24394 tcp_random_rptr = tcp_random_state; 24395 24396 mutex_exit(&tcp_random_lock); 24397 return (i); 24398 } 24399 24400 static int 24401 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24402 int *t_errorp, int *sys_errorp) 24403 { 24404 int error; 24405 int is_absreq_failure; 24406 t_scalar_t *opt_lenp; 24407 t_scalar_t opt_offset; 24408 int prim_type; 24409 struct T_conn_req *tcreqp; 24410 struct T_conn_res *tcresp; 24411 cred_t *cr; 24412 24413 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24414 24415 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24416 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24417 prim_type == T_CONN_RES); 24418 24419 switch (prim_type) { 24420 case T_CONN_REQ: 24421 tcreqp = (struct T_conn_req *)mp->b_rptr; 24422 opt_offset = tcreqp->OPT_offset; 24423 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24424 break; 24425 case O_T_CONN_RES: 24426 case T_CONN_RES: 24427 tcresp = (struct T_conn_res *)mp->b_rptr; 24428 opt_offset = tcresp->OPT_offset; 24429 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24430 break; 24431 } 24432 24433 *t_errorp = 0; 24434 *sys_errorp = 0; 24435 *do_disconnectp = 0; 24436 24437 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24438 opt_offset, cr, &tcp_opt_obj, 24439 NULL, &is_absreq_failure); 24440 24441 switch (error) { 24442 case 0: /* no error */ 24443 ASSERT(is_absreq_failure == 0); 24444 return (0); 24445 case ENOPROTOOPT: 24446 *t_errorp = TBADOPT; 24447 break; 24448 case EACCES: 24449 *t_errorp = TACCES; 24450 break; 24451 default: 24452 *t_errorp = TSYSERR; *sys_errorp = error; 24453 break; 24454 } 24455 if (is_absreq_failure != 0) { 24456 /* 24457 * The connection request should get the local ack 24458 * T_OK_ACK and then a T_DISCON_IND. 24459 */ 24460 *do_disconnectp = 1; 24461 } 24462 return (-1); 24463 } 24464 24465 /* 24466 * Split this function out so that if the secret changes, I'm okay. 24467 * 24468 * Initialize the tcp_iss_cookie and tcp_iss_key. 24469 */ 24470 24471 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24472 24473 static void 24474 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24475 { 24476 struct { 24477 int32_t current_time; 24478 uint32_t randnum; 24479 uint16_t pad; 24480 uint8_t ether[6]; 24481 uint8_t passwd[PASSWD_SIZE]; 24482 } tcp_iss_cookie; 24483 time_t t; 24484 24485 /* 24486 * Start with the current absolute time. 24487 */ 24488 (void) drv_getparm(TIME, &t); 24489 tcp_iss_cookie.current_time = t; 24490 24491 /* 24492 * XXX - Need a more random number per RFC 1750, not this crap. 24493 * OTOH, if what follows is pretty random, then I'm in better shape. 24494 */ 24495 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24496 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24497 24498 /* 24499 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24500 * as a good template. 24501 */ 24502 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24503 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24504 24505 /* 24506 * The pass-phrase. Normally this is supplied by user-called NDD. 24507 */ 24508 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24509 24510 /* 24511 * See 4010593 if this section becomes a problem again, 24512 * but the local ethernet address is useful here. 24513 */ 24514 (void) localetheraddr(NULL, 24515 (struct ether_addr *)&tcp_iss_cookie.ether); 24516 24517 /* 24518 * Hash 'em all together. The MD5Final is called per-connection. 24519 */ 24520 mutex_enter(&tcps->tcps_iss_key_lock); 24521 MD5Init(&tcps->tcps_iss_key); 24522 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24523 sizeof (tcp_iss_cookie)); 24524 mutex_exit(&tcps->tcps_iss_key_lock); 24525 } 24526 24527 /* 24528 * Set the RFC 1948 pass phrase 24529 */ 24530 /* ARGSUSED */ 24531 static int 24532 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24533 cred_t *cr) 24534 { 24535 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24536 24537 /* 24538 * Basically, value contains a new pass phrase. Pass it along! 24539 */ 24540 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24541 return (0); 24542 } 24543 24544 /* ARGSUSED */ 24545 static int 24546 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24547 { 24548 bzero(buf, sizeof (tcp_sack_info_t)); 24549 return (0); 24550 } 24551 24552 /* ARGSUSED */ 24553 static int 24554 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24555 { 24556 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24557 return (0); 24558 } 24559 24560 /* 24561 * Make sure we wait until the default queue is setup, yet allow 24562 * tcp_g_q_create() to open a TCP stream. 24563 * We need to allow tcp_g_q_create() do do an open 24564 * of tcp, hence we compare curhread. 24565 * All others have to wait until the tcps_g_q has been 24566 * setup. 24567 */ 24568 void 24569 tcp_g_q_setup(tcp_stack_t *tcps) 24570 { 24571 mutex_enter(&tcps->tcps_g_q_lock); 24572 if (tcps->tcps_g_q != NULL) { 24573 mutex_exit(&tcps->tcps_g_q_lock); 24574 return; 24575 } 24576 if (tcps->tcps_g_q_creator == NULL) { 24577 /* This thread will set it up */ 24578 tcps->tcps_g_q_creator = curthread; 24579 mutex_exit(&tcps->tcps_g_q_lock); 24580 tcp_g_q_create(tcps); 24581 mutex_enter(&tcps->tcps_g_q_lock); 24582 ASSERT(tcps->tcps_g_q_creator == curthread); 24583 tcps->tcps_g_q_creator = NULL; 24584 cv_signal(&tcps->tcps_g_q_cv); 24585 ASSERT(tcps->tcps_g_q != NULL); 24586 mutex_exit(&tcps->tcps_g_q_lock); 24587 return; 24588 } 24589 /* Everybody but the creator has to wait */ 24590 if (tcps->tcps_g_q_creator != curthread) { 24591 while (tcps->tcps_g_q == NULL) 24592 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24593 } 24594 mutex_exit(&tcps->tcps_g_q_lock); 24595 } 24596 24597 #define IP "ip" 24598 24599 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24600 24601 /* 24602 * Create a default tcp queue here instead of in strplumb 24603 */ 24604 void 24605 tcp_g_q_create(tcp_stack_t *tcps) 24606 { 24607 int error; 24608 ldi_handle_t lh = NULL; 24609 ldi_ident_t li = NULL; 24610 int rval; 24611 cred_t *cr; 24612 major_t IP_MAJ; 24613 24614 #ifdef NS_DEBUG 24615 (void) printf("tcp_g_q_create()\n"); 24616 #endif 24617 24618 IP_MAJ = ddi_name_to_major(IP); 24619 24620 ASSERT(tcps->tcps_g_q_creator == curthread); 24621 24622 error = ldi_ident_from_major(IP_MAJ, &li); 24623 if (error) { 24624 #ifdef DEBUG 24625 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24626 error); 24627 #endif 24628 return; 24629 } 24630 24631 cr = zone_get_kcred(netstackid_to_zoneid( 24632 tcps->tcps_netstack->netstack_stackid)); 24633 ASSERT(cr != NULL); 24634 /* 24635 * We set the tcp default queue to IPv6 because IPv4 falls 24636 * back to IPv6 when it can't find a client, but 24637 * IPv6 does not fall back to IPv4. 24638 */ 24639 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 24640 if (error) { 24641 #ifdef DEBUG 24642 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 24643 error); 24644 #endif 24645 goto out; 24646 } 24647 24648 /* 24649 * This ioctl causes the tcp framework to cache a pointer to 24650 * this stream, so we don't want to close the stream after 24651 * this operation. 24652 * Use the kernel credentials that are for the zone we're in. 24653 */ 24654 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 24655 (intptr_t)0, FKIOCTL, cr, &rval); 24656 if (error) { 24657 #ifdef DEBUG 24658 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 24659 "error %d\n", error); 24660 #endif 24661 goto out; 24662 } 24663 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 24664 lh = NULL; 24665 out: 24666 /* Close layered handles */ 24667 if (li) 24668 ldi_ident_release(li); 24669 /* Keep cred around until _inactive needs it */ 24670 tcps->tcps_g_q_cr = cr; 24671 } 24672 24673 /* 24674 * We keep tcp_g_q set until all other tcp_t's in the zone 24675 * has gone away, and then when tcp_g_q_inactive() is called 24676 * we clear it. 24677 */ 24678 void 24679 tcp_g_q_destroy(tcp_stack_t *tcps) 24680 { 24681 #ifdef NS_DEBUG 24682 (void) printf("tcp_g_q_destroy()for stack %d\n", 24683 tcps->tcps_netstack->netstack_stackid); 24684 #endif 24685 24686 if (tcps->tcps_g_q == NULL) { 24687 return; /* Nothing to cleanup */ 24688 } 24689 /* 24690 * Drop reference corresponding to the default queue. 24691 * This reference was added from tcp_open when the default queue 24692 * was created, hence we compensate for this extra drop in 24693 * tcp_g_q_close. If the refcnt drops to zero here it means 24694 * the default queue was the last one to be open, in which 24695 * case, then tcp_g_q_inactive will be 24696 * called as a result of the refrele. 24697 */ 24698 TCPS_REFRELE(tcps); 24699 } 24700 24701 /* 24702 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24703 * Run by tcp_q_q_inactive using a taskq. 24704 */ 24705 static void 24706 tcp_g_q_close(void *arg) 24707 { 24708 tcp_stack_t *tcps = arg; 24709 int error; 24710 ldi_handle_t lh = NULL; 24711 ldi_ident_t li = NULL; 24712 cred_t *cr; 24713 major_t IP_MAJ; 24714 24715 IP_MAJ = ddi_name_to_major(IP); 24716 24717 #ifdef NS_DEBUG 24718 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 24719 tcps->tcps_netstack->netstack_stackid, 24720 tcps->tcps_netstack->netstack_refcnt); 24721 #endif 24722 lh = tcps->tcps_g_q_lh; 24723 if (lh == NULL) 24724 return; /* Nothing to cleanup */ 24725 24726 ASSERT(tcps->tcps_refcnt == 1); 24727 ASSERT(tcps->tcps_g_q != NULL); 24728 24729 error = ldi_ident_from_major(IP_MAJ, &li); 24730 if (error) { 24731 #ifdef DEBUG 24732 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 24733 error); 24734 #endif 24735 return; 24736 } 24737 24738 cr = tcps->tcps_g_q_cr; 24739 tcps->tcps_g_q_cr = NULL; 24740 ASSERT(cr != NULL); 24741 24742 /* 24743 * Make sure we can break the recursion when tcp_close decrements 24744 * the reference count causing g_q_inactive to be called again. 24745 */ 24746 tcps->tcps_g_q_lh = NULL; 24747 24748 /* close the default queue */ 24749 (void) ldi_close(lh, FREAD|FWRITE, cr); 24750 /* 24751 * At this point in time tcps and the rest of netstack_t might 24752 * have been deleted. 24753 */ 24754 tcps = NULL; 24755 24756 /* Close layered handles */ 24757 ldi_ident_release(li); 24758 crfree(cr); 24759 } 24760 24761 /* 24762 * Called when last tcp_t drops reference count using TCPS_REFRELE. 24763 * 24764 * Have to ensure that the ldi routines are not used by an 24765 * interrupt thread by using a taskq. 24766 */ 24767 void 24768 tcp_g_q_inactive(tcp_stack_t *tcps) 24769 { 24770 if (tcps->tcps_g_q_lh == NULL) 24771 return; /* Nothing to cleanup */ 24772 24773 ASSERT(tcps->tcps_refcnt == 0); 24774 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 24775 24776 if (servicing_interrupt()) { 24777 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 24778 (void *) tcps, TQ_SLEEP); 24779 } else { 24780 tcp_g_q_close(tcps); 24781 } 24782 } 24783 24784 /* 24785 * Called by IP when IP is loaded into the kernel 24786 */ 24787 void 24788 tcp_ddi_g_init(void) 24789 { 24790 tcp_timercache = kmem_cache_create("tcp_timercache", 24791 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24792 NULL, NULL, NULL, NULL, NULL, 0); 24793 24794 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24795 sizeof (tcp_sack_info_t), 0, 24796 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24797 24798 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24799 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24800 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24801 24802 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24803 24804 /* Initialize the random number generator */ 24805 tcp_random_init(); 24806 24807 /* A single callback independently of how many netstacks we have */ 24808 ip_squeue_init(tcp_squeue_add); 24809 24810 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 24811 24812 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 24813 TASKQ_PREPOPULATE); 24814 24815 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 24816 24817 /* 24818 * We want to be informed each time a stack is created or 24819 * destroyed in the kernel, so we can maintain the 24820 * set of tcp_stack_t's. 24821 */ 24822 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 24823 tcp_stack_fini); 24824 } 24825 24826 24827 #define INET_NAME "ip" 24828 24829 /* 24830 * Initialize the TCP stack instance. 24831 */ 24832 static void * 24833 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 24834 { 24835 tcp_stack_t *tcps; 24836 tcpparam_t *pa; 24837 int i; 24838 int error = 0; 24839 major_t major; 24840 24841 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 24842 tcps->tcps_netstack = ns; 24843 24844 /* Initialize locks */ 24845 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 24846 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24847 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 24848 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24849 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24850 24851 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 24852 tcps->tcps_g_epriv_ports[0] = 2049; 24853 tcps->tcps_g_epriv_ports[1] = 4045; 24854 tcps->tcps_min_anonpriv_port = 512; 24855 24856 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 24857 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 24858 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 24859 TCP_FANOUT_SIZE, KM_SLEEP); 24860 24861 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24862 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 24863 MUTEX_DEFAULT, NULL); 24864 } 24865 24866 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24867 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 24868 MUTEX_DEFAULT, NULL); 24869 } 24870 24871 /* TCP's IPsec code calls the packet dropper. */ 24872 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 24873 24874 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 24875 tcps->tcps_params = pa; 24876 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24877 24878 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 24879 A_CNT(lcl_tcp_param_arr), tcps); 24880 24881 /* 24882 * Note: To really walk the device tree you need the devinfo 24883 * pointer to your device which is only available after probe/attach. 24884 * The following is safe only because it uses ddi_root_node() 24885 */ 24886 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24887 tcp_opt_obj.odb_opt_arr_cnt); 24888 24889 /* 24890 * Initialize RFC 1948 secret values. This will probably be reset once 24891 * by the boot scripts. 24892 * 24893 * Use NULL name, as the name is caught by the new lockstats. 24894 * 24895 * Initialize with some random, non-guessable string, like the global 24896 * T_INFO_ACK. 24897 */ 24898 24899 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24900 sizeof (tcp_g_t_info_ack), tcps); 24901 24902 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 24903 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 24904 24905 major = mod_name_to_major(INET_NAME); 24906 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 24907 ASSERT(error == 0); 24908 return (tcps); 24909 } 24910 24911 /* 24912 * Called when the IP module is about to be unloaded. 24913 */ 24914 void 24915 tcp_ddi_g_destroy(void) 24916 { 24917 tcp_g_kstat_fini(tcp_g_kstat); 24918 tcp_g_kstat = NULL; 24919 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 24920 24921 mutex_destroy(&tcp_random_lock); 24922 24923 kmem_cache_destroy(tcp_timercache); 24924 kmem_cache_destroy(tcp_sack_info_cache); 24925 kmem_cache_destroy(tcp_iphc_cache); 24926 24927 netstack_unregister(NS_TCP); 24928 taskq_destroy(tcp_taskq); 24929 } 24930 24931 /* 24932 * Shut down the TCP stack instance. 24933 */ 24934 /* ARGSUSED */ 24935 static void 24936 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24937 { 24938 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24939 24940 tcp_g_q_destroy(tcps); 24941 } 24942 24943 /* 24944 * Free the TCP stack instance. 24945 */ 24946 static void 24947 tcp_stack_fini(netstackid_t stackid, void *arg) 24948 { 24949 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24950 int i; 24951 24952 nd_free(&tcps->tcps_g_nd); 24953 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24954 tcps->tcps_params = NULL; 24955 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24956 tcps->tcps_wroff_xtra_param = NULL; 24957 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24958 tcps->tcps_mdt_head_param = NULL; 24959 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24960 tcps->tcps_mdt_tail_param = NULL; 24961 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24962 tcps->tcps_mdt_max_pbufs_param = NULL; 24963 24964 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24965 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24966 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24967 } 24968 24969 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24970 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24971 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24972 } 24973 24974 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24975 tcps->tcps_bind_fanout = NULL; 24976 24977 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24978 tcps->tcps_acceptor_fanout = NULL; 24979 24980 mutex_destroy(&tcps->tcps_iss_key_lock); 24981 rw_destroy(&tcps->tcps_hsp_lock); 24982 mutex_destroy(&tcps->tcps_g_q_lock); 24983 cv_destroy(&tcps->tcps_g_q_cv); 24984 mutex_destroy(&tcps->tcps_epriv_port_lock); 24985 24986 ip_drop_unregister(&tcps->tcps_dropper); 24987 24988 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24989 tcps->tcps_kstat = NULL; 24990 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24991 24992 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24993 tcps->tcps_mibkp = NULL; 24994 24995 ldi_ident_release(tcps->tcps_ldi_ident); 24996 kmem_free(tcps, sizeof (*tcps)); 24997 } 24998 24999 /* 25000 * Generate ISS, taking into account NDD changes may happen halfway through. 25001 * (If the iss is not zero, set it.) 25002 */ 25003 25004 static void 25005 tcp_iss_init(tcp_t *tcp) 25006 { 25007 MD5_CTX context; 25008 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25009 uint32_t answer[4]; 25010 tcp_stack_t *tcps = tcp->tcp_tcps; 25011 25012 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25013 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25014 switch (tcps->tcps_strong_iss) { 25015 case 2: 25016 mutex_enter(&tcps->tcps_iss_key_lock); 25017 context = tcps->tcps_iss_key; 25018 mutex_exit(&tcps->tcps_iss_key_lock); 25019 arg.ports = tcp->tcp_ports; 25020 if (tcp->tcp_ipversion == IPV4_VERSION) { 25021 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25022 &arg.src); 25023 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25024 &arg.dst); 25025 } else { 25026 arg.src = tcp->tcp_ip6h->ip6_src; 25027 arg.dst = tcp->tcp_ip6h->ip6_dst; 25028 } 25029 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25030 MD5Final((uchar_t *)answer, &context); 25031 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25032 /* 25033 * Now that we've hashed into a unique per-connection sequence 25034 * space, add a random increment per strong_iss == 1. So I 25035 * guess we'll have to... 25036 */ 25037 /* FALLTHRU */ 25038 case 1: 25039 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25040 break; 25041 default: 25042 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25043 break; 25044 } 25045 tcp->tcp_valid_bits = TCP_ISS_VALID; 25046 tcp->tcp_fss = tcp->tcp_iss - 1; 25047 tcp->tcp_suna = tcp->tcp_iss; 25048 tcp->tcp_snxt = tcp->tcp_iss + 1; 25049 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25050 tcp->tcp_csuna = tcp->tcp_snxt; 25051 } 25052 25053 /* 25054 * Exported routine for extracting active tcp connection status. 25055 * 25056 * This is used by the Solaris Cluster Networking software to 25057 * gather a list of connections that need to be forwarded to 25058 * specific nodes in the cluster when configuration changes occur. 25059 * 25060 * The callback is invoked for each tcp_t structure. Returning 25061 * non-zero from the callback routine terminates the search. 25062 */ 25063 int 25064 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25065 void *arg) 25066 { 25067 netstack_handle_t nh; 25068 netstack_t *ns; 25069 int ret = 0; 25070 25071 netstack_next_init(&nh); 25072 while ((ns = netstack_next(&nh)) != NULL) { 25073 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25074 ns->netstack_tcp); 25075 netstack_rele(ns); 25076 } 25077 netstack_next_fini(&nh); 25078 return (ret); 25079 } 25080 25081 static int 25082 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25083 tcp_stack_t *tcps) 25084 { 25085 tcp_t *tcp; 25086 cl_tcp_info_t cl_tcpi; 25087 connf_t *connfp; 25088 conn_t *connp; 25089 int i; 25090 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25091 25092 ASSERT(callback != NULL); 25093 25094 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25095 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25096 connp = NULL; 25097 25098 while ((connp = 25099 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25100 25101 tcp = connp->conn_tcp; 25102 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25103 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25104 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25105 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25106 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25107 /* 25108 * The macros tcp_laddr and tcp_faddr give the IPv4 25109 * addresses. They are copied implicitly below as 25110 * mapped addresses. 25111 */ 25112 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25113 if (tcp->tcp_ipversion == IPV4_VERSION) { 25114 cl_tcpi.cl_tcpi_faddr = 25115 tcp->tcp_ipha->ipha_dst; 25116 } else { 25117 cl_tcpi.cl_tcpi_faddr_v6 = 25118 tcp->tcp_ip6h->ip6_dst; 25119 } 25120 25121 /* 25122 * If the callback returns non-zero 25123 * we terminate the traversal. 25124 */ 25125 if ((*callback)(&cl_tcpi, arg) != 0) { 25126 CONN_DEC_REF(tcp->tcp_connp); 25127 return (1); 25128 } 25129 } 25130 } 25131 25132 return (0); 25133 } 25134 25135 /* 25136 * Macros used for accessing the different types of sockaddr 25137 * structures inside a tcp_ioc_abort_conn_t. 25138 */ 25139 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25140 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25141 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25142 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25143 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25144 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25145 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25146 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25147 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25148 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25149 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25150 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25151 25152 /* 25153 * Return the correct error code to mimic the behavior 25154 * of a connection reset. 25155 */ 25156 #define TCP_AC_GET_ERRCODE(state, err) { \ 25157 switch ((state)) { \ 25158 case TCPS_SYN_SENT: \ 25159 case TCPS_SYN_RCVD: \ 25160 (err) = ECONNREFUSED; \ 25161 break; \ 25162 case TCPS_ESTABLISHED: \ 25163 case TCPS_FIN_WAIT_1: \ 25164 case TCPS_FIN_WAIT_2: \ 25165 case TCPS_CLOSE_WAIT: \ 25166 (err) = ECONNRESET; \ 25167 break; \ 25168 case TCPS_CLOSING: \ 25169 case TCPS_LAST_ACK: \ 25170 case TCPS_TIME_WAIT: \ 25171 (err) = 0; \ 25172 break; \ 25173 default: \ 25174 (err) = ENXIO; \ 25175 } \ 25176 } 25177 25178 /* 25179 * Check if a tcp structure matches the info in acp. 25180 */ 25181 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25182 (((acp)->ac_local.ss_family == AF_INET) ? \ 25183 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25184 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25185 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25186 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25187 (TCP_AC_V4LPORT((acp)) == 0 || \ 25188 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25189 (TCP_AC_V4RPORT((acp)) == 0 || \ 25190 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25191 (acp)->ac_start <= (tcp)->tcp_state && \ 25192 (acp)->ac_end >= (tcp)->tcp_state) : \ 25193 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25194 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25195 &(tcp)->tcp_ip_src_v6)) && \ 25196 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25197 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25198 &(tcp)->tcp_remote_v6)) && \ 25199 (TCP_AC_V6LPORT((acp)) == 0 || \ 25200 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25201 (TCP_AC_V6RPORT((acp)) == 0 || \ 25202 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25203 (acp)->ac_start <= (tcp)->tcp_state && \ 25204 (acp)->ac_end >= (tcp)->tcp_state)) 25205 25206 #define TCP_AC_MATCH(acp, tcp) \ 25207 (((acp)->ac_zoneid == ALL_ZONES || \ 25208 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25209 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25210 25211 /* 25212 * Build a message containing a tcp_ioc_abort_conn_t structure 25213 * which is filled in with information from acp and tp. 25214 */ 25215 static mblk_t * 25216 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25217 { 25218 mblk_t *mp; 25219 tcp_ioc_abort_conn_t *tacp; 25220 25221 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25222 if (mp == NULL) 25223 return (NULL); 25224 25225 mp->b_datap->db_type = M_CTL; 25226 25227 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25228 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25229 sizeof (uint32_t)); 25230 25231 tacp->ac_start = acp->ac_start; 25232 tacp->ac_end = acp->ac_end; 25233 tacp->ac_zoneid = acp->ac_zoneid; 25234 25235 if (acp->ac_local.ss_family == AF_INET) { 25236 tacp->ac_local.ss_family = AF_INET; 25237 tacp->ac_remote.ss_family = AF_INET; 25238 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25239 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25240 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25241 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25242 } else { 25243 tacp->ac_local.ss_family = AF_INET6; 25244 tacp->ac_remote.ss_family = AF_INET6; 25245 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25246 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25247 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25248 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25249 } 25250 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25251 return (mp); 25252 } 25253 25254 /* 25255 * Print a tcp_ioc_abort_conn_t structure. 25256 */ 25257 static void 25258 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25259 { 25260 char lbuf[128]; 25261 char rbuf[128]; 25262 sa_family_t af; 25263 in_port_t lport, rport; 25264 ushort_t logflags; 25265 25266 af = acp->ac_local.ss_family; 25267 25268 if (af == AF_INET) { 25269 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25270 lbuf, 128); 25271 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25272 rbuf, 128); 25273 lport = ntohs(TCP_AC_V4LPORT(acp)); 25274 rport = ntohs(TCP_AC_V4RPORT(acp)); 25275 } else { 25276 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25277 lbuf, 128); 25278 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25279 rbuf, 128); 25280 lport = ntohs(TCP_AC_V6LPORT(acp)); 25281 rport = ntohs(TCP_AC_V6RPORT(acp)); 25282 } 25283 25284 logflags = SL_TRACE | SL_NOTE; 25285 /* 25286 * Don't print this message to the console if the operation was done 25287 * to a non-global zone. 25288 */ 25289 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25290 logflags |= SL_CONSOLE; 25291 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25292 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25293 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25294 acp->ac_start, acp->ac_end); 25295 } 25296 25297 /* 25298 * Called inside tcp_rput when a message built using 25299 * tcp_ioctl_abort_build_msg is put into a queue. 25300 * Note that when we get here there is no wildcard in acp any more. 25301 */ 25302 static void 25303 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25304 { 25305 tcp_ioc_abort_conn_t *acp; 25306 25307 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25308 if (tcp->tcp_state <= acp->ac_end) { 25309 /* 25310 * If we get here, we are already on the correct 25311 * squeue. This ioctl follows the following path 25312 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25313 * ->tcp_ioctl_abort->squeue_enter (if on a 25314 * different squeue) 25315 */ 25316 int errcode; 25317 25318 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25319 (void) tcp_clean_death(tcp, errcode, 26); 25320 } 25321 freemsg(mp); 25322 } 25323 25324 /* 25325 * Abort all matching connections on a hash chain. 25326 */ 25327 static int 25328 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25329 boolean_t exact, tcp_stack_t *tcps) 25330 { 25331 int nmatch, err = 0; 25332 tcp_t *tcp; 25333 MBLKP mp, last, listhead = NULL; 25334 conn_t *tconnp; 25335 connf_t *connfp; 25336 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25337 25338 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25339 25340 startover: 25341 nmatch = 0; 25342 25343 mutex_enter(&connfp->connf_lock); 25344 for (tconnp = connfp->connf_head; tconnp != NULL; 25345 tconnp = tconnp->conn_next) { 25346 tcp = tconnp->conn_tcp; 25347 if (TCP_AC_MATCH(acp, tcp)) { 25348 CONN_INC_REF(tcp->tcp_connp); 25349 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25350 if (mp == NULL) { 25351 err = ENOMEM; 25352 CONN_DEC_REF(tcp->tcp_connp); 25353 break; 25354 } 25355 mp->b_prev = (mblk_t *)tcp; 25356 25357 if (listhead == NULL) { 25358 listhead = mp; 25359 last = mp; 25360 } else { 25361 last->b_next = mp; 25362 last = mp; 25363 } 25364 nmatch++; 25365 if (exact) 25366 break; 25367 } 25368 25369 /* Avoid holding lock for too long. */ 25370 if (nmatch >= 500) 25371 break; 25372 } 25373 mutex_exit(&connfp->connf_lock); 25374 25375 /* Pass mp into the correct tcp */ 25376 while ((mp = listhead) != NULL) { 25377 listhead = listhead->b_next; 25378 tcp = (tcp_t *)mp->b_prev; 25379 mp->b_next = mp->b_prev = NULL; 25380 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 25381 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 25382 } 25383 25384 *count += nmatch; 25385 if (nmatch >= 500 && err == 0) 25386 goto startover; 25387 return (err); 25388 } 25389 25390 /* 25391 * Abort all connections that matches the attributes specified in acp. 25392 */ 25393 static int 25394 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25395 { 25396 sa_family_t af; 25397 uint32_t ports; 25398 uint16_t *pports; 25399 int err = 0, count = 0; 25400 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25401 int index = -1; 25402 ushort_t logflags; 25403 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25404 25405 af = acp->ac_local.ss_family; 25406 25407 if (af == AF_INET) { 25408 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25409 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25410 pports = (uint16_t *)&ports; 25411 pports[1] = TCP_AC_V4LPORT(acp); 25412 pports[0] = TCP_AC_V4RPORT(acp); 25413 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25414 } 25415 } else { 25416 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25417 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25418 pports = (uint16_t *)&ports; 25419 pports[1] = TCP_AC_V6LPORT(acp); 25420 pports[0] = TCP_AC_V6RPORT(acp); 25421 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25422 } 25423 } 25424 25425 /* 25426 * For cases where remote addr, local port, and remote port are non- 25427 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25428 */ 25429 if (index != -1) { 25430 err = tcp_ioctl_abort_bucket(acp, index, 25431 &count, exact, tcps); 25432 } else { 25433 /* 25434 * loop through all entries for wildcard case 25435 */ 25436 for (index = 0; 25437 index < ipst->ips_ipcl_conn_fanout_size; 25438 index++) { 25439 err = tcp_ioctl_abort_bucket(acp, index, 25440 &count, exact, tcps); 25441 if (err != 0) 25442 break; 25443 } 25444 } 25445 25446 logflags = SL_TRACE | SL_NOTE; 25447 /* 25448 * Don't print this message to the console if the operation was done 25449 * to a non-global zone. 25450 */ 25451 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25452 logflags |= SL_CONSOLE; 25453 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25454 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25455 if (err == 0 && count == 0) 25456 err = ENOENT; 25457 return (err); 25458 } 25459 25460 /* 25461 * Process the TCP_IOC_ABORT_CONN ioctl request. 25462 */ 25463 static void 25464 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25465 { 25466 int err; 25467 IOCP iocp; 25468 MBLKP mp1; 25469 sa_family_t laf, raf; 25470 tcp_ioc_abort_conn_t *acp; 25471 zone_t *zptr; 25472 conn_t *connp = Q_TO_CONN(q); 25473 zoneid_t zoneid = connp->conn_zoneid; 25474 tcp_t *tcp = connp->conn_tcp; 25475 tcp_stack_t *tcps = tcp->tcp_tcps; 25476 25477 iocp = (IOCP)mp->b_rptr; 25478 25479 if ((mp1 = mp->b_cont) == NULL || 25480 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25481 err = EINVAL; 25482 goto out; 25483 } 25484 25485 /* check permissions */ 25486 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25487 err = EPERM; 25488 goto out; 25489 } 25490 25491 if (mp1->b_cont != NULL) { 25492 freemsg(mp1->b_cont); 25493 mp1->b_cont = NULL; 25494 } 25495 25496 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25497 laf = acp->ac_local.ss_family; 25498 raf = acp->ac_remote.ss_family; 25499 25500 /* check that a zone with the supplied zoneid exists */ 25501 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25502 zptr = zone_find_by_id(zoneid); 25503 if (zptr != NULL) { 25504 zone_rele(zptr); 25505 } else { 25506 err = EINVAL; 25507 goto out; 25508 } 25509 } 25510 25511 /* 25512 * For exclusive stacks we set the zoneid to zero 25513 * to make TCP operate as if in the global zone. 25514 */ 25515 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25516 acp->ac_zoneid = GLOBAL_ZONEID; 25517 25518 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25519 acp->ac_start > acp->ac_end || laf != raf || 25520 (laf != AF_INET && laf != AF_INET6)) { 25521 err = EINVAL; 25522 goto out; 25523 } 25524 25525 tcp_ioctl_abort_dump(acp); 25526 err = tcp_ioctl_abort(acp, tcps); 25527 25528 out: 25529 if (mp1 != NULL) { 25530 freemsg(mp1); 25531 mp->b_cont = NULL; 25532 } 25533 25534 if (err != 0) 25535 miocnak(q, mp, 0, err); 25536 else 25537 miocack(q, mp, 0, 0); 25538 } 25539 25540 /* 25541 * tcp_time_wait_processing() handles processing of incoming packets when 25542 * the tcp is in the TIME_WAIT state. 25543 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25544 * on the time wait list. 25545 */ 25546 void 25547 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25548 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25549 { 25550 int32_t bytes_acked; 25551 int32_t gap; 25552 int32_t rgap; 25553 tcp_opt_t tcpopt; 25554 uint_t flags; 25555 uint32_t new_swnd = 0; 25556 conn_t *connp; 25557 tcp_stack_t *tcps = tcp->tcp_tcps; 25558 25559 BUMP_LOCAL(tcp->tcp_ibsegs); 25560 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 25561 25562 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25563 new_swnd = BE16_TO_U16(tcph->th_win) << 25564 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25565 if (tcp->tcp_snd_ts_ok) { 25566 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25567 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25568 tcp->tcp_rnxt, TH_ACK); 25569 goto done; 25570 } 25571 } 25572 gap = seg_seq - tcp->tcp_rnxt; 25573 rgap = tcp->tcp_rwnd - (gap + seg_len); 25574 if (gap < 0) { 25575 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25576 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25577 (seg_len > -gap ? -gap : seg_len)); 25578 seg_len += gap; 25579 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25580 if (flags & TH_RST) { 25581 goto done; 25582 } 25583 if ((flags & TH_FIN) && seg_len == -1) { 25584 /* 25585 * When TCP receives a duplicate FIN in 25586 * TIME_WAIT state, restart the 2 MSL timer. 25587 * See page 73 in RFC 793. Make sure this TCP 25588 * is already on the TIME_WAIT list. If not, 25589 * just restart the timer. 25590 */ 25591 if (TCP_IS_DETACHED(tcp)) { 25592 if (tcp_time_wait_remove(tcp, NULL) == 25593 B_TRUE) { 25594 tcp_time_wait_append(tcp); 25595 TCP_DBGSTAT(tcps, 25596 tcp_rput_time_wait); 25597 } 25598 } else { 25599 ASSERT(tcp != NULL); 25600 TCP_TIMER_RESTART(tcp, 25601 tcps->tcps_time_wait_interval); 25602 } 25603 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25604 tcp->tcp_rnxt, TH_ACK); 25605 goto done; 25606 } 25607 flags |= TH_ACK_NEEDED; 25608 seg_len = 0; 25609 goto process_ack; 25610 } 25611 25612 /* Fix seg_seq, and chew the gap off the front. */ 25613 seg_seq = tcp->tcp_rnxt; 25614 } 25615 25616 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25617 /* 25618 * Make sure that when we accept the connection, pick 25619 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25620 * old connection. 25621 * 25622 * The next ISS generated is equal to tcp_iss_incr_extra 25623 * + ISS_INCR/2 + other components depending on the 25624 * value of tcp_strong_iss. We pre-calculate the new 25625 * ISS here and compare with tcp_snxt to determine if 25626 * we need to make adjustment to tcp_iss_incr_extra. 25627 * 25628 * The above calculation is ugly and is a 25629 * waste of CPU cycles... 25630 */ 25631 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25632 int32_t adj; 25633 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25634 25635 switch (tcps->tcps_strong_iss) { 25636 case 2: { 25637 /* Add time and MD5 components. */ 25638 uint32_t answer[4]; 25639 struct { 25640 uint32_t ports; 25641 in6_addr_t src; 25642 in6_addr_t dst; 25643 } arg; 25644 MD5_CTX context; 25645 25646 mutex_enter(&tcps->tcps_iss_key_lock); 25647 context = tcps->tcps_iss_key; 25648 mutex_exit(&tcps->tcps_iss_key_lock); 25649 arg.ports = tcp->tcp_ports; 25650 /* We use MAPPED addresses in tcp_iss_init */ 25651 arg.src = tcp->tcp_ip_src_v6; 25652 if (tcp->tcp_ipversion == IPV4_VERSION) { 25653 IN6_IPADDR_TO_V4MAPPED( 25654 tcp->tcp_ipha->ipha_dst, 25655 &arg.dst); 25656 } else { 25657 arg.dst = 25658 tcp->tcp_ip6h->ip6_dst; 25659 } 25660 MD5Update(&context, (uchar_t *)&arg, 25661 sizeof (arg)); 25662 MD5Final((uchar_t *)answer, &context); 25663 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25664 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25665 break; 25666 } 25667 case 1: 25668 /* Add time component and min random (i.e. 1). */ 25669 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25670 break; 25671 default: 25672 /* Add only time component. */ 25673 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25674 break; 25675 } 25676 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25677 /* 25678 * New ISS not guaranteed to be ISS_INCR/2 25679 * ahead of the current tcp_snxt, so add the 25680 * difference to tcp_iss_incr_extra. 25681 */ 25682 tcps->tcps_iss_incr_extra += adj; 25683 } 25684 /* 25685 * If tcp_clean_death() can not perform the task now, 25686 * drop the SYN packet and let the other side re-xmit. 25687 * Otherwise pass the SYN packet back in, since the 25688 * old tcp state has been cleaned up or freed. 25689 */ 25690 if (tcp_clean_death(tcp, 0, 27) == -1) 25691 goto done; 25692 /* 25693 * We will come back to tcp_rput_data 25694 * on the global queue. Packets destined 25695 * for the global queue will be checked 25696 * with global policy. But the policy for 25697 * this packet has already been checked as 25698 * this was destined for the detached 25699 * connection. We need to bypass policy 25700 * check this time by attaching a dummy 25701 * ipsec_in with ipsec_in_dont_check set. 25702 */ 25703 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 25704 if (connp != NULL) { 25705 TCP_STAT(tcps, tcp_time_wait_syn_success); 25706 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25707 return; 25708 } 25709 goto done; 25710 } 25711 25712 /* 25713 * rgap is the amount of stuff received out of window. A negative 25714 * value is the amount out of window. 25715 */ 25716 if (rgap < 0) { 25717 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 25718 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 25719 /* Fix seg_len and make sure there is something left. */ 25720 seg_len += rgap; 25721 if (seg_len <= 0) { 25722 if (flags & TH_RST) { 25723 goto done; 25724 } 25725 flags |= TH_ACK_NEEDED; 25726 seg_len = 0; 25727 goto process_ack; 25728 } 25729 } 25730 /* 25731 * Check whether we can update tcp_ts_recent. This test is 25732 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25733 * Extensions for High Performance: An Update", Internet Draft. 25734 */ 25735 if (tcp->tcp_snd_ts_ok && 25736 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25737 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25738 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25739 tcp->tcp_last_rcv_lbolt = lbolt64; 25740 } 25741 25742 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25743 /* Always ack out of order packets */ 25744 flags |= TH_ACK_NEEDED; 25745 seg_len = 0; 25746 } else if (seg_len > 0) { 25747 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 25748 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 25749 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 25750 } 25751 if (flags & TH_RST) { 25752 (void) tcp_clean_death(tcp, 0, 28); 25753 goto done; 25754 } 25755 if (flags & TH_SYN) { 25756 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25757 TH_RST|TH_ACK); 25758 /* 25759 * Do not delete the TCP structure if it is in 25760 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25761 */ 25762 goto done; 25763 } 25764 process_ack: 25765 if (flags & TH_ACK) { 25766 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25767 if (bytes_acked <= 0) { 25768 if (bytes_acked == 0 && seg_len == 0 && 25769 new_swnd == tcp->tcp_swnd) 25770 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 25771 } else { 25772 /* Acks something not sent */ 25773 flags |= TH_ACK_NEEDED; 25774 } 25775 } 25776 if (flags & TH_ACK_NEEDED) { 25777 /* 25778 * Time to send an ack for some reason. 25779 */ 25780 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25781 tcp->tcp_rnxt, TH_ACK); 25782 } 25783 done: 25784 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25785 DB_CKSUMSTART(mp) = 0; 25786 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25787 TCP_STAT(tcps, tcp_time_wait_syn_fail); 25788 } 25789 freemsg(mp); 25790 } 25791 25792 /* 25793 * TCP Timers Implementation. 25794 */ 25795 timeout_id_t 25796 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25797 { 25798 mblk_t *mp; 25799 tcp_timer_t *tcpt; 25800 tcp_t *tcp = connp->conn_tcp; 25801 25802 ASSERT(connp->conn_sqp != NULL); 25803 25804 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 25805 25806 if (tcp->tcp_timercache == NULL) { 25807 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25808 } else { 25809 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 25810 mp = tcp->tcp_timercache; 25811 tcp->tcp_timercache = mp->b_next; 25812 mp->b_next = NULL; 25813 ASSERT(mp->b_wptr == NULL); 25814 } 25815 25816 CONN_INC_REF(connp); 25817 tcpt = (tcp_timer_t *)mp->b_rptr; 25818 tcpt->connp = connp; 25819 tcpt->tcpt_proc = f; 25820 /* 25821 * TCP timers are normal timeouts. Plus, they do not require more than 25822 * a 10 millisecond resolution. By choosing a coarser resolution and by 25823 * rounding up the expiration to the next resolution boundary, we can 25824 * batch timers in the callout subsystem to make TCP timers more 25825 * efficient. The roundup also protects short timers from expiring too 25826 * early before they have a chance to be cancelled. 25827 */ 25828 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 25829 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 25830 25831 return ((timeout_id_t)mp); 25832 } 25833 25834 static void 25835 tcp_timer_callback(void *arg) 25836 { 25837 mblk_t *mp = (mblk_t *)arg; 25838 tcp_timer_t *tcpt; 25839 conn_t *connp; 25840 25841 tcpt = (tcp_timer_t *)mp->b_rptr; 25842 connp = tcpt->connp; 25843 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 25844 SQ_FILL, SQTAG_TCP_TIMER); 25845 } 25846 25847 static void 25848 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25849 { 25850 tcp_timer_t *tcpt; 25851 conn_t *connp = (conn_t *)arg; 25852 tcp_t *tcp = connp->conn_tcp; 25853 25854 tcpt = (tcp_timer_t *)mp->b_rptr; 25855 ASSERT(connp == tcpt->connp); 25856 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25857 25858 /* 25859 * If the TCP has reached the closed state, don't proceed any 25860 * further. This TCP logically does not exist on the system. 25861 * tcpt_proc could for example access queues, that have already 25862 * been qprocoff'ed off. Also see comments at the start of tcp_input 25863 */ 25864 if (tcp->tcp_state != TCPS_CLOSED) { 25865 (*tcpt->tcpt_proc)(connp); 25866 } else { 25867 tcp->tcp_timer_tid = 0; 25868 } 25869 tcp_timer_free(connp->conn_tcp, mp); 25870 } 25871 25872 /* 25873 * There is potential race with untimeout and the handler firing at the same 25874 * time. The mblock may be freed by the handler while we are trying to use 25875 * it. But since both should execute on the same squeue, this race should not 25876 * occur. 25877 */ 25878 clock_t 25879 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25880 { 25881 mblk_t *mp = (mblk_t *)id; 25882 tcp_timer_t *tcpt; 25883 clock_t delta; 25884 25885 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 25886 25887 if (mp == NULL) 25888 return (-1); 25889 25890 tcpt = (tcp_timer_t *)mp->b_rptr; 25891 ASSERT(tcpt->connp == connp); 25892 25893 delta = untimeout_default(tcpt->tcpt_tid, 0); 25894 25895 if (delta >= 0) { 25896 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 25897 tcp_timer_free(connp->conn_tcp, mp); 25898 CONN_DEC_REF(connp); 25899 } 25900 25901 return (delta); 25902 } 25903 25904 /* 25905 * Allocate space for the timer event. The allocation looks like mblk, but it is 25906 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25907 * 25908 * Dealing with failures: If we can't allocate from the timer cache we try 25909 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25910 * points to b_rptr. 25911 * If we can't allocate anything using allocb_tryhard(), we perform a last 25912 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25913 * save the actual allocation size in b_datap. 25914 */ 25915 mblk_t * 25916 tcp_timermp_alloc(int kmflags) 25917 { 25918 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25919 kmflags & ~KM_PANIC); 25920 25921 if (mp != NULL) { 25922 mp->b_next = mp->b_prev = NULL; 25923 mp->b_rptr = (uchar_t *)(&mp[1]); 25924 mp->b_wptr = NULL; 25925 mp->b_datap = NULL; 25926 mp->b_queue = NULL; 25927 mp->b_cont = NULL; 25928 } else if (kmflags & KM_PANIC) { 25929 /* 25930 * Failed to allocate memory for the timer. Try allocating from 25931 * dblock caches. 25932 */ 25933 /* ipclassifier calls this from a constructor - hence no tcps */ 25934 TCP_G_STAT(tcp_timermp_allocfail); 25935 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25936 if (mp == NULL) { 25937 size_t size = 0; 25938 /* 25939 * Memory is really low. Try tryhard allocation. 25940 * 25941 * ipclassifier calls this from a constructor - 25942 * hence no tcps 25943 */ 25944 TCP_G_STAT(tcp_timermp_allocdblfail); 25945 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25946 sizeof (tcp_timer_t), &size, kmflags); 25947 mp->b_rptr = (uchar_t *)(&mp[1]); 25948 mp->b_next = mp->b_prev = NULL; 25949 mp->b_wptr = (uchar_t *)-1; 25950 mp->b_datap = (dblk_t *)size; 25951 mp->b_queue = NULL; 25952 mp->b_cont = NULL; 25953 } 25954 ASSERT(mp->b_wptr != NULL); 25955 } 25956 /* ipclassifier calls this from a constructor - hence no tcps */ 25957 TCP_G_DBGSTAT(tcp_timermp_alloced); 25958 25959 return (mp); 25960 } 25961 25962 /* 25963 * Free per-tcp timer cache. 25964 * It can only contain entries from tcp_timercache. 25965 */ 25966 void 25967 tcp_timermp_free(tcp_t *tcp) 25968 { 25969 mblk_t *mp; 25970 25971 while ((mp = tcp->tcp_timercache) != NULL) { 25972 ASSERT(mp->b_wptr == NULL); 25973 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25974 kmem_cache_free(tcp_timercache, mp); 25975 } 25976 } 25977 25978 /* 25979 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25980 * events there already (currently at most two events are cached). 25981 * If the event is not allocated from the timer cache, free it right away. 25982 */ 25983 static void 25984 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25985 { 25986 mblk_t *mp1 = tcp->tcp_timercache; 25987 25988 if (mp->b_wptr != NULL) { 25989 /* 25990 * This allocation is not from a timer cache, free it right 25991 * away. 25992 */ 25993 if (mp->b_wptr != (uchar_t *)-1) 25994 freeb(mp); 25995 else 25996 kmem_free(mp, (size_t)mp->b_datap); 25997 } else if (mp1 == NULL || mp1->b_next == NULL) { 25998 /* Cache this timer block for future allocations */ 25999 mp->b_rptr = (uchar_t *)(&mp[1]); 26000 mp->b_next = mp1; 26001 tcp->tcp_timercache = mp; 26002 } else { 26003 kmem_cache_free(tcp_timercache, mp); 26004 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 26005 } 26006 } 26007 26008 /* 26009 * End of TCP Timers implementation. 26010 */ 26011 26012 /* 26013 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26014 * on the specified backing STREAMS q. Note, the caller may make the 26015 * decision to call based on the tcp_t.tcp_flow_stopped value which 26016 * when check outside the q's lock is only an advisory check ... 26017 */ 26018 void 26019 tcp_setqfull(tcp_t *tcp) 26020 { 26021 tcp_stack_t *tcps = tcp->tcp_tcps; 26022 conn_t *connp = tcp->tcp_connp; 26023 26024 if (tcp->tcp_closed) 26025 return; 26026 26027 if (IPCL_IS_NONSTR(connp)) { 26028 (*connp->conn_upcalls->su_txq_full) 26029 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 26030 tcp->tcp_flow_stopped = B_TRUE; 26031 } else { 26032 queue_t *q = tcp->tcp_wq; 26033 26034 if (!(q->q_flag & QFULL)) { 26035 mutex_enter(QLOCK(q)); 26036 if (!(q->q_flag & QFULL)) { 26037 /* still need to set QFULL */ 26038 q->q_flag |= QFULL; 26039 tcp->tcp_flow_stopped = B_TRUE; 26040 mutex_exit(QLOCK(q)); 26041 TCP_STAT(tcps, tcp_flwctl_on); 26042 } else { 26043 mutex_exit(QLOCK(q)); 26044 } 26045 } 26046 } 26047 } 26048 26049 void 26050 tcp_clrqfull(tcp_t *tcp) 26051 { 26052 conn_t *connp = tcp->tcp_connp; 26053 26054 if (tcp->tcp_closed) 26055 return; 26056 26057 if (IPCL_IS_NONSTR(connp)) { 26058 (*connp->conn_upcalls->su_txq_full) 26059 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 26060 tcp->tcp_flow_stopped = B_FALSE; 26061 } else { 26062 queue_t *q = tcp->tcp_wq; 26063 26064 if (q->q_flag & QFULL) { 26065 mutex_enter(QLOCK(q)); 26066 if (q->q_flag & QFULL) { 26067 q->q_flag &= ~QFULL; 26068 tcp->tcp_flow_stopped = B_FALSE; 26069 mutex_exit(QLOCK(q)); 26070 if (q->q_flag & QWANTW) 26071 qbackenable(q, 0); 26072 } else { 26073 mutex_exit(QLOCK(q)); 26074 } 26075 } 26076 } 26077 } 26078 26079 /* 26080 * kstats related to squeues i.e. not per IP instance 26081 */ 26082 static void * 26083 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26084 { 26085 kstat_t *ksp; 26086 26087 tcp_g_stat_t template = { 26088 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26089 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26090 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26091 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26092 }; 26093 26094 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26095 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26096 KSTAT_FLAG_VIRTUAL); 26097 26098 if (ksp == NULL) 26099 return (NULL); 26100 26101 bcopy(&template, tcp_g_statp, sizeof (template)); 26102 ksp->ks_data = (void *)tcp_g_statp; 26103 26104 kstat_install(ksp); 26105 return (ksp); 26106 } 26107 26108 static void 26109 tcp_g_kstat_fini(kstat_t *ksp) 26110 { 26111 if (ksp != NULL) { 26112 kstat_delete(ksp); 26113 } 26114 } 26115 26116 26117 static void * 26118 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26119 { 26120 kstat_t *ksp; 26121 26122 tcp_stat_t template = { 26123 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26124 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26125 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26126 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26127 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26128 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26129 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26130 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26131 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26132 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26133 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26134 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26135 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26136 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26137 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26138 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26139 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26140 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26141 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26142 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26143 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26144 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26145 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26146 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26147 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26148 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26149 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26150 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26151 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26152 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26153 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26154 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26155 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26156 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26157 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26158 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26159 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26160 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26161 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26162 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26163 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26164 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26165 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26166 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26167 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26168 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26169 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26170 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26171 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26172 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26173 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26174 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26175 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26176 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26177 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26178 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26179 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26180 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26181 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26182 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26183 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26184 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26185 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26186 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26187 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26188 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26189 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26190 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26191 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26192 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26193 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26194 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26195 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26196 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26197 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26198 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26199 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26200 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26201 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26202 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26203 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26204 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26205 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26206 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26207 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26208 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26209 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26210 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26211 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26212 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26213 }; 26214 26215 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26216 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26217 KSTAT_FLAG_VIRTUAL, stackid); 26218 26219 if (ksp == NULL) 26220 return (NULL); 26221 26222 bcopy(&template, tcps_statisticsp, sizeof (template)); 26223 ksp->ks_data = (void *)tcps_statisticsp; 26224 ksp->ks_private = (void *)(uintptr_t)stackid; 26225 26226 kstat_install(ksp); 26227 return (ksp); 26228 } 26229 26230 static void 26231 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26232 { 26233 if (ksp != NULL) { 26234 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26235 kstat_delete_netstack(ksp, stackid); 26236 } 26237 } 26238 26239 /* 26240 * TCP Kstats implementation 26241 */ 26242 static void * 26243 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26244 { 26245 kstat_t *ksp; 26246 26247 tcp_named_kstat_t template = { 26248 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26249 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26250 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26251 { "maxConn", KSTAT_DATA_INT32, 0 }, 26252 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26253 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26254 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26255 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26256 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26257 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26258 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26259 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26260 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26261 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26262 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26263 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26264 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26265 { "outAck", KSTAT_DATA_UINT32, 0 }, 26266 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26267 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26268 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26269 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26270 { "outControl", KSTAT_DATA_UINT32, 0 }, 26271 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26272 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26273 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26274 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26275 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26276 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26277 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26278 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26279 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26280 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26281 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26282 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26283 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26284 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26285 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26286 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26287 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26288 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26289 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26290 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26291 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26292 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26293 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26294 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26295 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26296 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26297 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26298 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26299 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26300 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26301 }; 26302 26303 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26304 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26305 26306 if (ksp == NULL) 26307 return (NULL); 26308 26309 template.rtoAlgorithm.value.ui32 = 4; 26310 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26311 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26312 template.maxConn.value.i32 = -1; 26313 26314 bcopy(&template, ksp->ks_data, sizeof (template)); 26315 ksp->ks_update = tcp_kstat_update; 26316 ksp->ks_private = (void *)(uintptr_t)stackid; 26317 26318 kstat_install(ksp); 26319 return (ksp); 26320 } 26321 26322 static void 26323 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26324 { 26325 if (ksp != NULL) { 26326 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26327 kstat_delete_netstack(ksp, stackid); 26328 } 26329 } 26330 26331 static int 26332 tcp_kstat_update(kstat_t *kp, int rw) 26333 { 26334 tcp_named_kstat_t *tcpkp; 26335 tcp_t *tcp; 26336 connf_t *connfp; 26337 conn_t *connp; 26338 int i; 26339 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26340 netstack_t *ns; 26341 tcp_stack_t *tcps; 26342 ip_stack_t *ipst; 26343 26344 if ((kp == NULL) || (kp->ks_data == NULL)) 26345 return (EIO); 26346 26347 if (rw == KSTAT_WRITE) 26348 return (EACCES); 26349 26350 ns = netstack_find_by_stackid(stackid); 26351 if (ns == NULL) 26352 return (-1); 26353 tcps = ns->netstack_tcp; 26354 if (tcps == NULL) { 26355 netstack_rele(ns); 26356 return (-1); 26357 } 26358 26359 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26360 26361 tcpkp->currEstab.value.ui32 = 0; 26362 26363 ipst = ns->netstack_ip; 26364 26365 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26366 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26367 connp = NULL; 26368 while ((connp = 26369 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26370 tcp = connp->conn_tcp; 26371 switch (tcp_snmp_state(tcp)) { 26372 case MIB2_TCP_established: 26373 case MIB2_TCP_closeWait: 26374 tcpkp->currEstab.value.ui32++; 26375 break; 26376 } 26377 } 26378 } 26379 26380 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26381 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26382 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26383 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26384 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26385 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26386 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26387 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26388 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26389 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26390 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26391 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26392 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26393 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26394 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26395 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26396 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26397 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26398 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26399 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26400 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26401 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26402 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26403 tcpkp->inDataInorderSegs.value.ui32 = 26404 tcps->tcps_mib.tcpInDataInorderSegs; 26405 tcpkp->inDataInorderBytes.value.ui32 = 26406 tcps->tcps_mib.tcpInDataInorderBytes; 26407 tcpkp->inDataUnorderSegs.value.ui32 = 26408 tcps->tcps_mib.tcpInDataUnorderSegs; 26409 tcpkp->inDataUnorderBytes.value.ui32 = 26410 tcps->tcps_mib.tcpInDataUnorderBytes; 26411 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26412 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26413 tcpkp->inDataPartDupSegs.value.ui32 = 26414 tcps->tcps_mib.tcpInDataPartDupSegs; 26415 tcpkp->inDataPartDupBytes.value.ui32 = 26416 tcps->tcps_mib.tcpInDataPartDupBytes; 26417 tcpkp->inDataPastWinSegs.value.ui32 = 26418 tcps->tcps_mib.tcpInDataPastWinSegs; 26419 tcpkp->inDataPastWinBytes.value.ui32 = 26420 tcps->tcps_mib.tcpInDataPastWinBytes; 26421 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26422 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26423 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26424 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26425 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26426 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26427 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26428 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26429 tcpkp->timKeepaliveProbe.value.ui32 = 26430 tcps->tcps_mib.tcpTimKeepaliveProbe; 26431 tcpkp->timKeepaliveDrop.value.ui32 = 26432 tcps->tcps_mib.tcpTimKeepaliveDrop; 26433 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26434 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26435 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26436 tcpkp->outSackRetransSegs.value.ui32 = 26437 tcps->tcps_mib.tcpOutSackRetransSegs; 26438 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26439 26440 netstack_rele(ns); 26441 return (0); 26442 } 26443 26444 void 26445 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26446 { 26447 uint16_t hdr_len; 26448 ipha_t *ipha; 26449 uint8_t *nexthdrp; 26450 tcph_t *tcph; 26451 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26452 26453 /* Already has an eager */ 26454 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26455 TCP_STAT(tcps, tcp_reinput_syn); 26456 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26457 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 26458 return; 26459 } 26460 26461 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26462 case IPV4_VERSION: 26463 ipha = (ipha_t *)mp->b_rptr; 26464 hdr_len = IPH_HDR_LENGTH(ipha); 26465 break; 26466 case IPV6_VERSION: 26467 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26468 &hdr_len, &nexthdrp)) { 26469 CONN_DEC_REF(connp); 26470 freemsg(mp); 26471 return; 26472 } 26473 break; 26474 } 26475 26476 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26477 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26478 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26479 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26480 } 26481 26482 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 26483 SQ_FILL, SQTAG_TCP_REINPUT); 26484 } 26485 26486 static int 26487 tcp_squeue_switch(int val) 26488 { 26489 int rval = SQ_FILL; 26490 26491 switch (val) { 26492 case 1: 26493 rval = SQ_NODRAIN; 26494 break; 26495 case 2: 26496 rval = SQ_PROCESS; 26497 break; 26498 default: 26499 break; 26500 } 26501 return (rval); 26502 } 26503 26504 /* 26505 * This is called once for each squeue - globally for all stack 26506 * instances. 26507 */ 26508 static void 26509 tcp_squeue_add(squeue_t *sqp) 26510 { 26511 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26512 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26513 26514 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26515 tcp_time_wait->tcp_time_wait_tid = 26516 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 26517 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 26518 CALLOUT_FLAG_ROUNDUP); 26519 if (tcp_free_list_max_cnt == 0) { 26520 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26521 max_ncpus : boot_max_ncpus); 26522 26523 /* 26524 * Limit number of entries to 1% of availble memory / tcp_ncpus 26525 */ 26526 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26527 (tcp_ncpus * sizeof (tcp_t) * 100); 26528 } 26529 tcp_time_wait->tcp_free_list_cnt = 0; 26530 } 26531 26532 static int 26533 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error) 26534 { 26535 mblk_t *ire_mp = NULL; 26536 mblk_t *syn_mp; 26537 mblk_t *mdti; 26538 mblk_t *lsoi; 26539 int retval; 26540 tcph_t *tcph; 26541 uint32_t mss; 26542 queue_t *q = tcp->tcp_rq; 26543 conn_t *connp = tcp->tcp_connp; 26544 tcp_stack_t *tcps = tcp->tcp_tcps; 26545 26546 if (error == 0) { 26547 /* 26548 * Adapt Multidata information, if any. The 26549 * following tcp_mdt_update routine will free 26550 * the message. 26551 */ 26552 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 26553 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 26554 b_rptr)->mdt_capab, B_TRUE); 26555 freemsg(mdti); 26556 } 26557 26558 /* 26559 * Check to update LSO information with tcp, and 26560 * tcp_lso_update routine will free the message. 26561 */ 26562 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 26563 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 26564 b_rptr)->lso_capab); 26565 freemsg(lsoi); 26566 } 26567 26568 /* Get the IRE, if we had requested for it */ 26569 if (mp != NULL) 26570 ire_mp = tcp_ire_mp(&mp); 26571 26572 if (tcp->tcp_hard_binding) { 26573 tcp->tcp_hard_binding = B_FALSE; 26574 tcp->tcp_hard_bound = B_TRUE; 26575 CL_INET_CONNECT(tcp); 26576 } else { 26577 if (ire_mp != NULL) 26578 freeb(ire_mp); 26579 goto after_syn_sent; 26580 } 26581 26582 retval = tcp_adapt_ire(tcp, ire_mp); 26583 if (ire_mp != NULL) 26584 freeb(ire_mp); 26585 if (retval == 0) { 26586 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 26587 ENETUNREACH : EADDRNOTAVAIL); 26588 goto ipcl_rm; 26589 } 26590 /* 26591 * Don't let an endpoint connect to itself. 26592 * Also checked in tcp_connect() but that 26593 * check can't handle the case when the 26594 * local IP address is INADDR_ANY. 26595 */ 26596 if (tcp->tcp_ipversion == IPV4_VERSION) { 26597 if ((tcp->tcp_ipha->ipha_dst == 26598 tcp->tcp_ipha->ipha_src) && 26599 (BE16_EQL(tcp->tcp_tcph->th_lport, 26600 tcp->tcp_tcph->th_fport))) { 26601 error = EADDRNOTAVAIL; 26602 goto ipcl_rm; 26603 } 26604 } else { 26605 if (IN6_ARE_ADDR_EQUAL( 26606 &tcp->tcp_ip6h->ip6_dst, 26607 &tcp->tcp_ip6h->ip6_src) && 26608 (BE16_EQL(tcp->tcp_tcph->th_lport, 26609 tcp->tcp_tcph->th_fport))) { 26610 error = EADDRNOTAVAIL; 26611 goto ipcl_rm; 26612 } 26613 } 26614 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 26615 /* 26616 * This should not be possible! Just for 26617 * defensive coding... 26618 */ 26619 if (tcp->tcp_state != TCPS_SYN_SENT) 26620 goto after_syn_sent; 26621 26622 if (is_system_labeled() && 26623 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 26624 error = EHOSTUNREACH; 26625 goto ipcl_rm; 26626 } 26627 26628 /* 26629 * tcp_adapt_ire() does not adjust 26630 * for TCP/IP header length. 26631 */ 26632 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 26633 26634 /* 26635 * Just make sure our rwnd is at 26636 * least tcp_recv_hiwat_mss * MSS 26637 * large, and round up to the nearest 26638 * MSS. 26639 * 26640 * We do the round up here because 26641 * we need to get the interface 26642 * MTU first before we can do the 26643 * round up. 26644 */ 26645 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 26646 tcps->tcps_recv_hiwat_minmss * mss); 26647 if (!IPCL_IS_NONSTR(connp)) 26648 q->q_hiwat = tcp->tcp_rwnd; 26649 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 26650 tcp_set_ws_value(tcp); 26651 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 26652 tcp->tcp_tcph->th_win); 26653 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 26654 tcp->tcp_snd_ws_ok = B_TRUE; 26655 26656 /* 26657 * Set tcp_snd_ts_ok to true 26658 * so that tcp_xmit_mp will 26659 * include the timestamp 26660 * option in the SYN segment. 26661 */ 26662 if (tcps->tcps_tstamp_always || 26663 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 26664 tcp->tcp_snd_ts_ok = B_TRUE; 26665 } 26666 26667 /* 26668 * tcp_snd_sack_ok can be set in 26669 * tcp_adapt_ire() if the sack metric 26670 * is set. So check it here also. 26671 */ 26672 if (tcps->tcps_sack_permitted == 2 || 26673 tcp->tcp_snd_sack_ok) { 26674 if (tcp->tcp_sack_info == NULL) { 26675 tcp->tcp_sack_info = 26676 kmem_cache_alloc(tcp_sack_info_cache, 26677 KM_SLEEP); 26678 } 26679 tcp->tcp_snd_sack_ok = B_TRUE; 26680 } 26681 26682 /* 26683 * Should we use ECN? Note that the current 26684 * default value (SunOS 5.9) of tcp_ecn_permitted 26685 * is 1. The reason for doing this is that there 26686 * are equipments out there that will drop ECN 26687 * enabled IP packets. Setting it to 1 avoids 26688 * compatibility problems. 26689 */ 26690 if (tcps->tcps_ecn_permitted == 2) 26691 tcp->tcp_ecn_ok = B_TRUE; 26692 26693 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 26694 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 26695 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 26696 if (syn_mp) { 26697 cred_t *cr; 26698 pid_t pid; 26699 26700 /* 26701 * Obtain the credential from the 26702 * thread calling connect(). 26703 * If none can be found, default to 26704 * the creator of the socket. 26705 */ 26706 if (mp == NULL || 26707 (cr = DB_CRED(mp)) == NULL) { 26708 cr = tcp->tcp_cred; 26709 pid = tcp->tcp_cpid; 26710 } else { 26711 pid = DB_CPID(mp); 26712 } 26713 26714 mblk_setcred(syn_mp, cr); 26715 DB_CPID(syn_mp) = pid; 26716 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 26717 } 26718 after_syn_sent: 26719 /* 26720 * A trailer mblk indicates a waiting client upstream. 26721 * We complete here the processing begun in 26722 * either tcp_bind() or tcp_connect() by passing 26723 * upstream the reply message they supplied. 26724 */ 26725 if (mp != NULL) { 26726 ASSERT(mp->b_cont == NULL); 26727 freeb(mp); 26728 } 26729 return (error); 26730 } else { 26731 /* error */ 26732 if (tcp->tcp_debug) { 26733 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 26734 "tcp_post_ip_bind: error == %d", error); 26735 } 26736 if (mp != NULL) { 26737 freeb(mp); 26738 } 26739 } 26740 26741 ipcl_rm: 26742 /* 26743 * Need to unbind with classifier since we were just 26744 * told that our bind succeeded. a.k.a error == 0 at the entry. 26745 */ 26746 tcp->tcp_hard_bound = B_FALSE; 26747 tcp->tcp_hard_binding = B_FALSE; 26748 26749 ipcl_hash_remove(connp); 26750 26751 bind_failed: 26752 tcp->tcp_state = TCPS_IDLE; 26753 if (tcp->tcp_ipversion == IPV4_VERSION) 26754 tcp->tcp_ipha->ipha_src = 0; 26755 else 26756 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 26757 /* 26758 * Copy of the src addr. in tcp_t is needed since 26759 * the lookup funcs. can only look at tcp_t 26760 */ 26761 V6_SET_ZERO(tcp->tcp_ip_src_v6); 26762 26763 tcph = tcp->tcp_tcph; 26764 tcph->th_lport[0] = 0; 26765 tcph->th_lport[1] = 0; 26766 tcp_bind_hash_remove(tcp); 26767 bzero(&connp->u_port, sizeof (connp->u_port)); 26768 /* blow away saved option results if any */ 26769 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26770 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26771 26772 conn_delete_ire(tcp->tcp_connp, NULL); 26773 26774 return (error); 26775 } 26776 26777 static int 26778 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 26779 boolean_t bind_to_req_port_only, cred_t *cr) 26780 { 26781 in_port_t mlp_port; 26782 mlp_type_t addrtype, mlptype; 26783 boolean_t user_specified; 26784 in_port_t allocated_port; 26785 in_port_t requested_port = *requested_port_ptr; 26786 conn_t *connp; 26787 zone_t *zone; 26788 tcp_stack_t *tcps = tcp->tcp_tcps; 26789 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 26790 26791 /* 26792 * XXX It's up to the caller to specify bind_to_req_port_only or not. 26793 */ 26794 if (cr == NULL) 26795 cr = tcp->tcp_cred; 26796 /* 26797 * Get a valid port (within the anonymous range and should not 26798 * be a privileged one) to use if the user has not given a port. 26799 * If multiple threads are here, they may all start with 26800 * with the same initial port. But, it should be fine as long as 26801 * tcp_bindi will ensure that no two threads will be assigned 26802 * the same port. 26803 * 26804 * NOTE: XXX If a privileged process asks for an anonymous port, we 26805 * still check for ports only in the range > tcp_smallest_non_priv_port, 26806 * unless TCP_ANONPRIVBIND option is set. 26807 */ 26808 mlptype = mlptSingle; 26809 mlp_port = requested_port; 26810 if (requested_port == 0) { 26811 requested_port = tcp->tcp_anon_priv_bind ? 26812 tcp_get_next_priv_port(tcp) : 26813 tcp_update_next_port(tcps->tcps_next_port_to_try, 26814 tcp, B_TRUE); 26815 if (requested_port == 0) { 26816 return (-TNOADDR); 26817 } 26818 user_specified = B_FALSE; 26819 26820 /* 26821 * If the user went through one of the RPC interfaces to create 26822 * this socket and RPC is MLP in this zone, then give him an 26823 * anonymous MLP. 26824 */ 26825 connp = tcp->tcp_connp; 26826 if (connp->conn_anon_mlp && is_system_labeled()) { 26827 zone = crgetzone(cr); 26828 addrtype = tsol_mlp_addr_type(zone->zone_id, 26829 IPV6_VERSION, &v6addr, 26830 tcps->tcps_netstack->netstack_ip); 26831 if (addrtype == mlptSingle) { 26832 return (-TNOADDR); 26833 } 26834 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26835 PMAPPORT, addrtype); 26836 mlp_port = PMAPPORT; 26837 } 26838 } else { 26839 int i; 26840 boolean_t priv = B_FALSE; 26841 26842 /* 26843 * If the requested_port is in the well-known privileged range, 26844 * verify that the stream was opened by a privileged user. 26845 * Note: No locks are held when inspecting tcp_g_*epriv_ports 26846 * but instead the code relies on: 26847 * - the fact that the address of the array and its size never 26848 * changes 26849 * - the atomic assignment of the elements of the array 26850 */ 26851 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 26852 priv = B_TRUE; 26853 } else { 26854 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 26855 if (requested_port == 26856 tcps->tcps_g_epriv_ports[i]) { 26857 priv = B_TRUE; 26858 break; 26859 } 26860 } 26861 } 26862 if (priv) { 26863 if (secpolicy_net_privaddr(cr, requested_port, 26864 IPPROTO_TCP) != 0) { 26865 if (tcp->tcp_debug) { 26866 (void) strlog(TCP_MOD_ID, 0, 1, 26867 SL_ERROR|SL_TRACE, 26868 "tcp_bind: no priv for port %d", 26869 requested_port); 26870 } 26871 return (-TACCES); 26872 } 26873 } 26874 user_specified = B_TRUE; 26875 26876 connp = tcp->tcp_connp; 26877 if (is_system_labeled()) { 26878 zone = crgetzone(cr); 26879 addrtype = tsol_mlp_addr_type(zone->zone_id, 26880 IPV6_VERSION, &v6addr, 26881 tcps->tcps_netstack->netstack_ip); 26882 if (addrtype == mlptSingle) { 26883 return (-TNOADDR); 26884 } 26885 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 26886 requested_port, addrtype); 26887 } 26888 } 26889 26890 if (mlptype != mlptSingle) { 26891 if (secpolicy_net_bindmlp(cr) != 0) { 26892 if (tcp->tcp_debug) { 26893 (void) strlog(TCP_MOD_ID, 0, 1, 26894 SL_ERROR|SL_TRACE, 26895 "tcp_bind: no priv for multilevel port %d", 26896 requested_port); 26897 } 26898 return (-TACCES); 26899 } 26900 26901 /* 26902 * If we're specifically binding a shared IP address and the 26903 * port is MLP on shared addresses, then check to see if this 26904 * zone actually owns the MLP. Reject if not. 26905 */ 26906 if (mlptype == mlptShared && addrtype == mlptShared) { 26907 /* 26908 * No need to handle exclusive-stack zones since 26909 * ALL_ZONES only applies to the shared stack. 26910 */ 26911 zoneid_t mlpzone; 26912 26913 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26914 htons(mlp_port)); 26915 if (connp->conn_zoneid != mlpzone) { 26916 if (tcp->tcp_debug) { 26917 (void) strlog(TCP_MOD_ID, 0, 1, 26918 SL_ERROR|SL_TRACE, 26919 "tcp_bind: attempt to bind port " 26920 "%d on shared addr in zone %d " 26921 "(should be %d)", 26922 mlp_port, connp->conn_zoneid, 26923 mlpzone); 26924 } 26925 return (-TACCES); 26926 } 26927 } 26928 26929 if (!user_specified) { 26930 int err; 26931 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26932 requested_port, B_TRUE); 26933 if (err != 0) { 26934 if (tcp->tcp_debug) { 26935 (void) strlog(TCP_MOD_ID, 0, 1, 26936 SL_ERROR|SL_TRACE, 26937 "tcp_bind: cannot establish anon " 26938 "MLP for port %d", 26939 requested_port); 26940 } 26941 return (err); 26942 } 26943 connp->conn_anon_port = B_TRUE; 26944 } 26945 connp->conn_mlp_type = mlptype; 26946 } 26947 26948 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26949 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26950 26951 if (allocated_port == 0) { 26952 connp->conn_mlp_type = mlptSingle; 26953 if (connp->conn_anon_port) { 26954 connp->conn_anon_port = B_FALSE; 26955 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26956 requested_port, B_FALSE); 26957 } 26958 if (bind_to_req_port_only) { 26959 if (tcp->tcp_debug) { 26960 (void) strlog(TCP_MOD_ID, 0, 1, 26961 SL_ERROR|SL_TRACE, 26962 "tcp_bind: requested addr busy"); 26963 } 26964 return (-TADDRBUSY); 26965 } else { 26966 /* If we are out of ports, fail the bind. */ 26967 if (tcp->tcp_debug) { 26968 (void) strlog(TCP_MOD_ID, 0, 1, 26969 SL_ERROR|SL_TRACE, 26970 "tcp_bind: out of ports?"); 26971 } 26972 return (-TNOADDR); 26973 } 26974 } 26975 26976 /* Pass the allocated port back */ 26977 *requested_port_ptr = allocated_port; 26978 return (0); 26979 } 26980 26981 static int 26982 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26983 boolean_t bind_to_req_port_only) 26984 { 26985 tcp_t *tcp = connp->conn_tcp; 26986 26987 sin_t *sin; 26988 sin6_t *sin6; 26989 sin6_t sin6addr; 26990 in_port_t requested_port; 26991 ipaddr_t v4addr; 26992 in6_addr_t v6addr; 26993 uint_t origipversion; 26994 int error = 0; 26995 26996 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26997 26998 if (tcp->tcp_state == TCPS_BOUND) { 26999 return (0); 27000 } else if (tcp->tcp_state > TCPS_BOUND) { 27001 if (tcp->tcp_debug) { 27002 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27003 "tcp_bind: bad state, %d", tcp->tcp_state); 27004 } 27005 return (-TOUTSTATE); 27006 } 27007 origipversion = tcp->tcp_ipversion; 27008 27009 if (sa != NULL && !OK_32PTR((char *)sa)) { 27010 if (tcp->tcp_debug) { 27011 (void) strlog(TCP_MOD_ID, 0, 1, 27012 SL_ERROR|SL_TRACE, 27013 "tcp_bind: bad address parameter, " 27014 "address %p, len %d", 27015 (void *)sa, len); 27016 } 27017 return (-TPROTO); 27018 } 27019 27020 switch (len) { 27021 case 0: /* request for a generic port */ 27022 if (tcp->tcp_family == AF_INET) { 27023 sin = (sin_t *)&sin6addr; 27024 *sin = sin_null; 27025 sin->sin_family = AF_INET; 27026 tcp->tcp_ipversion = IPV4_VERSION; 27027 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 27028 } else { 27029 ASSERT(tcp->tcp_family == AF_INET6); 27030 sin6 = (sin6_t *)&sin6addr; 27031 *sin6 = sin6_null; 27032 sin6->sin6_family = AF_INET6; 27033 tcp->tcp_ipversion = IPV6_VERSION; 27034 V6_SET_ZERO(v6addr); 27035 } 27036 requested_port = 0; 27037 break; 27038 27039 case sizeof (sin_t): /* Complete IPv4 address */ 27040 sin = (sin_t *)sa; 27041 /* 27042 * With sockets sockfs will accept bogus sin_family in 27043 * bind() and replace it with the family used in the socket 27044 * call. 27045 */ 27046 if (sin->sin_family != AF_INET || 27047 tcp->tcp_family != AF_INET) { 27048 return (EAFNOSUPPORT); 27049 } 27050 requested_port = ntohs(sin->sin_port); 27051 tcp->tcp_ipversion = IPV4_VERSION; 27052 v4addr = sin->sin_addr.s_addr; 27053 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 27054 break; 27055 27056 case sizeof (sin6_t): /* Complete IPv6 address */ 27057 sin6 = (sin6_t *)sa; 27058 if (sin6->sin6_family != AF_INET6 || 27059 tcp->tcp_family != AF_INET6) { 27060 return (EAFNOSUPPORT); 27061 } 27062 requested_port = ntohs(sin6->sin6_port); 27063 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 27064 IPV4_VERSION : IPV6_VERSION; 27065 v6addr = sin6->sin6_addr; 27066 break; 27067 27068 default: 27069 if (tcp->tcp_debug) { 27070 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27071 "tcp_bind: bad address length, %d", len); 27072 } 27073 return (EAFNOSUPPORT); 27074 /* return (-TBADADDR); */ 27075 } 27076 27077 tcp->tcp_bound_source_v6 = v6addr; 27078 27079 /* Check for change in ipversion */ 27080 if (origipversion != tcp->tcp_ipversion) { 27081 ASSERT(tcp->tcp_family == AF_INET6); 27082 error = tcp->tcp_ipversion == IPV6_VERSION ? 27083 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 27084 if (error) { 27085 return (ENOMEM); 27086 } 27087 } 27088 27089 /* 27090 * Initialize family specific fields. Copy of the src addr. 27091 * in tcp_t is needed for the lookup funcs. 27092 */ 27093 if (tcp->tcp_ipversion == IPV6_VERSION) { 27094 tcp->tcp_ip6h->ip6_src = v6addr; 27095 } else { 27096 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 27097 } 27098 tcp->tcp_ip_src_v6 = v6addr; 27099 27100 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 27101 27102 error = tcp_bind_select_lport(tcp, &requested_port, 27103 bind_to_req_port_only, cr); 27104 27105 return (error); 27106 } 27107 27108 /* 27109 * Return unix error is tli error is TSYSERR, otherwise return a negative 27110 * tli error. 27111 */ 27112 int 27113 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 27114 boolean_t bind_to_req_port_only) 27115 { 27116 int error; 27117 tcp_t *tcp = connp->conn_tcp; 27118 27119 if (tcp->tcp_state >= TCPS_BOUND) { 27120 if (tcp->tcp_debug) { 27121 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27122 "tcp_bind: bad state, %d", tcp->tcp_state); 27123 } 27124 return (-TOUTSTATE); 27125 } 27126 27127 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 27128 if (error != 0) 27129 return (error); 27130 27131 ASSERT(tcp->tcp_state == TCPS_BOUND); 27132 27133 tcp->tcp_conn_req_max = 0; 27134 27135 /* 27136 * We need to make sure that the conn_recv is set to a non-null 27137 * value before we insert the conn into the classifier table. 27138 * This is to avoid a race with an incoming packet which does an 27139 * ipcl_classify(). 27140 */ 27141 connp->conn_recv = tcp_conn_request; 27142 27143 if (tcp->tcp_family == AF_INET6) { 27144 ASSERT(tcp->tcp_connp->conn_af_isv6); 27145 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27146 &tcp->tcp_bound_source_v6, 0, B_FALSE); 27147 } else { 27148 ASSERT(!tcp->tcp_connp->conn_af_isv6); 27149 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 27150 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 27151 } 27152 return (tcp_post_ip_bind(tcp, NULL, error)); 27153 } 27154 27155 int 27156 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 27157 socklen_t len, cred_t *cr) 27158 { 27159 int error; 27160 conn_t *connp = (conn_t *)proto_handle; 27161 squeue_t *sqp = connp->conn_sqp; 27162 27163 ASSERT(sqp != NULL); 27164 27165 error = squeue_synch_enter(sqp, connp, 0); 27166 if (error != 0) { 27167 /* failed to enter */ 27168 return (ENOSR); 27169 } 27170 27171 /* binding to a NULL address really means unbind */ 27172 if (sa == NULL) { 27173 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 27174 error = tcp_do_unbind(connp); 27175 else 27176 error = EINVAL; 27177 } else { 27178 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 27179 } 27180 27181 squeue_synch_exit(sqp, connp); 27182 27183 if (error < 0) { 27184 if (error == -TOUTSTATE) 27185 error = EINVAL; 27186 else 27187 error = proto_tlitosyserr(-error); 27188 } 27189 27190 return (error); 27191 } 27192 27193 /* 27194 * If the return value from this function is positive, it's a UNIX error. 27195 * Otherwise, if it's negative, then the absolute value is a TLI error. 27196 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 27197 */ 27198 int 27199 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 27200 cred_t *cr, pid_t pid) 27201 { 27202 tcp_t *tcp = connp->conn_tcp; 27203 sin_t *sin = (sin_t *)sa; 27204 sin6_t *sin6 = (sin6_t *)sa; 27205 ipaddr_t *dstaddrp; 27206 in_port_t dstport; 27207 uint_t srcid; 27208 int error = 0; 27209 27210 switch (len) { 27211 default: 27212 /* 27213 * Should never happen 27214 */ 27215 return (EINVAL); 27216 27217 case sizeof (sin_t): 27218 sin = (sin_t *)sa; 27219 if (sin->sin_port == 0) { 27220 return (-TBADADDR); 27221 } 27222 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 27223 return (EAFNOSUPPORT); 27224 } 27225 break; 27226 27227 case sizeof (sin6_t): 27228 sin6 = (sin6_t *)sa; 27229 if (sin6->sin6_port == 0) { 27230 return (-TBADADDR); 27231 } 27232 break; 27233 } 27234 /* 27235 * If we're connecting to an IPv4-mapped IPv6 address, we need to 27236 * make sure that the template IP header in the tcp structure is an 27237 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 27238 * need to this before we call tcp_bindi() so that the port lookup 27239 * code will look for ports in the correct port space (IPv4 and 27240 * IPv6 have separate port spaces). 27241 */ 27242 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 27243 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 27244 int err = 0; 27245 27246 err = tcp_header_init_ipv4(tcp); 27247 if (err != 0) { 27248 error = ENOMEM; 27249 goto connect_failed; 27250 } 27251 if (tcp->tcp_lport != 0) 27252 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 27253 } 27254 27255 switch (tcp->tcp_state) { 27256 case TCPS_LISTEN: 27257 /* 27258 * Listening sockets are not allowed to issue connect(). 27259 */ 27260 if (IPCL_IS_NONSTR(connp)) 27261 return (EOPNOTSUPP); 27262 /* FALLTHRU */ 27263 case TCPS_IDLE: 27264 /* 27265 * We support quick connect, refer to comments in 27266 * tcp_connect_*() 27267 */ 27268 /* FALLTHRU */ 27269 case TCPS_BOUND: 27270 /* 27271 * We must bump the generation before the operation start. 27272 * This is done to ensure that any upcall made later on sends 27273 * up the right generation to the socket. 27274 */ 27275 SOCK_CONNID_BUMP(tcp->tcp_connid); 27276 27277 if (tcp->tcp_family == AF_INET6) { 27278 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 27279 return (tcp_connect_ipv6(tcp, 27280 &sin6->sin6_addr, 27281 sin6->sin6_port, sin6->sin6_flowinfo, 27282 sin6->__sin6_src_id, sin6->sin6_scope_id, 27283 cr, pid)); 27284 } 27285 /* 27286 * Destination adress is mapped IPv6 address. 27287 * Source bound address should be unspecified or 27288 * IPv6 mapped address as well. 27289 */ 27290 if (!IN6_IS_ADDR_UNSPECIFIED( 27291 &tcp->tcp_bound_source_v6) && 27292 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 27293 return (EADDRNOTAVAIL); 27294 } 27295 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 27296 dstport = sin6->sin6_port; 27297 srcid = sin6->__sin6_src_id; 27298 } else { 27299 dstaddrp = &sin->sin_addr.s_addr; 27300 dstport = sin->sin_port; 27301 srcid = 0; 27302 } 27303 27304 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 27305 pid); 27306 break; 27307 default: 27308 return (-TOUTSTATE); 27309 } 27310 /* 27311 * Note: Code below is the "failure" case 27312 */ 27313 connect_failed: 27314 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 27315 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 27316 return (error); 27317 } 27318 27319 int 27320 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 27321 socklen_t len, sock_connid_t *id, cred_t *cr) 27322 { 27323 conn_t *connp = (conn_t *)proto_handle; 27324 tcp_t *tcp = connp->conn_tcp; 27325 squeue_t *sqp = connp->conn_sqp; 27326 int error; 27327 27328 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 27329 if (error != 0) { 27330 return (error); 27331 } 27332 27333 error = squeue_synch_enter(sqp, connp, 0); 27334 if (error != 0) { 27335 /* failed to enter */ 27336 return (ENOSR); 27337 } 27338 27339 /* 27340 * TCP supports quick connect, so no need to do an implicit bind 27341 */ 27342 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 27343 if (error == 0) { 27344 *id = connp->conn_tcp->tcp_connid; 27345 } else if (error < 0) { 27346 if (error == -TOUTSTATE) { 27347 switch (connp->conn_tcp->tcp_state) { 27348 case TCPS_SYN_SENT: 27349 error = EALREADY; 27350 break; 27351 case TCPS_ESTABLISHED: 27352 error = EISCONN; 27353 break; 27354 case TCPS_LISTEN: 27355 error = EOPNOTSUPP; 27356 break; 27357 default: 27358 error = EINVAL; 27359 break; 27360 } 27361 } else { 27362 error = proto_tlitosyserr(-error); 27363 } 27364 } 27365 done: 27366 squeue_synch_exit(sqp, connp); 27367 27368 return ((error == 0) ? EINPROGRESS : error); 27369 } 27370 27371 /* ARGSUSED */ 27372 sock_lower_handle_t 27373 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 27374 uint_t *smodep, int *errorp, int flags, cred_t *credp) 27375 { 27376 conn_t *connp; 27377 boolean_t isv6 = family == AF_INET6; 27378 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 27379 (proto != 0 && proto != IPPROTO_TCP)) { 27380 *errorp = EPROTONOSUPPORT; 27381 return (NULL); 27382 } 27383 27384 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 27385 if (connp == NULL) { 27386 return (NULL); 27387 } 27388 27389 /* 27390 * Put the ref for TCP. Ref for IP was already put 27391 * by ipcl_conn_create. Also Make the conn_t globally 27392 * visible to walkers 27393 */ 27394 mutex_enter(&connp->conn_lock); 27395 CONN_INC_REF_LOCKED(connp); 27396 ASSERT(connp->conn_ref == 2); 27397 connp->conn_state_flags &= ~CONN_INCIPIENT; 27398 27399 connp->conn_flags |= IPCL_NONSTR; 27400 mutex_exit(&connp->conn_lock); 27401 27402 ASSERT(errorp != NULL); 27403 *errorp = 0; 27404 *sock_downcalls = &sock_tcp_downcalls; 27405 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP; 27406 27407 return ((sock_lower_handle_t)connp); 27408 } 27409 27410 /* ARGSUSED */ 27411 void 27412 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 27413 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 27414 { 27415 conn_t *connp = (conn_t *)proto_handle; 27416 struct sock_proto_props sopp; 27417 27418 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 27419 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 27420 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 27421 27422 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 27423 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 27424 sopp.sopp_maxpsz = INFPSZ; 27425 sopp.sopp_maxblk = INFPSZ; 27426 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 27427 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 27428 sopp.sopp_maxaddrlen = sizeof (sin6_t); 27429 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 27430 tcp_rinfo.mi_minpsz; 27431 27432 connp->conn_upcalls = sock_upcalls; 27433 connp->conn_upper_handle = sock_handle; 27434 27435 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 27436 } 27437 27438 /* ARGSUSED */ 27439 int 27440 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 27441 { 27442 conn_t *connp = (conn_t *)proto_handle; 27443 27444 tcp_close_common(connp, flags); 27445 27446 ip_close_helper_stream(connp); 27447 27448 /* 27449 * Drop IP's reference on the conn. This is the last reference 27450 * on the connp if the state was less than established. If the 27451 * connection has gone into timewait state, then we will have 27452 * one ref for the TCP and one more ref (total of two) for the 27453 * classifier connected hash list (a timewait connections stays 27454 * in connected hash till closed). 27455 * 27456 * We can't assert the references because there might be other 27457 * transient reference places because of some walkers or queued 27458 * packets in squeue for the timewait state. 27459 */ 27460 CONN_DEC_REF(connp); 27461 return (0); 27462 } 27463 27464 /* ARGSUSED */ 27465 int 27466 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 27467 cred_t *cr) 27468 { 27469 tcp_t *tcp; 27470 uint32_t msize; 27471 conn_t *connp = (conn_t *)proto_handle; 27472 int32_t tcpstate; 27473 27474 ASSERT(connp->conn_ref >= 2); 27475 27476 if (msg->msg_controllen != 0) { 27477 return (EOPNOTSUPP); 27478 27479 } 27480 switch (DB_TYPE(mp)) { 27481 case M_DATA: 27482 tcp = connp->conn_tcp; 27483 ASSERT(tcp != NULL); 27484 27485 tcpstate = tcp->tcp_state; 27486 if (tcpstate < TCPS_ESTABLISHED) { 27487 freemsg(mp); 27488 return (ENOTCONN); 27489 } else if (tcpstate > TCPS_CLOSE_WAIT) { 27490 freemsg(mp); 27491 return (EPIPE); 27492 } 27493 27494 if (is_system_labeled()) 27495 msg_setcredpid(mp, cr, curproc->p_pid); 27496 27497 /* XXX pass the size down and to the squeue */ 27498 msize = msgdsize(mp); 27499 27500 mutex_enter(&tcp->tcp_non_sq_lock); 27501 tcp->tcp_squeue_bytes += msize; 27502 /* 27503 * Squeue Flow Control 27504 */ 27505 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 27506 tcp_setqfull(tcp); 27507 } 27508 mutex_exit(&tcp->tcp_non_sq_lock); 27509 27510 /* 27511 * The application may pass in an address in the msghdr, but 27512 * we ignore the address on connection-oriented sockets. 27513 * Just like BSD this code does not generate an error for 27514 * TCP (a CONNREQUIRED socket) when sending to an address 27515 * passed in with sendto/sendmsg. Instead the data is 27516 * delivered on the connection as if no address had been 27517 * supplied. 27518 */ 27519 CONN_INC_REF(connp); 27520 27521 if (msg != NULL && msg->msg_flags & MSG_OOB) { 27522 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 27523 tcp_output_urgent, connp, tcp_squeue_flag, 27524 SQTAG_TCP_OUTPUT); 27525 } else { 27526 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 27527 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 27528 } 27529 27530 return (0); 27531 27532 default: 27533 ASSERT(0); 27534 } 27535 27536 freemsg(mp); 27537 return (0); 27538 } 27539 27540 /* ARGSUSED */ 27541 void 27542 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 27543 { 27544 int len; 27545 uint32_t msize; 27546 conn_t *connp = (conn_t *)arg; 27547 tcp_t *tcp = connp->conn_tcp; 27548 27549 msize = msgdsize(mp); 27550 27551 len = msize - 1; 27552 if (len < 0) { 27553 freemsg(mp); 27554 return; 27555 } 27556 27557 /* 27558 * Try to force urgent data out on the wire. 27559 * Even if we have unsent data this will 27560 * at least send the urgent flag. 27561 * XXX does not handle more flag correctly. 27562 */ 27563 len += tcp->tcp_unsent; 27564 len += tcp->tcp_snxt; 27565 tcp->tcp_urg = len; 27566 tcp->tcp_valid_bits |= TCP_URG_VALID; 27567 27568 /* Bypass tcp protocol for fused tcp loopback */ 27569 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 27570 return; 27571 tcp_wput_data(tcp, mp, B_TRUE); 27572 } 27573 27574 /* ARGSUSED */ 27575 int 27576 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27577 socklen_t *addrlen, cred_t *cr) 27578 { 27579 sin_t *sin; 27580 sin6_t *sin6; 27581 conn_t *connp = (conn_t *)proto_handle; 27582 tcp_t *tcp = connp->conn_tcp; 27583 27584 ASSERT(tcp != NULL); 27585 if (tcp->tcp_state < TCPS_SYN_RCVD) 27586 return (ENOTCONN); 27587 27588 addr->sa_family = tcp->tcp_family; 27589 switch (tcp->tcp_family) { 27590 case AF_INET: 27591 if (*addrlen < sizeof (sin_t)) 27592 return (EINVAL); 27593 27594 sin = (sin_t *)addr; 27595 *sin = sin_null; 27596 sin->sin_family = AF_INET; 27597 if (tcp->tcp_ipversion == IPV4_VERSION) { 27598 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 27599 sin->sin_addr.s_addr); 27600 } 27601 sin->sin_port = tcp->tcp_fport; 27602 *addrlen = sizeof (struct sockaddr_in); 27603 break; 27604 case AF_INET6: 27605 sin6 = (sin6_t *)addr; 27606 *sin6 = sin6_null; 27607 sin6->sin6_family = AF_INET6; 27608 27609 if (*addrlen < sizeof (struct sockaddr_in6)) 27610 return (EINVAL); 27611 27612 if (tcp->tcp_ipversion == IPV6_VERSION) { 27613 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 27614 ~IPV6_VERS_AND_FLOW_MASK; 27615 } 27616 27617 sin6->sin6_addr = tcp->tcp_remote_v6; 27618 sin6->sin6_port = tcp->tcp_fport; 27619 *addrlen = sizeof (struct sockaddr_in6); 27620 break; 27621 } 27622 return (0); 27623 } 27624 27625 /* ARGSUSED */ 27626 int 27627 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 27628 socklen_t *addrlenp, cred_t *cr) 27629 { 27630 sin_t *sin; 27631 sin6_t *sin6; 27632 conn_t *connp = (conn_t *)proto_handle; 27633 tcp_t *tcp = connp->conn_tcp; 27634 27635 switch (tcp->tcp_family) { 27636 case AF_INET: 27637 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 27638 if (*addrlenp < sizeof (sin_t)) 27639 return (EINVAL); 27640 sin = (sin_t *)addr; 27641 *sin = sin_null; 27642 sin->sin_family = AF_INET; 27643 *addrlenp = sizeof (sin_t); 27644 if (tcp->tcp_state >= TCPS_BOUND) { 27645 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 27646 sin->sin_port = tcp->tcp_lport; 27647 } 27648 break; 27649 27650 case AF_INET6: 27651 if (*addrlenp < sizeof (sin6_t)) 27652 return (EINVAL); 27653 sin6 = (sin6_t *)addr; 27654 *sin6 = sin6_null; 27655 sin6->sin6_family = AF_INET6; 27656 *addrlenp = sizeof (sin6_t); 27657 if (tcp->tcp_state >= TCPS_BOUND) { 27658 sin6->sin6_port = tcp->tcp_lport; 27659 if (tcp->tcp_ipversion == IPV4_VERSION) { 27660 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 27661 &sin6->sin6_addr); 27662 } else { 27663 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 27664 } 27665 } 27666 break; 27667 } 27668 return (0); 27669 } 27670 27671 /* 27672 * tcp_fallback 27673 * 27674 * A direct socket is falling back to using STREAMS. Hanging 27675 * off of the queue is a temporary tcp_t, which was created using 27676 * tcp_open(). The tcp_open() was called as part of the regular 27677 * sockfs create path, i.e., the SO_SOCKSTR flag is passed down, 27678 * and therefore the temporary tcp_t is marked to be a socket 27679 * (i.e., IPCL_SOCKET, tcp_issocket). So the optimizations 27680 * introduced by FireEngine will be used. 27681 * 27682 * The tcp_t associated with the socket falling back will 27683 * still be marked as a socket, although the direct socket flag 27684 * (IPCL_NONSTR) is removed. A fall back to true TPI semantics 27685 * will not take place until a _SIOCSOCKFALLBACK ioctl is issued. 27686 * 27687 * If the above mentioned behavior, i.e., the tmp tcp_t is created 27688 * as a STREAMS/TPI endpoint, then we will need to do more work here. 27689 * Such as inserting the direct socket into the acceptor hash. 27690 */ 27691 void 27692 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 27693 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 27694 { 27695 tcp_t *tcp, *eager; 27696 conn_t *connp = (conn_t *)proto_handle; 27697 int error; 27698 struct T_capability_ack tca; 27699 struct sockaddr_in6 laddr, faddr; 27700 socklen_t laddrlen, faddrlen; 27701 short opts; 27702 struct stroptions *stropt; 27703 mblk_t *stropt_mp; 27704 mblk_t *mp; 27705 mblk_t *conn_ind_head = NULL; 27706 mblk_t *conn_ind_tail = NULL; 27707 mblk_t *ordrel_mp; 27708 mblk_t *fused_sigurp_mp; 27709 27710 tcp = connp->conn_tcp; 27711 /* 27712 * No support for acceptor fallback 27713 */ 27714 ASSERT(q->q_qinfo != &tcp_acceptor_rinit); 27715 27716 stropt_mp = allocb_wait(sizeof (*stropt), BPRI_HI, STR_NOSIG, NULL); 27717 27718 /* Pre-allocate the T_ordrel_ind mblk. */ 27719 ASSERT(tcp->tcp_ordrel_mp == NULL); 27720 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 27721 STR_NOSIG, NULL); 27722 ordrel_mp->b_datap->db_type = M_PROTO; 27723 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 27724 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 27725 27726 /* Pre-allocate the M_PCSIG anyway */ 27727 fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL); 27728 27729 /* 27730 * Enter the squeue so that no new packets can come in 27731 */ 27732 error = squeue_synch_enter(connp->conn_sqp, connp, 0); 27733 if (error != 0) { 27734 /* failed to enter, free all the pre-allocated messages. */ 27735 freeb(stropt_mp); 27736 freeb(ordrel_mp); 27737 freeb(fused_sigurp_mp); 27738 return; 27739 } 27740 27741 /* Disable I/OAT during fallback */ 27742 tcp->tcp_sodirect = NULL; 27743 27744 connp->conn_dev = (dev_t)RD(q)->q_ptr; 27745 connp->conn_minor_arena = WR(q)->q_ptr; 27746 27747 RD(q)->q_ptr = WR(q)->q_ptr = connp; 27748 27749 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 27750 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 27751 27752 WR(q)->q_qinfo = &tcp_sock_winit; 27753 27754 if (!direct_sockfs) 27755 tcp_disable_direct_sockfs(tcp); 27756 27757 /* 27758 * free the helper stream 27759 */ 27760 ip_close_helper_stream(connp); 27761 27762 /* 27763 * Notify the STREAM head about options 27764 */ 27765 DB_TYPE(stropt_mp) = M_SETOPTS; 27766 stropt = (struct stroptions *)stropt_mp->b_rptr; 27767 stropt_mp->b_wptr += sizeof (struct stroptions); 27768 stropt = (struct stroptions *)stropt_mp->b_rptr; 27769 stropt->so_flags |= SO_HIWAT | SO_WROFF | SO_MAXBLK; 27770 27771 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 27772 tcp->tcp_tcps->tcps_wroff_xtra); 27773 if (tcp->tcp_snd_sack_ok) 27774 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 27775 stropt->so_hiwat = tcp->tcp_fused ? 27776 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 27777 MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat); 27778 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 27779 27780 putnext(RD(q), stropt_mp); 27781 27782 /* 27783 * Collect the information needed to sync with the sonode 27784 */ 27785 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 27786 27787 laddrlen = faddrlen = sizeof (sin6_t); 27788 (void) tcp_getsockname(proto_handle, (struct sockaddr *)&laddr, 27789 &laddrlen, CRED()); 27790 error = tcp_getpeername(proto_handle, (struct sockaddr *)&faddr, 27791 &faddrlen, CRED()); 27792 if (error != 0) 27793 faddrlen = 0; 27794 27795 opts = 0; 27796 if (tcp->tcp_oobinline) 27797 opts |= SO_OOBINLINE; 27798 if (tcp->tcp_dontroute) 27799 opts |= SO_DONTROUTE; 27800 27801 /* 27802 * Notify the socket that the protocol is now quiescent, 27803 * and it's therefore safe move data from the socket 27804 * to the stream head. 27805 */ 27806 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 27807 (struct sockaddr *)&laddr, laddrlen, 27808 (struct sockaddr *)&faddr, faddrlen, opts); 27809 27810 while ((mp = tcp->tcp_rcv_list) != NULL) { 27811 tcp->tcp_rcv_list = mp->b_next; 27812 mp->b_next = NULL; 27813 putnext(q, mp); 27814 } 27815 tcp->tcp_rcv_last_head = NULL; 27816 tcp->tcp_rcv_last_tail = NULL; 27817 tcp->tcp_rcv_cnt = 0; 27818 27819 /* 27820 * No longer a direct socket 27821 */ 27822 connp->conn_flags &= ~IPCL_NONSTR; 27823 27824 tcp->tcp_ordrel_mp = ordrel_mp; 27825 27826 if (tcp->tcp_fused) { 27827 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 27828 tcp->tcp_fused_sigurg_mp = fused_sigurp_mp; 27829 } else { 27830 freeb(fused_sigurp_mp); 27831 } 27832 27833 /* 27834 * Send T_CONN_IND messages for all ESTABLISHED connections. 27835 */ 27836 mutex_enter(&tcp->tcp_eager_lock); 27837 for (eager = tcp->tcp_eager_next_q; eager != NULL; 27838 eager = eager->tcp_eager_next_q) { 27839 mp = eager->tcp_conn.tcp_eager_conn_ind; 27840 27841 eager->tcp_conn.tcp_eager_conn_ind = NULL; 27842 ASSERT(mp != NULL); 27843 /* 27844 * TLI/XTI applications will get confused by 27845 * sending eager as an option since it violates 27846 * the option semantics. So remove the eager as 27847 * option since TLI/XTI app doesn't need it anyway. 27848 */ 27849 if (!TCP_IS_SOCKET(tcp)) { 27850 struct T_conn_ind *conn_ind; 27851 27852 conn_ind = (struct T_conn_ind *)mp->b_rptr; 27853 conn_ind->OPT_length = 0; 27854 conn_ind->OPT_offset = 0; 27855 } 27856 if (conn_ind_head == NULL) { 27857 conn_ind_head = mp; 27858 } else { 27859 conn_ind_tail->b_next = mp; 27860 } 27861 conn_ind_tail = mp; 27862 } 27863 mutex_exit(&tcp->tcp_eager_lock); 27864 27865 mp = conn_ind_head; 27866 while (mp != NULL) { 27867 mblk_t *nmp = mp->b_next; 27868 mp->b_next = NULL; 27869 27870 putnext(tcp->tcp_rq, mp); 27871 mp = nmp; 27872 } 27873 27874 /* 27875 * There should be atleast two ref's (IP + TCP) 27876 */ 27877 ASSERT(connp->conn_ref >= 2); 27878 squeue_synch_exit(connp->conn_sqp, connp); 27879 } 27880 27881 /* ARGSUSED */ 27882 static void 27883 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 27884 { 27885 conn_t *connp = (conn_t *)arg; 27886 tcp_t *tcp = connp->conn_tcp; 27887 27888 freemsg(mp); 27889 27890 if (tcp->tcp_fused) 27891 tcp_unfuse(tcp); 27892 27893 if (tcp_xmit_end(tcp) != 0) { 27894 /* 27895 * We were crossing FINs and got a reset from 27896 * the other side. Just ignore it. 27897 */ 27898 if (tcp->tcp_debug) { 27899 (void) strlog(TCP_MOD_ID, 0, 1, 27900 SL_ERROR|SL_TRACE, 27901 "tcp_shutdown_output() out of state %s", 27902 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 27903 } 27904 } 27905 } 27906 27907 /* ARGSUSED */ 27908 int 27909 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 27910 { 27911 conn_t *connp = (conn_t *)proto_handle; 27912 tcp_t *tcp = connp->conn_tcp; 27913 27914 /* 27915 * X/Open requires that we check the connected state. 27916 */ 27917 if (tcp->tcp_state < TCPS_SYN_SENT) 27918 return (ENOTCONN); 27919 27920 /* shutdown the send side */ 27921 if (how != SHUT_RD) { 27922 mblk_t *bp; 27923 27924 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 27925 CONN_INC_REF(connp); 27926 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 27927 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 27928 27929 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27930 SOCK_OPCTL_SHUT_SEND, 0); 27931 } 27932 27933 /* shutdown the recv side */ 27934 if (how != SHUT_WR) 27935 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27936 SOCK_OPCTL_SHUT_RECV, 0); 27937 27938 return (0); 27939 } 27940 27941 /* 27942 * SOP_LISTEN() calls into tcp_listen(). 27943 */ 27944 /* ARGSUSED */ 27945 int 27946 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27947 { 27948 conn_t *connp = (conn_t *)proto_handle; 27949 int error; 27950 squeue_t *sqp = connp->conn_sqp; 27951 27952 error = squeue_synch_enter(sqp, connp, 0); 27953 if (error != 0) { 27954 /* failed to enter */ 27955 return (ENOBUFS); 27956 } 27957 27958 error = tcp_do_listen(connp, backlog, cr); 27959 if (error == 0) { 27960 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27961 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27962 } else if (error < 0) { 27963 if (error == -TOUTSTATE) 27964 error = EINVAL; 27965 else 27966 error = proto_tlitosyserr(-error); 27967 } 27968 squeue_synch_exit(sqp, connp); 27969 return (error); 27970 } 27971 27972 static int 27973 tcp_do_listen(conn_t *connp, int backlog, cred_t *cr) 27974 { 27975 tcp_t *tcp = connp->conn_tcp; 27976 sin_t *sin; 27977 sin6_t *sin6; 27978 int error = 0; 27979 tcp_stack_t *tcps = tcp->tcp_tcps; 27980 27981 if (tcp->tcp_state >= TCPS_BOUND) { 27982 if ((tcp->tcp_state == TCPS_BOUND || 27983 tcp->tcp_state == TCPS_LISTEN) && 27984 backlog > 0) { 27985 /* 27986 * Handle listen() increasing backlog. 27987 * This is more "liberal" then what the TPI spec 27988 * requires but is needed to avoid a t_unbind 27989 * when handling listen() since the port number 27990 * might be "stolen" between the unbind and bind. 27991 */ 27992 goto do_listen; 27993 } 27994 if (tcp->tcp_debug) { 27995 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27996 "tcp_bind: bad state, %d", tcp->tcp_state); 27997 } 27998 return (-TOUTSTATE); 27999 } else { 28000 int32_t len; 28001 sin6_t addr; 28002 28003 /* Do an implicit bind: Request for a generic port. */ 28004 if (tcp->tcp_family == AF_INET) { 28005 len = sizeof (sin_t); 28006 sin = (sin_t *)&addr; 28007 *sin = sin_null; 28008 sin->sin_family = AF_INET; 28009 tcp->tcp_ipversion = IPV4_VERSION; 28010 } else { 28011 ASSERT(tcp->tcp_family == AF_INET6); 28012 len = sizeof (sin6_t); 28013 sin6 = (sin6_t *)&addr; 28014 *sin6 = sin6_null; 28015 sin6->sin6_family = AF_INET6; 28016 tcp->tcp_ipversion = IPV6_VERSION; 28017 } 28018 28019 error = tcp_bind_check(connp, (struct sockaddr *)&addr, len, 28020 cr, B_FALSE); 28021 if (error) 28022 return (error); 28023 /* Fall through and do the fanout insertion */ 28024 } 28025 28026 do_listen: 28027 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 28028 tcp->tcp_conn_req_max = backlog; 28029 if (tcp->tcp_conn_req_max) { 28030 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 28031 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 28032 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 28033 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 28034 /* 28035 * If this is a listener, do not reset the eager list 28036 * and other stuffs. Note that we don't check if the 28037 * existing eager list meets the new tcp_conn_req_max 28038 * requirement. 28039 */ 28040 if (tcp->tcp_state != TCPS_LISTEN) { 28041 tcp->tcp_state = TCPS_LISTEN; 28042 /* Initialize the chain. Don't need the eager_lock */ 28043 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 28044 tcp->tcp_eager_next_drop_q0 = tcp; 28045 tcp->tcp_eager_prev_drop_q0 = tcp; 28046 tcp->tcp_second_ctimer_threshold = 28047 tcps->tcps_ip_abort_linterval; 28048 } 28049 } 28050 28051 /* 28052 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 28053 * processing continues in tcp_rput_other(). 28054 * 28055 * We need to make sure that the conn_recv is set to a non-null 28056 * value before we insert the conn into the classifier table. 28057 * This is to avoid a race with an incoming packet which does an 28058 * ipcl_classify(). 28059 */ 28060 connp->conn_recv = tcp_conn_request; 28061 if (tcp->tcp_family == AF_INET) { 28062 error = ip_proto_bind_laddr_v4(connp, NULL, 28063 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 28064 } else { 28065 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 28066 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 28067 } 28068 return (tcp_post_ip_bind(tcp, NULL, error)); 28069 } 28070 28071 void 28072 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 28073 { 28074 conn_t *connp = (conn_t *)proto_handle; 28075 tcp_t *tcp = connp->conn_tcp; 28076 tcp_stack_t *tcps = tcp->tcp_tcps; 28077 uint_t thwin; 28078 28079 (void) squeue_synch_enter(connp->conn_sqp, connp, 0); 28080 28081 /* Flow control condition has been removed. */ 28082 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 28083 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 28084 << tcp->tcp_rcv_ws; 28085 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 28086 /* 28087 * Send back a window update immediately if TCP is above 28088 * ESTABLISHED state and the increase of the rcv window 28089 * that the other side knows is at least 1 MSS after flow 28090 * control is lifted. 28091 */ 28092 if (tcp->tcp_state >= TCPS_ESTABLISHED && 28093 (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss)) { 28094 tcp_xmit_ctl(NULL, tcp, 28095 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 28096 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 28097 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 28098 } 28099 28100 squeue_synch_exit(connp->conn_sqp, connp); 28101 } 28102 28103 /* ARGSUSED */ 28104 int 28105 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 28106 int mode, int32_t *rvalp, cred_t *cr) 28107 { 28108 conn_t *connp = (conn_t *)proto_handle; 28109 int error; 28110 28111 switch (cmd) { 28112 case ND_SET: 28113 case ND_GET: 28114 case TCP_IOC_DEFAULT_Q: 28115 case _SIOCSOCKFALLBACK: 28116 case TCP_IOC_ABORT_CONN: 28117 case TI_GETPEERNAME: 28118 case TI_GETMYNAME: 28119 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 28120 cmd)); 28121 error = EINVAL; 28122 break; 28123 default: 28124 /* 28125 * Pass on to IP using helper stream 28126 */ 28127 error = ldi_ioctl( 28128 connp->conn_helper_info->ip_helper_stream_handle, 28129 cmd, arg, mode, cr, rvalp); 28130 break; 28131 } 28132 return (error); 28133 } 28134 28135 sock_downcalls_t sock_tcp_downcalls = { 28136 tcp_activate, 28137 tcp_accept, 28138 tcp_bind, 28139 tcp_listen, 28140 tcp_connect, 28141 tcp_getpeername, 28142 tcp_getsockname, 28143 tcp_getsockopt, 28144 tcp_setsockopt, 28145 tcp_sendmsg, 28146 NULL, 28147 NULL, 28148 NULL, 28149 tcp_shutdown, 28150 tcp_clr_flowctrl, 28151 tcp_ioctl, 28152 tcp_close, 28153 }; 28154