1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #include <sys/types.h> 29 #include <sys/stream.h> 30 #include <sys/strsun.h> 31 #include <sys/strsubr.h> 32 #include <sys/stropts.h> 33 #include <sys/strlog.h> 34 #define _SUN_TPI_VERSION 2 35 #include <sys/tihdr.h> 36 #include <sys/timod.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/suntpi.h> 40 #include <sys/xti_inet.h> 41 #include <sys/cmn_err.h> 42 #include <sys/debug.h> 43 #include <sys/sdt.h> 44 #include <sys/vtrace.h> 45 #include <sys/kmem.h> 46 #include <sys/ethernet.h> 47 #include <sys/cpuvar.h> 48 #include <sys/dlpi.h> 49 #include <sys/multidata.h> 50 #include <sys/multidata_impl.h> 51 #include <sys/pattr.h> 52 #include <sys/policy.h> 53 #include <sys/priv.h> 54 #include <sys/zone.h> 55 #include <sys/sunldi.h> 56 57 #include <sys/errno.h> 58 #include <sys/signal.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/isa_defs.h> 63 #include <sys/md5.h> 64 #include <sys/random.h> 65 #include <sys/uio.h> 66 #include <sys/systm.h> 67 #include <netinet/in.h> 68 #include <netinet/tcp.h> 69 #include <netinet/ip6.h> 70 #include <netinet/icmp6.h> 71 #include <net/if.h> 72 #include <net/route.h> 73 #include <inet/ipsec_impl.h> 74 75 #include <inet/common.h> 76 #include <inet/ip.h> 77 #include <inet/ip_impl.h> 78 #include <inet/ip6.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/proto_set.h> 81 #include <inet/mib2.h> 82 #include <inet/nd.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/udp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_netinfo.h> 99 #include <sys/squeue_impl.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 /* 237 * Values for squeue switch: 238 * 1: SQ_NODRAIN 239 * 2: SQ_PROCESS 240 * 3: SQ_FILL 241 */ 242 int tcp_squeue_wput = 2; /* /etc/systems */ 243 int tcp_squeue_flag; 244 245 /* 246 * This controls how tiny a write must be before we try to copy it 247 * into the the mblk on the tail of the transmit queue. Not much 248 * speedup is observed for values larger than sixteen. Zero will 249 * disable the optimisation. 250 */ 251 int tcp_tx_pull_len = 16; 252 253 /* 254 * TCP Statistics. 255 * 256 * How TCP statistics work. 257 * 258 * There are two types of statistics invoked by two macros. 259 * 260 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 261 * supposed to be used in non MT-hot paths of the code. 262 * 263 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 264 * supposed to be used for DEBUG purposes and may be used on a hot path. 265 * 266 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 267 * (use "kstat tcp" to get them). 268 * 269 * There is also additional debugging facility that marks tcp_clean_death() 270 * instances and saves them in tcp_t structure. It is triggered by 271 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 272 * tcp_clean_death() calls that counts the number of times each tag was hit. It 273 * is triggered by TCP_CLD_COUNTERS define. 274 * 275 * How to add new counters. 276 * 277 * 1) Add a field in the tcp_stat structure describing your counter. 278 * 2) Add a line in the template in tcp_kstat2_init() with the name 279 * of the counter. 280 * 281 * IMPORTANT!! - make sure that both are in sync !! 282 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 283 * 284 * Please avoid using private counters which are not kstat-exported. 285 * 286 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 287 * in tcp_t structure. 288 * 289 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 290 */ 291 292 #ifndef TCP_DEBUG_COUNTER 293 #ifdef DEBUG 294 #define TCP_DEBUG_COUNTER 1 295 #else 296 #define TCP_DEBUG_COUNTER 0 297 #endif 298 #endif 299 300 #define TCP_CLD_COUNTERS 0 301 302 #define TCP_TAG_CLEAN_DEATH 1 303 #define TCP_MAX_CLEAN_DEATH_TAG 32 304 305 #ifdef lint 306 static int _lint_dummy_; 307 #endif 308 309 #if TCP_CLD_COUNTERS 310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 311 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 312 #elif defined(lint) 313 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 314 #else 315 #define TCP_CLD_STAT(x) 316 #endif 317 318 #if TCP_DEBUG_COUNTER 319 #define TCP_DBGSTAT(tcps, x) \ 320 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 321 #define TCP_G_DBGSTAT(x) \ 322 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 323 #elif defined(lint) 324 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 325 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(tcps, x) 328 #define TCP_G_DBGSTAT(x) 329 #endif 330 331 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 332 333 tcp_g_stat_t tcp_g_statistics; 334 kstat_t *tcp_g_kstat; 335 336 /* 337 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 338 * tcp write side. 339 */ 340 #define CALL_IP_WPUT(connp, q, mp) { \ 341 ASSERT(((q)->q_flag & QREADR) == 0); \ 342 TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output); \ 343 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 344 } 345 346 /* Macros for timestamp comparisons */ 347 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 348 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 349 350 /* 351 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 352 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 353 * by adding three components: a time component which grows by 1 every 4096 354 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 355 * a per-connection component which grows by 125000 for every new connection; 356 * and an "extra" component that grows by a random amount centered 357 * approximately on 64000. This causes the the ISS generator to cycle every 358 * 4.89 hours if no TCP connections are made, and faster if connections are 359 * made. 360 * 361 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 362 * components: a time component which grows by 250000 every second; and 363 * a per-connection component which grows by 125000 for every new connections. 364 * 365 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 366 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 367 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 368 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 369 * password. 370 */ 371 #define ISS_INCR 250000 372 #define ISS_NSEC_SHT 12 373 374 static sin_t sin_null; /* Zero address for quick clears */ 375 static sin6_t sin6_null; /* Zero address for quick clears */ 376 377 /* 378 * This implementation follows the 4.3BSD interpretation of the urgent 379 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 380 * incompatible changes in protocols like telnet and rlogin. 381 */ 382 #define TCP_OLD_URP_INTERPRETATION 1 383 384 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 385 (TCP_IS_DETACHED(tcp) && \ 386 (!(tcp)->tcp_hard_binding)) 387 388 /* 389 * TCP reassembly macros. We hide starting and ending sequence numbers in 390 * b_next and b_prev of messages on the reassembly queue. The messages are 391 * chained using b_cont. These macros are used in tcp_reass() so we don't 392 * have to see the ugly casts and assignments. 393 */ 394 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 395 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 396 (mblk_t *)(uintptr_t)(u)) 397 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 398 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 399 (mblk_t *)(uintptr_t)(u)) 400 401 /* 402 * Implementation of TCP Timers. 403 * ============================= 404 * 405 * INTERFACE: 406 * 407 * There are two basic functions dealing with tcp timers: 408 * 409 * timeout_id_t tcp_timeout(connp, func, time) 410 * clock_t tcp_timeout_cancel(connp, timeout_id) 411 * TCP_TIMER_RESTART(tcp, intvl) 412 * 413 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 414 * after 'time' ticks passed. The function called by timeout() must adhere to 415 * the same restrictions as a driver soft interrupt handler - it must not sleep 416 * or call other functions that might sleep. The value returned is the opaque 417 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 418 * cancel the request. The call to tcp_timeout() may fail in which case it 419 * returns zero. This is different from the timeout(9F) function which never 420 * fails. 421 * 422 * The call-back function 'func' always receives 'connp' as its single 423 * argument. It is always executed in the squeue corresponding to the tcp 424 * structure. The tcp structure is guaranteed to be present at the time the 425 * call-back is called. 426 * 427 * NOTE: The call-back function 'func' is never called if tcp is in 428 * the TCPS_CLOSED state. 429 * 430 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 431 * request. locks acquired by the call-back routine should not be held across 432 * the call to tcp_timeout_cancel() or a deadlock may result. 433 * 434 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 435 * Otherwise, it returns an integer value greater than or equal to 0. In 436 * particular, if the call-back function is already placed on the squeue, it can 437 * not be canceled. 438 * 439 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 440 * within squeue context corresponding to the tcp instance. Since the 441 * call-back is also called via the same squeue, there are no race 442 * conditions described in untimeout(9F) manual page since all calls are 443 * strictly serialized. 444 * 445 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 446 * stored in tcp_timer_tid and starts a new one using 447 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 448 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 449 * field. 450 * 451 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 452 * call-back may still be called, so it is possible tcp_timer() will be 453 * called several times. This should not be a problem since tcp_timer() 454 * should always check the tcp instance state. 455 * 456 * 457 * IMPLEMENTATION: 458 * 459 * TCP timers are implemented using three-stage process. The call to 460 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 461 * when the timer expires. The tcp_timer_callback() arranges the call of the 462 * tcp_timer_handler() function via squeue corresponding to the tcp 463 * instance. The tcp_timer_handler() calls actual requested timeout call-back 464 * and passes tcp instance as an argument to it. Information is passed between 465 * stages using the tcp_timer_t structure which contains the connp pointer, the 466 * tcp call-back to call and the timeout id returned by the timeout(9F). 467 * 468 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 469 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 470 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 471 * returns the pointer to this mblk. 472 * 473 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 474 * looks like a normal mblk without actual dblk attached to it. 475 * 476 * To optimize performance each tcp instance holds a small cache of timer 477 * mblocks. In the current implementation it caches up to two timer mblocks per 478 * tcp instance. The cache is preserved over tcp frees and is only freed when 479 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 480 * timer processing happens on a corresponding squeue, the cache manipulation 481 * does not require any locks. Experiments show that majority of timer mblocks 482 * allocations are satisfied from the tcp cache and do not involve kmem calls. 483 * 484 * The tcp_timeout() places a refhold on the connp instance which guarantees 485 * that it will be present at the time the call-back function fires. The 486 * tcp_timer_handler() drops the reference after calling the call-back, so the 487 * call-back function does not need to manipulate the references explicitly. 488 */ 489 490 typedef struct tcp_timer_s { 491 conn_t *connp; 492 void (*tcpt_proc)(void *); 493 callout_id_t tcpt_tid; 494 } tcp_timer_t; 495 496 static kmem_cache_t *tcp_timercache; 497 kmem_cache_t *tcp_sack_info_cache; 498 kmem_cache_t *tcp_iphc_cache; 499 500 /* 501 * For scalability, we must not run a timer for every TCP connection 502 * in TIME_WAIT state. To see why, consider (for time wait interval of 503 * 4 minutes): 504 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 505 * 506 * This list is ordered by time, so you need only delete from the head 507 * until you get to entries which aren't old enough to delete yet. 508 * The list consists of only the detached TIME_WAIT connections. 509 * 510 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 511 * becomes detached TIME_WAIT (either by changing the state and already 512 * being detached or the other way around). This means that the TIME_WAIT 513 * state can be extended (up to doubled) if the connection doesn't become 514 * detached for a long time. 515 * 516 * The list manipulations (including tcp_time_wait_next/prev) 517 * are protected by the tcp_time_wait_lock. The content of the 518 * detached TIME_WAIT connections is protected by the normal perimeters. 519 * 520 * This list is per squeue and squeues are shared across the tcp_stack_t's. 521 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 522 * and conn_netstack. 523 * The tcp_t's that are added to tcp_free_list are disassociated and 524 * have NULL tcp_tcps and conn_netstack pointers. 525 */ 526 typedef struct tcp_squeue_priv_s { 527 kmutex_t tcp_time_wait_lock; 528 callout_id_t tcp_time_wait_tid; 529 tcp_t *tcp_time_wait_head; 530 tcp_t *tcp_time_wait_tail; 531 tcp_t *tcp_free_list; 532 uint_t tcp_free_list_cnt; 533 } tcp_squeue_priv_t; 534 535 /* 536 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 537 * Running it every 5 seconds seems to give the best results. 538 */ 539 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 540 541 /* 542 * To prevent memory hog, limit the number of entries in tcp_free_list 543 * to 1% of available memory / number of cpus 544 */ 545 uint_t tcp_free_list_max_cnt = 0; 546 547 #define TCP_XMIT_LOWATER 4096 548 #define TCP_XMIT_HIWATER 49152 549 #define TCP_RECV_LOWATER 2048 550 #define TCP_RECV_HIWATER 49152 551 552 /* 553 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 554 */ 555 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 556 557 #define TIDUSZ 4096 /* transport interface data unit size */ 558 559 /* 560 * Bind hash list size and has function. It has to be a power of 2 for 561 * hashing. 562 */ 563 #define TCP_BIND_FANOUT_SIZE 512 564 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 565 /* 566 * Size of listen and acceptor hash list. It has to be a power of 2 for 567 * hashing. 568 */ 569 #define TCP_FANOUT_SIZE 256 570 571 #ifdef _ILP32 572 #define TCP_ACCEPTOR_HASH(accid) \ 573 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 574 #else 575 #define TCP_ACCEPTOR_HASH(accid) \ 576 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 577 #endif /* _ILP32 */ 578 579 #define IP_ADDR_CACHE_SIZE 2048 580 #define IP_ADDR_CACHE_HASH(faddr) \ 581 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 582 583 /* 584 * TCP options struct returned from tcp_parse_options. 585 */ 586 typedef struct tcp_opt_s { 587 uint32_t tcp_opt_mss; 588 uint32_t tcp_opt_wscale; 589 uint32_t tcp_opt_ts_val; 590 uint32_t tcp_opt_ts_ecr; 591 tcp_t *tcp; 592 } tcp_opt_t; 593 594 /* 595 * TCP option struct passing information b/w lisenter and eager. 596 */ 597 struct tcp_options { 598 uint_t to_flags; 599 ssize_t to_boundif; /* IPV6_BOUND_IF */ 600 }; 601 602 #define TCPOPT_BOUNDIF 0x00000001 /* set IPV6_BOUND_IF */ 603 #define TCPOPT_RECVPKTINFO 0x00000002 /* set IPV6_RECVPKTINFO */ 604 605 /* 606 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 607 */ 608 609 #ifdef _BIG_ENDIAN 610 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 611 (TCPOPT_TSTAMP << 8) | 10) 612 #else 613 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 614 (TCPOPT_NOP << 8) | TCPOPT_NOP) 615 #endif 616 617 /* 618 * Flags returned from tcp_parse_options. 619 */ 620 #define TCP_OPT_MSS_PRESENT 1 621 #define TCP_OPT_WSCALE_PRESENT 2 622 #define TCP_OPT_TSTAMP_PRESENT 4 623 #define TCP_OPT_SACK_OK_PRESENT 8 624 #define TCP_OPT_SACK_PRESENT 16 625 626 /* TCP option length */ 627 #define TCPOPT_NOP_LEN 1 628 #define TCPOPT_MAXSEG_LEN 4 629 #define TCPOPT_WS_LEN 3 630 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 631 #define TCPOPT_TSTAMP_LEN 10 632 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 633 #define TCPOPT_SACK_OK_LEN 2 634 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 635 #define TCPOPT_REAL_SACK_LEN 4 636 #define TCPOPT_MAX_SACK_LEN 36 637 #define TCPOPT_HEADER_LEN 2 638 639 /* TCP cwnd burst factor. */ 640 #define TCP_CWND_INFINITE 65535 641 #define TCP_CWND_SS 3 642 #define TCP_CWND_NORMAL 5 643 644 /* Maximum TCP initial cwin (start/restart). */ 645 #define TCP_MAX_INIT_CWND 8 646 647 /* 648 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 649 * either tcp_slow_start_initial or tcp_slow_start_after idle 650 * depending on the caller. If the upper layer has not used the 651 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 652 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 653 * If the upper layer has changed set the tcp_init_cwnd, just use 654 * it to calculate the tcp_cwnd. 655 */ 656 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 657 { \ 658 if ((tcp)->tcp_init_cwnd == 0) { \ 659 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 660 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 661 } else { \ 662 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 663 } \ 664 tcp->tcp_cwnd_cnt = 0; \ 665 } 666 667 /* TCP Timer control structure */ 668 typedef struct tcpt_s { 669 pfv_t tcpt_pfv; /* The routine we are to call */ 670 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 671 } tcpt_t; 672 673 /* 674 * Functions called directly via squeue having a prototype of edesc_t. 675 */ 676 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 677 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 678 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 679 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 680 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 681 void tcp_input(void *arg, mblk_t *mp, void *arg2); 682 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 683 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 684 void tcp_output(void *arg, mblk_t *mp, void *arg2); 685 void tcp_output_urgent(void *arg, mblk_t *mp, void *arg2); 686 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 687 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 688 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 689 690 691 /* Prototype for TCP functions */ 692 static void tcp_random_init(void); 693 int tcp_random(void); 694 static void tcp_tli_accept(tcp_t *tcp, mblk_t *mp); 695 static int tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 696 tcp_t *eager); 697 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 699 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 700 boolean_t user_specified); 701 static void tcp_closei_local(tcp_t *tcp); 702 static void tcp_close_detached(tcp_t *tcp); 703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 704 mblk_t *idmp, mblk_t **defermp); 705 static void tcp_tpi_connect(tcp_t *tcp, mblk_t *mp); 706 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 707 in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid); 708 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 709 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 710 uint32_t scope_id, cred_t *cr, pid_t pid); 711 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 712 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 713 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 714 static char *tcp_display(tcp_t *tcp, char *, char); 715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 716 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 717 static void tcp_eager_unlink(tcp_t *tcp); 718 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 719 int unixerr); 720 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 721 int tlierr, int unixerr); 722 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 723 cred_t *cr); 724 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 725 char *value, caddr_t cp, cred_t *cr); 726 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 727 char *value, caddr_t cp, cred_t *cr); 728 static int tcp_tpistate(tcp_t *tcp); 729 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 730 int caller_holds_lock); 731 static void tcp_bind_hash_remove(tcp_t *tcp); 732 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 733 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 734 static void tcp_acceptor_hash_remove(tcp_t *tcp); 735 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 736 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 737 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 738 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 739 void tcp_g_q_setup(tcp_stack_t *); 740 void tcp_g_q_create(tcp_stack_t *); 741 void tcp_g_q_destroy(tcp_stack_t *); 742 static int tcp_header_init_ipv4(tcp_t *tcp); 743 static int tcp_header_init_ipv6(tcp_t *tcp); 744 int tcp_init(tcp_t *tcp, queue_t *q); 745 static int tcp_init_values(tcp_t *tcp); 746 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 747 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 748 static void tcp_ip_notify(tcp_t *tcp); 749 static mblk_t *tcp_ire_mp(mblk_t **mpp); 750 static void tcp_iss_init(tcp_t *tcp); 751 static void tcp_keepalive_killer(void *arg); 752 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 753 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 754 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 755 int *do_disconnectp, int *t_errorp, int *sys_errorp); 756 static boolean_t tcp_allow_connopt_set(int level, int name); 757 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 758 int tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 759 int tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, 760 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 761 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 762 mblk_t *mblk); 763 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 764 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 765 uchar_t *ptr, uint_t len); 766 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 768 tcp_stack_t *); 769 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 770 caddr_t cp, cred_t *cr); 771 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 772 caddr_t cp, cred_t *cr); 773 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 774 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 775 caddr_t cp, cred_t *cr); 776 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 777 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 778 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 779 static void tcp_reinit(tcp_t *tcp); 780 static void tcp_reinit_values(tcp_t *tcp); 781 782 static uint_t tcp_rwnd_reopen(tcp_t *tcp); 783 static uint_t tcp_rcv_drain(tcp_t *tcp); 784 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 785 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 786 static void tcp_ss_rexmit(tcp_t *tcp); 787 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 788 static void tcp_process_options(tcp_t *, tcph_t *); 789 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 790 static void tcp_rsrv(queue_t *q); 791 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 792 static int tcp_snmp_state(tcp_t *tcp); 793 static void tcp_timer(void *arg); 794 static void tcp_timer_callback(void *); 795 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 796 boolean_t random); 797 static in_port_t tcp_get_next_priv_port(const tcp_t *); 798 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 799 static void tcp_wput_fallback(queue_t *q, mblk_t *mp); 800 void tcp_tpi_accept(queue_t *q, mblk_t *mp); 801 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 802 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 803 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 804 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 805 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 806 const int num_sack_blk, int *usable, uint_t *snxt, 807 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 808 const int mdt_thres); 809 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 810 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 811 const int num_sack_blk, int *usable, uint_t *snxt, 812 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 813 const int mdt_thres); 814 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 815 int num_sack_blk); 816 static void tcp_wsrv(queue_t *q); 817 static int tcp_xmit_end(tcp_t *tcp); 818 static void tcp_ack_timer(void *arg); 819 static mblk_t *tcp_ack_mp(tcp_t *tcp); 820 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 821 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 822 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 823 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 824 uint32_t ack, int ctl); 825 static int setmaxps(queue_t *q, int maxpsz); 826 static void tcp_set_rto(tcp_t *, time_t); 827 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 828 boolean_t, boolean_t); 829 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 830 boolean_t ipsec_mctl); 831 static int tcp_build_hdrs(tcp_t *); 832 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 833 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 834 tcph_t *tcph); 835 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 836 static mblk_t *tcp_mdt_info_mp(mblk_t *); 837 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 838 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 839 const boolean_t, const uint32_t, const uint32_t, 840 const uint32_t, const uint32_t, tcp_stack_t *); 841 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 842 const uint_t, const uint_t, boolean_t *); 843 static mblk_t *tcp_lso_info_mp(mblk_t *); 844 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 845 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 846 extern mblk_t *tcp_timermp_alloc(int); 847 extern void tcp_timermp_free(tcp_t *); 848 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 849 static void tcp_stop_lingering(tcp_t *tcp); 850 static void tcp_close_linger_timeout(void *arg); 851 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 852 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 853 static void tcp_stack_fini(netstackid_t stackid, void *arg); 854 static void *tcp_g_kstat_init(tcp_g_stat_t *); 855 static void tcp_g_kstat_fini(kstat_t *); 856 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 857 static void tcp_kstat_fini(netstackid_t, kstat_t *); 858 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 859 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 860 static int tcp_kstat_update(kstat_t *kp, int rw); 861 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 862 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 863 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 864 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 865 tcph_t *tcph, mblk_t *idmp); 866 static int tcp_squeue_switch(int); 867 868 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 869 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 870 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 871 static int tcp_tpi_close(queue_t *, int); 872 static int tcp_tpi_close_accept(queue_t *); 873 874 static void tcp_squeue_add(squeue_t *); 875 static boolean_t tcp_zcopy_check(tcp_t *); 876 static void tcp_zcopy_notify(tcp_t *); 877 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 878 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 879 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 880 881 extern void tcp_kssl_input(tcp_t *, mblk_t *); 882 883 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 884 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 885 886 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t, 887 sock_upper_handle_t, cred_t *); 888 static int tcp_listen(sock_lower_handle_t, int, cred_t *); 889 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t); 890 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *, 891 boolean_t); 892 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t, 893 cred_t *, pid_t); 894 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *, 895 boolean_t); 896 static int tcp_do_unbind(conn_t *); 897 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *, 898 boolean_t); 899 900 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *); 901 902 /* 903 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 904 * 905 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 906 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 907 * (defined in tcp.h) needs to be filled in and passed into the kernel 908 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 909 * structure contains the four-tuple of a TCP connection and a range of TCP 910 * states (specified by ac_start and ac_end). The use of wildcard addresses 911 * and ports is allowed. Connections with a matching four tuple and a state 912 * within the specified range will be aborted. The valid states for the 913 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 914 * inclusive. 915 * 916 * An application which has its connection aborted by this ioctl will receive 917 * an error that is dependent on the connection state at the time of the abort. 918 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 919 * though a RST packet has been received. If the connection state is equal to 920 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 921 * and all resources associated with the connection will be freed. 922 */ 923 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 924 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 925 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 926 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 927 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 928 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 929 boolean_t, tcp_stack_t *); 930 931 static struct module_info tcp_rinfo = { 932 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 933 }; 934 935 static struct module_info tcp_winfo = { 936 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 937 }; 938 939 /* 940 * Entry points for TCP as a device. The normal case which supports 941 * the TCP functionality. 942 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 943 */ 944 struct qinit tcp_rinitv4 = { 945 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 946 }; 947 948 struct qinit tcp_rinitv6 = { 949 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 950 }; 951 952 struct qinit tcp_winit = { 953 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 954 }; 955 956 /* Initial entry point for TCP in socket mode. */ 957 struct qinit tcp_sock_winit = { 958 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 959 }; 960 961 /* TCP entry point during fallback */ 962 struct qinit tcp_fallback_sock_winit = { 963 (pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 964 }; 965 966 /* 967 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 968 * an accept. Avoid allocating data structures since eager has already 969 * been created. 970 */ 971 struct qinit tcp_acceptor_rinit = { 972 NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 973 }; 974 975 struct qinit tcp_acceptor_winit = { 976 (pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 977 }; 978 979 /* 980 * Entry points for TCP loopback (read side only) 981 * The open routine is only used for reopens, thus no need to 982 * have a separate one for tcp_openv6. 983 */ 984 struct qinit tcp_loopback_rinit = { 985 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0, 986 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 987 }; 988 989 /* For AF_INET aka /dev/tcp */ 990 struct streamtab tcpinfov4 = { 991 &tcp_rinitv4, &tcp_winit 992 }; 993 994 /* For AF_INET6 aka /dev/tcp6 */ 995 struct streamtab tcpinfov6 = { 996 &tcp_rinitv6, &tcp_winit 997 }; 998 999 sock_downcalls_t sock_tcp_downcalls; 1000 1001 /* 1002 * Have to ensure that tcp_g_q_close is not done by an 1003 * interrupt thread. 1004 */ 1005 static taskq_t *tcp_taskq; 1006 1007 /* Setable only in /etc/system. Move to ndd? */ 1008 boolean_t tcp_icmp_source_quench = B_FALSE; 1009 1010 /* 1011 * Following assumes TPI alignment requirements stay along 32 bit 1012 * boundaries 1013 */ 1014 #define ROUNDUP32(x) \ 1015 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1016 1017 /* Template for response to info request. */ 1018 static struct T_info_ack tcp_g_t_info_ack = { 1019 T_INFO_ACK, /* PRIM_type */ 1020 0, /* TSDU_size */ 1021 T_INFINITE, /* ETSDU_size */ 1022 T_INVALID, /* CDATA_size */ 1023 T_INVALID, /* DDATA_size */ 1024 sizeof (sin_t), /* ADDR_size */ 1025 0, /* OPT_size - not initialized here */ 1026 TIDUSZ, /* TIDU_size */ 1027 T_COTS_ORD, /* SERV_type */ 1028 TCPS_IDLE, /* CURRENT_state */ 1029 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1030 }; 1031 1032 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1033 T_INFO_ACK, /* PRIM_type */ 1034 0, /* TSDU_size */ 1035 T_INFINITE, /* ETSDU_size */ 1036 T_INVALID, /* CDATA_size */ 1037 T_INVALID, /* DDATA_size */ 1038 sizeof (sin6_t), /* ADDR_size */ 1039 0, /* OPT_size - not initialized here */ 1040 TIDUSZ, /* TIDU_size */ 1041 T_COTS_ORD, /* SERV_type */ 1042 TCPS_IDLE, /* CURRENT_state */ 1043 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1044 }; 1045 1046 #define MS 1L 1047 #define SECONDS (1000 * MS) 1048 #define MINUTES (60 * SECONDS) 1049 #define HOURS (60 * MINUTES) 1050 #define DAYS (24 * HOURS) 1051 1052 #define PARAM_MAX (~(uint32_t)0) 1053 1054 /* Max size IP datagram is 64k - 1 */ 1055 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1056 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1057 /* Max of the above */ 1058 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1059 1060 /* Largest TCP port number */ 1061 #define TCP_MAX_PORT (64 * 1024 - 1) 1062 1063 /* 1064 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1065 * layer header. It has to be a multiple of 4. 1066 */ 1067 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1068 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1069 1070 /* 1071 * All of these are alterable, within the min/max values given, at run time. 1072 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1073 * per the TCP spec. 1074 */ 1075 /* BEGIN CSTYLED */ 1076 static tcpparam_t lcl_tcp_param_arr[] = { 1077 /*min max value name */ 1078 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1079 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1080 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1081 { 1, 1024, 1, "tcp_conn_req_min" }, 1082 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1083 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1084 { 0, 10, 0, "tcp_debug" }, 1085 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1086 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1087 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1088 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1089 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1090 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1091 { 1, 255, 64, "tcp_ipv4_ttl"}, 1092 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1093 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1094 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1095 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1096 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1097 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1098 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1099 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1100 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1101 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1102 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1103 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1104 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1105 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1106 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1107 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1108 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1109 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1110 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1111 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1112 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1113 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1114 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1115 /* 1116 * Question: What default value should I set for tcp_strong_iss? 1117 */ 1118 { 0, 2, 1, "tcp_strong_iss"}, 1119 { 0, 65536, 20, "tcp_rtt_updates"}, 1120 { 0, 1, 1, "tcp_wscale_always"}, 1121 { 0, 1, 0, "tcp_tstamp_always"}, 1122 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1123 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1124 { 0, 16, 2, "tcp_deferred_acks_max"}, 1125 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1126 { 1, 4, 4, "tcp_slow_start_initial"}, 1127 { 0, 2, 2, "tcp_sack_permitted"}, 1128 { 0, 1, 1, "tcp_compression_enabled"}, 1129 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1130 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1131 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1132 { 0, 1, 0, "tcp_rev_src_routes"}, 1133 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1134 { 0, 16, 8, "tcp_local_dacks_max"}, 1135 { 0, 2, 1, "tcp_ecn_permitted"}, 1136 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1137 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1138 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1139 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1140 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1141 }; 1142 /* END CSTYLED */ 1143 1144 /* 1145 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1146 * each header fragment in the header buffer. Each parameter value has 1147 * to be a multiple of 4 (32-bit aligned). 1148 */ 1149 static tcpparam_t lcl_tcp_mdt_head_param = 1150 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1151 static tcpparam_t lcl_tcp_mdt_tail_param = 1152 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1153 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1154 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1155 1156 /* 1157 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1158 * the maximum number of payload buffers associated per Multidata. 1159 */ 1160 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1161 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1162 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1163 1164 /* Round up the value to the nearest mss. */ 1165 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1166 1167 /* 1168 * Set ECN capable transport (ECT) code point in IP header. 1169 * 1170 * Note that there are 2 ECT code points '01' and '10', which are called 1171 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1172 * point ECT(0) for TCP as described in RFC 2481. 1173 */ 1174 #define SET_ECT(tcp, iph) \ 1175 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1176 /* We need to clear the code point first. */ \ 1177 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1178 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1179 } else { \ 1180 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1181 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1182 } 1183 1184 /* 1185 * The format argument to pass to tcp_display(). 1186 * DISP_PORT_ONLY means that the returned string has only port info. 1187 * DISP_ADDR_AND_PORT means that the returned string also contains the 1188 * remote and local IP address. 1189 */ 1190 #define DISP_PORT_ONLY 1 1191 #define DISP_ADDR_AND_PORT 2 1192 1193 #define IS_VMLOANED_MBLK(mp) \ 1194 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1195 1196 1197 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1198 boolean_t tcp_mdt_chain = B_TRUE; 1199 1200 /* 1201 * MDT threshold in the form of effective send MSS multiplier; we take 1202 * the MDT path if the amount of unsent data exceeds the threshold value 1203 * (default threshold is 1*SMSS). 1204 */ 1205 uint_t tcp_mdt_smss_threshold = 1; 1206 1207 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1208 1209 /* 1210 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1211 * tunable settable via NDD. Otherwise, the per-connection behavior is 1212 * determined dynamically during tcp_adapt_ire(), which is the default. 1213 */ 1214 boolean_t tcp_static_maxpsz = B_FALSE; 1215 1216 /* Setable in /etc/system */ 1217 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1218 uint32_t tcp_random_anon_port = 1; 1219 1220 /* 1221 * To reach to an eager in Q0 which can be dropped due to an incoming 1222 * new SYN request when Q0 is full, a new doubly linked list is 1223 * introduced. This list allows to select an eager from Q0 in O(1) time. 1224 * This is needed to avoid spending too much time walking through the 1225 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1226 * this new list has to be a member of Q0. 1227 * This list is headed by listener's tcp_t. When the list is empty, 1228 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1229 * of listener's tcp_t point to listener's tcp_t itself. 1230 * 1231 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1232 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1233 * These macros do not affect the eager's membership to Q0. 1234 */ 1235 1236 1237 #define MAKE_DROPPABLE(listener, eager) \ 1238 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1239 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1240 = (eager); \ 1241 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1242 (eager)->tcp_eager_next_drop_q0 = \ 1243 (listener)->tcp_eager_next_drop_q0; \ 1244 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1245 } 1246 1247 #define MAKE_UNDROPPABLE(eager) \ 1248 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1249 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1250 = (eager)->tcp_eager_prev_drop_q0; \ 1251 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1252 = (eager)->tcp_eager_next_drop_q0; \ 1253 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1254 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1255 } 1256 1257 /* 1258 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1259 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1260 * data, TCP will not respond with an ACK. RFC 793 requires that 1261 * TCP responds with an ACK for such a bogus ACK. By not following 1262 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1263 * an attacker successfully spoofs an acceptable segment to our 1264 * peer; or when our peer is "confused." 1265 */ 1266 uint32_t tcp_drop_ack_unsent_cnt = 10; 1267 1268 /* 1269 * Hook functions to enable cluster networking 1270 * On non-clustered systems these vectors must always be NULL. 1271 */ 1272 1273 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol, 1274 sa_family_t addr_family, uint8_t *laddrp, 1275 in_port_t lport, void *args) = NULL; 1276 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol, 1277 sa_family_t addr_family, uint8_t *laddrp, 1278 in_port_t lport, void *args) = NULL; 1279 1280 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol, 1281 boolean_t is_outgoing, 1282 sa_family_t addr_family, 1283 uint8_t *laddrp, in_port_t lport, 1284 uint8_t *faddrp, in_port_t fport, 1285 void *args) = NULL; 1286 1287 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol, 1288 sa_family_t addr_family, uint8_t *laddrp, 1289 in_port_t lport, uint8_t *faddrp, 1290 in_port_t fport, void *args) = NULL; 1291 1292 /* 1293 * The following are defined in ip.c 1294 */ 1295 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol, 1296 sa_family_t addr_family, uint8_t *laddrp, 1297 void *args); 1298 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol, 1299 sa_family_t addr_family, uint8_t *laddrp, 1300 uint8_t *faddrp, void *args); 1301 1302 1303 /* 1304 * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err) 1305 */ 1306 #define CL_INET_CONNECT(connp, tcp, is_outgoing, err) { \ 1307 (err) = 0; \ 1308 if (cl_inet_connect2 != NULL) { \ 1309 /* \ 1310 * Running in cluster mode - register active connection \ 1311 * information \ 1312 */ \ 1313 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1314 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1315 (err) = (*cl_inet_connect2)( \ 1316 (connp)->conn_netstack->netstack_stackid,\ 1317 IPPROTO_TCP, is_outgoing, AF_INET, \ 1318 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1319 (in_port_t)(tcp)->tcp_lport, \ 1320 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1321 (in_port_t)(tcp)->tcp_fport, NULL); \ 1322 } \ 1323 } else { \ 1324 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1325 &(tcp)->tcp_ip6h->ip6_src)) { \ 1326 (err) = (*cl_inet_connect2)( \ 1327 (connp)->conn_netstack->netstack_stackid,\ 1328 IPPROTO_TCP, is_outgoing, AF_INET6, \ 1329 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1330 (in_port_t)(tcp)->tcp_lport, \ 1331 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1332 (in_port_t)(tcp)->tcp_fport, NULL); \ 1333 } \ 1334 } \ 1335 } \ 1336 } 1337 1338 #define CL_INET_DISCONNECT(connp, tcp) { \ 1339 if (cl_inet_disconnect != NULL) { \ 1340 /* \ 1341 * Running in cluster mode - deregister active \ 1342 * connection information \ 1343 */ \ 1344 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1345 if ((tcp)->tcp_ip_src != 0) { \ 1346 (*cl_inet_disconnect)( \ 1347 (connp)->conn_netstack->netstack_stackid,\ 1348 IPPROTO_TCP, AF_INET, \ 1349 (uint8_t *)(&((tcp)->tcp_ip_src)), \ 1350 (in_port_t)(tcp)->tcp_lport, \ 1351 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1352 (in_port_t)(tcp)->tcp_fport, NULL); \ 1353 } \ 1354 } else { \ 1355 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1356 &(tcp)->tcp_ip_src_v6)) { \ 1357 (*cl_inet_disconnect)( \ 1358 (connp)->conn_netstack->netstack_stackid,\ 1359 IPPROTO_TCP, AF_INET6, \ 1360 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1361 (in_port_t)(tcp)->tcp_lport, \ 1362 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1363 (in_port_t)(tcp)->tcp_fport, NULL); \ 1364 } \ 1365 } \ 1366 } \ 1367 } 1368 1369 /* 1370 * Cluster networking hook for traversing current connection list. 1371 * This routine is used to extract the current list of live connections 1372 * which must continue to to be dispatched to this node. 1373 */ 1374 int cl_tcp_walk_list(netstackid_t stack_id, 1375 int (*callback)(cl_tcp_info_t *, void *), void *arg); 1376 1377 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1378 void *arg, tcp_stack_t *tcps); 1379 1380 #define DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) \ 1381 DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *, \ 1382 iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha, \ 1383 ip6_t *, ip6h, int, 0); 1384 1385 /* 1386 * Figure out the value of window scale opton. Note that the rwnd is 1387 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1388 * We cannot find the scale value and then do a round up of tcp_rwnd 1389 * because the scale value may not be correct after that. 1390 * 1391 * Set the compiler flag to make this function inline. 1392 */ 1393 static void 1394 tcp_set_ws_value(tcp_t *tcp) 1395 { 1396 int i; 1397 uint32_t rwnd = tcp->tcp_rwnd; 1398 1399 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1400 i++, rwnd >>= 1) 1401 ; 1402 tcp->tcp_rcv_ws = i; 1403 } 1404 1405 /* 1406 * Remove a connection from the list of detached TIME_WAIT connections. 1407 * It returns B_FALSE if it can't remove the connection from the list 1408 * as the connection has already been removed from the list due to an 1409 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1410 */ 1411 static boolean_t 1412 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1413 { 1414 boolean_t locked = B_FALSE; 1415 1416 if (tcp_time_wait == NULL) { 1417 tcp_time_wait = *((tcp_squeue_priv_t **) 1418 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1419 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1420 locked = B_TRUE; 1421 } else { 1422 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1423 } 1424 1425 if (tcp->tcp_time_wait_expire == 0) { 1426 ASSERT(tcp->tcp_time_wait_next == NULL); 1427 ASSERT(tcp->tcp_time_wait_prev == NULL); 1428 if (locked) 1429 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1430 return (B_FALSE); 1431 } 1432 ASSERT(TCP_IS_DETACHED(tcp)); 1433 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1434 1435 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1436 ASSERT(tcp->tcp_time_wait_prev == NULL); 1437 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1438 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1439 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1440 NULL; 1441 } else { 1442 tcp_time_wait->tcp_time_wait_tail = NULL; 1443 } 1444 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1445 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1446 ASSERT(tcp->tcp_time_wait_next == NULL); 1447 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1448 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1449 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1450 } else { 1451 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1452 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1453 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1454 tcp->tcp_time_wait_next; 1455 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1456 tcp->tcp_time_wait_prev; 1457 } 1458 tcp->tcp_time_wait_next = NULL; 1459 tcp->tcp_time_wait_prev = NULL; 1460 tcp->tcp_time_wait_expire = 0; 1461 1462 if (locked) 1463 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1464 return (B_TRUE); 1465 } 1466 1467 /* 1468 * Add a connection to the list of detached TIME_WAIT connections 1469 * and set its time to expire. 1470 */ 1471 static void 1472 tcp_time_wait_append(tcp_t *tcp) 1473 { 1474 tcp_stack_t *tcps = tcp->tcp_tcps; 1475 tcp_squeue_priv_t *tcp_time_wait = 1476 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1477 SQPRIVATE_TCP)); 1478 1479 tcp_timers_stop(tcp); 1480 1481 /* Freed above */ 1482 ASSERT(tcp->tcp_timer_tid == 0); 1483 ASSERT(tcp->tcp_ack_tid == 0); 1484 1485 /* must have happened at the time of detaching the tcp */ 1486 ASSERT(tcp->tcp_ptpahn == NULL); 1487 ASSERT(tcp->tcp_flow_stopped == 0); 1488 ASSERT(tcp->tcp_time_wait_next == NULL); 1489 ASSERT(tcp->tcp_time_wait_prev == NULL); 1490 ASSERT(tcp->tcp_time_wait_expire == NULL); 1491 ASSERT(tcp->tcp_listener == NULL); 1492 1493 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1494 /* 1495 * The value computed below in tcp->tcp_time_wait_expire may 1496 * appear negative or wrap around. That is ok since our 1497 * interest is only in the difference between the current lbolt 1498 * value and tcp->tcp_time_wait_expire. But the value should not 1499 * be zero, since it means the tcp is not in the TIME_WAIT list. 1500 * The corresponding comparison in tcp_time_wait_collector() uses 1501 * modular arithmetic. 1502 */ 1503 tcp->tcp_time_wait_expire += 1504 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1505 if (tcp->tcp_time_wait_expire == 0) 1506 tcp->tcp_time_wait_expire = 1; 1507 1508 ASSERT(TCP_IS_DETACHED(tcp)); 1509 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1510 ASSERT(tcp->tcp_time_wait_next == NULL); 1511 ASSERT(tcp->tcp_time_wait_prev == NULL); 1512 TCP_DBGSTAT(tcps, tcp_time_wait); 1513 1514 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1515 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1516 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1517 tcp_time_wait->tcp_time_wait_head = tcp; 1518 } else { 1519 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1520 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1521 TCPS_TIME_WAIT); 1522 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1523 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1524 } 1525 tcp_time_wait->tcp_time_wait_tail = tcp; 1526 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1527 } 1528 1529 /* ARGSUSED */ 1530 void 1531 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1532 { 1533 conn_t *connp = (conn_t *)arg; 1534 tcp_t *tcp = connp->conn_tcp; 1535 tcp_stack_t *tcps = tcp->tcp_tcps; 1536 1537 ASSERT(tcp != NULL); 1538 if (tcp->tcp_state == TCPS_CLOSED) { 1539 return; 1540 } 1541 1542 ASSERT((tcp->tcp_family == AF_INET && 1543 tcp->tcp_ipversion == IPV4_VERSION) || 1544 (tcp->tcp_family == AF_INET6 && 1545 (tcp->tcp_ipversion == IPV4_VERSION || 1546 tcp->tcp_ipversion == IPV6_VERSION))); 1547 ASSERT(!tcp->tcp_listener); 1548 1549 TCP_STAT(tcps, tcp_time_wait_reap); 1550 ASSERT(TCP_IS_DETACHED(tcp)); 1551 1552 /* 1553 * Because they have no upstream client to rebind or tcp_close() 1554 * them later, we axe the connection here and now. 1555 */ 1556 tcp_close_detached(tcp); 1557 } 1558 1559 /* 1560 * Remove cached/latched IPsec references. 1561 */ 1562 void 1563 tcp_ipsec_cleanup(tcp_t *tcp) 1564 { 1565 conn_t *connp = tcp->tcp_connp; 1566 1567 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1568 1569 if (connp->conn_latch != NULL) { 1570 IPLATCH_REFRELE(connp->conn_latch, 1571 connp->conn_netstack); 1572 connp->conn_latch = NULL; 1573 } 1574 if (connp->conn_policy != NULL) { 1575 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1576 connp->conn_policy = NULL; 1577 } 1578 } 1579 1580 /* 1581 * Cleaup before placing on free list. 1582 * Disassociate from the netstack/tcp_stack_t since the freelist 1583 * is per squeue and not per netstack. 1584 */ 1585 void 1586 tcp_cleanup(tcp_t *tcp) 1587 { 1588 mblk_t *mp; 1589 char *tcp_iphc; 1590 int tcp_iphc_len; 1591 int tcp_hdr_grown; 1592 tcp_sack_info_t *tcp_sack_info; 1593 conn_t *connp = tcp->tcp_connp; 1594 tcp_stack_t *tcps = tcp->tcp_tcps; 1595 netstack_t *ns = tcps->tcps_netstack; 1596 mblk_t *tcp_rsrv_mp; 1597 1598 tcp_bind_hash_remove(tcp); 1599 1600 /* Cleanup that which needs the netstack first */ 1601 tcp_ipsec_cleanup(tcp); 1602 1603 tcp_free(tcp); 1604 1605 /* Release any SSL context */ 1606 if (tcp->tcp_kssl_ent != NULL) { 1607 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1608 tcp->tcp_kssl_ent = NULL; 1609 } 1610 1611 if (tcp->tcp_kssl_ctx != NULL) { 1612 kssl_release_ctx(tcp->tcp_kssl_ctx); 1613 tcp->tcp_kssl_ctx = NULL; 1614 } 1615 tcp->tcp_kssl_pending = B_FALSE; 1616 1617 conn_delete_ire(connp, NULL); 1618 1619 /* 1620 * Since we will bzero the entire structure, we need to 1621 * remove it and reinsert it in global hash list. We 1622 * know the walkers can't get to this conn because we 1623 * had set CONDEMNED flag earlier and checked reference 1624 * under conn_lock so walker won't pick it and when we 1625 * go the ipcl_globalhash_remove() below, no walker 1626 * can get to it. 1627 */ 1628 ipcl_globalhash_remove(connp); 1629 1630 /* 1631 * Now it is safe to decrement the reference counts. 1632 * This might be the last reference on the netstack and TCPS 1633 * in which case it will cause the tcp_g_q_close and 1634 * the freeing of the IP Instance. 1635 */ 1636 connp->conn_netstack = NULL; 1637 netstack_rele(ns); 1638 ASSERT(tcps != NULL); 1639 tcp->tcp_tcps = NULL; 1640 TCPS_REFRELE(tcps); 1641 1642 /* Save some state */ 1643 mp = tcp->tcp_timercache; 1644 1645 tcp_sack_info = tcp->tcp_sack_info; 1646 tcp_iphc = tcp->tcp_iphc; 1647 tcp_iphc_len = tcp->tcp_iphc_len; 1648 tcp_hdr_grown = tcp->tcp_hdr_grown; 1649 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 1650 1651 if (connp->conn_cred != NULL) { 1652 crfree(connp->conn_cred); 1653 connp->conn_cred = NULL; 1654 } 1655 if (connp->conn_effective_cred != NULL) { 1656 crfree(connp->conn_effective_cred); 1657 connp->conn_effective_cred = NULL; 1658 } 1659 ipcl_conn_cleanup(connp); 1660 connp->conn_flags = IPCL_TCPCONN; 1661 bzero(tcp, sizeof (tcp_t)); 1662 1663 /* restore the state */ 1664 tcp->tcp_timercache = mp; 1665 1666 tcp->tcp_sack_info = tcp_sack_info; 1667 tcp->tcp_iphc = tcp_iphc; 1668 tcp->tcp_iphc_len = tcp_iphc_len; 1669 tcp->tcp_hdr_grown = tcp_hdr_grown; 1670 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1671 1672 tcp->tcp_connp = connp; 1673 1674 ASSERT(connp->conn_tcp == tcp); 1675 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1676 connp->conn_state_flags = CONN_INCIPIENT; 1677 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1678 ASSERT(connp->conn_ref == 1); 1679 } 1680 1681 /* 1682 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1683 * is done forwards from the head. 1684 * This walks all stack instances since 1685 * tcp_time_wait remains global across all stacks. 1686 */ 1687 /* ARGSUSED */ 1688 void 1689 tcp_time_wait_collector(void *arg) 1690 { 1691 tcp_t *tcp; 1692 clock_t now; 1693 mblk_t *mp; 1694 conn_t *connp; 1695 kmutex_t *lock; 1696 boolean_t removed; 1697 1698 squeue_t *sqp = (squeue_t *)arg; 1699 tcp_squeue_priv_t *tcp_time_wait = 1700 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1701 1702 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1703 tcp_time_wait->tcp_time_wait_tid = 0; 1704 1705 if (tcp_time_wait->tcp_free_list != NULL && 1706 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1707 TCP_G_STAT(tcp_freelist_cleanup); 1708 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1709 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1710 tcp->tcp_time_wait_next = NULL; 1711 tcp_time_wait->tcp_free_list_cnt--; 1712 ASSERT(tcp->tcp_tcps == NULL); 1713 CONN_DEC_REF(tcp->tcp_connp); 1714 } 1715 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1716 } 1717 1718 /* 1719 * In order to reap time waits reliably, we should use a 1720 * source of time that is not adjustable by the user -- hence 1721 * the call to ddi_get_lbolt(). 1722 */ 1723 now = ddi_get_lbolt(); 1724 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1725 /* 1726 * Compare times using modular arithmetic, since 1727 * lbolt can wrapover. 1728 */ 1729 if ((now - tcp->tcp_time_wait_expire) < 0) { 1730 break; 1731 } 1732 1733 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1734 ASSERT(removed); 1735 1736 connp = tcp->tcp_connp; 1737 ASSERT(connp->conn_fanout != NULL); 1738 lock = &connp->conn_fanout->connf_lock; 1739 /* 1740 * This is essentially a TW reclaim fast path optimization for 1741 * performance where the timewait collector checks under the 1742 * fanout lock (so that no one else can get access to the 1743 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1744 * the classifier hash list. If ref count is indeed 2, we can 1745 * just remove the conn under the fanout lock and avoid 1746 * cleaning up the conn under the squeue, provided that 1747 * clustering callbacks are not enabled. If clustering is 1748 * enabled, we need to make the clustering callback before 1749 * setting the CONDEMNED flag and after dropping all locks and 1750 * so we forego this optimization and fall back to the slow 1751 * path. Also please see the comments in tcp_closei_local 1752 * regarding the refcnt logic. 1753 * 1754 * Since we are holding the tcp_time_wait_lock, its better 1755 * not to block on the fanout_lock because other connections 1756 * can't add themselves to time_wait list. So we do a 1757 * tryenter instead of mutex_enter. 1758 */ 1759 if (mutex_tryenter(lock)) { 1760 mutex_enter(&connp->conn_lock); 1761 if ((connp->conn_ref == 2) && 1762 (cl_inet_disconnect == NULL)) { 1763 ipcl_hash_remove_locked(connp, 1764 connp->conn_fanout); 1765 /* 1766 * Set the CONDEMNED flag now itself so that 1767 * the refcnt cannot increase due to any 1768 * walker. But we have still not cleaned up 1769 * conn_ire_cache. This is still ok since 1770 * we are going to clean it up in tcp_cleanup 1771 * immediately and any interface unplumb 1772 * thread will wait till the ire is blown away 1773 */ 1774 connp->conn_state_flags |= CONN_CONDEMNED; 1775 mutex_exit(lock); 1776 mutex_exit(&connp->conn_lock); 1777 if (tcp_time_wait->tcp_free_list_cnt < 1778 tcp_free_list_max_cnt) { 1779 /* Add to head of tcp_free_list */ 1780 mutex_exit( 1781 &tcp_time_wait->tcp_time_wait_lock); 1782 tcp_cleanup(tcp); 1783 ASSERT(connp->conn_latch == NULL); 1784 ASSERT(connp->conn_policy == NULL); 1785 ASSERT(tcp->tcp_tcps == NULL); 1786 ASSERT(connp->conn_netstack == NULL); 1787 1788 mutex_enter( 1789 &tcp_time_wait->tcp_time_wait_lock); 1790 tcp->tcp_time_wait_next = 1791 tcp_time_wait->tcp_free_list; 1792 tcp_time_wait->tcp_free_list = tcp; 1793 tcp_time_wait->tcp_free_list_cnt++; 1794 continue; 1795 } else { 1796 /* Do not add to tcp_free_list */ 1797 mutex_exit( 1798 &tcp_time_wait->tcp_time_wait_lock); 1799 tcp_bind_hash_remove(tcp); 1800 conn_delete_ire(tcp->tcp_connp, NULL); 1801 tcp_ipsec_cleanup(tcp); 1802 CONN_DEC_REF(tcp->tcp_connp); 1803 } 1804 } else { 1805 CONN_INC_REF_LOCKED(connp); 1806 mutex_exit(lock); 1807 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1808 mutex_exit(&connp->conn_lock); 1809 /* 1810 * We can reuse the closemp here since conn has 1811 * detached (otherwise we wouldn't even be in 1812 * time_wait list). tcp_closemp_used can safely 1813 * be changed without taking a lock as no other 1814 * thread can concurrently access it at this 1815 * point in the connection lifecycle. 1816 */ 1817 1818 if (tcp->tcp_closemp.b_prev == NULL) 1819 tcp->tcp_closemp_used = B_TRUE; 1820 else 1821 cmn_err(CE_PANIC, 1822 "tcp_timewait_collector: " 1823 "concurrent use of tcp_closemp: " 1824 "connp %p tcp %p\n", (void *)connp, 1825 (void *)tcp); 1826 1827 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1828 mp = &tcp->tcp_closemp; 1829 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1830 tcp_timewait_output, connp, 1831 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1832 } 1833 } else { 1834 mutex_enter(&connp->conn_lock); 1835 CONN_INC_REF_LOCKED(connp); 1836 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1837 mutex_exit(&connp->conn_lock); 1838 /* 1839 * We can reuse the closemp here since conn has 1840 * detached (otherwise we wouldn't even be in 1841 * time_wait list). tcp_closemp_used can safely 1842 * be changed without taking a lock as no other 1843 * thread can concurrently access it at this 1844 * point in the connection lifecycle. 1845 */ 1846 1847 if (tcp->tcp_closemp.b_prev == NULL) 1848 tcp->tcp_closemp_used = B_TRUE; 1849 else 1850 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1851 "concurrent use of tcp_closemp: " 1852 "connp %p tcp %p\n", (void *)connp, 1853 (void *)tcp); 1854 1855 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1856 mp = &tcp->tcp_closemp; 1857 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 1858 tcp_timewait_output, connp, 1859 SQ_FILL, SQTAG_TCP_TIMEWAIT); 1860 } 1861 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1862 } 1863 1864 if (tcp_time_wait->tcp_free_list != NULL) 1865 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1866 1867 tcp_time_wait->tcp_time_wait_tid = 1868 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 1869 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 1870 CALLOUT_FLAG_ROUNDUP); 1871 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1872 } 1873 1874 /* 1875 * Reply to a clients T_CONN_RES TPI message. This function 1876 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1877 * on the acceptor STREAM and processed in tcp_wput_accept(). 1878 * Read the block comment on top of tcp_conn_request(). 1879 */ 1880 static void 1881 tcp_tli_accept(tcp_t *listener, mblk_t *mp) 1882 { 1883 tcp_t *acceptor; 1884 tcp_t *eager; 1885 tcp_t *tcp; 1886 struct T_conn_res *tcr; 1887 t_uscalar_t acceptor_id; 1888 t_scalar_t seqnum; 1889 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1890 struct tcp_options *tcpopt; 1891 mblk_t *ok_mp; 1892 mblk_t *mp1; 1893 tcp_stack_t *tcps = listener->tcp_tcps; 1894 int error; 1895 1896 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1897 tcp_err_ack(listener, mp, TPROTO, 0); 1898 return; 1899 } 1900 tcr = (struct T_conn_res *)mp->b_rptr; 1901 1902 /* 1903 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1904 * read side queue of the streams device underneath us i.e. the 1905 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1906 * look it up in the queue_hash. Under LP64 it sends down the 1907 * minor_t of the accepting endpoint. 1908 * 1909 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1910 * fanout hash lock is held. 1911 * This prevents any thread from entering the acceptor queue from 1912 * below (since it has not been hard bound yet i.e. any inbound 1913 * packets will arrive on the listener or default tcp queue and 1914 * go through tcp_lookup). 1915 * The CONN_INC_REF will prevent the acceptor from closing. 1916 * 1917 * XXX It is still possible for a tli application to send down data 1918 * on the accepting stream while another thread calls t_accept. 1919 * This should not be a problem for well-behaved applications since 1920 * the T_OK_ACK is sent after the queue swapping is completed. 1921 * 1922 * If the accepting fd is the same as the listening fd, avoid 1923 * queue hash lookup since that will return an eager listener in a 1924 * already established state. 1925 */ 1926 acceptor_id = tcr->ACCEPTOR_id; 1927 mutex_enter(&listener->tcp_eager_lock); 1928 if (listener->tcp_acceptor_id == acceptor_id) { 1929 eager = listener->tcp_eager_next_q; 1930 /* only count how many T_CONN_INDs so don't count q0 */ 1931 if ((listener->tcp_conn_req_cnt_q != 1) || 1932 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1933 mutex_exit(&listener->tcp_eager_lock); 1934 tcp_err_ack(listener, mp, TBADF, 0); 1935 return; 1936 } 1937 if (listener->tcp_conn_req_cnt_q0 != 0) { 1938 /* Throw away all the eagers on q0. */ 1939 tcp_eager_cleanup(listener, 1); 1940 } 1941 if (listener->tcp_syn_defense) { 1942 listener->tcp_syn_defense = B_FALSE; 1943 if (listener->tcp_ip_addr_cache != NULL) { 1944 kmem_free(listener->tcp_ip_addr_cache, 1945 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1946 listener->tcp_ip_addr_cache = NULL; 1947 } 1948 } 1949 /* 1950 * Transfer tcp_conn_req_max to the eager so that when 1951 * a disconnect occurs we can revert the endpoint to the 1952 * listen state. 1953 */ 1954 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1955 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1956 /* 1957 * Get a reference on the acceptor just like the 1958 * tcp_acceptor_hash_lookup below. 1959 */ 1960 acceptor = listener; 1961 CONN_INC_REF(acceptor->tcp_connp); 1962 } else { 1963 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1964 if (acceptor == NULL) { 1965 if (listener->tcp_debug) { 1966 (void) strlog(TCP_MOD_ID, 0, 1, 1967 SL_ERROR|SL_TRACE, 1968 "tcp_accept: did not find acceptor 0x%x\n", 1969 acceptor_id); 1970 } 1971 mutex_exit(&listener->tcp_eager_lock); 1972 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1973 return; 1974 } 1975 /* 1976 * Verify acceptor state. The acceptable states for an acceptor 1977 * include TCPS_IDLE and TCPS_BOUND. 1978 */ 1979 switch (acceptor->tcp_state) { 1980 case TCPS_IDLE: 1981 /* FALLTHRU */ 1982 case TCPS_BOUND: 1983 break; 1984 default: 1985 CONN_DEC_REF(acceptor->tcp_connp); 1986 mutex_exit(&listener->tcp_eager_lock); 1987 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1988 return; 1989 } 1990 } 1991 1992 /* The listener must be in TCPS_LISTEN */ 1993 if (listener->tcp_state != TCPS_LISTEN) { 1994 CONN_DEC_REF(acceptor->tcp_connp); 1995 mutex_exit(&listener->tcp_eager_lock); 1996 tcp_err_ack(listener, mp, TOUTSTATE, 0); 1997 return; 1998 } 1999 2000 /* 2001 * Rendezvous with an eager connection request packet hanging off 2002 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2003 * tcp structure when the connection packet arrived in 2004 * tcp_conn_request(). 2005 */ 2006 seqnum = tcr->SEQ_number; 2007 eager = listener; 2008 do { 2009 eager = eager->tcp_eager_next_q; 2010 if (eager == NULL) { 2011 CONN_DEC_REF(acceptor->tcp_connp); 2012 mutex_exit(&listener->tcp_eager_lock); 2013 tcp_err_ack(listener, mp, TBADSEQ, 0); 2014 return; 2015 } 2016 } while (eager->tcp_conn_req_seqnum != seqnum); 2017 mutex_exit(&listener->tcp_eager_lock); 2018 2019 /* 2020 * At this point, both acceptor and listener have 2 ref 2021 * that they begin with. Acceptor has one additional ref 2022 * we placed in lookup while listener has 3 additional 2023 * ref for being behind the squeue (tcp_accept() is 2024 * done on listener's squeue); being in classifier hash; 2025 * and eager's ref on listener. 2026 */ 2027 ASSERT(listener->tcp_connp->conn_ref >= 5); 2028 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2029 2030 /* 2031 * The eager at this point is set in its own squeue and 2032 * could easily have been killed (tcp_accept_finish will 2033 * deal with that) because of a TH_RST so we can only 2034 * ASSERT for a single ref. 2035 */ 2036 ASSERT(eager->tcp_connp->conn_ref >= 1); 2037 2038 /* Pre allocate the stroptions mblk also */ 2039 opt_mp = allocb(MAX(sizeof (struct tcp_options), 2040 sizeof (struct T_conn_res)), BPRI_HI); 2041 if (opt_mp == NULL) { 2042 CONN_DEC_REF(acceptor->tcp_connp); 2043 CONN_DEC_REF(eager->tcp_connp); 2044 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2045 return; 2046 } 2047 DB_TYPE(opt_mp) = M_SETOPTS; 2048 opt_mp->b_wptr += sizeof (struct tcp_options); 2049 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 2050 tcpopt->to_flags = 0; 2051 2052 /* 2053 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2054 * from listener to acceptor. 2055 */ 2056 if (listener->tcp_bound_if != 0) { 2057 tcpopt->to_flags |= TCPOPT_BOUNDIF; 2058 tcpopt->to_boundif = listener->tcp_bound_if; 2059 } 2060 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2061 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 2062 } 2063 2064 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2065 if ((mp1 = copymsg(mp)) == NULL) { 2066 CONN_DEC_REF(acceptor->tcp_connp); 2067 CONN_DEC_REF(eager->tcp_connp); 2068 freemsg(opt_mp); 2069 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2070 return; 2071 } 2072 2073 tcr = (struct T_conn_res *)mp1->b_rptr; 2074 2075 /* 2076 * This is an expanded version of mi_tpi_ok_ack_alloc() 2077 * which allocates a larger mblk and appends the new 2078 * local address to the ok_ack. The address is copied by 2079 * soaccept() for getsockname(). 2080 */ 2081 { 2082 int extra; 2083 2084 extra = (eager->tcp_family == AF_INET) ? 2085 sizeof (sin_t) : sizeof (sin6_t); 2086 2087 /* 2088 * Try to re-use mp, if possible. Otherwise, allocate 2089 * an mblk and return it as ok_mp. In any case, mp 2090 * is no longer usable upon return. 2091 */ 2092 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2093 CONN_DEC_REF(acceptor->tcp_connp); 2094 CONN_DEC_REF(eager->tcp_connp); 2095 freemsg(opt_mp); 2096 /* Original mp has been freed by now, so use mp1 */ 2097 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2098 return; 2099 } 2100 2101 mp = NULL; /* We should never use mp after this point */ 2102 2103 switch (extra) { 2104 case sizeof (sin_t): { 2105 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2106 2107 ok_mp->b_wptr += extra; 2108 sin->sin_family = AF_INET; 2109 sin->sin_port = eager->tcp_lport; 2110 sin->sin_addr.s_addr = 2111 eager->tcp_ipha->ipha_src; 2112 break; 2113 } 2114 case sizeof (sin6_t): { 2115 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2116 2117 ok_mp->b_wptr += extra; 2118 sin6->sin6_family = AF_INET6; 2119 sin6->sin6_port = eager->tcp_lport; 2120 if (eager->tcp_ipversion == IPV4_VERSION) { 2121 sin6->sin6_flowinfo = 0; 2122 IN6_IPADDR_TO_V4MAPPED( 2123 eager->tcp_ipha->ipha_src, 2124 &sin6->sin6_addr); 2125 } else { 2126 ASSERT(eager->tcp_ip6h != NULL); 2127 sin6->sin6_flowinfo = 2128 eager->tcp_ip6h->ip6_vcf & 2129 ~IPV6_VERS_AND_FLOW_MASK; 2130 sin6->sin6_addr = 2131 eager->tcp_ip6h->ip6_src; 2132 } 2133 sin6->sin6_scope_id = 0; 2134 sin6->__sin6_src_id = 0; 2135 break; 2136 } 2137 default: 2138 break; 2139 } 2140 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2141 } 2142 2143 /* 2144 * If there are no options we know that the T_CONN_RES will 2145 * succeed. However, we can't send the T_OK_ACK upstream until 2146 * the tcp_accept_swap is done since it would be dangerous to 2147 * let the application start using the new fd prior to the swap. 2148 */ 2149 error = tcp_accept_swap(listener, acceptor, eager); 2150 if (error != 0) { 2151 CONN_DEC_REF(acceptor->tcp_connp); 2152 CONN_DEC_REF(eager->tcp_connp); 2153 freemsg(ok_mp); 2154 /* Original mp has been freed by now, so use mp1 */ 2155 tcp_err_ack(listener, mp1, TSYSERR, error); 2156 return; 2157 } 2158 2159 /* 2160 * tcp_accept_swap unlinks eager from listener but does not drop 2161 * the eager's reference on the listener. 2162 */ 2163 ASSERT(eager->tcp_listener == NULL); 2164 ASSERT(listener->tcp_connp->conn_ref >= 5); 2165 2166 /* 2167 * The eager is now associated with its own queue. Insert in 2168 * the hash so that the connection can be reused for a future 2169 * T_CONN_RES. 2170 */ 2171 tcp_acceptor_hash_insert(acceptor_id, eager); 2172 2173 /* 2174 * We now do the processing of options with T_CONN_RES. 2175 * We delay till now since we wanted to have queue to pass to 2176 * option processing routines that points back to the right 2177 * instance structure which does not happen until after 2178 * tcp_accept_swap(). 2179 * 2180 * Note: 2181 * The sanity of the logic here assumes that whatever options 2182 * are appropriate to inherit from listner=>eager are done 2183 * before this point, and whatever were to be overridden (or not) 2184 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2185 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2186 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2187 * This may not be true at this point in time but can be fixed 2188 * independently. This option processing code starts with 2189 * the instantiated acceptor instance and the final queue at 2190 * this point. 2191 */ 2192 2193 if (tcr->OPT_length != 0) { 2194 /* Options to process */ 2195 int t_error = 0; 2196 int sys_error = 0; 2197 int do_disconnect = 0; 2198 2199 if (tcp_conprim_opt_process(eager, mp1, 2200 &do_disconnect, &t_error, &sys_error) < 0) { 2201 eager->tcp_accept_error = 1; 2202 if (do_disconnect) { 2203 /* 2204 * An option failed which does not allow 2205 * connection to be accepted. 2206 * 2207 * We allow T_CONN_RES to succeed and 2208 * put a T_DISCON_IND on the eager queue. 2209 */ 2210 ASSERT(t_error == 0 && sys_error == 0); 2211 eager->tcp_send_discon_ind = 1; 2212 } else { 2213 ASSERT(t_error != 0); 2214 freemsg(ok_mp); 2215 /* 2216 * Original mp was either freed or set 2217 * to ok_mp above, so use mp1 instead. 2218 */ 2219 tcp_err_ack(listener, mp1, t_error, sys_error); 2220 goto finish; 2221 } 2222 } 2223 /* 2224 * Most likely success in setting options (except if 2225 * eager->tcp_send_discon_ind set). 2226 * mp1 option buffer represented by OPT_length/offset 2227 * potentially modified and contains results of setting 2228 * options at this point 2229 */ 2230 } 2231 2232 /* We no longer need mp1, since all options processing has passed */ 2233 freemsg(mp1); 2234 2235 putnext(listener->tcp_rq, ok_mp); 2236 2237 mutex_enter(&listener->tcp_eager_lock); 2238 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2239 tcp_t *tail; 2240 mblk_t *conn_ind; 2241 2242 /* 2243 * This path should not be executed if listener and 2244 * acceptor streams are the same. 2245 */ 2246 ASSERT(listener != acceptor); 2247 2248 tcp = listener->tcp_eager_prev_q0; 2249 /* 2250 * listener->tcp_eager_prev_q0 points to the TAIL of the 2251 * deferred T_conn_ind queue. We need to get to the head of 2252 * the queue in order to send up T_conn_ind the same order as 2253 * how the 3WHS is completed. 2254 */ 2255 while (tcp != listener) { 2256 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2257 break; 2258 else 2259 tcp = tcp->tcp_eager_prev_q0; 2260 } 2261 ASSERT(tcp != listener); 2262 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2263 ASSERT(conn_ind != NULL); 2264 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2265 2266 /* Move from q0 to q */ 2267 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2268 listener->tcp_conn_req_cnt_q0--; 2269 listener->tcp_conn_req_cnt_q++; 2270 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2271 tcp->tcp_eager_prev_q0; 2272 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2273 tcp->tcp_eager_next_q0; 2274 tcp->tcp_eager_prev_q0 = NULL; 2275 tcp->tcp_eager_next_q0 = NULL; 2276 tcp->tcp_conn_def_q0 = B_FALSE; 2277 2278 /* Make sure the tcp isn't in the list of droppables */ 2279 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2280 tcp->tcp_eager_prev_drop_q0 == NULL); 2281 2282 /* 2283 * Insert at end of the queue because sockfs sends 2284 * down T_CONN_RES in chronological order. Leaving 2285 * the older conn indications at front of the queue 2286 * helps reducing search time. 2287 */ 2288 tail = listener->tcp_eager_last_q; 2289 if (tail != NULL) 2290 tail->tcp_eager_next_q = tcp; 2291 else 2292 listener->tcp_eager_next_q = tcp; 2293 listener->tcp_eager_last_q = tcp; 2294 tcp->tcp_eager_next_q = NULL; 2295 mutex_exit(&listener->tcp_eager_lock); 2296 putnext(tcp->tcp_rq, conn_ind); 2297 } else { 2298 mutex_exit(&listener->tcp_eager_lock); 2299 } 2300 2301 /* 2302 * Done with the acceptor - free it 2303 * 2304 * Note: from this point on, no access to listener should be made 2305 * as listener can be equal to acceptor. 2306 */ 2307 finish: 2308 ASSERT(acceptor->tcp_detached); 2309 ASSERT(tcps->tcps_g_q != NULL); 2310 ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp)); 2311 acceptor->tcp_rq = tcps->tcps_g_q; 2312 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2313 (void) tcp_clean_death(acceptor, 0, 2); 2314 CONN_DEC_REF(acceptor->tcp_connp); 2315 2316 /* 2317 * In case we already received a FIN we have to make tcp_rput send 2318 * the ordrel_ind. This will also send up a window update if the window 2319 * has opened up. 2320 * 2321 * In the normal case of a successful connection acceptance 2322 * we give the O_T_BIND_REQ to the read side put procedure as an 2323 * indication that this was just accepted. This tells tcp_rput to 2324 * pass up any data queued in tcp_rcv_list. 2325 * 2326 * In the fringe case where options sent with T_CONN_RES failed and 2327 * we required, we would be indicating a T_DISCON_IND to blow 2328 * away this connection. 2329 */ 2330 2331 /* 2332 * XXX: we currently have a problem if XTI application closes the 2333 * acceptor stream in between. This problem exists in on10-gate also 2334 * and is well know but nothing can be done short of major rewrite 2335 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2336 * eager same squeue as listener (we can distinguish non socket 2337 * listeners at the time of handling a SYN in tcp_conn_request) 2338 * and do most of the work that tcp_accept_finish does here itself 2339 * and then get behind the acceptor squeue to access the acceptor 2340 * queue. 2341 */ 2342 /* 2343 * We already have a ref on tcp so no need to do one before squeue_enter 2344 */ 2345 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish, 2346 eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH); 2347 } 2348 2349 /* 2350 * Swap information between the eager and acceptor for a TLI/XTI client. 2351 * The sockfs accept is done on the acceptor stream and control goes 2352 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2353 * called. In either case, both the eager and listener are in their own 2354 * perimeter (squeue) and the code has to deal with potential race. 2355 * 2356 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2357 */ 2358 static int 2359 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2360 { 2361 conn_t *econnp, *aconnp; 2362 cred_t *effective_cred = NULL; 2363 2364 ASSERT(eager->tcp_rq == listener->tcp_rq); 2365 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2366 ASSERT(!eager->tcp_hard_bound); 2367 ASSERT(!TCP_IS_SOCKET(acceptor)); 2368 ASSERT(!TCP_IS_SOCKET(eager)); 2369 ASSERT(!TCP_IS_SOCKET(listener)); 2370 2371 econnp = eager->tcp_connp; 2372 aconnp = acceptor->tcp_connp; 2373 2374 /* 2375 * Trusted Extensions may need to use a security label that is 2376 * different from the acceptor's label on MLP and MAC-Exempt 2377 * sockets. If this is the case, the required security label 2378 * already exists in econnp->conn_effective_cred. Use this label 2379 * to generate a new effective cred for the acceptor. 2380 * 2381 * We allow for potential application level retry attempts by 2382 * checking for transient errors before modifying eager. 2383 */ 2384 if (is_system_labeled() && 2385 aconnp->conn_cred != NULL && econnp->conn_effective_cred != NULL) { 2386 effective_cred = copycred_from_tslabel(aconnp->conn_cred, 2387 crgetlabel(econnp->conn_effective_cred), KM_NOSLEEP); 2388 if (effective_cred == NULL) 2389 return (ENOMEM); 2390 } 2391 2392 acceptor->tcp_detached = B_TRUE; 2393 /* 2394 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2395 * the acceptor id. 2396 */ 2397 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2398 2399 /* remove eager from listen list... */ 2400 mutex_enter(&listener->tcp_eager_lock); 2401 tcp_eager_unlink(eager); 2402 ASSERT(eager->tcp_eager_next_q == NULL && 2403 eager->tcp_eager_last_q == NULL); 2404 ASSERT(eager->tcp_eager_next_q0 == NULL && 2405 eager->tcp_eager_prev_q0 == NULL); 2406 mutex_exit(&listener->tcp_eager_lock); 2407 eager->tcp_rq = acceptor->tcp_rq; 2408 eager->tcp_wq = acceptor->tcp_wq; 2409 2410 eager->tcp_rq->q_ptr = econnp; 2411 eager->tcp_wq->q_ptr = econnp; 2412 2413 /* 2414 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2415 * which might be a different squeue from our peer TCP instance. 2416 * For TCP Fusion, the peer expects that whenever tcp_detached is 2417 * clear, our TCP queues point to the acceptor's queues. Thus, use 2418 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2419 * above reach global visibility prior to the clearing of tcp_detached. 2420 */ 2421 membar_producer(); 2422 eager->tcp_detached = B_FALSE; 2423 2424 ASSERT(eager->tcp_ack_tid == 0); 2425 2426 econnp->conn_dev = aconnp->conn_dev; 2427 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2428 2429 ASSERT(econnp->conn_minor_arena != NULL); 2430 if (eager->tcp_cred != NULL) 2431 crfree(eager->tcp_cred); 2432 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2433 if (econnp->conn_effective_cred != NULL) 2434 crfree(econnp->conn_effective_cred); 2435 econnp->conn_effective_cred = effective_cred; 2436 aconnp->conn_cred = NULL; 2437 ASSERT(aconnp->conn_effective_cred == NULL); 2438 2439 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2440 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2441 2442 econnp->conn_zoneid = aconnp->conn_zoneid; 2443 econnp->conn_allzones = aconnp->conn_allzones; 2444 2445 aconnp->conn_mac_exempt = B_FALSE; 2446 2447 /* Do the IPC initialization */ 2448 CONN_INC_REF(econnp); 2449 2450 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2451 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2452 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2453 2454 /* Done with old IPC. Drop its ref on its connp */ 2455 CONN_DEC_REF(aconnp); 2456 return (0); 2457 } 2458 2459 2460 /* 2461 * Adapt to the information, such as rtt and rtt_sd, provided from the 2462 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2463 * 2464 * Checks for multicast and broadcast destination address. 2465 * Returns zero on failure; non-zero if ok. 2466 * 2467 * Note that the MSS calculation here is based on the info given in 2468 * the IRE. We do not do any calculation based on TCP options. They 2469 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2470 * knows which options to use. 2471 * 2472 * Note on how TCP gets its parameters for a connection. 2473 * 2474 * When a tcp_t structure is allocated, it gets all the default parameters. 2475 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2476 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2477 * default. 2478 * 2479 * An incoming SYN with a multicast or broadcast destination address, is dropped 2480 * in 1 of 2 places. 2481 * 2482 * 1. If the packet was received over the wire it is dropped in 2483 * ip_rput_process_broadcast() 2484 * 2485 * 2. If the packet was received through internal IP loopback, i.e. the packet 2486 * was generated and received on the same machine, it is dropped in 2487 * ip_wput_local() 2488 * 2489 * An incoming SYN with a multicast or broadcast source address is always 2490 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2491 * reject an attempt to connect to a broadcast or multicast (destination) 2492 * address. 2493 */ 2494 static int 2495 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2496 { 2497 ire_t *ire; 2498 ire_t *sire = NULL; 2499 iulp_t *ire_uinfo = NULL; 2500 uint32_t mss_max; 2501 uint32_t mss; 2502 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2503 conn_t *connp = tcp->tcp_connp; 2504 boolean_t ire_cacheable = B_FALSE; 2505 zoneid_t zoneid = connp->conn_zoneid; 2506 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2507 MATCH_IRE_SECATTR; 2508 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2509 ill_t *ill = NULL; 2510 boolean_t incoming = (ire_mp == NULL); 2511 tcp_stack_t *tcps = tcp->tcp_tcps; 2512 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2513 2514 ASSERT(connp->conn_ire_cache == NULL); 2515 2516 if (tcp->tcp_ipversion == IPV4_VERSION) { 2517 2518 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2519 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2520 return (0); 2521 } 2522 /* 2523 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2524 * for the destination with the nexthop as gateway. 2525 * ire_ctable_lookup() is used because this particular 2526 * ire, if it exists, will be marked private. 2527 * If that is not available, use the interface ire 2528 * for the nexthop. 2529 * 2530 * TSol: tcp_update_label will detect label mismatches based 2531 * only on the destination's label, but that would not 2532 * detect label mismatches based on the security attributes 2533 * of routes or next hop gateway. Hence we need to pass the 2534 * label to ire_ftable_lookup below in order to locate the 2535 * right prefix (and/or) ire cache. Similarly we also need 2536 * pass the label to the ire_cache_lookup below to locate 2537 * the right ire that also matches on the label. 2538 */ 2539 if (tcp->tcp_connp->conn_nexthop_set) { 2540 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2541 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2542 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2543 ipst); 2544 if (ire == NULL) { 2545 ire = ire_ftable_lookup( 2546 tcp->tcp_connp->conn_nexthop_v4, 2547 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2548 tsl, match_flags, ipst); 2549 if (ire == NULL) 2550 return (0); 2551 } else { 2552 ire_uinfo = &ire->ire_uinfo; 2553 } 2554 } else { 2555 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2556 zoneid, tsl, ipst); 2557 if (ire != NULL) { 2558 ire_cacheable = B_TRUE; 2559 ire_uinfo = (ire_mp != NULL) ? 2560 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2561 &ire->ire_uinfo; 2562 2563 } else { 2564 if (ire_mp == NULL) { 2565 ire = ire_ftable_lookup( 2566 tcp->tcp_connp->conn_rem, 2567 0, 0, 0, NULL, &sire, zoneid, 0, 2568 tsl, (MATCH_IRE_RECURSIVE | 2569 MATCH_IRE_DEFAULT), ipst); 2570 if (ire == NULL) 2571 return (0); 2572 ire_uinfo = (sire != NULL) ? 2573 &sire->ire_uinfo : 2574 &ire->ire_uinfo; 2575 } else { 2576 ire = (ire_t *)ire_mp->b_rptr; 2577 ire_uinfo = 2578 &((ire_t *) 2579 ire_mp->b_rptr)->ire_uinfo; 2580 } 2581 } 2582 } 2583 ASSERT(ire != NULL); 2584 2585 if ((ire->ire_src_addr == INADDR_ANY) || 2586 (ire->ire_type & IRE_BROADCAST)) { 2587 /* 2588 * ire->ire_mp is non null when ire_mp passed in is used 2589 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2590 */ 2591 if (ire->ire_mp == NULL) 2592 ire_refrele(ire); 2593 if (sire != NULL) 2594 ire_refrele(sire); 2595 return (0); 2596 } 2597 2598 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2599 ipaddr_t src_addr; 2600 2601 /* 2602 * ip_bind_connected() has stored the correct source 2603 * address in conn_src. 2604 */ 2605 src_addr = tcp->tcp_connp->conn_src; 2606 tcp->tcp_ipha->ipha_src = src_addr; 2607 /* 2608 * Copy of the src addr. in tcp_t is needed 2609 * for the lookup funcs. 2610 */ 2611 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2612 } 2613 /* 2614 * Set the fragment bit so that IP will tell us if the MTU 2615 * should change. IP tells us the latest setting of 2616 * ip_path_mtu_discovery through ire_frag_flag. 2617 */ 2618 if (ipst->ips_ip_path_mtu_discovery) { 2619 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2620 htons(IPH_DF); 2621 } 2622 /* 2623 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2624 * for IP_NEXTHOP. No cache ire has been found for the 2625 * destination and we are working with the nexthop's 2626 * interface ire. Since we need to forward all packets 2627 * to the nexthop first, we "blindly" set tcp_localnet 2628 * to false, eventhough the destination may also be 2629 * onlink. 2630 */ 2631 if (ire_uinfo == NULL) 2632 tcp->tcp_localnet = 0; 2633 else 2634 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2635 } else { 2636 /* 2637 * For incoming connection ire_mp = NULL 2638 * For outgoing connection ire_mp != NULL 2639 * Technically we should check conn_incoming_ill 2640 * when ire_mp is NULL and conn_outgoing_ill when 2641 * ire_mp is non-NULL. But this is performance 2642 * critical path and for IPV*_BOUND_IF, outgoing 2643 * and incoming ill are always set to the same value. 2644 */ 2645 ill_t *dst_ill = NULL; 2646 ipif_t *dst_ipif = NULL; 2647 2648 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2649 2650 if (connp->conn_outgoing_ill != NULL) { 2651 /* Outgoing or incoming path */ 2652 int err; 2653 2654 dst_ill = conn_get_held_ill(connp, 2655 &connp->conn_outgoing_ill, &err); 2656 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2657 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2658 return (0); 2659 } 2660 match_flags |= MATCH_IRE_ILL; 2661 dst_ipif = dst_ill->ill_ipif; 2662 } 2663 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2664 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2665 2666 if (ire != NULL) { 2667 ire_cacheable = B_TRUE; 2668 ire_uinfo = (ire_mp != NULL) ? 2669 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2670 &ire->ire_uinfo; 2671 } else { 2672 if (ire_mp == NULL) { 2673 ire = ire_ftable_lookup_v6( 2674 &tcp->tcp_connp->conn_remv6, 2675 0, 0, 0, dst_ipif, &sire, zoneid, 2676 0, tsl, match_flags, ipst); 2677 if (ire == NULL) { 2678 if (dst_ill != NULL) 2679 ill_refrele(dst_ill); 2680 return (0); 2681 } 2682 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2683 &ire->ire_uinfo; 2684 } else { 2685 ire = (ire_t *)ire_mp->b_rptr; 2686 ire_uinfo = 2687 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2688 } 2689 } 2690 if (dst_ill != NULL) 2691 ill_refrele(dst_ill); 2692 2693 ASSERT(ire != NULL); 2694 ASSERT(ire_uinfo != NULL); 2695 2696 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2697 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2698 /* 2699 * ire->ire_mp is non null when ire_mp passed in is used 2700 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2701 */ 2702 if (ire->ire_mp == NULL) 2703 ire_refrele(ire); 2704 if (sire != NULL) 2705 ire_refrele(sire); 2706 return (0); 2707 } 2708 2709 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2710 in6_addr_t src_addr; 2711 2712 /* 2713 * ip_bind_connected_v6() has stored the correct source 2714 * address per IPv6 addr. selection policy in 2715 * conn_src_v6. 2716 */ 2717 src_addr = tcp->tcp_connp->conn_srcv6; 2718 2719 tcp->tcp_ip6h->ip6_src = src_addr; 2720 /* 2721 * Copy of the src addr. in tcp_t is needed 2722 * for the lookup funcs. 2723 */ 2724 tcp->tcp_ip_src_v6 = src_addr; 2725 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2726 &connp->conn_srcv6)); 2727 } 2728 tcp->tcp_localnet = 2729 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2730 } 2731 2732 /* 2733 * This allows applications to fail quickly when connections are made 2734 * to dead hosts. Hosts can be labeled dead by adding a reject route 2735 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2736 */ 2737 if ((ire->ire_flags & RTF_REJECT) && 2738 (ire->ire_flags & RTF_PRIVATE)) 2739 goto error; 2740 2741 /* 2742 * Make use of the cached rtt and rtt_sd values to calculate the 2743 * initial RTO. Note that they are already initialized in 2744 * tcp_init_values(). 2745 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2746 * IP_NEXTHOP, but instead are using the interface ire for the 2747 * nexthop, then we do not use the ire_uinfo from that ire to 2748 * do any initializations. 2749 */ 2750 if (ire_uinfo != NULL) { 2751 if (ire_uinfo->iulp_rtt != 0) { 2752 clock_t rto; 2753 2754 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2755 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2756 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2757 tcps->tcps_rexmit_interval_extra + 2758 (tcp->tcp_rtt_sa >> 5); 2759 2760 if (rto > tcps->tcps_rexmit_interval_max) { 2761 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2762 } else if (rto < tcps->tcps_rexmit_interval_min) { 2763 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2764 } else { 2765 tcp->tcp_rto = rto; 2766 } 2767 } 2768 if (ire_uinfo->iulp_ssthresh != 0) 2769 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2770 else 2771 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2772 if (ire_uinfo->iulp_spipe > 0) { 2773 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2774 tcps->tcps_max_buf); 2775 if (tcps->tcps_snd_lowat_fraction != 0) 2776 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2777 tcps->tcps_snd_lowat_fraction; 2778 (void) tcp_maxpsz_set(tcp, B_TRUE); 2779 } 2780 /* 2781 * Note that up till now, acceptor always inherits receive 2782 * window from the listener. But if there is a metrics 2783 * associated with a host, we should use that instead of 2784 * inheriting it from listener. Thus we need to pass this 2785 * info back to the caller. 2786 */ 2787 if (ire_uinfo->iulp_rpipe > 0) { 2788 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2789 tcps->tcps_max_buf); 2790 } 2791 2792 if (ire_uinfo->iulp_rtomax > 0) { 2793 tcp->tcp_second_timer_threshold = 2794 ire_uinfo->iulp_rtomax; 2795 } 2796 2797 /* 2798 * Use the metric option settings, iulp_tstamp_ok and 2799 * iulp_wscale_ok, only for active open. What this means 2800 * is that if the other side uses timestamp or window 2801 * scale option, TCP will also use those options. That 2802 * is for passive open. If the application sets a 2803 * large window, window scale is enabled regardless of 2804 * the value in iulp_wscale_ok. This is the behavior 2805 * since 2.6. So we keep it. 2806 * The only case left in passive open processing is the 2807 * check for SACK. 2808 * For ECN, it should probably be like SACK. But the 2809 * current value is binary, so we treat it like the other 2810 * cases. The metric only controls active open.For passive 2811 * open, the ndd param, tcp_ecn_permitted, controls the 2812 * behavior. 2813 */ 2814 if (!tcp_detached) { 2815 /* 2816 * The if check means that the following can only 2817 * be turned on by the metrics only IRE, but not off. 2818 */ 2819 if (ire_uinfo->iulp_tstamp_ok) 2820 tcp->tcp_snd_ts_ok = B_TRUE; 2821 if (ire_uinfo->iulp_wscale_ok) 2822 tcp->tcp_snd_ws_ok = B_TRUE; 2823 if (ire_uinfo->iulp_sack == 2) 2824 tcp->tcp_snd_sack_ok = B_TRUE; 2825 if (ire_uinfo->iulp_ecn_ok) 2826 tcp->tcp_ecn_ok = B_TRUE; 2827 } else { 2828 /* 2829 * Passive open. 2830 * 2831 * As above, the if check means that SACK can only be 2832 * turned on by the metric only IRE. 2833 */ 2834 if (ire_uinfo->iulp_sack > 0) { 2835 tcp->tcp_snd_sack_ok = B_TRUE; 2836 } 2837 } 2838 } 2839 2840 2841 /* 2842 * XXX: Note that currently, ire_max_frag can be as small as 68 2843 * because of PMTUd. So tcp_mss may go to negative if combined 2844 * length of all those options exceeds 28 bytes. But because 2845 * of the tcp_mss_min check below, we may not have a problem if 2846 * tcp_mss_min is of a reasonable value. The default is 1 so 2847 * the negative problem still exists. And the check defeats PMTUd. 2848 * In fact, if PMTUd finds that the MSS should be smaller than 2849 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2850 * value. 2851 * 2852 * We do not deal with that now. All those problems related to 2853 * PMTUd will be fixed later. 2854 */ 2855 ASSERT(ire->ire_max_frag != 0); 2856 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2857 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2858 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2859 mss = MIN(mss, IPV6_MIN_MTU); 2860 } 2861 } 2862 2863 /* Sanity check for MSS value. */ 2864 if (tcp->tcp_ipversion == IPV4_VERSION) 2865 mss_max = tcps->tcps_mss_max_ipv4; 2866 else 2867 mss_max = tcps->tcps_mss_max_ipv6; 2868 2869 if (tcp->tcp_ipversion == IPV6_VERSION && 2870 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2871 /* 2872 * After receiving an ICMPv6 "packet too big" message with a 2873 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2874 * will insert a 8-byte fragment header in every packet; we 2875 * reduce the MSS by that amount here. 2876 */ 2877 mss -= sizeof (ip6_frag_t); 2878 } 2879 2880 if (tcp->tcp_ipsec_overhead == 0) 2881 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2882 2883 mss -= tcp->tcp_ipsec_overhead; 2884 2885 if (mss < tcps->tcps_mss_min) 2886 mss = tcps->tcps_mss_min; 2887 if (mss > mss_max) 2888 mss = mss_max; 2889 2890 /* Note that this is the maximum MSS, excluding all options. */ 2891 tcp->tcp_mss = mss; 2892 2893 /* 2894 * Initialize the ISS here now that we have the full connection ID. 2895 * The RFC 1948 method of initial sequence number generation requires 2896 * knowledge of the full connection ID before setting the ISS. 2897 */ 2898 2899 tcp_iss_init(tcp); 2900 2901 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2902 tcp->tcp_loopback = B_TRUE; 2903 2904 if (sire != NULL) 2905 IRE_REFRELE(sire); 2906 2907 /* 2908 * If we got an IRE_CACHE and an ILL, go through their properties; 2909 * otherwise, this is deferred until later when we have an IRE_CACHE. 2910 */ 2911 if (tcp->tcp_loopback || 2912 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2913 /* 2914 * For incoming, see if this tcp may be MDT-capable. For 2915 * outgoing, this process has been taken care of through 2916 * tcp_rput_other. 2917 */ 2918 tcp_ire_ill_check(tcp, ire, ill, incoming); 2919 tcp->tcp_ire_ill_check_done = B_TRUE; 2920 } 2921 2922 mutex_enter(&connp->conn_lock); 2923 /* 2924 * Make sure that conn is not marked incipient 2925 * for incoming connections. A blind 2926 * removal of incipient flag is cheaper than 2927 * check and removal. 2928 */ 2929 connp->conn_state_flags &= ~CONN_INCIPIENT; 2930 2931 /* 2932 * Must not cache forwarding table routes 2933 * or recache an IRE after the conn_t has 2934 * had conn_ire_cache cleared and is flagged 2935 * unusable, (see the CONN_CACHE_IRE() macro). 2936 */ 2937 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2938 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2939 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2940 connp->conn_ire_cache = ire; 2941 IRE_UNTRACE_REF(ire); 2942 rw_exit(&ire->ire_bucket->irb_lock); 2943 mutex_exit(&connp->conn_lock); 2944 return (1); 2945 } 2946 rw_exit(&ire->ire_bucket->irb_lock); 2947 } 2948 mutex_exit(&connp->conn_lock); 2949 2950 if (ire->ire_mp == NULL) 2951 ire_refrele(ire); 2952 return (1); 2953 2954 error: 2955 if (ire->ire_mp == NULL) 2956 ire_refrele(ire); 2957 if (sire != NULL) 2958 ire_refrele(sire); 2959 return (0); 2960 } 2961 2962 static void 2963 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp) 2964 { 2965 int error; 2966 conn_t *connp = tcp->tcp_connp; 2967 struct sockaddr *sa; 2968 mblk_t *mp1; 2969 struct T_bind_req *tbr; 2970 int backlog; 2971 socklen_t len; 2972 sin_t *sin; 2973 sin6_t *sin6; 2974 cred_t *cr; 2975 2976 /* 2977 * All Solaris components should pass a db_credp 2978 * for this TPI message, hence we ASSERT. 2979 * But in case there is some other M_PROTO that looks 2980 * like a TPI message sent by some other kernel 2981 * component, we check and return an error. 2982 */ 2983 cr = msg_getcred(mp, NULL); 2984 ASSERT(cr != NULL); 2985 if (cr == NULL) { 2986 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 2987 return; 2988 } 2989 2990 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 2991 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 2992 if (tcp->tcp_debug) { 2993 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 2994 "tcp_tpi_bind: bad req, len %u", 2995 (uint_t)(mp->b_wptr - mp->b_rptr)); 2996 } 2997 tcp_err_ack(tcp, mp, TPROTO, 0); 2998 return; 2999 } 3000 /* Make sure the largest address fits */ 3001 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3002 if (mp1 == NULL) { 3003 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3004 return; 3005 } 3006 mp = mp1; 3007 tbr = (struct T_bind_req *)mp->b_rptr; 3008 3009 backlog = tbr->CONIND_number; 3010 len = tbr->ADDR_length; 3011 3012 switch (len) { 3013 case 0: /* request for a generic port */ 3014 tbr->ADDR_offset = sizeof (struct T_bind_req); 3015 if (tcp->tcp_family == AF_INET) { 3016 tbr->ADDR_length = sizeof (sin_t); 3017 sin = (sin_t *)&tbr[1]; 3018 *sin = sin_null; 3019 sin->sin_family = AF_INET; 3020 sa = (struct sockaddr *)sin; 3021 len = sizeof (sin_t); 3022 mp->b_wptr = (uchar_t *)&sin[1]; 3023 } else { 3024 ASSERT(tcp->tcp_family == AF_INET6); 3025 tbr->ADDR_length = sizeof (sin6_t); 3026 sin6 = (sin6_t *)&tbr[1]; 3027 *sin6 = sin6_null; 3028 sin6->sin6_family = AF_INET6; 3029 sa = (struct sockaddr *)sin6; 3030 len = sizeof (sin6_t); 3031 mp->b_wptr = (uchar_t *)&sin6[1]; 3032 } 3033 break; 3034 3035 case sizeof (sin_t): /* Complete IPv4 address */ 3036 sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset, 3037 sizeof (sin_t)); 3038 break; 3039 3040 case sizeof (sin6_t): /* Complete IPv6 address */ 3041 sa = (struct sockaddr *)mi_offset_param(mp, 3042 tbr->ADDR_offset, sizeof (sin6_t)); 3043 break; 3044 3045 default: 3046 if (tcp->tcp_debug) { 3047 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3048 "tcp_tpi_bind: bad address length, %d", 3049 tbr->ADDR_length); 3050 } 3051 tcp_err_ack(tcp, mp, TBADADDR, 0); 3052 return; 3053 } 3054 3055 if (backlog > 0) { 3056 error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp), 3057 tbr->PRIM_type != O_T_BIND_REQ); 3058 } else { 3059 error = tcp_do_bind(connp, sa, len, DB_CRED(mp), 3060 tbr->PRIM_type != O_T_BIND_REQ); 3061 } 3062 done: 3063 if (error > 0) { 3064 tcp_err_ack(tcp, mp, TSYSERR, error); 3065 } else if (error < 0) { 3066 tcp_err_ack(tcp, mp, -error, 0); 3067 } else { 3068 /* 3069 * Update port information as sockfs/tpi needs it for checking 3070 */ 3071 if (tcp->tcp_family == AF_INET) { 3072 sin = (sin_t *)sa; 3073 sin->sin_port = tcp->tcp_lport; 3074 } else { 3075 sin6 = (sin6_t *)sa; 3076 sin6->sin6_port = tcp->tcp_lport; 3077 } 3078 mp->b_datap->db_type = M_PCPROTO; 3079 tbr->PRIM_type = T_BIND_ACK; 3080 putnext(tcp->tcp_rq, mp); 3081 } 3082 } 3083 3084 /* 3085 * If the "bind_to_req_port_only" parameter is set, if the requested port 3086 * number is available, return it, If not return 0 3087 * 3088 * If "bind_to_req_port_only" parameter is not set and 3089 * If the requested port number is available, return it. If not, return 3090 * the first anonymous port we happen across. If no anonymous ports are 3091 * available, return 0. addr is the requested local address, if any. 3092 * 3093 * In either case, when succeeding update the tcp_t to record the port number 3094 * and insert it in the bind hash table. 3095 * 3096 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3097 * without setting SO_REUSEADDR. This is needed so that they 3098 * can be viewed as two independent transport protocols. 3099 */ 3100 static in_port_t 3101 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3102 int reuseaddr, boolean_t quick_connect, 3103 boolean_t bind_to_req_port_only, boolean_t user_specified) 3104 { 3105 /* number of times we have run around the loop */ 3106 int count = 0; 3107 /* maximum number of times to run around the loop */ 3108 int loopmax; 3109 conn_t *connp = tcp->tcp_connp; 3110 zoneid_t zoneid = connp->conn_zoneid; 3111 tcp_stack_t *tcps = tcp->tcp_tcps; 3112 3113 /* 3114 * Lookup for free addresses is done in a loop and "loopmax" 3115 * influences how long we spin in the loop 3116 */ 3117 if (bind_to_req_port_only) { 3118 /* 3119 * If the requested port is busy, don't bother to look 3120 * for a new one. Setting loop maximum count to 1 has 3121 * that effect. 3122 */ 3123 loopmax = 1; 3124 } else { 3125 /* 3126 * If the requested port is busy, look for a free one 3127 * in the anonymous port range. 3128 * Set loopmax appropriately so that one does not look 3129 * forever in the case all of the anonymous ports are in use. 3130 */ 3131 if (tcp->tcp_anon_priv_bind) { 3132 /* 3133 * loopmax = 3134 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3135 */ 3136 loopmax = IPPORT_RESERVED - 3137 tcps->tcps_min_anonpriv_port; 3138 } else { 3139 loopmax = (tcps->tcps_largest_anon_port - 3140 tcps->tcps_smallest_anon_port + 1); 3141 } 3142 } 3143 do { 3144 uint16_t lport; 3145 tf_t *tbf; 3146 tcp_t *ltcp; 3147 conn_t *lconnp; 3148 3149 lport = htons(port); 3150 3151 /* 3152 * Ensure that the tcp_t is not currently in the bind hash. 3153 * Hold the lock on the hash bucket to ensure that 3154 * the duplicate check plus the insertion is an atomic 3155 * operation. 3156 * 3157 * This function does an inline lookup on the bind hash list 3158 * Make sure that we access only members of tcp_t 3159 * and that we don't look at tcp_tcp, since we are not 3160 * doing a CONN_INC_REF. 3161 */ 3162 tcp_bind_hash_remove(tcp); 3163 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3164 mutex_enter(&tbf->tf_lock); 3165 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3166 ltcp = ltcp->tcp_bind_hash) { 3167 if (lport == ltcp->tcp_lport) 3168 break; 3169 } 3170 3171 for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) { 3172 boolean_t not_socket; 3173 boolean_t exclbind; 3174 3175 lconnp = ltcp->tcp_connp; 3176 3177 /* 3178 * On a labeled system, we must treat bindings to ports 3179 * on shared IP addresses by sockets with MAC exemption 3180 * privilege as being in all zones, as there's 3181 * otherwise no way to identify the right receiver. 3182 */ 3183 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3184 IPCL_ZONE_MATCH(connp, 3185 ltcp->tcp_connp->conn_zoneid)) && 3186 !lconnp->conn_mac_exempt && 3187 !connp->conn_mac_exempt) 3188 continue; 3189 3190 /* 3191 * If TCP_EXCLBIND is set for either the bound or 3192 * binding endpoint, the semantics of bind 3193 * is changed according to the following. 3194 * 3195 * spec = specified address (v4 or v6) 3196 * unspec = unspecified address (v4 or v6) 3197 * A = specified addresses are different for endpoints 3198 * 3199 * bound bind to allowed 3200 * ------------------------------------- 3201 * unspec unspec no 3202 * unspec spec no 3203 * spec unspec no 3204 * spec spec yes if A 3205 * 3206 * For labeled systems, SO_MAC_EXEMPT behaves the same 3207 * as TCP_EXCLBIND, except that zoneid is ignored. 3208 * 3209 * Note: 3210 * 3211 * 1. Because of TLI semantics, an endpoint can go 3212 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3213 * TCPS_BOUND, depending on whether it is originally 3214 * a listener or not. That is why we need to check 3215 * for states greater than or equal to TCPS_BOUND 3216 * here. 3217 * 3218 * 2. Ideally, we should only check for state equals 3219 * to TCPS_LISTEN. And the following check should be 3220 * added. 3221 * 3222 * if (ltcp->tcp_state == TCPS_LISTEN || 3223 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3224 * ... 3225 * } 3226 * 3227 * The semantics will be changed to this. If the 3228 * endpoint on the list is in state not equal to 3229 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3230 * set, let the bind succeed. 3231 * 3232 * Because of (1), we cannot do that for TLI 3233 * endpoints. But we can do that for socket endpoints. 3234 * If in future, we can change this going back 3235 * semantics, we can use the above check for TLI also. 3236 */ 3237 not_socket = !(TCP_IS_SOCKET(ltcp) && 3238 TCP_IS_SOCKET(tcp)); 3239 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3240 3241 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3242 (exclbind && (not_socket || 3243 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3244 if (V6_OR_V4_INADDR_ANY( 3245 ltcp->tcp_bound_source_v6) || 3246 V6_OR_V4_INADDR_ANY(*laddr) || 3247 IN6_ARE_ADDR_EQUAL(laddr, 3248 <cp->tcp_bound_source_v6)) { 3249 break; 3250 } 3251 continue; 3252 } 3253 3254 /* 3255 * Check ipversion to allow IPv4 and IPv6 sockets to 3256 * have disjoint port number spaces, if *_EXCLBIND 3257 * is not set and only if the application binds to a 3258 * specific port. We use the same autoassigned port 3259 * number space for IPv4 and IPv6 sockets. 3260 */ 3261 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3262 bind_to_req_port_only) 3263 continue; 3264 3265 /* 3266 * Ideally, we should make sure that the source 3267 * address, remote address, and remote port in the 3268 * four tuple for this tcp-connection is unique. 3269 * However, trying to find out the local source 3270 * address would require too much code duplication 3271 * with IP, since IP needs needs to have that code 3272 * to support userland TCP implementations. 3273 */ 3274 if (quick_connect && 3275 (ltcp->tcp_state > TCPS_LISTEN) && 3276 ((tcp->tcp_fport != ltcp->tcp_fport) || 3277 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3278 <cp->tcp_remote_v6))) 3279 continue; 3280 3281 if (!reuseaddr) { 3282 /* 3283 * No socket option SO_REUSEADDR. 3284 * If existing port is bound to 3285 * a non-wildcard IP address 3286 * and the requesting stream is 3287 * bound to a distinct 3288 * different IP addresses 3289 * (non-wildcard, also), keep 3290 * going. 3291 */ 3292 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3293 !V6_OR_V4_INADDR_ANY( 3294 ltcp->tcp_bound_source_v6) && 3295 !IN6_ARE_ADDR_EQUAL(laddr, 3296 <cp->tcp_bound_source_v6)) 3297 continue; 3298 if (ltcp->tcp_state >= TCPS_BOUND) { 3299 /* 3300 * This port is being used and 3301 * its state is >= TCPS_BOUND, 3302 * so we can't bind to it. 3303 */ 3304 break; 3305 } 3306 } else { 3307 /* 3308 * socket option SO_REUSEADDR is set on the 3309 * binding tcp_t. 3310 * 3311 * If two streams are bound to 3312 * same IP address or both addr 3313 * and bound source are wildcards 3314 * (INADDR_ANY), we want to stop 3315 * searching. 3316 * We have found a match of IP source 3317 * address and source port, which is 3318 * refused regardless of the 3319 * SO_REUSEADDR setting, so we break. 3320 */ 3321 if (IN6_ARE_ADDR_EQUAL(laddr, 3322 <cp->tcp_bound_source_v6) && 3323 (ltcp->tcp_state == TCPS_LISTEN || 3324 ltcp->tcp_state == TCPS_BOUND)) 3325 break; 3326 } 3327 } 3328 if (ltcp != NULL) { 3329 /* The port number is busy */ 3330 mutex_exit(&tbf->tf_lock); 3331 } else { 3332 /* 3333 * This port is ours. Insert in fanout and mark as 3334 * bound to prevent others from getting the port 3335 * number. 3336 */ 3337 tcp->tcp_state = TCPS_BOUND; 3338 tcp->tcp_lport = htons(port); 3339 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3340 3341 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3342 tcp->tcp_lport)] == tbf); 3343 tcp_bind_hash_insert(tbf, tcp, 1); 3344 3345 mutex_exit(&tbf->tf_lock); 3346 3347 /* 3348 * We don't want tcp_next_port_to_try to "inherit" 3349 * a port number supplied by the user in a bind. 3350 */ 3351 if (user_specified) 3352 return (port); 3353 3354 /* 3355 * This is the only place where tcp_next_port_to_try 3356 * is updated. After the update, it may or may not 3357 * be in the valid range. 3358 */ 3359 if (!tcp->tcp_anon_priv_bind) 3360 tcps->tcps_next_port_to_try = port + 1; 3361 return (port); 3362 } 3363 3364 if (tcp->tcp_anon_priv_bind) { 3365 port = tcp_get_next_priv_port(tcp); 3366 } else { 3367 if (count == 0 && user_specified) { 3368 /* 3369 * We may have to return an anonymous port. So 3370 * get one to start with. 3371 */ 3372 port = 3373 tcp_update_next_port( 3374 tcps->tcps_next_port_to_try, 3375 tcp, B_TRUE); 3376 user_specified = B_FALSE; 3377 } else { 3378 port = tcp_update_next_port(port + 1, tcp, 3379 B_FALSE); 3380 } 3381 } 3382 if (port == 0) 3383 break; 3384 3385 /* 3386 * Don't let this loop run forever in the case where 3387 * all of the anonymous ports are in use. 3388 */ 3389 } while (++count < loopmax); 3390 return (0); 3391 } 3392 3393 /* 3394 * tcp_clean_death / tcp_close_detached must not be called more than once 3395 * on a tcp. Thus every function that potentially calls tcp_clean_death 3396 * must check for the tcp state before calling tcp_clean_death. 3397 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3398 * tcp_timer_handler, all check for the tcp state. 3399 */ 3400 /* ARGSUSED */ 3401 void 3402 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3403 { 3404 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3405 3406 freemsg(mp); 3407 if (tcp->tcp_state > TCPS_BOUND) 3408 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3409 ETIMEDOUT, 5); 3410 } 3411 3412 /* 3413 * We are dying for some reason. Try to do it gracefully. (May be called 3414 * as writer.) 3415 * 3416 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3417 * done by a service procedure). 3418 * TBD - Should the return value distinguish between the tcp_t being 3419 * freed and it being reinitialized? 3420 */ 3421 static int 3422 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3423 { 3424 mblk_t *mp; 3425 queue_t *q; 3426 conn_t *connp = tcp->tcp_connp; 3427 tcp_stack_t *tcps = tcp->tcp_tcps; 3428 3429 TCP_CLD_STAT(tag); 3430 3431 #if TCP_TAG_CLEAN_DEATH 3432 tcp->tcp_cleandeathtag = tag; 3433 #endif 3434 3435 if (tcp->tcp_fused) 3436 tcp_unfuse(tcp); 3437 3438 if (tcp->tcp_linger_tid != 0 && 3439 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3440 tcp_stop_lingering(tcp); 3441 } 3442 3443 ASSERT(tcp != NULL); 3444 ASSERT((tcp->tcp_family == AF_INET && 3445 tcp->tcp_ipversion == IPV4_VERSION) || 3446 (tcp->tcp_family == AF_INET6 && 3447 (tcp->tcp_ipversion == IPV4_VERSION || 3448 tcp->tcp_ipversion == IPV6_VERSION))); 3449 3450 if (TCP_IS_DETACHED(tcp)) { 3451 if (tcp->tcp_hard_binding) { 3452 /* 3453 * Its an eager that we are dealing with. We close the 3454 * eager but in case a conn_ind has already gone to the 3455 * listener, let tcp_accept_finish() send a discon_ind 3456 * to the listener and drop the last reference. If the 3457 * listener doesn't even know about the eager i.e. the 3458 * conn_ind hasn't gone up, blow away the eager and drop 3459 * the last reference as well. If the conn_ind has gone 3460 * up, state should be BOUND. tcp_accept_finish 3461 * will figure out that the connection has received a 3462 * RST and will send a DISCON_IND to the application. 3463 */ 3464 tcp_closei_local(tcp); 3465 if (!tcp->tcp_tconnind_started) { 3466 CONN_DEC_REF(connp); 3467 } else { 3468 tcp->tcp_state = TCPS_BOUND; 3469 } 3470 } else { 3471 tcp_close_detached(tcp); 3472 } 3473 return (0); 3474 } 3475 3476 TCP_STAT(tcps, tcp_clean_death_nondetached); 3477 3478 q = tcp->tcp_rq; 3479 3480 /* Trash all inbound data */ 3481 if (!IPCL_IS_NONSTR(connp)) { 3482 ASSERT(q != NULL); 3483 flushq(q, FLUSHALL); 3484 } 3485 3486 /* 3487 * If we are at least part way open and there is error 3488 * (err==0 implies no error) 3489 * notify our client by a T_DISCON_IND. 3490 */ 3491 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3492 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3493 !TCP_IS_SOCKET(tcp)) { 3494 /* 3495 * Send M_FLUSH according to TPI. Because sockets will 3496 * (and must) ignore FLUSHR we do that only for TPI 3497 * endpoints and sockets in STREAMS mode. 3498 */ 3499 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3500 } 3501 if (tcp->tcp_debug) { 3502 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3503 "tcp_clean_death: discon err %d", err); 3504 } 3505 if (IPCL_IS_NONSTR(connp)) { 3506 /* Direct socket, use upcall */ 3507 (*connp->conn_upcalls->su_disconnected)( 3508 connp->conn_upper_handle, tcp->tcp_connid, err); 3509 } else { 3510 mp = mi_tpi_discon_ind(NULL, err, 0); 3511 if (mp != NULL) { 3512 putnext(q, mp); 3513 } else { 3514 if (tcp->tcp_debug) { 3515 (void) strlog(TCP_MOD_ID, 0, 1, 3516 SL_ERROR|SL_TRACE, 3517 "tcp_clean_death, sending M_ERROR"); 3518 } 3519 (void) putnextctl1(q, M_ERROR, EPROTO); 3520 } 3521 } 3522 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3523 /* SYN_SENT or SYN_RCVD */ 3524 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3525 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3526 /* ESTABLISHED or CLOSE_WAIT */ 3527 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3528 } 3529 } 3530 3531 tcp_reinit(tcp); 3532 if (IPCL_IS_NONSTR(connp)) 3533 (void) tcp_do_unbind(connp); 3534 3535 return (-1); 3536 } 3537 3538 /* 3539 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3540 * to expire, stop the wait and finish the close. 3541 */ 3542 static void 3543 tcp_stop_lingering(tcp_t *tcp) 3544 { 3545 clock_t delta = 0; 3546 tcp_stack_t *tcps = tcp->tcp_tcps; 3547 3548 tcp->tcp_linger_tid = 0; 3549 if (tcp->tcp_state > TCPS_LISTEN) { 3550 tcp_acceptor_hash_remove(tcp); 3551 mutex_enter(&tcp->tcp_non_sq_lock); 3552 if (tcp->tcp_flow_stopped) { 3553 tcp_clrqfull(tcp); 3554 } 3555 mutex_exit(&tcp->tcp_non_sq_lock); 3556 3557 if (tcp->tcp_timer_tid != 0) { 3558 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3559 tcp->tcp_timer_tid = 0; 3560 } 3561 /* 3562 * Need to cancel those timers which will not be used when 3563 * TCP is detached. This has to be done before the tcp_wq 3564 * is set to the global queue. 3565 */ 3566 tcp_timers_stop(tcp); 3567 3568 tcp->tcp_detached = B_TRUE; 3569 ASSERT(tcps->tcps_g_q != NULL); 3570 tcp->tcp_rq = tcps->tcps_g_q; 3571 tcp->tcp_wq = WR(tcps->tcps_g_q); 3572 3573 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3574 tcp_time_wait_append(tcp); 3575 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3576 goto finish; 3577 } 3578 3579 /* 3580 * If delta is zero the timer event wasn't executed and was 3581 * successfully canceled. In this case we need to restart it 3582 * with the minimal delta possible. 3583 */ 3584 if (delta >= 0) { 3585 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3586 delta ? delta : 1); 3587 } 3588 } else { 3589 tcp_closei_local(tcp); 3590 CONN_DEC_REF(tcp->tcp_connp); 3591 } 3592 finish: 3593 /* Signal closing thread that it can complete close */ 3594 mutex_enter(&tcp->tcp_closelock); 3595 tcp->tcp_detached = B_TRUE; 3596 ASSERT(tcps->tcps_g_q != NULL); 3597 3598 tcp->tcp_rq = tcps->tcps_g_q; 3599 tcp->tcp_wq = WR(tcps->tcps_g_q); 3600 3601 tcp->tcp_closed = 1; 3602 cv_signal(&tcp->tcp_closecv); 3603 mutex_exit(&tcp->tcp_closelock); 3604 } 3605 3606 /* 3607 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3608 * expires. 3609 */ 3610 static void 3611 tcp_close_linger_timeout(void *arg) 3612 { 3613 conn_t *connp = (conn_t *)arg; 3614 tcp_t *tcp = connp->conn_tcp; 3615 3616 tcp->tcp_client_errno = ETIMEDOUT; 3617 tcp_stop_lingering(tcp); 3618 } 3619 3620 static void 3621 tcp_close_common(conn_t *connp, int flags) 3622 { 3623 tcp_t *tcp = connp->conn_tcp; 3624 mblk_t *mp = &tcp->tcp_closemp; 3625 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 3626 mblk_t *bp; 3627 3628 ASSERT(connp->conn_ref >= 2); 3629 3630 /* 3631 * Mark the conn as closing. ill_pending_mp_add will not 3632 * add any mp to the pending mp list, after this conn has 3633 * started closing. Same for sq_pending_mp_add 3634 */ 3635 mutex_enter(&connp->conn_lock); 3636 connp->conn_state_flags |= CONN_CLOSING; 3637 if (connp->conn_oper_pending_ill != NULL) 3638 conn_ioctl_cleanup_reqd = B_TRUE; 3639 CONN_INC_REF_LOCKED(connp); 3640 mutex_exit(&connp->conn_lock); 3641 tcp->tcp_closeflags = (uint8_t)flags; 3642 ASSERT(connp->conn_ref >= 3); 3643 3644 /* 3645 * tcp_closemp_used is used below without any protection of a lock 3646 * as we don't expect any one else to use it concurrently at this 3647 * point otherwise it would be a major defect. 3648 */ 3649 3650 if (mp->b_prev == NULL) 3651 tcp->tcp_closemp_used = B_TRUE; 3652 else 3653 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 3654 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 3655 3656 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 3657 3658 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 3659 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3660 3661 mutex_enter(&tcp->tcp_closelock); 3662 while (!tcp->tcp_closed) { 3663 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 3664 /* 3665 * The cv_wait_sig() was interrupted. We now do the 3666 * following: 3667 * 3668 * 1) If the endpoint was lingering, we allow this 3669 * to be interrupted by cancelling the linger timeout 3670 * and closing normally. 3671 * 3672 * 2) Revert to calling cv_wait() 3673 * 3674 * We revert to using cv_wait() to avoid an 3675 * infinite loop which can occur if the calling 3676 * thread is higher priority than the squeue worker 3677 * thread and is bound to the same cpu. 3678 */ 3679 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 3680 mutex_exit(&tcp->tcp_closelock); 3681 /* Entering squeue, bump ref count. */ 3682 CONN_INC_REF(connp); 3683 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 3684 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 3685 tcp_linger_interrupted, connp, 3686 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 3687 mutex_enter(&tcp->tcp_closelock); 3688 } 3689 break; 3690 } 3691 } 3692 while (!tcp->tcp_closed) 3693 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 3694 mutex_exit(&tcp->tcp_closelock); 3695 3696 /* 3697 * In the case of listener streams that have eagers in the q or q0 3698 * we wait for the eagers to drop their reference to us. tcp_rq and 3699 * tcp_wq of the eagers point to our queues. By waiting for the 3700 * refcnt to drop to 1, we are sure that the eagers have cleaned 3701 * up their queue pointers and also dropped their references to us. 3702 */ 3703 if (tcp->tcp_wait_for_eagers) { 3704 mutex_enter(&connp->conn_lock); 3705 while (connp->conn_ref != 1) { 3706 cv_wait(&connp->conn_cv, &connp->conn_lock); 3707 } 3708 mutex_exit(&connp->conn_lock); 3709 } 3710 /* 3711 * ioctl cleanup. The mp is queued in the 3712 * ill_pending_mp or in the sq_pending_mp. 3713 */ 3714 if (conn_ioctl_cleanup_reqd) 3715 conn_ioctl_cleanup(connp); 3716 3717 tcp->tcp_cpid = -1; 3718 } 3719 3720 static int 3721 tcp_tpi_close(queue_t *q, int flags) 3722 { 3723 conn_t *connp; 3724 3725 ASSERT(WR(q)->q_next == NULL); 3726 3727 if (flags & SO_FALLBACK) { 3728 /* 3729 * stream is being closed while in fallback 3730 * simply free the resources that were allocated 3731 */ 3732 inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr)); 3733 qprocsoff(q); 3734 goto done; 3735 } 3736 3737 connp = Q_TO_CONN(q); 3738 /* 3739 * We are being closed as /dev/tcp or /dev/tcp6. 3740 */ 3741 tcp_close_common(connp, flags); 3742 3743 qprocsoff(q); 3744 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 3745 3746 /* 3747 * Drop IP's reference on the conn. This is the last reference 3748 * on the connp if the state was less than established. If the 3749 * connection has gone into timewait state, then we will have 3750 * one ref for the TCP and one more ref (total of two) for the 3751 * classifier connected hash list (a timewait connections stays 3752 * in connected hash till closed). 3753 * 3754 * We can't assert the references because there might be other 3755 * transient reference places because of some walkers or queued 3756 * packets in squeue for the timewait state. 3757 */ 3758 CONN_DEC_REF(connp); 3759 done: 3760 q->q_ptr = WR(q)->q_ptr = NULL; 3761 return (0); 3762 } 3763 3764 static int 3765 tcp_tpi_close_accept(queue_t *q) 3766 { 3767 vmem_t *minor_arena; 3768 dev_t conn_dev; 3769 3770 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 3771 3772 /* 3773 * We had opened an acceptor STREAM for sockfs which is 3774 * now being closed due to some error. 3775 */ 3776 qprocsoff(q); 3777 3778 minor_arena = (vmem_t *)WR(q)->q_ptr; 3779 conn_dev = (dev_t)RD(q)->q_ptr; 3780 ASSERT(minor_arena != NULL); 3781 ASSERT(conn_dev != 0); 3782 inet_minor_free(minor_arena, conn_dev); 3783 q->q_ptr = WR(q)->q_ptr = NULL; 3784 return (0); 3785 } 3786 3787 /* 3788 * Called by tcp_close() routine via squeue when lingering is 3789 * interrupted by a signal. 3790 */ 3791 3792 /* ARGSUSED */ 3793 static void 3794 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 3795 { 3796 conn_t *connp = (conn_t *)arg; 3797 tcp_t *tcp = connp->conn_tcp; 3798 3799 freeb(mp); 3800 if (tcp->tcp_linger_tid != 0 && 3801 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3802 tcp_stop_lingering(tcp); 3803 tcp->tcp_client_errno = EINTR; 3804 } 3805 } 3806 3807 /* 3808 * Called by streams close routine via squeues when our client blows off her 3809 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 3810 * connection politely" When SO_LINGER is set (with a non-zero linger time and 3811 * it is not a nonblocking socket) then this routine sleeps until the FIN is 3812 * acked. 3813 * 3814 * NOTE: tcp_close potentially returns error when lingering. 3815 * However, the stream head currently does not pass these errors 3816 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 3817 * errors to the application (from tsleep()) and not errors 3818 * like ECONNRESET caused by receiving a reset packet. 3819 */ 3820 3821 /* ARGSUSED */ 3822 static void 3823 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 3824 { 3825 char *msg; 3826 conn_t *connp = (conn_t *)arg; 3827 tcp_t *tcp = connp->conn_tcp; 3828 clock_t delta = 0; 3829 tcp_stack_t *tcps = tcp->tcp_tcps; 3830 3831 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 3832 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 3833 3834 mutex_enter(&tcp->tcp_eager_lock); 3835 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3836 /* Cleanup for listener */ 3837 tcp_eager_cleanup(tcp, 0); 3838 tcp->tcp_wait_for_eagers = 1; 3839 } 3840 mutex_exit(&tcp->tcp_eager_lock); 3841 3842 connp->conn_mdt_ok = B_FALSE; 3843 tcp->tcp_mdt = B_FALSE; 3844 3845 connp->conn_lso_ok = B_FALSE; 3846 tcp->tcp_lso = B_FALSE; 3847 3848 msg = NULL; 3849 switch (tcp->tcp_state) { 3850 case TCPS_CLOSED: 3851 case TCPS_IDLE: 3852 case TCPS_BOUND: 3853 case TCPS_LISTEN: 3854 break; 3855 case TCPS_SYN_SENT: 3856 msg = "tcp_close, during connect"; 3857 break; 3858 case TCPS_SYN_RCVD: 3859 /* 3860 * Close during the connect 3-way handshake 3861 * but here there may or may not be pending data 3862 * already on queue. Process almost same as in 3863 * the ESTABLISHED state. 3864 */ 3865 /* FALLTHRU */ 3866 default: 3867 if (tcp->tcp_fused) 3868 tcp_unfuse(tcp); 3869 3870 /* 3871 * If SO_LINGER has set a zero linger time, abort the 3872 * connection with a reset. 3873 */ 3874 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 3875 msg = "tcp_close, zero lingertime"; 3876 break; 3877 } 3878 3879 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 3880 /* 3881 * Abort connection if there is unread data queued. 3882 */ 3883 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 3884 msg = "tcp_close, unread data"; 3885 break; 3886 } 3887 /* 3888 * tcp_hard_bound is now cleared thus all packets go through 3889 * tcp_lookup. This fact is used by tcp_detach below. 3890 * 3891 * We have done a qwait() above which could have possibly 3892 * drained more messages in turn causing transition to a 3893 * different state. Check whether we have to do the rest 3894 * of the processing or not. 3895 */ 3896 if (tcp->tcp_state <= TCPS_LISTEN) 3897 break; 3898 3899 /* 3900 * Transmit the FIN before detaching the tcp_t. 3901 * After tcp_detach returns this queue/perimeter 3902 * no longer owns the tcp_t thus others can modify it. 3903 */ 3904 (void) tcp_xmit_end(tcp); 3905 3906 /* 3907 * If lingering on close then wait until the fin is acked, 3908 * the SO_LINGER time passes, or a reset is sent/received. 3909 */ 3910 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 3911 !(tcp->tcp_fin_acked) && 3912 tcp->tcp_state >= TCPS_ESTABLISHED) { 3913 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 3914 tcp->tcp_client_errno = EWOULDBLOCK; 3915 } else if (tcp->tcp_client_errno == 0) { 3916 3917 ASSERT(tcp->tcp_linger_tid == 0); 3918 3919 tcp->tcp_linger_tid = TCP_TIMER(tcp, 3920 tcp_close_linger_timeout, 3921 tcp->tcp_lingertime * hz); 3922 3923 /* tcp_close_linger_timeout will finish close */ 3924 if (tcp->tcp_linger_tid == 0) 3925 tcp->tcp_client_errno = ENOSR; 3926 else 3927 return; 3928 } 3929 3930 /* 3931 * Check if we need to detach or just close 3932 * the instance. 3933 */ 3934 if (tcp->tcp_state <= TCPS_LISTEN) 3935 break; 3936 } 3937 3938 /* 3939 * Make sure that no other thread will access the tcp_rq of 3940 * this instance (through lookups etc.) as tcp_rq will go 3941 * away shortly. 3942 */ 3943 tcp_acceptor_hash_remove(tcp); 3944 3945 mutex_enter(&tcp->tcp_non_sq_lock); 3946 if (tcp->tcp_flow_stopped) { 3947 tcp_clrqfull(tcp); 3948 } 3949 mutex_exit(&tcp->tcp_non_sq_lock); 3950 3951 if (tcp->tcp_timer_tid != 0) { 3952 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3953 tcp->tcp_timer_tid = 0; 3954 } 3955 /* 3956 * Need to cancel those timers which will not be used when 3957 * TCP is detached. This has to be done before the tcp_wq 3958 * is set to the global queue. 3959 */ 3960 tcp_timers_stop(tcp); 3961 3962 tcp->tcp_detached = B_TRUE; 3963 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3964 tcp_time_wait_append(tcp); 3965 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3966 ASSERT(connp->conn_ref >= 3); 3967 goto finish; 3968 } 3969 3970 /* 3971 * If delta is zero the timer event wasn't executed and was 3972 * successfully canceled. In this case we need to restart it 3973 * with the minimal delta possible. 3974 */ 3975 if (delta >= 0) 3976 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3977 delta ? delta : 1); 3978 3979 ASSERT(connp->conn_ref >= 3); 3980 goto finish; 3981 } 3982 3983 /* Detach did not complete. Still need to remove q from stream. */ 3984 if (msg) { 3985 if (tcp->tcp_state == TCPS_ESTABLISHED || 3986 tcp->tcp_state == TCPS_CLOSE_WAIT) 3987 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3988 if (tcp->tcp_state == TCPS_SYN_SENT || 3989 tcp->tcp_state == TCPS_SYN_RCVD) 3990 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3991 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 3992 } 3993 3994 tcp_closei_local(tcp); 3995 CONN_DEC_REF(connp); 3996 ASSERT(connp->conn_ref >= 2); 3997 3998 finish: 3999 /* 4000 * Although packets are always processed on the correct 4001 * tcp's perimeter and access is serialized via squeue's, 4002 * IP still needs a queue when sending packets in time_wait 4003 * state so use WR(tcps_g_q) till ip_output() can be 4004 * changed to deal with just connp. For read side, we 4005 * could have set tcp_rq to NULL but there are some cases 4006 * in tcp_rput_data() from early days of this code which 4007 * do a putnext without checking if tcp is closed. Those 4008 * need to be identified before both tcp_rq and tcp_wq 4009 * can be set to NULL and tcps_g_q can disappear forever. 4010 */ 4011 mutex_enter(&tcp->tcp_closelock); 4012 /* 4013 * Don't change the queues in the case of a listener that has 4014 * eagers in its q or q0. It could surprise the eagers. 4015 * Instead wait for the eagers outside the squeue. 4016 */ 4017 if (!tcp->tcp_wait_for_eagers) { 4018 tcp->tcp_detached = B_TRUE; 4019 /* 4020 * When default queue is closing we set tcps_g_q to NULL 4021 * after the close is done. 4022 */ 4023 ASSERT(tcps->tcps_g_q != NULL); 4024 tcp->tcp_rq = tcps->tcps_g_q; 4025 tcp->tcp_wq = WR(tcps->tcps_g_q); 4026 } 4027 4028 /* Signal tcp_close() to finish closing. */ 4029 tcp->tcp_closed = 1; 4030 cv_signal(&tcp->tcp_closecv); 4031 mutex_exit(&tcp->tcp_closelock); 4032 } 4033 4034 /* 4035 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4036 * Some stream heads get upset if they see these later on as anything but NULL. 4037 */ 4038 static void 4039 tcp_close_mpp(mblk_t **mpp) 4040 { 4041 mblk_t *mp; 4042 4043 if ((mp = *mpp) != NULL) { 4044 do { 4045 mp->b_next = NULL; 4046 mp->b_prev = NULL; 4047 } while ((mp = mp->b_cont) != NULL); 4048 4049 mp = *mpp; 4050 *mpp = NULL; 4051 freemsg(mp); 4052 } 4053 } 4054 4055 /* Do detached close. */ 4056 static void 4057 tcp_close_detached(tcp_t *tcp) 4058 { 4059 if (tcp->tcp_fused) 4060 tcp_unfuse(tcp); 4061 4062 /* 4063 * Clustering code serializes TCP disconnect callbacks and 4064 * cluster tcp list walks by blocking a TCP disconnect callback 4065 * if a cluster tcp list walk is in progress. This ensures 4066 * accurate accounting of TCPs in the cluster code even though 4067 * the TCP list walk itself is not atomic. 4068 */ 4069 tcp_closei_local(tcp); 4070 CONN_DEC_REF(tcp->tcp_connp); 4071 } 4072 4073 /* 4074 * Stop all TCP timers, and free the timer mblks if requested. 4075 */ 4076 void 4077 tcp_timers_stop(tcp_t *tcp) 4078 { 4079 if (tcp->tcp_timer_tid != 0) { 4080 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4081 tcp->tcp_timer_tid = 0; 4082 } 4083 if (tcp->tcp_ka_tid != 0) { 4084 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4085 tcp->tcp_ka_tid = 0; 4086 } 4087 if (tcp->tcp_ack_tid != 0) { 4088 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4089 tcp->tcp_ack_tid = 0; 4090 } 4091 if (tcp->tcp_push_tid != 0) { 4092 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4093 tcp->tcp_push_tid = 0; 4094 } 4095 } 4096 4097 /* 4098 * The tcp_t is going away. Remove it from all lists and set it 4099 * to TCPS_CLOSED. The freeing up of memory is deferred until 4100 * tcp_inactive. This is needed since a thread in tcp_rput might have 4101 * done a CONN_INC_REF on this structure before it was removed from the 4102 * hashes. 4103 */ 4104 static void 4105 tcp_closei_local(tcp_t *tcp) 4106 { 4107 ire_t *ire; 4108 conn_t *connp = tcp->tcp_connp; 4109 tcp_stack_t *tcps = tcp->tcp_tcps; 4110 4111 if (!TCP_IS_SOCKET(tcp)) 4112 tcp_acceptor_hash_remove(tcp); 4113 4114 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4115 tcp->tcp_ibsegs = 0; 4116 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4117 tcp->tcp_obsegs = 0; 4118 4119 /* 4120 * If we are an eager connection hanging off a listener that 4121 * hasn't formally accepted the connection yet, get off his 4122 * list and blow off any data that we have accumulated. 4123 */ 4124 if (tcp->tcp_listener != NULL) { 4125 tcp_t *listener = tcp->tcp_listener; 4126 mutex_enter(&listener->tcp_eager_lock); 4127 /* 4128 * tcp_tconnind_started == B_TRUE means that the 4129 * conn_ind has already gone to listener. At 4130 * this point, eager will be closed but we 4131 * leave it in listeners eager list so that 4132 * if listener decides to close without doing 4133 * accept, we can clean this up. In tcp_wput_accept 4134 * we take care of the case of accept on closed 4135 * eager. 4136 */ 4137 if (!tcp->tcp_tconnind_started) { 4138 tcp_eager_unlink(tcp); 4139 mutex_exit(&listener->tcp_eager_lock); 4140 /* 4141 * We don't want to have any pointers to the 4142 * listener queue, after we have released our 4143 * reference on the listener 4144 */ 4145 ASSERT(tcps->tcps_g_q != NULL); 4146 tcp->tcp_rq = tcps->tcps_g_q; 4147 tcp->tcp_wq = WR(tcps->tcps_g_q); 4148 CONN_DEC_REF(listener->tcp_connp); 4149 } else { 4150 mutex_exit(&listener->tcp_eager_lock); 4151 } 4152 } 4153 4154 /* Stop all the timers */ 4155 tcp_timers_stop(tcp); 4156 4157 if (tcp->tcp_state == TCPS_LISTEN) { 4158 if (tcp->tcp_ip_addr_cache) { 4159 kmem_free((void *)tcp->tcp_ip_addr_cache, 4160 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4161 tcp->tcp_ip_addr_cache = NULL; 4162 } 4163 } 4164 mutex_enter(&tcp->tcp_non_sq_lock); 4165 if (tcp->tcp_flow_stopped) 4166 tcp_clrqfull(tcp); 4167 mutex_exit(&tcp->tcp_non_sq_lock); 4168 4169 tcp_bind_hash_remove(tcp); 4170 /* 4171 * If the tcp_time_wait_collector (which runs outside the squeue) 4172 * is trying to remove this tcp from the time wait list, we will 4173 * block in tcp_time_wait_remove while trying to acquire the 4174 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4175 * requires the ipcl_hash_remove to be ordered after the 4176 * tcp_time_wait_remove for the refcnt checks to work correctly. 4177 */ 4178 if (tcp->tcp_state == TCPS_TIME_WAIT) 4179 (void) tcp_time_wait_remove(tcp, NULL); 4180 CL_INET_DISCONNECT(connp, tcp); 4181 ipcl_hash_remove(connp); 4182 4183 /* 4184 * Delete the cached ire in conn_ire_cache and also mark 4185 * the conn as CONDEMNED 4186 */ 4187 mutex_enter(&connp->conn_lock); 4188 connp->conn_state_flags |= CONN_CONDEMNED; 4189 ire = connp->conn_ire_cache; 4190 connp->conn_ire_cache = NULL; 4191 mutex_exit(&connp->conn_lock); 4192 if (ire != NULL) 4193 IRE_REFRELE_NOTR(ire); 4194 4195 /* Need to cleanup any pending ioctls */ 4196 ASSERT(tcp->tcp_time_wait_next == NULL); 4197 ASSERT(tcp->tcp_time_wait_prev == NULL); 4198 ASSERT(tcp->tcp_time_wait_expire == 0); 4199 tcp->tcp_state = TCPS_CLOSED; 4200 4201 /* Release any SSL context */ 4202 if (tcp->tcp_kssl_ent != NULL) { 4203 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4204 tcp->tcp_kssl_ent = NULL; 4205 } 4206 if (tcp->tcp_kssl_ctx != NULL) { 4207 kssl_release_ctx(tcp->tcp_kssl_ctx); 4208 tcp->tcp_kssl_ctx = NULL; 4209 } 4210 tcp->tcp_kssl_pending = B_FALSE; 4211 4212 tcp_ipsec_cleanup(tcp); 4213 } 4214 4215 /* 4216 * tcp is dying (called from ipcl_conn_destroy and error cases). 4217 * Free the tcp_t in either case. 4218 */ 4219 void 4220 tcp_free(tcp_t *tcp) 4221 { 4222 mblk_t *mp; 4223 ip6_pkt_t *ipp; 4224 4225 ASSERT(tcp != NULL); 4226 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4227 4228 tcp->tcp_rq = NULL; 4229 tcp->tcp_wq = NULL; 4230 4231 tcp_close_mpp(&tcp->tcp_xmit_head); 4232 tcp_close_mpp(&tcp->tcp_reass_head); 4233 if (tcp->tcp_rcv_list != NULL) { 4234 /* Free b_next chain */ 4235 tcp_close_mpp(&tcp->tcp_rcv_list); 4236 } 4237 if ((mp = tcp->tcp_urp_mp) != NULL) { 4238 freemsg(mp); 4239 } 4240 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4241 freemsg(mp); 4242 } 4243 4244 if (tcp->tcp_fused_sigurg_mp != NULL) { 4245 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4246 freeb(tcp->tcp_fused_sigurg_mp); 4247 tcp->tcp_fused_sigurg_mp = NULL; 4248 } 4249 4250 if (tcp->tcp_ordrel_mp != NULL) { 4251 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 4252 freeb(tcp->tcp_ordrel_mp); 4253 tcp->tcp_ordrel_mp = NULL; 4254 } 4255 4256 if (tcp->tcp_sack_info != NULL) { 4257 if (tcp->tcp_notsack_list != NULL) { 4258 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4259 } 4260 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4261 } 4262 4263 if (tcp->tcp_hopopts != NULL) { 4264 mi_free(tcp->tcp_hopopts); 4265 tcp->tcp_hopopts = NULL; 4266 tcp->tcp_hopoptslen = 0; 4267 } 4268 ASSERT(tcp->tcp_hopoptslen == 0); 4269 if (tcp->tcp_dstopts != NULL) { 4270 mi_free(tcp->tcp_dstopts); 4271 tcp->tcp_dstopts = NULL; 4272 tcp->tcp_dstoptslen = 0; 4273 } 4274 ASSERT(tcp->tcp_dstoptslen == 0); 4275 if (tcp->tcp_rtdstopts != NULL) { 4276 mi_free(tcp->tcp_rtdstopts); 4277 tcp->tcp_rtdstopts = NULL; 4278 tcp->tcp_rtdstoptslen = 0; 4279 } 4280 ASSERT(tcp->tcp_rtdstoptslen == 0); 4281 if (tcp->tcp_rthdr != NULL) { 4282 mi_free(tcp->tcp_rthdr); 4283 tcp->tcp_rthdr = NULL; 4284 tcp->tcp_rthdrlen = 0; 4285 } 4286 ASSERT(tcp->tcp_rthdrlen == 0); 4287 4288 ipp = &tcp->tcp_sticky_ipp; 4289 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4290 IPPF_RTHDR)) 4291 ip6_pkt_free(ipp); 4292 4293 /* 4294 * Free memory associated with the tcp/ip header template. 4295 */ 4296 4297 if (tcp->tcp_iphc != NULL) 4298 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4299 4300 /* 4301 * Following is really a blowing away a union. 4302 * It happens to have exactly two members of identical size 4303 * the following code is enough. 4304 */ 4305 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4306 } 4307 4308 4309 /* 4310 * Put a connection confirmation message upstream built from the 4311 * address information within 'iph' and 'tcph'. Report our success or failure. 4312 */ 4313 static boolean_t 4314 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4315 mblk_t **defermp) 4316 { 4317 sin_t sin; 4318 sin6_t sin6; 4319 mblk_t *mp; 4320 char *optp = NULL; 4321 int optlen = 0; 4322 4323 if (defermp != NULL) 4324 *defermp = NULL; 4325 4326 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4327 /* 4328 * Return in T_CONN_CON results of option negotiation through 4329 * the T_CONN_REQ. Note: If there is an real end-to-end option 4330 * negotiation, then what is received from remote end needs 4331 * to be taken into account but there is no such thing (yet?) 4332 * in our TCP/IP. 4333 * Note: We do not use mi_offset_param() here as 4334 * tcp_opts_conn_req contents do not directly come from 4335 * an application and are either generated in kernel or 4336 * from user input that was already verified. 4337 */ 4338 mp = tcp->tcp_conn.tcp_opts_conn_req; 4339 optp = (char *)(mp->b_rptr + 4340 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4341 optlen = (int) 4342 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4343 } 4344 4345 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4346 ipha_t *ipha = (ipha_t *)iphdr; 4347 4348 /* packet is IPv4 */ 4349 if (tcp->tcp_family == AF_INET) { 4350 sin = sin_null; 4351 sin.sin_addr.s_addr = ipha->ipha_src; 4352 sin.sin_port = *(uint16_t *)tcph->th_lport; 4353 sin.sin_family = AF_INET; 4354 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4355 (int)sizeof (sin_t), optp, optlen); 4356 } else { 4357 sin6 = sin6_null; 4358 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4359 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4360 sin6.sin6_family = AF_INET6; 4361 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4362 (int)sizeof (sin6_t), optp, optlen); 4363 4364 } 4365 } else { 4366 ip6_t *ip6h = (ip6_t *)iphdr; 4367 4368 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4369 ASSERT(tcp->tcp_family == AF_INET6); 4370 sin6 = sin6_null; 4371 sin6.sin6_addr = ip6h->ip6_src; 4372 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4373 sin6.sin6_family = AF_INET6; 4374 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4375 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4376 (int)sizeof (sin6_t), optp, optlen); 4377 } 4378 4379 if (!mp) 4380 return (B_FALSE); 4381 4382 mblk_copycred(mp, idmp); 4383 4384 if (defermp == NULL) { 4385 conn_t *connp = tcp->tcp_connp; 4386 if (IPCL_IS_NONSTR(connp)) { 4387 cred_t *cr; 4388 pid_t cpid; 4389 4390 cr = msg_getcred(mp, &cpid); 4391 (*connp->conn_upcalls->su_connected) 4392 (connp->conn_upper_handle, tcp->tcp_connid, cr, 4393 cpid); 4394 freemsg(mp); 4395 } else { 4396 putnext(tcp->tcp_rq, mp); 4397 } 4398 } else { 4399 *defermp = mp; 4400 } 4401 4402 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4403 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4404 return (B_TRUE); 4405 } 4406 4407 /* 4408 * Defense for the SYN attack - 4409 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4410 * one from the list of droppable eagers. This list is a subset of q0. 4411 * see comments before the definition of MAKE_DROPPABLE(). 4412 * 2. Don't drop a SYN request before its first timeout. This gives every 4413 * request at least til the first timeout to complete its 3-way handshake. 4414 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4415 * requests currently on the queue that has timed out. This will be used 4416 * as an indicator of whether an attack is under way, so that appropriate 4417 * actions can be taken. (It's incremented in tcp_timer() and decremented 4418 * either when eager goes into ESTABLISHED, or gets freed up.) 4419 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4420 * # of timeout drops back to <= q0len/32 => SYN alert off 4421 */ 4422 static boolean_t 4423 tcp_drop_q0(tcp_t *tcp) 4424 { 4425 tcp_t *eager; 4426 mblk_t *mp; 4427 tcp_stack_t *tcps = tcp->tcp_tcps; 4428 4429 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4430 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4431 4432 /* Pick oldest eager from the list of droppable eagers */ 4433 eager = tcp->tcp_eager_prev_drop_q0; 4434 4435 /* If list is empty. return B_FALSE */ 4436 if (eager == tcp) { 4437 return (B_FALSE); 4438 } 4439 4440 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4441 if ((mp = allocb(0, BPRI_HI)) == NULL) 4442 return (B_FALSE); 4443 4444 /* 4445 * Take this eager out from the list of droppable eagers since we are 4446 * going to drop it. 4447 */ 4448 MAKE_UNDROPPABLE(eager); 4449 4450 if (tcp->tcp_debug) { 4451 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4452 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4453 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4454 tcp->tcp_conn_req_cnt_q0, 4455 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4456 } 4457 4458 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4459 4460 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4461 CONN_INC_REF(eager->tcp_connp); 4462 4463 /* Mark the IRE created for this SYN request temporary */ 4464 tcp_ip_ire_mark_advice(eager); 4465 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 4466 tcp_clean_death_wrapper, eager->tcp_connp, 4467 SQ_FILL, SQTAG_TCP_DROP_Q0); 4468 4469 return (B_TRUE); 4470 } 4471 4472 int 4473 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4474 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4475 { 4476 tcp_t *ltcp = lconnp->conn_tcp; 4477 tcp_t *tcp = connp->conn_tcp; 4478 mblk_t *tpi_mp; 4479 ipha_t *ipha; 4480 ip6_t *ip6h; 4481 sin6_t sin6; 4482 in6_addr_t v6dst; 4483 int err; 4484 int ifindex = 0; 4485 tcp_stack_t *tcps = tcp->tcp_tcps; 4486 4487 if (ipvers == IPV4_VERSION) { 4488 ipha = (ipha_t *)mp->b_rptr; 4489 4490 connp->conn_send = ip_output; 4491 connp->conn_recv = tcp_input; 4492 4493 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4494 &connp->conn_bound_source_v6); 4495 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4496 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4497 4498 sin6 = sin6_null; 4499 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4500 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4501 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4502 sin6.sin6_family = AF_INET6; 4503 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4504 lconnp->conn_zoneid, tcps->tcps_netstack); 4505 if (tcp->tcp_recvdstaddr) { 4506 sin6_t sin6d; 4507 4508 sin6d = sin6_null; 4509 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4510 &sin6d.sin6_addr); 4511 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4512 sin6d.sin6_family = AF_INET; 4513 tpi_mp = mi_tpi_extconn_ind(NULL, 4514 (char *)&sin6d, sizeof (sin6_t), 4515 (char *)&tcp, 4516 (t_scalar_t)sizeof (intptr_t), 4517 (char *)&sin6d, sizeof (sin6_t), 4518 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4519 } else { 4520 tpi_mp = mi_tpi_conn_ind(NULL, 4521 (char *)&sin6, sizeof (sin6_t), 4522 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4523 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4524 } 4525 } else { 4526 ip6h = (ip6_t *)mp->b_rptr; 4527 4528 connp->conn_send = ip_output_v6; 4529 connp->conn_recv = tcp_input; 4530 4531 connp->conn_bound_source_v6 = ip6h->ip6_dst; 4532 connp->conn_srcv6 = ip6h->ip6_dst; 4533 connp->conn_remv6 = ip6h->ip6_src; 4534 4535 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4536 ifindex = (int)DB_CKSUMSTUFF(mp); 4537 DB_CKSUMSTUFF(mp) = 0; 4538 4539 sin6 = sin6_null; 4540 sin6.sin6_addr = ip6h->ip6_src; 4541 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4542 sin6.sin6_family = AF_INET6; 4543 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4544 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4545 lconnp->conn_zoneid, tcps->tcps_netstack); 4546 4547 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4548 /* Pass up the scope_id of remote addr */ 4549 sin6.sin6_scope_id = ifindex; 4550 } else { 4551 sin6.sin6_scope_id = 0; 4552 } 4553 if (tcp->tcp_recvdstaddr) { 4554 sin6_t sin6d; 4555 4556 sin6d = sin6_null; 4557 sin6.sin6_addr = ip6h->ip6_dst; 4558 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4559 sin6d.sin6_family = AF_INET; 4560 tpi_mp = mi_tpi_extconn_ind(NULL, 4561 (char *)&sin6d, sizeof (sin6_t), 4562 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4563 (char *)&sin6d, sizeof (sin6_t), 4564 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4565 } else { 4566 tpi_mp = mi_tpi_conn_ind(NULL, 4567 (char *)&sin6, sizeof (sin6_t), 4568 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4569 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4570 } 4571 } 4572 4573 if (tpi_mp == NULL) 4574 return (ENOMEM); 4575 4576 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4577 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4578 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4579 connp->conn_fully_bound = B_FALSE; 4580 4581 /* Inherit information from the "parent" */ 4582 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4583 tcp->tcp_family = ltcp->tcp_family; 4584 4585 tcp->tcp_wq = ltcp->tcp_wq; 4586 tcp->tcp_rq = ltcp->tcp_rq; 4587 4588 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4589 tcp->tcp_detached = B_TRUE; 4590 SOCK_CONNID_INIT(tcp->tcp_connid); 4591 if ((err = tcp_init_values(tcp)) != 0) { 4592 freemsg(tpi_mp); 4593 return (err); 4594 } 4595 4596 if (ipvers == IPV4_VERSION) { 4597 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4598 freemsg(tpi_mp); 4599 return (err); 4600 } 4601 ASSERT(tcp->tcp_ipha != NULL); 4602 } else { 4603 /* ifindex must be already set */ 4604 ASSERT(ifindex != 0); 4605 4606 if (ltcp->tcp_bound_if != 0) 4607 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4608 else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) 4609 tcp->tcp_bound_if = ifindex; 4610 4611 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4612 tcp->tcp_recvifindex = 0; 4613 tcp->tcp_recvhops = 0xffffffffU; 4614 ASSERT(tcp->tcp_ip6h != NULL); 4615 } 4616 4617 tcp->tcp_lport = ltcp->tcp_lport; 4618 4619 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4620 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4621 /* 4622 * Listener had options of some sort; eager inherits. 4623 * Free up the eager template and allocate one 4624 * of the right size. 4625 */ 4626 if (tcp->tcp_hdr_grown) { 4627 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4628 } else { 4629 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4630 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4631 } 4632 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 4633 KM_NOSLEEP); 4634 if (tcp->tcp_iphc == NULL) { 4635 tcp->tcp_iphc_len = 0; 4636 freemsg(tpi_mp); 4637 return (ENOMEM); 4638 } 4639 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 4640 tcp->tcp_hdr_grown = B_TRUE; 4641 } 4642 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4643 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4644 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4645 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 4646 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 4647 4648 /* 4649 * Copy the IP+TCP header template from listener to eager 4650 */ 4651 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4652 if (tcp->tcp_ipversion == IPV6_VERSION) { 4653 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 4654 IPPROTO_RAW) { 4655 tcp->tcp_ip6h = 4656 (ip6_t *)(tcp->tcp_iphc + 4657 sizeof (ip6i_t)); 4658 } else { 4659 tcp->tcp_ip6h = 4660 (ip6_t *)(tcp->tcp_iphc); 4661 } 4662 tcp->tcp_ipha = NULL; 4663 } else { 4664 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4665 tcp->tcp_ip6h = NULL; 4666 } 4667 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4668 tcp->tcp_ip_hdr_len); 4669 } else { 4670 /* 4671 * only valid case when ipversion of listener and 4672 * eager differ is when listener is IPv6 and 4673 * eager is IPv4. 4674 * Eager header template has been initialized to the 4675 * maximum v4 header sizes, which includes space for 4676 * TCP and IP options. 4677 */ 4678 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 4679 (tcp->tcp_ipversion == IPV4_VERSION)); 4680 ASSERT(tcp->tcp_iphc_len >= 4681 TCP_MAX_COMBINED_HEADER_LENGTH); 4682 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4683 /* copy IP header fields individually */ 4684 tcp->tcp_ipha->ipha_ttl = 4685 ltcp->tcp_ip6h->ip6_hops; 4686 bcopy(ltcp->tcp_tcph->th_lport, 4687 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 4688 } 4689 4690 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4691 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 4692 sizeof (in_port_t)); 4693 4694 if (ltcp->tcp_lport == 0) { 4695 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 4696 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 4697 sizeof (in_port_t)); 4698 } 4699 4700 if (tcp->tcp_ipversion == IPV4_VERSION) { 4701 ASSERT(ipha != NULL); 4702 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4703 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4704 4705 /* Source routing option copyover (reverse it) */ 4706 if (tcps->tcps_rev_src_routes) 4707 tcp_opt_reverse(tcp, ipha); 4708 } else { 4709 ASSERT(ip6h != NULL); 4710 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 4711 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 4712 } 4713 4714 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4715 ASSERT(!tcp->tcp_tconnind_started); 4716 /* 4717 * If the SYN contains a credential, it's a loopback packet; attach 4718 * the credential to the TPI message. 4719 */ 4720 mblk_copycred(tpi_mp, idmp); 4721 4722 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4723 4724 /* Inherit the listener's SSL protection state */ 4725 4726 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4727 kssl_hold_ent(tcp->tcp_kssl_ent); 4728 tcp->tcp_kssl_pending = B_TRUE; 4729 } 4730 4731 /* Inherit the listener's non-STREAMS flag */ 4732 if (IPCL_IS_NONSTR(lconnp)) { 4733 connp->conn_flags |= IPCL_NONSTR; 4734 } 4735 4736 return (0); 4737 } 4738 4739 4740 int 4741 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 4742 tcph_t *tcph, mblk_t *idmp) 4743 { 4744 tcp_t *ltcp = lconnp->conn_tcp; 4745 tcp_t *tcp = connp->conn_tcp; 4746 sin_t sin; 4747 mblk_t *tpi_mp = NULL; 4748 int err; 4749 tcp_stack_t *tcps = tcp->tcp_tcps; 4750 4751 sin = sin_null; 4752 sin.sin_addr.s_addr = ipha->ipha_src; 4753 sin.sin_port = *(uint16_t *)tcph->th_lport; 4754 sin.sin_family = AF_INET; 4755 if (ltcp->tcp_recvdstaddr) { 4756 sin_t sind; 4757 4758 sind = sin_null; 4759 sind.sin_addr.s_addr = ipha->ipha_dst; 4760 sind.sin_port = *(uint16_t *)tcph->th_fport; 4761 sind.sin_family = AF_INET; 4762 tpi_mp = mi_tpi_extconn_ind(NULL, 4763 (char *)&sind, sizeof (sin_t), (char *)&tcp, 4764 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 4765 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4766 } else { 4767 tpi_mp = mi_tpi_conn_ind(NULL, 4768 (char *)&sin, sizeof (sin_t), 4769 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4770 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4771 } 4772 4773 if (tpi_mp == NULL) { 4774 return (ENOMEM); 4775 } 4776 4777 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 4778 connp->conn_send = ip_output; 4779 connp->conn_recv = tcp_input; 4780 connp->conn_fully_bound = B_FALSE; 4781 4782 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6); 4783 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4784 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4785 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4786 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4787 4788 /* Inherit information from the "parent" */ 4789 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4790 tcp->tcp_family = ltcp->tcp_family; 4791 tcp->tcp_wq = ltcp->tcp_wq; 4792 tcp->tcp_rq = ltcp->tcp_rq; 4793 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 4794 tcp->tcp_detached = B_TRUE; 4795 SOCK_CONNID_INIT(tcp->tcp_connid); 4796 if ((err = tcp_init_values(tcp)) != 0) { 4797 freemsg(tpi_mp); 4798 return (err); 4799 } 4800 4801 /* 4802 * Let's make sure that eager tcp template has enough space to 4803 * copy IPv4 listener's tcp template. Since the conn_t structure is 4804 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 4805 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 4806 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 4807 * extension headers or with ip6i_t struct). Note that bcopy() below 4808 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 4809 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 4810 */ 4811 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 4812 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 4813 4814 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 4815 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 4816 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 4817 tcp->tcp_ttl = ltcp->tcp_ttl; 4818 tcp->tcp_tos = ltcp->tcp_tos; 4819 4820 /* Copy the IP+TCP header template from listener to eager */ 4821 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 4822 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 4823 tcp->tcp_ip6h = NULL; 4824 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 4825 tcp->tcp_ip_hdr_len); 4826 4827 /* Initialize the IP addresses and Ports */ 4828 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 4829 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 4830 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 4831 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 4832 4833 /* Source routing option copyover (reverse it) */ 4834 if (tcps->tcps_rev_src_routes) 4835 tcp_opt_reverse(tcp, ipha); 4836 4837 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 4838 ASSERT(!tcp->tcp_tconnind_started); 4839 4840 /* 4841 * If the SYN contains a credential, it's a loopback packet; attach 4842 * the credential to the TPI message. 4843 */ 4844 mblk_copycred(tpi_mp, idmp); 4845 4846 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 4847 4848 /* Inherit the listener's SSL protection state */ 4849 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 4850 kssl_hold_ent(tcp->tcp_kssl_ent); 4851 tcp->tcp_kssl_pending = B_TRUE; 4852 } 4853 4854 /* Inherit the listener's non-STREAMS flag */ 4855 if (IPCL_IS_NONSTR(lconnp)) { 4856 connp->conn_flags |= IPCL_NONSTR; 4857 } 4858 4859 return (0); 4860 } 4861 4862 /* 4863 * sets up conn for ipsec. 4864 * if the first mblk is M_CTL it is consumed and mpp is updated. 4865 * in case of error mpp is freed. 4866 */ 4867 conn_t * 4868 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 4869 { 4870 conn_t *connp = tcp->tcp_connp; 4871 conn_t *econnp; 4872 squeue_t *new_sqp; 4873 mblk_t *first_mp = *mpp; 4874 mblk_t *mp = *mpp; 4875 boolean_t mctl_present = B_FALSE; 4876 uint_t ipvers; 4877 4878 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 4879 if (econnp == NULL) { 4880 freemsg(first_mp); 4881 return (NULL); 4882 } 4883 if (DB_TYPE(mp) == M_CTL) { 4884 if (mp->b_cont == NULL || 4885 mp->b_cont->b_datap->db_type != M_DATA) { 4886 freemsg(first_mp); 4887 return (NULL); 4888 } 4889 mp = mp->b_cont; 4890 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 4891 freemsg(first_mp); 4892 return (NULL); 4893 } 4894 4895 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 4896 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4897 mctl_present = B_TRUE; 4898 } else { 4899 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 4900 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 4901 } 4902 4903 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 4904 DB_CKSUMSTART(mp) = 0; 4905 4906 ASSERT(OK_32PTR(mp->b_rptr)); 4907 ipvers = IPH_HDR_VERSION(mp->b_rptr); 4908 if (ipvers == IPV4_VERSION) { 4909 uint16_t *up; 4910 uint32_t ports; 4911 ipha_t *ipha; 4912 4913 ipha = (ipha_t *)mp->b_rptr; 4914 up = (uint16_t *)((uchar_t *)ipha + 4915 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 4916 ports = *(uint32_t *)up; 4917 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 4918 ipha->ipha_dst, ipha->ipha_src, ports); 4919 } else { 4920 uint16_t *up; 4921 uint32_t ports; 4922 uint16_t ip_hdr_len; 4923 uint8_t *nexthdrp; 4924 ip6_t *ip6h; 4925 tcph_t *tcph; 4926 4927 ip6h = (ip6_t *)mp->b_rptr; 4928 if (ip6h->ip6_nxt == IPPROTO_TCP) { 4929 ip_hdr_len = IPV6_HDR_LEN; 4930 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 4931 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 4932 CONN_DEC_REF(econnp); 4933 freemsg(first_mp); 4934 return (NULL); 4935 } 4936 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 4937 up = (uint16_t *)tcph->th_lport; 4938 ports = *(uint32_t *)up; 4939 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 4940 ip6h->ip6_dst, ip6h->ip6_src, ports); 4941 } 4942 4943 /* 4944 * The caller already ensured that there is a sqp present. 4945 */ 4946 econnp->conn_sqp = new_sqp; 4947 econnp->conn_initial_sqp = new_sqp; 4948 4949 if (connp->conn_policy != NULL) { 4950 ipsec_in_t *ii; 4951 ii = (ipsec_in_t *)(first_mp->b_rptr); 4952 ASSERT(ii->ipsec_in_policy == NULL); 4953 IPPH_REFHOLD(connp->conn_policy); 4954 ii->ipsec_in_policy = connp->conn_policy; 4955 4956 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 4957 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 4958 CONN_DEC_REF(econnp); 4959 freemsg(first_mp); 4960 return (NULL); 4961 } 4962 } 4963 4964 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 4965 CONN_DEC_REF(econnp); 4966 freemsg(first_mp); 4967 return (NULL); 4968 } 4969 4970 /* 4971 * If we know we have some policy, pass the "IPSEC" 4972 * options size TCP uses this adjust the MSS. 4973 */ 4974 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 4975 if (mctl_present) { 4976 freeb(first_mp); 4977 *mpp = mp; 4978 } 4979 4980 return (econnp); 4981 } 4982 4983 /* 4984 * tcp_get_conn/tcp_free_conn 4985 * 4986 * tcp_get_conn is used to get a clean tcp connection structure. 4987 * It tries to reuse the connections put on the freelist by the 4988 * time_wait_collector failing which it goes to kmem_cache. This 4989 * way has two benefits compared to just allocating from and 4990 * freeing to kmem_cache. 4991 * 1) The time_wait_collector can free (which includes the cleanup) 4992 * outside the squeue. So when the interrupt comes, we have a clean 4993 * connection sitting in the freelist. Obviously, this buys us 4994 * performance. 4995 * 4996 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 4997 * has multiple disadvantages - tying up the squeue during alloc, and the 4998 * fact that IPSec policy initialization has to happen here which 4999 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5000 * But allocating the conn/tcp in IP land is also not the best since 5001 * we can't check the 'q' and 'q0' which are protected by squeue and 5002 * blindly allocate memory which might have to be freed here if we are 5003 * not allowed to accept the connection. By using the freelist and 5004 * putting the conn/tcp back in freelist, we don't pay a penalty for 5005 * allocating memory without checking 'q/q0' and freeing it if we can't 5006 * accept the connection. 5007 * 5008 * Care should be taken to put the conn back in the same squeue's freelist 5009 * from which it was allocated. Best results are obtained if conn is 5010 * allocated from listener's squeue and freed to the same. Time wait 5011 * collector will free up the freelist is the connection ends up sitting 5012 * there for too long. 5013 */ 5014 void * 5015 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5016 { 5017 tcp_t *tcp = NULL; 5018 conn_t *connp = NULL; 5019 squeue_t *sqp = (squeue_t *)arg; 5020 tcp_squeue_priv_t *tcp_time_wait; 5021 netstack_t *ns; 5022 mblk_t *tcp_rsrv_mp = NULL; 5023 5024 tcp_time_wait = 5025 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5026 5027 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5028 tcp = tcp_time_wait->tcp_free_list; 5029 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5030 if (tcp != NULL) { 5031 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5032 tcp_time_wait->tcp_free_list_cnt--; 5033 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5034 tcp->tcp_time_wait_next = NULL; 5035 connp = tcp->tcp_connp; 5036 connp->conn_flags |= IPCL_REUSED; 5037 5038 ASSERT(tcp->tcp_tcps == NULL); 5039 ASSERT(connp->conn_netstack == NULL); 5040 ASSERT(tcp->tcp_rsrv_mp != NULL); 5041 ns = tcps->tcps_netstack; 5042 netstack_hold(ns); 5043 connp->conn_netstack = ns; 5044 tcp->tcp_tcps = tcps; 5045 TCPS_REFHOLD(tcps); 5046 ipcl_globalhash_insert(connp); 5047 return ((void *)connp); 5048 } 5049 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5050 /* 5051 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 5052 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 5053 */ 5054 tcp_rsrv_mp = allocb(0, BPRI_HI); 5055 if (tcp_rsrv_mp == NULL) 5056 return (NULL); 5057 5058 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5059 tcps->tcps_netstack)) == NULL) { 5060 freeb(tcp_rsrv_mp); 5061 return (NULL); 5062 } 5063 5064 tcp = connp->conn_tcp; 5065 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 5066 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 5067 5068 tcp->tcp_tcps = tcps; 5069 TCPS_REFHOLD(tcps); 5070 5071 return ((void *)connp); 5072 } 5073 5074 /* 5075 * Update the cached label for the given tcp_t. This should be called once per 5076 * connection, and before any packets are sent or tcp_process_options is 5077 * invoked. Returns B_FALSE if the correct label could not be constructed. 5078 */ 5079 static boolean_t 5080 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5081 { 5082 conn_t *connp = tcp->tcp_connp; 5083 5084 if (tcp->tcp_ipversion == IPV4_VERSION) { 5085 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5086 int added; 5087 5088 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5089 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5090 return (B_FALSE); 5091 5092 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5093 if (added == -1) 5094 return (B_FALSE); 5095 tcp->tcp_hdr_len += added; 5096 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5097 tcp->tcp_ip_hdr_len += added; 5098 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5099 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5100 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5101 tcp->tcp_hdr_len); 5102 if (added == -1) 5103 return (B_FALSE); 5104 tcp->tcp_hdr_len += added; 5105 tcp->tcp_tcph = (tcph_t *) 5106 ((uchar_t *)tcp->tcp_tcph + added); 5107 tcp->tcp_ip_hdr_len += added; 5108 } 5109 } else { 5110 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5111 5112 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5113 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5114 return (B_FALSE); 5115 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5116 &tcp->tcp_label_len, optbuf) != 0) 5117 return (B_FALSE); 5118 if (tcp_build_hdrs(tcp) != 0) 5119 return (B_FALSE); 5120 } 5121 5122 connp->conn_ulp_labeled = 1; 5123 5124 return (B_TRUE); 5125 } 5126 5127 /* BEGIN CSTYLED */ 5128 /* 5129 * 5130 * The sockfs ACCEPT path: 5131 * ======================= 5132 * 5133 * The eager is now established in its own perimeter as soon as SYN is 5134 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5135 * completes the accept processing on the acceptor STREAM. The sending 5136 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5137 * listener but a TLI/XTI listener completes the accept processing 5138 * on the listener perimeter. 5139 * 5140 * Common control flow for 3 way handshake: 5141 * ---------------------------------------- 5142 * 5143 * incoming SYN (listener perimeter) -> tcp_rput_data() 5144 * -> tcp_conn_request() 5145 * 5146 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5147 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5148 * 5149 * Sockfs ACCEPT Path: 5150 * ------------------- 5151 * 5152 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5153 * as STREAM entry point) 5154 * 5155 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5156 * 5157 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5158 * association (we are not behind eager's squeue but sockfs is protecting us 5159 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5160 * is changed to point at tcp_wput(). 5161 * 5162 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5163 * listener (done on listener's perimeter). 5164 * 5165 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5166 * accept. 5167 * 5168 * TLI/XTI client ACCEPT path: 5169 * --------------------------- 5170 * 5171 * soaccept() sends T_CONN_RES on the listener STREAM. 5172 * 5173 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5174 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5175 * 5176 * Locks: 5177 * ====== 5178 * 5179 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5180 * and listeners->tcp_eager_next_q. 5181 * 5182 * Referencing: 5183 * ============ 5184 * 5185 * 1) We start out in tcp_conn_request by eager placing a ref on 5186 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5187 * 5188 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5189 * doing so we place a ref on the eager. This ref is finally dropped at the 5190 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5191 * reference is dropped by the squeue framework. 5192 * 5193 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5194 * 5195 * The reference must be released by the same entity that added the reference 5196 * In the above scheme, the eager is the entity that adds and releases the 5197 * references. Note that tcp_accept_finish executes in the squeue of the eager 5198 * (albeit after it is attached to the acceptor stream). Though 1. executes 5199 * in the listener's squeue, the eager is nascent at this point and the 5200 * reference can be considered to have been added on behalf of the eager. 5201 * 5202 * Eager getting a Reset or listener closing: 5203 * ========================================== 5204 * 5205 * Once the listener and eager are linked, the listener never does the unlink. 5206 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5207 * a message on all eager perimeter. The eager then does the unlink, clears 5208 * any pointers to the listener's queue and drops the reference to the 5209 * listener. The listener waits in tcp_close outside the squeue until its 5210 * refcount has dropped to 1. This ensures that the listener has waited for 5211 * all eagers to clear their association with the listener. 5212 * 5213 * Similarly, if eager decides to go away, it can unlink itself and close. 5214 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5215 * the reference to eager is still valid because of the extra ref we put 5216 * in tcp_send_conn_ind. 5217 * 5218 * Listener can always locate the eager under the protection 5219 * of the listener->tcp_eager_lock, and then do a refhold 5220 * on the eager during the accept processing. 5221 * 5222 * The acceptor stream accesses the eager in the accept processing 5223 * based on the ref placed on eager before sending T_conn_ind. 5224 * The only entity that can negate this refhold is a listener close 5225 * which is mutually exclusive with an active acceptor stream. 5226 * 5227 * Eager's reference on the listener 5228 * =================================== 5229 * 5230 * If the accept happens (even on a closed eager) the eager drops its 5231 * reference on the listener at the start of tcp_accept_finish. If the 5232 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5233 * the reference is dropped in tcp_closei_local. If the listener closes, 5234 * the reference is dropped in tcp_eager_kill. In all cases the reference 5235 * is dropped while executing in the eager's context (squeue). 5236 */ 5237 /* END CSTYLED */ 5238 5239 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5240 5241 /* 5242 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5243 * tcp_rput_data will not see any SYN packets. 5244 */ 5245 /* ARGSUSED */ 5246 void 5247 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5248 { 5249 tcph_t *tcph; 5250 uint32_t seg_seq; 5251 tcp_t *eager; 5252 uint_t ipvers; 5253 ipha_t *ipha; 5254 ip6_t *ip6h; 5255 int err; 5256 conn_t *econnp = NULL; 5257 squeue_t *new_sqp; 5258 mblk_t *mp1; 5259 uint_t ip_hdr_len; 5260 conn_t *connp = (conn_t *)arg; 5261 tcp_t *tcp = connp->conn_tcp; 5262 cred_t *credp; 5263 tcp_stack_t *tcps = tcp->tcp_tcps; 5264 ip_stack_t *ipst; 5265 5266 if (tcp->tcp_state != TCPS_LISTEN) 5267 goto error2; 5268 5269 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5270 5271 mutex_enter(&tcp->tcp_eager_lock); 5272 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5273 mutex_exit(&tcp->tcp_eager_lock); 5274 TCP_STAT(tcps, tcp_listendrop); 5275 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5276 if (tcp->tcp_debug) { 5277 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5278 "tcp_conn_request: listen backlog (max=%d) " 5279 "overflow (%d pending) on %s", 5280 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5281 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5282 } 5283 goto error2; 5284 } 5285 5286 if (tcp->tcp_conn_req_cnt_q0 >= 5287 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5288 /* 5289 * Q0 is full. Drop a pending half-open req from the queue 5290 * to make room for the new SYN req. Also mark the time we 5291 * drop a SYN. 5292 * 5293 * A more aggressive defense against SYN attack will 5294 * be to set the "tcp_syn_defense" flag now. 5295 */ 5296 TCP_STAT(tcps, tcp_listendropq0); 5297 tcp->tcp_last_rcv_lbolt = lbolt64; 5298 if (!tcp_drop_q0(tcp)) { 5299 mutex_exit(&tcp->tcp_eager_lock); 5300 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5301 if (tcp->tcp_debug) { 5302 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5303 "tcp_conn_request: listen half-open queue " 5304 "(max=%d) full (%d pending) on %s", 5305 tcps->tcps_conn_req_max_q0, 5306 tcp->tcp_conn_req_cnt_q0, 5307 tcp_display(tcp, NULL, 5308 DISP_PORT_ONLY)); 5309 } 5310 goto error2; 5311 } 5312 } 5313 mutex_exit(&tcp->tcp_eager_lock); 5314 5315 /* 5316 * IP adds STRUIO_EAGER and ensures that the received packet is 5317 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5318 * link local address. If IPSec is enabled, db_struioflag has 5319 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5320 * otherwise an error case if neither of them is set. 5321 */ 5322 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5323 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5324 DB_CKSUMSTART(mp) = 0; 5325 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5326 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5327 if (econnp == NULL) 5328 goto error2; 5329 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5330 econnp->conn_sqp = new_sqp; 5331 econnp->conn_initial_sqp = new_sqp; 5332 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5333 /* 5334 * mp is updated in tcp_get_ipsec_conn(). 5335 */ 5336 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5337 if (econnp == NULL) { 5338 /* 5339 * mp freed by tcp_get_ipsec_conn. 5340 */ 5341 return; 5342 } 5343 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5344 } else { 5345 goto error2; 5346 } 5347 5348 ASSERT(DB_TYPE(mp) == M_DATA); 5349 5350 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5351 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5352 ASSERT(OK_32PTR(mp->b_rptr)); 5353 if (ipvers == IPV4_VERSION) { 5354 ipha = (ipha_t *)mp->b_rptr; 5355 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5356 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5357 } else { 5358 ip6h = (ip6_t *)mp->b_rptr; 5359 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5360 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5361 } 5362 5363 if (tcp->tcp_family == AF_INET) { 5364 ASSERT(ipvers == IPV4_VERSION); 5365 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5366 } else { 5367 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5368 } 5369 5370 if (err) 5371 goto error3; 5372 5373 eager = econnp->conn_tcp; 5374 ASSERT(eager->tcp_ordrel_mp == NULL); 5375 5376 if (!IPCL_IS_NONSTR(econnp)) { 5377 /* 5378 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that 5379 * at close time, we will always have that to send up. 5380 * Otherwise, we need to do special handling in case the 5381 * allocation fails at that time. 5382 */ 5383 if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) 5384 goto error3; 5385 } 5386 /* Inherit various TCP parameters from the listener */ 5387 eager->tcp_naglim = tcp->tcp_naglim; 5388 eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold; 5389 eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold; 5390 5391 eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold; 5392 eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold; 5393 5394 /* 5395 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5396 * If it does not, the eager's receive window will be set to the 5397 * listener's receive window later in this function. 5398 */ 5399 eager->tcp_rwnd = 0; 5400 5401 /* 5402 * Inherit listener's tcp_init_cwnd. Need to do this before 5403 * calling tcp_process_options() where tcp_mss_set() is called 5404 * to set the initial cwnd. 5405 */ 5406 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5407 5408 /* 5409 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5410 * zone id before the accept is completed in tcp_wput_accept(). 5411 */ 5412 econnp->conn_zoneid = connp->conn_zoneid; 5413 econnp->conn_allzones = connp->conn_allzones; 5414 5415 /* Copy nexthop information from listener to eager */ 5416 if (connp->conn_nexthop_set) { 5417 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5418 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5419 } 5420 5421 /* 5422 * TSOL: tsol_input_proc() needs the eager's cred before the 5423 * eager is accepted 5424 */ 5425 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5426 crhold(credp); 5427 5428 ASSERT(econnp->conn_effective_cred == NULL); 5429 if (is_system_labeled()) { 5430 cred_t *cr; 5431 ts_label_t *tsl; 5432 5433 /* 5434 * If this is an MLP connection or a MAC-Exempt connection 5435 * with an unlabeled node, packets are to be 5436 * exchanged using the security label of the received 5437 * SYN packet instead of the server application's label. 5438 */ 5439 if ((cr = msg_getcred(mp, NULL)) != NULL && 5440 (tsl = crgetlabel(cr)) != NULL && 5441 (connp->conn_mlp_type != mlptSingle || 5442 (connp->conn_mac_exempt == B_TRUE && 5443 (tsl->tsl_flags & TSLF_UNLABELED)))) { 5444 if ((econnp->conn_effective_cred = 5445 copycred_from_tslabel(econnp->conn_cred, 5446 tsl, KM_NOSLEEP)) != NULL) { 5447 DTRACE_PROBE2( 5448 syn_accept_peerlabel, 5449 conn_t *, econnp, cred_t *, 5450 econnp->conn_effective_cred); 5451 } else { 5452 DTRACE_PROBE3( 5453 tx__ip__log__error__set__eagercred__tcp, 5454 char *, 5455 "SYN mp(1) label on eager connp(2) failed", 5456 mblk_t *, mp, conn_t *, econnp); 5457 goto error3; 5458 } 5459 } else { 5460 DTRACE_PROBE2(syn_accept, conn_t *, 5461 econnp, cred_t *, econnp->conn_cred) 5462 } 5463 5464 /* 5465 * Verify the destination is allowed to receive packets 5466 * at the security label of the SYN-ACK we are generating. 5467 * tsol_check_dest() may create a new effective cred for 5468 * this connection with a modified label or label flags. 5469 */ 5470 if (IN6_IS_ADDR_V4MAPPED(&econnp->conn_remv6)) { 5471 uint32_t dst; 5472 IN6_V4MAPPED_TO_IPADDR(&econnp->conn_remv6, dst); 5473 err = tsol_check_dest(CONN_CRED(econnp), &dst, 5474 IPV4_VERSION, B_FALSE, &cr); 5475 } else { 5476 err = tsol_check_dest(CONN_CRED(econnp), 5477 &econnp->conn_remv6, IPV6_VERSION, 5478 B_FALSE, &cr); 5479 } 5480 if (err != 0) 5481 goto error3; 5482 if (cr != NULL) { 5483 if (econnp->conn_effective_cred != NULL) 5484 crfree(econnp->conn_effective_cred); 5485 econnp->conn_effective_cred = cr; 5486 } 5487 5488 /* 5489 * Generate the security label to be used in the text of 5490 * this connection's outgoing packets. 5491 */ 5492 if (!tcp_update_label(eager, CONN_CRED(econnp))) { 5493 DTRACE_PROBE3( 5494 tx__ip__log__error__connrequest__tcp, 5495 char *, "eager connp(1) label on SYN mp(2) failed", 5496 conn_t *, econnp, mblk_t *, mp); 5497 goto error3; 5498 } 5499 } 5500 5501 eager->tcp_hard_binding = B_TRUE; 5502 5503 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5504 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5505 5506 CL_INET_CONNECT(connp, eager, B_FALSE, err); 5507 if (err != 0) { 5508 tcp_bind_hash_remove(eager); 5509 goto error3; 5510 } 5511 5512 /* 5513 * No need to check for multicast destination since ip will only pass 5514 * up multicasts to those that have expressed interest 5515 * TODO: what about rejecting broadcasts? 5516 * Also check that source is not a multicast or broadcast address. 5517 */ 5518 eager->tcp_state = TCPS_SYN_RCVD; 5519 5520 5521 /* 5522 * There should be no ire in the mp as we are being called after 5523 * receiving the SYN. 5524 */ 5525 ASSERT(tcp_ire_mp(&mp) == NULL); 5526 5527 /* 5528 * Adapt our mss, ttl, ... according to information provided in IRE. 5529 */ 5530 5531 if (tcp_adapt_ire(eager, NULL) == 0) { 5532 /* Undo the bind_hash_insert */ 5533 tcp_bind_hash_remove(eager); 5534 goto error3; 5535 } 5536 5537 /* Process all TCP options. */ 5538 tcp_process_options(eager, tcph); 5539 5540 /* Is the other end ECN capable? */ 5541 if (tcps->tcps_ecn_permitted >= 1 && 5542 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5543 eager->tcp_ecn_ok = B_TRUE; 5544 } 5545 5546 /* 5547 * listener->tcp_rq->q_hiwat should be the default window size or a 5548 * window size changed via SO_RCVBUF option. First round up the 5549 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5550 * scale option value if needed. Call tcp_rwnd_set() to finish the 5551 * setting. 5552 * 5553 * Note if there is a rpipe metric associated with the remote host, 5554 * we should not inherit receive window size from listener. 5555 */ 5556 eager->tcp_rwnd = MSS_ROUNDUP( 5557 (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater: 5558 eager->tcp_rwnd), eager->tcp_mss); 5559 if (eager->tcp_snd_ws_ok) 5560 tcp_set_ws_value(eager); 5561 /* 5562 * Note that this is the only place tcp_rwnd_set() is called for 5563 * accepting a connection. We need to call it here instead of 5564 * after the 3-way handshake because we need to tell the other 5565 * side our rwnd in the SYN-ACK segment. 5566 */ 5567 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5568 5569 /* 5570 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5571 * via soaccept()->soinheritoptions() which essentially applies 5572 * all the listener options to the new STREAM. The options that we 5573 * need to take care of are: 5574 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5575 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5576 * SO_SNDBUF, SO_RCVBUF. 5577 * 5578 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5579 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5580 * tcp_maxpsz_set() gets called later from 5581 * tcp_accept_finish(), the option takes effect. 5582 * 5583 */ 5584 /* Set the TCP options */ 5585 eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater; 5586 eager->tcp_recv_lowater = tcp->tcp_recv_lowater; 5587 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5588 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5589 eager->tcp_oobinline = tcp->tcp_oobinline; 5590 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5591 eager->tcp_broadcast = tcp->tcp_broadcast; 5592 eager->tcp_useloopback = tcp->tcp_useloopback; 5593 eager->tcp_dontroute = tcp->tcp_dontroute; 5594 eager->tcp_debug = tcp->tcp_debug; 5595 eager->tcp_linger = tcp->tcp_linger; 5596 eager->tcp_lingertime = tcp->tcp_lingertime; 5597 if (tcp->tcp_ka_enabled) 5598 eager->tcp_ka_enabled = 1; 5599 5600 /* Set the IP options */ 5601 econnp->conn_broadcast = connp->conn_broadcast; 5602 econnp->conn_loopback = connp->conn_loopback; 5603 econnp->conn_dontroute = connp->conn_dontroute; 5604 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5605 5606 /* Put a ref on the listener for the eager. */ 5607 CONN_INC_REF(connp); 5608 mutex_enter(&tcp->tcp_eager_lock); 5609 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5610 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5611 tcp->tcp_eager_next_q0 = eager; 5612 eager->tcp_eager_prev_q0 = tcp; 5613 5614 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5615 eager->tcp_listener = tcp; 5616 eager->tcp_saved_listener = tcp; 5617 5618 /* 5619 * Tag this detached tcp vector for later retrieval 5620 * by our listener client in tcp_accept(). 5621 */ 5622 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5623 tcp->tcp_conn_req_cnt_q0++; 5624 if (++tcp->tcp_conn_req_seqnum == -1) { 5625 /* 5626 * -1 is "special" and defined in TPI as something 5627 * that should never be used in T_CONN_IND 5628 */ 5629 ++tcp->tcp_conn_req_seqnum; 5630 } 5631 mutex_exit(&tcp->tcp_eager_lock); 5632 5633 if (tcp->tcp_syn_defense) { 5634 /* Don't drop the SYN that comes from a good IP source */ 5635 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5636 if (addr_cache != NULL && eager->tcp_remote == 5637 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5638 eager->tcp_dontdrop = B_TRUE; 5639 } 5640 } 5641 5642 /* 5643 * We need to insert the eager in its own perimeter but as soon 5644 * as we do that, we expose the eager to the classifier and 5645 * should not touch any field outside the eager's perimeter. 5646 * So do all the work necessary before inserting the eager 5647 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5648 * will succeed but undo everything if it fails. 5649 */ 5650 seg_seq = ABE32_TO_U32(tcph->th_seq); 5651 eager->tcp_irs = seg_seq; 5652 eager->tcp_rack = seg_seq; 5653 eager->tcp_rnxt = seg_seq + 1; 5654 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5655 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5656 eager->tcp_state = TCPS_SYN_RCVD; 5657 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5658 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5659 if (mp1 == NULL) { 5660 /* 5661 * Increment the ref count as we are going to 5662 * enqueueing an mp in squeue 5663 */ 5664 CONN_INC_REF(econnp); 5665 goto error; 5666 } 5667 5668 /* 5669 * Note that in theory this should use the current pid 5670 * so that getpeerucred on the client returns the actual listener 5671 * that does accept. But accept() hasn't been called yet. We could use 5672 * the pid of the process that did bind/listen on the server. 5673 * However, with common usage like inetd() the bind/listen can be done 5674 * by a different process than the accept(). 5675 * Hence we do the simple thing of using the open pid here. 5676 * Note that db_credp is set later in tcp_send_data(). 5677 */ 5678 mblk_setcred(mp1, credp, tcp->tcp_cpid); 5679 eager->tcp_cpid = tcp->tcp_cpid; 5680 eager->tcp_open_time = lbolt64; 5681 5682 /* 5683 * We need to start the rto timer. In normal case, we start 5684 * the timer after sending the packet on the wire (or at 5685 * least believing that packet was sent by waiting for 5686 * CALL_IP_WPUT() to return). Since this is the first packet 5687 * being sent on the wire for the eager, our initial tcp_rto 5688 * is at least tcp_rexmit_interval_min which is a fairly 5689 * large value to allow the algorithm to adjust slowly to large 5690 * fluctuations of RTT during first few transmissions. 5691 * 5692 * Starting the timer first and then sending the packet in this 5693 * case shouldn't make much difference since tcp_rexmit_interval_min 5694 * is of the order of several 100ms and starting the timer 5695 * first and then sending the packet will result in difference 5696 * of few micro seconds. 5697 * 5698 * Without this optimization, we are forced to hold the fanout 5699 * lock across the ipcl_bind_insert() and sending the packet 5700 * so that we don't race against an incoming packet (maybe RST) 5701 * for this eager. 5702 * 5703 * It is necessary to acquire an extra reference on the eager 5704 * at this point and hold it until after tcp_send_data() to 5705 * ensure against an eager close race. 5706 */ 5707 5708 CONN_INC_REF(eager->tcp_connp); 5709 5710 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5711 5712 /* 5713 * Insert the eager in its own perimeter now. We are ready to deal 5714 * with any packets on eager. 5715 */ 5716 if (eager->tcp_ipversion == IPV4_VERSION) { 5717 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5718 goto error; 5719 } 5720 } else { 5721 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5722 goto error; 5723 } 5724 } 5725 5726 /* mark conn as fully-bound */ 5727 econnp->conn_fully_bound = B_TRUE; 5728 5729 /* Send the SYN-ACK */ 5730 tcp_send_data(eager, eager->tcp_wq, mp1); 5731 CONN_DEC_REF(eager->tcp_connp); 5732 freemsg(mp); 5733 5734 return; 5735 error: 5736 freemsg(mp1); 5737 eager->tcp_closemp_used = B_TRUE; 5738 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 5739 mp1 = &eager->tcp_closemp; 5740 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill, 5741 econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2); 5742 5743 /* 5744 * If a connection already exists, send the mp to that connections so 5745 * that it can be appropriately dealt with. 5746 */ 5747 ipst = tcps->tcps_netstack->netstack_ip; 5748 5749 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 5750 if (!IPCL_IS_CONNECTED(econnp)) { 5751 /* 5752 * Something bad happened. ipcl_conn_insert() 5753 * failed because a connection already existed 5754 * in connected hash but we can't find it 5755 * anymore (someone blew it away). Just 5756 * free this message and hopefully remote 5757 * will retransmit at which time the SYN can be 5758 * treated as a new connection or dealth with 5759 * a TH_RST if a connection already exists. 5760 */ 5761 CONN_DEC_REF(econnp); 5762 freemsg(mp); 5763 } else { 5764 SQUEUE_ENTER_ONE(econnp->conn_sqp, mp, 5765 tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1); 5766 } 5767 } else { 5768 /* Nobody wants this packet */ 5769 freemsg(mp); 5770 } 5771 return; 5772 error3: 5773 CONN_DEC_REF(econnp); 5774 error2: 5775 freemsg(mp); 5776 } 5777 5778 /* 5779 * In an ideal case of vertical partition in NUMA architecture, its 5780 * beneficial to have the listener and all the incoming connections 5781 * tied to the same squeue. The other constraint is that incoming 5782 * connections should be tied to the squeue attached to interrupted 5783 * CPU for obvious locality reason so this leaves the listener to 5784 * be tied to the same squeue. Our only problem is that when listener 5785 * is binding, the CPU that will get interrupted by the NIC whose 5786 * IP address the listener is binding to is not even known. So 5787 * the code below allows us to change that binding at the time the 5788 * CPU is interrupted by virtue of incoming connection's squeue. 5789 * 5790 * This is usefull only in case of a listener bound to a specific IP 5791 * address. For other kind of listeners, they get bound the 5792 * very first time and there is no attempt to rebind them. 5793 */ 5794 void 5795 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 5796 { 5797 conn_t *connp = (conn_t *)arg; 5798 squeue_t *sqp = (squeue_t *)arg2; 5799 squeue_t *new_sqp; 5800 uint32_t conn_flags; 5801 5802 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5803 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5804 } else { 5805 goto done; 5806 } 5807 5808 if (connp->conn_fanout == NULL) 5809 goto done; 5810 5811 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 5812 mutex_enter(&connp->conn_fanout->connf_lock); 5813 mutex_enter(&connp->conn_lock); 5814 /* 5815 * No one from read or write side can access us now 5816 * except for already queued packets on this squeue. 5817 * But since we haven't changed the squeue yet, they 5818 * can't execute. If they are processed after we have 5819 * changed the squeue, they are sent back to the 5820 * correct squeue down below. 5821 * But a listner close can race with processing of 5822 * incoming SYN. If incoming SYN processing changes 5823 * the squeue then the listener close which is waiting 5824 * to enter the squeue would operate on the wrong 5825 * squeue. Hence we don't change the squeue here unless 5826 * the refcount is exactly the minimum refcount. The 5827 * minimum refcount of 4 is counted as - 1 each for 5828 * TCP and IP, 1 for being in the classifier hash, and 5829 * 1 for the mblk being processed. 5830 */ 5831 5832 if (connp->conn_ref != 4 || 5833 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 5834 mutex_exit(&connp->conn_lock); 5835 mutex_exit(&connp->conn_fanout->connf_lock); 5836 goto done; 5837 } 5838 if (connp->conn_sqp != new_sqp) { 5839 while (connp->conn_sqp != new_sqp) 5840 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 5841 } 5842 5843 do { 5844 conn_flags = connp->conn_flags; 5845 conn_flags |= IPCL_FULLY_BOUND; 5846 (void) cas32(&connp->conn_flags, connp->conn_flags, 5847 conn_flags); 5848 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 5849 5850 mutex_exit(&connp->conn_fanout->connf_lock); 5851 mutex_exit(&connp->conn_lock); 5852 } 5853 5854 done: 5855 if (connp->conn_sqp != sqp) { 5856 CONN_INC_REF(connp); 5857 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 5858 SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND); 5859 } else { 5860 tcp_conn_request(connp, mp, sqp); 5861 } 5862 } 5863 5864 /* 5865 * Successful connect request processing begins when our client passes 5866 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 5867 * our T_OK_ACK reply message upstream. The control flow looks like this: 5868 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP 5869 * upstream <- tcp_rput() <- IP 5870 * After various error checks are completed, tcp_tpi_connect() lays 5871 * the target address and port into the composite header template, 5872 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 5873 * request followed by an IRE request, and passes the three mblk message 5874 * down to IP looking like this: 5875 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 5876 * Processing continues in tcp_rput() when we receive the following message: 5877 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 5878 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 5879 * to fire off the connection request, and then passes the T_OK_ACK mblk 5880 * upstream that we filled in below. There are, of course, numerous 5881 * error conditions along the way which truncate the processing described 5882 * above. 5883 */ 5884 static void 5885 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp) 5886 { 5887 sin_t *sin; 5888 queue_t *q = tcp->tcp_wq; 5889 struct T_conn_req *tcr; 5890 struct sockaddr *sa; 5891 socklen_t len; 5892 int error; 5893 cred_t *cr; 5894 pid_t cpid; 5895 5896 /* 5897 * All Solaris components should pass a db_credp 5898 * for this TPI message, hence we ASSERT. 5899 * But in case there is some other M_PROTO that looks 5900 * like a TPI message sent by some other kernel 5901 * component, we check and return an error. 5902 */ 5903 cr = msg_getcred(mp, &cpid); 5904 ASSERT(cr != NULL); 5905 if (cr == NULL) { 5906 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5907 return; 5908 } 5909 5910 tcr = (struct T_conn_req *)mp->b_rptr; 5911 5912 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 5913 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 5914 tcp_err_ack(tcp, mp, TPROTO, 0); 5915 return; 5916 } 5917 5918 /* 5919 * Pre-allocate the T_ordrel_ind mblk so that at close time, we 5920 * will always have that to send up. Otherwise, we need to do 5921 * special handling in case the allocation fails at that time. 5922 * If the end point is TPI, the tcp_t can be reused and the 5923 * tcp_ordrel_mp may be allocated already. 5924 */ 5925 if (tcp->tcp_ordrel_mp == NULL) { 5926 if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) { 5927 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5928 return; 5929 } 5930 } 5931 5932 /* 5933 * Determine packet type based on type of address passed in 5934 * the request should contain an IPv4 or IPv6 address. 5935 * Make sure that address family matches the type of 5936 * family of the the address passed down 5937 */ 5938 switch (tcr->DEST_length) { 5939 default: 5940 tcp_err_ack(tcp, mp, TBADADDR, 0); 5941 return; 5942 5943 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 5944 /* 5945 * XXX: The check for valid DEST_length was not there 5946 * in earlier releases and some buggy 5947 * TLI apps (e.g Sybase) got away with not feeding 5948 * in sin_zero part of address. 5949 * We allow that bug to keep those buggy apps humming. 5950 * Test suites require the check on DEST_length. 5951 * We construct a new mblk with valid DEST_length 5952 * free the original so the rest of the code does 5953 * not have to keep track of this special shorter 5954 * length address case. 5955 */ 5956 mblk_t *nmp; 5957 struct T_conn_req *ntcr; 5958 sin_t *nsin; 5959 5960 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 5961 tcr->OPT_length, BPRI_HI); 5962 if (nmp == NULL) { 5963 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 5964 return; 5965 } 5966 ntcr = (struct T_conn_req *)nmp->b_rptr; 5967 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 5968 ntcr->PRIM_type = T_CONN_REQ; 5969 ntcr->DEST_length = sizeof (sin_t); 5970 ntcr->DEST_offset = sizeof (struct T_conn_req); 5971 5972 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 5973 *nsin = sin_null; 5974 /* Get pointer to shorter address to copy from original mp */ 5975 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 5976 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 5977 if (sin == NULL || !OK_32PTR((char *)sin)) { 5978 freemsg(nmp); 5979 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 5980 return; 5981 } 5982 nsin->sin_family = sin->sin_family; 5983 nsin->sin_port = sin->sin_port; 5984 nsin->sin_addr = sin->sin_addr; 5985 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 5986 nmp->b_wptr = (uchar_t *)&nsin[1]; 5987 if (tcr->OPT_length != 0) { 5988 ntcr->OPT_length = tcr->OPT_length; 5989 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 5990 bcopy((uchar_t *)tcr + tcr->OPT_offset, 5991 (uchar_t *)ntcr + ntcr->OPT_offset, 5992 tcr->OPT_length); 5993 nmp->b_wptr += tcr->OPT_length; 5994 } 5995 freemsg(mp); /* original mp freed */ 5996 mp = nmp; /* re-initialize original variables */ 5997 tcr = ntcr; 5998 } 5999 /* FALLTHRU */ 6000 6001 case sizeof (sin_t): 6002 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6003 sizeof (sin_t)); 6004 len = sizeof (sin_t); 6005 break; 6006 6007 case sizeof (sin6_t): 6008 sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset, 6009 sizeof (sin6_t)); 6010 len = sizeof (sin6_t); 6011 break; 6012 } 6013 6014 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 6015 if (error != 0) { 6016 tcp_err_ack(tcp, mp, TSYSERR, error); 6017 return; 6018 } 6019 6020 /* 6021 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6022 * should key on their sequence number and cut them loose. 6023 */ 6024 6025 /* 6026 * If options passed in, feed it for verification and handling 6027 */ 6028 if (tcr->OPT_length != 0) { 6029 mblk_t *ok_mp; 6030 mblk_t *discon_mp; 6031 mblk_t *conn_opts_mp; 6032 int t_error, sys_error, do_disconnect; 6033 6034 conn_opts_mp = NULL; 6035 6036 if (tcp_conprim_opt_process(tcp, mp, 6037 &do_disconnect, &t_error, &sys_error) < 0) { 6038 if (do_disconnect) { 6039 ASSERT(t_error == 0 && sys_error == 0); 6040 discon_mp = mi_tpi_discon_ind(NULL, 6041 ECONNREFUSED, 0); 6042 if (!discon_mp) { 6043 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6044 TSYSERR, ENOMEM); 6045 return; 6046 } 6047 ok_mp = mi_tpi_ok_ack_alloc(mp); 6048 if (!ok_mp) { 6049 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6050 TSYSERR, ENOMEM); 6051 return; 6052 } 6053 qreply(q, ok_mp); 6054 qreply(q, discon_mp); /* no flush! */ 6055 } else { 6056 ASSERT(t_error != 0); 6057 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6058 sys_error); 6059 } 6060 return; 6061 } 6062 /* 6063 * Success in setting options, the mp option buffer represented 6064 * by OPT_length/offset has been potentially modified and 6065 * contains results of option processing. We copy it in 6066 * another mp to save it for potentially influencing returning 6067 * it in T_CONN_CONN. 6068 */ 6069 if (tcr->OPT_length != 0) { /* there are resulting options */ 6070 conn_opts_mp = copyb(mp); 6071 if (!conn_opts_mp) { 6072 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6073 TSYSERR, ENOMEM); 6074 return; 6075 } 6076 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6077 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6078 /* 6079 * Note: 6080 * These resulting option negotiation can include any 6081 * end-to-end negotiation options but there no such 6082 * thing (yet?) in our TCP/IP. 6083 */ 6084 } 6085 } 6086 6087 /* call the non-TPI version */ 6088 error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid); 6089 if (error < 0) { 6090 mp = mi_tpi_err_ack_alloc(mp, -error, 0); 6091 } else if (error > 0) { 6092 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error); 6093 } else { 6094 mp = mi_tpi_ok_ack_alloc(mp); 6095 } 6096 6097 /* 6098 * Note: Code below is the "failure" case 6099 */ 6100 /* return error ack and blow away saved option results if any */ 6101 connect_failed: 6102 if (mp != NULL) 6103 putnext(tcp->tcp_rq, mp); 6104 else { 6105 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6106 TSYSERR, ENOMEM); 6107 } 6108 } 6109 6110 /* 6111 * Handle connect to IPv4 destinations, including connections for AF_INET6 6112 * sockets connecting to IPv4 mapped IPv6 destinations. 6113 */ 6114 static int 6115 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 6116 uint_t srcid, cred_t *cr, pid_t pid) 6117 { 6118 tcph_t *tcph; 6119 mblk_t *mp; 6120 ipaddr_t dstaddr = *dstaddrp; 6121 int32_t oldstate; 6122 uint16_t lport; 6123 int error = 0; 6124 tcp_stack_t *tcps = tcp->tcp_tcps; 6125 6126 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6127 6128 /* Check for attempt to connect to INADDR_ANY */ 6129 if (dstaddr == INADDR_ANY) { 6130 /* 6131 * SunOS 4.x and 4.3 BSD allow an application 6132 * to connect a TCP socket to INADDR_ANY. 6133 * When they do this, the kernel picks the 6134 * address of one interface and uses it 6135 * instead. The kernel usually ends up 6136 * picking the address of the loopback 6137 * interface. This is an undocumented feature. 6138 * However, we provide the same thing here 6139 * in order to have source and binary 6140 * compatibility with SunOS 4.x. 6141 * Update the T_CONN_REQ (sin/sin6) since it is used to 6142 * generate the T_CONN_CON. 6143 */ 6144 dstaddr = htonl(INADDR_LOOPBACK); 6145 *dstaddrp = dstaddr; 6146 } 6147 6148 /* Handle __sin6_src_id if socket not bound to an IP address */ 6149 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6150 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6151 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6152 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6153 tcp->tcp_ipha->ipha_src); 6154 } 6155 6156 /* 6157 * Don't let an endpoint connect to itself. Note that 6158 * the test here does not catch the case where the 6159 * source IP addr was left unspecified by the user. In 6160 * this case, the source addr is set in tcp_adapt_ire() 6161 * using the reply to the T_BIND message that we send 6162 * down to IP here and the check is repeated in tcp_rput_other. 6163 */ 6164 if (dstaddr == tcp->tcp_ipha->ipha_src && 6165 dstport == tcp->tcp_lport) { 6166 error = -TBADADDR; 6167 goto failed; 6168 } 6169 6170 /* 6171 * Verify the destination is allowed to receive packets 6172 * at the security label of the connection we are initiating. 6173 * tsol_check_dest() may create a new effective cred for this 6174 * connection with a modified label or label flags. 6175 */ 6176 if (is_system_labeled()) { 6177 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6178 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6179 &dstaddr, IPV4_VERSION, tcp->tcp_connp->conn_mac_exempt, 6180 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6181 if (error != EHOSTUNREACH) 6182 error = -TSYSERR; 6183 goto failed; 6184 } 6185 } 6186 6187 tcp->tcp_ipha->ipha_dst = dstaddr; 6188 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6189 6190 /* 6191 * Massage a source route if any putting the first hop 6192 * in iph_dst. Compute a starting value for the checksum which 6193 * takes into account that the original iph_dst should be 6194 * included in the checksum but that ip will include the 6195 * first hop in the source route in the tcp checksum. 6196 */ 6197 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6198 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6199 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6200 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6201 if ((int)tcp->tcp_sum < 0) 6202 tcp->tcp_sum--; 6203 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6204 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6205 (tcp->tcp_sum >> 16)); 6206 tcph = tcp->tcp_tcph; 6207 *(uint16_t *)tcph->th_fport = dstport; 6208 tcp->tcp_fport = dstport; 6209 6210 oldstate = tcp->tcp_state; 6211 /* 6212 * At this point the remote destination address and remote port fields 6213 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6214 * have to see which state tcp was in so we can take apropriate action. 6215 */ 6216 if (oldstate == TCPS_IDLE) { 6217 /* 6218 * We support a quick connect capability here, allowing 6219 * clients to transition directly from IDLE to SYN_SENT 6220 * tcp_bindi will pick an unused port, insert the connection 6221 * in the bind hash and transition to BOUND state. 6222 */ 6223 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6224 tcp, B_TRUE); 6225 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6226 B_FALSE, B_FALSE); 6227 if (lport == 0) { 6228 error = -TNOADDR; 6229 goto failed; 6230 } 6231 } 6232 tcp->tcp_state = TCPS_SYN_SENT; 6233 6234 mp = allocb(sizeof (ire_t), BPRI_HI); 6235 if (mp == NULL) { 6236 tcp->tcp_state = oldstate; 6237 error = ENOMEM; 6238 goto failed; 6239 } 6240 6241 mp->b_wptr += sizeof (ire_t); 6242 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6243 tcp->tcp_hard_binding = 1; 6244 6245 /* 6246 * We need to make sure that the conn_recv is set to a non-null 6247 * value before we insert the conn_t into the classifier table. 6248 * This is to avoid a race with an incoming packet which does 6249 * an ipcl_classify(). 6250 */ 6251 tcp->tcp_connp->conn_recv = tcp_input; 6252 6253 if (tcp->tcp_family == AF_INET) { 6254 error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp, 6255 IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport, 6256 tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6257 } else { 6258 in6_addr_t v6src; 6259 if (tcp->tcp_ipversion == IPV4_VERSION) { 6260 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6261 } else { 6262 v6src = tcp->tcp_ip6h->ip6_src; 6263 } 6264 error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp, 6265 IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6266 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6267 } 6268 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6269 tcp->tcp_active_open = 1; 6270 6271 6272 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6273 failed: 6274 /* return error ack and blow away saved option results if any */ 6275 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6276 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6277 return (error); 6278 } 6279 6280 /* 6281 * Handle connect to IPv6 destinations. 6282 */ 6283 static int 6284 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 6285 uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid) 6286 { 6287 tcph_t *tcph; 6288 mblk_t *mp; 6289 ip6_rthdr_t *rth; 6290 int32_t oldstate; 6291 uint16_t lport; 6292 tcp_stack_t *tcps = tcp->tcp_tcps; 6293 int error = 0; 6294 conn_t *connp = tcp->tcp_connp; 6295 6296 ASSERT(tcp->tcp_family == AF_INET6); 6297 6298 /* 6299 * If we're here, it means that the destination address is a native 6300 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6301 * reason why it might not be IPv6 is if the socket was bound to an 6302 * IPv4-mapped IPv6 address. 6303 */ 6304 if (tcp->tcp_ipversion != IPV6_VERSION) { 6305 return (-TBADADDR); 6306 } 6307 6308 /* 6309 * Interpret a zero destination to mean loopback. 6310 * Update the T_CONN_REQ (sin/sin6) since it is used to 6311 * generate the T_CONN_CON. 6312 */ 6313 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6314 *dstaddrp = ipv6_loopback; 6315 } 6316 6317 /* Handle __sin6_src_id if socket not bound to an IP address */ 6318 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6319 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6320 connp->conn_zoneid, tcps->tcps_netstack); 6321 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6322 } 6323 6324 /* 6325 * Take care of the scope_id now and add ip6i_t 6326 * if ip6i_t is not already allocated through TCP 6327 * sticky options. At this point tcp_ip6h does not 6328 * have dst info, thus use dstaddrp. 6329 */ 6330 if (scope_id != 0 && 6331 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6332 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6333 ip6i_t *ip6i; 6334 6335 ipp->ipp_ifindex = scope_id; 6336 ip6i = (ip6i_t *)tcp->tcp_iphc; 6337 6338 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6339 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6340 /* Already allocated */ 6341 ip6i->ip6i_flags |= IP6I_IFINDEX; 6342 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6343 ipp->ipp_fields |= IPPF_SCOPE_ID; 6344 } else { 6345 int reterr; 6346 6347 ipp->ipp_fields |= IPPF_SCOPE_ID; 6348 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6349 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6350 reterr = tcp_build_hdrs(tcp); 6351 if (reterr != 0) 6352 goto failed; 6353 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6354 } 6355 } 6356 6357 /* 6358 * Don't let an endpoint connect to itself. Note that 6359 * the test here does not catch the case where the 6360 * source IP addr was left unspecified by the user. In 6361 * this case, the source addr is set in tcp_adapt_ire() 6362 * using the reply to the T_BIND message that we send 6363 * down to IP here and the check is repeated in tcp_rput_other. 6364 */ 6365 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6366 (dstport == tcp->tcp_lport)) { 6367 error = -TBADADDR; 6368 goto failed; 6369 } 6370 6371 /* 6372 * Verify the destination is allowed to receive packets 6373 * at the security label of the connection we are initiating. 6374 * check_dest may create a new effective cred for this 6375 * connection with a modified label or label flags. 6376 */ 6377 if (is_system_labeled()) { 6378 ASSERT(tcp->tcp_connp->conn_effective_cred == NULL); 6379 if ((error = tsol_check_dest(CONN_CRED(tcp->tcp_connp), 6380 dstaddrp, IPV6_VERSION, tcp->tcp_connp->conn_mac_exempt, 6381 &tcp->tcp_connp->conn_effective_cred)) != 0) { 6382 if (error != EHOSTUNREACH) 6383 error = -TSYSERR; 6384 goto failed; 6385 } 6386 } 6387 6388 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6389 tcp->tcp_remote_v6 = *dstaddrp; 6390 tcp->tcp_ip6h->ip6_vcf = 6391 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6392 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6393 6394 /* 6395 * Massage a routing header (if present) putting the first hop 6396 * in ip6_dst. Compute a starting value for the checksum which 6397 * takes into account that the original ip6_dst should be 6398 * included in the checksum but that ip will include the 6399 * first hop in the source route in the tcp checksum. 6400 */ 6401 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6402 if (rth != NULL) { 6403 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6404 tcps->tcps_netstack); 6405 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6406 (tcp->tcp_sum >> 16)); 6407 } else { 6408 tcp->tcp_sum = 0; 6409 } 6410 6411 tcph = tcp->tcp_tcph; 6412 *(uint16_t *)tcph->th_fport = dstport; 6413 tcp->tcp_fport = dstport; 6414 6415 oldstate = tcp->tcp_state; 6416 /* 6417 * At this point the remote destination address and remote port fields 6418 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6419 * have to see which state tcp was in so we can take apropriate action. 6420 */ 6421 if (oldstate == TCPS_IDLE) { 6422 /* 6423 * We support a quick connect capability here, allowing 6424 * clients to transition directly from IDLE to SYN_SENT 6425 * tcp_bindi will pick an unused port, insert the connection 6426 * in the bind hash and transition to BOUND state. 6427 */ 6428 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6429 tcp, B_TRUE); 6430 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6431 B_FALSE, B_FALSE); 6432 if (lport == 0) { 6433 error = -TNOADDR; 6434 goto failed; 6435 } 6436 } 6437 tcp->tcp_state = TCPS_SYN_SENT; 6438 6439 mp = allocb(sizeof (ire_t), BPRI_HI); 6440 if (mp != NULL) { 6441 in6_addr_t v6src; 6442 6443 mp->b_wptr += sizeof (ire_t); 6444 mp->b_datap->db_type = IRE_DB_REQ_TYPE; 6445 6446 tcp->tcp_hard_binding = 1; 6447 6448 /* 6449 * We need to make sure that the conn_recv is set to a non-null 6450 * value before we insert the conn_t into the classifier table. 6451 * This is to avoid a race with an incoming packet which does 6452 * an ipcl_classify(). 6453 */ 6454 tcp->tcp_connp->conn_recv = tcp_input; 6455 6456 if (tcp->tcp_ipversion == IPV4_VERSION) { 6457 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src); 6458 } else { 6459 v6src = tcp->tcp_ip6h->ip6_src; 6460 } 6461 error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP, 6462 &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6, 6463 &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr); 6464 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6465 tcp->tcp_active_open = 1; 6466 6467 return (tcp_post_ip_bind(tcp, mp, error, cr, pid)); 6468 } 6469 /* Error case */ 6470 tcp->tcp_state = oldstate; 6471 error = ENOMEM; 6472 6473 failed: 6474 /* return error ack and blow away saved option results if any */ 6475 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6476 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6477 return (error); 6478 } 6479 6480 /* 6481 * We need a stream q for detached closing tcp connections 6482 * to use. Our client hereby indicates that this q is the 6483 * one to use. 6484 */ 6485 static void 6486 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6487 { 6488 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6489 queue_t *q = tcp->tcp_wq; 6490 tcp_stack_t *tcps = tcp->tcp_tcps; 6491 6492 #ifdef NS_DEBUG 6493 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6494 tcps->tcps_netstack->netstack_stackid); 6495 #endif 6496 mp->b_datap->db_type = M_IOCACK; 6497 iocp->ioc_count = 0; 6498 mutex_enter(&tcps->tcps_g_q_lock); 6499 if (tcps->tcps_g_q != NULL) { 6500 mutex_exit(&tcps->tcps_g_q_lock); 6501 iocp->ioc_error = EALREADY; 6502 } else { 6503 int error = 0; 6504 conn_t *connp = tcp->tcp_connp; 6505 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 6506 6507 tcps->tcps_g_q = tcp->tcp_rq; 6508 mutex_exit(&tcps->tcps_g_q_lock); 6509 iocp->ioc_error = 0; 6510 iocp->ioc_rval = 0; 6511 /* 6512 * We are passing tcp_sticky_ipp as NULL 6513 * as it is not useful for tcp_default queue 6514 * 6515 * Set conn_recv just in case. 6516 */ 6517 tcp->tcp_connp->conn_recv = tcp_conn_request; 6518 6519 ASSERT(connp->conn_af_isv6); 6520 connp->conn_ulp = IPPROTO_TCP; 6521 6522 if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head != 6523 NULL || connp->conn_mac_exempt) { 6524 error = -TBADADDR; 6525 } else { 6526 connp->conn_srcv6 = ipv6_all_zeros; 6527 ipcl_proto_insert_v6(connp, IPPROTO_TCP); 6528 } 6529 6530 (void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0); 6531 } 6532 qreply(q, mp); 6533 } 6534 6535 static int 6536 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 6537 { 6538 tcp_t *ltcp = NULL; 6539 conn_t *connp; 6540 tcp_stack_t *tcps = tcp->tcp_tcps; 6541 6542 /* 6543 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6544 * when the stream is in BOUND state. Do not send a reset, 6545 * since the destination IP address is not valid, and it can 6546 * be the initialized value of all zeros (broadcast address). 6547 * 6548 * XXX There won't be any pending bind request to IP. 6549 */ 6550 if (tcp->tcp_state <= TCPS_BOUND) { 6551 if (tcp->tcp_debug) { 6552 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6553 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6554 } 6555 return (TOUTSTATE); 6556 } 6557 6558 6559 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6560 6561 /* 6562 * According to TPI, for non-listeners, ignore seqnum 6563 * and disconnect. 6564 * Following interpretation of -1 seqnum is historical 6565 * and implied TPI ? (TPI only states that for T_CONN_IND, 6566 * a valid seqnum should not be -1). 6567 * 6568 * -1 means disconnect everything 6569 * regardless even on a listener. 6570 */ 6571 6572 int old_state = tcp->tcp_state; 6573 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6574 6575 /* 6576 * The connection can't be on the tcp_time_wait_head list 6577 * since it is not detached. 6578 */ 6579 ASSERT(tcp->tcp_time_wait_next == NULL); 6580 ASSERT(tcp->tcp_time_wait_prev == NULL); 6581 ASSERT(tcp->tcp_time_wait_expire == 0); 6582 ltcp = NULL; 6583 /* 6584 * If it used to be a listener, check to make sure no one else 6585 * has taken the port before switching back to LISTEN state. 6586 */ 6587 if (tcp->tcp_ipversion == IPV4_VERSION) { 6588 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6589 tcp->tcp_ipha->ipha_src, 6590 tcp->tcp_connp->conn_zoneid, ipst); 6591 if (connp != NULL) 6592 ltcp = connp->conn_tcp; 6593 } else { 6594 /* Allow tcp_bound_if listeners? */ 6595 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6596 &tcp->tcp_ip6h->ip6_src, 0, 6597 tcp->tcp_connp->conn_zoneid, ipst); 6598 if (connp != NULL) 6599 ltcp = connp->conn_tcp; 6600 } 6601 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6602 tcp->tcp_state = TCPS_LISTEN; 6603 } else if (old_state > TCPS_BOUND) { 6604 tcp->tcp_conn_req_max = 0; 6605 tcp->tcp_state = TCPS_BOUND; 6606 } 6607 if (ltcp != NULL) 6608 CONN_DEC_REF(ltcp->tcp_connp); 6609 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6610 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6611 } else if (old_state == TCPS_ESTABLISHED || 6612 old_state == TCPS_CLOSE_WAIT) { 6613 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6614 } 6615 6616 if (tcp->tcp_fused) 6617 tcp_unfuse(tcp); 6618 6619 mutex_enter(&tcp->tcp_eager_lock); 6620 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6621 (tcp->tcp_conn_req_cnt_q != 0)) { 6622 tcp_eager_cleanup(tcp, 0); 6623 } 6624 mutex_exit(&tcp->tcp_eager_lock); 6625 6626 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6627 tcp->tcp_rnxt, TH_RST | TH_ACK); 6628 6629 tcp_reinit(tcp); 6630 6631 return (0); 6632 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6633 return (TBADSEQ); 6634 } 6635 return (0); 6636 } 6637 6638 /* 6639 * Our client hereby directs us to reject the connection request 6640 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6641 * of sending the appropriate RST, not an ICMP error. 6642 */ 6643 static void 6644 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6645 { 6646 t_scalar_t seqnum; 6647 int error; 6648 6649 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6650 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6651 tcp_err_ack(tcp, mp, TPROTO, 0); 6652 return; 6653 } 6654 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6655 error = tcp_disconnect_common(tcp, seqnum); 6656 if (error != 0) 6657 tcp_err_ack(tcp, mp, error, 0); 6658 else { 6659 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6660 /* Send M_FLUSH according to TPI */ 6661 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6662 } 6663 mp = mi_tpi_ok_ack_alloc(mp); 6664 if (mp) 6665 putnext(tcp->tcp_rq, mp); 6666 } 6667 } 6668 6669 /* 6670 * Diagnostic routine used to return a string associated with the tcp state. 6671 * Note that if the caller does not supply a buffer, it will use an internal 6672 * static string. This means that if multiple threads call this function at 6673 * the same time, output can be corrupted... Note also that this function 6674 * does not check the size of the supplied buffer. The caller has to make 6675 * sure that it is big enough. 6676 */ 6677 static char * 6678 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6679 { 6680 char buf1[30]; 6681 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6682 char *buf; 6683 char *cp; 6684 in6_addr_t local, remote; 6685 char local_addrbuf[INET6_ADDRSTRLEN]; 6686 char remote_addrbuf[INET6_ADDRSTRLEN]; 6687 6688 if (sup_buf != NULL) 6689 buf = sup_buf; 6690 else 6691 buf = priv_buf; 6692 6693 if (tcp == NULL) 6694 return ("NULL_TCP"); 6695 switch (tcp->tcp_state) { 6696 case TCPS_CLOSED: 6697 cp = "TCP_CLOSED"; 6698 break; 6699 case TCPS_IDLE: 6700 cp = "TCP_IDLE"; 6701 break; 6702 case TCPS_BOUND: 6703 cp = "TCP_BOUND"; 6704 break; 6705 case TCPS_LISTEN: 6706 cp = "TCP_LISTEN"; 6707 break; 6708 case TCPS_SYN_SENT: 6709 cp = "TCP_SYN_SENT"; 6710 break; 6711 case TCPS_SYN_RCVD: 6712 cp = "TCP_SYN_RCVD"; 6713 break; 6714 case TCPS_ESTABLISHED: 6715 cp = "TCP_ESTABLISHED"; 6716 break; 6717 case TCPS_CLOSE_WAIT: 6718 cp = "TCP_CLOSE_WAIT"; 6719 break; 6720 case TCPS_FIN_WAIT_1: 6721 cp = "TCP_FIN_WAIT_1"; 6722 break; 6723 case TCPS_CLOSING: 6724 cp = "TCP_CLOSING"; 6725 break; 6726 case TCPS_LAST_ACK: 6727 cp = "TCP_LAST_ACK"; 6728 break; 6729 case TCPS_FIN_WAIT_2: 6730 cp = "TCP_FIN_WAIT_2"; 6731 break; 6732 case TCPS_TIME_WAIT: 6733 cp = "TCP_TIME_WAIT"; 6734 break; 6735 default: 6736 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 6737 cp = buf1; 6738 break; 6739 } 6740 switch (format) { 6741 case DISP_ADDR_AND_PORT: 6742 if (tcp->tcp_ipversion == IPV4_VERSION) { 6743 /* 6744 * Note that we use the remote address in the tcp_b 6745 * structure. This means that it will print out 6746 * the real destination address, not the next hop's 6747 * address if source routing is used. 6748 */ 6749 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 6750 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 6751 6752 } else { 6753 local = tcp->tcp_ip_src_v6; 6754 remote = tcp->tcp_remote_v6; 6755 } 6756 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 6757 sizeof (local_addrbuf)); 6758 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 6759 sizeof (remote_addrbuf)); 6760 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 6761 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 6762 ntohs(tcp->tcp_fport), cp); 6763 break; 6764 case DISP_PORT_ONLY: 6765 default: 6766 (void) mi_sprintf(buf, "[%u, %u] %s", 6767 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 6768 break; 6769 } 6770 6771 return (buf); 6772 } 6773 6774 /* 6775 * Called via squeue to get on to eager's perimeter. It sends a 6776 * TH_RST if eager is in the fanout table. The listener wants the 6777 * eager to disappear either by means of tcp_eager_blowoff() or 6778 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 6779 * called (via squeue) if the eager cannot be inserted in the 6780 * fanout table in tcp_conn_request(). 6781 */ 6782 /* ARGSUSED */ 6783 void 6784 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 6785 { 6786 conn_t *econnp = (conn_t *)arg; 6787 tcp_t *eager = econnp->conn_tcp; 6788 tcp_t *listener = eager->tcp_listener; 6789 tcp_stack_t *tcps = eager->tcp_tcps; 6790 6791 /* 6792 * We could be called because listener is closing. Since 6793 * the eager is using listener's queue's, its not safe. 6794 * Better use the default queue just to send the TH_RST 6795 * out. 6796 */ 6797 ASSERT(tcps->tcps_g_q != NULL); 6798 eager->tcp_rq = tcps->tcps_g_q; 6799 eager->tcp_wq = WR(tcps->tcps_g_q); 6800 6801 /* 6802 * An eager's conn_fanout will be NULL if it's a duplicate 6803 * for an existing 4-tuples in the conn fanout table. 6804 * We don't want to send an RST out in such case. 6805 */ 6806 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 6807 tcp_xmit_ctl("tcp_eager_kill, can't wait", 6808 eager, eager->tcp_snxt, 0, TH_RST); 6809 } 6810 6811 /* We are here because listener wants this eager gone */ 6812 if (listener != NULL) { 6813 mutex_enter(&listener->tcp_eager_lock); 6814 tcp_eager_unlink(eager); 6815 if (eager->tcp_tconnind_started) { 6816 /* 6817 * The eager has sent a conn_ind up to the 6818 * listener but listener decides to close 6819 * instead. We need to drop the extra ref 6820 * placed on eager in tcp_rput_data() before 6821 * sending the conn_ind to listener. 6822 */ 6823 CONN_DEC_REF(econnp); 6824 } 6825 mutex_exit(&listener->tcp_eager_lock); 6826 CONN_DEC_REF(listener->tcp_connp); 6827 } 6828 6829 if (eager->tcp_state != TCPS_CLOSED) 6830 tcp_close_detached(eager); 6831 } 6832 6833 /* 6834 * Reset any eager connection hanging off this listener marked 6835 * with 'seqnum' and then reclaim it's resources. 6836 */ 6837 static boolean_t 6838 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 6839 { 6840 tcp_t *eager; 6841 mblk_t *mp; 6842 tcp_stack_t *tcps = listener->tcp_tcps; 6843 6844 TCP_STAT(tcps, tcp_eager_blowoff_calls); 6845 eager = listener; 6846 mutex_enter(&listener->tcp_eager_lock); 6847 do { 6848 eager = eager->tcp_eager_next_q; 6849 if (eager == NULL) { 6850 mutex_exit(&listener->tcp_eager_lock); 6851 return (B_FALSE); 6852 } 6853 } while (eager->tcp_conn_req_seqnum != seqnum); 6854 6855 if (eager->tcp_closemp_used) { 6856 mutex_exit(&listener->tcp_eager_lock); 6857 return (B_TRUE); 6858 } 6859 eager->tcp_closemp_used = B_TRUE; 6860 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6861 CONN_INC_REF(eager->tcp_connp); 6862 mutex_exit(&listener->tcp_eager_lock); 6863 mp = &eager->tcp_closemp; 6864 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 6865 eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF); 6866 return (B_TRUE); 6867 } 6868 6869 /* 6870 * Reset any eager connection hanging off this listener 6871 * and then reclaim it's resources. 6872 */ 6873 static void 6874 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 6875 { 6876 tcp_t *eager; 6877 mblk_t *mp; 6878 tcp_stack_t *tcps = listener->tcp_tcps; 6879 6880 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6881 6882 if (!q0_only) { 6883 /* First cleanup q */ 6884 TCP_STAT(tcps, tcp_eager_blowoff_q); 6885 eager = listener->tcp_eager_next_q; 6886 while (eager != NULL) { 6887 if (!eager->tcp_closemp_used) { 6888 eager->tcp_closemp_used = B_TRUE; 6889 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6890 CONN_INC_REF(eager->tcp_connp); 6891 mp = &eager->tcp_closemp; 6892 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6893 tcp_eager_kill, eager->tcp_connp, 6894 SQ_FILL, SQTAG_TCP_EAGER_CLEANUP); 6895 } 6896 eager = eager->tcp_eager_next_q; 6897 } 6898 } 6899 /* Then cleanup q0 */ 6900 TCP_STAT(tcps, tcp_eager_blowoff_q0); 6901 eager = listener->tcp_eager_next_q0; 6902 while (eager != listener) { 6903 if (!eager->tcp_closemp_used) { 6904 eager->tcp_closemp_used = B_TRUE; 6905 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6906 CONN_INC_REF(eager->tcp_connp); 6907 mp = &eager->tcp_closemp; 6908 SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, 6909 tcp_eager_kill, eager->tcp_connp, SQ_FILL, 6910 SQTAG_TCP_EAGER_CLEANUP_Q0); 6911 } 6912 eager = eager->tcp_eager_next_q0; 6913 } 6914 } 6915 6916 /* 6917 * If we are an eager connection hanging off a listener that hasn't 6918 * formally accepted the connection yet, get off his list and blow off 6919 * any data that we have accumulated. 6920 */ 6921 static void 6922 tcp_eager_unlink(tcp_t *tcp) 6923 { 6924 tcp_t *listener = tcp->tcp_listener; 6925 6926 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 6927 ASSERT(listener != NULL); 6928 if (tcp->tcp_eager_next_q0 != NULL) { 6929 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 6930 6931 /* Remove the eager tcp from q0 */ 6932 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 6933 tcp->tcp_eager_prev_q0; 6934 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 6935 tcp->tcp_eager_next_q0; 6936 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 6937 listener->tcp_conn_req_cnt_q0--; 6938 6939 tcp->tcp_eager_next_q0 = NULL; 6940 tcp->tcp_eager_prev_q0 = NULL; 6941 6942 /* 6943 * Take the eager out, if it is in the list of droppable 6944 * eagers. 6945 */ 6946 MAKE_UNDROPPABLE(tcp); 6947 6948 if (tcp->tcp_syn_rcvd_timeout != 0) { 6949 /* we have timed out before */ 6950 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 6951 listener->tcp_syn_rcvd_timeout--; 6952 } 6953 } else { 6954 tcp_t **tcpp = &listener->tcp_eager_next_q; 6955 tcp_t *prev = NULL; 6956 6957 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 6958 if (tcpp[0] == tcp) { 6959 if (listener->tcp_eager_last_q == tcp) { 6960 /* 6961 * If we are unlinking the last 6962 * element on the list, adjust 6963 * tail pointer. Set tail pointer 6964 * to nil when list is empty. 6965 */ 6966 ASSERT(tcp->tcp_eager_next_q == NULL); 6967 if (listener->tcp_eager_last_q == 6968 listener->tcp_eager_next_q) { 6969 listener->tcp_eager_last_q = 6970 NULL; 6971 } else { 6972 /* 6973 * We won't get here if there 6974 * is only one eager in the 6975 * list. 6976 */ 6977 ASSERT(prev != NULL); 6978 listener->tcp_eager_last_q = 6979 prev; 6980 } 6981 } 6982 tcpp[0] = tcp->tcp_eager_next_q; 6983 tcp->tcp_eager_next_q = NULL; 6984 tcp->tcp_eager_last_q = NULL; 6985 ASSERT(listener->tcp_conn_req_cnt_q > 0); 6986 listener->tcp_conn_req_cnt_q--; 6987 break; 6988 } 6989 prev = tcpp[0]; 6990 } 6991 } 6992 tcp->tcp_listener = NULL; 6993 } 6994 6995 /* Shorthand to generate and send TPI error acks to our client */ 6996 static void 6997 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 6998 { 6999 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7000 putnext(tcp->tcp_rq, mp); 7001 } 7002 7003 /* Shorthand to generate and send TPI error acks to our client */ 7004 static void 7005 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7006 int t_error, int sys_error) 7007 { 7008 struct T_error_ack *teackp; 7009 7010 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7011 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7012 teackp = (struct T_error_ack *)mp->b_rptr; 7013 teackp->ERROR_prim = primitive; 7014 teackp->TLI_error = t_error; 7015 teackp->UNIX_error = sys_error; 7016 putnext(tcp->tcp_rq, mp); 7017 } 7018 } 7019 7020 /* 7021 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7022 * but instead the code relies on: 7023 * - the fact that the address of the array and its size never changes 7024 * - the atomic assignment of the elements of the array 7025 */ 7026 /* ARGSUSED */ 7027 static int 7028 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7029 { 7030 int i; 7031 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7032 7033 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7034 if (tcps->tcps_g_epriv_ports[i] != 0) 7035 (void) mi_mpprintf(mp, "%d ", 7036 tcps->tcps_g_epriv_ports[i]); 7037 } 7038 return (0); 7039 } 7040 7041 /* 7042 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7043 * threads from changing it at the same time. 7044 */ 7045 /* ARGSUSED */ 7046 static int 7047 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7048 cred_t *cr) 7049 { 7050 long new_value; 7051 int i; 7052 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7053 7054 /* 7055 * Fail the request if the new value does not lie within the 7056 * port number limits. 7057 */ 7058 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7059 new_value <= 0 || new_value >= 65536) { 7060 return (EINVAL); 7061 } 7062 7063 mutex_enter(&tcps->tcps_epriv_port_lock); 7064 /* Check if the value is already in the list */ 7065 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7066 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7067 mutex_exit(&tcps->tcps_epriv_port_lock); 7068 return (EEXIST); 7069 } 7070 } 7071 /* Find an empty slot */ 7072 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7073 if (tcps->tcps_g_epriv_ports[i] == 0) 7074 break; 7075 } 7076 if (i == tcps->tcps_g_num_epriv_ports) { 7077 mutex_exit(&tcps->tcps_epriv_port_lock); 7078 return (EOVERFLOW); 7079 } 7080 /* Set the new value */ 7081 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7082 mutex_exit(&tcps->tcps_epriv_port_lock); 7083 return (0); 7084 } 7085 7086 /* 7087 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7088 * threads from changing it at the same time. 7089 */ 7090 /* ARGSUSED */ 7091 static int 7092 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7093 cred_t *cr) 7094 { 7095 long new_value; 7096 int i; 7097 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7098 7099 /* 7100 * Fail the request if the new value does not lie within the 7101 * port number limits. 7102 */ 7103 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7104 new_value >= 65536) { 7105 return (EINVAL); 7106 } 7107 7108 mutex_enter(&tcps->tcps_epriv_port_lock); 7109 /* Check that the value is already in the list */ 7110 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7111 if (tcps->tcps_g_epriv_ports[i] == new_value) 7112 break; 7113 } 7114 if (i == tcps->tcps_g_num_epriv_ports) { 7115 mutex_exit(&tcps->tcps_epriv_port_lock); 7116 return (ESRCH); 7117 } 7118 /* Clear the value */ 7119 tcps->tcps_g_epriv_ports[i] = 0; 7120 mutex_exit(&tcps->tcps_epriv_port_lock); 7121 return (0); 7122 } 7123 7124 /* Return the TPI/TLI equivalent of our current tcp_state */ 7125 static int 7126 tcp_tpistate(tcp_t *tcp) 7127 { 7128 switch (tcp->tcp_state) { 7129 case TCPS_IDLE: 7130 return (TS_UNBND); 7131 case TCPS_LISTEN: 7132 /* 7133 * Return whether there are outstanding T_CONN_IND waiting 7134 * for the matching T_CONN_RES. Therefore don't count q0. 7135 */ 7136 if (tcp->tcp_conn_req_cnt_q > 0) 7137 return (TS_WRES_CIND); 7138 else 7139 return (TS_IDLE); 7140 case TCPS_BOUND: 7141 return (TS_IDLE); 7142 case TCPS_SYN_SENT: 7143 return (TS_WCON_CREQ); 7144 case TCPS_SYN_RCVD: 7145 /* 7146 * Note: assumption: this has to the active open SYN_RCVD. 7147 * The passive instance is detached in SYN_RCVD stage of 7148 * incoming connection processing so we cannot get request 7149 * for T_info_ack on it. 7150 */ 7151 return (TS_WACK_CRES); 7152 case TCPS_ESTABLISHED: 7153 return (TS_DATA_XFER); 7154 case TCPS_CLOSE_WAIT: 7155 return (TS_WREQ_ORDREL); 7156 case TCPS_FIN_WAIT_1: 7157 return (TS_WIND_ORDREL); 7158 case TCPS_FIN_WAIT_2: 7159 return (TS_WIND_ORDREL); 7160 7161 case TCPS_CLOSING: 7162 case TCPS_LAST_ACK: 7163 case TCPS_TIME_WAIT: 7164 case TCPS_CLOSED: 7165 /* 7166 * Following TS_WACK_DREQ7 is a rendition of "not 7167 * yet TS_IDLE" TPI state. There is no best match to any 7168 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7169 * choose a value chosen that will map to TLI/XTI level 7170 * state of TSTATECHNG (state is process of changing) which 7171 * captures what this dummy state represents. 7172 */ 7173 return (TS_WACK_DREQ7); 7174 default: 7175 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7176 tcp->tcp_state, tcp_display(tcp, NULL, 7177 DISP_PORT_ONLY)); 7178 return (TS_UNBND); 7179 } 7180 } 7181 7182 static void 7183 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7184 { 7185 tcp_stack_t *tcps = tcp->tcp_tcps; 7186 7187 if (tcp->tcp_family == AF_INET6) 7188 *tia = tcp_g_t_info_ack_v6; 7189 else 7190 *tia = tcp_g_t_info_ack; 7191 tia->CURRENT_state = tcp_tpistate(tcp); 7192 tia->OPT_size = tcp_max_optsize; 7193 if (tcp->tcp_mss == 0) { 7194 /* Not yet set - tcp_open does not set mss */ 7195 if (tcp->tcp_ipversion == IPV4_VERSION) 7196 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7197 else 7198 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7199 } else { 7200 tia->TIDU_size = tcp->tcp_mss; 7201 } 7202 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7203 } 7204 7205 static void 7206 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap, 7207 t_uscalar_t cap_bits1) 7208 { 7209 tcap->CAP_bits1 = 0; 7210 7211 if (cap_bits1 & TC1_INFO) { 7212 tcp_copy_info(&tcap->INFO_ack, tcp); 7213 tcap->CAP_bits1 |= TC1_INFO; 7214 } 7215 7216 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7217 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7218 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7219 } 7220 7221 } 7222 7223 /* 7224 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7225 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7226 * tcp_g_t_info_ack. The current state of the stream is copied from 7227 * tcp_state. 7228 */ 7229 static void 7230 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7231 { 7232 t_uscalar_t cap_bits1; 7233 struct T_capability_ack *tcap; 7234 7235 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7236 freemsg(mp); 7237 return; 7238 } 7239 7240 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7241 7242 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7243 mp->b_datap->db_type, T_CAPABILITY_ACK); 7244 if (mp == NULL) 7245 return; 7246 7247 tcap = (struct T_capability_ack *)mp->b_rptr; 7248 tcp_do_capability_ack(tcp, tcap, cap_bits1); 7249 7250 putnext(tcp->tcp_rq, mp); 7251 } 7252 7253 /* 7254 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7255 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7256 * The current state of the stream is copied from tcp_state. 7257 */ 7258 static void 7259 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7260 { 7261 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7262 T_INFO_ACK); 7263 if (!mp) { 7264 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7265 return; 7266 } 7267 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7268 putnext(tcp->tcp_rq, mp); 7269 } 7270 7271 /* Respond to the TPI addr request */ 7272 static void 7273 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7274 { 7275 sin_t *sin; 7276 mblk_t *ackmp; 7277 struct T_addr_ack *taa; 7278 7279 /* Make it large enough for worst case */ 7280 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7281 2 * sizeof (sin6_t), 1); 7282 if (ackmp == NULL) { 7283 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7284 return; 7285 } 7286 7287 if (tcp->tcp_ipversion == IPV6_VERSION) { 7288 tcp_addr_req_ipv6(tcp, ackmp); 7289 return; 7290 } 7291 taa = (struct T_addr_ack *)ackmp->b_rptr; 7292 7293 bzero(taa, sizeof (struct T_addr_ack)); 7294 ackmp->b_wptr = (uchar_t *)&taa[1]; 7295 7296 taa->PRIM_type = T_ADDR_ACK; 7297 ackmp->b_datap->db_type = M_PCPROTO; 7298 7299 /* 7300 * Note: Following code assumes 32 bit alignment of basic 7301 * data structures like sin_t and struct T_addr_ack. 7302 */ 7303 if (tcp->tcp_state >= TCPS_BOUND) { 7304 /* 7305 * Fill in local address 7306 */ 7307 taa->LOCADDR_length = sizeof (sin_t); 7308 taa->LOCADDR_offset = sizeof (*taa); 7309 7310 sin = (sin_t *)&taa[1]; 7311 7312 /* Fill zeroes and then intialize non-zero fields */ 7313 *sin = sin_null; 7314 7315 sin->sin_family = AF_INET; 7316 7317 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7318 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7319 7320 ackmp->b_wptr = (uchar_t *)&sin[1]; 7321 7322 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7323 /* 7324 * Fill in Remote address 7325 */ 7326 taa->REMADDR_length = sizeof (sin_t); 7327 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7328 taa->LOCADDR_length); 7329 7330 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7331 *sin = sin_null; 7332 sin->sin_family = AF_INET; 7333 sin->sin_addr.s_addr = tcp->tcp_remote; 7334 sin->sin_port = tcp->tcp_fport; 7335 7336 ackmp->b_wptr = (uchar_t *)&sin[1]; 7337 } 7338 } 7339 putnext(tcp->tcp_rq, ackmp); 7340 } 7341 7342 /* Assumes that tcp_addr_req gets enough space and alignment */ 7343 static void 7344 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7345 { 7346 sin6_t *sin6; 7347 struct T_addr_ack *taa; 7348 7349 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7350 ASSERT(OK_32PTR(ackmp->b_rptr)); 7351 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7352 2 * sizeof (sin6_t)); 7353 7354 taa = (struct T_addr_ack *)ackmp->b_rptr; 7355 7356 bzero(taa, sizeof (struct T_addr_ack)); 7357 ackmp->b_wptr = (uchar_t *)&taa[1]; 7358 7359 taa->PRIM_type = T_ADDR_ACK; 7360 ackmp->b_datap->db_type = M_PCPROTO; 7361 7362 /* 7363 * Note: Following code assumes 32 bit alignment of basic 7364 * data structures like sin6_t and struct T_addr_ack. 7365 */ 7366 if (tcp->tcp_state >= TCPS_BOUND) { 7367 /* 7368 * Fill in local address 7369 */ 7370 taa->LOCADDR_length = sizeof (sin6_t); 7371 taa->LOCADDR_offset = sizeof (*taa); 7372 7373 sin6 = (sin6_t *)&taa[1]; 7374 *sin6 = sin6_null; 7375 7376 sin6->sin6_family = AF_INET6; 7377 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7378 sin6->sin6_port = tcp->tcp_lport; 7379 7380 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7381 7382 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7383 /* 7384 * Fill in Remote address 7385 */ 7386 taa->REMADDR_length = sizeof (sin6_t); 7387 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7388 taa->LOCADDR_length); 7389 7390 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7391 *sin6 = sin6_null; 7392 sin6->sin6_family = AF_INET6; 7393 sin6->sin6_flowinfo = 7394 tcp->tcp_ip6h->ip6_vcf & 7395 ~IPV6_VERS_AND_FLOW_MASK; 7396 sin6->sin6_addr = tcp->tcp_remote_v6; 7397 sin6->sin6_port = tcp->tcp_fport; 7398 7399 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7400 } 7401 } 7402 putnext(tcp->tcp_rq, ackmp); 7403 } 7404 7405 /* 7406 * Handle reinitialization of a tcp structure. 7407 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7408 */ 7409 static void 7410 tcp_reinit(tcp_t *tcp) 7411 { 7412 mblk_t *mp; 7413 int err; 7414 tcp_stack_t *tcps = tcp->tcp_tcps; 7415 7416 TCP_STAT(tcps, tcp_reinit_calls); 7417 7418 /* tcp_reinit should never be called for detached tcp_t's */ 7419 ASSERT(tcp->tcp_listener == NULL); 7420 ASSERT((tcp->tcp_family == AF_INET && 7421 tcp->tcp_ipversion == IPV4_VERSION) || 7422 (tcp->tcp_family == AF_INET6 && 7423 (tcp->tcp_ipversion == IPV4_VERSION || 7424 tcp->tcp_ipversion == IPV6_VERSION))); 7425 7426 /* Cancel outstanding timers */ 7427 tcp_timers_stop(tcp); 7428 7429 /* 7430 * Reset everything in the state vector, after updating global 7431 * MIB data from instance counters. 7432 */ 7433 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7434 tcp->tcp_ibsegs = 0; 7435 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7436 tcp->tcp_obsegs = 0; 7437 7438 tcp_close_mpp(&tcp->tcp_xmit_head); 7439 if (tcp->tcp_snd_zcopy_aware) 7440 tcp_zcopy_notify(tcp); 7441 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7442 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7443 mutex_enter(&tcp->tcp_non_sq_lock); 7444 if (tcp->tcp_flow_stopped && 7445 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7446 tcp_clrqfull(tcp); 7447 } 7448 mutex_exit(&tcp->tcp_non_sq_lock); 7449 tcp_close_mpp(&tcp->tcp_reass_head); 7450 tcp->tcp_reass_tail = NULL; 7451 if (tcp->tcp_rcv_list != NULL) { 7452 /* Free b_next chain */ 7453 tcp_close_mpp(&tcp->tcp_rcv_list); 7454 tcp->tcp_rcv_last_head = NULL; 7455 tcp->tcp_rcv_last_tail = NULL; 7456 tcp->tcp_rcv_cnt = 0; 7457 } 7458 tcp->tcp_rcv_last_tail = NULL; 7459 7460 if ((mp = tcp->tcp_urp_mp) != NULL) { 7461 freemsg(mp); 7462 tcp->tcp_urp_mp = NULL; 7463 } 7464 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7465 freemsg(mp); 7466 tcp->tcp_urp_mark_mp = NULL; 7467 } 7468 if (tcp->tcp_fused_sigurg_mp != NULL) { 7469 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7470 freeb(tcp->tcp_fused_sigurg_mp); 7471 tcp->tcp_fused_sigurg_mp = NULL; 7472 } 7473 if (tcp->tcp_ordrel_mp != NULL) { 7474 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 7475 freeb(tcp->tcp_ordrel_mp); 7476 tcp->tcp_ordrel_mp = NULL; 7477 } 7478 7479 /* 7480 * Following is a union with two members which are 7481 * identical types and size so the following cleanup 7482 * is enough. 7483 */ 7484 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7485 7486 CL_INET_DISCONNECT(tcp->tcp_connp, tcp); 7487 7488 /* 7489 * The connection can't be on the tcp_time_wait_head list 7490 * since it is not detached. 7491 */ 7492 ASSERT(tcp->tcp_time_wait_next == NULL); 7493 ASSERT(tcp->tcp_time_wait_prev == NULL); 7494 ASSERT(tcp->tcp_time_wait_expire == 0); 7495 7496 if (tcp->tcp_kssl_pending) { 7497 tcp->tcp_kssl_pending = B_FALSE; 7498 7499 /* Don't reset if the initialized by bind. */ 7500 if (tcp->tcp_kssl_ent != NULL) { 7501 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7502 KSSL_NO_PROXY); 7503 } 7504 } 7505 if (tcp->tcp_kssl_ctx != NULL) { 7506 kssl_release_ctx(tcp->tcp_kssl_ctx); 7507 tcp->tcp_kssl_ctx = NULL; 7508 } 7509 7510 /* 7511 * Reset/preserve other values 7512 */ 7513 tcp_reinit_values(tcp); 7514 ipcl_hash_remove(tcp->tcp_connp); 7515 conn_delete_ire(tcp->tcp_connp, NULL); 7516 tcp_ipsec_cleanup(tcp); 7517 7518 if (tcp->tcp_connp->conn_effective_cred != NULL) { 7519 crfree(tcp->tcp_connp->conn_effective_cred); 7520 tcp->tcp_connp->conn_effective_cred = NULL; 7521 } 7522 7523 if (tcp->tcp_conn_req_max != 0) { 7524 /* 7525 * This is the case when a TLI program uses the same 7526 * transport end point to accept a connection. This 7527 * makes the TCP both a listener and acceptor. When 7528 * this connection is closed, we need to set the state 7529 * back to TCPS_LISTEN. Make sure that the eager list 7530 * is reinitialized. 7531 * 7532 * Note that this stream is still bound to the four 7533 * tuples of the previous connection in IP. If a new 7534 * SYN with different foreign address comes in, IP will 7535 * not find it and will send it to the global queue. In 7536 * the global queue, TCP will do a tcp_lookup_listener() 7537 * to find this stream. This works because this stream 7538 * is only removed from connected hash. 7539 * 7540 */ 7541 tcp->tcp_state = TCPS_LISTEN; 7542 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7543 tcp->tcp_eager_next_drop_q0 = tcp; 7544 tcp->tcp_eager_prev_drop_q0 = tcp; 7545 tcp->tcp_connp->conn_recv = tcp_conn_request; 7546 if (tcp->tcp_family == AF_INET6) { 7547 ASSERT(tcp->tcp_connp->conn_af_isv6); 7548 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7549 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7550 } else { 7551 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7552 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7553 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7554 } 7555 } else { 7556 tcp->tcp_state = TCPS_BOUND; 7557 } 7558 7559 /* 7560 * Initialize to default values 7561 * Can't fail since enough header template space already allocated 7562 * at open(). 7563 */ 7564 err = tcp_init_values(tcp); 7565 ASSERT(err == 0); 7566 /* Restore state in tcp_tcph */ 7567 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7568 if (tcp->tcp_ipversion == IPV4_VERSION) 7569 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7570 else 7571 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7572 /* 7573 * Copy of the src addr. in tcp_t is needed in tcp_t 7574 * since the lookup funcs can only lookup on tcp_t 7575 */ 7576 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7577 7578 ASSERT(tcp->tcp_ptpbhn != NULL); 7579 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 7580 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7581 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 7582 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 7583 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7584 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7585 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7586 } 7587 7588 /* 7589 * Force values to zero that need be zero. 7590 * Do not touch values asociated with the BOUND or LISTEN state 7591 * since the connection will end up in that state after the reinit. 7592 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7593 * structure! 7594 */ 7595 static void 7596 tcp_reinit_values(tcp) 7597 tcp_t *tcp; 7598 { 7599 tcp_stack_t *tcps = tcp->tcp_tcps; 7600 7601 #ifndef lint 7602 #define DONTCARE(x) 7603 #define PRESERVE(x) 7604 #else 7605 #define DONTCARE(x) ((x) = (x)) 7606 #define PRESERVE(x) ((x) = (x)) 7607 #endif /* lint */ 7608 7609 PRESERVE(tcp->tcp_bind_hash_port); 7610 PRESERVE(tcp->tcp_bind_hash); 7611 PRESERVE(tcp->tcp_ptpbhn); 7612 PRESERVE(tcp->tcp_acceptor_hash); 7613 PRESERVE(tcp->tcp_ptpahn); 7614 7615 /* Should be ASSERT NULL on these with new code! */ 7616 ASSERT(tcp->tcp_time_wait_next == NULL); 7617 ASSERT(tcp->tcp_time_wait_prev == NULL); 7618 ASSERT(tcp->tcp_time_wait_expire == 0); 7619 PRESERVE(tcp->tcp_state); 7620 PRESERVE(tcp->tcp_rq); 7621 PRESERVE(tcp->tcp_wq); 7622 7623 ASSERT(tcp->tcp_xmit_head == NULL); 7624 ASSERT(tcp->tcp_xmit_last == NULL); 7625 ASSERT(tcp->tcp_unsent == 0); 7626 ASSERT(tcp->tcp_xmit_tail == NULL); 7627 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7628 7629 tcp->tcp_snxt = 0; /* Displayed in mib */ 7630 tcp->tcp_suna = 0; /* Displayed in mib */ 7631 tcp->tcp_swnd = 0; 7632 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7633 7634 ASSERT(tcp->tcp_ibsegs == 0); 7635 ASSERT(tcp->tcp_obsegs == 0); 7636 7637 if (tcp->tcp_iphc != NULL) { 7638 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7639 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7640 } 7641 7642 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7643 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7644 DONTCARE(tcp->tcp_ipha); 7645 DONTCARE(tcp->tcp_ip6h); 7646 DONTCARE(tcp->tcp_ip_hdr_len); 7647 DONTCARE(tcp->tcp_tcph); 7648 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7649 tcp->tcp_valid_bits = 0; 7650 7651 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7652 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7653 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7654 tcp->tcp_last_rcv_lbolt = 0; 7655 7656 tcp->tcp_init_cwnd = 0; 7657 7658 tcp->tcp_urp_last_valid = 0; 7659 tcp->tcp_hard_binding = 0; 7660 tcp->tcp_hard_bound = 0; 7661 PRESERVE(tcp->tcp_cred); 7662 PRESERVE(tcp->tcp_cpid); 7663 PRESERVE(tcp->tcp_open_time); 7664 PRESERVE(tcp->tcp_exclbind); 7665 7666 tcp->tcp_fin_acked = 0; 7667 tcp->tcp_fin_rcvd = 0; 7668 tcp->tcp_fin_sent = 0; 7669 tcp->tcp_ordrel_done = 0; 7670 7671 tcp->tcp_debug = 0; 7672 tcp->tcp_dontroute = 0; 7673 tcp->tcp_broadcast = 0; 7674 7675 tcp->tcp_useloopback = 0; 7676 tcp->tcp_reuseaddr = 0; 7677 tcp->tcp_oobinline = 0; 7678 tcp->tcp_dgram_errind = 0; 7679 7680 tcp->tcp_detached = 0; 7681 tcp->tcp_bind_pending = 0; 7682 tcp->tcp_unbind_pending = 0; 7683 7684 tcp->tcp_snd_ws_ok = B_FALSE; 7685 tcp->tcp_snd_ts_ok = B_FALSE; 7686 tcp->tcp_linger = 0; 7687 tcp->tcp_ka_enabled = 0; 7688 tcp->tcp_zero_win_probe = 0; 7689 7690 tcp->tcp_loopback = 0; 7691 tcp->tcp_refuse = 0; 7692 tcp->tcp_localnet = 0; 7693 tcp->tcp_syn_defense = 0; 7694 tcp->tcp_set_timer = 0; 7695 7696 tcp->tcp_active_open = 0; 7697 tcp->tcp_rexmit = B_FALSE; 7698 tcp->tcp_xmit_zc_clean = B_FALSE; 7699 7700 tcp->tcp_snd_sack_ok = B_FALSE; 7701 PRESERVE(tcp->tcp_recvdstaddr); 7702 tcp->tcp_hwcksum = B_FALSE; 7703 7704 tcp->tcp_ire_ill_check_done = B_FALSE; 7705 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7706 7707 tcp->tcp_mdt = B_FALSE; 7708 tcp->tcp_mdt_hdr_head = 0; 7709 tcp->tcp_mdt_hdr_tail = 0; 7710 7711 tcp->tcp_conn_def_q0 = 0; 7712 tcp->tcp_ip_forward_progress = B_FALSE; 7713 tcp->tcp_anon_priv_bind = 0; 7714 tcp->tcp_ecn_ok = B_FALSE; 7715 7716 tcp->tcp_cwr = B_FALSE; 7717 tcp->tcp_ecn_echo_on = B_FALSE; 7718 7719 if (tcp->tcp_sack_info != NULL) { 7720 if (tcp->tcp_notsack_list != NULL) { 7721 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7722 } 7723 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7724 tcp->tcp_sack_info = NULL; 7725 } 7726 7727 tcp->tcp_rcv_ws = 0; 7728 tcp->tcp_snd_ws = 0; 7729 tcp->tcp_ts_recent = 0; 7730 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7731 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7732 tcp->tcp_if_mtu = 0; 7733 7734 ASSERT(tcp->tcp_reass_head == NULL); 7735 ASSERT(tcp->tcp_reass_tail == NULL); 7736 7737 tcp->tcp_cwnd_cnt = 0; 7738 7739 ASSERT(tcp->tcp_rcv_list == NULL); 7740 ASSERT(tcp->tcp_rcv_last_head == NULL); 7741 ASSERT(tcp->tcp_rcv_last_tail == NULL); 7742 ASSERT(tcp->tcp_rcv_cnt == 0); 7743 7744 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 7745 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 7746 tcp->tcp_csuna = 0; 7747 7748 tcp->tcp_rto = 0; /* Displayed in MIB */ 7749 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 7750 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 7751 tcp->tcp_rtt_update = 0; 7752 7753 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7754 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 7755 7756 tcp->tcp_rack = 0; /* Displayed in mib */ 7757 tcp->tcp_rack_cnt = 0; 7758 tcp->tcp_rack_cur_max = 0; 7759 tcp->tcp_rack_abs_max = 0; 7760 7761 tcp->tcp_max_swnd = 0; 7762 7763 ASSERT(tcp->tcp_listener == NULL); 7764 7765 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 7766 7767 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 7768 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 7769 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 7770 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 7771 7772 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 7773 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 7774 PRESERVE(tcp->tcp_conn_req_max); 7775 PRESERVE(tcp->tcp_conn_req_seqnum); 7776 7777 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 7778 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 7779 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 7780 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 7781 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 7782 7783 tcp->tcp_lingertime = 0; 7784 7785 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 7786 ASSERT(tcp->tcp_urp_mp == NULL); 7787 ASSERT(tcp->tcp_urp_mark_mp == NULL); 7788 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 7789 7790 ASSERT(tcp->tcp_eager_next_q == NULL); 7791 ASSERT(tcp->tcp_eager_last_q == NULL); 7792 ASSERT((tcp->tcp_eager_next_q0 == NULL && 7793 tcp->tcp_eager_prev_q0 == NULL) || 7794 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 7795 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 7796 7797 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 7798 tcp->tcp_eager_prev_drop_q0 == NULL) || 7799 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 7800 7801 tcp->tcp_client_errno = 0; 7802 7803 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 7804 7805 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 7806 7807 PRESERVE(tcp->tcp_bound_source_v6); 7808 tcp->tcp_last_sent_len = 0; 7809 tcp->tcp_dupack_cnt = 0; 7810 7811 tcp->tcp_fport = 0; /* Displayed in MIB */ 7812 PRESERVE(tcp->tcp_lport); 7813 7814 PRESERVE(tcp->tcp_acceptor_lockp); 7815 7816 ASSERT(tcp->tcp_ordrel_mp == NULL); 7817 PRESERVE(tcp->tcp_acceptor_id); 7818 DONTCARE(tcp->tcp_ipsec_overhead); 7819 7820 PRESERVE(tcp->tcp_family); 7821 if (tcp->tcp_family == AF_INET6) { 7822 tcp->tcp_ipversion = IPV6_VERSION; 7823 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 7824 } else { 7825 tcp->tcp_ipversion = IPV4_VERSION; 7826 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 7827 } 7828 7829 tcp->tcp_bound_if = 0; 7830 tcp->tcp_ipv6_recvancillary = 0; 7831 tcp->tcp_recvifindex = 0; 7832 tcp->tcp_recvhops = 0; 7833 tcp->tcp_closed = 0; 7834 tcp->tcp_cleandeathtag = 0; 7835 if (tcp->tcp_hopopts != NULL) { 7836 mi_free(tcp->tcp_hopopts); 7837 tcp->tcp_hopopts = NULL; 7838 tcp->tcp_hopoptslen = 0; 7839 } 7840 ASSERT(tcp->tcp_hopoptslen == 0); 7841 if (tcp->tcp_dstopts != NULL) { 7842 mi_free(tcp->tcp_dstopts); 7843 tcp->tcp_dstopts = NULL; 7844 tcp->tcp_dstoptslen = 0; 7845 } 7846 ASSERT(tcp->tcp_dstoptslen == 0); 7847 if (tcp->tcp_rtdstopts != NULL) { 7848 mi_free(tcp->tcp_rtdstopts); 7849 tcp->tcp_rtdstopts = NULL; 7850 tcp->tcp_rtdstoptslen = 0; 7851 } 7852 ASSERT(tcp->tcp_rtdstoptslen == 0); 7853 if (tcp->tcp_rthdr != NULL) { 7854 mi_free(tcp->tcp_rthdr); 7855 tcp->tcp_rthdr = NULL; 7856 tcp->tcp_rthdrlen = 0; 7857 } 7858 ASSERT(tcp->tcp_rthdrlen == 0); 7859 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 7860 7861 /* Reset fusion-related fields */ 7862 tcp->tcp_fused = B_FALSE; 7863 tcp->tcp_unfusable = B_FALSE; 7864 tcp->tcp_fused_sigurg = B_FALSE; 7865 tcp->tcp_direct_sockfs = B_FALSE; 7866 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7867 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7868 tcp->tcp_loopback_peer = NULL; 7869 tcp->tcp_fuse_rcv_hiwater = 0; 7870 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7871 tcp->tcp_fuse_rcv_unread_cnt = 0; 7872 7873 tcp->tcp_lso = B_FALSE; 7874 7875 tcp->tcp_in_ack_unsent = 0; 7876 tcp->tcp_cork = B_FALSE; 7877 tcp->tcp_tconnind_started = B_FALSE; 7878 7879 PRESERVE(tcp->tcp_squeue_bytes); 7880 7881 ASSERT(tcp->tcp_kssl_ctx == NULL); 7882 ASSERT(!tcp->tcp_kssl_pending); 7883 PRESERVE(tcp->tcp_kssl_ent); 7884 7885 tcp->tcp_closemp_used = B_FALSE; 7886 7887 PRESERVE(tcp->tcp_rsrv_mp); 7888 PRESERVE(tcp->tcp_rsrv_mp_lock); 7889 7890 #ifdef DEBUG 7891 DONTCARE(tcp->tcmp_stk[0]); 7892 #endif 7893 7894 PRESERVE(tcp->tcp_connid); 7895 7896 7897 #undef DONTCARE 7898 #undef PRESERVE 7899 } 7900 7901 /* 7902 * Allocate necessary resources and initialize state vector. 7903 * Guaranteed not to fail so that when an error is returned, 7904 * the caller doesn't need to do any additional cleanup. 7905 */ 7906 int 7907 tcp_init(tcp_t *tcp, queue_t *q) 7908 { 7909 int err; 7910 7911 tcp->tcp_rq = q; 7912 tcp->tcp_wq = WR(q); 7913 tcp->tcp_state = TCPS_IDLE; 7914 if ((err = tcp_init_values(tcp)) != 0) 7915 tcp_timers_stop(tcp); 7916 return (err); 7917 } 7918 7919 static int 7920 tcp_init_values(tcp_t *tcp) 7921 { 7922 int err; 7923 tcp_stack_t *tcps = tcp->tcp_tcps; 7924 7925 ASSERT((tcp->tcp_family == AF_INET && 7926 tcp->tcp_ipversion == IPV4_VERSION) || 7927 (tcp->tcp_family == AF_INET6 && 7928 (tcp->tcp_ipversion == IPV4_VERSION || 7929 tcp->tcp_ipversion == IPV6_VERSION))); 7930 7931 /* 7932 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 7933 * will be close to tcp_rexmit_interval_initial. By doing this, we 7934 * allow the algorithm to adjust slowly to large fluctuations of RTT 7935 * during first few transmissions of a connection as seen in slow 7936 * links. 7937 */ 7938 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 7939 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 7940 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 7941 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 7942 tcps->tcps_conn_grace_period; 7943 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 7944 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 7945 tcp->tcp_timer_backoff = 0; 7946 tcp->tcp_ms_we_have_waited = 0; 7947 tcp->tcp_last_recv_time = lbolt; 7948 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 7949 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 7950 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 7951 7952 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 7953 7954 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 7955 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 7956 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 7957 /* 7958 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 7959 * passive open. 7960 */ 7961 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 7962 7963 tcp->tcp_naglim = tcps->tcps_naglim_def; 7964 7965 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 7966 7967 tcp->tcp_mdt_hdr_head = 0; 7968 tcp->tcp_mdt_hdr_tail = 0; 7969 7970 /* Reset fusion-related fields */ 7971 tcp->tcp_fused = B_FALSE; 7972 tcp->tcp_unfusable = B_FALSE; 7973 tcp->tcp_fused_sigurg = B_FALSE; 7974 tcp->tcp_direct_sockfs = B_FALSE; 7975 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 7976 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 7977 tcp->tcp_loopback_peer = NULL; 7978 tcp->tcp_fuse_rcv_hiwater = 0; 7979 tcp->tcp_fuse_rcv_unread_hiwater = 0; 7980 tcp->tcp_fuse_rcv_unread_cnt = 0; 7981 7982 /* Initialize the header template */ 7983 if (tcp->tcp_ipversion == IPV4_VERSION) { 7984 err = tcp_header_init_ipv4(tcp); 7985 } else { 7986 err = tcp_header_init_ipv6(tcp); 7987 } 7988 if (err) 7989 return (err); 7990 7991 /* 7992 * Init the window scale to the max so tcp_rwnd_set() won't pare 7993 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 7994 */ 7995 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 7996 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 7997 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 7998 7999 tcp->tcp_cork = B_FALSE; 8000 /* 8001 * Init the tcp_debug option. This value determines whether TCP 8002 * calls strlog() to print out debug messages. Doing this 8003 * initialization here means that this value is not inherited thru 8004 * tcp_reinit(). 8005 */ 8006 tcp->tcp_debug = tcps->tcps_dbg; 8007 8008 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8009 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8010 8011 return (0); 8012 } 8013 8014 /* 8015 * Initialize the IPv4 header. Loses any record of any IP options. 8016 */ 8017 static int 8018 tcp_header_init_ipv4(tcp_t *tcp) 8019 { 8020 tcph_t *tcph; 8021 uint32_t sum; 8022 conn_t *connp; 8023 tcp_stack_t *tcps = tcp->tcp_tcps; 8024 8025 /* 8026 * This is a simple initialization. If there's 8027 * already a template, it should never be too small, 8028 * so reuse it. Otherwise, allocate space for the new one. 8029 */ 8030 if (tcp->tcp_iphc == NULL) { 8031 ASSERT(tcp->tcp_iphc_len == 0); 8032 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8033 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8034 if (tcp->tcp_iphc == NULL) { 8035 tcp->tcp_iphc_len = 0; 8036 return (ENOMEM); 8037 } 8038 } 8039 8040 /* options are gone; may need a new label */ 8041 connp = tcp->tcp_connp; 8042 connp->conn_mlp_type = mlptSingle; 8043 connp->conn_ulp_labeled = !is_system_labeled(); 8044 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8045 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8046 tcp->tcp_ip6h = NULL; 8047 tcp->tcp_ipversion = IPV4_VERSION; 8048 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8049 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8050 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8051 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8052 tcp->tcp_ipha->ipha_version_and_hdr_length 8053 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8054 tcp->tcp_ipha->ipha_ident = 0; 8055 8056 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8057 tcp->tcp_tos = 0; 8058 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8059 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8060 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8061 8062 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8063 tcp->tcp_tcph = tcph; 8064 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8065 /* 8066 * IP wants our header length in the checksum field to 8067 * allow it to perform a single pseudo-header+checksum 8068 * calculation on behalf of TCP. 8069 * Include the adjustment for a source route once IP_OPTIONS is set. 8070 */ 8071 sum = sizeof (tcph_t) + tcp->tcp_sum; 8072 sum = (sum >> 16) + (sum & 0xFFFF); 8073 U16_TO_ABE16(sum, tcph->th_sum); 8074 return (0); 8075 } 8076 8077 /* 8078 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8079 */ 8080 static int 8081 tcp_header_init_ipv6(tcp_t *tcp) 8082 { 8083 tcph_t *tcph; 8084 uint32_t sum; 8085 conn_t *connp; 8086 tcp_stack_t *tcps = tcp->tcp_tcps; 8087 8088 /* 8089 * This is a simple initialization. If there's 8090 * already a template, it should never be too small, 8091 * so reuse it. Otherwise, allocate space for the new one. 8092 * Ensure that there is enough space to "downgrade" the tcp_t 8093 * to an IPv4 tcp_t. This requires having space for a full load 8094 * of IPv4 options, as well as a full load of TCP options 8095 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8096 * than a v6 header and a TCP header with a full load of TCP options 8097 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8098 * We want to avoid reallocation in the "downgraded" case when 8099 * processing outbound IPv4 options. 8100 */ 8101 if (tcp->tcp_iphc == NULL) { 8102 ASSERT(tcp->tcp_iphc_len == 0); 8103 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8104 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8105 if (tcp->tcp_iphc == NULL) { 8106 tcp->tcp_iphc_len = 0; 8107 return (ENOMEM); 8108 } 8109 } 8110 8111 /* options are gone; may need a new label */ 8112 connp = tcp->tcp_connp; 8113 connp->conn_mlp_type = mlptSingle; 8114 connp->conn_ulp_labeled = !is_system_labeled(); 8115 8116 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8117 tcp->tcp_ipversion = IPV6_VERSION; 8118 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8119 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8120 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8121 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8122 tcp->tcp_ipha = NULL; 8123 8124 /* Initialize the header template */ 8125 8126 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8127 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8128 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8129 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8130 8131 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8132 tcp->tcp_tcph = tcph; 8133 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8134 /* 8135 * IP wants our header length in the checksum field to 8136 * allow it to perform a single psuedo-header+checksum 8137 * calculation on behalf of TCP. 8138 * Include the adjustment for a source route when IPV6_RTHDR is set. 8139 */ 8140 sum = sizeof (tcph_t) + tcp->tcp_sum; 8141 sum = (sum >> 16) + (sum & 0xFFFF); 8142 U16_TO_ABE16(sum, tcph->th_sum); 8143 return (0); 8144 } 8145 8146 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8147 #define ICMP_MIN_TCP_HDR 8 8148 8149 /* 8150 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8151 * passed up by IP. The message is always received on the correct tcp_t. 8152 * Assumes that IP has pulled up everything up to and including the ICMP header. 8153 */ 8154 void 8155 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8156 { 8157 icmph_t *icmph; 8158 ipha_t *ipha; 8159 int iph_hdr_length; 8160 tcph_t *tcph; 8161 boolean_t ipsec_mctl = B_FALSE; 8162 boolean_t secure; 8163 mblk_t *first_mp = mp; 8164 int32_t new_mss; 8165 uint32_t ratio; 8166 size_t mp_size = MBLKL(mp); 8167 uint32_t seg_seq; 8168 tcp_stack_t *tcps = tcp->tcp_tcps; 8169 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 8170 8171 /* Assume IP provides aligned packets - otherwise toss */ 8172 if (!OK_32PTR(mp->b_rptr)) { 8173 freemsg(mp); 8174 return; 8175 } 8176 8177 /* 8178 * Since ICMP errors are normal data marked with M_CTL when sent 8179 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8180 * packets starting with an ipsec_info_t, see ipsec_info.h. 8181 */ 8182 if ((mp_size == sizeof (ipsec_info_t)) && 8183 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8184 ASSERT(mp->b_cont != NULL); 8185 mp = mp->b_cont; 8186 /* IP should have done this */ 8187 ASSERT(OK_32PTR(mp->b_rptr)); 8188 mp_size = MBLKL(mp); 8189 ipsec_mctl = B_TRUE; 8190 } 8191 8192 /* 8193 * Verify that we have a complete outer IP header. If not, drop it. 8194 */ 8195 if (mp_size < sizeof (ipha_t)) { 8196 noticmpv4: 8197 freemsg(first_mp); 8198 return; 8199 } 8200 8201 ipha = (ipha_t *)mp->b_rptr; 8202 /* 8203 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8204 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8205 */ 8206 switch (IPH_HDR_VERSION(ipha)) { 8207 case IPV6_VERSION: 8208 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8209 return; 8210 case IPV4_VERSION: 8211 break; 8212 default: 8213 goto noticmpv4; 8214 } 8215 8216 /* Skip past the outer IP and ICMP headers */ 8217 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8218 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8219 /* 8220 * If we don't have the correct outer IP header length or if the ULP 8221 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8222 * send it upstream. 8223 */ 8224 if (iph_hdr_length < sizeof (ipha_t) || 8225 ipha->ipha_protocol != IPPROTO_ICMP || 8226 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8227 goto noticmpv4; 8228 } 8229 ipha = (ipha_t *)&icmph[1]; 8230 8231 /* Skip past the inner IP and find the ULP header */ 8232 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8233 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8234 /* 8235 * If we don't have the correct inner IP header length or if the ULP 8236 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8237 * bytes of TCP header, drop it. 8238 */ 8239 if (iph_hdr_length < sizeof (ipha_t) || 8240 ipha->ipha_protocol != IPPROTO_TCP || 8241 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8242 goto noticmpv4; 8243 } 8244 8245 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8246 if (ipsec_mctl) { 8247 secure = ipsec_in_is_secure(first_mp); 8248 } else { 8249 secure = B_FALSE; 8250 } 8251 if (secure) { 8252 /* 8253 * If we are willing to accept this in clear 8254 * we don't have to verify policy. 8255 */ 8256 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8257 if (!tcp_check_policy(tcp, first_mp, 8258 ipha, NULL, secure, ipsec_mctl)) { 8259 /* 8260 * tcp_check_policy called 8261 * ip_drop_packet() on failure. 8262 */ 8263 return; 8264 } 8265 } 8266 } 8267 } else if (ipsec_mctl) { 8268 /* 8269 * This is a hard_bound connection. IP has already 8270 * verified policy. We don't have to do it again. 8271 */ 8272 freeb(first_mp); 8273 first_mp = mp; 8274 ipsec_mctl = B_FALSE; 8275 } 8276 8277 seg_seq = ABE32_TO_U32(tcph->th_seq); 8278 /* 8279 * TCP SHOULD check that the TCP sequence number contained in 8280 * payload of the ICMP error message is within the range 8281 * SND.UNA <= SEG.SEQ < SND.NXT. 8282 */ 8283 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8284 /* 8285 * The ICMP message is bogus, just drop it. But if this is 8286 * an ICMP too big message, IP has already changed 8287 * the ire_max_frag to the bogus value. We need to change 8288 * it back. 8289 */ 8290 if (icmph->icmph_type == ICMP_DEST_UNREACHABLE && 8291 icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) { 8292 conn_t *connp = tcp->tcp_connp; 8293 ire_t *ire; 8294 int flag; 8295 8296 if (tcp->tcp_ipversion == IPV4_VERSION) { 8297 flag = tcp->tcp_ipha-> 8298 ipha_fragment_offset_and_flags; 8299 } else { 8300 flag = 0; 8301 } 8302 mutex_enter(&connp->conn_lock); 8303 if ((ire = connp->conn_ire_cache) != NULL) { 8304 mutex_enter(&ire->ire_lock); 8305 mutex_exit(&connp->conn_lock); 8306 ire->ire_max_frag = tcp->tcp_if_mtu; 8307 ire->ire_frag_flag |= flag; 8308 mutex_exit(&ire->ire_lock); 8309 } else { 8310 mutex_exit(&connp->conn_lock); 8311 } 8312 } 8313 goto noticmpv4; 8314 } 8315 8316 switch (icmph->icmph_type) { 8317 case ICMP_DEST_UNREACHABLE: 8318 switch (icmph->icmph_code) { 8319 case ICMP_FRAGMENTATION_NEEDED: 8320 /* 8321 * Reduce the MSS based on the new MTU. This will 8322 * eliminate any fragmentation locally. 8323 * N.B. There may well be some funny side-effects on 8324 * the local send policy and the remote receive policy. 8325 * Pending further research, we provide 8326 * tcp_ignore_path_mtu just in case this proves 8327 * disastrous somewhere. 8328 * 8329 * After updating the MSS, retransmit part of the 8330 * dropped segment using the new mss by calling 8331 * tcp_wput_data(). Need to adjust all those 8332 * params to make sure tcp_wput_data() work properly. 8333 */ 8334 if (tcps->tcps_ignore_path_mtu || 8335 tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0) 8336 break; 8337 8338 /* 8339 * Decrease the MSS by time stamp options 8340 * IP options and IPSEC options. tcp_hdr_len 8341 * includes time stamp option and IP option 8342 * length. Note that new_mss may be negative 8343 * if tcp_ipsec_overhead is large and the 8344 * icmph_du_mtu is the minimum value, which is 68. 8345 */ 8346 new_mss = ntohs(icmph->icmph_du_mtu) - 8347 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8348 8349 DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int, 8350 new_mss); 8351 8352 /* 8353 * Only update the MSS if the new one is 8354 * smaller than the previous one. This is 8355 * to avoid problems when getting multiple 8356 * ICMP errors for the same MTU. 8357 */ 8358 if (new_mss >= tcp->tcp_mss) 8359 break; 8360 8361 /* 8362 * Note that we are using the template header's DF 8363 * bit in the fast path sending. So we need to compare 8364 * the new mss with both tcps_mss_min and ip_pmtu_min. 8365 * And stop doing IPv4 PMTUd if new_mss is less than 8366 * MAX(tcps_mss_min, ip_pmtu_min). 8367 */ 8368 if (new_mss < tcps->tcps_mss_min || 8369 new_mss < ipst->ips_ip_pmtu_min) { 8370 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8371 0; 8372 } 8373 8374 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8375 ASSERT(ratio >= 1); 8376 tcp_mss_set(tcp, new_mss, B_TRUE); 8377 8378 /* 8379 * Make sure we have something to 8380 * send. 8381 */ 8382 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8383 (tcp->tcp_xmit_head != NULL)) { 8384 /* 8385 * Shrink tcp_cwnd in 8386 * proportion to the old MSS/new MSS. 8387 */ 8388 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8389 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8390 (tcp->tcp_unsent == 0)) { 8391 tcp->tcp_rexmit_max = tcp->tcp_fss; 8392 } else { 8393 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8394 } 8395 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8396 tcp->tcp_rexmit = B_TRUE; 8397 tcp->tcp_dupack_cnt = 0; 8398 tcp->tcp_snd_burst = TCP_CWND_SS; 8399 tcp_ss_rexmit(tcp); 8400 } 8401 break; 8402 case ICMP_PORT_UNREACHABLE: 8403 case ICMP_PROTOCOL_UNREACHABLE: 8404 switch (tcp->tcp_state) { 8405 case TCPS_SYN_SENT: 8406 case TCPS_SYN_RCVD: 8407 /* 8408 * ICMP can snipe away incipient 8409 * TCP connections as long as 8410 * seq number is same as initial 8411 * send seq number. 8412 */ 8413 if (seg_seq == tcp->tcp_iss) { 8414 (void) tcp_clean_death(tcp, 8415 ECONNREFUSED, 6); 8416 } 8417 break; 8418 } 8419 break; 8420 case ICMP_HOST_UNREACHABLE: 8421 case ICMP_NET_UNREACHABLE: 8422 /* Record the error in case we finally time out. */ 8423 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8424 tcp->tcp_client_errno = EHOSTUNREACH; 8425 else 8426 tcp->tcp_client_errno = ENETUNREACH; 8427 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8428 if (tcp->tcp_listener != NULL && 8429 tcp->tcp_listener->tcp_syn_defense) { 8430 /* 8431 * Ditch the half-open connection if we 8432 * suspect a SYN attack is under way. 8433 */ 8434 tcp_ip_ire_mark_advice(tcp); 8435 (void) tcp_clean_death(tcp, 8436 tcp->tcp_client_errno, 7); 8437 } 8438 } 8439 break; 8440 default: 8441 break; 8442 } 8443 break; 8444 case ICMP_SOURCE_QUENCH: { 8445 /* 8446 * use a global boolean to control 8447 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8448 * The default is false. 8449 */ 8450 if (tcp_icmp_source_quench) { 8451 /* 8452 * Reduce the sending rate as if we got a 8453 * retransmit timeout 8454 */ 8455 uint32_t npkt; 8456 8457 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8458 tcp->tcp_mss; 8459 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8460 tcp->tcp_cwnd = tcp->tcp_mss; 8461 tcp->tcp_cwnd_cnt = 0; 8462 } 8463 break; 8464 } 8465 } 8466 freemsg(first_mp); 8467 } 8468 8469 /* 8470 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8471 * error messages passed up by IP. 8472 * Assumes that IP has pulled up all the extension headers as well 8473 * as the ICMPv6 header. 8474 */ 8475 static void 8476 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8477 { 8478 icmp6_t *icmp6; 8479 ip6_t *ip6h; 8480 uint16_t iph_hdr_length; 8481 tcpha_t *tcpha; 8482 uint8_t *nexthdrp; 8483 uint32_t new_mss; 8484 uint32_t ratio; 8485 boolean_t secure; 8486 mblk_t *first_mp = mp; 8487 size_t mp_size; 8488 uint32_t seg_seq; 8489 tcp_stack_t *tcps = tcp->tcp_tcps; 8490 8491 /* 8492 * The caller has determined if this is an IPSEC_IN packet and 8493 * set ipsec_mctl appropriately (see tcp_icmp_error). 8494 */ 8495 if (ipsec_mctl) 8496 mp = mp->b_cont; 8497 8498 mp_size = MBLKL(mp); 8499 8500 /* 8501 * Verify that we have a complete IP header. If not, send it upstream. 8502 */ 8503 if (mp_size < sizeof (ip6_t)) { 8504 noticmpv6: 8505 freemsg(first_mp); 8506 return; 8507 } 8508 8509 /* 8510 * Verify this is an ICMPV6 packet, else send it upstream. 8511 */ 8512 ip6h = (ip6_t *)mp->b_rptr; 8513 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8514 iph_hdr_length = IPV6_HDR_LEN; 8515 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8516 &nexthdrp) || 8517 *nexthdrp != IPPROTO_ICMPV6) { 8518 goto noticmpv6; 8519 } 8520 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8521 ip6h = (ip6_t *)&icmp6[1]; 8522 /* 8523 * Verify if we have a complete ICMP and inner IP header. 8524 */ 8525 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8526 goto noticmpv6; 8527 8528 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8529 goto noticmpv6; 8530 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8531 /* 8532 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8533 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8534 * packet. 8535 */ 8536 if ((*nexthdrp != IPPROTO_TCP) || 8537 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8538 goto noticmpv6; 8539 } 8540 8541 /* 8542 * ICMP errors come on the right queue or come on 8543 * listener/global queue for detached connections and 8544 * get switched to the right queue. If it comes on the 8545 * right queue, policy check has already been done by IP 8546 * and thus free the first_mp without verifying the policy. 8547 * If it has come for a non-hard bound connection, we need 8548 * to verify policy as IP may not have done it. 8549 */ 8550 if (!tcp->tcp_hard_bound) { 8551 if (ipsec_mctl) { 8552 secure = ipsec_in_is_secure(first_mp); 8553 } else { 8554 secure = B_FALSE; 8555 } 8556 if (secure) { 8557 /* 8558 * If we are willing to accept this in clear 8559 * we don't have to verify policy. 8560 */ 8561 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8562 if (!tcp_check_policy(tcp, first_mp, 8563 NULL, ip6h, secure, ipsec_mctl)) { 8564 /* 8565 * tcp_check_policy called 8566 * ip_drop_packet() on failure. 8567 */ 8568 return; 8569 } 8570 } 8571 } 8572 } else if (ipsec_mctl) { 8573 /* 8574 * This is a hard_bound connection. IP has already 8575 * verified policy. We don't have to do it again. 8576 */ 8577 freeb(first_mp); 8578 first_mp = mp; 8579 ipsec_mctl = B_FALSE; 8580 } 8581 8582 seg_seq = ntohl(tcpha->tha_seq); 8583 /* 8584 * TCP SHOULD check that the TCP sequence number contained in 8585 * payload of the ICMP error message is within the range 8586 * SND.UNA <= SEG.SEQ < SND.NXT. 8587 */ 8588 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8589 /* 8590 * If the ICMP message is bogus, should we kill the 8591 * connection, or should we just drop the bogus ICMP 8592 * message? It would probably make more sense to just 8593 * drop the message so that if this one managed to get 8594 * in, the real connection should not suffer. 8595 */ 8596 goto noticmpv6; 8597 } 8598 8599 switch (icmp6->icmp6_type) { 8600 case ICMP6_PACKET_TOO_BIG: 8601 /* 8602 * Reduce the MSS based on the new MTU. This will 8603 * eliminate any fragmentation locally. 8604 * N.B. There may well be some funny side-effects on 8605 * the local send policy and the remote receive policy. 8606 * Pending further research, we provide 8607 * tcp_ignore_path_mtu just in case this proves 8608 * disastrous somewhere. 8609 * 8610 * After updating the MSS, retransmit part of the 8611 * dropped segment using the new mss by calling 8612 * tcp_wput_data(). Need to adjust all those 8613 * params to make sure tcp_wput_data() work properly. 8614 */ 8615 if (tcps->tcps_ignore_path_mtu) 8616 break; 8617 8618 /* 8619 * Decrease the MSS by time stamp options 8620 * IP options and IPSEC options. tcp_hdr_len 8621 * includes time stamp option and IP option 8622 * length. 8623 */ 8624 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8625 tcp->tcp_ipsec_overhead; 8626 8627 /* 8628 * Only update the MSS if the new one is 8629 * smaller than the previous one. This is 8630 * to avoid problems when getting multiple 8631 * ICMP errors for the same MTU. 8632 */ 8633 if (new_mss >= tcp->tcp_mss) 8634 break; 8635 8636 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8637 ASSERT(ratio >= 1); 8638 tcp_mss_set(tcp, new_mss, B_TRUE); 8639 8640 /* 8641 * Make sure we have something to 8642 * send. 8643 */ 8644 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8645 (tcp->tcp_xmit_head != NULL)) { 8646 /* 8647 * Shrink tcp_cwnd in 8648 * proportion to the old MSS/new MSS. 8649 */ 8650 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8651 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8652 (tcp->tcp_unsent == 0)) { 8653 tcp->tcp_rexmit_max = tcp->tcp_fss; 8654 } else { 8655 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8656 } 8657 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8658 tcp->tcp_rexmit = B_TRUE; 8659 tcp->tcp_dupack_cnt = 0; 8660 tcp->tcp_snd_burst = TCP_CWND_SS; 8661 tcp_ss_rexmit(tcp); 8662 } 8663 break; 8664 8665 case ICMP6_DST_UNREACH: 8666 switch (icmp6->icmp6_code) { 8667 case ICMP6_DST_UNREACH_NOPORT: 8668 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8669 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8670 (seg_seq == tcp->tcp_iss)) { 8671 (void) tcp_clean_death(tcp, 8672 ECONNREFUSED, 8); 8673 } 8674 break; 8675 8676 case ICMP6_DST_UNREACH_ADMIN: 8677 case ICMP6_DST_UNREACH_NOROUTE: 8678 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8679 case ICMP6_DST_UNREACH_ADDR: 8680 /* Record the error in case we finally time out. */ 8681 tcp->tcp_client_errno = EHOSTUNREACH; 8682 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8683 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8684 (seg_seq == tcp->tcp_iss)) { 8685 if (tcp->tcp_listener != NULL && 8686 tcp->tcp_listener->tcp_syn_defense) { 8687 /* 8688 * Ditch the half-open connection if we 8689 * suspect a SYN attack is under way. 8690 */ 8691 tcp_ip_ire_mark_advice(tcp); 8692 (void) tcp_clean_death(tcp, 8693 tcp->tcp_client_errno, 9); 8694 } 8695 } 8696 8697 8698 break; 8699 default: 8700 break; 8701 } 8702 break; 8703 8704 case ICMP6_PARAM_PROB: 8705 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8706 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8707 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8708 (uchar_t *)nexthdrp) { 8709 if (tcp->tcp_state == TCPS_SYN_SENT || 8710 tcp->tcp_state == TCPS_SYN_RCVD) { 8711 (void) tcp_clean_death(tcp, 8712 ECONNREFUSED, 10); 8713 } 8714 break; 8715 } 8716 break; 8717 8718 case ICMP6_TIME_EXCEEDED: 8719 default: 8720 break; 8721 } 8722 freemsg(first_mp); 8723 } 8724 8725 /* 8726 * Notify IP that we are having trouble with this connection. IP should 8727 * blow the IRE away and start over. 8728 */ 8729 static void 8730 tcp_ip_notify(tcp_t *tcp) 8731 { 8732 struct iocblk *iocp; 8733 ipid_t *ipid; 8734 mblk_t *mp; 8735 8736 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 8737 if (tcp->tcp_ipversion == IPV6_VERSION) 8738 return; 8739 8740 mp = mkiocb(IP_IOCTL); 8741 if (mp == NULL) 8742 return; 8743 8744 iocp = (struct iocblk *)mp->b_rptr; 8745 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 8746 8747 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 8748 if (!mp->b_cont) { 8749 freeb(mp); 8750 return; 8751 } 8752 8753 ipid = (ipid_t *)mp->b_cont->b_rptr; 8754 mp->b_cont->b_wptr += iocp->ioc_count; 8755 bzero(ipid, sizeof (*ipid)); 8756 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 8757 ipid->ipid_ire_type = IRE_CACHE; 8758 ipid->ipid_addr_offset = sizeof (ipid_t); 8759 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 8760 /* 8761 * Note: in the case of source routing we want to blow away the 8762 * route to the first source route hop. 8763 */ 8764 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 8765 sizeof (tcp->tcp_ipha->ipha_dst)); 8766 8767 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 8768 } 8769 8770 /* Unlink and return any mblk that looks like it contains an ire */ 8771 static mblk_t * 8772 tcp_ire_mp(mblk_t **mpp) 8773 { 8774 mblk_t *mp = *mpp; 8775 mblk_t *prev_mp = NULL; 8776 8777 for (;;) { 8778 switch (DB_TYPE(mp)) { 8779 case IRE_DB_TYPE: 8780 case IRE_DB_REQ_TYPE: 8781 if (mp == *mpp) { 8782 *mpp = mp->b_cont; 8783 } else { 8784 prev_mp->b_cont = mp->b_cont; 8785 } 8786 mp->b_cont = NULL; 8787 return (mp); 8788 default: 8789 break; 8790 } 8791 prev_mp = mp; 8792 mp = mp->b_cont; 8793 if (mp == NULL) 8794 break; 8795 } 8796 return (mp); 8797 } 8798 8799 /* 8800 * Timer callback routine for keepalive probe. We do a fake resend of 8801 * last ACKed byte. Then set a timer using RTO. When the timer expires, 8802 * check to see if we have heard anything from the other end for the last 8803 * RTO period. If we have, set the timer to expire for another 8804 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 8805 * RTO << 1 and check again when it expires. Keep exponentially increasing 8806 * the timeout if we have not heard from the other side. If for more than 8807 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 8808 * kill the connection unless the keepalive abort threshold is 0. In 8809 * that case, we will probe "forever." 8810 */ 8811 static void 8812 tcp_keepalive_killer(void *arg) 8813 { 8814 mblk_t *mp; 8815 conn_t *connp = (conn_t *)arg; 8816 tcp_t *tcp = connp->conn_tcp; 8817 int32_t firetime; 8818 int32_t idletime; 8819 int32_t ka_intrvl; 8820 tcp_stack_t *tcps = tcp->tcp_tcps; 8821 8822 tcp->tcp_ka_tid = 0; 8823 8824 if (tcp->tcp_fused) 8825 return; 8826 8827 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 8828 ka_intrvl = tcp->tcp_ka_interval; 8829 8830 /* 8831 * Keepalive probe should only be sent if the application has not 8832 * done a close on the connection. 8833 */ 8834 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 8835 return; 8836 } 8837 /* Timer fired too early, restart it. */ 8838 if (tcp->tcp_state < TCPS_ESTABLISHED) { 8839 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8840 MSEC_TO_TICK(ka_intrvl)); 8841 return; 8842 } 8843 8844 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 8845 /* 8846 * If we have not heard from the other side for a long 8847 * time, kill the connection unless the keepalive abort 8848 * threshold is 0. In that case, we will probe "forever." 8849 */ 8850 if (tcp->tcp_ka_abort_thres != 0 && 8851 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 8852 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 8853 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 8854 tcp->tcp_client_errno : ETIMEDOUT, 11); 8855 return; 8856 } 8857 8858 if (tcp->tcp_snxt == tcp->tcp_suna && 8859 idletime >= ka_intrvl) { 8860 /* Fake resend of last ACKed byte. */ 8861 mblk_t *mp1 = allocb(1, BPRI_LO); 8862 8863 if (mp1 != NULL) { 8864 *mp1->b_wptr++ = '\0'; 8865 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 8866 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 8867 freeb(mp1); 8868 /* 8869 * if allocation failed, fall through to start the 8870 * timer back. 8871 */ 8872 if (mp != NULL) { 8873 tcp_send_data(tcp, tcp->tcp_wq, mp); 8874 BUMP_MIB(&tcps->tcps_mib, 8875 tcpTimKeepaliveProbe); 8876 if (tcp->tcp_ka_last_intrvl != 0) { 8877 int max; 8878 /* 8879 * We should probe again at least 8880 * in ka_intrvl, but not more than 8881 * tcp_rexmit_interval_max. 8882 */ 8883 max = tcps->tcps_rexmit_interval_max; 8884 firetime = MIN(ka_intrvl - 1, 8885 tcp->tcp_ka_last_intrvl << 1); 8886 if (firetime > max) 8887 firetime = max; 8888 } else { 8889 firetime = tcp->tcp_rto; 8890 } 8891 tcp->tcp_ka_tid = TCP_TIMER(tcp, 8892 tcp_keepalive_killer, 8893 MSEC_TO_TICK(firetime)); 8894 tcp->tcp_ka_last_intrvl = firetime; 8895 return; 8896 } 8897 } 8898 } else { 8899 tcp->tcp_ka_last_intrvl = 0; 8900 } 8901 8902 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 8903 if ((firetime = ka_intrvl - idletime) < 0) { 8904 firetime = ka_intrvl; 8905 } 8906 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 8907 MSEC_TO_TICK(firetime)); 8908 } 8909 8910 int 8911 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 8912 { 8913 queue_t *q = tcp->tcp_rq; 8914 int32_t mss = tcp->tcp_mss; 8915 int maxpsz; 8916 conn_t *connp = tcp->tcp_connp; 8917 8918 if (TCP_IS_DETACHED(tcp)) 8919 return (mss); 8920 if (tcp->tcp_fused) { 8921 maxpsz = tcp_fuse_maxpsz_set(tcp); 8922 mss = INFPSZ; 8923 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 8924 /* 8925 * Set the sd_qn_maxpsz according to the socket send buffer 8926 * size, and sd_maxblk to INFPSZ (-1). This will essentially 8927 * instruct the stream head to copyin user data into contiguous 8928 * kernel-allocated buffers without breaking it up into smaller 8929 * chunks. We round up the buffer size to the nearest SMSS. 8930 */ 8931 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 8932 if (tcp->tcp_kssl_ctx == NULL) 8933 mss = INFPSZ; 8934 else 8935 mss = SSL3_MAX_RECORD_LEN; 8936 } else { 8937 /* 8938 * Set sd_qn_maxpsz to approx half the (receivers) buffer 8939 * (and a multiple of the mss). This instructs the stream 8940 * head to break down larger than SMSS writes into SMSS- 8941 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 8942 */ 8943 /* XXX tune this with ndd tcp_maxpsz_multiplier */ 8944 maxpsz = tcp->tcp_maxpsz * mss; 8945 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 8946 maxpsz = tcp->tcp_xmit_hiwater/2; 8947 /* Round up to nearest mss */ 8948 maxpsz = MSS_ROUNDUP(maxpsz, mss); 8949 } 8950 } 8951 8952 (void) proto_set_maxpsz(q, connp, maxpsz); 8953 if (!(IPCL_IS_NONSTR(connp))) { 8954 /* XXX do it in set_maxpsz()? */ 8955 tcp->tcp_wq->q_maxpsz = maxpsz; 8956 } 8957 8958 if (set_maxblk) 8959 (void) proto_set_tx_maxblk(q, connp, mss); 8960 return (mss); 8961 } 8962 8963 /* 8964 * Extract option values from a tcp header. We put any found values into the 8965 * tcpopt struct and return a bitmask saying which options were found. 8966 */ 8967 static int 8968 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 8969 { 8970 uchar_t *endp; 8971 int len; 8972 uint32_t mss; 8973 uchar_t *up = (uchar_t *)tcph; 8974 int found = 0; 8975 int32_t sack_len; 8976 tcp_seq sack_begin, sack_end; 8977 tcp_t *tcp; 8978 8979 endp = up + TCP_HDR_LENGTH(tcph); 8980 up += TCP_MIN_HEADER_LENGTH; 8981 while (up < endp) { 8982 len = endp - up; 8983 switch (*up) { 8984 case TCPOPT_EOL: 8985 break; 8986 8987 case TCPOPT_NOP: 8988 up++; 8989 continue; 8990 8991 case TCPOPT_MAXSEG: 8992 if (len < TCPOPT_MAXSEG_LEN || 8993 up[1] != TCPOPT_MAXSEG_LEN) 8994 break; 8995 8996 mss = BE16_TO_U16(up+2); 8997 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 8998 tcpopt->tcp_opt_mss = mss; 8999 found |= TCP_OPT_MSS_PRESENT; 9000 9001 up += TCPOPT_MAXSEG_LEN; 9002 continue; 9003 9004 case TCPOPT_WSCALE: 9005 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9006 break; 9007 9008 if (up[2] > TCP_MAX_WINSHIFT) 9009 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9010 else 9011 tcpopt->tcp_opt_wscale = up[2]; 9012 found |= TCP_OPT_WSCALE_PRESENT; 9013 9014 up += TCPOPT_WS_LEN; 9015 continue; 9016 9017 case TCPOPT_SACK_PERMITTED: 9018 if (len < TCPOPT_SACK_OK_LEN || 9019 up[1] != TCPOPT_SACK_OK_LEN) 9020 break; 9021 found |= TCP_OPT_SACK_OK_PRESENT; 9022 up += TCPOPT_SACK_OK_LEN; 9023 continue; 9024 9025 case TCPOPT_SACK: 9026 if (len <= 2 || up[1] <= 2 || len < up[1]) 9027 break; 9028 9029 /* If TCP is not interested in SACK blks... */ 9030 if ((tcp = tcpopt->tcp) == NULL) { 9031 up += up[1]; 9032 continue; 9033 } 9034 sack_len = up[1] - TCPOPT_HEADER_LEN; 9035 up += TCPOPT_HEADER_LEN; 9036 9037 /* 9038 * If the list is empty, allocate one and assume 9039 * nothing is sack'ed. 9040 */ 9041 ASSERT(tcp->tcp_sack_info != NULL); 9042 if (tcp->tcp_notsack_list == NULL) { 9043 tcp_notsack_update(&(tcp->tcp_notsack_list), 9044 tcp->tcp_suna, tcp->tcp_snxt, 9045 &(tcp->tcp_num_notsack_blk), 9046 &(tcp->tcp_cnt_notsack_list)); 9047 9048 /* 9049 * Make sure tcp_notsack_list is not NULL. 9050 * This happens when kmem_alloc(KM_NOSLEEP) 9051 * returns NULL. 9052 */ 9053 if (tcp->tcp_notsack_list == NULL) { 9054 up += sack_len; 9055 continue; 9056 } 9057 tcp->tcp_fack = tcp->tcp_suna; 9058 } 9059 9060 while (sack_len > 0) { 9061 if (up + 8 > endp) { 9062 up = endp; 9063 break; 9064 } 9065 sack_begin = BE32_TO_U32(up); 9066 up += 4; 9067 sack_end = BE32_TO_U32(up); 9068 up += 4; 9069 sack_len -= 8; 9070 /* 9071 * Bounds checking. Make sure the SACK 9072 * info is within tcp_suna and tcp_snxt. 9073 * If this SACK blk is out of bound, ignore 9074 * it but continue to parse the following 9075 * blks. 9076 */ 9077 if (SEQ_LEQ(sack_end, sack_begin) || 9078 SEQ_LT(sack_begin, tcp->tcp_suna) || 9079 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9080 continue; 9081 } 9082 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9083 sack_begin, sack_end, 9084 &(tcp->tcp_num_notsack_blk), 9085 &(tcp->tcp_cnt_notsack_list)); 9086 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9087 tcp->tcp_fack = sack_end; 9088 } 9089 } 9090 found |= TCP_OPT_SACK_PRESENT; 9091 continue; 9092 9093 case TCPOPT_TSTAMP: 9094 if (len < TCPOPT_TSTAMP_LEN || 9095 up[1] != TCPOPT_TSTAMP_LEN) 9096 break; 9097 9098 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9099 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9100 9101 found |= TCP_OPT_TSTAMP_PRESENT; 9102 9103 up += TCPOPT_TSTAMP_LEN; 9104 continue; 9105 9106 default: 9107 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9108 break; 9109 up += up[1]; 9110 continue; 9111 } 9112 break; 9113 } 9114 return (found); 9115 } 9116 9117 /* 9118 * Set the mss associated with a particular tcp based on its current value, 9119 * and a new one passed in. Observe minimums and maximums, and reset 9120 * other state variables that we want to view as multiples of mss. 9121 * 9122 * This function is called mainly because values like tcp_mss, tcp_cwnd, 9123 * highwater marks etc. need to be initialized or adjusted. 9124 * 1) From tcp_process_options() when the other side's SYN/SYN-ACK 9125 * packet arrives. 9126 * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or 9127 * ICMP6_PACKET_TOO_BIG arrives. 9128 * 3) From tcp_paws_check() if the other side stops sending the timestamp, 9129 * to increase the MSS to use the extra bytes available. 9130 * 9131 * Callers except tcp_paws_check() ensure that they only reduce mss. 9132 */ 9133 static void 9134 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9135 { 9136 uint32_t mss_max; 9137 tcp_stack_t *tcps = tcp->tcp_tcps; 9138 9139 if (tcp->tcp_ipversion == IPV4_VERSION) 9140 mss_max = tcps->tcps_mss_max_ipv4; 9141 else 9142 mss_max = tcps->tcps_mss_max_ipv6; 9143 9144 if (mss < tcps->tcps_mss_min) 9145 mss = tcps->tcps_mss_min; 9146 if (mss > mss_max) 9147 mss = mss_max; 9148 /* 9149 * Unless naglim has been set by our client to 9150 * a non-mss value, force naglim to track mss. 9151 * This can help to aggregate small writes. 9152 */ 9153 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9154 tcp->tcp_naglim = mss; 9155 /* 9156 * TCP should be able to buffer at least 4 MSS data for obvious 9157 * performance reason. 9158 */ 9159 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9160 tcp->tcp_xmit_hiwater = mss << 2; 9161 9162 /* 9163 * Set the xmit_lowater to at least twice of MSS. 9164 */ 9165 if ((mss << 1) > tcp->tcp_xmit_lowater) 9166 tcp->tcp_xmit_lowater = mss << 1; 9167 9168 if (do_ss) { 9169 /* 9170 * Either the tcp_cwnd is as yet uninitialized, or mss is 9171 * changing due to a reduction in MTU, presumably as a 9172 * result of a new path component, reset cwnd to its 9173 * "initial" value, as a multiple of the new mss. 9174 */ 9175 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial); 9176 } else { 9177 /* 9178 * Called by tcp_paws_check(), the mss increased 9179 * marginally to allow use of space previously taken 9180 * by the timestamp option. It would be inappropriate 9181 * to apply slow start or tcp_init_cwnd values to 9182 * tcp_cwnd, simply adjust to a multiple of the new mss. 9183 */ 9184 tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss; 9185 tcp->tcp_cwnd_cnt = 0; 9186 } 9187 tcp->tcp_mss = mss; 9188 (void) tcp_maxpsz_set(tcp, B_TRUE); 9189 } 9190 9191 /* For /dev/tcp aka AF_INET open */ 9192 static int 9193 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9194 { 9195 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9196 } 9197 9198 /* For /dev/tcp6 aka AF_INET6 open */ 9199 static int 9200 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9201 { 9202 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9203 } 9204 9205 static conn_t * 9206 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6, 9207 boolean_t issocket, int *errorp) 9208 { 9209 tcp_t *tcp = NULL; 9210 conn_t *connp; 9211 int err; 9212 zoneid_t zoneid; 9213 tcp_stack_t *tcps; 9214 squeue_t *sqp; 9215 9216 ASSERT(errorp != NULL); 9217 /* 9218 * Find the proper zoneid and netstack. 9219 */ 9220 /* 9221 * Special case for install: miniroot needs to be able to 9222 * access files via NFS as though it were always in the 9223 * global zone. 9224 */ 9225 if (credp == kcred && nfs_global_client_only != 0) { 9226 zoneid = GLOBAL_ZONEID; 9227 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9228 netstack_tcp; 9229 ASSERT(tcps != NULL); 9230 } else { 9231 netstack_t *ns; 9232 9233 ns = netstack_find_by_cred(credp); 9234 ASSERT(ns != NULL); 9235 tcps = ns->netstack_tcp; 9236 ASSERT(tcps != NULL); 9237 9238 /* 9239 * For exclusive stacks we set the zoneid to zero 9240 * to make TCP operate as if in the global zone. 9241 */ 9242 if (tcps->tcps_netstack->netstack_stackid != 9243 GLOBAL_NETSTACKID) 9244 zoneid = GLOBAL_ZONEID; 9245 else 9246 zoneid = crgetzoneid(credp); 9247 } 9248 /* 9249 * For stackid zero this is done from strplumb.c, but 9250 * non-zero stackids are handled here. 9251 */ 9252 if (tcps->tcps_g_q == NULL && 9253 tcps->tcps_netstack->netstack_stackid != 9254 GLOBAL_NETSTACKID) { 9255 tcp_g_q_setup(tcps); 9256 } 9257 9258 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 9259 connp = (conn_t *)tcp_get_conn(sqp, tcps); 9260 /* 9261 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9262 * so we drop it by one. 9263 */ 9264 netstack_rele(tcps->tcps_netstack); 9265 if (connp == NULL) { 9266 *errorp = ENOSR; 9267 return (NULL); 9268 } 9269 connp->conn_sqp = sqp; 9270 connp->conn_initial_sqp = connp->conn_sqp; 9271 tcp = connp->conn_tcp; 9272 9273 if (isv6) { 9274 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9275 connp->conn_send = ip_output_v6; 9276 connp->conn_af_isv6 = B_TRUE; 9277 connp->conn_pkt_isv6 = B_TRUE; 9278 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9279 tcp->tcp_ipversion = IPV6_VERSION; 9280 tcp->tcp_family = AF_INET6; 9281 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9282 } else { 9283 connp->conn_flags |= IPCL_TCP4; 9284 connp->conn_send = ip_output; 9285 connp->conn_af_isv6 = B_FALSE; 9286 connp->conn_pkt_isv6 = B_FALSE; 9287 tcp->tcp_ipversion = IPV4_VERSION; 9288 tcp->tcp_family = AF_INET; 9289 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9290 } 9291 9292 /* 9293 * TCP keeps a copy of cred for cache locality reasons but 9294 * we put a reference only once. If connp->conn_cred 9295 * becomes invalid, tcp_cred should also be set to NULL. 9296 */ 9297 tcp->tcp_cred = connp->conn_cred = credp; 9298 crhold(connp->conn_cred); 9299 tcp->tcp_cpid = curproc->p_pid; 9300 tcp->tcp_open_time = lbolt64; 9301 connp->conn_zoneid = zoneid; 9302 connp->conn_mlp_type = mlptSingle; 9303 connp->conn_ulp_labeled = !is_system_labeled(); 9304 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9305 ASSERT(tcp->tcp_tcps == tcps); 9306 9307 /* 9308 * If the caller has the process-wide flag set, then default to MAC 9309 * exempt mode. This allows read-down to unlabeled hosts. 9310 */ 9311 if (getpflags(NET_MAC_AWARE, credp) != 0) 9312 connp->conn_mac_exempt = B_TRUE; 9313 9314 connp->conn_dev = NULL; 9315 if (issocket) { 9316 connp->conn_flags |= IPCL_SOCKET; 9317 tcp->tcp_issocket = 1; 9318 } 9319 9320 tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat; 9321 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9322 tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat; 9323 9324 /* Non-zero default values */ 9325 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9326 9327 if (q == NULL) { 9328 /* 9329 * Create a helper stream for non-STREAMS socket. 9330 */ 9331 err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident); 9332 if (err != 0) { 9333 ip1dbg(("tcp_create_common: create of IP helper stream " 9334 "failed\n")); 9335 CONN_DEC_REF(connp); 9336 *errorp = err; 9337 return (NULL); 9338 } 9339 q = connp->conn_rq; 9340 } else { 9341 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9342 } 9343 9344 SOCK_CONNID_INIT(tcp->tcp_connid); 9345 err = tcp_init(tcp, q); 9346 if (err != 0) { 9347 CONN_DEC_REF(connp); 9348 *errorp = err; 9349 return (NULL); 9350 } 9351 9352 return (connp); 9353 } 9354 9355 static int 9356 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9357 boolean_t isv6) 9358 { 9359 tcp_t *tcp = NULL; 9360 conn_t *connp = NULL; 9361 int err; 9362 vmem_t *minor_arena = NULL; 9363 dev_t conn_dev; 9364 boolean_t issocket; 9365 9366 if (q->q_ptr != NULL) 9367 return (0); 9368 9369 if (sflag == MODOPEN) 9370 return (EINVAL); 9371 9372 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9373 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9374 minor_arena = ip_minor_arena_la; 9375 } else { 9376 /* 9377 * Either minor numbers in the large arena were exhausted 9378 * or a non socket application is doing the open. 9379 * Try to allocate from the small arena. 9380 */ 9381 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9382 return (EBUSY); 9383 } 9384 minor_arena = ip_minor_arena_sa; 9385 } 9386 9387 ASSERT(minor_arena != NULL); 9388 9389 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 9390 9391 if (flag & SO_FALLBACK) { 9392 /* 9393 * Non streams socket needs a stream to fallback to 9394 */ 9395 RD(q)->q_ptr = (void *)conn_dev; 9396 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 9397 WR(q)->q_ptr = (void *)minor_arena; 9398 qprocson(q); 9399 return (0); 9400 } else if (flag & SO_ACCEPTOR) { 9401 q->q_qinfo = &tcp_acceptor_rinit; 9402 /* 9403 * the conn_dev and minor_arena will be subsequently used by 9404 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out 9405 * the minor device number for this connection from the q_ptr. 9406 */ 9407 RD(q)->q_ptr = (void *)conn_dev; 9408 WR(q)->q_qinfo = &tcp_acceptor_winit; 9409 WR(q)->q_ptr = (void *)minor_arena; 9410 qprocson(q); 9411 return (0); 9412 } 9413 9414 issocket = flag & SO_SOCKSTR; 9415 connp = tcp_create_common(q, credp, isv6, issocket, &err); 9416 9417 if (connp == NULL) { 9418 inet_minor_free(minor_arena, conn_dev); 9419 q->q_ptr = WR(q)->q_ptr = NULL; 9420 return (err); 9421 } 9422 9423 q->q_ptr = WR(q)->q_ptr = connp; 9424 9425 connp->conn_dev = conn_dev; 9426 connp->conn_minor_arena = minor_arena; 9427 9428 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9429 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9430 9431 tcp = connp->conn_tcp; 9432 9433 if (issocket) { 9434 WR(q)->q_qinfo = &tcp_sock_winit; 9435 } else { 9436 #ifdef _ILP32 9437 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9438 #else 9439 tcp->tcp_acceptor_id = conn_dev; 9440 #endif /* _ILP32 */ 9441 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9442 } 9443 9444 /* 9445 * Put the ref for TCP. Ref for IP was already put 9446 * by ipcl_conn_create. Also Make the conn_t globally 9447 * visible to walkers 9448 */ 9449 mutex_enter(&connp->conn_lock); 9450 CONN_INC_REF_LOCKED(connp); 9451 ASSERT(connp->conn_ref == 2); 9452 connp->conn_state_flags &= ~CONN_INCIPIENT; 9453 mutex_exit(&connp->conn_lock); 9454 9455 qprocson(q); 9456 return (0); 9457 } 9458 9459 /* 9460 * Some TCP options can be "set" by requesting them in the option 9461 * buffer. This is needed for XTI feature test though we do not 9462 * allow it in general. We interpret that this mechanism is more 9463 * applicable to OSI protocols and need not be allowed in general. 9464 * This routine filters out options for which it is not allowed (most) 9465 * and lets through those (few) for which it is. [ The XTI interface 9466 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9467 * ever implemented will have to be allowed here ]. 9468 */ 9469 static boolean_t 9470 tcp_allow_connopt_set(int level, int name) 9471 { 9472 9473 switch (level) { 9474 case IPPROTO_TCP: 9475 switch (name) { 9476 case TCP_NODELAY: 9477 return (B_TRUE); 9478 default: 9479 return (B_FALSE); 9480 } 9481 /*NOTREACHED*/ 9482 default: 9483 return (B_FALSE); 9484 } 9485 /*NOTREACHED*/ 9486 } 9487 9488 /* 9489 * this routine gets default values of certain options whose default 9490 * values are maintained by protocol specific code 9491 */ 9492 /* ARGSUSED */ 9493 int 9494 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9495 { 9496 int32_t *i1 = (int32_t *)ptr; 9497 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9498 9499 switch (level) { 9500 case IPPROTO_TCP: 9501 switch (name) { 9502 case TCP_NOTIFY_THRESHOLD: 9503 *i1 = tcps->tcps_ip_notify_interval; 9504 break; 9505 case TCP_ABORT_THRESHOLD: 9506 *i1 = tcps->tcps_ip_abort_interval; 9507 break; 9508 case TCP_CONN_NOTIFY_THRESHOLD: 9509 *i1 = tcps->tcps_ip_notify_cinterval; 9510 break; 9511 case TCP_CONN_ABORT_THRESHOLD: 9512 *i1 = tcps->tcps_ip_abort_cinterval; 9513 break; 9514 default: 9515 return (-1); 9516 } 9517 break; 9518 case IPPROTO_IP: 9519 switch (name) { 9520 case IP_TTL: 9521 *i1 = tcps->tcps_ipv4_ttl; 9522 break; 9523 default: 9524 return (-1); 9525 } 9526 break; 9527 case IPPROTO_IPV6: 9528 switch (name) { 9529 case IPV6_UNICAST_HOPS: 9530 *i1 = tcps->tcps_ipv6_hoplimit; 9531 break; 9532 default: 9533 return (-1); 9534 } 9535 break; 9536 default: 9537 return (-1); 9538 } 9539 return (sizeof (int)); 9540 } 9541 9542 static int 9543 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr) 9544 { 9545 int *i1 = (int *)ptr; 9546 tcp_t *tcp = connp->conn_tcp; 9547 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9548 9549 switch (level) { 9550 case SOL_SOCKET: 9551 switch (name) { 9552 case SO_LINGER: { 9553 struct linger *lgr = (struct linger *)ptr; 9554 9555 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9556 lgr->l_linger = tcp->tcp_lingertime; 9557 } 9558 return (sizeof (struct linger)); 9559 case SO_DEBUG: 9560 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9561 break; 9562 case SO_KEEPALIVE: 9563 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9564 break; 9565 case SO_DONTROUTE: 9566 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9567 break; 9568 case SO_USELOOPBACK: 9569 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9570 break; 9571 case SO_BROADCAST: 9572 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9573 break; 9574 case SO_REUSEADDR: 9575 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9576 break; 9577 case SO_OOBINLINE: 9578 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9579 break; 9580 case SO_DGRAM_ERRIND: 9581 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9582 break; 9583 case SO_TYPE: 9584 *i1 = SOCK_STREAM; 9585 break; 9586 case SO_SNDBUF: 9587 *i1 = tcp->tcp_xmit_hiwater; 9588 break; 9589 case SO_RCVBUF: 9590 *i1 = tcp->tcp_recv_hiwater; 9591 break; 9592 case SO_SND_COPYAVOID: 9593 *i1 = tcp->tcp_snd_zcopy_on ? 9594 SO_SND_COPYAVOID : 0; 9595 break; 9596 case SO_ALLZONES: 9597 *i1 = connp->conn_allzones ? 1 : 0; 9598 break; 9599 case SO_ANON_MLP: 9600 *i1 = connp->conn_anon_mlp; 9601 break; 9602 case SO_MAC_EXEMPT: 9603 *i1 = connp->conn_mac_exempt; 9604 break; 9605 case SO_EXCLBIND: 9606 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9607 break; 9608 case SO_PROTOTYPE: 9609 *i1 = IPPROTO_TCP; 9610 break; 9611 case SO_DOMAIN: 9612 *i1 = tcp->tcp_family; 9613 break; 9614 case SO_ACCEPTCONN: 9615 *i1 = (tcp->tcp_state == TCPS_LISTEN); 9616 default: 9617 return (-1); 9618 } 9619 break; 9620 case IPPROTO_TCP: 9621 switch (name) { 9622 case TCP_NODELAY: 9623 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9624 break; 9625 case TCP_MAXSEG: 9626 *i1 = tcp->tcp_mss; 9627 break; 9628 case TCP_NOTIFY_THRESHOLD: 9629 *i1 = (int)tcp->tcp_first_timer_threshold; 9630 break; 9631 case TCP_ABORT_THRESHOLD: 9632 *i1 = tcp->tcp_second_timer_threshold; 9633 break; 9634 case TCP_CONN_NOTIFY_THRESHOLD: 9635 *i1 = tcp->tcp_first_ctimer_threshold; 9636 break; 9637 case TCP_CONN_ABORT_THRESHOLD: 9638 *i1 = tcp->tcp_second_ctimer_threshold; 9639 break; 9640 case TCP_RECVDSTADDR: 9641 *i1 = tcp->tcp_recvdstaddr; 9642 break; 9643 case TCP_ANONPRIVBIND: 9644 *i1 = tcp->tcp_anon_priv_bind; 9645 break; 9646 case TCP_EXCLBIND: 9647 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9648 break; 9649 case TCP_INIT_CWND: 9650 *i1 = tcp->tcp_init_cwnd; 9651 break; 9652 case TCP_KEEPALIVE_THRESHOLD: 9653 *i1 = tcp->tcp_ka_interval; 9654 break; 9655 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9656 *i1 = tcp->tcp_ka_abort_thres; 9657 break; 9658 case TCP_CORK: 9659 *i1 = tcp->tcp_cork; 9660 break; 9661 default: 9662 return (-1); 9663 } 9664 break; 9665 case IPPROTO_IP: 9666 if (tcp->tcp_family != AF_INET) 9667 return (-1); 9668 switch (name) { 9669 case IP_OPTIONS: 9670 case T_IP_OPTIONS: { 9671 /* 9672 * This is compatible with BSD in that in only return 9673 * the reverse source route with the final destination 9674 * as the last entry. The first 4 bytes of the option 9675 * will contain the final destination. 9676 */ 9677 int opt_len; 9678 9679 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9680 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9681 ASSERT(opt_len >= 0); 9682 /* Caller ensures enough space */ 9683 if (opt_len > 0) { 9684 /* 9685 * TODO: Do we have to handle getsockopt on an 9686 * initiator as well? 9687 */ 9688 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9689 } 9690 return (0); 9691 } 9692 case IP_TOS: 9693 case T_IP_TOS: 9694 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9695 break; 9696 case IP_TTL: 9697 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9698 break; 9699 case IP_NEXTHOP: 9700 /* Handled at IP level */ 9701 return (-EINVAL); 9702 default: 9703 return (-1); 9704 } 9705 break; 9706 case IPPROTO_IPV6: 9707 /* 9708 * IPPROTO_IPV6 options are only supported for sockets 9709 * that are using IPv6 on the wire. 9710 */ 9711 if (tcp->tcp_ipversion != IPV6_VERSION) { 9712 return (-1); 9713 } 9714 switch (name) { 9715 case IPV6_UNICAST_HOPS: 9716 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9717 break; /* goto sizeof (int) option return */ 9718 case IPV6_BOUND_IF: 9719 /* Zero if not set */ 9720 *i1 = tcp->tcp_bound_if; 9721 break; /* goto sizeof (int) option return */ 9722 case IPV6_RECVPKTINFO: 9723 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9724 *i1 = 1; 9725 else 9726 *i1 = 0; 9727 break; /* goto sizeof (int) option return */ 9728 case IPV6_RECVTCLASS: 9729 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9730 *i1 = 1; 9731 else 9732 *i1 = 0; 9733 break; /* goto sizeof (int) option return */ 9734 case IPV6_RECVHOPLIMIT: 9735 if (tcp->tcp_ipv6_recvancillary & 9736 TCP_IPV6_RECVHOPLIMIT) 9737 *i1 = 1; 9738 else 9739 *i1 = 0; 9740 break; /* goto sizeof (int) option return */ 9741 case IPV6_RECVHOPOPTS: 9742 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9743 *i1 = 1; 9744 else 9745 *i1 = 0; 9746 break; /* goto sizeof (int) option return */ 9747 case IPV6_RECVDSTOPTS: 9748 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 9749 *i1 = 1; 9750 else 9751 *i1 = 0; 9752 break; /* goto sizeof (int) option return */ 9753 case _OLD_IPV6_RECVDSTOPTS: 9754 if (tcp->tcp_ipv6_recvancillary & 9755 TCP_OLD_IPV6_RECVDSTOPTS) 9756 *i1 = 1; 9757 else 9758 *i1 = 0; 9759 break; /* goto sizeof (int) option return */ 9760 case IPV6_RECVRTHDR: 9761 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 9762 *i1 = 1; 9763 else 9764 *i1 = 0; 9765 break; /* goto sizeof (int) option return */ 9766 case IPV6_RECVRTHDRDSTOPTS: 9767 if (tcp->tcp_ipv6_recvancillary & 9768 TCP_IPV6_RECVRTDSTOPTS) 9769 *i1 = 1; 9770 else 9771 *i1 = 0; 9772 break; /* goto sizeof (int) option return */ 9773 case IPV6_PKTINFO: { 9774 /* XXX assumes that caller has room for max size! */ 9775 struct in6_pktinfo *pkti; 9776 9777 pkti = (struct in6_pktinfo *)ptr; 9778 if (ipp->ipp_fields & IPPF_IFINDEX) 9779 pkti->ipi6_ifindex = ipp->ipp_ifindex; 9780 else 9781 pkti->ipi6_ifindex = 0; 9782 if (ipp->ipp_fields & IPPF_ADDR) 9783 pkti->ipi6_addr = ipp->ipp_addr; 9784 else 9785 pkti->ipi6_addr = ipv6_all_zeros; 9786 return (sizeof (struct in6_pktinfo)); 9787 } 9788 case IPV6_TCLASS: 9789 if (ipp->ipp_fields & IPPF_TCLASS) 9790 *i1 = ipp->ipp_tclass; 9791 else 9792 *i1 = IPV6_FLOW_TCLASS( 9793 IPV6_DEFAULT_VERS_AND_FLOW); 9794 break; /* goto sizeof (int) option return */ 9795 case IPV6_NEXTHOP: { 9796 sin6_t *sin6 = (sin6_t *)ptr; 9797 9798 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 9799 return (0); 9800 *sin6 = sin6_null; 9801 sin6->sin6_family = AF_INET6; 9802 sin6->sin6_addr = ipp->ipp_nexthop; 9803 return (sizeof (sin6_t)); 9804 } 9805 case IPV6_HOPOPTS: 9806 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 9807 return (0); 9808 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 9809 return (0); 9810 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 9811 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 9812 if (tcp->tcp_label_len > 0) { 9813 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 9814 ptr[1] = (ipp->ipp_hopoptslen - 9815 tcp->tcp_label_len + 7) / 8 - 1; 9816 } 9817 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 9818 case IPV6_RTHDRDSTOPTS: 9819 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 9820 return (0); 9821 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 9822 return (ipp->ipp_rtdstoptslen); 9823 case IPV6_RTHDR: 9824 if (!(ipp->ipp_fields & IPPF_RTHDR)) 9825 return (0); 9826 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 9827 return (ipp->ipp_rthdrlen); 9828 case IPV6_DSTOPTS: 9829 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 9830 return (0); 9831 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 9832 return (ipp->ipp_dstoptslen); 9833 case IPV6_SRC_PREFERENCES: 9834 return (ip6_get_src_preferences(connp, 9835 (uint32_t *)ptr)); 9836 case IPV6_PATHMTU: { 9837 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 9838 9839 if (tcp->tcp_state < TCPS_ESTABLISHED) 9840 return (-1); 9841 9842 return (ip_fill_mtuinfo(&connp->conn_remv6, 9843 connp->conn_fport, mtuinfo, 9844 connp->conn_netstack)); 9845 } 9846 default: 9847 return (-1); 9848 } 9849 break; 9850 default: 9851 return (-1); 9852 } 9853 return (sizeof (int)); 9854 } 9855 9856 /* 9857 * TCP routine to get the values of options. 9858 */ 9859 int 9860 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9861 { 9862 return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr)); 9863 } 9864 9865 /* returns UNIX error, the optlen is a value-result arg */ 9866 int 9867 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 9868 void *optvalp, socklen_t *optlen, cred_t *cr) 9869 { 9870 conn_t *connp = (conn_t *)proto_handle; 9871 squeue_t *sqp = connp->conn_sqp; 9872 int error; 9873 t_uscalar_t max_optbuf_len; 9874 void *optvalp_buf; 9875 int len; 9876 9877 ASSERT(connp->conn_upper_handle != NULL); 9878 9879 error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len, 9880 tcp_opt_obj.odb_opt_des_arr, 9881 tcp_opt_obj.odb_opt_arr_cnt, 9882 tcp_opt_obj.odb_topmost_tpiprovider, 9883 B_FALSE, B_TRUE, cr); 9884 if (error != 0) { 9885 if (error < 0) { 9886 error = proto_tlitosyserr(-error); 9887 } 9888 return (error); 9889 } 9890 9891 optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP); 9892 9893 error = squeue_synch_enter(sqp, connp, NULL); 9894 if (error == ENOMEM) { 9895 return (ENOMEM); 9896 } 9897 9898 len = tcp_opt_get(connp, level, option_name, optvalp_buf); 9899 squeue_synch_exit(sqp, connp); 9900 9901 if (len < 0) { 9902 /* 9903 * Pass on to IP 9904 */ 9905 kmem_free(optvalp_buf, max_optbuf_len); 9906 return (ip_get_options(connp, level, option_name, 9907 optvalp, optlen, cr)); 9908 } else { 9909 /* 9910 * update optlen and copy option value 9911 */ 9912 t_uscalar_t size = MIN(len, *optlen); 9913 bcopy(optvalp_buf, optvalp, size); 9914 bcopy(&size, optlen, sizeof (size)); 9915 9916 kmem_free(optvalp_buf, max_optbuf_len); 9917 return (0); 9918 } 9919 } 9920 9921 /* 9922 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 9923 * Parameters are assumed to be verified by the caller. 9924 */ 9925 /* ARGSUSED */ 9926 int 9927 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name, 9928 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 9929 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 9930 { 9931 tcp_t *tcp = connp->conn_tcp; 9932 int *i1 = (int *)invalp; 9933 boolean_t onoff = (*i1 == 0) ? 0 : 1; 9934 boolean_t checkonly; 9935 int reterr; 9936 tcp_stack_t *tcps = tcp->tcp_tcps; 9937 9938 switch (optset_context) { 9939 case SETFN_OPTCOM_CHECKONLY: 9940 checkonly = B_TRUE; 9941 /* 9942 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 9943 * inlen != 0 implies value supplied and 9944 * we have to "pretend" to set it. 9945 * inlen == 0 implies that there is no 9946 * value part in T_CHECK request and just validation 9947 * done elsewhere should be enough, we just return here. 9948 */ 9949 if (inlen == 0) { 9950 *outlenp = 0; 9951 return (0); 9952 } 9953 break; 9954 case SETFN_OPTCOM_NEGOTIATE: 9955 checkonly = B_FALSE; 9956 break; 9957 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 9958 case SETFN_CONN_NEGOTIATE: 9959 checkonly = B_FALSE; 9960 /* 9961 * Negotiating local and "association-related" options 9962 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 9963 * primitives is allowed by XTI, but we choose 9964 * to not implement this style negotiation for Internet 9965 * protocols (We interpret it is a must for OSI world but 9966 * optional for Internet protocols) for all options. 9967 * [ Will do only for the few options that enable test 9968 * suites that our XTI implementation of this feature 9969 * works for transports that do allow it ] 9970 */ 9971 if (!tcp_allow_connopt_set(level, name)) { 9972 *outlenp = 0; 9973 return (EINVAL); 9974 } 9975 break; 9976 default: 9977 /* 9978 * We should never get here 9979 */ 9980 *outlenp = 0; 9981 return (EINVAL); 9982 } 9983 9984 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 9985 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 9986 9987 /* 9988 * For TCP, we should have no ancillary data sent down 9989 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 9990 * has to be zero. 9991 */ 9992 ASSERT(thisdg_attrs == NULL); 9993 9994 /* 9995 * For fixed length options, no sanity check 9996 * of passed in length is done. It is assumed *_optcom_req() 9997 * routines do the right thing. 9998 */ 9999 switch (level) { 10000 case SOL_SOCKET: 10001 switch (name) { 10002 case SO_LINGER: { 10003 struct linger *lgr = (struct linger *)invalp; 10004 10005 if (!checkonly) { 10006 if (lgr->l_onoff) { 10007 tcp->tcp_linger = 1; 10008 tcp->tcp_lingertime = lgr->l_linger; 10009 } else { 10010 tcp->tcp_linger = 0; 10011 tcp->tcp_lingertime = 0; 10012 } 10013 /* struct copy */ 10014 *(struct linger *)outvalp = *lgr; 10015 } else { 10016 if (!lgr->l_onoff) { 10017 ((struct linger *) 10018 outvalp)->l_onoff = 0; 10019 ((struct linger *) 10020 outvalp)->l_linger = 0; 10021 } else { 10022 /* struct copy */ 10023 *(struct linger *)outvalp = *lgr; 10024 } 10025 } 10026 *outlenp = sizeof (struct linger); 10027 return (0); 10028 } 10029 case SO_DEBUG: 10030 if (!checkonly) 10031 tcp->tcp_debug = onoff; 10032 break; 10033 case SO_KEEPALIVE: 10034 if (checkonly) { 10035 /* check only case */ 10036 break; 10037 } 10038 10039 if (!onoff) { 10040 if (tcp->tcp_ka_enabled) { 10041 if (tcp->tcp_ka_tid != 0) { 10042 (void) TCP_TIMER_CANCEL(tcp, 10043 tcp->tcp_ka_tid); 10044 tcp->tcp_ka_tid = 0; 10045 } 10046 tcp->tcp_ka_enabled = 0; 10047 } 10048 break; 10049 } 10050 if (!tcp->tcp_ka_enabled) { 10051 /* Crank up the keepalive timer */ 10052 tcp->tcp_ka_last_intrvl = 0; 10053 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10054 tcp_keepalive_killer, 10055 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10056 tcp->tcp_ka_enabled = 1; 10057 } 10058 break; 10059 case SO_DONTROUTE: 10060 /* 10061 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10062 * only of interest to IP. We track them here only so 10063 * that we can report their current value. 10064 */ 10065 if (!checkonly) { 10066 tcp->tcp_dontroute = onoff; 10067 tcp->tcp_connp->conn_dontroute = onoff; 10068 } 10069 break; 10070 case SO_USELOOPBACK: 10071 if (!checkonly) { 10072 tcp->tcp_useloopback = onoff; 10073 tcp->tcp_connp->conn_loopback = onoff; 10074 } 10075 break; 10076 case SO_BROADCAST: 10077 if (!checkonly) { 10078 tcp->tcp_broadcast = onoff; 10079 tcp->tcp_connp->conn_broadcast = onoff; 10080 } 10081 break; 10082 case SO_REUSEADDR: 10083 if (!checkonly) { 10084 tcp->tcp_reuseaddr = onoff; 10085 tcp->tcp_connp->conn_reuseaddr = onoff; 10086 } 10087 break; 10088 case SO_OOBINLINE: 10089 if (!checkonly) { 10090 tcp->tcp_oobinline = onoff; 10091 if (IPCL_IS_NONSTR(tcp->tcp_connp)) 10092 proto_set_rx_oob_opt(connp, onoff); 10093 } 10094 break; 10095 case SO_DGRAM_ERRIND: 10096 if (!checkonly) 10097 tcp->tcp_dgram_errind = onoff; 10098 break; 10099 case SO_SNDBUF: { 10100 if (*i1 > tcps->tcps_max_buf) { 10101 *outlenp = 0; 10102 return (ENOBUFS); 10103 } 10104 if (checkonly) 10105 break; 10106 10107 tcp->tcp_xmit_hiwater = *i1; 10108 if (tcps->tcps_snd_lowat_fraction != 0) 10109 tcp->tcp_xmit_lowater = 10110 tcp->tcp_xmit_hiwater / 10111 tcps->tcps_snd_lowat_fraction; 10112 (void) tcp_maxpsz_set(tcp, B_TRUE); 10113 /* 10114 * If we are flow-controlled, recheck the condition. 10115 * There are apps that increase SO_SNDBUF size when 10116 * flow-controlled (EWOULDBLOCK), and expect the flow 10117 * control condition to be lifted right away. 10118 */ 10119 mutex_enter(&tcp->tcp_non_sq_lock); 10120 if (tcp->tcp_flow_stopped && 10121 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10122 tcp_clrqfull(tcp); 10123 } 10124 mutex_exit(&tcp->tcp_non_sq_lock); 10125 break; 10126 } 10127 case SO_RCVBUF: 10128 if (*i1 > tcps->tcps_max_buf) { 10129 *outlenp = 0; 10130 return (ENOBUFS); 10131 } 10132 /* Silently ignore zero */ 10133 if (!checkonly && *i1 != 0) { 10134 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10135 (void) tcp_rwnd_set(tcp, *i1); 10136 } 10137 /* 10138 * XXX should we return the rwnd here 10139 * and tcp_opt_get ? 10140 */ 10141 break; 10142 case SO_SND_COPYAVOID: 10143 if (!checkonly) { 10144 /* we only allow enable at most once for now */ 10145 if (tcp->tcp_loopback || 10146 (tcp->tcp_kssl_ctx != NULL) || 10147 (!tcp->tcp_snd_zcopy_aware && 10148 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10149 *outlenp = 0; 10150 return (EOPNOTSUPP); 10151 } 10152 tcp->tcp_snd_zcopy_aware = 1; 10153 } 10154 break; 10155 case SO_RCVTIMEO: 10156 case SO_SNDTIMEO: 10157 /* 10158 * Pass these two options in order for third part 10159 * protocol usage. Here just return directly. 10160 */ 10161 return (0); 10162 case SO_ALLZONES: 10163 /* Pass option along to IP level for handling */ 10164 return (-EINVAL); 10165 case SO_ANON_MLP: 10166 /* Pass option along to IP level for handling */ 10167 return (-EINVAL); 10168 case SO_MAC_EXEMPT: 10169 /* Pass option along to IP level for handling */ 10170 return (-EINVAL); 10171 case SO_EXCLBIND: 10172 if (!checkonly) 10173 tcp->tcp_exclbind = onoff; 10174 break; 10175 default: 10176 *outlenp = 0; 10177 return (EINVAL); 10178 } 10179 break; 10180 case IPPROTO_TCP: 10181 switch (name) { 10182 case TCP_NODELAY: 10183 if (!checkonly) 10184 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10185 break; 10186 case TCP_NOTIFY_THRESHOLD: 10187 if (!checkonly) 10188 tcp->tcp_first_timer_threshold = *i1; 10189 break; 10190 case TCP_ABORT_THRESHOLD: 10191 if (!checkonly) 10192 tcp->tcp_second_timer_threshold = *i1; 10193 break; 10194 case TCP_CONN_NOTIFY_THRESHOLD: 10195 if (!checkonly) 10196 tcp->tcp_first_ctimer_threshold = *i1; 10197 break; 10198 case TCP_CONN_ABORT_THRESHOLD: 10199 if (!checkonly) 10200 tcp->tcp_second_ctimer_threshold = *i1; 10201 break; 10202 case TCP_RECVDSTADDR: 10203 if (tcp->tcp_state > TCPS_LISTEN) 10204 return (EOPNOTSUPP); 10205 if (!checkonly) 10206 tcp->tcp_recvdstaddr = onoff; 10207 break; 10208 case TCP_ANONPRIVBIND: 10209 if ((reterr = secpolicy_net_privaddr(cr, 0, 10210 IPPROTO_TCP)) != 0) { 10211 *outlenp = 0; 10212 return (reterr); 10213 } 10214 if (!checkonly) { 10215 tcp->tcp_anon_priv_bind = onoff; 10216 } 10217 break; 10218 case TCP_EXCLBIND: 10219 if (!checkonly) 10220 tcp->tcp_exclbind = onoff; 10221 break; /* goto sizeof (int) option return */ 10222 case TCP_INIT_CWND: { 10223 uint32_t init_cwnd = *((uint32_t *)invalp); 10224 10225 if (checkonly) 10226 break; 10227 10228 /* 10229 * Only allow socket with network configuration 10230 * privilege to set the initial cwnd to be larger 10231 * than allowed by RFC 3390. 10232 */ 10233 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10234 tcp->tcp_init_cwnd = init_cwnd; 10235 break; 10236 } 10237 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10238 *outlenp = 0; 10239 return (reterr); 10240 } 10241 if (init_cwnd > TCP_MAX_INIT_CWND) { 10242 *outlenp = 0; 10243 return (EINVAL); 10244 } 10245 tcp->tcp_init_cwnd = init_cwnd; 10246 break; 10247 } 10248 case TCP_KEEPALIVE_THRESHOLD: 10249 if (checkonly) 10250 break; 10251 10252 if (*i1 < tcps->tcps_keepalive_interval_low || 10253 *i1 > tcps->tcps_keepalive_interval_high) { 10254 *outlenp = 0; 10255 return (EINVAL); 10256 } 10257 if (*i1 != tcp->tcp_ka_interval) { 10258 tcp->tcp_ka_interval = *i1; 10259 /* 10260 * Check if we need to restart the 10261 * keepalive timer. 10262 */ 10263 if (tcp->tcp_ka_tid != 0) { 10264 ASSERT(tcp->tcp_ka_enabled); 10265 (void) TCP_TIMER_CANCEL(tcp, 10266 tcp->tcp_ka_tid); 10267 tcp->tcp_ka_last_intrvl = 0; 10268 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10269 tcp_keepalive_killer, 10270 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10271 } 10272 } 10273 break; 10274 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10275 if (!checkonly) { 10276 if (*i1 < 10277 tcps->tcps_keepalive_abort_interval_low || 10278 *i1 > 10279 tcps->tcps_keepalive_abort_interval_high) { 10280 *outlenp = 0; 10281 return (EINVAL); 10282 } 10283 tcp->tcp_ka_abort_thres = *i1; 10284 } 10285 break; 10286 case TCP_CORK: 10287 if (!checkonly) { 10288 /* 10289 * if tcp->tcp_cork was set and is now 10290 * being unset, we have to make sure that 10291 * the remaining data gets sent out. Also 10292 * unset tcp->tcp_cork so that tcp_wput_data() 10293 * can send data even if it is less than mss 10294 */ 10295 if (tcp->tcp_cork && onoff == 0 && 10296 tcp->tcp_unsent > 0) { 10297 tcp->tcp_cork = B_FALSE; 10298 tcp_wput_data(tcp, NULL, B_FALSE); 10299 } 10300 tcp->tcp_cork = onoff; 10301 } 10302 break; 10303 default: 10304 *outlenp = 0; 10305 return (EINVAL); 10306 } 10307 break; 10308 case IPPROTO_IP: 10309 if (tcp->tcp_family != AF_INET) { 10310 *outlenp = 0; 10311 return (ENOPROTOOPT); 10312 } 10313 switch (name) { 10314 case IP_OPTIONS: 10315 case T_IP_OPTIONS: 10316 reterr = tcp_opt_set_header(tcp, checkonly, 10317 invalp, inlen); 10318 if (reterr) { 10319 *outlenp = 0; 10320 return (reterr); 10321 } 10322 /* OK return - copy input buffer into output buffer */ 10323 if (invalp != outvalp) { 10324 /* don't trust bcopy for identical src/dst */ 10325 bcopy(invalp, outvalp, inlen); 10326 } 10327 *outlenp = inlen; 10328 return (0); 10329 case IP_TOS: 10330 case T_IP_TOS: 10331 if (!checkonly) { 10332 tcp->tcp_ipha->ipha_type_of_service = 10333 (uchar_t)*i1; 10334 tcp->tcp_tos = (uchar_t)*i1; 10335 } 10336 break; 10337 case IP_TTL: 10338 if (!checkonly) { 10339 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10340 tcp->tcp_ttl = (uchar_t)*i1; 10341 } 10342 break; 10343 case IP_BOUND_IF: 10344 case IP_NEXTHOP: 10345 /* Handled at the IP level */ 10346 return (-EINVAL); 10347 case IP_SEC_OPT: 10348 /* 10349 * We should not allow policy setting after 10350 * we start listening for connections. 10351 */ 10352 if (tcp->tcp_state == TCPS_LISTEN) { 10353 return (EINVAL); 10354 } else { 10355 /* Handled at the IP level */ 10356 return (-EINVAL); 10357 } 10358 default: 10359 *outlenp = 0; 10360 return (EINVAL); 10361 } 10362 break; 10363 case IPPROTO_IPV6: { 10364 ip6_pkt_t *ipp; 10365 10366 /* 10367 * IPPROTO_IPV6 options are only supported for sockets 10368 * that are using IPv6 on the wire. 10369 */ 10370 if (tcp->tcp_ipversion != IPV6_VERSION) { 10371 *outlenp = 0; 10372 return (ENOPROTOOPT); 10373 } 10374 /* 10375 * Only sticky options; no ancillary data 10376 */ 10377 ipp = &tcp->tcp_sticky_ipp; 10378 10379 switch (name) { 10380 case IPV6_UNICAST_HOPS: 10381 /* -1 means use default */ 10382 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10383 *outlenp = 0; 10384 return (EINVAL); 10385 } 10386 if (!checkonly) { 10387 if (*i1 == -1) { 10388 tcp->tcp_ip6h->ip6_hops = 10389 ipp->ipp_unicast_hops = 10390 (uint8_t)tcps->tcps_ipv6_hoplimit; 10391 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10392 /* Pass modified value to IP. */ 10393 *i1 = tcp->tcp_ip6h->ip6_hops; 10394 } else { 10395 tcp->tcp_ip6h->ip6_hops = 10396 ipp->ipp_unicast_hops = 10397 (uint8_t)*i1; 10398 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10399 } 10400 reterr = tcp_build_hdrs(tcp); 10401 if (reterr != 0) 10402 return (reterr); 10403 } 10404 break; 10405 case IPV6_BOUND_IF: 10406 if (!checkonly) { 10407 tcp->tcp_bound_if = *i1; 10408 PASS_OPT_TO_IP(connp); 10409 } 10410 break; 10411 /* 10412 * Set boolean switches for ancillary data delivery 10413 */ 10414 case IPV6_RECVPKTINFO: 10415 if (!checkonly) { 10416 if (onoff) 10417 tcp->tcp_ipv6_recvancillary |= 10418 TCP_IPV6_RECVPKTINFO; 10419 else 10420 tcp->tcp_ipv6_recvancillary &= 10421 ~TCP_IPV6_RECVPKTINFO; 10422 /* Force it to be sent up with the next msg */ 10423 tcp->tcp_recvifindex = 0; 10424 PASS_OPT_TO_IP(connp); 10425 } 10426 break; 10427 case IPV6_RECVTCLASS: 10428 if (!checkonly) { 10429 if (onoff) 10430 tcp->tcp_ipv6_recvancillary |= 10431 TCP_IPV6_RECVTCLASS; 10432 else 10433 tcp->tcp_ipv6_recvancillary &= 10434 ~TCP_IPV6_RECVTCLASS; 10435 PASS_OPT_TO_IP(connp); 10436 } 10437 break; 10438 case IPV6_RECVHOPLIMIT: 10439 if (!checkonly) { 10440 if (onoff) 10441 tcp->tcp_ipv6_recvancillary |= 10442 TCP_IPV6_RECVHOPLIMIT; 10443 else 10444 tcp->tcp_ipv6_recvancillary &= 10445 ~TCP_IPV6_RECVHOPLIMIT; 10446 /* Force it to be sent up with the next msg */ 10447 tcp->tcp_recvhops = 0xffffffffU; 10448 PASS_OPT_TO_IP(connp); 10449 } 10450 break; 10451 case IPV6_RECVHOPOPTS: 10452 if (!checkonly) { 10453 if (onoff) 10454 tcp->tcp_ipv6_recvancillary |= 10455 TCP_IPV6_RECVHOPOPTS; 10456 else 10457 tcp->tcp_ipv6_recvancillary &= 10458 ~TCP_IPV6_RECVHOPOPTS; 10459 PASS_OPT_TO_IP(connp); 10460 } 10461 break; 10462 case IPV6_RECVDSTOPTS: 10463 if (!checkonly) { 10464 if (onoff) 10465 tcp->tcp_ipv6_recvancillary |= 10466 TCP_IPV6_RECVDSTOPTS; 10467 else 10468 tcp->tcp_ipv6_recvancillary &= 10469 ~TCP_IPV6_RECVDSTOPTS; 10470 PASS_OPT_TO_IP(connp); 10471 } 10472 break; 10473 case _OLD_IPV6_RECVDSTOPTS: 10474 if (!checkonly) { 10475 if (onoff) 10476 tcp->tcp_ipv6_recvancillary |= 10477 TCP_OLD_IPV6_RECVDSTOPTS; 10478 else 10479 tcp->tcp_ipv6_recvancillary &= 10480 ~TCP_OLD_IPV6_RECVDSTOPTS; 10481 } 10482 break; 10483 case IPV6_RECVRTHDR: 10484 if (!checkonly) { 10485 if (onoff) 10486 tcp->tcp_ipv6_recvancillary |= 10487 TCP_IPV6_RECVRTHDR; 10488 else 10489 tcp->tcp_ipv6_recvancillary &= 10490 ~TCP_IPV6_RECVRTHDR; 10491 PASS_OPT_TO_IP(connp); 10492 } 10493 break; 10494 case IPV6_RECVRTHDRDSTOPTS: 10495 if (!checkonly) { 10496 if (onoff) 10497 tcp->tcp_ipv6_recvancillary |= 10498 TCP_IPV6_RECVRTDSTOPTS; 10499 else 10500 tcp->tcp_ipv6_recvancillary &= 10501 ~TCP_IPV6_RECVRTDSTOPTS; 10502 PASS_OPT_TO_IP(connp); 10503 } 10504 break; 10505 case IPV6_PKTINFO: 10506 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10507 return (EINVAL); 10508 if (checkonly) 10509 break; 10510 10511 if (inlen == 0) { 10512 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10513 } else { 10514 struct in6_pktinfo *pkti; 10515 10516 pkti = (struct in6_pktinfo *)invalp; 10517 /* 10518 * RFC 3542 states that ipi6_addr must be 10519 * the unspecified address when setting the 10520 * IPV6_PKTINFO sticky socket option on a 10521 * TCP socket. 10522 */ 10523 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10524 return (EINVAL); 10525 /* 10526 * IP will validate the source address and 10527 * interface index. 10528 */ 10529 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 10530 reterr = ip_set_options(tcp->tcp_connp, 10531 level, name, invalp, inlen, cr); 10532 } else { 10533 reterr = ip6_set_pktinfo(cr, 10534 tcp->tcp_connp, pkti); 10535 } 10536 if (reterr != 0) 10537 return (reterr); 10538 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10539 ipp->ipp_addr = pkti->ipi6_addr; 10540 if (ipp->ipp_ifindex != 0) 10541 ipp->ipp_fields |= IPPF_IFINDEX; 10542 else 10543 ipp->ipp_fields &= ~IPPF_IFINDEX; 10544 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10545 ipp->ipp_fields |= IPPF_ADDR; 10546 else 10547 ipp->ipp_fields &= ~IPPF_ADDR; 10548 } 10549 reterr = tcp_build_hdrs(tcp); 10550 if (reterr != 0) 10551 return (reterr); 10552 break; 10553 case IPV6_TCLASS: 10554 if (inlen != 0 && inlen != sizeof (int)) 10555 return (EINVAL); 10556 if (checkonly) 10557 break; 10558 10559 if (inlen == 0) { 10560 ipp->ipp_fields &= ~IPPF_TCLASS; 10561 } else { 10562 if (*i1 > 255 || *i1 < -1) 10563 return (EINVAL); 10564 if (*i1 == -1) { 10565 ipp->ipp_tclass = 0; 10566 *i1 = 0; 10567 } else { 10568 ipp->ipp_tclass = *i1; 10569 } 10570 ipp->ipp_fields |= IPPF_TCLASS; 10571 } 10572 reterr = tcp_build_hdrs(tcp); 10573 if (reterr != 0) 10574 return (reterr); 10575 break; 10576 case IPV6_NEXTHOP: 10577 /* 10578 * IP will verify that the nexthop is reachable 10579 * and fail for sticky options. 10580 */ 10581 if (inlen != 0 && inlen != sizeof (sin6_t)) 10582 return (EINVAL); 10583 if (checkonly) 10584 break; 10585 10586 if (inlen == 0) { 10587 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10588 } else { 10589 sin6_t *sin6 = (sin6_t *)invalp; 10590 10591 if (sin6->sin6_family != AF_INET6) 10592 return (EAFNOSUPPORT); 10593 if (IN6_IS_ADDR_V4MAPPED( 10594 &sin6->sin6_addr)) 10595 return (EADDRNOTAVAIL); 10596 ipp->ipp_nexthop = sin6->sin6_addr; 10597 if (!IN6_IS_ADDR_UNSPECIFIED( 10598 &ipp->ipp_nexthop)) 10599 ipp->ipp_fields |= IPPF_NEXTHOP; 10600 else 10601 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10602 } 10603 reterr = tcp_build_hdrs(tcp); 10604 if (reterr != 0) 10605 return (reterr); 10606 PASS_OPT_TO_IP(connp); 10607 break; 10608 case IPV6_HOPOPTS: { 10609 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10610 10611 /* 10612 * Sanity checks - minimum size, size a multiple of 10613 * eight bytes, and matching size passed in. 10614 */ 10615 if (inlen != 0 && 10616 inlen != (8 * (hopts->ip6h_len + 1))) 10617 return (EINVAL); 10618 10619 if (checkonly) 10620 break; 10621 10622 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10623 (uchar_t **)&ipp->ipp_hopopts, 10624 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10625 if (reterr != 0) 10626 return (reterr); 10627 if (ipp->ipp_hopoptslen == 0) 10628 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10629 else 10630 ipp->ipp_fields |= IPPF_HOPOPTS; 10631 reterr = tcp_build_hdrs(tcp); 10632 if (reterr != 0) 10633 return (reterr); 10634 break; 10635 } 10636 case IPV6_RTHDRDSTOPTS: { 10637 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10638 10639 /* 10640 * Sanity checks - minimum size, size a multiple of 10641 * eight bytes, and matching size passed in. 10642 */ 10643 if (inlen != 0 && 10644 inlen != (8 * (dopts->ip6d_len + 1))) 10645 return (EINVAL); 10646 10647 if (checkonly) 10648 break; 10649 10650 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10651 (uchar_t **)&ipp->ipp_rtdstopts, 10652 &ipp->ipp_rtdstoptslen, 0); 10653 if (reterr != 0) 10654 return (reterr); 10655 if (ipp->ipp_rtdstoptslen == 0) 10656 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10657 else 10658 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10659 reterr = tcp_build_hdrs(tcp); 10660 if (reterr != 0) 10661 return (reterr); 10662 break; 10663 } 10664 case IPV6_DSTOPTS: { 10665 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10666 10667 /* 10668 * Sanity checks - minimum size, size a multiple of 10669 * eight bytes, and matching size passed in. 10670 */ 10671 if (inlen != 0 && 10672 inlen != (8 * (dopts->ip6d_len + 1))) 10673 return (EINVAL); 10674 10675 if (checkonly) 10676 break; 10677 10678 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10679 (uchar_t **)&ipp->ipp_dstopts, 10680 &ipp->ipp_dstoptslen, 0); 10681 if (reterr != 0) 10682 return (reterr); 10683 if (ipp->ipp_dstoptslen == 0) 10684 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10685 else 10686 ipp->ipp_fields |= IPPF_DSTOPTS; 10687 reterr = tcp_build_hdrs(tcp); 10688 if (reterr != 0) 10689 return (reterr); 10690 break; 10691 } 10692 case IPV6_RTHDR: { 10693 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10694 10695 /* 10696 * Sanity checks - minimum size, size a multiple of 10697 * eight bytes, and matching size passed in. 10698 */ 10699 if (inlen != 0 && 10700 inlen != (8 * (rt->ip6r_len + 1))) 10701 return (EINVAL); 10702 10703 if (checkonly) 10704 break; 10705 10706 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10707 (uchar_t **)&ipp->ipp_rthdr, 10708 &ipp->ipp_rthdrlen, 0); 10709 if (reterr != 0) 10710 return (reterr); 10711 if (ipp->ipp_rthdrlen == 0) 10712 ipp->ipp_fields &= ~IPPF_RTHDR; 10713 else 10714 ipp->ipp_fields |= IPPF_RTHDR; 10715 reterr = tcp_build_hdrs(tcp); 10716 if (reterr != 0) 10717 return (reterr); 10718 break; 10719 } 10720 case IPV6_V6ONLY: 10721 if (!checkonly) { 10722 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10723 } 10724 break; 10725 case IPV6_USE_MIN_MTU: 10726 if (inlen != sizeof (int)) 10727 return (EINVAL); 10728 10729 if (*i1 < -1 || *i1 > 1) 10730 return (EINVAL); 10731 10732 if (checkonly) 10733 break; 10734 10735 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10736 ipp->ipp_use_min_mtu = *i1; 10737 break; 10738 case IPV6_SEC_OPT: 10739 /* 10740 * We should not allow policy setting after 10741 * we start listening for connections. 10742 */ 10743 if (tcp->tcp_state == TCPS_LISTEN) { 10744 return (EINVAL); 10745 } else { 10746 /* Handled at the IP level */ 10747 return (-EINVAL); 10748 } 10749 case IPV6_SRC_PREFERENCES: 10750 if (inlen != sizeof (uint32_t)) 10751 return (EINVAL); 10752 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10753 *(uint32_t *)invalp); 10754 if (reterr != 0) { 10755 *outlenp = 0; 10756 return (reterr); 10757 } 10758 break; 10759 default: 10760 *outlenp = 0; 10761 return (EINVAL); 10762 } 10763 break; 10764 } /* end IPPROTO_IPV6 */ 10765 default: 10766 *outlenp = 0; 10767 return (EINVAL); 10768 } 10769 /* 10770 * Common case of OK return with outval same as inval 10771 */ 10772 if (invalp != outvalp) { 10773 /* don't trust bcopy for identical src/dst */ 10774 (void) bcopy(invalp, outvalp, inlen); 10775 } 10776 *outlenp = inlen; 10777 return (0); 10778 } 10779 10780 /* ARGSUSED */ 10781 int 10782 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10783 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10784 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10785 { 10786 conn_t *connp = Q_TO_CONN(q); 10787 10788 return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp, 10789 outlenp, outvalp, thisdg_attrs, cr, mblk)); 10790 } 10791 10792 int 10793 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name, 10794 const void *optvalp, socklen_t optlen, cred_t *cr) 10795 { 10796 conn_t *connp = (conn_t *)proto_handle; 10797 squeue_t *sqp = connp->conn_sqp; 10798 int error; 10799 10800 ASSERT(connp->conn_upper_handle != NULL); 10801 /* 10802 * Entering the squeue synchronously can result in a context switch, 10803 * which can cause a rather sever performance degradation. So we try to 10804 * handle whatever options we can without entering the squeue. 10805 */ 10806 if (level == IPPROTO_TCP) { 10807 switch (option_name) { 10808 case TCP_NODELAY: 10809 if (optlen != sizeof (int32_t)) 10810 return (EINVAL); 10811 mutex_enter(&connp->conn_tcp->tcp_non_sq_lock); 10812 connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 : 10813 connp->conn_tcp->tcp_mss; 10814 mutex_exit(&connp->conn_tcp->tcp_non_sq_lock); 10815 return (0); 10816 default: 10817 break; 10818 } 10819 } 10820 10821 error = squeue_synch_enter(sqp, connp, NULL); 10822 if (error == ENOMEM) { 10823 return (ENOMEM); 10824 } 10825 10826 error = proto_opt_check(level, option_name, optlen, NULL, 10827 tcp_opt_obj.odb_opt_des_arr, 10828 tcp_opt_obj.odb_opt_arr_cnt, 10829 tcp_opt_obj.odb_topmost_tpiprovider, 10830 B_TRUE, B_FALSE, cr); 10831 10832 if (error != 0) { 10833 if (error < 0) { 10834 error = proto_tlitosyserr(-error); 10835 } 10836 squeue_synch_exit(sqp, connp); 10837 return (error); 10838 } 10839 10840 error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name, 10841 optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp, 10842 NULL, cr, NULL); 10843 squeue_synch_exit(sqp, connp); 10844 10845 if (error < 0) { 10846 /* 10847 * Pass on to ip 10848 */ 10849 error = ip_set_options(connp, level, option_name, optvalp, 10850 optlen, cr); 10851 } 10852 return (error); 10853 } 10854 10855 /* 10856 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10857 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10858 * headers, and the maximum size tcp header (to avoid reallocation 10859 * on the fly for additional tcp options). 10860 * Returns failure if can't allocate memory. 10861 */ 10862 static int 10863 tcp_build_hdrs(tcp_t *tcp) 10864 { 10865 char *hdrs; 10866 uint_t hdrs_len; 10867 ip6i_t *ip6i; 10868 char buf[TCP_MAX_HDR_LENGTH]; 10869 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10870 in6_addr_t src, dst; 10871 tcp_stack_t *tcps = tcp->tcp_tcps; 10872 conn_t *connp = tcp->tcp_connp; 10873 10874 /* 10875 * save the existing tcp header and source/dest IP addresses 10876 */ 10877 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10878 src = tcp->tcp_ip6h->ip6_src; 10879 dst = tcp->tcp_ip6h->ip6_dst; 10880 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10881 ASSERT(hdrs_len != 0); 10882 if (hdrs_len > tcp->tcp_iphc_len) { 10883 /* Need to reallocate */ 10884 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10885 if (hdrs == NULL) 10886 return (ENOMEM); 10887 if (tcp->tcp_iphc != NULL) { 10888 if (tcp->tcp_hdr_grown) { 10889 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10890 } else { 10891 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10892 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10893 } 10894 tcp->tcp_iphc_len = 0; 10895 } 10896 ASSERT(tcp->tcp_iphc_len == 0); 10897 tcp->tcp_iphc = hdrs; 10898 tcp->tcp_iphc_len = hdrs_len; 10899 tcp->tcp_hdr_grown = B_TRUE; 10900 } 10901 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 10902 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 10903 10904 /* Set header fields not in ipp */ 10905 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 10906 ip6i = (ip6i_t *)tcp->tcp_iphc; 10907 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 10908 } else { 10909 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 10910 } 10911 /* 10912 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 10913 * 10914 * tcp->tcp_tcp_hdr_len doesn't change here. 10915 */ 10916 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 10917 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 10918 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 10919 10920 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 10921 10922 tcp->tcp_ip6h->ip6_src = src; 10923 tcp->tcp_ip6h->ip6_dst = dst; 10924 10925 /* 10926 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 10927 * the default value for TCP. 10928 */ 10929 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 10930 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 10931 10932 /* 10933 * If we're setting extension headers after a connection 10934 * has been established, and if we have a routing header 10935 * among the extension headers, call ip_massage_options_v6 to 10936 * manipulate the routing header/ip6_dst set the checksum 10937 * difference in the tcp header template. 10938 * (This happens in tcp_connect_ipv6 if the routing header 10939 * is set prior to the connect.) 10940 * Set the tcp_sum to zero first in case we've cleared a 10941 * routing header or don't have one at all. 10942 */ 10943 tcp->tcp_sum = 0; 10944 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 10945 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 10946 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 10947 (uint8_t *)tcp->tcp_tcph); 10948 if (rth != NULL) { 10949 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 10950 rth, tcps->tcps_netstack); 10951 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 10952 (tcp->tcp_sum >> 16)); 10953 } 10954 } 10955 10956 /* Try to get everything in a single mblk */ 10957 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 10958 hdrs_len + tcps->tcps_wroff_xtra); 10959 return (0); 10960 } 10961 10962 /* 10963 * Transfer any source route option from ipha to buf/dst in reversed form. 10964 */ 10965 static int 10966 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 10967 { 10968 ipoptp_t opts; 10969 uchar_t *opt; 10970 uint8_t optval; 10971 uint8_t optlen; 10972 uint32_t len = 0; 10973 10974 for (optval = ipoptp_first(&opts, ipha); 10975 optval != IPOPT_EOL; 10976 optval = ipoptp_next(&opts)) { 10977 opt = opts.ipoptp_cur; 10978 optlen = opts.ipoptp_len; 10979 switch (optval) { 10980 int off1, off2; 10981 case IPOPT_SSRR: 10982 case IPOPT_LSRR: 10983 10984 /* Reverse source route */ 10985 /* 10986 * First entry should be the next to last one in the 10987 * current source route (the last entry is our 10988 * address.) 10989 * The last entry should be the final destination. 10990 */ 10991 buf[IPOPT_OPTVAL] = (uint8_t)optval; 10992 buf[IPOPT_OLEN] = (uint8_t)optlen; 10993 off1 = IPOPT_MINOFF_SR - 1; 10994 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 10995 if (off2 < 0) { 10996 /* No entries in source route */ 10997 break; 10998 } 10999 bcopy(opt + off2, dst, IP_ADDR_LEN); 11000 /* 11001 * Note: use src since ipha has not had its src 11002 * and dst reversed (it is in the state it was 11003 * received. 11004 */ 11005 bcopy(&ipha->ipha_src, buf + off2, 11006 IP_ADDR_LEN); 11007 off2 -= IP_ADDR_LEN; 11008 11009 while (off2 > 0) { 11010 bcopy(opt + off2, buf + off1, 11011 IP_ADDR_LEN); 11012 off1 += IP_ADDR_LEN; 11013 off2 -= IP_ADDR_LEN; 11014 } 11015 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11016 buf += optlen; 11017 len += optlen; 11018 break; 11019 } 11020 } 11021 done: 11022 /* Pad the resulting options */ 11023 while (len & 0x3) { 11024 *buf++ = IPOPT_EOL; 11025 len++; 11026 } 11027 return (len); 11028 } 11029 11030 11031 /* 11032 * Extract and revert a source route from ipha (if any) 11033 * and then update the relevant fields in both tcp_t and the standard header. 11034 */ 11035 static void 11036 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11037 { 11038 char buf[TCP_MAX_HDR_LENGTH]; 11039 uint_t tcph_len; 11040 int len; 11041 11042 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11043 len = IPH_HDR_LENGTH(ipha); 11044 if (len == IP_SIMPLE_HDR_LENGTH) 11045 /* Nothing to do */ 11046 return; 11047 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11048 (len & 0x3)) 11049 return; 11050 11051 tcph_len = tcp->tcp_tcp_hdr_len; 11052 bcopy(tcp->tcp_tcph, buf, tcph_len); 11053 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11054 (tcp->tcp_ipha->ipha_dst & 0xffff); 11055 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11056 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11057 len += IP_SIMPLE_HDR_LENGTH; 11058 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11059 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11060 if ((int)tcp->tcp_sum < 0) 11061 tcp->tcp_sum--; 11062 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11063 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11064 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11065 bcopy(buf, tcp->tcp_tcph, tcph_len); 11066 tcp->tcp_ip_hdr_len = len; 11067 tcp->tcp_ipha->ipha_version_and_hdr_length = 11068 (IP_VERSION << 4) | (len >> 2); 11069 len += tcph_len; 11070 tcp->tcp_hdr_len = len; 11071 } 11072 11073 /* 11074 * Copy the standard header into its new location, 11075 * lay in the new options and then update the relevant 11076 * fields in both tcp_t and the standard header. 11077 */ 11078 static int 11079 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11080 { 11081 uint_t tcph_len; 11082 uint8_t *ip_optp; 11083 tcph_t *new_tcph; 11084 tcp_stack_t *tcps = tcp->tcp_tcps; 11085 conn_t *connp = tcp->tcp_connp; 11086 11087 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11088 return (EINVAL); 11089 11090 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11091 return (EINVAL); 11092 11093 if (checkonly) { 11094 /* 11095 * do not really set, just pretend to - T_CHECK 11096 */ 11097 return (0); 11098 } 11099 11100 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11101 if (tcp->tcp_label_len > 0) { 11102 int padlen; 11103 uint8_t opt; 11104 11105 /* convert list termination to no-ops */ 11106 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11107 ip_optp += ip_optp[IPOPT_OLEN]; 11108 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11109 while (--padlen >= 0) 11110 *ip_optp++ = opt; 11111 } 11112 tcph_len = tcp->tcp_tcp_hdr_len; 11113 new_tcph = (tcph_t *)(ip_optp + len); 11114 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11115 tcp->tcp_tcph = new_tcph; 11116 bcopy(ptr, ip_optp, len); 11117 11118 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11119 11120 tcp->tcp_ip_hdr_len = len; 11121 tcp->tcp_ipha->ipha_version_and_hdr_length = 11122 (IP_VERSION << 4) | (len >> 2); 11123 tcp->tcp_hdr_len = len + tcph_len; 11124 if (!TCP_IS_DETACHED(tcp)) { 11125 /* Always allocate room for all options. */ 11126 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 11127 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11128 } 11129 return (0); 11130 } 11131 11132 /* Get callback routine passed to nd_load by tcp_param_register */ 11133 /* ARGSUSED */ 11134 static int 11135 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11136 { 11137 tcpparam_t *tcppa = (tcpparam_t *)cp; 11138 11139 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11140 return (0); 11141 } 11142 11143 /* 11144 * Walk through the param array specified registering each element with the 11145 * named dispatch handler. 11146 */ 11147 static boolean_t 11148 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11149 { 11150 for (; cnt-- > 0; tcppa++) { 11151 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11152 if (!nd_load(ndp, tcppa->tcp_param_name, 11153 tcp_param_get, tcp_param_set, 11154 (caddr_t)tcppa)) { 11155 nd_free(ndp); 11156 return (B_FALSE); 11157 } 11158 } 11159 } 11160 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11161 KM_SLEEP); 11162 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11163 sizeof (tcpparam_t)); 11164 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11165 tcp_param_get, tcp_param_set_aligned, 11166 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11167 nd_free(ndp); 11168 return (B_FALSE); 11169 } 11170 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11171 KM_SLEEP); 11172 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11173 sizeof (tcpparam_t)); 11174 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11175 tcp_param_get, tcp_param_set_aligned, 11176 (caddr_t)tcps->tcps_mdt_head_param)) { 11177 nd_free(ndp); 11178 return (B_FALSE); 11179 } 11180 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11181 KM_SLEEP); 11182 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11183 sizeof (tcpparam_t)); 11184 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11185 tcp_param_get, tcp_param_set_aligned, 11186 (caddr_t)tcps->tcps_mdt_tail_param)) { 11187 nd_free(ndp); 11188 return (B_FALSE); 11189 } 11190 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11191 KM_SLEEP); 11192 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11193 sizeof (tcpparam_t)); 11194 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11195 tcp_param_get, tcp_param_set_aligned, 11196 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11197 nd_free(ndp); 11198 return (B_FALSE); 11199 } 11200 if (!nd_load(ndp, "tcp_extra_priv_ports", 11201 tcp_extra_priv_ports_get, NULL, NULL)) { 11202 nd_free(ndp); 11203 return (B_FALSE); 11204 } 11205 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11206 NULL, tcp_extra_priv_ports_add, NULL)) { 11207 nd_free(ndp); 11208 return (B_FALSE); 11209 } 11210 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11211 NULL, tcp_extra_priv_ports_del, NULL)) { 11212 nd_free(ndp); 11213 return (B_FALSE); 11214 } 11215 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11216 tcp_1948_phrase_set, NULL)) { 11217 nd_free(ndp); 11218 return (B_FALSE); 11219 } 11220 /* 11221 * Dummy ndd variables - only to convey obsolescence information 11222 * through printing of their name (no get or set routines) 11223 * XXX Remove in future releases ? 11224 */ 11225 if (!nd_load(ndp, 11226 "tcp_close_wait_interval(obsoleted - " 11227 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11228 nd_free(ndp); 11229 return (B_FALSE); 11230 } 11231 return (B_TRUE); 11232 } 11233 11234 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11235 /* ARGSUSED */ 11236 static int 11237 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11238 cred_t *cr) 11239 { 11240 long new_value; 11241 tcpparam_t *tcppa = (tcpparam_t *)cp; 11242 11243 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11244 new_value < tcppa->tcp_param_min || 11245 new_value > tcppa->tcp_param_max) { 11246 return (EINVAL); 11247 } 11248 /* 11249 * Need to make sure new_value is a multiple of 4. If it is not, 11250 * round it up. For future 64 bit requirement, we actually make it 11251 * a multiple of 8. 11252 */ 11253 if (new_value & 0x7) { 11254 new_value = (new_value & ~0x7) + 0x8; 11255 } 11256 tcppa->tcp_param_val = new_value; 11257 return (0); 11258 } 11259 11260 /* Set callback routine passed to nd_load by tcp_param_register */ 11261 /* ARGSUSED */ 11262 static int 11263 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11264 { 11265 long new_value; 11266 tcpparam_t *tcppa = (tcpparam_t *)cp; 11267 11268 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11269 new_value < tcppa->tcp_param_min || 11270 new_value > tcppa->tcp_param_max) { 11271 return (EINVAL); 11272 } 11273 tcppa->tcp_param_val = new_value; 11274 return (0); 11275 } 11276 11277 /* 11278 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11279 * is filled, return as much as we can. The message passed in may be 11280 * multi-part, chained using b_cont. "start" is the starting sequence 11281 * number for this piece. 11282 */ 11283 static mblk_t * 11284 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11285 { 11286 uint32_t end; 11287 mblk_t *mp1; 11288 mblk_t *mp2; 11289 mblk_t *next_mp; 11290 uint32_t u1; 11291 tcp_stack_t *tcps = tcp->tcp_tcps; 11292 11293 /* Walk through all the new pieces. */ 11294 do { 11295 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11296 (uintptr_t)INT_MAX); 11297 end = start + (int)(mp->b_wptr - mp->b_rptr); 11298 next_mp = mp->b_cont; 11299 if (start == end) { 11300 /* Empty. Blast it. */ 11301 freeb(mp); 11302 continue; 11303 } 11304 mp->b_cont = NULL; 11305 TCP_REASS_SET_SEQ(mp, start); 11306 TCP_REASS_SET_END(mp, end); 11307 mp1 = tcp->tcp_reass_tail; 11308 if (!mp1) { 11309 tcp->tcp_reass_tail = mp; 11310 tcp->tcp_reass_head = mp; 11311 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11312 UPDATE_MIB(&tcps->tcps_mib, 11313 tcpInDataUnorderBytes, end - start); 11314 continue; 11315 } 11316 /* New stuff completely beyond tail? */ 11317 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11318 /* Link it on end. */ 11319 mp1->b_cont = mp; 11320 tcp->tcp_reass_tail = mp; 11321 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11322 UPDATE_MIB(&tcps->tcps_mib, 11323 tcpInDataUnorderBytes, end - start); 11324 continue; 11325 } 11326 mp1 = tcp->tcp_reass_head; 11327 u1 = TCP_REASS_SEQ(mp1); 11328 /* New stuff at the front? */ 11329 if (SEQ_LT(start, u1)) { 11330 /* Yes... Check for overlap. */ 11331 mp->b_cont = mp1; 11332 tcp->tcp_reass_head = mp; 11333 tcp_reass_elim_overlap(tcp, mp); 11334 continue; 11335 } 11336 /* 11337 * The new piece fits somewhere between the head and tail. 11338 * We find our slot, where mp1 precedes us and mp2 trails. 11339 */ 11340 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11341 u1 = TCP_REASS_SEQ(mp2); 11342 if (SEQ_LEQ(start, u1)) 11343 break; 11344 } 11345 /* Link ourselves in */ 11346 mp->b_cont = mp2; 11347 mp1->b_cont = mp; 11348 11349 /* Trim overlap with following mblk(s) first */ 11350 tcp_reass_elim_overlap(tcp, mp); 11351 11352 /* Trim overlap with preceding mblk */ 11353 tcp_reass_elim_overlap(tcp, mp1); 11354 11355 } while (start = end, mp = next_mp); 11356 mp1 = tcp->tcp_reass_head; 11357 /* Anything ready to go? */ 11358 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11359 return (NULL); 11360 /* Eat what we can off the queue */ 11361 for (;;) { 11362 mp = mp1->b_cont; 11363 end = TCP_REASS_END(mp1); 11364 TCP_REASS_SET_SEQ(mp1, 0); 11365 TCP_REASS_SET_END(mp1, 0); 11366 if (!mp) { 11367 tcp->tcp_reass_tail = NULL; 11368 break; 11369 } 11370 if (end != TCP_REASS_SEQ(mp)) { 11371 mp1->b_cont = NULL; 11372 break; 11373 } 11374 mp1 = mp; 11375 } 11376 mp1 = tcp->tcp_reass_head; 11377 tcp->tcp_reass_head = mp; 11378 return (mp1); 11379 } 11380 11381 /* Eliminate any overlap that mp may have over later mblks */ 11382 static void 11383 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11384 { 11385 uint32_t end; 11386 mblk_t *mp1; 11387 uint32_t u1; 11388 tcp_stack_t *tcps = tcp->tcp_tcps; 11389 11390 end = TCP_REASS_END(mp); 11391 while ((mp1 = mp->b_cont) != NULL) { 11392 u1 = TCP_REASS_SEQ(mp1); 11393 if (!SEQ_GT(end, u1)) 11394 break; 11395 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11396 mp->b_wptr -= end - u1; 11397 TCP_REASS_SET_END(mp, u1); 11398 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11399 UPDATE_MIB(&tcps->tcps_mib, 11400 tcpInDataPartDupBytes, end - u1); 11401 break; 11402 } 11403 mp->b_cont = mp1->b_cont; 11404 TCP_REASS_SET_SEQ(mp1, 0); 11405 TCP_REASS_SET_END(mp1, 0); 11406 freeb(mp1); 11407 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11408 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11409 } 11410 if (!mp1) 11411 tcp->tcp_reass_tail = mp; 11412 } 11413 11414 static uint_t 11415 tcp_rwnd_reopen(tcp_t *tcp) 11416 { 11417 uint_t ret = 0; 11418 uint_t thwin; 11419 11420 /* Learn the latest rwnd information that we sent to the other side. */ 11421 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11422 << tcp->tcp_rcv_ws; 11423 /* This is peer's calculated send window (our receive window). */ 11424 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11425 /* 11426 * Increase the receive window to max. But we need to do receiver 11427 * SWS avoidance. This means that we need to check the increase of 11428 * of receive window is at least 1 MSS. 11429 */ 11430 if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) { 11431 /* 11432 * If the window that the other side knows is less than max 11433 * deferred acks segments, send an update immediately. 11434 */ 11435 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11436 BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate); 11437 ret = TH_ACK_NEEDED; 11438 } 11439 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 11440 } 11441 return (ret); 11442 } 11443 11444 /* 11445 * Send up all messages queued on tcp_rcv_list. 11446 */ 11447 static uint_t 11448 tcp_rcv_drain(tcp_t *tcp) 11449 { 11450 mblk_t *mp; 11451 uint_t ret = 0; 11452 #ifdef DEBUG 11453 uint_t cnt = 0; 11454 #endif 11455 queue_t *q = tcp->tcp_rq; 11456 11457 /* Can't drain on an eager connection */ 11458 if (tcp->tcp_listener != NULL) 11459 return (ret); 11460 11461 /* Can't be a non-STREAMS connection */ 11462 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 11463 11464 /* No need for the push timer now. */ 11465 if (tcp->tcp_push_tid != 0) { 11466 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11467 tcp->tcp_push_tid = 0; 11468 } 11469 11470 /* 11471 * Handle two cases here: we are currently fused or we were 11472 * previously fused and have some urgent data to be delivered 11473 * upstream. The latter happens because we either ran out of 11474 * memory or were detached and therefore sending the SIGURG was 11475 * deferred until this point. In either case we pass control 11476 * over to tcp_fuse_rcv_drain() since it may need to complete 11477 * some work. 11478 */ 11479 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11480 ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) || 11481 tcp->tcp_fused_sigurg_mp != NULL); 11482 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11483 &tcp->tcp_fused_sigurg_mp)) 11484 return (ret); 11485 } 11486 11487 while ((mp = tcp->tcp_rcv_list) != NULL) { 11488 tcp->tcp_rcv_list = mp->b_next; 11489 mp->b_next = NULL; 11490 #ifdef DEBUG 11491 cnt += msgdsize(mp); 11492 #endif 11493 /* Does this need SSL processing first? */ 11494 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11495 DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain, 11496 mblk_t *, mp); 11497 tcp_kssl_input(tcp, mp); 11498 continue; 11499 } 11500 putnext(q, mp); 11501 } 11502 #ifdef DEBUG 11503 ASSERT(cnt == tcp->tcp_rcv_cnt); 11504 #endif 11505 tcp->tcp_rcv_last_head = NULL; 11506 tcp->tcp_rcv_last_tail = NULL; 11507 tcp->tcp_rcv_cnt = 0; 11508 11509 if (canputnext(q)) 11510 return (tcp_rwnd_reopen(tcp)); 11511 11512 return (ret); 11513 } 11514 11515 /* 11516 * Queue data on tcp_rcv_list which is a b_next chain. 11517 * tcp_rcv_last_head/tail is the last element of this chain. 11518 * Each element of the chain is a b_cont chain. 11519 * 11520 * M_DATA messages are added to the current element. 11521 * Other messages are added as new (b_next) elements. 11522 */ 11523 void 11524 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11525 { 11526 ASSERT(seg_len == msgdsize(mp)); 11527 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11528 11529 if (tcp->tcp_rcv_list == NULL) { 11530 ASSERT(tcp->tcp_rcv_last_head == NULL); 11531 tcp->tcp_rcv_list = mp; 11532 tcp->tcp_rcv_last_head = mp; 11533 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11534 tcp->tcp_rcv_last_tail->b_cont = mp; 11535 } else { 11536 tcp->tcp_rcv_last_head->b_next = mp; 11537 tcp->tcp_rcv_last_head = mp; 11538 } 11539 11540 while (mp->b_cont) 11541 mp = mp->b_cont; 11542 11543 tcp->tcp_rcv_last_tail = mp; 11544 tcp->tcp_rcv_cnt += seg_len; 11545 tcp->tcp_rwnd -= seg_len; 11546 } 11547 11548 /* 11549 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11550 * 11551 * This is the default entry function into TCP on the read side. TCP is 11552 * always entered via squeue i.e. using squeue's for mutual exclusion. 11553 * When classifier does a lookup to find the tcp, it also puts a reference 11554 * on the conn structure associated so the tcp is guaranteed to exist 11555 * when we come here. We still need to check the state because it might 11556 * as well has been closed. The squeue processing function i.e. squeue_enter, 11557 * is responsible for doing the CONN_DEC_REF. 11558 * 11559 * Apart from the default entry point, IP also sends packets directly to 11560 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11561 * connections. 11562 */ 11563 boolean_t tcp_outbound_squeue_switch = B_FALSE; 11564 void 11565 tcp_input(void *arg, mblk_t *mp, void *arg2) 11566 { 11567 conn_t *connp = (conn_t *)arg; 11568 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11569 11570 /* arg2 is the sqp */ 11571 ASSERT(arg2 != NULL); 11572 ASSERT(mp != NULL); 11573 11574 /* 11575 * Don't accept any input on a closed tcp as this TCP logically does 11576 * not exist on the system. Don't proceed further with this TCP. 11577 * For eg. this packet could trigger another close of this tcp 11578 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11579 * tcp_clean_death / tcp_closei_local must be called at most once 11580 * on a TCP. In this case we need to refeed the packet into the 11581 * classifier and figure out where the packet should go. Need to 11582 * preserve the recv_ill somehow. Until we figure that out, for 11583 * now just drop the packet if we can't classify the packet. 11584 */ 11585 if (tcp->tcp_state == TCPS_CLOSED || 11586 tcp->tcp_state == TCPS_BOUND) { 11587 conn_t *new_connp; 11588 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11589 11590 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11591 if (new_connp != NULL) { 11592 tcp_reinput(new_connp, mp, arg2); 11593 return; 11594 } 11595 /* We failed to classify. For now just drop the packet */ 11596 freemsg(mp); 11597 return; 11598 } 11599 11600 if (DB_TYPE(mp) != M_DATA) { 11601 tcp_rput_common(tcp, mp); 11602 return; 11603 } 11604 11605 if (mp->b_datap->db_struioflag & STRUIO_CONNECT) { 11606 squeue_t *final_sqp; 11607 11608 mp->b_datap->db_struioflag &= ~STRUIO_CONNECT; 11609 final_sqp = (squeue_t *)DB_CKSUMSTART(mp); 11610 DB_CKSUMSTART(mp) = 0; 11611 if (tcp->tcp_state == TCPS_SYN_SENT && 11612 connp->conn_final_sqp == NULL && 11613 tcp_outbound_squeue_switch) { 11614 ASSERT(connp->conn_initial_sqp == connp->conn_sqp); 11615 connp->conn_final_sqp = final_sqp; 11616 if (connp->conn_final_sqp != connp->conn_sqp) { 11617 CONN_INC_REF(connp); 11618 SQUEUE_SWITCH(connp, connp->conn_final_sqp); 11619 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 11620 tcp_rput_data, connp, ip_squeue_flag, 11621 SQTAG_CONNECT_FINISH); 11622 return; 11623 } 11624 } 11625 } 11626 tcp_rput_data(connp, mp, arg2); 11627 } 11628 11629 /* 11630 * The read side put procedure. 11631 * The packets passed up by ip are assume to be aligned according to 11632 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11633 */ 11634 static void 11635 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11636 { 11637 /* 11638 * tcp_rput_data() does not expect M_CTL except for the case 11639 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11640 * type. Need to make sure that any other M_CTLs don't make 11641 * it to tcp_rput_data since it is not expecting any and doesn't 11642 * check for it. 11643 */ 11644 if (DB_TYPE(mp) == M_CTL) { 11645 switch (*(uint32_t *)(mp->b_rptr)) { 11646 case TCP_IOC_ABORT_CONN: 11647 /* 11648 * Handle connection abort request. 11649 */ 11650 tcp_ioctl_abort_handler(tcp, mp); 11651 return; 11652 case IPSEC_IN: 11653 /* 11654 * Only secure icmp arrive in TCP and they 11655 * don't go through data path. 11656 */ 11657 tcp_icmp_error(tcp, mp); 11658 return; 11659 case IN_PKTINFO: 11660 /* 11661 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11662 * sockets that are receiving IPv4 traffic. tcp 11663 */ 11664 ASSERT(tcp->tcp_family == AF_INET6); 11665 ASSERT(tcp->tcp_ipv6_recvancillary & 11666 TCP_IPV6_RECVPKTINFO); 11667 tcp_rput_data(tcp->tcp_connp, mp, 11668 tcp->tcp_connp->conn_sqp); 11669 return; 11670 case MDT_IOC_INFO_UPDATE: 11671 /* 11672 * Handle Multidata information update; the 11673 * following routine will free the message. 11674 */ 11675 if (tcp->tcp_connp->conn_mdt_ok) { 11676 tcp_mdt_update(tcp, 11677 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11678 B_FALSE); 11679 } 11680 freemsg(mp); 11681 return; 11682 case LSO_IOC_INFO_UPDATE: 11683 /* 11684 * Handle LSO information update; the following 11685 * routine will free the message. 11686 */ 11687 if (tcp->tcp_connp->conn_lso_ok) { 11688 tcp_lso_update(tcp, 11689 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11690 } 11691 freemsg(mp); 11692 return; 11693 default: 11694 /* 11695 * tcp_icmp_err() will process the M_CTL packets. 11696 * Non-ICMP packets, if any, will be discarded in 11697 * tcp_icmp_err(). We will process the ICMP packet 11698 * even if we are TCP_IS_DETACHED_NONEAGER as the 11699 * incoming ICMP packet may result in changing 11700 * the tcp_mss, which we would need if we have 11701 * packets to retransmit. 11702 */ 11703 tcp_icmp_error(tcp, mp); 11704 return; 11705 } 11706 } 11707 11708 /* No point processing the message if tcp is already closed */ 11709 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11710 freemsg(mp); 11711 return; 11712 } 11713 11714 tcp_rput_other(tcp, mp); 11715 } 11716 11717 11718 /* The minimum of smoothed mean deviation in RTO calculation. */ 11719 #define TCP_SD_MIN 400 11720 11721 /* 11722 * Set RTO for this connection. The formula is from Jacobson and Karels' 11723 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11724 * are the same as those in Appendix A.2 of that paper. 11725 * 11726 * m = new measurement 11727 * sa = smoothed RTT average (8 * average estimates). 11728 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11729 */ 11730 static void 11731 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11732 { 11733 long m = TICK_TO_MSEC(rtt); 11734 clock_t sa = tcp->tcp_rtt_sa; 11735 clock_t sv = tcp->tcp_rtt_sd; 11736 clock_t rto; 11737 tcp_stack_t *tcps = tcp->tcp_tcps; 11738 11739 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11740 tcp->tcp_rtt_update++; 11741 11742 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11743 if (sa != 0) { 11744 /* 11745 * Update average estimator: 11746 * new rtt = 7/8 old rtt + 1/8 Error 11747 */ 11748 11749 /* m is now Error in estimate. */ 11750 m -= sa >> 3; 11751 if ((sa += m) <= 0) { 11752 /* 11753 * Don't allow the smoothed average to be negative. 11754 * We use 0 to denote reinitialization of the 11755 * variables. 11756 */ 11757 sa = 1; 11758 } 11759 11760 /* 11761 * Update deviation estimator: 11762 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11763 */ 11764 if (m < 0) 11765 m = -m; 11766 m -= sv >> 2; 11767 sv += m; 11768 } else { 11769 /* 11770 * This follows BSD's implementation. So the reinitialized 11771 * RTO is 3 * m. We cannot go less than 2 because if the 11772 * link is bandwidth dominated, doubling the window size 11773 * during slow start means doubling the RTT. We want to be 11774 * more conservative when we reinitialize our estimates. 3 11775 * is just a convenient number. 11776 */ 11777 sa = m << 3; 11778 sv = m << 1; 11779 } 11780 if (sv < TCP_SD_MIN) { 11781 /* 11782 * We do not know that if sa captures the delay ACK 11783 * effect as in a long train of segments, a receiver 11784 * does not delay its ACKs. So set the minimum of sv 11785 * to be TCP_SD_MIN, which is default to 400 ms, twice 11786 * of BSD DATO. That means the minimum of mean 11787 * deviation is 100 ms. 11788 * 11789 */ 11790 sv = TCP_SD_MIN; 11791 } 11792 tcp->tcp_rtt_sa = sa; 11793 tcp->tcp_rtt_sd = sv; 11794 /* 11795 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11796 * 11797 * Add tcp_rexmit_interval extra in case of extreme environment 11798 * where the algorithm fails to work. The default value of 11799 * tcp_rexmit_interval_extra should be 0. 11800 * 11801 * As we use a finer grained clock than BSD and update 11802 * RTO for every ACKs, add in another .25 of RTT to the 11803 * deviation of RTO to accomodate burstiness of 1/4 of 11804 * window size. 11805 */ 11806 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 11807 11808 if (rto > tcps->tcps_rexmit_interval_max) { 11809 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 11810 } else if (rto < tcps->tcps_rexmit_interval_min) { 11811 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 11812 } else { 11813 tcp->tcp_rto = rto; 11814 } 11815 11816 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11817 tcp->tcp_timer_backoff = 0; 11818 } 11819 11820 /* 11821 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11822 * send queue which starts at the given seq. no. 11823 * 11824 * Parameters: 11825 * tcp_t *tcp: the tcp instance pointer. 11826 * uint32_t seq: the starting seq. no of the requested segment. 11827 * int32_t *off: after the execution, *off will be the offset to 11828 * the returned mblk which points to the requested seq no. 11829 * It is the caller's responsibility to send in a non-null off. 11830 * 11831 * Return: 11832 * A mblk_t pointer pointing to the requested segment in send queue. 11833 */ 11834 static mblk_t * 11835 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11836 { 11837 int32_t cnt; 11838 mblk_t *mp; 11839 11840 /* Defensive coding. Make sure we don't send incorrect data. */ 11841 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11842 return (NULL); 11843 11844 cnt = seq - tcp->tcp_suna; 11845 mp = tcp->tcp_xmit_head; 11846 while (cnt > 0 && mp != NULL) { 11847 cnt -= mp->b_wptr - mp->b_rptr; 11848 if (cnt < 0) { 11849 cnt += mp->b_wptr - mp->b_rptr; 11850 break; 11851 } 11852 mp = mp->b_cont; 11853 } 11854 ASSERT(mp != NULL); 11855 *off = cnt; 11856 return (mp); 11857 } 11858 11859 /* 11860 * This function handles all retransmissions if SACK is enabled for this 11861 * connection. First it calculates how many segments can be retransmitted 11862 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11863 * segments. A segment is eligible if sack_cnt for that segment is greater 11864 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11865 * all eligible segments, it checks to see if TCP can send some new segments 11866 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11867 * 11868 * Parameters: 11869 * tcp_t *tcp: the tcp structure of the connection. 11870 * uint_t *flags: in return, appropriate value will be set for 11871 * tcp_rput_data(). 11872 */ 11873 static void 11874 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11875 { 11876 notsack_blk_t *notsack_blk; 11877 int32_t usable_swnd; 11878 int32_t mss; 11879 uint32_t seg_len; 11880 mblk_t *xmit_mp; 11881 tcp_stack_t *tcps = tcp->tcp_tcps; 11882 11883 ASSERT(tcp->tcp_sack_info != NULL); 11884 ASSERT(tcp->tcp_notsack_list != NULL); 11885 ASSERT(tcp->tcp_rexmit == B_FALSE); 11886 11887 /* Defensive coding in case there is a bug... */ 11888 if (tcp->tcp_notsack_list == NULL) { 11889 return; 11890 } 11891 notsack_blk = tcp->tcp_notsack_list; 11892 mss = tcp->tcp_mss; 11893 11894 /* 11895 * Limit the num of outstanding data in the network to be 11896 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11897 */ 11898 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11899 11900 /* At least retransmit 1 MSS of data. */ 11901 if (usable_swnd <= 0) { 11902 usable_swnd = mss; 11903 } 11904 11905 /* Make sure no new RTT samples will be taken. */ 11906 tcp->tcp_csuna = tcp->tcp_snxt; 11907 11908 notsack_blk = tcp->tcp_notsack_list; 11909 while (usable_swnd > 0) { 11910 mblk_t *snxt_mp, *tmp_mp; 11911 tcp_seq begin = tcp->tcp_sack_snxt; 11912 tcp_seq end; 11913 int32_t off; 11914 11915 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11916 if (SEQ_GT(notsack_blk->end, begin) && 11917 (notsack_blk->sack_cnt >= 11918 tcps->tcps_dupack_fast_retransmit)) { 11919 end = notsack_blk->end; 11920 if (SEQ_LT(begin, notsack_blk->begin)) { 11921 begin = notsack_blk->begin; 11922 } 11923 break; 11924 } 11925 } 11926 /* 11927 * All holes are filled. Manipulate tcp_cwnd to send more 11928 * if we can. Note that after the SACK recovery, tcp_cwnd is 11929 * set to tcp_cwnd_ssthresh. 11930 */ 11931 if (notsack_blk == NULL) { 11932 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11933 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 11934 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 11935 ASSERT(tcp->tcp_cwnd > 0); 11936 return; 11937 } else { 11938 usable_swnd = usable_swnd / mss; 11939 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 11940 MAX(usable_swnd * mss, mss); 11941 *flags |= TH_XMIT_NEEDED; 11942 return; 11943 } 11944 } 11945 11946 /* 11947 * Note that we may send more than usable_swnd allows here 11948 * because of round off, but no more than 1 MSS of data. 11949 */ 11950 seg_len = end - begin; 11951 if (seg_len > mss) 11952 seg_len = mss; 11953 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 11954 ASSERT(snxt_mp != NULL); 11955 /* This should not happen. Defensive coding again... */ 11956 if (snxt_mp == NULL) { 11957 return; 11958 } 11959 11960 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 11961 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 11962 if (xmit_mp == NULL) 11963 return; 11964 11965 usable_swnd -= seg_len; 11966 tcp->tcp_pipe += seg_len; 11967 tcp->tcp_sack_snxt = begin + seg_len; 11968 11969 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 11970 11971 /* 11972 * Update the send timestamp to avoid false retransmission. 11973 */ 11974 snxt_mp->b_prev = (mblk_t *)lbolt; 11975 11976 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 11977 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 11978 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 11979 /* 11980 * Update tcp_rexmit_max to extend this SACK recovery phase. 11981 * This happens when new data sent during fast recovery is 11982 * also lost. If TCP retransmits those new data, it needs 11983 * to extend SACK recover phase to avoid starting another 11984 * fast retransmit/recovery unnecessarily. 11985 */ 11986 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 11987 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 11988 } 11989 } 11990 } 11991 11992 /* 11993 * This function handles policy checking at TCP level for non-hard_bound/ 11994 * detached connections. 11995 */ 11996 static boolean_t 11997 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 11998 boolean_t secure, boolean_t mctl_present) 11999 { 12000 ipsec_latch_t *ipl = NULL; 12001 ipsec_action_t *act = NULL; 12002 mblk_t *data_mp; 12003 ipsec_in_t *ii; 12004 const char *reason; 12005 kstat_named_t *counter; 12006 tcp_stack_t *tcps = tcp->tcp_tcps; 12007 ipsec_stack_t *ipss; 12008 ip_stack_t *ipst; 12009 12010 ASSERT(mctl_present || !secure); 12011 12012 ASSERT((ipha == NULL && ip6h != NULL) || 12013 (ip6h == NULL && ipha != NULL)); 12014 12015 /* 12016 * We don't necessarily have an ipsec_in_act action to verify 12017 * policy because of assymetrical policy where we have only 12018 * outbound policy and no inbound policy (possible with global 12019 * policy). 12020 */ 12021 if (!secure) { 12022 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12023 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12024 return (B_TRUE); 12025 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12026 "tcp_check_policy", ipha, ip6h, secure, 12027 tcps->tcps_netstack); 12028 ipss = tcps->tcps_netstack->netstack_ipsec; 12029 12030 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12031 DROPPER(ipss, ipds_tcp_clear), 12032 &tcps->tcps_dropper); 12033 return (B_FALSE); 12034 } 12035 12036 /* 12037 * We have a secure packet. 12038 */ 12039 if (act == NULL) { 12040 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12041 "tcp_check_policy", ipha, ip6h, secure, 12042 tcps->tcps_netstack); 12043 ipss = tcps->tcps_netstack->netstack_ipsec; 12044 12045 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12046 DROPPER(ipss, ipds_tcp_secure), 12047 &tcps->tcps_dropper); 12048 return (B_FALSE); 12049 } 12050 12051 /* 12052 * XXX This whole routine is currently incorrect. ipl should 12053 * be set to the latch pointer, but is currently not set, so 12054 * we initialize it to NULL to avoid picking up random garbage. 12055 */ 12056 if (ipl == NULL) 12057 return (B_TRUE); 12058 12059 data_mp = first_mp->b_cont; 12060 12061 ii = (ipsec_in_t *)first_mp->b_rptr; 12062 12063 ipst = tcps->tcps_netstack->netstack_ip; 12064 12065 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12066 &counter, tcp->tcp_connp)) { 12067 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12068 return (B_TRUE); 12069 } 12070 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12071 "tcp inbound policy mismatch: %s, packet dropped\n", 12072 reason); 12073 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12074 12075 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12076 &tcps->tcps_dropper); 12077 return (B_FALSE); 12078 } 12079 12080 /* 12081 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12082 * retransmission after a timeout. 12083 * 12084 * To limit the number of duplicate segments, we limit the number of segment 12085 * to be sent in one time to tcp_snd_burst, the burst variable. 12086 */ 12087 static void 12088 tcp_ss_rexmit(tcp_t *tcp) 12089 { 12090 uint32_t snxt; 12091 uint32_t smax; 12092 int32_t win; 12093 int32_t mss; 12094 int32_t off; 12095 int32_t burst = tcp->tcp_snd_burst; 12096 mblk_t *snxt_mp; 12097 tcp_stack_t *tcps = tcp->tcp_tcps; 12098 12099 /* 12100 * Note that tcp_rexmit can be set even though TCP has retransmitted 12101 * all unack'ed segments. 12102 */ 12103 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12104 smax = tcp->tcp_rexmit_max; 12105 snxt = tcp->tcp_rexmit_nxt; 12106 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12107 snxt = tcp->tcp_suna; 12108 } 12109 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12110 win -= snxt - tcp->tcp_suna; 12111 mss = tcp->tcp_mss; 12112 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12113 12114 while (SEQ_LT(snxt, smax) && (win > 0) && 12115 (burst > 0) && (snxt_mp != NULL)) { 12116 mblk_t *xmit_mp; 12117 mblk_t *old_snxt_mp = snxt_mp; 12118 uint32_t cnt = mss; 12119 12120 if (win < cnt) { 12121 cnt = win; 12122 } 12123 if (SEQ_GT(snxt + cnt, smax)) { 12124 cnt = smax - snxt; 12125 } 12126 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12127 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12128 if (xmit_mp == NULL) 12129 return; 12130 12131 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12132 12133 snxt += cnt; 12134 win -= cnt; 12135 /* 12136 * Update the send timestamp to avoid false 12137 * retransmission. 12138 */ 12139 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12140 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12141 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12142 12143 tcp->tcp_rexmit_nxt = snxt; 12144 burst--; 12145 } 12146 /* 12147 * If we have transmitted all we have at the time 12148 * we started the retranmission, we can leave 12149 * the rest of the job to tcp_wput_data(). But we 12150 * need to check the send window first. If the 12151 * win is not 0, go on with tcp_wput_data(). 12152 */ 12153 if (SEQ_LT(snxt, smax) || win == 0) { 12154 return; 12155 } 12156 } 12157 /* Only call tcp_wput_data() if there is data to be sent. */ 12158 if (tcp->tcp_unsent) { 12159 tcp_wput_data(tcp, NULL, B_FALSE); 12160 } 12161 } 12162 12163 /* 12164 * Process all TCP option in SYN segment. Note that this function should 12165 * be called after tcp_adapt_ire() is called so that the necessary info 12166 * from IRE is already set in the tcp structure. 12167 * 12168 * This function sets up the correct tcp_mss value according to the 12169 * MSS option value and our header size. It also sets up the window scale 12170 * and timestamp values, and initialize SACK info blocks. But it does not 12171 * change receive window size after setting the tcp_mss value. The caller 12172 * should do the appropriate change. 12173 */ 12174 void 12175 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12176 { 12177 int options; 12178 tcp_opt_t tcpopt; 12179 uint32_t mss_max; 12180 char *tmp_tcph; 12181 tcp_stack_t *tcps = tcp->tcp_tcps; 12182 12183 tcpopt.tcp = NULL; 12184 options = tcp_parse_options(tcph, &tcpopt); 12185 12186 /* 12187 * Process MSS option. Note that MSS option value does not account 12188 * for IP or TCP options. This means that it is equal to MTU - minimum 12189 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12190 * IPv6. 12191 */ 12192 if (!(options & TCP_OPT_MSS_PRESENT)) { 12193 if (tcp->tcp_ipversion == IPV4_VERSION) 12194 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12195 else 12196 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12197 } else { 12198 if (tcp->tcp_ipversion == IPV4_VERSION) 12199 mss_max = tcps->tcps_mss_max_ipv4; 12200 else 12201 mss_max = tcps->tcps_mss_max_ipv6; 12202 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12203 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12204 else if (tcpopt.tcp_opt_mss > mss_max) 12205 tcpopt.tcp_opt_mss = mss_max; 12206 } 12207 12208 /* Process Window Scale option. */ 12209 if (options & TCP_OPT_WSCALE_PRESENT) { 12210 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12211 tcp->tcp_snd_ws_ok = B_TRUE; 12212 } else { 12213 tcp->tcp_snd_ws = B_FALSE; 12214 tcp->tcp_snd_ws_ok = B_FALSE; 12215 tcp->tcp_rcv_ws = B_FALSE; 12216 } 12217 12218 /* Process Timestamp option. */ 12219 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12220 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12221 tmp_tcph = (char *)tcp->tcp_tcph; 12222 12223 tcp->tcp_snd_ts_ok = B_TRUE; 12224 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12225 tcp->tcp_last_rcv_lbolt = lbolt64; 12226 ASSERT(OK_32PTR(tmp_tcph)); 12227 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12228 12229 /* Fill in our template header with basic timestamp option. */ 12230 tmp_tcph += tcp->tcp_tcp_hdr_len; 12231 tmp_tcph[0] = TCPOPT_NOP; 12232 tmp_tcph[1] = TCPOPT_NOP; 12233 tmp_tcph[2] = TCPOPT_TSTAMP; 12234 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12235 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12236 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12237 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12238 } else { 12239 tcp->tcp_snd_ts_ok = B_FALSE; 12240 } 12241 12242 /* 12243 * Process SACK options. If SACK is enabled for this connection, 12244 * then allocate the SACK info structure. Note the following ways 12245 * when tcp_snd_sack_ok is set to true. 12246 * 12247 * For active connection: in tcp_adapt_ire() called in 12248 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12249 * is checked. 12250 * 12251 * For passive connection: in tcp_adapt_ire() called in 12252 * tcp_accept_comm(). 12253 * 12254 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12255 * That check makes sure that if we did not send a SACK OK option, 12256 * we will not enable SACK for this connection even though the other 12257 * side sends us SACK OK option. For active connection, the SACK 12258 * info structure has already been allocated. So we need to free 12259 * it if SACK is disabled. 12260 */ 12261 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12262 (tcp->tcp_snd_sack_ok || 12263 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12264 /* This should be true only in the passive case. */ 12265 if (tcp->tcp_sack_info == NULL) { 12266 ASSERT(TCP_IS_DETACHED(tcp)); 12267 tcp->tcp_sack_info = 12268 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12269 } 12270 if (tcp->tcp_sack_info == NULL) { 12271 tcp->tcp_snd_sack_ok = B_FALSE; 12272 } else { 12273 tcp->tcp_snd_sack_ok = B_TRUE; 12274 if (tcp->tcp_snd_ts_ok) { 12275 tcp->tcp_max_sack_blk = 3; 12276 } else { 12277 tcp->tcp_max_sack_blk = 4; 12278 } 12279 } 12280 } else { 12281 /* 12282 * Resetting tcp_snd_sack_ok to B_FALSE so that 12283 * no SACK info will be used for this 12284 * connection. This assumes that SACK usage 12285 * permission is negotiated. This may need 12286 * to be changed once this is clarified. 12287 */ 12288 if (tcp->tcp_sack_info != NULL) { 12289 ASSERT(tcp->tcp_notsack_list == NULL); 12290 kmem_cache_free(tcp_sack_info_cache, 12291 tcp->tcp_sack_info); 12292 tcp->tcp_sack_info = NULL; 12293 } 12294 tcp->tcp_snd_sack_ok = B_FALSE; 12295 } 12296 12297 /* 12298 * Now we know the exact TCP/IP header length, subtract 12299 * that from tcp_mss to get our side's MSS. 12300 */ 12301 tcp->tcp_mss -= tcp->tcp_hdr_len; 12302 /* 12303 * Here we assume that the other side's header size will be equal to 12304 * our header size. We calculate the real MSS accordingly. Need to 12305 * take into additional stuffs IPsec puts in. 12306 * 12307 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12308 */ 12309 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12310 ((tcp->tcp_ipversion == IPV4_VERSION ? 12311 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12312 12313 /* 12314 * Set MSS to the smaller one of both ends of the connection. 12315 * We should not have called tcp_mss_set() before, but our 12316 * side of the MSS should have been set to a proper value 12317 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12318 * STREAM head parameters properly. 12319 * 12320 * If we have a larger-than-16-bit window but the other side 12321 * didn't want to do window scale, tcp_rwnd_set() will take 12322 * care of that. 12323 */ 12324 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12325 } 12326 12327 /* 12328 * Sends the T_CONN_IND to the listener. The caller calls this 12329 * functions via squeue to get inside the listener's perimeter 12330 * once the 3 way hand shake is done a T_CONN_IND needs to be 12331 * sent. As an optimization, the caller can call this directly 12332 * if listener's perimeter is same as eager's. 12333 */ 12334 /* ARGSUSED */ 12335 void 12336 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12337 { 12338 conn_t *lconnp = (conn_t *)arg; 12339 tcp_t *listener = lconnp->conn_tcp; 12340 tcp_t *tcp; 12341 struct T_conn_ind *conn_ind; 12342 ipaddr_t *addr_cache; 12343 boolean_t need_send_conn_ind = B_FALSE; 12344 tcp_stack_t *tcps = listener->tcp_tcps; 12345 12346 /* retrieve the eager */ 12347 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12348 ASSERT(conn_ind->OPT_offset != 0 && 12349 conn_ind->OPT_length == sizeof (intptr_t)); 12350 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12351 conn_ind->OPT_length); 12352 12353 /* 12354 * TLI/XTI applications will get confused by 12355 * sending eager as an option since it violates 12356 * the option semantics. So remove the eager as 12357 * option since TLI/XTI app doesn't need it anyway. 12358 */ 12359 if (!TCP_IS_SOCKET(listener)) { 12360 conn_ind->OPT_length = 0; 12361 conn_ind->OPT_offset = 0; 12362 } 12363 if (listener->tcp_state != TCPS_LISTEN) { 12364 /* 12365 * If listener has closed, it would have caused a 12366 * a cleanup/blowoff to happen for the eager. We 12367 * just need to return. 12368 */ 12369 freemsg(mp); 12370 return; 12371 } 12372 12373 12374 /* 12375 * if the conn_req_q is full defer passing up the 12376 * T_CONN_IND until space is availabe after t_accept() 12377 * processing 12378 */ 12379 mutex_enter(&listener->tcp_eager_lock); 12380 12381 /* 12382 * Take the eager out, if it is in the list of droppable eagers 12383 * as we are here because the 3W handshake is over. 12384 */ 12385 MAKE_UNDROPPABLE(tcp); 12386 12387 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12388 tcp_t *tail; 12389 12390 /* 12391 * The eager already has an extra ref put in tcp_rput_data 12392 * so that it stays till accept comes back even though it 12393 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12394 */ 12395 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12396 listener->tcp_conn_req_cnt_q0--; 12397 listener->tcp_conn_req_cnt_q++; 12398 12399 /* Move from SYN_RCVD to ESTABLISHED list */ 12400 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12401 tcp->tcp_eager_prev_q0; 12402 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12403 tcp->tcp_eager_next_q0; 12404 tcp->tcp_eager_prev_q0 = NULL; 12405 tcp->tcp_eager_next_q0 = NULL; 12406 12407 /* 12408 * Insert at end of the queue because sockfs 12409 * sends down T_CONN_RES in chronological 12410 * order. Leaving the older conn indications 12411 * at front of the queue helps reducing search 12412 * time. 12413 */ 12414 tail = listener->tcp_eager_last_q; 12415 if (tail != NULL) 12416 tail->tcp_eager_next_q = tcp; 12417 else 12418 listener->tcp_eager_next_q = tcp; 12419 listener->tcp_eager_last_q = tcp; 12420 tcp->tcp_eager_next_q = NULL; 12421 /* 12422 * Delay sending up the T_conn_ind until we are 12423 * done with the eager. Once we have have sent up 12424 * the T_conn_ind, the accept can potentially complete 12425 * any time and release the refhold we have on the eager. 12426 */ 12427 need_send_conn_ind = B_TRUE; 12428 } else { 12429 /* 12430 * Defer connection on q0 and set deferred 12431 * connection bit true 12432 */ 12433 tcp->tcp_conn_def_q0 = B_TRUE; 12434 12435 /* take tcp out of q0 ... */ 12436 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12437 tcp->tcp_eager_next_q0; 12438 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12439 tcp->tcp_eager_prev_q0; 12440 12441 /* ... and place it at the end of q0 */ 12442 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12443 tcp->tcp_eager_next_q0 = listener; 12444 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12445 listener->tcp_eager_prev_q0 = tcp; 12446 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12447 } 12448 12449 /* we have timed out before */ 12450 if (tcp->tcp_syn_rcvd_timeout != 0) { 12451 tcp->tcp_syn_rcvd_timeout = 0; 12452 listener->tcp_syn_rcvd_timeout--; 12453 if (listener->tcp_syn_defense && 12454 listener->tcp_syn_rcvd_timeout <= 12455 (tcps->tcps_conn_req_max_q0 >> 5) && 12456 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12457 listener->tcp_last_rcv_lbolt)) { 12458 /* 12459 * Turn off the defense mode if we 12460 * believe the SYN attack is over. 12461 */ 12462 listener->tcp_syn_defense = B_FALSE; 12463 if (listener->tcp_ip_addr_cache) { 12464 kmem_free((void *)listener->tcp_ip_addr_cache, 12465 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12466 listener->tcp_ip_addr_cache = NULL; 12467 } 12468 } 12469 } 12470 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12471 if (addr_cache != NULL) { 12472 /* 12473 * We have finished a 3-way handshake with this 12474 * remote host. This proves the IP addr is good. 12475 * Cache it! 12476 */ 12477 addr_cache[IP_ADDR_CACHE_HASH( 12478 tcp->tcp_remote)] = tcp->tcp_remote; 12479 } 12480 mutex_exit(&listener->tcp_eager_lock); 12481 if (need_send_conn_ind) 12482 tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp); 12483 } 12484 12485 /* 12486 * Send the newconn notification to ulp. The eager is blown off if the 12487 * notification fails. 12488 */ 12489 static void 12490 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp) 12491 { 12492 if (IPCL_IS_NONSTR(lconnp)) { 12493 cred_t *cr; 12494 pid_t cpid; 12495 12496 cr = msg_getcred(mp, &cpid); 12497 12498 ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp); 12499 ASSERT(econnp->conn_tcp->tcp_saved_listener == 12500 lconnp->conn_tcp); 12501 12502 /* Keep the message around in case of a fallback to TPI */ 12503 econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp; 12504 12505 /* 12506 * Notify the ULP about the newconn. It is guaranteed that no 12507 * tcp_accept() call will be made for the eager if the 12508 * notification fails, so it's safe to blow it off in that 12509 * case. 12510 * 12511 * The upper handle will be assigned when tcp_accept() is 12512 * called. 12513 */ 12514 if ((*lconnp->conn_upcalls->su_newconn) 12515 (lconnp->conn_upper_handle, 12516 (sock_lower_handle_t)econnp, 12517 &sock_tcp_downcalls, cr, cpid, 12518 &econnp->conn_upcalls) == NULL) { 12519 /* Failed to allocate a socket */ 12520 BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib, 12521 tcpEstabResets); 12522 (void) tcp_eager_blowoff(lconnp->conn_tcp, 12523 econnp->conn_tcp->tcp_conn_req_seqnum); 12524 } 12525 } else { 12526 putnext(lconnp->conn_tcp->tcp_rq, mp); 12527 } 12528 } 12529 12530 mblk_t * 12531 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12532 uint_t *ifindexp, ip6_pkt_t *ippp) 12533 { 12534 ip_pktinfo_t *pinfo; 12535 ip6_t *ip6h; 12536 uchar_t *rptr; 12537 mblk_t *first_mp = mp; 12538 boolean_t mctl_present = B_FALSE; 12539 uint_t ifindex = 0; 12540 ip6_pkt_t ipp; 12541 uint_t ipvers; 12542 uint_t ip_hdr_len; 12543 tcp_stack_t *tcps = tcp->tcp_tcps; 12544 12545 rptr = mp->b_rptr; 12546 ASSERT(OK_32PTR(rptr)); 12547 ASSERT(tcp != NULL); 12548 ipp.ipp_fields = 0; 12549 12550 switch DB_TYPE(mp) { 12551 case M_CTL: 12552 mp = mp->b_cont; 12553 if (mp == NULL) { 12554 freemsg(first_mp); 12555 return (NULL); 12556 } 12557 if (DB_TYPE(mp) != M_DATA) { 12558 freemsg(first_mp); 12559 return (NULL); 12560 } 12561 mctl_present = B_TRUE; 12562 break; 12563 case M_DATA: 12564 break; 12565 default: 12566 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12567 freemsg(mp); 12568 return (NULL); 12569 } 12570 ipvers = IPH_HDR_VERSION(rptr); 12571 if (ipvers == IPV4_VERSION) { 12572 if (tcp == NULL) { 12573 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12574 goto done; 12575 } 12576 12577 ipp.ipp_fields |= IPPF_HOPLIMIT; 12578 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12579 12580 /* 12581 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12582 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12583 */ 12584 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12585 mctl_present) { 12586 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12587 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12588 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12589 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12590 ipp.ipp_fields |= IPPF_IFINDEX; 12591 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12592 ifindex = pinfo->ip_pkt_ifindex; 12593 } 12594 freeb(first_mp); 12595 mctl_present = B_FALSE; 12596 } 12597 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12598 } else { 12599 ip6h = (ip6_t *)rptr; 12600 12601 ASSERT(ipvers == IPV6_VERSION); 12602 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12603 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12604 ipp.ipp_hoplimit = ip6h->ip6_hops; 12605 12606 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12607 uint8_t nexthdrp; 12608 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12609 12610 /* Look for ifindex information */ 12611 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12612 ip6i_t *ip6i = (ip6i_t *)ip6h; 12613 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12614 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12615 freemsg(first_mp); 12616 return (NULL); 12617 } 12618 12619 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12620 ASSERT(ip6i->ip6i_ifindex != 0); 12621 ipp.ipp_fields |= IPPF_IFINDEX; 12622 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12623 ifindex = ip6i->ip6i_ifindex; 12624 } 12625 rptr = (uchar_t *)&ip6i[1]; 12626 mp->b_rptr = rptr; 12627 if (rptr == mp->b_wptr) { 12628 mblk_t *mp1; 12629 mp1 = mp->b_cont; 12630 freeb(mp); 12631 mp = mp1; 12632 rptr = mp->b_rptr; 12633 } 12634 if (MBLKL(mp) < IPV6_HDR_LEN + 12635 sizeof (tcph_t)) { 12636 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12637 freemsg(first_mp); 12638 return (NULL); 12639 } 12640 ip6h = (ip6_t *)rptr; 12641 } 12642 12643 /* 12644 * Find any potentially interesting extension headers 12645 * as well as the length of the IPv6 + extension 12646 * headers. 12647 */ 12648 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12649 /* Verify if this is a TCP packet */ 12650 if (nexthdrp != IPPROTO_TCP) { 12651 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12652 freemsg(first_mp); 12653 return (NULL); 12654 } 12655 } else { 12656 ip_hdr_len = IPV6_HDR_LEN; 12657 } 12658 } 12659 12660 done: 12661 if (ipversp != NULL) 12662 *ipversp = ipvers; 12663 if (ip_hdr_lenp != NULL) 12664 *ip_hdr_lenp = ip_hdr_len; 12665 if (ippp != NULL) 12666 *ippp = ipp; 12667 if (ifindexp != NULL) 12668 *ifindexp = ifindex; 12669 if (mctl_present) { 12670 freeb(first_mp); 12671 } 12672 return (mp); 12673 } 12674 12675 /* 12676 * Handle M_DATA messages from IP. Its called directly from IP via 12677 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12678 * in this path. 12679 * 12680 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12681 * v4 and v6), we are called through tcp_input() and a M_CTL can 12682 * be present for options but tcp_find_pktinfo() deals with it. We 12683 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12684 * 12685 * The first argument is always the connp/tcp to which the mp belongs. 12686 * There are no exceptions to this rule. The caller has already put 12687 * a reference on this connp/tcp and once tcp_rput_data() returns, 12688 * the squeue will do the refrele. 12689 * 12690 * The TH_SYN for the listener directly go to tcp_conn_request via 12691 * squeue. 12692 * 12693 * sqp: NULL = recursive, sqp != NULL means called from squeue 12694 */ 12695 void 12696 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12697 { 12698 int32_t bytes_acked; 12699 int32_t gap; 12700 mblk_t *mp1; 12701 uint_t flags; 12702 uint32_t new_swnd = 0; 12703 uchar_t *iphdr; 12704 uchar_t *rptr; 12705 int32_t rgap; 12706 uint32_t seg_ack; 12707 int seg_len; 12708 uint_t ip_hdr_len; 12709 uint32_t seg_seq; 12710 tcph_t *tcph; 12711 int urp; 12712 tcp_opt_t tcpopt; 12713 uint_t ipvers; 12714 ip6_pkt_t ipp; 12715 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12716 uint32_t cwnd; 12717 uint32_t add; 12718 int npkt; 12719 int mss; 12720 conn_t *connp = (conn_t *)arg; 12721 squeue_t *sqp = (squeue_t *)arg2; 12722 tcp_t *tcp = connp->conn_tcp; 12723 tcp_stack_t *tcps = tcp->tcp_tcps; 12724 12725 /* 12726 * RST from fused tcp loopback peer should trigger an unfuse. 12727 */ 12728 if (tcp->tcp_fused) { 12729 TCP_STAT(tcps, tcp_fusion_aborted); 12730 tcp_unfuse(tcp); 12731 } 12732 12733 iphdr = mp->b_rptr; 12734 rptr = mp->b_rptr; 12735 ASSERT(OK_32PTR(rptr)); 12736 12737 /* 12738 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12739 * processing here. For rest call tcp_find_pktinfo to fill up the 12740 * necessary information. 12741 */ 12742 if (IPCL_IS_TCP4(connp)) { 12743 ipvers = IPV4_VERSION; 12744 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12745 } else { 12746 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12747 NULL, &ipp); 12748 if (mp == NULL) { 12749 TCP_STAT(tcps, tcp_rput_v6_error); 12750 return; 12751 } 12752 iphdr = mp->b_rptr; 12753 rptr = mp->b_rptr; 12754 } 12755 ASSERT(DB_TYPE(mp) == M_DATA); 12756 ASSERT(mp->b_next == NULL); 12757 12758 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12759 seg_seq = ABE32_TO_U32(tcph->th_seq); 12760 seg_ack = ABE32_TO_U32(tcph->th_ack); 12761 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12762 seg_len = (int)(mp->b_wptr - rptr) - 12763 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12764 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12765 do { 12766 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12767 (uintptr_t)INT_MAX); 12768 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12769 } while ((mp1 = mp1->b_cont) != NULL && 12770 mp1->b_datap->db_type == M_DATA); 12771 } 12772 12773 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12774 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12775 seg_len, tcph); 12776 return; 12777 } 12778 12779 if (sqp != NULL) { 12780 /* 12781 * This is the correct place to update tcp_last_recv_time. Note 12782 * that it is also updated for tcp structure that belongs to 12783 * global and listener queues which do not really need updating. 12784 * But that should not cause any harm. And it is updated for 12785 * all kinds of incoming segments, not only for data segments. 12786 */ 12787 tcp->tcp_last_recv_time = lbolt; 12788 } 12789 12790 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12791 12792 BUMP_LOCAL(tcp->tcp_ibsegs); 12793 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 12794 12795 if ((flags & TH_URG) && sqp != NULL) { 12796 /* 12797 * TCP can't handle urgent pointers that arrive before 12798 * the connection has been accept()ed since it can't 12799 * buffer OOB data. Discard segment if this happens. 12800 * 12801 * We can't just rely on a non-null tcp_listener to indicate 12802 * that the accept() has completed since unlinking of the 12803 * eager and completion of the accept are not atomic. 12804 * tcp_detached, when it is not set (B_FALSE) indicates 12805 * that the accept() has completed. 12806 * 12807 * Nor can it reassemble urgent pointers, so discard 12808 * if it's not the next segment expected. 12809 * 12810 * Otherwise, collapse chain into one mblk (discard if 12811 * that fails). This makes sure the headers, retransmitted 12812 * data, and new data all are in the same mblk. 12813 */ 12814 ASSERT(mp != NULL); 12815 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12816 freemsg(mp); 12817 return; 12818 } 12819 /* Update pointers into message */ 12820 iphdr = rptr = mp->b_rptr; 12821 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12822 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12823 /* 12824 * Since we can't handle any data with this urgent 12825 * pointer that is out of sequence, we expunge 12826 * the data. This allows us to still register 12827 * the urgent mark and generate the M_PCSIG, 12828 * which we can do. 12829 */ 12830 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12831 seg_len = 0; 12832 } 12833 } 12834 12835 switch (tcp->tcp_state) { 12836 case TCPS_SYN_SENT: 12837 if (flags & TH_ACK) { 12838 /* 12839 * Note that our stack cannot send data before a 12840 * connection is established, therefore the 12841 * following check is valid. Otherwise, it has 12842 * to be changed. 12843 */ 12844 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12845 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12846 freemsg(mp); 12847 if (flags & TH_RST) 12848 return; 12849 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12850 tcp, seg_ack, 0, TH_RST); 12851 return; 12852 } 12853 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12854 } 12855 if (flags & TH_RST) { 12856 freemsg(mp); 12857 if (flags & TH_ACK) 12858 (void) tcp_clean_death(tcp, 12859 ECONNREFUSED, 13); 12860 return; 12861 } 12862 if (!(flags & TH_SYN)) { 12863 freemsg(mp); 12864 return; 12865 } 12866 12867 /* Process all TCP options. */ 12868 tcp_process_options(tcp, tcph); 12869 /* 12870 * The following changes our rwnd to be a multiple of the 12871 * MIN(peer MSS, our MSS) for performance reason. 12872 */ 12873 (void) tcp_rwnd_set(tcp, 12874 MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss)); 12875 12876 /* Is the other end ECN capable? */ 12877 if (tcp->tcp_ecn_ok) { 12878 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12879 tcp->tcp_ecn_ok = B_FALSE; 12880 } 12881 } 12882 /* 12883 * Clear ECN flags because it may interfere with later 12884 * processing. 12885 */ 12886 flags &= ~(TH_ECE|TH_CWR); 12887 12888 tcp->tcp_irs = seg_seq; 12889 tcp->tcp_rack = seg_seq; 12890 tcp->tcp_rnxt = seg_seq + 1; 12891 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12892 if (!TCP_IS_DETACHED(tcp)) { 12893 /* Allocate room for SACK options if needed. */ 12894 if (tcp->tcp_snd_sack_ok) { 12895 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12896 tcp->tcp_hdr_len + 12897 TCPOPT_MAX_SACK_LEN + 12898 (tcp->tcp_loopback ? 0 : 12899 tcps->tcps_wroff_xtra)); 12900 } else { 12901 (void) proto_set_tx_wroff(tcp->tcp_rq, connp, 12902 tcp->tcp_hdr_len + 12903 (tcp->tcp_loopback ? 0 : 12904 tcps->tcps_wroff_xtra)); 12905 } 12906 } 12907 if (flags & TH_ACK) { 12908 /* 12909 * If we can't get the confirmation upstream, pretend 12910 * we didn't even see this one. 12911 * 12912 * XXX: how can we pretend we didn't see it if we 12913 * have updated rnxt et. al. 12914 * 12915 * For loopback we defer sending up the T_CONN_CON 12916 * until after some checks below. 12917 */ 12918 mp1 = NULL; 12919 /* 12920 * tcp_sendmsg() checks tcp_state without entering 12921 * the squeue so tcp_state should be updated before 12922 * sending up connection confirmation 12923 */ 12924 tcp->tcp_state = TCPS_ESTABLISHED; 12925 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12926 tcp->tcp_loopback ? &mp1 : NULL)) { 12927 tcp->tcp_state = TCPS_SYN_SENT; 12928 freemsg(mp); 12929 return; 12930 } 12931 /* SYN was acked - making progress */ 12932 if (tcp->tcp_ipversion == IPV6_VERSION) 12933 tcp->tcp_ip_forward_progress = B_TRUE; 12934 12935 /* One for the SYN */ 12936 tcp->tcp_suna = tcp->tcp_iss + 1; 12937 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12938 12939 /* 12940 * If SYN was retransmitted, need to reset all 12941 * retransmission info. This is because this 12942 * segment will be treated as a dup ACK. 12943 */ 12944 if (tcp->tcp_rexmit) { 12945 tcp->tcp_rexmit = B_FALSE; 12946 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12947 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12948 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12949 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12950 tcp->tcp_ms_we_have_waited = 0; 12951 12952 /* 12953 * Set tcp_cwnd back to 1 MSS, per 12954 * recommendation from 12955 * draft-floyd-incr-init-win-01.txt, 12956 * Increasing TCP's Initial Window. 12957 */ 12958 tcp->tcp_cwnd = tcp->tcp_mss; 12959 } 12960 12961 tcp->tcp_swl1 = seg_seq; 12962 tcp->tcp_swl2 = seg_ack; 12963 12964 new_swnd = BE16_TO_U16(tcph->th_win); 12965 tcp->tcp_swnd = new_swnd; 12966 if (new_swnd > tcp->tcp_max_swnd) 12967 tcp->tcp_max_swnd = new_swnd; 12968 12969 /* 12970 * Always send the three-way handshake ack immediately 12971 * in order to make the connection complete as soon as 12972 * possible on the accepting host. 12973 */ 12974 flags |= TH_ACK_NEEDED; 12975 12976 /* 12977 * Special case for loopback. At this point we have 12978 * received SYN-ACK from the remote endpoint. In 12979 * order to ensure that both endpoints reach the 12980 * fused state prior to any data exchange, the final 12981 * ACK needs to be sent before we indicate T_CONN_CON 12982 * to the module upstream. 12983 */ 12984 if (tcp->tcp_loopback) { 12985 mblk_t *ack_mp; 12986 12987 ASSERT(!tcp->tcp_unfusable); 12988 ASSERT(mp1 != NULL); 12989 /* 12990 * For loopback, we always get a pure SYN-ACK 12991 * and only need to send back the final ACK 12992 * with no data (this is because the other 12993 * tcp is ours and we don't do T/TCP). This 12994 * final ACK triggers the passive side to 12995 * perform fusion in ESTABLISHED state. 12996 */ 12997 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12998 if (tcp->tcp_ack_tid != 0) { 12999 (void) TCP_TIMER_CANCEL(tcp, 13000 tcp->tcp_ack_tid); 13001 tcp->tcp_ack_tid = 0; 13002 } 13003 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13004 BUMP_LOCAL(tcp->tcp_obsegs); 13005 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13006 13007 if (!IPCL_IS_NONSTR(connp)) { 13008 /* Send up T_CONN_CON */ 13009 putnext(tcp->tcp_rq, mp1); 13010 } else { 13011 cred_t *cr; 13012 pid_t cpid; 13013 13014 cr = msg_getcred(mp1, &cpid); 13015 (*connp->conn_upcalls-> 13016 su_connected) 13017 (connp->conn_upper_handle, 13018 tcp->tcp_connid, cr, cpid); 13019 freemsg(mp1); 13020 } 13021 13022 freemsg(mp); 13023 return; 13024 } 13025 /* 13026 * Forget fusion; we need to handle more 13027 * complex cases below. Send the deferred 13028 * T_CONN_CON message upstream and proceed 13029 * as usual. Mark this tcp as not capable 13030 * of fusion. 13031 */ 13032 TCP_STAT(tcps, tcp_fusion_unfusable); 13033 tcp->tcp_unfusable = B_TRUE; 13034 if (!IPCL_IS_NONSTR(connp)) { 13035 putnext(tcp->tcp_rq, mp1); 13036 } else { 13037 cred_t *cr; 13038 pid_t cpid; 13039 13040 cr = msg_getcred(mp1, &cpid); 13041 (*connp->conn_upcalls->su_connected) 13042 (connp->conn_upper_handle, 13043 tcp->tcp_connid, cr, cpid); 13044 freemsg(mp1); 13045 } 13046 } 13047 13048 /* 13049 * Check to see if there is data to be sent. If 13050 * yes, set the transmit flag. Then check to see 13051 * if received data processing needs to be done. 13052 * If not, go straight to xmit_check. This short 13053 * cut is OK as we don't support T/TCP. 13054 */ 13055 if (tcp->tcp_unsent) 13056 flags |= TH_XMIT_NEEDED; 13057 13058 if (seg_len == 0 && !(flags & TH_URG)) { 13059 freemsg(mp); 13060 goto xmit_check; 13061 } 13062 13063 flags &= ~TH_SYN; 13064 seg_seq++; 13065 break; 13066 } 13067 tcp->tcp_state = TCPS_SYN_RCVD; 13068 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13069 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13070 if (mp1) { 13071 /* 13072 * See comment in tcp_conn_request() for why we use 13073 * the open() time pid here. 13074 */ 13075 DB_CPID(mp1) = tcp->tcp_cpid; 13076 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13077 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13078 } 13079 freemsg(mp); 13080 return; 13081 case TCPS_SYN_RCVD: 13082 if (flags & TH_ACK) { 13083 /* 13084 * In this state, a SYN|ACK packet is either bogus 13085 * because the other side must be ACKing our SYN which 13086 * indicates it has seen the ACK for their SYN and 13087 * shouldn't retransmit it or we're crossing SYNs 13088 * on active open. 13089 */ 13090 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13091 freemsg(mp); 13092 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13093 tcp, seg_ack, 0, TH_RST); 13094 return; 13095 } 13096 /* 13097 * NOTE: RFC 793 pg. 72 says this should be 13098 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13099 * but that would mean we have an ack that ignored 13100 * our SYN. 13101 */ 13102 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13103 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13104 freemsg(mp); 13105 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13106 tcp, seg_ack, 0, TH_RST); 13107 return; 13108 } 13109 } 13110 break; 13111 case TCPS_LISTEN: 13112 /* 13113 * Only a TLI listener can come through this path when a 13114 * acceptor is going back to be a listener and a packet 13115 * for the acceptor hits the classifier. For a socket 13116 * listener, this can never happen because a listener 13117 * can never accept connection on itself and hence a 13118 * socket acceptor can not go back to being a listener. 13119 */ 13120 ASSERT(!TCP_IS_SOCKET(tcp)); 13121 /*FALLTHRU*/ 13122 case TCPS_CLOSED: 13123 case TCPS_BOUND: { 13124 conn_t *new_connp; 13125 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13126 13127 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13128 if (new_connp != NULL) { 13129 tcp_reinput(new_connp, mp, connp->conn_sqp); 13130 return; 13131 } 13132 /* We failed to classify. For now just drop the packet */ 13133 freemsg(mp); 13134 return; 13135 } 13136 case TCPS_IDLE: 13137 /* 13138 * Handle the case where the tcp_clean_death() has happened 13139 * on a connection (application hasn't closed yet) but a packet 13140 * was already queued on squeue before tcp_clean_death() 13141 * was processed. Calling tcp_clean_death() twice on same 13142 * connection can result in weird behaviour. 13143 */ 13144 freemsg(mp); 13145 return; 13146 default: 13147 break; 13148 } 13149 13150 /* 13151 * Already on the correct queue/perimeter. 13152 * If this is a detached connection and not an eager 13153 * connection hanging off a listener then new data 13154 * (past the FIN) will cause a reset. 13155 * We do a special check here where it 13156 * is out of the main line, rather than check 13157 * if we are detached every time we see new 13158 * data down below. 13159 */ 13160 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13161 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13162 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13163 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 13164 13165 freemsg(mp); 13166 /* 13167 * This could be an SSL closure alert. We're detached so just 13168 * acknowledge it this last time. 13169 */ 13170 if (tcp->tcp_kssl_ctx != NULL) { 13171 kssl_release_ctx(tcp->tcp_kssl_ctx); 13172 tcp->tcp_kssl_ctx = NULL; 13173 13174 tcp->tcp_rnxt += seg_len; 13175 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13176 flags |= TH_ACK_NEEDED; 13177 goto ack_check; 13178 } 13179 13180 tcp_xmit_ctl("new data when detached", tcp, 13181 tcp->tcp_snxt, 0, TH_RST); 13182 (void) tcp_clean_death(tcp, EPROTO, 12); 13183 return; 13184 } 13185 13186 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13187 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13188 new_swnd = BE16_TO_U16(tcph->th_win) << 13189 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13190 13191 if (tcp->tcp_snd_ts_ok) { 13192 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13193 /* 13194 * This segment is not acceptable. 13195 * Drop it and send back an ACK. 13196 */ 13197 freemsg(mp); 13198 flags |= TH_ACK_NEEDED; 13199 goto ack_check; 13200 } 13201 } else if (tcp->tcp_snd_sack_ok) { 13202 ASSERT(tcp->tcp_sack_info != NULL); 13203 tcpopt.tcp = tcp; 13204 /* 13205 * SACK info in already updated in tcp_parse_options. Ignore 13206 * all other TCP options... 13207 */ 13208 (void) tcp_parse_options(tcph, &tcpopt); 13209 } 13210 try_again:; 13211 mss = tcp->tcp_mss; 13212 gap = seg_seq - tcp->tcp_rnxt; 13213 rgap = tcp->tcp_rwnd - (gap + seg_len); 13214 /* 13215 * gap is the amount of sequence space between what we expect to see 13216 * and what we got for seg_seq. A positive value for gap means 13217 * something got lost. A negative value means we got some old stuff. 13218 */ 13219 if (gap < 0) { 13220 /* Old stuff present. Is the SYN in there? */ 13221 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13222 (seg_len != 0)) { 13223 flags &= ~TH_SYN; 13224 seg_seq++; 13225 urp--; 13226 /* Recompute the gaps after noting the SYN. */ 13227 goto try_again; 13228 } 13229 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13230 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13231 (seg_len > -gap ? -gap : seg_len)); 13232 /* Remove the old stuff from seg_len. */ 13233 seg_len += gap; 13234 /* 13235 * Anything left? 13236 * Make sure to check for unack'd FIN when rest of data 13237 * has been previously ack'd. 13238 */ 13239 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13240 /* 13241 * Resets are only valid if they lie within our offered 13242 * window. If the RST bit is set, we just ignore this 13243 * segment. 13244 */ 13245 if (flags & TH_RST) { 13246 freemsg(mp); 13247 return; 13248 } 13249 13250 /* 13251 * The arriving of dup data packets indicate that we 13252 * may have postponed an ack for too long, or the other 13253 * side's RTT estimate is out of shape. Start acking 13254 * more often. 13255 */ 13256 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13257 tcp->tcp_rack_cnt >= 1 && 13258 tcp->tcp_rack_abs_max > 2) { 13259 tcp->tcp_rack_abs_max--; 13260 } 13261 tcp->tcp_rack_cur_max = 1; 13262 13263 /* 13264 * This segment is "unacceptable". None of its 13265 * sequence space lies within our advertized window. 13266 * 13267 * Adjust seg_len to the original value for tracing. 13268 */ 13269 seg_len -= gap; 13270 if (tcp->tcp_debug) { 13271 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13272 "tcp_rput: unacceptable, gap %d, rgap %d, " 13273 "flags 0x%x, seg_seq %u, seg_ack %u, " 13274 "seg_len %d, rnxt %u, snxt %u, %s", 13275 gap, rgap, flags, seg_seq, seg_ack, 13276 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13277 tcp_display(tcp, NULL, 13278 DISP_ADDR_AND_PORT)); 13279 } 13280 13281 /* 13282 * Arrange to send an ACK in response to the 13283 * unacceptable segment per RFC 793 page 69. There 13284 * is only one small difference between ours and the 13285 * acceptability test in the RFC - we accept ACK-only 13286 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13287 * will be generated. 13288 * 13289 * Note that we have to ACK an ACK-only packet at least 13290 * for stacks that send 0-length keep-alives with 13291 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13292 * section 4.2.3.6. As long as we don't ever generate 13293 * an unacceptable packet in response to an incoming 13294 * packet that is unacceptable, it should not cause 13295 * "ACK wars". 13296 */ 13297 flags |= TH_ACK_NEEDED; 13298 13299 /* 13300 * Continue processing this segment in order to use the 13301 * ACK information it contains, but skip all other 13302 * sequence-number processing. Processing the ACK 13303 * information is necessary in order to 13304 * re-synchronize connections that may have lost 13305 * synchronization. 13306 * 13307 * We clear seg_len and flag fields related to 13308 * sequence number processing as they are not 13309 * to be trusted for an unacceptable segment. 13310 */ 13311 seg_len = 0; 13312 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13313 goto process_ack; 13314 } 13315 13316 /* Fix seg_seq, and chew the gap off the front. */ 13317 seg_seq = tcp->tcp_rnxt; 13318 urp += gap; 13319 do { 13320 mblk_t *mp2; 13321 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13322 (uintptr_t)UINT_MAX); 13323 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13324 if (gap > 0) { 13325 mp->b_rptr = mp->b_wptr - gap; 13326 break; 13327 } 13328 mp2 = mp; 13329 mp = mp->b_cont; 13330 freeb(mp2); 13331 } while (gap < 0); 13332 /* 13333 * If the urgent data has already been acknowledged, we 13334 * should ignore TH_URG below 13335 */ 13336 if (urp < 0) 13337 flags &= ~TH_URG; 13338 } 13339 /* 13340 * rgap is the amount of stuff received out of window. A negative 13341 * value is the amount out of window. 13342 */ 13343 if (rgap < 0) { 13344 mblk_t *mp2; 13345 13346 if (tcp->tcp_rwnd == 0) { 13347 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13348 } else { 13349 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13350 UPDATE_MIB(&tcps->tcps_mib, 13351 tcpInDataPastWinBytes, -rgap); 13352 } 13353 13354 /* 13355 * seg_len does not include the FIN, so if more than 13356 * just the FIN is out of window, we act like we don't 13357 * see it. (If just the FIN is out of window, rgap 13358 * will be zero and we will go ahead and acknowledge 13359 * the FIN.) 13360 */ 13361 flags &= ~TH_FIN; 13362 13363 /* Fix seg_len and make sure there is something left. */ 13364 seg_len += rgap; 13365 if (seg_len <= 0) { 13366 /* 13367 * Resets are only valid if they lie within our offered 13368 * window. If the RST bit is set, we just ignore this 13369 * segment. 13370 */ 13371 if (flags & TH_RST) { 13372 freemsg(mp); 13373 return; 13374 } 13375 13376 /* Per RFC 793, we need to send back an ACK. */ 13377 flags |= TH_ACK_NEEDED; 13378 13379 /* 13380 * Send SIGURG as soon as possible i.e. even 13381 * if the TH_URG was delivered in a window probe 13382 * packet (which will be unacceptable). 13383 * 13384 * We generate a signal if none has been generated 13385 * for this connection or if this is a new urgent 13386 * byte. Also send a zero-length "unmarked" message 13387 * to inform SIOCATMARK that this is not the mark. 13388 * 13389 * tcp_urp_last_valid is cleared when the T_exdata_ind 13390 * is sent up. This plus the check for old data 13391 * (gap >= 0) handles the wraparound of the sequence 13392 * number space without having to always track the 13393 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13394 * this max in its rcv_up variable). 13395 * 13396 * This prevents duplicate SIGURGS due to a "late" 13397 * zero-window probe when the T_EXDATA_IND has already 13398 * been sent up. 13399 */ 13400 if ((flags & TH_URG) && 13401 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13402 tcp->tcp_urp_last))) { 13403 if (IPCL_IS_NONSTR(connp)) { 13404 if (!TCP_IS_DETACHED(tcp)) { 13405 (*connp->conn_upcalls-> 13406 su_signal_oob) 13407 (connp->conn_upper_handle, 13408 urp); 13409 } 13410 } else { 13411 mp1 = allocb(0, BPRI_MED); 13412 if (mp1 == NULL) { 13413 freemsg(mp); 13414 return; 13415 } 13416 if (!TCP_IS_DETACHED(tcp) && 13417 !putnextctl1(tcp->tcp_rq, 13418 M_PCSIG, SIGURG)) { 13419 /* Try again on the rexmit. */ 13420 freemsg(mp1); 13421 freemsg(mp); 13422 return; 13423 } 13424 /* 13425 * If the next byte would be the mark 13426 * then mark with MARKNEXT else mark 13427 * with NOTMARKNEXT. 13428 */ 13429 if (gap == 0 && urp == 0) 13430 mp1->b_flag |= MSGMARKNEXT; 13431 else 13432 mp1->b_flag |= MSGNOTMARKNEXT; 13433 freemsg(tcp->tcp_urp_mark_mp); 13434 tcp->tcp_urp_mark_mp = mp1; 13435 flags |= TH_SEND_URP_MARK; 13436 } 13437 tcp->tcp_urp_last_valid = B_TRUE; 13438 tcp->tcp_urp_last = urp + seg_seq; 13439 } 13440 /* 13441 * If this is a zero window probe, continue to 13442 * process the ACK part. But we need to set seg_len 13443 * to 0 to avoid data processing. Otherwise just 13444 * drop the segment and send back an ACK. 13445 */ 13446 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13447 flags &= ~(TH_SYN | TH_URG); 13448 seg_len = 0; 13449 goto process_ack; 13450 } else { 13451 freemsg(mp); 13452 goto ack_check; 13453 } 13454 } 13455 /* Pitch out of window stuff off the end. */ 13456 rgap = seg_len; 13457 mp2 = mp; 13458 do { 13459 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13460 (uintptr_t)INT_MAX); 13461 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13462 if (rgap < 0) { 13463 mp2->b_wptr += rgap; 13464 if ((mp1 = mp2->b_cont) != NULL) { 13465 mp2->b_cont = NULL; 13466 freemsg(mp1); 13467 } 13468 break; 13469 } 13470 } while ((mp2 = mp2->b_cont) != NULL); 13471 } 13472 ok:; 13473 /* 13474 * TCP should check ECN info for segments inside the window only. 13475 * Therefore the check should be done here. 13476 */ 13477 if (tcp->tcp_ecn_ok) { 13478 if (flags & TH_CWR) { 13479 tcp->tcp_ecn_echo_on = B_FALSE; 13480 } 13481 /* 13482 * Note that both ECN_CE and CWR can be set in the 13483 * same segment. In this case, we once again turn 13484 * on ECN_ECHO. 13485 */ 13486 if (tcp->tcp_ipversion == IPV4_VERSION) { 13487 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13488 13489 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13490 tcp->tcp_ecn_echo_on = B_TRUE; 13491 } 13492 } else { 13493 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13494 13495 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13496 htonl(IPH_ECN_CE << 20)) { 13497 tcp->tcp_ecn_echo_on = B_TRUE; 13498 } 13499 } 13500 } 13501 13502 /* 13503 * Check whether we can update tcp_ts_recent. This test is 13504 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13505 * Extensions for High Performance: An Update", Internet Draft. 13506 */ 13507 if (tcp->tcp_snd_ts_ok && 13508 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13509 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13510 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13511 tcp->tcp_last_rcv_lbolt = lbolt64; 13512 } 13513 13514 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13515 /* 13516 * FIN in an out of order segment. We record this in 13517 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13518 * Clear the FIN so that any check on FIN flag will fail. 13519 * Remember that FIN also counts in the sequence number 13520 * space. So we need to ack out of order FIN only segments. 13521 */ 13522 if (flags & TH_FIN) { 13523 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13524 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13525 flags &= ~TH_FIN; 13526 flags |= TH_ACK_NEEDED; 13527 } 13528 if (seg_len > 0) { 13529 /* Fill in the SACK blk list. */ 13530 if (tcp->tcp_snd_sack_ok) { 13531 ASSERT(tcp->tcp_sack_info != NULL); 13532 tcp_sack_insert(tcp->tcp_sack_list, 13533 seg_seq, seg_seq + seg_len, 13534 &(tcp->tcp_num_sack_blk)); 13535 } 13536 13537 /* 13538 * Attempt reassembly and see if we have something 13539 * ready to go. 13540 */ 13541 mp = tcp_reass(tcp, mp, seg_seq); 13542 /* Always ack out of order packets */ 13543 flags |= TH_ACK_NEEDED | TH_PUSH; 13544 if (mp) { 13545 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13546 (uintptr_t)INT_MAX); 13547 seg_len = mp->b_cont ? msgdsize(mp) : 13548 (int)(mp->b_wptr - mp->b_rptr); 13549 seg_seq = tcp->tcp_rnxt; 13550 /* 13551 * A gap is filled and the seq num and len 13552 * of the gap match that of a previously 13553 * received FIN, put the FIN flag back in. 13554 */ 13555 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13556 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13557 flags |= TH_FIN; 13558 tcp->tcp_valid_bits &= 13559 ~TCP_OFO_FIN_VALID; 13560 } 13561 } else { 13562 /* 13563 * Keep going even with NULL mp. 13564 * There may be a useful ACK or something else 13565 * we don't want to miss. 13566 * 13567 * But TCP should not perform fast retransmit 13568 * because of the ack number. TCP uses 13569 * seg_len == 0 to determine if it is a pure 13570 * ACK. And this is not a pure ACK. 13571 */ 13572 seg_len = 0; 13573 ofo_seg = B_TRUE; 13574 } 13575 } 13576 } else if (seg_len > 0) { 13577 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13578 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13579 /* 13580 * If an out of order FIN was received before, and the seq 13581 * num and len of the new segment match that of the FIN, 13582 * put the FIN flag back in. 13583 */ 13584 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13585 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13586 flags |= TH_FIN; 13587 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13588 } 13589 } 13590 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13591 if (flags & TH_RST) { 13592 freemsg(mp); 13593 switch (tcp->tcp_state) { 13594 case TCPS_SYN_RCVD: 13595 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13596 break; 13597 case TCPS_ESTABLISHED: 13598 case TCPS_FIN_WAIT_1: 13599 case TCPS_FIN_WAIT_2: 13600 case TCPS_CLOSE_WAIT: 13601 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13602 break; 13603 case TCPS_CLOSING: 13604 case TCPS_LAST_ACK: 13605 (void) tcp_clean_death(tcp, 0, 16); 13606 break; 13607 default: 13608 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13609 (void) tcp_clean_death(tcp, ENXIO, 17); 13610 break; 13611 } 13612 return; 13613 } 13614 if (flags & TH_SYN) { 13615 /* 13616 * See RFC 793, Page 71 13617 * 13618 * The seq number must be in the window as it should 13619 * be "fixed" above. If it is outside window, it should 13620 * be already rejected. Note that we allow seg_seq to be 13621 * rnxt + rwnd because we want to accept 0 window probe. 13622 */ 13623 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13624 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13625 freemsg(mp); 13626 /* 13627 * If the ACK flag is not set, just use our snxt as the 13628 * seq number of the RST segment. 13629 */ 13630 if (!(flags & TH_ACK)) { 13631 seg_ack = tcp->tcp_snxt; 13632 } 13633 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13634 TH_RST|TH_ACK); 13635 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13636 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13637 return; 13638 } 13639 /* 13640 * urp could be -1 when the urp field in the packet is 0 13641 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13642 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13643 */ 13644 if (flags & TH_URG && urp >= 0) { 13645 if (!tcp->tcp_urp_last_valid || 13646 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13647 if (IPCL_IS_NONSTR(connp)) { 13648 if (!TCP_IS_DETACHED(tcp)) { 13649 (*connp->conn_upcalls->su_signal_oob) 13650 (connp->conn_upper_handle, urp); 13651 } 13652 } else { 13653 /* 13654 * If we haven't generated the signal yet for 13655 * this urgent pointer value, do it now. Also, 13656 * send up a zero-length M_DATA indicating 13657 * whether or not this is the mark. The latter 13658 * is not needed when a T_EXDATA_IND is sent up. 13659 * However, if there are allocation failures 13660 * this code relies on the sender retransmitting 13661 * and the socket code for determining the mark 13662 * should not block waiting for the peer to 13663 * transmit. Thus, for simplicity we always 13664 * send up the mark indication. 13665 */ 13666 mp1 = allocb(0, BPRI_MED); 13667 if (mp1 == NULL) { 13668 freemsg(mp); 13669 return; 13670 } 13671 if (!TCP_IS_DETACHED(tcp) && 13672 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13673 SIGURG)) { 13674 /* Try again on the rexmit. */ 13675 freemsg(mp1); 13676 freemsg(mp); 13677 return; 13678 } 13679 /* 13680 * Mark with NOTMARKNEXT for now. 13681 * The code below will change this to MARKNEXT 13682 * if we are at the mark. 13683 * 13684 * If there are allocation failures (e.g. in 13685 * dupmsg below) the next time tcp_rput_data 13686 * sees the urgent segment it will send up the 13687 * MSGMARKNEXT message. 13688 */ 13689 mp1->b_flag |= MSGNOTMARKNEXT; 13690 freemsg(tcp->tcp_urp_mark_mp); 13691 tcp->tcp_urp_mark_mp = mp1; 13692 flags |= TH_SEND_URP_MARK; 13693 #ifdef DEBUG 13694 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13695 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13696 "last %x, %s", 13697 seg_seq, urp, tcp->tcp_urp_last, 13698 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13699 #endif /* DEBUG */ 13700 } 13701 tcp->tcp_urp_last_valid = B_TRUE; 13702 tcp->tcp_urp_last = urp + seg_seq; 13703 } else if (tcp->tcp_urp_mark_mp != NULL) { 13704 /* 13705 * An allocation failure prevented the previous 13706 * tcp_rput_data from sending up the allocated 13707 * MSG*MARKNEXT message - send it up this time 13708 * around. 13709 */ 13710 flags |= TH_SEND_URP_MARK; 13711 } 13712 13713 /* 13714 * If the urgent byte is in this segment, make sure that it is 13715 * all by itself. This makes it much easier to deal with the 13716 * possibility of an allocation failure on the T_exdata_ind. 13717 * Note that seg_len is the number of bytes in the segment, and 13718 * urp is the offset into the segment of the urgent byte. 13719 * urp < seg_len means that the urgent byte is in this segment. 13720 */ 13721 if (urp < seg_len) { 13722 if (seg_len != 1) { 13723 uint32_t tmp_rnxt; 13724 /* 13725 * Break it up and feed it back in. 13726 * Re-attach the IP header. 13727 */ 13728 mp->b_rptr = iphdr; 13729 if (urp > 0) { 13730 /* 13731 * There is stuff before the urgent 13732 * byte. 13733 */ 13734 mp1 = dupmsg(mp); 13735 if (!mp1) { 13736 /* 13737 * Trim from urgent byte on. 13738 * The rest will come back. 13739 */ 13740 (void) adjmsg(mp, 13741 urp - seg_len); 13742 tcp_rput_data(connp, 13743 mp, NULL); 13744 return; 13745 } 13746 (void) adjmsg(mp1, urp - seg_len); 13747 /* Feed this piece back in. */ 13748 tmp_rnxt = tcp->tcp_rnxt; 13749 tcp_rput_data(connp, mp1, NULL); 13750 /* 13751 * If the data passed back in was not 13752 * processed (ie: bad ACK) sending 13753 * the remainder back in will cause a 13754 * loop. In this case, drop the 13755 * packet and let the sender try 13756 * sending a good packet. 13757 */ 13758 if (tmp_rnxt == tcp->tcp_rnxt) { 13759 freemsg(mp); 13760 return; 13761 } 13762 } 13763 if (urp != seg_len - 1) { 13764 uint32_t tmp_rnxt; 13765 /* 13766 * There is stuff after the urgent 13767 * byte. 13768 */ 13769 mp1 = dupmsg(mp); 13770 if (!mp1) { 13771 /* 13772 * Trim everything beyond the 13773 * urgent byte. The rest will 13774 * come back. 13775 */ 13776 (void) adjmsg(mp, 13777 urp + 1 - seg_len); 13778 tcp_rput_data(connp, 13779 mp, NULL); 13780 return; 13781 } 13782 (void) adjmsg(mp1, urp + 1 - seg_len); 13783 tmp_rnxt = tcp->tcp_rnxt; 13784 tcp_rput_data(connp, mp1, NULL); 13785 /* 13786 * If the data passed back in was not 13787 * processed (ie: bad ACK) sending 13788 * the remainder back in will cause a 13789 * loop. In this case, drop the 13790 * packet and let the sender try 13791 * sending a good packet. 13792 */ 13793 if (tmp_rnxt == tcp->tcp_rnxt) { 13794 freemsg(mp); 13795 return; 13796 } 13797 } 13798 tcp_rput_data(connp, mp, NULL); 13799 return; 13800 } 13801 /* 13802 * This segment contains only the urgent byte. We 13803 * have to allocate the T_exdata_ind, if we can. 13804 */ 13805 if (IPCL_IS_NONSTR(connp)) { 13806 int error; 13807 13808 (*connp->conn_upcalls->su_recv) 13809 (connp->conn_upper_handle, mp, seg_len, 13810 MSG_OOB, &error, NULL); 13811 /* 13812 * We should never be in middle of a 13813 * fallback, the squeue guarantees that. 13814 */ 13815 ASSERT(error != EOPNOTSUPP); 13816 mp = NULL; 13817 goto update_ack; 13818 } else if (!tcp->tcp_urp_mp) { 13819 struct T_exdata_ind *tei; 13820 mp1 = allocb(sizeof (struct T_exdata_ind), 13821 BPRI_MED); 13822 if (!mp1) { 13823 /* 13824 * Sigh... It'll be back. 13825 * Generate any MSG*MARK message now. 13826 */ 13827 freemsg(mp); 13828 seg_len = 0; 13829 if (flags & TH_SEND_URP_MARK) { 13830 13831 13832 ASSERT(tcp->tcp_urp_mark_mp); 13833 tcp->tcp_urp_mark_mp->b_flag &= 13834 ~MSGNOTMARKNEXT; 13835 tcp->tcp_urp_mark_mp->b_flag |= 13836 MSGMARKNEXT; 13837 } 13838 goto ack_check; 13839 } 13840 mp1->b_datap->db_type = M_PROTO; 13841 tei = (struct T_exdata_ind *)mp1->b_rptr; 13842 tei->PRIM_type = T_EXDATA_IND; 13843 tei->MORE_flag = 0; 13844 mp1->b_wptr = (uchar_t *)&tei[1]; 13845 tcp->tcp_urp_mp = mp1; 13846 #ifdef DEBUG 13847 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13848 "tcp_rput: allocated exdata_ind %s", 13849 tcp_display(tcp, NULL, 13850 DISP_PORT_ONLY)); 13851 #endif /* DEBUG */ 13852 /* 13853 * There is no need to send a separate MSG*MARK 13854 * message since the T_EXDATA_IND will be sent 13855 * now. 13856 */ 13857 flags &= ~TH_SEND_URP_MARK; 13858 freemsg(tcp->tcp_urp_mark_mp); 13859 tcp->tcp_urp_mark_mp = NULL; 13860 } 13861 /* 13862 * Now we are all set. On the next putnext upstream, 13863 * tcp_urp_mp will be non-NULL and will get prepended 13864 * to what has to be this piece containing the urgent 13865 * byte. If for any reason we abort this segment below, 13866 * if it comes back, we will have this ready, or it 13867 * will get blown off in close. 13868 */ 13869 } else if (urp == seg_len) { 13870 /* 13871 * The urgent byte is the next byte after this sequence 13872 * number. If there is data it is marked with 13873 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13874 * since it is not needed. Otherwise, if the code 13875 * above just allocated a zero-length tcp_urp_mark_mp 13876 * message, that message is tagged with MSGMARKNEXT. 13877 * Sending up these MSGMARKNEXT messages makes 13878 * SIOCATMARK work correctly even though 13879 * the T_EXDATA_IND will not be sent up until the 13880 * urgent byte arrives. 13881 */ 13882 if (seg_len != 0) { 13883 flags |= TH_MARKNEXT_NEEDED; 13884 freemsg(tcp->tcp_urp_mark_mp); 13885 tcp->tcp_urp_mark_mp = NULL; 13886 flags &= ~TH_SEND_URP_MARK; 13887 } else if (tcp->tcp_urp_mark_mp != NULL) { 13888 flags |= TH_SEND_URP_MARK; 13889 tcp->tcp_urp_mark_mp->b_flag &= 13890 ~MSGNOTMARKNEXT; 13891 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13892 } 13893 #ifdef DEBUG 13894 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13895 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13896 seg_len, flags, 13897 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13898 #endif /* DEBUG */ 13899 } 13900 #ifdef DEBUG 13901 else { 13902 /* Data left until we hit mark */ 13903 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13904 "tcp_rput: URP %d bytes left, %s", 13905 urp - seg_len, tcp_display(tcp, NULL, 13906 DISP_PORT_ONLY)); 13907 } 13908 #endif /* DEBUG */ 13909 } 13910 13911 process_ack: 13912 if (!(flags & TH_ACK)) { 13913 freemsg(mp); 13914 goto xmit_check; 13915 } 13916 } 13917 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13918 13919 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13920 tcp->tcp_ip_forward_progress = B_TRUE; 13921 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13922 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13923 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13924 /* 3-way handshake complete - pass up the T_CONN_IND */ 13925 tcp_t *listener = tcp->tcp_listener; 13926 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13927 13928 tcp->tcp_tconnind_started = B_TRUE; 13929 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13930 /* 13931 * We are here means eager is fine but it can 13932 * get a TH_RST at any point between now and till 13933 * accept completes and disappear. We need to 13934 * ensure that reference to eager is valid after 13935 * we get out of eager's perimeter. So we do 13936 * an extra refhold. 13937 */ 13938 CONN_INC_REF(connp); 13939 13940 /* 13941 * The listener also exists because of the refhold 13942 * done in tcp_conn_request. Its possible that it 13943 * might have closed. We will check that once we 13944 * get inside listeners context. 13945 */ 13946 CONN_INC_REF(listener->tcp_connp); 13947 if (listener->tcp_connp->conn_sqp == 13948 connp->conn_sqp) { 13949 /* 13950 * We optimize by not calling an SQUEUE_ENTER 13951 * on the listener since we know that the 13952 * listener and eager squeues are the same. 13953 * We are able to make this check safely only 13954 * because neither the eager nor the listener 13955 * can change its squeue. Only an active connect 13956 * can change its squeue 13957 */ 13958 tcp_send_conn_ind(listener->tcp_connp, mp, 13959 listener->tcp_connp->conn_sqp); 13960 CONN_DEC_REF(listener->tcp_connp); 13961 } else if (!tcp->tcp_loopback) { 13962 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 13963 mp, tcp_send_conn_ind, 13964 listener->tcp_connp, SQ_FILL, 13965 SQTAG_TCP_CONN_IND); 13966 } else { 13967 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, 13968 mp, tcp_send_conn_ind, 13969 listener->tcp_connp, SQ_PROCESS, 13970 SQTAG_TCP_CONN_IND); 13971 } 13972 } 13973 13974 /* 13975 * We are seeing the final ack in the three way 13976 * hand shake of a active open'ed connection 13977 * so we must send up a T_CONN_CON 13978 * 13979 * tcp_sendmsg() checks tcp_state without entering 13980 * the squeue so tcp_state should be updated before 13981 * sending up connection confirmation. 13982 */ 13983 tcp->tcp_state = TCPS_ESTABLISHED; 13984 if (tcp->tcp_active_open) { 13985 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13986 freemsg(mp); 13987 tcp->tcp_state = TCPS_SYN_RCVD; 13988 return; 13989 } 13990 /* 13991 * Don't fuse the loopback endpoints for 13992 * simultaneous active opens. 13993 */ 13994 if (tcp->tcp_loopback) { 13995 TCP_STAT(tcps, tcp_fusion_unfusable); 13996 tcp->tcp_unfusable = B_TRUE; 13997 } 13998 } 13999 14000 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14001 bytes_acked--; 14002 /* SYN was acked - making progress */ 14003 if (tcp->tcp_ipversion == IPV6_VERSION) 14004 tcp->tcp_ip_forward_progress = B_TRUE; 14005 14006 /* 14007 * If SYN was retransmitted, need to reset all 14008 * retransmission info as this segment will be 14009 * treated as a dup ACK. 14010 */ 14011 if (tcp->tcp_rexmit) { 14012 tcp->tcp_rexmit = B_FALSE; 14013 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14014 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14015 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14016 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14017 tcp->tcp_ms_we_have_waited = 0; 14018 tcp->tcp_cwnd = mss; 14019 } 14020 14021 /* 14022 * We set the send window to zero here. 14023 * This is needed if there is data to be 14024 * processed already on the queue. 14025 * Later (at swnd_update label), the 14026 * "new_swnd > tcp_swnd" condition is satisfied 14027 * the XMIT_NEEDED flag is set in the current 14028 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14029 * called if there is already data on queue in 14030 * this state. 14031 */ 14032 tcp->tcp_swnd = 0; 14033 14034 if (new_swnd > tcp->tcp_max_swnd) 14035 tcp->tcp_max_swnd = new_swnd; 14036 tcp->tcp_swl1 = seg_seq; 14037 tcp->tcp_swl2 = seg_ack; 14038 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14039 14040 /* Fuse when both sides are in ESTABLISHED state */ 14041 if (tcp->tcp_loopback && do_tcp_fusion) 14042 tcp_fuse(tcp, iphdr, tcph); 14043 14044 } 14045 /* This code follows 4.4BSD-Lite2 mostly. */ 14046 if (bytes_acked < 0) 14047 goto est; 14048 14049 /* 14050 * If TCP is ECN capable and the congestion experience bit is 14051 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14052 * done once per window (or more loosely, per RTT). 14053 */ 14054 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14055 tcp->tcp_cwr = B_FALSE; 14056 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14057 if (!tcp->tcp_cwr) { 14058 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14059 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14060 tcp->tcp_cwnd = npkt * mss; 14061 /* 14062 * If the cwnd is 0, use the timer to clock out 14063 * new segments. This is required by the ECN spec. 14064 */ 14065 if (npkt == 0) { 14066 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14067 /* 14068 * This makes sure that when the ACK comes 14069 * back, we will increase tcp_cwnd by 1 MSS. 14070 */ 14071 tcp->tcp_cwnd_cnt = 0; 14072 } 14073 tcp->tcp_cwr = B_TRUE; 14074 /* 14075 * This marks the end of the current window of in 14076 * flight data. That is why we don't use 14077 * tcp_suna + tcp_swnd. Only data in flight can 14078 * provide ECN info. 14079 */ 14080 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14081 tcp->tcp_ecn_cwr_sent = B_FALSE; 14082 } 14083 } 14084 14085 mp1 = tcp->tcp_xmit_head; 14086 if (bytes_acked == 0) { 14087 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14088 int dupack_cnt; 14089 14090 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14091 /* 14092 * Fast retransmit. When we have seen exactly three 14093 * identical ACKs while we have unacked data 14094 * outstanding we take it as a hint that our peer 14095 * dropped something. 14096 * 14097 * If TCP is retransmitting, don't do fast retransmit. 14098 */ 14099 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14100 ! tcp->tcp_rexmit) { 14101 /* Do Limited Transmit */ 14102 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14103 tcps->tcps_dupack_fast_retransmit) { 14104 /* 14105 * RFC 3042 14106 * 14107 * What we need to do is temporarily 14108 * increase tcp_cwnd so that new 14109 * data can be sent if it is allowed 14110 * by the receive window (tcp_rwnd). 14111 * tcp_wput_data() will take care of 14112 * the rest. 14113 * 14114 * If the connection is SACK capable, 14115 * only do limited xmit when there 14116 * is SACK info. 14117 * 14118 * Note how tcp_cwnd is incremented. 14119 * The first dup ACK will increase 14120 * it by 1 MSS. The second dup ACK 14121 * will increase it by 2 MSS. This 14122 * means that only 1 new segment will 14123 * be sent for each dup ACK. 14124 */ 14125 if (tcp->tcp_unsent > 0 && 14126 (!tcp->tcp_snd_sack_ok || 14127 (tcp->tcp_snd_sack_ok && 14128 tcp->tcp_notsack_list != NULL))) { 14129 tcp->tcp_cwnd += mss << 14130 (tcp->tcp_dupack_cnt - 1); 14131 flags |= TH_LIMIT_XMIT; 14132 } 14133 } else if (dupack_cnt == 14134 tcps->tcps_dupack_fast_retransmit) { 14135 14136 /* 14137 * If we have reduced tcp_ssthresh 14138 * because of ECN, do not reduce it again 14139 * unless it is already one window of data 14140 * away. After one window of data, tcp_cwr 14141 * should then be cleared. Note that 14142 * for non ECN capable connection, tcp_cwr 14143 * should always be false. 14144 * 14145 * Adjust cwnd since the duplicate 14146 * ack indicates that a packet was 14147 * dropped (due to congestion.) 14148 */ 14149 if (!tcp->tcp_cwr) { 14150 npkt = ((tcp->tcp_snxt - 14151 tcp->tcp_suna) >> 1) / mss; 14152 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14153 mss; 14154 tcp->tcp_cwnd = (npkt + 14155 tcp->tcp_dupack_cnt) * mss; 14156 } 14157 if (tcp->tcp_ecn_ok) { 14158 tcp->tcp_cwr = B_TRUE; 14159 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14160 tcp->tcp_ecn_cwr_sent = B_FALSE; 14161 } 14162 14163 /* 14164 * We do Hoe's algorithm. Refer to her 14165 * paper "Improving the Start-up Behavior 14166 * of a Congestion Control Scheme for TCP," 14167 * appeared in SIGCOMM'96. 14168 * 14169 * Save highest seq no we have sent so far. 14170 * Be careful about the invisible FIN byte. 14171 */ 14172 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14173 (tcp->tcp_unsent == 0)) { 14174 tcp->tcp_rexmit_max = tcp->tcp_fss; 14175 } else { 14176 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14177 } 14178 14179 /* 14180 * Do not allow bursty traffic during. 14181 * fast recovery. Refer to Fall and Floyd's 14182 * paper "Simulation-based Comparisons of 14183 * Tahoe, Reno and SACK TCP" (in CCR?) 14184 * This is a best current practise. 14185 */ 14186 tcp->tcp_snd_burst = TCP_CWND_SS; 14187 14188 /* 14189 * For SACK: 14190 * Calculate tcp_pipe, which is the 14191 * estimated number of bytes in 14192 * network. 14193 * 14194 * tcp_fack is the highest sack'ed seq num 14195 * TCP has received. 14196 * 14197 * tcp_pipe is explained in the above quoted 14198 * Fall and Floyd's paper. tcp_fack is 14199 * explained in Mathis and Mahdavi's 14200 * "Forward Acknowledgment: Refining TCP 14201 * Congestion Control" in SIGCOMM '96. 14202 */ 14203 if (tcp->tcp_snd_sack_ok) { 14204 ASSERT(tcp->tcp_sack_info != NULL); 14205 if (tcp->tcp_notsack_list != NULL) { 14206 tcp->tcp_pipe = tcp->tcp_snxt - 14207 tcp->tcp_fack; 14208 tcp->tcp_sack_snxt = seg_ack; 14209 flags |= TH_NEED_SACK_REXMIT; 14210 } else { 14211 /* 14212 * Always initialize tcp_pipe 14213 * even though we don't have 14214 * any SACK info. If later 14215 * we get SACK info and 14216 * tcp_pipe is not initialized, 14217 * funny things will happen. 14218 */ 14219 tcp->tcp_pipe = 14220 tcp->tcp_cwnd_ssthresh; 14221 } 14222 } else { 14223 flags |= TH_REXMIT_NEEDED; 14224 } /* tcp_snd_sack_ok */ 14225 14226 } else { 14227 /* 14228 * Here we perform congestion 14229 * avoidance, but NOT slow start. 14230 * This is known as the Fast 14231 * Recovery Algorithm. 14232 */ 14233 if (tcp->tcp_snd_sack_ok && 14234 tcp->tcp_notsack_list != NULL) { 14235 flags |= TH_NEED_SACK_REXMIT; 14236 tcp->tcp_pipe -= mss; 14237 if (tcp->tcp_pipe < 0) 14238 tcp->tcp_pipe = 0; 14239 } else { 14240 /* 14241 * We know that one more packet has 14242 * left the pipe thus we can update 14243 * cwnd. 14244 */ 14245 cwnd = tcp->tcp_cwnd + mss; 14246 if (cwnd > tcp->tcp_cwnd_max) 14247 cwnd = tcp->tcp_cwnd_max; 14248 tcp->tcp_cwnd = cwnd; 14249 if (tcp->tcp_unsent > 0) 14250 flags |= TH_XMIT_NEEDED; 14251 } 14252 } 14253 } 14254 } else if (tcp->tcp_zero_win_probe) { 14255 /* 14256 * If the window has opened, need to arrange 14257 * to send additional data. 14258 */ 14259 if (new_swnd != 0) { 14260 /* tcp_suna != tcp_snxt */ 14261 /* Packet contains a window update */ 14262 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14263 tcp->tcp_zero_win_probe = 0; 14264 tcp->tcp_timer_backoff = 0; 14265 tcp->tcp_ms_we_have_waited = 0; 14266 14267 /* 14268 * Transmit starting with tcp_suna since 14269 * the one byte probe is not ack'ed. 14270 * If TCP has sent more than one identical 14271 * probe, tcp_rexmit will be set. That means 14272 * tcp_ss_rexmit() will send out the one 14273 * byte along with new data. Otherwise, 14274 * fake the retransmission. 14275 */ 14276 flags |= TH_XMIT_NEEDED; 14277 if (!tcp->tcp_rexmit) { 14278 tcp->tcp_rexmit = B_TRUE; 14279 tcp->tcp_dupack_cnt = 0; 14280 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14281 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14282 } 14283 } 14284 } 14285 goto swnd_update; 14286 } 14287 14288 /* 14289 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14290 * If the ACK value acks something that we have not yet sent, it might 14291 * be an old duplicate segment. Send an ACK to re-synchronize the 14292 * other side. 14293 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14294 * state is handled above, so we can always just drop the segment and 14295 * send an ACK here. 14296 * 14297 * Should we send ACKs in response to ACK only segments? 14298 */ 14299 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14300 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14301 /* drop the received segment */ 14302 freemsg(mp); 14303 14304 /* 14305 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14306 * greater than 0, check if the number of such 14307 * bogus ACks is greater than that count. If yes, 14308 * don't send back any ACK. This prevents TCP from 14309 * getting into an ACK storm if somehow an attacker 14310 * successfully spoofs an acceptable segment to our 14311 * peer. 14312 */ 14313 if (tcp_drop_ack_unsent_cnt > 0 && 14314 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14315 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14316 return; 14317 } 14318 mp = tcp_ack_mp(tcp); 14319 if (mp != NULL) { 14320 BUMP_LOCAL(tcp->tcp_obsegs); 14321 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14322 tcp_send_data(tcp, tcp->tcp_wq, mp); 14323 } 14324 return; 14325 } 14326 14327 /* 14328 * TCP gets a new ACK, update the notsack'ed list to delete those 14329 * blocks that are covered by this ACK. 14330 */ 14331 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14332 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14333 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14334 } 14335 14336 /* 14337 * If we got an ACK after fast retransmit, check to see 14338 * if it is a partial ACK. If it is not and the congestion 14339 * window was inflated to account for the other side's 14340 * cached packets, retract it. If it is, do Hoe's algorithm. 14341 */ 14342 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14343 ASSERT(tcp->tcp_rexmit == B_FALSE); 14344 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14345 tcp->tcp_dupack_cnt = 0; 14346 /* 14347 * Restore the orig tcp_cwnd_ssthresh after 14348 * fast retransmit phase. 14349 */ 14350 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14351 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14352 } 14353 tcp->tcp_rexmit_max = seg_ack; 14354 tcp->tcp_cwnd_cnt = 0; 14355 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14356 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14357 14358 /* 14359 * Remove all notsack info to avoid confusion with 14360 * the next fast retrasnmit/recovery phase. 14361 */ 14362 if (tcp->tcp_snd_sack_ok && 14363 tcp->tcp_notsack_list != NULL) { 14364 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14365 } 14366 } else { 14367 if (tcp->tcp_snd_sack_ok && 14368 tcp->tcp_notsack_list != NULL) { 14369 flags |= TH_NEED_SACK_REXMIT; 14370 tcp->tcp_pipe -= mss; 14371 if (tcp->tcp_pipe < 0) 14372 tcp->tcp_pipe = 0; 14373 } else { 14374 /* 14375 * Hoe's algorithm: 14376 * 14377 * Retransmit the unack'ed segment and 14378 * restart fast recovery. Note that we 14379 * need to scale back tcp_cwnd to the 14380 * original value when we started fast 14381 * recovery. This is to prevent overly 14382 * aggressive behaviour in sending new 14383 * segments. 14384 */ 14385 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14386 tcps->tcps_dupack_fast_retransmit * mss; 14387 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14388 flags |= TH_REXMIT_NEEDED; 14389 } 14390 } 14391 } else { 14392 tcp->tcp_dupack_cnt = 0; 14393 if (tcp->tcp_rexmit) { 14394 /* 14395 * TCP is retranmitting. If the ACK ack's all 14396 * outstanding data, update tcp_rexmit_max and 14397 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14398 * to the correct value. 14399 * 14400 * Note that SEQ_LEQ() is used. This is to avoid 14401 * unnecessary fast retransmit caused by dup ACKs 14402 * received when TCP does slow start retransmission 14403 * after a time out. During this phase, TCP may 14404 * send out segments which are already received. 14405 * This causes dup ACKs to be sent back. 14406 */ 14407 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14408 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14409 tcp->tcp_rexmit_nxt = seg_ack; 14410 } 14411 if (seg_ack != tcp->tcp_rexmit_max) { 14412 flags |= TH_XMIT_NEEDED; 14413 } 14414 } else { 14415 tcp->tcp_rexmit = B_FALSE; 14416 tcp->tcp_xmit_zc_clean = B_FALSE; 14417 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14418 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14419 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14420 } 14421 tcp->tcp_ms_we_have_waited = 0; 14422 } 14423 } 14424 14425 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14426 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14427 tcp->tcp_suna = seg_ack; 14428 if (tcp->tcp_zero_win_probe != 0) { 14429 tcp->tcp_zero_win_probe = 0; 14430 tcp->tcp_timer_backoff = 0; 14431 } 14432 14433 /* 14434 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14435 * Note that it cannot be the SYN being ack'ed. The code flow 14436 * will not reach here. 14437 */ 14438 if (mp1 == NULL) { 14439 goto fin_acked; 14440 } 14441 14442 /* 14443 * Update the congestion window. 14444 * 14445 * If TCP is not ECN capable or TCP is ECN capable but the 14446 * congestion experience bit is not set, increase the tcp_cwnd as 14447 * usual. 14448 */ 14449 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14450 cwnd = tcp->tcp_cwnd; 14451 add = mss; 14452 14453 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14454 /* 14455 * This is to prevent an increase of less than 1 MSS of 14456 * tcp_cwnd. With partial increase, tcp_wput_data() 14457 * may send out tinygrams in order to preserve mblk 14458 * boundaries. 14459 * 14460 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14461 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14462 * increased by 1 MSS for every RTTs. 14463 */ 14464 if (tcp->tcp_cwnd_cnt <= 0) { 14465 tcp->tcp_cwnd_cnt = cwnd + add; 14466 } else { 14467 tcp->tcp_cwnd_cnt -= add; 14468 add = 0; 14469 } 14470 } 14471 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14472 } 14473 14474 /* See if the latest urgent data has been acknowledged */ 14475 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14476 SEQ_GT(seg_ack, tcp->tcp_urg)) 14477 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14478 14479 /* Can we update the RTT estimates? */ 14480 if (tcp->tcp_snd_ts_ok) { 14481 /* Ignore zero timestamp echo-reply. */ 14482 if (tcpopt.tcp_opt_ts_ecr != 0) { 14483 tcp_set_rto(tcp, (int32_t)lbolt - 14484 (int32_t)tcpopt.tcp_opt_ts_ecr); 14485 } 14486 14487 /* If needed, restart the timer. */ 14488 if (tcp->tcp_set_timer == 1) { 14489 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14490 tcp->tcp_set_timer = 0; 14491 } 14492 /* 14493 * Update tcp_csuna in case the other side stops sending 14494 * us timestamps. 14495 */ 14496 tcp->tcp_csuna = tcp->tcp_snxt; 14497 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14498 /* 14499 * An ACK sequence we haven't seen before, so get the RTT 14500 * and update the RTO. But first check if the timestamp is 14501 * valid to use. 14502 */ 14503 if ((mp1->b_next != NULL) && 14504 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14505 tcp_set_rto(tcp, (int32_t)lbolt - 14506 (int32_t)(intptr_t)mp1->b_prev); 14507 else 14508 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14509 14510 /* Remeber the last sequence to be ACKed */ 14511 tcp->tcp_csuna = seg_ack; 14512 if (tcp->tcp_set_timer == 1) { 14513 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14514 tcp->tcp_set_timer = 0; 14515 } 14516 } else { 14517 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14518 } 14519 14520 /* Eat acknowledged bytes off the xmit queue. */ 14521 for (;;) { 14522 mblk_t *mp2; 14523 uchar_t *wptr; 14524 14525 wptr = mp1->b_wptr; 14526 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14527 bytes_acked -= (int)(wptr - mp1->b_rptr); 14528 if (bytes_acked < 0) { 14529 mp1->b_rptr = wptr + bytes_acked; 14530 /* 14531 * Set a new timestamp if all the bytes timed by the 14532 * old timestamp have been ack'ed. 14533 */ 14534 if (SEQ_GT(seg_ack, 14535 (uint32_t)(uintptr_t)(mp1->b_next))) { 14536 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14537 mp1->b_next = NULL; 14538 } 14539 break; 14540 } 14541 mp1->b_next = NULL; 14542 mp1->b_prev = NULL; 14543 mp2 = mp1; 14544 mp1 = mp1->b_cont; 14545 14546 /* 14547 * This notification is required for some zero-copy 14548 * clients to maintain a copy semantic. After the data 14549 * is ack'ed, client is safe to modify or reuse the buffer. 14550 */ 14551 if (tcp->tcp_snd_zcopy_aware && 14552 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14553 tcp_zcopy_notify(tcp); 14554 freeb(mp2); 14555 if (bytes_acked == 0) { 14556 if (mp1 == NULL) { 14557 /* Everything is ack'ed, clear the tail. */ 14558 tcp->tcp_xmit_tail = NULL; 14559 /* 14560 * Cancel the timer unless we are still 14561 * waiting for an ACK for the FIN packet. 14562 */ 14563 if (tcp->tcp_timer_tid != 0 && 14564 tcp->tcp_snxt == tcp->tcp_suna) { 14565 (void) TCP_TIMER_CANCEL(tcp, 14566 tcp->tcp_timer_tid); 14567 tcp->tcp_timer_tid = 0; 14568 } 14569 goto pre_swnd_update; 14570 } 14571 if (mp2 != tcp->tcp_xmit_tail) 14572 break; 14573 tcp->tcp_xmit_tail = mp1; 14574 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14575 (uintptr_t)INT_MAX); 14576 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14577 mp1->b_rptr); 14578 break; 14579 } 14580 if (mp1 == NULL) { 14581 /* 14582 * More was acked but there is nothing more 14583 * outstanding. This means that the FIN was 14584 * just acked or that we're talking to a clown. 14585 */ 14586 fin_acked: 14587 ASSERT(tcp->tcp_fin_sent); 14588 tcp->tcp_xmit_tail = NULL; 14589 if (tcp->tcp_fin_sent) { 14590 /* FIN was acked - making progress */ 14591 if (tcp->tcp_ipversion == IPV6_VERSION && 14592 !tcp->tcp_fin_acked) 14593 tcp->tcp_ip_forward_progress = B_TRUE; 14594 tcp->tcp_fin_acked = B_TRUE; 14595 if (tcp->tcp_linger_tid != 0 && 14596 TCP_TIMER_CANCEL(tcp, 14597 tcp->tcp_linger_tid) >= 0) { 14598 tcp_stop_lingering(tcp); 14599 freemsg(mp); 14600 mp = NULL; 14601 } 14602 } else { 14603 /* 14604 * We should never get here because 14605 * we have already checked that the 14606 * number of bytes ack'ed should be 14607 * smaller than or equal to what we 14608 * have sent so far (it is the 14609 * acceptability check of the ACK). 14610 * We can only get here if the send 14611 * queue is corrupted. 14612 * 14613 * Terminate the connection and 14614 * panic the system. It is better 14615 * for us to panic instead of 14616 * continuing to avoid other disaster. 14617 */ 14618 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14619 tcp->tcp_rnxt, TH_RST|TH_ACK); 14620 panic("Memory corruption " 14621 "detected for connection %s.", 14622 tcp_display(tcp, NULL, 14623 DISP_ADDR_AND_PORT)); 14624 /*NOTREACHED*/ 14625 } 14626 goto pre_swnd_update; 14627 } 14628 ASSERT(mp2 != tcp->tcp_xmit_tail); 14629 } 14630 if (tcp->tcp_unsent) { 14631 flags |= TH_XMIT_NEEDED; 14632 } 14633 pre_swnd_update: 14634 tcp->tcp_xmit_head = mp1; 14635 swnd_update: 14636 /* 14637 * The following check is different from most other implementations. 14638 * For bi-directional transfer, when segments are dropped, the 14639 * "normal" check will not accept a window update in those 14640 * retransmitted segemnts. Failing to do that, TCP may send out 14641 * segments which are outside receiver's window. As TCP accepts 14642 * the ack in those retransmitted segments, if the window update in 14643 * the same segment is not accepted, TCP will incorrectly calculates 14644 * that it can send more segments. This can create a deadlock 14645 * with the receiver if its window becomes zero. 14646 */ 14647 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14648 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14649 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14650 /* 14651 * The criteria for update is: 14652 * 14653 * 1. the segment acknowledges some data. Or 14654 * 2. the segment is new, i.e. it has a higher seq num. Or 14655 * 3. the segment is not old and the advertised window is 14656 * larger than the previous advertised window. 14657 */ 14658 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14659 flags |= TH_XMIT_NEEDED; 14660 tcp->tcp_swnd = new_swnd; 14661 if (new_swnd > tcp->tcp_max_swnd) 14662 tcp->tcp_max_swnd = new_swnd; 14663 tcp->tcp_swl1 = seg_seq; 14664 tcp->tcp_swl2 = seg_ack; 14665 } 14666 est: 14667 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14668 14669 switch (tcp->tcp_state) { 14670 case TCPS_FIN_WAIT_1: 14671 if (tcp->tcp_fin_acked) { 14672 tcp->tcp_state = TCPS_FIN_WAIT_2; 14673 /* 14674 * We implement the non-standard BSD/SunOS 14675 * FIN_WAIT_2 flushing algorithm. 14676 * If there is no user attached to this 14677 * TCP endpoint, then this TCP struct 14678 * could hang around forever in FIN_WAIT_2 14679 * state if the peer forgets to send us 14680 * a FIN. To prevent this, we wait only 14681 * 2*MSL (a convenient time value) for 14682 * the FIN to arrive. If it doesn't show up, 14683 * we flush the TCP endpoint. This algorithm, 14684 * though a violation of RFC-793, has worked 14685 * for over 10 years in BSD systems. 14686 * Note: SunOS 4.x waits 675 seconds before 14687 * flushing the FIN_WAIT_2 connection. 14688 */ 14689 TCP_TIMER_RESTART(tcp, 14690 tcps->tcps_fin_wait_2_flush_interval); 14691 } 14692 break; 14693 case TCPS_FIN_WAIT_2: 14694 break; /* Shutdown hook? */ 14695 case TCPS_LAST_ACK: 14696 freemsg(mp); 14697 if (tcp->tcp_fin_acked) { 14698 (void) tcp_clean_death(tcp, 0, 19); 14699 return; 14700 } 14701 goto xmit_check; 14702 case TCPS_CLOSING: 14703 if (tcp->tcp_fin_acked) { 14704 tcp->tcp_state = TCPS_TIME_WAIT; 14705 /* 14706 * Unconditionally clear the exclusive binding 14707 * bit so this TIME-WAIT connection won't 14708 * interfere with new ones. 14709 */ 14710 tcp->tcp_exclbind = 0; 14711 if (!TCP_IS_DETACHED(tcp)) { 14712 TCP_TIMER_RESTART(tcp, 14713 tcps->tcps_time_wait_interval); 14714 } else { 14715 tcp_time_wait_append(tcp); 14716 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14717 } 14718 } 14719 /*FALLTHRU*/ 14720 case TCPS_CLOSE_WAIT: 14721 freemsg(mp); 14722 goto xmit_check; 14723 default: 14724 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14725 break; 14726 } 14727 } 14728 if (flags & TH_FIN) { 14729 /* Make sure we ack the fin */ 14730 flags |= TH_ACK_NEEDED; 14731 if (!tcp->tcp_fin_rcvd) { 14732 tcp->tcp_fin_rcvd = B_TRUE; 14733 tcp->tcp_rnxt++; 14734 tcph = tcp->tcp_tcph; 14735 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14736 14737 /* 14738 * Generate the ordrel_ind at the end unless we 14739 * are an eager guy. 14740 * In the eager case tcp_rsrv will do this when run 14741 * after tcp_accept is done. 14742 */ 14743 if (tcp->tcp_listener == NULL && 14744 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14745 flags |= TH_ORDREL_NEEDED; 14746 switch (tcp->tcp_state) { 14747 case TCPS_SYN_RCVD: 14748 case TCPS_ESTABLISHED: 14749 tcp->tcp_state = TCPS_CLOSE_WAIT; 14750 /* Keepalive? */ 14751 break; 14752 case TCPS_FIN_WAIT_1: 14753 if (!tcp->tcp_fin_acked) { 14754 tcp->tcp_state = TCPS_CLOSING; 14755 break; 14756 } 14757 /* FALLTHRU */ 14758 case TCPS_FIN_WAIT_2: 14759 tcp->tcp_state = TCPS_TIME_WAIT; 14760 /* 14761 * Unconditionally clear the exclusive binding 14762 * bit so this TIME-WAIT connection won't 14763 * interfere with new ones. 14764 */ 14765 tcp->tcp_exclbind = 0; 14766 if (!TCP_IS_DETACHED(tcp)) { 14767 TCP_TIMER_RESTART(tcp, 14768 tcps->tcps_time_wait_interval); 14769 } else { 14770 tcp_time_wait_append(tcp); 14771 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14772 } 14773 if (seg_len) { 14774 /* 14775 * implies data piggybacked on FIN. 14776 * break to handle data. 14777 */ 14778 break; 14779 } 14780 freemsg(mp); 14781 goto ack_check; 14782 } 14783 } 14784 } 14785 if (mp == NULL) 14786 goto xmit_check; 14787 if (seg_len == 0) { 14788 freemsg(mp); 14789 goto xmit_check; 14790 } 14791 if (mp->b_rptr == mp->b_wptr) { 14792 /* 14793 * The header has been consumed, so we remove the 14794 * zero-length mblk here. 14795 */ 14796 mp1 = mp; 14797 mp = mp->b_cont; 14798 freeb(mp1); 14799 } 14800 update_ack: 14801 tcph = tcp->tcp_tcph; 14802 tcp->tcp_rack_cnt++; 14803 { 14804 uint32_t cur_max; 14805 14806 cur_max = tcp->tcp_rack_cur_max; 14807 if (tcp->tcp_rack_cnt >= cur_max) { 14808 /* 14809 * We have more unacked data than we should - send 14810 * an ACK now. 14811 */ 14812 flags |= TH_ACK_NEEDED; 14813 cur_max++; 14814 if (cur_max > tcp->tcp_rack_abs_max) 14815 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14816 else 14817 tcp->tcp_rack_cur_max = cur_max; 14818 } else if (TCP_IS_DETACHED(tcp)) { 14819 /* We don't have an ACK timer for detached TCP. */ 14820 flags |= TH_ACK_NEEDED; 14821 } else if (seg_len < mss) { 14822 /* 14823 * If we get a segment that is less than an mss, and we 14824 * already have unacknowledged data, and the amount 14825 * unacknowledged is not a multiple of mss, then we 14826 * better generate an ACK now. Otherwise, this may be 14827 * the tail piece of a transaction, and we would rather 14828 * wait for the response. 14829 */ 14830 uint32_t udif; 14831 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14832 (uintptr_t)INT_MAX); 14833 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14834 if (udif && (udif % mss)) 14835 flags |= TH_ACK_NEEDED; 14836 else 14837 flags |= TH_ACK_TIMER_NEEDED; 14838 } else { 14839 /* Start delayed ack timer */ 14840 flags |= TH_ACK_TIMER_NEEDED; 14841 } 14842 } 14843 tcp->tcp_rnxt += seg_len; 14844 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14845 14846 if (mp == NULL) 14847 goto xmit_check; 14848 14849 /* Update SACK list */ 14850 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14851 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14852 &(tcp->tcp_num_sack_blk)); 14853 } 14854 14855 if (tcp->tcp_urp_mp) { 14856 tcp->tcp_urp_mp->b_cont = mp; 14857 mp = tcp->tcp_urp_mp; 14858 tcp->tcp_urp_mp = NULL; 14859 /* Ready for a new signal. */ 14860 tcp->tcp_urp_last_valid = B_FALSE; 14861 #ifdef DEBUG 14862 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14863 "tcp_rput: sending exdata_ind %s", 14864 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14865 #endif /* DEBUG */ 14866 } 14867 14868 /* 14869 * Check for ancillary data changes compared to last segment. 14870 */ 14871 if (tcp->tcp_ipv6_recvancillary != 0) { 14872 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14873 ASSERT(mp != NULL); 14874 } 14875 14876 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14877 /* 14878 * Side queue inbound data until the accept happens. 14879 * tcp_accept/tcp_rput drains this when the accept happens. 14880 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14881 * T_EXDATA_IND) it is queued on b_next. 14882 * XXX Make urgent data use this. Requires: 14883 * Removing tcp_listener check for TH_URG 14884 * Making M_PCPROTO and MARK messages skip the eager case 14885 */ 14886 14887 if (tcp->tcp_kssl_pending) { 14888 DTRACE_PROBE1(kssl_mblk__ksslinput_pending, 14889 mblk_t *, mp); 14890 tcp_kssl_input(tcp, mp); 14891 } else { 14892 tcp_rcv_enqueue(tcp, mp, seg_len); 14893 } 14894 } else { 14895 if (mp->b_datap->db_type != M_DATA || 14896 (flags & TH_MARKNEXT_NEEDED)) { 14897 if (IPCL_IS_NONSTR(connp)) { 14898 int error; 14899 14900 if ((*connp->conn_upcalls->su_recv) 14901 (connp->conn_upper_handle, mp, 14902 seg_len, 0, &error, NULL) <= 0) { 14903 /* 14904 * We should never be in middle of a 14905 * fallback, the squeue guarantees that. 14906 */ 14907 ASSERT(error != EOPNOTSUPP); 14908 if (error == ENOSPC) 14909 tcp->tcp_rwnd -= seg_len; 14910 } 14911 } else if (tcp->tcp_rcv_list != NULL) { 14912 flags |= tcp_rcv_drain(tcp); 14913 } 14914 ASSERT(tcp->tcp_rcv_list == NULL || 14915 tcp->tcp_fused_sigurg); 14916 14917 if (flags & TH_MARKNEXT_NEEDED) { 14918 #ifdef DEBUG 14919 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14920 "tcp_rput: sending MSGMARKNEXT %s", 14921 tcp_display(tcp, NULL, 14922 DISP_PORT_ONLY)); 14923 #endif /* DEBUG */ 14924 mp->b_flag |= MSGMARKNEXT; 14925 flags &= ~TH_MARKNEXT_NEEDED; 14926 } 14927 14928 /* Does this need SSL processing first? */ 14929 if ((tcp->tcp_kssl_ctx != NULL) && 14930 (DB_TYPE(mp) == M_DATA)) { 14931 DTRACE_PROBE1(kssl_mblk__ksslinput_data1, 14932 mblk_t *, mp); 14933 tcp_kssl_input(tcp, mp); 14934 } else if (!IPCL_IS_NONSTR(connp)) { 14935 /* Already handled non-STREAMS case. */ 14936 putnext(tcp->tcp_rq, mp); 14937 if (!canputnext(tcp->tcp_rq)) 14938 tcp->tcp_rwnd -= seg_len; 14939 } 14940 } else if ((tcp->tcp_kssl_ctx != NULL) && 14941 (DB_TYPE(mp) == M_DATA)) { 14942 /* Does this need SSL processing first? */ 14943 DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp); 14944 tcp_kssl_input(tcp, mp); 14945 } else if (IPCL_IS_NONSTR(connp)) { 14946 /* Non-STREAMS socket */ 14947 boolean_t push = flags & (TH_PUSH|TH_FIN); 14948 int error; 14949 14950 if ((*connp->conn_upcalls->su_recv)( 14951 connp->conn_upper_handle, 14952 mp, seg_len, 0, &error, &push) <= 0) { 14953 /* 14954 * We should never be in middle of a 14955 * fallback, the squeue guarantees that. 14956 */ 14957 ASSERT(error != EOPNOTSUPP); 14958 if (error == ENOSPC) 14959 tcp->tcp_rwnd -= seg_len; 14960 } else if (push) { 14961 /* 14962 * PUSH bit set and sockfs is not 14963 * flow controlled 14964 */ 14965 flags |= tcp_rwnd_reopen(tcp); 14966 } 14967 } else if ((flags & (TH_PUSH|TH_FIN)) || 14968 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) { 14969 if (tcp->tcp_rcv_list != NULL) { 14970 /* 14971 * Enqueue the new segment first and then 14972 * call tcp_rcv_drain() to send all data 14973 * up. The other way to do this is to 14974 * send all queued data up and then call 14975 * putnext() to send the new segment up. 14976 * This way can remove the else part later 14977 * on. 14978 * 14979 * We don't do this to avoid one more call to 14980 * canputnext() as tcp_rcv_drain() needs to 14981 * call canputnext(). 14982 */ 14983 tcp_rcv_enqueue(tcp, mp, seg_len); 14984 flags |= tcp_rcv_drain(tcp); 14985 } else { 14986 putnext(tcp->tcp_rq, mp); 14987 if (!canputnext(tcp->tcp_rq)) 14988 tcp->tcp_rwnd -= seg_len; 14989 } 14990 } else { 14991 /* 14992 * Enqueue all packets when processing an mblk 14993 * from the co queue and also enqueue normal packets. 14994 */ 14995 tcp_rcv_enqueue(tcp, mp, seg_len); 14996 } 14997 /* 14998 * Make sure the timer is running if we have data waiting 14999 * for a push bit. This provides resiliency against 15000 * implementations that do not correctly generate push bits. 15001 */ 15002 if (!IPCL_IS_NONSTR(connp) && tcp->tcp_rcv_list != NULL && 15003 tcp->tcp_push_tid == 0) { 15004 /* 15005 * The connection may be closed at this point, so don't 15006 * do anything for a detached tcp. 15007 */ 15008 if (!TCP_IS_DETACHED(tcp)) 15009 tcp->tcp_push_tid = TCP_TIMER(tcp, 15010 tcp_push_timer, 15011 MSEC_TO_TICK( 15012 tcps->tcps_push_timer_interval)); 15013 } 15014 } 15015 15016 xmit_check: 15017 /* Is there anything left to do? */ 15018 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15019 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15020 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15021 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15022 goto done; 15023 15024 /* Any transmit work to do and a non-zero window? */ 15025 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15026 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15027 if (flags & TH_REXMIT_NEEDED) { 15028 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15029 15030 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15031 if (snd_size > mss) 15032 snd_size = mss; 15033 if (snd_size > tcp->tcp_swnd) 15034 snd_size = tcp->tcp_swnd; 15035 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15036 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15037 B_TRUE); 15038 15039 if (mp1 != NULL) { 15040 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15041 tcp->tcp_csuna = tcp->tcp_snxt; 15042 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15043 UPDATE_MIB(&tcps->tcps_mib, 15044 tcpRetransBytes, snd_size); 15045 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15046 } 15047 } 15048 if (flags & TH_NEED_SACK_REXMIT) { 15049 tcp_sack_rxmit(tcp, &flags); 15050 } 15051 /* 15052 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15053 * out new segment. Note that tcp_rexmit should not be 15054 * set, otherwise TH_LIMIT_XMIT should not be set. 15055 */ 15056 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15057 if (!tcp->tcp_rexmit) { 15058 tcp_wput_data(tcp, NULL, B_FALSE); 15059 } else { 15060 tcp_ss_rexmit(tcp); 15061 } 15062 } 15063 /* 15064 * Adjust tcp_cwnd back to normal value after sending 15065 * new data segments. 15066 */ 15067 if (flags & TH_LIMIT_XMIT) { 15068 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15069 /* 15070 * This will restart the timer. Restarting the 15071 * timer is used to avoid a timeout before the 15072 * limited transmitted segment's ACK gets back. 15073 */ 15074 if (tcp->tcp_xmit_head != NULL) 15075 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15076 } 15077 15078 /* Anything more to do? */ 15079 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15080 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15081 goto done; 15082 } 15083 ack_check: 15084 if (flags & TH_SEND_URP_MARK) { 15085 ASSERT(tcp->tcp_urp_mark_mp); 15086 ASSERT(!IPCL_IS_NONSTR(connp)); 15087 /* 15088 * Send up any queued data and then send the mark message 15089 */ 15090 if (tcp->tcp_rcv_list != NULL) { 15091 flags |= tcp_rcv_drain(tcp); 15092 15093 } 15094 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15095 mp1 = tcp->tcp_urp_mark_mp; 15096 tcp->tcp_urp_mark_mp = NULL; 15097 putnext(tcp->tcp_rq, mp1); 15098 #ifdef DEBUG 15099 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15100 "tcp_rput: sending zero-length %s %s", 15101 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15102 "MSGNOTMARKNEXT"), 15103 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15104 #endif /* DEBUG */ 15105 flags &= ~TH_SEND_URP_MARK; 15106 } 15107 if (flags & TH_ACK_NEEDED) { 15108 /* 15109 * Time to send an ack for some reason. 15110 */ 15111 mp1 = tcp_ack_mp(tcp); 15112 15113 if (mp1 != NULL) { 15114 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15115 BUMP_LOCAL(tcp->tcp_obsegs); 15116 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15117 } 15118 if (tcp->tcp_ack_tid != 0) { 15119 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15120 tcp->tcp_ack_tid = 0; 15121 } 15122 } 15123 if (flags & TH_ACK_TIMER_NEEDED) { 15124 /* 15125 * Arrange for deferred ACK or push wait timeout. 15126 * Start timer if it is not already running. 15127 */ 15128 if (tcp->tcp_ack_tid == 0) { 15129 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15130 MSEC_TO_TICK(tcp->tcp_localnet ? 15131 (clock_t)tcps->tcps_local_dack_interval : 15132 (clock_t)tcps->tcps_deferred_ack_interval)); 15133 } 15134 } 15135 if (flags & TH_ORDREL_NEEDED) { 15136 /* 15137 * Send up the ordrel_ind unless we are an eager guy. 15138 * In the eager case tcp_rsrv will do this when run 15139 * after tcp_accept is done. 15140 */ 15141 ASSERT(tcp->tcp_listener == NULL); 15142 15143 if (IPCL_IS_NONSTR(connp)) { 15144 ASSERT(tcp->tcp_ordrel_mp == NULL); 15145 tcp->tcp_ordrel_done = B_TRUE; 15146 (*connp->conn_upcalls->su_opctl) 15147 (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0); 15148 goto done; 15149 } 15150 15151 if (tcp->tcp_rcv_list != NULL) { 15152 /* 15153 * Push any mblk(s) enqueued from co processing. 15154 */ 15155 flags |= tcp_rcv_drain(tcp); 15156 } 15157 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15158 15159 mp1 = tcp->tcp_ordrel_mp; 15160 tcp->tcp_ordrel_mp = NULL; 15161 tcp->tcp_ordrel_done = B_TRUE; 15162 putnext(tcp->tcp_rq, mp1); 15163 } 15164 done: 15165 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15166 } 15167 15168 /* 15169 * This function does PAWS protection check. Returns B_TRUE if the 15170 * segment passes the PAWS test, else returns B_FALSE. 15171 */ 15172 boolean_t 15173 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15174 { 15175 uint8_t flags; 15176 int options; 15177 uint8_t *up; 15178 15179 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15180 /* 15181 * If timestamp option is aligned nicely, get values inline, 15182 * otherwise call general routine to parse. Only do that 15183 * if timestamp is the only option. 15184 */ 15185 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15186 TCPOPT_REAL_TS_LEN && 15187 OK_32PTR((up = ((uint8_t *)tcph) + 15188 TCP_MIN_HEADER_LENGTH)) && 15189 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15190 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15191 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15192 15193 options = TCP_OPT_TSTAMP_PRESENT; 15194 } else { 15195 if (tcp->tcp_snd_sack_ok) { 15196 tcpoptp->tcp = tcp; 15197 } else { 15198 tcpoptp->tcp = NULL; 15199 } 15200 options = tcp_parse_options(tcph, tcpoptp); 15201 } 15202 15203 if (options & TCP_OPT_TSTAMP_PRESENT) { 15204 /* 15205 * Do PAWS per RFC 1323 section 4.2. Accept RST 15206 * regardless of the timestamp, page 18 RFC 1323.bis. 15207 */ 15208 if ((flags & TH_RST) == 0 && 15209 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15210 tcp->tcp_ts_recent)) { 15211 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15212 PAWS_TIMEOUT)) { 15213 /* This segment is not acceptable. */ 15214 return (B_FALSE); 15215 } else { 15216 /* 15217 * Connection has been idle for 15218 * too long. Reset the timestamp 15219 * and assume the segment is valid. 15220 */ 15221 tcp->tcp_ts_recent = 15222 tcpoptp->tcp_opt_ts_val; 15223 } 15224 } 15225 } else { 15226 /* 15227 * If we don't get a timestamp on every packet, we 15228 * figure we can't really trust 'em, so we stop sending 15229 * and parsing them. 15230 */ 15231 tcp->tcp_snd_ts_ok = B_FALSE; 15232 15233 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15234 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15235 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15236 /* 15237 * Adjust the tcp_mss accordingly. We also need to 15238 * adjust tcp_cwnd here in accordance with the new mss. 15239 * But we avoid doing a slow start here so as to not 15240 * to lose on the transfer rate built up so far. 15241 */ 15242 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15243 if (tcp->tcp_snd_sack_ok) { 15244 ASSERT(tcp->tcp_sack_info != NULL); 15245 tcp->tcp_max_sack_blk = 4; 15246 } 15247 } 15248 return (B_TRUE); 15249 } 15250 15251 /* 15252 * Attach ancillary data to a received TCP segments for the 15253 * ancillary pieces requested by the application that are 15254 * different than they were in the previous data segment. 15255 * 15256 * Save the "current" values once memory allocation is ok so that 15257 * when memory allocation fails we can just wait for the next data segment. 15258 */ 15259 static mblk_t * 15260 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15261 { 15262 struct T_optdata_ind *todi; 15263 int optlen; 15264 uchar_t *optptr; 15265 struct T_opthdr *toh; 15266 uint_t addflag; /* Which pieces to add */ 15267 mblk_t *mp1; 15268 15269 optlen = 0; 15270 addflag = 0; 15271 /* If app asked for pktinfo and the index has changed ... */ 15272 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15273 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15274 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15275 optlen += sizeof (struct T_opthdr) + 15276 sizeof (struct in6_pktinfo); 15277 addflag |= TCP_IPV6_RECVPKTINFO; 15278 } 15279 /* If app asked for hoplimit and it has changed ... */ 15280 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15281 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15282 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15283 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15284 addflag |= TCP_IPV6_RECVHOPLIMIT; 15285 } 15286 /* If app asked for tclass and it has changed ... */ 15287 if ((ipp->ipp_fields & IPPF_TCLASS) && 15288 ipp->ipp_tclass != tcp->tcp_recvtclass && 15289 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15290 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15291 addflag |= TCP_IPV6_RECVTCLASS; 15292 } 15293 /* 15294 * If app asked for hopbyhop headers and it has changed ... 15295 * For security labels, note that (1) security labels can't change on 15296 * a connected socket at all, (2) we're connected to at most one peer, 15297 * (3) if anything changes, then it must be some other extra option. 15298 */ 15299 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15300 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15301 (ipp->ipp_fields & IPPF_HOPOPTS), 15302 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15303 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15304 tcp->tcp_label_len; 15305 addflag |= TCP_IPV6_RECVHOPOPTS; 15306 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15307 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15308 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15309 return (mp); 15310 } 15311 /* If app asked for dst headers before routing headers ... */ 15312 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15313 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15314 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15315 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15316 optlen += sizeof (struct T_opthdr) + 15317 ipp->ipp_rtdstoptslen; 15318 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15319 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15320 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15321 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15322 return (mp); 15323 } 15324 /* If app asked for routing headers and it has changed ... */ 15325 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15326 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15327 (ipp->ipp_fields & IPPF_RTHDR), 15328 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15329 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15330 addflag |= TCP_IPV6_RECVRTHDR; 15331 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15332 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15333 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15334 return (mp); 15335 } 15336 /* If app asked for dest headers and it has changed ... */ 15337 if ((tcp->tcp_ipv6_recvancillary & 15338 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15339 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15340 (ipp->ipp_fields & IPPF_DSTOPTS), 15341 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15342 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15343 addflag |= TCP_IPV6_RECVDSTOPTS; 15344 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15345 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15346 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15347 return (mp); 15348 } 15349 15350 if (optlen == 0) { 15351 /* Nothing to add */ 15352 return (mp); 15353 } 15354 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15355 if (mp1 == NULL) { 15356 /* 15357 * Defer sending ancillary data until the next TCP segment 15358 * arrives. 15359 */ 15360 return (mp); 15361 } 15362 mp1->b_cont = mp; 15363 mp = mp1; 15364 mp->b_wptr += sizeof (*todi) + optlen; 15365 mp->b_datap->db_type = M_PROTO; 15366 todi = (struct T_optdata_ind *)mp->b_rptr; 15367 todi->PRIM_type = T_OPTDATA_IND; 15368 todi->DATA_flag = 1; /* MORE data */ 15369 todi->OPT_length = optlen; 15370 todi->OPT_offset = sizeof (*todi); 15371 optptr = (uchar_t *)&todi[1]; 15372 /* 15373 * If app asked for pktinfo and the index has changed ... 15374 * Note that the local address never changes for the connection. 15375 */ 15376 if (addflag & TCP_IPV6_RECVPKTINFO) { 15377 struct in6_pktinfo *pkti; 15378 15379 toh = (struct T_opthdr *)optptr; 15380 toh->level = IPPROTO_IPV6; 15381 toh->name = IPV6_PKTINFO; 15382 toh->len = sizeof (*toh) + sizeof (*pkti); 15383 toh->status = 0; 15384 optptr += sizeof (*toh); 15385 pkti = (struct in6_pktinfo *)optptr; 15386 if (tcp->tcp_ipversion == IPV6_VERSION) 15387 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15388 else 15389 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15390 &pkti->ipi6_addr); 15391 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15392 optptr += sizeof (*pkti); 15393 ASSERT(OK_32PTR(optptr)); 15394 /* Save as "last" value */ 15395 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15396 } 15397 /* If app asked for hoplimit and it has changed ... */ 15398 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15399 toh = (struct T_opthdr *)optptr; 15400 toh->level = IPPROTO_IPV6; 15401 toh->name = IPV6_HOPLIMIT; 15402 toh->len = sizeof (*toh) + sizeof (uint_t); 15403 toh->status = 0; 15404 optptr += sizeof (*toh); 15405 *(uint_t *)optptr = ipp->ipp_hoplimit; 15406 optptr += sizeof (uint_t); 15407 ASSERT(OK_32PTR(optptr)); 15408 /* Save as "last" value */ 15409 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15410 } 15411 /* If app asked for tclass and it has changed ... */ 15412 if (addflag & TCP_IPV6_RECVTCLASS) { 15413 toh = (struct T_opthdr *)optptr; 15414 toh->level = IPPROTO_IPV6; 15415 toh->name = IPV6_TCLASS; 15416 toh->len = sizeof (*toh) + sizeof (uint_t); 15417 toh->status = 0; 15418 optptr += sizeof (*toh); 15419 *(uint_t *)optptr = ipp->ipp_tclass; 15420 optptr += sizeof (uint_t); 15421 ASSERT(OK_32PTR(optptr)); 15422 /* Save as "last" value */ 15423 tcp->tcp_recvtclass = ipp->ipp_tclass; 15424 } 15425 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15426 toh = (struct T_opthdr *)optptr; 15427 toh->level = IPPROTO_IPV6; 15428 toh->name = IPV6_HOPOPTS; 15429 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15430 tcp->tcp_label_len; 15431 toh->status = 0; 15432 optptr += sizeof (*toh); 15433 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15434 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15435 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15436 ASSERT(OK_32PTR(optptr)); 15437 /* Save as last value */ 15438 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15439 (ipp->ipp_fields & IPPF_HOPOPTS), 15440 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15441 } 15442 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15443 toh = (struct T_opthdr *)optptr; 15444 toh->level = IPPROTO_IPV6; 15445 toh->name = IPV6_RTHDRDSTOPTS; 15446 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15447 toh->status = 0; 15448 optptr += sizeof (*toh); 15449 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15450 optptr += ipp->ipp_rtdstoptslen; 15451 ASSERT(OK_32PTR(optptr)); 15452 /* Save as last value */ 15453 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15454 &tcp->tcp_rtdstoptslen, 15455 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15456 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15457 } 15458 if (addflag & TCP_IPV6_RECVRTHDR) { 15459 toh = (struct T_opthdr *)optptr; 15460 toh->level = IPPROTO_IPV6; 15461 toh->name = IPV6_RTHDR; 15462 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15463 toh->status = 0; 15464 optptr += sizeof (*toh); 15465 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15466 optptr += ipp->ipp_rthdrlen; 15467 ASSERT(OK_32PTR(optptr)); 15468 /* Save as last value */ 15469 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15470 (ipp->ipp_fields & IPPF_RTHDR), 15471 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15472 } 15473 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15474 toh = (struct T_opthdr *)optptr; 15475 toh->level = IPPROTO_IPV6; 15476 toh->name = IPV6_DSTOPTS; 15477 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15478 toh->status = 0; 15479 optptr += sizeof (*toh); 15480 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15481 optptr += ipp->ipp_dstoptslen; 15482 ASSERT(OK_32PTR(optptr)); 15483 /* Save as last value */ 15484 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15485 (ipp->ipp_fields & IPPF_DSTOPTS), 15486 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15487 } 15488 ASSERT(optptr == mp->b_wptr); 15489 return (mp); 15490 } 15491 15492 /* 15493 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15494 * messages. 15495 */ 15496 void 15497 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15498 { 15499 uchar_t *rptr = mp->b_rptr; 15500 queue_t *q = tcp->tcp_rq; 15501 struct T_error_ack *tea; 15502 15503 switch (mp->b_datap->db_type) { 15504 case M_PROTO: 15505 case M_PCPROTO: 15506 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15507 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15508 break; 15509 tea = (struct T_error_ack *)rptr; 15510 ASSERT(tea->PRIM_type != T_BIND_ACK); 15511 ASSERT(tea->ERROR_prim != O_T_BIND_REQ && 15512 tea->ERROR_prim != T_BIND_REQ); 15513 switch (tea->PRIM_type) { 15514 case T_ERROR_ACK: 15515 if (tcp->tcp_debug) { 15516 (void) strlog(TCP_MOD_ID, 0, 1, 15517 SL_TRACE|SL_ERROR, 15518 "tcp_rput_other: case T_ERROR_ACK, " 15519 "ERROR_prim == %d", 15520 tea->ERROR_prim); 15521 } 15522 switch (tea->ERROR_prim) { 15523 case T_SVR4_OPTMGMT_REQ: 15524 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15525 /* T_OPTMGMT_REQ generated by TCP */ 15526 printf("T_SVR4_OPTMGMT_REQ failed " 15527 "%d/%d - dropped (cnt %d)\n", 15528 tea->TLI_error, tea->UNIX_error, 15529 tcp->tcp_drop_opt_ack_cnt); 15530 freemsg(mp); 15531 tcp->tcp_drop_opt_ack_cnt--; 15532 return; 15533 } 15534 break; 15535 } 15536 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15537 tcp->tcp_drop_opt_ack_cnt > 0) { 15538 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15539 "- dropped (cnt %d)\n", 15540 tea->TLI_error, tea->UNIX_error, 15541 tcp->tcp_drop_opt_ack_cnt); 15542 freemsg(mp); 15543 tcp->tcp_drop_opt_ack_cnt--; 15544 return; 15545 } 15546 break; 15547 case T_OPTMGMT_ACK: 15548 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15549 /* T_OPTMGMT_REQ generated by TCP */ 15550 freemsg(mp); 15551 tcp->tcp_drop_opt_ack_cnt--; 15552 return; 15553 } 15554 break; 15555 default: 15556 ASSERT(tea->ERROR_prim != T_UNBIND_REQ); 15557 break; 15558 } 15559 break; 15560 case M_FLUSH: 15561 if (*rptr & FLUSHR) 15562 flushq(q, FLUSHDATA); 15563 break; 15564 default: 15565 /* M_CTL will be directly sent to tcp_icmp_error() */ 15566 ASSERT(DB_TYPE(mp) != M_CTL); 15567 break; 15568 } 15569 /* 15570 * Make sure we set this bit before sending the ACK for 15571 * bind. Otherwise accept could possibly run and free 15572 * this tcp struct. 15573 */ 15574 ASSERT(q != NULL); 15575 putnext(q, mp); 15576 } 15577 15578 /* ARGSUSED */ 15579 static void 15580 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15581 { 15582 conn_t *connp = (conn_t *)arg; 15583 tcp_t *tcp = connp->conn_tcp; 15584 queue_t *q = tcp->tcp_rq; 15585 tcp_stack_t *tcps = tcp->tcp_tcps; 15586 15587 ASSERT(!IPCL_IS_NONSTR(connp)); 15588 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15589 tcp->tcp_rsrv_mp = mp; 15590 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15591 15592 TCP_STAT(tcps, tcp_rsrv_calls); 15593 15594 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15595 return; 15596 } 15597 15598 if (tcp->tcp_fused) { 15599 tcp_fuse_backenable(tcp); 15600 return; 15601 } 15602 15603 if (canputnext(q)) { 15604 /* Not flow-controlled, open rwnd */ 15605 tcp->tcp_rwnd = q->q_hiwat; 15606 15607 /* 15608 * Send back a window update immediately if TCP is above 15609 * ESTABLISHED state and the increase of the rcv window 15610 * that the other side knows is at least 1 MSS after flow 15611 * control is lifted. 15612 */ 15613 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15614 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 15615 tcp_xmit_ctl(NULL, tcp, 15616 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15617 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15618 } 15619 } 15620 } 15621 15622 /* 15623 * The read side service routine is called mostly when we get back-enabled as a 15624 * result of flow control relief. Since we don't actually queue anything in 15625 * TCP, we have no data to send out of here. What we do is clear the receive 15626 * window, and send out a window update. 15627 */ 15628 static void 15629 tcp_rsrv(queue_t *q) 15630 { 15631 conn_t *connp = Q_TO_CONN(q); 15632 tcp_t *tcp = connp->conn_tcp; 15633 mblk_t *mp; 15634 tcp_stack_t *tcps = tcp->tcp_tcps; 15635 15636 /* No code does a putq on the read side */ 15637 ASSERT(q->q_first == NULL); 15638 15639 /* Nothing to do for the default queue */ 15640 if (q == tcps->tcps_g_q) { 15641 return; 15642 } 15643 15644 /* 15645 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already 15646 * been run. So just return. 15647 */ 15648 mutex_enter(&tcp->tcp_rsrv_mp_lock); 15649 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 15650 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15651 return; 15652 } 15653 tcp->tcp_rsrv_mp = NULL; 15654 mutex_exit(&tcp->tcp_rsrv_mp_lock); 15655 15656 CONN_INC_REF(connp); 15657 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15658 SQ_PROCESS, SQTAG_TCP_RSRV); 15659 } 15660 15661 /* 15662 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15663 * We do not allow the receive window to shrink. After setting rwnd, 15664 * set the flow control hiwat of the stream. 15665 * 15666 * This function is called in 2 cases: 15667 * 15668 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15669 * connection (passive open) and in tcp_rput_data() for active connect. 15670 * This is called after tcp_mss_set() when the desired MSS value is known. 15671 * This makes sure that our window size is a mutiple of the other side's 15672 * MSS. 15673 * 2) Handling SO_RCVBUF option. 15674 * 15675 * It is ASSUMED that the requested size is a multiple of the current MSS. 15676 * 15677 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15678 * user requests so. 15679 */ 15680 static int 15681 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15682 { 15683 uint32_t mss = tcp->tcp_mss; 15684 uint32_t old_max_rwnd; 15685 uint32_t max_transmittable_rwnd; 15686 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15687 tcp_stack_t *tcps = tcp->tcp_tcps; 15688 15689 if (tcp->tcp_fused) { 15690 size_t sth_hiwat; 15691 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15692 15693 ASSERT(peer_tcp != NULL); 15694 /* 15695 * Record the stream head's high water mark for 15696 * this endpoint; this is used for flow-control 15697 * purposes in tcp_fuse_output(). 15698 */ 15699 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15700 if (!tcp_detached) { 15701 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15702 sth_hiwat); 15703 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 15704 conn_t *connp = tcp->tcp_connp; 15705 struct sock_proto_props sopp; 15706 15707 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 15708 sopp.sopp_rcvthresh = sth_hiwat >> 3; 15709 15710 (*connp->conn_upcalls->su_set_proto_props) 15711 (connp->conn_upper_handle, &sopp); 15712 } 15713 } 15714 15715 /* 15716 * In the fusion case, the maxpsz stream head value of 15717 * our peer is set according to its send buffer size 15718 * and our receive buffer size; since the latter may 15719 * have changed we need to update the peer's maxpsz. 15720 */ 15721 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15722 return (rwnd); 15723 } 15724 15725 if (tcp_detached) { 15726 old_max_rwnd = tcp->tcp_rwnd; 15727 } else { 15728 old_max_rwnd = tcp->tcp_recv_hiwater; 15729 } 15730 15731 /* 15732 * Insist on a receive window that is at least 15733 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15734 * funny TCP interactions of Nagle algorithm, SWS avoidance 15735 * and delayed acknowledgement. 15736 */ 15737 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 15738 15739 /* 15740 * If window size info has already been exchanged, TCP should not 15741 * shrink the window. Shrinking window is doable if done carefully. 15742 * We may add that support later. But so far there is not a real 15743 * need to do that. 15744 */ 15745 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15746 /* MSS may have changed, do a round up again. */ 15747 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15748 } 15749 15750 /* 15751 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15752 * can be applied even before the window scale option is decided. 15753 */ 15754 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15755 if (rwnd > max_transmittable_rwnd) { 15756 rwnd = max_transmittable_rwnd - 15757 (max_transmittable_rwnd % mss); 15758 if (rwnd < mss) 15759 rwnd = max_transmittable_rwnd; 15760 /* 15761 * If we're over the limit we may have to back down tcp_rwnd. 15762 * The increment below won't work for us. So we set all three 15763 * here and the increment below will have no effect. 15764 */ 15765 tcp->tcp_rwnd = old_max_rwnd = rwnd; 15766 } 15767 if (tcp->tcp_localnet) { 15768 tcp->tcp_rack_abs_max = 15769 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 15770 } else { 15771 /* 15772 * For a remote host on a different subnet (through a router), 15773 * we ack every other packet to be conforming to RFC1122. 15774 * tcp_deferred_acks_max is default to 2. 15775 */ 15776 tcp->tcp_rack_abs_max = 15777 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 15778 } 15779 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 15780 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 15781 else 15782 tcp->tcp_rack_cur_max = 0; 15783 /* 15784 * Increment the current rwnd by the amount the maximum grew (we 15785 * can not overwrite it since we might be in the middle of a 15786 * connection.) 15787 */ 15788 tcp->tcp_rwnd += rwnd - old_max_rwnd; 15789 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 15790 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 15791 tcp->tcp_cwnd_max = rwnd; 15792 15793 if (tcp_detached) 15794 return (rwnd); 15795 /* 15796 * We set the maximum receive window into rq->q_hiwat if it is 15797 * a STREAMS socket. 15798 * This is not actually used for flow control. 15799 */ 15800 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) 15801 tcp->tcp_rq->q_hiwat = rwnd; 15802 tcp->tcp_recv_hiwater = rwnd; 15803 /* 15804 * Set the STREAM head high water mark. This doesn't have to be 15805 * here, since we are simply using default values, but we would 15806 * prefer to choose these values algorithmically, with a likely 15807 * relationship to rwnd. 15808 */ 15809 (void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp, 15810 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 15811 return (rwnd); 15812 } 15813 15814 /* 15815 * Return SNMP stuff in buffer in mpdata. 15816 */ 15817 mblk_t * 15818 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 15819 { 15820 mblk_t *mpdata; 15821 mblk_t *mp_conn_ctl = NULL; 15822 mblk_t *mp_conn_tail; 15823 mblk_t *mp_attr_ctl = NULL; 15824 mblk_t *mp_attr_tail; 15825 mblk_t *mp6_conn_ctl = NULL; 15826 mblk_t *mp6_conn_tail; 15827 mblk_t *mp6_attr_ctl = NULL; 15828 mblk_t *mp6_attr_tail; 15829 struct opthdr *optp; 15830 mib2_tcpConnEntry_t tce; 15831 mib2_tcp6ConnEntry_t tce6; 15832 mib2_transportMLPEntry_t mlp; 15833 connf_t *connfp; 15834 int i; 15835 boolean_t ispriv; 15836 zoneid_t zoneid; 15837 int v4_conn_idx; 15838 int v6_conn_idx; 15839 conn_t *connp = Q_TO_CONN(q); 15840 tcp_stack_t *tcps; 15841 ip_stack_t *ipst; 15842 mblk_t *mp2ctl; 15843 15844 /* 15845 * make a copy of the original message 15846 */ 15847 mp2ctl = copymsg(mpctl); 15848 15849 if (mpctl == NULL || 15850 (mpdata = mpctl->b_cont) == NULL || 15851 (mp_conn_ctl = copymsg(mpctl)) == NULL || 15852 (mp_attr_ctl = copymsg(mpctl)) == NULL || 15853 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 15854 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 15855 freemsg(mp_conn_ctl); 15856 freemsg(mp_attr_ctl); 15857 freemsg(mp6_conn_ctl); 15858 freemsg(mp6_attr_ctl); 15859 freemsg(mpctl); 15860 freemsg(mp2ctl); 15861 return (NULL); 15862 } 15863 15864 ipst = connp->conn_netstack->netstack_ip; 15865 tcps = connp->conn_netstack->netstack_tcp; 15866 15867 /* build table of connections -- need count in fixed part */ 15868 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 15869 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 15870 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 15871 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 15872 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 15873 15874 ispriv = 15875 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 15876 zoneid = Q_TO_CONN(q)->conn_zoneid; 15877 15878 v4_conn_idx = v6_conn_idx = 0; 15879 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 15880 15881 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 15882 ipst = tcps->tcps_netstack->netstack_ip; 15883 15884 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 15885 15886 connp = NULL; 15887 15888 while ((connp = 15889 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 15890 tcp_t *tcp; 15891 boolean_t needattr; 15892 15893 if (connp->conn_zoneid != zoneid) 15894 continue; /* not in this zone */ 15895 15896 tcp = connp->conn_tcp; 15897 UPDATE_MIB(&tcps->tcps_mib, 15898 tcpHCInSegs, tcp->tcp_ibsegs); 15899 tcp->tcp_ibsegs = 0; 15900 UPDATE_MIB(&tcps->tcps_mib, 15901 tcpHCOutSegs, tcp->tcp_obsegs); 15902 tcp->tcp_obsegs = 0; 15903 15904 tce6.tcp6ConnState = tce.tcpConnState = 15905 tcp_snmp_state(tcp); 15906 if (tce.tcpConnState == MIB2_TCP_established || 15907 tce.tcpConnState == MIB2_TCP_closeWait) 15908 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 15909 15910 needattr = B_FALSE; 15911 bzero(&mlp, sizeof (mlp)); 15912 if (connp->conn_mlp_type != mlptSingle) { 15913 if (connp->conn_mlp_type == mlptShared || 15914 connp->conn_mlp_type == mlptBoth) 15915 mlp.tme_flags |= MIB2_TMEF_SHARED; 15916 if (connp->conn_mlp_type == mlptPrivate || 15917 connp->conn_mlp_type == mlptBoth) 15918 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 15919 needattr = B_TRUE; 15920 } 15921 if (connp->conn_anon_mlp) { 15922 mlp.tme_flags |= MIB2_TMEF_ANONMLP; 15923 needattr = B_TRUE; 15924 } 15925 if (connp->conn_mac_exempt) { 15926 mlp.tme_flags |= MIB2_TMEF_MACEXEMPT; 15927 needattr = B_TRUE; 15928 } 15929 if (connp->conn_fully_bound && 15930 connp->conn_effective_cred != NULL) { 15931 ts_label_t *tsl; 15932 15933 tsl = crgetlabel(connp->conn_effective_cred); 15934 mlp.tme_flags |= MIB2_TMEF_IS_LABELED; 15935 mlp.tme_doi = label2doi(tsl); 15936 mlp.tme_label = *label2bslabel(tsl); 15937 needattr = B_TRUE; 15938 } 15939 15940 /* Create a message to report on IPv6 entries */ 15941 if (tcp->tcp_ipversion == IPV6_VERSION) { 15942 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 15943 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 15944 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 15945 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 15946 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 15947 /* Don't want just anybody seeing these... */ 15948 if (ispriv) { 15949 tce6.tcp6ConnEntryInfo.ce_snxt = 15950 tcp->tcp_snxt; 15951 tce6.tcp6ConnEntryInfo.ce_suna = 15952 tcp->tcp_suna; 15953 tce6.tcp6ConnEntryInfo.ce_rnxt = 15954 tcp->tcp_rnxt; 15955 tce6.tcp6ConnEntryInfo.ce_rack = 15956 tcp->tcp_rack; 15957 } else { 15958 /* 15959 * Netstat, unfortunately, uses this to 15960 * get send/receive queue sizes. How to fix? 15961 * Why not compute the difference only? 15962 */ 15963 tce6.tcp6ConnEntryInfo.ce_snxt = 15964 tcp->tcp_snxt - tcp->tcp_suna; 15965 tce6.tcp6ConnEntryInfo.ce_suna = 0; 15966 tce6.tcp6ConnEntryInfo.ce_rnxt = 15967 tcp->tcp_rnxt - tcp->tcp_rack; 15968 tce6.tcp6ConnEntryInfo.ce_rack = 0; 15969 } 15970 15971 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 15972 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 15973 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 15974 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 15975 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 15976 15977 tce6.tcp6ConnCreationProcess = 15978 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 15979 tcp->tcp_cpid; 15980 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 15981 15982 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 15983 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 15984 15985 mlp.tme_connidx = v6_conn_idx++; 15986 if (needattr) 15987 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 15988 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 15989 } 15990 /* 15991 * Create an IPv4 table entry for IPv4 entries and also 15992 * for IPv6 entries which are bound to in6addr_any 15993 * but don't have IPV6_V6ONLY set. 15994 * (i.e. anything an IPv4 peer could connect to) 15995 */ 15996 if (tcp->tcp_ipversion == IPV4_VERSION || 15997 (tcp->tcp_state <= TCPS_LISTEN && 15998 !tcp->tcp_connp->conn_ipv6_v6only && 15999 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16000 if (tcp->tcp_ipversion == IPV6_VERSION) { 16001 tce.tcpConnRemAddress = INADDR_ANY; 16002 tce.tcpConnLocalAddress = INADDR_ANY; 16003 } else { 16004 tce.tcpConnRemAddress = 16005 tcp->tcp_remote; 16006 tce.tcpConnLocalAddress = 16007 tcp->tcp_ip_src; 16008 } 16009 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16010 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16011 /* Don't want just anybody seeing these... */ 16012 if (ispriv) { 16013 tce.tcpConnEntryInfo.ce_snxt = 16014 tcp->tcp_snxt; 16015 tce.tcpConnEntryInfo.ce_suna = 16016 tcp->tcp_suna; 16017 tce.tcpConnEntryInfo.ce_rnxt = 16018 tcp->tcp_rnxt; 16019 tce.tcpConnEntryInfo.ce_rack = 16020 tcp->tcp_rack; 16021 } else { 16022 /* 16023 * Netstat, unfortunately, uses this to 16024 * get send/receive queue sizes. How 16025 * to fix? 16026 * Why not compute the difference only? 16027 */ 16028 tce.tcpConnEntryInfo.ce_snxt = 16029 tcp->tcp_snxt - tcp->tcp_suna; 16030 tce.tcpConnEntryInfo.ce_suna = 0; 16031 tce.tcpConnEntryInfo.ce_rnxt = 16032 tcp->tcp_rnxt - tcp->tcp_rack; 16033 tce.tcpConnEntryInfo.ce_rack = 0; 16034 } 16035 16036 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16037 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16038 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16039 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16040 tce.tcpConnEntryInfo.ce_state = 16041 tcp->tcp_state; 16042 16043 tce.tcpConnCreationProcess = 16044 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16045 tcp->tcp_cpid; 16046 tce.tcpConnCreationTime = tcp->tcp_open_time; 16047 16048 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16049 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16050 16051 mlp.tme_connidx = v4_conn_idx++; 16052 if (needattr) 16053 (void) snmp_append_data2( 16054 mp_attr_ctl->b_cont, 16055 &mp_attr_tail, (char *)&mlp, 16056 sizeof (mlp)); 16057 } 16058 } 16059 } 16060 16061 /* fixed length structure for IPv4 and IPv6 counters */ 16062 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16063 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16064 sizeof (mib2_tcp6ConnEntry_t)); 16065 /* synchronize 32- and 64-bit counters */ 16066 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16067 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16068 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16069 optp->level = MIB2_TCP; 16070 optp->name = 0; 16071 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16072 sizeof (tcps->tcps_mib)); 16073 optp->len = msgdsize(mpdata); 16074 qreply(q, mpctl); 16075 16076 /* table of connections... */ 16077 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16078 sizeof (struct T_optmgmt_ack)]; 16079 optp->level = MIB2_TCP; 16080 optp->name = MIB2_TCP_CONN; 16081 optp->len = msgdsize(mp_conn_ctl->b_cont); 16082 qreply(q, mp_conn_ctl); 16083 16084 /* table of MLP attributes... */ 16085 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16086 sizeof (struct T_optmgmt_ack)]; 16087 optp->level = MIB2_TCP; 16088 optp->name = EXPER_XPORT_MLP; 16089 optp->len = msgdsize(mp_attr_ctl->b_cont); 16090 if (optp->len == 0) 16091 freemsg(mp_attr_ctl); 16092 else 16093 qreply(q, mp_attr_ctl); 16094 16095 /* table of IPv6 connections... */ 16096 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16097 sizeof (struct T_optmgmt_ack)]; 16098 optp->level = MIB2_TCP6; 16099 optp->name = MIB2_TCP6_CONN; 16100 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16101 qreply(q, mp6_conn_ctl); 16102 16103 /* table of IPv6 MLP attributes... */ 16104 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16105 sizeof (struct T_optmgmt_ack)]; 16106 optp->level = MIB2_TCP6; 16107 optp->name = EXPER_XPORT_MLP; 16108 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16109 if (optp->len == 0) 16110 freemsg(mp6_attr_ctl); 16111 else 16112 qreply(q, mp6_attr_ctl); 16113 return (mp2ctl); 16114 } 16115 16116 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16117 /* ARGSUSED */ 16118 int 16119 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16120 { 16121 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16122 16123 switch (level) { 16124 case MIB2_TCP: 16125 switch (name) { 16126 case 13: 16127 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16128 return (0); 16129 /* TODO: delete entry defined by tce */ 16130 return (1); 16131 default: 16132 return (0); 16133 } 16134 default: 16135 return (1); 16136 } 16137 } 16138 16139 /* Translate TCP state to MIB2 TCP state. */ 16140 static int 16141 tcp_snmp_state(tcp_t *tcp) 16142 { 16143 if (tcp == NULL) 16144 return (0); 16145 16146 switch (tcp->tcp_state) { 16147 case TCPS_CLOSED: 16148 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16149 case TCPS_BOUND: 16150 return (MIB2_TCP_closed); 16151 case TCPS_LISTEN: 16152 return (MIB2_TCP_listen); 16153 case TCPS_SYN_SENT: 16154 return (MIB2_TCP_synSent); 16155 case TCPS_SYN_RCVD: 16156 return (MIB2_TCP_synReceived); 16157 case TCPS_ESTABLISHED: 16158 return (MIB2_TCP_established); 16159 case TCPS_CLOSE_WAIT: 16160 return (MIB2_TCP_closeWait); 16161 case TCPS_FIN_WAIT_1: 16162 return (MIB2_TCP_finWait1); 16163 case TCPS_CLOSING: 16164 return (MIB2_TCP_closing); 16165 case TCPS_LAST_ACK: 16166 return (MIB2_TCP_lastAck); 16167 case TCPS_FIN_WAIT_2: 16168 return (MIB2_TCP_finWait2); 16169 case TCPS_TIME_WAIT: 16170 return (MIB2_TCP_timeWait); 16171 default: 16172 return (0); 16173 } 16174 } 16175 16176 /* 16177 * tcp_timer is the timer service routine. It handles the retransmission, 16178 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16179 * from the state of the tcp instance what kind of action needs to be done 16180 * at the time it is called. 16181 */ 16182 static void 16183 tcp_timer(void *arg) 16184 { 16185 mblk_t *mp; 16186 clock_t first_threshold; 16187 clock_t second_threshold; 16188 clock_t ms; 16189 uint32_t mss; 16190 conn_t *connp = (conn_t *)arg; 16191 tcp_t *tcp = connp->conn_tcp; 16192 tcp_stack_t *tcps = tcp->tcp_tcps; 16193 16194 tcp->tcp_timer_tid = 0; 16195 16196 if (tcp->tcp_fused) 16197 return; 16198 16199 first_threshold = tcp->tcp_first_timer_threshold; 16200 second_threshold = tcp->tcp_second_timer_threshold; 16201 switch (tcp->tcp_state) { 16202 case TCPS_IDLE: 16203 case TCPS_BOUND: 16204 case TCPS_LISTEN: 16205 return; 16206 case TCPS_SYN_RCVD: { 16207 tcp_t *listener = tcp->tcp_listener; 16208 16209 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16210 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16211 /* it's our first timeout */ 16212 tcp->tcp_syn_rcvd_timeout = 1; 16213 mutex_enter(&listener->tcp_eager_lock); 16214 listener->tcp_syn_rcvd_timeout++; 16215 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 16216 /* 16217 * Make this eager available for drop if we 16218 * need to drop one to accomodate a new 16219 * incoming SYN request. 16220 */ 16221 MAKE_DROPPABLE(listener, tcp); 16222 } 16223 if (!listener->tcp_syn_defense && 16224 (listener->tcp_syn_rcvd_timeout > 16225 (tcps->tcps_conn_req_max_q0 >> 2)) && 16226 (tcps->tcps_conn_req_max_q0 > 200)) { 16227 /* We may be under attack. Put on a defense. */ 16228 listener->tcp_syn_defense = B_TRUE; 16229 cmn_err(CE_WARN, "High TCP connect timeout " 16230 "rate! System (port %d) may be under a " 16231 "SYN flood attack!", 16232 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16233 16234 listener->tcp_ip_addr_cache = kmem_zalloc( 16235 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16236 KM_NOSLEEP); 16237 } 16238 mutex_exit(&listener->tcp_eager_lock); 16239 } else if (listener != NULL) { 16240 mutex_enter(&listener->tcp_eager_lock); 16241 tcp->tcp_syn_rcvd_timeout++; 16242 if (tcp->tcp_syn_rcvd_timeout > 1 && 16243 !tcp->tcp_closemp_used) { 16244 /* 16245 * This is our second timeout. Put the tcp in 16246 * the list of droppable eagers to allow it to 16247 * be dropped, if needed. We don't check 16248 * whether tcp_dontdrop is set or not to 16249 * protect ourselve from a SYN attack where a 16250 * remote host can spoof itself as one of the 16251 * good IP source and continue to hold 16252 * resources too long. 16253 */ 16254 MAKE_DROPPABLE(listener, tcp); 16255 } 16256 mutex_exit(&listener->tcp_eager_lock); 16257 } 16258 } 16259 /* FALLTHRU */ 16260 case TCPS_SYN_SENT: 16261 first_threshold = tcp->tcp_first_ctimer_threshold; 16262 second_threshold = tcp->tcp_second_ctimer_threshold; 16263 break; 16264 case TCPS_ESTABLISHED: 16265 case TCPS_FIN_WAIT_1: 16266 case TCPS_CLOSING: 16267 case TCPS_CLOSE_WAIT: 16268 case TCPS_LAST_ACK: 16269 /* If we have data to rexmit */ 16270 if (tcp->tcp_suna != tcp->tcp_snxt) { 16271 clock_t time_to_wait; 16272 16273 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 16274 if (!tcp->tcp_xmit_head) 16275 break; 16276 time_to_wait = lbolt - 16277 (clock_t)tcp->tcp_xmit_head->b_prev; 16278 time_to_wait = tcp->tcp_rto - 16279 TICK_TO_MSEC(time_to_wait); 16280 /* 16281 * If the timer fires too early, 1 clock tick earlier, 16282 * restart the timer. 16283 */ 16284 if (time_to_wait > msec_per_tick) { 16285 TCP_STAT(tcps, tcp_timer_fire_early); 16286 TCP_TIMER_RESTART(tcp, time_to_wait); 16287 return; 16288 } 16289 /* 16290 * When we probe zero windows, we force the swnd open. 16291 * If our peer acks with a closed window swnd will be 16292 * set to zero by tcp_rput(). As long as we are 16293 * receiving acks tcp_rput will 16294 * reset 'tcp_ms_we_have_waited' so as not to trip the 16295 * first and second interval actions. NOTE: the timer 16296 * interval is allowed to continue its exponential 16297 * backoff. 16298 */ 16299 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16300 if (tcp->tcp_debug) { 16301 (void) strlog(TCP_MOD_ID, 0, 1, 16302 SL_TRACE, "tcp_timer: zero win"); 16303 } 16304 } else { 16305 /* 16306 * After retransmission, we need to do 16307 * slow start. Set the ssthresh to one 16308 * half of current effective window and 16309 * cwnd to one MSS. Also reset 16310 * tcp_cwnd_cnt. 16311 * 16312 * Note that if tcp_ssthresh is reduced because 16313 * of ECN, do not reduce it again unless it is 16314 * already one window of data away (tcp_cwr 16315 * should then be cleared) or this is a 16316 * timeout for a retransmitted segment. 16317 */ 16318 uint32_t npkt; 16319 16320 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16321 npkt = ((tcp->tcp_timer_backoff ? 16322 tcp->tcp_cwnd_ssthresh : 16323 tcp->tcp_snxt - 16324 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16325 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16326 tcp->tcp_mss; 16327 } 16328 tcp->tcp_cwnd = tcp->tcp_mss; 16329 tcp->tcp_cwnd_cnt = 0; 16330 if (tcp->tcp_ecn_ok) { 16331 tcp->tcp_cwr = B_TRUE; 16332 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16333 tcp->tcp_ecn_cwr_sent = B_FALSE; 16334 } 16335 } 16336 break; 16337 } 16338 /* 16339 * We have something to send yet we cannot send. The 16340 * reason can be: 16341 * 16342 * 1. Zero send window: we need to do zero window probe. 16343 * 2. Zero cwnd: because of ECN, we need to "clock out 16344 * segments. 16345 * 3. SWS avoidance: receiver may have shrunk window, 16346 * reset our knowledge. 16347 * 16348 * Note that condition 2 can happen with either 1 or 16349 * 3. But 1 and 3 are exclusive. 16350 */ 16351 if (tcp->tcp_unsent != 0) { 16352 if (tcp->tcp_cwnd == 0) { 16353 /* 16354 * Set tcp_cwnd to 1 MSS so that a 16355 * new segment can be sent out. We 16356 * are "clocking out" new data when 16357 * the network is really congested. 16358 */ 16359 ASSERT(tcp->tcp_ecn_ok); 16360 tcp->tcp_cwnd = tcp->tcp_mss; 16361 } 16362 if (tcp->tcp_swnd == 0) { 16363 /* Extend window for zero window probe */ 16364 tcp->tcp_swnd++; 16365 tcp->tcp_zero_win_probe = B_TRUE; 16366 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 16367 } else { 16368 /* 16369 * Handle timeout from sender SWS avoidance. 16370 * Reset our knowledge of the max send window 16371 * since the receiver might have reduced its 16372 * receive buffer. Avoid setting tcp_max_swnd 16373 * to one since that will essentially disable 16374 * the SWS checks. 16375 * 16376 * Note that since we don't have a SWS 16377 * state variable, if the timeout is set 16378 * for ECN but not for SWS, this 16379 * code will also be executed. This is 16380 * fine as tcp_max_swnd is updated 16381 * constantly and it will not affect 16382 * anything. 16383 */ 16384 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16385 } 16386 tcp_wput_data(tcp, NULL, B_FALSE); 16387 return; 16388 } 16389 /* Is there a FIN that needs to be to re retransmitted? */ 16390 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16391 !tcp->tcp_fin_acked) 16392 break; 16393 /* Nothing to do, return without restarting timer. */ 16394 TCP_STAT(tcps, tcp_timer_fire_miss); 16395 return; 16396 case TCPS_FIN_WAIT_2: 16397 /* 16398 * User closed the TCP endpoint and peer ACK'ed our FIN. 16399 * We waited some time for for peer's FIN, but it hasn't 16400 * arrived. We flush the connection now to avoid 16401 * case where the peer has rebooted. 16402 */ 16403 if (TCP_IS_DETACHED(tcp)) { 16404 (void) tcp_clean_death(tcp, 0, 23); 16405 } else { 16406 TCP_TIMER_RESTART(tcp, 16407 tcps->tcps_fin_wait_2_flush_interval); 16408 } 16409 return; 16410 case TCPS_TIME_WAIT: 16411 (void) tcp_clean_death(tcp, 0, 24); 16412 return; 16413 default: 16414 if (tcp->tcp_debug) { 16415 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16416 "tcp_timer: strange state (%d) %s", 16417 tcp->tcp_state, tcp_display(tcp, NULL, 16418 DISP_PORT_ONLY)); 16419 } 16420 return; 16421 } 16422 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16423 /* 16424 * For zero window probe, we need to send indefinitely, 16425 * unless we have not heard from the other side for some 16426 * time... 16427 */ 16428 if ((tcp->tcp_zero_win_probe == 0) || 16429 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 16430 second_threshold)) { 16431 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 16432 /* 16433 * If TCP is in SYN_RCVD state, send back a 16434 * RST|ACK as BSD does. Note that tcp_zero_win_probe 16435 * should be zero in TCPS_SYN_RCVD state. 16436 */ 16437 if (tcp->tcp_state == TCPS_SYN_RCVD) { 16438 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 16439 "in SYN_RCVD", 16440 tcp, tcp->tcp_snxt, 16441 tcp->tcp_rnxt, TH_RST | TH_ACK); 16442 } 16443 (void) tcp_clean_death(tcp, 16444 tcp->tcp_client_errno ? 16445 tcp->tcp_client_errno : ETIMEDOUT, 25); 16446 return; 16447 } else { 16448 /* 16449 * Set tcp_ms_we_have_waited to second_threshold 16450 * so that in next timeout, we will do the above 16451 * check (lbolt - tcp_last_recv_time). This is 16452 * also to avoid overflow. 16453 * 16454 * We don't need to decrement tcp_timer_backoff 16455 * to avoid overflow because it will be decremented 16456 * later if new timeout value is greater than 16457 * tcp_rexmit_interval_max. In the case when 16458 * tcp_rexmit_interval_max is greater than 16459 * second_threshold, it means that we will wait 16460 * longer than second_threshold to send the next 16461 * window probe. 16462 */ 16463 tcp->tcp_ms_we_have_waited = second_threshold; 16464 } 16465 } else if (ms > first_threshold) { 16466 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 16467 tcp->tcp_xmit_head != NULL) { 16468 tcp->tcp_xmit_head = 16469 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 16470 } 16471 /* 16472 * We have been retransmitting for too long... The RTT 16473 * we calculated is probably incorrect. Reinitialize it. 16474 * Need to compensate for 0 tcp_rtt_sa. Reset 16475 * tcp_rtt_update so that we won't accidentally cache a 16476 * bad value. But only do this if this is not a zero 16477 * window probe. 16478 */ 16479 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 16480 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 16481 (tcp->tcp_rtt_sa >> 5); 16482 tcp->tcp_rtt_sa = 0; 16483 tcp_ip_notify(tcp); 16484 tcp->tcp_rtt_update = 0; 16485 } 16486 } 16487 tcp->tcp_timer_backoff++; 16488 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 16489 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 16490 tcps->tcps_rexmit_interval_min) { 16491 /* 16492 * This means the original RTO is tcp_rexmit_interval_min. 16493 * So we will use tcp_rexmit_interval_min as the RTO value 16494 * and do the backoff. 16495 */ 16496 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 16497 } else { 16498 ms <<= tcp->tcp_timer_backoff; 16499 } 16500 if (ms > tcps->tcps_rexmit_interval_max) { 16501 ms = tcps->tcps_rexmit_interval_max; 16502 /* 16503 * ms is at max, decrement tcp_timer_backoff to avoid 16504 * overflow. 16505 */ 16506 tcp->tcp_timer_backoff--; 16507 } 16508 tcp->tcp_ms_we_have_waited += ms; 16509 if (tcp->tcp_zero_win_probe == 0) { 16510 tcp->tcp_rto = ms; 16511 } 16512 TCP_TIMER_RESTART(tcp, ms); 16513 /* 16514 * This is after a timeout and tcp_rto is backed off. Set 16515 * tcp_set_timer to 1 so that next time RTO is updated, we will 16516 * restart the timer with a correct value. 16517 */ 16518 tcp->tcp_set_timer = 1; 16519 mss = tcp->tcp_snxt - tcp->tcp_suna; 16520 if (mss > tcp->tcp_mss) 16521 mss = tcp->tcp_mss; 16522 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 16523 mss = tcp->tcp_swnd; 16524 16525 if ((mp = tcp->tcp_xmit_head) != NULL) 16526 mp->b_prev = (mblk_t *)lbolt; 16527 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 16528 B_TRUE); 16529 16530 /* 16531 * When slow start after retransmission begins, start with 16532 * this seq no. tcp_rexmit_max marks the end of special slow 16533 * start phase. tcp_snd_burst controls how many segments 16534 * can be sent because of an ack. 16535 */ 16536 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 16537 tcp->tcp_snd_burst = TCP_CWND_SS; 16538 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16539 (tcp->tcp_unsent == 0)) { 16540 tcp->tcp_rexmit_max = tcp->tcp_fss; 16541 } else { 16542 tcp->tcp_rexmit_max = tcp->tcp_snxt; 16543 } 16544 tcp->tcp_rexmit = B_TRUE; 16545 tcp->tcp_dupack_cnt = 0; 16546 16547 /* 16548 * Remove all rexmit SACK blk to start from fresh. 16549 */ 16550 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 16551 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 16552 tcp->tcp_num_notsack_blk = 0; 16553 tcp->tcp_cnt_notsack_list = 0; 16554 } 16555 if (mp == NULL) { 16556 return; 16557 } 16558 /* 16559 * Attach credentials to retransmitted initial SYNs. 16560 * In theory we should use the credentials from the connect() 16561 * call to ensure that getpeerucred() on the peer will be correct. 16562 * But we assume that SYN's are not dropped for loopback connections. 16563 */ 16564 if (tcp->tcp_state == TCPS_SYN_SENT) { 16565 mblk_setcred(mp, CONN_CRED(tcp->tcp_connp), tcp->tcp_cpid); 16566 } 16567 16568 tcp->tcp_csuna = tcp->tcp_snxt; 16569 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 16570 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 16571 tcp_send_data(tcp, tcp->tcp_wq, mp); 16572 16573 } 16574 16575 static int 16576 tcp_do_unbind(conn_t *connp) 16577 { 16578 tcp_t *tcp = connp->conn_tcp; 16579 int error = 0; 16580 16581 switch (tcp->tcp_state) { 16582 case TCPS_BOUND: 16583 case TCPS_LISTEN: 16584 break; 16585 default: 16586 return (-TOUTSTATE); 16587 } 16588 16589 /* 16590 * Need to clean up all the eagers since after the unbind, segments 16591 * will no longer be delivered to this listener stream. 16592 */ 16593 mutex_enter(&tcp->tcp_eager_lock); 16594 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 16595 tcp_eager_cleanup(tcp, 0); 16596 } 16597 mutex_exit(&tcp->tcp_eager_lock); 16598 16599 if (tcp->tcp_ipversion == IPV4_VERSION) { 16600 tcp->tcp_ipha->ipha_src = 0; 16601 } else { 16602 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 16603 } 16604 V6_SET_ZERO(tcp->tcp_ip_src_v6); 16605 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 16606 tcp_bind_hash_remove(tcp); 16607 tcp->tcp_state = TCPS_IDLE; 16608 tcp->tcp_mdt = B_FALSE; 16609 16610 connp = tcp->tcp_connp; 16611 connp->conn_mdt_ok = B_FALSE; 16612 ipcl_hash_remove(connp); 16613 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 16614 16615 return (error); 16616 } 16617 16618 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 16619 static void 16620 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp) 16621 { 16622 int error = tcp_do_unbind(tcp->tcp_connp); 16623 16624 if (error > 0) { 16625 tcp_err_ack(tcp, mp, TSYSERR, error); 16626 } else if (error < 0) { 16627 tcp_err_ack(tcp, mp, -error, 0); 16628 } else { 16629 /* Send M_FLUSH according to TPI */ 16630 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 16631 16632 mp = mi_tpi_ok_ack_alloc(mp); 16633 putnext(tcp->tcp_rq, mp); 16634 } 16635 } 16636 16637 /* 16638 * Don't let port fall into the privileged range. 16639 * Since the extra privileged ports can be arbitrary we also 16640 * ensure that we exclude those from consideration. 16641 * tcp_g_epriv_ports is not sorted thus we loop over it until 16642 * there are no changes. 16643 * 16644 * Note: No locks are held when inspecting tcp_g_*epriv_ports 16645 * but instead the code relies on: 16646 * - the fact that the address of the array and its size never changes 16647 * - the atomic assignment of the elements of the array 16648 * 16649 * Returns 0 if there are no more ports available. 16650 * 16651 * TS note: skip multilevel ports. 16652 */ 16653 static in_port_t 16654 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 16655 { 16656 int i; 16657 boolean_t restart = B_FALSE; 16658 tcp_stack_t *tcps = tcp->tcp_tcps; 16659 16660 if (random && tcp_random_anon_port != 0) { 16661 (void) random_get_pseudo_bytes((uint8_t *)&port, 16662 sizeof (in_port_t)); 16663 /* 16664 * Unless changed by a sys admin, the smallest anon port 16665 * is 32768 and the largest anon port is 65535. It is 16666 * very likely (50%) for the random port to be smaller 16667 * than the smallest anon port. When that happens, 16668 * add port % (anon port range) to the smallest anon 16669 * port to get the random port. It should fall into the 16670 * valid anon port range. 16671 */ 16672 if (port < tcps->tcps_smallest_anon_port) { 16673 port = tcps->tcps_smallest_anon_port + 16674 port % (tcps->tcps_largest_anon_port - 16675 tcps->tcps_smallest_anon_port); 16676 } 16677 } 16678 16679 retry: 16680 if (port < tcps->tcps_smallest_anon_port) 16681 port = (in_port_t)tcps->tcps_smallest_anon_port; 16682 16683 if (port > tcps->tcps_largest_anon_port) { 16684 if (restart) 16685 return (0); 16686 restart = B_TRUE; 16687 port = (in_port_t)tcps->tcps_smallest_anon_port; 16688 } 16689 16690 if (port < tcps->tcps_smallest_nonpriv_port) 16691 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 16692 16693 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 16694 if (port == tcps->tcps_g_epriv_ports[i]) { 16695 port++; 16696 /* 16697 * Make sure whether the port is in the 16698 * valid range. 16699 */ 16700 goto retry; 16701 } 16702 } 16703 if (is_system_labeled() && 16704 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 16705 IPPROTO_TCP, B_TRUE)) != 0) { 16706 port = i; 16707 goto retry; 16708 } 16709 return (port); 16710 } 16711 16712 /* 16713 * Return the next anonymous port in the privileged port range for 16714 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 16715 * downwards. This is the same behavior as documented in the userland 16716 * library call rresvport(3N). 16717 * 16718 * TS note: skip multilevel ports. 16719 */ 16720 static in_port_t 16721 tcp_get_next_priv_port(const tcp_t *tcp) 16722 { 16723 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 16724 in_port_t nextport; 16725 boolean_t restart = B_FALSE; 16726 tcp_stack_t *tcps = tcp->tcp_tcps; 16727 retry: 16728 if (next_priv_port < tcps->tcps_min_anonpriv_port || 16729 next_priv_port >= IPPORT_RESERVED) { 16730 next_priv_port = IPPORT_RESERVED - 1; 16731 if (restart) 16732 return (0); 16733 restart = B_TRUE; 16734 } 16735 if (is_system_labeled() && 16736 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 16737 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 16738 next_priv_port = nextport; 16739 goto retry; 16740 } 16741 return (next_priv_port--); 16742 } 16743 16744 /* The write side r/w procedure. */ 16745 16746 #if CCS_STATS 16747 struct { 16748 struct { 16749 int64_t count, bytes; 16750 } tot, hit; 16751 } wrw_stats; 16752 #endif 16753 16754 /* 16755 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 16756 * messages. 16757 */ 16758 /* ARGSUSED */ 16759 static void 16760 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 16761 { 16762 conn_t *connp = (conn_t *)arg; 16763 tcp_t *tcp = connp->conn_tcp; 16764 queue_t *q = tcp->tcp_wq; 16765 16766 ASSERT(DB_TYPE(mp) != M_IOCTL); 16767 /* 16768 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 16769 * Once the close starts, streamhead and sockfs will not let any data 16770 * packets come down (close ensures that there are no threads using the 16771 * queue and no new threads will come down) but since qprocsoff() 16772 * hasn't happened yet, a M_FLUSH or some non data message might 16773 * get reflected back (in response to our own FLUSHRW) and get 16774 * processed after tcp_close() is done. The conn would still be valid 16775 * because a ref would have added but we need to check the state 16776 * before actually processing the packet. 16777 */ 16778 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 16779 freemsg(mp); 16780 return; 16781 } 16782 16783 switch (DB_TYPE(mp)) { 16784 case M_IOCDATA: 16785 tcp_wput_iocdata(tcp, mp); 16786 break; 16787 case M_FLUSH: 16788 tcp_wput_flush(tcp, mp); 16789 break; 16790 default: 16791 CALL_IP_WPUT(connp, q, mp); 16792 break; 16793 } 16794 } 16795 16796 /* 16797 * The TCP fast path write put procedure. 16798 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 16799 */ 16800 /* ARGSUSED */ 16801 void 16802 tcp_output(void *arg, mblk_t *mp, void *arg2) 16803 { 16804 int len; 16805 int hdrlen; 16806 int plen; 16807 mblk_t *mp1; 16808 uchar_t *rptr; 16809 uint32_t snxt; 16810 tcph_t *tcph; 16811 struct datab *db; 16812 uint32_t suna; 16813 uint32_t mss; 16814 ipaddr_t *dst; 16815 ipaddr_t *src; 16816 uint32_t sum; 16817 int usable; 16818 conn_t *connp = (conn_t *)arg; 16819 tcp_t *tcp = connp->conn_tcp; 16820 uint32_t msize; 16821 tcp_stack_t *tcps = tcp->tcp_tcps; 16822 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 16823 16824 /* 16825 * Try and ASSERT the minimum possible references on the 16826 * conn early enough. Since we are executing on write side, 16827 * the connection is obviously not detached and that means 16828 * there is a ref each for TCP and IP. Since we are behind 16829 * the squeue, the minimum references needed are 3. If the 16830 * conn is in classifier hash list, there should be an 16831 * extra ref for that (we check both the possibilities). 16832 */ 16833 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 16834 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 16835 16836 ASSERT(DB_TYPE(mp) == M_DATA); 16837 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 16838 16839 mutex_enter(&tcp->tcp_non_sq_lock); 16840 tcp->tcp_squeue_bytes -= msize; 16841 mutex_exit(&tcp->tcp_non_sq_lock); 16842 16843 /* Check to see if this connection wants to be re-fused. */ 16844 if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) { 16845 if (tcp->tcp_ipversion == IPV4_VERSION) { 16846 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha, 16847 &tcp->tcp_saved_tcph); 16848 } else { 16849 tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h, 16850 &tcp->tcp_saved_tcph); 16851 } 16852 } 16853 /* Bypass tcp protocol for fused tcp loopback */ 16854 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 16855 return; 16856 16857 mss = tcp->tcp_mss; 16858 if (tcp->tcp_xmit_zc_clean) 16859 mp = tcp_zcopy_backoff(tcp, mp, 0); 16860 16861 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 16862 len = (int)(mp->b_wptr - mp->b_rptr); 16863 16864 /* 16865 * Criteria for fast path: 16866 * 16867 * 1. no unsent data 16868 * 2. single mblk in request 16869 * 3. connection established 16870 * 4. data in mblk 16871 * 5. len <= mss 16872 * 6. no tcp_valid bits 16873 */ 16874 if ((tcp->tcp_unsent != 0) || 16875 (tcp->tcp_cork) || 16876 (mp->b_cont != NULL) || 16877 (tcp->tcp_state != TCPS_ESTABLISHED) || 16878 (len == 0) || 16879 (len > mss) || 16880 (tcp->tcp_valid_bits != 0)) { 16881 tcp_wput_data(tcp, mp, B_FALSE); 16882 return; 16883 } 16884 16885 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 16886 ASSERT(tcp->tcp_fin_sent == 0); 16887 16888 /* queue new packet onto retransmission queue */ 16889 if (tcp->tcp_xmit_head == NULL) { 16890 tcp->tcp_xmit_head = mp; 16891 } else { 16892 tcp->tcp_xmit_last->b_cont = mp; 16893 } 16894 tcp->tcp_xmit_last = mp; 16895 tcp->tcp_xmit_tail = mp; 16896 16897 /* find out how much we can send */ 16898 /* BEGIN CSTYLED */ 16899 /* 16900 * un-acked usable 16901 * |--------------|-----------------| 16902 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 16903 */ 16904 /* END CSTYLED */ 16905 16906 /* start sending from tcp_snxt */ 16907 snxt = tcp->tcp_snxt; 16908 16909 /* 16910 * Check to see if this connection has been idled for some 16911 * time and no ACK is expected. If it is, we need to slow 16912 * start again to get back the connection's "self-clock" as 16913 * described in VJ's paper. 16914 * 16915 * Refer to the comment in tcp_mss_set() for the calculation 16916 * of tcp_cwnd after idle. 16917 */ 16918 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 16919 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 16920 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 16921 } 16922 16923 usable = tcp->tcp_swnd; /* tcp window size */ 16924 if (usable > tcp->tcp_cwnd) 16925 usable = tcp->tcp_cwnd; /* congestion window smaller */ 16926 usable -= snxt; /* subtract stuff already sent */ 16927 suna = tcp->tcp_suna; 16928 usable += suna; 16929 /* usable can be < 0 if the congestion window is smaller */ 16930 if (len > usable) { 16931 /* Can't send complete M_DATA in one shot */ 16932 goto slow; 16933 } 16934 16935 mutex_enter(&tcp->tcp_non_sq_lock); 16936 if (tcp->tcp_flow_stopped && 16937 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 16938 tcp_clrqfull(tcp); 16939 } 16940 mutex_exit(&tcp->tcp_non_sq_lock); 16941 16942 /* 16943 * determine if anything to send (Nagle). 16944 * 16945 * 1. len < tcp_mss (i.e. small) 16946 * 2. unacknowledged data present 16947 * 3. len < nagle limit 16948 * 4. last packet sent < nagle limit (previous packet sent) 16949 */ 16950 if ((len < mss) && (snxt != suna) && 16951 (len < (int)tcp->tcp_naglim) && 16952 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 16953 /* 16954 * This was the first unsent packet and normally 16955 * mss < xmit_hiwater so there is no need to worry 16956 * about flow control. The next packet will go 16957 * through the flow control check in tcp_wput_data(). 16958 */ 16959 /* leftover work from above */ 16960 tcp->tcp_unsent = len; 16961 tcp->tcp_xmit_tail_unsent = len; 16962 16963 return; 16964 } 16965 16966 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 16967 16968 if (snxt == suna) { 16969 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 16970 } 16971 16972 /* we have always sent something */ 16973 tcp->tcp_rack_cnt = 0; 16974 16975 tcp->tcp_snxt = snxt + len; 16976 tcp->tcp_rack = tcp->tcp_rnxt; 16977 16978 if ((mp1 = dupb(mp)) == 0) 16979 goto no_memory; 16980 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 16981 mp->b_next = (mblk_t *)(uintptr_t)snxt; 16982 16983 /* adjust tcp header information */ 16984 tcph = tcp->tcp_tcph; 16985 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 16986 16987 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 16988 sum = (sum >> 16) + (sum & 0xFFFF); 16989 U16_TO_ABE16(sum, tcph->th_sum); 16990 16991 U32_TO_ABE32(snxt, tcph->th_seq); 16992 16993 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 16994 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 16995 BUMP_LOCAL(tcp->tcp_obsegs); 16996 16997 /* Update the latest receive window size in TCP header. */ 16998 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 16999 tcph->th_win); 17000 17001 tcp->tcp_last_sent_len = (ushort_t)len; 17002 17003 plen = len + tcp->tcp_hdr_len; 17004 17005 if (tcp->tcp_ipversion == IPV4_VERSION) { 17006 tcp->tcp_ipha->ipha_length = htons(plen); 17007 } else { 17008 tcp->tcp_ip6h->ip6_plen = htons(plen - 17009 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17010 } 17011 17012 /* see if we need to allocate a mblk for the headers */ 17013 hdrlen = tcp->tcp_hdr_len; 17014 rptr = mp1->b_rptr - hdrlen; 17015 db = mp1->b_datap; 17016 if ((db->db_ref != 2) || rptr < db->db_base || 17017 (!OK_32PTR(rptr))) { 17018 /* NOTE: we assume allocb returns an OK_32PTR */ 17019 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17020 tcps->tcps_wroff_xtra, BPRI_MED); 17021 if (!mp) { 17022 freemsg(mp1); 17023 goto no_memory; 17024 } 17025 mp->b_cont = mp1; 17026 mp1 = mp; 17027 /* Leave room for Link Level header */ 17028 /* hdrlen = tcp->tcp_hdr_len; */ 17029 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17030 mp1->b_wptr = &rptr[hdrlen]; 17031 } 17032 mp1->b_rptr = rptr; 17033 17034 /* Fill in the timestamp option. */ 17035 if (tcp->tcp_snd_ts_ok) { 17036 U32_TO_BE32((uint32_t)lbolt, 17037 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17038 U32_TO_BE32(tcp->tcp_ts_recent, 17039 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17040 } else { 17041 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17042 } 17043 17044 /* copy header into outgoing packet */ 17045 dst = (ipaddr_t *)rptr; 17046 src = (ipaddr_t *)tcp->tcp_iphc; 17047 dst[0] = src[0]; 17048 dst[1] = src[1]; 17049 dst[2] = src[2]; 17050 dst[3] = src[3]; 17051 dst[4] = src[4]; 17052 dst[5] = src[5]; 17053 dst[6] = src[6]; 17054 dst[7] = src[7]; 17055 dst[8] = src[8]; 17056 dst[9] = src[9]; 17057 if (hdrlen -= 40) { 17058 hdrlen >>= 2; 17059 dst += 10; 17060 src += 10; 17061 do { 17062 *dst++ = *src++; 17063 } while (--hdrlen); 17064 } 17065 17066 /* 17067 * Set the ECN info in the TCP header. Note that this 17068 * is not the template header. 17069 */ 17070 if (tcp->tcp_ecn_ok) { 17071 SET_ECT(tcp, rptr); 17072 17073 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17074 if (tcp->tcp_ecn_echo_on) 17075 tcph->th_flags[0] |= TH_ECE; 17076 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17077 tcph->th_flags[0] |= TH_CWR; 17078 tcp->tcp_ecn_cwr_sent = B_TRUE; 17079 } 17080 } 17081 17082 if (tcp->tcp_ip_forward_progress) { 17083 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17084 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17085 tcp->tcp_ip_forward_progress = B_FALSE; 17086 } 17087 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17088 return; 17089 17090 /* 17091 * If we ran out of memory, we pretend to have sent the packet 17092 * and that it was lost on the wire. 17093 */ 17094 no_memory: 17095 return; 17096 17097 slow: 17098 /* leftover work from above */ 17099 tcp->tcp_unsent = len; 17100 tcp->tcp_xmit_tail_unsent = len; 17101 tcp_wput_data(tcp, NULL, B_FALSE); 17102 } 17103 17104 /* ARGSUSED */ 17105 void 17106 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17107 { 17108 conn_t *connp = (conn_t *)arg; 17109 tcp_t *tcp = connp->conn_tcp; 17110 queue_t *q = tcp->tcp_rq; 17111 struct tcp_options *tcpopt; 17112 tcp_stack_t *tcps = tcp->tcp_tcps; 17113 17114 /* socket options */ 17115 uint_t sopp_flags; 17116 ssize_t sopp_rxhiwat; 17117 ssize_t sopp_maxblk; 17118 ushort_t sopp_wroff; 17119 ushort_t sopp_tail; 17120 ushort_t sopp_copyopt; 17121 17122 tcpopt = (struct tcp_options *)mp->b_rptr; 17123 17124 /* 17125 * Drop the eager's ref on the listener, that was placed when 17126 * this eager began life in tcp_conn_request. 17127 */ 17128 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17129 if (IPCL_IS_NONSTR(connp)) { 17130 /* Safe to free conn_ind message */ 17131 freemsg(tcp->tcp_conn.tcp_eager_conn_ind); 17132 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17133 } 17134 17135 tcp->tcp_detached = B_FALSE; 17136 17137 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17138 /* 17139 * Someone blewoff the eager before we could finish 17140 * the accept. 17141 * 17142 * The only reason eager exists it because we put in 17143 * a ref on it when conn ind went up. We need to send 17144 * a disconnect indication up while the last reference 17145 * on the eager will be dropped by the squeue when we 17146 * return. 17147 */ 17148 ASSERT(tcp->tcp_listener == NULL); 17149 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17150 if (IPCL_IS_NONSTR(connp)) { 17151 ASSERT(tcp->tcp_issocket); 17152 (*connp->conn_upcalls->su_disconnected)( 17153 connp->conn_upper_handle, tcp->tcp_connid, 17154 ECONNREFUSED); 17155 freemsg(mp); 17156 } else { 17157 struct T_discon_ind *tdi; 17158 17159 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17160 /* 17161 * Let us reuse the incoming mblk to avoid 17162 * memory allocation failure problems. We know 17163 * that the size of the incoming mblk i.e. 17164 * stroptions is greater than sizeof 17165 * T_discon_ind. So the reallocb below can't 17166 * fail. 17167 */ 17168 freemsg(mp->b_cont); 17169 mp->b_cont = NULL; 17170 ASSERT(DB_REF(mp) == 1); 17171 mp = reallocb(mp, sizeof (struct T_discon_ind), 17172 B_FALSE); 17173 ASSERT(mp != NULL); 17174 DB_TYPE(mp) = M_PROTO; 17175 ((union T_primitives *)mp->b_rptr)->type = 17176 T_DISCON_IND; 17177 tdi = (struct T_discon_ind *)mp->b_rptr; 17178 if (tcp->tcp_issocket) { 17179 tdi->DISCON_reason = ECONNREFUSED; 17180 tdi->SEQ_number = 0; 17181 } else { 17182 tdi->DISCON_reason = ENOPROTOOPT; 17183 tdi->SEQ_number = 17184 tcp->tcp_conn_req_seqnum; 17185 } 17186 mp->b_wptr = mp->b_rptr + 17187 sizeof (struct T_discon_ind); 17188 putnext(q, mp); 17189 return; 17190 } 17191 } 17192 if (tcp->tcp_hard_binding) { 17193 tcp->tcp_hard_binding = B_FALSE; 17194 tcp->tcp_hard_bound = B_TRUE; 17195 } 17196 return; 17197 } 17198 17199 if (tcpopt->to_flags & TCPOPT_BOUNDIF) { 17200 int boundif = tcpopt->to_boundif; 17201 uint_t len = sizeof (int); 17202 17203 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17204 IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len, 17205 (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL); 17206 } 17207 if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) { 17208 uint_t on = 1; 17209 uint_t len = sizeof (uint_t); 17210 (void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6, 17211 IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len, 17212 (uchar_t *)&on, NULL, tcp->tcp_cred, NULL); 17213 } 17214 17215 /* 17216 * For a loopback connection with tcp_direct_sockfs on, note that 17217 * we don't have to protect tcp_rcv_list yet because synchronous 17218 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17219 * possibly race with us. 17220 */ 17221 17222 /* 17223 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17224 * properly. This is the first time we know of the acceptor' 17225 * queue. So we do it here. 17226 * 17227 * XXX 17228 */ 17229 if (tcp->tcp_rcv_list == NULL) { 17230 /* 17231 * Recv queue is empty, tcp_rwnd should not have changed. 17232 * That means it should be equal to the listener's tcp_rwnd. 17233 */ 17234 if (!IPCL_IS_NONSTR(connp)) 17235 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17236 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 17237 } else { 17238 #ifdef DEBUG 17239 mblk_t *tmp; 17240 mblk_t *mp1; 17241 uint_t cnt = 0; 17242 17243 mp1 = tcp->tcp_rcv_list; 17244 while ((tmp = mp1) != NULL) { 17245 mp1 = tmp->b_next; 17246 cnt += msgdsize(tmp); 17247 } 17248 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17249 #endif 17250 /* There is some data, add them back to get the max. */ 17251 if (!IPCL_IS_NONSTR(connp)) 17252 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17253 tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17254 } 17255 /* 17256 * This is the first time we run on the correct 17257 * queue after tcp_accept. So fix all the q parameters 17258 * here. 17259 */ 17260 sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 17261 sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17262 17263 /* 17264 * Record the stream head's high water mark for this endpoint; 17265 * this is used for flow-control purposes. 17266 */ 17267 sopp_rxhiwat = tcp->tcp_fused ? 17268 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 17269 MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat); 17270 17271 /* 17272 * Determine what write offset value to use depending on SACK and 17273 * whether the endpoint is fused or not. 17274 */ 17275 if (tcp->tcp_fused) { 17276 ASSERT(tcp->tcp_loopback); 17277 ASSERT(tcp->tcp_loopback_peer != NULL); 17278 /* 17279 * For fused tcp loopback, set the stream head's write 17280 * offset value to zero since we won't be needing any room 17281 * for TCP/IP headers. This would also improve performance 17282 * since it would reduce the amount of work done by kmem. 17283 * Non-fused tcp loopback case is handled separately below. 17284 */ 17285 sopp_wroff = 0; 17286 /* 17287 * Update the peer's transmit parameters according to 17288 * our recently calculated high water mark value. 17289 */ 17290 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17291 } else if (tcp->tcp_snd_sack_ok) { 17292 sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17293 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 17294 } else { 17295 sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17296 tcps->tcps_wroff_xtra); 17297 } 17298 17299 /* 17300 * If this is endpoint is handling SSL, then reserve extra 17301 * offset and space at the end. 17302 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17303 * overriding the previous setting. The extra cost of signing and 17304 * encrypting multiple MSS-size records (12 of them with Ethernet), 17305 * instead of a single contiguous one by the stream head 17306 * largely outweighs the statistical reduction of ACKs, when 17307 * applicable. The peer will also save on decryption and verification 17308 * costs. 17309 */ 17310 if (tcp->tcp_kssl_ctx != NULL) { 17311 sopp_wroff += SSL3_WROFFSET; 17312 17313 sopp_flags |= SOCKOPT_TAIL; 17314 sopp_tail = SSL3_MAX_TAIL_LEN; 17315 17316 sopp_flags |= SOCKOPT_ZCOPY; 17317 sopp_copyopt = ZCVMUNSAFE; 17318 17319 sopp_maxblk = SSL3_MAX_RECORD_LEN; 17320 } 17321 17322 /* Send the options up */ 17323 if (IPCL_IS_NONSTR(connp)) { 17324 struct sock_proto_props sopp; 17325 17326 sopp.sopp_flags = sopp_flags; 17327 sopp.sopp_wroff = sopp_wroff; 17328 sopp.sopp_maxblk = sopp_maxblk; 17329 sopp.sopp_rxhiwat = sopp_rxhiwat; 17330 if (sopp_flags & SOCKOPT_TAIL) { 17331 ASSERT(tcp->tcp_kssl_ctx != NULL); 17332 ASSERT(sopp_flags & SOCKOPT_ZCOPY); 17333 sopp.sopp_tail = sopp_tail; 17334 sopp.sopp_zcopyflag = sopp_copyopt; 17335 } 17336 (*connp->conn_upcalls->su_set_proto_props) 17337 (connp->conn_upper_handle, &sopp); 17338 } else { 17339 struct stroptions *stropt; 17340 mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 17341 if (stropt_mp == NULL) { 17342 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 17343 return; 17344 } 17345 DB_TYPE(stropt_mp) = M_SETOPTS; 17346 stropt = (struct stroptions *)stropt_mp->b_rptr; 17347 stropt_mp->b_wptr += sizeof (struct stroptions); 17348 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 17349 stropt->so_hiwat = sopp_rxhiwat; 17350 stropt->so_wroff = sopp_wroff; 17351 stropt->so_maxblk = sopp_maxblk; 17352 17353 if (sopp_flags & SOCKOPT_TAIL) { 17354 ASSERT(tcp->tcp_kssl_ctx != NULL); 17355 17356 stropt->so_flags |= SO_TAIL | SO_COPYOPT; 17357 stropt->so_tail = sopp_tail; 17358 stropt->so_copyopt = sopp_copyopt; 17359 } 17360 17361 /* Send the options up */ 17362 putnext(q, stropt_mp); 17363 } 17364 17365 freemsg(mp); 17366 /* 17367 * Pass up any data and/or a fin that has been received. 17368 * 17369 * Adjust receive window in case it had decreased 17370 * (because there is data <=> tcp_rcv_list != NULL) 17371 * while the connection was detached. Note that 17372 * in case the eager was flow-controlled, w/o this 17373 * code, the rwnd may never open up again! 17374 */ 17375 if (tcp->tcp_rcv_list != NULL) { 17376 if (IPCL_IS_NONSTR(connp)) { 17377 mblk_t *mp; 17378 int space_left; 17379 int error; 17380 boolean_t push = B_TRUE; 17381 17382 if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv) 17383 (connp->conn_upper_handle, NULL, 0, 0, &error, 17384 &push) >= 0) { 17385 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 17386 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17387 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17388 tcp_xmit_ctl(NULL, 17389 tcp, (tcp->tcp_swnd == 0) ? 17390 tcp->tcp_suna : tcp->tcp_snxt, 17391 tcp->tcp_rnxt, TH_ACK); 17392 } 17393 } 17394 while ((mp = tcp->tcp_rcv_list) != NULL) { 17395 push = B_TRUE; 17396 tcp->tcp_rcv_list = mp->b_next; 17397 mp->b_next = NULL; 17398 space_left = (*connp->conn_upcalls->su_recv) 17399 (connp->conn_upper_handle, mp, msgdsize(mp), 17400 0, &error, &push); 17401 if (space_left < 0) { 17402 /* 17403 * We should never be in middle of a 17404 * fallback, the squeue guarantees that. 17405 */ 17406 ASSERT(error != EOPNOTSUPP); 17407 } 17408 } 17409 tcp->tcp_rcv_last_head = NULL; 17410 tcp->tcp_rcv_last_tail = NULL; 17411 tcp->tcp_rcv_cnt = 0; 17412 } else { 17413 /* We drain directly in case of fused tcp loopback */ 17414 17415 if (!tcp->tcp_fused && canputnext(q)) { 17416 tcp->tcp_rwnd = q->q_hiwat; 17417 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17418 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 17419 tcp_xmit_ctl(NULL, 17420 tcp, (tcp->tcp_swnd == 0) ? 17421 tcp->tcp_suna : tcp->tcp_snxt, 17422 tcp->tcp_rnxt, TH_ACK); 17423 } 17424 } 17425 17426 (void) tcp_rcv_drain(tcp); 17427 } 17428 17429 /* 17430 * For fused tcp loopback, back-enable peer endpoint 17431 * if it's currently flow-controlled. 17432 */ 17433 if (tcp->tcp_fused) { 17434 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17435 17436 ASSERT(peer_tcp != NULL); 17437 ASSERT(peer_tcp->tcp_fused); 17438 /* 17439 * In order to change the peer's tcp_flow_stopped, 17440 * we need to take locks for both end points. The 17441 * highest address is taken first. 17442 */ 17443 if (peer_tcp > tcp) { 17444 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17445 mutex_enter(&tcp->tcp_non_sq_lock); 17446 } else { 17447 mutex_enter(&tcp->tcp_non_sq_lock); 17448 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17449 } 17450 if (peer_tcp->tcp_flow_stopped) { 17451 tcp_clrqfull(peer_tcp); 17452 TCP_STAT(tcps, tcp_fusion_backenabled); 17453 } 17454 mutex_exit(&peer_tcp->tcp_non_sq_lock); 17455 mutex_exit(&tcp->tcp_non_sq_lock); 17456 } 17457 } 17458 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17459 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17460 tcp->tcp_ordrel_done = B_TRUE; 17461 if (IPCL_IS_NONSTR(connp)) { 17462 ASSERT(tcp->tcp_ordrel_mp == NULL); 17463 (*connp->conn_upcalls->su_opctl)( 17464 connp->conn_upper_handle, 17465 SOCK_OPCTL_SHUT_RECV, 0); 17466 } else { 17467 mp = tcp->tcp_ordrel_mp; 17468 tcp->tcp_ordrel_mp = NULL; 17469 putnext(q, mp); 17470 } 17471 } 17472 if (tcp->tcp_hard_binding) { 17473 tcp->tcp_hard_binding = B_FALSE; 17474 tcp->tcp_hard_bound = B_TRUE; 17475 } 17476 17477 /* We can enable synchronous streams for STREAMS tcp endpoint now */ 17478 if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) && 17479 tcp->tcp_loopback_peer != NULL && 17480 !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) { 17481 tcp_fuse_syncstr_enable_pair(tcp); 17482 } 17483 17484 if (tcp->tcp_ka_enabled) { 17485 tcp->tcp_ka_last_intrvl = 0; 17486 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17487 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17488 } 17489 17490 /* 17491 * At this point, eager is fully established and will 17492 * have the following references - 17493 * 17494 * 2 references for connection to exist (1 for TCP and 1 for IP). 17495 * 1 reference for the squeue which will be dropped by the squeue as 17496 * soon as this function returns. 17497 * There will be 1 additonal reference for being in classifier 17498 * hash list provided something bad hasn't happened. 17499 */ 17500 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17501 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17502 } 17503 17504 /* 17505 * The function called through squeue to get behind listener's perimeter to 17506 * send a deffered conn_ind. 17507 */ 17508 /* ARGSUSED */ 17509 void 17510 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17511 { 17512 conn_t *connp = (conn_t *)arg; 17513 tcp_t *listener = connp->conn_tcp; 17514 struct T_conn_ind *conn_ind; 17515 tcp_t *tcp; 17516 17517 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17518 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17519 conn_ind->OPT_length); 17520 17521 if (listener->tcp_state != TCPS_LISTEN) { 17522 /* 17523 * If listener has closed, it would have caused a 17524 * a cleanup/blowoff to happen for the eager, so 17525 * we don't need to do anything more. 17526 */ 17527 freemsg(mp); 17528 return; 17529 } 17530 17531 tcp_ulp_newconn(connp, tcp->tcp_connp, mp); 17532 } 17533 17534 /* ARGSUSED */ 17535 static int 17536 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr) 17537 { 17538 tcp_t *listener, *eager; 17539 mblk_t *opt_mp; 17540 struct tcp_options *tcpopt; 17541 17542 listener = lconnp->conn_tcp; 17543 ASSERT(listener->tcp_state == TCPS_LISTEN); 17544 eager = econnp->conn_tcp; 17545 ASSERT(eager->tcp_listener != NULL); 17546 17547 ASSERT(eager->tcp_rq != NULL); 17548 17549 opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI); 17550 if (opt_mp == NULL) { 17551 return (-TPROTO); 17552 } 17553 bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options)); 17554 eager->tcp_issocket = B_TRUE; 17555 17556 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 17557 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 17558 ASSERT(econnp->conn_netstack == 17559 listener->tcp_connp->conn_netstack); 17560 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 17561 17562 /* Put the ref for IP */ 17563 CONN_INC_REF(econnp); 17564 17565 /* 17566 * We should have minimum of 3 references on the conn 17567 * at this point. One each for TCP and IP and one for 17568 * the T_conn_ind that was sent up when the 3-way handshake 17569 * completed. In the normal case we would also have another 17570 * reference (making a total of 4) for the conn being in the 17571 * classifier hash list. However the eager could have received 17572 * an RST subsequently and tcp_closei_local could have removed 17573 * the eager from the classifier hash list, hence we can't 17574 * assert that reference. 17575 */ 17576 ASSERT(econnp->conn_ref >= 3); 17577 17578 opt_mp->b_datap->db_type = M_SETOPTS; 17579 opt_mp->b_wptr += sizeof (struct tcp_options); 17580 17581 /* 17582 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 17583 * from listener to acceptor. 17584 */ 17585 tcpopt = (struct tcp_options *)opt_mp->b_rptr; 17586 tcpopt->to_flags = 0; 17587 17588 if (listener->tcp_bound_if != 0) { 17589 tcpopt->to_flags |= TCPOPT_BOUNDIF; 17590 tcpopt->to_boundif = listener->tcp_bound_if; 17591 } 17592 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 17593 tcpopt->to_flags |= TCPOPT_RECVPKTINFO; 17594 } 17595 17596 mutex_enter(&listener->tcp_eager_lock); 17597 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 17598 17599 tcp_t *tail; 17600 tcp_t *tcp; 17601 mblk_t *mp1; 17602 17603 tcp = listener->tcp_eager_prev_q0; 17604 /* 17605 * listener->tcp_eager_prev_q0 points to the TAIL of the 17606 * deferred T_conn_ind queue. We need to get to the head 17607 * of the queue in order to send up T_conn_ind the same 17608 * order as how the 3WHS is completed. 17609 */ 17610 while (tcp != listener) { 17611 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 17612 !tcp->tcp_kssl_pending) 17613 break; 17614 else 17615 tcp = tcp->tcp_eager_prev_q0; 17616 } 17617 /* None of the pending eagers can be sent up now */ 17618 if (tcp == listener) 17619 goto no_more_eagers; 17620 17621 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 17622 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 17623 /* Move from q0 to q */ 17624 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 17625 listener->tcp_conn_req_cnt_q0--; 17626 listener->tcp_conn_req_cnt_q++; 17627 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 17628 tcp->tcp_eager_prev_q0; 17629 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 17630 tcp->tcp_eager_next_q0; 17631 tcp->tcp_eager_prev_q0 = NULL; 17632 tcp->tcp_eager_next_q0 = NULL; 17633 tcp->tcp_conn_def_q0 = B_FALSE; 17634 17635 /* Make sure the tcp isn't in the list of droppables */ 17636 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 17637 tcp->tcp_eager_prev_drop_q0 == NULL); 17638 17639 /* 17640 * Insert at end of the queue because sockfs sends 17641 * down T_CONN_RES in chronological order. Leaving 17642 * the older conn indications at front of the queue 17643 * helps reducing search time. 17644 */ 17645 tail = listener->tcp_eager_last_q; 17646 if (tail != NULL) { 17647 tail->tcp_eager_next_q = tcp; 17648 } else { 17649 listener->tcp_eager_next_q = tcp; 17650 } 17651 listener->tcp_eager_last_q = tcp; 17652 tcp->tcp_eager_next_q = NULL; 17653 17654 /* Need to get inside the listener perimeter */ 17655 CONN_INC_REF(listener->tcp_connp); 17656 SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1, 17657 tcp_send_pending, listener->tcp_connp, SQ_FILL, 17658 SQTAG_TCP_SEND_PENDING); 17659 } 17660 no_more_eagers: 17661 tcp_eager_unlink(eager); 17662 mutex_exit(&listener->tcp_eager_lock); 17663 17664 /* 17665 * At this point, the eager is detached from the listener 17666 * but we still have an extra refs on eager (apart from the 17667 * usual tcp references). The ref was placed in tcp_rput_data 17668 * before sending the conn_ind in tcp_send_conn_ind. 17669 * The ref will be dropped in tcp_accept_finish(). 17670 */ 17671 SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish, 17672 econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0); 17673 return (0); 17674 } 17675 17676 int 17677 tcp_accept(sock_lower_handle_t lproto_handle, 17678 sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle, 17679 cred_t *cr) 17680 { 17681 conn_t *lconnp, *econnp; 17682 tcp_t *listener, *eager; 17683 tcp_stack_t *tcps; 17684 17685 lconnp = (conn_t *)lproto_handle; 17686 listener = lconnp->conn_tcp; 17687 ASSERT(listener->tcp_state == TCPS_LISTEN); 17688 econnp = (conn_t *)eproto_handle; 17689 eager = econnp->conn_tcp; 17690 ASSERT(eager->tcp_listener != NULL); 17691 tcps = eager->tcp_tcps; 17692 17693 /* 17694 * It is OK to manipulate these fields outside the eager's squeue 17695 * because they will not start being used until tcp_accept_finish 17696 * has been called. 17697 */ 17698 ASSERT(lconnp->conn_upper_handle != NULL); 17699 ASSERT(econnp->conn_upper_handle == NULL); 17700 econnp->conn_upper_handle = sock_handle; 17701 econnp->conn_upcalls = lconnp->conn_upcalls; 17702 ASSERT(IPCL_IS_NONSTR(econnp)); 17703 /* 17704 * Create helper stream if it is a non-TPI TCP connection. 17705 */ 17706 if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) { 17707 ip1dbg(("tcp_accept: create of IP helper stream" 17708 " failed\n")); 17709 return (EPROTO); 17710 } 17711 eager->tcp_rq = econnp->conn_rq; 17712 eager->tcp_wq = econnp->conn_wq; 17713 17714 ASSERT(eager->tcp_rq != NULL); 17715 17716 return (tcp_accept_common(lconnp, econnp, cr)); 17717 } 17718 17719 17720 /* 17721 * This is the STREAMS entry point for T_CONN_RES coming down on 17722 * Acceptor STREAM when sockfs listener does accept processing. 17723 * Read the block comment on top of tcp_conn_request(). 17724 */ 17725 void 17726 tcp_tpi_accept(queue_t *q, mblk_t *mp) 17727 { 17728 queue_t *rq = RD(q); 17729 struct T_conn_res *conn_res; 17730 tcp_t *eager; 17731 tcp_t *listener; 17732 struct T_ok_ack *ok; 17733 t_scalar_t PRIM_type; 17734 conn_t *econnp; 17735 cred_t *cr; 17736 17737 ASSERT(DB_TYPE(mp) == M_PROTO); 17738 17739 /* 17740 * All Solaris components should pass a db_credp 17741 * for this TPI message, hence we ASSERT. 17742 * But in case there is some other M_PROTO that looks 17743 * like a TPI message sent by some other kernel 17744 * component, we check and return an error. 17745 */ 17746 cr = msg_getcred(mp, NULL); 17747 ASSERT(cr != NULL); 17748 if (cr == NULL) { 17749 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL); 17750 if (mp != NULL) 17751 putnext(rq, mp); 17752 return; 17753 } 17754 conn_res = (struct T_conn_res *)mp->b_rptr; 17755 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17756 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 17757 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17758 if (mp != NULL) 17759 putnext(rq, mp); 17760 return; 17761 } 17762 switch (conn_res->PRIM_type) { 17763 case O_T_CONN_RES: 17764 case T_CONN_RES: 17765 /* 17766 * We pass up an err ack if allocb fails. This will 17767 * cause sockfs to issue a T_DISCON_REQ which will cause 17768 * tcp_eager_blowoff to be called. sockfs will then call 17769 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 17770 * we need to do the allocb up here because we have to 17771 * make sure rq->q_qinfo->qi_qclose still points to the 17772 * correct function (tcp_tpi_close_accept) in case allocb 17773 * fails. 17774 */ 17775 bcopy(mp->b_rptr + conn_res->OPT_offset, 17776 &eager, conn_res->OPT_length); 17777 PRIM_type = conn_res->PRIM_type; 17778 mp->b_datap->db_type = M_PCPROTO; 17779 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 17780 ok = (struct T_ok_ack *)mp->b_rptr; 17781 ok->PRIM_type = T_OK_ACK; 17782 ok->CORRECT_prim = PRIM_type; 17783 econnp = eager->tcp_connp; 17784 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 17785 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 17786 eager->tcp_rq = rq; 17787 eager->tcp_wq = q; 17788 rq->q_ptr = econnp; 17789 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 17790 q->q_ptr = econnp; 17791 q->q_qinfo = &tcp_winit; 17792 listener = eager->tcp_listener; 17793 17794 if (tcp_accept_common(listener->tcp_connp, 17795 econnp, cr) < 0) { 17796 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 17797 if (mp != NULL) 17798 putnext(rq, mp); 17799 return; 17800 } 17801 17802 /* 17803 * Send the new local address also up to sockfs. There 17804 * should already be enough space in the mp that came 17805 * down from soaccept(). 17806 */ 17807 if (eager->tcp_family == AF_INET) { 17808 sin_t *sin; 17809 17810 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17811 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 17812 sin = (sin_t *)mp->b_wptr; 17813 mp->b_wptr += sizeof (sin_t); 17814 sin->sin_family = AF_INET; 17815 sin->sin_port = eager->tcp_lport; 17816 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 17817 } else { 17818 sin6_t *sin6; 17819 17820 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 17821 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 17822 sin6 = (sin6_t *)mp->b_wptr; 17823 mp->b_wptr += sizeof (sin6_t); 17824 sin6->sin6_family = AF_INET6; 17825 sin6->sin6_port = eager->tcp_lport; 17826 if (eager->tcp_ipversion == IPV4_VERSION) { 17827 sin6->sin6_flowinfo = 0; 17828 IN6_IPADDR_TO_V4MAPPED( 17829 eager->tcp_ipha->ipha_src, 17830 &sin6->sin6_addr); 17831 } else { 17832 ASSERT(eager->tcp_ip6h != NULL); 17833 sin6->sin6_flowinfo = 17834 eager->tcp_ip6h->ip6_vcf & 17835 ~IPV6_VERS_AND_FLOW_MASK; 17836 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 17837 } 17838 sin6->sin6_scope_id = 0; 17839 sin6->__sin6_src_id = 0; 17840 } 17841 17842 putnext(rq, mp); 17843 return; 17844 default: 17845 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 17846 if (mp != NULL) 17847 putnext(rq, mp); 17848 return; 17849 } 17850 } 17851 17852 static int 17853 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17854 { 17855 sin_t *sin = (sin_t *)sa; 17856 sin6_t *sin6 = (sin6_t *)sa; 17857 17858 switch (tcp->tcp_family) { 17859 case AF_INET: 17860 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17861 17862 if (*salenp < sizeof (sin_t)) 17863 return (EINVAL); 17864 17865 *sin = sin_null; 17866 sin->sin_family = AF_INET; 17867 if (tcp->tcp_state >= TCPS_BOUND) { 17868 sin->sin_port = tcp->tcp_lport; 17869 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 17870 } 17871 *salenp = sizeof (sin_t); 17872 break; 17873 17874 case AF_INET6: 17875 if (*salenp < sizeof (sin6_t)) 17876 return (EINVAL); 17877 17878 *sin6 = sin6_null; 17879 sin6->sin6_family = AF_INET6; 17880 if (tcp->tcp_state >= TCPS_BOUND) { 17881 sin6->sin6_port = tcp->tcp_lport; 17882 if (tcp->tcp_ipversion == IPV4_VERSION) { 17883 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 17884 &sin6->sin6_addr); 17885 } else { 17886 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 17887 } 17888 } 17889 *salenp = sizeof (sin6_t); 17890 break; 17891 } 17892 17893 return (0); 17894 } 17895 17896 static int 17897 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp) 17898 { 17899 sin_t *sin = (sin_t *)sa; 17900 sin6_t *sin6 = (sin6_t *)sa; 17901 17902 if (tcp->tcp_state < TCPS_SYN_RCVD) 17903 return (ENOTCONN); 17904 17905 switch (tcp->tcp_family) { 17906 case AF_INET: 17907 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 17908 17909 if (*salenp < sizeof (sin_t)) 17910 return (EINVAL); 17911 17912 *sin = sin_null; 17913 sin->sin_family = AF_INET; 17914 sin->sin_port = tcp->tcp_fport; 17915 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 17916 sin->sin_addr.s_addr); 17917 *salenp = sizeof (sin_t); 17918 break; 17919 17920 case AF_INET6: 17921 if (*salenp < sizeof (sin6_t)) 17922 return (EINVAL); 17923 17924 *sin6 = sin6_null; 17925 sin6->sin6_family = AF_INET6; 17926 sin6->sin6_port = tcp->tcp_fport; 17927 sin6->sin6_addr = tcp->tcp_remote_v6; 17928 if (tcp->tcp_ipversion == IPV6_VERSION) { 17929 sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf & 17930 ~IPV6_VERS_AND_FLOW_MASK; 17931 } 17932 *salenp = sizeof (sin6_t); 17933 break; 17934 } 17935 17936 return (0); 17937 } 17938 17939 /* 17940 * Handle special out-of-band ioctl requests (see PSARC/2008/265). 17941 */ 17942 static void 17943 tcp_wput_cmdblk(queue_t *q, mblk_t *mp) 17944 { 17945 void *data; 17946 mblk_t *datamp = mp->b_cont; 17947 tcp_t *tcp = Q_TO_TCP(q); 17948 cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr; 17949 17950 if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) { 17951 cmdp->cb_error = EPROTO; 17952 qreply(q, mp); 17953 return; 17954 } 17955 17956 data = datamp->b_rptr; 17957 17958 switch (cmdp->cb_cmd) { 17959 case TI_GETPEERNAME: 17960 cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len); 17961 break; 17962 case TI_GETMYNAME: 17963 cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len); 17964 break; 17965 default: 17966 cmdp->cb_error = EINVAL; 17967 break; 17968 } 17969 17970 qreply(q, mp); 17971 } 17972 17973 void 17974 tcp_wput(queue_t *q, mblk_t *mp) 17975 { 17976 conn_t *connp = Q_TO_CONN(q); 17977 tcp_t *tcp; 17978 void (*output_proc)(); 17979 t_scalar_t type; 17980 uchar_t *rptr; 17981 struct iocblk *iocp; 17982 size_t size; 17983 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 17984 17985 ASSERT(connp->conn_ref >= 2); 17986 17987 switch (DB_TYPE(mp)) { 17988 case M_DATA: 17989 tcp = connp->conn_tcp; 17990 ASSERT(tcp != NULL); 17991 17992 size = msgdsize(mp); 17993 17994 mutex_enter(&tcp->tcp_non_sq_lock); 17995 tcp->tcp_squeue_bytes += size; 17996 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 17997 tcp_setqfull(tcp); 17998 } 17999 mutex_exit(&tcp->tcp_non_sq_lock); 18000 18001 CONN_INC_REF(connp); 18002 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp, 18003 tcp_squeue_flag, SQTAG_TCP_OUTPUT); 18004 return; 18005 18006 case M_CMD: 18007 tcp_wput_cmdblk(q, mp); 18008 return; 18009 18010 case M_PROTO: 18011 case M_PCPROTO: 18012 /* 18013 * if it is a snmp message, don't get behind the squeue 18014 */ 18015 tcp = connp->conn_tcp; 18016 rptr = mp->b_rptr; 18017 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18018 type = ((union T_primitives *)rptr)->type; 18019 } else { 18020 if (tcp->tcp_debug) { 18021 (void) strlog(TCP_MOD_ID, 0, 1, 18022 SL_ERROR|SL_TRACE, 18023 "tcp_wput_proto, dropping one..."); 18024 } 18025 freemsg(mp); 18026 return; 18027 } 18028 if (type == T_SVR4_OPTMGMT_REQ) { 18029 /* 18030 * All Solaris components should pass a db_credp 18031 * for this TPI message, hence we ASSERT. 18032 * But in case there is some other M_PROTO that looks 18033 * like a TPI message sent by some other kernel 18034 * component, we check and return an error. 18035 */ 18036 cred_t *cr = msg_getcred(mp, NULL); 18037 18038 ASSERT(cr != NULL); 18039 if (cr == NULL) { 18040 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 18041 return; 18042 } 18043 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18044 cr)) { 18045 /* 18046 * This was a SNMP request 18047 */ 18048 return; 18049 } else { 18050 output_proc = tcp_wput_proto; 18051 } 18052 } else { 18053 output_proc = tcp_wput_proto; 18054 } 18055 break; 18056 case M_IOCTL: 18057 /* 18058 * Most ioctls can be processed right away without going via 18059 * squeues - process them right here. Those that do require 18060 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18061 * are processed by tcp_wput_ioctl(). 18062 */ 18063 iocp = (struct iocblk *)mp->b_rptr; 18064 tcp = connp->conn_tcp; 18065 18066 switch (iocp->ioc_cmd) { 18067 case TCP_IOC_ABORT_CONN: 18068 tcp_ioctl_abort_conn(q, mp); 18069 return; 18070 case TI_GETPEERNAME: 18071 case TI_GETMYNAME: 18072 mi_copyin(q, mp, NULL, 18073 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18074 return; 18075 case ND_SET: 18076 /* nd_getset does the necessary checks */ 18077 case ND_GET: 18078 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18079 CALL_IP_WPUT(connp, q, mp); 18080 return; 18081 } 18082 qreply(q, mp); 18083 return; 18084 case TCP_IOC_DEFAULT_Q: 18085 /* 18086 * Wants to be the default wq. Check the credentials 18087 * first, the rest is executed via squeue. 18088 */ 18089 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18090 iocp->ioc_error = EPERM; 18091 iocp->ioc_count = 0; 18092 mp->b_datap->db_type = M_IOCACK; 18093 qreply(q, mp); 18094 return; 18095 } 18096 output_proc = tcp_wput_ioctl; 18097 break; 18098 default: 18099 output_proc = tcp_wput_ioctl; 18100 break; 18101 } 18102 break; 18103 default: 18104 output_proc = tcp_wput_nondata; 18105 break; 18106 } 18107 18108 CONN_INC_REF(connp); 18109 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp, 18110 tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER); 18111 } 18112 18113 /* 18114 * Initial STREAMS write side put() procedure for sockets. It tries to 18115 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18116 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18117 * are handled by tcp_wput() as usual. 18118 * 18119 * All further messages will also be handled by tcp_wput() because we cannot 18120 * be sure that the above short cut is safe later. 18121 */ 18122 static void 18123 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18124 { 18125 conn_t *connp = Q_TO_CONN(wq); 18126 tcp_t *tcp = connp->conn_tcp; 18127 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18128 18129 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18130 wq->q_qinfo = &tcp_winit; 18131 18132 ASSERT(IPCL_IS_TCP(connp)); 18133 ASSERT(TCP_IS_SOCKET(tcp)); 18134 18135 if (DB_TYPE(mp) == M_PCPROTO && 18136 MBLKL(mp) == sizeof (struct T_capability_req) && 18137 car->PRIM_type == T_CAPABILITY_REQ) { 18138 tcp_capability_req(tcp, mp); 18139 return; 18140 } 18141 18142 tcp_wput(wq, mp); 18143 } 18144 18145 /* ARGSUSED */ 18146 static void 18147 tcp_wput_fallback(queue_t *wq, mblk_t *mp) 18148 { 18149 #ifdef DEBUG 18150 cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n"); 18151 #endif 18152 freemsg(mp); 18153 } 18154 18155 static boolean_t 18156 tcp_zcopy_check(tcp_t *tcp) 18157 { 18158 conn_t *connp = tcp->tcp_connp; 18159 ire_t *ire; 18160 boolean_t zc_enabled = B_FALSE; 18161 tcp_stack_t *tcps = tcp->tcp_tcps; 18162 18163 if (do_tcpzcopy == 2) 18164 zc_enabled = B_TRUE; 18165 else if (tcp->tcp_ipversion == IPV4_VERSION && 18166 IPCL_IS_CONNECTED(connp) && 18167 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18168 connp->conn_dontroute == 0 && 18169 !connp->conn_nexthop_set && 18170 connp->conn_outgoing_ill == NULL && 18171 do_tcpzcopy == 1) { 18172 /* 18173 * the checks above closely resemble the fast path checks 18174 * in tcp_send_data(). 18175 */ 18176 mutex_enter(&connp->conn_lock); 18177 ire = connp->conn_ire_cache; 18178 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18179 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18180 IRE_REFHOLD(ire); 18181 if (ire->ire_stq != NULL) { 18182 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18183 18184 zc_enabled = ill && (ill->ill_capabilities & 18185 ILL_CAPAB_ZEROCOPY) && 18186 (ill->ill_zerocopy_capab-> 18187 ill_zerocopy_flags != 0); 18188 } 18189 IRE_REFRELE(ire); 18190 } 18191 mutex_exit(&connp->conn_lock); 18192 } 18193 tcp->tcp_snd_zcopy_on = zc_enabled; 18194 if (!TCP_IS_DETACHED(tcp)) { 18195 if (zc_enabled) { 18196 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18197 ZCVMSAFE); 18198 TCP_STAT(tcps, tcp_zcopy_on); 18199 } else { 18200 (void) proto_set_tx_copyopt(tcp->tcp_rq, connp, 18201 ZCVMUNSAFE); 18202 TCP_STAT(tcps, tcp_zcopy_off); 18203 } 18204 } 18205 return (zc_enabled); 18206 } 18207 18208 static mblk_t * 18209 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18210 { 18211 tcp_stack_t *tcps = tcp->tcp_tcps; 18212 18213 if (do_tcpzcopy == 2) 18214 return (bp); 18215 else if (tcp->tcp_snd_zcopy_on) { 18216 tcp->tcp_snd_zcopy_on = B_FALSE; 18217 if (!TCP_IS_DETACHED(tcp)) { 18218 (void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp, 18219 ZCVMUNSAFE); 18220 TCP_STAT(tcps, tcp_zcopy_disable); 18221 } 18222 } 18223 return (tcp_zcopy_backoff(tcp, bp, 0)); 18224 } 18225 18226 /* 18227 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18228 * the original desballoca'ed segmapped mblk. 18229 */ 18230 static mblk_t * 18231 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18232 { 18233 mblk_t *head, *tail, *nbp; 18234 tcp_stack_t *tcps = tcp->tcp_tcps; 18235 18236 if (IS_VMLOANED_MBLK(bp)) { 18237 TCP_STAT(tcps, tcp_zcopy_backoff); 18238 if ((head = copyb(bp)) == NULL) { 18239 /* fail to backoff; leave it for the next backoff */ 18240 tcp->tcp_xmit_zc_clean = B_FALSE; 18241 return (bp); 18242 } 18243 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18244 if (fix_xmitlist) 18245 tcp_zcopy_notify(tcp); 18246 else 18247 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18248 } 18249 nbp = bp->b_cont; 18250 if (fix_xmitlist) { 18251 head->b_prev = bp->b_prev; 18252 head->b_next = bp->b_next; 18253 if (tcp->tcp_xmit_tail == bp) 18254 tcp->tcp_xmit_tail = head; 18255 } 18256 bp->b_next = NULL; 18257 bp->b_prev = NULL; 18258 freeb(bp); 18259 } else { 18260 head = bp; 18261 nbp = bp->b_cont; 18262 } 18263 tail = head; 18264 while (nbp) { 18265 if (IS_VMLOANED_MBLK(nbp)) { 18266 TCP_STAT(tcps, tcp_zcopy_backoff); 18267 if ((tail->b_cont = copyb(nbp)) == NULL) { 18268 tcp->tcp_xmit_zc_clean = B_FALSE; 18269 tail->b_cont = nbp; 18270 return (head); 18271 } 18272 tail = tail->b_cont; 18273 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18274 if (fix_xmitlist) 18275 tcp_zcopy_notify(tcp); 18276 else 18277 tail->b_datap->db_struioflag |= 18278 STRUIO_ZCNOTIFY; 18279 } 18280 bp = nbp; 18281 nbp = nbp->b_cont; 18282 if (fix_xmitlist) { 18283 tail->b_prev = bp->b_prev; 18284 tail->b_next = bp->b_next; 18285 if (tcp->tcp_xmit_tail == bp) 18286 tcp->tcp_xmit_tail = tail; 18287 } 18288 bp->b_next = NULL; 18289 bp->b_prev = NULL; 18290 freeb(bp); 18291 } else { 18292 tail->b_cont = nbp; 18293 tail = nbp; 18294 nbp = nbp->b_cont; 18295 } 18296 } 18297 if (fix_xmitlist) { 18298 tcp->tcp_xmit_last = tail; 18299 tcp->tcp_xmit_zc_clean = B_TRUE; 18300 } 18301 return (head); 18302 } 18303 18304 static void 18305 tcp_zcopy_notify(tcp_t *tcp) 18306 { 18307 struct stdata *stp; 18308 conn_t *connp; 18309 18310 if (tcp->tcp_detached) 18311 return; 18312 connp = tcp->tcp_connp; 18313 if (IPCL_IS_NONSTR(connp)) { 18314 (*connp->conn_upcalls->su_zcopy_notify) 18315 (connp->conn_upper_handle); 18316 return; 18317 } 18318 stp = STREAM(tcp->tcp_rq); 18319 mutex_enter(&stp->sd_lock); 18320 stp->sd_flag |= STZCNOTIFY; 18321 cv_broadcast(&stp->sd_zcopy_wait); 18322 mutex_exit(&stp->sd_lock); 18323 } 18324 18325 static boolean_t 18326 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18327 { 18328 ire_t *ire; 18329 conn_t *connp = tcp->tcp_connp; 18330 tcp_stack_t *tcps = tcp->tcp_tcps; 18331 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18332 18333 mutex_enter(&connp->conn_lock); 18334 ire = connp->conn_ire_cache; 18335 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18336 18337 if ((ire != NULL) && 18338 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18339 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18340 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18341 IRE_REFHOLD(ire); 18342 mutex_exit(&connp->conn_lock); 18343 } else { 18344 boolean_t cached = B_FALSE; 18345 ts_label_t *tsl; 18346 18347 /* force a recheck later on */ 18348 tcp->tcp_ire_ill_check_done = B_FALSE; 18349 18350 TCP_DBGSTAT(tcps, tcp_ire_null1); 18351 connp->conn_ire_cache = NULL; 18352 mutex_exit(&connp->conn_lock); 18353 18354 if (ire != NULL) 18355 IRE_REFRELE_NOTR(ire); 18356 18357 tsl = crgetlabel(CONN_CRED(connp)); 18358 ire = (dst ? 18359 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18360 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18361 connp->conn_zoneid, tsl, ipst)); 18362 18363 if (ire == NULL) { 18364 TCP_STAT(tcps, tcp_ire_null); 18365 return (B_FALSE); 18366 } 18367 18368 IRE_REFHOLD_NOTR(ire); 18369 18370 mutex_enter(&connp->conn_lock); 18371 if (CONN_CACHE_IRE(connp)) { 18372 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18373 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18374 TCP_CHECK_IREINFO(tcp, ire); 18375 connp->conn_ire_cache = ire; 18376 cached = B_TRUE; 18377 } 18378 rw_exit(&ire->ire_bucket->irb_lock); 18379 } 18380 mutex_exit(&connp->conn_lock); 18381 18382 /* 18383 * We can continue to use the ire but since it was 18384 * not cached, we should drop the extra reference. 18385 */ 18386 if (!cached) 18387 IRE_REFRELE_NOTR(ire); 18388 18389 /* 18390 * Rampart note: no need to select a new label here, since 18391 * labels are not allowed to change during the life of a TCP 18392 * connection. 18393 */ 18394 } 18395 18396 *irep = ire; 18397 18398 return (B_TRUE); 18399 } 18400 18401 /* 18402 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18403 * 18404 * 0 = success; 18405 * 1 = failed to find ire and ill. 18406 */ 18407 static boolean_t 18408 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18409 { 18410 ipha_t *ipha; 18411 ipaddr_t dst; 18412 ire_t *ire; 18413 ill_t *ill; 18414 mblk_t *ire_fp_mp; 18415 tcp_stack_t *tcps = tcp->tcp_tcps; 18416 18417 if (mp != NULL) 18418 ipha = (ipha_t *)mp->b_rptr; 18419 else 18420 ipha = tcp->tcp_ipha; 18421 dst = ipha->ipha_dst; 18422 18423 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18424 return (B_FALSE); 18425 18426 if ((ire->ire_flags & RTF_MULTIRT) || 18427 (ire->ire_stq == NULL) || 18428 (ire->ire_nce == NULL) || 18429 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18430 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18431 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18432 TCP_STAT(tcps, tcp_ip_ire_send); 18433 IRE_REFRELE(ire); 18434 return (B_FALSE); 18435 } 18436 18437 ill = ire_to_ill(ire); 18438 ASSERT(ill != NULL); 18439 18440 if (!tcp->tcp_ire_ill_check_done) { 18441 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18442 tcp->tcp_ire_ill_check_done = B_TRUE; 18443 } 18444 18445 *irep = ire; 18446 *illp = ill; 18447 18448 return (B_TRUE); 18449 } 18450 18451 static void 18452 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18453 { 18454 ipha_t *ipha; 18455 ipaddr_t src; 18456 ipaddr_t dst; 18457 uint32_t cksum; 18458 ire_t *ire; 18459 uint16_t *up; 18460 ill_t *ill; 18461 conn_t *connp = tcp->tcp_connp; 18462 uint32_t hcksum_txflags = 0; 18463 mblk_t *ire_fp_mp; 18464 uint_t ire_fp_mp_len; 18465 tcp_stack_t *tcps = tcp->tcp_tcps; 18466 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18467 cred_t *cr; 18468 pid_t cpid; 18469 18470 ASSERT(DB_TYPE(mp) == M_DATA); 18471 18472 /* 18473 * Here we need to handle the overloading of the cred_t for 18474 * both getpeerucred and TX. 18475 * If this is a SYN then the caller already set db_credp so 18476 * that getpeerucred will work. But if TX is in use we might have 18477 * a conn_effective_cred which is different, and we need to use that 18478 * cred to make TX use the correct label and label dependent route. 18479 */ 18480 if (is_system_labeled()) { 18481 cr = msg_getcred(mp, &cpid); 18482 if (cr == NULL || connp->conn_effective_cred != NULL) 18483 mblk_setcred(mp, CONN_CRED(connp), cpid); 18484 } 18485 18486 ipha = (ipha_t *)mp->b_rptr; 18487 src = ipha->ipha_src; 18488 dst = ipha->ipha_dst; 18489 18490 ASSERT(q != NULL); 18491 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 18492 18493 /* 18494 * Drop off fast path for IPv6 and also if options are present or 18495 * we need to resolve a TS label. 18496 */ 18497 if (tcp->tcp_ipversion != IPV4_VERSION || 18498 !IPCL_IS_CONNECTED(connp) || 18499 !CONN_IS_LSO_MD_FASTPATH(connp) || 18500 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18501 !connp->conn_ulp_labeled || 18502 ipha->ipha_ident == IP_HDR_INCLUDED || 18503 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18504 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18505 if (tcp->tcp_snd_zcopy_aware) 18506 mp = tcp_zcopy_disable(tcp, mp); 18507 TCP_STAT(tcps, tcp_ip_send); 18508 CALL_IP_WPUT(connp, q, mp); 18509 return; 18510 } 18511 18512 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18513 if (tcp->tcp_snd_zcopy_aware) 18514 mp = tcp_zcopy_backoff(tcp, mp, 0); 18515 CALL_IP_WPUT(connp, q, mp); 18516 return; 18517 } 18518 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18519 ire_fp_mp_len = MBLKL(ire_fp_mp); 18520 18521 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18522 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18523 #ifndef _BIG_ENDIAN 18524 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18525 #endif 18526 18527 /* 18528 * Check to see if we need to re-enable LSO/MDT for this connection 18529 * because it was previously disabled due to changes in the ill; 18530 * note that by doing it here, this re-enabling only applies when 18531 * the packet is not dispatched through CALL_IP_WPUT(). 18532 * 18533 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18534 * case, since that's how we ended up here. For IPv6, we do the 18535 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18536 */ 18537 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18538 /* 18539 * Restore LSO for this connection, so that next time around 18540 * it is eligible to go through tcp_lsosend() path again. 18541 */ 18542 TCP_STAT(tcps, tcp_lso_enabled); 18543 tcp->tcp_lso = B_TRUE; 18544 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18545 "interface %s\n", (void *)connp, ill->ill_name)); 18546 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18547 /* 18548 * Restore MDT for this connection, so that next time around 18549 * it is eligible to go through tcp_multisend() path again. 18550 */ 18551 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 18552 tcp->tcp_mdt = B_TRUE; 18553 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18554 "interface %s\n", (void *)connp, ill->ill_name)); 18555 } 18556 18557 if (tcp->tcp_snd_zcopy_aware) { 18558 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18559 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18560 mp = tcp_zcopy_disable(tcp, mp); 18561 /* 18562 * we shouldn't need to reset ipha as the mp containing 18563 * ipha should never be a zero-copy mp. 18564 */ 18565 } 18566 18567 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18568 ASSERT(ill->ill_hcksum_capab != NULL); 18569 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18570 } 18571 18572 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18573 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18574 18575 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18576 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18577 18578 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18579 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18580 18581 /* Software checksum? */ 18582 if (DB_CKSUMFLAGS(mp) == 0) { 18583 TCP_STAT(tcps, tcp_out_sw_cksum); 18584 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 18585 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18586 } 18587 18588 /* Calculate IP header checksum if hardware isn't capable */ 18589 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18590 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18591 ((uint16_t *)ipha)[4]); 18592 } 18593 18594 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18595 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18596 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18597 18598 UPDATE_OB_PKT_COUNT(ire); 18599 ire->ire_last_used_time = lbolt; 18600 18601 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18602 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18603 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18604 ntohs(ipha->ipha_length)); 18605 18606 DTRACE_PROBE4(ip4__physical__out__start, 18607 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 18608 FW_HOOKS(ipst->ips_ip4_physical_out_event, 18609 ipst->ips_ipv4firewall_physical_out, 18610 NULL, ill, ipha, mp, mp, 0, ipst); 18611 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18612 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 18613 18614 if (mp != NULL) { 18615 if (ipst->ips_ipobs_enabled) { 18616 zoneid_t szone; 18617 18618 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 18619 ipst, ALL_ZONES); 18620 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 18621 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 18622 } 18623 18624 ILL_SEND_TX(ill, ire, connp, mp, 0, NULL); 18625 } 18626 18627 IRE_REFRELE(ire); 18628 } 18629 18630 /* 18631 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18632 * if the receiver shrinks the window, i.e. moves the right window to the 18633 * left, the we should not send new data, but should retransmit normally the 18634 * old unacked data between suna and suna + swnd. We might has sent data 18635 * that is now outside the new window, pretend that we didn't send it. 18636 */ 18637 static void 18638 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18639 { 18640 uint32_t snxt = tcp->tcp_snxt; 18641 mblk_t *xmit_tail; 18642 int32_t offset; 18643 18644 ASSERT(shrunk_count > 0); 18645 18646 /* Pretend we didn't send the data outside the window */ 18647 snxt -= shrunk_count; 18648 18649 /* Get the mblk and the offset in it per the shrunk window */ 18650 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18651 18652 ASSERT(xmit_tail != NULL); 18653 18654 /* Reset all the values per the now shrunk window */ 18655 tcp->tcp_snxt = snxt; 18656 tcp->tcp_xmit_tail = xmit_tail; 18657 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18658 offset; 18659 tcp->tcp_unsent += shrunk_count; 18660 18661 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18662 /* 18663 * Make sure the timer is running so that we will probe a zero 18664 * window. 18665 */ 18666 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18667 } 18668 18669 18670 /* 18671 * The TCP normal data output path. 18672 * NOTE: the logic of the fast path is duplicated from this function. 18673 */ 18674 static void 18675 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18676 { 18677 int len; 18678 mblk_t *local_time; 18679 mblk_t *mp1; 18680 uint32_t snxt; 18681 int tail_unsent; 18682 int tcpstate; 18683 int usable = 0; 18684 mblk_t *xmit_tail; 18685 queue_t *q = tcp->tcp_wq; 18686 int32_t mss; 18687 int32_t num_sack_blk = 0; 18688 int32_t tcp_hdr_len; 18689 int32_t tcp_tcp_hdr_len; 18690 int mdt_thres; 18691 int rc; 18692 tcp_stack_t *tcps = tcp->tcp_tcps; 18693 ip_stack_t *ipst; 18694 18695 tcpstate = tcp->tcp_state; 18696 if (mp == NULL) { 18697 /* 18698 * tcp_wput_data() with NULL mp should only be called when 18699 * there is unsent data. 18700 */ 18701 ASSERT(tcp->tcp_unsent > 0); 18702 /* Really tacky... but we need this for detached closes. */ 18703 len = tcp->tcp_unsent; 18704 goto data_null; 18705 } 18706 18707 #if CCS_STATS 18708 wrw_stats.tot.count++; 18709 wrw_stats.tot.bytes += msgdsize(mp); 18710 #endif 18711 ASSERT(mp->b_datap->db_type == M_DATA); 18712 /* 18713 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18714 * or before a connection attempt has begun. 18715 */ 18716 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18717 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18718 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18719 #ifdef DEBUG 18720 cmn_err(CE_WARN, 18721 "tcp_wput_data: data after ordrel, %s", 18722 tcp_display(tcp, NULL, 18723 DISP_ADDR_AND_PORT)); 18724 #else 18725 if (tcp->tcp_debug) { 18726 (void) strlog(TCP_MOD_ID, 0, 1, 18727 SL_TRACE|SL_ERROR, 18728 "tcp_wput_data: data after ordrel, %s\n", 18729 tcp_display(tcp, NULL, 18730 DISP_ADDR_AND_PORT)); 18731 } 18732 #endif /* DEBUG */ 18733 } 18734 if (tcp->tcp_snd_zcopy_aware && 18735 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18736 tcp_zcopy_notify(tcp); 18737 freemsg(mp); 18738 mutex_enter(&tcp->tcp_non_sq_lock); 18739 if (tcp->tcp_flow_stopped && 18740 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18741 tcp_clrqfull(tcp); 18742 } 18743 mutex_exit(&tcp->tcp_non_sq_lock); 18744 return; 18745 } 18746 18747 /* Strip empties */ 18748 for (;;) { 18749 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18750 (uintptr_t)INT_MAX); 18751 len = (int)(mp->b_wptr - mp->b_rptr); 18752 if (len > 0) 18753 break; 18754 mp1 = mp; 18755 mp = mp->b_cont; 18756 freeb(mp1); 18757 if (!mp) { 18758 return; 18759 } 18760 } 18761 18762 /* If we are the first on the list ... */ 18763 if (tcp->tcp_xmit_head == NULL) { 18764 tcp->tcp_xmit_head = mp; 18765 tcp->tcp_xmit_tail = mp; 18766 tcp->tcp_xmit_tail_unsent = len; 18767 } else { 18768 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18769 struct datab *dp; 18770 18771 mp1 = tcp->tcp_xmit_last; 18772 if (len < tcp_tx_pull_len && 18773 (dp = mp1->b_datap)->db_ref == 1 && 18774 dp->db_lim - mp1->b_wptr >= len) { 18775 ASSERT(len > 0); 18776 ASSERT(!mp1->b_cont); 18777 if (len == 1) { 18778 *mp1->b_wptr++ = *mp->b_rptr; 18779 } else { 18780 bcopy(mp->b_rptr, mp1->b_wptr, len); 18781 mp1->b_wptr += len; 18782 } 18783 if (mp1 == tcp->tcp_xmit_tail) 18784 tcp->tcp_xmit_tail_unsent += len; 18785 mp1->b_cont = mp->b_cont; 18786 if (tcp->tcp_snd_zcopy_aware && 18787 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18788 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18789 freeb(mp); 18790 mp = mp1; 18791 } else { 18792 tcp->tcp_xmit_last->b_cont = mp; 18793 } 18794 len += tcp->tcp_unsent; 18795 } 18796 18797 /* Tack on however many more positive length mblks we have */ 18798 if ((mp1 = mp->b_cont) != NULL) { 18799 do { 18800 int tlen; 18801 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 18802 (uintptr_t)INT_MAX); 18803 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 18804 if (tlen <= 0) { 18805 mp->b_cont = mp1->b_cont; 18806 freeb(mp1); 18807 } else { 18808 len += tlen; 18809 mp = mp1; 18810 } 18811 } while ((mp1 = mp->b_cont) != NULL); 18812 } 18813 tcp->tcp_xmit_last = mp; 18814 tcp->tcp_unsent = len; 18815 18816 if (urgent) 18817 usable = 1; 18818 18819 data_null: 18820 snxt = tcp->tcp_snxt; 18821 xmit_tail = tcp->tcp_xmit_tail; 18822 tail_unsent = tcp->tcp_xmit_tail_unsent; 18823 18824 /* 18825 * Note that tcp_mss has been adjusted to take into account the 18826 * timestamp option if applicable. Because SACK options do not 18827 * appear in every TCP segments and they are of variable lengths, 18828 * they cannot be included in tcp_mss. Thus we need to calculate 18829 * the actual segment length when we need to send a segment which 18830 * includes SACK options. 18831 */ 18832 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 18833 int32_t opt_len; 18834 18835 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 18836 tcp->tcp_num_sack_blk); 18837 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 18838 2 + TCPOPT_HEADER_LEN; 18839 mss = tcp->tcp_mss - opt_len; 18840 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 18841 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 18842 } else { 18843 mss = tcp->tcp_mss; 18844 tcp_hdr_len = tcp->tcp_hdr_len; 18845 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 18846 } 18847 18848 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 18849 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 18850 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 18851 } 18852 if (tcpstate == TCPS_SYN_RCVD) { 18853 /* 18854 * The three-way connection establishment handshake is not 18855 * complete yet. We want to queue the data for transmission 18856 * after entering ESTABLISHED state (RFC793). A jump to 18857 * "done" label effectively leaves data on the queue. 18858 */ 18859 goto done; 18860 } else { 18861 int usable_r; 18862 18863 /* 18864 * In the special case when cwnd is zero, which can only 18865 * happen if the connection is ECN capable, return now. 18866 * New segments is sent using tcp_timer(). The timer 18867 * is set in tcp_rput_data(). 18868 */ 18869 if (tcp->tcp_cwnd == 0) { 18870 /* 18871 * Note that tcp_cwnd is 0 before 3-way handshake is 18872 * finished. 18873 */ 18874 ASSERT(tcp->tcp_ecn_ok || 18875 tcp->tcp_state < TCPS_ESTABLISHED); 18876 return; 18877 } 18878 18879 /* NOTE: trouble if xmitting while SYN not acked? */ 18880 usable_r = snxt - tcp->tcp_suna; 18881 usable_r = tcp->tcp_swnd - usable_r; 18882 18883 /* 18884 * Check if the receiver has shrunk the window. If 18885 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 18886 * cannot be set as there is unsent data, so FIN cannot 18887 * be sent out. Otherwise, we need to take into account 18888 * of FIN as it consumes an "invisible" sequence number. 18889 */ 18890 ASSERT(tcp->tcp_fin_sent == 0); 18891 if (usable_r < 0) { 18892 /* 18893 * The receiver has shrunk the window and we have sent 18894 * -usable_r date beyond the window, re-adjust. 18895 * 18896 * If TCP window scaling is enabled, there can be 18897 * round down error as the advertised receive window 18898 * is actually right shifted n bits. This means that 18899 * the lower n bits info is wiped out. It will look 18900 * like the window is shrunk. Do a check here to 18901 * see if the shrunk amount is actually within the 18902 * error in window calculation. If it is, just 18903 * return. Note that this check is inside the 18904 * shrunk window check. This makes sure that even 18905 * though tcp_process_shrunk_swnd() is not called, 18906 * we will stop further processing. 18907 */ 18908 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 18909 tcp_process_shrunk_swnd(tcp, -usable_r); 18910 } 18911 return; 18912 } 18913 18914 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 18915 if (tcp->tcp_swnd > tcp->tcp_cwnd) 18916 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 18917 18918 /* usable = MIN(usable, unsent) */ 18919 if (usable_r > len) 18920 usable_r = len; 18921 18922 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 18923 if (usable_r > 0) { 18924 usable = usable_r; 18925 } else { 18926 /* Bypass all other unnecessary processing. */ 18927 goto done; 18928 } 18929 } 18930 18931 local_time = (mblk_t *)lbolt; 18932 18933 /* 18934 * "Our" Nagle Algorithm. This is not the same as in the old 18935 * BSD. This is more in line with the true intent of Nagle. 18936 * 18937 * The conditions are: 18938 * 1. The amount of unsent data (or amount of data which can be 18939 * sent, whichever is smaller) is less than Nagle limit. 18940 * 2. The last sent size is also less than Nagle limit. 18941 * 3. There is unack'ed data. 18942 * 4. Urgent pointer is not set. Send urgent data ignoring the 18943 * Nagle algorithm. This reduces the probability that urgent 18944 * bytes get "merged" together. 18945 * 5. The app has not closed the connection. This eliminates the 18946 * wait time of the receiving side waiting for the last piece of 18947 * (small) data. 18948 * 18949 * If all are satisified, exit without sending anything. Note 18950 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 18951 * the smaller of 1 MSS and global tcp_naglim_def (default to be 18952 * 4095). 18953 */ 18954 if (usable < (int)tcp->tcp_naglim && 18955 tcp->tcp_naglim > tcp->tcp_last_sent_len && 18956 snxt != tcp->tcp_suna && 18957 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 18958 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 18959 goto done; 18960 } 18961 18962 /* 18963 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option 18964 * is set, then we have to force TCP not to send partial segment 18965 * (smaller than MSS bytes). We are calculating the usable now 18966 * based on full mss and will save the rest of remaining data for 18967 * later. When tcp_zero_win_probe is set, TCP needs to send out 18968 * something to do zero window probe. 18969 */ 18970 if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) { 18971 if (usable < mss) 18972 goto done; 18973 usable = (usable / mss) * mss; 18974 } 18975 18976 /* Update the latest receive window size in TCP header. */ 18977 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 18978 tcp->tcp_tcph->th_win); 18979 18980 /* 18981 * Determine if it's worthwhile to attempt LSO or MDT, based on: 18982 * 18983 * 1. Simple TCP/IP{v4,v6} (no options). 18984 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 18985 * 3. If the TCP connection is in ESTABLISHED state. 18986 * 4. The TCP is not detached. 18987 * 18988 * If any of the above conditions have changed during the 18989 * connection, stop using LSO/MDT and restore the stream head 18990 * parameters accordingly. 18991 */ 18992 ipst = tcps->tcps_netstack->netstack_ip; 18993 18994 if ((tcp->tcp_lso || tcp->tcp_mdt) && 18995 ((tcp->tcp_ipversion == IPV4_VERSION && 18996 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 18997 (tcp->tcp_ipversion == IPV6_VERSION && 18998 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 18999 tcp->tcp_state != TCPS_ESTABLISHED || 19000 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19001 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19002 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19003 if (tcp->tcp_lso) { 19004 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19005 tcp->tcp_lso = B_FALSE; 19006 } else { 19007 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19008 tcp->tcp_mdt = B_FALSE; 19009 } 19010 19011 /* Anything other than detached is considered pathological */ 19012 if (!TCP_IS_DETACHED(tcp)) { 19013 if (tcp->tcp_lso) 19014 TCP_STAT(tcps, tcp_lso_disabled); 19015 else 19016 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19017 (void) tcp_maxpsz_set(tcp, B_TRUE); 19018 } 19019 } 19020 19021 /* Use MDT if sendable amount is greater than the threshold */ 19022 if (tcp->tcp_mdt && 19023 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19024 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19025 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19026 (tcp->tcp_valid_bits == 0 || 19027 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19028 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19029 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19030 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19031 local_time, mdt_thres); 19032 } else { 19033 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19034 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19035 local_time, INT_MAX); 19036 } 19037 19038 /* Pretend that all we were trying to send really got sent */ 19039 if (rc < 0 && tail_unsent < 0) { 19040 do { 19041 xmit_tail = xmit_tail->b_cont; 19042 xmit_tail->b_prev = local_time; 19043 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19044 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19045 tail_unsent += (int)(xmit_tail->b_wptr - 19046 xmit_tail->b_rptr); 19047 } while (tail_unsent < 0); 19048 } 19049 done:; 19050 tcp->tcp_xmit_tail = xmit_tail; 19051 tcp->tcp_xmit_tail_unsent = tail_unsent; 19052 len = tcp->tcp_snxt - snxt; 19053 if (len) { 19054 /* 19055 * If new data was sent, need to update the notsack 19056 * list, which is, afterall, data blocks that have 19057 * not been sack'ed by the receiver. New data is 19058 * not sack'ed. 19059 */ 19060 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19061 /* len is a negative value. */ 19062 tcp->tcp_pipe -= len; 19063 tcp_notsack_update(&(tcp->tcp_notsack_list), 19064 tcp->tcp_snxt, snxt, 19065 &(tcp->tcp_num_notsack_blk), 19066 &(tcp->tcp_cnt_notsack_list)); 19067 } 19068 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19069 tcp->tcp_rack = tcp->tcp_rnxt; 19070 tcp->tcp_rack_cnt = 0; 19071 if ((snxt + len) == tcp->tcp_suna) { 19072 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19073 } 19074 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19075 /* 19076 * Didn't send anything. Make sure the timer is running 19077 * so that we will probe a zero window. 19078 */ 19079 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19080 } 19081 /* Note that len is the amount we just sent but with a negative sign */ 19082 tcp->tcp_unsent += len; 19083 mutex_enter(&tcp->tcp_non_sq_lock); 19084 if (tcp->tcp_flow_stopped) { 19085 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19086 tcp_clrqfull(tcp); 19087 } 19088 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19089 tcp_setqfull(tcp); 19090 } 19091 mutex_exit(&tcp->tcp_non_sq_lock); 19092 } 19093 19094 /* 19095 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19096 * outgoing TCP header with the template header, as well as other 19097 * options such as time-stamp, ECN and/or SACK. 19098 */ 19099 static void 19100 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19101 { 19102 tcph_t *tcp_tmpl, *tcp_h; 19103 uint32_t *dst, *src; 19104 int hdrlen; 19105 19106 ASSERT(OK_32PTR(rptr)); 19107 19108 /* Template header */ 19109 tcp_tmpl = tcp->tcp_tcph; 19110 19111 /* Header of outgoing packet */ 19112 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19113 19114 /* dst and src are opaque 32-bit fields, used for copying */ 19115 dst = (uint32_t *)rptr; 19116 src = (uint32_t *)tcp->tcp_iphc; 19117 hdrlen = tcp->tcp_hdr_len; 19118 19119 /* Fill time-stamp option if needed */ 19120 if (tcp->tcp_snd_ts_ok) { 19121 U32_TO_BE32((uint32_t)now, 19122 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19123 U32_TO_BE32(tcp->tcp_ts_recent, 19124 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19125 } else { 19126 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19127 } 19128 19129 /* 19130 * Copy the template header; is this really more efficient than 19131 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19132 * but perhaps not for other scenarios. 19133 */ 19134 dst[0] = src[0]; 19135 dst[1] = src[1]; 19136 dst[2] = src[2]; 19137 dst[3] = src[3]; 19138 dst[4] = src[4]; 19139 dst[5] = src[5]; 19140 dst[6] = src[6]; 19141 dst[7] = src[7]; 19142 dst[8] = src[8]; 19143 dst[9] = src[9]; 19144 if (hdrlen -= 40) { 19145 hdrlen >>= 2; 19146 dst += 10; 19147 src += 10; 19148 do { 19149 *dst++ = *src++; 19150 } while (--hdrlen); 19151 } 19152 19153 /* 19154 * Set the ECN info in the TCP header if it is not a zero 19155 * window probe. Zero window probe is only sent in 19156 * tcp_wput_data() and tcp_timer(). 19157 */ 19158 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19159 SET_ECT(tcp, rptr); 19160 19161 if (tcp->tcp_ecn_echo_on) 19162 tcp_h->th_flags[0] |= TH_ECE; 19163 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19164 tcp_h->th_flags[0] |= TH_CWR; 19165 tcp->tcp_ecn_cwr_sent = B_TRUE; 19166 } 19167 } 19168 19169 /* Fill in SACK options */ 19170 if (num_sack_blk > 0) { 19171 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19172 sack_blk_t *tmp; 19173 int32_t i; 19174 19175 wptr[0] = TCPOPT_NOP; 19176 wptr[1] = TCPOPT_NOP; 19177 wptr[2] = TCPOPT_SACK; 19178 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19179 sizeof (sack_blk_t); 19180 wptr += TCPOPT_REAL_SACK_LEN; 19181 19182 tmp = tcp->tcp_sack_list; 19183 for (i = 0; i < num_sack_blk; i++) { 19184 U32_TO_BE32(tmp[i].begin, wptr); 19185 wptr += sizeof (tcp_seq); 19186 U32_TO_BE32(tmp[i].end, wptr); 19187 wptr += sizeof (tcp_seq); 19188 } 19189 tcp_h->th_offset_and_rsrvd[0] += 19190 ((num_sack_blk * 2 + 1) << 4); 19191 } 19192 } 19193 19194 /* 19195 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19196 * the destination address and SAP attribute, and if necessary, the 19197 * hardware checksum offload attribute to a Multidata message. 19198 */ 19199 static int 19200 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19201 const uint32_t start, const uint32_t stuff, const uint32_t end, 19202 const uint32_t flags, tcp_stack_t *tcps) 19203 { 19204 /* Add global destination address & SAP attribute */ 19205 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19206 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19207 "destination address+SAP\n")); 19208 19209 if (dlmp != NULL) 19210 TCP_STAT(tcps, tcp_mdt_allocfail); 19211 return (-1); 19212 } 19213 19214 /* Add global hwcksum attribute */ 19215 if (hwcksum && 19216 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19217 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19218 "checksum attribute\n")); 19219 19220 TCP_STAT(tcps, tcp_mdt_allocfail); 19221 return (-1); 19222 } 19223 19224 return (0); 19225 } 19226 19227 /* 19228 * Smaller and private version of pdescinfo_t used specifically for TCP, 19229 * which allows for only two payload spans per packet. 19230 */ 19231 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19232 19233 /* 19234 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19235 * scheme, and returns one the following: 19236 * 19237 * -1 = failed allocation. 19238 * 0 = success; burst count reached, or usable send window is too small, 19239 * and that we'd rather wait until later before sending again. 19240 */ 19241 static int 19242 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19243 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19244 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19245 const int mdt_thres) 19246 { 19247 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19248 multidata_t *mmd; 19249 uint_t obsegs, obbytes, hdr_frag_sz; 19250 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19251 int num_burst_seg, max_pld; 19252 pdesc_t *pkt; 19253 tcp_pdescinfo_t tcp_pkt_info; 19254 pdescinfo_t *pkt_info; 19255 int pbuf_idx, pbuf_idx_nxt; 19256 int seg_len, len, spill, af; 19257 boolean_t add_buffer, zcopy, clusterwide; 19258 boolean_t rconfirm = B_FALSE; 19259 boolean_t done = B_FALSE; 19260 uint32_t cksum; 19261 uint32_t hwcksum_flags; 19262 ire_t *ire = NULL; 19263 ill_t *ill; 19264 ipha_t *ipha; 19265 ip6_t *ip6h; 19266 ipaddr_t src, dst; 19267 ill_zerocopy_capab_t *zc_cap = NULL; 19268 uint16_t *up; 19269 int err; 19270 conn_t *connp; 19271 tcp_stack_t *tcps = tcp->tcp_tcps; 19272 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19273 int usable_mmd, tail_unsent_mmd; 19274 uint_t snxt_mmd, obsegs_mmd, obbytes_mmd; 19275 mblk_t *xmit_tail_mmd; 19276 netstackid_t stack_id; 19277 19278 #ifdef _BIG_ENDIAN 19279 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19280 #else 19281 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19282 #endif 19283 19284 #define PREP_NEW_MULTIDATA() { \ 19285 mmd = NULL; \ 19286 md_mp = md_hbuf = NULL; \ 19287 cur_hdr_off = 0; \ 19288 max_pld = tcp->tcp_mdt_max_pld; \ 19289 pbuf_idx = pbuf_idx_nxt = -1; \ 19290 add_buffer = B_TRUE; \ 19291 zcopy = B_FALSE; \ 19292 } 19293 19294 #define PREP_NEW_PBUF() { \ 19295 md_pbuf = md_pbuf_nxt = NULL; \ 19296 pbuf_idx = pbuf_idx_nxt = -1; \ 19297 cur_pld_off = 0; \ 19298 first_snxt = *snxt; \ 19299 ASSERT(*tail_unsent > 0); \ 19300 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19301 } 19302 19303 ASSERT(mdt_thres >= mss); 19304 ASSERT(*usable > 0 && *usable > mdt_thres); 19305 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19306 ASSERT(!TCP_IS_DETACHED(tcp)); 19307 ASSERT(tcp->tcp_valid_bits == 0 || 19308 tcp->tcp_valid_bits == TCP_FSS_VALID); 19309 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19310 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19311 (tcp->tcp_ipversion == IPV6_VERSION && 19312 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19313 19314 connp = tcp->tcp_connp; 19315 ASSERT(connp != NULL); 19316 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19317 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19318 19319 stack_id = connp->conn_netstack->netstack_stackid; 19320 19321 usable_mmd = tail_unsent_mmd = 0; 19322 snxt_mmd = obsegs_mmd = obbytes_mmd = 0; 19323 xmit_tail_mmd = NULL; 19324 /* 19325 * Note that tcp will only declare at most 2 payload spans per 19326 * packet, which is much lower than the maximum allowable number 19327 * of packet spans per Multidata. For this reason, we use the 19328 * privately declared and smaller descriptor info structure, in 19329 * order to save some stack space. 19330 */ 19331 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19332 19333 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19334 if (af == AF_INET) { 19335 dst = tcp->tcp_ipha->ipha_dst; 19336 src = tcp->tcp_ipha->ipha_src; 19337 ASSERT(!CLASSD(dst)); 19338 } 19339 ASSERT(af == AF_INET || 19340 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19341 19342 obsegs = obbytes = 0; 19343 num_burst_seg = tcp->tcp_snd_burst; 19344 md_mp_head = NULL; 19345 PREP_NEW_MULTIDATA(); 19346 19347 /* 19348 * Before we go on further, make sure there is an IRE that we can 19349 * use, and that the ILL supports MDT. Otherwise, there's no point 19350 * in proceeding any further, and we should just hand everything 19351 * off to the legacy path. 19352 */ 19353 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19354 goto legacy_send_no_md; 19355 19356 ASSERT(ire != NULL); 19357 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19358 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19359 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19360 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19361 /* 19362 * If we do support loopback for MDT (which requires modifications 19363 * to the receiving paths), the following assertions should go away, 19364 * and we would be sending the Multidata to loopback conn later on. 19365 */ 19366 ASSERT(!IRE_IS_LOCAL(ire)); 19367 ASSERT(ire->ire_stq != NULL); 19368 19369 ill = ire_to_ill(ire); 19370 ASSERT(ill != NULL); 19371 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19372 19373 if (!tcp->tcp_ire_ill_check_done) { 19374 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19375 tcp->tcp_ire_ill_check_done = B_TRUE; 19376 } 19377 19378 /* 19379 * If the underlying interface conditions have changed, or if the 19380 * new interface does not support MDT, go back to legacy path. 19381 */ 19382 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19383 /* don't go through this path anymore for this connection */ 19384 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19385 tcp->tcp_mdt = B_FALSE; 19386 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19387 "interface %s\n", (void *)connp, ill->ill_name)); 19388 /* IRE will be released prior to returning */ 19389 goto legacy_send_no_md; 19390 } 19391 19392 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19393 zc_cap = ill->ill_zerocopy_capab; 19394 19395 /* 19396 * Check if we can take tcp fast-path. Note that "incomplete" 19397 * ire's (where the link-layer for next hop is not resolved 19398 * or where the fast-path header in nce_fp_mp is not available 19399 * yet) are sent down the legacy (slow) path. 19400 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19401 */ 19402 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19403 /* IRE will be released prior to returning */ 19404 goto legacy_send_no_md; 19405 } 19406 19407 /* go to legacy path if interface doesn't support zerocopy */ 19408 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19409 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19410 /* IRE will be released prior to returning */ 19411 goto legacy_send_no_md; 19412 } 19413 19414 /* does the interface support hardware checksum offload? */ 19415 hwcksum_flags = 0; 19416 if (ILL_HCKSUM_CAPABLE(ill) && 19417 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19418 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19419 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19420 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19421 HCKSUM_IPHDRCKSUM) 19422 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19423 19424 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19425 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19426 hwcksum_flags |= HCK_FULLCKSUM; 19427 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19428 HCKSUM_INET_PARTIAL) 19429 hwcksum_flags |= HCK_PARTIALCKSUM; 19430 } 19431 19432 /* 19433 * Each header fragment consists of the leading extra space, 19434 * followed by the TCP/IP header, and the trailing extra space. 19435 * We make sure that each header fragment begins on a 32-bit 19436 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19437 * aligned in tcp_mdt_update). 19438 */ 19439 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19440 tcp->tcp_mdt_hdr_tail), 4); 19441 19442 /* are we starting from the beginning of data block? */ 19443 if (*tail_unsent == 0) { 19444 *xmit_tail = (*xmit_tail)->b_cont; 19445 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19446 *tail_unsent = (int)MBLKL(*xmit_tail); 19447 } 19448 19449 /* 19450 * Here we create one or more Multidata messages, each made up of 19451 * one header buffer and up to N payload buffers. This entire 19452 * operation is done within two loops: 19453 * 19454 * The outer loop mostly deals with creating the Multidata message, 19455 * as well as the header buffer that gets added to it. It also 19456 * links the Multidata messages together such that all of them can 19457 * be sent down to the lower layer in a single putnext call; this 19458 * linking behavior depends on the tcp_mdt_chain tunable. 19459 * 19460 * The inner loop takes an existing Multidata message, and adds 19461 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19462 * packetizes those buffers by filling up the corresponding header 19463 * buffer fragments with the proper IP and TCP headers, and by 19464 * describing the layout of each packet in the packet descriptors 19465 * that get added to the Multidata. 19466 */ 19467 do { 19468 /* 19469 * If usable send window is too small, or data blocks in 19470 * transmit list are smaller than our threshold (i.e. app 19471 * performs large writes followed by small ones), we hand 19472 * off the control over to the legacy path. Note that we'll 19473 * get back the control once it encounters a large block. 19474 */ 19475 if (*usable < mss || (*tail_unsent <= mdt_thres && 19476 (*xmit_tail)->b_cont != NULL && 19477 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19478 /* send down what we've got so far */ 19479 if (md_mp_head != NULL) { 19480 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19481 obsegs, obbytes, &rconfirm); 19482 } 19483 /* 19484 * Pass control over to tcp_send(), but tell it to 19485 * return to us once a large-size transmission is 19486 * possible. 19487 */ 19488 TCP_STAT(tcps, tcp_mdt_legacy_small); 19489 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19490 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19491 tail_unsent, xmit_tail, local_time, 19492 mdt_thres)) <= 0) { 19493 /* burst count reached, or alloc failed */ 19494 IRE_REFRELE(ire); 19495 return (err); 19496 } 19497 19498 /* tcp_send() may have sent everything, so check */ 19499 if (*usable <= 0) { 19500 IRE_REFRELE(ire); 19501 return (0); 19502 } 19503 19504 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19505 /* 19506 * We may have delivered the Multidata, so make sure 19507 * to re-initialize before the next round. 19508 */ 19509 md_mp_head = NULL; 19510 obsegs = obbytes = 0; 19511 num_burst_seg = tcp->tcp_snd_burst; 19512 PREP_NEW_MULTIDATA(); 19513 19514 /* are we starting from the beginning of data block? */ 19515 if (*tail_unsent == 0) { 19516 *xmit_tail = (*xmit_tail)->b_cont; 19517 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19518 (uintptr_t)INT_MAX); 19519 *tail_unsent = (int)MBLKL(*xmit_tail); 19520 } 19521 } 19522 /* 19523 * Record current values for parameters we may need to pass 19524 * to tcp_send() or tcp_multisend_data(). We checkpoint at 19525 * each iteration of the outer loop (each multidata message 19526 * creation). If we have a failure in the inner loop, we send 19527 * any complete multidata messages we have before reverting 19528 * to using the traditional non-md path. 19529 */ 19530 snxt_mmd = *snxt; 19531 usable_mmd = *usable; 19532 xmit_tail_mmd = *xmit_tail; 19533 tail_unsent_mmd = *tail_unsent; 19534 obsegs_mmd = obsegs; 19535 obbytes_mmd = obbytes; 19536 19537 /* 19538 * max_pld limits the number of mblks in tcp's transmit 19539 * queue that can be added to a Multidata message. Once 19540 * this counter reaches zero, no more additional mblks 19541 * can be added to it. What happens afterwards depends 19542 * on whether or not we are set to chain the Multidata 19543 * messages. If we are to link them together, reset 19544 * max_pld to its original value (tcp_mdt_max_pld) and 19545 * prepare to create a new Multidata message which will 19546 * get linked to md_mp_head. Else, leave it alone and 19547 * let the inner loop break on its own. 19548 */ 19549 if (tcp_mdt_chain && max_pld == 0) 19550 PREP_NEW_MULTIDATA(); 19551 19552 /* adding a payload buffer; re-initialize values */ 19553 if (add_buffer) 19554 PREP_NEW_PBUF(); 19555 19556 /* 19557 * If we don't have a Multidata, either because we just 19558 * (re)entered this outer loop, or after we branched off 19559 * to tcp_send above, setup the Multidata and header 19560 * buffer to be used. 19561 */ 19562 if (md_mp == NULL) { 19563 int md_hbuflen; 19564 uint32_t start, stuff; 19565 19566 /* 19567 * Calculate Multidata header buffer size large enough 19568 * to hold all of the headers that can possibly be 19569 * sent at this moment. We'd rather over-estimate 19570 * the size than running out of space; this is okay 19571 * since this buffer is small anyway. 19572 */ 19573 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19574 19575 /* 19576 * Start and stuff offset for partial hardware 19577 * checksum offload; these are currently for IPv4. 19578 * For full checksum offload, they are set to zero. 19579 */ 19580 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19581 if (af == AF_INET) { 19582 start = IP_SIMPLE_HDR_LENGTH; 19583 stuff = IP_SIMPLE_HDR_LENGTH + 19584 TCP_CHECKSUM_OFFSET; 19585 } else { 19586 start = IPV6_HDR_LEN; 19587 stuff = IPV6_HDR_LEN + 19588 TCP_CHECKSUM_OFFSET; 19589 } 19590 } else { 19591 start = stuff = 0; 19592 } 19593 19594 /* 19595 * Create the header buffer, Multidata, as well as 19596 * any necessary attributes (destination address, 19597 * SAP and hardware checksum offload) that should 19598 * be associated with the Multidata message. 19599 */ 19600 ASSERT(cur_hdr_off == 0); 19601 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19602 ((md_hbuf->b_wptr += md_hbuflen), 19603 (mmd = mmd_alloc(md_hbuf, &md_mp, 19604 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19605 /* fastpath mblk */ 19606 ire->ire_nce->nce_res_mp, 19607 /* hardware checksum enabled */ 19608 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19609 /* hardware checksum offsets */ 19610 start, stuff, 0, 19611 /* hardware checksum flag */ 19612 hwcksum_flags, tcps) != 0)) { 19613 legacy_send: 19614 /* 19615 * We arrive here from a failure within the 19616 * inner (packetizer) loop or we fail one of 19617 * the conditionals above. We restore the 19618 * previously checkpointed values for: 19619 * xmit_tail 19620 * usable 19621 * tail_unsent 19622 * snxt 19623 * obbytes 19624 * obsegs 19625 * We should then be able to dispatch any 19626 * complete multidata before reverting to the 19627 * traditional path with consistent parameters 19628 * (the inner loop updates these as it 19629 * iterates). 19630 */ 19631 *xmit_tail = xmit_tail_mmd; 19632 *usable = usable_mmd; 19633 *tail_unsent = tail_unsent_mmd; 19634 *snxt = snxt_mmd; 19635 obbytes = obbytes_mmd; 19636 obsegs = obsegs_mmd; 19637 if (md_mp != NULL) { 19638 /* Unlink message from the chain */ 19639 if (md_mp_head != NULL) { 19640 err = (intptr_t)rmvb(md_mp_head, 19641 md_mp); 19642 /* 19643 * We can't assert that rmvb 19644 * did not return -1, since we 19645 * may get here before linkb 19646 * happens. We do, however, 19647 * check if we just removed the 19648 * only element in the list. 19649 */ 19650 if (err == 0) 19651 md_mp_head = NULL; 19652 } 19653 /* md_hbuf gets freed automatically */ 19654 TCP_STAT(tcps, tcp_mdt_discarded); 19655 freeb(md_mp); 19656 } else { 19657 /* Either allocb or mmd_alloc failed */ 19658 TCP_STAT(tcps, tcp_mdt_allocfail); 19659 if (md_hbuf != NULL) 19660 freeb(md_hbuf); 19661 } 19662 19663 /* send down what we've got so far */ 19664 if (md_mp_head != NULL) { 19665 tcp_multisend_data(tcp, ire, ill, 19666 md_mp_head, obsegs, obbytes, 19667 &rconfirm); 19668 } 19669 legacy_send_no_md: 19670 if (ire != NULL) 19671 IRE_REFRELE(ire); 19672 /* 19673 * Too bad; let the legacy path handle this. 19674 * We specify INT_MAX for the threshold, since 19675 * we gave up with the Multidata processings 19676 * and let the old path have it all. 19677 */ 19678 TCP_STAT(tcps, tcp_mdt_legacy_all); 19679 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19680 tcp_tcp_hdr_len, num_sack_blk, usable, 19681 snxt, tail_unsent, xmit_tail, local_time, 19682 INT_MAX)); 19683 } 19684 19685 /* link to any existing ones, if applicable */ 19686 TCP_STAT(tcps, tcp_mdt_allocd); 19687 if (md_mp_head == NULL) { 19688 md_mp_head = md_mp; 19689 } else if (tcp_mdt_chain) { 19690 TCP_STAT(tcps, tcp_mdt_linked); 19691 linkb(md_mp_head, md_mp); 19692 } 19693 } 19694 19695 ASSERT(md_mp_head != NULL); 19696 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19697 ASSERT(md_mp != NULL && mmd != NULL); 19698 ASSERT(md_hbuf != NULL); 19699 19700 /* 19701 * Packetize the transmittable portion of the data block; 19702 * each data block is essentially added to the Multidata 19703 * as a payload buffer. We also deal with adding more 19704 * than one payload buffers, which happens when the remaining 19705 * packetized portion of the current payload buffer is less 19706 * than MSS, while the next data block in transmit queue 19707 * has enough data to make up for one. This "spillover" 19708 * case essentially creates a split-packet, where portions 19709 * of the packet's payload fragments may span across two 19710 * virtually discontiguous address blocks. 19711 */ 19712 seg_len = mss; 19713 do { 19714 len = seg_len; 19715 19716 /* one must remain NULL for DTRACE_IP_FASTPATH */ 19717 ipha = NULL; 19718 ip6h = NULL; 19719 19720 ASSERT(len > 0); 19721 ASSERT(max_pld >= 0); 19722 ASSERT(!add_buffer || cur_pld_off == 0); 19723 19724 /* 19725 * First time around for this payload buffer; note 19726 * in the case of a spillover, the following has 19727 * been done prior to adding the split-packet 19728 * descriptor to Multidata, and we don't want to 19729 * repeat the process. 19730 */ 19731 if (add_buffer) { 19732 ASSERT(mmd != NULL); 19733 ASSERT(md_pbuf == NULL); 19734 ASSERT(md_pbuf_nxt == NULL); 19735 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19736 19737 /* 19738 * Have we reached the limit? We'd get to 19739 * this case when we're not chaining the 19740 * Multidata messages together, and since 19741 * we're done, terminate this loop. 19742 */ 19743 if (max_pld == 0) 19744 break; /* done */ 19745 19746 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19747 TCP_STAT(tcps, tcp_mdt_allocfail); 19748 goto legacy_send; /* out_of_mem */ 19749 } 19750 19751 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19752 zc_cap != NULL) { 19753 if (!ip_md_zcopy_attr(mmd, NULL, 19754 zc_cap->ill_zerocopy_flags)) { 19755 freeb(md_pbuf); 19756 TCP_STAT(tcps, 19757 tcp_mdt_allocfail); 19758 /* out_of_mem */ 19759 goto legacy_send; 19760 } 19761 zcopy = B_TRUE; 19762 } 19763 19764 md_pbuf->b_rptr += base_pld_off; 19765 19766 /* 19767 * Add a payload buffer to the Multidata; this 19768 * operation must not fail, or otherwise our 19769 * logic in this routine is broken. There 19770 * is no memory allocation done by the 19771 * routine, so any returned failure simply 19772 * tells us that we've done something wrong. 19773 * 19774 * A failure tells us that either we're adding 19775 * the same payload buffer more than once, or 19776 * we're trying to add more buffers than 19777 * allowed (max_pld calculation is wrong). 19778 * None of the above cases should happen, and 19779 * we panic because either there's horrible 19780 * heap corruption, and/or programming mistake. 19781 */ 19782 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19783 if (pbuf_idx < 0) { 19784 cmn_err(CE_PANIC, "tcp_multisend: " 19785 "payload buffer logic error " 19786 "detected for tcp %p mmd %p " 19787 "pbuf %p (%d)\n", 19788 (void *)tcp, (void *)mmd, 19789 (void *)md_pbuf, pbuf_idx); 19790 } 19791 19792 ASSERT(max_pld > 0); 19793 --max_pld; 19794 add_buffer = B_FALSE; 19795 } 19796 19797 ASSERT(md_mp_head != NULL); 19798 ASSERT(md_pbuf != NULL); 19799 ASSERT(md_pbuf_nxt == NULL); 19800 ASSERT(pbuf_idx != -1); 19801 ASSERT(pbuf_idx_nxt == -1); 19802 ASSERT(*usable > 0); 19803 19804 /* 19805 * We spillover to the next payload buffer only 19806 * if all of the following is true: 19807 * 19808 * 1. There is not enough data on the current 19809 * payload buffer to make up `len', 19810 * 2. We are allowed to send `len', 19811 * 3. The next payload buffer length is large 19812 * enough to accomodate `spill'. 19813 */ 19814 if ((spill = len - *tail_unsent) > 0 && 19815 *usable >= len && 19816 MBLKL((*xmit_tail)->b_cont) >= spill && 19817 max_pld > 0) { 19818 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19819 if (md_pbuf_nxt == NULL) { 19820 TCP_STAT(tcps, tcp_mdt_allocfail); 19821 goto legacy_send; /* out_of_mem */ 19822 } 19823 19824 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19825 zc_cap != NULL) { 19826 if (!ip_md_zcopy_attr(mmd, NULL, 19827 zc_cap->ill_zerocopy_flags)) { 19828 freeb(md_pbuf_nxt); 19829 TCP_STAT(tcps, 19830 tcp_mdt_allocfail); 19831 /* out_of_mem */ 19832 goto legacy_send; 19833 } 19834 zcopy = B_TRUE; 19835 } 19836 19837 /* 19838 * See comments above on the first call to 19839 * mmd_addpldbuf for explanation on the panic. 19840 */ 19841 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19842 if (pbuf_idx_nxt < 0) { 19843 panic("tcp_multisend: " 19844 "next payload buffer logic error " 19845 "detected for tcp %p mmd %p " 19846 "pbuf %p (%d)\n", 19847 (void *)tcp, (void *)mmd, 19848 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19849 } 19850 19851 ASSERT(max_pld > 0); 19852 --max_pld; 19853 } else if (spill > 0) { 19854 /* 19855 * If there's a spillover, but the following 19856 * xmit_tail couldn't give us enough octets 19857 * to reach "len", then stop the current 19858 * Multidata creation and let the legacy 19859 * tcp_send() path take over. We don't want 19860 * to send the tiny segment as part of this 19861 * Multidata for performance reasons; instead, 19862 * we let the legacy path deal with grouping 19863 * it with the subsequent small mblks. 19864 */ 19865 if (*usable >= len && 19866 MBLKL((*xmit_tail)->b_cont) < spill) { 19867 max_pld = 0; 19868 break; /* done */ 19869 } 19870 19871 /* 19872 * We can't spillover, and we are near 19873 * the end of the current payload buffer, 19874 * so send what's left. 19875 */ 19876 ASSERT(*tail_unsent > 0); 19877 len = *tail_unsent; 19878 } 19879 19880 /* tail_unsent is negated if there is a spillover */ 19881 *tail_unsent -= len; 19882 *usable -= len; 19883 ASSERT(*usable >= 0); 19884 19885 if (*usable < mss) 19886 seg_len = *usable; 19887 /* 19888 * Sender SWS avoidance; see comments in tcp_send(); 19889 * everything else is the same, except that we only 19890 * do this here if there is no more data to be sent 19891 * following the current xmit_tail. We don't check 19892 * for 1-byte urgent data because we shouldn't get 19893 * here if TCP_URG_VALID is set. 19894 */ 19895 if (*usable > 0 && *usable < mss && 19896 ((md_pbuf_nxt == NULL && 19897 (*xmit_tail)->b_cont == NULL) || 19898 (md_pbuf_nxt != NULL && 19899 (*xmit_tail)->b_cont->b_cont == NULL)) && 19900 seg_len < (tcp->tcp_max_swnd >> 1) && 19901 (tcp->tcp_unsent - 19902 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 19903 !tcp->tcp_zero_win_probe) { 19904 if ((*snxt + len) == tcp->tcp_snxt && 19905 (*snxt + len) == tcp->tcp_suna) { 19906 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19907 } 19908 done = B_TRUE; 19909 } 19910 19911 /* 19912 * Prime pump for IP's checksumming on our behalf; 19913 * include the adjustment for a source route if any. 19914 * Do this only for software/partial hardware checksum 19915 * offload, as this field gets zeroed out later for 19916 * the full hardware checksum offload case. 19917 */ 19918 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 19919 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 19920 cksum = (cksum >> 16) + (cksum & 0xFFFF); 19921 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 19922 } 19923 19924 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 19925 *snxt += len; 19926 19927 tcp->tcp_tcph->th_flags[0] = TH_ACK; 19928 /* 19929 * We set the PUSH bit only if TCP has no more buffered 19930 * data to be transmitted (or if sender SWS avoidance 19931 * takes place), as opposed to setting it for every 19932 * last packet in the burst. 19933 */ 19934 if (done || 19935 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 19936 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 19937 19938 /* 19939 * Set FIN bit if this is our last segment; snxt 19940 * already includes its length, and it will not 19941 * be adjusted after this point. 19942 */ 19943 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 19944 *snxt == tcp->tcp_fss) { 19945 if (!tcp->tcp_fin_acked) { 19946 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 19947 BUMP_MIB(&tcps->tcps_mib, 19948 tcpOutControl); 19949 } 19950 if (!tcp->tcp_fin_sent) { 19951 tcp->tcp_fin_sent = B_TRUE; 19952 /* 19953 * tcp state must be ESTABLISHED 19954 * in order for us to get here in 19955 * the first place. 19956 */ 19957 tcp->tcp_state = TCPS_FIN_WAIT_1; 19958 19959 /* 19960 * Upon returning from this routine, 19961 * tcp_wput_data() will set tcp_snxt 19962 * to be equal to snxt + tcp_fin_sent. 19963 * This is essentially the same as 19964 * setting it to tcp_fss + 1. 19965 */ 19966 } 19967 } 19968 19969 tcp->tcp_last_sent_len = (ushort_t)len; 19970 19971 len += tcp_hdr_len; 19972 if (tcp->tcp_ipversion == IPV4_VERSION) 19973 tcp->tcp_ipha->ipha_length = htons(len); 19974 else 19975 tcp->tcp_ip6h->ip6_plen = htons(len - 19976 ((char *)&tcp->tcp_ip6h[1] - 19977 tcp->tcp_iphc)); 19978 19979 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 19980 19981 /* setup header fragment */ 19982 PDESC_HDR_ADD(pkt_info, 19983 md_hbuf->b_rptr + cur_hdr_off, /* base */ 19984 tcp->tcp_mdt_hdr_head, /* head room */ 19985 tcp_hdr_len, /* len */ 19986 tcp->tcp_mdt_hdr_tail); /* tail room */ 19987 19988 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 19989 hdr_frag_sz); 19990 ASSERT(MBLKIN(md_hbuf, 19991 (pkt_info->hdr_base - md_hbuf->b_rptr), 19992 PDESC_HDRSIZE(pkt_info))); 19993 19994 /* setup first payload fragment */ 19995 PDESC_PLD_INIT(pkt_info); 19996 PDESC_PLD_SPAN_ADD(pkt_info, 19997 pbuf_idx, /* index */ 19998 md_pbuf->b_rptr + cur_pld_off, /* start */ 19999 tcp->tcp_last_sent_len); /* len */ 20000 20001 /* create a split-packet in case of a spillover */ 20002 if (md_pbuf_nxt != NULL) { 20003 ASSERT(spill > 0); 20004 ASSERT(pbuf_idx_nxt > pbuf_idx); 20005 ASSERT(!add_buffer); 20006 20007 md_pbuf = md_pbuf_nxt; 20008 md_pbuf_nxt = NULL; 20009 pbuf_idx = pbuf_idx_nxt; 20010 pbuf_idx_nxt = -1; 20011 cur_pld_off = spill; 20012 20013 /* trim out first payload fragment */ 20014 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20015 20016 /* setup second payload fragment */ 20017 PDESC_PLD_SPAN_ADD(pkt_info, 20018 pbuf_idx, /* index */ 20019 md_pbuf->b_rptr, /* start */ 20020 spill); /* len */ 20021 20022 if ((*xmit_tail)->b_next == NULL) { 20023 /* 20024 * Store the lbolt used for RTT 20025 * estimation. We can only record one 20026 * timestamp per mblk so we do it when 20027 * we reach the end of the payload 20028 * buffer. Also we only take a new 20029 * timestamp sample when the previous 20030 * timed data from the same mblk has 20031 * been ack'ed. 20032 */ 20033 (*xmit_tail)->b_prev = local_time; 20034 (*xmit_tail)->b_next = 20035 (mblk_t *)(uintptr_t)first_snxt; 20036 } 20037 20038 first_snxt = *snxt - spill; 20039 20040 /* 20041 * Advance xmit_tail; usable could be 0 by 20042 * the time we got here, but we made sure 20043 * above that we would only spillover to 20044 * the next data block if usable includes 20045 * the spilled-over amount prior to the 20046 * subtraction. Therefore, we are sure 20047 * that xmit_tail->b_cont can't be NULL. 20048 */ 20049 ASSERT((*xmit_tail)->b_cont != NULL); 20050 *xmit_tail = (*xmit_tail)->b_cont; 20051 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20052 (uintptr_t)INT_MAX); 20053 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20054 } else { 20055 cur_pld_off += tcp->tcp_last_sent_len; 20056 } 20057 20058 /* 20059 * Fill in the header using the template header, and 20060 * add options such as time-stamp, ECN and/or SACK, 20061 * as needed. 20062 */ 20063 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20064 (clock_t)local_time, num_sack_blk); 20065 20066 /* take care of some IP header businesses */ 20067 if (af == AF_INET) { 20068 ipha = (ipha_t *)pkt_info->hdr_rptr; 20069 20070 ASSERT(OK_32PTR((uchar_t *)ipha)); 20071 ASSERT(PDESC_HDRL(pkt_info) >= 20072 IP_SIMPLE_HDR_LENGTH); 20073 ASSERT(ipha->ipha_version_and_hdr_length == 20074 IP_SIMPLE_HDR_VERSION); 20075 20076 /* 20077 * Assign ident value for current packet; see 20078 * related comments in ip_wput_ire() about the 20079 * contract private interface with clustering 20080 * group. 20081 */ 20082 clusterwide = B_FALSE; 20083 if (cl_inet_ipident != NULL) { 20084 ASSERT(cl_inet_isclusterwide != NULL); 20085 if ((*cl_inet_isclusterwide)(stack_id, 20086 IPPROTO_IP, AF_INET, 20087 (uint8_t *)(uintptr_t)src, NULL)) { 20088 ipha->ipha_ident = 20089 (*cl_inet_ipident)(stack_id, 20090 IPPROTO_IP, AF_INET, 20091 (uint8_t *)(uintptr_t)src, 20092 (uint8_t *)(uintptr_t)dst, 20093 NULL); 20094 clusterwide = B_TRUE; 20095 } 20096 } 20097 20098 if (!clusterwide) { 20099 ipha->ipha_ident = (uint16_t) 20100 atomic_add_32_nv( 20101 &ire->ire_ident, 1); 20102 } 20103 #ifndef _BIG_ENDIAN 20104 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20105 (ipha->ipha_ident >> 8); 20106 #endif 20107 } else { 20108 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20109 20110 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20111 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20112 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20113 ASSERT(PDESC_HDRL(pkt_info) >= 20114 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20115 TCP_CHECKSUM_SIZE)); 20116 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20117 20118 if (tcp->tcp_ip_forward_progress) { 20119 rconfirm = B_TRUE; 20120 tcp->tcp_ip_forward_progress = B_FALSE; 20121 } 20122 } 20123 20124 /* at least one payload span, and at most two */ 20125 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20126 20127 /* add the packet descriptor to Multidata */ 20128 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20129 KM_NOSLEEP)) == NULL) { 20130 /* 20131 * Any failure other than ENOMEM indicates 20132 * that we have passed in invalid pkt_info 20133 * or parameters to mmd_addpdesc, which must 20134 * not happen. 20135 * 20136 * EINVAL is a result of failure on boundary 20137 * checks against the pkt_info contents. It 20138 * should not happen, and we panic because 20139 * either there's horrible heap corruption, 20140 * and/or programming mistake. 20141 */ 20142 if (err != ENOMEM) { 20143 cmn_err(CE_PANIC, "tcp_multisend: " 20144 "pdesc logic error detected for " 20145 "tcp %p mmd %p pinfo %p (%d)\n", 20146 (void *)tcp, (void *)mmd, 20147 (void *)pkt_info, err); 20148 } 20149 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20150 goto legacy_send; /* out_of_mem */ 20151 } 20152 ASSERT(pkt != NULL); 20153 20154 /* calculate IP header and TCP checksums */ 20155 if (af == AF_INET) { 20156 /* calculate pseudo-header checksum */ 20157 cksum = (dst >> 16) + (dst & 0xFFFF) + 20158 (src >> 16) + (src & 0xFFFF); 20159 20160 /* offset for TCP header checksum */ 20161 up = IPH_TCPH_CHECKSUMP(ipha, 20162 IP_SIMPLE_HDR_LENGTH); 20163 } else { 20164 up = (uint16_t *)&ip6h->ip6_src; 20165 20166 /* calculate pseudo-header checksum */ 20167 cksum = up[0] + up[1] + up[2] + up[3] + 20168 up[4] + up[5] + up[6] + up[7] + 20169 up[8] + up[9] + up[10] + up[11] + 20170 up[12] + up[13] + up[14] + up[15]; 20171 20172 /* Fold the initial sum */ 20173 cksum = (cksum & 0xffff) + (cksum >> 16); 20174 20175 up = (uint16_t *)(((uchar_t *)ip6h) + 20176 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20177 } 20178 20179 if (hwcksum_flags & HCK_FULLCKSUM) { 20180 /* clear checksum field for hardware */ 20181 *up = 0; 20182 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20183 uint32_t sum; 20184 20185 /* pseudo-header checksumming */ 20186 sum = *up + cksum + IP_TCP_CSUM_COMP; 20187 sum = (sum & 0xFFFF) + (sum >> 16); 20188 *up = (sum & 0xFFFF) + (sum >> 16); 20189 } else { 20190 /* software checksumming */ 20191 TCP_STAT(tcps, tcp_out_sw_cksum); 20192 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20193 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20194 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20195 cksum + IP_TCP_CSUM_COMP); 20196 if (*up == 0) 20197 *up = 0xFFFF; 20198 } 20199 20200 /* IPv4 header checksum */ 20201 if (af == AF_INET) { 20202 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20203 ipha->ipha_hdr_checksum = 0; 20204 } else { 20205 IP_HDR_CKSUM(ipha, cksum, 20206 ((uint32_t *)ipha)[0], 20207 ((uint16_t *)ipha)[4]); 20208 } 20209 } 20210 20211 if (af == AF_INET && 20212 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20213 af == AF_INET6 && 20214 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20215 mblk_t *mp, *mp1; 20216 uchar_t *hdr_rptr, *hdr_wptr; 20217 uchar_t *pld_rptr, *pld_wptr; 20218 20219 /* 20220 * We reconstruct a pseudo packet for the hooks 20221 * framework using mmd_transform_link(). 20222 * If it is a split packet we pullup the 20223 * payload. FW_HOOKS expects a pkt comprising 20224 * of two mblks: a header and the payload. 20225 */ 20226 if ((mp = mmd_transform_link(pkt)) == NULL) { 20227 TCP_STAT(tcps, tcp_mdt_allocfail); 20228 goto legacy_send; 20229 } 20230 20231 if (pkt_info->pld_cnt > 1) { 20232 /* split payload, more than one pld */ 20233 if ((mp1 = msgpullup(mp->b_cont, -1)) == 20234 NULL) { 20235 freemsg(mp); 20236 TCP_STAT(tcps, 20237 tcp_mdt_allocfail); 20238 goto legacy_send; 20239 } 20240 freemsg(mp->b_cont); 20241 mp->b_cont = mp1; 20242 } else { 20243 mp1 = mp->b_cont; 20244 } 20245 ASSERT(mp1 != NULL && mp1->b_cont == NULL); 20246 20247 /* 20248 * Remember the message offsets. This is so we 20249 * can detect changes when we return from the 20250 * FW_HOOKS callbacks. 20251 */ 20252 hdr_rptr = mp->b_rptr; 20253 hdr_wptr = mp->b_wptr; 20254 pld_rptr = mp->b_cont->b_rptr; 20255 pld_wptr = mp->b_cont->b_wptr; 20256 20257 if (af == AF_INET) { 20258 DTRACE_PROBE4( 20259 ip4__physical__out__start, 20260 ill_t *, NULL, 20261 ill_t *, ill, 20262 ipha_t *, ipha, 20263 mblk_t *, mp); 20264 FW_HOOKS( 20265 ipst->ips_ip4_physical_out_event, 20266 ipst->ips_ipv4firewall_physical_out, 20267 NULL, ill, ipha, mp, mp, 0, ipst); 20268 DTRACE_PROBE1( 20269 ip4__physical__out__end, 20270 mblk_t *, mp); 20271 } else { 20272 DTRACE_PROBE4( 20273 ip6__physical__out_start, 20274 ill_t *, NULL, 20275 ill_t *, ill, 20276 ip6_t *, ip6h, 20277 mblk_t *, mp); 20278 FW_HOOKS6( 20279 ipst->ips_ip6_physical_out_event, 20280 ipst->ips_ipv6firewall_physical_out, 20281 NULL, ill, ip6h, mp, mp, 0, ipst); 20282 DTRACE_PROBE1( 20283 ip6__physical__out__end, 20284 mblk_t *, mp); 20285 } 20286 20287 if (mp == NULL || 20288 (mp1 = mp->b_cont) == NULL || 20289 mp->b_rptr != hdr_rptr || 20290 mp->b_wptr != hdr_wptr || 20291 mp1->b_rptr != pld_rptr || 20292 mp1->b_wptr != pld_wptr || 20293 mp1->b_cont != NULL) { 20294 /* 20295 * We abandon multidata processing and 20296 * return to the normal path, either 20297 * when a packet is blocked, or when 20298 * the boundaries of header buffer or 20299 * payload buffer have been changed by 20300 * FW_HOOKS[6]. 20301 */ 20302 if (mp != NULL) 20303 freemsg(mp); 20304 goto legacy_send; 20305 } 20306 /* Finished with the pseudo packet */ 20307 freemsg(mp); 20308 } 20309 DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr, 20310 ill, ipha, ip6h); 20311 /* advance header offset */ 20312 cur_hdr_off += hdr_frag_sz; 20313 20314 obbytes += tcp->tcp_last_sent_len; 20315 ++obsegs; 20316 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20317 *tail_unsent > 0); 20318 20319 if ((*xmit_tail)->b_next == NULL) { 20320 /* 20321 * Store the lbolt used for RTT estimation. We can only 20322 * record one timestamp per mblk so we do it when we 20323 * reach the end of the payload buffer. Also we only 20324 * take a new timestamp sample when the previous timed 20325 * data from the same mblk has been ack'ed. 20326 */ 20327 (*xmit_tail)->b_prev = local_time; 20328 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20329 } 20330 20331 ASSERT(*tail_unsent >= 0); 20332 if (*tail_unsent > 0) { 20333 /* 20334 * We got here because we broke out of the above 20335 * loop due to of one of the following cases: 20336 * 20337 * 1. len < adjusted MSS (i.e. small), 20338 * 2. Sender SWS avoidance, 20339 * 3. max_pld is zero. 20340 * 20341 * We are done for this Multidata, so trim our 20342 * last payload buffer (if any) accordingly. 20343 */ 20344 if (md_pbuf != NULL) 20345 md_pbuf->b_wptr -= *tail_unsent; 20346 } else if (*usable > 0) { 20347 *xmit_tail = (*xmit_tail)->b_cont; 20348 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20349 (uintptr_t)INT_MAX); 20350 *tail_unsent = (int)MBLKL(*xmit_tail); 20351 add_buffer = B_TRUE; 20352 } 20353 } while (!done && *usable > 0 && num_burst_seg > 0 && 20354 (tcp_mdt_chain || max_pld > 0)); 20355 20356 if (md_mp_head != NULL) { 20357 /* send everything down */ 20358 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20359 &rconfirm); 20360 } 20361 20362 #undef PREP_NEW_MULTIDATA 20363 #undef PREP_NEW_PBUF 20364 #undef IPVER 20365 20366 IRE_REFRELE(ire); 20367 return (0); 20368 } 20369 20370 /* 20371 * A wrapper function for sending one or more Multidata messages down to 20372 * the module below ip; this routine does not release the reference of the 20373 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20374 */ 20375 static void 20376 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20377 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20378 { 20379 uint64_t delta; 20380 nce_t *nce; 20381 tcp_stack_t *tcps = tcp->tcp_tcps; 20382 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20383 20384 ASSERT(ire != NULL && ill != NULL); 20385 ASSERT(ire->ire_stq != NULL); 20386 ASSERT(md_mp_head != NULL); 20387 ASSERT(rconfirm != NULL); 20388 20389 /* adjust MIBs and IRE timestamp */ 20390 DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp); 20391 tcp->tcp_obsegs += obsegs; 20392 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20393 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20394 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20395 20396 if (tcp->tcp_ipversion == IPV4_VERSION) { 20397 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20398 } else { 20399 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20400 } 20401 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20402 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20403 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20404 20405 ire->ire_ob_pkt_count += obsegs; 20406 if (ire->ire_ipif != NULL) 20407 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20408 ire->ire_last_used_time = lbolt; 20409 20410 if (ipst->ips_ipobs_enabled) { 20411 multidata_t *dlmdp = mmd_getmultidata(md_mp_head); 20412 pdesc_t *dl_pkt; 20413 pdescinfo_t pinfo; 20414 mblk_t *nmp; 20415 zoneid_t szone = tcp->tcp_connp->conn_zoneid; 20416 20417 for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo); 20418 (dl_pkt != NULL); 20419 dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) { 20420 if ((nmp = mmd_transform_link(dl_pkt)) == NULL) 20421 continue; 20422 ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone, 20423 ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst); 20424 freemsg(nmp); 20425 } 20426 } 20427 20428 /* send it down */ 20429 putnext(ire->ire_stq, md_mp_head); 20430 20431 /* we're done for TCP/IPv4 */ 20432 if (tcp->tcp_ipversion == IPV4_VERSION) 20433 return; 20434 20435 nce = ire->ire_nce; 20436 20437 ASSERT(nce != NULL); 20438 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20439 ASSERT(nce->nce_state != ND_INCOMPLETE); 20440 20441 /* reachability confirmation? */ 20442 if (*rconfirm) { 20443 nce->nce_last = TICK_TO_MSEC(lbolt64); 20444 if (nce->nce_state != ND_REACHABLE) { 20445 mutex_enter(&nce->nce_lock); 20446 nce->nce_state = ND_REACHABLE; 20447 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20448 mutex_exit(&nce->nce_lock); 20449 (void) untimeout(nce->nce_timeout_id); 20450 if (ip_debug > 2) { 20451 /* ip1dbg */ 20452 pr_addr_dbg("tcp_multisend_data: state " 20453 "for %s changed to REACHABLE\n", 20454 AF_INET6, &ire->ire_addr_v6); 20455 } 20456 } 20457 /* reset transport reachability confirmation */ 20458 *rconfirm = B_FALSE; 20459 } 20460 20461 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20462 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20463 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20464 20465 if (delta > (uint64_t)ill->ill_reachable_time) { 20466 mutex_enter(&nce->nce_lock); 20467 switch (nce->nce_state) { 20468 case ND_REACHABLE: 20469 case ND_STALE: 20470 /* 20471 * ND_REACHABLE is identical to ND_STALE in this 20472 * specific case. If reachable time has expired for 20473 * this neighbor (delta is greater than reachable 20474 * time), conceptually, the neighbor cache is no 20475 * longer in REACHABLE state, but already in STALE 20476 * state. So the correct transition here is to 20477 * ND_DELAY. 20478 */ 20479 nce->nce_state = ND_DELAY; 20480 mutex_exit(&nce->nce_lock); 20481 NDP_RESTART_TIMER(nce, 20482 ipst->ips_delay_first_probe_time); 20483 if (ip_debug > 3) { 20484 /* ip2dbg */ 20485 pr_addr_dbg("tcp_multisend_data: state " 20486 "for %s changed to DELAY\n", 20487 AF_INET6, &ire->ire_addr_v6); 20488 } 20489 break; 20490 case ND_DELAY: 20491 case ND_PROBE: 20492 mutex_exit(&nce->nce_lock); 20493 /* Timers have already started */ 20494 break; 20495 case ND_UNREACHABLE: 20496 /* 20497 * ndp timer has detected that this nce is 20498 * unreachable and initiated deleting this nce 20499 * and all its associated IREs. This is a race 20500 * where we found the ire before it was deleted 20501 * and have just sent out a packet using this 20502 * unreachable nce. 20503 */ 20504 mutex_exit(&nce->nce_lock); 20505 break; 20506 default: 20507 ASSERT(0); 20508 } 20509 } 20510 } 20511 20512 /* 20513 * Derived from tcp_send_data(). 20514 */ 20515 static void 20516 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20517 int num_lso_seg) 20518 { 20519 ipha_t *ipha; 20520 mblk_t *ire_fp_mp; 20521 uint_t ire_fp_mp_len; 20522 uint32_t hcksum_txflags = 0; 20523 ipaddr_t src; 20524 ipaddr_t dst; 20525 uint32_t cksum; 20526 uint16_t *up; 20527 tcp_stack_t *tcps = tcp->tcp_tcps; 20528 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20529 20530 ASSERT(DB_TYPE(mp) == M_DATA); 20531 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20532 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20533 ASSERT(tcp->tcp_connp != NULL); 20534 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20535 20536 ipha = (ipha_t *)mp->b_rptr; 20537 src = ipha->ipha_src; 20538 dst = ipha->ipha_dst; 20539 20540 DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp); 20541 20542 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20543 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20544 num_lso_seg); 20545 #ifndef _BIG_ENDIAN 20546 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20547 #endif 20548 if (tcp->tcp_snd_zcopy_aware) { 20549 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20550 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20551 mp = tcp_zcopy_disable(tcp, mp); 20552 } 20553 20554 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20555 ASSERT(ill->ill_hcksum_capab != NULL); 20556 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20557 } 20558 20559 /* 20560 * Since the TCP checksum should be recalculated by h/w, we can just 20561 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20562 * pseudo-header checksum for HCK_PARTIALCKSUM. 20563 * The partial pseudo-header excludes TCP length, that was calculated 20564 * in tcp_send(), so to zero *up before further processing. 20565 */ 20566 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20567 20568 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20569 *up = 0; 20570 20571 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20572 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20573 20574 /* 20575 * Append LSO flags and mss to the mp. 20576 */ 20577 lso_info_set(mp, mss, HW_LSO); 20578 20579 ipha->ipha_fragment_offset_and_flags |= 20580 (uint32_t)htons(ire->ire_frag_flag); 20581 20582 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20583 ire_fp_mp_len = MBLKL(ire_fp_mp); 20584 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20585 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20586 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20587 20588 UPDATE_OB_PKT_COUNT(ire); 20589 ire->ire_last_used_time = lbolt; 20590 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20591 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20592 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20593 ntohs(ipha->ipha_length)); 20594 20595 DTRACE_PROBE4(ip4__physical__out__start, 20596 ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp); 20597 FW_HOOKS(ipst->ips_ip4_physical_out_event, 20598 ipst->ips_ipv4firewall_physical_out, NULL, 20599 ill, ipha, mp, mp, 0, ipst); 20600 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20601 DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL); 20602 20603 if (mp != NULL) { 20604 if (ipst->ips_ipobs_enabled) { 20605 zoneid_t szone; 20606 20607 szone = ip_get_zoneid_v4(ipha->ipha_src, mp, 20608 ipst, ALL_ZONES); 20609 ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, 20610 ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst); 20611 } 20612 20613 ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL); 20614 } 20615 } 20616 20617 /* 20618 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20619 * scheme, and returns one of the following: 20620 * 20621 * -1 = failed allocation. 20622 * 0 = success; burst count reached, or usable send window is too small, 20623 * and that we'd rather wait until later before sending again. 20624 * 1 = success; we are called from tcp_multisend(), and both usable send 20625 * window and tail_unsent are greater than the MDT threshold, and thus 20626 * Multidata Transmit should be used instead. 20627 */ 20628 static int 20629 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20630 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20631 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20632 const int mdt_thres) 20633 { 20634 int num_burst_seg = tcp->tcp_snd_burst; 20635 ire_t *ire = NULL; 20636 ill_t *ill = NULL; 20637 mblk_t *ire_fp_mp = NULL; 20638 uint_t ire_fp_mp_len = 0; 20639 int num_lso_seg = 1; 20640 uint_t lso_usable; 20641 boolean_t do_lso_send = B_FALSE; 20642 tcp_stack_t *tcps = tcp->tcp_tcps; 20643 20644 /* 20645 * Check LSO capability before any further work. And the similar check 20646 * need to be done in for(;;) loop. 20647 * LSO will be deployed when therer is more than one mss of available 20648 * data and a burst transmission is allowed. 20649 */ 20650 if (tcp->tcp_lso && 20651 (tcp->tcp_valid_bits == 0 || 20652 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20653 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20654 /* 20655 * Try to find usable IRE/ILL and do basic check to the ILL. 20656 * Double check LSO usability before going further, since the 20657 * underlying interface could have been changed. In case of any 20658 * change of LSO capability, set tcp_ire_ill_check_done to 20659 * B_FALSE to force to check the ILL with the next send. 20660 */ 20661 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) && 20662 tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 20663 /* 20664 * Enable LSO with this transmission. 20665 * Since IRE has been hold in tcp_send_find_ire_ill(), 20666 * IRE_REFRELE(ire) should be called before return. 20667 */ 20668 do_lso_send = B_TRUE; 20669 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20670 ire_fp_mp_len = MBLKL(ire_fp_mp); 20671 /* Round up to multiple of 4 */ 20672 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20673 } else { 20674 tcp->tcp_lso = B_FALSE; 20675 tcp->tcp_ire_ill_check_done = B_FALSE; 20676 do_lso_send = B_FALSE; 20677 ill = NULL; 20678 } 20679 } 20680 20681 for (;;) { 20682 struct datab *db; 20683 tcph_t *tcph; 20684 uint32_t sum; 20685 mblk_t *mp, *mp1; 20686 uchar_t *rptr; 20687 int len; 20688 20689 /* 20690 * If we're called by tcp_multisend(), and the amount of 20691 * sendable data as well as the size of current xmit_tail 20692 * is beyond the MDT threshold, return to the caller and 20693 * let the large data transmit be done using MDT. 20694 */ 20695 if (*usable > 0 && *usable > mdt_thres && 20696 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20697 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20698 ASSERT(tcp->tcp_mdt); 20699 return (1); /* success; do large send */ 20700 } 20701 20702 if (num_burst_seg == 0) 20703 break; /* success; burst count reached */ 20704 20705 /* 20706 * Calculate the maximum payload length we can send in *one* 20707 * time. 20708 */ 20709 if (do_lso_send) { 20710 /* 20711 * Check whether need to do LSO any more. 20712 */ 20713 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20714 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20715 lso_usable = MIN(lso_usable, 20716 num_burst_seg * mss); 20717 20718 num_lso_seg = lso_usable / mss; 20719 if (lso_usable % mss) { 20720 num_lso_seg++; 20721 tcp->tcp_last_sent_len = (ushort_t) 20722 (lso_usable % mss); 20723 } else { 20724 tcp->tcp_last_sent_len = (ushort_t)mss; 20725 } 20726 } else { 20727 do_lso_send = B_FALSE; 20728 num_lso_seg = 1; 20729 lso_usable = mss; 20730 } 20731 } 20732 20733 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20734 20735 /* 20736 * Adjust num_burst_seg here. 20737 */ 20738 num_burst_seg -= num_lso_seg; 20739 20740 len = mss; 20741 if (len > *usable) { 20742 ASSERT(do_lso_send == B_FALSE); 20743 20744 len = *usable; 20745 if (len <= 0) { 20746 /* Terminate the loop */ 20747 break; /* success; too small */ 20748 } 20749 /* 20750 * Sender silly-window avoidance. 20751 * Ignore this if we are going to send a 20752 * zero window probe out. 20753 * 20754 * TODO: force data into microscopic window? 20755 * ==> (!pushed || (unsent > usable)) 20756 */ 20757 if (len < (tcp->tcp_max_swnd >> 1) && 20758 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20759 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20760 len == 1) && (! tcp->tcp_zero_win_probe)) { 20761 /* 20762 * If the retransmit timer is not running 20763 * we start it so that we will retransmit 20764 * in the case when the the receiver has 20765 * decremented the window. 20766 */ 20767 if (*snxt == tcp->tcp_snxt && 20768 *snxt == tcp->tcp_suna) { 20769 /* 20770 * We are not supposed to send 20771 * anything. So let's wait a little 20772 * bit longer before breaking SWS 20773 * avoidance. 20774 * 20775 * What should the value be? 20776 * Suggestion: MAX(init rexmit time, 20777 * tcp->tcp_rto) 20778 */ 20779 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20780 } 20781 break; /* success; too small */ 20782 } 20783 } 20784 20785 tcph = tcp->tcp_tcph; 20786 20787 /* 20788 * The reason to adjust len here is that we need to set flags 20789 * and calculate checksum. 20790 */ 20791 if (do_lso_send) 20792 len = lso_usable; 20793 20794 *usable -= len; /* Approximate - can be adjusted later */ 20795 if (*usable > 0) 20796 tcph->th_flags[0] = TH_ACK; 20797 else 20798 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20799 20800 /* 20801 * Prime pump for IP's checksumming on our behalf 20802 * Include the adjustment for a source route if any. 20803 */ 20804 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20805 sum = (sum >> 16) + (sum & 0xFFFF); 20806 U16_TO_ABE16(sum, tcph->th_sum); 20807 20808 U32_TO_ABE32(*snxt, tcph->th_seq); 20809 20810 /* 20811 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20812 * set. For the case when TCP_FSS_VALID is the only valid 20813 * bit (normal active close), branch off only when we think 20814 * that the FIN flag needs to be set. Note for this case, 20815 * that (snxt + len) may not reflect the actual seg_len, 20816 * as len may be further reduced in tcp_xmit_mp(). If len 20817 * gets modified, we will end up here again. 20818 */ 20819 if (tcp->tcp_valid_bits != 0 && 20820 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20821 ((*snxt + len) == tcp->tcp_fss))) { 20822 uchar_t *prev_rptr; 20823 uint32_t prev_snxt = tcp->tcp_snxt; 20824 20825 if (*tail_unsent == 0) { 20826 ASSERT((*xmit_tail)->b_cont != NULL); 20827 *xmit_tail = (*xmit_tail)->b_cont; 20828 prev_rptr = (*xmit_tail)->b_rptr; 20829 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20830 (*xmit_tail)->b_rptr); 20831 } else { 20832 prev_rptr = (*xmit_tail)->b_rptr; 20833 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20834 *tail_unsent; 20835 } 20836 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20837 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20838 /* Restore tcp_snxt so we get amount sent right. */ 20839 tcp->tcp_snxt = prev_snxt; 20840 if (prev_rptr == (*xmit_tail)->b_rptr) { 20841 /* 20842 * If the previous timestamp is still in use, 20843 * don't stomp on it. 20844 */ 20845 if ((*xmit_tail)->b_next == NULL) { 20846 (*xmit_tail)->b_prev = local_time; 20847 (*xmit_tail)->b_next = 20848 (mblk_t *)(uintptr_t)(*snxt); 20849 } 20850 } else 20851 (*xmit_tail)->b_rptr = prev_rptr; 20852 20853 if (mp == NULL) { 20854 if (ire != NULL) 20855 IRE_REFRELE(ire); 20856 return (-1); 20857 } 20858 mp1 = mp->b_cont; 20859 20860 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20861 tcp->tcp_last_sent_len = (ushort_t)len; 20862 while (mp1->b_cont) { 20863 *xmit_tail = (*xmit_tail)->b_cont; 20864 (*xmit_tail)->b_prev = local_time; 20865 (*xmit_tail)->b_next = 20866 (mblk_t *)(uintptr_t)(*snxt); 20867 mp1 = mp1->b_cont; 20868 } 20869 *snxt += len; 20870 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 20871 BUMP_LOCAL(tcp->tcp_obsegs); 20872 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20873 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20874 tcp_send_data(tcp, q, mp); 20875 continue; 20876 } 20877 20878 *snxt += len; /* Adjust later if we don't send all of len */ 20879 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 20880 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 20881 20882 if (*tail_unsent) { 20883 /* Are the bytes above us in flight? */ 20884 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 20885 if (rptr != (*xmit_tail)->b_rptr) { 20886 *tail_unsent -= len; 20887 if (len <= mss) /* LSO is unusable */ 20888 tcp->tcp_last_sent_len = (ushort_t)len; 20889 len += tcp_hdr_len; 20890 if (tcp->tcp_ipversion == IPV4_VERSION) 20891 tcp->tcp_ipha->ipha_length = htons(len); 20892 else 20893 tcp->tcp_ip6h->ip6_plen = 20894 htons(len - 20895 ((char *)&tcp->tcp_ip6h[1] - 20896 tcp->tcp_iphc)); 20897 mp = dupb(*xmit_tail); 20898 if (mp == NULL) { 20899 if (ire != NULL) 20900 IRE_REFRELE(ire); 20901 return (-1); /* out_of_mem */ 20902 } 20903 mp->b_rptr = rptr; 20904 /* 20905 * If the old timestamp is no longer in use, 20906 * sample a new timestamp now. 20907 */ 20908 if ((*xmit_tail)->b_next == NULL) { 20909 (*xmit_tail)->b_prev = local_time; 20910 (*xmit_tail)->b_next = 20911 (mblk_t *)(uintptr_t)(*snxt-len); 20912 } 20913 goto must_alloc; 20914 } 20915 } else { 20916 *xmit_tail = (*xmit_tail)->b_cont; 20917 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 20918 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 20919 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20920 (*xmit_tail)->b_rptr); 20921 } 20922 20923 (*xmit_tail)->b_prev = local_time; 20924 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 20925 20926 *tail_unsent -= len; 20927 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 20928 tcp->tcp_last_sent_len = (ushort_t)len; 20929 20930 len += tcp_hdr_len; 20931 if (tcp->tcp_ipversion == IPV4_VERSION) 20932 tcp->tcp_ipha->ipha_length = htons(len); 20933 else 20934 tcp->tcp_ip6h->ip6_plen = htons(len - 20935 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 20936 20937 mp = dupb(*xmit_tail); 20938 if (mp == NULL) { 20939 if (ire != NULL) 20940 IRE_REFRELE(ire); 20941 return (-1); /* out_of_mem */ 20942 } 20943 20944 len = tcp_hdr_len; 20945 /* 20946 * There are four reasons to allocate a new hdr mblk: 20947 * 1) The bytes above us are in use by another packet 20948 * 2) We don't have good alignment 20949 * 3) The mblk is being shared 20950 * 4) We don't have enough room for a header 20951 */ 20952 rptr = mp->b_rptr - len; 20953 if (!OK_32PTR(rptr) || 20954 ((db = mp->b_datap), db->db_ref != 2) || 20955 rptr < db->db_base + ire_fp_mp_len) { 20956 /* NOTE: we assume allocb returns an OK_32PTR */ 20957 20958 must_alloc:; 20959 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 20960 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 20961 if (mp1 == NULL) { 20962 freemsg(mp); 20963 if (ire != NULL) 20964 IRE_REFRELE(ire); 20965 return (-1); /* out_of_mem */ 20966 } 20967 mp1->b_cont = mp; 20968 mp = mp1; 20969 /* Leave room for Link Level header */ 20970 len = tcp_hdr_len; 20971 rptr = 20972 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 20973 mp->b_wptr = &rptr[len]; 20974 } 20975 20976 /* 20977 * Fill in the header using the template header, and add 20978 * options such as time-stamp, ECN and/or SACK, as needed. 20979 */ 20980 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 20981 20982 mp->b_rptr = rptr; 20983 20984 if (*tail_unsent) { 20985 int spill = *tail_unsent; 20986 20987 mp1 = mp->b_cont; 20988 if (mp1 == NULL) 20989 mp1 = mp; 20990 20991 /* 20992 * If we're a little short, tack on more mblks until 20993 * there is no more spillover. 20994 */ 20995 while (spill < 0) { 20996 mblk_t *nmp; 20997 int nmpsz; 20998 20999 nmp = (*xmit_tail)->b_cont; 21000 nmpsz = MBLKL(nmp); 21001 21002 /* 21003 * Excess data in mblk; can we split it? 21004 * If MDT is enabled for the connection, 21005 * keep on splitting as this is a transient 21006 * send path. 21007 */ 21008 if (!do_lso_send && !tcp->tcp_mdt && 21009 (spill + nmpsz > 0)) { 21010 /* 21011 * Don't split if stream head was 21012 * told to break up larger writes 21013 * into smaller ones. 21014 */ 21015 if (tcp->tcp_maxpsz > 0) 21016 break; 21017 21018 /* 21019 * Next mblk is less than SMSS/2 21020 * rounded up to nearest 64-byte; 21021 * let it get sent as part of the 21022 * next segment. 21023 */ 21024 if (tcp->tcp_localnet && 21025 !tcp->tcp_cork && 21026 (nmpsz < roundup((mss >> 1), 64))) 21027 break; 21028 } 21029 21030 *xmit_tail = nmp; 21031 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21032 /* Stash for rtt use later */ 21033 (*xmit_tail)->b_prev = local_time; 21034 (*xmit_tail)->b_next = 21035 (mblk_t *)(uintptr_t)(*snxt - len); 21036 mp1->b_cont = dupb(*xmit_tail); 21037 mp1 = mp1->b_cont; 21038 21039 spill += nmpsz; 21040 if (mp1 == NULL) { 21041 *tail_unsent = spill; 21042 freemsg(mp); 21043 if (ire != NULL) 21044 IRE_REFRELE(ire); 21045 return (-1); /* out_of_mem */ 21046 } 21047 } 21048 21049 /* Trim back any surplus on the last mblk */ 21050 if (spill >= 0) { 21051 mp1->b_wptr -= spill; 21052 *tail_unsent = spill; 21053 } else { 21054 /* 21055 * We did not send everything we could in 21056 * order to remain within the b_cont limit. 21057 */ 21058 *usable -= spill; 21059 *snxt += spill; 21060 tcp->tcp_last_sent_len += spill; 21061 UPDATE_MIB(&tcps->tcps_mib, 21062 tcpOutDataBytes, spill); 21063 /* 21064 * Adjust the checksum 21065 */ 21066 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21067 sum += spill; 21068 sum = (sum >> 16) + (sum & 0xFFFF); 21069 U16_TO_ABE16(sum, tcph->th_sum); 21070 if (tcp->tcp_ipversion == IPV4_VERSION) { 21071 sum = ntohs( 21072 ((ipha_t *)rptr)->ipha_length) + 21073 spill; 21074 ((ipha_t *)rptr)->ipha_length = 21075 htons(sum); 21076 } else { 21077 sum = ntohs( 21078 ((ip6_t *)rptr)->ip6_plen) + 21079 spill; 21080 ((ip6_t *)rptr)->ip6_plen = 21081 htons(sum); 21082 } 21083 *tail_unsent = 0; 21084 } 21085 } 21086 if (tcp->tcp_ip_forward_progress) { 21087 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21088 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21089 tcp->tcp_ip_forward_progress = B_FALSE; 21090 } 21091 21092 if (do_lso_send) { 21093 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21094 num_lso_seg); 21095 tcp->tcp_obsegs += num_lso_seg; 21096 21097 TCP_STAT(tcps, tcp_lso_times); 21098 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21099 } else { 21100 tcp_send_data(tcp, q, mp); 21101 BUMP_LOCAL(tcp->tcp_obsegs); 21102 } 21103 } 21104 21105 if (ire != NULL) 21106 IRE_REFRELE(ire); 21107 return (0); 21108 } 21109 21110 /* Unlink and return any mblk that looks like it contains a MDT info */ 21111 static mblk_t * 21112 tcp_mdt_info_mp(mblk_t *mp) 21113 { 21114 mblk_t *prev_mp; 21115 21116 for (;;) { 21117 prev_mp = mp; 21118 /* no more to process? */ 21119 if ((mp = mp->b_cont) == NULL) 21120 break; 21121 21122 switch (DB_TYPE(mp)) { 21123 case M_CTL: 21124 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21125 continue; 21126 ASSERT(prev_mp != NULL); 21127 prev_mp->b_cont = mp->b_cont; 21128 mp->b_cont = NULL; 21129 return (mp); 21130 default: 21131 break; 21132 } 21133 } 21134 return (mp); 21135 } 21136 21137 /* MDT info update routine, called when IP notifies us about MDT */ 21138 static void 21139 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21140 { 21141 boolean_t prev_state; 21142 tcp_stack_t *tcps = tcp->tcp_tcps; 21143 21144 /* 21145 * IP is telling us to abort MDT on this connection? We know 21146 * this because the capability is only turned off when IP 21147 * encounters some pathological cases, e.g. link-layer change 21148 * where the new driver doesn't support MDT, or in situation 21149 * where MDT usage on the link-layer has been switched off. 21150 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21151 * if the link-layer doesn't support MDT, and if it does, it 21152 * will indicate that the feature is to be turned on. 21153 */ 21154 prev_state = tcp->tcp_mdt; 21155 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21156 if (!tcp->tcp_mdt && !first) { 21157 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21158 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21159 (void *)tcp->tcp_connp)); 21160 } 21161 21162 /* 21163 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21164 * so disable MDT otherwise. The checks are done here 21165 * and in tcp_wput_data(). 21166 */ 21167 if (tcp->tcp_mdt && 21168 (tcp->tcp_ipversion == IPV4_VERSION && 21169 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21170 (tcp->tcp_ipversion == IPV6_VERSION && 21171 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21172 tcp->tcp_mdt = B_FALSE; 21173 21174 if (tcp->tcp_mdt) { 21175 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21176 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21177 "version (%d), expected version is %d", 21178 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21179 tcp->tcp_mdt = B_FALSE; 21180 return; 21181 } 21182 21183 /* 21184 * We need the driver to be able to handle at least three 21185 * spans per packet in order for tcp MDT to be utilized. 21186 * The first is for the header portion, while the rest are 21187 * needed to handle a packet that straddles across two 21188 * virtually non-contiguous buffers; a typical tcp packet 21189 * therefore consists of only two spans. Note that we take 21190 * a zero as "don't care". 21191 */ 21192 if (mdt_capab->ill_mdt_span_limit > 0 && 21193 mdt_capab->ill_mdt_span_limit < 3) { 21194 tcp->tcp_mdt = B_FALSE; 21195 return; 21196 } 21197 21198 /* a zero means driver wants default value */ 21199 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21200 tcps->tcps_mdt_max_pbufs); 21201 if (tcp->tcp_mdt_max_pld == 0) 21202 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21203 21204 /* ensure 32-bit alignment */ 21205 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21206 mdt_capab->ill_mdt_hdr_head), 4); 21207 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21208 mdt_capab->ill_mdt_hdr_tail), 4); 21209 21210 if (!first && !prev_state) { 21211 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21212 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21213 (void *)tcp->tcp_connp)); 21214 } 21215 } 21216 } 21217 21218 /* Unlink and return any mblk that looks like it contains a LSO info */ 21219 static mblk_t * 21220 tcp_lso_info_mp(mblk_t *mp) 21221 { 21222 mblk_t *prev_mp; 21223 21224 for (;;) { 21225 prev_mp = mp; 21226 /* no more to process? */ 21227 if ((mp = mp->b_cont) == NULL) 21228 break; 21229 21230 switch (DB_TYPE(mp)) { 21231 case M_CTL: 21232 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21233 continue; 21234 ASSERT(prev_mp != NULL); 21235 prev_mp->b_cont = mp->b_cont; 21236 mp->b_cont = NULL; 21237 return (mp); 21238 default: 21239 break; 21240 } 21241 } 21242 21243 return (mp); 21244 } 21245 21246 /* LSO info update routine, called when IP notifies us about LSO */ 21247 static void 21248 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21249 { 21250 tcp_stack_t *tcps = tcp->tcp_tcps; 21251 21252 /* 21253 * IP is telling us to abort LSO on this connection? We know 21254 * this because the capability is only turned off when IP 21255 * encounters some pathological cases, e.g. link-layer change 21256 * where the new NIC/driver doesn't support LSO, or in situation 21257 * where LSO usage on the link-layer has been switched off. 21258 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21259 * if the link-layer doesn't support LSO, and if it does, it 21260 * will indicate that the feature is to be turned on. 21261 */ 21262 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21263 TCP_STAT(tcps, tcp_lso_enabled); 21264 21265 /* 21266 * We currently only support LSO on simple TCP/IPv4, 21267 * so disable LSO otherwise. The checks are done here 21268 * and in tcp_wput_data(). 21269 */ 21270 if (tcp->tcp_lso && 21271 (tcp->tcp_ipversion == IPV4_VERSION && 21272 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21273 (tcp->tcp_ipversion == IPV6_VERSION)) { 21274 tcp->tcp_lso = B_FALSE; 21275 TCP_STAT(tcps, tcp_lso_disabled); 21276 } else { 21277 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21278 lso_capab->ill_lso_max); 21279 } 21280 } 21281 21282 static void 21283 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21284 { 21285 conn_t *connp = tcp->tcp_connp; 21286 tcp_stack_t *tcps = tcp->tcp_tcps; 21287 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21288 21289 ASSERT(ire != NULL); 21290 21291 /* 21292 * We may be in the fastpath here, and although we essentially do 21293 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21294 * we try to keep things as brief as possible. After all, these 21295 * are only best-effort checks, and we do more thorough ones prior 21296 * to calling tcp_send()/tcp_multisend(). 21297 */ 21298 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21299 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21300 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21301 !(ire->ire_flags & RTF_MULTIRT) && 21302 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21303 CONN_IS_LSO_MD_FASTPATH(connp)) { 21304 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21305 /* Cache the result */ 21306 connp->conn_lso_ok = B_TRUE; 21307 21308 ASSERT(ill->ill_lso_capab != NULL); 21309 if (!ill->ill_lso_capab->ill_lso_on) { 21310 ill->ill_lso_capab->ill_lso_on = 1; 21311 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21312 "LSO for interface %s\n", (void *)connp, 21313 ill->ill_name)); 21314 } 21315 tcp_lso_update(tcp, ill->ill_lso_capab); 21316 } else if (ipst->ips_ip_multidata_outbound && 21317 ILL_MDT_CAPABLE(ill)) { 21318 /* Cache the result */ 21319 connp->conn_mdt_ok = B_TRUE; 21320 21321 ASSERT(ill->ill_mdt_capab != NULL); 21322 if (!ill->ill_mdt_capab->ill_mdt_on) { 21323 ill->ill_mdt_capab->ill_mdt_on = 1; 21324 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21325 "MDT for interface %s\n", (void *)connp, 21326 ill->ill_name)); 21327 } 21328 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21329 } 21330 } 21331 21332 /* 21333 * The goal is to reduce the number of generated tcp segments by 21334 * setting the maxpsz multiplier to 0; this will have an affect on 21335 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21336 * into each packet, up to SMSS bytes. Doing this reduces the number 21337 * of outbound segments and incoming ACKs, thus allowing for better 21338 * network and system performance. In contrast the legacy behavior 21339 * may result in sending less than SMSS size, because the last mblk 21340 * for some packets may have more data than needed to make up SMSS, 21341 * and the legacy code refused to "split" it. 21342 * 21343 * We apply the new behavior on following situations: 21344 * 21345 * 1) Loopback connections, 21346 * 2) Connections in which the remote peer is not on local subnet, 21347 * 3) Local subnet connections over the bge interface (see below). 21348 * 21349 * Ideally, we would like this behavior to apply for interfaces other 21350 * than bge. However, doing so would negatively impact drivers which 21351 * perform dynamic mapping and unmapping of DMA resources, which are 21352 * increased by setting the maxpsz multiplier to 0 (more mblks per 21353 * packet will be generated by tcp). The bge driver does not suffer 21354 * from this, as it copies the mblks into pre-mapped buffers, and 21355 * therefore does not require more I/O resources than before. 21356 * 21357 * Otherwise, this behavior is present on all network interfaces when 21358 * the destination endpoint is non-local, since reducing the number 21359 * of packets in general is good for the network. 21360 * 21361 * TODO We need to remove this hard-coded conditional for bge once 21362 * a better "self-tuning" mechanism, or a way to comprehend 21363 * the driver transmit strategy is devised. Until the solution 21364 * is found and well understood, we live with this hack. 21365 */ 21366 if (!tcp_static_maxpsz && 21367 (tcp->tcp_loopback || !tcp->tcp_localnet || 21368 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21369 /* override the default value */ 21370 tcp->tcp_maxpsz = 0; 21371 21372 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21373 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21374 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21375 } 21376 21377 /* set the stream head parameters accordingly */ 21378 (void) tcp_maxpsz_set(tcp, B_TRUE); 21379 } 21380 21381 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21382 static void 21383 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21384 { 21385 uchar_t fval = *mp->b_rptr; 21386 mblk_t *tail; 21387 queue_t *q = tcp->tcp_wq; 21388 21389 /* TODO: How should flush interact with urgent data? */ 21390 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21391 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21392 /* 21393 * Flush only data that has not yet been put on the wire. If 21394 * we flush data that we have already transmitted, life, as we 21395 * know it, may come to an end. 21396 */ 21397 tail = tcp->tcp_xmit_tail; 21398 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21399 tcp->tcp_xmit_tail_unsent = 0; 21400 tcp->tcp_unsent = 0; 21401 if (tail->b_wptr != tail->b_rptr) 21402 tail = tail->b_cont; 21403 if (tail) { 21404 mblk_t **excess = &tcp->tcp_xmit_head; 21405 for (;;) { 21406 mblk_t *mp1 = *excess; 21407 if (mp1 == tail) 21408 break; 21409 tcp->tcp_xmit_tail = mp1; 21410 tcp->tcp_xmit_last = mp1; 21411 excess = &mp1->b_cont; 21412 } 21413 *excess = NULL; 21414 tcp_close_mpp(&tail); 21415 if (tcp->tcp_snd_zcopy_aware) 21416 tcp_zcopy_notify(tcp); 21417 } 21418 /* 21419 * We have no unsent data, so unsent must be less than 21420 * tcp_xmit_lowater, so re-enable flow. 21421 */ 21422 mutex_enter(&tcp->tcp_non_sq_lock); 21423 if (tcp->tcp_flow_stopped) { 21424 tcp_clrqfull(tcp); 21425 } 21426 mutex_exit(&tcp->tcp_non_sq_lock); 21427 } 21428 /* 21429 * TODO: you can't just flush these, you have to increase rwnd for one 21430 * thing. For another, how should urgent data interact? 21431 */ 21432 if (fval & FLUSHR) { 21433 *mp->b_rptr = fval & ~FLUSHW; 21434 /* XXX */ 21435 qreply(q, mp); 21436 return; 21437 } 21438 freemsg(mp); 21439 } 21440 21441 /* 21442 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21443 * messages. 21444 */ 21445 static void 21446 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21447 { 21448 mblk_t *mp1; 21449 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 21450 STRUCT_HANDLE(strbuf, sb); 21451 queue_t *q = tcp->tcp_wq; 21452 int error; 21453 uint_t addrlen; 21454 21455 /* Make sure it is one of ours. */ 21456 switch (iocp->ioc_cmd) { 21457 case TI_GETMYNAME: 21458 case TI_GETPEERNAME: 21459 break; 21460 default: 21461 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21462 return; 21463 } 21464 switch (mi_copy_state(q, mp, &mp1)) { 21465 case -1: 21466 return; 21467 case MI_COPY_CASE(MI_COPY_IN, 1): 21468 break; 21469 case MI_COPY_CASE(MI_COPY_OUT, 1): 21470 /* Copy out the strbuf. */ 21471 mi_copyout(q, mp); 21472 return; 21473 case MI_COPY_CASE(MI_COPY_OUT, 2): 21474 /* All done. */ 21475 mi_copy_done(q, mp, 0); 21476 return; 21477 default: 21478 mi_copy_done(q, mp, EPROTO); 21479 return; 21480 } 21481 /* Check alignment of the strbuf */ 21482 if (!OK_32PTR(mp1->b_rptr)) { 21483 mi_copy_done(q, mp, EINVAL); 21484 return; 21485 } 21486 21487 STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr); 21488 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21489 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21490 mi_copy_done(q, mp, EINVAL); 21491 return; 21492 } 21493 21494 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21495 if (mp1 == NULL) 21496 return; 21497 21498 switch (iocp->ioc_cmd) { 21499 case TI_GETMYNAME: 21500 error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen); 21501 break; 21502 case TI_GETPEERNAME: 21503 error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen); 21504 break; 21505 } 21506 21507 if (error != 0) { 21508 mi_copy_done(q, mp, error); 21509 } else { 21510 mp1->b_wptr += addrlen; 21511 STRUCT_FSET(sb, len, addrlen); 21512 21513 /* Copy out the address */ 21514 mi_copyout(q, mp); 21515 } 21516 } 21517 21518 static void 21519 tcp_disable_direct_sockfs(tcp_t *tcp) 21520 { 21521 #ifdef _ILP32 21522 tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq; 21523 #else 21524 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21525 #endif 21526 /* 21527 * Insert this socket into the acceptor hash. 21528 * We might need it for T_CONN_RES message 21529 */ 21530 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21531 21532 if (tcp->tcp_fused) { 21533 /* 21534 * This is a fused loopback tcp; disable 21535 * read-side synchronous streams interface 21536 * and drain any queued data. It is okay 21537 * to do this for non-synchronous streams 21538 * fused tcp as well. 21539 */ 21540 tcp_fuse_disable_pair(tcp, B_FALSE); 21541 } 21542 tcp->tcp_issocket = B_FALSE; 21543 TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback); 21544 } 21545 21546 /* 21547 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21548 * messages. 21549 */ 21550 /* ARGSUSED */ 21551 static void 21552 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21553 { 21554 conn_t *connp = (conn_t *)arg; 21555 tcp_t *tcp = connp->conn_tcp; 21556 queue_t *q = tcp->tcp_wq; 21557 struct iocblk *iocp; 21558 21559 ASSERT(DB_TYPE(mp) == M_IOCTL); 21560 /* 21561 * Try and ASSERT the minimum possible references on the 21562 * conn early enough. Since we are executing on write side, 21563 * the connection is obviously not detached and that means 21564 * there is a ref each for TCP and IP. Since we are behind 21565 * the squeue, the minimum references needed are 3. If the 21566 * conn is in classifier hash list, there should be an 21567 * extra ref for that (we check both the possibilities). 21568 */ 21569 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21570 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21571 21572 iocp = (struct iocblk *)mp->b_rptr; 21573 switch (iocp->ioc_cmd) { 21574 case TCP_IOC_DEFAULT_Q: 21575 /* Wants to be the default wq. */ 21576 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 21577 iocp->ioc_error = EPERM; 21578 iocp->ioc_count = 0; 21579 mp->b_datap->db_type = M_IOCACK; 21580 qreply(q, mp); 21581 return; 21582 } 21583 tcp_def_q_set(tcp, mp); 21584 return; 21585 case _SIOCSOCKFALLBACK: 21586 /* 21587 * Either sockmod is about to be popped and the socket 21588 * would now be treated as a plain stream, or a module 21589 * is about to be pushed so we could no longer use read- 21590 * side synchronous streams for fused loopback tcp. 21591 * Drain any queued data and disable direct sockfs 21592 * interface from now on. 21593 */ 21594 if (!tcp->tcp_issocket) { 21595 DB_TYPE(mp) = M_IOCNAK; 21596 iocp->ioc_error = EINVAL; 21597 } else { 21598 tcp_disable_direct_sockfs(tcp); 21599 DB_TYPE(mp) = M_IOCACK; 21600 iocp->ioc_error = 0; 21601 } 21602 iocp->ioc_count = 0; 21603 iocp->ioc_rval = 0; 21604 qreply(q, mp); 21605 return; 21606 } 21607 CALL_IP_WPUT(connp, q, mp); 21608 } 21609 21610 /* 21611 * This routine is called by tcp_wput() to handle all TPI requests. 21612 */ 21613 /* ARGSUSED */ 21614 static void 21615 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21616 { 21617 conn_t *connp = (conn_t *)arg; 21618 tcp_t *tcp = connp->conn_tcp; 21619 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21620 uchar_t *rptr; 21621 t_scalar_t type; 21622 cred_t *cr; 21623 21624 /* 21625 * Try and ASSERT the minimum possible references on the 21626 * conn early enough. Since we are executing on write side, 21627 * the connection is obviously not detached and that means 21628 * there is a ref each for TCP and IP. Since we are behind 21629 * the squeue, the minimum references needed are 3. If the 21630 * conn is in classifier hash list, there should be an 21631 * extra ref for that (we check both the possibilities). 21632 */ 21633 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21634 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21635 21636 rptr = mp->b_rptr; 21637 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21638 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21639 type = ((union T_primitives *)rptr)->type; 21640 if (type == T_EXDATA_REQ) { 21641 tcp_output_urgent(connp, mp->b_cont, arg2); 21642 freeb(mp); 21643 } else if (type != T_DATA_REQ) { 21644 goto non_urgent_data; 21645 } else { 21646 /* TODO: options, flags, ... from user */ 21647 /* Set length to zero for reclamation below */ 21648 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21649 freeb(mp); 21650 } 21651 return; 21652 } else { 21653 if (tcp->tcp_debug) { 21654 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21655 "tcp_wput_proto, dropping one..."); 21656 } 21657 freemsg(mp); 21658 return; 21659 } 21660 21661 non_urgent_data: 21662 21663 switch ((int)tprim->type) { 21664 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21665 /* 21666 * save the kssl_ent_t from the next block, and convert this 21667 * back to a normal bind_req. 21668 */ 21669 if (mp->b_cont != NULL) { 21670 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21671 21672 if (tcp->tcp_kssl_ent != NULL) { 21673 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21674 KSSL_NO_PROXY); 21675 tcp->tcp_kssl_ent = NULL; 21676 } 21677 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21678 sizeof (kssl_ent_t)); 21679 kssl_hold_ent(tcp->tcp_kssl_ent); 21680 freemsg(mp->b_cont); 21681 mp->b_cont = NULL; 21682 } 21683 tprim->type = T_BIND_REQ; 21684 21685 /* FALLTHROUGH */ 21686 case O_T_BIND_REQ: /* bind request */ 21687 case T_BIND_REQ: /* new semantics bind request */ 21688 tcp_tpi_bind(tcp, mp); 21689 break; 21690 case T_UNBIND_REQ: /* unbind request */ 21691 tcp_tpi_unbind(tcp, mp); 21692 break; 21693 case O_T_CONN_RES: /* old connection response XXX */ 21694 case T_CONN_RES: /* connection response */ 21695 tcp_tli_accept(tcp, mp); 21696 break; 21697 case T_CONN_REQ: /* connection request */ 21698 tcp_tpi_connect(tcp, mp); 21699 break; 21700 case T_DISCON_REQ: /* disconnect request */ 21701 tcp_disconnect(tcp, mp); 21702 break; 21703 case T_CAPABILITY_REQ: 21704 tcp_capability_req(tcp, mp); /* capability request */ 21705 break; 21706 case T_INFO_REQ: /* information request */ 21707 tcp_info_req(tcp, mp); 21708 break; 21709 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21710 case T_OPTMGMT_REQ: 21711 /* 21712 * Note: no support for snmpcom_req() through new 21713 * T_OPTMGMT_REQ. See comments in ip.c 21714 */ 21715 21716 /* 21717 * All Solaris components should pass a db_credp 21718 * for this TPI message, hence we ASSERT. 21719 * But in case there is some other M_PROTO that looks 21720 * like a TPI message sent by some other kernel 21721 * component, we check and return an error. 21722 */ 21723 cr = msg_getcred(mp, NULL); 21724 ASSERT(cr != NULL); 21725 if (cr == NULL) { 21726 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 21727 return; 21728 } 21729 /* 21730 * If EINPROGRESS is returned, the request has been queued 21731 * for subsequent processing by ip_restart_optmgmt(), which 21732 * will do the CONN_DEC_REF(). 21733 */ 21734 CONN_INC_REF(connp); 21735 if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) { 21736 if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21737 B_TRUE) != EINPROGRESS) { 21738 CONN_DEC_REF(connp); 21739 } 21740 } else { 21741 if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 21742 B_TRUE) != EINPROGRESS) { 21743 CONN_DEC_REF(connp); 21744 } 21745 } 21746 break; 21747 21748 case T_UNITDATA_REQ: /* unitdata request */ 21749 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21750 break; 21751 case T_ORDREL_REQ: /* orderly release req */ 21752 freemsg(mp); 21753 21754 if (tcp->tcp_fused) 21755 tcp_unfuse(tcp); 21756 21757 if (tcp_xmit_end(tcp) != 0) { 21758 /* 21759 * We were crossing FINs and got a reset from 21760 * the other side. Just ignore it. 21761 */ 21762 if (tcp->tcp_debug) { 21763 (void) strlog(TCP_MOD_ID, 0, 1, 21764 SL_ERROR|SL_TRACE, 21765 "tcp_wput_proto, T_ORDREL_REQ out of " 21766 "state %s", 21767 tcp_display(tcp, NULL, 21768 DISP_ADDR_AND_PORT)); 21769 } 21770 } 21771 break; 21772 case T_ADDR_REQ: 21773 tcp_addr_req(tcp, mp); 21774 break; 21775 default: 21776 if (tcp->tcp_debug) { 21777 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21778 "tcp_wput_proto, bogus TPI msg, type %d", 21779 tprim->type); 21780 } 21781 /* 21782 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21783 * to recover. 21784 */ 21785 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21786 break; 21787 } 21788 } 21789 21790 /* 21791 * The TCP write service routine should never be called... 21792 */ 21793 /* ARGSUSED */ 21794 static void 21795 tcp_wsrv(queue_t *q) 21796 { 21797 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 21798 21799 TCP_STAT(tcps, tcp_wsrv_called); 21800 } 21801 21802 /* Non overlapping byte exchanger */ 21803 static void 21804 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21805 { 21806 uchar_t uch; 21807 21808 while (len-- > 0) { 21809 uch = a[len]; 21810 a[len] = b[len]; 21811 b[len] = uch; 21812 } 21813 } 21814 21815 /* 21816 * Send out a control packet on the tcp connection specified. This routine 21817 * is typically called where we need a simple ACK or RST generated. 21818 */ 21819 static void 21820 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 21821 { 21822 uchar_t *rptr; 21823 tcph_t *tcph; 21824 ipha_t *ipha = NULL; 21825 ip6_t *ip6h = NULL; 21826 uint32_t sum; 21827 int tcp_hdr_len; 21828 int tcp_ip_hdr_len; 21829 mblk_t *mp; 21830 tcp_stack_t *tcps = tcp->tcp_tcps; 21831 21832 /* 21833 * Save sum for use in source route later. 21834 */ 21835 ASSERT(tcp != NULL); 21836 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 21837 tcp_hdr_len = tcp->tcp_hdr_len; 21838 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 21839 21840 /* If a text string is passed in with the request, pass it to strlog. */ 21841 if (str != NULL && tcp->tcp_debug) { 21842 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 21843 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 21844 str, seq, ack, ctl); 21845 } 21846 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 21847 BPRI_MED); 21848 if (mp == NULL) { 21849 return; 21850 } 21851 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 21852 mp->b_rptr = rptr; 21853 mp->b_wptr = &rptr[tcp_hdr_len]; 21854 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 21855 21856 if (tcp->tcp_ipversion == IPV4_VERSION) { 21857 ipha = (ipha_t *)rptr; 21858 ipha->ipha_length = htons(tcp_hdr_len); 21859 } else { 21860 ip6h = (ip6_t *)rptr; 21861 ASSERT(tcp != NULL); 21862 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 21863 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21864 } 21865 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 21866 tcph->th_flags[0] = (uint8_t)ctl; 21867 if (ctl & TH_RST) { 21868 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 21869 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 21870 /* 21871 * Don't send TSopt w/ TH_RST packets per RFC 1323. 21872 */ 21873 if (tcp->tcp_snd_ts_ok && 21874 tcp->tcp_state > TCPS_SYN_SENT) { 21875 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 21876 *(mp->b_wptr) = TCPOPT_EOL; 21877 if (tcp->tcp_ipversion == IPV4_VERSION) { 21878 ipha->ipha_length = htons(tcp_hdr_len - 21879 TCPOPT_REAL_TS_LEN); 21880 } else { 21881 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 21882 TCPOPT_REAL_TS_LEN); 21883 } 21884 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 21885 sum -= TCPOPT_REAL_TS_LEN; 21886 } 21887 } 21888 if (ctl & TH_ACK) { 21889 if (tcp->tcp_snd_ts_ok) { 21890 U32_TO_BE32(lbolt, 21891 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 21892 U32_TO_BE32(tcp->tcp_ts_recent, 21893 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 21894 } 21895 21896 /* Update the latest receive window size in TCP header. */ 21897 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 21898 tcph->th_win); 21899 tcp->tcp_rack = ack; 21900 tcp->tcp_rack_cnt = 0; 21901 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 21902 } 21903 BUMP_LOCAL(tcp->tcp_obsegs); 21904 U32_TO_BE32(seq, tcph->th_seq); 21905 U32_TO_BE32(ack, tcph->th_ack); 21906 /* 21907 * Include the adjustment for a source route if any. 21908 */ 21909 sum = (sum >> 16) + (sum & 0xFFFF); 21910 U16_TO_BE16(sum, tcph->th_sum); 21911 tcp_send_data(tcp, tcp->tcp_wq, mp); 21912 } 21913 21914 /* 21915 * If this routine returns B_TRUE, TCP can generate a RST in response 21916 * to a segment. If it returns B_FALSE, TCP should not respond. 21917 */ 21918 static boolean_t 21919 tcp_send_rst_chk(tcp_stack_t *tcps) 21920 { 21921 clock_t now; 21922 21923 /* 21924 * TCP needs to protect itself from generating too many RSTs. 21925 * This can be a DoS attack by sending us random segments 21926 * soliciting RSTs. 21927 * 21928 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 21929 * in each 1 second interval. In this way, TCP still generate 21930 * RSTs in normal cases but when under attack, the impact is 21931 * limited. 21932 */ 21933 if (tcps->tcps_rst_sent_rate_enabled != 0) { 21934 now = lbolt; 21935 /* lbolt can wrap around. */ 21936 if ((tcps->tcps_last_rst_intrvl > now) || 21937 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 21938 1*SECONDS)) { 21939 tcps->tcps_last_rst_intrvl = now; 21940 tcps->tcps_rst_cnt = 1; 21941 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 21942 return (B_FALSE); 21943 } 21944 } 21945 return (B_TRUE); 21946 } 21947 21948 /* 21949 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 21950 */ 21951 static void 21952 tcp_ip_ire_mark_advice(tcp_t *tcp) 21953 { 21954 mblk_t *mp; 21955 ipic_t *ipic; 21956 21957 if (tcp->tcp_ipversion == IPV4_VERSION) { 21958 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 21959 &ipic); 21960 } else { 21961 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 21962 &ipic); 21963 } 21964 if (mp == NULL) 21965 return; 21966 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 21967 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 21968 } 21969 21970 /* 21971 * Return an IP advice ioctl mblk and set ipic to be the pointer 21972 * to the advice structure. 21973 */ 21974 static mblk_t * 21975 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 21976 { 21977 struct iocblk *ioc; 21978 mblk_t *mp, *mp1; 21979 21980 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 21981 if (mp == NULL) 21982 return (NULL); 21983 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 21984 *ipic = (ipic_t *)mp->b_rptr; 21985 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 21986 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 21987 21988 bcopy(addr, *ipic + 1, addr_len); 21989 21990 (*ipic)->ipic_addr_length = addr_len; 21991 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 21992 21993 mp1 = mkiocb(IP_IOCTL); 21994 if (mp1 == NULL) { 21995 freemsg(mp); 21996 return (NULL); 21997 } 21998 mp1->b_cont = mp; 21999 ioc = (struct iocblk *)mp1->b_rptr; 22000 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22001 22002 return (mp1); 22003 } 22004 22005 /* 22006 * Generate a reset based on an inbound packet, connp is set by caller 22007 * when RST is in response to an unexpected inbound packet for which 22008 * there is active tcp state in the system. 22009 * 22010 * IPSEC NOTE : Try to send the reply with the same protection as it came 22011 * in. We still have the ipsec_mp that the packet was attached to. Thus 22012 * the packet will go out at the same level of protection as it came in by 22013 * converting the IPSEC_IN to IPSEC_OUT. 22014 */ 22015 static void 22016 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22017 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22018 tcp_stack_t *tcps, conn_t *connp) 22019 { 22020 ipha_t *ipha = NULL; 22021 ip6_t *ip6h = NULL; 22022 ushort_t len; 22023 tcph_t *tcph; 22024 int i; 22025 mblk_t *ipsec_mp; 22026 boolean_t mctl_present; 22027 ipic_t *ipic; 22028 ipaddr_t v4addr; 22029 in6_addr_t v6addr; 22030 int addr_len; 22031 void *addr; 22032 queue_t *q = tcps->tcps_g_q; 22033 tcp_t *tcp; 22034 cred_t *cr; 22035 pid_t pid; 22036 mblk_t *nmp; 22037 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22038 22039 if (tcps->tcps_g_q == NULL) { 22040 /* 22041 * For non-zero stackids the default queue isn't created 22042 * until the first open, thus there can be a need to send 22043 * a reset before then. But we can't do that, hence we just 22044 * drop the packet. Later during boot, when the default queue 22045 * has been setup, a retransmitted packet from the peer 22046 * will result in a reset. 22047 */ 22048 ASSERT(tcps->tcps_netstack->netstack_stackid != 22049 GLOBAL_NETSTACKID); 22050 freemsg(mp); 22051 return; 22052 } 22053 22054 if (connp != NULL) 22055 tcp = connp->conn_tcp; 22056 else 22057 tcp = Q_TO_TCP(q); 22058 22059 if (!tcp_send_rst_chk(tcps)) { 22060 tcps->tcps_rst_unsent++; 22061 freemsg(mp); 22062 return; 22063 } 22064 22065 if (mp->b_datap->db_type == M_CTL) { 22066 ipsec_mp = mp; 22067 mp = mp->b_cont; 22068 mctl_present = B_TRUE; 22069 } else { 22070 ipsec_mp = mp; 22071 mctl_present = B_FALSE; 22072 } 22073 22074 if (str && q && tcps->tcps_dbg) { 22075 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22076 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22077 "flags 0x%x", 22078 str, seq, ack, ctl); 22079 } 22080 if (mp->b_datap->db_ref != 1) { 22081 mblk_t *mp1 = copyb(mp); 22082 freemsg(mp); 22083 mp = mp1; 22084 if (!mp) { 22085 if (mctl_present) 22086 freeb(ipsec_mp); 22087 return; 22088 } else { 22089 if (mctl_present) { 22090 ipsec_mp->b_cont = mp; 22091 } else { 22092 ipsec_mp = mp; 22093 } 22094 } 22095 } else if (mp->b_cont) { 22096 freemsg(mp->b_cont); 22097 mp->b_cont = NULL; 22098 } 22099 /* 22100 * We skip reversing source route here. 22101 * (for now we replace all IP options with EOL) 22102 */ 22103 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22104 ipha = (ipha_t *)mp->b_rptr; 22105 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22106 mp->b_rptr[i] = IPOPT_EOL; 22107 /* 22108 * Make sure that src address isn't flagrantly invalid. 22109 * Not all broadcast address checking for the src address 22110 * is possible, since we don't know the netmask of the src 22111 * addr. No check for destination address is done, since 22112 * IP will not pass up a packet with a broadcast dest 22113 * address to TCP. Similar checks are done below for IPv6. 22114 */ 22115 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22116 CLASSD(ipha->ipha_src)) { 22117 freemsg(ipsec_mp); 22118 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22119 return; 22120 } 22121 } else { 22122 ip6h = (ip6_t *)mp->b_rptr; 22123 22124 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22125 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22126 freemsg(ipsec_mp); 22127 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22128 return; 22129 } 22130 22131 /* Remove any extension headers assuming partial overlay */ 22132 if (ip_hdr_len > IPV6_HDR_LEN) { 22133 uint8_t *to; 22134 22135 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22136 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22137 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22138 ip_hdr_len = IPV6_HDR_LEN; 22139 ip6h = (ip6_t *)mp->b_rptr; 22140 ip6h->ip6_nxt = IPPROTO_TCP; 22141 } 22142 } 22143 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22144 if (tcph->th_flags[0] & TH_RST) { 22145 freemsg(ipsec_mp); 22146 return; 22147 } 22148 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22149 len = ip_hdr_len + sizeof (tcph_t); 22150 mp->b_wptr = &mp->b_rptr[len]; 22151 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22152 ipha->ipha_length = htons(len); 22153 /* Swap addresses */ 22154 v4addr = ipha->ipha_src; 22155 ipha->ipha_src = ipha->ipha_dst; 22156 ipha->ipha_dst = v4addr; 22157 ipha->ipha_ident = 0; 22158 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22159 addr_len = IP_ADDR_LEN; 22160 addr = &v4addr; 22161 } else { 22162 /* No ip6i_t in this case */ 22163 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22164 /* Swap addresses */ 22165 v6addr = ip6h->ip6_src; 22166 ip6h->ip6_src = ip6h->ip6_dst; 22167 ip6h->ip6_dst = v6addr; 22168 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22169 addr_len = IPV6_ADDR_LEN; 22170 addr = &v6addr; 22171 } 22172 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22173 U32_TO_BE32(ack, tcph->th_ack); 22174 U32_TO_BE32(seq, tcph->th_seq); 22175 U16_TO_BE16(0, tcph->th_win); 22176 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22177 tcph->th_flags[0] = (uint8_t)ctl; 22178 if (ctl & TH_RST) { 22179 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22180 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22181 } 22182 22183 /* IP trusts us to set up labels when required. */ 22184 if (is_system_labeled() && (cr = msg_getcred(mp, &pid)) != NULL && 22185 crgetlabel(cr) != NULL) { 22186 int err; 22187 22188 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22189 err = tsol_check_label(cr, &mp, 22190 tcp->tcp_connp->conn_mac_exempt, 22191 tcps->tcps_netstack->netstack_ip, pid); 22192 else 22193 err = tsol_check_label_v6(cr, &mp, 22194 tcp->tcp_connp->conn_mac_exempt, 22195 tcps->tcps_netstack->netstack_ip, pid); 22196 if (mctl_present) 22197 ipsec_mp->b_cont = mp; 22198 else 22199 ipsec_mp = mp; 22200 if (err != 0) { 22201 freemsg(ipsec_mp); 22202 return; 22203 } 22204 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22205 ipha = (ipha_t *)mp->b_rptr; 22206 } else { 22207 ip6h = (ip6_t *)mp->b_rptr; 22208 } 22209 } 22210 22211 if (mctl_present) { 22212 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22213 22214 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22215 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22216 return; 22217 } 22218 } 22219 if (zoneid == ALL_ZONES) 22220 zoneid = GLOBAL_ZONEID; 22221 22222 /* Add the zoneid so ip_output routes it properly */ 22223 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22224 freemsg(ipsec_mp); 22225 return; 22226 } 22227 ipsec_mp = nmp; 22228 22229 /* 22230 * NOTE: one might consider tracing a TCP packet here, but 22231 * this function has no active TCP state and no tcp structure 22232 * that has a trace buffer. If we traced here, we would have 22233 * to keep a local trace buffer in tcp_record_trace(). 22234 * 22235 * TSol note: The mblk that contains the incoming packet was 22236 * reused by tcp_xmit_listener_reset, so it already contains 22237 * the right credentials and we don't need to call mblk_setcred. 22238 * Also the conn's cred is not right since it is associated 22239 * with tcps_g_q. 22240 */ 22241 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22242 22243 /* 22244 * Tell IP to mark the IRE used for this destination temporary. 22245 * This way, we can limit our exposure to DoS attack because IP 22246 * creates an IRE for each destination. If there are too many, 22247 * the time to do any routing lookup will be extremely long. And 22248 * the lookup can be in interrupt context. 22249 * 22250 * Note that in normal circumstances, this marking should not 22251 * affect anything. It would be nice if only 1 message is 22252 * needed to inform IP that the IRE created for this RST should 22253 * not be added to the cache table. But there is currently 22254 * not such communication mechanism between TCP and IP. So 22255 * the best we can do now is to send the advice ioctl to IP 22256 * to mark the IRE temporary. 22257 */ 22258 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22259 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22260 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22261 } 22262 } 22263 22264 /* 22265 * Initiate closedown sequence on an active connection. (May be called as 22266 * writer.) Return value zero for OK return, non-zero for error return. 22267 */ 22268 static int 22269 tcp_xmit_end(tcp_t *tcp) 22270 { 22271 ipic_t *ipic; 22272 mblk_t *mp; 22273 tcp_stack_t *tcps = tcp->tcp_tcps; 22274 22275 if (tcp->tcp_state < TCPS_SYN_RCVD || 22276 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22277 /* 22278 * Invalid state, only states TCPS_SYN_RCVD, 22279 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22280 */ 22281 return (-1); 22282 } 22283 22284 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22285 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22286 /* 22287 * If there is nothing more unsent, send the FIN now. 22288 * Otherwise, it will go out with the last segment. 22289 */ 22290 if (tcp->tcp_unsent == 0) { 22291 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22292 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22293 22294 if (mp) { 22295 tcp_send_data(tcp, tcp->tcp_wq, mp); 22296 } else { 22297 /* 22298 * Couldn't allocate msg. Pretend we got it out. 22299 * Wait for rexmit timeout. 22300 */ 22301 tcp->tcp_snxt = tcp->tcp_fss + 1; 22302 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22303 } 22304 22305 /* 22306 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22307 * changed. 22308 */ 22309 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22310 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22311 } 22312 } else { 22313 /* 22314 * If tcp->tcp_cork is set, then the data will not get sent, 22315 * so we have to check that and unset it first. 22316 */ 22317 if (tcp->tcp_cork) 22318 tcp->tcp_cork = B_FALSE; 22319 tcp_wput_data(tcp, NULL, B_FALSE); 22320 } 22321 22322 /* 22323 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22324 * is 0, don't update the cache. 22325 */ 22326 if (tcps->tcps_rtt_updates == 0 || 22327 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22328 return (0); 22329 22330 /* 22331 * NOTE: should not update if source routes i.e. if tcp_remote if 22332 * different from the destination. 22333 */ 22334 if (tcp->tcp_ipversion == IPV4_VERSION) { 22335 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22336 return (0); 22337 } 22338 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22339 &ipic); 22340 } else { 22341 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22342 &tcp->tcp_ip6h->ip6_dst))) { 22343 return (0); 22344 } 22345 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22346 &ipic); 22347 } 22348 22349 /* Record route attributes in the IRE for use by future connections. */ 22350 if (mp == NULL) 22351 return (0); 22352 22353 /* 22354 * We do not have a good algorithm to update ssthresh at this time. 22355 * So don't do any update. 22356 */ 22357 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22358 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22359 22360 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22361 22362 return (0); 22363 } 22364 22365 /* ARGSUSED */ 22366 void 22367 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2) 22368 { 22369 conn_t *connp = (conn_t *)arg; 22370 mblk_t *mp1; 22371 tcp_t *tcp = connp->conn_tcp; 22372 tcp_xmit_reset_event_t *eventp; 22373 22374 ASSERT(mp->b_datap->db_type == M_PROTO && 22375 MBLKL(mp) == sizeof (tcp_xmit_reset_event_t)); 22376 22377 if (tcp->tcp_state != TCPS_LISTEN) { 22378 freemsg(mp); 22379 return; 22380 } 22381 22382 mp1 = mp->b_cont; 22383 mp->b_cont = NULL; 22384 eventp = (tcp_xmit_reset_event_t *)mp->b_rptr; 22385 ASSERT(eventp->tcp_xre_tcps->tcps_netstack == 22386 connp->conn_netstack); 22387 22388 tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen, 22389 eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp); 22390 freemsg(mp); 22391 } 22392 22393 /* 22394 * Generate a "no listener here" RST in response to an "unknown" segment. 22395 * connp is set by caller when RST is in response to an unexpected 22396 * inbound packet for which there is active tcp state in the system. 22397 * Note that we are reusing the incoming mp to construct the outgoing RST. 22398 */ 22399 void 22400 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22401 tcp_stack_t *tcps, conn_t *connp) 22402 { 22403 uchar_t *rptr; 22404 uint32_t seg_len; 22405 tcph_t *tcph; 22406 uint32_t seg_seq; 22407 uint32_t seg_ack; 22408 uint_t flags; 22409 mblk_t *ipsec_mp; 22410 ipha_t *ipha; 22411 ip6_t *ip6h; 22412 boolean_t mctl_present = B_FALSE; 22413 boolean_t check = B_TRUE; 22414 boolean_t policy_present; 22415 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22416 22417 TCP_STAT(tcps, tcp_no_listener); 22418 22419 ipsec_mp = mp; 22420 22421 if (mp->b_datap->db_type == M_CTL) { 22422 ipsec_in_t *ii; 22423 22424 mctl_present = B_TRUE; 22425 mp = mp->b_cont; 22426 22427 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22428 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22429 if (ii->ipsec_in_dont_check) { 22430 check = B_FALSE; 22431 if (!ii->ipsec_in_secure) { 22432 freeb(ipsec_mp); 22433 mctl_present = B_FALSE; 22434 ipsec_mp = mp; 22435 } 22436 } 22437 } 22438 22439 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22440 policy_present = ipss->ipsec_inbound_v4_policy_present; 22441 ipha = (ipha_t *)mp->b_rptr; 22442 ip6h = NULL; 22443 } else { 22444 policy_present = ipss->ipsec_inbound_v6_policy_present; 22445 ipha = NULL; 22446 ip6h = (ip6_t *)mp->b_rptr; 22447 } 22448 22449 if (check && policy_present) { 22450 /* 22451 * The conn_t parameter is NULL because we already know 22452 * nobody's home. 22453 */ 22454 ipsec_mp = ipsec_check_global_policy( 22455 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22456 tcps->tcps_netstack); 22457 if (ipsec_mp == NULL) 22458 return; 22459 } 22460 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22461 DTRACE_PROBE2( 22462 tx__ip__log__error__nolistener__tcp, 22463 char *, "Could not reply with RST to mp(1)", 22464 mblk_t *, mp); 22465 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22466 freemsg(ipsec_mp); 22467 return; 22468 } 22469 22470 rptr = mp->b_rptr; 22471 22472 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22473 seg_seq = BE32_TO_U32(tcph->th_seq); 22474 seg_ack = BE32_TO_U32(tcph->th_ack); 22475 flags = tcph->th_flags[0]; 22476 22477 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22478 if (flags & TH_RST) { 22479 freemsg(ipsec_mp); 22480 } else if (flags & TH_ACK) { 22481 tcp_xmit_early_reset("no tcp, reset", 22482 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22483 connp); 22484 } else { 22485 if (flags & TH_SYN) { 22486 seg_len++; 22487 } else { 22488 /* 22489 * Here we violate the RFC. Note that a normal 22490 * TCP will never send a segment without the ACK 22491 * flag, except for RST or SYN segment. This 22492 * segment is neither. Just drop it on the 22493 * floor. 22494 */ 22495 freemsg(ipsec_mp); 22496 tcps->tcps_rst_unsent++; 22497 return; 22498 } 22499 22500 tcp_xmit_early_reset("no tcp, reset/ack", 22501 ipsec_mp, 0, seg_seq + seg_len, 22502 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22503 } 22504 } 22505 22506 /* 22507 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22508 * ip and tcp header ready to pass down to IP. If the mp passed in is 22509 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22510 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22511 * otherwise it will dup partial mblks.) 22512 * Otherwise, an appropriate ACK packet will be generated. This 22513 * routine is not usually called to send new data for the first time. It 22514 * is mostly called out of the timer for retransmits, and to generate ACKs. 22515 * 22516 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22517 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22518 * of the original mblk chain will be returned in *offset and *end_mp. 22519 */ 22520 mblk_t * 22521 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22522 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22523 boolean_t rexmit) 22524 { 22525 int data_length; 22526 int32_t off = 0; 22527 uint_t flags; 22528 mblk_t *mp1; 22529 mblk_t *mp2; 22530 uchar_t *rptr; 22531 tcph_t *tcph; 22532 int32_t num_sack_blk = 0; 22533 int32_t sack_opt_len = 0; 22534 tcp_stack_t *tcps = tcp->tcp_tcps; 22535 22536 /* Allocate for our maximum TCP header + link-level */ 22537 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22538 tcps->tcps_wroff_xtra, BPRI_MED); 22539 if (!mp1) 22540 return (NULL); 22541 data_length = 0; 22542 22543 /* 22544 * Note that tcp_mss has been adjusted to take into account the 22545 * timestamp option if applicable. Because SACK options do not 22546 * appear in every TCP segments and they are of variable lengths, 22547 * they cannot be included in tcp_mss. Thus we need to calculate 22548 * the actual segment length when we need to send a segment which 22549 * includes SACK options. 22550 */ 22551 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22552 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22553 tcp->tcp_num_sack_blk); 22554 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22555 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22556 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22557 max_to_send -= sack_opt_len; 22558 } 22559 22560 if (offset != NULL) { 22561 off = *offset; 22562 /* We use offset as an indicator that end_mp is not NULL. */ 22563 *end_mp = NULL; 22564 } 22565 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22566 /* This could be faster with cooperation from downstream */ 22567 if (mp2 != mp1 && !sendall && 22568 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22569 max_to_send) 22570 /* 22571 * Don't send the next mblk since the whole mblk 22572 * does not fit. 22573 */ 22574 break; 22575 mp2->b_cont = dupb(mp); 22576 mp2 = mp2->b_cont; 22577 if (!mp2) { 22578 freemsg(mp1); 22579 return (NULL); 22580 } 22581 mp2->b_rptr += off; 22582 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22583 (uintptr_t)INT_MAX); 22584 22585 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22586 if (data_length > max_to_send) { 22587 mp2->b_wptr -= data_length - max_to_send; 22588 data_length = max_to_send; 22589 off = mp2->b_wptr - mp->b_rptr; 22590 break; 22591 } else { 22592 off = 0; 22593 } 22594 } 22595 if (offset != NULL) { 22596 *offset = off; 22597 *end_mp = mp; 22598 } 22599 if (seg_len != NULL) { 22600 *seg_len = data_length; 22601 } 22602 22603 /* Update the latest receive window size in TCP header. */ 22604 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22605 tcp->tcp_tcph->th_win); 22606 22607 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 22608 mp1->b_rptr = rptr; 22609 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22610 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22611 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22612 U32_TO_ABE32(seq, tcph->th_seq); 22613 22614 /* 22615 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22616 * that this function was called from tcp_wput_data. Thus, when called 22617 * to retransmit data the setting of the PUSH bit may appear some 22618 * what random in that it might get set when it should not. This 22619 * should not pose any performance issues. 22620 */ 22621 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22622 tcp->tcp_unsent == data_length)) { 22623 flags = TH_ACK | TH_PUSH; 22624 } else { 22625 flags = TH_ACK; 22626 } 22627 22628 if (tcp->tcp_ecn_ok) { 22629 if (tcp->tcp_ecn_echo_on) 22630 flags |= TH_ECE; 22631 22632 /* 22633 * Only set ECT bit and ECN_CWR if a segment contains new data. 22634 * There is no TCP flow control for non-data segments, and 22635 * only data segment is transmitted reliably. 22636 */ 22637 if (data_length > 0 && !rexmit) { 22638 SET_ECT(tcp, rptr); 22639 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22640 flags |= TH_CWR; 22641 tcp->tcp_ecn_cwr_sent = B_TRUE; 22642 } 22643 } 22644 } 22645 22646 if (tcp->tcp_valid_bits) { 22647 uint32_t u1; 22648 22649 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22650 seq == tcp->tcp_iss) { 22651 uchar_t *wptr; 22652 22653 /* 22654 * If TCP_ISS_VALID and the seq number is tcp_iss, 22655 * TCP can only be in SYN-SENT, SYN-RCVD or 22656 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22657 * our SYN is not ack'ed but the app closes this 22658 * TCP connection. 22659 */ 22660 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22661 tcp->tcp_state == TCPS_SYN_RCVD || 22662 tcp->tcp_state == TCPS_FIN_WAIT_1); 22663 22664 /* 22665 * Tack on the MSS option. It is always needed 22666 * for both active and passive open. 22667 * 22668 * MSS option value should be interface MTU - MIN 22669 * TCP/IP header according to RFC 793 as it means 22670 * the maximum segment size TCP can receive. But 22671 * to get around some broken middle boxes/end hosts 22672 * out there, we allow the option value to be the 22673 * same as the MSS option size on the peer side. 22674 * In this way, the other side will not send 22675 * anything larger than they can receive. 22676 * 22677 * Note that for SYN_SENT state, the ndd param 22678 * tcp_use_smss_as_mss_opt has no effect as we 22679 * don't know the peer's MSS option value. So 22680 * the only case we need to take care of is in 22681 * SYN_RCVD state, which is done later. 22682 */ 22683 wptr = mp1->b_wptr; 22684 wptr[0] = TCPOPT_MAXSEG; 22685 wptr[1] = TCPOPT_MAXSEG_LEN; 22686 wptr += 2; 22687 u1 = tcp->tcp_if_mtu - 22688 (tcp->tcp_ipversion == IPV4_VERSION ? 22689 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22690 TCP_MIN_HEADER_LENGTH; 22691 U16_TO_BE16(u1, wptr); 22692 mp1->b_wptr = wptr + 2; 22693 /* Update the offset to cover the additional word */ 22694 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22695 22696 /* 22697 * Note that the following way of filling in 22698 * TCP options are not optimal. Some NOPs can 22699 * be saved. But there is no need at this time 22700 * to optimize it. When it is needed, we will 22701 * do it. 22702 */ 22703 switch (tcp->tcp_state) { 22704 case TCPS_SYN_SENT: 22705 flags = TH_SYN; 22706 22707 if (tcp->tcp_snd_ts_ok) { 22708 uint32_t llbolt = (uint32_t)lbolt; 22709 22710 wptr = mp1->b_wptr; 22711 wptr[0] = TCPOPT_NOP; 22712 wptr[1] = TCPOPT_NOP; 22713 wptr[2] = TCPOPT_TSTAMP; 22714 wptr[3] = TCPOPT_TSTAMP_LEN; 22715 wptr += 4; 22716 U32_TO_BE32(llbolt, wptr); 22717 wptr += 4; 22718 ASSERT(tcp->tcp_ts_recent == 0); 22719 U32_TO_BE32(0L, wptr); 22720 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22721 tcph->th_offset_and_rsrvd[0] += 22722 (3 << 4); 22723 } 22724 22725 /* 22726 * Set up all the bits to tell other side 22727 * we are ECN capable. 22728 */ 22729 if (tcp->tcp_ecn_ok) { 22730 flags |= (TH_ECE | TH_CWR); 22731 } 22732 break; 22733 case TCPS_SYN_RCVD: 22734 flags |= TH_SYN; 22735 22736 /* 22737 * Reset the MSS option value to be SMSS 22738 * We should probably add back the bytes 22739 * for timestamp option and IPsec. We 22740 * don't do that as this is a workaround 22741 * for broken middle boxes/end hosts, it 22742 * is better for us to be more cautious. 22743 * They may not take these things into 22744 * account in their SMSS calculation. Thus 22745 * the peer's calculated SMSS may be smaller 22746 * than what it can be. This should be OK. 22747 */ 22748 if (tcps->tcps_use_smss_as_mss_opt) { 22749 u1 = tcp->tcp_mss; 22750 U16_TO_BE16(u1, wptr); 22751 } 22752 22753 /* 22754 * If the other side is ECN capable, reply 22755 * that we are also ECN capable. 22756 */ 22757 if (tcp->tcp_ecn_ok) 22758 flags |= TH_ECE; 22759 break; 22760 default: 22761 /* 22762 * The above ASSERT() makes sure that this 22763 * must be FIN-WAIT-1 state. Our SYN has 22764 * not been ack'ed so retransmit it. 22765 */ 22766 flags |= TH_SYN; 22767 break; 22768 } 22769 22770 if (tcp->tcp_snd_ws_ok) { 22771 wptr = mp1->b_wptr; 22772 wptr[0] = TCPOPT_NOP; 22773 wptr[1] = TCPOPT_WSCALE; 22774 wptr[2] = TCPOPT_WS_LEN; 22775 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22776 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22777 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22778 } 22779 22780 if (tcp->tcp_snd_sack_ok) { 22781 wptr = mp1->b_wptr; 22782 wptr[0] = TCPOPT_NOP; 22783 wptr[1] = TCPOPT_NOP; 22784 wptr[2] = TCPOPT_SACK_PERMITTED; 22785 wptr[3] = TCPOPT_SACK_OK_LEN; 22786 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22787 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22788 } 22789 22790 /* allocb() of adequate mblk assures space */ 22791 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22792 (uintptr_t)INT_MAX); 22793 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22794 /* 22795 * Get IP set to checksum on our behalf 22796 * Include the adjustment for a source route if any. 22797 */ 22798 u1 += tcp->tcp_sum; 22799 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22800 U16_TO_BE16(u1, tcph->th_sum); 22801 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22802 } 22803 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22804 (seq + data_length) == tcp->tcp_fss) { 22805 if (!tcp->tcp_fin_acked) { 22806 flags |= TH_FIN; 22807 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22808 } 22809 if (!tcp->tcp_fin_sent) { 22810 tcp->tcp_fin_sent = B_TRUE; 22811 switch (tcp->tcp_state) { 22812 case TCPS_SYN_RCVD: 22813 case TCPS_ESTABLISHED: 22814 tcp->tcp_state = TCPS_FIN_WAIT_1; 22815 break; 22816 case TCPS_CLOSE_WAIT: 22817 tcp->tcp_state = TCPS_LAST_ACK; 22818 break; 22819 } 22820 if (tcp->tcp_suna == tcp->tcp_snxt) 22821 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22822 tcp->tcp_snxt = tcp->tcp_fss + 1; 22823 } 22824 } 22825 /* 22826 * Note the trick here. u1 is unsigned. When tcp_urg 22827 * is smaller than seq, u1 will become a very huge value. 22828 * So the comparison will fail. Also note that tcp_urp 22829 * should be positive, see RFC 793 page 17. 22830 */ 22831 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22832 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22833 u1 < (uint32_t)(64 * 1024)) { 22834 flags |= TH_URG; 22835 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 22836 U32_TO_ABE16(u1, tcph->th_urp); 22837 } 22838 } 22839 tcph->th_flags[0] = (uchar_t)flags; 22840 tcp->tcp_rack = tcp->tcp_rnxt; 22841 tcp->tcp_rack_cnt = 0; 22842 22843 if (tcp->tcp_snd_ts_ok) { 22844 if (tcp->tcp_state != TCPS_SYN_SENT) { 22845 uint32_t llbolt = (uint32_t)lbolt; 22846 22847 U32_TO_BE32(llbolt, 22848 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22849 U32_TO_BE32(tcp->tcp_ts_recent, 22850 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22851 } 22852 } 22853 22854 if (num_sack_blk > 0) { 22855 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22856 sack_blk_t *tmp; 22857 int32_t i; 22858 22859 wptr[0] = TCPOPT_NOP; 22860 wptr[1] = TCPOPT_NOP; 22861 wptr[2] = TCPOPT_SACK; 22862 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22863 sizeof (sack_blk_t); 22864 wptr += TCPOPT_REAL_SACK_LEN; 22865 22866 tmp = tcp->tcp_sack_list; 22867 for (i = 0; i < num_sack_blk; i++) { 22868 U32_TO_BE32(tmp[i].begin, wptr); 22869 wptr += sizeof (tcp_seq); 22870 U32_TO_BE32(tmp[i].end, wptr); 22871 wptr += sizeof (tcp_seq); 22872 } 22873 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22874 } 22875 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22876 data_length += (int)(mp1->b_wptr - rptr); 22877 if (tcp->tcp_ipversion == IPV4_VERSION) { 22878 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22879 } else { 22880 ip6_t *ip6 = (ip6_t *)(rptr + 22881 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 22882 sizeof (ip6i_t) : 0)); 22883 22884 ip6->ip6_plen = htons(data_length - 22885 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22886 } 22887 22888 /* 22889 * Prime pump for IP 22890 * Include the adjustment for a source route if any. 22891 */ 22892 data_length -= tcp->tcp_ip_hdr_len; 22893 data_length += tcp->tcp_sum; 22894 data_length = (data_length >> 16) + (data_length & 0xFFFF); 22895 U16_TO_ABE16(data_length, tcph->th_sum); 22896 if (tcp->tcp_ip_forward_progress) { 22897 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 22898 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 22899 tcp->tcp_ip_forward_progress = B_FALSE; 22900 } 22901 return (mp1); 22902 } 22903 22904 /* This function handles the push timeout. */ 22905 void 22906 tcp_push_timer(void *arg) 22907 { 22908 conn_t *connp = (conn_t *)arg; 22909 tcp_t *tcp = connp->conn_tcp; 22910 22911 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 22912 22913 ASSERT(tcp->tcp_listener == NULL); 22914 22915 ASSERT(!IPCL_IS_NONSTR(connp)); 22916 22917 /* 22918 * We need to plug synchronous streams during our drain to prevent 22919 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 22920 */ 22921 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 22922 tcp->tcp_push_tid = 0; 22923 22924 if (tcp->tcp_rcv_list != NULL && 22925 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 22926 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 22927 22928 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 22929 } 22930 22931 /* 22932 * This function handles delayed ACK timeout. 22933 */ 22934 static void 22935 tcp_ack_timer(void *arg) 22936 { 22937 conn_t *connp = (conn_t *)arg; 22938 tcp_t *tcp = connp->conn_tcp; 22939 mblk_t *mp; 22940 tcp_stack_t *tcps = tcp->tcp_tcps; 22941 22942 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 22943 22944 tcp->tcp_ack_tid = 0; 22945 22946 if (tcp->tcp_fused) 22947 return; 22948 22949 /* 22950 * Do not send ACK if there is no outstanding unack'ed data. 22951 */ 22952 if (tcp->tcp_rnxt == tcp->tcp_rack) { 22953 return; 22954 } 22955 22956 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 22957 /* 22958 * Make sure we don't allow deferred ACKs to result in 22959 * timer-based ACKing. If we have held off an ACK 22960 * when there was more than an mss here, and the timer 22961 * goes off, we have to worry about the possibility 22962 * that the sender isn't doing slow-start, or is out 22963 * of step with us for some other reason. We fall 22964 * permanently back in the direction of 22965 * ACK-every-other-packet as suggested in RFC 1122. 22966 */ 22967 if (tcp->tcp_rack_abs_max > 2) 22968 tcp->tcp_rack_abs_max--; 22969 tcp->tcp_rack_cur_max = 2; 22970 } 22971 mp = tcp_ack_mp(tcp); 22972 22973 if (mp != NULL) { 22974 BUMP_LOCAL(tcp->tcp_obsegs); 22975 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22976 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 22977 tcp_send_data(tcp, tcp->tcp_wq, mp); 22978 } 22979 } 22980 22981 22982 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 22983 static mblk_t * 22984 tcp_ack_mp(tcp_t *tcp) 22985 { 22986 uint32_t seq_no; 22987 tcp_stack_t *tcps = tcp->tcp_tcps; 22988 22989 /* 22990 * There are a few cases to be considered while setting the sequence no. 22991 * Essentially, we can come here while processing an unacceptable pkt 22992 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 22993 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 22994 * If we are here for a zero window probe, stick with suna. In all 22995 * other cases, we check if suna + swnd encompasses snxt and set 22996 * the sequence number to snxt, if so. If snxt falls outside the 22997 * window (the receiver probably shrunk its window), we will go with 22998 * suna + swnd, otherwise the sequence no will be unacceptable to the 22999 * receiver. 23000 */ 23001 if (tcp->tcp_zero_win_probe) { 23002 seq_no = tcp->tcp_suna; 23003 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23004 ASSERT(tcp->tcp_swnd == 0); 23005 seq_no = tcp->tcp_snxt; 23006 } else { 23007 seq_no = SEQ_GT(tcp->tcp_snxt, 23008 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23009 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23010 } 23011 23012 if (tcp->tcp_valid_bits) { 23013 /* 23014 * For the complex case where we have to send some 23015 * controls (FIN or SYN), let tcp_xmit_mp do it. 23016 */ 23017 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23018 NULL, B_FALSE)); 23019 } else { 23020 /* Generate a simple ACK */ 23021 int data_length; 23022 uchar_t *rptr; 23023 tcph_t *tcph; 23024 mblk_t *mp1; 23025 int32_t tcp_hdr_len; 23026 int32_t tcp_tcp_hdr_len; 23027 int32_t num_sack_blk = 0; 23028 int32_t sack_opt_len; 23029 23030 /* 23031 * Allocate space for TCP + IP headers 23032 * and link-level header 23033 */ 23034 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23035 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23036 tcp->tcp_num_sack_blk); 23037 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23038 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23039 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23040 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23041 } else { 23042 tcp_hdr_len = tcp->tcp_hdr_len; 23043 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23044 } 23045 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23046 if (!mp1) 23047 return (NULL); 23048 23049 /* Update the latest receive window size in TCP header. */ 23050 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23051 tcp->tcp_tcph->th_win); 23052 /* copy in prototype TCP + IP header */ 23053 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23054 mp1->b_rptr = rptr; 23055 mp1->b_wptr = rptr + tcp_hdr_len; 23056 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23057 23058 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23059 23060 /* Set the TCP sequence number. */ 23061 U32_TO_ABE32(seq_no, tcph->th_seq); 23062 23063 /* Set up the TCP flag field. */ 23064 tcph->th_flags[0] = (uchar_t)TH_ACK; 23065 if (tcp->tcp_ecn_echo_on) 23066 tcph->th_flags[0] |= TH_ECE; 23067 23068 tcp->tcp_rack = tcp->tcp_rnxt; 23069 tcp->tcp_rack_cnt = 0; 23070 23071 /* fill in timestamp option if in use */ 23072 if (tcp->tcp_snd_ts_ok) { 23073 uint32_t llbolt = (uint32_t)lbolt; 23074 23075 U32_TO_BE32(llbolt, 23076 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23077 U32_TO_BE32(tcp->tcp_ts_recent, 23078 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23079 } 23080 23081 /* Fill in SACK options */ 23082 if (num_sack_blk > 0) { 23083 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23084 sack_blk_t *tmp; 23085 int32_t i; 23086 23087 wptr[0] = TCPOPT_NOP; 23088 wptr[1] = TCPOPT_NOP; 23089 wptr[2] = TCPOPT_SACK; 23090 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23091 sizeof (sack_blk_t); 23092 wptr += TCPOPT_REAL_SACK_LEN; 23093 23094 tmp = tcp->tcp_sack_list; 23095 for (i = 0; i < num_sack_blk; i++) { 23096 U32_TO_BE32(tmp[i].begin, wptr); 23097 wptr += sizeof (tcp_seq); 23098 U32_TO_BE32(tmp[i].end, wptr); 23099 wptr += sizeof (tcp_seq); 23100 } 23101 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23102 << 4); 23103 } 23104 23105 if (tcp->tcp_ipversion == IPV4_VERSION) { 23106 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23107 } else { 23108 /* Check for ip6i_t header in sticky hdrs */ 23109 ip6_t *ip6 = (ip6_t *)(rptr + 23110 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23111 sizeof (ip6i_t) : 0)); 23112 23113 ip6->ip6_plen = htons(tcp_hdr_len - 23114 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23115 } 23116 23117 /* 23118 * Prime pump for checksum calculation in IP. Include the 23119 * adjustment for a source route if any. 23120 */ 23121 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23122 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23123 U16_TO_ABE16(data_length, tcph->th_sum); 23124 23125 if (tcp->tcp_ip_forward_progress) { 23126 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23127 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23128 tcp->tcp_ip_forward_progress = B_FALSE; 23129 } 23130 return (mp1); 23131 } 23132 } 23133 23134 /* 23135 * Hash list insertion routine for tcp_t structures. Each hash bucket 23136 * contains a list of tcp_t entries, and each entry is bound to a unique 23137 * port. If there are multiple tcp_t's that are bound to the same port, then 23138 * one of them will be linked into the hash bucket list, and the rest will 23139 * hang off of that one entry. For each port, entries bound to a specific IP 23140 * address will be inserted before those those bound to INADDR_ANY. 23141 */ 23142 static void 23143 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23144 { 23145 tcp_t **tcpp; 23146 tcp_t *tcpnext; 23147 tcp_t *tcphash; 23148 23149 if (tcp->tcp_ptpbhn != NULL) { 23150 ASSERT(!caller_holds_lock); 23151 tcp_bind_hash_remove(tcp); 23152 } 23153 tcpp = &tbf->tf_tcp; 23154 if (!caller_holds_lock) { 23155 mutex_enter(&tbf->tf_lock); 23156 } else { 23157 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23158 } 23159 tcphash = tcpp[0]; 23160 tcpnext = NULL; 23161 if (tcphash != NULL) { 23162 /* Look for an entry using the same port */ 23163 while ((tcphash = tcpp[0]) != NULL && 23164 tcp->tcp_lport != tcphash->tcp_lport) 23165 tcpp = &(tcphash->tcp_bind_hash); 23166 23167 /* The port was not found, just add to the end */ 23168 if (tcphash == NULL) 23169 goto insert; 23170 23171 /* 23172 * OK, there already exists an entry bound to the 23173 * same port. 23174 * 23175 * If the new tcp bound to the INADDR_ANY address 23176 * and the first one in the list is not bound to 23177 * INADDR_ANY we skip all entries until we find the 23178 * first one bound to INADDR_ANY. 23179 * This makes sure that applications binding to a 23180 * specific address get preference over those binding to 23181 * INADDR_ANY. 23182 */ 23183 tcpnext = tcphash; 23184 tcphash = NULL; 23185 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23186 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23187 while ((tcpnext = tcpp[0]) != NULL && 23188 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23189 tcpp = &(tcpnext->tcp_bind_hash_port); 23190 23191 if (tcpnext) { 23192 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23193 tcphash = tcpnext->tcp_bind_hash; 23194 if (tcphash != NULL) { 23195 tcphash->tcp_ptpbhn = 23196 &(tcp->tcp_bind_hash); 23197 tcpnext->tcp_bind_hash = NULL; 23198 } 23199 } 23200 } else { 23201 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port; 23202 tcphash = tcpnext->tcp_bind_hash; 23203 if (tcphash != NULL) { 23204 tcphash->tcp_ptpbhn = 23205 &(tcp->tcp_bind_hash); 23206 tcpnext->tcp_bind_hash = NULL; 23207 } 23208 } 23209 } 23210 insert: 23211 tcp->tcp_bind_hash_port = tcpnext; 23212 tcp->tcp_bind_hash = tcphash; 23213 tcp->tcp_ptpbhn = tcpp; 23214 tcpp[0] = tcp; 23215 if (!caller_holds_lock) 23216 mutex_exit(&tbf->tf_lock); 23217 } 23218 23219 /* 23220 * Hash list removal routine for tcp_t structures. 23221 */ 23222 static void 23223 tcp_bind_hash_remove(tcp_t *tcp) 23224 { 23225 tcp_t *tcpnext; 23226 kmutex_t *lockp; 23227 tcp_stack_t *tcps = tcp->tcp_tcps; 23228 23229 if (tcp->tcp_ptpbhn == NULL) 23230 return; 23231 23232 /* 23233 * Extract the lock pointer in case there are concurrent 23234 * hash_remove's for this instance. 23235 */ 23236 ASSERT(tcp->tcp_lport != 0); 23237 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23238 23239 ASSERT(lockp != NULL); 23240 mutex_enter(lockp); 23241 if (tcp->tcp_ptpbhn) { 23242 tcpnext = tcp->tcp_bind_hash_port; 23243 if (tcpnext != NULL) { 23244 tcp->tcp_bind_hash_port = NULL; 23245 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23246 tcpnext->tcp_bind_hash = tcp->tcp_bind_hash; 23247 if (tcpnext->tcp_bind_hash != NULL) { 23248 tcpnext->tcp_bind_hash->tcp_ptpbhn = 23249 &(tcpnext->tcp_bind_hash); 23250 tcp->tcp_bind_hash = NULL; 23251 } 23252 } else if ((tcpnext = tcp->tcp_bind_hash) != NULL) { 23253 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23254 tcp->tcp_bind_hash = NULL; 23255 } 23256 *tcp->tcp_ptpbhn = tcpnext; 23257 tcp->tcp_ptpbhn = NULL; 23258 } 23259 mutex_exit(lockp); 23260 } 23261 23262 23263 /* 23264 * Hash list lookup routine for tcp_t structures. 23265 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23266 */ 23267 static tcp_t * 23268 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 23269 { 23270 tf_t *tf; 23271 tcp_t *tcp; 23272 23273 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23274 mutex_enter(&tf->tf_lock); 23275 for (tcp = tf->tf_tcp; tcp != NULL; 23276 tcp = tcp->tcp_acceptor_hash) { 23277 if (tcp->tcp_acceptor_id == id) { 23278 CONN_INC_REF(tcp->tcp_connp); 23279 mutex_exit(&tf->tf_lock); 23280 return (tcp); 23281 } 23282 } 23283 mutex_exit(&tf->tf_lock); 23284 return (NULL); 23285 } 23286 23287 23288 /* 23289 * Hash list insertion routine for tcp_t structures. 23290 */ 23291 void 23292 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23293 { 23294 tf_t *tf; 23295 tcp_t **tcpp; 23296 tcp_t *tcpnext; 23297 tcp_stack_t *tcps = tcp->tcp_tcps; 23298 23299 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23300 23301 if (tcp->tcp_ptpahn != NULL) 23302 tcp_acceptor_hash_remove(tcp); 23303 tcpp = &tf->tf_tcp; 23304 mutex_enter(&tf->tf_lock); 23305 tcpnext = tcpp[0]; 23306 if (tcpnext) 23307 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23308 tcp->tcp_acceptor_hash = tcpnext; 23309 tcp->tcp_ptpahn = tcpp; 23310 tcpp[0] = tcp; 23311 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23312 mutex_exit(&tf->tf_lock); 23313 } 23314 23315 /* 23316 * Hash list removal routine for tcp_t structures. 23317 */ 23318 static void 23319 tcp_acceptor_hash_remove(tcp_t *tcp) 23320 { 23321 tcp_t *tcpnext; 23322 kmutex_t *lockp; 23323 23324 /* 23325 * Extract the lock pointer in case there are concurrent 23326 * hash_remove's for this instance. 23327 */ 23328 lockp = tcp->tcp_acceptor_lockp; 23329 23330 if (tcp->tcp_ptpahn == NULL) 23331 return; 23332 23333 ASSERT(lockp != NULL); 23334 mutex_enter(lockp); 23335 if (tcp->tcp_ptpahn) { 23336 tcpnext = tcp->tcp_acceptor_hash; 23337 if (tcpnext) { 23338 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23339 tcp->tcp_acceptor_hash = NULL; 23340 } 23341 *tcp->tcp_ptpahn = tcpnext; 23342 tcp->tcp_ptpahn = NULL; 23343 } 23344 mutex_exit(lockp); 23345 tcp->tcp_acceptor_lockp = NULL; 23346 } 23347 23348 /* 23349 * Type three generator adapted from the random() function in 4.4 BSD: 23350 */ 23351 23352 /* 23353 * Copyright (c) 1983, 1993 23354 * The Regents of the University of California. All rights reserved. 23355 * 23356 * Redistribution and use in source and binary forms, with or without 23357 * modification, are permitted provided that the following conditions 23358 * are met: 23359 * 1. Redistributions of source code must retain the above copyright 23360 * notice, this list of conditions and the following disclaimer. 23361 * 2. Redistributions in binary form must reproduce the above copyright 23362 * notice, this list of conditions and the following disclaimer in the 23363 * documentation and/or other materials provided with the distribution. 23364 * 3. All advertising materials mentioning features or use of this software 23365 * must display the following acknowledgement: 23366 * This product includes software developed by the University of 23367 * California, Berkeley and its contributors. 23368 * 4. Neither the name of the University nor the names of its contributors 23369 * may be used to endorse or promote products derived from this software 23370 * without specific prior written permission. 23371 * 23372 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23373 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23374 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23375 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23376 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23377 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23378 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23379 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23380 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23381 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23382 * SUCH DAMAGE. 23383 */ 23384 23385 /* Type 3 -- x**31 + x**3 + 1 */ 23386 #define DEG_3 31 23387 #define SEP_3 3 23388 23389 23390 /* Protected by tcp_random_lock */ 23391 static int tcp_randtbl[DEG_3 + 1]; 23392 23393 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 23394 static int *tcp_random_rptr = &tcp_randtbl[1]; 23395 23396 static int *tcp_random_state = &tcp_randtbl[1]; 23397 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 23398 23399 kmutex_t tcp_random_lock; 23400 23401 void 23402 tcp_random_init(void) 23403 { 23404 int i; 23405 hrtime_t hrt; 23406 time_t wallclock; 23407 uint64_t result; 23408 23409 /* 23410 * Use high-res timer and current time for seed. Gethrtime() returns 23411 * a longlong, which may contain resolution down to nanoseconds. 23412 * The current time will either be a 32-bit or a 64-bit quantity. 23413 * XOR the two together in a 64-bit result variable. 23414 * Convert the result to a 32-bit value by multiplying the high-order 23415 * 32-bits by the low-order 32-bits. 23416 */ 23417 23418 hrt = gethrtime(); 23419 (void) drv_getparm(TIME, &wallclock); 23420 result = (uint64_t)wallclock ^ (uint64_t)hrt; 23421 mutex_enter(&tcp_random_lock); 23422 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 23423 (result & 0xffffffff); 23424 23425 for (i = 1; i < DEG_3; i++) 23426 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 23427 + 12345; 23428 tcp_random_fptr = &tcp_random_state[SEP_3]; 23429 tcp_random_rptr = &tcp_random_state[0]; 23430 mutex_exit(&tcp_random_lock); 23431 for (i = 0; i < 10 * DEG_3; i++) 23432 (void) tcp_random(); 23433 } 23434 23435 /* 23436 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 23437 * This range is selected to be approximately centered on TCP_ISS / 2, 23438 * and easy to compute. We get this value by generating a 32-bit random 23439 * number, selecting out the high-order 17 bits, and then adding one so 23440 * that we never return zero. 23441 */ 23442 int 23443 tcp_random(void) 23444 { 23445 int i; 23446 23447 mutex_enter(&tcp_random_lock); 23448 *tcp_random_fptr += *tcp_random_rptr; 23449 23450 /* 23451 * The high-order bits are more random than the low-order bits, 23452 * so we select out the high-order 17 bits and add one so that 23453 * we never return zero. 23454 */ 23455 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 23456 if (++tcp_random_fptr >= tcp_random_end_ptr) { 23457 tcp_random_fptr = tcp_random_state; 23458 ++tcp_random_rptr; 23459 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 23460 tcp_random_rptr = tcp_random_state; 23461 23462 mutex_exit(&tcp_random_lock); 23463 return (i); 23464 } 23465 23466 static int 23467 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 23468 int *t_errorp, int *sys_errorp) 23469 { 23470 int error; 23471 int is_absreq_failure; 23472 t_scalar_t *opt_lenp; 23473 t_scalar_t opt_offset; 23474 int prim_type; 23475 struct T_conn_req *tcreqp; 23476 struct T_conn_res *tcresp; 23477 cred_t *cr; 23478 23479 /* 23480 * All Solaris components should pass a db_credp 23481 * for this TPI message, hence we ASSERT. 23482 * But in case there is some other M_PROTO that looks 23483 * like a TPI message sent by some other kernel 23484 * component, we check and return an error. 23485 */ 23486 cr = msg_getcred(mp, NULL); 23487 ASSERT(cr != NULL); 23488 if (cr == NULL) 23489 return (-1); 23490 23491 prim_type = ((union T_primitives *)mp->b_rptr)->type; 23492 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 23493 prim_type == T_CONN_RES); 23494 23495 switch (prim_type) { 23496 case T_CONN_REQ: 23497 tcreqp = (struct T_conn_req *)mp->b_rptr; 23498 opt_offset = tcreqp->OPT_offset; 23499 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 23500 break; 23501 case O_T_CONN_RES: 23502 case T_CONN_RES: 23503 tcresp = (struct T_conn_res *)mp->b_rptr; 23504 opt_offset = tcresp->OPT_offset; 23505 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 23506 break; 23507 } 23508 23509 *t_errorp = 0; 23510 *sys_errorp = 0; 23511 *do_disconnectp = 0; 23512 23513 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 23514 opt_offset, cr, &tcp_opt_obj, 23515 NULL, &is_absreq_failure); 23516 23517 switch (error) { 23518 case 0: /* no error */ 23519 ASSERT(is_absreq_failure == 0); 23520 return (0); 23521 case ENOPROTOOPT: 23522 *t_errorp = TBADOPT; 23523 break; 23524 case EACCES: 23525 *t_errorp = TACCES; 23526 break; 23527 default: 23528 *t_errorp = TSYSERR; *sys_errorp = error; 23529 break; 23530 } 23531 if (is_absreq_failure != 0) { 23532 /* 23533 * The connection request should get the local ack 23534 * T_OK_ACK and then a T_DISCON_IND. 23535 */ 23536 *do_disconnectp = 1; 23537 } 23538 return (-1); 23539 } 23540 23541 /* 23542 * Split this function out so that if the secret changes, I'm okay. 23543 * 23544 * Initialize the tcp_iss_cookie and tcp_iss_key. 23545 */ 23546 23547 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 23548 23549 static void 23550 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 23551 { 23552 struct { 23553 int32_t current_time; 23554 uint32_t randnum; 23555 uint16_t pad; 23556 uint8_t ether[6]; 23557 uint8_t passwd[PASSWD_SIZE]; 23558 } tcp_iss_cookie; 23559 time_t t; 23560 23561 /* 23562 * Start with the current absolute time. 23563 */ 23564 (void) drv_getparm(TIME, &t); 23565 tcp_iss_cookie.current_time = t; 23566 23567 /* 23568 * XXX - Need a more random number per RFC 1750, not this crap. 23569 * OTOH, if what follows is pretty random, then I'm in better shape. 23570 */ 23571 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 23572 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 23573 23574 /* 23575 * The cpu_type_info is pretty non-random. Ugggh. It does serve 23576 * as a good template. 23577 */ 23578 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 23579 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 23580 23581 /* 23582 * The pass-phrase. Normally this is supplied by user-called NDD. 23583 */ 23584 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 23585 23586 /* 23587 * See 4010593 if this section becomes a problem again, 23588 * but the local ethernet address is useful here. 23589 */ 23590 (void) localetheraddr(NULL, 23591 (struct ether_addr *)&tcp_iss_cookie.ether); 23592 23593 /* 23594 * Hash 'em all together. The MD5Final is called per-connection. 23595 */ 23596 mutex_enter(&tcps->tcps_iss_key_lock); 23597 MD5Init(&tcps->tcps_iss_key); 23598 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 23599 sizeof (tcp_iss_cookie)); 23600 mutex_exit(&tcps->tcps_iss_key_lock); 23601 } 23602 23603 /* 23604 * Set the RFC 1948 pass phrase 23605 */ 23606 /* ARGSUSED */ 23607 static int 23608 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23609 cred_t *cr) 23610 { 23611 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23612 23613 /* 23614 * Basically, value contains a new pass phrase. Pass it along! 23615 */ 23616 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 23617 return (0); 23618 } 23619 23620 /* ARGSUSED */ 23621 static int 23622 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 23623 { 23624 bzero(buf, sizeof (tcp_sack_info_t)); 23625 return (0); 23626 } 23627 23628 /* ARGSUSED */ 23629 static int 23630 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 23631 { 23632 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 23633 return (0); 23634 } 23635 23636 /* 23637 * Make sure we wait until the default queue is setup, yet allow 23638 * tcp_g_q_create() to open a TCP stream. 23639 * We need to allow tcp_g_q_create() do do an open 23640 * of tcp, hence we compare curhread. 23641 * All others have to wait until the tcps_g_q has been 23642 * setup. 23643 */ 23644 void 23645 tcp_g_q_setup(tcp_stack_t *tcps) 23646 { 23647 mutex_enter(&tcps->tcps_g_q_lock); 23648 if (tcps->tcps_g_q != NULL) { 23649 mutex_exit(&tcps->tcps_g_q_lock); 23650 return; 23651 } 23652 if (tcps->tcps_g_q_creator == NULL) { 23653 /* This thread will set it up */ 23654 tcps->tcps_g_q_creator = curthread; 23655 mutex_exit(&tcps->tcps_g_q_lock); 23656 tcp_g_q_create(tcps); 23657 mutex_enter(&tcps->tcps_g_q_lock); 23658 ASSERT(tcps->tcps_g_q_creator == curthread); 23659 tcps->tcps_g_q_creator = NULL; 23660 cv_signal(&tcps->tcps_g_q_cv); 23661 ASSERT(tcps->tcps_g_q != NULL); 23662 mutex_exit(&tcps->tcps_g_q_lock); 23663 return; 23664 } 23665 /* Everybody but the creator has to wait */ 23666 if (tcps->tcps_g_q_creator != curthread) { 23667 while (tcps->tcps_g_q == NULL) 23668 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 23669 } 23670 mutex_exit(&tcps->tcps_g_q_lock); 23671 } 23672 23673 #define IP "ip" 23674 23675 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 23676 23677 /* 23678 * Create a default tcp queue here instead of in strplumb 23679 */ 23680 void 23681 tcp_g_q_create(tcp_stack_t *tcps) 23682 { 23683 int error; 23684 ldi_handle_t lh = NULL; 23685 ldi_ident_t li = NULL; 23686 int rval; 23687 cred_t *cr; 23688 major_t IP_MAJ; 23689 23690 #ifdef NS_DEBUG 23691 (void) printf("tcp_g_q_create()\n"); 23692 #endif 23693 23694 IP_MAJ = ddi_name_to_major(IP); 23695 23696 ASSERT(tcps->tcps_g_q_creator == curthread); 23697 23698 error = ldi_ident_from_major(IP_MAJ, &li); 23699 if (error) { 23700 #ifdef DEBUG 23701 printf("tcp_g_q_create: lyr ident get failed error %d\n", 23702 error); 23703 #endif 23704 return; 23705 } 23706 23707 cr = zone_get_kcred(netstackid_to_zoneid( 23708 tcps->tcps_netstack->netstack_stackid)); 23709 ASSERT(cr != NULL); 23710 /* 23711 * We set the tcp default queue to IPv6 because IPv4 falls 23712 * back to IPv6 when it can't find a client, but 23713 * IPv6 does not fall back to IPv4. 23714 */ 23715 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 23716 if (error) { 23717 #ifdef DEBUG 23718 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 23719 error); 23720 #endif 23721 goto out; 23722 } 23723 23724 /* 23725 * This ioctl causes the tcp framework to cache a pointer to 23726 * this stream, so we don't want to close the stream after 23727 * this operation. 23728 * Use the kernel credentials that are for the zone we're in. 23729 */ 23730 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 23731 (intptr_t)0, FKIOCTL, cr, &rval); 23732 if (error) { 23733 #ifdef DEBUG 23734 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 23735 "error %d\n", error); 23736 #endif 23737 goto out; 23738 } 23739 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 23740 lh = NULL; 23741 out: 23742 /* Close layered handles */ 23743 if (li) 23744 ldi_ident_release(li); 23745 /* Keep cred around until _inactive needs it */ 23746 tcps->tcps_g_q_cr = cr; 23747 } 23748 23749 /* 23750 * We keep tcp_g_q set until all other tcp_t's in the zone 23751 * has gone away, and then when tcp_g_q_inactive() is called 23752 * we clear it. 23753 */ 23754 void 23755 tcp_g_q_destroy(tcp_stack_t *tcps) 23756 { 23757 #ifdef NS_DEBUG 23758 (void) printf("tcp_g_q_destroy()for stack %d\n", 23759 tcps->tcps_netstack->netstack_stackid); 23760 #endif 23761 23762 if (tcps->tcps_g_q == NULL) { 23763 return; /* Nothing to cleanup */ 23764 } 23765 /* 23766 * Drop reference corresponding to the default queue. 23767 * This reference was added from tcp_open when the default queue 23768 * was created, hence we compensate for this extra drop in 23769 * tcp_g_q_close. If the refcnt drops to zero here it means 23770 * the default queue was the last one to be open, in which 23771 * case, then tcp_g_q_inactive will be 23772 * called as a result of the refrele. 23773 */ 23774 TCPS_REFRELE(tcps); 23775 } 23776 23777 /* 23778 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23779 * Run by tcp_q_q_inactive using a taskq. 23780 */ 23781 static void 23782 tcp_g_q_close(void *arg) 23783 { 23784 tcp_stack_t *tcps = arg; 23785 int error; 23786 ldi_handle_t lh = NULL; 23787 ldi_ident_t li = NULL; 23788 cred_t *cr; 23789 major_t IP_MAJ; 23790 23791 IP_MAJ = ddi_name_to_major(IP); 23792 23793 #ifdef NS_DEBUG 23794 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 23795 tcps->tcps_netstack->netstack_stackid, 23796 tcps->tcps_netstack->netstack_refcnt); 23797 #endif 23798 lh = tcps->tcps_g_q_lh; 23799 if (lh == NULL) 23800 return; /* Nothing to cleanup */ 23801 23802 ASSERT(tcps->tcps_refcnt == 1); 23803 ASSERT(tcps->tcps_g_q != NULL); 23804 23805 error = ldi_ident_from_major(IP_MAJ, &li); 23806 if (error) { 23807 #ifdef DEBUG 23808 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 23809 error); 23810 #endif 23811 return; 23812 } 23813 23814 cr = tcps->tcps_g_q_cr; 23815 tcps->tcps_g_q_cr = NULL; 23816 ASSERT(cr != NULL); 23817 23818 /* 23819 * Make sure we can break the recursion when tcp_close decrements 23820 * the reference count causing g_q_inactive to be called again. 23821 */ 23822 tcps->tcps_g_q_lh = NULL; 23823 23824 /* close the default queue */ 23825 (void) ldi_close(lh, FREAD|FWRITE, cr); 23826 /* 23827 * At this point in time tcps and the rest of netstack_t might 23828 * have been deleted. 23829 */ 23830 tcps = NULL; 23831 23832 /* Close layered handles */ 23833 ldi_ident_release(li); 23834 crfree(cr); 23835 } 23836 23837 /* 23838 * Called when last tcp_t drops reference count using TCPS_REFRELE. 23839 * 23840 * Have to ensure that the ldi routines are not used by an 23841 * interrupt thread by using a taskq. 23842 */ 23843 void 23844 tcp_g_q_inactive(tcp_stack_t *tcps) 23845 { 23846 if (tcps->tcps_g_q_lh == NULL) 23847 return; /* Nothing to cleanup */ 23848 23849 ASSERT(tcps->tcps_refcnt == 0); 23850 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 23851 23852 if (servicing_interrupt()) { 23853 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 23854 (void *) tcps, TQ_SLEEP); 23855 } else { 23856 tcp_g_q_close(tcps); 23857 } 23858 } 23859 23860 /* 23861 * Called by IP when IP is loaded into the kernel 23862 */ 23863 void 23864 tcp_ddi_g_init(void) 23865 { 23866 tcp_timercache = kmem_cache_create("tcp_timercache", 23867 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 23868 NULL, NULL, NULL, NULL, NULL, 0); 23869 23870 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 23871 sizeof (tcp_sack_info_t), 0, 23872 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 23873 23874 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 23875 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 23876 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 23877 23878 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 23879 23880 /* Initialize the random number generator */ 23881 tcp_random_init(); 23882 23883 /* A single callback independently of how many netstacks we have */ 23884 ip_squeue_init(tcp_squeue_add); 23885 23886 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 23887 23888 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 23889 TASKQ_PREPOPULATE); 23890 23891 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 23892 23893 /* 23894 * We want to be informed each time a stack is created or 23895 * destroyed in the kernel, so we can maintain the 23896 * set of tcp_stack_t's. 23897 */ 23898 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 23899 tcp_stack_fini); 23900 } 23901 23902 23903 #define INET_NAME "ip" 23904 23905 /* 23906 * Initialize the TCP stack instance. 23907 */ 23908 static void * 23909 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 23910 { 23911 tcp_stack_t *tcps; 23912 tcpparam_t *pa; 23913 int i; 23914 int error = 0; 23915 major_t major; 23916 23917 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 23918 tcps->tcps_netstack = ns; 23919 23920 /* Initialize locks */ 23921 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 23922 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 23923 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 23924 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 23925 23926 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 23927 tcps->tcps_g_epriv_ports[0] = 2049; 23928 tcps->tcps_g_epriv_ports[1] = 4045; 23929 tcps->tcps_min_anonpriv_port = 512; 23930 23931 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 23932 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 23933 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 23934 TCP_FANOUT_SIZE, KM_SLEEP); 23935 23936 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 23937 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 23938 MUTEX_DEFAULT, NULL); 23939 } 23940 23941 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 23942 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 23943 MUTEX_DEFAULT, NULL); 23944 } 23945 23946 /* TCP's IPsec code calls the packet dropper. */ 23947 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 23948 23949 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 23950 tcps->tcps_params = pa; 23951 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 23952 23953 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 23954 A_CNT(lcl_tcp_param_arr), tcps); 23955 23956 /* 23957 * Note: To really walk the device tree you need the devinfo 23958 * pointer to your device which is only available after probe/attach. 23959 * The following is safe only because it uses ddi_root_node() 23960 */ 23961 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 23962 tcp_opt_obj.odb_opt_arr_cnt); 23963 23964 /* 23965 * Initialize RFC 1948 secret values. This will probably be reset once 23966 * by the boot scripts. 23967 * 23968 * Use NULL name, as the name is caught by the new lockstats. 23969 * 23970 * Initialize with some random, non-guessable string, like the global 23971 * T_INFO_ACK. 23972 */ 23973 23974 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 23975 sizeof (tcp_g_t_info_ack), tcps); 23976 23977 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 23978 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 23979 23980 major = mod_name_to_major(INET_NAME); 23981 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 23982 ASSERT(error == 0); 23983 return (tcps); 23984 } 23985 23986 /* 23987 * Called when the IP module is about to be unloaded. 23988 */ 23989 void 23990 tcp_ddi_g_destroy(void) 23991 { 23992 tcp_g_kstat_fini(tcp_g_kstat); 23993 tcp_g_kstat = NULL; 23994 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 23995 23996 mutex_destroy(&tcp_random_lock); 23997 23998 kmem_cache_destroy(tcp_timercache); 23999 kmem_cache_destroy(tcp_sack_info_cache); 24000 kmem_cache_destroy(tcp_iphc_cache); 24001 24002 netstack_unregister(NS_TCP); 24003 taskq_destroy(tcp_taskq); 24004 } 24005 24006 /* 24007 * Shut down the TCP stack instance. 24008 */ 24009 /* ARGSUSED */ 24010 static void 24011 tcp_stack_shutdown(netstackid_t stackid, void *arg) 24012 { 24013 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24014 24015 tcp_g_q_destroy(tcps); 24016 } 24017 24018 /* 24019 * Free the TCP stack instance. 24020 */ 24021 static void 24022 tcp_stack_fini(netstackid_t stackid, void *arg) 24023 { 24024 tcp_stack_t *tcps = (tcp_stack_t *)arg; 24025 int i; 24026 24027 nd_free(&tcps->tcps_g_nd); 24028 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 24029 tcps->tcps_params = NULL; 24030 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 24031 tcps->tcps_wroff_xtra_param = NULL; 24032 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 24033 tcps->tcps_mdt_head_param = NULL; 24034 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 24035 tcps->tcps_mdt_tail_param = NULL; 24036 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 24037 tcps->tcps_mdt_max_pbufs_param = NULL; 24038 24039 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 24040 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 24041 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 24042 } 24043 24044 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 24045 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 24046 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 24047 } 24048 24049 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 24050 tcps->tcps_bind_fanout = NULL; 24051 24052 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 24053 tcps->tcps_acceptor_fanout = NULL; 24054 24055 mutex_destroy(&tcps->tcps_iss_key_lock); 24056 mutex_destroy(&tcps->tcps_g_q_lock); 24057 cv_destroy(&tcps->tcps_g_q_cv); 24058 mutex_destroy(&tcps->tcps_epriv_port_lock); 24059 24060 ip_drop_unregister(&tcps->tcps_dropper); 24061 24062 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 24063 tcps->tcps_kstat = NULL; 24064 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 24065 24066 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 24067 tcps->tcps_mibkp = NULL; 24068 24069 ldi_ident_release(tcps->tcps_ldi_ident); 24070 kmem_free(tcps, sizeof (*tcps)); 24071 } 24072 24073 /* 24074 * Generate ISS, taking into account NDD changes may happen halfway through. 24075 * (If the iss is not zero, set it.) 24076 */ 24077 24078 static void 24079 tcp_iss_init(tcp_t *tcp) 24080 { 24081 MD5_CTX context; 24082 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24083 uint32_t answer[4]; 24084 tcp_stack_t *tcps = tcp->tcp_tcps; 24085 24086 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 24087 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 24088 switch (tcps->tcps_strong_iss) { 24089 case 2: 24090 mutex_enter(&tcps->tcps_iss_key_lock); 24091 context = tcps->tcps_iss_key; 24092 mutex_exit(&tcps->tcps_iss_key_lock); 24093 arg.ports = tcp->tcp_ports; 24094 if (tcp->tcp_ipversion == IPV4_VERSION) { 24095 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24096 &arg.src); 24097 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24098 &arg.dst); 24099 } else { 24100 arg.src = tcp->tcp_ip6h->ip6_src; 24101 arg.dst = tcp->tcp_ip6h->ip6_dst; 24102 } 24103 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24104 MD5Final((uchar_t *)answer, &context); 24105 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24106 /* 24107 * Now that we've hashed into a unique per-connection sequence 24108 * space, add a random increment per strong_iss == 1. So I 24109 * guess we'll have to... 24110 */ 24111 /* FALLTHRU */ 24112 case 1: 24113 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24114 break; 24115 default: 24116 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24117 break; 24118 } 24119 tcp->tcp_valid_bits = TCP_ISS_VALID; 24120 tcp->tcp_fss = tcp->tcp_iss - 1; 24121 tcp->tcp_suna = tcp->tcp_iss; 24122 tcp->tcp_snxt = tcp->tcp_iss + 1; 24123 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24124 tcp->tcp_csuna = tcp->tcp_snxt; 24125 } 24126 24127 /* 24128 * Exported routine for extracting active tcp connection status. 24129 * 24130 * This is used by the Solaris Cluster Networking software to 24131 * gather a list of connections that need to be forwarded to 24132 * specific nodes in the cluster when configuration changes occur. 24133 * 24134 * The callback is invoked for each tcp_t structure from all netstacks, 24135 * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures 24136 * from the netstack with the specified stack_id. Returning 24137 * non-zero from the callback routine terminates the search. 24138 */ 24139 int 24140 cl_tcp_walk_list(netstackid_t stack_id, 24141 int (*cl_callback)(cl_tcp_info_t *, void *), void *arg) 24142 { 24143 netstack_handle_t nh; 24144 netstack_t *ns; 24145 int ret = 0; 24146 24147 if (stack_id >= 0) { 24148 if ((ns = netstack_find_by_stackid(stack_id)) == NULL) 24149 return (EINVAL); 24150 24151 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24152 ns->netstack_tcp); 24153 netstack_rele(ns); 24154 return (ret); 24155 } 24156 24157 netstack_next_init(&nh); 24158 while ((ns = netstack_next(&nh)) != NULL) { 24159 ret = cl_tcp_walk_list_stack(cl_callback, arg, 24160 ns->netstack_tcp); 24161 netstack_rele(ns); 24162 } 24163 netstack_next_fini(&nh); 24164 return (ret); 24165 } 24166 24167 static int 24168 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 24169 tcp_stack_t *tcps) 24170 { 24171 tcp_t *tcp; 24172 cl_tcp_info_t cl_tcpi; 24173 connf_t *connfp; 24174 conn_t *connp; 24175 int i; 24176 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24177 24178 ASSERT(callback != NULL); 24179 24180 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24181 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 24182 connp = NULL; 24183 24184 while ((connp = 24185 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24186 24187 tcp = connp->conn_tcp; 24188 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24189 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24190 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24191 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24192 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24193 /* 24194 * The macros tcp_laddr and tcp_faddr give the IPv4 24195 * addresses. They are copied implicitly below as 24196 * mapped addresses. 24197 */ 24198 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24199 if (tcp->tcp_ipversion == IPV4_VERSION) { 24200 cl_tcpi.cl_tcpi_faddr = 24201 tcp->tcp_ipha->ipha_dst; 24202 } else { 24203 cl_tcpi.cl_tcpi_faddr_v6 = 24204 tcp->tcp_ip6h->ip6_dst; 24205 } 24206 24207 /* 24208 * If the callback returns non-zero 24209 * we terminate the traversal. 24210 */ 24211 if ((*callback)(&cl_tcpi, arg) != 0) { 24212 CONN_DEC_REF(tcp->tcp_connp); 24213 return (1); 24214 } 24215 } 24216 } 24217 24218 return (0); 24219 } 24220 24221 /* 24222 * Macros used for accessing the different types of sockaddr 24223 * structures inside a tcp_ioc_abort_conn_t. 24224 */ 24225 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24226 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24227 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24228 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24229 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24230 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24231 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24232 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24233 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24234 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24235 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24236 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24237 24238 /* 24239 * Return the correct error code to mimic the behavior 24240 * of a connection reset. 24241 */ 24242 #define TCP_AC_GET_ERRCODE(state, err) { \ 24243 switch ((state)) { \ 24244 case TCPS_SYN_SENT: \ 24245 case TCPS_SYN_RCVD: \ 24246 (err) = ECONNREFUSED; \ 24247 break; \ 24248 case TCPS_ESTABLISHED: \ 24249 case TCPS_FIN_WAIT_1: \ 24250 case TCPS_FIN_WAIT_2: \ 24251 case TCPS_CLOSE_WAIT: \ 24252 (err) = ECONNRESET; \ 24253 break; \ 24254 case TCPS_CLOSING: \ 24255 case TCPS_LAST_ACK: \ 24256 case TCPS_TIME_WAIT: \ 24257 (err) = 0; \ 24258 break; \ 24259 default: \ 24260 (err) = ENXIO; \ 24261 } \ 24262 } 24263 24264 /* 24265 * Check if a tcp structure matches the info in acp. 24266 */ 24267 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24268 (((acp)->ac_local.ss_family == AF_INET) ? \ 24269 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24270 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24271 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24272 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24273 (TCP_AC_V4LPORT((acp)) == 0 || \ 24274 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24275 (TCP_AC_V4RPORT((acp)) == 0 || \ 24276 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24277 (acp)->ac_start <= (tcp)->tcp_state && \ 24278 (acp)->ac_end >= (tcp)->tcp_state) : \ 24279 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24280 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24281 &(tcp)->tcp_ip_src_v6)) && \ 24282 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24283 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24284 &(tcp)->tcp_remote_v6)) && \ 24285 (TCP_AC_V6LPORT((acp)) == 0 || \ 24286 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24287 (TCP_AC_V6RPORT((acp)) == 0 || \ 24288 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24289 (acp)->ac_start <= (tcp)->tcp_state && \ 24290 (acp)->ac_end >= (tcp)->tcp_state)) 24291 24292 #define TCP_AC_MATCH(acp, tcp) \ 24293 (((acp)->ac_zoneid == ALL_ZONES || \ 24294 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24295 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24296 24297 /* 24298 * Build a message containing a tcp_ioc_abort_conn_t structure 24299 * which is filled in with information from acp and tp. 24300 */ 24301 static mblk_t * 24302 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24303 { 24304 mblk_t *mp; 24305 tcp_ioc_abort_conn_t *tacp; 24306 24307 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24308 if (mp == NULL) 24309 return (NULL); 24310 24311 mp->b_datap->db_type = M_CTL; 24312 24313 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24314 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24315 sizeof (uint32_t)); 24316 24317 tacp->ac_start = acp->ac_start; 24318 tacp->ac_end = acp->ac_end; 24319 tacp->ac_zoneid = acp->ac_zoneid; 24320 24321 if (acp->ac_local.ss_family == AF_INET) { 24322 tacp->ac_local.ss_family = AF_INET; 24323 tacp->ac_remote.ss_family = AF_INET; 24324 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24325 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24326 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24327 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24328 } else { 24329 tacp->ac_local.ss_family = AF_INET6; 24330 tacp->ac_remote.ss_family = AF_INET6; 24331 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24332 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24333 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24334 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24335 } 24336 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24337 return (mp); 24338 } 24339 24340 /* 24341 * Print a tcp_ioc_abort_conn_t structure. 24342 */ 24343 static void 24344 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24345 { 24346 char lbuf[128]; 24347 char rbuf[128]; 24348 sa_family_t af; 24349 in_port_t lport, rport; 24350 ushort_t logflags; 24351 24352 af = acp->ac_local.ss_family; 24353 24354 if (af == AF_INET) { 24355 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24356 lbuf, 128); 24357 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24358 rbuf, 128); 24359 lport = ntohs(TCP_AC_V4LPORT(acp)); 24360 rport = ntohs(TCP_AC_V4RPORT(acp)); 24361 } else { 24362 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24363 lbuf, 128); 24364 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24365 rbuf, 128); 24366 lport = ntohs(TCP_AC_V6LPORT(acp)); 24367 rport = ntohs(TCP_AC_V6RPORT(acp)); 24368 } 24369 24370 logflags = SL_TRACE | SL_NOTE; 24371 /* 24372 * Don't print this message to the console if the operation was done 24373 * to a non-global zone. 24374 */ 24375 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24376 logflags |= SL_CONSOLE; 24377 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24378 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24379 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24380 acp->ac_start, acp->ac_end); 24381 } 24382 24383 /* 24384 * Called inside tcp_rput when a message built using 24385 * tcp_ioctl_abort_build_msg is put into a queue. 24386 * Note that when we get here there is no wildcard in acp any more. 24387 */ 24388 static void 24389 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24390 { 24391 tcp_ioc_abort_conn_t *acp; 24392 24393 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24394 if (tcp->tcp_state <= acp->ac_end) { 24395 /* 24396 * If we get here, we are already on the correct 24397 * squeue. This ioctl follows the following path 24398 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24399 * ->tcp_ioctl_abort->squeue_enter (if on a 24400 * different squeue) 24401 */ 24402 int errcode; 24403 24404 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24405 (void) tcp_clean_death(tcp, errcode, 26); 24406 } 24407 freemsg(mp); 24408 } 24409 24410 /* 24411 * Abort all matching connections on a hash chain. 24412 */ 24413 static int 24414 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24415 boolean_t exact, tcp_stack_t *tcps) 24416 { 24417 int nmatch, err = 0; 24418 tcp_t *tcp; 24419 MBLKP mp, last, listhead = NULL; 24420 conn_t *tconnp; 24421 connf_t *connfp; 24422 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24423 24424 connfp = &ipst->ips_ipcl_conn_fanout[index]; 24425 24426 startover: 24427 nmatch = 0; 24428 24429 mutex_enter(&connfp->connf_lock); 24430 for (tconnp = connfp->connf_head; tconnp != NULL; 24431 tconnp = tconnp->conn_next) { 24432 tcp = tconnp->conn_tcp; 24433 if (TCP_AC_MATCH(acp, tcp)) { 24434 CONN_INC_REF(tcp->tcp_connp); 24435 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24436 if (mp == NULL) { 24437 err = ENOMEM; 24438 CONN_DEC_REF(tcp->tcp_connp); 24439 break; 24440 } 24441 mp->b_prev = (mblk_t *)tcp; 24442 24443 if (listhead == NULL) { 24444 listhead = mp; 24445 last = mp; 24446 } else { 24447 last->b_next = mp; 24448 last = mp; 24449 } 24450 nmatch++; 24451 if (exact) 24452 break; 24453 } 24454 24455 /* Avoid holding lock for too long. */ 24456 if (nmatch >= 500) 24457 break; 24458 } 24459 mutex_exit(&connfp->connf_lock); 24460 24461 /* Pass mp into the correct tcp */ 24462 while ((mp = listhead) != NULL) { 24463 listhead = listhead->b_next; 24464 tcp = (tcp_t *)mp->b_prev; 24465 mp->b_next = mp->b_prev = NULL; 24466 SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input, 24467 tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET); 24468 } 24469 24470 *count += nmatch; 24471 if (nmatch >= 500 && err == 0) 24472 goto startover; 24473 return (err); 24474 } 24475 24476 /* 24477 * Abort all connections that matches the attributes specified in acp. 24478 */ 24479 static int 24480 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 24481 { 24482 sa_family_t af; 24483 uint32_t ports; 24484 uint16_t *pports; 24485 int err = 0, count = 0; 24486 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 24487 int index = -1; 24488 ushort_t logflags; 24489 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24490 24491 af = acp->ac_local.ss_family; 24492 24493 if (af == AF_INET) { 24494 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 24495 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 24496 pports = (uint16_t *)&ports; 24497 pports[1] = TCP_AC_V4LPORT(acp); 24498 pports[0] = TCP_AC_V4RPORT(acp); 24499 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 24500 } 24501 } else { 24502 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 24503 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 24504 pports = (uint16_t *)&ports; 24505 pports[1] = TCP_AC_V6LPORT(acp); 24506 pports[0] = TCP_AC_V6RPORT(acp); 24507 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 24508 } 24509 } 24510 24511 /* 24512 * For cases where remote addr, local port, and remote port are non- 24513 * wildcards, tcp_ioctl_abort_bucket will only be called once. 24514 */ 24515 if (index != -1) { 24516 err = tcp_ioctl_abort_bucket(acp, index, 24517 &count, exact, tcps); 24518 } else { 24519 /* 24520 * loop through all entries for wildcard case 24521 */ 24522 for (index = 0; 24523 index < ipst->ips_ipcl_conn_fanout_size; 24524 index++) { 24525 err = tcp_ioctl_abort_bucket(acp, index, 24526 &count, exact, tcps); 24527 if (err != 0) 24528 break; 24529 } 24530 } 24531 24532 logflags = SL_TRACE | SL_NOTE; 24533 /* 24534 * Don't print this message to the console if the operation was done 24535 * to a non-global zone. 24536 */ 24537 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24538 logflags |= SL_CONSOLE; 24539 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 24540 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 24541 if (err == 0 && count == 0) 24542 err = ENOENT; 24543 return (err); 24544 } 24545 24546 /* 24547 * Process the TCP_IOC_ABORT_CONN ioctl request. 24548 */ 24549 static void 24550 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 24551 { 24552 int err; 24553 IOCP iocp; 24554 MBLKP mp1; 24555 sa_family_t laf, raf; 24556 tcp_ioc_abort_conn_t *acp; 24557 zone_t *zptr; 24558 conn_t *connp = Q_TO_CONN(q); 24559 zoneid_t zoneid = connp->conn_zoneid; 24560 tcp_t *tcp = connp->conn_tcp; 24561 tcp_stack_t *tcps = tcp->tcp_tcps; 24562 24563 iocp = (IOCP)mp->b_rptr; 24564 24565 if ((mp1 = mp->b_cont) == NULL || 24566 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 24567 err = EINVAL; 24568 goto out; 24569 } 24570 24571 /* check permissions */ 24572 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 24573 err = EPERM; 24574 goto out; 24575 } 24576 24577 if (mp1->b_cont != NULL) { 24578 freemsg(mp1->b_cont); 24579 mp1->b_cont = NULL; 24580 } 24581 24582 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 24583 laf = acp->ac_local.ss_family; 24584 raf = acp->ac_remote.ss_family; 24585 24586 /* check that a zone with the supplied zoneid exists */ 24587 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 24588 zptr = zone_find_by_id(zoneid); 24589 if (zptr != NULL) { 24590 zone_rele(zptr); 24591 } else { 24592 err = EINVAL; 24593 goto out; 24594 } 24595 } 24596 24597 /* 24598 * For exclusive stacks we set the zoneid to zero 24599 * to make TCP operate as if in the global zone. 24600 */ 24601 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 24602 acp->ac_zoneid = GLOBAL_ZONEID; 24603 24604 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 24605 acp->ac_start > acp->ac_end || laf != raf || 24606 (laf != AF_INET && laf != AF_INET6)) { 24607 err = EINVAL; 24608 goto out; 24609 } 24610 24611 tcp_ioctl_abort_dump(acp); 24612 err = tcp_ioctl_abort(acp, tcps); 24613 24614 out: 24615 if (mp1 != NULL) { 24616 freemsg(mp1); 24617 mp->b_cont = NULL; 24618 } 24619 24620 if (err != 0) 24621 miocnak(q, mp, 0, err); 24622 else 24623 miocack(q, mp, 0, 0); 24624 } 24625 24626 /* 24627 * tcp_time_wait_processing() handles processing of incoming packets when 24628 * the tcp is in the TIME_WAIT state. 24629 * A TIME_WAIT tcp that has an associated open TCP stream is never put 24630 * on the time wait list. 24631 */ 24632 void 24633 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 24634 uint32_t seg_ack, int seg_len, tcph_t *tcph) 24635 { 24636 int32_t bytes_acked; 24637 int32_t gap; 24638 int32_t rgap; 24639 tcp_opt_t tcpopt; 24640 uint_t flags; 24641 uint32_t new_swnd = 0; 24642 conn_t *connp; 24643 tcp_stack_t *tcps = tcp->tcp_tcps; 24644 24645 BUMP_LOCAL(tcp->tcp_ibsegs); 24646 DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp); 24647 24648 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 24649 new_swnd = BE16_TO_U16(tcph->th_win) << 24650 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 24651 if (tcp->tcp_snd_ts_ok) { 24652 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 24653 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24654 tcp->tcp_rnxt, TH_ACK); 24655 goto done; 24656 } 24657 } 24658 gap = seg_seq - tcp->tcp_rnxt; 24659 rgap = tcp->tcp_rwnd - (gap + seg_len); 24660 if (gap < 0) { 24661 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 24662 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 24663 (seg_len > -gap ? -gap : seg_len)); 24664 seg_len += gap; 24665 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 24666 if (flags & TH_RST) { 24667 goto done; 24668 } 24669 if ((flags & TH_FIN) && seg_len == -1) { 24670 /* 24671 * When TCP receives a duplicate FIN in 24672 * TIME_WAIT state, restart the 2 MSL timer. 24673 * See page 73 in RFC 793. Make sure this TCP 24674 * is already on the TIME_WAIT list. If not, 24675 * just restart the timer. 24676 */ 24677 if (TCP_IS_DETACHED(tcp)) { 24678 if (tcp_time_wait_remove(tcp, NULL) == 24679 B_TRUE) { 24680 tcp_time_wait_append(tcp); 24681 TCP_DBGSTAT(tcps, 24682 tcp_rput_time_wait); 24683 } 24684 } else { 24685 ASSERT(tcp != NULL); 24686 TCP_TIMER_RESTART(tcp, 24687 tcps->tcps_time_wait_interval); 24688 } 24689 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24690 tcp->tcp_rnxt, TH_ACK); 24691 goto done; 24692 } 24693 flags |= TH_ACK_NEEDED; 24694 seg_len = 0; 24695 goto process_ack; 24696 } 24697 24698 /* Fix seg_seq, and chew the gap off the front. */ 24699 seg_seq = tcp->tcp_rnxt; 24700 } 24701 24702 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 24703 /* 24704 * Make sure that when we accept the connection, pick 24705 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 24706 * old connection. 24707 * 24708 * The next ISS generated is equal to tcp_iss_incr_extra 24709 * + ISS_INCR/2 + other components depending on the 24710 * value of tcp_strong_iss. We pre-calculate the new 24711 * ISS here and compare with tcp_snxt to determine if 24712 * we need to make adjustment to tcp_iss_incr_extra. 24713 * 24714 * The above calculation is ugly and is a 24715 * waste of CPU cycles... 24716 */ 24717 uint32_t new_iss = tcps->tcps_iss_incr_extra; 24718 int32_t adj; 24719 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 24720 24721 switch (tcps->tcps_strong_iss) { 24722 case 2: { 24723 /* Add time and MD5 components. */ 24724 uint32_t answer[4]; 24725 struct { 24726 uint32_t ports; 24727 in6_addr_t src; 24728 in6_addr_t dst; 24729 } arg; 24730 MD5_CTX context; 24731 24732 mutex_enter(&tcps->tcps_iss_key_lock); 24733 context = tcps->tcps_iss_key; 24734 mutex_exit(&tcps->tcps_iss_key_lock); 24735 arg.ports = tcp->tcp_ports; 24736 /* We use MAPPED addresses in tcp_iss_init */ 24737 arg.src = tcp->tcp_ip_src_v6; 24738 if (tcp->tcp_ipversion == IPV4_VERSION) { 24739 IN6_IPADDR_TO_V4MAPPED( 24740 tcp->tcp_ipha->ipha_dst, 24741 &arg.dst); 24742 } else { 24743 arg.dst = 24744 tcp->tcp_ip6h->ip6_dst; 24745 } 24746 MD5Update(&context, (uchar_t *)&arg, 24747 sizeof (arg)); 24748 MD5Final((uchar_t *)answer, &context); 24749 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 24750 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 24751 break; 24752 } 24753 case 1: 24754 /* Add time component and min random (i.e. 1). */ 24755 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 24756 break; 24757 default: 24758 /* Add only time component. */ 24759 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24760 break; 24761 } 24762 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 24763 /* 24764 * New ISS not guaranteed to be ISS_INCR/2 24765 * ahead of the current tcp_snxt, so add the 24766 * difference to tcp_iss_incr_extra. 24767 */ 24768 tcps->tcps_iss_incr_extra += adj; 24769 } 24770 /* 24771 * If tcp_clean_death() can not perform the task now, 24772 * drop the SYN packet and let the other side re-xmit. 24773 * Otherwise pass the SYN packet back in, since the 24774 * old tcp state has been cleaned up or freed. 24775 */ 24776 if (tcp_clean_death(tcp, 0, 27) == -1) 24777 goto done; 24778 /* 24779 * We will come back to tcp_rput_data 24780 * on the global queue. Packets destined 24781 * for the global queue will be checked 24782 * with global policy. But the policy for 24783 * this packet has already been checked as 24784 * this was destined for the detached 24785 * connection. We need to bypass policy 24786 * check this time by attaching a dummy 24787 * ipsec_in with ipsec_in_dont_check set. 24788 */ 24789 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 24790 if (connp != NULL) { 24791 TCP_STAT(tcps, tcp_time_wait_syn_success); 24792 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 24793 return; 24794 } 24795 goto done; 24796 } 24797 24798 /* 24799 * rgap is the amount of stuff received out of window. A negative 24800 * value is the amount out of window. 24801 */ 24802 if (rgap < 0) { 24803 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 24804 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 24805 /* Fix seg_len and make sure there is something left. */ 24806 seg_len += rgap; 24807 if (seg_len <= 0) { 24808 if (flags & TH_RST) { 24809 goto done; 24810 } 24811 flags |= TH_ACK_NEEDED; 24812 seg_len = 0; 24813 goto process_ack; 24814 } 24815 } 24816 /* 24817 * Check whether we can update tcp_ts_recent. This test is 24818 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 24819 * Extensions for High Performance: An Update", Internet Draft. 24820 */ 24821 if (tcp->tcp_snd_ts_ok && 24822 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 24823 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 24824 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 24825 tcp->tcp_last_rcv_lbolt = lbolt64; 24826 } 24827 24828 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 24829 /* Always ack out of order packets */ 24830 flags |= TH_ACK_NEEDED; 24831 seg_len = 0; 24832 } else if (seg_len > 0) { 24833 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 24834 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 24835 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 24836 } 24837 if (flags & TH_RST) { 24838 (void) tcp_clean_death(tcp, 0, 28); 24839 goto done; 24840 } 24841 if (flags & TH_SYN) { 24842 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 24843 TH_RST|TH_ACK); 24844 /* 24845 * Do not delete the TCP structure if it is in 24846 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 24847 */ 24848 goto done; 24849 } 24850 process_ack: 24851 if (flags & TH_ACK) { 24852 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 24853 if (bytes_acked <= 0) { 24854 if (bytes_acked == 0 && seg_len == 0 && 24855 new_swnd == tcp->tcp_swnd) 24856 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 24857 } else { 24858 /* Acks something not sent */ 24859 flags |= TH_ACK_NEEDED; 24860 } 24861 } 24862 if (flags & TH_ACK_NEEDED) { 24863 /* 24864 * Time to send an ack for some reason. 24865 */ 24866 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 24867 tcp->tcp_rnxt, TH_ACK); 24868 } 24869 done: 24870 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 24871 DB_CKSUMSTART(mp) = 0; 24872 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 24873 TCP_STAT(tcps, tcp_time_wait_syn_fail); 24874 } 24875 freemsg(mp); 24876 } 24877 24878 /* 24879 * TCP Timers Implementation. 24880 */ 24881 timeout_id_t 24882 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 24883 { 24884 mblk_t *mp; 24885 tcp_timer_t *tcpt; 24886 tcp_t *tcp = connp->conn_tcp; 24887 24888 ASSERT(connp->conn_sqp != NULL); 24889 24890 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 24891 24892 if (tcp->tcp_timercache == NULL) { 24893 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 24894 } else { 24895 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 24896 mp = tcp->tcp_timercache; 24897 tcp->tcp_timercache = mp->b_next; 24898 mp->b_next = NULL; 24899 ASSERT(mp->b_wptr == NULL); 24900 } 24901 24902 CONN_INC_REF(connp); 24903 tcpt = (tcp_timer_t *)mp->b_rptr; 24904 tcpt->connp = connp; 24905 tcpt->tcpt_proc = f; 24906 /* 24907 * TCP timers are normal timeouts. Plus, they do not require more than 24908 * a 10 millisecond resolution. By choosing a coarser resolution and by 24909 * rounding up the expiration to the next resolution boundary, we can 24910 * batch timers in the callout subsystem to make TCP timers more 24911 * efficient. The roundup also protects short timers from expiring too 24912 * early before they have a chance to be cancelled. 24913 */ 24914 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 24915 TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 24916 24917 return ((timeout_id_t)mp); 24918 } 24919 24920 static void 24921 tcp_timer_callback(void *arg) 24922 { 24923 mblk_t *mp = (mblk_t *)arg; 24924 tcp_timer_t *tcpt; 24925 conn_t *connp; 24926 24927 tcpt = (tcp_timer_t *)mp->b_rptr; 24928 connp = tcpt->connp; 24929 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 24930 SQ_FILL, SQTAG_TCP_TIMER); 24931 } 24932 24933 static void 24934 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 24935 { 24936 tcp_timer_t *tcpt; 24937 conn_t *connp = (conn_t *)arg; 24938 tcp_t *tcp = connp->conn_tcp; 24939 24940 tcpt = (tcp_timer_t *)mp->b_rptr; 24941 ASSERT(connp == tcpt->connp); 24942 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 24943 24944 /* 24945 * If the TCP has reached the closed state, don't proceed any 24946 * further. This TCP logically does not exist on the system. 24947 * tcpt_proc could for example access queues, that have already 24948 * been qprocoff'ed off. Also see comments at the start of tcp_input 24949 */ 24950 if (tcp->tcp_state != TCPS_CLOSED) { 24951 (*tcpt->tcpt_proc)(connp); 24952 } else { 24953 tcp->tcp_timer_tid = 0; 24954 } 24955 tcp_timer_free(connp->conn_tcp, mp); 24956 } 24957 24958 /* 24959 * There is potential race with untimeout and the handler firing at the same 24960 * time. The mblock may be freed by the handler while we are trying to use 24961 * it. But since both should execute on the same squeue, this race should not 24962 * occur. 24963 */ 24964 clock_t 24965 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 24966 { 24967 mblk_t *mp = (mblk_t *)id; 24968 tcp_timer_t *tcpt; 24969 clock_t delta; 24970 24971 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 24972 24973 if (mp == NULL) 24974 return (-1); 24975 24976 tcpt = (tcp_timer_t *)mp->b_rptr; 24977 ASSERT(tcpt->connp == connp); 24978 24979 delta = untimeout_default(tcpt->tcpt_tid, 0); 24980 24981 if (delta >= 0) { 24982 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 24983 tcp_timer_free(connp->conn_tcp, mp); 24984 CONN_DEC_REF(connp); 24985 } 24986 24987 return (delta); 24988 } 24989 24990 /* 24991 * Allocate space for the timer event. The allocation looks like mblk, but it is 24992 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 24993 * 24994 * Dealing with failures: If we can't allocate from the timer cache we try 24995 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 24996 * points to b_rptr. 24997 * If we can't allocate anything using allocb_tryhard(), we perform a last 24998 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 24999 * save the actual allocation size in b_datap. 25000 */ 25001 mblk_t * 25002 tcp_timermp_alloc(int kmflags) 25003 { 25004 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25005 kmflags & ~KM_PANIC); 25006 25007 if (mp != NULL) { 25008 mp->b_next = mp->b_prev = NULL; 25009 mp->b_rptr = (uchar_t *)(&mp[1]); 25010 mp->b_wptr = NULL; 25011 mp->b_datap = NULL; 25012 mp->b_queue = NULL; 25013 mp->b_cont = NULL; 25014 } else if (kmflags & KM_PANIC) { 25015 /* 25016 * Failed to allocate memory for the timer. Try allocating from 25017 * dblock caches. 25018 */ 25019 /* ipclassifier calls this from a constructor - hence no tcps */ 25020 TCP_G_STAT(tcp_timermp_allocfail); 25021 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25022 if (mp == NULL) { 25023 size_t size = 0; 25024 /* 25025 * Memory is really low. Try tryhard allocation. 25026 * 25027 * ipclassifier calls this from a constructor - 25028 * hence no tcps 25029 */ 25030 TCP_G_STAT(tcp_timermp_allocdblfail); 25031 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25032 sizeof (tcp_timer_t), &size, kmflags); 25033 mp->b_rptr = (uchar_t *)(&mp[1]); 25034 mp->b_next = mp->b_prev = NULL; 25035 mp->b_wptr = (uchar_t *)-1; 25036 mp->b_datap = (dblk_t *)size; 25037 mp->b_queue = NULL; 25038 mp->b_cont = NULL; 25039 } 25040 ASSERT(mp->b_wptr != NULL); 25041 } 25042 /* ipclassifier calls this from a constructor - hence no tcps */ 25043 TCP_G_DBGSTAT(tcp_timermp_alloced); 25044 25045 return (mp); 25046 } 25047 25048 /* 25049 * Free per-tcp timer cache. 25050 * It can only contain entries from tcp_timercache. 25051 */ 25052 void 25053 tcp_timermp_free(tcp_t *tcp) 25054 { 25055 mblk_t *mp; 25056 25057 while ((mp = tcp->tcp_timercache) != NULL) { 25058 ASSERT(mp->b_wptr == NULL); 25059 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25060 kmem_cache_free(tcp_timercache, mp); 25061 } 25062 } 25063 25064 /* 25065 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25066 * events there already (currently at most two events are cached). 25067 * If the event is not allocated from the timer cache, free it right away. 25068 */ 25069 static void 25070 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25071 { 25072 mblk_t *mp1 = tcp->tcp_timercache; 25073 25074 if (mp->b_wptr != NULL) { 25075 /* 25076 * This allocation is not from a timer cache, free it right 25077 * away. 25078 */ 25079 if (mp->b_wptr != (uchar_t *)-1) 25080 freeb(mp); 25081 else 25082 kmem_free(mp, (size_t)mp->b_datap); 25083 } else if (mp1 == NULL || mp1->b_next == NULL) { 25084 /* Cache this timer block for future allocations */ 25085 mp->b_rptr = (uchar_t *)(&mp[1]); 25086 mp->b_next = mp1; 25087 tcp->tcp_timercache = mp; 25088 } else { 25089 kmem_cache_free(tcp_timercache, mp); 25090 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 25091 } 25092 } 25093 25094 /* 25095 * End of TCP Timers implementation. 25096 */ 25097 25098 /* 25099 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25100 * on the specified backing STREAMS q. Note, the caller may make the 25101 * decision to call based on the tcp_t.tcp_flow_stopped value which 25102 * when check outside the q's lock is only an advisory check ... 25103 */ 25104 void 25105 tcp_setqfull(tcp_t *tcp) 25106 { 25107 tcp_stack_t *tcps = tcp->tcp_tcps; 25108 conn_t *connp = tcp->tcp_connp; 25109 25110 if (tcp->tcp_closed) 25111 return; 25112 25113 if (IPCL_IS_NONSTR(connp)) { 25114 (*connp->conn_upcalls->su_txq_full) 25115 (tcp->tcp_connp->conn_upper_handle, B_TRUE); 25116 tcp->tcp_flow_stopped = B_TRUE; 25117 } else { 25118 queue_t *q = tcp->tcp_wq; 25119 25120 if (!(q->q_flag & QFULL)) { 25121 mutex_enter(QLOCK(q)); 25122 if (!(q->q_flag & QFULL)) { 25123 /* still need to set QFULL */ 25124 q->q_flag |= QFULL; 25125 tcp->tcp_flow_stopped = B_TRUE; 25126 mutex_exit(QLOCK(q)); 25127 TCP_STAT(tcps, tcp_flwctl_on); 25128 } else { 25129 mutex_exit(QLOCK(q)); 25130 } 25131 } 25132 } 25133 } 25134 25135 void 25136 tcp_clrqfull(tcp_t *tcp) 25137 { 25138 conn_t *connp = tcp->tcp_connp; 25139 25140 if (tcp->tcp_closed) 25141 return; 25142 25143 if (IPCL_IS_NONSTR(connp)) { 25144 (*connp->conn_upcalls->su_txq_full) 25145 (tcp->tcp_connp->conn_upper_handle, B_FALSE); 25146 tcp->tcp_flow_stopped = B_FALSE; 25147 } else { 25148 queue_t *q = tcp->tcp_wq; 25149 25150 if (q->q_flag & QFULL) { 25151 mutex_enter(QLOCK(q)); 25152 if (q->q_flag & QFULL) { 25153 q->q_flag &= ~QFULL; 25154 tcp->tcp_flow_stopped = B_FALSE; 25155 mutex_exit(QLOCK(q)); 25156 if (q->q_flag & QWANTW) 25157 qbackenable(q, 0); 25158 } else { 25159 mutex_exit(QLOCK(q)); 25160 } 25161 } 25162 } 25163 } 25164 25165 /* 25166 * kstats related to squeues i.e. not per IP instance 25167 */ 25168 static void * 25169 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 25170 { 25171 kstat_t *ksp; 25172 25173 tcp_g_stat_t template = { 25174 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 25175 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 25176 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 25177 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 25178 }; 25179 25180 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 25181 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25182 KSTAT_FLAG_VIRTUAL); 25183 25184 if (ksp == NULL) 25185 return (NULL); 25186 25187 bcopy(&template, tcp_g_statp, sizeof (template)); 25188 ksp->ks_data = (void *)tcp_g_statp; 25189 25190 kstat_install(ksp); 25191 return (ksp); 25192 } 25193 25194 static void 25195 tcp_g_kstat_fini(kstat_t *ksp) 25196 { 25197 if (ksp != NULL) { 25198 kstat_delete(ksp); 25199 } 25200 } 25201 25202 25203 static void * 25204 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 25205 { 25206 kstat_t *ksp; 25207 25208 tcp_stat_t template = { 25209 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 25210 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 25211 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 25212 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 25213 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 25214 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 25215 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 25216 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 25217 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 25218 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 25219 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 25220 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 25221 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 25222 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 25223 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 25224 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 25225 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 25226 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 25227 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 25228 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 25229 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 25230 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 25231 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 25232 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 25233 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 25234 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 25235 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 25236 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 25237 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 25238 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 25239 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 25240 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 25241 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 25242 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 25243 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 25244 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 25245 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 25246 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 25247 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 25248 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 25249 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 25250 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 25251 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 25252 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 25253 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 25254 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 25255 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 25256 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 25257 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 25258 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 25259 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 25260 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 25261 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 25262 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 25263 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 25264 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 25265 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 25266 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 25267 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 25268 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 25269 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 25270 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 25271 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 25272 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 25273 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 25274 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 25275 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 25276 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 25277 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 25278 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 25279 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 25280 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 25281 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 25282 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 25283 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 25284 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 25285 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 25286 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 25287 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 25288 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 25289 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 25290 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 25291 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 25292 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 25293 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 25294 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 25295 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 25296 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 25297 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 25298 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 25299 }; 25300 25301 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 25302 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 25303 KSTAT_FLAG_VIRTUAL, stackid); 25304 25305 if (ksp == NULL) 25306 return (NULL); 25307 25308 bcopy(&template, tcps_statisticsp, sizeof (template)); 25309 ksp->ks_data = (void *)tcps_statisticsp; 25310 ksp->ks_private = (void *)(uintptr_t)stackid; 25311 25312 kstat_install(ksp); 25313 return (ksp); 25314 } 25315 25316 static void 25317 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 25318 { 25319 if (ksp != NULL) { 25320 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25321 kstat_delete_netstack(ksp, stackid); 25322 } 25323 } 25324 25325 /* 25326 * TCP Kstats implementation 25327 */ 25328 static void * 25329 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 25330 { 25331 kstat_t *ksp; 25332 25333 tcp_named_kstat_t template = { 25334 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25335 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25336 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25337 { "maxConn", KSTAT_DATA_INT32, 0 }, 25338 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25339 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25340 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25341 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25342 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25343 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25344 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25345 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25346 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25347 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25348 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25349 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25350 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25351 { "outAck", KSTAT_DATA_UINT32, 0 }, 25352 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25353 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25354 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25355 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25356 { "outControl", KSTAT_DATA_UINT32, 0 }, 25357 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25358 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25359 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25360 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25361 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25362 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25363 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25364 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25365 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25366 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25367 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25368 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25369 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25370 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25371 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25372 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25373 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25374 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25375 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25376 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25377 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25378 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25379 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25380 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25381 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25382 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25383 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25384 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25385 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25386 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25387 }; 25388 25389 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 25390 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 25391 25392 if (ksp == NULL) 25393 return (NULL); 25394 25395 template.rtoAlgorithm.value.ui32 = 4; 25396 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 25397 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 25398 template.maxConn.value.i32 = -1; 25399 25400 bcopy(&template, ksp->ks_data, sizeof (template)); 25401 ksp->ks_update = tcp_kstat_update; 25402 ksp->ks_private = (void *)(uintptr_t)stackid; 25403 25404 kstat_install(ksp); 25405 return (ksp); 25406 } 25407 25408 static void 25409 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 25410 { 25411 if (ksp != NULL) { 25412 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 25413 kstat_delete_netstack(ksp, stackid); 25414 } 25415 } 25416 25417 static int 25418 tcp_kstat_update(kstat_t *kp, int rw) 25419 { 25420 tcp_named_kstat_t *tcpkp; 25421 tcp_t *tcp; 25422 connf_t *connfp; 25423 conn_t *connp; 25424 int i; 25425 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 25426 netstack_t *ns; 25427 tcp_stack_t *tcps; 25428 ip_stack_t *ipst; 25429 25430 if ((kp == NULL) || (kp->ks_data == NULL)) 25431 return (EIO); 25432 25433 if (rw == KSTAT_WRITE) 25434 return (EACCES); 25435 25436 ns = netstack_find_by_stackid(stackid); 25437 if (ns == NULL) 25438 return (-1); 25439 tcps = ns->netstack_tcp; 25440 if (tcps == NULL) { 25441 netstack_rele(ns); 25442 return (-1); 25443 } 25444 25445 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25446 25447 tcpkp->currEstab.value.ui32 = 0; 25448 25449 ipst = ns->netstack_ip; 25450 25451 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25452 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25453 connp = NULL; 25454 while ((connp = 25455 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25456 tcp = connp->conn_tcp; 25457 switch (tcp_snmp_state(tcp)) { 25458 case MIB2_TCP_established: 25459 case MIB2_TCP_closeWait: 25460 tcpkp->currEstab.value.ui32++; 25461 break; 25462 } 25463 } 25464 } 25465 25466 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 25467 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 25468 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 25469 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 25470 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 25471 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 25472 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 25473 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 25474 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 25475 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 25476 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 25477 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 25478 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 25479 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 25480 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 25481 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 25482 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 25483 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 25484 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 25485 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 25486 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 25487 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 25488 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 25489 tcpkp->inDataInorderSegs.value.ui32 = 25490 tcps->tcps_mib.tcpInDataInorderSegs; 25491 tcpkp->inDataInorderBytes.value.ui32 = 25492 tcps->tcps_mib.tcpInDataInorderBytes; 25493 tcpkp->inDataUnorderSegs.value.ui32 = 25494 tcps->tcps_mib.tcpInDataUnorderSegs; 25495 tcpkp->inDataUnorderBytes.value.ui32 = 25496 tcps->tcps_mib.tcpInDataUnorderBytes; 25497 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 25498 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 25499 tcpkp->inDataPartDupSegs.value.ui32 = 25500 tcps->tcps_mib.tcpInDataPartDupSegs; 25501 tcpkp->inDataPartDupBytes.value.ui32 = 25502 tcps->tcps_mib.tcpInDataPartDupBytes; 25503 tcpkp->inDataPastWinSegs.value.ui32 = 25504 tcps->tcps_mib.tcpInDataPastWinSegs; 25505 tcpkp->inDataPastWinBytes.value.ui32 = 25506 tcps->tcps_mib.tcpInDataPastWinBytes; 25507 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 25508 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 25509 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 25510 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 25511 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 25512 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 25513 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 25514 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 25515 tcpkp->timKeepaliveProbe.value.ui32 = 25516 tcps->tcps_mib.tcpTimKeepaliveProbe; 25517 tcpkp->timKeepaliveDrop.value.ui32 = 25518 tcps->tcps_mib.tcpTimKeepaliveDrop; 25519 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 25520 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 25521 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 25522 tcpkp->outSackRetransSegs.value.ui32 = 25523 tcps->tcps_mib.tcpOutSackRetransSegs; 25524 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 25525 25526 netstack_rele(ns); 25527 return (0); 25528 } 25529 25530 void 25531 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25532 { 25533 uint16_t hdr_len; 25534 ipha_t *ipha; 25535 uint8_t *nexthdrp; 25536 tcph_t *tcph; 25537 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 25538 25539 /* Already has an eager */ 25540 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25541 TCP_STAT(tcps, tcp_reinput_syn); 25542 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25543 SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER); 25544 return; 25545 } 25546 25547 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25548 case IPV4_VERSION: 25549 ipha = (ipha_t *)mp->b_rptr; 25550 hdr_len = IPH_HDR_LENGTH(ipha); 25551 break; 25552 case IPV6_VERSION: 25553 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25554 &hdr_len, &nexthdrp)) { 25555 CONN_DEC_REF(connp); 25556 freemsg(mp); 25557 return; 25558 } 25559 break; 25560 } 25561 25562 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25563 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25564 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25565 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25566 } 25567 25568 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp, 25569 SQ_FILL, SQTAG_TCP_REINPUT); 25570 } 25571 25572 static int 25573 tcp_squeue_switch(int val) 25574 { 25575 int rval = SQ_FILL; 25576 25577 switch (val) { 25578 case 1: 25579 rval = SQ_NODRAIN; 25580 break; 25581 case 2: 25582 rval = SQ_PROCESS; 25583 break; 25584 default: 25585 break; 25586 } 25587 return (rval); 25588 } 25589 25590 /* 25591 * This is called once for each squeue - globally for all stack 25592 * instances. 25593 */ 25594 static void 25595 tcp_squeue_add(squeue_t *sqp) 25596 { 25597 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25598 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25599 25600 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25601 tcp_time_wait->tcp_time_wait_tid = 25602 timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp, 25603 TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION, 25604 CALLOUT_FLAG_ROUNDUP); 25605 if (tcp_free_list_max_cnt == 0) { 25606 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25607 max_ncpus : boot_max_ncpus); 25608 25609 /* 25610 * Limit number of entries to 1% of availble memory / tcp_ncpus 25611 */ 25612 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25613 (tcp_ncpus * sizeof (tcp_t) * 100); 25614 } 25615 tcp_time_wait->tcp_free_list_cnt = 0; 25616 } 25617 25618 static int 25619 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid) 25620 { 25621 mblk_t *ire_mp = NULL; 25622 mblk_t *syn_mp; 25623 mblk_t *mdti; 25624 mblk_t *lsoi; 25625 int retval; 25626 tcph_t *tcph; 25627 cred_t *ecr; 25628 ts_label_t *tsl; 25629 uint32_t mss; 25630 queue_t *q = tcp->tcp_rq; 25631 conn_t *connp = tcp->tcp_connp; 25632 tcp_stack_t *tcps = tcp->tcp_tcps; 25633 25634 if (error == 0) { 25635 /* 25636 * Adapt Multidata information, if any. The 25637 * following tcp_mdt_update routine will free 25638 * the message. 25639 */ 25640 if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) { 25641 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 25642 b_rptr)->mdt_capab, B_TRUE); 25643 freemsg(mdti); 25644 } 25645 25646 /* 25647 * Check to update LSO information with tcp, and 25648 * tcp_lso_update routine will free the message. 25649 */ 25650 if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) { 25651 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 25652 b_rptr)->lso_capab); 25653 freemsg(lsoi); 25654 } 25655 25656 /* Get the IRE, if we had requested for it */ 25657 if (mp != NULL) 25658 ire_mp = tcp_ire_mp(&mp); 25659 25660 if (tcp->tcp_hard_binding) { 25661 tcp->tcp_hard_binding = B_FALSE; 25662 tcp->tcp_hard_bound = B_TRUE; 25663 CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval); 25664 if (retval != 0) { 25665 error = EADDRINUSE; 25666 goto bind_failed; 25667 } 25668 } else { 25669 if (ire_mp != NULL) 25670 freeb(ire_mp); 25671 goto after_syn_sent; 25672 } 25673 25674 retval = tcp_adapt_ire(tcp, ire_mp); 25675 if (ire_mp != NULL) 25676 freeb(ire_mp); 25677 if (retval == 0) { 25678 error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 25679 ENETUNREACH : EADDRNOTAVAIL); 25680 goto ipcl_rm; 25681 } 25682 /* 25683 * Don't let an endpoint connect to itself. 25684 * Also checked in tcp_connect() but that 25685 * check can't handle the case when the 25686 * local IP address is INADDR_ANY. 25687 */ 25688 if (tcp->tcp_ipversion == IPV4_VERSION) { 25689 if ((tcp->tcp_ipha->ipha_dst == 25690 tcp->tcp_ipha->ipha_src) && 25691 (BE16_EQL(tcp->tcp_tcph->th_lport, 25692 tcp->tcp_tcph->th_fport))) { 25693 error = EADDRNOTAVAIL; 25694 goto ipcl_rm; 25695 } 25696 } else { 25697 if (IN6_ARE_ADDR_EQUAL( 25698 &tcp->tcp_ip6h->ip6_dst, 25699 &tcp->tcp_ip6h->ip6_src) && 25700 (BE16_EQL(tcp->tcp_tcph->th_lport, 25701 tcp->tcp_tcph->th_fport))) { 25702 error = EADDRNOTAVAIL; 25703 goto ipcl_rm; 25704 } 25705 } 25706 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 25707 /* 25708 * This should not be possible! Just for 25709 * defensive coding... 25710 */ 25711 if (tcp->tcp_state != TCPS_SYN_SENT) 25712 goto after_syn_sent; 25713 25714 if (is_system_labeled() && 25715 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 25716 error = EHOSTUNREACH; 25717 goto ipcl_rm; 25718 } 25719 25720 /* 25721 * tcp_adapt_ire() does not adjust 25722 * for TCP/IP header length. 25723 */ 25724 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 25725 25726 /* 25727 * Just make sure our rwnd is at 25728 * least tcp_recv_hiwat_mss * MSS 25729 * large, and round up to the nearest 25730 * MSS. 25731 * 25732 * We do the round up here because 25733 * we need to get the interface 25734 * MTU first before we can do the 25735 * round up. 25736 */ 25737 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 25738 tcps->tcps_recv_hiwat_minmss * mss); 25739 if (!IPCL_IS_NONSTR(connp)) 25740 q->q_hiwat = tcp->tcp_rwnd; 25741 tcp->tcp_recv_hiwater = tcp->tcp_rwnd; 25742 tcp_set_ws_value(tcp); 25743 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 25744 tcp->tcp_tcph->th_win); 25745 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 25746 tcp->tcp_snd_ws_ok = B_TRUE; 25747 25748 /* 25749 * Set tcp_snd_ts_ok to true 25750 * so that tcp_xmit_mp will 25751 * include the timestamp 25752 * option in the SYN segment. 25753 */ 25754 if (tcps->tcps_tstamp_always || 25755 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 25756 tcp->tcp_snd_ts_ok = B_TRUE; 25757 } 25758 25759 /* 25760 * tcp_snd_sack_ok can be set in 25761 * tcp_adapt_ire() if the sack metric 25762 * is set. So check it here also. 25763 */ 25764 if (tcps->tcps_sack_permitted == 2 || 25765 tcp->tcp_snd_sack_ok) { 25766 if (tcp->tcp_sack_info == NULL) { 25767 tcp->tcp_sack_info = 25768 kmem_cache_alloc(tcp_sack_info_cache, 25769 KM_SLEEP); 25770 } 25771 tcp->tcp_snd_sack_ok = B_TRUE; 25772 } 25773 25774 /* 25775 * Should we use ECN? Note that the current 25776 * default value (SunOS 5.9) of tcp_ecn_permitted 25777 * is 1. The reason for doing this is that there 25778 * are equipments out there that will drop ECN 25779 * enabled IP packets. Setting it to 1 avoids 25780 * compatibility problems. 25781 */ 25782 if (tcps->tcps_ecn_permitted == 2) 25783 tcp->tcp_ecn_ok = B_TRUE; 25784 25785 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 25786 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 25787 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 25788 if (syn_mp) { 25789 /* 25790 * cr contains the cred from the thread calling 25791 * connect(). 25792 * 25793 * If no thread cred is available, use the 25794 * socket creator's cred instead. If still no 25795 * cred, drop the request rather than risk a 25796 * panic on production systems. 25797 */ 25798 if (cr == NULL) { 25799 cr = CONN_CRED(connp); 25800 pid = tcp->tcp_cpid; 25801 ASSERT(cr != NULL); 25802 if (cr != NULL) { 25803 mblk_setcred(syn_mp, cr, pid); 25804 } else { 25805 error = ECONNABORTED; 25806 goto ipcl_rm; 25807 } 25808 25809 /* 25810 * If an effective security label exists for 25811 * the connection, create a copy of the thread's 25812 * cred but with the effective label attached. 25813 */ 25814 } else if (is_system_labeled() && 25815 connp->conn_effective_cred != NULL && 25816 (tsl = crgetlabel(connp-> 25817 conn_effective_cred)) != NULL) { 25818 if ((ecr = copycred_from_tslabel(cr, 25819 tsl, KM_NOSLEEP)) == NULL) { 25820 error = ENOMEM; 25821 goto ipcl_rm; 25822 } 25823 mblk_setcred(syn_mp, ecr, pid); 25824 crfree(ecr); 25825 25826 /* 25827 * Default to using the thread's cred unchanged. 25828 */ 25829 } else { 25830 mblk_setcred(syn_mp, cr, pid); 25831 } 25832 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 25833 } 25834 after_syn_sent: 25835 if (mp != NULL) { 25836 ASSERT(mp->b_cont == NULL); 25837 freeb(mp); 25838 } 25839 return (error); 25840 } else { 25841 /* error */ 25842 if (tcp->tcp_debug) { 25843 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 25844 "tcp_post_ip_bind: error == %d", error); 25845 } 25846 if (mp != NULL) { 25847 freeb(mp); 25848 } 25849 } 25850 25851 ipcl_rm: 25852 /* 25853 * Need to unbind with classifier since we were just 25854 * told that our bind succeeded. a.k.a error == 0 at the entry. 25855 */ 25856 tcp->tcp_hard_bound = B_FALSE; 25857 tcp->tcp_hard_binding = B_FALSE; 25858 25859 ipcl_hash_remove(connp); 25860 25861 bind_failed: 25862 tcp->tcp_state = TCPS_IDLE; 25863 if (tcp->tcp_ipversion == IPV4_VERSION) 25864 tcp->tcp_ipha->ipha_src = 0; 25865 else 25866 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 25867 /* 25868 * Copy of the src addr. in tcp_t is needed since 25869 * the lookup funcs. can only look at tcp_t 25870 */ 25871 V6_SET_ZERO(tcp->tcp_ip_src_v6); 25872 25873 tcph = tcp->tcp_tcph; 25874 tcph->th_lport[0] = 0; 25875 tcph->th_lport[1] = 0; 25876 tcp_bind_hash_remove(tcp); 25877 bzero(&connp->u_port, sizeof (connp->u_port)); 25878 /* blow away saved option results if any */ 25879 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 25880 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 25881 25882 conn_delete_ire(tcp->tcp_connp, NULL); 25883 25884 return (error); 25885 } 25886 25887 static int 25888 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr, 25889 boolean_t bind_to_req_port_only, cred_t *cr) 25890 { 25891 in_port_t mlp_port; 25892 mlp_type_t addrtype, mlptype; 25893 boolean_t user_specified; 25894 in_port_t allocated_port; 25895 in_port_t requested_port = *requested_port_ptr; 25896 conn_t *connp; 25897 zone_t *zone; 25898 tcp_stack_t *tcps = tcp->tcp_tcps; 25899 in6_addr_t v6addr = tcp->tcp_ip_src_v6; 25900 25901 /* 25902 * XXX It's up to the caller to specify bind_to_req_port_only or not. 25903 */ 25904 if (cr == NULL) 25905 cr = tcp->tcp_cred; 25906 /* 25907 * Get a valid port (within the anonymous range and should not 25908 * be a privileged one) to use if the user has not given a port. 25909 * If multiple threads are here, they may all start with 25910 * with the same initial port. But, it should be fine as long as 25911 * tcp_bindi will ensure that no two threads will be assigned 25912 * the same port. 25913 * 25914 * NOTE: XXX If a privileged process asks for an anonymous port, we 25915 * still check for ports only in the range > tcp_smallest_non_priv_port, 25916 * unless TCP_ANONPRIVBIND option is set. 25917 */ 25918 mlptype = mlptSingle; 25919 mlp_port = requested_port; 25920 if (requested_port == 0) { 25921 requested_port = tcp->tcp_anon_priv_bind ? 25922 tcp_get_next_priv_port(tcp) : 25923 tcp_update_next_port(tcps->tcps_next_port_to_try, 25924 tcp, B_TRUE); 25925 if (requested_port == 0) { 25926 return (-TNOADDR); 25927 } 25928 user_specified = B_FALSE; 25929 25930 /* 25931 * If the user went through one of the RPC interfaces to create 25932 * this socket and RPC is MLP in this zone, then give him an 25933 * anonymous MLP. 25934 */ 25935 connp = tcp->tcp_connp; 25936 if (connp->conn_anon_mlp && is_system_labeled()) { 25937 zone = crgetzone(cr); 25938 addrtype = tsol_mlp_addr_type(zone->zone_id, 25939 IPV6_VERSION, &v6addr, 25940 tcps->tcps_netstack->netstack_ip); 25941 if (addrtype == mlptSingle) { 25942 return (-TNOADDR); 25943 } 25944 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25945 PMAPPORT, addrtype); 25946 mlp_port = PMAPPORT; 25947 } 25948 } else { 25949 int i; 25950 boolean_t priv = B_FALSE; 25951 25952 /* 25953 * If the requested_port is in the well-known privileged range, 25954 * verify that the stream was opened by a privileged user. 25955 * Note: No locks are held when inspecting tcp_g_*epriv_ports 25956 * but instead the code relies on: 25957 * - the fact that the address of the array and its size never 25958 * changes 25959 * - the atomic assignment of the elements of the array 25960 */ 25961 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 25962 priv = B_TRUE; 25963 } else { 25964 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 25965 if (requested_port == 25966 tcps->tcps_g_epriv_ports[i]) { 25967 priv = B_TRUE; 25968 break; 25969 } 25970 } 25971 } 25972 if (priv) { 25973 if (secpolicy_net_privaddr(cr, requested_port, 25974 IPPROTO_TCP) != 0) { 25975 if (tcp->tcp_debug) { 25976 (void) strlog(TCP_MOD_ID, 0, 1, 25977 SL_ERROR|SL_TRACE, 25978 "tcp_bind: no priv for port %d", 25979 requested_port); 25980 } 25981 return (-TACCES); 25982 } 25983 } 25984 user_specified = B_TRUE; 25985 25986 connp = tcp->tcp_connp; 25987 if (is_system_labeled()) { 25988 zone = crgetzone(cr); 25989 addrtype = tsol_mlp_addr_type(zone->zone_id, 25990 IPV6_VERSION, &v6addr, 25991 tcps->tcps_netstack->netstack_ip); 25992 if (addrtype == mlptSingle) { 25993 return (-TNOADDR); 25994 } 25995 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 25996 requested_port, addrtype); 25997 } 25998 } 25999 26000 if (mlptype != mlptSingle) { 26001 if (secpolicy_net_bindmlp(cr) != 0) { 26002 if (tcp->tcp_debug) { 26003 (void) strlog(TCP_MOD_ID, 0, 1, 26004 SL_ERROR|SL_TRACE, 26005 "tcp_bind: no priv for multilevel port %d", 26006 requested_port); 26007 } 26008 return (-TACCES); 26009 } 26010 26011 /* 26012 * If we're specifically binding a shared IP address and the 26013 * port is MLP on shared addresses, then check to see if this 26014 * zone actually owns the MLP. Reject if not. 26015 */ 26016 if (mlptype == mlptShared && addrtype == mlptShared) { 26017 /* 26018 * No need to handle exclusive-stack zones since 26019 * ALL_ZONES only applies to the shared stack. 26020 */ 26021 zoneid_t mlpzone; 26022 26023 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 26024 htons(mlp_port)); 26025 if (connp->conn_zoneid != mlpzone) { 26026 if (tcp->tcp_debug) { 26027 (void) strlog(TCP_MOD_ID, 0, 1, 26028 SL_ERROR|SL_TRACE, 26029 "tcp_bind: attempt to bind port " 26030 "%d on shared addr in zone %d " 26031 "(should be %d)", 26032 mlp_port, connp->conn_zoneid, 26033 mlpzone); 26034 } 26035 return (-TACCES); 26036 } 26037 } 26038 26039 if (!user_specified) { 26040 int err; 26041 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26042 requested_port, B_TRUE); 26043 if (err != 0) { 26044 if (tcp->tcp_debug) { 26045 (void) strlog(TCP_MOD_ID, 0, 1, 26046 SL_ERROR|SL_TRACE, 26047 "tcp_bind: cannot establish anon " 26048 "MLP for port %d", 26049 requested_port); 26050 } 26051 return (err); 26052 } 26053 connp->conn_anon_port = B_TRUE; 26054 } 26055 connp->conn_mlp_type = mlptype; 26056 } 26057 26058 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 26059 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 26060 26061 if (allocated_port == 0) { 26062 connp->conn_mlp_type = mlptSingle; 26063 if (connp->conn_anon_port) { 26064 connp->conn_anon_port = B_FALSE; 26065 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 26066 requested_port, B_FALSE); 26067 } 26068 if (bind_to_req_port_only) { 26069 if (tcp->tcp_debug) { 26070 (void) strlog(TCP_MOD_ID, 0, 1, 26071 SL_ERROR|SL_TRACE, 26072 "tcp_bind: requested addr busy"); 26073 } 26074 return (-TADDRBUSY); 26075 } else { 26076 /* If we are out of ports, fail the bind. */ 26077 if (tcp->tcp_debug) { 26078 (void) strlog(TCP_MOD_ID, 0, 1, 26079 SL_ERROR|SL_TRACE, 26080 "tcp_bind: out of ports?"); 26081 } 26082 return (-TNOADDR); 26083 } 26084 } 26085 26086 /* Pass the allocated port back */ 26087 *requested_port_ptr = allocated_port; 26088 return (0); 26089 } 26090 26091 static int 26092 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26093 boolean_t bind_to_req_port_only) 26094 { 26095 tcp_t *tcp = connp->conn_tcp; 26096 sin_t *sin; 26097 sin6_t *sin6; 26098 in_port_t requested_port; 26099 ipaddr_t v4addr; 26100 in6_addr_t v6addr; 26101 uint_t origipversion; 26102 int error = 0; 26103 26104 ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX); 26105 26106 if (tcp->tcp_state == TCPS_BOUND) { 26107 return (0); 26108 } else if (tcp->tcp_state > TCPS_BOUND) { 26109 if (tcp->tcp_debug) { 26110 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26111 "tcp_bind: bad state, %d", tcp->tcp_state); 26112 } 26113 return (-TOUTSTATE); 26114 } 26115 origipversion = tcp->tcp_ipversion; 26116 26117 ASSERT(sa != NULL && len != 0); 26118 26119 if (!OK_32PTR((char *)sa)) { 26120 if (tcp->tcp_debug) { 26121 (void) strlog(TCP_MOD_ID, 0, 1, 26122 SL_ERROR|SL_TRACE, 26123 "tcp_bind: bad address parameter, " 26124 "address %p, len %d", 26125 (void *)sa, len); 26126 } 26127 return (-TPROTO); 26128 } 26129 26130 switch (len) { 26131 case sizeof (sin_t): /* Complete IPv4 address */ 26132 sin = (sin_t *)sa; 26133 /* 26134 * With sockets sockfs will accept bogus sin_family in 26135 * bind() and replace it with the family used in the socket 26136 * call. 26137 */ 26138 if (sin->sin_family != AF_INET || 26139 tcp->tcp_family != AF_INET) { 26140 return (EAFNOSUPPORT); 26141 } 26142 requested_port = ntohs(sin->sin_port); 26143 tcp->tcp_ipversion = IPV4_VERSION; 26144 v4addr = sin->sin_addr.s_addr; 26145 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 26146 break; 26147 26148 case sizeof (sin6_t): /* Complete IPv6 address */ 26149 sin6 = (sin6_t *)sa; 26150 if (sin6->sin6_family != AF_INET6 || 26151 tcp->tcp_family != AF_INET6) { 26152 return (EAFNOSUPPORT); 26153 } 26154 requested_port = ntohs(sin6->sin6_port); 26155 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 26156 IPV4_VERSION : IPV6_VERSION; 26157 v6addr = sin6->sin6_addr; 26158 break; 26159 26160 default: 26161 if (tcp->tcp_debug) { 26162 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26163 "tcp_bind: bad address length, %d", len); 26164 } 26165 return (EAFNOSUPPORT); 26166 /* return (-TBADADDR); */ 26167 } 26168 26169 tcp->tcp_bound_source_v6 = v6addr; 26170 26171 /* Check for change in ipversion */ 26172 if (origipversion != tcp->tcp_ipversion) { 26173 ASSERT(tcp->tcp_family == AF_INET6); 26174 error = tcp->tcp_ipversion == IPV6_VERSION ? 26175 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 26176 if (error) { 26177 return (ENOMEM); 26178 } 26179 } 26180 26181 /* 26182 * Initialize family specific fields. Copy of the src addr. 26183 * in tcp_t is needed for the lookup funcs. 26184 */ 26185 if (tcp->tcp_ipversion == IPV6_VERSION) { 26186 tcp->tcp_ip6h->ip6_src = v6addr; 26187 } else { 26188 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 26189 } 26190 tcp->tcp_ip_src_v6 = v6addr; 26191 26192 bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only; 26193 26194 error = tcp_bind_select_lport(tcp, &requested_port, 26195 bind_to_req_port_only, cr); 26196 26197 return (error); 26198 } 26199 26200 /* 26201 * Return unix error is tli error is TSYSERR, otherwise return a negative 26202 * tli error. 26203 */ 26204 int 26205 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 26206 boolean_t bind_to_req_port_only) 26207 { 26208 int error; 26209 tcp_t *tcp = connp->conn_tcp; 26210 26211 if (tcp->tcp_state >= TCPS_BOUND) { 26212 if (tcp->tcp_debug) { 26213 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 26214 "tcp_bind: bad state, %d", tcp->tcp_state); 26215 } 26216 return (-TOUTSTATE); 26217 } 26218 26219 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 26220 if (error != 0) 26221 return (error); 26222 26223 ASSERT(tcp->tcp_state == TCPS_BOUND); 26224 26225 tcp->tcp_conn_req_max = 0; 26226 26227 if (tcp->tcp_family == AF_INET6) { 26228 ASSERT(tcp->tcp_connp->conn_af_isv6); 26229 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 26230 &tcp->tcp_bound_source_v6, 0, B_FALSE); 26231 } else { 26232 ASSERT(!tcp->tcp_connp->conn_af_isv6); 26233 error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP, 26234 tcp->tcp_ipha->ipha_src, 0, B_FALSE); 26235 } 26236 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 26237 } 26238 26239 int 26240 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa, 26241 socklen_t len, cred_t *cr) 26242 { 26243 int error; 26244 conn_t *connp = (conn_t *)proto_handle; 26245 squeue_t *sqp = connp->conn_sqp; 26246 26247 /* All Solaris components should pass a cred for this operation. */ 26248 ASSERT(cr != NULL); 26249 26250 ASSERT(sqp != NULL); 26251 ASSERT(connp->conn_upper_handle != NULL); 26252 26253 error = squeue_synch_enter(sqp, connp, NULL); 26254 if (error != 0) { 26255 /* failed to enter */ 26256 return (ENOSR); 26257 } 26258 26259 /* binding to a NULL address really means unbind */ 26260 if (sa == NULL) { 26261 if (connp->conn_tcp->tcp_state < TCPS_LISTEN) 26262 error = tcp_do_unbind(connp); 26263 else 26264 error = EINVAL; 26265 } else { 26266 error = tcp_do_bind(connp, sa, len, cr, B_TRUE); 26267 } 26268 26269 squeue_synch_exit(sqp, connp); 26270 26271 if (error < 0) { 26272 if (error == -TOUTSTATE) 26273 error = EINVAL; 26274 else 26275 error = proto_tlitosyserr(-error); 26276 } 26277 26278 return (error); 26279 } 26280 26281 /* 26282 * If the return value from this function is positive, it's a UNIX error. 26283 * Otherwise, if it's negative, then the absolute value is a TLI error. 26284 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 26285 */ 26286 int 26287 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 26288 cred_t *cr, pid_t pid) 26289 { 26290 tcp_t *tcp = connp->conn_tcp; 26291 sin_t *sin = (sin_t *)sa; 26292 sin6_t *sin6 = (sin6_t *)sa; 26293 ipaddr_t *dstaddrp; 26294 in_port_t dstport; 26295 uint_t srcid; 26296 int error = 0; 26297 26298 switch (len) { 26299 default: 26300 /* 26301 * Should never happen 26302 */ 26303 return (EINVAL); 26304 26305 case sizeof (sin_t): 26306 sin = (sin_t *)sa; 26307 if (sin->sin_port == 0) { 26308 return (-TBADADDR); 26309 } 26310 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 26311 return (EAFNOSUPPORT); 26312 } 26313 break; 26314 26315 case sizeof (sin6_t): 26316 sin6 = (sin6_t *)sa; 26317 if (sin6->sin6_port == 0) { 26318 return (-TBADADDR); 26319 } 26320 break; 26321 } 26322 /* 26323 * If we're connecting to an IPv4-mapped IPv6 address, we need to 26324 * make sure that the template IP header in the tcp structure is an 26325 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 26326 * need to this before we call tcp_bindi() so that the port lookup 26327 * code will look for ports in the correct port space (IPv4 and 26328 * IPv6 have separate port spaces). 26329 */ 26330 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 26331 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26332 int err = 0; 26333 26334 err = tcp_header_init_ipv4(tcp); 26335 if (err != 0) { 26336 error = ENOMEM; 26337 goto connect_failed; 26338 } 26339 if (tcp->tcp_lport != 0) 26340 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 26341 } 26342 26343 switch (tcp->tcp_state) { 26344 case TCPS_LISTEN: 26345 /* 26346 * Listening sockets are not allowed to issue connect(). 26347 */ 26348 if (IPCL_IS_NONSTR(connp)) 26349 return (EOPNOTSUPP); 26350 /* FALLTHRU */ 26351 case TCPS_IDLE: 26352 /* 26353 * We support quick connect, refer to comments in 26354 * tcp_connect_*() 26355 */ 26356 /* FALLTHRU */ 26357 case TCPS_BOUND: 26358 /* 26359 * We must bump the generation before the operation start. 26360 * This is done to ensure that any upcall made later on sends 26361 * up the right generation to the socket. 26362 */ 26363 SOCK_CONNID_BUMP(tcp->tcp_connid); 26364 26365 if (tcp->tcp_family == AF_INET6) { 26366 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 26367 return (tcp_connect_ipv6(tcp, 26368 &sin6->sin6_addr, 26369 sin6->sin6_port, sin6->sin6_flowinfo, 26370 sin6->__sin6_src_id, sin6->sin6_scope_id, 26371 cr, pid)); 26372 } 26373 /* 26374 * Destination adress is mapped IPv6 address. 26375 * Source bound address should be unspecified or 26376 * IPv6 mapped address as well. 26377 */ 26378 if (!IN6_IS_ADDR_UNSPECIFIED( 26379 &tcp->tcp_bound_source_v6) && 26380 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 26381 return (EADDRNOTAVAIL); 26382 } 26383 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 26384 dstport = sin6->sin6_port; 26385 srcid = sin6->__sin6_src_id; 26386 } else { 26387 dstaddrp = &sin->sin_addr.s_addr; 26388 dstport = sin->sin_port; 26389 srcid = 0; 26390 } 26391 26392 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr, 26393 pid); 26394 break; 26395 default: 26396 return (-TOUTSTATE); 26397 } 26398 /* 26399 * Note: Code below is the "failure" case 26400 */ 26401 connect_failed: 26402 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 26403 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 26404 return (error); 26405 } 26406 26407 int 26408 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa, 26409 socklen_t len, sock_connid_t *id, cred_t *cr) 26410 { 26411 conn_t *connp = (conn_t *)proto_handle; 26412 tcp_t *tcp = connp->conn_tcp; 26413 squeue_t *sqp = connp->conn_sqp; 26414 int error; 26415 26416 ASSERT(connp->conn_upper_handle != NULL); 26417 26418 /* All Solaris components should pass a cred for this operation. */ 26419 ASSERT(cr != NULL); 26420 26421 error = proto_verify_ip_addr(tcp->tcp_family, sa, len); 26422 if (error != 0) { 26423 return (error); 26424 } 26425 26426 error = squeue_synch_enter(sqp, connp, NULL); 26427 if (error != 0) { 26428 /* failed to enter */ 26429 return (ENOSR); 26430 } 26431 26432 /* 26433 * TCP supports quick connect, so no need to do an implicit bind 26434 */ 26435 error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid); 26436 if (error == 0) { 26437 *id = connp->conn_tcp->tcp_connid; 26438 } else if (error < 0) { 26439 if (error == -TOUTSTATE) { 26440 switch (connp->conn_tcp->tcp_state) { 26441 case TCPS_SYN_SENT: 26442 error = EALREADY; 26443 break; 26444 case TCPS_ESTABLISHED: 26445 error = EISCONN; 26446 break; 26447 case TCPS_LISTEN: 26448 error = EOPNOTSUPP; 26449 break; 26450 default: 26451 error = EINVAL; 26452 break; 26453 } 26454 } else { 26455 error = proto_tlitosyserr(-error); 26456 } 26457 } 26458 done: 26459 squeue_synch_exit(sqp, connp); 26460 26461 return ((error == 0) ? EINPROGRESS : error); 26462 } 26463 26464 /* ARGSUSED */ 26465 sock_lower_handle_t 26466 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls, 26467 uint_t *smodep, int *errorp, int flags, cred_t *credp) 26468 { 26469 conn_t *connp; 26470 boolean_t isv6 = family == AF_INET6; 26471 if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) || 26472 (proto != 0 && proto != IPPROTO_TCP)) { 26473 *errorp = EPROTONOSUPPORT; 26474 return (NULL); 26475 } 26476 26477 connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp); 26478 if (connp == NULL) { 26479 return (NULL); 26480 } 26481 26482 /* 26483 * Put the ref for TCP. Ref for IP was already put 26484 * by ipcl_conn_create. Also Make the conn_t globally 26485 * visible to walkers 26486 */ 26487 mutex_enter(&connp->conn_lock); 26488 CONN_INC_REF_LOCKED(connp); 26489 ASSERT(connp->conn_ref == 2); 26490 connp->conn_state_flags &= ~CONN_INCIPIENT; 26491 26492 connp->conn_flags |= IPCL_NONSTR; 26493 mutex_exit(&connp->conn_lock); 26494 26495 ASSERT(errorp != NULL); 26496 *errorp = 0; 26497 *sock_downcalls = &sock_tcp_downcalls; 26498 *smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP | 26499 SM_SENDFILESUPP; 26500 26501 return ((sock_lower_handle_t)connp); 26502 } 26503 26504 /* ARGSUSED */ 26505 void 26506 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle, 26507 sock_upcalls_t *sock_upcalls, int flags, cred_t *cr) 26508 { 26509 conn_t *connp = (conn_t *)proto_handle; 26510 struct sock_proto_props sopp; 26511 26512 ASSERT(connp->conn_upper_handle == NULL); 26513 26514 /* All Solaris components should pass a cred for this operation. */ 26515 ASSERT(cr != NULL); 26516 26517 sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT | 26518 SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER | 26519 SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ; 26520 26521 sopp.sopp_rxhiwat = SOCKET_RECVHIWATER; 26522 sopp.sopp_rxlowat = SOCKET_RECVLOWATER; 26523 sopp.sopp_maxpsz = INFPSZ; 26524 sopp.sopp_maxblk = INFPSZ; 26525 sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL; 26526 sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3; 26527 sopp.sopp_maxaddrlen = sizeof (sin6_t); 26528 sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 : 26529 tcp_rinfo.mi_minpsz; 26530 26531 connp->conn_upcalls = sock_upcalls; 26532 connp->conn_upper_handle = sock_handle; 26533 26534 (*sock_upcalls->su_set_proto_props)(sock_handle, &sopp); 26535 } 26536 26537 /* ARGSUSED */ 26538 int 26539 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr) 26540 { 26541 conn_t *connp = (conn_t *)proto_handle; 26542 26543 ASSERT(connp->conn_upper_handle != NULL); 26544 26545 /* All Solaris components should pass a cred for this operation. */ 26546 ASSERT(cr != NULL); 26547 26548 tcp_close_common(connp, flags); 26549 26550 ip_free_helper_stream(connp); 26551 26552 /* 26553 * Drop IP's reference on the conn. This is the last reference 26554 * on the connp if the state was less than established. If the 26555 * connection has gone into timewait state, then we will have 26556 * one ref for the TCP and one more ref (total of two) for the 26557 * classifier connected hash list (a timewait connections stays 26558 * in connected hash till closed). 26559 * 26560 * We can't assert the references because there might be other 26561 * transient reference places because of some walkers or queued 26562 * packets in squeue for the timewait state. 26563 */ 26564 CONN_DEC_REF(connp); 26565 return (0); 26566 } 26567 26568 /* ARGSUSED */ 26569 int 26570 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg, 26571 cred_t *cr) 26572 { 26573 tcp_t *tcp; 26574 uint32_t msize; 26575 conn_t *connp = (conn_t *)proto_handle; 26576 int32_t tcpstate; 26577 26578 /* All Solaris components should pass a cred for this operation. */ 26579 ASSERT(cr != NULL); 26580 26581 ASSERT(connp->conn_ref >= 2); 26582 ASSERT(connp->conn_upper_handle != NULL); 26583 26584 if (msg->msg_controllen != 0) { 26585 return (EOPNOTSUPP); 26586 26587 } 26588 switch (DB_TYPE(mp)) { 26589 case M_DATA: 26590 tcp = connp->conn_tcp; 26591 ASSERT(tcp != NULL); 26592 26593 tcpstate = tcp->tcp_state; 26594 if (tcpstate < TCPS_ESTABLISHED) { 26595 freemsg(mp); 26596 return (ENOTCONN); 26597 } else if (tcpstate > TCPS_CLOSE_WAIT) { 26598 freemsg(mp); 26599 return (EPIPE); 26600 } 26601 26602 msize = msgdsize(mp); 26603 26604 mutex_enter(&tcp->tcp_non_sq_lock); 26605 tcp->tcp_squeue_bytes += msize; 26606 /* 26607 * Squeue Flow Control 26608 */ 26609 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 26610 tcp_setqfull(tcp); 26611 } 26612 mutex_exit(&tcp->tcp_non_sq_lock); 26613 26614 /* 26615 * The application may pass in an address in the msghdr, but 26616 * we ignore the address on connection-oriented sockets. 26617 * Just like BSD this code does not generate an error for 26618 * TCP (a CONNREQUIRED socket) when sending to an address 26619 * passed in with sendto/sendmsg. Instead the data is 26620 * delivered on the connection as if no address had been 26621 * supplied. 26622 */ 26623 CONN_INC_REF(connp); 26624 26625 if (msg != NULL && msg->msg_flags & MSG_OOB) { 26626 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, 26627 tcp_output_urgent, connp, tcp_squeue_flag, 26628 SQTAG_TCP_OUTPUT); 26629 } else { 26630 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, 26631 connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT); 26632 } 26633 26634 return (0); 26635 26636 default: 26637 ASSERT(0); 26638 } 26639 26640 freemsg(mp); 26641 return (0); 26642 } 26643 26644 /* ARGSUSED */ 26645 void 26646 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2) 26647 { 26648 int len; 26649 uint32_t msize; 26650 conn_t *connp = (conn_t *)arg; 26651 tcp_t *tcp = connp->conn_tcp; 26652 26653 msize = msgdsize(mp); 26654 26655 len = msize - 1; 26656 if (len < 0) { 26657 freemsg(mp); 26658 return; 26659 } 26660 26661 /* 26662 * Try to force urgent data out on the wire. 26663 * Even if we have unsent data this will 26664 * at least send the urgent flag. 26665 * XXX does not handle more flag correctly. 26666 */ 26667 len += tcp->tcp_unsent; 26668 len += tcp->tcp_snxt; 26669 tcp->tcp_urg = len; 26670 tcp->tcp_valid_bits |= TCP_URG_VALID; 26671 26672 /* Bypass tcp protocol for fused tcp loopback */ 26673 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 26674 return; 26675 tcp_wput_data(tcp, mp, B_TRUE); 26676 } 26677 26678 /* ARGSUSED */ 26679 int 26680 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26681 socklen_t *addrlenp, cred_t *cr) 26682 { 26683 conn_t *connp = (conn_t *)proto_handle; 26684 tcp_t *tcp = connp->conn_tcp; 26685 26686 ASSERT(connp->conn_upper_handle != NULL); 26687 /* All Solaris components should pass a cred for this operation. */ 26688 ASSERT(cr != NULL); 26689 26690 ASSERT(tcp != NULL); 26691 26692 return (tcp_do_getpeername(tcp, addr, addrlenp)); 26693 } 26694 26695 /* ARGSUSED */ 26696 int 26697 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr, 26698 socklen_t *addrlenp, cred_t *cr) 26699 { 26700 conn_t *connp = (conn_t *)proto_handle; 26701 tcp_t *tcp = connp->conn_tcp; 26702 26703 /* All Solaris components should pass a cred for this operation. */ 26704 ASSERT(cr != NULL); 26705 26706 ASSERT(connp->conn_upper_handle != NULL); 26707 26708 return (tcp_do_getsockname(tcp, addr, addrlenp)); 26709 } 26710 26711 /* 26712 * tcp_fallback 26713 * 26714 * A direct socket is falling back to using STREAMS. The queue 26715 * that is being passed down was created using tcp_open() with 26716 * the SO_FALLBACK flag set. As a result, the queue is not 26717 * associated with a conn, and the q_ptrs instead contain the 26718 * dev and minor area that should be used. 26719 * 26720 * The 'direct_sockfs' flag indicates whether the FireEngine 26721 * optimizations should be used. The common case would be that 26722 * optimizations are enabled, and they might be subsequently 26723 * disabled using the _SIOCSOCKFALLBACK ioctl. 26724 */ 26725 26726 /* 26727 * An active connection is falling back to TPI. Gather all the information 26728 * required by the STREAM head and TPI sonode and send it up. 26729 */ 26730 void 26731 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q, 26732 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 26733 { 26734 conn_t *connp = tcp->tcp_connp; 26735 struct stroptions *stropt; 26736 struct T_capability_ack tca; 26737 struct sockaddr_in6 laddr, faddr; 26738 socklen_t laddrlen, faddrlen; 26739 short opts; 26740 int error; 26741 mblk_t *mp; 26742 26743 connp->conn_dev = (dev_t)RD(q)->q_ptr; 26744 connp->conn_minor_arena = WR(q)->q_ptr; 26745 26746 RD(q)->q_ptr = WR(q)->q_ptr = connp; 26747 26748 connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q); 26749 connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q); 26750 26751 WR(q)->q_qinfo = &tcp_sock_winit; 26752 26753 if (!direct_sockfs) 26754 tcp_disable_direct_sockfs(tcp); 26755 26756 /* 26757 * free the helper stream 26758 */ 26759 ip_free_helper_stream(connp); 26760 26761 /* 26762 * Notify the STREAM head about options 26763 */ 26764 DB_TYPE(stropt_mp) = M_SETOPTS; 26765 stropt = (struct stroptions *)stropt_mp->b_rptr; 26766 stropt_mp->b_wptr += sizeof (struct stroptions); 26767 stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK; 26768 26769 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 26770 tcp->tcp_tcps->tcps_wroff_xtra); 26771 if (tcp->tcp_snd_sack_ok) 26772 stropt->so_wroff += TCPOPT_MAX_SACK_LEN; 26773 stropt->so_hiwat = tcp->tcp_fused ? 26774 tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) : 26775 MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat); 26776 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 26777 26778 putnext(RD(q), stropt_mp); 26779 26780 /* 26781 * Collect the information needed to sync with the sonode 26782 */ 26783 tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID); 26784 26785 laddrlen = faddrlen = sizeof (sin6_t); 26786 (void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen); 26787 error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen); 26788 if (error != 0) 26789 faddrlen = 0; 26790 26791 opts = 0; 26792 if (tcp->tcp_oobinline) 26793 opts |= SO_OOBINLINE; 26794 if (tcp->tcp_dontroute) 26795 opts |= SO_DONTROUTE; 26796 26797 /* 26798 * Notify the socket that the protocol is now quiescent, 26799 * and it's therefore safe move data from the socket 26800 * to the stream head. 26801 */ 26802 (*quiesced_cb)(connp->conn_upper_handle, q, &tca, 26803 (struct sockaddr *)&laddr, laddrlen, 26804 (struct sockaddr *)&faddr, faddrlen, opts); 26805 26806 while ((mp = tcp->tcp_rcv_list) != NULL) { 26807 tcp->tcp_rcv_list = mp->b_next; 26808 mp->b_next = NULL; 26809 putnext(q, mp); 26810 } 26811 tcp->tcp_rcv_last_head = NULL; 26812 tcp->tcp_rcv_last_tail = NULL; 26813 tcp->tcp_rcv_cnt = 0; 26814 } 26815 26816 /* 26817 * An eager is falling back to TPI. All we have to do is send 26818 * up a T_CONN_IND. 26819 */ 26820 void 26821 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs) 26822 { 26823 tcp_t *listener = eager->tcp_listener; 26824 mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind; 26825 26826 ASSERT(listener != NULL); 26827 ASSERT(mp != NULL); 26828 26829 eager->tcp_conn.tcp_eager_conn_ind = NULL; 26830 26831 /* 26832 * TLI/XTI applications will get confused by 26833 * sending eager as an option since it violates 26834 * the option semantics. So remove the eager as 26835 * option since TLI/XTI app doesn't need it anyway. 26836 */ 26837 if (!direct_sockfs) { 26838 struct T_conn_ind *conn_ind; 26839 26840 conn_ind = (struct T_conn_ind *)mp->b_rptr; 26841 conn_ind->OPT_length = 0; 26842 conn_ind->OPT_offset = 0; 26843 } 26844 26845 /* 26846 * Sockfs guarantees that the listener will not be closed 26847 * during fallback. So we can safely use the listener's queue. 26848 */ 26849 putnext(listener->tcp_rq, mp); 26850 } 26851 26852 int 26853 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q, 26854 boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb) 26855 { 26856 tcp_t *tcp; 26857 conn_t *connp = (conn_t *)proto_handle; 26858 int error; 26859 mblk_t *stropt_mp; 26860 mblk_t *ordrel_mp; 26861 mblk_t *fused_sigurp_mp; 26862 26863 tcp = connp->conn_tcp; 26864 26865 stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG, 26866 NULL); 26867 26868 /* Pre-allocate the T_ordrel_ind mblk. */ 26869 ASSERT(tcp->tcp_ordrel_mp == NULL); 26870 ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI, 26871 STR_NOSIG, NULL); 26872 ordrel_mp->b_datap->db_type = M_PROTO; 26873 ((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND; 26874 ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind); 26875 26876 /* Pre-allocate the M_PCSIG used by fusion */ 26877 fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL); 26878 26879 /* 26880 * Enter the squeue so that no new packets can come in 26881 */ 26882 error = squeue_synch_enter(connp->conn_sqp, connp, NULL); 26883 if (error != 0) { 26884 /* failed to enter, free all the pre-allocated messages. */ 26885 freeb(stropt_mp); 26886 freeb(ordrel_mp); 26887 freeb(fused_sigurp_mp); 26888 /* 26889 * We cannot process the eager, so at least send out a 26890 * RST so the peer can reconnect. 26891 */ 26892 if (tcp->tcp_listener != NULL) { 26893 (void) tcp_eager_blowoff(tcp->tcp_listener, 26894 tcp->tcp_conn_req_seqnum); 26895 } 26896 return (ENOMEM); 26897 } 26898 26899 /* 26900 * No longer a direct socket 26901 */ 26902 connp->conn_flags &= ~IPCL_NONSTR; 26903 26904 tcp->tcp_ordrel_mp = ordrel_mp; 26905 26906 if (tcp->tcp_fused) { 26907 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 26908 tcp->tcp_fused_sigurg_mp = fused_sigurp_mp; 26909 } else { 26910 freeb(fused_sigurp_mp); 26911 } 26912 26913 if (tcp->tcp_listener != NULL) { 26914 /* The eager will deal with opts when accept() is called */ 26915 freeb(stropt_mp); 26916 tcp_fallback_eager(tcp, direct_sockfs); 26917 } else { 26918 tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs, 26919 quiesced_cb); 26920 } 26921 26922 /* 26923 * There should be atleast two ref's (IP + TCP) 26924 */ 26925 ASSERT(connp->conn_ref >= 2); 26926 squeue_synch_exit(connp->conn_sqp, connp); 26927 26928 return (0); 26929 } 26930 26931 /* ARGSUSED */ 26932 static void 26933 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2) 26934 { 26935 conn_t *connp = (conn_t *)arg; 26936 tcp_t *tcp = connp->conn_tcp; 26937 26938 freemsg(mp); 26939 26940 if (tcp->tcp_fused) 26941 tcp_unfuse(tcp); 26942 26943 if (tcp_xmit_end(tcp) != 0) { 26944 /* 26945 * We were crossing FINs and got a reset from 26946 * the other side. Just ignore it. 26947 */ 26948 if (tcp->tcp_debug) { 26949 (void) strlog(TCP_MOD_ID, 0, 1, 26950 SL_ERROR|SL_TRACE, 26951 "tcp_shutdown_output() out of state %s", 26952 tcp_display(tcp, NULL, DISP_ADDR_AND_PORT)); 26953 } 26954 } 26955 } 26956 26957 /* ARGSUSED */ 26958 int 26959 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr) 26960 { 26961 conn_t *connp = (conn_t *)proto_handle; 26962 tcp_t *tcp = connp->conn_tcp; 26963 26964 ASSERT(connp->conn_upper_handle != NULL); 26965 26966 /* All Solaris components should pass a cred for this operation. */ 26967 ASSERT(cr != NULL); 26968 26969 /* 26970 * X/Open requires that we check the connected state. 26971 */ 26972 if (tcp->tcp_state < TCPS_SYN_SENT) 26973 return (ENOTCONN); 26974 26975 /* shutdown the send side */ 26976 if (how != SHUT_RD) { 26977 mblk_t *bp; 26978 26979 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 26980 CONN_INC_REF(connp); 26981 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output, 26982 connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT); 26983 26984 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 26985 SOCK_OPCTL_SHUT_SEND, 0); 26986 } 26987 26988 /* shutdown the recv side */ 26989 if (how != SHUT_WR) 26990 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 26991 SOCK_OPCTL_SHUT_RECV, 0); 26992 26993 return (0); 26994 } 26995 26996 /* 26997 * SOP_LISTEN() calls into tcp_listen(). 26998 */ 26999 /* ARGSUSED */ 27000 int 27001 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr) 27002 { 27003 conn_t *connp = (conn_t *)proto_handle; 27004 int error; 27005 squeue_t *sqp = connp->conn_sqp; 27006 27007 ASSERT(connp->conn_upper_handle != NULL); 27008 27009 /* All Solaris components should pass a cred for this operation. */ 27010 ASSERT(cr != NULL); 27011 27012 error = squeue_synch_enter(sqp, connp, NULL); 27013 if (error != 0) { 27014 /* failed to enter */ 27015 return (ENOBUFS); 27016 } 27017 27018 error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE); 27019 if (error == 0) { 27020 (*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle, 27021 SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog); 27022 } else if (error < 0) { 27023 if (error == -TOUTSTATE) 27024 error = EINVAL; 27025 else 27026 error = proto_tlitosyserr(-error); 27027 } 27028 squeue_synch_exit(sqp, connp); 27029 return (error); 27030 } 27031 27032 static int 27033 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 27034 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 27035 { 27036 tcp_t *tcp = connp->conn_tcp; 27037 int error = 0; 27038 tcp_stack_t *tcps = tcp->tcp_tcps; 27039 27040 /* All Solaris components should pass a cred for this operation. */ 27041 ASSERT(cr != NULL); 27042 27043 if (tcp->tcp_state >= TCPS_BOUND) { 27044 if ((tcp->tcp_state == TCPS_BOUND || 27045 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 27046 /* 27047 * Handle listen() increasing backlog. 27048 * This is more "liberal" then what the TPI spec 27049 * requires but is needed to avoid a t_unbind 27050 * when handling listen() since the port number 27051 * might be "stolen" between the unbind and bind. 27052 */ 27053 goto do_listen; 27054 } 27055 if (tcp->tcp_debug) { 27056 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 27057 "tcp_listen: bad state, %d", tcp->tcp_state); 27058 } 27059 return (-TOUTSTATE); 27060 } else { 27061 if (sa == NULL) { 27062 sin6_t addr; 27063 sin_t *sin; 27064 sin6_t *sin6; 27065 27066 ASSERT(IPCL_IS_NONSTR(connp)); 27067 27068 /* Do an implicit bind: Request for a generic port. */ 27069 if (tcp->tcp_family == AF_INET) { 27070 len = sizeof (sin_t); 27071 sin = (sin_t *)&addr; 27072 *sin = sin_null; 27073 sin->sin_family = AF_INET; 27074 tcp->tcp_ipversion = IPV4_VERSION; 27075 } else { 27076 ASSERT(tcp->tcp_family == AF_INET6); 27077 len = sizeof (sin6_t); 27078 sin6 = (sin6_t *)&addr; 27079 *sin6 = sin6_null; 27080 sin6->sin6_family = AF_INET6; 27081 tcp->tcp_ipversion = IPV6_VERSION; 27082 } 27083 sa = (struct sockaddr *)&addr; 27084 } 27085 27086 error = tcp_bind_check(connp, sa, len, cr, 27087 bind_to_req_port_only); 27088 if (error) 27089 return (error); 27090 /* Fall through and do the fanout insertion */ 27091 } 27092 27093 do_listen: 27094 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 27095 tcp->tcp_conn_req_max = backlog; 27096 if (tcp->tcp_conn_req_max) { 27097 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 27098 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 27099 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 27100 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 27101 /* 27102 * If this is a listener, do not reset the eager list 27103 * and other stuffs. Note that we don't check if the 27104 * existing eager list meets the new tcp_conn_req_max 27105 * requirement. 27106 */ 27107 if (tcp->tcp_state != TCPS_LISTEN) { 27108 tcp->tcp_state = TCPS_LISTEN; 27109 /* Initialize the chain. Don't need the eager_lock */ 27110 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 27111 tcp->tcp_eager_next_drop_q0 = tcp; 27112 tcp->tcp_eager_prev_drop_q0 = tcp; 27113 tcp->tcp_second_ctimer_threshold = 27114 tcps->tcps_ip_abort_linterval; 27115 } 27116 } 27117 27118 /* 27119 * We can call ip_bind directly, the processing continues 27120 * in tcp_post_ip_bind(). 27121 * 27122 * We need to make sure that the conn_recv is set to a non-null 27123 * value before we insert the conn into the classifier table. 27124 * This is to avoid a race with an incoming packet which does an 27125 * ipcl_classify(). 27126 */ 27127 connp->conn_recv = tcp_conn_request; 27128 if (tcp->tcp_family == AF_INET) { 27129 error = ip_proto_bind_laddr_v4(connp, NULL, 27130 IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE); 27131 } else { 27132 error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP, 27133 &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE); 27134 } 27135 return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0)); 27136 } 27137 27138 void 27139 tcp_clr_flowctrl(sock_lower_handle_t proto_handle) 27140 { 27141 conn_t *connp = (conn_t *)proto_handle; 27142 tcp_t *tcp = connp->conn_tcp; 27143 mblk_t *mp; 27144 int error; 27145 27146 ASSERT(connp->conn_upper_handle != NULL); 27147 27148 /* 27149 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl() 27150 * is currently running. 27151 */ 27152 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27153 if ((mp = tcp->tcp_rsrv_mp) == NULL) { 27154 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27155 return; 27156 } 27157 tcp->tcp_rsrv_mp = NULL; 27158 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27159 27160 error = squeue_synch_enter(connp->conn_sqp, connp, mp); 27161 ASSERT(error == 0); 27162 27163 mutex_enter(&tcp->tcp_rsrv_mp_lock); 27164 tcp->tcp_rsrv_mp = mp; 27165 mutex_exit(&tcp->tcp_rsrv_mp_lock); 27166 27167 if (tcp->tcp_fused) { 27168 tcp_fuse_backenable(tcp); 27169 } else { 27170 tcp->tcp_rwnd = tcp->tcp_recv_hiwater; 27171 /* 27172 * Send back a window update immediately if TCP is above 27173 * ESTABLISHED state and the increase of the rcv window 27174 * that the other side knows is at least 1 MSS after flow 27175 * control is lifted. 27176 */ 27177 if (tcp->tcp_state >= TCPS_ESTABLISHED && 27178 tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) { 27179 tcp_xmit_ctl(NULL, tcp, 27180 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 27181 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 27182 } 27183 } 27184 27185 squeue_synch_exit(connp->conn_sqp, connp); 27186 } 27187 27188 /* ARGSUSED */ 27189 int 27190 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg, 27191 int mode, int32_t *rvalp, cred_t *cr) 27192 { 27193 conn_t *connp = (conn_t *)proto_handle; 27194 int error; 27195 27196 ASSERT(connp->conn_upper_handle != NULL); 27197 27198 /* All Solaris components should pass a cred for this operation. */ 27199 ASSERT(cr != NULL); 27200 27201 switch (cmd) { 27202 case ND_SET: 27203 case ND_GET: 27204 case TCP_IOC_DEFAULT_Q: 27205 case _SIOCSOCKFALLBACK: 27206 case TCP_IOC_ABORT_CONN: 27207 case TI_GETPEERNAME: 27208 case TI_GETMYNAME: 27209 ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket", 27210 cmd)); 27211 error = EINVAL; 27212 break; 27213 default: 27214 /* 27215 * Pass on to IP using helper stream 27216 */ 27217 error = ldi_ioctl(connp->conn_helper_info->iphs_handle, 27218 cmd, arg, mode, cr, rvalp); 27219 break; 27220 } 27221 return (error); 27222 } 27223 27224 sock_downcalls_t sock_tcp_downcalls = { 27225 tcp_activate, 27226 tcp_accept, 27227 tcp_bind, 27228 tcp_listen, 27229 tcp_connect, 27230 tcp_getpeername, 27231 tcp_getsockname, 27232 tcp_getsockopt, 27233 tcp_setsockopt, 27234 tcp_sendmsg, 27235 NULL, 27236 NULL, 27237 NULL, 27238 tcp_shutdown, 27239 tcp_clr_flowctrl, 27240 tcp_ioctl, 27241 tcp_close, 27242 }; 27243