xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp.c (revision b3baaabf8aa0df586f2fbe047c13633d089d9d8e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
30 
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/sdt.h>
49 #include <sys/vtrace.h>
50 #include <sys/kmem.h>
51 #include <sys/ethernet.h>
52 #include <sys/cpuvar.h>
53 #include <sys/dlpi.h>
54 #include <sys/multidata.h>
55 #include <sys/multidata_impl.h>
56 #include <sys/pattr.h>
57 #include <sys/policy.h>
58 #include <sys/priv.h>
59 #include <sys/zone.h>
60 
61 #include <sys/errno.h>
62 #include <sys/signal.h>
63 #include <sys/socket.h>
64 #include <sys/sockio.h>
65 #include <sys/isa_defs.h>
66 #include <sys/md5.h>
67 #include <sys/random.h>
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70 #include <netinet/ip6.h>
71 #include <netinet/icmp6.h>
72 #include <net/if.h>
73 #include <net/route.h>
74 #include <inet/ipsec_impl.h>
75 
76 #include <inet/common.h>
77 #include <inet/ip.h>
78 #include <inet/ip_impl.h>
79 #include <inet/ip6.h>
80 #include <inet/ip_ndp.h>
81 #include <inet/mi.h>
82 #include <inet/mib2.h>
83 #include <inet/nd.h>
84 #include <inet/optcom.h>
85 #include <inet/snmpcom.h>
86 #include <inet/kstatcom.h>
87 #include <inet/tcp.h>
88 #include <inet/tcp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 #include <inet/tcp_trace.h>
93 
94 #include <inet/ipclassifier.h>
95 #include <inet/ip_ire.h>
96 #include <inet/ip_ftable.h>
97 #include <inet/ip_if.h>
98 #include <inet/ipp_common.h>
99 #include <inet/ip_netinfo.h>
100 #include <sys/squeue.h>
101 #include <inet/kssl/ksslapi.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <sys/sdt.h>
105 #include <rpc/pmap_prot.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
129  * squeue_fill). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. ip_tcpopen() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 extern major_t TCP6_MAJ;
237 
238 /*
239  * Values for squeue switch:
240  * 1: squeue_enter_nodrain
241  * 2: squeue_enter
242  * 3: squeue_fill
243  */
244 int tcp_squeue_close = 2;
245 int tcp_squeue_wput = 2;
246 
247 squeue_func_t tcp_squeue_close_proc;
248 squeue_func_t tcp_squeue_wput_proc;
249 
250 /*
251  * This controls how tiny a write must be before we try to copy it
252  * into the the mblk on the tail of the transmit queue.  Not much
253  * speedup is observed for values larger than sixteen.  Zero will
254  * disable the optimisation.
255  */
256 int tcp_tx_pull_len = 16;
257 
258 /*
259  * TCP Statistics.
260  *
261  * How TCP statistics work.
262  *
263  * There are two types of statistics invoked by two macros.
264  *
265  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
266  * supposed to be used in non MT-hot paths of the code.
267  *
268  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
269  * supposed to be used for DEBUG purposes and may be used on a hot path.
270  *
271  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
272  * (use "kstat tcp" to get them).
273  *
274  * There is also additional debugging facility that marks tcp_clean_death()
275  * instances and saves them in tcp_t structure. It is triggered by
276  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
277  * tcp_clean_death() calls that counts the number of times each tag was hit. It
278  * is triggered by TCP_CLD_COUNTERS define.
279  *
280  * How to add new counters.
281  *
282  * 1) Add a field in the tcp_stat structure describing your counter.
283  * 2) Add a line in tcp_statistics with the name of the counter.
284  *
285  *    IMPORTANT!! - make sure that both are in sync !!
286  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
287  *
288  * Please avoid using private counters which are not kstat-exported.
289  *
290  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
291  * in tcp_t structure.
292  *
293  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
294  */
295 
296 #ifndef TCP_DEBUG_COUNTER
297 #ifdef DEBUG
298 #define	TCP_DEBUG_COUNTER 1
299 #else
300 #define	TCP_DEBUG_COUNTER 0
301 #endif
302 #endif
303 
304 #define	TCP_CLD_COUNTERS 0
305 
306 #define	TCP_TAG_CLEAN_DEATH 1
307 #define	TCP_MAX_CLEAN_DEATH_TAG 32
308 
309 #ifdef lint
310 static int _lint_dummy_;
311 #endif
312 
313 #if TCP_CLD_COUNTERS
314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
315 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
316 #elif defined(lint)
317 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
318 #else
319 #define	TCP_CLD_STAT(x)
320 #endif
321 
322 #if TCP_DEBUG_COUNTER
323 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
324 #elif defined(lint)
325 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
326 #else
327 #define	TCP_DBGSTAT(x)
328 #endif
329 
330 tcp_stat_t tcp_statistics = {
331 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
332 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
333 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
334 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
335 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
336 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
337 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
338 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
339 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
340 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
341 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
342 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
343 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
344 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
345 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
346 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
347 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
348 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
349 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
350 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
351 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
352 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
353 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
354 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
355 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
356 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
357 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
358 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
359 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
360 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
361 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
362 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
363 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
364 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
365 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
366 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
367 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
368 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
369 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
370 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
371 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
372 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
373 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
374 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
375 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
376 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
377 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
378 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
379 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
380 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
381 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
382 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
383 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
384 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
385 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
386 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
387 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
388 	{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
389 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
390 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
391 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
392 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
393 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
394 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
395 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
396 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
397 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
398 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
399 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
400 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
401 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
402 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
403 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
404 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
405 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
406 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
407 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
408 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
409 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
410 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
411 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
412 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
413 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
414 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
415 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
416 	{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
417 	{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
418 	{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
419 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
420 	{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
421 };
422 
423 static kstat_t *tcp_kstat;
424 
425 /*
426  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
427  * tcp write side.
428  */
429 #define	CALL_IP_WPUT(connp, q, mp) {					\
430 	ASSERT(((q)->q_flag & QREADR) == 0);				\
431 	TCP_DBGSTAT(tcp_ip_output);					\
432 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
433 }
434 
435 /* Macros for timestamp comparisons */
436 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
437 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
438 
439 /*
440  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
441  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
442  * by adding three components: a time component which grows by 1 every 4096
443  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
444  * a per-connection component which grows by 125000 for every new connection;
445  * and an "extra" component that grows by a random amount centered
446  * approximately on 64000.  This causes the the ISS generator to cycle every
447  * 4.89 hours if no TCP connections are made, and faster if connections are
448  * made.
449  *
450  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
451  * components: a time component which grows by 250000 every second; and
452  * a per-connection component which grows by 125000 for every new connections.
453  *
454  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
455  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
456  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
457  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
458  * password.
459  */
460 #define	ISS_INCR	250000
461 #define	ISS_NSEC_SHT	12
462 
463 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
464 static kmutex_t tcp_iss_key_lock;
465 static MD5_CTX tcp_iss_key;
466 static sin_t	sin_null;	/* Zero address for quick clears */
467 static sin6_t	sin6_null;	/* Zero address for quick clears */
468 
469 /* Packet dropper for TCP IPsec policy drops. */
470 static ipdropper_t tcp_dropper;
471 
472 /*
473  * This implementation follows the 4.3BSD interpretation of the urgent
474  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
475  * incompatible changes in protocols like telnet and rlogin.
476  */
477 #define	TCP_OLD_URP_INTERPRETATION	1
478 
479 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
480 	(TCP_IS_DETACHED(tcp) && \
481 	    (!(tcp)->tcp_hard_binding))
482 
483 /*
484  * TCP reassembly macros.  We hide starting and ending sequence numbers in
485  * b_next and b_prev of messages on the reassembly queue.  The messages are
486  * chained using b_cont.  These macros are used in tcp_reass() so we don't
487  * have to see the ugly casts and assignments.
488  */
489 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
490 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
491 					(mblk_t *)(uintptr_t)(u))
492 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
493 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
494 					(mblk_t *)(uintptr_t)(u))
495 
496 /*
497  * Implementation of TCP Timers.
498  * =============================
499  *
500  * INTERFACE:
501  *
502  * There are two basic functions dealing with tcp timers:
503  *
504  *	timeout_id_t	tcp_timeout(connp, func, time)
505  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
506  *	TCP_TIMER_RESTART(tcp, intvl)
507  *
508  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
509  * after 'time' ticks passed. The function called by timeout() must adhere to
510  * the same restrictions as a driver soft interrupt handler - it must not sleep
511  * or call other functions that might sleep. The value returned is the opaque
512  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
513  * cancel the request. The call to tcp_timeout() may fail in which case it
514  * returns zero. This is different from the timeout(9F) function which never
515  * fails.
516  *
517  * The call-back function 'func' always receives 'connp' as its single
518  * argument. It is always executed in the squeue corresponding to the tcp
519  * structure. The tcp structure is guaranteed to be present at the time the
520  * call-back is called.
521  *
522  * NOTE: The call-back function 'func' is never called if tcp is in
523  * 	the TCPS_CLOSED state.
524  *
525  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
526  * request. locks acquired by the call-back routine should not be held across
527  * the call to tcp_timeout_cancel() or a deadlock may result.
528  *
529  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
530  * Otherwise, it returns an integer value greater than or equal to 0. In
531  * particular, if the call-back function is already placed on the squeue, it can
532  * not be canceled.
533  *
534  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
535  * 	within squeue context corresponding to the tcp instance. Since the
536  *	call-back is also called via the same squeue, there are no race
537  *	conditions described in untimeout(9F) manual page since all calls are
538  *	strictly serialized.
539  *
540  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
541  *	stored in tcp_timer_tid and starts a new one using
542  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
543  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
544  *	field.
545  *
546  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
547  *	call-back may still be called, so it is possible tcp_timer() will be
548  *	called several times. This should not be a problem since tcp_timer()
549  *	should always check the tcp instance state.
550  *
551  *
552  * IMPLEMENTATION:
553  *
554  * TCP timers are implemented using three-stage process. The call to
555  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
556  * when the timer expires. The tcp_timer_callback() arranges the call of the
557  * tcp_timer_handler() function via squeue corresponding to the tcp
558  * instance. The tcp_timer_handler() calls actual requested timeout call-back
559  * and passes tcp instance as an argument to it. Information is passed between
560  * stages using the tcp_timer_t structure which contains the connp pointer, the
561  * tcp call-back to call and the timeout id returned by the timeout(9F).
562  *
563  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
564  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
565  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
566  * returns the pointer to this mblk.
567  *
568  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
569  * looks like a normal mblk without actual dblk attached to it.
570  *
571  * To optimize performance each tcp instance holds a small cache of timer
572  * mblocks. In the current implementation it caches up to two timer mblocks per
573  * tcp instance. The cache is preserved over tcp frees and is only freed when
574  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
575  * timer processing happens on a corresponding squeue, the cache manipulation
576  * does not require any locks. Experiments show that majority of timer mblocks
577  * allocations are satisfied from the tcp cache and do not involve kmem calls.
578  *
579  * The tcp_timeout() places a refhold on the connp instance which guarantees
580  * that it will be present at the time the call-back function fires. The
581  * tcp_timer_handler() drops the reference after calling the call-back, so the
582  * call-back function does not need to manipulate the references explicitly.
583  */
584 
585 typedef struct tcp_timer_s {
586 	conn_t	*connp;
587 	void 	(*tcpt_proc)(void *);
588 	timeout_id_t   tcpt_tid;
589 } tcp_timer_t;
590 
591 static kmem_cache_t *tcp_timercache;
592 kmem_cache_t	*tcp_sack_info_cache;
593 kmem_cache_t	*tcp_iphc_cache;
594 
595 /*
596  * For scalability, we must not run a timer for every TCP connection
597  * in TIME_WAIT state.  To see why, consider (for time wait interval of
598  * 4 minutes):
599  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
600  *
601  * This list is ordered by time, so you need only delete from the head
602  * until you get to entries which aren't old enough to delete yet.
603  * The list consists of only the detached TIME_WAIT connections.
604  *
605  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
606  * becomes detached TIME_WAIT (either by changing the state and already
607  * being detached or the other way around). This means that the TIME_WAIT
608  * state can be extended (up to doubled) if the connection doesn't become
609  * detached for a long time.
610  *
611  * The list manipulations (including tcp_time_wait_next/prev)
612  * are protected by the tcp_time_wait_lock. The content of the
613  * detached TIME_WAIT connections is protected by the normal perimeters.
614  */
615 
616 typedef struct tcp_squeue_priv_s {
617 	kmutex_t	tcp_time_wait_lock;
618 				/* Protects the next 3 globals */
619 	timeout_id_t	tcp_time_wait_tid;
620 	tcp_t		*tcp_time_wait_head;
621 	tcp_t		*tcp_time_wait_tail;
622 	tcp_t		*tcp_free_list;
623 	uint_t		tcp_free_list_cnt;
624 } tcp_squeue_priv_t;
625 
626 /*
627  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
628  * Running it every 5 seconds seems to give the best results.
629  */
630 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
631 
632 /*
633  * To prevent memory hog, limit the number of entries in tcp_free_list
634  * to 1% of available memory / number of cpus
635  */
636 uint_t tcp_free_list_max_cnt = 0;
637 
638 #define	TCP_XMIT_LOWATER	4096
639 #define	TCP_XMIT_HIWATER	49152
640 #define	TCP_RECV_LOWATER	2048
641 #define	TCP_RECV_HIWATER	49152
642 
643 /*
644  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
645  */
646 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
647 
648 #define	TIDUSZ	4096	/* transport interface data unit size */
649 
650 /*
651  * Bind hash list size and has function.  It has to be a power of 2 for
652  * hashing.
653  */
654 #define	TCP_BIND_FANOUT_SIZE	512
655 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
656 /*
657  * Size of listen and acceptor hash list.  It has to be a power of 2 for
658  * hashing.
659  */
660 #define	TCP_FANOUT_SIZE		256
661 
662 #ifdef	_ILP32
663 #define	TCP_ACCEPTOR_HASH(accid)					\
664 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
665 #else
666 #define	TCP_ACCEPTOR_HASH(accid)					\
667 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
668 #endif	/* _ILP32 */
669 
670 #define	IP_ADDR_CACHE_SIZE	2048
671 #define	IP_ADDR_CACHE_HASH(faddr)					\
672 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
673 
674 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
675 #define	TCP_HSP_HASH_SIZE 256
676 
677 #define	TCP_HSP_HASH(addr)					\
678 	(((addr>>24) ^ (addr >>16) ^			\
679 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
680 
681 /*
682  * TCP options struct returned from tcp_parse_options.
683  */
684 typedef struct tcp_opt_s {
685 	uint32_t	tcp_opt_mss;
686 	uint32_t	tcp_opt_wscale;
687 	uint32_t	tcp_opt_ts_val;
688 	uint32_t	tcp_opt_ts_ecr;
689 	tcp_t		*tcp;
690 } tcp_opt_t;
691 
692 /*
693  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
694  */
695 
696 #ifdef _BIG_ENDIAN
697 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
698 	(TCPOPT_TSTAMP << 8) | 10)
699 #else
700 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
701 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
702 #endif
703 
704 /*
705  * Flags returned from tcp_parse_options.
706  */
707 #define	TCP_OPT_MSS_PRESENT	1
708 #define	TCP_OPT_WSCALE_PRESENT	2
709 #define	TCP_OPT_TSTAMP_PRESENT	4
710 #define	TCP_OPT_SACK_OK_PRESENT	8
711 #define	TCP_OPT_SACK_PRESENT	16
712 
713 /* TCP option length */
714 #define	TCPOPT_NOP_LEN		1
715 #define	TCPOPT_MAXSEG_LEN	4
716 #define	TCPOPT_WS_LEN		3
717 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
718 #define	TCPOPT_TSTAMP_LEN	10
719 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
720 #define	TCPOPT_SACK_OK_LEN	2
721 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
722 #define	TCPOPT_REAL_SACK_LEN	4
723 #define	TCPOPT_MAX_SACK_LEN	36
724 #define	TCPOPT_HEADER_LEN	2
725 
726 /* TCP cwnd burst factor. */
727 #define	TCP_CWND_INFINITE	65535
728 #define	TCP_CWND_SS		3
729 #define	TCP_CWND_NORMAL		5
730 
731 /* Maximum TCP initial cwin (start/restart). */
732 #define	TCP_MAX_INIT_CWND	8
733 
734 /*
735  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
736  * either tcp_slow_start_initial or tcp_slow_start_after idle
737  * depending on the caller.  If the upper layer has not used the
738  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
739  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
740  * If the upper layer has changed set the tcp_init_cwnd, just use
741  * it to calculate the tcp_cwnd.
742  */
743 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
744 {									\
745 	if ((tcp)->tcp_init_cwnd == 0) {				\
746 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
747 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
748 	} else {							\
749 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
750 	}								\
751 	tcp->tcp_cwnd_cnt = 0;						\
752 }
753 
754 /* TCP Timer control structure */
755 typedef struct tcpt_s {
756 	pfv_t	tcpt_pfv;	/* The routine we are to call */
757 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
758 } tcpt_t;
759 
760 /* Host Specific Parameter structure */
761 typedef struct tcp_hsp {
762 	struct tcp_hsp	*tcp_hsp_next;
763 	in6_addr_t	tcp_hsp_addr_v6;
764 	in6_addr_t	tcp_hsp_subnet_v6;
765 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
766 	int32_t		tcp_hsp_sendspace;
767 	int32_t		tcp_hsp_recvspace;
768 	int32_t		tcp_hsp_tstamp;
769 } tcp_hsp_t;
770 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
771 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
772 
773 /*
774  * Functions called directly via squeue having a prototype of edesc_t.
775  */
776 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
777 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
778 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
779 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
780 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
781 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
782 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
783 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
784 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
785 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
786 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
787 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
788 
789 
790 /* Prototype for TCP functions */
791 static void	tcp_random_init(void);
792 int		tcp_random(void);
793 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
794 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
795 		    tcp_t *eager);
796 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
797 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
798     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
799     boolean_t user_specified);
800 static void	tcp_closei_local(tcp_t *tcp);
801 static void	tcp_close_detached(tcp_t *tcp);
802 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
803 			mblk_t *idmp, mblk_t **defermp);
804 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
805 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
806 		    in_port_t dstport, uint_t srcid);
807 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
808 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
809 		    uint32_t scope_id);
810 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
811 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
812 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
813 static char	*tcp_display(tcp_t *tcp, char *, char);
814 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
815 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
816 static void	tcp_eager_unlink(tcp_t *tcp);
817 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
818 		    int unixerr);
819 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
820 		    int tlierr, int unixerr);
821 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
822 		    cred_t *cr);
823 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
824 		    char *value, caddr_t cp, cred_t *cr);
825 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
826 		    char *value, caddr_t cp, cred_t *cr);
827 static int	tcp_tpistate(tcp_t *tcp);
828 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
829     int caller_holds_lock);
830 static void	tcp_bind_hash_remove(tcp_t *tcp);
831 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
832 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
833 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
834 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
835 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
836 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
837 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
838 static int	tcp_header_init_ipv4(tcp_t *tcp);
839 static int	tcp_header_init_ipv6(tcp_t *tcp);
840 int		tcp_init(tcp_t *tcp, queue_t *q);
841 static int	tcp_init_values(tcp_t *tcp);
842 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
843 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
844 		    t_scalar_t addr_length);
845 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
846 static void	tcp_ip_notify(tcp_t *tcp);
847 static mblk_t	*tcp_ire_mp(mblk_t *mp);
848 static void	tcp_iss_init(tcp_t *tcp);
849 static void	tcp_keepalive_killer(void *arg);
850 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
851 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
852 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
853 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
854 static boolean_t tcp_allow_connopt_set(int level, int name);
855 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
856 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
857 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
858 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
859 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
860 		    mblk_t *mblk);
861 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
862 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
863 		    uchar_t *ptr, uint_t len);
864 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
865 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
866 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
867 		    caddr_t cp, cred_t *cr);
868 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
869 		    caddr_t cp, cred_t *cr);
870 static void	tcp_iss_key_init(uint8_t *phrase, int len);
871 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
872 		    caddr_t cp, cred_t *cr);
873 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
874 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
875 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
876 static void	tcp_reinit(tcp_t *tcp);
877 static void	tcp_reinit_values(tcp_t *tcp);
878 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
879 		    tcp_t *thisstream, cred_t *cr);
880 
881 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
882 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
883 static boolean_t tcp_send_rst_chk(void);
884 static void	tcp_ss_rexmit(tcp_t *tcp);
885 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
886 static void	tcp_process_options(tcp_t *, tcph_t *);
887 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
888 static void	tcp_rsrv(queue_t *q);
889 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
890 static int	tcp_snmp_state(tcp_t *tcp);
891 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
892 		    cred_t *cr);
893 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
894 		    cred_t *cr);
895 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
896 		    cred_t *cr);
897 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
898 		    cred_t *cr);
899 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
900 		    cred_t *cr);
901 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
902 		    caddr_t cp, cred_t *cr);
903 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
904 		    caddr_t cp, cred_t *cr);
905 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
906 		    cred_t *cr);
907 static void	tcp_timer(void *arg);
908 static void	tcp_timer_callback(void *);
909 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
910     boolean_t random);
911 static in_port_t tcp_get_next_priv_port(const tcp_t *);
912 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
913 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
914 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
915 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
916 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
917 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
918 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
919 		    const int num_sack_blk, int *usable, uint_t *snxt,
920 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
921 		    const int mdt_thres);
922 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
923 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
924 		    const int num_sack_blk, int *usable, uint_t *snxt,
925 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
926 		    const int mdt_thres);
927 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
928 		    int num_sack_blk);
929 static void	tcp_wsrv(queue_t *q);
930 static int	tcp_xmit_end(tcp_t *tcp);
931 static void	tcp_ack_timer(void *arg);
932 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
933 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
934 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
935 		    zoneid_t zoneid);
936 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
937 		    uint32_t ack, int ctl);
938 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
939 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
940 static int	setmaxps(queue_t *q, int maxpsz);
941 static void	tcp_set_rto(tcp_t *, time_t);
942 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
943 		    boolean_t, boolean_t);
944 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
945 		    boolean_t ipsec_mctl);
946 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
947 		    char *opt, int optlen);
948 static int	tcp_build_hdrs(queue_t *, tcp_t *);
949 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
950 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
951 		    tcph_t *tcph);
952 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
953 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
954 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
955 boolean_t	tcp_reserved_port_check(in_port_t);
956 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
957 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
958 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
959 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
960 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
961 		    const boolean_t, const uint32_t, const uint32_t,
962 		    const uint32_t, const uint32_t);
963 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
964 		    const uint_t, const uint_t, boolean_t *);
965 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
966 extern mblk_t	*tcp_timermp_alloc(int);
967 extern void	tcp_timermp_free(tcp_t *);
968 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
969 static void	tcp_stop_lingering(tcp_t *tcp);
970 static void	tcp_close_linger_timeout(void *arg);
971 void		tcp_ddi_init(void);
972 void		tcp_ddi_destroy(void);
973 static void	tcp_kstat_init(void);
974 static void	tcp_kstat_fini(void);
975 static int	tcp_kstat_update(kstat_t *kp, int rw);
976 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
977 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
978 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
979 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
980 			tcph_t *tcph, mblk_t *idmp);
981 static squeue_func_t tcp_squeue_switch(int);
982 
983 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
984 static int	tcp_close(queue_t *, int);
985 static int	tcpclose_accept(queue_t *);
986 static int	tcp_modclose(queue_t *);
987 static void	tcp_wput_mod(queue_t *, mblk_t *);
988 
989 static void	tcp_squeue_add(squeue_t *);
990 static boolean_t tcp_zcopy_check(tcp_t *);
991 static void	tcp_zcopy_notify(tcp_t *);
992 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
993 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
994 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
995 
996 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
997 
998 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
999 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
1000 
1001 /*
1002  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
1003  *
1004  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
1005  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
1006  * (defined in tcp.h) needs to be filled in and passed into the kernel
1007  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
1008  * structure contains the four-tuple of a TCP connection and a range of TCP
1009  * states (specified by ac_start and ac_end). The use of wildcard addresses
1010  * and ports is allowed. Connections with a matching four tuple and a state
1011  * within the specified range will be aborted. The valid states for the
1012  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1013  * inclusive.
1014  *
1015  * An application which has its connection aborted by this ioctl will receive
1016  * an error that is dependent on the connection state at the time of the abort.
1017  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1018  * though a RST packet has been received.  If the connection state is equal to
1019  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1020  * and all resources associated with the connection will be freed.
1021  */
1022 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1023 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1024 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1025 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1026 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1027 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1028     boolean_t);
1029 
1030 static struct module_info tcp_rinfo =  {
1031 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1032 };
1033 
1034 static struct module_info tcp_winfo =  {
1035 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
1036 };
1037 
1038 /*
1039  * Entry points for TCP as a module. It only allows SNMP requests
1040  * to pass through.
1041  */
1042 struct qinit tcp_mod_rinit = {
1043 	(pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo,
1044 };
1045 
1046 struct qinit tcp_mod_winit = {
1047 	(pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL,
1048 	&tcp_rinfo
1049 };
1050 
1051 /*
1052  * Entry points for TCP as a device. The normal case which supports
1053  * the TCP functionality.
1054  */
1055 struct qinit tcp_rinit = {
1056 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1057 };
1058 
1059 struct qinit tcp_winit = {
1060 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1061 };
1062 
1063 /* Initial entry point for TCP in socket mode. */
1064 struct qinit tcp_sock_winit = {
1065 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1066 };
1067 
1068 /*
1069  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1070  * an accept. Avoid allocating data structures since eager has already
1071  * been created.
1072  */
1073 struct qinit tcp_acceptor_rinit = {
1074 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1075 };
1076 
1077 struct qinit tcp_acceptor_winit = {
1078 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1079 };
1080 
1081 /*
1082  * Entry points for TCP loopback (read side only)
1083  */
1084 struct qinit tcp_loopback_rinit = {
1085 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0,
1086 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
1087 };
1088 
1089 struct streamtab tcpinfo = {
1090 	&tcp_rinit, &tcp_winit
1091 };
1092 
1093 extern squeue_func_t tcp_squeue_wput_proc;
1094 extern squeue_func_t tcp_squeue_timer_proc;
1095 
1096 /* Protected by tcp_g_q_lock */
1097 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1098 kmutex_t tcp_g_q_lock;
1099 
1100 /* Protected by tcp_hsp_lock */
1101 /*
1102  * XXX The host param mechanism should go away and instead we should use
1103  * the metrics associated with the routes to determine the default sndspace
1104  * and rcvspace.
1105  */
1106 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1107 krwlock_t tcp_hsp_lock;
1108 
1109 /*
1110  * Extra privileged ports. In host byte order.
1111  * Protected by tcp_epriv_port_lock.
1112  */
1113 #define	TCP_NUM_EPRIV_PORTS	64
1114 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1115 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1116 kmutex_t tcp_epriv_port_lock;
1117 
1118 /*
1119  * The smallest anonymous port in the privileged port range which TCP
1120  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1121  */
1122 static in_port_t tcp_min_anonpriv_port = 512;
1123 
1124 /* Only modified during _init and _fini thus no locking is needed. */
1125 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1126 
1127 /* Hint not protected by any lock */
1128 static uint_t	tcp_next_port_to_try;
1129 
1130 
1131 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1132 tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1133 
1134 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1135 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1136 
1137 /*
1138  * TCP has a private interface for other kernel modules to reserve a
1139  * port range for them to use.  Once reserved, TCP will not use any ports
1140  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1141  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1142  * has to be verified.
1143  *
1144  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1145  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1146  * range is [port a, port b] inclusive.  And each port range is between
1147  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1148  *
1149  * Note that the default anonymous port range starts from 32768.  There is
1150  * no port "collision" between that and the reserved port range.  If there
1151  * is port collision (because the default smallest anonymous port is lowered
1152  * or some apps specifically bind to ports in the reserved port range), the
1153  * system may not be able to reserve a port range even there are enough
1154  * unbound ports as a reserved port range contains consecutive ports .
1155  */
1156 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1157 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1158 #define	TCP_SMALLEST_RESERVED_PORT		10240
1159 #define	TCP_LARGEST_RESERVED_PORT		20480
1160 
1161 /* Structure to represent those reserved port ranges. */
1162 typedef struct tcp_rport_s {
1163 	in_port_t	lo_port;
1164 	in_port_t	hi_port;
1165 	tcp_t		**temp_tcp_array;
1166 } tcp_rport_t;
1167 
1168 /* The reserved port array. */
1169 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1170 
1171 /* Locks to protect the tcp_reserved_ports array. */
1172 static krwlock_t tcp_reserved_port_lock;
1173 
1174 /* The number of ranges in the array. */
1175 uint32_t tcp_reserved_port_array_size = 0;
1176 
1177 /*
1178  * MIB-2 stuff for SNMP
1179  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1180  */
1181 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1182 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1183 
1184 boolean_t tcp_icmp_source_quench = B_FALSE;
1185 /*
1186  * Following assumes TPI alignment requirements stay along 32 bit
1187  * boundaries
1188  */
1189 #define	ROUNDUP32(x) \
1190 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1191 
1192 /* Template for response to info request. */
1193 static struct T_info_ack tcp_g_t_info_ack = {
1194 	T_INFO_ACK,		/* PRIM_type */
1195 	0,			/* TSDU_size */
1196 	T_INFINITE,		/* ETSDU_size */
1197 	T_INVALID,		/* CDATA_size */
1198 	T_INVALID,		/* DDATA_size */
1199 	sizeof (sin_t),		/* ADDR_size */
1200 	0,			/* OPT_size - not initialized here */
1201 	TIDUSZ,			/* TIDU_size */
1202 	T_COTS_ORD,		/* SERV_type */
1203 	TCPS_IDLE,		/* CURRENT_state */
1204 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1205 };
1206 
1207 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1208 	T_INFO_ACK,		/* PRIM_type */
1209 	0,			/* TSDU_size */
1210 	T_INFINITE,		/* ETSDU_size */
1211 	T_INVALID,		/* CDATA_size */
1212 	T_INVALID,		/* DDATA_size */
1213 	sizeof (sin6_t),	/* ADDR_size */
1214 	0,			/* OPT_size - not initialized here */
1215 	TIDUSZ,		/* TIDU_size */
1216 	T_COTS_ORD,		/* SERV_type */
1217 	TCPS_IDLE,		/* CURRENT_state */
1218 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1219 };
1220 
1221 #define	MS	1L
1222 #define	SECONDS	(1000 * MS)
1223 #define	MINUTES	(60 * SECONDS)
1224 #define	HOURS	(60 * MINUTES)
1225 #define	DAYS	(24 * HOURS)
1226 
1227 #define	PARAM_MAX (~(uint32_t)0)
1228 
1229 /* Max size IP datagram is 64k - 1 */
1230 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1231 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1232 /* Max of the above */
1233 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1234 
1235 /* Largest TCP port number */
1236 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1237 
1238 /*
1239  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1240  * layer header.  It has to be a multiple of 4.
1241  */
1242 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1243 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1244 
1245 /*
1246  * All of these are alterable, within the min/max values given, at run time.
1247  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1248  * per the TCP spec.
1249  */
1250 /* BEGIN CSTYLED */
1251 tcpparam_t	tcp_param_arr[] = {
1252  /*min		max		value		name */
1253  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1254  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1255  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1256  { 1,		1024,		1,		"tcp_conn_req_min" },
1257  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1258  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1259  { 0,		10,		0,		"tcp_debug" },
1260  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1261  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1262  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1263  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1264  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1265  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1266  { 1,		255,		64,		"tcp_ipv4_ttl"},
1267  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1268  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1269  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1270  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1271  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1272  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1273  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1274  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1275  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1276  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1277  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1278  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1279  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1280  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1281  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1282  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1283  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1284  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1285  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1286  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1287  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1288  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1289  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1290  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1291 /*
1292  * Question:  What default value should I set for tcp_strong_iss?
1293  */
1294  { 0,		2,		1,		"tcp_strong_iss"},
1295  { 0,		65536,		20,		"tcp_rtt_updates"},
1296  { 0,		1,		1,		"tcp_wscale_always"},
1297  { 0,		1,		0,		"tcp_tstamp_always"},
1298  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1299  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1300  { 0,		16,		2,		"tcp_deferred_acks_max"},
1301  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1302  { 1,		4,		4,		"tcp_slow_start_initial"},
1303  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1304  { 0,		2,		2,		"tcp_sack_permitted"},
1305  { 0,		1,		0,		"tcp_trace"},
1306  { 0,		1,		1,		"tcp_compression_enabled"},
1307  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1308  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1309  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1310  { 0,		1,		0,		"tcp_rev_src_routes"},
1311  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1312  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1313  { 0,		16,		8,		"tcp_local_dacks_max"},
1314  { 0,		2,		1,		"tcp_ecn_permitted"},
1315  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1316  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1317  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1318  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1319  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1320 };
1321 /* END CSTYLED */
1322 
1323 /*
1324  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1325  * each header fragment in the header buffer.  Each parameter value has
1326  * to be a multiple of 4 (32-bit aligned).
1327  */
1328 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1329 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1330 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1331 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1332 
1333 /*
1334  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1335  * the maximum number of payload buffers associated per Multidata.
1336  */
1337 static tcpparam_t tcp_mdt_max_pbufs_param =
1338 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1339 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1340 
1341 /* Round up the value to the nearest mss. */
1342 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1343 
1344 /*
1345  * Set ECN capable transport (ECT) code point in IP header.
1346  *
1347  * Note that there are 2 ECT code points '01' and '10', which are called
1348  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1349  * point ECT(0) for TCP as described in RFC 2481.
1350  */
1351 #define	SET_ECT(tcp, iph) \
1352 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1353 		/* We need to clear the code point first. */ \
1354 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1355 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1356 	} else { \
1357 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1358 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1359 	}
1360 
1361 /*
1362  * The format argument to pass to tcp_display().
1363  * DISP_PORT_ONLY means that the returned string has only port info.
1364  * DISP_ADDR_AND_PORT means that the returned string also contains the
1365  * remote and local IP address.
1366  */
1367 #define	DISP_PORT_ONLY		1
1368 #define	DISP_ADDR_AND_PORT	2
1369 
1370 /*
1371  * This controls the rate some ndd info report functions can be used
1372  * by non-privileged users.  It stores the last time such info is
1373  * requested.  When those report functions are called again, this
1374  * is checked with the current time and compare with the ndd param
1375  * tcp_ndd_get_info_interval.
1376  */
1377 static clock_t tcp_last_ndd_get_info_time = 0;
1378 #define	NDD_TOO_QUICK_MSG \
1379 	"ndd get info rate too high for non-privileged users, try again " \
1380 	"later.\n"
1381 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1382 
1383 #define	IS_VMLOANED_MBLK(mp) \
1384 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1385 
1386 /*
1387  * These two variables control the rate for TCP to generate RSTs in
1388  * response to segments not belonging to any connections.  We limit
1389  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1390  * each 1 second interval.  This is to protect TCP against DoS attack.
1391  */
1392 static clock_t tcp_last_rst_intrvl;
1393 static uint32_t tcp_rst_cnt;
1394 
1395 /* The number of RST not sent because of the rate limit. */
1396 static uint32_t tcp_rst_unsent;
1397 
1398 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1399 boolean_t tcp_mdt_chain = B_TRUE;
1400 
1401 /*
1402  * MDT threshold in the form of effective send MSS multiplier; we take
1403  * the MDT path if the amount of unsent data exceeds the threshold value
1404  * (default threshold is 1*SMSS).
1405  */
1406 uint_t tcp_mdt_smss_threshold = 1;
1407 
1408 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1409 
1410 /*
1411  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1412  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1413  * determined dynamically during tcp_adapt_ire(), which is the default.
1414  */
1415 boolean_t tcp_static_maxpsz = B_FALSE;
1416 
1417 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1418 uint32_t tcp_random_anon_port = 1;
1419 
1420 /*
1421  * To reach to an eager in Q0 which can be dropped due to an incoming
1422  * new SYN request when Q0 is full, a new doubly linked list is
1423  * introduced. This list allows to select an eager from Q0 in O(1) time.
1424  * This is needed to avoid spending too much time walking through the
1425  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1426  * this new list has to be a member of Q0.
1427  * This list is headed by listener's tcp_t. When the list is empty,
1428  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1429  * of listener's tcp_t point to listener's tcp_t itself.
1430  *
1431  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1432  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1433  * These macros do not affect the eager's membership to Q0.
1434  */
1435 
1436 
1437 #define	MAKE_DROPPABLE(listener, eager)					\
1438 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1439 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1440 		    = (eager);						\
1441 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1442 		(eager)->tcp_eager_next_drop_q0 =			\
1443 		    (listener)->tcp_eager_next_drop_q0;			\
1444 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1445 	}
1446 
1447 #define	MAKE_UNDROPPABLE(eager)						\
1448 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1449 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1450 		    = (eager)->tcp_eager_prev_drop_q0;			\
1451 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1452 		    = (eager)->tcp_eager_next_drop_q0;			\
1453 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1454 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1455 	}
1456 
1457 /*
1458  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1459  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1460  * data, TCP will not respond with an ACK.  RFC 793 requires that
1461  * TCP responds with an ACK for such a bogus ACK.  By not following
1462  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1463  * an attacker successfully spoofs an acceptable segment to our
1464  * peer; or when our peer is "confused."
1465  */
1466 uint32_t tcp_drop_ack_unsent_cnt = 10;
1467 
1468 /*
1469  * Hook functions to enable cluster networking
1470  * On non-clustered systems these vectors must always be NULL.
1471  */
1472 
1473 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1474 			    uint8_t *laddrp, in_port_t lport) = NULL;
1475 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1476 			    uint8_t *laddrp, in_port_t lport) = NULL;
1477 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1478 			    uint8_t *laddrp, in_port_t lport,
1479 			    uint8_t *faddrp, in_port_t fport) = NULL;
1480 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1481 			    uint8_t *laddrp, in_port_t lport,
1482 			    uint8_t *faddrp, in_port_t fport) = NULL;
1483 
1484 /*
1485  * The following are defined in ip.c
1486  */
1487 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1488 				uint8_t *laddrp);
1489 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1490 				uint8_t *laddrp, uint8_t *faddrp);
1491 
1492 #define	CL_INET_CONNECT(tcp)		{			\
1493 	if (cl_inet_connect != NULL) {				\
1494 		/*						\
1495 		 * Running in cluster mode - register active connection	\
1496 		 * information						\
1497 		 */							\
1498 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1499 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1500 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1501 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1502 				    (in_port_t)(tcp)->tcp_lport,	\
1503 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1504 				    (in_port_t)(tcp)->tcp_fport);	\
1505 			}						\
1506 		} else {						\
1507 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1508 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1509 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1510 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1511 				    (in_port_t)(tcp)->tcp_lport,	\
1512 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1513 				    (in_port_t)(tcp)->tcp_fport);	\
1514 			}						\
1515 		}							\
1516 	}								\
1517 }
1518 
1519 #define	CL_INET_DISCONNECT(tcp)	{				\
1520 	if (cl_inet_disconnect != NULL) {				\
1521 		/*							\
1522 		 * Running in cluster mode - deregister active		\
1523 		 * connection information				\
1524 		 */							\
1525 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1526 			if ((tcp)->tcp_ip_src != 0) {			\
1527 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1528 				    AF_INET,				\
1529 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1530 				    (in_port_t)(tcp)->tcp_lport,	\
1531 				    (uint8_t *)				\
1532 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1533 				    (in_port_t)(tcp)->tcp_fport);	\
1534 			}						\
1535 		} else {						\
1536 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1537 			    &(tcp)->tcp_ip_src_v6)) {			\
1538 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1539 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1540 				    (in_port_t)(tcp)->tcp_lport,	\
1541 				    (uint8_t *)				\
1542 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1543 				    (in_port_t)(tcp)->tcp_fport);	\
1544 			}						\
1545 		}							\
1546 	}								\
1547 }
1548 
1549 /*
1550  * Cluster networking hook for traversing current connection list.
1551  * This routine is used to extract the current list of live connections
1552  * which must continue to to be dispatched to this node.
1553  */
1554 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1555 
1556 /*
1557  * Figure out the value of window scale opton.  Note that the rwnd is
1558  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1559  * We cannot find the scale value and then do a round up of tcp_rwnd
1560  * because the scale value may not be correct after that.
1561  *
1562  * Set the compiler flag to make this function inline.
1563  */
1564 static void
1565 tcp_set_ws_value(tcp_t *tcp)
1566 {
1567 	int i;
1568 	uint32_t rwnd = tcp->tcp_rwnd;
1569 
1570 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1571 	    i++, rwnd >>= 1)
1572 		;
1573 	tcp->tcp_rcv_ws = i;
1574 }
1575 
1576 /*
1577  * Remove a connection from the list of detached TIME_WAIT connections.
1578  * It returns B_FALSE if it can't remove the connection from the list
1579  * as the connection has already been removed from the list due to an
1580  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1581  */
1582 static boolean_t
1583 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1584 {
1585 	boolean_t	locked = B_FALSE;
1586 
1587 	if (tcp_time_wait == NULL) {
1588 		tcp_time_wait = *((tcp_squeue_priv_t **)
1589 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1590 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1591 		locked = B_TRUE;
1592 	}
1593 
1594 	if (tcp->tcp_time_wait_expire == 0) {
1595 		ASSERT(tcp->tcp_time_wait_next == NULL);
1596 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1597 		if (locked)
1598 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1599 		return (B_FALSE);
1600 	}
1601 	ASSERT(TCP_IS_DETACHED(tcp));
1602 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1603 
1604 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1605 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1606 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1607 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1608 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1609 			    NULL;
1610 		} else {
1611 			tcp_time_wait->tcp_time_wait_tail = NULL;
1612 		}
1613 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1614 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1615 		ASSERT(tcp->tcp_time_wait_next == NULL);
1616 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1617 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1618 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1619 	} else {
1620 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1621 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1622 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1623 		    tcp->tcp_time_wait_next;
1624 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1625 		    tcp->tcp_time_wait_prev;
1626 	}
1627 	tcp->tcp_time_wait_next = NULL;
1628 	tcp->tcp_time_wait_prev = NULL;
1629 	tcp->tcp_time_wait_expire = 0;
1630 
1631 	if (locked)
1632 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1633 	return (B_TRUE);
1634 }
1635 
1636 /*
1637  * Add a connection to the list of detached TIME_WAIT connections
1638  * and set its time to expire.
1639  */
1640 static void
1641 tcp_time_wait_append(tcp_t *tcp)
1642 {
1643 	tcp_squeue_priv_t *tcp_time_wait =
1644 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1645 		SQPRIVATE_TCP));
1646 
1647 	tcp_timers_stop(tcp);
1648 
1649 	/* Freed above */
1650 	ASSERT(tcp->tcp_timer_tid == 0);
1651 	ASSERT(tcp->tcp_ack_tid == 0);
1652 
1653 	/* must have happened at the time of detaching the tcp */
1654 	ASSERT(tcp->tcp_ptpahn == NULL);
1655 	ASSERT(tcp->tcp_flow_stopped == 0);
1656 	ASSERT(tcp->tcp_time_wait_next == NULL);
1657 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1658 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1659 	ASSERT(tcp->tcp_listener == NULL);
1660 
1661 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1662 	/*
1663 	 * The value computed below in tcp->tcp_time_wait_expire may
1664 	 * appear negative or wrap around. That is ok since our
1665 	 * interest is only in the difference between the current lbolt
1666 	 * value and tcp->tcp_time_wait_expire. But the value should not
1667 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1668 	 * The corresponding comparison in tcp_time_wait_collector() uses
1669 	 * modular arithmetic.
1670 	 */
1671 	tcp->tcp_time_wait_expire +=
1672 	    drv_usectohz(tcp_time_wait_interval * 1000);
1673 	if (tcp->tcp_time_wait_expire == 0)
1674 		tcp->tcp_time_wait_expire = 1;
1675 
1676 	ASSERT(TCP_IS_DETACHED(tcp));
1677 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1678 	ASSERT(tcp->tcp_time_wait_next == NULL);
1679 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1680 	TCP_DBGSTAT(tcp_time_wait);
1681 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1682 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1683 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1684 		tcp_time_wait->tcp_time_wait_head = tcp;
1685 	} else {
1686 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1687 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1688 		    TCPS_TIME_WAIT);
1689 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1690 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1691 	}
1692 	tcp_time_wait->tcp_time_wait_tail = tcp;
1693 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1694 }
1695 
1696 /* ARGSUSED */
1697 void
1698 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1699 {
1700 	conn_t	*connp = (conn_t *)arg;
1701 	tcp_t	*tcp = connp->conn_tcp;
1702 
1703 	ASSERT(tcp != NULL);
1704 	if (tcp->tcp_state == TCPS_CLOSED) {
1705 		return;
1706 	}
1707 
1708 	ASSERT((tcp->tcp_family == AF_INET &&
1709 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1710 	    (tcp->tcp_family == AF_INET6 &&
1711 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1712 	    tcp->tcp_ipversion == IPV6_VERSION)));
1713 	ASSERT(!tcp->tcp_listener);
1714 
1715 	TCP_STAT(tcp_time_wait_reap);
1716 	ASSERT(TCP_IS_DETACHED(tcp));
1717 
1718 	/*
1719 	 * Because they have no upstream client to rebind or tcp_close()
1720 	 * them later, we axe the connection here and now.
1721 	 */
1722 	tcp_close_detached(tcp);
1723 }
1724 
1725 void
1726 tcp_cleanup(tcp_t *tcp)
1727 {
1728 	mblk_t		*mp;
1729 	char		*tcp_iphc;
1730 	int		tcp_iphc_len;
1731 	int		tcp_hdr_grown;
1732 	tcp_sack_info_t	*tcp_sack_info;
1733 	conn_t		*connp = tcp->tcp_connp;
1734 
1735 	tcp_bind_hash_remove(tcp);
1736 	tcp_free(tcp);
1737 
1738 	/* Release any SSL context */
1739 	if (tcp->tcp_kssl_ent != NULL) {
1740 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1741 		tcp->tcp_kssl_ent = NULL;
1742 	}
1743 
1744 	if (tcp->tcp_kssl_ctx != NULL) {
1745 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1746 		tcp->tcp_kssl_ctx = NULL;
1747 	}
1748 	tcp->tcp_kssl_pending = B_FALSE;
1749 
1750 	conn_delete_ire(connp, NULL);
1751 	if (connp->conn_flags & IPCL_TCPCONN) {
1752 		if (connp->conn_latch != NULL)
1753 			IPLATCH_REFRELE(connp->conn_latch);
1754 		if (connp->conn_policy != NULL)
1755 			IPPH_REFRELE(connp->conn_policy);
1756 	}
1757 
1758 	/*
1759 	 * Since we will bzero the entire structure, we need to
1760 	 * remove it and reinsert it in global hash list. We
1761 	 * know the walkers can't get to this conn because we
1762 	 * had set CONDEMNED flag earlier and checked reference
1763 	 * under conn_lock so walker won't pick it and when we
1764 	 * go the ipcl_globalhash_remove() below, no walker
1765 	 * can get to it.
1766 	 */
1767 	ipcl_globalhash_remove(connp);
1768 
1769 	/* Save some state */
1770 	mp = tcp->tcp_timercache;
1771 
1772 	tcp_sack_info = tcp->tcp_sack_info;
1773 	tcp_iphc = tcp->tcp_iphc;
1774 	tcp_iphc_len = tcp->tcp_iphc_len;
1775 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1776 
1777 	if (connp->conn_cred != NULL)
1778 		crfree(connp->conn_cred);
1779 	if (connp->conn_peercred != NULL)
1780 		crfree(connp->conn_peercred);
1781 	bzero(connp, sizeof (conn_t));
1782 	bzero(tcp, sizeof (tcp_t));
1783 
1784 	/* restore the state */
1785 	tcp->tcp_timercache = mp;
1786 
1787 	tcp->tcp_sack_info = tcp_sack_info;
1788 	tcp->tcp_iphc = tcp_iphc;
1789 	tcp->tcp_iphc_len = tcp_iphc_len;
1790 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1791 
1792 
1793 	tcp->tcp_connp = connp;
1794 
1795 	connp->conn_tcp = tcp;
1796 	connp->conn_flags = IPCL_TCPCONN;
1797 	connp->conn_state_flags = CONN_INCIPIENT;
1798 	connp->conn_ulp = IPPROTO_TCP;
1799 	connp->conn_ref = 1;
1800 
1801 	ipcl_globalhash_insert(connp);
1802 }
1803 
1804 /*
1805  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1806  * is done forwards from the head.
1807  */
1808 /* ARGSUSED */
1809 void
1810 tcp_time_wait_collector(void *arg)
1811 {
1812 	tcp_t *tcp;
1813 	clock_t now;
1814 	mblk_t *mp;
1815 	conn_t *connp;
1816 	kmutex_t *lock;
1817 	boolean_t removed;
1818 
1819 	squeue_t *sqp = (squeue_t *)arg;
1820 	tcp_squeue_priv_t *tcp_time_wait =
1821 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1822 
1823 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1824 	tcp_time_wait->tcp_time_wait_tid = 0;
1825 
1826 	if (tcp_time_wait->tcp_free_list != NULL &&
1827 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1828 		TCP_STAT(tcp_freelist_cleanup);
1829 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1830 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1831 			CONN_DEC_REF(tcp->tcp_connp);
1832 		}
1833 		tcp_time_wait->tcp_free_list_cnt = 0;
1834 	}
1835 
1836 	/*
1837 	 * In order to reap time waits reliably, we should use a
1838 	 * source of time that is not adjustable by the user -- hence
1839 	 * the call to ddi_get_lbolt().
1840 	 */
1841 	now = ddi_get_lbolt();
1842 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1843 		/*
1844 		 * Compare times using modular arithmetic, since
1845 		 * lbolt can wrapover.
1846 		 */
1847 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1848 			break;
1849 		}
1850 
1851 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1852 		ASSERT(removed);
1853 
1854 		connp = tcp->tcp_connp;
1855 		ASSERT(connp->conn_fanout != NULL);
1856 		lock = &connp->conn_fanout->connf_lock;
1857 		/*
1858 		 * This is essentially a TW reclaim fast path optimization for
1859 		 * performance where the timewait collector checks under the
1860 		 * fanout lock (so that no one else can get access to the
1861 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1862 		 * the classifier hash list. If ref count is indeed 2, we can
1863 		 * just remove the conn under the fanout lock and avoid
1864 		 * cleaning up the conn under the squeue, provided that
1865 		 * clustering callbacks are not enabled. If clustering is
1866 		 * enabled, we need to make the clustering callback before
1867 		 * setting the CONDEMNED flag and after dropping all locks and
1868 		 * so we forego this optimization and fall back to the slow
1869 		 * path. Also please see the comments in tcp_closei_local
1870 		 * regarding the refcnt logic.
1871 		 *
1872 		 * Since we are holding the tcp_time_wait_lock, its better
1873 		 * not to block on the fanout_lock because other connections
1874 		 * can't add themselves to time_wait list. So we do a
1875 		 * tryenter instead of mutex_enter.
1876 		 */
1877 		if (mutex_tryenter(lock)) {
1878 			mutex_enter(&connp->conn_lock);
1879 			if ((connp->conn_ref == 2) &&
1880 			    (cl_inet_disconnect == NULL)) {
1881 				ipcl_hash_remove_locked(connp,
1882 				    connp->conn_fanout);
1883 				/*
1884 				 * Set the CONDEMNED flag now itself so that
1885 				 * the refcnt cannot increase due to any
1886 				 * walker. But we have still not cleaned up
1887 				 * conn_ire_cache. This is still ok since
1888 				 * we are going to clean it up in tcp_cleanup
1889 				 * immediately and any interface unplumb
1890 				 * thread will wait till the ire is blown away
1891 				 */
1892 				connp->conn_state_flags |= CONN_CONDEMNED;
1893 				mutex_exit(lock);
1894 				mutex_exit(&connp->conn_lock);
1895 				if (tcp_time_wait->tcp_free_list_cnt <
1896 				    tcp_free_list_max_cnt) {
1897 					/* Add to head of tcp_free_list */
1898 					mutex_exit(
1899 					    &tcp_time_wait->tcp_time_wait_lock);
1900 					tcp_cleanup(tcp);
1901 					mutex_enter(
1902 					    &tcp_time_wait->tcp_time_wait_lock);
1903 					tcp->tcp_time_wait_next =
1904 					    tcp_time_wait->tcp_free_list;
1905 					tcp_time_wait->tcp_free_list = tcp;
1906 					tcp_time_wait->tcp_free_list_cnt++;
1907 					continue;
1908 				} else {
1909 					/* Do not add to tcp_free_list */
1910 					mutex_exit(
1911 					    &tcp_time_wait->tcp_time_wait_lock);
1912 					tcp_bind_hash_remove(tcp);
1913 					conn_delete_ire(tcp->tcp_connp, NULL);
1914 					CONN_DEC_REF(tcp->tcp_connp);
1915 				}
1916 			} else {
1917 				CONN_INC_REF_LOCKED(connp);
1918 				mutex_exit(lock);
1919 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1920 				mutex_exit(&connp->conn_lock);
1921 				/*
1922 				 * We can reuse the closemp here since conn has
1923 				 * detached (otherwise we wouldn't even be in
1924 				 * time_wait list). tcp_closemp_used can safely
1925 				 * be changed without taking a lock as no other
1926 				 * thread can concurrently access it at this
1927 				 * point in the connection lifecycle. We
1928 				 * increment tcp_closemp_used to record any
1929 				 * attempt to reuse tcp_closemp while it is
1930 				 * still in use.
1931 				 */
1932 
1933 				if (tcp->tcp_closemp.b_prev == NULL)
1934 					tcp->tcp_closemp_used = 1;
1935 				else
1936 					tcp->tcp_closemp_used++;
1937 
1938 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1939 				mp = &tcp->tcp_closemp;
1940 				squeue_fill(connp->conn_sqp, mp,
1941 				    tcp_timewait_output, connp,
1942 				    SQTAG_TCP_TIMEWAIT);
1943 			}
1944 		} else {
1945 			mutex_enter(&connp->conn_lock);
1946 			CONN_INC_REF_LOCKED(connp);
1947 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1948 			mutex_exit(&connp->conn_lock);
1949 			/*
1950 			 * We can reuse the closemp here since conn has
1951 			 * detached (otherwise we wouldn't even be in
1952 			 * time_wait list). tcp_closemp_used can safely
1953 			 * be changed without taking a lock as no other
1954 			 * thread can concurrently access it at this
1955 			 * point in the connection lifecycle. We
1956 			 * increment tcp_closemp_used to record any
1957 			 * attempt to reuse tcp_closemp while it is
1958 			 * still in use.
1959 			 */
1960 
1961 			if (tcp->tcp_closemp.b_prev == NULL)
1962 				tcp->tcp_closemp_used = 1;
1963 			else
1964 				tcp->tcp_closemp_used++;
1965 
1966 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1967 			mp = &tcp->tcp_closemp;
1968 			squeue_fill(connp->conn_sqp, mp,
1969 			    tcp_timewait_output, connp, 0);
1970 		}
1971 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1972 	}
1973 
1974 	if (tcp_time_wait->tcp_free_list != NULL)
1975 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1976 
1977 	tcp_time_wait->tcp_time_wait_tid =
1978 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
1979 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1980 }
1981 
1982 /*
1983  * Reply to a clients T_CONN_RES TPI message. This function
1984  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1985  * on the acceptor STREAM and processed in tcp_wput_accept().
1986  * Read the block comment on top of tcp_conn_request().
1987  */
1988 static void
1989 tcp_accept(tcp_t *listener, mblk_t *mp)
1990 {
1991 	tcp_t	*acceptor;
1992 	tcp_t	*eager;
1993 	tcp_t   *tcp;
1994 	struct T_conn_res	*tcr;
1995 	t_uscalar_t	acceptor_id;
1996 	t_scalar_t	seqnum;
1997 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1998 	mblk_t	*ok_mp;
1999 	mblk_t	*mp1;
2000 
2001 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
2002 		tcp_err_ack(listener, mp, TPROTO, 0);
2003 		return;
2004 	}
2005 	tcr = (struct T_conn_res *)mp->b_rptr;
2006 
2007 	/*
2008 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
2009 	 * read side queue of the streams device underneath us i.e. the
2010 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
2011 	 * look it up in the queue_hash.  Under LP64 it sends down the
2012 	 * minor_t of the accepting endpoint.
2013 	 *
2014 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
2015 	 * fanout hash lock is held.
2016 	 * This prevents any thread from entering the acceptor queue from
2017 	 * below (since it has not been hard bound yet i.e. any inbound
2018 	 * packets will arrive on the listener or default tcp queue and
2019 	 * go through tcp_lookup).
2020 	 * The CONN_INC_REF will prevent the acceptor from closing.
2021 	 *
2022 	 * XXX It is still possible for a tli application to send down data
2023 	 * on the accepting stream while another thread calls t_accept.
2024 	 * This should not be a problem for well-behaved applications since
2025 	 * the T_OK_ACK is sent after the queue swapping is completed.
2026 	 *
2027 	 * If the accepting fd is the same as the listening fd, avoid
2028 	 * queue hash lookup since that will return an eager listener in a
2029 	 * already established state.
2030 	 */
2031 	acceptor_id = tcr->ACCEPTOR_id;
2032 	mutex_enter(&listener->tcp_eager_lock);
2033 	if (listener->tcp_acceptor_id == acceptor_id) {
2034 		eager = listener->tcp_eager_next_q;
2035 		/* only count how many T_CONN_INDs so don't count q0 */
2036 		if ((listener->tcp_conn_req_cnt_q != 1) ||
2037 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
2038 			mutex_exit(&listener->tcp_eager_lock);
2039 			tcp_err_ack(listener, mp, TBADF, 0);
2040 			return;
2041 		}
2042 		if (listener->tcp_conn_req_cnt_q0 != 0) {
2043 			/* Throw away all the eagers on q0. */
2044 			tcp_eager_cleanup(listener, 1);
2045 		}
2046 		if (listener->tcp_syn_defense) {
2047 			listener->tcp_syn_defense = B_FALSE;
2048 			if (listener->tcp_ip_addr_cache != NULL) {
2049 				kmem_free(listener->tcp_ip_addr_cache,
2050 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
2051 				listener->tcp_ip_addr_cache = NULL;
2052 			}
2053 		}
2054 		/*
2055 		 * Transfer tcp_conn_req_max to the eager so that when
2056 		 * a disconnect occurs we can revert the endpoint to the
2057 		 * listen state.
2058 		 */
2059 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2060 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2061 		/*
2062 		 * Get a reference on the acceptor just like the
2063 		 * tcp_acceptor_hash_lookup below.
2064 		 */
2065 		acceptor = listener;
2066 		CONN_INC_REF(acceptor->tcp_connp);
2067 	} else {
2068 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
2069 		if (acceptor == NULL) {
2070 			if (listener->tcp_debug) {
2071 				(void) strlog(TCP_MOD_ID, 0, 1,
2072 				    SL_ERROR|SL_TRACE,
2073 				    "tcp_accept: did not find acceptor 0x%x\n",
2074 				    acceptor_id);
2075 			}
2076 			mutex_exit(&listener->tcp_eager_lock);
2077 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2078 			return;
2079 		}
2080 		/*
2081 		 * Verify acceptor state. The acceptable states for an acceptor
2082 		 * include TCPS_IDLE and TCPS_BOUND.
2083 		 */
2084 		switch (acceptor->tcp_state) {
2085 		case TCPS_IDLE:
2086 			/* FALLTHRU */
2087 		case TCPS_BOUND:
2088 			break;
2089 		default:
2090 			CONN_DEC_REF(acceptor->tcp_connp);
2091 			mutex_exit(&listener->tcp_eager_lock);
2092 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2093 			return;
2094 		}
2095 	}
2096 
2097 	/* The listener must be in TCPS_LISTEN */
2098 	if (listener->tcp_state != TCPS_LISTEN) {
2099 		CONN_DEC_REF(acceptor->tcp_connp);
2100 		mutex_exit(&listener->tcp_eager_lock);
2101 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2102 		return;
2103 	}
2104 
2105 	/*
2106 	 * Rendezvous with an eager connection request packet hanging off
2107 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2108 	 * tcp structure when the connection packet arrived in
2109 	 * tcp_conn_request().
2110 	 */
2111 	seqnum = tcr->SEQ_number;
2112 	eager = listener;
2113 	do {
2114 		eager = eager->tcp_eager_next_q;
2115 		if (eager == NULL) {
2116 			CONN_DEC_REF(acceptor->tcp_connp);
2117 			mutex_exit(&listener->tcp_eager_lock);
2118 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2119 			return;
2120 		}
2121 	} while (eager->tcp_conn_req_seqnum != seqnum);
2122 	mutex_exit(&listener->tcp_eager_lock);
2123 
2124 	/*
2125 	 * At this point, both acceptor and listener have 2 ref
2126 	 * that they begin with. Acceptor has one additional ref
2127 	 * we placed in lookup while listener has 3 additional
2128 	 * ref for being behind the squeue (tcp_accept() is
2129 	 * done on listener's squeue); being in classifier hash;
2130 	 * and eager's ref on listener.
2131 	 */
2132 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2133 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2134 
2135 	/*
2136 	 * The eager at this point is set in its own squeue and
2137 	 * could easily have been killed (tcp_accept_finish will
2138 	 * deal with that) because of a TH_RST so we can only
2139 	 * ASSERT for a single ref.
2140 	 */
2141 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2142 
2143 	/* Pre allocate the stroptions mblk also */
2144 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2145 	if (opt_mp == NULL) {
2146 		CONN_DEC_REF(acceptor->tcp_connp);
2147 		CONN_DEC_REF(eager->tcp_connp);
2148 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2149 		return;
2150 	}
2151 	DB_TYPE(opt_mp) = M_SETOPTS;
2152 	opt_mp->b_wptr += sizeof (struct stroptions);
2153 
2154 	/*
2155 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2156 	 * from listener to acceptor. The message is chained on opt_mp
2157 	 * which will be sent onto eager's squeue.
2158 	 */
2159 	if (listener->tcp_bound_if != 0) {
2160 		/* allocate optmgmt req */
2161 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2162 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2163 		    sizeof (int));
2164 		if (mp1 != NULL)
2165 			linkb(opt_mp, mp1);
2166 	}
2167 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2168 		uint_t on = 1;
2169 
2170 		/* allocate optmgmt req */
2171 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2172 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2173 		if (mp1 != NULL)
2174 			linkb(opt_mp, mp1);
2175 	}
2176 
2177 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2178 	if ((mp1 = copymsg(mp)) == NULL) {
2179 		CONN_DEC_REF(acceptor->tcp_connp);
2180 		CONN_DEC_REF(eager->tcp_connp);
2181 		freemsg(opt_mp);
2182 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2183 		return;
2184 	}
2185 
2186 	tcr = (struct T_conn_res *)mp1->b_rptr;
2187 
2188 	/*
2189 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2190 	 * which allocates a larger mblk and appends the new
2191 	 * local address to the ok_ack.  The address is copied by
2192 	 * soaccept() for getsockname().
2193 	 */
2194 	{
2195 		int extra;
2196 
2197 		extra = (eager->tcp_family == AF_INET) ?
2198 		    sizeof (sin_t) : sizeof (sin6_t);
2199 
2200 		/*
2201 		 * Try to re-use mp, if possible.  Otherwise, allocate
2202 		 * an mblk and return it as ok_mp.  In any case, mp
2203 		 * is no longer usable upon return.
2204 		 */
2205 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2206 			CONN_DEC_REF(acceptor->tcp_connp);
2207 			CONN_DEC_REF(eager->tcp_connp);
2208 			freemsg(opt_mp);
2209 			/* Original mp has been freed by now, so use mp1 */
2210 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2211 			return;
2212 		}
2213 
2214 		mp = NULL;	/* We should never use mp after this point */
2215 
2216 		switch (extra) {
2217 		case sizeof (sin_t): {
2218 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2219 
2220 				ok_mp->b_wptr += extra;
2221 				sin->sin_family = AF_INET;
2222 				sin->sin_port = eager->tcp_lport;
2223 				sin->sin_addr.s_addr =
2224 				    eager->tcp_ipha->ipha_src;
2225 				break;
2226 			}
2227 		case sizeof (sin6_t): {
2228 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2229 
2230 				ok_mp->b_wptr += extra;
2231 				sin6->sin6_family = AF_INET6;
2232 				sin6->sin6_port = eager->tcp_lport;
2233 				if (eager->tcp_ipversion == IPV4_VERSION) {
2234 					sin6->sin6_flowinfo = 0;
2235 					IN6_IPADDR_TO_V4MAPPED(
2236 					    eager->tcp_ipha->ipha_src,
2237 					    &sin6->sin6_addr);
2238 				} else {
2239 					ASSERT(eager->tcp_ip6h != NULL);
2240 					sin6->sin6_flowinfo =
2241 					    eager->tcp_ip6h->ip6_vcf &
2242 					    ~IPV6_VERS_AND_FLOW_MASK;
2243 					sin6->sin6_addr =
2244 					    eager->tcp_ip6h->ip6_src;
2245 				}
2246 				break;
2247 			}
2248 		default:
2249 			break;
2250 		}
2251 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2252 	}
2253 
2254 	/*
2255 	 * If there are no options we know that the T_CONN_RES will
2256 	 * succeed. However, we can't send the T_OK_ACK upstream until
2257 	 * the tcp_accept_swap is done since it would be dangerous to
2258 	 * let the application start using the new fd prior to the swap.
2259 	 */
2260 	tcp_accept_swap(listener, acceptor, eager);
2261 
2262 	/*
2263 	 * tcp_accept_swap unlinks eager from listener but does not drop
2264 	 * the eager's reference on the listener.
2265 	 */
2266 	ASSERT(eager->tcp_listener == NULL);
2267 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2268 
2269 	/*
2270 	 * The eager is now associated with its own queue. Insert in
2271 	 * the hash so that the connection can be reused for a future
2272 	 * T_CONN_RES.
2273 	 */
2274 	tcp_acceptor_hash_insert(acceptor_id, eager);
2275 
2276 	/*
2277 	 * We now do the processing of options with T_CONN_RES.
2278 	 * We delay till now since we wanted to have queue to pass to
2279 	 * option processing routines that points back to the right
2280 	 * instance structure which does not happen until after
2281 	 * tcp_accept_swap().
2282 	 *
2283 	 * Note:
2284 	 * The sanity of the logic here assumes that whatever options
2285 	 * are appropriate to inherit from listner=>eager are done
2286 	 * before this point, and whatever were to be overridden (or not)
2287 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2288 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2289 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2290 	 * This may not be true at this point in time but can be fixed
2291 	 * independently. This option processing code starts with
2292 	 * the instantiated acceptor instance and the final queue at
2293 	 * this point.
2294 	 */
2295 
2296 	if (tcr->OPT_length != 0) {
2297 		/* Options to process */
2298 		int t_error = 0;
2299 		int sys_error = 0;
2300 		int do_disconnect = 0;
2301 
2302 		if (tcp_conprim_opt_process(eager, mp1,
2303 		    &do_disconnect, &t_error, &sys_error) < 0) {
2304 			eager->tcp_accept_error = 1;
2305 			if (do_disconnect) {
2306 				/*
2307 				 * An option failed which does not allow
2308 				 * connection to be accepted.
2309 				 *
2310 				 * We allow T_CONN_RES to succeed and
2311 				 * put a T_DISCON_IND on the eager queue.
2312 				 */
2313 				ASSERT(t_error == 0 && sys_error == 0);
2314 				eager->tcp_send_discon_ind = 1;
2315 			} else {
2316 				ASSERT(t_error != 0);
2317 				freemsg(ok_mp);
2318 				/*
2319 				 * Original mp was either freed or set
2320 				 * to ok_mp above, so use mp1 instead.
2321 				 */
2322 				tcp_err_ack(listener, mp1, t_error, sys_error);
2323 				goto finish;
2324 			}
2325 		}
2326 		/*
2327 		 * Most likely success in setting options (except if
2328 		 * eager->tcp_send_discon_ind set).
2329 		 * mp1 option buffer represented by OPT_length/offset
2330 		 * potentially modified and contains results of setting
2331 		 * options at this point
2332 		 */
2333 	}
2334 
2335 	/* We no longer need mp1, since all options processing has passed */
2336 	freemsg(mp1);
2337 
2338 	putnext(listener->tcp_rq, ok_mp);
2339 
2340 	mutex_enter(&listener->tcp_eager_lock);
2341 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2342 		tcp_t	*tail;
2343 		mblk_t	*conn_ind;
2344 
2345 		/*
2346 		 * This path should not be executed if listener and
2347 		 * acceptor streams are the same.
2348 		 */
2349 		ASSERT(listener != acceptor);
2350 
2351 		tcp = listener->tcp_eager_prev_q0;
2352 		/*
2353 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2354 		 * deferred T_conn_ind queue. We need to get to the head of
2355 		 * the queue in order to send up T_conn_ind the same order as
2356 		 * how the 3WHS is completed.
2357 		 */
2358 		while (tcp != listener) {
2359 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2360 				break;
2361 			else
2362 				tcp = tcp->tcp_eager_prev_q0;
2363 		}
2364 		ASSERT(tcp != listener);
2365 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2366 		ASSERT(conn_ind != NULL);
2367 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2368 
2369 		/* Move from q0 to q */
2370 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2371 		listener->tcp_conn_req_cnt_q0--;
2372 		listener->tcp_conn_req_cnt_q++;
2373 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2374 		    tcp->tcp_eager_prev_q0;
2375 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2376 		    tcp->tcp_eager_next_q0;
2377 		tcp->tcp_eager_prev_q0 = NULL;
2378 		tcp->tcp_eager_next_q0 = NULL;
2379 		tcp->tcp_conn_def_q0 = B_FALSE;
2380 
2381 		/* Make sure the tcp isn't in the list of droppables */
2382 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2383 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2384 
2385 		/*
2386 		 * Insert at end of the queue because sockfs sends
2387 		 * down T_CONN_RES in chronological order. Leaving
2388 		 * the older conn indications at front of the queue
2389 		 * helps reducing search time.
2390 		 */
2391 		tail = listener->tcp_eager_last_q;
2392 		if (tail != NULL)
2393 			tail->tcp_eager_next_q = tcp;
2394 		else
2395 			listener->tcp_eager_next_q = tcp;
2396 		listener->tcp_eager_last_q = tcp;
2397 		tcp->tcp_eager_next_q = NULL;
2398 		mutex_exit(&listener->tcp_eager_lock);
2399 		putnext(tcp->tcp_rq, conn_ind);
2400 	} else {
2401 		mutex_exit(&listener->tcp_eager_lock);
2402 	}
2403 
2404 	/*
2405 	 * Done with the acceptor - free it
2406 	 *
2407 	 * Note: from this point on, no access to listener should be made
2408 	 * as listener can be equal to acceptor.
2409 	 */
2410 finish:
2411 	ASSERT(acceptor->tcp_detached);
2412 	acceptor->tcp_rq = tcp_g_q;
2413 	acceptor->tcp_wq = WR(tcp_g_q);
2414 	(void) tcp_clean_death(acceptor, 0, 2);
2415 	CONN_DEC_REF(acceptor->tcp_connp);
2416 
2417 	/*
2418 	 * In case we already received a FIN we have to make tcp_rput send
2419 	 * the ordrel_ind. This will also send up a window update if the window
2420 	 * has opened up.
2421 	 *
2422 	 * In the normal case of a successful connection acceptance
2423 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2424 	 * indication that this was just accepted. This tells tcp_rput to
2425 	 * pass up any data queued in tcp_rcv_list.
2426 	 *
2427 	 * In the fringe case where options sent with T_CONN_RES failed and
2428 	 * we required, we would be indicating a T_DISCON_IND to blow
2429 	 * away this connection.
2430 	 */
2431 
2432 	/*
2433 	 * XXX: we currently have a problem if XTI application closes the
2434 	 * acceptor stream in between. This problem exists in on10-gate also
2435 	 * and is well know but nothing can be done short of major rewrite
2436 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2437 	 * eager same squeue as listener (we can distinguish non socket
2438 	 * listeners at the time of handling a SYN in tcp_conn_request)
2439 	 * and do most of the work that tcp_accept_finish does here itself
2440 	 * and then get behind the acceptor squeue to access the acceptor
2441 	 * queue.
2442 	 */
2443 	/*
2444 	 * We already have a ref on tcp so no need to do one before squeue_fill
2445 	 */
2446 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
2447 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
2448 }
2449 
2450 /*
2451  * Swap information between the eager and acceptor for a TLI/XTI client.
2452  * The sockfs accept is done on the acceptor stream and control goes
2453  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2454  * called. In either case, both the eager and listener are in their own
2455  * perimeter (squeue) and the code has to deal with potential race.
2456  *
2457  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2458  */
2459 static void
2460 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2461 {
2462 	conn_t	*econnp, *aconnp;
2463 
2464 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2465 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2466 	ASSERT(!eager->tcp_hard_bound);
2467 	ASSERT(!TCP_IS_SOCKET(acceptor));
2468 	ASSERT(!TCP_IS_SOCKET(eager));
2469 	ASSERT(!TCP_IS_SOCKET(listener));
2470 
2471 	acceptor->tcp_detached = B_TRUE;
2472 	/*
2473 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2474 	 * the acceptor id.
2475 	 */
2476 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2477 
2478 	/* remove eager from listen list... */
2479 	mutex_enter(&listener->tcp_eager_lock);
2480 	tcp_eager_unlink(eager);
2481 	ASSERT(eager->tcp_eager_next_q == NULL &&
2482 	    eager->tcp_eager_last_q == NULL);
2483 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2484 	    eager->tcp_eager_prev_q0 == NULL);
2485 	mutex_exit(&listener->tcp_eager_lock);
2486 	eager->tcp_rq = acceptor->tcp_rq;
2487 	eager->tcp_wq = acceptor->tcp_wq;
2488 
2489 	econnp = eager->tcp_connp;
2490 	aconnp = acceptor->tcp_connp;
2491 
2492 	eager->tcp_rq->q_ptr = econnp;
2493 	eager->tcp_wq->q_ptr = econnp;
2494 
2495 	/*
2496 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2497 	 * which might be a different squeue from our peer TCP instance.
2498 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2499 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2500 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2501 	 * above reach global visibility prior to the clearing of tcp_detached.
2502 	 */
2503 	membar_producer();
2504 	eager->tcp_detached = B_FALSE;
2505 
2506 	ASSERT(eager->tcp_ack_tid == 0);
2507 
2508 	econnp->conn_dev = aconnp->conn_dev;
2509 	if (eager->tcp_cred != NULL)
2510 		crfree(eager->tcp_cred);
2511 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2512 	aconnp->conn_cred = NULL;
2513 
2514 	econnp->conn_zoneid = aconnp->conn_zoneid;
2515 	econnp->conn_allzones = aconnp->conn_allzones;
2516 
2517 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2518 	aconnp->conn_mac_exempt = B_FALSE;
2519 
2520 	ASSERT(aconnp->conn_peercred == NULL);
2521 
2522 	/* Do the IPC initialization */
2523 	CONN_INC_REF(econnp);
2524 
2525 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2526 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2527 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2528 	econnp->conn_ulp = aconnp->conn_ulp;
2529 
2530 	/* Done with old IPC. Drop its ref on its connp */
2531 	CONN_DEC_REF(aconnp);
2532 }
2533 
2534 
2535 /*
2536  * Adapt to the information, such as rtt and rtt_sd, provided from the
2537  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2538  *
2539  * Checks for multicast and broadcast destination address.
2540  * Returns zero on failure; non-zero if ok.
2541  *
2542  * Note that the MSS calculation here is based on the info given in
2543  * the IRE.  We do not do any calculation based on TCP options.  They
2544  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2545  * knows which options to use.
2546  *
2547  * Note on how TCP gets its parameters for a connection.
2548  *
2549  * When a tcp_t structure is allocated, it gets all the default parameters.
2550  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2551  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2552  * default.  But if there is an associated tcp_host_param, it will override
2553  * the metrics.
2554  *
2555  * An incoming SYN with a multicast or broadcast destination address, is dropped
2556  * in 1 of 2 places.
2557  *
2558  * 1. If the packet was received over the wire it is dropped in
2559  * ip_rput_process_broadcast()
2560  *
2561  * 2. If the packet was received through internal IP loopback, i.e. the packet
2562  * was generated and received on the same machine, it is dropped in
2563  * ip_wput_local()
2564  *
2565  * An incoming SYN with a multicast or broadcast source address is always
2566  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2567  * reject an attempt to connect to a broadcast or multicast (destination)
2568  * address.
2569  */
2570 static int
2571 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2572 {
2573 	tcp_hsp_t	*hsp;
2574 	ire_t		*ire;
2575 	ire_t		*sire = NULL;
2576 	iulp_t		*ire_uinfo = NULL;
2577 	uint32_t	mss_max;
2578 	uint32_t	mss;
2579 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2580 	conn_t		*connp = tcp->tcp_connp;
2581 	boolean_t	ire_cacheable = B_FALSE;
2582 	zoneid_t	zoneid = connp->conn_zoneid;
2583 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2584 			    MATCH_IRE_SECATTR;
2585 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2586 	ill_t		*ill = NULL;
2587 	boolean_t	incoming = (ire_mp == NULL);
2588 
2589 	ASSERT(connp->conn_ire_cache == NULL);
2590 
2591 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2592 
2593 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2594 			BUMP_MIB(&ip_mib, ipInDiscards);
2595 			return (0);
2596 		}
2597 		/*
2598 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2599 		 * for the destination with the nexthop as gateway.
2600 		 * ire_ctable_lookup() is used because this particular
2601 		 * ire, if it exists, will be marked private.
2602 		 * If that is not available, use the interface ire
2603 		 * for the nexthop.
2604 		 *
2605 		 * TSol: tcp_update_label will detect label mismatches based
2606 		 * only on the destination's label, but that would not
2607 		 * detect label mismatches based on the security attributes
2608 		 * of routes or next hop gateway. Hence we need to pass the
2609 		 * label to ire_ftable_lookup below in order to locate the
2610 		 * right prefix (and/or) ire cache. Similarly we also need
2611 		 * pass the label to the ire_cache_lookup below to locate
2612 		 * the right ire that also matches on the label.
2613 		 */
2614 		if (tcp->tcp_connp->conn_nexthop_set) {
2615 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2616 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2617 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW);
2618 			if (ire == NULL) {
2619 				ire = ire_ftable_lookup(
2620 				    tcp->tcp_connp->conn_nexthop_v4,
2621 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2622 				    tsl, match_flags);
2623 				if (ire == NULL)
2624 					return (0);
2625 			} else {
2626 				ire_uinfo = &ire->ire_uinfo;
2627 			}
2628 		} else {
2629 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2630 			    zoneid, tsl);
2631 			if (ire != NULL) {
2632 				ire_cacheable = B_TRUE;
2633 				ire_uinfo = (ire_mp != NULL) ?
2634 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2635 				    &ire->ire_uinfo;
2636 
2637 			} else {
2638 				if (ire_mp == NULL) {
2639 					ire = ire_ftable_lookup(
2640 					    tcp->tcp_connp->conn_rem,
2641 					    0, 0, 0, NULL, &sire, zoneid, 0,
2642 					    tsl, (MATCH_IRE_RECURSIVE |
2643 					    MATCH_IRE_DEFAULT));
2644 					if (ire == NULL)
2645 						return (0);
2646 					ire_uinfo = (sire != NULL) ?
2647 					    &sire->ire_uinfo :
2648 					    &ire->ire_uinfo;
2649 				} else {
2650 					ire = (ire_t *)ire_mp->b_rptr;
2651 					ire_uinfo =
2652 					    &((ire_t *)
2653 					    ire_mp->b_rptr)->ire_uinfo;
2654 				}
2655 			}
2656 		}
2657 		ASSERT(ire != NULL);
2658 
2659 		if ((ire->ire_src_addr == INADDR_ANY) ||
2660 		    (ire->ire_type & IRE_BROADCAST)) {
2661 			/*
2662 			 * ire->ire_mp is non null when ire_mp passed in is used
2663 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2664 			 */
2665 			if (ire->ire_mp == NULL)
2666 				ire_refrele(ire);
2667 			if (sire != NULL)
2668 				ire_refrele(sire);
2669 			return (0);
2670 		}
2671 
2672 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2673 			ipaddr_t src_addr;
2674 
2675 			/*
2676 			 * ip_bind_connected() has stored the correct source
2677 			 * address in conn_src.
2678 			 */
2679 			src_addr = tcp->tcp_connp->conn_src;
2680 			tcp->tcp_ipha->ipha_src = src_addr;
2681 			/*
2682 			 * Copy of the src addr. in tcp_t is needed
2683 			 * for the lookup funcs.
2684 			 */
2685 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2686 		}
2687 		/*
2688 		 * Set the fragment bit so that IP will tell us if the MTU
2689 		 * should change. IP tells us the latest setting of
2690 		 * ip_path_mtu_discovery through ire_frag_flag.
2691 		 */
2692 		if (ip_path_mtu_discovery) {
2693 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2694 			    htons(IPH_DF);
2695 		}
2696 		/*
2697 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2698 		 * for IP_NEXTHOP. No cache ire has been found for the
2699 		 * destination and we are working with the nexthop's
2700 		 * interface ire. Since we need to forward all packets
2701 		 * to the nexthop first, we "blindly" set tcp_localnet
2702 		 * to false, eventhough the destination may also be
2703 		 * onlink.
2704 		 */
2705 		if (ire_uinfo == NULL)
2706 			tcp->tcp_localnet = 0;
2707 		else
2708 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2709 	} else {
2710 		/*
2711 		 * For incoming connection ire_mp = NULL
2712 		 * For outgoing connection ire_mp != NULL
2713 		 * Technically we should check conn_incoming_ill
2714 		 * when ire_mp is NULL and conn_outgoing_ill when
2715 		 * ire_mp is non-NULL. But this is performance
2716 		 * critical path and for IPV*_BOUND_IF, outgoing
2717 		 * and incoming ill are always set to the same value.
2718 		 */
2719 		ill_t	*dst_ill = NULL;
2720 		ipif_t  *dst_ipif = NULL;
2721 
2722 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2723 
2724 		if (connp->conn_outgoing_ill != NULL) {
2725 			/* Outgoing or incoming path */
2726 			int   err;
2727 
2728 			dst_ill = conn_get_held_ill(connp,
2729 			    &connp->conn_outgoing_ill, &err);
2730 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2731 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2732 				return (0);
2733 			}
2734 			match_flags |= MATCH_IRE_ILL;
2735 			dst_ipif = dst_ill->ill_ipif;
2736 		}
2737 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2738 		    0, 0, dst_ipif, zoneid, tsl, match_flags);
2739 
2740 		if (ire != NULL) {
2741 			ire_cacheable = B_TRUE;
2742 			ire_uinfo = (ire_mp != NULL) ?
2743 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2744 			    &ire->ire_uinfo;
2745 		} else {
2746 			if (ire_mp == NULL) {
2747 				ire = ire_ftable_lookup_v6(
2748 				    &tcp->tcp_connp->conn_remv6,
2749 				    0, 0, 0, dst_ipif, &sire, zoneid,
2750 				    0, tsl, match_flags);
2751 				if (ire == NULL) {
2752 					if (dst_ill != NULL)
2753 						ill_refrele(dst_ill);
2754 					return (0);
2755 				}
2756 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2757 				    &ire->ire_uinfo;
2758 			} else {
2759 				ire = (ire_t *)ire_mp->b_rptr;
2760 				ire_uinfo =
2761 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2762 			}
2763 		}
2764 		if (dst_ill != NULL)
2765 			ill_refrele(dst_ill);
2766 
2767 		ASSERT(ire != NULL);
2768 		ASSERT(ire_uinfo != NULL);
2769 
2770 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2771 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2772 			/*
2773 			 * ire->ire_mp is non null when ire_mp passed in is used
2774 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2775 			 */
2776 			if (ire->ire_mp == NULL)
2777 				ire_refrele(ire);
2778 			if (sire != NULL)
2779 				ire_refrele(sire);
2780 			return (0);
2781 		}
2782 
2783 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2784 			in6_addr_t	src_addr;
2785 
2786 			/*
2787 			 * ip_bind_connected_v6() has stored the correct source
2788 			 * address per IPv6 addr. selection policy in
2789 			 * conn_src_v6.
2790 			 */
2791 			src_addr = tcp->tcp_connp->conn_srcv6;
2792 
2793 			tcp->tcp_ip6h->ip6_src = src_addr;
2794 			/*
2795 			 * Copy of the src addr. in tcp_t is needed
2796 			 * for the lookup funcs.
2797 			 */
2798 			tcp->tcp_ip_src_v6 = src_addr;
2799 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2800 			    &connp->conn_srcv6));
2801 		}
2802 		tcp->tcp_localnet =
2803 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2804 	}
2805 
2806 	/*
2807 	 * This allows applications to fail quickly when connections are made
2808 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2809 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2810 	 */
2811 	if ((ire->ire_flags & RTF_REJECT) &&
2812 	    (ire->ire_flags & RTF_PRIVATE))
2813 		goto error;
2814 
2815 	/*
2816 	 * Make use of the cached rtt and rtt_sd values to calculate the
2817 	 * initial RTO.  Note that they are already initialized in
2818 	 * tcp_init_values().
2819 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2820 	 * IP_NEXTHOP, but instead are using the interface ire for the
2821 	 * nexthop, then we do not use the ire_uinfo from that ire to
2822 	 * do any initializations.
2823 	 */
2824 	if (ire_uinfo != NULL) {
2825 		if (ire_uinfo->iulp_rtt != 0) {
2826 			clock_t	rto;
2827 
2828 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2829 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2830 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2831 			    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
2832 
2833 			if (rto > tcp_rexmit_interval_max) {
2834 				tcp->tcp_rto = tcp_rexmit_interval_max;
2835 			} else if (rto < tcp_rexmit_interval_min) {
2836 				tcp->tcp_rto = tcp_rexmit_interval_min;
2837 			} else {
2838 				tcp->tcp_rto = rto;
2839 			}
2840 		}
2841 		if (ire_uinfo->iulp_ssthresh != 0)
2842 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2843 		else
2844 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2845 		if (ire_uinfo->iulp_spipe > 0) {
2846 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2847 			    tcp_max_buf);
2848 			if (tcp_snd_lowat_fraction != 0)
2849 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2850 				    tcp_snd_lowat_fraction;
2851 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2852 		}
2853 		/*
2854 		 * Note that up till now, acceptor always inherits receive
2855 		 * window from the listener.  But if there is a metrics
2856 		 * associated with a host, we should use that instead of
2857 		 * inheriting it from listener. Thus we need to pass this
2858 		 * info back to the caller.
2859 		 */
2860 		if (ire_uinfo->iulp_rpipe > 0) {
2861 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
2862 		}
2863 
2864 		if (ire_uinfo->iulp_rtomax > 0) {
2865 			tcp->tcp_second_timer_threshold =
2866 			    ire_uinfo->iulp_rtomax;
2867 		}
2868 
2869 		/*
2870 		 * Use the metric option settings, iulp_tstamp_ok and
2871 		 * iulp_wscale_ok, only for active open. What this means
2872 		 * is that if the other side uses timestamp or window
2873 		 * scale option, TCP will also use those options. That
2874 		 * is for passive open.  If the application sets a
2875 		 * large window, window scale is enabled regardless of
2876 		 * the value in iulp_wscale_ok.  This is the behavior
2877 		 * since 2.6.  So we keep it.
2878 		 * The only case left in passive open processing is the
2879 		 * check for SACK.
2880 		 * For ECN, it should probably be like SACK.  But the
2881 		 * current value is binary, so we treat it like the other
2882 		 * cases.  The metric only controls active open.For passive
2883 		 * open, the ndd param, tcp_ecn_permitted, controls the
2884 		 * behavior.
2885 		 */
2886 		if (!tcp_detached) {
2887 			/*
2888 			 * The if check means that the following can only
2889 			 * be turned on by the metrics only IRE, but not off.
2890 			 */
2891 			if (ire_uinfo->iulp_tstamp_ok)
2892 				tcp->tcp_snd_ts_ok = B_TRUE;
2893 			if (ire_uinfo->iulp_wscale_ok)
2894 				tcp->tcp_snd_ws_ok = B_TRUE;
2895 			if (ire_uinfo->iulp_sack == 2)
2896 				tcp->tcp_snd_sack_ok = B_TRUE;
2897 			if (ire_uinfo->iulp_ecn_ok)
2898 				tcp->tcp_ecn_ok = B_TRUE;
2899 		} else {
2900 			/*
2901 			 * Passive open.
2902 			 *
2903 			 * As above, the if check means that SACK can only be
2904 			 * turned on by the metric only IRE.
2905 			 */
2906 			if (ire_uinfo->iulp_sack > 0) {
2907 				tcp->tcp_snd_sack_ok = B_TRUE;
2908 			}
2909 		}
2910 	}
2911 
2912 
2913 	/*
2914 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2915 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2916 	 * length of all those options exceeds 28 bytes.  But because
2917 	 * of the tcp_mss_min check below, we may not have a problem if
2918 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2919 	 * the negative problem still exists.  And the check defeats PMTUd.
2920 	 * In fact, if PMTUd finds that the MSS should be smaller than
2921 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2922 	 * value.
2923 	 *
2924 	 * We do not deal with that now.  All those problems related to
2925 	 * PMTUd will be fixed later.
2926 	 */
2927 	ASSERT(ire->ire_max_frag != 0);
2928 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2929 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2930 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2931 			mss = MIN(mss, IPV6_MIN_MTU);
2932 		}
2933 	}
2934 
2935 	/* Sanity check for MSS value. */
2936 	if (tcp->tcp_ipversion == IPV4_VERSION)
2937 		mss_max = tcp_mss_max_ipv4;
2938 	else
2939 		mss_max = tcp_mss_max_ipv6;
2940 
2941 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2942 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2943 		/*
2944 		 * After receiving an ICMPv6 "packet too big" message with a
2945 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2946 		 * will insert a 8-byte fragment header in every packet; we
2947 		 * reduce the MSS by that amount here.
2948 		 */
2949 		mss -= sizeof (ip6_frag_t);
2950 	}
2951 
2952 	if (tcp->tcp_ipsec_overhead == 0)
2953 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2954 
2955 	mss -= tcp->tcp_ipsec_overhead;
2956 
2957 	if (mss < tcp_mss_min)
2958 		mss = tcp_mss_min;
2959 	if (mss > mss_max)
2960 		mss = mss_max;
2961 
2962 	/* Note that this is the maximum MSS, excluding all options. */
2963 	tcp->tcp_mss = mss;
2964 
2965 	/*
2966 	 * Initialize the ISS here now that we have the full connection ID.
2967 	 * The RFC 1948 method of initial sequence number generation requires
2968 	 * knowledge of the full connection ID before setting the ISS.
2969 	 */
2970 
2971 	tcp_iss_init(tcp);
2972 
2973 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2974 		tcp->tcp_loopback = B_TRUE;
2975 
2976 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2977 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
2978 	} else {
2979 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
2980 	}
2981 
2982 	if (hsp != NULL) {
2983 		/* Only modify if we're going to make them bigger */
2984 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
2985 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
2986 			if (tcp_snd_lowat_fraction != 0)
2987 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2988 					tcp_snd_lowat_fraction;
2989 		}
2990 
2991 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
2992 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
2993 		}
2994 
2995 		/* Copy timestamp flag only for active open */
2996 		if (!tcp_detached)
2997 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
2998 	}
2999 
3000 	if (sire != NULL)
3001 		IRE_REFRELE(sire);
3002 
3003 	/*
3004 	 * If we got an IRE_CACHE and an ILL, go through their properties;
3005 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
3006 	 */
3007 	if (tcp->tcp_loopback ||
3008 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
3009 		/*
3010 		 * For incoming, see if this tcp may be MDT-capable.  For
3011 		 * outgoing, this process has been taken care of through
3012 		 * tcp_rput_other.
3013 		 */
3014 		tcp_ire_ill_check(tcp, ire, ill, incoming);
3015 		tcp->tcp_ire_ill_check_done = B_TRUE;
3016 	}
3017 
3018 	mutex_enter(&connp->conn_lock);
3019 	/*
3020 	 * Make sure that conn is not marked incipient
3021 	 * for incoming connections. A blind
3022 	 * removal of incipient flag is cheaper than
3023 	 * check and removal.
3024 	 */
3025 	connp->conn_state_flags &= ~CONN_INCIPIENT;
3026 
3027 	/* Must not cache forwarding table routes. */
3028 	if (ire_cacheable) {
3029 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
3030 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3031 			connp->conn_ire_cache = ire;
3032 			IRE_UNTRACE_REF(ire);
3033 			rw_exit(&ire->ire_bucket->irb_lock);
3034 			mutex_exit(&connp->conn_lock);
3035 			return (1);
3036 		}
3037 		rw_exit(&ire->ire_bucket->irb_lock);
3038 	}
3039 	mutex_exit(&connp->conn_lock);
3040 
3041 	if (ire->ire_mp == NULL)
3042 		ire_refrele(ire);
3043 	return (1);
3044 
3045 error:
3046 	if (ire->ire_mp == NULL)
3047 		ire_refrele(ire);
3048 	if (sire != NULL)
3049 		ire_refrele(sire);
3050 	return (0);
3051 }
3052 
3053 /*
3054  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
3055  * O_T_BIND_REQ/T_BIND_REQ message.
3056  */
3057 static void
3058 tcp_bind(tcp_t *tcp, mblk_t *mp)
3059 {
3060 	sin_t	*sin;
3061 	sin6_t	*sin6;
3062 	mblk_t	*mp1;
3063 	in_port_t requested_port;
3064 	in_port_t allocated_port;
3065 	struct T_bind_req *tbr;
3066 	boolean_t	bind_to_req_port_only;
3067 	boolean_t	backlog_update = B_FALSE;
3068 	boolean_t	user_specified;
3069 	in6_addr_t	v6addr;
3070 	ipaddr_t	v4addr;
3071 	uint_t	origipversion;
3072 	int	err;
3073 	queue_t *q = tcp->tcp_wq;
3074 	conn_t	*connp;
3075 	mlp_type_t addrtype, mlptype;
3076 	zone_t	*zone;
3077 	cred_t	*cr;
3078 	in_port_t mlp_port;
3079 
3080 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3081 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3082 		if (tcp->tcp_debug) {
3083 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3084 			    "tcp_bind: bad req, len %u",
3085 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3086 		}
3087 		tcp_err_ack(tcp, mp, TPROTO, 0);
3088 		return;
3089 	}
3090 	/* Make sure the largest address fits */
3091 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3092 	if (mp1 == NULL) {
3093 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3094 		return;
3095 	}
3096 	mp = mp1;
3097 	tbr = (struct T_bind_req *)mp->b_rptr;
3098 	if (tcp->tcp_state >= TCPS_BOUND) {
3099 		if ((tcp->tcp_state == TCPS_BOUND ||
3100 		    tcp->tcp_state == TCPS_LISTEN) &&
3101 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3102 		    tbr->CONIND_number > 0) {
3103 			/*
3104 			 * Handle listen() increasing CONIND_number.
3105 			 * This is more "liberal" then what the TPI spec
3106 			 * requires but is needed to avoid a t_unbind
3107 			 * when handling listen() since the port number
3108 			 * might be "stolen" between the unbind and bind.
3109 			 */
3110 			backlog_update = B_TRUE;
3111 			goto do_bind;
3112 		}
3113 		if (tcp->tcp_debug) {
3114 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3115 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3116 		}
3117 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3118 		return;
3119 	}
3120 	origipversion = tcp->tcp_ipversion;
3121 
3122 	switch (tbr->ADDR_length) {
3123 	case 0:			/* request for a generic port */
3124 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3125 		if (tcp->tcp_family == AF_INET) {
3126 			tbr->ADDR_length = sizeof (sin_t);
3127 			sin = (sin_t *)&tbr[1];
3128 			*sin = sin_null;
3129 			sin->sin_family = AF_INET;
3130 			mp->b_wptr = (uchar_t *)&sin[1];
3131 			tcp->tcp_ipversion = IPV4_VERSION;
3132 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3133 		} else {
3134 			ASSERT(tcp->tcp_family == AF_INET6);
3135 			tbr->ADDR_length = sizeof (sin6_t);
3136 			sin6 = (sin6_t *)&tbr[1];
3137 			*sin6 = sin6_null;
3138 			sin6->sin6_family = AF_INET6;
3139 			mp->b_wptr = (uchar_t *)&sin6[1];
3140 			tcp->tcp_ipversion = IPV6_VERSION;
3141 			V6_SET_ZERO(v6addr);
3142 		}
3143 		requested_port = 0;
3144 		break;
3145 
3146 	case sizeof (sin_t):	/* Complete IPv4 address */
3147 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3148 		    sizeof (sin_t));
3149 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3150 			if (tcp->tcp_debug) {
3151 				(void) strlog(TCP_MOD_ID, 0, 1,
3152 				    SL_ERROR|SL_TRACE,
3153 				    "tcp_bind: bad address parameter, "
3154 				    "offset %d, len %d",
3155 				    tbr->ADDR_offset, tbr->ADDR_length);
3156 			}
3157 			tcp_err_ack(tcp, mp, TPROTO, 0);
3158 			return;
3159 		}
3160 		/*
3161 		 * With sockets sockfs will accept bogus sin_family in
3162 		 * bind() and replace it with the family used in the socket
3163 		 * call.
3164 		 */
3165 		if (sin->sin_family != AF_INET ||
3166 		    tcp->tcp_family != AF_INET) {
3167 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3168 			return;
3169 		}
3170 		requested_port = ntohs(sin->sin_port);
3171 		tcp->tcp_ipversion = IPV4_VERSION;
3172 		v4addr = sin->sin_addr.s_addr;
3173 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3174 		break;
3175 
3176 	case sizeof (sin6_t): /* Complete IPv6 address */
3177 		sin6 = (sin6_t *)mi_offset_param(mp,
3178 		    tbr->ADDR_offset, sizeof (sin6_t));
3179 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3180 			if (tcp->tcp_debug) {
3181 				(void) strlog(TCP_MOD_ID, 0, 1,
3182 				    SL_ERROR|SL_TRACE,
3183 				    "tcp_bind: bad IPv6 address parameter, "
3184 				    "offset %d, len %d", tbr->ADDR_offset,
3185 				    tbr->ADDR_length);
3186 			}
3187 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3188 			return;
3189 		}
3190 		if (sin6->sin6_family != AF_INET6 ||
3191 		    tcp->tcp_family != AF_INET6) {
3192 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3193 			return;
3194 		}
3195 		requested_port = ntohs(sin6->sin6_port);
3196 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3197 		    IPV4_VERSION : IPV6_VERSION;
3198 		v6addr = sin6->sin6_addr;
3199 		break;
3200 
3201 	default:
3202 		if (tcp->tcp_debug) {
3203 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3204 			    "tcp_bind: bad address length, %d",
3205 			    tbr->ADDR_length);
3206 		}
3207 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3208 		return;
3209 	}
3210 	tcp->tcp_bound_source_v6 = v6addr;
3211 
3212 	/* Check for change in ipversion */
3213 	if (origipversion != tcp->tcp_ipversion) {
3214 		ASSERT(tcp->tcp_family == AF_INET6);
3215 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3216 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3217 		if (err) {
3218 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3219 			return;
3220 		}
3221 	}
3222 
3223 	/*
3224 	 * Initialize family specific fields. Copy of the src addr.
3225 	 * in tcp_t is needed for the lookup funcs.
3226 	 */
3227 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3228 		tcp->tcp_ip6h->ip6_src = v6addr;
3229 	} else {
3230 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3231 	}
3232 	tcp->tcp_ip_src_v6 = v6addr;
3233 
3234 	/*
3235 	 * For O_T_BIND_REQ:
3236 	 * Verify that the target port/addr is available, or choose
3237 	 * another.
3238 	 * For  T_BIND_REQ:
3239 	 * Verify that the target port/addr is available or fail.
3240 	 * In both cases when it succeeds the tcp is inserted in the
3241 	 * bind hash table. This ensures that the operation is atomic
3242 	 * under the lock on the hash bucket.
3243 	 */
3244 	bind_to_req_port_only = requested_port != 0 &&
3245 	    tbr->PRIM_type != O_T_BIND_REQ;
3246 	/*
3247 	 * Get a valid port (within the anonymous range and should not
3248 	 * be a privileged one) to use if the user has not given a port.
3249 	 * If multiple threads are here, they may all start with
3250 	 * with the same initial port. But, it should be fine as long as
3251 	 * tcp_bindi will ensure that no two threads will be assigned
3252 	 * the same port.
3253 	 *
3254 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3255 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3256 	 * unless TCP_ANONPRIVBIND option is set.
3257 	 */
3258 	mlptype = mlptSingle;
3259 	mlp_port = requested_port;
3260 	if (requested_port == 0) {
3261 		requested_port = tcp->tcp_anon_priv_bind ?
3262 		    tcp_get_next_priv_port(tcp) :
3263 		    tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
3264 		if (requested_port == 0) {
3265 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3266 			return;
3267 		}
3268 		user_specified = B_FALSE;
3269 
3270 		/*
3271 		 * If the user went through one of the RPC interfaces to create
3272 		 * this socket and RPC is MLP in this zone, then give him an
3273 		 * anonymous MLP.
3274 		 */
3275 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3276 		connp = tcp->tcp_connp;
3277 		if (connp->conn_anon_mlp && is_system_labeled()) {
3278 			zone = crgetzone(cr);
3279 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3280 			    IPV6_VERSION, &v6addr);
3281 			if (addrtype == mlptSingle) {
3282 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3283 				return;
3284 			}
3285 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3286 			    PMAPPORT, addrtype);
3287 			mlp_port = PMAPPORT;
3288 		}
3289 	} else {
3290 		int i;
3291 		boolean_t priv = B_FALSE;
3292 
3293 		/*
3294 		 * If the requested_port is in the well-known privileged range,
3295 		 * verify that the stream was opened by a privileged user.
3296 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3297 		 * but instead the code relies on:
3298 		 * - the fact that the address of the array and its size never
3299 		 *   changes
3300 		 * - the atomic assignment of the elements of the array
3301 		 */
3302 		cr = DB_CREDDEF(mp, tcp->tcp_cred);
3303 		if (requested_port < tcp_smallest_nonpriv_port) {
3304 			priv = B_TRUE;
3305 		} else {
3306 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3307 				if (requested_port ==
3308 				    tcp_g_epriv_ports[i]) {
3309 					priv = B_TRUE;
3310 					break;
3311 				}
3312 			}
3313 		}
3314 		if (priv) {
3315 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3316 				if (tcp->tcp_debug) {
3317 					(void) strlog(TCP_MOD_ID, 0, 1,
3318 					    SL_ERROR|SL_TRACE,
3319 					    "tcp_bind: no priv for port %d",
3320 					    requested_port);
3321 				}
3322 				tcp_err_ack(tcp, mp, TACCES, 0);
3323 				return;
3324 			}
3325 		}
3326 		user_specified = B_TRUE;
3327 
3328 		connp = tcp->tcp_connp;
3329 		if (is_system_labeled()) {
3330 			zone = crgetzone(cr);
3331 			addrtype = tsol_mlp_addr_type(zone->zone_id,
3332 			    IPV6_VERSION, &v6addr);
3333 			if (addrtype == mlptSingle) {
3334 				tcp_err_ack(tcp, mp, TNOADDR, 0);
3335 				return;
3336 			}
3337 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
3338 			    requested_port, addrtype);
3339 		}
3340 	}
3341 
3342 	if (mlptype != mlptSingle) {
3343 		if (secpolicy_net_bindmlp(cr) != 0) {
3344 			if (tcp->tcp_debug) {
3345 				(void) strlog(TCP_MOD_ID, 0, 1,
3346 				    SL_ERROR|SL_TRACE,
3347 				    "tcp_bind: no priv for multilevel port %d",
3348 				    requested_port);
3349 			}
3350 			tcp_err_ack(tcp, mp, TACCES, 0);
3351 			return;
3352 		}
3353 
3354 		/*
3355 		 * If we're specifically binding a shared IP address and the
3356 		 * port is MLP on shared addresses, then check to see if this
3357 		 * zone actually owns the MLP.  Reject if not.
3358 		 */
3359 		if (mlptype == mlptShared && addrtype == mlptShared) {
3360 			zoneid_t mlpzone;
3361 
3362 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
3363 			    htons(mlp_port));
3364 			if (connp->conn_zoneid != mlpzone) {
3365 				if (tcp->tcp_debug) {
3366 					(void) strlog(TCP_MOD_ID, 0, 1,
3367 					    SL_ERROR|SL_TRACE,
3368 					    "tcp_bind: attempt to bind port "
3369 					    "%d on shared addr in zone %d "
3370 					    "(should be %d)",
3371 					    mlp_port, connp->conn_zoneid,
3372 					    mlpzone);
3373 				}
3374 				tcp_err_ack(tcp, mp, TACCES, 0);
3375 				return;
3376 			}
3377 		}
3378 
3379 		if (!user_specified) {
3380 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3381 			    requested_port, B_TRUE);
3382 			if (err != 0) {
3383 				if (tcp->tcp_debug) {
3384 					(void) strlog(TCP_MOD_ID, 0, 1,
3385 					    SL_ERROR|SL_TRACE,
3386 					    "tcp_bind: cannot establish anon "
3387 					    "MLP for port %d",
3388 					    requested_port);
3389 				}
3390 				tcp_err_ack(tcp, mp, TSYSERR, err);
3391 				return;
3392 			}
3393 			connp->conn_anon_port = B_TRUE;
3394 		}
3395 		connp->conn_mlp_type = mlptype;
3396 	}
3397 
3398 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3399 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
3400 
3401 	if (allocated_port == 0) {
3402 		connp->conn_mlp_type = mlptSingle;
3403 		if (connp->conn_anon_port) {
3404 			connp->conn_anon_port = B_FALSE;
3405 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3406 			    requested_port, B_FALSE);
3407 		}
3408 		if (bind_to_req_port_only) {
3409 			if (tcp->tcp_debug) {
3410 				(void) strlog(TCP_MOD_ID, 0, 1,
3411 				    SL_ERROR|SL_TRACE,
3412 				    "tcp_bind: requested addr busy");
3413 			}
3414 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3415 		} else {
3416 			/* If we are out of ports, fail the bind. */
3417 			if (tcp->tcp_debug) {
3418 				(void) strlog(TCP_MOD_ID, 0, 1,
3419 				    SL_ERROR|SL_TRACE,
3420 				    "tcp_bind: out of ports?");
3421 			}
3422 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3423 		}
3424 		return;
3425 	}
3426 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3427 do_bind:
3428 	if (!backlog_update) {
3429 		if (tcp->tcp_family == AF_INET)
3430 			sin->sin_port = htons(allocated_port);
3431 		else
3432 			sin6->sin6_port = htons(allocated_port);
3433 	}
3434 	if (tcp->tcp_family == AF_INET) {
3435 		if (tbr->CONIND_number != 0) {
3436 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3437 			    sizeof (sin_t));
3438 		} else {
3439 			/* Just verify the local IP address */
3440 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3441 		}
3442 	} else {
3443 		if (tbr->CONIND_number != 0) {
3444 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3445 			    sizeof (sin6_t));
3446 		} else {
3447 			/* Just verify the local IP address */
3448 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3449 			    IPV6_ADDR_LEN);
3450 		}
3451 	}
3452 	if (mp1 == NULL) {
3453 		if (connp->conn_anon_port) {
3454 			connp->conn_anon_port = B_FALSE;
3455 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
3456 			    requested_port, B_FALSE);
3457 		}
3458 		connp->conn_mlp_type = mlptSingle;
3459 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3460 		return;
3461 	}
3462 
3463 	tbr->PRIM_type = T_BIND_ACK;
3464 	mp->b_datap->db_type = M_PCPROTO;
3465 
3466 	/* Chain in the reply mp for tcp_rput() */
3467 	mp1->b_cont = mp;
3468 	mp = mp1;
3469 
3470 	tcp->tcp_conn_req_max = tbr->CONIND_number;
3471 	if (tcp->tcp_conn_req_max) {
3472 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
3473 			tcp->tcp_conn_req_max = tcp_conn_req_min;
3474 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
3475 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
3476 		/*
3477 		 * If this is a listener, do not reset the eager list
3478 		 * and other stuffs.  Note that we don't check if the
3479 		 * existing eager list meets the new tcp_conn_req_max
3480 		 * requirement.
3481 		 */
3482 		if (tcp->tcp_state != TCPS_LISTEN) {
3483 			tcp->tcp_state = TCPS_LISTEN;
3484 			/* Initialize the chain. Don't need the eager_lock */
3485 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
3486 			tcp->tcp_eager_next_drop_q0 = tcp;
3487 			tcp->tcp_eager_prev_drop_q0 = tcp;
3488 			tcp->tcp_second_ctimer_threshold =
3489 			    tcp_ip_abort_linterval;
3490 		}
3491 	}
3492 
3493 	/*
3494 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
3495 	 * processing continues in tcp_rput_other().
3496 	 */
3497 	if (tcp->tcp_family == AF_INET6) {
3498 		ASSERT(tcp->tcp_connp->conn_af_isv6);
3499 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
3500 	} else {
3501 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
3502 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
3503 	}
3504 	/*
3505 	 * If the bind cannot complete immediately
3506 	 * IP will arrange to call tcp_rput_other
3507 	 * when the bind completes.
3508 	 */
3509 	if (mp != NULL) {
3510 		tcp_rput_other(tcp, mp);
3511 	} else {
3512 		/*
3513 		 * Bind will be resumed later. Need to ensure
3514 		 * that conn doesn't disappear when that happens.
3515 		 * This will be decremented in ip_resume_tcp_bind().
3516 		 */
3517 		CONN_INC_REF(tcp->tcp_connp);
3518 	}
3519 }
3520 
3521 
3522 /*
3523  * If the "bind_to_req_port_only" parameter is set, if the requested port
3524  * number is available, return it, If not return 0
3525  *
3526  * If "bind_to_req_port_only" parameter is not set and
3527  * If the requested port number is available, return it.  If not, return
3528  * the first anonymous port we happen across.  If no anonymous ports are
3529  * available, return 0. addr is the requested local address, if any.
3530  *
3531  * In either case, when succeeding update the tcp_t to record the port number
3532  * and insert it in the bind hash table.
3533  *
3534  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3535  * without setting SO_REUSEADDR. This is needed so that they
3536  * can be viewed as two independent transport protocols.
3537  */
3538 static in_port_t
3539 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3540     int reuseaddr, boolean_t quick_connect,
3541     boolean_t bind_to_req_port_only, boolean_t user_specified)
3542 {
3543 	/* number of times we have run around the loop */
3544 	int count = 0;
3545 	/* maximum number of times to run around the loop */
3546 	int loopmax;
3547 	conn_t *connp = tcp->tcp_connp;
3548 	zoneid_t zoneid = connp->conn_zoneid;
3549 
3550 	/*
3551 	 * Lookup for free addresses is done in a loop and "loopmax"
3552 	 * influences how long we spin in the loop
3553 	 */
3554 	if (bind_to_req_port_only) {
3555 		/*
3556 		 * If the requested port is busy, don't bother to look
3557 		 * for a new one. Setting loop maximum count to 1 has
3558 		 * that effect.
3559 		 */
3560 		loopmax = 1;
3561 	} else {
3562 		/*
3563 		 * If the requested port is busy, look for a free one
3564 		 * in the anonymous port range.
3565 		 * Set loopmax appropriately so that one does not look
3566 		 * forever in the case all of the anonymous ports are in use.
3567 		 */
3568 		if (tcp->tcp_anon_priv_bind) {
3569 			/*
3570 			 * loopmax =
3571 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3572 			 */
3573 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
3574 		} else {
3575 			loopmax = (tcp_largest_anon_port -
3576 			    tcp_smallest_anon_port + 1);
3577 		}
3578 	}
3579 	do {
3580 		uint16_t	lport;
3581 		tf_t		*tbf;
3582 		tcp_t		*ltcp;
3583 		conn_t		*lconnp;
3584 
3585 		lport = htons(port);
3586 
3587 		/*
3588 		 * Ensure that the tcp_t is not currently in the bind hash.
3589 		 * Hold the lock on the hash bucket to ensure that
3590 		 * the duplicate check plus the insertion is an atomic
3591 		 * operation.
3592 		 *
3593 		 * This function does an inline lookup on the bind hash list
3594 		 * Make sure that we access only members of tcp_t
3595 		 * and that we don't look at tcp_tcp, since we are not
3596 		 * doing a CONN_INC_REF.
3597 		 */
3598 		tcp_bind_hash_remove(tcp);
3599 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
3600 		mutex_enter(&tbf->tf_lock);
3601 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3602 		    ltcp = ltcp->tcp_bind_hash) {
3603 			boolean_t not_socket;
3604 			boolean_t exclbind;
3605 
3606 			if (lport != ltcp->tcp_lport)
3607 				continue;
3608 
3609 			lconnp = ltcp->tcp_connp;
3610 
3611 			/*
3612 			 * On a labeled system, we must treat bindings to ports
3613 			 * on shared IP addresses by sockets with MAC exemption
3614 			 * privilege as being in all zones, as there's
3615 			 * otherwise no way to identify the right receiver.
3616 			 */
3617 			if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) &&
3618 			    !lconnp->conn_mac_exempt &&
3619 			    !connp->conn_mac_exempt)
3620 				continue;
3621 
3622 			/*
3623 			 * If TCP_EXCLBIND is set for either the bound or
3624 			 * binding endpoint, the semantics of bind
3625 			 * is changed according to the following.
3626 			 *
3627 			 * spec = specified address (v4 or v6)
3628 			 * unspec = unspecified address (v4 or v6)
3629 			 * A = specified addresses are different for endpoints
3630 			 *
3631 			 * bound	bind to		allowed
3632 			 * -------------------------------------
3633 			 * unspec	unspec		no
3634 			 * unspec	spec		no
3635 			 * spec		unspec		no
3636 			 * spec		spec		yes if A
3637 			 *
3638 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3639 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3640 			 *
3641 			 * Note:
3642 			 *
3643 			 * 1. Because of TLI semantics, an endpoint can go
3644 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3645 			 * TCPS_BOUND, depending on whether it is originally
3646 			 * a listener or not.  That is why we need to check
3647 			 * for states greater than or equal to TCPS_BOUND
3648 			 * here.
3649 			 *
3650 			 * 2. Ideally, we should only check for state equals
3651 			 * to TCPS_LISTEN. And the following check should be
3652 			 * added.
3653 			 *
3654 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3655 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3656 			 *		...
3657 			 * }
3658 			 *
3659 			 * The semantics will be changed to this.  If the
3660 			 * endpoint on the list is in state not equal to
3661 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3662 			 * set, let the bind succeed.
3663 			 *
3664 			 * Because of (1), we cannot do that for TLI
3665 			 * endpoints.  But we can do that for socket endpoints.
3666 			 * If in future, we can change this going back
3667 			 * semantics, we can use the above check for TLI also.
3668 			 */
3669 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3670 			    TCP_IS_SOCKET(tcp));
3671 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3672 
3673 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3674 			    (exclbind && (not_socket ||
3675 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3676 				if (V6_OR_V4_INADDR_ANY(
3677 				    ltcp->tcp_bound_source_v6) ||
3678 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3679 				    IN6_ARE_ADDR_EQUAL(laddr,
3680 				    &ltcp->tcp_bound_source_v6)) {
3681 					break;
3682 				}
3683 				continue;
3684 			}
3685 
3686 			/*
3687 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3688 			 * have disjoint port number spaces, if *_EXCLBIND
3689 			 * is not set and only if the application binds to a
3690 			 * specific port. We use the same autoassigned port
3691 			 * number space for IPv4 and IPv6 sockets.
3692 			 */
3693 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3694 			    bind_to_req_port_only)
3695 				continue;
3696 
3697 			/*
3698 			 * Ideally, we should make sure that the source
3699 			 * address, remote address, and remote port in the
3700 			 * four tuple for this tcp-connection is unique.
3701 			 * However, trying to find out the local source
3702 			 * address would require too much code duplication
3703 			 * with IP, since IP needs needs to have that code
3704 			 * to support userland TCP implementations.
3705 			 */
3706 			if (quick_connect &&
3707 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3708 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3709 				!IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3710 				    &ltcp->tcp_remote_v6)))
3711 				continue;
3712 
3713 			if (!reuseaddr) {
3714 				/*
3715 				 * No socket option SO_REUSEADDR.
3716 				 * If existing port is bound to
3717 				 * a non-wildcard IP address
3718 				 * and the requesting stream is
3719 				 * bound to a distinct
3720 				 * different IP addresses
3721 				 * (non-wildcard, also), keep
3722 				 * going.
3723 				 */
3724 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3725 				    !V6_OR_V4_INADDR_ANY(
3726 				    ltcp->tcp_bound_source_v6) &&
3727 				    !IN6_ARE_ADDR_EQUAL(laddr,
3728 					&ltcp->tcp_bound_source_v6))
3729 					continue;
3730 				if (ltcp->tcp_state >= TCPS_BOUND) {
3731 					/*
3732 					 * This port is being used and
3733 					 * its state is >= TCPS_BOUND,
3734 					 * so we can't bind to it.
3735 					 */
3736 					break;
3737 				}
3738 			} else {
3739 				/*
3740 				 * socket option SO_REUSEADDR is set on the
3741 				 * binding tcp_t.
3742 				 *
3743 				 * If two streams are bound to
3744 				 * same IP address or both addr
3745 				 * and bound source are wildcards
3746 				 * (INADDR_ANY), we want to stop
3747 				 * searching.
3748 				 * We have found a match of IP source
3749 				 * address and source port, which is
3750 				 * refused regardless of the
3751 				 * SO_REUSEADDR setting, so we break.
3752 				 */
3753 				if (IN6_ARE_ADDR_EQUAL(laddr,
3754 				    &ltcp->tcp_bound_source_v6) &&
3755 				    (ltcp->tcp_state == TCPS_LISTEN ||
3756 					ltcp->tcp_state == TCPS_BOUND))
3757 					break;
3758 			}
3759 		}
3760 		if (ltcp != NULL) {
3761 			/* The port number is busy */
3762 			mutex_exit(&tbf->tf_lock);
3763 		} else {
3764 			/*
3765 			 * This port is ours. Insert in fanout and mark as
3766 			 * bound to prevent others from getting the port
3767 			 * number.
3768 			 */
3769 			tcp->tcp_state = TCPS_BOUND;
3770 			tcp->tcp_lport = htons(port);
3771 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3772 
3773 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
3774 			    tcp->tcp_lport)] == tbf);
3775 			tcp_bind_hash_insert(tbf, tcp, 1);
3776 
3777 			mutex_exit(&tbf->tf_lock);
3778 
3779 			/*
3780 			 * We don't want tcp_next_port_to_try to "inherit"
3781 			 * a port number supplied by the user in a bind.
3782 			 */
3783 			if (user_specified)
3784 				return (port);
3785 
3786 			/*
3787 			 * This is the only place where tcp_next_port_to_try
3788 			 * is updated. After the update, it may or may not
3789 			 * be in the valid range.
3790 			 */
3791 			if (!tcp->tcp_anon_priv_bind)
3792 				tcp_next_port_to_try = port + 1;
3793 			return (port);
3794 		}
3795 
3796 		if (tcp->tcp_anon_priv_bind) {
3797 			port = tcp_get_next_priv_port(tcp);
3798 		} else {
3799 			if (count == 0 && user_specified) {
3800 				/*
3801 				 * We may have to return an anonymous port. So
3802 				 * get one to start with.
3803 				 */
3804 				port =
3805 				    tcp_update_next_port(tcp_next_port_to_try,
3806 					tcp, B_TRUE);
3807 				user_specified = B_FALSE;
3808 			} else {
3809 				port = tcp_update_next_port(port + 1, tcp,
3810 				    B_FALSE);
3811 			}
3812 		}
3813 		if (port == 0)
3814 			break;
3815 
3816 		/*
3817 		 * Don't let this loop run forever in the case where
3818 		 * all of the anonymous ports are in use.
3819 		 */
3820 	} while (++count < loopmax);
3821 	return (0);
3822 }
3823 
3824 /*
3825  * tcp_clean_death / tcp_close_detached must not be called more than once
3826  * on a tcp. Thus every function that potentially calls tcp_clean_death
3827  * must check for the tcp state before calling tcp_clean_death.
3828  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3829  * tcp_timer_handler, all check for the tcp state.
3830  */
3831 /* ARGSUSED */
3832 void
3833 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3834 {
3835 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3836 
3837 	freemsg(mp);
3838 	if (tcp->tcp_state > TCPS_BOUND)
3839 	    (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5);
3840 }
3841 
3842 /*
3843  * We are dying for some reason.  Try to do it gracefully.  (May be called
3844  * as writer.)
3845  *
3846  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3847  * done by a service procedure).
3848  * TBD - Should the return value distinguish between the tcp_t being
3849  * freed and it being reinitialized?
3850  */
3851 static int
3852 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3853 {
3854 	mblk_t	*mp;
3855 	queue_t	*q;
3856 
3857 	TCP_CLD_STAT(tag);
3858 
3859 #if TCP_TAG_CLEAN_DEATH
3860 	tcp->tcp_cleandeathtag = tag;
3861 #endif
3862 
3863 	if (tcp->tcp_fused)
3864 		tcp_unfuse(tcp);
3865 
3866 	if (tcp->tcp_linger_tid != 0 &&
3867 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3868 		tcp_stop_lingering(tcp);
3869 	}
3870 
3871 	ASSERT(tcp != NULL);
3872 	ASSERT((tcp->tcp_family == AF_INET &&
3873 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3874 	    (tcp->tcp_family == AF_INET6 &&
3875 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3876 	    tcp->tcp_ipversion == IPV6_VERSION)));
3877 
3878 	if (TCP_IS_DETACHED(tcp)) {
3879 		if (tcp->tcp_hard_binding) {
3880 			/*
3881 			 * Its an eager that we are dealing with. We close the
3882 			 * eager but in case a conn_ind has already gone to the
3883 			 * listener, let tcp_accept_finish() send a discon_ind
3884 			 * to the listener and drop the last reference. If the
3885 			 * listener doesn't even know about the eager i.e. the
3886 			 * conn_ind hasn't gone up, blow away the eager and drop
3887 			 * the last reference as well. If the conn_ind has gone
3888 			 * up, state should be BOUND. tcp_accept_finish
3889 			 * will figure out that the connection has received a
3890 			 * RST and will send a DISCON_IND to the application.
3891 			 */
3892 			tcp_closei_local(tcp);
3893 			if (!tcp->tcp_tconnind_started) {
3894 				CONN_DEC_REF(tcp->tcp_connp);
3895 			} else {
3896 				tcp->tcp_state = TCPS_BOUND;
3897 			}
3898 		} else {
3899 			tcp_close_detached(tcp);
3900 		}
3901 		return (0);
3902 	}
3903 
3904 	TCP_STAT(tcp_clean_death_nondetached);
3905 
3906 	/*
3907 	 * If T_ORDREL_IND has not been sent yet (done when service routine
3908 	 * is run) postpone cleaning up the endpoint until service routine
3909 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
3910 	 * client_errno since tcp_close uses the client_errno field.
3911 	 */
3912 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
3913 		if (err != 0)
3914 			tcp->tcp_client_errno = err;
3915 
3916 		tcp->tcp_deferred_clean_death = B_TRUE;
3917 		return (-1);
3918 	}
3919 
3920 	q = tcp->tcp_rq;
3921 
3922 	/* Trash all inbound data */
3923 	flushq(q, FLUSHALL);
3924 
3925 	/*
3926 	 * If we are at least part way open and there is error
3927 	 * (err==0 implies no error)
3928 	 * notify our client by a T_DISCON_IND.
3929 	 */
3930 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3931 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3932 		    !TCP_IS_SOCKET(tcp)) {
3933 			/*
3934 			 * Send M_FLUSH according to TPI. Because sockets will
3935 			 * (and must) ignore FLUSHR we do that only for TPI
3936 			 * endpoints and sockets in STREAMS mode.
3937 			 */
3938 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3939 		}
3940 		if (tcp->tcp_debug) {
3941 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3942 			    "tcp_clean_death: discon err %d", err);
3943 		}
3944 		mp = mi_tpi_discon_ind(NULL, err, 0);
3945 		if (mp != NULL) {
3946 			putnext(q, mp);
3947 		} else {
3948 			if (tcp->tcp_debug) {
3949 				(void) strlog(TCP_MOD_ID, 0, 1,
3950 				    SL_ERROR|SL_TRACE,
3951 				    "tcp_clean_death, sending M_ERROR");
3952 			}
3953 			(void) putnextctl1(q, M_ERROR, EPROTO);
3954 		}
3955 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3956 			/* SYN_SENT or SYN_RCVD */
3957 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
3958 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3959 			/* ESTABLISHED or CLOSE_WAIT */
3960 			BUMP_MIB(&tcp_mib, tcpEstabResets);
3961 		}
3962 	}
3963 
3964 	tcp_reinit(tcp);
3965 	return (-1);
3966 }
3967 
3968 /*
3969  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3970  * to expire, stop the wait and finish the close.
3971  */
3972 static void
3973 tcp_stop_lingering(tcp_t *tcp)
3974 {
3975 	clock_t	delta = 0;
3976 
3977 	tcp->tcp_linger_tid = 0;
3978 	if (tcp->tcp_state > TCPS_LISTEN) {
3979 		tcp_acceptor_hash_remove(tcp);
3980 		if (tcp->tcp_flow_stopped) {
3981 			tcp_clrqfull(tcp);
3982 		}
3983 
3984 		if (tcp->tcp_timer_tid != 0) {
3985 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3986 			tcp->tcp_timer_tid = 0;
3987 		}
3988 		/*
3989 		 * Need to cancel those timers which will not be used when
3990 		 * TCP is detached.  This has to be done before the tcp_wq
3991 		 * is set to the global queue.
3992 		 */
3993 		tcp_timers_stop(tcp);
3994 
3995 
3996 		tcp->tcp_detached = B_TRUE;
3997 		tcp->tcp_rq = tcp_g_q;
3998 		tcp->tcp_wq = WR(tcp_g_q);
3999 
4000 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4001 			tcp_time_wait_append(tcp);
4002 			TCP_DBGSTAT(tcp_detach_time_wait);
4003 			goto finish;
4004 		}
4005 
4006 		/*
4007 		 * If delta is zero the timer event wasn't executed and was
4008 		 * successfully canceled. In this case we need to restart it
4009 		 * with the minimal delta possible.
4010 		 */
4011 		if (delta >= 0) {
4012 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4013 			    delta ? delta : 1);
4014 		}
4015 	} else {
4016 		tcp_closei_local(tcp);
4017 		CONN_DEC_REF(tcp->tcp_connp);
4018 	}
4019 finish:
4020 	/* Signal closing thread that it can complete close */
4021 	mutex_enter(&tcp->tcp_closelock);
4022 	tcp->tcp_detached = B_TRUE;
4023 	tcp->tcp_rq = tcp_g_q;
4024 	tcp->tcp_wq = WR(tcp_g_q);
4025 	tcp->tcp_closed = 1;
4026 	cv_signal(&tcp->tcp_closecv);
4027 	mutex_exit(&tcp->tcp_closelock);
4028 }
4029 
4030 /*
4031  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
4032  * expires.
4033  */
4034 static void
4035 tcp_close_linger_timeout(void *arg)
4036 {
4037 	conn_t	*connp = (conn_t *)arg;
4038 	tcp_t 	*tcp = connp->conn_tcp;
4039 
4040 	tcp->tcp_client_errno = ETIMEDOUT;
4041 	tcp_stop_lingering(tcp);
4042 }
4043 
4044 static int
4045 tcp_close(queue_t *q, int flags)
4046 {
4047 	conn_t		*connp = Q_TO_CONN(q);
4048 	tcp_t		*tcp = connp->conn_tcp;
4049 	mblk_t 		*mp = &tcp->tcp_closemp;
4050 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4051 	boolean_t	linger_interrupted = B_FALSE;
4052 	mblk_t		*bp;
4053 
4054 	ASSERT(WR(q)->q_next == NULL);
4055 	ASSERT(connp->conn_ref >= 2);
4056 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
4057 
4058 	/*
4059 	 * We are being closed as /dev/tcp or /dev/tcp6.
4060 	 *
4061 	 * Mark the conn as closing. ill_pending_mp_add will not
4062 	 * add any mp to the pending mp list, after this conn has
4063 	 * started closing. Same for sq_pending_mp_add
4064 	 */
4065 	mutex_enter(&connp->conn_lock);
4066 	connp->conn_state_flags |= CONN_CLOSING;
4067 	if (connp->conn_oper_pending_ill != NULL)
4068 		conn_ioctl_cleanup_reqd = B_TRUE;
4069 	CONN_INC_REF_LOCKED(connp);
4070 	mutex_exit(&connp->conn_lock);
4071 	tcp->tcp_closeflags = (uint8_t)flags;
4072 	ASSERT(connp->conn_ref >= 3);
4073 
4074 	/*
4075 	 * tcp_closemp_used is used below without any protection of a lock
4076 	 * as we don't expect any one else to use it concurrently at this
4077 	 * point otherwise it would be a major defect, though we do
4078 	 * increment tcp_closemp_used to record any attempt to reuse
4079 	 * tcp_closemp while it is still in use. This would help debugging.
4080 	 */
4081 
4082 	if (mp->b_prev == NULL) {
4083 		tcp->tcp_closemp_used = 1;
4084 	} else {
4085 		tcp->tcp_closemp_used++;
4086 		ASSERT(mp->b_prev == NULL);
4087 	}
4088 
4089 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
4090 
4091 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4092 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4093 
4094 	mutex_enter(&tcp->tcp_closelock);
4095 	while (!tcp->tcp_closed) {
4096 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
4097 			/*
4098 			 * We got interrupted. Check if we are lingering,
4099 			 * if yes, post a message to stop and wait until
4100 			 * tcp_closed is set. If we aren't lingering,
4101 			 * just go back around.
4102 			 */
4103 			if (tcp->tcp_linger &&
4104 			    tcp->tcp_lingertime > 0 &&
4105 			    !linger_interrupted) {
4106 				mutex_exit(&tcp->tcp_closelock);
4107 				/* Entering squeue, bump ref count. */
4108 				CONN_INC_REF(connp);
4109 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
4110 				squeue_enter(connp->conn_sqp, bp,
4111 				    tcp_linger_interrupted, connp,
4112 				    SQTAG_IP_TCP_CLOSE);
4113 				linger_interrupted = B_TRUE;
4114 				mutex_enter(&tcp->tcp_closelock);
4115 			}
4116 		}
4117 	}
4118 	mutex_exit(&tcp->tcp_closelock);
4119 
4120 	/*
4121 	 * In the case of listener streams that have eagers in the q or q0
4122 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4123 	 * tcp_wq of the eagers point to our queues. By waiting for the
4124 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4125 	 * up their queue pointers and also dropped their references to us.
4126 	 */
4127 	if (tcp->tcp_wait_for_eagers) {
4128 		mutex_enter(&connp->conn_lock);
4129 		while (connp->conn_ref != 1) {
4130 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4131 		}
4132 		mutex_exit(&connp->conn_lock);
4133 	}
4134 	/*
4135 	 * ioctl cleanup. The mp is queued in the
4136 	 * ill_pending_mp or in the sq_pending_mp.
4137 	 */
4138 	if (conn_ioctl_cleanup_reqd)
4139 		conn_ioctl_cleanup(connp);
4140 
4141 	qprocsoff(q);
4142 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4143 
4144 	tcp->tcp_cpid = -1;
4145 
4146 	/*
4147 	 * Drop IP's reference on the conn. This is the last reference
4148 	 * on the connp if the state was less than established. If the
4149 	 * connection has gone into timewait state, then we will have
4150 	 * one ref for the TCP and one more ref (total of two) for the
4151 	 * classifier connected hash list (a timewait connections stays
4152 	 * in connected hash till closed).
4153 	 *
4154 	 * We can't assert the references because there might be other
4155 	 * transient reference places because of some walkers or queued
4156 	 * packets in squeue for the timewait state.
4157 	 */
4158 	CONN_DEC_REF(connp);
4159 	q->q_ptr = WR(q)->q_ptr = NULL;
4160 	return (0);
4161 }
4162 
4163 static int
4164 tcpclose_accept(queue_t *q)
4165 {
4166 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4167 
4168 	/*
4169 	 * We had opened an acceptor STREAM for sockfs which is
4170 	 * now being closed due to some error.
4171 	 */
4172 	qprocsoff(q);
4173 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4174 	q->q_ptr = WR(q)->q_ptr = NULL;
4175 	return (0);
4176 }
4177 
4178 /*
4179  * Called by tcp_close() routine via squeue when lingering is
4180  * interrupted by a signal.
4181  */
4182 
4183 /* ARGSUSED */
4184 static void
4185 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
4186 {
4187 	conn_t	*connp = (conn_t *)arg;
4188 	tcp_t	*tcp = connp->conn_tcp;
4189 
4190 	freeb(mp);
4191 	if (tcp->tcp_linger_tid != 0 &&
4192 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4193 		tcp_stop_lingering(tcp);
4194 		tcp->tcp_client_errno = EINTR;
4195 	}
4196 }
4197 
4198 /*
4199  * Called by streams close routine via squeues when our client blows off her
4200  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4201  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4202  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4203  * acked.
4204  *
4205  * NOTE: tcp_close potentially returns error when lingering.
4206  * However, the stream head currently does not pass these errors
4207  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4208  * errors to the application (from tsleep()) and not errors
4209  * like ECONNRESET caused by receiving a reset packet.
4210  */
4211 
4212 /* ARGSUSED */
4213 static void
4214 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4215 {
4216 	char	*msg;
4217 	conn_t	*connp = (conn_t *)arg;
4218 	tcp_t	*tcp = connp->conn_tcp;
4219 	clock_t	delta = 0;
4220 
4221 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4222 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4223 
4224 	/* Cancel any pending timeout */
4225 	if (tcp->tcp_ordrelid != 0) {
4226 		if (tcp->tcp_timeout) {
4227 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4228 		}
4229 		tcp->tcp_ordrelid = 0;
4230 		tcp->tcp_timeout = B_FALSE;
4231 	}
4232 
4233 	mutex_enter(&tcp->tcp_eager_lock);
4234 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4235 		/* Cleanup for listener */
4236 		tcp_eager_cleanup(tcp, 0);
4237 		tcp->tcp_wait_for_eagers = 1;
4238 	}
4239 	mutex_exit(&tcp->tcp_eager_lock);
4240 
4241 	connp->conn_mdt_ok = B_FALSE;
4242 	tcp->tcp_mdt = B_FALSE;
4243 
4244 	msg = NULL;
4245 	switch (tcp->tcp_state) {
4246 	case TCPS_CLOSED:
4247 	case TCPS_IDLE:
4248 	case TCPS_BOUND:
4249 	case TCPS_LISTEN:
4250 		break;
4251 	case TCPS_SYN_SENT:
4252 		msg = "tcp_close, during connect";
4253 		break;
4254 	case TCPS_SYN_RCVD:
4255 		/*
4256 		 * Close during the connect 3-way handshake
4257 		 * but here there may or may not be pending data
4258 		 * already on queue. Process almost same as in
4259 		 * the ESTABLISHED state.
4260 		 */
4261 		/* FALLTHRU */
4262 	default:
4263 		if (tcp->tcp_fused)
4264 			tcp_unfuse(tcp);
4265 
4266 		/*
4267 		 * If SO_LINGER has set a zero linger time, abort the
4268 		 * connection with a reset.
4269 		 */
4270 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4271 			msg = "tcp_close, zero lingertime";
4272 			break;
4273 		}
4274 
4275 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4276 		/*
4277 		 * Abort connection if there is unread data queued.
4278 		 */
4279 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4280 			msg = "tcp_close, unread data";
4281 			break;
4282 		}
4283 		/*
4284 		 * tcp_hard_bound is now cleared thus all packets go through
4285 		 * tcp_lookup. This fact is used by tcp_detach below.
4286 		 *
4287 		 * We have done a qwait() above which could have possibly
4288 		 * drained more messages in turn causing transition to a
4289 		 * different state. Check whether we have to do the rest
4290 		 * of the processing or not.
4291 		 */
4292 		if (tcp->tcp_state <= TCPS_LISTEN)
4293 			break;
4294 
4295 		/*
4296 		 * Transmit the FIN before detaching the tcp_t.
4297 		 * After tcp_detach returns this queue/perimeter
4298 		 * no longer owns the tcp_t thus others can modify it.
4299 		 */
4300 		(void) tcp_xmit_end(tcp);
4301 
4302 		/*
4303 		 * If lingering on close then wait until the fin is acked,
4304 		 * the SO_LINGER time passes, or a reset is sent/received.
4305 		 */
4306 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4307 		    !(tcp->tcp_fin_acked) &&
4308 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4309 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4310 				tcp->tcp_client_errno = EWOULDBLOCK;
4311 			} else if (tcp->tcp_client_errno == 0) {
4312 
4313 				ASSERT(tcp->tcp_linger_tid == 0);
4314 
4315 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4316 				    tcp_close_linger_timeout,
4317 				    tcp->tcp_lingertime * hz);
4318 
4319 				/* tcp_close_linger_timeout will finish close */
4320 				if (tcp->tcp_linger_tid == 0)
4321 					tcp->tcp_client_errno = ENOSR;
4322 				else
4323 					return;
4324 			}
4325 
4326 			/*
4327 			 * Check if we need to detach or just close
4328 			 * the instance.
4329 			 */
4330 			if (tcp->tcp_state <= TCPS_LISTEN)
4331 				break;
4332 		}
4333 
4334 		/*
4335 		 * Make sure that no other thread will access the tcp_rq of
4336 		 * this instance (through lookups etc.) as tcp_rq will go
4337 		 * away shortly.
4338 		 */
4339 		tcp_acceptor_hash_remove(tcp);
4340 
4341 		if (tcp->tcp_flow_stopped) {
4342 			tcp_clrqfull(tcp);
4343 		}
4344 
4345 		if (tcp->tcp_timer_tid != 0) {
4346 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4347 			tcp->tcp_timer_tid = 0;
4348 		}
4349 		/*
4350 		 * Need to cancel those timers which will not be used when
4351 		 * TCP is detached.  This has to be done before the tcp_wq
4352 		 * is set to the global queue.
4353 		 */
4354 		tcp_timers_stop(tcp);
4355 
4356 		tcp->tcp_detached = B_TRUE;
4357 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4358 			tcp_time_wait_append(tcp);
4359 			TCP_DBGSTAT(tcp_detach_time_wait);
4360 			ASSERT(connp->conn_ref >= 3);
4361 			goto finish;
4362 		}
4363 
4364 		/*
4365 		 * If delta is zero the timer event wasn't executed and was
4366 		 * successfully canceled. In this case we need to restart it
4367 		 * with the minimal delta possible.
4368 		 */
4369 		if (delta >= 0)
4370 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4371 			    delta ? delta : 1);
4372 
4373 		ASSERT(connp->conn_ref >= 3);
4374 		goto finish;
4375 	}
4376 
4377 	/* Detach did not complete. Still need to remove q from stream. */
4378 	if (msg) {
4379 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4380 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4381 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4382 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4383 		    tcp->tcp_state == TCPS_SYN_RCVD)
4384 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4385 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4386 	}
4387 
4388 	tcp_closei_local(tcp);
4389 	CONN_DEC_REF(connp);
4390 	ASSERT(connp->conn_ref >= 2);
4391 
4392 finish:
4393 	/*
4394 	 * Although packets are always processed on the correct
4395 	 * tcp's perimeter and access is serialized via squeue's,
4396 	 * IP still needs a queue when sending packets in time_wait
4397 	 * state so use WR(tcp_g_q) till ip_output() can be
4398 	 * changed to deal with just connp. For read side, we
4399 	 * could have set tcp_rq to NULL but there are some cases
4400 	 * in tcp_rput_data() from early days of this code which
4401 	 * do a putnext without checking if tcp is closed. Those
4402 	 * need to be identified before both tcp_rq and tcp_wq
4403 	 * can be set to NULL and tcp_q_q can disappear forever.
4404 	 */
4405 	mutex_enter(&tcp->tcp_closelock);
4406 	/*
4407 	 * Don't change the queues in the case of a listener that has
4408 	 * eagers in its q or q0. It could surprise the eagers.
4409 	 * Instead wait for the eagers outside the squeue.
4410 	 */
4411 	if (!tcp->tcp_wait_for_eagers) {
4412 		tcp->tcp_detached = B_TRUE;
4413 		tcp->tcp_rq = tcp_g_q;
4414 		tcp->tcp_wq = WR(tcp_g_q);
4415 	}
4416 
4417 	/* Signal tcp_close() to finish closing. */
4418 	tcp->tcp_closed = 1;
4419 	cv_signal(&tcp->tcp_closecv);
4420 	mutex_exit(&tcp->tcp_closelock);
4421 }
4422 
4423 
4424 /*
4425  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4426  * Some stream heads get upset if they see these later on as anything but NULL.
4427  */
4428 static void
4429 tcp_close_mpp(mblk_t **mpp)
4430 {
4431 	mblk_t	*mp;
4432 
4433 	if ((mp = *mpp) != NULL) {
4434 		do {
4435 			mp->b_next = NULL;
4436 			mp->b_prev = NULL;
4437 		} while ((mp = mp->b_cont) != NULL);
4438 
4439 		mp = *mpp;
4440 		*mpp = NULL;
4441 		freemsg(mp);
4442 	}
4443 }
4444 
4445 /* Do detached close. */
4446 static void
4447 tcp_close_detached(tcp_t *tcp)
4448 {
4449 	if (tcp->tcp_fused)
4450 		tcp_unfuse(tcp);
4451 
4452 	/*
4453 	 * Clustering code serializes TCP disconnect callbacks and
4454 	 * cluster tcp list walks by blocking a TCP disconnect callback
4455 	 * if a cluster tcp list walk is in progress. This ensures
4456 	 * accurate accounting of TCPs in the cluster code even though
4457 	 * the TCP list walk itself is not atomic.
4458 	 */
4459 	tcp_closei_local(tcp);
4460 	CONN_DEC_REF(tcp->tcp_connp);
4461 }
4462 
4463 /*
4464  * Stop all TCP timers, and free the timer mblks if requested.
4465  */
4466 void
4467 tcp_timers_stop(tcp_t *tcp)
4468 {
4469 	if (tcp->tcp_timer_tid != 0) {
4470 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4471 		tcp->tcp_timer_tid = 0;
4472 	}
4473 	if (tcp->tcp_ka_tid != 0) {
4474 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4475 		tcp->tcp_ka_tid = 0;
4476 	}
4477 	if (tcp->tcp_ack_tid != 0) {
4478 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4479 		tcp->tcp_ack_tid = 0;
4480 	}
4481 	if (tcp->tcp_push_tid != 0) {
4482 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4483 		tcp->tcp_push_tid = 0;
4484 	}
4485 }
4486 
4487 /*
4488  * The tcp_t is going away. Remove it from all lists and set it
4489  * to TCPS_CLOSED. The freeing up of memory is deferred until
4490  * tcp_inactive. This is needed since a thread in tcp_rput might have
4491  * done a CONN_INC_REF on this structure before it was removed from the
4492  * hashes.
4493  */
4494 static void
4495 tcp_closei_local(tcp_t *tcp)
4496 {
4497 	ire_t 	*ire;
4498 	conn_t	*connp = tcp->tcp_connp;
4499 
4500 	if (!TCP_IS_SOCKET(tcp))
4501 		tcp_acceptor_hash_remove(tcp);
4502 
4503 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
4504 	tcp->tcp_ibsegs = 0;
4505 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
4506 	tcp->tcp_obsegs = 0;
4507 
4508 	/*
4509 	 * If we are an eager connection hanging off a listener that
4510 	 * hasn't formally accepted the connection yet, get off his
4511 	 * list and blow off any data that we have accumulated.
4512 	 */
4513 	if (tcp->tcp_listener != NULL) {
4514 		tcp_t	*listener = tcp->tcp_listener;
4515 		mutex_enter(&listener->tcp_eager_lock);
4516 		/*
4517 		 * tcp_tconnind_started == B_TRUE means that the
4518 		 * conn_ind has already gone to listener. At
4519 		 * this point, eager will be closed but we
4520 		 * leave it in listeners eager list so that
4521 		 * if listener decides to close without doing
4522 		 * accept, we can clean this up. In tcp_wput_accept
4523 		 * we take care of the case of accept on closed
4524 		 * eager.
4525 		 */
4526 		if (!tcp->tcp_tconnind_started) {
4527 			tcp_eager_unlink(tcp);
4528 			mutex_exit(&listener->tcp_eager_lock);
4529 			/*
4530 			 * We don't want to have any pointers to the
4531 			 * listener queue, after we have released our
4532 			 * reference on the listener
4533 			 */
4534 			tcp->tcp_rq = tcp_g_q;
4535 			tcp->tcp_wq = WR(tcp_g_q);
4536 			CONN_DEC_REF(listener->tcp_connp);
4537 		} else {
4538 			mutex_exit(&listener->tcp_eager_lock);
4539 		}
4540 	}
4541 
4542 	/* Stop all the timers */
4543 	tcp_timers_stop(tcp);
4544 
4545 	if (tcp->tcp_state == TCPS_LISTEN) {
4546 		if (tcp->tcp_ip_addr_cache) {
4547 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4548 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4549 			tcp->tcp_ip_addr_cache = NULL;
4550 		}
4551 	}
4552 	if (tcp->tcp_flow_stopped)
4553 		tcp_clrqfull(tcp);
4554 
4555 	tcp_bind_hash_remove(tcp);
4556 	/*
4557 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4558 	 * is trying to remove this tcp from the time wait list, we will
4559 	 * block in tcp_time_wait_remove while trying to acquire the
4560 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4561 	 * requires the ipcl_hash_remove to be ordered after the
4562 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4563 	 */
4564 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4565 		(void) tcp_time_wait_remove(tcp, NULL);
4566 	CL_INET_DISCONNECT(tcp);
4567 	ipcl_hash_remove(connp);
4568 
4569 	/*
4570 	 * Delete the cached ire in conn_ire_cache and also mark
4571 	 * the conn as CONDEMNED
4572 	 */
4573 	mutex_enter(&connp->conn_lock);
4574 	connp->conn_state_flags |= CONN_CONDEMNED;
4575 	ire = connp->conn_ire_cache;
4576 	connp->conn_ire_cache = NULL;
4577 	mutex_exit(&connp->conn_lock);
4578 	if (ire != NULL)
4579 		IRE_REFRELE_NOTR(ire);
4580 
4581 	/* Need to cleanup any pending ioctls */
4582 	ASSERT(tcp->tcp_time_wait_next == NULL);
4583 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4584 	ASSERT(tcp->tcp_time_wait_expire == 0);
4585 	tcp->tcp_state = TCPS_CLOSED;
4586 
4587 	/* Release any SSL context */
4588 	if (tcp->tcp_kssl_ent != NULL) {
4589 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4590 		tcp->tcp_kssl_ent = NULL;
4591 	}
4592 	if (tcp->tcp_kssl_ctx != NULL) {
4593 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4594 		tcp->tcp_kssl_ctx = NULL;
4595 	}
4596 	tcp->tcp_kssl_pending = B_FALSE;
4597 }
4598 
4599 /*
4600  * tcp is dying (called from ipcl_conn_destroy and error cases).
4601  * Free the tcp_t in either case.
4602  */
4603 void
4604 tcp_free(tcp_t *tcp)
4605 {
4606 	mblk_t	*mp;
4607 	ip6_pkt_t	*ipp;
4608 
4609 	ASSERT(tcp != NULL);
4610 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4611 
4612 	tcp->tcp_rq = NULL;
4613 	tcp->tcp_wq = NULL;
4614 
4615 	tcp_close_mpp(&tcp->tcp_xmit_head);
4616 	tcp_close_mpp(&tcp->tcp_reass_head);
4617 	if (tcp->tcp_rcv_list != NULL) {
4618 		/* Free b_next chain */
4619 		tcp_close_mpp(&tcp->tcp_rcv_list);
4620 	}
4621 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4622 		freemsg(mp);
4623 	}
4624 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4625 		freemsg(mp);
4626 	}
4627 
4628 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4629 		freeb(tcp->tcp_fused_sigurg_mp);
4630 		tcp->tcp_fused_sigurg_mp = NULL;
4631 	}
4632 
4633 	if (tcp->tcp_sack_info != NULL) {
4634 		if (tcp->tcp_notsack_list != NULL) {
4635 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4636 		}
4637 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4638 	}
4639 
4640 	if (tcp->tcp_hopopts != NULL) {
4641 		mi_free(tcp->tcp_hopopts);
4642 		tcp->tcp_hopopts = NULL;
4643 		tcp->tcp_hopoptslen = 0;
4644 	}
4645 	ASSERT(tcp->tcp_hopoptslen == 0);
4646 	if (tcp->tcp_dstopts != NULL) {
4647 		mi_free(tcp->tcp_dstopts);
4648 		tcp->tcp_dstopts = NULL;
4649 		tcp->tcp_dstoptslen = 0;
4650 	}
4651 	ASSERT(tcp->tcp_dstoptslen == 0);
4652 	if (tcp->tcp_rtdstopts != NULL) {
4653 		mi_free(tcp->tcp_rtdstopts);
4654 		tcp->tcp_rtdstopts = NULL;
4655 		tcp->tcp_rtdstoptslen = 0;
4656 	}
4657 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4658 	if (tcp->tcp_rthdr != NULL) {
4659 		mi_free(tcp->tcp_rthdr);
4660 		tcp->tcp_rthdr = NULL;
4661 		tcp->tcp_rthdrlen = 0;
4662 	}
4663 	ASSERT(tcp->tcp_rthdrlen == 0);
4664 
4665 	ipp = &tcp->tcp_sticky_ipp;
4666 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4667 	    IPPF_RTHDR))
4668 		ip6_pkt_free(ipp);
4669 
4670 	/*
4671 	 * Free memory associated with the tcp/ip header template.
4672 	 */
4673 
4674 	if (tcp->tcp_iphc != NULL)
4675 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4676 
4677 	/*
4678 	 * Following is really a blowing away a union.
4679 	 * It happens to have exactly two members of identical size
4680 	 * the following code is enough.
4681 	 */
4682 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4683 
4684 	if (tcp->tcp_tracebuf != NULL) {
4685 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
4686 		tcp->tcp_tracebuf = NULL;
4687 	}
4688 }
4689 
4690 
4691 /*
4692  * Put a connection confirmation message upstream built from the
4693  * address information within 'iph' and 'tcph'.  Report our success or failure.
4694  */
4695 static boolean_t
4696 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4697     mblk_t **defermp)
4698 {
4699 	sin_t	sin;
4700 	sin6_t	sin6;
4701 	mblk_t	*mp;
4702 	char	*optp = NULL;
4703 	int	optlen = 0;
4704 	cred_t	*cr;
4705 
4706 	if (defermp != NULL)
4707 		*defermp = NULL;
4708 
4709 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4710 		/*
4711 		 * Return in T_CONN_CON results of option negotiation through
4712 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4713 		 * negotiation, then what is received from remote end needs
4714 		 * to be taken into account but there is no such thing (yet?)
4715 		 * in our TCP/IP.
4716 		 * Note: We do not use mi_offset_param() here as
4717 		 * tcp_opts_conn_req contents do not directly come from
4718 		 * an application and are either generated in kernel or
4719 		 * from user input that was already verified.
4720 		 */
4721 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4722 		optp = (char *)(mp->b_rptr +
4723 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4724 		optlen = (int)
4725 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4726 	}
4727 
4728 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4729 		ipha_t *ipha = (ipha_t *)iphdr;
4730 
4731 		/* packet is IPv4 */
4732 		if (tcp->tcp_family == AF_INET) {
4733 			sin = sin_null;
4734 			sin.sin_addr.s_addr = ipha->ipha_src;
4735 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4736 			sin.sin_family = AF_INET;
4737 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4738 			    (int)sizeof (sin_t), optp, optlen);
4739 		} else {
4740 			sin6 = sin6_null;
4741 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4742 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4743 			sin6.sin6_family = AF_INET6;
4744 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4745 			    (int)sizeof (sin6_t), optp, optlen);
4746 
4747 		}
4748 	} else {
4749 		ip6_t	*ip6h = (ip6_t *)iphdr;
4750 
4751 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4752 		ASSERT(tcp->tcp_family == AF_INET6);
4753 		sin6 = sin6_null;
4754 		sin6.sin6_addr = ip6h->ip6_src;
4755 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4756 		sin6.sin6_family = AF_INET6;
4757 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4758 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4759 		    (int)sizeof (sin6_t), optp, optlen);
4760 	}
4761 
4762 	if (!mp)
4763 		return (B_FALSE);
4764 
4765 	if ((cr = DB_CRED(idmp)) != NULL) {
4766 		mblk_setcred(mp, cr);
4767 		DB_CPID(mp) = DB_CPID(idmp);
4768 	}
4769 
4770 	if (defermp == NULL)
4771 		putnext(tcp->tcp_rq, mp);
4772 	else
4773 		*defermp = mp;
4774 
4775 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4776 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4777 	return (B_TRUE);
4778 }
4779 
4780 /*
4781  * Defense for the SYN attack -
4782  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4783  *    one from the list of droppable eagers. This list is a subset of q0.
4784  *    see comments before the definition of MAKE_DROPPABLE().
4785  * 2. Don't drop a SYN request before its first timeout. This gives every
4786  *    request at least til the first timeout to complete its 3-way handshake.
4787  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4788  *    requests currently on the queue that has timed out. This will be used
4789  *    as an indicator of whether an attack is under way, so that appropriate
4790  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4791  *    either when eager goes into ESTABLISHED, or gets freed up.)
4792  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4793  *    # of timeout drops back to <= q0len/32 => SYN alert off
4794  */
4795 static boolean_t
4796 tcp_drop_q0(tcp_t *tcp)
4797 {
4798 	tcp_t	*eager;
4799 	mblk_t	*mp;
4800 
4801 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4802 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4803 
4804 	/* Pick oldest eager from the list of droppable eagers */
4805 	eager = tcp->tcp_eager_prev_drop_q0;
4806 
4807 	/* If list is empty. return B_FALSE */
4808 	if (eager == tcp) {
4809 		return (B_FALSE);
4810 	}
4811 
4812 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4813 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4814 		return (B_FALSE);
4815 
4816 	/*
4817 	 * Take this eager out from the list of droppable eagers since we are
4818 	 * going to drop it.
4819 	 */
4820 	MAKE_UNDROPPABLE(eager);
4821 
4822 	if (tcp->tcp_debug) {
4823 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4824 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4825 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
4826 		    tcp->tcp_conn_req_cnt_q0,
4827 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4828 	}
4829 
4830 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
4831 
4832 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4833 	CONN_INC_REF(eager->tcp_connp);
4834 
4835 	/* Mark the IRE created for this SYN request temporary */
4836 	tcp_ip_ire_mark_advice(eager);
4837 	squeue_fill(eager->tcp_connp->conn_sqp, mp,
4838 	    tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0);
4839 
4840 	return (B_TRUE);
4841 }
4842 
4843 int
4844 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4845     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4846 {
4847 	tcp_t 		*ltcp = lconnp->conn_tcp;
4848 	tcp_t		*tcp = connp->conn_tcp;
4849 	mblk_t		*tpi_mp;
4850 	ipha_t		*ipha;
4851 	ip6_t		*ip6h;
4852 	sin6_t 		sin6;
4853 	in6_addr_t 	v6dst;
4854 	int		err;
4855 	int		ifindex = 0;
4856 	cred_t		*cr;
4857 
4858 	if (ipvers == IPV4_VERSION) {
4859 		ipha = (ipha_t *)mp->b_rptr;
4860 
4861 		connp->conn_send = ip_output;
4862 		connp->conn_recv = tcp_input;
4863 
4864 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4865 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4866 
4867 		sin6 = sin6_null;
4868 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4869 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4870 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4871 		sin6.sin6_family = AF_INET6;
4872 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4873 		    lconnp->conn_zoneid);
4874 		if (tcp->tcp_recvdstaddr) {
4875 			sin6_t	sin6d;
4876 
4877 			sin6d = sin6_null;
4878 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4879 			    &sin6d.sin6_addr);
4880 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4881 			sin6d.sin6_family = AF_INET;
4882 			tpi_mp = mi_tpi_extconn_ind(NULL,
4883 			    (char *)&sin6d, sizeof (sin6_t),
4884 			    (char *)&tcp,
4885 			    (t_scalar_t)sizeof (intptr_t),
4886 			    (char *)&sin6d, sizeof (sin6_t),
4887 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4888 		} else {
4889 			tpi_mp = mi_tpi_conn_ind(NULL,
4890 			    (char *)&sin6, sizeof (sin6_t),
4891 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4892 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4893 		}
4894 	} else {
4895 		ip6h = (ip6_t *)mp->b_rptr;
4896 
4897 		connp->conn_send = ip_output_v6;
4898 		connp->conn_recv = tcp_input;
4899 
4900 		connp->conn_srcv6 = ip6h->ip6_dst;
4901 		connp->conn_remv6 = ip6h->ip6_src;
4902 
4903 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4904 		ifindex = (int)DB_CKSUMSTUFF(mp);
4905 		DB_CKSUMSTUFF(mp) = 0;
4906 
4907 		sin6 = sin6_null;
4908 		sin6.sin6_addr = ip6h->ip6_src;
4909 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4910 		sin6.sin6_family = AF_INET6;
4911 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4912 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4913 		    lconnp->conn_zoneid);
4914 
4915 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4916 			/* Pass up the scope_id of remote addr */
4917 			sin6.sin6_scope_id = ifindex;
4918 		} else {
4919 			sin6.sin6_scope_id = 0;
4920 		}
4921 		if (tcp->tcp_recvdstaddr) {
4922 			sin6_t	sin6d;
4923 
4924 			sin6d = sin6_null;
4925 			sin6.sin6_addr = ip6h->ip6_dst;
4926 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4927 			sin6d.sin6_family = AF_INET;
4928 			tpi_mp = mi_tpi_extconn_ind(NULL,
4929 			    (char *)&sin6d, sizeof (sin6_t),
4930 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4931 			    (char *)&sin6d, sizeof (sin6_t),
4932 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4933 		} else {
4934 			tpi_mp = mi_tpi_conn_ind(NULL,
4935 			    (char *)&sin6, sizeof (sin6_t),
4936 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4937 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4938 		}
4939 	}
4940 
4941 	if (tpi_mp == NULL)
4942 		return (ENOMEM);
4943 
4944 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4945 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4946 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4947 	connp->conn_fully_bound = B_FALSE;
4948 
4949 	if (tcp_trace)
4950 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
4951 
4952 	/* Inherit information from the "parent" */
4953 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4954 	tcp->tcp_family = ltcp->tcp_family;
4955 	tcp->tcp_wq = ltcp->tcp_wq;
4956 	tcp->tcp_rq = ltcp->tcp_rq;
4957 	tcp->tcp_mss = tcp_mss_def_ipv6;
4958 	tcp->tcp_detached = B_TRUE;
4959 	if ((err = tcp_init_values(tcp)) != 0) {
4960 		freemsg(tpi_mp);
4961 		return (err);
4962 	}
4963 
4964 	if (ipvers == IPV4_VERSION) {
4965 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4966 			freemsg(tpi_mp);
4967 			return (err);
4968 		}
4969 		ASSERT(tcp->tcp_ipha != NULL);
4970 	} else {
4971 		/* ifindex must be already set */
4972 		ASSERT(ifindex != 0);
4973 
4974 		if (ltcp->tcp_bound_if != 0) {
4975 			/*
4976 			 * Set newtcp's bound_if equal to
4977 			 * listener's value. If ifindex is
4978 			 * not the same as ltcp->tcp_bound_if,
4979 			 * it must be a packet for the ipmp group
4980 			 * of interfaces
4981 			 */
4982 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4983 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4984 			tcp->tcp_bound_if = ifindex;
4985 		}
4986 
4987 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4988 		tcp->tcp_recvifindex = 0;
4989 		tcp->tcp_recvhops = 0xffffffffU;
4990 		ASSERT(tcp->tcp_ip6h != NULL);
4991 	}
4992 
4993 	tcp->tcp_lport = ltcp->tcp_lport;
4994 
4995 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4996 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4997 			/*
4998 			 * Listener had options of some sort; eager inherits.
4999 			 * Free up the eager template and allocate one
5000 			 * of the right size.
5001 			 */
5002 			if (tcp->tcp_hdr_grown) {
5003 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
5004 			} else {
5005 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
5006 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
5007 			}
5008 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
5009 			    KM_NOSLEEP);
5010 			if (tcp->tcp_iphc == NULL) {
5011 				tcp->tcp_iphc_len = 0;
5012 				freemsg(tpi_mp);
5013 				return (ENOMEM);
5014 			}
5015 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5016 			tcp->tcp_hdr_grown = B_TRUE;
5017 		}
5018 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5019 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5020 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5021 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5022 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5023 
5024 		/*
5025 		 * Copy the IP+TCP header template from listener to eager
5026 		 */
5027 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5028 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5029 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5030 			    IPPROTO_RAW) {
5031 				tcp->tcp_ip6h =
5032 				    (ip6_t *)(tcp->tcp_iphc +
5033 					sizeof (ip6i_t));
5034 			} else {
5035 				tcp->tcp_ip6h =
5036 				    (ip6_t *)(tcp->tcp_iphc);
5037 			}
5038 			tcp->tcp_ipha = NULL;
5039 		} else {
5040 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5041 			tcp->tcp_ip6h = NULL;
5042 		}
5043 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5044 		    tcp->tcp_ip_hdr_len);
5045 	} else {
5046 		/*
5047 		 * only valid case when ipversion of listener and
5048 		 * eager differ is when listener is IPv6 and
5049 		 * eager is IPv4.
5050 		 * Eager header template has been initialized to the
5051 		 * maximum v4 header sizes, which includes space for
5052 		 * TCP and IP options.
5053 		 */
5054 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5055 		    (tcp->tcp_ipversion == IPV4_VERSION));
5056 		ASSERT(tcp->tcp_iphc_len >=
5057 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5058 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5059 		/* copy IP header fields individually */
5060 		tcp->tcp_ipha->ipha_ttl =
5061 		    ltcp->tcp_ip6h->ip6_hops;
5062 		bcopy(ltcp->tcp_tcph->th_lport,
5063 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5064 	}
5065 
5066 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5067 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5068 	    sizeof (in_port_t));
5069 
5070 	if (ltcp->tcp_lport == 0) {
5071 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5072 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5073 		    sizeof (in_port_t));
5074 	}
5075 
5076 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5077 		ASSERT(ipha != NULL);
5078 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5079 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5080 
5081 		/* Source routing option copyover (reverse it) */
5082 		if (tcp_rev_src_routes)
5083 			tcp_opt_reverse(tcp, ipha);
5084 	} else {
5085 		ASSERT(ip6h != NULL);
5086 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5087 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5088 	}
5089 
5090 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5091 	ASSERT(!tcp->tcp_tconnind_started);
5092 	/*
5093 	 * If the SYN contains a credential, it's a loopback packet; attach
5094 	 * the credential to the TPI message.
5095 	 */
5096 	if ((cr = DB_CRED(idmp)) != NULL) {
5097 		mblk_setcred(tpi_mp, cr);
5098 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5099 	}
5100 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5101 
5102 	/* Inherit the listener's SSL protection state */
5103 
5104 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5105 		kssl_hold_ent(tcp->tcp_kssl_ent);
5106 		tcp->tcp_kssl_pending = B_TRUE;
5107 	}
5108 
5109 	return (0);
5110 }
5111 
5112 
5113 int
5114 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5115     tcph_t *tcph, mblk_t *idmp)
5116 {
5117 	tcp_t 		*ltcp = lconnp->conn_tcp;
5118 	tcp_t		*tcp = connp->conn_tcp;
5119 	sin_t		sin;
5120 	mblk_t		*tpi_mp = NULL;
5121 	int		err;
5122 	cred_t		*cr;
5123 
5124 	sin = sin_null;
5125 	sin.sin_addr.s_addr = ipha->ipha_src;
5126 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5127 	sin.sin_family = AF_INET;
5128 	if (ltcp->tcp_recvdstaddr) {
5129 		sin_t	sind;
5130 
5131 		sind = sin_null;
5132 		sind.sin_addr.s_addr = ipha->ipha_dst;
5133 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5134 		sind.sin_family = AF_INET;
5135 		tpi_mp = mi_tpi_extconn_ind(NULL,
5136 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5137 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5138 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5139 	} else {
5140 		tpi_mp = mi_tpi_conn_ind(NULL,
5141 		    (char *)&sin, sizeof (sin_t),
5142 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5143 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5144 	}
5145 
5146 	if (tpi_mp == NULL) {
5147 		return (ENOMEM);
5148 	}
5149 
5150 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5151 	connp->conn_send = ip_output;
5152 	connp->conn_recv = tcp_input;
5153 	connp->conn_fully_bound = B_FALSE;
5154 
5155 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5156 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5157 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5158 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5159 
5160 	if (tcp_trace) {
5161 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5162 	}
5163 
5164 	/* Inherit information from the "parent" */
5165 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5166 	tcp->tcp_family = ltcp->tcp_family;
5167 	tcp->tcp_wq = ltcp->tcp_wq;
5168 	tcp->tcp_rq = ltcp->tcp_rq;
5169 	tcp->tcp_mss = tcp_mss_def_ipv4;
5170 	tcp->tcp_detached = B_TRUE;
5171 	if ((err = tcp_init_values(tcp)) != 0) {
5172 		freemsg(tpi_mp);
5173 		return (err);
5174 	}
5175 
5176 	/*
5177 	 * Let's make sure that eager tcp template has enough space to
5178 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5179 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5180 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5181 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5182 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5183 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5184 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5185 	 */
5186 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5187 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5188 
5189 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5190 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5191 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5192 	tcp->tcp_ttl = ltcp->tcp_ttl;
5193 	tcp->tcp_tos = ltcp->tcp_tos;
5194 
5195 	/* Copy the IP+TCP header template from listener to eager */
5196 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5197 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5198 	tcp->tcp_ip6h = NULL;
5199 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5200 	    tcp->tcp_ip_hdr_len);
5201 
5202 	/* Initialize the IP addresses and Ports */
5203 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5204 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5205 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5206 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5207 
5208 	/* Source routing option copyover (reverse it) */
5209 	if (tcp_rev_src_routes)
5210 		tcp_opt_reverse(tcp, ipha);
5211 
5212 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5213 	ASSERT(!tcp->tcp_tconnind_started);
5214 
5215 	/*
5216 	 * If the SYN contains a credential, it's a loopback packet; attach
5217 	 * the credential to the TPI message.
5218 	 */
5219 	if ((cr = DB_CRED(idmp)) != NULL) {
5220 		mblk_setcred(tpi_mp, cr);
5221 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5222 	}
5223 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5224 
5225 	/* Inherit the listener's SSL protection state */
5226 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
5227 		kssl_hold_ent(tcp->tcp_kssl_ent);
5228 		tcp->tcp_kssl_pending = B_TRUE;
5229 	}
5230 
5231 	return (0);
5232 }
5233 
5234 /*
5235  * sets up conn for ipsec.
5236  * if the first mblk is M_CTL it is consumed and mpp is updated.
5237  * in case of error mpp is freed.
5238  */
5239 conn_t *
5240 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5241 {
5242 	conn_t 		*connp = tcp->tcp_connp;
5243 	conn_t 		*econnp;
5244 	squeue_t 	*new_sqp;
5245 	mblk_t 		*first_mp = *mpp;
5246 	mblk_t		*mp = *mpp;
5247 	boolean_t	mctl_present = B_FALSE;
5248 	uint_t		ipvers;
5249 
5250 	econnp = tcp_get_conn(sqp);
5251 	if (econnp == NULL) {
5252 		freemsg(first_mp);
5253 		return (NULL);
5254 	}
5255 	if (DB_TYPE(mp) == M_CTL) {
5256 		if (mp->b_cont == NULL ||
5257 		    mp->b_cont->b_datap->db_type != M_DATA) {
5258 			freemsg(first_mp);
5259 			return (NULL);
5260 		}
5261 		mp = mp->b_cont;
5262 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5263 			freemsg(first_mp);
5264 			return (NULL);
5265 		}
5266 
5267 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5268 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5269 		mctl_present = B_TRUE;
5270 	} else {
5271 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5272 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5273 	}
5274 
5275 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5276 	DB_CKSUMSTART(mp) = 0;
5277 
5278 	ASSERT(OK_32PTR(mp->b_rptr));
5279 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5280 	if (ipvers == IPV4_VERSION) {
5281 		uint16_t  	*up;
5282 		uint32_t	ports;
5283 		ipha_t		*ipha;
5284 
5285 		ipha = (ipha_t *)mp->b_rptr;
5286 		up = (uint16_t *)((uchar_t *)ipha +
5287 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5288 		ports = *(uint32_t *)up;
5289 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5290 		    ipha->ipha_dst, ipha->ipha_src, ports);
5291 	} else {
5292 		uint16_t  	*up;
5293 		uint32_t	ports;
5294 		uint16_t	ip_hdr_len;
5295 		uint8_t		*nexthdrp;
5296 		ip6_t 		*ip6h;
5297 		tcph_t		*tcph;
5298 
5299 		ip6h = (ip6_t *)mp->b_rptr;
5300 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5301 			ip_hdr_len = IPV6_HDR_LEN;
5302 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5303 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5304 			CONN_DEC_REF(econnp);
5305 			freemsg(first_mp);
5306 			return (NULL);
5307 		}
5308 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5309 		up = (uint16_t *)tcph->th_lport;
5310 		ports = *(uint32_t *)up;
5311 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5312 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5313 	}
5314 
5315 	/*
5316 	 * The caller already ensured that there is a sqp present.
5317 	 */
5318 	econnp->conn_sqp = new_sqp;
5319 
5320 	if (connp->conn_policy != NULL) {
5321 		ipsec_in_t *ii;
5322 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5323 		ASSERT(ii->ipsec_in_policy == NULL);
5324 		IPPH_REFHOLD(connp->conn_policy);
5325 		ii->ipsec_in_policy = connp->conn_policy;
5326 
5327 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5328 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5329 			CONN_DEC_REF(econnp);
5330 			freemsg(first_mp);
5331 			return (NULL);
5332 		}
5333 	}
5334 
5335 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5336 		CONN_DEC_REF(econnp);
5337 		freemsg(first_mp);
5338 		return (NULL);
5339 	}
5340 
5341 	/*
5342 	 * If we know we have some policy, pass the "IPSEC"
5343 	 * options size TCP uses this adjust the MSS.
5344 	 */
5345 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5346 	if (mctl_present) {
5347 		freeb(first_mp);
5348 		*mpp = mp;
5349 	}
5350 
5351 	return (econnp);
5352 }
5353 
5354 /*
5355  * tcp_get_conn/tcp_free_conn
5356  *
5357  * tcp_get_conn is used to get a clean tcp connection structure.
5358  * It tries to reuse the connections put on the freelist by the
5359  * time_wait_collector failing which it goes to kmem_cache. This
5360  * way has two benefits compared to just allocating from and
5361  * freeing to kmem_cache.
5362  * 1) The time_wait_collector can free (which includes the cleanup)
5363  * outside the squeue. So when the interrupt comes, we have a clean
5364  * connection sitting in the freelist. Obviously, this buys us
5365  * performance.
5366  *
5367  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5368  * has multiple disadvantages - tying up the squeue during alloc, and the
5369  * fact that IPSec policy initialization has to happen here which
5370  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5371  * But allocating the conn/tcp in IP land is also not the best since
5372  * we can't check the 'q' and 'q0' which are protected by squeue and
5373  * blindly allocate memory which might have to be freed here if we are
5374  * not allowed to accept the connection. By using the freelist and
5375  * putting the conn/tcp back in freelist, we don't pay a penalty for
5376  * allocating memory without checking 'q/q0' and freeing it if we can't
5377  * accept the connection.
5378  *
5379  * Care should be taken to put the conn back in the same squeue's freelist
5380  * from which it was allocated. Best results are obtained if conn is
5381  * allocated from listener's squeue and freed to the same. Time wait
5382  * collector will free up the freelist is the connection ends up sitting
5383  * there for too long.
5384  */
5385 void *
5386 tcp_get_conn(void *arg)
5387 {
5388 	tcp_t			*tcp = NULL;
5389 	conn_t			*connp = NULL;
5390 	squeue_t		*sqp = (squeue_t *)arg;
5391 	tcp_squeue_priv_t 	*tcp_time_wait;
5392 
5393 	tcp_time_wait =
5394 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5395 
5396 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5397 	tcp = tcp_time_wait->tcp_free_list;
5398 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
5399 	if (tcp != NULL) {
5400 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5401 		tcp_time_wait->tcp_free_list_cnt--;
5402 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5403 		tcp->tcp_time_wait_next = NULL;
5404 		connp = tcp->tcp_connp;
5405 		connp->conn_flags |= IPCL_REUSED;
5406 		return ((void *)connp);
5407 	}
5408 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5409 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5410 		return (NULL);
5411 	return ((void *)connp);
5412 }
5413 
5414 /*
5415  * Update the cached label for the given tcp_t.  This should be called once per
5416  * connection, and before any packets are sent or tcp_process_options is
5417  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5418  */
5419 static boolean_t
5420 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5421 {
5422 	conn_t *connp = tcp->tcp_connp;
5423 
5424 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5425 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5426 		int added;
5427 
5428 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5429 		    connp->conn_mac_exempt) != 0)
5430 			return (B_FALSE);
5431 
5432 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5433 		if (added == -1)
5434 			return (B_FALSE);
5435 		tcp->tcp_hdr_len += added;
5436 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5437 		tcp->tcp_ip_hdr_len += added;
5438 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5439 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5440 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5441 			    tcp->tcp_hdr_len);
5442 			if (added == -1)
5443 				return (B_FALSE);
5444 			tcp->tcp_hdr_len += added;
5445 			tcp->tcp_tcph = (tcph_t *)
5446 			    ((uchar_t *)tcp->tcp_tcph + added);
5447 			tcp->tcp_ip_hdr_len += added;
5448 		}
5449 	} else {
5450 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5451 
5452 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5453 		    connp->conn_mac_exempt) != 0)
5454 			return (B_FALSE);
5455 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5456 		    &tcp->tcp_label_len, optbuf) != 0)
5457 			return (B_FALSE);
5458 		if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0)
5459 			return (B_FALSE);
5460 	}
5461 
5462 	connp->conn_ulp_labeled = 1;
5463 
5464 	return (B_TRUE);
5465 }
5466 
5467 /* BEGIN CSTYLED */
5468 /*
5469  *
5470  * The sockfs ACCEPT path:
5471  * =======================
5472  *
5473  * The eager is now established in its own perimeter as soon as SYN is
5474  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5475  * completes the accept processing on the acceptor STREAM. The sending
5476  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5477  * listener but a TLI/XTI listener completes the accept processing
5478  * on the listener perimeter.
5479  *
5480  * Common control flow for 3 way handshake:
5481  * ----------------------------------------
5482  *
5483  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5484  *					-> tcp_conn_request()
5485  *
5486  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5487  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5488  *
5489  * Sockfs ACCEPT Path:
5490  * -------------------
5491  *
5492  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5493  * as STREAM entry point)
5494  *
5495  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5496  *
5497  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5498  * association (we are not behind eager's squeue but sockfs is protecting us
5499  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5500  * is changed to point at tcp_wput().
5501  *
5502  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5503  * listener (done on listener's perimeter).
5504  *
5505  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5506  * accept.
5507  *
5508  * TLI/XTI client ACCEPT path:
5509  * ---------------------------
5510  *
5511  * soaccept() sends T_CONN_RES on the listener STREAM.
5512  *
5513  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5514  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5515  *
5516  * Locks:
5517  * ======
5518  *
5519  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5520  * and listeners->tcp_eager_next_q.
5521  *
5522  * Referencing:
5523  * ============
5524  *
5525  * 1) We start out in tcp_conn_request by eager placing a ref on
5526  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5527  *
5528  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5529  * doing so we place a ref on the eager. This ref is finally dropped at the
5530  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5531  * reference is dropped by the squeue framework.
5532  *
5533  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5534  *
5535  * The reference must be released by the same entity that added the reference
5536  * In the above scheme, the eager is the entity that adds and releases the
5537  * references. Note that tcp_accept_finish executes in the squeue of the eager
5538  * (albeit after it is attached to the acceptor stream). Though 1. executes
5539  * in the listener's squeue, the eager is nascent at this point and the
5540  * reference can be considered to have been added on behalf of the eager.
5541  *
5542  * Eager getting a Reset or listener closing:
5543  * ==========================================
5544  *
5545  * Once the listener and eager are linked, the listener never does the unlink.
5546  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5547  * a message on all eager perimeter. The eager then does the unlink, clears
5548  * any pointers to the listener's queue and drops the reference to the
5549  * listener. The listener waits in tcp_close outside the squeue until its
5550  * refcount has dropped to 1. This ensures that the listener has waited for
5551  * all eagers to clear their association with the listener.
5552  *
5553  * Similarly, if eager decides to go away, it can unlink itself and close.
5554  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5555  * the reference to eager is still valid because of the extra ref we put
5556  * in tcp_send_conn_ind.
5557  *
5558  * Listener can always locate the eager under the protection
5559  * of the listener->tcp_eager_lock, and then do a refhold
5560  * on the eager during the accept processing.
5561  *
5562  * The acceptor stream accesses the eager in the accept processing
5563  * based on the ref placed on eager before sending T_conn_ind.
5564  * The only entity that can negate this refhold is a listener close
5565  * which is mutually exclusive with an active acceptor stream.
5566  *
5567  * Eager's reference on the listener
5568  * ===================================
5569  *
5570  * If the accept happens (even on a closed eager) the eager drops its
5571  * reference on the listener at the start of tcp_accept_finish. If the
5572  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5573  * the reference is dropped in tcp_closei_local. If the listener closes,
5574  * the reference is dropped in tcp_eager_kill. In all cases the reference
5575  * is dropped while executing in the eager's context (squeue).
5576  */
5577 /* END CSTYLED */
5578 
5579 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5580 
5581 /*
5582  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5583  * tcp_rput_data will not see any SYN packets.
5584  */
5585 /* ARGSUSED */
5586 void
5587 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5588 {
5589 	tcph_t		*tcph;
5590 	uint32_t	seg_seq;
5591 	tcp_t		*eager;
5592 	uint_t		ipvers;
5593 	ipha_t		*ipha;
5594 	ip6_t		*ip6h;
5595 	int		err;
5596 	conn_t		*econnp = NULL;
5597 	squeue_t	*new_sqp;
5598 	mblk_t		*mp1;
5599 	uint_t 		ip_hdr_len;
5600 	conn_t		*connp = (conn_t *)arg;
5601 	tcp_t		*tcp = connp->conn_tcp;
5602 	ire_t		*ire;
5603 	cred_t		*credp;
5604 
5605 	if (tcp->tcp_state != TCPS_LISTEN)
5606 		goto error2;
5607 
5608 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5609 
5610 	mutex_enter(&tcp->tcp_eager_lock);
5611 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5612 		mutex_exit(&tcp->tcp_eager_lock);
5613 		TCP_STAT(tcp_listendrop);
5614 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5615 		if (tcp->tcp_debug) {
5616 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5617 			    "tcp_conn_request: listen backlog (max=%d) "
5618 			    "overflow (%d pending) on %s",
5619 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5620 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5621 		}
5622 		goto error2;
5623 	}
5624 
5625 	if (tcp->tcp_conn_req_cnt_q0 >=
5626 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
5627 		/*
5628 		 * Q0 is full. Drop a pending half-open req from the queue
5629 		 * to make room for the new SYN req. Also mark the time we
5630 		 * drop a SYN.
5631 		 *
5632 		 * A more aggressive defense against SYN attack will
5633 		 * be to set the "tcp_syn_defense" flag now.
5634 		 */
5635 		TCP_STAT(tcp_listendropq0);
5636 		tcp->tcp_last_rcv_lbolt = lbolt64;
5637 		if (!tcp_drop_q0(tcp)) {
5638 			mutex_exit(&tcp->tcp_eager_lock);
5639 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
5640 			if (tcp->tcp_debug) {
5641 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5642 				    "tcp_conn_request: listen half-open queue "
5643 				    "(max=%d) full (%d pending) on %s",
5644 				    tcp_conn_req_max_q0,
5645 				    tcp->tcp_conn_req_cnt_q0,
5646 				    tcp_display(tcp, NULL,
5647 				    DISP_PORT_ONLY));
5648 			}
5649 			goto error2;
5650 		}
5651 	}
5652 	mutex_exit(&tcp->tcp_eager_lock);
5653 
5654 	/*
5655 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5656 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5657 	 * link local address.  If IPSec is enabled, db_struioflag has
5658 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5659 	 * otherwise an error case if neither of them is set.
5660 	 */
5661 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5662 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5663 		DB_CKSUMSTART(mp) = 0;
5664 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5665 		econnp = (conn_t *)tcp_get_conn(arg2);
5666 		if (econnp == NULL)
5667 			goto error2;
5668 		econnp->conn_sqp = new_sqp;
5669 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5670 		/*
5671 		 * mp is updated in tcp_get_ipsec_conn().
5672 		 */
5673 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5674 		if (econnp == NULL) {
5675 			/*
5676 			 * mp freed by tcp_get_ipsec_conn.
5677 			 */
5678 			return;
5679 		}
5680 	} else {
5681 		goto error2;
5682 	}
5683 
5684 	ASSERT(DB_TYPE(mp) == M_DATA);
5685 
5686 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5687 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5688 	ASSERT(OK_32PTR(mp->b_rptr));
5689 	if (ipvers == IPV4_VERSION) {
5690 		ipha = (ipha_t *)mp->b_rptr;
5691 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5692 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5693 	} else {
5694 		ip6h = (ip6_t *)mp->b_rptr;
5695 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5696 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5697 	}
5698 
5699 	if (tcp->tcp_family == AF_INET) {
5700 		ASSERT(ipvers == IPV4_VERSION);
5701 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5702 	} else {
5703 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5704 	}
5705 
5706 	if (err)
5707 		goto error3;
5708 
5709 	eager = econnp->conn_tcp;
5710 
5711 	/* Inherit various TCP parameters from the listener */
5712 	eager->tcp_naglim = tcp->tcp_naglim;
5713 	eager->tcp_first_timer_threshold =
5714 	    tcp->tcp_first_timer_threshold;
5715 	eager->tcp_second_timer_threshold =
5716 	    tcp->tcp_second_timer_threshold;
5717 
5718 	eager->tcp_first_ctimer_threshold =
5719 	    tcp->tcp_first_ctimer_threshold;
5720 	eager->tcp_second_ctimer_threshold =
5721 	    tcp->tcp_second_ctimer_threshold;
5722 
5723 	/*
5724 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5725 	 * If it does not, the eager's receive window will be set to the
5726 	 * listener's receive window later in this function.
5727 	 */
5728 	eager->tcp_rwnd = 0;
5729 
5730 	/*
5731 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5732 	 * calling tcp_process_options() where tcp_mss_set() is called
5733 	 * to set the initial cwnd.
5734 	 */
5735 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5736 
5737 	/*
5738 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5739 	 * zone id before the accept is completed in tcp_wput_accept().
5740 	 */
5741 	econnp->conn_zoneid = connp->conn_zoneid;
5742 	econnp->conn_allzones = connp->conn_allzones;
5743 
5744 	/* Copy nexthop information from listener to eager */
5745 	if (connp->conn_nexthop_set) {
5746 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5747 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5748 	}
5749 
5750 	/*
5751 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5752 	 * eager is accepted
5753 	 */
5754 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5755 	crhold(credp);
5756 
5757 	/*
5758 	 * If the caller has the process-wide flag set, then default to MAC
5759 	 * exempt mode.  This allows read-down to unlabeled hosts.
5760 	 */
5761 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5762 		econnp->conn_mac_exempt = B_TRUE;
5763 
5764 	if (is_system_labeled()) {
5765 		cred_t *cr;
5766 
5767 		if (connp->conn_mlp_type != mlptSingle) {
5768 			cr = econnp->conn_peercred = DB_CRED(mp);
5769 			if (cr != NULL)
5770 				crhold(cr);
5771 			else
5772 				cr = econnp->conn_cred;
5773 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5774 			    econnp, cred_t *, cr)
5775 		} else {
5776 			cr = econnp->conn_cred;
5777 			DTRACE_PROBE2(syn_accept, conn_t *,
5778 			    econnp, cred_t *, cr)
5779 		}
5780 
5781 		if (!tcp_update_label(eager, cr)) {
5782 			DTRACE_PROBE3(
5783 			    tx__ip__log__error__connrequest__tcp,
5784 			    char *, "eager connp(1) label on SYN mp(2) failed",
5785 			    conn_t *, econnp, mblk_t *, mp);
5786 			goto error3;
5787 		}
5788 	}
5789 
5790 	eager->tcp_hard_binding = B_TRUE;
5791 
5792 	tcp_bind_hash_insert(&tcp_bind_fanout[
5793 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5794 
5795 	CL_INET_CONNECT(eager);
5796 
5797 	/*
5798 	 * No need to check for multicast destination since ip will only pass
5799 	 * up multicasts to those that have expressed interest
5800 	 * TODO: what about rejecting broadcasts?
5801 	 * Also check that source is not a multicast or broadcast address.
5802 	 */
5803 	eager->tcp_state = TCPS_SYN_RCVD;
5804 
5805 
5806 	/*
5807 	 * There should be no ire in the mp as we are being called after
5808 	 * receiving the SYN.
5809 	 */
5810 	ASSERT(tcp_ire_mp(mp) == NULL);
5811 
5812 	/*
5813 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5814 	 */
5815 
5816 	if (tcp_adapt_ire(eager, NULL) == 0) {
5817 		/* Undo the bind_hash_insert */
5818 		tcp_bind_hash_remove(eager);
5819 		goto error3;
5820 	}
5821 
5822 	/* Process all TCP options. */
5823 	tcp_process_options(eager, tcph);
5824 
5825 	/* Is the other end ECN capable? */
5826 	if (tcp_ecn_permitted >= 1 &&
5827 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5828 		eager->tcp_ecn_ok = B_TRUE;
5829 	}
5830 
5831 	/*
5832 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5833 	 * window size changed via SO_RCVBUF option.  First round up the
5834 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5835 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5836 	 * setting.
5837 	 *
5838 	 * Note if there is a rpipe metric associated with the remote host,
5839 	 * we should not inherit receive window size from listener.
5840 	 */
5841 	eager->tcp_rwnd = MSS_ROUNDUP(
5842 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
5843 	    eager->tcp_rwnd), eager->tcp_mss);
5844 	if (eager->tcp_snd_ws_ok)
5845 		tcp_set_ws_value(eager);
5846 	/*
5847 	 * Note that this is the only place tcp_rwnd_set() is called for
5848 	 * accepting a connection.  We need to call it here instead of
5849 	 * after the 3-way handshake because we need to tell the other
5850 	 * side our rwnd in the SYN-ACK segment.
5851 	 */
5852 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5853 
5854 	/*
5855 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5856 	 * via soaccept()->soinheritoptions() which essentially applies
5857 	 * all the listener options to the new STREAM. The options that we
5858 	 * need to take care of are:
5859 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5860 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5861 	 * SO_SNDBUF, SO_RCVBUF.
5862 	 *
5863 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5864 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5865 	 *		tcp_maxpsz_set() gets called later from
5866 	 *		tcp_accept_finish(), the option takes effect.
5867 	 *
5868 	 */
5869 	/* Set the TCP options */
5870 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5871 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5872 	eager->tcp_oobinline = tcp->tcp_oobinline;
5873 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5874 	eager->tcp_broadcast = tcp->tcp_broadcast;
5875 	eager->tcp_useloopback = tcp->tcp_useloopback;
5876 	eager->tcp_dontroute = tcp->tcp_dontroute;
5877 	eager->tcp_linger = tcp->tcp_linger;
5878 	eager->tcp_lingertime = tcp->tcp_lingertime;
5879 	if (tcp->tcp_ka_enabled)
5880 		eager->tcp_ka_enabled = 1;
5881 
5882 	/* Set the IP options */
5883 	econnp->conn_broadcast = connp->conn_broadcast;
5884 	econnp->conn_loopback = connp->conn_loopback;
5885 	econnp->conn_dontroute = connp->conn_dontroute;
5886 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5887 
5888 	/* Put a ref on the listener for the eager. */
5889 	CONN_INC_REF(connp);
5890 	mutex_enter(&tcp->tcp_eager_lock);
5891 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5892 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5893 	tcp->tcp_eager_next_q0 = eager;
5894 	eager->tcp_eager_prev_q0 = tcp;
5895 
5896 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5897 	eager->tcp_listener = tcp;
5898 	eager->tcp_saved_listener = tcp;
5899 
5900 	/*
5901 	 * Tag this detached tcp vector for later retrieval
5902 	 * by our listener client in tcp_accept().
5903 	 */
5904 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5905 	tcp->tcp_conn_req_cnt_q0++;
5906 	if (++tcp->tcp_conn_req_seqnum == -1) {
5907 		/*
5908 		 * -1 is "special" and defined in TPI as something
5909 		 * that should never be used in T_CONN_IND
5910 		 */
5911 		++tcp->tcp_conn_req_seqnum;
5912 	}
5913 	mutex_exit(&tcp->tcp_eager_lock);
5914 
5915 	if (tcp->tcp_syn_defense) {
5916 		/* Don't drop the SYN that comes from a good IP source */
5917 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5918 		if (addr_cache != NULL && eager->tcp_remote ==
5919 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5920 			eager->tcp_dontdrop = B_TRUE;
5921 		}
5922 	}
5923 
5924 	/*
5925 	 * We need to insert the eager in its own perimeter but as soon
5926 	 * as we do that, we expose the eager to the classifier and
5927 	 * should not touch any field outside the eager's perimeter.
5928 	 * So do all the work necessary before inserting the eager
5929 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5930 	 * will succeed but undo everything if it fails.
5931 	 */
5932 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5933 	eager->tcp_irs = seg_seq;
5934 	eager->tcp_rack = seg_seq;
5935 	eager->tcp_rnxt = seg_seq + 1;
5936 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5937 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
5938 	eager->tcp_state = TCPS_SYN_RCVD;
5939 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5940 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5941 	if (mp1 == NULL)
5942 		goto error1;
5943 	DB_CPID(mp1) = tcp->tcp_cpid;
5944 
5945 	/*
5946 	 * We need to start the rto timer. In normal case, we start
5947 	 * the timer after sending the packet on the wire (or at
5948 	 * least believing that packet was sent by waiting for
5949 	 * CALL_IP_WPUT() to return). Since this is the first packet
5950 	 * being sent on the wire for the eager, our initial tcp_rto
5951 	 * is at least tcp_rexmit_interval_min which is a fairly
5952 	 * large value to allow the algorithm to adjust slowly to large
5953 	 * fluctuations of RTT during first few transmissions.
5954 	 *
5955 	 * Starting the timer first and then sending the packet in this
5956 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5957 	 * is of the order of several 100ms and starting the timer
5958 	 * first and then sending the packet will result in difference
5959 	 * of few micro seconds.
5960 	 *
5961 	 * Without this optimization, we are forced to hold the fanout
5962 	 * lock across the ipcl_bind_insert() and sending the packet
5963 	 * so that we don't race against an incoming packet (maybe RST)
5964 	 * for this eager.
5965 	 */
5966 
5967 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
5968 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5969 
5970 
5971 	/*
5972 	 * Insert the eager in its own perimeter now. We are ready to deal
5973 	 * with any packets on eager.
5974 	 */
5975 	if (eager->tcp_ipversion == IPV4_VERSION) {
5976 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5977 			goto error;
5978 		}
5979 	} else {
5980 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5981 			goto error;
5982 		}
5983 	}
5984 
5985 	/* mark conn as fully-bound */
5986 	econnp->conn_fully_bound = B_TRUE;
5987 
5988 	/* Send the SYN-ACK */
5989 	tcp_send_data(eager, eager->tcp_wq, mp1);
5990 	freemsg(mp);
5991 
5992 	return;
5993 error:
5994 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
5995 	freemsg(mp1);
5996 error1:
5997 	/* Undo what we did above */
5998 	mutex_enter(&tcp->tcp_eager_lock);
5999 	tcp_eager_unlink(eager);
6000 	mutex_exit(&tcp->tcp_eager_lock);
6001 	/* Drop eager's reference on the listener */
6002 	CONN_DEC_REF(connp);
6003 
6004 	/*
6005 	 * Delete the cached ire in conn_ire_cache and also mark
6006 	 * the conn as CONDEMNED
6007 	 */
6008 	mutex_enter(&econnp->conn_lock);
6009 	econnp->conn_state_flags |= CONN_CONDEMNED;
6010 	ire = econnp->conn_ire_cache;
6011 	econnp->conn_ire_cache = NULL;
6012 	mutex_exit(&econnp->conn_lock);
6013 	if (ire != NULL)
6014 		IRE_REFRELE_NOTR(ire);
6015 
6016 	/*
6017 	 * tcp_accept_comm inserts the eager to the bind_hash
6018 	 * we need to remove it from the hash if ipcl_conn_insert
6019 	 * fails.
6020 	 */
6021 	tcp_bind_hash_remove(eager);
6022 	/* Drop the eager ref placed in tcp_open_detached */
6023 	CONN_DEC_REF(econnp);
6024 
6025 	/*
6026 	 * If a connection already exists, send the mp to that connections so
6027 	 * that it can be appropriately dealt with.
6028 	 */
6029 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
6030 		if (!IPCL_IS_CONNECTED(econnp)) {
6031 			/*
6032 			 * Something bad happened. ipcl_conn_insert()
6033 			 * failed because a connection already existed
6034 			 * in connected hash but we can't find it
6035 			 * anymore (someone blew it away). Just
6036 			 * free this message and hopefully remote
6037 			 * will retransmit at which time the SYN can be
6038 			 * treated as a new connection or dealth with
6039 			 * a TH_RST if a connection already exists.
6040 			 */
6041 			CONN_DEC_REF(econnp);
6042 			freemsg(mp);
6043 		} else {
6044 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6045 			    econnp, SQTAG_TCP_CONN_REQ);
6046 		}
6047 	} else {
6048 		/* Nobody wants this packet */
6049 		freemsg(mp);
6050 	}
6051 	return;
6052 error2:
6053 	freemsg(mp);
6054 	return;
6055 error3:
6056 	CONN_DEC_REF(econnp);
6057 	freemsg(mp);
6058 }
6059 
6060 /*
6061  * In an ideal case of vertical partition in NUMA architecture, its
6062  * beneficial to have the listener and all the incoming connections
6063  * tied to the same squeue. The other constraint is that incoming
6064  * connections should be tied to the squeue attached to interrupted
6065  * CPU for obvious locality reason so this leaves the listener to
6066  * be tied to the same squeue. Our only problem is that when listener
6067  * is binding, the CPU that will get interrupted by the NIC whose
6068  * IP address the listener is binding to is not even known. So
6069  * the code below allows us to change that binding at the time the
6070  * CPU is interrupted by virtue of incoming connection's squeue.
6071  *
6072  * This is usefull only in case of a listener bound to a specific IP
6073  * address. For other kind of listeners, they get bound the
6074  * very first time and there is no attempt to rebind them.
6075  */
6076 void
6077 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6078 {
6079 	conn_t		*connp = (conn_t *)arg;
6080 	squeue_t	*sqp = (squeue_t *)arg2;
6081 	squeue_t	*new_sqp;
6082 	uint32_t	conn_flags;
6083 
6084 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6085 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
6086 	} else {
6087 		goto done;
6088 	}
6089 
6090 	if (connp->conn_fanout == NULL)
6091 		goto done;
6092 
6093 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6094 		mutex_enter(&connp->conn_fanout->connf_lock);
6095 		mutex_enter(&connp->conn_lock);
6096 		/*
6097 		 * No one from read or write side can access us now
6098 		 * except for already queued packets on this squeue.
6099 		 * But since we haven't changed the squeue yet, they
6100 		 * can't execute. If they are processed after we have
6101 		 * changed the squeue, they are sent back to the
6102 		 * correct squeue down below.
6103 		 * But a listner close can race with processing of
6104 		 * incoming SYN. If incoming SYN processing changes
6105 		 * the squeue then the listener close which is waiting
6106 		 * to enter the squeue would operate on the wrong
6107 		 * squeue. Hence we don't change the squeue here unless
6108 		 * the refcount is exactly the minimum refcount. The
6109 		 * minimum refcount of 4 is counted as - 1 each for
6110 		 * TCP and IP, 1 for being in the classifier hash, and
6111 		 * 1 for the mblk being processed.
6112 		 */
6113 
6114 		if (connp->conn_ref != 4 ||
6115 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
6116 			mutex_exit(&connp->conn_lock);
6117 			mutex_exit(&connp->conn_fanout->connf_lock);
6118 			goto done;
6119 		}
6120 		if (connp->conn_sqp != new_sqp) {
6121 			while (connp->conn_sqp != new_sqp)
6122 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6123 		}
6124 
6125 		do {
6126 			conn_flags = connp->conn_flags;
6127 			conn_flags |= IPCL_FULLY_BOUND;
6128 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6129 			    conn_flags);
6130 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6131 
6132 		mutex_exit(&connp->conn_fanout->connf_lock);
6133 		mutex_exit(&connp->conn_lock);
6134 	}
6135 
6136 done:
6137 	if (connp->conn_sqp != sqp) {
6138 		CONN_INC_REF(connp);
6139 		squeue_fill(connp->conn_sqp, mp,
6140 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6141 	} else {
6142 		tcp_conn_request(connp, mp, sqp);
6143 	}
6144 }
6145 
6146 /*
6147  * Successful connect request processing begins when our client passes
6148  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6149  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6150  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6151  *   upstream <- tcp_rput()                <- IP
6152  * After various error checks are completed, tcp_connect() lays
6153  * the target address and port into the composite header template,
6154  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6155  * request followed by an IRE request, and passes the three mblk message
6156  * down to IP looking like this:
6157  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6158  * Processing continues in tcp_rput() when we receive the following message:
6159  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6160  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6161  * to fire off the connection request, and then passes the T_OK_ACK mblk
6162  * upstream that we filled in below.  There are, of course, numerous
6163  * error conditions along the way which truncate the processing described
6164  * above.
6165  */
6166 static void
6167 tcp_connect(tcp_t *tcp, mblk_t *mp)
6168 {
6169 	sin_t		*sin;
6170 	sin6_t		*sin6;
6171 	queue_t		*q = tcp->tcp_wq;
6172 	struct T_conn_req	*tcr;
6173 	ipaddr_t	*dstaddrp;
6174 	in_port_t	dstport;
6175 	uint_t		srcid;
6176 
6177 	tcr = (struct T_conn_req *)mp->b_rptr;
6178 
6179 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6180 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6181 		tcp_err_ack(tcp, mp, TPROTO, 0);
6182 		return;
6183 	}
6184 
6185 	/*
6186 	 * Determine packet type based on type of address passed in
6187 	 * the request should contain an IPv4 or IPv6 address.
6188 	 * Make sure that address family matches the type of
6189 	 * family of the the address passed down
6190 	 */
6191 	switch (tcr->DEST_length) {
6192 	default:
6193 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6194 		return;
6195 
6196 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6197 		/*
6198 		 * XXX: The check for valid DEST_length was not there
6199 		 * in earlier releases and some buggy
6200 		 * TLI apps (e.g Sybase) got away with not feeding
6201 		 * in sin_zero part of address.
6202 		 * We allow that bug to keep those buggy apps humming.
6203 		 * Test suites require the check on DEST_length.
6204 		 * We construct a new mblk with valid DEST_length
6205 		 * free the original so the rest of the code does
6206 		 * not have to keep track of this special shorter
6207 		 * length address case.
6208 		 */
6209 		mblk_t *nmp;
6210 		struct T_conn_req *ntcr;
6211 		sin_t *nsin;
6212 
6213 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6214 		    tcr->OPT_length, BPRI_HI);
6215 		if (nmp == NULL) {
6216 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6217 			return;
6218 		}
6219 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6220 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6221 		ntcr->PRIM_type = T_CONN_REQ;
6222 		ntcr->DEST_length = sizeof (sin_t);
6223 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6224 
6225 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6226 		*nsin = sin_null;
6227 		/* Get pointer to shorter address to copy from original mp */
6228 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6229 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6230 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6231 			freemsg(nmp);
6232 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6233 			return;
6234 		}
6235 		nsin->sin_family = sin->sin_family;
6236 		nsin->sin_port = sin->sin_port;
6237 		nsin->sin_addr = sin->sin_addr;
6238 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6239 		nmp->b_wptr = (uchar_t *)&nsin[1];
6240 		if (tcr->OPT_length != 0) {
6241 			ntcr->OPT_length = tcr->OPT_length;
6242 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6243 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6244 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6245 			    tcr->OPT_length);
6246 			nmp->b_wptr += tcr->OPT_length;
6247 		}
6248 		freemsg(mp);	/* original mp freed */
6249 		mp = nmp;	/* re-initialize original variables */
6250 		tcr = ntcr;
6251 	}
6252 	/* FALLTHRU */
6253 
6254 	case sizeof (sin_t):
6255 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6256 		    sizeof (sin_t));
6257 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6258 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6259 			return;
6260 		}
6261 		if (tcp->tcp_family != AF_INET ||
6262 		    sin->sin_family != AF_INET) {
6263 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6264 			return;
6265 		}
6266 		if (sin->sin_port == 0) {
6267 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6268 			return;
6269 		}
6270 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6271 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6272 			return;
6273 		}
6274 
6275 		break;
6276 
6277 	case sizeof (sin6_t):
6278 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6279 		    sizeof (sin6_t));
6280 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6281 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6282 			return;
6283 		}
6284 		if (tcp->tcp_family != AF_INET6 ||
6285 		    sin6->sin6_family != AF_INET6) {
6286 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6287 			return;
6288 		}
6289 		if (sin6->sin6_port == 0) {
6290 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6291 			return;
6292 		}
6293 		break;
6294 	}
6295 	/*
6296 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6297 	 * should key on their sequence number and cut them loose.
6298 	 */
6299 
6300 	/*
6301 	 * If options passed in, feed it for verification and handling
6302 	 */
6303 	if (tcr->OPT_length != 0) {
6304 		mblk_t	*ok_mp;
6305 		mblk_t	*discon_mp;
6306 		mblk_t  *conn_opts_mp;
6307 		int t_error, sys_error, do_disconnect;
6308 
6309 		conn_opts_mp = NULL;
6310 
6311 		if (tcp_conprim_opt_process(tcp, mp,
6312 			&do_disconnect, &t_error, &sys_error) < 0) {
6313 			if (do_disconnect) {
6314 				ASSERT(t_error == 0 && sys_error == 0);
6315 				discon_mp = mi_tpi_discon_ind(NULL,
6316 				    ECONNREFUSED, 0);
6317 				if (!discon_mp) {
6318 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6319 					    TSYSERR, ENOMEM);
6320 					return;
6321 				}
6322 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6323 				if (!ok_mp) {
6324 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6325 					    TSYSERR, ENOMEM);
6326 					return;
6327 				}
6328 				qreply(q, ok_mp);
6329 				qreply(q, discon_mp); /* no flush! */
6330 			} else {
6331 				ASSERT(t_error != 0);
6332 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6333 				    sys_error);
6334 			}
6335 			return;
6336 		}
6337 		/*
6338 		 * Success in setting options, the mp option buffer represented
6339 		 * by OPT_length/offset has been potentially modified and
6340 		 * contains results of option processing. We copy it in
6341 		 * another mp to save it for potentially influencing returning
6342 		 * it in T_CONN_CONN.
6343 		 */
6344 		if (tcr->OPT_length != 0) { /* there are resulting options */
6345 			conn_opts_mp = copyb(mp);
6346 			if (!conn_opts_mp) {
6347 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6348 				    TSYSERR, ENOMEM);
6349 				return;
6350 			}
6351 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6352 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6353 			/*
6354 			 * Note:
6355 			 * These resulting option negotiation can include any
6356 			 * end-to-end negotiation options but there no such
6357 			 * thing (yet?) in our TCP/IP.
6358 			 */
6359 		}
6360 	}
6361 
6362 	/*
6363 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6364 	 * make sure that the template IP header in the tcp structure is an
6365 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6366 	 * need to this before we call tcp_bindi() so that the port lookup
6367 	 * code will look for ports in the correct port space (IPv4 and
6368 	 * IPv6 have separate port spaces).
6369 	 */
6370 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6371 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6372 		int err = 0;
6373 
6374 		err = tcp_header_init_ipv4(tcp);
6375 		if (err != 0) {
6376 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6377 			goto connect_failed;
6378 		}
6379 		if (tcp->tcp_lport != 0)
6380 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6381 	}
6382 
6383 	switch (tcp->tcp_state) {
6384 	case TCPS_IDLE:
6385 		/*
6386 		 * We support quick connect, refer to comments in
6387 		 * tcp_connect_*()
6388 		 */
6389 		/* FALLTHRU */
6390 	case TCPS_BOUND:
6391 	case TCPS_LISTEN:
6392 		if (tcp->tcp_family == AF_INET6) {
6393 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6394 				tcp_connect_ipv6(tcp, mp,
6395 				    &sin6->sin6_addr,
6396 				    sin6->sin6_port, sin6->sin6_flowinfo,
6397 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6398 				return;
6399 			}
6400 			/*
6401 			 * Destination adress is mapped IPv6 address.
6402 			 * Source bound address should be unspecified or
6403 			 * IPv6 mapped address as well.
6404 			 */
6405 			if (!IN6_IS_ADDR_UNSPECIFIED(
6406 			    &tcp->tcp_bound_source_v6) &&
6407 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6408 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6409 				    EADDRNOTAVAIL);
6410 				break;
6411 			}
6412 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6413 			dstport = sin6->sin6_port;
6414 			srcid = sin6->__sin6_src_id;
6415 		} else {
6416 			dstaddrp = &sin->sin_addr.s_addr;
6417 			dstport = sin->sin_port;
6418 			srcid = 0;
6419 		}
6420 
6421 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6422 		return;
6423 	default:
6424 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6425 		break;
6426 	}
6427 	/*
6428 	 * Note: Code below is the "failure" case
6429 	 */
6430 	/* return error ack and blow away saved option results if any */
6431 connect_failed:
6432 	if (mp != NULL)
6433 		putnext(tcp->tcp_rq, mp);
6434 	else {
6435 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6436 		    TSYSERR, ENOMEM);
6437 	}
6438 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6439 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6440 }
6441 
6442 /*
6443  * Handle connect to IPv4 destinations, including connections for AF_INET6
6444  * sockets connecting to IPv4 mapped IPv6 destinations.
6445  */
6446 static void
6447 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6448     uint_t srcid)
6449 {
6450 	tcph_t	*tcph;
6451 	mblk_t	*mp1;
6452 	ipaddr_t dstaddr = *dstaddrp;
6453 	int32_t	oldstate;
6454 	uint16_t lport;
6455 
6456 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6457 
6458 	/* Check for attempt to connect to INADDR_ANY */
6459 	if (dstaddr == INADDR_ANY)  {
6460 		/*
6461 		 * SunOS 4.x and 4.3 BSD allow an application
6462 		 * to connect a TCP socket to INADDR_ANY.
6463 		 * When they do this, the kernel picks the
6464 		 * address of one interface and uses it
6465 		 * instead.  The kernel usually ends up
6466 		 * picking the address of the loopback
6467 		 * interface.  This is an undocumented feature.
6468 		 * However, we provide the same thing here
6469 		 * in order to have source and binary
6470 		 * compatibility with SunOS 4.x.
6471 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6472 		 * generate the T_CONN_CON.
6473 		 */
6474 		dstaddr = htonl(INADDR_LOOPBACK);
6475 		*dstaddrp = dstaddr;
6476 	}
6477 
6478 	/* Handle __sin6_src_id if socket not bound to an IP address */
6479 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6480 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6481 		    tcp->tcp_connp->conn_zoneid);
6482 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6483 		    tcp->tcp_ipha->ipha_src);
6484 	}
6485 
6486 	/*
6487 	 * Don't let an endpoint connect to itself.  Note that
6488 	 * the test here does not catch the case where the
6489 	 * source IP addr was left unspecified by the user. In
6490 	 * this case, the source addr is set in tcp_adapt_ire()
6491 	 * using the reply to the T_BIND message that we send
6492 	 * down to IP here and the check is repeated in tcp_rput_other.
6493 	 */
6494 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6495 	    dstport == tcp->tcp_lport) {
6496 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6497 		goto failed;
6498 	}
6499 
6500 	tcp->tcp_ipha->ipha_dst = dstaddr;
6501 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6502 
6503 	/*
6504 	 * Massage a source route if any putting the first hop
6505 	 * in iph_dst. Compute a starting value for the checksum which
6506 	 * takes into account that the original iph_dst should be
6507 	 * included in the checksum but that ip will include the
6508 	 * first hop in the source route in the tcp checksum.
6509 	 */
6510 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6511 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6512 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6513 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6514 	if ((int)tcp->tcp_sum < 0)
6515 		tcp->tcp_sum--;
6516 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6517 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6518 	    (tcp->tcp_sum >> 16));
6519 	tcph = tcp->tcp_tcph;
6520 	*(uint16_t *)tcph->th_fport = dstport;
6521 	tcp->tcp_fport = dstport;
6522 
6523 	oldstate = tcp->tcp_state;
6524 	/*
6525 	 * At this point the remote destination address and remote port fields
6526 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6527 	 * have to see which state tcp was in so we can take apropriate action.
6528 	 */
6529 	if (oldstate == TCPS_IDLE) {
6530 		/*
6531 		 * We support a quick connect capability here, allowing
6532 		 * clients to transition directly from IDLE to SYN_SENT
6533 		 * tcp_bindi will pick an unused port, insert the connection
6534 		 * in the bind hash and transition to BOUND state.
6535 		 */
6536 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6537 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6538 		    B_FALSE, B_FALSE);
6539 		if (lport == 0) {
6540 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6541 			goto failed;
6542 		}
6543 	}
6544 	tcp->tcp_state = TCPS_SYN_SENT;
6545 
6546 	/*
6547 	 * TODO: allow data with connect requests
6548 	 * by unlinking M_DATA trailers here and
6549 	 * linking them in behind the T_OK_ACK mblk.
6550 	 * The tcp_rput() bind ack handler would then
6551 	 * feed them to tcp_wput_data() rather than call
6552 	 * tcp_timer().
6553 	 */
6554 	mp = mi_tpi_ok_ack_alloc(mp);
6555 	if (!mp) {
6556 		tcp->tcp_state = oldstate;
6557 		goto failed;
6558 	}
6559 	if (tcp->tcp_family == AF_INET) {
6560 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6561 		    sizeof (ipa_conn_t));
6562 	} else {
6563 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6564 		    sizeof (ipa6_conn_t));
6565 	}
6566 	if (mp1) {
6567 		/* Hang onto the T_OK_ACK for later. */
6568 		linkb(mp1, mp);
6569 		mblk_setcred(mp1, tcp->tcp_cred);
6570 		if (tcp->tcp_family == AF_INET)
6571 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6572 		else {
6573 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6574 			    &tcp->tcp_sticky_ipp);
6575 		}
6576 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6577 		tcp->tcp_active_open = 1;
6578 		/*
6579 		 * If the bind cannot complete immediately
6580 		 * IP will arrange to call tcp_rput_other
6581 		 * when the bind completes.
6582 		 */
6583 		if (mp1 != NULL)
6584 			tcp_rput_other(tcp, mp1);
6585 		return;
6586 	}
6587 	/* Error case */
6588 	tcp->tcp_state = oldstate;
6589 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6590 
6591 failed:
6592 	/* return error ack and blow away saved option results if any */
6593 	if (mp != NULL)
6594 		putnext(tcp->tcp_rq, mp);
6595 	else {
6596 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6597 		    TSYSERR, ENOMEM);
6598 	}
6599 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6600 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6601 
6602 }
6603 
6604 /*
6605  * Handle connect to IPv6 destinations.
6606  */
6607 static void
6608 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6609     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6610 {
6611 	tcph_t	*tcph;
6612 	mblk_t	*mp1;
6613 	ip6_rthdr_t *rth;
6614 	int32_t  oldstate;
6615 	uint16_t lport;
6616 
6617 	ASSERT(tcp->tcp_family == AF_INET6);
6618 
6619 	/*
6620 	 * If we're here, it means that the destination address is a native
6621 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6622 	 * reason why it might not be IPv6 is if the socket was bound to an
6623 	 * IPv4-mapped IPv6 address.
6624 	 */
6625 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6626 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6627 		goto failed;
6628 	}
6629 
6630 	/*
6631 	 * Interpret a zero destination to mean loopback.
6632 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6633 	 * generate the T_CONN_CON.
6634 	 */
6635 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6636 		*dstaddrp = ipv6_loopback;
6637 	}
6638 
6639 	/* Handle __sin6_src_id if socket not bound to an IP address */
6640 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6641 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6642 		    tcp->tcp_connp->conn_zoneid);
6643 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6644 	}
6645 
6646 	/*
6647 	 * Take care of the scope_id now and add ip6i_t
6648 	 * if ip6i_t is not already allocated through TCP
6649 	 * sticky options. At this point tcp_ip6h does not
6650 	 * have dst info, thus use dstaddrp.
6651 	 */
6652 	if (scope_id != 0 &&
6653 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6654 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6655 		ip6i_t  *ip6i;
6656 
6657 		ipp->ipp_ifindex = scope_id;
6658 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6659 
6660 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6661 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6662 			/* Already allocated */
6663 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6664 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6665 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6666 		} else {
6667 			int reterr;
6668 
6669 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6670 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6671 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6672 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6673 			if (reterr != 0)
6674 				goto failed;
6675 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6676 		}
6677 	}
6678 
6679 	/*
6680 	 * Don't let an endpoint connect to itself.  Note that
6681 	 * the test here does not catch the case where the
6682 	 * source IP addr was left unspecified by the user. In
6683 	 * this case, the source addr is set in tcp_adapt_ire()
6684 	 * using the reply to the T_BIND message that we send
6685 	 * down to IP here and the check is repeated in tcp_rput_other.
6686 	 */
6687 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6688 	    (dstport == tcp->tcp_lport)) {
6689 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6690 		goto failed;
6691 	}
6692 
6693 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6694 	tcp->tcp_remote_v6 = *dstaddrp;
6695 	tcp->tcp_ip6h->ip6_vcf =
6696 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6697 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6698 
6699 
6700 	/*
6701 	 * Massage a routing header (if present) putting the first hop
6702 	 * in ip6_dst. Compute a starting value for the checksum which
6703 	 * takes into account that the original ip6_dst should be
6704 	 * included in the checksum but that ip will include the
6705 	 * first hop in the source route in the tcp checksum.
6706 	 */
6707 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6708 	if (rth != NULL) {
6709 
6710 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
6711 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6712 		    (tcp->tcp_sum >> 16));
6713 	} else {
6714 		tcp->tcp_sum = 0;
6715 	}
6716 
6717 	tcph = tcp->tcp_tcph;
6718 	*(uint16_t *)tcph->th_fport = dstport;
6719 	tcp->tcp_fport = dstport;
6720 
6721 	oldstate = tcp->tcp_state;
6722 	/*
6723 	 * At this point the remote destination address and remote port fields
6724 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6725 	 * have to see which state tcp was in so we can take apropriate action.
6726 	 */
6727 	if (oldstate == TCPS_IDLE) {
6728 		/*
6729 		 * We support a quick connect capability here, allowing
6730 		 * clients to transition directly from IDLE to SYN_SENT
6731 		 * tcp_bindi will pick an unused port, insert the connection
6732 		 * in the bind hash and transition to BOUND state.
6733 		 */
6734 		lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE);
6735 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6736 		    B_FALSE, B_FALSE);
6737 		if (lport == 0) {
6738 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6739 			goto failed;
6740 		}
6741 	}
6742 	tcp->tcp_state = TCPS_SYN_SENT;
6743 	/*
6744 	 * TODO: allow data with connect requests
6745 	 * by unlinking M_DATA trailers here and
6746 	 * linking them in behind the T_OK_ACK mblk.
6747 	 * The tcp_rput() bind ack handler would then
6748 	 * feed them to tcp_wput_data() rather than call
6749 	 * tcp_timer().
6750 	 */
6751 	mp = mi_tpi_ok_ack_alloc(mp);
6752 	if (!mp) {
6753 		tcp->tcp_state = oldstate;
6754 		goto failed;
6755 	}
6756 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
6757 	if (mp1) {
6758 		/* Hang onto the T_OK_ACK for later. */
6759 		linkb(mp1, mp);
6760 		mblk_setcred(mp1, tcp->tcp_cred);
6761 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6762 		    &tcp->tcp_sticky_ipp);
6763 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6764 		tcp->tcp_active_open = 1;
6765 		/* ip_bind_v6() may return ACK or ERROR */
6766 		if (mp1 != NULL)
6767 			tcp_rput_other(tcp, mp1);
6768 		return;
6769 	}
6770 	/* Error case */
6771 	tcp->tcp_state = oldstate;
6772 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6773 
6774 failed:
6775 	/* return error ack and blow away saved option results if any */
6776 	if (mp != NULL)
6777 		putnext(tcp->tcp_rq, mp);
6778 	else {
6779 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6780 		    TSYSERR, ENOMEM);
6781 	}
6782 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6783 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6784 }
6785 
6786 /*
6787  * We need a stream q for detached closing tcp connections
6788  * to use.  Our client hereby indicates that this q is the
6789  * one to use.
6790  */
6791 static void
6792 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6793 {
6794 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6795 	queue_t	*q = tcp->tcp_wq;
6796 
6797 	mp->b_datap->db_type = M_IOCACK;
6798 	iocp->ioc_count = 0;
6799 	mutex_enter(&tcp_g_q_lock);
6800 	if (tcp_g_q != NULL) {
6801 		mutex_exit(&tcp_g_q_lock);
6802 		iocp->ioc_error = EALREADY;
6803 	} else {
6804 		mblk_t *mp1;
6805 
6806 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
6807 		if (mp1 == NULL) {
6808 			mutex_exit(&tcp_g_q_lock);
6809 			iocp->ioc_error = ENOMEM;
6810 		} else {
6811 			tcp_g_q = tcp->tcp_rq;
6812 			mutex_exit(&tcp_g_q_lock);
6813 			iocp->ioc_error = 0;
6814 			iocp->ioc_rval = 0;
6815 			/*
6816 			 * We are passing tcp_sticky_ipp as NULL
6817 			 * as it is not useful for tcp_default queue
6818 			 */
6819 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
6820 			if (mp1 != NULL)
6821 				tcp_rput_other(tcp, mp1);
6822 		}
6823 	}
6824 	qreply(q, mp);
6825 }
6826 
6827 /*
6828  * Our client hereby directs us to reject the connection request
6829  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6830  * of sending the appropriate RST, not an ICMP error.
6831  */
6832 static void
6833 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6834 {
6835 	tcp_t	*ltcp = NULL;
6836 	t_scalar_t seqnum;
6837 	conn_t	*connp;
6838 
6839 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6840 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6841 		tcp_err_ack(tcp, mp, TPROTO, 0);
6842 		return;
6843 	}
6844 
6845 	/*
6846 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6847 	 * when the stream is in BOUND state. Do not send a reset,
6848 	 * since the destination IP address is not valid, and it can
6849 	 * be the initialized value of all zeros (broadcast address).
6850 	 *
6851 	 * If TCP has sent down a bind request to IP and has not
6852 	 * received the reply, reject the request.  Otherwise, TCP
6853 	 * will be confused.
6854 	 */
6855 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
6856 		if (tcp->tcp_debug) {
6857 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6858 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6859 		}
6860 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
6861 		return;
6862 	}
6863 
6864 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6865 
6866 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6867 
6868 		/*
6869 		 * According to TPI, for non-listeners, ignore seqnum
6870 		 * and disconnect.
6871 		 * Following interpretation of -1 seqnum is historical
6872 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6873 		 * a valid seqnum should not be -1).
6874 		 *
6875 		 *	-1 means disconnect everything
6876 		 *	regardless even on a listener.
6877 		 */
6878 
6879 		int old_state = tcp->tcp_state;
6880 
6881 		/*
6882 		 * The connection can't be on the tcp_time_wait_head list
6883 		 * since it is not detached.
6884 		 */
6885 		ASSERT(tcp->tcp_time_wait_next == NULL);
6886 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6887 		ASSERT(tcp->tcp_time_wait_expire == 0);
6888 		ltcp = NULL;
6889 		/*
6890 		 * If it used to be a listener, check to make sure no one else
6891 		 * has taken the port before switching back to LISTEN state.
6892 		 */
6893 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6894 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6895 			    tcp->tcp_ipha->ipha_src,
6896 			    tcp->tcp_connp->conn_zoneid);
6897 			if (connp != NULL)
6898 				ltcp = connp->conn_tcp;
6899 		} else {
6900 			/* Allow tcp_bound_if listeners? */
6901 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6902 			    &tcp->tcp_ip6h->ip6_src, 0,
6903 			    tcp->tcp_connp->conn_zoneid);
6904 			if (connp != NULL)
6905 				ltcp = connp->conn_tcp;
6906 		}
6907 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6908 			tcp->tcp_state = TCPS_LISTEN;
6909 		} else if (old_state > TCPS_BOUND) {
6910 			tcp->tcp_conn_req_max = 0;
6911 			tcp->tcp_state = TCPS_BOUND;
6912 		}
6913 		if (ltcp != NULL)
6914 			CONN_DEC_REF(ltcp->tcp_connp);
6915 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6916 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
6917 		} else if (old_state == TCPS_ESTABLISHED ||
6918 		    old_state == TCPS_CLOSE_WAIT) {
6919 			BUMP_MIB(&tcp_mib, tcpEstabResets);
6920 		}
6921 
6922 		if (tcp->tcp_fused)
6923 			tcp_unfuse(tcp);
6924 
6925 		mutex_enter(&tcp->tcp_eager_lock);
6926 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6927 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6928 			tcp_eager_cleanup(tcp, 0);
6929 		}
6930 		mutex_exit(&tcp->tcp_eager_lock);
6931 
6932 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6933 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6934 
6935 		tcp_reinit(tcp);
6936 
6937 		if (old_state >= TCPS_ESTABLISHED) {
6938 			/* Send M_FLUSH according to TPI */
6939 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6940 		}
6941 		mp = mi_tpi_ok_ack_alloc(mp);
6942 		if (mp)
6943 			putnext(tcp->tcp_rq, mp);
6944 		return;
6945 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6946 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
6947 		return;
6948 	}
6949 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6950 		/* Send M_FLUSH according to TPI */
6951 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6952 	}
6953 	mp = mi_tpi_ok_ack_alloc(mp);
6954 	if (mp)
6955 		putnext(tcp->tcp_rq, mp);
6956 }
6957 
6958 /*
6959  * Diagnostic routine used to return a string associated with the tcp state.
6960  * Note that if the caller does not supply a buffer, it will use an internal
6961  * static string.  This means that if multiple threads call this function at
6962  * the same time, output can be corrupted...  Note also that this function
6963  * does not check the size of the supplied buffer.  The caller has to make
6964  * sure that it is big enough.
6965  */
6966 static char *
6967 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6968 {
6969 	char		buf1[30];
6970 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6971 	char		*buf;
6972 	char		*cp;
6973 	in6_addr_t	local, remote;
6974 	char		local_addrbuf[INET6_ADDRSTRLEN];
6975 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6976 
6977 	if (sup_buf != NULL)
6978 		buf = sup_buf;
6979 	else
6980 		buf = priv_buf;
6981 
6982 	if (tcp == NULL)
6983 		return ("NULL_TCP");
6984 	switch (tcp->tcp_state) {
6985 	case TCPS_CLOSED:
6986 		cp = "TCP_CLOSED";
6987 		break;
6988 	case TCPS_IDLE:
6989 		cp = "TCP_IDLE";
6990 		break;
6991 	case TCPS_BOUND:
6992 		cp = "TCP_BOUND";
6993 		break;
6994 	case TCPS_LISTEN:
6995 		cp = "TCP_LISTEN";
6996 		break;
6997 	case TCPS_SYN_SENT:
6998 		cp = "TCP_SYN_SENT";
6999 		break;
7000 	case TCPS_SYN_RCVD:
7001 		cp = "TCP_SYN_RCVD";
7002 		break;
7003 	case TCPS_ESTABLISHED:
7004 		cp = "TCP_ESTABLISHED";
7005 		break;
7006 	case TCPS_CLOSE_WAIT:
7007 		cp = "TCP_CLOSE_WAIT";
7008 		break;
7009 	case TCPS_FIN_WAIT_1:
7010 		cp = "TCP_FIN_WAIT_1";
7011 		break;
7012 	case TCPS_CLOSING:
7013 		cp = "TCP_CLOSING";
7014 		break;
7015 	case TCPS_LAST_ACK:
7016 		cp = "TCP_LAST_ACK";
7017 		break;
7018 	case TCPS_FIN_WAIT_2:
7019 		cp = "TCP_FIN_WAIT_2";
7020 		break;
7021 	case TCPS_TIME_WAIT:
7022 		cp = "TCP_TIME_WAIT";
7023 		break;
7024 	default:
7025 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7026 		cp = buf1;
7027 		break;
7028 	}
7029 	switch (format) {
7030 	case DISP_ADDR_AND_PORT:
7031 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7032 			/*
7033 			 * Note that we use the remote address in the tcp_b
7034 			 * structure.  This means that it will print out
7035 			 * the real destination address, not the next hop's
7036 			 * address if source routing is used.
7037 			 */
7038 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7039 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7040 
7041 		} else {
7042 			local = tcp->tcp_ip_src_v6;
7043 			remote = tcp->tcp_remote_v6;
7044 		}
7045 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7046 		    sizeof (local_addrbuf));
7047 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7048 		    sizeof (remote_addrbuf));
7049 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7050 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7051 		    ntohs(tcp->tcp_fport), cp);
7052 		break;
7053 	case DISP_PORT_ONLY:
7054 	default:
7055 		(void) mi_sprintf(buf, "[%u, %u] %s",
7056 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7057 		break;
7058 	}
7059 
7060 	return (buf);
7061 }
7062 
7063 /*
7064  * Called via squeue to get on to eager's perimeter to send a
7065  * TH_RST. The listener wants the eager to disappear either
7066  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
7067  * being called.
7068  */
7069 /* ARGSUSED */
7070 void
7071 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7072 {
7073 	conn_t	*econnp = (conn_t *)arg;
7074 	tcp_t	*eager = econnp->conn_tcp;
7075 	tcp_t	*listener = eager->tcp_listener;
7076 
7077 	/*
7078 	 * We could be called because listener is closing. Since
7079 	 * the eager is using listener's queue's, its not safe.
7080 	 * Better use the default queue just to send the TH_RST
7081 	 * out.
7082 	 */
7083 	eager->tcp_rq = tcp_g_q;
7084 	eager->tcp_wq = WR(tcp_g_q);
7085 
7086 	if (eager->tcp_state > TCPS_LISTEN) {
7087 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7088 		    eager, eager->tcp_snxt, 0, TH_RST);
7089 	}
7090 
7091 	/* We are here because listener wants this eager gone */
7092 	if (listener != NULL) {
7093 		mutex_enter(&listener->tcp_eager_lock);
7094 		tcp_eager_unlink(eager);
7095 		if (eager->tcp_tconnind_started) {
7096 			/*
7097 			 * The eager has sent a conn_ind up to the
7098 			 * listener but listener decides to close
7099 			 * instead. We need to drop the extra ref
7100 			 * placed on eager in tcp_rput_data() before
7101 			 * sending the conn_ind to listener.
7102 			 */
7103 			CONN_DEC_REF(econnp);
7104 		}
7105 		mutex_exit(&listener->tcp_eager_lock);
7106 		CONN_DEC_REF(listener->tcp_connp);
7107 	}
7108 
7109 	if (eager->tcp_state > TCPS_BOUND)
7110 		tcp_close_detached(eager);
7111 }
7112 
7113 /*
7114  * Reset any eager connection hanging off this listener marked
7115  * with 'seqnum' and then reclaim it's resources.
7116  */
7117 static boolean_t
7118 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7119 {
7120 	tcp_t	*eager;
7121 	mblk_t 	*mp;
7122 
7123 	TCP_STAT(tcp_eager_blowoff_calls);
7124 	eager = listener;
7125 	mutex_enter(&listener->tcp_eager_lock);
7126 	do {
7127 		eager = eager->tcp_eager_next_q;
7128 		if (eager == NULL) {
7129 			mutex_exit(&listener->tcp_eager_lock);
7130 			return (B_FALSE);
7131 		}
7132 	} while (eager->tcp_conn_req_seqnum != seqnum);
7133 
7134 	if (eager->tcp_closemp_used > 0) {
7135 		mutex_exit(&listener->tcp_eager_lock);
7136 		return (B_TRUE);
7137 	}
7138 	eager->tcp_closemp_used = 1;
7139 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7140 	CONN_INC_REF(eager->tcp_connp);
7141 	mutex_exit(&listener->tcp_eager_lock);
7142 	mp = &eager->tcp_closemp;
7143 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7144 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7145 	return (B_TRUE);
7146 }
7147 
7148 /*
7149  * Reset any eager connection hanging off this listener
7150  * and then reclaim it's resources.
7151  */
7152 static void
7153 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7154 {
7155 	tcp_t	*eager;
7156 	mblk_t	*mp;
7157 
7158 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7159 
7160 	if (!q0_only) {
7161 		/* First cleanup q */
7162 		TCP_STAT(tcp_eager_blowoff_q);
7163 		eager = listener->tcp_eager_next_q;
7164 		while (eager != NULL) {
7165 			if (eager->tcp_closemp_used == 0) {
7166 				eager->tcp_closemp_used = 1;
7167 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7168 				CONN_INC_REF(eager->tcp_connp);
7169 				mp = &eager->tcp_closemp;
7170 				squeue_fill(eager->tcp_connp->conn_sqp, mp,
7171 				    tcp_eager_kill, eager->tcp_connp,
7172 				    SQTAG_TCP_EAGER_CLEANUP);
7173 			}
7174 			eager = eager->tcp_eager_next_q;
7175 		}
7176 	}
7177 	/* Then cleanup q0 */
7178 	TCP_STAT(tcp_eager_blowoff_q0);
7179 	eager = listener->tcp_eager_next_q0;
7180 	while (eager != listener) {
7181 		if (eager->tcp_closemp_used == 0) {
7182 			eager->tcp_closemp_used = 1;
7183 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
7184 			CONN_INC_REF(eager->tcp_connp);
7185 			mp = &eager->tcp_closemp;
7186 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7187 			    tcp_eager_kill, eager->tcp_connp,
7188 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
7189 		}
7190 		eager = eager->tcp_eager_next_q0;
7191 	}
7192 }
7193 
7194 /*
7195  * If we are an eager connection hanging off a listener that hasn't
7196  * formally accepted the connection yet, get off his list and blow off
7197  * any data that we have accumulated.
7198  */
7199 static void
7200 tcp_eager_unlink(tcp_t *tcp)
7201 {
7202 	tcp_t	*listener = tcp->tcp_listener;
7203 
7204 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7205 	ASSERT(listener != NULL);
7206 	if (tcp->tcp_eager_next_q0 != NULL) {
7207 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7208 
7209 		/* Remove the eager tcp from q0 */
7210 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7211 		    tcp->tcp_eager_prev_q0;
7212 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7213 		    tcp->tcp_eager_next_q0;
7214 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7215 		listener->tcp_conn_req_cnt_q0--;
7216 
7217 		tcp->tcp_eager_next_q0 = NULL;
7218 		tcp->tcp_eager_prev_q0 = NULL;
7219 
7220 		/*
7221 		 * Take the eager out, if it is in the list of droppable
7222 		 * eagers.
7223 		 */
7224 		MAKE_UNDROPPABLE(tcp);
7225 
7226 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7227 			/* we have timed out before */
7228 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7229 			listener->tcp_syn_rcvd_timeout--;
7230 		}
7231 	} else {
7232 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7233 		tcp_t	*prev = NULL;
7234 
7235 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7236 			if (tcpp[0] == tcp) {
7237 				if (listener->tcp_eager_last_q == tcp) {
7238 					/*
7239 					 * If we are unlinking the last
7240 					 * element on the list, adjust
7241 					 * tail pointer. Set tail pointer
7242 					 * to nil when list is empty.
7243 					 */
7244 					ASSERT(tcp->tcp_eager_next_q == NULL);
7245 					if (listener->tcp_eager_last_q ==
7246 					    listener->tcp_eager_next_q) {
7247 						listener->tcp_eager_last_q =
7248 						NULL;
7249 					} else {
7250 						/*
7251 						 * We won't get here if there
7252 						 * is only one eager in the
7253 						 * list.
7254 						 */
7255 						ASSERT(prev != NULL);
7256 						listener->tcp_eager_last_q =
7257 						    prev;
7258 					}
7259 				}
7260 				tcpp[0] = tcp->tcp_eager_next_q;
7261 				tcp->tcp_eager_next_q = NULL;
7262 				tcp->tcp_eager_last_q = NULL;
7263 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7264 				listener->tcp_conn_req_cnt_q--;
7265 				break;
7266 			}
7267 			prev = tcpp[0];
7268 		}
7269 	}
7270 	tcp->tcp_listener = NULL;
7271 }
7272 
7273 /* Shorthand to generate and send TPI error acks to our client */
7274 static void
7275 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7276 {
7277 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7278 		putnext(tcp->tcp_rq, mp);
7279 }
7280 
7281 /* Shorthand to generate and send TPI error acks to our client */
7282 static void
7283 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7284     int t_error, int sys_error)
7285 {
7286 	struct T_error_ack	*teackp;
7287 
7288 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7289 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7290 		teackp = (struct T_error_ack *)mp->b_rptr;
7291 		teackp->ERROR_prim = primitive;
7292 		teackp->TLI_error = t_error;
7293 		teackp->UNIX_error = sys_error;
7294 		putnext(tcp->tcp_rq, mp);
7295 	}
7296 }
7297 
7298 /*
7299  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7300  * but instead the code relies on:
7301  * - the fact that the address of the array and its size never changes
7302  * - the atomic assignment of the elements of the array
7303  */
7304 /* ARGSUSED */
7305 static int
7306 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7307 {
7308 	int i;
7309 
7310 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7311 		if (tcp_g_epriv_ports[i] != 0)
7312 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
7313 	}
7314 	return (0);
7315 }
7316 
7317 /*
7318  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7319  * threads from changing it at the same time.
7320  */
7321 /* ARGSUSED */
7322 static int
7323 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7324     cred_t *cr)
7325 {
7326 	long	new_value;
7327 	int	i;
7328 
7329 	/*
7330 	 * Fail the request if the new value does not lie within the
7331 	 * port number limits.
7332 	 */
7333 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7334 	    new_value <= 0 || new_value >= 65536) {
7335 		return (EINVAL);
7336 	}
7337 
7338 	mutex_enter(&tcp_epriv_port_lock);
7339 	/* Check if the value is already in the list */
7340 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7341 		if (new_value == tcp_g_epriv_ports[i]) {
7342 			mutex_exit(&tcp_epriv_port_lock);
7343 			return (EEXIST);
7344 		}
7345 	}
7346 	/* Find an empty slot */
7347 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7348 		if (tcp_g_epriv_ports[i] == 0)
7349 			break;
7350 	}
7351 	if (i == tcp_g_num_epriv_ports) {
7352 		mutex_exit(&tcp_epriv_port_lock);
7353 		return (EOVERFLOW);
7354 	}
7355 	/* Set the new value */
7356 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
7357 	mutex_exit(&tcp_epriv_port_lock);
7358 	return (0);
7359 }
7360 
7361 /*
7362  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7363  * threads from changing it at the same time.
7364  */
7365 /* ARGSUSED */
7366 static int
7367 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7368     cred_t *cr)
7369 {
7370 	long	new_value;
7371 	int	i;
7372 
7373 	/*
7374 	 * Fail the request if the new value does not lie within the
7375 	 * port number limits.
7376 	 */
7377 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7378 	    new_value >= 65536) {
7379 		return (EINVAL);
7380 	}
7381 
7382 	mutex_enter(&tcp_epriv_port_lock);
7383 	/* Check that the value is already in the list */
7384 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7385 		if (tcp_g_epriv_ports[i] == new_value)
7386 			break;
7387 	}
7388 	if (i == tcp_g_num_epriv_ports) {
7389 		mutex_exit(&tcp_epriv_port_lock);
7390 		return (ESRCH);
7391 	}
7392 	/* Clear the value */
7393 	tcp_g_epriv_ports[i] = 0;
7394 	mutex_exit(&tcp_epriv_port_lock);
7395 	return (0);
7396 }
7397 
7398 /* Return the TPI/TLI equivalent of our current tcp_state */
7399 static int
7400 tcp_tpistate(tcp_t *tcp)
7401 {
7402 	switch (tcp->tcp_state) {
7403 	case TCPS_IDLE:
7404 		return (TS_UNBND);
7405 	case TCPS_LISTEN:
7406 		/*
7407 		 * Return whether there are outstanding T_CONN_IND waiting
7408 		 * for the matching T_CONN_RES. Therefore don't count q0.
7409 		 */
7410 		if (tcp->tcp_conn_req_cnt_q > 0)
7411 			return (TS_WRES_CIND);
7412 		else
7413 			return (TS_IDLE);
7414 	case TCPS_BOUND:
7415 		return (TS_IDLE);
7416 	case TCPS_SYN_SENT:
7417 		return (TS_WCON_CREQ);
7418 	case TCPS_SYN_RCVD:
7419 		/*
7420 		 * Note: assumption: this has to the active open SYN_RCVD.
7421 		 * The passive instance is detached in SYN_RCVD stage of
7422 		 * incoming connection processing so we cannot get request
7423 		 * for T_info_ack on it.
7424 		 */
7425 		return (TS_WACK_CRES);
7426 	case TCPS_ESTABLISHED:
7427 		return (TS_DATA_XFER);
7428 	case TCPS_CLOSE_WAIT:
7429 		return (TS_WREQ_ORDREL);
7430 	case TCPS_FIN_WAIT_1:
7431 		return (TS_WIND_ORDREL);
7432 	case TCPS_FIN_WAIT_2:
7433 		return (TS_WIND_ORDREL);
7434 
7435 	case TCPS_CLOSING:
7436 	case TCPS_LAST_ACK:
7437 	case TCPS_TIME_WAIT:
7438 	case TCPS_CLOSED:
7439 		/*
7440 		 * Following TS_WACK_DREQ7 is a rendition of "not
7441 		 * yet TS_IDLE" TPI state. There is no best match to any
7442 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7443 		 * choose a value chosen that will map to TLI/XTI level
7444 		 * state of TSTATECHNG (state is process of changing) which
7445 		 * captures what this dummy state represents.
7446 		 */
7447 		return (TS_WACK_DREQ7);
7448 	default:
7449 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7450 		    tcp->tcp_state, tcp_display(tcp, NULL,
7451 		    DISP_PORT_ONLY));
7452 		return (TS_UNBND);
7453 	}
7454 }
7455 
7456 static void
7457 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7458 {
7459 	if (tcp->tcp_family == AF_INET6)
7460 		*tia = tcp_g_t_info_ack_v6;
7461 	else
7462 		*tia = tcp_g_t_info_ack;
7463 	tia->CURRENT_state = tcp_tpistate(tcp);
7464 	tia->OPT_size = tcp_max_optsize;
7465 	if (tcp->tcp_mss == 0) {
7466 		/* Not yet set - tcp_open does not set mss */
7467 		if (tcp->tcp_ipversion == IPV4_VERSION)
7468 			tia->TIDU_size = tcp_mss_def_ipv4;
7469 		else
7470 			tia->TIDU_size = tcp_mss_def_ipv6;
7471 	} else {
7472 		tia->TIDU_size = tcp->tcp_mss;
7473 	}
7474 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7475 }
7476 
7477 /*
7478  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7479  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7480  * tcp_g_t_info_ack.  The current state of the stream is copied from
7481  * tcp_state.
7482  */
7483 static void
7484 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7485 {
7486 	t_uscalar_t		cap_bits1;
7487 	struct T_capability_ack	*tcap;
7488 
7489 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7490 		freemsg(mp);
7491 		return;
7492 	}
7493 
7494 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7495 
7496 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7497 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7498 	if (mp == NULL)
7499 		return;
7500 
7501 	tcap = (struct T_capability_ack *)mp->b_rptr;
7502 	tcap->CAP_bits1 = 0;
7503 
7504 	if (cap_bits1 & TC1_INFO) {
7505 		tcp_copy_info(&tcap->INFO_ack, tcp);
7506 		tcap->CAP_bits1 |= TC1_INFO;
7507 	}
7508 
7509 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7510 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7511 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7512 	}
7513 
7514 	putnext(tcp->tcp_rq, mp);
7515 }
7516 
7517 /*
7518  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7519  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7520  * The current state of the stream is copied from tcp_state.
7521  */
7522 static void
7523 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7524 {
7525 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7526 	    T_INFO_ACK);
7527 	if (!mp) {
7528 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7529 		return;
7530 	}
7531 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7532 	putnext(tcp->tcp_rq, mp);
7533 }
7534 
7535 /* Respond to the TPI addr request */
7536 static void
7537 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7538 {
7539 	sin_t	*sin;
7540 	mblk_t	*ackmp;
7541 	struct T_addr_ack *taa;
7542 
7543 	/* Make it large enough for worst case */
7544 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7545 	    2 * sizeof (sin6_t), 1);
7546 	if (ackmp == NULL) {
7547 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7548 		return;
7549 	}
7550 
7551 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7552 		tcp_addr_req_ipv6(tcp, ackmp);
7553 		return;
7554 	}
7555 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7556 
7557 	bzero(taa, sizeof (struct T_addr_ack));
7558 	ackmp->b_wptr = (uchar_t *)&taa[1];
7559 
7560 	taa->PRIM_type = T_ADDR_ACK;
7561 	ackmp->b_datap->db_type = M_PCPROTO;
7562 
7563 	/*
7564 	 * Note: Following code assumes 32 bit alignment of basic
7565 	 * data structures like sin_t and struct T_addr_ack.
7566 	 */
7567 	if (tcp->tcp_state >= TCPS_BOUND) {
7568 		/*
7569 		 * Fill in local address
7570 		 */
7571 		taa->LOCADDR_length = sizeof (sin_t);
7572 		taa->LOCADDR_offset = sizeof (*taa);
7573 
7574 		sin = (sin_t *)&taa[1];
7575 
7576 		/* Fill zeroes and then intialize non-zero fields */
7577 		*sin = sin_null;
7578 
7579 		sin->sin_family = AF_INET;
7580 
7581 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7582 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7583 
7584 		ackmp->b_wptr = (uchar_t *)&sin[1];
7585 
7586 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7587 			/*
7588 			 * Fill in Remote address
7589 			 */
7590 			taa->REMADDR_length = sizeof (sin_t);
7591 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7592 						taa->LOCADDR_length);
7593 
7594 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7595 			*sin = sin_null;
7596 			sin->sin_family = AF_INET;
7597 			sin->sin_addr.s_addr = tcp->tcp_remote;
7598 			sin->sin_port = tcp->tcp_fport;
7599 
7600 			ackmp->b_wptr = (uchar_t *)&sin[1];
7601 		}
7602 	}
7603 	putnext(tcp->tcp_rq, ackmp);
7604 }
7605 
7606 /* Assumes that tcp_addr_req gets enough space and alignment */
7607 static void
7608 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7609 {
7610 	sin6_t	*sin6;
7611 	struct T_addr_ack *taa;
7612 
7613 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7614 	ASSERT(OK_32PTR(ackmp->b_rptr));
7615 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7616 	    2 * sizeof (sin6_t));
7617 
7618 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7619 
7620 	bzero(taa, sizeof (struct T_addr_ack));
7621 	ackmp->b_wptr = (uchar_t *)&taa[1];
7622 
7623 	taa->PRIM_type = T_ADDR_ACK;
7624 	ackmp->b_datap->db_type = M_PCPROTO;
7625 
7626 	/*
7627 	 * Note: Following code assumes 32 bit alignment of basic
7628 	 * data structures like sin6_t and struct T_addr_ack.
7629 	 */
7630 	if (tcp->tcp_state >= TCPS_BOUND) {
7631 		/*
7632 		 * Fill in local address
7633 		 */
7634 		taa->LOCADDR_length = sizeof (sin6_t);
7635 		taa->LOCADDR_offset = sizeof (*taa);
7636 
7637 		sin6 = (sin6_t *)&taa[1];
7638 		*sin6 = sin6_null;
7639 
7640 		sin6->sin6_family = AF_INET6;
7641 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7642 		sin6->sin6_port = tcp->tcp_lport;
7643 
7644 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7645 
7646 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7647 			/*
7648 			 * Fill in Remote address
7649 			 */
7650 			taa->REMADDR_length = sizeof (sin6_t);
7651 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7652 						taa->LOCADDR_length);
7653 
7654 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7655 			*sin6 = sin6_null;
7656 			sin6->sin6_family = AF_INET6;
7657 			sin6->sin6_flowinfo =
7658 			    tcp->tcp_ip6h->ip6_vcf &
7659 			    ~IPV6_VERS_AND_FLOW_MASK;
7660 			sin6->sin6_addr = tcp->tcp_remote_v6;
7661 			sin6->sin6_port = tcp->tcp_fport;
7662 
7663 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7664 		}
7665 	}
7666 	putnext(tcp->tcp_rq, ackmp);
7667 }
7668 
7669 /*
7670  * Handle reinitialization of a tcp structure.
7671  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7672  */
7673 static void
7674 tcp_reinit(tcp_t *tcp)
7675 {
7676 	mblk_t	*mp;
7677 	int 	err;
7678 
7679 	TCP_STAT(tcp_reinit_calls);
7680 
7681 	/* tcp_reinit should never be called for detached tcp_t's */
7682 	ASSERT(tcp->tcp_listener == NULL);
7683 	ASSERT((tcp->tcp_family == AF_INET &&
7684 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7685 	    (tcp->tcp_family == AF_INET6 &&
7686 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7687 	    tcp->tcp_ipversion == IPV6_VERSION)));
7688 
7689 	/* Cancel outstanding timers */
7690 	tcp_timers_stop(tcp);
7691 
7692 	/*
7693 	 * Reset everything in the state vector, after updating global
7694 	 * MIB data from instance counters.
7695 	 */
7696 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
7697 	tcp->tcp_ibsegs = 0;
7698 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
7699 	tcp->tcp_obsegs = 0;
7700 
7701 	tcp_close_mpp(&tcp->tcp_xmit_head);
7702 	if (tcp->tcp_snd_zcopy_aware)
7703 		tcp_zcopy_notify(tcp);
7704 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7705 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7706 	if (tcp->tcp_flow_stopped &&
7707 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7708 		tcp_clrqfull(tcp);
7709 	}
7710 	tcp_close_mpp(&tcp->tcp_reass_head);
7711 	tcp->tcp_reass_tail = NULL;
7712 	if (tcp->tcp_rcv_list != NULL) {
7713 		/* Free b_next chain */
7714 		tcp_close_mpp(&tcp->tcp_rcv_list);
7715 		tcp->tcp_rcv_last_head = NULL;
7716 		tcp->tcp_rcv_last_tail = NULL;
7717 		tcp->tcp_rcv_cnt = 0;
7718 	}
7719 	tcp->tcp_rcv_last_tail = NULL;
7720 
7721 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7722 		freemsg(mp);
7723 		tcp->tcp_urp_mp = NULL;
7724 	}
7725 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7726 		freemsg(mp);
7727 		tcp->tcp_urp_mark_mp = NULL;
7728 	}
7729 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7730 		freeb(tcp->tcp_fused_sigurg_mp);
7731 		tcp->tcp_fused_sigurg_mp = NULL;
7732 	}
7733 
7734 	/*
7735 	 * Following is a union with two members which are
7736 	 * identical types and size so the following cleanup
7737 	 * is enough.
7738 	 */
7739 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7740 
7741 	CL_INET_DISCONNECT(tcp);
7742 
7743 	/*
7744 	 * The connection can't be on the tcp_time_wait_head list
7745 	 * since it is not detached.
7746 	 */
7747 	ASSERT(tcp->tcp_time_wait_next == NULL);
7748 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7749 	ASSERT(tcp->tcp_time_wait_expire == 0);
7750 
7751 	if (tcp->tcp_kssl_pending) {
7752 		tcp->tcp_kssl_pending = B_FALSE;
7753 
7754 		/* Don't reset if the initialized by bind. */
7755 		if (tcp->tcp_kssl_ent != NULL) {
7756 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7757 			    KSSL_NO_PROXY);
7758 		}
7759 	}
7760 	if (tcp->tcp_kssl_ctx != NULL) {
7761 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7762 		tcp->tcp_kssl_ctx = NULL;
7763 	}
7764 
7765 	/*
7766 	 * Reset/preserve other values
7767 	 */
7768 	tcp_reinit_values(tcp);
7769 	ipcl_hash_remove(tcp->tcp_connp);
7770 	conn_delete_ire(tcp->tcp_connp, NULL);
7771 
7772 	if (tcp->tcp_conn_req_max != 0) {
7773 		/*
7774 		 * This is the case when a TLI program uses the same
7775 		 * transport end point to accept a connection.  This
7776 		 * makes the TCP both a listener and acceptor.  When
7777 		 * this connection is closed, we need to set the state
7778 		 * back to TCPS_LISTEN.  Make sure that the eager list
7779 		 * is reinitialized.
7780 		 *
7781 		 * Note that this stream is still bound to the four
7782 		 * tuples of the previous connection in IP.  If a new
7783 		 * SYN with different foreign address comes in, IP will
7784 		 * not find it and will send it to the global queue.  In
7785 		 * the global queue, TCP will do a tcp_lookup_listener()
7786 		 * to find this stream.  This works because this stream
7787 		 * is only removed from connected hash.
7788 		 *
7789 		 */
7790 		tcp->tcp_state = TCPS_LISTEN;
7791 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7792 		tcp->tcp_eager_next_drop_q0 = tcp;
7793 		tcp->tcp_eager_prev_drop_q0 = tcp;
7794 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7795 		if (tcp->tcp_family == AF_INET6) {
7796 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7797 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7798 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7799 		} else {
7800 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7801 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7802 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7803 		}
7804 	} else {
7805 		tcp->tcp_state = TCPS_BOUND;
7806 	}
7807 
7808 	/*
7809 	 * Initialize to default values
7810 	 * Can't fail since enough header template space already allocated
7811 	 * at open().
7812 	 */
7813 	err = tcp_init_values(tcp);
7814 	ASSERT(err == 0);
7815 	/* Restore state in tcp_tcph */
7816 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7817 	if (tcp->tcp_ipversion == IPV4_VERSION)
7818 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7819 	else
7820 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7821 	/*
7822 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7823 	 * since the lookup funcs can only lookup on tcp_t
7824 	 */
7825 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7826 
7827 	ASSERT(tcp->tcp_ptpbhn != NULL);
7828 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
7829 	tcp->tcp_rwnd = tcp_recv_hiwat;
7830 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7831 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
7832 }
7833 
7834 /*
7835  * Force values to zero that need be zero.
7836  * Do not touch values asociated with the BOUND or LISTEN state
7837  * since the connection will end up in that state after the reinit.
7838  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7839  * structure!
7840  */
7841 static void
7842 tcp_reinit_values(tcp)
7843 	tcp_t *tcp;
7844 {
7845 #ifndef	lint
7846 #define	DONTCARE(x)
7847 #define	PRESERVE(x)
7848 #else
7849 #define	DONTCARE(x)	((x) = (x))
7850 #define	PRESERVE(x)	((x) = (x))
7851 #endif	/* lint */
7852 
7853 	PRESERVE(tcp->tcp_bind_hash);
7854 	PRESERVE(tcp->tcp_ptpbhn);
7855 	PRESERVE(tcp->tcp_acceptor_hash);
7856 	PRESERVE(tcp->tcp_ptpahn);
7857 
7858 	/* Should be ASSERT NULL on these with new code! */
7859 	ASSERT(tcp->tcp_time_wait_next == NULL);
7860 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7861 	ASSERT(tcp->tcp_time_wait_expire == 0);
7862 	PRESERVE(tcp->tcp_state);
7863 	PRESERVE(tcp->tcp_rq);
7864 	PRESERVE(tcp->tcp_wq);
7865 
7866 	ASSERT(tcp->tcp_xmit_head == NULL);
7867 	ASSERT(tcp->tcp_xmit_last == NULL);
7868 	ASSERT(tcp->tcp_unsent == 0);
7869 	ASSERT(tcp->tcp_xmit_tail == NULL);
7870 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7871 
7872 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7873 	tcp->tcp_suna = 0;			/* Displayed in mib */
7874 	tcp->tcp_swnd = 0;
7875 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7876 
7877 	ASSERT(tcp->tcp_ibsegs == 0);
7878 	ASSERT(tcp->tcp_obsegs == 0);
7879 
7880 	if (tcp->tcp_iphc != NULL) {
7881 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7882 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7883 	}
7884 
7885 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7886 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7887 	DONTCARE(tcp->tcp_ipha);
7888 	DONTCARE(tcp->tcp_ip6h);
7889 	DONTCARE(tcp->tcp_ip_hdr_len);
7890 	DONTCARE(tcp->tcp_tcph);
7891 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7892 	tcp->tcp_valid_bits = 0;
7893 
7894 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7895 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7896 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7897 	tcp->tcp_last_rcv_lbolt = 0;
7898 
7899 	tcp->tcp_init_cwnd = 0;
7900 
7901 	tcp->tcp_urp_last_valid = 0;
7902 	tcp->tcp_hard_binding = 0;
7903 	tcp->tcp_hard_bound = 0;
7904 	PRESERVE(tcp->tcp_cred);
7905 	PRESERVE(tcp->tcp_cpid);
7906 	PRESERVE(tcp->tcp_exclbind);
7907 
7908 	tcp->tcp_fin_acked = 0;
7909 	tcp->tcp_fin_rcvd = 0;
7910 	tcp->tcp_fin_sent = 0;
7911 	tcp->tcp_ordrel_done = 0;
7912 
7913 	tcp->tcp_debug = 0;
7914 	tcp->tcp_dontroute = 0;
7915 	tcp->tcp_broadcast = 0;
7916 
7917 	tcp->tcp_useloopback = 0;
7918 	tcp->tcp_reuseaddr = 0;
7919 	tcp->tcp_oobinline = 0;
7920 	tcp->tcp_dgram_errind = 0;
7921 
7922 	tcp->tcp_detached = 0;
7923 	tcp->tcp_bind_pending = 0;
7924 	tcp->tcp_unbind_pending = 0;
7925 	tcp->tcp_deferred_clean_death = 0;
7926 
7927 	tcp->tcp_snd_ws_ok = B_FALSE;
7928 	tcp->tcp_snd_ts_ok = B_FALSE;
7929 	tcp->tcp_linger = 0;
7930 	tcp->tcp_ka_enabled = 0;
7931 	tcp->tcp_zero_win_probe = 0;
7932 
7933 	tcp->tcp_loopback = 0;
7934 	tcp->tcp_localnet = 0;
7935 	tcp->tcp_syn_defense = 0;
7936 	tcp->tcp_set_timer = 0;
7937 
7938 	tcp->tcp_active_open = 0;
7939 	ASSERT(tcp->tcp_timeout == B_FALSE);
7940 	tcp->tcp_rexmit = B_FALSE;
7941 	tcp->tcp_xmit_zc_clean = B_FALSE;
7942 
7943 	tcp->tcp_snd_sack_ok = B_FALSE;
7944 	PRESERVE(tcp->tcp_recvdstaddr);
7945 	tcp->tcp_hwcksum = B_FALSE;
7946 
7947 	tcp->tcp_ire_ill_check_done = B_FALSE;
7948 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7949 
7950 	tcp->tcp_mdt = B_FALSE;
7951 	tcp->tcp_mdt_hdr_head = 0;
7952 	tcp->tcp_mdt_hdr_tail = 0;
7953 
7954 	tcp->tcp_conn_def_q0 = 0;
7955 	tcp->tcp_ip_forward_progress = B_FALSE;
7956 	tcp->tcp_anon_priv_bind = 0;
7957 	tcp->tcp_ecn_ok = B_FALSE;
7958 
7959 	tcp->tcp_cwr = B_FALSE;
7960 	tcp->tcp_ecn_echo_on = B_FALSE;
7961 
7962 	if (tcp->tcp_sack_info != NULL) {
7963 		if (tcp->tcp_notsack_list != NULL) {
7964 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7965 		}
7966 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7967 		tcp->tcp_sack_info = NULL;
7968 	}
7969 
7970 	tcp->tcp_rcv_ws = 0;
7971 	tcp->tcp_snd_ws = 0;
7972 	tcp->tcp_ts_recent = 0;
7973 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7974 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7975 	tcp->tcp_if_mtu = 0;
7976 
7977 	ASSERT(tcp->tcp_reass_head == NULL);
7978 	ASSERT(tcp->tcp_reass_tail == NULL);
7979 
7980 	tcp->tcp_cwnd_cnt = 0;
7981 
7982 	ASSERT(tcp->tcp_rcv_list == NULL);
7983 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7984 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7985 	ASSERT(tcp->tcp_rcv_cnt == 0);
7986 
7987 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7988 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7989 	tcp->tcp_csuna = 0;
7990 
7991 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7992 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7993 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7994 	tcp->tcp_rtt_update = 0;
7995 
7996 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7997 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7998 
7999 	tcp->tcp_rack = 0;			/* Displayed in mib */
8000 	tcp->tcp_rack_cnt = 0;
8001 	tcp->tcp_rack_cur_max = 0;
8002 	tcp->tcp_rack_abs_max = 0;
8003 
8004 	tcp->tcp_max_swnd = 0;
8005 
8006 	ASSERT(tcp->tcp_listener == NULL);
8007 
8008 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8009 
8010 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8011 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8012 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8013 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8014 
8015 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8016 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8017 	PRESERVE(tcp->tcp_conn_req_max);
8018 	PRESERVE(tcp->tcp_conn_req_seqnum);
8019 
8020 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8021 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8022 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8023 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8024 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8025 
8026 	tcp->tcp_lingertime = 0;
8027 
8028 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8029 	ASSERT(tcp->tcp_urp_mp == NULL);
8030 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8031 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8032 
8033 	ASSERT(tcp->tcp_eager_next_q == NULL);
8034 	ASSERT(tcp->tcp_eager_last_q == NULL);
8035 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8036 	    tcp->tcp_eager_prev_q0 == NULL) ||
8037 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8038 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8039 
8040 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
8041 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
8042 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
8043 
8044 	tcp->tcp_client_errno = 0;
8045 
8046 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8047 
8048 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8049 
8050 	PRESERVE(tcp->tcp_bound_source_v6);
8051 	tcp->tcp_last_sent_len = 0;
8052 	tcp->tcp_dupack_cnt = 0;
8053 
8054 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8055 	PRESERVE(tcp->tcp_lport);
8056 
8057 	PRESERVE(tcp->tcp_acceptor_lockp);
8058 
8059 	ASSERT(tcp->tcp_ordrelid == 0);
8060 	PRESERVE(tcp->tcp_acceptor_id);
8061 	DONTCARE(tcp->tcp_ipsec_overhead);
8062 
8063 	/*
8064 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8065 	 * in tcp structure and now tracing), Re-initialize all
8066 	 * members of tcp_traceinfo.
8067 	 */
8068 	if (tcp->tcp_tracebuf != NULL) {
8069 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8070 	}
8071 
8072 	PRESERVE(tcp->tcp_family);
8073 	if (tcp->tcp_family == AF_INET6) {
8074 		tcp->tcp_ipversion = IPV6_VERSION;
8075 		tcp->tcp_mss = tcp_mss_def_ipv6;
8076 	} else {
8077 		tcp->tcp_ipversion = IPV4_VERSION;
8078 		tcp->tcp_mss = tcp_mss_def_ipv4;
8079 	}
8080 
8081 	tcp->tcp_bound_if = 0;
8082 	tcp->tcp_ipv6_recvancillary = 0;
8083 	tcp->tcp_recvifindex = 0;
8084 	tcp->tcp_recvhops = 0;
8085 	tcp->tcp_closed = 0;
8086 	tcp->tcp_cleandeathtag = 0;
8087 	if (tcp->tcp_hopopts != NULL) {
8088 		mi_free(tcp->tcp_hopopts);
8089 		tcp->tcp_hopopts = NULL;
8090 		tcp->tcp_hopoptslen = 0;
8091 	}
8092 	ASSERT(tcp->tcp_hopoptslen == 0);
8093 	if (tcp->tcp_dstopts != NULL) {
8094 		mi_free(tcp->tcp_dstopts);
8095 		tcp->tcp_dstopts = NULL;
8096 		tcp->tcp_dstoptslen = 0;
8097 	}
8098 	ASSERT(tcp->tcp_dstoptslen == 0);
8099 	if (tcp->tcp_rtdstopts != NULL) {
8100 		mi_free(tcp->tcp_rtdstopts);
8101 		tcp->tcp_rtdstopts = NULL;
8102 		tcp->tcp_rtdstoptslen = 0;
8103 	}
8104 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8105 	if (tcp->tcp_rthdr != NULL) {
8106 		mi_free(tcp->tcp_rthdr);
8107 		tcp->tcp_rthdr = NULL;
8108 		tcp->tcp_rthdrlen = 0;
8109 	}
8110 	ASSERT(tcp->tcp_rthdrlen == 0);
8111 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8112 
8113 	/* Reset fusion-related fields */
8114 	tcp->tcp_fused = B_FALSE;
8115 	tcp->tcp_unfusable = B_FALSE;
8116 	tcp->tcp_fused_sigurg = B_FALSE;
8117 	tcp->tcp_direct_sockfs = B_FALSE;
8118 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8119 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8120 	tcp->tcp_loopback_peer = NULL;
8121 	tcp->tcp_fuse_rcv_hiwater = 0;
8122 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8123 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8124 
8125 	tcp->tcp_in_ack_unsent = 0;
8126 	tcp->tcp_cork = B_FALSE;
8127 	tcp->tcp_tconnind_started = B_FALSE;
8128 
8129 	PRESERVE(tcp->tcp_squeue_bytes);
8130 
8131 	ASSERT(tcp->tcp_kssl_ctx == NULL);
8132 	ASSERT(!tcp->tcp_kssl_pending);
8133 	PRESERVE(tcp->tcp_kssl_ent);
8134 
8135 	tcp->tcp_closemp_used = 0;
8136 
8137 #ifdef DEBUG
8138 	DONTCARE(tcp->tcmp_stk[0]);
8139 #endif
8140 
8141 
8142 #undef	DONTCARE
8143 #undef	PRESERVE
8144 }
8145 
8146 /*
8147  * Allocate necessary resources and initialize state vector.
8148  * Guaranteed not to fail so that when an error is returned,
8149  * the caller doesn't need to do any additional cleanup.
8150  */
8151 int
8152 tcp_init(tcp_t *tcp, queue_t *q)
8153 {
8154 	int	err;
8155 
8156 	tcp->tcp_rq = q;
8157 	tcp->tcp_wq = WR(q);
8158 	tcp->tcp_state = TCPS_IDLE;
8159 	if ((err = tcp_init_values(tcp)) != 0)
8160 		tcp_timers_stop(tcp);
8161 	return (err);
8162 }
8163 
8164 static int
8165 tcp_init_values(tcp_t *tcp)
8166 {
8167 	int	err;
8168 
8169 	ASSERT((tcp->tcp_family == AF_INET &&
8170 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8171 	    (tcp->tcp_family == AF_INET6 &&
8172 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8173 	    tcp->tcp_ipversion == IPV6_VERSION)));
8174 
8175 	/*
8176 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8177 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8178 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8179 	 * during first few transmissions of a connection as seen in slow
8180 	 * links.
8181 	 */
8182 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
8183 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
8184 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8185 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8186 	    tcp_conn_grace_period;
8187 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
8188 		tcp->tcp_rto = tcp_rexmit_interval_min;
8189 	tcp->tcp_timer_backoff = 0;
8190 	tcp->tcp_ms_we_have_waited = 0;
8191 	tcp->tcp_last_recv_time = lbolt;
8192 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
8193 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
8194 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8195 
8196 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
8197 
8198 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
8199 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
8200 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
8201 	/*
8202 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8203 	 * passive open.
8204 	 */
8205 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
8206 
8207 	tcp->tcp_naglim = tcp_naglim_def;
8208 
8209 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8210 
8211 	tcp->tcp_mdt_hdr_head = 0;
8212 	tcp->tcp_mdt_hdr_tail = 0;
8213 
8214 	/* Reset fusion-related fields */
8215 	tcp->tcp_fused = B_FALSE;
8216 	tcp->tcp_unfusable = B_FALSE;
8217 	tcp->tcp_fused_sigurg = B_FALSE;
8218 	tcp->tcp_direct_sockfs = B_FALSE;
8219 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
8220 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
8221 	tcp->tcp_loopback_peer = NULL;
8222 	tcp->tcp_fuse_rcv_hiwater = 0;
8223 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
8224 	tcp->tcp_fuse_rcv_unread_cnt = 0;
8225 
8226 	/* Initialize the header template */
8227 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8228 		err = tcp_header_init_ipv4(tcp);
8229 	} else {
8230 		err = tcp_header_init_ipv6(tcp);
8231 	}
8232 	if (err)
8233 		return (err);
8234 
8235 	/*
8236 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8237 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8238 	 */
8239 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8240 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
8241 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
8242 
8243 	tcp->tcp_cork = B_FALSE;
8244 	/*
8245 	 * Init the tcp_debug option.  This value determines whether TCP
8246 	 * calls strlog() to print out debug messages.  Doing this
8247 	 * initialization here means that this value is not inherited thru
8248 	 * tcp_reinit().
8249 	 */
8250 	tcp->tcp_debug = tcp_dbg;
8251 
8252 	tcp->tcp_ka_interval = tcp_keepalive_interval;
8253 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
8254 
8255 	return (0);
8256 }
8257 
8258 /*
8259  * Initialize the IPv4 header. Loses any record of any IP options.
8260  */
8261 static int
8262 tcp_header_init_ipv4(tcp_t *tcp)
8263 {
8264 	tcph_t		*tcph;
8265 	uint32_t	sum;
8266 	conn_t		*connp;
8267 
8268 	/*
8269 	 * This is a simple initialization. If there's
8270 	 * already a template, it should never be too small,
8271 	 * so reuse it.  Otherwise, allocate space for the new one.
8272 	 */
8273 	if (tcp->tcp_iphc == NULL) {
8274 		ASSERT(tcp->tcp_iphc_len == 0);
8275 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8276 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8277 		if (tcp->tcp_iphc == NULL) {
8278 			tcp->tcp_iphc_len = 0;
8279 			return (ENOMEM);
8280 		}
8281 	}
8282 
8283 	/* options are gone; may need a new label */
8284 	connp = tcp->tcp_connp;
8285 	connp->conn_mlp_type = mlptSingle;
8286 	connp->conn_ulp_labeled = !is_system_labeled();
8287 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8288 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8289 	tcp->tcp_ip6h = NULL;
8290 	tcp->tcp_ipversion = IPV4_VERSION;
8291 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8292 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8293 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8294 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8295 	tcp->tcp_ipha->ipha_version_and_hdr_length
8296 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8297 	tcp->tcp_ipha->ipha_ident = 0;
8298 
8299 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
8300 	tcp->tcp_tos = 0;
8301 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8302 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
8303 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8304 
8305 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8306 	tcp->tcp_tcph = tcph;
8307 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8308 	/*
8309 	 * IP wants our header length in the checksum field to
8310 	 * allow it to perform a single pseudo-header+checksum
8311 	 * calculation on behalf of TCP.
8312 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8313 	 */
8314 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8315 	sum = (sum >> 16) + (sum & 0xFFFF);
8316 	U16_TO_ABE16(sum, tcph->th_sum);
8317 	return (0);
8318 }
8319 
8320 /*
8321  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8322  */
8323 static int
8324 tcp_header_init_ipv6(tcp_t *tcp)
8325 {
8326 	tcph_t	*tcph;
8327 	uint32_t	sum;
8328 	conn_t	*connp;
8329 
8330 	/*
8331 	 * This is a simple initialization. If there's
8332 	 * already a template, it should never be too small,
8333 	 * so reuse it. Otherwise, allocate space for the new one.
8334 	 * Ensure that there is enough space to "downgrade" the tcp_t
8335 	 * to an IPv4 tcp_t. This requires having space for a full load
8336 	 * of IPv4 options, as well as a full load of TCP options
8337 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8338 	 * than a v6 header and a TCP header with a full load of TCP options
8339 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8340 	 * We want to avoid reallocation in the "downgraded" case when
8341 	 * processing outbound IPv4 options.
8342 	 */
8343 	if (tcp->tcp_iphc == NULL) {
8344 		ASSERT(tcp->tcp_iphc_len == 0);
8345 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8346 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8347 		if (tcp->tcp_iphc == NULL) {
8348 			tcp->tcp_iphc_len = 0;
8349 			return (ENOMEM);
8350 		}
8351 	}
8352 
8353 	/* options are gone; may need a new label */
8354 	connp = tcp->tcp_connp;
8355 	connp->conn_mlp_type = mlptSingle;
8356 	connp->conn_ulp_labeled = !is_system_labeled();
8357 
8358 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8359 	tcp->tcp_ipversion = IPV6_VERSION;
8360 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8361 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8362 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8363 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8364 	tcp->tcp_ipha = NULL;
8365 
8366 	/* Initialize the header template */
8367 
8368 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8369 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8370 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8371 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
8372 
8373 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8374 	tcp->tcp_tcph = tcph;
8375 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8376 	/*
8377 	 * IP wants our header length in the checksum field to
8378 	 * allow it to perform a single psuedo-header+checksum
8379 	 * calculation on behalf of TCP.
8380 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8381 	 */
8382 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8383 	sum = (sum >> 16) + (sum & 0xFFFF);
8384 	U16_TO_ABE16(sum, tcph->th_sum);
8385 	return (0);
8386 }
8387 
8388 /* At minimum we need 4 bytes in the TCP header for the lookup */
8389 #define	ICMP_MIN_TCP_HDR	12
8390 
8391 /*
8392  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8393  * passed up by IP. The message is always received on the correct tcp_t.
8394  * Assumes that IP has pulled up everything up to and including the ICMP header.
8395  */
8396 void
8397 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8398 {
8399 	icmph_t *icmph;
8400 	ipha_t	*ipha;
8401 	int	iph_hdr_length;
8402 	tcph_t	*tcph;
8403 	boolean_t ipsec_mctl = B_FALSE;
8404 	boolean_t secure;
8405 	mblk_t *first_mp = mp;
8406 	uint32_t new_mss;
8407 	uint32_t ratio;
8408 	size_t mp_size = MBLKL(mp);
8409 	uint32_t seg_ack;
8410 	uint32_t seg_seq;
8411 
8412 	/* Assume IP provides aligned packets - otherwise toss */
8413 	if (!OK_32PTR(mp->b_rptr)) {
8414 		freemsg(mp);
8415 		return;
8416 	}
8417 
8418 	/*
8419 	 * Since ICMP errors are normal data marked with M_CTL when sent
8420 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8421 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8422 	 */
8423 	if ((mp_size == sizeof (ipsec_info_t)) &&
8424 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8425 		ASSERT(mp->b_cont != NULL);
8426 		mp = mp->b_cont;
8427 		/* IP should have done this */
8428 		ASSERT(OK_32PTR(mp->b_rptr));
8429 		mp_size = MBLKL(mp);
8430 		ipsec_mctl = B_TRUE;
8431 	}
8432 
8433 	/*
8434 	 * Verify that we have a complete outer IP header. If not, drop it.
8435 	 */
8436 	if (mp_size < sizeof (ipha_t)) {
8437 noticmpv4:
8438 		freemsg(first_mp);
8439 		return;
8440 	}
8441 
8442 	ipha = (ipha_t *)mp->b_rptr;
8443 	/*
8444 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8445 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8446 	 */
8447 	switch (IPH_HDR_VERSION(ipha)) {
8448 	case IPV6_VERSION:
8449 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8450 		return;
8451 	case IPV4_VERSION:
8452 		break;
8453 	default:
8454 		goto noticmpv4;
8455 	}
8456 
8457 	/* Skip past the outer IP and ICMP headers */
8458 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8459 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8460 	/*
8461 	 * If we don't have the correct outer IP header length or if the ULP
8462 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8463 	 * send it upstream.
8464 	 */
8465 	if (iph_hdr_length < sizeof (ipha_t) ||
8466 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8467 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8468 		goto noticmpv4;
8469 	}
8470 	ipha = (ipha_t *)&icmph[1];
8471 
8472 	/* Skip past the inner IP and find the ULP header */
8473 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8474 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8475 	/*
8476 	 * If we don't have the correct inner IP header length or if the ULP
8477 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8478 	 * bytes of TCP header, drop it.
8479 	 */
8480 	if (iph_hdr_length < sizeof (ipha_t) ||
8481 	    ipha->ipha_protocol != IPPROTO_TCP ||
8482 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8483 		goto noticmpv4;
8484 	}
8485 
8486 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8487 		if (ipsec_mctl) {
8488 			secure = ipsec_in_is_secure(first_mp);
8489 		} else {
8490 			secure = B_FALSE;
8491 		}
8492 		if (secure) {
8493 			/*
8494 			 * If we are willing to accept this in clear
8495 			 * we don't have to verify policy.
8496 			 */
8497 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8498 				if (!tcp_check_policy(tcp, first_mp,
8499 				    ipha, NULL, secure, ipsec_mctl)) {
8500 					/*
8501 					 * tcp_check_policy called
8502 					 * ip_drop_packet() on failure.
8503 					 */
8504 					return;
8505 				}
8506 			}
8507 		}
8508 	} else if (ipsec_mctl) {
8509 		/*
8510 		 * This is a hard_bound connection. IP has already
8511 		 * verified policy. We don't have to do it again.
8512 		 */
8513 		freeb(first_mp);
8514 		first_mp = mp;
8515 		ipsec_mctl = B_FALSE;
8516 	}
8517 
8518 	seg_ack = ABE32_TO_U32(tcph->th_ack);
8519 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8520 	/*
8521 	 * TCP SHOULD check that the TCP sequence number contained in
8522 	 * payload of the ICMP error message is within the range
8523 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8524 	 */
8525 	if (SEQ_LT(seg_seq, tcp->tcp_suna) ||
8526 		SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8527 		SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8528 		/*
8529 		 * If the ICMP message is bogus, should we kill the
8530 		 * connection, or should we just drop the bogus ICMP
8531 		 * message? It would probably make more sense to just
8532 		 * drop the message so that if this one managed to get
8533 		 * in, the real connection should not suffer.
8534 		 */
8535 		goto noticmpv4;
8536 	}
8537 
8538 	switch (icmph->icmph_type) {
8539 	case ICMP_DEST_UNREACHABLE:
8540 		switch (icmph->icmph_code) {
8541 		case ICMP_FRAGMENTATION_NEEDED:
8542 			/*
8543 			 * Reduce the MSS based on the new MTU.  This will
8544 			 * eliminate any fragmentation locally.
8545 			 * N.B.  There may well be some funny side-effects on
8546 			 * the local send policy and the remote receive policy.
8547 			 * Pending further research, we provide
8548 			 * tcp_ignore_path_mtu just in case this proves
8549 			 * disastrous somewhere.
8550 			 *
8551 			 * After updating the MSS, retransmit part of the
8552 			 * dropped segment using the new mss by calling
8553 			 * tcp_wput_data().  Need to adjust all those
8554 			 * params to make sure tcp_wput_data() work properly.
8555 			 */
8556 			if (tcp_ignore_path_mtu)
8557 				break;
8558 
8559 			/*
8560 			 * Decrease the MSS by time stamp options
8561 			 * IP options and IPSEC options. tcp_hdr_len
8562 			 * includes time stamp option and IP option
8563 			 * length.
8564 			 */
8565 
8566 			new_mss = ntohs(icmph->icmph_du_mtu) -
8567 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8568 
8569 			/*
8570 			 * Only update the MSS if the new one is
8571 			 * smaller than the previous one.  This is
8572 			 * to avoid problems when getting multiple
8573 			 * ICMP errors for the same MTU.
8574 			 */
8575 			if (new_mss >= tcp->tcp_mss)
8576 				break;
8577 
8578 			/*
8579 			 * Stop doing PMTU if new_mss is less than 68
8580 			 * or less than tcp_mss_min.
8581 			 * The value 68 comes from rfc 1191.
8582 			 */
8583 			if (new_mss < MAX(68, tcp_mss_min))
8584 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8585 				    0;
8586 
8587 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8588 			ASSERT(ratio >= 1);
8589 			tcp_mss_set(tcp, new_mss);
8590 
8591 			/*
8592 			 * Make sure we have something to
8593 			 * send.
8594 			 */
8595 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8596 			    (tcp->tcp_xmit_head != NULL)) {
8597 				/*
8598 				 * Shrink tcp_cwnd in
8599 				 * proportion to the old MSS/new MSS.
8600 				 */
8601 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8602 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8603 				    (tcp->tcp_unsent == 0)) {
8604 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8605 				} else {
8606 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8607 				}
8608 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8609 				tcp->tcp_rexmit = B_TRUE;
8610 				tcp->tcp_dupack_cnt = 0;
8611 				tcp->tcp_snd_burst = TCP_CWND_SS;
8612 				tcp_ss_rexmit(tcp);
8613 			}
8614 			break;
8615 		case ICMP_PORT_UNREACHABLE:
8616 		case ICMP_PROTOCOL_UNREACHABLE:
8617 			switch (tcp->tcp_state) {
8618 			case TCPS_SYN_SENT:
8619 			case TCPS_SYN_RCVD:
8620 				/*
8621 				 * ICMP can snipe away incipient
8622 				 * TCP connections as long as
8623 				 * seq number is same as initial
8624 				 * send seq number.
8625 				 */
8626 				if (seg_seq == tcp->tcp_iss) {
8627 					(void) tcp_clean_death(tcp,
8628 					    ECONNREFUSED, 6);
8629 				}
8630 				break;
8631 			}
8632 			break;
8633 		case ICMP_HOST_UNREACHABLE:
8634 		case ICMP_NET_UNREACHABLE:
8635 			/* Record the error in case we finally time out. */
8636 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8637 				tcp->tcp_client_errno = EHOSTUNREACH;
8638 			else
8639 				tcp->tcp_client_errno = ENETUNREACH;
8640 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8641 				if (tcp->tcp_listener != NULL &&
8642 				    tcp->tcp_listener->tcp_syn_defense) {
8643 					/*
8644 					 * Ditch the half-open connection if we
8645 					 * suspect a SYN attack is under way.
8646 					 */
8647 					tcp_ip_ire_mark_advice(tcp);
8648 					(void) tcp_clean_death(tcp,
8649 					    tcp->tcp_client_errno, 7);
8650 				}
8651 			}
8652 			break;
8653 		default:
8654 			break;
8655 		}
8656 		break;
8657 	case ICMP_SOURCE_QUENCH: {
8658 		/*
8659 		 * use a global boolean to control
8660 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8661 		 * The default is false.
8662 		 */
8663 		if (tcp_icmp_source_quench) {
8664 			/*
8665 			 * Reduce the sending rate as if we got a
8666 			 * retransmit timeout
8667 			 */
8668 			uint32_t npkt;
8669 
8670 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8671 			    tcp->tcp_mss;
8672 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8673 			tcp->tcp_cwnd = tcp->tcp_mss;
8674 			tcp->tcp_cwnd_cnt = 0;
8675 		}
8676 		break;
8677 	}
8678 	}
8679 	freemsg(first_mp);
8680 }
8681 
8682 /*
8683  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8684  * error messages passed up by IP.
8685  * Assumes that IP has pulled up all the extension headers as well
8686  * as the ICMPv6 header.
8687  */
8688 static void
8689 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8690 {
8691 	icmp6_t *icmp6;
8692 	ip6_t	*ip6h;
8693 	uint16_t	iph_hdr_length;
8694 	tcpha_t	*tcpha;
8695 	uint8_t	*nexthdrp;
8696 	uint32_t new_mss;
8697 	uint32_t ratio;
8698 	boolean_t secure;
8699 	mblk_t *first_mp = mp;
8700 	size_t mp_size;
8701 	uint32_t seg_ack;
8702 	uint32_t seg_seq;
8703 
8704 	/*
8705 	 * The caller has determined if this is an IPSEC_IN packet and
8706 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8707 	 */
8708 	if (ipsec_mctl)
8709 		mp = mp->b_cont;
8710 
8711 	mp_size = MBLKL(mp);
8712 
8713 	/*
8714 	 * Verify that we have a complete IP header. If not, send it upstream.
8715 	 */
8716 	if (mp_size < sizeof (ip6_t)) {
8717 noticmpv6:
8718 		freemsg(first_mp);
8719 		return;
8720 	}
8721 
8722 	/*
8723 	 * Verify this is an ICMPV6 packet, else send it upstream.
8724 	 */
8725 	ip6h = (ip6_t *)mp->b_rptr;
8726 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8727 		iph_hdr_length = IPV6_HDR_LEN;
8728 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8729 	    &nexthdrp) ||
8730 	    *nexthdrp != IPPROTO_ICMPV6) {
8731 		goto noticmpv6;
8732 	}
8733 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8734 	ip6h = (ip6_t *)&icmp6[1];
8735 	/*
8736 	 * Verify if we have a complete ICMP and inner IP header.
8737 	 */
8738 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8739 		goto noticmpv6;
8740 
8741 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8742 		goto noticmpv6;
8743 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8744 	/*
8745 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8746 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8747 	 * packet.
8748 	 */
8749 	if ((*nexthdrp != IPPROTO_TCP) ||
8750 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8751 		goto noticmpv6;
8752 	}
8753 
8754 	/*
8755 	 * ICMP errors come on the right queue or come on
8756 	 * listener/global queue for detached connections and
8757 	 * get switched to the right queue. If it comes on the
8758 	 * right queue, policy check has already been done by IP
8759 	 * and thus free the first_mp without verifying the policy.
8760 	 * If it has come for a non-hard bound connection, we need
8761 	 * to verify policy as IP may not have done it.
8762 	 */
8763 	if (!tcp->tcp_hard_bound) {
8764 		if (ipsec_mctl) {
8765 			secure = ipsec_in_is_secure(first_mp);
8766 		} else {
8767 			secure = B_FALSE;
8768 		}
8769 		if (secure) {
8770 			/*
8771 			 * If we are willing to accept this in clear
8772 			 * we don't have to verify policy.
8773 			 */
8774 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8775 				if (!tcp_check_policy(tcp, first_mp,
8776 				    NULL, ip6h, secure, ipsec_mctl)) {
8777 					/*
8778 					 * tcp_check_policy called
8779 					 * ip_drop_packet() on failure.
8780 					 */
8781 					return;
8782 				}
8783 			}
8784 		}
8785 	} else if (ipsec_mctl) {
8786 		/*
8787 		 * This is a hard_bound connection. IP has already
8788 		 * verified policy. We don't have to do it again.
8789 		 */
8790 		freeb(first_mp);
8791 		first_mp = mp;
8792 		ipsec_mctl = B_FALSE;
8793 	}
8794 
8795 	seg_ack = ntohl(tcpha->tha_ack);
8796 	seg_seq = ntohl(tcpha->tha_seq);
8797 	/*
8798 	 * TCP SHOULD check that the TCP sequence number contained in
8799 	 * payload of the ICMP error message is within the range
8800 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8801 	 */
8802 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8803 	    SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8804 		/*
8805 		 * If the ICMP message is bogus, should we kill the
8806 		 * connection, or should we just drop the bogus ICMP
8807 		 * message? It would probably make more sense to just
8808 		 * drop the message so that if this one managed to get
8809 		 * in, the real connection should not suffer.
8810 		 */
8811 		goto noticmpv6;
8812 	}
8813 
8814 	switch (icmp6->icmp6_type) {
8815 	case ICMP6_PACKET_TOO_BIG:
8816 		/*
8817 		 * Reduce the MSS based on the new MTU.  This will
8818 		 * eliminate any fragmentation locally.
8819 		 * N.B.  There may well be some funny side-effects on
8820 		 * the local send policy and the remote receive policy.
8821 		 * Pending further research, we provide
8822 		 * tcp_ignore_path_mtu just in case this proves
8823 		 * disastrous somewhere.
8824 		 *
8825 		 * After updating the MSS, retransmit part of the
8826 		 * dropped segment using the new mss by calling
8827 		 * tcp_wput_data().  Need to adjust all those
8828 		 * params to make sure tcp_wput_data() work properly.
8829 		 */
8830 		if (tcp_ignore_path_mtu)
8831 			break;
8832 
8833 		/*
8834 		 * Decrease the MSS by time stamp options
8835 		 * IP options and IPSEC options. tcp_hdr_len
8836 		 * includes time stamp option and IP option
8837 		 * length.
8838 		 */
8839 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8840 			    tcp->tcp_ipsec_overhead;
8841 
8842 		/*
8843 		 * Only update the MSS if the new one is
8844 		 * smaller than the previous one.  This is
8845 		 * to avoid problems when getting multiple
8846 		 * ICMP errors for the same MTU.
8847 		 */
8848 		if (new_mss >= tcp->tcp_mss)
8849 			break;
8850 
8851 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8852 		ASSERT(ratio >= 1);
8853 		tcp_mss_set(tcp, new_mss);
8854 
8855 		/*
8856 		 * Make sure we have something to
8857 		 * send.
8858 		 */
8859 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8860 		    (tcp->tcp_xmit_head != NULL)) {
8861 			/*
8862 			 * Shrink tcp_cwnd in
8863 			 * proportion to the old MSS/new MSS.
8864 			 */
8865 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8866 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8867 			    (tcp->tcp_unsent == 0)) {
8868 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8869 			} else {
8870 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8871 			}
8872 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8873 			tcp->tcp_rexmit = B_TRUE;
8874 			tcp->tcp_dupack_cnt = 0;
8875 			tcp->tcp_snd_burst = TCP_CWND_SS;
8876 			tcp_ss_rexmit(tcp);
8877 		}
8878 		break;
8879 
8880 	case ICMP6_DST_UNREACH:
8881 		switch (icmp6->icmp6_code) {
8882 		case ICMP6_DST_UNREACH_NOPORT:
8883 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8884 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8885 			    (seg_seq == tcp->tcp_iss)) {
8886 				(void) tcp_clean_death(tcp,
8887 				    ECONNREFUSED, 8);
8888 			}
8889 			break;
8890 
8891 		case ICMP6_DST_UNREACH_ADMIN:
8892 		case ICMP6_DST_UNREACH_NOROUTE:
8893 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8894 		case ICMP6_DST_UNREACH_ADDR:
8895 			/* Record the error in case we finally time out. */
8896 			tcp->tcp_client_errno = EHOSTUNREACH;
8897 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8898 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8899 			    (seg_seq == tcp->tcp_iss)) {
8900 				if (tcp->tcp_listener != NULL &&
8901 				    tcp->tcp_listener->tcp_syn_defense) {
8902 					/*
8903 					 * Ditch the half-open connection if we
8904 					 * suspect a SYN attack is under way.
8905 					 */
8906 					tcp_ip_ire_mark_advice(tcp);
8907 					(void) tcp_clean_death(tcp,
8908 					    tcp->tcp_client_errno, 9);
8909 				}
8910 			}
8911 
8912 
8913 			break;
8914 		default:
8915 			break;
8916 		}
8917 		break;
8918 
8919 	case ICMP6_PARAM_PROB:
8920 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8921 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8922 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8923 		    (uchar_t *)nexthdrp) {
8924 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8925 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8926 				(void) tcp_clean_death(tcp,
8927 				    ECONNREFUSED, 10);
8928 			}
8929 			break;
8930 		}
8931 		break;
8932 
8933 	case ICMP6_TIME_EXCEEDED:
8934 	default:
8935 		break;
8936 	}
8937 	freemsg(first_mp);
8938 }
8939 
8940 /*
8941  * IP recognizes seven kinds of bind requests:
8942  *
8943  * - A zero-length address binds only to the protocol number.
8944  *
8945  * - A 4-byte address is treated as a request to
8946  * validate that the address is a valid local IPv4
8947  * address, appropriate for an application to bind to.
8948  * IP does the verification, but does not make any note
8949  * of the address at this time.
8950  *
8951  * - A 16-byte address contains is treated as a request
8952  * to validate a local IPv6 address, as the 4-byte
8953  * address case above.
8954  *
8955  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
8956  * use it for the inbound fanout of packets.
8957  *
8958  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
8959  * use it for the inbound fanout of packets.
8960  *
8961  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
8962  * information consisting of local and remote addresses
8963  * and ports.  In this case, the addresses are both
8964  * validated as appropriate for this operation, and, if
8965  * so, the information is retained for use in the
8966  * inbound fanout.
8967  *
8968  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
8969  * fanout information, like the 12-byte case above.
8970  *
8971  * IP will also fill in the IRE request mblk with information
8972  * regarding our peer.  In all cases, we notify IP of our protocol
8973  * type by appending a single protocol byte to the bind request.
8974  */
8975 static mblk_t *
8976 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
8977 {
8978 	char	*cp;
8979 	mblk_t	*mp;
8980 	struct T_bind_req *tbr;
8981 	ipa_conn_t	*ac;
8982 	ipa6_conn_t	*ac6;
8983 	sin_t		*sin;
8984 	sin6_t		*sin6;
8985 
8986 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
8987 	ASSERT((tcp->tcp_family == AF_INET &&
8988 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8989 	    (tcp->tcp_family == AF_INET6 &&
8990 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8991 	    tcp->tcp_ipversion == IPV6_VERSION)));
8992 
8993 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
8994 	if (!mp)
8995 		return (mp);
8996 	mp->b_datap->db_type = M_PROTO;
8997 	tbr = (struct T_bind_req *)mp->b_rptr;
8998 	tbr->PRIM_type = bind_prim;
8999 	tbr->ADDR_offset = sizeof (*tbr);
9000 	tbr->CONIND_number = 0;
9001 	tbr->ADDR_length = addr_length;
9002 	cp = (char *)&tbr[1];
9003 	switch (addr_length) {
9004 	case sizeof (ipa_conn_t):
9005 		ASSERT(tcp->tcp_family == AF_INET);
9006 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9007 
9008 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9009 		if (mp->b_cont == NULL) {
9010 			freemsg(mp);
9011 			return (NULL);
9012 		}
9013 		mp->b_cont->b_wptr += sizeof (ire_t);
9014 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9015 
9016 		/* cp known to be 32 bit aligned */
9017 		ac = (ipa_conn_t *)cp;
9018 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9019 		ac->ac_faddr = tcp->tcp_remote;
9020 		ac->ac_fport = tcp->tcp_fport;
9021 		ac->ac_lport = tcp->tcp_lport;
9022 		tcp->tcp_hard_binding = 1;
9023 		break;
9024 
9025 	case sizeof (ipa6_conn_t):
9026 		ASSERT(tcp->tcp_family == AF_INET6);
9027 
9028 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9029 		if (mp->b_cont == NULL) {
9030 			freemsg(mp);
9031 			return (NULL);
9032 		}
9033 		mp->b_cont->b_wptr += sizeof (ire_t);
9034 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9035 
9036 		/* cp known to be 32 bit aligned */
9037 		ac6 = (ipa6_conn_t *)cp;
9038 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9039 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9040 			    &ac6->ac6_laddr);
9041 		} else {
9042 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9043 		}
9044 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9045 		ac6->ac6_fport = tcp->tcp_fport;
9046 		ac6->ac6_lport = tcp->tcp_lport;
9047 		tcp->tcp_hard_binding = 1;
9048 		break;
9049 
9050 	case sizeof (sin_t):
9051 		/*
9052 		 * NOTE: IPV6_ADDR_LEN also has same size.
9053 		 * Use family to discriminate.
9054 		 */
9055 		if (tcp->tcp_family == AF_INET) {
9056 			sin = (sin_t *)cp;
9057 
9058 			*sin = sin_null;
9059 			sin->sin_family = AF_INET;
9060 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9061 			sin->sin_port = tcp->tcp_lport;
9062 			break;
9063 		} else {
9064 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9065 		}
9066 		break;
9067 
9068 	case sizeof (sin6_t):
9069 		ASSERT(tcp->tcp_family == AF_INET6);
9070 		sin6 = (sin6_t *)cp;
9071 
9072 		*sin6 = sin6_null;
9073 		sin6->sin6_family = AF_INET6;
9074 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9075 		sin6->sin6_port = tcp->tcp_lport;
9076 		break;
9077 
9078 	case IP_ADDR_LEN:
9079 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9080 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9081 		break;
9082 
9083 	}
9084 	/* Add protocol number to end */
9085 	cp[addr_length] = (char)IPPROTO_TCP;
9086 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9087 	return (mp);
9088 }
9089 
9090 /*
9091  * Notify IP that we are having trouble with this connection.  IP should
9092  * blow the IRE away and start over.
9093  */
9094 static void
9095 tcp_ip_notify(tcp_t *tcp)
9096 {
9097 	struct iocblk	*iocp;
9098 	ipid_t	*ipid;
9099 	mblk_t	*mp;
9100 
9101 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9102 	if (tcp->tcp_ipversion == IPV6_VERSION)
9103 		return;
9104 
9105 	mp = mkiocb(IP_IOCTL);
9106 	if (mp == NULL)
9107 		return;
9108 
9109 	iocp = (struct iocblk *)mp->b_rptr;
9110 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9111 
9112 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9113 	if (!mp->b_cont) {
9114 		freeb(mp);
9115 		return;
9116 	}
9117 
9118 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9119 	mp->b_cont->b_wptr += iocp->ioc_count;
9120 	bzero(ipid, sizeof (*ipid));
9121 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9122 	ipid->ipid_ire_type = IRE_CACHE;
9123 	ipid->ipid_addr_offset = sizeof (ipid_t);
9124 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9125 	/*
9126 	 * Note: in the case of source routing we want to blow away the
9127 	 * route to the first source route hop.
9128 	 */
9129 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9130 	    sizeof (tcp->tcp_ipha->ipha_dst));
9131 
9132 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9133 }
9134 
9135 /* Unlink and return any mblk that looks like it contains an ire */
9136 static mblk_t *
9137 tcp_ire_mp(mblk_t *mp)
9138 {
9139 	mblk_t	*prev_mp;
9140 
9141 	for (;;) {
9142 		prev_mp = mp;
9143 		mp = mp->b_cont;
9144 		if (mp == NULL)
9145 			break;
9146 		switch (DB_TYPE(mp)) {
9147 		case IRE_DB_TYPE:
9148 		case IRE_DB_REQ_TYPE:
9149 			if (prev_mp != NULL)
9150 				prev_mp->b_cont = mp->b_cont;
9151 			mp->b_cont = NULL;
9152 			return (mp);
9153 		default:
9154 			break;
9155 		}
9156 	}
9157 	return (mp);
9158 }
9159 
9160 /*
9161  * Timer callback routine for keepalive probe.  We do a fake resend of
9162  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9163  * check to see if we have heard anything from the other end for the last
9164  * RTO period.  If we have, set the timer to expire for another
9165  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9166  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9167  * the timeout if we have not heard from the other side.  If for more than
9168  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9169  * kill the connection unless the keepalive abort threshold is 0.  In
9170  * that case, we will probe "forever."
9171  */
9172 static void
9173 tcp_keepalive_killer(void *arg)
9174 {
9175 	mblk_t	*mp;
9176 	conn_t	*connp = (conn_t *)arg;
9177 	tcp_t  	*tcp = connp->conn_tcp;
9178 	int32_t	firetime;
9179 	int32_t	idletime;
9180 	int32_t	ka_intrvl;
9181 
9182 	tcp->tcp_ka_tid = 0;
9183 
9184 	if (tcp->tcp_fused)
9185 		return;
9186 
9187 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
9188 	ka_intrvl = tcp->tcp_ka_interval;
9189 
9190 	/*
9191 	 * Keepalive probe should only be sent if the application has not
9192 	 * done a close on the connection.
9193 	 */
9194 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9195 		return;
9196 	}
9197 	/* Timer fired too early, restart it. */
9198 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9199 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9200 		    MSEC_TO_TICK(ka_intrvl));
9201 		return;
9202 	}
9203 
9204 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9205 	/*
9206 	 * If we have not heard from the other side for a long
9207 	 * time, kill the connection unless the keepalive abort
9208 	 * threshold is 0.  In that case, we will probe "forever."
9209 	 */
9210 	if (tcp->tcp_ka_abort_thres != 0 &&
9211 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9212 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
9213 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9214 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9215 		return;
9216 	}
9217 
9218 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9219 	    idletime >= ka_intrvl) {
9220 		/* Fake resend of last ACKed byte. */
9221 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9222 
9223 		if (mp1 != NULL) {
9224 			*mp1->b_wptr++ = '\0';
9225 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9226 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9227 			freeb(mp1);
9228 			/*
9229 			 * if allocation failed, fall through to start the
9230 			 * timer back.
9231 			 */
9232 			if (mp != NULL) {
9233 				TCP_RECORD_TRACE(tcp, mp,
9234 				    TCP_TRACE_SEND_PKT);
9235 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9236 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
9237 				if (tcp->tcp_ka_last_intrvl != 0) {
9238 					/*
9239 					 * We should probe again at least
9240 					 * in ka_intrvl, but not more than
9241 					 * tcp_rexmit_interval_max.
9242 					 */
9243 					firetime = MIN(ka_intrvl - 1,
9244 					    tcp->tcp_ka_last_intrvl << 1);
9245 					if (firetime > tcp_rexmit_interval_max)
9246 						firetime =
9247 						    tcp_rexmit_interval_max;
9248 				} else {
9249 					firetime = tcp->tcp_rto;
9250 				}
9251 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9252 				    tcp_keepalive_killer,
9253 				    MSEC_TO_TICK(firetime));
9254 				tcp->tcp_ka_last_intrvl = firetime;
9255 				return;
9256 			}
9257 		}
9258 	} else {
9259 		tcp->tcp_ka_last_intrvl = 0;
9260 	}
9261 
9262 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9263 	if ((firetime = ka_intrvl - idletime) < 0) {
9264 		firetime = ka_intrvl;
9265 	}
9266 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9267 	    MSEC_TO_TICK(firetime));
9268 }
9269 
9270 int
9271 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9272 {
9273 	queue_t	*q = tcp->tcp_rq;
9274 	int32_t	mss = tcp->tcp_mss;
9275 	int	maxpsz;
9276 
9277 	if (TCP_IS_DETACHED(tcp))
9278 		return (mss);
9279 
9280 	if (tcp->tcp_fused) {
9281 		maxpsz = tcp_fuse_maxpsz_set(tcp);
9282 		mss = INFPSZ;
9283 	} else if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) {
9284 		/*
9285 		 * Set the sd_qn_maxpsz according to the socket send buffer
9286 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9287 		 * instruct the stream head to copyin user data into contiguous
9288 		 * kernel-allocated buffers without breaking it up into smaller
9289 		 * chunks.  We round up the buffer size to the nearest SMSS.
9290 		 */
9291 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9292 		if (tcp->tcp_kssl_ctx == NULL)
9293 			mss = INFPSZ;
9294 		else
9295 			mss = SSL3_MAX_RECORD_LEN;
9296 	} else {
9297 		/*
9298 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9299 		 * (and a multiple of the mss).  This instructs the stream
9300 		 * head to break down larger than SMSS writes into SMSS-
9301 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9302 		 */
9303 		maxpsz = tcp->tcp_maxpsz * mss;
9304 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9305 			maxpsz = tcp->tcp_xmit_hiwater/2;
9306 			/* Round up to nearest mss */
9307 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9308 		}
9309 	}
9310 	(void) setmaxps(q, maxpsz);
9311 	tcp->tcp_wq->q_maxpsz = maxpsz;
9312 
9313 	if (set_maxblk)
9314 		(void) mi_set_sth_maxblk(q, mss);
9315 
9316 	return (mss);
9317 }
9318 
9319 /*
9320  * Extract option values from a tcp header.  We put any found values into the
9321  * tcpopt struct and return a bitmask saying which options were found.
9322  */
9323 static int
9324 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9325 {
9326 	uchar_t		*endp;
9327 	int		len;
9328 	uint32_t	mss;
9329 	uchar_t		*up = (uchar_t *)tcph;
9330 	int		found = 0;
9331 	int32_t		sack_len;
9332 	tcp_seq		sack_begin, sack_end;
9333 	tcp_t		*tcp;
9334 
9335 	endp = up + TCP_HDR_LENGTH(tcph);
9336 	up += TCP_MIN_HEADER_LENGTH;
9337 	while (up < endp) {
9338 		len = endp - up;
9339 		switch (*up) {
9340 		case TCPOPT_EOL:
9341 			break;
9342 
9343 		case TCPOPT_NOP:
9344 			up++;
9345 			continue;
9346 
9347 		case TCPOPT_MAXSEG:
9348 			if (len < TCPOPT_MAXSEG_LEN ||
9349 			    up[1] != TCPOPT_MAXSEG_LEN)
9350 				break;
9351 
9352 			mss = BE16_TO_U16(up+2);
9353 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9354 			tcpopt->tcp_opt_mss = mss;
9355 			found |= TCP_OPT_MSS_PRESENT;
9356 
9357 			up += TCPOPT_MAXSEG_LEN;
9358 			continue;
9359 
9360 		case TCPOPT_WSCALE:
9361 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9362 				break;
9363 
9364 			if (up[2] > TCP_MAX_WINSHIFT)
9365 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9366 			else
9367 				tcpopt->tcp_opt_wscale = up[2];
9368 			found |= TCP_OPT_WSCALE_PRESENT;
9369 
9370 			up += TCPOPT_WS_LEN;
9371 			continue;
9372 
9373 		case TCPOPT_SACK_PERMITTED:
9374 			if (len < TCPOPT_SACK_OK_LEN ||
9375 			    up[1] != TCPOPT_SACK_OK_LEN)
9376 				break;
9377 			found |= TCP_OPT_SACK_OK_PRESENT;
9378 			up += TCPOPT_SACK_OK_LEN;
9379 			continue;
9380 
9381 		case TCPOPT_SACK:
9382 			if (len <= 2 || up[1] <= 2 || len < up[1])
9383 				break;
9384 
9385 			/* If TCP is not interested in SACK blks... */
9386 			if ((tcp = tcpopt->tcp) == NULL) {
9387 				up += up[1];
9388 				continue;
9389 			}
9390 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9391 			up += TCPOPT_HEADER_LEN;
9392 
9393 			/*
9394 			 * If the list is empty, allocate one and assume
9395 			 * nothing is sack'ed.
9396 			 */
9397 			ASSERT(tcp->tcp_sack_info != NULL);
9398 			if (tcp->tcp_notsack_list == NULL) {
9399 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9400 				    tcp->tcp_suna, tcp->tcp_snxt,
9401 				    &(tcp->tcp_num_notsack_blk),
9402 				    &(tcp->tcp_cnt_notsack_list));
9403 
9404 				/*
9405 				 * Make sure tcp_notsack_list is not NULL.
9406 				 * This happens when kmem_alloc(KM_NOSLEEP)
9407 				 * returns NULL.
9408 				 */
9409 				if (tcp->tcp_notsack_list == NULL) {
9410 					up += sack_len;
9411 					continue;
9412 				}
9413 				tcp->tcp_fack = tcp->tcp_suna;
9414 			}
9415 
9416 			while (sack_len > 0) {
9417 				if (up + 8 > endp) {
9418 					up = endp;
9419 					break;
9420 				}
9421 				sack_begin = BE32_TO_U32(up);
9422 				up += 4;
9423 				sack_end = BE32_TO_U32(up);
9424 				up += 4;
9425 				sack_len -= 8;
9426 				/*
9427 				 * Bounds checking.  Make sure the SACK
9428 				 * info is within tcp_suna and tcp_snxt.
9429 				 * If this SACK blk is out of bound, ignore
9430 				 * it but continue to parse the following
9431 				 * blks.
9432 				 */
9433 				if (SEQ_LEQ(sack_end, sack_begin) ||
9434 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9435 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9436 					continue;
9437 				}
9438 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9439 				    sack_begin, sack_end,
9440 				    &(tcp->tcp_num_notsack_blk),
9441 				    &(tcp->tcp_cnt_notsack_list));
9442 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9443 					tcp->tcp_fack = sack_end;
9444 				}
9445 			}
9446 			found |= TCP_OPT_SACK_PRESENT;
9447 			continue;
9448 
9449 		case TCPOPT_TSTAMP:
9450 			if (len < TCPOPT_TSTAMP_LEN ||
9451 			    up[1] != TCPOPT_TSTAMP_LEN)
9452 				break;
9453 
9454 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9455 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9456 
9457 			found |= TCP_OPT_TSTAMP_PRESENT;
9458 
9459 			up += TCPOPT_TSTAMP_LEN;
9460 			continue;
9461 
9462 		default:
9463 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9464 				break;
9465 			up += up[1];
9466 			continue;
9467 		}
9468 		break;
9469 	}
9470 	return (found);
9471 }
9472 
9473 /*
9474  * Set the mss associated with a particular tcp based on its current value,
9475  * and a new one passed in. Observe minimums and maximums, and reset
9476  * other state variables that we want to view as multiples of mss.
9477  *
9478  * This function is called in various places mainly because
9479  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9480  *    other side's SYN/SYN-ACK packet arrives.
9481  * 2) PMTUd may get us a new MSS.
9482  * 3) If the other side stops sending us timestamp option, we need to
9483  *    increase the MSS size to use the extra bytes available.
9484  */
9485 static void
9486 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9487 {
9488 	uint32_t	mss_max;
9489 
9490 	if (tcp->tcp_ipversion == IPV4_VERSION)
9491 		mss_max = tcp_mss_max_ipv4;
9492 	else
9493 		mss_max = tcp_mss_max_ipv6;
9494 
9495 	if (mss < tcp_mss_min)
9496 		mss = tcp_mss_min;
9497 	if (mss > mss_max)
9498 		mss = mss_max;
9499 	/*
9500 	 * Unless naglim has been set by our client to
9501 	 * a non-mss value, force naglim to track mss.
9502 	 * This can help to aggregate small writes.
9503 	 */
9504 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9505 		tcp->tcp_naglim = mss;
9506 	/*
9507 	 * TCP should be able to buffer at least 4 MSS data for obvious
9508 	 * performance reason.
9509 	 */
9510 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9511 		tcp->tcp_xmit_hiwater = mss << 2;
9512 
9513 	/*
9514 	 * Check if we need to apply the tcp_init_cwnd here.  If
9515 	 * it is set and the MSS gets bigger (should not happen
9516 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9517 	 * The new tcp_cwnd should not get bigger.
9518 	 */
9519 	if (tcp->tcp_init_cwnd == 0) {
9520 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9521 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9522 	} else {
9523 		if (tcp->tcp_mss < mss) {
9524 			tcp->tcp_cwnd = MAX(1,
9525 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9526 		} else {
9527 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9528 		}
9529 	}
9530 	tcp->tcp_mss = mss;
9531 	tcp->tcp_cwnd_cnt = 0;
9532 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9533 }
9534 
9535 static int
9536 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9537 {
9538 	tcp_t		*tcp = NULL;
9539 	conn_t		*connp;
9540 	int		err;
9541 	dev_t		conn_dev;
9542 	zoneid_t	zoneid = getzoneid();
9543 
9544 	/*
9545 	 * Special case for install: miniroot needs to be able to access files
9546 	 * via NFS as though it were always in the global zone.
9547 	 */
9548 	if (credp == kcred && nfs_global_client_only != 0)
9549 		zoneid = GLOBAL_ZONEID;
9550 
9551 	if (q->q_ptr != NULL)
9552 		return (0);
9553 
9554 	if (sflag == MODOPEN) {
9555 		/*
9556 		 * This is a special case. The purpose of a modopen
9557 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9558 		 * through for MIB browsers. Everything else is failed.
9559 		 */
9560 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9561 
9562 		if (connp == NULL)
9563 			return (ENOMEM);
9564 
9565 		connp->conn_flags |= IPCL_TCPMOD;
9566 		connp->conn_cred = credp;
9567 		connp->conn_zoneid = zoneid;
9568 		q->q_ptr = WR(q)->q_ptr = connp;
9569 		crhold(credp);
9570 		q->q_qinfo = &tcp_mod_rinit;
9571 		WR(q)->q_qinfo = &tcp_mod_winit;
9572 		qprocson(q);
9573 		return (0);
9574 	}
9575 
9576 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9577 		return (EBUSY);
9578 
9579 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9580 
9581 	if (flag & SO_ACCEPTOR) {
9582 		q->q_qinfo = &tcp_acceptor_rinit;
9583 		q->q_ptr = (void *)conn_dev;
9584 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9585 		WR(q)->q_ptr = (void *)conn_dev;
9586 		qprocson(q);
9587 		return (0);
9588 	}
9589 
9590 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9591 	if (connp == NULL) {
9592 		inet_minor_free(ip_minor_arena, conn_dev);
9593 		q->q_ptr = NULL;
9594 		return (ENOSR);
9595 	}
9596 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9597 	tcp = connp->conn_tcp;
9598 
9599 	q->q_ptr = WR(q)->q_ptr = connp;
9600 	if (getmajor(*devp) == TCP6_MAJ) {
9601 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9602 		connp->conn_send = ip_output_v6;
9603 		connp->conn_af_isv6 = B_TRUE;
9604 		connp->conn_pkt_isv6 = B_TRUE;
9605 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9606 		tcp->tcp_ipversion = IPV6_VERSION;
9607 		tcp->tcp_family = AF_INET6;
9608 		tcp->tcp_mss = tcp_mss_def_ipv6;
9609 	} else {
9610 		connp->conn_flags |= IPCL_TCP4;
9611 		connp->conn_send = ip_output;
9612 		connp->conn_af_isv6 = B_FALSE;
9613 		connp->conn_pkt_isv6 = B_FALSE;
9614 		tcp->tcp_ipversion = IPV4_VERSION;
9615 		tcp->tcp_family = AF_INET;
9616 		tcp->tcp_mss = tcp_mss_def_ipv4;
9617 	}
9618 
9619 	/*
9620 	 * TCP keeps a copy of cred for cache locality reasons but
9621 	 * we put a reference only once. If connp->conn_cred
9622 	 * becomes invalid, tcp_cred should also be set to NULL.
9623 	 */
9624 	tcp->tcp_cred = connp->conn_cred = credp;
9625 	crhold(connp->conn_cred);
9626 	tcp->tcp_cpid = curproc->p_pid;
9627 	connp->conn_zoneid = zoneid;
9628 	connp->conn_mlp_type = mlptSingle;
9629 	connp->conn_ulp_labeled = !is_system_labeled();
9630 
9631 	/*
9632 	 * If the caller has the process-wide flag set, then default to MAC
9633 	 * exempt mode.  This allows read-down to unlabeled hosts.
9634 	 */
9635 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9636 		connp->conn_mac_exempt = B_TRUE;
9637 
9638 	connp->conn_dev = conn_dev;
9639 
9640 	ASSERT(q->q_qinfo == &tcp_rinit);
9641 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9642 
9643 	if (flag & SO_SOCKSTR) {
9644 		/*
9645 		 * No need to insert a socket in tcp acceptor hash.
9646 		 * If it was a socket acceptor stream, we dealt with
9647 		 * it above. A socket listener can never accept a
9648 		 * connection and doesn't need acceptor_id.
9649 		 */
9650 		connp->conn_flags |= IPCL_SOCKET;
9651 		tcp->tcp_issocket = 1;
9652 		WR(q)->q_qinfo = &tcp_sock_winit;
9653 	} else {
9654 #ifdef	_ILP32
9655 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9656 #else
9657 		tcp->tcp_acceptor_id = conn_dev;
9658 #endif	/* _ILP32 */
9659 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9660 	}
9661 
9662 	if (tcp_trace)
9663 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9664 
9665 	err = tcp_init(tcp, q);
9666 	if (err != 0) {
9667 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9668 		tcp_acceptor_hash_remove(tcp);
9669 		CONN_DEC_REF(connp);
9670 		q->q_ptr = WR(q)->q_ptr = NULL;
9671 		return (err);
9672 	}
9673 
9674 	RD(q)->q_hiwat = tcp_recv_hiwat;
9675 	tcp->tcp_rwnd = tcp_recv_hiwat;
9676 
9677 	/* Non-zero default values */
9678 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9679 	/*
9680 	 * Put the ref for TCP. Ref for IP was already put
9681 	 * by ipcl_conn_create. Also Make the conn_t globally
9682 	 * visible to walkers
9683 	 */
9684 	mutex_enter(&connp->conn_lock);
9685 	CONN_INC_REF_LOCKED(connp);
9686 	ASSERT(connp->conn_ref == 2);
9687 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9688 	mutex_exit(&connp->conn_lock);
9689 
9690 	qprocson(q);
9691 	return (0);
9692 }
9693 
9694 /*
9695  * Some TCP options can be "set" by requesting them in the option
9696  * buffer. This is needed for XTI feature test though we do not
9697  * allow it in general. We interpret that this mechanism is more
9698  * applicable to OSI protocols and need not be allowed in general.
9699  * This routine filters out options for which it is not allowed (most)
9700  * and lets through those (few) for which it is. [ The XTI interface
9701  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9702  * ever implemented will have to be allowed here ].
9703  */
9704 static boolean_t
9705 tcp_allow_connopt_set(int level, int name)
9706 {
9707 
9708 	switch (level) {
9709 	case IPPROTO_TCP:
9710 		switch (name) {
9711 		case TCP_NODELAY:
9712 			return (B_TRUE);
9713 		default:
9714 			return (B_FALSE);
9715 		}
9716 		/*NOTREACHED*/
9717 	default:
9718 		return (B_FALSE);
9719 	}
9720 	/*NOTREACHED*/
9721 }
9722 
9723 /*
9724  * This routine gets default values of certain options whose default
9725  * values are maintained by protocol specific code
9726  */
9727 /* ARGSUSED */
9728 int
9729 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9730 {
9731 	int32_t	*i1 = (int32_t *)ptr;
9732 
9733 	switch (level) {
9734 	case IPPROTO_TCP:
9735 		switch (name) {
9736 		case TCP_NOTIFY_THRESHOLD:
9737 			*i1 = tcp_ip_notify_interval;
9738 			break;
9739 		case TCP_ABORT_THRESHOLD:
9740 			*i1 = tcp_ip_abort_interval;
9741 			break;
9742 		case TCP_CONN_NOTIFY_THRESHOLD:
9743 			*i1 = tcp_ip_notify_cinterval;
9744 			break;
9745 		case TCP_CONN_ABORT_THRESHOLD:
9746 			*i1 = tcp_ip_abort_cinterval;
9747 			break;
9748 		default:
9749 			return (-1);
9750 		}
9751 		break;
9752 	case IPPROTO_IP:
9753 		switch (name) {
9754 		case IP_TTL:
9755 			*i1 = tcp_ipv4_ttl;
9756 			break;
9757 		default:
9758 			return (-1);
9759 		}
9760 		break;
9761 	case IPPROTO_IPV6:
9762 		switch (name) {
9763 		case IPV6_UNICAST_HOPS:
9764 			*i1 = tcp_ipv6_hoplimit;
9765 			break;
9766 		default:
9767 			return (-1);
9768 		}
9769 		break;
9770 	default:
9771 		return (-1);
9772 	}
9773 	return (sizeof (int));
9774 }
9775 
9776 
9777 /*
9778  * TCP routine to get the values of options.
9779  */
9780 int
9781 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9782 {
9783 	int		*i1 = (int *)ptr;
9784 	conn_t		*connp = Q_TO_CONN(q);
9785 	tcp_t		*tcp = connp->conn_tcp;
9786 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9787 
9788 	switch (level) {
9789 	case SOL_SOCKET:
9790 		switch (name) {
9791 		case SO_LINGER:	{
9792 			struct linger *lgr = (struct linger *)ptr;
9793 
9794 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9795 			lgr->l_linger = tcp->tcp_lingertime;
9796 			}
9797 			return (sizeof (struct linger));
9798 		case SO_DEBUG:
9799 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9800 			break;
9801 		case SO_KEEPALIVE:
9802 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9803 			break;
9804 		case SO_DONTROUTE:
9805 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9806 			break;
9807 		case SO_USELOOPBACK:
9808 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9809 			break;
9810 		case SO_BROADCAST:
9811 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9812 			break;
9813 		case SO_REUSEADDR:
9814 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9815 			break;
9816 		case SO_OOBINLINE:
9817 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9818 			break;
9819 		case SO_DGRAM_ERRIND:
9820 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9821 			break;
9822 		case SO_TYPE:
9823 			*i1 = SOCK_STREAM;
9824 			break;
9825 		case SO_SNDBUF:
9826 			*i1 = tcp->tcp_xmit_hiwater;
9827 			break;
9828 		case SO_RCVBUF:
9829 			*i1 = RD(q)->q_hiwat;
9830 			break;
9831 		case SO_SND_COPYAVOID:
9832 			*i1 = tcp->tcp_snd_zcopy_on ?
9833 			    SO_SND_COPYAVOID : 0;
9834 			break;
9835 		case SO_ALLZONES:
9836 			*i1 = connp->conn_allzones ? 1 : 0;
9837 			break;
9838 		case SO_ANON_MLP:
9839 			*i1 = connp->conn_anon_mlp;
9840 			break;
9841 		case SO_MAC_EXEMPT:
9842 			*i1 = connp->conn_mac_exempt;
9843 			break;
9844 		case SO_EXCLBIND:
9845 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9846 			break;
9847 		default:
9848 			return (-1);
9849 		}
9850 		break;
9851 	case IPPROTO_TCP:
9852 		switch (name) {
9853 		case TCP_NODELAY:
9854 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9855 			break;
9856 		case TCP_MAXSEG:
9857 			*i1 = tcp->tcp_mss;
9858 			break;
9859 		case TCP_NOTIFY_THRESHOLD:
9860 			*i1 = (int)tcp->tcp_first_timer_threshold;
9861 			break;
9862 		case TCP_ABORT_THRESHOLD:
9863 			*i1 = tcp->tcp_second_timer_threshold;
9864 			break;
9865 		case TCP_CONN_NOTIFY_THRESHOLD:
9866 			*i1 = tcp->tcp_first_ctimer_threshold;
9867 			break;
9868 		case TCP_CONN_ABORT_THRESHOLD:
9869 			*i1 = tcp->tcp_second_ctimer_threshold;
9870 			break;
9871 		case TCP_RECVDSTADDR:
9872 			*i1 = tcp->tcp_recvdstaddr;
9873 			break;
9874 		case TCP_ANONPRIVBIND:
9875 			*i1 = tcp->tcp_anon_priv_bind;
9876 			break;
9877 		case TCP_EXCLBIND:
9878 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9879 			break;
9880 		case TCP_INIT_CWND:
9881 			*i1 = tcp->tcp_init_cwnd;
9882 			break;
9883 		case TCP_KEEPALIVE_THRESHOLD:
9884 			*i1 = tcp->tcp_ka_interval;
9885 			break;
9886 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9887 			*i1 = tcp->tcp_ka_abort_thres;
9888 			break;
9889 		case TCP_CORK:
9890 			*i1 = tcp->tcp_cork;
9891 			break;
9892 		default:
9893 			return (-1);
9894 		}
9895 		break;
9896 	case IPPROTO_IP:
9897 		if (tcp->tcp_family != AF_INET)
9898 			return (-1);
9899 		switch (name) {
9900 		case IP_OPTIONS:
9901 		case T_IP_OPTIONS: {
9902 			/*
9903 			 * This is compatible with BSD in that in only return
9904 			 * the reverse source route with the final destination
9905 			 * as the last entry. The first 4 bytes of the option
9906 			 * will contain the final destination.
9907 			 */
9908 			int	opt_len;
9909 
9910 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9911 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9912 			ASSERT(opt_len >= 0);
9913 			/* Caller ensures enough space */
9914 			if (opt_len > 0) {
9915 				/*
9916 				 * TODO: Do we have to handle getsockopt on an
9917 				 * initiator as well?
9918 				 */
9919 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9920 			}
9921 			return (0);
9922 			}
9923 		case IP_TOS:
9924 		case T_IP_TOS:
9925 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9926 			break;
9927 		case IP_TTL:
9928 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9929 			break;
9930 		case IP_NEXTHOP:
9931 			/* Handled at IP level */
9932 			return (-EINVAL);
9933 		default:
9934 			return (-1);
9935 		}
9936 		break;
9937 	case IPPROTO_IPV6:
9938 		/*
9939 		 * IPPROTO_IPV6 options are only supported for sockets
9940 		 * that are using IPv6 on the wire.
9941 		 */
9942 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9943 			return (-1);
9944 		}
9945 		switch (name) {
9946 		case IPV6_UNICAST_HOPS:
9947 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9948 			break;	/* goto sizeof (int) option return */
9949 		case IPV6_BOUND_IF:
9950 			/* Zero if not set */
9951 			*i1 = tcp->tcp_bound_if;
9952 			break;	/* goto sizeof (int) option return */
9953 		case IPV6_RECVPKTINFO:
9954 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9955 				*i1 = 1;
9956 			else
9957 				*i1 = 0;
9958 			break;	/* goto sizeof (int) option return */
9959 		case IPV6_RECVTCLASS:
9960 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9961 				*i1 = 1;
9962 			else
9963 				*i1 = 0;
9964 			break;	/* goto sizeof (int) option return */
9965 		case IPV6_RECVHOPLIMIT:
9966 			if (tcp->tcp_ipv6_recvancillary &
9967 			    TCP_IPV6_RECVHOPLIMIT)
9968 				*i1 = 1;
9969 			else
9970 				*i1 = 0;
9971 			break;	/* goto sizeof (int) option return */
9972 		case IPV6_RECVHOPOPTS:
9973 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9974 				*i1 = 1;
9975 			else
9976 				*i1 = 0;
9977 			break;	/* goto sizeof (int) option return */
9978 		case IPV6_RECVDSTOPTS:
9979 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9980 				*i1 = 1;
9981 			else
9982 				*i1 = 0;
9983 			break;	/* goto sizeof (int) option return */
9984 		case _OLD_IPV6_RECVDSTOPTS:
9985 			if (tcp->tcp_ipv6_recvancillary &
9986 			    TCP_OLD_IPV6_RECVDSTOPTS)
9987 				*i1 = 1;
9988 			else
9989 				*i1 = 0;
9990 			break;	/* goto sizeof (int) option return */
9991 		case IPV6_RECVRTHDR:
9992 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9993 				*i1 = 1;
9994 			else
9995 				*i1 = 0;
9996 			break;	/* goto sizeof (int) option return */
9997 		case IPV6_RECVRTHDRDSTOPTS:
9998 			if (tcp->tcp_ipv6_recvancillary &
9999 			    TCP_IPV6_RECVRTDSTOPTS)
10000 				*i1 = 1;
10001 			else
10002 				*i1 = 0;
10003 			break;	/* goto sizeof (int) option return */
10004 		case IPV6_PKTINFO: {
10005 			/* XXX assumes that caller has room for max size! */
10006 			struct in6_pktinfo *pkti;
10007 
10008 			pkti = (struct in6_pktinfo *)ptr;
10009 			if (ipp->ipp_fields & IPPF_IFINDEX)
10010 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10011 			else
10012 				pkti->ipi6_ifindex = 0;
10013 			if (ipp->ipp_fields & IPPF_ADDR)
10014 				pkti->ipi6_addr = ipp->ipp_addr;
10015 			else
10016 				pkti->ipi6_addr = ipv6_all_zeros;
10017 			return (sizeof (struct in6_pktinfo));
10018 		}
10019 		case IPV6_TCLASS:
10020 			if (ipp->ipp_fields & IPPF_TCLASS)
10021 				*i1 = ipp->ipp_tclass;
10022 			else
10023 				*i1 = IPV6_FLOW_TCLASS(
10024 				    IPV6_DEFAULT_VERS_AND_FLOW);
10025 			break;	/* goto sizeof (int) option return */
10026 		case IPV6_NEXTHOP: {
10027 			sin6_t *sin6 = (sin6_t *)ptr;
10028 
10029 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10030 				return (0);
10031 			*sin6 = sin6_null;
10032 			sin6->sin6_family = AF_INET6;
10033 			sin6->sin6_addr = ipp->ipp_nexthop;
10034 			return (sizeof (sin6_t));
10035 		}
10036 		case IPV6_HOPOPTS:
10037 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10038 				return (0);
10039 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
10040 				return (0);
10041 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
10042 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
10043 			if (tcp->tcp_label_len > 0) {
10044 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
10045 				ptr[1] = (ipp->ipp_hopoptslen -
10046 				    tcp->tcp_label_len + 7) / 8 - 1;
10047 			}
10048 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
10049 		case IPV6_RTHDRDSTOPTS:
10050 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10051 				return (0);
10052 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10053 			return (ipp->ipp_rtdstoptslen);
10054 		case IPV6_RTHDR:
10055 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10056 				return (0);
10057 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10058 			return (ipp->ipp_rthdrlen);
10059 		case IPV6_DSTOPTS:
10060 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10061 				return (0);
10062 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10063 			return (ipp->ipp_dstoptslen);
10064 		case IPV6_SRC_PREFERENCES:
10065 			return (ip6_get_src_preferences(connp,
10066 			    (uint32_t *)ptr));
10067 		case IPV6_PATHMTU: {
10068 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10069 
10070 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10071 				return (-1);
10072 
10073 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10074 				connp->conn_fport, mtuinfo));
10075 		}
10076 		default:
10077 			return (-1);
10078 		}
10079 		break;
10080 	default:
10081 		return (-1);
10082 	}
10083 	return (sizeof (int));
10084 }
10085 
10086 /*
10087  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10088  * Parameters are assumed to be verified by the caller.
10089  */
10090 /* ARGSUSED */
10091 int
10092 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10093     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10094     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10095 {
10096 	conn_t	*connp = Q_TO_CONN(q);
10097 	tcp_t	*tcp = connp->conn_tcp;
10098 	int	*i1 = (int *)invalp;
10099 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10100 	boolean_t checkonly;
10101 	int	reterr;
10102 
10103 	switch (optset_context) {
10104 	case SETFN_OPTCOM_CHECKONLY:
10105 		checkonly = B_TRUE;
10106 		/*
10107 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10108 		 * inlen != 0 implies value supplied and
10109 		 * 	we have to "pretend" to set it.
10110 		 * inlen == 0 implies that there is no
10111 		 * 	value part in T_CHECK request and just validation
10112 		 * done elsewhere should be enough, we just return here.
10113 		 */
10114 		if (inlen == 0) {
10115 			*outlenp = 0;
10116 			return (0);
10117 		}
10118 		break;
10119 	case SETFN_OPTCOM_NEGOTIATE:
10120 		checkonly = B_FALSE;
10121 		break;
10122 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10123 	case SETFN_CONN_NEGOTIATE:
10124 		checkonly = B_FALSE;
10125 		/*
10126 		 * Negotiating local and "association-related" options
10127 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10128 		 * primitives is allowed by XTI, but we choose
10129 		 * to not implement this style negotiation for Internet
10130 		 * protocols (We interpret it is a must for OSI world but
10131 		 * optional for Internet protocols) for all options.
10132 		 * [ Will do only for the few options that enable test
10133 		 * suites that our XTI implementation of this feature
10134 		 * works for transports that do allow it ]
10135 		 */
10136 		if (!tcp_allow_connopt_set(level, name)) {
10137 			*outlenp = 0;
10138 			return (EINVAL);
10139 		}
10140 		break;
10141 	default:
10142 		/*
10143 		 * We should never get here
10144 		 */
10145 		*outlenp = 0;
10146 		return (EINVAL);
10147 	}
10148 
10149 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10150 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10151 
10152 	/*
10153 	 * For TCP, we should have no ancillary data sent down
10154 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10155 	 * has to be zero.
10156 	 */
10157 	ASSERT(thisdg_attrs == NULL);
10158 
10159 	/*
10160 	 * For fixed length options, no sanity check
10161 	 * of passed in length is done. It is assumed *_optcom_req()
10162 	 * routines do the right thing.
10163 	 */
10164 
10165 	switch (level) {
10166 	case SOL_SOCKET:
10167 		switch (name) {
10168 		case SO_LINGER: {
10169 			struct linger *lgr = (struct linger *)invalp;
10170 
10171 			if (!checkonly) {
10172 				if (lgr->l_onoff) {
10173 					tcp->tcp_linger = 1;
10174 					tcp->tcp_lingertime = lgr->l_linger;
10175 				} else {
10176 					tcp->tcp_linger = 0;
10177 					tcp->tcp_lingertime = 0;
10178 				}
10179 				/* struct copy */
10180 				*(struct linger *)outvalp = *lgr;
10181 			} else {
10182 				if (!lgr->l_onoff) {
10183 				    ((struct linger *)outvalp)->l_onoff = 0;
10184 				    ((struct linger *)outvalp)->l_linger = 0;
10185 				} else {
10186 				    /* struct copy */
10187 				    *(struct linger *)outvalp = *lgr;
10188 				}
10189 			}
10190 			*outlenp = sizeof (struct linger);
10191 			return (0);
10192 		}
10193 		case SO_DEBUG:
10194 			if (!checkonly)
10195 				tcp->tcp_debug = onoff;
10196 			break;
10197 		case SO_KEEPALIVE:
10198 			if (checkonly) {
10199 				/* T_CHECK case */
10200 				break;
10201 			}
10202 
10203 			if (!onoff) {
10204 				if (tcp->tcp_ka_enabled) {
10205 					if (tcp->tcp_ka_tid != 0) {
10206 						(void) TCP_TIMER_CANCEL(tcp,
10207 						    tcp->tcp_ka_tid);
10208 						tcp->tcp_ka_tid = 0;
10209 					}
10210 					tcp->tcp_ka_enabled = 0;
10211 				}
10212 				break;
10213 			}
10214 			if (!tcp->tcp_ka_enabled) {
10215 				/* Crank up the keepalive timer */
10216 				tcp->tcp_ka_last_intrvl = 0;
10217 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10218 				    tcp_keepalive_killer,
10219 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10220 				tcp->tcp_ka_enabled = 1;
10221 			}
10222 			break;
10223 		case SO_DONTROUTE:
10224 			/*
10225 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
10226 			 * only of interest to IP.  We track them here only so
10227 			 * that we can report their current value.
10228 			 */
10229 			if (!checkonly) {
10230 				tcp->tcp_dontroute = onoff;
10231 				tcp->tcp_connp->conn_dontroute = onoff;
10232 			}
10233 			break;
10234 		case SO_USELOOPBACK:
10235 			if (!checkonly) {
10236 				tcp->tcp_useloopback = onoff;
10237 				tcp->tcp_connp->conn_loopback = onoff;
10238 			}
10239 			break;
10240 		case SO_BROADCAST:
10241 			if (!checkonly) {
10242 				tcp->tcp_broadcast = onoff;
10243 				tcp->tcp_connp->conn_broadcast = onoff;
10244 			}
10245 			break;
10246 		case SO_REUSEADDR:
10247 			if (!checkonly) {
10248 				tcp->tcp_reuseaddr = onoff;
10249 				tcp->tcp_connp->conn_reuseaddr = onoff;
10250 			}
10251 			break;
10252 		case SO_OOBINLINE:
10253 			if (!checkonly)
10254 				tcp->tcp_oobinline = onoff;
10255 			break;
10256 		case SO_DGRAM_ERRIND:
10257 			if (!checkonly)
10258 				tcp->tcp_dgram_errind = onoff;
10259 			break;
10260 		case SO_SNDBUF: {
10261 			tcp_t *peer_tcp;
10262 
10263 			if (*i1 > tcp_max_buf) {
10264 				*outlenp = 0;
10265 				return (ENOBUFS);
10266 			}
10267 			if (checkonly)
10268 				break;
10269 
10270 			tcp->tcp_xmit_hiwater = *i1;
10271 			if (tcp_snd_lowat_fraction != 0)
10272 				tcp->tcp_xmit_lowater =
10273 				    tcp->tcp_xmit_hiwater /
10274 				    tcp_snd_lowat_fraction;
10275 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10276 			/*
10277 			 * If we are flow-controlled, recheck the condition.
10278 			 * There are apps that increase SO_SNDBUF size when
10279 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10280 			 * control condition to be lifted right away.
10281 			 *
10282 			 * For the fused tcp loopback case, in order to avoid
10283 			 * a race with the peer's tcp_fuse_rrw() we need to
10284 			 * hold its fuse_lock while accessing tcp_flow_stopped.
10285 			 */
10286 			peer_tcp = tcp->tcp_loopback_peer;
10287 			ASSERT(!tcp->tcp_fused || peer_tcp != NULL);
10288 			if (tcp->tcp_fused)
10289 				mutex_enter(&peer_tcp->tcp_fuse_lock);
10290 
10291 			if (tcp->tcp_flow_stopped &&
10292 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10293 				tcp_clrqfull(tcp);
10294 			}
10295 			if (tcp->tcp_fused)
10296 				mutex_exit(&peer_tcp->tcp_fuse_lock);
10297 			break;
10298 		}
10299 		case SO_RCVBUF:
10300 			if (*i1 > tcp_max_buf) {
10301 				*outlenp = 0;
10302 				return (ENOBUFS);
10303 			}
10304 			/* Silently ignore zero */
10305 			if (!checkonly && *i1 != 0) {
10306 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10307 				(void) tcp_rwnd_set(tcp, *i1);
10308 			}
10309 			/*
10310 			 * XXX should we return the rwnd here
10311 			 * and tcp_opt_get ?
10312 			 */
10313 			break;
10314 		case SO_SND_COPYAVOID:
10315 			if (!checkonly) {
10316 				/* we only allow enable at most once for now */
10317 				if (tcp->tcp_loopback ||
10318 				    (!tcp->tcp_snd_zcopy_aware &&
10319 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10320 					*outlenp = 0;
10321 					return (EOPNOTSUPP);
10322 				}
10323 				tcp->tcp_snd_zcopy_aware = 1;
10324 			}
10325 			break;
10326 		case SO_ALLZONES:
10327 			/* Handled at the IP level */
10328 			return (-EINVAL);
10329 		case SO_ANON_MLP:
10330 			if (!checkonly) {
10331 				mutex_enter(&connp->conn_lock);
10332 				connp->conn_anon_mlp = onoff;
10333 				mutex_exit(&connp->conn_lock);
10334 			}
10335 			break;
10336 		case SO_MAC_EXEMPT:
10337 			if (secpolicy_net_mac_aware(cr) != 0 ||
10338 			    IPCL_IS_BOUND(connp))
10339 				return (EACCES);
10340 			if (!checkonly) {
10341 				mutex_enter(&connp->conn_lock);
10342 				connp->conn_mac_exempt = onoff;
10343 				mutex_exit(&connp->conn_lock);
10344 			}
10345 			break;
10346 		case SO_EXCLBIND:
10347 			if (!checkonly)
10348 				tcp->tcp_exclbind = onoff;
10349 			break;
10350 		default:
10351 			*outlenp = 0;
10352 			return (EINVAL);
10353 		}
10354 		break;
10355 	case IPPROTO_TCP:
10356 		switch (name) {
10357 		case TCP_NODELAY:
10358 			if (!checkonly)
10359 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10360 			break;
10361 		case TCP_NOTIFY_THRESHOLD:
10362 			if (!checkonly)
10363 				tcp->tcp_first_timer_threshold = *i1;
10364 			break;
10365 		case TCP_ABORT_THRESHOLD:
10366 			if (!checkonly)
10367 				tcp->tcp_second_timer_threshold = *i1;
10368 			break;
10369 		case TCP_CONN_NOTIFY_THRESHOLD:
10370 			if (!checkonly)
10371 				tcp->tcp_first_ctimer_threshold = *i1;
10372 			break;
10373 		case TCP_CONN_ABORT_THRESHOLD:
10374 			if (!checkonly)
10375 				tcp->tcp_second_ctimer_threshold = *i1;
10376 			break;
10377 		case TCP_RECVDSTADDR:
10378 			if (tcp->tcp_state > TCPS_LISTEN)
10379 				return (EOPNOTSUPP);
10380 			if (!checkonly)
10381 				tcp->tcp_recvdstaddr = onoff;
10382 			break;
10383 		case TCP_ANONPRIVBIND:
10384 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10385 				*outlenp = 0;
10386 				return (reterr);
10387 			}
10388 			if (!checkonly) {
10389 				tcp->tcp_anon_priv_bind = onoff;
10390 			}
10391 			break;
10392 		case TCP_EXCLBIND:
10393 			if (!checkonly)
10394 				tcp->tcp_exclbind = onoff;
10395 			break;	/* goto sizeof (int) option return */
10396 		case TCP_INIT_CWND: {
10397 			uint32_t init_cwnd = *((uint32_t *)invalp);
10398 
10399 			if (checkonly)
10400 				break;
10401 
10402 			/*
10403 			 * Only allow socket with network configuration
10404 			 * privilege to set the initial cwnd to be larger
10405 			 * than allowed by RFC 3390.
10406 			 */
10407 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10408 				tcp->tcp_init_cwnd = init_cwnd;
10409 				break;
10410 			}
10411 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
10412 				*outlenp = 0;
10413 				return (reterr);
10414 			}
10415 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10416 				*outlenp = 0;
10417 				return (EINVAL);
10418 			}
10419 			tcp->tcp_init_cwnd = init_cwnd;
10420 			break;
10421 		}
10422 		case TCP_KEEPALIVE_THRESHOLD:
10423 			if (checkonly)
10424 				break;
10425 
10426 			if (*i1 < tcp_keepalive_interval_low ||
10427 			    *i1 > tcp_keepalive_interval_high) {
10428 				*outlenp = 0;
10429 				return (EINVAL);
10430 			}
10431 			if (*i1 != tcp->tcp_ka_interval) {
10432 				tcp->tcp_ka_interval = *i1;
10433 				/*
10434 				 * Check if we need to restart the
10435 				 * keepalive timer.
10436 				 */
10437 				if (tcp->tcp_ka_tid != 0) {
10438 					ASSERT(tcp->tcp_ka_enabled);
10439 					(void) TCP_TIMER_CANCEL(tcp,
10440 					    tcp->tcp_ka_tid);
10441 					tcp->tcp_ka_last_intrvl = 0;
10442 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10443 					    tcp_keepalive_killer,
10444 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10445 				}
10446 			}
10447 			break;
10448 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10449 			if (!checkonly) {
10450 				if (*i1 < tcp_keepalive_abort_interval_low ||
10451 				    *i1 > tcp_keepalive_abort_interval_high) {
10452 					*outlenp = 0;
10453 					return (EINVAL);
10454 				}
10455 				tcp->tcp_ka_abort_thres = *i1;
10456 			}
10457 			break;
10458 		case TCP_CORK:
10459 			if (!checkonly) {
10460 				/*
10461 				 * if tcp->tcp_cork was set and is now
10462 				 * being unset, we have to make sure that
10463 				 * the remaining data gets sent out. Also
10464 				 * unset tcp->tcp_cork so that tcp_wput_data()
10465 				 * can send data even if it is less than mss
10466 				 */
10467 				if (tcp->tcp_cork && onoff == 0 &&
10468 				    tcp->tcp_unsent > 0) {
10469 					tcp->tcp_cork = B_FALSE;
10470 					tcp_wput_data(tcp, NULL, B_FALSE);
10471 				}
10472 				tcp->tcp_cork = onoff;
10473 			}
10474 			break;
10475 		default:
10476 			*outlenp = 0;
10477 			return (EINVAL);
10478 		}
10479 		break;
10480 	case IPPROTO_IP:
10481 		if (tcp->tcp_family != AF_INET) {
10482 			*outlenp = 0;
10483 			return (ENOPROTOOPT);
10484 		}
10485 		switch (name) {
10486 		case IP_OPTIONS:
10487 		case T_IP_OPTIONS:
10488 			reterr = tcp_opt_set_header(tcp, checkonly,
10489 			    invalp, inlen);
10490 			if (reterr) {
10491 				*outlenp = 0;
10492 				return (reterr);
10493 			}
10494 			/* OK return - copy input buffer into output buffer */
10495 			if (invalp != outvalp) {
10496 				/* don't trust bcopy for identical src/dst */
10497 				bcopy(invalp, outvalp, inlen);
10498 			}
10499 			*outlenp = inlen;
10500 			return (0);
10501 		case IP_TOS:
10502 		case T_IP_TOS:
10503 			if (!checkonly) {
10504 				tcp->tcp_ipha->ipha_type_of_service =
10505 				    (uchar_t)*i1;
10506 				tcp->tcp_tos = (uchar_t)*i1;
10507 			}
10508 			break;
10509 		case IP_TTL:
10510 			if (!checkonly) {
10511 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10512 				tcp->tcp_ttl = (uchar_t)*i1;
10513 			}
10514 			break;
10515 		case IP_BOUND_IF:
10516 		case IP_NEXTHOP:
10517 			/* Handled at the IP level */
10518 			return (-EINVAL);
10519 		case IP_SEC_OPT:
10520 			/*
10521 			 * We should not allow policy setting after
10522 			 * we start listening for connections.
10523 			 */
10524 			if (tcp->tcp_state == TCPS_LISTEN) {
10525 				return (EINVAL);
10526 			} else {
10527 				/* Handled at the IP level */
10528 				return (-EINVAL);
10529 			}
10530 		default:
10531 			*outlenp = 0;
10532 			return (EINVAL);
10533 		}
10534 		break;
10535 	case IPPROTO_IPV6: {
10536 		ip6_pkt_t		*ipp;
10537 
10538 		/*
10539 		 * IPPROTO_IPV6 options are only supported for sockets
10540 		 * that are using IPv6 on the wire.
10541 		 */
10542 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10543 			*outlenp = 0;
10544 			return (ENOPROTOOPT);
10545 		}
10546 		/*
10547 		 * Only sticky options; no ancillary data
10548 		 */
10549 		ASSERT(thisdg_attrs == NULL);
10550 		ipp = &tcp->tcp_sticky_ipp;
10551 
10552 		switch (name) {
10553 		case IPV6_UNICAST_HOPS:
10554 			/* -1 means use default */
10555 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10556 				*outlenp = 0;
10557 				return (EINVAL);
10558 			}
10559 			if (!checkonly) {
10560 				if (*i1 == -1) {
10561 					tcp->tcp_ip6h->ip6_hops =
10562 					    ipp->ipp_unicast_hops =
10563 					    (uint8_t)tcp_ipv6_hoplimit;
10564 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10565 					/* Pass modified value to IP. */
10566 					*i1 = tcp->tcp_ip6h->ip6_hops;
10567 				} else {
10568 					tcp->tcp_ip6h->ip6_hops =
10569 					    ipp->ipp_unicast_hops =
10570 					    (uint8_t)*i1;
10571 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10572 				}
10573 				reterr = tcp_build_hdrs(q, tcp);
10574 				if (reterr != 0)
10575 					return (reterr);
10576 			}
10577 			break;
10578 		case IPV6_BOUND_IF:
10579 			if (!checkonly) {
10580 				int error = 0;
10581 
10582 				tcp->tcp_bound_if = *i1;
10583 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10584 				    B_TRUE, checkonly, level, name, mblk);
10585 				if (error != 0) {
10586 					*outlenp = 0;
10587 					return (error);
10588 				}
10589 			}
10590 			break;
10591 		/*
10592 		 * Set boolean switches for ancillary data delivery
10593 		 */
10594 		case IPV6_RECVPKTINFO:
10595 			if (!checkonly) {
10596 				if (onoff)
10597 					tcp->tcp_ipv6_recvancillary |=
10598 					    TCP_IPV6_RECVPKTINFO;
10599 				else
10600 					tcp->tcp_ipv6_recvancillary &=
10601 					    ~TCP_IPV6_RECVPKTINFO;
10602 				/* Force it to be sent up with the next msg */
10603 				tcp->tcp_recvifindex = 0;
10604 			}
10605 			break;
10606 		case IPV6_RECVTCLASS:
10607 			if (!checkonly) {
10608 				if (onoff)
10609 					tcp->tcp_ipv6_recvancillary |=
10610 					    TCP_IPV6_RECVTCLASS;
10611 				else
10612 					tcp->tcp_ipv6_recvancillary &=
10613 					    ~TCP_IPV6_RECVTCLASS;
10614 			}
10615 			break;
10616 		case IPV6_RECVHOPLIMIT:
10617 			if (!checkonly) {
10618 				if (onoff)
10619 					tcp->tcp_ipv6_recvancillary |=
10620 					    TCP_IPV6_RECVHOPLIMIT;
10621 				else
10622 					tcp->tcp_ipv6_recvancillary &=
10623 					    ~TCP_IPV6_RECVHOPLIMIT;
10624 				/* Force it to be sent up with the next msg */
10625 				tcp->tcp_recvhops = 0xffffffffU;
10626 			}
10627 			break;
10628 		case IPV6_RECVHOPOPTS:
10629 			if (!checkonly) {
10630 				if (onoff)
10631 					tcp->tcp_ipv6_recvancillary |=
10632 					    TCP_IPV6_RECVHOPOPTS;
10633 				else
10634 					tcp->tcp_ipv6_recvancillary &=
10635 					    ~TCP_IPV6_RECVHOPOPTS;
10636 			}
10637 			break;
10638 		case IPV6_RECVDSTOPTS:
10639 			if (!checkonly) {
10640 				if (onoff)
10641 					tcp->tcp_ipv6_recvancillary |=
10642 					    TCP_IPV6_RECVDSTOPTS;
10643 				else
10644 					tcp->tcp_ipv6_recvancillary &=
10645 					    ~TCP_IPV6_RECVDSTOPTS;
10646 			}
10647 			break;
10648 		case _OLD_IPV6_RECVDSTOPTS:
10649 			if (!checkonly) {
10650 				if (onoff)
10651 					tcp->tcp_ipv6_recvancillary |=
10652 					    TCP_OLD_IPV6_RECVDSTOPTS;
10653 				else
10654 					tcp->tcp_ipv6_recvancillary &=
10655 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10656 			}
10657 			break;
10658 		case IPV6_RECVRTHDR:
10659 			if (!checkonly) {
10660 				if (onoff)
10661 					tcp->tcp_ipv6_recvancillary |=
10662 					    TCP_IPV6_RECVRTHDR;
10663 				else
10664 					tcp->tcp_ipv6_recvancillary &=
10665 					    ~TCP_IPV6_RECVRTHDR;
10666 			}
10667 			break;
10668 		case IPV6_RECVRTHDRDSTOPTS:
10669 			if (!checkonly) {
10670 				if (onoff)
10671 					tcp->tcp_ipv6_recvancillary |=
10672 					    TCP_IPV6_RECVRTDSTOPTS;
10673 				else
10674 					tcp->tcp_ipv6_recvancillary &=
10675 					    ~TCP_IPV6_RECVRTDSTOPTS;
10676 			}
10677 			break;
10678 		case IPV6_PKTINFO:
10679 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10680 				return (EINVAL);
10681 			if (checkonly)
10682 				break;
10683 
10684 			if (inlen == 0) {
10685 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10686 			} else {
10687 				struct in6_pktinfo *pkti;
10688 
10689 				pkti = (struct in6_pktinfo *)invalp;
10690 				/*
10691 				 * RFC 3542 states that ipi6_addr must be
10692 				 * the unspecified address when setting the
10693 				 * IPV6_PKTINFO sticky socket option on a
10694 				 * TCP socket.
10695 				 */
10696 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10697 					return (EINVAL);
10698 				/*
10699 				 * ip6_set_pktinfo() validates the source
10700 				 * address and interface index.
10701 				 */
10702 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10703 				    pkti, mblk);
10704 				if (reterr != 0)
10705 					return (reterr);
10706 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10707 				ipp->ipp_addr = pkti->ipi6_addr;
10708 				if (ipp->ipp_ifindex != 0)
10709 					ipp->ipp_fields |= IPPF_IFINDEX;
10710 				else
10711 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10712 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10713 					ipp->ipp_fields |= IPPF_ADDR;
10714 				else
10715 					ipp->ipp_fields &= ~IPPF_ADDR;
10716 			}
10717 			reterr = tcp_build_hdrs(q, tcp);
10718 			if (reterr != 0)
10719 				return (reterr);
10720 			break;
10721 		case IPV6_TCLASS:
10722 			if (inlen != 0 && inlen != sizeof (int))
10723 				return (EINVAL);
10724 			if (checkonly)
10725 				break;
10726 
10727 			if (inlen == 0) {
10728 				ipp->ipp_fields &= ~IPPF_TCLASS;
10729 			} else {
10730 				if (*i1 > 255 || *i1 < -1)
10731 					return (EINVAL);
10732 				if (*i1 == -1) {
10733 					ipp->ipp_tclass = 0;
10734 					*i1 = 0;
10735 				} else {
10736 					ipp->ipp_tclass = *i1;
10737 				}
10738 				ipp->ipp_fields |= IPPF_TCLASS;
10739 			}
10740 			reterr = tcp_build_hdrs(q, tcp);
10741 			if (reterr != 0)
10742 				return (reterr);
10743 			break;
10744 		case IPV6_NEXTHOP:
10745 			/*
10746 			 * IP will verify that the nexthop is reachable
10747 			 * and fail for sticky options.
10748 			 */
10749 			if (inlen != 0 && inlen != sizeof (sin6_t))
10750 				return (EINVAL);
10751 			if (checkonly)
10752 				break;
10753 
10754 			if (inlen == 0) {
10755 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10756 			} else {
10757 				sin6_t *sin6 = (sin6_t *)invalp;
10758 
10759 				if (sin6->sin6_family != AF_INET6)
10760 					return (EAFNOSUPPORT);
10761 				if (IN6_IS_ADDR_V4MAPPED(
10762 				    &sin6->sin6_addr))
10763 					return (EADDRNOTAVAIL);
10764 				ipp->ipp_nexthop = sin6->sin6_addr;
10765 				if (!IN6_IS_ADDR_UNSPECIFIED(
10766 				    &ipp->ipp_nexthop))
10767 					ipp->ipp_fields |= IPPF_NEXTHOP;
10768 				else
10769 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10770 			}
10771 			reterr = tcp_build_hdrs(q, tcp);
10772 			if (reterr != 0)
10773 				return (reterr);
10774 			break;
10775 		case IPV6_HOPOPTS: {
10776 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10777 
10778 			/*
10779 			 * Sanity checks - minimum size, size a multiple of
10780 			 * eight bytes, and matching size passed in.
10781 			 */
10782 			if (inlen != 0 &&
10783 			    inlen != (8 * (hopts->ip6h_len + 1)))
10784 				return (EINVAL);
10785 
10786 			if (checkonly)
10787 				break;
10788 
10789 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10790 			    (uchar_t **)&ipp->ipp_hopopts,
10791 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10792 			if (reterr != 0)
10793 				return (reterr);
10794 			if (ipp->ipp_hopoptslen == 0)
10795 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10796 			else
10797 				ipp->ipp_fields |= IPPF_HOPOPTS;
10798 			reterr = tcp_build_hdrs(q, tcp);
10799 			if (reterr != 0)
10800 				return (reterr);
10801 			break;
10802 		}
10803 		case IPV6_RTHDRDSTOPTS: {
10804 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10805 
10806 			/*
10807 			 * Sanity checks - minimum size, size a multiple of
10808 			 * eight bytes, and matching size passed in.
10809 			 */
10810 			if (inlen != 0 &&
10811 			    inlen != (8 * (dopts->ip6d_len + 1)))
10812 				return (EINVAL);
10813 
10814 			if (checkonly)
10815 				break;
10816 
10817 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10818 			    (uchar_t **)&ipp->ipp_rtdstopts,
10819 			    &ipp->ipp_rtdstoptslen, 0);
10820 			if (reterr != 0)
10821 				return (reterr);
10822 			if (ipp->ipp_rtdstoptslen == 0)
10823 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10824 			else
10825 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10826 			reterr = tcp_build_hdrs(q, tcp);
10827 			if (reterr != 0)
10828 				return (reterr);
10829 			break;
10830 		}
10831 		case IPV6_DSTOPTS: {
10832 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10833 
10834 			/*
10835 			 * Sanity checks - minimum size, size a multiple of
10836 			 * eight bytes, and matching size passed in.
10837 			 */
10838 			if (inlen != 0 &&
10839 			    inlen != (8 * (dopts->ip6d_len + 1)))
10840 				return (EINVAL);
10841 
10842 			if (checkonly)
10843 				break;
10844 
10845 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10846 			    (uchar_t **)&ipp->ipp_dstopts,
10847 			    &ipp->ipp_dstoptslen, 0);
10848 			if (reterr != 0)
10849 				return (reterr);
10850 			if (ipp->ipp_dstoptslen == 0)
10851 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10852 			else
10853 				ipp->ipp_fields |= IPPF_DSTOPTS;
10854 			reterr = tcp_build_hdrs(q, tcp);
10855 			if (reterr != 0)
10856 				return (reterr);
10857 			break;
10858 		}
10859 		case IPV6_RTHDR: {
10860 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10861 
10862 			/*
10863 			 * Sanity checks - minimum size, size a multiple of
10864 			 * eight bytes, and matching size passed in.
10865 			 */
10866 			if (inlen != 0 &&
10867 			    inlen != (8 * (rt->ip6r_len + 1)))
10868 				return (EINVAL);
10869 
10870 			if (checkonly)
10871 				break;
10872 
10873 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10874 			    (uchar_t **)&ipp->ipp_rthdr,
10875 			    &ipp->ipp_rthdrlen, 0);
10876 			if (reterr != 0)
10877 				return (reterr);
10878 			if (ipp->ipp_rthdrlen == 0)
10879 				ipp->ipp_fields &= ~IPPF_RTHDR;
10880 			else
10881 				ipp->ipp_fields |= IPPF_RTHDR;
10882 			reterr = tcp_build_hdrs(q, tcp);
10883 			if (reterr != 0)
10884 				return (reterr);
10885 			break;
10886 		}
10887 		case IPV6_V6ONLY:
10888 			if (!checkonly)
10889 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10890 			break;
10891 		case IPV6_USE_MIN_MTU:
10892 			if (inlen != sizeof (int))
10893 				return (EINVAL);
10894 
10895 			if (*i1 < -1 || *i1 > 1)
10896 				return (EINVAL);
10897 
10898 			if (checkonly)
10899 				break;
10900 
10901 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10902 			ipp->ipp_use_min_mtu = *i1;
10903 			break;
10904 		case IPV6_BOUND_PIF:
10905 			/* Handled at the IP level */
10906 			return (-EINVAL);
10907 		case IPV6_SEC_OPT:
10908 			/*
10909 			 * We should not allow policy setting after
10910 			 * we start listening for connections.
10911 			 */
10912 			if (tcp->tcp_state == TCPS_LISTEN) {
10913 				return (EINVAL);
10914 			} else {
10915 				/* Handled at the IP level */
10916 				return (-EINVAL);
10917 			}
10918 		case IPV6_SRC_PREFERENCES:
10919 			if (inlen != sizeof (uint32_t))
10920 				return (EINVAL);
10921 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10922 			    *(uint32_t *)invalp);
10923 			if (reterr != 0) {
10924 				*outlenp = 0;
10925 				return (reterr);
10926 			}
10927 			break;
10928 		default:
10929 			*outlenp = 0;
10930 			return (EINVAL);
10931 		}
10932 		break;
10933 	}		/* end IPPROTO_IPV6 */
10934 	default:
10935 		*outlenp = 0;
10936 		return (EINVAL);
10937 	}
10938 	/*
10939 	 * Common case of OK return with outval same as inval
10940 	 */
10941 	if (invalp != outvalp) {
10942 		/* don't trust bcopy for identical src/dst */
10943 		(void) bcopy(invalp, outvalp, inlen);
10944 	}
10945 	*outlenp = inlen;
10946 	return (0);
10947 }
10948 
10949 /*
10950  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10951  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10952  * headers, and the maximum size tcp header (to avoid reallocation
10953  * on the fly for additional tcp options).
10954  * Returns failure if can't allocate memory.
10955  */
10956 static int
10957 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
10958 {
10959 	char	*hdrs;
10960 	uint_t	hdrs_len;
10961 	ip6i_t	*ip6i;
10962 	char	buf[TCP_MAX_HDR_LENGTH];
10963 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10964 	in6_addr_t src, dst;
10965 
10966 	/*
10967 	 * save the existing tcp header and source/dest IP addresses
10968 	 */
10969 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10970 	src = tcp->tcp_ip6h->ip6_src;
10971 	dst = tcp->tcp_ip6h->ip6_dst;
10972 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10973 	ASSERT(hdrs_len != 0);
10974 	if (hdrs_len > tcp->tcp_iphc_len) {
10975 		/* Need to reallocate */
10976 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10977 		if (hdrs == NULL)
10978 			return (ENOMEM);
10979 		if (tcp->tcp_iphc != NULL) {
10980 			if (tcp->tcp_hdr_grown) {
10981 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10982 			} else {
10983 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10984 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10985 			}
10986 			tcp->tcp_iphc_len = 0;
10987 		}
10988 		ASSERT(tcp->tcp_iphc_len == 0);
10989 		tcp->tcp_iphc = hdrs;
10990 		tcp->tcp_iphc_len = hdrs_len;
10991 		tcp->tcp_hdr_grown = B_TRUE;
10992 	}
10993 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10994 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10995 
10996 	/* Set header fields not in ipp */
10997 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10998 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10999 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11000 	} else {
11001 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11002 	}
11003 	/*
11004 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11005 	 *
11006 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11007 	 */
11008 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11009 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11010 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11011 
11012 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11013 
11014 	tcp->tcp_ip6h->ip6_src = src;
11015 	tcp->tcp_ip6h->ip6_dst = dst;
11016 
11017 	/*
11018 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
11019 	 * the default value for TCP.
11020 	 */
11021 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
11022 		tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit;
11023 
11024 	/*
11025 	 * If we're setting extension headers after a connection
11026 	 * has been established, and if we have a routing header
11027 	 * among the extension headers, call ip_massage_options_v6 to
11028 	 * manipulate the routing header/ip6_dst set the checksum
11029 	 * difference in the tcp header template.
11030 	 * (This happens in tcp_connect_ipv6 if the routing header
11031 	 * is set prior to the connect.)
11032 	 * Set the tcp_sum to zero first in case we've cleared a
11033 	 * routing header or don't have one at all.
11034 	 */
11035 	tcp->tcp_sum = 0;
11036 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11037 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11038 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11039 		    (uint8_t *)tcp->tcp_tcph);
11040 		if (rth != NULL) {
11041 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11042 			    rth);
11043 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11044 			    (tcp->tcp_sum >> 16));
11045 		}
11046 	}
11047 
11048 	/* Try to get everything in a single mblk */
11049 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
11050 	return (0);
11051 }
11052 
11053 /*
11054  * Transfer any source route option from ipha to buf/dst in reversed form.
11055  */
11056 static int
11057 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11058 {
11059 	ipoptp_t	opts;
11060 	uchar_t		*opt;
11061 	uint8_t		optval;
11062 	uint8_t		optlen;
11063 	uint32_t	len = 0;
11064 
11065 	for (optval = ipoptp_first(&opts, ipha);
11066 	    optval != IPOPT_EOL;
11067 	    optval = ipoptp_next(&opts)) {
11068 		opt = opts.ipoptp_cur;
11069 		optlen = opts.ipoptp_len;
11070 		switch (optval) {
11071 			int	off1, off2;
11072 		case IPOPT_SSRR:
11073 		case IPOPT_LSRR:
11074 
11075 			/* Reverse source route */
11076 			/*
11077 			 * First entry should be the next to last one in the
11078 			 * current source route (the last entry is our
11079 			 * address.)
11080 			 * The last entry should be the final destination.
11081 			 */
11082 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11083 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11084 			off1 = IPOPT_MINOFF_SR - 1;
11085 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11086 			if (off2 < 0) {
11087 				/* No entries in source route */
11088 				break;
11089 			}
11090 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11091 			/*
11092 			 * Note: use src since ipha has not had its src
11093 			 * and dst reversed (it is in the state it was
11094 			 * received.
11095 			 */
11096 			bcopy(&ipha->ipha_src, buf + off2,
11097 			    IP_ADDR_LEN);
11098 			off2 -= IP_ADDR_LEN;
11099 
11100 			while (off2 > 0) {
11101 				bcopy(opt + off2, buf + off1,
11102 				    IP_ADDR_LEN);
11103 				off1 += IP_ADDR_LEN;
11104 				off2 -= IP_ADDR_LEN;
11105 			}
11106 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11107 			buf += optlen;
11108 			len += optlen;
11109 			break;
11110 		}
11111 	}
11112 done:
11113 	/* Pad the resulting options */
11114 	while (len & 0x3) {
11115 		*buf++ = IPOPT_EOL;
11116 		len++;
11117 	}
11118 	return (len);
11119 }
11120 
11121 
11122 /*
11123  * Extract and revert a source route from ipha (if any)
11124  * and then update the relevant fields in both tcp_t and the standard header.
11125  */
11126 static void
11127 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11128 {
11129 	char	buf[TCP_MAX_HDR_LENGTH];
11130 	uint_t	tcph_len;
11131 	int	len;
11132 
11133 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11134 	len = IPH_HDR_LENGTH(ipha);
11135 	if (len == IP_SIMPLE_HDR_LENGTH)
11136 		/* Nothing to do */
11137 		return;
11138 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11139 	    (len & 0x3))
11140 		return;
11141 
11142 	tcph_len = tcp->tcp_tcp_hdr_len;
11143 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11144 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11145 		(tcp->tcp_ipha->ipha_dst & 0xffff);
11146 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11147 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11148 	len += IP_SIMPLE_HDR_LENGTH;
11149 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11150 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11151 	if ((int)tcp->tcp_sum < 0)
11152 		tcp->tcp_sum--;
11153 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11154 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11155 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11156 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11157 	tcp->tcp_ip_hdr_len = len;
11158 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11159 	    (IP_VERSION << 4) | (len >> 2);
11160 	len += tcph_len;
11161 	tcp->tcp_hdr_len = len;
11162 }
11163 
11164 /*
11165  * Copy the standard header into its new location,
11166  * lay in the new options and then update the relevant
11167  * fields in both tcp_t and the standard header.
11168  */
11169 static int
11170 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11171 {
11172 	uint_t	tcph_len;
11173 	uint8_t	*ip_optp;
11174 	tcph_t	*new_tcph;
11175 
11176 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11177 		return (EINVAL);
11178 
11179 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
11180 		return (EINVAL);
11181 
11182 	if (checkonly) {
11183 		/*
11184 		 * do not really set, just pretend to - T_CHECK
11185 		 */
11186 		return (0);
11187 	}
11188 
11189 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11190 	if (tcp->tcp_label_len > 0) {
11191 		int padlen;
11192 		uint8_t opt;
11193 
11194 		/* convert list termination to no-ops */
11195 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
11196 		ip_optp += ip_optp[IPOPT_OLEN];
11197 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11198 		while (--padlen >= 0)
11199 			*ip_optp++ = opt;
11200 	}
11201 	tcph_len = tcp->tcp_tcp_hdr_len;
11202 	new_tcph = (tcph_t *)(ip_optp + len);
11203 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11204 	tcp->tcp_tcph = new_tcph;
11205 	bcopy(ptr, ip_optp, len);
11206 
11207 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11208 
11209 	tcp->tcp_ip_hdr_len = len;
11210 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11211 	    (IP_VERSION << 4) | (len >> 2);
11212 	tcp->tcp_hdr_len = len + tcph_len;
11213 	if (!TCP_IS_DETACHED(tcp)) {
11214 		/* Always allocate room for all options. */
11215 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11216 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
11217 	}
11218 	return (0);
11219 }
11220 
11221 /* Get callback routine passed to nd_load by tcp_param_register */
11222 /* ARGSUSED */
11223 static int
11224 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11225 {
11226 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11227 
11228 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11229 	return (0);
11230 }
11231 
11232 /*
11233  * Walk through the param array specified registering each element with the
11234  * named dispatch handler.
11235  */
11236 static boolean_t
11237 tcp_param_register(tcpparam_t *tcppa, int cnt)
11238 {
11239 	for (; cnt-- > 0; tcppa++) {
11240 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11241 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
11242 			    tcp_param_get, tcp_param_set,
11243 			    (caddr_t)tcppa)) {
11244 				nd_free(&tcp_g_nd);
11245 				return (B_FALSE);
11246 			}
11247 		}
11248 	}
11249 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
11250 	    tcp_param_get, tcp_param_set_aligned,
11251 	    (caddr_t)&tcp_wroff_xtra_param)) {
11252 		nd_free(&tcp_g_nd);
11253 		return (B_FALSE);
11254 	}
11255 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
11256 	    tcp_param_get, tcp_param_set_aligned,
11257 	    (caddr_t)&tcp_mdt_head_param)) {
11258 		nd_free(&tcp_g_nd);
11259 		return (B_FALSE);
11260 	}
11261 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
11262 	    tcp_param_get, tcp_param_set_aligned,
11263 	    (caddr_t)&tcp_mdt_tail_param)) {
11264 		nd_free(&tcp_g_nd);
11265 		return (B_FALSE);
11266 	}
11267 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
11268 	    tcp_param_get, tcp_param_set,
11269 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
11270 		nd_free(&tcp_g_nd);
11271 		return (B_FALSE);
11272 	}
11273 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
11274 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11275 		nd_free(&tcp_g_nd);
11276 		return (B_FALSE);
11277 	}
11278 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
11279 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11280 		nd_free(&tcp_g_nd);
11281 		return (B_FALSE);
11282 	}
11283 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
11284 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11285 		nd_free(&tcp_g_nd);
11286 		return (B_FALSE);
11287 	}
11288 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
11289 	    NULL)) {
11290 		nd_free(&tcp_g_nd);
11291 		return (B_FALSE);
11292 	}
11293 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
11294 	    NULL, NULL)) {
11295 		nd_free(&tcp_g_nd);
11296 		return (B_FALSE);
11297 	}
11298 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
11299 	    NULL, NULL)) {
11300 		nd_free(&tcp_g_nd);
11301 		return (B_FALSE);
11302 	}
11303 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
11304 	    NULL, NULL)) {
11305 		nd_free(&tcp_g_nd);
11306 		return (B_FALSE);
11307 	}
11308 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
11309 	    NULL, NULL)) {
11310 		nd_free(&tcp_g_nd);
11311 		return (B_FALSE);
11312 	}
11313 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
11314 	    tcp_host_param_set, NULL)) {
11315 		nd_free(&tcp_g_nd);
11316 		return (B_FALSE);
11317 	}
11318 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
11319 	    tcp_host_param_set_ipv6, NULL)) {
11320 		nd_free(&tcp_g_nd);
11321 		return (B_FALSE);
11322 	}
11323 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
11324 	    NULL)) {
11325 		nd_free(&tcp_g_nd);
11326 		return (B_FALSE);
11327 	}
11328 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
11329 	    tcp_reserved_port_list, NULL, NULL)) {
11330 		nd_free(&tcp_g_nd);
11331 		return (B_FALSE);
11332 	}
11333 	/*
11334 	 * Dummy ndd variables - only to convey obsolescence information
11335 	 * through printing of their name (no get or set routines)
11336 	 * XXX Remove in future releases ?
11337 	 */
11338 	if (!nd_load(&tcp_g_nd,
11339 	    "tcp_close_wait_interval(obsoleted - "
11340 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11341 		nd_free(&tcp_g_nd);
11342 		return (B_FALSE);
11343 	}
11344 	return (B_TRUE);
11345 }
11346 
11347 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11348 /* ARGSUSED */
11349 static int
11350 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11351     cred_t *cr)
11352 {
11353 	long new_value;
11354 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11355 
11356 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11357 	    new_value < tcppa->tcp_param_min ||
11358 	    new_value > tcppa->tcp_param_max) {
11359 		return (EINVAL);
11360 	}
11361 	/*
11362 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11363 	 * round it up.  For future 64 bit requirement, we actually make it
11364 	 * a multiple of 8.
11365 	 */
11366 	if (new_value & 0x7) {
11367 		new_value = (new_value & ~0x7) + 0x8;
11368 	}
11369 	tcppa->tcp_param_val = new_value;
11370 	return (0);
11371 }
11372 
11373 /* Set callback routine passed to nd_load by tcp_param_register */
11374 /* ARGSUSED */
11375 static int
11376 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11377 {
11378 	long	new_value;
11379 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11380 
11381 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11382 	    new_value < tcppa->tcp_param_min ||
11383 	    new_value > tcppa->tcp_param_max) {
11384 		return (EINVAL);
11385 	}
11386 	tcppa->tcp_param_val = new_value;
11387 	return (0);
11388 }
11389 
11390 /*
11391  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11392  * is filled, return as much as we can.  The message passed in may be
11393  * multi-part, chained using b_cont.  "start" is the starting sequence
11394  * number for this piece.
11395  */
11396 static mblk_t *
11397 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11398 {
11399 	uint32_t	end;
11400 	mblk_t		*mp1;
11401 	mblk_t		*mp2;
11402 	mblk_t		*next_mp;
11403 	uint32_t	u1;
11404 
11405 	/* Walk through all the new pieces. */
11406 	do {
11407 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11408 		    (uintptr_t)INT_MAX);
11409 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11410 		next_mp = mp->b_cont;
11411 		if (start == end) {
11412 			/* Empty.  Blast it. */
11413 			freeb(mp);
11414 			continue;
11415 		}
11416 		mp->b_cont = NULL;
11417 		TCP_REASS_SET_SEQ(mp, start);
11418 		TCP_REASS_SET_END(mp, end);
11419 		mp1 = tcp->tcp_reass_tail;
11420 		if (!mp1) {
11421 			tcp->tcp_reass_tail = mp;
11422 			tcp->tcp_reass_head = mp;
11423 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11424 			UPDATE_MIB(&tcp_mib,
11425 			    tcpInDataUnorderBytes, end - start);
11426 			continue;
11427 		}
11428 		/* New stuff completely beyond tail? */
11429 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11430 			/* Link it on end. */
11431 			mp1->b_cont = mp;
11432 			tcp->tcp_reass_tail = mp;
11433 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11434 			UPDATE_MIB(&tcp_mib,
11435 			    tcpInDataUnorderBytes, end - start);
11436 			continue;
11437 		}
11438 		mp1 = tcp->tcp_reass_head;
11439 		u1 = TCP_REASS_SEQ(mp1);
11440 		/* New stuff at the front? */
11441 		if (SEQ_LT(start, u1)) {
11442 			/* Yes... Check for overlap. */
11443 			mp->b_cont = mp1;
11444 			tcp->tcp_reass_head = mp;
11445 			tcp_reass_elim_overlap(tcp, mp);
11446 			continue;
11447 		}
11448 		/*
11449 		 * The new piece fits somewhere between the head and tail.
11450 		 * We find our slot, where mp1 precedes us and mp2 trails.
11451 		 */
11452 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11453 			u1 = TCP_REASS_SEQ(mp2);
11454 			if (SEQ_LEQ(start, u1))
11455 				break;
11456 		}
11457 		/* Link ourselves in */
11458 		mp->b_cont = mp2;
11459 		mp1->b_cont = mp;
11460 
11461 		/* Trim overlap with following mblk(s) first */
11462 		tcp_reass_elim_overlap(tcp, mp);
11463 
11464 		/* Trim overlap with preceding mblk */
11465 		tcp_reass_elim_overlap(tcp, mp1);
11466 
11467 	} while (start = end, mp = next_mp);
11468 	mp1 = tcp->tcp_reass_head;
11469 	/* Anything ready to go? */
11470 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11471 		return (NULL);
11472 	/* Eat what we can off the queue */
11473 	for (;;) {
11474 		mp = mp1->b_cont;
11475 		end = TCP_REASS_END(mp1);
11476 		TCP_REASS_SET_SEQ(mp1, 0);
11477 		TCP_REASS_SET_END(mp1, 0);
11478 		if (!mp) {
11479 			tcp->tcp_reass_tail = NULL;
11480 			break;
11481 		}
11482 		if (end != TCP_REASS_SEQ(mp)) {
11483 			mp1->b_cont = NULL;
11484 			break;
11485 		}
11486 		mp1 = mp;
11487 	}
11488 	mp1 = tcp->tcp_reass_head;
11489 	tcp->tcp_reass_head = mp;
11490 	return (mp1);
11491 }
11492 
11493 /* Eliminate any overlap that mp may have over later mblks */
11494 static void
11495 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11496 {
11497 	uint32_t	end;
11498 	mblk_t		*mp1;
11499 	uint32_t	u1;
11500 
11501 	end = TCP_REASS_END(mp);
11502 	while ((mp1 = mp->b_cont) != NULL) {
11503 		u1 = TCP_REASS_SEQ(mp1);
11504 		if (!SEQ_GT(end, u1))
11505 			break;
11506 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11507 			mp->b_wptr -= end - u1;
11508 			TCP_REASS_SET_END(mp, u1);
11509 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11510 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11511 			break;
11512 		}
11513 		mp->b_cont = mp1->b_cont;
11514 		TCP_REASS_SET_SEQ(mp1, 0);
11515 		TCP_REASS_SET_END(mp1, 0);
11516 		freeb(mp1);
11517 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11518 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11519 	}
11520 	if (!mp1)
11521 		tcp->tcp_reass_tail = mp;
11522 }
11523 
11524 /*
11525  * Send up all messages queued on tcp_rcv_list.
11526  */
11527 static uint_t
11528 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11529 {
11530 	mblk_t *mp;
11531 	uint_t ret = 0;
11532 	uint_t thwin;
11533 #ifdef DEBUG
11534 	uint_t cnt = 0;
11535 #endif
11536 	/* Can't drain on an eager connection */
11537 	if (tcp->tcp_listener != NULL)
11538 		return (ret);
11539 
11540 	/*
11541 	 * Handle two cases here: we are currently fused or we were
11542 	 * previously fused and have some urgent data to be delivered
11543 	 * upstream.  The latter happens because we either ran out of
11544 	 * memory or were detached and therefore sending the SIGURG was
11545 	 * deferred until this point.  In either case we pass control
11546 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11547 	 * some work.
11548 	 */
11549 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11550 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11551 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11552 		    &tcp->tcp_fused_sigurg_mp))
11553 			return (ret);
11554 	}
11555 
11556 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11557 		tcp->tcp_rcv_list = mp->b_next;
11558 		mp->b_next = NULL;
11559 #ifdef DEBUG
11560 		cnt += msgdsize(mp);
11561 #endif
11562 		/* Does this need SSL processing first? */
11563 		if ((tcp->tcp_kssl_ctx  != NULL) && (DB_TYPE(mp) == M_DATA)) {
11564 			tcp_kssl_input(tcp, mp);
11565 			continue;
11566 		}
11567 		putnext(q, mp);
11568 	}
11569 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11570 	tcp->tcp_rcv_last_head = NULL;
11571 	tcp->tcp_rcv_last_tail = NULL;
11572 	tcp->tcp_rcv_cnt = 0;
11573 
11574 	/* Learn the latest rwnd information that we sent to the other side. */
11575 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11576 	    << tcp->tcp_rcv_ws;
11577 	/* This is peer's calculated send window (our receive window). */
11578 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11579 	/*
11580 	 * Increase the receive window to max.  But we need to do receiver
11581 	 * SWS avoidance.  This means that we need to check the increase of
11582 	 * of receive window is at least 1 MSS.
11583 	 */
11584 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11585 		/*
11586 		 * If the window that the other side knows is less than max
11587 		 * deferred acks segments, send an update immediately.
11588 		 */
11589 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11590 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11591 			ret = TH_ACK_NEEDED;
11592 		}
11593 		tcp->tcp_rwnd = q->q_hiwat;
11594 	}
11595 	/* No need for the push timer now. */
11596 	if (tcp->tcp_push_tid != 0) {
11597 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11598 		tcp->tcp_push_tid = 0;
11599 	}
11600 	return (ret);
11601 }
11602 
11603 /*
11604  * Queue data on tcp_rcv_list which is a b_next chain.
11605  * tcp_rcv_last_head/tail is the last element of this chain.
11606  * Each element of the chain is a b_cont chain.
11607  *
11608  * M_DATA messages are added to the current element.
11609  * Other messages are added as new (b_next) elements.
11610  */
11611 void
11612 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11613 {
11614 	ASSERT(seg_len == msgdsize(mp));
11615 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11616 
11617 	if (tcp->tcp_rcv_list == NULL) {
11618 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11619 		tcp->tcp_rcv_list = mp;
11620 		tcp->tcp_rcv_last_head = mp;
11621 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11622 		tcp->tcp_rcv_last_tail->b_cont = mp;
11623 	} else {
11624 		tcp->tcp_rcv_last_head->b_next = mp;
11625 		tcp->tcp_rcv_last_head = mp;
11626 	}
11627 
11628 	while (mp->b_cont)
11629 		mp = mp->b_cont;
11630 
11631 	tcp->tcp_rcv_last_tail = mp;
11632 	tcp->tcp_rcv_cnt += seg_len;
11633 	tcp->tcp_rwnd -= seg_len;
11634 }
11635 
11636 /*
11637  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11638  *
11639  * This is the default entry function into TCP on the read side. TCP is
11640  * always entered via squeue i.e. using squeue's for mutual exclusion.
11641  * When classifier does a lookup to find the tcp, it also puts a reference
11642  * on the conn structure associated so the tcp is guaranteed to exist
11643  * when we come here. We still need to check the state because it might
11644  * as well has been closed. The squeue processing function i.e. squeue_enter,
11645  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11646  * CONN_DEC_REF.
11647  *
11648  * Apart from the default entry point, IP also sends packets directly to
11649  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11650  * connections.
11651  */
11652 void
11653 tcp_input(void *arg, mblk_t *mp, void *arg2)
11654 {
11655 	conn_t	*connp = (conn_t *)arg;
11656 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11657 
11658 	/* arg2 is the sqp */
11659 	ASSERT(arg2 != NULL);
11660 	ASSERT(mp != NULL);
11661 
11662 	/*
11663 	 * Don't accept any input on a closed tcp as this TCP logically does
11664 	 * not exist on the system. Don't proceed further with this TCP.
11665 	 * For eg. this packet could trigger another close of this tcp
11666 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11667 	 * tcp_clean_death / tcp_closei_local must be called at most once
11668 	 * on a TCP. In this case we need to refeed the packet into the
11669 	 * classifier and figure out where the packet should go. Need to
11670 	 * preserve the recv_ill somehow. Until we figure that out, for
11671 	 * now just drop the packet if we can't classify the packet.
11672 	 */
11673 	if (tcp->tcp_state == TCPS_CLOSED ||
11674 	    tcp->tcp_state == TCPS_BOUND) {
11675 		conn_t	*new_connp;
11676 
11677 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11678 		if (new_connp != NULL) {
11679 			tcp_reinput(new_connp, mp, arg2);
11680 			return;
11681 		}
11682 		/* We failed to classify. For now just drop the packet */
11683 		freemsg(mp);
11684 		return;
11685 	}
11686 
11687 	if (DB_TYPE(mp) == M_DATA)
11688 		tcp_rput_data(connp, mp, arg2);
11689 	else
11690 		tcp_rput_common(tcp, mp);
11691 }
11692 
11693 /*
11694  * The read side put procedure.
11695  * The packets passed up by ip are assume to be aligned according to
11696  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11697  */
11698 static void
11699 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11700 {
11701 	/*
11702 	 * tcp_rput_data() does not expect M_CTL except for the case
11703 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11704 	 * type. Need to make sure that any other M_CTLs don't make
11705 	 * it to tcp_rput_data since it is not expecting any and doesn't
11706 	 * check for it.
11707 	 */
11708 	if (DB_TYPE(mp) == M_CTL) {
11709 		switch (*(uint32_t *)(mp->b_rptr)) {
11710 		case TCP_IOC_ABORT_CONN:
11711 			/*
11712 			 * Handle connection abort request.
11713 			 */
11714 			tcp_ioctl_abort_handler(tcp, mp);
11715 			return;
11716 		case IPSEC_IN:
11717 			/*
11718 			 * Only secure icmp arrive in TCP and they
11719 			 * don't go through data path.
11720 			 */
11721 			tcp_icmp_error(tcp, mp);
11722 			return;
11723 		case IN_PKTINFO:
11724 			/*
11725 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11726 			 * sockets that are receiving IPv4 traffic. tcp
11727 			 */
11728 			ASSERT(tcp->tcp_family == AF_INET6);
11729 			ASSERT(tcp->tcp_ipv6_recvancillary &
11730 			    TCP_IPV6_RECVPKTINFO);
11731 			tcp_rput_data(tcp->tcp_connp, mp,
11732 			    tcp->tcp_connp->conn_sqp);
11733 			return;
11734 		case MDT_IOC_INFO_UPDATE:
11735 			/*
11736 			 * Handle Multidata information update; the
11737 			 * following routine will free the message.
11738 			 */
11739 			if (tcp->tcp_connp->conn_mdt_ok) {
11740 				tcp_mdt_update(tcp,
11741 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11742 				    B_FALSE);
11743 			}
11744 			freemsg(mp);
11745 			return;
11746 		default:
11747 			break;
11748 		}
11749 	}
11750 
11751 	/* No point processing the message if tcp is already closed */
11752 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11753 		freemsg(mp);
11754 		return;
11755 	}
11756 
11757 	tcp_rput_other(tcp, mp);
11758 }
11759 
11760 
11761 /* The minimum of smoothed mean deviation in RTO calculation. */
11762 #define	TCP_SD_MIN	400
11763 
11764 /*
11765  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11766  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11767  * are the same as those in Appendix A.2 of that paper.
11768  *
11769  * m = new measurement
11770  * sa = smoothed RTT average (8 * average estimates).
11771  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11772  */
11773 static void
11774 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11775 {
11776 	long m = TICK_TO_MSEC(rtt);
11777 	clock_t sa = tcp->tcp_rtt_sa;
11778 	clock_t sv = tcp->tcp_rtt_sd;
11779 	clock_t rto;
11780 
11781 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
11782 	tcp->tcp_rtt_update++;
11783 
11784 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11785 	if (sa != 0) {
11786 		/*
11787 		 * Update average estimator:
11788 		 *	new rtt = 7/8 old rtt + 1/8 Error
11789 		 */
11790 
11791 		/* m is now Error in estimate. */
11792 		m -= sa >> 3;
11793 		if ((sa += m) <= 0) {
11794 			/*
11795 			 * Don't allow the smoothed average to be negative.
11796 			 * We use 0 to denote reinitialization of the
11797 			 * variables.
11798 			 */
11799 			sa = 1;
11800 		}
11801 
11802 		/*
11803 		 * Update deviation estimator:
11804 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11805 		 */
11806 		if (m < 0)
11807 			m = -m;
11808 		m -= sv >> 2;
11809 		sv += m;
11810 	} else {
11811 		/*
11812 		 * This follows BSD's implementation.  So the reinitialized
11813 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11814 		 * link is bandwidth dominated, doubling the window size
11815 		 * during slow start means doubling the RTT.  We want to be
11816 		 * more conservative when we reinitialize our estimates.  3
11817 		 * is just a convenient number.
11818 		 */
11819 		sa = m << 3;
11820 		sv = m << 1;
11821 	}
11822 	if (sv < TCP_SD_MIN) {
11823 		/*
11824 		 * We do not know that if sa captures the delay ACK
11825 		 * effect as in a long train of segments, a receiver
11826 		 * does not delay its ACKs.  So set the minimum of sv
11827 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11828 		 * of BSD DATO.  That means the minimum of mean
11829 		 * deviation is 100 ms.
11830 		 *
11831 		 */
11832 		sv = TCP_SD_MIN;
11833 	}
11834 	tcp->tcp_rtt_sa = sa;
11835 	tcp->tcp_rtt_sd = sv;
11836 	/*
11837 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11838 	 *
11839 	 * Add tcp_rexmit_interval extra in case of extreme environment
11840 	 * where the algorithm fails to work.  The default value of
11841 	 * tcp_rexmit_interval_extra should be 0.
11842 	 *
11843 	 * As we use a finer grained clock than BSD and update
11844 	 * RTO for every ACKs, add in another .25 of RTT to the
11845 	 * deviation of RTO to accomodate burstiness of 1/4 of
11846 	 * window size.
11847 	 */
11848 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
11849 
11850 	if (rto > tcp_rexmit_interval_max) {
11851 		tcp->tcp_rto = tcp_rexmit_interval_max;
11852 	} else if (rto < tcp_rexmit_interval_min) {
11853 		tcp->tcp_rto = tcp_rexmit_interval_min;
11854 	} else {
11855 		tcp->tcp_rto = rto;
11856 	}
11857 
11858 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11859 	tcp->tcp_timer_backoff = 0;
11860 }
11861 
11862 /*
11863  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11864  * send queue which starts at the given seq. no.
11865  *
11866  * Parameters:
11867  *	tcp_t *tcp: the tcp instance pointer.
11868  *	uint32_t seq: the starting seq. no of the requested segment.
11869  *	int32_t *off: after the execution, *off will be the offset to
11870  *		the returned mblk which points to the requested seq no.
11871  *		It is the caller's responsibility to send in a non-null off.
11872  *
11873  * Return:
11874  *	A mblk_t pointer pointing to the requested segment in send queue.
11875  */
11876 static mblk_t *
11877 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11878 {
11879 	int32_t	cnt;
11880 	mblk_t	*mp;
11881 
11882 	/* Defensive coding.  Make sure we don't send incorrect data. */
11883 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11884 		return (NULL);
11885 
11886 	cnt = seq - tcp->tcp_suna;
11887 	mp = tcp->tcp_xmit_head;
11888 	while (cnt > 0 && mp != NULL) {
11889 		cnt -= mp->b_wptr - mp->b_rptr;
11890 		if (cnt < 0) {
11891 			cnt += mp->b_wptr - mp->b_rptr;
11892 			break;
11893 		}
11894 		mp = mp->b_cont;
11895 	}
11896 	ASSERT(mp != NULL);
11897 	*off = cnt;
11898 	return (mp);
11899 }
11900 
11901 /*
11902  * This function handles all retransmissions if SACK is enabled for this
11903  * connection.  First it calculates how many segments can be retransmitted
11904  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11905  * segments.  A segment is eligible if sack_cnt for that segment is greater
11906  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11907  * all eligible segments, it checks to see if TCP can send some new segments
11908  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11909  *
11910  * Parameters:
11911  *	tcp_t *tcp: the tcp structure of the connection.
11912  *	uint_t *flags: in return, appropriate value will be set for
11913  *	tcp_rput_data().
11914  */
11915 static void
11916 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11917 {
11918 	notsack_blk_t	*notsack_blk;
11919 	int32_t		usable_swnd;
11920 	int32_t		mss;
11921 	uint32_t	seg_len;
11922 	mblk_t		*xmit_mp;
11923 
11924 	ASSERT(tcp->tcp_sack_info != NULL);
11925 	ASSERT(tcp->tcp_notsack_list != NULL);
11926 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11927 
11928 	/* Defensive coding in case there is a bug... */
11929 	if (tcp->tcp_notsack_list == NULL) {
11930 		return;
11931 	}
11932 	notsack_blk = tcp->tcp_notsack_list;
11933 	mss = tcp->tcp_mss;
11934 
11935 	/*
11936 	 * Limit the num of outstanding data in the network to be
11937 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11938 	 */
11939 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11940 
11941 	/* At least retransmit 1 MSS of data. */
11942 	if (usable_swnd <= 0) {
11943 		usable_swnd = mss;
11944 	}
11945 
11946 	/* Make sure no new RTT samples will be taken. */
11947 	tcp->tcp_csuna = tcp->tcp_snxt;
11948 
11949 	notsack_blk = tcp->tcp_notsack_list;
11950 	while (usable_swnd > 0) {
11951 		mblk_t		*snxt_mp, *tmp_mp;
11952 		tcp_seq		begin = tcp->tcp_sack_snxt;
11953 		tcp_seq		end;
11954 		int32_t		off;
11955 
11956 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11957 			if (SEQ_GT(notsack_blk->end, begin) &&
11958 			    (notsack_blk->sack_cnt >=
11959 			    tcp_dupack_fast_retransmit)) {
11960 				end = notsack_blk->end;
11961 				if (SEQ_LT(begin, notsack_blk->begin)) {
11962 					begin = notsack_blk->begin;
11963 				}
11964 				break;
11965 			}
11966 		}
11967 		/*
11968 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11969 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11970 		 * set to tcp_cwnd_ssthresh.
11971 		 */
11972 		if (notsack_blk == NULL) {
11973 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11974 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11975 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11976 				ASSERT(tcp->tcp_cwnd > 0);
11977 				return;
11978 			} else {
11979 				usable_swnd = usable_swnd / mss;
11980 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11981 				    MAX(usable_swnd * mss, mss);
11982 				*flags |= TH_XMIT_NEEDED;
11983 				return;
11984 			}
11985 		}
11986 
11987 		/*
11988 		 * Note that we may send more than usable_swnd allows here
11989 		 * because of round off, but no more than 1 MSS of data.
11990 		 */
11991 		seg_len = end - begin;
11992 		if (seg_len > mss)
11993 			seg_len = mss;
11994 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11995 		ASSERT(snxt_mp != NULL);
11996 		/* This should not happen.  Defensive coding again... */
11997 		if (snxt_mp == NULL) {
11998 			return;
11999 		}
12000 
12001 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12002 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12003 		if (xmit_mp == NULL)
12004 			return;
12005 
12006 		usable_swnd -= seg_len;
12007 		tcp->tcp_pipe += seg_len;
12008 		tcp->tcp_sack_snxt = begin + seg_len;
12009 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12010 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12011 
12012 		/*
12013 		 * Update the send timestamp to avoid false retransmission.
12014 		 */
12015 		snxt_mp->b_prev = (mblk_t *)lbolt;
12016 
12017 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
12018 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
12019 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
12020 		/*
12021 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12022 		 * This happens when new data sent during fast recovery is
12023 		 * also lost.  If TCP retransmits those new data, it needs
12024 		 * to extend SACK recover phase to avoid starting another
12025 		 * fast retransmit/recovery unnecessarily.
12026 		 */
12027 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12028 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12029 		}
12030 	}
12031 }
12032 
12033 /*
12034  * This function handles policy checking at TCP level for non-hard_bound/
12035  * detached connections.
12036  */
12037 static boolean_t
12038 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12039     boolean_t secure, boolean_t mctl_present)
12040 {
12041 	ipsec_latch_t *ipl = NULL;
12042 	ipsec_action_t *act = NULL;
12043 	mblk_t *data_mp;
12044 	ipsec_in_t *ii;
12045 	const char *reason;
12046 	kstat_named_t *counter;
12047 
12048 	ASSERT(mctl_present || !secure);
12049 
12050 	ASSERT((ipha == NULL && ip6h != NULL) ||
12051 	    (ip6h == NULL && ipha != NULL));
12052 
12053 	/*
12054 	 * We don't necessarily have an ipsec_in_act action to verify
12055 	 * policy because of assymetrical policy where we have only
12056 	 * outbound policy and no inbound policy (possible with global
12057 	 * policy).
12058 	 */
12059 	if (!secure) {
12060 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12061 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12062 			return (B_TRUE);
12063 		ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH,
12064 		    "tcp_check_policy", ipha, ip6h, secure);
12065 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12066 		    &ipdrops_tcp_clear, &tcp_dropper);
12067 		return (B_FALSE);
12068 	}
12069 
12070 	/*
12071 	 * We have a secure packet.
12072 	 */
12073 	if (act == NULL) {
12074 		ipsec_log_policy_failure(tcp->tcp_wq,
12075 		    IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h,
12076 		    secure);
12077 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12078 		    &ipdrops_tcp_secure, &tcp_dropper);
12079 		return (B_FALSE);
12080 	}
12081 
12082 	/*
12083 	 * XXX This whole routine is currently incorrect.  ipl should
12084 	 * be set to the latch pointer, but is currently not set, so
12085 	 * we initialize it to NULL to avoid picking up random garbage.
12086 	 */
12087 	if (ipl == NULL)
12088 		return (B_TRUE);
12089 
12090 	data_mp = first_mp->b_cont;
12091 
12092 	ii = (ipsec_in_t *)first_mp->b_rptr;
12093 
12094 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12095 	    &counter, tcp->tcp_connp)) {
12096 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
12097 		return (B_TRUE);
12098 	}
12099 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12100 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12101 	    reason);
12102 	BUMP_MIB(&ip_mib, ipsecInFailed);
12103 
12104 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
12105 	return (B_FALSE);
12106 }
12107 
12108 /*
12109  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12110  * retransmission after a timeout.
12111  *
12112  * To limit the number of duplicate segments, we limit the number of segment
12113  * to be sent in one time to tcp_snd_burst, the burst variable.
12114  */
12115 static void
12116 tcp_ss_rexmit(tcp_t *tcp)
12117 {
12118 	uint32_t	snxt;
12119 	uint32_t	smax;
12120 	int32_t		win;
12121 	int32_t		mss;
12122 	int32_t		off;
12123 	int32_t		burst = tcp->tcp_snd_burst;
12124 	mblk_t		*snxt_mp;
12125 
12126 	/*
12127 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12128 	 * all unack'ed segments.
12129 	 */
12130 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12131 		smax = tcp->tcp_rexmit_max;
12132 		snxt = tcp->tcp_rexmit_nxt;
12133 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12134 			snxt = tcp->tcp_suna;
12135 		}
12136 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12137 		win -= snxt - tcp->tcp_suna;
12138 		mss = tcp->tcp_mss;
12139 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12140 
12141 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12142 		    (burst > 0) && (snxt_mp != NULL)) {
12143 			mblk_t	*xmit_mp;
12144 			mblk_t	*old_snxt_mp = snxt_mp;
12145 			uint32_t cnt = mss;
12146 
12147 			if (win < cnt) {
12148 				cnt = win;
12149 			}
12150 			if (SEQ_GT(snxt + cnt, smax)) {
12151 				cnt = smax - snxt;
12152 			}
12153 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12154 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12155 			if (xmit_mp == NULL)
12156 				return;
12157 
12158 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12159 
12160 			snxt += cnt;
12161 			win -= cnt;
12162 			/*
12163 			 * Update the send timestamp to avoid false
12164 			 * retransmission.
12165 			 */
12166 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12167 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
12168 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
12169 
12170 			tcp->tcp_rexmit_nxt = snxt;
12171 			burst--;
12172 		}
12173 		/*
12174 		 * If we have transmitted all we have at the time
12175 		 * we started the retranmission, we can leave
12176 		 * the rest of the job to tcp_wput_data().  But we
12177 		 * need to check the send window first.  If the
12178 		 * win is not 0, go on with tcp_wput_data().
12179 		 */
12180 		if (SEQ_LT(snxt, smax) || win == 0) {
12181 			return;
12182 		}
12183 	}
12184 	/* Only call tcp_wput_data() if there is data to be sent. */
12185 	if (tcp->tcp_unsent) {
12186 		tcp_wput_data(tcp, NULL, B_FALSE);
12187 	}
12188 }
12189 
12190 /*
12191  * Process all TCP option in SYN segment.  Note that this function should
12192  * be called after tcp_adapt_ire() is called so that the necessary info
12193  * from IRE is already set in the tcp structure.
12194  *
12195  * This function sets up the correct tcp_mss value according to the
12196  * MSS option value and our header size.  It also sets up the window scale
12197  * and timestamp values, and initialize SACK info blocks.  But it does not
12198  * change receive window size after setting the tcp_mss value.  The caller
12199  * should do the appropriate change.
12200  */
12201 void
12202 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12203 {
12204 	int options;
12205 	tcp_opt_t tcpopt;
12206 	uint32_t mss_max;
12207 	char *tmp_tcph;
12208 
12209 	tcpopt.tcp = NULL;
12210 	options = tcp_parse_options(tcph, &tcpopt);
12211 
12212 	/*
12213 	 * Process MSS option.  Note that MSS option value does not account
12214 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12215 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12216 	 * IPv6.
12217 	 */
12218 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12219 		if (tcp->tcp_ipversion == IPV4_VERSION)
12220 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
12221 		else
12222 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
12223 	} else {
12224 		if (tcp->tcp_ipversion == IPV4_VERSION)
12225 			mss_max = tcp_mss_max_ipv4;
12226 		else
12227 			mss_max = tcp_mss_max_ipv6;
12228 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
12229 			tcpopt.tcp_opt_mss = tcp_mss_min;
12230 		else if (tcpopt.tcp_opt_mss > mss_max)
12231 			tcpopt.tcp_opt_mss = mss_max;
12232 	}
12233 
12234 	/* Process Window Scale option. */
12235 	if (options & TCP_OPT_WSCALE_PRESENT) {
12236 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12237 		tcp->tcp_snd_ws_ok = B_TRUE;
12238 	} else {
12239 		tcp->tcp_snd_ws = B_FALSE;
12240 		tcp->tcp_snd_ws_ok = B_FALSE;
12241 		tcp->tcp_rcv_ws = B_FALSE;
12242 	}
12243 
12244 	/* Process Timestamp option. */
12245 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12246 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12247 		tmp_tcph = (char *)tcp->tcp_tcph;
12248 
12249 		tcp->tcp_snd_ts_ok = B_TRUE;
12250 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12251 		tcp->tcp_last_rcv_lbolt = lbolt64;
12252 		ASSERT(OK_32PTR(tmp_tcph));
12253 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12254 
12255 		/* Fill in our template header with basic timestamp option. */
12256 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12257 		tmp_tcph[0] = TCPOPT_NOP;
12258 		tmp_tcph[1] = TCPOPT_NOP;
12259 		tmp_tcph[2] = TCPOPT_TSTAMP;
12260 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12261 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12262 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12263 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12264 	} else {
12265 		tcp->tcp_snd_ts_ok = B_FALSE;
12266 	}
12267 
12268 	/*
12269 	 * Process SACK options.  If SACK is enabled for this connection,
12270 	 * then allocate the SACK info structure.  Note the following ways
12271 	 * when tcp_snd_sack_ok is set to true.
12272 	 *
12273 	 * For active connection: in tcp_adapt_ire() called in
12274 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12275 	 * is checked.
12276 	 *
12277 	 * For passive connection: in tcp_adapt_ire() called in
12278 	 * tcp_accept_comm().
12279 	 *
12280 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12281 	 * That check makes sure that if we did not send a SACK OK option,
12282 	 * we will not enable SACK for this connection even though the other
12283 	 * side sends us SACK OK option.  For active connection, the SACK
12284 	 * info structure has already been allocated.  So we need to free
12285 	 * it if SACK is disabled.
12286 	 */
12287 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12288 	    (tcp->tcp_snd_sack_ok ||
12289 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12290 		/* This should be true only in the passive case. */
12291 		if (tcp->tcp_sack_info == NULL) {
12292 			ASSERT(TCP_IS_DETACHED(tcp));
12293 			tcp->tcp_sack_info =
12294 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12295 		}
12296 		if (tcp->tcp_sack_info == NULL) {
12297 			tcp->tcp_snd_sack_ok = B_FALSE;
12298 		} else {
12299 			tcp->tcp_snd_sack_ok = B_TRUE;
12300 			if (tcp->tcp_snd_ts_ok) {
12301 				tcp->tcp_max_sack_blk = 3;
12302 			} else {
12303 				tcp->tcp_max_sack_blk = 4;
12304 			}
12305 		}
12306 	} else {
12307 		/*
12308 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12309 		 * no SACK info will be used for this
12310 		 * connection.  This assumes that SACK usage
12311 		 * permission is negotiated.  This may need
12312 		 * to be changed once this is clarified.
12313 		 */
12314 		if (tcp->tcp_sack_info != NULL) {
12315 			ASSERT(tcp->tcp_notsack_list == NULL);
12316 			kmem_cache_free(tcp_sack_info_cache,
12317 			    tcp->tcp_sack_info);
12318 			tcp->tcp_sack_info = NULL;
12319 		}
12320 		tcp->tcp_snd_sack_ok = B_FALSE;
12321 	}
12322 
12323 	/*
12324 	 * Now we know the exact TCP/IP header length, subtract
12325 	 * that from tcp_mss to get our side's MSS.
12326 	 */
12327 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12328 	/*
12329 	 * Here we assume that the other side's header size will be equal to
12330 	 * our header size.  We calculate the real MSS accordingly.  Need to
12331 	 * take into additional stuffs IPsec puts in.
12332 	 *
12333 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12334 	 */
12335 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12336 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12337 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12338 
12339 	/*
12340 	 * Set MSS to the smaller one of both ends of the connection.
12341 	 * We should not have called tcp_mss_set() before, but our
12342 	 * side of the MSS should have been set to a proper value
12343 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12344 	 * STREAM head parameters properly.
12345 	 *
12346 	 * If we have a larger-than-16-bit window but the other side
12347 	 * didn't want to do window scale, tcp_rwnd_set() will take
12348 	 * care of that.
12349 	 */
12350 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12351 }
12352 
12353 /*
12354  * Sends the T_CONN_IND to the listener. The caller calls this
12355  * functions via squeue to get inside the listener's perimeter
12356  * once the 3 way hand shake is done a T_CONN_IND needs to be
12357  * sent. As an optimization, the caller can call this directly
12358  * if listener's perimeter is same as eager's.
12359  */
12360 /* ARGSUSED */
12361 void
12362 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12363 {
12364 	conn_t			*lconnp = (conn_t *)arg;
12365 	tcp_t			*listener = lconnp->conn_tcp;
12366 	tcp_t			*tcp;
12367 	struct T_conn_ind	*conn_ind;
12368 	ipaddr_t 		*addr_cache;
12369 	boolean_t		need_send_conn_ind = B_FALSE;
12370 
12371 	/* retrieve the eager */
12372 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12373 	ASSERT(conn_ind->OPT_offset != 0 &&
12374 	    conn_ind->OPT_length == sizeof (intptr_t));
12375 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12376 		conn_ind->OPT_length);
12377 
12378 	/*
12379 	 * TLI/XTI applications will get confused by
12380 	 * sending eager as an option since it violates
12381 	 * the option semantics. So remove the eager as
12382 	 * option since TLI/XTI app doesn't need it anyway.
12383 	 */
12384 	if (!TCP_IS_SOCKET(listener)) {
12385 		conn_ind->OPT_length = 0;
12386 		conn_ind->OPT_offset = 0;
12387 	}
12388 	if (listener->tcp_state == TCPS_CLOSED ||
12389 	    TCP_IS_DETACHED(listener)) {
12390 		/*
12391 		 * If listener has closed, it would have caused a
12392 		 * a cleanup/blowoff to happen for the eager. We
12393 		 * just need to return.
12394 		 */
12395 		freemsg(mp);
12396 		return;
12397 	}
12398 
12399 
12400 	/*
12401 	 * if the conn_req_q is full defer passing up the
12402 	 * T_CONN_IND until space is availabe after t_accept()
12403 	 * processing
12404 	 */
12405 	mutex_enter(&listener->tcp_eager_lock);
12406 
12407 	/*
12408 	 * Take the eager out, if it is in the list of droppable eagers
12409 	 * as we are here because the 3W handshake is over.
12410 	 */
12411 	MAKE_UNDROPPABLE(tcp);
12412 
12413 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12414 		tcp_t *tail;
12415 
12416 		/*
12417 		 * The eager already has an extra ref put in tcp_rput_data
12418 		 * so that it stays till accept comes back even though it
12419 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12420 		 */
12421 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12422 		listener->tcp_conn_req_cnt_q0--;
12423 		listener->tcp_conn_req_cnt_q++;
12424 
12425 		/* Move from SYN_RCVD to ESTABLISHED list  */
12426 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12427 		    tcp->tcp_eager_prev_q0;
12428 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12429 		    tcp->tcp_eager_next_q0;
12430 		tcp->tcp_eager_prev_q0 = NULL;
12431 		tcp->tcp_eager_next_q0 = NULL;
12432 
12433 		/*
12434 		 * Insert at end of the queue because sockfs
12435 		 * sends down T_CONN_RES in chronological
12436 		 * order. Leaving the older conn indications
12437 		 * at front of the queue helps reducing search
12438 		 * time.
12439 		 */
12440 		tail = listener->tcp_eager_last_q;
12441 		if (tail != NULL)
12442 			tail->tcp_eager_next_q = tcp;
12443 		else
12444 			listener->tcp_eager_next_q = tcp;
12445 		listener->tcp_eager_last_q = tcp;
12446 		tcp->tcp_eager_next_q = NULL;
12447 		/*
12448 		 * Delay sending up the T_conn_ind until we are
12449 		 * done with the eager. Once we have have sent up
12450 		 * the T_conn_ind, the accept can potentially complete
12451 		 * any time and release the refhold we have on the eager.
12452 		 */
12453 		need_send_conn_ind = B_TRUE;
12454 	} else {
12455 		/*
12456 		 * Defer connection on q0 and set deferred
12457 		 * connection bit true
12458 		 */
12459 		tcp->tcp_conn_def_q0 = B_TRUE;
12460 
12461 		/* take tcp out of q0 ... */
12462 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12463 		    tcp->tcp_eager_next_q0;
12464 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12465 		    tcp->tcp_eager_prev_q0;
12466 
12467 		/* ... and place it at the end of q0 */
12468 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12469 		tcp->tcp_eager_next_q0 = listener;
12470 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12471 		listener->tcp_eager_prev_q0 = tcp;
12472 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12473 	}
12474 
12475 	/* we have timed out before */
12476 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12477 		tcp->tcp_syn_rcvd_timeout = 0;
12478 		listener->tcp_syn_rcvd_timeout--;
12479 		if (listener->tcp_syn_defense &&
12480 		    listener->tcp_syn_rcvd_timeout <=
12481 		    (tcp_conn_req_max_q0 >> 5) &&
12482 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12483 			listener->tcp_last_rcv_lbolt)) {
12484 			/*
12485 			 * Turn off the defense mode if we
12486 			 * believe the SYN attack is over.
12487 			 */
12488 			listener->tcp_syn_defense = B_FALSE;
12489 			if (listener->tcp_ip_addr_cache) {
12490 				kmem_free((void *)listener->tcp_ip_addr_cache,
12491 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12492 				listener->tcp_ip_addr_cache = NULL;
12493 			}
12494 		}
12495 	}
12496 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12497 	if (addr_cache != NULL) {
12498 		/*
12499 		 * We have finished a 3-way handshake with this
12500 		 * remote host. This proves the IP addr is good.
12501 		 * Cache it!
12502 		 */
12503 		addr_cache[IP_ADDR_CACHE_HASH(
12504 			tcp->tcp_remote)] = tcp->tcp_remote;
12505 	}
12506 	mutex_exit(&listener->tcp_eager_lock);
12507 	if (need_send_conn_ind)
12508 		putnext(listener->tcp_rq, mp);
12509 }
12510 
12511 mblk_t *
12512 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12513     uint_t *ifindexp, ip6_pkt_t *ippp)
12514 {
12515 	in_pktinfo_t	*pinfo;
12516 	ip6_t		*ip6h;
12517 	uchar_t		*rptr;
12518 	mblk_t		*first_mp = mp;
12519 	boolean_t	mctl_present = B_FALSE;
12520 	uint_t 		ifindex = 0;
12521 	ip6_pkt_t	ipp;
12522 	uint_t		ipvers;
12523 	uint_t		ip_hdr_len;
12524 
12525 	rptr = mp->b_rptr;
12526 	ASSERT(OK_32PTR(rptr));
12527 	ASSERT(tcp != NULL);
12528 	ipp.ipp_fields = 0;
12529 
12530 	switch DB_TYPE(mp) {
12531 	case M_CTL:
12532 		mp = mp->b_cont;
12533 		if (mp == NULL) {
12534 			freemsg(first_mp);
12535 			return (NULL);
12536 		}
12537 		if (DB_TYPE(mp) != M_DATA) {
12538 			freemsg(first_mp);
12539 			return (NULL);
12540 		}
12541 		mctl_present = B_TRUE;
12542 		break;
12543 	case M_DATA:
12544 		break;
12545 	default:
12546 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12547 		freemsg(mp);
12548 		return (NULL);
12549 	}
12550 	ipvers = IPH_HDR_VERSION(rptr);
12551 	if (ipvers == IPV4_VERSION) {
12552 		if (tcp == NULL) {
12553 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12554 			goto done;
12555 		}
12556 
12557 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12558 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12559 
12560 		/*
12561 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12562 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12563 		 */
12564 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12565 		    mctl_present) {
12566 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12567 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12568 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12569 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12570 				ipp.ipp_fields |= IPPF_IFINDEX;
12571 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12572 				ifindex = pinfo->in_pkt_ifindex;
12573 			}
12574 			freeb(first_mp);
12575 			mctl_present = B_FALSE;
12576 		}
12577 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12578 	} else {
12579 		ip6h = (ip6_t *)rptr;
12580 
12581 		ASSERT(ipvers == IPV6_VERSION);
12582 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12583 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12584 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12585 
12586 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12587 			uint8_t	nexthdrp;
12588 
12589 			/* Look for ifindex information */
12590 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12591 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12592 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12593 					BUMP_MIB(&ip_mib, tcpInErrs);
12594 					freemsg(first_mp);
12595 					return (NULL);
12596 				}
12597 
12598 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12599 					ASSERT(ip6i->ip6i_ifindex != 0);
12600 					ipp.ipp_fields |= IPPF_IFINDEX;
12601 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12602 					ifindex = ip6i->ip6i_ifindex;
12603 				}
12604 				rptr = (uchar_t *)&ip6i[1];
12605 				mp->b_rptr = rptr;
12606 				if (rptr == mp->b_wptr) {
12607 					mblk_t *mp1;
12608 					mp1 = mp->b_cont;
12609 					freeb(mp);
12610 					mp = mp1;
12611 					rptr = mp->b_rptr;
12612 				}
12613 				if (MBLKL(mp) < IPV6_HDR_LEN +
12614 				    sizeof (tcph_t)) {
12615 					BUMP_MIB(&ip_mib, tcpInErrs);
12616 					freemsg(first_mp);
12617 					return (NULL);
12618 				}
12619 				ip6h = (ip6_t *)rptr;
12620 			}
12621 
12622 			/*
12623 			 * Find any potentially interesting extension headers
12624 			 * as well as the length of the IPv6 + extension
12625 			 * headers.
12626 			 */
12627 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12628 			/* Verify if this is a TCP packet */
12629 			if (nexthdrp != IPPROTO_TCP) {
12630 				BUMP_MIB(&ip_mib, tcpInErrs);
12631 				freemsg(first_mp);
12632 				return (NULL);
12633 			}
12634 		} else {
12635 			ip_hdr_len = IPV6_HDR_LEN;
12636 		}
12637 	}
12638 
12639 done:
12640 	if (ipversp != NULL)
12641 		*ipversp = ipvers;
12642 	if (ip_hdr_lenp != NULL)
12643 		*ip_hdr_lenp = ip_hdr_len;
12644 	if (ippp != NULL)
12645 		*ippp = ipp;
12646 	if (ifindexp != NULL)
12647 		*ifindexp = ifindex;
12648 	if (mctl_present) {
12649 		freeb(first_mp);
12650 	}
12651 	return (mp);
12652 }
12653 
12654 /*
12655  * Handle M_DATA messages from IP. Its called directly from IP via
12656  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12657  * in this path.
12658  *
12659  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12660  * v4 and v6), we are called through tcp_input() and a M_CTL can
12661  * be present for options but tcp_find_pktinfo() deals with it. We
12662  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12663  *
12664  * The first argument is always the connp/tcp to which the mp belongs.
12665  * There are no exceptions to this rule. The caller has already put
12666  * a reference on this connp/tcp and once tcp_rput_data() returns,
12667  * the squeue will do the refrele.
12668  *
12669  * The TH_SYN for the listener directly go to tcp_conn_request via
12670  * squeue.
12671  *
12672  * sqp: NULL = recursive, sqp != NULL means called from squeue
12673  */
12674 void
12675 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12676 {
12677 	int32_t		bytes_acked;
12678 	int32_t		gap;
12679 	mblk_t		*mp1;
12680 	uint_t		flags;
12681 	uint32_t	new_swnd = 0;
12682 	uchar_t		*iphdr;
12683 	uchar_t		*rptr;
12684 	int32_t		rgap;
12685 	uint32_t	seg_ack;
12686 	int		seg_len;
12687 	uint_t		ip_hdr_len;
12688 	uint32_t	seg_seq;
12689 	tcph_t		*tcph;
12690 	int		urp;
12691 	tcp_opt_t	tcpopt;
12692 	uint_t		ipvers;
12693 	ip6_pkt_t	ipp;
12694 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12695 	uint32_t	cwnd;
12696 	uint32_t	add;
12697 	int		npkt;
12698 	int		mss;
12699 	conn_t		*connp = (conn_t *)arg;
12700 	squeue_t	*sqp = (squeue_t *)arg2;
12701 	tcp_t		*tcp = connp->conn_tcp;
12702 
12703 	/*
12704 	 * RST from fused tcp loopback peer should trigger an unfuse.
12705 	 */
12706 	if (tcp->tcp_fused) {
12707 		TCP_STAT(tcp_fusion_aborted);
12708 		tcp_unfuse(tcp);
12709 	}
12710 
12711 	iphdr = mp->b_rptr;
12712 	rptr = mp->b_rptr;
12713 	ASSERT(OK_32PTR(rptr));
12714 
12715 	/*
12716 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12717 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12718 	 * necessary information.
12719 	 */
12720 	if (IPCL_IS_TCP4(connp)) {
12721 		ipvers = IPV4_VERSION;
12722 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12723 	} else {
12724 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12725 		    NULL, &ipp);
12726 		if (mp == NULL) {
12727 			TCP_STAT(tcp_rput_v6_error);
12728 			return;
12729 		}
12730 		iphdr = mp->b_rptr;
12731 		rptr = mp->b_rptr;
12732 	}
12733 	ASSERT(DB_TYPE(mp) == M_DATA);
12734 
12735 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12736 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12737 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12738 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12739 	seg_len = (int)(mp->b_wptr - rptr) -
12740 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12741 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12742 		do {
12743 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12744 			    (uintptr_t)INT_MAX);
12745 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12746 		} while ((mp1 = mp1->b_cont) != NULL &&
12747 		    mp1->b_datap->db_type == M_DATA);
12748 	}
12749 
12750 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12751 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12752 		    seg_len, tcph);
12753 		return;
12754 	}
12755 
12756 	if (sqp != NULL) {
12757 		/*
12758 		 * This is the correct place to update tcp_last_recv_time. Note
12759 		 * that it is also updated for tcp structure that belongs to
12760 		 * global and listener queues which do not really need updating.
12761 		 * But that should not cause any harm.  And it is updated for
12762 		 * all kinds of incoming segments, not only for data segments.
12763 		 */
12764 		tcp->tcp_last_recv_time = lbolt;
12765 	}
12766 
12767 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12768 
12769 	BUMP_LOCAL(tcp->tcp_ibsegs);
12770 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
12771 
12772 	if ((flags & TH_URG) && sqp != NULL) {
12773 		/*
12774 		 * TCP can't handle urgent pointers that arrive before
12775 		 * the connection has been accept()ed since it can't
12776 		 * buffer OOB data.  Discard segment if this happens.
12777 		 *
12778 		 * Nor can it reassemble urgent pointers, so discard
12779 		 * if it's not the next segment expected.
12780 		 *
12781 		 * Otherwise, collapse chain into one mblk (discard if
12782 		 * that fails).  This makes sure the headers, retransmitted
12783 		 * data, and new data all are in the same mblk.
12784 		 */
12785 		ASSERT(mp != NULL);
12786 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
12787 			freemsg(mp);
12788 			return;
12789 		}
12790 		/* Update pointers into message */
12791 		iphdr = rptr = mp->b_rptr;
12792 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12793 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12794 			/*
12795 			 * Since we can't handle any data with this urgent
12796 			 * pointer that is out of sequence, we expunge
12797 			 * the data.  This allows us to still register
12798 			 * the urgent mark and generate the M_PCSIG,
12799 			 * which we can do.
12800 			 */
12801 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12802 			seg_len = 0;
12803 		}
12804 	}
12805 
12806 	switch (tcp->tcp_state) {
12807 	case TCPS_SYN_SENT:
12808 		if (flags & TH_ACK) {
12809 			/*
12810 			 * Note that our stack cannot send data before a
12811 			 * connection is established, therefore the
12812 			 * following check is valid.  Otherwise, it has
12813 			 * to be changed.
12814 			 */
12815 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12816 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12817 				freemsg(mp);
12818 				if (flags & TH_RST)
12819 					return;
12820 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12821 				    tcp, seg_ack, 0, TH_RST);
12822 				return;
12823 			}
12824 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12825 		}
12826 		if (flags & TH_RST) {
12827 			freemsg(mp);
12828 			if (flags & TH_ACK)
12829 				(void) tcp_clean_death(tcp,
12830 				    ECONNREFUSED, 13);
12831 			return;
12832 		}
12833 		if (!(flags & TH_SYN)) {
12834 			freemsg(mp);
12835 			return;
12836 		}
12837 
12838 		/* Process all TCP options. */
12839 		tcp_process_options(tcp, tcph);
12840 		/*
12841 		 * The following changes our rwnd to be a multiple of the
12842 		 * MIN(peer MSS, our MSS) for performance reason.
12843 		 */
12844 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
12845 		    tcp->tcp_mss));
12846 
12847 		/* Is the other end ECN capable? */
12848 		if (tcp->tcp_ecn_ok) {
12849 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12850 				tcp->tcp_ecn_ok = B_FALSE;
12851 			}
12852 		}
12853 		/*
12854 		 * Clear ECN flags because it may interfere with later
12855 		 * processing.
12856 		 */
12857 		flags &= ~(TH_ECE|TH_CWR);
12858 
12859 		tcp->tcp_irs = seg_seq;
12860 		tcp->tcp_rack = seg_seq;
12861 		tcp->tcp_rnxt = seg_seq + 1;
12862 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12863 		if (!TCP_IS_DETACHED(tcp)) {
12864 			/* Allocate room for SACK options if needed. */
12865 			if (tcp->tcp_snd_sack_ok) {
12866 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12867 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
12868 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12869 			} else {
12870 				(void) mi_set_sth_wroff(tcp->tcp_rq,
12871 				    tcp->tcp_hdr_len +
12872 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
12873 			}
12874 		}
12875 		if (flags & TH_ACK) {
12876 			/*
12877 			 * If we can't get the confirmation upstream, pretend
12878 			 * we didn't even see this one.
12879 			 *
12880 			 * XXX: how can we pretend we didn't see it if we
12881 			 * have updated rnxt et. al.
12882 			 *
12883 			 * For loopback we defer sending up the T_CONN_CON
12884 			 * until after some checks below.
12885 			 */
12886 			mp1 = NULL;
12887 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12888 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12889 				freemsg(mp);
12890 				return;
12891 			}
12892 			/* SYN was acked - making progress */
12893 			if (tcp->tcp_ipversion == IPV6_VERSION)
12894 				tcp->tcp_ip_forward_progress = B_TRUE;
12895 
12896 			/* One for the SYN */
12897 			tcp->tcp_suna = tcp->tcp_iss + 1;
12898 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12899 			tcp->tcp_state = TCPS_ESTABLISHED;
12900 
12901 			/*
12902 			 * If SYN was retransmitted, need to reset all
12903 			 * retransmission info.  This is because this
12904 			 * segment will be treated as a dup ACK.
12905 			 */
12906 			if (tcp->tcp_rexmit) {
12907 				tcp->tcp_rexmit = B_FALSE;
12908 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12909 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12910 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12911 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12912 				tcp->tcp_ms_we_have_waited = 0;
12913 
12914 				/*
12915 				 * Set tcp_cwnd back to 1 MSS, per
12916 				 * recommendation from
12917 				 * draft-floyd-incr-init-win-01.txt,
12918 				 * Increasing TCP's Initial Window.
12919 				 */
12920 				tcp->tcp_cwnd = tcp->tcp_mss;
12921 			}
12922 
12923 			tcp->tcp_swl1 = seg_seq;
12924 			tcp->tcp_swl2 = seg_ack;
12925 
12926 			new_swnd = BE16_TO_U16(tcph->th_win);
12927 			tcp->tcp_swnd = new_swnd;
12928 			if (new_swnd > tcp->tcp_max_swnd)
12929 				tcp->tcp_max_swnd = new_swnd;
12930 
12931 			/*
12932 			 * Always send the three-way handshake ack immediately
12933 			 * in order to make the connection complete as soon as
12934 			 * possible on the accepting host.
12935 			 */
12936 			flags |= TH_ACK_NEEDED;
12937 
12938 			/*
12939 			 * Special case for loopback.  At this point we have
12940 			 * received SYN-ACK from the remote endpoint.  In
12941 			 * order to ensure that both endpoints reach the
12942 			 * fused state prior to any data exchange, the final
12943 			 * ACK needs to be sent before we indicate T_CONN_CON
12944 			 * to the module upstream.
12945 			 */
12946 			if (tcp->tcp_loopback) {
12947 				mblk_t *ack_mp;
12948 
12949 				ASSERT(!tcp->tcp_unfusable);
12950 				ASSERT(mp1 != NULL);
12951 				/*
12952 				 * For loopback, we always get a pure SYN-ACK
12953 				 * and only need to send back the final ACK
12954 				 * with no data (this is because the other
12955 				 * tcp is ours and we don't do T/TCP).  This
12956 				 * final ACK triggers the passive side to
12957 				 * perform fusion in ESTABLISHED state.
12958 				 */
12959 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12960 					if (tcp->tcp_ack_tid != 0) {
12961 						(void) TCP_TIMER_CANCEL(tcp,
12962 						    tcp->tcp_ack_tid);
12963 						tcp->tcp_ack_tid = 0;
12964 					}
12965 					TCP_RECORD_TRACE(tcp, ack_mp,
12966 					    TCP_TRACE_SEND_PKT);
12967 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12968 					BUMP_LOCAL(tcp->tcp_obsegs);
12969 					BUMP_MIB(&tcp_mib, tcpOutAck);
12970 
12971 					/* Send up T_CONN_CON */
12972 					putnext(tcp->tcp_rq, mp1);
12973 
12974 					freemsg(mp);
12975 					return;
12976 				}
12977 				/*
12978 				 * Forget fusion; we need to handle more
12979 				 * complex cases below.  Send the deferred
12980 				 * T_CONN_CON message upstream and proceed
12981 				 * as usual.  Mark this tcp as not capable
12982 				 * of fusion.
12983 				 */
12984 				TCP_STAT(tcp_fusion_unfusable);
12985 				tcp->tcp_unfusable = B_TRUE;
12986 				putnext(tcp->tcp_rq, mp1);
12987 			}
12988 
12989 			/*
12990 			 * Check to see if there is data to be sent.  If
12991 			 * yes, set the transmit flag.  Then check to see
12992 			 * if received data processing needs to be done.
12993 			 * If not, go straight to xmit_check.  This short
12994 			 * cut is OK as we don't support T/TCP.
12995 			 */
12996 			if (tcp->tcp_unsent)
12997 				flags |= TH_XMIT_NEEDED;
12998 
12999 			if (seg_len == 0 && !(flags & TH_URG)) {
13000 				freemsg(mp);
13001 				goto xmit_check;
13002 			}
13003 
13004 			flags &= ~TH_SYN;
13005 			seg_seq++;
13006 			break;
13007 		}
13008 		tcp->tcp_state = TCPS_SYN_RCVD;
13009 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13010 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13011 		if (mp1) {
13012 			DB_CPID(mp1) = tcp->tcp_cpid;
13013 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13014 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13015 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13016 		}
13017 		freemsg(mp);
13018 		return;
13019 	case TCPS_SYN_RCVD:
13020 		if (flags & TH_ACK) {
13021 			/*
13022 			 * In this state, a SYN|ACK packet is either bogus
13023 			 * because the other side must be ACKing our SYN which
13024 			 * indicates it has seen the ACK for their SYN and
13025 			 * shouldn't retransmit it or we're crossing SYNs
13026 			 * on active open.
13027 			 */
13028 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13029 				freemsg(mp);
13030 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13031 				    tcp, seg_ack, 0, TH_RST);
13032 				return;
13033 			}
13034 			/*
13035 			 * NOTE: RFC 793 pg. 72 says this should be
13036 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13037 			 * but that would mean we have an ack that ignored
13038 			 * our SYN.
13039 			 */
13040 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13041 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13042 				freemsg(mp);
13043 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13044 				    tcp, seg_ack, 0, TH_RST);
13045 				return;
13046 			}
13047 		}
13048 		break;
13049 	case TCPS_LISTEN:
13050 		/*
13051 		 * Only a TLI listener can come through this path when a
13052 		 * acceptor is going back to be a listener and a packet
13053 		 * for the acceptor hits the classifier. For a socket
13054 		 * listener, this can never happen because a listener
13055 		 * can never accept connection on itself and hence a
13056 		 * socket acceptor can not go back to being a listener.
13057 		 */
13058 		ASSERT(!TCP_IS_SOCKET(tcp));
13059 		/*FALLTHRU*/
13060 	case TCPS_CLOSED:
13061 	case TCPS_BOUND: {
13062 		conn_t	*new_connp;
13063 
13064 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
13065 		if (new_connp != NULL) {
13066 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13067 			return;
13068 		}
13069 		/* We failed to classify. For now just drop the packet */
13070 		freemsg(mp);
13071 		return;
13072 	}
13073 	case TCPS_IDLE:
13074 		/*
13075 		 * Handle the case where the tcp_clean_death() has happened
13076 		 * on a connection (application hasn't closed yet) but a packet
13077 		 * was already queued on squeue before tcp_clean_death()
13078 		 * was processed. Calling tcp_clean_death() twice on same
13079 		 * connection can result in weird behaviour.
13080 		 */
13081 		freemsg(mp);
13082 		return;
13083 	default:
13084 		break;
13085 	}
13086 
13087 	/*
13088 	 * Already on the correct queue/perimeter.
13089 	 * If this is a detached connection and not an eager
13090 	 * connection hanging off a listener then new data
13091 	 * (past the FIN) will cause a reset.
13092 	 * We do a special check here where it
13093 	 * is out of the main line, rather than check
13094 	 * if we are detached every time we see new
13095 	 * data down below.
13096 	 */
13097 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13098 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13099 		BUMP_MIB(&tcp_mib, tcpInClosed);
13100 		TCP_RECORD_TRACE(tcp,
13101 		    mp, TCP_TRACE_RECV_PKT);
13102 
13103 		freemsg(mp);
13104 		/*
13105 		 * This could be an SSL closure alert. We're detached so just
13106 		 * acknowledge it this last time.
13107 		 */
13108 		if (tcp->tcp_kssl_ctx != NULL) {
13109 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13110 			tcp->tcp_kssl_ctx = NULL;
13111 
13112 			tcp->tcp_rnxt += seg_len;
13113 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13114 			flags |= TH_ACK_NEEDED;
13115 			goto ack_check;
13116 		}
13117 
13118 		tcp_xmit_ctl("new data when detached", tcp,
13119 		    tcp->tcp_snxt, 0, TH_RST);
13120 		(void) tcp_clean_death(tcp, EPROTO, 12);
13121 		return;
13122 	}
13123 
13124 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13125 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13126 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13127 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13128 	mss = tcp->tcp_mss;
13129 
13130 	if (tcp->tcp_snd_ts_ok) {
13131 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13132 			/*
13133 			 * This segment is not acceptable.
13134 			 * Drop it and send back an ACK.
13135 			 */
13136 			freemsg(mp);
13137 			flags |= TH_ACK_NEEDED;
13138 			goto ack_check;
13139 		}
13140 	} else if (tcp->tcp_snd_sack_ok) {
13141 		ASSERT(tcp->tcp_sack_info != NULL);
13142 		tcpopt.tcp = tcp;
13143 		/*
13144 		 * SACK info in already updated in tcp_parse_options.  Ignore
13145 		 * all other TCP options...
13146 		 */
13147 		(void) tcp_parse_options(tcph, &tcpopt);
13148 	}
13149 try_again:;
13150 	gap = seg_seq - tcp->tcp_rnxt;
13151 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13152 	/*
13153 	 * gap is the amount of sequence space between what we expect to see
13154 	 * and what we got for seg_seq.  A positive value for gap means
13155 	 * something got lost.  A negative value means we got some old stuff.
13156 	 */
13157 	if (gap < 0) {
13158 		/* Old stuff present.  Is the SYN in there? */
13159 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13160 		    (seg_len != 0)) {
13161 			flags &= ~TH_SYN;
13162 			seg_seq++;
13163 			urp--;
13164 			/* Recompute the gaps after noting the SYN. */
13165 			goto try_again;
13166 		}
13167 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
13168 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
13169 		    (seg_len > -gap ? -gap : seg_len));
13170 		/* Remove the old stuff from seg_len. */
13171 		seg_len += gap;
13172 		/*
13173 		 * Anything left?
13174 		 * Make sure to check for unack'd FIN when rest of data
13175 		 * has been previously ack'd.
13176 		 */
13177 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13178 			/*
13179 			 * Resets are only valid if they lie within our offered
13180 			 * window.  If the RST bit is set, we just ignore this
13181 			 * segment.
13182 			 */
13183 			if (flags & TH_RST) {
13184 				freemsg(mp);
13185 				return;
13186 			}
13187 
13188 			/*
13189 			 * The arriving of dup data packets indicate that we
13190 			 * may have postponed an ack for too long, or the other
13191 			 * side's RTT estimate is out of shape. Start acking
13192 			 * more often.
13193 			 */
13194 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13195 			    tcp->tcp_rack_cnt >= 1 &&
13196 			    tcp->tcp_rack_abs_max > 2) {
13197 				tcp->tcp_rack_abs_max--;
13198 			}
13199 			tcp->tcp_rack_cur_max = 1;
13200 
13201 			/*
13202 			 * This segment is "unacceptable".  None of its
13203 			 * sequence space lies within our advertized window.
13204 			 *
13205 			 * Adjust seg_len to the original value for tracing.
13206 			 */
13207 			seg_len -= gap;
13208 			if (tcp->tcp_debug) {
13209 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13210 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13211 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13212 				    "seg_len %d, rnxt %u, snxt %u, %s",
13213 				    gap, rgap, flags, seg_seq, seg_ack,
13214 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13215 				    tcp_display(tcp, NULL,
13216 				    DISP_ADDR_AND_PORT));
13217 			}
13218 
13219 			/*
13220 			 * Arrange to send an ACK in response to the
13221 			 * unacceptable segment per RFC 793 page 69. There
13222 			 * is only one small difference between ours and the
13223 			 * acceptability test in the RFC - we accept ACK-only
13224 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13225 			 * will be generated.
13226 			 *
13227 			 * Note that we have to ACK an ACK-only packet at least
13228 			 * for stacks that send 0-length keep-alives with
13229 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13230 			 * section 4.2.3.6. As long as we don't ever generate
13231 			 * an unacceptable packet in response to an incoming
13232 			 * packet that is unacceptable, it should not cause
13233 			 * "ACK wars".
13234 			 */
13235 			flags |=  TH_ACK_NEEDED;
13236 
13237 			/*
13238 			 * Continue processing this segment in order to use the
13239 			 * ACK information it contains, but skip all other
13240 			 * sequence-number processing.	Processing the ACK
13241 			 * information is necessary in order to
13242 			 * re-synchronize connections that may have lost
13243 			 * synchronization.
13244 			 *
13245 			 * We clear seg_len and flag fields related to
13246 			 * sequence number processing as they are not
13247 			 * to be trusted for an unacceptable segment.
13248 			 */
13249 			seg_len = 0;
13250 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13251 			goto process_ack;
13252 		}
13253 
13254 		/* Fix seg_seq, and chew the gap off the front. */
13255 		seg_seq = tcp->tcp_rnxt;
13256 		urp += gap;
13257 		do {
13258 			mblk_t	*mp2;
13259 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13260 			    (uintptr_t)UINT_MAX);
13261 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13262 			if (gap > 0) {
13263 				mp->b_rptr = mp->b_wptr - gap;
13264 				break;
13265 			}
13266 			mp2 = mp;
13267 			mp = mp->b_cont;
13268 			freeb(mp2);
13269 		} while (gap < 0);
13270 		/*
13271 		 * If the urgent data has already been acknowledged, we
13272 		 * should ignore TH_URG below
13273 		 */
13274 		if (urp < 0)
13275 			flags &= ~TH_URG;
13276 	}
13277 	/*
13278 	 * rgap is the amount of stuff received out of window.  A negative
13279 	 * value is the amount out of window.
13280 	 */
13281 	if (rgap < 0) {
13282 		mblk_t	*mp2;
13283 
13284 		if (tcp->tcp_rwnd == 0) {
13285 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
13286 		} else {
13287 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
13288 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
13289 		}
13290 
13291 		/*
13292 		 * seg_len does not include the FIN, so if more than
13293 		 * just the FIN is out of window, we act like we don't
13294 		 * see it.  (If just the FIN is out of window, rgap
13295 		 * will be zero and we will go ahead and acknowledge
13296 		 * the FIN.)
13297 		 */
13298 		flags &= ~TH_FIN;
13299 
13300 		/* Fix seg_len and make sure there is something left. */
13301 		seg_len += rgap;
13302 		if (seg_len <= 0) {
13303 			/*
13304 			 * Resets are only valid if they lie within our offered
13305 			 * window.  If the RST bit is set, we just ignore this
13306 			 * segment.
13307 			 */
13308 			if (flags & TH_RST) {
13309 				freemsg(mp);
13310 				return;
13311 			}
13312 
13313 			/* Per RFC 793, we need to send back an ACK. */
13314 			flags |= TH_ACK_NEEDED;
13315 
13316 			/*
13317 			 * Send SIGURG as soon as possible i.e. even
13318 			 * if the TH_URG was delivered in a window probe
13319 			 * packet (which will be unacceptable).
13320 			 *
13321 			 * We generate a signal if none has been generated
13322 			 * for this connection or if this is a new urgent
13323 			 * byte. Also send a zero-length "unmarked" message
13324 			 * to inform SIOCATMARK that this is not the mark.
13325 			 *
13326 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13327 			 * is sent up. This plus the check for old data
13328 			 * (gap >= 0) handles the wraparound of the sequence
13329 			 * number space without having to always track the
13330 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13331 			 * this max in its rcv_up variable).
13332 			 *
13333 			 * This prevents duplicate SIGURGS due to a "late"
13334 			 * zero-window probe when the T_EXDATA_IND has already
13335 			 * been sent up.
13336 			 */
13337 			if ((flags & TH_URG) &&
13338 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13339 			    tcp->tcp_urp_last))) {
13340 				mp1 = allocb(0, BPRI_MED);
13341 				if (mp1 == NULL) {
13342 					freemsg(mp);
13343 					return;
13344 				}
13345 				if (!TCP_IS_DETACHED(tcp) &&
13346 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13347 				    SIGURG)) {
13348 					/* Try again on the rexmit. */
13349 					freemsg(mp1);
13350 					freemsg(mp);
13351 					return;
13352 				}
13353 				/*
13354 				 * If the next byte would be the mark
13355 				 * then mark with MARKNEXT else mark
13356 				 * with NOTMARKNEXT.
13357 				 */
13358 				if (gap == 0 && urp == 0)
13359 					mp1->b_flag |= MSGMARKNEXT;
13360 				else
13361 					mp1->b_flag |= MSGNOTMARKNEXT;
13362 				freemsg(tcp->tcp_urp_mark_mp);
13363 				tcp->tcp_urp_mark_mp = mp1;
13364 				flags |= TH_SEND_URP_MARK;
13365 				tcp->tcp_urp_last_valid = B_TRUE;
13366 				tcp->tcp_urp_last = urp + seg_seq;
13367 			}
13368 			/*
13369 			 * If this is a zero window probe, continue to
13370 			 * process the ACK part.  But we need to set seg_len
13371 			 * to 0 to avoid data processing.  Otherwise just
13372 			 * drop the segment and send back an ACK.
13373 			 */
13374 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13375 				flags &= ~(TH_SYN | TH_URG);
13376 				seg_len = 0;
13377 				goto process_ack;
13378 			} else {
13379 				freemsg(mp);
13380 				goto ack_check;
13381 			}
13382 		}
13383 		/* Pitch out of window stuff off the end. */
13384 		rgap = seg_len;
13385 		mp2 = mp;
13386 		do {
13387 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13388 			    (uintptr_t)INT_MAX);
13389 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13390 			if (rgap < 0) {
13391 				mp2->b_wptr += rgap;
13392 				if ((mp1 = mp2->b_cont) != NULL) {
13393 					mp2->b_cont = NULL;
13394 					freemsg(mp1);
13395 				}
13396 				break;
13397 			}
13398 		} while ((mp2 = mp2->b_cont) != NULL);
13399 	}
13400 ok:;
13401 	/*
13402 	 * TCP should check ECN info for segments inside the window only.
13403 	 * Therefore the check should be done here.
13404 	 */
13405 	if (tcp->tcp_ecn_ok) {
13406 		if (flags & TH_CWR) {
13407 			tcp->tcp_ecn_echo_on = B_FALSE;
13408 		}
13409 		/*
13410 		 * Note that both ECN_CE and CWR can be set in the
13411 		 * same segment.  In this case, we once again turn
13412 		 * on ECN_ECHO.
13413 		 */
13414 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13415 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13416 
13417 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13418 				tcp->tcp_ecn_echo_on = B_TRUE;
13419 			}
13420 		} else {
13421 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13422 
13423 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13424 			    htonl(IPH_ECN_CE << 20)) {
13425 				tcp->tcp_ecn_echo_on = B_TRUE;
13426 			}
13427 		}
13428 	}
13429 
13430 	/*
13431 	 * Check whether we can update tcp_ts_recent.  This test is
13432 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13433 	 * Extensions for High Performance: An Update", Internet Draft.
13434 	 */
13435 	if (tcp->tcp_snd_ts_ok &&
13436 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13437 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13438 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13439 		tcp->tcp_last_rcv_lbolt = lbolt64;
13440 	}
13441 
13442 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13443 		/*
13444 		 * FIN in an out of order segment.  We record this in
13445 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13446 		 * Clear the FIN so that any check on FIN flag will fail.
13447 		 * Remember that FIN also counts in the sequence number
13448 		 * space.  So we need to ack out of order FIN only segments.
13449 		 */
13450 		if (flags & TH_FIN) {
13451 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13452 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13453 			flags &= ~TH_FIN;
13454 			flags |= TH_ACK_NEEDED;
13455 		}
13456 		if (seg_len > 0) {
13457 			/* Fill in the SACK blk list. */
13458 			if (tcp->tcp_snd_sack_ok) {
13459 				ASSERT(tcp->tcp_sack_info != NULL);
13460 				tcp_sack_insert(tcp->tcp_sack_list,
13461 				    seg_seq, seg_seq + seg_len,
13462 				    &(tcp->tcp_num_sack_blk));
13463 			}
13464 
13465 			/*
13466 			 * Attempt reassembly and see if we have something
13467 			 * ready to go.
13468 			 */
13469 			mp = tcp_reass(tcp, mp, seg_seq);
13470 			/* Always ack out of order packets */
13471 			flags |= TH_ACK_NEEDED | TH_PUSH;
13472 			if (mp) {
13473 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13474 				    (uintptr_t)INT_MAX);
13475 				seg_len = mp->b_cont ? msgdsize(mp) :
13476 					(int)(mp->b_wptr - mp->b_rptr);
13477 				seg_seq = tcp->tcp_rnxt;
13478 				/*
13479 				 * A gap is filled and the seq num and len
13480 				 * of the gap match that of a previously
13481 				 * received FIN, put the FIN flag back in.
13482 				 */
13483 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13484 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13485 					flags |= TH_FIN;
13486 					tcp->tcp_valid_bits &=
13487 					    ~TCP_OFO_FIN_VALID;
13488 				}
13489 			} else {
13490 				/*
13491 				 * Keep going even with NULL mp.
13492 				 * There may be a useful ACK or something else
13493 				 * we don't want to miss.
13494 				 *
13495 				 * But TCP should not perform fast retransmit
13496 				 * because of the ack number.  TCP uses
13497 				 * seg_len == 0 to determine if it is a pure
13498 				 * ACK.  And this is not a pure ACK.
13499 				 */
13500 				seg_len = 0;
13501 				ofo_seg = B_TRUE;
13502 			}
13503 		}
13504 	} else if (seg_len > 0) {
13505 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13506 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13507 		/*
13508 		 * If an out of order FIN was received before, and the seq
13509 		 * num and len of the new segment match that of the FIN,
13510 		 * put the FIN flag back in.
13511 		 */
13512 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13513 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13514 			flags |= TH_FIN;
13515 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13516 		}
13517 	}
13518 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13519 	if (flags & TH_RST) {
13520 		freemsg(mp);
13521 		switch (tcp->tcp_state) {
13522 		case TCPS_SYN_RCVD:
13523 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13524 			break;
13525 		case TCPS_ESTABLISHED:
13526 		case TCPS_FIN_WAIT_1:
13527 		case TCPS_FIN_WAIT_2:
13528 		case TCPS_CLOSE_WAIT:
13529 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13530 			break;
13531 		case TCPS_CLOSING:
13532 		case TCPS_LAST_ACK:
13533 			(void) tcp_clean_death(tcp, 0, 16);
13534 			break;
13535 		default:
13536 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13537 			(void) tcp_clean_death(tcp, ENXIO, 17);
13538 			break;
13539 		}
13540 		return;
13541 	}
13542 	if (flags & TH_SYN) {
13543 		/*
13544 		 * See RFC 793, Page 71
13545 		 *
13546 		 * The seq number must be in the window as it should
13547 		 * be "fixed" above.  If it is outside window, it should
13548 		 * be already rejected.  Note that we allow seg_seq to be
13549 		 * rnxt + rwnd because we want to accept 0 window probe.
13550 		 */
13551 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13552 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13553 		freemsg(mp);
13554 		/*
13555 		 * If the ACK flag is not set, just use our snxt as the
13556 		 * seq number of the RST segment.
13557 		 */
13558 		if (!(flags & TH_ACK)) {
13559 			seg_ack = tcp->tcp_snxt;
13560 		}
13561 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13562 		    TH_RST|TH_ACK);
13563 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13564 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13565 		return;
13566 	}
13567 	/*
13568 	 * urp could be -1 when the urp field in the packet is 0
13569 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13570 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13571 	 */
13572 	if (flags & TH_URG && urp >= 0) {
13573 		if (!tcp->tcp_urp_last_valid ||
13574 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13575 			/*
13576 			 * If we haven't generated the signal yet for this
13577 			 * urgent pointer value, do it now.  Also, send up a
13578 			 * zero-length M_DATA indicating whether or not this is
13579 			 * the mark. The latter is not needed when a
13580 			 * T_EXDATA_IND is sent up. However, if there are
13581 			 * allocation failures this code relies on the sender
13582 			 * retransmitting and the socket code for determining
13583 			 * the mark should not block waiting for the peer to
13584 			 * transmit. Thus, for simplicity we always send up the
13585 			 * mark indication.
13586 			 */
13587 			mp1 = allocb(0, BPRI_MED);
13588 			if (mp1 == NULL) {
13589 				freemsg(mp);
13590 				return;
13591 			}
13592 			if (!TCP_IS_DETACHED(tcp) &&
13593 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13594 				/* Try again on the rexmit. */
13595 				freemsg(mp1);
13596 				freemsg(mp);
13597 				return;
13598 			}
13599 			/*
13600 			 * Mark with NOTMARKNEXT for now.
13601 			 * The code below will change this to MARKNEXT
13602 			 * if we are at the mark.
13603 			 *
13604 			 * If there are allocation failures (e.g. in dupmsg
13605 			 * below) the next time tcp_rput_data sees the urgent
13606 			 * segment it will send up the MSG*MARKNEXT message.
13607 			 */
13608 			mp1->b_flag |= MSGNOTMARKNEXT;
13609 			freemsg(tcp->tcp_urp_mark_mp);
13610 			tcp->tcp_urp_mark_mp = mp1;
13611 			flags |= TH_SEND_URP_MARK;
13612 #ifdef DEBUG
13613 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13614 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13615 			    "last %x, %s",
13616 			    seg_seq, urp, tcp->tcp_urp_last,
13617 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13618 #endif /* DEBUG */
13619 			tcp->tcp_urp_last_valid = B_TRUE;
13620 			tcp->tcp_urp_last = urp + seg_seq;
13621 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13622 			/*
13623 			 * An allocation failure prevented the previous
13624 			 * tcp_rput_data from sending up the allocated
13625 			 * MSG*MARKNEXT message - send it up this time
13626 			 * around.
13627 			 */
13628 			flags |= TH_SEND_URP_MARK;
13629 		}
13630 
13631 		/*
13632 		 * If the urgent byte is in this segment, make sure that it is
13633 		 * all by itself.  This makes it much easier to deal with the
13634 		 * possibility of an allocation failure on the T_exdata_ind.
13635 		 * Note that seg_len is the number of bytes in the segment, and
13636 		 * urp is the offset into the segment of the urgent byte.
13637 		 * urp < seg_len means that the urgent byte is in this segment.
13638 		 */
13639 		if (urp < seg_len) {
13640 			if (seg_len != 1) {
13641 				uint32_t  tmp_rnxt;
13642 				/*
13643 				 * Break it up and feed it back in.
13644 				 * Re-attach the IP header.
13645 				 */
13646 				mp->b_rptr = iphdr;
13647 				if (urp > 0) {
13648 					/*
13649 					 * There is stuff before the urgent
13650 					 * byte.
13651 					 */
13652 					mp1 = dupmsg(mp);
13653 					if (!mp1) {
13654 						/*
13655 						 * Trim from urgent byte on.
13656 						 * The rest will come back.
13657 						 */
13658 						(void) adjmsg(mp,
13659 						    urp - seg_len);
13660 						tcp_rput_data(connp,
13661 						    mp, NULL);
13662 						return;
13663 					}
13664 					(void) adjmsg(mp1, urp - seg_len);
13665 					/* Feed this piece back in. */
13666 					tmp_rnxt = tcp->tcp_rnxt;
13667 					tcp_rput_data(connp, mp1, NULL);
13668 					/*
13669 					 * If the data passed back in was not
13670 					 * processed (ie: bad ACK) sending
13671 					 * the remainder back in will cause a
13672 					 * loop. In this case, drop the
13673 					 * packet and let the sender try
13674 					 * sending a good packet.
13675 					 */
13676 					if (tmp_rnxt == tcp->tcp_rnxt) {
13677 						freemsg(mp);
13678 						return;
13679 					}
13680 				}
13681 				if (urp != seg_len - 1) {
13682 					uint32_t  tmp_rnxt;
13683 					/*
13684 					 * There is stuff after the urgent
13685 					 * byte.
13686 					 */
13687 					mp1 = dupmsg(mp);
13688 					if (!mp1) {
13689 						/*
13690 						 * Trim everything beyond the
13691 						 * urgent byte.  The rest will
13692 						 * come back.
13693 						 */
13694 						(void) adjmsg(mp,
13695 						    urp + 1 - seg_len);
13696 						tcp_rput_data(connp,
13697 						    mp, NULL);
13698 						return;
13699 					}
13700 					(void) adjmsg(mp1, urp + 1 - seg_len);
13701 					tmp_rnxt = tcp->tcp_rnxt;
13702 					tcp_rput_data(connp, mp1, NULL);
13703 					/*
13704 					 * If the data passed back in was not
13705 					 * processed (ie: bad ACK) sending
13706 					 * the remainder back in will cause a
13707 					 * loop. In this case, drop the
13708 					 * packet and let the sender try
13709 					 * sending a good packet.
13710 					 */
13711 					if (tmp_rnxt == tcp->tcp_rnxt) {
13712 						freemsg(mp);
13713 						return;
13714 					}
13715 				}
13716 				tcp_rput_data(connp, mp, NULL);
13717 				return;
13718 			}
13719 			/*
13720 			 * This segment contains only the urgent byte.  We
13721 			 * have to allocate the T_exdata_ind, if we can.
13722 			 */
13723 			if (!tcp->tcp_urp_mp) {
13724 				struct T_exdata_ind *tei;
13725 				mp1 = allocb(sizeof (struct T_exdata_ind),
13726 				    BPRI_MED);
13727 				if (!mp1) {
13728 					/*
13729 					 * Sigh... It'll be back.
13730 					 * Generate any MSG*MARK message now.
13731 					 */
13732 					freemsg(mp);
13733 					seg_len = 0;
13734 					if (flags & TH_SEND_URP_MARK) {
13735 
13736 
13737 						ASSERT(tcp->tcp_urp_mark_mp);
13738 						tcp->tcp_urp_mark_mp->b_flag &=
13739 							~MSGNOTMARKNEXT;
13740 						tcp->tcp_urp_mark_mp->b_flag |=
13741 							MSGMARKNEXT;
13742 					}
13743 					goto ack_check;
13744 				}
13745 				mp1->b_datap->db_type = M_PROTO;
13746 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13747 				tei->PRIM_type = T_EXDATA_IND;
13748 				tei->MORE_flag = 0;
13749 				mp1->b_wptr = (uchar_t *)&tei[1];
13750 				tcp->tcp_urp_mp = mp1;
13751 #ifdef DEBUG
13752 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13753 				    "tcp_rput: allocated exdata_ind %s",
13754 				    tcp_display(tcp, NULL,
13755 				    DISP_PORT_ONLY));
13756 #endif /* DEBUG */
13757 				/*
13758 				 * There is no need to send a separate MSG*MARK
13759 				 * message since the T_EXDATA_IND will be sent
13760 				 * now.
13761 				 */
13762 				flags &= ~TH_SEND_URP_MARK;
13763 				freemsg(tcp->tcp_urp_mark_mp);
13764 				tcp->tcp_urp_mark_mp = NULL;
13765 			}
13766 			/*
13767 			 * Now we are all set.  On the next putnext upstream,
13768 			 * tcp_urp_mp will be non-NULL and will get prepended
13769 			 * to what has to be this piece containing the urgent
13770 			 * byte.  If for any reason we abort this segment below,
13771 			 * if it comes back, we will have this ready, or it
13772 			 * will get blown off in close.
13773 			 */
13774 		} else if (urp == seg_len) {
13775 			/*
13776 			 * The urgent byte is the next byte after this sequence
13777 			 * number. If there is data it is marked with
13778 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13779 			 * since it is not needed. Otherwise, if the code
13780 			 * above just allocated a zero-length tcp_urp_mark_mp
13781 			 * message, that message is tagged with MSGMARKNEXT.
13782 			 * Sending up these MSGMARKNEXT messages makes
13783 			 * SIOCATMARK work correctly even though
13784 			 * the T_EXDATA_IND will not be sent up until the
13785 			 * urgent byte arrives.
13786 			 */
13787 			if (seg_len != 0) {
13788 				flags |= TH_MARKNEXT_NEEDED;
13789 				freemsg(tcp->tcp_urp_mark_mp);
13790 				tcp->tcp_urp_mark_mp = NULL;
13791 				flags &= ~TH_SEND_URP_MARK;
13792 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13793 				flags |= TH_SEND_URP_MARK;
13794 				tcp->tcp_urp_mark_mp->b_flag &=
13795 					~MSGNOTMARKNEXT;
13796 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13797 			}
13798 #ifdef DEBUG
13799 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13800 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13801 			    seg_len, flags,
13802 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13803 #endif /* DEBUG */
13804 		} else {
13805 			/* Data left until we hit mark */
13806 #ifdef DEBUG
13807 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13808 			    "tcp_rput: URP %d bytes left, %s",
13809 			    urp - seg_len, tcp_display(tcp, NULL,
13810 			    DISP_PORT_ONLY));
13811 #endif /* DEBUG */
13812 		}
13813 	}
13814 
13815 process_ack:
13816 	if (!(flags & TH_ACK)) {
13817 		freemsg(mp);
13818 		goto xmit_check;
13819 	}
13820 	}
13821 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13822 
13823 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13824 		tcp->tcp_ip_forward_progress = B_TRUE;
13825 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13826 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13827 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13828 			/* 3-way handshake complete - pass up the T_CONN_IND */
13829 			tcp_t	*listener = tcp->tcp_listener;
13830 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13831 
13832 			tcp->tcp_tconnind_started = B_TRUE;
13833 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13834 			/*
13835 			 * We are here means eager is fine but it can
13836 			 * get a TH_RST at any point between now and till
13837 			 * accept completes and disappear. We need to
13838 			 * ensure that reference to eager is valid after
13839 			 * we get out of eager's perimeter. So we do
13840 			 * an extra refhold.
13841 			 */
13842 			CONN_INC_REF(connp);
13843 
13844 			/*
13845 			 * The listener also exists because of the refhold
13846 			 * done in tcp_conn_request. Its possible that it
13847 			 * might have closed. We will check that once we
13848 			 * get inside listeners context.
13849 			 */
13850 			CONN_INC_REF(listener->tcp_connp);
13851 			if (listener->tcp_connp->conn_sqp ==
13852 			    connp->conn_sqp) {
13853 				tcp_send_conn_ind(listener->tcp_connp, mp,
13854 				    listener->tcp_connp->conn_sqp);
13855 				CONN_DEC_REF(listener->tcp_connp);
13856 			} else if (!tcp->tcp_loopback) {
13857 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
13858 				    tcp_send_conn_ind,
13859 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
13860 			} else {
13861 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
13862 				    tcp_send_conn_ind, listener->tcp_connp,
13863 				    SQTAG_TCP_CONN_IND);
13864 			}
13865 		}
13866 
13867 		if (tcp->tcp_active_open) {
13868 			/*
13869 			 * We are seeing the final ack in the three way
13870 			 * hand shake of a active open'ed connection
13871 			 * so we must send up a T_CONN_CON
13872 			 */
13873 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13874 				freemsg(mp);
13875 				return;
13876 			}
13877 			/*
13878 			 * Don't fuse the loopback endpoints for
13879 			 * simultaneous active opens.
13880 			 */
13881 			if (tcp->tcp_loopback) {
13882 				TCP_STAT(tcp_fusion_unfusable);
13883 				tcp->tcp_unfusable = B_TRUE;
13884 			}
13885 		}
13886 
13887 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13888 		bytes_acked--;
13889 		/* SYN was acked - making progress */
13890 		if (tcp->tcp_ipversion == IPV6_VERSION)
13891 			tcp->tcp_ip_forward_progress = B_TRUE;
13892 
13893 		/*
13894 		 * If SYN was retransmitted, need to reset all
13895 		 * retransmission info as this segment will be
13896 		 * treated as a dup ACK.
13897 		 */
13898 		if (tcp->tcp_rexmit) {
13899 			tcp->tcp_rexmit = B_FALSE;
13900 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13901 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13902 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13903 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13904 			tcp->tcp_ms_we_have_waited = 0;
13905 			tcp->tcp_cwnd = mss;
13906 		}
13907 
13908 		/*
13909 		 * We set the send window to zero here.
13910 		 * This is needed if there is data to be
13911 		 * processed already on the queue.
13912 		 * Later (at swnd_update label), the
13913 		 * "new_swnd > tcp_swnd" condition is satisfied
13914 		 * the XMIT_NEEDED flag is set in the current
13915 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13916 		 * called if there is already data on queue in
13917 		 * this state.
13918 		 */
13919 		tcp->tcp_swnd = 0;
13920 
13921 		if (new_swnd > tcp->tcp_max_swnd)
13922 			tcp->tcp_max_swnd = new_swnd;
13923 		tcp->tcp_swl1 = seg_seq;
13924 		tcp->tcp_swl2 = seg_ack;
13925 		tcp->tcp_state = TCPS_ESTABLISHED;
13926 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13927 
13928 		/* Fuse when both sides are in ESTABLISHED state */
13929 		if (tcp->tcp_loopback && do_tcp_fusion)
13930 			tcp_fuse(tcp, iphdr, tcph);
13931 
13932 	}
13933 	/* This code follows 4.4BSD-Lite2 mostly. */
13934 	if (bytes_acked < 0)
13935 		goto est;
13936 
13937 	/*
13938 	 * If TCP is ECN capable and the congestion experience bit is
13939 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13940 	 * done once per window (or more loosely, per RTT).
13941 	 */
13942 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13943 		tcp->tcp_cwr = B_FALSE;
13944 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13945 		if (!tcp->tcp_cwr) {
13946 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13947 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13948 			tcp->tcp_cwnd = npkt * mss;
13949 			/*
13950 			 * If the cwnd is 0, use the timer to clock out
13951 			 * new segments.  This is required by the ECN spec.
13952 			 */
13953 			if (npkt == 0) {
13954 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13955 				/*
13956 				 * This makes sure that when the ACK comes
13957 				 * back, we will increase tcp_cwnd by 1 MSS.
13958 				 */
13959 				tcp->tcp_cwnd_cnt = 0;
13960 			}
13961 			tcp->tcp_cwr = B_TRUE;
13962 			/*
13963 			 * This marks the end of the current window of in
13964 			 * flight data.  That is why we don't use
13965 			 * tcp_suna + tcp_swnd.  Only data in flight can
13966 			 * provide ECN info.
13967 			 */
13968 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13969 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13970 		}
13971 	}
13972 
13973 	mp1 = tcp->tcp_xmit_head;
13974 	if (bytes_acked == 0) {
13975 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13976 			int dupack_cnt;
13977 
13978 			BUMP_MIB(&tcp_mib, tcpInDupAck);
13979 			/*
13980 			 * Fast retransmit.  When we have seen exactly three
13981 			 * identical ACKs while we have unacked data
13982 			 * outstanding we take it as a hint that our peer
13983 			 * dropped something.
13984 			 *
13985 			 * If TCP is retransmitting, don't do fast retransmit.
13986 			 */
13987 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
13988 			    ! tcp->tcp_rexmit) {
13989 				/* Do Limited Transmit */
13990 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
13991 				    tcp_dupack_fast_retransmit) {
13992 					/*
13993 					 * RFC 3042
13994 					 *
13995 					 * What we need to do is temporarily
13996 					 * increase tcp_cwnd so that new
13997 					 * data can be sent if it is allowed
13998 					 * by the receive window (tcp_rwnd).
13999 					 * tcp_wput_data() will take care of
14000 					 * the rest.
14001 					 *
14002 					 * If the connection is SACK capable,
14003 					 * only do limited xmit when there
14004 					 * is SACK info.
14005 					 *
14006 					 * Note how tcp_cwnd is incremented.
14007 					 * The first dup ACK will increase
14008 					 * it by 1 MSS.  The second dup ACK
14009 					 * will increase it by 2 MSS.  This
14010 					 * means that only 1 new segment will
14011 					 * be sent for each dup ACK.
14012 					 */
14013 					if (tcp->tcp_unsent > 0 &&
14014 					    (!tcp->tcp_snd_sack_ok ||
14015 					    (tcp->tcp_snd_sack_ok &&
14016 					    tcp->tcp_notsack_list != NULL))) {
14017 						tcp->tcp_cwnd += mss <<
14018 						    (tcp->tcp_dupack_cnt - 1);
14019 						flags |= TH_LIMIT_XMIT;
14020 					}
14021 				} else if (dupack_cnt ==
14022 				    tcp_dupack_fast_retransmit) {
14023 
14024 				/*
14025 				 * If we have reduced tcp_ssthresh
14026 				 * because of ECN, do not reduce it again
14027 				 * unless it is already one window of data
14028 				 * away.  After one window of data, tcp_cwr
14029 				 * should then be cleared.  Note that
14030 				 * for non ECN capable connection, tcp_cwr
14031 				 * should always be false.
14032 				 *
14033 				 * Adjust cwnd since the duplicate
14034 				 * ack indicates that a packet was
14035 				 * dropped (due to congestion.)
14036 				 */
14037 				if (!tcp->tcp_cwr) {
14038 					npkt = ((tcp->tcp_snxt -
14039 					    tcp->tcp_suna) >> 1) / mss;
14040 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14041 					    mss;
14042 					tcp->tcp_cwnd = (npkt +
14043 					    tcp->tcp_dupack_cnt) * mss;
14044 				}
14045 				if (tcp->tcp_ecn_ok) {
14046 					tcp->tcp_cwr = B_TRUE;
14047 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14048 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14049 				}
14050 
14051 				/*
14052 				 * We do Hoe's algorithm.  Refer to her
14053 				 * paper "Improving the Start-up Behavior
14054 				 * of a Congestion Control Scheme for TCP,"
14055 				 * appeared in SIGCOMM'96.
14056 				 *
14057 				 * Save highest seq no we have sent so far.
14058 				 * Be careful about the invisible FIN byte.
14059 				 */
14060 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14061 				    (tcp->tcp_unsent == 0)) {
14062 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14063 				} else {
14064 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14065 				}
14066 
14067 				/*
14068 				 * Do not allow bursty traffic during.
14069 				 * fast recovery.  Refer to Fall and Floyd's
14070 				 * paper "Simulation-based Comparisons of
14071 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14072 				 * This is a best current practise.
14073 				 */
14074 				tcp->tcp_snd_burst = TCP_CWND_SS;
14075 
14076 				/*
14077 				 * For SACK:
14078 				 * Calculate tcp_pipe, which is the
14079 				 * estimated number of bytes in
14080 				 * network.
14081 				 *
14082 				 * tcp_fack is the highest sack'ed seq num
14083 				 * TCP has received.
14084 				 *
14085 				 * tcp_pipe is explained in the above quoted
14086 				 * Fall and Floyd's paper.  tcp_fack is
14087 				 * explained in Mathis and Mahdavi's
14088 				 * "Forward Acknowledgment: Refining TCP
14089 				 * Congestion Control" in SIGCOMM '96.
14090 				 */
14091 				if (tcp->tcp_snd_sack_ok) {
14092 					ASSERT(tcp->tcp_sack_info != NULL);
14093 					if (tcp->tcp_notsack_list != NULL) {
14094 						tcp->tcp_pipe = tcp->tcp_snxt -
14095 						    tcp->tcp_fack;
14096 						tcp->tcp_sack_snxt = seg_ack;
14097 						flags |= TH_NEED_SACK_REXMIT;
14098 					} else {
14099 						/*
14100 						 * Always initialize tcp_pipe
14101 						 * even though we don't have
14102 						 * any SACK info.  If later
14103 						 * we get SACK info and
14104 						 * tcp_pipe is not initialized,
14105 						 * funny things will happen.
14106 						 */
14107 						tcp->tcp_pipe =
14108 						    tcp->tcp_cwnd_ssthresh;
14109 					}
14110 				} else {
14111 					flags |= TH_REXMIT_NEEDED;
14112 				} /* tcp_snd_sack_ok */
14113 
14114 				} else {
14115 					/*
14116 					 * Here we perform congestion
14117 					 * avoidance, but NOT slow start.
14118 					 * This is known as the Fast
14119 					 * Recovery Algorithm.
14120 					 */
14121 					if (tcp->tcp_snd_sack_ok &&
14122 					    tcp->tcp_notsack_list != NULL) {
14123 						flags |= TH_NEED_SACK_REXMIT;
14124 						tcp->tcp_pipe -= mss;
14125 						if (tcp->tcp_pipe < 0)
14126 							tcp->tcp_pipe = 0;
14127 					} else {
14128 					/*
14129 					 * We know that one more packet has
14130 					 * left the pipe thus we can update
14131 					 * cwnd.
14132 					 */
14133 					cwnd = tcp->tcp_cwnd + mss;
14134 					if (cwnd > tcp->tcp_cwnd_max)
14135 						cwnd = tcp->tcp_cwnd_max;
14136 					tcp->tcp_cwnd = cwnd;
14137 					if (tcp->tcp_unsent > 0)
14138 						flags |= TH_XMIT_NEEDED;
14139 					}
14140 				}
14141 			}
14142 		} else if (tcp->tcp_zero_win_probe) {
14143 			/*
14144 			 * If the window has opened, need to arrange
14145 			 * to send additional data.
14146 			 */
14147 			if (new_swnd != 0) {
14148 				/* tcp_suna != tcp_snxt */
14149 				/* Packet contains a window update */
14150 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
14151 				tcp->tcp_zero_win_probe = 0;
14152 				tcp->tcp_timer_backoff = 0;
14153 				tcp->tcp_ms_we_have_waited = 0;
14154 
14155 				/*
14156 				 * Transmit starting with tcp_suna since
14157 				 * the one byte probe is not ack'ed.
14158 				 * If TCP has sent more than one identical
14159 				 * probe, tcp_rexmit will be set.  That means
14160 				 * tcp_ss_rexmit() will send out the one
14161 				 * byte along with new data.  Otherwise,
14162 				 * fake the retransmission.
14163 				 */
14164 				flags |= TH_XMIT_NEEDED;
14165 				if (!tcp->tcp_rexmit) {
14166 					tcp->tcp_rexmit = B_TRUE;
14167 					tcp->tcp_dupack_cnt = 0;
14168 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14169 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14170 				}
14171 			}
14172 		}
14173 		goto swnd_update;
14174 	}
14175 
14176 	/*
14177 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14178 	 * If the ACK value acks something that we have not yet sent, it might
14179 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14180 	 * other side.
14181 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14182 	 * state is handled above, so we can always just drop the segment and
14183 	 * send an ACK here.
14184 	 *
14185 	 * Should we send ACKs in response to ACK only segments?
14186 	 */
14187 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14188 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
14189 		/* drop the received segment */
14190 		freemsg(mp);
14191 
14192 		/*
14193 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14194 		 * greater than 0, check if the number of such
14195 		 * bogus ACks is greater than that count.  If yes,
14196 		 * don't send back any ACK.  This prevents TCP from
14197 		 * getting into an ACK storm if somehow an attacker
14198 		 * successfully spoofs an acceptable segment to our
14199 		 * peer.
14200 		 */
14201 		if (tcp_drop_ack_unsent_cnt > 0 &&
14202 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14203 			TCP_STAT(tcp_in_ack_unsent_drop);
14204 			return;
14205 		}
14206 		mp = tcp_ack_mp(tcp);
14207 		if (mp != NULL) {
14208 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14209 			BUMP_LOCAL(tcp->tcp_obsegs);
14210 			BUMP_MIB(&tcp_mib, tcpOutAck);
14211 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14212 		}
14213 		return;
14214 	}
14215 
14216 	/*
14217 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14218 	 * blocks that are covered by this ACK.
14219 	 */
14220 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14221 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14222 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14223 	}
14224 
14225 	/*
14226 	 * If we got an ACK after fast retransmit, check to see
14227 	 * if it is a partial ACK.  If it is not and the congestion
14228 	 * window was inflated to account for the other side's
14229 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14230 	 */
14231 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
14232 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14233 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14234 			tcp->tcp_dupack_cnt = 0;
14235 			/*
14236 			 * Restore the orig tcp_cwnd_ssthresh after
14237 			 * fast retransmit phase.
14238 			 */
14239 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14240 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14241 			}
14242 			tcp->tcp_rexmit_max = seg_ack;
14243 			tcp->tcp_cwnd_cnt = 0;
14244 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14245 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14246 
14247 			/*
14248 			 * Remove all notsack info to avoid confusion with
14249 			 * the next fast retrasnmit/recovery phase.
14250 			 */
14251 			if (tcp->tcp_snd_sack_ok &&
14252 			    tcp->tcp_notsack_list != NULL) {
14253 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14254 			}
14255 		} else {
14256 			if (tcp->tcp_snd_sack_ok &&
14257 			    tcp->tcp_notsack_list != NULL) {
14258 				flags |= TH_NEED_SACK_REXMIT;
14259 				tcp->tcp_pipe -= mss;
14260 				if (tcp->tcp_pipe < 0)
14261 					tcp->tcp_pipe = 0;
14262 			} else {
14263 				/*
14264 				 * Hoe's algorithm:
14265 				 *
14266 				 * Retransmit the unack'ed segment and
14267 				 * restart fast recovery.  Note that we
14268 				 * need to scale back tcp_cwnd to the
14269 				 * original value when we started fast
14270 				 * recovery.  This is to prevent overly
14271 				 * aggressive behaviour in sending new
14272 				 * segments.
14273 				 */
14274 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14275 					tcp_dupack_fast_retransmit * mss;
14276 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14277 				flags |= TH_REXMIT_NEEDED;
14278 			}
14279 		}
14280 	} else {
14281 		tcp->tcp_dupack_cnt = 0;
14282 		if (tcp->tcp_rexmit) {
14283 			/*
14284 			 * TCP is retranmitting.  If the ACK ack's all
14285 			 * outstanding data, update tcp_rexmit_max and
14286 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14287 			 * to the correct value.
14288 			 *
14289 			 * Note that SEQ_LEQ() is used.  This is to avoid
14290 			 * unnecessary fast retransmit caused by dup ACKs
14291 			 * received when TCP does slow start retransmission
14292 			 * after a time out.  During this phase, TCP may
14293 			 * send out segments which are already received.
14294 			 * This causes dup ACKs to be sent back.
14295 			 */
14296 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14297 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14298 					tcp->tcp_rexmit_nxt = seg_ack;
14299 				}
14300 				if (seg_ack != tcp->tcp_rexmit_max) {
14301 					flags |= TH_XMIT_NEEDED;
14302 				}
14303 			} else {
14304 				tcp->tcp_rexmit = B_FALSE;
14305 				tcp->tcp_xmit_zc_clean = B_FALSE;
14306 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14307 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14308 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14309 			}
14310 			tcp->tcp_ms_we_have_waited = 0;
14311 		}
14312 	}
14313 
14314 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
14315 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
14316 	tcp->tcp_suna = seg_ack;
14317 	if (tcp->tcp_zero_win_probe != 0) {
14318 		tcp->tcp_zero_win_probe = 0;
14319 		tcp->tcp_timer_backoff = 0;
14320 	}
14321 
14322 	/*
14323 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14324 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14325 	 * will not reach here.
14326 	 */
14327 	if (mp1 == NULL) {
14328 		goto fin_acked;
14329 	}
14330 
14331 	/*
14332 	 * Update the congestion window.
14333 	 *
14334 	 * If TCP is not ECN capable or TCP is ECN capable but the
14335 	 * congestion experience bit is not set, increase the tcp_cwnd as
14336 	 * usual.
14337 	 */
14338 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14339 		cwnd = tcp->tcp_cwnd;
14340 		add = mss;
14341 
14342 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14343 			/*
14344 			 * This is to prevent an increase of less than 1 MSS of
14345 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14346 			 * may send out tinygrams in order to preserve mblk
14347 			 * boundaries.
14348 			 *
14349 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14350 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14351 			 * increased by 1 MSS for every RTTs.
14352 			 */
14353 			if (tcp->tcp_cwnd_cnt <= 0) {
14354 				tcp->tcp_cwnd_cnt = cwnd + add;
14355 			} else {
14356 				tcp->tcp_cwnd_cnt -= add;
14357 				add = 0;
14358 			}
14359 		}
14360 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14361 	}
14362 
14363 	/* See if the latest urgent data has been acknowledged */
14364 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14365 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14366 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14367 
14368 	/* Can we update the RTT estimates? */
14369 	if (tcp->tcp_snd_ts_ok) {
14370 		/* Ignore zero timestamp echo-reply. */
14371 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14372 			tcp_set_rto(tcp, (int32_t)lbolt -
14373 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14374 		}
14375 
14376 		/* If needed, restart the timer. */
14377 		if (tcp->tcp_set_timer == 1) {
14378 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14379 			tcp->tcp_set_timer = 0;
14380 		}
14381 		/*
14382 		 * Update tcp_csuna in case the other side stops sending
14383 		 * us timestamps.
14384 		 */
14385 		tcp->tcp_csuna = tcp->tcp_snxt;
14386 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14387 		/*
14388 		 * An ACK sequence we haven't seen before, so get the RTT
14389 		 * and update the RTO. But first check if the timestamp is
14390 		 * valid to use.
14391 		 */
14392 		if ((mp1->b_next != NULL) &&
14393 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14394 			tcp_set_rto(tcp, (int32_t)lbolt -
14395 			    (int32_t)(intptr_t)mp1->b_prev);
14396 		else
14397 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14398 
14399 		/* Remeber the last sequence to be ACKed */
14400 		tcp->tcp_csuna = seg_ack;
14401 		if (tcp->tcp_set_timer == 1) {
14402 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14403 			tcp->tcp_set_timer = 0;
14404 		}
14405 	} else {
14406 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14407 	}
14408 
14409 	/* Eat acknowledged bytes off the xmit queue. */
14410 	for (;;) {
14411 		mblk_t	*mp2;
14412 		uchar_t	*wptr;
14413 
14414 		wptr = mp1->b_wptr;
14415 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14416 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14417 		if (bytes_acked < 0) {
14418 			mp1->b_rptr = wptr + bytes_acked;
14419 			/*
14420 			 * Set a new timestamp if all the bytes timed by the
14421 			 * old timestamp have been ack'ed.
14422 			 */
14423 			if (SEQ_GT(seg_ack,
14424 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14425 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14426 				mp1->b_next = NULL;
14427 			}
14428 			break;
14429 		}
14430 		mp1->b_next = NULL;
14431 		mp1->b_prev = NULL;
14432 		mp2 = mp1;
14433 		mp1 = mp1->b_cont;
14434 
14435 		/*
14436 		 * This notification is required for some zero-copy
14437 		 * clients to maintain a copy semantic. After the data
14438 		 * is ack'ed, client is safe to modify or reuse the buffer.
14439 		 */
14440 		if (tcp->tcp_snd_zcopy_aware &&
14441 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14442 			tcp_zcopy_notify(tcp);
14443 		freeb(mp2);
14444 		if (bytes_acked == 0) {
14445 			if (mp1 == NULL) {
14446 				/* Everything is ack'ed, clear the tail. */
14447 				tcp->tcp_xmit_tail = NULL;
14448 				/*
14449 				 * Cancel the timer unless we are still
14450 				 * waiting for an ACK for the FIN packet.
14451 				 */
14452 				if (tcp->tcp_timer_tid != 0 &&
14453 				    tcp->tcp_snxt == tcp->tcp_suna) {
14454 					(void) TCP_TIMER_CANCEL(tcp,
14455 					    tcp->tcp_timer_tid);
14456 					tcp->tcp_timer_tid = 0;
14457 				}
14458 				goto pre_swnd_update;
14459 			}
14460 			if (mp2 != tcp->tcp_xmit_tail)
14461 				break;
14462 			tcp->tcp_xmit_tail = mp1;
14463 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14464 			    (uintptr_t)INT_MAX);
14465 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14466 			    mp1->b_rptr);
14467 			break;
14468 		}
14469 		if (mp1 == NULL) {
14470 			/*
14471 			 * More was acked but there is nothing more
14472 			 * outstanding.  This means that the FIN was
14473 			 * just acked or that we're talking to a clown.
14474 			 */
14475 fin_acked:
14476 			ASSERT(tcp->tcp_fin_sent);
14477 			tcp->tcp_xmit_tail = NULL;
14478 			if (tcp->tcp_fin_sent) {
14479 				/* FIN was acked - making progress */
14480 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14481 				    !tcp->tcp_fin_acked)
14482 					tcp->tcp_ip_forward_progress = B_TRUE;
14483 				tcp->tcp_fin_acked = B_TRUE;
14484 				if (tcp->tcp_linger_tid != 0 &&
14485 				    TCP_TIMER_CANCEL(tcp,
14486 					tcp->tcp_linger_tid) >= 0) {
14487 					tcp_stop_lingering(tcp);
14488 				}
14489 			} else {
14490 				/*
14491 				 * We should never get here because
14492 				 * we have already checked that the
14493 				 * number of bytes ack'ed should be
14494 				 * smaller than or equal to what we
14495 				 * have sent so far (it is the
14496 				 * acceptability check of the ACK).
14497 				 * We can only get here if the send
14498 				 * queue is corrupted.
14499 				 *
14500 				 * Terminate the connection and
14501 				 * panic the system.  It is better
14502 				 * for us to panic instead of
14503 				 * continuing to avoid other disaster.
14504 				 */
14505 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14506 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14507 				panic("Memory corruption "
14508 				    "detected for connection %s.",
14509 				    tcp_display(tcp, NULL,
14510 					DISP_ADDR_AND_PORT));
14511 				/*NOTREACHED*/
14512 			}
14513 			goto pre_swnd_update;
14514 		}
14515 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14516 	}
14517 	if (tcp->tcp_unsent) {
14518 		flags |= TH_XMIT_NEEDED;
14519 	}
14520 pre_swnd_update:
14521 	tcp->tcp_xmit_head = mp1;
14522 swnd_update:
14523 	/*
14524 	 * The following check is different from most other implementations.
14525 	 * For bi-directional transfer, when segments are dropped, the
14526 	 * "normal" check will not accept a window update in those
14527 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14528 	 * segments which are outside receiver's window.  As TCP accepts
14529 	 * the ack in those retransmitted segments, if the window update in
14530 	 * the same segment is not accepted, TCP will incorrectly calculates
14531 	 * that it can send more segments.  This can create a deadlock
14532 	 * with the receiver if its window becomes zero.
14533 	 */
14534 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14535 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14536 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14537 		/*
14538 		 * The criteria for update is:
14539 		 *
14540 		 * 1. the segment acknowledges some data.  Or
14541 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14542 		 * 3. the segment is not old and the advertised window is
14543 		 * larger than the previous advertised window.
14544 		 */
14545 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14546 			flags |= TH_XMIT_NEEDED;
14547 		tcp->tcp_swnd = new_swnd;
14548 		if (new_swnd > tcp->tcp_max_swnd)
14549 			tcp->tcp_max_swnd = new_swnd;
14550 		tcp->tcp_swl1 = seg_seq;
14551 		tcp->tcp_swl2 = seg_ack;
14552 	}
14553 est:
14554 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14555 
14556 		switch (tcp->tcp_state) {
14557 		case TCPS_FIN_WAIT_1:
14558 			if (tcp->tcp_fin_acked) {
14559 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14560 				/*
14561 				 * We implement the non-standard BSD/SunOS
14562 				 * FIN_WAIT_2 flushing algorithm.
14563 				 * If there is no user attached to this
14564 				 * TCP endpoint, then this TCP struct
14565 				 * could hang around forever in FIN_WAIT_2
14566 				 * state if the peer forgets to send us
14567 				 * a FIN.  To prevent this, we wait only
14568 				 * 2*MSL (a convenient time value) for
14569 				 * the FIN to arrive.  If it doesn't show up,
14570 				 * we flush the TCP endpoint.  This algorithm,
14571 				 * though a violation of RFC-793, has worked
14572 				 * for over 10 years in BSD systems.
14573 				 * Note: SunOS 4.x waits 675 seconds before
14574 				 * flushing the FIN_WAIT_2 connection.
14575 				 */
14576 				TCP_TIMER_RESTART(tcp,
14577 				    tcp_fin_wait_2_flush_interval);
14578 			}
14579 			break;
14580 		case TCPS_FIN_WAIT_2:
14581 			break;	/* Shutdown hook? */
14582 		case TCPS_LAST_ACK:
14583 			freemsg(mp);
14584 			if (tcp->tcp_fin_acked) {
14585 				(void) tcp_clean_death(tcp, 0, 19);
14586 				return;
14587 			}
14588 			goto xmit_check;
14589 		case TCPS_CLOSING:
14590 			if (tcp->tcp_fin_acked) {
14591 				tcp->tcp_state = TCPS_TIME_WAIT;
14592 				/*
14593 				 * Unconditionally clear the exclusive binding
14594 				 * bit so this TIME-WAIT connection won't
14595 				 * interfere with new ones.
14596 				 */
14597 				tcp->tcp_exclbind = 0;
14598 				if (!TCP_IS_DETACHED(tcp)) {
14599 					TCP_TIMER_RESTART(tcp,
14600 					    tcp_time_wait_interval);
14601 				} else {
14602 					tcp_time_wait_append(tcp);
14603 					TCP_DBGSTAT(tcp_rput_time_wait);
14604 				}
14605 			}
14606 			/*FALLTHRU*/
14607 		case TCPS_CLOSE_WAIT:
14608 			freemsg(mp);
14609 			goto xmit_check;
14610 		default:
14611 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14612 			break;
14613 		}
14614 	}
14615 	if (flags & TH_FIN) {
14616 		/* Make sure we ack the fin */
14617 		flags |= TH_ACK_NEEDED;
14618 		if (!tcp->tcp_fin_rcvd) {
14619 			tcp->tcp_fin_rcvd = B_TRUE;
14620 			tcp->tcp_rnxt++;
14621 			tcph = tcp->tcp_tcph;
14622 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14623 
14624 			/*
14625 			 * Generate the ordrel_ind at the end unless we
14626 			 * are an eager guy.
14627 			 * In the eager case tcp_rsrv will do this when run
14628 			 * after tcp_accept is done.
14629 			 */
14630 			if (tcp->tcp_listener == NULL &&
14631 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14632 				flags |= TH_ORDREL_NEEDED;
14633 			switch (tcp->tcp_state) {
14634 			case TCPS_SYN_RCVD:
14635 			case TCPS_ESTABLISHED:
14636 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14637 				/* Keepalive? */
14638 				break;
14639 			case TCPS_FIN_WAIT_1:
14640 				if (!tcp->tcp_fin_acked) {
14641 					tcp->tcp_state = TCPS_CLOSING;
14642 					break;
14643 				}
14644 				/* FALLTHRU */
14645 			case TCPS_FIN_WAIT_2:
14646 				tcp->tcp_state = TCPS_TIME_WAIT;
14647 				/*
14648 				 * Unconditionally clear the exclusive binding
14649 				 * bit so this TIME-WAIT connection won't
14650 				 * interfere with new ones.
14651 				 */
14652 				tcp->tcp_exclbind = 0;
14653 				if (!TCP_IS_DETACHED(tcp)) {
14654 					TCP_TIMER_RESTART(tcp,
14655 					    tcp_time_wait_interval);
14656 				} else {
14657 					tcp_time_wait_append(tcp);
14658 					TCP_DBGSTAT(tcp_rput_time_wait);
14659 				}
14660 				if (seg_len) {
14661 					/*
14662 					 * implies data piggybacked on FIN.
14663 					 * break to handle data.
14664 					 */
14665 					break;
14666 				}
14667 				freemsg(mp);
14668 				goto ack_check;
14669 			}
14670 		}
14671 	}
14672 	if (mp == NULL)
14673 		goto xmit_check;
14674 	if (seg_len == 0) {
14675 		freemsg(mp);
14676 		goto xmit_check;
14677 	}
14678 	if (mp->b_rptr == mp->b_wptr) {
14679 		/*
14680 		 * The header has been consumed, so we remove the
14681 		 * zero-length mblk here.
14682 		 */
14683 		mp1 = mp;
14684 		mp = mp->b_cont;
14685 		freeb(mp1);
14686 	}
14687 	tcph = tcp->tcp_tcph;
14688 	tcp->tcp_rack_cnt++;
14689 	{
14690 		uint32_t cur_max;
14691 
14692 		cur_max = tcp->tcp_rack_cur_max;
14693 		if (tcp->tcp_rack_cnt >= cur_max) {
14694 			/*
14695 			 * We have more unacked data than we should - send
14696 			 * an ACK now.
14697 			 */
14698 			flags |= TH_ACK_NEEDED;
14699 			cur_max++;
14700 			if (cur_max > tcp->tcp_rack_abs_max)
14701 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14702 			else
14703 				tcp->tcp_rack_cur_max = cur_max;
14704 		} else if (TCP_IS_DETACHED(tcp)) {
14705 			/* We don't have an ACK timer for detached TCP. */
14706 			flags |= TH_ACK_NEEDED;
14707 		} else if (seg_len < mss) {
14708 			/*
14709 			 * If we get a segment that is less than an mss, and we
14710 			 * already have unacknowledged data, and the amount
14711 			 * unacknowledged is not a multiple of mss, then we
14712 			 * better generate an ACK now.  Otherwise, this may be
14713 			 * the tail piece of a transaction, and we would rather
14714 			 * wait for the response.
14715 			 */
14716 			uint32_t udif;
14717 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14718 			    (uintptr_t)INT_MAX);
14719 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14720 			if (udif && (udif % mss))
14721 				flags |= TH_ACK_NEEDED;
14722 			else
14723 				flags |= TH_ACK_TIMER_NEEDED;
14724 		} else {
14725 			/* Start delayed ack timer */
14726 			flags |= TH_ACK_TIMER_NEEDED;
14727 		}
14728 	}
14729 	tcp->tcp_rnxt += seg_len;
14730 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14731 
14732 	/* Update SACK list */
14733 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14734 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14735 		    &(tcp->tcp_num_sack_blk));
14736 	}
14737 
14738 	if (tcp->tcp_urp_mp) {
14739 		tcp->tcp_urp_mp->b_cont = mp;
14740 		mp = tcp->tcp_urp_mp;
14741 		tcp->tcp_urp_mp = NULL;
14742 		/* Ready for a new signal. */
14743 		tcp->tcp_urp_last_valid = B_FALSE;
14744 #ifdef DEBUG
14745 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14746 		    "tcp_rput: sending exdata_ind %s",
14747 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14748 #endif /* DEBUG */
14749 	}
14750 
14751 	/*
14752 	 * Check for ancillary data changes compared to last segment.
14753 	 */
14754 	if (tcp->tcp_ipv6_recvancillary != 0) {
14755 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14756 		if (mp == NULL)
14757 			return;
14758 	}
14759 
14760 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14761 		/*
14762 		 * Side queue inbound data until the accept happens.
14763 		 * tcp_accept/tcp_rput drains this when the accept happens.
14764 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14765 		 * T_EXDATA_IND) it is queued on b_next.
14766 		 * XXX Make urgent data use this. Requires:
14767 		 *	Removing tcp_listener check for TH_URG
14768 		 *	Making M_PCPROTO and MARK messages skip the eager case
14769 		 */
14770 
14771 		if (tcp->tcp_kssl_pending) {
14772 			tcp_kssl_input(tcp, mp);
14773 		} else {
14774 			tcp_rcv_enqueue(tcp, mp, seg_len);
14775 		}
14776 	} else {
14777 		if (mp->b_datap->db_type != M_DATA ||
14778 		    (flags & TH_MARKNEXT_NEEDED)) {
14779 			if (tcp->tcp_rcv_list != NULL) {
14780 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14781 			}
14782 			ASSERT(tcp->tcp_rcv_list == NULL ||
14783 			    tcp->tcp_fused_sigurg);
14784 			if (flags & TH_MARKNEXT_NEEDED) {
14785 #ifdef DEBUG
14786 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14787 				    "tcp_rput: sending MSGMARKNEXT %s",
14788 				    tcp_display(tcp, NULL,
14789 				    DISP_PORT_ONLY));
14790 #endif /* DEBUG */
14791 				mp->b_flag |= MSGMARKNEXT;
14792 				flags &= ~TH_MARKNEXT_NEEDED;
14793 			}
14794 
14795 			/* Does this need SSL processing first? */
14796 			if ((tcp->tcp_kssl_ctx  != NULL) &&
14797 			    (DB_TYPE(mp) == M_DATA)) {
14798 				tcp_kssl_input(tcp, mp);
14799 			} else {
14800 				putnext(tcp->tcp_rq, mp);
14801 				if (!canputnext(tcp->tcp_rq))
14802 					tcp->tcp_rwnd -= seg_len;
14803 			}
14804 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14805 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) {
14806 			if (tcp->tcp_rcv_list != NULL) {
14807 				/*
14808 				 * Enqueue the new segment first and then
14809 				 * call tcp_rcv_drain() to send all data
14810 				 * up.  The other way to do this is to
14811 				 * send all queued data up and then call
14812 				 * putnext() to send the new segment up.
14813 				 * This way can remove the else part later
14814 				 * on.
14815 				 *
14816 				 * We don't this to avoid one more call to
14817 				 * canputnext() as tcp_rcv_drain() needs to
14818 				 * call canputnext().
14819 				 */
14820 				tcp_rcv_enqueue(tcp, mp, seg_len);
14821 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14822 			} else {
14823 				/* Does this need SSL processing first? */
14824 				if ((tcp->tcp_kssl_ctx  != NULL) &&
14825 				    (DB_TYPE(mp) == M_DATA)) {
14826 					tcp_kssl_input(tcp, mp);
14827 				} else {
14828 					putnext(tcp->tcp_rq, mp);
14829 					if (!canputnext(tcp->tcp_rq))
14830 						tcp->tcp_rwnd -= seg_len;
14831 				}
14832 			}
14833 		} else {
14834 			/*
14835 			 * Enqueue all packets when processing an mblk
14836 			 * from the co queue and also enqueue normal packets.
14837 			 */
14838 			tcp_rcv_enqueue(tcp, mp, seg_len);
14839 		}
14840 		/*
14841 		 * Make sure the timer is running if we have data waiting
14842 		 * for a push bit. This provides resiliency against
14843 		 * implementations that do not correctly generate push bits.
14844 		 */
14845 		if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) {
14846 			/*
14847 			 * The connection may be closed at this point, so don't
14848 			 * do anything for a detached tcp.
14849 			 */
14850 			if (!TCP_IS_DETACHED(tcp))
14851 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14852 				    tcp_push_timer,
14853 				    MSEC_TO_TICK(tcp_push_timer_interval));
14854 		}
14855 	}
14856 xmit_check:
14857 	/* Is there anything left to do? */
14858 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14859 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14860 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14861 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14862 		goto done;
14863 
14864 	/* Any transmit work to do and a non-zero window? */
14865 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14866 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14867 		if (flags & TH_REXMIT_NEEDED) {
14868 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14869 
14870 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
14871 			if (snd_size > mss)
14872 				snd_size = mss;
14873 			if (snd_size > tcp->tcp_swnd)
14874 				snd_size = tcp->tcp_swnd;
14875 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14876 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14877 			    B_TRUE);
14878 
14879 			if (mp1 != NULL) {
14880 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14881 				tcp->tcp_csuna = tcp->tcp_snxt;
14882 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
14883 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
14884 				TCP_RECORD_TRACE(tcp, mp1,
14885 				    TCP_TRACE_SEND_PKT);
14886 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14887 			}
14888 		}
14889 		if (flags & TH_NEED_SACK_REXMIT) {
14890 			tcp_sack_rxmit(tcp, &flags);
14891 		}
14892 		/*
14893 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14894 		 * out new segment.  Note that tcp_rexmit should not be
14895 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14896 		 */
14897 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14898 			if (!tcp->tcp_rexmit) {
14899 				tcp_wput_data(tcp, NULL, B_FALSE);
14900 			} else {
14901 				tcp_ss_rexmit(tcp);
14902 			}
14903 		}
14904 		/*
14905 		 * Adjust tcp_cwnd back to normal value after sending
14906 		 * new data segments.
14907 		 */
14908 		if (flags & TH_LIMIT_XMIT) {
14909 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14910 			/*
14911 			 * This will restart the timer.  Restarting the
14912 			 * timer is used to avoid a timeout before the
14913 			 * limited transmitted segment's ACK gets back.
14914 			 */
14915 			if (tcp->tcp_xmit_head != NULL)
14916 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14917 		}
14918 
14919 		/* Anything more to do? */
14920 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14921 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14922 			goto done;
14923 	}
14924 ack_check:
14925 	if (flags & TH_SEND_URP_MARK) {
14926 		ASSERT(tcp->tcp_urp_mark_mp);
14927 		/*
14928 		 * Send up any queued data and then send the mark message
14929 		 */
14930 		if (tcp->tcp_rcv_list != NULL) {
14931 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14932 		}
14933 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14934 
14935 		mp1 = tcp->tcp_urp_mark_mp;
14936 		tcp->tcp_urp_mark_mp = NULL;
14937 #ifdef DEBUG
14938 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14939 		    "tcp_rput: sending zero-length %s %s",
14940 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14941 		    "MSGNOTMARKNEXT"),
14942 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14943 #endif /* DEBUG */
14944 		putnext(tcp->tcp_rq, mp1);
14945 		flags &= ~TH_SEND_URP_MARK;
14946 	}
14947 	if (flags & TH_ACK_NEEDED) {
14948 		/*
14949 		 * Time to send an ack for some reason.
14950 		 */
14951 		mp1 = tcp_ack_mp(tcp);
14952 
14953 		if (mp1 != NULL) {
14954 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
14955 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
14956 			BUMP_LOCAL(tcp->tcp_obsegs);
14957 			BUMP_MIB(&tcp_mib, tcpOutAck);
14958 		}
14959 		if (tcp->tcp_ack_tid != 0) {
14960 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
14961 			tcp->tcp_ack_tid = 0;
14962 		}
14963 	}
14964 	if (flags & TH_ACK_TIMER_NEEDED) {
14965 		/*
14966 		 * Arrange for deferred ACK or push wait timeout.
14967 		 * Start timer if it is not already running.
14968 		 */
14969 		if (tcp->tcp_ack_tid == 0) {
14970 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
14971 			    MSEC_TO_TICK(tcp->tcp_localnet ?
14972 			    (clock_t)tcp_local_dack_interval :
14973 			    (clock_t)tcp_deferred_ack_interval));
14974 		}
14975 	}
14976 	if (flags & TH_ORDREL_NEEDED) {
14977 		/*
14978 		 * Send up the ordrel_ind unless we are an eager guy.
14979 		 * In the eager case tcp_rsrv will do this when run
14980 		 * after tcp_accept is done.
14981 		 */
14982 		ASSERT(tcp->tcp_listener == NULL);
14983 		if (tcp->tcp_rcv_list != NULL) {
14984 			/*
14985 			 * Push any mblk(s) enqueued from co processing.
14986 			 */
14987 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
14988 		}
14989 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14990 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
14991 			tcp->tcp_ordrel_done = B_TRUE;
14992 			putnext(tcp->tcp_rq, mp1);
14993 			if (tcp->tcp_deferred_clean_death) {
14994 				/*
14995 				 * tcp_clean_death was deferred
14996 				 * for T_ORDREL_IND - do it now
14997 				 */
14998 				(void) tcp_clean_death(tcp,
14999 				    tcp->tcp_client_errno, 20);
15000 				tcp->tcp_deferred_clean_death =	B_FALSE;
15001 			}
15002 		} else {
15003 			/*
15004 			 * Run the orderly release in the
15005 			 * service routine.
15006 			 */
15007 			qenable(tcp->tcp_rq);
15008 			/*
15009 			 * Caveat(XXX): The machine may be so
15010 			 * overloaded that tcp_rsrv() is not scheduled
15011 			 * until after the endpoint has transitioned
15012 			 * to TCPS_TIME_WAIT
15013 			 * and tcp_time_wait_interval expires. Then
15014 			 * tcp_timer() will blow away state in tcp_t
15015 			 * and T_ORDREL_IND will never be delivered
15016 			 * upstream. Unlikely but potentially
15017 			 * a problem.
15018 			 */
15019 		}
15020 	}
15021 done:
15022 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15023 }
15024 
15025 /*
15026  * This function does PAWS protection check. Returns B_TRUE if the
15027  * segment passes the PAWS test, else returns B_FALSE.
15028  */
15029 boolean_t
15030 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15031 {
15032 	uint8_t	flags;
15033 	int	options;
15034 	uint8_t *up;
15035 
15036 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15037 	/*
15038 	 * If timestamp option is aligned nicely, get values inline,
15039 	 * otherwise call general routine to parse.  Only do that
15040 	 * if timestamp is the only option.
15041 	 */
15042 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15043 	    TCPOPT_REAL_TS_LEN &&
15044 	    OK_32PTR((up = ((uint8_t *)tcph) +
15045 	    TCP_MIN_HEADER_LENGTH)) &&
15046 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15047 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15048 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15049 
15050 		options = TCP_OPT_TSTAMP_PRESENT;
15051 	} else {
15052 		if (tcp->tcp_snd_sack_ok) {
15053 			tcpoptp->tcp = tcp;
15054 		} else {
15055 			tcpoptp->tcp = NULL;
15056 		}
15057 		options = tcp_parse_options(tcph, tcpoptp);
15058 	}
15059 
15060 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15061 		/*
15062 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15063 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15064 		 */
15065 		if ((flags & TH_RST) == 0 &&
15066 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15067 		    tcp->tcp_ts_recent)) {
15068 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15069 			    PAWS_TIMEOUT)) {
15070 				/* This segment is not acceptable. */
15071 				return (B_FALSE);
15072 			} else {
15073 				/*
15074 				 * Connection has been idle for
15075 				 * too long.  Reset the timestamp
15076 				 * and assume the segment is valid.
15077 				 */
15078 				tcp->tcp_ts_recent =
15079 				    tcpoptp->tcp_opt_ts_val;
15080 			}
15081 		}
15082 	} else {
15083 		/*
15084 		 * If we don't get a timestamp on every packet, we
15085 		 * figure we can't really trust 'em, so we stop sending
15086 		 * and parsing them.
15087 		 */
15088 		tcp->tcp_snd_ts_ok = B_FALSE;
15089 
15090 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15091 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15092 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15093 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
15094 		if (tcp->tcp_snd_sack_ok) {
15095 			ASSERT(tcp->tcp_sack_info != NULL);
15096 			tcp->tcp_max_sack_blk = 4;
15097 		}
15098 	}
15099 	return (B_TRUE);
15100 }
15101 
15102 /*
15103  * Attach ancillary data to a received TCP segments for the
15104  * ancillary pieces requested by the application that are
15105  * different than they were in the previous data segment.
15106  *
15107  * Save the "current" values once memory allocation is ok so that
15108  * when memory allocation fails we can just wait for the next data segment.
15109  */
15110 static mblk_t *
15111 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15112 {
15113 	struct T_optdata_ind *todi;
15114 	int optlen;
15115 	uchar_t *optptr;
15116 	struct T_opthdr *toh;
15117 	uint_t addflag;	/* Which pieces to add */
15118 	mblk_t *mp1;
15119 
15120 	optlen = 0;
15121 	addflag = 0;
15122 	/* If app asked for pktinfo and the index has changed ... */
15123 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15124 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15125 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15126 		optlen += sizeof (struct T_opthdr) +
15127 		    sizeof (struct in6_pktinfo);
15128 		addflag |= TCP_IPV6_RECVPKTINFO;
15129 	}
15130 	/* If app asked for hoplimit and it has changed ... */
15131 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15132 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15133 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15134 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15135 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15136 	}
15137 	/* If app asked for tclass and it has changed ... */
15138 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15139 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15140 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15141 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15142 		addflag |= TCP_IPV6_RECVTCLASS;
15143 	}
15144 	/*
15145 	 * If app asked for hopbyhop headers and it has changed ...
15146 	 * For security labels, note that (1) security labels can't change on
15147 	 * a connected socket at all, (2) we're connected to at most one peer,
15148 	 * (3) if anything changes, then it must be some other extra option.
15149 	 */
15150 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15151 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15152 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15153 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15154 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15155 		    tcp->tcp_label_len;
15156 		addflag |= TCP_IPV6_RECVHOPOPTS;
15157 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15158 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15159 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15160 			return (mp);
15161 	}
15162 	/* If app asked for dst headers before routing headers ... */
15163 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15164 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15165 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
15166 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15167 		optlen += sizeof (struct T_opthdr) +
15168 		    ipp->ipp_rtdstoptslen;
15169 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15170 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15171 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15172 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15173 			return (mp);
15174 	}
15175 	/* If app asked for routing headers and it has changed ... */
15176 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15177 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15178 	    (ipp->ipp_fields & IPPF_RTHDR),
15179 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15180 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15181 		addflag |= TCP_IPV6_RECVRTHDR;
15182 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15183 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15184 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15185 			return (mp);
15186 	}
15187 	/* If app asked for dest headers and it has changed ... */
15188 	if ((tcp->tcp_ipv6_recvancillary &
15189 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15190 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15191 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15192 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15193 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15194 		addflag |= TCP_IPV6_RECVDSTOPTS;
15195 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15196 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15197 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15198 			return (mp);
15199 	}
15200 
15201 	if (optlen == 0) {
15202 		/* Nothing to add */
15203 		return (mp);
15204 	}
15205 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15206 	if (mp1 == NULL) {
15207 		/*
15208 		 * Defer sending ancillary data until the next TCP segment
15209 		 * arrives.
15210 		 */
15211 		return (mp);
15212 	}
15213 	mp1->b_cont = mp;
15214 	mp = mp1;
15215 	mp->b_wptr += sizeof (*todi) + optlen;
15216 	mp->b_datap->db_type = M_PROTO;
15217 	todi = (struct T_optdata_ind *)mp->b_rptr;
15218 	todi->PRIM_type = T_OPTDATA_IND;
15219 	todi->DATA_flag = 1;	/* MORE data */
15220 	todi->OPT_length = optlen;
15221 	todi->OPT_offset = sizeof (*todi);
15222 	optptr = (uchar_t *)&todi[1];
15223 	/*
15224 	 * If app asked for pktinfo and the index has changed ...
15225 	 * Note that the local address never changes for the connection.
15226 	 */
15227 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15228 		struct in6_pktinfo *pkti;
15229 
15230 		toh = (struct T_opthdr *)optptr;
15231 		toh->level = IPPROTO_IPV6;
15232 		toh->name = IPV6_PKTINFO;
15233 		toh->len = sizeof (*toh) + sizeof (*pkti);
15234 		toh->status = 0;
15235 		optptr += sizeof (*toh);
15236 		pkti = (struct in6_pktinfo *)optptr;
15237 		if (tcp->tcp_ipversion == IPV6_VERSION)
15238 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15239 		else
15240 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15241 			    &pkti->ipi6_addr);
15242 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15243 		optptr += sizeof (*pkti);
15244 		ASSERT(OK_32PTR(optptr));
15245 		/* Save as "last" value */
15246 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15247 	}
15248 	/* If app asked for hoplimit and it has changed ... */
15249 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15250 		toh = (struct T_opthdr *)optptr;
15251 		toh->level = IPPROTO_IPV6;
15252 		toh->name = IPV6_HOPLIMIT;
15253 		toh->len = sizeof (*toh) + sizeof (uint_t);
15254 		toh->status = 0;
15255 		optptr += sizeof (*toh);
15256 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15257 		optptr += sizeof (uint_t);
15258 		ASSERT(OK_32PTR(optptr));
15259 		/* Save as "last" value */
15260 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15261 	}
15262 	/* If app asked for tclass and it has changed ... */
15263 	if (addflag & TCP_IPV6_RECVTCLASS) {
15264 		toh = (struct T_opthdr *)optptr;
15265 		toh->level = IPPROTO_IPV6;
15266 		toh->name = IPV6_TCLASS;
15267 		toh->len = sizeof (*toh) + sizeof (uint_t);
15268 		toh->status = 0;
15269 		optptr += sizeof (*toh);
15270 		*(uint_t *)optptr = ipp->ipp_tclass;
15271 		optptr += sizeof (uint_t);
15272 		ASSERT(OK_32PTR(optptr));
15273 		/* Save as "last" value */
15274 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15275 	}
15276 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15277 		toh = (struct T_opthdr *)optptr;
15278 		toh->level = IPPROTO_IPV6;
15279 		toh->name = IPV6_HOPOPTS;
15280 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15281 		    tcp->tcp_label_len;
15282 		toh->status = 0;
15283 		optptr += sizeof (*toh);
15284 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15285 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15286 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15287 		ASSERT(OK_32PTR(optptr));
15288 		/* Save as last value */
15289 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15290 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15291 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15292 	}
15293 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15294 		toh = (struct T_opthdr *)optptr;
15295 		toh->level = IPPROTO_IPV6;
15296 		toh->name = IPV6_RTHDRDSTOPTS;
15297 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15298 		toh->status = 0;
15299 		optptr += sizeof (*toh);
15300 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15301 		optptr += ipp->ipp_rtdstoptslen;
15302 		ASSERT(OK_32PTR(optptr));
15303 		/* Save as last value */
15304 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15305 		    &tcp->tcp_rtdstoptslen,
15306 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15307 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15308 	}
15309 	if (addflag & TCP_IPV6_RECVRTHDR) {
15310 		toh = (struct T_opthdr *)optptr;
15311 		toh->level = IPPROTO_IPV6;
15312 		toh->name = IPV6_RTHDR;
15313 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15314 		toh->status = 0;
15315 		optptr += sizeof (*toh);
15316 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15317 		optptr += ipp->ipp_rthdrlen;
15318 		ASSERT(OK_32PTR(optptr));
15319 		/* Save as last value */
15320 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15321 		    (ipp->ipp_fields & IPPF_RTHDR),
15322 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15323 	}
15324 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15325 		toh = (struct T_opthdr *)optptr;
15326 		toh->level = IPPROTO_IPV6;
15327 		toh->name = IPV6_DSTOPTS;
15328 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15329 		toh->status = 0;
15330 		optptr += sizeof (*toh);
15331 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15332 		optptr += ipp->ipp_dstoptslen;
15333 		ASSERT(OK_32PTR(optptr));
15334 		/* Save as last value */
15335 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15336 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15337 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15338 	}
15339 	ASSERT(optptr == mp->b_wptr);
15340 	return (mp);
15341 }
15342 
15343 
15344 /*
15345  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15346  * or a "bad" IRE detected by tcp_adapt_ire.
15347  * We can't tell if the failure was due to the laddr or the faddr
15348  * thus we clear out all addresses and ports.
15349  */
15350 static void
15351 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15352 {
15353 	queue_t	*q = tcp->tcp_rq;
15354 	tcph_t	*tcph;
15355 	struct T_error_ack *tea;
15356 	conn_t	*connp = tcp->tcp_connp;
15357 
15358 
15359 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15360 
15361 	if (mp->b_cont) {
15362 		freemsg(mp->b_cont);
15363 		mp->b_cont = NULL;
15364 	}
15365 	tea = (struct T_error_ack *)mp->b_rptr;
15366 	switch (tea->PRIM_type) {
15367 	case T_BIND_ACK:
15368 		/*
15369 		 * Need to unbind with classifier since we were just told that
15370 		 * our bind succeeded.
15371 		 */
15372 		tcp->tcp_hard_bound = B_FALSE;
15373 		tcp->tcp_hard_binding = B_FALSE;
15374 
15375 		ipcl_hash_remove(connp);
15376 		/* Reuse the mblk if possible */
15377 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15378 			sizeof (*tea));
15379 		mp->b_rptr = mp->b_datap->db_base;
15380 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15381 		tea = (struct T_error_ack *)mp->b_rptr;
15382 		tea->PRIM_type = T_ERROR_ACK;
15383 		tea->TLI_error = TSYSERR;
15384 		tea->UNIX_error = error;
15385 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15386 			tea->ERROR_prim = T_CONN_REQ;
15387 		} else {
15388 			tea->ERROR_prim = O_T_BIND_REQ;
15389 		}
15390 		break;
15391 
15392 	case T_ERROR_ACK:
15393 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15394 			tea->ERROR_prim = T_CONN_REQ;
15395 		break;
15396 	default:
15397 		panic("tcp_bind_failed: unexpected TPI type");
15398 		/*NOTREACHED*/
15399 	}
15400 
15401 	tcp->tcp_state = TCPS_IDLE;
15402 	if (tcp->tcp_ipversion == IPV4_VERSION)
15403 		tcp->tcp_ipha->ipha_src = 0;
15404 	else
15405 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15406 	/*
15407 	 * Copy of the src addr. in tcp_t is needed since
15408 	 * the lookup funcs. can only look at tcp_t
15409 	 */
15410 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15411 
15412 	tcph = tcp->tcp_tcph;
15413 	tcph->th_lport[0] = 0;
15414 	tcph->th_lport[1] = 0;
15415 	tcp_bind_hash_remove(tcp);
15416 	bzero(&connp->u_port, sizeof (connp->u_port));
15417 	/* blow away saved option results if any */
15418 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15419 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15420 
15421 	conn_delete_ire(tcp->tcp_connp, NULL);
15422 	putnext(q, mp);
15423 }
15424 
15425 /*
15426  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15427  * messages.
15428  */
15429 void
15430 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15431 {
15432 	mblk_t	*mp1;
15433 	uchar_t	*rptr = mp->b_rptr;
15434 	queue_t	*q = tcp->tcp_rq;
15435 	struct T_error_ack *tea;
15436 	uint32_t mss;
15437 	mblk_t *syn_mp;
15438 	mblk_t *mdti;
15439 	int	retval;
15440 	mblk_t *ire_mp;
15441 
15442 	switch (mp->b_datap->db_type) {
15443 	case M_PROTO:
15444 	case M_PCPROTO:
15445 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15446 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15447 			break;
15448 		tea = (struct T_error_ack *)rptr;
15449 		switch (tea->PRIM_type) {
15450 		case T_BIND_ACK:
15451 			/*
15452 			 * Adapt Multidata information, if any.  The
15453 			 * following tcp_mdt_update routine will free
15454 			 * the message.
15455 			 */
15456 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15457 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15458 				    b_rptr)->mdt_capab, B_TRUE);
15459 				freemsg(mdti);
15460 			}
15461 
15462 			/* Get the IRE, if we had requested for it */
15463 			ire_mp = tcp_ire_mp(mp);
15464 
15465 			if (tcp->tcp_hard_binding) {
15466 				tcp->tcp_hard_binding = B_FALSE;
15467 				tcp->tcp_hard_bound = B_TRUE;
15468 				CL_INET_CONNECT(tcp);
15469 			} else {
15470 				if (ire_mp != NULL)
15471 					freeb(ire_mp);
15472 				goto after_syn_sent;
15473 			}
15474 
15475 			retval = tcp_adapt_ire(tcp, ire_mp);
15476 			if (ire_mp != NULL)
15477 				freeb(ire_mp);
15478 			if (retval == 0) {
15479 				tcp_bind_failed(tcp, mp,
15480 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15481 				    ENETUNREACH : EADDRNOTAVAIL));
15482 				return;
15483 			}
15484 			/*
15485 			 * Don't let an endpoint connect to itself.
15486 			 * Also checked in tcp_connect() but that
15487 			 * check can't handle the case when the
15488 			 * local IP address is INADDR_ANY.
15489 			 */
15490 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15491 				if ((tcp->tcp_ipha->ipha_dst ==
15492 				    tcp->tcp_ipha->ipha_src) &&
15493 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15494 				    tcp->tcp_tcph->th_fport))) {
15495 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15496 					return;
15497 				}
15498 			} else {
15499 				if (IN6_ARE_ADDR_EQUAL(
15500 				    &tcp->tcp_ip6h->ip6_dst,
15501 				    &tcp->tcp_ip6h->ip6_src) &&
15502 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15503 				    tcp->tcp_tcph->th_fport))) {
15504 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15505 					return;
15506 				}
15507 			}
15508 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15509 			/*
15510 			 * This should not be possible!  Just for
15511 			 * defensive coding...
15512 			 */
15513 			if (tcp->tcp_state != TCPS_SYN_SENT)
15514 				goto after_syn_sent;
15515 
15516 			if (is_system_labeled() &&
15517 			    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
15518 				tcp_bind_failed(tcp, mp, EHOSTUNREACH);
15519 				return;
15520 			}
15521 
15522 			ASSERT(q == tcp->tcp_rq);
15523 			/*
15524 			 * tcp_adapt_ire() does not adjust
15525 			 * for TCP/IP header length.
15526 			 */
15527 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15528 
15529 			/*
15530 			 * Just make sure our rwnd is at
15531 			 * least tcp_recv_hiwat_mss * MSS
15532 			 * large, and round up to the nearest
15533 			 * MSS.
15534 			 *
15535 			 * We do the round up here because
15536 			 * we need to get the interface
15537 			 * MTU first before we can do the
15538 			 * round up.
15539 			 */
15540 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15541 			    tcp_recv_hiwat_minmss * mss);
15542 			q->q_hiwat = tcp->tcp_rwnd;
15543 			tcp_set_ws_value(tcp);
15544 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15545 			    tcp->tcp_tcph->th_win);
15546 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15547 				tcp->tcp_snd_ws_ok = B_TRUE;
15548 
15549 			/*
15550 			 * Set tcp_snd_ts_ok to true
15551 			 * so that tcp_xmit_mp will
15552 			 * include the timestamp
15553 			 * option in the SYN segment.
15554 			 */
15555 			if (tcp_tstamp_always ||
15556 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15557 				tcp->tcp_snd_ts_ok = B_TRUE;
15558 			}
15559 
15560 			/*
15561 			 * tcp_snd_sack_ok can be set in
15562 			 * tcp_adapt_ire() if the sack metric
15563 			 * is set.  So check it here also.
15564 			 */
15565 			if (tcp_sack_permitted == 2 ||
15566 			    tcp->tcp_snd_sack_ok) {
15567 				if (tcp->tcp_sack_info == NULL) {
15568 					tcp->tcp_sack_info =
15569 					kmem_cache_alloc(tcp_sack_info_cache,
15570 					    KM_SLEEP);
15571 				}
15572 				tcp->tcp_snd_sack_ok = B_TRUE;
15573 			}
15574 
15575 			/*
15576 			 * Should we use ECN?  Note that the current
15577 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15578 			 * is 1.  The reason for doing this is that there
15579 			 * are equipments out there that will drop ECN
15580 			 * enabled IP packets.  Setting it to 1 avoids
15581 			 * compatibility problems.
15582 			 */
15583 			if (tcp_ecn_permitted == 2)
15584 				tcp->tcp_ecn_ok = B_TRUE;
15585 
15586 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15587 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15588 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15589 			if (syn_mp) {
15590 				cred_t *cr;
15591 				pid_t pid;
15592 
15593 				/*
15594 				 * Obtain the credential from the
15595 				 * thread calling connect(); the credential
15596 				 * lives on in the second mblk which
15597 				 * originated from T_CONN_REQ and is echoed
15598 				 * with the T_BIND_ACK from ip.  If none
15599 				 * can be found, default to the creator
15600 				 * of the socket.
15601 				 */
15602 				if (mp->b_cont == NULL ||
15603 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15604 					cr = tcp->tcp_cred;
15605 					pid = tcp->tcp_cpid;
15606 				} else {
15607 					pid = DB_CPID(mp->b_cont);
15608 				}
15609 
15610 				TCP_RECORD_TRACE(tcp, syn_mp,
15611 				    TCP_TRACE_SEND_PKT);
15612 				mblk_setcred(syn_mp, cr);
15613 				DB_CPID(syn_mp) = pid;
15614 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15615 			}
15616 		after_syn_sent:
15617 			/*
15618 			 * A trailer mblk indicates a waiting client upstream.
15619 			 * We complete here the processing begun in
15620 			 * either tcp_bind() or tcp_connect() by passing
15621 			 * upstream the reply message they supplied.
15622 			 */
15623 			mp1 = mp;
15624 			mp = mp->b_cont;
15625 			freeb(mp1);
15626 			if (mp)
15627 				break;
15628 			return;
15629 		case T_ERROR_ACK:
15630 			if (tcp->tcp_debug) {
15631 				(void) strlog(TCP_MOD_ID, 0, 1,
15632 				    SL_TRACE|SL_ERROR,
15633 				    "tcp_rput_other: case T_ERROR_ACK, "
15634 				    "ERROR_prim == %d",
15635 				    tea->ERROR_prim);
15636 			}
15637 			switch (tea->ERROR_prim) {
15638 			case O_T_BIND_REQ:
15639 			case T_BIND_REQ:
15640 				tcp_bind_failed(tcp, mp,
15641 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15642 				    ENETUNREACH : EADDRNOTAVAIL));
15643 				return;
15644 			case T_UNBIND_REQ:
15645 				tcp->tcp_hard_binding = B_FALSE;
15646 				tcp->tcp_hard_bound = B_FALSE;
15647 				if (mp->b_cont) {
15648 					freemsg(mp->b_cont);
15649 					mp->b_cont = NULL;
15650 				}
15651 				if (tcp->tcp_unbind_pending)
15652 					tcp->tcp_unbind_pending = 0;
15653 				else {
15654 					/* From tcp_ip_unbind() - free */
15655 					freemsg(mp);
15656 					return;
15657 				}
15658 				break;
15659 			case T_SVR4_OPTMGMT_REQ:
15660 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15661 					/* T_OPTMGMT_REQ generated by TCP */
15662 					printf("T_SVR4_OPTMGMT_REQ failed "
15663 					    "%d/%d - dropped (cnt %d)\n",
15664 					    tea->TLI_error, tea->UNIX_error,
15665 					    tcp->tcp_drop_opt_ack_cnt);
15666 					freemsg(mp);
15667 					tcp->tcp_drop_opt_ack_cnt--;
15668 					return;
15669 				}
15670 				break;
15671 			}
15672 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15673 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15674 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15675 				    "- dropped (cnt %d)\n",
15676 				    tea->TLI_error, tea->UNIX_error,
15677 				    tcp->tcp_drop_opt_ack_cnt);
15678 				freemsg(mp);
15679 				tcp->tcp_drop_opt_ack_cnt--;
15680 				return;
15681 			}
15682 			break;
15683 		case T_OPTMGMT_ACK:
15684 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15685 				/* T_OPTMGMT_REQ generated by TCP */
15686 				freemsg(mp);
15687 				tcp->tcp_drop_opt_ack_cnt--;
15688 				return;
15689 			}
15690 			break;
15691 		default:
15692 			break;
15693 		}
15694 		break;
15695 	case M_CTL:
15696 		/*
15697 		 * ICMP messages.
15698 		 */
15699 		tcp_icmp_error(tcp, mp);
15700 		return;
15701 	case M_FLUSH:
15702 		if (*rptr & FLUSHR)
15703 			flushq(q, FLUSHDATA);
15704 		break;
15705 	default:
15706 		break;
15707 	}
15708 	/*
15709 	 * Make sure we set this bit before sending the ACK for
15710 	 * bind. Otherwise accept could possibly run and free
15711 	 * this tcp struct.
15712 	 */
15713 	putnext(q, mp);
15714 }
15715 
15716 /*
15717  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15718  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15719  * tcp_rsrv() try again.
15720  */
15721 static void
15722 tcp_ordrel_kick(void *arg)
15723 {
15724 	conn_t 	*connp = (conn_t *)arg;
15725 	tcp_t	*tcp = connp->conn_tcp;
15726 
15727 	tcp->tcp_ordrelid = 0;
15728 	tcp->tcp_timeout = B_FALSE;
15729 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15730 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15731 		qenable(tcp->tcp_rq);
15732 	}
15733 }
15734 
15735 /* ARGSUSED */
15736 static void
15737 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15738 {
15739 	conn_t	*connp = (conn_t *)arg;
15740 	tcp_t	*tcp = connp->conn_tcp;
15741 	queue_t	*q = tcp->tcp_rq;
15742 	uint_t	thwin;
15743 
15744 	freeb(mp);
15745 
15746 	TCP_STAT(tcp_rsrv_calls);
15747 
15748 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15749 		return;
15750 	}
15751 
15752 	if (tcp->tcp_fused) {
15753 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15754 
15755 		ASSERT(tcp->tcp_fused);
15756 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15757 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15758 		ASSERT(!TCP_IS_DETACHED(tcp));
15759 		ASSERT(tcp->tcp_connp->conn_sqp ==
15760 		    peer_tcp->tcp_connp->conn_sqp);
15761 
15762 		/*
15763 		 * Normally we would not get backenabled in synchronous
15764 		 * streams mode, but in case this happens, we need to plug
15765 		 * synchronous streams during our drain to prevent a race
15766 		 * with tcp_fuse_rrw() or tcp_fuse_rinfop().
15767 		 */
15768 		TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
15769 		if (tcp->tcp_rcv_list != NULL)
15770 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15771 
15772 		tcp_clrqfull(peer_tcp);
15773 		TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
15774 		TCP_STAT(tcp_fusion_backenabled);
15775 		return;
15776 	}
15777 
15778 	if (canputnext(q)) {
15779 		tcp->tcp_rwnd = q->q_hiwat;
15780 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15781 		    << tcp->tcp_rcv_ws;
15782 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15783 		/*
15784 		 * Send back a window update immediately if TCP is above
15785 		 * ESTABLISHED state and the increase of the rcv window
15786 		 * that the other side knows is at least 1 MSS after flow
15787 		 * control is lifted.
15788 		 */
15789 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15790 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15791 			tcp_xmit_ctl(NULL, tcp,
15792 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15793 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15794 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
15795 		}
15796 	}
15797 	/* Handle a failure to allocate a T_ORDREL_IND here */
15798 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15799 		ASSERT(tcp->tcp_listener == NULL);
15800 		if (tcp->tcp_rcv_list != NULL) {
15801 			(void) tcp_rcv_drain(q, tcp);
15802 		}
15803 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15804 		mp = mi_tpi_ordrel_ind();
15805 		if (mp) {
15806 			tcp->tcp_ordrel_done = B_TRUE;
15807 			putnext(q, mp);
15808 			if (tcp->tcp_deferred_clean_death) {
15809 				/*
15810 				 * tcp_clean_death was deferred for
15811 				 * T_ORDREL_IND - do it now
15812 				 */
15813 				tcp->tcp_deferred_clean_death = B_FALSE;
15814 				(void) tcp_clean_death(tcp,
15815 				    tcp->tcp_client_errno, 22);
15816 			}
15817 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15818 			/*
15819 			 * If there isn't already a timer running
15820 			 * start one.  Use a 4 second
15821 			 * timer as a fallback since it can't fail.
15822 			 */
15823 			tcp->tcp_timeout = B_TRUE;
15824 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15825 			    MSEC_TO_TICK(4000));
15826 		}
15827 	}
15828 }
15829 
15830 /*
15831  * The read side service routine is called mostly when we get back-enabled as a
15832  * result of flow control relief.  Since we don't actually queue anything in
15833  * TCP, we have no data to send out of here.  What we do is clear the receive
15834  * window, and send out a window update.
15835  * This routine is also called to drive an orderly release message upstream
15836  * if the attempt in tcp_rput failed.
15837  */
15838 static void
15839 tcp_rsrv(queue_t *q)
15840 {
15841 	conn_t *connp = Q_TO_CONN(q);
15842 	tcp_t	*tcp = connp->conn_tcp;
15843 	mblk_t	*mp;
15844 
15845 	/* No code does a putq on the read side */
15846 	ASSERT(q->q_first == NULL);
15847 
15848 	/* Nothing to do for the default queue */
15849 	if (q == tcp_g_q) {
15850 		return;
15851 	}
15852 
15853 	mp = allocb(0, BPRI_HI);
15854 	if (mp == NULL) {
15855 		/*
15856 		 * We are under memory pressure. Return for now and we
15857 		 * we will be called again later.
15858 		 */
15859 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
15860 			/*
15861 			 * If there isn't already a timer running
15862 			 * start one.  Use a 4 second
15863 			 * timer as a fallback since it can't fail.
15864 			 */
15865 			tcp->tcp_timeout = B_TRUE;
15866 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
15867 			    MSEC_TO_TICK(4000));
15868 		}
15869 		return;
15870 	}
15871 	CONN_INC_REF(connp);
15872 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15873 	    SQTAG_TCP_RSRV);
15874 }
15875 
15876 /*
15877  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15878  * We do not allow the receive window to shrink.  After setting rwnd,
15879  * set the flow control hiwat of the stream.
15880  *
15881  * This function is called in 2 cases:
15882  *
15883  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15884  *    connection (passive open) and in tcp_rput_data() for active connect.
15885  *    This is called after tcp_mss_set() when the desired MSS value is known.
15886  *    This makes sure that our window size is a mutiple of the other side's
15887  *    MSS.
15888  * 2) Handling SO_RCVBUF option.
15889  *
15890  * It is ASSUMED that the requested size is a multiple of the current MSS.
15891  *
15892  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15893  * user requests so.
15894  */
15895 static int
15896 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15897 {
15898 	uint32_t	mss = tcp->tcp_mss;
15899 	uint32_t	old_max_rwnd;
15900 	uint32_t	max_transmittable_rwnd;
15901 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15902 
15903 	if (tcp->tcp_fused) {
15904 		size_t sth_hiwat;
15905 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15906 
15907 		ASSERT(peer_tcp != NULL);
15908 		/*
15909 		 * Record the stream head's high water mark for
15910 		 * this endpoint; this is used for flow-control
15911 		 * purposes in tcp_fuse_output().
15912 		 */
15913 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15914 		if (!tcp_detached)
15915 			(void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat);
15916 
15917 		/*
15918 		 * In the fusion case, the maxpsz stream head value of
15919 		 * our peer is set according to its send buffer size
15920 		 * and our receive buffer size; since the latter may
15921 		 * have changed we need to update the peer's maxpsz.
15922 		 */
15923 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15924 		return (rwnd);
15925 	}
15926 
15927 	if (tcp_detached)
15928 		old_max_rwnd = tcp->tcp_rwnd;
15929 	else
15930 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
15931 
15932 	/*
15933 	 * Insist on a receive window that is at least
15934 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15935 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15936 	 * and delayed acknowledgement.
15937 	 */
15938 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
15939 
15940 	/*
15941 	 * If window size info has already been exchanged, TCP should not
15942 	 * shrink the window.  Shrinking window is doable if done carefully.
15943 	 * We may add that support later.  But so far there is not a real
15944 	 * need to do that.
15945 	 */
15946 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15947 		/* MSS may have changed, do a round up again. */
15948 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15949 	}
15950 
15951 	/*
15952 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15953 	 * can be applied even before the window scale option is decided.
15954 	 */
15955 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15956 	if (rwnd > max_transmittable_rwnd) {
15957 		rwnd = max_transmittable_rwnd -
15958 		    (max_transmittable_rwnd % mss);
15959 		if (rwnd < mss)
15960 			rwnd = max_transmittable_rwnd;
15961 		/*
15962 		 * If we're over the limit we may have to back down tcp_rwnd.
15963 		 * The increment below won't work for us. So we set all three
15964 		 * here and the increment below will have no effect.
15965 		 */
15966 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15967 	}
15968 	if (tcp->tcp_localnet) {
15969 		tcp->tcp_rack_abs_max =
15970 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
15971 	} else {
15972 		/*
15973 		 * For a remote host on a different subnet (through a router),
15974 		 * we ack every other packet to be conforming to RFC1122.
15975 		 * tcp_deferred_acks_max is default to 2.
15976 		 */
15977 		tcp->tcp_rack_abs_max =
15978 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
15979 	}
15980 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15981 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15982 	else
15983 		tcp->tcp_rack_cur_max = 0;
15984 	/*
15985 	 * Increment the current rwnd by the amount the maximum grew (we
15986 	 * can not overwrite it since we might be in the middle of a
15987 	 * connection.)
15988 	 */
15989 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15990 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15991 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15992 		tcp->tcp_cwnd_max = rwnd;
15993 
15994 	if (tcp_detached)
15995 		return (rwnd);
15996 	/*
15997 	 * We set the maximum receive window into rq->q_hiwat.
15998 	 * This is not actually used for flow control.
15999 	 */
16000 	tcp->tcp_rq->q_hiwat = rwnd;
16001 	/*
16002 	 * Set the Stream head high water mark. This doesn't have to be
16003 	 * here, since we are simply using default values, but we would
16004 	 * prefer to choose these values algorithmically, with a likely
16005 	 * relationship to rwnd.
16006 	 */
16007 	(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat));
16008 	return (rwnd);
16009 }
16010 
16011 /*
16012  * Return SNMP stuff in buffer in mpdata.
16013  */
16014 int
16015 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16016 {
16017 	mblk_t			*mpdata;
16018 	mblk_t			*mp_conn_ctl = NULL;
16019 	mblk_t			*mp_conn_tail;
16020 	mblk_t			*mp_attr_ctl = NULL;
16021 	mblk_t			*mp_attr_tail;
16022 	mblk_t			*mp6_conn_ctl = NULL;
16023 	mblk_t			*mp6_conn_tail;
16024 	mblk_t			*mp6_attr_ctl = NULL;
16025 	mblk_t			*mp6_attr_tail;
16026 	struct opthdr		*optp;
16027 	mib2_tcpConnEntry_t	tce;
16028 	mib2_tcp6ConnEntry_t	tce6;
16029 	mib2_transportMLPEntry_t mlp;
16030 	connf_t			*connfp;
16031 	conn_t			*connp;
16032 	int			i;
16033 	boolean_t 		ispriv;
16034 	zoneid_t 		zoneid;
16035 	int			v4_conn_idx;
16036 	int			v6_conn_idx;
16037 
16038 	if (mpctl == NULL ||
16039 	    (mpdata = mpctl->b_cont) == NULL ||
16040 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16041 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
16042 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
16043 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
16044 		freemsg(mp_conn_ctl);
16045 		freemsg(mp_attr_ctl);
16046 		freemsg(mp6_conn_ctl);
16047 		freemsg(mp6_attr_ctl);
16048 		return (0);
16049 	}
16050 
16051 	/* build table of connections -- need count in fixed part */
16052 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
16053 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
16054 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
16055 	SET_MIB(tcp_mib.tcpMaxConn, -1);
16056 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
16057 
16058 	ispriv =
16059 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16060 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16061 
16062 	v4_conn_idx = v6_conn_idx = 0;
16063 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
16064 
16065 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16066 
16067 		connfp = &ipcl_globalhash_fanout[i];
16068 
16069 		connp = NULL;
16070 
16071 		while ((connp =
16072 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16073 			tcp_t *tcp;
16074 			boolean_t needattr;
16075 
16076 			if (connp->conn_zoneid != zoneid)
16077 				continue;	/* not in this zone */
16078 
16079 			tcp = connp->conn_tcp;
16080 			UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
16081 			tcp->tcp_ibsegs = 0;
16082 			UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
16083 			tcp->tcp_obsegs = 0;
16084 
16085 			tce6.tcp6ConnState = tce.tcpConnState =
16086 			    tcp_snmp_state(tcp);
16087 			if (tce.tcpConnState == MIB2_TCP_established ||
16088 			    tce.tcpConnState == MIB2_TCP_closeWait)
16089 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
16090 
16091 			needattr = B_FALSE;
16092 			bzero(&mlp, sizeof (mlp));
16093 			if (connp->conn_mlp_type != mlptSingle) {
16094 				if (connp->conn_mlp_type == mlptShared ||
16095 				    connp->conn_mlp_type == mlptBoth)
16096 					mlp.tme_flags |= MIB2_TMEF_SHARED;
16097 				if (connp->conn_mlp_type == mlptPrivate ||
16098 				    connp->conn_mlp_type == mlptBoth)
16099 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
16100 				needattr = B_TRUE;
16101 			}
16102 			if (connp->conn_peercred != NULL) {
16103 				ts_label_t *tsl;
16104 
16105 				tsl = crgetlabel(connp->conn_peercred);
16106 				mlp.tme_doi = label2doi(tsl);
16107 				mlp.tme_label = *label2bslabel(tsl);
16108 				needattr = B_TRUE;
16109 			}
16110 
16111 			/* Create a message to report on IPv6 entries */
16112 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16113 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16114 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16115 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16116 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16117 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16118 			/* Don't want just anybody seeing these... */
16119 			if (ispriv) {
16120 				tce6.tcp6ConnEntryInfo.ce_snxt =
16121 				    tcp->tcp_snxt;
16122 				tce6.tcp6ConnEntryInfo.ce_suna =
16123 				    tcp->tcp_suna;
16124 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16125 				    tcp->tcp_rnxt;
16126 				tce6.tcp6ConnEntryInfo.ce_rack =
16127 				    tcp->tcp_rack;
16128 			} else {
16129 				/*
16130 				 * Netstat, unfortunately, uses this to
16131 				 * get send/receive queue sizes.  How to fix?
16132 				 * Why not compute the difference only?
16133 				 */
16134 				tce6.tcp6ConnEntryInfo.ce_snxt =
16135 				    tcp->tcp_snxt - tcp->tcp_suna;
16136 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16137 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16138 				    tcp->tcp_rnxt - tcp->tcp_rack;
16139 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16140 			}
16141 
16142 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16143 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16144 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16145 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16146 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16147 
16148 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
16149 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
16150 
16151 			mlp.tme_connidx = v6_conn_idx++;
16152 			if (needattr)
16153 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
16154 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
16155 			}
16156 			/*
16157 			 * Create an IPv4 table entry for IPv4 entries and also
16158 			 * for IPv6 entries which are bound to in6addr_any
16159 			 * but don't have IPV6_V6ONLY set.
16160 			 * (i.e. anything an IPv4 peer could connect to)
16161 			 */
16162 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16163 			    (tcp->tcp_state <= TCPS_LISTEN &&
16164 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16165 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16166 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16167 					tce.tcpConnRemAddress = INADDR_ANY;
16168 					tce.tcpConnLocalAddress = INADDR_ANY;
16169 				} else {
16170 					tce.tcpConnRemAddress =
16171 					    tcp->tcp_remote;
16172 					tce.tcpConnLocalAddress =
16173 					    tcp->tcp_ip_src;
16174 				}
16175 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16176 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16177 				/* Don't want just anybody seeing these... */
16178 				if (ispriv) {
16179 					tce.tcpConnEntryInfo.ce_snxt =
16180 					    tcp->tcp_snxt;
16181 					tce.tcpConnEntryInfo.ce_suna =
16182 					    tcp->tcp_suna;
16183 					tce.tcpConnEntryInfo.ce_rnxt =
16184 					    tcp->tcp_rnxt;
16185 					tce.tcpConnEntryInfo.ce_rack =
16186 					    tcp->tcp_rack;
16187 				} else {
16188 					/*
16189 					 * Netstat, unfortunately, uses this to
16190 					 * get send/receive queue sizes.  How
16191 					 * to fix?
16192 					 * Why not compute the difference only?
16193 					 */
16194 					tce.tcpConnEntryInfo.ce_snxt =
16195 					    tcp->tcp_snxt - tcp->tcp_suna;
16196 					tce.tcpConnEntryInfo.ce_suna = 0;
16197 					tce.tcpConnEntryInfo.ce_rnxt =
16198 					    tcp->tcp_rnxt - tcp->tcp_rack;
16199 					tce.tcpConnEntryInfo.ce_rack = 0;
16200 				}
16201 
16202 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16203 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16204 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16205 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16206 				tce.tcpConnEntryInfo.ce_state =
16207 				    tcp->tcp_state;
16208 
16209 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
16210 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16211 
16212 				mlp.tme_connidx = v4_conn_idx++;
16213 				if (needattr)
16214 					(void) snmp_append_data2(
16215 					    mp_attr_ctl->b_cont,
16216 					    &mp_attr_tail, (char *)&mlp,
16217 					    sizeof (mlp));
16218 			}
16219 		}
16220 	}
16221 
16222 	/* fixed length structure for IPv4 and IPv6 counters */
16223 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16224 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
16225 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16226 	optp->level = MIB2_TCP;
16227 	optp->name = 0;
16228 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
16229 	optp->len = msgdsize(mpdata);
16230 	qreply(q, mpctl);
16231 
16232 	/* table of connections... */
16233 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16234 	    sizeof (struct T_optmgmt_ack)];
16235 	optp->level = MIB2_TCP;
16236 	optp->name = MIB2_TCP_CONN;
16237 	optp->len = msgdsize(mp_conn_ctl->b_cont);
16238 	qreply(q, mp_conn_ctl);
16239 
16240 	/* table of MLP attributes... */
16241 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
16242 	    sizeof (struct T_optmgmt_ack)];
16243 	optp->level = MIB2_TCP;
16244 	optp->name = EXPER_XPORT_MLP;
16245 	optp->len = msgdsize(mp_attr_ctl->b_cont);
16246 	if (optp->len == 0)
16247 		freemsg(mp_attr_ctl);
16248 	else
16249 		qreply(q, mp_attr_ctl);
16250 
16251 	/* table of IPv6 connections... */
16252 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16253 	    sizeof (struct T_optmgmt_ack)];
16254 	optp->level = MIB2_TCP6;
16255 	optp->name = MIB2_TCP6_CONN;
16256 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
16257 	qreply(q, mp6_conn_ctl);
16258 
16259 	/* table of IPv6 MLP attributes... */
16260 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
16261 	    sizeof (struct T_optmgmt_ack)];
16262 	optp->level = MIB2_TCP6;
16263 	optp->name = EXPER_XPORT_MLP;
16264 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
16265 	if (optp->len == 0)
16266 		freemsg(mp6_attr_ctl);
16267 	else
16268 		qreply(q, mp6_attr_ctl);
16269 	return (1);
16270 }
16271 
16272 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16273 /* ARGSUSED */
16274 int
16275 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16276 {
16277 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16278 
16279 	switch (level) {
16280 	case MIB2_TCP:
16281 		switch (name) {
16282 		case 13:
16283 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16284 				return (0);
16285 			/* TODO: delete entry defined by tce */
16286 			return (1);
16287 		default:
16288 			return (0);
16289 		}
16290 	default:
16291 		return (1);
16292 	}
16293 }
16294 
16295 /* Translate TCP state to MIB2 TCP state. */
16296 static int
16297 tcp_snmp_state(tcp_t *tcp)
16298 {
16299 	if (tcp == NULL)
16300 		return (0);
16301 
16302 	switch (tcp->tcp_state) {
16303 	case TCPS_CLOSED:
16304 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16305 	case TCPS_BOUND:
16306 		return (MIB2_TCP_closed);
16307 	case TCPS_LISTEN:
16308 		return (MIB2_TCP_listen);
16309 	case TCPS_SYN_SENT:
16310 		return (MIB2_TCP_synSent);
16311 	case TCPS_SYN_RCVD:
16312 		return (MIB2_TCP_synReceived);
16313 	case TCPS_ESTABLISHED:
16314 		return (MIB2_TCP_established);
16315 	case TCPS_CLOSE_WAIT:
16316 		return (MIB2_TCP_closeWait);
16317 	case TCPS_FIN_WAIT_1:
16318 		return (MIB2_TCP_finWait1);
16319 	case TCPS_CLOSING:
16320 		return (MIB2_TCP_closing);
16321 	case TCPS_LAST_ACK:
16322 		return (MIB2_TCP_lastAck);
16323 	case TCPS_FIN_WAIT_2:
16324 		return (MIB2_TCP_finWait2);
16325 	case TCPS_TIME_WAIT:
16326 		return (MIB2_TCP_timeWait);
16327 	default:
16328 		return (0);
16329 	}
16330 }
16331 
16332 static char tcp_report_header[] =
16333 	"TCP     " MI_COL_HDRPAD_STR
16334 	"zone dest            snxt     suna     "
16335 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16336 	"recent   [lport,fport] state";
16337 
16338 /*
16339  * TCP status report triggered via the Named Dispatch mechanism.
16340  */
16341 /* ARGSUSED */
16342 static void
16343 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16344     cred_t *cr)
16345 {
16346 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16347 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
16348 	char cflag;
16349 	in6_addr_t	v6dst;
16350 	char buf[80];
16351 	uint_t print_len, buf_len;
16352 
16353 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16354 	if (buf_len <= 0)
16355 		return;
16356 
16357 	if (hashval >= 0)
16358 		(void) sprintf(hash, "%03d ", hashval);
16359 	else
16360 		hash[0] = '\0';
16361 
16362 	/*
16363 	 * Note that we use the remote address in the tcp_b  structure.
16364 	 * This means that it will print out the real destination address,
16365 	 * not the next hop's address if source routing is used.  This
16366 	 * avoid the confusion on the output because user may not
16367 	 * know that source routing is used for a connection.
16368 	 */
16369 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16370 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16371 	} else {
16372 		v6dst = tcp->tcp_remote_v6;
16373 	}
16374 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16375 	/*
16376 	 * the ispriv checks are so that normal users cannot determine
16377 	 * sequence number information using NDD.
16378 	 */
16379 
16380 	if (TCP_IS_DETACHED(tcp))
16381 		cflag = '*';
16382 	else
16383 		cflag = ' ';
16384 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16385 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16386 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16387 	    hash,
16388 	    (void *)tcp,
16389 	    tcp->tcp_connp->conn_zoneid,
16390 	    addrbuf,
16391 	    (ispriv) ? tcp->tcp_snxt : 0,
16392 	    (ispriv) ? tcp->tcp_suna : 0,
16393 	    tcp->tcp_swnd,
16394 	    (ispriv) ? tcp->tcp_rnxt : 0,
16395 	    (ispriv) ? tcp->tcp_rack : 0,
16396 	    tcp->tcp_rwnd,
16397 	    tcp->tcp_rto,
16398 	    tcp->tcp_mss,
16399 	    tcp->tcp_snd_ws_ok,
16400 	    tcp->tcp_snd_ws,
16401 	    tcp->tcp_rcv_ws,
16402 	    tcp->tcp_snd_ts_ok,
16403 	    tcp->tcp_ts_recent,
16404 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16405 	if (print_len < buf_len) {
16406 		((mblk_t *)mp)->b_wptr += print_len;
16407 	} else {
16408 		((mblk_t *)mp)->b_wptr += buf_len;
16409 	}
16410 }
16411 
16412 /*
16413  * TCP status report (for listeners only) triggered via the Named Dispatch
16414  * mechanism.
16415  */
16416 /* ARGSUSED */
16417 static void
16418 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16419 {
16420 	char addrbuf[INET6_ADDRSTRLEN];
16421 	in6_addr_t	v6dst;
16422 	uint_t print_len, buf_len;
16423 
16424 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16425 	if (buf_len <= 0)
16426 		return;
16427 
16428 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16429 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16430 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16431 	} else {
16432 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16433 		    addrbuf, sizeof (addrbuf));
16434 	}
16435 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16436 	    "%03d "
16437 	    MI_COL_PTRFMT_STR
16438 	    "%d %s %05u %08u %d/%d/%d%c\n",
16439 	    hashval, (void *)tcp,
16440 	    tcp->tcp_connp->conn_zoneid,
16441 	    addrbuf,
16442 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16443 	    tcp->tcp_conn_req_seqnum,
16444 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16445 	    tcp->tcp_conn_req_max,
16446 	    tcp->tcp_syn_defense ? '*' : ' ');
16447 	if (print_len < buf_len) {
16448 		((mblk_t *)mp)->b_wptr += print_len;
16449 	} else {
16450 		((mblk_t *)mp)->b_wptr += buf_len;
16451 	}
16452 }
16453 
16454 /* TCP status report triggered via the Named Dispatch mechanism. */
16455 /* ARGSUSED */
16456 static int
16457 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16458 {
16459 	tcp_t	*tcp;
16460 	int	i;
16461 	conn_t	*connp;
16462 	connf_t	*connfp;
16463 	zoneid_t zoneid;
16464 
16465 	/*
16466 	 * Because of the ndd constraint, at most we can have 64K buffer
16467 	 * to put in all TCP info.  So to be more efficient, just
16468 	 * allocate a 64K buffer here, assuming we need that large buffer.
16469 	 * This may be a problem as any user can read tcp_status.  Therefore
16470 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16471 	 * This should be OK as normal users should not do this too often.
16472 	 */
16473 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16474 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16475 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16476 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16477 			return (0);
16478 		}
16479 	}
16480 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16481 		/* The following may work even if we cannot get a large buf. */
16482 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16483 		return (0);
16484 	}
16485 
16486 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16487 
16488 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16489 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16490 
16491 		connfp = &ipcl_globalhash_fanout[i];
16492 
16493 		connp = NULL;
16494 
16495 		while ((connp =
16496 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16497 			tcp = connp->conn_tcp;
16498 			if (zoneid != GLOBAL_ZONEID &&
16499 			    zoneid != connp->conn_zoneid)
16500 				continue;
16501 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16502 			    cr);
16503 		}
16504 
16505 	}
16506 
16507 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16508 	return (0);
16509 }
16510 
16511 /* TCP status report triggered via the Named Dispatch mechanism. */
16512 /* ARGSUSED */
16513 static int
16514 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16515 {
16516 	tf_t	*tbf;
16517 	tcp_t	*tcp;
16518 	int	i;
16519 	zoneid_t zoneid;
16520 
16521 	/* Refer to comments in tcp_status_report(). */
16522 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16523 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16524 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16525 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16526 			return (0);
16527 		}
16528 	}
16529 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16530 		/* The following may work even if we cannot get a large buf. */
16531 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16532 		return (0);
16533 	}
16534 
16535 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16536 
16537 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16538 
16539 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16540 		tbf = &tcp_bind_fanout[i];
16541 		mutex_enter(&tbf->tf_lock);
16542 		for (tcp = tbf->tf_tcp; tcp != NULL;
16543 		    tcp = tcp->tcp_bind_hash) {
16544 			if (zoneid != GLOBAL_ZONEID &&
16545 			    zoneid != tcp->tcp_connp->conn_zoneid)
16546 				continue;
16547 			CONN_INC_REF(tcp->tcp_connp);
16548 			tcp_report_item(mp->b_cont, tcp, i,
16549 			    Q_TO_TCP(q), cr);
16550 			CONN_DEC_REF(tcp->tcp_connp);
16551 		}
16552 		mutex_exit(&tbf->tf_lock);
16553 	}
16554 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16555 	return (0);
16556 }
16557 
16558 /* TCP status report triggered via the Named Dispatch mechanism. */
16559 /* ARGSUSED */
16560 static int
16561 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16562 {
16563 	connf_t	*connfp;
16564 	conn_t	*connp;
16565 	tcp_t	*tcp;
16566 	int	i;
16567 	zoneid_t zoneid;
16568 
16569 	/* Refer to comments in tcp_status_report(). */
16570 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16571 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16572 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16573 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16574 			return (0);
16575 		}
16576 	}
16577 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16578 		/* The following may work even if we cannot get a large buf. */
16579 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16580 		return (0);
16581 	}
16582 
16583 	(void) mi_mpprintf(mp,
16584 	    "    TCP    " MI_COL_HDRPAD_STR
16585 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16586 
16587 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16588 
16589 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16590 		connfp =  &ipcl_bind_fanout[i];
16591 		connp = NULL;
16592 		while ((connp =
16593 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16594 			tcp = connp->conn_tcp;
16595 			if (zoneid != GLOBAL_ZONEID &&
16596 			    zoneid != connp->conn_zoneid)
16597 				continue;
16598 			tcp_report_listener(mp->b_cont, tcp, i);
16599 		}
16600 	}
16601 
16602 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16603 	return (0);
16604 }
16605 
16606 /* TCP status report triggered via the Named Dispatch mechanism. */
16607 /* ARGSUSED */
16608 static int
16609 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16610 {
16611 	connf_t	*connfp;
16612 	conn_t	*connp;
16613 	tcp_t	*tcp;
16614 	int	i;
16615 	zoneid_t zoneid;
16616 
16617 	/* Refer to comments in tcp_status_report(). */
16618 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16619 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16620 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16621 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16622 			return (0);
16623 		}
16624 	}
16625 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16626 		/* The following may work even if we cannot get a large buf. */
16627 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16628 		return (0);
16629 	}
16630 
16631 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16632 	    ipcl_conn_fanout_size);
16633 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16634 
16635 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16636 
16637 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16638 		connfp =  &ipcl_conn_fanout[i];
16639 		connp = NULL;
16640 		while ((connp =
16641 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
16642 			tcp = connp->conn_tcp;
16643 			if (zoneid != GLOBAL_ZONEID &&
16644 			    zoneid != connp->conn_zoneid)
16645 				continue;
16646 			tcp_report_item(mp->b_cont, tcp, i,
16647 			    Q_TO_TCP(q), cr);
16648 		}
16649 	}
16650 
16651 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16652 	return (0);
16653 }
16654 
16655 /* TCP status report triggered via the Named Dispatch mechanism. */
16656 /* ARGSUSED */
16657 static int
16658 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16659 {
16660 	tf_t	*tf;
16661 	tcp_t	*tcp;
16662 	int	i;
16663 	zoneid_t zoneid;
16664 
16665 	/* Refer to comments in tcp_status_report(). */
16666 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16667 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16668 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16669 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16670 			return (0);
16671 		}
16672 	}
16673 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16674 		/* The following may work even if we cannot get a large buf. */
16675 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16676 		return (0);
16677 	}
16678 
16679 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16680 
16681 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16682 
16683 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16684 		tf = &tcp_acceptor_fanout[i];
16685 		mutex_enter(&tf->tf_lock);
16686 		for (tcp = tf->tf_tcp; tcp != NULL;
16687 		    tcp = tcp->tcp_acceptor_hash) {
16688 			if (zoneid != GLOBAL_ZONEID &&
16689 			    zoneid != tcp->tcp_connp->conn_zoneid)
16690 				continue;
16691 			tcp_report_item(mp->b_cont, tcp, i,
16692 			    Q_TO_TCP(q), cr);
16693 		}
16694 		mutex_exit(&tf->tf_lock);
16695 	}
16696 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16697 	return (0);
16698 }
16699 
16700 /*
16701  * tcp_timer is the timer service routine.  It handles the retransmission,
16702  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16703  * from the state of the tcp instance what kind of action needs to be done
16704  * at the time it is called.
16705  */
16706 static void
16707 tcp_timer(void *arg)
16708 {
16709 	mblk_t		*mp;
16710 	clock_t		first_threshold;
16711 	clock_t		second_threshold;
16712 	clock_t		ms;
16713 	uint32_t	mss;
16714 	conn_t		*connp = (conn_t *)arg;
16715 	tcp_t		*tcp = connp->conn_tcp;
16716 
16717 	tcp->tcp_timer_tid = 0;
16718 
16719 	if (tcp->tcp_fused)
16720 		return;
16721 
16722 	first_threshold =  tcp->tcp_first_timer_threshold;
16723 	second_threshold = tcp->tcp_second_timer_threshold;
16724 	switch (tcp->tcp_state) {
16725 	case TCPS_IDLE:
16726 	case TCPS_BOUND:
16727 	case TCPS_LISTEN:
16728 		return;
16729 	case TCPS_SYN_RCVD: {
16730 		tcp_t	*listener = tcp->tcp_listener;
16731 
16732 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16733 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16734 			/* it's our first timeout */
16735 			tcp->tcp_syn_rcvd_timeout = 1;
16736 			mutex_enter(&listener->tcp_eager_lock);
16737 			listener->tcp_syn_rcvd_timeout++;
16738 			if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) {
16739 				/*
16740 				 * Make this eager available for drop if we
16741 				 * need to drop one to accomodate a new
16742 				 * incoming SYN request.
16743 				 */
16744 				MAKE_DROPPABLE(listener, tcp);
16745 			}
16746 			if (!listener->tcp_syn_defense &&
16747 			    (listener->tcp_syn_rcvd_timeout >
16748 			    (tcp_conn_req_max_q0 >> 2)) &&
16749 			    (tcp_conn_req_max_q0 > 200)) {
16750 				/* We may be under attack. Put on a defense. */
16751 				listener->tcp_syn_defense = B_TRUE;
16752 				cmn_err(CE_WARN, "High TCP connect timeout "
16753 				    "rate! System (port %d) may be under a "
16754 				    "SYN flood attack!",
16755 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16756 
16757 				listener->tcp_ip_addr_cache = kmem_zalloc(
16758 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16759 				    KM_NOSLEEP);
16760 			}
16761 			mutex_exit(&listener->tcp_eager_lock);
16762 		} else if (listener != NULL) {
16763 			mutex_enter(&listener->tcp_eager_lock);
16764 			tcp->tcp_syn_rcvd_timeout++;
16765 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16766 			    tcp->tcp_closemp_used == 0) {
16767 				/*
16768 				 * This is our second timeout. Put the tcp in
16769 				 * the list of droppable eagers to allow it to
16770 				 * be dropped, if needed. We don't check
16771 				 * whether tcp_dontdrop is set or not to
16772 				 * protect ourselve from a SYN attack where a
16773 				 * remote host can spoof itself as one of the
16774 				 * good IP source and continue to hold
16775 				 * resources too long.
16776 				 */
16777 				MAKE_DROPPABLE(listener, tcp);
16778 			}
16779 			mutex_exit(&listener->tcp_eager_lock);
16780 		}
16781 	}
16782 		/* FALLTHRU */
16783 	case TCPS_SYN_SENT:
16784 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16785 		second_threshold = tcp->tcp_second_ctimer_threshold;
16786 		break;
16787 	case TCPS_ESTABLISHED:
16788 	case TCPS_FIN_WAIT_1:
16789 	case TCPS_CLOSING:
16790 	case TCPS_CLOSE_WAIT:
16791 	case TCPS_LAST_ACK:
16792 		/* If we have data to rexmit */
16793 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16794 			clock_t	time_to_wait;
16795 
16796 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16797 			if (!tcp->tcp_xmit_head)
16798 				break;
16799 			time_to_wait = lbolt -
16800 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16801 			time_to_wait = tcp->tcp_rto -
16802 			    TICK_TO_MSEC(time_to_wait);
16803 			/*
16804 			 * If the timer fires too early, 1 clock tick earlier,
16805 			 * restart the timer.
16806 			 */
16807 			if (time_to_wait > msec_per_tick) {
16808 				TCP_STAT(tcp_timer_fire_early);
16809 				TCP_TIMER_RESTART(tcp, time_to_wait);
16810 				return;
16811 			}
16812 			/*
16813 			 * When we probe zero windows, we force the swnd open.
16814 			 * If our peer acks with a closed window swnd will be
16815 			 * set to zero by tcp_rput(). As long as we are
16816 			 * receiving acks tcp_rput will
16817 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16818 			 * first and second interval actions.  NOTE: the timer
16819 			 * interval is allowed to continue its exponential
16820 			 * backoff.
16821 			 */
16822 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16823 				if (tcp->tcp_debug) {
16824 					(void) strlog(TCP_MOD_ID, 0, 1,
16825 					    SL_TRACE, "tcp_timer: zero win");
16826 				}
16827 			} else {
16828 				/*
16829 				 * After retransmission, we need to do
16830 				 * slow start.  Set the ssthresh to one
16831 				 * half of current effective window and
16832 				 * cwnd to one MSS.  Also reset
16833 				 * tcp_cwnd_cnt.
16834 				 *
16835 				 * Note that if tcp_ssthresh is reduced because
16836 				 * of ECN, do not reduce it again unless it is
16837 				 * already one window of data away (tcp_cwr
16838 				 * should then be cleared) or this is a
16839 				 * timeout for a retransmitted segment.
16840 				 */
16841 				uint32_t npkt;
16842 
16843 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16844 					npkt = ((tcp->tcp_timer_backoff ?
16845 					    tcp->tcp_cwnd_ssthresh :
16846 					    tcp->tcp_snxt -
16847 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16848 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16849 					    tcp->tcp_mss;
16850 				}
16851 				tcp->tcp_cwnd = tcp->tcp_mss;
16852 				tcp->tcp_cwnd_cnt = 0;
16853 				if (tcp->tcp_ecn_ok) {
16854 					tcp->tcp_cwr = B_TRUE;
16855 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16856 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16857 				}
16858 			}
16859 			break;
16860 		}
16861 		/*
16862 		 * We have something to send yet we cannot send.  The
16863 		 * reason can be:
16864 		 *
16865 		 * 1. Zero send window: we need to do zero window probe.
16866 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16867 		 * segments.
16868 		 * 3. SWS avoidance: receiver may have shrunk window,
16869 		 * reset our knowledge.
16870 		 *
16871 		 * Note that condition 2 can happen with either 1 or
16872 		 * 3.  But 1 and 3 are exclusive.
16873 		 */
16874 		if (tcp->tcp_unsent != 0) {
16875 			if (tcp->tcp_cwnd == 0) {
16876 				/*
16877 				 * Set tcp_cwnd to 1 MSS so that a
16878 				 * new segment can be sent out.  We
16879 				 * are "clocking out" new data when
16880 				 * the network is really congested.
16881 				 */
16882 				ASSERT(tcp->tcp_ecn_ok);
16883 				tcp->tcp_cwnd = tcp->tcp_mss;
16884 			}
16885 			if (tcp->tcp_swnd == 0) {
16886 				/* Extend window for zero window probe */
16887 				tcp->tcp_swnd++;
16888 				tcp->tcp_zero_win_probe = B_TRUE;
16889 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16890 			} else {
16891 				/*
16892 				 * Handle timeout from sender SWS avoidance.
16893 				 * Reset our knowledge of the max send window
16894 				 * since the receiver might have reduced its
16895 				 * receive buffer.  Avoid setting tcp_max_swnd
16896 				 * to one since that will essentially disable
16897 				 * the SWS checks.
16898 				 *
16899 				 * Note that since we don't have a SWS
16900 				 * state variable, if the timeout is set
16901 				 * for ECN but not for SWS, this
16902 				 * code will also be executed.  This is
16903 				 * fine as tcp_max_swnd is updated
16904 				 * constantly and it will not affect
16905 				 * anything.
16906 				 */
16907 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16908 			}
16909 			tcp_wput_data(tcp, NULL, B_FALSE);
16910 			return;
16911 		}
16912 		/* Is there a FIN that needs to be to re retransmitted? */
16913 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16914 		    !tcp->tcp_fin_acked)
16915 			break;
16916 		/* Nothing to do, return without restarting timer. */
16917 		TCP_STAT(tcp_timer_fire_miss);
16918 		return;
16919 	case TCPS_FIN_WAIT_2:
16920 		/*
16921 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16922 		 * We waited some time for for peer's FIN, but it hasn't
16923 		 * arrived.  We flush the connection now to avoid
16924 		 * case where the peer has rebooted.
16925 		 */
16926 		if (TCP_IS_DETACHED(tcp)) {
16927 			(void) tcp_clean_death(tcp, 0, 23);
16928 		} else {
16929 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
16930 		}
16931 		return;
16932 	case TCPS_TIME_WAIT:
16933 		(void) tcp_clean_death(tcp, 0, 24);
16934 		return;
16935 	default:
16936 		if (tcp->tcp_debug) {
16937 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16938 			    "tcp_timer: strange state (%d) %s",
16939 			    tcp->tcp_state, tcp_display(tcp, NULL,
16940 			    DISP_PORT_ONLY));
16941 		}
16942 		return;
16943 	}
16944 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16945 		/*
16946 		 * For zero window probe, we need to send indefinitely,
16947 		 * unless we have not heard from the other side for some
16948 		 * time...
16949 		 */
16950 		if ((tcp->tcp_zero_win_probe == 0) ||
16951 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16952 		    second_threshold)) {
16953 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
16954 			/*
16955 			 * If TCP is in SYN_RCVD state, send back a
16956 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16957 			 * should be zero in TCPS_SYN_RCVD state.
16958 			 */
16959 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16960 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16961 				    "in SYN_RCVD",
16962 				    tcp, tcp->tcp_snxt,
16963 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16964 			}
16965 			(void) tcp_clean_death(tcp,
16966 			    tcp->tcp_client_errno ?
16967 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16968 			return;
16969 		} else {
16970 			/*
16971 			 * Set tcp_ms_we_have_waited to second_threshold
16972 			 * so that in next timeout, we will do the above
16973 			 * check (lbolt - tcp_last_recv_time).  This is
16974 			 * also to avoid overflow.
16975 			 *
16976 			 * We don't need to decrement tcp_timer_backoff
16977 			 * to avoid overflow because it will be decremented
16978 			 * later if new timeout value is greater than
16979 			 * tcp_rexmit_interval_max.  In the case when
16980 			 * tcp_rexmit_interval_max is greater than
16981 			 * second_threshold, it means that we will wait
16982 			 * longer than second_threshold to send the next
16983 			 * window probe.
16984 			 */
16985 			tcp->tcp_ms_we_have_waited = second_threshold;
16986 		}
16987 	} else if (ms > first_threshold) {
16988 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16989 		    tcp->tcp_xmit_head != NULL) {
16990 			tcp->tcp_xmit_head =
16991 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16992 		}
16993 		/*
16994 		 * We have been retransmitting for too long...  The RTT
16995 		 * we calculated is probably incorrect.  Reinitialize it.
16996 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16997 		 * tcp_rtt_update so that we won't accidentally cache a
16998 		 * bad value.  But only do this if this is not a zero
16999 		 * window probe.
17000 		 */
17001 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17002 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17003 			    (tcp->tcp_rtt_sa >> 5);
17004 			tcp->tcp_rtt_sa = 0;
17005 			tcp_ip_notify(tcp);
17006 			tcp->tcp_rtt_update = 0;
17007 		}
17008 	}
17009 	tcp->tcp_timer_backoff++;
17010 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17011 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17012 	    tcp_rexmit_interval_min) {
17013 		/*
17014 		 * This means the original RTO is tcp_rexmit_interval_min.
17015 		 * So we will use tcp_rexmit_interval_min as the RTO value
17016 		 * and do the backoff.
17017 		 */
17018 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
17019 	} else {
17020 		ms <<= tcp->tcp_timer_backoff;
17021 	}
17022 	if (ms > tcp_rexmit_interval_max) {
17023 		ms = tcp_rexmit_interval_max;
17024 		/*
17025 		 * ms is at max, decrement tcp_timer_backoff to avoid
17026 		 * overflow.
17027 		 */
17028 		tcp->tcp_timer_backoff--;
17029 	}
17030 	tcp->tcp_ms_we_have_waited += ms;
17031 	if (tcp->tcp_zero_win_probe == 0) {
17032 		tcp->tcp_rto = ms;
17033 	}
17034 	TCP_TIMER_RESTART(tcp, ms);
17035 	/*
17036 	 * This is after a timeout and tcp_rto is backed off.  Set
17037 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17038 	 * restart the timer with a correct value.
17039 	 */
17040 	tcp->tcp_set_timer = 1;
17041 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17042 	if (mss > tcp->tcp_mss)
17043 		mss = tcp->tcp_mss;
17044 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17045 		mss = tcp->tcp_swnd;
17046 
17047 	if ((mp = tcp->tcp_xmit_head) != NULL)
17048 		mp->b_prev = (mblk_t *)lbolt;
17049 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17050 	    B_TRUE);
17051 
17052 	/*
17053 	 * When slow start after retransmission begins, start with
17054 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17055 	 * start phase.  tcp_snd_burst controls how many segments
17056 	 * can be sent because of an ack.
17057 	 */
17058 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17059 	tcp->tcp_snd_burst = TCP_CWND_SS;
17060 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17061 	    (tcp->tcp_unsent == 0)) {
17062 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17063 	} else {
17064 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17065 	}
17066 	tcp->tcp_rexmit = B_TRUE;
17067 	tcp->tcp_dupack_cnt = 0;
17068 
17069 	/*
17070 	 * Remove all rexmit SACK blk to start from fresh.
17071 	 */
17072 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17073 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17074 		tcp->tcp_num_notsack_blk = 0;
17075 		tcp->tcp_cnt_notsack_list = 0;
17076 	}
17077 	if (mp == NULL) {
17078 		return;
17079 	}
17080 	/* Attach credentials to retransmitted initial SYNs. */
17081 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17082 		mblk_setcred(mp, tcp->tcp_cred);
17083 		DB_CPID(mp) = tcp->tcp_cpid;
17084 	}
17085 
17086 	tcp->tcp_csuna = tcp->tcp_snxt;
17087 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
17088 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
17089 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17090 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17091 
17092 }
17093 
17094 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17095 static void
17096 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17097 {
17098 	conn_t	*connp;
17099 
17100 	switch (tcp->tcp_state) {
17101 	case TCPS_BOUND:
17102 	case TCPS_LISTEN:
17103 		break;
17104 	default:
17105 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17106 		return;
17107 	}
17108 
17109 	/*
17110 	 * Need to clean up all the eagers since after the unbind, segments
17111 	 * will no longer be delivered to this listener stream.
17112 	 */
17113 	mutex_enter(&tcp->tcp_eager_lock);
17114 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17115 		tcp_eager_cleanup(tcp, 0);
17116 	}
17117 	mutex_exit(&tcp->tcp_eager_lock);
17118 
17119 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17120 		tcp->tcp_ipha->ipha_src = 0;
17121 	} else {
17122 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17123 	}
17124 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17125 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17126 	tcp_bind_hash_remove(tcp);
17127 	tcp->tcp_state = TCPS_IDLE;
17128 	tcp->tcp_mdt = B_FALSE;
17129 	/* Send M_FLUSH according to TPI */
17130 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17131 	connp = tcp->tcp_connp;
17132 	connp->conn_mdt_ok = B_FALSE;
17133 	ipcl_hash_remove(connp);
17134 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17135 	mp = mi_tpi_ok_ack_alloc(mp);
17136 	putnext(tcp->tcp_rq, mp);
17137 }
17138 
17139 /*
17140  * Don't let port fall into the privileged range.
17141  * Since the extra privileged ports can be arbitrary we also
17142  * ensure that we exclude those from consideration.
17143  * tcp_g_epriv_ports is not sorted thus we loop over it until
17144  * there are no changes.
17145  *
17146  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17147  * but instead the code relies on:
17148  * - the fact that the address of the array and its size never changes
17149  * - the atomic assignment of the elements of the array
17150  *
17151  * Returns 0 if there are no more ports available.
17152  *
17153  * TS note: skip multilevel ports.
17154  */
17155 static in_port_t
17156 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
17157 {
17158 	int i;
17159 	boolean_t restart = B_FALSE;
17160 
17161 	if (random && tcp_random_anon_port != 0) {
17162 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17163 		    sizeof (in_port_t));
17164 		/*
17165 		 * Unless changed by a sys admin, the smallest anon port
17166 		 * is 32768 and the largest anon port is 65535.  It is
17167 		 * very likely (50%) for the random port to be smaller
17168 		 * than the smallest anon port.  When that happens,
17169 		 * add port % (anon port range) to the smallest anon
17170 		 * port to get the random port.  It should fall into the
17171 		 * valid anon port range.
17172 		 */
17173 		if (port < tcp_smallest_anon_port) {
17174 			port = tcp_smallest_anon_port +
17175 			    port % (tcp_largest_anon_port -
17176 				tcp_smallest_anon_port);
17177 		}
17178 	}
17179 
17180 retry:
17181 	if (port < tcp_smallest_anon_port)
17182 		port = (in_port_t)tcp_smallest_anon_port;
17183 
17184 	if (port > tcp_largest_anon_port) {
17185 		if (restart)
17186 			return (0);
17187 		restart = B_TRUE;
17188 		port = (in_port_t)tcp_smallest_anon_port;
17189 	}
17190 
17191 	if (port < tcp_smallest_nonpriv_port)
17192 		port = (in_port_t)tcp_smallest_nonpriv_port;
17193 
17194 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
17195 		if (port == tcp_g_epriv_ports[i]) {
17196 			port++;
17197 			/*
17198 			 * Make sure whether the port is in the
17199 			 * valid range.
17200 			 */
17201 			goto retry;
17202 		}
17203 	}
17204 	if (is_system_labeled() &&
17205 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
17206 	    IPPROTO_TCP, B_TRUE)) != 0) {
17207 		port = i;
17208 		goto retry;
17209 	}
17210 	return (port);
17211 }
17212 
17213 /*
17214  * Return the next anonymous port in the privileged port range for
17215  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17216  * downwards.  This is the same behavior as documented in the userland
17217  * library call rresvport(3N).
17218  *
17219  * TS note: skip multilevel ports.
17220  */
17221 static in_port_t
17222 tcp_get_next_priv_port(const tcp_t *tcp)
17223 {
17224 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17225 	in_port_t nextport;
17226 	boolean_t restart = B_FALSE;
17227 
17228 retry:
17229 	if (next_priv_port < tcp_min_anonpriv_port ||
17230 	    next_priv_port >= IPPORT_RESERVED) {
17231 		next_priv_port = IPPORT_RESERVED - 1;
17232 		if (restart)
17233 			return (0);
17234 		restart = B_TRUE;
17235 	}
17236 	if (is_system_labeled() &&
17237 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
17238 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
17239 		next_priv_port = nextport;
17240 		goto retry;
17241 	}
17242 	return (next_priv_port--);
17243 }
17244 
17245 /* The write side r/w procedure. */
17246 
17247 #if CCS_STATS
17248 struct {
17249 	struct {
17250 		int64_t count, bytes;
17251 	} tot, hit;
17252 } wrw_stats;
17253 #endif
17254 
17255 /*
17256  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17257  * messages.
17258  */
17259 /* ARGSUSED */
17260 static void
17261 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17262 {
17263 	conn_t	*connp = (conn_t *)arg;
17264 	tcp_t	*tcp = connp->conn_tcp;
17265 	queue_t	*q = tcp->tcp_wq;
17266 
17267 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17268 	/*
17269 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17270 	 * Once the close starts, streamhead and sockfs will not let any data
17271 	 * packets come down (close ensures that there are no threads using the
17272 	 * queue and no new threads will come down) but since qprocsoff()
17273 	 * hasn't happened yet, a M_FLUSH or some non data message might
17274 	 * get reflected back (in response to our own FLUSHRW) and get
17275 	 * processed after tcp_close() is done. The conn would still be valid
17276 	 * because a ref would have added but we need to check the state
17277 	 * before actually processing the packet.
17278 	 */
17279 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17280 		freemsg(mp);
17281 		return;
17282 	}
17283 
17284 	switch (DB_TYPE(mp)) {
17285 	case M_IOCDATA:
17286 		tcp_wput_iocdata(tcp, mp);
17287 		break;
17288 	case M_FLUSH:
17289 		tcp_wput_flush(tcp, mp);
17290 		break;
17291 	default:
17292 		CALL_IP_WPUT(connp, q, mp);
17293 		break;
17294 	}
17295 }
17296 
17297 /*
17298  * The TCP fast path write put procedure.
17299  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17300  */
17301 /* ARGSUSED */
17302 void
17303 tcp_output(void *arg, mblk_t *mp, void *arg2)
17304 {
17305 	int		len;
17306 	int		hdrlen;
17307 	int		plen;
17308 	mblk_t		*mp1;
17309 	uchar_t		*rptr;
17310 	uint32_t	snxt;
17311 	tcph_t		*tcph;
17312 	struct datab	*db;
17313 	uint32_t	suna;
17314 	uint32_t	mss;
17315 	ipaddr_t	*dst;
17316 	ipaddr_t	*src;
17317 	uint32_t	sum;
17318 	int		usable;
17319 	conn_t		*connp = (conn_t *)arg;
17320 	tcp_t		*tcp = connp->conn_tcp;
17321 	uint32_t	msize;
17322 
17323 	/*
17324 	 * Try and ASSERT the minimum possible references on the
17325 	 * conn early enough. Since we are executing on write side,
17326 	 * the connection is obviously not detached and that means
17327 	 * there is a ref each for TCP and IP. Since we are behind
17328 	 * the squeue, the minimum references needed are 3. If the
17329 	 * conn is in classifier hash list, there should be an
17330 	 * extra ref for that (we check both the possibilities).
17331 	 */
17332 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17333 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17334 
17335 	ASSERT(DB_TYPE(mp) == M_DATA);
17336 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
17337 
17338 	mutex_enter(&connp->conn_lock);
17339 	tcp->tcp_squeue_bytes -= msize;
17340 	mutex_exit(&connp->conn_lock);
17341 
17342 	/* Bypass tcp protocol for fused tcp loopback */
17343 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
17344 		return;
17345 
17346 	mss = tcp->tcp_mss;
17347 	if (tcp->tcp_xmit_zc_clean)
17348 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17349 
17350 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17351 	len = (int)(mp->b_wptr - mp->b_rptr);
17352 
17353 	/*
17354 	 * Criteria for fast path:
17355 	 *
17356 	 *   1. no unsent data
17357 	 *   2. single mblk in request
17358 	 *   3. connection established
17359 	 *   4. data in mblk
17360 	 *   5. len <= mss
17361 	 *   6. no tcp_valid bits
17362 	 */
17363 	if ((tcp->tcp_unsent != 0) ||
17364 	    (tcp->tcp_cork) ||
17365 	    (mp->b_cont != NULL) ||
17366 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17367 	    (len == 0) ||
17368 	    (len > mss) ||
17369 	    (tcp->tcp_valid_bits != 0)) {
17370 		tcp_wput_data(tcp, mp, B_FALSE);
17371 		return;
17372 	}
17373 
17374 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17375 	ASSERT(tcp->tcp_fin_sent == 0);
17376 
17377 	/* queue new packet onto retransmission queue */
17378 	if (tcp->tcp_xmit_head == NULL) {
17379 		tcp->tcp_xmit_head = mp;
17380 	} else {
17381 		tcp->tcp_xmit_last->b_cont = mp;
17382 	}
17383 	tcp->tcp_xmit_last = mp;
17384 	tcp->tcp_xmit_tail = mp;
17385 
17386 	/* find out how much we can send */
17387 	/* BEGIN CSTYLED */
17388 	/*
17389 	 *    un-acked           usable
17390 	 *  |--------------|-----------------|
17391 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17392 	 */
17393 	/* END CSTYLED */
17394 
17395 	/* start sending from tcp_snxt */
17396 	snxt = tcp->tcp_snxt;
17397 
17398 	/*
17399 	 * Check to see if this connection has been idled for some
17400 	 * time and no ACK is expected.  If it is, we need to slow
17401 	 * start again to get back the connection's "self-clock" as
17402 	 * described in VJ's paper.
17403 	 *
17404 	 * Refer to the comment in tcp_mss_set() for the calculation
17405 	 * of tcp_cwnd after idle.
17406 	 */
17407 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17408 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17409 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
17410 	}
17411 
17412 	usable = tcp->tcp_swnd;		/* tcp window size */
17413 	if (usable > tcp->tcp_cwnd)
17414 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17415 	usable -= snxt;		/* subtract stuff already sent */
17416 	suna = tcp->tcp_suna;
17417 	usable += suna;
17418 	/* usable can be < 0 if the congestion window is smaller */
17419 	if (len > usable) {
17420 		/* Can't send complete M_DATA in one shot */
17421 		goto slow;
17422 	}
17423 
17424 	if (tcp->tcp_flow_stopped &&
17425 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
17426 		tcp_clrqfull(tcp);
17427 	}
17428 
17429 	/*
17430 	 * determine if anything to send (Nagle).
17431 	 *
17432 	 *   1. len < tcp_mss (i.e. small)
17433 	 *   2. unacknowledged data present
17434 	 *   3. len < nagle limit
17435 	 *   4. last packet sent < nagle limit (previous packet sent)
17436 	 */
17437 	if ((len < mss) && (snxt != suna) &&
17438 	    (len < (int)tcp->tcp_naglim) &&
17439 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17440 		/*
17441 		 * This was the first unsent packet and normally
17442 		 * mss < xmit_hiwater so there is no need to worry
17443 		 * about flow control. The next packet will go
17444 		 * through the flow control check in tcp_wput_data().
17445 		 */
17446 		/* leftover work from above */
17447 		tcp->tcp_unsent = len;
17448 		tcp->tcp_xmit_tail_unsent = len;
17449 
17450 		return;
17451 	}
17452 
17453 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17454 
17455 	if (snxt == suna) {
17456 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17457 	}
17458 
17459 	/* we have always sent something */
17460 	tcp->tcp_rack_cnt = 0;
17461 
17462 	tcp->tcp_snxt = snxt + len;
17463 	tcp->tcp_rack = tcp->tcp_rnxt;
17464 
17465 	if ((mp1 = dupb(mp)) == 0)
17466 		goto no_memory;
17467 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17468 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17469 
17470 	/* adjust tcp header information */
17471 	tcph = tcp->tcp_tcph;
17472 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17473 
17474 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17475 	sum = (sum >> 16) + (sum & 0xFFFF);
17476 	U16_TO_ABE16(sum, tcph->th_sum);
17477 
17478 	U32_TO_ABE32(snxt, tcph->th_seq);
17479 
17480 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
17481 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
17482 	BUMP_LOCAL(tcp->tcp_obsegs);
17483 
17484 	/* Update the latest receive window size in TCP header. */
17485 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17486 	    tcph->th_win);
17487 
17488 	tcp->tcp_last_sent_len = (ushort_t)len;
17489 
17490 	plen = len + tcp->tcp_hdr_len;
17491 
17492 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17493 		tcp->tcp_ipha->ipha_length = htons(plen);
17494 	} else {
17495 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17496 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17497 	}
17498 
17499 	/* see if we need to allocate a mblk for the headers */
17500 	hdrlen = tcp->tcp_hdr_len;
17501 	rptr = mp1->b_rptr - hdrlen;
17502 	db = mp1->b_datap;
17503 	if ((db->db_ref != 2) || rptr < db->db_base ||
17504 	    (!OK_32PTR(rptr))) {
17505 		/* NOTE: we assume allocb returns an OK_32PTR */
17506 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17507 		    tcp_wroff_xtra, BPRI_MED);
17508 		if (!mp) {
17509 			freemsg(mp1);
17510 			goto no_memory;
17511 		}
17512 		mp->b_cont = mp1;
17513 		mp1 = mp;
17514 		/* Leave room for Link Level header */
17515 		/* hdrlen = tcp->tcp_hdr_len; */
17516 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
17517 		mp1->b_wptr = &rptr[hdrlen];
17518 	}
17519 	mp1->b_rptr = rptr;
17520 
17521 	/* Fill in the timestamp option. */
17522 	if (tcp->tcp_snd_ts_ok) {
17523 		U32_TO_BE32((uint32_t)lbolt,
17524 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17525 		U32_TO_BE32(tcp->tcp_ts_recent,
17526 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17527 	} else {
17528 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17529 	}
17530 
17531 	/* copy header into outgoing packet */
17532 	dst = (ipaddr_t *)rptr;
17533 	src = (ipaddr_t *)tcp->tcp_iphc;
17534 	dst[0] = src[0];
17535 	dst[1] = src[1];
17536 	dst[2] = src[2];
17537 	dst[3] = src[3];
17538 	dst[4] = src[4];
17539 	dst[5] = src[5];
17540 	dst[6] = src[6];
17541 	dst[7] = src[7];
17542 	dst[8] = src[8];
17543 	dst[9] = src[9];
17544 	if (hdrlen -= 40) {
17545 		hdrlen >>= 2;
17546 		dst += 10;
17547 		src += 10;
17548 		do {
17549 			*dst++ = *src++;
17550 		} while (--hdrlen);
17551 	}
17552 
17553 	/*
17554 	 * Set the ECN info in the TCP header.  Note that this
17555 	 * is not the template header.
17556 	 */
17557 	if (tcp->tcp_ecn_ok) {
17558 		SET_ECT(tcp, rptr);
17559 
17560 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17561 		if (tcp->tcp_ecn_echo_on)
17562 			tcph->th_flags[0] |= TH_ECE;
17563 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17564 			tcph->th_flags[0] |= TH_CWR;
17565 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17566 		}
17567 	}
17568 
17569 	if (tcp->tcp_ip_forward_progress) {
17570 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17571 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17572 		tcp->tcp_ip_forward_progress = B_FALSE;
17573 	}
17574 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17575 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17576 	return;
17577 
17578 	/*
17579 	 * If we ran out of memory, we pretend to have sent the packet
17580 	 * and that it was lost on the wire.
17581 	 */
17582 no_memory:
17583 	return;
17584 
17585 slow:
17586 	/* leftover work from above */
17587 	tcp->tcp_unsent = len;
17588 	tcp->tcp_xmit_tail_unsent = len;
17589 	tcp_wput_data(tcp, NULL, B_FALSE);
17590 }
17591 
17592 /*
17593  * The function called through squeue to get behind eager's perimeter to
17594  * finish the accept processing.
17595  */
17596 /* ARGSUSED */
17597 void
17598 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17599 {
17600 	conn_t			*connp = (conn_t *)arg;
17601 	tcp_t			*tcp = connp->conn_tcp;
17602 	queue_t			*q = tcp->tcp_rq;
17603 	mblk_t			*mp1;
17604 	mblk_t			*stropt_mp = mp;
17605 	struct  stroptions	*stropt;
17606 	uint_t			thwin;
17607 
17608 	/*
17609 	 * Drop the eager's ref on the listener, that was placed when
17610 	 * this eager began life in tcp_conn_request.
17611 	 */
17612 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17613 
17614 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17615 		/*
17616 		 * Someone blewoff the eager before we could finish
17617 		 * the accept.
17618 		 *
17619 		 * The only reason eager exists it because we put in
17620 		 * a ref on it when conn ind went up. We need to send
17621 		 * a disconnect indication up while the last reference
17622 		 * on the eager will be dropped by the squeue when we
17623 		 * return.
17624 		 */
17625 		ASSERT(tcp->tcp_listener == NULL);
17626 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17627 			struct	T_discon_ind	*tdi;
17628 
17629 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17630 			/*
17631 			 * Let us reuse the incoming mblk to avoid memory
17632 			 * allocation failure problems. We know that the
17633 			 * size of the incoming mblk i.e. stroptions is greater
17634 			 * than sizeof T_discon_ind. So the reallocb below
17635 			 * can't fail.
17636 			 */
17637 			freemsg(mp->b_cont);
17638 			mp->b_cont = NULL;
17639 			ASSERT(DB_REF(mp) == 1);
17640 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17641 			    B_FALSE);
17642 			ASSERT(mp != NULL);
17643 			DB_TYPE(mp) = M_PROTO;
17644 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17645 			tdi = (struct T_discon_ind *)mp->b_rptr;
17646 			if (tcp->tcp_issocket) {
17647 				tdi->DISCON_reason = ECONNREFUSED;
17648 				tdi->SEQ_number = 0;
17649 			} else {
17650 				tdi->DISCON_reason = ENOPROTOOPT;
17651 				tdi->SEQ_number =
17652 				    tcp->tcp_conn_req_seqnum;
17653 			}
17654 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17655 			putnext(q, mp);
17656 		} else {
17657 			freemsg(mp);
17658 		}
17659 		if (tcp->tcp_hard_binding) {
17660 			tcp->tcp_hard_binding = B_FALSE;
17661 			tcp->tcp_hard_bound = B_TRUE;
17662 		}
17663 		tcp->tcp_detached = B_FALSE;
17664 		return;
17665 	}
17666 
17667 	mp1 = stropt_mp->b_cont;
17668 	stropt_mp->b_cont = NULL;
17669 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17670 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17671 
17672 	while (mp1 != NULL) {
17673 		mp = mp1;
17674 		mp1 = mp1->b_cont;
17675 		mp->b_cont = NULL;
17676 		tcp->tcp_drop_opt_ack_cnt++;
17677 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17678 	}
17679 	mp = NULL;
17680 
17681 	/*
17682 	 * For a loopback connection with tcp_direct_sockfs on, note that
17683 	 * we don't have to protect tcp_rcv_list yet because synchronous
17684 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17685 	 * possibly race with us.
17686 	 */
17687 
17688 	/*
17689 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17690 	 * properly.  This is the first time we know of the acceptor'
17691 	 * queue.  So we do it here.
17692 	 */
17693 	if (tcp->tcp_rcv_list == NULL) {
17694 		/*
17695 		 * Recv queue is empty, tcp_rwnd should not have changed.
17696 		 * That means it should be equal to the listener's tcp_rwnd.
17697 		 */
17698 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17699 	} else {
17700 #ifdef DEBUG
17701 		uint_t cnt = 0;
17702 
17703 		mp1 = tcp->tcp_rcv_list;
17704 		while ((mp = mp1) != NULL) {
17705 			mp1 = mp->b_next;
17706 			cnt += msgdsize(mp);
17707 		}
17708 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17709 #endif
17710 		/* There is some data, add them back to get the max. */
17711 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17712 	}
17713 
17714 	stropt->so_flags = SO_HIWAT;
17715 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17716 
17717 	stropt->so_flags |= SO_MAXBLK;
17718 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17719 
17720 	/*
17721 	 * This is the first time we run on the correct
17722 	 * queue after tcp_accept. So fix all the q parameters
17723 	 * here.
17724 	 */
17725 	/* Allocate room for SACK options if needed. */
17726 	stropt->so_flags |= SO_WROFF;
17727 	if (tcp->tcp_fused) {
17728 		ASSERT(tcp->tcp_loopback);
17729 		ASSERT(tcp->tcp_loopback_peer != NULL);
17730 		/*
17731 		 * For fused tcp loopback, set the stream head's write
17732 		 * offset value to zero since we won't be needing any room
17733 		 * for TCP/IP headers.  This would also improve performance
17734 		 * since it would reduce the amount of work done by kmem.
17735 		 * Non-fused tcp loopback case is handled separately below.
17736 		 */
17737 		stropt->so_wroff = 0;
17738 		/*
17739 		 * Record the stream head's high water mark for this endpoint;
17740 		 * this is used for flow-control purposes in tcp_fuse_output().
17741 		 */
17742 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat);
17743 		/*
17744 		 * Update the peer's transmit parameters according to
17745 		 * our recently calculated high water mark value.
17746 		 */
17747 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17748 	} else if (tcp->tcp_snd_sack_ok) {
17749 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17750 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17751 	} else {
17752 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17753 		    tcp_wroff_xtra);
17754 	}
17755 
17756 	/*
17757 	 * If this is endpoint is handling SSL, then reserve extra
17758 	 * offset and space at the end.
17759 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17760 	 * overriding the previous setting. The extra cost of signing and
17761 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17762 	 * instead of a single contiguous one by the stream head
17763 	 * largely outweighs the statistical reduction of ACKs, when
17764 	 * applicable. The peer will also save on decyption and verification
17765 	 * costs.
17766 	 */
17767 	if (tcp->tcp_kssl_ctx != NULL) {
17768 		stropt->so_wroff += SSL3_WROFFSET;
17769 
17770 		stropt->so_flags |= SO_TAIL;
17771 		stropt->so_tail = SSL3_MAX_TAIL_LEN;
17772 
17773 		stropt->so_maxblk = SSL3_MAX_RECORD_LEN;
17774 	}
17775 
17776 	/* Send the options up */
17777 	putnext(q, stropt_mp);
17778 
17779 	/*
17780 	 * Pass up any data and/or a fin that has been received.
17781 	 *
17782 	 * Adjust receive window in case it had decreased
17783 	 * (because there is data <=> tcp_rcv_list != NULL)
17784 	 * while the connection was detached. Note that
17785 	 * in case the eager was flow-controlled, w/o this
17786 	 * code, the rwnd may never open up again!
17787 	 */
17788 	if (tcp->tcp_rcv_list != NULL) {
17789 		/* We drain directly in case of fused tcp loopback */
17790 		if (!tcp->tcp_fused && canputnext(q)) {
17791 			tcp->tcp_rwnd = q->q_hiwat;
17792 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17793 			    << tcp->tcp_rcv_ws;
17794 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17795 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17796 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17797 				tcp_xmit_ctl(NULL,
17798 				    tcp, (tcp->tcp_swnd == 0) ?
17799 				    tcp->tcp_suna : tcp->tcp_snxt,
17800 				    tcp->tcp_rnxt, TH_ACK);
17801 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17802 			}
17803 
17804 		}
17805 		(void) tcp_rcv_drain(q, tcp);
17806 
17807 		/*
17808 		 * For fused tcp loopback, back-enable peer endpoint
17809 		 * if it's currently flow-controlled.
17810 		 */
17811 		if (tcp->tcp_fused &&
17812 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17813 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17814 
17815 			ASSERT(peer_tcp != NULL);
17816 			ASSERT(peer_tcp->tcp_fused);
17817 
17818 			tcp_clrqfull(peer_tcp);
17819 			TCP_STAT(tcp_fusion_backenabled);
17820 		}
17821 	}
17822 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17823 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17824 		mp = mi_tpi_ordrel_ind();
17825 		if (mp) {
17826 			tcp->tcp_ordrel_done = B_TRUE;
17827 			putnext(q, mp);
17828 			if (tcp->tcp_deferred_clean_death) {
17829 				/*
17830 				 * tcp_clean_death was deferred
17831 				 * for T_ORDREL_IND - do it now
17832 				 */
17833 				(void) tcp_clean_death(tcp,
17834 				    tcp->tcp_client_errno, 21);
17835 				tcp->tcp_deferred_clean_death = B_FALSE;
17836 			}
17837 		} else {
17838 			/*
17839 			 * Run the orderly release in the
17840 			 * service routine.
17841 			 */
17842 			qenable(q);
17843 		}
17844 	}
17845 	if (tcp->tcp_hard_binding) {
17846 		tcp->tcp_hard_binding = B_FALSE;
17847 		tcp->tcp_hard_bound = B_TRUE;
17848 	}
17849 
17850 	tcp->tcp_detached = B_FALSE;
17851 
17852 	/* We can enable synchronous streams now */
17853 	if (tcp->tcp_fused) {
17854 		tcp_fuse_syncstr_enable_pair(tcp);
17855 	}
17856 
17857 	if (tcp->tcp_ka_enabled) {
17858 		tcp->tcp_ka_last_intrvl = 0;
17859 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17860 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17861 	}
17862 
17863 	/*
17864 	 * At this point, eager is fully established and will
17865 	 * have the following references -
17866 	 *
17867 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17868 	 * 1 reference for the squeue which will be dropped by the squeue as
17869 	 *	soon as this function returns.
17870 	 * There will be 1 additonal reference for being in classifier
17871 	 *	hash list provided something bad hasn't happened.
17872 	 */
17873 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17874 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17875 }
17876 
17877 /*
17878  * The function called through squeue to get behind listener's perimeter to
17879  * send a deffered conn_ind.
17880  */
17881 /* ARGSUSED */
17882 void
17883 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17884 {
17885 	conn_t	*connp = (conn_t *)arg;
17886 	tcp_t *listener = connp->conn_tcp;
17887 
17888 	if (listener->tcp_state == TCPS_CLOSED ||
17889 	    TCP_IS_DETACHED(listener)) {
17890 		/*
17891 		 * If listener has closed, it would have caused a
17892 		 * a cleanup/blowoff to happen for the eager.
17893 		 */
17894 		tcp_t *tcp;
17895 		struct T_conn_ind	*conn_ind;
17896 
17897 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17898 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17899 		    conn_ind->OPT_length);
17900 		/*
17901 		 * We need to drop the ref on eager that was put
17902 		 * tcp_rput_data() before trying to send the conn_ind
17903 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17904 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17905 		 * listener is closed so we drop the ref.
17906 		 */
17907 		CONN_DEC_REF(tcp->tcp_connp);
17908 		freemsg(mp);
17909 		return;
17910 	}
17911 	putnext(listener->tcp_rq, mp);
17912 }
17913 
17914 
17915 /*
17916  * This is the STREAMS entry point for T_CONN_RES coming down on
17917  * Acceptor STREAM when  sockfs listener does accept processing.
17918  * Read the block comment on top pf tcp_conn_request().
17919  */
17920 void
17921 tcp_wput_accept(queue_t *q, mblk_t *mp)
17922 {
17923 	queue_t *rq = RD(q);
17924 	struct T_conn_res *conn_res;
17925 	tcp_t *eager;
17926 	tcp_t *listener;
17927 	struct T_ok_ack *ok;
17928 	t_scalar_t PRIM_type;
17929 	mblk_t *opt_mp;
17930 	conn_t *econnp;
17931 
17932 	ASSERT(DB_TYPE(mp) == M_PROTO);
17933 
17934 	conn_res = (struct T_conn_res *)mp->b_rptr;
17935 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17936 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17937 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17938 		if (mp != NULL)
17939 			putnext(rq, mp);
17940 		return;
17941 	}
17942 	switch (conn_res->PRIM_type) {
17943 	case O_T_CONN_RES:
17944 	case T_CONN_RES:
17945 		/*
17946 		 * We pass up an err ack if allocb fails. This will
17947 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17948 		 * tcp_eager_blowoff to be called. sockfs will then call
17949 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17950 		 * we need to do the allocb up here because we have to
17951 		 * make sure rq->q_qinfo->qi_qclose still points to the
17952 		 * correct function (tcpclose_accept) in case allocb
17953 		 * fails.
17954 		 */
17955 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17956 		if (opt_mp == NULL) {
17957 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17958 			if (mp != NULL)
17959 				putnext(rq, mp);
17960 			return;
17961 		}
17962 
17963 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17964 		    &eager, conn_res->OPT_length);
17965 		PRIM_type = conn_res->PRIM_type;
17966 		mp->b_datap->db_type = M_PCPROTO;
17967 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17968 		ok = (struct T_ok_ack *)mp->b_rptr;
17969 		ok->PRIM_type = T_OK_ACK;
17970 		ok->CORRECT_prim = PRIM_type;
17971 		econnp = eager->tcp_connp;
17972 		econnp->conn_dev = (dev_t)q->q_ptr;
17973 		eager->tcp_rq = rq;
17974 		eager->tcp_wq = q;
17975 		rq->q_ptr = econnp;
17976 		rq->q_qinfo = &tcp_rinit;
17977 		q->q_ptr = econnp;
17978 		q->q_qinfo = &tcp_winit;
17979 		listener = eager->tcp_listener;
17980 		eager->tcp_issocket = B_TRUE;
17981 
17982 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17983 		econnp->conn_allzones = listener->tcp_connp->conn_allzones;
17984 
17985 		/* Put the ref for IP */
17986 		CONN_INC_REF(econnp);
17987 
17988 		/*
17989 		 * We should have minimum of 3 references on the conn
17990 		 * at this point. One each for TCP and IP and one for
17991 		 * the T_conn_ind that was sent up when the 3-way handshake
17992 		 * completed. In the normal case we would also have another
17993 		 * reference (making a total of 4) for the conn being in the
17994 		 * classifier hash list. However the eager could have received
17995 		 * an RST subsequently and tcp_closei_local could have removed
17996 		 * the eager from the classifier hash list, hence we can't
17997 		 * assert that reference.
17998 		 */
17999 		ASSERT(econnp->conn_ref >= 3);
18000 
18001 		/*
18002 		 * Send the new local address also up to sockfs. There
18003 		 * should already be enough space in the mp that came
18004 		 * down from soaccept().
18005 		 */
18006 		if (eager->tcp_family == AF_INET) {
18007 			sin_t *sin;
18008 
18009 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18010 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18011 			sin = (sin_t *)mp->b_wptr;
18012 			mp->b_wptr += sizeof (sin_t);
18013 			sin->sin_family = AF_INET;
18014 			sin->sin_port = eager->tcp_lport;
18015 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18016 		} else {
18017 			sin6_t *sin6;
18018 
18019 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18020 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18021 			sin6 = (sin6_t *)mp->b_wptr;
18022 			mp->b_wptr += sizeof (sin6_t);
18023 			sin6->sin6_family = AF_INET6;
18024 			sin6->sin6_port = eager->tcp_lport;
18025 			if (eager->tcp_ipversion == IPV4_VERSION) {
18026 				sin6->sin6_flowinfo = 0;
18027 				IN6_IPADDR_TO_V4MAPPED(
18028 					eager->tcp_ipha->ipha_src,
18029 					    &sin6->sin6_addr);
18030 			} else {
18031 				ASSERT(eager->tcp_ip6h != NULL);
18032 				sin6->sin6_flowinfo =
18033 				    eager->tcp_ip6h->ip6_vcf &
18034 				    ~IPV6_VERS_AND_FLOW_MASK;
18035 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18036 			}
18037 			sin6->sin6_scope_id = 0;
18038 			sin6->__sin6_src_id = 0;
18039 		}
18040 
18041 		putnext(rq, mp);
18042 
18043 		opt_mp->b_datap->db_type = M_SETOPTS;
18044 		opt_mp->b_wptr += sizeof (struct stroptions);
18045 
18046 		/*
18047 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18048 		 * from listener to acceptor. The message is chained on the
18049 		 * bind_mp which tcp_rput_other will send down to IP.
18050 		 */
18051 		if (listener->tcp_bound_if != 0) {
18052 			/* allocate optmgmt req */
18053 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18054 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18055 			    sizeof (int));
18056 			if (mp != NULL)
18057 				linkb(opt_mp, mp);
18058 		}
18059 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18060 			uint_t on = 1;
18061 
18062 			/* allocate optmgmt req */
18063 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18064 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18065 			if (mp != NULL)
18066 				linkb(opt_mp, mp);
18067 		}
18068 
18069 
18070 		mutex_enter(&listener->tcp_eager_lock);
18071 
18072 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18073 
18074 			tcp_t *tail;
18075 			tcp_t *tcp;
18076 			mblk_t *mp1;
18077 
18078 			tcp = listener->tcp_eager_prev_q0;
18079 			/*
18080 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18081 			 * deferred T_conn_ind queue. We need to get to the head
18082 			 * of the queue in order to send up T_conn_ind the same
18083 			 * order as how the 3WHS is completed.
18084 			 */
18085 			while (tcp != listener) {
18086 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
18087 				    !tcp->tcp_kssl_pending)
18088 					break;
18089 				else
18090 					tcp = tcp->tcp_eager_prev_q0;
18091 			}
18092 			/* None of the pending eagers can be sent up now */
18093 			if (tcp == listener)
18094 				goto no_more_eagers;
18095 
18096 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18097 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18098 			/* Move from q0 to q */
18099 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18100 			listener->tcp_conn_req_cnt_q0--;
18101 			listener->tcp_conn_req_cnt_q++;
18102 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18103 			    tcp->tcp_eager_prev_q0;
18104 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18105 			    tcp->tcp_eager_next_q0;
18106 			tcp->tcp_eager_prev_q0 = NULL;
18107 			tcp->tcp_eager_next_q0 = NULL;
18108 			tcp->tcp_conn_def_q0 = B_FALSE;
18109 
18110 			/* Make sure the tcp isn't in the list of droppables */
18111 			ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
18112 			    tcp->tcp_eager_prev_drop_q0 == NULL);
18113 
18114 			/*
18115 			 * Insert at end of the queue because sockfs sends
18116 			 * down T_CONN_RES in chronological order. Leaving
18117 			 * the older conn indications at front of the queue
18118 			 * helps reducing search time.
18119 			 */
18120 			tail = listener->tcp_eager_last_q;
18121 			if (tail != NULL) {
18122 				tail->tcp_eager_next_q = tcp;
18123 			} else {
18124 				listener->tcp_eager_next_q = tcp;
18125 			}
18126 			listener->tcp_eager_last_q = tcp;
18127 			tcp->tcp_eager_next_q = NULL;
18128 
18129 			/* Need to get inside the listener perimeter */
18130 			CONN_INC_REF(listener->tcp_connp);
18131 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18132 			    tcp_send_pending, listener->tcp_connp,
18133 			    SQTAG_TCP_SEND_PENDING);
18134 		}
18135 no_more_eagers:
18136 		tcp_eager_unlink(eager);
18137 		mutex_exit(&listener->tcp_eager_lock);
18138 
18139 		/*
18140 		 * At this point, the eager is detached from the listener
18141 		 * but we still have an extra refs on eager (apart from the
18142 		 * usual tcp references). The ref was placed in tcp_rput_data
18143 		 * before sending the conn_ind in tcp_send_conn_ind.
18144 		 * The ref will be dropped in tcp_accept_finish().
18145 		 */
18146 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18147 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18148 		return;
18149 	default:
18150 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18151 		if (mp != NULL)
18152 			putnext(rq, mp);
18153 		return;
18154 	}
18155 }
18156 
18157 void
18158 tcp_wput(queue_t *q, mblk_t *mp)
18159 {
18160 	conn_t	*connp = Q_TO_CONN(q);
18161 	tcp_t	*tcp;
18162 	void (*output_proc)();
18163 	t_scalar_t type;
18164 	uchar_t *rptr;
18165 	struct iocblk	*iocp;
18166 	uint32_t	msize;
18167 
18168 	ASSERT(connp->conn_ref >= 2);
18169 
18170 	switch (DB_TYPE(mp)) {
18171 	case M_DATA:
18172 		tcp = connp->conn_tcp;
18173 		ASSERT(tcp != NULL);
18174 
18175 		msize = msgdsize(mp);
18176 
18177 		mutex_enter(&connp->conn_lock);
18178 		CONN_INC_REF_LOCKED(connp);
18179 
18180 		tcp->tcp_squeue_bytes += msize;
18181 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
18182 			mutex_exit(&connp->conn_lock);
18183 			tcp_setqfull(tcp);
18184 		} else
18185 			mutex_exit(&connp->conn_lock);
18186 
18187 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18188 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18189 		return;
18190 	case M_PROTO:
18191 	case M_PCPROTO:
18192 		/*
18193 		 * if it is a snmp message, don't get behind the squeue
18194 		 */
18195 		tcp = connp->conn_tcp;
18196 		rptr = mp->b_rptr;
18197 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18198 			type = ((union T_primitives *)rptr)->type;
18199 		} else {
18200 			if (tcp->tcp_debug) {
18201 				(void) strlog(TCP_MOD_ID, 0, 1,
18202 				    SL_ERROR|SL_TRACE,
18203 				    "tcp_wput_proto, dropping one...");
18204 			}
18205 			freemsg(mp);
18206 			return;
18207 		}
18208 		if (type == T_SVR4_OPTMGMT_REQ) {
18209 			cred_t	*cr = DB_CREDDEF(mp, tcp->tcp_cred);
18210 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
18211 			    cr)) {
18212 				/*
18213 				 * This was a SNMP request
18214 				 */
18215 				return;
18216 			} else {
18217 				output_proc = tcp_wput_proto;
18218 			}
18219 		} else {
18220 			output_proc = tcp_wput_proto;
18221 		}
18222 		break;
18223 	case M_IOCTL:
18224 		/*
18225 		 * Most ioctls can be processed right away without going via
18226 		 * squeues - process them right here. Those that do require
18227 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
18228 		 * are processed by tcp_wput_ioctl().
18229 		 */
18230 		iocp = (struct iocblk *)mp->b_rptr;
18231 		tcp = connp->conn_tcp;
18232 
18233 		switch (iocp->ioc_cmd) {
18234 		case TCP_IOC_ABORT_CONN:
18235 			tcp_ioctl_abort_conn(q, mp);
18236 			return;
18237 		case TI_GETPEERNAME:
18238 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18239 				iocp->ioc_error = ENOTCONN;
18240 				iocp->ioc_count = 0;
18241 				mp->b_datap->db_type = M_IOCACK;
18242 				qreply(q, mp);
18243 				return;
18244 			}
18245 			/* FALLTHRU */
18246 		case TI_GETMYNAME:
18247 			mi_copyin(q, mp, NULL,
18248 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18249 			return;
18250 		case ND_SET:
18251 			/* nd_getset does the necessary checks */
18252 		case ND_GET:
18253 			if (!nd_getset(q, tcp_g_nd, mp)) {
18254 				CALL_IP_WPUT(connp, q, mp);
18255 				return;
18256 			}
18257 			qreply(q, mp);
18258 			return;
18259 		case TCP_IOC_DEFAULT_Q:
18260 			/*
18261 			 * Wants to be the default wq. Check the credentials
18262 			 * first, the rest is executed via squeue.
18263 			 */
18264 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
18265 				iocp->ioc_error = EPERM;
18266 				iocp->ioc_count = 0;
18267 				mp->b_datap->db_type = M_IOCACK;
18268 				qreply(q, mp);
18269 				return;
18270 			}
18271 			output_proc = tcp_wput_ioctl;
18272 			break;
18273 		default:
18274 			output_proc = tcp_wput_ioctl;
18275 			break;
18276 		}
18277 		break;
18278 	default:
18279 		output_proc = tcp_wput_nondata;
18280 		break;
18281 	}
18282 
18283 	CONN_INC_REF(connp);
18284 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18285 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18286 }
18287 
18288 /*
18289  * Initial STREAMS write side put() procedure for sockets. It tries to
18290  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18291  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18292  * are handled by tcp_wput() as usual.
18293  *
18294  * All further messages will also be handled by tcp_wput() because we cannot
18295  * be sure that the above short cut is safe later.
18296  */
18297 static void
18298 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18299 {
18300 	conn_t			*connp = Q_TO_CONN(wq);
18301 	tcp_t			*tcp = connp->conn_tcp;
18302 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18303 
18304 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18305 	wq->q_qinfo = &tcp_winit;
18306 
18307 	ASSERT(IPCL_IS_TCP(connp));
18308 	ASSERT(TCP_IS_SOCKET(tcp));
18309 
18310 	if (DB_TYPE(mp) == M_PCPROTO &&
18311 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18312 	    car->PRIM_type == T_CAPABILITY_REQ) {
18313 		tcp_capability_req(tcp, mp);
18314 		return;
18315 	}
18316 
18317 	tcp_wput(wq, mp);
18318 }
18319 
18320 static boolean_t
18321 tcp_zcopy_check(tcp_t *tcp)
18322 {
18323 	conn_t	*connp = tcp->tcp_connp;
18324 	ire_t	*ire;
18325 	boolean_t	zc_enabled = B_FALSE;
18326 
18327 	if (do_tcpzcopy == 2)
18328 		zc_enabled = B_TRUE;
18329 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18330 	    IPCL_IS_CONNECTED(connp) &&
18331 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18332 	    connp->conn_dontroute == 0 &&
18333 	    !connp->conn_nexthop_set &&
18334 	    connp->conn_xmit_if_ill == NULL &&
18335 	    connp->conn_nofailover_ill == NULL &&
18336 	    do_tcpzcopy == 1) {
18337 		/*
18338 		 * the checks above  closely resemble the fast path checks
18339 		 * in tcp_send_data().
18340 		 */
18341 		mutex_enter(&connp->conn_lock);
18342 		ire = connp->conn_ire_cache;
18343 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18344 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18345 			IRE_REFHOLD(ire);
18346 			if (ire->ire_stq != NULL) {
18347 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18348 
18349 				zc_enabled = ill && (ill->ill_capabilities &
18350 				    ILL_CAPAB_ZEROCOPY) &&
18351 				    (ill->ill_zerocopy_capab->
18352 				    ill_zerocopy_flags != 0);
18353 			}
18354 			IRE_REFRELE(ire);
18355 		}
18356 		mutex_exit(&connp->conn_lock);
18357 	}
18358 	tcp->tcp_snd_zcopy_on = zc_enabled;
18359 	if (!TCP_IS_DETACHED(tcp)) {
18360 		if (zc_enabled) {
18361 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18362 			TCP_STAT(tcp_zcopy_on);
18363 		} else {
18364 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18365 			TCP_STAT(tcp_zcopy_off);
18366 		}
18367 	}
18368 	return (zc_enabled);
18369 }
18370 
18371 static mblk_t *
18372 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18373 {
18374 	if (do_tcpzcopy == 2)
18375 		return (bp);
18376 	else if (tcp->tcp_snd_zcopy_on) {
18377 		tcp->tcp_snd_zcopy_on = B_FALSE;
18378 		if (!TCP_IS_DETACHED(tcp)) {
18379 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18380 			TCP_STAT(tcp_zcopy_disable);
18381 		}
18382 	}
18383 	return (tcp_zcopy_backoff(tcp, bp, 0));
18384 }
18385 
18386 /*
18387  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18388  * the original desballoca'ed segmapped mblk.
18389  */
18390 static mblk_t *
18391 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18392 {
18393 	mblk_t *head, *tail, *nbp;
18394 	if (IS_VMLOANED_MBLK(bp)) {
18395 		TCP_STAT(tcp_zcopy_backoff);
18396 		if ((head = copyb(bp)) == NULL) {
18397 			/* fail to backoff; leave it for the next backoff */
18398 			tcp->tcp_xmit_zc_clean = B_FALSE;
18399 			return (bp);
18400 		}
18401 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18402 			if (fix_xmitlist)
18403 				tcp_zcopy_notify(tcp);
18404 			else
18405 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18406 		}
18407 		nbp = bp->b_cont;
18408 		if (fix_xmitlist) {
18409 			head->b_prev = bp->b_prev;
18410 			head->b_next = bp->b_next;
18411 			if (tcp->tcp_xmit_tail == bp)
18412 				tcp->tcp_xmit_tail = head;
18413 		}
18414 		bp->b_next = NULL;
18415 		bp->b_prev = NULL;
18416 		freeb(bp);
18417 	} else {
18418 		head = bp;
18419 		nbp = bp->b_cont;
18420 	}
18421 	tail = head;
18422 	while (nbp) {
18423 		if (IS_VMLOANED_MBLK(nbp)) {
18424 			TCP_STAT(tcp_zcopy_backoff);
18425 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18426 				tcp->tcp_xmit_zc_clean = B_FALSE;
18427 				tail->b_cont = nbp;
18428 				return (head);
18429 			}
18430 			tail = tail->b_cont;
18431 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18432 				if (fix_xmitlist)
18433 					tcp_zcopy_notify(tcp);
18434 				else
18435 					tail->b_datap->db_struioflag |=
18436 					    STRUIO_ZCNOTIFY;
18437 			}
18438 			bp = nbp;
18439 			nbp = nbp->b_cont;
18440 			if (fix_xmitlist) {
18441 				tail->b_prev = bp->b_prev;
18442 				tail->b_next = bp->b_next;
18443 				if (tcp->tcp_xmit_tail == bp)
18444 					tcp->tcp_xmit_tail = tail;
18445 			}
18446 			bp->b_next = NULL;
18447 			bp->b_prev = NULL;
18448 			freeb(bp);
18449 		} else {
18450 			tail->b_cont = nbp;
18451 			tail = nbp;
18452 			nbp = nbp->b_cont;
18453 		}
18454 	}
18455 	if (fix_xmitlist) {
18456 		tcp->tcp_xmit_last = tail;
18457 		tcp->tcp_xmit_zc_clean = B_TRUE;
18458 	}
18459 	return (head);
18460 }
18461 
18462 static void
18463 tcp_zcopy_notify(tcp_t *tcp)
18464 {
18465 	struct stdata	*stp;
18466 
18467 	if (tcp->tcp_detached)
18468 		return;
18469 	stp = STREAM(tcp->tcp_rq);
18470 	mutex_enter(&stp->sd_lock);
18471 	stp->sd_flag |= STZCNOTIFY;
18472 	cv_broadcast(&stp->sd_zcopy_wait);
18473 	mutex_exit(&stp->sd_lock);
18474 }
18475 
18476 static void
18477 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18478 {
18479 	ipha_t		*ipha;
18480 	ipaddr_t	src;
18481 	ipaddr_t	dst;
18482 	uint32_t	cksum;
18483 	ire_t		*ire;
18484 	uint16_t	*up;
18485 	ill_t		*ill;
18486 	conn_t		*connp = tcp->tcp_connp;
18487 	uint32_t	hcksum_txflags = 0;
18488 	mblk_t		*ire_fp_mp;
18489 	uint_t		ire_fp_mp_len;
18490 
18491 	ASSERT(DB_TYPE(mp) == M_DATA);
18492 
18493 	if (DB_CRED(mp) == NULL)
18494 		mblk_setcred(mp, CONN_CRED(connp));
18495 
18496 	ipha = (ipha_t *)mp->b_rptr;
18497 	src = ipha->ipha_src;
18498 	dst = ipha->ipha_dst;
18499 
18500 	/*
18501 	 * Drop off fast path for IPv6 and also if options are present or
18502 	 * we need to resolve a TS label.
18503 	 */
18504 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18505 	    !IPCL_IS_CONNECTED(connp) ||
18506 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18507 	    connp->conn_dontroute ||
18508 	    connp->conn_nexthop_set ||
18509 	    connp->conn_xmit_if_ill != NULL ||
18510 	    connp->conn_nofailover_ill != NULL ||
18511 	    !connp->conn_ulp_labeled ||
18512 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18513 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18514 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
18515 		if (tcp->tcp_snd_zcopy_aware)
18516 			mp = tcp_zcopy_disable(tcp, mp);
18517 		TCP_STAT(tcp_ip_send);
18518 		CALL_IP_WPUT(connp, q, mp);
18519 		return;
18520 	}
18521 
18522 	mutex_enter(&connp->conn_lock);
18523 	ire = connp->conn_ire_cache;
18524 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18525 	if (ire != NULL && ire->ire_addr == dst &&
18526 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18527 		IRE_REFHOLD(ire);
18528 		mutex_exit(&connp->conn_lock);
18529 	} else {
18530 		boolean_t cached = B_FALSE;
18531 
18532 		/* force a recheck later on */
18533 		tcp->tcp_ire_ill_check_done = B_FALSE;
18534 
18535 		TCP_DBGSTAT(tcp_ire_null1);
18536 		connp->conn_ire_cache = NULL;
18537 		mutex_exit(&connp->conn_lock);
18538 		if (ire != NULL)
18539 			IRE_REFRELE_NOTR(ire);
18540 		ire = ire_cache_lookup(dst, connp->conn_zoneid,
18541 		    MBLK_GETLABEL(mp));
18542 		if (ire == NULL) {
18543 			if (tcp->tcp_snd_zcopy_aware)
18544 				mp = tcp_zcopy_backoff(tcp, mp, 0);
18545 			TCP_STAT(tcp_ire_null);
18546 			CALL_IP_WPUT(connp, q, mp);
18547 			return;
18548 		}
18549 		IRE_REFHOLD_NOTR(ire);
18550 		/*
18551 		 * Since we are inside the squeue, there cannot be another
18552 		 * thread in TCP trying to set the conn_ire_cache now.  The
18553 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18554 		 * unplumb thread has not yet started cleaning up the conns.
18555 		 * Hence we don't need to grab the conn lock.
18556 		 */
18557 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18558 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18559 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18560 				connp->conn_ire_cache = ire;
18561 				cached = B_TRUE;
18562 			}
18563 			rw_exit(&ire->ire_bucket->irb_lock);
18564 		}
18565 
18566 		/*
18567 		 * We can continue to use the ire but since it was
18568 		 * not cached, we should drop the extra reference.
18569 		 */
18570 		if (!cached)
18571 			IRE_REFRELE_NOTR(ire);
18572 
18573 		/*
18574 		 * Rampart note: no need to select a new label here, since
18575 		 * labels are not allowed to change during the life of a TCP
18576 		 * connection.
18577 		 */
18578 	}
18579 
18580 	/*
18581 	 * The following if case identifies whether or not
18582 	 * we are forced to take the slowpath.
18583 	 */
18584 	if (ire->ire_flags & RTF_MULTIRT ||
18585 	    ire->ire_stq == NULL ||
18586 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18587 	    (ire->ire_nce != NULL &&
18588 	    (ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18589 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
18590 		if (tcp->tcp_snd_zcopy_aware)
18591 			mp = tcp_zcopy_disable(tcp, mp);
18592 		TCP_STAT(tcp_ip_ire_send);
18593 		IRE_REFRELE(ire);
18594 		CALL_IP_WPUT(connp, q, mp);
18595 		return;
18596 	}
18597 
18598 	ill = ire_to_ill(ire);
18599 	if (connp->conn_outgoing_ill != NULL) {
18600 		ill_t *conn_outgoing_ill = NULL;
18601 		/*
18602 		 * Choose a good ill in the group to send the packets on.
18603 		 */
18604 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18605 		ill = ire_to_ill(ire);
18606 	}
18607 	ASSERT(ill != NULL);
18608 
18609 	if (!tcp->tcp_ire_ill_check_done) {
18610 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18611 		tcp->tcp_ire_ill_check_done = B_TRUE;
18612 	}
18613 
18614 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18615 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18616 #ifndef _BIG_ENDIAN
18617 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18618 #endif
18619 
18620 	/*
18621 	 * Check to see if we need to re-enable MDT for this connection
18622 	 * because it was previously disabled due to changes in the ill;
18623 	 * note that by doing it here, this re-enabling only applies when
18624 	 * the packet is not dispatched through CALL_IP_WPUT().
18625 	 *
18626 	 * That means for IPv4, it is worth re-enabling MDT for the fastpath
18627 	 * case, since that's how we ended up here.  For IPv6, we do the
18628 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18629 	 */
18630 	if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18631 		/*
18632 		 * Restore MDT for this connection, so that next time around
18633 		 * it is eligible to go through tcp_multisend() path again.
18634 		 */
18635 		TCP_STAT(tcp_mdt_conn_resumed1);
18636 		tcp->tcp_mdt = B_TRUE;
18637 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18638 		    "interface %s\n", (void *)connp, ill->ill_name));
18639 	}
18640 
18641 	if (tcp->tcp_snd_zcopy_aware) {
18642 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18643 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18644 			mp = tcp_zcopy_disable(tcp, mp);
18645 		/*
18646 		 * we shouldn't need to reset ipha as the mp containing
18647 		 * ipha should never be a zero-copy mp.
18648 		 */
18649 	}
18650 
18651 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18652 		ASSERT(ill->ill_hcksum_capab != NULL);
18653 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18654 	}
18655 
18656 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18657 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18658 
18659 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18660 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18661 
18662 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18663 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18664 
18665 	/* Software checksum? */
18666 	if (DB_CKSUMFLAGS(mp) == 0) {
18667 		TCP_STAT(tcp_out_sw_cksum);
18668 		TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
18669 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18670 	}
18671 
18672 	ipha->ipha_fragment_offset_and_flags |=
18673 	    (uint32_t)htons(ire->ire_frag_flag);
18674 
18675 	/* Calculate IP header checksum if hardware isn't capable */
18676 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18677 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18678 		    ((uint16_t *)ipha)[4]);
18679 	}
18680 
18681 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18682 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18683 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18684 
18685 	UPDATE_OB_PKT_COUNT(ire);
18686 	ire->ire_last_used_time = lbolt;
18687 	BUMP_MIB(&ip_mib, ipOutRequests);
18688 
18689 	if (ILL_DLS_CAPABLE(ill)) {
18690 		/*
18691 		 * Send the packet directly to DLD, where it may be queued
18692 		 * depending on the availability of transmit resources at
18693 		 * the media layer.
18694 		 */
18695 		IP_DLS_ILL_TX(ill, ipha, mp);
18696 	} else {
18697 		ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr;
18698 		DTRACE_PROBE4(ip4__physical__out__start,
18699 		    ill_t *, NULL, ill_t *, out_ill,
18700 		    ipha_t *, ipha, mblk_t *, mp);
18701 		FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out,
18702 		    NULL, out_ill, ipha, mp, mp);
18703 		DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
18704 		if (mp != NULL)
18705 			putnext(ire->ire_stq, mp);
18706 	}
18707 	IRE_REFRELE(ire);
18708 }
18709 
18710 /*
18711  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18712  * if the receiver shrinks the window, i.e. moves the right window to the
18713  * left, the we should not send new data, but should retransmit normally the
18714  * old unacked data between suna and suna + swnd. We might has sent data
18715  * that is now outside the new window, pretend that we didn't send  it.
18716  */
18717 static void
18718 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18719 {
18720 	uint32_t	snxt = tcp->tcp_snxt;
18721 	mblk_t		*xmit_tail;
18722 	int32_t		offset;
18723 
18724 	ASSERT(shrunk_count > 0);
18725 
18726 	/* Pretend we didn't send the data outside the window */
18727 	snxt -= shrunk_count;
18728 
18729 	/* Get the mblk and the offset in it per the shrunk window */
18730 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18731 
18732 	ASSERT(xmit_tail != NULL);
18733 
18734 	/* Reset all the values per the now shrunk window */
18735 	tcp->tcp_snxt = snxt;
18736 	tcp->tcp_xmit_tail = xmit_tail;
18737 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18738 	    offset;
18739 	tcp->tcp_unsent += shrunk_count;
18740 
18741 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18742 		/*
18743 		 * Make sure the timer is running so that we will probe a zero
18744 		 * window.
18745 		 */
18746 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18747 }
18748 
18749 
18750 /*
18751  * The TCP normal data output path.
18752  * NOTE: the logic of the fast path is duplicated from this function.
18753  */
18754 static void
18755 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18756 {
18757 	int		len;
18758 	mblk_t		*local_time;
18759 	mblk_t		*mp1;
18760 	uint32_t	snxt;
18761 	int		tail_unsent;
18762 	int		tcpstate;
18763 	int		usable = 0;
18764 	mblk_t		*xmit_tail;
18765 	queue_t		*q = tcp->tcp_wq;
18766 	int32_t		mss;
18767 	int32_t		num_sack_blk = 0;
18768 	int32_t		tcp_hdr_len;
18769 	int32_t		tcp_tcp_hdr_len;
18770 	int		mdt_thres;
18771 	int		rc;
18772 
18773 	tcpstate = tcp->tcp_state;
18774 	if (mp == NULL) {
18775 		/*
18776 		 * tcp_wput_data() with NULL mp should only be called when
18777 		 * there is unsent data.
18778 		 */
18779 		ASSERT(tcp->tcp_unsent > 0);
18780 		/* Really tacky... but we need this for detached closes. */
18781 		len = tcp->tcp_unsent;
18782 		goto data_null;
18783 	}
18784 
18785 #if CCS_STATS
18786 	wrw_stats.tot.count++;
18787 	wrw_stats.tot.bytes += msgdsize(mp);
18788 #endif
18789 	ASSERT(mp->b_datap->db_type == M_DATA);
18790 	/*
18791 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18792 	 * or before a connection attempt has begun.
18793 	 */
18794 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18795 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18796 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18797 #ifdef DEBUG
18798 			cmn_err(CE_WARN,
18799 			    "tcp_wput_data: data after ordrel, %s",
18800 			    tcp_display(tcp, NULL,
18801 			    DISP_ADDR_AND_PORT));
18802 #else
18803 			if (tcp->tcp_debug) {
18804 				(void) strlog(TCP_MOD_ID, 0, 1,
18805 				    SL_TRACE|SL_ERROR,
18806 				    "tcp_wput_data: data after ordrel, %s\n",
18807 				    tcp_display(tcp, NULL,
18808 				    DISP_ADDR_AND_PORT));
18809 			}
18810 #endif /* DEBUG */
18811 		}
18812 		if (tcp->tcp_snd_zcopy_aware &&
18813 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18814 			tcp_zcopy_notify(tcp);
18815 		freemsg(mp);
18816 		if (tcp->tcp_flow_stopped &&
18817 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18818 			tcp_clrqfull(tcp);
18819 		}
18820 		return;
18821 	}
18822 
18823 	/* Strip empties */
18824 	for (;;) {
18825 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18826 		    (uintptr_t)INT_MAX);
18827 		len = (int)(mp->b_wptr - mp->b_rptr);
18828 		if (len > 0)
18829 			break;
18830 		mp1 = mp;
18831 		mp = mp->b_cont;
18832 		freeb(mp1);
18833 		if (!mp) {
18834 			return;
18835 		}
18836 	}
18837 
18838 	/* If we are the first on the list ... */
18839 	if (tcp->tcp_xmit_head == NULL) {
18840 		tcp->tcp_xmit_head = mp;
18841 		tcp->tcp_xmit_tail = mp;
18842 		tcp->tcp_xmit_tail_unsent = len;
18843 	} else {
18844 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18845 		struct datab *dp;
18846 
18847 		mp1 = tcp->tcp_xmit_last;
18848 		if (len < tcp_tx_pull_len &&
18849 		    (dp = mp1->b_datap)->db_ref == 1 &&
18850 		    dp->db_lim - mp1->b_wptr >= len) {
18851 			ASSERT(len > 0);
18852 			ASSERT(!mp1->b_cont);
18853 			if (len == 1) {
18854 				*mp1->b_wptr++ = *mp->b_rptr;
18855 			} else {
18856 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18857 				mp1->b_wptr += len;
18858 			}
18859 			if (mp1 == tcp->tcp_xmit_tail)
18860 				tcp->tcp_xmit_tail_unsent += len;
18861 			mp1->b_cont = mp->b_cont;
18862 			if (tcp->tcp_snd_zcopy_aware &&
18863 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18864 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18865 			freeb(mp);
18866 			mp = mp1;
18867 		} else {
18868 			tcp->tcp_xmit_last->b_cont = mp;
18869 		}
18870 		len += tcp->tcp_unsent;
18871 	}
18872 
18873 	/* Tack on however many more positive length mblks we have */
18874 	if ((mp1 = mp->b_cont) != NULL) {
18875 		do {
18876 			int tlen;
18877 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18878 			    (uintptr_t)INT_MAX);
18879 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18880 			if (tlen <= 0) {
18881 				mp->b_cont = mp1->b_cont;
18882 				freeb(mp1);
18883 			} else {
18884 				len += tlen;
18885 				mp = mp1;
18886 			}
18887 		} while ((mp1 = mp->b_cont) != NULL);
18888 	}
18889 	tcp->tcp_xmit_last = mp;
18890 	tcp->tcp_unsent = len;
18891 
18892 	if (urgent)
18893 		usable = 1;
18894 
18895 data_null:
18896 	snxt = tcp->tcp_snxt;
18897 	xmit_tail = tcp->tcp_xmit_tail;
18898 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18899 
18900 	/*
18901 	 * Note that tcp_mss has been adjusted to take into account the
18902 	 * timestamp option if applicable.  Because SACK options do not
18903 	 * appear in every TCP segments and they are of variable lengths,
18904 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18905 	 * the actual segment length when we need to send a segment which
18906 	 * includes SACK options.
18907 	 */
18908 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18909 		int32_t	opt_len;
18910 
18911 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18912 		    tcp->tcp_num_sack_blk);
18913 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18914 		    2 + TCPOPT_HEADER_LEN;
18915 		mss = tcp->tcp_mss - opt_len;
18916 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18917 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18918 	} else {
18919 		mss = tcp->tcp_mss;
18920 		tcp_hdr_len = tcp->tcp_hdr_len;
18921 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18922 	}
18923 
18924 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18925 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18926 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
18927 	}
18928 	if (tcpstate == TCPS_SYN_RCVD) {
18929 		/*
18930 		 * The three-way connection establishment handshake is not
18931 		 * complete yet. We want to queue the data for transmission
18932 		 * after entering ESTABLISHED state (RFC793). A jump to
18933 		 * "done" label effectively leaves data on the queue.
18934 		 */
18935 		goto done;
18936 	} else {
18937 		int usable_r;
18938 
18939 		/*
18940 		 * In the special case when cwnd is zero, which can only
18941 		 * happen if the connection is ECN capable, return now.
18942 		 * New segments is sent using tcp_timer().  The timer
18943 		 * is set in tcp_rput_data().
18944 		 */
18945 		if (tcp->tcp_cwnd == 0) {
18946 			/*
18947 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18948 			 * finished.
18949 			 */
18950 			ASSERT(tcp->tcp_ecn_ok ||
18951 			    tcp->tcp_state < TCPS_ESTABLISHED);
18952 			return;
18953 		}
18954 
18955 		/* NOTE: trouble if xmitting while SYN not acked? */
18956 		usable_r = snxt - tcp->tcp_suna;
18957 		usable_r = tcp->tcp_swnd - usable_r;
18958 
18959 		/*
18960 		 * Check if the receiver has shrunk the window.  If
18961 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18962 		 * cannot be set as there is unsent data, so FIN cannot
18963 		 * be sent out.  Otherwise, we need to take into account
18964 		 * of FIN as it consumes an "invisible" sequence number.
18965 		 */
18966 		ASSERT(tcp->tcp_fin_sent == 0);
18967 		if (usable_r < 0) {
18968 			/*
18969 			 * The receiver has shrunk the window and we have sent
18970 			 * -usable_r date beyond the window, re-adjust.
18971 			 *
18972 			 * If TCP window scaling is enabled, there can be
18973 			 * round down error as the advertised receive window
18974 			 * is actually right shifted n bits.  This means that
18975 			 * the lower n bits info is wiped out.  It will look
18976 			 * like the window is shrunk.  Do a check here to
18977 			 * see if the shrunk amount is actually within the
18978 			 * error in window calculation.  If it is, just
18979 			 * return.  Note that this check is inside the
18980 			 * shrunk window check.  This makes sure that even
18981 			 * though tcp_process_shrunk_swnd() is not called,
18982 			 * we will stop further processing.
18983 			 */
18984 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18985 				tcp_process_shrunk_swnd(tcp, -usable_r);
18986 			}
18987 			return;
18988 		}
18989 
18990 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18991 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18992 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18993 
18994 		/* usable = MIN(usable, unsent) */
18995 		if (usable_r > len)
18996 			usable_r = len;
18997 
18998 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18999 		if (usable_r > 0) {
19000 			usable = usable_r;
19001 		} else {
19002 			/* Bypass all other unnecessary processing. */
19003 			goto done;
19004 		}
19005 	}
19006 
19007 	local_time = (mblk_t *)lbolt;
19008 
19009 	/*
19010 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19011 	 * BSD.  This is more in line with the true intent of Nagle.
19012 	 *
19013 	 * The conditions are:
19014 	 * 1. The amount of unsent data (or amount of data which can be
19015 	 *    sent, whichever is smaller) is less than Nagle limit.
19016 	 * 2. The last sent size is also less than Nagle limit.
19017 	 * 3. There is unack'ed data.
19018 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19019 	 *    Nagle algorithm.  This reduces the probability that urgent
19020 	 *    bytes get "merged" together.
19021 	 * 5. The app has not closed the connection.  This eliminates the
19022 	 *    wait time of the receiving side waiting for the last piece of
19023 	 *    (small) data.
19024 	 *
19025 	 * If all are satisified, exit without sending anything.  Note
19026 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19027 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19028 	 * 4095).
19029 	 */
19030 	if (usable < (int)tcp->tcp_naglim &&
19031 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19032 	    snxt != tcp->tcp_suna &&
19033 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19034 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19035 		goto done;
19036 	}
19037 
19038 	if (tcp->tcp_cork) {
19039 		/*
19040 		 * if the tcp->tcp_cork option is set, then we have to force
19041 		 * TCP not to send partial segment (smaller than MSS bytes).
19042 		 * We are calculating the usable now based on full mss and
19043 		 * will save the rest of remaining data for later.
19044 		 */
19045 		if (usable < mss)
19046 			goto done;
19047 		usable = (usable / mss) * mss;
19048 	}
19049 
19050 	/* Update the latest receive window size in TCP header. */
19051 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19052 	    tcp->tcp_tcph->th_win);
19053 
19054 	/*
19055 	 * Determine if it's worthwhile to attempt MDT, based on:
19056 	 *
19057 	 * 1. Simple TCP/IP{v4,v6} (no options).
19058 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19059 	 * 3. If the TCP connection is in ESTABLISHED state.
19060 	 * 4. The TCP is not detached.
19061 	 *
19062 	 * If any of the above conditions have changed during the
19063 	 * connection, stop using MDT and restore the stream head
19064 	 * parameters accordingly.
19065 	 */
19066 	if (tcp->tcp_mdt &&
19067 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19068 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19069 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19070 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19071 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19072 	    TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) ||
19073 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19074 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
19075 		tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19076 		tcp->tcp_mdt = B_FALSE;
19077 
19078 		/* Anything other than detached is considered pathological */
19079 		if (!TCP_IS_DETACHED(tcp)) {
19080 			TCP_STAT(tcp_mdt_conn_halted1);
19081 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19082 		}
19083 	}
19084 
19085 	/* Use MDT if sendable amount is greater than the threshold */
19086 	if (tcp->tcp_mdt &&
19087 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19088 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19089 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19090 	    (tcp->tcp_valid_bits == 0 ||
19091 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19092 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19093 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19094 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19095 		    local_time, mdt_thres);
19096 	} else {
19097 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19098 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19099 		    local_time, INT_MAX);
19100 	}
19101 
19102 	/* Pretend that all we were trying to send really got sent */
19103 	if (rc < 0 && tail_unsent < 0) {
19104 		do {
19105 			xmit_tail = xmit_tail->b_cont;
19106 			xmit_tail->b_prev = local_time;
19107 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19108 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19109 			tail_unsent += (int)(xmit_tail->b_wptr -
19110 			    xmit_tail->b_rptr);
19111 		} while (tail_unsent < 0);
19112 	}
19113 done:;
19114 	tcp->tcp_xmit_tail = xmit_tail;
19115 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19116 	len = tcp->tcp_snxt - snxt;
19117 	if (len) {
19118 		/*
19119 		 * If new data was sent, need to update the notsack
19120 		 * list, which is, afterall, data blocks that have
19121 		 * not been sack'ed by the receiver.  New data is
19122 		 * not sack'ed.
19123 		 */
19124 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19125 			/* len is a negative value. */
19126 			tcp->tcp_pipe -= len;
19127 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19128 			    tcp->tcp_snxt, snxt,
19129 			    &(tcp->tcp_num_notsack_blk),
19130 			    &(tcp->tcp_cnt_notsack_list));
19131 		}
19132 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19133 		tcp->tcp_rack = tcp->tcp_rnxt;
19134 		tcp->tcp_rack_cnt = 0;
19135 		if ((snxt + len) == tcp->tcp_suna) {
19136 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19137 		}
19138 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19139 		/*
19140 		 * Didn't send anything. Make sure the timer is running
19141 		 * so that we will probe a zero window.
19142 		 */
19143 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19144 	}
19145 	/* Note that len is the amount we just sent but with a negative sign */
19146 	tcp->tcp_unsent += len;
19147 	if (tcp->tcp_flow_stopped) {
19148 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
19149 			tcp_clrqfull(tcp);
19150 		}
19151 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
19152 		tcp_setqfull(tcp);
19153 	}
19154 }
19155 
19156 /*
19157  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19158  * outgoing TCP header with the template header, as well as other
19159  * options such as time-stamp, ECN and/or SACK.
19160  */
19161 static void
19162 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19163 {
19164 	tcph_t *tcp_tmpl, *tcp_h;
19165 	uint32_t *dst, *src;
19166 	int hdrlen;
19167 
19168 	ASSERT(OK_32PTR(rptr));
19169 
19170 	/* Template header */
19171 	tcp_tmpl = tcp->tcp_tcph;
19172 
19173 	/* Header of outgoing packet */
19174 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19175 
19176 	/* dst and src are opaque 32-bit fields, used for copying */
19177 	dst = (uint32_t *)rptr;
19178 	src = (uint32_t *)tcp->tcp_iphc;
19179 	hdrlen = tcp->tcp_hdr_len;
19180 
19181 	/* Fill time-stamp option if needed */
19182 	if (tcp->tcp_snd_ts_ok) {
19183 		U32_TO_BE32((uint32_t)now,
19184 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19185 		U32_TO_BE32(tcp->tcp_ts_recent,
19186 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19187 	} else {
19188 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19189 	}
19190 
19191 	/*
19192 	 * Copy the template header; is this really more efficient than
19193 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19194 	 * but perhaps not for other scenarios.
19195 	 */
19196 	dst[0] = src[0];
19197 	dst[1] = src[1];
19198 	dst[2] = src[2];
19199 	dst[3] = src[3];
19200 	dst[4] = src[4];
19201 	dst[5] = src[5];
19202 	dst[6] = src[6];
19203 	dst[7] = src[7];
19204 	dst[8] = src[8];
19205 	dst[9] = src[9];
19206 	if (hdrlen -= 40) {
19207 		hdrlen >>= 2;
19208 		dst += 10;
19209 		src += 10;
19210 		do {
19211 			*dst++ = *src++;
19212 		} while (--hdrlen);
19213 	}
19214 
19215 	/*
19216 	 * Set the ECN info in the TCP header if it is not a zero
19217 	 * window probe.  Zero window probe is only sent in
19218 	 * tcp_wput_data() and tcp_timer().
19219 	 */
19220 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19221 		SET_ECT(tcp, rptr);
19222 
19223 		if (tcp->tcp_ecn_echo_on)
19224 			tcp_h->th_flags[0] |= TH_ECE;
19225 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19226 			tcp_h->th_flags[0] |= TH_CWR;
19227 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19228 		}
19229 	}
19230 
19231 	/* Fill in SACK options */
19232 	if (num_sack_blk > 0) {
19233 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19234 		sack_blk_t *tmp;
19235 		int32_t	i;
19236 
19237 		wptr[0] = TCPOPT_NOP;
19238 		wptr[1] = TCPOPT_NOP;
19239 		wptr[2] = TCPOPT_SACK;
19240 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19241 		    sizeof (sack_blk_t);
19242 		wptr += TCPOPT_REAL_SACK_LEN;
19243 
19244 		tmp = tcp->tcp_sack_list;
19245 		for (i = 0; i < num_sack_blk; i++) {
19246 			U32_TO_BE32(tmp[i].begin, wptr);
19247 			wptr += sizeof (tcp_seq);
19248 			U32_TO_BE32(tmp[i].end, wptr);
19249 			wptr += sizeof (tcp_seq);
19250 		}
19251 		tcp_h->th_offset_and_rsrvd[0] +=
19252 		    ((num_sack_blk * 2 + 1) << 4);
19253 	}
19254 }
19255 
19256 /*
19257  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19258  * the destination address and SAP attribute, and if necessary, the
19259  * hardware checksum offload attribute to a Multidata message.
19260  */
19261 static int
19262 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19263     const uint32_t start, const uint32_t stuff, const uint32_t end,
19264     const uint32_t flags)
19265 {
19266 	/* Add global destination address & SAP attribute */
19267 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19268 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19269 		    "destination address+SAP\n"));
19270 
19271 		if (dlmp != NULL)
19272 			TCP_STAT(tcp_mdt_allocfail);
19273 		return (-1);
19274 	}
19275 
19276 	/* Add global hwcksum attribute */
19277 	if (hwcksum &&
19278 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19279 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19280 		    "checksum attribute\n"));
19281 
19282 		TCP_STAT(tcp_mdt_allocfail);
19283 		return (-1);
19284 	}
19285 
19286 	return (0);
19287 }
19288 
19289 /*
19290  * Smaller and private version of pdescinfo_t used specifically for TCP,
19291  * which allows for only two payload spans per packet.
19292  */
19293 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19294 
19295 /*
19296  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19297  * scheme, and returns one the following:
19298  *
19299  * -1 = failed allocation.
19300  *  0 = success; burst count reached, or usable send window is too small,
19301  *      and that we'd rather wait until later before sending again.
19302  */
19303 static int
19304 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19305     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19306     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19307     const int mdt_thres)
19308 {
19309 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19310 	multidata_t	*mmd;
19311 	uint_t		obsegs, obbytes, hdr_frag_sz;
19312 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19313 	int		num_burst_seg, max_pld;
19314 	pdesc_t		*pkt;
19315 	tcp_pdescinfo_t	tcp_pkt_info;
19316 	pdescinfo_t	*pkt_info;
19317 	int		pbuf_idx, pbuf_idx_nxt;
19318 	int		seg_len, len, spill, af;
19319 	boolean_t	add_buffer, zcopy, clusterwide;
19320 	boolean_t	buf_trunked = B_FALSE;
19321 	boolean_t	rconfirm = B_FALSE;
19322 	boolean_t	done = B_FALSE;
19323 	uint32_t	cksum;
19324 	uint32_t	hwcksum_flags;
19325 	ire_t		*ire;
19326 	ill_t		*ill;
19327 	ipha_t		*ipha;
19328 	ip6_t		*ip6h;
19329 	ipaddr_t	src, dst;
19330 	ill_zerocopy_capab_t *zc_cap = NULL;
19331 	uint16_t	*up;
19332 	int		err;
19333 	conn_t		*connp;
19334 	mblk_t		*mp, *mp1, *fw_mp_head = NULL;
19335 	uchar_t		*pld_start;
19336 
19337 #ifdef	_BIG_ENDIAN
19338 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19339 #else
19340 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19341 #endif
19342 
19343 #define	PREP_NEW_MULTIDATA() {			\
19344 	mmd = NULL;				\
19345 	md_mp = md_hbuf = NULL;			\
19346 	cur_hdr_off = 0;			\
19347 	max_pld = tcp->tcp_mdt_max_pld;		\
19348 	pbuf_idx = pbuf_idx_nxt = -1;		\
19349 	add_buffer = B_TRUE;			\
19350 	zcopy = B_FALSE;			\
19351 }
19352 
19353 #define	PREP_NEW_PBUF() {			\
19354 	md_pbuf = md_pbuf_nxt = NULL;		\
19355 	pbuf_idx = pbuf_idx_nxt = -1;		\
19356 	cur_pld_off = 0;			\
19357 	first_snxt = *snxt;			\
19358 	ASSERT(*tail_unsent > 0);		\
19359 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19360 }
19361 
19362 	ASSERT(mdt_thres >= mss);
19363 	ASSERT(*usable > 0 && *usable > mdt_thres);
19364 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19365 	ASSERT(!TCP_IS_DETACHED(tcp));
19366 	ASSERT(tcp->tcp_valid_bits == 0 ||
19367 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19368 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19369 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19370 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19371 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19372 
19373 	connp = tcp->tcp_connp;
19374 	ASSERT(connp != NULL);
19375 	ASSERT(CONN_IS_MD_FASTPATH(connp));
19376 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19377 
19378 	/*
19379 	 * Note that tcp will only declare at most 2 payload spans per
19380 	 * packet, which is much lower than the maximum allowable number
19381 	 * of packet spans per Multidata.  For this reason, we use the
19382 	 * privately declared and smaller descriptor info structure, in
19383 	 * order to save some stack space.
19384 	 */
19385 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19386 
19387 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19388 	if (af == AF_INET) {
19389 		dst = tcp->tcp_ipha->ipha_dst;
19390 		src = tcp->tcp_ipha->ipha_src;
19391 		ASSERT(!CLASSD(dst));
19392 	}
19393 	ASSERT(af == AF_INET ||
19394 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19395 
19396 	obsegs = obbytes = 0;
19397 	num_burst_seg = tcp->tcp_snd_burst;
19398 	md_mp_head = NULL;
19399 	PREP_NEW_MULTIDATA();
19400 
19401 	/*
19402 	 * Before we go on further, make sure there is an IRE that we can
19403 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19404 	 * in proceeding any further, and we should just hand everything
19405 	 * off to the legacy path.
19406 	 */
19407 	mutex_enter(&connp->conn_lock);
19408 	ire = connp->conn_ire_cache;
19409 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
19410 	if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) ||
19411 	    (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6,
19412 	    &tcp->tcp_ip6h->ip6_dst))) &&
19413 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19414 		IRE_REFHOLD(ire);
19415 		mutex_exit(&connp->conn_lock);
19416 	} else {
19417 		boolean_t cached = B_FALSE;
19418 		ts_label_t *tsl;
19419 
19420 		/* force a recheck later on */
19421 		tcp->tcp_ire_ill_check_done = B_FALSE;
19422 
19423 		TCP_DBGSTAT(tcp_ire_null1);
19424 		connp->conn_ire_cache = NULL;
19425 		mutex_exit(&connp->conn_lock);
19426 
19427 		/* Release the old ire */
19428 		if (ire != NULL)
19429 			IRE_REFRELE_NOTR(ire);
19430 
19431 		tsl = crgetlabel(CONN_CRED(connp));
19432 		ire = (af == AF_INET) ?
19433 		    ire_cache_lookup(dst, connp->conn_zoneid, tsl) :
19434 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19435 		    connp->conn_zoneid, tsl);
19436 
19437 		if (ire == NULL) {
19438 			TCP_STAT(tcp_ire_null);
19439 			goto legacy_send_no_md;
19440 		}
19441 
19442 		IRE_REFHOLD_NOTR(ire);
19443 		/*
19444 		 * Since we are inside the squeue, there cannot be another
19445 		 * thread in TCP trying to set the conn_ire_cache now. The
19446 		 * check for IRE_MARK_CONDEMNED ensures that an interface
19447 		 * unplumb thread has not yet started cleaning up the conns.
19448 		 * Hence we don't need to grab the conn lock.
19449 		 */
19450 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
19451 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19452 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19453 				connp->conn_ire_cache = ire;
19454 				cached = B_TRUE;
19455 			}
19456 			rw_exit(&ire->ire_bucket->irb_lock);
19457 		}
19458 
19459 		/*
19460 		 * We can continue to use the ire but since it was not
19461 		 * cached, we should drop the extra reference.
19462 		 */
19463 		if (!cached)
19464 			IRE_REFRELE_NOTR(ire);
19465 	}
19466 
19467 	ASSERT(ire != NULL);
19468 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19469 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19470 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19471 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19472 	/*
19473 	 * If we do support loopback for MDT (which requires modifications
19474 	 * to the receiving paths), the following assertions should go away,
19475 	 * and we would be sending the Multidata to loopback conn later on.
19476 	 */
19477 	ASSERT(!IRE_IS_LOCAL(ire));
19478 	ASSERT(ire->ire_stq != NULL);
19479 
19480 	ill = ire_to_ill(ire);
19481 	ASSERT(ill != NULL);
19482 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19483 
19484 	if (!tcp->tcp_ire_ill_check_done) {
19485 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19486 		tcp->tcp_ire_ill_check_done = B_TRUE;
19487 	}
19488 
19489 	/*
19490 	 * If the underlying interface conditions have changed, or if the
19491 	 * new interface does not support MDT, go back to legacy path.
19492 	 */
19493 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19494 		/* don't go through this path anymore for this connection */
19495 		TCP_STAT(tcp_mdt_conn_halted2);
19496 		tcp->tcp_mdt = B_FALSE;
19497 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19498 		    "interface %s\n", (void *)connp, ill->ill_name));
19499 		/* IRE will be released prior to returning */
19500 		goto legacy_send_no_md;
19501 	}
19502 
19503 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19504 		zc_cap = ill->ill_zerocopy_capab;
19505 
19506 	/*
19507 	 * Check if we can take tcp fast-path. Note that "incomplete"
19508 	 * ire's (where the link-layer for next hop is not resolved
19509 	 * or where the fast-path header in nce_fp_mp is not available
19510 	 * yet) are sent down the legacy (slow) path.
19511 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19512 	 */
19513 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19514 		/* IRE will be released prior to returning */
19515 		goto legacy_send_no_md;
19516 	}
19517 
19518 	/* go to legacy path if interface doesn't support zerocopy */
19519 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19520 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19521 		/* IRE will be released prior to returning */
19522 		goto legacy_send_no_md;
19523 	}
19524 
19525 	/* does the interface support hardware checksum offload? */
19526 	hwcksum_flags = 0;
19527 	if (ILL_HCKSUM_CAPABLE(ill) &&
19528 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19529 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19530 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19531 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19532 		    HCKSUM_IPHDRCKSUM)
19533 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19534 
19535 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19536 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19537 			hwcksum_flags |= HCK_FULLCKSUM;
19538 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19539 		    HCKSUM_INET_PARTIAL)
19540 			hwcksum_flags |= HCK_PARTIALCKSUM;
19541 	}
19542 
19543 	/*
19544 	 * Each header fragment consists of the leading extra space,
19545 	 * followed by the TCP/IP header, and the trailing extra space.
19546 	 * We make sure that each header fragment begins on a 32-bit
19547 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19548 	 * aligned in tcp_mdt_update).
19549 	 */
19550 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19551 	    tcp->tcp_mdt_hdr_tail), 4);
19552 
19553 	/* are we starting from the beginning of data block? */
19554 	if (*tail_unsent == 0) {
19555 		*xmit_tail = (*xmit_tail)->b_cont;
19556 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19557 		*tail_unsent = (int)MBLKL(*xmit_tail);
19558 	}
19559 
19560 	/*
19561 	 * Here we create one or more Multidata messages, each made up of
19562 	 * one header buffer and up to N payload buffers.  This entire
19563 	 * operation is done within two loops:
19564 	 *
19565 	 * The outer loop mostly deals with creating the Multidata message,
19566 	 * as well as the header buffer that gets added to it.  It also
19567 	 * links the Multidata messages together such that all of them can
19568 	 * be sent down to the lower layer in a single putnext call; this
19569 	 * linking behavior depends on the tcp_mdt_chain tunable.
19570 	 *
19571 	 * The inner loop takes an existing Multidata message, and adds
19572 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19573 	 * packetizes those buffers by filling up the corresponding header
19574 	 * buffer fragments with the proper IP and TCP headers, and by
19575 	 * describing the layout of each packet in the packet descriptors
19576 	 * that get added to the Multidata.
19577 	 */
19578 	do {
19579 		/*
19580 		 * If usable send window is too small, or data blocks in
19581 		 * transmit list are smaller than our threshold (i.e. app
19582 		 * performs large writes followed by small ones), we hand
19583 		 * off the control over to the legacy path.  Note that we'll
19584 		 * get back the control once it encounters a large block.
19585 		 */
19586 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19587 		    (*xmit_tail)->b_cont != NULL &&
19588 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19589 			/* send down what we've got so far */
19590 			if (md_mp_head != NULL) {
19591 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19592 				    obsegs, obbytes, &rconfirm);
19593 			}
19594 			/*
19595 			 * Pass control over to tcp_send(), but tell it to
19596 			 * return to us once a large-size transmission is
19597 			 * possible.
19598 			 */
19599 			TCP_STAT(tcp_mdt_legacy_small);
19600 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19601 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19602 			    tail_unsent, xmit_tail, local_time,
19603 			    mdt_thres)) <= 0) {
19604 				/* burst count reached, or alloc failed */
19605 				IRE_REFRELE(ire);
19606 				return (err);
19607 			}
19608 
19609 			/* tcp_send() may have sent everything, so check */
19610 			if (*usable <= 0) {
19611 				IRE_REFRELE(ire);
19612 				return (0);
19613 			}
19614 
19615 			TCP_STAT(tcp_mdt_legacy_ret);
19616 			/*
19617 			 * We may have delivered the Multidata, so make sure
19618 			 * to re-initialize before the next round.
19619 			 */
19620 			md_mp_head = NULL;
19621 			obsegs = obbytes = 0;
19622 			num_burst_seg = tcp->tcp_snd_burst;
19623 			PREP_NEW_MULTIDATA();
19624 
19625 			/* are we starting from the beginning of data block? */
19626 			if (*tail_unsent == 0) {
19627 				*xmit_tail = (*xmit_tail)->b_cont;
19628 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19629 				    (uintptr_t)INT_MAX);
19630 				*tail_unsent = (int)MBLKL(*xmit_tail);
19631 			}
19632 		}
19633 
19634 		/*
19635 		 * max_pld limits the number of mblks in tcp's transmit
19636 		 * queue that can be added to a Multidata message.  Once
19637 		 * this counter reaches zero, no more additional mblks
19638 		 * can be added to it.  What happens afterwards depends
19639 		 * on whether or not we are set to chain the Multidata
19640 		 * messages.  If we are to link them together, reset
19641 		 * max_pld to its original value (tcp_mdt_max_pld) and
19642 		 * prepare to create a new Multidata message which will
19643 		 * get linked to md_mp_head.  Else, leave it alone and
19644 		 * let the inner loop break on its own.
19645 		 */
19646 		if (tcp_mdt_chain && max_pld == 0)
19647 			PREP_NEW_MULTIDATA();
19648 
19649 		/* adding a payload buffer; re-initialize values */
19650 		if (add_buffer)
19651 			PREP_NEW_PBUF();
19652 
19653 		/*
19654 		 * If we don't have a Multidata, either because we just
19655 		 * (re)entered this outer loop, or after we branched off
19656 		 * to tcp_send above, setup the Multidata and header
19657 		 * buffer to be used.
19658 		 */
19659 		if (md_mp == NULL) {
19660 			int md_hbuflen;
19661 			uint32_t start, stuff;
19662 
19663 			/*
19664 			 * Calculate Multidata header buffer size large enough
19665 			 * to hold all of the headers that can possibly be
19666 			 * sent at this moment.  We'd rather over-estimate
19667 			 * the size than running out of space; this is okay
19668 			 * since this buffer is small anyway.
19669 			 */
19670 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19671 
19672 			/*
19673 			 * Start and stuff offset for partial hardware
19674 			 * checksum offload; these are currently for IPv4.
19675 			 * For full checksum offload, they are set to zero.
19676 			 */
19677 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19678 				if (af == AF_INET) {
19679 					start = IP_SIMPLE_HDR_LENGTH;
19680 					stuff = IP_SIMPLE_HDR_LENGTH +
19681 					    TCP_CHECKSUM_OFFSET;
19682 				} else {
19683 					start = IPV6_HDR_LEN;
19684 					stuff = IPV6_HDR_LEN +
19685 					    TCP_CHECKSUM_OFFSET;
19686 				}
19687 			} else {
19688 				start = stuff = 0;
19689 			}
19690 
19691 			/*
19692 			 * Create the header buffer, Multidata, as well as
19693 			 * any necessary attributes (destination address,
19694 			 * SAP and hardware checksum offload) that should
19695 			 * be associated with the Multidata message.
19696 			 */
19697 			ASSERT(cur_hdr_off == 0);
19698 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19699 			    ((md_hbuf->b_wptr += md_hbuflen),
19700 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19701 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19702 			    /* fastpath mblk */
19703 			    ire->ire_nce->nce_res_mp,
19704 			    /* hardware checksum enabled */
19705 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19706 			    /* hardware checksum offsets */
19707 			    start, stuff, 0,
19708 			    /* hardware checksum flag */
19709 			    hwcksum_flags) != 0)) {
19710 legacy_send:
19711 				if (md_mp != NULL) {
19712 					/* Unlink message from the chain */
19713 					if (md_mp_head != NULL) {
19714 						err = (intptr_t)rmvb(md_mp_head,
19715 						    md_mp);
19716 						/*
19717 						 * We can't assert that rmvb
19718 						 * did not return -1, since we
19719 						 * may get here before linkb
19720 						 * happens.  We do, however,
19721 						 * check if we just removed the
19722 						 * only element in the list.
19723 						 */
19724 						if (err == 0)
19725 							md_mp_head = NULL;
19726 					}
19727 					/* md_hbuf gets freed automatically */
19728 					TCP_STAT(tcp_mdt_discarded);
19729 					freeb(md_mp);
19730 				} else {
19731 					/* Either allocb or mmd_alloc failed */
19732 					TCP_STAT(tcp_mdt_allocfail);
19733 					if (md_hbuf != NULL)
19734 						freeb(md_hbuf);
19735 				}
19736 
19737 				/* send down what we've got so far */
19738 				if (md_mp_head != NULL) {
19739 					tcp_multisend_data(tcp, ire, ill,
19740 					    md_mp_head, obsegs, obbytes,
19741 					    &rconfirm);
19742 				}
19743 legacy_send_no_md:
19744 				if (ire != NULL)
19745 					IRE_REFRELE(ire);
19746 				/*
19747 				 * Too bad; let the legacy path handle this.
19748 				 * We specify INT_MAX for the threshold, since
19749 				 * we gave up with the Multidata processings
19750 				 * and let the old path have it all.
19751 				 */
19752 				TCP_STAT(tcp_mdt_legacy_all);
19753 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19754 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19755 				    snxt, tail_unsent, xmit_tail, local_time,
19756 				    INT_MAX));
19757 			}
19758 
19759 			/* link to any existing ones, if applicable */
19760 			TCP_STAT(tcp_mdt_allocd);
19761 			if (md_mp_head == NULL) {
19762 				md_mp_head = md_mp;
19763 			} else if (tcp_mdt_chain) {
19764 				TCP_STAT(tcp_mdt_linked);
19765 				linkb(md_mp_head, md_mp);
19766 			}
19767 		}
19768 
19769 		ASSERT(md_mp_head != NULL);
19770 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19771 		ASSERT(md_mp != NULL && mmd != NULL);
19772 		ASSERT(md_hbuf != NULL);
19773 
19774 		/*
19775 		 * Packetize the transmittable portion of the data block;
19776 		 * each data block is essentially added to the Multidata
19777 		 * as a payload buffer.  We also deal with adding more
19778 		 * than one payload buffers, which happens when the remaining
19779 		 * packetized portion of the current payload buffer is less
19780 		 * than MSS, while the next data block in transmit queue
19781 		 * has enough data to make up for one.  This "spillover"
19782 		 * case essentially creates a split-packet, where portions
19783 		 * of the packet's payload fragments may span across two
19784 		 * virtually discontiguous address blocks.
19785 		 */
19786 		seg_len = mss;
19787 		do {
19788 			len = seg_len;
19789 
19790 			ASSERT(len > 0);
19791 			ASSERT(max_pld >= 0);
19792 			ASSERT(!add_buffer || cur_pld_off == 0);
19793 
19794 			/*
19795 			 * First time around for this payload buffer; note
19796 			 * in the case of a spillover, the following has
19797 			 * been done prior to adding the split-packet
19798 			 * descriptor to Multidata, and we don't want to
19799 			 * repeat the process.
19800 			 */
19801 			if (add_buffer) {
19802 				ASSERT(mmd != NULL);
19803 				ASSERT(md_pbuf == NULL);
19804 				ASSERT(md_pbuf_nxt == NULL);
19805 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19806 
19807 				/*
19808 				 * Have we reached the limit?  We'd get to
19809 				 * this case when we're not chaining the
19810 				 * Multidata messages together, and since
19811 				 * we're done, terminate this loop.
19812 				 */
19813 				if (max_pld == 0)
19814 					break; /* done */
19815 
19816 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19817 					TCP_STAT(tcp_mdt_allocfail);
19818 					goto legacy_send; /* out_of_mem */
19819 				}
19820 
19821 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19822 				    zc_cap != NULL) {
19823 					if (!ip_md_zcopy_attr(mmd, NULL,
19824 					    zc_cap->ill_zerocopy_flags)) {
19825 						freeb(md_pbuf);
19826 						TCP_STAT(tcp_mdt_allocfail);
19827 						/* out_of_mem */
19828 						goto legacy_send;
19829 					}
19830 					zcopy = B_TRUE;
19831 				}
19832 
19833 				md_pbuf->b_rptr += base_pld_off;
19834 
19835 				/*
19836 				 * Add a payload buffer to the Multidata; this
19837 				 * operation must not fail, or otherwise our
19838 				 * logic in this routine is broken.  There
19839 				 * is no memory allocation done by the
19840 				 * routine, so any returned failure simply
19841 				 * tells us that we've done something wrong.
19842 				 *
19843 				 * A failure tells us that either we're adding
19844 				 * the same payload buffer more than once, or
19845 				 * we're trying to add more buffers than
19846 				 * allowed (max_pld calculation is wrong).
19847 				 * None of the above cases should happen, and
19848 				 * we panic because either there's horrible
19849 				 * heap corruption, and/or programming mistake.
19850 				 */
19851 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19852 				if (pbuf_idx < 0) {
19853 					cmn_err(CE_PANIC, "tcp_multisend: "
19854 					    "payload buffer logic error "
19855 					    "detected for tcp %p mmd %p "
19856 					    "pbuf %p (%d)\n",
19857 					    (void *)tcp, (void *)mmd,
19858 					    (void *)md_pbuf, pbuf_idx);
19859 				}
19860 
19861 				ASSERT(max_pld > 0);
19862 				--max_pld;
19863 				add_buffer = B_FALSE;
19864 			}
19865 
19866 			ASSERT(md_mp_head != NULL);
19867 			ASSERT(md_pbuf != NULL);
19868 			ASSERT(md_pbuf_nxt == NULL);
19869 			ASSERT(pbuf_idx != -1);
19870 			ASSERT(pbuf_idx_nxt == -1);
19871 			ASSERT(*usable > 0);
19872 
19873 			/*
19874 			 * We spillover to the next payload buffer only
19875 			 * if all of the following is true:
19876 			 *
19877 			 *   1. There is not enough data on the current
19878 			 *	payload buffer to make up `len',
19879 			 *   2. We are allowed to send `len',
19880 			 *   3. The next payload buffer length is large
19881 			 *	enough to accomodate `spill'.
19882 			 */
19883 			if ((spill = len - *tail_unsent) > 0 &&
19884 			    *usable >= len &&
19885 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19886 			    max_pld > 0) {
19887 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19888 				if (md_pbuf_nxt == NULL) {
19889 					TCP_STAT(tcp_mdt_allocfail);
19890 					goto legacy_send; /* out_of_mem */
19891 				}
19892 
19893 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19894 				    zc_cap != NULL) {
19895 					if (!ip_md_zcopy_attr(mmd, NULL,
19896 					    zc_cap->ill_zerocopy_flags)) {
19897 						freeb(md_pbuf_nxt);
19898 						TCP_STAT(tcp_mdt_allocfail);
19899 						/* out_of_mem */
19900 						goto legacy_send;
19901 					}
19902 					zcopy = B_TRUE;
19903 				}
19904 
19905 				/*
19906 				 * See comments above on the first call to
19907 				 * mmd_addpldbuf for explanation on the panic.
19908 				 */
19909 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19910 				if (pbuf_idx_nxt < 0) {
19911 					panic("tcp_multisend: "
19912 					    "next payload buffer logic error "
19913 					    "detected for tcp %p mmd %p "
19914 					    "pbuf %p (%d)\n",
19915 					    (void *)tcp, (void *)mmd,
19916 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19917 				}
19918 
19919 				ASSERT(max_pld > 0);
19920 				--max_pld;
19921 			} else if (spill > 0) {
19922 				/*
19923 				 * If there's a spillover, but the following
19924 				 * xmit_tail couldn't give us enough octets
19925 				 * to reach "len", then stop the current
19926 				 * Multidata creation and let the legacy
19927 				 * tcp_send() path take over.  We don't want
19928 				 * to send the tiny segment as part of this
19929 				 * Multidata for performance reasons; instead,
19930 				 * we let the legacy path deal with grouping
19931 				 * it with the subsequent small mblks.
19932 				 */
19933 				if (*usable >= len &&
19934 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19935 					max_pld = 0;
19936 					break;	/* done */
19937 				}
19938 
19939 				/*
19940 				 * We can't spillover, and we are near
19941 				 * the end of the current payload buffer,
19942 				 * so send what's left.
19943 				 */
19944 				ASSERT(*tail_unsent > 0);
19945 				len = *tail_unsent;
19946 			}
19947 
19948 			/* tail_unsent is negated if there is a spillover */
19949 			*tail_unsent -= len;
19950 			*usable -= len;
19951 			ASSERT(*usable >= 0);
19952 
19953 			if (*usable < mss)
19954 				seg_len = *usable;
19955 			/*
19956 			 * Sender SWS avoidance; see comments in tcp_send();
19957 			 * everything else is the same, except that we only
19958 			 * do this here if there is no more data to be sent
19959 			 * following the current xmit_tail.  We don't check
19960 			 * for 1-byte urgent data because we shouldn't get
19961 			 * here if TCP_URG_VALID is set.
19962 			 */
19963 			if (*usable > 0 && *usable < mss &&
19964 			    ((md_pbuf_nxt == NULL &&
19965 			    (*xmit_tail)->b_cont == NULL) ||
19966 			    (md_pbuf_nxt != NULL &&
19967 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19968 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19969 			    (tcp->tcp_unsent -
19970 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19971 			    !tcp->tcp_zero_win_probe) {
19972 				if ((*snxt + len) == tcp->tcp_snxt &&
19973 				    (*snxt + len) == tcp->tcp_suna) {
19974 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19975 				}
19976 				done = B_TRUE;
19977 			}
19978 
19979 			/*
19980 			 * Prime pump for IP's checksumming on our behalf;
19981 			 * include the adjustment for a source route if any.
19982 			 * Do this only for software/partial hardware checksum
19983 			 * offload, as this field gets zeroed out later for
19984 			 * the full hardware checksum offload case.
19985 			 */
19986 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19987 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19988 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19989 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19990 			}
19991 
19992 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19993 			*snxt += len;
19994 
19995 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19996 			/*
19997 			 * We set the PUSH bit only if TCP has no more buffered
19998 			 * data to be transmitted (or if sender SWS avoidance
19999 			 * takes place), as opposed to setting it for every
20000 			 * last packet in the burst.
20001 			 */
20002 			if (done ||
20003 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20004 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20005 
20006 			/*
20007 			 * Set FIN bit if this is our last segment; snxt
20008 			 * already includes its length, and it will not
20009 			 * be adjusted after this point.
20010 			 */
20011 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20012 			    *snxt == tcp->tcp_fss) {
20013 				if (!tcp->tcp_fin_acked) {
20014 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20015 					BUMP_MIB(&tcp_mib, tcpOutControl);
20016 				}
20017 				if (!tcp->tcp_fin_sent) {
20018 					tcp->tcp_fin_sent = B_TRUE;
20019 					/*
20020 					 * tcp state must be ESTABLISHED
20021 					 * in order for us to get here in
20022 					 * the first place.
20023 					 */
20024 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20025 
20026 					/*
20027 					 * Upon returning from this routine,
20028 					 * tcp_wput_data() will set tcp_snxt
20029 					 * to be equal to snxt + tcp_fin_sent.
20030 					 * This is essentially the same as
20031 					 * setting it to tcp_fss + 1.
20032 					 */
20033 				}
20034 			}
20035 
20036 			tcp->tcp_last_sent_len = (ushort_t)len;
20037 
20038 			len += tcp_hdr_len;
20039 			if (tcp->tcp_ipversion == IPV4_VERSION)
20040 				tcp->tcp_ipha->ipha_length = htons(len);
20041 			else
20042 				tcp->tcp_ip6h->ip6_plen = htons(len -
20043 				    ((char *)&tcp->tcp_ip6h[1] -
20044 				    tcp->tcp_iphc));
20045 
20046 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20047 
20048 			/* setup header fragment */
20049 			PDESC_HDR_ADD(pkt_info,
20050 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20051 			    tcp->tcp_mdt_hdr_head,		/* head room */
20052 			    tcp_hdr_len,			/* len */
20053 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20054 
20055 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20056 			    hdr_frag_sz);
20057 			ASSERT(MBLKIN(md_hbuf,
20058 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20059 			    PDESC_HDRSIZE(pkt_info)));
20060 
20061 			/* setup first payload fragment */
20062 			PDESC_PLD_INIT(pkt_info);
20063 			PDESC_PLD_SPAN_ADD(pkt_info,
20064 			    pbuf_idx,				/* index */
20065 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20066 			    tcp->tcp_last_sent_len);		/* len */
20067 
20068 			/* create a split-packet in case of a spillover */
20069 			if (md_pbuf_nxt != NULL) {
20070 				ASSERT(spill > 0);
20071 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20072 				ASSERT(!add_buffer);
20073 
20074 				md_pbuf = md_pbuf_nxt;
20075 				md_pbuf_nxt = NULL;
20076 				pbuf_idx = pbuf_idx_nxt;
20077 				pbuf_idx_nxt = -1;
20078 				cur_pld_off = spill;
20079 
20080 				/* trim out first payload fragment */
20081 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20082 
20083 				/* setup second payload fragment */
20084 				PDESC_PLD_SPAN_ADD(pkt_info,
20085 				    pbuf_idx,			/* index */
20086 				    md_pbuf->b_rptr,		/* start */
20087 				    spill);			/* len */
20088 
20089 				if ((*xmit_tail)->b_next == NULL) {
20090 					/*
20091 					 * Store the lbolt used for RTT
20092 					 * estimation. We can only record one
20093 					 * timestamp per mblk so we do it when
20094 					 * we reach the end of the payload
20095 					 * buffer.  Also we only take a new
20096 					 * timestamp sample when the previous
20097 					 * timed data from the same mblk has
20098 					 * been ack'ed.
20099 					 */
20100 					(*xmit_tail)->b_prev = local_time;
20101 					(*xmit_tail)->b_next =
20102 					    (mblk_t *)(uintptr_t)first_snxt;
20103 				}
20104 
20105 				first_snxt = *snxt - spill;
20106 
20107 				/*
20108 				 * Advance xmit_tail; usable could be 0 by
20109 				 * the time we got here, but we made sure
20110 				 * above that we would only spillover to
20111 				 * the next data block if usable includes
20112 				 * the spilled-over amount prior to the
20113 				 * subtraction.  Therefore, we are sure
20114 				 * that xmit_tail->b_cont can't be NULL.
20115 				 */
20116 				ASSERT((*xmit_tail)->b_cont != NULL);
20117 				*xmit_tail = (*xmit_tail)->b_cont;
20118 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20119 				    (uintptr_t)INT_MAX);
20120 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20121 			} else {
20122 				cur_pld_off += tcp->tcp_last_sent_len;
20123 			}
20124 
20125 			/*
20126 			 * Fill in the header using the template header, and
20127 			 * add options such as time-stamp, ECN and/or SACK,
20128 			 * as needed.
20129 			 */
20130 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20131 			    (clock_t)local_time, num_sack_blk);
20132 
20133 			/* take care of some IP header businesses */
20134 			if (af == AF_INET) {
20135 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20136 
20137 				ASSERT(OK_32PTR((uchar_t *)ipha));
20138 				ASSERT(PDESC_HDRL(pkt_info) >=
20139 				    IP_SIMPLE_HDR_LENGTH);
20140 				ASSERT(ipha->ipha_version_and_hdr_length ==
20141 				    IP_SIMPLE_HDR_VERSION);
20142 
20143 				/*
20144 				 * Assign ident value for current packet; see
20145 				 * related comments in ip_wput_ire() about the
20146 				 * contract private interface with clustering
20147 				 * group.
20148 				 */
20149 				clusterwide = B_FALSE;
20150 				if (cl_inet_ipident != NULL) {
20151 					ASSERT(cl_inet_isclusterwide != NULL);
20152 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20153 					    AF_INET,
20154 					    (uint8_t *)(uintptr_t)src)) {
20155 						ipha->ipha_ident =
20156 						    (*cl_inet_ipident)
20157 						    (IPPROTO_IP, AF_INET,
20158 						    (uint8_t *)(uintptr_t)src,
20159 						    (uint8_t *)(uintptr_t)dst);
20160 						clusterwide = B_TRUE;
20161 					}
20162 				}
20163 
20164 				if (!clusterwide) {
20165 					ipha->ipha_ident = (uint16_t)
20166 					    atomic_add_32_nv(
20167 						&ire->ire_ident, 1);
20168 				}
20169 #ifndef _BIG_ENDIAN
20170 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20171 				    (ipha->ipha_ident >> 8);
20172 #endif
20173 			} else {
20174 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20175 
20176 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20177 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20178 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20179 				ASSERT(PDESC_HDRL(pkt_info) >=
20180 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20181 				    TCP_CHECKSUM_SIZE));
20182 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20183 
20184 				if (tcp->tcp_ip_forward_progress) {
20185 					rconfirm = B_TRUE;
20186 					tcp->tcp_ip_forward_progress = B_FALSE;
20187 				}
20188 			}
20189 
20190 			/* at least one payload span, and at most two */
20191 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20192 
20193 			/* add the packet descriptor to Multidata */
20194 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20195 			    KM_NOSLEEP)) == NULL) {
20196 				/*
20197 				 * Any failure other than ENOMEM indicates
20198 				 * that we have passed in invalid pkt_info
20199 				 * or parameters to mmd_addpdesc, which must
20200 				 * not happen.
20201 				 *
20202 				 * EINVAL is a result of failure on boundary
20203 				 * checks against the pkt_info contents.  It
20204 				 * should not happen, and we panic because
20205 				 * either there's horrible heap corruption,
20206 				 * and/or programming mistake.
20207 				 */
20208 				if (err != ENOMEM) {
20209 					cmn_err(CE_PANIC, "tcp_multisend: "
20210 					    "pdesc logic error detected for "
20211 					    "tcp %p mmd %p pinfo %p (%d)\n",
20212 					    (void *)tcp, (void *)mmd,
20213 					    (void *)pkt_info, err);
20214 				}
20215 				TCP_STAT(tcp_mdt_addpdescfail);
20216 				goto legacy_send; /* out_of_mem */
20217 			}
20218 			ASSERT(pkt != NULL);
20219 
20220 			/* calculate IP header and TCP checksums */
20221 			if (af == AF_INET) {
20222 				/* calculate pseudo-header checksum */
20223 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20224 				    (src >> 16) + (src & 0xFFFF);
20225 
20226 				/* offset for TCP header checksum */
20227 				up = IPH_TCPH_CHECKSUMP(ipha,
20228 				    IP_SIMPLE_HDR_LENGTH);
20229 			} else {
20230 				up = (uint16_t *)&ip6h->ip6_src;
20231 
20232 				/* calculate pseudo-header checksum */
20233 				cksum = up[0] + up[1] + up[2] + up[3] +
20234 				    up[4] + up[5] + up[6] + up[7] +
20235 				    up[8] + up[9] + up[10] + up[11] +
20236 				    up[12] + up[13] + up[14] + up[15];
20237 
20238 				/* Fold the initial sum */
20239 				cksum = (cksum & 0xffff) + (cksum >> 16);
20240 
20241 				up = (uint16_t *)(((uchar_t *)ip6h) +
20242 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20243 			}
20244 
20245 			if (hwcksum_flags & HCK_FULLCKSUM) {
20246 				/* clear checksum field for hardware */
20247 				*up = 0;
20248 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20249 				uint32_t sum;
20250 
20251 				/* pseudo-header checksumming */
20252 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20253 				sum = (sum & 0xFFFF) + (sum >> 16);
20254 				*up = (sum & 0xFFFF) + (sum >> 16);
20255 			} else {
20256 				/* software checksumming */
20257 				TCP_STAT(tcp_out_sw_cksum);
20258 				TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes,
20259 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20260 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20261 				    cksum + IP_TCP_CSUM_COMP);
20262 				if (*up == 0)
20263 					*up = 0xFFFF;
20264 			}
20265 
20266 			/* IPv4 header checksum */
20267 			if (af == AF_INET) {
20268 				ipha->ipha_fragment_offset_and_flags |=
20269 				    (uint32_t)htons(ire->ire_frag_flag);
20270 
20271 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20272 					ipha->ipha_hdr_checksum = 0;
20273 				} else {
20274 					IP_HDR_CKSUM(ipha, cksum,
20275 					    ((uint32_t *)ipha)[0],
20276 					    ((uint16_t *)ipha)[4]);
20277 				}
20278 			}
20279 
20280 			if (af == AF_INET && HOOKS4_INTERESTED_PHYSICAL_OUT||
20281 			    af == AF_INET6 && HOOKS6_INTERESTED_PHYSICAL_OUT) {
20282 				/* build header(IP/TCP) mblk for this segment */
20283 				if ((mp = dupb(md_hbuf)) == NULL)
20284 					goto legacy_send;
20285 
20286 				mp->b_rptr = pkt_info->hdr_rptr;
20287 				mp->b_wptr = pkt_info->hdr_wptr;
20288 
20289 				/* build payload mblk for this segment */
20290 				if ((mp1 = dupb(*xmit_tail)) == NULL) {
20291 					freemsg(mp);
20292 					goto legacy_send;
20293 				}
20294 				mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off;
20295 				mp1->b_rptr = mp1->b_wptr -
20296 				    tcp->tcp_last_sent_len;
20297 				linkb(mp, mp1);
20298 
20299 				pld_start = mp1->b_rptr;
20300 
20301 				if (af == AF_INET) {
20302 					DTRACE_PROBE4(
20303 					    ip4__physical__out__start,
20304 					    ill_t *, NULL,
20305 					    ill_t *, ill,
20306 					    ipha_t *, ipha,
20307 					    mblk_t *, mp);
20308 					FW_HOOKS(ip4_physical_out_event,
20309 					    ipv4firewall_physical_out,
20310 					    NULL, ill, ipha, mp, mp);
20311 					DTRACE_PROBE1(
20312 					    ip4__physical__out__end,
20313 					    mblk_t *, mp);
20314 				} else {
20315 					DTRACE_PROBE4(
20316 					    ip6__physical__out_start,
20317 					    ill_t *, NULL,
20318 					    ill_t *, ill,
20319 					    ip6_t *, ip6h,
20320 					    mblk_t *, mp);
20321 					FW_HOOKS6(ip6_physical_out_event,
20322 					    ipv6firewall_physical_out,
20323 					    NULL, ill, ip6h, mp, mp);
20324 					DTRACE_PROBE1(
20325 					    ip6__physical__out__end,
20326 					    mblk_t *, mp);
20327 				}
20328 
20329 				if (buf_trunked && mp != NULL) {
20330 					/*
20331 					 * Need to pass it to normal path.
20332 					 */
20333 					CALL_IP_WPUT(tcp->tcp_connp, q, mp);
20334 				} else if (mp == NULL ||
20335 				    mp->b_rptr != pkt_info->hdr_rptr ||
20336 				    mp->b_wptr != pkt_info->hdr_wptr ||
20337 				    (mp1 = mp->b_cont) == NULL ||
20338 				    mp1->b_rptr != pld_start ||
20339 				    mp1->b_wptr != pld_start +
20340 				    tcp->tcp_last_sent_len ||
20341 				    mp1->b_cont != NULL) {
20342 					/*
20343 					 * Need to pass all packets of this
20344 					 * buffer to normal path, either when
20345 					 * packet is blocked, or when boundary
20346 					 * of header buffer or payload buffer
20347 					 * has been changed by FW_HOOKS[6].
20348 					 */
20349 					buf_trunked = B_TRUE;
20350 					if (md_mp_head != NULL) {
20351 						err = (intptr_t)rmvb(md_mp_head,
20352 						    md_mp);
20353 						if (err == 0)
20354 							md_mp_head = NULL;
20355 					}
20356 
20357 					/* send down what we've got so far */
20358 					if (md_mp_head != NULL) {
20359 						tcp_multisend_data(tcp, ire,
20360 						    ill, md_mp_head, obsegs,
20361 						    obbytes, &rconfirm);
20362 					}
20363 					md_mp_head = NULL;
20364 
20365 					if (mp != NULL)
20366 						CALL_IP_WPUT(tcp->tcp_connp,
20367 						    q, mp);
20368 
20369 					mp1 = fw_mp_head;
20370 					do {
20371 						mp = mp1;
20372 						mp1 = mp1->b_next;
20373 						mp->b_next = NULL;
20374 						mp->b_prev = NULL;
20375 						CALL_IP_WPUT(tcp->tcp_connp,
20376 						    q, mp);
20377 					} while (mp1 != NULL);
20378 
20379 					fw_mp_head = NULL;
20380 				} else {
20381 					if (fw_mp_head == NULL)
20382 						fw_mp_head = mp;
20383 					else
20384 						fw_mp_head->b_prev->b_next = mp;
20385 					fw_mp_head->b_prev = mp;
20386 				}
20387 			}
20388 
20389 			/* advance header offset */
20390 			cur_hdr_off += hdr_frag_sz;
20391 
20392 			obbytes += tcp->tcp_last_sent_len;
20393 			++obsegs;
20394 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20395 		    *tail_unsent > 0);
20396 
20397 		if ((*xmit_tail)->b_next == NULL) {
20398 			/*
20399 			 * Store the lbolt used for RTT estimation. We can only
20400 			 * record one timestamp per mblk so we do it when we
20401 			 * reach the end of the payload buffer. Also we only
20402 			 * take a new timestamp sample when the previous timed
20403 			 * data from the same mblk has been ack'ed.
20404 			 */
20405 			(*xmit_tail)->b_prev = local_time;
20406 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20407 		}
20408 
20409 		ASSERT(*tail_unsent >= 0);
20410 		if (*tail_unsent > 0) {
20411 			/*
20412 			 * We got here because we broke out of the above
20413 			 * loop due to of one of the following cases:
20414 			 *
20415 			 *   1. len < adjusted MSS (i.e. small),
20416 			 *   2. Sender SWS avoidance,
20417 			 *   3. max_pld is zero.
20418 			 *
20419 			 * We are done for this Multidata, so trim our
20420 			 * last payload buffer (if any) accordingly.
20421 			 */
20422 			if (md_pbuf != NULL)
20423 				md_pbuf->b_wptr -= *tail_unsent;
20424 		} else if (*usable > 0) {
20425 			*xmit_tail = (*xmit_tail)->b_cont;
20426 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20427 			    (uintptr_t)INT_MAX);
20428 			*tail_unsent = (int)MBLKL(*xmit_tail);
20429 			add_buffer = B_TRUE;
20430 		}
20431 
20432 		while (fw_mp_head) {
20433 			mp = fw_mp_head;
20434 			fw_mp_head = fw_mp_head->b_next;
20435 			mp->b_prev = mp->b_next = NULL;
20436 			freemsg(mp);
20437 		}
20438 		if (buf_trunked) {
20439 			TCP_STAT(tcp_mdt_discarded);
20440 			freeb(md_mp);
20441 			buf_trunked = B_FALSE;
20442 		}
20443 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20444 	    (tcp_mdt_chain || max_pld > 0));
20445 
20446 	if (md_mp_head != NULL) {
20447 		/* send everything down */
20448 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20449 		    &rconfirm);
20450 	}
20451 
20452 #undef PREP_NEW_MULTIDATA
20453 #undef PREP_NEW_PBUF
20454 #undef IPVER
20455 
20456 	IRE_REFRELE(ire);
20457 	return (0);
20458 }
20459 
20460 /*
20461  * A wrapper function for sending one or more Multidata messages down to
20462  * the module below ip; this routine does not release the reference of the
20463  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20464  */
20465 static void
20466 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20467     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20468 {
20469 	uint64_t delta;
20470 	nce_t *nce;
20471 
20472 	ASSERT(ire != NULL && ill != NULL);
20473 	ASSERT(ire->ire_stq != NULL);
20474 	ASSERT(md_mp_head != NULL);
20475 	ASSERT(rconfirm != NULL);
20476 
20477 	/* adjust MIBs and IRE timestamp */
20478 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20479 	tcp->tcp_obsegs += obsegs;
20480 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
20481 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
20482 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
20483 
20484 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20485 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
20486 		UPDATE_MIB(&ip_mib, ipOutRequests, obsegs);
20487 	} else {
20488 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
20489 		UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs);
20490 	}
20491 
20492 	ire->ire_ob_pkt_count += obsegs;
20493 	if (ire->ire_ipif != NULL)
20494 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20495 	ire->ire_last_used_time = lbolt;
20496 
20497 	/* send it down */
20498 	putnext(ire->ire_stq, md_mp_head);
20499 
20500 	/* we're done for TCP/IPv4 */
20501 	if (tcp->tcp_ipversion == IPV4_VERSION)
20502 		return;
20503 
20504 	nce = ire->ire_nce;
20505 
20506 	ASSERT(nce != NULL);
20507 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20508 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20509 
20510 	/* reachability confirmation? */
20511 	if (*rconfirm) {
20512 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20513 		if (nce->nce_state != ND_REACHABLE) {
20514 			mutex_enter(&nce->nce_lock);
20515 			nce->nce_state = ND_REACHABLE;
20516 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20517 			mutex_exit(&nce->nce_lock);
20518 			(void) untimeout(nce->nce_timeout_id);
20519 			if (ip_debug > 2) {
20520 				/* ip1dbg */
20521 				pr_addr_dbg("tcp_multisend_data: state "
20522 				    "for %s changed to REACHABLE\n",
20523 				    AF_INET6, &ire->ire_addr_v6);
20524 			}
20525 		}
20526 		/* reset transport reachability confirmation */
20527 		*rconfirm = B_FALSE;
20528 	}
20529 
20530 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20531 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20532 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20533 
20534 	if (delta > (uint64_t)ill->ill_reachable_time) {
20535 		mutex_enter(&nce->nce_lock);
20536 		switch (nce->nce_state) {
20537 		case ND_REACHABLE:
20538 		case ND_STALE:
20539 			/*
20540 			 * ND_REACHABLE is identical to ND_STALE in this
20541 			 * specific case. If reachable time has expired for
20542 			 * this neighbor (delta is greater than reachable
20543 			 * time), conceptually, the neighbor cache is no
20544 			 * longer in REACHABLE state, but already in STALE
20545 			 * state.  So the correct transition here is to
20546 			 * ND_DELAY.
20547 			 */
20548 			nce->nce_state = ND_DELAY;
20549 			mutex_exit(&nce->nce_lock);
20550 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
20551 			if (ip_debug > 3) {
20552 				/* ip2dbg */
20553 				pr_addr_dbg("tcp_multisend_data: state "
20554 				    "for %s changed to DELAY\n",
20555 				    AF_INET6, &ire->ire_addr_v6);
20556 			}
20557 			break;
20558 		case ND_DELAY:
20559 		case ND_PROBE:
20560 			mutex_exit(&nce->nce_lock);
20561 			/* Timers have already started */
20562 			break;
20563 		case ND_UNREACHABLE:
20564 			/*
20565 			 * ndp timer has detected that this nce is
20566 			 * unreachable and initiated deleting this nce
20567 			 * and all its associated IREs. This is a race
20568 			 * where we found the ire before it was deleted
20569 			 * and have just sent out a packet using this
20570 			 * unreachable nce.
20571 			 */
20572 			mutex_exit(&nce->nce_lock);
20573 			break;
20574 		default:
20575 			ASSERT(0);
20576 		}
20577 	}
20578 }
20579 
20580 /*
20581  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20582  * scheme, and returns one of the following:
20583  *
20584  * -1 = failed allocation.
20585  *  0 = success; burst count reached, or usable send window is too small,
20586  *      and that we'd rather wait until later before sending again.
20587  *  1 = success; we are called from tcp_multisend(), and both usable send
20588  *      window and tail_unsent are greater than the MDT threshold, and thus
20589  *      Multidata Transmit should be used instead.
20590  */
20591 static int
20592 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20593     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20594     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20595     const int mdt_thres)
20596 {
20597 	int num_burst_seg = tcp->tcp_snd_burst;
20598 
20599 	for (;;) {
20600 		struct datab	*db;
20601 		tcph_t		*tcph;
20602 		uint32_t	sum;
20603 		mblk_t		*mp, *mp1;
20604 		uchar_t		*rptr;
20605 		int		len;
20606 
20607 		/*
20608 		 * If we're called by tcp_multisend(), and the amount of
20609 		 * sendable data as well as the size of current xmit_tail
20610 		 * is beyond the MDT threshold, return to the caller and
20611 		 * let the large data transmit be done using MDT.
20612 		 */
20613 		if (*usable > 0 && *usable > mdt_thres &&
20614 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20615 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20616 			ASSERT(tcp->tcp_mdt);
20617 			return (1);	/* success; do large send */
20618 		}
20619 
20620 		if (num_burst_seg-- == 0)
20621 			break;		/* success; burst count reached */
20622 
20623 		len = mss;
20624 		if (len > *usable) {
20625 			len = *usable;
20626 			if (len <= 0) {
20627 				/* Terminate the loop */
20628 				break;	/* success; too small */
20629 			}
20630 			/*
20631 			 * Sender silly-window avoidance.
20632 			 * Ignore this if we are going to send a
20633 			 * zero window probe out.
20634 			 *
20635 			 * TODO: force data into microscopic window?
20636 			 *	==> (!pushed || (unsent > usable))
20637 			 */
20638 			if (len < (tcp->tcp_max_swnd >> 1) &&
20639 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20640 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20641 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20642 				/*
20643 				 * If the retransmit timer is not running
20644 				 * we start it so that we will retransmit
20645 				 * in the case when the the receiver has
20646 				 * decremented the window.
20647 				 */
20648 				if (*snxt == tcp->tcp_snxt &&
20649 				    *snxt == tcp->tcp_suna) {
20650 					/*
20651 					 * We are not supposed to send
20652 					 * anything.  So let's wait a little
20653 					 * bit longer before breaking SWS
20654 					 * avoidance.
20655 					 *
20656 					 * What should the value be?
20657 					 * Suggestion: MAX(init rexmit time,
20658 					 * tcp->tcp_rto)
20659 					 */
20660 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20661 				}
20662 				break;	/* success; too small */
20663 			}
20664 		}
20665 
20666 		tcph = tcp->tcp_tcph;
20667 
20668 		*usable -= len; /* Approximate - can be adjusted later */
20669 		if (*usable > 0)
20670 			tcph->th_flags[0] = TH_ACK;
20671 		else
20672 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20673 
20674 		/*
20675 		 * Prime pump for IP's checksumming on our behalf
20676 		 * Include the adjustment for a source route if any.
20677 		 */
20678 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20679 		sum = (sum >> 16) + (sum & 0xFFFF);
20680 		U16_TO_ABE16(sum, tcph->th_sum);
20681 
20682 		U32_TO_ABE32(*snxt, tcph->th_seq);
20683 
20684 		/*
20685 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20686 		 * set.  For the case when TCP_FSS_VALID is the only valid
20687 		 * bit (normal active close), branch off only when we think
20688 		 * that the FIN flag needs to be set.  Note for this case,
20689 		 * that (snxt + len) may not reflect the actual seg_len,
20690 		 * as len may be further reduced in tcp_xmit_mp().  If len
20691 		 * gets modified, we will end up here again.
20692 		 */
20693 		if (tcp->tcp_valid_bits != 0 &&
20694 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20695 		    ((*snxt + len) == tcp->tcp_fss))) {
20696 			uchar_t		*prev_rptr;
20697 			uint32_t	prev_snxt = tcp->tcp_snxt;
20698 
20699 			if (*tail_unsent == 0) {
20700 				ASSERT((*xmit_tail)->b_cont != NULL);
20701 				*xmit_tail = (*xmit_tail)->b_cont;
20702 				prev_rptr = (*xmit_tail)->b_rptr;
20703 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20704 				    (*xmit_tail)->b_rptr);
20705 			} else {
20706 				prev_rptr = (*xmit_tail)->b_rptr;
20707 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20708 				    *tail_unsent;
20709 			}
20710 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20711 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20712 			/* Restore tcp_snxt so we get amount sent right. */
20713 			tcp->tcp_snxt = prev_snxt;
20714 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20715 				/*
20716 				 * If the previous timestamp is still in use,
20717 				 * don't stomp on it.
20718 				 */
20719 				if ((*xmit_tail)->b_next == NULL) {
20720 					(*xmit_tail)->b_prev = local_time;
20721 					(*xmit_tail)->b_next =
20722 					    (mblk_t *)(uintptr_t)(*snxt);
20723 				}
20724 			} else
20725 				(*xmit_tail)->b_rptr = prev_rptr;
20726 
20727 			if (mp == NULL)
20728 				return (-1);
20729 			mp1 = mp->b_cont;
20730 
20731 			tcp->tcp_last_sent_len = (ushort_t)len;
20732 			while (mp1->b_cont) {
20733 				*xmit_tail = (*xmit_tail)->b_cont;
20734 				(*xmit_tail)->b_prev = local_time;
20735 				(*xmit_tail)->b_next =
20736 				    (mblk_t *)(uintptr_t)(*snxt);
20737 				mp1 = mp1->b_cont;
20738 			}
20739 			*snxt += len;
20740 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20741 			BUMP_LOCAL(tcp->tcp_obsegs);
20742 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20743 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20744 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20745 			tcp_send_data(tcp, q, mp);
20746 			continue;
20747 		}
20748 
20749 		*snxt += len;	/* Adjust later if we don't send all of len */
20750 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20751 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20752 
20753 		if (*tail_unsent) {
20754 			/* Are the bytes above us in flight? */
20755 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20756 			if (rptr != (*xmit_tail)->b_rptr) {
20757 				*tail_unsent -= len;
20758 				tcp->tcp_last_sent_len = (ushort_t)len;
20759 				len += tcp_hdr_len;
20760 				if (tcp->tcp_ipversion == IPV4_VERSION)
20761 					tcp->tcp_ipha->ipha_length = htons(len);
20762 				else
20763 					tcp->tcp_ip6h->ip6_plen =
20764 					    htons(len -
20765 					    ((char *)&tcp->tcp_ip6h[1] -
20766 					    tcp->tcp_iphc));
20767 				mp = dupb(*xmit_tail);
20768 				if (!mp)
20769 					return (-1);	/* out_of_mem */
20770 				mp->b_rptr = rptr;
20771 				/*
20772 				 * If the old timestamp is no longer in use,
20773 				 * sample a new timestamp now.
20774 				 */
20775 				if ((*xmit_tail)->b_next == NULL) {
20776 					(*xmit_tail)->b_prev = local_time;
20777 					(*xmit_tail)->b_next =
20778 					    (mblk_t *)(uintptr_t)(*snxt-len);
20779 				}
20780 				goto must_alloc;
20781 			}
20782 		} else {
20783 			*xmit_tail = (*xmit_tail)->b_cont;
20784 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20785 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20786 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20787 			    (*xmit_tail)->b_rptr);
20788 		}
20789 
20790 		(*xmit_tail)->b_prev = local_time;
20791 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20792 
20793 		*tail_unsent -= len;
20794 		tcp->tcp_last_sent_len = (ushort_t)len;
20795 
20796 		len += tcp_hdr_len;
20797 		if (tcp->tcp_ipversion == IPV4_VERSION)
20798 			tcp->tcp_ipha->ipha_length = htons(len);
20799 		else
20800 			tcp->tcp_ip6h->ip6_plen = htons(len -
20801 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20802 
20803 		mp = dupb(*xmit_tail);
20804 		if (!mp)
20805 			return (-1);	/* out_of_mem */
20806 
20807 		len = tcp_hdr_len;
20808 		/*
20809 		 * There are four reasons to allocate a new hdr mblk:
20810 		 *  1) The bytes above us are in use by another packet
20811 		 *  2) We don't have good alignment
20812 		 *  3) The mblk is being shared
20813 		 *  4) We don't have enough room for a header
20814 		 */
20815 		rptr = mp->b_rptr - len;
20816 		if (!OK_32PTR(rptr) ||
20817 		    ((db = mp->b_datap), db->db_ref != 2) ||
20818 		    rptr < db->db_base) {
20819 			/* NOTE: we assume allocb returns an OK_32PTR */
20820 
20821 		must_alloc:;
20822 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20823 			    tcp_wroff_xtra, BPRI_MED);
20824 			if (!mp1) {
20825 				freemsg(mp);
20826 				return (-1);	/* out_of_mem */
20827 			}
20828 			mp1->b_cont = mp;
20829 			mp = mp1;
20830 			/* Leave room for Link Level header */
20831 			len = tcp_hdr_len;
20832 			rptr = &mp->b_rptr[tcp_wroff_xtra];
20833 			mp->b_wptr = &rptr[len];
20834 		}
20835 
20836 		/*
20837 		 * Fill in the header using the template header, and add
20838 		 * options such as time-stamp, ECN and/or SACK, as needed.
20839 		 */
20840 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20841 
20842 		mp->b_rptr = rptr;
20843 
20844 		if (*tail_unsent) {
20845 			int spill = *tail_unsent;
20846 
20847 			mp1 = mp->b_cont;
20848 			if (!mp1)
20849 				mp1 = mp;
20850 
20851 			/*
20852 			 * If we're a little short, tack on more mblks until
20853 			 * there is no more spillover.
20854 			 */
20855 			while (spill < 0) {
20856 				mblk_t *nmp;
20857 				int nmpsz;
20858 
20859 				nmp = (*xmit_tail)->b_cont;
20860 				nmpsz = MBLKL(nmp);
20861 
20862 				/*
20863 				 * Excess data in mblk; can we split it?
20864 				 * If MDT is enabled for the connection,
20865 				 * keep on splitting as this is a transient
20866 				 * send path.
20867 				 */
20868 				if (!tcp->tcp_mdt && (spill + nmpsz > 0)) {
20869 					/*
20870 					 * Don't split if stream head was
20871 					 * told to break up larger writes
20872 					 * into smaller ones.
20873 					 */
20874 					if (tcp->tcp_maxpsz > 0)
20875 						break;
20876 
20877 					/*
20878 					 * Next mblk is less than SMSS/2
20879 					 * rounded up to nearest 64-byte;
20880 					 * let it get sent as part of the
20881 					 * next segment.
20882 					 */
20883 					if (tcp->tcp_localnet &&
20884 					    !tcp->tcp_cork &&
20885 					    (nmpsz < roundup((mss >> 1), 64)))
20886 						break;
20887 				}
20888 
20889 				*xmit_tail = nmp;
20890 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20891 				/* Stash for rtt use later */
20892 				(*xmit_tail)->b_prev = local_time;
20893 				(*xmit_tail)->b_next =
20894 				    (mblk_t *)(uintptr_t)(*snxt - len);
20895 				mp1->b_cont = dupb(*xmit_tail);
20896 				mp1 = mp1->b_cont;
20897 
20898 				spill += nmpsz;
20899 				if (mp1 == NULL) {
20900 					*tail_unsent = spill;
20901 					freemsg(mp);
20902 					return (-1);	/* out_of_mem */
20903 				}
20904 			}
20905 
20906 			/* Trim back any surplus on the last mblk */
20907 			if (spill >= 0) {
20908 				mp1->b_wptr -= spill;
20909 				*tail_unsent = spill;
20910 			} else {
20911 				/*
20912 				 * We did not send everything we could in
20913 				 * order to remain within the b_cont limit.
20914 				 */
20915 				*usable -= spill;
20916 				*snxt += spill;
20917 				tcp->tcp_last_sent_len += spill;
20918 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
20919 				/*
20920 				 * Adjust the checksum
20921 				 */
20922 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20923 				sum += spill;
20924 				sum = (sum >> 16) + (sum & 0xFFFF);
20925 				U16_TO_ABE16(sum, tcph->th_sum);
20926 				if (tcp->tcp_ipversion == IPV4_VERSION) {
20927 					sum = ntohs(
20928 					    ((ipha_t *)rptr)->ipha_length) +
20929 					    spill;
20930 					((ipha_t *)rptr)->ipha_length =
20931 					    htons(sum);
20932 				} else {
20933 					sum = ntohs(
20934 					    ((ip6_t *)rptr)->ip6_plen) +
20935 					    spill;
20936 					((ip6_t *)rptr)->ip6_plen =
20937 					    htons(sum);
20938 				}
20939 				*tail_unsent = 0;
20940 			}
20941 		}
20942 		if (tcp->tcp_ip_forward_progress) {
20943 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20944 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
20945 			tcp->tcp_ip_forward_progress = B_FALSE;
20946 		}
20947 
20948 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20949 		tcp_send_data(tcp, q, mp);
20950 		BUMP_LOCAL(tcp->tcp_obsegs);
20951 	}
20952 
20953 	return (0);
20954 }
20955 
20956 /* Unlink and return any mblk that looks like it contains a MDT info */
20957 static mblk_t *
20958 tcp_mdt_info_mp(mblk_t *mp)
20959 {
20960 	mblk_t	*prev_mp;
20961 
20962 	for (;;) {
20963 		prev_mp = mp;
20964 		/* no more to process? */
20965 		if ((mp = mp->b_cont) == NULL)
20966 			break;
20967 
20968 		switch (DB_TYPE(mp)) {
20969 		case M_CTL:
20970 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
20971 				continue;
20972 			ASSERT(prev_mp != NULL);
20973 			prev_mp->b_cont = mp->b_cont;
20974 			mp->b_cont = NULL;
20975 			return (mp);
20976 		default:
20977 			break;
20978 		}
20979 	}
20980 	return (mp);
20981 }
20982 
20983 /* MDT info update routine, called when IP notifies us about MDT */
20984 static void
20985 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
20986 {
20987 	boolean_t prev_state;
20988 
20989 	/*
20990 	 * IP is telling us to abort MDT on this connection?  We know
20991 	 * this because the capability is only turned off when IP
20992 	 * encounters some pathological cases, e.g. link-layer change
20993 	 * where the new driver doesn't support MDT, or in situation
20994 	 * where MDT usage on the link-layer has been switched off.
20995 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
20996 	 * if the link-layer doesn't support MDT, and if it does, it
20997 	 * will indicate that the feature is to be turned on.
20998 	 */
20999 	prev_state = tcp->tcp_mdt;
21000 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21001 	if (!tcp->tcp_mdt && !first) {
21002 		TCP_STAT(tcp_mdt_conn_halted3);
21003 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21004 		    (void *)tcp->tcp_connp));
21005 	}
21006 
21007 	/*
21008 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21009 	 * so disable MDT otherwise.  The checks are done here
21010 	 * and in tcp_wput_data().
21011 	 */
21012 	if (tcp->tcp_mdt &&
21013 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21014 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21015 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21016 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21017 		tcp->tcp_mdt = B_FALSE;
21018 
21019 	if (tcp->tcp_mdt) {
21020 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21021 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21022 			    "version (%d), expected version is %d",
21023 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21024 			tcp->tcp_mdt = B_FALSE;
21025 			return;
21026 		}
21027 
21028 		/*
21029 		 * We need the driver to be able to handle at least three
21030 		 * spans per packet in order for tcp MDT to be utilized.
21031 		 * The first is for the header portion, while the rest are
21032 		 * needed to handle a packet that straddles across two
21033 		 * virtually non-contiguous buffers; a typical tcp packet
21034 		 * therefore consists of only two spans.  Note that we take
21035 		 * a zero as "don't care".
21036 		 */
21037 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21038 		    mdt_capab->ill_mdt_span_limit < 3) {
21039 			tcp->tcp_mdt = B_FALSE;
21040 			return;
21041 		}
21042 
21043 		/* a zero means driver wants default value */
21044 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21045 		    tcp_mdt_max_pbufs);
21046 		if (tcp->tcp_mdt_max_pld == 0)
21047 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
21048 
21049 		/* ensure 32-bit alignment */
21050 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
21051 		    mdt_capab->ill_mdt_hdr_head), 4);
21052 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
21053 		    mdt_capab->ill_mdt_hdr_tail), 4);
21054 
21055 		if (!first && !prev_state) {
21056 			TCP_STAT(tcp_mdt_conn_resumed2);
21057 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21058 			    (void *)tcp->tcp_connp));
21059 		}
21060 	}
21061 }
21062 
21063 static void
21064 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt)
21065 {
21066 	conn_t *connp = tcp->tcp_connp;
21067 
21068 	ASSERT(ire != NULL);
21069 
21070 	/*
21071 	 * We may be in the fastpath here, and although we essentially do
21072 	 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return,
21073 	 * we try to keep things as brief as possible.  After all, these
21074 	 * are only best-effort checks, and we do more thorough ones prior
21075 	 * to calling tcp_multisend().
21076 	 */
21077 	if (ip_multidata_outbound && check_mdt &&
21078 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21079 	    ill != NULL && ILL_MDT_CAPABLE(ill) &&
21080 	    !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21081 	    !(ire->ire_flags & RTF_MULTIRT) &&
21082 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
21083 	    CONN_IS_MD_FASTPATH(connp)) {
21084 		/* Remember the result */
21085 		connp->conn_mdt_ok = B_TRUE;
21086 
21087 		ASSERT(ill->ill_mdt_capab != NULL);
21088 		if (!ill->ill_mdt_capab->ill_mdt_on) {
21089 			/*
21090 			 * If MDT has been previously turned off in the past,
21091 			 * and we currently can do MDT (due to IPQoS policy
21092 			 * removal, etc.) then enable it for this interface.
21093 			 */
21094 			ill->ill_mdt_capab->ill_mdt_on = 1;
21095 			ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for "
21096 			    "interface %s\n", (void *)connp, ill->ill_name));
21097 		}
21098 		tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21099 	}
21100 
21101 	/*
21102 	 * The goal is to reduce the number of generated tcp segments by
21103 	 * setting the maxpsz multiplier to 0; this will have an affect on
21104 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21105 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21106 	 * of outbound segments and incoming ACKs, thus allowing for better
21107 	 * network and system performance.  In contrast the legacy behavior
21108 	 * may result in sending less than SMSS size, because the last mblk
21109 	 * for some packets may have more data than needed to make up SMSS,
21110 	 * and the legacy code refused to "split" it.
21111 	 *
21112 	 * We apply the new behavior on following situations:
21113 	 *
21114 	 *   1) Loopback connections,
21115 	 *   2) Connections in which the remote peer is not on local subnet,
21116 	 *   3) Local subnet connections over the bge interface (see below).
21117 	 *
21118 	 * Ideally, we would like this behavior to apply for interfaces other
21119 	 * than bge.  However, doing so would negatively impact drivers which
21120 	 * perform dynamic mapping and unmapping of DMA resources, which are
21121 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21122 	 * packet will be generated by tcp).  The bge driver does not suffer
21123 	 * from this, as it copies the mblks into pre-mapped buffers, and
21124 	 * therefore does not require more I/O resources than before.
21125 	 *
21126 	 * Otherwise, this behavior is present on all network interfaces when
21127 	 * the destination endpoint is non-local, since reducing the number
21128 	 * of packets in general is good for the network.
21129 	 *
21130 	 * TODO We need to remove this hard-coded conditional for bge once
21131 	 *	a better "self-tuning" mechanism, or a way to comprehend
21132 	 *	the driver transmit strategy is devised.  Until the solution
21133 	 *	is found and well understood, we live with this hack.
21134 	 */
21135 	if (!tcp_static_maxpsz &&
21136 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21137 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21138 		/* override the default value */
21139 		tcp->tcp_maxpsz = 0;
21140 
21141 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21142 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21143 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21144 	}
21145 
21146 	/* set the stream head parameters accordingly */
21147 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21148 }
21149 
21150 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21151 static void
21152 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21153 {
21154 	uchar_t	fval = *mp->b_rptr;
21155 	mblk_t	*tail;
21156 	queue_t	*q = tcp->tcp_wq;
21157 
21158 	/* TODO: How should flush interact with urgent data? */
21159 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21160 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21161 		/*
21162 		 * Flush only data that has not yet been put on the wire.  If
21163 		 * we flush data that we have already transmitted, life, as we
21164 		 * know it, may come to an end.
21165 		 */
21166 		tail = tcp->tcp_xmit_tail;
21167 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21168 		tcp->tcp_xmit_tail_unsent = 0;
21169 		tcp->tcp_unsent = 0;
21170 		if (tail->b_wptr != tail->b_rptr)
21171 			tail = tail->b_cont;
21172 		if (tail) {
21173 			mblk_t **excess = &tcp->tcp_xmit_head;
21174 			for (;;) {
21175 				mblk_t *mp1 = *excess;
21176 				if (mp1 == tail)
21177 					break;
21178 				tcp->tcp_xmit_tail = mp1;
21179 				tcp->tcp_xmit_last = mp1;
21180 				excess = &mp1->b_cont;
21181 			}
21182 			*excess = NULL;
21183 			tcp_close_mpp(&tail);
21184 			if (tcp->tcp_snd_zcopy_aware)
21185 				tcp_zcopy_notify(tcp);
21186 		}
21187 		/*
21188 		 * We have no unsent data, so unsent must be less than
21189 		 * tcp_xmit_lowater, so re-enable flow.
21190 		 */
21191 		if (tcp->tcp_flow_stopped) {
21192 			tcp_clrqfull(tcp);
21193 		}
21194 	}
21195 	/*
21196 	 * TODO: you can't just flush these, you have to increase rwnd for one
21197 	 * thing.  For another, how should urgent data interact?
21198 	 */
21199 	if (fval & FLUSHR) {
21200 		*mp->b_rptr = fval & ~FLUSHW;
21201 		/* XXX */
21202 		qreply(q, mp);
21203 		return;
21204 	}
21205 	freemsg(mp);
21206 }
21207 
21208 /*
21209  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21210  * messages.
21211  */
21212 static void
21213 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21214 {
21215 	mblk_t	*mp1;
21216 	STRUCT_HANDLE(strbuf, sb);
21217 	uint16_t port;
21218 	queue_t 	*q = tcp->tcp_wq;
21219 	in6_addr_t	v6addr;
21220 	ipaddr_t	v4addr;
21221 	uint32_t	flowinfo = 0;
21222 	int		addrlen;
21223 
21224 	/* Make sure it is one of ours. */
21225 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21226 	case TI_GETMYNAME:
21227 	case TI_GETPEERNAME:
21228 		break;
21229 	default:
21230 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21231 		return;
21232 	}
21233 	switch (mi_copy_state(q, mp, &mp1)) {
21234 	case -1:
21235 		return;
21236 	case MI_COPY_CASE(MI_COPY_IN, 1):
21237 		break;
21238 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21239 		/* Copy out the strbuf. */
21240 		mi_copyout(q, mp);
21241 		return;
21242 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21243 		/* All done. */
21244 		mi_copy_done(q, mp, 0);
21245 		return;
21246 	default:
21247 		mi_copy_done(q, mp, EPROTO);
21248 		return;
21249 	}
21250 	/* Check alignment of the strbuf */
21251 	if (!OK_32PTR(mp1->b_rptr)) {
21252 		mi_copy_done(q, mp, EINVAL);
21253 		return;
21254 	}
21255 
21256 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21257 	    (void *)mp1->b_rptr);
21258 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21259 
21260 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21261 		mi_copy_done(q, mp, EINVAL);
21262 		return;
21263 	}
21264 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21265 	case TI_GETMYNAME:
21266 		if (tcp->tcp_family == AF_INET) {
21267 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21268 				v4addr = tcp->tcp_ipha->ipha_src;
21269 			} else {
21270 				/* can't return an address in this case */
21271 				v4addr = 0;
21272 			}
21273 		} else {
21274 			/* tcp->tcp_family == AF_INET6 */
21275 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21276 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21277 				    &v6addr);
21278 			} else {
21279 				v6addr = tcp->tcp_ip6h->ip6_src;
21280 			}
21281 		}
21282 		port = tcp->tcp_lport;
21283 		break;
21284 	case TI_GETPEERNAME:
21285 		if (tcp->tcp_family == AF_INET) {
21286 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21287 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21288 				    v4addr);
21289 			} else {
21290 				/* can't return an address in this case */
21291 				v4addr = 0;
21292 			}
21293 		} else {
21294 			/* tcp->tcp_family == AF_INET6) */
21295 			v6addr = tcp->tcp_remote_v6;
21296 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21297 				/*
21298 				 * No flowinfo if tcp->tcp_ipversion is v4.
21299 				 *
21300 				 * flowinfo was already initialized to zero
21301 				 * where it was declared above, so only
21302 				 * set it if ipversion is v6.
21303 				 */
21304 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21305 				    ~IPV6_VERS_AND_FLOW_MASK;
21306 			}
21307 		}
21308 		port = tcp->tcp_fport;
21309 		break;
21310 	default:
21311 		mi_copy_done(q, mp, EPROTO);
21312 		return;
21313 	}
21314 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21315 	if (!mp1)
21316 		return;
21317 
21318 	if (tcp->tcp_family == AF_INET) {
21319 		sin_t *sin;
21320 
21321 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
21322 		sin = (sin_t *)mp1->b_rptr;
21323 		mp1->b_wptr = (uchar_t *)&sin[1];
21324 		*sin = sin_null;
21325 		sin->sin_family = AF_INET;
21326 		sin->sin_addr.s_addr = v4addr;
21327 		sin->sin_port = port;
21328 	} else {
21329 		/* tcp->tcp_family == AF_INET6 */
21330 		sin6_t *sin6;
21331 
21332 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
21333 		sin6 = (sin6_t *)mp1->b_rptr;
21334 		mp1->b_wptr = (uchar_t *)&sin6[1];
21335 		*sin6 = sin6_null;
21336 		sin6->sin6_family = AF_INET6;
21337 		sin6->sin6_flowinfo = flowinfo;
21338 		sin6->sin6_addr = v6addr;
21339 		sin6->sin6_port = port;
21340 	}
21341 	/* Copy out the address */
21342 	mi_copyout(q, mp);
21343 }
21344 
21345 /*
21346  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21347  * messages.
21348  */
21349 /* ARGSUSED */
21350 static void
21351 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21352 {
21353 	conn_t 	*connp = (conn_t *)arg;
21354 	tcp_t	*tcp = connp->conn_tcp;
21355 	queue_t	*q = tcp->tcp_wq;
21356 	struct iocblk	*iocp;
21357 
21358 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21359 	/*
21360 	 * Try and ASSERT the minimum possible references on the
21361 	 * conn early enough. Since we are executing on write side,
21362 	 * the connection is obviously not detached and that means
21363 	 * there is a ref each for TCP and IP. Since we are behind
21364 	 * the squeue, the minimum references needed are 3. If the
21365 	 * conn is in classifier hash list, there should be an
21366 	 * extra ref for that (we check both the possibilities).
21367 	 */
21368 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21369 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21370 
21371 	iocp = (struct iocblk *)mp->b_rptr;
21372 	switch (iocp->ioc_cmd) {
21373 	case TCP_IOC_DEFAULT_Q:
21374 		/* Wants to be the default wq. */
21375 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
21376 			iocp->ioc_error = EPERM;
21377 			iocp->ioc_count = 0;
21378 			mp->b_datap->db_type = M_IOCACK;
21379 			qreply(q, mp);
21380 			return;
21381 		}
21382 		tcp_def_q_set(tcp, mp);
21383 		return;
21384 	case _SIOCSOCKFALLBACK:
21385 		/*
21386 		 * Either sockmod is about to be popped and the socket
21387 		 * would now be treated as a plain stream, or a module
21388 		 * is about to be pushed so we could no longer use read-
21389 		 * side synchronous streams for fused loopback tcp.
21390 		 * Drain any queued data and disable direct sockfs
21391 		 * interface from now on.
21392 		 */
21393 		if (!tcp->tcp_issocket) {
21394 			DB_TYPE(mp) = M_IOCNAK;
21395 			iocp->ioc_error = EINVAL;
21396 		} else {
21397 #ifdef	_ILP32
21398 			tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21399 #else
21400 			tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21401 #endif
21402 			/*
21403 			 * Insert this socket into the acceptor hash.
21404 			 * We might need it for T_CONN_RES message
21405 			 */
21406 			tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21407 
21408 			if (tcp->tcp_fused) {
21409 				/*
21410 				 * This is a fused loopback tcp; disable
21411 				 * read-side synchronous streams interface
21412 				 * and drain any queued data.  It is okay
21413 				 * to do this for non-synchronous streams
21414 				 * fused tcp as well.
21415 				 */
21416 				tcp_fuse_disable_pair(tcp, B_FALSE);
21417 			}
21418 			tcp->tcp_issocket = B_FALSE;
21419 			TCP_STAT(tcp_sock_fallback);
21420 
21421 			DB_TYPE(mp) = M_IOCACK;
21422 			iocp->ioc_error = 0;
21423 		}
21424 		iocp->ioc_count = 0;
21425 		iocp->ioc_rval = 0;
21426 		qreply(q, mp);
21427 		return;
21428 	}
21429 	CALL_IP_WPUT(connp, q, mp);
21430 }
21431 
21432 /*
21433  * This routine is called by tcp_wput() to handle all TPI requests.
21434  */
21435 /* ARGSUSED */
21436 static void
21437 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21438 {
21439 	conn_t 	*connp = (conn_t *)arg;
21440 	tcp_t	*tcp = connp->conn_tcp;
21441 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21442 	uchar_t *rptr;
21443 	t_scalar_t type;
21444 	int len;
21445 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
21446 
21447 	/*
21448 	 * Try and ASSERT the minimum possible references on the
21449 	 * conn early enough. Since we are executing on write side,
21450 	 * the connection is obviously not detached and that means
21451 	 * there is a ref each for TCP and IP. Since we are behind
21452 	 * the squeue, the minimum references needed are 3. If the
21453 	 * conn is in classifier hash list, there should be an
21454 	 * extra ref for that (we check both the possibilities).
21455 	 */
21456 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21457 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21458 
21459 	rptr = mp->b_rptr;
21460 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21461 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21462 		type = ((union T_primitives *)rptr)->type;
21463 		if (type == T_EXDATA_REQ) {
21464 			uint32_t msize = msgdsize(mp->b_cont);
21465 
21466 			len = msize - 1;
21467 			if (len < 0) {
21468 				freemsg(mp);
21469 				return;
21470 			}
21471 			/*
21472 			 * Try to force urgent data out on the wire.
21473 			 * Even if we have unsent data this will
21474 			 * at least send the urgent flag.
21475 			 * XXX does not handle more flag correctly.
21476 			 */
21477 			len += tcp->tcp_unsent;
21478 			len += tcp->tcp_snxt;
21479 			tcp->tcp_urg = len;
21480 			tcp->tcp_valid_bits |= TCP_URG_VALID;
21481 
21482 			/* Bypass tcp protocol for fused tcp loopback */
21483 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
21484 				return;
21485 		} else if (type != T_DATA_REQ) {
21486 			goto non_urgent_data;
21487 		}
21488 		/* TODO: options, flags, ... from user */
21489 		/* Set length to zero for reclamation below */
21490 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21491 		freeb(mp);
21492 		return;
21493 	} else {
21494 		if (tcp->tcp_debug) {
21495 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21496 			    "tcp_wput_proto, dropping one...");
21497 		}
21498 		freemsg(mp);
21499 		return;
21500 	}
21501 
21502 non_urgent_data:
21503 
21504 	switch ((int)tprim->type) {
21505 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21506 		/*
21507 		 * save the kssl_ent_t from the next block, and convert this
21508 		 * back to a normal bind_req.
21509 		 */
21510 		if (mp->b_cont != NULL) {
21511 		    ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21512 
21513 			if (tcp->tcp_kssl_ent != NULL) {
21514 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21515 				    KSSL_NO_PROXY);
21516 				tcp->tcp_kssl_ent = NULL;
21517 			}
21518 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21519 			    sizeof (kssl_ent_t));
21520 			kssl_hold_ent(tcp->tcp_kssl_ent);
21521 			freemsg(mp->b_cont);
21522 			mp->b_cont = NULL;
21523 		}
21524 		tprim->type = T_BIND_REQ;
21525 
21526 	/* FALLTHROUGH */
21527 	case O_T_BIND_REQ:	/* bind request */
21528 	case T_BIND_REQ:	/* new semantics bind request */
21529 		tcp_bind(tcp, mp);
21530 		break;
21531 	case T_UNBIND_REQ:	/* unbind request */
21532 		tcp_unbind(tcp, mp);
21533 		break;
21534 	case O_T_CONN_RES:	/* old connection response XXX */
21535 	case T_CONN_RES:	/* connection response */
21536 		tcp_accept(tcp, mp);
21537 		break;
21538 	case T_CONN_REQ:	/* connection request */
21539 		tcp_connect(tcp, mp);
21540 		break;
21541 	case T_DISCON_REQ:	/* disconnect request */
21542 		tcp_disconnect(tcp, mp);
21543 		break;
21544 	case T_CAPABILITY_REQ:
21545 		tcp_capability_req(tcp, mp);	/* capability request */
21546 		break;
21547 	case T_INFO_REQ:	/* information request */
21548 		tcp_info_req(tcp, mp);
21549 		break;
21550 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21551 		/* Only IP is allowed to return meaningful value */
21552 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21553 		break;
21554 	case T_OPTMGMT_REQ:
21555 		/*
21556 		 * Note:  no support for snmpcom_req() through new
21557 		 * T_OPTMGMT_REQ. See comments in ip.c
21558 		 */
21559 		/* Only IP is allowed to return meaningful value */
21560 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21561 		break;
21562 
21563 	case T_UNITDATA_REQ:	/* unitdata request */
21564 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21565 		break;
21566 	case T_ORDREL_REQ:	/* orderly release req */
21567 		freemsg(mp);
21568 
21569 		if (tcp->tcp_fused)
21570 			tcp_unfuse(tcp);
21571 
21572 		if (tcp_xmit_end(tcp) != 0) {
21573 			/*
21574 			 * We were crossing FINs and got a reset from
21575 			 * the other side. Just ignore it.
21576 			 */
21577 			if (tcp->tcp_debug) {
21578 				(void) strlog(TCP_MOD_ID, 0, 1,
21579 				    SL_ERROR|SL_TRACE,
21580 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21581 				    "state %s",
21582 				    tcp_display(tcp, NULL,
21583 				    DISP_ADDR_AND_PORT));
21584 			}
21585 		}
21586 		break;
21587 	case T_ADDR_REQ:
21588 		tcp_addr_req(tcp, mp);
21589 		break;
21590 	default:
21591 		if (tcp->tcp_debug) {
21592 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21593 			    "tcp_wput_proto, bogus TPI msg, type %d",
21594 			    tprim->type);
21595 		}
21596 		/*
21597 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21598 		 * to recover.
21599 		 */
21600 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21601 		break;
21602 	}
21603 }
21604 
21605 /*
21606  * The TCP write service routine should never be called...
21607  */
21608 /* ARGSUSED */
21609 static void
21610 tcp_wsrv(queue_t *q)
21611 {
21612 	TCP_STAT(tcp_wsrv_called);
21613 }
21614 
21615 /* Non overlapping byte exchanger */
21616 static void
21617 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21618 {
21619 	uchar_t	uch;
21620 
21621 	while (len-- > 0) {
21622 		uch = a[len];
21623 		a[len] = b[len];
21624 		b[len] = uch;
21625 	}
21626 }
21627 
21628 /*
21629  * Send out a control packet on the tcp connection specified.  This routine
21630  * is typically called where we need a simple ACK or RST generated.
21631  */
21632 static void
21633 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21634 {
21635 	uchar_t		*rptr;
21636 	tcph_t		*tcph;
21637 	ipha_t		*ipha = NULL;
21638 	ip6_t		*ip6h = NULL;
21639 	uint32_t	sum;
21640 	int		tcp_hdr_len;
21641 	int		tcp_ip_hdr_len;
21642 	mblk_t		*mp;
21643 
21644 	/*
21645 	 * Save sum for use in source route later.
21646 	 */
21647 	ASSERT(tcp != NULL);
21648 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21649 	tcp_hdr_len = tcp->tcp_hdr_len;
21650 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21651 
21652 	/* If a text string is passed in with the request, pass it to strlog. */
21653 	if (str != NULL && tcp->tcp_debug) {
21654 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21655 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21656 		    str, seq, ack, ctl);
21657 	}
21658 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21659 	    BPRI_MED);
21660 	if (mp == NULL) {
21661 		return;
21662 	}
21663 	rptr = &mp->b_rptr[tcp_wroff_xtra];
21664 	mp->b_rptr = rptr;
21665 	mp->b_wptr = &rptr[tcp_hdr_len];
21666 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21667 
21668 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21669 		ipha = (ipha_t *)rptr;
21670 		ipha->ipha_length = htons(tcp_hdr_len);
21671 	} else {
21672 		ip6h = (ip6_t *)rptr;
21673 		ASSERT(tcp != NULL);
21674 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21675 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21676 	}
21677 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21678 	tcph->th_flags[0] = (uint8_t)ctl;
21679 	if (ctl & TH_RST) {
21680 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21681 		BUMP_MIB(&tcp_mib, tcpOutControl);
21682 		/*
21683 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21684 		 */
21685 		if (tcp->tcp_snd_ts_ok &&
21686 		    tcp->tcp_state > TCPS_SYN_SENT) {
21687 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21688 			*(mp->b_wptr) = TCPOPT_EOL;
21689 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21690 				ipha->ipha_length = htons(tcp_hdr_len -
21691 				    TCPOPT_REAL_TS_LEN);
21692 			} else {
21693 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21694 				    TCPOPT_REAL_TS_LEN);
21695 			}
21696 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21697 			sum -= TCPOPT_REAL_TS_LEN;
21698 		}
21699 	}
21700 	if (ctl & TH_ACK) {
21701 		if (tcp->tcp_snd_ts_ok) {
21702 			U32_TO_BE32(lbolt,
21703 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21704 			U32_TO_BE32(tcp->tcp_ts_recent,
21705 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21706 		}
21707 
21708 		/* Update the latest receive window size in TCP header. */
21709 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21710 		    tcph->th_win);
21711 		tcp->tcp_rack = ack;
21712 		tcp->tcp_rack_cnt = 0;
21713 		BUMP_MIB(&tcp_mib, tcpOutAck);
21714 	}
21715 	BUMP_LOCAL(tcp->tcp_obsegs);
21716 	U32_TO_BE32(seq, tcph->th_seq);
21717 	U32_TO_BE32(ack, tcph->th_ack);
21718 	/*
21719 	 * Include the adjustment for a source route if any.
21720 	 */
21721 	sum = (sum >> 16) + (sum & 0xFFFF);
21722 	U16_TO_BE16(sum, tcph->th_sum);
21723 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21724 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21725 }
21726 
21727 /*
21728  * If this routine returns B_TRUE, TCP can generate a RST in response
21729  * to a segment.  If it returns B_FALSE, TCP should not respond.
21730  */
21731 static boolean_t
21732 tcp_send_rst_chk(void)
21733 {
21734 	clock_t	now;
21735 
21736 	/*
21737 	 * TCP needs to protect itself from generating too many RSTs.
21738 	 * This can be a DoS attack by sending us random segments
21739 	 * soliciting RSTs.
21740 	 *
21741 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21742 	 * in each 1 second interval.  In this way, TCP still generate
21743 	 * RSTs in normal cases but when under attack, the impact is
21744 	 * limited.
21745 	 */
21746 	if (tcp_rst_sent_rate_enabled != 0) {
21747 		now = lbolt;
21748 		/* lbolt can wrap around. */
21749 		if ((tcp_last_rst_intrvl > now) ||
21750 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
21751 			tcp_last_rst_intrvl = now;
21752 			tcp_rst_cnt = 1;
21753 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
21754 			return (B_FALSE);
21755 		}
21756 	}
21757 	return (B_TRUE);
21758 }
21759 
21760 /*
21761  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21762  */
21763 static void
21764 tcp_ip_ire_mark_advice(tcp_t *tcp)
21765 {
21766 	mblk_t *mp;
21767 	ipic_t *ipic;
21768 
21769 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21770 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21771 		    &ipic);
21772 	} else {
21773 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21774 		    &ipic);
21775 	}
21776 	if (mp == NULL)
21777 		return;
21778 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21779 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21780 }
21781 
21782 /*
21783  * Return an IP advice ioctl mblk and set ipic to be the pointer
21784  * to the advice structure.
21785  */
21786 static mblk_t *
21787 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21788 {
21789 	struct iocblk *ioc;
21790 	mblk_t *mp, *mp1;
21791 
21792 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21793 	if (mp == NULL)
21794 		return (NULL);
21795 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21796 	*ipic = (ipic_t *)mp->b_rptr;
21797 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21798 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21799 
21800 	bcopy(addr, *ipic + 1, addr_len);
21801 
21802 	(*ipic)->ipic_addr_length = addr_len;
21803 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21804 
21805 	mp1 = mkiocb(IP_IOCTL);
21806 	if (mp1 == NULL) {
21807 		freemsg(mp);
21808 		return (NULL);
21809 	}
21810 	mp1->b_cont = mp;
21811 	ioc = (struct iocblk *)mp1->b_rptr;
21812 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21813 
21814 	return (mp1);
21815 }
21816 
21817 /*
21818  * Generate a reset based on an inbound packet for which there is no active
21819  * tcp state that we can find.
21820  *
21821  * IPSEC NOTE : Try to send the reply with the same protection as it came
21822  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21823  * the packet will go out at the same level of protection as it came in by
21824  * converting the IPSEC_IN to IPSEC_OUT.
21825  */
21826 static void
21827 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21828     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid)
21829 {
21830 	ipha_t		*ipha = NULL;
21831 	ip6_t		*ip6h = NULL;
21832 	ushort_t	len;
21833 	tcph_t		*tcph;
21834 	int		i;
21835 	mblk_t		*ipsec_mp;
21836 	boolean_t	mctl_present;
21837 	ipic_t		*ipic;
21838 	ipaddr_t	v4addr;
21839 	in6_addr_t	v6addr;
21840 	int		addr_len;
21841 	void		*addr;
21842 	queue_t		*q = tcp_g_q;
21843 	tcp_t		*tcp = Q_TO_TCP(q);
21844 	cred_t		*cr;
21845 	mblk_t		*nmp;
21846 
21847 	if (!tcp_send_rst_chk()) {
21848 		tcp_rst_unsent++;
21849 		freemsg(mp);
21850 		return;
21851 	}
21852 
21853 	if (mp->b_datap->db_type == M_CTL) {
21854 		ipsec_mp = mp;
21855 		mp = mp->b_cont;
21856 		mctl_present = B_TRUE;
21857 	} else {
21858 		ipsec_mp = mp;
21859 		mctl_present = B_FALSE;
21860 	}
21861 
21862 	if (str && q && tcp_dbg) {
21863 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21864 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
21865 		    "flags 0x%x",
21866 		    str, seq, ack, ctl);
21867 	}
21868 	if (mp->b_datap->db_ref != 1) {
21869 		mblk_t *mp1 = copyb(mp);
21870 		freemsg(mp);
21871 		mp = mp1;
21872 		if (!mp) {
21873 			if (mctl_present)
21874 				freeb(ipsec_mp);
21875 			return;
21876 		} else {
21877 			if (mctl_present) {
21878 				ipsec_mp->b_cont = mp;
21879 			} else {
21880 				ipsec_mp = mp;
21881 			}
21882 		}
21883 	} else if (mp->b_cont) {
21884 		freemsg(mp->b_cont);
21885 		mp->b_cont = NULL;
21886 	}
21887 	/*
21888 	 * We skip reversing source route here.
21889 	 * (for now we replace all IP options with EOL)
21890 	 */
21891 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21892 		ipha = (ipha_t *)mp->b_rptr;
21893 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
21894 			mp->b_rptr[i] = IPOPT_EOL;
21895 		/*
21896 		 * Make sure that src address isn't flagrantly invalid.
21897 		 * Not all broadcast address checking for the src address
21898 		 * is possible, since we don't know the netmask of the src
21899 		 * addr.  No check for destination address is done, since
21900 		 * IP will not pass up a packet with a broadcast dest
21901 		 * address to TCP.  Similar checks are done below for IPv6.
21902 		 */
21903 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
21904 		    CLASSD(ipha->ipha_src)) {
21905 			freemsg(ipsec_mp);
21906 			BUMP_MIB(&ip_mib, ipInDiscards);
21907 			return;
21908 		}
21909 	} else {
21910 		ip6h = (ip6_t *)mp->b_rptr;
21911 
21912 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
21913 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
21914 			freemsg(ipsec_mp);
21915 			BUMP_MIB(&ip6_mib, ipv6InDiscards);
21916 			return;
21917 		}
21918 
21919 		/* Remove any extension headers assuming partial overlay */
21920 		if (ip_hdr_len > IPV6_HDR_LEN) {
21921 			uint8_t *to;
21922 
21923 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
21924 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
21925 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
21926 			ip_hdr_len = IPV6_HDR_LEN;
21927 			ip6h = (ip6_t *)mp->b_rptr;
21928 			ip6h->ip6_nxt = IPPROTO_TCP;
21929 		}
21930 	}
21931 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
21932 	if (tcph->th_flags[0] & TH_RST) {
21933 		freemsg(ipsec_mp);
21934 		return;
21935 	}
21936 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
21937 	len = ip_hdr_len + sizeof (tcph_t);
21938 	mp->b_wptr = &mp->b_rptr[len];
21939 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21940 		ipha->ipha_length = htons(len);
21941 		/* Swap addresses */
21942 		v4addr = ipha->ipha_src;
21943 		ipha->ipha_src = ipha->ipha_dst;
21944 		ipha->ipha_dst = v4addr;
21945 		ipha->ipha_ident = 0;
21946 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
21947 		addr_len = IP_ADDR_LEN;
21948 		addr = &v4addr;
21949 	} else {
21950 		/* No ip6i_t in this case */
21951 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
21952 		/* Swap addresses */
21953 		v6addr = ip6h->ip6_src;
21954 		ip6h->ip6_src = ip6h->ip6_dst;
21955 		ip6h->ip6_dst = v6addr;
21956 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
21957 		addr_len = IPV6_ADDR_LEN;
21958 		addr = &v6addr;
21959 	}
21960 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
21961 	U32_TO_BE32(ack, tcph->th_ack);
21962 	U32_TO_BE32(seq, tcph->th_seq);
21963 	U16_TO_BE16(0, tcph->th_win);
21964 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
21965 	tcph->th_flags[0] = (uint8_t)ctl;
21966 	if (ctl & TH_RST) {
21967 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21968 		BUMP_MIB(&tcp_mib, tcpOutControl);
21969 	}
21970 
21971 	/* IP trusts us to set up labels when required. */
21972 	if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL &&
21973 	    crgetlabel(cr) != NULL) {
21974 		int err, adjust;
21975 
21976 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
21977 			err = tsol_check_label(cr, &mp, &adjust,
21978 			    tcp->tcp_connp->conn_mac_exempt);
21979 		else
21980 			err = tsol_check_label_v6(cr, &mp, &adjust,
21981 			    tcp->tcp_connp->conn_mac_exempt);
21982 		if (mctl_present)
21983 			ipsec_mp->b_cont = mp;
21984 		else
21985 			ipsec_mp = mp;
21986 		if (err != 0) {
21987 			freemsg(ipsec_mp);
21988 			return;
21989 		}
21990 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21991 			ipha = (ipha_t *)mp->b_rptr;
21992 			adjust += ntohs(ipha->ipha_length);
21993 			ipha->ipha_length = htons(adjust);
21994 		} else {
21995 			ip6h = (ip6_t *)mp->b_rptr;
21996 		}
21997 	}
21998 
21999 	if (mctl_present) {
22000 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22001 
22002 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22003 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22004 			return;
22005 		}
22006 	}
22007 	if (zoneid == ALL_ZONES)
22008 		zoneid = GLOBAL_ZONEID;
22009 
22010 	/* Add the zoneid so ip_output routes it properly */
22011 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) {
22012 		freemsg(ipsec_mp);
22013 		return;
22014 	}
22015 	ipsec_mp = nmp;
22016 
22017 	/*
22018 	 * NOTE:  one might consider tracing a TCP packet here, but
22019 	 * this function has no active TCP state and no tcp structure
22020 	 * that has a trace buffer.  If we traced here, we would have
22021 	 * to keep a local trace buffer in tcp_record_trace().
22022 	 *
22023 	 * TSol note: The mblk that contains the incoming packet was
22024 	 * reused by tcp_xmit_listener_reset, so it already contains
22025 	 * the right credentials and we don't need to call mblk_setcred.
22026 	 * Also the conn's cred is not right since it is associated
22027 	 * with tcp_g_q.
22028 	 */
22029 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22030 
22031 	/*
22032 	 * Tell IP to mark the IRE used for this destination temporary.
22033 	 * This way, we can limit our exposure to DoS attack because IP
22034 	 * creates an IRE for each destination.  If there are too many,
22035 	 * the time to do any routing lookup will be extremely long.  And
22036 	 * the lookup can be in interrupt context.
22037 	 *
22038 	 * Note that in normal circumstances, this marking should not
22039 	 * affect anything.  It would be nice if only 1 message is
22040 	 * needed to inform IP that the IRE created for this RST should
22041 	 * not be added to the cache table.  But there is currently
22042 	 * not such communication mechanism between TCP and IP.  So
22043 	 * the best we can do now is to send the advice ioctl to IP
22044 	 * to mark the IRE temporary.
22045 	 */
22046 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22047 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22048 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22049 	}
22050 }
22051 
22052 /*
22053  * Initiate closedown sequence on an active connection.  (May be called as
22054  * writer.)  Return value zero for OK return, non-zero for error return.
22055  */
22056 static int
22057 tcp_xmit_end(tcp_t *tcp)
22058 {
22059 	ipic_t	*ipic;
22060 	mblk_t	*mp;
22061 
22062 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22063 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22064 		/*
22065 		 * Invalid state, only states TCPS_SYN_RCVD,
22066 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22067 		 */
22068 		return (-1);
22069 	}
22070 
22071 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22072 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22073 	/*
22074 	 * If there is nothing more unsent, send the FIN now.
22075 	 * Otherwise, it will go out with the last segment.
22076 	 */
22077 	if (tcp->tcp_unsent == 0) {
22078 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22079 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22080 
22081 		if (mp) {
22082 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22083 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22084 		} else {
22085 			/*
22086 			 * Couldn't allocate msg.  Pretend we got it out.
22087 			 * Wait for rexmit timeout.
22088 			 */
22089 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22090 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22091 		}
22092 
22093 		/*
22094 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22095 		 * changed.
22096 		 */
22097 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22098 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22099 		}
22100 	} else {
22101 		/*
22102 		 * If tcp->tcp_cork is set, then the data will not get sent,
22103 		 * so we have to check that and unset it first.
22104 		 */
22105 		if (tcp->tcp_cork)
22106 			tcp->tcp_cork = B_FALSE;
22107 		tcp_wput_data(tcp, NULL, B_FALSE);
22108 	}
22109 
22110 	/*
22111 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22112 	 * is 0, don't update the cache.
22113 	 */
22114 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
22115 		return (0);
22116 
22117 	/*
22118 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22119 	 * different from the destination.
22120 	 */
22121 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22122 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22123 			return (0);
22124 		}
22125 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22126 		    &ipic);
22127 	} else {
22128 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22129 		    &tcp->tcp_ip6h->ip6_dst))) {
22130 			return (0);
22131 		}
22132 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22133 		    &ipic);
22134 	}
22135 
22136 	/* Record route attributes in the IRE for use by future connections. */
22137 	if (mp == NULL)
22138 		return (0);
22139 
22140 	/*
22141 	 * We do not have a good algorithm to update ssthresh at this time.
22142 	 * So don't do any update.
22143 	 */
22144 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22145 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22146 
22147 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22148 	return (0);
22149 }
22150 
22151 /*
22152  * Generate a "no listener here" RST in response to an "unknown" segment.
22153  * Note that we are reusing the incoming mp to construct the outgoing
22154  * RST.
22155  */
22156 void
22157 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid)
22158 {
22159 	uchar_t		*rptr;
22160 	uint32_t	seg_len;
22161 	tcph_t		*tcph;
22162 	uint32_t	seg_seq;
22163 	uint32_t	seg_ack;
22164 	uint_t		flags;
22165 	mblk_t		*ipsec_mp;
22166 	ipha_t 		*ipha;
22167 	ip6_t 		*ip6h;
22168 	boolean_t	mctl_present = B_FALSE;
22169 	boolean_t	check = B_TRUE;
22170 	boolean_t	policy_present;
22171 
22172 	TCP_STAT(tcp_no_listener);
22173 
22174 	ipsec_mp = mp;
22175 
22176 	if (mp->b_datap->db_type == M_CTL) {
22177 		ipsec_in_t *ii;
22178 
22179 		mctl_present = B_TRUE;
22180 		mp = mp->b_cont;
22181 
22182 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22183 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22184 		if (ii->ipsec_in_dont_check) {
22185 			check = B_FALSE;
22186 			if (!ii->ipsec_in_secure) {
22187 				freeb(ipsec_mp);
22188 				mctl_present = B_FALSE;
22189 				ipsec_mp = mp;
22190 			}
22191 		}
22192 	}
22193 
22194 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22195 		policy_present = ipsec_inbound_v4_policy_present;
22196 		ipha = (ipha_t *)mp->b_rptr;
22197 		ip6h = NULL;
22198 	} else {
22199 		policy_present = ipsec_inbound_v6_policy_present;
22200 		ipha = NULL;
22201 		ip6h = (ip6_t *)mp->b_rptr;
22202 	}
22203 
22204 	if (check && policy_present) {
22205 		/*
22206 		 * The conn_t parameter is NULL because we already know
22207 		 * nobody's home.
22208 		 */
22209 		ipsec_mp = ipsec_check_global_policy(
22210 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
22211 		if (ipsec_mp == NULL)
22212 			return;
22213 	}
22214 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22215 		DTRACE_PROBE2(
22216 		    tx__ip__log__error__nolistener__tcp,
22217 		    char *, "Could not reply with RST to mp(1)",
22218 		    mblk_t *, mp);
22219 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22220 		freemsg(ipsec_mp);
22221 		return;
22222 	}
22223 
22224 	rptr = mp->b_rptr;
22225 
22226 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22227 	seg_seq = BE32_TO_U32(tcph->th_seq);
22228 	seg_ack = BE32_TO_U32(tcph->th_ack);
22229 	flags = tcph->th_flags[0];
22230 
22231 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22232 	if (flags & TH_RST) {
22233 		freemsg(ipsec_mp);
22234 	} else if (flags & TH_ACK) {
22235 		tcp_xmit_early_reset("no tcp, reset",
22236 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid);
22237 	} else {
22238 		if (flags & TH_SYN) {
22239 			seg_len++;
22240 		} else {
22241 			/*
22242 			 * Here we violate the RFC.  Note that a normal
22243 			 * TCP will never send a segment without the ACK
22244 			 * flag, except for RST or SYN segment.  This
22245 			 * segment is neither.  Just drop it on the
22246 			 * floor.
22247 			 */
22248 			freemsg(ipsec_mp);
22249 			tcp_rst_unsent++;
22250 			return;
22251 		}
22252 
22253 		tcp_xmit_early_reset("no tcp, reset/ack",
22254 		    ipsec_mp, 0, seg_seq + seg_len,
22255 		    TH_RST | TH_ACK, ip_hdr_len, zoneid);
22256 	}
22257 }
22258 
22259 /*
22260  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22261  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22262  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22263  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22264  * otherwise it will dup partial mblks.)
22265  * Otherwise, an appropriate ACK packet will be generated.  This
22266  * routine is not usually called to send new data for the first time.  It
22267  * is mostly called out of the timer for retransmits, and to generate ACKs.
22268  *
22269  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22270  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22271  * of the original mblk chain will be returned in *offset and *end_mp.
22272  */
22273 mblk_t *
22274 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22275     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22276     boolean_t rexmit)
22277 {
22278 	int	data_length;
22279 	int32_t	off = 0;
22280 	uint_t	flags;
22281 	mblk_t	*mp1;
22282 	mblk_t	*mp2;
22283 	uchar_t	*rptr;
22284 	tcph_t	*tcph;
22285 	int32_t	num_sack_blk = 0;
22286 	int32_t	sack_opt_len = 0;
22287 
22288 	/* Allocate for our maximum TCP header + link-level */
22289 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
22290 	    BPRI_MED);
22291 	if (!mp1)
22292 		return (NULL);
22293 	data_length = 0;
22294 
22295 	/*
22296 	 * Note that tcp_mss has been adjusted to take into account the
22297 	 * timestamp option if applicable.  Because SACK options do not
22298 	 * appear in every TCP segments and they are of variable lengths,
22299 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22300 	 * the actual segment length when we need to send a segment which
22301 	 * includes SACK options.
22302 	 */
22303 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22304 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22305 		    tcp->tcp_num_sack_blk);
22306 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22307 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22308 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22309 			max_to_send -= sack_opt_len;
22310 	}
22311 
22312 	if (offset != NULL) {
22313 		off = *offset;
22314 		/* We use offset as an indicator that end_mp is not NULL. */
22315 		*end_mp = NULL;
22316 	}
22317 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22318 		/* This could be faster with cooperation from downstream */
22319 		if (mp2 != mp1 && !sendall &&
22320 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22321 		    max_to_send)
22322 			/*
22323 			 * Don't send the next mblk since the whole mblk
22324 			 * does not fit.
22325 			 */
22326 			break;
22327 		mp2->b_cont = dupb(mp);
22328 		mp2 = mp2->b_cont;
22329 		if (!mp2) {
22330 			freemsg(mp1);
22331 			return (NULL);
22332 		}
22333 		mp2->b_rptr += off;
22334 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22335 		    (uintptr_t)INT_MAX);
22336 
22337 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22338 		if (data_length > max_to_send) {
22339 			mp2->b_wptr -= data_length - max_to_send;
22340 			data_length = max_to_send;
22341 			off = mp2->b_wptr - mp->b_rptr;
22342 			break;
22343 		} else {
22344 			off = 0;
22345 		}
22346 	}
22347 	if (offset != NULL) {
22348 		*offset = off;
22349 		*end_mp = mp;
22350 	}
22351 	if (seg_len != NULL) {
22352 		*seg_len = data_length;
22353 	}
22354 
22355 	/* Update the latest receive window size in TCP header. */
22356 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22357 	    tcp->tcp_tcph->th_win);
22358 
22359 	rptr = mp1->b_rptr + tcp_wroff_xtra;
22360 	mp1->b_rptr = rptr;
22361 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22362 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22363 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22364 	U32_TO_ABE32(seq, tcph->th_seq);
22365 
22366 	/*
22367 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22368 	 * that this function was called from tcp_wput_data. Thus, when called
22369 	 * to retransmit data the setting of the PUSH bit may appear some
22370 	 * what random in that it might get set when it should not. This
22371 	 * should not pose any performance issues.
22372 	 */
22373 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22374 	    tcp->tcp_unsent == data_length)) {
22375 		flags = TH_ACK | TH_PUSH;
22376 	} else {
22377 		flags = TH_ACK;
22378 	}
22379 
22380 	if (tcp->tcp_ecn_ok) {
22381 		if (tcp->tcp_ecn_echo_on)
22382 			flags |= TH_ECE;
22383 
22384 		/*
22385 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22386 		 * There is no TCP flow control for non-data segments, and
22387 		 * only data segment is transmitted reliably.
22388 		 */
22389 		if (data_length > 0 && !rexmit) {
22390 			SET_ECT(tcp, rptr);
22391 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22392 				flags |= TH_CWR;
22393 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22394 			}
22395 		}
22396 	}
22397 
22398 	if (tcp->tcp_valid_bits) {
22399 		uint32_t u1;
22400 
22401 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22402 		    seq == tcp->tcp_iss) {
22403 			uchar_t	*wptr;
22404 
22405 			/*
22406 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22407 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22408 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22409 			 * our SYN is not ack'ed but the app closes this
22410 			 * TCP connection.
22411 			 */
22412 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22413 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22414 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22415 
22416 			/*
22417 			 * Tack on the MSS option.  It is always needed
22418 			 * for both active and passive open.
22419 			 *
22420 			 * MSS option value should be interface MTU - MIN
22421 			 * TCP/IP header according to RFC 793 as it means
22422 			 * the maximum segment size TCP can receive.  But
22423 			 * to get around some broken middle boxes/end hosts
22424 			 * out there, we allow the option value to be the
22425 			 * same as the MSS option size on the peer side.
22426 			 * In this way, the other side will not send
22427 			 * anything larger than they can receive.
22428 			 *
22429 			 * Note that for SYN_SENT state, the ndd param
22430 			 * tcp_use_smss_as_mss_opt has no effect as we
22431 			 * don't know the peer's MSS option value. So
22432 			 * the only case we need to take care of is in
22433 			 * SYN_RCVD state, which is done later.
22434 			 */
22435 			wptr = mp1->b_wptr;
22436 			wptr[0] = TCPOPT_MAXSEG;
22437 			wptr[1] = TCPOPT_MAXSEG_LEN;
22438 			wptr += 2;
22439 			u1 = tcp->tcp_if_mtu -
22440 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22441 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22442 			    TCP_MIN_HEADER_LENGTH;
22443 			U16_TO_BE16(u1, wptr);
22444 			mp1->b_wptr = wptr + 2;
22445 			/* Update the offset to cover the additional word */
22446 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22447 
22448 			/*
22449 			 * Note that the following way of filling in
22450 			 * TCP options are not optimal.  Some NOPs can
22451 			 * be saved.  But there is no need at this time
22452 			 * to optimize it.  When it is needed, we will
22453 			 * do it.
22454 			 */
22455 			switch (tcp->tcp_state) {
22456 			case TCPS_SYN_SENT:
22457 				flags = TH_SYN;
22458 
22459 				if (tcp->tcp_snd_ts_ok) {
22460 					uint32_t llbolt = (uint32_t)lbolt;
22461 
22462 					wptr = mp1->b_wptr;
22463 					wptr[0] = TCPOPT_NOP;
22464 					wptr[1] = TCPOPT_NOP;
22465 					wptr[2] = TCPOPT_TSTAMP;
22466 					wptr[3] = TCPOPT_TSTAMP_LEN;
22467 					wptr += 4;
22468 					U32_TO_BE32(llbolt, wptr);
22469 					wptr += 4;
22470 					ASSERT(tcp->tcp_ts_recent == 0);
22471 					U32_TO_BE32(0L, wptr);
22472 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22473 					tcph->th_offset_and_rsrvd[0] +=
22474 					    (3 << 4);
22475 				}
22476 
22477 				/*
22478 				 * Set up all the bits to tell other side
22479 				 * we are ECN capable.
22480 				 */
22481 				if (tcp->tcp_ecn_ok) {
22482 					flags |= (TH_ECE | TH_CWR);
22483 				}
22484 				break;
22485 			case TCPS_SYN_RCVD:
22486 				flags |= TH_SYN;
22487 
22488 				/*
22489 				 * Reset the MSS option value to be SMSS
22490 				 * We should probably add back the bytes
22491 				 * for timestamp option and IPsec.  We
22492 				 * don't do that as this is a workaround
22493 				 * for broken middle boxes/end hosts, it
22494 				 * is better for us to be more cautious.
22495 				 * They may not take these things into
22496 				 * account in their SMSS calculation.  Thus
22497 				 * the peer's calculated SMSS may be smaller
22498 				 * than what it can be.  This should be OK.
22499 				 */
22500 				if (tcp_use_smss_as_mss_opt) {
22501 					u1 = tcp->tcp_mss;
22502 					U16_TO_BE16(u1, wptr);
22503 				}
22504 
22505 				/*
22506 				 * If the other side is ECN capable, reply
22507 				 * that we are also ECN capable.
22508 				 */
22509 				if (tcp->tcp_ecn_ok)
22510 					flags |= TH_ECE;
22511 				break;
22512 			default:
22513 				/*
22514 				 * The above ASSERT() makes sure that this
22515 				 * must be FIN-WAIT-1 state.  Our SYN has
22516 				 * not been ack'ed so retransmit it.
22517 				 */
22518 				flags |= TH_SYN;
22519 				break;
22520 			}
22521 
22522 			if (tcp->tcp_snd_ws_ok) {
22523 				wptr = mp1->b_wptr;
22524 				wptr[0] =  TCPOPT_NOP;
22525 				wptr[1] =  TCPOPT_WSCALE;
22526 				wptr[2] =  TCPOPT_WS_LEN;
22527 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22528 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22529 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22530 			}
22531 
22532 			if (tcp->tcp_snd_sack_ok) {
22533 				wptr = mp1->b_wptr;
22534 				wptr[0] = TCPOPT_NOP;
22535 				wptr[1] = TCPOPT_NOP;
22536 				wptr[2] = TCPOPT_SACK_PERMITTED;
22537 				wptr[3] = TCPOPT_SACK_OK_LEN;
22538 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22539 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22540 			}
22541 
22542 			/* allocb() of adequate mblk assures space */
22543 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22544 			    (uintptr_t)INT_MAX);
22545 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22546 			/*
22547 			 * Get IP set to checksum on our behalf
22548 			 * Include the adjustment for a source route if any.
22549 			 */
22550 			u1 += tcp->tcp_sum;
22551 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22552 			U16_TO_BE16(u1, tcph->th_sum);
22553 			BUMP_MIB(&tcp_mib, tcpOutControl);
22554 		}
22555 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22556 		    (seq + data_length) == tcp->tcp_fss) {
22557 			if (!tcp->tcp_fin_acked) {
22558 				flags |= TH_FIN;
22559 				BUMP_MIB(&tcp_mib, tcpOutControl);
22560 			}
22561 			if (!tcp->tcp_fin_sent) {
22562 				tcp->tcp_fin_sent = B_TRUE;
22563 				switch (tcp->tcp_state) {
22564 				case TCPS_SYN_RCVD:
22565 				case TCPS_ESTABLISHED:
22566 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22567 					break;
22568 				case TCPS_CLOSE_WAIT:
22569 					tcp->tcp_state = TCPS_LAST_ACK;
22570 					break;
22571 				}
22572 				if (tcp->tcp_suna == tcp->tcp_snxt)
22573 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22574 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22575 			}
22576 		}
22577 		/*
22578 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22579 		 * is smaller than seq, u1 will become a very huge value.
22580 		 * So the comparison will fail.  Also note that tcp_urp
22581 		 * should be positive, see RFC 793 page 17.
22582 		 */
22583 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22584 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22585 		    u1 < (uint32_t)(64 * 1024)) {
22586 			flags |= TH_URG;
22587 			BUMP_MIB(&tcp_mib, tcpOutUrg);
22588 			U32_TO_ABE16(u1, tcph->th_urp);
22589 		}
22590 	}
22591 	tcph->th_flags[0] = (uchar_t)flags;
22592 	tcp->tcp_rack = tcp->tcp_rnxt;
22593 	tcp->tcp_rack_cnt = 0;
22594 
22595 	if (tcp->tcp_snd_ts_ok) {
22596 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22597 			uint32_t llbolt = (uint32_t)lbolt;
22598 
22599 			U32_TO_BE32(llbolt,
22600 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22601 			U32_TO_BE32(tcp->tcp_ts_recent,
22602 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22603 		}
22604 	}
22605 
22606 	if (num_sack_blk > 0) {
22607 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22608 		sack_blk_t *tmp;
22609 		int32_t	i;
22610 
22611 		wptr[0] = TCPOPT_NOP;
22612 		wptr[1] = TCPOPT_NOP;
22613 		wptr[2] = TCPOPT_SACK;
22614 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22615 		    sizeof (sack_blk_t);
22616 		wptr += TCPOPT_REAL_SACK_LEN;
22617 
22618 		tmp = tcp->tcp_sack_list;
22619 		for (i = 0; i < num_sack_blk; i++) {
22620 			U32_TO_BE32(tmp[i].begin, wptr);
22621 			wptr += sizeof (tcp_seq);
22622 			U32_TO_BE32(tmp[i].end, wptr);
22623 			wptr += sizeof (tcp_seq);
22624 		}
22625 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22626 	}
22627 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22628 	data_length += (int)(mp1->b_wptr - rptr);
22629 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22630 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22631 	} else {
22632 		ip6_t *ip6 = (ip6_t *)(rptr +
22633 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22634 		    sizeof (ip6i_t) : 0));
22635 
22636 		ip6->ip6_plen = htons(data_length -
22637 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22638 	}
22639 
22640 	/*
22641 	 * Prime pump for IP
22642 	 * Include the adjustment for a source route if any.
22643 	 */
22644 	data_length -= tcp->tcp_ip_hdr_len;
22645 	data_length += tcp->tcp_sum;
22646 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22647 	U16_TO_ABE16(data_length, tcph->th_sum);
22648 	if (tcp->tcp_ip_forward_progress) {
22649 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22650 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22651 		tcp->tcp_ip_forward_progress = B_FALSE;
22652 	}
22653 	return (mp1);
22654 }
22655 
22656 /* This function handles the push timeout. */
22657 void
22658 tcp_push_timer(void *arg)
22659 {
22660 	conn_t	*connp = (conn_t *)arg;
22661 	tcp_t *tcp = connp->conn_tcp;
22662 
22663 	TCP_DBGSTAT(tcp_push_timer_cnt);
22664 
22665 	ASSERT(tcp->tcp_listener == NULL);
22666 
22667 	/*
22668 	 * We need to plug synchronous streams during our drain to prevent
22669 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
22670 	 */
22671 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
22672 	tcp->tcp_push_tid = 0;
22673 	if ((tcp->tcp_rcv_list != NULL) &&
22674 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
22675 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22676 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
22677 }
22678 
22679 /*
22680  * This function handles delayed ACK timeout.
22681  */
22682 static void
22683 tcp_ack_timer(void *arg)
22684 {
22685 	conn_t	*connp = (conn_t *)arg;
22686 	tcp_t *tcp = connp->conn_tcp;
22687 	mblk_t *mp;
22688 
22689 	TCP_DBGSTAT(tcp_ack_timer_cnt);
22690 
22691 	tcp->tcp_ack_tid = 0;
22692 
22693 	if (tcp->tcp_fused)
22694 		return;
22695 
22696 	/*
22697 	 * Do not send ACK if there is no outstanding unack'ed data.
22698 	 */
22699 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
22700 		return;
22701 	}
22702 
22703 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
22704 		/*
22705 		 * Make sure we don't allow deferred ACKs to result in
22706 		 * timer-based ACKing.  If we have held off an ACK
22707 		 * when there was more than an mss here, and the timer
22708 		 * goes off, we have to worry about the possibility
22709 		 * that the sender isn't doing slow-start, or is out
22710 		 * of step with us for some other reason.  We fall
22711 		 * permanently back in the direction of
22712 		 * ACK-every-other-packet as suggested in RFC 1122.
22713 		 */
22714 		if (tcp->tcp_rack_abs_max > 2)
22715 			tcp->tcp_rack_abs_max--;
22716 		tcp->tcp_rack_cur_max = 2;
22717 	}
22718 	mp = tcp_ack_mp(tcp);
22719 
22720 	if (mp != NULL) {
22721 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22722 		BUMP_LOCAL(tcp->tcp_obsegs);
22723 		BUMP_MIB(&tcp_mib, tcpOutAck);
22724 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
22725 		tcp_send_data(tcp, tcp->tcp_wq, mp);
22726 	}
22727 }
22728 
22729 
22730 /* Generate an ACK-only (no data) segment for a TCP endpoint */
22731 static mblk_t *
22732 tcp_ack_mp(tcp_t *tcp)
22733 {
22734 	uint32_t	seq_no;
22735 
22736 	/*
22737 	 * There are a few cases to be considered while setting the sequence no.
22738 	 * Essentially, we can come here while processing an unacceptable pkt
22739 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
22740 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
22741 	 * If we are here for a zero window probe, stick with suna. In all
22742 	 * other cases, we check if suna + swnd encompasses snxt and set
22743 	 * the sequence number to snxt, if so. If snxt falls outside the
22744 	 * window (the receiver probably shrunk its window), we will go with
22745 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
22746 	 * receiver.
22747 	 */
22748 	if (tcp->tcp_zero_win_probe) {
22749 		seq_no = tcp->tcp_suna;
22750 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
22751 		ASSERT(tcp->tcp_swnd == 0);
22752 		seq_no = tcp->tcp_snxt;
22753 	} else {
22754 		seq_no = SEQ_GT(tcp->tcp_snxt,
22755 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
22756 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
22757 	}
22758 
22759 	if (tcp->tcp_valid_bits) {
22760 		/*
22761 		 * For the complex case where we have to send some
22762 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
22763 		 */
22764 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22765 		    NULL, B_FALSE));
22766 	} else {
22767 		/* Generate a simple ACK */
22768 		int	data_length;
22769 		uchar_t	*rptr;
22770 		tcph_t	*tcph;
22771 		mblk_t	*mp1;
22772 		int32_t	tcp_hdr_len;
22773 		int32_t	tcp_tcp_hdr_len;
22774 		int32_t	num_sack_blk = 0;
22775 		int32_t sack_opt_len;
22776 
22777 		/*
22778 		 * Allocate space for TCP + IP headers
22779 		 * and link-level header
22780 		 */
22781 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22782 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22783 			    tcp->tcp_num_sack_blk);
22784 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22785 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22786 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22787 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22788 		} else {
22789 			tcp_hdr_len = tcp->tcp_hdr_len;
22790 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22791 		}
22792 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
22793 		if (!mp1)
22794 			return (NULL);
22795 
22796 		/* Update the latest receive window size in TCP header. */
22797 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22798 		    tcp->tcp_tcph->th_win);
22799 		/* copy in prototype TCP + IP header */
22800 		rptr = mp1->b_rptr + tcp_wroff_xtra;
22801 		mp1->b_rptr = rptr;
22802 		mp1->b_wptr = rptr + tcp_hdr_len;
22803 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22804 
22805 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22806 
22807 		/* Set the TCP sequence number. */
22808 		U32_TO_ABE32(seq_no, tcph->th_seq);
22809 
22810 		/* Set up the TCP flag field. */
22811 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22812 		if (tcp->tcp_ecn_echo_on)
22813 			tcph->th_flags[0] |= TH_ECE;
22814 
22815 		tcp->tcp_rack = tcp->tcp_rnxt;
22816 		tcp->tcp_rack_cnt = 0;
22817 
22818 		/* fill in timestamp option if in use */
22819 		if (tcp->tcp_snd_ts_ok) {
22820 			uint32_t llbolt = (uint32_t)lbolt;
22821 
22822 			U32_TO_BE32(llbolt,
22823 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22824 			U32_TO_BE32(tcp->tcp_ts_recent,
22825 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22826 		}
22827 
22828 		/* Fill in SACK options */
22829 		if (num_sack_blk > 0) {
22830 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22831 			sack_blk_t *tmp;
22832 			int32_t	i;
22833 
22834 			wptr[0] = TCPOPT_NOP;
22835 			wptr[1] = TCPOPT_NOP;
22836 			wptr[2] = TCPOPT_SACK;
22837 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22838 			    sizeof (sack_blk_t);
22839 			wptr += TCPOPT_REAL_SACK_LEN;
22840 
22841 			tmp = tcp->tcp_sack_list;
22842 			for (i = 0; i < num_sack_blk; i++) {
22843 				U32_TO_BE32(tmp[i].begin, wptr);
22844 				wptr += sizeof (tcp_seq);
22845 				U32_TO_BE32(tmp[i].end, wptr);
22846 				wptr += sizeof (tcp_seq);
22847 			}
22848 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
22849 			    << 4);
22850 		}
22851 
22852 		if (tcp->tcp_ipversion == IPV4_VERSION) {
22853 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
22854 		} else {
22855 			/* Check for ip6i_t header in sticky hdrs */
22856 			ip6_t *ip6 = (ip6_t *)(rptr +
22857 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22858 			    sizeof (ip6i_t) : 0));
22859 
22860 			ip6->ip6_plen = htons(tcp_hdr_len -
22861 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22862 		}
22863 
22864 		/*
22865 		 * Prime pump for checksum calculation in IP.  Include the
22866 		 * adjustment for a source route if any.
22867 		 */
22868 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
22869 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
22870 		U16_TO_ABE16(data_length, tcph->th_sum);
22871 
22872 		if (tcp->tcp_ip_forward_progress) {
22873 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22874 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22875 			tcp->tcp_ip_forward_progress = B_FALSE;
22876 		}
22877 		return (mp1);
22878 	}
22879 }
22880 
22881 /*
22882  * To create a temporary tcp structure for inserting into bind hash list.
22883  * The parameter is assumed to be in network byte order, ready for use.
22884  */
22885 /* ARGSUSED */
22886 static tcp_t *
22887 tcp_alloc_temp_tcp(in_port_t port)
22888 {
22889 	conn_t	*connp;
22890 	tcp_t	*tcp;
22891 
22892 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
22893 	if (connp == NULL)
22894 		return (NULL);
22895 
22896 	tcp = connp->conn_tcp;
22897 
22898 	/*
22899 	 * Only initialize the necessary info in those structures.  Note
22900 	 * that since INADDR_ANY is all 0, we do not need to set
22901 	 * tcp_bound_source to INADDR_ANY here.
22902 	 */
22903 	tcp->tcp_state = TCPS_BOUND;
22904 	tcp->tcp_lport = port;
22905 	tcp->tcp_exclbind = 1;
22906 	tcp->tcp_reserved_port = 1;
22907 
22908 	/* Just for place holding... */
22909 	tcp->tcp_ipversion = IPV4_VERSION;
22910 
22911 	return (tcp);
22912 }
22913 
22914 /*
22915  * To remove a port range specified by lo_port and hi_port from the
22916  * reserved port ranges.  This is one of the three public functions of
22917  * the reserved port interface.  Note that a port range has to be removed
22918  * as a whole.  Ports in a range cannot be removed individually.
22919  *
22920  * Params:
22921  *	in_port_t lo_port: the beginning port of the reserved port range to
22922  *		be deleted.
22923  *	in_port_t hi_port: the ending port of the reserved port range to
22924  *		be deleted.
22925  *
22926  * Return:
22927  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
22928  */
22929 boolean_t
22930 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
22931 {
22932 	int	i, j;
22933 	int	size;
22934 	tcp_t	**temp_tcp_array;
22935 	tcp_t	*tcp;
22936 
22937 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22938 
22939 	/* First make sure that the port ranage is indeed reserved. */
22940 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22941 		if (tcp_reserved_port[i].lo_port == lo_port) {
22942 			hi_port = tcp_reserved_port[i].hi_port;
22943 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
22944 			break;
22945 		}
22946 	}
22947 	if (i == tcp_reserved_port_array_size) {
22948 		rw_exit(&tcp_reserved_port_lock);
22949 		return (B_FALSE);
22950 	}
22951 
22952 	/*
22953 	 * Remove the range from the array.  This simple loop is possible
22954 	 * because port ranges are inserted in ascending order.
22955 	 */
22956 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
22957 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
22958 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
22959 		tcp_reserved_port[j].temp_tcp_array =
22960 		    tcp_reserved_port[j+1].temp_tcp_array;
22961 	}
22962 
22963 	/* Remove all the temporary tcp structures. */
22964 	size = hi_port - lo_port + 1;
22965 	while (size > 0) {
22966 		tcp = temp_tcp_array[size - 1];
22967 		ASSERT(tcp != NULL);
22968 		tcp_bind_hash_remove(tcp);
22969 		CONN_DEC_REF(tcp->tcp_connp);
22970 		size--;
22971 	}
22972 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
22973 	tcp_reserved_port_array_size--;
22974 	rw_exit(&tcp_reserved_port_lock);
22975 	return (B_TRUE);
22976 }
22977 
22978 /*
22979  * Macro to remove temporary tcp structure from the bind hash list.  The
22980  * first parameter is the list of tcp to be removed.  The second parameter
22981  * is the number of tcps in the array.
22982  */
22983 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
22984 { \
22985 	while ((num) > 0) { \
22986 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
22987 		tf_t *tbf; \
22988 		tcp_t *tcpnext; \
22989 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
22990 		mutex_enter(&tbf->tf_lock); \
22991 		tcpnext = tcp->tcp_bind_hash; \
22992 		if (tcpnext) { \
22993 			tcpnext->tcp_ptpbhn = \
22994 				tcp->tcp_ptpbhn; \
22995 		} \
22996 		*tcp->tcp_ptpbhn = tcpnext; \
22997 		mutex_exit(&tbf->tf_lock); \
22998 		kmem_free(tcp, sizeof (tcp_t)); \
22999 		(tcp_array)[(num) - 1] = NULL; \
23000 		(num)--; \
23001 	} \
23002 }
23003 
23004 /*
23005  * The public interface for other modules to call to reserve a port range
23006  * in TCP.  The caller passes in how large a port range it wants.  TCP
23007  * will try to find a range and return it via lo_port and hi_port.  This is
23008  * used by NCA's nca_conn_init.
23009  * NCA can only be used in the global zone so this only affects the global
23010  * zone's ports.
23011  *
23012  * Params:
23013  *	int size: the size of the port range to be reserved.
23014  *	in_port_t *lo_port (referenced): returns the beginning port of the
23015  *		reserved port range added.
23016  *	in_port_t *hi_port (referenced): returns the ending port of the
23017  *		reserved port range added.
23018  *
23019  * Return:
23020  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
23021  */
23022 boolean_t
23023 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
23024 {
23025 	tcp_t		*tcp;
23026 	tcp_t		*tmp_tcp;
23027 	tcp_t		**temp_tcp_array;
23028 	tf_t		*tbf;
23029 	in_port_t	net_port;
23030 	in_port_t	port;
23031 	int32_t		cur_size;
23032 	int		i, j;
23033 	boolean_t	used;
23034 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
23035 	zoneid_t	zoneid = GLOBAL_ZONEID;
23036 
23037 	/* Sanity check. */
23038 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
23039 		return (B_FALSE);
23040 	}
23041 
23042 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
23043 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
23044 		rw_exit(&tcp_reserved_port_lock);
23045 		return (B_FALSE);
23046 	}
23047 
23048 	/*
23049 	 * Find the starting port to try.  Since the port ranges are ordered
23050 	 * in the reserved port array, we can do a simple search here.
23051 	 */
23052 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
23053 	*hi_port = TCP_LARGEST_RESERVED_PORT;
23054 	for (i = 0; i < tcp_reserved_port_array_size;
23055 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
23056 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
23057 			*hi_port = tcp_reserved_port[i].lo_port - 1;
23058 			break;
23059 		}
23060 	}
23061 	/* No available port range. */
23062 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
23063 		rw_exit(&tcp_reserved_port_lock);
23064 		return (B_FALSE);
23065 	}
23066 
23067 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
23068 	if (temp_tcp_array == NULL) {
23069 		rw_exit(&tcp_reserved_port_lock);
23070 		return (B_FALSE);
23071 	}
23072 
23073 	/* Go thru the port range to see if some ports are already bound. */
23074 	for (port = *lo_port, cur_size = 0;
23075 	    cur_size < size && port <= *hi_port;
23076 	    cur_size++, port++) {
23077 		used = B_FALSE;
23078 		net_port = htons(port);
23079 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
23080 		mutex_enter(&tbf->tf_lock);
23081 		for (tcp = tbf->tf_tcp; tcp != NULL;
23082 		    tcp = tcp->tcp_bind_hash) {
23083 			if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) &&
23084 			    net_port == tcp->tcp_lport) {
23085 				/*
23086 				 * A port is already bound.  Search again
23087 				 * starting from port + 1.  Release all
23088 				 * temporary tcps.
23089 				 */
23090 				mutex_exit(&tbf->tf_lock);
23091 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23092 				*lo_port = port + 1;
23093 				cur_size = -1;
23094 				used = B_TRUE;
23095 				break;
23096 			}
23097 		}
23098 		if (!used) {
23099 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
23100 				/*
23101 				 * Allocation failure.  Just fail the request.
23102 				 * Need to remove all those temporary tcp
23103 				 * structures.
23104 				 */
23105 				mutex_exit(&tbf->tf_lock);
23106 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23107 				rw_exit(&tcp_reserved_port_lock);
23108 				kmem_free(temp_tcp_array,
23109 				    (hi_port - lo_port + 1) *
23110 				    sizeof (tcp_t *));
23111 				return (B_FALSE);
23112 			}
23113 			temp_tcp_array[cur_size] = tmp_tcp;
23114 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
23115 			mutex_exit(&tbf->tf_lock);
23116 		}
23117 	}
23118 
23119 	/*
23120 	 * The current range is not large enough.  We can actually do another
23121 	 * search if this search is done between 2 reserved port ranges.  But
23122 	 * for first release, we just stop here and return saying that no port
23123 	 * range is available.
23124 	 */
23125 	if (cur_size < size) {
23126 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
23127 		rw_exit(&tcp_reserved_port_lock);
23128 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
23129 		return (B_FALSE);
23130 	}
23131 	*hi_port = port - 1;
23132 
23133 	/*
23134 	 * Insert range into array in ascending order.  Since this function
23135 	 * must not be called often, we choose to use the simplest method.
23136 	 * The above array should not consume excessive stack space as
23137 	 * the size must be very small.  If in future releases, we find
23138 	 * that we should provide more reserved port ranges, this function
23139 	 * has to be modified to be more efficient.
23140 	 */
23141 	if (tcp_reserved_port_array_size == 0) {
23142 		tcp_reserved_port[0].lo_port = *lo_port;
23143 		tcp_reserved_port[0].hi_port = *hi_port;
23144 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
23145 	} else {
23146 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
23147 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
23148 				tmp_ports[j].lo_port = *lo_port;
23149 				tmp_ports[j].hi_port = *hi_port;
23150 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
23151 				j++;
23152 			}
23153 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
23154 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
23155 			tmp_ports[j].temp_tcp_array =
23156 			    tcp_reserved_port[i].temp_tcp_array;
23157 		}
23158 		if (j == i) {
23159 			tmp_ports[j].lo_port = *lo_port;
23160 			tmp_ports[j].hi_port = *hi_port;
23161 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
23162 		}
23163 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
23164 	}
23165 	tcp_reserved_port_array_size++;
23166 	rw_exit(&tcp_reserved_port_lock);
23167 	return (B_TRUE);
23168 }
23169 
23170 /*
23171  * Check to see if a port is in any reserved port range.
23172  *
23173  * Params:
23174  *	in_port_t port: the port to be verified.
23175  *
23176  * Return:
23177  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
23178  */
23179 boolean_t
23180 tcp_reserved_port_check(in_port_t port)
23181 {
23182 	int i;
23183 
23184 	rw_enter(&tcp_reserved_port_lock, RW_READER);
23185 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23186 		if (port >= tcp_reserved_port[i].lo_port ||
23187 		    port <= tcp_reserved_port[i].hi_port) {
23188 			rw_exit(&tcp_reserved_port_lock);
23189 			return (B_TRUE);
23190 		}
23191 	}
23192 	rw_exit(&tcp_reserved_port_lock);
23193 	return (B_FALSE);
23194 }
23195 
23196 /*
23197  * To list all reserved port ranges.  This is the function to handle
23198  * ndd tcp_reserved_port_list.
23199  */
23200 /* ARGSUSED */
23201 static int
23202 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23203 {
23204 	int i;
23205 
23206 	rw_enter(&tcp_reserved_port_lock, RW_READER);
23207 	if (tcp_reserved_port_array_size > 0)
23208 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23209 	else
23210 		(void) mi_mpprintf(mp, "No port is reserved.");
23211 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23212 		(void) mi_mpprintf(mp, "%d-%d",
23213 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
23214 	}
23215 	rw_exit(&tcp_reserved_port_lock);
23216 	return (0);
23217 }
23218 
23219 /*
23220  * Hash list insertion routine for tcp_t structures.
23221  * Inserts entries with the ones bound to a specific IP address first
23222  * followed by those bound to INADDR_ANY.
23223  */
23224 static void
23225 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23226 {
23227 	tcp_t	**tcpp;
23228 	tcp_t	*tcpnext;
23229 
23230 	if (tcp->tcp_ptpbhn != NULL) {
23231 		ASSERT(!caller_holds_lock);
23232 		tcp_bind_hash_remove(tcp);
23233 	}
23234 	tcpp = &tbf->tf_tcp;
23235 	if (!caller_holds_lock) {
23236 		mutex_enter(&tbf->tf_lock);
23237 	} else {
23238 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23239 	}
23240 	tcpnext = tcpp[0];
23241 	if (tcpnext) {
23242 		/*
23243 		 * If the new tcp bound to the INADDR_ANY address
23244 		 * and the first one in the list is not bound to
23245 		 * INADDR_ANY we skip all entries until we find the
23246 		 * first one bound to INADDR_ANY.
23247 		 * This makes sure that applications binding to a
23248 		 * specific address get preference over those binding to
23249 		 * INADDR_ANY.
23250 		 */
23251 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23252 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23253 			while ((tcpnext = tcpp[0]) != NULL &&
23254 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23255 				tcpp = &(tcpnext->tcp_bind_hash);
23256 			if (tcpnext)
23257 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23258 		} else
23259 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23260 	}
23261 	tcp->tcp_bind_hash = tcpnext;
23262 	tcp->tcp_ptpbhn = tcpp;
23263 	tcpp[0] = tcp;
23264 	if (!caller_holds_lock)
23265 		mutex_exit(&tbf->tf_lock);
23266 }
23267 
23268 /*
23269  * Hash list removal routine for tcp_t structures.
23270  */
23271 static void
23272 tcp_bind_hash_remove(tcp_t *tcp)
23273 {
23274 	tcp_t	*tcpnext;
23275 	kmutex_t *lockp;
23276 
23277 	if (tcp->tcp_ptpbhn == NULL)
23278 		return;
23279 
23280 	/*
23281 	 * Extract the lock pointer in case there are concurrent
23282 	 * hash_remove's for this instance.
23283 	 */
23284 	ASSERT(tcp->tcp_lport != 0);
23285 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23286 
23287 	ASSERT(lockp != NULL);
23288 	mutex_enter(lockp);
23289 	if (tcp->tcp_ptpbhn) {
23290 		tcpnext = tcp->tcp_bind_hash;
23291 		if (tcpnext) {
23292 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23293 			tcp->tcp_bind_hash = NULL;
23294 		}
23295 		*tcp->tcp_ptpbhn = tcpnext;
23296 		tcp->tcp_ptpbhn = NULL;
23297 	}
23298 	mutex_exit(lockp);
23299 }
23300 
23301 
23302 /*
23303  * Hash list lookup routine for tcp_t structures.
23304  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23305  */
23306 static tcp_t *
23307 tcp_acceptor_hash_lookup(t_uscalar_t id)
23308 {
23309 	tf_t	*tf;
23310 	tcp_t	*tcp;
23311 
23312 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23313 	mutex_enter(&tf->tf_lock);
23314 	for (tcp = tf->tf_tcp; tcp != NULL;
23315 	    tcp = tcp->tcp_acceptor_hash) {
23316 		if (tcp->tcp_acceptor_id == id) {
23317 			CONN_INC_REF(tcp->tcp_connp);
23318 			mutex_exit(&tf->tf_lock);
23319 			return (tcp);
23320 		}
23321 	}
23322 	mutex_exit(&tf->tf_lock);
23323 	return (NULL);
23324 }
23325 
23326 
23327 /*
23328  * Hash list insertion routine for tcp_t structures.
23329  */
23330 void
23331 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23332 {
23333 	tf_t	*tf;
23334 	tcp_t	**tcpp;
23335 	tcp_t	*tcpnext;
23336 
23337 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23338 
23339 	if (tcp->tcp_ptpahn != NULL)
23340 		tcp_acceptor_hash_remove(tcp);
23341 	tcpp = &tf->tf_tcp;
23342 	mutex_enter(&tf->tf_lock);
23343 	tcpnext = tcpp[0];
23344 	if (tcpnext)
23345 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23346 	tcp->tcp_acceptor_hash = tcpnext;
23347 	tcp->tcp_ptpahn = tcpp;
23348 	tcpp[0] = tcp;
23349 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23350 	mutex_exit(&tf->tf_lock);
23351 }
23352 
23353 /*
23354  * Hash list removal routine for tcp_t structures.
23355  */
23356 static void
23357 tcp_acceptor_hash_remove(tcp_t *tcp)
23358 {
23359 	tcp_t	*tcpnext;
23360 	kmutex_t *lockp;
23361 
23362 	/*
23363 	 * Extract the lock pointer in case there are concurrent
23364 	 * hash_remove's for this instance.
23365 	 */
23366 	lockp = tcp->tcp_acceptor_lockp;
23367 
23368 	if (tcp->tcp_ptpahn == NULL)
23369 		return;
23370 
23371 	ASSERT(lockp != NULL);
23372 	mutex_enter(lockp);
23373 	if (tcp->tcp_ptpahn) {
23374 		tcpnext = tcp->tcp_acceptor_hash;
23375 		if (tcpnext) {
23376 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23377 			tcp->tcp_acceptor_hash = NULL;
23378 		}
23379 		*tcp->tcp_ptpahn = tcpnext;
23380 		tcp->tcp_ptpahn = NULL;
23381 	}
23382 	mutex_exit(lockp);
23383 	tcp->tcp_acceptor_lockp = NULL;
23384 }
23385 
23386 /* ARGSUSED */
23387 static int
23388 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
23389 {
23390 	int error = 0;
23391 	int retval;
23392 	char *end;
23393 
23394 	tcp_hsp_t *hsp;
23395 	tcp_hsp_t *hspprev;
23396 
23397 	ipaddr_t addr = 0;		/* Address we're looking for */
23398 	in6_addr_t v6addr;		/* Address we're looking for */
23399 	uint32_t hash;			/* Hash of that address */
23400 
23401 	/*
23402 	 * If the following variables are still zero after parsing the input
23403 	 * string, the user didn't specify them and we don't change them in
23404 	 * the HSP.
23405 	 */
23406 
23407 	ipaddr_t mask = 0;		/* Subnet mask */
23408 	in6_addr_t v6mask;
23409 	long sendspace = 0;		/* Send buffer size */
23410 	long recvspace = 0;		/* Receive buffer size */
23411 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
23412 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
23413 
23414 	rw_enter(&tcp_hsp_lock, RW_WRITER);
23415 
23416 	/* Parse and validate address */
23417 	if (af == AF_INET) {
23418 		retval = inet_pton(af, value, &addr);
23419 		if (retval == 1)
23420 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
23421 	} else if (af == AF_INET6) {
23422 		retval = inet_pton(af, value, &v6addr);
23423 	} else {
23424 		error = EINVAL;
23425 		goto done;
23426 	}
23427 	if (retval == 0) {
23428 		error = EINVAL;
23429 		goto done;
23430 	}
23431 
23432 	while ((*value) && *value != ' ')
23433 		value++;
23434 
23435 	/* Parse individual keywords, set variables if found */
23436 	while (*value) {
23437 		/* Skip leading blanks */
23438 
23439 		while (*value == ' ' || *value == '\t')
23440 			value++;
23441 
23442 		/* If at end of string, we're done */
23443 
23444 		if (!*value)
23445 			break;
23446 
23447 		/* We have a word, figure out what it is */
23448 
23449 		if (strncmp("mask", value, 4) == 0) {
23450 			value += 4;
23451 			while (*value == ' ' || *value == '\t')
23452 				value++;
23453 			/* Parse subnet mask */
23454 			if (af == AF_INET) {
23455 				retval = inet_pton(af, value, &mask);
23456 				if (retval == 1) {
23457 					V4MASK_TO_V6(mask, v6mask);
23458 				}
23459 			} else if (af == AF_INET6) {
23460 				retval = inet_pton(af, value, &v6mask);
23461 			}
23462 			if (retval != 1) {
23463 				error = EINVAL;
23464 				goto done;
23465 			}
23466 			while ((*value) && *value != ' ')
23467 				value++;
23468 		} else if (strncmp("sendspace", value, 9) == 0) {
23469 			value += 9;
23470 
23471 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
23472 			    sendspace < TCP_XMIT_HIWATER ||
23473 			    sendspace >= (1L<<30)) {
23474 				error = EINVAL;
23475 				goto done;
23476 			}
23477 			value = end;
23478 		} else if (strncmp("recvspace", value, 9) == 0) {
23479 			value += 9;
23480 
23481 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
23482 			    recvspace < TCP_RECV_HIWATER ||
23483 			    recvspace >= (1L<<30)) {
23484 				error = EINVAL;
23485 				goto done;
23486 			}
23487 			value = end;
23488 		} else if (strncmp("timestamp", value, 9) == 0) {
23489 			value += 9;
23490 
23491 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
23492 			    timestamp < 0 || timestamp > 1) {
23493 				error = EINVAL;
23494 				goto done;
23495 			}
23496 
23497 			/*
23498 			 * We increment timestamp so we know it's been set;
23499 			 * this is undone when we put it in the HSP
23500 			 */
23501 			timestamp++;
23502 			value = end;
23503 		} else if (strncmp("delete", value, 6) == 0) {
23504 			value += 6;
23505 			delete = B_TRUE;
23506 		} else {
23507 			error = EINVAL;
23508 			goto done;
23509 		}
23510 	}
23511 
23512 	/* Hash address for lookup */
23513 
23514 	hash = TCP_HSP_HASH(addr);
23515 
23516 	if (delete) {
23517 		/*
23518 		 * Note that deletes don't return an error if the thing
23519 		 * we're trying to delete isn't there.
23520 		 */
23521 		if (tcp_hsp_hash == NULL)
23522 			goto done;
23523 		hsp = tcp_hsp_hash[hash];
23524 
23525 		if (hsp) {
23526 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23527 			    &v6addr)) {
23528 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
23529 				mi_free((char *)hsp);
23530 			} else {
23531 				hspprev = hsp;
23532 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
23533 					if (IN6_ARE_ADDR_EQUAL(
23534 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
23535 						hspprev->tcp_hsp_next =
23536 						    hsp->tcp_hsp_next;
23537 						mi_free((char *)hsp);
23538 						break;
23539 					}
23540 					hspprev = hsp;
23541 				}
23542 			}
23543 		}
23544 	} else {
23545 		/*
23546 		 * We're adding/modifying an HSP.  If we haven't already done
23547 		 * so, allocate the hash table.
23548 		 */
23549 
23550 		if (!tcp_hsp_hash) {
23551 			tcp_hsp_hash = (tcp_hsp_t **)
23552 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
23553 			if (!tcp_hsp_hash) {
23554 				error = EINVAL;
23555 				goto done;
23556 			}
23557 		}
23558 
23559 		/* Get head of hash chain */
23560 
23561 		hsp = tcp_hsp_hash[hash];
23562 
23563 		/* Try to find pre-existing hsp on hash chain */
23564 		/* Doesn't handle CIDR prefixes. */
23565 		while (hsp) {
23566 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
23567 				break;
23568 			hsp = hsp->tcp_hsp_next;
23569 		}
23570 
23571 		/*
23572 		 * If we didn't, create one with default values and put it
23573 		 * at head of hash chain
23574 		 */
23575 
23576 		if (!hsp) {
23577 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
23578 			if (!hsp) {
23579 				error = EINVAL;
23580 				goto done;
23581 			}
23582 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
23583 			tcp_hsp_hash[hash] = hsp;
23584 		}
23585 
23586 		/* Set values that the user asked us to change */
23587 
23588 		hsp->tcp_hsp_addr_v6 = v6addr;
23589 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
23590 			hsp->tcp_hsp_vers = IPV4_VERSION;
23591 		else
23592 			hsp->tcp_hsp_vers = IPV6_VERSION;
23593 		hsp->tcp_hsp_subnet_v6 = v6mask;
23594 		if (sendspace > 0)
23595 			hsp->tcp_hsp_sendspace = sendspace;
23596 		if (recvspace > 0)
23597 			hsp->tcp_hsp_recvspace = recvspace;
23598 		if (timestamp > 0)
23599 			hsp->tcp_hsp_tstamp = timestamp - 1;
23600 	}
23601 
23602 done:
23603 	rw_exit(&tcp_hsp_lock);
23604 	return (error);
23605 }
23606 
23607 /* Set callback routine passed to nd_load by tcp_param_register. */
23608 /* ARGSUSED */
23609 static int
23610 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
23611 {
23612 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
23613 }
23614 /* ARGSUSED */
23615 static int
23616 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23617     cred_t *cr)
23618 {
23619 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
23620 }
23621 
23622 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
23623 /* ARGSUSED */
23624 static int
23625 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23626 {
23627 	tcp_hsp_t *hsp;
23628 	int i;
23629 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
23630 
23631 	rw_enter(&tcp_hsp_lock, RW_READER);
23632 	(void) mi_mpprintf(mp,
23633 	    "Hash HSP     " MI_COL_HDRPAD_STR
23634 	    "Address         Subnet Mask     Send       Receive    TStamp");
23635 	if (tcp_hsp_hash) {
23636 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
23637 			hsp = tcp_hsp_hash[i];
23638 			while (hsp) {
23639 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
23640 					(void) inet_ntop(AF_INET,
23641 					    &hsp->tcp_hsp_addr,
23642 					    addrbuf, sizeof (addrbuf));
23643 					(void) inet_ntop(AF_INET,
23644 					    &hsp->tcp_hsp_subnet,
23645 					    subnetbuf, sizeof (subnetbuf));
23646 				} else {
23647 					(void) inet_ntop(AF_INET6,
23648 					    &hsp->tcp_hsp_addr_v6,
23649 					    addrbuf, sizeof (addrbuf));
23650 					(void) inet_ntop(AF_INET6,
23651 					    &hsp->tcp_hsp_subnet_v6,
23652 					    subnetbuf, sizeof (subnetbuf));
23653 				}
23654 				(void) mi_mpprintf(mp,
23655 				    " %03d " MI_COL_PTRFMT_STR
23656 				    "%s %s %010d %010d      %d",
23657 				    i,
23658 				    (void *)hsp,
23659 				    addrbuf,
23660 				    subnetbuf,
23661 				    hsp->tcp_hsp_sendspace,
23662 				    hsp->tcp_hsp_recvspace,
23663 				    hsp->tcp_hsp_tstamp);
23664 
23665 				hsp = hsp->tcp_hsp_next;
23666 			}
23667 		}
23668 	}
23669 	rw_exit(&tcp_hsp_lock);
23670 	return (0);
23671 }
23672 
23673 
23674 /* Data for fast netmask macro used by tcp_hsp_lookup */
23675 
23676 static ipaddr_t netmasks[] = {
23677 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
23678 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
23679 };
23680 
23681 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
23682 
23683 /*
23684  * XXX This routine should go away and instead we should use the metrics
23685  * associated with the routes to determine the default sndspace and rcvspace.
23686  */
23687 static tcp_hsp_t *
23688 tcp_hsp_lookup(ipaddr_t addr)
23689 {
23690 	tcp_hsp_t *hsp = NULL;
23691 
23692 	/* Quick check without acquiring the lock. */
23693 	if (tcp_hsp_hash == NULL)
23694 		return (NULL);
23695 
23696 	rw_enter(&tcp_hsp_lock, RW_READER);
23697 
23698 	/* This routine finds the best-matching HSP for address addr. */
23699 
23700 	if (tcp_hsp_hash) {
23701 		int i;
23702 		ipaddr_t srchaddr;
23703 		tcp_hsp_t *hsp_net;
23704 
23705 		/* We do three passes: host, network, and subnet. */
23706 
23707 		srchaddr = addr;
23708 
23709 		for (i = 1; i <= 3; i++) {
23710 			/* Look for exact match on srchaddr */
23711 
23712 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
23713 			while (hsp) {
23714 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
23715 				    hsp->tcp_hsp_addr == srchaddr)
23716 					break;
23717 				hsp = hsp->tcp_hsp_next;
23718 			}
23719 			ASSERT(hsp == NULL ||
23720 			    hsp->tcp_hsp_vers == IPV4_VERSION);
23721 
23722 			/*
23723 			 * If this is the first pass:
23724 			 *   If we found a match, great, return it.
23725 			 *   If not, search for the network on the second pass.
23726 			 */
23727 
23728 			if (i == 1)
23729 				if (hsp)
23730 					break;
23731 				else
23732 				{
23733 					srchaddr = addr & netmask(addr);
23734 					continue;
23735 				}
23736 
23737 			/*
23738 			 * If this is the second pass:
23739 			 *   If we found a match, but there's a subnet mask,
23740 			 *    save the match but try again using the subnet
23741 			 *    mask on the third pass.
23742 			 *   Otherwise, return whatever we found.
23743 			 */
23744 
23745 			if (i == 2) {
23746 				if (hsp && hsp->tcp_hsp_subnet) {
23747 					hsp_net = hsp;
23748 					srchaddr = addr & hsp->tcp_hsp_subnet;
23749 					continue;
23750 				} else {
23751 					break;
23752 				}
23753 			}
23754 
23755 			/*
23756 			 * This must be the third pass.  If we didn't find
23757 			 * anything, return the saved network HSP instead.
23758 			 */
23759 
23760 			if (!hsp)
23761 				hsp = hsp_net;
23762 		}
23763 	}
23764 
23765 	rw_exit(&tcp_hsp_lock);
23766 	return (hsp);
23767 }
23768 
23769 /*
23770  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
23771  * match lookup.
23772  */
23773 static tcp_hsp_t *
23774 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
23775 {
23776 	tcp_hsp_t *hsp = NULL;
23777 
23778 	/* Quick check without acquiring the lock. */
23779 	if (tcp_hsp_hash == NULL)
23780 		return (NULL);
23781 
23782 	rw_enter(&tcp_hsp_lock, RW_READER);
23783 
23784 	/* This routine finds the best-matching HSP for address addr. */
23785 
23786 	if (tcp_hsp_hash) {
23787 		int i;
23788 		in6_addr_t v6srchaddr;
23789 		tcp_hsp_t *hsp_net;
23790 
23791 		/* We do three passes: host, network, and subnet. */
23792 
23793 		v6srchaddr = *v6addr;
23794 
23795 		for (i = 1; i <= 3; i++) {
23796 			/* Look for exact match on srchaddr */
23797 
23798 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
23799 			    V4_PART_OF_V6(v6srchaddr))];
23800 			while (hsp) {
23801 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
23802 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23803 				    &v6srchaddr))
23804 					break;
23805 				hsp = hsp->tcp_hsp_next;
23806 			}
23807 
23808 			/*
23809 			 * If this is the first pass:
23810 			 *   If we found a match, great, return it.
23811 			 *   If not, search for the network on the second pass.
23812 			 */
23813 
23814 			if (i == 1)
23815 				if (hsp)
23816 					break;
23817 				else {
23818 					/* Assume a 64 bit mask */
23819 					v6srchaddr.s6_addr32[0] =
23820 					    v6addr->s6_addr32[0];
23821 					v6srchaddr.s6_addr32[1] =
23822 					    v6addr->s6_addr32[1];
23823 					v6srchaddr.s6_addr32[2] = 0;
23824 					v6srchaddr.s6_addr32[3] = 0;
23825 					continue;
23826 				}
23827 
23828 			/*
23829 			 * If this is the second pass:
23830 			 *   If we found a match, but there's a subnet mask,
23831 			 *    save the match but try again using the subnet
23832 			 *    mask on the third pass.
23833 			 *   Otherwise, return whatever we found.
23834 			 */
23835 
23836 			if (i == 2) {
23837 				ASSERT(hsp == NULL ||
23838 				    hsp->tcp_hsp_vers == IPV6_VERSION);
23839 				if (hsp &&
23840 				    !IN6_IS_ADDR_UNSPECIFIED(
23841 				    &hsp->tcp_hsp_subnet_v6)) {
23842 					hsp_net = hsp;
23843 					V6_MASK_COPY(*v6addr,
23844 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
23845 					continue;
23846 				} else {
23847 					break;
23848 				}
23849 			}
23850 
23851 			/*
23852 			 * This must be the third pass.  If we didn't find
23853 			 * anything, return the saved network HSP instead.
23854 			 */
23855 
23856 			if (!hsp)
23857 				hsp = hsp_net;
23858 		}
23859 	}
23860 
23861 	rw_exit(&tcp_hsp_lock);
23862 	return (hsp);
23863 }
23864 
23865 /*
23866  * Type three generator adapted from the random() function in 4.4 BSD:
23867  */
23868 
23869 /*
23870  * Copyright (c) 1983, 1993
23871  *	The Regents of the University of California.  All rights reserved.
23872  *
23873  * Redistribution and use in source and binary forms, with or without
23874  * modification, are permitted provided that the following conditions
23875  * are met:
23876  * 1. Redistributions of source code must retain the above copyright
23877  *    notice, this list of conditions and the following disclaimer.
23878  * 2. Redistributions in binary form must reproduce the above copyright
23879  *    notice, this list of conditions and the following disclaimer in the
23880  *    documentation and/or other materials provided with the distribution.
23881  * 3. All advertising materials mentioning features or use of this software
23882  *    must display the following acknowledgement:
23883  *	This product includes software developed by the University of
23884  *	California, Berkeley and its contributors.
23885  * 4. Neither the name of the University nor the names of its contributors
23886  *    may be used to endorse or promote products derived from this software
23887  *    without specific prior written permission.
23888  *
23889  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23890  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23891  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23892  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23893  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23894  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23895  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23896  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23897  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23898  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23899  * SUCH DAMAGE.
23900  */
23901 
23902 /* Type 3 -- x**31 + x**3 + 1 */
23903 #define	DEG_3		31
23904 #define	SEP_3		3
23905 
23906 
23907 /* Protected by tcp_random_lock */
23908 static int tcp_randtbl[DEG_3 + 1];
23909 
23910 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23911 static int *tcp_random_rptr = &tcp_randtbl[1];
23912 
23913 static int *tcp_random_state = &tcp_randtbl[1];
23914 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23915 
23916 kmutex_t tcp_random_lock;
23917 
23918 void
23919 tcp_random_init(void)
23920 {
23921 	int i;
23922 	hrtime_t hrt;
23923 	time_t wallclock;
23924 	uint64_t result;
23925 
23926 	/*
23927 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23928 	 * a longlong, which may contain resolution down to nanoseconds.
23929 	 * The current time will either be a 32-bit or a 64-bit quantity.
23930 	 * XOR the two together in a 64-bit result variable.
23931 	 * Convert the result to a 32-bit value by multiplying the high-order
23932 	 * 32-bits by the low-order 32-bits.
23933 	 */
23934 
23935 	hrt = gethrtime();
23936 	(void) drv_getparm(TIME, &wallclock);
23937 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23938 	mutex_enter(&tcp_random_lock);
23939 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23940 	    (result & 0xffffffff);
23941 
23942 	for (i = 1; i < DEG_3; i++)
23943 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23944 			+ 12345;
23945 	tcp_random_fptr = &tcp_random_state[SEP_3];
23946 	tcp_random_rptr = &tcp_random_state[0];
23947 	mutex_exit(&tcp_random_lock);
23948 	for (i = 0; i < 10 * DEG_3; i++)
23949 		(void) tcp_random();
23950 }
23951 
23952 /*
23953  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23954  * This range is selected to be approximately centered on TCP_ISS / 2,
23955  * and easy to compute. We get this value by generating a 32-bit random
23956  * number, selecting out the high-order 17 bits, and then adding one so
23957  * that we never return zero.
23958  */
23959 int
23960 tcp_random(void)
23961 {
23962 	int i;
23963 
23964 	mutex_enter(&tcp_random_lock);
23965 	*tcp_random_fptr += *tcp_random_rptr;
23966 
23967 	/*
23968 	 * The high-order bits are more random than the low-order bits,
23969 	 * so we select out the high-order 17 bits and add one so that
23970 	 * we never return zero.
23971 	 */
23972 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23973 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23974 		tcp_random_fptr = tcp_random_state;
23975 		++tcp_random_rptr;
23976 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23977 		tcp_random_rptr = tcp_random_state;
23978 
23979 	mutex_exit(&tcp_random_lock);
23980 	return (i);
23981 }
23982 
23983 /*
23984  * XXX This will go away when TPI is extended to send
23985  * info reqs to sockfs/timod .....
23986  * Given a queue, set the max packet size for the write
23987  * side of the queue below stream head.  This value is
23988  * cached on the stream head.
23989  * Returns 1 on success, 0 otherwise.
23990  */
23991 static int
23992 setmaxps(queue_t *q, int maxpsz)
23993 {
23994 	struct stdata	*stp;
23995 	queue_t		*wq;
23996 	stp = STREAM(q);
23997 
23998 	/*
23999 	 * At this point change of a queue parameter is not allowed
24000 	 * when a multiplexor is sitting on top.
24001 	 */
24002 	if (stp->sd_flag & STPLEX)
24003 		return (0);
24004 
24005 	claimstr(stp->sd_wrq);
24006 	wq = stp->sd_wrq->q_next;
24007 	ASSERT(wq != NULL);
24008 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
24009 	releasestr(stp->sd_wrq);
24010 	return (1);
24011 }
24012 
24013 static int
24014 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
24015     int *t_errorp, int *sys_errorp)
24016 {
24017 	int error;
24018 	int is_absreq_failure;
24019 	t_scalar_t *opt_lenp;
24020 	t_scalar_t opt_offset;
24021 	int prim_type;
24022 	struct T_conn_req *tcreqp;
24023 	struct T_conn_res *tcresp;
24024 	cred_t *cr;
24025 
24026 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
24027 
24028 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
24029 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
24030 	    prim_type == T_CONN_RES);
24031 
24032 	switch (prim_type) {
24033 	case T_CONN_REQ:
24034 		tcreqp = (struct T_conn_req *)mp->b_rptr;
24035 		opt_offset = tcreqp->OPT_offset;
24036 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
24037 		break;
24038 	case O_T_CONN_RES:
24039 	case T_CONN_RES:
24040 		tcresp = (struct T_conn_res *)mp->b_rptr;
24041 		opt_offset = tcresp->OPT_offset;
24042 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
24043 		break;
24044 	}
24045 
24046 	*t_errorp = 0;
24047 	*sys_errorp = 0;
24048 	*do_disconnectp = 0;
24049 
24050 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
24051 	    opt_offset, cr, &tcp_opt_obj,
24052 	    NULL, &is_absreq_failure);
24053 
24054 	switch (error) {
24055 	case  0:		/* no error */
24056 		ASSERT(is_absreq_failure == 0);
24057 		return (0);
24058 	case ENOPROTOOPT:
24059 		*t_errorp = TBADOPT;
24060 		break;
24061 	case EACCES:
24062 		*t_errorp = TACCES;
24063 		break;
24064 	default:
24065 		*t_errorp = TSYSERR; *sys_errorp = error;
24066 		break;
24067 	}
24068 	if (is_absreq_failure != 0) {
24069 		/*
24070 		 * The connection request should get the local ack
24071 		 * T_OK_ACK and then a T_DISCON_IND.
24072 		 */
24073 		*do_disconnectp = 1;
24074 	}
24075 	return (-1);
24076 }
24077 
24078 /*
24079  * Split this function out so that if the secret changes, I'm okay.
24080  *
24081  * Initialize the tcp_iss_cookie and tcp_iss_key.
24082  */
24083 
24084 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
24085 
24086 static void
24087 tcp_iss_key_init(uint8_t *phrase, int len)
24088 {
24089 	struct {
24090 		int32_t current_time;
24091 		uint32_t randnum;
24092 		uint16_t pad;
24093 		uint8_t ether[6];
24094 		uint8_t passwd[PASSWD_SIZE];
24095 	} tcp_iss_cookie;
24096 	time_t t;
24097 
24098 	/*
24099 	 * Start with the current absolute time.
24100 	 */
24101 	(void) drv_getparm(TIME, &t);
24102 	tcp_iss_cookie.current_time = t;
24103 
24104 	/*
24105 	 * XXX - Need a more random number per RFC 1750, not this crap.
24106 	 * OTOH, if what follows is pretty random, then I'm in better shape.
24107 	 */
24108 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
24109 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
24110 
24111 	/*
24112 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
24113 	 * as a good template.
24114 	 */
24115 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
24116 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
24117 
24118 	/*
24119 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
24120 	 */
24121 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
24122 
24123 	/*
24124 	 * See 4010593 if this section becomes a problem again,
24125 	 * but the local ethernet address is useful here.
24126 	 */
24127 	(void) localetheraddr(NULL,
24128 	    (struct ether_addr *)&tcp_iss_cookie.ether);
24129 
24130 	/*
24131 	 * Hash 'em all together.  The MD5Final is called per-connection.
24132 	 */
24133 	mutex_enter(&tcp_iss_key_lock);
24134 	MD5Init(&tcp_iss_key);
24135 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
24136 	    sizeof (tcp_iss_cookie));
24137 	mutex_exit(&tcp_iss_key_lock);
24138 }
24139 
24140 /*
24141  * Set the RFC 1948 pass phrase
24142  */
24143 /* ARGSUSED */
24144 static int
24145 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
24146     cred_t *cr)
24147 {
24148 	/*
24149 	 * Basically, value contains a new pass phrase.  Pass it along!
24150 	 */
24151 	tcp_iss_key_init((uint8_t *)value, strlen(value));
24152 	return (0);
24153 }
24154 
24155 /* ARGSUSED */
24156 static int
24157 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
24158 {
24159 	bzero(buf, sizeof (tcp_sack_info_t));
24160 	return (0);
24161 }
24162 
24163 /* ARGSUSED */
24164 static int
24165 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
24166 {
24167 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
24168 	return (0);
24169 }
24170 
24171 void
24172 tcp_ddi_init(void)
24173 {
24174 	int i;
24175 
24176 	/* Initialize locks */
24177 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
24178 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
24179 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
24180 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
24181 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
24182 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
24183 
24184 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
24185 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
24186 		    MUTEX_DEFAULT, NULL);
24187 	}
24188 
24189 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
24190 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
24191 		    MUTEX_DEFAULT, NULL);
24192 	}
24193 
24194 	/* TCP's IPsec code calls the packet dropper. */
24195 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
24196 
24197 	if (!tcp_g_nd) {
24198 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
24199 			nd_free(&tcp_g_nd);
24200 		}
24201 	}
24202 
24203 	/*
24204 	 * Note: To really walk the device tree you need the devinfo
24205 	 * pointer to your device which is only available after probe/attach.
24206 	 * The following is safe only because it uses ddi_root_node()
24207 	 */
24208 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24209 	    tcp_opt_obj.odb_opt_arr_cnt);
24210 
24211 	tcp_timercache = kmem_cache_create("tcp_timercache",
24212 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24213 	    NULL, NULL, NULL, NULL, NULL, 0);
24214 
24215 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24216 	    sizeof (tcp_sack_info_t), 0,
24217 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24218 
24219 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24220 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24221 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24222 
24223 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
24224 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
24225 
24226 	ip_squeue_init(tcp_squeue_add);
24227 
24228 	/* Initialize the random number generator */
24229 	tcp_random_init();
24230 
24231 	/*
24232 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24233 	 * by the boot scripts.
24234 	 *
24235 	 * Use NULL name, as the name is caught by the new lockstats.
24236 	 *
24237 	 * Initialize with some random, non-guessable string, like the global
24238 	 * T_INFO_ACK.
24239 	 */
24240 
24241 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24242 	    sizeof (tcp_g_t_info_ack));
24243 
24244 	if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat",
24245 		"net", KSTAT_TYPE_NAMED,
24246 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
24247 		KSTAT_FLAG_VIRTUAL)) != NULL) {
24248 		tcp_kstat->ks_data = &tcp_statistics;
24249 		kstat_install(tcp_kstat);
24250 	}
24251 
24252 	tcp_kstat_init();
24253 }
24254 
24255 void
24256 tcp_ddi_destroy(void)
24257 {
24258 	int i;
24259 
24260 	nd_free(&tcp_g_nd);
24261 
24262 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
24263 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
24264 	}
24265 
24266 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
24267 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
24268 	}
24269 
24270 	mutex_destroy(&tcp_iss_key_lock);
24271 	rw_destroy(&tcp_hsp_lock);
24272 	mutex_destroy(&tcp_g_q_lock);
24273 	mutex_destroy(&tcp_random_lock);
24274 	mutex_destroy(&tcp_epriv_port_lock);
24275 	rw_destroy(&tcp_reserved_port_lock);
24276 
24277 	ip_drop_unregister(&tcp_dropper);
24278 
24279 	kmem_cache_destroy(tcp_timercache);
24280 	kmem_cache_destroy(tcp_sack_info_cache);
24281 	kmem_cache_destroy(tcp_iphc_cache);
24282 
24283 	tcp_kstat_fini();
24284 }
24285 
24286 /*
24287  * Generate ISS, taking into account NDD changes may happen halfway through.
24288  * (If the iss is not zero, set it.)
24289  */
24290 
24291 static void
24292 tcp_iss_init(tcp_t *tcp)
24293 {
24294 	MD5_CTX context;
24295 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
24296 	uint32_t answer[4];
24297 
24298 	tcp_iss_incr_extra += (ISS_INCR >> 1);
24299 	tcp->tcp_iss = tcp_iss_incr_extra;
24300 	switch (tcp_strong_iss) {
24301 	case 2:
24302 		mutex_enter(&tcp_iss_key_lock);
24303 		context = tcp_iss_key;
24304 		mutex_exit(&tcp_iss_key_lock);
24305 		arg.ports = tcp->tcp_ports;
24306 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24307 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
24308 			    &arg.src);
24309 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
24310 			    &arg.dst);
24311 		} else {
24312 			arg.src = tcp->tcp_ip6h->ip6_src;
24313 			arg.dst = tcp->tcp_ip6h->ip6_dst;
24314 		}
24315 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
24316 		MD5Final((uchar_t *)answer, &context);
24317 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
24318 		/*
24319 		 * Now that we've hashed into a unique per-connection sequence
24320 		 * space, add a random increment per strong_iss == 1.  So I
24321 		 * guess we'll have to...
24322 		 */
24323 		/* FALLTHRU */
24324 	case 1:
24325 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
24326 		break;
24327 	default:
24328 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24329 		break;
24330 	}
24331 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24332 	tcp->tcp_fss = tcp->tcp_iss - 1;
24333 	tcp->tcp_suna = tcp->tcp_iss;
24334 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24335 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24336 	tcp->tcp_csuna = tcp->tcp_snxt;
24337 }
24338 
24339 /*
24340  * Exported routine for extracting active tcp connection status.
24341  *
24342  * This is used by the Solaris Cluster Networking software to
24343  * gather a list of connections that need to be forwarded to
24344  * specific nodes in the cluster when configuration changes occur.
24345  *
24346  * The callback is invoked for each tcp_t structure. Returning
24347  * non-zero from the callback routine terminates the search.
24348  */
24349 int
24350 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
24351 {
24352 	tcp_t *tcp;
24353 	cl_tcp_info_t	cl_tcpi;
24354 	connf_t	*connfp;
24355 	conn_t	*connp;
24356 	int	i;
24357 
24358 	ASSERT(callback != NULL);
24359 
24360 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24361 
24362 		connfp = &ipcl_globalhash_fanout[i];
24363 		connp = NULL;
24364 
24365 		while ((connp =
24366 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24367 
24368 			tcp = connp->conn_tcp;
24369 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
24370 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
24371 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
24372 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
24373 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
24374 			/*
24375 			 * The macros tcp_laddr and tcp_faddr give the IPv4
24376 			 * addresses. They are copied implicitly below as
24377 			 * mapped addresses.
24378 			 */
24379 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
24380 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24381 				cl_tcpi.cl_tcpi_faddr =
24382 				    tcp->tcp_ipha->ipha_dst;
24383 			} else {
24384 				cl_tcpi.cl_tcpi_faddr_v6 =
24385 				    tcp->tcp_ip6h->ip6_dst;
24386 			}
24387 
24388 			/*
24389 			 * If the callback returns non-zero
24390 			 * we terminate the traversal.
24391 			 */
24392 			if ((*callback)(&cl_tcpi, arg) != 0) {
24393 				CONN_DEC_REF(tcp->tcp_connp);
24394 				return (1);
24395 			}
24396 		}
24397 	}
24398 
24399 	return (0);
24400 }
24401 
24402 /*
24403  * Macros used for accessing the different types of sockaddr
24404  * structures inside a tcp_ioc_abort_conn_t.
24405  */
24406 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24407 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24408 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24409 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24410 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24411 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24412 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24413 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24414 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24415 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24416 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24417 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24418 
24419 /*
24420  * Return the correct error code to mimic the behavior
24421  * of a connection reset.
24422  */
24423 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24424 		switch ((state)) {		\
24425 		case TCPS_SYN_SENT:		\
24426 		case TCPS_SYN_RCVD:		\
24427 			(err) = ECONNREFUSED;	\
24428 			break;			\
24429 		case TCPS_ESTABLISHED:		\
24430 		case TCPS_FIN_WAIT_1:		\
24431 		case TCPS_FIN_WAIT_2:		\
24432 		case TCPS_CLOSE_WAIT:		\
24433 			(err) = ECONNRESET;	\
24434 			break;			\
24435 		case TCPS_CLOSING:		\
24436 		case TCPS_LAST_ACK:		\
24437 		case TCPS_TIME_WAIT:		\
24438 			(err) = 0;		\
24439 			break;			\
24440 		default:			\
24441 			(err) = ENXIO;		\
24442 		}				\
24443 	}
24444 
24445 /*
24446  * Check if a tcp structure matches the info in acp.
24447  */
24448 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24449 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24450 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24451 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24452 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24453 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24454 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24455 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24456 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24457 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24458 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24459 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24460 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24461 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24462 	&(tcp)->tcp_ip_src_v6)) &&				\
24463 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24464 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24465 	&(tcp)->tcp_remote_v6)) &&				\
24466 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24467 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24468 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24469 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24470 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24471 	(acp)->ac_end >= (tcp)->tcp_state))
24472 
24473 #define	TCP_AC_MATCH(acp, tcp)					\
24474 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24475 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24476 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24477 
24478 /*
24479  * Build a message containing a tcp_ioc_abort_conn_t structure
24480  * which is filled in with information from acp and tp.
24481  */
24482 static mblk_t *
24483 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24484 {
24485 	mblk_t *mp;
24486 	tcp_ioc_abort_conn_t *tacp;
24487 
24488 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24489 	if (mp == NULL)
24490 		return (NULL);
24491 
24492 	mp->b_datap->db_type = M_CTL;
24493 
24494 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24495 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24496 		sizeof (uint32_t));
24497 
24498 	tacp->ac_start = acp->ac_start;
24499 	tacp->ac_end = acp->ac_end;
24500 	tacp->ac_zoneid = acp->ac_zoneid;
24501 
24502 	if (acp->ac_local.ss_family == AF_INET) {
24503 		tacp->ac_local.ss_family = AF_INET;
24504 		tacp->ac_remote.ss_family = AF_INET;
24505 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24506 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24507 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24508 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24509 	} else {
24510 		tacp->ac_local.ss_family = AF_INET6;
24511 		tacp->ac_remote.ss_family = AF_INET6;
24512 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24513 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24514 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24515 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24516 	}
24517 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24518 	return (mp);
24519 }
24520 
24521 /*
24522  * Print a tcp_ioc_abort_conn_t structure.
24523  */
24524 static void
24525 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24526 {
24527 	char lbuf[128];
24528 	char rbuf[128];
24529 	sa_family_t af;
24530 	in_port_t lport, rport;
24531 	ushort_t logflags;
24532 
24533 	af = acp->ac_local.ss_family;
24534 
24535 	if (af == AF_INET) {
24536 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24537 				lbuf, 128);
24538 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24539 				rbuf, 128);
24540 		lport = ntohs(TCP_AC_V4LPORT(acp));
24541 		rport = ntohs(TCP_AC_V4RPORT(acp));
24542 	} else {
24543 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24544 				lbuf, 128);
24545 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24546 				rbuf, 128);
24547 		lport = ntohs(TCP_AC_V6LPORT(acp));
24548 		rport = ntohs(TCP_AC_V6RPORT(acp));
24549 	}
24550 
24551 	logflags = SL_TRACE | SL_NOTE;
24552 	/*
24553 	 * Don't print this message to the console if the operation was done
24554 	 * to a non-global zone.
24555 	 */
24556 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24557 		logflags |= SL_CONSOLE;
24558 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24559 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24560 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24561 		acp->ac_start, acp->ac_end);
24562 }
24563 
24564 /*
24565  * Called inside tcp_rput when a message built using
24566  * tcp_ioctl_abort_build_msg is put into a queue.
24567  * Note that when we get here there is no wildcard in acp any more.
24568  */
24569 static void
24570 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24571 {
24572 	tcp_ioc_abort_conn_t *acp;
24573 
24574 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24575 	if (tcp->tcp_state <= acp->ac_end) {
24576 		/*
24577 		 * If we get here, we are already on the correct
24578 		 * squeue. This ioctl follows the following path
24579 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24580 		 * ->tcp_ioctl_abort->squeue_fill (if on a
24581 		 * different squeue)
24582 		 */
24583 		int errcode;
24584 
24585 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24586 		(void) tcp_clean_death(tcp, errcode, 26);
24587 	}
24588 	freemsg(mp);
24589 }
24590 
24591 /*
24592  * Abort all matching connections on a hash chain.
24593  */
24594 static int
24595 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24596     boolean_t exact)
24597 {
24598 	int nmatch, err = 0;
24599 	tcp_t *tcp;
24600 	MBLKP mp, last, listhead = NULL;
24601 	conn_t	*tconnp;
24602 	connf_t	*connfp = &ipcl_conn_fanout[index];
24603 
24604 startover:
24605 	nmatch = 0;
24606 
24607 	mutex_enter(&connfp->connf_lock);
24608 	for (tconnp = connfp->connf_head; tconnp != NULL;
24609 	    tconnp = tconnp->conn_next) {
24610 		tcp = tconnp->conn_tcp;
24611 		if (TCP_AC_MATCH(acp, tcp)) {
24612 			CONN_INC_REF(tcp->tcp_connp);
24613 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24614 			if (mp == NULL) {
24615 				err = ENOMEM;
24616 				CONN_DEC_REF(tcp->tcp_connp);
24617 				break;
24618 			}
24619 			mp->b_prev = (mblk_t *)tcp;
24620 
24621 			if (listhead == NULL) {
24622 				listhead = mp;
24623 				last = mp;
24624 			} else {
24625 				last->b_next = mp;
24626 				last = mp;
24627 			}
24628 			nmatch++;
24629 			if (exact)
24630 				break;
24631 		}
24632 
24633 		/* Avoid holding lock for too long. */
24634 		if (nmatch >= 500)
24635 			break;
24636 	}
24637 	mutex_exit(&connfp->connf_lock);
24638 
24639 	/* Pass mp into the correct tcp */
24640 	while ((mp = listhead) != NULL) {
24641 		listhead = listhead->b_next;
24642 		tcp = (tcp_t *)mp->b_prev;
24643 		mp->b_next = mp->b_prev = NULL;
24644 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
24645 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
24646 	}
24647 
24648 	*count += nmatch;
24649 	if (nmatch >= 500 && err == 0)
24650 		goto startover;
24651 	return (err);
24652 }
24653 
24654 /*
24655  * Abort all connections that matches the attributes specified in acp.
24656  */
24657 static int
24658 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
24659 {
24660 	sa_family_t af;
24661 	uint32_t  ports;
24662 	uint16_t *pports;
24663 	int err = 0, count = 0;
24664 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24665 	int index = -1;
24666 	ushort_t logflags;
24667 
24668 	af = acp->ac_local.ss_family;
24669 
24670 	if (af == AF_INET) {
24671 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24672 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24673 			pports = (uint16_t *)&ports;
24674 			pports[1] = TCP_AC_V4LPORT(acp);
24675 			pports[0] = TCP_AC_V4RPORT(acp);
24676 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24677 		}
24678 	} else {
24679 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24680 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24681 			pports = (uint16_t *)&ports;
24682 			pports[1] = TCP_AC_V6LPORT(acp);
24683 			pports[0] = TCP_AC_V6RPORT(acp);
24684 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24685 		}
24686 	}
24687 
24688 	/*
24689 	 * For cases where remote addr, local port, and remote port are non-
24690 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24691 	 */
24692 	if (index != -1) {
24693 		err = tcp_ioctl_abort_bucket(acp, index,
24694 			    &count, exact);
24695 	} else {
24696 		/*
24697 		 * loop through all entries for wildcard case
24698 		 */
24699 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
24700 			err = tcp_ioctl_abort_bucket(acp, index,
24701 			    &count, exact);
24702 			if (err != 0)
24703 				break;
24704 		}
24705 	}
24706 
24707 	logflags = SL_TRACE | SL_NOTE;
24708 	/*
24709 	 * Don't print this message to the console if the operation was done
24710 	 * to a non-global zone.
24711 	 */
24712 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24713 		logflags |= SL_CONSOLE;
24714 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24715 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24716 	if (err == 0 && count == 0)
24717 		err = ENOENT;
24718 	return (err);
24719 }
24720 
24721 /*
24722  * Process the TCP_IOC_ABORT_CONN ioctl request.
24723  */
24724 static void
24725 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24726 {
24727 	int	err;
24728 	IOCP    iocp;
24729 	MBLKP   mp1;
24730 	sa_family_t laf, raf;
24731 	tcp_ioc_abort_conn_t *acp;
24732 	zone_t *zptr;
24733 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
24734 
24735 	iocp = (IOCP)mp->b_rptr;
24736 
24737 	if ((mp1 = mp->b_cont) == NULL ||
24738 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24739 		err = EINVAL;
24740 		goto out;
24741 	}
24742 
24743 	/* check permissions */
24744 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
24745 		err = EPERM;
24746 		goto out;
24747 	}
24748 
24749 	if (mp1->b_cont != NULL) {
24750 		freemsg(mp1->b_cont);
24751 		mp1->b_cont = NULL;
24752 	}
24753 
24754 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24755 	laf = acp->ac_local.ss_family;
24756 	raf = acp->ac_remote.ss_family;
24757 
24758 	/* check that a zone with the supplied zoneid exists */
24759 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24760 		zptr = zone_find_by_id(zoneid);
24761 		if (zptr != NULL) {
24762 			zone_rele(zptr);
24763 		} else {
24764 			err = EINVAL;
24765 			goto out;
24766 		}
24767 	}
24768 
24769 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24770 	    acp->ac_start > acp->ac_end || laf != raf ||
24771 	    (laf != AF_INET && laf != AF_INET6)) {
24772 		err = EINVAL;
24773 		goto out;
24774 	}
24775 
24776 	tcp_ioctl_abort_dump(acp);
24777 	err = tcp_ioctl_abort(acp);
24778 
24779 out:
24780 	if (mp1 != NULL) {
24781 		freemsg(mp1);
24782 		mp->b_cont = NULL;
24783 	}
24784 
24785 	if (err != 0)
24786 		miocnak(q, mp, 0, err);
24787 	else
24788 		miocack(q, mp, 0, 0);
24789 }
24790 
24791 /*
24792  * tcp_time_wait_processing() handles processing of incoming packets when
24793  * the tcp is in the TIME_WAIT state.
24794  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24795  * on the time wait list.
24796  */
24797 void
24798 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24799     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24800 {
24801 	int32_t		bytes_acked;
24802 	int32_t		gap;
24803 	int32_t		rgap;
24804 	tcp_opt_t	tcpopt;
24805 	uint_t		flags;
24806 	uint32_t	new_swnd = 0;
24807 	conn_t		*connp;
24808 
24809 	BUMP_LOCAL(tcp->tcp_ibsegs);
24810 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
24811 
24812 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24813 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24814 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24815 	if (tcp->tcp_snd_ts_ok) {
24816 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24817 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24818 			    tcp->tcp_rnxt, TH_ACK);
24819 			goto done;
24820 		}
24821 	}
24822 	gap = seg_seq - tcp->tcp_rnxt;
24823 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24824 	if (gap < 0) {
24825 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
24826 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
24827 		    (seg_len > -gap ? -gap : seg_len));
24828 		seg_len += gap;
24829 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24830 			if (flags & TH_RST) {
24831 				goto done;
24832 			}
24833 			if ((flags & TH_FIN) && seg_len == -1) {
24834 				/*
24835 				 * When TCP receives a duplicate FIN in
24836 				 * TIME_WAIT state, restart the 2 MSL timer.
24837 				 * See page 73 in RFC 793. Make sure this TCP
24838 				 * is already on the TIME_WAIT list. If not,
24839 				 * just restart the timer.
24840 				 */
24841 				if (TCP_IS_DETACHED(tcp)) {
24842 					if (tcp_time_wait_remove(tcp, NULL) ==
24843 					    B_TRUE) {
24844 						tcp_time_wait_append(tcp);
24845 						TCP_DBGSTAT(tcp_rput_time_wait);
24846 					}
24847 				} else {
24848 					ASSERT(tcp != NULL);
24849 					TCP_TIMER_RESTART(tcp,
24850 					    tcp_time_wait_interval);
24851 				}
24852 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24853 				    tcp->tcp_rnxt, TH_ACK);
24854 				goto done;
24855 			}
24856 			flags |=  TH_ACK_NEEDED;
24857 			seg_len = 0;
24858 			goto process_ack;
24859 		}
24860 
24861 		/* Fix seg_seq, and chew the gap off the front. */
24862 		seg_seq = tcp->tcp_rnxt;
24863 	}
24864 
24865 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24866 		/*
24867 		 * Make sure that when we accept the connection, pick
24868 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24869 		 * old connection.
24870 		 *
24871 		 * The next ISS generated is equal to tcp_iss_incr_extra
24872 		 * + ISS_INCR/2 + other components depending on the
24873 		 * value of tcp_strong_iss.  We pre-calculate the new
24874 		 * ISS here and compare with tcp_snxt to determine if
24875 		 * we need to make adjustment to tcp_iss_incr_extra.
24876 		 *
24877 		 * The above calculation is ugly and is a
24878 		 * waste of CPU cycles...
24879 		 */
24880 		uint32_t new_iss = tcp_iss_incr_extra;
24881 		int32_t adj;
24882 
24883 		switch (tcp_strong_iss) {
24884 		case 2: {
24885 			/* Add time and MD5 components. */
24886 			uint32_t answer[4];
24887 			struct {
24888 				uint32_t ports;
24889 				in6_addr_t src;
24890 				in6_addr_t dst;
24891 			} arg;
24892 			MD5_CTX context;
24893 
24894 			mutex_enter(&tcp_iss_key_lock);
24895 			context = tcp_iss_key;
24896 			mutex_exit(&tcp_iss_key_lock);
24897 			arg.ports = tcp->tcp_ports;
24898 			/* We use MAPPED addresses in tcp_iss_init */
24899 			arg.src = tcp->tcp_ip_src_v6;
24900 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24901 				IN6_IPADDR_TO_V4MAPPED(
24902 					tcp->tcp_ipha->ipha_dst,
24903 					    &arg.dst);
24904 			} else {
24905 				arg.dst =
24906 				    tcp->tcp_ip6h->ip6_dst;
24907 			}
24908 			MD5Update(&context, (uchar_t *)&arg,
24909 			    sizeof (arg));
24910 			MD5Final((uchar_t *)answer, &context);
24911 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24912 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24913 			break;
24914 		}
24915 		case 1:
24916 			/* Add time component and min random (i.e. 1). */
24917 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24918 			break;
24919 		default:
24920 			/* Add only time component. */
24921 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24922 			break;
24923 		}
24924 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24925 			/*
24926 			 * New ISS not guaranteed to be ISS_INCR/2
24927 			 * ahead of the current tcp_snxt, so add the
24928 			 * difference to tcp_iss_incr_extra.
24929 			 */
24930 			tcp_iss_incr_extra += adj;
24931 		}
24932 		/*
24933 		 * If tcp_clean_death() can not perform the task now,
24934 		 * drop the SYN packet and let the other side re-xmit.
24935 		 * Otherwise pass the SYN packet back in, since the
24936 		 * old tcp state has been cleaned up or freed.
24937 		 */
24938 		if (tcp_clean_death(tcp, 0, 27) == -1)
24939 			goto done;
24940 		/*
24941 		 * We will come back to tcp_rput_data
24942 		 * on the global queue. Packets destined
24943 		 * for the global queue will be checked
24944 		 * with global policy. But the policy for
24945 		 * this packet has already been checked as
24946 		 * this was destined for the detached
24947 		 * connection. We need to bypass policy
24948 		 * check this time by attaching a dummy
24949 		 * ipsec_in with ipsec_in_dont_check set.
24950 		 */
24951 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
24952 		    NULL) {
24953 			TCP_STAT(tcp_time_wait_syn_success);
24954 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24955 			return;
24956 		}
24957 		goto done;
24958 	}
24959 
24960 	/*
24961 	 * rgap is the amount of stuff received out of window.  A negative
24962 	 * value is the amount out of window.
24963 	 */
24964 	if (rgap < 0) {
24965 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
24966 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
24967 		/* Fix seg_len and make sure there is something left. */
24968 		seg_len += rgap;
24969 		if (seg_len <= 0) {
24970 			if (flags & TH_RST) {
24971 				goto done;
24972 			}
24973 			flags |=  TH_ACK_NEEDED;
24974 			seg_len = 0;
24975 			goto process_ack;
24976 		}
24977 	}
24978 	/*
24979 	 * Check whether we can update tcp_ts_recent.  This test is
24980 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24981 	 * Extensions for High Performance: An Update", Internet Draft.
24982 	 */
24983 	if (tcp->tcp_snd_ts_ok &&
24984 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24985 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24986 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24987 		tcp->tcp_last_rcv_lbolt = lbolt64;
24988 	}
24989 
24990 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24991 		/* Always ack out of order packets */
24992 		flags |= TH_ACK_NEEDED;
24993 		seg_len = 0;
24994 	} else if (seg_len > 0) {
24995 		BUMP_MIB(&tcp_mib, tcpInClosed);
24996 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
24997 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
24998 	}
24999 	if (flags & TH_RST) {
25000 		(void) tcp_clean_death(tcp, 0, 28);
25001 		goto done;
25002 	}
25003 	if (flags & TH_SYN) {
25004 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
25005 		    TH_RST|TH_ACK);
25006 		/*
25007 		 * Do not delete the TCP structure if it is in
25008 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
25009 		 */
25010 		goto done;
25011 	}
25012 process_ack:
25013 	if (flags & TH_ACK) {
25014 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
25015 		if (bytes_acked <= 0) {
25016 			if (bytes_acked == 0 && seg_len == 0 &&
25017 			    new_swnd == tcp->tcp_swnd)
25018 				BUMP_MIB(&tcp_mib, tcpInDupAck);
25019 		} else {
25020 			/* Acks something not sent */
25021 			flags |= TH_ACK_NEEDED;
25022 		}
25023 	}
25024 	if (flags & TH_ACK_NEEDED) {
25025 		/*
25026 		 * Time to send an ack for some reason.
25027 		 */
25028 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
25029 		    tcp->tcp_rnxt, TH_ACK);
25030 	}
25031 done:
25032 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25033 		DB_CKSUMSTART(mp) = 0;
25034 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
25035 		TCP_STAT(tcp_time_wait_syn_fail);
25036 	}
25037 	freemsg(mp);
25038 }
25039 
25040 /*
25041  * Allocate a T_SVR4_OPTMGMT_REQ.
25042  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
25043  * that tcp_rput_other can drop the acks.
25044  */
25045 static mblk_t *
25046 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
25047 {
25048 	mblk_t *mp;
25049 	struct T_optmgmt_req *tor;
25050 	struct opthdr *oh;
25051 	uint_t size;
25052 	char *optptr;
25053 
25054 	size = sizeof (*tor) + sizeof (*oh) + optlen;
25055 	mp = allocb(size, BPRI_MED);
25056 	if (mp == NULL)
25057 		return (NULL);
25058 
25059 	mp->b_wptr += size;
25060 	mp->b_datap->db_type = M_PROTO;
25061 	tor = (struct T_optmgmt_req *)mp->b_rptr;
25062 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
25063 	tor->MGMT_flags = T_NEGOTIATE;
25064 	tor->OPT_length = sizeof (*oh) + optlen;
25065 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
25066 
25067 	oh = (struct opthdr *)&tor[1];
25068 	oh->level = level;
25069 	oh->name = cmd;
25070 	oh->len = optlen;
25071 	if (optlen != 0) {
25072 		optptr = (char *)&oh[1];
25073 		bcopy(opt, optptr, optlen);
25074 	}
25075 	return (mp);
25076 }
25077 
25078 /*
25079  * TCP Timers Implementation.
25080  */
25081 timeout_id_t
25082 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
25083 {
25084 	mblk_t *mp;
25085 	tcp_timer_t *tcpt;
25086 	tcp_t *tcp = connp->conn_tcp;
25087 
25088 	ASSERT(connp->conn_sqp != NULL);
25089 
25090 	TCP_DBGSTAT(tcp_timeout_calls);
25091 
25092 	if (tcp->tcp_timercache == NULL) {
25093 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
25094 	} else {
25095 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
25096 		mp = tcp->tcp_timercache;
25097 		tcp->tcp_timercache = mp->b_next;
25098 		mp->b_next = NULL;
25099 		ASSERT(mp->b_wptr == NULL);
25100 	}
25101 
25102 	CONN_INC_REF(connp);
25103 	tcpt = (tcp_timer_t *)mp->b_rptr;
25104 	tcpt->connp = connp;
25105 	tcpt->tcpt_proc = f;
25106 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
25107 	return ((timeout_id_t)mp);
25108 }
25109 
25110 static void
25111 tcp_timer_callback(void *arg)
25112 {
25113 	mblk_t *mp = (mblk_t *)arg;
25114 	tcp_timer_t *tcpt;
25115 	conn_t	*connp;
25116 
25117 	tcpt = (tcp_timer_t *)mp->b_rptr;
25118 	connp = tcpt->connp;
25119 	squeue_fill(connp->conn_sqp, mp,
25120 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
25121 }
25122 
25123 static void
25124 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25125 {
25126 	tcp_timer_t *tcpt;
25127 	conn_t *connp = (conn_t *)arg;
25128 	tcp_t *tcp = connp->conn_tcp;
25129 
25130 	tcpt = (tcp_timer_t *)mp->b_rptr;
25131 	ASSERT(connp == tcpt->connp);
25132 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25133 
25134 	/*
25135 	 * If the TCP has reached the closed state, don't proceed any
25136 	 * further. This TCP logically does not exist on the system.
25137 	 * tcpt_proc could for example access queues, that have already
25138 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25139 	 */
25140 	if (tcp->tcp_state != TCPS_CLOSED) {
25141 		(*tcpt->tcpt_proc)(connp);
25142 	} else {
25143 		tcp->tcp_timer_tid = 0;
25144 	}
25145 	tcp_timer_free(connp->conn_tcp, mp);
25146 }
25147 
25148 /*
25149  * There is potential race with untimeout and the handler firing at the same
25150  * time. The mblock may be freed by the handler while we are trying to use
25151  * it. But since both should execute on the same squeue, this race should not
25152  * occur.
25153  */
25154 clock_t
25155 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25156 {
25157 	mblk_t	*mp = (mblk_t *)id;
25158 	tcp_timer_t *tcpt;
25159 	clock_t delta;
25160 
25161 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
25162 
25163 	if (mp == NULL)
25164 		return (-1);
25165 
25166 	tcpt = (tcp_timer_t *)mp->b_rptr;
25167 	ASSERT(tcpt->connp == connp);
25168 
25169 	delta = untimeout(tcpt->tcpt_tid);
25170 
25171 	if (delta >= 0) {
25172 		TCP_DBGSTAT(tcp_timeout_canceled);
25173 		tcp_timer_free(connp->conn_tcp, mp);
25174 		CONN_DEC_REF(connp);
25175 	}
25176 
25177 	return (delta);
25178 }
25179 
25180 /*
25181  * Allocate space for the timer event. The allocation looks like mblk, but it is
25182  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25183  *
25184  * Dealing with failures: If we can't allocate from the timer cache we try
25185  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25186  * points to b_rptr.
25187  * If we can't allocate anything using allocb_tryhard(), we perform a last
25188  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25189  * save the actual allocation size in b_datap.
25190  */
25191 mblk_t *
25192 tcp_timermp_alloc(int kmflags)
25193 {
25194 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25195 	    kmflags & ~KM_PANIC);
25196 
25197 	if (mp != NULL) {
25198 		mp->b_next = mp->b_prev = NULL;
25199 		mp->b_rptr = (uchar_t *)(&mp[1]);
25200 		mp->b_wptr = NULL;
25201 		mp->b_datap = NULL;
25202 		mp->b_queue = NULL;
25203 	} else if (kmflags & KM_PANIC) {
25204 		/*
25205 		 * Failed to allocate memory for the timer. Try allocating from
25206 		 * dblock caches.
25207 		 */
25208 		TCP_STAT(tcp_timermp_allocfail);
25209 		mp = allocb_tryhard(sizeof (tcp_timer_t));
25210 		if (mp == NULL) {
25211 			size_t size = 0;
25212 			/*
25213 			 * Memory is really low. Try tryhard allocation.
25214 			 */
25215 			TCP_STAT(tcp_timermp_allocdblfail);
25216 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
25217 			    sizeof (tcp_timer_t), &size, kmflags);
25218 			mp->b_rptr = (uchar_t *)(&mp[1]);
25219 			mp->b_next = mp->b_prev = NULL;
25220 			mp->b_wptr = (uchar_t *)-1;
25221 			mp->b_datap = (dblk_t *)size;
25222 			mp->b_queue = NULL;
25223 		}
25224 		ASSERT(mp->b_wptr != NULL);
25225 	}
25226 	TCP_DBGSTAT(tcp_timermp_alloced);
25227 
25228 	return (mp);
25229 }
25230 
25231 /*
25232  * Free per-tcp timer cache.
25233  * It can only contain entries from tcp_timercache.
25234  */
25235 void
25236 tcp_timermp_free(tcp_t *tcp)
25237 {
25238 	mblk_t *mp;
25239 
25240 	while ((mp = tcp->tcp_timercache) != NULL) {
25241 		ASSERT(mp->b_wptr == NULL);
25242 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
25243 		kmem_cache_free(tcp_timercache, mp);
25244 	}
25245 }
25246 
25247 /*
25248  * Free timer event. Put it on the per-tcp timer cache if there is not too many
25249  * events there already (currently at most two events are cached).
25250  * If the event is not allocated from the timer cache, free it right away.
25251  */
25252 static void
25253 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
25254 {
25255 	mblk_t *mp1 = tcp->tcp_timercache;
25256 
25257 	if (mp->b_wptr != NULL) {
25258 		/*
25259 		 * This allocation is not from a timer cache, free it right
25260 		 * away.
25261 		 */
25262 		if (mp->b_wptr != (uchar_t *)-1)
25263 			freeb(mp);
25264 		else
25265 			kmem_free(mp, (size_t)mp->b_datap);
25266 	} else if (mp1 == NULL || mp1->b_next == NULL) {
25267 		/* Cache this timer block for future allocations */
25268 		mp->b_rptr = (uchar_t *)(&mp[1]);
25269 		mp->b_next = mp1;
25270 		tcp->tcp_timercache = mp;
25271 	} else {
25272 		kmem_cache_free(tcp_timercache, mp);
25273 		TCP_DBGSTAT(tcp_timermp_freed);
25274 	}
25275 }
25276 
25277 /*
25278  * End of TCP Timers implementation.
25279  */
25280 
25281 /*
25282  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
25283  * on the specified backing STREAMS q. Note, the caller may make the
25284  * decision to call based on the tcp_t.tcp_flow_stopped value which
25285  * when check outside the q's lock is only an advisory check ...
25286  */
25287 
25288 void
25289 tcp_setqfull(tcp_t *tcp)
25290 {
25291 	queue_t *q = tcp->tcp_wq;
25292 
25293 	if (!(q->q_flag & QFULL)) {
25294 		mutex_enter(QLOCK(q));
25295 		if (!(q->q_flag & QFULL)) {
25296 			/* still need to set QFULL */
25297 			q->q_flag |= QFULL;
25298 			tcp->tcp_flow_stopped = B_TRUE;
25299 			mutex_exit(QLOCK(q));
25300 			TCP_STAT(tcp_flwctl_on);
25301 		} else {
25302 			mutex_exit(QLOCK(q));
25303 		}
25304 	}
25305 }
25306 
25307 void
25308 tcp_clrqfull(tcp_t *tcp)
25309 {
25310 	queue_t *q = tcp->tcp_wq;
25311 
25312 	if (q->q_flag & QFULL) {
25313 		mutex_enter(QLOCK(q));
25314 		if (q->q_flag & QFULL) {
25315 			q->q_flag &= ~QFULL;
25316 			tcp->tcp_flow_stopped = B_FALSE;
25317 			mutex_exit(QLOCK(q));
25318 			if (q->q_flag & QWANTW)
25319 				qbackenable(q, 0);
25320 		} else {
25321 			mutex_exit(QLOCK(q));
25322 		}
25323 	}
25324 }
25325 
25326 /*
25327  * TCP Kstats implementation
25328  */
25329 static void
25330 tcp_kstat_init(void)
25331 {
25332 	tcp_named_kstat_t template = {
25333 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
25334 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
25335 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
25336 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
25337 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
25338 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
25339 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
25340 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
25341 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
25342 		{ "inSegs",		KSTAT_DATA_UINT32, 0 },
25343 		{ "outSegs",		KSTAT_DATA_UINT32, 0 },
25344 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
25345 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
25346 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
25347 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
25348 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
25349 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
25350 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
25351 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
25352 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
25353 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
25354 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
25355 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
25356 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
25357 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
25358 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
25359 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
25360 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
25361 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
25362 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
25363 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
25364 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
25365 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
25366 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
25367 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
25368 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
25369 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
25370 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
25371 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
25372 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
25373 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
25374 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
25375 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
25376 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
25377 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
25378 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
25379 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
25380 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
25381 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
25382 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
25383 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
25384 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
25385 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
25386 	};
25387 
25388 	tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME,
25389 	    "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0);
25390 
25391 	if (tcp_mibkp == NULL)
25392 		return;
25393 
25394 	template.rtoAlgorithm.value.ui32 = 4;
25395 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
25396 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
25397 	template.maxConn.value.i32 = -1;
25398 
25399 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
25400 
25401 	tcp_mibkp->ks_update = tcp_kstat_update;
25402 
25403 	kstat_install(tcp_mibkp);
25404 }
25405 
25406 static void
25407 tcp_kstat_fini(void)
25408 {
25409 
25410 	if (tcp_mibkp != NULL) {
25411 		kstat_delete(tcp_mibkp);
25412 		tcp_mibkp = NULL;
25413 	}
25414 }
25415 
25416 static int
25417 tcp_kstat_update(kstat_t *kp, int rw)
25418 {
25419 	tcp_named_kstat_t	*tcpkp;
25420 	tcp_t			*tcp;
25421 	connf_t			*connfp;
25422 	conn_t			*connp;
25423 	int 			i;
25424 
25425 	if (!kp || !kp->ks_data)
25426 		return (EIO);
25427 
25428 	if (rw == KSTAT_WRITE)
25429 		return (EACCES);
25430 
25431 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25432 
25433 	tcpkp->currEstab.value.ui32 = 0;
25434 
25435 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25436 		connfp = &ipcl_globalhash_fanout[i];
25437 		connp = NULL;
25438 		while ((connp =
25439 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25440 			tcp = connp->conn_tcp;
25441 			switch (tcp_snmp_state(tcp)) {
25442 			case MIB2_TCP_established:
25443 			case MIB2_TCP_closeWait:
25444 				tcpkp->currEstab.value.ui32++;
25445 				break;
25446 			}
25447 		}
25448 	}
25449 
25450 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
25451 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
25452 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
25453 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
25454 	tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs;
25455 	tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs;
25456 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
25457 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
25458 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
25459 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
25460 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
25461 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
25462 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
25463 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
25464 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
25465 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
25466 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
25467 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
25468 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
25469 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
25470 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
25471 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
25472 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
25473 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
25474 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
25475 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
25476 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
25477 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
25478 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
25479 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
25480 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
25481 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
25482 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
25483 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
25484 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
25485 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
25486 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
25487 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
25488 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
25489 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
25490 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
25491 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
25492 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
25493 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
25494 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
25495 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
25496 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
25497 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
25498 
25499 	return (0);
25500 }
25501 
25502 void
25503 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25504 {
25505 	uint16_t	hdr_len;
25506 	ipha_t		*ipha;
25507 	uint8_t		*nexthdrp;
25508 	tcph_t		*tcph;
25509 
25510 	/* Already has an eager */
25511 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25512 		TCP_STAT(tcp_reinput_syn);
25513 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
25514 		    connp, SQTAG_TCP_REINPUT_EAGER);
25515 		return;
25516 	}
25517 
25518 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25519 	case IPV4_VERSION:
25520 		ipha = (ipha_t *)mp->b_rptr;
25521 		hdr_len = IPH_HDR_LENGTH(ipha);
25522 		break;
25523 	case IPV6_VERSION:
25524 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25525 		    &hdr_len, &nexthdrp)) {
25526 			CONN_DEC_REF(connp);
25527 			freemsg(mp);
25528 			return;
25529 		}
25530 		break;
25531 	}
25532 
25533 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25534 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25535 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25536 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25537 	}
25538 
25539 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
25540 	    SQTAG_TCP_REINPUT);
25541 }
25542 
25543 static squeue_func_t
25544 tcp_squeue_switch(int val)
25545 {
25546 	squeue_func_t rval = squeue_fill;
25547 
25548 	switch (val) {
25549 	case 1:
25550 		rval = squeue_enter_nodrain;
25551 		break;
25552 	case 2:
25553 		rval = squeue_enter;
25554 		break;
25555 	default:
25556 		break;
25557 	}
25558 	return (rval);
25559 }
25560 
25561 static void
25562 tcp_squeue_add(squeue_t *sqp)
25563 {
25564 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25565 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
25566 
25567 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25568 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
25569 	    sqp, TCP_TIME_WAIT_DELAY);
25570 	if (tcp_free_list_max_cnt == 0) {
25571 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25572 			max_ncpus : boot_max_ncpus);
25573 
25574 		/*
25575 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25576 		 */
25577 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25578 			(tcp_ncpus * sizeof (tcp_t) * 100);
25579 	}
25580 	tcp_time_wait->tcp_free_list_cnt = 0;
25581 }
25582