1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 const char tcp_version[] = "@(#)tcp.c 1.490 05/11/29 SMI"; 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/vtrace.h> 49 #include <sys/kmem.h> 50 #include <sys/ethernet.h> 51 #include <sys/cpuvar.h> 52 #include <sys/dlpi.h> 53 #include <sys/multidata.h> 54 #include <sys/multidata_impl.h> 55 #include <sys/pattr.h> 56 #include <sys/policy.h> 57 #include <sys/zone.h> 58 59 #include <sys/errno.h> 60 #include <sys/signal.h> 61 #include <sys/socket.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <netinet/in.h> 67 #include <netinet/tcp.h> 68 #include <netinet/ip6.h> 69 #include <netinet/icmp6.h> 70 #include <net/if.h> 71 #include <net/route.h> 72 #include <inet/ipsec_impl.h> 73 74 #include <inet/common.h> 75 #include <inet/ip.h> 76 #include <inet/ip_impl.h> 77 #include <inet/ip6.h> 78 #include <inet/ip_ndp.h> 79 #include <inet/mi.h> 80 #include <inet/mib2.h> 81 #include <inet/nd.h> 82 #include <inet/optcom.h> 83 #include <inet/snmpcom.h> 84 #include <inet/kstatcom.h> 85 #include <inet/tcp.h> 86 #include <inet/tcp_impl.h> 87 #include <net/pfkeyv2.h> 88 #include <inet/ipsec_info.h> 89 #include <inet/ipdrop.h> 90 #include <inet/tcp_trace.h> 91 92 #include <inet/ipclassifier.h> 93 #include <inet/ip_ire.h> 94 #include <inet/ip_if.h> 95 #include <inet/ipp_common.h> 96 #include <sys/squeue.h> 97 #include <inet/kssl/ksslapi.h> 98 99 /* 100 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 101 * 102 * (Read the detailed design doc in PSARC case directory) 103 * 104 * The entire tcp state is contained in tcp_t and conn_t structure 105 * which are allocated in tandem using ipcl_conn_create() and passing 106 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 107 * the references on the tcp_t. The tcp_t structure is never compressed 108 * and packets always land on the correct TCP perimeter from the time 109 * eager is created till the time tcp_t dies (as such the old mentat 110 * TCP global queue is not used for detached state and no IPSEC checking 111 * is required). The global queue is still allocated to send out resets 112 * for connection which have no listeners and IP directly calls 113 * tcp_xmit_listeners_reset() which does any policy check. 114 * 115 * Protection and Synchronisation mechanism: 116 * 117 * The tcp data structure does not use any kind of lock for protecting 118 * its state but instead uses 'squeues' for mutual exclusion from various 119 * read and write side threads. To access a tcp member, the thread should 120 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 121 * squeue_fill). Since the squeues allow a direct function call, caller 122 * can pass any tcp function having prototype of edesc_t as argument 123 * (different from traditional STREAMs model where packets come in only 124 * designated entry points). The list of functions that can be directly 125 * called via squeue are listed before the usual function prototype. 126 * 127 * Referencing: 128 * 129 * TCP is MT-Hot and we use a reference based scheme to make sure that the 130 * tcp structure doesn't disappear when its needed. When the application 131 * creates an outgoing connection or accepts an incoming connection, we 132 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 133 * The IP reference is just a symbolic reference since ip_tcpclose() 134 * looks at tcp structure after tcp_close_output() returns which could 135 * have dropped the last TCP reference. So as long as the connection is 136 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 137 * conn_t. The classifier puts its own reference when the connection is 138 * inserted in listen or connected hash. Anytime a thread needs to enter 139 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 140 * on write side or by doing a classify on read side and then puts a 141 * reference on the conn before doing squeue_enter/tryenter/fill. For 142 * read side, the classifier itself puts the reference under fanout lock 143 * to make sure that tcp can't disappear before it gets processed. The 144 * squeue will drop this reference automatically so the called function 145 * doesn't have to do a DEC_REF. 146 * 147 * Opening a new connection: 148 * 149 * The outgoing connection open is pretty simple. ip_tcpopen() does the 150 * work in creating the conn/tcp structure and initializing it. The 151 * squeue assignment is done based on the CPU the application 152 * is running on. So for outbound connections, processing is always done 153 * on application CPU which might be different from the incoming CPU 154 * being interrupted by the NIC. An optimal way would be to figure out 155 * the NIC <-> CPU binding at listen time, and assign the outgoing 156 * connection to the squeue attached to the CPU that will be interrupted 157 * for incoming packets (we know the NIC based on the bind IP address). 158 * This might seem like a problem if more data is going out but the 159 * fact is that in most cases the transmit is ACK driven transmit where 160 * the outgoing data normally sits on TCP's xmit queue waiting to be 161 * transmitted. 162 * 163 * Accepting a connection: 164 * 165 * This is a more interesting case because of various races involved in 166 * establishing a eager in its own perimeter. Read the meta comment on 167 * top of tcp_conn_request(). But briefly, the squeue is picked by 168 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 169 * 170 * Closing a connection: 171 * 172 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 173 * via squeue to do the close and mark the tcp as detached if the connection 174 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 175 * reference but tcp_close() drop IP's reference always. So if tcp was 176 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 177 * and 1 because it is in classifier's connected hash. This is the condition 178 * we use to determine that its OK to clean up the tcp outside of squeue 179 * when time wait expires (check the ref under fanout and conn_lock and 180 * if it is 2, remove it from fanout hash and kill it). 181 * 182 * Although close just drops the necessary references and marks the 183 * tcp_detached state, tcp_close needs to know the tcp_detached has been 184 * set (under squeue) before letting the STREAM go away (because a 185 * inbound packet might attempt to go up the STREAM while the close 186 * has happened and tcp_detached is not set). So a special lock and 187 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 188 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 189 * tcp_detached. 190 * 191 * Special provisions and fast paths: 192 * 193 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 194 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 195 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 196 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 197 * check to send packets directly to tcp_rput_data via squeue. Everyone 198 * else comes through tcp_input() on the read side. 199 * 200 * We also make special provisions for sockfs by marking tcp_issocket 201 * whenever we have only sockfs on top of TCP. This allows us to skip 202 * putting the tcp in acceptor hash since a sockfs listener can never 203 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 204 * since eager has already been allocated and the accept now happens 205 * on acceptor STREAM. There is a big blob of comment on top of 206 * tcp_conn_request explaining the new accept. When socket is POP'd, 207 * sockfs sends us an ioctl to mark the fact and we go back to old 208 * behaviour. Once tcp_issocket is unset, its never set for the 209 * life of that connection. 210 * 211 * IPsec notes : 212 * 213 * Since a packet is always executed on the correct TCP perimeter 214 * all IPsec processing is defered to IP including checking new 215 * connections and setting IPSEC policies for new connection. The 216 * only exception is tcp_xmit_listeners_reset() which is called 217 * directly from IP and needs to policy check to see if TH_RST 218 * can be sent out. 219 */ 220 221 222 extern major_t TCP6_MAJ; 223 224 /* 225 * Values for squeue switch: 226 * 1: squeue_enter_nodrain 227 * 2: squeue_enter 228 * 3: squeue_fill 229 */ 230 int tcp_squeue_close = 2; 231 int tcp_squeue_wput = 2; 232 233 squeue_func_t tcp_squeue_close_proc; 234 squeue_func_t tcp_squeue_wput_proc; 235 236 /* 237 * This controls how tiny a write must be before we try to copy it 238 * into the the mblk on the tail of the transmit queue. Not much 239 * speedup is observed for values larger than sixteen. Zero will 240 * disable the optimisation. 241 */ 242 int tcp_tx_pull_len = 16; 243 244 /* 245 * TCP Statistics. 246 * 247 * How TCP statistics work. 248 * 249 * There are two types of statistics invoked by two macros. 250 * 251 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 252 * supposed to be used in non MT-hot paths of the code. 253 * 254 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 255 * supposed to be used for DEBUG purposes and may be used on a hot path. 256 * 257 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 258 * (use "kstat tcp" to get them). 259 * 260 * There is also additional debugging facility that marks tcp_clean_death() 261 * instances and saves them in tcp_t structure. It is triggered by 262 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 263 * tcp_clean_death() calls that counts the number of times each tag was hit. It 264 * is triggered by TCP_CLD_COUNTERS define. 265 * 266 * How to add new counters. 267 * 268 * 1) Add a field in the tcp_stat structure describing your counter. 269 * 2) Add a line in tcp_statistics with the name of the counter. 270 * 271 * IMPORTANT!! - make sure that both are in sync !! 272 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 273 * 274 * Please avoid using private counters which are not kstat-exported. 275 * 276 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 277 * in tcp_t structure. 278 * 279 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 280 */ 281 282 #ifndef TCP_DEBUG_COUNTER 283 #ifdef DEBUG 284 #define TCP_DEBUG_COUNTER 1 285 #else 286 #define TCP_DEBUG_COUNTER 0 287 #endif 288 #endif 289 290 #define TCP_CLD_COUNTERS 0 291 292 #define TCP_TAG_CLEAN_DEATH 1 293 #define TCP_MAX_CLEAN_DEATH_TAG 32 294 295 #ifdef lint 296 static int _lint_dummy_; 297 #endif 298 299 #if TCP_CLD_COUNTERS 300 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 301 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 302 #elif defined(lint) 303 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 304 #else 305 #define TCP_CLD_STAT(x) 306 #endif 307 308 #if TCP_DEBUG_COUNTER 309 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 310 #elif defined(lint) 311 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 312 #else 313 #define TCP_DBGSTAT(x) 314 #endif 315 316 tcp_stat_t tcp_statistics = { 317 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 318 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 319 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 320 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 321 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 322 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 323 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 324 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 325 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 326 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 327 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 328 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 329 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 330 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 331 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 332 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 333 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 334 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 335 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 336 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 337 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 338 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 339 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 340 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 341 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 342 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 343 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 344 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 345 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 346 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 347 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 348 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 349 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 350 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 351 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 352 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 353 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 354 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 355 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 356 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 357 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 358 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 359 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 360 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 361 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 362 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 363 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 364 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 365 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 366 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 367 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 368 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 369 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 370 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 371 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 372 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 373 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 374 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 375 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 376 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 377 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 378 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 379 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 380 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 381 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 382 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 383 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 384 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 385 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 386 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 387 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 388 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 389 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 390 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 391 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 392 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 395 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 396 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 397 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 398 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 399 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 400 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 401 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 402 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 403 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 404 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 405 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 406 }; 407 408 static kstat_t *tcp_kstat; 409 410 /* 411 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 412 * tcp write side. 413 */ 414 #define CALL_IP_WPUT(connp, q, mp) { \ 415 ASSERT(((q)->q_flag & QREADR) == 0); \ 416 TCP_DBGSTAT(tcp_ip_output); \ 417 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 418 } 419 420 /* Macros for timestamp comparisons */ 421 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 422 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 423 424 /* 425 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 426 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 427 * by adding three components: a time component which grows by 1 every 4096 428 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 429 * a per-connection component which grows by 125000 for every new connection; 430 * and an "extra" component that grows by a random amount centered 431 * approximately on 64000. This causes the the ISS generator to cycle every 432 * 4.89 hours if no TCP connections are made, and faster if connections are 433 * made. 434 * 435 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 436 * components: a time component which grows by 250000 every second; and 437 * a per-connection component which grows by 125000 for every new connections. 438 * 439 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 440 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 441 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 442 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 443 * password. 444 */ 445 #define ISS_INCR 250000 446 #define ISS_NSEC_SHT 12 447 448 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 449 static kmutex_t tcp_iss_key_lock; 450 static MD5_CTX tcp_iss_key; 451 static sin_t sin_null; /* Zero address for quick clears */ 452 static sin6_t sin6_null; /* Zero address for quick clears */ 453 454 /* Packet dropper for TCP IPsec policy drops. */ 455 static ipdropper_t tcp_dropper; 456 457 /* 458 * This implementation follows the 4.3BSD interpretation of the urgent 459 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 460 * incompatible changes in protocols like telnet and rlogin. 461 */ 462 #define TCP_OLD_URP_INTERPRETATION 1 463 464 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 465 (TCP_IS_DETACHED(tcp) && \ 466 (!(tcp)->tcp_hard_binding)) 467 468 /* 469 * TCP reassembly macros. We hide starting and ending sequence numbers in 470 * b_next and b_prev of messages on the reassembly queue. The messages are 471 * chained using b_cont. These macros are used in tcp_reass() so we don't 472 * have to see the ugly casts and assignments. 473 */ 474 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 475 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 476 (mblk_t *)(uintptr_t)(u)) 477 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 478 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 479 (mblk_t *)(uintptr_t)(u)) 480 481 /* 482 * Implementation of TCP Timers. 483 * ============================= 484 * 485 * INTERFACE: 486 * 487 * There are two basic functions dealing with tcp timers: 488 * 489 * timeout_id_t tcp_timeout(connp, func, time) 490 * clock_t tcp_timeout_cancel(connp, timeout_id) 491 * TCP_TIMER_RESTART(tcp, intvl) 492 * 493 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 494 * after 'time' ticks passed. The function called by timeout() must adhere to 495 * the same restrictions as a driver soft interrupt handler - it must not sleep 496 * or call other functions that might sleep. The value returned is the opaque 497 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 498 * cancel the request. The call to tcp_timeout() may fail in which case it 499 * returns zero. This is different from the timeout(9F) function which never 500 * fails. 501 * 502 * The call-back function 'func' always receives 'connp' as its single 503 * argument. It is always executed in the squeue corresponding to the tcp 504 * structure. The tcp structure is guaranteed to be present at the time the 505 * call-back is called. 506 * 507 * NOTE: The call-back function 'func' is never called if tcp is in 508 * the TCPS_CLOSED state. 509 * 510 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 511 * request. locks acquired by the call-back routine should not be held across 512 * the call to tcp_timeout_cancel() or a deadlock may result. 513 * 514 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 515 * Otherwise, it returns an integer value greater than or equal to 0. In 516 * particular, if the call-back function is already placed on the squeue, it can 517 * not be canceled. 518 * 519 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 520 * within squeue context corresponding to the tcp instance. Since the 521 * call-back is also called via the same squeue, there are no race 522 * conditions described in untimeout(9F) manual page since all calls are 523 * strictly serialized. 524 * 525 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 526 * stored in tcp_timer_tid and starts a new one using 527 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 528 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 529 * field. 530 * 531 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 532 * call-back may still be called, so it is possible tcp_timer() will be 533 * called several times. This should not be a problem since tcp_timer() 534 * should always check the tcp instance state. 535 * 536 * 537 * IMPLEMENTATION: 538 * 539 * TCP timers are implemented using three-stage process. The call to 540 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 541 * when the timer expires. The tcp_timer_callback() arranges the call of the 542 * tcp_timer_handler() function via squeue corresponding to the tcp 543 * instance. The tcp_timer_handler() calls actual requested timeout call-back 544 * and passes tcp instance as an argument to it. Information is passed between 545 * stages using the tcp_timer_t structure which contains the connp pointer, the 546 * tcp call-back to call and the timeout id returned by the timeout(9F). 547 * 548 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 549 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 550 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 551 * returns the pointer to this mblk. 552 * 553 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 554 * looks like a normal mblk without actual dblk attached to it. 555 * 556 * To optimize performance each tcp instance holds a small cache of timer 557 * mblocks. In the current implementation it caches up to two timer mblocks per 558 * tcp instance. The cache is preserved over tcp frees and is only freed when 559 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 560 * timer processing happens on a corresponding squeue, the cache manipulation 561 * does not require any locks. Experiments show that majority of timer mblocks 562 * allocations are satisfied from the tcp cache and do not involve kmem calls. 563 * 564 * The tcp_timeout() places a refhold on the connp instance which guarantees 565 * that it will be present at the time the call-back function fires. The 566 * tcp_timer_handler() drops the reference after calling the call-back, so the 567 * call-back function does not need to manipulate the references explicitly. 568 */ 569 570 typedef struct tcp_timer_s { 571 conn_t *connp; 572 void (*tcpt_proc)(void *); 573 timeout_id_t tcpt_tid; 574 } tcp_timer_t; 575 576 static kmem_cache_t *tcp_timercache; 577 kmem_cache_t *tcp_sack_info_cache; 578 kmem_cache_t *tcp_iphc_cache; 579 580 /* 581 * For scalability, we must not run a timer for every TCP connection 582 * in TIME_WAIT state. To see why, consider (for time wait interval of 583 * 4 minutes): 584 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 585 * 586 * This list is ordered by time, so you need only delete from the head 587 * until you get to entries which aren't old enough to delete yet. 588 * The list consists of only the detached TIME_WAIT connections. 589 * 590 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 591 * becomes detached TIME_WAIT (either by changing the state and already 592 * being detached or the other way around). This means that the TIME_WAIT 593 * state can be extended (up to doubled) if the connection doesn't become 594 * detached for a long time. 595 * 596 * The list manipulations (including tcp_time_wait_next/prev) 597 * are protected by the tcp_time_wait_lock. The content of the 598 * detached TIME_WAIT connections is protected by the normal perimeters. 599 */ 600 601 typedef struct tcp_squeue_priv_s { 602 kmutex_t tcp_time_wait_lock; 603 /* Protects the next 3 globals */ 604 timeout_id_t tcp_time_wait_tid; 605 tcp_t *tcp_time_wait_head; 606 tcp_t *tcp_time_wait_tail; 607 tcp_t *tcp_free_list; 608 uint_t tcp_free_list_cnt; 609 } tcp_squeue_priv_t; 610 611 /* 612 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 613 * Running it every 5 seconds seems to give the best results. 614 */ 615 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 616 617 /* 618 * To prevent memory hog, limit the number of entries in tcp_free_list 619 * to 1% of available memory / number of cpus 620 */ 621 uint_t tcp_free_list_max_cnt = 0; 622 623 #define TCP_XMIT_LOWATER 4096 624 #define TCP_XMIT_HIWATER 49152 625 #define TCP_RECV_LOWATER 2048 626 #define TCP_RECV_HIWATER 49152 627 628 /* 629 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 630 */ 631 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 632 633 #define TIDUSZ 4096 /* transport interface data unit size */ 634 635 /* 636 * Bind hash list size and has function. It has to be a power of 2 for 637 * hashing. 638 */ 639 #define TCP_BIND_FANOUT_SIZE 512 640 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 641 /* 642 * Size of listen and acceptor hash list. It has to be a power of 2 for 643 * hashing. 644 */ 645 #define TCP_FANOUT_SIZE 256 646 647 #ifdef _ILP32 648 #define TCP_ACCEPTOR_HASH(accid) \ 649 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 650 #else 651 #define TCP_ACCEPTOR_HASH(accid) \ 652 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 653 #endif /* _ILP32 */ 654 655 #define IP_ADDR_CACHE_SIZE 2048 656 #define IP_ADDR_CACHE_HASH(faddr) \ 657 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 658 659 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 660 #define TCP_HSP_HASH_SIZE 256 661 662 #define TCP_HSP_HASH(addr) \ 663 (((addr>>24) ^ (addr >>16) ^ \ 664 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 665 666 /* 667 * TCP options struct returned from tcp_parse_options. 668 */ 669 typedef struct tcp_opt_s { 670 uint32_t tcp_opt_mss; 671 uint32_t tcp_opt_wscale; 672 uint32_t tcp_opt_ts_val; 673 uint32_t tcp_opt_ts_ecr; 674 tcp_t *tcp; 675 } tcp_opt_t; 676 677 /* 678 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 679 */ 680 681 #ifdef _BIG_ENDIAN 682 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 683 (TCPOPT_TSTAMP << 8) | 10) 684 #else 685 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 686 (TCPOPT_NOP << 8) | TCPOPT_NOP) 687 #endif 688 689 /* 690 * Flags returned from tcp_parse_options. 691 */ 692 #define TCP_OPT_MSS_PRESENT 1 693 #define TCP_OPT_WSCALE_PRESENT 2 694 #define TCP_OPT_TSTAMP_PRESENT 4 695 #define TCP_OPT_SACK_OK_PRESENT 8 696 #define TCP_OPT_SACK_PRESENT 16 697 698 /* TCP option length */ 699 #define TCPOPT_NOP_LEN 1 700 #define TCPOPT_MAXSEG_LEN 4 701 #define TCPOPT_WS_LEN 3 702 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 703 #define TCPOPT_TSTAMP_LEN 10 704 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 705 #define TCPOPT_SACK_OK_LEN 2 706 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 707 #define TCPOPT_REAL_SACK_LEN 4 708 #define TCPOPT_MAX_SACK_LEN 36 709 #define TCPOPT_HEADER_LEN 2 710 711 /* TCP cwnd burst factor. */ 712 #define TCP_CWND_INFINITE 65535 713 #define TCP_CWND_SS 3 714 #define TCP_CWND_NORMAL 5 715 716 /* Maximum TCP initial cwin (start/restart). */ 717 #define TCP_MAX_INIT_CWND 8 718 719 /* 720 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 721 * either tcp_slow_start_initial or tcp_slow_start_after idle 722 * depending on the caller. If the upper layer has not used the 723 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 724 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 725 * If the upper layer has changed set the tcp_init_cwnd, just use 726 * it to calculate the tcp_cwnd. 727 */ 728 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 729 { \ 730 if ((tcp)->tcp_init_cwnd == 0) { \ 731 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 732 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 733 } else { \ 734 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 735 } \ 736 tcp->tcp_cwnd_cnt = 0; \ 737 } 738 739 /* TCP Timer control structure */ 740 typedef struct tcpt_s { 741 pfv_t tcpt_pfv; /* The routine we are to call */ 742 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 743 } tcpt_t; 744 745 /* Host Specific Parameter structure */ 746 typedef struct tcp_hsp { 747 struct tcp_hsp *tcp_hsp_next; 748 in6_addr_t tcp_hsp_addr_v6; 749 in6_addr_t tcp_hsp_subnet_v6; 750 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 751 int32_t tcp_hsp_sendspace; 752 int32_t tcp_hsp_recvspace; 753 int32_t tcp_hsp_tstamp; 754 } tcp_hsp_t; 755 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 756 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 757 758 /* 759 * Functions called directly via squeue having a prototype of edesc_t. 760 */ 761 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 762 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 763 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 764 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 765 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 766 void tcp_input(void *arg, mblk_t *mp, void *arg2); 767 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 768 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 769 void tcp_output(void *arg, mblk_t *mp, void *arg2); 770 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 771 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 772 773 774 /* Prototype for TCP functions */ 775 static void tcp_random_init(void); 776 int tcp_random(void); 777 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 778 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 779 tcp_t *eager); 780 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 781 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 782 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 783 boolean_t user_specified); 784 static void tcp_closei_local(tcp_t *tcp); 785 static void tcp_close_detached(tcp_t *tcp); 786 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 787 mblk_t *idmp, mblk_t **defermp); 788 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 789 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 790 in_port_t dstport, uint_t srcid); 791 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 792 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 793 uint32_t scope_id); 794 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 795 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 796 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 797 static char *tcp_display(tcp_t *tcp, char *, char); 798 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 799 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 800 static void tcp_eager_unlink(tcp_t *tcp); 801 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 802 int unixerr); 803 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 804 int tlierr, int unixerr); 805 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 806 cred_t *cr); 807 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 808 char *value, caddr_t cp, cred_t *cr); 809 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 810 char *value, caddr_t cp, cred_t *cr); 811 static int tcp_tpistate(tcp_t *tcp); 812 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 813 int caller_holds_lock); 814 static void tcp_bind_hash_remove(tcp_t *tcp); 815 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 816 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 817 static void tcp_acceptor_hash_remove(tcp_t *tcp); 818 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 819 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 820 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 821 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 822 static int tcp_header_init_ipv4(tcp_t *tcp); 823 static int tcp_header_init_ipv6(tcp_t *tcp); 824 int tcp_init(tcp_t *tcp, queue_t *q); 825 static int tcp_init_values(tcp_t *tcp); 826 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 827 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 828 t_scalar_t addr_length); 829 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 830 static void tcp_ip_notify(tcp_t *tcp); 831 static mblk_t *tcp_ire_mp(mblk_t *mp); 832 static void tcp_iss_init(tcp_t *tcp); 833 static void tcp_keepalive_killer(void *arg); 834 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 835 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 836 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 837 int *do_disconnectp, int *t_errorp, int *sys_errorp); 838 static boolean_t tcp_allow_connopt_set(int level, int name); 839 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 840 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 841 static int tcp_opt_get_user(ipha_t *ipha, uchar_t *ptr); 842 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 843 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 844 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 845 mblk_t *mblk); 846 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 847 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 848 uchar_t *ptr, uint_t len); 849 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 850 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 851 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 852 caddr_t cp, cred_t *cr); 853 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 854 caddr_t cp, cred_t *cr); 855 static void tcp_iss_key_init(uint8_t *phrase, int len); 856 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 857 caddr_t cp, cred_t *cr); 858 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 859 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 860 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 861 static void tcp_reinit(tcp_t *tcp); 862 static void tcp_reinit_values(tcp_t *tcp); 863 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 864 tcp_t *thisstream, cred_t *cr); 865 866 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 867 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 868 static boolean_t tcp_send_rst_chk(void); 869 static void tcp_ss_rexmit(tcp_t *tcp); 870 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 871 static void tcp_process_options(tcp_t *, tcph_t *); 872 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 873 static void tcp_rsrv(queue_t *q); 874 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 875 static int tcp_snmp_state(tcp_t *tcp); 876 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 877 cred_t *cr); 878 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 879 cred_t *cr); 880 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 881 cred_t *cr); 882 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 883 cred_t *cr); 884 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 885 cred_t *cr); 886 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 887 caddr_t cp, cred_t *cr); 888 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 889 caddr_t cp, cred_t *cr); 890 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 891 cred_t *cr); 892 static void tcp_timer(void *arg); 893 static void tcp_timer_callback(void *); 894 static in_port_t tcp_update_next_port(in_port_t port, boolean_t random); 895 static in_port_t tcp_get_next_priv_port(void); 896 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 897 void tcp_wput_accept(queue_t *q, mblk_t *mp); 898 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 899 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 900 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 901 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 902 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 903 const int num_sack_blk, int *usable, uint_t *snxt, 904 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 905 const int mdt_thres); 906 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 907 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 908 const int num_sack_blk, int *usable, uint_t *snxt, 909 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 910 const int mdt_thres); 911 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 912 int num_sack_blk); 913 static void tcp_wsrv(queue_t *q); 914 static int tcp_xmit_end(tcp_t *tcp); 915 void tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len); 916 static mblk_t *tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, 917 int32_t *offset, mblk_t **end_mp, uint32_t seq, 918 boolean_t sendall, uint32_t *seg_len, boolean_t rexmit); 919 static void tcp_ack_timer(void *arg); 920 static mblk_t *tcp_ack_mp(tcp_t *tcp); 921 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 922 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len); 923 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 924 uint32_t ack, int ctl); 925 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 926 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 927 static int setmaxps(queue_t *q, int maxpsz); 928 static void tcp_set_rto(tcp_t *, time_t); 929 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 930 boolean_t, boolean_t); 931 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 932 boolean_t ipsec_mctl); 933 static boolean_t tcp_cmpbuf(void *a, uint_t alen, 934 boolean_t b_valid, void *b, uint_t blen); 935 static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp, 936 boolean_t src_valid, void *src, uint_t srclen); 937 static void tcp_savebuf(void **dstp, uint_t *dstlenp, 938 boolean_t src_valid, void *src, uint_t srclen); 939 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 940 char *opt, int optlen); 941 static int tcp_pkt_set(uchar_t *, uint_t, uchar_t **, uint_t *); 942 static int tcp_build_hdrs(queue_t *, tcp_t *); 943 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 944 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 945 tcph_t *tcph); 946 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 947 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 948 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 949 boolean_t tcp_reserved_port_check(in_port_t); 950 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 951 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 952 static mblk_t *tcp_mdt_info_mp(mblk_t *); 953 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 954 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 955 const boolean_t, const uint32_t, const uint32_t, 956 const uint32_t, const uint32_t); 957 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 958 const uint_t, const uint_t, boolean_t *); 959 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 960 extern mblk_t *tcp_timermp_alloc(int); 961 extern void tcp_timermp_free(tcp_t *); 962 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 963 static void tcp_stop_lingering(tcp_t *tcp); 964 static void tcp_close_linger_timeout(void *arg); 965 void tcp_ddi_init(void); 966 void tcp_ddi_destroy(void); 967 static void tcp_kstat_init(void); 968 static void tcp_kstat_fini(void); 969 static int tcp_kstat_update(kstat_t *kp, int rw); 970 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 971 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 972 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 973 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 974 tcph_t *tcph, mblk_t *idmp); 975 static squeue_func_t tcp_squeue_switch(int); 976 977 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 978 static int tcp_close(queue_t *, int); 979 static int tcpclose_accept(queue_t *); 980 static int tcp_modclose(queue_t *); 981 static void tcp_wput_mod(queue_t *, mblk_t *); 982 983 static void tcp_squeue_add(squeue_t *); 984 static boolean_t tcp_zcopy_check(tcp_t *); 985 static void tcp_zcopy_notify(tcp_t *); 986 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 987 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 988 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 989 990 extern void tcp_kssl_input(tcp_t *, mblk_t *); 991 992 /* 993 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 994 * 995 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 996 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 997 * (defined in tcp.h) needs to be filled in and passed into the kernel 998 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 999 * structure contains the four-tuple of a TCP connection and a range of TCP 1000 * states (specified by ac_start and ac_end). The use of wildcard addresses 1001 * and ports is allowed. Connections with a matching four tuple and a state 1002 * within the specified range will be aborted. The valid states for the 1003 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1004 * inclusive. 1005 * 1006 * An application which has its connection aborted by this ioctl will receive 1007 * an error that is dependent on the connection state at the time of the abort. 1008 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1009 * though a RST packet has been received. If the connection state is equal to 1010 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1011 * and all resources associated with the connection will be freed. 1012 */ 1013 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1014 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1015 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1016 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1017 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1018 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1019 boolean_t); 1020 1021 static struct module_info tcp_rinfo = { 1022 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1023 }; 1024 1025 static struct module_info tcp_winfo = { 1026 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1027 }; 1028 1029 /* 1030 * Entry points for TCP as a module. It only allows SNMP requests 1031 * to pass through. 1032 */ 1033 struct qinit tcp_mod_rinit = { 1034 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1035 }; 1036 1037 struct qinit tcp_mod_winit = { 1038 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1039 &tcp_rinfo 1040 }; 1041 1042 /* 1043 * Entry points for TCP as a device. The normal case which supports 1044 * the TCP functionality. 1045 */ 1046 struct qinit tcp_rinit = { 1047 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1048 }; 1049 1050 struct qinit tcp_winit = { 1051 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1052 }; 1053 1054 /* Initial entry point for TCP in socket mode. */ 1055 struct qinit tcp_sock_winit = { 1056 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1057 }; 1058 1059 /* 1060 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1061 * an accept. Avoid allocating data structures since eager has already 1062 * been created. 1063 */ 1064 struct qinit tcp_acceptor_rinit = { 1065 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1066 }; 1067 1068 struct qinit tcp_acceptor_winit = { 1069 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1070 }; 1071 1072 /* 1073 * Entry points for TCP loopback (read side only) 1074 */ 1075 struct qinit tcp_loopback_rinit = { 1076 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1077 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1078 }; 1079 1080 struct streamtab tcpinfo = { 1081 &tcp_rinit, &tcp_winit 1082 }; 1083 1084 extern squeue_func_t tcp_squeue_wput_proc; 1085 extern squeue_func_t tcp_squeue_timer_proc; 1086 1087 /* Protected by tcp_g_q_lock */ 1088 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1089 kmutex_t tcp_g_q_lock; 1090 1091 /* Protected by tcp_hsp_lock */ 1092 /* 1093 * XXX The host param mechanism should go away and instead we should use 1094 * the metrics associated with the routes to determine the default sndspace 1095 * and rcvspace. 1096 */ 1097 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1098 krwlock_t tcp_hsp_lock; 1099 1100 /* 1101 * Extra privileged ports. In host byte order. 1102 * Protected by tcp_epriv_port_lock. 1103 */ 1104 #define TCP_NUM_EPRIV_PORTS 64 1105 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1106 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1107 kmutex_t tcp_epriv_port_lock; 1108 1109 /* 1110 * The smallest anonymous port in the priviledged port range which TCP 1111 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1112 */ 1113 static in_port_t tcp_min_anonpriv_port = 512; 1114 1115 /* Only modified during _init and _fini thus no locking is needed. */ 1116 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1117 1118 /* Hint not protected by any lock */ 1119 static uint_t tcp_next_port_to_try; 1120 1121 1122 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1123 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1124 1125 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1126 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1127 1128 /* 1129 * TCP has a private interface for other kernel modules to reserve a 1130 * port range for them to use. Once reserved, TCP will not use any ports 1131 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1132 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1133 * has to be verified. 1134 * 1135 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1136 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1137 * range is [port a, port b] inclusive. And each port range is between 1138 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1139 * 1140 * Note that the default anonymous port range starts from 32768. There is 1141 * no port "collision" between that and the reserved port range. If there 1142 * is port collision (because the default smallest anonymous port is lowered 1143 * or some apps specifically bind to ports in the reserved port range), the 1144 * system may not be able to reserve a port range even there are enough 1145 * unbound ports as a reserved port range contains consecutive ports . 1146 */ 1147 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1148 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1149 #define TCP_SMALLEST_RESERVED_PORT 10240 1150 #define TCP_LARGEST_RESERVED_PORT 20480 1151 1152 /* Structure to represent those reserved port ranges. */ 1153 typedef struct tcp_rport_s { 1154 in_port_t lo_port; 1155 in_port_t hi_port; 1156 tcp_t **temp_tcp_array; 1157 } tcp_rport_t; 1158 1159 /* The reserved port array. */ 1160 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1161 1162 /* Locks to protect the tcp_reserved_ports array. */ 1163 static krwlock_t tcp_reserved_port_lock; 1164 1165 /* The number of ranges in the array. */ 1166 uint32_t tcp_reserved_port_array_size = 0; 1167 1168 /* 1169 * MIB-2 stuff for SNMP 1170 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1171 */ 1172 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1173 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1174 1175 boolean_t tcp_icmp_source_quench = B_FALSE; 1176 /* 1177 * Following assumes TPI alignment requirements stay along 32 bit 1178 * boundaries 1179 */ 1180 #define ROUNDUP32(x) \ 1181 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1182 1183 /* Template for response to info request. */ 1184 static struct T_info_ack tcp_g_t_info_ack = { 1185 T_INFO_ACK, /* PRIM_type */ 1186 0, /* TSDU_size */ 1187 T_INFINITE, /* ETSDU_size */ 1188 T_INVALID, /* CDATA_size */ 1189 T_INVALID, /* DDATA_size */ 1190 sizeof (sin_t), /* ADDR_size */ 1191 0, /* OPT_size - not initialized here */ 1192 TIDUSZ, /* TIDU_size */ 1193 T_COTS_ORD, /* SERV_type */ 1194 TCPS_IDLE, /* CURRENT_state */ 1195 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1196 }; 1197 1198 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1199 T_INFO_ACK, /* PRIM_type */ 1200 0, /* TSDU_size */ 1201 T_INFINITE, /* ETSDU_size */ 1202 T_INVALID, /* CDATA_size */ 1203 T_INVALID, /* DDATA_size */ 1204 sizeof (sin6_t), /* ADDR_size */ 1205 0, /* OPT_size - not initialized here */ 1206 TIDUSZ, /* TIDU_size */ 1207 T_COTS_ORD, /* SERV_type */ 1208 TCPS_IDLE, /* CURRENT_state */ 1209 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1210 }; 1211 1212 #define MS 1L 1213 #define SECONDS (1000 * MS) 1214 #define MINUTES (60 * SECONDS) 1215 #define HOURS (60 * MINUTES) 1216 #define DAYS (24 * HOURS) 1217 1218 #define PARAM_MAX (~(uint32_t)0) 1219 1220 /* Max size IP datagram is 64k - 1 */ 1221 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1222 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1223 /* Max of the above */ 1224 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1225 1226 /* Largest TCP port number */ 1227 #define TCP_MAX_PORT (64 * 1024 - 1) 1228 1229 /* 1230 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1231 * layer header. It has to be a multiple of 4. 1232 */ 1233 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1234 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1235 1236 /* 1237 * All of these are alterable, within the min/max values given, at run time. 1238 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1239 * per the TCP spec. 1240 */ 1241 /* BEGIN CSTYLED */ 1242 tcpparam_t tcp_param_arr[] = { 1243 /*min max value name */ 1244 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1245 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1246 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1247 { 1, 1024, 1, "tcp_conn_req_min" }, 1248 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1249 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1250 { 0, 10, 0, "tcp_debug" }, 1251 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1252 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1253 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1254 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1255 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1256 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1257 { 1, 255, 64, "tcp_ipv4_ttl"}, 1258 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1259 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1260 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1261 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1262 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1263 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1264 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1265 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1266 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1267 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1268 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1269 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1270 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1271 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1272 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1273 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1274 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1275 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1276 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1277 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1278 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1279 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1280 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1281 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1282 /* 1283 * Question: What default value should I set for tcp_strong_iss? 1284 */ 1285 { 0, 2, 1, "tcp_strong_iss"}, 1286 { 0, 65536, 20, "tcp_rtt_updates"}, 1287 { 0, 1, 1, "tcp_wscale_always"}, 1288 { 0, 1, 0, "tcp_tstamp_always"}, 1289 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1290 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1291 { 0, 16, 2, "tcp_deferred_acks_max"}, 1292 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1293 { 1, 4, 4, "tcp_slow_start_initial"}, 1294 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1295 { 0, 2, 2, "tcp_sack_permitted"}, 1296 { 0, 1, 0, "tcp_trace"}, 1297 { 0, 1, 1, "tcp_compression_enabled"}, 1298 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1299 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1300 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1301 { 0, 1, 0, "tcp_rev_src_routes"}, 1302 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1303 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1304 { 0, 16, 8, "tcp_local_dacks_max"}, 1305 { 0, 2, 1, "tcp_ecn_permitted"}, 1306 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1307 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1308 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1309 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1310 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1311 }; 1312 /* END CSTYLED */ 1313 1314 /* 1315 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1316 * each header fragment in the header buffer. Each parameter value has 1317 * to be a multiple of 4 (32-bit aligned). 1318 */ 1319 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1320 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1321 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1322 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1323 1324 /* 1325 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1326 * the maximum number of payload buffers associated per Multidata. 1327 */ 1328 static tcpparam_t tcp_mdt_max_pbufs_param = 1329 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1330 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1331 1332 /* Round up the value to the nearest mss. */ 1333 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1334 1335 /* 1336 * Set ECN capable transport (ECT) code point in IP header. 1337 * 1338 * Note that there are 2 ECT code points '01' and '10', which are called 1339 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1340 * point ECT(0) for TCP as described in RFC 2481. 1341 */ 1342 #define SET_ECT(tcp, iph) \ 1343 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1344 /* We need to clear the code point first. */ \ 1345 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1346 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1347 } else { \ 1348 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1349 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1350 } 1351 1352 /* 1353 * The format argument to pass to tcp_display(). 1354 * DISP_PORT_ONLY means that the returned string has only port info. 1355 * DISP_ADDR_AND_PORT means that the returned string also contains the 1356 * remote and local IP address. 1357 */ 1358 #define DISP_PORT_ONLY 1 1359 #define DISP_ADDR_AND_PORT 2 1360 1361 /* 1362 * This controls the rate some ndd info report functions can be used 1363 * by non-priviledged users. It stores the last time such info is 1364 * requested. When those report functions are called again, this 1365 * is checked with the current time and compare with the ndd param 1366 * tcp_ndd_get_info_interval. 1367 */ 1368 static clock_t tcp_last_ndd_get_info_time = 0; 1369 #define NDD_TOO_QUICK_MSG \ 1370 "ndd get info rate too high for non-priviledged users, try again " \ 1371 "later.\n" 1372 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1373 1374 #define IS_VMLOANED_MBLK(mp) \ 1375 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1376 1377 /* 1378 * These two variables control the rate for TCP to generate RSTs in 1379 * response to segments not belonging to any connections. We limit 1380 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1381 * each 1 second interval. This is to protect TCP against DoS attack. 1382 */ 1383 static clock_t tcp_last_rst_intrvl; 1384 static uint32_t tcp_rst_cnt; 1385 1386 /* The number of RST not sent because of the rate limit. */ 1387 static uint32_t tcp_rst_unsent; 1388 1389 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1390 boolean_t tcp_mdt_chain = B_TRUE; 1391 1392 /* 1393 * MDT threshold in the form of effective send MSS multiplier; we take 1394 * the MDT path if the amount of unsent data exceeds the threshold value 1395 * (default threshold is 1*SMSS). 1396 */ 1397 uint_t tcp_mdt_smss_threshold = 1; 1398 1399 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1400 1401 /* 1402 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1403 * tunable settable via NDD. Otherwise, the per-connection behavior is 1404 * determined dynamically during tcp_adapt_ire(), which is the default. 1405 */ 1406 boolean_t tcp_static_maxpsz = B_FALSE; 1407 1408 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1409 uint32_t tcp_random_anon_port = 1; 1410 1411 /* 1412 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1413 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1414 * data, TCP will not respond with an ACK. RFC 793 requires that 1415 * TCP responds with an ACK for such a bogus ACK. By not following 1416 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1417 * an attacker successfully spoofs an acceptable segment to our 1418 * peer; or when our peer is "confused." 1419 */ 1420 uint32_t tcp_drop_ack_unsent_cnt = 10; 1421 1422 /* 1423 * Hook functions to enable cluster networking 1424 * On non-clustered systems these vectors must always be NULL. 1425 */ 1426 1427 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1428 uint8_t *laddrp, in_port_t lport) = NULL; 1429 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1430 uint8_t *laddrp, in_port_t lport) = NULL; 1431 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1432 uint8_t *laddrp, in_port_t lport, 1433 uint8_t *faddrp, in_port_t fport) = NULL; 1434 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1435 uint8_t *laddrp, in_port_t lport, 1436 uint8_t *faddrp, in_port_t fport) = NULL; 1437 1438 /* 1439 * The following are defined in ip.c 1440 */ 1441 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1442 uint8_t *laddrp); 1443 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1444 uint8_t *laddrp, uint8_t *faddrp); 1445 1446 #define CL_INET_CONNECT(tcp) { \ 1447 if (cl_inet_connect != NULL) { \ 1448 /* \ 1449 * Running in cluster mode - register active connection \ 1450 * information \ 1451 */ \ 1452 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1453 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1454 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1455 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1456 (in_port_t)(tcp)->tcp_lport, \ 1457 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1458 (in_port_t)(tcp)->tcp_fport); \ 1459 } \ 1460 } else { \ 1461 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1462 &(tcp)->tcp_ip6h->ip6_src)) {\ 1463 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1464 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1465 (in_port_t)(tcp)->tcp_lport, \ 1466 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1467 (in_port_t)(tcp)->tcp_fport); \ 1468 } \ 1469 } \ 1470 } \ 1471 } 1472 1473 #define CL_INET_DISCONNECT(tcp) { \ 1474 if (cl_inet_disconnect != NULL) { \ 1475 /* \ 1476 * Running in cluster mode - deregister active \ 1477 * connection information \ 1478 */ \ 1479 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1480 if ((tcp)->tcp_ip_src != 0) { \ 1481 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1482 AF_INET, \ 1483 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1484 (in_port_t)(tcp)->tcp_lport, \ 1485 (uint8_t *) \ 1486 (&((tcp)->tcp_ipha->ipha_dst)),\ 1487 (in_port_t)(tcp)->tcp_fport); \ 1488 } \ 1489 } else { \ 1490 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1491 &(tcp)->tcp_ip_src_v6)) { \ 1492 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1493 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1494 (in_port_t)(tcp)->tcp_lport, \ 1495 (uint8_t *) \ 1496 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1497 (in_port_t)(tcp)->tcp_fport); \ 1498 } \ 1499 } \ 1500 } \ 1501 } 1502 1503 /* 1504 * Cluster networking hook for traversing current connection list. 1505 * This routine is used to extract the current list of live connections 1506 * which must continue to to be dispatched to this node. 1507 */ 1508 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1509 1510 /* 1511 * Figure out the value of window scale opton. Note that the rwnd is 1512 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1513 * We cannot find the scale value and then do a round up of tcp_rwnd 1514 * because the scale value may not be correct after that. 1515 * 1516 * Set the compiler flag to make this function inline. 1517 */ 1518 static void 1519 tcp_set_ws_value(tcp_t *tcp) 1520 { 1521 int i; 1522 uint32_t rwnd = tcp->tcp_rwnd; 1523 1524 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1525 i++, rwnd >>= 1) 1526 ; 1527 tcp->tcp_rcv_ws = i; 1528 } 1529 1530 /* 1531 * Remove a connection from the list of detached TIME_WAIT connections. 1532 */ 1533 static void 1534 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1535 { 1536 boolean_t locked = B_FALSE; 1537 1538 if (tcp_time_wait == NULL) { 1539 tcp_time_wait = *((tcp_squeue_priv_t **) 1540 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1541 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1542 locked = B_TRUE; 1543 } 1544 1545 if (tcp->tcp_time_wait_expire == 0) { 1546 ASSERT(tcp->tcp_time_wait_next == NULL); 1547 ASSERT(tcp->tcp_time_wait_prev == NULL); 1548 if (locked) 1549 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1550 return; 1551 } 1552 ASSERT(TCP_IS_DETACHED(tcp)); 1553 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1554 1555 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1556 ASSERT(tcp->tcp_time_wait_prev == NULL); 1557 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1558 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1559 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1560 NULL; 1561 } else { 1562 tcp_time_wait->tcp_time_wait_tail = NULL; 1563 } 1564 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1565 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1566 ASSERT(tcp->tcp_time_wait_next == NULL); 1567 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1568 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1569 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1570 } else { 1571 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1572 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1573 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1574 tcp->tcp_time_wait_next; 1575 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1576 tcp->tcp_time_wait_prev; 1577 } 1578 tcp->tcp_time_wait_next = NULL; 1579 tcp->tcp_time_wait_prev = NULL; 1580 tcp->tcp_time_wait_expire = 0; 1581 1582 if (locked) 1583 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1584 } 1585 1586 /* 1587 * Add a connection to the list of detached TIME_WAIT connections 1588 * and set its time to expire. 1589 */ 1590 static void 1591 tcp_time_wait_append(tcp_t *tcp) 1592 { 1593 tcp_squeue_priv_t *tcp_time_wait = 1594 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1595 SQPRIVATE_TCP)); 1596 1597 tcp_timers_stop(tcp); 1598 1599 /* Freed above */ 1600 ASSERT(tcp->tcp_timer_tid == 0); 1601 ASSERT(tcp->tcp_ack_tid == 0); 1602 1603 /* must have happened at the time of detaching the tcp */ 1604 ASSERT(tcp->tcp_ptpahn == NULL); 1605 ASSERT(tcp->tcp_flow_stopped == 0); 1606 ASSERT(tcp->tcp_time_wait_next == NULL); 1607 ASSERT(tcp->tcp_time_wait_prev == NULL); 1608 ASSERT(tcp->tcp_time_wait_expire == NULL); 1609 ASSERT(tcp->tcp_listener == NULL); 1610 1611 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1612 /* 1613 * The value computed below in tcp->tcp_time_wait_expire may 1614 * appear negative or wrap around. That is ok since our 1615 * interest is only in the difference between the current lbolt 1616 * value and tcp->tcp_time_wait_expire. But the value should not 1617 * be zero, since it means the tcp is not in the TIME_WAIT list. 1618 * The corresponding comparison in tcp_time_wait_collector() uses 1619 * modular arithmetic. 1620 */ 1621 tcp->tcp_time_wait_expire += 1622 drv_usectohz(tcp_time_wait_interval * 1000); 1623 if (tcp->tcp_time_wait_expire == 0) 1624 tcp->tcp_time_wait_expire = 1; 1625 1626 ASSERT(TCP_IS_DETACHED(tcp)); 1627 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1628 ASSERT(tcp->tcp_time_wait_next == NULL); 1629 ASSERT(tcp->tcp_time_wait_prev == NULL); 1630 TCP_DBGSTAT(tcp_time_wait); 1631 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1632 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1633 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1634 tcp_time_wait->tcp_time_wait_head = tcp; 1635 } else { 1636 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1637 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1638 TCPS_TIME_WAIT); 1639 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1640 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1641 } 1642 tcp_time_wait->tcp_time_wait_tail = tcp; 1643 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1644 } 1645 1646 /* ARGSUSED */ 1647 void 1648 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1649 { 1650 conn_t *connp = (conn_t *)arg; 1651 tcp_t *tcp = connp->conn_tcp; 1652 1653 ASSERT(tcp != NULL); 1654 if (tcp->tcp_state == TCPS_CLOSED) { 1655 return; 1656 } 1657 1658 ASSERT((tcp->tcp_family == AF_INET && 1659 tcp->tcp_ipversion == IPV4_VERSION) || 1660 (tcp->tcp_family == AF_INET6 && 1661 (tcp->tcp_ipversion == IPV4_VERSION || 1662 tcp->tcp_ipversion == IPV6_VERSION))); 1663 ASSERT(!tcp->tcp_listener); 1664 1665 TCP_STAT(tcp_time_wait_reap); 1666 ASSERT(TCP_IS_DETACHED(tcp)); 1667 1668 /* 1669 * Because they have no upstream client to rebind or tcp_close() 1670 * them later, we axe the connection here and now. 1671 */ 1672 tcp_close_detached(tcp); 1673 } 1674 1675 void 1676 tcp_cleanup(tcp_t *tcp) 1677 { 1678 mblk_t *mp; 1679 char *tcp_iphc; 1680 int tcp_iphc_len; 1681 int tcp_hdr_grown; 1682 tcp_sack_info_t *tcp_sack_info; 1683 conn_t *connp = tcp->tcp_connp; 1684 1685 tcp_bind_hash_remove(tcp); 1686 tcp_free(tcp); 1687 1688 /* Release any SSL context */ 1689 if (tcp->tcp_kssl_ent != NULL) { 1690 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1691 tcp->tcp_kssl_ent = NULL; 1692 } 1693 1694 if (tcp->tcp_kssl_ctx != NULL) { 1695 kssl_release_ctx(tcp->tcp_kssl_ctx); 1696 tcp->tcp_kssl_ctx = NULL; 1697 } 1698 tcp->tcp_kssl_pending = B_FALSE; 1699 1700 conn_delete_ire(connp, NULL); 1701 if (connp->conn_flags & IPCL_TCPCONN) { 1702 if (connp->conn_latch != NULL) 1703 IPLATCH_REFRELE(connp->conn_latch); 1704 if (connp->conn_policy != NULL) 1705 IPPH_REFRELE(connp->conn_policy); 1706 } 1707 1708 /* 1709 * Since we will bzero the entire structure, we need to 1710 * remove it and reinsert it in global hash list. We 1711 * know the walkers can't get to this conn because we 1712 * had set CONDEMNED flag earlier and checked reference 1713 * under conn_lock so walker won't pick it and when we 1714 * go the ipcl_globalhash_remove() below, no walker 1715 * can get to it. 1716 */ 1717 ipcl_globalhash_remove(connp); 1718 1719 /* Save some state */ 1720 mp = tcp->tcp_timercache; 1721 1722 tcp_sack_info = tcp->tcp_sack_info; 1723 tcp_iphc = tcp->tcp_iphc; 1724 tcp_iphc_len = tcp->tcp_iphc_len; 1725 tcp_hdr_grown = tcp->tcp_hdr_grown; 1726 1727 bzero(connp, sizeof (conn_t)); 1728 bzero(tcp, sizeof (tcp_t)); 1729 1730 /* restore the state */ 1731 tcp->tcp_timercache = mp; 1732 1733 tcp->tcp_sack_info = tcp_sack_info; 1734 tcp->tcp_iphc = tcp_iphc; 1735 tcp->tcp_iphc_len = tcp_iphc_len; 1736 tcp->tcp_hdr_grown = tcp_hdr_grown; 1737 1738 1739 tcp->tcp_connp = connp; 1740 1741 connp->conn_tcp = tcp; 1742 connp->conn_flags = IPCL_TCPCONN; 1743 connp->conn_state_flags = CONN_INCIPIENT; 1744 connp->conn_ulp = IPPROTO_TCP; 1745 connp->conn_ref = 1; 1746 1747 ipcl_globalhash_insert(connp); 1748 } 1749 1750 /* 1751 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1752 * is done forwards from the head. 1753 */ 1754 /* ARGSUSED */ 1755 void 1756 tcp_time_wait_collector(void *arg) 1757 { 1758 tcp_t *tcp; 1759 clock_t now; 1760 mblk_t *mp; 1761 conn_t *connp; 1762 kmutex_t *lock; 1763 1764 squeue_t *sqp = (squeue_t *)arg; 1765 tcp_squeue_priv_t *tcp_time_wait = 1766 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1767 1768 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1769 tcp_time_wait->tcp_time_wait_tid = 0; 1770 1771 if (tcp_time_wait->tcp_free_list != NULL && 1772 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1773 TCP_STAT(tcp_freelist_cleanup); 1774 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1775 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1776 CONN_DEC_REF(tcp->tcp_connp); 1777 } 1778 tcp_time_wait->tcp_free_list_cnt = 0; 1779 } 1780 1781 /* 1782 * In order to reap time waits reliably, we should use a 1783 * source of time that is not adjustable by the user -- hence 1784 * the call to ddi_get_lbolt(). 1785 */ 1786 now = ddi_get_lbolt(); 1787 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1788 /* 1789 * Compare times using modular arithmetic, since 1790 * lbolt can wrapover. 1791 */ 1792 if ((now - tcp->tcp_time_wait_expire) < 0) { 1793 break; 1794 } 1795 1796 tcp_time_wait_remove(tcp, tcp_time_wait); 1797 1798 connp = tcp->tcp_connp; 1799 ASSERT(connp->conn_fanout != NULL); 1800 lock = &connp->conn_fanout->connf_lock; 1801 /* 1802 * This is essentially a TW reclaim fast path optimization for 1803 * performance where the timewait collector checks under the 1804 * fanout lock (so that no one else can get access to the 1805 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1806 * the classifier hash list. If ref count is indeed 2, we can 1807 * just remove the conn under the fanout lock and avoid 1808 * cleaning up the conn under the squeue, provided that 1809 * clustering callbacks are not enabled. If clustering is 1810 * enabled, we need to make the clustering callback before 1811 * setting the CONDEMNED flag and after dropping all locks and 1812 * so we forego this optimization and fall back to the slow 1813 * path. Also please see the comments in tcp_closei_local 1814 * regarding the refcnt logic. 1815 * 1816 * Since we are holding the tcp_time_wait_lock, its better 1817 * not to block on the fanout_lock because other connections 1818 * can't add themselves to time_wait list. So we do a 1819 * tryenter instead of mutex_enter. 1820 */ 1821 if (mutex_tryenter(lock)) { 1822 mutex_enter(&connp->conn_lock); 1823 if ((connp->conn_ref == 2) && 1824 (cl_inet_disconnect == NULL)) { 1825 ipcl_hash_remove_locked(connp, 1826 connp->conn_fanout); 1827 /* 1828 * Set the CONDEMNED flag now itself so that 1829 * the refcnt cannot increase due to any 1830 * walker. But we have still not cleaned up 1831 * conn_ire_cache. This is still ok since 1832 * we are going to clean it up in tcp_cleanup 1833 * immediately and any interface unplumb 1834 * thread will wait till the ire is blown away 1835 */ 1836 connp->conn_state_flags |= CONN_CONDEMNED; 1837 mutex_exit(lock); 1838 mutex_exit(&connp->conn_lock); 1839 if (tcp_time_wait->tcp_free_list_cnt < 1840 tcp_free_list_max_cnt) { 1841 /* Add to head of tcp_free_list */ 1842 mutex_exit( 1843 &tcp_time_wait->tcp_time_wait_lock); 1844 tcp_cleanup(tcp); 1845 mutex_enter( 1846 &tcp_time_wait->tcp_time_wait_lock); 1847 tcp->tcp_time_wait_next = 1848 tcp_time_wait->tcp_free_list; 1849 tcp_time_wait->tcp_free_list = tcp; 1850 tcp_time_wait->tcp_free_list_cnt++; 1851 continue; 1852 } else { 1853 /* Do not add to tcp_free_list */ 1854 mutex_exit( 1855 &tcp_time_wait->tcp_time_wait_lock); 1856 tcp_bind_hash_remove(tcp); 1857 conn_delete_ire(tcp->tcp_connp, NULL); 1858 CONN_DEC_REF(tcp->tcp_connp); 1859 } 1860 } else { 1861 CONN_INC_REF_LOCKED(connp); 1862 mutex_exit(lock); 1863 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1864 mutex_exit(&connp->conn_lock); 1865 /* 1866 * We can reuse the closemp here since conn has 1867 * detached (otherwise we wouldn't even be in 1868 * time_wait list). 1869 */ 1870 mp = &tcp->tcp_closemp; 1871 squeue_fill(connp->conn_sqp, mp, 1872 tcp_timewait_output, connp, 1873 SQTAG_TCP_TIMEWAIT); 1874 } 1875 } else { 1876 mutex_enter(&connp->conn_lock); 1877 CONN_INC_REF_LOCKED(connp); 1878 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1879 mutex_exit(&connp->conn_lock); 1880 /* 1881 * We can reuse the closemp here since conn has 1882 * detached (otherwise we wouldn't even be in 1883 * time_wait list). 1884 */ 1885 mp = &tcp->tcp_closemp; 1886 squeue_fill(connp->conn_sqp, mp, 1887 tcp_timewait_output, connp, 0); 1888 } 1889 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1890 } 1891 1892 if (tcp_time_wait->tcp_free_list != NULL) 1893 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1894 1895 tcp_time_wait->tcp_time_wait_tid = 1896 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1897 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1898 } 1899 1900 /* 1901 * Reply to a clients T_CONN_RES TPI message. This function 1902 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1903 * on the acceptor STREAM and processed in tcp_wput_accept(). 1904 * Read the block comment on top of tcp_conn_request(). 1905 */ 1906 static void 1907 tcp_accept(tcp_t *listener, mblk_t *mp) 1908 { 1909 tcp_t *acceptor; 1910 tcp_t *eager; 1911 tcp_t *tcp; 1912 struct T_conn_res *tcr; 1913 t_uscalar_t acceptor_id; 1914 t_scalar_t seqnum; 1915 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1916 mblk_t *ok_mp; 1917 mblk_t *mp1; 1918 1919 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1920 tcp_err_ack(listener, mp, TPROTO, 0); 1921 return; 1922 } 1923 tcr = (struct T_conn_res *)mp->b_rptr; 1924 1925 /* 1926 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1927 * read side queue of the streams device underneath us i.e. the 1928 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1929 * look it up in the queue_hash. Under LP64 it sends down the 1930 * minor_t of the accepting endpoint. 1931 * 1932 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1933 * fanout hash lock is held. 1934 * This prevents any thread from entering the acceptor queue from 1935 * below (since it has not been hard bound yet i.e. any inbound 1936 * packets will arrive on the listener or default tcp queue and 1937 * go through tcp_lookup). 1938 * The CONN_INC_REF will prevent the acceptor from closing. 1939 * 1940 * XXX It is still possible for a tli application to send down data 1941 * on the accepting stream while another thread calls t_accept. 1942 * This should not be a problem for well-behaved applications since 1943 * the T_OK_ACK is sent after the queue swapping is completed. 1944 * 1945 * If the accepting fd is the same as the listening fd, avoid 1946 * queue hash lookup since that will return an eager listener in a 1947 * already established state. 1948 */ 1949 acceptor_id = tcr->ACCEPTOR_id; 1950 mutex_enter(&listener->tcp_eager_lock); 1951 if (listener->tcp_acceptor_id == acceptor_id) { 1952 eager = listener->tcp_eager_next_q; 1953 /* only count how many T_CONN_INDs so don't count q0 */ 1954 if ((listener->tcp_conn_req_cnt_q != 1) || 1955 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1956 mutex_exit(&listener->tcp_eager_lock); 1957 tcp_err_ack(listener, mp, TBADF, 0); 1958 return; 1959 } 1960 if (listener->tcp_conn_req_cnt_q0 != 0) { 1961 /* Throw away all the eagers on q0. */ 1962 tcp_eager_cleanup(listener, 1); 1963 } 1964 if (listener->tcp_syn_defense) { 1965 listener->tcp_syn_defense = B_FALSE; 1966 if (listener->tcp_ip_addr_cache != NULL) { 1967 kmem_free(listener->tcp_ip_addr_cache, 1968 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1969 listener->tcp_ip_addr_cache = NULL; 1970 } 1971 } 1972 /* 1973 * Transfer tcp_conn_req_max to the eager so that when 1974 * a disconnect occurs we can revert the endpoint to the 1975 * listen state. 1976 */ 1977 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1978 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1979 /* 1980 * Get a reference on the acceptor just like the 1981 * tcp_acceptor_hash_lookup below. 1982 */ 1983 acceptor = listener; 1984 CONN_INC_REF(acceptor->tcp_connp); 1985 } else { 1986 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 1987 if (acceptor == NULL) { 1988 if (listener->tcp_debug) { 1989 (void) strlog(TCP_MOD_ID, 0, 1, 1990 SL_ERROR|SL_TRACE, 1991 "tcp_accept: did not find acceptor 0x%x\n", 1992 acceptor_id); 1993 } 1994 mutex_exit(&listener->tcp_eager_lock); 1995 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1996 return; 1997 } 1998 /* 1999 * Verify acceptor state. The acceptable states for an acceptor 2000 * include TCPS_IDLE and TCPS_BOUND. 2001 */ 2002 switch (acceptor->tcp_state) { 2003 case TCPS_IDLE: 2004 /* FALLTHRU */ 2005 case TCPS_BOUND: 2006 break; 2007 default: 2008 CONN_DEC_REF(acceptor->tcp_connp); 2009 mutex_exit(&listener->tcp_eager_lock); 2010 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2011 return; 2012 } 2013 } 2014 2015 /* The listener must be in TCPS_LISTEN */ 2016 if (listener->tcp_state != TCPS_LISTEN) { 2017 CONN_DEC_REF(acceptor->tcp_connp); 2018 mutex_exit(&listener->tcp_eager_lock); 2019 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2020 return; 2021 } 2022 2023 /* 2024 * Rendezvous with an eager connection request packet hanging off 2025 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2026 * tcp structure when the connection packet arrived in 2027 * tcp_conn_request(). 2028 */ 2029 seqnum = tcr->SEQ_number; 2030 eager = listener; 2031 do { 2032 eager = eager->tcp_eager_next_q; 2033 if (eager == NULL) { 2034 CONN_DEC_REF(acceptor->tcp_connp); 2035 mutex_exit(&listener->tcp_eager_lock); 2036 tcp_err_ack(listener, mp, TBADSEQ, 0); 2037 return; 2038 } 2039 } while (eager->tcp_conn_req_seqnum != seqnum); 2040 mutex_exit(&listener->tcp_eager_lock); 2041 2042 /* 2043 * At this point, both acceptor and listener have 2 ref 2044 * that they begin with. Acceptor has one additional ref 2045 * we placed in lookup while listener has 3 additional 2046 * ref for being behind the squeue (tcp_accept() is 2047 * done on listener's squeue); being in classifier hash; 2048 * and eager's ref on listener. 2049 */ 2050 ASSERT(listener->tcp_connp->conn_ref >= 5); 2051 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2052 2053 /* 2054 * The eager at this point is set in its own squeue and 2055 * could easily have been killed (tcp_accept_finish will 2056 * deal with that) because of a TH_RST so we can only 2057 * ASSERT for a single ref. 2058 */ 2059 ASSERT(eager->tcp_connp->conn_ref >= 1); 2060 2061 /* Pre allocate the stroptions mblk also */ 2062 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2063 if (opt_mp == NULL) { 2064 CONN_DEC_REF(acceptor->tcp_connp); 2065 CONN_DEC_REF(eager->tcp_connp); 2066 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2067 return; 2068 } 2069 DB_TYPE(opt_mp) = M_SETOPTS; 2070 opt_mp->b_wptr += sizeof (struct stroptions); 2071 2072 /* 2073 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2074 * from listener to acceptor. The message is chained on opt_mp 2075 * which will be sent onto eager's squeue. 2076 */ 2077 if (listener->tcp_bound_if != 0) { 2078 /* allocate optmgmt req */ 2079 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2080 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2081 sizeof (int)); 2082 if (mp1 != NULL) 2083 linkb(opt_mp, mp1); 2084 } 2085 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2086 uint_t on = 1; 2087 2088 /* allocate optmgmt req */ 2089 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2090 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2091 if (mp1 != NULL) 2092 linkb(opt_mp, mp1); 2093 } 2094 2095 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2096 if ((mp1 = copymsg(mp)) == NULL) { 2097 CONN_DEC_REF(acceptor->tcp_connp); 2098 CONN_DEC_REF(eager->tcp_connp); 2099 freemsg(opt_mp); 2100 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2101 return; 2102 } 2103 2104 tcr = (struct T_conn_res *)mp1->b_rptr; 2105 2106 /* 2107 * This is an expanded version of mi_tpi_ok_ack_alloc() 2108 * which allocates a larger mblk and appends the new 2109 * local address to the ok_ack. The address is copied by 2110 * soaccept() for getsockname(). 2111 */ 2112 { 2113 int extra; 2114 2115 extra = (eager->tcp_family == AF_INET) ? 2116 sizeof (sin_t) : sizeof (sin6_t); 2117 2118 /* 2119 * Try to re-use mp, if possible. Otherwise, allocate 2120 * an mblk and return it as ok_mp. In any case, mp 2121 * is no longer usable upon return. 2122 */ 2123 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2124 CONN_DEC_REF(acceptor->tcp_connp); 2125 CONN_DEC_REF(eager->tcp_connp); 2126 freemsg(opt_mp); 2127 /* Original mp has been freed by now, so use mp1 */ 2128 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2129 return; 2130 } 2131 2132 mp = NULL; /* We should never use mp after this point */ 2133 2134 switch (extra) { 2135 case sizeof (sin_t): { 2136 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2137 2138 ok_mp->b_wptr += extra; 2139 sin->sin_family = AF_INET; 2140 sin->sin_port = eager->tcp_lport; 2141 sin->sin_addr.s_addr = 2142 eager->tcp_ipha->ipha_src; 2143 break; 2144 } 2145 case sizeof (sin6_t): { 2146 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2147 2148 ok_mp->b_wptr += extra; 2149 sin6->sin6_family = AF_INET6; 2150 sin6->sin6_port = eager->tcp_lport; 2151 if (eager->tcp_ipversion == IPV4_VERSION) { 2152 sin6->sin6_flowinfo = 0; 2153 IN6_IPADDR_TO_V4MAPPED( 2154 eager->tcp_ipha->ipha_src, 2155 &sin6->sin6_addr); 2156 } else { 2157 ASSERT(eager->tcp_ip6h != NULL); 2158 sin6->sin6_flowinfo = 2159 eager->tcp_ip6h->ip6_vcf & 2160 ~IPV6_VERS_AND_FLOW_MASK; 2161 sin6->sin6_addr = 2162 eager->tcp_ip6h->ip6_src; 2163 } 2164 break; 2165 } 2166 default: 2167 break; 2168 } 2169 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2170 } 2171 2172 /* 2173 * If there are no options we know that the T_CONN_RES will 2174 * succeed. However, we can't send the T_OK_ACK upstream until 2175 * the tcp_accept_swap is done since it would be dangerous to 2176 * let the application start using the new fd prior to the swap. 2177 */ 2178 tcp_accept_swap(listener, acceptor, eager); 2179 2180 /* 2181 * tcp_accept_swap unlinks eager from listener but does not drop 2182 * the eager's reference on the listener. 2183 */ 2184 ASSERT(eager->tcp_listener == NULL); 2185 ASSERT(listener->tcp_connp->conn_ref >= 5); 2186 2187 /* 2188 * The eager is now associated with its own queue. Insert in 2189 * the hash so that the connection can be reused for a future 2190 * T_CONN_RES. 2191 */ 2192 tcp_acceptor_hash_insert(acceptor_id, eager); 2193 2194 /* 2195 * We now do the processing of options with T_CONN_RES. 2196 * We delay till now since we wanted to have queue to pass to 2197 * option processing routines that points back to the right 2198 * instance structure which does not happen until after 2199 * tcp_accept_swap(). 2200 * 2201 * Note: 2202 * The sanity of the logic here assumes that whatever options 2203 * are appropriate to inherit from listner=>eager are done 2204 * before this point, and whatever were to be overridden (or not) 2205 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2206 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2207 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2208 * This may not be true at this point in time but can be fixed 2209 * independently. This option processing code starts with 2210 * the instantiated acceptor instance and the final queue at 2211 * this point. 2212 */ 2213 2214 if (tcr->OPT_length != 0) { 2215 /* Options to process */ 2216 int t_error = 0; 2217 int sys_error = 0; 2218 int do_disconnect = 0; 2219 2220 if (tcp_conprim_opt_process(eager, mp1, 2221 &do_disconnect, &t_error, &sys_error) < 0) { 2222 eager->tcp_accept_error = 1; 2223 if (do_disconnect) { 2224 /* 2225 * An option failed which does not allow 2226 * connection to be accepted. 2227 * 2228 * We allow T_CONN_RES to succeed and 2229 * put a T_DISCON_IND on the eager queue. 2230 */ 2231 ASSERT(t_error == 0 && sys_error == 0); 2232 eager->tcp_send_discon_ind = 1; 2233 } else { 2234 ASSERT(t_error != 0); 2235 freemsg(ok_mp); 2236 /* 2237 * Original mp was either freed or set 2238 * to ok_mp above, so use mp1 instead. 2239 */ 2240 tcp_err_ack(listener, mp1, t_error, sys_error); 2241 goto finish; 2242 } 2243 } 2244 /* 2245 * Most likely success in setting options (except if 2246 * eager->tcp_send_discon_ind set). 2247 * mp1 option buffer represented by OPT_length/offset 2248 * potentially modified and contains results of setting 2249 * options at this point 2250 */ 2251 } 2252 2253 /* We no longer need mp1, since all options processing has passed */ 2254 freemsg(mp1); 2255 2256 putnext(listener->tcp_rq, ok_mp); 2257 2258 mutex_enter(&listener->tcp_eager_lock); 2259 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2260 tcp_t *tail; 2261 mblk_t *conn_ind; 2262 2263 /* 2264 * This path should not be executed if listener and 2265 * acceptor streams are the same. 2266 */ 2267 ASSERT(listener != acceptor); 2268 2269 tcp = listener->tcp_eager_prev_q0; 2270 /* 2271 * listener->tcp_eager_prev_q0 points to the TAIL of the 2272 * deferred T_conn_ind queue. We need to get to the head of 2273 * the queue in order to send up T_conn_ind the same order as 2274 * how the 3WHS is completed. 2275 */ 2276 while (tcp != listener) { 2277 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2278 break; 2279 else 2280 tcp = tcp->tcp_eager_prev_q0; 2281 } 2282 ASSERT(tcp != listener); 2283 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2284 ASSERT(conn_ind != NULL); 2285 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2286 2287 /* Move from q0 to q */ 2288 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2289 listener->tcp_conn_req_cnt_q0--; 2290 listener->tcp_conn_req_cnt_q++; 2291 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2292 tcp->tcp_eager_prev_q0; 2293 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2294 tcp->tcp_eager_next_q0; 2295 tcp->tcp_eager_prev_q0 = NULL; 2296 tcp->tcp_eager_next_q0 = NULL; 2297 tcp->tcp_conn_def_q0 = B_FALSE; 2298 2299 /* 2300 * Insert at end of the queue because sockfs sends 2301 * down T_CONN_RES in chronological order. Leaving 2302 * the older conn indications at front of the queue 2303 * helps reducing search time. 2304 */ 2305 tail = listener->tcp_eager_last_q; 2306 if (tail != NULL) 2307 tail->tcp_eager_next_q = tcp; 2308 else 2309 listener->tcp_eager_next_q = tcp; 2310 listener->tcp_eager_last_q = tcp; 2311 tcp->tcp_eager_next_q = NULL; 2312 mutex_exit(&listener->tcp_eager_lock); 2313 putnext(tcp->tcp_rq, conn_ind); 2314 } else { 2315 mutex_exit(&listener->tcp_eager_lock); 2316 } 2317 2318 /* 2319 * Done with the acceptor - free it 2320 * 2321 * Note: from this point on, no access to listener should be made 2322 * as listener can be equal to acceptor. 2323 */ 2324 finish: 2325 ASSERT(acceptor->tcp_detached); 2326 acceptor->tcp_rq = tcp_g_q; 2327 acceptor->tcp_wq = WR(tcp_g_q); 2328 (void) tcp_clean_death(acceptor, 0, 2); 2329 CONN_DEC_REF(acceptor->tcp_connp); 2330 2331 /* 2332 * In case we already received a FIN we have to make tcp_rput send 2333 * the ordrel_ind. This will also send up a window update if the window 2334 * has opened up. 2335 * 2336 * In the normal case of a successful connection acceptance 2337 * we give the O_T_BIND_REQ to the read side put procedure as an 2338 * indication that this was just accepted. This tells tcp_rput to 2339 * pass up any data queued in tcp_rcv_list. 2340 * 2341 * In the fringe case where options sent with T_CONN_RES failed and 2342 * we required, we would be indicating a T_DISCON_IND to blow 2343 * away this connection. 2344 */ 2345 2346 /* 2347 * XXX: we currently have a problem if XTI application closes the 2348 * acceptor stream in between. This problem exists in on10-gate also 2349 * and is well know but nothing can be done short of major rewrite 2350 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2351 * eager same squeue as listener (we can distinguish non socket 2352 * listeners at the time of handling a SYN in tcp_conn_request) 2353 * and do most of the work that tcp_accept_finish does here itself 2354 * and then get behind the acceptor squeue to access the acceptor 2355 * queue. 2356 */ 2357 /* 2358 * We already have a ref on tcp so no need to do one before squeue_fill 2359 */ 2360 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2361 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2362 } 2363 2364 /* 2365 * Swap information between the eager and acceptor for a TLI/XTI client. 2366 * The sockfs accept is done on the acceptor stream and control goes 2367 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2368 * called. In either case, both the eager and listener are in their own 2369 * perimeter (squeue) and the code has to deal with potential race. 2370 * 2371 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2372 */ 2373 static void 2374 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2375 { 2376 conn_t *econnp, *aconnp; 2377 2378 ASSERT(eager->tcp_rq == listener->tcp_rq); 2379 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2380 ASSERT(!eager->tcp_hard_bound); 2381 ASSERT(!TCP_IS_SOCKET(acceptor)); 2382 ASSERT(!TCP_IS_SOCKET(eager)); 2383 ASSERT(!TCP_IS_SOCKET(listener)); 2384 2385 acceptor->tcp_detached = B_TRUE; 2386 /* 2387 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2388 * the acceptor id. 2389 */ 2390 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2391 2392 /* remove eager from listen list... */ 2393 mutex_enter(&listener->tcp_eager_lock); 2394 tcp_eager_unlink(eager); 2395 ASSERT(eager->tcp_eager_next_q == NULL && 2396 eager->tcp_eager_last_q == NULL); 2397 ASSERT(eager->tcp_eager_next_q0 == NULL && 2398 eager->tcp_eager_prev_q0 == NULL); 2399 mutex_exit(&listener->tcp_eager_lock); 2400 eager->tcp_rq = acceptor->tcp_rq; 2401 eager->tcp_wq = acceptor->tcp_wq; 2402 2403 econnp = eager->tcp_connp; 2404 aconnp = acceptor->tcp_connp; 2405 2406 eager->tcp_rq->q_ptr = econnp; 2407 eager->tcp_wq->q_ptr = econnp; 2408 eager->tcp_detached = B_FALSE; 2409 2410 ASSERT(eager->tcp_ack_tid == 0); 2411 2412 econnp->conn_dev = aconnp->conn_dev; 2413 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2414 econnp->conn_zoneid = aconnp->conn_zoneid; 2415 aconnp->conn_cred = NULL; 2416 2417 /* Do the IPC initialization */ 2418 CONN_INC_REF(econnp); 2419 2420 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2421 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2422 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2423 econnp->conn_ulp = aconnp->conn_ulp; 2424 2425 /* Done with old IPC. Drop its ref on its connp */ 2426 CONN_DEC_REF(aconnp); 2427 } 2428 2429 2430 /* 2431 * Adapt to the information, such as rtt and rtt_sd, provided from the 2432 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2433 * 2434 * Checks for multicast and broadcast destination address. 2435 * Returns zero on failure; non-zero if ok. 2436 * 2437 * Note that the MSS calculation here is based on the info given in 2438 * the IRE. We do not do any calculation based on TCP options. They 2439 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2440 * knows which options to use. 2441 * 2442 * Note on how TCP gets its parameters for a connection. 2443 * 2444 * When a tcp_t structure is allocated, it gets all the default parameters. 2445 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2446 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2447 * default. But if there is an associated tcp_host_param, it will override 2448 * the metrics. 2449 * 2450 * An incoming SYN with a multicast or broadcast destination address, is dropped 2451 * in 1 of 2 places. 2452 * 2453 * 1. If the packet was received over the wire it is dropped in 2454 * ip_rput_process_broadcast() 2455 * 2456 * 2. If the packet was received through internal IP loopback, i.e. the packet 2457 * was generated and received on the same machine, it is dropped in 2458 * ip_wput_local() 2459 * 2460 * An incoming SYN with a multicast or broadcast source address is always 2461 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2462 * reject an attempt to connect to a broadcast or multicast (destination) 2463 * address. 2464 */ 2465 static int 2466 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2467 { 2468 tcp_hsp_t *hsp; 2469 ire_t *ire; 2470 ire_t *sire = NULL; 2471 iulp_t *ire_uinfo = NULL; 2472 uint32_t mss_max; 2473 uint32_t mss; 2474 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2475 conn_t *connp = tcp->tcp_connp; 2476 boolean_t ire_cacheable = B_FALSE; 2477 zoneid_t zoneid = connp->conn_zoneid; 2478 ill_t *ill = NULL; 2479 boolean_t incoming = (ire_mp == NULL); 2480 2481 ASSERT(connp->conn_ire_cache == NULL); 2482 2483 if (tcp->tcp_ipversion == IPV4_VERSION) { 2484 2485 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2486 BUMP_MIB(&ip_mib, ipInDiscards); 2487 return (0); 2488 } 2489 /* 2490 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2491 * for the destination with the nexthop as gateway. 2492 * ire_ctable_lookup() is used because this particular 2493 * ire, if it exists, will be marked private. 2494 * If that is not available, use the interface ire 2495 * for the nexthop. 2496 */ 2497 if (tcp->tcp_connp->conn_nexthop_set) { 2498 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2499 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2500 MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2501 if (ire == NULL) { 2502 ire = ire_ftable_lookup( 2503 tcp->tcp_connp->conn_nexthop_v4, 2504 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2505 MATCH_IRE_TYPE); 2506 if (ire == NULL) 2507 return (0); 2508 } else { 2509 ire_uinfo = &ire->ire_uinfo; 2510 } 2511 } else { 2512 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2513 zoneid); 2514 if (ire != NULL) { 2515 ire_cacheable = B_TRUE; 2516 ire_uinfo = (ire_mp != NULL) ? 2517 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2518 &ire->ire_uinfo; 2519 2520 } else { 2521 if (ire_mp == NULL) { 2522 ire = ire_ftable_lookup( 2523 tcp->tcp_connp->conn_rem, 2524 0, 0, 0, NULL, &sire, zoneid, 0, 2525 (MATCH_IRE_RECURSIVE | 2526 MATCH_IRE_DEFAULT)); 2527 if (ire == NULL) 2528 return (0); 2529 ire_uinfo = (sire != NULL) ? 2530 &sire->ire_uinfo : 2531 &ire->ire_uinfo; 2532 } else { 2533 ire = (ire_t *)ire_mp->b_rptr; 2534 ire_uinfo = 2535 &((ire_t *) 2536 ire_mp->b_rptr)->ire_uinfo; 2537 } 2538 } 2539 } 2540 ASSERT(ire != NULL); 2541 2542 if ((ire->ire_src_addr == INADDR_ANY) || 2543 (ire->ire_type & IRE_BROADCAST)) { 2544 /* 2545 * ire->ire_mp is non null when ire_mp passed in is used 2546 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2547 */ 2548 if (ire->ire_mp == NULL) 2549 ire_refrele(ire); 2550 if (sire != NULL) 2551 ire_refrele(sire); 2552 return (0); 2553 } 2554 2555 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2556 ipaddr_t src_addr; 2557 2558 /* 2559 * ip_bind_connected() has stored the correct source 2560 * address in conn_src. 2561 */ 2562 src_addr = tcp->tcp_connp->conn_src; 2563 tcp->tcp_ipha->ipha_src = src_addr; 2564 /* 2565 * Copy of the src addr. in tcp_t is needed 2566 * for the lookup funcs. 2567 */ 2568 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2569 } 2570 /* 2571 * Set the fragment bit so that IP will tell us if the MTU 2572 * should change. IP tells us the latest setting of 2573 * ip_path_mtu_discovery through ire_frag_flag. 2574 */ 2575 if (ip_path_mtu_discovery) { 2576 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2577 htons(IPH_DF); 2578 } 2579 /* 2580 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2581 * for IP_NEXTHOP. No cache ire has been found for the 2582 * destination and we are working with the nexthop's 2583 * interface ire. Since we need to forward all packets 2584 * to the nexthop first, we "blindly" set tcp_localnet 2585 * to false, eventhough the destination may also be 2586 * onlink. 2587 */ 2588 if (ire_uinfo == NULL) 2589 tcp->tcp_localnet = 0; 2590 else 2591 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2592 } else { 2593 /* 2594 * For incoming connection ire_mp = NULL 2595 * For outgoing connection ire_mp != NULL 2596 * Technically we should check conn_incoming_ill 2597 * when ire_mp is NULL and conn_outgoing_ill when 2598 * ire_mp is non-NULL. But this is performance 2599 * critical path and for IPV*_BOUND_IF, outgoing 2600 * and incoming ill are always set to the same value. 2601 */ 2602 ill_t *dst_ill = NULL; 2603 ipif_t *dst_ipif = NULL; 2604 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT; 2605 2606 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2607 2608 if (connp->conn_outgoing_ill != NULL) { 2609 /* Outgoing or incoming path */ 2610 int err; 2611 2612 dst_ill = conn_get_held_ill(connp, 2613 &connp->conn_outgoing_ill, &err); 2614 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2615 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2616 return (0); 2617 } 2618 match_flags |= MATCH_IRE_ILL; 2619 dst_ipif = dst_ill->ill_ipif; 2620 } 2621 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2622 0, 0, dst_ipif, zoneid, match_flags); 2623 2624 if (ire != NULL) { 2625 ire_cacheable = B_TRUE; 2626 ire_uinfo = (ire_mp != NULL) ? 2627 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2628 &ire->ire_uinfo; 2629 } else { 2630 if (ire_mp == NULL) { 2631 ire = ire_ftable_lookup_v6( 2632 &tcp->tcp_connp->conn_remv6, 2633 0, 0, 0, dst_ipif, &sire, zoneid, 2634 0, match_flags); 2635 if (ire == NULL) { 2636 if (dst_ill != NULL) 2637 ill_refrele(dst_ill); 2638 return (0); 2639 } 2640 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2641 &ire->ire_uinfo; 2642 } else { 2643 ire = (ire_t *)ire_mp->b_rptr; 2644 ire_uinfo = 2645 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2646 } 2647 } 2648 if (dst_ill != NULL) 2649 ill_refrele(dst_ill); 2650 2651 ASSERT(ire != NULL); 2652 ASSERT(ire_uinfo != NULL); 2653 2654 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2655 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2656 /* 2657 * ire->ire_mp is non null when ire_mp passed in is used 2658 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2659 */ 2660 if (ire->ire_mp == NULL) 2661 ire_refrele(ire); 2662 if (sire != NULL) 2663 ire_refrele(sire); 2664 return (0); 2665 } 2666 2667 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2668 in6_addr_t src_addr; 2669 2670 /* 2671 * ip_bind_connected_v6() has stored the correct source 2672 * address per IPv6 addr. selection policy in 2673 * conn_src_v6. 2674 */ 2675 src_addr = tcp->tcp_connp->conn_srcv6; 2676 2677 tcp->tcp_ip6h->ip6_src = src_addr; 2678 /* 2679 * Copy of the src addr. in tcp_t is needed 2680 * for the lookup funcs. 2681 */ 2682 tcp->tcp_ip_src_v6 = src_addr; 2683 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2684 &connp->conn_srcv6)); 2685 } 2686 tcp->tcp_localnet = 2687 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2688 } 2689 2690 /* 2691 * This allows applications to fail quickly when connections are made 2692 * to dead hosts. Hosts can be labeled dead by adding a reject route 2693 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2694 */ 2695 if ((ire->ire_flags & RTF_REJECT) && 2696 (ire->ire_flags & RTF_PRIVATE)) 2697 goto error; 2698 2699 /* 2700 * Make use of the cached rtt and rtt_sd values to calculate the 2701 * initial RTO. Note that they are already initialized in 2702 * tcp_init_values(). 2703 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2704 * IP_NEXTHOP, but instead are using the interface ire for the 2705 * nexthop, then we do not use the ire_uinfo from that ire to 2706 * do any initializations. 2707 */ 2708 if (ire_uinfo != NULL) { 2709 if (ire_uinfo->iulp_rtt != 0) { 2710 clock_t rto; 2711 2712 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2713 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2714 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2715 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2716 2717 if (rto > tcp_rexmit_interval_max) { 2718 tcp->tcp_rto = tcp_rexmit_interval_max; 2719 } else if (rto < tcp_rexmit_interval_min) { 2720 tcp->tcp_rto = tcp_rexmit_interval_min; 2721 } else { 2722 tcp->tcp_rto = rto; 2723 } 2724 } 2725 if (ire_uinfo->iulp_ssthresh != 0) 2726 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2727 else 2728 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2729 if (ire_uinfo->iulp_spipe > 0) { 2730 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2731 tcp_max_buf); 2732 if (tcp_snd_lowat_fraction != 0) 2733 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2734 tcp_snd_lowat_fraction; 2735 (void) tcp_maxpsz_set(tcp, B_TRUE); 2736 } 2737 /* 2738 * Note that up till now, acceptor always inherits receive 2739 * window from the listener. But if there is a metrics 2740 * associated with a host, we should use that instead of 2741 * inheriting it from listener. Thus we need to pass this 2742 * info back to the caller. 2743 */ 2744 if (ire_uinfo->iulp_rpipe > 0) { 2745 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2746 } 2747 2748 if (ire_uinfo->iulp_rtomax > 0) { 2749 tcp->tcp_second_timer_threshold = 2750 ire_uinfo->iulp_rtomax; 2751 } 2752 2753 /* 2754 * Use the metric option settings, iulp_tstamp_ok and 2755 * iulp_wscale_ok, only for active open. What this means 2756 * is that if the other side uses timestamp or window 2757 * scale option, TCP will also use those options. That 2758 * is for passive open. If the application sets a 2759 * large window, window scale is enabled regardless of 2760 * the value in iulp_wscale_ok. This is the behavior 2761 * since 2.6. So we keep it. 2762 * The only case left in passive open processing is the 2763 * check for SACK. 2764 * For ECN, it should probably be like SACK. But the 2765 * current value is binary, so we treat it like the other 2766 * cases. The metric only controls active open.For passive 2767 * open, the ndd param, tcp_ecn_permitted, controls the 2768 * behavior. 2769 */ 2770 if (!tcp_detached) { 2771 /* 2772 * The if check means that the following can only 2773 * be turned on by the metrics only IRE, but not off. 2774 */ 2775 if (ire_uinfo->iulp_tstamp_ok) 2776 tcp->tcp_snd_ts_ok = B_TRUE; 2777 if (ire_uinfo->iulp_wscale_ok) 2778 tcp->tcp_snd_ws_ok = B_TRUE; 2779 if (ire_uinfo->iulp_sack == 2) 2780 tcp->tcp_snd_sack_ok = B_TRUE; 2781 if (ire_uinfo->iulp_ecn_ok) 2782 tcp->tcp_ecn_ok = B_TRUE; 2783 } else { 2784 /* 2785 * Passive open. 2786 * 2787 * As above, the if check means that SACK can only be 2788 * turned on by the metric only IRE. 2789 */ 2790 if (ire_uinfo->iulp_sack > 0) { 2791 tcp->tcp_snd_sack_ok = B_TRUE; 2792 } 2793 } 2794 } 2795 2796 2797 /* 2798 * XXX: Note that currently, ire_max_frag can be as small as 68 2799 * because of PMTUd. So tcp_mss may go to negative if combined 2800 * length of all those options exceeds 28 bytes. But because 2801 * of the tcp_mss_min check below, we may not have a problem if 2802 * tcp_mss_min is of a reasonable value. The default is 1 so 2803 * the negative problem still exists. And the check defeats PMTUd. 2804 * In fact, if PMTUd finds that the MSS should be smaller than 2805 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2806 * value. 2807 * 2808 * We do not deal with that now. All those problems related to 2809 * PMTUd will be fixed later. 2810 */ 2811 ASSERT(ire->ire_max_frag != 0); 2812 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2813 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2814 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2815 mss = MIN(mss, IPV6_MIN_MTU); 2816 } 2817 } 2818 2819 /* Sanity check for MSS value. */ 2820 if (tcp->tcp_ipversion == IPV4_VERSION) 2821 mss_max = tcp_mss_max_ipv4; 2822 else 2823 mss_max = tcp_mss_max_ipv6; 2824 2825 if (tcp->tcp_ipversion == IPV6_VERSION && 2826 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2827 /* 2828 * After receiving an ICMPv6 "packet too big" message with a 2829 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2830 * will insert a 8-byte fragment header in every packet; we 2831 * reduce the MSS by that amount here. 2832 */ 2833 mss -= sizeof (ip6_frag_t); 2834 } 2835 2836 if (tcp->tcp_ipsec_overhead == 0) 2837 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2838 2839 mss -= tcp->tcp_ipsec_overhead; 2840 2841 if (mss < tcp_mss_min) 2842 mss = tcp_mss_min; 2843 if (mss > mss_max) 2844 mss = mss_max; 2845 2846 /* Note that this is the maximum MSS, excluding all options. */ 2847 tcp->tcp_mss = mss; 2848 2849 /* 2850 * Initialize the ISS here now that we have the full connection ID. 2851 * The RFC 1948 method of initial sequence number generation requires 2852 * knowledge of the full connection ID before setting the ISS. 2853 */ 2854 2855 tcp_iss_init(tcp); 2856 2857 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2858 tcp->tcp_loopback = B_TRUE; 2859 2860 if (tcp->tcp_ipversion == IPV4_VERSION) { 2861 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2862 } else { 2863 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2864 } 2865 2866 if (hsp != NULL) { 2867 /* Only modify if we're going to make them bigger */ 2868 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2869 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2870 if (tcp_snd_lowat_fraction != 0) 2871 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2872 tcp_snd_lowat_fraction; 2873 } 2874 2875 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2876 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2877 } 2878 2879 /* Copy timestamp flag only for active open */ 2880 if (!tcp_detached) 2881 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2882 } 2883 2884 if (sire != NULL) 2885 IRE_REFRELE(sire); 2886 2887 /* 2888 * If we got an IRE_CACHE and an ILL, go through their properties; 2889 * otherwise, this is deferred until later when we have an IRE_CACHE. 2890 */ 2891 if (tcp->tcp_loopback || 2892 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2893 /* 2894 * For incoming, see if this tcp may be MDT-capable. For 2895 * outgoing, this process has been taken care of through 2896 * tcp_rput_other. 2897 */ 2898 tcp_ire_ill_check(tcp, ire, ill, incoming); 2899 tcp->tcp_ire_ill_check_done = B_TRUE; 2900 } 2901 2902 mutex_enter(&connp->conn_lock); 2903 /* 2904 * Make sure that conn is not marked incipient 2905 * for incoming connections. A blind 2906 * removal of incipient flag is cheaper than 2907 * check and removal. 2908 */ 2909 connp->conn_state_flags &= ~CONN_INCIPIENT; 2910 2911 /* Must not cache forwarding table routes. */ 2912 if (ire_cacheable) { 2913 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2914 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2915 connp->conn_ire_cache = ire; 2916 IRE_UNTRACE_REF(ire); 2917 rw_exit(&ire->ire_bucket->irb_lock); 2918 mutex_exit(&connp->conn_lock); 2919 return (1); 2920 } 2921 rw_exit(&ire->ire_bucket->irb_lock); 2922 } 2923 mutex_exit(&connp->conn_lock); 2924 2925 if (ire->ire_mp == NULL) 2926 ire_refrele(ire); 2927 return (1); 2928 2929 error: 2930 if (ire->ire_mp == NULL) 2931 ire_refrele(ire); 2932 if (sire != NULL) 2933 ire_refrele(sire); 2934 return (0); 2935 } 2936 2937 /* 2938 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2939 * O_T_BIND_REQ/T_BIND_REQ message. 2940 */ 2941 static void 2942 tcp_bind(tcp_t *tcp, mblk_t *mp) 2943 { 2944 sin_t *sin; 2945 sin6_t *sin6; 2946 mblk_t *mp1; 2947 in_port_t requested_port; 2948 in_port_t allocated_port; 2949 struct T_bind_req *tbr; 2950 boolean_t bind_to_req_port_only; 2951 boolean_t backlog_update = B_FALSE; 2952 boolean_t user_specified; 2953 in6_addr_t v6addr; 2954 ipaddr_t v4addr; 2955 uint_t origipversion; 2956 int err; 2957 queue_t *q = tcp->tcp_wq; 2958 2959 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2960 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2961 if (tcp->tcp_debug) { 2962 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2963 "tcp_bind: bad req, len %u", 2964 (uint_t)(mp->b_wptr - mp->b_rptr)); 2965 } 2966 tcp_err_ack(tcp, mp, TPROTO, 0); 2967 return; 2968 } 2969 /* Make sure the largest address fits */ 2970 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 2971 if (mp1 == NULL) { 2972 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 2973 return; 2974 } 2975 mp = mp1; 2976 tbr = (struct T_bind_req *)mp->b_rptr; 2977 if (tcp->tcp_state >= TCPS_BOUND) { 2978 if ((tcp->tcp_state == TCPS_BOUND || 2979 tcp->tcp_state == TCPS_LISTEN) && 2980 tcp->tcp_conn_req_max != tbr->CONIND_number && 2981 tbr->CONIND_number > 0) { 2982 /* 2983 * Handle listen() increasing CONIND_number. 2984 * This is more "liberal" then what the TPI spec 2985 * requires but is needed to avoid a t_unbind 2986 * when handling listen() since the port number 2987 * might be "stolen" between the unbind and bind. 2988 */ 2989 backlog_update = B_TRUE; 2990 goto do_bind; 2991 } 2992 if (tcp->tcp_debug) { 2993 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2994 "tcp_bind: bad state, %d", tcp->tcp_state); 2995 } 2996 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 2997 return; 2998 } 2999 origipversion = tcp->tcp_ipversion; 3000 3001 switch (tbr->ADDR_length) { 3002 case 0: /* request for a generic port */ 3003 tbr->ADDR_offset = sizeof (struct T_bind_req); 3004 if (tcp->tcp_family == AF_INET) { 3005 tbr->ADDR_length = sizeof (sin_t); 3006 sin = (sin_t *)&tbr[1]; 3007 *sin = sin_null; 3008 sin->sin_family = AF_INET; 3009 mp->b_wptr = (uchar_t *)&sin[1]; 3010 tcp->tcp_ipversion = IPV4_VERSION; 3011 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3012 } else { 3013 ASSERT(tcp->tcp_family == AF_INET6); 3014 tbr->ADDR_length = sizeof (sin6_t); 3015 sin6 = (sin6_t *)&tbr[1]; 3016 *sin6 = sin6_null; 3017 sin6->sin6_family = AF_INET6; 3018 mp->b_wptr = (uchar_t *)&sin6[1]; 3019 tcp->tcp_ipversion = IPV6_VERSION; 3020 V6_SET_ZERO(v6addr); 3021 } 3022 requested_port = 0; 3023 break; 3024 3025 case sizeof (sin_t): /* Complete IPv4 address */ 3026 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3027 sizeof (sin_t)); 3028 if (sin == NULL || !OK_32PTR((char *)sin)) { 3029 if (tcp->tcp_debug) { 3030 (void) strlog(TCP_MOD_ID, 0, 1, 3031 SL_ERROR|SL_TRACE, 3032 "tcp_bind: bad address parameter, " 3033 "offset %d, len %d", 3034 tbr->ADDR_offset, tbr->ADDR_length); 3035 } 3036 tcp_err_ack(tcp, mp, TPROTO, 0); 3037 return; 3038 } 3039 /* 3040 * With sockets sockfs will accept bogus sin_family in 3041 * bind() and replace it with the family used in the socket 3042 * call. 3043 */ 3044 if (sin->sin_family != AF_INET || 3045 tcp->tcp_family != AF_INET) { 3046 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3047 return; 3048 } 3049 requested_port = ntohs(sin->sin_port); 3050 tcp->tcp_ipversion = IPV4_VERSION; 3051 v4addr = sin->sin_addr.s_addr; 3052 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3053 break; 3054 3055 case sizeof (sin6_t): /* Complete IPv6 address */ 3056 sin6 = (sin6_t *)mi_offset_param(mp, 3057 tbr->ADDR_offset, sizeof (sin6_t)); 3058 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3059 if (tcp->tcp_debug) { 3060 (void) strlog(TCP_MOD_ID, 0, 1, 3061 SL_ERROR|SL_TRACE, 3062 "tcp_bind: bad IPv6 address parameter, " 3063 "offset %d, len %d", tbr->ADDR_offset, 3064 tbr->ADDR_length); 3065 } 3066 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3067 return; 3068 } 3069 if (sin6->sin6_family != AF_INET6 || 3070 tcp->tcp_family != AF_INET6) { 3071 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3072 return; 3073 } 3074 requested_port = ntohs(sin6->sin6_port); 3075 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3076 IPV4_VERSION : IPV6_VERSION; 3077 v6addr = sin6->sin6_addr; 3078 break; 3079 3080 default: 3081 if (tcp->tcp_debug) { 3082 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3083 "tcp_bind: bad address length, %d", 3084 tbr->ADDR_length); 3085 } 3086 tcp_err_ack(tcp, mp, TBADADDR, 0); 3087 return; 3088 } 3089 tcp->tcp_bound_source_v6 = v6addr; 3090 3091 /* Check for change in ipversion */ 3092 if (origipversion != tcp->tcp_ipversion) { 3093 ASSERT(tcp->tcp_family == AF_INET6); 3094 err = tcp->tcp_ipversion == IPV6_VERSION ? 3095 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3096 if (err) { 3097 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3098 return; 3099 } 3100 } 3101 3102 /* 3103 * Initialize family specific fields. Copy of the src addr. 3104 * in tcp_t is needed for the lookup funcs. 3105 */ 3106 if (tcp->tcp_ipversion == IPV6_VERSION) { 3107 tcp->tcp_ip6h->ip6_src = v6addr; 3108 } else { 3109 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3110 } 3111 tcp->tcp_ip_src_v6 = v6addr; 3112 3113 /* 3114 * For O_T_BIND_REQ: 3115 * Verify that the target port/addr is available, or choose 3116 * another. 3117 * For T_BIND_REQ: 3118 * Verify that the target port/addr is available or fail. 3119 * In both cases when it succeeds the tcp is inserted in the 3120 * bind hash table. This ensures that the operation is atomic 3121 * under the lock on the hash bucket. 3122 */ 3123 bind_to_req_port_only = requested_port != 0 && 3124 tbr->PRIM_type != O_T_BIND_REQ; 3125 /* 3126 * Get a valid port (within the anonymous range and should not 3127 * be a privileged one) to use if the user has not given a port. 3128 * If multiple threads are here, they may all start with 3129 * with the same initial port. But, it should be fine as long as 3130 * tcp_bindi will ensure that no two threads will be assigned 3131 * the same port. 3132 * 3133 * NOTE: XXX If a privileged process asks for an anonymous port, we 3134 * still check for ports only in the range > tcp_smallest_non_priv_port, 3135 * unless TCP_ANONPRIVBIND option is set. 3136 */ 3137 if (requested_port == 0) { 3138 requested_port = tcp->tcp_anon_priv_bind ? 3139 tcp_get_next_priv_port() : 3140 tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 3141 user_specified = B_FALSE; 3142 } else { 3143 int i; 3144 boolean_t priv = B_FALSE; 3145 /* 3146 * If the requested_port is in the well-known privileged range, 3147 * verify that the stream was opened by a privileged user. 3148 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3149 * but instead the code relies on: 3150 * - the fact that the address of the array and its size never 3151 * changes 3152 * - the atomic assignment of the elements of the array 3153 */ 3154 if (requested_port < tcp_smallest_nonpriv_port) { 3155 priv = B_TRUE; 3156 } else { 3157 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3158 if (requested_port == 3159 tcp_g_epriv_ports[i]) { 3160 priv = B_TRUE; 3161 break; 3162 } 3163 } 3164 } 3165 if (priv) { 3166 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 3167 3168 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3169 if (tcp->tcp_debug) { 3170 (void) strlog(TCP_MOD_ID, 0, 1, 3171 SL_ERROR|SL_TRACE, 3172 "tcp_bind: no priv for port %d", 3173 requested_port); 3174 } 3175 tcp_err_ack(tcp, mp, TACCES, 0); 3176 return; 3177 } 3178 } 3179 user_specified = B_TRUE; 3180 } 3181 3182 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3183 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3184 3185 if (allocated_port == 0) { 3186 if (bind_to_req_port_only) { 3187 if (tcp->tcp_debug) { 3188 (void) strlog(TCP_MOD_ID, 0, 1, 3189 SL_ERROR|SL_TRACE, 3190 "tcp_bind: requested addr busy"); 3191 } 3192 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3193 } else { 3194 /* If we are out of ports, fail the bind. */ 3195 if (tcp->tcp_debug) { 3196 (void) strlog(TCP_MOD_ID, 0, 1, 3197 SL_ERROR|SL_TRACE, 3198 "tcp_bind: out of ports?"); 3199 } 3200 tcp_err_ack(tcp, mp, TNOADDR, 0); 3201 } 3202 return; 3203 } 3204 ASSERT(tcp->tcp_state == TCPS_BOUND); 3205 do_bind: 3206 if (!backlog_update) { 3207 if (tcp->tcp_family == AF_INET) 3208 sin->sin_port = htons(allocated_port); 3209 else 3210 sin6->sin6_port = htons(allocated_port); 3211 } 3212 if (tcp->tcp_family == AF_INET) { 3213 if (tbr->CONIND_number != 0) { 3214 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3215 sizeof (sin_t)); 3216 } else { 3217 /* Just verify the local IP address */ 3218 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3219 } 3220 } else { 3221 if (tbr->CONIND_number != 0) { 3222 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3223 sizeof (sin6_t)); 3224 } else { 3225 /* Just verify the local IP address */ 3226 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3227 IPV6_ADDR_LEN); 3228 } 3229 } 3230 if (!mp1) { 3231 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3232 return; 3233 } 3234 3235 tbr->PRIM_type = T_BIND_ACK; 3236 mp->b_datap->db_type = M_PCPROTO; 3237 3238 /* Chain in the reply mp for tcp_rput() */ 3239 mp1->b_cont = mp; 3240 mp = mp1; 3241 3242 tcp->tcp_conn_req_max = tbr->CONIND_number; 3243 if (tcp->tcp_conn_req_max) { 3244 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3245 tcp->tcp_conn_req_max = tcp_conn_req_min; 3246 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3247 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3248 /* 3249 * If this is a listener, do not reset the eager list 3250 * and other stuffs. Note that we don't check if the 3251 * existing eager list meets the new tcp_conn_req_max 3252 * requirement. 3253 */ 3254 if (tcp->tcp_state != TCPS_LISTEN) { 3255 tcp->tcp_state = TCPS_LISTEN; 3256 /* Initialize the chain. Don't need the eager_lock */ 3257 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3258 tcp->tcp_second_ctimer_threshold = 3259 tcp_ip_abort_linterval; 3260 } 3261 } 3262 3263 /* 3264 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3265 * processing continues in tcp_rput_other(). 3266 */ 3267 if (tcp->tcp_family == AF_INET6) { 3268 ASSERT(tcp->tcp_connp->conn_af_isv6); 3269 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3270 } else { 3271 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3272 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3273 } 3274 /* 3275 * If the bind cannot complete immediately 3276 * IP will arrange to call tcp_rput_other 3277 * when the bind completes. 3278 */ 3279 if (mp != NULL) { 3280 tcp_rput_other(tcp, mp); 3281 } else { 3282 /* 3283 * Bind will be resumed later. Need to ensure 3284 * that conn doesn't disappear when that happens. 3285 * This will be decremented in ip_resume_tcp_bind(). 3286 */ 3287 CONN_INC_REF(tcp->tcp_connp); 3288 } 3289 } 3290 3291 3292 /* 3293 * If the "bind_to_req_port_only" parameter is set, if the requested port 3294 * number is available, return it, If not return 0 3295 * 3296 * If "bind_to_req_port_only" parameter is not set and 3297 * If the requested port number is available, return it. If not, return 3298 * the first anonymous port we happen across. If no anonymous ports are 3299 * available, return 0. addr is the requested local address, if any. 3300 * 3301 * In either case, when succeeding update the tcp_t to record the port number 3302 * and insert it in the bind hash table. 3303 * 3304 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3305 * without setting SO_REUSEADDR. This is needed so that they 3306 * can be viewed as two independent transport protocols. 3307 */ 3308 static in_port_t 3309 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3310 int reuseaddr, boolean_t quick_connect, 3311 boolean_t bind_to_req_port_only, boolean_t user_specified) 3312 { 3313 /* number of times we have run around the loop */ 3314 int count = 0; 3315 /* maximum number of times to run around the loop */ 3316 int loopmax; 3317 zoneid_t zoneid = tcp->tcp_connp->conn_zoneid; 3318 3319 /* 3320 * Lookup for free addresses is done in a loop and "loopmax" 3321 * influences how long we spin in the loop 3322 */ 3323 if (bind_to_req_port_only) { 3324 /* 3325 * If the requested port is busy, don't bother to look 3326 * for a new one. Setting loop maximum count to 1 has 3327 * that effect. 3328 */ 3329 loopmax = 1; 3330 } else { 3331 /* 3332 * If the requested port is busy, look for a free one 3333 * in the anonymous port range. 3334 * Set loopmax appropriately so that one does not look 3335 * forever in the case all of the anonymous ports are in use. 3336 */ 3337 if (tcp->tcp_anon_priv_bind) { 3338 /* 3339 * loopmax = 3340 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3341 */ 3342 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3343 } else { 3344 loopmax = (tcp_largest_anon_port - 3345 tcp_smallest_anon_port + 1); 3346 } 3347 } 3348 do { 3349 uint16_t lport; 3350 tf_t *tbf; 3351 tcp_t *ltcp; 3352 3353 lport = htons(port); 3354 3355 /* 3356 * Ensure that the tcp_t is not currently in the bind hash. 3357 * Hold the lock on the hash bucket to ensure that 3358 * the duplicate check plus the insertion is an atomic 3359 * operation. 3360 * 3361 * This function does an inline lookup on the bind hash list 3362 * Make sure that we access only members of tcp_t 3363 * and that we don't look at tcp_tcp, since we are not 3364 * doing a CONN_INC_REF. 3365 */ 3366 tcp_bind_hash_remove(tcp); 3367 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3368 mutex_enter(&tbf->tf_lock); 3369 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3370 ltcp = ltcp->tcp_bind_hash) { 3371 if (lport != ltcp->tcp_lport || 3372 ltcp->tcp_connp->conn_zoneid != zoneid) { 3373 continue; 3374 } 3375 3376 /* 3377 * If TCP_EXCLBIND is set for either the bound or 3378 * binding endpoint, the semantics of bind 3379 * is changed according to the following. 3380 * 3381 * spec = specified address (v4 or v6) 3382 * unspec = unspecified address (v4 or v6) 3383 * A = specified addresses are different for endpoints 3384 * 3385 * bound bind to allowed 3386 * ------------------------------------- 3387 * unspec unspec no 3388 * unspec spec no 3389 * spec unspec no 3390 * spec spec yes if A 3391 * 3392 * Note: 3393 * 3394 * 1. Because of TLI semantics, an endpoint can go 3395 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3396 * TCPS_BOUND, depending on whether it is originally 3397 * a listener or not. That is why we need to check 3398 * for states greater than or equal to TCPS_BOUND 3399 * here. 3400 * 3401 * 2. Ideally, we should only check for state equals 3402 * to TCPS_LISTEN. And the following check should be 3403 * added. 3404 * 3405 * if (ltcp->tcp_state == TCPS_LISTEN || 3406 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3407 * ... 3408 * } 3409 * 3410 * The semantics will be changed to this. If the 3411 * endpoint on the list is in state not equal to 3412 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3413 * set, let the bind succeed. 3414 * 3415 * But because of (1), we cannot do that now. If 3416 * in future, we can change this going back semantics, 3417 * we can add the above check. 3418 */ 3419 if (ltcp->tcp_exclbind || tcp->tcp_exclbind) { 3420 if (V6_OR_V4_INADDR_ANY( 3421 ltcp->tcp_bound_source_v6) || 3422 V6_OR_V4_INADDR_ANY(*laddr) || 3423 IN6_ARE_ADDR_EQUAL(laddr, 3424 <cp->tcp_bound_source_v6)) { 3425 break; 3426 } 3427 continue; 3428 } 3429 3430 /* 3431 * Check ipversion to allow IPv4 and IPv6 sockets to 3432 * have disjoint port number spaces, if *_EXCLBIND 3433 * is not set and only if the application binds to a 3434 * specific port. We use the same autoassigned port 3435 * number space for IPv4 and IPv6 sockets. 3436 */ 3437 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3438 bind_to_req_port_only) 3439 continue; 3440 3441 /* 3442 * Ideally, we should make sure that the source 3443 * address, remote address, and remote port in the 3444 * four tuple for this tcp-connection is unique. 3445 * However, trying to find out the local source 3446 * address would require too much code duplication 3447 * with IP, since IP needs needs to have that code 3448 * to support userland TCP implementations. 3449 */ 3450 if (quick_connect && 3451 (ltcp->tcp_state > TCPS_LISTEN) && 3452 ((tcp->tcp_fport != ltcp->tcp_fport) || 3453 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3454 <cp->tcp_remote_v6))) 3455 continue; 3456 3457 if (!reuseaddr) { 3458 /* 3459 * No socket option SO_REUSEADDR. 3460 * If existing port is bound to 3461 * a non-wildcard IP address 3462 * and the requesting stream is 3463 * bound to a distinct 3464 * different IP addresses 3465 * (non-wildcard, also), keep 3466 * going. 3467 */ 3468 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3469 !V6_OR_V4_INADDR_ANY( 3470 ltcp->tcp_bound_source_v6) && 3471 !IN6_ARE_ADDR_EQUAL(laddr, 3472 <cp->tcp_bound_source_v6)) 3473 continue; 3474 if (ltcp->tcp_state >= TCPS_BOUND) { 3475 /* 3476 * This port is being used and 3477 * its state is >= TCPS_BOUND, 3478 * so we can't bind to it. 3479 */ 3480 break; 3481 } 3482 } else { 3483 /* 3484 * socket option SO_REUSEADDR is set on the 3485 * binding tcp_t. 3486 * 3487 * If two streams are bound to 3488 * same IP address or both addr 3489 * and bound source are wildcards 3490 * (INADDR_ANY), we want to stop 3491 * searching. 3492 * We have found a match of IP source 3493 * address and source port, which is 3494 * refused regardless of the 3495 * SO_REUSEADDR setting, so we break. 3496 */ 3497 if (IN6_ARE_ADDR_EQUAL(laddr, 3498 <cp->tcp_bound_source_v6) && 3499 (ltcp->tcp_state == TCPS_LISTEN || 3500 ltcp->tcp_state == TCPS_BOUND)) 3501 break; 3502 } 3503 } 3504 if (ltcp != NULL) { 3505 /* The port number is busy */ 3506 mutex_exit(&tbf->tf_lock); 3507 } else { 3508 /* 3509 * This port is ours. Insert in fanout and mark as 3510 * bound to prevent others from getting the port 3511 * number. 3512 */ 3513 tcp->tcp_state = TCPS_BOUND; 3514 tcp->tcp_lport = htons(port); 3515 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3516 3517 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3518 tcp->tcp_lport)] == tbf); 3519 tcp_bind_hash_insert(tbf, tcp, 1); 3520 3521 mutex_exit(&tbf->tf_lock); 3522 3523 /* 3524 * We don't want tcp_next_port_to_try to "inherit" 3525 * a port number supplied by the user in a bind. 3526 */ 3527 if (user_specified) 3528 return (port); 3529 3530 /* 3531 * This is the only place where tcp_next_port_to_try 3532 * is updated. After the update, it may or may not 3533 * be in the valid range. 3534 */ 3535 if (!tcp->tcp_anon_priv_bind) 3536 tcp_next_port_to_try = port + 1; 3537 return (port); 3538 } 3539 3540 if (tcp->tcp_anon_priv_bind) { 3541 port = tcp_get_next_priv_port(); 3542 } else { 3543 if (count == 0 && user_specified) { 3544 /* 3545 * We may have to return an anonymous port. So 3546 * get one to start with. 3547 */ 3548 port = 3549 tcp_update_next_port(tcp_next_port_to_try, 3550 B_TRUE); 3551 user_specified = B_FALSE; 3552 } else { 3553 port = tcp_update_next_port(port + 1, B_FALSE); 3554 } 3555 } 3556 3557 /* 3558 * Don't let this loop run forever in the case where 3559 * all of the anonymous ports are in use. 3560 */ 3561 } while (++count < loopmax); 3562 return (0); 3563 } 3564 3565 /* 3566 * We are dying for some reason. Try to do it gracefully. (May be called 3567 * as writer.) 3568 * 3569 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3570 * done by a service procedure). 3571 * TBD - Should the return value distinguish between the tcp_t being 3572 * freed and it being reinitialized? 3573 */ 3574 static int 3575 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3576 { 3577 mblk_t *mp; 3578 queue_t *q; 3579 3580 TCP_CLD_STAT(tag); 3581 3582 #if TCP_TAG_CLEAN_DEATH 3583 tcp->tcp_cleandeathtag = tag; 3584 #endif 3585 3586 if (tcp->tcp_linger_tid != 0 && 3587 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3588 tcp_stop_lingering(tcp); 3589 } 3590 3591 ASSERT(tcp != NULL); 3592 ASSERT((tcp->tcp_family == AF_INET && 3593 tcp->tcp_ipversion == IPV4_VERSION) || 3594 (tcp->tcp_family == AF_INET6 && 3595 (tcp->tcp_ipversion == IPV4_VERSION || 3596 tcp->tcp_ipversion == IPV6_VERSION))); 3597 3598 if (TCP_IS_DETACHED(tcp)) { 3599 if (tcp->tcp_hard_binding) { 3600 /* 3601 * Its an eager that we are dealing with. We close the 3602 * eager but in case a conn_ind has already gone to the 3603 * listener, let tcp_accept_finish() send a discon_ind 3604 * to the listener and drop the last reference. If the 3605 * listener doesn't even know about the eager i.e. the 3606 * conn_ind hasn't gone up, blow away the eager and drop 3607 * the last reference as well. If the conn_ind has gone 3608 * up, state should be BOUND. tcp_accept_finish 3609 * will figure out that the connection has received a 3610 * RST and will send a DISCON_IND to the application. 3611 */ 3612 tcp_closei_local(tcp); 3613 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 3614 CONN_DEC_REF(tcp->tcp_connp); 3615 } else { 3616 tcp->tcp_state = TCPS_BOUND; 3617 } 3618 } else { 3619 tcp_close_detached(tcp); 3620 } 3621 return (0); 3622 } 3623 3624 TCP_STAT(tcp_clean_death_nondetached); 3625 3626 /* 3627 * If T_ORDREL_IND has not been sent yet (done when service routine 3628 * is run) postpone cleaning up the endpoint until service routine 3629 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3630 * client_errno since tcp_close uses the client_errno field. 3631 */ 3632 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3633 if (err != 0) 3634 tcp->tcp_client_errno = err; 3635 3636 tcp->tcp_deferred_clean_death = B_TRUE; 3637 return (-1); 3638 } 3639 3640 q = tcp->tcp_rq; 3641 3642 /* Trash all inbound data */ 3643 flushq(q, FLUSHALL); 3644 3645 /* 3646 * If we are at least part way open and there is error 3647 * (err==0 implies no error) 3648 * notify our client by a T_DISCON_IND. 3649 */ 3650 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3651 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3652 !TCP_IS_SOCKET(tcp)) { 3653 /* 3654 * Send M_FLUSH according to TPI. Because sockets will 3655 * (and must) ignore FLUSHR we do that only for TPI 3656 * endpoints and sockets in STREAMS mode. 3657 */ 3658 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3659 } 3660 if (tcp->tcp_debug) { 3661 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3662 "tcp_clean_death: discon err %d", err); 3663 } 3664 mp = mi_tpi_discon_ind(NULL, err, 0); 3665 if (mp != NULL) { 3666 putnext(q, mp); 3667 } else { 3668 if (tcp->tcp_debug) { 3669 (void) strlog(TCP_MOD_ID, 0, 1, 3670 SL_ERROR|SL_TRACE, 3671 "tcp_clean_death, sending M_ERROR"); 3672 } 3673 (void) putnextctl1(q, M_ERROR, EPROTO); 3674 } 3675 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3676 /* SYN_SENT or SYN_RCVD */ 3677 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3678 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3679 /* ESTABLISHED or CLOSE_WAIT */ 3680 BUMP_MIB(&tcp_mib, tcpEstabResets); 3681 } 3682 } 3683 3684 tcp_reinit(tcp); 3685 return (-1); 3686 } 3687 3688 /* 3689 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3690 * to expire, stop the wait and finish the close. 3691 */ 3692 static void 3693 tcp_stop_lingering(tcp_t *tcp) 3694 { 3695 clock_t delta = 0; 3696 3697 tcp->tcp_linger_tid = 0; 3698 if (tcp->tcp_state > TCPS_LISTEN) { 3699 tcp_acceptor_hash_remove(tcp); 3700 if (tcp->tcp_flow_stopped) { 3701 tcp_clrqfull(tcp); 3702 } 3703 3704 if (tcp->tcp_timer_tid != 0) { 3705 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3706 tcp->tcp_timer_tid = 0; 3707 } 3708 /* 3709 * Need to cancel those timers which will not be used when 3710 * TCP is detached. This has to be done before the tcp_wq 3711 * is set to the global queue. 3712 */ 3713 tcp_timers_stop(tcp); 3714 3715 3716 tcp->tcp_detached = B_TRUE; 3717 tcp->tcp_rq = tcp_g_q; 3718 tcp->tcp_wq = WR(tcp_g_q); 3719 3720 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3721 tcp_time_wait_append(tcp); 3722 TCP_DBGSTAT(tcp_detach_time_wait); 3723 goto finish; 3724 } 3725 3726 /* 3727 * If delta is zero the timer event wasn't executed and was 3728 * successfully canceled. In this case we need to restart it 3729 * with the minimal delta possible. 3730 */ 3731 if (delta >= 0) { 3732 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3733 delta ? delta : 1); 3734 } 3735 } else { 3736 tcp_closei_local(tcp); 3737 CONN_DEC_REF(tcp->tcp_connp); 3738 } 3739 finish: 3740 /* Signal closing thread that it can complete close */ 3741 mutex_enter(&tcp->tcp_closelock); 3742 tcp->tcp_detached = B_TRUE; 3743 tcp->tcp_rq = tcp_g_q; 3744 tcp->tcp_wq = WR(tcp_g_q); 3745 tcp->tcp_closed = 1; 3746 cv_signal(&tcp->tcp_closecv); 3747 mutex_exit(&tcp->tcp_closelock); 3748 } 3749 3750 /* 3751 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3752 * expires. 3753 */ 3754 static void 3755 tcp_close_linger_timeout(void *arg) 3756 { 3757 conn_t *connp = (conn_t *)arg; 3758 tcp_t *tcp = connp->conn_tcp; 3759 3760 tcp->tcp_client_errno = ETIMEDOUT; 3761 tcp_stop_lingering(tcp); 3762 } 3763 3764 static int 3765 tcp_close(queue_t *q, int flags) 3766 { 3767 conn_t *connp = Q_TO_CONN(q); 3768 tcp_t *tcp = connp->conn_tcp; 3769 mblk_t *mp = &tcp->tcp_closemp; 3770 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3771 3772 ASSERT(WR(q)->q_next == NULL); 3773 ASSERT(connp->conn_ref >= 2); 3774 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 3775 3776 /* 3777 * We are being closed as /dev/tcp or /dev/tcp6. 3778 * 3779 * Mark the conn as closing. ill_pending_mp_add will not 3780 * add any mp to the pending mp list, after this conn has 3781 * started closing. Same for sq_pending_mp_add 3782 */ 3783 mutex_enter(&connp->conn_lock); 3784 connp->conn_state_flags |= CONN_CLOSING; 3785 if (connp->conn_oper_pending_ill != NULL) 3786 conn_ioctl_cleanup_reqd = B_TRUE; 3787 CONN_INC_REF_LOCKED(connp); 3788 mutex_exit(&connp->conn_lock); 3789 tcp->tcp_closeflags = (uint8_t)flags; 3790 ASSERT(connp->conn_ref >= 3); 3791 3792 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 3793 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 3794 3795 mutex_enter(&tcp->tcp_closelock); 3796 3797 while (!tcp->tcp_closed) 3798 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3799 mutex_exit(&tcp->tcp_closelock); 3800 /* 3801 * In the case of listener streams that have eagers in the q or q0 3802 * we wait for the eagers to drop their reference to us. tcp_rq and 3803 * tcp_wq of the eagers point to our queues. By waiting for the 3804 * refcnt to drop to 1, we are sure that the eagers have cleaned 3805 * up their queue pointers and also dropped their references to us. 3806 */ 3807 if (tcp->tcp_wait_for_eagers) { 3808 mutex_enter(&connp->conn_lock); 3809 while (connp->conn_ref != 1) { 3810 cv_wait(&connp->conn_cv, &connp->conn_lock); 3811 } 3812 mutex_exit(&connp->conn_lock); 3813 } 3814 /* 3815 * ioctl cleanup. The mp is queued in the 3816 * ill_pending_mp or in the sq_pending_mp. 3817 */ 3818 if (conn_ioctl_cleanup_reqd) 3819 conn_ioctl_cleanup(connp); 3820 3821 qprocsoff(q); 3822 inet_minor_free(ip_minor_arena, connp->conn_dev); 3823 3824 ASSERT(connp->conn_cred != NULL); 3825 crfree(connp->conn_cred); 3826 tcp->tcp_cred = connp->conn_cred = NULL; 3827 tcp->tcp_cpid = -1; 3828 3829 /* 3830 * Drop IP's reference on the conn. This is the last reference 3831 * on the connp if the state was less than established. If the 3832 * connection has gone into timewait state, then we will have 3833 * one ref for the TCP and one more ref (total of two) for the 3834 * classifier connected hash list (a timewait connections stays 3835 * in connected hash till closed). 3836 * 3837 * We can't assert the references because there might be other 3838 * transient reference places because of some walkers or queued 3839 * packets in squeue for the timewait state. 3840 */ 3841 CONN_DEC_REF(connp); 3842 q->q_ptr = WR(q)->q_ptr = NULL; 3843 return (0); 3844 } 3845 3846 static int 3847 tcpclose_accept(queue_t *q) 3848 { 3849 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3850 3851 /* 3852 * We had opened an acceptor STREAM for sockfs which is 3853 * now being closed due to some error. 3854 */ 3855 qprocsoff(q); 3856 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 3857 q->q_ptr = WR(q)->q_ptr = NULL; 3858 return (0); 3859 } 3860 3861 3862 /* 3863 * Called by streams close routine via squeues when our client blows off her 3864 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3865 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3866 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3867 * acked. 3868 * 3869 * NOTE: tcp_close potentially returns error when lingering. 3870 * However, the stream head currently does not pass these errors 3871 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3872 * errors to the application (from tsleep()) and not errors 3873 * like ECONNRESET caused by receiving a reset packet. 3874 */ 3875 3876 /* ARGSUSED */ 3877 static void 3878 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3879 { 3880 char *msg; 3881 conn_t *connp = (conn_t *)arg; 3882 tcp_t *tcp = connp->conn_tcp; 3883 clock_t delta = 0; 3884 3885 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3886 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3887 3888 /* Cancel any pending timeout */ 3889 if (tcp->tcp_ordrelid != 0) { 3890 if (tcp->tcp_timeout) { 3891 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 3892 } 3893 tcp->tcp_ordrelid = 0; 3894 tcp->tcp_timeout = B_FALSE; 3895 } 3896 3897 mutex_enter(&tcp->tcp_eager_lock); 3898 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3899 /* Cleanup for listener */ 3900 tcp_eager_cleanup(tcp, 0); 3901 tcp->tcp_wait_for_eagers = 1; 3902 } 3903 mutex_exit(&tcp->tcp_eager_lock); 3904 3905 connp->conn_mdt_ok = B_FALSE; 3906 tcp->tcp_mdt = B_FALSE; 3907 3908 msg = NULL; 3909 switch (tcp->tcp_state) { 3910 case TCPS_CLOSED: 3911 case TCPS_IDLE: 3912 case TCPS_BOUND: 3913 case TCPS_LISTEN: 3914 break; 3915 case TCPS_SYN_SENT: 3916 msg = "tcp_close, during connect"; 3917 break; 3918 case TCPS_SYN_RCVD: 3919 /* 3920 * Close during the connect 3-way handshake 3921 * but here there may or may not be pending data 3922 * already on queue. Process almost same as in 3923 * the ESTABLISHED state. 3924 */ 3925 /* FALLTHRU */ 3926 default: 3927 if (tcp->tcp_fused) 3928 tcp_unfuse(tcp); 3929 3930 /* 3931 * If SO_LINGER has set a zero linger time, abort the 3932 * connection with a reset. 3933 */ 3934 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3935 msg = "tcp_close, zero lingertime"; 3936 break; 3937 } 3938 3939 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3940 /* 3941 * Abort connection if there is unread data queued. 3942 */ 3943 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3944 msg = "tcp_close, unread data"; 3945 break; 3946 } 3947 /* 3948 * tcp_hard_bound is now cleared thus all packets go through 3949 * tcp_lookup. This fact is used by tcp_detach below. 3950 * 3951 * We have done a qwait() above which could have possibly 3952 * drained more messages in turn causing transition to a 3953 * different state. Check whether we have to do the rest 3954 * of the processing or not. 3955 */ 3956 if (tcp->tcp_state <= TCPS_LISTEN) 3957 break; 3958 3959 /* 3960 * Transmit the FIN before detaching the tcp_t. 3961 * After tcp_detach returns this queue/perimeter 3962 * no longer owns the tcp_t thus others can modify it. 3963 */ 3964 (void) tcp_xmit_end(tcp); 3965 3966 /* 3967 * If lingering on close then wait until the fin is acked, 3968 * the SO_LINGER time passes, or a reset is sent/received. 3969 */ 3970 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3971 !(tcp->tcp_fin_acked) && 3972 tcp->tcp_state >= TCPS_ESTABLISHED) { 3973 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3974 tcp->tcp_client_errno = EWOULDBLOCK; 3975 } else if (tcp->tcp_client_errno == 0) { 3976 3977 ASSERT(tcp->tcp_linger_tid == 0); 3978 3979 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3980 tcp_close_linger_timeout, 3981 tcp->tcp_lingertime * hz); 3982 3983 /* tcp_close_linger_timeout will finish close */ 3984 if (tcp->tcp_linger_tid == 0) 3985 tcp->tcp_client_errno = ENOSR; 3986 else 3987 return; 3988 } 3989 3990 /* 3991 * Check if we need to detach or just close 3992 * the instance. 3993 */ 3994 if (tcp->tcp_state <= TCPS_LISTEN) 3995 break; 3996 } 3997 3998 /* 3999 * Make sure that no other thread will access the tcp_rq of 4000 * this instance (through lookups etc.) as tcp_rq will go 4001 * away shortly. 4002 */ 4003 tcp_acceptor_hash_remove(tcp); 4004 4005 if (tcp->tcp_flow_stopped) { 4006 tcp_clrqfull(tcp); 4007 } 4008 4009 if (tcp->tcp_timer_tid != 0) { 4010 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4011 tcp->tcp_timer_tid = 0; 4012 } 4013 /* 4014 * Need to cancel those timers which will not be used when 4015 * TCP is detached. This has to be done before the tcp_wq 4016 * is set to the global queue. 4017 */ 4018 tcp_timers_stop(tcp); 4019 4020 tcp->tcp_detached = B_TRUE; 4021 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4022 tcp_time_wait_append(tcp); 4023 TCP_DBGSTAT(tcp_detach_time_wait); 4024 ASSERT(connp->conn_ref >= 3); 4025 goto finish; 4026 } 4027 4028 /* 4029 * If delta is zero the timer event wasn't executed and was 4030 * successfully canceled. In this case we need to restart it 4031 * with the minimal delta possible. 4032 */ 4033 if (delta >= 0) 4034 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4035 delta ? delta : 1); 4036 4037 ASSERT(connp->conn_ref >= 3); 4038 goto finish; 4039 } 4040 4041 /* Detach did not complete. Still need to remove q from stream. */ 4042 if (msg) { 4043 if (tcp->tcp_state == TCPS_ESTABLISHED || 4044 tcp->tcp_state == TCPS_CLOSE_WAIT) 4045 BUMP_MIB(&tcp_mib, tcpEstabResets); 4046 if (tcp->tcp_state == TCPS_SYN_SENT || 4047 tcp->tcp_state == TCPS_SYN_RCVD) 4048 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4049 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4050 } 4051 4052 tcp_closei_local(tcp); 4053 CONN_DEC_REF(connp); 4054 ASSERT(connp->conn_ref >= 2); 4055 4056 finish: 4057 /* 4058 * Although packets are always processed on the correct 4059 * tcp's perimeter and access is serialized via squeue's, 4060 * IP still needs a queue when sending packets in time_wait 4061 * state so use WR(tcp_g_q) till ip_output() can be 4062 * changed to deal with just connp. For read side, we 4063 * could have set tcp_rq to NULL but there are some cases 4064 * in tcp_rput_data() from early days of this code which 4065 * do a putnext without checking if tcp is closed. Those 4066 * need to be identified before both tcp_rq and tcp_wq 4067 * can be set to NULL and tcp_q_q can disappear forever. 4068 */ 4069 mutex_enter(&tcp->tcp_closelock); 4070 /* 4071 * Don't change the queues in the case of a listener that has 4072 * eagers in its q or q0. It could surprise the eagers. 4073 * Instead wait for the eagers outside the squeue. 4074 */ 4075 if (!tcp->tcp_wait_for_eagers) { 4076 tcp->tcp_detached = B_TRUE; 4077 tcp->tcp_rq = tcp_g_q; 4078 tcp->tcp_wq = WR(tcp_g_q); 4079 } 4080 4081 /* Signal tcp_close() to finish closing. */ 4082 tcp->tcp_closed = 1; 4083 cv_signal(&tcp->tcp_closecv); 4084 mutex_exit(&tcp->tcp_closelock); 4085 } 4086 4087 4088 /* 4089 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4090 * Some stream heads get upset if they see these later on as anything but NULL. 4091 */ 4092 static void 4093 tcp_close_mpp(mblk_t **mpp) 4094 { 4095 mblk_t *mp; 4096 4097 if ((mp = *mpp) != NULL) { 4098 do { 4099 mp->b_next = NULL; 4100 mp->b_prev = NULL; 4101 } while ((mp = mp->b_cont) != NULL); 4102 4103 mp = *mpp; 4104 *mpp = NULL; 4105 freemsg(mp); 4106 } 4107 } 4108 4109 /* Do detached close. */ 4110 static void 4111 tcp_close_detached(tcp_t *tcp) 4112 { 4113 if (tcp->tcp_fused) 4114 tcp_unfuse(tcp); 4115 4116 /* 4117 * Clustering code serializes TCP disconnect callbacks and 4118 * cluster tcp list walks by blocking a TCP disconnect callback 4119 * if a cluster tcp list walk is in progress. This ensures 4120 * accurate accounting of TCPs in the cluster code even though 4121 * the TCP list walk itself is not atomic. 4122 */ 4123 tcp_closei_local(tcp); 4124 CONN_DEC_REF(tcp->tcp_connp); 4125 } 4126 4127 /* 4128 * Stop all TCP timers, and free the timer mblks if requested. 4129 */ 4130 void 4131 tcp_timers_stop(tcp_t *tcp) 4132 { 4133 if (tcp->tcp_timer_tid != 0) { 4134 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4135 tcp->tcp_timer_tid = 0; 4136 } 4137 if (tcp->tcp_ka_tid != 0) { 4138 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4139 tcp->tcp_ka_tid = 0; 4140 } 4141 if (tcp->tcp_ack_tid != 0) { 4142 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4143 tcp->tcp_ack_tid = 0; 4144 } 4145 if (tcp->tcp_push_tid != 0) { 4146 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4147 tcp->tcp_push_tid = 0; 4148 } 4149 } 4150 4151 /* 4152 * The tcp_t is going away. Remove it from all lists and set it 4153 * to TCPS_CLOSED. The freeing up of memory is deferred until 4154 * tcp_inactive. This is needed since a thread in tcp_rput might have 4155 * done a CONN_INC_REF on this structure before it was removed from the 4156 * hashes. 4157 */ 4158 static void 4159 tcp_closei_local(tcp_t *tcp) 4160 { 4161 ire_t *ire; 4162 conn_t *connp = tcp->tcp_connp; 4163 4164 if (!TCP_IS_SOCKET(tcp)) 4165 tcp_acceptor_hash_remove(tcp); 4166 4167 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 4168 tcp->tcp_ibsegs = 0; 4169 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 4170 tcp->tcp_obsegs = 0; 4171 4172 /* 4173 * If we are an eager connection hanging off a listener that 4174 * hasn't formally accepted the connection yet, get off his 4175 * list and blow off any data that we have accumulated. 4176 */ 4177 if (tcp->tcp_listener != NULL) { 4178 tcp_t *listener = tcp->tcp_listener; 4179 mutex_enter(&listener->tcp_eager_lock); 4180 /* 4181 * tcp_eager_conn_ind == NULL means that the 4182 * conn_ind has already gone to listener. At 4183 * this point, eager will be closed but we 4184 * leave it in listeners eager list so that 4185 * if listener decides to close without doing 4186 * accept, we can clean this up. In tcp_wput_accept 4187 * we take case of the case of accept on closed 4188 * eager. 4189 */ 4190 if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) { 4191 tcp_eager_unlink(tcp); 4192 mutex_exit(&listener->tcp_eager_lock); 4193 /* 4194 * We don't want to have any pointers to the 4195 * listener queue, after we have released our 4196 * reference on the listener 4197 */ 4198 tcp->tcp_rq = tcp_g_q; 4199 tcp->tcp_wq = WR(tcp_g_q); 4200 CONN_DEC_REF(listener->tcp_connp); 4201 } else { 4202 mutex_exit(&listener->tcp_eager_lock); 4203 } 4204 } 4205 4206 /* Stop all the timers */ 4207 tcp_timers_stop(tcp); 4208 4209 if (tcp->tcp_state == TCPS_LISTEN) { 4210 if (tcp->tcp_ip_addr_cache) { 4211 kmem_free((void *)tcp->tcp_ip_addr_cache, 4212 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4213 tcp->tcp_ip_addr_cache = NULL; 4214 } 4215 } 4216 if (tcp->tcp_flow_stopped) 4217 tcp_clrqfull(tcp); 4218 4219 tcp_bind_hash_remove(tcp); 4220 /* 4221 * If the tcp_time_wait_collector (which runs outside the squeue) 4222 * is trying to remove this tcp from the time wait list, we will 4223 * block in tcp_time_wait_remove while trying to acquire the 4224 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4225 * requires the ipcl_hash_remove to be ordered after the 4226 * tcp_time_wait_remove for the refcnt checks to work correctly. 4227 */ 4228 if (tcp->tcp_state == TCPS_TIME_WAIT) 4229 tcp_time_wait_remove(tcp, NULL); 4230 CL_INET_DISCONNECT(tcp); 4231 ipcl_hash_remove(connp); 4232 4233 /* 4234 * Delete the cached ire in conn_ire_cache and also mark 4235 * the conn as CONDEMNED 4236 */ 4237 mutex_enter(&connp->conn_lock); 4238 connp->conn_state_flags |= CONN_CONDEMNED; 4239 ire = connp->conn_ire_cache; 4240 connp->conn_ire_cache = NULL; 4241 mutex_exit(&connp->conn_lock); 4242 if (ire != NULL) 4243 IRE_REFRELE_NOTR(ire); 4244 4245 /* Need to cleanup any pending ioctls */ 4246 ASSERT(tcp->tcp_time_wait_next == NULL); 4247 ASSERT(tcp->tcp_time_wait_prev == NULL); 4248 ASSERT(tcp->tcp_time_wait_expire == 0); 4249 tcp->tcp_state = TCPS_CLOSED; 4250 4251 /* Release any SSL context */ 4252 if (tcp->tcp_kssl_ent != NULL) { 4253 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4254 tcp->tcp_kssl_ent = NULL; 4255 } 4256 if (tcp->tcp_kssl_ctx != NULL) { 4257 kssl_release_ctx(tcp->tcp_kssl_ctx); 4258 tcp->tcp_kssl_ctx = NULL; 4259 } 4260 tcp->tcp_kssl_pending = B_FALSE; 4261 } 4262 4263 /* 4264 * tcp is dying (called from ipcl_conn_destroy and error cases). 4265 * Free the tcp_t in either case. 4266 */ 4267 void 4268 tcp_free(tcp_t *tcp) 4269 { 4270 mblk_t *mp; 4271 ip6_pkt_t *ipp; 4272 4273 ASSERT(tcp != NULL); 4274 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4275 4276 tcp->tcp_rq = NULL; 4277 tcp->tcp_wq = NULL; 4278 4279 tcp_close_mpp(&tcp->tcp_xmit_head); 4280 tcp_close_mpp(&tcp->tcp_reass_head); 4281 if (tcp->tcp_rcv_list != NULL) { 4282 /* Free b_next chain */ 4283 tcp_close_mpp(&tcp->tcp_rcv_list); 4284 } 4285 if ((mp = tcp->tcp_urp_mp) != NULL) { 4286 freemsg(mp); 4287 } 4288 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4289 freemsg(mp); 4290 } 4291 4292 if (tcp->tcp_fused_sigurg_mp != NULL) { 4293 freeb(tcp->tcp_fused_sigurg_mp); 4294 tcp->tcp_fused_sigurg_mp = NULL; 4295 } 4296 4297 if (tcp->tcp_sack_info != NULL) { 4298 if (tcp->tcp_notsack_list != NULL) { 4299 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4300 } 4301 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4302 } 4303 4304 if (tcp->tcp_hopopts != NULL) { 4305 mi_free(tcp->tcp_hopopts); 4306 tcp->tcp_hopopts = NULL; 4307 tcp->tcp_hopoptslen = 0; 4308 } 4309 ASSERT(tcp->tcp_hopoptslen == 0); 4310 if (tcp->tcp_dstopts != NULL) { 4311 mi_free(tcp->tcp_dstopts); 4312 tcp->tcp_dstopts = NULL; 4313 tcp->tcp_dstoptslen = 0; 4314 } 4315 ASSERT(tcp->tcp_dstoptslen == 0); 4316 if (tcp->tcp_rtdstopts != NULL) { 4317 mi_free(tcp->tcp_rtdstopts); 4318 tcp->tcp_rtdstopts = NULL; 4319 tcp->tcp_rtdstoptslen = 0; 4320 } 4321 ASSERT(tcp->tcp_rtdstoptslen == 0); 4322 if (tcp->tcp_rthdr != NULL) { 4323 mi_free(tcp->tcp_rthdr); 4324 tcp->tcp_rthdr = NULL; 4325 tcp->tcp_rthdrlen = 0; 4326 } 4327 ASSERT(tcp->tcp_rthdrlen == 0); 4328 4329 ipp = &tcp->tcp_sticky_ipp; 4330 if ((ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | 4331 IPPF_DSTOPTS | IPPF_RTHDR)) != 0) { 4332 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 4333 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen); 4334 ipp->ipp_hopopts = NULL; 4335 ipp->ipp_hopoptslen = 0; 4336 } 4337 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 4338 kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 4339 ipp->ipp_rtdstopts = NULL; 4340 ipp->ipp_rtdstoptslen = 0; 4341 } 4342 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 4343 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen); 4344 ipp->ipp_dstopts = NULL; 4345 ipp->ipp_dstoptslen = 0; 4346 } 4347 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 4348 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen); 4349 ipp->ipp_rthdr = NULL; 4350 ipp->ipp_rthdrlen = 0; 4351 } 4352 ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS | 4353 IPPF_DSTOPTS | IPPF_RTHDR); 4354 } 4355 4356 /* 4357 * Free memory associated with the tcp/ip header template. 4358 */ 4359 4360 if (tcp->tcp_iphc != NULL) 4361 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4362 4363 /* 4364 * Following is really a blowing away a union. 4365 * It happens to have exactly two members of identical size 4366 * the following code is enough. 4367 */ 4368 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4369 4370 if (tcp->tcp_tracebuf != NULL) { 4371 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4372 tcp->tcp_tracebuf = NULL; 4373 } 4374 } 4375 4376 4377 /* 4378 * Put a connection confirmation message upstream built from the 4379 * address information within 'iph' and 'tcph'. Report our success or failure. 4380 */ 4381 static boolean_t 4382 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4383 mblk_t **defermp) 4384 { 4385 sin_t sin; 4386 sin6_t sin6; 4387 mblk_t *mp; 4388 char *optp = NULL; 4389 int optlen = 0; 4390 cred_t *cr; 4391 4392 if (defermp != NULL) 4393 *defermp = NULL; 4394 4395 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4396 /* 4397 * Return in T_CONN_CON results of option negotiation through 4398 * the T_CONN_REQ. Note: If there is an real end-to-end option 4399 * negotiation, then what is received from remote end needs 4400 * to be taken into account but there is no such thing (yet?) 4401 * in our TCP/IP. 4402 * Note: We do not use mi_offset_param() here as 4403 * tcp_opts_conn_req contents do not directly come from 4404 * an application and are either generated in kernel or 4405 * from user input that was already verified. 4406 */ 4407 mp = tcp->tcp_conn.tcp_opts_conn_req; 4408 optp = (char *)(mp->b_rptr + 4409 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4410 optlen = (int) 4411 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4412 } 4413 4414 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4415 ipha_t *ipha = (ipha_t *)iphdr; 4416 4417 /* packet is IPv4 */ 4418 if (tcp->tcp_family == AF_INET) { 4419 sin = sin_null; 4420 sin.sin_addr.s_addr = ipha->ipha_src; 4421 sin.sin_port = *(uint16_t *)tcph->th_lport; 4422 sin.sin_family = AF_INET; 4423 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4424 (int)sizeof (sin_t), optp, optlen); 4425 } else { 4426 sin6 = sin6_null; 4427 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4428 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4429 sin6.sin6_family = AF_INET6; 4430 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4431 (int)sizeof (sin6_t), optp, optlen); 4432 4433 } 4434 } else { 4435 ip6_t *ip6h = (ip6_t *)iphdr; 4436 4437 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4438 ASSERT(tcp->tcp_family == AF_INET6); 4439 sin6 = sin6_null; 4440 sin6.sin6_addr = ip6h->ip6_src; 4441 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4442 sin6.sin6_family = AF_INET6; 4443 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4444 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4445 (int)sizeof (sin6_t), optp, optlen); 4446 } 4447 4448 if (!mp) 4449 return (B_FALSE); 4450 4451 if ((cr = DB_CRED(idmp)) != NULL) { 4452 mblk_setcred(mp, cr); 4453 DB_CPID(mp) = DB_CPID(idmp); 4454 } 4455 4456 if (defermp == NULL) 4457 putnext(tcp->tcp_rq, mp); 4458 else 4459 *defermp = mp; 4460 4461 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4462 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4463 return (B_TRUE); 4464 } 4465 4466 /* 4467 * Defense for the SYN attack - 4468 * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest 4469 * one that doesn't have the dontdrop bit set. 4470 * 2. Don't drop a SYN request before its first timeout. This gives every 4471 * request at least til the first timeout to complete its 3-way handshake. 4472 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4473 * requests currently on the queue that has timed out. This will be used 4474 * as an indicator of whether an attack is under way, so that appropriate 4475 * actions can be taken. (It's incremented in tcp_timer() and decremented 4476 * either when eager goes into ESTABLISHED, or gets freed up.) 4477 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4478 * # of timeout drops back to <= q0len/32 => SYN alert off 4479 */ 4480 static boolean_t 4481 tcp_drop_q0(tcp_t *tcp) 4482 { 4483 tcp_t *eager; 4484 4485 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4486 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4487 /* 4488 * New one is added after next_q0 so prev_q0 points to the oldest 4489 * Also do not drop any established connections that are deferred on 4490 * q0 due to q being full 4491 */ 4492 4493 eager = tcp->tcp_eager_prev_q0; 4494 while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) { 4495 eager = eager->tcp_eager_prev_q0; 4496 if (eager == tcp) { 4497 eager = tcp->tcp_eager_prev_q0; 4498 break; 4499 } 4500 } 4501 if (eager->tcp_syn_rcvd_timeout == 0) 4502 return (B_FALSE); 4503 4504 if (tcp->tcp_debug) { 4505 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4506 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4507 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4508 tcp->tcp_conn_req_cnt_q0, 4509 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4510 } 4511 4512 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4513 4514 /* 4515 * need to do refhold here because the selected eager could 4516 * be removed by someone else if we release the eager lock. 4517 */ 4518 CONN_INC_REF(eager->tcp_connp); 4519 mutex_exit(&tcp->tcp_eager_lock); 4520 4521 /* Mark the IRE created for this SYN request temporary */ 4522 tcp_ip_ire_mark_advice(eager); 4523 (void) tcp_clean_death(eager, ETIMEDOUT, 5); 4524 CONN_DEC_REF(eager->tcp_connp); 4525 4526 mutex_enter(&tcp->tcp_eager_lock); 4527 return (B_TRUE); 4528 } 4529 4530 int 4531 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4532 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4533 { 4534 tcp_t *ltcp = lconnp->conn_tcp; 4535 tcp_t *tcp = connp->conn_tcp; 4536 mblk_t *tpi_mp; 4537 ipha_t *ipha; 4538 ip6_t *ip6h; 4539 sin6_t sin6; 4540 in6_addr_t v6dst; 4541 int err; 4542 int ifindex = 0; 4543 cred_t *cr; 4544 4545 if (ipvers == IPV4_VERSION) { 4546 ipha = (ipha_t *)mp->b_rptr; 4547 4548 connp->conn_send = ip_output; 4549 connp->conn_recv = tcp_input; 4550 4551 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4552 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4553 4554 sin6 = sin6_null; 4555 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4556 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4557 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4558 sin6.sin6_family = AF_INET6; 4559 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4560 lconnp->conn_zoneid); 4561 if (tcp->tcp_recvdstaddr) { 4562 sin6_t sin6d; 4563 4564 sin6d = sin6_null; 4565 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4566 &sin6d.sin6_addr); 4567 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4568 sin6d.sin6_family = AF_INET; 4569 tpi_mp = mi_tpi_extconn_ind(NULL, 4570 (char *)&sin6d, sizeof (sin6_t), 4571 (char *)&tcp, 4572 (t_scalar_t)sizeof (intptr_t), 4573 (char *)&sin6d, sizeof (sin6_t), 4574 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4575 } else { 4576 tpi_mp = mi_tpi_conn_ind(NULL, 4577 (char *)&sin6, sizeof (sin6_t), 4578 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4579 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4580 } 4581 } else { 4582 ip6h = (ip6_t *)mp->b_rptr; 4583 4584 connp->conn_send = ip_output_v6; 4585 connp->conn_recv = tcp_input; 4586 4587 connp->conn_srcv6 = ip6h->ip6_dst; 4588 connp->conn_remv6 = ip6h->ip6_src; 4589 4590 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4591 ifindex = (int)DB_CKSUMSTUFF(mp); 4592 DB_CKSUMSTUFF(mp) = 0; 4593 4594 sin6 = sin6_null; 4595 sin6.sin6_addr = ip6h->ip6_src; 4596 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4597 sin6.sin6_family = AF_INET6; 4598 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4599 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4600 lconnp->conn_zoneid); 4601 4602 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4603 /* Pass up the scope_id of remote addr */ 4604 sin6.sin6_scope_id = ifindex; 4605 } else { 4606 sin6.sin6_scope_id = 0; 4607 } 4608 if (tcp->tcp_recvdstaddr) { 4609 sin6_t sin6d; 4610 4611 sin6d = sin6_null; 4612 sin6.sin6_addr = ip6h->ip6_dst; 4613 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4614 sin6d.sin6_family = AF_INET; 4615 tpi_mp = mi_tpi_extconn_ind(NULL, 4616 (char *)&sin6d, sizeof (sin6_t), 4617 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4618 (char *)&sin6d, sizeof (sin6_t), 4619 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4620 } else { 4621 tpi_mp = mi_tpi_conn_ind(NULL, 4622 (char *)&sin6, sizeof (sin6_t), 4623 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4624 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4625 } 4626 } 4627 4628 if (tpi_mp == NULL) 4629 return (ENOMEM); 4630 4631 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4632 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4633 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4634 connp->conn_fully_bound = B_FALSE; 4635 4636 if (tcp_trace) 4637 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4638 4639 /* Inherit information from the "parent" */ 4640 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4641 tcp->tcp_family = ltcp->tcp_family; 4642 tcp->tcp_wq = ltcp->tcp_wq; 4643 tcp->tcp_rq = ltcp->tcp_rq; 4644 tcp->tcp_mss = tcp_mss_def_ipv6; 4645 tcp->tcp_detached = B_TRUE; 4646 if ((err = tcp_init_values(tcp)) != 0) { 4647 freemsg(tpi_mp); 4648 return (err); 4649 } 4650 4651 if (ipvers == IPV4_VERSION) { 4652 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4653 freemsg(tpi_mp); 4654 return (err); 4655 } 4656 ASSERT(tcp->tcp_ipha != NULL); 4657 } else { 4658 /* ifindex must be already set */ 4659 ASSERT(ifindex != 0); 4660 4661 if (ltcp->tcp_bound_if != 0) { 4662 /* 4663 * Set newtcp's bound_if equal to 4664 * listener's value. If ifindex is 4665 * not the same as ltcp->tcp_bound_if, 4666 * it must be a packet for the ipmp group 4667 * of interfaces 4668 */ 4669 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4670 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4671 tcp->tcp_bound_if = ifindex; 4672 } 4673 4674 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4675 tcp->tcp_recvifindex = 0; 4676 tcp->tcp_recvhops = 0xffffffffU; 4677 ASSERT(tcp->tcp_ip6h != NULL); 4678 } 4679 4680 tcp->tcp_lport = ltcp->tcp_lport; 4681 4682 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4683 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4684 /* 4685 * Listener had options of some sort; eager inherits. 4686 * Free up the eager template and allocate one 4687 * of the right size. 4688 */ 4689 if (tcp->tcp_hdr_grown) { 4690 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4691 } else { 4692 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4693 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4694 } 4695 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4696 KM_NOSLEEP); 4697 if (tcp->tcp_iphc == NULL) { 4698 tcp->tcp_iphc_len = 0; 4699 freemsg(tpi_mp); 4700 return (ENOMEM); 4701 } 4702 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4703 tcp->tcp_hdr_grown = B_TRUE; 4704 } 4705 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4706 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4707 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4708 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4709 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4710 4711 /* 4712 * Copy the IP+TCP header template from listener to eager 4713 */ 4714 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4715 if (tcp->tcp_ipversion == IPV6_VERSION) { 4716 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4717 IPPROTO_RAW) { 4718 tcp->tcp_ip6h = 4719 (ip6_t *)(tcp->tcp_iphc + 4720 sizeof (ip6i_t)); 4721 } else { 4722 tcp->tcp_ip6h = 4723 (ip6_t *)(tcp->tcp_iphc); 4724 } 4725 tcp->tcp_ipha = NULL; 4726 } else { 4727 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4728 tcp->tcp_ip6h = NULL; 4729 } 4730 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4731 tcp->tcp_ip_hdr_len); 4732 } else { 4733 /* 4734 * only valid case when ipversion of listener and 4735 * eager differ is when listener is IPv6 and 4736 * eager is IPv4. 4737 * Eager header template has been initialized to the 4738 * maximum v4 header sizes, which includes space for 4739 * TCP and IP options. 4740 */ 4741 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4742 (tcp->tcp_ipversion == IPV4_VERSION)); 4743 ASSERT(tcp->tcp_iphc_len >= 4744 TCP_MAX_COMBINED_HEADER_LENGTH); 4745 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4746 /* copy IP header fields individually */ 4747 tcp->tcp_ipha->ipha_ttl = 4748 ltcp->tcp_ip6h->ip6_hops; 4749 bcopy(ltcp->tcp_tcph->th_lport, 4750 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4751 } 4752 4753 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4754 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4755 sizeof (in_port_t)); 4756 4757 if (ltcp->tcp_lport == 0) { 4758 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4759 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4760 sizeof (in_port_t)); 4761 } 4762 4763 if (tcp->tcp_ipversion == IPV4_VERSION) { 4764 ASSERT(ipha != NULL); 4765 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4766 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4767 4768 /* Source routing option copyover (reverse it) */ 4769 if (tcp_rev_src_routes) 4770 tcp_opt_reverse(tcp, ipha); 4771 } else { 4772 ASSERT(ip6h != NULL); 4773 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4774 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4775 } 4776 4777 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4778 /* 4779 * If the SYN contains a credential, it's a loopback packet; attach 4780 * the credential to the TPI message. 4781 */ 4782 if ((cr = DB_CRED(idmp)) != NULL) { 4783 mblk_setcred(tpi_mp, cr); 4784 DB_CPID(tpi_mp) = DB_CPID(idmp); 4785 } 4786 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4787 4788 /* Inherit the listener's SSL protection state */ 4789 4790 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4791 kssl_hold_ent(tcp->tcp_kssl_ent); 4792 tcp->tcp_kssl_pending = B_TRUE; 4793 } 4794 4795 return (0); 4796 } 4797 4798 4799 int 4800 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4801 tcph_t *tcph, mblk_t *idmp) 4802 { 4803 tcp_t *ltcp = lconnp->conn_tcp; 4804 tcp_t *tcp = connp->conn_tcp; 4805 sin_t sin; 4806 mblk_t *tpi_mp = NULL; 4807 int err; 4808 cred_t *cr; 4809 4810 sin = sin_null; 4811 sin.sin_addr.s_addr = ipha->ipha_src; 4812 sin.sin_port = *(uint16_t *)tcph->th_lport; 4813 sin.sin_family = AF_INET; 4814 if (ltcp->tcp_recvdstaddr) { 4815 sin_t sind; 4816 4817 sind = sin_null; 4818 sind.sin_addr.s_addr = ipha->ipha_dst; 4819 sind.sin_port = *(uint16_t *)tcph->th_fport; 4820 sind.sin_family = AF_INET; 4821 tpi_mp = mi_tpi_extconn_ind(NULL, 4822 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4823 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4824 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4825 } else { 4826 tpi_mp = mi_tpi_conn_ind(NULL, 4827 (char *)&sin, sizeof (sin_t), 4828 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4829 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4830 } 4831 4832 if (tpi_mp == NULL) { 4833 return (ENOMEM); 4834 } 4835 4836 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4837 connp->conn_send = ip_output; 4838 connp->conn_recv = tcp_input; 4839 connp->conn_fully_bound = B_FALSE; 4840 4841 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4842 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4843 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4844 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4845 4846 if (tcp_trace) { 4847 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4848 } 4849 4850 /* Inherit information from the "parent" */ 4851 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4852 tcp->tcp_family = ltcp->tcp_family; 4853 tcp->tcp_wq = ltcp->tcp_wq; 4854 tcp->tcp_rq = ltcp->tcp_rq; 4855 tcp->tcp_mss = tcp_mss_def_ipv4; 4856 tcp->tcp_detached = B_TRUE; 4857 if ((err = tcp_init_values(tcp)) != 0) { 4858 freemsg(tpi_mp); 4859 return (err); 4860 } 4861 4862 /* 4863 * Let's make sure that eager tcp template has enough space to 4864 * copy IPv4 listener's tcp template. Since the conn_t structure is 4865 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4866 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4867 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4868 * extension headers or with ip6i_t struct). Note that bcopy() below 4869 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4870 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4871 */ 4872 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4873 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4874 4875 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4876 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4877 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4878 tcp->tcp_ttl = ltcp->tcp_ttl; 4879 tcp->tcp_tos = ltcp->tcp_tos; 4880 4881 /* Copy the IP+TCP header template from listener to eager */ 4882 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4883 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4884 tcp->tcp_ip6h = NULL; 4885 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4886 tcp->tcp_ip_hdr_len); 4887 4888 /* Initialize the IP addresses and Ports */ 4889 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4890 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4891 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4892 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4893 4894 /* Source routing option copyover (reverse it) */ 4895 if (tcp_rev_src_routes) 4896 tcp_opt_reverse(tcp, ipha); 4897 4898 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4899 4900 /* 4901 * If the SYN contains a credential, it's a loopback packet; attach 4902 * the credential to the TPI message. 4903 */ 4904 if ((cr = DB_CRED(idmp)) != NULL) { 4905 mblk_setcred(tpi_mp, cr); 4906 DB_CPID(tpi_mp) = DB_CPID(idmp); 4907 } 4908 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4909 4910 /* Inherit the listener's SSL protection state */ 4911 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4912 kssl_hold_ent(tcp->tcp_kssl_ent); 4913 tcp->tcp_kssl_pending = B_TRUE; 4914 } 4915 4916 return (0); 4917 } 4918 4919 /* 4920 * sets up conn for ipsec. 4921 * if the first mblk is M_CTL it is consumed and mpp is updated. 4922 * in case of error mpp is freed. 4923 */ 4924 conn_t * 4925 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4926 { 4927 conn_t *connp = tcp->tcp_connp; 4928 conn_t *econnp; 4929 squeue_t *new_sqp; 4930 mblk_t *first_mp = *mpp; 4931 mblk_t *mp = *mpp; 4932 boolean_t mctl_present = B_FALSE; 4933 uint_t ipvers; 4934 4935 econnp = tcp_get_conn(sqp); 4936 if (econnp == NULL) { 4937 freemsg(first_mp); 4938 return (NULL); 4939 } 4940 if (DB_TYPE(mp) == M_CTL) { 4941 if (mp->b_cont == NULL || 4942 mp->b_cont->b_datap->db_type != M_DATA) { 4943 freemsg(first_mp); 4944 return (NULL); 4945 } 4946 mp = mp->b_cont; 4947 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4948 freemsg(first_mp); 4949 return (NULL); 4950 } 4951 4952 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4953 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4954 mctl_present = B_TRUE; 4955 } else { 4956 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4957 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4958 } 4959 4960 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4961 DB_CKSUMSTART(mp) = 0; 4962 4963 ASSERT(OK_32PTR(mp->b_rptr)); 4964 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4965 if (ipvers == IPV4_VERSION) { 4966 uint16_t *up; 4967 uint32_t ports; 4968 ipha_t *ipha; 4969 4970 ipha = (ipha_t *)mp->b_rptr; 4971 up = (uint16_t *)((uchar_t *)ipha + 4972 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4973 ports = *(uint32_t *)up; 4974 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4975 ipha->ipha_dst, ipha->ipha_src, ports); 4976 } else { 4977 uint16_t *up; 4978 uint32_t ports; 4979 uint16_t ip_hdr_len; 4980 uint8_t *nexthdrp; 4981 ip6_t *ip6h; 4982 tcph_t *tcph; 4983 4984 ip6h = (ip6_t *)mp->b_rptr; 4985 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4986 ip_hdr_len = IPV6_HDR_LEN; 4987 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4988 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4989 CONN_DEC_REF(econnp); 4990 freemsg(first_mp); 4991 return (NULL); 4992 } 4993 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4994 up = (uint16_t *)tcph->th_lport; 4995 ports = *(uint32_t *)up; 4996 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4997 ip6h->ip6_dst, ip6h->ip6_src, ports); 4998 } 4999 5000 /* 5001 * The caller already ensured that there is a sqp present. 5002 */ 5003 econnp->conn_sqp = new_sqp; 5004 5005 if (connp->conn_policy != NULL) { 5006 ipsec_in_t *ii; 5007 ii = (ipsec_in_t *)(first_mp->b_rptr); 5008 ASSERT(ii->ipsec_in_policy == NULL); 5009 IPPH_REFHOLD(connp->conn_policy); 5010 ii->ipsec_in_policy = connp->conn_policy; 5011 5012 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5013 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5014 CONN_DEC_REF(econnp); 5015 freemsg(first_mp); 5016 return (NULL); 5017 } 5018 } 5019 5020 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5021 CONN_DEC_REF(econnp); 5022 freemsg(first_mp); 5023 return (NULL); 5024 } 5025 5026 /* 5027 * If we know we have some policy, pass the "IPSEC" 5028 * options size TCP uses this adjust the MSS. 5029 */ 5030 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5031 if (mctl_present) { 5032 freeb(first_mp); 5033 *mpp = mp; 5034 } 5035 5036 return (econnp); 5037 } 5038 5039 /* 5040 * tcp_get_conn/tcp_free_conn 5041 * 5042 * tcp_get_conn is used to get a clean tcp connection structure. 5043 * It tries to reuse the connections put on the freelist by the 5044 * time_wait_collector failing which it goes to kmem_cache. This 5045 * way has two benefits compared to just allocating from and 5046 * freeing to kmem_cache. 5047 * 1) The time_wait_collector can free (which includes the cleanup) 5048 * outside the squeue. So when the interrupt comes, we have a clean 5049 * connection sitting in the freelist. Obviously, this buys us 5050 * performance. 5051 * 5052 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5053 * has multiple disadvantages - tying up the squeue during alloc, and the 5054 * fact that IPSec policy initialization has to happen here which 5055 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5056 * But allocating the conn/tcp in IP land is also not the best since 5057 * we can't check the 'q' and 'q0' which are protected by squeue and 5058 * blindly allocate memory which might have to be freed here if we are 5059 * not allowed to accept the connection. By using the freelist and 5060 * putting the conn/tcp back in freelist, we don't pay a penalty for 5061 * allocating memory without checking 'q/q0' and freeing it if we can't 5062 * accept the connection. 5063 * 5064 * Care should be taken to put the conn back in the same squeue's freelist 5065 * from which it was allocated. Best results are obtained if conn is 5066 * allocated from listener's squeue and freed to the same. Time wait 5067 * collector will free up the freelist is the connection ends up sitting 5068 * there for too long. 5069 */ 5070 void * 5071 tcp_get_conn(void *arg) 5072 { 5073 tcp_t *tcp = NULL; 5074 conn_t *connp = NULL; 5075 squeue_t *sqp = (squeue_t *)arg; 5076 tcp_squeue_priv_t *tcp_time_wait; 5077 5078 tcp_time_wait = 5079 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5080 5081 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5082 tcp = tcp_time_wait->tcp_free_list; 5083 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5084 if (tcp != NULL) { 5085 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5086 tcp_time_wait->tcp_free_list_cnt--; 5087 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5088 tcp->tcp_time_wait_next = NULL; 5089 connp = tcp->tcp_connp; 5090 connp->conn_flags |= IPCL_REUSED; 5091 return ((void *)connp); 5092 } 5093 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5094 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5095 return (NULL); 5096 return ((void *)connp); 5097 } 5098 5099 /* BEGIN CSTYLED */ 5100 /* 5101 * 5102 * The sockfs ACCEPT path: 5103 * ======================= 5104 * 5105 * The eager is now established in its own perimeter as soon as SYN is 5106 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5107 * completes the accept processing on the acceptor STREAM. The sending 5108 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5109 * listener but a TLI/XTI listener completes the accept processing 5110 * on the listener perimeter. 5111 * 5112 * Common control flow for 3 way handshake: 5113 * ---------------------------------------- 5114 * 5115 * incoming SYN (listener perimeter) -> tcp_rput_data() 5116 * -> tcp_conn_request() 5117 * 5118 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5119 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5120 * 5121 * Sockfs ACCEPT Path: 5122 * ------------------- 5123 * 5124 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5125 * as STREAM entry point) 5126 * 5127 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5128 * 5129 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5130 * association (we are not behind eager's squeue but sockfs is protecting us 5131 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5132 * is changed to point at tcp_wput(). 5133 * 5134 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5135 * listener (done on listener's perimeter). 5136 * 5137 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5138 * accept. 5139 * 5140 * TLI/XTI client ACCEPT path: 5141 * --------------------------- 5142 * 5143 * soaccept() sends T_CONN_RES on the listener STREAM. 5144 * 5145 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5146 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5147 * 5148 * Locks: 5149 * ====== 5150 * 5151 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5152 * and listeners->tcp_eager_next_q. 5153 * 5154 * Referencing: 5155 * ============ 5156 * 5157 * 1) We start out in tcp_conn_request by eager placing a ref on 5158 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5159 * 5160 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5161 * doing so we place a ref on the eager. This ref is finally dropped at the 5162 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5163 * reference is dropped by the squeue framework. 5164 * 5165 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5166 * 5167 * The reference must be released by the same entity that added the reference 5168 * In the above scheme, the eager is the entity that adds and releases the 5169 * references. Note that tcp_accept_finish executes in the squeue of the eager 5170 * (albeit after it is attached to the acceptor stream). Though 1. executes 5171 * in the listener's squeue, the eager is nascent at this point and the 5172 * reference can be considered to have been added on behalf of the eager. 5173 * 5174 * Eager getting a Reset or listener closing: 5175 * ========================================== 5176 * 5177 * Once the listener and eager are linked, the listener never does the unlink. 5178 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5179 * a message on all eager perimeter. The eager then does the unlink, clears 5180 * any pointers to the listener's queue and drops the reference to the 5181 * listener. The listener waits in tcp_close outside the squeue until its 5182 * refcount has dropped to 1. This ensures that the listener has waited for 5183 * all eagers to clear their association with the listener. 5184 * 5185 * Similarly, if eager decides to go away, it can unlink itself and close. 5186 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5187 * the reference to eager is still valid because of the extra ref we put 5188 * in tcp_send_conn_ind. 5189 * 5190 * Listener can always locate the eager under the protection 5191 * of the listener->tcp_eager_lock, and then do a refhold 5192 * on the eager during the accept processing. 5193 * 5194 * The acceptor stream accesses the eager in the accept processing 5195 * based on the ref placed on eager before sending T_conn_ind. 5196 * The only entity that can negate this refhold is a listener close 5197 * which is mutually exclusive with an active acceptor stream. 5198 * 5199 * Eager's reference on the listener 5200 * =================================== 5201 * 5202 * If the accept happens (even on a closed eager) the eager drops its 5203 * reference on the listener at the start of tcp_accept_finish. If the 5204 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5205 * the reference is dropped in tcp_closei_local. If the listener closes, 5206 * the reference is dropped in tcp_eager_kill. In all cases the reference 5207 * is dropped while executing in the eager's context (squeue). 5208 */ 5209 /* END CSTYLED */ 5210 5211 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5212 5213 /* 5214 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5215 * tcp_rput_data will not see any SYN packets. 5216 */ 5217 /* ARGSUSED */ 5218 void 5219 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5220 { 5221 tcph_t *tcph; 5222 uint32_t seg_seq; 5223 tcp_t *eager; 5224 uint_t ipvers; 5225 ipha_t *ipha; 5226 ip6_t *ip6h; 5227 int err; 5228 conn_t *econnp = NULL; 5229 squeue_t *new_sqp; 5230 mblk_t *mp1; 5231 uint_t ip_hdr_len; 5232 conn_t *connp = (conn_t *)arg; 5233 tcp_t *tcp = connp->conn_tcp; 5234 ire_t *ire; 5235 5236 if (tcp->tcp_state != TCPS_LISTEN) 5237 goto error2; 5238 5239 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5240 5241 mutex_enter(&tcp->tcp_eager_lock); 5242 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5243 mutex_exit(&tcp->tcp_eager_lock); 5244 TCP_STAT(tcp_listendrop); 5245 BUMP_MIB(&tcp_mib, tcpListenDrop); 5246 if (tcp->tcp_debug) { 5247 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5248 "tcp_conn_request: listen backlog (max=%d) " 5249 "overflow (%d pending) on %s", 5250 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5251 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5252 } 5253 goto error2; 5254 } 5255 5256 if (tcp->tcp_conn_req_cnt_q0 >= 5257 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5258 /* 5259 * Q0 is full. Drop a pending half-open req from the queue 5260 * to make room for the new SYN req. Also mark the time we 5261 * drop a SYN. 5262 * 5263 * A more aggressive defense against SYN attack will 5264 * be to set the "tcp_syn_defense" flag now. 5265 */ 5266 TCP_STAT(tcp_listendropq0); 5267 tcp->tcp_last_rcv_lbolt = lbolt64; 5268 if (!tcp_drop_q0(tcp)) { 5269 mutex_exit(&tcp->tcp_eager_lock); 5270 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5271 if (tcp->tcp_debug) { 5272 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5273 "tcp_conn_request: listen half-open queue " 5274 "(max=%d) full (%d pending) on %s", 5275 tcp_conn_req_max_q0, 5276 tcp->tcp_conn_req_cnt_q0, 5277 tcp_display(tcp, NULL, 5278 DISP_PORT_ONLY)); 5279 } 5280 goto error2; 5281 } 5282 } 5283 mutex_exit(&tcp->tcp_eager_lock); 5284 5285 /* 5286 * IP adds STRUIO_EAGER and ensures that the received packet is 5287 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5288 * link local address. If IPSec is enabled, db_struioflag has 5289 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5290 * otherwise an error case if neither of them is set. 5291 */ 5292 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5293 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5294 DB_CKSUMSTART(mp) = 0; 5295 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5296 econnp = (conn_t *)tcp_get_conn(arg2); 5297 if (econnp == NULL) 5298 goto error2; 5299 econnp->conn_sqp = new_sqp; 5300 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5301 /* 5302 * mp is updated in tcp_get_ipsec_conn(). 5303 */ 5304 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5305 if (econnp == NULL) { 5306 /* 5307 * mp freed by tcp_get_ipsec_conn. 5308 */ 5309 return; 5310 } 5311 } else { 5312 goto error2; 5313 } 5314 5315 ASSERT(DB_TYPE(mp) == M_DATA); 5316 5317 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5318 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5319 ASSERT(OK_32PTR(mp->b_rptr)); 5320 if (ipvers == IPV4_VERSION) { 5321 ipha = (ipha_t *)mp->b_rptr; 5322 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5323 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5324 } else { 5325 ip6h = (ip6_t *)mp->b_rptr; 5326 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5327 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5328 } 5329 5330 if (tcp->tcp_family == AF_INET) { 5331 ASSERT(ipvers == IPV4_VERSION); 5332 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5333 } else { 5334 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5335 } 5336 5337 if (err) 5338 goto error3; 5339 5340 eager = econnp->conn_tcp; 5341 5342 /* Inherit various TCP parameters from the listener */ 5343 eager->tcp_naglim = tcp->tcp_naglim; 5344 eager->tcp_first_timer_threshold = 5345 tcp->tcp_first_timer_threshold; 5346 eager->tcp_second_timer_threshold = 5347 tcp->tcp_second_timer_threshold; 5348 5349 eager->tcp_first_ctimer_threshold = 5350 tcp->tcp_first_ctimer_threshold; 5351 eager->tcp_second_ctimer_threshold = 5352 tcp->tcp_second_ctimer_threshold; 5353 5354 /* 5355 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5356 * If it does not, the eager's receive window will be set to the 5357 * listener's receive window later in this function. 5358 */ 5359 eager->tcp_rwnd = 0; 5360 5361 /* 5362 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5363 * zone id before the accept is completed in tcp_wput_accept(). 5364 */ 5365 econnp->conn_zoneid = connp->conn_zoneid; 5366 5367 /* Copy nexthop information from listener to eager */ 5368 if (connp->conn_nexthop_set) { 5369 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5370 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5371 } 5372 5373 eager->tcp_hard_binding = B_TRUE; 5374 5375 tcp_bind_hash_insert(&tcp_bind_fanout[ 5376 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5377 5378 CL_INET_CONNECT(eager); 5379 5380 /* 5381 * No need to check for multicast destination since ip will only pass 5382 * up multicasts to those that have expressed interest 5383 * TODO: what about rejecting broadcasts? 5384 * Also check that source is not a multicast or broadcast address. 5385 */ 5386 eager->tcp_state = TCPS_SYN_RCVD; 5387 5388 5389 /* 5390 * There should be no ire in the mp as we are being called after 5391 * receiving the SYN. 5392 */ 5393 ASSERT(tcp_ire_mp(mp) == NULL); 5394 5395 /* 5396 * Adapt our mss, ttl, ... according to information provided in IRE. 5397 */ 5398 5399 if (tcp_adapt_ire(eager, NULL) == 0) { 5400 /* Undo the bind_hash_insert */ 5401 tcp_bind_hash_remove(eager); 5402 goto error3; 5403 } 5404 5405 /* Process all TCP options. */ 5406 tcp_process_options(eager, tcph); 5407 5408 /* Is the other end ECN capable? */ 5409 if (tcp_ecn_permitted >= 1 && 5410 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5411 eager->tcp_ecn_ok = B_TRUE; 5412 } 5413 5414 /* 5415 * listener->tcp_rq->q_hiwat should be the default window size or a 5416 * window size changed via SO_RCVBUF option. First round up the 5417 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5418 * scale option value if needed. Call tcp_rwnd_set() to finish the 5419 * setting. 5420 * 5421 * Note if there is a rpipe metric associated with the remote host, 5422 * we should not inherit receive window size from listener. 5423 */ 5424 eager->tcp_rwnd = MSS_ROUNDUP( 5425 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5426 eager->tcp_rwnd), eager->tcp_mss); 5427 if (eager->tcp_snd_ws_ok) 5428 tcp_set_ws_value(eager); 5429 /* 5430 * Note that this is the only place tcp_rwnd_set() is called for 5431 * accepting a connection. We need to call it here instead of 5432 * after the 3-way handshake because we need to tell the other 5433 * side our rwnd in the SYN-ACK segment. 5434 */ 5435 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5436 5437 /* 5438 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5439 * via soaccept()->soinheritoptions() which essentially applies 5440 * all the listener options to the new STREAM. The options that we 5441 * need to take care of are: 5442 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5443 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5444 * SO_SNDBUF, SO_RCVBUF. 5445 * 5446 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5447 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5448 * tcp_maxpsz_set() gets called later from 5449 * tcp_accept_finish(), the option takes effect. 5450 * 5451 */ 5452 /* Set the TCP options */ 5453 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5454 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5455 eager->tcp_oobinline = tcp->tcp_oobinline; 5456 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5457 eager->tcp_broadcast = tcp->tcp_broadcast; 5458 eager->tcp_useloopback = tcp->tcp_useloopback; 5459 eager->tcp_dontroute = tcp->tcp_dontroute; 5460 eager->tcp_linger = tcp->tcp_linger; 5461 eager->tcp_lingertime = tcp->tcp_lingertime; 5462 if (tcp->tcp_ka_enabled) 5463 eager->tcp_ka_enabled = 1; 5464 5465 /* Set the IP options */ 5466 econnp->conn_broadcast = connp->conn_broadcast; 5467 econnp->conn_loopback = connp->conn_loopback; 5468 econnp->conn_dontroute = connp->conn_dontroute; 5469 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5470 5471 /* Put a ref on the listener for the eager. */ 5472 CONN_INC_REF(connp); 5473 mutex_enter(&tcp->tcp_eager_lock); 5474 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5475 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5476 tcp->tcp_eager_next_q0 = eager; 5477 eager->tcp_eager_prev_q0 = tcp; 5478 5479 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5480 eager->tcp_listener = tcp; 5481 eager->tcp_saved_listener = tcp; 5482 5483 /* 5484 * Tag this detached tcp vector for later retrieval 5485 * by our listener client in tcp_accept(). 5486 */ 5487 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5488 tcp->tcp_conn_req_cnt_q0++; 5489 if (++tcp->tcp_conn_req_seqnum == -1) { 5490 /* 5491 * -1 is "special" and defined in TPI as something 5492 * that should never be used in T_CONN_IND 5493 */ 5494 ++tcp->tcp_conn_req_seqnum; 5495 } 5496 mutex_exit(&tcp->tcp_eager_lock); 5497 5498 if (tcp->tcp_syn_defense) { 5499 /* Don't drop the SYN that comes from a good IP source */ 5500 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5501 if (addr_cache != NULL && eager->tcp_remote == 5502 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5503 eager->tcp_dontdrop = B_TRUE; 5504 } 5505 } 5506 5507 /* 5508 * We need to insert the eager in its own perimeter but as soon 5509 * as we do that, we expose the eager to the classifier and 5510 * should not touch any field outside the eager's perimeter. 5511 * So do all the work necessary before inserting the eager 5512 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5513 * will succeed but undo everything if it fails. 5514 */ 5515 seg_seq = ABE32_TO_U32(tcph->th_seq); 5516 eager->tcp_irs = seg_seq; 5517 eager->tcp_rack = seg_seq; 5518 eager->tcp_rnxt = seg_seq + 1; 5519 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5520 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5521 eager->tcp_state = TCPS_SYN_RCVD; 5522 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5523 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5524 if (mp1 == NULL) 5525 goto error1; 5526 mblk_setcred(mp1, tcp->tcp_cred); 5527 DB_CPID(mp1) = tcp->tcp_cpid; 5528 5529 /* 5530 * We need to start the rto timer. In normal case, we start 5531 * the timer after sending the packet on the wire (or at 5532 * least believing that packet was sent by waiting for 5533 * CALL_IP_WPUT() to return). Since this is the first packet 5534 * being sent on the wire for the eager, our initial tcp_rto 5535 * is at least tcp_rexmit_interval_min which is a fairly 5536 * large value to allow the algorithm to adjust slowly to large 5537 * fluctuations of RTT during first few transmissions. 5538 * 5539 * Starting the timer first and then sending the packet in this 5540 * case shouldn't make much difference since tcp_rexmit_interval_min 5541 * is of the order of several 100ms and starting the timer 5542 * first and then sending the packet will result in difference 5543 * of few micro seconds. 5544 * 5545 * Without this optimization, we are forced to hold the fanout 5546 * lock across the ipcl_bind_insert() and sending the packet 5547 * so that we don't race against an incoming packet (maybe RST) 5548 * for this eager. 5549 */ 5550 5551 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5552 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5553 5554 5555 /* 5556 * Insert the eager in its own perimeter now. We are ready to deal 5557 * with any packets on eager. 5558 */ 5559 if (eager->tcp_ipversion == IPV4_VERSION) { 5560 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5561 goto error; 5562 } 5563 } else { 5564 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5565 goto error; 5566 } 5567 } 5568 5569 /* mark conn as fully-bound */ 5570 econnp->conn_fully_bound = B_TRUE; 5571 5572 /* Send the SYN-ACK */ 5573 tcp_send_data(eager, eager->tcp_wq, mp1); 5574 freemsg(mp); 5575 5576 return; 5577 error: 5578 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 5579 freemsg(mp1); 5580 error1: 5581 /* Undo what we did above */ 5582 mutex_enter(&tcp->tcp_eager_lock); 5583 tcp_eager_unlink(eager); 5584 mutex_exit(&tcp->tcp_eager_lock); 5585 /* Drop eager's reference on the listener */ 5586 CONN_DEC_REF(connp); 5587 5588 /* 5589 * Delete the cached ire in conn_ire_cache and also mark 5590 * the conn as CONDEMNED 5591 */ 5592 mutex_enter(&econnp->conn_lock); 5593 econnp->conn_state_flags |= CONN_CONDEMNED; 5594 ire = econnp->conn_ire_cache; 5595 econnp->conn_ire_cache = NULL; 5596 mutex_exit(&econnp->conn_lock); 5597 if (ire != NULL) 5598 IRE_REFRELE_NOTR(ire); 5599 5600 /* 5601 * tcp_accept_comm inserts the eager to the bind_hash 5602 * we need to remove it from the hash if ipcl_conn_insert 5603 * fails. 5604 */ 5605 tcp_bind_hash_remove(eager); 5606 /* Drop the eager ref placed in tcp_open_detached */ 5607 CONN_DEC_REF(econnp); 5608 5609 /* 5610 * If a connection already exists, send the mp to that connections so 5611 * that it can be appropriately dealt with. 5612 */ 5613 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 5614 if (!IPCL_IS_CONNECTED(econnp)) { 5615 /* 5616 * Something bad happened. ipcl_conn_insert() 5617 * failed because a connection already existed 5618 * in connected hash but we can't find it 5619 * anymore (someone blew it away). Just 5620 * free this message and hopefully remote 5621 * will retransmit at which time the SYN can be 5622 * treated as a new connection or dealth with 5623 * a TH_RST if a connection already exists. 5624 */ 5625 freemsg(mp); 5626 } else { 5627 squeue_fill(econnp->conn_sqp, mp, tcp_input, 5628 econnp, SQTAG_TCP_CONN_REQ); 5629 } 5630 } else { 5631 /* Nobody wants this packet */ 5632 freemsg(mp); 5633 } 5634 return; 5635 error2: 5636 freemsg(mp); 5637 return; 5638 error3: 5639 CONN_DEC_REF(econnp); 5640 freemsg(mp); 5641 } 5642 5643 /* 5644 * In an ideal case of vertical partition in NUMA architecture, its 5645 * beneficial to have the listener and all the incoming connections 5646 * tied to the same squeue. The other constraint is that incoming 5647 * connections should be tied to the squeue attached to interrupted 5648 * CPU for obvious locality reason so this leaves the listener to 5649 * be tied to the same squeue. Our only problem is that when listener 5650 * is binding, the CPU that will get interrupted by the NIC whose 5651 * IP address the listener is binding to is not even known. So 5652 * the code below allows us to change that binding at the time the 5653 * CPU is interrupted by virtue of incoming connection's squeue. 5654 * 5655 * This is usefull only in case of a listener bound to a specific IP 5656 * address. For other kind of listeners, they get bound the 5657 * very first time and there is no attempt to rebind them. 5658 */ 5659 void 5660 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5661 { 5662 conn_t *connp = (conn_t *)arg; 5663 squeue_t *sqp = (squeue_t *)arg2; 5664 squeue_t *new_sqp; 5665 uint32_t conn_flags; 5666 5667 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5668 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5669 } else { 5670 goto done; 5671 } 5672 5673 if (connp->conn_fanout == NULL) 5674 goto done; 5675 5676 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5677 mutex_enter(&connp->conn_fanout->connf_lock); 5678 mutex_enter(&connp->conn_lock); 5679 /* 5680 * No one from read or write side can access us now 5681 * except for already queued packets on this squeue. 5682 * But since we haven't changed the squeue yet, they 5683 * can't execute. If they are processed after we have 5684 * changed the squeue, they are sent back to the 5685 * correct squeue down below. 5686 */ 5687 if (connp->conn_sqp != new_sqp) { 5688 while (connp->conn_sqp != new_sqp) 5689 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5690 } 5691 5692 do { 5693 conn_flags = connp->conn_flags; 5694 conn_flags |= IPCL_FULLY_BOUND; 5695 (void) cas32(&connp->conn_flags, connp->conn_flags, 5696 conn_flags); 5697 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5698 5699 mutex_exit(&connp->conn_fanout->connf_lock); 5700 mutex_exit(&connp->conn_lock); 5701 } 5702 5703 done: 5704 if (connp->conn_sqp != sqp) { 5705 CONN_INC_REF(connp); 5706 squeue_fill(connp->conn_sqp, mp, 5707 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 5708 } else { 5709 tcp_conn_request(connp, mp, sqp); 5710 } 5711 } 5712 5713 /* 5714 * Successful connect request processing begins when our client passes 5715 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5716 * our T_OK_ACK reply message upstream. The control flow looks like this: 5717 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 5718 * upstream <- tcp_rput() <- IP 5719 * After various error checks are completed, tcp_connect() lays 5720 * the target address and port into the composite header template, 5721 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5722 * request followed by an IRE request, and passes the three mblk message 5723 * down to IP looking like this: 5724 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5725 * Processing continues in tcp_rput() when we receive the following message: 5726 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5727 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5728 * to fire off the connection request, and then passes the T_OK_ACK mblk 5729 * upstream that we filled in below. There are, of course, numerous 5730 * error conditions along the way which truncate the processing described 5731 * above. 5732 */ 5733 static void 5734 tcp_connect(tcp_t *tcp, mblk_t *mp) 5735 { 5736 sin_t *sin; 5737 sin6_t *sin6; 5738 queue_t *q = tcp->tcp_wq; 5739 struct T_conn_req *tcr; 5740 ipaddr_t *dstaddrp; 5741 in_port_t dstport; 5742 uint_t srcid; 5743 5744 tcr = (struct T_conn_req *)mp->b_rptr; 5745 5746 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5747 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5748 tcp_err_ack(tcp, mp, TPROTO, 0); 5749 return; 5750 } 5751 5752 /* 5753 * Determine packet type based on type of address passed in 5754 * the request should contain an IPv4 or IPv6 address. 5755 * Make sure that address family matches the type of 5756 * family of the the address passed down 5757 */ 5758 switch (tcr->DEST_length) { 5759 default: 5760 tcp_err_ack(tcp, mp, TBADADDR, 0); 5761 return; 5762 5763 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5764 /* 5765 * XXX: The check for valid DEST_length was not there 5766 * in earlier releases and some buggy 5767 * TLI apps (e.g Sybase) got away with not feeding 5768 * in sin_zero part of address. 5769 * We allow that bug to keep those buggy apps humming. 5770 * Test suites require the check on DEST_length. 5771 * We construct a new mblk with valid DEST_length 5772 * free the original so the rest of the code does 5773 * not have to keep track of this special shorter 5774 * length address case. 5775 */ 5776 mblk_t *nmp; 5777 struct T_conn_req *ntcr; 5778 sin_t *nsin; 5779 5780 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5781 tcr->OPT_length, BPRI_HI); 5782 if (nmp == NULL) { 5783 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5784 return; 5785 } 5786 ntcr = (struct T_conn_req *)nmp->b_rptr; 5787 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5788 ntcr->PRIM_type = T_CONN_REQ; 5789 ntcr->DEST_length = sizeof (sin_t); 5790 ntcr->DEST_offset = sizeof (struct T_conn_req); 5791 5792 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5793 *nsin = sin_null; 5794 /* Get pointer to shorter address to copy from original mp */ 5795 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5796 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5797 if (sin == NULL || !OK_32PTR((char *)sin)) { 5798 freemsg(nmp); 5799 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5800 return; 5801 } 5802 nsin->sin_family = sin->sin_family; 5803 nsin->sin_port = sin->sin_port; 5804 nsin->sin_addr = sin->sin_addr; 5805 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5806 nmp->b_wptr = (uchar_t *)&nsin[1]; 5807 if (tcr->OPT_length != 0) { 5808 ntcr->OPT_length = tcr->OPT_length; 5809 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5810 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5811 (uchar_t *)ntcr + ntcr->OPT_offset, 5812 tcr->OPT_length); 5813 nmp->b_wptr += tcr->OPT_length; 5814 } 5815 freemsg(mp); /* original mp freed */ 5816 mp = nmp; /* re-initialize original variables */ 5817 tcr = ntcr; 5818 } 5819 /* FALLTHRU */ 5820 5821 case sizeof (sin_t): 5822 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5823 sizeof (sin_t)); 5824 if (sin == NULL || !OK_32PTR((char *)sin)) { 5825 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5826 return; 5827 } 5828 if (tcp->tcp_family != AF_INET || 5829 sin->sin_family != AF_INET) { 5830 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5831 return; 5832 } 5833 if (sin->sin_port == 0) { 5834 tcp_err_ack(tcp, mp, TBADADDR, 0); 5835 return; 5836 } 5837 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 5838 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5839 return; 5840 } 5841 5842 break; 5843 5844 case sizeof (sin6_t): 5845 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 5846 sizeof (sin6_t)); 5847 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 5848 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5849 return; 5850 } 5851 if (tcp->tcp_family != AF_INET6 || 5852 sin6->sin6_family != AF_INET6) { 5853 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 5854 return; 5855 } 5856 if (sin6->sin6_port == 0) { 5857 tcp_err_ack(tcp, mp, TBADADDR, 0); 5858 return; 5859 } 5860 break; 5861 } 5862 /* 5863 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 5864 * should key on their sequence number and cut them loose. 5865 */ 5866 5867 /* 5868 * If options passed in, feed it for verification and handling 5869 */ 5870 if (tcr->OPT_length != 0) { 5871 mblk_t *ok_mp; 5872 mblk_t *discon_mp; 5873 mblk_t *conn_opts_mp; 5874 int t_error, sys_error, do_disconnect; 5875 5876 conn_opts_mp = NULL; 5877 5878 if (tcp_conprim_opt_process(tcp, mp, 5879 &do_disconnect, &t_error, &sys_error) < 0) { 5880 if (do_disconnect) { 5881 ASSERT(t_error == 0 && sys_error == 0); 5882 discon_mp = mi_tpi_discon_ind(NULL, 5883 ECONNREFUSED, 0); 5884 if (!discon_mp) { 5885 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5886 TSYSERR, ENOMEM); 5887 return; 5888 } 5889 ok_mp = mi_tpi_ok_ack_alloc(mp); 5890 if (!ok_mp) { 5891 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 5892 TSYSERR, ENOMEM); 5893 return; 5894 } 5895 qreply(q, ok_mp); 5896 qreply(q, discon_mp); /* no flush! */ 5897 } else { 5898 ASSERT(t_error != 0); 5899 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 5900 sys_error); 5901 } 5902 return; 5903 } 5904 /* 5905 * Success in setting options, the mp option buffer represented 5906 * by OPT_length/offset has been potentially modified and 5907 * contains results of option processing. We copy it in 5908 * another mp to save it for potentially influencing returning 5909 * it in T_CONN_CONN. 5910 */ 5911 if (tcr->OPT_length != 0) { /* there are resulting options */ 5912 conn_opts_mp = copyb(mp); 5913 if (!conn_opts_mp) { 5914 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 5915 TSYSERR, ENOMEM); 5916 return; 5917 } 5918 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 5919 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 5920 /* 5921 * Note: 5922 * These resulting option negotiation can include any 5923 * end-to-end negotiation options but there no such 5924 * thing (yet?) in our TCP/IP. 5925 */ 5926 } 5927 } 5928 5929 /* 5930 * If we're connecting to an IPv4-mapped IPv6 address, we need to 5931 * make sure that the template IP header in the tcp structure is an 5932 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 5933 * need to this before we call tcp_bindi() so that the port lookup 5934 * code will look for ports in the correct port space (IPv4 and 5935 * IPv6 have separate port spaces). 5936 */ 5937 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 5938 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 5939 int err = 0; 5940 5941 err = tcp_header_init_ipv4(tcp); 5942 if (err != 0) { 5943 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 5944 goto connect_failed; 5945 } 5946 if (tcp->tcp_lport != 0) 5947 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 5948 } 5949 5950 switch (tcp->tcp_state) { 5951 case TCPS_IDLE: 5952 /* 5953 * We support quick connect, refer to comments in 5954 * tcp_connect_*() 5955 */ 5956 /* FALLTHRU */ 5957 case TCPS_BOUND: 5958 case TCPS_LISTEN: 5959 if (tcp->tcp_family == AF_INET6) { 5960 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 5961 tcp_connect_ipv6(tcp, mp, 5962 &sin6->sin6_addr, 5963 sin6->sin6_port, sin6->sin6_flowinfo, 5964 sin6->__sin6_src_id, sin6->sin6_scope_id); 5965 return; 5966 } 5967 /* 5968 * Destination adress is mapped IPv6 address. 5969 * Source bound address should be unspecified or 5970 * IPv6 mapped address as well. 5971 */ 5972 if (!IN6_IS_ADDR_UNSPECIFIED( 5973 &tcp->tcp_bound_source_v6) && 5974 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 5975 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 5976 EADDRNOTAVAIL); 5977 break; 5978 } 5979 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 5980 dstport = sin6->sin6_port; 5981 srcid = sin6->__sin6_src_id; 5982 } else { 5983 dstaddrp = &sin->sin_addr.s_addr; 5984 dstport = sin->sin_port; 5985 srcid = 0; 5986 } 5987 5988 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 5989 return; 5990 default: 5991 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 5992 break; 5993 } 5994 /* 5995 * Note: Code below is the "failure" case 5996 */ 5997 /* return error ack and blow away saved option results if any */ 5998 connect_failed: 5999 if (mp != NULL) 6000 putnext(tcp->tcp_rq, mp); 6001 else { 6002 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6003 TSYSERR, ENOMEM); 6004 } 6005 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6006 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6007 } 6008 6009 /* 6010 * Handle connect to IPv4 destinations, including connections for AF_INET6 6011 * sockets connecting to IPv4 mapped IPv6 destinations. 6012 */ 6013 static void 6014 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6015 uint_t srcid) 6016 { 6017 tcph_t *tcph; 6018 mblk_t *mp1; 6019 ipaddr_t dstaddr = *dstaddrp; 6020 int32_t oldstate; 6021 uint16_t lport; 6022 6023 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6024 6025 /* Check for attempt to connect to INADDR_ANY */ 6026 if (dstaddr == INADDR_ANY) { 6027 /* 6028 * SunOS 4.x and 4.3 BSD allow an application 6029 * to connect a TCP socket to INADDR_ANY. 6030 * When they do this, the kernel picks the 6031 * address of one interface and uses it 6032 * instead. The kernel usually ends up 6033 * picking the address of the loopback 6034 * interface. This is an undocumented feature. 6035 * However, we provide the same thing here 6036 * in order to have source and binary 6037 * compatibility with SunOS 4.x. 6038 * Update the T_CONN_REQ (sin/sin6) since it is used to 6039 * generate the T_CONN_CON. 6040 */ 6041 dstaddr = htonl(INADDR_LOOPBACK); 6042 *dstaddrp = dstaddr; 6043 } 6044 6045 /* Handle __sin6_src_id if socket not bound to an IP address */ 6046 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6047 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6048 tcp->tcp_connp->conn_zoneid); 6049 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6050 tcp->tcp_ipha->ipha_src); 6051 } 6052 6053 /* 6054 * Don't let an endpoint connect to itself. Note that 6055 * the test here does not catch the case where the 6056 * source IP addr was left unspecified by the user. In 6057 * this case, the source addr is set in tcp_adapt_ire() 6058 * using the reply to the T_BIND message that we send 6059 * down to IP here and the check is repeated in tcp_rput_other. 6060 */ 6061 if (dstaddr == tcp->tcp_ipha->ipha_src && 6062 dstport == tcp->tcp_lport) { 6063 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6064 goto failed; 6065 } 6066 6067 tcp->tcp_ipha->ipha_dst = dstaddr; 6068 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6069 6070 /* 6071 * Massage a source route if any putting the first hop 6072 * in iph_dst. Compute a starting value for the checksum which 6073 * takes into account that the original iph_dst should be 6074 * included in the checksum but that ip will include the 6075 * first hop in the source route in the tcp checksum. 6076 */ 6077 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6078 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6079 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6080 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6081 if ((int)tcp->tcp_sum < 0) 6082 tcp->tcp_sum--; 6083 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6084 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6085 (tcp->tcp_sum >> 16)); 6086 tcph = tcp->tcp_tcph; 6087 *(uint16_t *)tcph->th_fport = dstport; 6088 tcp->tcp_fport = dstport; 6089 6090 oldstate = tcp->tcp_state; 6091 /* 6092 * At this point the remote destination address and remote port fields 6093 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6094 * have to see which state tcp was in so we can take apropriate action. 6095 */ 6096 if (oldstate == TCPS_IDLE) { 6097 /* 6098 * We support a quick connect capability here, allowing 6099 * clients to transition directly from IDLE to SYN_SENT 6100 * tcp_bindi will pick an unused port, insert the connection 6101 * in the bind hash and transition to BOUND state. 6102 */ 6103 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 6104 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6105 B_FALSE, B_FALSE); 6106 if (lport == 0) { 6107 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6108 goto failed; 6109 } 6110 } 6111 tcp->tcp_state = TCPS_SYN_SENT; 6112 6113 /* 6114 * TODO: allow data with connect requests 6115 * by unlinking M_DATA trailers here and 6116 * linking them in behind the T_OK_ACK mblk. 6117 * The tcp_rput() bind ack handler would then 6118 * feed them to tcp_wput_data() rather than call 6119 * tcp_timer(). 6120 */ 6121 mp = mi_tpi_ok_ack_alloc(mp); 6122 if (!mp) { 6123 tcp->tcp_state = oldstate; 6124 goto failed; 6125 } 6126 if (tcp->tcp_family == AF_INET) { 6127 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6128 sizeof (ipa_conn_t)); 6129 } else { 6130 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6131 sizeof (ipa6_conn_t)); 6132 } 6133 if (mp1) { 6134 /* Hang onto the T_OK_ACK for later. */ 6135 linkb(mp1, mp); 6136 if (tcp->tcp_family == AF_INET) 6137 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6138 else { 6139 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6140 &tcp->tcp_sticky_ipp); 6141 } 6142 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6143 tcp->tcp_active_open = 1; 6144 /* 6145 * If the bind cannot complete immediately 6146 * IP will arrange to call tcp_rput_other 6147 * when the bind completes. 6148 */ 6149 if (mp1 != NULL) 6150 tcp_rput_other(tcp, mp1); 6151 return; 6152 } 6153 /* Error case */ 6154 tcp->tcp_state = oldstate; 6155 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6156 6157 failed: 6158 /* return error ack and blow away saved option results if any */ 6159 if (mp != NULL) 6160 putnext(tcp->tcp_rq, mp); 6161 else { 6162 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6163 TSYSERR, ENOMEM); 6164 } 6165 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6166 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6167 6168 } 6169 6170 /* 6171 * Handle connect to IPv6 destinations. 6172 */ 6173 static void 6174 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6175 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6176 { 6177 tcph_t *tcph; 6178 mblk_t *mp1; 6179 ip6_rthdr_t *rth; 6180 int32_t oldstate; 6181 uint16_t lport; 6182 6183 ASSERT(tcp->tcp_family == AF_INET6); 6184 6185 /* 6186 * If we're here, it means that the destination address is a native 6187 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6188 * reason why it might not be IPv6 is if the socket was bound to an 6189 * IPv4-mapped IPv6 address. 6190 */ 6191 if (tcp->tcp_ipversion != IPV6_VERSION) { 6192 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6193 goto failed; 6194 } 6195 6196 /* 6197 * Interpret a zero destination to mean loopback. 6198 * Update the T_CONN_REQ (sin/sin6) since it is used to 6199 * generate the T_CONN_CON. 6200 */ 6201 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6202 *dstaddrp = ipv6_loopback; 6203 } 6204 6205 /* Handle __sin6_src_id if socket not bound to an IP address */ 6206 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6207 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6208 tcp->tcp_connp->conn_zoneid); 6209 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6210 } 6211 6212 /* 6213 * Take care of the scope_id now and add ip6i_t 6214 * if ip6i_t is not already allocated through TCP 6215 * sticky options. At this point tcp_ip6h does not 6216 * have dst info, thus use dstaddrp. 6217 */ 6218 if (scope_id != 0 && 6219 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6220 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6221 ip6i_t *ip6i; 6222 6223 ipp->ipp_ifindex = scope_id; 6224 ip6i = (ip6i_t *)tcp->tcp_iphc; 6225 6226 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6227 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6228 /* Already allocated */ 6229 ip6i->ip6i_flags |= IP6I_IFINDEX; 6230 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6231 ipp->ipp_fields |= IPPF_SCOPE_ID; 6232 } else { 6233 int reterr; 6234 6235 ipp->ipp_fields |= IPPF_SCOPE_ID; 6236 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6237 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6238 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6239 if (reterr != 0) 6240 goto failed; 6241 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6242 } 6243 } 6244 6245 /* 6246 * Don't let an endpoint connect to itself. Note that 6247 * the test here does not catch the case where the 6248 * source IP addr was left unspecified by the user. In 6249 * this case, the source addr is set in tcp_adapt_ire() 6250 * using the reply to the T_BIND message that we send 6251 * down to IP here and the check is repeated in tcp_rput_other. 6252 */ 6253 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6254 (dstport == tcp->tcp_lport)) { 6255 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6256 goto failed; 6257 } 6258 6259 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6260 tcp->tcp_remote_v6 = *dstaddrp; 6261 tcp->tcp_ip6h->ip6_vcf = 6262 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6263 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6264 6265 6266 /* 6267 * Massage a routing header (if present) putting the first hop 6268 * in ip6_dst. Compute a starting value for the checksum which 6269 * takes into account that the original ip6_dst should be 6270 * included in the checksum but that ip will include the 6271 * first hop in the source route in the tcp checksum. 6272 */ 6273 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6274 if (rth != NULL) { 6275 6276 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6277 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6278 (tcp->tcp_sum >> 16)); 6279 } else { 6280 tcp->tcp_sum = 0; 6281 } 6282 6283 tcph = tcp->tcp_tcph; 6284 *(uint16_t *)tcph->th_fport = dstport; 6285 tcp->tcp_fport = dstport; 6286 6287 oldstate = tcp->tcp_state; 6288 /* 6289 * At this point the remote destination address and remote port fields 6290 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6291 * have to see which state tcp was in so we can take apropriate action. 6292 */ 6293 if (oldstate == TCPS_IDLE) { 6294 /* 6295 * We support a quick connect capability here, allowing 6296 * clients to transition directly from IDLE to SYN_SENT 6297 * tcp_bindi will pick an unused port, insert the connection 6298 * in the bind hash and transition to BOUND state. 6299 */ 6300 lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE); 6301 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6302 B_FALSE, B_FALSE); 6303 if (lport == 0) { 6304 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6305 goto failed; 6306 } 6307 } 6308 tcp->tcp_state = TCPS_SYN_SENT; 6309 /* 6310 * TODO: allow data with connect requests 6311 * by unlinking M_DATA trailers here and 6312 * linking them in behind the T_OK_ACK mblk. 6313 * The tcp_rput() bind ack handler would then 6314 * feed them to tcp_wput_data() rather than call 6315 * tcp_timer(). 6316 */ 6317 mp = mi_tpi_ok_ack_alloc(mp); 6318 if (!mp) { 6319 tcp->tcp_state = oldstate; 6320 goto failed; 6321 } 6322 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6323 if (mp1) { 6324 /* Hang onto the T_OK_ACK for later. */ 6325 linkb(mp1, mp); 6326 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6327 &tcp->tcp_sticky_ipp); 6328 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6329 tcp->tcp_active_open = 1; 6330 /* ip_bind_v6() may return ACK or ERROR */ 6331 if (mp1 != NULL) 6332 tcp_rput_other(tcp, mp1); 6333 return; 6334 } 6335 /* Error case */ 6336 tcp->tcp_state = oldstate; 6337 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6338 6339 failed: 6340 /* return error ack and blow away saved option results if any */ 6341 if (mp != NULL) 6342 putnext(tcp->tcp_rq, mp); 6343 else { 6344 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6345 TSYSERR, ENOMEM); 6346 } 6347 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6348 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6349 } 6350 6351 /* 6352 * We need a stream q for detached closing tcp connections 6353 * to use. Our client hereby indicates that this q is the 6354 * one to use. 6355 */ 6356 static void 6357 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6358 { 6359 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6360 queue_t *q = tcp->tcp_wq; 6361 6362 mp->b_datap->db_type = M_IOCACK; 6363 iocp->ioc_count = 0; 6364 mutex_enter(&tcp_g_q_lock); 6365 if (tcp_g_q != NULL) { 6366 mutex_exit(&tcp_g_q_lock); 6367 iocp->ioc_error = EALREADY; 6368 } else { 6369 mblk_t *mp1; 6370 6371 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6372 if (mp1 == NULL) { 6373 mutex_exit(&tcp_g_q_lock); 6374 iocp->ioc_error = ENOMEM; 6375 } else { 6376 tcp_g_q = tcp->tcp_rq; 6377 mutex_exit(&tcp_g_q_lock); 6378 iocp->ioc_error = 0; 6379 iocp->ioc_rval = 0; 6380 /* 6381 * We are passing tcp_sticky_ipp as NULL 6382 * as it is not useful for tcp_default queue 6383 */ 6384 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6385 if (mp1 != NULL) 6386 tcp_rput_other(tcp, mp1); 6387 } 6388 } 6389 qreply(q, mp); 6390 } 6391 6392 /* 6393 * Our client hereby directs us to reject the connection request 6394 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6395 * of sending the appropriate RST, not an ICMP error. 6396 */ 6397 static void 6398 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6399 { 6400 tcp_t *ltcp = NULL; 6401 t_scalar_t seqnum; 6402 conn_t *connp; 6403 6404 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6405 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6406 tcp_err_ack(tcp, mp, TPROTO, 0); 6407 return; 6408 } 6409 6410 /* 6411 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6412 * when the stream is in BOUND state. Do not send a reset, 6413 * since the destination IP address is not valid, and it can 6414 * be the initialized value of all zeros (broadcast address). 6415 * 6416 * If TCP has sent down a bind request to IP and has not 6417 * received the reply, reject the request. Otherwise, TCP 6418 * will be confused. 6419 */ 6420 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6421 if (tcp->tcp_debug) { 6422 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6423 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6424 } 6425 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6426 return; 6427 } 6428 6429 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6430 6431 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6432 6433 /* 6434 * According to TPI, for non-listeners, ignore seqnum 6435 * and disconnect. 6436 * Following interpretation of -1 seqnum is historical 6437 * and implied TPI ? (TPI only states that for T_CONN_IND, 6438 * a valid seqnum should not be -1). 6439 * 6440 * -1 means disconnect everything 6441 * regardless even on a listener. 6442 */ 6443 6444 int old_state = tcp->tcp_state; 6445 6446 /* 6447 * The connection can't be on the tcp_time_wait_head list 6448 * since it is not detached. 6449 */ 6450 ASSERT(tcp->tcp_time_wait_next == NULL); 6451 ASSERT(tcp->tcp_time_wait_prev == NULL); 6452 ASSERT(tcp->tcp_time_wait_expire == 0); 6453 ltcp = NULL; 6454 /* 6455 * If it used to be a listener, check to make sure no one else 6456 * has taken the port before switching back to LISTEN state. 6457 */ 6458 if (tcp->tcp_ipversion == IPV4_VERSION) { 6459 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6460 tcp->tcp_ipha->ipha_src, 6461 tcp->tcp_connp->conn_zoneid); 6462 if (connp != NULL) 6463 ltcp = connp->conn_tcp; 6464 } else { 6465 /* Allow tcp_bound_if listeners? */ 6466 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6467 &tcp->tcp_ip6h->ip6_src, 0, 6468 tcp->tcp_connp->conn_zoneid); 6469 if (connp != NULL) 6470 ltcp = connp->conn_tcp; 6471 } 6472 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6473 tcp->tcp_state = TCPS_LISTEN; 6474 } else if (old_state > TCPS_BOUND) { 6475 tcp->tcp_conn_req_max = 0; 6476 tcp->tcp_state = TCPS_BOUND; 6477 } 6478 if (ltcp != NULL) 6479 CONN_DEC_REF(ltcp->tcp_connp); 6480 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6481 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6482 } else if (old_state == TCPS_ESTABLISHED || 6483 old_state == TCPS_CLOSE_WAIT) { 6484 BUMP_MIB(&tcp_mib, tcpEstabResets); 6485 } 6486 6487 if (tcp->tcp_fused) 6488 tcp_unfuse(tcp); 6489 6490 mutex_enter(&tcp->tcp_eager_lock); 6491 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6492 (tcp->tcp_conn_req_cnt_q != 0)) { 6493 tcp_eager_cleanup(tcp, 0); 6494 } 6495 mutex_exit(&tcp->tcp_eager_lock); 6496 6497 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6498 tcp->tcp_rnxt, TH_RST | TH_ACK); 6499 6500 tcp_reinit(tcp); 6501 6502 if (old_state >= TCPS_ESTABLISHED) { 6503 /* Send M_FLUSH according to TPI */ 6504 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6505 } 6506 mp = mi_tpi_ok_ack_alloc(mp); 6507 if (mp) 6508 putnext(tcp->tcp_rq, mp); 6509 return; 6510 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6511 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6512 return; 6513 } 6514 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6515 /* Send M_FLUSH according to TPI */ 6516 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6517 } 6518 mp = mi_tpi_ok_ack_alloc(mp); 6519 if (mp) 6520 putnext(tcp->tcp_rq, mp); 6521 } 6522 6523 /* 6524 * Diagnostic routine used to return a string associated with the tcp state. 6525 * Note that if the caller does not supply a buffer, it will use an internal 6526 * static string. This means that if multiple threads call this function at 6527 * the same time, output can be corrupted... Note also that this function 6528 * does not check the size of the supplied buffer. The caller has to make 6529 * sure that it is big enough. 6530 */ 6531 static char * 6532 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6533 { 6534 char buf1[30]; 6535 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6536 char *buf; 6537 char *cp; 6538 in6_addr_t local, remote; 6539 char local_addrbuf[INET6_ADDRSTRLEN]; 6540 char remote_addrbuf[INET6_ADDRSTRLEN]; 6541 6542 if (sup_buf != NULL) 6543 buf = sup_buf; 6544 else 6545 buf = priv_buf; 6546 6547 if (tcp == NULL) 6548 return ("NULL_TCP"); 6549 switch (tcp->tcp_state) { 6550 case TCPS_CLOSED: 6551 cp = "TCP_CLOSED"; 6552 break; 6553 case TCPS_IDLE: 6554 cp = "TCP_IDLE"; 6555 break; 6556 case TCPS_BOUND: 6557 cp = "TCP_BOUND"; 6558 break; 6559 case TCPS_LISTEN: 6560 cp = "TCP_LISTEN"; 6561 break; 6562 case TCPS_SYN_SENT: 6563 cp = "TCP_SYN_SENT"; 6564 break; 6565 case TCPS_SYN_RCVD: 6566 cp = "TCP_SYN_RCVD"; 6567 break; 6568 case TCPS_ESTABLISHED: 6569 cp = "TCP_ESTABLISHED"; 6570 break; 6571 case TCPS_CLOSE_WAIT: 6572 cp = "TCP_CLOSE_WAIT"; 6573 break; 6574 case TCPS_FIN_WAIT_1: 6575 cp = "TCP_FIN_WAIT_1"; 6576 break; 6577 case TCPS_CLOSING: 6578 cp = "TCP_CLOSING"; 6579 break; 6580 case TCPS_LAST_ACK: 6581 cp = "TCP_LAST_ACK"; 6582 break; 6583 case TCPS_FIN_WAIT_2: 6584 cp = "TCP_FIN_WAIT_2"; 6585 break; 6586 case TCPS_TIME_WAIT: 6587 cp = "TCP_TIME_WAIT"; 6588 break; 6589 default: 6590 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6591 cp = buf1; 6592 break; 6593 } 6594 switch (format) { 6595 case DISP_ADDR_AND_PORT: 6596 if (tcp->tcp_ipversion == IPV4_VERSION) { 6597 /* 6598 * Note that we use the remote address in the tcp_b 6599 * structure. This means that it will print out 6600 * the real destination address, not the next hop's 6601 * address if source routing is used. 6602 */ 6603 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6604 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6605 6606 } else { 6607 local = tcp->tcp_ip_src_v6; 6608 remote = tcp->tcp_remote_v6; 6609 } 6610 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6611 sizeof (local_addrbuf)); 6612 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6613 sizeof (remote_addrbuf)); 6614 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6615 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6616 ntohs(tcp->tcp_fport), cp); 6617 break; 6618 case DISP_PORT_ONLY: 6619 default: 6620 (void) mi_sprintf(buf, "[%u, %u] %s", 6621 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6622 break; 6623 } 6624 6625 return (buf); 6626 } 6627 6628 /* 6629 * Called via squeue to get on to eager's perimeter to send a 6630 * TH_RST. The listener wants the eager to disappear either 6631 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 6632 * being called. 6633 */ 6634 /* ARGSUSED */ 6635 void 6636 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6637 { 6638 conn_t *econnp = (conn_t *)arg; 6639 tcp_t *eager = econnp->conn_tcp; 6640 tcp_t *listener = eager->tcp_listener; 6641 6642 /* 6643 * We could be called because listener is closing. Since 6644 * the eager is using listener's queue's, its not safe. 6645 * Better use the default queue just to send the TH_RST 6646 * out. 6647 */ 6648 eager->tcp_rq = tcp_g_q; 6649 eager->tcp_wq = WR(tcp_g_q); 6650 6651 if (eager->tcp_state > TCPS_LISTEN) { 6652 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6653 eager, eager->tcp_snxt, 0, TH_RST); 6654 } 6655 6656 /* We are here because listener wants this eager gone */ 6657 if (listener != NULL) { 6658 mutex_enter(&listener->tcp_eager_lock); 6659 tcp_eager_unlink(eager); 6660 if (eager->tcp_conn.tcp_eager_conn_ind == NULL) { 6661 /* 6662 * The eager has sent a conn_ind up to the 6663 * listener but listener decides to close 6664 * instead. We need to drop the extra ref 6665 * placed on eager in tcp_rput_data() before 6666 * sending the conn_ind to listener. 6667 */ 6668 CONN_DEC_REF(econnp); 6669 } 6670 mutex_exit(&listener->tcp_eager_lock); 6671 CONN_DEC_REF(listener->tcp_connp); 6672 } 6673 6674 if (eager->tcp_state > TCPS_BOUND) 6675 tcp_close_detached(eager); 6676 } 6677 6678 /* 6679 * Reset any eager connection hanging off this listener marked 6680 * with 'seqnum' and then reclaim it's resources. 6681 */ 6682 static boolean_t 6683 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6684 { 6685 tcp_t *eager; 6686 mblk_t *mp; 6687 6688 TCP_STAT(tcp_eager_blowoff_calls); 6689 eager = listener; 6690 mutex_enter(&listener->tcp_eager_lock); 6691 do { 6692 eager = eager->tcp_eager_next_q; 6693 if (eager == NULL) { 6694 mutex_exit(&listener->tcp_eager_lock); 6695 return (B_FALSE); 6696 } 6697 } while (eager->tcp_conn_req_seqnum != seqnum); 6698 CONN_INC_REF(eager->tcp_connp); 6699 mutex_exit(&listener->tcp_eager_lock); 6700 mp = &eager->tcp_closemp; 6701 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6702 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 6703 return (B_TRUE); 6704 } 6705 6706 /* 6707 * Reset any eager connection hanging off this listener 6708 * and then reclaim it's resources. 6709 */ 6710 static void 6711 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6712 { 6713 tcp_t *eager; 6714 mblk_t *mp; 6715 6716 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6717 6718 if (!q0_only) { 6719 /* First cleanup q */ 6720 TCP_STAT(tcp_eager_blowoff_q); 6721 eager = listener->tcp_eager_next_q; 6722 while (eager != NULL) { 6723 CONN_INC_REF(eager->tcp_connp); 6724 mp = &eager->tcp_closemp; 6725 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6726 tcp_eager_kill, eager->tcp_connp, 6727 SQTAG_TCP_EAGER_CLEANUP); 6728 eager = eager->tcp_eager_next_q; 6729 } 6730 } 6731 /* Then cleanup q0 */ 6732 TCP_STAT(tcp_eager_blowoff_q0); 6733 eager = listener->tcp_eager_next_q0; 6734 while (eager != listener) { 6735 CONN_INC_REF(eager->tcp_connp); 6736 mp = &eager->tcp_closemp; 6737 squeue_fill(eager->tcp_connp->conn_sqp, mp, 6738 tcp_eager_kill, eager->tcp_connp, 6739 SQTAG_TCP_EAGER_CLEANUP_Q0); 6740 eager = eager->tcp_eager_next_q0; 6741 } 6742 } 6743 6744 /* 6745 * If we are an eager connection hanging off a listener that hasn't 6746 * formally accepted the connection yet, get off his list and blow off 6747 * any data that we have accumulated. 6748 */ 6749 static void 6750 tcp_eager_unlink(tcp_t *tcp) 6751 { 6752 tcp_t *listener = tcp->tcp_listener; 6753 6754 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6755 ASSERT(listener != NULL); 6756 if (tcp->tcp_eager_next_q0 != NULL) { 6757 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6758 6759 /* Remove the eager tcp from q0 */ 6760 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6761 tcp->tcp_eager_prev_q0; 6762 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6763 tcp->tcp_eager_next_q0; 6764 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6765 listener->tcp_conn_req_cnt_q0--; 6766 6767 tcp->tcp_eager_next_q0 = NULL; 6768 tcp->tcp_eager_prev_q0 = NULL; 6769 6770 if (tcp->tcp_syn_rcvd_timeout != 0) { 6771 /* we have timed out before */ 6772 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6773 listener->tcp_syn_rcvd_timeout--; 6774 } 6775 } else { 6776 tcp_t **tcpp = &listener->tcp_eager_next_q; 6777 tcp_t *prev = NULL; 6778 6779 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6780 if (tcpp[0] == tcp) { 6781 if (listener->tcp_eager_last_q == tcp) { 6782 /* 6783 * If we are unlinking the last 6784 * element on the list, adjust 6785 * tail pointer. Set tail pointer 6786 * to nil when list is empty. 6787 */ 6788 ASSERT(tcp->tcp_eager_next_q == NULL); 6789 if (listener->tcp_eager_last_q == 6790 listener->tcp_eager_next_q) { 6791 listener->tcp_eager_last_q = 6792 NULL; 6793 } else { 6794 /* 6795 * We won't get here if there 6796 * is only one eager in the 6797 * list. 6798 */ 6799 ASSERT(prev != NULL); 6800 listener->tcp_eager_last_q = 6801 prev; 6802 } 6803 } 6804 tcpp[0] = tcp->tcp_eager_next_q; 6805 tcp->tcp_eager_next_q = NULL; 6806 tcp->tcp_eager_last_q = NULL; 6807 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6808 listener->tcp_conn_req_cnt_q--; 6809 break; 6810 } 6811 prev = tcpp[0]; 6812 } 6813 } 6814 tcp->tcp_listener = NULL; 6815 } 6816 6817 /* Shorthand to generate and send TPI error acks to our client */ 6818 static void 6819 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6820 { 6821 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 6822 putnext(tcp->tcp_rq, mp); 6823 } 6824 6825 /* Shorthand to generate and send TPI error acks to our client */ 6826 static void 6827 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 6828 int t_error, int sys_error) 6829 { 6830 struct T_error_ack *teackp; 6831 6832 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 6833 M_PCPROTO, T_ERROR_ACK)) != NULL) { 6834 teackp = (struct T_error_ack *)mp->b_rptr; 6835 teackp->ERROR_prim = primitive; 6836 teackp->TLI_error = t_error; 6837 teackp->UNIX_error = sys_error; 6838 putnext(tcp->tcp_rq, mp); 6839 } 6840 } 6841 6842 /* 6843 * Note: No locks are held when inspecting tcp_g_*epriv_ports 6844 * but instead the code relies on: 6845 * - the fact that the address of the array and its size never changes 6846 * - the atomic assignment of the elements of the array 6847 */ 6848 /* ARGSUSED */ 6849 static int 6850 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 6851 { 6852 int i; 6853 6854 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6855 if (tcp_g_epriv_ports[i] != 0) 6856 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 6857 } 6858 return (0); 6859 } 6860 6861 /* 6862 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6863 * threads from changing it at the same time. 6864 */ 6865 /* ARGSUSED */ 6866 static int 6867 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6868 cred_t *cr) 6869 { 6870 long new_value; 6871 int i; 6872 6873 /* 6874 * Fail the request if the new value does not lie within the 6875 * port number limits. 6876 */ 6877 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 6878 new_value <= 0 || new_value >= 65536) { 6879 return (EINVAL); 6880 } 6881 6882 mutex_enter(&tcp_epriv_port_lock); 6883 /* Check if the value is already in the list */ 6884 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6885 if (new_value == tcp_g_epriv_ports[i]) { 6886 mutex_exit(&tcp_epriv_port_lock); 6887 return (EEXIST); 6888 } 6889 } 6890 /* Find an empty slot */ 6891 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6892 if (tcp_g_epriv_ports[i] == 0) 6893 break; 6894 } 6895 if (i == tcp_g_num_epriv_ports) { 6896 mutex_exit(&tcp_epriv_port_lock); 6897 return (EOVERFLOW); 6898 } 6899 /* Set the new value */ 6900 tcp_g_epriv_ports[i] = (uint16_t)new_value; 6901 mutex_exit(&tcp_epriv_port_lock); 6902 return (0); 6903 } 6904 6905 /* 6906 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 6907 * threads from changing it at the same time. 6908 */ 6909 /* ARGSUSED */ 6910 static int 6911 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 6912 cred_t *cr) 6913 { 6914 long new_value; 6915 int i; 6916 6917 /* 6918 * Fail the request if the new value does not lie within the 6919 * port number limits. 6920 */ 6921 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 6922 new_value >= 65536) { 6923 return (EINVAL); 6924 } 6925 6926 mutex_enter(&tcp_epriv_port_lock); 6927 /* Check that the value is already in the list */ 6928 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 6929 if (tcp_g_epriv_ports[i] == new_value) 6930 break; 6931 } 6932 if (i == tcp_g_num_epriv_ports) { 6933 mutex_exit(&tcp_epriv_port_lock); 6934 return (ESRCH); 6935 } 6936 /* Clear the value */ 6937 tcp_g_epriv_ports[i] = 0; 6938 mutex_exit(&tcp_epriv_port_lock); 6939 return (0); 6940 } 6941 6942 /* Return the TPI/TLI equivalent of our current tcp_state */ 6943 static int 6944 tcp_tpistate(tcp_t *tcp) 6945 { 6946 switch (tcp->tcp_state) { 6947 case TCPS_IDLE: 6948 return (TS_UNBND); 6949 case TCPS_LISTEN: 6950 /* 6951 * Return whether there are outstanding T_CONN_IND waiting 6952 * for the matching T_CONN_RES. Therefore don't count q0. 6953 */ 6954 if (tcp->tcp_conn_req_cnt_q > 0) 6955 return (TS_WRES_CIND); 6956 else 6957 return (TS_IDLE); 6958 case TCPS_BOUND: 6959 return (TS_IDLE); 6960 case TCPS_SYN_SENT: 6961 return (TS_WCON_CREQ); 6962 case TCPS_SYN_RCVD: 6963 /* 6964 * Note: assumption: this has to the active open SYN_RCVD. 6965 * The passive instance is detached in SYN_RCVD stage of 6966 * incoming connection processing so we cannot get request 6967 * for T_info_ack on it. 6968 */ 6969 return (TS_WACK_CRES); 6970 case TCPS_ESTABLISHED: 6971 return (TS_DATA_XFER); 6972 case TCPS_CLOSE_WAIT: 6973 return (TS_WREQ_ORDREL); 6974 case TCPS_FIN_WAIT_1: 6975 return (TS_WIND_ORDREL); 6976 case TCPS_FIN_WAIT_2: 6977 return (TS_WIND_ORDREL); 6978 6979 case TCPS_CLOSING: 6980 case TCPS_LAST_ACK: 6981 case TCPS_TIME_WAIT: 6982 case TCPS_CLOSED: 6983 /* 6984 * Following TS_WACK_DREQ7 is a rendition of "not 6985 * yet TS_IDLE" TPI state. There is no best match to any 6986 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 6987 * choose a value chosen that will map to TLI/XTI level 6988 * state of TSTATECHNG (state is process of changing) which 6989 * captures what this dummy state represents. 6990 */ 6991 return (TS_WACK_DREQ7); 6992 default: 6993 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 6994 tcp->tcp_state, tcp_display(tcp, NULL, 6995 DISP_PORT_ONLY)); 6996 return (TS_UNBND); 6997 } 6998 } 6999 7000 static void 7001 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7002 { 7003 if (tcp->tcp_family == AF_INET6) 7004 *tia = tcp_g_t_info_ack_v6; 7005 else 7006 *tia = tcp_g_t_info_ack; 7007 tia->CURRENT_state = tcp_tpistate(tcp); 7008 tia->OPT_size = tcp_max_optsize; 7009 if (tcp->tcp_mss == 0) { 7010 /* Not yet set - tcp_open does not set mss */ 7011 if (tcp->tcp_ipversion == IPV4_VERSION) 7012 tia->TIDU_size = tcp_mss_def_ipv4; 7013 else 7014 tia->TIDU_size = tcp_mss_def_ipv6; 7015 } else { 7016 tia->TIDU_size = tcp->tcp_mss; 7017 } 7018 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7019 } 7020 7021 /* 7022 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7023 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7024 * tcp_g_t_info_ack. The current state of the stream is copied from 7025 * tcp_state. 7026 */ 7027 static void 7028 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7029 { 7030 t_uscalar_t cap_bits1; 7031 struct T_capability_ack *tcap; 7032 7033 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7034 freemsg(mp); 7035 return; 7036 } 7037 7038 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7039 7040 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7041 mp->b_datap->db_type, T_CAPABILITY_ACK); 7042 if (mp == NULL) 7043 return; 7044 7045 tcap = (struct T_capability_ack *)mp->b_rptr; 7046 tcap->CAP_bits1 = 0; 7047 7048 if (cap_bits1 & TC1_INFO) { 7049 tcp_copy_info(&tcap->INFO_ack, tcp); 7050 tcap->CAP_bits1 |= TC1_INFO; 7051 } 7052 7053 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7054 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7055 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7056 } 7057 7058 putnext(tcp->tcp_rq, mp); 7059 } 7060 7061 /* 7062 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7063 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7064 * The current state of the stream is copied from tcp_state. 7065 */ 7066 static void 7067 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7068 { 7069 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7070 T_INFO_ACK); 7071 if (!mp) { 7072 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7073 return; 7074 } 7075 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7076 putnext(tcp->tcp_rq, mp); 7077 } 7078 7079 /* Respond to the TPI addr request */ 7080 static void 7081 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7082 { 7083 sin_t *sin; 7084 mblk_t *ackmp; 7085 struct T_addr_ack *taa; 7086 7087 /* Make it large enough for worst case */ 7088 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7089 2 * sizeof (sin6_t), 1); 7090 if (ackmp == NULL) { 7091 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7092 return; 7093 } 7094 7095 if (tcp->tcp_ipversion == IPV6_VERSION) { 7096 tcp_addr_req_ipv6(tcp, ackmp); 7097 return; 7098 } 7099 taa = (struct T_addr_ack *)ackmp->b_rptr; 7100 7101 bzero(taa, sizeof (struct T_addr_ack)); 7102 ackmp->b_wptr = (uchar_t *)&taa[1]; 7103 7104 taa->PRIM_type = T_ADDR_ACK; 7105 ackmp->b_datap->db_type = M_PCPROTO; 7106 7107 /* 7108 * Note: Following code assumes 32 bit alignment of basic 7109 * data structures like sin_t and struct T_addr_ack. 7110 */ 7111 if (tcp->tcp_state >= TCPS_BOUND) { 7112 /* 7113 * Fill in local address 7114 */ 7115 taa->LOCADDR_length = sizeof (sin_t); 7116 taa->LOCADDR_offset = sizeof (*taa); 7117 7118 sin = (sin_t *)&taa[1]; 7119 7120 /* Fill zeroes and then intialize non-zero fields */ 7121 *sin = sin_null; 7122 7123 sin->sin_family = AF_INET; 7124 7125 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7126 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7127 7128 ackmp->b_wptr = (uchar_t *)&sin[1]; 7129 7130 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7131 /* 7132 * Fill in Remote address 7133 */ 7134 taa->REMADDR_length = sizeof (sin_t); 7135 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7136 taa->LOCADDR_length); 7137 7138 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7139 *sin = sin_null; 7140 sin->sin_family = AF_INET; 7141 sin->sin_addr.s_addr = tcp->tcp_remote; 7142 sin->sin_port = tcp->tcp_fport; 7143 7144 ackmp->b_wptr = (uchar_t *)&sin[1]; 7145 } 7146 } 7147 putnext(tcp->tcp_rq, ackmp); 7148 } 7149 7150 /* Assumes that tcp_addr_req gets enough space and alignment */ 7151 static void 7152 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7153 { 7154 sin6_t *sin6; 7155 struct T_addr_ack *taa; 7156 7157 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7158 ASSERT(OK_32PTR(ackmp->b_rptr)); 7159 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7160 2 * sizeof (sin6_t)); 7161 7162 taa = (struct T_addr_ack *)ackmp->b_rptr; 7163 7164 bzero(taa, sizeof (struct T_addr_ack)); 7165 ackmp->b_wptr = (uchar_t *)&taa[1]; 7166 7167 taa->PRIM_type = T_ADDR_ACK; 7168 ackmp->b_datap->db_type = M_PCPROTO; 7169 7170 /* 7171 * Note: Following code assumes 32 bit alignment of basic 7172 * data structures like sin6_t and struct T_addr_ack. 7173 */ 7174 if (tcp->tcp_state >= TCPS_BOUND) { 7175 /* 7176 * Fill in local address 7177 */ 7178 taa->LOCADDR_length = sizeof (sin6_t); 7179 taa->LOCADDR_offset = sizeof (*taa); 7180 7181 sin6 = (sin6_t *)&taa[1]; 7182 *sin6 = sin6_null; 7183 7184 sin6->sin6_family = AF_INET6; 7185 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7186 sin6->sin6_port = tcp->tcp_lport; 7187 7188 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7189 7190 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7191 /* 7192 * Fill in Remote address 7193 */ 7194 taa->REMADDR_length = sizeof (sin6_t); 7195 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7196 taa->LOCADDR_length); 7197 7198 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7199 *sin6 = sin6_null; 7200 sin6->sin6_family = AF_INET6; 7201 sin6->sin6_flowinfo = 7202 tcp->tcp_ip6h->ip6_vcf & 7203 ~IPV6_VERS_AND_FLOW_MASK; 7204 sin6->sin6_addr = tcp->tcp_remote_v6; 7205 sin6->sin6_port = tcp->tcp_fport; 7206 7207 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7208 } 7209 } 7210 putnext(tcp->tcp_rq, ackmp); 7211 } 7212 7213 /* 7214 * Handle reinitialization of a tcp structure. 7215 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7216 */ 7217 static void 7218 tcp_reinit(tcp_t *tcp) 7219 { 7220 mblk_t *mp; 7221 int err; 7222 7223 TCP_STAT(tcp_reinit_calls); 7224 7225 /* tcp_reinit should never be called for detached tcp_t's */ 7226 ASSERT(tcp->tcp_listener == NULL); 7227 ASSERT((tcp->tcp_family == AF_INET && 7228 tcp->tcp_ipversion == IPV4_VERSION) || 7229 (tcp->tcp_family == AF_INET6 && 7230 (tcp->tcp_ipversion == IPV4_VERSION || 7231 tcp->tcp_ipversion == IPV6_VERSION))); 7232 7233 /* Cancel outstanding timers */ 7234 tcp_timers_stop(tcp); 7235 7236 /* 7237 * Reset everything in the state vector, after updating global 7238 * MIB data from instance counters. 7239 */ 7240 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 7241 tcp->tcp_ibsegs = 0; 7242 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 7243 tcp->tcp_obsegs = 0; 7244 7245 tcp_close_mpp(&tcp->tcp_xmit_head); 7246 if (tcp->tcp_snd_zcopy_aware) 7247 tcp_zcopy_notify(tcp); 7248 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7249 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7250 if (tcp->tcp_flow_stopped && 7251 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7252 tcp_clrqfull(tcp); 7253 } 7254 tcp_close_mpp(&tcp->tcp_reass_head); 7255 tcp->tcp_reass_tail = NULL; 7256 if (tcp->tcp_rcv_list != NULL) { 7257 /* Free b_next chain */ 7258 tcp_close_mpp(&tcp->tcp_rcv_list); 7259 tcp->tcp_rcv_last_head = NULL; 7260 tcp->tcp_rcv_last_tail = NULL; 7261 tcp->tcp_rcv_cnt = 0; 7262 } 7263 tcp->tcp_rcv_last_tail = NULL; 7264 7265 if ((mp = tcp->tcp_urp_mp) != NULL) { 7266 freemsg(mp); 7267 tcp->tcp_urp_mp = NULL; 7268 } 7269 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7270 freemsg(mp); 7271 tcp->tcp_urp_mark_mp = NULL; 7272 } 7273 if (tcp->tcp_fused_sigurg_mp != NULL) { 7274 freeb(tcp->tcp_fused_sigurg_mp); 7275 tcp->tcp_fused_sigurg_mp = NULL; 7276 } 7277 7278 /* 7279 * Following is a union with two members which are 7280 * identical types and size so the following cleanup 7281 * is enough. 7282 */ 7283 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7284 7285 CL_INET_DISCONNECT(tcp); 7286 7287 /* 7288 * The connection can't be on the tcp_time_wait_head list 7289 * since it is not detached. 7290 */ 7291 ASSERT(tcp->tcp_time_wait_next == NULL); 7292 ASSERT(tcp->tcp_time_wait_prev == NULL); 7293 ASSERT(tcp->tcp_time_wait_expire == 0); 7294 7295 if (tcp->tcp_kssl_pending) { 7296 tcp->tcp_kssl_pending = B_FALSE; 7297 7298 /* Don't reset if the initialized by bind. */ 7299 if (tcp->tcp_kssl_ent != NULL) { 7300 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7301 KSSL_NO_PROXY); 7302 } 7303 } 7304 if (tcp->tcp_kssl_ctx != NULL) { 7305 kssl_release_ctx(tcp->tcp_kssl_ctx); 7306 tcp->tcp_kssl_ctx = NULL; 7307 } 7308 7309 /* 7310 * Reset/preserve other values 7311 */ 7312 tcp_reinit_values(tcp); 7313 ipcl_hash_remove(tcp->tcp_connp); 7314 conn_delete_ire(tcp->tcp_connp, NULL); 7315 7316 if (tcp->tcp_conn_req_max != 0) { 7317 /* 7318 * This is the case when a TLI program uses the same 7319 * transport end point to accept a connection. This 7320 * makes the TCP both a listener and acceptor. When 7321 * this connection is closed, we need to set the state 7322 * back to TCPS_LISTEN. Make sure that the eager list 7323 * is reinitialized. 7324 * 7325 * Note that this stream is still bound to the four 7326 * tuples of the previous connection in IP. If a new 7327 * SYN with different foreign address comes in, IP will 7328 * not find it and will send it to the global queue. In 7329 * the global queue, TCP will do a tcp_lookup_listener() 7330 * to find this stream. This works because this stream 7331 * is only removed from connected hash. 7332 * 7333 */ 7334 tcp->tcp_state = TCPS_LISTEN; 7335 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7336 tcp->tcp_connp->conn_recv = tcp_conn_request; 7337 if (tcp->tcp_family == AF_INET6) { 7338 ASSERT(tcp->tcp_connp->conn_af_isv6); 7339 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7340 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7341 } else { 7342 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7343 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7344 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7345 } 7346 } else { 7347 tcp->tcp_state = TCPS_BOUND; 7348 } 7349 7350 /* 7351 * Initialize to default values 7352 * Can't fail since enough header template space already allocated 7353 * at open(). 7354 */ 7355 err = tcp_init_values(tcp); 7356 ASSERT(err == 0); 7357 /* Restore state in tcp_tcph */ 7358 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7359 if (tcp->tcp_ipversion == IPV4_VERSION) 7360 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7361 else 7362 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7363 /* 7364 * Copy of the src addr. in tcp_t is needed in tcp_t 7365 * since the lookup funcs can only lookup on tcp_t 7366 */ 7367 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7368 7369 ASSERT(tcp->tcp_ptpbhn != NULL); 7370 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7371 tcp->tcp_rwnd = tcp_recv_hiwat; 7372 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7373 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7374 } 7375 7376 /* 7377 * Force values to zero that need be zero. 7378 * Do not touch values asociated with the BOUND or LISTEN state 7379 * since the connection will end up in that state after the reinit. 7380 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7381 * structure! 7382 */ 7383 static void 7384 tcp_reinit_values(tcp) 7385 tcp_t *tcp; 7386 { 7387 #ifndef lint 7388 #define DONTCARE(x) 7389 #define PRESERVE(x) 7390 #else 7391 #define DONTCARE(x) ((x) = (x)) 7392 #define PRESERVE(x) ((x) = (x)) 7393 #endif /* lint */ 7394 7395 PRESERVE(tcp->tcp_bind_hash); 7396 PRESERVE(tcp->tcp_ptpbhn); 7397 PRESERVE(tcp->tcp_acceptor_hash); 7398 PRESERVE(tcp->tcp_ptpahn); 7399 7400 /* Should be ASSERT NULL on these with new code! */ 7401 ASSERT(tcp->tcp_time_wait_next == NULL); 7402 ASSERT(tcp->tcp_time_wait_prev == NULL); 7403 ASSERT(tcp->tcp_time_wait_expire == 0); 7404 PRESERVE(tcp->tcp_state); 7405 PRESERVE(tcp->tcp_rq); 7406 PRESERVE(tcp->tcp_wq); 7407 7408 ASSERT(tcp->tcp_xmit_head == NULL); 7409 ASSERT(tcp->tcp_xmit_last == NULL); 7410 ASSERT(tcp->tcp_unsent == 0); 7411 ASSERT(tcp->tcp_xmit_tail == NULL); 7412 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7413 7414 tcp->tcp_snxt = 0; /* Displayed in mib */ 7415 tcp->tcp_suna = 0; /* Displayed in mib */ 7416 tcp->tcp_swnd = 0; 7417 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7418 7419 ASSERT(tcp->tcp_ibsegs == 0); 7420 ASSERT(tcp->tcp_obsegs == 0); 7421 7422 if (tcp->tcp_iphc != NULL) { 7423 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7424 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7425 } 7426 7427 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7428 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7429 DONTCARE(tcp->tcp_ipha); 7430 DONTCARE(tcp->tcp_ip6h); 7431 DONTCARE(tcp->tcp_ip_hdr_len); 7432 DONTCARE(tcp->tcp_tcph); 7433 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7434 tcp->tcp_valid_bits = 0; 7435 7436 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7437 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7438 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7439 tcp->tcp_last_rcv_lbolt = 0; 7440 7441 tcp->tcp_init_cwnd = 0; 7442 7443 tcp->tcp_urp_last_valid = 0; 7444 tcp->tcp_hard_binding = 0; 7445 tcp->tcp_hard_bound = 0; 7446 PRESERVE(tcp->tcp_cred); 7447 PRESERVE(tcp->tcp_cpid); 7448 PRESERVE(tcp->tcp_exclbind); 7449 7450 tcp->tcp_fin_acked = 0; 7451 tcp->tcp_fin_rcvd = 0; 7452 tcp->tcp_fin_sent = 0; 7453 tcp->tcp_ordrel_done = 0; 7454 7455 tcp->tcp_debug = 0; 7456 tcp->tcp_dontroute = 0; 7457 tcp->tcp_broadcast = 0; 7458 7459 tcp->tcp_useloopback = 0; 7460 tcp->tcp_reuseaddr = 0; 7461 tcp->tcp_oobinline = 0; 7462 tcp->tcp_dgram_errind = 0; 7463 7464 tcp->tcp_detached = 0; 7465 tcp->tcp_bind_pending = 0; 7466 tcp->tcp_unbind_pending = 0; 7467 tcp->tcp_deferred_clean_death = 0; 7468 7469 tcp->tcp_snd_ws_ok = B_FALSE; 7470 tcp->tcp_snd_ts_ok = B_FALSE; 7471 tcp->tcp_linger = 0; 7472 tcp->tcp_ka_enabled = 0; 7473 tcp->tcp_zero_win_probe = 0; 7474 7475 tcp->tcp_loopback = 0; 7476 tcp->tcp_localnet = 0; 7477 tcp->tcp_syn_defense = 0; 7478 tcp->tcp_set_timer = 0; 7479 7480 tcp->tcp_active_open = 0; 7481 ASSERT(tcp->tcp_timeout == B_FALSE); 7482 tcp->tcp_rexmit = B_FALSE; 7483 tcp->tcp_xmit_zc_clean = B_FALSE; 7484 7485 tcp->tcp_snd_sack_ok = B_FALSE; 7486 PRESERVE(tcp->tcp_recvdstaddr); 7487 tcp->tcp_hwcksum = B_FALSE; 7488 7489 tcp->tcp_ire_ill_check_done = B_FALSE; 7490 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7491 7492 tcp->tcp_mdt = B_FALSE; 7493 tcp->tcp_mdt_hdr_head = 0; 7494 tcp->tcp_mdt_hdr_tail = 0; 7495 7496 tcp->tcp_conn_def_q0 = 0; 7497 tcp->tcp_ip_forward_progress = B_FALSE; 7498 tcp->tcp_anon_priv_bind = 0; 7499 tcp->tcp_ecn_ok = B_FALSE; 7500 7501 tcp->tcp_cwr = B_FALSE; 7502 tcp->tcp_ecn_echo_on = B_FALSE; 7503 7504 if (tcp->tcp_sack_info != NULL) { 7505 if (tcp->tcp_notsack_list != NULL) { 7506 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7507 } 7508 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7509 tcp->tcp_sack_info = NULL; 7510 } 7511 7512 tcp->tcp_rcv_ws = 0; 7513 tcp->tcp_snd_ws = 0; 7514 tcp->tcp_ts_recent = 0; 7515 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7516 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7517 tcp->tcp_if_mtu = 0; 7518 7519 ASSERT(tcp->tcp_reass_head == NULL); 7520 ASSERT(tcp->tcp_reass_tail == NULL); 7521 7522 tcp->tcp_cwnd_cnt = 0; 7523 7524 ASSERT(tcp->tcp_rcv_list == NULL); 7525 ASSERT(tcp->tcp_rcv_last_head == NULL); 7526 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7527 ASSERT(tcp->tcp_rcv_cnt == 0); 7528 7529 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7530 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7531 tcp->tcp_csuna = 0; 7532 7533 tcp->tcp_rto = 0; /* Displayed in MIB */ 7534 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7535 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7536 tcp->tcp_rtt_update = 0; 7537 7538 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7539 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7540 7541 tcp->tcp_rack = 0; /* Displayed in mib */ 7542 tcp->tcp_rack_cnt = 0; 7543 tcp->tcp_rack_cur_max = 0; 7544 tcp->tcp_rack_abs_max = 0; 7545 7546 tcp->tcp_max_swnd = 0; 7547 7548 ASSERT(tcp->tcp_listener == NULL); 7549 7550 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7551 7552 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7553 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7554 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7555 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7556 7557 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7558 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7559 PRESERVE(tcp->tcp_conn_req_max); 7560 PRESERVE(tcp->tcp_conn_req_seqnum); 7561 7562 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7563 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7564 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7565 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7566 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7567 7568 tcp->tcp_lingertime = 0; 7569 7570 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7571 ASSERT(tcp->tcp_urp_mp == NULL); 7572 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7573 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7574 7575 ASSERT(tcp->tcp_eager_next_q == NULL); 7576 ASSERT(tcp->tcp_eager_last_q == NULL); 7577 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7578 tcp->tcp_eager_prev_q0 == NULL) || 7579 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7580 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7581 7582 tcp->tcp_client_errno = 0; 7583 7584 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7585 7586 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7587 7588 PRESERVE(tcp->tcp_bound_source_v6); 7589 tcp->tcp_last_sent_len = 0; 7590 tcp->tcp_dupack_cnt = 0; 7591 7592 tcp->tcp_fport = 0; /* Displayed in MIB */ 7593 PRESERVE(tcp->tcp_lport); 7594 7595 PRESERVE(tcp->tcp_acceptor_lockp); 7596 7597 ASSERT(tcp->tcp_ordrelid == 0); 7598 PRESERVE(tcp->tcp_acceptor_id); 7599 DONTCARE(tcp->tcp_ipsec_overhead); 7600 7601 /* 7602 * If tcp_tracing flag is ON (i.e. We have a trace buffer 7603 * in tcp structure and now tracing), Re-initialize all 7604 * members of tcp_traceinfo. 7605 */ 7606 if (tcp->tcp_tracebuf != NULL) { 7607 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 7608 } 7609 7610 PRESERVE(tcp->tcp_family); 7611 if (tcp->tcp_family == AF_INET6) { 7612 tcp->tcp_ipversion = IPV6_VERSION; 7613 tcp->tcp_mss = tcp_mss_def_ipv6; 7614 } else { 7615 tcp->tcp_ipversion = IPV4_VERSION; 7616 tcp->tcp_mss = tcp_mss_def_ipv4; 7617 } 7618 7619 tcp->tcp_bound_if = 0; 7620 tcp->tcp_ipv6_recvancillary = 0; 7621 tcp->tcp_recvifindex = 0; 7622 tcp->tcp_recvhops = 0; 7623 tcp->tcp_closed = 0; 7624 tcp->tcp_cleandeathtag = 0; 7625 if (tcp->tcp_hopopts != NULL) { 7626 mi_free(tcp->tcp_hopopts); 7627 tcp->tcp_hopopts = NULL; 7628 tcp->tcp_hopoptslen = 0; 7629 } 7630 ASSERT(tcp->tcp_hopoptslen == 0); 7631 if (tcp->tcp_dstopts != NULL) { 7632 mi_free(tcp->tcp_dstopts); 7633 tcp->tcp_dstopts = NULL; 7634 tcp->tcp_dstoptslen = 0; 7635 } 7636 ASSERT(tcp->tcp_dstoptslen == 0); 7637 if (tcp->tcp_rtdstopts != NULL) { 7638 mi_free(tcp->tcp_rtdstopts); 7639 tcp->tcp_rtdstopts = NULL; 7640 tcp->tcp_rtdstoptslen = 0; 7641 } 7642 ASSERT(tcp->tcp_rtdstoptslen == 0); 7643 if (tcp->tcp_rthdr != NULL) { 7644 mi_free(tcp->tcp_rthdr); 7645 tcp->tcp_rthdr = NULL; 7646 tcp->tcp_rthdrlen = 0; 7647 } 7648 ASSERT(tcp->tcp_rthdrlen == 0); 7649 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7650 7651 /* Reset fusion-related fields */ 7652 tcp->tcp_fused = B_FALSE; 7653 tcp->tcp_unfusable = B_FALSE; 7654 tcp->tcp_fused_sigurg = B_FALSE; 7655 tcp->tcp_direct_sockfs = B_FALSE; 7656 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7657 tcp->tcp_loopback_peer = NULL; 7658 tcp->tcp_fuse_rcv_hiwater = 0; 7659 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7660 tcp->tcp_fuse_rcv_unread_cnt = 0; 7661 7662 tcp->tcp_in_ack_unsent = 0; 7663 tcp->tcp_cork = B_FALSE; 7664 7665 PRESERVE(tcp->tcp_squeue_bytes); 7666 7667 ASSERT(tcp->tcp_kssl_ctx == NULL); 7668 ASSERT(!tcp->tcp_kssl_pending); 7669 PRESERVE(tcp->tcp_kssl_ent); 7670 7671 #undef DONTCARE 7672 #undef PRESERVE 7673 } 7674 7675 /* 7676 * Allocate necessary resources and initialize state vector. 7677 * Guaranteed not to fail so that when an error is returned, 7678 * the caller doesn't need to do any additional cleanup. 7679 */ 7680 int 7681 tcp_init(tcp_t *tcp, queue_t *q) 7682 { 7683 int err; 7684 7685 tcp->tcp_rq = q; 7686 tcp->tcp_wq = WR(q); 7687 tcp->tcp_state = TCPS_IDLE; 7688 if ((err = tcp_init_values(tcp)) != 0) 7689 tcp_timers_stop(tcp); 7690 return (err); 7691 } 7692 7693 static int 7694 tcp_init_values(tcp_t *tcp) 7695 { 7696 int err; 7697 7698 ASSERT((tcp->tcp_family == AF_INET && 7699 tcp->tcp_ipversion == IPV4_VERSION) || 7700 (tcp->tcp_family == AF_INET6 && 7701 (tcp->tcp_ipversion == IPV4_VERSION || 7702 tcp->tcp_ipversion == IPV6_VERSION))); 7703 7704 /* 7705 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7706 * will be close to tcp_rexmit_interval_initial. By doing this, we 7707 * allow the algorithm to adjust slowly to large fluctuations of RTT 7708 * during first few transmissions of a connection as seen in slow 7709 * links. 7710 */ 7711 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 7712 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 7713 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7714 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7715 tcp_conn_grace_period; 7716 if (tcp->tcp_rto < tcp_rexmit_interval_min) 7717 tcp->tcp_rto = tcp_rexmit_interval_min; 7718 tcp->tcp_timer_backoff = 0; 7719 tcp->tcp_ms_we_have_waited = 0; 7720 tcp->tcp_last_recv_time = lbolt; 7721 tcp->tcp_cwnd_max = tcp_cwnd_max_; 7722 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7723 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7724 7725 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 7726 7727 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 7728 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 7729 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 7730 /* 7731 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7732 * passive open. 7733 */ 7734 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 7735 7736 tcp->tcp_naglim = tcp_naglim_def; 7737 7738 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7739 7740 tcp->tcp_mdt_hdr_head = 0; 7741 tcp->tcp_mdt_hdr_tail = 0; 7742 7743 /* Reset fusion-related fields */ 7744 tcp->tcp_fused = B_FALSE; 7745 tcp->tcp_unfusable = B_FALSE; 7746 tcp->tcp_fused_sigurg = B_FALSE; 7747 tcp->tcp_direct_sockfs = B_FALSE; 7748 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7749 tcp->tcp_loopback_peer = NULL; 7750 tcp->tcp_fuse_rcv_hiwater = 0; 7751 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7752 tcp->tcp_fuse_rcv_unread_cnt = 0; 7753 7754 /* Initialize the header template */ 7755 if (tcp->tcp_ipversion == IPV4_VERSION) { 7756 err = tcp_header_init_ipv4(tcp); 7757 } else { 7758 err = tcp_header_init_ipv6(tcp); 7759 } 7760 if (err) 7761 return (err); 7762 7763 /* 7764 * Init the window scale to the max so tcp_rwnd_set() won't pare 7765 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7766 */ 7767 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7768 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 7769 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 7770 7771 tcp->tcp_cork = B_FALSE; 7772 /* 7773 * Init the tcp_debug option. This value determines whether TCP 7774 * calls strlog() to print out debug messages. Doing this 7775 * initialization here means that this value is not inherited thru 7776 * tcp_reinit(). 7777 */ 7778 tcp->tcp_debug = tcp_dbg; 7779 7780 tcp->tcp_ka_interval = tcp_keepalive_interval; 7781 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 7782 7783 return (0); 7784 } 7785 7786 /* 7787 * Initialize the IPv4 header. Loses any record of any IP options. 7788 */ 7789 static int 7790 tcp_header_init_ipv4(tcp_t *tcp) 7791 { 7792 tcph_t *tcph; 7793 uint32_t sum; 7794 7795 /* 7796 * This is a simple initialization. If there's 7797 * already a template, it should never be too small, 7798 * so reuse it. Otherwise, allocate space for the new one. 7799 */ 7800 if (tcp->tcp_iphc == NULL) { 7801 ASSERT(tcp->tcp_iphc_len == 0); 7802 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7803 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7804 if (tcp->tcp_iphc == NULL) { 7805 tcp->tcp_iphc_len = 0; 7806 return (ENOMEM); 7807 } 7808 } 7809 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7810 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 7811 tcp->tcp_ip6h = NULL; 7812 tcp->tcp_ipversion = IPV4_VERSION; 7813 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 7814 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 7815 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 7816 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 7817 tcp->tcp_ipha->ipha_version_and_hdr_length 7818 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 7819 tcp->tcp_ipha->ipha_ident = 0; 7820 7821 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 7822 tcp->tcp_tos = 0; 7823 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 7824 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 7825 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 7826 7827 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 7828 tcp->tcp_tcph = tcph; 7829 tcph->th_offset_and_rsrvd[0] = (5 << 4); 7830 /* 7831 * IP wants our header length in the checksum field to 7832 * allow it to perform a single pseudo-header+checksum 7833 * calculation on behalf of TCP. 7834 * Include the adjustment for a source route once IP_OPTIONS is set. 7835 */ 7836 sum = sizeof (tcph_t) + tcp->tcp_sum; 7837 sum = (sum >> 16) + (sum & 0xFFFF); 7838 U16_TO_ABE16(sum, tcph->th_sum); 7839 return (0); 7840 } 7841 7842 /* 7843 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 7844 */ 7845 static int 7846 tcp_header_init_ipv6(tcp_t *tcp) 7847 { 7848 tcph_t *tcph; 7849 uint32_t sum; 7850 7851 /* 7852 * This is a simple initialization. If there's 7853 * already a template, it should never be too small, 7854 * so reuse it. Otherwise, allocate space for the new one. 7855 * Ensure that there is enough space to "downgrade" the tcp_t 7856 * to an IPv4 tcp_t. This requires having space for a full load 7857 * of IPv4 options, as well as a full load of TCP options 7858 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 7859 * than a v6 header and a TCP header with a full load of TCP options 7860 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 7861 * We want to avoid reallocation in the "downgraded" case when 7862 * processing outbound IPv4 options. 7863 */ 7864 if (tcp->tcp_iphc == NULL) { 7865 ASSERT(tcp->tcp_iphc_len == 0); 7866 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 7867 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 7868 if (tcp->tcp_iphc == NULL) { 7869 tcp->tcp_iphc_len = 0; 7870 return (ENOMEM); 7871 } 7872 } 7873 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7874 tcp->tcp_ipversion = IPV6_VERSION; 7875 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 7876 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 7877 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 7878 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 7879 tcp->tcp_ipha = NULL; 7880 7881 /* Initialize the header template */ 7882 7883 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 7884 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 7885 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 7886 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 7887 7888 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 7889 tcp->tcp_tcph = tcph; 7890 tcph->th_offset_and_rsrvd[0] = (5 << 4); 7891 /* 7892 * IP wants our header length in the checksum field to 7893 * allow it to perform a single psuedo-header+checksum 7894 * calculation on behalf of TCP. 7895 * Include the adjustment for a source route when IPV6_RTHDR is set. 7896 */ 7897 sum = sizeof (tcph_t) + tcp->tcp_sum; 7898 sum = (sum >> 16) + (sum & 0xFFFF); 7899 U16_TO_ABE16(sum, tcph->th_sum); 7900 return (0); 7901 } 7902 7903 /* At minimum we need 4 bytes in the TCP header for the lookup */ 7904 #define ICMP_MIN_TCP_HDR 12 7905 7906 /* 7907 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 7908 * passed up by IP. The message is always received on the correct tcp_t. 7909 * Assumes that IP has pulled up everything up to and including the ICMP header. 7910 */ 7911 void 7912 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 7913 { 7914 icmph_t *icmph; 7915 ipha_t *ipha; 7916 int iph_hdr_length; 7917 tcph_t *tcph; 7918 boolean_t ipsec_mctl = B_FALSE; 7919 boolean_t secure; 7920 mblk_t *first_mp = mp; 7921 uint32_t new_mss; 7922 uint32_t ratio; 7923 size_t mp_size = MBLKL(mp); 7924 uint32_t seg_ack; 7925 uint32_t seg_seq; 7926 7927 /* Assume IP provides aligned packets - otherwise toss */ 7928 if (!OK_32PTR(mp->b_rptr)) { 7929 freemsg(mp); 7930 return; 7931 } 7932 7933 /* 7934 * Since ICMP errors are normal data marked with M_CTL when sent 7935 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 7936 * packets starting with an ipsec_info_t, see ipsec_info.h. 7937 */ 7938 if ((mp_size == sizeof (ipsec_info_t)) && 7939 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 7940 ASSERT(mp->b_cont != NULL); 7941 mp = mp->b_cont; 7942 /* IP should have done this */ 7943 ASSERT(OK_32PTR(mp->b_rptr)); 7944 mp_size = MBLKL(mp); 7945 ipsec_mctl = B_TRUE; 7946 } 7947 7948 /* 7949 * Verify that we have a complete outer IP header. If not, drop it. 7950 */ 7951 if (mp_size < sizeof (ipha_t)) { 7952 noticmpv4: 7953 freemsg(first_mp); 7954 return; 7955 } 7956 7957 ipha = (ipha_t *)mp->b_rptr; 7958 /* 7959 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 7960 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 7961 */ 7962 switch (IPH_HDR_VERSION(ipha)) { 7963 case IPV6_VERSION: 7964 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 7965 return; 7966 case IPV4_VERSION: 7967 break; 7968 default: 7969 goto noticmpv4; 7970 } 7971 7972 /* Skip past the outer IP and ICMP headers */ 7973 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7974 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 7975 /* 7976 * If we don't have the correct outer IP header length or if the ULP 7977 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 7978 * send it upstream. 7979 */ 7980 if (iph_hdr_length < sizeof (ipha_t) || 7981 ipha->ipha_protocol != IPPROTO_ICMP || 7982 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 7983 goto noticmpv4; 7984 } 7985 ipha = (ipha_t *)&icmph[1]; 7986 7987 /* Skip past the inner IP and find the ULP header */ 7988 iph_hdr_length = IPH_HDR_LENGTH(ipha); 7989 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 7990 /* 7991 * If we don't have the correct inner IP header length or if the ULP 7992 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 7993 * bytes of TCP header, drop it. 7994 */ 7995 if (iph_hdr_length < sizeof (ipha_t) || 7996 ipha->ipha_protocol != IPPROTO_TCP || 7997 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 7998 goto noticmpv4; 7999 } 8000 8001 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8002 if (ipsec_mctl) { 8003 secure = ipsec_in_is_secure(first_mp); 8004 } else { 8005 secure = B_FALSE; 8006 } 8007 if (secure) { 8008 /* 8009 * If we are willing to accept this in clear 8010 * we don't have to verify policy. 8011 */ 8012 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8013 if (!tcp_check_policy(tcp, first_mp, 8014 ipha, NULL, secure, ipsec_mctl)) { 8015 /* 8016 * tcp_check_policy called 8017 * ip_drop_packet() on failure. 8018 */ 8019 return; 8020 } 8021 } 8022 } 8023 } else if (ipsec_mctl) { 8024 /* 8025 * This is a hard_bound connection. IP has already 8026 * verified policy. We don't have to do it again. 8027 */ 8028 freeb(first_mp); 8029 first_mp = mp; 8030 ipsec_mctl = B_FALSE; 8031 } 8032 8033 seg_ack = ABE32_TO_U32(tcph->th_ack); 8034 seg_seq = ABE32_TO_U32(tcph->th_seq); 8035 /* 8036 * TCP SHOULD check that the TCP sequence number contained in 8037 * payload of the ICMP error message is within the range 8038 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8039 */ 8040 if (SEQ_LT(seg_seq, tcp->tcp_suna) || 8041 SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8042 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8043 /* 8044 * If the ICMP message is bogus, should we kill the 8045 * connection, or should we just drop the bogus ICMP 8046 * message? It would probably make more sense to just 8047 * drop the message so that if this one managed to get 8048 * in, the real connection should not suffer. 8049 */ 8050 goto noticmpv4; 8051 } 8052 8053 switch (icmph->icmph_type) { 8054 case ICMP_DEST_UNREACHABLE: 8055 switch (icmph->icmph_code) { 8056 case ICMP_FRAGMENTATION_NEEDED: 8057 /* 8058 * Reduce the MSS based on the new MTU. This will 8059 * eliminate any fragmentation locally. 8060 * N.B. There may well be some funny side-effects on 8061 * the local send policy and the remote receive policy. 8062 * Pending further research, we provide 8063 * tcp_ignore_path_mtu just in case this proves 8064 * disastrous somewhere. 8065 * 8066 * After updating the MSS, retransmit part of the 8067 * dropped segment using the new mss by calling 8068 * tcp_wput_data(). Need to adjust all those 8069 * params to make sure tcp_wput_data() work properly. 8070 */ 8071 if (tcp_ignore_path_mtu) 8072 break; 8073 8074 /* 8075 * Decrease the MSS by time stamp options 8076 * IP options and IPSEC options. tcp_hdr_len 8077 * includes time stamp option and IP option 8078 * length. 8079 */ 8080 8081 new_mss = ntohs(icmph->icmph_du_mtu) - 8082 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8083 8084 /* 8085 * Only update the MSS if the new one is 8086 * smaller than the previous one. This is 8087 * to avoid problems when getting multiple 8088 * ICMP errors for the same MTU. 8089 */ 8090 if (new_mss >= tcp->tcp_mss) 8091 break; 8092 8093 /* 8094 * Stop doing PMTU if new_mss is less than 68 8095 * or less than tcp_mss_min. 8096 * The value 68 comes from rfc 1191. 8097 */ 8098 if (new_mss < MAX(68, tcp_mss_min)) 8099 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8100 0; 8101 8102 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8103 ASSERT(ratio >= 1); 8104 tcp_mss_set(tcp, new_mss); 8105 8106 /* 8107 * Make sure we have something to 8108 * send. 8109 */ 8110 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8111 (tcp->tcp_xmit_head != NULL)) { 8112 /* 8113 * Shrink tcp_cwnd in 8114 * proportion to the old MSS/new MSS. 8115 */ 8116 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8117 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8118 (tcp->tcp_unsent == 0)) { 8119 tcp->tcp_rexmit_max = tcp->tcp_fss; 8120 } else { 8121 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8122 } 8123 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8124 tcp->tcp_rexmit = B_TRUE; 8125 tcp->tcp_dupack_cnt = 0; 8126 tcp->tcp_snd_burst = TCP_CWND_SS; 8127 tcp_ss_rexmit(tcp); 8128 } 8129 break; 8130 case ICMP_PORT_UNREACHABLE: 8131 case ICMP_PROTOCOL_UNREACHABLE: 8132 switch (tcp->tcp_state) { 8133 case TCPS_SYN_SENT: 8134 case TCPS_SYN_RCVD: 8135 /* 8136 * ICMP can snipe away incipient 8137 * TCP connections as long as 8138 * seq number is same as initial 8139 * send seq number. 8140 */ 8141 if (seg_seq == tcp->tcp_iss) { 8142 (void) tcp_clean_death(tcp, 8143 ECONNREFUSED, 6); 8144 } 8145 break; 8146 } 8147 break; 8148 case ICMP_HOST_UNREACHABLE: 8149 case ICMP_NET_UNREACHABLE: 8150 /* Record the error in case we finally time out. */ 8151 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8152 tcp->tcp_client_errno = EHOSTUNREACH; 8153 else 8154 tcp->tcp_client_errno = ENETUNREACH; 8155 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8156 if (tcp->tcp_listener != NULL && 8157 tcp->tcp_listener->tcp_syn_defense) { 8158 /* 8159 * Ditch the half-open connection if we 8160 * suspect a SYN attack is under way. 8161 */ 8162 tcp_ip_ire_mark_advice(tcp); 8163 (void) tcp_clean_death(tcp, 8164 tcp->tcp_client_errno, 7); 8165 } 8166 } 8167 break; 8168 default: 8169 break; 8170 } 8171 break; 8172 case ICMP_SOURCE_QUENCH: { 8173 /* 8174 * use a global boolean to control 8175 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8176 * The default is false. 8177 */ 8178 if (tcp_icmp_source_quench) { 8179 /* 8180 * Reduce the sending rate as if we got a 8181 * retransmit timeout 8182 */ 8183 uint32_t npkt; 8184 8185 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8186 tcp->tcp_mss; 8187 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8188 tcp->tcp_cwnd = tcp->tcp_mss; 8189 tcp->tcp_cwnd_cnt = 0; 8190 } 8191 break; 8192 } 8193 } 8194 freemsg(first_mp); 8195 } 8196 8197 /* 8198 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8199 * error messages passed up by IP. 8200 * Assumes that IP has pulled up all the extension headers as well 8201 * as the ICMPv6 header. 8202 */ 8203 static void 8204 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8205 { 8206 icmp6_t *icmp6; 8207 ip6_t *ip6h; 8208 uint16_t iph_hdr_length; 8209 tcpha_t *tcpha; 8210 uint8_t *nexthdrp; 8211 uint32_t new_mss; 8212 uint32_t ratio; 8213 boolean_t secure; 8214 mblk_t *first_mp = mp; 8215 size_t mp_size; 8216 uint32_t seg_ack; 8217 uint32_t seg_seq; 8218 8219 /* 8220 * The caller has determined if this is an IPSEC_IN packet and 8221 * set ipsec_mctl appropriately (see tcp_icmp_error). 8222 */ 8223 if (ipsec_mctl) 8224 mp = mp->b_cont; 8225 8226 mp_size = MBLKL(mp); 8227 8228 /* 8229 * Verify that we have a complete IP header. If not, send it upstream. 8230 */ 8231 if (mp_size < sizeof (ip6_t)) { 8232 noticmpv6: 8233 freemsg(first_mp); 8234 return; 8235 } 8236 8237 /* 8238 * Verify this is an ICMPV6 packet, else send it upstream. 8239 */ 8240 ip6h = (ip6_t *)mp->b_rptr; 8241 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8242 iph_hdr_length = IPV6_HDR_LEN; 8243 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8244 &nexthdrp) || 8245 *nexthdrp != IPPROTO_ICMPV6) { 8246 goto noticmpv6; 8247 } 8248 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8249 ip6h = (ip6_t *)&icmp6[1]; 8250 /* 8251 * Verify if we have a complete ICMP and inner IP header. 8252 */ 8253 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8254 goto noticmpv6; 8255 8256 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8257 goto noticmpv6; 8258 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8259 /* 8260 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8261 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8262 * packet. 8263 */ 8264 if ((*nexthdrp != IPPROTO_TCP) || 8265 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8266 goto noticmpv6; 8267 } 8268 8269 /* 8270 * ICMP errors come on the right queue or come on 8271 * listener/global queue for detached connections and 8272 * get switched to the right queue. If it comes on the 8273 * right queue, policy check has already been done by IP 8274 * and thus free the first_mp without verifying the policy. 8275 * If it has come for a non-hard bound connection, we need 8276 * to verify policy as IP may not have done it. 8277 */ 8278 if (!tcp->tcp_hard_bound) { 8279 if (ipsec_mctl) { 8280 secure = ipsec_in_is_secure(first_mp); 8281 } else { 8282 secure = B_FALSE; 8283 } 8284 if (secure) { 8285 /* 8286 * If we are willing to accept this in clear 8287 * we don't have to verify policy. 8288 */ 8289 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8290 if (!tcp_check_policy(tcp, first_mp, 8291 NULL, ip6h, secure, ipsec_mctl)) { 8292 /* 8293 * tcp_check_policy called 8294 * ip_drop_packet() on failure. 8295 */ 8296 return; 8297 } 8298 } 8299 } 8300 } else if (ipsec_mctl) { 8301 /* 8302 * This is a hard_bound connection. IP has already 8303 * verified policy. We don't have to do it again. 8304 */ 8305 freeb(first_mp); 8306 first_mp = mp; 8307 ipsec_mctl = B_FALSE; 8308 } 8309 8310 seg_ack = ntohl(tcpha->tha_ack); 8311 seg_seq = ntohl(tcpha->tha_seq); 8312 /* 8313 * TCP SHOULD check that the TCP sequence number contained in 8314 * payload of the ICMP error message is within the range 8315 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT 8316 */ 8317 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) || 8318 SEQ_GT(seg_ack, tcp->tcp_rnxt)) { 8319 /* 8320 * If the ICMP message is bogus, should we kill the 8321 * connection, or should we just drop the bogus ICMP 8322 * message? It would probably make more sense to just 8323 * drop the message so that if this one managed to get 8324 * in, the real connection should not suffer. 8325 */ 8326 goto noticmpv6; 8327 } 8328 8329 switch (icmp6->icmp6_type) { 8330 case ICMP6_PACKET_TOO_BIG: 8331 /* 8332 * Reduce the MSS based on the new MTU. This will 8333 * eliminate any fragmentation locally. 8334 * N.B. There may well be some funny side-effects on 8335 * the local send policy and the remote receive policy. 8336 * Pending further research, we provide 8337 * tcp_ignore_path_mtu just in case this proves 8338 * disastrous somewhere. 8339 * 8340 * After updating the MSS, retransmit part of the 8341 * dropped segment using the new mss by calling 8342 * tcp_wput_data(). Need to adjust all those 8343 * params to make sure tcp_wput_data() work properly. 8344 */ 8345 if (tcp_ignore_path_mtu) 8346 break; 8347 8348 /* 8349 * Decrease the MSS by time stamp options 8350 * IP options and IPSEC options. tcp_hdr_len 8351 * includes time stamp option and IP option 8352 * length. 8353 */ 8354 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8355 tcp->tcp_ipsec_overhead; 8356 8357 /* 8358 * Only update the MSS if the new one is 8359 * smaller than the previous one. This is 8360 * to avoid problems when getting multiple 8361 * ICMP errors for the same MTU. 8362 */ 8363 if (new_mss >= tcp->tcp_mss) 8364 break; 8365 8366 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8367 ASSERT(ratio >= 1); 8368 tcp_mss_set(tcp, new_mss); 8369 8370 /* 8371 * Make sure we have something to 8372 * send. 8373 */ 8374 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8375 (tcp->tcp_xmit_head != NULL)) { 8376 /* 8377 * Shrink tcp_cwnd in 8378 * proportion to the old MSS/new MSS. 8379 */ 8380 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8381 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8382 (tcp->tcp_unsent == 0)) { 8383 tcp->tcp_rexmit_max = tcp->tcp_fss; 8384 } else { 8385 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8386 } 8387 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8388 tcp->tcp_rexmit = B_TRUE; 8389 tcp->tcp_dupack_cnt = 0; 8390 tcp->tcp_snd_burst = TCP_CWND_SS; 8391 tcp_ss_rexmit(tcp); 8392 } 8393 break; 8394 8395 case ICMP6_DST_UNREACH: 8396 switch (icmp6->icmp6_code) { 8397 case ICMP6_DST_UNREACH_NOPORT: 8398 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8399 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8400 (seg_seq == tcp->tcp_iss)) { 8401 (void) tcp_clean_death(tcp, 8402 ECONNREFUSED, 8); 8403 } 8404 break; 8405 8406 case ICMP6_DST_UNREACH_ADMIN: 8407 case ICMP6_DST_UNREACH_NOROUTE: 8408 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8409 case ICMP6_DST_UNREACH_ADDR: 8410 /* Record the error in case we finally time out. */ 8411 tcp->tcp_client_errno = EHOSTUNREACH; 8412 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8413 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8414 (seg_seq == tcp->tcp_iss)) { 8415 if (tcp->tcp_listener != NULL && 8416 tcp->tcp_listener->tcp_syn_defense) { 8417 /* 8418 * Ditch the half-open connection if we 8419 * suspect a SYN attack is under way. 8420 */ 8421 tcp_ip_ire_mark_advice(tcp); 8422 (void) tcp_clean_death(tcp, 8423 tcp->tcp_client_errno, 9); 8424 } 8425 } 8426 8427 8428 break; 8429 default: 8430 break; 8431 } 8432 break; 8433 8434 case ICMP6_PARAM_PROB: 8435 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8436 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8437 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8438 (uchar_t *)nexthdrp) { 8439 if (tcp->tcp_state == TCPS_SYN_SENT || 8440 tcp->tcp_state == TCPS_SYN_RCVD) { 8441 (void) tcp_clean_death(tcp, 8442 ECONNREFUSED, 10); 8443 } 8444 break; 8445 } 8446 break; 8447 8448 case ICMP6_TIME_EXCEEDED: 8449 default: 8450 break; 8451 } 8452 freemsg(first_mp); 8453 } 8454 8455 /* 8456 * IP recognizes seven kinds of bind requests: 8457 * 8458 * - A zero-length address binds only to the protocol number. 8459 * 8460 * - A 4-byte address is treated as a request to 8461 * validate that the address is a valid local IPv4 8462 * address, appropriate for an application to bind to. 8463 * IP does the verification, but does not make any note 8464 * of the address at this time. 8465 * 8466 * - A 16-byte address contains is treated as a request 8467 * to validate a local IPv6 address, as the 4-byte 8468 * address case above. 8469 * 8470 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8471 * use it for the inbound fanout of packets. 8472 * 8473 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8474 * use it for the inbound fanout of packets. 8475 * 8476 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8477 * information consisting of local and remote addresses 8478 * and ports. In this case, the addresses are both 8479 * validated as appropriate for this operation, and, if 8480 * so, the information is retained for use in the 8481 * inbound fanout. 8482 * 8483 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8484 * fanout information, like the 12-byte case above. 8485 * 8486 * IP will also fill in the IRE request mblk with information 8487 * regarding our peer. In all cases, we notify IP of our protocol 8488 * type by appending a single protocol byte to the bind request. 8489 */ 8490 static mblk_t * 8491 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8492 { 8493 char *cp; 8494 mblk_t *mp; 8495 struct T_bind_req *tbr; 8496 ipa_conn_t *ac; 8497 ipa6_conn_t *ac6; 8498 sin_t *sin; 8499 sin6_t *sin6; 8500 8501 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 8502 ASSERT((tcp->tcp_family == AF_INET && 8503 tcp->tcp_ipversion == IPV4_VERSION) || 8504 (tcp->tcp_family == AF_INET6 && 8505 (tcp->tcp_ipversion == IPV4_VERSION || 8506 tcp->tcp_ipversion == IPV6_VERSION))); 8507 8508 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 8509 if (!mp) 8510 return (mp); 8511 mp->b_datap->db_type = M_PROTO; 8512 tbr = (struct T_bind_req *)mp->b_rptr; 8513 tbr->PRIM_type = bind_prim; 8514 tbr->ADDR_offset = sizeof (*tbr); 8515 tbr->CONIND_number = 0; 8516 tbr->ADDR_length = addr_length; 8517 cp = (char *)&tbr[1]; 8518 switch (addr_length) { 8519 case sizeof (ipa_conn_t): 8520 ASSERT(tcp->tcp_family == AF_INET); 8521 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8522 8523 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8524 if (mp->b_cont == NULL) { 8525 freemsg(mp); 8526 return (NULL); 8527 } 8528 mp->b_cont->b_wptr += sizeof (ire_t); 8529 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8530 8531 /* cp known to be 32 bit aligned */ 8532 ac = (ipa_conn_t *)cp; 8533 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 8534 ac->ac_faddr = tcp->tcp_remote; 8535 ac->ac_fport = tcp->tcp_fport; 8536 ac->ac_lport = tcp->tcp_lport; 8537 tcp->tcp_hard_binding = 1; 8538 break; 8539 8540 case sizeof (ipa6_conn_t): 8541 ASSERT(tcp->tcp_family == AF_INET6); 8542 8543 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 8544 if (mp->b_cont == NULL) { 8545 freemsg(mp); 8546 return (NULL); 8547 } 8548 mp->b_cont->b_wptr += sizeof (ire_t); 8549 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 8550 8551 /* cp known to be 32 bit aligned */ 8552 ac6 = (ipa6_conn_t *)cp; 8553 if (tcp->tcp_ipversion == IPV4_VERSION) { 8554 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 8555 &ac6->ac6_laddr); 8556 } else { 8557 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 8558 } 8559 ac6->ac6_faddr = tcp->tcp_remote_v6; 8560 ac6->ac6_fport = tcp->tcp_fport; 8561 ac6->ac6_lport = tcp->tcp_lport; 8562 tcp->tcp_hard_binding = 1; 8563 break; 8564 8565 case sizeof (sin_t): 8566 /* 8567 * NOTE: IPV6_ADDR_LEN also has same size. 8568 * Use family to discriminate. 8569 */ 8570 if (tcp->tcp_family == AF_INET) { 8571 sin = (sin_t *)cp; 8572 8573 *sin = sin_null; 8574 sin->sin_family = AF_INET; 8575 sin->sin_addr.s_addr = tcp->tcp_bound_source; 8576 sin->sin_port = tcp->tcp_lport; 8577 break; 8578 } else { 8579 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 8580 } 8581 break; 8582 8583 case sizeof (sin6_t): 8584 ASSERT(tcp->tcp_family == AF_INET6); 8585 sin6 = (sin6_t *)cp; 8586 8587 *sin6 = sin6_null; 8588 sin6->sin6_family = AF_INET6; 8589 sin6->sin6_addr = tcp->tcp_bound_source_v6; 8590 sin6->sin6_port = tcp->tcp_lport; 8591 break; 8592 8593 case IP_ADDR_LEN: 8594 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 8595 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 8596 break; 8597 8598 } 8599 /* Add protocol number to end */ 8600 cp[addr_length] = (char)IPPROTO_TCP; 8601 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 8602 return (mp); 8603 } 8604 8605 /* 8606 * Notify IP that we are having trouble with this connection. IP should 8607 * blow the IRE away and start over. 8608 */ 8609 static void 8610 tcp_ip_notify(tcp_t *tcp) 8611 { 8612 struct iocblk *iocp; 8613 ipid_t *ipid; 8614 mblk_t *mp; 8615 8616 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8617 if (tcp->tcp_ipversion == IPV6_VERSION) 8618 return; 8619 8620 mp = mkiocb(IP_IOCTL); 8621 if (mp == NULL) 8622 return; 8623 8624 iocp = (struct iocblk *)mp->b_rptr; 8625 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8626 8627 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8628 if (!mp->b_cont) { 8629 freeb(mp); 8630 return; 8631 } 8632 8633 ipid = (ipid_t *)mp->b_cont->b_rptr; 8634 mp->b_cont->b_wptr += iocp->ioc_count; 8635 bzero(ipid, sizeof (*ipid)); 8636 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8637 ipid->ipid_ire_type = IRE_CACHE; 8638 ipid->ipid_addr_offset = sizeof (ipid_t); 8639 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8640 /* 8641 * Note: in the case of source routing we want to blow away the 8642 * route to the first source route hop. 8643 */ 8644 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8645 sizeof (tcp->tcp_ipha->ipha_dst)); 8646 8647 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8648 } 8649 8650 /* Unlink and return any mblk that looks like it contains an ire */ 8651 static mblk_t * 8652 tcp_ire_mp(mblk_t *mp) 8653 { 8654 mblk_t *prev_mp; 8655 8656 for (;;) { 8657 prev_mp = mp; 8658 mp = mp->b_cont; 8659 if (mp == NULL) 8660 break; 8661 switch (DB_TYPE(mp)) { 8662 case IRE_DB_TYPE: 8663 case IRE_DB_REQ_TYPE: 8664 if (prev_mp != NULL) 8665 prev_mp->b_cont = mp->b_cont; 8666 mp->b_cont = NULL; 8667 return (mp); 8668 default: 8669 break; 8670 } 8671 } 8672 return (mp); 8673 } 8674 8675 /* 8676 * Timer callback routine for keepalive probe. We do a fake resend of 8677 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8678 * check to see if we have heard anything from the other end for the last 8679 * RTO period. If we have, set the timer to expire for another 8680 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8681 * RTO << 1 and check again when it expires. Keep exponentially increasing 8682 * the timeout if we have not heard from the other side. If for more than 8683 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8684 * kill the connection unless the keepalive abort threshold is 0. In 8685 * that case, we will probe "forever." 8686 */ 8687 static void 8688 tcp_keepalive_killer(void *arg) 8689 { 8690 mblk_t *mp; 8691 conn_t *connp = (conn_t *)arg; 8692 tcp_t *tcp = connp->conn_tcp; 8693 int32_t firetime; 8694 int32_t idletime; 8695 int32_t ka_intrvl; 8696 8697 tcp->tcp_ka_tid = 0; 8698 8699 if (tcp->tcp_fused) 8700 return; 8701 8702 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 8703 ka_intrvl = tcp->tcp_ka_interval; 8704 8705 /* 8706 * Keepalive probe should only be sent if the application has not 8707 * done a close on the connection. 8708 */ 8709 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8710 return; 8711 } 8712 /* Timer fired too early, restart it. */ 8713 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8714 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8715 MSEC_TO_TICK(ka_intrvl)); 8716 return; 8717 } 8718 8719 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8720 /* 8721 * If we have not heard from the other side for a long 8722 * time, kill the connection unless the keepalive abort 8723 * threshold is 0. In that case, we will probe "forever." 8724 */ 8725 if (tcp->tcp_ka_abort_thres != 0 && 8726 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8727 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 8728 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8729 tcp->tcp_client_errno : ETIMEDOUT, 11); 8730 return; 8731 } 8732 8733 if (tcp->tcp_snxt == tcp->tcp_suna && 8734 idletime >= ka_intrvl) { 8735 /* Fake resend of last ACKed byte. */ 8736 mblk_t *mp1 = allocb(1, BPRI_LO); 8737 8738 if (mp1 != NULL) { 8739 *mp1->b_wptr++ = '\0'; 8740 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8741 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8742 freeb(mp1); 8743 /* 8744 * if allocation failed, fall through to start the 8745 * timer back. 8746 */ 8747 if (mp != NULL) { 8748 TCP_RECORD_TRACE(tcp, mp, 8749 TCP_TRACE_SEND_PKT); 8750 tcp_send_data(tcp, tcp->tcp_wq, mp); 8751 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 8752 if (tcp->tcp_ka_last_intrvl != 0) { 8753 /* 8754 * We should probe again at least 8755 * in ka_intrvl, but not more than 8756 * tcp_rexmit_interval_max. 8757 */ 8758 firetime = MIN(ka_intrvl - 1, 8759 tcp->tcp_ka_last_intrvl << 1); 8760 if (firetime > tcp_rexmit_interval_max) 8761 firetime = 8762 tcp_rexmit_interval_max; 8763 } else { 8764 firetime = tcp->tcp_rto; 8765 } 8766 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8767 tcp_keepalive_killer, 8768 MSEC_TO_TICK(firetime)); 8769 tcp->tcp_ka_last_intrvl = firetime; 8770 return; 8771 } 8772 } 8773 } else { 8774 tcp->tcp_ka_last_intrvl = 0; 8775 } 8776 8777 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8778 if ((firetime = ka_intrvl - idletime) < 0) { 8779 firetime = ka_intrvl; 8780 } 8781 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8782 MSEC_TO_TICK(firetime)); 8783 } 8784 8785 int 8786 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8787 { 8788 queue_t *q = tcp->tcp_rq; 8789 int32_t mss = tcp->tcp_mss; 8790 int maxpsz; 8791 8792 if (TCP_IS_DETACHED(tcp)) 8793 return (mss); 8794 8795 if (tcp->tcp_fused) { 8796 maxpsz = tcp_fuse_maxpsz_set(tcp); 8797 mss = INFPSZ; 8798 } else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) { 8799 /* 8800 * Set the sd_qn_maxpsz according to the socket send buffer 8801 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8802 * instruct the stream head to copyin user data into contiguous 8803 * kernel-allocated buffers without breaking it up into smaller 8804 * chunks. We round up the buffer size to the nearest SMSS. 8805 */ 8806 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8807 if (tcp->tcp_kssl_ctx == NULL) 8808 mss = INFPSZ; 8809 else 8810 mss = SSL3_MAX_RECORD_LEN; 8811 } else { 8812 /* 8813 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8814 * (and a multiple of the mss). This instructs the stream 8815 * head to break down larger than SMSS writes into SMSS- 8816 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8817 */ 8818 maxpsz = tcp->tcp_maxpsz * mss; 8819 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8820 maxpsz = tcp->tcp_xmit_hiwater/2; 8821 /* Round up to nearest mss */ 8822 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8823 } 8824 } 8825 (void) setmaxps(q, maxpsz); 8826 tcp->tcp_wq->q_maxpsz = maxpsz; 8827 8828 if (set_maxblk) 8829 (void) mi_set_sth_maxblk(q, mss); 8830 8831 return (mss); 8832 } 8833 8834 /* 8835 * Extract option values from a tcp header. We put any found values into the 8836 * tcpopt struct and return a bitmask saying which options were found. 8837 */ 8838 static int 8839 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8840 { 8841 uchar_t *endp; 8842 int len; 8843 uint32_t mss; 8844 uchar_t *up = (uchar_t *)tcph; 8845 int found = 0; 8846 int32_t sack_len; 8847 tcp_seq sack_begin, sack_end; 8848 tcp_t *tcp; 8849 8850 endp = up + TCP_HDR_LENGTH(tcph); 8851 up += TCP_MIN_HEADER_LENGTH; 8852 while (up < endp) { 8853 len = endp - up; 8854 switch (*up) { 8855 case TCPOPT_EOL: 8856 break; 8857 8858 case TCPOPT_NOP: 8859 up++; 8860 continue; 8861 8862 case TCPOPT_MAXSEG: 8863 if (len < TCPOPT_MAXSEG_LEN || 8864 up[1] != TCPOPT_MAXSEG_LEN) 8865 break; 8866 8867 mss = BE16_TO_U16(up+2); 8868 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8869 tcpopt->tcp_opt_mss = mss; 8870 found |= TCP_OPT_MSS_PRESENT; 8871 8872 up += TCPOPT_MAXSEG_LEN; 8873 continue; 8874 8875 case TCPOPT_WSCALE: 8876 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 8877 break; 8878 8879 if (up[2] > TCP_MAX_WINSHIFT) 8880 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 8881 else 8882 tcpopt->tcp_opt_wscale = up[2]; 8883 found |= TCP_OPT_WSCALE_PRESENT; 8884 8885 up += TCPOPT_WS_LEN; 8886 continue; 8887 8888 case TCPOPT_SACK_PERMITTED: 8889 if (len < TCPOPT_SACK_OK_LEN || 8890 up[1] != TCPOPT_SACK_OK_LEN) 8891 break; 8892 found |= TCP_OPT_SACK_OK_PRESENT; 8893 up += TCPOPT_SACK_OK_LEN; 8894 continue; 8895 8896 case TCPOPT_SACK: 8897 if (len <= 2 || up[1] <= 2 || len < up[1]) 8898 break; 8899 8900 /* If TCP is not interested in SACK blks... */ 8901 if ((tcp = tcpopt->tcp) == NULL) { 8902 up += up[1]; 8903 continue; 8904 } 8905 sack_len = up[1] - TCPOPT_HEADER_LEN; 8906 up += TCPOPT_HEADER_LEN; 8907 8908 /* 8909 * If the list is empty, allocate one and assume 8910 * nothing is sack'ed. 8911 */ 8912 ASSERT(tcp->tcp_sack_info != NULL); 8913 if (tcp->tcp_notsack_list == NULL) { 8914 tcp_notsack_update(&(tcp->tcp_notsack_list), 8915 tcp->tcp_suna, tcp->tcp_snxt, 8916 &(tcp->tcp_num_notsack_blk), 8917 &(tcp->tcp_cnt_notsack_list)); 8918 8919 /* 8920 * Make sure tcp_notsack_list is not NULL. 8921 * This happens when kmem_alloc(KM_NOSLEEP) 8922 * returns NULL. 8923 */ 8924 if (tcp->tcp_notsack_list == NULL) { 8925 up += sack_len; 8926 continue; 8927 } 8928 tcp->tcp_fack = tcp->tcp_suna; 8929 } 8930 8931 while (sack_len > 0) { 8932 if (up + 8 > endp) { 8933 up = endp; 8934 break; 8935 } 8936 sack_begin = BE32_TO_U32(up); 8937 up += 4; 8938 sack_end = BE32_TO_U32(up); 8939 up += 4; 8940 sack_len -= 8; 8941 /* 8942 * Bounds checking. Make sure the SACK 8943 * info is within tcp_suna and tcp_snxt. 8944 * If this SACK blk is out of bound, ignore 8945 * it but continue to parse the following 8946 * blks. 8947 */ 8948 if (SEQ_LEQ(sack_end, sack_begin) || 8949 SEQ_LT(sack_begin, tcp->tcp_suna) || 8950 SEQ_GT(sack_end, tcp->tcp_snxt)) { 8951 continue; 8952 } 8953 tcp_notsack_insert(&(tcp->tcp_notsack_list), 8954 sack_begin, sack_end, 8955 &(tcp->tcp_num_notsack_blk), 8956 &(tcp->tcp_cnt_notsack_list)); 8957 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 8958 tcp->tcp_fack = sack_end; 8959 } 8960 } 8961 found |= TCP_OPT_SACK_PRESENT; 8962 continue; 8963 8964 case TCPOPT_TSTAMP: 8965 if (len < TCPOPT_TSTAMP_LEN || 8966 up[1] != TCPOPT_TSTAMP_LEN) 8967 break; 8968 8969 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 8970 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 8971 8972 found |= TCP_OPT_TSTAMP_PRESENT; 8973 8974 up += TCPOPT_TSTAMP_LEN; 8975 continue; 8976 8977 default: 8978 if (len <= 1 || len < (int)up[1] || up[1] == 0) 8979 break; 8980 up += up[1]; 8981 continue; 8982 } 8983 break; 8984 } 8985 return (found); 8986 } 8987 8988 /* 8989 * Set the mss associated with a particular tcp based on its current value, 8990 * and a new one passed in. Observe minimums and maximums, and reset 8991 * other state variables that we want to view as multiples of mss. 8992 * 8993 * This function is called in various places mainly because 8994 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 8995 * other side's SYN/SYN-ACK packet arrives. 8996 * 2) PMTUd may get us a new MSS. 8997 * 3) If the other side stops sending us timestamp option, we need to 8998 * increase the MSS size to use the extra bytes available. 8999 */ 9000 static void 9001 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9002 { 9003 uint32_t mss_max; 9004 9005 if (tcp->tcp_ipversion == IPV4_VERSION) 9006 mss_max = tcp_mss_max_ipv4; 9007 else 9008 mss_max = tcp_mss_max_ipv6; 9009 9010 if (mss < tcp_mss_min) 9011 mss = tcp_mss_min; 9012 if (mss > mss_max) 9013 mss = mss_max; 9014 /* 9015 * Unless naglim has been set by our client to 9016 * a non-mss value, force naglim to track mss. 9017 * This can help to aggregate small writes. 9018 */ 9019 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9020 tcp->tcp_naglim = mss; 9021 /* 9022 * TCP should be able to buffer at least 4 MSS data for obvious 9023 * performance reason. 9024 */ 9025 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9026 tcp->tcp_xmit_hiwater = mss << 2; 9027 9028 /* 9029 * Check if we need to apply the tcp_init_cwnd here. If 9030 * it is set and the MSS gets bigger (should not happen 9031 * normally), we need to adjust the resulting tcp_cwnd properly. 9032 * The new tcp_cwnd should not get bigger. 9033 */ 9034 if (tcp->tcp_init_cwnd == 0) { 9035 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9036 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9037 } else { 9038 if (tcp->tcp_mss < mss) { 9039 tcp->tcp_cwnd = MAX(1, 9040 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9041 } else { 9042 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9043 } 9044 } 9045 tcp->tcp_mss = mss; 9046 tcp->tcp_cwnd_cnt = 0; 9047 (void) tcp_maxpsz_set(tcp, B_TRUE); 9048 } 9049 9050 static int 9051 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9052 { 9053 tcp_t *tcp = NULL; 9054 conn_t *connp; 9055 int err; 9056 dev_t conn_dev; 9057 zoneid_t zoneid = getzoneid(); 9058 9059 /* 9060 * Special case for install: miniroot needs to be able to access files 9061 * via NFS as though it were always in the global zone. 9062 */ 9063 if (credp == kcred && nfs_global_client_only != 0) 9064 zoneid = GLOBAL_ZONEID; 9065 9066 if (q->q_ptr != NULL) 9067 return (0); 9068 9069 if (sflag == MODOPEN) { 9070 /* 9071 * This is a special case. The purpose of a modopen 9072 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9073 * through for MIB browsers. Everything else is failed. 9074 */ 9075 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9076 9077 if (connp == NULL) 9078 return (ENOMEM); 9079 9080 connp->conn_flags |= IPCL_TCPMOD; 9081 connp->conn_cred = credp; 9082 connp->conn_zoneid = zoneid; 9083 q->q_ptr = WR(q)->q_ptr = connp; 9084 crhold(credp); 9085 q->q_qinfo = &tcp_mod_rinit; 9086 WR(q)->q_qinfo = &tcp_mod_winit; 9087 qprocson(q); 9088 return (0); 9089 } 9090 9091 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9092 return (EBUSY); 9093 9094 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9095 9096 if (flag & SO_ACCEPTOR) { 9097 q->q_qinfo = &tcp_acceptor_rinit; 9098 q->q_ptr = (void *)conn_dev; 9099 WR(q)->q_qinfo = &tcp_acceptor_winit; 9100 WR(q)->q_ptr = (void *)conn_dev; 9101 qprocson(q); 9102 return (0); 9103 } 9104 9105 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9106 if (connp == NULL) { 9107 inet_minor_free(ip_minor_arena, conn_dev); 9108 q->q_ptr = NULL; 9109 return (ENOSR); 9110 } 9111 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9112 tcp = connp->conn_tcp; 9113 9114 q->q_ptr = WR(q)->q_ptr = connp; 9115 if (getmajor(*devp) == TCP6_MAJ) { 9116 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9117 connp->conn_send = ip_output_v6; 9118 connp->conn_af_isv6 = B_TRUE; 9119 connp->conn_pkt_isv6 = B_TRUE; 9120 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9121 tcp->tcp_ipversion = IPV6_VERSION; 9122 tcp->tcp_family = AF_INET6; 9123 tcp->tcp_mss = tcp_mss_def_ipv6; 9124 } else { 9125 connp->conn_flags |= IPCL_TCP4; 9126 connp->conn_send = ip_output; 9127 connp->conn_af_isv6 = B_FALSE; 9128 connp->conn_pkt_isv6 = B_FALSE; 9129 tcp->tcp_ipversion = IPV4_VERSION; 9130 tcp->tcp_family = AF_INET; 9131 tcp->tcp_mss = tcp_mss_def_ipv4; 9132 } 9133 9134 /* 9135 * TCP keeps a copy of cred for cache locality reasons but 9136 * we put a reference only once. If connp->conn_cred 9137 * becomes invalid, tcp_cred should also be set to NULL. 9138 */ 9139 tcp->tcp_cred = connp->conn_cred = credp; 9140 crhold(connp->conn_cred); 9141 tcp->tcp_cpid = curproc->p_pid; 9142 connp->conn_zoneid = zoneid; 9143 9144 connp->conn_dev = conn_dev; 9145 9146 ASSERT(q->q_qinfo == &tcp_rinit); 9147 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9148 9149 if (flag & SO_SOCKSTR) { 9150 /* 9151 * No need to insert a socket in tcp acceptor hash. 9152 * If it was a socket acceptor stream, we dealt with 9153 * it above. A socket listener can never accept a 9154 * connection and doesn't need acceptor_id. 9155 */ 9156 connp->conn_flags |= IPCL_SOCKET; 9157 tcp->tcp_issocket = 1; 9158 WR(q)->q_qinfo = &tcp_sock_winit; 9159 } else { 9160 #ifdef _ILP32 9161 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9162 #else 9163 tcp->tcp_acceptor_id = conn_dev; 9164 #endif /* _ILP32 */ 9165 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9166 } 9167 9168 if (tcp_trace) 9169 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9170 9171 err = tcp_init(tcp, q); 9172 if (err != 0) { 9173 inet_minor_free(ip_minor_arena, connp->conn_dev); 9174 tcp_acceptor_hash_remove(tcp); 9175 CONN_DEC_REF(connp); 9176 q->q_ptr = WR(q)->q_ptr = NULL; 9177 return (err); 9178 } 9179 9180 RD(q)->q_hiwat = tcp_recv_hiwat; 9181 tcp->tcp_rwnd = tcp_recv_hiwat; 9182 9183 /* Non-zero default values */ 9184 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9185 /* 9186 * Put the ref for TCP. Ref for IP was already put 9187 * by ipcl_conn_create. Also Make the conn_t globally 9188 * visible to walkers 9189 */ 9190 mutex_enter(&connp->conn_lock); 9191 CONN_INC_REF_LOCKED(connp); 9192 ASSERT(connp->conn_ref == 2); 9193 connp->conn_state_flags &= ~CONN_INCIPIENT; 9194 mutex_exit(&connp->conn_lock); 9195 9196 qprocson(q); 9197 return (0); 9198 } 9199 9200 /* 9201 * Some TCP options can be "set" by requesting them in the option 9202 * buffer. This is needed for XTI feature test though we do not 9203 * allow it in general. We interpret that this mechanism is more 9204 * applicable to OSI protocols and need not be allowed in general. 9205 * This routine filters out options for which it is not allowed (most) 9206 * and lets through those (few) for which it is. [ The XTI interface 9207 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9208 * ever implemented will have to be allowed here ]. 9209 */ 9210 static boolean_t 9211 tcp_allow_connopt_set(int level, int name) 9212 { 9213 9214 switch (level) { 9215 case IPPROTO_TCP: 9216 switch (name) { 9217 case TCP_NODELAY: 9218 return (B_TRUE); 9219 default: 9220 return (B_FALSE); 9221 } 9222 /*NOTREACHED*/ 9223 default: 9224 return (B_FALSE); 9225 } 9226 /*NOTREACHED*/ 9227 } 9228 9229 /* 9230 * This routine gets default values of certain options whose default 9231 * values are maintained by protocol specific code 9232 */ 9233 /* ARGSUSED */ 9234 int 9235 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9236 { 9237 int32_t *i1 = (int32_t *)ptr; 9238 9239 switch (level) { 9240 case IPPROTO_TCP: 9241 switch (name) { 9242 case TCP_NOTIFY_THRESHOLD: 9243 *i1 = tcp_ip_notify_interval; 9244 break; 9245 case TCP_ABORT_THRESHOLD: 9246 *i1 = tcp_ip_abort_interval; 9247 break; 9248 case TCP_CONN_NOTIFY_THRESHOLD: 9249 *i1 = tcp_ip_notify_cinterval; 9250 break; 9251 case TCP_CONN_ABORT_THRESHOLD: 9252 *i1 = tcp_ip_abort_cinterval; 9253 break; 9254 default: 9255 return (-1); 9256 } 9257 break; 9258 case IPPROTO_IP: 9259 switch (name) { 9260 case IP_TTL: 9261 *i1 = tcp_ipv4_ttl; 9262 break; 9263 default: 9264 return (-1); 9265 } 9266 break; 9267 case IPPROTO_IPV6: 9268 switch (name) { 9269 case IPV6_UNICAST_HOPS: 9270 *i1 = tcp_ipv6_hoplimit; 9271 break; 9272 default: 9273 return (-1); 9274 } 9275 break; 9276 default: 9277 return (-1); 9278 } 9279 return (sizeof (int)); 9280 } 9281 9282 9283 /* 9284 * TCP routine to get the values of options. 9285 */ 9286 int 9287 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9288 { 9289 int *i1 = (int *)ptr; 9290 conn_t *connp = Q_TO_CONN(q); 9291 tcp_t *tcp = connp->conn_tcp; 9292 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9293 9294 switch (level) { 9295 case SOL_SOCKET: 9296 switch (name) { 9297 case SO_LINGER: { 9298 struct linger *lgr = (struct linger *)ptr; 9299 9300 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9301 lgr->l_linger = tcp->tcp_lingertime; 9302 } 9303 return (sizeof (struct linger)); 9304 case SO_DEBUG: 9305 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9306 break; 9307 case SO_KEEPALIVE: 9308 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9309 break; 9310 case SO_DONTROUTE: 9311 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9312 break; 9313 case SO_USELOOPBACK: 9314 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9315 break; 9316 case SO_BROADCAST: 9317 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9318 break; 9319 case SO_REUSEADDR: 9320 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9321 break; 9322 case SO_OOBINLINE: 9323 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9324 break; 9325 case SO_DGRAM_ERRIND: 9326 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9327 break; 9328 case SO_TYPE: 9329 *i1 = SOCK_STREAM; 9330 break; 9331 case SO_SNDBUF: 9332 *i1 = tcp->tcp_xmit_hiwater; 9333 break; 9334 case SO_RCVBUF: 9335 *i1 = RD(q)->q_hiwat; 9336 break; 9337 case SO_SND_COPYAVOID: 9338 *i1 = tcp->tcp_snd_zcopy_on ? 9339 SO_SND_COPYAVOID : 0; 9340 break; 9341 default: 9342 return (-1); 9343 } 9344 break; 9345 case IPPROTO_TCP: 9346 switch (name) { 9347 case TCP_NODELAY: 9348 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9349 break; 9350 case TCP_MAXSEG: 9351 *i1 = tcp->tcp_mss; 9352 break; 9353 case TCP_NOTIFY_THRESHOLD: 9354 *i1 = (int)tcp->tcp_first_timer_threshold; 9355 break; 9356 case TCP_ABORT_THRESHOLD: 9357 *i1 = tcp->tcp_second_timer_threshold; 9358 break; 9359 case TCP_CONN_NOTIFY_THRESHOLD: 9360 *i1 = tcp->tcp_first_ctimer_threshold; 9361 break; 9362 case TCP_CONN_ABORT_THRESHOLD: 9363 *i1 = tcp->tcp_second_ctimer_threshold; 9364 break; 9365 case TCP_RECVDSTADDR: 9366 *i1 = tcp->tcp_recvdstaddr; 9367 break; 9368 case TCP_ANONPRIVBIND: 9369 *i1 = tcp->tcp_anon_priv_bind; 9370 break; 9371 case TCP_EXCLBIND: 9372 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9373 break; 9374 case TCP_INIT_CWND: 9375 *i1 = tcp->tcp_init_cwnd; 9376 break; 9377 case TCP_KEEPALIVE_THRESHOLD: 9378 *i1 = tcp->tcp_ka_interval; 9379 break; 9380 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9381 *i1 = tcp->tcp_ka_abort_thres; 9382 break; 9383 case TCP_CORK: 9384 *i1 = tcp->tcp_cork; 9385 break; 9386 default: 9387 return (-1); 9388 } 9389 break; 9390 case IPPROTO_IP: 9391 if (tcp->tcp_family != AF_INET) 9392 return (-1); 9393 switch (name) { 9394 case IP_OPTIONS: 9395 case T_IP_OPTIONS: { 9396 /* 9397 * This is compatible with BSD in that in only return 9398 * the reverse source route with the final destination 9399 * as the last entry. The first 4 bytes of the option 9400 * will contain the final destination. 9401 */ 9402 char *opt_ptr; 9403 int opt_len; 9404 opt_ptr = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 9405 opt_len = (char *)tcp->tcp_tcph - opt_ptr; 9406 /* Caller ensures enough space */ 9407 if (opt_len > 0) { 9408 /* 9409 * TODO: Do we have to handle getsockopt on an 9410 * initiator as well? 9411 */ 9412 return (tcp_opt_get_user(tcp->tcp_ipha, ptr)); 9413 } 9414 return (0); 9415 } 9416 case IP_TOS: 9417 case T_IP_TOS: 9418 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9419 break; 9420 case IP_TTL: 9421 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9422 break; 9423 case IP_NEXTHOP: 9424 /* Handled at IP level */ 9425 return (-EINVAL); 9426 default: 9427 return (-1); 9428 } 9429 break; 9430 case IPPROTO_IPV6: 9431 /* 9432 * IPPROTO_IPV6 options are only supported for sockets 9433 * that are using IPv6 on the wire. 9434 */ 9435 if (tcp->tcp_ipversion != IPV6_VERSION) { 9436 return (-1); 9437 } 9438 switch (name) { 9439 case IPV6_UNICAST_HOPS: 9440 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9441 break; /* goto sizeof (int) option return */ 9442 case IPV6_BOUND_IF: 9443 /* Zero if not set */ 9444 *i1 = tcp->tcp_bound_if; 9445 break; /* goto sizeof (int) option return */ 9446 case IPV6_RECVPKTINFO: 9447 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9448 *i1 = 1; 9449 else 9450 *i1 = 0; 9451 break; /* goto sizeof (int) option return */ 9452 case IPV6_RECVTCLASS: 9453 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9454 *i1 = 1; 9455 else 9456 *i1 = 0; 9457 break; /* goto sizeof (int) option return */ 9458 case IPV6_RECVHOPLIMIT: 9459 if (tcp->tcp_ipv6_recvancillary & 9460 TCP_IPV6_RECVHOPLIMIT) 9461 *i1 = 1; 9462 else 9463 *i1 = 0; 9464 break; /* goto sizeof (int) option return */ 9465 case IPV6_RECVHOPOPTS: 9466 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9467 *i1 = 1; 9468 else 9469 *i1 = 0; 9470 break; /* goto sizeof (int) option return */ 9471 case IPV6_RECVDSTOPTS: 9472 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9473 *i1 = 1; 9474 else 9475 *i1 = 0; 9476 break; /* goto sizeof (int) option return */ 9477 case _OLD_IPV6_RECVDSTOPTS: 9478 if (tcp->tcp_ipv6_recvancillary & 9479 TCP_OLD_IPV6_RECVDSTOPTS) 9480 *i1 = 1; 9481 else 9482 *i1 = 0; 9483 break; /* goto sizeof (int) option return */ 9484 case IPV6_RECVRTHDR: 9485 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9486 *i1 = 1; 9487 else 9488 *i1 = 0; 9489 break; /* goto sizeof (int) option return */ 9490 case IPV6_RECVRTHDRDSTOPTS: 9491 if (tcp->tcp_ipv6_recvancillary & 9492 TCP_IPV6_RECVRTDSTOPTS) 9493 *i1 = 1; 9494 else 9495 *i1 = 0; 9496 break; /* goto sizeof (int) option return */ 9497 case IPV6_PKTINFO: { 9498 /* XXX assumes that caller has room for max size! */ 9499 struct in6_pktinfo *pkti; 9500 9501 pkti = (struct in6_pktinfo *)ptr; 9502 if (ipp->ipp_fields & IPPF_IFINDEX) 9503 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9504 else 9505 pkti->ipi6_ifindex = 0; 9506 if (ipp->ipp_fields & IPPF_ADDR) 9507 pkti->ipi6_addr = ipp->ipp_addr; 9508 else 9509 pkti->ipi6_addr = ipv6_all_zeros; 9510 return (sizeof (struct in6_pktinfo)); 9511 } 9512 case IPV6_TCLASS: 9513 if (ipp->ipp_fields & IPPF_TCLASS) 9514 *i1 = ipp->ipp_tclass; 9515 else 9516 *i1 = IPV6_FLOW_TCLASS( 9517 IPV6_DEFAULT_VERS_AND_FLOW); 9518 break; /* goto sizeof (int) option return */ 9519 case IPV6_NEXTHOP: { 9520 sin6_t *sin6 = (sin6_t *)ptr; 9521 9522 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9523 return (0); 9524 *sin6 = sin6_null; 9525 sin6->sin6_family = AF_INET6; 9526 sin6->sin6_addr = ipp->ipp_nexthop; 9527 return (sizeof (sin6_t)); 9528 } 9529 case IPV6_HOPOPTS: 9530 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9531 return (0); 9532 bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen); 9533 return (ipp->ipp_hopoptslen); 9534 case IPV6_RTHDRDSTOPTS: 9535 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9536 return (0); 9537 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9538 return (ipp->ipp_rtdstoptslen); 9539 case IPV6_RTHDR: 9540 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9541 return (0); 9542 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9543 return (ipp->ipp_rthdrlen); 9544 case IPV6_DSTOPTS: 9545 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9546 return (0); 9547 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9548 return (ipp->ipp_dstoptslen); 9549 case IPV6_SRC_PREFERENCES: 9550 return (ip6_get_src_preferences(connp, 9551 (uint32_t *)ptr)); 9552 case IPV6_PATHMTU: { 9553 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9554 9555 if (tcp->tcp_state < TCPS_ESTABLISHED) 9556 return (-1); 9557 9558 return (ip_fill_mtuinfo(&connp->conn_remv6, 9559 connp->conn_fport, mtuinfo)); 9560 } 9561 default: 9562 return (-1); 9563 } 9564 break; 9565 default: 9566 return (-1); 9567 } 9568 return (sizeof (int)); 9569 } 9570 9571 /* 9572 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9573 * Parameters are assumed to be verified by the caller. 9574 */ 9575 /* ARGSUSED */ 9576 int 9577 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 9578 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9579 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9580 { 9581 tcp_t *tcp = Q_TO_TCP(q); 9582 int *i1 = (int *)invalp; 9583 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9584 boolean_t checkonly; 9585 int reterr; 9586 9587 switch (optset_context) { 9588 case SETFN_OPTCOM_CHECKONLY: 9589 checkonly = B_TRUE; 9590 /* 9591 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9592 * inlen != 0 implies value supplied and 9593 * we have to "pretend" to set it. 9594 * inlen == 0 implies that there is no 9595 * value part in T_CHECK request and just validation 9596 * done elsewhere should be enough, we just return here. 9597 */ 9598 if (inlen == 0) { 9599 *outlenp = 0; 9600 return (0); 9601 } 9602 break; 9603 case SETFN_OPTCOM_NEGOTIATE: 9604 checkonly = B_FALSE; 9605 break; 9606 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9607 case SETFN_CONN_NEGOTIATE: 9608 checkonly = B_FALSE; 9609 /* 9610 * Negotiating local and "association-related" options 9611 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9612 * primitives is allowed by XTI, but we choose 9613 * to not implement this style negotiation for Internet 9614 * protocols (We interpret it is a must for OSI world but 9615 * optional for Internet protocols) for all options. 9616 * [ Will do only for the few options that enable test 9617 * suites that our XTI implementation of this feature 9618 * works for transports that do allow it ] 9619 */ 9620 if (!tcp_allow_connopt_set(level, name)) { 9621 *outlenp = 0; 9622 return (EINVAL); 9623 } 9624 break; 9625 default: 9626 /* 9627 * We should never get here 9628 */ 9629 *outlenp = 0; 9630 return (EINVAL); 9631 } 9632 9633 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9634 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9635 9636 /* 9637 * For TCP, we should have no ancillary data sent down 9638 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9639 * has to be zero. 9640 */ 9641 ASSERT(thisdg_attrs == NULL); 9642 9643 /* 9644 * For fixed length options, no sanity check 9645 * of passed in length is done. It is assumed *_optcom_req() 9646 * routines do the right thing. 9647 */ 9648 9649 switch (level) { 9650 case SOL_SOCKET: 9651 switch (name) { 9652 case SO_LINGER: { 9653 struct linger *lgr = (struct linger *)invalp; 9654 9655 if (!checkonly) { 9656 if (lgr->l_onoff) { 9657 tcp->tcp_linger = 1; 9658 tcp->tcp_lingertime = lgr->l_linger; 9659 } else { 9660 tcp->tcp_linger = 0; 9661 tcp->tcp_lingertime = 0; 9662 } 9663 /* struct copy */ 9664 *(struct linger *)outvalp = *lgr; 9665 } else { 9666 if (!lgr->l_onoff) { 9667 ((struct linger *)outvalp)->l_onoff = 0; 9668 ((struct linger *)outvalp)->l_linger = 0; 9669 } else { 9670 /* struct copy */ 9671 *(struct linger *)outvalp = *lgr; 9672 } 9673 } 9674 *outlenp = sizeof (struct linger); 9675 return (0); 9676 } 9677 case SO_DEBUG: 9678 if (!checkonly) 9679 tcp->tcp_debug = onoff; 9680 break; 9681 case SO_KEEPALIVE: 9682 if (checkonly) { 9683 /* T_CHECK case */ 9684 break; 9685 } 9686 9687 if (!onoff) { 9688 if (tcp->tcp_ka_enabled) { 9689 if (tcp->tcp_ka_tid != 0) { 9690 (void) TCP_TIMER_CANCEL(tcp, 9691 tcp->tcp_ka_tid); 9692 tcp->tcp_ka_tid = 0; 9693 } 9694 tcp->tcp_ka_enabled = 0; 9695 } 9696 break; 9697 } 9698 if (!tcp->tcp_ka_enabled) { 9699 /* Crank up the keepalive timer */ 9700 tcp->tcp_ka_last_intrvl = 0; 9701 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9702 tcp_keepalive_killer, 9703 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9704 tcp->tcp_ka_enabled = 1; 9705 } 9706 break; 9707 case SO_DONTROUTE: 9708 /* 9709 * SO_DONTROUTE, SO_USELOOPBACK and SO_BROADCAST are 9710 * only of interest to IP. We track them here only so 9711 * that we can report their current value. 9712 */ 9713 if (!checkonly) { 9714 tcp->tcp_dontroute = onoff; 9715 tcp->tcp_connp->conn_dontroute = onoff; 9716 } 9717 break; 9718 case SO_USELOOPBACK: 9719 if (!checkonly) { 9720 tcp->tcp_useloopback = onoff; 9721 tcp->tcp_connp->conn_loopback = onoff; 9722 } 9723 break; 9724 case SO_BROADCAST: 9725 if (!checkonly) { 9726 tcp->tcp_broadcast = onoff; 9727 tcp->tcp_connp->conn_broadcast = onoff; 9728 } 9729 break; 9730 case SO_REUSEADDR: 9731 if (!checkonly) { 9732 tcp->tcp_reuseaddr = onoff; 9733 tcp->tcp_connp->conn_reuseaddr = onoff; 9734 } 9735 break; 9736 case SO_OOBINLINE: 9737 if (!checkonly) 9738 tcp->tcp_oobinline = onoff; 9739 break; 9740 case SO_DGRAM_ERRIND: 9741 if (!checkonly) 9742 tcp->tcp_dgram_errind = onoff; 9743 break; 9744 case SO_SNDBUF: { 9745 tcp_t *peer_tcp; 9746 9747 if (*i1 > tcp_max_buf) { 9748 *outlenp = 0; 9749 return (ENOBUFS); 9750 } 9751 if (checkonly) 9752 break; 9753 9754 tcp->tcp_xmit_hiwater = *i1; 9755 if (tcp_snd_lowat_fraction != 0) 9756 tcp->tcp_xmit_lowater = 9757 tcp->tcp_xmit_hiwater / 9758 tcp_snd_lowat_fraction; 9759 (void) tcp_maxpsz_set(tcp, B_TRUE); 9760 /* 9761 * If we are flow-controlled, recheck the condition. 9762 * There are apps that increase SO_SNDBUF size when 9763 * flow-controlled (EWOULDBLOCK), and expect the flow 9764 * control condition to be lifted right away. 9765 * 9766 * For the fused tcp loopback case, in order to avoid 9767 * a race with the peer's tcp_fuse_rrw() we need to 9768 * hold its fuse_lock while accessing tcp_flow_stopped. 9769 */ 9770 peer_tcp = tcp->tcp_loopback_peer; 9771 ASSERT(!tcp->tcp_fused || peer_tcp != NULL); 9772 if (tcp->tcp_fused) 9773 mutex_enter(&peer_tcp->tcp_fuse_lock); 9774 9775 if (tcp->tcp_flow_stopped && 9776 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 9777 tcp_clrqfull(tcp); 9778 } 9779 if (tcp->tcp_fused) 9780 mutex_exit(&peer_tcp->tcp_fuse_lock); 9781 break; 9782 } 9783 case SO_RCVBUF: 9784 if (*i1 > tcp_max_buf) { 9785 *outlenp = 0; 9786 return (ENOBUFS); 9787 } 9788 /* Silently ignore zero */ 9789 if (!checkonly && *i1 != 0) { 9790 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 9791 (void) tcp_rwnd_set(tcp, *i1); 9792 } 9793 /* 9794 * XXX should we return the rwnd here 9795 * and tcp_opt_get ? 9796 */ 9797 break; 9798 case SO_SND_COPYAVOID: 9799 if (!checkonly) { 9800 /* we only allow enable at most once for now */ 9801 if (tcp->tcp_loopback || 9802 (!tcp->tcp_snd_zcopy_aware && 9803 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 9804 *outlenp = 0; 9805 return (EOPNOTSUPP); 9806 } 9807 tcp->tcp_snd_zcopy_aware = 1; 9808 } 9809 break; 9810 default: 9811 *outlenp = 0; 9812 return (EINVAL); 9813 } 9814 break; 9815 case IPPROTO_TCP: 9816 switch (name) { 9817 case TCP_NODELAY: 9818 if (!checkonly) 9819 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 9820 break; 9821 case TCP_NOTIFY_THRESHOLD: 9822 if (!checkonly) 9823 tcp->tcp_first_timer_threshold = *i1; 9824 break; 9825 case TCP_ABORT_THRESHOLD: 9826 if (!checkonly) 9827 tcp->tcp_second_timer_threshold = *i1; 9828 break; 9829 case TCP_CONN_NOTIFY_THRESHOLD: 9830 if (!checkonly) 9831 tcp->tcp_first_ctimer_threshold = *i1; 9832 break; 9833 case TCP_CONN_ABORT_THRESHOLD: 9834 if (!checkonly) 9835 tcp->tcp_second_ctimer_threshold = *i1; 9836 break; 9837 case TCP_RECVDSTADDR: 9838 if (tcp->tcp_state > TCPS_LISTEN) 9839 return (EOPNOTSUPP); 9840 if (!checkonly) 9841 tcp->tcp_recvdstaddr = onoff; 9842 break; 9843 case TCP_ANONPRIVBIND: 9844 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 9845 *outlenp = 0; 9846 return (reterr); 9847 } 9848 if (!checkonly) { 9849 tcp->tcp_anon_priv_bind = onoff; 9850 } 9851 break; 9852 case TCP_EXCLBIND: 9853 if (!checkonly) 9854 tcp->tcp_exclbind = onoff; 9855 break; /* goto sizeof (int) option return */ 9856 case TCP_INIT_CWND: { 9857 uint32_t init_cwnd = *((uint32_t *)invalp); 9858 9859 if (checkonly) 9860 break; 9861 9862 /* 9863 * Only allow socket with network configuration 9864 * privilege to set the initial cwnd to be larger 9865 * than allowed by RFC 3390. 9866 */ 9867 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 9868 tcp->tcp_init_cwnd = init_cwnd; 9869 break; 9870 } 9871 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 9872 *outlenp = 0; 9873 return (reterr); 9874 } 9875 if (init_cwnd > TCP_MAX_INIT_CWND) { 9876 *outlenp = 0; 9877 return (EINVAL); 9878 } 9879 tcp->tcp_init_cwnd = init_cwnd; 9880 break; 9881 } 9882 case TCP_KEEPALIVE_THRESHOLD: 9883 if (checkonly) 9884 break; 9885 9886 if (*i1 < tcp_keepalive_interval_low || 9887 *i1 > tcp_keepalive_interval_high) { 9888 *outlenp = 0; 9889 return (EINVAL); 9890 } 9891 if (*i1 != tcp->tcp_ka_interval) { 9892 tcp->tcp_ka_interval = *i1; 9893 /* 9894 * Check if we need to restart the 9895 * keepalive timer. 9896 */ 9897 if (tcp->tcp_ka_tid != 0) { 9898 ASSERT(tcp->tcp_ka_enabled); 9899 (void) TCP_TIMER_CANCEL(tcp, 9900 tcp->tcp_ka_tid); 9901 tcp->tcp_ka_last_intrvl = 0; 9902 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9903 tcp_keepalive_killer, 9904 MSEC_TO_TICK(tcp->tcp_ka_interval)); 9905 } 9906 } 9907 break; 9908 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9909 if (!checkonly) { 9910 if (*i1 < tcp_keepalive_abort_interval_low || 9911 *i1 > tcp_keepalive_abort_interval_high) { 9912 *outlenp = 0; 9913 return (EINVAL); 9914 } 9915 tcp->tcp_ka_abort_thres = *i1; 9916 } 9917 break; 9918 case TCP_CORK: 9919 if (!checkonly) { 9920 /* 9921 * if tcp->tcp_cork was set and is now 9922 * being unset, we have to make sure that 9923 * the remaining data gets sent out. Also 9924 * unset tcp->tcp_cork so that tcp_wput_data() 9925 * can send data even if it is less than mss 9926 */ 9927 if (tcp->tcp_cork && onoff == 0 && 9928 tcp->tcp_unsent > 0) { 9929 tcp->tcp_cork = B_FALSE; 9930 tcp_wput_data(tcp, NULL, B_FALSE); 9931 } 9932 tcp->tcp_cork = onoff; 9933 } 9934 break; 9935 default: 9936 *outlenp = 0; 9937 return (EINVAL); 9938 } 9939 break; 9940 case IPPROTO_IP: 9941 if (tcp->tcp_family != AF_INET) { 9942 *outlenp = 0; 9943 return (ENOPROTOOPT); 9944 } 9945 switch (name) { 9946 case IP_OPTIONS: 9947 case T_IP_OPTIONS: 9948 reterr = tcp_opt_set_header(tcp, checkonly, 9949 invalp, inlen); 9950 if (reterr) { 9951 *outlenp = 0; 9952 return (reterr); 9953 } 9954 /* OK return - copy input buffer into output buffer */ 9955 if (invalp != outvalp) { 9956 /* don't trust bcopy for identical src/dst */ 9957 bcopy(invalp, outvalp, inlen); 9958 } 9959 *outlenp = inlen; 9960 return (0); 9961 case IP_TOS: 9962 case T_IP_TOS: 9963 if (!checkonly) { 9964 tcp->tcp_ipha->ipha_type_of_service = 9965 (uchar_t)*i1; 9966 tcp->tcp_tos = (uchar_t)*i1; 9967 } 9968 break; 9969 case IP_TTL: 9970 if (!checkonly) { 9971 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 9972 tcp->tcp_ttl = (uchar_t)*i1; 9973 } 9974 break; 9975 case IP_BOUND_IF: 9976 case IP_NEXTHOP: 9977 /* Handled at the IP level */ 9978 return (-EINVAL); 9979 case IP_SEC_OPT: 9980 /* 9981 * We should not allow policy setting after 9982 * we start listening for connections. 9983 */ 9984 if (tcp->tcp_state == TCPS_LISTEN) { 9985 return (EINVAL); 9986 } else { 9987 /* Handled at the IP level */ 9988 return (-EINVAL); 9989 } 9990 default: 9991 *outlenp = 0; 9992 return (EINVAL); 9993 } 9994 break; 9995 case IPPROTO_IPV6: { 9996 ip6_pkt_t *ipp; 9997 9998 /* 9999 * IPPROTO_IPV6 options are only supported for sockets 10000 * that are using IPv6 on the wire. 10001 */ 10002 if (tcp->tcp_ipversion != IPV6_VERSION) { 10003 *outlenp = 0; 10004 return (ENOPROTOOPT); 10005 } 10006 /* 10007 * Only sticky options; no ancillary data 10008 */ 10009 ASSERT(thisdg_attrs == NULL); 10010 ipp = &tcp->tcp_sticky_ipp; 10011 10012 switch (name) { 10013 case IPV6_UNICAST_HOPS: 10014 /* -1 means use default */ 10015 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10016 *outlenp = 0; 10017 return (EINVAL); 10018 } 10019 if (!checkonly) { 10020 if (*i1 == -1) { 10021 tcp->tcp_ip6h->ip6_hops = 10022 ipp->ipp_unicast_hops = 10023 (uint8_t)tcp_ipv6_hoplimit; 10024 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10025 /* Pass modified value to IP. */ 10026 *i1 = tcp->tcp_ip6h->ip6_hops; 10027 } else { 10028 tcp->tcp_ip6h->ip6_hops = 10029 ipp->ipp_unicast_hops = 10030 (uint8_t)*i1; 10031 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10032 } 10033 reterr = tcp_build_hdrs(q, tcp); 10034 if (reterr != 0) 10035 return (reterr); 10036 } 10037 break; 10038 case IPV6_BOUND_IF: 10039 if (!checkonly) { 10040 int error = 0; 10041 10042 tcp->tcp_bound_if = *i1; 10043 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10044 B_TRUE, checkonly, level, name, mblk); 10045 if (error != 0) { 10046 *outlenp = 0; 10047 return (error); 10048 } 10049 } 10050 break; 10051 /* 10052 * Set boolean switches for ancillary data delivery 10053 */ 10054 case IPV6_RECVPKTINFO: 10055 if (!checkonly) { 10056 if (onoff) 10057 tcp->tcp_ipv6_recvancillary |= 10058 TCP_IPV6_RECVPKTINFO; 10059 else 10060 tcp->tcp_ipv6_recvancillary &= 10061 ~TCP_IPV6_RECVPKTINFO; 10062 /* Force it to be sent up with the next msg */ 10063 tcp->tcp_recvifindex = 0; 10064 } 10065 break; 10066 case IPV6_RECVTCLASS: 10067 if (!checkonly) { 10068 if (onoff) 10069 tcp->tcp_ipv6_recvancillary |= 10070 TCP_IPV6_RECVTCLASS; 10071 else 10072 tcp->tcp_ipv6_recvancillary &= 10073 ~TCP_IPV6_RECVTCLASS; 10074 } 10075 break; 10076 case IPV6_RECVHOPLIMIT: 10077 if (!checkonly) { 10078 if (onoff) 10079 tcp->tcp_ipv6_recvancillary |= 10080 TCP_IPV6_RECVHOPLIMIT; 10081 else 10082 tcp->tcp_ipv6_recvancillary &= 10083 ~TCP_IPV6_RECVHOPLIMIT; 10084 /* Force it to be sent up with the next msg */ 10085 tcp->tcp_recvhops = 0xffffffffU; 10086 } 10087 break; 10088 case IPV6_RECVHOPOPTS: 10089 if (!checkonly) { 10090 if (onoff) 10091 tcp->tcp_ipv6_recvancillary |= 10092 TCP_IPV6_RECVHOPOPTS; 10093 else 10094 tcp->tcp_ipv6_recvancillary &= 10095 ~TCP_IPV6_RECVHOPOPTS; 10096 } 10097 break; 10098 case IPV6_RECVDSTOPTS: 10099 if (!checkonly) { 10100 if (onoff) 10101 tcp->tcp_ipv6_recvancillary |= 10102 TCP_IPV6_RECVDSTOPTS; 10103 else 10104 tcp->tcp_ipv6_recvancillary &= 10105 ~TCP_IPV6_RECVDSTOPTS; 10106 } 10107 break; 10108 case _OLD_IPV6_RECVDSTOPTS: 10109 if (!checkonly) { 10110 if (onoff) 10111 tcp->tcp_ipv6_recvancillary |= 10112 TCP_OLD_IPV6_RECVDSTOPTS; 10113 else 10114 tcp->tcp_ipv6_recvancillary &= 10115 ~TCP_OLD_IPV6_RECVDSTOPTS; 10116 } 10117 break; 10118 case IPV6_RECVRTHDR: 10119 if (!checkonly) { 10120 if (onoff) 10121 tcp->tcp_ipv6_recvancillary |= 10122 TCP_IPV6_RECVRTHDR; 10123 else 10124 tcp->tcp_ipv6_recvancillary &= 10125 ~TCP_IPV6_RECVRTHDR; 10126 } 10127 break; 10128 case IPV6_RECVRTHDRDSTOPTS: 10129 if (!checkonly) { 10130 if (onoff) 10131 tcp->tcp_ipv6_recvancillary |= 10132 TCP_IPV6_RECVRTDSTOPTS; 10133 else 10134 tcp->tcp_ipv6_recvancillary &= 10135 ~TCP_IPV6_RECVRTDSTOPTS; 10136 } 10137 break; 10138 case IPV6_PKTINFO: 10139 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10140 return (EINVAL); 10141 if (checkonly) 10142 break; 10143 10144 if (inlen == 0) { 10145 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10146 } else { 10147 struct in6_pktinfo *pkti; 10148 10149 pkti = (struct in6_pktinfo *)invalp; 10150 /* 10151 * RFC 3542 states that ipi6_addr must be 10152 * the unspecified address when setting the 10153 * IPV6_PKTINFO sticky socket option on a 10154 * TCP socket. 10155 */ 10156 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10157 return (EINVAL); 10158 /* 10159 * ip6_set_pktinfo() validates the source 10160 * address and interface index. 10161 */ 10162 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10163 pkti, mblk); 10164 if (reterr != 0) 10165 return (reterr); 10166 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10167 ipp->ipp_addr = pkti->ipi6_addr; 10168 if (ipp->ipp_ifindex != 0) 10169 ipp->ipp_fields |= IPPF_IFINDEX; 10170 else 10171 ipp->ipp_fields &= ~IPPF_IFINDEX; 10172 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10173 ipp->ipp_fields |= IPPF_ADDR; 10174 else 10175 ipp->ipp_fields &= ~IPPF_ADDR; 10176 } 10177 reterr = tcp_build_hdrs(q, tcp); 10178 if (reterr != 0) 10179 return (reterr); 10180 break; 10181 case IPV6_TCLASS: 10182 if (inlen != 0 && inlen != sizeof (int)) 10183 return (EINVAL); 10184 if (checkonly) 10185 break; 10186 10187 if (inlen == 0) { 10188 ipp->ipp_fields &= ~IPPF_TCLASS; 10189 } else { 10190 if (*i1 > 255 || *i1 < -1) 10191 return (EINVAL); 10192 if (*i1 == -1) { 10193 ipp->ipp_tclass = 0; 10194 *i1 = 0; 10195 } else { 10196 ipp->ipp_tclass = *i1; 10197 } 10198 ipp->ipp_fields |= IPPF_TCLASS; 10199 } 10200 reterr = tcp_build_hdrs(q, tcp); 10201 if (reterr != 0) 10202 return (reterr); 10203 break; 10204 case IPV6_NEXTHOP: 10205 /* 10206 * IP will verify that the nexthop is reachable 10207 * and fail for sticky options. 10208 */ 10209 if (inlen != 0 && inlen != sizeof (sin6_t)) 10210 return (EINVAL); 10211 if (checkonly) 10212 break; 10213 10214 if (inlen == 0) { 10215 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10216 } else { 10217 sin6_t *sin6 = (sin6_t *)invalp; 10218 10219 if (sin6->sin6_family != AF_INET6) 10220 return (EAFNOSUPPORT); 10221 if (IN6_IS_ADDR_V4MAPPED( 10222 &sin6->sin6_addr)) 10223 return (EADDRNOTAVAIL); 10224 ipp->ipp_nexthop = sin6->sin6_addr; 10225 if (!IN6_IS_ADDR_UNSPECIFIED( 10226 &ipp->ipp_nexthop)) 10227 ipp->ipp_fields |= IPPF_NEXTHOP; 10228 else 10229 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10230 } 10231 reterr = tcp_build_hdrs(q, tcp); 10232 if (reterr != 0) 10233 return (reterr); 10234 break; 10235 case IPV6_HOPOPTS: { 10236 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10237 /* 10238 * Sanity checks - minimum size, size a multiple of 10239 * eight bytes, and matching size passed in. 10240 */ 10241 if (inlen != 0 && 10242 inlen != (8 * (hopts->ip6h_len + 1))) 10243 return (EINVAL); 10244 10245 if (checkonly) 10246 break; 10247 10248 if (inlen == 0) { 10249 if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) { 10250 kmem_free(ipp->ipp_hopopts, 10251 ipp->ipp_hopoptslen); 10252 ipp->ipp_hopopts = NULL; 10253 ipp->ipp_hopoptslen = 0; 10254 } 10255 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10256 } else { 10257 reterr = tcp_pkt_set(invalp, inlen, 10258 (uchar_t **)&ipp->ipp_hopopts, 10259 &ipp->ipp_hopoptslen); 10260 if (reterr != 0) 10261 return (reterr); 10262 ipp->ipp_fields |= IPPF_HOPOPTS; 10263 } 10264 reterr = tcp_build_hdrs(q, tcp); 10265 if (reterr != 0) 10266 return (reterr); 10267 break; 10268 } 10269 case IPV6_RTHDRDSTOPTS: { 10270 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10271 10272 /* 10273 * Sanity checks - minimum size, size a multiple of 10274 * eight bytes, and matching size passed in. 10275 */ 10276 if (inlen != 0 && 10277 inlen != (8 * (dopts->ip6d_len + 1))) 10278 return (EINVAL); 10279 10280 if (checkonly) 10281 break; 10282 10283 if (inlen == 0) { 10284 if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) { 10285 kmem_free(ipp->ipp_rtdstopts, 10286 ipp->ipp_rtdstoptslen); 10287 ipp->ipp_rtdstopts = NULL; 10288 ipp->ipp_rtdstoptslen = 0; 10289 } 10290 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10291 } else { 10292 reterr = tcp_pkt_set(invalp, inlen, 10293 (uchar_t **)&ipp->ipp_rtdstopts, 10294 &ipp->ipp_rtdstoptslen); 10295 if (reterr != 0) 10296 return (reterr); 10297 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10298 } 10299 reterr = tcp_build_hdrs(q, tcp); 10300 if (reterr != 0) 10301 return (reterr); 10302 break; 10303 } 10304 case IPV6_DSTOPTS: { 10305 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10306 10307 /* 10308 * Sanity checks - minimum size, size a multiple of 10309 * eight bytes, and matching size passed in. 10310 */ 10311 if (inlen != 0 && 10312 inlen != (8 * (dopts->ip6d_len + 1))) 10313 return (EINVAL); 10314 10315 if (checkonly) 10316 break; 10317 10318 if (inlen == 0) { 10319 if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) { 10320 kmem_free(ipp->ipp_dstopts, 10321 ipp->ipp_dstoptslen); 10322 ipp->ipp_dstopts = NULL; 10323 ipp->ipp_dstoptslen = 0; 10324 } 10325 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10326 } else { 10327 reterr = tcp_pkt_set(invalp, inlen, 10328 (uchar_t **)&ipp->ipp_dstopts, 10329 &ipp->ipp_dstoptslen); 10330 if (reterr != 0) 10331 return (reterr); 10332 ipp->ipp_fields |= IPPF_DSTOPTS; 10333 } 10334 reterr = tcp_build_hdrs(q, tcp); 10335 if (reterr != 0) 10336 return (reterr); 10337 break; 10338 } 10339 case IPV6_RTHDR: { 10340 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10341 10342 /* 10343 * Sanity checks - minimum size, size a multiple of 10344 * eight bytes, and matching size passed in. 10345 */ 10346 if (inlen != 0 && 10347 inlen != (8 * (rt->ip6r_len + 1))) 10348 return (EINVAL); 10349 10350 if (checkonly) 10351 break; 10352 10353 if (inlen == 0) { 10354 if ((ipp->ipp_fields & IPPF_RTHDR) != 0) { 10355 kmem_free(ipp->ipp_rthdr, 10356 ipp->ipp_rthdrlen); 10357 ipp->ipp_rthdr = NULL; 10358 ipp->ipp_rthdrlen = 0; 10359 } 10360 ipp->ipp_fields &= ~IPPF_RTHDR; 10361 } else { 10362 reterr = tcp_pkt_set(invalp, inlen, 10363 (uchar_t **)&ipp->ipp_rthdr, 10364 &ipp->ipp_rthdrlen); 10365 if (reterr != 0) 10366 return (reterr); 10367 ipp->ipp_fields |= IPPF_RTHDR; 10368 } 10369 reterr = tcp_build_hdrs(q, tcp); 10370 if (reterr != 0) 10371 return (reterr); 10372 break; 10373 } 10374 case IPV6_V6ONLY: 10375 if (!checkonly) 10376 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10377 break; 10378 case IPV6_USE_MIN_MTU: 10379 if (inlen != sizeof (int)) 10380 return (EINVAL); 10381 10382 if (*i1 < -1 || *i1 > 1) 10383 return (EINVAL); 10384 10385 if (checkonly) 10386 break; 10387 10388 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10389 ipp->ipp_use_min_mtu = *i1; 10390 break; 10391 case IPV6_BOUND_PIF: 10392 /* Handled at the IP level */ 10393 return (-EINVAL); 10394 case IPV6_SEC_OPT: 10395 /* 10396 * We should not allow policy setting after 10397 * we start listening for connections. 10398 */ 10399 if (tcp->tcp_state == TCPS_LISTEN) { 10400 return (EINVAL); 10401 } else { 10402 /* Handled at the IP level */ 10403 return (-EINVAL); 10404 } 10405 case IPV6_SRC_PREFERENCES: 10406 if (inlen != sizeof (uint32_t)) 10407 return (EINVAL); 10408 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10409 *(uint32_t *)invalp); 10410 if (reterr != 0) { 10411 *outlenp = 0; 10412 return (reterr); 10413 } 10414 break; 10415 default: 10416 *outlenp = 0; 10417 return (EINVAL); 10418 } 10419 break; 10420 } /* end IPPROTO_IPV6 */ 10421 default: 10422 *outlenp = 0; 10423 return (EINVAL); 10424 } 10425 /* 10426 * Common case of OK return with outval same as inval 10427 */ 10428 if (invalp != outvalp) { 10429 /* don't trust bcopy for identical src/dst */ 10430 (void) bcopy(invalp, outvalp, inlen); 10431 } 10432 *outlenp = inlen; 10433 return (0); 10434 } 10435 10436 /* 10437 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10438 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10439 * headers, and the maximum size tcp header (to avoid reallocation 10440 * on the fly for additional tcp options). 10441 * Returns failure if can't allocate memory. 10442 */ 10443 static int 10444 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10445 { 10446 char *hdrs; 10447 uint_t hdrs_len; 10448 ip6i_t *ip6i; 10449 char buf[TCP_MAX_HDR_LENGTH]; 10450 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10451 in6_addr_t src, dst; 10452 10453 /* 10454 * save the existing tcp header and source/dest IP addresses 10455 */ 10456 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10457 src = tcp->tcp_ip6h->ip6_src; 10458 dst = tcp->tcp_ip6h->ip6_dst; 10459 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10460 ASSERT(hdrs_len != 0); 10461 if (hdrs_len > tcp->tcp_iphc_len) { 10462 /* Need to reallocate */ 10463 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10464 if (hdrs == NULL) 10465 return (ENOMEM); 10466 if (tcp->tcp_iphc != NULL) { 10467 if (tcp->tcp_hdr_grown) { 10468 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10469 } else { 10470 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10471 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10472 } 10473 tcp->tcp_iphc_len = 0; 10474 } 10475 ASSERT(tcp->tcp_iphc_len == 0); 10476 tcp->tcp_iphc = hdrs; 10477 tcp->tcp_iphc_len = hdrs_len; 10478 tcp->tcp_hdr_grown = B_TRUE; 10479 } 10480 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10481 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10482 10483 /* Set header fields not in ipp */ 10484 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10485 ip6i = (ip6i_t *)tcp->tcp_iphc; 10486 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10487 } else { 10488 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10489 } 10490 /* 10491 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10492 * 10493 * tcp->tcp_tcp_hdr_len doesn't change here. 10494 */ 10495 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10496 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10497 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10498 10499 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10500 10501 tcp->tcp_ip6h->ip6_src = src; 10502 tcp->tcp_ip6h->ip6_dst = dst; 10503 10504 /* 10505 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10506 * the default value for TCP. 10507 */ 10508 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10509 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 10510 10511 /* 10512 * If we're setting extension headers after a connection 10513 * has been established, and if we have a routing header 10514 * among the extension headers, call ip_massage_options_v6 to 10515 * manipulate the routing header/ip6_dst set the checksum 10516 * difference in the tcp header template. 10517 * (This happens in tcp_connect_ipv6 if the routing header 10518 * is set prior to the connect.) 10519 * Set the tcp_sum to zero first in case we've cleared a 10520 * routing header or don't have one at all. 10521 */ 10522 tcp->tcp_sum = 0; 10523 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10524 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10525 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10526 (uint8_t *)tcp->tcp_tcph); 10527 if (rth != NULL) { 10528 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10529 rth); 10530 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10531 (tcp->tcp_sum >> 16)); 10532 } 10533 } 10534 10535 /* Try to get everything in a single mblk */ 10536 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 10537 return (0); 10538 } 10539 10540 /* 10541 * Set optbuf and optlen for the option. 10542 * Allocate memory (if not already present). 10543 * Otherwise just point optbuf and optlen at invalp and inlen. 10544 * Returns failure if memory can not be allocated. 10545 */ 10546 static int 10547 tcp_pkt_set(uchar_t *invalp, uint_t inlen, uchar_t **optbufp, uint_t *optlenp) 10548 { 10549 uchar_t *optbuf; 10550 10551 if (inlen == *optlenp) { 10552 /* Unchanged length - no need to realocate */ 10553 bcopy(invalp, *optbufp, inlen); 10554 return (0); 10555 } 10556 if (inlen != 0) { 10557 /* Allocate new buffer before free */ 10558 optbuf = kmem_alloc(inlen, KM_NOSLEEP); 10559 if (optbuf == NULL) 10560 return (ENOMEM); 10561 } else { 10562 optbuf = NULL; 10563 } 10564 /* Free old buffer */ 10565 if (*optlenp != 0) 10566 kmem_free(*optbufp, *optlenp); 10567 10568 bcopy(invalp, optbuf, inlen); 10569 *optbufp = optbuf; 10570 *optlenp = inlen; 10571 return (0); 10572 } 10573 10574 10575 /* 10576 * Use the outgoing IP header to create an IP_OPTIONS option the way 10577 * it was passed down from the application. 10578 */ 10579 static int 10580 tcp_opt_get_user(ipha_t *ipha, uchar_t *buf) 10581 { 10582 ipoptp_t opts; 10583 uchar_t *opt; 10584 uint8_t optval; 10585 uint8_t optlen; 10586 uint32_t len = 0; 10587 uchar_t *buf1 = buf; 10588 10589 buf += IP_ADDR_LEN; /* Leave room for final destination */ 10590 len += IP_ADDR_LEN; 10591 bzero(buf1, IP_ADDR_LEN); 10592 10593 for (optval = ipoptp_first(&opts, ipha); 10594 optval != IPOPT_EOL; 10595 optval = ipoptp_next(&opts)) { 10596 opt = opts.ipoptp_cur; 10597 optlen = opts.ipoptp_len; 10598 switch (optval) { 10599 int off; 10600 case IPOPT_SSRR: 10601 case IPOPT_LSRR: 10602 10603 /* 10604 * Insert ipha_dst as the first entry in the source 10605 * route and move down the entries on step. 10606 * The last entry gets placed at buf1. 10607 */ 10608 buf[IPOPT_OPTVAL] = optval; 10609 buf[IPOPT_OLEN] = optlen; 10610 buf[IPOPT_OFFSET] = optlen; 10611 10612 off = optlen - IP_ADDR_LEN; 10613 if (off < 0) { 10614 /* No entries in source route */ 10615 break; 10616 } 10617 /* Last entry in source route */ 10618 bcopy(opt + off, buf1, IP_ADDR_LEN); 10619 off -= IP_ADDR_LEN; 10620 10621 while (off > 0) { 10622 bcopy(opt + off, 10623 buf + off + IP_ADDR_LEN, 10624 IP_ADDR_LEN); 10625 off -= IP_ADDR_LEN; 10626 } 10627 /* ipha_dst into first slot */ 10628 bcopy(&ipha->ipha_dst, 10629 buf + off + IP_ADDR_LEN, 10630 IP_ADDR_LEN); 10631 buf += optlen; 10632 len += optlen; 10633 break; 10634 default: 10635 bcopy(opt, buf, optlen); 10636 buf += optlen; 10637 len += optlen; 10638 break; 10639 } 10640 } 10641 done: 10642 /* Pad the resulting options */ 10643 while (len & 0x3) { 10644 *buf++ = IPOPT_EOL; 10645 len++; 10646 } 10647 return (len); 10648 } 10649 10650 /* 10651 * Transfer any source route option from ipha to buf/dst in reversed form. 10652 */ 10653 static int 10654 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10655 { 10656 ipoptp_t opts; 10657 uchar_t *opt; 10658 uint8_t optval; 10659 uint8_t optlen; 10660 uint32_t len = 0; 10661 10662 for (optval = ipoptp_first(&opts, ipha); 10663 optval != IPOPT_EOL; 10664 optval = ipoptp_next(&opts)) { 10665 opt = opts.ipoptp_cur; 10666 optlen = opts.ipoptp_len; 10667 switch (optval) { 10668 int off1, off2; 10669 case IPOPT_SSRR: 10670 case IPOPT_LSRR: 10671 10672 /* Reverse source route */ 10673 /* 10674 * First entry should be the next to last one in the 10675 * current source route (the last entry is our 10676 * address.) 10677 * The last entry should be the final destination. 10678 */ 10679 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10680 buf[IPOPT_OLEN] = (uint8_t)optlen; 10681 off1 = IPOPT_MINOFF_SR - 1; 10682 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10683 if (off2 < 0) { 10684 /* No entries in source route */ 10685 break; 10686 } 10687 bcopy(opt + off2, dst, IP_ADDR_LEN); 10688 /* 10689 * Note: use src since ipha has not had its src 10690 * and dst reversed (it is in the state it was 10691 * received. 10692 */ 10693 bcopy(&ipha->ipha_src, buf + off2, 10694 IP_ADDR_LEN); 10695 off2 -= IP_ADDR_LEN; 10696 10697 while (off2 > 0) { 10698 bcopy(opt + off2, buf + off1, 10699 IP_ADDR_LEN); 10700 off1 += IP_ADDR_LEN; 10701 off2 -= IP_ADDR_LEN; 10702 } 10703 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 10704 buf += optlen; 10705 len += optlen; 10706 break; 10707 } 10708 } 10709 done: 10710 /* Pad the resulting options */ 10711 while (len & 0x3) { 10712 *buf++ = IPOPT_EOL; 10713 len++; 10714 } 10715 return (len); 10716 } 10717 10718 10719 /* 10720 * Extract and revert a source route from ipha (if any) 10721 * and then update the relevant fields in both tcp_t and the standard header. 10722 */ 10723 static void 10724 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 10725 { 10726 char buf[TCP_MAX_HDR_LENGTH]; 10727 uint_t tcph_len; 10728 int len; 10729 10730 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 10731 len = IPH_HDR_LENGTH(ipha); 10732 if (len == IP_SIMPLE_HDR_LENGTH) 10733 /* Nothing to do */ 10734 return; 10735 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 10736 (len & 0x3)) 10737 return; 10738 10739 tcph_len = tcp->tcp_tcp_hdr_len; 10740 bcopy(tcp->tcp_tcph, buf, tcph_len); 10741 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 10742 (tcp->tcp_ipha->ipha_dst & 0xffff); 10743 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 10744 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 10745 len += IP_SIMPLE_HDR_LENGTH; 10746 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 10747 (tcp->tcp_ipha->ipha_dst & 0xffff)); 10748 if ((int)tcp->tcp_sum < 0) 10749 tcp->tcp_sum--; 10750 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 10751 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 10752 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 10753 bcopy(buf, tcp->tcp_tcph, tcph_len); 10754 tcp->tcp_ip_hdr_len = len; 10755 tcp->tcp_ipha->ipha_version_and_hdr_length = 10756 (IP_VERSION << 4) | (len >> 2); 10757 len += tcph_len; 10758 tcp->tcp_hdr_len = len; 10759 } 10760 10761 /* 10762 * Copy the standard header into its new location, 10763 * lay in the new options and then update the relevant 10764 * fields in both tcp_t and the standard header. 10765 */ 10766 static int 10767 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 10768 { 10769 uint_t tcph_len; 10770 char *ip_optp; 10771 tcph_t *new_tcph; 10772 10773 if (checkonly) { 10774 /* 10775 * do not really set, just pretend to - T_CHECK 10776 */ 10777 if (len != 0) { 10778 /* 10779 * there is value supplied, validate it as if 10780 * for a real set operation. 10781 */ 10782 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10783 return (EINVAL); 10784 } 10785 return (0); 10786 } 10787 10788 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 10789 return (EINVAL); 10790 10791 ip_optp = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 10792 tcph_len = tcp->tcp_tcp_hdr_len; 10793 new_tcph = (tcph_t *)(ip_optp + len); 10794 ovbcopy((char *)tcp->tcp_tcph, (char *)new_tcph, tcph_len); 10795 tcp->tcp_tcph = new_tcph; 10796 bcopy(ptr, ip_optp, len); 10797 10798 len += IP_SIMPLE_HDR_LENGTH; 10799 10800 tcp->tcp_ip_hdr_len = len; 10801 tcp->tcp_ipha->ipha_version_and_hdr_length = 10802 (IP_VERSION << 4) | (len >> 2); 10803 len += tcph_len; 10804 tcp->tcp_hdr_len = len; 10805 if (!TCP_IS_DETACHED(tcp)) { 10806 /* Always allocate room for all options. */ 10807 (void) mi_set_sth_wroff(tcp->tcp_rq, 10808 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 10809 } 10810 return (0); 10811 } 10812 10813 /* Get callback routine passed to nd_load by tcp_param_register */ 10814 /* ARGSUSED */ 10815 static int 10816 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 10817 { 10818 tcpparam_t *tcppa = (tcpparam_t *)cp; 10819 10820 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 10821 return (0); 10822 } 10823 10824 /* 10825 * Walk through the param array specified registering each element with the 10826 * named dispatch handler. 10827 */ 10828 static boolean_t 10829 tcp_param_register(tcpparam_t *tcppa, int cnt) 10830 { 10831 for (; cnt-- > 0; tcppa++) { 10832 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 10833 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 10834 tcp_param_get, tcp_param_set, 10835 (caddr_t)tcppa)) { 10836 nd_free(&tcp_g_nd); 10837 return (B_FALSE); 10838 } 10839 } 10840 } 10841 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 10842 tcp_param_get, tcp_param_set_aligned, 10843 (caddr_t)&tcp_wroff_xtra_param)) { 10844 nd_free(&tcp_g_nd); 10845 return (B_FALSE); 10846 } 10847 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 10848 tcp_param_get, tcp_param_set_aligned, 10849 (caddr_t)&tcp_mdt_head_param)) { 10850 nd_free(&tcp_g_nd); 10851 return (B_FALSE); 10852 } 10853 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 10854 tcp_param_get, tcp_param_set_aligned, 10855 (caddr_t)&tcp_mdt_tail_param)) { 10856 nd_free(&tcp_g_nd); 10857 return (B_FALSE); 10858 } 10859 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 10860 tcp_param_get, tcp_param_set, 10861 (caddr_t)&tcp_mdt_max_pbufs_param)) { 10862 nd_free(&tcp_g_nd); 10863 return (B_FALSE); 10864 } 10865 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 10866 tcp_extra_priv_ports_get, NULL, NULL)) { 10867 nd_free(&tcp_g_nd); 10868 return (B_FALSE); 10869 } 10870 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 10871 NULL, tcp_extra_priv_ports_add, NULL)) { 10872 nd_free(&tcp_g_nd); 10873 return (B_FALSE); 10874 } 10875 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 10876 NULL, tcp_extra_priv_ports_del, NULL)) { 10877 nd_free(&tcp_g_nd); 10878 return (B_FALSE); 10879 } 10880 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 10881 NULL)) { 10882 nd_free(&tcp_g_nd); 10883 return (B_FALSE); 10884 } 10885 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 10886 NULL, NULL)) { 10887 nd_free(&tcp_g_nd); 10888 return (B_FALSE); 10889 } 10890 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 10891 NULL, NULL)) { 10892 nd_free(&tcp_g_nd); 10893 return (B_FALSE); 10894 } 10895 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 10896 NULL, NULL)) { 10897 nd_free(&tcp_g_nd); 10898 return (B_FALSE); 10899 } 10900 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 10901 NULL, NULL)) { 10902 nd_free(&tcp_g_nd); 10903 return (B_FALSE); 10904 } 10905 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 10906 tcp_host_param_set, NULL)) { 10907 nd_free(&tcp_g_nd); 10908 return (B_FALSE); 10909 } 10910 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 10911 tcp_host_param_set_ipv6, NULL)) { 10912 nd_free(&tcp_g_nd); 10913 return (B_FALSE); 10914 } 10915 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 10916 NULL)) { 10917 nd_free(&tcp_g_nd); 10918 return (B_FALSE); 10919 } 10920 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 10921 tcp_reserved_port_list, NULL, NULL)) { 10922 nd_free(&tcp_g_nd); 10923 return (B_FALSE); 10924 } 10925 /* 10926 * Dummy ndd variables - only to convey obsolescence information 10927 * through printing of their name (no get or set routines) 10928 * XXX Remove in future releases ? 10929 */ 10930 if (!nd_load(&tcp_g_nd, 10931 "tcp_close_wait_interval(obsoleted - " 10932 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 10933 nd_free(&tcp_g_nd); 10934 return (B_FALSE); 10935 } 10936 return (B_TRUE); 10937 } 10938 10939 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 10940 /* ARGSUSED */ 10941 static int 10942 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 10943 cred_t *cr) 10944 { 10945 long new_value; 10946 tcpparam_t *tcppa = (tcpparam_t *)cp; 10947 10948 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10949 new_value < tcppa->tcp_param_min || 10950 new_value > tcppa->tcp_param_max) { 10951 return (EINVAL); 10952 } 10953 /* 10954 * Need to make sure new_value is a multiple of 4. If it is not, 10955 * round it up. For future 64 bit requirement, we actually make it 10956 * a multiple of 8. 10957 */ 10958 if (new_value & 0x7) { 10959 new_value = (new_value & ~0x7) + 0x8; 10960 } 10961 tcppa->tcp_param_val = new_value; 10962 return (0); 10963 } 10964 10965 /* Set callback routine passed to nd_load by tcp_param_register */ 10966 /* ARGSUSED */ 10967 static int 10968 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 10969 { 10970 long new_value; 10971 tcpparam_t *tcppa = (tcpparam_t *)cp; 10972 10973 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 10974 new_value < tcppa->tcp_param_min || 10975 new_value > tcppa->tcp_param_max) { 10976 return (EINVAL); 10977 } 10978 tcppa->tcp_param_val = new_value; 10979 return (0); 10980 } 10981 10982 /* 10983 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 10984 * is filled, return as much as we can. The message passed in may be 10985 * multi-part, chained using b_cont. "start" is the starting sequence 10986 * number for this piece. 10987 */ 10988 static mblk_t * 10989 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 10990 { 10991 uint32_t end; 10992 mblk_t *mp1; 10993 mblk_t *mp2; 10994 mblk_t *next_mp; 10995 uint32_t u1; 10996 10997 /* Walk through all the new pieces. */ 10998 do { 10999 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11000 (uintptr_t)INT_MAX); 11001 end = start + (int)(mp->b_wptr - mp->b_rptr); 11002 next_mp = mp->b_cont; 11003 if (start == end) { 11004 /* Empty. Blast it. */ 11005 freeb(mp); 11006 continue; 11007 } 11008 mp->b_cont = NULL; 11009 TCP_REASS_SET_SEQ(mp, start); 11010 TCP_REASS_SET_END(mp, end); 11011 mp1 = tcp->tcp_reass_tail; 11012 if (!mp1) { 11013 tcp->tcp_reass_tail = mp; 11014 tcp->tcp_reass_head = mp; 11015 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11016 UPDATE_MIB(&tcp_mib, 11017 tcpInDataUnorderBytes, end - start); 11018 continue; 11019 } 11020 /* New stuff completely beyond tail? */ 11021 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11022 /* Link it on end. */ 11023 mp1->b_cont = mp; 11024 tcp->tcp_reass_tail = mp; 11025 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11026 UPDATE_MIB(&tcp_mib, 11027 tcpInDataUnorderBytes, end - start); 11028 continue; 11029 } 11030 mp1 = tcp->tcp_reass_head; 11031 u1 = TCP_REASS_SEQ(mp1); 11032 /* New stuff at the front? */ 11033 if (SEQ_LT(start, u1)) { 11034 /* Yes... Check for overlap. */ 11035 mp->b_cont = mp1; 11036 tcp->tcp_reass_head = mp; 11037 tcp_reass_elim_overlap(tcp, mp); 11038 continue; 11039 } 11040 /* 11041 * The new piece fits somewhere between the head and tail. 11042 * We find our slot, where mp1 precedes us and mp2 trails. 11043 */ 11044 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11045 u1 = TCP_REASS_SEQ(mp2); 11046 if (SEQ_LEQ(start, u1)) 11047 break; 11048 } 11049 /* Link ourselves in */ 11050 mp->b_cont = mp2; 11051 mp1->b_cont = mp; 11052 11053 /* Trim overlap with following mblk(s) first */ 11054 tcp_reass_elim_overlap(tcp, mp); 11055 11056 /* Trim overlap with preceding mblk */ 11057 tcp_reass_elim_overlap(tcp, mp1); 11058 11059 } while (start = end, mp = next_mp); 11060 mp1 = tcp->tcp_reass_head; 11061 /* Anything ready to go? */ 11062 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11063 return (NULL); 11064 /* Eat what we can off the queue */ 11065 for (;;) { 11066 mp = mp1->b_cont; 11067 end = TCP_REASS_END(mp1); 11068 TCP_REASS_SET_SEQ(mp1, 0); 11069 TCP_REASS_SET_END(mp1, 0); 11070 if (!mp) { 11071 tcp->tcp_reass_tail = NULL; 11072 break; 11073 } 11074 if (end != TCP_REASS_SEQ(mp)) { 11075 mp1->b_cont = NULL; 11076 break; 11077 } 11078 mp1 = mp; 11079 } 11080 mp1 = tcp->tcp_reass_head; 11081 tcp->tcp_reass_head = mp; 11082 return (mp1); 11083 } 11084 11085 /* Eliminate any overlap that mp may have over later mblks */ 11086 static void 11087 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11088 { 11089 uint32_t end; 11090 mblk_t *mp1; 11091 uint32_t u1; 11092 11093 end = TCP_REASS_END(mp); 11094 while ((mp1 = mp->b_cont) != NULL) { 11095 u1 = TCP_REASS_SEQ(mp1); 11096 if (!SEQ_GT(end, u1)) 11097 break; 11098 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11099 mp->b_wptr -= end - u1; 11100 TCP_REASS_SET_END(mp, u1); 11101 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11102 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11103 break; 11104 } 11105 mp->b_cont = mp1->b_cont; 11106 TCP_REASS_SET_SEQ(mp1, 0); 11107 TCP_REASS_SET_END(mp1, 0); 11108 freeb(mp1); 11109 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11110 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11111 } 11112 if (!mp1) 11113 tcp->tcp_reass_tail = mp; 11114 } 11115 11116 /* 11117 * Send up all messages queued on tcp_rcv_list. 11118 */ 11119 static uint_t 11120 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11121 { 11122 mblk_t *mp; 11123 uint_t ret = 0; 11124 uint_t thwin; 11125 #ifdef DEBUG 11126 uint_t cnt = 0; 11127 #endif 11128 /* Can't drain on an eager connection */ 11129 if (tcp->tcp_listener != NULL) 11130 return (ret); 11131 11132 /* 11133 * Handle two cases here: we are currently fused or we were 11134 * previously fused and have some urgent data to be delivered 11135 * upstream. The latter happens because we either ran out of 11136 * memory or were detached and therefore sending the SIGURG was 11137 * deferred until this point. In either case we pass control 11138 * over to tcp_fuse_rcv_drain() since it may need to complete 11139 * some work. 11140 */ 11141 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11142 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11143 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11144 &tcp->tcp_fused_sigurg_mp)) 11145 return (ret); 11146 } 11147 11148 while ((mp = tcp->tcp_rcv_list) != NULL) { 11149 tcp->tcp_rcv_list = mp->b_next; 11150 mp->b_next = NULL; 11151 #ifdef DEBUG 11152 cnt += msgdsize(mp); 11153 #endif 11154 /* Does this need SSL processing first? */ 11155 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11156 tcp_kssl_input(tcp, mp); 11157 continue; 11158 } 11159 putnext(q, mp); 11160 } 11161 ASSERT(cnt == tcp->tcp_rcv_cnt); 11162 tcp->tcp_rcv_last_head = NULL; 11163 tcp->tcp_rcv_last_tail = NULL; 11164 tcp->tcp_rcv_cnt = 0; 11165 11166 /* Learn the latest rwnd information that we sent to the other side. */ 11167 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11168 << tcp->tcp_rcv_ws; 11169 /* This is peer's calculated send window (our receive window). */ 11170 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11171 /* 11172 * Increase the receive window to max. But we need to do receiver 11173 * SWS avoidance. This means that we need to check the increase of 11174 * of receive window is at least 1 MSS. 11175 */ 11176 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11177 /* 11178 * If the window that the other side knows is less than max 11179 * deferred acks segments, send an update immediately. 11180 */ 11181 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11182 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11183 ret = TH_ACK_NEEDED; 11184 } 11185 tcp->tcp_rwnd = q->q_hiwat; 11186 } 11187 /* No need for the push timer now. */ 11188 if (tcp->tcp_push_tid != 0) { 11189 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11190 tcp->tcp_push_tid = 0; 11191 } 11192 return (ret); 11193 } 11194 11195 /* 11196 * Queue data on tcp_rcv_list which is a b_next chain. 11197 * tcp_rcv_last_head/tail is the last element of this chain. 11198 * Each element of the chain is a b_cont chain. 11199 * 11200 * M_DATA messages are added to the current element. 11201 * Other messages are added as new (b_next) elements. 11202 */ 11203 void 11204 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11205 { 11206 ASSERT(seg_len == msgdsize(mp)); 11207 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11208 11209 if (tcp->tcp_rcv_list == NULL) { 11210 ASSERT(tcp->tcp_rcv_last_head == NULL); 11211 tcp->tcp_rcv_list = mp; 11212 tcp->tcp_rcv_last_head = mp; 11213 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11214 tcp->tcp_rcv_last_tail->b_cont = mp; 11215 } else { 11216 tcp->tcp_rcv_last_head->b_next = mp; 11217 tcp->tcp_rcv_last_head = mp; 11218 } 11219 11220 while (mp->b_cont) 11221 mp = mp->b_cont; 11222 11223 tcp->tcp_rcv_last_tail = mp; 11224 tcp->tcp_rcv_cnt += seg_len; 11225 tcp->tcp_rwnd -= seg_len; 11226 } 11227 11228 /* 11229 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11230 * 11231 * This is the default entry function into TCP on the read side. TCP is 11232 * always entered via squeue i.e. using squeue's for mutual exclusion. 11233 * When classifier does a lookup to find the tcp, it also puts a reference 11234 * on the conn structure associated so the tcp is guaranteed to exist 11235 * when we come here. We still need to check the state because it might 11236 * as well has been closed. The squeue processing function i.e. squeue_enter, 11237 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11238 * CONN_DEC_REF. 11239 * 11240 * Apart from the default entry point, IP also sends packets directly to 11241 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11242 * connections. 11243 */ 11244 void 11245 tcp_input(void *arg, mblk_t *mp, void *arg2) 11246 { 11247 conn_t *connp = (conn_t *)arg; 11248 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11249 11250 /* arg2 is the sqp */ 11251 ASSERT(arg2 != NULL); 11252 ASSERT(mp != NULL); 11253 11254 /* 11255 * Don't accept any input on a closed tcp as this TCP logically does 11256 * not exist on the system. Don't proceed further with this TCP. 11257 * For eg. this packet could trigger another close of this tcp 11258 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11259 * tcp_clean_death / tcp_closei_local must be called at most once 11260 * on a TCP. In this case we need to refeed the packet into the 11261 * classifier and figure out where the packet should go. Need to 11262 * preserve the recv_ill somehow. Until we figure that out, for 11263 * now just drop the packet if we can't classify the packet. 11264 */ 11265 if (tcp->tcp_state == TCPS_CLOSED || 11266 tcp->tcp_state == TCPS_BOUND) { 11267 conn_t *new_connp; 11268 11269 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11270 if (new_connp != NULL) { 11271 tcp_reinput(new_connp, mp, arg2); 11272 return; 11273 } 11274 /* We failed to classify. For now just drop the packet */ 11275 freemsg(mp); 11276 return; 11277 } 11278 11279 if (DB_TYPE(mp) == M_DATA) 11280 tcp_rput_data(connp, mp, arg2); 11281 else 11282 tcp_rput_common(tcp, mp); 11283 } 11284 11285 /* 11286 * The read side put procedure. 11287 * The packets passed up by ip are assume to be aligned according to 11288 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11289 */ 11290 static void 11291 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11292 { 11293 /* 11294 * tcp_rput_data() does not expect M_CTL except for the case 11295 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11296 * type. Need to make sure that any other M_CTLs don't make 11297 * it to tcp_rput_data since it is not expecting any and doesn't 11298 * check for it. 11299 */ 11300 if (DB_TYPE(mp) == M_CTL) { 11301 switch (*(uint32_t *)(mp->b_rptr)) { 11302 case TCP_IOC_ABORT_CONN: 11303 /* 11304 * Handle connection abort request. 11305 */ 11306 tcp_ioctl_abort_handler(tcp, mp); 11307 return; 11308 case IPSEC_IN: 11309 /* 11310 * Only secure icmp arrive in TCP and they 11311 * don't go through data path. 11312 */ 11313 tcp_icmp_error(tcp, mp); 11314 return; 11315 case IN_PKTINFO: 11316 /* 11317 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11318 * sockets that are receiving IPv4 traffic. tcp 11319 */ 11320 ASSERT(tcp->tcp_family == AF_INET6); 11321 ASSERT(tcp->tcp_ipv6_recvancillary & 11322 TCP_IPV6_RECVPKTINFO); 11323 tcp_rput_data(tcp->tcp_connp, mp, 11324 tcp->tcp_connp->conn_sqp); 11325 return; 11326 case MDT_IOC_INFO_UPDATE: 11327 /* 11328 * Handle Multidata information update; the 11329 * following routine will free the message. 11330 */ 11331 if (tcp->tcp_connp->conn_mdt_ok) { 11332 tcp_mdt_update(tcp, 11333 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11334 B_FALSE); 11335 } 11336 freemsg(mp); 11337 return; 11338 default: 11339 break; 11340 } 11341 } 11342 11343 /* No point processing the message if tcp is already closed */ 11344 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11345 freemsg(mp); 11346 return; 11347 } 11348 11349 tcp_rput_other(tcp, mp); 11350 } 11351 11352 11353 /* The minimum of smoothed mean deviation in RTO calculation. */ 11354 #define TCP_SD_MIN 400 11355 11356 /* 11357 * Set RTO for this connection. The formula is from Jacobson and Karels' 11358 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11359 * are the same as those in Appendix A.2 of that paper. 11360 * 11361 * m = new measurement 11362 * sa = smoothed RTT average (8 * average estimates). 11363 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11364 */ 11365 static void 11366 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11367 { 11368 long m = TICK_TO_MSEC(rtt); 11369 clock_t sa = tcp->tcp_rtt_sa; 11370 clock_t sv = tcp->tcp_rtt_sd; 11371 clock_t rto; 11372 11373 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11374 tcp->tcp_rtt_update++; 11375 11376 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11377 if (sa != 0) { 11378 /* 11379 * Update average estimator: 11380 * new rtt = 7/8 old rtt + 1/8 Error 11381 */ 11382 11383 /* m is now Error in estimate. */ 11384 m -= sa >> 3; 11385 if ((sa += m) <= 0) { 11386 /* 11387 * Don't allow the smoothed average to be negative. 11388 * We use 0 to denote reinitialization of the 11389 * variables. 11390 */ 11391 sa = 1; 11392 } 11393 11394 /* 11395 * Update deviation estimator: 11396 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11397 */ 11398 if (m < 0) 11399 m = -m; 11400 m -= sv >> 2; 11401 sv += m; 11402 } else { 11403 /* 11404 * This follows BSD's implementation. So the reinitialized 11405 * RTO is 3 * m. We cannot go less than 2 because if the 11406 * link is bandwidth dominated, doubling the window size 11407 * during slow start means doubling the RTT. We want to be 11408 * more conservative when we reinitialize our estimates. 3 11409 * is just a convenient number. 11410 */ 11411 sa = m << 3; 11412 sv = m << 1; 11413 } 11414 if (sv < TCP_SD_MIN) { 11415 /* 11416 * We do not know that if sa captures the delay ACK 11417 * effect as in a long train of segments, a receiver 11418 * does not delay its ACKs. So set the minimum of sv 11419 * to be TCP_SD_MIN, which is default to 400 ms, twice 11420 * of BSD DATO. That means the minimum of mean 11421 * deviation is 100 ms. 11422 * 11423 */ 11424 sv = TCP_SD_MIN; 11425 } 11426 tcp->tcp_rtt_sa = sa; 11427 tcp->tcp_rtt_sd = sv; 11428 /* 11429 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11430 * 11431 * Add tcp_rexmit_interval extra in case of extreme environment 11432 * where the algorithm fails to work. The default value of 11433 * tcp_rexmit_interval_extra should be 0. 11434 * 11435 * As we use a finer grained clock than BSD and update 11436 * RTO for every ACKs, add in another .25 of RTT to the 11437 * deviation of RTO to accomodate burstiness of 1/4 of 11438 * window size. 11439 */ 11440 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11441 11442 if (rto > tcp_rexmit_interval_max) { 11443 tcp->tcp_rto = tcp_rexmit_interval_max; 11444 } else if (rto < tcp_rexmit_interval_min) { 11445 tcp->tcp_rto = tcp_rexmit_interval_min; 11446 } else { 11447 tcp->tcp_rto = rto; 11448 } 11449 11450 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11451 tcp->tcp_timer_backoff = 0; 11452 } 11453 11454 /* 11455 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11456 * send queue which starts at the given seq. no. 11457 * 11458 * Parameters: 11459 * tcp_t *tcp: the tcp instance pointer. 11460 * uint32_t seq: the starting seq. no of the requested segment. 11461 * int32_t *off: after the execution, *off will be the offset to 11462 * the returned mblk which points to the requested seq no. 11463 * It is the caller's responsibility to send in a non-null off. 11464 * 11465 * Return: 11466 * A mblk_t pointer pointing to the requested segment in send queue. 11467 */ 11468 static mblk_t * 11469 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11470 { 11471 int32_t cnt; 11472 mblk_t *mp; 11473 11474 /* Defensive coding. Make sure we don't send incorrect data. */ 11475 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11476 return (NULL); 11477 11478 cnt = seq - tcp->tcp_suna; 11479 mp = tcp->tcp_xmit_head; 11480 while (cnt > 0 && mp != NULL) { 11481 cnt -= mp->b_wptr - mp->b_rptr; 11482 if (cnt < 0) { 11483 cnt += mp->b_wptr - mp->b_rptr; 11484 break; 11485 } 11486 mp = mp->b_cont; 11487 } 11488 ASSERT(mp != NULL); 11489 *off = cnt; 11490 return (mp); 11491 } 11492 11493 /* 11494 * This function handles all retransmissions if SACK is enabled for this 11495 * connection. First it calculates how many segments can be retransmitted 11496 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11497 * segments. A segment is eligible if sack_cnt for that segment is greater 11498 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11499 * all eligible segments, it checks to see if TCP can send some new segments 11500 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11501 * 11502 * Parameters: 11503 * tcp_t *tcp: the tcp structure of the connection. 11504 * uint_t *flags: in return, appropriate value will be set for 11505 * tcp_rput_data(). 11506 */ 11507 static void 11508 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11509 { 11510 notsack_blk_t *notsack_blk; 11511 int32_t usable_swnd; 11512 int32_t mss; 11513 uint32_t seg_len; 11514 mblk_t *xmit_mp; 11515 11516 ASSERT(tcp->tcp_sack_info != NULL); 11517 ASSERT(tcp->tcp_notsack_list != NULL); 11518 ASSERT(tcp->tcp_rexmit == B_FALSE); 11519 11520 /* Defensive coding in case there is a bug... */ 11521 if (tcp->tcp_notsack_list == NULL) { 11522 return; 11523 } 11524 notsack_blk = tcp->tcp_notsack_list; 11525 mss = tcp->tcp_mss; 11526 11527 /* 11528 * Limit the num of outstanding data in the network to be 11529 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11530 */ 11531 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11532 11533 /* At least retransmit 1 MSS of data. */ 11534 if (usable_swnd <= 0) { 11535 usable_swnd = mss; 11536 } 11537 11538 /* Make sure no new RTT samples will be taken. */ 11539 tcp->tcp_csuna = tcp->tcp_snxt; 11540 11541 notsack_blk = tcp->tcp_notsack_list; 11542 while (usable_swnd > 0) { 11543 mblk_t *snxt_mp, *tmp_mp; 11544 tcp_seq begin = tcp->tcp_sack_snxt; 11545 tcp_seq end; 11546 int32_t off; 11547 11548 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11549 if (SEQ_GT(notsack_blk->end, begin) && 11550 (notsack_blk->sack_cnt >= 11551 tcp_dupack_fast_retransmit)) { 11552 end = notsack_blk->end; 11553 if (SEQ_LT(begin, notsack_blk->begin)) { 11554 begin = notsack_blk->begin; 11555 } 11556 break; 11557 } 11558 } 11559 /* 11560 * All holes are filled. Manipulate tcp_cwnd to send more 11561 * if we can. Note that after the SACK recovery, tcp_cwnd is 11562 * set to tcp_cwnd_ssthresh. 11563 */ 11564 if (notsack_blk == NULL) { 11565 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11566 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11567 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11568 ASSERT(tcp->tcp_cwnd > 0); 11569 return; 11570 } else { 11571 usable_swnd = usable_swnd / mss; 11572 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11573 MAX(usable_swnd * mss, mss); 11574 *flags |= TH_XMIT_NEEDED; 11575 return; 11576 } 11577 } 11578 11579 /* 11580 * Note that we may send more than usable_swnd allows here 11581 * because of round off, but no more than 1 MSS of data. 11582 */ 11583 seg_len = end - begin; 11584 if (seg_len > mss) 11585 seg_len = mss; 11586 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11587 ASSERT(snxt_mp != NULL); 11588 /* This should not happen. Defensive coding again... */ 11589 if (snxt_mp == NULL) { 11590 return; 11591 } 11592 11593 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11594 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11595 if (xmit_mp == NULL) 11596 return; 11597 11598 usable_swnd -= seg_len; 11599 tcp->tcp_pipe += seg_len; 11600 tcp->tcp_sack_snxt = begin + seg_len; 11601 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 11602 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11603 11604 /* 11605 * Update the send timestamp to avoid false retransmission. 11606 */ 11607 snxt_mp->b_prev = (mblk_t *)lbolt; 11608 11609 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11610 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 11611 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 11612 /* 11613 * Update tcp_rexmit_max to extend this SACK recovery phase. 11614 * This happens when new data sent during fast recovery is 11615 * also lost. If TCP retransmits those new data, it needs 11616 * to extend SACK recover phase to avoid starting another 11617 * fast retransmit/recovery unnecessarily. 11618 */ 11619 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11620 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11621 } 11622 } 11623 } 11624 11625 /* 11626 * This function handles policy checking at TCP level for non-hard_bound/ 11627 * detached connections. 11628 */ 11629 static boolean_t 11630 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11631 boolean_t secure, boolean_t mctl_present) 11632 { 11633 ipsec_latch_t *ipl = NULL; 11634 ipsec_action_t *act = NULL; 11635 mblk_t *data_mp; 11636 ipsec_in_t *ii; 11637 const char *reason; 11638 kstat_named_t *counter; 11639 11640 ASSERT(mctl_present || !secure); 11641 11642 ASSERT((ipha == NULL && ip6h != NULL) || 11643 (ip6h == NULL && ipha != NULL)); 11644 11645 /* 11646 * We don't necessarily have an ipsec_in_act action to verify 11647 * policy because of assymetrical policy where we have only 11648 * outbound policy and no inbound policy (possible with global 11649 * policy). 11650 */ 11651 if (!secure) { 11652 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 11653 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 11654 return (B_TRUE); 11655 ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH, 11656 "tcp_check_policy", ipha, ip6h, secure); 11657 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11658 &ipdrops_tcp_clear, &tcp_dropper); 11659 return (B_FALSE); 11660 } 11661 11662 /* 11663 * We have a secure packet. 11664 */ 11665 if (act == NULL) { 11666 ipsec_log_policy_failure(tcp->tcp_wq, 11667 IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h, 11668 secure); 11669 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 11670 &ipdrops_tcp_secure, &tcp_dropper); 11671 return (B_FALSE); 11672 } 11673 11674 /* 11675 * XXX This whole routine is currently incorrect. ipl should 11676 * be set to the latch pointer, but is currently not set, so 11677 * we initialize it to NULL to avoid picking up random garbage. 11678 */ 11679 if (ipl == NULL) 11680 return (B_TRUE); 11681 11682 data_mp = first_mp->b_cont; 11683 11684 ii = (ipsec_in_t *)first_mp->b_rptr; 11685 11686 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 11687 &counter)) { 11688 BUMP_MIB(&ip_mib, ipsecInSucceeded); 11689 return (B_TRUE); 11690 } 11691 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 11692 "tcp inbound policy mismatch: %s, packet dropped\n", 11693 reason); 11694 BUMP_MIB(&ip_mib, ipsecInFailed); 11695 11696 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 11697 return (B_FALSE); 11698 } 11699 11700 /* 11701 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 11702 * retransmission after a timeout. 11703 * 11704 * To limit the number of duplicate segments, we limit the number of segment 11705 * to be sent in one time to tcp_snd_burst, the burst variable. 11706 */ 11707 static void 11708 tcp_ss_rexmit(tcp_t *tcp) 11709 { 11710 uint32_t snxt; 11711 uint32_t smax; 11712 int32_t win; 11713 int32_t mss; 11714 int32_t off; 11715 int32_t burst = tcp->tcp_snd_burst; 11716 mblk_t *snxt_mp; 11717 11718 /* 11719 * Note that tcp_rexmit can be set even though TCP has retransmitted 11720 * all unack'ed segments. 11721 */ 11722 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 11723 smax = tcp->tcp_rexmit_max; 11724 snxt = tcp->tcp_rexmit_nxt; 11725 if (SEQ_LT(snxt, tcp->tcp_suna)) { 11726 snxt = tcp->tcp_suna; 11727 } 11728 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 11729 win -= snxt - tcp->tcp_suna; 11730 mss = tcp->tcp_mss; 11731 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 11732 11733 while (SEQ_LT(snxt, smax) && (win > 0) && 11734 (burst > 0) && (snxt_mp != NULL)) { 11735 mblk_t *xmit_mp; 11736 mblk_t *old_snxt_mp = snxt_mp; 11737 uint32_t cnt = mss; 11738 11739 if (win < cnt) { 11740 cnt = win; 11741 } 11742 if (SEQ_GT(snxt + cnt, smax)) { 11743 cnt = smax - snxt; 11744 } 11745 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 11746 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 11747 if (xmit_mp == NULL) 11748 return; 11749 11750 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11751 11752 snxt += cnt; 11753 win -= cnt; 11754 /* 11755 * Update the send timestamp to avoid false 11756 * retransmission. 11757 */ 11758 old_snxt_mp->b_prev = (mblk_t *)lbolt; 11759 BUMP_MIB(&tcp_mib, tcpRetransSegs); 11760 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 11761 11762 tcp->tcp_rexmit_nxt = snxt; 11763 burst--; 11764 } 11765 /* 11766 * If we have transmitted all we have at the time 11767 * we started the retranmission, we can leave 11768 * the rest of the job to tcp_wput_data(). But we 11769 * need to check the send window first. If the 11770 * win is not 0, go on with tcp_wput_data(). 11771 */ 11772 if (SEQ_LT(snxt, smax) || win == 0) { 11773 return; 11774 } 11775 } 11776 /* Only call tcp_wput_data() if there is data to be sent. */ 11777 if (tcp->tcp_unsent) { 11778 tcp_wput_data(tcp, NULL, B_FALSE); 11779 } 11780 } 11781 11782 /* 11783 * Process all TCP option in SYN segment. Note that this function should 11784 * be called after tcp_adapt_ire() is called so that the necessary info 11785 * from IRE is already set in the tcp structure. 11786 * 11787 * This function sets up the correct tcp_mss value according to the 11788 * MSS option value and our header size. It also sets up the window scale 11789 * and timestamp values, and initialize SACK info blocks. But it does not 11790 * change receive window size after setting the tcp_mss value. The caller 11791 * should do the appropriate change. 11792 */ 11793 void 11794 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 11795 { 11796 int options; 11797 tcp_opt_t tcpopt; 11798 uint32_t mss_max; 11799 char *tmp_tcph; 11800 11801 tcpopt.tcp = NULL; 11802 options = tcp_parse_options(tcph, &tcpopt); 11803 11804 /* 11805 * Process MSS option. Note that MSS option value does not account 11806 * for IP or TCP options. This means that it is equal to MTU - minimum 11807 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 11808 * IPv6. 11809 */ 11810 if (!(options & TCP_OPT_MSS_PRESENT)) { 11811 if (tcp->tcp_ipversion == IPV4_VERSION) 11812 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 11813 else 11814 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 11815 } else { 11816 if (tcp->tcp_ipversion == IPV4_VERSION) 11817 mss_max = tcp_mss_max_ipv4; 11818 else 11819 mss_max = tcp_mss_max_ipv6; 11820 if (tcpopt.tcp_opt_mss < tcp_mss_min) 11821 tcpopt.tcp_opt_mss = tcp_mss_min; 11822 else if (tcpopt.tcp_opt_mss > mss_max) 11823 tcpopt.tcp_opt_mss = mss_max; 11824 } 11825 11826 /* Process Window Scale option. */ 11827 if (options & TCP_OPT_WSCALE_PRESENT) { 11828 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 11829 tcp->tcp_snd_ws_ok = B_TRUE; 11830 } else { 11831 tcp->tcp_snd_ws = B_FALSE; 11832 tcp->tcp_snd_ws_ok = B_FALSE; 11833 tcp->tcp_rcv_ws = B_FALSE; 11834 } 11835 11836 /* Process Timestamp option. */ 11837 if ((options & TCP_OPT_TSTAMP_PRESENT) && 11838 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 11839 tmp_tcph = (char *)tcp->tcp_tcph; 11840 11841 tcp->tcp_snd_ts_ok = B_TRUE; 11842 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 11843 tcp->tcp_last_rcv_lbolt = lbolt64; 11844 ASSERT(OK_32PTR(tmp_tcph)); 11845 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 11846 11847 /* Fill in our template header with basic timestamp option. */ 11848 tmp_tcph += tcp->tcp_tcp_hdr_len; 11849 tmp_tcph[0] = TCPOPT_NOP; 11850 tmp_tcph[1] = TCPOPT_NOP; 11851 tmp_tcph[2] = TCPOPT_TSTAMP; 11852 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 11853 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 11854 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 11855 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 11856 } else { 11857 tcp->tcp_snd_ts_ok = B_FALSE; 11858 } 11859 11860 /* 11861 * Process SACK options. If SACK is enabled for this connection, 11862 * then allocate the SACK info structure. Note the following ways 11863 * when tcp_snd_sack_ok is set to true. 11864 * 11865 * For active connection: in tcp_adapt_ire() called in 11866 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 11867 * is checked. 11868 * 11869 * For passive connection: in tcp_adapt_ire() called in 11870 * tcp_accept_comm(). 11871 * 11872 * That's the reason why the extra TCP_IS_DETACHED() check is there. 11873 * That check makes sure that if we did not send a SACK OK option, 11874 * we will not enable SACK for this connection even though the other 11875 * side sends us SACK OK option. For active connection, the SACK 11876 * info structure has already been allocated. So we need to free 11877 * it if SACK is disabled. 11878 */ 11879 if ((options & TCP_OPT_SACK_OK_PRESENT) && 11880 (tcp->tcp_snd_sack_ok || 11881 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 11882 /* This should be true only in the passive case. */ 11883 if (tcp->tcp_sack_info == NULL) { 11884 ASSERT(TCP_IS_DETACHED(tcp)); 11885 tcp->tcp_sack_info = 11886 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 11887 } 11888 if (tcp->tcp_sack_info == NULL) { 11889 tcp->tcp_snd_sack_ok = B_FALSE; 11890 } else { 11891 tcp->tcp_snd_sack_ok = B_TRUE; 11892 if (tcp->tcp_snd_ts_ok) { 11893 tcp->tcp_max_sack_blk = 3; 11894 } else { 11895 tcp->tcp_max_sack_blk = 4; 11896 } 11897 } 11898 } else { 11899 /* 11900 * Resetting tcp_snd_sack_ok to B_FALSE so that 11901 * no SACK info will be used for this 11902 * connection. This assumes that SACK usage 11903 * permission is negotiated. This may need 11904 * to be changed once this is clarified. 11905 */ 11906 if (tcp->tcp_sack_info != NULL) { 11907 ASSERT(tcp->tcp_notsack_list == NULL); 11908 kmem_cache_free(tcp_sack_info_cache, 11909 tcp->tcp_sack_info); 11910 tcp->tcp_sack_info = NULL; 11911 } 11912 tcp->tcp_snd_sack_ok = B_FALSE; 11913 } 11914 11915 /* 11916 * Now we know the exact TCP/IP header length, subtract 11917 * that from tcp_mss to get our side's MSS. 11918 */ 11919 tcp->tcp_mss -= tcp->tcp_hdr_len; 11920 /* 11921 * Here we assume that the other side's header size will be equal to 11922 * our header size. We calculate the real MSS accordingly. Need to 11923 * take into additional stuffs IPsec puts in. 11924 * 11925 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 11926 */ 11927 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 11928 ((tcp->tcp_ipversion == IPV4_VERSION ? 11929 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 11930 11931 /* 11932 * Set MSS to the smaller one of both ends of the connection. 11933 * We should not have called tcp_mss_set() before, but our 11934 * side of the MSS should have been set to a proper value 11935 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 11936 * STREAM head parameters properly. 11937 * 11938 * If we have a larger-than-16-bit window but the other side 11939 * didn't want to do window scale, tcp_rwnd_set() will take 11940 * care of that. 11941 */ 11942 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 11943 } 11944 11945 /* 11946 * Sends the T_CONN_IND to the listener. The caller calls this 11947 * functions via squeue to get inside the listener's perimeter 11948 * once the 3 way hand shake is done a T_CONN_IND needs to be 11949 * sent. As an optimization, the caller can call this directly 11950 * if listener's perimeter is same as eager's. 11951 */ 11952 /* ARGSUSED */ 11953 void 11954 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 11955 { 11956 conn_t *lconnp = (conn_t *)arg; 11957 tcp_t *listener = lconnp->conn_tcp; 11958 tcp_t *tcp; 11959 struct T_conn_ind *conn_ind; 11960 ipaddr_t *addr_cache; 11961 boolean_t need_send_conn_ind = B_FALSE; 11962 11963 /* retrieve the eager */ 11964 conn_ind = (struct T_conn_ind *)mp->b_rptr; 11965 ASSERT(conn_ind->OPT_offset != 0 && 11966 conn_ind->OPT_length == sizeof (intptr_t)); 11967 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 11968 conn_ind->OPT_length); 11969 11970 /* 11971 * TLI/XTI applications will get confused by 11972 * sending eager as an option since it violates 11973 * the option semantics. So remove the eager as 11974 * option since TLI/XTI app doesn't need it anyway. 11975 */ 11976 if (!TCP_IS_SOCKET(listener)) { 11977 conn_ind->OPT_length = 0; 11978 conn_ind->OPT_offset = 0; 11979 } 11980 if (listener->tcp_state == TCPS_CLOSED || 11981 TCP_IS_DETACHED(listener)) { 11982 /* 11983 * If listener has closed, it would have caused a 11984 * a cleanup/blowoff to happen for the eager. We 11985 * just need to return. 11986 */ 11987 freemsg(mp); 11988 return; 11989 } 11990 11991 11992 /* 11993 * if the conn_req_q is full defer passing up the 11994 * T_CONN_IND until space is availabe after t_accept() 11995 * processing 11996 */ 11997 mutex_enter(&listener->tcp_eager_lock); 11998 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 11999 tcp_t *tail; 12000 12001 /* 12002 * The eager already has an extra ref put in tcp_rput_data 12003 * so that it stays till accept comes back even though it 12004 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12005 */ 12006 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12007 listener->tcp_conn_req_cnt_q0--; 12008 listener->tcp_conn_req_cnt_q++; 12009 12010 /* Move from SYN_RCVD to ESTABLISHED list */ 12011 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12012 tcp->tcp_eager_prev_q0; 12013 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12014 tcp->tcp_eager_next_q0; 12015 tcp->tcp_eager_prev_q0 = NULL; 12016 tcp->tcp_eager_next_q0 = NULL; 12017 12018 /* 12019 * Insert at end of the queue because sockfs 12020 * sends down T_CONN_RES in chronological 12021 * order. Leaving the older conn indications 12022 * at front of the queue helps reducing search 12023 * time. 12024 */ 12025 tail = listener->tcp_eager_last_q; 12026 if (tail != NULL) 12027 tail->tcp_eager_next_q = tcp; 12028 else 12029 listener->tcp_eager_next_q = tcp; 12030 listener->tcp_eager_last_q = tcp; 12031 tcp->tcp_eager_next_q = NULL; 12032 /* 12033 * Delay sending up the T_conn_ind until we are 12034 * done with the eager. Once we have have sent up 12035 * the T_conn_ind, the accept can potentially complete 12036 * any time and release the refhold we have on the eager. 12037 */ 12038 need_send_conn_ind = B_TRUE; 12039 } else { 12040 /* 12041 * Defer connection on q0 and set deferred 12042 * connection bit true 12043 */ 12044 tcp->tcp_conn_def_q0 = B_TRUE; 12045 12046 /* take tcp out of q0 ... */ 12047 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12048 tcp->tcp_eager_next_q0; 12049 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12050 tcp->tcp_eager_prev_q0; 12051 12052 /* ... and place it at the end of q0 */ 12053 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12054 tcp->tcp_eager_next_q0 = listener; 12055 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12056 listener->tcp_eager_prev_q0 = tcp; 12057 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12058 } 12059 12060 /* we have timed out before */ 12061 if (tcp->tcp_syn_rcvd_timeout != 0) { 12062 tcp->tcp_syn_rcvd_timeout = 0; 12063 listener->tcp_syn_rcvd_timeout--; 12064 if (listener->tcp_syn_defense && 12065 listener->tcp_syn_rcvd_timeout <= 12066 (tcp_conn_req_max_q0 >> 5) && 12067 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12068 listener->tcp_last_rcv_lbolt)) { 12069 /* 12070 * Turn off the defense mode if we 12071 * believe the SYN attack is over. 12072 */ 12073 listener->tcp_syn_defense = B_FALSE; 12074 if (listener->tcp_ip_addr_cache) { 12075 kmem_free((void *)listener->tcp_ip_addr_cache, 12076 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12077 listener->tcp_ip_addr_cache = NULL; 12078 } 12079 } 12080 } 12081 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12082 if (addr_cache != NULL) { 12083 /* 12084 * We have finished a 3-way handshake with this 12085 * remote host. This proves the IP addr is good. 12086 * Cache it! 12087 */ 12088 addr_cache[IP_ADDR_CACHE_HASH( 12089 tcp->tcp_remote)] = tcp->tcp_remote; 12090 } 12091 mutex_exit(&listener->tcp_eager_lock); 12092 if (need_send_conn_ind) 12093 putnext(listener->tcp_rq, mp); 12094 } 12095 12096 mblk_t * 12097 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12098 uint_t *ifindexp, ip6_pkt_t *ippp) 12099 { 12100 in_pktinfo_t *pinfo; 12101 ip6_t *ip6h; 12102 uchar_t *rptr; 12103 mblk_t *first_mp = mp; 12104 boolean_t mctl_present = B_FALSE; 12105 uint_t ifindex = 0; 12106 ip6_pkt_t ipp; 12107 uint_t ipvers; 12108 uint_t ip_hdr_len; 12109 12110 rptr = mp->b_rptr; 12111 ASSERT(OK_32PTR(rptr)); 12112 ASSERT(tcp != NULL); 12113 ipp.ipp_fields = 0; 12114 12115 switch DB_TYPE(mp) { 12116 case M_CTL: 12117 mp = mp->b_cont; 12118 if (mp == NULL) { 12119 freemsg(first_mp); 12120 return (NULL); 12121 } 12122 if (DB_TYPE(mp) != M_DATA) { 12123 freemsg(first_mp); 12124 return (NULL); 12125 } 12126 mctl_present = B_TRUE; 12127 break; 12128 case M_DATA: 12129 break; 12130 default: 12131 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12132 freemsg(mp); 12133 return (NULL); 12134 } 12135 ipvers = IPH_HDR_VERSION(rptr); 12136 if (ipvers == IPV4_VERSION) { 12137 if (tcp == NULL) { 12138 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12139 goto done; 12140 } 12141 12142 ipp.ipp_fields |= IPPF_HOPLIMIT; 12143 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12144 12145 /* 12146 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12147 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12148 */ 12149 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12150 mctl_present) { 12151 pinfo = (in_pktinfo_t *)first_mp->b_rptr; 12152 if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) && 12153 (pinfo->in_pkt_ulp_type == IN_PKTINFO) && 12154 (pinfo->in_pkt_flags & IPF_RECVIF)) { 12155 ipp.ipp_fields |= IPPF_IFINDEX; 12156 ipp.ipp_ifindex = pinfo->in_pkt_ifindex; 12157 ifindex = pinfo->in_pkt_ifindex; 12158 } 12159 freeb(first_mp); 12160 mctl_present = B_FALSE; 12161 } 12162 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12163 } else { 12164 ip6h = (ip6_t *)rptr; 12165 12166 ASSERT(ipvers == IPV6_VERSION); 12167 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12168 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12169 ipp.ipp_hoplimit = ip6h->ip6_hops; 12170 12171 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12172 uint8_t nexthdrp; 12173 12174 /* Look for ifindex information */ 12175 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12176 ip6i_t *ip6i = (ip6i_t *)ip6h; 12177 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12178 BUMP_MIB(&ip_mib, tcpInErrs); 12179 freemsg(first_mp); 12180 return (NULL); 12181 } 12182 12183 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12184 ASSERT(ip6i->ip6i_ifindex != 0); 12185 ipp.ipp_fields |= IPPF_IFINDEX; 12186 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12187 ifindex = ip6i->ip6i_ifindex; 12188 } 12189 rptr = (uchar_t *)&ip6i[1]; 12190 mp->b_rptr = rptr; 12191 if (rptr == mp->b_wptr) { 12192 mblk_t *mp1; 12193 mp1 = mp->b_cont; 12194 freeb(mp); 12195 mp = mp1; 12196 rptr = mp->b_rptr; 12197 } 12198 if (MBLKL(mp) < IPV6_HDR_LEN + 12199 sizeof (tcph_t)) { 12200 BUMP_MIB(&ip_mib, tcpInErrs); 12201 freemsg(first_mp); 12202 return (NULL); 12203 } 12204 ip6h = (ip6_t *)rptr; 12205 } 12206 12207 /* 12208 * Find any potentially interesting extension headers 12209 * as well as the length of the IPv6 + extension 12210 * headers. 12211 */ 12212 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12213 /* Verify if this is a TCP packet */ 12214 if (nexthdrp != IPPROTO_TCP) { 12215 BUMP_MIB(&ip_mib, tcpInErrs); 12216 freemsg(first_mp); 12217 return (NULL); 12218 } 12219 } else { 12220 ip_hdr_len = IPV6_HDR_LEN; 12221 } 12222 } 12223 12224 done: 12225 if (ipversp != NULL) 12226 *ipversp = ipvers; 12227 if (ip_hdr_lenp != NULL) 12228 *ip_hdr_lenp = ip_hdr_len; 12229 if (ippp != NULL) 12230 *ippp = ipp; 12231 if (ifindexp != NULL) 12232 *ifindexp = ifindex; 12233 if (mctl_present) { 12234 freeb(first_mp); 12235 } 12236 return (mp); 12237 } 12238 12239 /* 12240 * Handle M_DATA messages from IP. Its called directly from IP via 12241 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12242 * in this path. 12243 * 12244 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12245 * v4 and v6), we are called through tcp_input() and a M_CTL can 12246 * be present for options but tcp_find_pktinfo() deals with it. We 12247 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12248 * 12249 * The first argument is always the connp/tcp to which the mp belongs. 12250 * There are no exceptions to this rule. The caller has already put 12251 * a reference on this connp/tcp and once tcp_rput_data() returns, 12252 * the squeue will do the refrele. 12253 * 12254 * The TH_SYN for the listener directly go to tcp_conn_request via 12255 * squeue. 12256 * 12257 * sqp: NULL = recursive, sqp != NULL means called from squeue 12258 */ 12259 void 12260 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12261 { 12262 int32_t bytes_acked; 12263 int32_t gap; 12264 mblk_t *mp1; 12265 uint_t flags; 12266 uint32_t new_swnd = 0; 12267 uchar_t *iphdr; 12268 uchar_t *rptr; 12269 int32_t rgap; 12270 uint32_t seg_ack; 12271 int seg_len; 12272 uint_t ip_hdr_len; 12273 uint32_t seg_seq; 12274 tcph_t *tcph; 12275 int urp; 12276 tcp_opt_t tcpopt; 12277 uint_t ipvers; 12278 ip6_pkt_t ipp; 12279 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12280 uint32_t cwnd; 12281 uint32_t add; 12282 int npkt; 12283 int mss; 12284 conn_t *connp = (conn_t *)arg; 12285 squeue_t *sqp = (squeue_t *)arg2; 12286 tcp_t *tcp = connp->conn_tcp; 12287 12288 /* 12289 * RST from fused tcp loopback peer should trigger an unfuse. 12290 */ 12291 if (tcp->tcp_fused) { 12292 TCP_STAT(tcp_fusion_aborted); 12293 tcp_unfuse(tcp); 12294 } 12295 12296 iphdr = mp->b_rptr; 12297 rptr = mp->b_rptr; 12298 ASSERT(OK_32PTR(rptr)); 12299 12300 /* 12301 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12302 * processing here. For rest call tcp_find_pktinfo to fill up the 12303 * necessary information. 12304 */ 12305 if (IPCL_IS_TCP4(connp)) { 12306 ipvers = IPV4_VERSION; 12307 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12308 } else { 12309 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12310 NULL, &ipp); 12311 if (mp == NULL) { 12312 TCP_STAT(tcp_rput_v6_error); 12313 return; 12314 } 12315 iphdr = mp->b_rptr; 12316 rptr = mp->b_rptr; 12317 } 12318 ASSERT(DB_TYPE(mp) == M_DATA); 12319 12320 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12321 seg_seq = ABE32_TO_U32(tcph->th_seq); 12322 seg_ack = ABE32_TO_U32(tcph->th_ack); 12323 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12324 seg_len = (int)(mp->b_wptr - rptr) - 12325 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12326 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12327 do { 12328 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12329 (uintptr_t)INT_MAX); 12330 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12331 } while ((mp1 = mp1->b_cont) != NULL && 12332 mp1->b_datap->db_type == M_DATA); 12333 } 12334 12335 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12336 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12337 seg_len, tcph); 12338 return; 12339 } 12340 12341 if (sqp != NULL) { 12342 /* 12343 * This is the correct place to update tcp_last_recv_time. Note 12344 * that it is also updated for tcp structure that belongs to 12345 * global and listener queues which do not really need updating. 12346 * But that should not cause any harm. And it is updated for 12347 * all kinds of incoming segments, not only for data segments. 12348 */ 12349 tcp->tcp_last_recv_time = lbolt; 12350 } 12351 12352 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12353 12354 BUMP_LOCAL(tcp->tcp_ibsegs); 12355 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12356 12357 if ((flags & TH_URG) && sqp != NULL) { 12358 /* 12359 * TCP can't handle urgent pointers that arrive before 12360 * the connection has been accept()ed since it can't 12361 * buffer OOB data. Discard segment if this happens. 12362 * 12363 * Nor can it reassemble urgent pointers, so discard 12364 * if it's not the next segment expected. 12365 * 12366 * Otherwise, collapse chain into one mblk (discard if 12367 * that fails). This makes sure the headers, retransmitted 12368 * data, and new data all are in the same mblk. 12369 */ 12370 ASSERT(mp != NULL); 12371 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12372 freemsg(mp); 12373 return; 12374 } 12375 /* Update pointers into message */ 12376 iphdr = rptr = mp->b_rptr; 12377 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12378 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12379 /* 12380 * Since we can't handle any data with this urgent 12381 * pointer that is out of sequence, we expunge 12382 * the data. This allows us to still register 12383 * the urgent mark and generate the M_PCSIG, 12384 * which we can do. 12385 */ 12386 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12387 seg_len = 0; 12388 } 12389 } 12390 12391 switch (tcp->tcp_state) { 12392 case TCPS_SYN_SENT: 12393 if (flags & TH_ACK) { 12394 /* 12395 * Note that our stack cannot send data before a 12396 * connection is established, therefore the 12397 * following check is valid. Otherwise, it has 12398 * to be changed. 12399 */ 12400 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12401 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12402 freemsg(mp); 12403 if (flags & TH_RST) 12404 return; 12405 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12406 tcp, seg_ack, 0, TH_RST); 12407 return; 12408 } 12409 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12410 } 12411 if (flags & TH_RST) { 12412 freemsg(mp); 12413 if (flags & TH_ACK) 12414 (void) tcp_clean_death(tcp, 12415 ECONNREFUSED, 13); 12416 return; 12417 } 12418 if (!(flags & TH_SYN)) { 12419 freemsg(mp); 12420 return; 12421 } 12422 12423 /* Process all TCP options. */ 12424 tcp_process_options(tcp, tcph); 12425 /* 12426 * The following changes our rwnd to be a multiple of the 12427 * MIN(peer MSS, our MSS) for performance reason. 12428 */ 12429 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12430 tcp->tcp_mss)); 12431 12432 /* Is the other end ECN capable? */ 12433 if (tcp->tcp_ecn_ok) { 12434 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12435 tcp->tcp_ecn_ok = B_FALSE; 12436 } 12437 } 12438 /* 12439 * Clear ECN flags because it may interfere with later 12440 * processing. 12441 */ 12442 flags &= ~(TH_ECE|TH_CWR); 12443 12444 tcp->tcp_irs = seg_seq; 12445 tcp->tcp_rack = seg_seq; 12446 tcp->tcp_rnxt = seg_seq + 1; 12447 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12448 if (!TCP_IS_DETACHED(tcp)) { 12449 /* Allocate room for SACK options if needed. */ 12450 if (tcp->tcp_snd_sack_ok) { 12451 (void) mi_set_sth_wroff(tcp->tcp_rq, 12452 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12453 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12454 } else { 12455 (void) mi_set_sth_wroff(tcp->tcp_rq, 12456 tcp->tcp_hdr_len + 12457 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12458 } 12459 } 12460 if (flags & TH_ACK) { 12461 /* 12462 * If we can't get the confirmation upstream, pretend 12463 * we didn't even see this one. 12464 * 12465 * XXX: how can we pretend we didn't see it if we 12466 * have updated rnxt et. al. 12467 * 12468 * For loopback we defer sending up the T_CONN_CON 12469 * until after some checks below. 12470 */ 12471 mp1 = NULL; 12472 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12473 tcp->tcp_loopback ? &mp1 : NULL)) { 12474 freemsg(mp); 12475 return; 12476 } 12477 /* SYN was acked - making progress */ 12478 if (tcp->tcp_ipversion == IPV6_VERSION) 12479 tcp->tcp_ip_forward_progress = B_TRUE; 12480 12481 /* One for the SYN */ 12482 tcp->tcp_suna = tcp->tcp_iss + 1; 12483 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12484 tcp->tcp_state = TCPS_ESTABLISHED; 12485 12486 /* 12487 * If SYN was retransmitted, need to reset all 12488 * retransmission info. This is because this 12489 * segment will be treated as a dup ACK. 12490 */ 12491 if (tcp->tcp_rexmit) { 12492 tcp->tcp_rexmit = B_FALSE; 12493 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12494 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12495 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12496 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12497 tcp->tcp_ms_we_have_waited = 0; 12498 12499 /* 12500 * Set tcp_cwnd back to 1 MSS, per 12501 * recommendation from 12502 * draft-floyd-incr-init-win-01.txt, 12503 * Increasing TCP's Initial Window. 12504 */ 12505 tcp->tcp_cwnd = tcp->tcp_mss; 12506 } 12507 12508 tcp->tcp_swl1 = seg_seq; 12509 tcp->tcp_swl2 = seg_ack; 12510 12511 new_swnd = BE16_TO_U16(tcph->th_win); 12512 tcp->tcp_swnd = new_swnd; 12513 if (new_swnd > tcp->tcp_max_swnd) 12514 tcp->tcp_max_swnd = new_swnd; 12515 12516 /* 12517 * Always send the three-way handshake ack immediately 12518 * in order to make the connection complete as soon as 12519 * possible on the accepting host. 12520 */ 12521 flags |= TH_ACK_NEEDED; 12522 12523 /* 12524 * Special case for loopback. At this point we have 12525 * received SYN-ACK from the remote endpoint. In 12526 * order to ensure that both endpoints reach the 12527 * fused state prior to any data exchange, the final 12528 * ACK needs to be sent before we indicate T_CONN_CON 12529 * to the module upstream. 12530 */ 12531 if (tcp->tcp_loopback) { 12532 mblk_t *ack_mp; 12533 12534 ASSERT(!tcp->tcp_unfusable); 12535 ASSERT(mp1 != NULL); 12536 /* 12537 * For loopback, we always get a pure SYN-ACK 12538 * and only need to send back the final ACK 12539 * with no data (this is because the other 12540 * tcp is ours and we don't do T/TCP). This 12541 * final ACK triggers the passive side to 12542 * perform fusion in ESTABLISHED state. 12543 */ 12544 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12545 if (tcp->tcp_ack_tid != 0) { 12546 (void) TCP_TIMER_CANCEL(tcp, 12547 tcp->tcp_ack_tid); 12548 tcp->tcp_ack_tid = 0; 12549 } 12550 TCP_RECORD_TRACE(tcp, ack_mp, 12551 TCP_TRACE_SEND_PKT); 12552 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12553 BUMP_LOCAL(tcp->tcp_obsegs); 12554 BUMP_MIB(&tcp_mib, tcpOutAck); 12555 12556 /* Send up T_CONN_CON */ 12557 putnext(tcp->tcp_rq, mp1); 12558 12559 freemsg(mp); 12560 return; 12561 } 12562 /* 12563 * Forget fusion; we need to handle more 12564 * complex cases below. Send the deferred 12565 * T_CONN_CON message upstream and proceed 12566 * as usual. Mark this tcp as not capable 12567 * of fusion. 12568 */ 12569 TCP_STAT(tcp_fusion_unfusable); 12570 tcp->tcp_unfusable = B_TRUE; 12571 putnext(tcp->tcp_rq, mp1); 12572 } 12573 12574 /* 12575 * Check to see if there is data to be sent. If 12576 * yes, set the transmit flag. Then check to see 12577 * if received data processing needs to be done. 12578 * If not, go straight to xmit_check. This short 12579 * cut is OK as we don't support T/TCP. 12580 */ 12581 if (tcp->tcp_unsent) 12582 flags |= TH_XMIT_NEEDED; 12583 12584 if (seg_len == 0 && !(flags & TH_URG)) { 12585 freemsg(mp); 12586 goto xmit_check; 12587 } 12588 12589 flags &= ~TH_SYN; 12590 seg_seq++; 12591 break; 12592 } 12593 tcp->tcp_state = TCPS_SYN_RCVD; 12594 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 12595 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 12596 if (mp1) { 12597 mblk_setcred(mp1, tcp->tcp_cred); 12598 DB_CPID(mp1) = tcp->tcp_cpid; 12599 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 12600 tcp_send_data(tcp, tcp->tcp_wq, mp1); 12601 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 12602 } 12603 freemsg(mp); 12604 return; 12605 case TCPS_SYN_RCVD: 12606 if (flags & TH_ACK) { 12607 /* 12608 * In this state, a SYN|ACK packet is either bogus 12609 * because the other side must be ACKing our SYN which 12610 * indicates it has seen the ACK for their SYN and 12611 * shouldn't retransmit it or we're crossing SYNs 12612 * on active open. 12613 */ 12614 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 12615 freemsg(mp); 12616 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 12617 tcp, seg_ack, 0, TH_RST); 12618 return; 12619 } 12620 /* 12621 * NOTE: RFC 793 pg. 72 says this should be 12622 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 12623 * but that would mean we have an ack that ignored 12624 * our SYN. 12625 */ 12626 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 12627 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12628 freemsg(mp); 12629 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 12630 tcp, seg_ack, 0, TH_RST); 12631 return; 12632 } 12633 } 12634 break; 12635 case TCPS_LISTEN: 12636 /* 12637 * Only a TLI listener can come through this path when a 12638 * acceptor is going back to be a listener and a packet 12639 * for the acceptor hits the classifier. For a socket 12640 * listener, this can never happen because a listener 12641 * can never accept connection on itself and hence a 12642 * socket acceptor can not go back to being a listener. 12643 */ 12644 ASSERT(!TCP_IS_SOCKET(tcp)); 12645 /*FALLTHRU*/ 12646 case TCPS_CLOSED: 12647 case TCPS_BOUND: { 12648 conn_t *new_connp; 12649 12650 new_connp = ipcl_classify(mp, connp->conn_zoneid); 12651 if (new_connp != NULL) { 12652 tcp_reinput(new_connp, mp, connp->conn_sqp); 12653 return; 12654 } 12655 /* We failed to classify. For now just drop the packet */ 12656 freemsg(mp); 12657 return; 12658 } 12659 case TCPS_IDLE: 12660 /* 12661 * Handle the case where the tcp_clean_death() has happened 12662 * on a connection (application hasn't closed yet) but a packet 12663 * was already queued on squeue before tcp_clean_death() 12664 * was processed. Calling tcp_clean_death() twice on same 12665 * connection can result in weird behaviour. 12666 */ 12667 freemsg(mp); 12668 return; 12669 default: 12670 break; 12671 } 12672 12673 /* 12674 * Already on the correct queue/perimeter. 12675 * If this is a detached connection and not an eager 12676 * connection hanging off a listener then new data 12677 * (past the FIN) will cause a reset. 12678 * We do a special check here where it 12679 * is out of the main line, rather than check 12680 * if we are detached every time we see new 12681 * data down below. 12682 */ 12683 if (TCP_IS_DETACHED_NONEAGER(tcp) && 12684 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 12685 BUMP_MIB(&tcp_mib, tcpInClosed); 12686 TCP_RECORD_TRACE(tcp, 12687 mp, TCP_TRACE_RECV_PKT); 12688 12689 freemsg(mp); 12690 /* 12691 * This could be an SSL closure alert. We're detached so just 12692 * acknowledge it this last time. 12693 */ 12694 if (tcp->tcp_kssl_ctx != NULL) { 12695 kssl_release_ctx(tcp->tcp_kssl_ctx); 12696 tcp->tcp_kssl_ctx = NULL; 12697 12698 tcp->tcp_rnxt += seg_len; 12699 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12700 flags |= TH_ACK_NEEDED; 12701 goto ack_check; 12702 } 12703 12704 tcp_xmit_ctl("new data when detached", tcp, 12705 tcp->tcp_snxt, 0, TH_RST); 12706 (void) tcp_clean_death(tcp, EPROTO, 12); 12707 return; 12708 } 12709 12710 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12711 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 12712 new_swnd = BE16_TO_U16(tcph->th_win) << 12713 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 12714 mss = tcp->tcp_mss; 12715 12716 if (tcp->tcp_snd_ts_ok) { 12717 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 12718 /* 12719 * This segment is not acceptable. 12720 * Drop it and send back an ACK. 12721 */ 12722 freemsg(mp); 12723 flags |= TH_ACK_NEEDED; 12724 goto ack_check; 12725 } 12726 } else if (tcp->tcp_snd_sack_ok) { 12727 ASSERT(tcp->tcp_sack_info != NULL); 12728 tcpopt.tcp = tcp; 12729 /* 12730 * SACK info in already updated in tcp_parse_options. Ignore 12731 * all other TCP options... 12732 */ 12733 (void) tcp_parse_options(tcph, &tcpopt); 12734 } 12735 try_again:; 12736 gap = seg_seq - tcp->tcp_rnxt; 12737 rgap = tcp->tcp_rwnd - (gap + seg_len); 12738 /* 12739 * gap is the amount of sequence space between what we expect to see 12740 * and what we got for seg_seq. A positive value for gap means 12741 * something got lost. A negative value means we got some old stuff. 12742 */ 12743 if (gap < 0) { 12744 /* Old stuff present. Is the SYN in there? */ 12745 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 12746 (seg_len != 0)) { 12747 flags &= ~TH_SYN; 12748 seg_seq++; 12749 urp--; 12750 /* Recompute the gaps after noting the SYN. */ 12751 goto try_again; 12752 } 12753 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 12754 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 12755 (seg_len > -gap ? -gap : seg_len)); 12756 /* Remove the old stuff from seg_len. */ 12757 seg_len += gap; 12758 /* 12759 * Anything left? 12760 * Make sure to check for unack'd FIN when rest of data 12761 * has been previously ack'd. 12762 */ 12763 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 12764 /* 12765 * Resets are only valid if they lie within our offered 12766 * window. If the RST bit is set, we just ignore this 12767 * segment. 12768 */ 12769 if (flags & TH_RST) { 12770 freemsg(mp); 12771 return; 12772 } 12773 12774 /* 12775 * The arriving of dup data packets indicate that we 12776 * may have postponed an ack for too long, or the other 12777 * side's RTT estimate is out of shape. Start acking 12778 * more often. 12779 */ 12780 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 12781 tcp->tcp_rack_cnt >= 1 && 12782 tcp->tcp_rack_abs_max > 2) { 12783 tcp->tcp_rack_abs_max--; 12784 } 12785 tcp->tcp_rack_cur_max = 1; 12786 12787 /* 12788 * This segment is "unacceptable". None of its 12789 * sequence space lies within our advertized window. 12790 * 12791 * Adjust seg_len to the original value for tracing. 12792 */ 12793 seg_len -= gap; 12794 if (tcp->tcp_debug) { 12795 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 12796 "tcp_rput: unacceptable, gap %d, rgap %d, " 12797 "flags 0x%x, seg_seq %u, seg_ack %u, " 12798 "seg_len %d, rnxt %u, snxt %u, %s", 12799 gap, rgap, flags, seg_seq, seg_ack, 12800 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 12801 tcp_display(tcp, NULL, 12802 DISP_ADDR_AND_PORT)); 12803 } 12804 12805 /* 12806 * Arrange to send an ACK in response to the 12807 * unacceptable segment per RFC 793 page 69. There 12808 * is only one small difference between ours and the 12809 * acceptability test in the RFC - we accept ACK-only 12810 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 12811 * will be generated. 12812 * 12813 * Note that we have to ACK an ACK-only packet at least 12814 * for stacks that send 0-length keep-alives with 12815 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 12816 * section 4.2.3.6. As long as we don't ever generate 12817 * an unacceptable packet in response to an incoming 12818 * packet that is unacceptable, it should not cause 12819 * "ACK wars". 12820 */ 12821 flags |= TH_ACK_NEEDED; 12822 12823 /* 12824 * Continue processing this segment in order to use the 12825 * ACK information it contains, but skip all other 12826 * sequence-number processing. Processing the ACK 12827 * information is necessary in order to 12828 * re-synchronize connections that may have lost 12829 * synchronization. 12830 * 12831 * We clear seg_len and flag fields related to 12832 * sequence number processing as they are not 12833 * to be trusted for an unacceptable segment. 12834 */ 12835 seg_len = 0; 12836 flags &= ~(TH_SYN | TH_FIN | TH_URG); 12837 goto process_ack; 12838 } 12839 12840 /* Fix seg_seq, and chew the gap off the front. */ 12841 seg_seq = tcp->tcp_rnxt; 12842 urp += gap; 12843 do { 12844 mblk_t *mp2; 12845 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 12846 (uintptr_t)UINT_MAX); 12847 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 12848 if (gap > 0) { 12849 mp->b_rptr = mp->b_wptr - gap; 12850 break; 12851 } 12852 mp2 = mp; 12853 mp = mp->b_cont; 12854 freeb(mp2); 12855 } while (gap < 0); 12856 /* 12857 * If the urgent data has already been acknowledged, we 12858 * should ignore TH_URG below 12859 */ 12860 if (urp < 0) 12861 flags &= ~TH_URG; 12862 } 12863 /* 12864 * rgap is the amount of stuff received out of window. A negative 12865 * value is the amount out of window. 12866 */ 12867 if (rgap < 0) { 12868 mblk_t *mp2; 12869 12870 if (tcp->tcp_rwnd == 0) { 12871 BUMP_MIB(&tcp_mib, tcpInWinProbe); 12872 } else { 12873 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 12874 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 12875 } 12876 12877 /* 12878 * seg_len does not include the FIN, so if more than 12879 * just the FIN is out of window, we act like we don't 12880 * see it. (If just the FIN is out of window, rgap 12881 * will be zero and we will go ahead and acknowledge 12882 * the FIN.) 12883 */ 12884 flags &= ~TH_FIN; 12885 12886 /* Fix seg_len and make sure there is something left. */ 12887 seg_len += rgap; 12888 if (seg_len <= 0) { 12889 /* 12890 * Resets are only valid if they lie within our offered 12891 * window. If the RST bit is set, we just ignore this 12892 * segment. 12893 */ 12894 if (flags & TH_RST) { 12895 freemsg(mp); 12896 return; 12897 } 12898 12899 /* Per RFC 793, we need to send back an ACK. */ 12900 flags |= TH_ACK_NEEDED; 12901 12902 /* 12903 * Send SIGURG as soon as possible i.e. even 12904 * if the TH_URG was delivered in a window probe 12905 * packet (which will be unacceptable). 12906 * 12907 * We generate a signal if none has been generated 12908 * for this connection or if this is a new urgent 12909 * byte. Also send a zero-length "unmarked" message 12910 * to inform SIOCATMARK that this is not the mark. 12911 * 12912 * tcp_urp_last_valid is cleared when the T_exdata_ind 12913 * is sent up. This plus the check for old data 12914 * (gap >= 0) handles the wraparound of the sequence 12915 * number space without having to always track the 12916 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 12917 * this max in its rcv_up variable). 12918 * 12919 * This prevents duplicate SIGURGS due to a "late" 12920 * zero-window probe when the T_EXDATA_IND has already 12921 * been sent up. 12922 */ 12923 if ((flags & TH_URG) && 12924 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 12925 tcp->tcp_urp_last))) { 12926 mp1 = allocb(0, BPRI_MED); 12927 if (mp1 == NULL) { 12928 freemsg(mp); 12929 return; 12930 } 12931 if (!TCP_IS_DETACHED(tcp) && 12932 !putnextctl1(tcp->tcp_rq, M_PCSIG, 12933 SIGURG)) { 12934 /* Try again on the rexmit. */ 12935 freemsg(mp1); 12936 freemsg(mp); 12937 return; 12938 } 12939 /* 12940 * If the next byte would be the mark 12941 * then mark with MARKNEXT else mark 12942 * with NOTMARKNEXT. 12943 */ 12944 if (gap == 0 && urp == 0) 12945 mp1->b_flag |= MSGMARKNEXT; 12946 else 12947 mp1->b_flag |= MSGNOTMARKNEXT; 12948 freemsg(tcp->tcp_urp_mark_mp); 12949 tcp->tcp_urp_mark_mp = mp1; 12950 flags |= TH_SEND_URP_MARK; 12951 tcp->tcp_urp_last_valid = B_TRUE; 12952 tcp->tcp_urp_last = urp + seg_seq; 12953 } 12954 /* 12955 * If this is a zero window probe, continue to 12956 * process the ACK part. But we need to set seg_len 12957 * to 0 to avoid data processing. Otherwise just 12958 * drop the segment and send back an ACK. 12959 */ 12960 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 12961 flags &= ~(TH_SYN | TH_URG); 12962 seg_len = 0; 12963 goto process_ack; 12964 } else { 12965 freemsg(mp); 12966 goto ack_check; 12967 } 12968 } 12969 /* Pitch out of window stuff off the end. */ 12970 rgap = seg_len; 12971 mp2 = mp; 12972 do { 12973 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 12974 (uintptr_t)INT_MAX); 12975 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 12976 if (rgap < 0) { 12977 mp2->b_wptr += rgap; 12978 if ((mp1 = mp2->b_cont) != NULL) { 12979 mp2->b_cont = NULL; 12980 freemsg(mp1); 12981 } 12982 break; 12983 } 12984 } while ((mp2 = mp2->b_cont) != NULL); 12985 } 12986 ok:; 12987 /* 12988 * TCP should check ECN info for segments inside the window only. 12989 * Therefore the check should be done here. 12990 */ 12991 if (tcp->tcp_ecn_ok) { 12992 if (flags & TH_CWR) { 12993 tcp->tcp_ecn_echo_on = B_FALSE; 12994 } 12995 /* 12996 * Note that both ECN_CE and CWR can be set in the 12997 * same segment. In this case, we once again turn 12998 * on ECN_ECHO. 12999 */ 13000 if (tcp->tcp_ipversion == IPV4_VERSION) { 13001 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13002 13003 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13004 tcp->tcp_ecn_echo_on = B_TRUE; 13005 } 13006 } else { 13007 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13008 13009 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13010 htonl(IPH_ECN_CE << 20)) { 13011 tcp->tcp_ecn_echo_on = B_TRUE; 13012 } 13013 } 13014 } 13015 13016 /* 13017 * Check whether we can update tcp_ts_recent. This test is 13018 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13019 * Extensions for High Performance: An Update", Internet Draft. 13020 */ 13021 if (tcp->tcp_snd_ts_ok && 13022 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13023 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13024 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13025 tcp->tcp_last_rcv_lbolt = lbolt64; 13026 } 13027 13028 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13029 /* 13030 * FIN in an out of order segment. We record this in 13031 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13032 * Clear the FIN so that any check on FIN flag will fail. 13033 * Remember that FIN also counts in the sequence number 13034 * space. So we need to ack out of order FIN only segments. 13035 */ 13036 if (flags & TH_FIN) { 13037 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13038 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13039 flags &= ~TH_FIN; 13040 flags |= TH_ACK_NEEDED; 13041 } 13042 if (seg_len > 0) { 13043 /* Fill in the SACK blk list. */ 13044 if (tcp->tcp_snd_sack_ok) { 13045 ASSERT(tcp->tcp_sack_info != NULL); 13046 tcp_sack_insert(tcp->tcp_sack_list, 13047 seg_seq, seg_seq + seg_len, 13048 &(tcp->tcp_num_sack_blk)); 13049 } 13050 13051 /* 13052 * Attempt reassembly and see if we have something 13053 * ready to go. 13054 */ 13055 mp = tcp_reass(tcp, mp, seg_seq); 13056 /* Always ack out of order packets */ 13057 flags |= TH_ACK_NEEDED | TH_PUSH; 13058 if (mp) { 13059 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13060 (uintptr_t)INT_MAX); 13061 seg_len = mp->b_cont ? msgdsize(mp) : 13062 (int)(mp->b_wptr - mp->b_rptr); 13063 seg_seq = tcp->tcp_rnxt; 13064 /* 13065 * A gap is filled and the seq num and len 13066 * of the gap match that of a previously 13067 * received FIN, put the FIN flag back in. 13068 */ 13069 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13070 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13071 flags |= TH_FIN; 13072 tcp->tcp_valid_bits &= 13073 ~TCP_OFO_FIN_VALID; 13074 } 13075 } else { 13076 /* 13077 * Keep going even with NULL mp. 13078 * There may be a useful ACK or something else 13079 * we don't want to miss. 13080 * 13081 * But TCP should not perform fast retransmit 13082 * because of the ack number. TCP uses 13083 * seg_len == 0 to determine if it is a pure 13084 * ACK. And this is not a pure ACK. 13085 */ 13086 seg_len = 0; 13087 ofo_seg = B_TRUE; 13088 } 13089 } 13090 } else if (seg_len > 0) { 13091 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13092 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13093 /* 13094 * If an out of order FIN was received before, and the seq 13095 * num and len of the new segment match that of the FIN, 13096 * put the FIN flag back in. 13097 */ 13098 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13099 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13100 flags |= TH_FIN; 13101 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13102 } 13103 } 13104 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13105 if (flags & TH_RST) { 13106 freemsg(mp); 13107 switch (tcp->tcp_state) { 13108 case TCPS_SYN_RCVD: 13109 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13110 break; 13111 case TCPS_ESTABLISHED: 13112 case TCPS_FIN_WAIT_1: 13113 case TCPS_FIN_WAIT_2: 13114 case TCPS_CLOSE_WAIT: 13115 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13116 break; 13117 case TCPS_CLOSING: 13118 case TCPS_LAST_ACK: 13119 (void) tcp_clean_death(tcp, 0, 16); 13120 break; 13121 default: 13122 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13123 (void) tcp_clean_death(tcp, ENXIO, 17); 13124 break; 13125 } 13126 return; 13127 } 13128 if (flags & TH_SYN) { 13129 /* 13130 * See RFC 793, Page 71 13131 * 13132 * The seq number must be in the window as it should 13133 * be "fixed" above. If it is outside window, it should 13134 * be already rejected. Note that we allow seg_seq to be 13135 * rnxt + rwnd because we want to accept 0 window probe. 13136 */ 13137 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13138 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13139 freemsg(mp); 13140 /* 13141 * If the ACK flag is not set, just use our snxt as the 13142 * seq number of the RST segment. 13143 */ 13144 if (!(flags & TH_ACK)) { 13145 seg_ack = tcp->tcp_snxt; 13146 } 13147 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13148 TH_RST|TH_ACK); 13149 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13150 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13151 return; 13152 } 13153 /* 13154 * urp could be -1 when the urp field in the packet is 0 13155 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13156 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13157 */ 13158 if (flags & TH_URG && urp >= 0) { 13159 if (!tcp->tcp_urp_last_valid || 13160 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13161 /* 13162 * If we haven't generated the signal yet for this 13163 * urgent pointer value, do it now. Also, send up a 13164 * zero-length M_DATA indicating whether or not this is 13165 * the mark. The latter is not needed when a 13166 * T_EXDATA_IND is sent up. However, if there are 13167 * allocation failures this code relies on the sender 13168 * retransmitting and the socket code for determining 13169 * the mark should not block waiting for the peer to 13170 * transmit. Thus, for simplicity we always send up the 13171 * mark indication. 13172 */ 13173 mp1 = allocb(0, BPRI_MED); 13174 if (mp1 == NULL) { 13175 freemsg(mp); 13176 return; 13177 } 13178 if (!TCP_IS_DETACHED(tcp) && 13179 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13180 /* Try again on the rexmit. */ 13181 freemsg(mp1); 13182 freemsg(mp); 13183 return; 13184 } 13185 /* 13186 * Mark with NOTMARKNEXT for now. 13187 * The code below will change this to MARKNEXT 13188 * if we are at the mark. 13189 * 13190 * If there are allocation failures (e.g. in dupmsg 13191 * below) the next time tcp_rput_data sees the urgent 13192 * segment it will send up the MSG*MARKNEXT message. 13193 */ 13194 mp1->b_flag |= MSGNOTMARKNEXT; 13195 freemsg(tcp->tcp_urp_mark_mp); 13196 tcp->tcp_urp_mark_mp = mp1; 13197 flags |= TH_SEND_URP_MARK; 13198 #ifdef DEBUG 13199 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13200 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13201 "last %x, %s", 13202 seg_seq, urp, tcp->tcp_urp_last, 13203 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13204 #endif /* DEBUG */ 13205 tcp->tcp_urp_last_valid = B_TRUE; 13206 tcp->tcp_urp_last = urp + seg_seq; 13207 } else if (tcp->tcp_urp_mark_mp != NULL) { 13208 /* 13209 * An allocation failure prevented the previous 13210 * tcp_rput_data from sending up the allocated 13211 * MSG*MARKNEXT message - send it up this time 13212 * around. 13213 */ 13214 flags |= TH_SEND_URP_MARK; 13215 } 13216 13217 /* 13218 * If the urgent byte is in this segment, make sure that it is 13219 * all by itself. This makes it much easier to deal with the 13220 * possibility of an allocation failure on the T_exdata_ind. 13221 * Note that seg_len is the number of bytes in the segment, and 13222 * urp is the offset into the segment of the urgent byte. 13223 * urp < seg_len means that the urgent byte is in this segment. 13224 */ 13225 if (urp < seg_len) { 13226 if (seg_len != 1) { 13227 uint32_t tmp_rnxt; 13228 /* 13229 * Break it up and feed it back in. 13230 * Re-attach the IP header. 13231 */ 13232 mp->b_rptr = iphdr; 13233 if (urp > 0) { 13234 /* 13235 * There is stuff before the urgent 13236 * byte. 13237 */ 13238 mp1 = dupmsg(mp); 13239 if (!mp1) { 13240 /* 13241 * Trim from urgent byte on. 13242 * The rest will come back. 13243 */ 13244 (void) adjmsg(mp, 13245 urp - seg_len); 13246 tcp_rput_data(connp, 13247 mp, NULL); 13248 return; 13249 } 13250 (void) adjmsg(mp1, urp - seg_len); 13251 /* Feed this piece back in. */ 13252 tmp_rnxt = tcp->tcp_rnxt; 13253 tcp_rput_data(connp, mp1, NULL); 13254 /* 13255 * If the data passed back in was not 13256 * processed (ie: bad ACK) sending 13257 * the remainder back in will cause a 13258 * loop. In this case, drop the 13259 * packet and let the sender try 13260 * sending a good packet. 13261 */ 13262 if (tmp_rnxt == tcp->tcp_rnxt) { 13263 freemsg(mp); 13264 return; 13265 } 13266 } 13267 if (urp != seg_len - 1) { 13268 uint32_t tmp_rnxt; 13269 /* 13270 * There is stuff after the urgent 13271 * byte. 13272 */ 13273 mp1 = dupmsg(mp); 13274 if (!mp1) { 13275 /* 13276 * Trim everything beyond the 13277 * urgent byte. The rest will 13278 * come back. 13279 */ 13280 (void) adjmsg(mp, 13281 urp + 1 - seg_len); 13282 tcp_rput_data(connp, 13283 mp, NULL); 13284 return; 13285 } 13286 (void) adjmsg(mp1, urp + 1 - seg_len); 13287 tmp_rnxt = tcp->tcp_rnxt; 13288 tcp_rput_data(connp, mp1, NULL); 13289 /* 13290 * If the data passed back in was not 13291 * processed (ie: bad ACK) sending 13292 * the remainder back in will cause a 13293 * loop. In this case, drop the 13294 * packet and let the sender try 13295 * sending a good packet. 13296 */ 13297 if (tmp_rnxt == tcp->tcp_rnxt) { 13298 freemsg(mp); 13299 return; 13300 } 13301 } 13302 tcp_rput_data(connp, mp, NULL); 13303 return; 13304 } 13305 /* 13306 * This segment contains only the urgent byte. We 13307 * have to allocate the T_exdata_ind, if we can. 13308 */ 13309 if (!tcp->tcp_urp_mp) { 13310 struct T_exdata_ind *tei; 13311 mp1 = allocb(sizeof (struct T_exdata_ind), 13312 BPRI_MED); 13313 if (!mp1) { 13314 /* 13315 * Sigh... It'll be back. 13316 * Generate any MSG*MARK message now. 13317 */ 13318 freemsg(mp); 13319 seg_len = 0; 13320 if (flags & TH_SEND_URP_MARK) { 13321 13322 13323 ASSERT(tcp->tcp_urp_mark_mp); 13324 tcp->tcp_urp_mark_mp->b_flag &= 13325 ~MSGNOTMARKNEXT; 13326 tcp->tcp_urp_mark_mp->b_flag |= 13327 MSGMARKNEXT; 13328 } 13329 goto ack_check; 13330 } 13331 mp1->b_datap->db_type = M_PROTO; 13332 tei = (struct T_exdata_ind *)mp1->b_rptr; 13333 tei->PRIM_type = T_EXDATA_IND; 13334 tei->MORE_flag = 0; 13335 mp1->b_wptr = (uchar_t *)&tei[1]; 13336 tcp->tcp_urp_mp = mp1; 13337 #ifdef DEBUG 13338 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13339 "tcp_rput: allocated exdata_ind %s", 13340 tcp_display(tcp, NULL, 13341 DISP_PORT_ONLY)); 13342 #endif /* DEBUG */ 13343 /* 13344 * There is no need to send a separate MSG*MARK 13345 * message since the T_EXDATA_IND will be sent 13346 * now. 13347 */ 13348 flags &= ~TH_SEND_URP_MARK; 13349 freemsg(tcp->tcp_urp_mark_mp); 13350 tcp->tcp_urp_mark_mp = NULL; 13351 } 13352 /* 13353 * Now we are all set. On the next putnext upstream, 13354 * tcp_urp_mp will be non-NULL and will get prepended 13355 * to what has to be this piece containing the urgent 13356 * byte. If for any reason we abort this segment below, 13357 * if it comes back, we will have this ready, or it 13358 * will get blown off in close. 13359 */ 13360 } else if (urp == seg_len) { 13361 /* 13362 * The urgent byte is the next byte after this sequence 13363 * number. If there is data it is marked with 13364 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13365 * since it is not needed. Otherwise, if the code 13366 * above just allocated a zero-length tcp_urp_mark_mp 13367 * message, that message is tagged with MSGMARKNEXT. 13368 * Sending up these MSGMARKNEXT messages makes 13369 * SIOCATMARK work correctly even though 13370 * the T_EXDATA_IND will not be sent up until the 13371 * urgent byte arrives. 13372 */ 13373 if (seg_len != 0) { 13374 flags |= TH_MARKNEXT_NEEDED; 13375 freemsg(tcp->tcp_urp_mark_mp); 13376 tcp->tcp_urp_mark_mp = NULL; 13377 flags &= ~TH_SEND_URP_MARK; 13378 } else if (tcp->tcp_urp_mark_mp != NULL) { 13379 flags |= TH_SEND_URP_MARK; 13380 tcp->tcp_urp_mark_mp->b_flag &= 13381 ~MSGNOTMARKNEXT; 13382 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13383 } 13384 #ifdef DEBUG 13385 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13386 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13387 seg_len, flags, 13388 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13389 #endif /* DEBUG */ 13390 } else { 13391 /* Data left until we hit mark */ 13392 #ifdef DEBUG 13393 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13394 "tcp_rput: URP %d bytes left, %s", 13395 urp - seg_len, tcp_display(tcp, NULL, 13396 DISP_PORT_ONLY)); 13397 #endif /* DEBUG */ 13398 } 13399 } 13400 13401 process_ack: 13402 if (!(flags & TH_ACK)) { 13403 freemsg(mp); 13404 goto xmit_check; 13405 } 13406 } 13407 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13408 13409 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13410 tcp->tcp_ip_forward_progress = B_TRUE; 13411 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13412 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13413 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13414 /* 3-way handshake complete - pass up the T_CONN_IND */ 13415 tcp_t *listener = tcp->tcp_listener; 13416 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13417 13418 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13419 /* 13420 * We are here means eager is fine but it can 13421 * get a TH_RST at any point between now and till 13422 * accept completes and disappear. We need to 13423 * ensure that reference to eager is valid after 13424 * we get out of eager's perimeter. So we do 13425 * an extra refhold. 13426 */ 13427 CONN_INC_REF(connp); 13428 13429 /* 13430 * The listener also exists because of the refhold 13431 * done in tcp_conn_request. Its possible that it 13432 * might have closed. We will check that once we 13433 * get inside listeners context. 13434 */ 13435 CONN_INC_REF(listener->tcp_connp); 13436 if (listener->tcp_connp->conn_sqp == 13437 connp->conn_sqp) { 13438 tcp_send_conn_ind(listener->tcp_connp, mp, 13439 listener->tcp_connp->conn_sqp); 13440 CONN_DEC_REF(listener->tcp_connp); 13441 } else if (!tcp->tcp_loopback) { 13442 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13443 tcp_send_conn_ind, 13444 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13445 } else { 13446 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13447 tcp_send_conn_ind, listener->tcp_connp, 13448 SQTAG_TCP_CONN_IND); 13449 } 13450 } 13451 13452 if (tcp->tcp_active_open) { 13453 /* 13454 * We are seeing the final ack in the three way 13455 * hand shake of a active open'ed connection 13456 * so we must send up a T_CONN_CON 13457 */ 13458 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13459 freemsg(mp); 13460 return; 13461 } 13462 /* 13463 * Don't fuse the loopback endpoints for 13464 * simultaneous active opens. 13465 */ 13466 if (tcp->tcp_loopback) { 13467 TCP_STAT(tcp_fusion_unfusable); 13468 tcp->tcp_unfusable = B_TRUE; 13469 } 13470 } 13471 13472 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13473 bytes_acked--; 13474 /* SYN was acked - making progress */ 13475 if (tcp->tcp_ipversion == IPV6_VERSION) 13476 tcp->tcp_ip_forward_progress = B_TRUE; 13477 13478 /* 13479 * If SYN was retransmitted, need to reset all 13480 * retransmission info as this segment will be 13481 * treated as a dup ACK. 13482 */ 13483 if (tcp->tcp_rexmit) { 13484 tcp->tcp_rexmit = B_FALSE; 13485 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13486 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13487 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13488 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13489 tcp->tcp_ms_we_have_waited = 0; 13490 tcp->tcp_cwnd = mss; 13491 } 13492 13493 /* 13494 * We set the send window to zero here. 13495 * This is needed if there is data to be 13496 * processed already on the queue. 13497 * Later (at swnd_update label), the 13498 * "new_swnd > tcp_swnd" condition is satisfied 13499 * the XMIT_NEEDED flag is set in the current 13500 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13501 * called if there is already data on queue in 13502 * this state. 13503 */ 13504 tcp->tcp_swnd = 0; 13505 13506 if (new_swnd > tcp->tcp_max_swnd) 13507 tcp->tcp_max_swnd = new_swnd; 13508 tcp->tcp_swl1 = seg_seq; 13509 tcp->tcp_swl2 = seg_ack; 13510 tcp->tcp_state = TCPS_ESTABLISHED; 13511 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13512 13513 /* Fuse when both sides are in ESTABLISHED state */ 13514 if (tcp->tcp_loopback && do_tcp_fusion) 13515 tcp_fuse(tcp, iphdr, tcph); 13516 13517 } 13518 /* This code follows 4.4BSD-Lite2 mostly. */ 13519 if (bytes_acked < 0) 13520 goto est; 13521 13522 /* 13523 * If TCP is ECN capable and the congestion experience bit is 13524 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13525 * done once per window (or more loosely, per RTT). 13526 */ 13527 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13528 tcp->tcp_cwr = B_FALSE; 13529 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13530 if (!tcp->tcp_cwr) { 13531 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13532 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13533 tcp->tcp_cwnd = npkt * mss; 13534 /* 13535 * If the cwnd is 0, use the timer to clock out 13536 * new segments. This is required by the ECN spec. 13537 */ 13538 if (npkt == 0) { 13539 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13540 /* 13541 * This makes sure that when the ACK comes 13542 * back, we will increase tcp_cwnd by 1 MSS. 13543 */ 13544 tcp->tcp_cwnd_cnt = 0; 13545 } 13546 tcp->tcp_cwr = B_TRUE; 13547 /* 13548 * This marks the end of the current window of in 13549 * flight data. That is why we don't use 13550 * tcp_suna + tcp_swnd. Only data in flight can 13551 * provide ECN info. 13552 */ 13553 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13554 tcp->tcp_ecn_cwr_sent = B_FALSE; 13555 } 13556 } 13557 13558 mp1 = tcp->tcp_xmit_head; 13559 if (bytes_acked == 0) { 13560 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 13561 int dupack_cnt; 13562 13563 BUMP_MIB(&tcp_mib, tcpInDupAck); 13564 /* 13565 * Fast retransmit. When we have seen exactly three 13566 * identical ACKs while we have unacked data 13567 * outstanding we take it as a hint that our peer 13568 * dropped something. 13569 * 13570 * If TCP is retransmitting, don't do fast retransmit. 13571 */ 13572 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 13573 ! tcp->tcp_rexmit) { 13574 /* Do Limited Transmit */ 13575 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 13576 tcp_dupack_fast_retransmit) { 13577 /* 13578 * RFC 3042 13579 * 13580 * What we need to do is temporarily 13581 * increase tcp_cwnd so that new 13582 * data can be sent if it is allowed 13583 * by the receive window (tcp_rwnd). 13584 * tcp_wput_data() will take care of 13585 * the rest. 13586 * 13587 * If the connection is SACK capable, 13588 * only do limited xmit when there 13589 * is SACK info. 13590 * 13591 * Note how tcp_cwnd is incremented. 13592 * The first dup ACK will increase 13593 * it by 1 MSS. The second dup ACK 13594 * will increase it by 2 MSS. This 13595 * means that only 1 new segment will 13596 * be sent for each dup ACK. 13597 */ 13598 if (tcp->tcp_unsent > 0 && 13599 (!tcp->tcp_snd_sack_ok || 13600 (tcp->tcp_snd_sack_ok && 13601 tcp->tcp_notsack_list != NULL))) { 13602 tcp->tcp_cwnd += mss << 13603 (tcp->tcp_dupack_cnt - 1); 13604 flags |= TH_LIMIT_XMIT; 13605 } 13606 } else if (dupack_cnt == 13607 tcp_dupack_fast_retransmit) { 13608 13609 /* 13610 * If we have reduced tcp_ssthresh 13611 * because of ECN, do not reduce it again 13612 * unless it is already one window of data 13613 * away. After one window of data, tcp_cwr 13614 * should then be cleared. Note that 13615 * for non ECN capable connection, tcp_cwr 13616 * should always be false. 13617 * 13618 * Adjust cwnd since the duplicate 13619 * ack indicates that a packet was 13620 * dropped (due to congestion.) 13621 */ 13622 if (!tcp->tcp_cwr) { 13623 npkt = ((tcp->tcp_snxt - 13624 tcp->tcp_suna) >> 1) / mss; 13625 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 13626 mss; 13627 tcp->tcp_cwnd = (npkt + 13628 tcp->tcp_dupack_cnt) * mss; 13629 } 13630 if (tcp->tcp_ecn_ok) { 13631 tcp->tcp_cwr = B_TRUE; 13632 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 13633 tcp->tcp_ecn_cwr_sent = B_FALSE; 13634 } 13635 13636 /* 13637 * We do Hoe's algorithm. Refer to her 13638 * paper "Improving the Start-up Behavior 13639 * of a Congestion Control Scheme for TCP," 13640 * appeared in SIGCOMM'96. 13641 * 13642 * Save highest seq no we have sent so far. 13643 * Be careful about the invisible FIN byte. 13644 */ 13645 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 13646 (tcp->tcp_unsent == 0)) { 13647 tcp->tcp_rexmit_max = tcp->tcp_fss; 13648 } else { 13649 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13650 } 13651 13652 /* 13653 * Do not allow bursty traffic during. 13654 * fast recovery. Refer to Fall and Floyd's 13655 * paper "Simulation-based Comparisons of 13656 * Tahoe, Reno and SACK TCP" (in CCR?) 13657 * This is a best current practise. 13658 */ 13659 tcp->tcp_snd_burst = TCP_CWND_SS; 13660 13661 /* 13662 * For SACK: 13663 * Calculate tcp_pipe, which is the 13664 * estimated number of bytes in 13665 * network. 13666 * 13667 * tcp_fack is the highest sack'ed seq num 13668 * TCP has received. 13669 * 13670 * tcp_pipe is explained in the above quoted 13671 * Fall and Floyd's paper. tcp_fack is 13672 * explained in Mathis and Mahdavi's 13673 * "Forward Acknowledgment: Refining TCP 13674 * Congestion Control" in SIGCOMM '96. 13675 */ 13676 if (tcp->tcp_snd_sack_ok) { 13677 ASSERT(tcp->tcp_sack_info != NULL); 13678 if (tcp->tcp_notsack_list != NULL) { 13679 tcp->tcp_pipe = tcp->tcp_snxt - 13680 tcp->tcp_fack; 13681 tcp->tcp_sack_snxt = seg_ack; 13682 flags |= TH_NEED_SACK_REXMIT; 13683 } else { 13684 /* 13685 * Always initialize tcp_pipe 13686 * even though we don't have 13687 * any SACK info. If later 13688 * we get SACK info and 13689 * tcp_pipe is not initialized, 13690 * funny things will happen. 13691 */ 13692 tcp->tcp_pipe = 13693 tcp->tcp_cwnd_ssthresh; 13694 } 13695 } else { 13696 flags |= TH_REXMIT_NEEDED; 13697 } /* tcp_snd_sack_ok */ 13698 13699 } else { 13700 /* 13701 * Here we perform congestion 13702 * avoidance, but NOT slow start. 13703 * This is known as the Fast 13704 * Recovery Algorithm. 13705 */ 13706 if (tcp->tcp_snd_sack_ok && 13707 tcp->tcp_notsack_list != NULL) { 13708 flags |= TH_NEED_SACK_REXMIT; 13709 tcp->tcp_pipe -= mss; 13710 if (tcp->tcp_pipe < 0) 13711 tcp->tcp_pipe = 0; 13712 } else { 13713 /* 13714 * We know that one more packet has 13715 * left the pipe thus we can update 13716 * cwnd. 13717 */ 13718 cwnd = tcp->tcp_cwnd + mss; 13719 if (cwnd > tcp->tcp_cwnd_max) 13720 cwnd = tcp->tcp_cwnd_max; 13721 tcp->tcp_cwnd = cwnd; 13722 if (tcp->tcp_unsent > 0) 13723 flags |= TH_XMIT_NEEDED; 13724 } 13725 } 13726 } 13727 } else if (tcp->tcp_zero_win_probe) { 13728 /* 13729 * If the window has opened, need to arrange 13730 * to send additional data. 13731 */ 13732 if (new_swnd != 0) { 13733 /* tcp_suna != tcp_snxt */ 13734 /* Packet contains a window update */ 13735 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 13736 tcp->tcp_zero_win_probe = 0; 13737 tcp->tcp_timer_backoff = 0; 13738 tcp->tcp_ms_we_have_waited = 0; 13739 13740 /* 13741 * Transmit starting with tcp_suna since 13742 * the one byte probe is not ack'ed. 13743 * If TCP has sent more than one identical 13744 * probe, tcp_rexmit will be set. That means 13745 * tcp_ss_rexmit() will send out the one 13746 * byte along with new data. Otherwise, 13747 * fake the retransmission. 13748 */ 13749 flags |= TH_XMIT_NEEDED; 13750 if (!tcp->tcp_rexmit) { 13751 tcp->tcp_rexmit = B_TRUE; 13752 tcp->tcp_dupack_cnt = 0; 13753 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 13754 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 13755 } 13756 } 13757 } 13758 goto swnd_update; 13759 } 13760 13761 /* 13762 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 13763 * If the ACK value acks something that we have not yet sent, it might 13764 * be an old duplicate segment. Send an ACK to re-synchronize the 13765 * other side. 13766 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 13767 * state is handled above, so we can always just drop the segment and 13768 * send an ACK here. 13769 * 13770 * Should we send ACKs in response to ACK only segments? 13771 */ 13772 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13773 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 13774 /* drop the received segment */ 13775 freemsg(mp); 13776 13777 /* 13778 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 13779 * greater than 0, check if the number of such 13780 * bogus ACks is greater than that count. If yes, 13781 * don't send back any ACK. This prevents TCP from 13782 * getting into an ACK storm if somehow an attacker 13783 * successfully spoofs an acceptable segment to our 13784 * peer. 13785 */ 13786 if (tcp_drop_ack_unsent_cnt > 0 && 13787 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 13788 TCP_STAT(tcp_in_ack_unsent_drop); 13789 return; 13790 } 13791 mp = tcp_ack_mp(tcp); 13792 if (mp != NULL) { 13793 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 13794 BUMP_LOCAL(tcp->tcp_obsegs); 13795 BUMP_MIB(&tcp_mib, tcpOutAck); 13796 tcp_send_data(tcp, tcp->tcp_wq, mp); 13797 } 13798 return; 13799 } 13800 13801 /* 13802 * TCP gets a new ACK, update the notsack'ed list to delete those 13803 * blocks that are covered by this ACK. 13804 */ 13805 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 13806 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 13807 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 13808 } 13809 13810 /* 13811 * If we got an ACK after fast retransmit, check to see 13812 * if it is a partial ACK. If it is not and the congestion 13813 * window was inflated to account for the other side's 13814 * cached packets, retract it. If it is, do Hoe's algorithm. 13815 */ 13816 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 13817 ASSERT(tcp->tcp_rexmit == B_FALSE); 13818 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 13819 tcp->tcp_dupack_cnt = 0; 13820 /* 13821 * Restore the orig tcp_cwnd_ssthresh after 13822 * fast retransmit phase. 13823 */ 13824 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 13825 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 13826 } 13827 tcp->tcp_rexmit_max = seg_ack; 13828 tcp->tcp_cwnd_cnt = 0; 13829 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13830 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13831 13832 /* 13833 * Remove all notsack info to avoid confusion with 13834 * the next fast retrasnmit/recovery phase. 13835 */ 13836 if (tcp->tcp_snd_sack_ok && 13837 tcp->tcp_notsack_list != NULL) { 13838 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 13839 } 13840 } else { 13841 if (tcp->tcp_snd_sack_ok && 13842 tcp->tcp_notsack_list != NULL) { 13843 flags |= TH_NEED_SACK_REXMIT; 13844 tcp->tcp_pipe -= mss; 13845 if (tcp->tcp_pipe < 0) 13846 tcp->tcp_pipe = 0; 13847 } else { 13848 /* 13849 * Hoe's algorithm: 13850 * 13851 * Retransmit the unack'ed segment and 13852 * restart fast recovery. Note that we 13853 * need to scale back tcp_cwnd to the 13854 * original value when we started fast 13855 * recovery. This is to prevent overly 13856 * aggressive behaviour in sending new 13857 * segments. 13858 */ 13859 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 13860 tcp_dupack_fast_retransmit * mss; 13861 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 13862 flags |= TH_REXMIT_NEEDED; 13863 } 13864 } 13865 } else { 13866 tcp->tcp_dupack_cnt = 0; 13867 if (tcp->tcp_rexmit) { 13868 /* 13869 * TCP is retranmitting. If the ACK ack's all 13870 * outstanding data, update tcp_rexmit_max and 13871 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 13872 * to the correct value. 13873 * 13874 * Note that SEQ_LEQ() is used. This is to avoid 13875 * unnecessary fast retransmit caused by dup ACKs 13876 * received when TCP does slow start retransmission 13877 * after a time out. During this phase, TCP may 13878 * send out segments which are already received. 13879 * This causes dup ACKs to be sent back. 13880 */ 13881 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 13882 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 13883 tcp->tcp_rexmit_nxt = seg_ack; 13884 } 13885 if (seg_ack != tcp->tcp_rexmit_max) { 13886 flags |= TH_XMIT_NEEDED; 13887 } 13888 } else { 13889 tcp->tcp_rexmit = B_FALSE; 13890 tcp->tcp_xmit_zc_clean = B_FALSE; 13891 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13892 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13893 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13894 } 13895 tcp->tcp_ms_we_have_waited = 0; 13896 } 13897 } 13898 13899 BUMP_MIB(&tcp_mib, tcpInAckSegs); 13900 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 13901 tcp->tcp_suna = seg_ack; 13902 if (tcp->tcp_zero_win_probe != 0) { 13903 tcp->tcp_zero_win_probe = 0; 13904 tcp->tcp_timer_backoff = 0; 13905 } 13906 13907 /* 13908 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 13909 * Note that it cannot be the SYN being ack'ed. The code flow 13910 * will not reach here. 13911 */ 13912 if (mp1 == NULL) { 13913 goto fin_acked; 13914 } 13915 13916 /* 13917 * Update the congestion window. 13918 * 13919 * If TCP is not ECN capable or TCP is ECN capable but the 13920 * congestion experience bit is not set, increase the tcp_cwnd as 13921 * usual. 13922 */ 13923 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 13924 cwnd = tcp->tcp_cwnd; 13925 add = mss; 13926 13927 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 13928 /* 13929 * This is to prevent an increase of less than 1 MSS of 13930 * tcp_cwnd. With partial increase, tcp_wput_data() 13931 * may send out tinygrams in order to preserve mblk 13932 * boundaries. 13933 * 13934 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 13935 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 13936 * increased by 1 MSS for every RTTs. 13937 */ 13938 if (tcp->tcp_cwnd_cnt <= 0) { 13939 tcp->tcp_cwnd_cnt = cwnd + add; 13940 } else { 13941 tcp->tcp_cwnd_cnt -= add; 13942 add = 0; 13943 } 13944 } 13945 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 13946 } 13947 13948 /* See if the latest urgent data has been acknowledged */ 13949 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 13950 SEQ_GT(seg_ack, tcp->tcp_urg)) 13951 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 13952 13953 /* Can we update the RTT estimates? */ 13954 if (tcp->tcp_snd_ts_ok) { 13955 /* Ignore zero timestamp echo-reply. */ 13956 if (tcpopt.tcp_opt_ts_ecr != 0) { 13957 tcp_set_rto(tcp, (int32_t)lbolt - 13958 (int32_t)tcpopt.tcp_opt_ts_ecr); 13959 } 13960 13961 /* If needed, restart the timer. */ 13962 if (tcp->tcp_set_timer == 1) { 13963 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13964 tcp->tcp_set_timer = 0; 13965 } 13966 /* 13967 * Update tcp_csuna in case the other side stops sending 13968 * us timestamps. 13969 */ 13970 tcp->tcp_csuna = tcp->tcp_snxt; 13971 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 13972 /* 13973 * An ACK sequence we haven't seen before, so get the RTT 13974 * and update the RTO. But first check if the timestamp is 13975 * valid to use. 13976 */ 13977 if ((mp1->b_next != NULL) && 13978 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 13979 tcp_set_rto(tcp, (int32_t)lbolt - 13980 (int32_t)(intptr_t)mp1->b_prev); 13981 else 13982 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 13983 13984 /* Remeber the last sequence to be ACKed */ 13985 tcp->tcp_csuna = seg_ack; 13986 if (tcp->tcp_set_timer == 1) { 13987 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13988 tcp->tcp_set_timer = 0; 13989 } 13990 } else { 13991 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 13992 } 13993 13994 /* Eat acknowledged bytes off the xmit queue. */ 13995 for (;;) { 13996 mblk_t *mp2; 13997 uchar_t *wptr; 13998 13999 wptr = mp1->b_wptr; 14000 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14001 bytes_acked -= (int)(wptr - mp1->b_rptr); 14002 if (bytes_acked < 0) { 14003 mp1->b_rptr = wptr + bytes_acked; 14004 /* 14005 * Set a new timestamp if all the bytes timed by the 14006 * old timestamp have been ack'ed. 14007 */ 14008 if (SEQ_GT(seg_ack, 14009 (uint32_t)(uintptr_t)(mp1->b_next))) { 14010 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14011 mp1->b_next = NULL; 14012 } 14013 break; 14014 } 14015 mp1->b_next = NULL; 14016 mp1->b_prev = NULL; 14017 mp2 = mp1; 14018 mp1 = mp1->b_cont; 14019 14020 /* 14021 * This notification is required for some zero-copy 14022 * clients to maintain a copy semantic. After the data 14023 * is ack'ed, client is safe to modify or reuse the buffer. 14024 */ 14025 if (tcp->tcp_snd_zcopy_aware && 14026 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14027 tcp_zcopy_notify(tcp); 14028 freeb(mp2); 14029 if (bytes_acked == 0) { 14030 if (mp1 == NULL) { 14031 /* Everything is ack'ed, clear the tail. */ 14032 tcp->tcp_xmit_tail = NULL; 14033 /* 14034 * Cancel the timer unless we are still 14035 * waiting for an ACK for the FIN packet. 14036 */ 14037 if (tcp->tcp_timer_tid != 0 && 14038 tcp->tcp_snxt == tcp->tcp_suna) { 14039 (void) TCP_TIMER_CANCEL(tcp, 14040 tcp->tcp_timer_tid); 14041 tcp->tcp_timer_tid = 0; 14042 } 14043 goto pre_swnd_update; 14044 } 14045 if (mp2 != tcp->tcp_xmit_tail) 14046 break; 14047 tcp->tcp_xmit_tail = mp1; 14048 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14049 (uintptr_t)INT_MAX); 14050 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14051 mp1->b_rptr); 14052 break; 14053 } 14054 if (mp1 == NULL) { 14055 /* 14056 * More was acked but there is nothing more 14057 * outstanding. This means that the FIN was 14058 * just acked or that we're talking to a clown. 14059 */ 14060 fin_acked: 14061 ASSERT(tcp->tcp_fin_sent); 14062 tcp->tcp_xmit_tail = NULL; 14063 if (tcp->tcp_fin_sent) { 14064 /* FIN was acked - making progress */ 14065 if (tcp->tcp_ipversion == IPV6_VERSION && 14066 !tcp->tcp_fin_acked) 14067 tcp->tcp_ip_forward_progress = B_TRUE; 14068 tcp->tcp_fin_acked = B_TRUE; 14069 if (tcp->tcp_linger_tid != 0 && 14070 TCP_TIMER_CANCEL(tcp, 14071 tcp->tcp_linger_tid) >= 0) { 14072 tcp_stop_lingering(tcp); 14073 } 14074 } else { 14075 /* 14076 * We should never get here because 14077 * we have already checked that the 14078 * number of bytes ack'ed should be 14079 * smaller than or equal to what we 14080 * have sent so far (it is the 14081 * acceptability check of the ACK). 14082 * We can only get here if the send 14083 * queue is corrupted. 14084 * 14085 * Terminate the connection and 14086 * panic the system. It is better 14087 * for us to panic instead of 14088 * continuing to avoid other disaster. 14089 */ 14090 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14091 tcp->tcp_rnxt, TH_RST|TH_ACK); 14092 panic("Memory corruption " 14093 "detected for connection %s.", 14094 tcp_display(tcp, NULL, 14095 DISP_ADDR_AND_PORT)); 14096 /*NOTREACHED*/ 14097 } 14098 goto pre_swnd_update; 14099 } 14100 ASSERT(mp2 != tcp->tcp_xmit_tail); 14101 } 14102 if (tcp->tcp_unsent) { 14103 flags |= TH_XMIT_NEEDED; 14104 } 14105 pre_swnd_update: 14106 tcp->tcp_xmit_head = mp1; 14107 swnd_update: 14108 /* 14109 * The following check is different from most other implementations. 14110 * For bi-directional transfer, when segments are dropped, the 14111 * "normal" check will not accept a window update in those 14112 * retransmitted segemnts. Failing to do that, TCP may send out 14113 * segments which are outside receiver's window. As TCP accepts 14114 * the ack in those retransmitted segments, if the window update in 14115 * the same segment is not accepted, TCP will incorrectly calculates 14116 * that it can send more segments. This can create a deadlock 14117 * with the receiver if its window becomes zero. 14118 */ 14119 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14120 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14121 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14122 /* 14123 * The criteria for update is: 14124 * 14125 * 1. the segment acknowledges some data. Or 14126 * 2. the segment is new, i.e. it has a higher seq num. Or 14127 * 3. the segment is not old and the advertised window is 14128 * larger than the previous advertised window. 14129 */ 14130 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14131 flags |= TH_XMIT_NEEDED; 14132 tcp->tcp_swnd = new_swnd; 14133 if (new_swnd > tcp->tcp_max_swnd) 14134 tcp->tcp_max_swnd = new_swnd; 14135 tcp->tcp_swl1 = seg_seq; 14136 tcp->tcp_swl2 = seg_ack; 14137 } 14138 est: 14139 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14140 14141 switch (tcp->tcp_state) { 14142 case TCPS_FIN_WAIT_1: 14143 if (tcp->tcp_fin_acked) { 14144 tcp->tcp_state = TCPS_FIN_WAIT_2; 14145 /* 14146 * We implement the non-standard BSD/SunOS 14147 * FIN_WAIT_2 flushing algorithm. 14148 * If there is no user attached to this 14149 * TCP endpoint, then this TCP struct 14150 * could hang around forever in FIN_WAIT_2 14151 * state if the peer forgets to send us 14152 * a FIN. To prevent this, we wait only 14153 * 2*MSL (a convenient time value) for 14154 * the FIN to arrive. If it doesn't show up, 14155 * we flush the TCP endpoint. This algorithm, 14156 * though a violation of RFC-793, has worked 14157 * for over 10 years in BSD systems. 14158 * Note: SunOS 4.x waits 675 seconds before 14159 * flushing the FIN_WAIT_2 connection. 14160 */ 14161 TCP_TIMER_RESTART(tcp, 14162 tcp_fin_wait_2_flush_interval); 14163 } 14164 break; 14165 case TCPS_FIN_WAIT_2: 14166 break; /* Shutdown hook? */ 14167 case TCPS_LAST_ACK: 14168 freemsg(mp); 14169 if (tcp->tcp_fin_acked) { 14170 (void) tcp_clean_death(tcp, 0, 19); 14171 return; 14172 } 14173 goto xmit_check; 14174 case TCPS_CLOSING: 14175 if (tcp->tcp_fin_acked) { 14176 tcp->tcp_state = TCPS_TIME_WAIT; 14177 if (!TCP_IS_DETACHED(tcp)) { 14178 TCP_TIMER_RESTART(tcp, 14179 tcp_time_wait_interval); 14180 } else { 14181 tcp_time_wait_append(tcp); 14182 TCP_DBGSTAT(tcp_rput_time_wait); 14183 } 14184 } 14185 /*FALLTHRU*/ 14186 case TCPS_CLOSE_WAIT: 14187 freemsg(mp); 14188 goto xmit_check; 14189 default: 14190 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14191 break; 14192 } 14193 } 14194 if (flags & TH_FIN) { 14195 /* Make sure we ack the fin */ 14196 flags |= TH_ACK_NEEDED; 14197 if (!tcp->tcp_fin_rcvd) { 14198 tcp->tcp_fin_rcvd = B_TRUE; 14199 tcp->tcp_rnxt++; 14200 tcph = tcp->tcp_tcph; 14201 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14202 14203 /* 14204 * Generate the ordrel_ind at the end unless we 14205 * are an eager guy. 14206 * In the eager case tcp_rsrv will do this when run 14207 * after tcp_accept is done. 14208 */ 14209 if (tcp->tcp_listener == NULL && 14210 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14211 flags |= TH_ORDREL_NEEDED; 14212 switch (tcp->tcp_state) { 14213 case TCPS_SYN_RCVD: 14214 case TCPS_ESTABLISHED: 14215 tcp->tcp_state = TCPS_CLOSE_WAIT; 14216 /* Keepalive? */ 14217 break; 14218 case TCPS_FIN_WAIT_1: 14219 if (!tcp->tcp_fin_acked) { 14220 tcp->tcp_state = TCPS_CLOSING; 14221 break; 14222 } 14223 /* FALLTHRU */ 14224 case TCPS_FIN_WAIT_2: 14225 tcp->tcp_state = TCPS_TIME_WAIT; 14226 if (!TCP_IS_DETACHED(tcp)) { 14227 TCP_TIMER_RESTART(tcp, 14228 tcp_time_wait_interval); 14229 } else { 14230 tcp_time_wait_append(tcp); 14231 TCP_DBGSTAT(tcp_rput_time_wait); 14232 } 14233 if (seg_len) { 14234 /* 14235 * implies data piggybacked on FIN. 14236 * break to handle data. 14237 */ 14238 break; 14239 } 14240 freemsg(mp); 14241 goto ack_check; 14242 } 14243 } 14244 } 14245 if (mp == NULL) 14246 goto xmit_check; 14247 if (seg_len == 0) { 14248 freemsg(mp); 14249 goto xmit_check; 14250 } 14251 if (mp->b_rptr == mp->b_wptr) { 14252 /* 14253 * The header has been consumed, so we remove the 14254 * zero-length mblk here. 14255 */ 14256 mp1 = mp; 14257 mp = mp->b_cont; 14258 freeb(mp1); 14259 } 14260 tcph = tcp->tcp_tcph; 14261 tcp->tcp_rack_cnt++; 14262 { 14263 uint32_t cur_max; 14264 14265 cur_max = tcp->tcp_rack_cur_max; 14266 if (tcp->tcp_rack_cnt >= cur_max) { 14267 /* 14268 * We have more unacked data than we should - send 14269 * an ACK now. 14270 */ 14271 flags |= TH_ACK_NEEDED; 14272 cur_max++; 14273 if (cur_max > tcp->tcp_rack_abs_max) 14274 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14275 else 14276 tcp->tcp_rack_cur_max = cur_max; 14277 } else if (TCP_IS_DETACHED(tcp)) { 14278 /* We don't have an ACK timer for detached TCP. */ 14279 flags |= TH_ACK_NEEDED; 14280 } else if (seg_len < mss) { 14281 /* 14282 * If we get a segment that is less than an mss, and we 14283 * already have unacknowledged data, and the amount 14284 * unacknowledged is not a multiple of mss, then we 14285 * better generate an ACK now. Otherwise, this may be 14286 * the tail piece of a transaction, and we would rather 14287 * wait for the response. 14288 */ 14289 uint32_t udif; 14290 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14291 (uintptr_t)INT_MAX); 14292 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14293 if (udif && (udif % mss)) 14294 flags |= TH_ACK_NEEDED; 14295 else 14296 flags |= TH_ACK_TIMER_NEEDED; 14297 } else { 14298 /* Start delayed ack timer */ 14299 flags |= TH_ACK_TIMER_NEEDED; 14300 } 14301 } 14302 tcp->tcp_rnxt += seg_len; 14303 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14304 14305 /* Update SACK list */ 14306 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14307 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14308 &(tcp->tcp_num_sack_blk)); 14309 } 14310 14311 if (tcp->tcp_urp_mp) { 14312 tcp->tcp_urp_mp->b_cont = mp; 14313 mp = tcp->tcp_urp_mp; 14314 tcp->tcp_urp_mp = NULL; 14315 /* Ready for a new signal. */ 14316 tcp->tcp_urp_last_valid = B_FALSE; 14317 #ifdef DEBUG 14318 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14319 "tcp_rput: sending exdata_ind %s", 14320 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14321 #endif /* DEBUG */ 14322 } 14323 14324 /* 14325 * Check for ancillary data changes compared to last segment. 14326 */ 14327 if (tcp->tcp_ipv6_recvancillary != 0) { 14328 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14329 if (mp == NULL) 14330 return; 14331 } 14332 14333 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14334 /* 14335 * Side queue inbound data until the accept happens. 14336 * tcp_accept/tcp_rput drains this when the accept happens. 14337 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14338 * T_EXDATA_IND) it is queued on b_next. 14339 * XXX Make urgent data use this. Requires: 14340 * Removing tcp_listener check for TH_URG 14341 * Making M_PCPROTO and MARK messages skip the eager case 14342 */ 14343 14344 if (tcp->tcp_kssl_pending) { 14345 tcp_kssl_input(tcp, mp); 14346 } else { 14347 tcp_rcv_enqueue(tcp, mp, seg_len); 14348 } 14349 } else { 14350 if (mp->b_datap->db_type != M_DATA || 14351 (flags & TH_MARKNEXT_NEEDED)) { 14352 if (tcp->tcp_rcv_list != NULL) { 14353 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14354 } 14355 ASSERT(tcp->tcp_rcv_list == NULL || 14356 tcp->tcp_fused_sigurg); 14357 if (flags & TH_MARKNEXT_NEEDED) { 14358 #ifdef DEBUG 14359 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14360 "tcp_rput: sending MSGMARKNEXT %s", 14361 tcp_display(tcp, NULL, 14362 DISP_PORT_ONLY)); 14363 #endif /* DEBUG */ 14364 mp->b_flag |= MSGMARKNEXT; 14365 flags &= ~TH_MARKNEXT_NEEDED; 14366 } 14367 14368 /* Does this need SSL processing first? */ 14369 if ((tcp->tcp_kssl_ctx != NULL) && 14370 (DB_TYPE(mp) == M_DATA)) { 14371 tcp_kssl_input(tcp, mp); 14372 } else { 14373 putnext(tcp->tcp_rq, mp); 14374 if (!canputnext(tcp->tcp_rq)) 14375 tcp->tcp_rwnd -= seg_len; 14376 } 14377 } else if (((flags & (TH_PUSH|TH_FIN)) || 14378 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) && 14379 (sqp != NULL)) { 14380 if (tcp->tcp_rcv_list != NULL) { 14381 /* 14382 * Enqueue the new segment first and then 14383 * call tcp_rcv_drain() to send all data 14384 * up. The other way to do this is to 14385 * send all queued data up and then call 14386 * putnext() to send the new segment up. 14387 * This way can remove the else part later 14388 * on. 14389 * 14390 * We don't this to avoid one more call to 14391 * canputnext() as tcp_rcv_drain() needs to 14392 * call canputnext(). 14393 */ 14394 tcp_rcv_enqueue(tcp, mp, seg_len); 14395 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14396 } else { 14397 /* Does this need SSL processing first? */ 14398 if ((tcp->tcp_kssl_ctx != NULL) && 14399 (DB_TYPE(mp) == M_DATA)) { 14400 tcp_kssl_input(tcp, mp); 14401 } else { 14402 putnext(tcp->tcp_rq, mp); 14403 if (!canputnext(tcp->tcp_rq)) 14404 tcp->tcp_rwnd -= seg_len; 14405 } 14406 } 14407 } else { 14408 /* 14409 * Enqueue all packets when processing an mblk 14410 * from the co queue and also enqueue normal packets. 14411 */ 14412 tcp_rcv_enqueue(tcp, mp, seg_len); 14413 } 14414 /* 14415 * Make sure the timer is running if we have data waiting 14416 * for a push bit. This provides resiliency against 14417 * implementations that do not correctly generate push bits. 14418 */ 14419 if ((sqp != NULL) && tcp->tcp_rcv_list != NULL && 14420 tcp->tcp_push_tid == 0) { 14421 /* 14422 * The connection may be closed at this point, so don't 14423 * do anything for a detached tcp. 14424 */ 14425 if (!TCP_IS_DETACHED(tcp)) 14426 tcp->tcp_push_tid = TCP_TIMER(tcp, 14427 tcp_push_timer, 14428 MSEC_TO_TICK(tcp_push_timer_interval)); 14429 } 14430 } 14431 xmit_check: 14432 /* Is there anything left to do? */ 14433 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14434 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14435 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14436 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14437 goto done; 14438 14439 /* Any transmit work to do and a non-zero window? */ 14440 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14441 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14442 if (flags & TH_REXMIT_NEEDED) { 14443 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14444 14445 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14446 if (snd_size > mss) 14447 snd_size = mss; 14448 if (snd_size > tcp->tcp_swnd) 14449 snd_size = tcp->tcp_swnd; 14450 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14451 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14452 B_TRUE); 14453 14454 if (mp1 != NULL) { 14455 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14456 tcp->tcp_csuna = tcp->tcp_snxt; 14457 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14458 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14459 TCP_RECORD_TRACE(tcp, mp1, 14460 TCP_TRACE_SEND_PKT); 14461 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14462 } 14463 } 14464 if (flags & TH_NEED_SACK_REXMIT) { 14465 tcp_sack_rxmit(tcp, &flags); 14466 } 14467 /* 14468 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14469 * out new segment. Note that tcp_rexmit should not be 14470 * set, otherwise TH_LIMIT_XMIT should not be set. 14471 */ 14472 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14473 if (!tcp->tcp_rexmit) { 14474 tcp_wput_data(tcp, NULL, B_FALSE); 14475 } else { 14476 tcp_ss_rexmit(tcp); 14477 } 14478 } 14479 /* 14480 * Adjust tcp_cwnd back to normal value after sending 14481 * new data segments. 14482 */ 14483 if (flags & TH_LIMIT_XMIT) { 14484 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14485 /* 14486 * This will restart the timer. Restarting the 14487 * timer is used to avoid a timeout before the 14488 * limited transmitted segment's ACK gets back. 14489 */ 14490 if (tcp->tcp_xmit_head != NULL) 14491 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14492 } 14493 14494 /* Anything more to do? */ 14495 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14496 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14497 goto done; 14498 } 14499 ack_check: 14500 if (flags & TH_SEND_URP_MARK) { 14501 ASSERT(tcp->tcp_urp_mark_mp); 14502 /* 14503 * Send up any queued data and then send the mark message 14504 */ 14505 if (tcp->tcp_rcv_list != NULL) { 14506 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14507 } 14508 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14509 14510 mp1 = tcp->tcp_urp_mark_mp; 14511 tcp->tcp_urp_mark_mp = NULL; 14512 #ifdef DEBUG 14513 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14514 "tcp_rput: sending zero-length %s %s", 14515 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14516 "MSGNOTMARKNEXT"), 14517 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14518 #endif /* DEBUG */ 14519 putnext(tcp->tcp_rq, mp1); 14520 flags &= ~TH_SEND_URP_MARK; 14521 } 14522 if (flags & TH_ACK_NEEDED) { 14523 /* 14524 * Time to send an ack for some reason. 14525 */ 14526 mp1 = tcp_ack_mp(tcp); 14527 14528 if (mp1 != NULL) { 14529 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14530 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14531 BUMP_LOCAL(tcp->tcp_obsegs); 14532 BUMP_MIB(&tcp_mib, tcpOutAck); 14533 } 14534 if (tcp->tcp_ack_tid != 0) { 14535 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14536 tcp->tcp_ack_tid = 0; 14537 } 14538 } 14539 if (flags & TH_ACK_TIMER_NEEDED) { 14540 /* 14541 * Arrange for deferred ACK or push wait timeout. 14542 * Start timer if it is not already running. 14543 */ 14544 if (tcp->tcp_ack_tid == 0) { 14545 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 14546 MSEC_TO_TICK(tcp->tcp_localnet ? 14547 (clock_t)tcp_local_dack_interval : 14548 (clock_t)tcp_deferred_ack_interval)); 14549 } 14550 } 14551 if (flags & TH_ORDREL_NEEDED) { 14552 /* 14553 * Send up the ordrel_ind unless we are an eager guy. 14554 * In the eager case tcp_rsrv will do this when run 14555 * after tcp_accept is done. 14556 */ 14557 ASSERT(tcp->tcp_listener == NULL); 14558 if (tcp->tcp_rcv_list != NULL) { 14559 /* 14560 * Push any mblk(s) enqueued from co processing. 14561 */ 14562 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14563 } 14564 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14565 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 14566 tcp->tcp_ordrel_done = B_TRUE; 14567 putnext(tcp->tcp_rq, mp1); 14568 if (tcp->tcp_deferred_clean_death) { 14569 /* 14570 * tcp_clean_death was deferred 14571 * for T_ORDREL_IND - do it now 14572 */ 14573 (void) tcp_clean_death(tcp, 14574 tcp->tcp_client_errno, 20); 14575 tcp->tcp_deferred_clean_death = B_FALSE; 14576 } 14577 } else { 14578 /* 14579 * Run the orderly release in the 14580 * service routine. 14581 */ 14582 qenable(tcp->tcp_rq); 14583 /* 14584 * Caveat(XXX): The machine may be so 14585 * overloaded that tcp_rsrv() is not scheduled 14586 * until after the endpoint has transitioned 14587 * to TCPS_TIME_WAIT 14588 * and tcp_time_wait_interval expires. Then 14589 * tcp_timer() will blow away state in tcp_t 14590 * and T_ORDREL_IND will never be delivered 14591 * upstream. Unlikely but potentially 14592 * a problem. 14593 */ 14594 } 14595 } 14596 done: 14597 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14598 } 14599 14600 /* 14601 * This function does PAWS protection check. Returns B_TRUE if the 14602 * segment passes the PAWS test, else returns B_FALSE. 14603 */ 14604 boolean_t 14605 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 14606 { 14607 uint8_t flags; 14608 int options; 14609 uint8_t *up; 14610 14611 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 14612 /* 14613 * If timestamp option is aligned nicely, get values inline, 14614 * otherwise call general routine to parse. Only do that 14615 * if timestamp is the only option. 14616 */ 14617 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 14618 TCPOPT_REAL_TS_LEN && 14619 OK_32PTR((up = ((uint8_t *)tcph) + 14620 TCP_MIN_HEADER_LENGTH)) && 14621 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 14622 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 14623 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 14624 14625 options = TCP_OPT_TSTAMP_PRESENT; 14626 } else { 14627 if (tcp->tcp_snd_sack_ok) { 14628 tcpoptp->tcp = tcp; 14629 } else { 14630 tcpoptp->tcp = NULL; 14631 } 14632 options = tcp_parse_options(tcph, tcpoptp); 14633 } 14634 14635 if (options & TCP_OPT_TSTAMP_PRESENT) { 14636 /* 14637 * Do PAWS per RFC 1323 section 4.2. Accept RST 14638 * regardless of the timestamp, page 18 RFC 1323.bis. 14639 */ 14640 if ((flags & TH_RST) == 0 && 14641 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 14642 tcp->tcp_ts_recent)) { 14643 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 14644 PAWS_TIMEOUT)) { 14645 /* This segment is not acceptable. */ 14646 return (B_FALSE); 14647 } else { 14648 /* 14649 * Connection has been idle for 14650 * too long. Reset the timestamp 14651 * and assume the segment is valid. 14652 */ 14653 tcp->tcp_ts_recent = 14654 tcpoptp->tcp_opt_ts_val; 14655 } 14656 } 14657 } else { 14658 /* 14659 * If we don't get a timestamp on every packet, we 14660 * figure we can't really trust 'em, so we stop sending 14661 * and parsing them. 14662 */ 14663 tcp->tcp_snd_ts_ok = B_FALSE; 14664 14665 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14666 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 14667 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 14668 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 14669 if (tcp->tcp_snd_sack_ok) { 14670 ASSERT(tcp->tcp_sack_info != NULL); 14671 tcp->tcp_max_sack_blk = 4; 14672 } 14673 } 14674 return (B_TRUE); 14675 } 14676 14677 /* 14678 * Attach ancillary data to a received TCP segments for the 14679 * ancillary pieces requested by the application that are 14680 * different than they were in the previous data segment. 14681 * 14682 * Save the "current" values once memory allocation is ok so that 14683 * when memory allocation fails we can just wait for the next data segment. 14684 */ 14685 static mblk_t * 14686 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 14687 { 14688 struct T_optdata_ind *todi; 14689 int optlen; 14690 uchar_t *optptr; 14691 struct T_opthdr *toh; 14692 uint_t addflag; /* Which pieces to add */ 14693 mblk_t *mp1; 14694 14695 optlen = 0; 14696 addflag = 0; 14697 /* If app asked for pktinfo and the index has changed ... */ 14698 if ((ipp->ipp_fields & IPPF_IFINDEX) && 14699 ipp->ipp_ifindex != tcp->tcp_recvifindex && 14700 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 14701 optlen += sizeof (struct T_opthdr) + 14702 sizeof (struct in6_pktinfo); 14703 addflag |= TCP_IPV6_RECVPKTINFO; 14704 } 14705 /* If app asked for hoplimit and it has changed ... */ 14706 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 14707 ipp->ipp_hoplimit != tcp->tcp_recvhops && 14708 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 14709 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14710 addflag |= TCP_IPV6_RECVHOPLIMIT; 14711 } 14712 /* If app asked for tclass and it has changed ... */ 14713 if ((ipp->ipp_fields & IPPF_TCLASS) && 14714 ipp->ipp_tclass != tcp->tcp_recvtclass && 14715 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 14716 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 14717 addflag |= TCP_IPV6_RECVTCLASS; 14718 } 14719 /* If app asked for hopbyhop headers and it has changed ... */ 14720 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 14721 tcp_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 14722 (ipp->ipp_fields & IPPF_HOPOPTS), 14723 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 14724 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen; 14725 addflag |= TCP_IPV6_RECVHOPOPTS; 14726 if (!tcp_allocbuf((void **)&tcp->tcp_hopopts, 14727 &tcp->tcp_hopoptslen, 14728 (ipp->ipp_fields & IPPF_HOPOPTS), 14729 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 14730 return (mp); 14731 } 14732 /* If app asked for dst headers before routing headers ... */ 14733 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 14734 tcp_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 14735 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14736 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 14737 optlen += sizeof (struct T_opthdr) + 14738 ipp->ipp_rtdstoptslen; 14739 addflag |= TCP_IPV6_RECVRTDSTOPTS; 14740 if (!tcp_allocbuf((void **)&tcp->tcp_rtdstopts, 14741 &tcp->tcp_rtdstoptslen, 14742 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14743 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 14744 return (mp); 14745 } 14746 /* If app asked for routing headers and it has changed ... */ 14747 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 14748 tcp_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 14749 (ipp->ipp_fields & IPPF_RTHDR), 14750 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 14751 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 14752 addflag |= TCP_IPV6_RECVRTHDR; 14753 if (!tcp_allocbuf((void **)&tcp->tcp_rthdr, 14754 &tcp->tcp_rthdrlen, 14755 (ipp->ipp_fields & IPPF_RTHDR), 14756 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 14757 return (mp); 14758 } 14759 /* If app asked for dest headers and it has changed ... */ 14760 if ((tcp->tcp_ipv6_recvancillary & 14761 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 14762 tcp_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 14763 (ipp->ipp_fields & IPPF_DSTOPTS), 14764 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 14765 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 14766 addflag |= TCP_IPV6_RECVDSTOPTS; 14767 if (!tcp_allocbuf((void **)&tcp->tcp_dstopts, 14768 &tcp->tcp_dstoptslen, 14769 (ipp->ipp_fields & IPPF_DSTOPTS), 14770 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 14771 return (mp); 14772 } 14773 14774 if (optlen == 0) { 14775 /* Nothing to add */ 14776 return (mp); 14777 } 14778 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 14779 if (mp1 == NULL) { 14780 /* 14781 * Defer sending ancillary data until the next TCP segment 14782 * arrives. 14783 */ 14784 return (mp); 14785 } 14786 mp1->b_cont = mp; 14787 mp = mp1; 14788 mp->b_wptr += sizeof (*todi) + optlen; 14789 mp->b_datap->db_type = M_PROTO; 14790 todi = (struct T_optdata_ind *)mp->b_rptr; 14791 todi->PRIM_type = T_OPTDATA_IND; 14792 todi->DATA_flag = 1; /* MORE data */ 14793 todi->OPT_length = optlen; 14794 todi->OPT_offset = sizeof (*todi); 14795 optptr = (uchar_t *)&todi[1]; 14796 /* 14797 * If app asked for pktinfo and the index has changed ... 14798 * Note that the local address never changes for the connection. 14799 */ 14800 if (addflag & TCP_IPV6_RECVPKTINFO) { 14801 struct in6_pktinfo *pkti; 14802 14803 toh = (struct T_opthdr *)optptr; 14804 toh->level = IPPROTO_IPV6; 14805 toh->name = IPV6_PKTINFO; 14806 toh->len = sizeof (*toh) + sizeof (*pkti); 14807 toh->status = 0; 14808 optptr += sizeof (*toh); 14809 pkti = (struct in6_pktinfo *)optptr; 14810 if (tcp->tcp_ipversion == IPV6_VERSION) 14811 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 14812 else 14813 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 14814 &pkti->ipi6_addr); 14815 pkti->ipi6_ifindex = ipp->ipp_ifindex; 14816 optptr += sizeof (*pkti); 14817 ASSERT(OK_32PTR(optptr)); 14818 /* Save as "last" value */ 14819 tcp->tcp_recvifindex = ipp->ipp_ifindex; 14820 } 14821 /* If app asked for hoplimit and it has changed ... */ 14822 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 14823 toh = (struct T_opthdr *)optptr; 14824 toh->level = IPPROTO_IPV6; 14825 toh->name = IPV6_HOPLIMIT; 14826 toh->len = sizeof (*toh) + sizeof (uint_t); 14827 toh->status = 0; 14828 optptr += sizeof (*toh); 14829 *(uint_t *)optptr = ipp->ipp_hoplimit; 14830 optptr += sizeof (uint_t); 14831 ASSERT(OK_32PTR(optptr)); 14832 /* Save as "last" value */ 14833 tcp->tcp_recvhops = ipp->ipp_hoplimit; 14834 } 14835 /* If app asked for tclass and it has changed ... */ 14836 if (addflag & TCP_IPV6_RECVTCLASS) { 14837 toh = (struct T_opthdr *)optptr; 14838 toh->level = IPPROTO_IPV6; 14839 toh->name = IPV6_TCLASS; 14840 toh->len = sizeof (*toh) + sizeof (uint_t); 14841 toh->status = 0; 14842 optptr += sizeof (*toh); 14843 *(uint_t *)optptr = ipp->ipp_tclass; 14844 optptr += sizeof (uint_t); 14845 ASSERT(OK_32PTR(optptr)); 14846 /* Save as "last" value */ 14847 tcp->tcp_recvtclass = ipp->ipp_tclass; 14848 } 14849 if (addflag & TCP_IPV6_RECVHOPOPTS) { 14850 toh = (struct T_opthdr *)optptr; 14851 toh->level = IPPROTO_IPV6; 14852 toh->name = IPV6_HOPOPTS; 14853 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen; 14854 toh->status = 0; 14855 optptr += sizeof (*toh); 14856 bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen); 14857 optptr += ipp->ipp_hopoptslen; 14858 ASSERT(OK_32PTR(optptr)); 14859 /* Save as last value */ 14860 tcp_savebuf((void **)&tcp->tcp_hopopts, 14861 &tcp->tcp_hopoptslen, 14862 (ipp->ipp_fields & IPPF_HOPOPTS), 14863 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 14864 } 14865 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 14866 toh = (struct T_opthdr *)optptr; 14867 toh->level = IPPROTO_IPV6; 14868 toh->name = IPV6_RTHDRDSTOPTS; 14869 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 14870 toh->status = 0; 14871 optptr += sizeof (*toh); 14872 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 14873 optptr += ipp->ipp_rtdstoptslen; 14874 ASSERT(OK_32PTR(optptr)); 14875 /* Save as last value */ 14876 tcp_savebuf((void **)&tcp->tcp_rtdstopts, 14877 &tcp->tcp_rtdstoptslen, 14878 (ipp->ipp_fields & IPPF_RTDSTOPTS), 14879 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 14880 } 14881 if (addflag & TCP_IPV6_RECVRTHDR) { 14882 toh = (struct T_opthdr *)optptr; 14883 toh->level = IPPROTO_IPV6; 14884 toh->name = IPV6_RTHDR; 14885 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 14886 toh->status = 0; 14887 optptr += sizeof (*toh); 14888 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 14889 optptr += ipp->ipp_rthdrlen; 14890 ASSERT(OK_32PTR(optptr)); 14891 /* Save as last value */ 14892 tcp_savebuf((void **)&tcp->tcp_rthdr, 14893 &tcp->tcp_rthdrlen, 14894 (ipp->ipp_fields & IPPF_RTHDR), 14895 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 14896 } 14897 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 14898 toh = (struct T_opthdr *)optptr; 14899 toh->level = IPPROTO_IPV6; 14900 toh->name = IPV6_DSTOPTS; 14901 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 14902 toh->status = 0; 14903 optptr += sizeof (*toh); 14904 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 14905 optptr += ipp->ipp_dstoptslen; 14906 ASSERT(OK_32PTR(optptr)); 14907 /* Save as last value */ 14908 tcp_savebuf((void **)&tcp->tcp_dstopts, 14909 &tcp->tcp_dstoptslen, 14910 (ipp->ipp_fields & IPPF_DSTOPTS), 14911 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 14912 } 14913 ASSERT(optptr == mp->b_wptr); 14914 return (mp); 14915 } 14916 14917 14918 /* 14919 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 14920 * or a "bad" IRE detected by tcp_adapt_ire. 14921 * We can't tell if the failure was due to the laddr or the faddr 14922 * thus we clear out all addresses and ports. 14923 */ 14924 static void 14925 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 14926 { 14927 queue_t *q = tcp->tcp_rq; 14928 tcph_t *tcph; 14929 struct T_error_ack *tea; 14930 conn_t *connp = tcp->tcp_connp; 14931 14932 14933 ASSERT(mp->b_datap->db_type == M_PCPROTO); 14934 14935 if (mp->b_cont) { 14936 freemsg(mp->b_cont); 14937 mp->b_cont = NULL; 14938 } 14939 tea = (struct T_error_ack *)mp->b_rptr; 14940 switch (tea->PRIM_type) { 14941 case T_BIND_ACK: 14942 /* 14943 * Need to unbind with classifier since we were just told that 14944 * our bind succeeded. 14945 */ 14946 tcp->tcp_hard_bound = B_FALSE; 14947 tcp->tcp_hard_binding = B_FALSE; 14948 14949 ipcl_hash_remove(connp); 14950 /* Reuse the mblk if possible */ 14951 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 14952 sizeof (*tea)); 14953 mp->b_rptr = mp->b_datap->db_base; 14954 mp->b_wptr = mp->b_rptr + sizeof (*tea); 14955 tea = (struct T_error_ack *)mp->b_rptr; 14956 tea->PRIM_type = T_ERROR_ACK; 14957 tea->TLI_error = TSYSERR; 14958 tea->UNIX_error = error; 14959 if (tcp->tcp_state >= TCPS_SYN_SENT) { 14960 tea->ERROR_prim = T_CONN_REQ; 14961 } else { 14962 tea->ERROR_prim = O_T_BIND_REQ; 14963 } 14964 break; 14965 14966 case T_ERROR_ACK: 14967 if (tcp->tcp_state >= TCPS_SYN_SENT) 14968 tea->ERROR_prim = T_CONN_REQ; 14969 break; 14970 default: 14971 panic("tcp_bind_failed: unexpected TPI type"); 14972 /*NOTREACHED*/ 14973 } 14974 14975 tcp->tcp_state = TCPS_IDLE; 14976 if (tcp->tcp_ipversion == IPV4_VERSION) 14977 tcp->tcp_ipha->ipha_src = 0; 14978 else 14979 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 14980 /* 14981 * Copy of the src addr. in tcp_t is needed since 14982 * the lookup funcs. can only look at tcp_t 14983 */ 14984 V6_SET_ZERO(tcp->tcp_ip_src_v6); 14985 14986 tcph = tcp->tcp_tcph; 14987 tcph->th_lport[0] = 0; 14988 tcph->th_lport[1] = 0; 14989 tcp_bind_hash_remove(tcp); 14990 bzero(&connp->u_port, sizeof (connp->u_port)); 14991 /* blow away saved option results if any */ 14992 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 14993 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 14994 14995 conn_delete_ire(tcp->tcp_connp, NULL); 14996 putnext(q, mp); 14997 } 14998 14999 /* 15000 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15001 * messages. 15002 */ 15003 void 15004 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15005 { 15006 mblk_t *mp1; 15007 uchar_t *rptr = mp->b_rptr; 15008 queue_t *q = tcp->tcp_rq; 15009 struct T_error_ack *tea; 15010 uint32_t mss; 15011 mblk_t *syn_mp; 15012 mblk_t *mdti; 15013 int retval; 15014 mblk_t *ire_mp; 15015 15016 switch (mp->b_datap->db_type) { 15017 case M_PROTO: 15018 case M_PCPROTO: 15019 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15020 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15021 break; 15022 tea = (struct T_error_ack *)rptr; 15023 switch (tea->PRIM_type) { 15024 case T_BIND_ACK: 15025 /* 15026 * Adapt Multidata information, if any. The 15027 * following tcp_mdt_update routine will free 15028 * the message. 15029 */ 15030 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15031 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15032 b_rptr)->mdt_capab, B_TRUE); 15033 freemsg(mdti); 15034 } 15035 15036 /* Get the IRE, if we had requested for it */ 15037 ire_mp = tcp_ire_mp(mp); 15038 15039 if (tcp->tcp_hard_binding) { 15040 tcp->tcp_hard_binding = B_FALSE; 15041 tcp->tcp_hard_bound = B_TRUE; 15042 CL_INET_CONNECT(tcp); 15043 } else { 15044 if (ire_mp != NULL) 15045 freeb(ire_mp); 15046 goto after_syn_sent; 15047 } 15048 15049 retval = tcp_adapt_ire(tcp, ire_mp); 15050 if (ire_mp != NULL) 15051 freeb(ire_mp); 15052 if (retval == 0) { 15053 tcp_bind_failed(tcp, mp, 15054 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15055 ENETUNREACH : EADDRNOTAVAIL)); 15056 return; 15057 } 15058 /* 15059 * Don't let an endpoint connect to itself. 15060 * Also checked in tcp_connect() but that 15061 * check can't handle the case when the 15062 * local IP address is INADDR_ANY. 15063 */ 15064 if (tcp->tcp_ipversion == IPV4_VERSION) { 15065 if ((tcp->tcp_ipha->ipha_dst == 15066 tcp->tcp_ipha->ipha_src) && 15067 (BE16_EQL(tcp->tcp_tcph->th_lport, 15068 tcp->tcp_tcph->th_fport))) { 15069 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15070 return; 15071 } 15072 } else { 15073 if (IN6_ARE_ADDR_EQUAL( 15074 &tcp->tcp_ip6h->ip6_dst, 15075 &tcp->tcp_ip6h->ip6_src) && 15076 (BE16_EQL(tcp->tcp_tcph->th_lport, 15077 tcp->tcp_tcph->th_fport))) { 15078 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15079 return; 15080 } 15081 } 15082 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15083 /* 15084 * This should not be possible! Just for 15085 * defensive coding... 15086 */ 15087 if (tcp->tcp_state != TCPS_SYN_SENT) 15088 goto after_syn_sent; 15089 15090 ASSERT(q == tcp->tcp_rq); 15091 /* 15092 * tcp_adapt_ire() does not adjust 15093 * for TCP/IP header length. 15094 */ 15095 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15096 15097 /* 15098 * Just make sure our rwnd is at 15099 * least tcp_recv_hiwat_mss * MSS 15100 * large, and round up to the nearest 15101 * MSS. 15102 * 15103 * We do the round up here because 15104 * we need to get the interface 15105 * MTU first before we can do the 15106 * round up. 15107 */ 15108 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15109 tcp_recv_hiwat_minmss * mss); 15110 q->q_hiwat = tcp->tcp_rwnd; 15111 tcp_set_ws_value(tcp); 15112 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15113 tcp->tcp_tcph->th_win); 15114 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15115 tcp->tcp_snd_ws_ok = B_TRUE; 15116 15117 /* 15118 * Set tcp_snd_ts_ok to true 15119 * so that tcp_xmit_mp will 15120 * include the timestamp 15121 * option in the SYN segment. 15122 */ 15123 if (tcp_tstamp_always || 15124 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15125 tcp->tcp_snd_ts_ok = B_TRUE; 15126 } 15127 15128 /* 15129 * tcp_snd_sack_ok can be set in 15130 * tcp_adapt_ire() if the sack metric 15131 * is set. So check it here also. 15132 */ 15133 if (tcp_sack_permitted == 2 || 15134 tcp->tcp_snd_sack_ok) { 15135 if (tcp->tcp_sack_info == NULL) { 15136 tcp->tcp_sack_info = 15137 kmem_cache_alloc(tcp_sack_info_cache, 15138 KM_SLEEP); 15139 } 15140 tcp->tcp_snd_sack_ok = B_TRUE; 15141 } 15142 15143 /* 15144 * Should we use ECN? Note that the current 15145 * default value (SunOS 5.9) of tcp_ecn_permitted 15146 * is 1. The reason for doing this is that there 15147 * are equipments out there that will drop ECN 15148 * enabled IP packets. Setting it to 1 avoids 15149 * compatibility problems. 15150 */ 15151 if (tcp_ecn_permitted == 2) 15152 tcp->tcp_ecn_ok = B_TRUE; 15153 15154 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15155 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15156 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15157 if (syn_mp) { 15158 cred_t *cr; 15159 pid_t pid; 15160 15161 /* 15162 * Obtain the credential from the 15163 * thread calling connect(); the credential 15164 * lives on in the second mblk which 15165 * originated from T_CONN_REQ and is echoed 15166 * with the T_BIND_ACK from ip. If none 15167 * can be found, default to the creator 15168 * of the socket. 15169 */ 15170 if (mp->b_cont == NULL || 15171 (cr = DB_CRED(mp->b_cont)) == NULL) { 15172 cr = tcp->tcp_cred; 15173 pid = tcp->tcp_cpid; 15174 } else { 15175 pid = DB_CPID(mp->b_cont); 15176 } 15177 15178 TCP_RECORD_TRACE(tcp, syn_mp, 15179 TCP_TRACE_SEND_PKT); 15180 mblk_setcred(syn_mp, cr); 15181 DB_CPID(syn_mp) = pid; 15182 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15183 } 15184 after_syn_sent: 15185 /* 15186 * A trailer mblk indicates a waiting client upstream. 15187 * We complete here the processing begun in 15188 * either tcp_bind() or tcp_connect() by passing 15189 * upstream the reply message they supplied. 15190 */ 15191 mp1 = mp; 15192 mp = mp->b_cont; 15193 freeb(mp1); 15194 if (mp) 15195 break; 15196 return; 15197 case T_ERROR_ACK: 15198 if (tcp->tcp_debug) { 15199 (void) strlog(TCP_MOD_ID, 0, 1, 15200 SL_TRACE|SL_ERROR, 15201 "tcp_rput_other: case T_ERROR_ACK, " 15202 "ERROR_prim == %d", 15203 tea->ERROR_prim); 15204 } 15205 switch (tea->ERROR_prim) { 15206 case O_T_BIND_REQ: 15207 case T_BIND_REQ: 15208 tcp_bind_failed(tcp, mp, 15209 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15210 ENETUNREACH : EADDRNOTAVAIL)); 15211 return; 15212 case T_UNBIND_REQ: 15213 tcp->tcp_hard_binding = B_FALSE; 15214 tcp->tcp_hard_bound = B_FALSE; 15215 if (mp->b_cont) { 15216 freemsg(mp->b_cont); 15217 mp->b_cont = NULL; 15218 } 15219 if (tcp->tcp_unbind_pending) 15220 tcp->tcp_unbind_pending = 0; 15221 else { 15222 /* From tcp_ip_unbind() - free */ 15223 freemsg(mp); 15224 return; 15225 } 15226 break; 15227 case T_SVR4_OPTMGMT_REQ: 15228 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15229 /* T_OPTMGMT_REQ generated by TCP */ 15230 printf("T_SVR4_OPTMGMT_REQ failed " 15231 "%d/%d - dropped (cnt %d)\n", 15232 tea->TLI_error, tea->UNIX_error, 15233 tcp->tcp_drop_opt_ack_cnt); 15234 freemsg(mp); 15235 tcp->tcp_drop_opt_ack_cnt--; 15236 return; 15237 } 15238 break; 15239 } 15240 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15241 tcp->tcp_drop_opt_ack_cnt > 0) { 15242 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15243 "- dropped (cnt %d)\n", 15244 tea->TLI_error, tea->UNIX_error, 15245 tcp->tcp_drop_opt_ack_cnt); 15246 freemsg(mp); 15247 tcp->tcp_drop_opt_ack_cnt--; 15248 return; 15249 } 15250 break; 15251 case T_OPTMGMT_ACK: 15252 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15253 /* T_OPTMGMT_REQ generated by TCP */ 15254 freemsg(mp); 15255 tcp->tcp_drop_opt_ack_cnt--; 15256 return; 15257 } 15258 break; 15259 default: 15260 break; 15261 } 15262 break; 15263 case M_CTL: 15264 /* 15265 * ICMP messages. 15266 */ 15267 tcp_icmp_error(tcp, mp); 15268 return; 15269 case M_FLUSH: 15270 if (*rptr & FLUSHR) 15271 flushq(q, FLUSHDATA); 15272 break; 15273 default: 15274 break; 15275 } 15276 /* 15277 * Make sure we set this bit before sending the ACK for 15278 * bind. Otherwise accept could possibly run and free 15279 * this tcp struct. 15280 */ 15281 putnext(q, mp); 15282 } 15283 15284 /* 15285 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15286 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15287 * tcp_rsrv() try again. 15288 */ 15289 static void 15290 tcp_ordrel_kick(void *arg) 15291 { 15292 conn_t *connp = (conn_t *)arg; 15293 tcp_t *tcp = connp->conn_tcp; 15294 15295 tcp->tcp_ordrelid = 0; 15296 tcp->tcp_timeout = B_FALSE; 15297 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15298 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15299 qenable(tcp->tcp_rq); 15300 } 15301 } 15302 15303 /* ARGSUSED */ 15304 static void 15305 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15306 { 15307 conn_t *connp = (conn_t *)arg; 15308 tcp_t *tcp = connp->conn_tcp; 15309 queue_t *q = tcp->tcp_rq; 15310 uint_t thwin; 15311 15312 freeb(mp); 15313 15314 TCP_STAT(tcp_rsrv_calls); 15315 15316 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15317 return; 15318 } 15319 15320 if (tcp->tcp_fused) { 15321 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15322 15323 ASSERT(tcp->tcp_fused); 15324 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15325 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15326 ASSERT(!TCP_IS_DETACHED(tcp)); 15327 ASSERT(tcp->tcp_connp->conn_sqp == 15328 peer_tcp->tcp_connp->conn_sqp); 15329 15330 /* 15331 * Normally we would not get backenabled in synchronous 15332 * streams mode, but in case this happens, we need to stop 15333 * synchronous streams temporarily to prevent a race with 15334 * tcp_fuse_rrw() or tcp_fuse_rinfop(). It is safe to access 15335 * tcp_rcv_list here because those entry points will return 15336 * right away when synchronous streams is stopped. 15337 */ 15338 TCP_FUSE_SYNCSTR_STOP(tcp); 15339 if (tcp->tcp_rcv_list != NULL) 15340 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15341 15342 tcp_clrqfull(peer_tcp); 15343 TCP_FUSE_SYNCSTR_RESUME(tcp); 15344 TCP_STAT(tcp_fusion_backenabled); 15345 return; 15346 } 15347 15348 if (canputnext(q)) { 15349 tcp->tcp_rwnd = q->q_hiwat; 15350 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15351 << tcp->tcp_rcv_ws; 15352 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15353 /* 15354 * Send back a window update immediately if TCP is above 15355 * ESTABLISHED state and the increase of the rcv window 15356 * that the other side knows is at least 1 MSS after flow 15357 * control is lifted. 15358 */ 15359 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15360 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15361 tcp_xmit_ctl(NULL, tcp, 15362 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15363 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15364 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15365 } 15366 } 15367 /* Handle a failure to allocate a T_ORDREL_IND here */ 15368 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15369 ASSERT(tcp->tcp_listener == NULL); 15370 if (tcp->tcp_rcv_list != NULL) { 15371 (void) tcp_rcv_drain(q, tcp); 15372 } 15373 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15374 mp = mi_tpi_ordrel_ind(); 15375 if (mp) { 15376 tcp->tcp_ordrel_done = B_TRUE; 15377 putnext(q, mp); 15378 if (tcp->tcp_deferred_clean_death) { 15379 /* 15380 * tcp_clean_death was deferred for 15381 * T_ORDREL_IND - do it now 15382 */ 15383 tcp->tcp_deferred_clean_death = B_FALSE; 15384 (void) tcp_clean_death(tcp, 15385 tcp->tcp_client_errno, 22); 15386 } 15387 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15388 /* 15389 * If there isn't already a timer running 15390 * start one. Use a 4 second 15391 * timer as a fallback since it can't fail. 15392 */ 15393 tcp->tcp_timeout = B_TRUE; 15394 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15395 MSEC_TO_TICK(4000)); 15396 } 15397 } 15398 } 15399 15400 /* 15401 * The read side service routine is called mostly when we get back-enabled as a 15402 * result of flow control relief. Since we don't actually queue anything in 15403 * TCP, we have no data to send out of here. What we do is clear the receive 15404 * window, and send out a window update. 15405 * This routine is also called to drive an orderly release message upstream 15406 * if the attempt in tcp_rput failed. 15407 */ 15408 static void 15409 tcp_rsrv(queue_t *q) 15410 { 15411 conn_t *connp = Q_TO_CONN(q); 15412 tcp_t *tcp = connp->conn_tcp; 15413 mblk_t *mp; 15414 15415 /* No code does a putq on the read side */ 15416 ASSERT(q->q_first == NULL); 15417 15418 /* Nothing to do for the default queue */ 15419 if (q == tcp_g_q) { 15420 return; 15421 } 15422 15423 mp = allocb(0, BPRI_HI); 15424 if (mp == NULL) { 15425 /* 15426 * We are under memory pressure. Return for now and we 15427 * we will be called again later. 15428 */ 15429 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15430 /* 15431 * If there isn't already a timer running 15432 * start one. Use a 4 second 15433 * timer as a fallback since it can't fail. 15434 */ 15435 tcp->tcp_timeout = B_TRUE; 15436 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15437 MSEC_TO_TICK(4000)); 15438 } 15439 return; 15440 } 15441 CONN_INC_REF(connp); 15442 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15443 SQTAG_TCP_RSRV); 15444 } 15445 15446 /* 15447 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15448 * We do not allow the receive window to shrink. After setting rwnd, 15449 * set the flow control hiwat of the stream. 15450 * 15451 * This function is called in 2 cases: 15452 * 15453 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15454 * connection (passive open) and in tcp_rput_data() for active connect. 15455 * This is called after tcp_mss_set() when the desired MSS value is known. 15456 * This makes sure that our window size is a mutiple of the other side's 15457 * MSS. 15458 * 2) Handling SO_RCVBUF option. 15459 * 15460 * It is ASSUMED that the requested size is a multiple of the current MSS. 15461 * 15462 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15463 * user requests so. 15464 */ 15465 static int 15466 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15467 { 15468 uint32_t mss = tcp->tcp_mss; 15469 uint32_t old_max_rwnd; 15470 uint32_t max_transmittable_rwnd; 15471 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15472 15473 if (tcp->tcp_fused) { 15474 size_t sth_hiwat; 15475 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15476 15477 ASSERT(peer_tcp != NULL); 15478 /* 15479 * Record the stream head's high water mark for 15480 * this endpoint; this is used for flow-control 15481 * purposes in tcp_fuse_output(). 15482 */ 15483 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15484 if (!tcp_detached) 15485 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15486 15487 /* 15488 * In the fusion case, the maxpsz stream head value of 15489 * our peer is set according to its send buffer size 15490 * and our receive buffer size; since the latter may 15491 * have changed we need to update the peer's maxpsz. 15492 */ 15493 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15494 return (rwnd); 15495 } 15496 15497 if (tcp_detached) 15498 old_max_rwnd = tcp->tcp_rwnd; 15499 else 15500 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15501 15502 /* 15503 * Insist on a receive window that is at least 15504 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15505 * funny TCP interactions of Nagle algorithm, SWS avoidance 15506 * and delayed acknowledgement. 15507 */ 15508 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15509 15510 /* 15511 * If window size info has already been exchanged, TCP should not 15512 * shrink the window. Shrinking window is doable if done carefully. 15513 * We may add that support later. But so far there is not a real 15514 * need to do that. 15515 */ 15516 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15517 /* MSS may have changed, do a round up again. */ 15518 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15519 } 15520 15521 /* 15522 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15523 * can be applied even before the window scale option is decided. 15524 */ 15525 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15526 if (rwnd > max_transmittable_rwnd) { 15527 rwnd = max_transmittable_rwnd - 15528 (max_transmittable_rwnd % mss); 15529 if (rwnd < mss) 15530 rwnd = max_transmittable_rwnd; 15531 /* 15532 * If we're over the limit we may have to back down tcp_rwnd. 15533 * The increment below won't work for us. So we set all three 15534 * here and the increment below will have no effect. 15535 */ 15536 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15537 } 15538 if (tcp->tcp_localnet) { 15539 tcp->tcp_rack_abs_max = 15540 MIN(tcp_local_dacks_max, rwnd / mss / 2); 15541 } else { 15542 /* 15543 * For a remote host on a different subnet (through a router), 15544 * we ack every other packet to be conforming to RFC1122. 15545 * tcp_deferred_acks_max is default to 2. 15546 */ 15547 tcp->tcp_rack_abs_max = 15548 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 15549 } 15550 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15551 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15552 else 15553 tcp->tcp_rack_cur_max = 0; 15554 /* 15555 * Increment the current rwnd by the amount the maximum grew (we 15556 * can not overwrite it since we might be in the middle of a 15557 * connection.) 15558 */ 15559 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15560 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15561 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15562 tcp->tcp_cwnd_max = rwnd; 15563 15564 if (tcp_detached) 15565 return (rwnd); 15566 /* 15567 * We set the maximum receive window into rq->q_hiwat. 15568 * This is not actually used for flow control. 15569 */ 15570 tcp->tcp_rq->q_hiwat = rwnd; 15571 /* 15572 * Set the Stream head high water mark. This doesn't have to be 15573 * here, since we are simply using default values, but we would 15574 * prefer to choose these values algorithmically, with a likely 15575 * relationship to rwnd. 15576 */ 15577 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 15578 return (rwnd); 15579 } 15580 15581 /* 15582 * Return SNMP stuff in buffer in mpdata. 15583 */ 15584 int 15585 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15586 { 15587 mblk_t *mpdata; 15588 mblk_t *mp_conn_ctl = NULL; 15589 mblk_t *mp_conn_data; 15590 mblk_t *mp6_conn_ctl = NULL; 15591 mblk_t *mp6_conn_data; 15592 mblk_t *mp_conn_tail = NULL; 15593 mblk_t *mp6_conn_tail = NULL; 15594 struct opthdr *optp; 15595 mib2_tcpConnEntry_t tce; 15596 mib2_tcp6ConnEntry_t tce6; 15597 connf_t *connfp; 15598 conn_t *connp; 15599 int i; 15600 boolean_t ispriv; 15601 zoneid_t zoneid; 15602 15603 if (mpctl == NULL || 15604 (mpdata = mpctl->b_cont) == NULL || 15605 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15606 (mp6_conn_ctl = copymsg(mpctl)) == NULL) { 15607 if (mp_conn_ctl != NULL) 15608 freemsg(mp_conn_ctl); 15609 if (mp6_conn_ctl != NULL) 15610 freemsg(mp6_conn_ctl); 15611 return (0); 15612 } 15613 15614 /* build table of connections -- need count in fixed part */ 15615 mp_conn_data = mp_conn_ctl->b_cont; 15616 mp6_conn_data = mp6_conn_ctl->b_cont; 15617 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 15618 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 15619 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 15620 SET_MIB(tcp_mib.tcpMaxConn, -1); 15621 SET_MIB(tcp_mib.tcpCurrEstab, 0); 15622 15623 ispriv = 15624 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15625 zoneid = Q_TO_CONN(q)->conn_zoneid; 15626 15627 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15628 15629 connfp = &ipcl_globalhash_fanout[i]; 15630 15631 connp = NULL; 15632 15633 while ((connp = 15634 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15635 tcp_t *tcp; 15636 15637 if (connp->conn_zoneid != zoneid) 15638 continue; /* not in this zone */ 15639 15640 tcp = connp->conn_tcp; 15641 UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs); 15642 tcp->tcp_ibsegs = 0; 15643 UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs); 15644 tcp->tcp_obsegs = 0; 15645 15646 tce6.tcp6ConnState = tce.tcpConnState = 15647 tcp_snmp_state(tcp); 15648 if (tce.tcpConnState == MIB2_TCP_established || 15649 tce.tcpConnState == MIB2_TCP_closeWait) 15650 BUMP_MIB(&tcp_mib, tcpCurrEstab); 15651 15652 /* Create a message to report on IPv6 entries */ 15653 if (tcp->tcp_ipversion == IPV6_VERSION) { 15654 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15655 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15656 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15657 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15658 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15659 /* Don't want just anybody seeing these... */ 15660 if (ispriv) { 15661 tce6.tcp6ConnEntryInfo.ce_snxt = 15662 tcp->tcp_snxt; 15663 tce6.tcp6ConnEntryInfo.ce_suna = 15664 tcp->tcp_suna; 15665 tce6.tcp6ConnEntryInfo.ce_rnxt = 15666 tcp->tcp_rnxt; 15667 tce6.tcp6ConnEntryInfo.ce_rack = 15668 tcp->tcp_rack; 15669 } else { 15670 /* 15671 * Netstat, unfortunately, uses this to 15672 * get send/receive queue sizes. How to fix? 15673 * Why not compute the difference only? 15674 */ 15675 tce6.tcp6ConnEntryInfo.ce_snxt = 15676 tcp->tcp_snxt - tcp->tcp_suna; 15677 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15678 tce6.tcp6ConnEntryInfo.ce_rnxt = 15679 tcp->tcp_rnxt - tcp->tcp_rack; 15680 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15681 } 15682 15683 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15684 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15685 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15686 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15687 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15688 (void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail, 15689 (char *)&tce6, sizeof (tce6)); 15690 } 15691 /* 15692 * Create an IPv4 table entry for IPv4 entries and also 15693 * for IPv6 entries which are bound to in6addr_any 15694 * but don't have IPV6_V6ONLY set. 15695 * (i.e. anything an IPv4 peer could connect to) 15696 */ 15697 if (tcp->tcp_ipversion == IPV4_VERSION || 15698 (tcp->tcp_state <= TCPS_LISTEN && 15699 !tcp->tcp_connp->conn_ipv6_v6only && 15700 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 15701 if (tcp->tcp_ipversion == IPV6_VERSION) { 15702 tce.tcpConnRemAddress = INADDR_ANY; 15703 tce.tcpConnLocalAddress = INADDR_ANY; 15704 } else { 15705 tce.tcpConnRemAddress = 15706 tcp->tcp_remote; 15707 tce.tcpConnLocalAddress = 15708 tcp->tcp_ip_src; 15709 } 15710 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 15711 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 15712 /* Don't want just anybody seeing these... */ 15713 if (ispriv) { 15714 tce.tcpConnEntryInfo.ce_snxt = 15715 tcp->tcp_snxt; 15716 tce.tcpConnEntryInfo.ce_suna = 15717 tcp->tcp_suna; 15718 tce.tcpConnEntryInfo.ce_rnxt = 15719 tcp->tcp_rnxt; 15720 tce.tcpConnEntryInfo.ce_rack = 15721 tcp->tcp_rack; 15722 } else { 15723 /* 15724 * Netstat, unfortunately, uses this to 15725 * get send/receive queue sizes. How 15726 * to fix? 15727 * Why not compute the difference only? 15728 */ 15729 tce.tcpConnEntryInfo.ce_snxt = 15730 tcp->tcp_snxt - tcp->tcp_suna; 15731 tce.tcpConnEntryInfo.ce_suna = 0; 15732 tce.tcpConnEntryInfo.ce_rnxt = 15733 tcp->tcp_rnxt - tcp->tcp_rack; 15734 tce.tcpConnEntryInfo.ce_rack = 0; 15735 } 15736 15737 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15738 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15739 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 15740 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 15741 tce.tcpConnEntryInfo.ce_state = 15742 tcp->tcp_state; 15743 (void) snmp_append_data2(mp_conn_data, 15744 &mp_conn_tail, (char *)&tce, sizeof (tce)); 15745 } 15746 } 15747 } 15748 15749 /* fixed length structure for IPv4 and IPv6 counters */ 15750 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 15751 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 15752 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 15753 optp->level = MIB2_TCP; 15754 optp->name = 0; 15755 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 15756 optp->len = msgdsize(mpdata); 15757 qreply(q, mpctl); 15758 15759 /* table of connections... */ 15760 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 15761 sizeof (struct T_optmgmt_ack)]; 15762 optp->level = MIB2_TCP; 15763 optp->name = MIB2_TCP_CONN; 15764 optp->len = msgdsize(mp_conn_data); 15765 qreply(q, mp_conn_ctl); 15766 15767 /* table of IPv6 connections... */ 15768 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 15769 sizeof (struct T_optmgmt_ack)]; 15770 optp->level = MIB2_TCP6; 15771 optp->name = MIB2_TCP6_CONN; 15772 optp->len = msgdsize(mp6_conn_data); 15773 qreply(q, mp6_conn_ctl); 15774 return (1); 15775 } 15776 15777 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 15778 /* ARGSUSED */ 15779 int 15780 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 15781 { 15782 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 15783 15784 switch (level) { 15785 case MIB2_TCP: 15786 switch (name) { 15787 case 13: 15788 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 15789 return (0); 15790 /* TODO: delete entry defined by tce */ 15791 return (1); 15792 default: 15793 return (0); 15794 } 15795 default: 15796 return (1); 15797 } 15798 } 15799 15800 /* Translate TCP state to MIB2 TCP state. */ 15801 static int 15802 tcp_snmp_state(tcp_t *tcp) 15803 { 15804 if (tcp == NULL) 15805 return (0); 15806 15807 switch (tcp->tcp_state) { 15808 case TCPS_CLOSED: 15809 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 15810 case TCPS_BOUND: 15811 return (MIB2_TCP_closed); 15812 case TCPS_LISTEN: 15813 return (MIB2_TCP_listen); 15814 case TCPS_SYN_SENT: 15815 return (MIB2_TCP_synSent); 15816 case TCPS_SYN_RCVD: 15817 return (MIB2_TCP_synReceived); 15818 case TCPS_ESTABLISHED: 15819 return (MIB2_TCP_established); 15820 case TCPS_CLOSE_WAIT: 15821 return (MIB2_TCP_closeWait); 15822 case TCPS_FIN_WAIT_1: 15823 return (MIB2_TCP_finWait1); 15824 case TCPS_CLOSING: 15825 return (MIB2_TCP_closing); 15826 case TCPS_LAST_ACK: 15827 return (MIB2_TCP_lastAck); 15828 case TCPS_FIN_WAIT_2: 15829 return (MIB2_TCP_finWait2); 15830 case TCPS_TIME_WAIT: 15831 return (MIB2_TCP_timeWait); 15832 default: 15833 return (0); 15834 } 15835 } 15836 15837 static char tcp_report_header[] = 15838 "TCP " MI_COL_HDRPAD_STR 15839 "zone dest snxt suna " 15840 "swnd rnxt rack rwnd rto mss w sw rw t " 15841 "recent [lport,fport] state"; 15842 15843 /* 15844 * TCP status report triggered via the Named Dispatch mechanism. 15845 */ 15846 /* ARGSUSED */ 15847 static void 15848 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 15849 cred_t *cr) 15850 { 15851 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 15852 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 15853 char cflag; 15854 in6_addr_t v6dst; 15855 char buf[80]; 15856 uint_t print_len, buf_len; 15857 15858 buf_len = mp->b_datap->db_lim - mp->b_wptr; 15859 if (buf_len <= 0) 15860 return; 15861 15862 if (hashval >= 0) 15863 (void) sprintf(hash, "%03d ", hashval); 15864 else 15865 hash[0] = '\0'; 15866 15867 /* 15868 * Note that we use the remote address in the tcp_b structure. 15869 * This means that it will print out the real destination address, 15870 * not the next hop's address if source routing is used. This 15871 * avoid the confusion on the output because user may not 15872 * know that source routing is used for a connection. 15873 */ 15874 if (tcp->tcp_ipversion == IPV4_VERSION) { 15875 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 15876 } else { 15877 v6dst = tcp->tcp_remote_v6; 15878 } 15879 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 15880 /* 15881 * the ispriv checks are so that normal users cannot determine 15882 * sequence number information using NDD. 15883 */ 15884 15885 if (TCP_IS_DETACHED(tcp)) 15886 cflag = '*'; 15887 else 15888 cflag = ' '; 15889 print_len = snprintf((char *)mp->b_wptr, buf_len, 15890 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 15891 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 15892 hash, 15893 (void *)tcp, 15894 tcp->tcp_connp->conn_zoneid, 15895 addrbuf, 15896 (ispriv) ? tcp->tcp_snxt : 0, 15897 (ispriv) ? tcp->tcp_suna : 0, 15898 tcp->tcp_swnd, 15899 (ispriv) ? tcp->tcp_rnxt : 0, 15900 (ispriv) ? tcp->tcp_rack : 0, 15901 tcp->tcp_rwnd, 15902 tcp->tcp_rto, 15903 tcp->tcp_mss, 15904 tcp->tcp_snd_ws_ok, 15905 tcp->tcp_snd_ws, 15906 tcp->tcp_rcv_ws, 15907 tcp->tcp_snd_ts_ok, 15908 tcp->tcp_ts_recent, 15909 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 15910 if (print_len < buf_len) { 15911 ((mblk_t *)mp)->b_wptr += print_len; 15912 } else { 15913 ((mblk_t *)mp)->b_wptr += buf_len; 15914 } 15915 } 15916 15917 /* 15918 * TCP status report (for listeners only) triggered via the Named Dispatch 15919 * mechanism. 15920 */ 15921 /* ARGSUSED */ 15922 static void 15923 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 15924 { 15925 char addrbuf[INET6_ADDRSTRLEN]; 15926 in6_addr_t v6dst; 15927 uint_t print_len, buf_len; 15928 15929 buf_len = mp->b_datap->db_lim - mp->b_wptr; 15930 if (buf_len <= 0) 15931 return; 15932 15933 if (tcp->tcp_ipversion == IPV4_VERSION) { 15934 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 15935 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 15936 } else { 15937 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 15938 addrbuf, sizeof (addrbuf)); 15939 } 15940 print_len = snprintf((char *)mp->b_wptr, buf_len, 15941 "%03d " 15942 MI_COL_PTRFMT_STR 15943 "%d %s %05u %08u %d/%d/%d%c\n", 15944 hashval, (void *)tcp, 15945 tcp->tcp_connp->conn_zoneid, 15946 addrbuf, 15947 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 15948 tcp->tcp_conn_req_seqnum, 15949 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 15950 tcp->tcp_conn_req_max, 15951 tcp->tcp_syn_defense ? '*' : ' '); 15952 if (print_len < buf_len) { 15953 ((mblk_t *)mp)->b_wptr += print_len; 15954 } else { 15955 ((mblk_t *)mp)->b_wptr += buf_len; 15956 } 15957 } 15958 15959 /* TCP status report triggered via the Named Dispatch mechanism. */ 15960 /* ARGSUSED */ 15961 static int 15962 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 15963 { 15964 tcp_t *tcp; 15965 int i; 15966 conn_t *connp; 15967 connf_t *connfp; 15968 zoneid_t zoneid; 15969 15970 /* 15971 * Because of the ndd constraint, at most we can have 64K buffer 15972 * to put in all TCP info. So to be more efficient, just 15973 * allocate a 64K buffer here, assuming we need that large buffer. 15974 * This may be a problem as any user can read tcp_status. Therefore 15975 * we limit the rate of doing this using tcp_ndd_get_info_interval. 15976 * This should be OK as normal users should not do this too often. 15977 */ 15978 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 15979 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 15980 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 15981 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 15982 return (0); 15983 } 15984 } 15985 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 15986 /* The following may work even if we cannot get a large buf. */ 15987 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 15988 return (0); 15989 } 15990 15991 (void) mi_mpprintf(mp, "%s", tcp_report_header); 15992 15993 zoneid = Q_TO_CONN(q)->conn_zoneid; 15994 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15995 15996 connfp = &ipcl_globalhash_fanout[i]; 15997 15998 connp = NULL; 15999 16000 while ((connp = 16001 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16002 tcp = connp->conn_tcp; 16003 if (zoneid != GLOBAL_ZONEID && 16004 zoneid != connp->conn_zoneid) 16005 continue; 16006 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16007 cr); 16008 } 16009 16010 } 16011 16012 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16013 return (0); 16014 } 16015 16016 /* TCP status report triggered via the Named Dispatch mechanism. */ 16017 /* ARGSUSED */ 16018 static int 16019 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16020 { 16021 tf_t *tbf; 16022 tcp_t *tcp; 16023 int i; 16024 zoneid_t zoneid; 16025 16026 /* Refer to comments in tcp_status_report(). */ 16027 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16028 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16029 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16030 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16031 return (0); 16032 } 16033 } 16034 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16035 /* The following may work even if we cannot get a large buf. */ 16036 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16037 return (0); 16038 } 16039 16040 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16041 16042 zoneid = Q_TO_CONN(q)->conn_zoneid; 16043 16044 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16045 tbf = &tcp_bind_fanout[i]; 16046 mutex_enter(&tbf->tf_lock); 16047 for (tcp = tbf->tf_tcp; tcp != NULL; 16048 tcp = tcp->tcp_bind_hash) { 16049 if (zoneid != GLOBAL_ZONEID && 16050 zoneid != tcp->tcp_connp->conn_zoneid) 16051 continue; 16052 CONN_INC_REF(tcp->tcp_connp); 16053 tcp_report_item(mp->b_cont, tcp, i, 16054 Q_TO_TCP(q), cr); 16055 CONN_DEC_REF(tcp->tcp_connp); 16056 } 16057 mutex_exit(&tbf->tf_lock); 16058 } 16059 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16060 return (0); 16061 } 16062 16063 /* TCP status report triggered via the Named Dispatch mechanism. */ 16064 /* ARGSUSED */ 16065 static int 16066 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16067 { 16068 connf_t *connfp; 16069 conn_t *connp; 16070 tcp_t *tcp; 16071 int i; 16072 zoneid_t zoneid; 16073 16074 /* Refer to comments in tcp_status_report(). */ 16075 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16076 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16077 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16078 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16079 return (0); 16080 } 16081 } 16082 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16083 /* The following may work even if we cannot get a large buf. */ 16084 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16085 return (0); 16086 } 16087 16088 (void) mi_mpprintf(mp, 16089 " TCP " MI_COL_HDRPAD_STR 16090 "zone IP addr port seqnum backlog (q0/q/max)"); 16091 16092 zoneid = Q_TO_CONN(q)->conn_zoneid; 16093 16094 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16095 connfp = &ipcl_bind_fanout[i]; 16096 connp = NULL; 16097 while ((connp = 16098 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16099 tcp = connp->conn_tcp; 16100 if (zoneid != GLOBAL_ZONEID && 16101 zoneid != connp->conn_zoneid) 16102 continue; 16103 tcp_report_listener(mp->b_cont, tcp, i); 16104 } 16105 } 16106 16107 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16108 return (0); 16109 } 16110 16111 /* TCP status report triggered via the Named Dispatch mechanism. */ 16112 /* ARGSUSED */ 16113 static int 16114 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16115 { 16116 connf_t *connfp; 16117 conn_t *connp; 16118 tcp_t *tcp; 16119 int i; 16120 zoneid_t zoneid; 16121 16122 /* Refer to comments in tcp_status_report(). */ 16123 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16124 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16125 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16126 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16127 return (0); 16128 } 16129 } 16130 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16131 /* The following may work even if we cannot get a large buf. */ 16132 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16133 return (0); 16134 } 16135 16136 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16137 ipcl_conn_fanout_size); 16138 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16139 16140 zoneid = Q_TO_CONN(q)->conn_zoneid; 16141 16142 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16143 connfp = &ipcl_conn_fanout[i]; 16144 connp = NULL; 16145 while ((connp = 16146 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16147 tcp = connp->conn_tcp; 16148 if (zoneid != GLOBAL_ZONEID && 16149 zoneid != connp->conn_zoneid) 16150 continue; 16151 tcp_report_item(mp->b_cont, tcp, i, 16152 Q_TO_TCP(q), cr); 16153 } 16154 } 16155 16156 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16157 return (0); 16158 } 16159 16160 /* TCP status report triggered via the Named Dispatch mechanism. */ 16161 /* ARGSUSED */ 16162 static int 16163 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16164 { 16165 tf_t *tf; 16166 tcp_t *tcp; 16167 int i; 16168 zoneid_t zoneid; 16169 16170 /* Refer to comments in tcp_status_report(). */ 16171 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16172 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16173 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16174 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16175 return (0); 16176 } 16177 } 16178 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16179 /* The following may work even if we cannot get a large buf. */ 16180 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16181 return (0); 16182 } 16183 16184 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16185 16186 zoneid = Q_TO_CONN(q)->conn_zoneid; 16187 16188 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16189 tf = &tcp_acceptor_fanout[i]; 16190 mutex_enter(&tf->tf_lock); 16191 for (tcp = tf->tf_tcp; tcp != NULL; 16192 tcp = tcp->tcp_acceptor_hash) { 16193 if (zoneid != GLOBAL_ZONEID && 16194 zoneid != tcp->tcp_connp->conn_zoneid) 16195 continue; 16196 tcp_report_item(mp->b_cont, tcp, i, 16197 Q_TO_TCP(q), cr); 16198 } 16199 mutex_exit(&tf->tf_lock); 16200 } 16201 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16202 return (0); 16203 } 16204 16205 /* 16206 * tcp_timer is the timer service routine. It handles the retransmission, 16207 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16208 * from the state of the tcp instance what kind of action needs to be done 16209 * at the time it is called. 16210 */ 16211 static void 16212 tcp_timer(void *arg) 16213 { 16214 mblk_t *mp; 16215 clock_t first_threshold; 16216 clock_t second_threshold; 16217 clock_t ms; 16218 uint32_t mss; 16219 conn_t *connp = (conn_t *)arg; 16220 tcp_t *tcp = connp->conn_tcp; 16221 16222 tcp->tcp_timer_tid = 0; 16223 16224 if (tcp->tcp_fused) 16225 return; 16226 16227 first_threshold = tcp->tcp_first_timer_threshold; 16228 second_threshold = tcp->tcp_second_timer_threshold; 16229 switch (tcp->tcp_state) { 16230 case TCPS_IDLE: 16231 case TCPS_BOUND: 16232 case TCPS_LISTEN: 16233 return; 16234 case TCPS_SYN_RCVD: { 16235 tcp_t *listener = tcp->tcp_listener; 16236 16237 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16238 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16239 /* it's our first timeout */ 16240 tcp->tcp_syn_rcvd_timeout = 1; 16241 mutex_enter(&listener->tcp_eager_lock); 16242 listener->tcp_syn_rcvd_timeout++; 16243 if (!listener->tcp_syn_defense && 16244 (listener->tcp_syn_rcvd_timeout > 16245 (tcp_conn_req_max_q0 >> 2)) && 16246 (tcp_conn_req_max_q0 > 200)) { 16247 /* We may be under attack. Put on a defense. */ 16248 listener->tcp_syn_defense = B_TRUE; 16249 cmn_err(CE_WARN, "High TCP connect timeout " 16250 "rate! System (port %d) may be under a " 16251 "SYN flood attack!", 16252 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16253 16254 listener->tcp_ip_addr_cache = kmem_zalloc( 16255 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16256 KM_NOSLEEP); 16257 } 16258 mutex_exit(&listener->tcp_eager_lock); 16259 } 16260 } 16261 /* FALLTHRU */ 16262 case TCPS_SYN_SENT: 16263 first_threshold = tcp->tcp_first_ctimer_threshold; 16264 second_threshold = tcp->tcp_second_ctimer_threshold; 16265 break; 16266 case TCPS_ESTABLISHED: 16267 case TCPS_FIN_WAIT_1: 16268 case TCPS_CLOSING: 16269 case TCPS_CLOSE_WAIT: 16270 case TCPS_LAST_ACK: 16271 /* If we have data to rexmit */ 16272 if (tcp->tcp_suna != tcp->tcp_snxt) { 16273 clock_t time_to_wait; 16274 16275 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16276 if (!tcp->tcp_xmit_head) 16277 break; 16278 time_to_wait = lbolt - 16279 (clock_t)tcp->tcp_xmit_head->b_prev; 16280 time_to_wait = tcp->tcp_rto - 16281 TICK_TO_MSEC(time_to_wait); 16282 /* 16283 * If the timer fires too early, 1 clock tick earlier, 16284 * restart the timer. 16285 */ 16286 if (time_to_wait > msec_per_tick) { 16287 TCP_STAT(tcp_timer_fire_early); 16288 TCP_TIMER_RESTART(tcp, time_to_wait); 16289 return; 16290 } 16291 /* 16292 * When we probe zero windows, we force the swnd open. 16293 * If our peer acks with a closed window swnd will be 16294 * set to zero by tcp_rput(). As long as we are 16295 * receiving acks tcp_rput will 16296 * reset 'tcp_ms_we_have_waited' so as not to trip the 16297 * first and second interval actions. NOTE: the timer 16298 * interval is allowed to continue its exponential 16299 * backoff. 16300 */ 16301 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16302 if (tcp->tcp_debug) { 16303 (void) strlog(TCP_MOD_ID, 0, 1, 16304 SL_TRACE, "tcp_timer: zero win"); 16305 } 16306 } else { 16307 /* 16308 * After retransmission, we need to do 16309 * slow start. Set the ssthresh to one 16310 * half of current effective window and 16311 * cwnd to one MSS. Also reset 16312 * tcp_cwnd_cnt. 16313 * 16314 * Note that if tcp_ssthresh is reduced because 16315 * of ECN, do not reduce it again unless it is 16316 * already one window of data away (tcp_cwr 16317 * should then be cleared) or this is a 16318 * timeout for a retransmitted segment. 16319 */ 16320 uint32_t npkt; 16321 16322 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16323 npkt = ((tcp->tcp_timer_backoff ? 16324 tcp->tcp_cwnd_ssthresh : 16325 tcp->tcp_snxt - 16326 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16327 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16328 tcp->tcp_mss; 16329 } 16330 tcp->tcp_cwnd = tcp->tcp_mss; 16331 tcp->tcp_cwnd_cnt = 0; 16332 if (tcp->tcp_ecn_ok) { 16333 tcp->tcp_cwr = B_TRUE; 16334 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16335 tcp->tcp_ecn_cwr_sent = B_FALSE; 16336 } 16337 } 16338 break; 16339 } 16340 /* 16341 * We have something to send yet we cannot send. The 16342 * reason can be: 16343 * 16344 * 1. Zero send window: we need to do zero window probe. 16345 * 2. Zero cwnd: because of ECN, we need to "clock out 16346 * segments. 16347 * 3. SWS avoidance: receiver may have shrunk window, 16348 * reset our knowledge. 16349 * 16350 * Note that condition 2 can happen with either 1 or 16351 * 3. But 1 and 3 are exclusive. 16352 */ 16353 if (tcp->tcp_unsent != 0) { 16354 if (tcp->tcp_cwnd == 0) { 16355 /* 16356 * Set tcp_cwnd to 1 MSS so that a 16357 * new segment can be sent out. We 16358 * are "clocking out" new data when 16359 * the network is really congested. 16360 */ 16361 ASSERT(tcp->tcp_ecn_ok); 16362 tcp->tcp_cwnd = tcp->tcp_mss; 16363 } 16364 if (tcp->tcp_swnd == 0) { 16365 /* Extend window for zero window probe */ 16366 tcp->tcp_swnd++; 16367 tcp->tcp_zero_win_probe = B_TRUE; 16368 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16369 } else { 16370 /* 16371 * Handle timeout from sender SWS avoidance. 16372 * Reset our knowledge of the max send window 16373 * since the receiver might have reduced its 16374 * receive buffer. Avoid setting tcp_max_swnd 16375 * to one since that will essentially disable 16376 * the SWS checks. 16377 * 16378 * Note that since we don't have a SWS 16379 * state variable, if the timeout is set 16380 * for ECN but not for SWS, this 16381 * code will also be executed. This is 16382 * fine as tcp_max_swnd is updated 16383 * constantly and it will not affect 16384 * anything. 16385 */ 16386 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16387 } 16388 tcp_wput_data(tcp, NULL, B_FALSE); 16389 return; 16390 } 16391 /* Is there a FIN that needs to be to re retransmitted? */ 16392 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16393 !tcp->tcp_fin_acked) 16394 break; 16395 /* Nothing to do, return without restarting timer. */ 16396 TCP_STAT(tcp_timer_fire_miss); 16397 return; 16398 case TCPS_FIN_WAIT_2: 16399 /* 16400 * User closed the TCP endpoint and peer ACK'ed our FIN. 16401 * We waited some time for for peer's FIN, but it hasn't 16402 * arrived. We flush the connection now to avoid 16403 * case where the peer has rebooted. 16404 */ 16405 if (TCP_IS_DETACHED(tcp)) { 16406 (void) tcp_clean_death(tcp, 0, 23); 16407 } else { 16408 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16409 } 16410 return; 16411 case TCPS_TIME_WAIT: 16412 (void) tcp_clean_death(tcp, 0, 24); 16413 return; 16414 default: 16415 if (tcp->tcp_debug) { 16416 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16417 "tcp_timer: strange state (%d) %s", 16418 tcp->tcp_state, tcp_display(tcp, NULL, 16419 DISP_PORT_ONLY)); 16420 } 16421 return; 16422 } 16423 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16424 /* 16425 * For zero window probe, we need to send indefinitely, 16426 * unless we have not heard from the other side for some 16427 * time... 16428 */ 16429 if ((tcp->tcp_zero_win_probe == 0) || 16430 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16431 second_threshold)) { 16432 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 16433 /* 16434 * If TCP is in SYN_RCVD state, send back a 16435 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16436 * should be zero in TCPS_SYN_RCVD state. 16437 */ 16438 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16439 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16440 "in SYN_RCVD", 16441 tcp, tcp->tcp_snxt, 16442 tcp->tcp_rnxt, TH_RST | TH_ACK); 16443 } 16444 (void) tcp_clean_death(tcp, 16445 tcp->tcp_client_errno ? 16446 tcp->tcp_client_errno : ETIMEDOUT, 25); 16447 return; 16448 } else { 16449 /* 16450 * Set tcp_ms_we_have_waited to second_threshold 16451 * so that in next timeout, we will do the above 16452 * check (lbolt - tcp_last_recv_time). This is 16453 * also to avoid overflow. 16454 * 16455 * We don't need to decrement tcp_timer_backoff 16456 * to avoid overflow because it will be decremented 16457 * later if new timeout value is greater than 16458 * tcp_rexmit_interval_max. In the case when 16459 * tcp_rexmit_interval_max is greater than 16460 * second_threshold, it means that we will wait 16461 * longer than second_threshold to send the next 16462 * window probe. 16463 */ 16464 tcp->tcp_ms_we_have_waited = second_threshold; 16465 } 16466 } else if (ms > first_threshold) { 16467 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16468 tcp->tcp_xmit_head != NULL) { 16469 tcp->tcp_xmit_head = 16470 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16471 } 16472 /* 16473 * We have been retransmitting for too long... The RTT 16474 * we calculated is probably incorrect. Reinitialize it. 16475 * Need to compensate for 0 tcp_rtt_sa. Reset 16476 * tcp_rtt_update so that we won't accidentally cache a 16477 * bad value. But only do this if this is not a zero 16478 * window probe. 16479 */ 16480 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16481 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16482 (tcp->tcp_rtt_sa >> 5); 16483 tcp->tcp_rtt_sa = 0; 16484 tcp_ip_notify(tcp); 16485 tcp->tcp_rtt_update = 0; 16486 } 16487 } 16488 tcp->tcp_timer_backoff++; 16489 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16490 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16491 tcp_rexmit_interval_min) { 16492 /* 16493 * This means the original RTO is tcp_rexmit_interval_min. 16494 * So we will use tcp_rexmit_interval_min as the RTO value 16495 * and do the backoff. 16496 */ 16497 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 16498 } else { 16499 ms <<= tcp->tcp_timer_backoff; 16500 } 16501 if (ms > tcp_rexmit_interval_max) { 16502 ms = tcp_rexmit_interval_max; 16503 /* 16504 * ms is at max, decrement tcp_timer_backoff to avoid 16505 * overflow. 16506 */ 16507 tcp->tcp_timer_backoff--; 16508 } 16509 tcp->tcp_ms_we_have_waited += ms; 16510 if (tcp->tcp_zero_win_probe == 0) { 16511 tcp->tcp_rto = ms; 16512 } 16513 TCP_TIMER_RESTART(tcp, ms); 16514 /* 16515 * This is after a timeout and tcp_rto is backed off. Set 16516 * tcp_set_timer to 1 so that next time RTO is updated, we will 16517 * restart the timer with a correct value. 16518 */ 16519 tcp->tcp_set_timer = 1; 16520 mss = tcp->tcp_snxt - tcp->tcp_suna; 16521 if (mss > tcp->tcp_mss) 16522 mss = tcp->tcp_mss; 16523 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16524 mss = tcp->tcp_swnd; 16525 16526 if ((mp = tcp->tcp_xmit_head) != NULL) 16527 mp->b_prev = (mblk_t *)lbolt; 16528 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16529 B_TRUE); 16530 16531 /* 16532 * When slow start after retransmission begins, start with 16533 * this seq no. tcp_rexmit_max marks the end of special slow 16534 * start phase. tcp_snd_burst controls how many segments 16535 * can be sent because of an ack. 16536 */ 16537 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16538 tcp->tcp_snd_burst = TCP_CWND_SS; 16539 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16540 (tcp->tcp_unsent == 0)) { 16541 tcp->tcp_rexmit_max = tcp->tcp_fss; 16542 } else { 16543 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16544 } 16545 tcp->tcp_rexmit = B_TRUE; 16546 tcp->tcp_dupack_cnt = 0; 16547 16548 /* 16549 * Remove all rexmit SACK blk to start from fresh. 16550 */ 16551 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16552 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16553 tcp->tcp_num_notsack_blk = 0; 16554 tcp->tcp_cnt_notsack_list = 0; 16555 } 16556 if (mp == NULL) { 16557 return; 16558 } 16559 /* Attach credentials to retransmitted initial SYNs. */ 16560 if (tcp->tcp_state == TCPS_SYN_SENT) { 16561 mblk_setcred(mp, tcp->tcp_cred); 16562 DB_CPID(mp) = tcp->tcp_cpid; 16563 } 16564 16565 tcp->tcp_csuna = tcp->tcp_snxt; 16566 BUMP_MIB(&tcp_mib, tcpRetransSegs); 16567 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 16568 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 16569 tcp_send_data(tcp, tcp->tcp_wq, mp); 16570 16571 } 16572 16573 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16574 static void 16575 tcp_unbind(tcp_t *tcp, mblk_t *mp) 16576 { 16577 conn_t *connp; 16578 16579 switch (tcp->tcp_state) { 16580 case TCPS_BOUND: 16581 case TCPS_LISTEN: 16582 break; 16583 default: 16584 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 16585 return; 16586 } 16587 16588 /* 16589 * Need to clean up all the eagers since after the unbind, segments 16590 * will no longer be delivered to this listener stream. 16591 */ 16592 mutex_enter(&tcp->tcp_eager_lock); 16593 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16594 tcp_eager_cleanup(tcp, 0); 16595 } 16596 mutex_exit(&tcp->tcp_eager_lock); 16597 16598 if (tcp->tcp_ipversion == IPV4_VERSION) { 16599 tcp->tcp_ipha->ipha_src = 0; 16600 } else { 16601 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16602 } 16603 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16604 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16605 tcp_bind_hash_remove(tcp); 16606 tcp->tcp_state = TCPS_IDLE; 16607 tcp->tcp_mdt = B_FALSE; 16608 /* Send M_FLUSH according to TPI */ 16609 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16610 connp = tcp->tcp_connp; 16611 connp->conn_mdt_ok = B_FALSE; 16612 ipcl_hash_remove(connp); 16613 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16614 mp = mi_tpi_ok_ack_alloc(mp); 16615 putnext(tcp->tcp_rq, mp); 16616 } 16617 16618 /* 16619 * Don't let port fall into the privileged range. 16620 * Since the extra privileged ports can be arbitrary we also 16621 * ensure that we exclude those from consideration. 16622 * tcp_g_epriv_ports is not sorted thus we loop over it until 16623 * there are no changes. 16624 * 16625 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16626 * but instead the code relies on: 16627 * - the fact that the address of the array and its size never changes 16628 * - the atomic assignment of the elements of the array 16629 */ 16630 static in_port_t 16631 tcp_update_next_port(in_port_t port, boolean_t random) 16632 { 16633 int i; 16634 16635 if (random && tcp_random_anon_port != 0) { 16636 (void) random_get_pseudo_bytes((uint8_t *)&port, 16637 sizeof (in_port_t)); 16638 /* 16639 * Unless changed by a sys admin, the smallest anon port 16640 * is 32768 and the largest anon port is 65535. It is 16641 * very likely (50%) for the random port to be smaller 16642 * than the smallest anon port. When that happens, 16643 * add port % (anon port range) to the smallest anon 16644 * port to get the random port. It should fall into the 16645 * valid anon port range. 16646 */ 16647 if (port < tcp_smallest_anon_port) { 16648 port = tcp_smallest_anon_port + 16649 port % (tcp_largest_anon_port - 16650 tcp_smallest_anon_port); 16651 } 16652 } 16653 16654 retry: 16655 if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port) 16656 port = (in_port_t)tcp_smallest_anon_port; 16657 16658 if (port < tcp_smallest_nonpriv_port) 16659 port = (in_port_t)tcp_smallest_nonpriv_port; 16660 16661 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 16662 if (port == tcp_g_epriv_ports[i]) { 16663 port++; 16664 /* 16665 * Make sure whether the port is in the 16666 * valid range. 16667 * 16668 * XXX Note that if tcp_g_epriv_ports contains 16669 * all the anonymous ports this will be an 16670 * infinite loop. 16671 */ 16672 goto retry; 16673 } 16674 } 16675 return (port); 16676 } 16677 16678 /* 16679 * Return the next anonymous port in the priviledged port range for 16680 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16681 * downwards. This is the same behavior as documented in the userland 16682 * library call rresvport(3N). 16683 */ 16684 static in_port_t 16685 tcp_get_next_priv_port(void) 16686 { 16687 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16688 16689 if (next_priv_port < tcp_min_anonpriv_port) { 16690 next_priv_port = IPPORT_RESERVED - 1; 16691 } 16692 return (next_priv_port--); 16693 } 16694 16695 /* The write side r/w procedure. */ 16696 16697 #if CCS_STATS 16698 struct { 16699 struct { 16700 int64_t count, bytes; 16701 } tot, hit; 16702 } wrw_stats; 16703 #endif 16704 16705 /* 16706 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16707 * messages. 16708 */ 16709 /* ARGSUSED */ 16710 static void 16711 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16712 { 16713 conn_t *connp = (conn_t *)arg; 16714 tcp_t *tcp = connp->conn_tcp; 16715 queue_t *q = tcp->tcp_wq; 16716 16717 ASSERT(DB_TYPE(mp) != M_IOCTL); 16718 /* 16719 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16720 * Once the close starts, streamhead and sockfs will not let any data 16721 * packets come down (close ensures that there are no threads using the 16722 * queue and no new threads will come down) but since qprocsoff() 16723 * hasn't happened yet, a M_FLUSH or some non data message might 16724 * get reflected back (in response to our own FLUSHRW) and get 16725 * processed after tcp_close() is done. The conn would still be valid 16726 * because a ref would have added but we need to check the state 16727 * before actually processing the packet. 16728 */ 16729 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16730 freemsg(mp); 16731 return; 16732 } 16733 16734 switch (DB_TYPE(mp)) { 16735 case M_IOCDATA: 16736 tcp_wput_iocdata(tcp, mp); 16737 break; 16738 case M_FLUSH: 16739 tcp_wput_flush(tcp, mp); 16740 break; 16741 default: 16742 CALL_IP_WPUT(connp, q, mp); 16743 break; 16744 } 16745 } 16746 16747 /* 16748 * The TCP fast path write put procedure. 16749 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16750 */ 16751 /* ARGSUSED */ 16752 void 16753 tcp_output(void *arg, mblk_t *mp, void *arg2) 16754 { 16755 int len; 16756 int hdrlen; 16757 int plen; 16758 mblk_t *mp1; 16759 uchar_t *rptr; 16760 uint32_t snxt; 16761 tcph_t *tcph; 16762 struct datab *db; 16763 uint32_t suna; 16764 uint32_t mss; 16765 ipaddr_t *dst; 16766 ipaddr_t *src; 16767 uint32_t sum; 16768 int usable; 16769 conn_t *connp = (conn_t *)arg; 16770 tcp_t *tcp = connp->conn_tcp; 16771 uint32_t msize; 16772 16773 /* 16774 * Try and ASSERT the minimum possible references on the 16775 * conn early enough. Since we are executing on write side, 16776 * the connection is obviously not detached and that means 16777 * there is a ref each for TCP and IP. Since we are behind 16778 * the squeue, the minimum references needed are 3. If the 16779 * conn is in classifier hash list, there should be an 16780 * extra ref for that (we check both the possibilities). 16781 */ 16782 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16783 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16784 16785 /* Bypass tcp protocol for fused tcp loopback */ 16786 if (tcp->tcp_fused) { 16787 msize = msgdsize(mp); 16788 mutex_enter(&connp->conn_lock); 16789 tcp->tcp_squeue_bytes -= msize; 16790 mutex_exit(&connp->conn_lock); 16791 16792 if (tcp_fuse_output(tcp, mp, msize)) 16793 return; 16794 } 16795 16796 mss = tcp->tcp_mss; 16797 if (tcp->tcp_xmit_zc_clean) 16798 mp = tcp_zcopy_backoff(tcp, mp, 0); 16799 16800 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16801 len = (int)(mp->b_wptr - mp->b_rptr); 16802 16803 /* 16804 * Criteria for fast path: 16805 * 16806 * 1. no unsent data 16807 * 2. single mblk in request 16808 * 3. connection established 16809 * 4. data in mblk 16810 * 5. len <= mss 16811 * 6. no tcp_valid bits 16812 */ 16813 if ((tcp->tcp_unsent != 0) || 16814 (tcp->tcp_cork) || 16815 (mp->b_cont != NULL) || 16816 (tcp->tcp_state != TCPS_ESTABLISHED) || 16817 (len == 0) || 16818 (len > mss) || 16819 (tcp->tcp_valid_bits != 0)) { 16820 msize = msgdsize(mp); 16821 mutex_enter(&connp->conn_lock); 16822 tcp->tcp_squeue_bytes -= msize; 16823 mutex_exit(&connp->conn_lock); 16824 16825 tcp_wput_data(tcp, mp, B_FALSE); 16826 return; 16827 } 16828 16829 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16830 ASSERT(tcp->tcp_fin_sent == 0); 16831 16832 mutex_enter(&connp->conn_lock); 16833 tcp->tcp_squeue_bytes -= len; 16834 mutex_exit(&connp->conn_lock); 16835 16836 /* queue new packet onto retransmission queue */ 16837 if (tcp->tcp_xmit_head == NULL) { 16838 tcp->tcp_xmit_head = mp; 16839 } else { 16840 tcp->tcp_xmit_last->b_cont = mp; 16841 } 16842 tcp->tcp_xmit_last = mp; 16843 tcp->tcp_xmit_tail = mp; 16844 16845 /* find out how much we can send */ 16846 /* BEGIN CSTYLED */ 16847 /* 16848 * un-acked usable 16849 * |--------------|-----------------| 16850 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16851 */ 16852 /* END CSTYLED */ 16853 16854 /* start sending from tcp_snxt */ 16855 snxt = tcp->tcp_snxt; 16856 16857 /* 16858 * Check to see if this connection has been idled for some 16859 * time and no ACK is expected. If it is, we need to slow 16860 * start again to get back the connection's "self-clock" as 16861 * described in VJ's paper. 16862 * 16863 * Refer to the comment in tcp_mss_set() for the calculation 16864 * of tcp_cwnd after idle. 16865 */ 16866 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16867 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16868 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 16869 } 16870 16871 usable = tcp->tcp_swnd; /* tcp window size */ 16872 if (usable > tcp->tcp_cwnd) 16873 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16874 usable -= snxt; /* subtract stuff already sent */ 16875 suna = tcp->tcp_suna; 16876 usable += suna; 16877 /* usable can be < 0 if the congestion window is smaller */ 16878 if (len > usable) { 16879 /* Can't send complete M_DATA in one shot */ 16880 goto slow; 16881 } 16882 16883 if (tcp->tcp_flow_stopped && 16884 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16885 tcp_clrqfull(tcp); 16886 } 16887 16888 /* 16889 * determine if anything to send (Nagle). 16890 * 16891 * 1. len < tcp_mss (i.e. small) 16892 * 2. unacknowledged data present 16893 * 3. len < nagle limit 16894 * 4. last packet sent < nagle limit (previous packet sent) 16895 */ 16896 if ((len < mss) && (snxt != suna) && 16897 (len < (int)tcp->tcp_naglim) && 16898 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 16899 /* 16900 * This was the first unsent packet and normally 16901 * mss < xmit_hiwater so there is no need to worry 16902 * about flow control. The next packet will go 16903 * through the flow control check in tcp_wput_data(). 16904 */ 16905 /* leftover work from above */ 16906 tcp->tcp_unsent = len; 16907 tcp->tcp_xmit_tail_unsent = len; 16908 16909 return; 16910 } 16911 16912 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 16913 16914 if (snxt == suna) { 16915 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16916 } 16917 16918 /* we have always sent something */ 16919 tcp->tcp_rack_cnt = 0; 16920 16921 tcp->tcp_snxt = snxt + len; 16922 tcp->tcp_rack = tcp->tcp_rnxt; 16923 16924 if ((mp1 = dupb(mp)) == 0) 16925 goto no_memory; 16926 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 16927 mp->b_next = (mblk_t *)(uintptr_t)snxt; 16928 16929 /* adjust tcp header information */ 16930 tcph = tcp->tcp_tcph; 16931 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 16932 16933 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 16934 sum = (sum >> 16) + (sum & 0xFFFF); 16935 U16_TO_ABE16(sum, tcph->th_sum); 16936 16937 U32_TO_ABE32(snxt, tcph->th_seq); 16938 16939 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 16940 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 16941 BUMP_LOCAL(tcp->tcp_obsegs); 16942 16943 /* Update the latest receive window size in TCP header. */ 16944 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 16945 tcph->th_win); 16946 16947 tcp->tcp_last_sent_len = (ushort_t)len; 16948 16949 plen = len + tcp->tcp_hdr_len; 16950 16951 if (tcp->tcp_ipversion == IPV4_VERSION) { 16952 tcp->tcp_ipha->ipha_length = htons(plen); 16953 } else { 16954 tcp->tcp_ip6h->ip6_plen = htons(plen - 16955 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 16956 } 16957 16958 /* see if we need to allocate a mblk for the headers */ 16959 hdrlen = tcp->tcp_hdr_len; 16960 rptr = mp1->b_rptr - hdrlen; 16961 db = mp1->b_datap; 16962 if ((db->db_ref != 2) || rptr < db->db_base || 16963 (!OK_32PTR(rptr))) { 16964 /* NOTE: we assume allocb returns an OK_32PTR */ 16965 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 16966 tcp_wroff_xtra, BPRI_MED); 16967 if (!mp) { 16968 freemsg(mp1); 16969 goto no_memory; 16970 } 16971 mp->b_cont = mp1; 16972 mp1 = mp; 16973 /* Leave room for Link Level header */ 16974 /* hdrlen = tcp->tcp_hdr_len; */ 16975 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 16976 mp1->b_wptr = &rptr[hdrlen]; 16977 } 16978 mp1->b_rptr = rptr; 16979 16980 /* Fill in the timestamp option. */ 16981 if (tcp->tcp_snd_ts_ok) { 16982 U32_TO_BE32((uint32_t)lbolt, 16983 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 16984 U32_TO_BE32(tcp->tcp_ts_recent, 16985 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 16986 } else { 16987 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 16988 } 16989 16990 /* copy header into outgoing packet */ 16991 dst = (ipaddr_t *)rptr; 16992 src = (ipaddr_t *)tcp->tcp_iphc; 16993 dst[0] = src[0]; 16994 dst[1] = src[1]; 16995 dst[2] = src[2]; 16996 dst[3] = src[3]; 16997 dst[4] = src[4]; 16998 dst[5] = src[5]; 16999 dst[6] = src[6]; 17000 dst[7] = src[7]; 17001 dst[8] = src[8]; 17002 dst[9] = src[9]; 17003 if (hdrlen -= 40) { 17004 hdrlen >>= 2; 17005 dst += 10; 17006 src += 10; 17007 do { 17008 *dst++ = *src++; 17009 } while (--hdrlen); 17010 } 17011 17012 /* 17013 * Set the ECN info in the TCP header. Note that this 17014 * is not the template header. 17015 */ 17016 if (tcp->tcp_ecn_ok) { 17017 SET_ECT(tcp, rptr); 17018 17019 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17020 if (tcp->tcp_ecn_echo_on) 17021 tcph->th_flags[0] |= TH_ECE; 17022 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17023 tcph->th_flags[0] |= TH_CWR; 17024 tcp->tcp_ecn_cwr_sent = B_TRUE; 17025 } 17026 } 17027 17028 if (tcp->tcp_ip_forward_progress) { 17029 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17030 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17031 tcp->tcp_ip_forward_progress = B_FALSE; 17032 } 17033 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17034 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17035 return; 17036 17037 /* 17038 * If we ran out of memory, we pretend to have sent the packet 17039 * and that it was lost on the wire. 17040 */ 17041 no_memory: 17042 return; 17043 17044 slow: 17045 /* leftover work from above */ 17046 tcp->tcp_unsent = len; 17047 tcp->tcp_xmit_tail_unsent = len; 17048 tcp_wput_data(tcp, NULL, B_FALSE); 17049 } 17050 17051 /* 17052 * The function called through squeue to get behind eager's perimeter to 17053 * finish the accept processing. 17054 */ 17055 /* ARGSUSED */ 17056 void 17057 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17058 { 17059 conn_t *connp = (conn_t *)arg; 17060 tcp_t *tcp = connp->conn_tcp; 17061 queue_t *q = tcp->tcp_rq; 17062 mblk_t *mp1; 17063 mblk_t *stropt_mp = mp; 17064 struct stroptions *stropt; 17065 uint_t thwin; 17066 17067 /* 17068 * Drop the eager's ref on the listener, that was placed when 17069 * this eager began life in tcp_conn_request. 17070 */ 17071 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17072 17073 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17074 /* 17075 * Someone blewoff the eager before we could finish 17076 * the accept. 17077 * 17078 * The only reason eager exists it because we put in 17079 * a ref on it when conn ind went up. We need to send 17080 * a disconnect indication up while the last reference 17081 * on the eager will be dropped by the squeue when we 17082 * return. 17083 */ 17084 ASSERT(tcp->tcp_listener == NULL); 17085 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17086 struct T_discon_ind *tdi; 17087 17088 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17089 /* 17090 * Let us reuse the incoming mblk to avoid memory 17091 * allocation failure problems. We know that the 17092 * size of the incoming mblk i.e. stroptions is greater 17093 * than sizeof T_discon_ind. So the reallocb below 17094 * can't fail. 17095 */ 17096 freemsg(mp->b_cont); 17097 mp->b_cont = NULL; 17098 ASSERT(DB_REF(mp) == 1); 17099 mp = reallocb(mp, sizeof (struct T_discon_ind), 17100 B_FALSE); 17101 ASSERT(mp != NULL); 17102 DB_TYPE(mp) = M_PROTO; 17103 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17104 tdi = (struct T_discon_ind *)mp->b_rptr; 17105 if (tcp->tcp_issocket) { 17106 tdi->DISCON_reason = ECONNREFUSED; 17107 tdi->SEQ_number = 0; 17108 } else { 17109 tdi->DISCON_reason = ENOPROTOOPT; 17110 tdi->SEQ_number = 17111 tcp->tcp_conn_req_seqnum; 17112 } 17113 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17114 putnext(q, mp); 17115 } else { 17116 freemsg(mp); 17117 } 17118 if (tcp->tcp_hard_binding) { 17119 tcp->tcp_hard_binding = B_FALSE; 17120 tcp->tcp_hard_bound = B_TRUE; 17121 } 17122 tcp->tcp_detached = B_FALSE; 17123 return; 17124 } 17125 17126 mp1 = stropt_mp->b_cont; 17127 stropt_mp->b_cont = NULL; 17128 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17129 stropt = (struct stroptions *)stropt_mp->b_rptr; 17130 17131 while (mp1 != NULL) { 17132 mp = mp1; 17133 mp1 = mp1->b_cont; 17134 mp->b_cont = NULL; 17135 tcp->tcp_drop_opt_ack_cnt++; 17136 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17137 } 17138 mp = NULL; 17139 17140 /* 17141 * For a loopback connection with tcp_direct_sockfs on, note that 17142 * we don't have to protect tcp_rcv_list yet because synchronous 17143 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17144 * possibly race with us. 17145 */ 17146 17147 /* 17148 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17149 * properly. This is the first time we know of the acceptor' 17150 * queue. So we do it here. 17151 */ 17152 if (tcp->tcp_rcv_list == NULL) { 17153 /* 17154 * Recv queue is empty, tcp_rwnd should not have changed. 17155 * That means it should be equal to the listener's tcp_rwnd. 17156 */ 17157 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17158 } else { 17159 #ifdef DEBUG 17160 uint_t cnt = 0; 17161 17162 mp1 = tcp->tcp_rcv_list; 17163 while ((mp = mp1) != NULL) { 17164 mp1 = mp->b_next; 17165 cnt += msgdsize(mp); 17166 } 17167 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17168 #endif 17169 /* There is some data, add them back to get the max. */ 17170 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17171 } 17172 17173 stropt->so_flags = SO_HIWAT; 17174 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17175 17176 stropt->so_flags |= SO_MAXBLK; 17177 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17178 17179 /* 17180 * This is the first time we run on the correct 17181 * queue after tcp_accept. So fix all the q parameters 17182 * here. 17183 */ 17184 /* Allocate room for SACK options if needed. */ 17185 stropt->so_flags |= SO_WROFF; 17186 if (tcp->tcp_fused) { 17187 ASSERT(tcp->tcp_loopback); 17188 ASSERT(tcp->tcp_loopback_peer != NULL); 17189 /* 17190 * For fused tcp loopback, set the stream head's write 17191 * offset value to zero since we won't be needing any room 17192 * for TCP/IP headers. This would also improve performance 17193 * since it would reduce the amount of work done by kmem. 17194 * Non-fused tcp loopback case is handled separately below. 17195 */ 17196 stropt->so_wroff = 0; 17197 /* 17198 * Record the stream head's high water mark for this endpoint; 17199 * this is used for flow-control purposes in tcp_fuse_output(). 17200 */ 17201 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17202 /* 17203 * Update the peer's transmit parameters according to 17204 * our recently calculated high water mark value. 17205 */ 17206 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17207 } else if (tcp->tcp_snd_sack_ok) { 17208 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17209 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17210 } else { 17211 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17212 tcp_wroff_xtra); 17213 } 17214 17215 /* 17216 * If this is endpoint is handling SSL, then reserve extra 17217 * offset and space at the end. 17218 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17219 * overriding the previous setting. The extra cost of signing and 17220 * encrypting multiple MSS-size records (12 of them with Ethernet), 17221 * instead of a single contiguous one by the stream head 17222 * largely outweighs the statistical reduction of ACKs, when 17223 * applicable. The peer will also save on decyption and verification 17224 * costs. 17225 */ 17226 if (tcp->tcp_kssl_ctx != NULL) { 17227 stropt->so_wroff += SSL3_WROFFSET; 17228 17229 stropt->so_flags |= SO_TAIL; 17230 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17231 17232 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17233 } 17234 17235 /* Send the options up */ 17236 putnext(q, stropt_mp); 17237 17238 /* 17239 * Pass up any data and/or a fin that has been received. 17240 * 17241 * Adjust receive window in case it had decreased 17242 * (because there is data <=> tcp_rcv_list != NULL) 17243 * while the connection was detached. Note that 17244 * in case the eager was flow-controlled, w/o this 17245 * code, the rwnd may never open up again! 17246 */ 17247 if (tcp->tcp_rcv_list != NULL) { 17248 /* We drain directly in case of fused tcp loopback */ 17249 if (!tcp->tcp_fused && canputnext(q)) { 17250 tcp->tcp_rwnd = q->q_hiwat; 17251 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17252 << tcp->tcp_rcv_ws; 17253 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17254 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17255 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17256 tcp_xmit_ctl(NULL, 17257 tcp, (tcp->tcp_swnd == 0) ? 17258 tcp->tcp_suna : tcp->tcp_snxt, 17259 tcp->tcp_rnxt, TH_ACK); 17260 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17261 } 17262 17263 } 17264 (void) tcp_rcv_drain(q, tcp); 17265 17266 /* 17267 * For fused tcp loopback, back-enable peer endpoint 17268 * if it's currently flow-controlled. 17269 */ 17270 if (tcp->tcp_fused && 17271 tcp->tcp_loopback_peer->tcp_flow_stopped) { 17272 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17273 17274 ASSERT(peer_tcp != NULL); 17275 ASSERT(peer_tcp->tcp_fused); 17276 17277 tcp_clrqfull(peer_tcp); 17278 TCP_STAT(tcp_fusion_backenabled); 17279 } 17280 } 17281 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17282 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17283 mp = mi_tpi_ordrel_ind(); 17284 if (mp) { 17285 tcp->tcp_ordrel_done = B_TRUE; 17286 putnext(q, mp); 17287 if (tcp->tcp_deferred_clean_death) { 17288 /* 17289 * tcp_clean_death was deferred 17290 * for T_ORDREL_IND - do it now 17291 */ 17292 (void) tcp_clean_death(tcp, 17293 tcp->tcp_client_errno, 21); 17294 tcp->tcp_deferred_clean_death = B_FALSE; 17295 } 17296 } else { 17297 /* 17298 * Run the orderly release in the 17299 * service routine. 17300 */ 17301 qenable(q); 17302 } 17303 } 17304 if (tcp->tcp_hard_binding) { 17305 tcp->tcp_hard_binding = B_FALSE; 17306 tcp->tcp_hard_bound = B_TRUE; 17307 } 17308 17309 tcp->tcp_detached = B_FALSE; 17310 17311 /* We can enable synchronous streams now */ 17312 if (tcp->tcp_fused) { 17313 tcp_fuse_syncstr_enable_pair(tcp); 17314 } 17315 17316 if (tcp->tcp_ka_enabled) { 17317 tcp->tcp_ka_last_intrvl = 0; 17318 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17319 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17320 } 17321 17322 /* 17323 * At this point, eager is fully established and will 17324 * have the following references - 17325 * 17326 * 2 references for connection to exist (1 for TCP and 1 for IP). 17327 * 1 reference for the squeue which will be dropped by the squeue as 17328 * soon as this function returns. 17329 * There will be 1 additonal reference for being in classifier 17330 * hash list provided something bad hasn't happened. 17331 */ 17332 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17333 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17334 } 17335 17336 /* 17337 * The function called through squeue to get behind listener's perimeter to 17338 * send a deffered conn_ind. 17339 */ 17340 /* ARGSUSED */ 17341 void 17342 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17343 { 17344 conn_t *connp = (conn_t *)arg; 17345 tcp_t *listener = connp->conn_tcp; 17346 17347 if (listener->tcp_state == TCPS_CLOSED || 17348 TCP_IS_DETACHED(listener)) { 17349 /* 17350 * If listener has closed, it would have caused a 17351 * a cleanup/blowoff to happen for the eager. 17352 */ 17353 tcp_t *tcp; 17354 struct T_conn_ind *conn_ind; 17355 17356 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17357 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17358 conn_ind->OPT_length); 17359 /* 17360 * We need to drop the ref on eager that was put 17361 * tcp_rput_data() before trying to send the conn_ind 17362 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17363 * and tcp_wput_accept() is sending this deferred conn_ind but 17364 * listener is closed so we drop the ref. 17365 */ 17366 CONN_DEC_REF(tcp->tcp_connp); 17367 freemsg(mp); 17368 return; 17369 } 17370 putnext(listener->tcp_rq, mp); 17371 } 17372 17373 17374 /* 17375 * This is the STREAMS entry point for T_CONN_RES coming down on 17376 * Acceptor STREAM when sockfs listener does accept processing. 17377 * Read the block comment on top pf tcp_conn_request(). 17378 */ 17379 void 17380 tcp_wput_accept(queue_t *q, mblk_t *mp) 17381 { 17382 queue_t *rq = RD(q); 17383 struct T_conn_res *conn_res; 17384 tcp_t *eager; 17385 tcp_t *listener; 17386 struct T_ok_ack *ok; 17387 t_scalar_t PRIM_type; 17388 mblk_t *opt_mp; 17389 conn_t *econnp; 17390 17391 ASSERT(DB_TYPE(mp) == M_PROTO); 17392 17393 conn_res = (struct T_conn_res *)mp->b_rptr; 17394 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17395 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17396 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17397 if (mp != NULL) 17398 putnext(rq, mp); 17399 return; 17400 } 17401 switch (conn_res->PRIM_type) { 17402 case O_T_CONN_RES: 17403 case T_CONN_RES: 17404 /* 17405 * We pass up an err ack if allocb fails. This will 17406 * cause sockfs to issue a T_DISCON_REQ which will cause 17407 * tcp_eager_blowoff to be called. sockfs will then call 17408 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17409 * we need to do the allocb up here because we have to 17410 * make sure rq->q_qinfo->qi_qclose still points to the 17411 * correct function (tcpclose_accept) in case allocb 17412 * fails. 17413 */ 17414 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17415 if (opt_mp == NULL) { 17416 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17417 if (mp != NULL) 17418 putnext(rq, mp); 17419 return; 17420 } 17421 17422 bcopy(mp->b_rptr + conn_res->OPT_offset, 17423 &eager, conn_res->OPT_length); 17424 PRIM_type = conn_res->PRIM_type; 17425 mp->b_datap->db_type = M_PCPROTO; 17426 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17427 ok = (struct T_ok_ack *)mp->b_rptr; 17428 ok->PRIM_type = T_OK_ACK; 17429 ok->CORRECT_prim = PRIM_type; 17430 econnp = eager->tcp_connp; 17431 econnp->conn_dev = (dev_t)q->q_ptr; 17432 eager->tcp_rq = rq; 17433 eager->tcp_wq = q; 17434 rq->q_ptr = econnp; 17435 rq->q_qinfo = &tcp_rinit; 17436 q->q_ptr = econnp; 17437 q->q_qinfo = &tcp_winit; 17438 listener = eager->tcp_listener; 17439 eager->tcp_issocket = B_TRUE; 17440 eager->tcp_cred = econnp->conn_cred = 17441 listener->tcp_connp->conn_cred; 17442 crhold(econnp->conn_cred); 17443 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17444 17445 /* Put the ref for IP */ 17446 CONN_INC_REF(econnp); 17447 17448 /* 17449 * We should have minimum of 3 references on the conn 17450 * at this point. One each for TCP and IP and one for 17451 * the T_conn_ind that was sent up when the 3-way handshake 17452 * completed. In the normal case we would also have another 17453 * reference (making a total of 4) for the conn being in the 17454 * classifier hash list. However the eager could have received 17455 * an RST subsequently and tcp_closei_local could have removed 17456 * the eager from the classifier hash list, hence we can't 17457 * assert that reference. 17458 */ 17459 ASSERT(econnp->conn_ref >= 3); 17460 17461 /* 17462 * Send the new local address also up to sockfs. There 17463 * should already be enough space in the mp that came 17464 * down from soaccept(). 17465 */ 17466 if (eager->tcp_family == AF_INET) { 17467 sin_t *sin; 17468 17469 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17470 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17471 sin = (sin_t *)mp->b_wptr; 17472 mp->b_wptr += sizeof (sin_t); 17473 sin->sin_family = AF_INET; 17474 sin->sin_port = eager->tcp_lport; 17475 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17476 } else { 17477 sin6_t *sin6; 17478 17479 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17480 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17481 sin6 = (sin6_t *)mp->b_wptr; 17482 mp->b_wptr += sizeof (sin6_t); 17483 sin6->sin6_family = AF_INET6; 17484 sin6->sin6_port = eager->tcp_lport; 17485 if (eager->tcp_ipversion == IPV4_VERSION) { 17486 sin6->sin6_flowinfo = 0; 17487 IN6_IPADDR_TO_V4MAPPED( 17488 eager->tcp_ipha->ipha_src, 17489 &sin6->sin6_addr); 17490 } else { 17491 ASSERT(eager->tcp_ip6h != NULL); 17492 sin6->sin6_flowinfo = 17493 eager->tcp_ip6h->ip6_vcf & 17494 ~IPV6_VERS_AND_FLOW_MASK; 17495 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17496 } 17497 sin6->sin6_scope_id = 0; 17498 sin6->__sin6_src_id = 0; 17499 } 17500 17501 putnext(rq, mp); 17502 17503 opt_mp->b_datap->db_type = M_SETOPTS; 17504 opt_mp->b_wptr += sizeof (struct stroptions); 17505 17506 /* 17507 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17508 * from listener to acceptor. The message is chained on the 17509 * bind_mp which tcp_rput_other will send down to IP. 17510 */ 17511 if (listener->tcp_bound_if != 0) { 17512 /* allocate optmgmt req */ 17513 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17514 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 17515 sizeof (int)); 17516 if (mp != NULL) 17517 linkb(opt_mp, mp); 17518 } 17519 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17520 uint_t on = 1; 17521 17522 /* allocate optmgmt req */ 17523 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 17524 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 17525 if (mp != NULL) 17526 linkb(opt_mp, mp); 17527 } 17528 17529 17530 mutex_enter(&listener->tcp_eager_lock); 17531 17532 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17533 17534 tcp_t *tail; 17535 tcp_t *tcp; 17536 mblk_t *mp1; 17537 17538 tcp = listener->tcp_eager_prev_q0; 17539 /* 17540 * listener->tcp_eager_prev_q0 points to the TAIL of the 17541 * deferred T_conn_ind queue. We need to get to the head 17542 * of the queue in order to send up T_conn_ind the same 17543 * order as how the 3WHS is completed. 17544 */ 17545 while (tcp != listener) { 17546 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17547 !tcp->tcp_kssl_pending) 17548 break; 17549 else 17550 tcp = tcp->tcp_eager_prev_q0; 17551 } 17552 /* None of the pending eagers can be sent up now */ 17553 if (tcp == listener) 17554 goto no_more_eagers; 17555 17556 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17557 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17558 /* Move from q0 to q */ 17559 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17560 listener->tcp_conn_req_cnt_q0--; 17561 listener->tcp_conn_req_cnt_q++; 17562 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17563 tcp->tcp_eager_prev_q0; 17564 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17565 tcp->tcp_eager_next_q0; 17566 tcp->tcp_eager_prev_q0 = NULL; 17567 tcp->tcp_eager_next_q0 = NULL; 17568 tcp->tcp_conn_def_q0 = B_FALSE; 17569 17570 /* 17571 * Insert at end of the queue because sockfs sends 17572 * down T_CONN_RES in chronological order. Leaving 17573 * the older conn indications at front of the queue 17574 * helps reducing search time. 17575 */ 17576 tail = listener->tcp_eager_last_q; 17577 if (tail != NULL) { 17578 tail->tcp_eager_next_q = tcp; 17579 } else { 17580 listener->tcp_eager_next_q = tcp; 17581 } 17582 listener->tcp_eager_last_q = tcp; 17583 tcp->tcp_eager_next_q = NULL; 17584 17585 /* Need to get inside the listener perimeter */ 17586 CONN_INC_REF(listener->tcp_connp); 17587 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 17588 tcp_send_pending, listener->tcp_connp, 17589 SQTAG_TCP_SEND_PENDING); 17590 } 17591 no_more_eagers: 17592 tcp_eager_unlink(eager); 17593 mutex_exit(&listener->tcp_eager_lock); 17594 17595 /* 17596 * At this point, the eager is detached from the listener 17597 * but we still have an extra refs on eager (apart from the 17598 * usual tcp references). The ref was placed in tcp_rput_data 17599 * before sending the conn_ind in tcp_send_conn_ind. 17600 * The ref will be dropped in tcp_accept_finish(). 17601 */ 17602 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 17603 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 17604 return; 17605 default: 17606 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17607 if (mp != NULL) 17608 putnext(rq, mp); 17609 return; 17610 } 17611 } 17612 17613 void 17614 tcp_wput(queue_t *q, mblk_t *mp) 17615 { 17616 conn_t *connp = Q_TO_CONN(q); 17617 tcp_t *tcp; 17618 void (*output_proc)(); 17619 t_scalar_t type; 17620 uchar_t *rptr; 17621 struct iocblk *iocp; 17622 uint32_t msize; 17623 17624 ASSERT(connp->conn_ref >= 2); 17625 17626 switch (DB_TYPE(mp)) { 17627 case M_DATA: 17628 tcp = connp->conn_tcp; 17629 ASSERT(tcp != NULL); 17630 17631 msize = msgdsize(mp); 17632 17633 mutex_enter(&connp->conn_lock); 17634 CONN_INC_REF_LOCKED(connp); 17635 17636 tcp->tcp_squeue_bytes += msize; 17637 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 17638 mutex_exit(&connp->conn_lock); 17639 tcp_setqfull(tcp); 17640 } else 17641 mutex_exit(&connp->conn_lock); 17642 17643 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17644 tcp_output, connp, SQTAG_TCP_OUTPUT); 17645 return; 17646 case M_PROTO: 17647 case M_PCPROTO: 17648 /* 17649 * if it is a snmp message, don't get behind the squeue 17650 */ 17651 tcp = connp->conn_tcp; 17652 rptr = mp->b_rptr; 17653 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 17654 type = ((union T_primitives *)rptr)->type; 17655 } else { 17656 if (tcp->tcp_debug) { 17657 (void) strlog(TCP_MOD_ID, 0, 1, 17658 SL_ERROR|SL_TRACE, 17659 "tcp_wput_proto, dropping one..."); 17660 } 17661 freemsg(mp); 17662 return; 17663 } 17664 if (type == T_SVR4_OPTMGMT_REQ) { 17665 cred_t *cr = DB_CREDDEF(mp, 17666 tcp->tcp_cred); 17667 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 17668 cr)) { 17669 /* 17670 * This was a SNMP request 17671 */ 17672 return; 17673 } else { 17674 output_proc = tcp_wput_proto; 17675 } 17676 } else { 17677 output_proc = tcp_wput_proto; 17678 } 17679 break; 17680 case M_IOCTL: 17681 /* 17682 * Most ioctls can be processed right away without going via 17683 * squeues - process them right here. Those that do require 17684 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 17685 * are processed by tcp_wput_ioctl(). 17686 */ 17687 iocp = (struct iocblk *)mp->b_rptr; 17688 tcp = connp->conn_tcp; 17689 17690 switch (iocp->ioc_cmd) { 17691 case TCP_IOC_ABORT_CONN: 17692 tcp_ioctl_abort_conn(q, mp); 17693 return; 17694 case TI_GETPEERNAME: 17695 if (tcp->tcp_state < TCPS_SYN_RCVD) { 17696 iocp->ioc_error = ENOTCONN; 17697 iocp->ioc_count = 0; 17698 mp->b_datap->db_type = M_IOCACK; 17699 qreply(q, mp); 17700 return; 17701 } 17702 /* FALLTHRU */ 17703 case TI_GETMYNAME: 17704 mi_copyin(q, mp, NULL, 17705 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 17706 return; 17707 case ND_SET: 17708 /* nd_getset does the necessary checks */ 17709 case ND_GET: 17710 if (!nd_getset(q, tcp_g_nd, mp)) { 17711 CALL_IP_WPUT(connp, q, mp); 17712 return; 17713 } 17714 qreply(q, mp); 17715 return; 17716 case TCP_IOC_DEFAULT_Q: 17717 /* 17718 * Wants to be the default wq. Check the credentials 17719 * first, the rest is executed via squeue. 17720 */ 17721 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 17722 iocp->ioc_error = EPERM; 17723 iocp->ioc_count = 0; 17724 mp->b_datap->db_type = M_IOCACK; 17725 qreply(q, mp); 17726 return; 17727 } 17728 output_proc = tcp_wput_ioctl; 17729 break; 17730 default: 17731 output_proc = tcp_wput_ioctl; 17732 break; 17733 } 17734 break; 17735 default: 17736 output_proc = tcp_wput_nondata; 17737 break; 17738 } 17739 17740 CONN_INC_REF(connp); 17741 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 17742 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 17743 } 17744 17745 /* 17746 * Initial STREAMS write side put() procedure for sockets. It tries to 17747 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 17748 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 17749 * are handled by tcp_wput() as usual. 17750 * 17751 * All further messages will also be handled by tcp_wput() because we cannot 17752 * be sure that the above short cut is safe later. 17753 */ 17754 static void 17755 tcp_wput_sock(queue_t *wq, mblk_t *mp) 17756 { 17757 conn_t *connp = Q_TO_CONN(wq); 17758 tcp_t *tcp = connp->conn_tcp; 17759 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 17760 17761 ASSERT(wq->q_qinfo == &tcp_sock_winit); 17762 wq->q_qinfo = &tcp_winit; 17763 17764 ASSERT(IPCL_IS_TCP(connp)); 17765 ASSERT(TCP_IS_SOCKET(tcp)); 17766 17767 if (DB_TYPE(mp) == M_PCPROTO && 17768 MBLKL(mp) == sizeof (struct T_capability_req) && 17769 car->PRIM_type == T_CAPABILITY_REQ) { 17770 tcp_capability_req(tcp, mp); 17771 return; 17772 } 17773 17774 tcp_wput(wq, mp); 17775 } 17776 17777 static boolean_t 17778 tcp_zcopy_check(tcp_t *tcp) 17779 { 17780 conn_t *connp = tcp->tcp_connp; 17781 ire_t *ire; 17782 boolean_t zc_enabled = B_FALSE; 17783 17784 if (do_tcpzcopy == 2) 17785 zc_enabled = B_TRUE; 17786 else if (tcp->tcp_ipversion == IPV4_VERSION && 17787 IPCL_IS_CONNECTED(connp) && 17788 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 17789 connp->conn_dontroute == 0 && 17790 !connp->conn_nexthop_set && 17791 connp->conn_xmit_if_ill == NULL && 17792 connp->conn_nofailover_ill == NULL && 17793 do_tcpzcopy == 1) { 17794 /* 17795 * the checks above closely resemble the fast path checks 17796 * in tcp_send_data(). 17797 */ 17798 mutex_enter(&connp->conn_lock); 17799 ire = connp->conn_ire_cache; 17800 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 17801 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17802 IRE_REFHOLD(ire); 17803 if (ire->ire_stq != NULL) { 17804 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 17805 17806 zc_enabled = ill && (ill->ill_capabilities & 17807 ILL_CAPAB_ZEROCOPY) && 17808 (ill->ill_zerocopy_capab-> 17809 ill_zerocopy_flags != 0); 17810 } 17811 IRE_REFRELE(ire); 17812 } 17813 mutex_exit(&connp->conn_lock); 17814 } 17815 tcp->tcp_snd_zcopy_on = zc_enabled; 17816 if (!TCP_IS_DETACHED(tcp)) { 17817 if (zc_enabled) { 17818 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 17819 TCP_STAT(tcp_zcopy_on); 17820 } else { 17821 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 17822 TCP_STAT(tcp_zcopy_off); 17823 } 17824 } 17825 return (zc_enabled); 17826 } 17827 17828 static mblk_t * 17829 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 17830 { 17831 if (do_tcpzcopy == 2) 17832 return (bp); 17833 else if (tcp->tcp_snd_zcopy_on) { 17834 tcp->tcp_snd_zcopy_on = B_FALSE; 17835 if (!TCP_IS_DETACHED(tcp)) { 17836 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 17837 TCP_STAT(tcp_zcopy_disable); 17838 } 17839 } 17840 return (tcp_zcopy_backoff(tcp, bp, 0)); 17841 } 17842 17843 /* 17844 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 17845 * the original desballoca'ed segmapped mblk. 17846 */ 17847 static mblk_t * 17848 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 17849 { 17850 mblk_t *head, *tail, *nbp; 17851 if (IS_VMLOANED_MBLK(bp)) { 17852 TCP_STAT(tcp_zcopy_backoff); 17853 if ((head = copyb(bp)) == NULL) { 17854 /* fail to backoff; leave it for the next backoff */ 17855 tcp->tcp_xmit_zc_clean = B_FALSE; 17856 return (bp); 17857 } 17858 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 17859 if (fix_xmitlist) 17860 tcp_zcopy_notify(tcp); 17861 else 17862 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 17863 } 17864 nbp = bp->b_cont; 17865 if (fix_xmitlist) { 17866 head->b_prev = bp->b_prev; 17867 head->b_next = bp->b_next; 17868 if (tcp->tcp_xmit_tail == bp) 17869 tcp->tcp_xmit_tail = head; 17870 } 17871 bp->b_next = NULL; 17872 bp->b_prev = NULL; 17873 freeb(bp); 17874 } else { 17875 head = bp; 17876 nbp = bp->b_cont; 17877 } 17878 tail = head; 17879 while (nbp) { 17880 if (IS_VMLOANED_MBLK(nbp)) { 17881 TCP_STAT(tcp_zcopy_backoff); 17882 if ((tail->b_cont = copyb(nbp)) == NULL) { 17883 tcp->tcp_xmit_zc_clean = B_FALSE; 17884 tail->b_cont = nbp; 17885 return (head); 17886 } 17887 tail = tail->b_cont; 17888 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 17889 if (fix_xmitlist) 17890 tcp_zcopy_notify(tcp); 17891 else 17892 tail->b_datap->db_struioflag |= 17893 STRUIO_ZCNOTIFY; 17894 } 17895 bp = nbp; 17896 nbp = nbp->b_cont; 17897 if (fix_xmitlist) { 17898 tail->b_prev = bp->b_prev; 17899 tail->b_next = bp->b_next; 17900 if (tcp->tcp_xmit_tail == bp) 17901 tcp->tcp_xmit_tail = tail; 17902 } 17903 bp->b_next = NULL; 17904 bp->b_prev = NULL; 17905 freeb(bp); 17906 } else { 17907 tail->b_cont = nbp; 17908 tail = nbp; 17909 nbp = nbp->b_cont; 17910 } 17911 } 17912 if (fix_xmitlist) { 17913 tcp->tcp_xmit_last = tail; 17914 tcp->tcp_xmit_zc_clean = B_TRUE; 17915 } 17916 return (head); 17917 } 17918 17919 static void 17920 tcp_zcopy_notify(tcp_t *tcp) 17921 { 17922 struct stdata *stp; 17923 17924 if (tcp->tcp_detached) 17925 return; 17926 stp = STREAM(tcp->tcp_rq); 17927 mutex_enter(&stp->sd_lock); 17928 stp->sd_flag |= STZCNOTIFY; 17929 cv_broadcast(&stp->sd_zcopy_wait); 17930 mutex_exit(&stp->sd_lock); 17931 } 17932 17933 static void 17934 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 17935 { 17936 ipha_t *ipha; 17937 ipaddr_t src; 17938 ipaddr_t dst; 17939 uint32_t cksum; 17940 ire_t *ire; 17941 uint16_t *up; 17942 ill_t *ill; 17943 conn_t *connp = tcp->tcp_connp; 17944 uint32_t hcksum_txflags = 0; 17945 mblk_t *ire_fp_mp; 17946 uint_t ire_fp_mp_len; 17947 17948 ASSERT(DB_TYPE(mp) == M_DATA); 17949 17950 ipha = (ipha_t *)mp->b_rptr; 17951 src = ipha->ipha_src; 17952 dst = ipha->ipha_dst; 17953 17954 /* 17955 * Drop off slow path for IPv6 and also if options are present. 17956 */ 17957 if (tcp->tcp_ipversion != IPV4_VERSION || 17958 !IPCL_IS_CONNECTED(connp) || 17959 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 17960 connp->conn_dontroute || 17961 connp->conn_nexthop_set || 17962 connp->conn_xmit_if_ill != NULL || 17963 connp->conn_nofailover_ill != NULL || 17964 ipha->ipha_ident == IP_HDR_INCLUDED || 17965 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 17966 IPP_ENABLED(IPP_LOCAL_OUT)) { 17967 if (tcp->tcp_snd_zcopy_aware) 17968 mp = tcp_zcopy_disable(tcp, mp); 17969 TCP_STAT(tcp_ip_send); 17970 CALL_IP_WPUT(connp, q, mp); 17971 return; 17972 } 17973 17974 mutex_enter(&connp->conn_lock); 17975 ire = connp->conn_ire_cache; 17976 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 17977 if (ire != NULL && ire->ire_addr == dst && 17978 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 17979 IRE_REFHOLD(ire); 17980 mutex_exit(&connp->conn_lock); 17981 } else { 17982 boolean_t cached = B_FALSE; 17983 17984 /* force a recheck later on */ 17985 tcp->tcp_ire_ill_check_done = B_FALSE; 17986 17987 TCP_DBGSTAT(tcp_ire_null1); 17988 connp->conn_ire_cache = NULL; 17989 mutex_exit(&connp->conn_lock); 17990 if (ire != NULL) 17991 IRE_REFRELE_NOTR(ire); 17992 ire = ire_cache_lookup(dst, connp->conn_zoneid); 17993 if (ire == NULL) { 17994 if (tcp->tcp_snd_zcopy_aware) 17995 mp = tcp_zcopy_backoff(tcp, mp, 0); 17996 TCP_STAT(tcp_ire_null); 17997 CALL_IP_WPUT(connp, q, mp); 17998 return; 17999 } 18000 IRE_REFHOLD_NOTR(ire); 18001 /* 18002 * Since we are inside the squeue, there cannot be another 18003 * thread in TCP trying to set the conn_ire_cache now. The 18004 * check for IRE_MARK_CONDEMNED ensures that an interface 18005 * unplumb thread has not yet started cleaning up the conns. 18006 * Hence we don't need to grab the conn lock. 18007 */ 18008 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18009 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18010 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18011 connp->conn_ire_cache = ire; 18012 cached = B_TRUE; 18013 } 18014 rw_exit(&ire->ire_bucket->irb_lock); 18015 } 18016 18017 /* 18018 * We can continue to use the ire but since it was 18019 * not cached, we should drop the extra reference. 18020 */ 18021 if (!cached) 18022 IRE_REFRELE_NOTR(ire); 18023 } 18024 18025 if (ire->ire_flags & RTF_MULTIRT || 18026 ire->ire_stq == NULL || 18027 ire->ire_max_frag < ntohs(ipha->ipha_length) || 18028 (ire_fp_mp = ire->ire_fp_mp) == NULL || 18029 (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) { 18030 if (tcp->tcp_snd_zcopy_aware) 18031 mp = tcp_zcopy_disable(tcp, mp); 18032 TCP_STAT(tcp_ip_ire_send); 18033 IRE_REFRELE(ire); 18034 CALL_IP_WPUT(connp, q, mp); 18035 return; 18036 } 18037 18038 ill = ire_to_ill(ire); 18039 if (connp->conn_outgoing_ill != NULL) { 18040 ill_t *conn_outgoing_ill = NULL; 18041 /* 18042 * Choose a good ill in the group to send the packets on. 18043 */ 18044 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18045 ill = ire_to_ill(ire); 18046 } 18047 ASSERT(ill != NULL); 18048 18049 if (!tcp->tcp_ire_ill_check_done) { 18050 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18051 tcp->tcp_ire_ill_check_done = B_TRUE; 18052 } 18053 18054 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18055 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18056 #ifndef _BIG_ENDIAN 18057 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18058 #endif 18059 18060 /* 18061 * Check to see if we need to re-enable MDT for this connection 18062 * because it was previously disabled due to changes in the ill; 18063 * note that by doing it here, this re-enabling only applies when 18064 * the packet is not dispatched through CALL_IP_WPUT(). 18065 * 18066 * That means for IPv4, it is worth re-enabling MDT for the fastpath 18067 * case, since that's how we ended up here. For IPv6, we do the 18068 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18069 */ 18070 if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18071 /* 18072 * Restore MDT for this connection, so that next time around 18073 * it is eligible to go through tcp_multisend() path again. 18074 */ 18075 TCP_STAT(tcp_mdt_conn_resumed1); 18076 tcp->tcp_mdt = B_TRUE; 18077 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18078 "interface %s\n", (void *)connp, ill->ill_name)); 18079 } 18080 18081 if (tcp->tcp_snd_zcopy_aware) { 18082 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18083 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18084 mp = tcp_zcopy_disable(tcp, mp); 18085 /* 18086 * we shouldn't need to reset ipha as the mp containing 18087 * ipha should never be a zero-copy mp. 18088 */ 18089 } 18090 18091 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18092 ASSERT(ill->ill_hcksum_capab != NULL); 18093 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18094 } 18095 18096 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18097 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18098 18099 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18100 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18101 18102 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18103 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18104 18105 /* Software checksum? */ 18106 if (DB_CKSUMFLAGS(mp) == 0) { 18107 TCP_STAT(tcp_out_sw_cksum); 18108 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18109 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18110 } 18111 18112 ipha->ipha_fragment_offset_and_flags |= 18113 (uint32_t)htons(ire->ire_frag_flag); 18114 18115 /* Calculate IP header checksum if hardware isn't capable */ 18116 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18117 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18118 ((uint16_t *)ipha)[4]); 18119 } 18120 18121 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18122 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18123 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18124 18125 UPDATE_OB_PKT_COUNT(ire); 18126 ire->ire_last_used_time = lbolt; 18127 BUMP_MIB(&ip_mib, ipOutRequests); 18128 18129 if (ILL_DLS_CAPABLE(ill)) { 18130 /* 18131 * Send the packet directly to DLD, where it may be queued 18132 * depending on the availability of transmit resources at 18133 * the media layer. 18134 */ 18135 IP_DLS_ILL_TX(ill, mp); 18136 } else { 18137 putnext(ire->ire_stq, mp); 18138 } 18139 IRE_REFRELE(ire); 18140 } 18141 18142 /* 18143 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18144 * if the receiver shrinks the window, i.e. moves the right window to the 18145 * left, the we should not send new data, but should retransmit normally the 18146 * old unacked data between suna and suna + swnd. We might has sent data 18147 * that is now outside the new window, pretend that we didn't send it. 18148 */ 18149 static void 18150 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18151 { 18152 uint32_t snxt = tcp->tcp_snxt; 18153 mblk_t *xmit_tail; 18154 int32_t offset; 18155 18156 ASSERT(shrunk_count > 0); 18157 18158 /* Pretend we didn't send the data outside the window */ 18159 snxt -= shrunk_count; 18160 18161 /* Get the mblk and the offset in it per the shrunk window */ 18162 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18163 18164 ASSERT(xmit_tail != NULL); 18165 18166 /* Reset all the values per the now shrunk window */ 18167 tcp->tcp_snxt = snxt; 18168 tcp->tcp_xmit_tail = xmit_tail; 18169 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18170 offset; 18171 tcp->tcp_unsent += shrunk_count; 18172 18173 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18174 /* 18175 * Make sure the timer is running so that we will probe a zero 18176 * window. 18177 */ 18178 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18179 } 18180 18181 18182 /* 18183 * The TCP normal data output path. 18184 * NOTE: the logic of the fast path is duplicated from this function. 18185 */ 18186 static void 18187 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18188 { 18189 int len; 18190 mblk_t *local_time; 18191 mblk_t *mp1; 18192 uint32_t snxt; 18193 int tail_unsent; 18194 int tcpstate; 18195 int usable = 0; 18196 mblk_t *xmit_tail; 18197 queue_t *q = tcp->tcp_wq; 18198 int32_t mss; 18199 int32_t num_sack_blk = 0; 18200 int32_t tcp_hdr_len; 18201 int32_t tcp_tcp_hdr_len; 18202 int mdt_thres; 18203 int rc; 18204 18205 tcpstate = tcp->tcp_state; 18206 if (mp == NULL) { 18207 /* 18208 * tcp_wput_data() with NULL mp should only be called when 18209 * there is unsent data. 18210 */ 18211 ASSERT(tcp->tcp_unsent > 0); 18212 /* Really tacky... but we need this for detached closes. */ 18213 len = tcp->tcp_unsent; 18214 goto data_null; 18215 } 18216 18217 #if CCS_STATS 18218 wrw_stats.tot.count++; 18219 wrw_stats.tot.bytes += msgdsize(mp); 18220 #endif 18221 ASSERT(mp->b_datap->db_type == M_DATA); 18222 /* 18223 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18224 * or before a connection attempt has begun. 18225 */ 18226 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18227 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18228 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18229 #ifdef DEBUG 18230 cmn_err(CE_WARN, 18231 "tcp_wput_data: data after ordrel, %s", 18232 tcp_display(tcp, NULL, 18233 DISP_ADDR_AND_PORT)); 18234 #else 18235 if (tcp->tcp_debug) { 18236 (void) strlog(TCP_MOD_ID, 0, 1, 18237 SL_TRACE|SL_ERROR, 18238 "tcp_wput_data: data after ordrel, %s\n", 18239 tcp_display(tcp, NULL, 18240 DISP_ADDR_AND_PORT)); 18241 } 18242 #endif /* DEBUG */ 18243 } 18244 if (tcp->tcp_snd_zcopy_aware && 18245 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18246 tcp_zcopy_notify(tcp); 18247 freemsg(mp); 18248 if (tcp->tcp_flow_stopped && 18249 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18250 tcp_clrqfull(tcp); 18251 } 18252 return; 18253 } 18254 18255 /* Strip empties */ 18256 for (;;) { 18257 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18258 (uintptr_t)INT_MAX); 18259 len = (int)(mp->b_wptr - mp->b_rptr); 18260 if (len > 0) 18261 break; 18262 mp1 = mp; 18263 mp = mp->b_cont; 18264 freeb(mp1); 18265 if (!mp) { 18266 return; 18267 } 18268 } 18269 18270 /* If we are the first on the list ... */ 18271 if (tcp->tcp_xmit_head == NULL) { 18272 tcp->tcp_xmit_head = mp; 18273 tcp->tcp_xmit_tail = mp; 18274 tcp->tcp_xmit_tail_unsent = len; 18275 } else { 18276 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18277 struct datab *dp; 18278 18279 mp1 = tcp->tcp_xmit_last; 18280 if (len < tcp_tx_pull_len && 18281 (dp = mp1->b_datap)->db_ref == 1 && 18282 dp->db_lim - mp1->b_wptr >= len) { 18283 ASSERT(len > 0); 18284 ASSERT(!mp1->b_cont); 18285 if (len == 1) { 18286 *mp1->b_wptr++ = *mp->b_rptr; 18287 } else { 18288 bcopy(mp->b_rptr, mp1->b_wptr, len); 18289 mp1->b_wptr += len; 18290 } 18291 if (mp1 == tcp->tcp_xmit_tail) 18292 tcp->tcp_xmit_tail_unsent += len; 18293 mp1->b_cont = mp->b_cont; 18294 if (tcp->tcp_snd_zcopy_aware && 18295 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18296 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18297 freeb(mp); 18298 mp = mp1; 18299 } else { 18300 tcp->tcp_xmit_last->b_cont = mp; 18301 } 18302 len += tcp->tcp_unsent; 18303 } 18304 18305 /* Tack on however many more positive length mblks we have */ 18306 if ((mp1 = mp->b_cont) != NULL) { 18307 do { 18308 int tlen; 18309 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18310 (uintptr_t)INT_MAX); 18311 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18312 if (tlen <= 0) { 18313 mp->b_cont = mp1->b_cont; 18314 freeb(mp1); 18315 } else { 18316 len += tlen; 18317 mp = mp1; 18318 } 18319 } while ((mp1 = mp->b_cont) != NULL); 18320 } 18321 tcp->tcp_xmit_last = mp; 18322 tcp->tcp_unsent = len; 18323 18324 if (urgent) 18325 usable = 1; 18326 18327 data_null: 18328 snxt = tcp->tcp_snxt; 18329 xmit_tail = tcp->tcp_xmit_tail; 18330 tail_unsent = tcp->tcp_xmit_tail_unsent; 18331 18332 /* 18333 * Note that tcp_mss has been adjusted to take into account the 18334 * timestamp option if applicable. Because SACK options do not 18335 * appear in every TCP segments and they are of variable lengths, 18336 * they cannot be included in tcp_mss. Thus we need to calculate 18337 * the actual segment length when we need to send a segment which 18338 * includes SACK options. 18339 */ 18340 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18341 int32_t opt_len; 18342 18343 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18344 tcp->tcp_num_sack_blk); 18345 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18346 2 + TCPOPT_HEADER_LEN; 18347 mss = tcp->tcp_mss - opt_len; 18348 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18349 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18350 } else { 18351 mss = tcp->tcp_mss; 18352 tcp_hdr_len = tcp->tcp_hdr_len; 18353 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18354 } 18355 18356 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18357 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18358 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 18359 } 18360 if (tcpstate == TCPS_SYN_RCVD) { 18361 /* 18362 * The three-way connection establishment handshake is not 18363 * complete yet. We want to queue the data for transmission 18364 * after entering ESTABLISHED state (RFC793). A jump to 18365 * "done" label effectively leaves data on the queue. 18366 */ 18367 goto done; 18368 } else { 18369 int usable_r = tcp->tcp_swnd; 18370 18371 /* 18372 * In the special case when cwnd is zero, which can only 18373 * happen if the connection is ECN capable, return now. 18374 * New segments is sent using tcp_timer(). The timer 18375 * is set in tcp_rput_data(). 18376 */ 18377 if (tcp->tcp_cwnd == 0) { 18378 /* 18379 * Note that tcp_cwnd is 0 before 3-way handshake is 18380 * finished. 18381 */ 18382 ASSERT(tcp->tcp_ecn_ok || 18383 tcp->tcp_state < TCPS_ESTABLISHED); 18384 return; 18385 } 18386 18387 /* NOTE: trouble if xmitting while SYN not acked? */ 18388 usable_r -= snxt; 18389 usable_r += tcp->tcp_suna; 18390 18391 /* 18392 * Check if the receiver has shrunk the window. If 18393 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18394 * cannot be set as there is unsent data, so FIN cannot 18395 * be sent out. Otherwise, we need to take into account 18396 * of FIN as it consumes an "invisible" sequence number. 18397 */ 18398 ASSERT(tcp->tcp_fin_sent == 0); 18399 if (usable_r < 0) { 18400 /* 18401 * The receiver has shrunk the window and we have sent 18402 * -usable_r date beyond the window, re-adjust. 18403 * 18404 * If TCP window scaling is enabled, there can be 18405 * round down error as the advertised receive window 18406 * is actually right shifted n bits. This means that 18407 * the lower n bits info is wiped out. It will look 18408 * like the window is shrunk. Do a check here to 18409 * see if the shrunk amount is actually within the 18410 * error in window calculation. If it is, just 18411 * return. Note that this check is inside the 18412 * shrunk window check. This makes sure that even 18413 * though tcp_process_shrunk_swnd() is not called, 18414 * we will stop further processing. 18415 */ 18416 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18417 tcp_process_shrunk_swnd(tcp, -usable_r); 18418 } 18419 return; 18420 } 18421 18422 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18423 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18424 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18425 18426 /* usable = MIN(usable, unsent) */ 18427 if (usable_r > len) 18428 usable_r = len; 18429 18430 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18431 if (usable_r > 0) { 18432 usable = usable_r; 18433 } else { 18434 /* Bypass all other unnecessary processing. */ 18435 goto done; 18436 } 18437 } 18438 18439 local_time = (mblk_t *)lbolt; 18440 18441 /* 18442 * "Our" Nagle Algorithm. This is not the same as in the old 18443 * BSD. This is more in line with the true intent of Nagle. 18444 * 18445 * The conditions are: 18446 * 1. The amount of unsent data (or amount of data which can be 18447 * sent, whichever is smaller) is less than Nagle limit. 18448 * 2. The last sent size is also less than Nagle limit. 18449 * 3. There is unack'ed data. 18450 * 4. Urgent pointer is not set. Send urgent data ignoring the 18451 * Nagle algorithm. This reduces the probability that urgent 18452 * bytes get "merged" together. 18453 * 5. The app has not closed the connection. This eliminates the 18454 * wait time of the receiving side waiting for the last piece of 18455 * (small) data. 18456 * 18457 * If all are satisified, exit without sending anything. Note 18458 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18459 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18460 * 4095). 18461 */ 18462 if (usable < (int)tcp->tcp_naglim && 18463 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18464 snxt != tcp->tcp_suna && 18465 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18466 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18467 goto done; 18468 } 18469 18470 if (tcp->tcp_cork) { 18471 /* 18472 * if the tcp->tcp_cork option is set, then we have to force 18473 * TCP not to send partial segment (smaller than MSS bytes). 18474 * We are calculating the usable now based on full mss and 18475 * will save the rest of remaining data for later. 18476 */ 18477 if (usable < mss) 18478 goto done; 18479 usable = (usable / mss) * mss; 18480 } 18481 18482 /* Update the latest receive window size in TCP header. */ 18483 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18484 tcp->tcp_tcph->th_win); 18485 18486 /* 18487 * Determine if it's worthwhile to attempt MDT, based on: 18488 * 18489 * 1. Simple TCP/IP{v4,v6} (no options). 18490 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18491 * 3. If the TCP connection is in ESTABLISHED state. 18492 * 4. The TCP is not detached. 18493 * 18494 * If any of the above conditions have changed during the 18495 * connection, stop using MDT and restore the stream head 18496 * parameters accordingly. 18497 */ 18498 if (tcp->tcp_mdt && 18499 ((tcp->tcp_ipversion == IPV4_VERSION && 18500 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 18501 (tcp->tcp_ipversion == IPV6_VERSION && 18502 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 18503 tcp->tcp_state != TCPS_ESTABLISHED || 18504 TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) || 18505 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 18506 IPP_ENABLED(IPP_LOCAL_OUT))) { 18507 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 18508 tcp->tcp_mdt = B_FALSE; 18509 18510 /* Anything other than detached is considered pathological */ 18511 if (!TCP_IS_DETACHED(tcp)) { 18512 TCP_STAT(tcp_mdt_conn_halted1); 18513 (void) tcp_maxpsz_set(tcp, B_TRUE); 18514 } 18515 } 18516 18517 /* Use MDT if sendable amount is greater than the threshold */ 18518 if (tcp->tcp_mdt && 18519 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 18520 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 18521 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 18522 (tcp->tcp_valid_bits == 0 || 18523 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 18524 ASSERT(tcp->tcp_connp->conn_mdt_ok); 18525 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18526 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18527 local_time, mdt_thres); 18528 } else { 18529 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 18530 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 18531 local_time, INT_MAX); 18532 } 18533 18534 /* Pretend that all we were trying to send really got sent */ 18535 if (rc < 0 && tail_unsent < 0) { 18536 do { 18537 xmit_tail = xmit_tail->b_cont; 18538 xmit_tail->b_prev = local_time; 18539 ASSERT((uintptr_t)(xmit_tail->b_wptr - 18540 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 18541 tail_unsent += (int)(xmit_tail->b_wptr - 18542 xmit_tail->b_rptr); 18543 } while (tail_unsent < 0); 18544 } 18545 done:; 18546 tcp->tcp_xmit_tail = xmit_tail; 18547 tcp->tcp_xmit_tail_unsent = tail_unsent; 18548 len = tcp->tcp_snxt - snxt; 18549 if (len) { 18550 /* 18551 * If new data was sent, need to update the notsack 18552 * list, which is, afterall, data blocks that have 18553 * not been sack'ed by the receiver. New data is 18554 * not sack'ed. 18555 */ 18556 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 18557 /* len is a negative value. */ 18558 tcp->tcp_pipe -= len; 18559 tcp_notsack_update(&(tcp->tcp_notsack_list), 18560 tcp->tcp_snxt, snxt, 18561 &(tcp->tcp_num_notsack_blk), 18562 &(tcp->tcp_cnt_notsack_list)); 18563 } 18564 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 18565 tcp->tcp_rack = tcp->tcp_rnxt; 18566 tcp->tcp_rack_cnt = 0; 18567 if ((snxt + len) == tcp->tcp_suna) { 18568 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18569 } 18570 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 18571 /* 18572 * Didn't send anything. Make sure the timer is running 18573 * so that we will probe a zero window. 18574 */ 18575 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18576 } 18577 /* Note that len is the amount we just sent but with a negative sign */ 18578 tcp->tcp_unsent += len; 18579 if (tcp->tcp_flow_stopped) { 18580 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18581 tcp_clrqfull(tcp); 18582 } 18583 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 18584 tcp_setqfull(tcp); 18585 } 18586 } 18587 18588 /* 18589 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 18590 * outgoing TCP header with the template header, as well as other 18591 * options such as time-stamp, ECN and/or SACK. 18592 */ 18593 static void 18594 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 18595 { 18596 tcph_t *tcp_tmpl, *tcp_h; 18597 uint32_t *dst, *src; 18598 int hdrlen; 18599 18600 ASSERT(OK_32PTR(rptr)); 18601 18602 /* Template header */ 18603 tcp_tmpl = tcp->tcp_tcph; 18604 18605 /* Header of outgoing packet */ 18606 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 18607 18608 /* dst and src are opaque 32-bit fields, used for copying */ 18609 dst = (uint32_t *)rptr; 18610 src = (uint32_t *)tcp->tcp_iphc; 18611 hdrlen = tcp->tcp_hdr_len; 18612 18613 /* Fill time-stamp option if needed */ 18614 if (tcp->tcp_snd_ts_ok) { 18615 U32_TO_BE32((uint32_t)now, 18616 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 18617 U32_TO_BE32(tcp->tcp_ts_recent, 18618 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 18619 } else { 18620 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 18621 } 18622 18623 /* 18624 * Copy the template header; is this really more efficient than 18625 * calling bcopy()? For simple IPv4/TCP, it may be the case, 18626 * but perhaps not for other scenarios. 18627 */ 18628 dst[0] = src[0]; 18629 dst[1] = src[1]; 18630 dst[2] = src[2]; 18631 dst[3] = src[3]; 18632 dst[4] = src[4]; 18633 dst[5] = src[5]; 18634 dst[6] = src[6]; 18635 dst[7] = src[7]; 18636 dst[8] = src[8]; 18637 dst[9] = src[9]; 18638 if (hdrlen -= 40) { 18639 hdrlen >>= 2; 18640 dst += 10; 18641 src += 10; 18642 do { 18643 *dst++ = *src++; 18644 } while (--hdrlen); 18645 } 18646 18647 /* 18648 * Set the ECN info in the TCP header if it is not a zero 18649 * window probe. Zero window probe is only sent in 18650 * tcp_wput_data() and tcp_timer(). 18651 */ 18652 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 18653 SET_ECT(tcp, rptr); 18654 18655 if (tcp->tcp_ecn_echo_on) 18656 tcp_h->th_flags[0] |= TH_ECE; 18657 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 18658 tcp_h->th_flags[0] |= TH_CWR; 18659 tcp->tcp_ecn_cwr_sent = B_TRUE; 18660 } 18661 } 18662 18663 /* Fill in SACK options */ 18664 if (num_sack_blk > 0) { 18665 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 18666 sack_blk_t *tmp; 18667 int32_t i; 18668 18669 wptr[0] = TCPOPT_NOP; 18670 wptr[1] = TCPOPT_NOP; 18671 wptr[2] = TCPOPT_SACK; 18672 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 18673 sizeof (sack_blk_t); 18674 wptr += TCPOPT_REAL_SACK_LEN; 18675 18676 tmp = tcp->tcp_sack_list; 18677 for (i = 0; i < num_sack_blk; i++) { 18678 U32_TO_BE32(tmp[i].begin, wptr); 18679 wptr += sizeof (tcp_seq); 18680 U32_TO_BE32(tmp[i].end, wptr); 18681 wptr += sizeof (tcp_seq); 18682 } 18683 tcp_h->th_offset_and_rsrvd[0] += 18684 ((num_sack_blk * 2 + 1) << 4); 18685 } 18686 } 18687 18688 /* 18689 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 18690 * the destination address and SAP attribute, and if necessary, the 18691 * hardware checksum offload attribute to a Multidata message. 18692 */ 18693 static int 18694 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 18695 const uint32_t start, const uint32_t stuff, const uint32_t end, 18696 const uint32_t flags) 18697 { 18698 /* Add global destination address & SAP attribute */ 18699 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 18700 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 18701 "destination address+SAP\n")); 18702 18703 if (dlmp != NULL) 18704 TCP_STAT(tcp_mdt_allocfail); 18705 return (-1); 18706 } 18707 18708 /* Add global hwcksum attribute */ 18709 if (hwcksum && 18710 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 18711 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 18712 "checksum attribute\n")); 18713 18714 TCP_STAT(tcp_mdt_allocfail); 18715 return (-1); 18716 } 18717 18718 return (0); 18719 } 18720 18721 /* 18722 * Smaller and private version of pdescinfo_t used specifically for TCP, 18723 * which allows for only two payload spans per packet. 18724 */ 18725 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 18726 18727 /* 18728 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 18729 * scheme, and returns one the following: 18730 * 18731 * -1 = failed allocation. 18732 * 0 = success; burst count reached, or usable send window is too small, 18733 * and that we'd rather wait until later before sending again. 18734 */ 18735 static int 18736 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 18737 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 18738 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 18739 const int mdt_thres) 18740 { 18741 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 18742 multidata_t *mmd; 18743 uint_t obsegs, obbytes, hdr_frag_sz; 18744 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 18745 int num_burst_seg, max_pld; 18746 pdesc_t *pkt; 18747 tcp_pdescinfo_t tcp_pkt_info; 18748 pdescinfo_t *pkt_info; 18749 int pbuf_idx, pbuf_idx_nxt; 18750 int seg_len, len, spill, af; 18751 boolean_t add_buffer, zcopy, clusterwide; 18752 boolean_t rconfirm = B_FALSE; 18753 boolean_t done = B_FALSE; 18754 uint32_t cksum; 18755 uint32_t hwcksum_flags; 18756 ire_t *ire; 18757 ill_t *ill; 18758 ipha_t *ipha; 18759 ip6_t *ip6h; 18760 ipaddr_t src, dst; 18761 ill_zerocopy_capab_t *zc_cap = NULL; 18762 uint16_t *up; 18763 int err; 18764 18765 #ifdef _BIG_ENDIAN 18766 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 18767 #else 18768 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 18769 #endif 18770 18771 #define PREP_NEW_MULTIDATA() { \ 18772 mmd = NULL; \ 18773 md_mp = md_hbuf = NULL; \ 18774 cur_hdr_off = 0; \ 18775 max_pld = tcp->tcp_mdt_max_pld; \ 18776 pbuf_idx = pbuf_idx_nxt = -1; \ 18777 add_buffer = B_TRUE; \ 18778 zcopy = B_FALSE; \ 18779 } 18780 18781 #define PREP_NEW_PBUF() { \ 18782 md_pbuf = md_pbuf_nxt = NULL; \ 18783 pbuf_idx = pbuf_idx_nxt = -1; \ 18784 cur_pld_off = 0; \ 18785 first_snxt = *snxt; \ 18786 ASSERT(*tail_unsent > 0); \ 18787 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 18788 } 18789 18790 ASSERT(mdt_thres >= mss); 18791 ASSERT(*usable > 0 && *usable > mdt_thres); 18792 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 18793 ASSERT(!TCP_IS_DETACHED(tcp)); 18794 ASSERT(tcp->tcp_valid_bits == 0 || 18795 tcp->tcp_valid_bits == TCP_FSS_VALID); 18796 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 18797 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 18798 (tcp->tcp_ipversion == IPV6_VERSION && 18799 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 18800 ASSERT(tcp->tcp_connp != NULL); 18801 ASSERT(CONN_IS_MD_FASTPATH(tcp->tcp_connp)); 18802 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp)); 18803 18804 /* 18805 * Note that tcp will only declare at most 2 payload spans per 18806 * packet, which is much lower than the maximum allowable number 18807 * of packet spans per Multidata. For this reason, we use the 18808 * privately declared and smaller descriptor info structure, in 18809 * order to save some stack space. 18810 */ 18811 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 18812 18813 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 18814 if (af == AF_INET) { 18815 dst = tcp->tcp_ipha->ipha_dst; 18816 src = tcp->tcp_ipha->ipha_src; 18817 ASSERT(!CLASSD(dst)); 18818 } 18819 ASSERT(af == AF_INET || 18820 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 18821 18822 obsegs = obbytes = 0; 18823 num_burst_seg = tcp->tcp_snd_burst; 18824 md_mp_head = NULL; 18825 PREP_NEW_MULTIDATA(); 18826 18827 /* 18828 * Before we go on further, make sure there is an IRE that we can 18829 * use, and that the ILL supports MDT. Otherwise, there's no point 18830 * in proceeding any further, and we should just hand everything 18831 * off to the legacy path. 18832 */ 18833 mutex_enter(&tcp->tcp_connp->conn_lock); 18834 ire = tcp->tcp_connp->conn_ire_cache; 18835 ASSERT(!(tcp->tcp_connp->conn_state_flags & CONN_INCIPIENT)); 18836 if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) || 18837 (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, 18838 &tcp->tcp_ip6h->ip6_dst))) && 18839 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18840 IRE_REFHOLD(ire); 18841 mutex_exit(&tcp->tcp_connp->conn_lock); 18842 } else { 18843 boolean_t cached = B_FALSE; 18844 18845 /* force a recheck later on */ 18846 tcp->tcp_ire_ill_check_done = B_FALSE; 18847 18848 TCP_DBGSTAT(tcp_ire_null1); 18849 tcp->tcp_connp->conn_ire_cache = NULL; 18850 mutex_exit(&tcp->tcp_connp->conn_lock); 18851 18852 /* Release the old ire */ 18853 if (ire != NULL) 18854 IRE_REFRELE_NOTR(ire); 18855 18856 ire = (af == AF_INET) ? 18857 ire_cache_lookup(dst, tcp->tcp_connp->conn_zoneid) : 18858 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18859 tcp->tcp_connp->conn_zoneid); 18860 18861 if (ire == NULL) { 18862 TCP_STAT(tcp_ire_null); 18863 goto legacy_send_no_md; 18864 } 18865 18866 IRE_REFHOLD_NOTR(ire); 18867 /* 18868 * Since we are inside the squeue, there cannot be another 18869 * thread in TCP trying to set the conn_ire_cache now. The 18870 * check for IRE_MARK_CONDEMNED ensures that an interface 18871 * unplumb thread has not yet started cleaning up the conns. 18872 * Hence we don't need to grab the conn lock. 18873 */ 18874 if (!(tcp->tcp_connp->conn_state_flags & CONN_CLOSING)) { 18875 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18876 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18877 tcp->tcp_connp->conn_ire_cache = ire; 18878 cached = B_TRUE; 18879 } 18880 rw_exit(&ire->ire_bucket->irb_lock); 18881 } 18882 18883 /* 18884 * We can continue to use the ire but since it was not 18885 * cached, we should drop the extra reference. 18886 */ 18887 if (!cached) 18888 IRE_REFRELE_NOTR(ire); 18889 } 18890 18891 ASSERT(ire != NULL); 18892 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 18893 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 18894 ASSERT(af == AF_INET || ire->ire_nce != NULL); 18895 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 18896 /* 18897 * If we do support loopback for MDT (which requires modifications 18898 * to the receiving paths), the following assertions should go away, 18899 * and we would be sending the Multidata to loopback conn later on. 18900 */ 18901 ASSERT(!IRE_IS_LOCAL(ire)); 18902 ASSERT(ire->ire_stq != NULL); 18903 18904 ill = ire_to_ill(ire); 18905 ASSERT(ill != NULL); 18906 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 18907 18908 if (!tcp->tcp_ire_ill_check_done) { 18909 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18910 tcp->tcp_ire_ill_check_done = B_TRUE; 18911 } 18912 18913 /* 18914 * If the underlying interface conditions have changed, or if the 18915 * new interface does not support MDT, go back to legacy path. 18916 */ 18917 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 18918 /* don't go through this path anymore for this connection */ 18919 TCP_STAT(tcp_mdt_conn_halted2); 18920 tcp->tcp_mdt = B_FALSE; 18921 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 18922 "interface %s\n", (void *)tcp->tcp_connp, ill->ill_name)); 18923 /* IRE will be released prior to returning */ 18924 goto legacy_send_no_md; 18925 } 18926 18927 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 18928 zc_cap = ill->ill_zerocopy_capab; 18929 18930 /* go to legacy path if interface doesn't support zerocopy */ 18931 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 18932 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 18933 /* IRE will be released prior to returning */ 18934 goto legacy_send_no_md; 18935 } 18936 18937 /* does the interface support hardware checksum offload? */ 18938 hwcksum_flags = 0; 18939 if (ILL_HCKSUM_CAPABLE(ill) && 18940 (ill->ill_hcksum_capab->ill_hcksum_txflags & 18941 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 18942 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 18943 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18944 HCKSUM_IPHDRCKSUM) 18945 hwcksum_flags = HCK_IPV4_HDRCKSUM; 18946 18947 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18948 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 18949 hwcksum_flags |= HCK_FULLCKSUM; 18950 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 18951 HCKSUM_INET_PARTIAL) 18952 hwcksum_flags |= HCK_PARTIALCKSUM; 18953 } 18954 18955 /* 18956 * Each header fragment consists of the leading extra space, 18957 * followed by the TCP/IP header, and the trailing extra space. 18958 * We make sure that each header fragment begins on a 32-bit 18959 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 18960 * aligned in tcp_mdt_update). 18961 */ 18962 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 18963 tcp->tcp_mdt_hdr_tail), 4); 18964 18965 /* are we starting from the beginning of data block? */ 18966 if (*tail_unsent == 0) { 18967 *xmit_tail = (*xmit_tail)->b_cont; 18968 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 18969 *tail_unsent = (int)MBLKL(*xmit_tail); 18970 } 18971 18972 /* 18973 * Here we create one or more Multidata messages, each made up of 18974 * one header buffer and up to N payload buffers. This entire 18975 * operation is done within two loops: 18976 * 18977 * The outer loop mostly deals with creating the Multidata message, 18978 * as well as the header buffer that gets added to it. It also 18979 * links the Multidata messages together such that all of them can 18980 * be sent down to the lower layer in a single putnext call; this 18981 * linking behavior depends on the tcp_mdt_chain tunable. 18982 * 18983 * The inner loop takes an existing Multidata message, and adds 18984 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 18985 * packetizes those buffers by filling up the corresponding header 18986 * buffer fragments with the proper IP and TCP headers, and by 18987 * describing the layout of each packet in the packet descriptors 18988 * that get added to the Multidata. 18989 */ 18990 do { 18991 /* 18992 * If usable send window is too small, or data blocks in 18993 * transmit list are smaller than our threshold (i.e. app 18994 * performs large writes followed by small ones), we hand 18995 * off the control over to the legacy path. Note that we'll 18996 * get back the control once it encounters a large block. 18997 */ 18998 if (*usable < mss || (*tail_unsent <= mdt_thres && 18999 (*xmit_tail)->b_cont != NULL && 19000 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19001 /* send down what we've got so far */ 19002 if (md_mp_head != NULL) { 19003 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19004 obsegs, obbytes, &rconfirm); 19005 } 19006 /* 19007 * Pass control over to tcp_send(), but tell it to 19008 * return to us once a large-size transmission is 19009 * possible. 19010 */ 19011 TCP_STAT(tcp_mdt_legacy_small); 19012 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19013 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19014 tail_unsent, xmit_tail, local_time, 19015 mdt_thres)) <= 0) { 19016 /* burst count reached, or alloc failed */ 19017 IRE_REFRELE(ire); 19018 return (err); 19019 } 19020 19021 /* tcp_send() may have sent everything, so check */ 19022 if (*usable <= 0) { 19023 IRE_REFRELE(ire); 19024 return (0); 19025 } 19026 19027 TCP_STAT(tcp_mdt_legacy_ret); 19028 /* 19029 * We may have delivered the Multidata, so make sure 19030 * to re-initialize before the next round. 19031 */ 19032 md_mp_head = NULL; 19033 obsegs = obbytes = 0; 19034 num_burst_seg = tcp->tcp_snd_burst; 19035 PREP_NEW_MULTIDATA(); 19036 19037 /* are we starting from the beginning of data block? */ 19038 if (*tail_unsent == 0) { 19039 *xmit_tail = (*xmit_tail)->b_cont; 19040 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19041 (uintptr_t)INT_MAX); 19042 *tail_unsent = (int)MBLKL(*xmit_tail); 19043 } 19044 } 19045 19046 /* 19047 * max_pld limits the number of mblks in tcp's transmit 19048 * queue that can be added to a Multidata message. Once 19049 * this counter reaches zero, no more additional mblks 19050 * can be added to it. What happens afterwards depends 19051 * on whether or not we are set to chain the Multidata 19052 * messages. If we are to link them together, reset 19053 * max_pld to its original value (tcp_mdt_max_pld) and 19054 * prepare to create a new Multidata message which will 19055 * get linked to md_mp_head. Else, leave it alone and 19056 * let the inner loop break on its own. 19057 */ 19058 if (tcp_mdt_chain && max_pld == 0) 19059 PREP_NEW_MULTIDATA(); 19060 19061 /* adding a payload buffer; re-initialize values */ 19062 if (add_buffer) 19063 PREP_NEW_PBUF(); 19064 19065 /* 19066 * If we don't have a Multidata, either because we just 19067 * (re)entered this outer loop, or after we branched off 19068 * to tcp_send above, setup the Multidata and header 19069 * buffer to be used. 19070 */ 19071 if (md_mp == NULL) { 19072 int md_hbuflen; 19073 uint32_t start, stuff; 19074 19075 /* 19076 * Calculate Multidata header buffer size large enough 19077 * to hold all of the headers that can possibly be 19078 * sent at this moment. We'd rather over-estimate 19079 * the size than running out of space; this is okay 19080 * since this buffer is small anyway. 19081 */ 19082 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19083 19084 /* 19085 * Start and stuff offset for partial hardware 19086 * checksum offload; these are currently for IPv4. 19087 * For full checksum offload, they are set to zero. 19088 */ 19089 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19090 if (af == AF_INET) { 19091 start = IP_SIMPLE_HDR_LENGTH; 19092 stuff = IP_SIMPLE_HDR_LENGTH + 19093 TCP_CHECKSUM_OFFSET; 19094 } else { 19095 start = IPV6_HDR_LEN; 19096 stuff = IPV6_HDR_LEN + 19097 TCP_CHECKSUM_OFFSET; 19098 } 19099 } else { 19100 start = stuff = 0; 19101 } 19102 19103 /* 19104 * Create the header buffer, Multidata, as well as 19105 * any necessary attributes (destination address, 19106 * SAP and hardware checksum offload) that should 19107 * be associated with the Multidata message. 19108 */ 19109 ASSERT(cur_hdr_off == 0); 19110 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19111 ((md_hbuf->b_wptr += md_hbuflen), 19112 (mmd = mmd_alloc(md_hbuf, &md_mp, 19113 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19114 /* fastpath mblk */ 19115 (af == AF_INET) ? ire->ire_dlureq_mp : 19116 ire->ire_nce->nce_res_mp, 19117 /* hardware checksum enabled */ 19118 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19119 /* hardware checksum offsets */ 19120 start, stuff, 0, 19121 /* hardware checksum flag */ 19122 hwcksum_flags) != 0)) { 19123 legacy_send: 19124 if (md_mp != NULL) { 19125 /* Unlink message from the chain */ 19126 if (md_mp_head != NULL) { 19127 err = (intptr_t)rmvb(md_mp_head, 19128 md_mp); 19129 /* 19130 * We can't assert that rmvb 19131 * did not return -1, since we 19132 * may get here before linkb 19133 * happens. We do, however, 19134 * check if we just removed the 19135 * only element in the list. 19136 */ 19137 if (err == 0) 19138 md_mp_head = NULL; 19139 } 19140 /* md_hbuf gets freed automatically */ 19141 TCP_STAT(tcp_mdt_discarded); 19142 freeb(md_mp); 19143 } else { 19144 /* Either allocb or mmd_alloc failed */ 19145 TCP_STAT(tcp_mdt_allocfail); 19146 if (md_hbuf != NULL) 19147 freeb(md_hbuf); 19148 } 19149 19150 /* send down what we've got so far */ 19151 if (md_mp_head != NULL) { 19152 tcp_multisend_data(tcp, ire, ill, 19153 md_mp_head, obsegs, obbytes, 19154 &rconfirm); 19155 } 19156 legacy_send_no_md: 19157 if (ire != NULL) 19158 IRE_REFRELE(ire); 19159 /* 19160 * Too bad; let the legacy path handle this. 19161 * We specify INT_MAX for the threshold, since 19162 * we gave up with the Multidata processings 19163 * and let the old path have it all. 19164 */ 19165 TCP_STAT(tcp_mdt_legacy_all); 19166 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19167 tcp_tcp_hdr_len, num_sack_blk, usable, 19168 snxt, tail_unsent, xmit_tail, local_time, 19169 INT_MAX)); 19170 } 19171 19172 /* link to any existing ones, if applicable */ 19173 TCP_STAT(tcp_mdt_allocd); 19174 if (md_mp_head == NULL) { 19175 md_mp_head = md_mp; 19176 } else if (tcp_mdt_chain) { 19177 TCP_STAT(tcp_mdt_linked); 19178 linkb(md_mp_head, md_mp); 19179 } 19180 } 19181 19182 ASSERT(md_mp_head != NULL); 19183 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19184 ASSERT(md_mp != NULL && mmd != NULL); 19185 ASSERT(md_hbuf != NULL); 19186 19187 /* 19188 * Packetize the transmittable portion of the data block; 19189 * each data block is essentially added to the Multidata 19190 * as a payload buffer. We also deal with adding more 19191 * than one payload buffers, which happens when the remaining 19192 * packetized portion of the current payload buffer is less 19193 * than MSS, while the next data block in transmit queue 19194 * has enough data to make up for one. This "spillover" 19195 * case essentially creates a split-packet, where portions 19196 * of the packet's payload fragments may span across two 19197 * virtually discontiguous address blocks. 19198 */ 19199 seg_len = mss; 19200 do { 19201 len = seg_len; 19202 19203 ASSERT(len > 0); 19204 ASSERT(max_pld >= 0); 19205 ASSERT(!add_buffer || cur_pld_off == 0); 19206 19207 /* 19208 * First time around for this payload buffer; note 19209 * in the case of a spillover, the following has 19210 * been done prior to adding the split-packet 19211 * descriptor to Multidata, and we don't want to 19212 * repeat the process. 19213 */ 19214 if (add_buffer) { 19215 ASSERT(mmd != NULL); 19216 ASSERT(md_pbuf == NULL); 19217 ASSERT(md_pbuf_nxt == NULL); 19218 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19219 19220 /* 19221 * Have we reached the limit? We'd get to 19222 * this case when we're not chaining the 19223 * Multidata messages together, and since 19224 * we're done, terminate this loop. 19225 */ 19226 if (max_pld == 0) 19227 break; /* done */ 19228 19229 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19230 TCP_STAT(tcp_mdt_allocfail); 19231 goto legacy_send; /* out_of_mem */ 19232 } 19233 19234 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19235 zc_cap != NULL) { 19236 if (!ip_md_zcopy_attr(mmd, NULL, 19237 zc_cap->ill_zerocopy_flags)) { 19238 freeb(md_pbuf); 19239 TCP_STAT(tcp_mdt_allocfail); 19240 /* out_of_mem */ 19241 goto legacy_send; 19242 } 19243 zcopy = B_TRUE; 19244 } 19245 19246 md_pbuf->b_rptr += base_pld_off; 19247 19248 /* 19249 * Add a payload buffer to the Multidata; this 19250 * operation must not fail, or otherwise our 19251 * logic in this routine is broken. There 19252 * is no memory allocation done by the 19253 * routine, so any returned failure simply 19254 * tells us that we've done something wrong. 19255 * 19256 * A failure tells us that either we're adding 19257 * the same payload buffer more than once, or 19258 * we're trying to add more buffers than 19259 * allowed (max_pld calculation is wrong). 19260 * None of the above cases should happen, and 19261 * we panic because either there's horrible 19262 * heap corruption, and/or programming mistake. 19263 */ 19264 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19265 if (pbuf_idx < 0) { 19266 cmn_err(CE_PANIC, "tcp_multisend: " 19267 "payload buffer logic error " 19268 "detected for tcp %p mmd %p " 19269 "pbuf %p (%d)\n", 19270 (void *)tcp, (void *)mmd, 19271 (void *)md_pbuf, pbuf_idx); 19272 } 19273 19274 ASSERT(max_pld > 0); 19275 --max_pld; 19276 add_buffer = B_FALSE; 19277 } 19278 19279 ASSERT(md_mp_head != NULL); 19280 ASSERT(md_pbuf != NULL); 19281 ASSERT(md_pbuf_nxt == NULL); 19282 ASSERT(pbuf_idx != -1); 19283 ASSERT(pbuf_idx_nxt == -1); 19284 ASSERT(*usable > 0); 19285 19286 /* 19287 * We spillover to the next payload buffer only 19288 * if all of the following is true: 19289 * 19290 * 1. There is not enough data on the current 19291 * payload buffer to make up `len', 19292 * 2. We are allowed to send `len', 19293 * 3. The next payload buffer length is large 19294 * enough to accomodate `spill'. 19295 */ 19296 if ((spill = len - *tail_unsent) > 0 && 19297 *usable >= len && 19298 MBLKL((*xmit_tail)->b_cont) >= spill && 19299 max_pld > 0) { 19300 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19301 if (md_pbuf_nxt == NULL) { 19302 TCP_STAT(tcp_mdt_allocfail); 19303 goto legacy_send; /* out_of_mem */ 19304 } 19305 19306 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19307 zc_cap != NULL) { 19308 if (!ip_md_zcopy_attr(mmd, NULL, 19309 zc_cap->ill_zerocopy_flags)) { 19310 freeb(md_pbuf_nxt); 19311 TCP_STAT(tcp_mdt_allocfail); 19312 /* out_of_mem */ 19313 goto legacy_send; 19314 } 19315 zcopy = B_TRUE; 19316 } 19317 19318 /* 19319 * See comments above on the first call to 19320 * mmd_addpldbuf for explanation on the panic. 19321 */ 19322 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19323 if (pbuf_idx_nxt < 0) { 19324 panic("tcp_multisend: " 19325 "next payload buffer logic error " 19326 "detected for tcp %p mmd %p " 19327 "pbuf %p (%d)\n", 19328 (void *)tcp, (void *)mmd, 19329 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19330 } 19331 19332 ASSERT(max_pld > 0); 19333 --max_pld; 19334 } else if (spill > 0) { 19335 /* 19336 * If there's a spillover, but the following 19337 * xmit_tail couldn't give us enough octets 19338 * to reach "len", then stop the current 19339 * Multidata creation and let the legacy 19340 * tcp_send() path take over. We don't want 19341 * to send the tiny segment as part of this 19342 * Multidata for performance reasons; instead, 19343 * we let the legacy path deal with grouping 19344 * it with the subsequent small mblks. 19345 */ 19346 if (*usable >= len && 19347 MBLKL((*xmit_tail)->b_cont) < spill) { 19348 max_pld = 0; 19349 break; /* done */ 19350 } 19351 19352 /* 19353 * We can't spillover, and we are near 19354 * the end of the current payload buffer, 19355 * so send what's left. 19356 */ 19357 ASSERT(*tail_unsent > 0); 19358 len = *tail_unsent; 19359 } 19360 19361 /* tail_unsent is negated if there is a spillover */ 19362 *tail_unsent -= len; 19363 *usable -= len; 19364 ASSERT(*usable >= 0); 19365 19366 if (*usable < mss) 19367 seg_len = *usable; 19368 /* 19369 * Sender SWS avoidance; see comments in tcp_send(); 19370 * everything else is the same, except that we only 19371 * do this here if there is no more data to be sent 19372 * following the current xmit_tail. We don't check 19373 * for 1-byte urgent data because we shouldn't get 19374 * here if TCP_URG_VALID is set. 19375 */ 19376 if (*usable > 0 && *usable < mss && 19377 ((md_pbuf_nxt == NULL && 19378 (*xmit_tail)->b_cont == NULL) || 19379 (md_pbuf_nxt != NULL && 19380 (*xmit_tail)->b_cont->b_cont == NULL)) && 19381 seg_len < (tcp->tcp_max_swnd >> 1) && 19382 (tcp->tcp_unsent - 19383 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19384 !tcp->tcp_zero_win_probe) { 19385 if ((*snxt + len) == tcp->tcp_snxt && 19386 (*snxt + len) == tcp->tcp_suna) { 19387 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19388 } 19389 done = B_TRUE; 19390 } 19391 19392 /* 19393 * Prime pump for IP's checksumming on our behalf; 19394 * include the adjustment for a source route if any. 19395 * Do this only for software/partial hardware checksum 19396 * offload, as this field gets zeroed out later for 19397 * the full hardware checksum offload case. 19398 */ 19399 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19400 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19401 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19402 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19403 } 19404 19405 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19406 *snxt += len; 19407 19408 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19409 /* 19410 * We set the PUSH bit only if TCP has no more buffered 19411 * data to be transmitted (or if sender SWS avoidance 19412 * takes place), as opposed to setting it for every 19413 * last packet in the burst. 19414 */ 19415 if (done || 19416 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19417 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19418 19419 /* 19420 * Set FIN bit if this is our last segment; snxt 19421 * already includes its length, and it will not 19422 * be adjusted after this point. 19423 */ 19424 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19425 *snxt == tcp->tcp_fss) { 19426 if (!tcp->tcp_fin_acked) { 19427 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19428 BUMP_MIB(&tcp_mib, tcpOutControl); 19429 } 19430 if (!tcp->tcp_fin_sent) { 19431 tcp->tcp_fin_sent = B_TRUE; 19432 /* 19433 * tcp state must be ESTABLISHED 19434 * in order for us to get here in 19435 * the first place. 19436 */ 19437 tcp->tcp_state = TCPS_FIN_WAIT_1; 19438 19439 /* 19440 * Upon returning from this routine, 19441 * tcp_wput_data() will set tcp_snxt 19442 * to be equal to snxt + tcp_fin_sent. 19443 * This is essentially the same as 19444 * setting it to tcp_fss + 1. 19445 */ 19446 } 19447 } 19448 19449 tcp->tcp_last_sent_len = (ushort_t)len; 19450 19451 len += tcp_hdr_len; 19452 if (tcp->tcp_ipversion == IPV4_VERSION) 19453 tcp->tcp_ipha->ipha_length = htons(len); 19454 else 19455 tcp->tcp_ip6h->ip6_plen = htons(len - 19456 ((char *)&tcp->tcp_ip6h[1] - 19457 tcp->tcp_iphc)); 19458 19459 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19460 19461 /* setup header fragment */ 19462 PDESC_HDR_ADD(pkt_info, 19463 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19464 tcp->tcp_mdt_hdr_head, /* head room */ 19465 tcp_hdr_len, /* len */ 19466 tcp->tcp_mdt_hdr_tail); /* tail room */ 19467 19468 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19469 hdr_frag_sz); 19470 ASSERT(MBLKIN(md_hbuf, 19471 (pkt_info->hdr_base - md_hbuf->b_rptr), 19472 PDESC_HDRSIZE(pkt_info))); 19473 19474 /* setup first payload fragment */ 19475 PDESC_PLD_INIT(pkt_info); 19476 PDESC_PLD_SPAN_ADD(pkt_info, 19477 pbuf_idx, /* index */ 19478 md_pbuf->b_rptr + cur_pld_off, /* start */ 19479 tcp->tcp_last_sent_len); /* len */ 19480 19481 /* create a split-packet in case of a spillover */ 19482 if (md_pbuf_nxt != NULL) { 19483 ASSERT(spill > 0); 19484 ASSERT(pbuf_idx_nxt > pbuf_idx); 19485 ASSERT(!add_buffer); 19486 19487 md_pbuf = md_pbuf_nxt; 19488 md_pbuf_nxt = NULL; 19489 pbuf_idx = pbuf_idx_nxt; 19490 pbuf_idx_nxt = -1; 19491 cur_pld_off = spill; 19492 19493 /* trim out first payload fragment */ 19494 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 19495 19496 /* setup second payload fragment */ 19497 PDESC_PLD_SPAN_ADD(pkt_info, 19498 pbuf_idx, /* index */ 19499 md_pbuf->b_rptr, /* start */ 19500 spill); /* len */ 19501 19502 if ((*xmit_tail)->b_next == NULL) { 19503 /* 19504 * Store the lbolt used for RTT 19505 * estimation. We can only record one 19506 * timestamp per mblk so we do it when 19507 * we reach the end of the payload 19508 * buffer. Also we only take a new 19509 * timestamp sample when the previous 19510 * timed data from the same mblk has 19511 * been ack'ed. 19512 */ 19513 (*xmit_tail)->b_prev = local_time; 19514 (*xmit_tail)->b_next = 19515 (mblk_t *)(uintptr_t)first_snxt; 19516 } 19517 19518 first_snxt = *snxt - spill; 19519 19520 /* 19521 * Advance xmit_tail; usable could be 0 by 19522 * the time we got here, but we made sure 19523 * above that we would only spillover to 19524 * the next data block if usable includes 19525 * the spilled-over amount prior to the 19526 * subtraction. Therefore, we are sure 19527 * that xmit_tail->b_cont can't be NULL. 19528 */ 19529 ASSERT((*xmit_tail)->b_cont != NULL); 19530 *xmit_tail = (*xmit_tail)->b_cont; 19531 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19532 (uintptr_t)INT_MAX); 19533 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 19534 } else { 19535 cur_pld_off += tcp->tcp_last_sent_len; 19536 } 19537 19538 /* 19539 * Fill in the header using the template header, and 19540 * add options such as time-stamp, ECN and/or SACK, 19541 * as needed. 19542 */ 19543 tcp_fill_header(tcp, pkt_info->hdr_rptr, 19544 (clock_t)local_time, num_sack_blk); 19545 19546 /* take care of some IP header businesses */ 19547 if (af == AF_INET) { 19548 ipha = (ipha_t *)pkt_info->hdr_rptr; 19549 19550 ASSERT(OK_32PTR((uchar_t *)ipha)); 19551 ASSERT(PDESC_HDRL(pkt_info) >= 19552 IP_SIMPLE_HDR_LENGTH); 19553 ASSERT(ipha->ipha_version_and_hdr_length == 19554 IP_SIMPLE_HDR_VERSION); 19555 19556 /* 19557 * Assign ident value for current packet; see 19558 * related comments in ip_wput_ire() about the 19559 * contract private interface with clustering 19560 * group. 19561 */ 19562 clusterwide = B_FALSE; 19563 if (cl_inet_ipident != NULL) { 19564 ASSERT(cl_inet_isclusterwide != NULL); 19565 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 19566 AF_INET, 19567 (uint8_t *)(uintptr_t)src)) { 19568 ipha->ipha_ident = 19569 (*cl_inet_ipident) 19570 (IPPROTO_IP, AF_INET, 19571 (uint8_t *)(uintptr_t)src, 19572 (uint8_t *)(uintptr_t)dst); 19573 clusterwide = B_TRUE; 19574 } 19575 } 19576 19577 if (!clusterwide) { 19578 ipha->ipha_ident = (uint16_t) 19579 atomic_add_32_nv( 19580 &ire->ire_ident, 1); 19581 } 19582 #ifndef _BIG_ENDIAN 19583 ipha->ipha_ident = (ipha->ipha_ident << 8) | 19584 (ipha->ipha_ident >> 8); 19585 #endif 19586 } else { 19587 ip6h = (ip6_t *)pkt_info->hdr_rptr; 19588 19589 ASSERT(OK_32PTR((uchar_t *)ip6h)); 19590 ASSERT(IPVER(ip6h) == IPV6_VERSION); 19591 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 19592 ASSERT(PDESC_HDRL(pkt_info) >= 19593 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 19594 TCP_CHECKSUM_SIZE)); 19595 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 19596 19597 if (tcp->tcp_ip_forward_progress) { 19598 rconfirm = B_TRUE; 19599 tcp->tcp_ip_forward_progress = B_FALSE; 19600 } 19601 } 19602 19603 /* at least one payload span, and at most two */ 19604 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 19605 19606 /* add the packet descriptor to Multidata */ 19607 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 19608 KM_NOSLEEP)) == NULL) { 19609 /* 19610 * Any failure other than ENOMEM indicates 19611 * that we have passed in invalid pkt_info 19612 * or parameters to mmd_addpdesc, which must 19613 * not happen. 19614 * 19615 * EINVAL is a result of failure on boundary 19616 * checks against the pkt_info contents. It 19617 * should not happen, and we panic because 19618 * either there's horrible heap corruption, 19619 * and/or programming mistake. 19620 */ 19621 if (err != ENOMEM) { 19622 cmn_err(CE_PANIC, "tcp_multisend: " 19623 "pdesc logic error detected for " 19624 "tcp %p mmd %p pinfo %p (%d)\n", 19625 (void *)tcp, (void *)mmd, 19626 (void *)pkt_info, err); 19627 } 19628 TCP_STAT(tcp_mdt_addpdescfail); 19629 goto legacy_send; /* out_of_mem */ 19630 } 19631 ASSERT(pkt != NULL); 19632 19633 /* calculate IP header and TCP checksums */ 19634 if (af == AF_INET) { 19635 /* calculate pseudo-header checksum */ 19636 cksum = (dst >> 16) + (dst & 0xFFFF) + 19637 (src >> 16) + (src & 0xFFFF); 19638 19639 /* offset for TCP header checksum */ 19640 up = IPH_TCPH_CHECKSUMP(ipha, 19641 IP_SIMPLE_HDR_LENGTH); 19642 } else { 19643 up = (uint16_t *)&ip6h->ip6_src; 19644 19645 /* calculate pseudo-header checksum */ 19646 cksum = up[0] + up[1] + up[2] + up[3] + 19647 up[4] + up[5] + up[6] + up[7] + 19648 up[8] + up[9] + up[10] + up[11] + 19649 up[12] + up[13] + up[14] + up[15]; 19650 19651 /* Fold the initial sum */ 19652 cksum = (cksum & 0xffff) + (cksum >> 16); 19653 19654 up = (uint16_t *)(((uchar_t *)ip6h) + 19655 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 19656 } 19657 19658 if (hwcksum_flags & HCK_FULLCKSUM) { 19659 /* clear checksum field for hardware */ 19660 *up = 0; 19661 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 19662 uint32_t sum; 19663 19664 /* pseudo-header checksumming */ 19665 sum = *up + cksum + IP_TCP_CSUM_COMP; 19666 sum = (sum & 0xFFFF) + (sum >> 16); 19667 *up = (sum & 0xFFFF) + (sum >> 16); 19668 } else { 19669 /* software checksumming */ 19670 TCP_STAT(tcp_out_sw_cksum); 19671 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 19672 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 19673 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 19674 cksum + IP_TCP_CSUM_COMP); 19675 if (*up == 0) 19676 *up = 0xFFFF; 19677 } 19678 19679 /* IPv4 header checksum */ 19680 if (af == AF_INET) { 19681 ipha->ipha_fragment_offset_and_flags |= 19682 (uint32_t)htons(ire->ire_frag_flag); 19683 19684 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 19685 ipha->ipha_hdr_checksum = 0; 19686 } else { 19687 IP_HDR_CKSUM(ipha, cksum, 19688 ((uint32_t *)ipha)[0], 19689 ((uint16_t *)ipha)[4]); 19690 } 19691 } 19692 19693 /* advance header offset */ 19694 cur_hdr_off += hdr_frag_sz; 19695 19696 obbytes += tcp->tcp_last_sent_len; 19697 ++obsegs; 19698 } while (!done && *usable > 0 && --num_burst_seg > 0 && 19699 *tail_unsent > 0); 19700 19701 if ((*xmit_tail)->b_next == NULL) { 19702 /* 19703 * Store the lbolt used for RTT estimation. We can only 19704 * record one timestamp per mblk so we do it when we 19705 * reach the end of the payload buffer. Also we only 19706 * take a new timestamp sample when the previous timed 19707 * data from the same mblk has been ack'ed. 19708 */ 19709 (*xmit_tail)->b_prev = local_time; 19710 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 19711 } 19712 19713 ASSERT(*tail_unsent >= 0); 19714 if (*tail_unsent > 0) { 19715 /* 19716 * We got here because we broke out of the above 19717 * loop due to of one of the following cases: 19718 * 19719 * 1. len < adjusted MSS (i.e. small), 19720 * 2. Sender SWS avoidance, 19721 * 3. max_pld is zero. 19722 * 19723 * We are done for this Multidata, so trim our 19724 * last payload buffer (if any) accordingly. 19725 */ 19726 if (md_pbuf != NULL) 19727 md_pbuf->b_wptr -= *tail_unsent; 19728 } else if (*usable > 0) { 19729 *xmit_tail = (*xmit_tail)->b_cont; 19730 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19731 (uintptr_t)INT_MAX); 19732 *tail_unsent = (int)MBLKL(*xmit_tail); 19733 add_buffer = B_TRUE; 19734 } 19735 } while (!done && *usable > 0 && num_burst_seg > 0 && 19736 (tcp_mdt_chain || max_pld > 0)); 19737 19738 /* send everything down */ 19739 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 19740 &rconfirm); 19741 19742 #undef PREP_NEW_MULTIDATA 19743 #undef PREP_NEW_PBUF 19744 #undef IPVER 19745 19746 IRE_REFRELE(ire); 19747 return (0); 19748 } 19749 19750 /* 19751 * A wrapper function for sending one or more Multidata messages down to 19752 * the module below ip; this routine does not release the reference of the 19753 * IRE (caller does that). This routine is analogous to tcp_send_data(). 19754 */ 19755 static void 19756 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 19757 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 19758 { 19759 uint64_t delta; 19760 nce_t *nce; 19761 19762 ASSERT(ire != NULL && ill != NULL); 19763 ASSERT(ire->ire_stq != NULL); 19764 ASSERT(md_mp_head != NULL); 19765 ASSERT(rconfirm != NULL); 19766 19767 /* adjust MIBs and IRE timestamp */ 19768 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 19769 tcp->tcp_obsegs += obsegs; 19770 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 19771 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 19772 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 19773 19774 if (tcp->tcp_ipversion == IPV4_VERSION) { 19775 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 19776 UPDATE_MIB(&ip_mib, ipOutRequests, obsegs); 19777 } else { 19778 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 19779 UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs); 19780 } 19781 19782 ire->ire_ob_pkt_count += obsegs; 19783 if (ire->ire_ipif != NULL) 19784 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 19785 ire->ire_last_used_time = lbolt; 19786 19787 /* send it down */ 19788 putnext(ire->ire_stq, md_mp_head); 19789 19790 /* we're done for TCP/IPv4 */ 19791 if (tcp->tcp_ipversion == IPV4_VERSION) 19792 return; 19793 19794 nce = ire->ire_nce; 19795 19796 ASSERT(nce != NULL); 19797 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 19798 ASSERT(nce->nce_state != ND_INCOMPLETE); 19799 19800 /* reachability confirmation? */ 19801 if (*rconfirm) { 19802 nce->nce_last = TICK_TO_MSEC(lbolt64); 19803 if (nce->nce_state != ND_REACHABLE) { 19804 mutex_enter(&nce->nce_lock); 19805 nce->nce_state = ND_REACHABLE; 19806 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 19807 mutex_exit(&nce->nce_lock); 19808 (void) untimeout(nce->nce_timeout_id); 19809 if (ip_debug > 2) { 19810 /* ip1dbg */ 19811 pr_addr_dbg("tcp_multisend_data: state " 19812 "for %s changed to REACHABLE\n", 19813 AF_INET6, &ire->ire_addr_v6); 19814 } 19815 } 19816 /* reset transport reachability confirmation */ 19817 *rconfirm = B_FALSE; 19818 } 19819 19820 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 19821 ip1dbg(("tcp_multisend_data: delta = %" PRId64 19822 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 19823 19824 if (delta > (uint64_t)ill->ill_reachable_time) { 19825 mutex_enter(&nce->nce_lock); 19826 switch (nce->nce_state) { 19827 case ND_REACHABLE: 19828 case ND_STALE: 19829 /* 19830 * ND_REACHABLE is identical to ND_STALE in this 19831 * specific case. If reachable time has expired for 19832 * this neighbor (delta is greater than reachable 19833 * time), conceptually, the neighbor cache is no 19834 * longer in REACHABLE state, but already in STALE 19835 * state. So the correct transition here is to 19836 * ND_DELAY. 19837 */ 19838 nce->nce_state = ND_DELAY; 19839 mutex_exit(&nce->nce_lock); 19840 NDP_RESTART_TIMER(nce, delay_first_probe_time); 19841 if (ip_debug > 3) { 19842 /* ip2dbg */ 19843 pr_addr_dbg("tcp_multisend_data: state " 19844 "for %s changed to DELAY\n", 19845 AF_INET6, &ire->ire_addr_v6); 19846 } 19847 break; 19848 case ND_DELAY: 19849 case ND_PROBE: 19850 mutex_exit(&nce->nce_lock); 19851 /* Timers have already started */ 19852 break; 19853 case ND_UNREACHABLE: 19854 /* 19855 * ndp timer has detected that this nce is 19856 * unreachable and initiated deleting this nce 19857 * and all its associated IREs. This is a race 19858 * where we found the ire before it was deleted 19859 * and have just sent out a packet using this 19860 * unreachable nce. 19861 */ 19862 mutex_exit(&nce->nce_lock); 19863 break; 19864 default: 19865 ASSERT(0); 19866 } 19867 } 19868 } 19869 19870 /* 19871 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 19872 * scheme, and returns one of the following: 19873 * 19874 * -1 = failed allocation. 19875 * 0 = success; burst count reached, or usable send window is too small, 19876 * and that we'd rather wait until later before sending again. 19877 * 1 = success; we are called from tcp_multisend(), and both usable send 19878 * window and tail_unsent are greater than the MDT threshold, and thus 19879 * Multidata Transmit should be used instead. 19880 */ 19881 static int 19882 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19883 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19884 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19885 const int mdt_thres) 19886 { 19887 int num_burst_seg = tcp->tcp_snd_burst; 19888 19889 for (;;) { 19890 struct datab *db; 19891 tcph_t *tcph; 19892 uint32_t sum; 19893 mblk_t *mp, *mp1; 19894 uchar_t *rptr; 19895 int len; 19896 19897 /* 19898 * If we're called by tcp_multisend(), and the amount of 19899 * sendable data as well as the size of current xmit_tail 19900 * is beyond the MDT threshold, return to the caller and 19901 * let the large data transmit be done using MDT. 19902 */ 19903 if (*usable > 0 && *usable > mdt_thres && 19904 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 19905 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 19906 ASSERT(tcp->tcp_mdt); 19907 return (1); /* success; do large send */ 19908 } 19909 19910 if (num_burst_seg-- == 0) 19911 break; /* success; burst count reached */ 19912 19913 len = mss; 19914 if (len > *usable) { 19915 len = *usable; 19916 if (len <= 0) { 19917 /* Terminate the loop */ 19918 break; /* success; too small */ 19919 } 19920 /* 19921 * Sender silly-window avoidance. 19922 * Ignore this if we are going to send a 19923 * zero window probe out. 19924 * 19925 * TODO: force data into microscopic window? 19926 * ==> (!pushed || (unsent > usable)) 19927 */ 19928 if (len < (tcp->tcp_max_swnd >> 1) && 19929 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 19930 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 19931 len == 1) && (! tcp->tcp_zero_win_probe)) { 19932 /* 19933 * If the retransmit timer is not running 19934 * we start it so that we will retransmit 19935 * in the case when the the receiver has 19936 * decremented the window. 19937 */ 19938 if (*snxt == tcp->tcp_snxt && 19939 *snxt == tcp->tcp_suna) { 19940 /* 19941 * We are not supposed to send 19942 * anything. So let's wait a little 19943 * bit longer before breaking SWS 19944 * avoidance. 19945 * 19946 * What should the value be? 19947 * Suggestion: MAX(init rexmit time, 19948 * tcp->tcp_rto) 19949 */ 19950 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19951 } 19952 break; /* success; too small */ 19953 } 19954 } 19955 19956 tcph = tcp->tcp_tcph; 19957 19958 *usable -= len; /* Approximate - can be adjusted later */ 19959 if (*usable > 0) 19960 tcph->th_flags[0] = TH_ACK; 19961 else 19962 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 19963 19964 /* 19965 * Prime pump for IP's checksumming on our behalf 19966 * Include the adjustment for a source route if any. 19967 */ 19968 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19969 sum = (sum >> 16) + (sum & 0xFFFF); 19970 U16_TO_ABE16(sum, tcph->th_sum); 19971 19972 U32_TO_ABE32(*snxt, tcph->th_seq); 19973 19974 /* 19975 * Branch off to tcp_xmit_mp() if any of the VALID bits is 19976 * set. For the case when TCP_FSS_VALID is the only valid 19977 * bit (normal active close), branch off only when we think 19978 * that the FIN flag needs to be set. Note for this case, 19979 * that (snxt + len) may not reflect the actual seg_len, 19980 * as len may be further reduced in tcp_xmit_mp(). If len 19981 * gets modified, we will end up here again. 19982 */ 19983 if (tcp->tcp_valid_bits != 0 && 19984 (tcp->tcp_valid_bits != TCP_FSS_VALID || 19985 ((*snxt + len) == tcp->tcp_fss))) { 19986 uchar_t *prev_rptr; 19987 uint32_t prev_snxt = tcp->tcp_snxt; 19988 19989 if (*tail_unsent == 0) { 19990 ASSERT((*xmit_tail)->b_cont != NULL); 19991 *xmit_tail = (*xmit_tail)->b_cont; 19992 prev_rptr = (*xmit_tail)->b_rptr; 19993 *tail_unsent = (int)((*xmit_tail)->b_wptr - 19994 (*xmit_tail)->b_rptr); 19995 } else { 19996 prev_rptr = (*xmit_tail)->b_rptr; 19997 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 19998 *tail_unsent; 19999 } 20000 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20001 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20002 /* Restore tcp_snxt so we get amount sent right. */ 20003 tcp->tcp_snxt = prev_snxt; 20004 if (prev_rptr == (*xmit_tail)->b_rptr) { 20005 /* 20006 * If the previous timestamp is still in use, 20007 * don't stomp on it. 20008 */ 20009 if ((*xmit_tail)->b_next == NULL) { 20010 (*xmit_tail)->b_prev = local_time; 20011 (*xmit_tail)->b_next = 20012 (mblk_t *)(uintptr_t)(*snxt); 20013 } 20014 } else 20015 (*xmit_tail)->b_rptr = prev_rptr; 20016 20017 if (mp == NULL) 20018 return (-1); 20019 mp1 = mp->b_cont; 20020 20021 tcp->tcp_last_sent_len = (ushort_t)len; 20022 while (mp1->b_cont) { 20023 *xmit_tail = (*xmit_tail)->b_cont; 20024 (*xmit_tail)->b_prev = local_time; 20025 (*xmit_tail)->b_next = 20026 (mblk_t *)(uintptr_t)(*snxt); 20027 mp1 = mp1->b_cont; 20028 } 20029 *snxt += len; 20030 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20031 BUMP_LOCAL(tcp->tcp_obsegs); 20032 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20033 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20034 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20035 tcp_send_data(tcp, q, mp); 20036 continue; 20037 } 20038 20039 *snxt += len; /* Adjust later if we don't send all of len */ 20040 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 20041 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 20042 20043 if (*tail_unsent) { 20044 /* Are the bytes above us in flight? */ 20045 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20046 if (rptr != (*xmit_tail)->b_rptr) { 20047 *tail_unsent -= len; 20048 tcp->tcp_last_sent_len = (ushort_t)len; 20049 len += tcp_hdr_len; 20050 if (tcp->tcp_ipversion == IPV4_VERSION) 20051 tcp->tcp_ipha->ipha_length = htons(len); 20052 else 20053 tcp->tcp_ip6h->ip6_plen = 20054 htons(len - 20055 ((char *)&tcp->tcp_ip6h[1] - 20056 tcp->tcp_iphc)); 20057 mp = dupb(*xmit_tail); 20058 if (!mp) 20059 return (-1); /* out_of_mem */ 20060 mp->b_rptr = rptr; 20061 /* 20062 * If the old timestamp is no longer in use, 20063 * sample a new timestamp now. 20064 */ 20065 if ((*xmit_tail)->b_next == NULL) { 20066 (*xmit_tail)->b_prev = local_time; 20067 (*xmit_tail)->b_next = 20068 (mblk_t *)(uintptr_t)(*snxt-len); 20069 } 20070 goto must_alloc; 20071 } 20072 } else { 20073 *xmit_tail = (*xmit_tail)->b_cont; 20074 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20075 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20076 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20077 (*xmit_tail)->b_rptr); 20078 } 20079 20080 (*xmit_tail)->b_prev = local_time; 20081 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20082 20083 *tail_unsent -= len; 20084 tcp->tcp_last_sent_len = (ushort_t)len; 20085 20086 len += tcp_hdr_len; 20087 if (tcp->tcp_ipversion == IPV4_VERSION) 20088 tcp->tcp_ipha->ipha_length = htons(len); 20089 else 20090 tcp->tcp_ip6h->ip6_plen = htons(len - 20091 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20092 20093 mp = dupb(*xmit_tail); 20094 if (!mp) 20095 return (-1); /* out_of_mem */ 20096 20097 len = tcp_hdr_len; 20098 /* 20099 * There are four reasons to allocate a new hdr mblk: 20100 * 1) The bytes above us are in use by another packet 20101 * 2) We don't have good alignment 20102 * 3) The mblk is being shared 20103 * 4) We don't have enough room for a header 20104 */ 20105 rptr = mp->b_rptr - len; 20106 if (!OK_32PTR(rptr) || 20107 ((db = mp->b_datap), db->db_ref != 2) || 20108 rptr < db->db_base) { 20109 /* NOTE: we assume allocb returns an OK_32PTR */ 20110 20111 must_alloc:; 20112 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20113 tcp_wroff_xtra, BPRI_MED); 20114 if (!mp1) { 20115 freemsg(mp); 20116 return (-1); /* out_of_mem */ 20117 } 20118 mp1->b_cont = mp; 20119 mp = mp1; 20120 /* Leave room for Link Level header */ 20121 len = tcp_hdr_len; 20122 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20123 mp->b_wptr = &rptr[len]; 20124 } 20125 20126 /* 20127 * Fill in the header using the template header, and add 20128 * options such as time-stamp, ECN and/or SACK, as needed. 20129 */ 20130 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20131 20132 mp->b_rptr = rptr; 20133 20134 if (*tail_unsent) { 20135 int spill = *tail_unsent; 20136 20137 mp1 = mp->b_cont; 20138 if (!mp1) 20139 mp1 = mp; 20140 20141 /* 20142 * If we're a little short, tack on more mblks until 20143 * there is no more spillover. 20144 */ 20145 while (spill < 0) { 20146 mblk_t *nmp; 20147 int nmpsz; 20148 20149 nmp = (*xmit_tail)->b_cont; 20150 nmpsz = MBLKL(nmp); 20151 20152 /* 20153 * Excess data in mblk; can we split it? 20154 * If MDT is enabled for the connection, 20155 * keep on splitting as this is a transient 20156 * send path. 20157 */ 20158 if (!tcp->tcp_mdt && (spill + nmpsz > 0)) { 20159 /* 20160 * Don't split if stream head was 20161 * told to break up larger writes 20162 * into smaller ones. 20163 */ 20164 if (tcp->tcp_maxpsz > 0) 20165 break; 20166 20167 /* 20168 * Next mblk is less than SMSS/2 20169 * rounded up to nearest 64-byte; 20170 * let it get sent as part of the 20171 * next segment. 20172 */ 20173 if (tcp->tcp_localnet && 20174 !tcp->tcp_cork && 20175 (nmpsz < roundup((mss >> 1), 64))) 20176 break; 20177 } 20178 20179 *xmit_tail = nmp; 20180 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 20181 /* Stash for rtt use later */ 20182 (*xmit_tail)->b_prev = local_time; 20183 (*xmit_tail)->b_next = 20184 (mblk_t *)(uintptr_t)(*snxt - len); 20185 mp1->b_cont = dupb(*xmit_tail); 20186 mp1 = mp1->b_cont; 20187 20188 spill += nmpsz; 20189 if (mp1 == NULL) { 20190 *tail_unsent = spill; 20191 freemsg(mp); 20192 return (-1); /* out_of_mem */ 20193 } 20194 } 20195 20196 /* Trim back any surplus on the last mblk */ 20197 if (spill >= 0) { 20198 mp1->b_wptr -= spill; 20199 *tail_unsent = spill; 20200 } else { 20201 /* 20202 * We did not send everything we could in 20203 * order to remain within the b_cont limit. 20204 */ 20205 *usable -= spill; 20206 *snxt += spill; 20207 tcp->tcp_last_sent_len += spill; 20208 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 20209 /* 20210 * Adjust the checksum 20211 */ 20212 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 20213 sum += spill; 20214 sum = (sum >> 16) + (sum & 0xFFFF); 20215 U16_TO_ABE16(sum, tcph->th_sum); 20216 if (tcp->tcp_ipversion == IPV4_VERSION) { 20217 sum = ntohs( 20218 ((ipha_t *)rptr)->ipha_length) + 20219 spill; 20220 ((ipha_t *)rptr)->ipha_length = 20221 htons(sum); 20222 } else { 20223 sum = ntohs( 20224 ((ip6_t *)rptr)->ip6_plen) + 20225 spill; 20226 ((ip6_t *)rptr)->ip6_plen = 20227 htons(sum); 20228 } 20229 *tail_unsent = 0; 20230 } 20231 } 20232 if (tcp->tcp_ip_forward_progress) { 20233 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20234 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 20235 tcp->tcp_ip_forward_progress = B_FALSE; 20236 } 20237 20238 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 20239 tcp_send_data(tcp, q, mp); 20240 BUMP_LOCAL(tcp->tcp_obsegs); 20241 } 20242 20243 return (0); 20244 } 20245 20246 /* Unlink and return any mblk that looks like it contains a MDT info */ 20247 static mblk_t * 20248 tcp_mdt_info_mp(mblk_t *mp) 20249 { 20250 mblk_t *prev_mp; 20251 20252 for (;;) { 20253 prev_mp = mp; 20254 /* no more to process? */ 20255 if ((mp = mp->b_cont) == NULL) 20256 break; 20257 20258 switch (DB_TYPE(mp)) { 20259 case M_CTL: 20260 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 20261 continue; 20262 ASSERT(prev_mp != NULL); 20263 prev_mp->b_cont = mp->b_cont; 20264 mp->b_cont = NULL; 20265 return (mp); 20266 default: 20267 break; 20268 } 20269 } 20270 return (mp); 20271 } 20272 20273 /* MDT info update routine, called when IP notifies us about MDT */ 20274 static void 20275 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 20276 { 20277 boolean_t prev_state; 20278 20279 /* 20280 * IP is telling us to abort MDT on this connection? We know 20281 * this because the capability is only turned off when IP 20282 * encounters some pathological cases, e.g. link-layer change 20283 * where the new driver doesn't support MDT, or in situation 20284 * where MDT usage on the link-layer has been switched off. 20285 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 20286 * if the link-layer doesn't support MDT, and if it does, it 20287 * will indicate that the feature is to be turned on. 20288 */ 20289 prev_state = tcp->tcp_mdt; 20290 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 20291 if (!tcp->tcp_mdt && !first) { 20292 TCP_STAT(tcp_mdt_conn_halted3); 20293 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 20294 (void *)tcp->tcp_connp)); 20295 } 20296 20297 /* 20298 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 20299 * so disable MDT otherwise. The checks are done here 20300 * and in tcp_wput_data(). 20301 */ 20302 if (tcp->tcp_mdt && 20303 (tcp->tcp_ipversion == IPV4_VERSION && 20304 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 20305 (tcp->tcp_ipversion == IPV6_VERSION && 20306 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 20307 tcp->tcp_mdt = B_FALSE; 20308 20309 if (tcp->tcp_mdt) { 20310 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 20311 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 20312 "version (%d), expected version is %d", 20313 mdt_capab->ill_mdt_version, MDT_VERSION_2); 20314 tcp->tcp_mdt = B_FALSE; 20315 return; 20316 } 20317 20318 /* 20319 * We need the driver to be able to handle at least three 20320 * spans per packet in order for tcp MDT to be utilized. 20321 * The first is for the header portion, while the rest are 20322 * needed to handle a packet that straddles across two 20323 * virtually non-contiguous buffers; a typical tcp packet 20324 * therefore consists of only two spans. Note that we take 20325 * a zero as "don't care". 20326 */ 20327 if (mdt_capab->ill_mdt_span_limit > 0 && 20328 mdt_capab->ill_mdt_span_limit < 3) { 20329 tcp->tcp_mdt = B_FALSE; 20330 return; 20331 } 20332 20333 /* a zero means driver wants default value */ 20334 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 20335 tcp_mdt_max_pbufs); 20336 if (tcp->tcp_mdt_max_pld == 0) 20337 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 20338 20339 /* ensure 32-bit alignment */ 20340 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 20341 mdt_capab->ill_mdt_hdr_head), 4); 20342 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 20343 mdt_capab->ill_mdt_hdr_tail), 4); 20344 20345 if (!first && !prev_state) { 20346 TCP_STAT(tcp_mdt_conn_resumed2); 20347 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 20348 (void *)tcp->tcp_connp)); 20349 } 20350 } 20351 } 20352 20353 static void 20354 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt) 20355 { 20356 conn_t *connp = tcp->tcp_connp; 20357 20358 ASSERT(ire != NULL); 20359 20360 /* 20361 * We may be in the fastpath here, and although we essentially do 20362 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return, 20363 * we try to keep things as brief as possible. After all, these 20364 * are only best-effort checks, and we do more thorough ones prior 20365 * to calling tcp_multisend(). 20366 */ 20367 if (ip_multidata_outbound && check_mdt && 20368 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 20369 ill != NULL && ILL_MDT_CAPABLE(ill) && 20370 !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 20371 !(ire->ire_flags & RTF_MULTIRT) && 20372 !IPP_ENABLED(IPP_LOCAL_OUT) && 20373 CONN_IS_MD_FASTPATH(connp)) { 20374 /* Remember the result */ 20375 connp->conn_mdt_ok = B_TRUE; 20376 20377 ASSERT(ill->ill_mdt_capab != NULL); 20378 if (!ill->ill_mdt_capab->ill_mdt_on) { 20379 /* 20380 * If MDT has been previously turned off in the past, 20381 * and we currently can do MDT (due to IPQoS policy 20382 * removal, etc.) then enable it for this interface. 20383 */ 20384 ill->ill_mdt_capab->ill_mdt_on = 1; 20385 ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for " 20386 "interface %s\n", (void *)connp, ill->ill_name)); 20387 } 20388 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 20389 } 20390 20391 /* 20392 * The goal is to reduce the number of generated tcp segments by 20393 * setting the maxpsz multiplier to 0; this will have an affect on 20394 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 20395 * into each packet, up to SMSS bytes. Doing this reduces the number 20396 * of outbound segments and incoming ACKs, thus allowing for better 20397 * network and system performance. In contrast the legacy behavior 20398 * may result in sending less than SMSS size, because the last mblk 20399 * for some packets may have more data than needed to make up SMSS, 20400 * and the legacy code refused to "split" it. 20401 * 20402 * We apply the new behavior on following situations: 20403 * 20404 * 1) Loopback connections, 20405 * 2) Connections in which the remote peer is not on local subnet, 20406 * 3) Local subnet connections over the bge interface (see below). 20407 * 20408 * Ideally, we would like this behavior to apply for interfaces other 20409 * than bge. However, doing so would negatively impact drivers which 20410 * perform dynamic mapping and unmapping of DMA resources, which are 20411 * increased by setting the maxpsz multiplier to 0 (more mblks per 20412 * packet will be generated by tcp). The bge driver does not suffer 20413 * from this, as it copies the mblks into pre-mapped buffers, and 20414 * therefore does not require more I/O resources than before. 20415 * 20416 * Otherwise, this behavior is present on all network interfaces when 20417 * the destination endpoint is non-local, since reducing the number 20418 * of packets in general is good for the network. 20419 * 20420 * TODO We need to remove this hard-coded conditional for bge once 20421 * a better "self-tuning" mechanism, or a way to comprehend 20422 * the driver transmit strategy is devised. Until the solution 20423 * is found and well understood, we live with this hack. 20424 */ 20425 if (!tcp_static_maxpsz && 20426 (tcp->tcp_loopback || !tcp->tcp_localnet || 20427 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 20428 /* override the default value */ 20429 tcp->tcp_maxpsz = 0; 20430 20431 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 20432 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 20433 ill != NULL ? ill->ill_name : ipif_loopback_name)); 20434 } 20435 20436 /* set the stream head parameters accordingly */ 20437 (void) tcp_maxpsz_set(tcp, B_TRUE); 20438 } 20439 20440 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 20441 static void 20442 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 20443 { 20444 uchar_t fval = *mp->b_rptr; 20445 mblk_t *tail; 20446 queue_t *q = tcp->tcp_wq; 20447 20448 /* TODO: How should flush interact with urgent data? */ 20449 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 20450 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 20451 /* 20452 * Flush only data that has not yet been put on the wire. If 20453 * we flush data that we have already transmitted, life, as we 20454 * know it, may come to an end. 20455 */ 20456 tail = tcp->tcp_xmit_tail; 20457 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 20458 tcp->tcp_xmit_tail_unsent = 0; 20459 tcp->tcp_unsent = 0; 20460 if (tail->b_wptr != tail->b_rptr) 20461 tail = tail->b_cont; 20462 if (tail) { 20463 mblk_t **excess = &tcp->tcp_xmit_head; 20464 for (;;) { 20465 mblk_t *mp1 = *excess; 20466 if (mp1 == tail) 20467 break; 20468 tcp->tcp_xmit_tail = mp1; 20469 tcp->tcp_xmit_last = mp1; 20470 excess = &mp1->b_cont; 20471 } 20472 *excess = NULL; 20473 tcp_close_mpp(&tail); 20474 if (tcp->tcp_snd_zcopy_aware) 20475 tcp_zcopy_notify(tcp); 20476 } 20477 /* 20478 * We have no unsent data, so unsent must be less than 20479 * tcp_xmit_lowater, so re-enable flow. 20480 */ 20481 if (tcp->tcp_flow_stopped) { 20482 tcp_clrqfull(tcp); 20483 } 20484 } 20485 /* 20486 * TODO: you can't just flush these, you have to increase rwnd for one 20487 * thing. For another, how should urgent data interact? 20488 */ 20489 if (fval & FLUSHR) { 20490 *mp->b_rptr = fval & ~FLUSHW; 20491 /* XXX */ 20492 qreply(q, mp); 20493 return; 20494 } 20495 freemsg(mp); 20496 } 20497 20498 /* 20499 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 20500 * messages. 20501 */ 20502 static void 20503 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 20504 { 20505 mblk_t *mp1; 20506 STRUCT_HANDLE(strbuf, sb); 20507 uint16_t port; 20508 queue_t *q = tcp->tcp_wq; 20509 in6_addr_t v6addr; 20510 ipaddr_t v4addr; 20511 uint32_t flowinfo = 0; 20512 int addrlen; 20513 20514 /* Make sure it is one of ours. */ 20515 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20516 case TI_GETMYNAME: 20517 case TI_GETPEERNAME: 20518 break; 20519 default: 20520 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20521 return; 20522 } 20523 switch (mi_copy_state(q, mp, &mp1)) { 20524 case -1: 20525 return; 20526 case MI_COPY_CASE(MI_COPY_IN, 1): 20527 break; 20528 case MI_COPY_CASE(MI_COPY_OUT, 1): 20529 /* Copy out the strbuf. */ 20530 mi_copyout(q, mp); 20531 return; 20532 case MI_COPY_CASE(MI_COPY_OUT, 2): 20533 /* All done. */ 20534 mi_copy_done(q, mp, 0); 20535 return; 20536 default: 20537 mi_copy_done(q, mp, EPROTO); 20538 return; 20539 } 20540 /* Check alignment of the strbuf */ 20541 if (!OK_32PTR(mp1->b_rptr)) { 20542 mi_copy_done(q, mp, EINVAL); 20543 return; 20544 } 20545 20546 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 20547 (void *)mp1->b_rptr); 20548 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 20549 20550 if (STRUCT_FGET(sb, maxlen) < addrlen) { 20551 mi_copy_done(q, mp, EINVAL); 20552 return; 20553 } 20554 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 20555 case TI_GETMYNAME: 20556 if (tcp->tcp_family == AF_INET) { 20557 if (tcp->tcp_ipversion == IPV4_VERSION) { 20558 v4addr = tcp->tcp_ipha->ipha_src; 20559 } else { 20560 /* can't return an address in this case */ 20561 v4addr = 0; 20562 } 20563 } else { 20564 /* tcp->tcp_family == AF_INET6 */ 20565 if (tcp->tcp_ipversion == IPV4_VERSION) { 20566 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 20567 &v6addr); 20568 } else { 20569 v6addr = tcp->tcp_ip6h->ip6_src; 20570 } 20571 } 20572 port = tcp->tcp_lport; 20573 break; 20574 case TI_GETPEERNAME: 20575 if (tcp->tcp_family == AF_INET) { 20576 if (tcp->tcp_ipversion == IPV4_VERSION) { 20577 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 20578 v4addr); 20579 } else { 20580 /* can't return an address in this case */ 20581 v4addr = 0; 20582 } 20583 } else { 20584 /* tcp->tcp_family == AF_INET6) */ 20585 v6addr = tcp->tcp_remote_v6; 20586 if (tcp->tcp_ipversion == IPV6_VERSION) { 20587 /* 20588 * No flowinfo if tcp->tcp_ipversion is v4. 20589 * 20590 * flowinfo was already initialized to zero 20591 * where it was declared above, so only 20592 * set it if ipversion is v6. 20593 */ 20594 flowinfo = tcp->tcp_ip6h->ip6_vcf & 20595 ~IPV6_VERS_AND_FLOW_MASK; 20596 } 20597 } 20598 port = tcp->tcp_fport; 20599 break; 20600 default: 20601 mi_copy_done(q, mp, EPROTO); 20602 return; 20603 } 20604 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 20605 if (!mp1) 20606 return; 20607 20608 if (tcp->tcp_family == AF_INET) { 20609 sin_t *sin; 20610 20611 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 20612 sin = (sin_t *)mp1->b_rptr; 20613 mp1->b_wptr = (uchar_t *)&sin[1]; 20614 *sin = sin_null; 20615 sin->sin_family = AF_INET; 20616 sin->sin_addr.s_addr = v4addr; 20617 sin->sin_port = port; 20618 } else { 20619 /* tcp->tcp_family == AF_INET6 */ 20620 sin6_t *sin6; 20621 20622 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 20623 sin6 = (sin6_t *)mp1->b_rptr; 20624 mp1->b_wptr = (uchar_t *)&sin6[1]; 20625 *sin6 = sin6_null; 20626 sin6->sin6_family = AF_INET6; 20627 sin6->sin6_flowinfo = flowinfo; 20628 sin6->sin6_addr = v6addr; 20629 sin6->sin6_port = port; 20630 } 20631 /* Copy out the address */ 20632 mi_copyout(q, mp); 20633 } 20634 20635 /* 20636 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 20637 * messages. 20638 */ 20639 /* ARGSUSED */ 20640 static void 20641 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 20642 { 20643 conn_t *connp = (conn_t *)arg; 20644 tcp_t *tcp = connp->conn_tcp; 20645 queue_t *q = tcp->tcp_wq; 20646 struct iocblk *iocp; 20647 20648 ASSERT(DB_TYPE(mp) == M_IOCTL); 20649 /* 20650 * Try and ASSERT the minimum possible references on the 20651 * conn early enough. Since we are executing on write side, 20652 * the connection is obviously not detached and that means 20653 * there is a ref each for TCP and IP. Since we are behind 20654 * the squeue, the minimum references needed are 3. If the 20655 * conn is in classifier hash list, there should be an 20656 * extra ref for that (we check both the possibilities). 20657 */ 20658 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20659 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20660 20661 iocp = (struct iocblk *)mp->b_rptr; 20662 switch (iocp->ioc_cmd) { 20663 case TCP_IOC_DEFAULT_Q: 20664 /* Wants to be the default wq. */ 20665 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 20666 iocp->ioc_error = EPERM; 20667 iocp->ioc_count = 0; 20668 mp->b_datap->db_type = M_IOCACK; 20669 qreply(q, mp); 20670 return; 20671 } 20672 tcp_def_q_set(tcp, mp); 20673 return; 20674 case _SIOCSOCKFALLBACK: 20675 /* 20676 * Either sockmod is about to be popped and the socket 20677 * would now be treated as a plain stream, or a module 20678 * is about to be pushed so we could no longer use read- 20679 * side synchronous streams for fused loopback tcp. 20680 * Drain any queued data and disable direct sockfs 20681 * interface from now on. 20682 */ 20683 if (!tcp->tcp_issocket) { 20684 DB_TYPE(mp) = M_IOCNAK; 20685 iocp->ioc_error = EINVAL; 20686 } else { 20687 #ifdef _ILP32 20688 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 20689 #else 20690 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 20691 #endif 20692 /* 20693 * Insert this socket into the acceptor hash. 20694 * We might need it for T_CONN_RES message 20695 */ 20696 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 20697 20698 if (tcp->tcp_fused) { 20699 /* 20700 * This is a fused loopback tcp; disable 20701 * read-side synchronous streams interface 20702 * and drain any queued data. It is okay 20703 * to do this for non-synchronous streams 20704 * fused tcp as well. 20705 */ 20706 tcp_fuse_disable_pair(tcp, B_FALSE); 20707 } 20708 tcp->tcp_issocket = B_FALSE; 20709 TCP_STAT(tcp_sock_fallback); 20710 20711 DB_TYPE(mp) = M_IOCACK; 20712 iocp->ioc_error = 0; 20713 } 20714 iocp->ioc_count = 0; 20715 iocp->ioc_rval = 0; 20716 qreply(q, mp); 20717 return; 20718 } 20719 CALL_IP_WPUT(connp, q, mp); 20720 } 20721 20722 /* 20723 * This routine is called by tcp_wput() to handle all TPI requests. 20724 */ 20725 /* ARGSUSED */ 20726 static void 20727 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 20728 { 20729 conn_t *connp = (conn_t *)arg; 20730 tcp_t *tcp = connp->conn_tcp; 20731 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 20732 uchar_t *rptr; 20733 t_scalar_t type; 20734 int len; 20735 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 20736 20737 /* 20738 * Try and ASSERT the minimum possible references on the 20739 * conn early enough. Since we are executing on write side, 20740 * the connection is obviously not detached and that means 20741 * there is a ref each for TCP and IP. Since we are behind 20742 * the squeue, the minimum references needed are 3. If the 20743 * conn is in classifier hash list, there should be an 20744 * extra ref for that (we check both the possibilities). 20745 */ 20746 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 20747 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 20748 20749 rptr = mp->b_rptr; 20750 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 20751 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 20752 type = ((union T_primitives *)rptr)->type; 20753 if (type == T_EXDATA_REQ) { 20754 uint32_t msize = msgdsize(mp->b_cont); 20755 20756 len = msize - 1; 20757 if (len < 0) { 20758 freemsg(mp); 20759 return; 20760 } 20761 /* 20762 * Try to force urgent data out on the wire. 20763 * Even if we have unsent data this will 20764 * at least send the urgent flag. 20765 * XXX does not handle more flag correctly. 20766 */ 20767 len += tcp->tcp_unsent; 20768 len += tcp->tcp_snxt; 20769 tcp->tcp_urg = len; 20770 tcp->tcp_valid_bits |= TCP_URG_VALID; 20771 20772 /* Bypass tcp protocol for fused tcp loopback */ 20773 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 20774 return; 20775 } else if (type != T_DATA_REQ) { 20776 goto non_urgent_data; 20777 } 20778 /* TODO: options, flags, ... from user */ 20779 /* Set length to zero for reclamation below */ 20780 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 20781 freeb(mp); 20782 return; 20783 } else { 20784 if (tcp->tcp_debug) { 20785 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20786 "tcp_wput_proto, dropping one..."); 20787 } 20788 freemsg(mp); 20789 return; 20790 } 20791 20792 non_urgent_data: 20793 20794 switch ((int)tprim->type) { 20795 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 20796 /* 20797 * save the kssl_ent_t from the next block, and convert this 20798 * back to a normal bind_req. 20799 */ 20800 if (mp->b_cont != NULL) { 20801 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 20802 20803 if (tcp->tcp_kssl_ent != NULL) { 20804 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 20805 KSSL_NO_PROXY); 20806 tcp->tcp_kssl_ent = NULL; 20807 } 20808 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 20809 sizeof (kssl_ent_t)); 20810 kssl_hold_ent(tcp->tcp_kssl_ent); 20811 freemsg(mp->b_cont); 20812 mp->b_cont = NULL; 20813 } 20814 tprim->type = T_BIND_REQ; 20815 20816 /* FALLTHROUGH */ 20817 case O_T_BIND_REQ: /* bind request */ 20818 case T_BIND_REQ: /* new semantics bind request */ 20819 tcp_bind(tcp, mp); 20820 break; 20821 case T_UNBIND_REQ: /* unbind request */ 20822 tcp_unbind(tcp, mp); 20823 break; 20824 case O_T_CONN_RES: /* old connection response XXX */ 20825 case T_CONN_RES: /* connection response */ 20826 tcp_accept(tcp, mp); 20827 break; 20828 case T_CONN_REQ: /* connection request */ 20829 tcp_connect(tcp, mp); 20830 break; 20831 case T_DISCON_REQ: /* disconnect request */ 20832 tcp_disconnect(tcp, mp); 20833 break; 20834 case T_CAPABILITY_REQ: 20835 tcp_capability_req(tcp, mp); /* capability request */ 20836 break; 20837 case T_INFO_REQ: /* information request */ 20838 tcp_info_req(tcp, mp); 20839 break; 20840 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 20841 /* Only IP is allowed to return meaningful value */ 20842 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 20843 break; 20844 case T_OPTMGMT_REQ: 20845 /* 20846 * Note: no support for snmpcom_req() through new 20847 * T_OPTMGMT_REQ. See comments in ip.c 20848 */ 20849 /* Only IP is allowed to return meaningful value */ 20850 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 20851 break; 20852 20853 case T_UNITDATA_REQ: /* unitdata request */ 20854 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 20855 break; 20856 case T_ORDREL_REQ: /* orderly release req */ 20857 freemsg(mp); 20858 20859 if (tcp->tcp_fused) 20860 tcp_unfuse(tcp); 20861 20862 if (tcp_xmit_end(tcp) != 0) { 20863 /* 20864 * We were crossing FINs and got a reset from 20865 * the other side. Just ignore it. 20866 */ 20867 if (tcp->tcp_debug) { 20868 (void) strlog(TCP_MOD_ID, 0, 1, 20869 SL_ERROR|SL_TRACE, 20870 "tcp_wput_proto, T_ORDREL_REQ out of " 20871 "state %s", 20872 tcp_display(tcp, NULL, 20873 DISP_ADDR_AND_PORT)); 20874 } 20875 } 20876 break; 20877 case T_ADDR_REQ: 20878 tcp_addr_req(tcp, mp); 20879 break; 20880 default: 20881 if (tcp->tcp_debug) { 20882 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 20883 "tcp_wput_proto, bogus TPI msg, type %d", 20884 tprim->type); 20885 } 20886 /* 20887 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 20888 * to recover. 20889 */ 20890 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 20891 break; 20892 } 20893 } 20894 20895 /* 20896 * The TCP write service routine should never be called... 20897 */ 20898 /* ARGSUSED */ 20899 static void 20900 tcp_wsrv(queue_t *q) 20901 { 20902 TCP_STAT(tcp_wsrv_called); 20903 } 20904 20905 /* Non overlapping byte exchanger */ 20906 static void 20907 tcp_xchg(uchar_t *a, uchar_t *b, int len) 20908 { 20909 uchar_t uch; 20910 20911 while (len-- > 0) { 20912 uch = a[len]; 20913 a[len] = b[len]; 20914 b[len] = uch; 20915 } 20916 } 20917 20918 /* 20919 * Send out a control packet on the tcp connection specified. This routine 20920 * is typically called where we need a simple ACK or RST generated. 20921 */ 20922 static void 20923 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 20924 { 20925 uchar_t *rptr; 20926 tcph_t *tcph; 20927 ipha_t *ipha = NULL; 20928 ip6_t *ip6h = NULL; 20929 uint32_t sum; 20930 int tcp_hdr_len; 20931 int tcp_ip_hdr_len; 20932 mblk_t *mp; 20933 20934 /* 20935 * Save sum for use in source route later. 20936 */ 20937 ASSERT(tcp != NULL); 20938 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 20939 tcp_hdr_len = tcp->tcp_hdr_len; 20940 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 20941 20942 /* If a text string is passed in with the request, pass it to strlog. */ 20943 if (str != NULL && tcp->tcp_debug) { 20944 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 20945 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 20946 str, seq, ack, ctl); 20947 } 20948 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 20949 BPRI_MED); 20950 if (mp == NULL) { 20951 return; 20952 } 20953 rptr = &mp->b_rptr[tcp_wroff_xtra]; 20954 mp->b_rptr = rptr; 20955 mp->b_wptr = &rptr[tcp_hdr_len]; 20956 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 20957 20958 if (tcp->tcp_ipversion == IPV4_VERSION) { 20959 ipha = (ipha_t *)rptr; 20960 ipha->ipha_length = htons(tcp_hdr_len); 20961 } else { 20962 ip6h = (ip6_t *)rptr; 20963 ASSERT(tcp != NULL); 20964 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 20965 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20966 } 20967 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 20968 tcph->th_flags[0] = (uint8_t)ctl; 20969 if (ctl & TH_RST) { 20970 BUMP_MIB(&tcp_mib, tcpOutRsts); 20971 BUMP_MIB(&tcp_mib, tcpOutControl); 20972 /* 20973 * Don't send TSopt w/ TH_RST packets per RFC 1323. 20974 */ 20975 if (tcp->tcp_snd_ts_ok && 20976 tcp->tcp_state > TCPS_SYN_SENT) { 20977 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 20978 *(mp->b_wptr) = TCPOPT_EOL; 20979 if (tcp->tcp_ipversion == IPV4_VERSION) { 20980 ipha->ipha_length = htons(tcp_hdr_len - 20981 TCPOPT_REAL_TS_LEN); 20982 } else { 20983 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 20984 TCPOPT_REAL_TS_LEN); 20985 } 20986 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 20987 sum -= TCPOPT_REAL_TS_LEN; 20988 } 20989 } 20990 if (ctl & TH_ACK) { 20991 if (tcp->tcp_snd_ts_ok) { 20992 U32_TO_BE32(lbolt, 20993 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 20994 U32_TO_BE32(tcp->tcp_ts_recent, 20995 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 20996 } 20997 20998 /* Update the latest receive window size in TCP header. */ 20999 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21000 tcph->th_win); 21001 tcp->tcp_rack = ack; 21002 tcp->tcp_rack_cnt = 0; 21003 BUMP_MIB(&tcp_mib, tcpOutAck); 21004 } 21005 BUMP_LOCAL(tcp->tcp_obsegs); 21006 U32_TO_BE32(seq, tcph->th_seq); 21007 U32_TO_BE32(ack, tcph->th_ack); 21008 /* 21009 * Include the adjustment for a source route if any. 21010 */ 21011 sum = (sum >> 16) + (sum & 0xFFFF); 21012 U16_TO_BE16(sum, tcph->th_sum); 21013 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21014 tcp_send_data(tcp, tcp->tcp_wq, mp); 21015 } 21016 21017 /* 21018 * If this routine returns B_TRUE, TCP can generate a RST in response 21019 * to a segment. If it returns B_FALSE, TCP should not respond. 21020 */ 21021 static boolean_t 21022 tcp_send_rst_chk(void) 21023 { 21024 clock_t now; 21025 21026 /* 21027 * TCP needs to protect itself from generating too many RSTs. 21028 * This can be a DoS attack by sending us random segments 21029 * soliciting RSTs. 21030 * 21031 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21032 * in each 1 second interval. In this way, TCP still generate 21033 * RSTs in normal cases but when under attack, the impact is 21034 * limited. 21035 */ 21036 if (tcp_rst_sent_rate_enabled != 0) { 21037 now = lbolt; 21038 /* lbolt can wrap around. */ 21039 if ((tcp_last_rst_intrvl > now) || 21040 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 21041 tcp_last_rst_intrvl = now; 21042 tcp_rst_cnt = 1; 21043 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 21044 return (B_FALSE); 21045 } 21046 } 21047 return (B_TRUE); 21048 } 21049 21050 /* 21051 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21052 */ 21053 static void 21054 tcp_ip_ire_mark_advice(tcp_t *tcp) 21055 { 21056 mblk_t *mp; 21057 ipic_t *ipic; 21058 21059 if (tcp->tcp_ipversion == IPV4_VERSION) { 21060 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21061 &ipic); 21062 } else { 21063 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21064 &ipic); 21065 } 21066 if (mp == NULL) 21067 return; 21068 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21069 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21070 } 21071 21072 /* 21073 * Return an IP advice ioctl mblk and set ipic to be the pointer 21074 * to the advice structure. 21075 */ 21076 static mblk_t * 21077 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21078 { 21079 struct iocblk *ioc; 21080 mblk_t *mp, *mp1; 21081 21082 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21083 if (mp == NULL) 21084 return (NULL); 21085 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21086 *ipic = (ipic_t *)mp->b_rptr; 21087 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21088 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21089 21090 bcopy(addr, *ipic + 1, addr_len); 21091 21092 (*ipic)->ipic_addr_length = addr_len; 21093 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21094 21095 mp1 = mkiocb(IP_IOCTL); 21096 if (mp1 == NULL) { 21097 freemsg(mp); 21098 return (NULL); 21099 } 21100 mp1->b_cont = mp; 21101 ioc = (struct iocblk *)mp1->b_rptr; 21102 ioc->ioc_count = sizeof (ipic_t) + addr_len; 21103 21104 return (mp1); 21105 } 21106 21107 /* 21108 * Generate a reset based on an inbound packet for which there is no active 21109 * tcp state that we can find. 21110 * 21111 * IPSEC NOTE : Try to send the reply with the same protection as it came 21112 * in. We still have the ipsec_mp that the packet was attached to. Thus 21113 * the packet will go out at the same level of protection as it came in by 21114 * converting the IPSEC_IN to IPSEC_OUT. 21115 */ 21116 static void 21117 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 21118 uint32_t ack, int ctl, uint_t ip_hdr_len) 21119 { 21120 ipha_t *ipha = NULL; 21121 ip6_t *ip6h = NULL; 21122 ushort_t len; 21123 tcph_t *tcph; 21124 int i; 21125 mblk_t *ipsec_mp; 21126 boolean_t mctl_present; 21127 ipic_t *ipic; 21128 ipaddr_t v4addr; 21129 in6_addr_t v6addr; 21130 int addr_len; 21131 void *addr; 21132 queue_t *q = tcp_g_q; 21133 tcp_t *tcp = Q_TO_TCP(q); 21134 21135 if (!tcp_send_rst_chk()) { 21136 tcp_rst_unsent++; 21137 freemsg(mp); 21138 return; 21139 } 21140 21141 if (mp->b_datap->db_type == M_CTL) { 21142 ipsec_mp = mp; 21143 mp = mp->b_cont; 21144 mctl_present = B_TRUE; 21145 } else { 21146 ipsec_mp = mp; 21147 mctl_present = B_FALSE; 21148 } 21149 21150 if (str && q && tcp_dbg) { 21151 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21152 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 21153 "flags 0x%x", 21154 str, seq, ack, ctl); 21155 } 21156 if (mp->b_datap->db_ref != 1) { 21157 mblk_t *mp1 = copyb(mp); 21158 freemsg(mp); 21159 mp = mp1; 21160 if (!mp) { 21161 if (mctl_present) 21162 freeb(ipsec_mp); 21163 return; 21164 } else { 21165 if (mctl_present) { 21166 ipsec_mp->b_cont = mp; 21167 } else { 21168 ipsec_mp = mp; 21169 } 21170 } 21171 } else if (mp->b_cont) { 21172 freemsg(mp->b_cont); 21173 mp->b_cont = NULL; 21174 } 21175 /* 21176 * We skip reversing source route here. 21177 * (for now we replace all IP options with EOL) 21178 */ 21179 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21180 ipha = (ipha_t *)mp->b_rptr; 21181 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 21182 mp->b_rptr[i] = IPOPT_EOL; 21183 /* 21184 * Make sure that src address isn't flagrantly invalid. 21185 * Not all broadcast address checking for the src address 21186 * is possible, since we don't know the netmask of the src 21187 * addr. No check for destination address is done, since 21188 * IP will not pass up a packet with a broadcast dest 21189 * address to TCP. Similar checks are done below for IPv6. 21190 */ 21191 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 21192 CLASSD(ipha->ipha_src)) { 21193 freemsg(ipsec_mp); 21194 BUMP_MIB(&ip_mib, ipInDiscards); 21195 return; 21196 } 21197 } else { 21198 ip6h = (ip6_t *)mp->b_rptr; 21199 21200 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 21201 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 21202 freemsg(ipsec_mp); 21203 BUMP_MIB(&ip6_mib, ipv6InDiscards); 21204 return; 21205 } 21206 21207 /* Remove any extension headers assuming partial overlay */ 21208 if (ip_hdr_len > IPV6_HDR_LEN) { 21209 uint8_t *to; 21210 21211 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 21212 ovbcopy(ip6h, to, IPV6_HDR_LEN); 21213 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 21214 ip_hdr_len = IPV6_HDR_LEN; 21215 ip6h = (ip6_t *)mp->b_rptr; 21216 ip6h->ip6_nxt = IPPROTO_TCP; 21217 } 21218 } 21219 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 21220 if (tcph->th_flags[0] & TH_RST) { 21221 freemsg(ipsec_mp); 21222 return; 21223 } 21224 tcph->th_offset_and_rsrvd[0] = (5 << 4); 21225 len = ip_hdr_len + sizeof (tcph_t); 21226 mp->b_wptr = &mp->b_rptr[len]; 21227 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21228 ipha->ipha_length = htons(len); 21229 /* Swap addresses */ 21230 v4addr = ipha->ipha_src; 21231 ipha->ipha_src = ipha->ipha_dst; 21232 ipha->ipha_dst = v4addr; 21233 ipha->ipha_ident = 0; 21234 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 21235 addr_len = IP_ADDR_LEN; 21236 addr = &v4addr; 21237 } else { 21238 /* No ip6i_t in this case */ 21239 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 21240 /* Swap addresses */ 21241 v6addr = ip6h->ip6_src; 21242 ip6h->ip6_src = ip6h->ip6_dst; 21243 ip6h->ip6_dst = v6addr; 21244 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 21245 addr_len = IPV6_ADDR_LEN; 21246 addr = &v6addr; 21247 } 21248 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 21249 U32_TO_BE32(ack, tcph->th_ack); 21250 U32_TO_BE32(seq, tcph->th_seq); 21251 U16_TO_BE16(0, tcph->th_win); 21252 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 21253 tcph->th_flags[0] = (uint8_t)ctl; 21254 if (ctl & TH_RST) { 21255 BUMP_MIB(&tcp_mib, tcpOutRsts); 21256 BUMP_MIB(&tcp_mib, tcpOutControl); 21257 } 21258 if (mctl_present) { 21259 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21260 21261 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21262 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 21263 return; 21264 } 21265 } 21266 /* 21267 * NOTE: one might consider tracing a TCP packet here, but 21268 * this function has no active TCP state nd no tcp structure 21269 * which has trace buffer. If we traced here, we would have 21270 * to keep a local trace buffer in tcp_record_trace(). 21271 */ 21272 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 21273 21274 /* 21275 * Tell IP to mark the IRE used for this destination temporary. 21276 * This way, we can limit our exposure to DoS attack because IP 21277 * creates an IRE for each destination. If there are too many, 21278 * the time to do any routing lookup will be extremely long. And 21279 * the lookup can be in interrupt context. 21280 * 21281 * Note that in normal circumstances, this marking should not 21282 * affect anything. It would be nice if only 1 message is 21283 * needed to inform IP that the IRE created for this RST should 21284 * not be added to the cache table. But there is currently 21285 * not such communication mechanism between TCP and IP. So 21286 * the best we can do now is to send the advice ioctl to IP 21287 * to mark the IRE temporary. 21288 */ 21289 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 21290 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21291 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21292 } 21293 } 21294 21295 /* 21296 * Initiate closedown sequence on an active connection. (May be called as 21297 * writer.) Return value zero for OK return, non-zero for error return. 21298 */ 21299 static int 21300 tcp_xmit_end(tcp_t *tcp) 21301 { 21302 ipic_t *ipic; 21303 mblk_t *mp; 21304 21305 if (tcp->tcp_state < TCPS_SYN_RCVD || 21306 tcp->tcp_state > TCPS_CLOSE_WAIT) { 21307 /* 21308 * Invalid state, only states TCPS_SYN_RCVD, 21309 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 21310 */ 21311 return (-1); 21312 } 21313 21314 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 21315 tcp->tcp_valid_bits |= TCP_FSS_VALID; 21316 /* 21317 * If there is nothing more unsent, send the FIN now. 21318 * Otherwise, it will go out with the last segment. 21319 */ 21320 if (tcp->tcp_unsent == 0) { 21321 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 21322 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 21323 21324 if (mp) { 21325 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21326 tcp_send_data(tcp, tcp->tcp_wq, mp); 21327 } else { 21328 /* 21329 * Couldn't allocate msg. Pretend we got it out. 21330 * Wait for rexmit timeout. 21331 */ 21332 tcp->tcp_snxt = tcp->tcp_fss + 1; 21333 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21334 } 21335 21336 /* 21337 * If needed, update tcp_rexmit_snxt as tcp_snxt is 21338 * changed. 21339 */ 21340 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 21341 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 21342 } 21343 } else { 21344 /* 21345 * If tcp->tcp_cork is set, then the data will not get sent, 21346 * so we have to check that and unset it first. 21347 */ 21348 if (tcp->tcp_cork) 21349 tcp->tcp_cork = B_FALSE; 21350 tcp_wput_data(tcp, NULL, B_FALSE); 21351 } 21352 21353 /* 21354 * If TCP does not get enough samples of RTT or tcp_rtt_updates 21355 * is 0, don't update the cache. 21356 */ 21357 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 21358 return (0); 21359 21360 /* 21361 * NOTE: should not update if source routes i.e. if tcp_remote if 21362 * different from the destination. 21363 */ 21364 if (tcp->tcp_ipversion == IPV4_VERSION) { 21365 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 21366 return (0); 21367 } 21368 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21369 &ipic); 21370 } else { 21371 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 21372 &tcp->tcp_ip6h->ip6_dst))) { 21373 return (0); 21374 } 21375 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21376 &ipic); 21377 } 21378 21379 /* Record route attributes in the IRE for use by future connections. */ 21380 if (mp == NULL) 21381 return (0); 21382 21383 /* 21384 * We do not have a good algorithm to update ssthresh at this time. 21385 * So don't do any update. 21386 */ 21387 ipic->ipic_rtt = tcp->tcp_rtt_sa; 21388 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 21389 21390 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21391 return (0); 21392 } 21393 21394 /* 21395 * Generate a "no listener here" RST in response to an "unknown" segment. 21396 * Note that we are reusing the incoming mp to construct the outgoing 21397 * RST. 21398 */ 21399 void 21400 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len) 21401 { 21402 uchar_t *rptr; 21403 uint32_t seg_len; 21404 tcph_t *tcph; 21405 uint32_t seg_seq; 21406 uint32_t seg_ack; 21407 uint_t flags; 21408 mblk_t *ipsec_mp; 21409 ipha_t *ipha; 21410 ip6_t *ip6h; 21411 boolean_t mctl_present = B_FALSE; 21412 boolean_t check = B_TRUE; 21413 boolean_t policy_present; 21414 21415 TCP_STAT(tcp_no_listener); 21416 21417 ipsec_mp = mp; 21418 21419 if (mp->b_datap->db_type == M_CTL) { 21420 ipsec_in_t *ii; 21421 21422 mctl_present = B_TRUE; 21423 mp = mp->b_cont; 21424 21425 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 21426 ASSERT(ii->ipsec_in_type == IPSEC_IN); 21427 if (ii->ipsec_in_dont_check) { 21428 check = B_FALSE; 21429 if (!ii->ipsec_in_secure) { 21430 freeb(ipsec_mp); 21431 mctl_present = B_FALSE; 21432 ipsec_mp = mp; 21433 } 21434 } 21435 } 21436 21437 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 21438 policy_present = ipsec_inbound_v4_policy_present; 21439 ipha = (ipha_t *)mp->b_rptr; 21440 ip6h = NULL; 21441 } else { 21442 policy_present = ipsec_inbound_v6_policy_present; 21443 ipha = NULL; 21444 ip6h = (ip6_t *)mp->b_rptr; 21445 } 21446 21447 if (check && policy_present) { 21448 /* 21449 * The conn_t parameter is NULL because we already know 21450 * nobody's home. 21451 */ 21452 ipsec_mp = ipsec_check_global_policy( 21453 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 21454 if (ipsec_mp == NULL) 21455 return; 21456 } 21457 21458 21459 rptr = mp->b_rptr; 21460 21461 tcph = (tcph_t *)&rptr[ip_hdr_len]; 21462 seg_seq = BE32_TO_U32(tcph->th_seq); 21463 seg_ack = BE32_TO_U32(tcph->th_ack); 21464 flags = tcph->th_flags[0]; 21465 21466 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 21467 if (flags & TH_RST) { 21468 freemsg(ipsec_mp); 21469 } else if (flags & TH_ACK) { 21470 tcp_xmit_early_reset("no tcp, reset", 21471 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len); 21472 } else { 21473 if (flags & TH_SYN) { 21474 seg_len++; 21475 } else { 21476 /* 21477 * Here we violate the RFC. Note that a normal 21478 * TCP will never send a segment without the ACK 21479 * flag, except for RST or SYN segment. This 21480 * segment is neither. Just drop it on the 21481 * floor. 21482 */ 21483 freemsg(ipsec_mp); 21484 tcp_rst_unsent++; 21485 return; 21486 } 21487 21488 tcp_xmit_early_reset("no tcp, reset/ack", 21489 ipsec_mp, 0, seg_seq + seg_len, 21490 TH_RST | TH_ACK, ip_hdr_len); 21491 } 21492 } 21493 21494 /* 21495 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 21496 * ip and tcp header ready to pass down to IP. If the mp passed in is 21497 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 21498 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 21499 * otherwise it will dup partial mblks.) 21500 * Otherwise, an appropriate ACK packet will be generated. This 21501 * routine is not usually called to send new data for the first time. It 21502 * is mostly called out of the timer for retransmits, and to generate ACKs. 21503 * 21504 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 21505 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 21506 * of the original mblk chain will be returned in *offset and *end_mp. 21507 */ 21508 static mblk_t * 21509 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 21510 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 21511 boolean_t rexmit) 21512 { 21513 int data_length; 21514 int32_t off = 0; 21515 uint_t flags; 21516 mblk_t *mp1; 21517 mblk_t *mp2; 21518 uchar_t *rptr; 21519 tcph_t *tcph; 21520 int32_t num_sack_blk = 0; 21521 int32_t sack_opt_len = 0; 21522 21523 /* Allocate for our maximum TCP header + link-level */ 21524 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 21525 BPRI_MED); 21526 if (!mp1) 21527 return (NULL); 21528 data_length = 0; 21529 21530 /* 21531 * Note that tcp_mss has been adjusted to take into account the 21532 * timestamp option if applicable. Because SACK options do not 21533 * appear in every TCP segments and they are of variable lengths, 21534 * they cannot be included in tcp_mss. Thus we need to calculate 21535 * the actual segment length when we need to send a segment which 21536 * includes SACK options. 21537 */ 21538 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 21539 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 21540 tcp->tcp_num_sack_blk); 21541 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 21542 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 21543 if (max_to_send + sack_opt_len > tcp->tcp_mss) 21544 max_to_send -= sack_opt_len; 21545 } 21546 21547 if (offset != NULL) { 21548 off = *offset; 21549 /* We use offset as an indicator that end_mp is not NULL. */ 21550 *end_mp = NULL; 21551 } 21552 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 21553 /* This could be faster with cooperation from downstream */ 21554 if (mp2 != mp1 && !sendall && 21555 data_length + (int)(mp->b_wptr - mp->b_rptr) > 21556 max_to_send) 21557 /* 21558 * Don't send the next mblk since the whole mblk 21559 * does not fit. 21560 */ 21561 break; 21562 mp2->b_cont = dupb(mp); 21563 mp2 = mp2->b_cont; 21564 if (!mp2) { 21565 freemsg(mp1); 21566 return (NULL); 21567 } 21568 mp2->b_rptr += off; 21569 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 21570 (uintptr_t)INT_MAX); 21571 21572 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 21573 if (data_length > max_to_send) { 21574 mp2->b_wptr -= data_length - max_to_send; 21575 data_length = max_to_send; 21576 off = mp2->b_wptr - mp->b_rptr; 21577 break; 21578 } else { 21579 off = 0; 21580 } 21581 } 21582 if (offset != NULL) { 21583 *offset = off; 21584 *end_mp = mp; 21585 } 21586 if (seg_len != NULL) { 21587 *seg_len = data_length; 21588 } 21589 21590 /* Update the latest receive window size in TCP header. */ 21591 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21592 tcp->tcp_tcph->th_win); 21593 21594 rptr = mp1->b_rptr + tcp_wroff_xtra; 21595 mp1->b_rptr = rptr; 21596 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 21597 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 21598 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 21599 U32_TO_ABE32(seq, tcph->th_seq); 21600 21601 /* 21602 * Use tcp_unsent to determine if the PUSH bit should be used assumes 21603 * that this function was called from tcp_wput_data. Thus, when called 21604 * to retransmit data the setting of the PUSH bit may appear some 21605 * what random in that it might get set when it should not. This 21606 * should not pose any performance issues. 21607 */ 21608 if (data_length != 0 && (tcp->tcp_unsent == 0 || 21609 tcp->tcp_unsent == data_length)) { 21610 flags = TH_ACK | TH_PUSH; 21611 } else { 21612 flags = TH_ACK; 21613 } 21614 21615 if (tcp->tcp_ecn_ok) { 21616 if (tcp->tcp_ecn_echo_on) 21617 flags |= TH_ECE; 21618 21619 /* 21620 * Only set ECT bit and ECN_CWR if a segment contains new data. 21621 * There is no TCP flow control for non-data segments, and 21622 * only data segment is transmitted reliably. 21623 */ 21624 if (data_length > 0 && !rexmit) { 21625 SET_ECT(tcp, rptr); 21626 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 21627 flags |= TH_CWR; 21628 tcp->tcp_ecn_cwr_sent = B_TRUE; 21629 } 21630 } 21631 } 21632 21633 if (tcp->tcp_valid_bits) { 21634 uint32_t u1; 21635 21636 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 21637 seq == tcp->tcp_iss) { 21638 uchar_t *wptr; 21639 21640 /* 21641 * If TCP_ISS_VALID and the seq number is tcp_iss, 21642 * TCP can only be in SYN-SENT, SYN-RCVD or 21643 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 21644 * our SYN is not ack'ed but the app closes this 21645 * TCP connection. 21646 */ 21647 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 21648 tcp->tcp_state == TCPS_SYN_RCVD || 21649 tcp->tcp_state == TCPS_FIN_WAIT_1); 21650 21651 /* 21652 * Tack on the MSS option. It is always needed 21653 * for both active and passive open. 21654 * 21655 * MSS option value should be interface MTU - MIN 21656 * TCP/IP header according to RFC 793 as it means 21657 * the maximum segment size TCP can receive. But 21658 * to get around some broken middle boxes/end hosts 21659 * out there, we allow the option value to be the 21660 * same as the MSS option size on the peer side. 21661 * In this way, the other side will not send 21662 * anything larger than they can receive. 21663 * 21664 * Note that for SYN_SENT state, the ndd param 21665 * tcp_use_smss_as_mss_opt has no effect as we 21666 * don't know the peer's MSS option value. So 21667 * the only case we need to take care of is in 21668 * SYN_RCVD state, which is done later. 21669 */ 21670 wptr = mp1->b_wptr; 21671 wptr[0] = TCPOPT_MAXSEG; 21672 wptr[1] = TCPOPT_MAXSEG_LEN; 21673 wptr += 2; 21674 u1 = tcp->tcp_if_mtu - 21675 (tcp->tcp_ipversion == IPV4_VERSION ? 21676 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 21677 TCP_MIN_HEADER_LENGTH; 21678 U16_TO_BE16(u1, wptr); 21679 mp1->b_wptr = wptr + 2; 21680 /* Update the offset to cover the additional word */ 21681 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21682 21683 /* 21684 * Note that the following way of filling in 21685 * TCP options are not optimal. Some NOPs can 21686 * be saved. But there is no need at this time 21687 * to optimize it. When it is needed, we will 21688 * do it. 21689 */ 21690 switch (tcp->tcp_state) { 21691 case TCPS_SYN_SENT: 21692 flags = TH_SYN; 21693 21694 if (tcp->tcp_snd_ts_ok) { 21695 uint32_t llbolt = (uint32_t)lbolt; 21696 21697 wptr = mp1->b_wptr; 21698 wptr[0] = TCPOPT_NOP; 21699 wptr[1] = TCPOPT_NOP; 21700 wptr[2] = TCPOPT_TSTAMP; 21701 wptr[3] = TCPOPT_TSTAMP_LEN; 21702 wptr += 4; 21703 U32_TO_BE32(llbolt, wptr); 21704 wptr += 4; 21705 ASSERT(tcp->tcp_ts_recent == 0); 21706 U32_TO_BE32(0L, wptr); 21707 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 21708 tcph->th_offset_and_rsrvd[0] += 21709 (3 << 4); 21710 } 21711 21712 /* 21713 * Set up all the bits to tell other side 21714 * we are ECN capable. 21715 */ 21716 if (tcp->tcp_ecn_ok) { 21717 flags |= (TH_ECE | TH_CWR); 21718 } 21719 break; 21720 case TCPS_SYN_RCVD: 21721 flags |= TH_SYN; 21722 21723 /* 21724 * Reset the MSS option value to be SMSS 21725 * We should probably add back the bytes 21726 * for timestamp option and IPsec. We 21727 * don't do that as this is a workaround 21728 * for broken middle boxes/end hosts, it 21729 * is better for us to be more cautious. 21730 * They may not take these things into 21731 * account in their SMSS calculation. Thus 21732 * the peer's calculated SMSS may be smaller 21733 * than what it can be. This should be OK. 21734 */ 21735 if (tcp_use_smss_as_mss_opt) { 21736 u1 = tcp->tcp_mss; 21737 U16_TO_BE16(u1, wptr); 21738 } 21739 21740 /* 21741 * If the other side is ECN capable, reply 21742 * that we are also ECN capable. 21743 */ 21744 if (tcp->tcp_ecn_ok) 21745 flags |= TH_ECE; 21746 break; 21747 default: 21748 /* 21749 * The above ASSERT() makes sure that this 21750 * must be FIN-WAIT-1 state. Our SYN has 21751 * not been ack'ed so retransmit it. 21752 */ 21753 flags |= TH_SYN; 21754 break; 21755 } 21756 21757 if (tcp->tcp_snd_ws_ok) { 21758 wptr = mp1->b_wptr; 21759 wptr[0] = TCPOPT_NOP; 21760 wptr[1] = TCPOPT_WSCALE; 21761 wptr[2] = TCPOPT_WS_LEN; 21762 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 21763 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 21764 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21765 } 21766 21767 if (tcp->tcp_snd_sack_ok) { 21768 wptr = mp1->b_wptr; 21769 wptr[0] = TCPOPT_NOP; 21770 wptr[1] = TCPOPT_NOP; 21771 wptr[2] = TCPOPT_SACK_PERMITTED; 21772 wptr[3] = TCPOPT_SACK_OK_LEN; 21773 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 21774 tcph->th_offset_and_rsrvd[0] += (1 << 4); 21775 } 21776 21777 /* allocb() of adequate mblk assures space */ 21778 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 21779 (uintptr_t)INT_MAX); 21780 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 21781 /* 21782 * Get IP set to checksum on our behalf 21783 * Include the adjustment for a source route if any. 21784 */ 21785 u1 += tcp->tcp_sum; 21786 u1 = (u1 >> 16) + (u1 & 0xFFFF); 21787 U16_TO_BE16(u1, tcph->th_sum); 21788 BUMP_MIB(&tcp_mib, tcpOutControl); 21789 } 21790 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 21791 (seq + data_length) == tcp->tcp_fss) { 21792 if (!tcp->tcp_fin_acked) { 21793 flags |= TH_FIN; 21794 BUMP_MIB(&tcp_mib, tcpOutControl); 21795 } 21796 if (!tcp->tcp_fin_sent) { 21797 tcp->tcp_fin_sent = B_TRUE; 21798 switch (tcp->tcp_state) { 21799 case TCPS_SYN_RCVD: 21800 case TCPS_ESTABLISHED: 21801 tcp->tcp_state = TCPS_FIN_WAIT_1; 21802 break; 21803 case TCPS_CLOSE_WAIT: 21804 tcp->tcp_state = TCPS_LAST_ACK; 21805 break; 21806 } 21807 if (tcp->tcp_suna == tcp->tcp_snxt) 21808 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21809 tcp->tcp_snxt = tcp->tcp_fss + 1; 21810 } 21811 } 21812 /* 21813 * Note the trick here. u1 is unsigned. When tcp_urg 21814 * is smaller than seq, u1 will become a very huge value. 21815 * So the comparison will fail. Also note that tcp_urp 21816 * should be positive, see RFC 793 page 17. 21817 */ 21818 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 21819 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 21820 u1 < (uint32_t)(64 * 1024)) { 21821 flags |= TH_URG; 21822 BUMP_MIB(&tcp_mib, tcpOutUrg); 21823 U32_TO_ABE16(u1, tcph->th_urp); 21824 } 21825 } 21826 tcph->th_flags[0] = (uchar_t)flags; 21827 tcp->tcp_rack = tcp->tcp_rnxt; 21828 tcp->tcp_rack_cnt = 0; 21829 21830 if (tcp->tcp_snd_ts_ok) { 21831 if (tcp->tcp_state != TCPS_SYN_SENT) { 21832 uint32_t llbolt = (uint32_t)lbolt; 21833 21834 U32_TO_BE32(llbolt, 21835 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21836 U32_TO_BE32(tcp->tcp_ts_recent, 21837 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21838 } 21839 } 21840 21841 if (num_sack_blk > 0) { 21842 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 21843 sack_blk_t *tmp; 21844 int32_t i; 21845 21846 wptr[0] = TCPOPT_NOP; 21847 wptr[1] = TCPOPT_NOP; 21848 wptr[2] = TCPOPT_SACK; 21849 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 21850 sizeof (sack_blk_t); 21851 wptr += TCPOPT_REAL_SACK_LEN; 21852 21853 tmp = tcp->tcp_sack_list; 21854 for (i = 0; i < num_sack_blk; i++) { 21855 U32_TO_BE32(tmp[i].begin, wptr); 21856 wptr += sizeof (tcp_seq); 21857 U32_TO_BE32(tmp[i].end, wptr); 21858 wptr += sizeof (tcp_seq); 21859 } 21860 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 21861 } 21862 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21863 data_length += (int)(mp1->b_wptr - rptr); 21864 if (tcp->tcp_ipversion == IPV4_VERSION) { 21865 ((ipha_t *)rptr)->ipha_length = htons(data_length); 21866 } else { 21867 ip6_t *ip6 = (ip6_t *)(rptr + 21868 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 21869 sizeof (ip6i_t) : 0)); 21870 21871 ip6->ip6_plen = htons(data_length - 21872 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21873 } 21874 21875 /* 21876 * Prime pump for IP 21877 * Include the adjustment for a source route if any. 21878 */ 21879 data_length -= tcp->tcp_ip_hdr_len; 21880 data_length += tcp->tcp_sum; 21881 data_length = (data_length >> 16) + (data_length & 0xFFFF); 21882 U16_TO_ABE16(data_length, tcph->th_sum); 21883 if (tcp->tcp_ip_forward_progress) { 21884 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21885 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 21886 tcp->tcp_ip_forward_progress = B_FALSE; 21887 } 21888 return (mp1); 21889 } 21890 21891 /* This function handles the push timeout. */ 21892 void 21893 tcp_push_timer(void *arg) 21894 { 21895 conn_t *connp = (conn_t *)arg; 21896 tcp_t *tcp = connp->conn_tcp; 21897 21898 TCP_DBGSTAT(tcp_push_timer_cnt); 21899 21900 ASSERT(tcp->tcp_listener == NULL); 21901 21902 /* 21903 * We need to stop synchronous streams temporarily to prevent a race 21904 * with tcp_fuse_rrw() or tcp_fusion rinfop(). It is safe to access 21905 * tcp_rcv_list here because those entry points will return right 21906 * away when synchronous streams is stopped. 21907 */ 21908 TCP_FUSE_SYNCSTR_STOP(tcp); 21909 tcp->tcp_push_tid = 0; 21910 if ((tcp->tcp_rcv_list != NULL) && 21911 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 21912 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 21913 TCP_FUSE_SYNCSTR_RESUME(tcp); 21914 } 21915 21916 /* 21917 * This function handles delayed ACK timeout. 21918 */ 21919 static void 21920 tcp_ack_timer(void *arg) 21921 { 21922 conn_t *connp = (conn_t *)arg; 21923 tcp_t *tcp = connp->conn_tcp; 21924 mblk_t *mp; 21925 21926 TCP_DBGSTAT(tcp_ack_timer_cnt); 21927 21928 tcp->tcp_ack_tid = 0; 21929 21930 if (tcp->tcp_fused) 21931 return; 21932 21933 /* 21934 * Do not send ACK if there is no outstanding unack'ed data. 21935 */ 21936 if (tcp->tcp_rnxt == tcp->tcp_rack) { 21937 return; 21938 } 21939 21940 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 21941 /* 21942 * Make sure we don't allow deferred ACKs to result in 21943 * timer-based ACKing. If we have held off an ACK 21944 * when there was more than an mss here, and the timer 21945 * goes off, we have to worry about the possibility 21946 * that the sender isn't doing slow-start, or is out 21947 * of step with us for some other reason. We fall 21948 * permanently back in the direction of 21949 * ACK-every-other-packet as suggested in RFC 1122. 21950 */ 21951 if (tcp->tcp_rack_abs_max > 2) 21952 tcp->tcp_rack_abs_max--; 21953 tcp->tcp_rack_cur_max = 2; 21954 } 21955 mp = tcp_ack_mp(tcp); 21956 21957 if (mp != NULL) { 21958 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21959 BUMP_LOCAL(tcp->tcp_obsegs); 21960 BUMP_MIB(&tcp_mib, tcpOutAck); 21961 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 21962 tcp_send_data(tcp, tcp->tcp_wq, mp); 21963 } 21964 } 21965 21966 21967 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 21968 static mblk_t * 21969 tcp_ack_mp(tcp_t *tcp) 21970 { 21971 uint32_t seq_no; 21972 21973 /* 21974 * There are a few cases to be considered while setting the sequence no. 21975 * Essentially, we can come here while processing an unacceptable pkt 21976 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 21977 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 21978 * If we are here for a zero window probe, stick with suna. In all 21979 * other cases, we check if suna + swnd encompasses snxt and set 21980 * the sequence number to snxt, if so. If snxt falls outside the 21981 * window (the receiver probably shrunk its window), we will go with 21982 * suna + swnd, otherwise the sequence no will be unacceptable to the 21983 * receiver. 21984 */ 21985 if (tcp->tcp_zero_win_probe) { 21986 seq_no = tcp->tcp_suna; 21987 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 21988 ASSERT(tcp->tcp_swnd == 0); 21989 seq_no = tcp->tcp_snxt; 21990 } else { 21991 seq_no = SEQ_GT(tcp->tcp_snxt, 21992 (tcp->tcp_suna + tcp->tcp_swnd)) ? 21993 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 21994 } 21995 21996 if (tcp->tcp_valid_bits) { 21997 /* 21998 * For the complex case where we have to send some 21999 * controls (FIN or SYN), let tcp_xmit_mp do it. 22000 */ 22001 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 22002 NULL, B_FALSE)); 22003 } else { 22004 /* Generate a simple ACK */ 22005 int data_length; 22006 uchar_t *rptr; 22007 tcph_t *tcph; 22008 mblk_t *mp1; 22009 int32_t tcp_hdr_len; 22010 int32_t tcp_tcp_hdr_len; 22011 int32_t num_sack_blk = 0; 22012 int32_t sack_opt_len; 22013 22014 /* 22015 * Allocate space for TCP + IP headers 22016 * and link-level header 22017 */ 22018 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22019 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22020 tcp->tcp_num_sack_blk); 22021 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22022 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22023 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 22024 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 22025 } else { 22026 tcp_hdr_len = tcp->tcp_hdr_len; 22027 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 22028 } 22029 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 22030 if (!mp1) 22031 return (NULL); 22032 22033 /* Update the latest receive window size in TCP header. */ 22034 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22035 tcp->tcp_tcph->th_win); 22036 /* copy in prototype TCP + IP header */ 22037 rptr = mp1->b_rptr + tcp_wroff_xtra; 22038 mp1->b_rptr = rptr; 22039 mp1->b_wptr = rptr + tcp_hdr_len; 22040 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22041 22042 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22043 22044 /* Set the TCP sequence number. */ 22045 U32_TO_ABE32(seq_no, tcph->th_seq); 22046 22047 /* Set up the TCP flag field. */ 22048 tcph->th_flags[0] = (uchar_t)TH_ACK; 22049 if (tcp->tcp_ecn_echo_on) 22050 tcph->th_flags[0] |= TH_ECE; 22051 22052 tcp->tcp_rack = tcp->tcp_rnxt; 22053 tcp->tcp_rack_cnt = 0; 22054 22055 /* fill in timestamp option if in use */ 22056 if (tcp->tcp_snd_ts_ok) { 22057 uint32_t llbolt = (uint32_t)lbolt; 22058 22059 U32_TO_BE32(llbolt, 22060 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22061 U32_TO_BE32(tcp->tcp_ts_recent, 22062 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22063 } 22064 22065 /* Fill in SACK options */ 22066 if (num_sack_blk > 0) { 22067 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22068 sack_blk_t *tmp; 22069 int32_t i; 22070 22071 wptr[0] = TCPOPT_NOP; 22072 wptr[1] = TCPOPT_NOP; 22073 wptr[2] = TCPOPT_SACK; 22074 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22075 sizeof (sack_blk_t); 22076 wptr += TCPOPT_REAL_SACK_LEN; 22077 22078 tmp = tcp->tcp_sack_list; 22079 for (i = 0; i < num_sack_blk; i++) { 22080 U32_TO_BE32(tmp[i].begin, wptr); 22081 wptr += sizeof (tcp_seq); 22082 U32_TO_BE32(tmp[i].end, wptr); 22083 wptr += sizeof (tcp_seq); 22084 } 22085 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 22086 << 4); 22087 } 22088 22089 if (tcp->tcp_ipversion == IPV4_VERSION) { 22090 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 22091 } else { 22092 /* Check for ip6i_t header in sticky hdrs */ 22093 ip6_t *ip6 = (ip6_t *)(rptr + 22094 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22095 sizeof (ip6i_t) : 0)); 22096 22097 ip6->ip6_plen = htons(tcp_hdr_len - 22098 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22099 } 22100 22101 /* 22102 * Prime pump for checksum calculation in IP. Include the 22103 * adjustment for a source route if any. 22104 */ 22105 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 22106 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22107 U16_TO_ABE16(data_length, tcph->th_sum); 22108 22109 if (tcp->tcp_ip_forward_progress) { 22110 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22111 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22112 tcp->tcp_ip_forward_progress = B_FALSE; 22113 } 22114 return (mp1); 22115 } 22116 } 22117 22118 /* 22119 * To create a temporary tcp structure for inserting into bind hash list. 22120 * The parameter is assumed to be in network byte order, ready for use. 22121 */ 22122 /* ARGSUSED */ 22123 static tcp_t * 22124 tcp_alloc_temp_tcp(in_port_t port) 22125 { 22126 conn_t *connp; 22127 tcp_t *tcp; 22128 22129 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 22130 if (connp == NULL) 22131 return (NULL); 22132 22133 tcp = connp->conn_tcp; 22134 22135 /* 22136 * Only initialize the necessary info in those structures. Note 22137 * that since INADDR_ANY is all 0, we do not need to set 22138 * tcp_bound_source to INADDR_ANY here. 22139 */ 22140 tcp->tcp_state = TCPS_BOUND; 22141 tcp->tcp_lport = port; 22142 tcp->tcp_exclbind = 1; 22143 tcp->tcp_reserved_port = 1; 22144 22145 /* Just for place holding... */ 22146 tcp->tcp_ipversion = IPV4_VERSION; 22147 22148 return (tcp); 22149 } 22150 22151 /* 22152 * To remove a port range specified by lo_port and hi_port from the 22153 * reserved port ranges. This is one of the three public functions of 22154 * the reserved port interface. Note that a port range has to be removed 22155 * as a whole. Ports in a range cannot be removed individually. 22156 * 22157 * Params: 22158 * in_port_t lo_port: the beginning port of the reserved port range to 22159 * be deleted. 22160 * in_port_t hi_port: the ending port of the reserved port range to 22161 * be deleted. 22162 * 22163 * Return: 22164 * B_TRUE if the deletion is successful, B_FALSE otherwise. 22165 */ 22166 boolean_t 22167 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 22168 { 22169 int i, j; 22170 int size; 22171 tcp_t **temp_tcp_array; 22172 tcp_t *tcp; 22173 22174 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22175 22176 /* First make sure that the port ranage is indeed reserved. */ 22177 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22178 if (tcp_reserved_port[i].lo_port == lo_port) { 22179 hi_port = tcp_reserved_port[i].hi_port; 22180 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 22181 break; 22182 } 22183 } 22184 if (i == tcp_reserved_port_array_size) { 22185 rw_exit(&tcp_reserved_port_lock); 22186 return (B_FALSE); 22187 } 22188 22189 /* 22190 * Remove the range from the array. This simple loop is possible 22191 * because port ranges are inserted in ascending order. 22192 */ 22193 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 22194 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 22195 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 22196 tcp_reserved_port[j].temp_tcp_array = 22197 tcp_reserved_port[j+1].temp_tcp_array; 22198 } 22199 22200 /* Remove all the temporary tcp structures. */ 22201 size = hi_port - lo_port + 1; 22202 while (size > 0) { 22203 tcp = temp_tcp_array[size - 1]; 22204 ASSERT(tcp != NULL); 22205 tcp_bind_hash_remove(tcp); 22206 CONN_DEC_REF(tcp->tcp_connp); 22207 size--; 22208 } 22209 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 22210 tcp_reserved_port_array_size--; 22211 rw_exit(&tcp_reserved_port_lock); 22212 return (B_TRUE); 22213 } 22214 22215 /* 22216 * Macro to remove temporary tcp structure from the bind hash list. The 22217 * first parameter is the list of tcp to be removed. The second parameter 22218 * is the number of tcps in the array. 22219 */ 22220 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 22221 { \ 22222 while ((num) > 0) { \ 22223 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 22224 tf_t *tbf; \ 22225 tcp_t *tcpnext; \ 22226 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 22227 mutex_enter(&tbf->tf_lock); \ 22228 tcpnext = tcp->tcp_bind_hash; \ 22229 if (tcpnext) { \ 22230 tcpnext->tcp_ptpbhn = \ 22231 tcp->tcp_ptpbhn; \ 22232 } \ 22233 *tcp->tcp_ptpbhn = tcpnext; \ 22234 mutex_exit(&tbf->tf_lock); \ 22235 kmem_free(tcp, sizeof (tcp_t)); \ 22236 (tcp_array)[(num) - 1] = NULL; \ 22237 (num)--; \ 22238 } \ 22239 } 22240 22241 /* 22242 * The public interface for other modules to call to reserve a port range 22243 * in TCP. The caller passes in how large a port range it wants. TCP 22244 * will try to find a range and return it via lo_port and hi_port. This is 22245 * used by NCA's nca_conn_init. 22246 * NCA can only be used in the global zone so this only affects the global 22247 * zone's ports. 22248 * 22249 * Params: 22250 * int size: the size of the port range to be reserved. 22251 * in_port_t *lo_port (referenced): returns the beginning port of the 22252 * reserved port range added. 22253 * in_port_t *hi_port (referenced): returns the ending port of the 22254 * reserved port range added. 22255 * 22256 * Return: 22257 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 22258 */ 22259 boolean_t 22260 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 22261 { 22262 tcp_t *tcp; 22263 tcp_t *tmp_tcp; 22264 tcp_t **temp_tcp_array; 22265 tf_t *tbf; 22266 in_port_t net_port; 22267 in_port_t port; 22268 int32_t cur_size; 22269 int i, j; 22270 boolean_t used; 22271 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 22272 zoneid_t zoneid = GLOBAL_ZONEID; 22273 22274 /* Sanity check. */ 22275 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 22276 return (B_FALSE); 22277 } 22278 22279 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 22280 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 22281 rw_exit(&tcp_reserved_port_lock); 22282 return (B_FALSE); 22283 } 22284 22285 /* 22286 * Find the starting port to try. Since the port ranges are ordered 22287 * in the reserved port array, we can do a simple search here. 22288 */ 22289 *lo_port = TCP_SMALLEST_RESERVED_PORT; 22290 *hi_port = TCP_LARGEST_RESERVED_PORT; 22291 for (i = 0; i < tcp_reserved_port_array_size; 22292 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 22293 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 22294 *hi_port = tcp_reserved_port[i].lo_port - 1; 22295 break; 22296 } 22297 } 22298 /* No available port range. */ 22299 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 22300 rw_exit(&tcp_reserved_port_lock); 22301 return (B_FALSE); 22302 } 22303 22304 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 22305 if (temp_tcp_array == NULL) { 22306 rw_exit(&tcp_reserved_port_lock); 22307 return (B_FALSE); 22308 } 22309 22310 /* Go thru the port range to see if some ports are already bound. */ 22311 for (port = *lo_port, cur_size = 0; 22312 cur_size < size && port <= *hi_port; 22313 cur_size++, port++) { 22314 used = B_FALSE; 22315 net_port = htons(port); 22316 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 22317 mutex_enter(&tbf->tf_lock); 22318 for (tcp = tbf->tf_tcp; tcp != NULL; 22319 tcp = tcp->tcp_bind_hash) { 22320 if (zoneid == tcp->tcp_connp->conn_zoneid && 22321 net_port == tcp->tcp_lport) { 22322 /* 22323 * A port is already bound. Search again 22324 * starting from port + 1. Release all 22325 * temporary tcps. 22326 */ 22327 mutex_exit(&tbf->tf_lock); 22328 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22329 *lo_port = port + 1; 22330 cur_size = -1; 22331 used = B_TRUE; 22332 break; 22333 } 22334 } 22335 if (!used) { 22336 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 22337 /* 22338 * Allocation failure. Just fail the request. 22339 * Need to remove all those temporary tcp 22340 * structures. 22341 */ 22342 mutex_exit(&tbf->tf_lock); 22343 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22344 rw_exit(&tcp_reserved_port_lock); 22345 kmem_free(temp_tcp_array, 22346 (hi_port - lo_port + 1) * 22347 sizeof (tcp_t *)); 22348 return (B_FALSE); 22349 } 22350 temp_tcp_array[cur_size] = tmp_tcp; 22351 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 22352 mutex_exit(&tbf->tf_lock); 22353 } 22354 } 22355 22356 /* 22357 * The current range is not large enough. We can actually do another 22358 * search if this search is done between 2 reserved port ranges. But 22359 * for first release, we just stop here and return saying that no port 22360 * range is available. 22361 */ 22362 if (cur_size < size) { 22363 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 22364 rw_exit(&tcp_reserved_port_lock); 22365 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 22366 return (B_FALSE); 22367 } 22368 *hi_port = port - 1; 22369 22370 /* 22371 * Insert range into array in ascending order. Since this function 22372 * must not be called often, we choose to use the simplest method. 22373 * The above array should not consume excessive stack space as 22374 * the size must be very small. If in future releases, we find 22375 * that we should provide more reserved port ranges, this function 22376 * has to be modified to be more efficient. 22377 */ 22378 if (tcp_reserved_port_array_size == 0) { 22379 tcp_reserved_port[0].lo_port = *lo_port; 22380 tcp_reserved_port[0].hi_port = *hi_port; 22381 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 22382 } else { 22383 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 22384 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 22385 tmp_ports[j].lo_port = *lo_port; 22386 tmp_ports[j].hi_port = *hi_port; 22387 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22388 j++; 22389 } 22390 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 22391 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 22392 tmp_ports[j].temp_tcp_array = 22393 tcp_reserved_port[i].temp_tcp_array; 22394 } 22395 if (j == i) { 22396 tmp_ports[j].lo_port = *lo_port; 22397 tmp_ports[j].hi_port = *hi_port; 22398 tmp_ports[j].temp_tcp_array = temp_tcp_array; 22399 } 22400 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 22401 } 22402 tcp_reserved_port_array_size++; 22403 rw_exit(&tcp_reserved_port_lock); 22404 return (B_TRUE); 22405 } 22406 22407 /* 22408 * Check to see if a port is in any reserved port range. 22409 * 22410 * Params: 22411 * in_port_t port: the port to be verified. 22412 * 22413 * Return: 22414 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 22415 */ 22416 boolean_t 22417 tcp_reserved_port_check(in_port_t port) 22418 { 22419 int i; 22420 22421 rw_enter(&tcp_reserved_port_lock, RW_READER); 22422 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22423 if (port >= tcp_reserved_port[i].lo_port || 22424 port <= tcp_reserved_port[i].hi_port) { 22425 rw_exit(&tcp_reserved_port_lock); 22426 return (B_TRUE); 22427 } 22428 } 22429 rw_exit(&tcp_reserved_port_lock); 22430 return (B_FALSE); 22431 } 22432 22433 /* 22434 * To list all reserved port ranges. This is the function to handle 22435 * ndd tcp_reserved_port_list. 22436 */ 22437 /* ARGSUSED */ 22438 static int 22439 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22440 { 22441 int i; 22442 22443 rw_enter(&tcp_reserved_port_lock, RW_READER); 22444 if (tcp_reserved_port_array_size > 0) 22445 (void) mi_mpprintf(mp, "The following ports are reserved:"); 22446 else 22447 (void) mi_mpprintf(mp, "No port is reserved."); 22448 for (i = 0; i < tcp_reserved_port_array_size; i++) { 22449 (void) mi_mpprintf(mp, "%d-%d", 22450 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 22451 } 22452 rw_exit(&tcp_reserved_port_lock); 22453 return (0); 22454 } 22455 22456 /* 22457 * Hash list insertion routine for tcp_t structures. 22458 * Inserts entries with the ones bound to a specific IP address first 22459 * followed by those bound to INADDR_ANY. 22460 */ 22461 static void 22462 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 22463 { 22464 tcp_t **tcpp; 22465 tcp_t *tcpnext; 22466 22467 if (tcp->tcp_ptpbhn != NULL) { 22468 ASSERT(!caller_holds_lock); 22469 tcp_bind_hash_remove(tcp); 22470 } 22471 tcpp = &tbf->tf_tcp; 22472 if (!caller_holds_lock) { 22473 mutex_enter(&tbf->tf_lock); 22474 } else { 22475 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 22476 } 22477 tcpnext = tcpp[0]; 22478 if (tcpnext) { 22479 /* 22480 * If the new tcp bound to the INADDR_ANY address 22481 * and the first one in the list is not bound to 22482 * INADDR_ANY we skip all entries until we find the 22483 * first one bound to INADDR_ANY. 22484 * This makes sure that applications binding to a 22485 * specific address get preference over those binding to 22486 * INADDR_ANY. 22487 */ 22488 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 22489 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 22490 while ((tcpnext = tcpp[0]) != NULL && 22491 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 22492 tcpp = &(tcpnext->tcp_bind_hash); 22493 if (tcpnext) 22494 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22495 } else 22496 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 22497 } 22498 tcp->tcp_bind_hash = tcpnext; 22499 tcp->tcp_ptpbhn = tcpp; 22500 tcpp[0] = tcp; 22501 if (!caller_holds_lock) 22502 mutex_exit(&tbf->tf_lock); 22503 } 22504 22505 /* 22506 * Hash list removal routine for tcp_t structures. 22507 */ 22508 static void 22509 tcp_bind_hash_remove(tcp_t *tcp) 22510 { 22511 tcp_t *tcpnext; 22512 kmutex_t *lockp; 22513 22514 if (tcp->tcp_ptpbhn == NULL) 22515 return; 22516 22517 /* 22518 * Extract the lock pointer in case there are concurrent 22519 * hash_remove's for this instance. 22520 */ 22521 ASSERT(tcp->tcp_lport != 0); 22522 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 22523 22524 ASSERT(lockp != NULL); 22525 mutex_enter(lockp); 22526 if (tcp->tcp_ptpbhn) { 22527 tcpnext = tcp->tcp_bind_hash; 22528 if (tcpnext) { 22529 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 22530 tcp->tcp_bind_hash = NULL; 22531 } 22532 *tcp->tcp_ptpbhn = tcpnext; 22533 tcp->tcp_ptpbhn = NULL; 22534 } 22535 mutex_exit(lockp); 22536 } 22537 22538 22539 /* 22540 * Hash list lookup routine for tcp_t structures. 22541 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 22542 */ 22543 static tcp_t * 22544 tcp_acceptor_hash_lookup(t_uscalar_t id) 22545 { 22546 tf_t *tf; 22547 tcp_t *tcp; 22548 22549 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22550 mutex_enter(&tf->tf_lock); 22551 for (tcp = tf->tf_tcp; tcp != NULL; 22552 tcp = tcp->tcp_acceptor_hash) { 22553 if (tcp->tcp_acceptor_id == id) { 22554 CONN_INC_REF(tcp->tcp_connp); 22555 mutex_exit(&tf->tf_lock); 22556 return (tcp); 22557 } 22558 } 22559 mutex_exit(&tf->tf_lock); 22560 return (NULL); 22561 } 22562 22563 22564 /* 22565 * Hash list insertion routine for tcp_t structures. 22566 */ 22567 void 22568 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 22569 { 22570 tf_t *tf; 22571 tcp_t **tcpp; 22572 tcp_t *tcpnext; 22573 22574 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 22575 22576 if (tcp->tcp_ptpahn != NULL) 22577 tcp_acceptor_hash_remove(tcp); 22578 tcpp = &tf->tf_tcp; 22579 mutex_enter(&tf->tf_lock); 22580 tcpnext = tcpp[0]; 22581 if (tcpnext) 22582 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 22583 tcp->tcp_acceptor_hash = tcpnext; 22584 tcp->tcp_ptpahn = tcpp; 22585 tcpp[0] = tcp; 22586 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 22587 mutex_exit(&tf->tf_lock); 22588 } 22589 22590 /* 22591 * Hash list removal routine for tcp_t structures. 22592 */ 22593 static void 22594 tcp_acceptor_hash_remove(tcp_t *tcp) 22595 { 22596 tcp_t *tcpnext; 22597 kmutex_t *lockp; 22598 22599 /* 22600 * Extract the lock pointer in case there are concurrent 22601 * hash_remove's for this instance. 22602 */ 22603 lockp = tcp->tcp_acceptor_lockp; 22604 22605 if (tcp->tcp_ptpahn == NULL) 22606 return; 22607 22608 ASSERT(lockp != NULL); 22609 mutex_enter(lockp); 22610 if (tcp->tcp_ptpahn) { 22611 tcpnext = tcp->tcp_acceptor_hash; 22612 if (tcpnext) { 22613 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 22614 tcp->tcp_acceptor_hash = NULL; 22615 } 22616 *tcp->tcp_ptpahn = tcpnext; 22617 tcp->tcp_ptpahn = NULL; 22618 } 22619 mutex_exit(lockp); 22620 tcp->tcp_acceptor_lockp = NULL; 22621 } 22622 22623 /* ARGSUSED */ 22624 static int 22625 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 22626 { 22627 int error = 0; 22628 int retval; 22629 char *end; 22630 22631 tcp_hsp_t *hsp; 22632 tcp_hsp_t *hspprev; 22633 22634 ipaddr_t addr = 0; /* Address we're looking for */ 22635 in6_addr_t v6addr; /* Address we're looking for */ 22636 uint32_t hash; /* Hash of that address */ 22637 22638 /* 22639 * If the following variables are still zero after parsing the input 22640 * string, the user didn't specify them and we don't change them in 22641 * the HSP. 22642 */ 22643 22644 ipaddr_t mask = 0; /* Subnet mask */ 22645 in6_addr_t v6mask; 22646 long sendspace = 0; /* Send buffer size */ 22647 long recvspace = 0; /* Receive buffer size */ 22648 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 22649 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 22650 22651 rw_enter(&tcp_hsp_lock, RW_WRITER); 22652 22653 /* Parse and validate address */ 22654 if (af == AF_INET) { 22655 retval = inet_pton(af, value, &addr); 22656 if (retval == 1) 22657 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 22658 } else if (af == AF_INET6) { 22659 retval = inet_pton(af, value, &v6addr); 22660 } else { 22661 error = EINVAL; 22662 goto done; 22663 } 22664 if (retval == 0) { 22665 error = EINVAL; 22666 goto done; 22667 } 22668 22669 while ((*value) && *value != ' ') 22670 value++; 22671 22672 /* Parse individual keywords, set variables if found */ 22673 while (*value) { 22674 /* Skip leading blanks */ 22675 22676 while (*value == ' ' || *value == '\t') 22677 value++; 22678 22679 /* If at end of string, we're done */ 22680 22681 if (!*value) 22682 break; 22683 22684 /* We have a word, figure out what it is */ 22685 22686 if (strncmp("mask", value, 4) == 0) { 22687 value += 4; 22688 while (*value == ' ' || *value == '\t') 22689 value++; 22690 /* Parse subnet mask */ 22691 if (af == AF_INET) { 22692 retval = inet_pton(af, value, &mask); 22693 if (retval == 1) { 22694 V4MASK_TO_V6(mask, v6mask); 22695 } 22696 } else if (af == AF_INET6) { 22697 retval = inet_pton(af, value, &v6mask); 22698 } 22699 if (retval != 1) { 22700 error = EINVAL; 22701 goto done; 22702 } 22703 while ((*value) && *value != ' ') 22704 value++; 22705 } else if (strncmp("sendspace", value, 9) == 0) { 22706 value += 9; 22707 22708 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 22709 sendspace < TCP_XMIT_HIWATER || 22710 sendspace >= (1L<<30)) { 22711 error = EINVAL; 22712 goto done; 22713 } 22714 value = end; 22715 } else if (strncmp("recvspace", value, 9) == 0) { 22716 value += 9; 22717 22718 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 22719 recvspace < TCP_RECV_HIWATER || 22720 recvspace >= (1L<<30)) { 22721 error = EINVAL; 22722 goto done; 22723 } 22724 value = end; 22725 } else if (strncmp("timestamp", value, 9) == 0) { 22726 value += 9; 22727 22728 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 22729 timestamp < 0 || timestamp > 1) { 22730 error = EINVAL; 22731 goto done; 22732 } 22733 22734 /* 22735 * We increment timestamp so we know it's been set; 22736 * this is undone when we put it in the HSP 22737 */ 22738 timestamp++; 22739 value = end; 22740 } else if (strncmp("delete", value, 6) == 0) { 22741 value += 6; 22742 delete = B_TRUE; 22743 } else { 22744 error = EINVAL; 22745 goto done; 22746 } 22747 } 22748 22749 /* Hash address for lookup */ 22750 22751 hash = TCP_HSP_HASH(addr); 22752 22753 if (delete) { 22754 /* 22755 * Note that deletes don't return an error if the thing 22756 * we're trying to delete isn't there. 22757 */ 22758 if (tcp_hsp_hash == NULL) 22759 goto done; 22760 hsp = tcp_hsp_hash[hash]; 22761 22762 if (hsp) { 22763 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 22764 &v6addr)) { 22765 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 22766 mi_free((char *)hsp); 22767 } else { 22768 hspprev = hsp; 22769 while ((hsp = hsp->tcp_hsp_next) != NULL) { 22770 if (IN6_ARE_ADDR_EQUAL( 22771 &hsp->tcp_hsp_addr_v6, &v6addr)) { 22772 hspprev->tcp_hsp_next = 22773 hsp->tcp_hsp_next; 22774 mi_free((char *)hsp); 22775 break; 22776 } 22777 hspprev = hsp; 22778 } 22779 } 22780 } 22781 } else { 22782 /* 22783 * We're adding/modifying an HSP. If we haven't already done 22784 * so, allocate the hash table. 22785 */ 22786 22787 if (!tcp_hsp_hash) { 22788 tcp_hsp_hash = (tcp_hsp_t **) 22789 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 22790 if (!tcp_hsp_hash) { 22791 error = EINVAL; 22792 goto done; 22793 } 22794 } 22795 22796 /* Get head of hash chain */ 22797 22798 hsp = tcp_hsp_hash[hash]; 22799 22800 /* Try to find pre-existing hsp on hash chain */ 22801 /* Doesn't handle CIDR prefixes. */ 22802 while (hsp) { 22803 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 22804 break; 22805 hsp = hsp->tcp_hsp_next; 22806 } 22807 22808 /* 22809 * If we didn't, create one with default values and put it 22810 * at head of hash chain 22811 */ 22812 22813 if (!hsp) { 22814 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 22815 if (!hsp) { 22816 error = EINVAL; 22817 goto done; 22818 } 22819 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 22820 tcp_hsp_hash[hash] = hsp; 22821 } 22822 22823 /* Set values that the user asked us to change */ 22824 22825 hsp->tcp_hsp_addr_v6 = v6addr; 22826 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 22827 hsp->tcp_hsp_vers = IPV4_VERSION; 22828 else 22829 hsp->tcp_hsp_vers = IPV6_VERSION; 22830 hsp->tcp_hsp_subnet_v6 = v6mask; 22831 if (sendspace > 0) 22832 hsp->tcp_hsp_sendspace = sendspace; 22833 if (recvspace > 0) 22834 hsp->tcp_hsp_recvspace = recvspace; 22835 if (timestamp > 0) 22836 hsp->tcp_hsp_tstamp = timestamp - 1; 22837 } 22838 22839 done: 22840 rw_exit(&tcp_hsp_lock); 22841 return (error); 22842 } 22843 22844 /* Set callback routine passed to nd_load by tcp_param_register. */ 22845 /* ARGSUSED */ 22846 static int 22847 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 22848 { 22849 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 22850 } 22851 /* ARGSUSED */ 22852 static int 22853 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 22854 cred_t *cr) 22855 { 22856 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 22857 } 22858 22859 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 22860 /* ARGSUSED */ 22861 static int 22862 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 22863 { 22864 tcp_hsp_t *hsp; 22865 int i; 22866 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 22867 22868 rw_enter(&tcp_hsp_lock, RW_READER); 22869 (void) mi_mpprintf(mp, 22870 "Hash HSP " MI_COL_HDRPAD_STR 22871 "Address Subnet Mask Send Receive TStamp"); 22872 if (tcp_hsp_hash) { 22873 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 22874 hsp = tcp_hsp_hash[i]; 22875 while (hsp) { 22876 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 22877 (void) inet_ntop(AF_INET, 22878 &hsp->tcp_hsp_addr, 22879 addrbuf, sizeof (addrbuf)); 22880 (void) inet_ntop(AF_INET, 22881 &hsp->tcp_hsp_subnet, 22882 subnetbuf, sizeof (subnetbuf)); 22883 } else { 22884 (void) inet_ntop(AF_INET6, 22885 &hsp->tcp_hsp_addr_v6, 22886 addrbuf, sizeof (addrbuf)); 22887 (void) inet_ntop(AF_INET6, 22888 &hsp->tcp_hsp_subnet_v6, 22889 subnetbuf, sizeof (subnetbuf)); 22890 } 22891 (void) mi_mpprintf(mp, 22892 " %03d " MI_COL_PTRFMT_STR 22893 "%s %s %010d %010d %d", 22894 i, 22895 (void *)hsp, 22896 addrbuf, 22897 subnetbuf, 22898 hsp->tcp_hsp_sendspace, 22899 hsp->tcp_hsp_recvspace, 22900 hsp->tcp_hsp_tstamp); 22901 22902 hsp = hsp->tcp_hsp_next; 22903 } 22904 } 22905 } 22906 rw_exit(&tcp_hsp_lock); 22907 return (0); 22908 } 22909 22910 22911 /* Data for fast netmask macro used by tcp_hsp_lookup */ 22912 22913 static ipaddr_t netmasks[] = { 22914 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 22915 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 22916 }; 22917 22918 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 22919 22920 /* 22921 * XXX This routine should go away and instead we should use the metrics 22922 * associated with the routes to determine the default sndspace and rcvspace. 22923 */ 22924 static tcp_hsp_t * 22925 tcp_hsp_lookup(ipaddr_t addr) 22926 { 22927 tcp_hsp_t *hsp = NULL; 22928 22929 /* Quick check without acquiring the lock. */ 22930 if (tcp_hsp_hash == NULL) 22931 return (NULL); 22932 22933 rw_enter(&tcp_hsp_lock, RW_READER); 22934 22935 /* This routine finds the best-matching HSP for address addr. */ 22936 22937 if (tcp_hsp_hash) { 22938 int i; 22939 ipaddr_t srchaddr; 22940 tcp_hsp_t *hsp_net; 22941 22942 /* We do three passes: host, network, and subnet. */ 22943 22944 srchaddr = addr; 22945 22946 for (i = 1; i <= 3; i++) { 22947 /* Look for exact match on srchaddr */ 22948 22949 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 22950 while (hsp) { 22951 if (hsp->tcp_hsp_vers == IPV4_VERSION && 22952 hsp->tcp_hsp_addr == srchaddr) 22953 break; 22954 hsp = hsp->tcp_hsp_next; 22955 } 22956 ASSERT(hsp == NULL || 22957 hsp->tcp_hsp_vers == IPV4_VERSION); 22958 22959 /* 22960 * If this is the first pass: 22961 * If we found a match, great, return it. 22962 * If not, search for the network on the second pass. 22963 */ 22964 22965 if (i == 1) 22966 if (hsp) 22967 break; 22968 else 22969 { 22970 srchaddr = addr & netmask(addr); 22971 continue; 22972 } 22973 22974 /* 22975 * If this is the second pass: 22976 * If we found a match, but there's a subnet mask, 22977 * save the match but try again using the subnet 22978 * mask on the third pass. 22979 * Otherwise, return whatever we found. 22980 */ 22981 22982 if (i == 2) { 22983 if (hsp && hsp->tcp_hsp_subnet) { 22984 hsp_net = hsp; 22985 srchaddr = addr & hsp->tcp_hsp_subnet; 22986 continue; 22987 } else { 22988 break; 22989 } 22990 } 22991 22992 /* 22993 * This must be the third pass. If we didn't find 22994 * anything, return the saved network HSP instead. 22995 */ 22996 22997 if (!hsp) 22998 hsp = hsp_net; 22999 } 23000 } 23001 23002 rw_exit(&tcp_hsp_lock); 23003 return (hsp); 23004 } 23005 23006 /* 23007 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 23008 * match lookup. 23009 */ 23010 static tcp_hsp_t * 23011 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 23012 { 23013 tcp_hsp_t *hsp = NULL; 23014 23015 /* Quick check without acquiring the lock. */ 23016 if (tcp_hsp_hash == NULL) 23017 return (NULL); 23018 23019 rw_enter(&tcp_hsp_lock, RW_READER); 23020 23021 /* This routine finds the best-matching HSP for address addr. */ 23022 23023 if (tcp_hsp_hash) { 23024 int i; 23025 in6_addr_t v6srchaddr; 23026 tcp_hsp_t *hsp_net; 23027 23028 /* We do three passes: host, network, and subnet. */ 23029 23030 v6srchaddr = *v6addr; 23031 23032 for (i = 1; i <= 3; i++) { 23033 /* Look for exact match on srchaddr */ 23034 23035 hsp = tcp_hsp_hash[TCP_HSP_HASH( 23036 V4_PART_OF_V6(v6srchaddr))]; 23037 while (hsp) { 23038 if (hsp->tcp_hsp_vers == IPV6_VERSION && 23039 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23040 &v6srchaddr)) 23041 break; 23042 hsp = hsp->tcp_hsp_next; 23043 } 23044 23045 /* 23046 * If this is the first pass: 23047 * If we found a match, great, return it. 23048 * If not, search for the network on the second pass. 23049 */ 23050 23051 if (i == 1) 23052 if (hsp) 23053 break; 23054 else { 23055 /* Assume a 64 bit mask */ 23056 v6srchaddr.s6_addr32[0] = 23057 v6addr->s6_addr32[0]; 23058 v6srchaddr.s6_addr32[1] = 23059 v6addr->s6_addr32[1]; 23060 v6srchaddr.s6_addr32[2] = 0; 23061 v6srchaddr.s6_addr32[3] = 0; 23062 continue; 23063 } 23064 23065 /* 23066 * If this is the second pass: 23067 * If we found a match, but there's a subnet mask, 23068 * save the match but try again using the subnet 23069 * mask on the third pass. 23070 * Otherwise, return whatever we found. 23071 */ 23072 23073 if (i == 2) { 23074 ASSERT(hsp == NULL || 23075 hsp->tcp_hsp_vers == IPV6_VERSION); 23076 if (hsp && 23077 !IN6_IS_ADDR_UNSPECIFIED( 23078 &hsp->tcp_hsp_subnet_v6)) { 23079 hsp_net = hsp; 23080 V6_MASK_COPY(*v6addr, 23081 hsp->tcp_hsp_subnet_v6, v6srchaddr); 23082 continue; 23083 } else { 23084 break; 23085 } 23086 } 23087 23088 /* 23089 * This must be the third pass. If we didn't find 23090 * anything, return the saved network HSP instead. 23091 */ 23092 23093 if (!hsp) 23094 hsp = hsp_net; 23095 } 23096 } 23097 23098 rw_exit(&tcp_hsp_lock); 23099 return (hsp); 23100 } 23101 23102 /* 23103 * Type three generator adapted from the random() function in 4.4 BSD: 23104 */ 23105 23106 /* 23107 * Copyright (c) 1983, 1993 23108 * The Regents of the University of California. All rights reserved. 23109 * 23110 * Redistribution and use in source and binary forms, with or without 23111 * modification, are permitted provided that the following conditions 23112 * are met: 23113 * 1. Redistributions of source code must retain the above copyright 23114 * notice, this list of conditions and the following disclaimer. 23115 * 2. Redistributions in binary form must reproduce the above copyright 23116 * notice, this list of conditions and the following disclaimer in the 23117 * documentation and/or other materials provided with the distribution. 23118 * 3. All advertising materials mentioning features or use of this software 23119 * must display the following acknowledgement: 23120 * This product includes software developed by the University of 23121 * California, Berkeley and its contributors. 23122 * 4. Neither the name of the University nor the names of its contributors 23123 * may be used to endorse or promote products derived from this software 23124 * without specific prior written permission. 23125 * 23126 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23127 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23128 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23129 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23130 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23131 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23132 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23133 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23134 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23135 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23136 * SUCH DAMAGE. 23137 */ 23138 23139 /* Type 3 -- x**31 + x**3 + 1 */ 23140 #define DEG_3 31 23141 #define SEP_3 3 23142 23143 23144 /* Protected by tcp_random_lock */ 23145 static int tcp_randtbl[DEG_3 + 1]; 23146 23147 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23148 static int *tcp_random_rptr = &tcp_randtbl[1]; 23149 23150 static int *tcp_random_state = &tcp_randtbl[1]; 23151 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23152 23153 kmutex_t tcp_random_lock; 23154 23155 void 23156 tcp_random_init(void) 23157 { 23158 int i; 23159 hrtime_t hrt; 23160 time_t wallclock; 23161 uint64_t result; 23162 23163 /* 23164 * Use high-res timer and current time for seed. Gethrtime() returns 23165 * a longlong, which may contain resolution down to nanoseconds. 23166 * The current time will either be a 32-bit or a 64-bit quantity. 23167 * XOR the two together in a 64-bit result variable. 23168 * Convert the result to a 32-bit value by multiplying the high-order 23169 * 32-bits by the low-order 32-bits. 23170 */ 23171 23172 hrt = gethrtime(); 23173 (void) drv_getparm(TIME, &wallclock); 23174 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23175 mutex_enter(&tcp_random_lock); 23176 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23177 (result & 0xffffffff); 23178 23179 for (i = 1; i < DEG_3; i++) 23180 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23181 + 12345; 23182 tcp_random_fptr = &tcp_random_state[SEP_3]; 23183 tcp_random_rptr = &tcp_random_state[0]; 23184 mutex_exit(&tcp_random_lock); 23185 for (i = 0; i < 10 * DEG_3; i++) 23186 (void) tcp_random(); 23187 } 23188 23189 /* 23190 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23191 * This range is selected to be approximately centered on TCP_ISS / 2, 23192 * and easy to compute. We get this value by generating a 32-bit random 23193 * number, selecting out the high-order 17 bits, and then adding one so 23194 * that we never return zero. 23195 */ 23196 int 23197 tcp_random(void) 23198 { 23199 int i; 23200 23201 mutex_enter(&tcp_random_lock); 23202 *tcp_random_fptr += *tcp_random_rptr; 23203 23204 /* 23205 * The high-order bits are more random than the low-order bits, 23206 * so we select out the high-order 17 bits and add one so that 23207 * we never return zero. 23208 */ 23209 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23210 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23211 tcp_random_fptr = tcp_random_state; 23212 ++tcp_random_rptr; 23213 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23214 tcp_random_rptr = tcp_random_state; 23215 23216 mutex_exit(&tcp_random_lock); 23217 return (i); 23218 } 23219 23220 /* 23221 * XXX This will go away when TPI is extended to send 23222 * info reqs to sockfs/timod ..... 23223 * Given a queue, set the max packet size for the write 23224 * side of the queue below stream head. This value is 23225 * cached on the stream head. 23226 * Returns 1 on success, 0 otherwise. 23227 */ 23228 static int 23229 setmaxps(queue_t *q, int maxpsz) 23230 { 23231 struct stdata *stp; 23232 queue_t *wq; 23233 stp = STREAM(q); 23234 23235 /* 23236 * At this point change of a queue parameter is not allowed 23237 * when a multiplexor is sitting on top. 23238 */ 23239 if (stp->sd_flag & STPLEX) 23240 return (0); 23241 23242 claimstr(stp->sd_wrq); 23243 wq = stp->sd_wrq->q_next; 23244 ASSERT(wq != NULL); 23245 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 23246 releasestr(stp->sd_wrq); 23247 return (1); 23248 } 23249 23250 static int 23251 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23252 int *t_errorp, int *sys_errorp) 23253 { 23254 int error; 23255 int is_absreq_failure; 23256 t_scalar_t *opt_lenp; 23257 t_scalar_t opt_offset; 23258 int prim_type; 23259 struct T_conn_req *tcreqp; 23260 struct T_conn_res *tcresp; 23261 cred_t *cr; 23262 23263 cr = DB_CREDDEF(mp, tcp->tcp_cred); 23264 23265 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23266 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23267 prim_type == T_CONN_RES); 23268 23269 switch (prim_type) { 23270 case T_CONN_REQ: 23271 tcreqp = (struct T_conn_req *)mp->b_rptr; 23272 opt_offset = tcreqp->OPT_offset; 23273 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23274 break; 23275 case O_T_CONN_RES: 23276 case T_CONN_RES: 23277 tcresp = (struct T_conn_res *)mp->b_rptr; 23278 opt_offset = tcresp->OPT_offset; 23279 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23280 break; 23281 } 23282 23283 *t_errorp = 0; 23284 *sys_errorp = 0; 23285 *do_disconnectp = 0; 23286 23287 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23288 opt_offset, cr, &tcp_opt_obj, 23289 NULL, &is_absreq_failure); 23290 23291 switch (error) { 23292 case 0: /* no error */ 23293 ASSERT(is_absreq_failure == 0); 23294 return (0); 23295 case ENOPROTOOPT: 23296 *t_errorp = TBADOPT; 23297 break; 23298 case EACCES: 23299 *t_errorp = TACCES; 23300 break; 23301 default: 23302 *t_errorp = TSYSERR; *sys_errorp = error; 23303 break; 23304 } 23305 if (is_absreq_failure != 0) { 23306 /* 23307 * The connection request should get the local ack 23308 * T_OK_ACK and then a T_DISCON_IND. 23309 */ 23310 *do_disconnectp = 1; 23311 } 23312 return (-1); 23313 } 23314 23315 /* 23316 * Split this function out so that if the secret changes, I'm okay. 23317 * 23318 * Initialize the tcp_iss_cookie and tcp_iss_key. 23319 */ 23320 23321 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23322 23323 static void 23324 tcp_iss_key_init(uint8_t *phrase, int len) 23325 { 23326 struct { 23327 int32_t current_time; 23328 uint32_t randnum; 23329 uint16_t pad; 23330 uint8_t ether[6]; 23331 uint8_t passwd[PASSWD_SIZE]; 23332 } tcp_iss_cookie; 23333 time_t t; 23334 23335 /* 23336 * Start with the current absolute time. 23337 */ 23338 (void) drv_getparm(TIME, &t); 23339 tcp_iss_cookie.current_time = t; 23340 23341 /* 23342 * XXX - Need a more random number per RFC 1750, not this crap. 23343 * OTOH, if what follows is pretty random, then I'm in better shape. 23344 */ 23345 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23346 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23347 23348 /* 23349 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23350 * as a good template. 23351 */ 23352 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23353 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23354 23355 /* 23356 * The pass-phrase. Normally this is supplied by user-called NDD. 23357 */ 23358 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23359 23360 /* 23361 * See 4010593 if this section becomes a problem again, 23362 * but the local ethernet address is useful here. 23363 */ 23364 (void) localetheraddr(NULL, 23365 (struct ether_addr *)&tcp_iss_cookie.ether); 23366 23367 /* 23368 * Hash 'em all together. The MD5Final is called per-connection. 23369 */ 23370 mutex_enter(&tcp_iss_key_lock); 23371 MD5Init(&tcp_iss_key); 23372 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 23373 sizeof (tcp_iss_cookie)); 23374 mutex_exit(&tcp_iss_key_lock); 23375 } 23376 23377 /* 23378 * Set the RFC 1948 pass phrase 23379 */ 23380 /* ARGSUSED */ 23381 static int 23382 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23383 cred_t *cr) 23384 { 23385 /* 23386 * Basically, value contains a new pass phrase. Pass it along! 23387 */ 23388 tcp_iss_key_init((uint8_t *)value, strlen(value)); 23389 return (0); 23390 } 23391 23392 /* ARGSUSED */ 23393 static int 23394 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23395 { 23396 bzero(buf, sizeof (tcp_sack_info_t)); 23397 return (0); 23398 } 23399 23400 /* ARGSUSED */ 23401 static int 23402 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23403 { 23404 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23405 return (0); 23406 } 23407 23408 void 23409 tcp_ddi_init(void) 23410 { 23411 int i; 23412 23413 /* Initialize locks */ 23414 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 23415 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23416 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23417 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23418 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23419 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 23420 23421 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23422 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 23423 MUTEX_DEFAULT, NULL); 23424 } 23425 23426 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23427 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 23428 MUTEX_DEFAULT, NULL); 23429 } 23430 23431 /* TCP's IPsec code calls the packet dropper. */ 23432 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 23433 23434 if (!tcp_g_nd) { 23435 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 23436 nd_free(&tcp_g_nd); 23437 } 23438 } 23439 23440 /* 23441 * Note: To really walk the device tree you need the devinfo 23442 * pointer to your device which is only available after probe/attach. 23443 * The following is safe only because it uses ddi_root_node() 23444 */ 23445 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23446 tcp_opt_obj.odb_opt_arr_cnt); 23447 23448 tcp_timercache = kmem_cache_create("tcp_timercache", 23449 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23450 NULL, NULL, NULL, NULL, NULL, 0); 23451 23452 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23453 sizeof (tcp_sack_info_t), 0, 23454 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23455 23456 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23457 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23458 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23459 23460 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 23461 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 23462 23463 ip_squeue_init(tcp_squeue_add); 23464 23465 /* Initialize the random number generator */ 23466 tcp_random_init(); 23467 23468 /* 23469 * Initialize RFC 1948 secret values. This will probably be reset once 23470 * by the boot scripts. 23471 * 23472 * Use NULL name, as the name is caught by the new lockstats. 23473 * 23474 * Initialize with some random, non-guessable string, like the global 23475 * T_INFO_ACK. 23476 */ 23477 23478 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23479 sizeof (tcp_g_t_info_ack)); 23480 23481 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 23482 "net", KSTAT_TYPE_NAMED, 23483 sizeof (tcp_statistics) / sizeof (kstat_named_t), 23484 KSTAT_FLAG_VIRTUAL)) != NULL) { 23485 tcp_kstat->ks_data = &tcp_statistics; 23486 kstat_install(tcp_kstat); 23487 } 23488 23489 tcp_kstat_init(); 23490 } 23491 23492 void 23493 tcp_ddi_destroy(void) 23494 { 23495 int i; 23496 23497 nd_free(&tcp_g_nd); 23498 23499 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 23500 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 23501 } 23502 23503 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 23504 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 23505 } 23506 23507 mutex_destroy(&tcp_iss_key_lock); 23508 rw_destroy(&tcp_hsp_lock); 23509 mutex_destroy(&tcp_g_q_lock); 23510 mutex_destroy(&tcp_random_lock); 23511 mutex_destroy(&tcp_epriv_port_lock); 23512 rw_destroy(&tcp_reserved_port_lock); 23513 23514 ip_drop_unregister(&tcp_dropper); 23515 23516 kmem_cache_destroy(tcp_timercache); 23517 kmem_cache_destroy(tcp_sack_info_cache); 23518 kmem_cache_destroy(tcp_iphc_cache); 23519 23520 tcp_kstat_fini(); 23521 } 23522 23523 /* 23524 * Generate ISS, taking into account NDD changes may happen halfway through. 23525 * (If the iss is not zero, set it.) 23526 */ 23527 23528 static void 23529 tcp_iss_init(tcp_t *tcp) 23530 { 23531 MD5_CTX context; 23532 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 23533 uint32_t answer[4]; 23534 23535 tcp_iss_incr_extra += (ISS_INCR >> 1); 23536 tcp->tcp_iss = tcp_iss_incr_extra; 23537 switch (tcp_strong_iss) { 23538 case 2: 23539 mutex_enter(&tcp_iss_key_lock); 23540 context = tcp_iss_key; 23541 mutex_exit(&tcp_iss_key_lock); 23542 arg.ports = tcp->tcp_ports; 23543 if (tcp->tcp_ipversion == IPV4_VERSION) { 23544 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 23545 &arg.src); 23546 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 23547 &arg.dst); 23548 } else { 23549 arg.src = tcp->tcp_ip6h->ip6_src; 23550 arg.dst = tcp->tcp_ip6h->ip6_dst; 23551 } 23552 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 23553 MD5Final((uchar_t *)answer, &context); 23554 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 23555 /* 23556 * Now that we've hashed into a unique per-connection sequence 23557 * space, add a random increment per strong_iss == 1. So I 23558 * guess we'll have to... 23559 */ 23560 /* FALLTHRU */ 23561 case 1: 23562 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 23563 break; 23564 default: 23565 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 23566 break; 23567 } 23568 tcp->tcp_valid_bits = TCP_ISS_VALID; 23569 tcp->tcp_fss = tcp->tcp_iss - 1; 23570 tcp->tcp_suna = tcp->tcp_iss; 23571 tcp->tcp_snxt = tcp->tcp_iss + 1; 23572 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 23573 tcp->tcp_csuna = tcp->tcp_snxt; 23574 } 23575 23576 /* 23577 * Exported routine for extracting active tcp connection status. 23578 * 23579 * This is used by the Solaris Cluster Networking software to 23580 * gather a list of connections that need to be forwarded to 23581 * specific nodes in the cluster when configuration changes occur. 23582 * 23583 * The callback is invoked for each tcp_t structure. Returning 23584 * non-zero from the callback routine terminates the search. 23585 */ 23586 int 23587 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 23588 { 23589 tcp_t *tcp; 23590 cl_tcp_info_t cl_tcpi; 23591 connf_t *connfp; 23592 conn_t *connp; 23593 int i; 23594 23595 ASSERT(callback != NULL); 23596 23597 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 23598 23599 connfp = &ipcl_globalhash_fanout[i]; 23600 connp = NULL; 23601 23602 while ((connp = 23603 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 23604 23605 tcp = connp->conn_tcp; 23606 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 23607 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 23608 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 23609 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 23610 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 23611 /* 23612 * The macros tcp_laddr and tcp_faddr give the IPv4 23613 * addresses. They are copied implicitly below as 23614 * mapped addresses. 23615 */ 23616 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 23617 if (tcp->tcp_ipversion == IPV4_VERSION) { 23618 cl_tcpi.cl_tcpi_faddr = 23619 tcp->tcp_ipha->ipha_dst; 23620 } else { 23621 cl_tcpi.cl_tcpi_faddr_v6 = 23622 tcp->tcp_ip6h->ip6_dst; 23623 } 23624 23625 /* 23626 * If the callback returns non-zero 23627 * we terminate the traversal. 23628 */ 23629 if ((*callback)(&cl_tcpi, arg) != 0) { 23630 CONN_DEC_REF(tcp->tcp_connp); 23631 return (1); 23632 } 23633 } 23634 } 23635 23636 return (0); 23637 } 23638 23639 /* 23640 * Macros used for accessing the different types of sockaddr 23641 * structures inside a tcp_ioc_abort_conn_t. 23642 */ 23643 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 23644 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 23645 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 23646 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 23647 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 23648 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 23649 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 23650 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 23651 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 23652 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 23653 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 23654 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 23655 23656 /* 23657 * Return the correct error code to mimic the behavior 23658 * of a connection reset. 23659 */ 23660 #define TCP_AC_GET_ERRCODE(state, err) { \ 23661 switch ((state)) { \ 23662 case TCPS_SYN_SENT: \ 23663 case TCPS_SYN_RCVD: \ 23664 (err) = ECONNREFUSED; \ 23665 break; \ 23666 case TCPS_ESTABLISHED: \ 23667 case TCPS_FIN_WAIT_1: \ 23668 case TCPS_FIN_WAIT_2: \ 23669 case TCPS_CLOSE_WAIT: \ 23670 (err) = ECONNRESET; \ 23671 break; \ 23672 case TCPS_CLOSING: \ 23673 case TCPS_LAST_ACK: \ 23674 case TCPS_TIME_WAIT: \ 23675 (err) = 0; \ 23676 break; \ 23677 default: \ 23678 (err) = ENXIO; \ 23679 } \ 23680 } 23681 23682 /* 23683 * Check if a tcp structure matches the info in acp. 23684 */ 23685 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 23686 (((acp)->ac_local.ss_family == AF_INET) ? \ 23687 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 23688 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 23689 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 23690 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 23691 (TCP_AC_V4LPORT((acp)) == 0 || \ 23692 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 23693 (TCP_AC_V4RPORT((acp)) == 0 || \ 23694 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 23695 (acp)->ac_start <= (tcp)->tcp_state && \ 23696 (acp)->ac_end >= (tcp)->tcp_state) : \ 23697 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 23698 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 23699 &(tcp)->tcp_ip_src_v6)) && \ 23700 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 23701 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 23702 &(tcp)->tcp_remote_v6)) && \ 23703 (TCP_AC_V6LPORT((acp)) == 0 || \ 23704 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 23705 (TCP_AC_V6RPORT((acp)) == 0 || \ 23706 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 23707 (acp)->ac_start <= (tcp)->tcp_state && \ 23708 (acp)->ac_end >= (tcp)->tcp_state)) 23709 23710 #define TCP_AC_MATCH(acp, tcp) \ 23711 (((acp)->ac_zoneid == ALL_ZONES || \ 23712 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 23713 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 23714 23715 /* 23716 * Build a message containing a tcp_ioc_abort_conn_t structure 23717 * which is filled in with information from acp and tp. 23718 */ 23719 static mblk_t * 23720 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 23721 { 23722 mblk_t *mp; 23723 tcp_ioc_abort_conn_t *tacp; 23724 23725 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 23726 if (mp == NULL) 23727 return (NULL); 23728 23729 mp->b_datap->db_type = M_CTL; 23730 23731 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 23732 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 23733 sizeof (uint32_t)); 23734 23735 tacp->ac_start = acp->ac_start; 23736 tacp->ac_end = acp->ac_end; 23737 tacp->ac_zoneid = acp->ac_zoneid; 23738 23739 if (acp->ac_local.ss_family == AF_INET) { 23740 tacp->ac_local.ss_family = AF_INET; 23741 tacp->ac_remote.ss_family = AF_INET; 23742 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 23743 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 23744 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 23745 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 23746 } else { 23747 tacp->ac_local.ss_family = AF_INET6; 23748 tacp->ac_remote.ss_family = AF_INET6; 23749 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 23750 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 23751 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 23752 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 23753 } 23754 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 23755 return (mp); 23756 } 23757 23758 /* 23759 * Print a tcp_ioc_abort_conn_t structure. 23760 */ 23761 static void 23762 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 23763 { 23764 char lbuf[128]; 23765 char rbuf[128]; 23766 sa_family_t af; 23767 in_port_t lport, rport; 23768 ushort_t logflags; 23769 23770 af = acp->ac_local.ss_family; 23771 23772 if (af == AF_INET) { 23773 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 23774 lbuf, 128); 23775 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 23776 rbuf, 128); 23777 lport = ntohs(TCP_AC_V4LPORT(acp)); 23778 rport = ntohs(TCP_AC_V4RPORT(acp)); 23779 } else { 23780 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 23781 lbuf, 128); 23782 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 23783 rbuf, 128); 23784 lport = ntohs(TCP_AC_V6LPORT(acp)); 23785 rport = ntohs(TCP_AC_V6RPORT(acp)); 23786 } 23787 23788 logflags = SL_TRACE | SL_NOTE; 23789 /* 23790 * Don't print this message to the console if the operation was done 23791 * to a non-global zone. 23792 */ 23793 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 23794 logflags |= SL_CONSOLE; 23795 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 23796 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 23797 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 23798 acp->ac_start, acp->ac_end); 23799 } 23800 23801 /* 23802 * Called inside tcp_rput when a message built using 23803 * tcp_ioctl_abort_build_msg is put into a queue. 23804 * Note that when we get here there is no wildcard in acp any more. 23805 */ 23806 static void 23807 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 23808 { 23809 tcp_ioc_abort_conn_t *acp; 23810 23811 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 23812 if (tcp->tcp_state <= acp->ac_end) { 23813 /* 23814 * If we get here, we are already on the correct 23815 * squeue. This ioctl follows the following path 23816 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 23817 * ->tcp_ioctl_abort->squeue_fill (if on a 23818 * different squeue) 23819 */ 23820 int errcode; 23821 23822 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 23823 (void) tcp_clean_death(tcp, errcode, 26); 23824 } 23825 freemsg(mp); 23826 } 23827 23828 /* 23829 * Abort all matching connections on a hash chain. 23830 */ 23831 static int 23832 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 23833 boolean_t exact) 23834 { 23835 int nmatch, err = 0; 23836 tcp_t *tcp; 23837 MBLKP mp, last, listhead = NULL; 23838 conn_t *tconnp; 23839 connf_t *connfp = &ipcl_conn_fanout[index]; 23840 23841 startover: 23842 nmatch = 0; 23843 23844 mutex_enter(&connfp->connf_lock); 23845 for (tconnp = connfp->connf_head; tconnp != NULL; 23846 tconnp = tconnp->conn_next) { 23847 tcp = tconnp->conn_tcp; 23848 if (TCP_AC_MATCH(acp, tcp)) { 23849 CONN_INC_REF(tcp->tcp_connp); 23850 mp = tcp_ioctl_abort_build_msg(acp, tcp); 23851 if (mp == NULL) { 23852 err = ENOMEM; 23853 CONN_DEC_REF(tcp->tcp_connp); 23854 break; 23855 } 23856 mp->b_prev = (mblk_t *)tcp; 23857 23858 if (listhead == NULL) { 23859 listhead = mp; 23860 last = mp; 23861 } else { 23862 last->b_next = mp; 23863 last = mp; 23864 } 23865 nmatch++; 23866 if (exact) 23867 break; 23868 } 23869 23870 /* Avoid holding lock for too long. */ 23871 if (nmatch >= 500) 23872 break; 23873 } 23874 mutex_exit(&connfp->connf_lock); 23875 23876 /* Pass mp into the correct tcp */ 23877 while ((mp = listhead) != NULL) { 23878 listhead = listhead->b_next; 23879 tcp = (tcp_t *)mp->b_prev; 23880 mp->b_next = mp->b_prev = NULL; 23881 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 23882 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 23883 } 23884 23885 *count += nmatch; 23886 if (nmatch >= 500 && err == 0) 23887 goto startover; 23888 return (err); 23889 } 23890 23891 /* 23892 * Abort all connections that matches the attributes specified in acp. 23893 */ 23894 static int 23895 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 23896 { 23897 sa_family_t af; 23898 uint32_t ports; 23899 uint16_t *pports; 23900 int err = 0, count = 0; 23901 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 23902 int index = -1; 23903 ushort_t logflags; 23904 23905 af = acp->ac_local.ss_family; 23906 23907 if (af == AF_INET) { 23908 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 23909 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 23910 pports = (uint16_t *)&ports; 23911 pports[1] = TCP_AC_V4LPORT(acp); 23912 pports[0] = TCP_AC_V4RPORT(acp); 23913 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 23914 } 23915 } else { 23916 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 23917 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 23918 pports = (uint16_t *)&ports; 23919 pports[1] = TCP_AC_V6LPORT(acp); 23920 pports[0] = TCP_AC_V6RPORT(acp); 23921 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 23922 } 23923 } 23924 23925 /* 23926 * For cases where remote addr, local port, and remote port are non- 23927 * wildcards, tcp_ioctl_abort_bucket will only be called once. 23928 */ 23929 if (index != -1) { 23930 err = tcp_ioctl_abort_bucket(acp, index, 23931 &count, exact); 23932 } else { 23933 /* 23934 * loop through all entries for wildcard case 23935 */ 23936 for (index = 0; index < ipcl_conn_fanout_size; index++) { 23937 err = tcp_ioctl_abort_bucket(acp, index, 23938 &count, exact); 23939 if (err != 0) 23940 break; 23941 } 23942 } 23943 23944 logflags = SL_TRACE | SL_NOTE; 23945 /* 23946 * Don't print this message to the console if the operation was done 23947 * to a non-global zone. 23948 */ 23949 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 23950 logflags |= SL_CONSOLE; 23951 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 23952 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 23953 if (err == 0 && count == 0) 23954 err = ENOENT; 23955 return (err); 23956 } 23957 23958 /* 23959 * Process the TCP_IOC_ABORT_CONN ioctl request. 23960 */ 23961 static void 23962 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 23963 { 23964 int err; 23965 IOCP iocp; 23966 MBLKP mp1; 23967 sa_family_t laf, raf; 23968 tcp_ioc_abort_conn_t *acp; 23969 zone_t *zptr; 23970 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 23971 23972 iocp = (IOCP)mp->b_rptr; 23973 23974 if ((mp1 = mp->b_cont) == NULL || 23975 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 23976 err = EINVAL; 23977 goto out; 23978 } 23979 23980 /* check permissions */ 23981 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 23982 err = EPERM; 23983 goto out; 23984 } 23985 23986 if (mp1->b_cont != NULL) { 23987 freemsg(mp1->b_cont); 23988 mp1->b_cont = NULL; 23989 } 23990 23991 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 23992 laf = acp->ac_local.ss_family; 23993 raf = acp->ac_remote.ss_family; 23994 23995 /* check that a zone with the supplied zoneid exists */ 23996 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 23997 zptr = zone_find_by_id(zoneid); 23998 if (zptr != NULL) { 23999 zone_rele(zptr); 24000 } else { 24001 err = EINVAL; 24002 goto out; 24003 } 24004 } 24005 24006 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24007 acp->ac_start > acp->ac_end || laf != raf || 24008 (laf != AF_INET && laf != AF_INET6)) { 24009 err = EINVAL; 24010 goto out; 24011 } 24012 24013 tcp_ioctl_abort_dump(acp); 24014 err = tcp_ioctl_abort(acp); 24015 24016 out: 24017 if (mp1 != NULL) { 24018 freemsg(mp1); 24019 mp->b_cont = NULL; 24020 } 24021 24022 if (err != 0) 24023 miocnak(q, mp, 0, err); 24024 else 24025 miocack(q, mp, 0, 0); 24026 } 24027 24028 /* 24029 * tcp_time_wait_processing() handles processing of incoming packets when 24030 * the tcp is in the TIME_WAIT state. 24031 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24032 * on the time wait list. 24033 */ 24034 void 24035 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24036 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24037 { 24038 int32_t bytes_acked; 24039 int32_t gap; 24040 int32_t rgap; 24041 tcp_opt_t tcpopt; 24042 uint_t flags; 24043 uint32_t new_swnd = 0; 24044 conn_t *connp; 24045 24046 BUMP_LOCAL(tcp->tcp_ibsegs); 24047 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 24048 24049 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24050 new_swnd = BE16_TO_U16(tcph->th_win) << 24051 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24052 if (tcp->tcp_snd_ts_ok) { 24053 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24054 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24055 tcp->tcp_rnxt, TH_ACK); 24056 goto done; 24057 } 24058 } 24059 gap = seg_seq - tcp->tcp_rnxt; 24060 rgap = tcp->tcp_rwnd - (gap + seg_len); 24061 if (gap < 0) { 24062 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 24063 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 24064 (seg_len > -gap ? -gap : seg_len)); 24065 seg_len += gap; 24066 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24067 if (flags & TH_RST) { 24068 goto done; 24069 } 24070 if ((flags & TH_FIN) && seg_len == -1) { 24071 /* 24072 * When TCP receives a duplicate FIN in 24073 * TIME_WAIT state, restart the 2 MSL timer. 24074 * See page 73 in RFC 793. Make sure this TCP 24075 * is already on the TIME_WAIT list. If not, 24076 * just restart the timer. 24077 */ 24078 if (TCP_IS_DETACHED(tcp)) { 24079 tcp_time_wait_remove(tcp, NULL); 24080 tcp_time_wait_append(tcp); 24081 TCP_DBGSTAT(tcp_rput_time_wait); 24082 } else { 24083 ASSERT(tcp != NULL); 24084 TCP_TIMER_RESTART(tcp, 24085 tcp_time_wait_interval); 24086 } 24087 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24088 tcp->tcp_rnxt, TH_ACK); 24089 goto done; 24090 } 24091 flags |= TH_ACK_NEEDED; 24092 seg_len = 0; 24093 goto process_ack; 24094 } 24095 24096 /* Fix seg_seq, and chew the gap off the front. */ 24097 seg_seq = tcp->tcp_rnxt; 24098 } 24099 24100 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24101 /* 24102 * Make sure that when we accept the connection, pick 24103 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24104 * old connection. 24105 * 24106 * The next ISS generated is equal to tcp_iss_incr_extra 24107 * + ISS_INCR/2 + other components depending on the 24108 * value of tcp_strong_iss. We pre-calculate the new 24109 * ISS here and compare with tcp_snxt to determine if 24110 * we need to make adjustment to tcp_iss_incr_extra. 24111 * 24112 * The above calculation is ugly and is a 24113 * waste of CPU cycles... 24114 */ 24115 uint32_t new_iss = tcp_iss_incr_extra; 24116 int32_t adj; 24117 24118 switch (tcp_strong_iss) { 24119 case 2: { 24120 /* Add time and MD5 components. */ 24121 uint32_t answer[4]; 24122 struct { 24123 uint32_t ports; 24124 in6_addr_t src; 24125 in6_addr_t dst; 24126 } arg; 24127 MD5_CTX context; 24128 24129 mutex_enter(&tcp_iss_key_lock); 24130 context = tcp_iss_key; 24131 mutex_exit(&tcp_iss_key_lock); 24132 arg.ports = tcp->tcp_ports; 24133 /* We use MAPPED addresses in tcp_iss_init */ 24134 arg.src = tcp->tcp_ip_src_v6; 24135 if (tcp->tcp_ipversion == IPV4_VERSION) { 24136 IN6_IPADDR_TO_V4MAPPED( 24137 tcp->tcp_ipha->ipha_dst, 24138 &arg.dst); 24139 } else { 24140 arg.dst = 24141 tcp->tcp_ip6h->ip6_dst; 24142 } 24143 MD5Update(&context, (uchar_t *)&arg, 24144 sizeof (arg)); 24145 MD5Final((uchar_t *)answer, &context); 24146 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24147 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24148 break; 24149 } 24150 case 1: 24151 /* Add time component and min random (i.e. 1). */ 24152 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24153 break; 24154 default: 24155 /* Add only time component. */ 24156 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24157 break; 24158 } 24159 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24160 /* 24161 * New ISS not guaranteed to be ISS_INCR/2 24162 * ahead of the current tcp_snxt, so add the 24163 * difference to tcp_iss_incr_extra. 24164 */ 24165 tcp_iss_incr_extra += adj; 24166 } 24167 /* 24168 * If tcp_clean_death() can not perform the task now, 24169 * drop the SYN packet and let the other side re-xmit. 24170 * Otherwise pass the SYN packet back in, since the 24171 * old tcp state has been cleaned up or freed. 24172 */ 24173 if (tcp_clean_death(tcp, 0, 27) == -1) 24174 goto done; 24175 /* 24176 * We will come back to tcp_rput_data 24177 * on the global queue. Packets destined 24178 * for the global queue will be checked 24179 * with global policy. But the policy for 24180 * this packet has already been checked as 24181 * this was destined for the detached 24182 * connection. We need to bypass policy 24183 * check this time by attaching a dummy 24184 * ipsec_in with ipsec_in_dont_check set. 24185 */ 24186 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 24187 NULL) { 24188 TCP_STAT(tcp_time_wait_syn_success); 24189 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24190 return; 24191 } 24192 goto done; 24193 } 24194 24195 /* 24196 * rgap is the amount of stuff received out of window. A negative 24197 * value is the amount out of window. 24198 */ 24199 if (rgap < 0) { 24200 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 24201 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 24202 /* Fix seg_len and make sure there is something left. */ 24203 seg_len += rgap; 24204 if (seg_len <= 0) { 24205 if (flags & TH_RST) { 24206 goto done; 24207 } 24208 flags |= TH_ACK_NEEDED; 24209 seg_len = 0; 24210 goto process_ack; 24211 } 24212 } 24213 /* 24214 * Check whether we can update tcp_ts_recent. This test is 24215 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24216 * Extensions for High Performance: An Update", Internet Draft. 24217 */ 24218 if (tcp->tcp_snd_ts_ok && 24219 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24220 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24221 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24222 tcp->tcp_last_rcv_lbolt = lbolt64; 24223 } 24224 24225 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24226 /* Always ack out of order packets */ 24227 flags |= TH_ACK_NEEDED; 24228 seg_len = 0; 24229 } else if (seg_len > 0) { 24230 BUMP_MIB(&tcp_mib, tcpInClosed); 24231 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 24232 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 24233 } 24234 if (flags & TH_RST) { 24235 (void) tcp_clean_death(tcp, 0, 28); 24236 goto done; 24237 } 24238 if (flags & TH_SYN) { 24239 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24240 TH_RST|TH_ACK); 24241 /* 24242 * Do not delete the TCP structure if it is in 24243 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24244 */ 24245 goto done; 24246 } 24247 process_ack: 24248 if (flags & TH_ACK) { 24249 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24250 if (bytes_acked <= 0) { 24251 if (bytes_acked == 0 && seg_len == 0 && 24252 new_swnd == tcp->tcp_swnd) 24253 BUMP_MIB(&tcp_mib, tcpInDupAck); 24254 } else { 24255 /* Acks something not sent */ 24256 flags |= TH_ACK_NEEDED; 24257 } 24258 } 24259 if (flags & TH_ACK_NEEDED) { 24260 /* 24261 * Time to send an ack for some reason. 24262 */ 24263 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24264 tcp->tcp_rnxt, TH_ACK); 24265 } 24266 done: 24267 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24268 DB_CKSUMSTART(mp) = 0; 24269 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24270 TCP_STAT(tcp_time_wait_syn_fail); 24271 } 24272 freemsg(mp); 24273 } 24274 24275 /* 24276 * Return zero if the buffers are identical in length and content. 24277 * This is used for comparing extension header buffers. 24278 * Note that an extension header would be declared different 24279 * even if all that changed was the next header value in that header i.e. 24280 * what really changed is the next extension header. 24281 */ 24282 static boolean_t 24283 tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen) 24284 { 24285 if (!b_valid) 24286 blen = 0; 24287 24288 if (alen != blen) 24289 return (B_TRUE); 24290 if (alen == 0) 24291 return (B_FALSE); /* Both zero length */ 24292 return (bcmp(a, b, alen)); 24293 } 24294 24295 /* 24296 * Preallocate memory for tcp_savebuf(). Returns B_TRUE if ok. 24297 * Return B_FALSE if memory allocation fails - don't change any state! 24298 */ 24299 static boolean_t 24300 tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24301 void *src, uint_t srclen) 24302 { 24303 void *dst; 24304 24305 if (!src_valid) 24306 srclen = 0; 24307 24308 ASSERT(*dstlenp == 0); 24309 if (src != NULL && srclen != 0) { 24310 dst = mi_alloc(srclen, BPRI_MED); 24311 if (dst == NULL) 24312 return (B_FALSE); 24313 } else { 24314 dst = NULL; 24315 } 24316 if (*dstp != NULL) { 24317 mi_free(*dstp); 24318 *dstp = NULL; 24319 *dstlenp = 0; 24320 } 24321 *dstp = dst; 24322 if (dst != NULL) 24323 *dstlenp = srclen; 24324 else 24325 *dstlenp = 0; 24326 return (B_TRUE); 24327 } 24328 24329 /* 24330 * Replace what is in *dst, *dstlen with the source. 24331 * Assumes tcp_allocbuf has already been called. 24332 */ 24333 static void 24334 tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid, 24335 void *src, uint_t srclen) 24336 { 24337 if (!src_valid) 24338 srclen = 0; 24339 24340 ASSERT(*dstlenp == srclen); 24341 if (src != NULL && srclen != 0) { 24342 bcopy(src, *dstp, srclen); 24343 } 24344 } 24345 24346 /* 24347 * Allocate a T_SVR4_OPTMGMT_REQ. 24348 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 24349 * that tcp_rput_other can drop the acks. 24350 */ 24351 static mblk_t * 24352 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 24353 { 24354 mblk_t *mp; 24355 struct T_optmgmt_req *tor; 24356 struct opthdr *oh; 24357 uint_t size; 24358 char *optptr; 24359 24360 size = sizeof (*tor) + sizeof (*oh) + optlen; 24361 mp = allocb(size, BPRI_MED); 24362 if (mp == NULL) 24363 return (NULL); 24364 24365 mp->b_wptr += size; 24366 mp->b_datap->db_type = M_PROTO; 24367 tor = (struct T_optmgmt_req *)mp->b_rptr; 24368 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 24369 tor->MGMT_flags = T_NEGOTIATE; 24370 tor->OPT_length = sizeof (*oh) + optlen; 24371 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 24372 24373 oh = (struct opthdr *)&tor[1]; 24374 oh->level = level; 24375 oh->name = cmd; 24376 oh->len = optlen; 24377 if (optlen != 0) { 24378 optptr = (char *)&oh[1]; 24379 bcopy(opt, optptr, optlen); 24380 } 24381 return (mp); 24382 } 24383 24384 /* 24385 * TCP Timers Implementation. 24386 */ 24387 timeout_id_t 24388 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24389 { 24390 mblk_t *mp; 24391 tcp_timer_t *tcpt; 24392 tcp_t *tcp = connp->conn_tcp; 24393 24394 ASSERT(connp->conn_sqp != NULL); 24395 24396 TCP_DBGSTAT(tcp_timeout_calls); 24397 24398 if (tcp->tcp_timercache == NULL) { 24399 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24400 } else { 24401 TCP_DBGSTAT(tcp_timeout_cached_alloc); 24402 mp = tcp->tcp_timercache; 24403 tcp->tcp_timercache = mp->b_next; 24404 mp->b_next = NULL; 24405 ASSERT(mp->b_wptr == NULL); 24406 } 24407 24408 CONN_INC_REF(connp); 24409 tcpt = (tcp_timer_t *)mp->b_rptr; 24410 tcpt->connp = connp; 24411 tcpt->tcpt_proc = f; 24412 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 24413 return ((timeout_id_t)mp); 24414 } 24415 24416 static void 24417 tcp_timer_callback(void *arg) 24418 { 24419 mblk_t *mp = (mblk_t *)arg; 24420 tcp_timer_t *tcpt; 24421 conn_t *connp; 24422 24423 tcpt = (tcp_timer_t *)mp->b_rptr; 24424 connp = tcpt->connp; 24425 squeue_fill(connp->conn_sqp, mp, 24426 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 24427 } 24428 24429 static void 24430 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24431 { 24432 tcp_timer_t *tcpt; 24433 conn_t *connp = (conn_t *)arg; 24434 tcp_t *tcp = connp->conn_tcp; 24435 24436 tcpt = (tcp_timer_t *)mp->b_rptr; 24437 ASSERT(connp == tcpt->connp); 24438 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24439 24440 /* 24441 * If the TCP has reached the closed state, don't proceed any 24442 * further. This TCP logically does not exist on the system. 24443 * tcpt_proc could for example access queues, that have already 24444 * been qprocoff'ed off. Also see comments at the start of tcp_input 24445 */ 24446 if (tcp->tcp_state != TCPS_CLOSED) { 24447 (*tcpt->tcpt_proc)(connp); 24448 } else { 24449 tcp->tcp_timer_tid = 0; 24450 } 24451 tcp_timer_free(connp->conn_tcp, mp); 24452 } 24453 24454 /* 24455 * There is potential race with untimeout and the handler firing at the same 24456 * time. The mblock may be freed by the handler while we are trying to use 24457 * it. But since both should execute on the same squeue, this race should not 24458 * occur. 24459 */ 24460 clock_t 24461 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24462 { 24463 mblk_t *mp = (mblk_t *)id; 24464 tcp_timer_t *tcpt; 24465 clock_t delta; 24466 24467 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 24468 24469 if (mp == NULL) 24470 return (-1); 24471 24472 tcpt = (tcp_timer_t *)mp->b_rptr; 24473 ASSERT(tcpt->connp == connp); 24474 24475 delta = untimeout(tcpt->tcpt_tid); 24476 24477 if (delta >= 0) { 24478 TCP_DBGSTAT(tcp_timeout_canceled); 24479 tcp_timer_free(connp->conn_tcp, mp); 24480 CONN_DEC_REF(connp); 24481 } 24482 24483 return (delta); 24484 } 24485 24486 /* 24487 * Allocate space for the timer event. The allocation looks like mblk, but it is 24488 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24489 * 24490 * Dealing with failures: If we can't allocate from the timer cache we try 24491 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24492 * points to b_rptr. 24493 * If we can't allocate anything using allocb_tryhard(), we perform a last 24494 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24495 * save the actual allocation size in b_datap. 24496 */ 24497 mblk_t * 24498 tcp_timermp_alloc(int kmflags) 24499 { 24500 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 24501 kmflags & ~KM_PANIC); 24502 24503 if (mp != NULL) { 24504 mp->b_next = mp->b_prev = NULL; 24505 mp->b_rptr = (uchar_t *)(&mp[1]); 24506 mp->b_wptr = NULL; 24507 mp->b_datap = NULL; 24508 mp->b_queue = NULL; 24509 } else if (kmflags & KM_PANIC) { 24510 /* 24511 * Failed to allocate memory for the timer. Try allocating from 24512 * dblock caches. 24513 */ 24514 TCP_STAT(tcp_timermp_allocfail); 24515 mp = allocb_tryhard(sizeof (tcp_timer_t)); 24516 if (mp == NULL) { 24517 size_t size = 0; 24518 /* 24519 * Memory is really low. Try tryhard allocation. 24520 */ 24521 TCP_STAT(tcp_timermp_allocdblfail); 24522 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 24523 sizeof (tcp_timer_t), &size, kmflags); 24524 mp->b_rptr = (uchar_t *)(&mp[1]); 24525 mp->b_next = mp->b_prev = NULL; 24526 mp->b_wptr = (uchar_t *)-1; 24527 mp->b_datap = (dblk_t *)size; 24528 mp->b_queue = NULL; 24529 } 24530 ASSERT(mp->b_wptr != NULL); 24531 } 24532 TCP_DBGSTAT(tcp_timermp_alloced); 24533 24534 return (mp); 24535 } 24536 24537 /* 24538 * Free per-tcp timer cache. 24539 * It can only contain entries from tcp_timercache. 24540 */ 24541 void 24542 tcp_timermp_free(tcp_t *tcp) 24543 { 24544 mblk_t *mp; 24545 24546 while ((mp = tcp->tcp_timercache) != NULL) { 24547 ASSERT(mp->b_wptr == NULL); 24548 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 24549 kmem_cache_free(tcp_timercache, mp); 24550 } 24551 } 24552 24553 /* 24554 * Free timer event. Put it on the per-tcp timer cache if there is not too many 24555 * events there already (currently at most two events are cached). 24556 * If the event is not allocated from the timer cache, free it right away. 24557 */ 24558 static void 24559 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 24560 { 24561 mblk_t *mp1 = tcp->tcp_timercache; 24562 24563 if (mp->b_wptr != NULL) { 24564 /* 24565 * This allocation is not from a timer cache, free it right 24566 * away. 24567 */ 24568 if (mp->b_wptr != (uchar_t *)-1) 24569 freeb(mp); 24570 else 24571 kmem_free(mp, (size_t)mp->b_datap); 24572 } else if (mp1 == NULL || mp1->b_next == NULL) { 24573 /* Cache this timer block for future allocations */ 24574 mp->b_rptr = (uchar_t *)(&mp[1]); 24575 mp->b_next = mp1; 24576 tcp->tcp_timercache = mp; 24577 } else { 24578 kmem_cache_free(tcp_timercache, mp); 24579 TCP_DBGSTAT(tcp_timermp_freed); 24580 } 24581 } 24582 24583 /* 24584 * End of TCP Timers implementation. 24585 */ 24586 24587 /* 24588 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 24589 * on the specified backing STREAMS q. Note, the caller may make the 24590 * decision to call based on the tcp_t.tcp_flow_stopped value which 24591 * when check outside the q's lock is only an advisory check ... 24592 */ 24593 24594 void 24595 tcp_setqfull(tcp_t *tcp) 24596 { 24597 queue_t *q = tcp->tcp_wq; 24598 24599 if (!(q->q_flag & QFULL)) { 24600 mutex_enter(QLOCK(q)); 24601 if (!(q->q_flag & QFULL)) { 24602 /* still need to set QFULL */ 24603 q->q_flag |= QFULL; 24604 tcp->tcp_flow_stopped = B_TRUE; 24605 mutex_exit(QLOCK(q)); 24606 TCP_STAT(tcp_flwctl_on); 24607 } else { 24608 mutex_exit(QLOCK(q)); 24609 } 24610 } 24611 } 24612 24613 void 24614 tcp_clrqfull(tcp_t *tcp) 24615 { 24616 queue_t *q = tcp->tcp_wq; 24617 24618 if (q->q_flag & QFULL) { 24619 mutex_enter(QLOCK(q)); 24620 if (q->q_flag & QFULL) { 24621 q->q_flag &= ~QFULL; 24622 tcp->tcp_flow_stopped = B_FALSE; 24623 mutex_exit(QLOCK(q)); 24624 if (q->q_flag & QWANTW) 24625 qbackenable(q, 0); 24626 } else { 24627 mutex_exit(QLOCK(q)); 24628 } 24629 } 24630 } 24631 24632 /* 24633 * TCP Kstats implementation 24634 */ 24635 static void 24636 tcp_kstat_init(void) 24637 { 24638 tcp_named_kstat_t template = { 24639 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 24640 { "rtoMin", KSTAT_DATA_INT32, 0 }, 24641 { "rtoMax", KSTAT_DATA_INT32, 0 }, 24642 { "maxConn", KSTAT_DATA_INT32, 0 }, 24643 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 24644 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 24645 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 24646 { "estabResets", KSTAT_DATA_UINT32, 0 }, 24647 { "currEstab", KSTAT_DATA_UINT32, 0 }, 24648 { "inSegs", KSTAT_DATA_UINT32, 0 }, 24649 { "outSegs", KSTAT_DATA_UINT32, 0 }, 24650 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 24651 { "connTableSize", KSTAT_DATA_INT32, 0 }, 24652 { "outRsts", KSTAT_DATA_UINT32, 0 }, 24653 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 24654 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 24655 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 24656 { "outAck", KSTAT_DATA_UINT32, 0 }, 24657 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 24658 { "outUrg", KSTAT_DATA_UINT32, 0 }, 24659 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 24660 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 24661 { "outControl", KSTAT_DATA_UINT32, 0 }, 24662 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 24663 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 24664 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 24665 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 24666 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 24667 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 24668 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 24669 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 24670 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 24671 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 24672 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 24673 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 24674 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 24675 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 24676 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 24677 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 24678 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 24679 { "inClosed", KSTAT_DATA_UINT32, 0 }, 24680 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 24681 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 24682 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 24683 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 24684 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 24685 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 24686 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 24687 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 24688 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 24689 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 24690 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 24691 { "connTableSize6", KSTAT_DATA_INT32, 0 } 24692 }; 24693 24694 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 24695 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 24696 24697 if (tcp_mibkp == NULL) 24698 return; 24699 24700 template.rtoAlgorithm.value.ui32 = 4; 24701 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 24702 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 24703 template.maxConn.value.i32 = -1; 24704 24705 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 24706 24707 tcp_mibkp->ks_update = tcp_kstat_update; 24708 24709 kstat_install(tcp_mibkp); 24710 } 24711 24712 static void 24713 tcp_kstat_fini(void) 24714 { 24715 24716 if (tcp_mibkp != NULL) { 24717 kstat_delete(tcp_mibkp); 24718 tcp_mibkp = NULL; 24719 } 24720 } 24721 24722 static int 24723 tcp_kstat_update(kstat_t *kp, int rw) 24724 { 24725 tcp_named_kstat_t *tcpkp; 24726 tcp_t *tcp; 24727 connf_t *connfp; 24728 conn_t *connp; 24729 int i; 24730 24731 if (!kp || !kp->ks_data) 24732 return (EIO); 24733 24734 if (rw == KSTAT_WRITE) 24735 return (EACCES); 24736 24737 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 24738 24739 tcpkp->currEstab.value.ui32 = 0; 24740 24741 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24742 connfp = &ipcl_globalhash_fanout[i]; 24743 connp = NULL; 24744 while ((connp = 24745 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24746 tcp = connp->conn_tcp; 24747 switch (tcp_snmp_state(tcp)) { 24748 case MIB2_TCP_established: 24749 case MIB2_TCP_closeWait: 24750 tcpkp->currEstab.value.ui32++; 24751 break; 24752 } 24753 } 24754 } 24755 24756 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 24757 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 24758 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 24759 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 24760 tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs; 24761 tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs; 24762 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 24763 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 24764 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 24765 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 24766 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 24767 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 24768 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 24769 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 24770 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 24771 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 24772 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 24773 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 24774 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 24775 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 24776 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 24777 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 24778 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 24779 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 24780 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 24781 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 24782 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 24783 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 24784 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 24785 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 24786 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 24787 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 24788 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 24789 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 24790 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 24791 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 24792 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 24793 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 24794 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 24795 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 24796 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 24797 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 24798 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 24799 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 24800 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 24801 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 24802 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 24803 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 24804 24805 return (0); 24806 } 24807 24808 void 24809 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 24810 { 24811 uint16_t hdr_len; 24812 ipha_t *ipha; 24813 uint8_t *nexthdrp; 24814 tcph_t *tcph; 24815 24816 /* Already has an eager */ 24817 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24818 TCP_STAT(tcp_reinput_syn); 24819 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 24820 connp, SQTAG_TCP_REINPUT_EAGER); 24821 return; 24822 } 24823 24824 switch (IPH_HDR_VERSION(mp->b_rptr)) { 24825 case IPV4_VERSION: 24826 ipha = (ipha_t *)mp->b_rptr; 24827 hdr_len = IPH_HDR_LENGTH(ipha); 24828 break; 24829 case IPV6_VERSION: 24830 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 24831 &hdr_len, &nexthdrp)) { 24832 CONN_DEC_REF(connp); 24833 freemsg(mp); 24834 return; 24835 } 24836 break; 24837 } 24838 24839 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 24840 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 24841 mp->b_datap->db_struioflag |= STRUIO_EAGER; 24842 DB_CKSUMSTART(mp) = (intptr_t)sqp; 24843 } 24844 24845 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 24846 SQTAG_TCP_REINPUT); 24847 } 24848 24849 static squeue_func_t 24850 tcp_squeue_switch(int val) 24851 { 24852 squeue_func_t rval = squeue_fill; 24853 24854 switch (val) { 24855 case 1: 24856 rval = squeue_enter_nodrain; 24857 break; 24858 case 2: 24859 rval = squeue_enter; 24860 break; 24861 default: 24862 break; 24863 } 24864 return (rval); 24865 } 24866 24867 static void 24868 tcp_squeue_add(squeue_t *sqp) 24869 { 24870 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 24871 sizeof (tcp_squeue_priv_t), KM_SLEEP); 24872 24873 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 24874 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 24875 sqp, TCP_TIME_WAIT_DELAY); 24876 if (tcp_free_list_max_cnt == 0) { 24877 int tcp_ncpus = ((boot_max_ncpus == -1) ? 24878 max_ncpus : boot_max_ncpus); 24879 24880 /* 24881 * Limit number of entries to 1% of availble memory / tcp_ncpus 24882 */ 24883 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 24884 (tcp_ncpus * sizeof (tcp_t) * 100); 24885 } 24886 tcp_time_wait->tcp_free_list_cnt = 0; 24887 } 24888