1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 #include <sys/sunldi.h> 61 62 #include <sys/errno.h> 63 #include <sys/signal.h> 64 #include <sys/socket.h> 65 #include <sys/sockio.h> 66 #include <sys/isa_defs.h> 67 #include <sys/md5.h> 68 #include <sys/random.h> 69 #include <netinet/in.h> 70 #include <netinet/tcp.h> 71 #include <netinet/ip6.h> 72 #include <netinet/icmp6.h> 73 #include <net/if.h> 74 #include <net/route.h> 75 #include <inet/ipsec_impl.h> 76 77 #include <inet/common.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/mi.h> 83 #include <inet/mib2.h> 84 #include <inet/nd.h> 85 #include <inet/optcom.h> 86 #include <inet/snmpcom.h> 87 #include <inet/kstatcom.h> 88 #include <inet/tcp.h> 89 #include <inet/tcp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/ipdrop.h> 93 #include <inet/tcp_trace.h> 94 95 #include <inet/ipclassifier.h> 96 #include <inet/ip_ire.h> 97 #include <inet/ip_ftable.h> 98 #include <inet/ip_if.h> 99 #include <inet/ipp_common.h> 100 #include <inet/ip_netinfo.h> 101 #include <sys/squeue.h> 102 #include <inet/kssl/ksslapi.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <sys/sdt.h> 106 #include <rpc/pmap_prot.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 130 * squeue_fill). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_conn_request(). But briefly, the squeue is picked by 177 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 203 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 204 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 205 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 206 * check to send packets directly to tcp_rput_data via squeue. Everyone 207 * else comes through tcp_input() on the read side. 208 * 209 * We also make special provisions for sockfs by marking tcp_issocket 210 * whenever we have only sockfs on top of TCP. This allows us to skip 211 * putting the tcp in acceptor hash since a sockfs listener can never 212 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 213 * since eager has already been allocated and the accept now happens 214 * on acceptor STREAM. There is a big blob of comment on top of 215 * tcp_conn_request explaining the new accept. When socket is POP'd, 216 * sockfs sends us an ioctl to mark the fact and we go back to old 217 * behaviour. Once tcp_issocket is unset, its never set for the 218 * life of that connection. 219 * 220 * IPsec notes : 221 * 222 * Since a packet is always executed on the correct TCP perimeter 223 * all IPsec processing is defered to IP including checking new 224 * connections and setting IPSEC policies for new connection. The 225 * only exception is tcp_xmit_listeners_reset() which is called 226 * directly from IP and needs to policy check to see if TH_RST 227 * can be sent out. 228 * 229 * PFHooks notes : 230 * 231 * For mdt case, one meta buffer contains multiple packets. Mblks for every 232 * packet are assembled and passed to the hooks. When packets are blocked, 233 * or boundary of any packet is changed, the mdt processing is stopped, and 234 * packets of the meta buffer are send to the IP path one by one. 235 */ 236 237 /* 238 * Values for squeue switch: 239 * 1: squeue_enter_nodrain 240 * 2: squeue_enter 241 * 3: squeue_fill 242 */ 243 int tcp_squeue_close = 2; /* Setable in /etc/system */ 244 int tcp_squeue_wput = 2; 245 246 squeue_func_t tcp_squeue_close_proc; 247 squeue_func_t tcp_squeue_wput_proc; 248 249 /* 250 * This controls how tiny a write must be before we try to copy it 251 * into the the mblk on the tail of the transmit queue. Not much 252 * speedup is observed for values larger than sixteen. Zero will 253 * disable the optimisation. 254 */ 255 int tcp_tx_pull_len = 16; 256 257 /* 258 * TCP Statistics. 259 * 260 * How TCP statistics work. 261 * 262 * There are two types of statistics invoked by two macros. 263 * 264 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 265 * supposed to be used in non MT-hot paths of the code. 266 * 267 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 268 * supposed to be used for DEBUG purposes and may be used on a hot path. 269 * 270 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 271 * (use "kstat tcp" to get them). 272 * 273 * There is also additional debugging facility that marks tcp_clean_death() 274 * instances and saves them in tcp_t structure. It is triggered by 275 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 276 * tcp_clean_death() calls that counts the number of times each tag was hit. It 277 * is triggered by TCP_CLD_COUNTERS define. 278 * 279 * How to add new counters. 280 * 281 * 1) Add a field in the tcp_stat structure describing your counter. 282 * 2) Add a line in the template in tcp_kstat2_init() with the name 283 * of the counter. 284 * 285 * IMPORTANT!! - make sure that both are in sync !! 286 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 287 * 288 * Please avoid using private counters which are not kstat-exported. 289 * 290 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 291 * in tcp_t structure. 292 * 293 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 294 */ 295 296 #ifndef TCP_DEBUG_COUNTER 297 #ifdef DEBUG 298 #define TCP_DEBUG_COUNTER 1 299 #else 300 #define TCP_DEBUG_COUNTER 0 301 #endif 302 #endif 303 304 #define TCP_CLD_COUNTERS 0 305 306 #define TCP_TAG_CLEAN_DEATH 1 307 #define TCP_MAX_CLEAN_DEATH_TAG 32 308 309 #ifdef lint 310 static int _lint_dummy_; 311 #endif 312 313 #if TCP_CLD_COUNTERS 314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 315 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 316 #elif defined(lint) 317 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 318 #else 319 #define TCP_CLD_STAT(x) 320 #endif 321 322 #if TCP_DEBUG_COUNTER 323 #define TCP_DBGSTAT(tcps, x) \ 324 atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1) 325 #define TCP_G_DBGSTAT(x) \ 326 atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1) 327 #elif defined(lint) 328 #define TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0); 329 #define TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 330 #else 331 #define TCP_DBGSTAT(tcps, x) 332 #define TCP_G_DBGSTAT(x) 333 #endif 334 335 #define TCP_G_STAT(x) (tcp_g_statistics.x.value.ui64++) 336 337 tcp_g_stat_t tcp_g_statistics; 338 kstat_t *tcp_g_kstat; 339 340 /* 341 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 342 * tcp write side. 343 */ 344 #define CALL_IP_WPUT(connp, q, mp) { \ 345 tcp_stack_t *tcps; \ 346 \ 347 tcps = connp->conn_netstack->netstack_tcp; \ 348 ASSERT(((q)->q_flag & QREADR) == 0); \ 349 TCP_DBGSTAT(tcps, tcp_ip_output); \ 350 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 351 } 352 353 /* Macros for timestamp comparisons */ 354 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 355 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 356 357 /* 358 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 359 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 360 * by adding three components: a time component which grows by 1 every 4096 361 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 362 * a per-connection component which grows by 125000 for every new connection; 363 * and an "extra" component that grows by a random amount centered 364 * approximately on 64000. This causes the the ISS generator to cycle every 365 * 4.89 hours if no TCP connections are made, and faster if connections are 366 * made. 367 * 368 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 369 * components: a time component which grows by 250000 every second; and 370 * a per-connection component which grows by 125000 for every new connections. 371 * 372 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 373 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 374 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 375 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 376 * password. 377 */ 378 #define ISS_INCR 250000 379 #define ISS_NSEC_SHT 12 380 381 static sin_t sin_null; /* Zero address for quick clears */ 382 static sin6_t sin6_null; /* Zero address for quick clears */ 383 384 /* 385 * This implementation follows the 4.3BSD interpretation of the urgent 386 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 387 * incompatible changes in protocols like telnet and rlogin. 388 */ 389 #define TCP_OLD_URP_INTERPRETATION 1 390 391 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 392 (TCP_IS_DETACHED(tcp) && \ 393 (!(tcp)->tcp_hard_binding)) 394 395 /* 396 * TCP reassembly macros. We hide starting and ending sequence numbers in 397 * b_next and b_prev of messages on the reassembly queue. The messages are 398 * chained using b_cont. These macros are used in tcp_reass() so we don't 399 * have to see the ugly casts and assignments. 400 */ 401 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 402 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 403 (mblk_t *)(uintptr_t)(u)) 404 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 405 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 406 (mblk_t *)(uintptr_t)(u)) 407 408 /* 409 * Implementation of TCP Timers. 410 * ============================= 411 * 412 * INTERFACE: 413 * 414 * There are two basic functions dealing with tcp timers: 415 * 416 * timeout_id_t tcp_timeout(connp, func, time) 417 * clock_t tcp_timeout_cancel(connp, timeout_id) 418 * TCP_TIMER_RESTART(tcp, intvl) 419 * 420 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 421 * after 'time' ticks passed. The function called by timeout() must adhere to 422 * the same restrictions as a driver soft interrupt handler - it must not sleep 423 * or call other functions that might sleep. The value returned is the opaque 424 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 425 * cancel the request. The call to tcp_timeout() may fail in which case it 426 * returns zero. This is different from the timeout(9F) function which never 427 * fails. 428 * 429 * The call-back function 'func' always receives 'connp' as its single 430 * argument. It is always executed in the squeue corresponding to the tcp 431 * structure. The tcp structure is guaranteed to be present at the time the 432 * call-back is called. 433 * 434 * NOTE: The call-back function 'func' is never called if tcp is in 435 * the TCPS_CLOSED state. 436 * 437 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 438 * request. locks acquired by the call-back routine should not be held across 439 * the call to tcp_timeout_cancel() or a deadlock may result. 440 * 441 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 442 * Otherwise, it returns an integer value greater than or equal to 0. In 443 * particular, if the call-back function is already placed on the squeue, it can 444 * not be canceled. 445 * 446 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 447 * within squeue context corresponding to the tcp instance. Since the 448 * call-back is also called via the same squeue, there are no race 449 * conditions described in untimeout(9F) manual page since all calls are 450 * strictly serialized. 451 * 452 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 453 * stored in tcp_timer_tid and starts a new one using 454 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 455 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 456 * field. 457 * 458 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 459 * call-back may still be called, so it is possible tcp_timer() will be 460 * called several times. This should not be a problem since tcp_timer() 461 * should always check the tcp instance state. 462 * 463 * 464 * IMPLEMENTATION: 465 * 466 * TCP timers are implemented using three-stage process. The call to 467 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 468 * when the timer expires. The tcp_timer_callback() arranges the call of the 469 * tcp_timer_handler() function via squeue corresponding to the tcp 470 * instance. The tcp_timer_handler() calls actual requested timeout call-back 471 * and passes tcp instance as an argument to it. Information is passed between 472 * stages using the tcp_timer_t structure which contains the connp pointer, the 473 * tcp call-back to call and the timeout id returned by the timeout(9F). 474 * 475 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 476 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 477 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 478 * returns the pointer to this mblk. 479 * 480 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 481 * looks like a normal mblk without actual dblk attached to it. 482 * 483 * To optimize performance each tcp instance holds a small cache of timer 484 * mblocks. In the current implementation it caches up to two timer mblocks per 485 * tcp instance. The cache is preserved over tcp frees and is only freed when 486 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 487 * timer processing happens on a corresponding squeue, the cache manipulation 488 * does not require any locks. Experiments show that majority of timer mblocks 489 * allocations are satisfied from the tcp cache and do not involve kmem calls. 490 * 491 * The tcp_timeout() places a refhold on the connp instance which guarantees 492 * that it will be present at the time the call-back function fires. The 493 * tcp_timer_handler() drops the reference after calling the call-back, so the 494 * call-back function does not need to manipulate the references explicitly. 495 */ 496 497 typedef struct tcp_timer_s { 498 conn_t *connp; 499 void (*tcpt_proc)(void *); 500 timeout_id_t tcpt_tid; 501 } tcp_timer_t; 502 503 static kmem_cache_t *tcp_timercache; 504 kmem_cache_t *tcp_sack_info_cache; 505 kmem_cache_t *tcp_iphc_cache; 506 507 /* 508 * For scalability, we must not run a timer for every TCP connection 509 * in TIME_WAIT state. To see why, consider (for time wait interval of 510 * 4 minutes): 511 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 512 * 513 * This list is ordered by time, so you need only delete from the head 514 * until you get to entries which aren't old enough to delete yet. 515 * The list consists of only the detached TIME_WAIT connections. 516 * 517 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 518 * becomes detached TIME_WAIT (either by changing the state and already 519 * being detached or the other way around). This means that the TIME_WAIT 520 * state can be extended (up to doubled) if the connection doesn't become 521 * detached for a long time. 522 * 523 * The list manipulations (including tcp_time_wait_next/prev) 524 * are protected by the tcp_time_wait_lock. The content of the 525 * detached TIME_WAIT connections is protected by the normal perimeters. 526 * 527 * This list is per squeue and squeues are shared across the tcp_stack_t's. 528 * Things on tcp_time_wait_head remain associated with the tcp_stack_t 529 * and conn_netstack. 530 * The tcp_t's that are added to tcp_free_list are disassociated and 531 * have NULL tcp_tcps and conn_netstack pointers. 532 */ 533 typedef struct tcp_squeue_priv_s { 534 kmutex_t tcp_time_wait_lock; 535 timeout_id_t tcp_time_wait_tid; 536 tcp_t *tcp_time_wait_head; 537 tcp_t *tcp_time_wait_tail; 538 tcp_t *tcp_free_list; 539 uint_t tcp_free_list_cnt; 540 } tcp_squeue_priv_t; 541 542 /* 543 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 544 * Running it every 5 seconds seems to give the best results. 545 */ 546 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 547 548 /* 549 * To prevent memory hog, limit the number of entries in tcp_free_list 550 * to 1% of available memory / number of cpus 551 */ 552 uint_t tcp_free_list_max_cnt = 0; 553 554 #define TCP_XMIT_LOWATER 4096 555 #define TCP_XMIT_HIWATER 49152 556 #define TCP_RECV_LOWATER 2048 557 #define TCP_RECV_HIWATER 49152 558 559 /* 560 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 561 */ 562 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 563 564 #define TIDUSZ 4096 /* transport interface data unit size */ 565 566 /* 567 * Bind hash list size and has function. It has to be a power of 2 for 568 * hashing. 569 */ 570 #define TCP_BIND_FANOUT_SIZE 512 571 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 572 /* 573 * Size of listen and acceptor hash list. It has to be a power of 2 for 574 * hashing. 575 */ 576 #define TCP_FANOUT_SIZE 256 577 578 #ifdef _ILP32 579 #define TCP_ACCEPTOR_HASH(accid) \ 580 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 581 #else 582 #define TCP_ACCEPTOR_HASH(accid) \ 583 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 584 #endif /* _ILP32 */ 585 586 #define IP_ADDR_CACHE_SIZE 2048 587 #define IP_ADDR_CACHE_HASH(faddr) \ 588 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 589 590 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 591 #define TCP_HSP_HASH_SIZE 256 592 593 #define TCP_HSP_HASH(addr) \ 594 (((addr>>24) ^ (addr >>16) ^ \ 595 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 596 597 /* 598 * TCP options struct returned from tcp_parse_options. 599 */ 600 typedef struct tcp_opt_s { 601 uint32_t tcp_opt_mss; 602 uint32_t tcp_opt_wscale; 603 uint32_t tcp_opt_ts_val; 604 uint32_t tcp_opt_ts_ecr; 605 tcp_t *tcp; 606 } tcp_opt_t; 607 608 /* 609 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 610 */ 611 612 #ifdef _BIG_ENDIAN 613 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 614 (TCPOPT_TSTAMP << 8) | 10) 615 #else 616 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 617 (TCPOPT_NOP << 8) | TCPOPT_NOP) 618 #endif 619 620 /* 621 * Flags returned from tcp_parse_options. 622 */ 623 #define TCP_OPT_MSS_PRESENT 1 624 #define TCP_OPT_WSCALE_PRESENT 2 625 #define TCP_OPT_TSTAMP_PRESENT 4 626 #define TCP_OPT_SACK_OK_PRESENT 8 627 #define TCP_OPT_SACK_PRESENT 16 628 629 /* TCP option length */ 630 #define TCPOPT_NOP_LEN 1 631 #define TCPOPT_MAXSEG_LEN 4 632 #define TCPOPT_WS_LEN 3 633 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 634 #define TCPOPT_TSTAMP_LEN 10 635 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 636 #define TCPOPT_SACK_OK_LEN 2 637 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 638 #define TCPOPT_REAL_SACK_LEN 4 639 #define TCPOPT_MAX_SACK_LEN 36 640 #define TCPOPT_HEADER_LEN 2 641 642 /* TCP cwnd burst factor. */ 643 #define TCP_CWND_INFINITE 65535 644 #define TCP_CWND_SS 3 645 #define TCP_CWND_NORMAL 5 646 647 /* Maximum TCP initial cwin (start/restart). */ 648 #define TCP_MAX_INIT_CWND 8 649 650 /* 651 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 652 * either tcp_slow_start_initial or tcp_slow_start_after idle 653 * depending on the caller. If the upper layer has not used the 654 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 655 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 656 * If the upper layer has changed set the tcp_init_cwnd, just use 657 * it to calculate the tcp_cwnd. 658 */ 659 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 660 { \ 661 if ((tcp)->tcp_init_cwnd == 0) { \ 662 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 663 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 664 } else { \ 665 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 666 } \ 667 tcp->tcp_cwnd_cnt = 0; \ 668 } 669 670 /* TCP Timer control structure */ 671 typedef struct tcpt_s { 672 pfv_t tcpt_pfv; /* The routine we are to call */ 673 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 674 } tcpt_t; 675 676 /* Host Specific Parameter structure */ 677 typedef struct tcp_hsp { 678 struct tcp_hsp *tcp_hsp_next; 679 in6_addr_t tcp_hsp_addr_v6; 680 in6_addr_t tcp_hsp_subnet_v6; 681 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 682 int32_t tcp_hsp_sendspace; 683 int32_t tcp_hsp_recvspace; 684 int32_t tcp_hsp_tstamp; 685 } tcp_hsp_t; 686 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 687 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 688 689 /* 690 * Functions called directly via squeue having a prototype of edesc_t. 691 */ 692 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 693 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 694 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 695 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 696 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 697 void tcp_input(void *arg, mblk_t *mp, void *arg2); 698 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 699 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 700 void tcp_output(void *arg, mblk_t *mp, void *arg2); 701 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 702 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 703 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 704 705 706 /* Prototype for TCP functions */ 707 static void tcp_random_init(void); 708 int tcp_random(void); 709 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 710 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 711 tcp_t *eager); 712 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 713 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 714 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 715 boolean_t user_specified); 716 static void tcp_closei_local(tcp_t *tcp); 717 static void tcp_close_detached(tcp_t *tcp); 718 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 719 mblk_t *idmp, mblk_t **defermp); 720 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 721 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 722 in_port_t dstport, uint_t srcid); 723 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 724 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 725 uint32_t scope_id); 726 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 727 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 728 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 729 static char *tcp_display(tcp_t *tcp, char *, char); 730 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 731 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 732 static void tcp_eager_unlink(tcp_t *tcp); 733 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 734 int unixerr); 735 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 736 int tlierr, int unixerr); 737 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 738 cred_t *cr); 739 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 740 char *value, caddr_t cp, cred_t *cr); 741 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 742 char *value, caddr_t cp, cred_t *cr); 743 static int tcp_tpistate(tcp_t *tcp); 744 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 745 int caller_holds_lock); 746 static void tcp_bind_hash_remove(tcp_t *tcp); 747 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *); 748 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 749 static void tcp_acceptor_hash_remove(tcp_t *tcp); 750 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 751 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 752 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 753 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 754 void tcp_g_q_setup(tcp_stack_t *); 755 void tcp_g_q_create(tcp_stack_t *); 756 void tcp_g_q_destroy(tcp_stack_t *); 757 static int tcp_header_init_ipv4(tcp_t *tcp); 758 static int tcp_header_init_ipv6(tcp_t *tcp); 759 int tcp_init(tcp_t *tcp, queue_t *q); 760 static int tcp_init_values(tcp_t *tcp); 761 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 762 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 763 t_scalar_t addr_length); 764 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 765 static void tcp_ip_notify(tcp_t *tcp); 766 static mblk_t *tcp_ire_mp(mblk_t *mp); 767 static void tcp_iss_init(tcp_t *tcp); 768 static void tcp_keepalive_killer(void *arg); 769 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 770 static void tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss); 771 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 772 int *do_disconnectp, int *t_errorp, int *sys_errorp); 773 static boolean_t tcp_allow_connopt_set(int level, int name); 774 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 775 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 776 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 777 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 778 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 779 mblk_t *mblk); 780 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 781 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 782 uchar_t *ptr, uint_t len); 783 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 784 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, 785 tcp_stack_t *); 786 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 787 caddr_t cp, cred_t *cr); 788 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 789 caddr_t cp, cred_t *cr); 790 static void tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *); 791 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 792 caddr_t cp, cred_t *cr); 793 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 794 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 795 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 796 static void tcp_reinit(tcp_t *tcp); 797 static void tcp_reinit_values(tcp_t *tcp); 798 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 799 tcp_t *thisstream, cred_t *cr); 800 801 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 802 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 803 static boolean_t tcp_send_rst_chk(tcp_stack_t *); 804 static void tcp_ss_rexmit(tcp_t *tcp); 805 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 806 static void tcp_process_options(tcp_t *, tcph_t *); 807 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 808 static void tcp_rsrv(queue_t *q); 809 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 810 static int tcp_snmp_state(tcp_t *tcp); 811 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 812 cred_t *cr); 813 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 814 cred_t *cr); 815 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 816 cred_t *cr); 817 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 818 cred_t *cr); 819 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 820 cred_t *cr); 821 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 822 caddr_t cp, cred_t *cr); 823 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 824 caddr_t cp, cred_t *cr); 825 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 826 cred_t *cr); 827 static void tcp_timer(void *arg); 828 static void tcp_timer_callback(void *); 829 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 830 boolean_t random); 831 static in_port_t tcp_get_next_priv_port(const tcp_t *); 832 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 833 void tcp_wput_accept(queue_t *q, mblk_t *mp); 834 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 835 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 836 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 837 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 838 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 839 const int num_sack_blk, int *usable, uint_t *snxt, 840 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 841 const int mdt_thres); 842 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 843 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 844 const int num_sack_blk, int *usable, uint_t *snxt, 845 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 846 const int mdt_thres); 847 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 848 int num_sack_blk); 849 static void tcp_wsrv(queue_t *q); 850 static int tcp_xmit_end(tcp_t *tcp); 851 static void tcp_ack_timer(void *arg); 852 static mblk_t *tcp_ack_mp(tcp_t *tcp); 853 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 854 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 855 zoneid_t zoneid, tcp_stack_t *, conn_t *connp); 856 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 857 uint32_t ack, int ctl); 858 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *); 859 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr, tcp_stack_t *); 860 static int setmaxps(queue_t *q, int maxpsz); 861 static void tcp_set_rto(tcp_t *, time_t); 862 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 863 boolean_t, boolean_t); 864 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 865 boolean_t ipsec_mctl); 866 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 867 char *opt, int optlen); 868 static int tcp_build_hdrs(queue_t *, tcp_t *); 869 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 870 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 871 tcph_t *tcph); 872 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 873 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 874 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 875 boolean_t tcp_reserved_port_check(in_port_t, tcp_stack_t *); 876 static tcp_t *tcp_alloc_temp_tcp(in_port_t, tcp_stack_t *); 877 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 878 static mblk_t *tcp_mdt_info_mp(mblk_t *); 879 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 880 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 881 const boolean_t, const uint32_t, const uint32_t, 882 const uint32_t, const uint32_t, tcp_stack_t *); 883 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 884 const uint_t, const uint_t, boolean_t *); 885 static mblk_t *tcp_lso_info_mp(mblk_t *); 886 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 887 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 888 extern mblk_t *tcp_timermp_alloc(int); 889 extern void tcp_timermp_free(tcp_t *); 890 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 891 static void tcp_stop_lingering(tcp_t *tcp); 892 static void tcp_close_linger_timeout(void *arg); 893 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 894 static void tcp_stack_shutdown(netstackid_t stackid, void *arg); 895 static void tcp_stack_fini(netstackid_t stackid, void *arg); 896 static void *tcp_g_kstat_init(tcp_g_stat_t *); 897 static void tcp_g_kstat_fini(kstat_t *); 898 static void *tcp_kstat_init(netstackid_t, tcp_stack_t *); 899 static void tcp_kstat_fini(netstackid_t, kstat_t *); 900 static void *tcp_kstat2_init(netstackid_t, tcp_stat_t *); 901 static void tcp_kstat2_fini(netstackid_t, kstat_t *); 902 static int tcp_kstat_update(kstat_t *kp, int rw); 903 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 904 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 905 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 906 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 907 tcph_t *tcph, mblk_t *idmp); 908 static squeue_func_t tcp_squeue_switch(int); 909 910 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 911 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 912 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 913 static int tcp_close(queue_t *, int); 914 static int tcpclose_accept(queue_t *); 915 916 static void tcp_squeue_add(squeue_t *); 917 static boolean_t tcp_zcopy_check(tcp_t *); 918 static void tcp_zcopy_notify(tcp_t *); 919 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 920 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 921 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 922 923 extern void tcp_kssl_input(tcp_t *, mblk_t *); 924 925 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 926 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 927 928 /* 929 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 930 * 931 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 932 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 933 * (defined in tcp.h) needs to be filled in and passed into the kernel 934 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 935 * structure contains the four-tuple of a TCP connection and a range of TCP 936 * states (specified by ac_start and ac_end). The use of wildcard addresses 937 * and ports is allowed. Connections with a matching four tuple and a state 938 * within the specified range will be aborted. The valid states for the 939 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 940 * inclusive. 941 * 942 * An application which has its connection aborted by this ioctl will receive 943 * an error that is dependent on the connection state at the time of the abort. 944 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 945 * though a RST packet has been received. If the connection state is equal to 946 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 947 * and all resources associated with the connection will be freed. 948 */ 949 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 950 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 951 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 952 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps); 953 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 954 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 955 boolean_t, tcp_stack_t *); 956 957 static struct module_info tcp_rinfo = { 958 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 959 }; 960 961 static struct module_info tcp_winfo = { 962 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 963 }; 964 965 /* 966 * Entry points for TCP as a device. The normal case which supports 967 * the TCP functionality. 968 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 969 */ 970 struct qinit tcp_rinitv4 = { 971 NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, NULL, &tcp_rinfo 972 }; 973 974 struct qinit tcp_rinitv6 = { 975 NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_close, NULL, &tcp_rinfo 976 }; 977 978 struct qinit tcp_winit = { 979 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 980 }; 981 982 /* Initial entry point for TCP in socket mode. */ 983 struct qinit tcp_sock_winit = { 984 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 985 }; 986 987 /* 988 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 989 * an accept. Avoid allocating data structures since eager has already 990 * been created. 991 */ 992 struct qinit tcp_acceptor_rinit = { 993 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 994 }; 995 996 struct qinit tcp_acceptor_winit = { 997 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 998 }; 999 1000 /* 1001 * Entry points for TCP loopback (read side only) 1002 * The open routine is only used for reopens, thus no need to 1003 * have a separate one for tcp_openv6. 1004 */ 1005 struct qinit tcp_loopback_rinit = { 1006 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_close, (pfi_t)0, 1007 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1008 }; 1009 1010 /* For AF_INET aka /dev/tcp */ 1011 struct streamtab tcpinfov4 = { 1012 &tcp_rinitv4, &tcp_winit 1013 }; 1014 1015 /* For AF_INET6 aka /dev/tcp6 */ 1016 struct streamtab tcpinfov6 = { 1017 &tcp_rinitv6, &tcp_winit 1018 }; 1019 1020 /* 1021 * Have to ensure that tcp_g_q_close is not done by an 1022 * interrupt thread. 1023 */ 1024 static taskq_t *tcp_taskq; 1025 1026 /* 1027 * TCP has a private interface for other kernel modules to reserve a 1028 * port range for them to use. Once reserved, TCP will not use any ports 1029 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1030 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1031 * has to be verified. 1032 * 1033 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1034 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1035 * range is [port a, port b] inclusive. And each port range is between 1036 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1037 * 1038 * Note that the default anonymous port range starts from 32768. There is 1039 * no port "collision" between that and the reserved port range. If there 1040 * is port collision (because the default smallest anonymous port is lowered 1041 * or some apps specifically bind to ports in the reserved port range), the 1042 * system may not be able to reserve a port range even there are enough 1043 * unbound ports as a reserved port range contains consecutive ports . 1044 */ 1045 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1046 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1047 #define TCP_SMALLEST_RESERVED_PORT 10240 1048 #define TCP_LARGEST_RESERVED_PORT 20480 1049 1050 /* Structure to represent those reserved port ranges. */ 1051 typedef struct tcp_rport_s { 1052 in_port_t lo_port; 1053 in_port_t hi_port; 1054 tcp_t **temp_tcp_array; 1055 } tcp_rport_t; 1056 1057 /* Setable only in /etc/system. Move to ndd? */ 1058 boolean_t tcp_icmp_source_quench = B_FALSE; 1059 1060 /* 1061 * Following assumes TPI alignment requirements stay along 32 bit 1062 * boundaries 1063 */ 1064 #define ROUNDUP32(x) \ 1065 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1066 1067 /* Template for response to info request. */ 1068 static struct T_info_ack tcp_g_t_info_ack = { 1069 T_INFO_ACK, /* PRIM_type */ 1070 0, /* TSDU_size */ 1071 T_INFINITE, /* ETSDU_size */ 1072 T_INVALID, /* CDATA_size */ 1073 T_INVALID, /* DDATA_size */ 1074 sizeof (sin_t), /* ADDR_size */ 1075 0, /* OPT_size - not initialized here */ 1076 TIDUSZ, /* TIDU_size */ 1077 T_COTS_ORD, /* SERV_type */ 1078 TCPS_IDLE, /* CURRENT_state */ 1079 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1080 }; 1081 1082 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1083 T_INFO_ACK, /* PRIM_type */ 1084 0, /* TSDU_size */ 1085 T_INFINITE, /* ETSDU_size */ 1086 T_INVALID, /* CDATA_size */ 1087 T_INVALID, /* DDATA_size */ 1088 sizeof (sin6_t), /* ADDR_size */ 1089 0, /* OPT_size - not initialized here */ 1090 TIDUSZ, /* TIDU_size */ 1091 T_COTS_ORD, /* SERV_type */ 1092 TCPS_IDLE, /* CURRENT_state */ 1093 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1094 }; 1095 1096 #define MS 1L 1097 #define SECONDS (1000 * MS) 1098 #define MINUTES (60 * SECONDS) 1099 #define HOURS (60 * MINUTES) 1100 #define DAYS (24 * HOURS) 1101 1102 #define PARAM_MAX (~(uint32_t)0) 1103 1104 /* Max size IP datagram is 64k - 1 */ 1105 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1106 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1107 /* Max of the above */ 1108 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1109 1110 /* Largest TCP port number */ 1111 #define TCP_MAX_PORT (64 * 1024 - 1) 1112 1113 /* 1114 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1115 * layer header. It has to be a multiple of 4. 1116 */ 1117 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1118 #define tcps_wroff_xtra tcps_wroff_xtra_param->tcp_param_val 1119 1120 /* 1121 * All of these are alterable, within the min/max values given, at run time. 1122 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1123 * per the TCP spec. 1124 */ 1125 /* BEGIN CSTYLED */ 1126 static tcpparam_t lcl_tcp_param_arr[] = { 1127 /*min max value name */ 1128 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1129 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1130 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1131 { 1, 1024, 1, "tcp_conn_req_min" }, 1132 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1133 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1134 { 0, 10, 0, "tcp_debug" }, 1135 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1136 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1137 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1138 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1139 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1140 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1141 { 1, 255, 64, "tcp_ipv4_ttl"}, 1142 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1143 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1144 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1145 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1146 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1147 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1148 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1149 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1150 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1151 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1152 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1153 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1154 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1155 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1156 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1157 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1158 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1159 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1160 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1161 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1162 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1163 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1164 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1165 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1166 /* 1167 * Question: What default value should I set for tcp_strong_iss? 1168 */ 1169 { 0, 2, 1, "tcp_strong_iss"}, 1170 { 0, 65536, 20, "tcp_rtt_updates"}, 1171 { 0, 1, 1, "tcp_wscale_always"}, 1172 { 0, 1, 0, "tcp_tstamp_always"}, 1173 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1174 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1175 { 0, 16, 2, "tcp_deferred_acks_max"}, 1176 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1177 { 1, 4, 4, "tcp_slow_start_initial"}, 1178 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1179 { 0, 2, 2, "tcp_sack_permitted"}, 1180 { 0, 1, 0, "tcp_trace"}, 1181 { 0, 1, 1, "tcp_compression_enabled"}, 1182 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1183 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1184 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1185 { 0, 1, 0, "tcp_rev_src_routes"}, 1186 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1187 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1188 { 0, 16, 8, "tcp_local_dacks_max"}, 1189 { 0, 2, 1, "tcp_ecn_permitted"}, 1190 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1191 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1192 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1193 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1194 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1195 }; 1196 /* END CSTYLED */ 1197 1198 /* 1199 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1200 * each header fragment in the header buffer. Each parameter value has 1201 * to be a multiple of 4 (32-bit aligned). 1202 */ 1203 static tcpparam_t lcl_tcp_mdt_head_param = 1204 { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1205 static tcpparam_t lcl_tcp_mdt_tail_param = 1206 { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1207 #define tcps_mdt_hdr_head_min tcps_mdt_head_param->tcp_param_val 1208 #define tcps_mdt_hdr_tail_min tcps_mdt_tail_param->tcp_param_val 1209 1210 /* 1211 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1212 * the maximum number of payload buffers associated per Multidata. 1213 */ 1214 static tcpparam_t lcl_tcp_mdt_max_pbufs_param = 1215 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1216 #define tcps_mdt_max_pbufs tcps_mdt_max_pbufs_param->tcp_param_val 1217 1218 /* Round up the value to the nearest mss. */ 1219 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1220 1221 /* 1222 * Set ECN capable transport (ECT) code point in IP header. 1223 * 1224 * Note that there are 2 ECT code points '01' and '10', which are called 1225 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1226 * point ECT(0) for TCP as described in RFC 2481. 1227 */ 1228 #define SET_ECT(tcp, iph) \ 1229 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1230 /* We need to clear the code point first. */ \ 1231 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1232 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1233 } else { \ 1234 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1235 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1236 } 1237 1238 /* 1239 * The format argument to pass to tcp_display(). 1240 * DISP_PORT_ONLY means that the returned string has only port info. 1241 * DISP_ADDR_AND_PORT means that the returned string also contains the 1242 * remote and local IP address. 1243 */ 1244 #define DISP_PORT_ONLY 1 1245 #define DISP_ADDR_AND_PORT 2 1246 1247 #define NDD_TOO_QUICK_MSG \ 1248 "ndd get info rate too high for non-privileged users, try again " \ 1249 "later.\n" 1250 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1251 1252 #define IS_VMLOANED_MBLK(mp) \ 1253 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1254 1255 1256 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1257 boolean_t tcp_mdt_chain = B_TRUE; 1258 1259 /* 1260 * MDT threshold in the form of effective send MSS multiplier; we take 1261 * the MDT path if the amount of unsent data exceeds the threshold value 1262 * (default threshold is 1*SMSS). 1263 */ 1264 uint_t tcp_mdt_smss_threshold = 1; 1265 1266 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1267 1268 /* 1269 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 1270 * tunable settable via NDD. Otherwise, the per-connection behavior is 1271 * determined dynamically during tcp_adapt_ire(), which is the default. 1272 */ 1273 boolean_t tcp_static_maxpsz = B_FALSE; 1274 1275 /* Setable in /etc/system */ 1276 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1277 uint32_t tcp_random_anon_port = 1; 1278 1279 /* 1280 * To reach to an eager in Q0 which can be dropped due to an incoming 1281 * new SYN request when Q0 is full, a new doubly linked list is 1282 * introduced. This list allows to select an eager from Q0 in O(1) time. 1283 * This is needed to avoid spending too much time walking through the 1284 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1285 * this new list has to be a member of Q0. 1286 * This list is headed by listener's tcp_t. When the list is empty, 1287 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1288 * of listener's tcp_t point to listener's tcp_t itself. 1289 * 1290 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1291 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1292 * These macros do not affect the eager's membership to Q0. 1293 */ 1294 1295 1296 #define MAKE_DROPPABLE(listener, eager) \ 1297 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1298 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1299 = (eager); \ 1300 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1301 (eager)->tcp_eager_next_drop_q0 = \ 1302 (listener)->tcp_eager_next_drop_q0; \ 1303 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1304 } 1305 1306 #define MAKE_UNDROPPABLE(eager) \ 1307 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1308 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1309 = (eager)->tcp_eager_prev_drop_q0; \ 1310 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1311 = (eager)->tcp_eager_next_drop_q0; \ 1312 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1313 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1314 } 1315 1316 /* 1317 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1318 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1319 * data, TCP will not respond with an ACK. RFC 793 requires that 1320 * TCP responds with an ACK for such a bogus ACK. By not following 1321 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1322 * an attacker successfully spoofs an acceptable segment to our 1323 * peer; or when our peer is "confused." 1324 */ 1325 uint32_t tcp_drop_ack_unsent_cnt = 10; 1326 1327 /* 1328 * Hook functions to enable cluster networking 1329 * On non-clustered systems these vectors must always be NULL. 1330 */ 1331 1332 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1333 uint8_t *laddrp, in_port_t lport) = NULL; 1334 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1335 uint8_t *laddrp, in_port_t lport) = NULL; 1336 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1337 uint8_t *laddrp, in_port_t lport, 1338 uint8_t *faddrp, in_port_t fport) = NULL; 1339 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1340 uint8_t *laddrp, in_port_t lport, 1341 uint8_t *faddrp, in_port_t fport) = NULL; 1342 1343 /* 1344 * The following are defined in ip.c 1345 */ 1346 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1347 uint8_t *laddrp); 1348 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1349 uint8_t *laddrp, uint8_t *faddrp); 1350 1351 #define CL_INET_CONNECT(tcp) { \ 1352 if (cl_inet_connect != NULL) { \ 1353 /* \ 1354 * Running in cluster mode - register active connection \ 1355 * information \ 1356 */ \ 1357 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1358 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1359 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1360 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1361 (in_port_t)(tcp)->tcp_lport, \ 1362 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1363 (in_port_t)(tcp)->tcp_fport); \ 1364 } \ 1365 } else { \ 1366 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1367 &(tcp)->tcp_ip6h->ip6_src)) {\ 1368 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1369 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1370 (in_port_t)(tcp)->tcp_lport, \ 1371 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1372 (in_port_t)(tcp)->tcp_fport); \ 1373 } \ 1374 } \ 1375 } \ 1376 } 1377 1378 #define CL_INET_DISCONNECT(tcp) { \ 1379 if (cl_inet_disconnect != NULL) { \ 1380 /* \ 1381 * Running in cluster mode - deregister active \ 1382 * connection information \ 1383 */ \ 1384 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1385 if ((tcp)->tcp_ip_src != 0) { \ 1386 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1387 AF_INET, \ 1388 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1389 (in_port_t)(tcp)->tcp_lport, \ 1390 (uint8_t *) \ 1391 (&((tcp)->tcp_ipha->ipha_dst)),\ 1392 (in_port_t)(tcp)->tcp_fport); \ 1393 } \ 1394 } else { \ 1395 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1396 &(tcp)->tcp_ip_src_v6)) { \ 1397 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1398 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1399 (in_port_t)(tcp)->tcp_lport, \ 1400 (uint8_t *) \ 1401 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1402 (in_port_t)(tcp)->tcp_fport); \ 1403 } \ 1404 } \ 1405 } \ 1406 } 1407 1408 /* 1409 * Cluster networking hook for traversing current connection list. 1410 * This routine is used to extract the current list of live connections 1411 * which must continue to to be dispatched to this node. 1412 */ 1413 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1414 1415 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), 1416 void *arg, tcp_stack_t *tcps); 1417 1418 /* 1419 * Figure out the value of window scale opton. Note that the rwnd is 1420 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1421 * We cannot find the scale value and then do a round up of tcp_rwnd 1422 * because the scale value may not be correct after that. 1423 * 1424 * Set the compiler flag to make this function inline. 1425 */ 1426 static void 1427 tcp_set_ws_value(tcp_t *tcp) 1428 { 1429 int i; 1430 uint32_t rwnd = tcp->tcp_rwnd; 1431 1432 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1433 i++, rwnd >>= 1) 1434 ; 1435 tcp->tcp_rcv_ws = i; 1436 } 1437 1438 /* 1439 * Remove a connection from the list of detached TIME_WAIT connections. 1440 * It returns B_FALSE if it can't remove the connection from the list 1441 * as the connection has already been removed from the list due to an 1442 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1443 */ 1444 static boolean_t 1445 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1446 { 1447 boolean_t locked = B_FALSE; 1448 1449 if (tcp_time_wait == NULL) { 1450 tcp_time_wait = *((tcp_squeue_priv_t **) 1451 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1452 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1453 locked = B_TRUE; 1454 } else { 1455 ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock)); 1456 } 1457 1458 if (tcp->tcp_time_wait_expire == 0) { 1459 ASSERT(tcp->tcp_time_wait_next == NULL); 1460 ASSERT(tcp->tcp_time_wait_prev == NULL); 1461 if (locked) 1462 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1463 return (B_FALSE); 1464 } 1465 ASSERT(TCP_IS_DETACHED(tcp)); 1466 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1467 1468 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1469 ASSERT(tcp->tcp_time_wait_prev == NULL); 1470 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1471 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1472 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1473 NULL; 1474 } else { 1475 tcp_time_wait->tcp_time_wait_tail = NULL; 1476 } 1477 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1478 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1479 ASSERT(tcp->tcp_time_wait_next == NULL); 1480 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1481 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1482 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1483 } else { 1484 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1485 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1486 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1487 tcp->tcp_time_wait_next; 1488 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1489 tcp->tcp_time_wait_prev; 1490 } 1491 tcp->tcp_time_wait_next = NULL; 1492 tcp->tcp_time_wait_prev = NULL; 1493 tcp->tcp_time_wait_expire = 0; 1494 1495 if (locked) 1496 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1497 return (B_TRUE); 1498 } 1499 1500 /* 1501 * Add a connection to the list of detached TIME_WAIT connections 1502 * and set its time to expire. 1503 */ 1504 static void 1505 tcp_time_wait_append(tcp_t *tcp) 1506 { 1507 tcp_stack_t *tcps = tcp->tcp_tcps; 1508 tcp_squeue_priv_t *tcp_time_wait = 1509 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1510 SQPRIVATE_TCP)); 1511 1512 tcp_timers_stop(tcp); 1513 1514 /* Freed above */ 1515 ASSERT(tcp->tcp_timer_tid == 0); 1516 ASSERT(tcp->tcp_ack_tid == 0); 1517 1518 /* must have happened at the time of detaching the tcp */ 1519 ASSERT(tcp->tcp_ptpahn == NULL); 1520 ASSERT(tcp->tcp_flow_stopped == 0); 1521 ASSERT(tcp->tcp_time_wait_next == NULL); 1522 ASSERT(tcp->tcp_time_wait_prev == NULL); 1523 ASSERT(tcp->tcp_time_wait_expire == NULL); 1524 ASSERT(tcp->tcp_listener == NULL); 1525 1526 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1527 /* 1528 * The value computed below in tcp->tcp_time_wait_expire may 1529 * appear negative or wrap around. That is ok since our 1530 * interest is only in the difference between the current lbolt 1531 * value and tcp->tcp_time_wait_expire. But the value should not 1532 * be zero, since it means the tcp is not in the TIME_WAIT list. 1533 * The corresponding comparison in tcp_time_wait_collector() uses 1534 * modular arithmetic. 1535 */ 1536 tcp->tcp_time_wait_expire += 1537 drv_usectohz(tcps->tcps_time_wait_interval * 1000); 1538 if (tcp->tcp_time_wait_expire == 0) 1539 tcp->tcp_time_wait_expire = 1; 1540 1541 ASSERT(TCP_IS_DETACHED(tcp)); 1542 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1543 ASSERT(tcp->tcp_time_wait_next == NULL); 1544 ASSERT(tcp->tcp_time_wait_prev == NULL); 1545 TCP_DBGSTAT(tcps, tcp_time_wait); 1546 1547 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1548 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1549 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1550 tcp_time_wait->tcp_time_wait_head = tcp; 1551 } else { 1552 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1553 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1554 TCPS_TIME_WAIT); 1555 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1556 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1557 } 1558 tcp_time_wait->tcp_time_wait_tail = tcp; 1559 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1560 } 1561 1562 /* ARGSUSED */ 1563 void 1564 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1565 { 1566 conn_t *connp = (conn_t *)arg; 1567 tcp_t *tcp = connp->conn_tcp; 1568 tcp_stack_t *tcps = tcp->tcp_tcps; 1569 1570 ASSERT(tcp != NULL); 1571 if (tcp->tcp_state == TCPS_CLOSED) { 1572 return; 1573 } 1574 1575 ASSERT((tcp->tcp_family == AF_INET && 1576 tcp->tcp_ipversion == IPV4_VERSION) || 1577 (tcp->tcp_family == AF_INET6 && 1578 (tcp->tcp_ipversion == IPV4_VERSION || 1579 tcp->tcp_ipversion == IPV6_VERSION))); 1580 ASSERT(!tcp->tcp_listener); 1581 1582 TCP_STAT(tcps, tcp_time_wait_reap); 1583 ASSERT(TCP_IS_DETACHED(tcp)); 1584 1585 /* 1586 * Because they have no upstream client to rebind or tcp_close() 1587 * them later, we axe the connection here and now. 1588 */ 1589 tcp_close_detached(tcp); 1590 } 1591 1592 /* 1593 * Remove cached/latched IPsec references. 1594 */ 1595 void 1596 tcp_ipsec_cleanup(tcp_t *tcp) 1597 { 1598 conn_t *connp = tcp->tcp_connp; 1599 1600 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1601 1602 if (connp->conn_latch != NULL) { 1603 IPLATCH_REFRELE(connp->conn_latch, 1604 connp->conn_netstack); 1605 connp->conn_latch = NULL; 1606 } 1607 if (connp->conn_policy != NULL) { 1608 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 1609 connp->conn_policy = NULL; 1610 } 1611 } 1612 1613 /* 1614 * Cleaup before placing on free list. 1615 * Disassociate from the netstack/tcp_stack_t since the freelist 1616 * is per squeue and not per netstack. 1617 */ 1618 void 1619 tcp_cleanup(tcp_t *tcp) 1620 { 1621 mblk_t *mp; 1622 char *tcp_iphc; 1623 int tcp_iphc_len; 1624 int tcp_hdr_grown; 1625 tcp_sack_info_t *tcp_sack_info; 1626 conn_t *connp = tcp->tcp_connp; 1627 tcp_stack_t *tcps = tcp->tcp_tcps; 1628 netstack_t *ns = tcps->tcps_netstack; 1629 1630 tcp_bind_hash_remove(tcp); 1631 1632 /* Cleanup that which needs the netstack first */ 1633 tcp_ipsec_cleanup(tcp); 1634 1635 tcp_free(tcp); 1636 1637 /* Release any SSL context */ 1638 if (tcp->tcp_kssl_ent != NULL) { 1639 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1640 tcp->tcp_kssl_ent = NULL; 1641 } 1642 1643 if (tcp->tcp_kssl_ctx != NULL) { 1644 kssl_release_ctx(tcp->tcp_kssl_ctx); 1645 tcp->tcp_kssl_ctx = NULL; 1646 } 1647 tcp->tcp_kssl_pending = B_FALSE; 1648 1649 conn_delete_ire(connp, NULL); 1650 1651 /* 1652 * Since we will bzero the entire structure, we need to 1653 * remove it and reinsert it in global hash list. We 1654 * know the walkers can't get to this conn because we 1655 * had set CONDEMNED flag earlier and checked reference 1656 * under conn_lock so walker won't pick it and when we 1657 * go the ipcl_globalhash_remove() below, no walker 1658 * can get to it. 1659 */ 1660 ipcl_globalhash_remove(connp); 1661 1662 /* 1663 * Now it is safe to decrement the reference counts. 1664 * This might be the last reference on the netstack and TCPS 1665 * in which case it will cause the tcp_g_q_close and 1666 * the freeing of the IP Instance. 1667 */ 1668 connp->conn_netstack = NULL; 1669 netstack_rele(ns); 1670 ASSERT(tcps != NULL); 1671 tcp->tcp_tcps = NULL; 1672 TCPS_REFRELE(tcps); 1673 1674 /* Save some state */ 1675 mp = tcp->tcp_timercache; 1676 1677 tcp_sack_info = tcp->tcp_sack_info; 1678 tcp_iphc = tcp->tcp_iphc; 1679 tcp_iphc_len = tcp->tcp_iphc_len; 1680 tcp_hdr_grown = tcp->tcp_hdr_grown; 1681 1682 if (connp->conn_cred != NULL) { 1683 crfree(connp->conn_cred); 1684 connp->conn_cred = NULL; 1685 } 1686 if (connp->conn_peercred != NULL) { 1687 crfree(connp->conn_peercred); 1688 connp->conn_peercred = NULL; 1689 } 1690 ipcl_conn_cleanup(connp); 1691 connp->conn_flags = IPCL_TCPCONN; 1692 bzero(tcp, sizeof (tcp_t)); 1693 1694 /* restore the state */ 1695 tcp->tcp_timercache = mp; 1696 1697 tcp->tcp_sack_info = tcp_sack_info; 1698 tcp->tcp_iphc = tcp_iphc; 1699 tcp->tcp_iphc_len = tcp_iphc_len; 1700 tcp->tcp_hdr_grown = tcp_hdr_grown; 1701 1702 tcp->tcp_connp = connp; 1703 1704 ASSERT(connp->conn_tcp == tcp); 1705 ASSERT(connp->conn_flags & IPCL_TCPCONN); 1706 connp->conn_state_flags = CONN_INCIPIENT; 1707 ASSERT(connp->conn_ulp == IPPROTO_TCP); 1708 ASSERT(connp->conn_ref == 1); 1709 } 1710 1711 /* 1712 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1713 * is done forwards from the head. 1714 * This walks all stack instances since 1715 * tcp_time_wait remains global across all stacks. 1716 */ 1717 /* ARGSUSED */ 1718 void 1719 tcp_time_wait_collector(void *arg) 1720 { 1721 tcp_t *tcp; 1722 clock_t now; 1723 mblk_t *mp; 1724 conn_t *connp; 1725 kmutex_t *lock; 1726 boolean_t removed; 1727 1728 squeue_t *sqp = (squeue_t *)arg; 1729 tcp_squeue_priv_t *tcp_time_wait = 1730 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1731 1732 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1733 tcp_time_wait->tcp_time_wait_tid = 0; 1734 1735 if (tcp_time_wait->tcp_free_list != NULL && 1736 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1737 TCP_G_STAT(tcp_freelist_cleanup); 1738 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1739 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1740 tcp->tcp_time_wait_next = NULL; 1741 tcp_time_wait->tcp_free_list_cnt--; 1742 ASSERT(tcp->tcp_tcps == NULL); 1743 CONN_DEC_REF(tcp->tcp_connp); 1744 } 1745 ASSERT(tcp_time_wait->tcp_free_list_cnt == 0); 1746 } 1747 1748 /* 1749 * In order to reap time waits reliably, we should use a 1750 * source of time that is not adjustable by the user -- hence 1751 * the call to ddi_get_lbolt(). 1752 */ 1753 now = ddi_get_lbolt(); 1754 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1755 /* 1756 * Compare times using modular arithmetic, since 1757 * lbolt can wrapover. 1758 */ 1759 if ((now - tcp->tcp_time_wait_expire) < 0) { 1760 break; 1761 } 1762 1763 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1764 ASSERT(removed); 1765 1766 connp = tcp->tcp_connp; 1767 ASSERT(connp->conn_fanout != NULL); 1768 lock = &connp->conn_fanout->connf_lock; 1769 /* 1770 * This is essentially a TW reclaim fast path optimization for 1771 * performance where the timewait collector checks under the 1772 * fanout lock (so that no one else can get access to the 1773 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1774 * the classifier hash list. If ref count is indeed 2, we can 1775 * just remove the conn under the fanout lock and avoid 1776 * cleaning up the conn under the squeue, provided that 1777 * clustering callbacks are not enabled. If clustering is 1778 * enabled, we need to make the clustering callback before 1779 * setting the CONDEMNED flag and after dropping all locks and 1780 * so we forego this optimization and fall back to the slow 1781 * path. Also please see the comments in tcp_closei_local 1782 * regarding the refcnt logic. 1783 * 1784 * Since we are holding the tcp_time_wait_lock, its better 1785 * not to block on the fanout_lock because other connections 1786 * can't add themselves to time_wait list. So we do a 1787 * tryenter instead of mutex_enter. 1788 */ 1789 if (mutex_tryenter(lock)) { 1790 mutex_enter(&connp->conn_lock); 1791 if ((connp->conn_ref == 2) && 1792 (cl_inet_disconnect == NULL)) { 1793 ipcl_hash_remove_locked(connp, 1794 connp->conn_fanout); 1795 /* 1796 * Set the CONDEMNED flag now itself so that 1797 * the refcnt cannot increase due to any 1798 * walker. But we have still not cleaned up 1799 * conn_ire_cache. This is still ok since 1800 * we are going to clean it up in tcp_cleanup 1801 * immediately and any interface unplumb 1802 * thread will wait till the ire is blown away 1803 */ 1804 connp->conn_state_flags |= CONN_CONDEMNED; 1805 mutex_exit(lock); 1806 mutex_exit(&connp->conn_lock); 1807 if (tcp_time_wait->tcp_free_list_cnt < 1808 tcp_free_list_max_cnt) { 1809 /* Add to head of tcp_free_list */ 1810 mutex_exit( 1811 &tcp_time_wait->tcp_time_wait_lock); 1812 tcp_cleanup(tcp); 1813 ASSERT(connp->conn_latch == NULL); 1814 ASSERT(connp->conn_policy == NULL); 1815 ASSERT(tcp->tcp_tcps == NULL); 1816 ASSERT(connp->conn_netstack == NULL); 1817 1818 mutex_enter( 1819 &tcp_time_wait->tcp_time_wait_lock); 1820 tcp->tcp_time_wait_next = 1821 tcp_time_wait->tcp_free_list; 1822 tcp_time_wait->tcp_free_list = tcp; 1823 tcp_time_wait->tcp_free_list_cnt++; 1824 continue; 1825 } else { 1826 /* Do not add to tcp_free_list */ 1827 mutex_exit( 1828 &tcp_time_wait->tcp_time_wait_lock); 1829 tcp_bind_hash_remove(tcp); 1830 conn_delete_ire(tcp->tcp_connp, NULL); 1831 tcp_ipsec_cleanup(tcp); 1832 CONN_DEC_REF(tcp->tcp_connp); 1833 } 1834 } else { 1835 CONN_INC_REF_LOCKED(connp); 1836 mutex_exit(lock); 1837 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1838 mutex_exit(&connp->conn_lock); 1839 /* 1840 * We can reuse the closemp here since conn has 1841 * detached (otherwise we wouldn't even be in 1842 * time_wait list). tcp_closemp_used can safely 1843 * be changed without taking a lock as no other 1844 * thread can concurrently access it at this 1845 * point in the connection lifecycle. 1846 */ 1847 1848 if (tcp->tcp_closemp.b_prev == NULL) 1849 tcp->tcp_closemp_used = B_TRUE; 1850 else 1851 cmn_err(CE_PANIC, 1852 "tcp_timewait_collector: " 1853 "concurrent use of tcp_closemp: " 1854 "connp %p tcp %p\n", (void *)connp, 1855 (void *)tcp); 1856 1857 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1858 mp = &tcp->tcp_closemp; 1859 squeue_fill(connp->conn_sqp, mp, 1860 tcp_timewait_output, connp, 1861 SQTAG_TCP_TIMEWAIT); 1862 } 1863 } else { 1864 mutex_enter(&connp->conn_lock); 1865 CONN_INC_REF_LOCKED(connp); 1866 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1867 mutex_exit(&connp->conn_lock); 1868 /* 1869 * We can reuse the closemp here since conn has 1870 * detached (otherwise we wouldn't even be in 1871 * time_wait list). tcp_closemp_used can safely 1872 * be changed without taking a lock as no other 1873 * thread can concurrently access it at this 1874 * point in the connection lifecycle. 1875 */ 1876 1877 if (tcp->tcp_closemp.b_prev == NULL) 1878 tcp->tcp_closemp_used = B_TRUE; 1879 else 1880 cmn_err(CE_PANIC, "tcp_timewait_collector: " 1881 "concurrent use of tcp_closemp: " 1882 "connp %p tcp %p\n", (void *)connp, 1883 (void *)tcp); 1884 1885 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1886 mp = &tcp->tcp_closemp; 1887 squeue_fill(connp->conn_sqp, mp, 1888 tcp_timewait_output, connp, 0); 1889 } 1890 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1891 } 1892 1893 if (tcp_time_wait->tcp_free_list != NULL) 1894 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1895 1896 tcp_time_wait->tcp_time_wait_tid = 1897 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1898 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1899 } 1900 /* 1901 * Reply to a clients T_CONN_RES TPI message. This function 1902 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1903 * on the acceptor STREAM and processed in tcp_wput_accept(). 1904 * Read the block comment on top of tcp_conn_request(). 1905 */ 1906 static void 1907 tcp_accept(tcp_t *listener, mblk_t *mp) 1908 { 1909 tcp_t *acceptor; 1910 tcp_t *eager; 1911 tcp_t *tcp; 1912 struct T_conn_res *tcr; 1913 t_uscalar_t acceptor_id; 1914 t_scalar_t seqnum; 1915 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 1916 mblk_t *ok_mp; 1917 mblk_t *mp1; 1918 tcp_stack_t *tcps = listener->tcp_tcps; 1919 1920 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 1921 tcp_err_ack(listener, mp, TPROTO, 0); 1922 return; 1923 } 1924 tcr = (struct T_conn_res *)mp->b_rptr; 1925 1926 /* 1927 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 1928 * read side queue of the streams device underneath us i.e. the 1929 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 1930 * look it up in the queue_hash. Under LP64 it sends down the 1931 * minor_t of the accepting endpoint. 1932 * 1933 * Once the acceptor/eager are modified (in tcp_accept_swap) the 1934 * fanout hash lock is held. 1935 * This prevents any thread from entering the acceptor queue from 1936 * below (since it has not been hard bound yet i.e. any inbound 1937 * packets will arrive on the listener or default tcp queue and 1938 * go through tcp_lookup). 1939 * The CONN_INC_REF will prevent the acceptor from closing. 1940 * 1941 * XXX It is still possible for a tli application to send down data 1942 * on the accepting stream while another thread calls t_accept. 1943 * This should not be a problem for well-behaved applications since 1944 * the T_OK_ACK is sent after the queue swapping is completed. 1945 * 1946 * If the accepting fd is the same as the listening fd, avoid 1947 * queue hash lookup since that will return an eager listener in a 1948 * already established state. 1949 */ 1950 acceptor_id = tcr->ACCEPTOR_id; 1951 mutex_enter(&listener->tcp_eager_lock); 1952 if (listener->tcp_acceptor_id == acceptor_id) { 1953 eager = listener->tcp_eager_next_q; 1954 /* only count how many T_CONN_INDs so don't count q0 */ 1955 if ((listener->tcp_conn_req_cnt_q != 1) || 1956 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 1957 mutex_exit(&listener->tcp_eager_lock); 1958 tcp_err_ack(listener, mp, TBADF, 0); 1959 return; 1960 } 1961 if (listener->tcp_conn_req_cnt_q0 != 0) { 1962 /* Throw away all the eagers on q0. */ 1963 tcp_eager_cleanup(listener, 1); 1964 } 1965 if (listener->tcp_syn_defense) { 1966 listener->tcp_syn_defense = B_FALSE; 1967 if (listener->tcp_ip_addr_cache != NULL) { 1968 kmem_free(listener->tcp_ip_addr_cache, 1969 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1970 listener->tcp_ip_addr_cache = NULL; 1971 } 1972 } 1973 /* 1974 * Transfer tcp_conn_req_max to the eager so that when 1975 * a disconnect occurs we can revert the endpoint to the 1976 * listen state. 1977 */ 1978 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 1979 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 1980 /* 1981 * Get a reference on the acceptor just like the 1982 * tcp_acceptor_hash_lookup below. 1983 */ 1984 acceptor = listener; 1985 CONN_INC_REF(acceptor->tcp_connp); 1986 } else { 1987 acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps); 1988 if (acceptor == NULL) { 1989 if (listener->tcp_debug) { 1990 (void) strlog(TCP_MOD_ID, 0, 1, 1991 SL_ERROR|SL_TRACE, 1992 "tcp_accept: did not find acceptor 0x%x\n", 1993 acceptor_id); 1994 } 1995 mutex_exit(&listener->tcp_eager_lock); 1996 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 1997 return; 1998 } 1999 /* 2000 * Verify acceptor state. The acceptable states for an acceptor 2001 * include TCPS_IDLE and TCPS_BOUND. 2002 */ 2003 switch (acceptor->tcp_state) { 2004 case TCPS_IDLE: 2005 /* FALLTHRU */ 2006 case TCPS_BOUND: 2007 break; 2008 default: 2009 CONN_DEC_REF(acceptor->tcp_connp); 2010 mutex_exit(&listener->tcp_eager_lock); 2011 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2012 return; 2013 } 2014 } 2015 2016 /* The listener must be in TCPS_LISTEN */ 2017 if (listener->tcp_state != TCPS_LISTEN) { 2018 CONN_DEC_REF(acceptor->tcp_connp); 2019 mutex_exit(&listener->tcp_eager_lock); 2020 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2021 return; 2022 } 2023 2024 /* 2025 * Rendezvous with an eager connection request packet hanging off 2026 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2027 * tcp structure when the connection packet arrived in 2028 * tcp_conn_request(). 2029 */ 2030 seqnum = tcr->SEQ_number; 2031 eager = listener; 2032 do { 2033 eager = eager->tcp_eager_next_q; 2034 if (eager == NULL) { 2035 CONN_DEC_REF(acceptor->tcp_connp); 2036 mutex_exit(&listener->tcp_eager_lock); 2037 tcp_err_ack(listener, mp, TBADSEQ, 0); 2038 return; 2039 } 2040 } while (eager->tcp_conn_req_seqnum != seqnum); 2041 mutex_exit(&listener->tcp_eager_lock); 2042 2043 /* 2044 * At this point, both acceptor and listener have 2 ref 2045 * that they begin with. Acceptor has one additional ref 2046 * we placed in lookup while listener has 3 additional 2047 * ref for being behind the squeue (tcp_accept() is 2048 * done on listener's squeue); being in classifier hash; 2049 * and eager's ref on listener. 2050 */ 2051 ASSERT(listener->tcp_connp->conn_ref >= 5); 2052 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2053 2054 /* 2055 * The eager at this point is set in its own squeue and 2056 * could easily have been killed (tcp_accept_finish will 2057 * deal with that) because of a TH_RST so we can only 2058 * ASSERT for a single ref. 2059 */ 2060 ASSERT(eager->tcp_connp->conn_ref >= 1); 2061 2062 /* Pre allocate the stroptions mblk also */ 2063 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2064 if (opt_mp == NULL) { 2065 CONN_DEC_REF(acceptor->tcp_connp); 2066 CONN_DEC_REF(eager->tcp_connp); 2067 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2068 return; 2069 } 2070 DB_TYPE(opt_mp) = M_SETOPTS; 2071 opt_mp->b_wptr += sizeof (struct stroptions); 2072 2073 /* 2074 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2075 * from listener to acceptor. The message is chained on opt_mp 2076 * which will be sent onto eager's squeue. 2077 */ 2078 if (listener->tcp_bound_if != 0) { 2079 /* allocate optmgmt req */ 2080 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2081 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2082 sizeof (int)); 2083 if (mp1 != NULL) 2084 linkb(opt_mp, mp1); 2085 } 2086 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2087 uint_t on = 1; 2088 2089 /* allocate optmgmt req */ 2090 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2091 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2092 if (mp1 != NULL) 2093 linkb(opt_mp, mp1); 2094 } 2095 2096 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2097 if ((mp1 = copymsg(mp)) == NULL) { 2098 CONN_DEC_REF(acceptor->tcp_connp); 2099 CONN_DEC_REF(eager->tcp_connp); 2100 freemsg(opt_mp); 2101 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2102 return; 2103 } 2104 2105 tcr = (struct T_conn_res *)mp1->b_rptr; 2106 2107 /* 2108 * This is an expanded version of mi_tpi_ok_ack_alloc() 2109 * which allocates a larger mblk and appends the new 2110 * local address to the ok_ack. The address is copied by 2111 * soaccept() for getsockname(). 2112 */ 2113 { 2114 int extra; 2115 2116 extra = (eager->tcp_family == AF_INET) ? 2117 sizeof (sin_t) : sizeof (sin6_t); 2118 2119 /* 2120 * Try to re-use mp, if possible. Otherwise, allocate 2121 * an mblk and return it as ok_mp. In any case, mp 2122 * is no longer usable upon return. 2123 */ 2124 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2125 CONN_DEC_REF(acceptor->tcp_connp); 2126 CONN_DEC_REF(eager->tcp_connp); 2127 freemsg(opt_mp); 2128 /* Original mp has been freed by now, so use mp1 */ 2129 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2130 return; 2131 } 2132 2133 mp = NULL; /* We should never use mp after this point */ 2134 2135 switch (extra) { 2136 case sizeof (sin_t): { 2137 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2138 2139 ok_mp->b_wptr += extra; 2140 sin->sin_family = AF_INET; 2141 sin->sin_port = eager->tcp_lport; 2142 sin->sin_addr.s_addr = 2143 eager->tcp_ipha->ipha_src; 2144 break; 2145 } 2146 case sizeof (sin6_t): { 2147 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2148 2149 ok_mp->b_wptr += extra; 2150 sin6->sin6_family = AF_INET6; 2151 sin6->sin6_port = eager->tcp_lport; 2152 if (eager->tcp_ipversion == IPV4_VERSION) { 2153 sin6->sin6_flowinfo = 0; 2154 IN6_IPADDR_TO_V4MAPPED( 2155 eager->tcp_ipha->ipha_src, 2156 &sin6->sin6_addr); 2157 } else { 2158 ASSERT(eager->tcp_ip6h != NULL); 2159 sin6->sin6_flowinfo = 2160 eager->tcp_ip6h->ip6_vcf & 2161 ~IPV6_VERS_AND_FLOW_MASK; 2162 sin6->sin6_addr = 2163 eager->tcp_ip6h->ip6_src; 2164 } 2165 sin6->sin6_scope_id = 0; 2166 sin6->__sin6_src_id = 0; 2167 break; 2168 } 2169 default: 2170 break; 2171 } 2172 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2173 } 2174 2175 /* 2176 * If there are no options we know that the T_CONN_RES will 2177 * succeed. However, we can't send the T_OK_ACK upstream until 2178 * the tcp_accept_swap is done since it would be dangerous to 2179 * let the application start using the new fd prior to the swap. 2180 */ 2181 tcp_accept_swap(listener, acceptor, eager); 2182 2183 /* 2184 * tcp_accept_swap unlinks eager from listener but does not drop 2185 * the eager's reference on the listener. 2186 */ 2187 ASSERT(eager->tcp_listener == NULL); 2188 ASSERT(listener->tcp_connp->conn_ref >= 5); 2189 2190 /* 2191 * The eager is now associated with its own queue. Insert in 2192 * the hash so that the connection can be reused for a future 2193 * T_CONN_RES. 2194 */ 2195 tcp_acceptor_hash_insert(acceptor_id, eager); 2196 2197 /* 2198 * We now do the processing of options with T_CONN_RES. 2199 * We delay till now since we wanted to have queue to pass to 2200 * option processing routines that points back to the right 2201 * instance structure which does not happen until after 2202 * tcp_accept_swap(). 2203 * 2204 * Note: 2205 * The sanity of the logic here assumes that whatever options 2206 * are appropriate to inherit from listner=>eager are done 2207 * before this point, and whatever were to be overridden (or not) 2208 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2209 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2210 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2211 * This may not be true at this point in time but can be fixed 2212 * independently. This option processing code starts with 2213 * the instantiated acceptor instance and the final queue at 2214 * this point. 2215 */ 2216 2217 if (tcr->OPT_length != 0) { 2218 /* Options to process */ 2219 int t_error = 0; 2220 int sys_error = 0; 2221 int do_disconnect = 0; 2222 2223 if (tcp_conprim_opt_process(eager, mp1, 2224 &do_disconnect, &t_error, &sys_error) < 0) { 2225 eager->tcp_accept_error = 1; 2226 if (do_disconnect) { 2227 /* 2228 * An option failed which does not allow 2229 * connection to be accepted. 2230 * 2231 * We allow T_CONN_RES to succeed and 2232 * put a T_DISCON_IND on the eager queue. 2233 */ 2234 ASSERT(t_error == 0 && sys_error == 0); 2235 eager->tcp_send_discon_ind = 1; 2236 } else { 2237 ASSERT(t_error != 0); 2238 freemsg(ok_mp); 2239 /* 2240 * Original mp was either freed or set 2241 * to ok_mp above, so use mp1 instead. 2242 */ 2243 tcp_err_ack(listener, mp1, t_error, sys_error); 2244 goto finish; 2245 } 2246 } 2247 /* 2248 * Most likely success in setting options (except if 2249 * eager->tcp_send_discon_ind set). 2250 * mp1 option buffer represented by OPT_length/offset 2251 * potentially modified and contains results of setting 2252 * options at this point 2253 */ 2254 } 2255 2256 /* We no longer need mp1, since all options processing has passed */ 2257 freemsg(mp1); 2258 2259 putnext(listener->tcp_rq, ok_mp); 2260 2261 mutex_enter(&listener->tcp_eager_lock); 2262 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2263 tcp_t *tail; 2264 mblk_t *conn_ind; 2265 2266 /* 2267 * This path should not be executed if listener and 2268 * acceptor streams are the same. 2269 */ 2270 ASSERT(listener != acceptor); 2271 2272 tcp = listener->tcp_eager_prev_q0; 2273 /* 2274 * listener->tcp_eager_prev_q0 points to the TAIL of the 2275 * deferred T_conn_ind queue. We need to get to the head of 2276 * the queue in order to send up T_conn_ind the same order as 2277 * how the 3WHS is completed. 2278 */ 2279 while (tcp != listener) { 2280 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2281 break; 2282 else 2283 tcp = tcp->tcp_eager_prev_q0; 2284 } 2285 ASSERT(tcp != listener); 2286 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2287 ASSERT(conn_ind != NULL); 2288 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2289 2290 /* Move from q0 to q */ 2291 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2292 listener->tcp_conn_req_cnt_q0--; 2293 listener->tcp_conn_req_cnt_q++; 2294 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2295 tcp->tcp_eager_prev_q0; 2296 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2297 tcp->tcp_eager_next_q0; 2298 tcp->tcp_eager_prev_q0 = NULL; 2299 tcp->tcp_eager_next_q0 = NULL; 2300 tcp->tcp_conn_def_q0 = B_FALSE; 2301 2302 /* Make sure the tcp isn't in the list of droppables */ 2303 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2304 tcp->tcp_eager_prev_drop_q0 == NULL); 2305 2306 /* 2307 * Insert at end of the queue because sockfs sends 2308 * down T_CONN_RES in chronological order. Leaving 2309 * the older conn indications at front of the queue 2310 * helps reducing search time. 2311 */ 2312 tail = listener->tcp_eager_last_q; 2313 if (tail != NULL) 2314 tail->tcp_eager_next_q = tcp; 2315 else 2316 listener->tcp_eager_next_q = tcp; 2317 listener->tcp_eager_last_q = tcp; 2318 tcp->tcp_eager_next_q = NULL; 2319 mutex_exit(&listener->tcp_eager_lock); 2320 putnext(tcp->tcp_rq, conn_ind); 2321 } else { 2322 mutex_exit(&listener->tcp_eager_lock); 2323 } 2324 2325 /* 2326 * Done with the acceptor - free it 2327 * 2328 * Note: from this point on, no access to listener should be made 2329 * as listener can be equal to acceptor. 2330 */ 2331 finish: 2332 ASSERT(acceptor->tcp_detached); 2333 ASSERT(tcps->tcps_g_q != NULL); 2334 acceptor->tcp_rq = tcps->tcps_g_q; 2335 acceptor->tcp_wq = WR(tcps->tcps_g_q); 2336 (void) tcp_clean_death(acceptor, 0, 2); 2337 CONN_DEC_REF(acceptor->tcp_connp); 2338 2339 /* 2340 * In case we already received a FIN we have to make tcp_rput send 2341 * the ordrel_ind. This will also send up a window update if the window 2342 * has opened up. 2343 * 2344 * In the normal case of a successful connection acceptance 2345 * we give the O_T_BIND_REQ to the read side put procedure as an 2346 * indication that this was just accepted. This tells tcp_rput to 2347 * pass up any data queued in tcp_rcv_list. 2348 * 2349 * In the fringe case where options sent with T_CONN_RES failed and 2350 * we required, we would be indicating a T_DISCON_IND to blow 2351 * away this connection. 2352 */ 2353 2354 /* 2355 * XXX: we currently have a problem if XTI application closes the 2356 * acceptor stream in between. This problem exists in on10-gate also 2357 * and is well know but nothing can be done short of major rewrite 2358 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2359 * eager same squeue as listener (we can distinguish non socket 2360 * listeners at the time of handling a SYN in tcp_conn_request) 2361 * and do most of the work that tcp_accept_finish does here itself 2362 * and then get behind the acceptor squeue to access the acceptor 2363 * queue. 2364 */ 2365 /* 2366 * We already have a ref on tcp so no need to do one before squeue_fill 2367 */ 2368 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2369 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2370 } 2371 2372 /* 2373 * Swap information between the eager and acceptor for a TLI/XTI client. 2374 * The sockfs accept is done on the acceptor stream and control goes 2375 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2376 * called. In either case, both the eager and listener are in their own 2377 * perimeter (squeue) and the code has to deal with potential race. 2378 * 2379 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2380 */ 2381 static void 2382 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2383 { 2384 conn_t *econnp, *aconnp; 2385 2386 ASSERT(eager->tcp_rq == listener->tcp_rq); 2387 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2388 ASSERT(!eager->tcp_hard_bound); 2389 ASSERT(!TCP_IS_SOCKET(acceptor)); 2390 ASSERT(!TCP_IS_SOCKET(eager)); 2391 ASSERT(!TCP_IS_SOCKET(listener)); 2392 2393 acceptor->tcp_detached = B_TRUE; 2394 /* 2395 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2396 * the acceptor id. 2397 */ 2398 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2399 2400 /* remove eager from listen list... */ 2401 mutex_enter(&listener->tcp_eager_lock); 2402 tcp_eager_unlink(eager); 2403 ASSERT(eager->tcp_eager_next_q == NULL && 2404 eager->tcp_eager_last_q == NULL); 2405 ASSERT(eager->tcp_eager_next_q0 == NULL && 2406 eager->tcp_eager_prev_q0 == NULL); 2407 mutex_exit(&listener->tcp_eager_lock); 2408 eager->tcp_rq = acceptor->tcp_rq; 2409 eager->tcp_wq = acceptor->tcp_wq; 2410 2411 econnp = eager->tcp_connp; 2412 aconnp = acceptor->tcp_connp; 2413 2414 eager->tcp_rq->q_ptr = econnp; 2415 eager->tcp_wq->q_ptr = econnp; 2416 2417 /* 2418 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2419 * which might be a different squeue from our peer TCP instance. 2420 * For TCP Fusion, the peer expects that whenever tcp_detached is 2421 * clear, our TCP queues point to the acceptor's queues. Thus, use 2422 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2423 * above reach global visibility prior to the clearing of tcp_detached. 2424 */ 2425 membar_producer(); 2426 eager->tcp_detached = B_FALSE; 2427 2428 ASSERT(eager->tcp_ack_tid == 0); 2429 2430 econnp->conn_dev = aconnp->conn_dev; 2431 econnp->conn_minor_arena = aconnp->conn_minor_arena; 2432 ASSERT(econnp->conn_minor_arena != NULL); 2433 if (eager->tcp_cred != NULL) 2434 crfree(eager->tcp_cred); 2435 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2436 ASSERT(econnp->conn_netstack == aconnp->conn_netstack); 2437 ASSERT(eager->tcp_tcps == acceptor->tcp_tcps); 2438 2439 aconnp->conn_cred = NULL; 2440 2441 econnp->conn_zoneid = aconnp->conn_zoneid; 2442 econnp->conn_allzones = aconnp->conn_allzones; 2443 2444 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2445 aconnp->conn_mac_exempt = B_FALSE; 2446 2447 ASSERT(aconnp->conn_peercred == NULL); 2448 2449 /* Do the IPC initialization */ 2450 CONN_INC_REF(econnp); 2451 2452 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2453 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2454 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2455 2456 /* Done with old IPC. Drop its ref on its connp */ 2457 CONN_DEC_REF(aconnp); 2458 } 2459 2460 2461 /* 2462 * Adapt to the information, such as rtt and rtt_sd, provided from the 2463 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2464 * 2465 * Checks for multicast and broadcast destination address. 2466 * Returns zero on failure; non-zero if ok. 2467 * 2468 * Note that the MSS calculation here is based on the info given in 2469 * the IRE. We do not do any calculation based on TCP options. They 2470 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2471 * knows which options to use. 2472 * 2473 * Note on how TCP gets its parameters for a connection. 2474 * 2475 * When a tcp_t structure is allocated, it gets all the default parameters. 2476 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2477 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2478 * default. But if there is an associated tcp_host_param, it will override 2479 * the metrics. 2480 * 2481 * An incoming SYN with a multicast or broadcast destination address, is dropped 2482 * in 1 of 2 places. 2483 * 2484 * 1. If the packet was received over the wire it is dropped in 2485 * ip_rput_process_broadcast() 2486 * 2487 * 2. If the packet was received through internal IP loopback, i.e. the packet 2488 * was generated and received on the same machine, it is dropped in 2489 * ip_wput_local() 2490 * 2491 * An incoming SYN with a multicast or broadcast source address is always 2492 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2493 * reject an attempt to connect to a broadcast or multicast (destination) 2494 * address. 2495 */ 2496 static int 2497 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2498 { 2499 tcp_hsp_t *hsp; 2500 ire_t *ire; 2501 ire_t *sire = NULL; 2502 iulp_t *ire_uinfo = NULL; 2503 uint32_t mss_max; 2504 uint32_t mss; 2505 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2506 conn_t *connp = tcp->tcp_connp; 2507 boolean_t ire_cacheable = B_FALSE; 2508 zoneid_t zoneid = connp->conn_zoneid; 2509 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2510 MATCH_IRE_SECATTR; 2511 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2512 ill_t *ill = NULL; 2513 boolean_t incoming = (ire_mp == NULL); 2514 tcp_stack_t *tcps = tcp->tcp_tcps; 2515 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 2516 2517 ASSERT(connp->conn_ire_cache == NULL); 2518 2519 if (tcp->tcp_ipversion == IPV4_VERSION) { 2520 2521 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2522 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 2523 return (0); 2524 } 2525 /* 2526 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2527 * for the destination with the nexthop as gateway. 2528 * ire_ctable_lookup() is used because this particular 2529 * ire, if it exists, will be marked private. 2530 * If that is not available, use the interface ire 2531 * for the nexthop. 2532 * 2533 * TSol: tcp_update_label will detect label mismatches based 2534 * only on the destination's label, but that would not 2535 * detect label mismatches based on the security attributes 2536 * of routes or next hop gateway. Hence we need to pass the 2537 * label to ire_ftable_lookup below in order to locate the 2538 * right prefix (and/or) ire cache. Similarly we also need 2539 * pass the label to the ire_cache_lookup below to locate 2540 * the right ire that also matches on the label. 2541 */ 2542 if (tcp->tcp_connp->conn_nexthop_set) { 2543 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2544 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2545 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW, 2546 ipst); 2547 if (ire == NULL) { 2548 ire = ire_ftable_lookup( 2549 tcp->tcp_connp->conn_nexthop_v4, 2550 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2551 tsl, match_flags, ipst); 2552 if (ire == NULL) 2553 return (0); 2554 } else { 2555 ire_uinfo = &ire->ire_uinfo; 2556 } 2557 } else { 2558 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2559 zoneid, tsl, ipst); 2560 if (ire != NULL) { 2561 ire_cacheable = B_TRUE; 2562 ire_uinfo = (ire_mp != NULL) ? 2563 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2564 &ire->ire_uinfo; 2565 2566 } else { 2567 if (ire_mp == NULL) { 2568 ire = ire_ftable_lookup( 2569 tcp->tcp_connp->conn_rem, 2570 0, 0, 0, NULL, &sire, zoneid, 0, 2571 tsl, (MATCH_IRE_RECURSIVE | 2572 MATCH_IRE_DEFAULT), ipst); 2573 if (ire == NULL) 2574 return (0); 2575 ire_uinfo = (sire != NULL) ? 2576 &sire->ire_uinfo : 2577 &ire->ire_uinfo; 2578 } else { 2579 ire = (ire_t *)ire_mp->b_rptr; 2580 ire_uinfo = 2581 &((ire_t *) 2582 ire_mp->b_rptr)->ire_uinfo; 2583 } 2584 } 2585 } 2586 ASSERT(ire != NULL); 2587 2588 if ((ire->ire_src_addr == INADDR_ANY) || 2589 (ire->ire_type & IRE_BROADCAST)) { 2590 /* 2591 * ire->ire_mp is non null when ire_mp passed in is used 2592 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2593 */ 2594 if (ire->ire_mp == NULL) 2595 ire_refrele(ire); 2596 if (sire != NULL) 2597 ire_refrele(sire); 2598 return (0); 2599 } 2600 2601 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2602 ipaddr_t src_addr; 2603 2604 /* 2605 * ip_bind_connected() has stored the correct source 2606 * address in conn_src. 2607 */ 2608 src_addr = tcp->tcp_connp->conn_src; 2609 tcp->tcp_ipha->ipha_src = src_addr; 2610 /* 2611 * Copy of the src addr. in tcp_t is needed 2612 * for the lookup funcs. 2613 */ 2614 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2615 } 2616 /* 2617 * Set the fragment bit so that IP will tell us if the MTU 2618 * should change. IP tells us the latest setting of 2619 * ip_path_mtu_discovery through ire_frag_flag. 2620 */ 2621 if (ipst->ips_ip_path_mtu_discovery) { 2622 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2623 htons(IPH_DF); 2624 } 2625 /* 2626 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2627 * for IP_NEXTHOP. No cache ire has been found for the 2628 * destination and we are working with the nexthop's 2629 * interface ire. Since we need to forward all packets 2630 * to the nexthop first, we "blindly" set tcp_localnet 2631 * to false, eventhough the destination may also be 2632 * onlink. 2633 */ 2634 if (ire_uinfo == NULL) 2635 tcp->tcp_localnet = 0; 2636 else 2637 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2638 } else { 2639 /* 2640 * For incoming connection ire_mp = NULL 2641 * For outgoing connection ire_mp != NULL 2642 * Technically we should check conn_incoming_ill 2643 * when ire_mp is NULL and conn_outgoing_ill when 2644 * ire_mp is non-NULL. But this is performance 2645 * critical path and for IPV*_BOUND_IF, outgoing 2646 * and incoming ill are always set to the same value. 2647 */ 2648 ill_t *dst_ill = NULL; 2649 ipif_t *dst_ipif = NULL; 2650 2651 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2652 2653 if (connp->conn_outgoing_ill != NULL) { 2654 /* Outgoing or incoming path */ 2655 int err; 2656 2657 dst_ill = conn_get_held_ill(connp, 2658 &connp->conn_outgoing_ill, &err); 2659 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2660 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2661 return (0); 2662 } 2663 match_flags |= MATCH_IRE_ILL; 2664 dst_ipif = dst_ill->ill_ipif; 2665 } 2666 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2667 0, 0, dst_ipif, zoneid, tsl, match_flags, ipst); 2668 2669 if (ire != NULL) { 2670 ire_cacheable = B_TRUE; 2671 ire_uinfo = (ire_mp != NULL) ? 2672 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2673 &ire->ire_uinfo; 2674 } else { 2675 if (ire_mp == NULL) { 2676 ire = ire_ftable_lookup_v6( 2677 &tcp->tcp_connp->conn_remv6, 2678 0, 0, 0, dst_ipif, &sire, zoneid, 2679 0, tsl, match_flags, ipst); 2680 if (ire == NULL) { 2681 if (dst_ill != NULL) 2682 ill_refrele(dst_ill); 2683 return (0); 2684 } 2685 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2686 &ire->ire_uinfo; 2687 } else { 2688 ire = (ire_t *)ire_mp->b_rptr; 2689 ire_uinfo = 2690 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2691 } 2692 } 2693 if (dst_ill != NULL) 2694 ill_refrele(dst_ill); 2695 2696 ASSERT(ire != NULL); 2697 ASSERT(ire_uinfo != NULL); 2698 2699 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2700 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2701 /* 2702 * ire->ire_mp is non null when ire_mp passed in is used 2703 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2704 */ 2705 if (ire->ire_mp == NULL) 2706 ire_refrele(ire); 2707 if (sire != NULL) 2708 ire_refrele(sire); 2709 return (0); 2710 } 2711 2712 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2713 in6_addr_t src_addr; 2714 2715 /* 2716 * ip_bind_connected_v6() has stored the correct source 2717 * address per IPv6 addr. selection policy in 2718 * conn_src_v6. 2719 */ 2720 src_addr = tcp->tcp_connp->conn_srcv6; 2721 2722 tcp->tcp_ip6h->ip6_src = src_addr; 2723 /* 2724 * Copy of the src addr. in tcp_t is needed 2725 * for the lookup funcs. 2726 */ 2727 tcp->tcp_ip_src_v6 = src_addr; 2728 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2729 &connp->conn_srcv6)); 2730 } 2731 tcp->tcp_localnet = 2732 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2733 } 2734 2735 /* 2736 * This allows applications to fail quickly when connections are made 2737 * to dead hosts. Hosts can be labeled dead by adding a reject route 2738 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2739 */ 2740 if ((ire->ire_flags & RTF_REJECT) && 2741 (ire->ire_flags & RTF_PRIVATE)) 2742 goto error; 2743 2744 /* 2745 * Make use of the cached rtt and rtt_sd values to calculate the 2746 * initial RTO. Note that they are already initialized in 2747 * tcp_init_values(). 2748 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2749 * IP_NEXTHOP, but instead are using the interface ire for the 2750 * nexthop, then we do not use the ire_uinfo from that ire to 2751 * do any initializations. 2752 */ 2753 if (ire_uinfo != NULL) { 2754 if (ire_uinfo->iulp_rtt != 0) { 2755 clock_t rto; 2756 2757 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2758 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2759 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2760 tcps->tcps_rexmit_interval_extra + 2761 (tcp->tcp_rtt_sa >> 5); 2762 2763 if (rto > tcps->tcps_rexmit_interval_max) { 2764 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 2765 } else if (rto < tcps->tcps_rexmit_interval_min) { 2766 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 2767 } else { 2768 tcp->tcp_rto = rto; 2769 } 2770 } 2771 if (ire_uinfo->iulp_ssthresh != 0) 2772 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2773 else 2774 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2775 if (ire_uinfo->iulp_spipe > 0) { 2776 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2777 tcps->tcps_max_buf); 2778 if (tcps->tcps_snd_lowat_fraction != 0) 2779 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2780 tcps->tcps_snd_lowat_fraction; 2781 (void) tcp_maxpsz_set(tcp, B_TRUE); 2782 } 2783 /* 2784 * Note that up till now, acceptor always inherits receive 2785 * window from the listener. But if there is a metrics 2786 * associated with a host, we should use that instead of 2787 * inheriting it from listener. Thus we need to pass this 2788 * info back to the caller. 2789 */ 2790 if (ire_uinfo->iulp_rpipe > 0) { 2791 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, 2792 tcps->tcps_max_buf); 2793 } 2794 2795 if (ire_uinfo->iulp_rtomax > 0) { 2796 tcp->tcp_second_timer_threshold = 2797 ire_uinfo->iulp_rtomax; 2798 } 2799 2800 /* 2801 * Use the metric option settings, iulp_tstamp_ok and 2802 * iulp_wscale_ok, only for active open. What this means 2803 * is that if the other side uses timestamp or window 2804 * scale option, TCP will also use those options. That 2805 * is for passive open. If the application sets a 2806 * large window, window scale is enabled regardless of 2807 * the value in iulp_wscale_ok. This is the behavior 2808 * since 2.6. So we keep it. 2809 * The only case left in passive open processing is the 2810 * check for SACK. 2811 * For ECN, it should probably be like SACK. But the 2812 * current value is binary, so we treat it like the other 2813 * cases. The metric only controls active open.For passive 2814 * open, the ndd param, tcp_ecn_permitted, controls the 2815 * behavior. 2816 */ 2817 if (!tcp_detached) { 2818 /* 2819 * The if check means that the following can only 2820 * be turned on by the metrics only IRE, but not off. 2821 */ 2822 if (ire_uinfo->iulp_tstamp_ok) 2823 tcp->tcp_snd_ts_ok = B_TRUE; 2824 if (ire_uinfo->iulp_wscale_ok) 2825 tcp->tcp_snd_ws_ok = B_TRUE; 2826 if (ire_uinfo->iulp_sack == 2) 2827 tcp->tcp_snd_sack_ok = B_TRUE; 2828 if (ire_uinfo->iulp_ecn_ok) 2829 tcp->tcp_ecn_ok = B_TRUE; 2830 } else { 2831 /* 2832 * Passive open. 2833 * 2834 * As above, the if check means that SACK can only be 2835 * turned on by the metric only IRE. 2836 */ 2837 if (ire_uinfo->iulp_sack > 0) { 2838 tcp->tcp_snd_sack_ok = B_TRUE; 2839 } 2840 } 2841 } 2842 2843 2844 /* 2845 * XXX: Note that currently, ire_max_frag can be as small as 68 2846 * because of PMTUd. So tcp_mss may go to negative if combined 2847 * length of all those options exceeds 28 bytes. But because 2848 * of the tcp_mss_min check below, we may not have a problem if 2849 * tcp_mss_min is of a reasonable value. The default is 1 so 2850 * the negative problem still exists. And the check defeats PMTUd. 2851 * In fact, if PMTUd finds that the MSS should be smaller than 2852 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2853 * value. 2854 * 2855 * We do not deal with that now. All those problems related to 2856 * PMTUd will be fixed later. 2857 */ 2858 ASSERT(ire->ire_max_frag != 0); 2859 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2860 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2861 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2862 mss = MIN(mss, IPV6_MIN_MTU); 2863 } 2864 } 2865 2866 /* Sanity check for MSS value. */ 2867 if (tcp->tcp_ipversion == IPV4_VERSION) 2868 mss_max = tcps->tcps_mss_max_ipv4; 2869 else 2870 mss_max = tcps->tcps_mss_max_ipv6; 2871 2872 if (tcp->tcp_ipversion == IPV6_VERSION && 2873 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2874 /* 2875 * After receiving an ICMPv6 "packet too big" message with a 2876 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2877 * will insert a 8-byte fragment header in every packet; we 2878 * reduce the MSS by that amount here. 2879 */ 2880 mss -= sizeof (ip6_frag_t); 2881 } 2882 2883 if (tcp->tcp_ipsec_overhead == 0) 2884 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2885 2886 mss -= tcp->tcp_ipsec_overhead; 2887 2888 if (mss < tcps->tcps_mss_min) 2889 mss = tcps->tcps_mss_min; 2890 if (mss > mss_max) 2891 mss = mss_max; 2892 2893 /* Note that this is the maximum MSS, excluding all options. */ 2894 tcp->tcp_mss = mss; 2895 2896 /* 2897 * Initialize the ISS here now that we have the full connection ID. 2898 * The RFC 1948 method of initial sequence number generation requires 2899 * knowledge of the full connection ID before setting the ISS. 2900 */ 2901 2902 tcp_iss_init(tcp); 2903 2904 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2905 tcp->tcp_loopback = B_TRUE; 2906 2907 if (tcp->tcp_ipversion == IPV4_VERSION) { 2908 hsp = tcp_hsp_lookup(tcp->tcp_remote, tcps); 2909 } else { 2910 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6, tcps); 2911 } 2912 2913 if (hsp != NULL) { 2914 /* Only modify if we're going to make them bigger */ 2915 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2916 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2917 if (tcps->tcps_snd_lowat_fraction != 0) 2918 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2919 tcps->tcps_snd_lowat_fraction; 2920 } 2921 2922 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2923 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2924 } 2925 2926 /* Copy timestamp flag only for active open */ 2927 if (!tcp_detached) 2928 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 2929 } 2930 2931 if (sire != NULL) 2932 IRE_REFRELE(sire); 2933 2934 /* 2935 * If we got an IRE_CACHE and an ILL, go through their properties; 2936 * otherwise, this is deferred until later when we have an IRE_CACHE. 2937 */ 2938 if (tcp->tcp_loopback || 2939 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 2940 /* 2941 * For incoming, see if this tcp may be MDT-capable. For 2942 * outgoing, this process has been taken care of through 2943 * tcp_rput_other. 2944 */ 2945 tcp_ire_ill_check(tcp, ire, ill, incoming); 2946 tcp->tcp_ire_ill_check_done = B_TRUE; 2947 } 2948 2949 mutex_enter(&connp->conn_lock); 2950 /* 2951 * Make sure that conn is not marked incipient 2952 * for incoming connections. A blind 2953 * removal of incipient flag is cheaper than 2954 * check and removal. 2955 */ 2956 connp->conn_state_flags &= ~CONN_INCIPIENT; 2957 2958 /* 2959 * Must not cache forwarding table routes 2960 * or recache an IRE after the conn_t has 2961 * had conn_ire_cache cleared and is flagged 2962 * unusable, (see the CONN_CACHE_IRE() macro). 2963 */ 2964 if (ire_cacheable && CONN_CACHE_IRE(connp)) { 2965 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 2966 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 2967 connp->conn_ire_cache = ire; 2968 IRE_UNTRACE_REF(ire); 2969 rw_exit(&ire->ire_bucket->irb_lock); 2970 mutex_exit(&connp->conn_lock); 2971 return (1); 2972 } 2973 rw_exit(&ire->ire_bucket->irb_lock); 2974 } 2975 mutex_exit(&connp->conn_lock); 2976 2977 if (ire->ire_mp == NULL) 2978 ire_refrele(ire); 2979 return (1); 2980 2981 error: 2982 if (ire->ire_mp == NULL) 2983 ire_refrele(ire); 2984 if (sire != NULL) 2985 ire_refrele(sire); 2986 return (0); 2987 } 2988 2989 /* 2990 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 2991 * O_T_BIND_REQ/T_BIND_REQ message. 2992 */ 2993 static void 2994 tcp_bind(tcp_t *tcp, mblk_t *mp) 2995 { 2996 sin_t *sin; 2997 sin6_t *sin6; 2998 mblk_t *mp1; 2999 in_port_t requested_port; 3000 in_port_t allocated_port; 3001 struct T_bind_req *tbr; 3002 boolean_t bind_to_req_port_only; 3003 boolean_t backlog_update = B_FALSE; 3004 boolean_t user_specified; 3005 in6_addr_t v6addr; 3006 ipaddr_t v4addr; 3007 uint_t origipversion; 3008 int err; 3009 queue_t *q = tcp->tcp_wq; 3010 conn_t *connp = tcp->tcp_connp; 3011 mlp_type_t addrtype, mlptype; 3012 zone_t *zone; 3013 cred_t *cr; 3014 in_port_t mlp_port; 3015 tcp_stack_t *tcps = tcp->tcp_tcps; 3016 3017 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3018 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3019 if (tcp->tcp_debug) { 3020 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3021 "tcp_bind: bad req, len %u", 3022 (uint_t)(mp->b_wptr - mp->b_rptr)); 3023 } 3024 tcp_err_ack(tcp, mp, TPROTO, 0); 3025 return; 3026 } 3027 /* Make sure the largest address fits */ 3028 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3029 if (mp1 == NULL) { 3030 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3031 return; 3032 } 3033 mp = mp1; 3034 tbr = (struct T_bind_req *)mp->b_rptr; 3035 if (tcp->tcp_state >= TCPS_BOUND) { 3036 if ((tcp->tcp_state == TCPS_BOUND || 3037 tcp->tcp_state == TCPS_LISTEN) && 3038 tcp->tcp_conn_req_max != tbr->CONIND_number && 3039 tbr->CONIND_number > 0) { 3040 /* 3041 * Handle listen() increasing CONIND_number. 3042 * This is more "liberal" then what the TPI spec 3043 * requires but is needed to avoid a t_unbind 3044 * when handling listen() since the port number 3045 * might be "stolen" between the unbind and bind. 3046 */ 3047 backlog_update = B_TRUE; 3048 goto do_bind; 3049 } 3050 if (tcp->tcp_debug) { 3051 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3052 "tcp_bind: bad state, %d", tcp->tcp_state); 3053 } 3054 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3055 return; 3056 } 3057 origipversion = tcp->tcp_ipversion; 3058 3059 switch (tbr->ADDR_length) { 3060 case 0: /* request for a generic port */ 3061 tbr->ADDR_offset = sizeof (struct T_bind_req); 3062 if (tcp->tcp_family == AF_INET) { 3063 tbr->ADDR_length = sizeof (sin_t); 3064 sin = (sin_t *)&tbr[1]; 3065 *sin = sin_null; 3066 sin->sin_family = AF_INET; 3067 mp->b_wptr = (uchar_t *)&sin[1]; 3068 tcp->tcp_ipversion = IPV4_VERSION; 3069 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3070 } else { 3071 ASSERT(tcp->tcp_family == AF_INET6); 3072 tbr->ADDR_length = sizeof (sin6_t); 3073 sin6 = (sin6_t *)&tbr[1]; 3074 *sin6 = sin6_null; 3075 sin6->sin6_family = AF_INET6; 3076 mp->b_wptr = (uchar_t *)&sin6[1]; 3077 tcp->tcp_ipversion = IPV6_VERSION; 3078 V6_SET_ZERO(v6addr); 3079 } 3080 requested_port = 0; 3081 break; 3082 3083 case sizeof (sin_t): /* Complete IPv4 address */ 3084 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3085 sizeof (sin_t)); 3086 if (sin == NULL || !OK_32PTR((char *)sin)) { 3087 if (tcp->tcp_debug) { 3088 (void) strlog(TCP_MOD_ID, 0, 1, 3089 SL_ERROR|SL_TRACE, 3090 "tcp_bind: bad address parameter, " 3091 "offset %d, len %d", 3092 tbr->ADDR_offset, tbr->ADDR_length); 3093 } 3094 tcp_err_ack(tcp, mp, TPROTO, 0); 3095 return; 3096 } 3097 /* 3098 * With sockets sockfs will accept bogus sin_family in 3099 * bind() and replace it with the family used in the socket 3100 * call. 3101 */ 3102 if (sin->sin_family != AF_INET || 3103 tcp->tcp_family != AF_INET) { 3104 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3105 return; 3106 } 3107 requested_port = ntohs(sin->sin_port); 3108 tcp->tcp_ipversion = IPV4_VERSION; 3109 v4addr = sin->sin_addr.s_addr; 3110 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3111 break; 3112 3113 case sizeof (sin6_t): /* Complete IPv6 address */ 3114 sin6 = (sin6_t *)mi_offset_param(mp, 3115 tbr->ADDR_offset, sizeof (sin6_t)); 3116 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3117 if (tcp->tcp_debug) { 3118 (void) strlog(TCP_MOD_ID, 0, 1, 3119 SL_ERROR|SL_TRACE, 3120 "tcp_bind: bad IPv6 address parameter, " 3121 "offset %d, len %d", tbr->ADDR_offset, 3122 tbr->ADDR_length); 3123 } 3124 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3125 return; 3126 } 3127 if (sin6->sin6_family != AF_INET6 || 3128 tcp->tcp_family != AF_INET6) { 3129 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3130 return; 3131 } 3132 requested_port = ntohs(sin6->sin6_port); 3133 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3134 IPV4_VERSION : IPV6_VERSION; 3135 v6addr = sin6->sin6_addr; 3136 break; 3137 3138 default: 3139 if (tcp->tcp_debug) { 3140 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3141 "tcp_bind: bad address length, %d", 3142 tbr->ADDR_length); 3143 } 3144 tcp_err_ack(tcp, mp, TBADADDR, 0); 3145 return; 3146 } 3147 tcp->tcp_bound_source_v6 = v6addr; 3148 3149 /* Check for change in ipversion */ 3150 if (origipversion != tcp->tcp_ipversion) { 3151 ASSERT(tcp->tcp_family == AF_INET6); 3152 err = tcp->tcp_ipversion == IPV6_VERSION ? 3153 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3154 if (err) { 3155 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3156 return; 3157 } 3158 } 3159 3160 /* 3161 * Initialize family specific fields. Copy of the src addr. 3162 * in tcp_t is needed for the lookup funcs. 3163 */ 3164 if (tcp->tcp_ipversion == IPV6_VERSION) { 3165 tcp->tcp_ip6h->ip6_src = v6addr; 3166 } else { 3167 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3168 } 3169 tcp->tcp_ip_src_v6 = v6addr; 3170 3171 /* 3172 * For O_T_BIND_REQ: 3173 * Verify that the target port/addr is available, or choose 3174 * another. 3175 * For T_BIND_REQ: 3176 * Verify that the target port/addr is available or fail. 3177 * In both cases when it succeeds the tcp is inserted in the 3178 * bind hash table. This ensures that the operation is atomic 3179 * under the lock on the hash bucket. 3180 */ 3181 bind_to_req_port_only = requested_port != 0 && 3182 tbr->PRIM_type != O_T_BIND_REQ; 3183 /* 3184 * Get a valid port (within the anonymous range and should not 3185 * be a privileged one) to use if the user has not given a port. 3186 * If multiple threads are here, they may all start with 3187 * with the same initial port. But, it should be fine as long as 3188 * tcp_bindi will ensure that no two threads will be assigned 3189 * the same port. 3190 * 3191 * NOTE: XXX If a privileged process asks for an anonymous port, we 3192 * still check for ports only in the range > tcp_smallest_non_priv_port, 3193 * unless TCP_ANONPRIVBIND option is set. 3194 */ 3195 mlptype = mlptSingle; 3196 mlp_port = requested_port; 3197 if (requested_port == 0) { 3198 requested_port = tcp->tcp_anon_priv_bind ? 3199 tcp_get_next_priv_port(tcp) : 3200 tcp_update_next_port(tcps->tcps_next_port_to_try, 3201 tcp, B_TRUE); 3202 if (requested_port == 0) { 3203 tcp_err_ack(tcp, mp, TNOADDR, 0); 3204 return; 3205 } 3206 user_specified = B_FALSE; 3207 3208 /* 3209 * If the user went through one of the RPC interfaces to create 3210 * this socket and RPC is MLP in this zone, then give him an 3211 * anonymous MLP. 3212 */ 3213 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3214 if (connp->conn_anon_mlp && is_system_labeled()) { 3215 zone = crgetzone(cr); 3216 addrtype = tsol_mlp_addr_type(zone->zone_id, 3217 IPV6_VERSION, &v6addr, 3218 tcps->tcps_netstack->netstack_ip); 3219 if (addrtype == mlptSingle) { 3220 tcp_err_ack(tcp, mp, TNOADDR, 0); 3221 return; 3222 } 3223 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3224 PMAPPORT, addrtype); 3225 mlp_port = PMAPPORT; 3226 } 3227 } else { 3228 int i; 3229 boolean_t priv = B_FALSE; 3230 3231 /* 3232 * If the requested_port is in the well-known privileged range, 3233 * verify that the stream was opened by a privileged user. 3234 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3235 * but instead the code relies on: 3236 * - the fact that the address of the array and its size never 3237 * changes 3238 * - the atomic assignment of the elements of the array 3239 */ 3240 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3241 if (requested_port < tcps->tcps_smallest_nonpriv_port) { 3242 priv = B_TRUE; 3243 } else { 3244 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 3245 if (requested_port == 3246 tcps->tcps_g_epriv_ports[i]) { 3247 priv = B_TRUE; 3248 break; 3249 } 3250 } 3251 } 3252 if (priv) { 3253 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3254 if (tcp->tcp_debug) { 3255 (void) strlog(TCP_MOD_ID, 0, 1, 3256 SL_ERROR|SL_TRACE, 3257 "tcp_bind: no priv for port %d", 3258 requested_port); 3259 } 3260 tcp_err_ack(tcp, mp, TACCES, 0); 3261 return; 3262 } 3263 } 3264 user_specified = B_TRUE; 3265 3266 if (is_system_labeled()) { 3267 zone = crgetzone(cr); 3268 addrtype = tsol_mlp_addr_type(zone->zone_id, 3269 IPV6_VERSION, &v6addr, 3270 tcps->tcps_netstack->netstack_ip); 3271 if (addrtype == mlptSingle) { 3272 tcp_err_ack(tcp, mp, TNOADDR, 0); 3273 return; 3274 } 3275 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3276 requested_port, addrtype); 3277 } 3278 } 3279 3280 if (mlptype != mlptSingle) { 3281 if (secpolicy_net_bindmlp(cr) != 0) { 3282 if (tcp->tcp_debug) { 3283 (void) strlog(TCP_MOD_ID, 0, 1, 3284 SL_ERROR|SL_TRACE, 3285 "tcp_bind: no priv for multilevel port %d", 3286 requested_port); 3287 } 3288 tcp_err_ack(tcp, mp, TACCES, 0); 3289 return; 3290 } 3291 3292 /* 3293 * If we're specifically binding a shared IP address and the 3294 * port is MLP on shared addresses, then check to see if this 3295 * zone actually owns the MLP. Reject if not. 3296 */ 3297 if (mlptype == mlptShared && addrtype == mlptShared) { 3298 /* 3299 * No need to handle exclusive-stack zones since 3300 * ALL_ZONES only applies to the shared stack. 3301 */ 3302 zoneid_t mlpzone; 3303 3304 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3305 htons(mlp_port)); 3306 if (connp->conn_zoneid != mlpzone) { 3307 if (tcp->tcp_debug) { 3308 (void) strlog(TCP_MOD_ID, 0, 1, 3309 SL_ERROR|SL_TRACE, 3310 "tcp_bind: attempt to bind port " 3311 "%d on shared addr in zone %d " 3312 "(should be %d)", 3313 mlp_port, connp->conn_zoneid, 3314 mlpzone); 3315 } 3316 tcp_err_ack(tcp, mp, TACCES, 0); 3317 return; 3318 } 3319 } 3320 3321 if (!user_specified) { 3322 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3323 requested_port, B_TRUE); 3324 if (err != 0) { 3325 if (tcp->tcp_debug) { 3326 (void) strlog(TCP_MOD_ID, 0, 1, 3327 SL_ERROR|SL_TRACE, 3328 "tcp_bind: cannot establish anon " 3329 "MLP for port %d", 3330 requested_port); 3331 } 3332 tcp_err_ack(tcp, mp, TSYSERR, err); 3333 return; 3334 } 3335 connp->conn_anon_port = B_TRUE; 3336 } 3337 connp->conn_mlp_type = mlptype; 3338 } 3339 3340 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3341 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3342 3343 if (allocated_port == 0) { 3344 connp->conn_mlp_type = mlptSingle; 3345 if (connp->conn_anon_port) { 3346 connp->conn_anon_port = B_FALSE; 3347 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3348 requested_port, B_FALSE); 3349 } 3350 if (bind_to_req_port_only) { 3351 if (tcp->tcp_debug) { 3352 (void) strlog(TCP_MOD_ID, 0, 1, 3353 SL_ERROR|SL_TRACE, 3354 "tcp_bind: requested addr busy"); 3355 } 3356 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3357 } else { 3358 /* If we are out of ports, fail the bind. */ 3359 if (tcp->tcp_debug) { 3360 (void) strlog(TCP_MOD_ID, 0, 1, 3361 SL_ERROR|SL_TRACE, 3362 "tcp_bind: out of ports?"); 3363 } 3364 tcp_err_ack(tcp, mp, TNOADDR, 0); 3365 } 3366 return; 3367 } 3368 ASSERT(tcp->tcp_state == TCPS_BOUND); 3369 do_bind: 3370 if (!backlog_update) { 3371 if (tcp->tcp_family == AF_INET) 3372 sin->sin_port = htons(allocated_port); 3373 else 3374 sin6->sin6_port = htons(allocated_port); 3375 } 3376 if (tcp->tcp_family == AF_INET) { 3377 if (tbr->CONIND_number != 0) { 3378 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3379 sizeof (sin_t)); 3380 } else { 3381 /* Just verify the local IP address */ 3382 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3383 } 3384 } else { 3385 if (tbr->CONIND_number != 0) { 3386 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3387 sizeof (sin6_t)); 3388 } else { 3389 /* Just verify the local IP address */ 3390 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3391 IPV6_ADDR_LEN); 3392 } 3393 } 3394 if (mp1 == NULL) { 3395 if (connp->conn_anon_port) { 3396 connp->conn_anon_port = B_FALSE; 3397 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3398 requested_port, B_FALSE); 3399 } 3400 connp->conn_mlp_type = mlptSingle; 3401 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3402 return; 3403 } 3404 3405 tbr->PRIM_type = T_BIND_ACK; 3406 mp->b_datap->db_type = M_PCPROTO; 3407 3408 /* Chain in the reply mp for tcp_rput() */ 3409 mp1->b_cont = mp; 3410 mp = mp1; 3411 3412 tcp->tcp_conn_req_max = tbr->CONIND_number; 3413 if (tcp->tcp_conn_req_max) { 3414 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 3415 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 3416 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 3417 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 3418 /* 3419 * If this is a listener, do not reset the eager list 3420 * and other stuffs. Note that we don't check if the 3421 * existing eager list meets the new tcp_conn_req_max 3422 * requirement. 3423 */ 3424 if (tcp->tcp_state != TCPS_LISTEN) { 3425 tcp->tcp_state = TCPS_LISTEN; 3426 /* Initialize the chain. Don't need the eager_lock */ 3427 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3428 tcp->tcp_eager_next_drop_q0 = tcp; 3429 tcp->tcp_eager_prev_drop_q0 = tcp; 3430 tcp->tcp_second_ctimer_threshold = 3431 tcps->tcps_ip_abort_linterval; 3432 } 3433 } 3434 3435 /* 3436 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3437 * processing continues in tcp_rput_other(). 3438 * 3439 * We need to make sure that the conn_recv is set to a non-null 3440 * value before we insert the conn into the classifier table. 3441 * This is to avoid a race with an incoming packet which does an 3442 * ipcl_classify(). 3443 */ 3444 connp->conn_recv = tcp_conn_request; 3445 if (tcp->tcp_family == AF_INET6) { 3446 ASSERT(tcp->tcp_connp->conn_af_isv6); 3447 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3448 } else { 3449 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3450 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3451 } 3452 /* 3453 * If the bind cannot complete immediately 3454 * IP will arrange to call tcp_rput_other 3455 * when the bind completes. 3456 */ 3457 if (mp != NULL) { 3458 tcp_rput_other(tcp, mp); 3459 } else { 3460 /* 3461 * Bind will be resumed later. Need to ensure 3462 * that conn doesn't disappear when that happens. 3463 * This will be decremented in ip_resume_tcp_bind(). 3464 */ 3465 CONN_INC_REF(tcp->tcp_connp); 3466 } 3467 } 3468 3469 3470 /* 3471 * If the "bind_to_req_port_only" parameter is set, if the requested port 3472 * number is available, return it, If not return 0 3473 * 3474 * If "bind_to_req_port_only" parameter is not set and 3475 * If the requested port number is available, return it. If not, return 3476 * the first anonymous port we happen across. If no anonymous ports are 3477 * available, return 0. addr is the requested local address, if any. 3478 * 3479 * In either case, when succeeding update the tcp_t to record the port number 3480 * and insert it in the bind hash table. 3481 * 3482 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3483 * without setting SO_REUSEADDR. This is needed so that they 3484 * can be viewed as two independent transport protocols. 3485 */ 3486 static in_port_t 3487 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3488 int reuseaddr, boolean_t quick_connect, 3489 boolean_t bind_to_req_port_only, boolean_t user_specified) 3490 { 3491 /* number of times we have run around the loop */ 3492 int count = 0; 3493 /* maximum number of times to run around the loop */ 3494 int loopmax; 3495 conn_t *connp = tcp->tcp_connp; 3496 zoneid_t zoneid = connp->conn_zoneid; 3497 tcp_stack_t *tcps = tcp->tcp_tcps; 3498 3499 /* 3500 * Lookup for free addresses is done in a loop and "loopmax" 3501 * influences how long we spin in the loop 3502 */ 3503 if (bind_to_req_port_only) { 3504 /* 3505 * If the requested port is busy, don't bother to look 3506 * for a new one. Setting loop maximum count to 1 has 3507 * that effect. 3508 */ 3509 loopmax = 1; 3510 } else { 3511 /* 3512 * If the requested port is busy, look for a free one 3513 * in the anonymous port range. 3514 * Set loopmax appropriately so that one does not look 3515 * forever in the case all of the anonymous ports are in use. 3516 */ 3517 if (tcp->tcp_anon_priv_bind) { 3518 /* 3519 * loopmax = 3520 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3521 */ 3522 loopmax = IPPORT_RESERVED - 3523 tcps->tcps_min_anonpriv_port; 3524 } else { 3525 loopmax = (tcps->tcps_largest_anon_port - 3526 tcps->tcps_smallest_anon_port + 1); 3527 } 3528 } 3529 do { 3530 uint16_t lport; 3531 tf_t *tbf; 3532 tcp_t *ltcp; 3533 conn_t *lconnp; 3534 3535 lport = htons(port); 3536 3537 /* 3538 * Ensure that the tcp_t is not currently in the bind hash. 3539 * Hold the lock on the hash bucket to ensure that 3540 * the duplicate check plus the insertion is an atomic 3541 * operation. 3542 * 3543 * This function does an inline lookup on the bind hash list 3544 * Make sure that we access only members of tcp_t 3545 * and that we don't look at tcp_tcp, since we are not 3546 * doing a CONN_INC_REF. 3547 */ 3548 tcp_bind_hash_remove(tcp); 3549 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)]; 3550 mutex_enter(&tbf->tf_lock); 3551 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3552 ltcp = ltcp->tcp_bind_hash) { 3553 boolean_t not_socket; 3554 boolean_t exclbind; 3555 3556 if (lport != ltcp->tcp_lport) 3557 continue; 3558 3559 lconnp = ltcp->tcp_connp; 3560 3561 /* 3562 * On a labeled system, we must treat bindings to ports 3563 * on shared IP addresses by sockets with MAC exemption 3564 * privilege as being in all zones, as there's 3565 * otherwise no way to identify the right receiver. 3566 */ 3567 if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) || 3568 IPCL_ZONE_MATCH(connp, 3569 ltcp->tcp_connp->conn_zoneid)) && 3570 !lconnp->conn_mac_exempt && 3571 !connp->conn_mac_exempt) 3572 continue; 3573 3574 /* 3575 * If TCP_EXCLBIND is set for either the bound or 3576 * binding endpoint, the semantics of bind 3577 * is changed according to the following. 3578 * 3579 * spec = specified address (v4 or v6) 3580 * unspec = unspecified address (v4 or v6) 3581 * A = specified addresses are different for endpoints 3582 * 3583 * bound bind to allowed 3584 * ------------------------------------- 3585 * unspec unspec no 3586 * unspec spec no 3587 * spec unspec no 3588 * spec spec yes if A 3589 * 3590 * For labeled systems, SO_MAC_EXEMPT behaves the same 3591 * as TCP_EXCLBIND, except that zoneid is ignored. 3592 * 3593 * Note: 3594 * 3595 * 1. Because of TLI semantics, an endpoint can go 3596 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3597 * TCPS_BOUND, depending on whether it is originally 3598 * a listener or not. That is why we need to check 3599 * for states greater than or equal to TCPS_BOUND 3600 * here. 3601 * 3602 * 2. Ideally, we should only check for state equals 3603 * to TCPS_LISTEN. And the following check should be 3604 * added. 3605 * 3606 * if (ltcp->tcp_state == TCPS_LISTEN || 3607 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3608 * ... 3609 * } 3610 * 3611 * The semantics will be changed to this. If the 3612 * endpoint on the list is in state not equal to 3613 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3614 * set, let the bind succeed. 3615 * 3616 * Because of (1), we cannot do that for TLI 3617 * endpoints. But we can do that for socket endpoints. 3618 * If in future, we can change this going back 3619 * semantics, we can use the above check for TLI also. 3620 */ 3621 not_socket = !(TCP_IS_SOCKET(ltcp) && 3622 TCP_IS_SOCKET(tcp)); 3623 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3624 3625 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3626 (exclbind && (not_socket || 3627 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3628 if (V6_OR_V4_INADDR_ANY( 3629 ltcp->tcp_bound_source_v6) || 3630 V6_OR_V4_INADDR_ANY(*laddr) || 3631 IN6_ARE_ADDR_EQUAL(laddr, 3632 <cp->tcp_bound_source_v6)) { 3633 break; 3634 } 3635 continue; 3636 } 3637 3638 /* 3639 * Check ipversion to allow IPv4 and IPv6 sockets to 3640 * have disjoint port number spaces, if *_EXCLBIND 3641 * is not set and only if the application binds to a 3642 * specific port. We use the same autoassigned port 3643 * number space for IPv4 and IPv6 sockets. 3644 */ 3645 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3646 bind_to_req_port_only) 3647 continue; 3648 3649 /* 3650 * Ideally, we should make sure that the source 3651 * address, remote address, and remote port in the 3652 * four tuple for this tcp-connection is unique. 3653 * However, trying to find out the local source 3654 * address would require too much code duplication 3655 * with IP, since IP needs needs to have that code 3656 * to support userland TCP implementations. 3657 */ 3658 if (quick_connect && 3659 (ltcp->tcp_state > TCPS_LISTEN) && 3660 ((tcp->tcp_fport != ltcp->tcp_fport) || 3661 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3662 <cp->tcp_remote_v6))) 3663 continue; 3664 3665 if (!reuseaddr) { 3666 /* 3667 * No socket option SO_REUSEADDR. 3668 * If existing port is bound to 3669 * a non-wildcard IP address 3670 * and the requesting stream is 3671 * bound to a distinct 3672 * different IP addresses 3673 * (non-wildcard, also), keep 3674 * going. 3675 */ 3676 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3677 !V6_OR_V4_INADDR_ANY( 3678 ltcp->tcp_bound_source_v6) && 3679 !IN6_ARE_ADDR_EQUAL(laddr, 3680 <cp->tcp_bound_source_v6)) 3681 continue; 3682 if (ltcp->tcp_state >= TCPS_BOUND) { 3683 /* 3684 * This port is being used and 3685 * its state is >= TCPS_BOUND, 3686 * so we can't bind to it. 3687 */ 3688 break; 3689 } 3690 } else { 3691 /* 3692 * socket option SO_REUSEADDR is set on the 3693 * binding tcp_t. 3694 * 3695 * If two streams are bound to 3696 * same IP address or both addr 3697 * and bound source are wildcards 3698 * (INADDR_ANY), we want to stop 3699 * searching. 3700 * We have found a match of IP source 3701 * address and source port, which is 3702 * refused regardless of the 3703 * SO_REUSEADDR setting, so we break. 3704 */ 3705 if (IN6_ARE_ADDR_EQUAL(laddr, 3706 <cp->tcp_bound_source_v6) && 3707 (ltcp->tcp_state == TCPS_LISTEN || 3708 ltcp->tcp_state == TCPS_BOUND)) 3709 break; 3710 } 3711 } 3712 if (ltcp != NULL) { 3713 /* The port number is busy */ 3714 mutex_exit(&tbf->tf_lock); 3715 } else { 3716 /* 3717 * This port is ours. Insert in fanout and mark as 3718 * bound to prevent others from getting the port 3719 * number. 3720 */ 3721 tcp->tcp_state = TCPS_BOUND; 3722 tcp->tcp_lport = htons(port); 3723 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3724 3725 ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH( 3726 tcp->tcp_lport)] == tbf); 3727 tcp_bind_hash_insert(tbf, tcp, 1); 3728 3729 mutex_exit(&tbf->tf_lock); 3730 3731 /* 3732 * We don't want tcp_next_port_to_try to "inherit" 3733 * a port number supplied by the user in a bind. 3734 */ 3735 if (user_specified) 3736 return (port); 3737 3738 /* 3739 * This is the only place where tcp_next_port_to_try 3740 * is updated. After the update, it may or may not 3741 * be in the valid range. 3742 */ 3743 if (!tcp->tcp_anon_priv_bind) 3744 tcps->tcps_next_port_to_try = port + 1; 3745 return (port); 3746 } 3747 3748 if (tcp->tcp_anon_priv_bind) { 3749 port = tcp_get_next_priv_port(tcp); 3750 } else { 3751 if (count == 0 && user_specified) { 3752 /* 3753 * We may have to return an anonymous port. So 3754 * get one to start with. 3755 */ 3756 port = 3757 tcp_update_next_port( 3758 tcps->tcps_next_port_to_try, 3759 tcp, B_TRUE); 3760 user_specified = B_FALSE; 3761 } else { 3762 port = tcp_update_next_port(port + 1, tcp, 3763 B_FALSE); 3764 } 3765 } 3766 if (port == 0) 3767 break; 3768 3769 /* 3770 * Don't let this loop run forever in the case where 3771 * all of the anonymous ports are in use. 3772 */ 3773 } while (++count < loopmax); 3774 return (0); 3775 } 3776 3777 /* 3778 * tcp_clean_death / tcp_close_detached must not be called more than once 3779 * on a tcp. Thus every function that potentially calls tcp_clean_death 3780 * must check for the tcp state before calling tcp_clean_death. 3781 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3782 * tcp_timer_handler, all check for the tcp state. 3783 */ 3784 /* ARGSUSED */ 3785 void 3786 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3787 { 3788 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3789 3790 freemsg(mp); 3791 if (tcp->tcp_state > TCPS_BOUND) 3792 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, 3793 ETIMEDOUT, 5); 3794 } 3795 3796 /* 3797 * We are dying for some reason. Try to do it gracefully. (May be called 3798 * as writer.) 3799 * 3800 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3801 * done by a service procedure). 3802 * TBD - Should the return value distinguish between the tcp_t being 3803 * freed and it being reinitialized? 3804 */ 3805 static int 3806 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3807 { 3808 mblk_t *mp; 3809 queue_t *q; 3810 tcp_stack_t *tcps = tcp->tcp_tcps; 3811 3812 TCP_CLD_STAT(tag); 3813 3814 #if TCP_TAG_CLEAN_DEATH 3815 tcp->tcp_cleandeathtag = tag; 3816 #endif 3817 3818 if (tcp->tcp_fused) 3819 tcp_unfuse(tcp); 3820 3821 if (tcp->tcp_linger_tid != 0 && 3822 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3823 tcp_stop_lingering(tcp); 3824 } 3825 3826 ASSERT(tcp != NULL); 3827 ASSERT((tcp->tcp_family == AF_INET && 3828 tcp->tcp_ipversion == IPV4_VERSION) || 3829 (tcp->tcp_family == AF_INET6 && 3830 (tcp->tcp_ipversion == IPV4_VERSION || 3831 tcp->tcp_ipversion == IPV6_VERSION))); 3832 3833 if (TCP_IS_DETACHED(tcp)) { 3834 if (tcp->tcp_hard_binding) { 3835 /* 3836 * Its an eager that we are dealing with. We close the 3837 * eager but in case a conn_ind has already gone to the 3838 * listener, let tcp_accept_finish() send a discon_ind 3839 * to the listener and drop the last reference. If the 3840 * listener doesn't even know about the eager i.e. the 3841 * conn_ind hasn't gone up, blow away the eager and drop 3842 * the last reference as well. If the conn_ind has gone 3843 * up, state should be BOUND. tcp_accept_finish 3844 * will figure out that the connection has received a 3845 * RST and will send a DISCON_IND to the application. 3846 */ 3847 tcp_closei_local(tcp); 3848 if (!tcp->tcp_tconnind_started) { 3849 CONN_DEC_REF(tcp->tcp_connp); 3850 } else { 3851 tcp->tcp_state = TCPS_BOUND; 3852 } 3853 } else { 3854 tcp_close_detached(tcp); 3855 } 3856 return (0); 3857 } 3858 3859 TCP_STAT(tcps, tcp_clean_death_nondetached); 3860 3861 /* 3862 * If T_ORDREL_IND has not been sent yet (done when service routine 3863 * is run) postpone cleaning up the endpoint until service routine 3864 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3865 * client_errno since tcp_close uses the client_errno field. 3866 */ 3867 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3868 if (err != 0) 3869 tcp->tcp_client_errno = err; 3870 3871 tcp->tcp_deferred_clean_death = B_TRUE; 3872 return (-1); 3873 } 3874 3875 q = tcp->tcp_rq; 3876 3877 /* Trash all inbound data */ 3878 flushq(q, FLUSHALL); 3879 3880 /* 3881 * If we are at least part way open and there is error 3882 * (err==0 implies no error) 3883 * notify our client by a T_DISCON_IND. 3884 */ 3885 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3886 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3887 !TCP_IS_SOCKET(tcp)) { 3888 /* 3889 * Send M_FLUSH according to TPI. Because sockets will 3890 * (and must) ignore FLUSHR we do that only for TPI 3891 * endpoints and sockets in STREAMS mode. 3892 */ 3893 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3894 } 3895 if (tcp->tcp_debug) { 3896 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3897 "tcp_clean_death: discon err %d", err); 3898 } 3899 mp = mi_tpi_discon_ind(NULL, err, 0); 3900 if (mp != NULL) { 3901 putnext(q, mp); 3902 } else { 3903 if (tcp->tcp_debug) { 3904 (void) strlog(TCP_MOD_ID, 0, 1, 3905 SL_ERROR|SL_TRACE, 3906 "tcp_clean_death, sending M_ERROR"); 3907 } 3908 (void) putnextctl1(q, M_ERROR, EPROTO); 3909 } 3910 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3911 /* SYN_SENT or SYN_RCVD */ 3912 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 3913 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3914 /* ESTABLISHED or CLOSE_WAIT */ 3915 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 3916 } 3917 } 3918 3919 tcp_reinit(tcp); 3920 return (-1); 3921 } 3922 3923 /* 3924 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3925 * to expire, stop the wait and finish the close. 3926 */ 3927 static void 3928 tcp_stop_lingering(tcp_t *tcp) 3929 { 3930 clock_t delta = 0; 3931 tcp_stack_t *tcps = tcp->tcp_tcps; 3932 3933 tcp->tcp_linger_tid = 0; 3934 if (tcp->tcp_state > TCPS_LISTEN) { 3935 tcp_acceptor_hash_remove(tcp); 3936 mutex_enter(&tcp->tcp_non_sq_lock); 3937 if (tcp->tcp_flow_stopped) { 3938 tcp_clrqfull(tcp); 3939 } 3940 mutex_exit(&tcp->tcp_non_sq_lock); 3941 3942 if (tcp->tcp_timer_tid != 0) { 3943 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3944 tcp->tcp_timer_tid = 0; 3945 } 3946 /* 3947 * Need to cancel those timers which will not be used when 3948 * TCP is detached. This has to be done before the tcp_wq 3949 * is set to the global queue. 3950 */ 3951 tcp_timers_stop(tcp); 3952 3953 3954 tcp->tcp_detached = B_TRUE; 3955 ASSERT(tcps->tcps_g_q != NULL); 3956 tcp->tcp_rq = tcps->tcps_g_q; 3957 tcp->tcp_wq = WR(tcps->tcps_g_q); 3958 3959 if (tcp->tcp_state == TCPS_TIME_WAIT) { 3960 tcp_time_wait_append(tcp); 3961 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 3962 goto finish; 3963 } 3964 3965 /* 3966 * If delta is zero the timer event wasn't executed and was 3967 * successfully canceled. In this case we need to restart it 3968 * with the minimal delta possible. 3969 */ 3970 if (delta >= 0) { 3971 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 3972 delta ? delta : 1); 3973 } 3974 } else { 3975 tcp_closei_local(tcp); 3976 CONN_DEC_REF(tcp->tcp_connp); 3977 } 3978 finish: 3979 /* Signal closing thread that it can complete close */ 3980 mutex_enter(&tcp->tcp_closelock); 3981 tcp->tcp_detached = B_TRUE; 3982 ASSERT(tcps->tcps_g_q != NULL); 3983 tcp->tcp_rq = tcps->tcps_g_q; 3984 tcp->tcp_wq = WR(tcps->tcps_g_q); 3985 tcp->tcp_closed = 1; 3986 cv_signal(&tcp->tcp_closecv); 3987 mutex_exit(&tcp->tcp_closelock); 3988 } 3989 3990 /* 3991 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 3992 * expires. 3993 */ 3994 static void 3995 tcp_close_linger_timeout(void *arg) 3996 { 3997 conn_t *connp = (conn_t *)arg; 3998 tcp_t *tcp = connp->conn_tcp; 3999 4000 tcp->tcp_client_errno = ETIMEDOUT; 4001 tcp_stop_lingering(tcp); 4002 } 4003 4004 static int 4005 tcp_close(queue_t *q, int flags) 4006 { 4007 conn_t *connp = Q_TO_CONN(q); 4008 tcp_t *tcp = connp->conn_tcp; 4009 mblk_t *mp = &tcp->tcp_closemp; 4010 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4011 mblk_t *bp; 4012 4013 ASSERT(WR(q)->q_next == NULL); 4014 ASSERT(connp->conn_ref >= 2); 4015 4016 /* 4017 * We are being closed as /dev/tcp or /dev/tcp6. 4018 * 4019 * Mark the conn as closing. ill_pending_mp_add will not 4020 * add any mp to the pending mp list, after this conn has 4021 * started closing. Same for sq_pending_mp_add 4022 */ 4023 mutex_enter(&connp->conn_lock); 4024 connp->conn_state_flags |= CONN_CLOSING; 4025 if (connp->conn_oper_pending_ill != NULL) 4026 conn_ioctl_cleanup_reqd = B_TRUE; 4027 CONN_INC_REF_LOCKED(connp); 4028 mutex_exit(&connp->conn_lock); 4029 tcp->tcp_closeflags = (uint8_t)flags; 4030 ASSERT(connp->conn_ref >= 3); 4031 4032 /* 4033 * tcp_closemp_used is used below without any protection of a lock 4034 * as we don't expect any one else to use it concurrently at this 4035 * point otherwise it would be a major defect. 4036 */ 4037 4038 if (mp->b_prev == NULL) 4039 tcp->tcp_closemp_used = B_TRUE; 4040 else 4041 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 4042 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 4043 4044 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4045 4046 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4047 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4048 4049 mutex_enter(&tcp->tcp_closelock); 4050 while (!tcp->tcp_closed) { 4051 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4052 /* 4053 * The cv_wait_sig() was interrupted. We now do the 4054 * following: 4055 * 4056 * 1) If the endpoint was lingering, we allow this 4057 * to be interrupted by cancelling the linger timeout 4058 * and closing normally. 4059 * 4060 * 2) Revert to calling cv_wait() 4061 * 4062 * We revert to using cv_wait() to avoid an 4063 * infinite loop which can occur if the calling 4064 * thread is higher priority than the squeue worker 4065 * thread and is bound to the same cpu. 4066 */ 4067 if (tcp->tcp_linger && tcp->tcp_lingertime > 0) { 4068 mutex_exit(&tcp->tcp_closelock); 4069 /* Entering squeue, bump ref count. */ 4070 CONN_INC_REF(connp); 4071 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4072 squeue_enter(connp->conn_sqp, bp, 4073 tcp_linger_interrupted, connp, 4074 SQTAG_IP_TCP_CLOSE); 4075 mutex_enter(&tcp->tcp_closelock); 4076 } 4077 break; 4078 } 4079 } 4080 while (!tcp->tcp_closed) 4081 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 4082 mutex_exit(&tcp->tcp_closelock); 4083 4084 /* 4085 * In the case of listener streams that have eagers in the q or q0 4086 * we wait for the eagers to drop their reference to us. tcp_rq and 4087 * tcp_wq of the eagers point to our queues. By waiting for the 4088 * refcnt to drop to 1, we are sure that the eagers have cleaned 4089 * up their queue pointers and also dropped their references to us. 4090 */ 4091 if (tcp->tcp_wait_for_eagers) { 4092 mutex_enter(&connp->conn_lock); 4093 while (connp->conn_ref != 1) { 4094 cv_wait(&connp->conn_cv, &connp->conn_lock); 4095 } 4096 mutex_exit(&connp->conn_lock); 4097 } 4098 /* 4099 * ioctl cleanup. The mp is queued in the 4100 * ill_pending_mp or in the sq_pending_mp. 4101 */ 4102 if (conn_ioctl_cleanup_reqd) 4103 conn_ioctl_cleanup(connp); 4104 4105 qprocsoff(q); 4106 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 4107 4108 tcp->tcp_cpid = -1; 4109 4110 /* 4111 * Drop IP's reference on the conn. This is the last reference 4112 * on the connp if the state was less than established. If the 4113 * connection has gone into timewait state, then we will have 4114 * one ref for the TCP and one more ref (total of two) for the 4115 * classifier connected hash list (a timewait connections stays 4116 * in connected hash till closed). 4117 * 4118 * We can't assert the references because there might be other 4119 * transient reference places because of some walkers or queued 4120 * packets in squeue for the timewait state. 4121 */ 4122 CONN_DEC_REF(connp); 4123 q->q_ptr = WR(q)->q_ptr = NULL; 4124 return (0); 4125 } 4126 4127 static int 4128 tcpclose_accept(queue_t *q) 4129 { 4130 vmem_t *minor_arena; 4131 dev_t conn_dev; 4132 4133 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4134 4135 /* 4136 * We had opened an acceptor STREAM for sockfs which is 4137 * now being closed due to some error. 4138 */ 4139 qprocsoff(q); 4140 4141 minor_arena = (vmem_t *)WR(q)->q_ptr; 4142 conn_dev = (dev_t)RD(q)->q_ptr; 4143 ASSERT(minor_arena != NULL); 4144 ASSERT(conn_dev != 0); 4145 inet_minor_free(minor_arena, conn_dev); 4146 q->q_ptr = WR(q)->q_ptr = NULL; 4147 return (0); 4148 } 4149 4150 /* 4151 * Called by tcp_close() routine via squeue when lingering is 4152 * interrupted by a signal. 4153 */ 4154 4155 /* ARGSUSED */ 4156 static void 4157 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4158 { 4159 conn_t *connp = (conn_t *)arg; 4160 tcp_t *tcp = connp->conn_tcp; 4161 4162 freeb(mp); 4163 if (tcp->tcp_linger_tid != 0 && 4164 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4165 tcp_stop_lingering(tcp); 4166 tcp->tcp_client_errno = EINTR; 4167 } 4168 } 4169 4170 /* 4171 * Called by streams close routine via squeues when our client blows off her 4172 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4173 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4174 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4175 * acked. 4176 * 4177 * NOTE: tcp_close potentially returns error when lingering. 4178 * However, the stream head currently does not pass these errors 4179 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4180 * errors to the application (from tsleep()) and not errors 4181 * like ECONNRESET caused by receiving a reset packet. 4182 */ 4183 4184 /* ARGSUSED */ 4185 static void 4186 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4187 { 4188 char *msg; 4189 conn_t *connp = (conn_t *)arg; 4190 tcp_t *tcp = connp->conn_tcp; 4191 clock_t delta = 0; 4192 tcp_stack_t *tcps = tcp->tcp_tcps; 4193 4194 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4195 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4196 4197 /* Cancel any pending timeout */ 4198 if (tcp->tcp_ordrelid != 0) { 4199 if (tcp->tcp_timeout) { 4200 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4201 } 4202 tcp->tcp_ordrelid = 0; 4203 tcp->tcp_timeout = B_FALSE; 4204 } 4205 4206 mutex_enter(&tcp->tcp_eager_lock); 4207 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4208 /* Cleanup for listener */ 4209 tcp_eager_cleanup(tcp, 0); 4210 tcp->tcp_wait_for_eagers = 1; 4211 } 4212 mutex_exit(&tcp->tcp_eager_lock); 4213 4214 connp->conn_mdt_ok = B_FALSE; 4215 tcp->tcp_mdt = B_FALSE; 4216 4217 connp->conn_lso_ok = B_FALSE; 4218 tcp->tcp_lso = B_FALSE; 4219 4220 msg = NULL; 4221 switch (tcp->tcp_state) { 4222 case TCPS_CLOSED: 4223 case TCPS_IDLE: 4224 case TCPS_BOUND: 4225 case TCPS_LISTEN: 4226 break; 4227 case TCPS_SYN_SENT: 4228 msg = "tcp_close, during connect"; 4229 break; 4230 case TCPS_SYN_RCVD: 4231 /* 4232 * Close during the connect 3-way handshake 4233 * but here there may or may not be pending data 4234 * already on queue. Process almost same as in 4235 * the ESTABLISHED state. 4236 */ 4237 /* FALLTHRU */ 4238 default: 4239 if (tcp->tcp_fused) 4240 tcp_unfuse(tcp); 4241 4242 /* 4243 * If SO_LINGER has set a zero linger time, abort the 4244 * connection with a reset. 4245 */ 4246 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4247 msg = "tcp_close, zero lingertime"; 4248 break; 4249 } 4250 4251 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4252 /* 4253 * Abort connection if there is unread data queued. 4254 */ 4255 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4256 msg = "tcp_close, unread data"; 4257 break; 4258 } 4259 /* 4260 * tcp_hard_bound is now cleared thus all packets go through 4261 * tcp_lookup. This fact is used by tcp_detach below. 4262 * 4263 * We have done a qwait() above which could have possibly 4264 * drained more messages in turn causing transition to a 4265 * different state. Check whether we have to do the rest 4266 * of the processing or not. 4267 */ 4268 if (tcp->tcp_state <= TCPS_LISTEN) 4269 break; 4270 4271 /* 4272 * Transmit the FIN before detaching the tcp_t. 4273 * After tcp_detach returns this queue/perimeter 4274 * no longer owns the tcp_t thus others can modify it. 4275 */ 4276 (void) tcp_xmit_end(tcp); 4277 4278 /* 4279 * If lingering on close then wait until the fin is acked, 4280 * the SO_LINGER time passes, or a reset is sent/received. 4281 */ 4282 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4283 !(tcp->tcp_fin_acked) && 4284 tcp->tcp_state >= TCPS_ESTABLISHED) { 4285 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4286 tcp->tcp_client_errno = EWOULDBLOCK; 4287 } else if (tcp->tcp_client_errno == 0) { 4288 4289 ASSERT(tcp->tcp_linger_tid == 0); 4290 4291 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4292 tcp_close_linger_timeout, 4293 tcp->tcp_lingertime * hz); 4294 4295 /* tcp_close_linger_timeout will finish close */ 4296 if (tcp->tcp_linger_tid == 0) 4297 tcp->tcp_client_errno = ENOSR; 4298 else 4299 return; 4300 } 4301 4302 /* 4303 * Check if we need to detach or just close 4304 * the instance. 4305 */ 4306 if (tcp->tcp_state <= TCPS_LISTEN) 4307 break; 4308 } 4309 4310 /* 4311 * Make sure that no other thread will access the tcp_rq of 4312 * this instance (through lookups etc.) as tcp_rq will go 4313 * away shortly. 4314 */ 4315 tcp_acceptor_hash_remove(tcp); 4316 4317 mutex_enter(&tcp->tcp_non_sq_lock); 4318 if (tcp->tcp_flow_stopped) { 4319 tcp_clrqfull(tcp); 4320 } 4321 mutex_exit(&tcp->tcp_non_sq_lock); 4322 4323 if (tcp->tcp_timer_tid != 0) { 4324 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4325 tcp->tcp_timer_tid = 0; 4326 } 4327 /* 4328 * Need to cancel those timers which will not be used when 4329 * TCP is detached. This has to be done before the tcp_wq 4330 * is set to the global queue. 4331 */ 4332 tcp_timers_stop(tcp); 4333 4334 tcp->tcp_detached = B_TRUE; 4335 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4336 tcp_time_wait_append(tcp); 4337 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 4338 ASSERT(connp->conn_ref >= 3); 4339 goto finish; 4340 } 4341 4342 /* 4343 * If delta is zero the timer event wasn't executed and was 4344 * successfully canceled. In this case we need to restart it 4345 * with the minimal delta possible. 4346 */ 4347 if (delta >= 0) 4348 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4349 delta ? delta : 1); 4350 4351 ASSERT(connp->conn_ref >= 3); 4352 goto finish; 4353 } 4354 4355 /* Detach did not complete. Still need to remove q from stream. */ 4356 if (msg) { 4357 if (tcp->tcp_state == TCPS_ESTABLISHED || 4358 tcp->tcp_state == TCPS_CLOSE_WAIT) 4359 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 4360 if (tcp->tcp_state == TCPS_SYN_SENT || 4361 tcp->tcp_state == TCPS_SYN_RCVD) 4362 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 4363 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4364 } 4365 4366 tcp_closei_local(tcp); 4367 CONN_DEC_REF(connp); 4368 ASSERT(connp->conn_ref >= 2); 4369 4370 finish: 4371 /* 4372 * Although packets are always processed on the correct 4373 * tcp's perimeter and access is serialized via squeue's, 4374 * IP still needs a queue when sending packets in time_wait 4375 * state so use WR(tcps_g_q) till ip_output() can be 4376 * changed to deal with just connp. For read side, we 4377 * could have set tcp_rq to NULL but there are some cases 4378 * in tcp_rput_data() from early days of this code which 4379 * do a putnext without checking if tcp is closed. Those 4380 * need to be identified before both tcp_rq and tcp_wq 4381 * can be set to NULL and tcps_g_q can disappear forever. 4382 */ 4383 mutex_enter(&tcp->tcp_closelock); 4384 /* 4385 * Don't change the queues in the case of a listener that has 4386 * eagers in its q or q0. It could surprise the eagers. 4387 * Instead wait for the eagers outside the squeue. 4388 */ 4389 if (!tcp->tcp_wait_for_eagers) { 4390 tcp->tcp_detached = B_TRUE; 4391 /* 4392 * When default queue is closing we set tcps_g_q to NULL 4393 * after the close is done. 4394 */ 4395 ASSERT(tcps->tcps_g_q != NULL); 4396 tcp->tcp_rq = tcps->tcps_g_q; 4397 tcp->tcp_wq = WR(tcps->tcps_g_q); 4398 } 4399 4400 /* Signal tcp_close() to finish closing. */ 4401 tcp->tcp_closed = 1; 4402 cv_signal(&tcp->tcp_closecv); 4403 mutex_exit(&tcp->tcp_closelock); 4404 } 4405 4406 4407 /* 4408 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4409 * Some stream heads get upset if they see these later on as anything but NULL. 4410 */ 4411 static void 4412 tcp_close_mpp(mblk_t **mpp) 4413 { 4414 mblk_t *mp; 4415 4416 if ((mp = *mpp) != NULL) { 4417 do { 4418 mp->b_next = NULL; 4419 mp->b_prev = NULL; 4420 } while ((mp = mp->b_cont) != NULL); 4421 4422 mp = *mpp; 4423 *mpp = NULL; 4424 freemsg(mp); 4425 } 4426 } 4427 4428 /* Do detached close. */ 4429 static void 4430 tcp_close_detached(tcp_t *tcp) 4431 { 4432 if (tcp->tcp_fused) 4433 tcp_unfuse(tcp); 4434 4435 /* 4436 * Clustering code serializes TCP disconnect callbacks and 4437 * cluster tcp list walks by blocking a TCP disconnect callback 4438 * if a cluster tcp list walk is in progress. This ensures 4439 * accurate accounting of TCPs in the cluster code even though 4440 * the TCP list walk itself is not atomic. 4441 */ 4442 tcp_closei_local(tcp); 4443 CONN_DEC_REF(tcp->tcp_connp); 4444 } 4445 4446 /* 4447 * Stop all TCP timers, and free the timer mblks if requested. 4448 */ 4449 void 4450 tcp_timers_stop(tcp_t *tcp) 4451 { 4452 if (tcp->tcp_timer_tid != 0) { 4453 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4454 tcp->tcp_timer_tid = 0; 4455 } 4456 if (tcp->tcp_ka_tid != 0) { 4457 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4458 tcp->tcp_ka_tid = 0; 4459 } 4460 if (tcp->tcp_ack_tid != 0) { 4461 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4462 tcp->tcp_ack_tid = 0; 4463 } 4464 if (tcp->tcp_push_tid != 0) { 4465 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4466 tcp->tcp_push_tid = 0; 4467 } 4468 } 4469 4470 /* 4471 * The tcp_t is going away. Remove it from all lists and set it 4472 * to TCPS_CLOSED. The freeing up of memory is deferred until 4473 * tcp_inactive. This is needed since a thread in tcp_rput might have 4474 * done a CONN_INC_REF on this structure before it was removed from the 4475 * hashes. 4476 */ 4477 static void 4478 tcp_closei_local(tcp_t *tcp) 4479 { 4480 ire_t *ire; 4481 conn_t *connp = tcp->tcp_connp; 4482 tcp_stack_t *tcps = tcp->tcp_tcps; 4483 4484 if (!TCP_IS_SOCKET(tcp)) 4485 tcp_acceptor_hash_remove(tcp); 4486 4487 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4488 tcp->tcp_ibsegs = 0; 4489 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4490 tcp->tcp_obsegs = 0; 4491 4492 /* 4493 * If we are an eager connection hanging off a listener that 4494 * hasn't formally accepted the connection yet, get off his 4495 * list and blow off any data that we have accumulated. 4496 */ 4497 if (tcp->tcp_listener != NULL) { 4498 tcp_t *listener = tcp->tcp_listener; 4499 mutex_enter(&listener->tcp_eager_lock); 4500 /* 4501 * tcp_tconnind_started == B_TRUE means that the 4502 * conn_ind has already gone to listener. At 4503 * this point, eager will be closed but we 4504 * leave it in listeners eager list so that 4505 * if listener decides to close without doing 4506 * accept, we can clean this up. In tcp_wput_accept 4507 * we take care of the case of accept on closed 4508 * eager. 4509 */ 4510 if (!tcp->tcp_tconnind_started) { 4511 tcp_eager_unlink(tcp); 4512 mutex_exit(&listener->tcp_eager_lock); 4513 /* 4514 * We don't want to have any pointers to the 4515 * listener queue, after we have released our 4516 * reference on the listener 4517 */ 4518 ASSERT(tcps->tcps_g_q != NULL); 4519 tcp->tcp_rq = tcps->tcps_g_q; 4520 tcp->tcp_wq = WR(tcps->tcps_g_q); 4521 CONN_DEC_REF(listener->tcp_connp); 4522 } else { 4523 mutex_exit(&listener->tcp_eager_lock); 4524 } 4525 } 4526 4527 /* Stop all the timers */ 4528 tcp_timers_stop(tcp); 4529 4530 if (tcp->tcp_state == TCPS_LISTEN) { 4531 if (tcp->tcp_ip_addr_cache) { 4532 kmem_free((void *)tcp->tcp_ip_addr_cache, 4533 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4534 tcp->tcp_ip_addr_cache = NULL; 4535 } 4536 } 4537 mutex_enter(&tcp->tcp_non_sq_lock); 4538 if (tcp->tcp_flow_stopped) 4539 tcp_clrqfull(tcp); 4540 mutex_exit(&tcp->tcp_non_sq_lock); 4541 4542 tcp_bind_hash_remove(tcp); 4543 /* 4544 * If the tcp_time_wait_collector (which runs outside the squeue) 4545 * is trying to remove this tcp from the time wait list, we will 4546 * block in tcp_time_wait_remove while trying to acquire the 4547 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4548 * requires the ipcl_hash_remove to be ordered after the 4549 * tcp_time_wait_remove for the refcnt checks to work correctly. 4550 */ 4551 if (tcp->tcp_state == TCPS_TIME_WAIT) 4552 (void) tcp_time_wait_remove(tcp, NULL); 4553 CL_INET_DISCONNECT(tcp); 4554 ipcl_hash_remove(connp); 4555 4556 /* 4557 * Delete the cached ire in conn_ire_cache and also mark 4558 * the conn as CONDEMNED 4559 */ 4560 mutex_enter(&connp->conn_lock); 4561 connp->conn_state_flags |= CONN_CONDEMNED; 4562 ire = connp->conn_ire_cache; 4563 connp->conn_ire_cache = NULL; 4564 mutex_exit(&connp->conn_lock); 4565 if (ire != NULL) 4566 IRE_REFRELE_NOTR(ire); 4567 4568 /* Need to cleanup any pending ioctls */ 4569 ASSERT(tcp->tcp_time_wait_next == NULL); 4570 ASSERT(tcp->tcp_time_wait_prev == NULL); 4571 ASSERT(tcp->tcp_time_wait_expire == 0); 4572 tcp->tcp_state = TCPS_CLOSED; 4573 4574 /* Release any SSL context */ 4575 if (tcp->tcp_kssl_ent != NULL) { 4576 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4577 tcp->tcp_kssl_ent = NULL; 4578 } 4579 if (tcp->tcp_kssl_ctx != NULL) { 4580 kssl_release_ctx(tcp->tcp_kssl_ctx); 4581 tcp->tcp_kssl_ctx = NULL; 4582 } 4583 tcp->tcp_kssl_pending = B_FALSE; 4584 4585 tcp_ipsec_cleanup(tcp); 4586 } 4587 4588 /* 4589 * tcp is dying (called from ipcl_conn_destroy and error cases). 4590 * Free the tcp_t in either case. 4591 */ 4592 void 4593 tcp_free(tcp_t *tcp) 4594 { 4595 mblk_t *mp; 4596 ip6_pkt_t *ipp; 4597 4598 ASSERT(tcp != NULL); 4599 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4600 4601 tcp->tcp_rq = NULL; 4602 tcp->tcp_wq = NULL; 4603 4604 tcp_close_mpp(&tcp->tcp_xmit_head); 4605 tcp_close_mpp(&tcp->tcp_reass_head); 4606 if (tcp->tcp_rcv_list != NULL) { 4607 /* Free b_next chain */ 4608 tcp_close_mpp(&tcp->tcp_rcv_list); 4609 } 4610 if ((mp = tcp->tcp_urp_mp) != NULL) { 4611 freemsg(mp); 4612 } 4613 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4614 freemsg(mp); 4615 } 4616 4617 if (tcp->tcp_fused_sigurg_mp != NULL) { 4618 freeb(tcp->tcp_fused_sigurg_mp); 4619 tcp->tcp_fused_sigurg_mp = NULL; 4620 } 4621 4622 if (tcp->tcp_sack_info != NULL) { 4623 if (tcp->tcp_notsack_list != NULL) { 4624 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4625 } 4626 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4627 } 4628 4629 if (tcp->tcp_hopopts != NULL) { 4630 mi_free(tcp->tcp_hopopts); 4631 tcp->tcp_hopopts = NULL; 4632 tcp->tcp_hopoptslen = 0; 4633 } 4634 ASSERT(tcp->tcp_hopoptslen == 0); 4635 if (tcp->tcp_dstopts != NULL) { 4636 mi_free(tcp->tcp_dstopts); 4637 tcp->tcp_dstopts = NULL; 4638 tcp->tcp_dstoptslen = 0; 4639 } 4640 ASSERT(tcp->tcp_dstoptslen == 0); 4641 if (tcp->tcp_rtdstopts != NULL) { 4642 mi_free(tcp->tcp_rtdstopts); 4643 tcp->tcp_rtdstopts = NULL; 4644 tcp->tcp_rtdstoptslen = 0; 4645 } 4646 ASSERT(tcp->tcp_rtdstoptslen == 0); 4647 if (tcp->tcp_rthdr != NULL) { 4648 mi_free(tcp->tcp_rthdr); 4649 tcp->tcp_rthdr = NULL; 4650 tcp->tcp_rthdrlen = 0; 4651 } 4652 ASSERT(tcp->tcp_rthdrlen == 0); 4653 4654 ipp = &tcp->tcp_sticky_ipp; 4655 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4656 IPPF_RTHDR)) 4657 ip6_pkt_free(ipp); 4658 4659 /* 4660 * Free memory associated with the tcp/ip header template. 4661 */ 4662 4663 if (tcp->tcp_iphc != NULL) 4664 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4665 4666 /* 4667 * Following is really a blowing away a union. 4668 * It happens to have exactly two members of identical size 4669 * the following code is enough. 4670 */ 4671 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4672 4673 if (tcp->tcp_tracebuf != NULL) { 4674 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4675 tcp->tcp_tracebuf = NULL; 4676 } 4677 } 4678 4679 4680 /* 4681 * Put a connection confirmation message upstream built from the 4682 * address information within 'iph' and 'tcph'. Report our success or failure. 4683 */ 4684 static boolean_t 4685 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4686 mblk_t **defermp) 4687 { 4688 sin_t sin; 4689 sin6_t sin6; 4690 mblk_t *mp; 4691 char *optp = NULL; 4692 int optlen = 0; 4693 cred_t *cr; 4694 4695 if (defermp != NULL) 4696 *defermp = NULL; 4697 4698 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4699 /* 4700 * Return in T_CONN_CON results of option negotiation through 4701 * the T_CONN_REQ. Note: If there is an real end-to-end option 4702 * negotiation, then what is received from remote end needs 4703 * to be taken into account but there is no such thing (yet?) 4704 * in our TCP/IP. 4705 * Note: We do not use mi_offset_param() here as 4706 * tcp_opts_conn_req contents do not directly come from 4707 * an application and are either generated in kernel or 4708 * from user input that was already verified. 4709 */ 4710 mp = tcp->tcp_conn.tcp_opts_conn_req; 4711 optp = (char *)(mp->b_rptr + 4712 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4713 optlen = (int) 4714 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4715 } 4716 4717 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4718 ipha_t *ipha = (ipha_t *)iphdr; 4719 4720 /* packet is IPv4 */ 4721 if (tcp->tcp_family == AF_INET) { 4722 sin = sin_null; 4723 sin.sin_addr.s_addr = ipha->ipha_src; 4724 sin.sin_port = *(uint16_t *)tcph->th_lport; 4725 sin.sin_family = AF_INET; 4726 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4727 (int)sizeof (sin_t), optp, optlen); 4728 } else { 4729 sin6 = sin6_null; 4730 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4731 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4732 sin6.sin6_family = AF_INET6; 4733 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4734 (int)sizeof (sin6_t), optp, optlen); 4735 4736 } 4737 } else { 4738 ip6_t *ip6h = (ip6_t *)iphdr; 4739 4740 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4741 ASSERT(tcp->tcp_family == AF_INET6); 4742 sin6 = sin6_null; 4743 sin6.sin6_addr = ip6h->ip6_src; 4744 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4745 sin6.sin6_family = AF_INET6; 4746 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4747 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4748 (int)sizeof (sin6_t), optp, optlen); 4749 } 4750 4751 if (!mp) 4752 return (B_FALSE); 4753 4754 if ((cr = DB_CRED(idmp)) != NULL) { 4755 mblk_setcred(mp, cr); 4756 DB_CPID(mp) = DB_CPID(idmp); 4757 } 4758 4759 if (defermp == NULL) 4760 putnext(tcp->tcp_rq, mp); 4761 else 4762 *defermp = mp; 4763 4764 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4765 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4766 return (B_TRUE); 4767 } 4768 4769 /* 4770 * Defense for the SYN attack - 4771 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4772 * one from the list of droppable eagers. This list is a subset of q0. 4773 * see comments before the definition of MAKE_DROPPABLE(). 4774 * 2. Don't drop a SYN request before its first timeout. This gives every 4775 * request at least til the first timeout to complete its 3-way handshake. 4776 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4777 * requests currently on the queue that has timed out. This will be used 4778 * as an indicator of whether an attack is under way, so that appropriate 4779 * actions can be taken. (It's incremented in tcp_timer() and decremented 4780 * either when eager goes into ESTABLISHED, or gets freed up.) 4781 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4782 * # of timeout drops back to <= q0len/32 => SYN alert off 4783 */ 4784 static boolean_t 4785 tcp_drop_q0(tcp_t *tcp) 4786 { 4787 tcp_t *eager; 4788 mblk_t *mp; 4789 tcp_stack_t *tcps = tcp->tcp_tcps; 4790 4791 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4792 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4793 4794 /* Pick oldest eager from the list of droppable eagers */ 4795 eager = tcp->tcp_eager_prev_drop_q0; 4796 4797 /* If list is empty. return B_FALSE */ 4798 if (eager == tcp) { 4799 return (B_FALSE); 4800 } 4801 4802 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4803 if ((mp = allocb(0, BPRI_HI)) == NULL) 4804 return (B_FALSE); 4805 4806 /* 4807 * Take this eager out from the list of droppable eagers since we are 4808 * going to drop it. 4809 */ 4810 MAKE_UNDROPPABLE(eager); 4811 4812 if (tcp->tcp_debug) { 4813 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4814 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4815 " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0, 4816 tcp->tcp_conn_req_cnt_q0, 4817 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4818 } 4819 4820 BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop); 4821 4822 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4823 CONN_INC_REF(eager->tcp_connp); 4824 4825 /* Mark the IRE created for this SYN request temporary */ 4826 tcp_ip_ire_mark_advice(eager); 4827 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4828 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4829 4830 return (B_TRUE); 4831 } 4832 4833 int 4834 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4835 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4836 { 4837 tcp_t *ltcp = lconnp->conn_tcp; 4838 tcp_t *tcp = connp->conn_tcp; 4839 mblk_t *tpi_mp; 4840 ipha_t *ipha; 4841 ip6_t *ip6h; 4842 sin6_t sin6; 4843 in6_addr_t v6dst; 4844 int err; 4845 int ifindex = 0; 4846 cred_t *cr; 4847 tcp_stack_t *tcps = tcp->tcp_tcps; 4848 4849 if (ipvers == IPV4_VERSION) { 4850 ipha = (ipha_t *)mp->b_rptr; 4851 4852 connp->conn_send = ip_output; 4853 connp->conn_recv = tcp_input; 4854 4855 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4856 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4857 4858 sin6 = sin6_null; 4859 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4860 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4861 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4862 sin6.sin6_family = AF_INET6; 4863 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4864 lconnp->conn_zoneid, tcps->tcps_netstack); 4865 if (tcp->tcp_recvdstaddr) { 4866 sin6_t sin6d; 4867 4868 sin6d = sin6_null; 4869 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4870 &sin6d.sin6_addr); 4871 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4872 sin6d.sin6_family = AF_INET; 4873 tpi_mp = mi_tpi_extconn_ind(NULL, 4874 (char *)&sin6d, sizeof (sin6_t), 4875 (char *)&tcp, 4876 (t_scalar_t)sizeof (intptr_t), 4877 (char *)&sin6d, sizeof (sin6_t), 4878 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4879 } else { 4880 tpi_mp = mi_tpi_conn_ind(NULL, 4881 (char *)&sin6, sizeof (sin6_t), 4882 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4883 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4884 } 4885 } else { 4886 ip6h = (ip6_t *)mp->b_rptr; 4887 4888 connp->conn_send = ip_output_v6; 4889 connp->conn_recv = tcp_input; 4890 4891 connp->conn_srcv6 = ip6h->ip6_dst; 4892 connp->conn_remv6 = ip6h->ip6_src; 4893 4894 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4895 ifindex = (int)DB_CKSUMSTUFF(mp); 4896 DB_CKSUMSTUFF(mp) = 0; 4897 4898 sin6 = sin6_null; 4899 sin6.sin6_addr = ip6h->ip6_src; 4900 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4901 sin6.sin6_family = AF_INET6; 4902 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4903 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4904 lconnp->conn_zoneid, tcps->tcps_netstack); 4905 4906 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4907 /* Pass up the scope_id of remote addr */ 4908 sin6.sin6_scope_id = ifindex; 4909 } else { 4910 sin6.sin6_scope_id = 0; 4911 } 4912 if (tcp->tcp_recvdstaddr) { 4913 sin6_t sin6d; 4914 4915 sin6d = sin6_null; 4916 sin6.sin6_addr = ip6h->ip6_dst; 4917 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4918 sin6d.sin6_family = AF_INET; 4919 tpi_mp = mi_tpi_extconn_ind(NULL, 4920 (char *)&sin6d, sizeof (sin6_t), 4921 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4922 (char *)&sin6d, sizeof (sin6_t), 4923 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4924 } else { 4925 tpi_mp = mi_tpi_conn_ind(NULL, 4926 (char *)&sin6, sizeof (sin6_t), 4927 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4928 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4929 } 4930 } 4931 4932 if (tpi_mp == NULL) 4933 return (ENOMEM); 4934 4935 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4936 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4937 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4938 connp->conn_fully_bound = B_FALSE; 4939 4940 if (tcps->tcps_trace) 4941 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4942 4943 /* Inherit information from the "parent" */ 4944 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4945 tcp->tcp_family = ltcp->tcp_family; 4946 tcp->tcp_wq = ltcp->tcp_wq; 4947 tcp->tcp_rq = ltcp->tcp_rq; 4948 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 4949 tcp->tcp_detached = B_TRUE; 4950 if ((err = tcp_init_values(tcp)) != 0) { 4951 freemsg(tpi_mp); 4952 return (err); 4953 } 4954 4955 if (ipvers == IPV4_VERSION) { 4956 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4957 freemsg(tpi_mp); 4958 return (err); 4959 } 4960 ASSERT(tcp->tcp_ipha != NULL); 4961 } else { 4962 /* ifindex must be already set */ 4963 ASSERT(ifindex != 0); 4964 4965 if (ltcp->tcp_bound_if != 0) { 4966 /* 4967 * Set newtcp's bound_if equal to 4968 * listener's value. If ifindex is 4969 * not the same as ltcp->tcp_bound_if, 4970 * it must be a packet for the ipmp group 4971 * of interfaces 4972 */ 4973 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4974 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4975 tcp->tcp_bound_if = ifindex; 4976 } 4977 4978 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 4979 tcp->tcp_recvifindex = 0; 4980 tcp->tcp_recvhops = 0xffffffffU; 4981 ASSERT(tcp->tcp_ip6h != NULL); 4982 } 4983 4984 tcp->tcp_lport = ltcp->tcp_lport; 4985 4986 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 4987 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 4988 /* 4989 * Listener had options of some sort; eager inherits. 4990 * Free up the eager template and allocate one 4991 * of the right size. 4992 */ 4993 if (tcp->tcp_hdr_grown) { 4994 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 4995 } else { 4996 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4997 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 4998 } 4999 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5000 KM_NOSLEEP); 5001 if (tcp->tcp_iphc == NULL) { 5002 tcp->tcp_iphc_len = 0; 5003 freemsg(tpi_mp); 5004 return (ENOMEM); 5005 } 5006 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5007 tcp->tcp_hdr_grown = B_TRUE; 5008 } 5009 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5010 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5011 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5012 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5013 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5014 5015 /* 5016 * Copy the IP+TCP header template from listener to eager 5017 */ 5018 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5019 if (tcp->tcp_ipversion == IPV6_VERSION) { 5020 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5021 IPPROTO_RAW) { 5022 tcp->tcp_ip6h = 5023 (ip6_t *)(tcp->tcp_iphc + 5024 sizeof (ip6i_t)); 5025 } else { 5026 tcp->tcp_ip6h = 5027 (ip6_t *)(tcp->tcp_iphc); 5028 } 5029 tcp->tcp_ipha = NULL; 5030 } else { 5031 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5032 tcp->tcp_ip6h = NULL; 5033 } 5034 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5035 tcp->tcp_ip_hdr_len); 5036 } else { 5037 /* 5038 * only valid case when ipversion of listener and 5039 * eager differ is when listener is IPv6 and 5040 * eager is IPv4. 5041 * Eager header template has been initialized to the 5042 * maximum v4 header sizes, which includes space for 5043 * TCP and IP options. 5044 */ 5045 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5046 (tcp->tcp_ipversion == IPV4_VERSION)); 5047 ASSERT(tcp->tcp_iphc_len >= 5048 TCP_MAX_COMBINED_HEADER_LENGTH); 5049 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5050 /* copy IP header fields individually */ 5051 tcp->tcp_ipha->ipha_ttl = 5052 ltcp->tcp_ip6h->ip6_hops; 5053 bcopy(ltcp->tcp_tcph->th_lport, 5054 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5055 } 5056 5057 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5058 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5059 sizeof (in_port_t)); 5060 5061 if (ltcp->tcp_lport == 0) { 5062 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5063 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5064 sizeof (in_port_t)); 5065 } 5066 5067 if (tcp->tcp_ipversion == IPV4_VERSION) { 5068 ASSERT(ipha != NULL); 5069 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5070 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5071 5072 /* Source routing option copyover (reverse it) */ 5073 if (tcps->tcps_rev_src_routes) 5074 tcp_opt_reverse(tcp, ipha); 5075 } else { 5076 ASSERT(ip6h != NULL); 5077 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5078 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5079 } 5080 5081 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5082 ASSERT(!tcp->tcp_tconnind_started); 5083 /* 5084 * If the SYN contains a credential, it's a loopback packet; attach 5085 * the credential to the TPI message. 5086 */ 5087 if ((cr = DB_CRED(idmp)) != NULL) { 5088 mblk_setcred(tpi_mp, cr); 5089 DB_CPID(tpi_mp) = DB_CPID(idmp); 5090 } 5091 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5092 5093 /* Inherit the listener's SSL protection state */ 5094 5095 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5096 kssl_hold_ent(tcp->tcp_kssl_ent); 5097 tcp->tcp_kssl_pending = B_TRUE; 5098 } 5099 5100 return (0); 5101 } 5102 5103 5104 int 5105 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5106 tcph_t *tcph, mblk_t *idmp) 5107 { 5108 tcp_t *ltcp = lconnp->conn_tcp; 5109 tcp_t *tcp = connp->conn_tcp; 5110 sin_t sin; 5111 mblk_t *tpi_mp = NULL; 5112 int err; 5113 cred_t *cr; 5114 tcp_stack_t *tcps = tcp->tcp_tcps; 5115 5116 sin = sin_null; 5117 sin.sin_addr.s_addr = ipha->ipha_src; 5118 sin.sin_port = *(uint16_t *)tcph->th_lport; 5119 sin.sin_family = AF_INET; 5120 if (ltcp->tcp_recvdstaddr) { 5121 sin_t sind; 5122 5123 sind = sin_null; 5124 sind.sin_addr.s_addr = ipha->ipha_dst; 5125 sind.sin_port = *(uint16_t *)tcph->th_fport; 5126 sind.sin_family = AF_INET; 5127 tpi_mp = mi_tpi_extconn_ind(NULL, 5128 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5129 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5130 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5131 } else { 5132 tpi_mp = mi_tpi_conn_ind(NULL, 5133 (char *)&sin, sizeof (sin_t), 5134 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5135 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5136 } 5137 5138 if (tpi_mp == NULL) { 5139 return (ENOMEM); 5140 } 5141 5142 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5143 connp->conn_send = ip_output; 5144 connp->conn_recv = tcp_input; 5145 connp->conn_fully_bound = B_FALSE; 5146 5147 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5148 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5149 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5150 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5151 5152 if (tcps->tcps_trace) { 5153 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5154 } 5155 5156 /* Inherit information from the "parent" */ 5157 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5158 tcp->tcp_family = ltcp->tcp_family; 5159 tcp->tcp_wq = ltcp->tcp_wq; 5160 tcp->tcp_rq = ltcp->tcp_rq; 5161 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 5162 tcp->tcp_detached = B_TRUE; 5163 if ((err = tcp_init_values(tcp)) != 0) { 5164 freemsg(tpi_mp); 5165 return (err); 5166 } 5167 5168 /* 5169 * Let's make sure that eager tcp template has enough space to 5170 * copy IPv4 listener's tcp template. Since the conn_t structure is 5171 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5172 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5173 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5174 * extension headers or with ip6i_t struct). Note that bcopy() below 5175 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5176 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5177 */ 5178 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5179 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5180 5181 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5182 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5183 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5184 tcp->tcp_ttl = ltcp->tcp_ttl; 5185 tcp->tcp_tos = ltcp->tcp_tos; 5186 5187 /* Copy the IP+TCP header template from listener to eager */ 5188 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5189 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5190 tcp->tcp_ip6h = NULL; 5191 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5192 tcp->tcp_ip_hdr_len); 5193 5194 /* Initialize the IP addresses and Ports */ 5195 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5196 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5197 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5198 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5199 5200 /* Source routing option copyover (reverse it) */ 5201 if (tcps->tcps_rev_src_routes) 5202 tcp_opt_reverse(tcp, ipha); 5203 5204 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5205 ASSERT(!tcp->tcp_tconnind_started); 5206 5207 /* 5208 * If the SYN contains a credential, it's a loopback packet; attach 5209 * the credential to the TPI message. 5210 */ 5211 if ((cr = DB_CRED(idmp)) != NULL) { 5212 mblk_setcred(tpi_mp, cr); 5213 DB_CPID(tpi_mp) = DB_CPID(idmp); 5214 } 5215 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5216 5217 /* Inherit the listener's SSL protection state */ 5218 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5219 kssl_hold_ent(tcp->tcp_kssl_ent); 5220 tcp->tcp_kssl_pending = B_TRUE; 5221 } 5222 5223 return (0); 5224 } 5225 5226 /* 5227 * sets up conn for ipsec. 5228 * if the first mblk is M_CTL it is consumed and mpp is updated. 5229 * in case of error mpp is freed. 5230 */ 5231 conn_t * 5232 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5233 { 5234 conn_t *connp = tcp->tcp_connp; 5235 conn_t *econnp; 5236 squeue_t *new_sqp; 5237 mblk_t *first_mp = *mpp; 5238 mblk_t *mp = *mpp; 5239 boolean_t mctl_present = B_FALSE; 5240 uint_t ipvers; 5241 5242 econnp = tcp_get_conn(sqp, tcp->tcp_tcps); 5243 if (econnp == NULL) { 5244 freemsg(first_mp); 5245 return (NULL); 5246 } 5247 if (DB_TYPE(mp) == M_CTL) { 5248 if (mp->b_cont == NULL || 5249 mp->b_cont->b_datap->db_type != M_DATA) { 5250 freemsg(first_mp); 5251 return (NULL); 5252 } 5253 mp = mp->b_cont; 5254 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5255 freemsg(first_mp); 5256 return (NULL); 5257 } 5258 5259 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5260 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5261 mctl_present = B_TRUE; 5262 } else { 5263 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5264 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5265 } 5266 5267 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5268 DB_CKSUMSTART(mp) = 0; 5269 5270 ASSERT(OK_32PTR(mp->b_rptr)); 5271 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5272 if (ipvers == IPV4_VERSION) { 5273 uint16_t *up; 5274 uint32_t ports; 5275 ipha_t *ipha; 5276 5277 ipha = (ipha_t *)mp->b_rptr; 5278 up = (uint16_t *)((uchar_t *)ipha + 5279 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5280 ports = *(uint32_t *)up; 5281 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5282 ipha->ipha_dst, ipha->ipha_src, ports); 5283 } else { 5284 uint16_t *up; 5285 uint32_t ports; 5286 uint16_t ip_hdr_len; 5287 uint8_t *nexthdrp; 5288 ip6_t *ip6h; 5289 tcph_t *tcph; 5290 5291 ip6h = (ip6_t *)mp->b_rptr; 5292 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5293 ip_hdr_len = IPV6_HDR_LEN; 5294 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5295 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5296 CONN_DEC_REF(econnp); 5297 freemsg(first_mp); 5298 return (NULL); 5299 } 5300 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5301 up = (uint16_t *)tcph->th_lport; 5302 ports = *(uint32_t *)up; 5303 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5304 ip6h->ip6_dst, ip6h->ip6_src, ports); 5305 } 5306 5307 /* 5308 * The caller already ensured that there is a sqp present. 5309 */ 5310 econnp->conn_sqp = new_sqp; 5311 5312 if (connp->conn_policy != NULL) { 5313 ipsec_in_t *ii; 5314 ii = (ipsec_in_t *)(first_mp->b_rptr); 5315 ASSERT(ii->ipsec_in_policy == NULL); 5316 IPPH_REFHOLD(connp->conn_policy); 5317 ii->ipsec_in_policy = connp->conn_policy; 5318 5319 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5320 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5321 CONN_DEC_REF(econnp); 5322 freemsg(first_mp); 5323 return (NULL); 5324 } 5325 } 5326 5327 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5328 CONN_DEC_REF(econnp); 5329 freemsg(first_mp); 5330 return (NULL); 5331 } 5332 5333 /* 5334 * If we know we have some policy, pass the "IPSEC" 5335 * options size TCP uses this adjust the MSS. 5336 */ 5337 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5338 if (mctl_present) { 5339 freeb(first_mp); 5340 *mpp = mp; 5341 } 5342 5343 return (econnp); 5344 } 5345 5346 /* 5347 * tcp_get_conn/tcp_free_conn 5348 * 5349 * tcp_get_conn is used to get a clean tcp connection structure. 5350 * It tries to reuse the connections put on the freelist by the 5351 * time_wait_collector failing which it goes to kmem_cache. This 5352 * way has two benefits compared to just allocating from and 5353 * freeing to kmem_cache. 5354 * 1) The time_wait_collector can free (which includes the cleanup) 5355 * outside the squeue. So when the interrupt comes, we have a clean 5356 * connection sitting in the freelist. Obviously, this buys us 5357 * performance. 5358 * 5359 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5360 * has multiple disadvantages - tying up the squeue during alloc, and the 5361 * fact that IPSec policy initialization has to happen here which 5362 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5363 * But allocating the conn/tcp in IP land is also not the best since 5364 * we can't check the 'q' and 'q0' which are protected by squeue and 5365 * blindly allocate memory which might have to be freed here if we are 5366 * not allowed to accept the connection. By using the freelist and 5367 * putting the conn/tcp back in freelist, we don't pay a penalty for 5368 * allocating memory without checking 'q/q0' and freeing it if we can't 5369 * accept the connection. 5370 * 5371 * Care should be taken to put the conn back in the same squeue's freelist 5372 * from which it was allocated. Best results are obtained if conn is 5373 * allocated from listener's squeue and freed to the same. Time wait 5374 * collector will free up the freelist is the connection ends up sitting 5375 * there for too long. 5376 */ 5377 void * 5378 tcp_get_conn(void *arg, tcp_stack_t *tcps) 5379 { 5380 tcp_t *tcp = NULL; 5381 conn_t *connp = NULL; 5382 squeue_t *sqp = (squeue_t *)arg; 5383 tcp_squeue_priv_t *tcp_time_wait; 5384 netstack_t *ns; 5385 5386 tcp_time_wait = 5387 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5388 5389 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5390 tcp = tcp_time_wait->tcp_free_list; 5391 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5392 if (tcp != NULL) { 5393 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5394 tcp_time_wait->tcp_free_list_cnt--; 5395 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5396 tcp->tcp_time_wait_next = NULL; 5397 connp = tcp->tcp_connp; 5398 connp->conn_flags |= IPCL_REUSED; 5399 5400 ASSERT(tcp->tcp_tcps == NULL); 5401 ASSERT(connp->conn_netstack == NULL); 5402 ns = tcps->tcps_netstack; 5403 netstack_hold(ns); 5404 connp->conn_netstack = ns; 5405 tcp->tcp_tcps = tcps; 5406 TCPS_REFHOLD(tcps); 5407 ipcl_globalhash_insert(connp); 5408 return ((void *)connp); 5409 } 5410 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5411 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 5412 tcps->tcps_netstack)) == NULL) 5413 return (NULL); 5414 tcp = connp->conn_tcp; 5415 tcp->tcp_tcps = tcps; 5416 TCPS_REFHOLD(tcps); 5417 return ((void *)connp); 5418 } 5419 5420 /* 5421 * Update the cached label for the given tcp_t. This should be called once per 5422 * connection, and before any packets are sent or tcp_process_options is 5423 * invoked. Returns B_FALSE if the correct label could not be constructed. 5424 */ 5425 static boolean_t 5426 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5427 { 5428 conn_t *connp = tcp->tcp_connp; 5429 5430 if (tcp->tcp_ipversion == IPV4_VERSION) { 5431 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5432 int added; 5433 5434 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5435 connp->conn_mac_exempt, 5436 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5437 return (B_FALSE); 5438 5439 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5440 if (added == -1) 5441 return (B_FALSE); 5442 tcp->tcp_hdr_len += added; 5443 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5444 tcp->tcp_ip_hdr_len += added; 5445 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5446 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5447 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5448 tcp->tcp_hdr_len); 5449 if (added == -1) 5450 return (B_FALSE); 5451 tcp->tcp_hdr_len += added; 5452 tcp->tcp_tcph = (tcph_t *) 5453 ((uchar_t *)tcp->tcp_tcph + added); 5454 tcp->tcp_ip_hdr_len += added; 5455 } 5456 } else { 5457 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5458 5459 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5460 connp->conn_mac_exempt, 5461 tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0) 5462 return (B_FALSE); 5463 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5464 &tcp->tcp_label_len, optbuf) != 0) 5465 return (B_FALSE); 5466 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5467 return (B_FALSE); 5468 } 5469 5470 connp->conn_ulp_labeled = 1; 5471 5472 return (B_TRUE); 5473 } 5474 5475 /* BEGIN CSTYLED */ 5476 /* 5477 * 5478 * The sockfs ACCEPT path: 5479 * ======================= 5480 * 5481 * The eager is now established in its own perimeter as soon as SYN is 5482 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5483 * completes the accept processing on the acceptor STREAM. The sending 5484 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5485 * listener but a TLI/XTI listener completes the accept processing 5486 * on the listener perimeter. 5487 * 5488 * Common control flow for 3 way handshake: 5489 * ---------------------------------------- 5490 * 5491 * incoming SYN (listener perimeter) -> tcp_rput_data() 5492 * -> tcp_conn_request() 5493 * 5494 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5495 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5496 * 5497 * Sockfs ACCEPT Path: 5498 * ------------------- 5499 * 5500 * open acceptor stream (tcp_open allocates tcp_wput_accept() 5501 * as STREAM entry point) 5502 * 5503 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5504 * 5505 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5506 * association (we are not behind eager's squeue but sockfs is protecting us 5507 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5508 * is changed to point at tcp_wput(). 5509 * 5510 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5511 * listener (done on listener's perimeter). 5512 * 5513 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5514 * accept. 5515 * 5516 * TLI/XTI client ACCEPT path: 5517 * --------------------------- 5518 * 5519 * soaccept() sends T_CONN_RES on the listener STREAM. 5520 * 5521 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5522 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5523 * 5524 * Locks: 5525 * ====== 5526 * 5527 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5528 * and listeners->tcp_eager_next_q. 5529 * 5530 * Referencing: 5531 * ============ 5532 * 5533 * 1) We start out in tcp_conn_request by eager placing a ref on 5534 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5535 * 5536 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5537 * doing so we place a ref on the eager. This ref is finally dropped at the 5538 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5539 * reference is dropped by the squeue framework. 5540 * 5541 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5542 * 5543 * The reference must be released by the same entity that added the reference 5544 * In the above scheme, the eager is the entity that adds and releases the 5545 * references. Note that tcp_accept_finish executes in the squeue of the eager 5546 * (albeit after it is attached to the acceptor stream). Though 1. executes 5547 * in the listener's squeue, the eager is nascent at this point and the 5548 * reference can be considered to have been added on behalf of the eager. 5549 * 5550 * Eager getting a Reset or listener closing: 5551 * ========================================== 5552 * 5553 * Once the listener and eager are linked, the listener never does the unlink. 5554 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5555 * a message on all eager perimeter. The eager then does the unlink, clears 5556 * any pointers to the listener's queue and drops the reference to the 5557 * listener. The listener waits in tcp_close outside the squeue until its 5558 * refcount has dropped to 1. This ensures that the listener has waited for 5559 * all eagers to clear their association with the listener. 5560 * 5561 * Similarly, if eager decides to go away, it can unlink itself and close. 5562 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5563 * the reference to eager is still valid because of the extra ref we put 5564 * in tcp_send_conn_ind. 5565 * 5566 * Listener can always locate the eager under the protection 5567 * of the listener->tcp_eager_lock, and then do a refhold 5568 * on the eager during the accept processing. 5569 * 5570 * The acceptor stream accesses the eager in the accept processing 5571 * based on the ref placed on eager before sending T_conn_ind. 5572 * The only entity that can negate this refhold is a listener close 5573 * which is mutually exclusive with an active acceptor stream. 5574 * 5575 * Eager's reference on the listener 5576 * =================================== 5577 * 5578 * If the accept happens (even on a closed eager) the eager drops its 5579 * reference on the listener at the start of tcp_accept_finish. If the 5580 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5581 * the reference is dropped in tcp_closei_local. If the listener closes, 5582 * the reference is dropped in tcp_eager_kill. In all cases the reference 5583 * is dropped while executing in the eager's context (squeue). 5584 */ 5585 /* END CSTYLED */ 5586 5587 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5588 5589 /* 5590 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5591 * tcp_rput_data will not see any SYN packets. 5592 */ 5593 /* ARGSUSED */ 5594 void 5595 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5596 { 5597 tcph_t *tcph; 5598 uint32_t seg_seq; 5599 tcp_t *eager; 5600 uint_t ipvers; 5601 ipha_t *ipha; 5602 ip6_t *ip6h; 5603 int err; 5604 conn_t *econnp = NULL; 5605 squeue_t *new_sqp; 5606 mblk_t *mp1; 5607 uint_t ip_hdr_len; 5608 conn_t *connp = (conn_t *)arg; 5609 tcp_t *tcp = connp->conn_tcp; 5610 cred_t *credp; 5611 tcp_stack_t *tcps = tcp->tcp_tcps; 5612 ip_stack_t *ipst; 5613 5614 if (tcp->tcp_state != TCPS_LISTEN) 5615 goto error2; 5616 5617 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5618 5619 mutex_enter(&tcp->tcp_eager_lock); 5620 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5621 mutex_exit(&tcp->tcp_eager_lock); 5622 TCP_STAT(tcps, tcp_listendrop); 5623 BUMP_MIB(&tcps->tcps_mib, tcpListenDrop); 5624 if (tcp->tcp_debug) { 5625 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5626 "tcp_conn_request: listen backlog (max=%d) " 5627 "overflow (%d pending) on %s", 5628 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5629 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5630 } 5631 goto error2; 5632 } 5633 5634 if (tcp->tcp_conn_req_cnt_q0 >= 5635 tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) { 5636 /* 5637 * Q0 is full. Drop a pending half-open req from the queue 5638 * to make room for the new SYN req. Also mark the time we 5639 * drop a SYN. 5640 * 5641 * A more aggressive defense against SYN attack will 5642 * be to set the "tcp_syn_defense" flag now. 5643 */ 5644 TCP_STAT(tcps, tcp_listendropq0); 5645 tcp->tcp_last_rcv_lbolt = lbolt64; 5646 if (!tcp_drop_q0(tcp)) { 5647 mutex_exit(&tcp->tcp_eager_lock); 5648 BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0); 5649 if (tcp->tcp_debug) { 5650 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5651 "tcp_conn_request: listen half-open queue " 5652 "(max=%d) full (%d pending) on %s", 5653 tcps->tcps_conn_req_max_q0, 5654 tcp->tcp_conn_req_cnt_q0, 5655 tcp_display(tcp, NULL, 5656 DISP_PORT_ONLY)); 5657 } 5658 goto error2; 5659 } 5660 } 5661 mutex_exit(&tcp->tcp_eager_lock); 5662 5663 /* 5664 * IP adds STRUIO_EAGER and ensures that the received packet is 5665 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5666 * link local address. If IPSec is enabled, db_struioflag has 5667 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5668 * otherwise an error case if neither of them is set. 5669 */ 5670 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5671 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5672 DB_CKSUMSTART(mp) = 0; 5673 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5674 econnp = (conn_t *)tcp_get_conn(arg2, tcps); 5675 if (econnp == NULL) 5676 goto error2; 5677 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5678 econnp->conn_sqp = new_sqp; 5679 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5680 /* 5681 * mp is updated in tcp_get_ipsec_conn(). 5682 */ 5683 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5684 if (econnp == NULL) { 5685 /* 5686 * mp freed by tcp_get_ipsec_conn. 5687 */ 5688 return; 5689 } 5690 ASSERT(econnp->conn_netstack == connp->conn_netstack); 5691 } else { 5692 goto error2; 5693 } 5694 5695 ASSERT(DB_TYPE(mp) == M_DATA); 5696 5697 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5698 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5699 ASSERT(OK_32PTR(mp->b_rptr)); 5700 if (ipvers == IPV4_VERSION) { 5701 ipha = (ipha_t *)mp->b_rptr; 5702 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5703 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5704 } else { 5705 ip6h = (ip6_t *)mp->b_rptr; 5706 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5707 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5708 } 5709 5710 if (tcp->tcp_family == AF_INET) { 5711 ASSERT(ipvers == IPV4_VERSION); 5712 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5713 } else { 5714 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5715 } 5716 5717 if (err) 5718 goto error3; 5719 5720 eager = econnp->conn_tcp; 5721 5722 /* Inherit various TCP parameters from the listener */ 5723 eager->tcp_naglim = tcp->tcp_naglim; 5724 eager->tcp_first_timer_threshold = 5725 tcp->tcp_first_timer_threshold; 5726 eager->tcp_second_timer_threshold = 5727 tcp->tcp_second_timer_threshold; 5728 5729 eager->tcp_first_ctimer_threshold = 5730 tcp->tcp_first_ctimer_threshold; 5731 eager->tcp_second_ctimer_threshold = 5732 tcp->tcp_second_ctimer_threshold; 5733 5734 /* 5735 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5736 * If it does not, the eager's receive window will be set to the 5737 * listener's receive window later in this function. 5738 */ 5739 eager->tcp_rwnd = 0; 5740 5741 /* 5742 * Inherit listener's tcp_init_cwnd. Need to do this before 5743 * calling tcp_process_options() where tcp_mss_set() is called 5744 * to set the initial cwnd. 5745 */ 5746 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5747 5748 /* 5749 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5750 * zone id before the accept is completed in tcp_wput_accept(). 5751 */ 5752 econnp->conn_zoneid = connp->conn_zoneid; 5753 econnp->conn_allzones = connp->conn_allzones; 5754 5755 /* Copy nexthop information from listener to eager */ 5756 if (connp->conn_nexthop_set) { 5757 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5758 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5759 } 5760 5761 /* 5762 * TSOL: tsol_input_proc() needs the eager's cred before the 5763 * eager is accepted 5764 */ 5765 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5766 crhold(credp); 5767 5768 /* 5769 * If the caller has the process-wide flag set, then default to MAC 5770 * exempt mode. This allows read-down to unlabeled hosts. 5771 */ 5772 if (getpflags(NET_MAC_AWARE, credp) != 0) 5773 econnp->conn_mac_exempt = B_TRUE; 5774 5775 if (is_system_labeled()) { 5776 cred_t *cr; 5777 5778 if (connp->conn_mlp_type != mlptSingle) { 5779 cr = econnp->conn_peercred = DB_CRED(mp); 5780 if (cr != NULL) 5781 crhold(cr); 5782 else 5783 cr = econnp->conn_cred; 5784 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5785 econnp, cred_t *, cr) 5786 } else { 5787 cr = econnp->conn_cred; 5788 DTRACE_PROBE2(syn_accept, conn_t *, 5789 econnp, cred_t *, cr) 5790 } 5791 5792 if (!tcp_update_label(eager, cr)) { 5793 DTRACE_PROBE3( 5794 tx__ip__log__error__connrequest__tcp, 5795 char *, "eager connp(1) label on SYN mp(2) failed", 5796 conn_t *, econnp, mblk_t *, mp); 5797 goto error3; 5798 } 5799 } 5800 5801 eager->tcp_hard_binding = B_TRUE; 5802 5803 tcp_bind_hash_insert(&tcps->tcps_bind_fanout[ 5804 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5805 5806 CL_INET_CONNECT(eager); 5807 5808 /* 5809 * No need to check for multicast destination since ip will only pass 5810 * up multicasts to those that have expressed interest 5811 * TODO: what about rejecting broadcasts? 5812 * Also check that source is not a multicast or broadcast address. 5813 */ 5814 eager->tcp_state = TCPS_SYN_RCVD; 5815 5816 5817 /* 5818 * There should be no ire in the mp as we are being called after 5819 * receiving the SYN. 5820 */ 5821 ASSERT(tcp_ire_mp(mp) == NULL); 5822 5823 /* 5824 * Adapt our mss, ttl, ... according to information provided in IRE. 5825 */ 5826 5827 if (tcp_adapt_ire(eager, NULL) == 0) { 5828 /* Undo the bind_hash_insert */ 5829 tcp_bind_hash_remove(eager); 5830 goto error3; 5831 } 5832 5833 /* Process all TCP options. */ 5834 tcp_process_options(eager, tcph); 5835 5836 /* Is the other end ECN capable? */ 5837 if (tcps->tcps_ecn_permitted >= 1 && 5838 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5839 eager->tcp_ecn_ok = B_TRUE; 5840 } 5841 5842 /* 5843 * listener->tcp_rq->q_hiwat should be the default window size or a 5844 * window size changed via SO_RCVBUF option. First round up the 5845 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5846 * scale option value if needed. Call tcp_rwnd_set() to finish the 5847 * setting. 5848 * 5849 * Note if there is a rpipe metric associated with the remote host, 5850 * we should not inherit receive window size from listener. 5851 */ 5852 eager->tcp_rwnd = MSS_ROUNDUP( 5853 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5854 eager->tcp_rwnd), eager->tcp_mss); 5855 if (eager->tcp_snd_ws_ok) 5856 tcp_set_ws_value(eager); 5857 /* 5858 * Note that this is the only place tcp_rwnd_set() is called for 5859 * accepting a connection. We need to call it here instead of 5860 * after the 3-way handshake because we need to tell the other 5861 * side our rwnd in the SYN-ACK segment. 5862 */ 5863 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5864 5865 /* 5866 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5867 * via soaccept()->soinheritoptions() which essentially applies 5868 * all the listener options to the new STREAM. The options that we 5869 * need to take care of are: 5870 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5871 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5872 * SO_SNDBUF, SO_RCVBUF. 5873 * 5874 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5875 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5876 * tcp_maxpsz_set() gets called later from 5877 * tcp_accept_finish(), the option takes effect. 5878 * 5879 */ 5880 /* Set the TCP options */ 5881 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5882 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5883 eager->tcp_oobinline = tcp->tcp_oobinline; 5884 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5885 eager->tcp_broadcast = tcp->tcp_broadcast; 5886 eager->tcp_useloopback = tcp->tcp_useloopback; 5887 eager->tcp_dontroute = tcp->tcp_dontroute; 5888 eager->tcp_linger = tcp->tcp_linger; 5889 eager->tcp_lingertime = tcp->tcp_lingertime; 5890 if (tcp->tcp_ka_enabled) 5891 eager->tcp_ka_enabled = 1; 5892 5893 /* Set the IP options */ 5894 econnp->conn_broadcast = connp->conn_broadcast; 5895 econnp->conn_loopback = connp->conn_loopback; 5896 econnp->conn_dontroute = connp->conn_dontroute; 5897 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5898 5899 /* Put a ref on the listener for the eager. */ 5900 CONN_INC_REF(connp); 5901 mutex_enter(&tcp->tcp_eager_lock); 5902 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5903 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5904 tcp->tcp_eager_next_q0 = eager; 5905 eager->tcp_eager_prev_q0 = tcp; 5906 5907 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5908 eager->tcp_listener = tcp; 5909 eager->tcp_saved_listener = tcp; 5910 5911 /* 5912 * Tag this detached tcp vector for later retrieval 5913 * by our listener client in tcp_accept(). 5914 */ 5915 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5916 tcp->tcp_conn_req_cnt_q0++; 5917 if (++tcp->tcp_conn_req_seqnum == -1) { 5918 /* 5919 * -1 is "special" and defined in TPI as something 5920 * that should never be used in T_CONN_IND 5921 */ 5922 ++tcp->tcp_conn_req_seqnum; 5923 } 5924 mutex_exit(&tcp->tcp_eager_lock); 5925 5926 if (tcp->tcp_syn_defense) { 5927 /* Don't drop the SYN that comes from a good IP source */ 5928 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5929 if (addr_cache != NULL && eager->tcp_remote == 5930 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5931 eager->tcp_dontdrop = B_TRUE; 5932 } 5933 } 5934 5935 /* 5936 * We need to insert the eager in its own perimeter but as soon 5937 * as we do that, we expose the eager to the classifier and 5938 * should not touch any field outside the eager's perimeter. 5939 * So do all the work necessary before inserting the eager 5940 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5941 * will succeed but undo everything if it fails. 5942 */ 5943 seg_seq = ABE32_TO_U32(tcph->th_seq); 5944 eager->tcp_irs = seg_seq; 5945 eager->tcp_rack = seg_seq; 5946 eager->tcp_rnxt = seg_seq + 1; 5947 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5948 BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens); 5949 eager->tcp_state = TCPS_SYN_RCVD; 5950 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5951 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5952 if (mp1 == NULL) { 5953 /* 5954 * Increment the ref count as we are going to 5955 * enqueueing an mp in squeue 5956 */ 5957 CONN_INC_REF(econnp); 5958 goto error; 5959 } 5960 DB_CPID(mp1) = tcp->tcp_cpid; 5961 eager->tcp_cpid = tcp->tcp_cpid; 5962 eager->tcp_open_time = lbolt64; 5963 5964 /* 5965 * We need to start the rto timer. In normal case, we start 5966 * the timer after sending the packet on the wire (or at 5967 * least believing that packet was sent by waiting for 5968 * CALL_IP_WPUT() to return). Since this is the first packet 5969 * being sent on the wire for the eager, our initial tcp_rto 5970 * is at least tcp_rexmit_interval_min which is a fairly 5971 * large value to allow the algorithm to adjust slowly to large 5972 * fluctuations of RTT during first few transmissions. 5973 * 5974 * Starting the timer first and then sending the packet in this 5975 * case shouldn't make much difference since tcp_rexmit_interval_min 5976 * is of the order of several 100ms and starting the timer 5977 * first and then sending the packet will result in difference 5978 * of few micro seconds. 5979 * 5980 * Without this optimization, we are forced to hold the fanout 5981 * lock across the ipcl_bind_insert() and sending the packet 5982 * so that we don't race against an incoming packet (maybe RST) 5983 * for this eager. 5984 * 5985 * It is necessary to acquire an extra reference on the eager 5986 * at this point and hold it until after tcp_send_data() to 5987 * ensure against an eager close race. 5988 */ 5989 5990 CONN_INC_REF(eager->tcp_connp); 5991 5992 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5993 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5994 5995 5996 /* 5997 * Insert the eager in its own perimeter now. We are ready to deal 5998 * with any packets on eager. 5999 */ 6000 if (eager->tcp_ipversion == IPV4_VERSION) { 6001 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 6002 goto error; 6003 } 6004 } else { 6005 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 6006 goto error; 6007 } 6008 } 6009 6010 /* mark conn as fully-bound */ 6011 econnp->conn_fully_bound = B_TRUE; 6012 6013 /* Send the SYN-ACK */ 6014 tcp_send_data(eager, eager->tcp_wq, mp1); 6015 CONN_DEC_REF(eager->tcp_connp); 6016 freemsg(mp); 6017 6018 return; 6019 error: 6020 freemsg(mp1); 6021 eager->tcp_closemp_used = B_TRUE; 6022 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 6023 squeue_fill(econnp->conn_sqp, &eager->tcp_closemp, tcp_eager_kill, 6024 econnp, SQTAG_TCP_CONN_REQ_2); 6025 6026 /* 6027 * If a connection already exists, send the mp to that connections so 6028 * that it can be appropriately dealt with. 6029 */ 6030 ipst = tcps->tcps_netstack->netstack_ip; 6031 6032 if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) { 6033 if (!IPCL_IS_CONNECTED(econnp)) { 6034 /* 6035 * Something bad happened. ipcl_conn_insert() 6036 * failed because a connection already existed 6037 * in connected hash but we can't find it 6038 * anymore (someone blew it away). Just 6039 * free this message and hopefully remote 6040 * will retransmit at which time the SYN can be 6041 * treated as a new connection or dealth with 6042 * a TH_RST if a connection already exists. 6043 */ 6044 CONN_DEC_REF(econnp); 6045 freemsg(mp); 6046 } else { 6047 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6048 econnp, SQTAG_TCP_CONN_REQ_1); 6049 } 6050 } else { 6051 /* Nobody wants this packet */ 6052 freemsg(mp); 6053 } 6054 return; 6055 error3: 6056 CONN_DEC_REF(econnp); 6057 error2: 6058 freemsg(mp); 6059 } 6060 6061 /* 6062 * In an ideal case of vertical partition in NUMA architecture, its 6063 * beneficial to have the listener and all the incoming connections 6064 * tied to the same squeue. The other constraint is that incoming 6065 * connections should be tied to the squeue attached to interrupted 6066 * CPU for obvious locality reason so this leaves the listener to 6067 * be tied to the same squeue. Our only problem is that when listener 6068 * is binding, the CPU that will get interrupted by the NIC whose 6069 * IP address the listener is binding to is not even known. So 6070 * the code below allows us to change that binding at the time the 6071 * CPU is interrupted by virtue of incoming connection's squeue. 6072 * 6073 * This is usefull only in case of a listener bound to a specific IP 6074 * address. For other kind of listeners, they get bound the 6075 * very first time and there is no attempt to rebind them. 6076 */ 6077 void 6078 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6079 { 6080 conn_t *connp = (conn_t *)arg; 6081 squeue_t *sqp = (squeue_t *)arg2; 6082 squeue_t *new_sqp; 6083 uint32_t conn_flags; 6084 6085 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6086 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6087 } else { 6088 goto done; 6089 } 6090 6091 if (connp->conn_fanout == NULL) 6092 goto done; 6093 6094 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6095 mutex_enter(&connp->conn_fanout->connf_lock); 6096 mutex_enter(&connp->conn_lock); 6097 /* 6098 * No one from read or write side can access us now 6099 * except for already queued packets on this squeue. 6100 * But since we haven't changed the squeue yet, they 6101 * can't execute. If they are processed after we have 6102 * changed the squeue, they are sent back to the 6103 * correct squeue down below. 6104 * But a listner close can race with processing of 6105 * incoming SYN. If incoming SYN processing changes 6106 * the squeue then the listener close which is waiting 6107 * to enter the squeue would operate on the wrong 6108 * squeue. Hence we don't change the squeue here unless 6109 * the refcount is exactly the minimum refcount. The 6110 * minimum refcount of 4 is counted as - 1 each for 6111 * TCP and IP, 1 for being in the classifier hash, and 6112 * 1 for the mblk being processed. 6113 */ 6114 6115 if (connp->conn_ref != 4 || 6116 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6117 mutex_exit(&connp->conn_lock); 6118 mutex_exit(&connp->conn_fanout->connf_lock); 6119 goto done; 6120 } 6121 if (connp->conn_sqp != new_sqp) { 6122 while (connp->conn_sqp != new_sqp) 6123 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6124 } 6125 6126 do { 6127 conn_flags = connp->conn_flags; 6128 conn_flags |= IPCL_FULLY_BOUND; 6129 (void) cas32(&connp->conn_flags, connp->conn_flags, 6130 conn_flags); 6131 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6132 6133 mutex_exit(&connp->conn_fanout->connf_lock); 6134 mutex_exit(&connp->conn_lock); 6135 } 6136 6137 done: 6138 if (connp->conn_sqp != sqp) { 6139 CONN_INC_REF(connp); 6140 squeue_fill(connp->conn_sqp, mp, 6141 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6142 } else { 6143 tcp_conn_request(connp, mp, sqp); 6144 } 6145 } 6146 6147 /* 6148 * Successful connect request processing begins when our client passes 6149 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6150 * our T_OK_ACK reply message upstream. The control flow looks like this: 6151 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6152 * upstream <- tcp_rput() <- IP 6153 * After various error checks are completed, tcp_connect() lays 6154 * the target address and port into the composite header template, 6155 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6156 * request followed by an IRE request, and passes the three mblk message 6157 * down to IP looking like this: 6158 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6159 * Processing continues in tcp_rput() when we receive the following message: 6160 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6161 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6162 * to fire off the connection request, and then passes the T_OK_ACK mblk 6163 * upstream that we filled in below. There are, of course, numerous 6164 * error conditions along the way which truncate the processing described 6165 * above. 6166 */ 6167 static void 6168 tcp_connect(tcp_t *tcp, mblk_t *mp) 6169 { 6170 sin_t *sin; 6171 sin6_t *sin6; 6172 queue_t *q = tcp->tcp_wq; 6173 struct T_conn_req *tcr; 6174 ipaddr_t *dstaddrp; 6175 in_port_t dstport; 6176 uint_t srcid; 6177 6178 tcr = (struct T_conn_req *)mp->b_rptr; 6179 6180 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6181 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6182 tcp_err_ack(tcp, mp, TPROTO, 0); 6183 return; 6184 } 6185 6186 /* 6187 * Determine packet type based on type of address passed in 6188 * the request should contain an IPv4 or IPv6 address. 6189 * Make sure that address family matches the type of 6190 * family of the the address passed down 6191 */ 6192 switch (tcr->DEST_length) { 6193 default: 6194 tcp_err_ack(tcp, mp, TBADADDR, 0); 6195 return; 6196 6197 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6198 /* 6199 * XXX: The check for valid DEST_length was not there 6200 * in earlier releases and some buggy 6201 * TLI apps (e.g Sybase) got away with not feeding 6202 * in sin_zero part of address. 6203 * We allow that bug to keep those buggy apps humming. 6204 * Test suites require the check on DEST_length. 6205 * We construct a new mblk with valid DEST_length 6206 * free the original so the rest of the code does 6207 * not have to keep track of this special shorter 6208 * length address case. 6209 */ 6210 mblk_t *nmp; 6211 struct T_conn_req *ntcr; 6212 sin_t *nsin; 6213 6214 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6215 tcr->OPT_length, BPRI_HI); 6216 if (nmp == NULL) { 6217 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6218 return; 6219 } 6220 ntcr = (struct T_conn_req *)nmp->b_rptr; 6221 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6222 ntcr->PRIM_type = T_CONN_REQ; 6223 ntcr->DEST_length = sizeof (sin_t); 6224 ntcr->DEST_offset = sizeof (struct T_conn_req); 6225 6226 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6227 *nsin = sin_null; 6228 /* Get pointer to shorter address to copy from original mp */ 6229 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6230 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6231 if (sin == NULL || !OK_32PTR((char *)sin)) { 6232 freemsg(nmp); 6233 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6234 return; 6235 } 6236 nsin->sin_family = sin->sin_family; 6237 nsin->sin_port = sin->sin_port; 6238 nsin->sin_addr = sin->sin_addr; 6239 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6240 nmp->b_wptr = (uchar_t *)&nsin[1]; 6241 if (tcr->OPT_length != 0) { 6242 ntcr->OPT_length = tcr->OPT_length; 6243 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6244 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6245 (uchar_t *)ntcr + ntcr->OPT_offset, 6246 tcr->OPT_length); 6247 nmp->b_wptr += tcr->OPT_length; 6248 } 6249 freemsg(mp); /* original mp freed */ 6250 mp = nmp; /* re-initialize original variables */ 6251 tcr = ntcr; 6252 } 6253 /* FALLTHRU */ 6254 6255 case sizeof (sin_t): 6256 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6257 sizeof (sin_t)); 6258 if (sin == NULL || !OK_32PTR((char *)sin)) { 6259 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6260 return; 6261 } 6262 if (tcp->tcp_family != AF_INET || 6263 sin->sin_family != AF_INET) { 6264 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6265 return; 6266 } 6267 if (sin->sin_port == 0) { 6268 tcp_err_ack(tcp, mp, TBADADDR, 0); 6269 return; 6270 } 6271 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6272 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6273 return; 6274 } 6275 6276 break; 6277 6278 case sizeof (sin6_t): 6279 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6280 sizeof (sin6_t)); 6281 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6282 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6283 return; 6284 } 6285 if (tcp->tcp_family != AF_INET6 || 6286 sin6->sin6_family != AF_INET6) { 6287 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6288 return; 6289 } 6290 if (sin6->sin6_port == 0) { 6291 tcp_err_ack(tcp, mp, TBADADDR, 0); 6292 return; 6293 } 6294 break; 6295 } 6296 /* 6297 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6298 * should key on their sequence number and cut them loose. 6299 */ 6300 6301 /* 6302 * If options passed in, feed it for verification and handling 6303 */ 6304 if (tcr->OPT_length != 0) { 6305 mblk_t *ok_mp; 6306 mblk_t *discon_mp; 6307 mblk_t *conn_opts_mp; 6308 int t_error, sys_error, do_disconnect; 6309 6310 conn_opts_mp = NULL; 6311 6312 if (tcp_conprim_opt_process(tcp, mp, 6313 &do_disconnect, &t_error, &sys_error) < 0) { 6314 if (do_disconnect) { 6315 ASSERT(t_error == 0 && sys_error == 0); 6316 discon_mp = mi_tpi_discon_ind(NULL, 6317 ECONNREFUSED, 0); 6318 if (!discon_mp) { 6319 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6320 TSYSERR, ENOMEM); 6321 return; 6322 } 6323 ok_mp = mi_tpi_ok_ack_alloc(mp); 6324 if (!ok_mp) { 6325 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6326 TSYSERR, ENOMEM); 6327 return; 6328 } 6329 qreply(q, ok_mp); 6330 qreply(q, discon_mp); /* no flush! */ 6331 } else { 6332 ASSERT(t_error != 0); 6333 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6334 sys_error); 6335 } 6336 return; 6337 } 6338 /* 6339 * Success in setting options, the mp option buffer represented 6340 * by OPT_length/offset has been potentially modified and 6341 * contains results of option processing. We copy it in 6342 * another mp to save it for potentially influencing returning 6343 * it in T_CONN_CONN. 6344 */ 6345 if (tcr->OPT_length != 0) { /* there are resulting options */ 6346 conn_opts_mp = copyb(mp); 6347 if (!conn_opts_mp) { 6348 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6349 TSYSERR, ENOMEM); 6350 return; 6351 } 6352 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6353 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6354 /* 6355 * Note: 6356 * These resulting option negotiation can include any 6357 * end-to-end negotiation options but there no such 6358 * thing (yet?) in our TCP/IP. 6359 */ 6360 } 6361 } 6362 6363 /* 6364 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6365 * make sure that the template IP header in the tcp structure is an 6366 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6367 * need to this before we call tcp_bindi() so that the port lookup 6368 * code will look for ports in the correct port space (IPv4 and 6369 * IPv6 have separate port spaces). 6370 */ 6371 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6372 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6373 int err = 0; 6374 6375 err = tcp_header_init_ipv4(tcp); 6376 if (err != 0) { 6377 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6378 goto connect_failed; 6379 } 6380 if (tcp->tcp_lport != 0) 6381 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6382 } 6383 6384 switch (tcp->tcp_state) { 6385 case TCPS_IDLE: 6386 /* 6387 * We support quick connect, refer to comments in 6388 * tcp_connect_*() 6389 */ 6390 /* FALLTHRU */ 6391 case TCPS_BOUND: 6392 case TCPS_LISTEN: 6393 if (tcp->tcp_family == AF_INET6) { 6394 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6395 tcp_connect_ipv6(tcp, mp, 6396 &sin6->sin6_addr, 6397 sin6->sin6_port, sin6->sin6_flowinfo, 6398 sin6->__sin6_src_id, sin6->sin6_scope_id); 6399 return; 6400 } 6401 /* 6402 * Destination adress is mapped IPv6 address. 6403 * Source bound address should be unspecified or 6404 * IPv6 mapped address as well. 6405 */ 6406 if (!IN6_IS_ADDR_UNSPECIFIED( 6407 &tcp->tcp_bound_source_v6) && 6408 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6409 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6410 EADDRNOTAVAIL); 6411 break; 6412 } 6413 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6414 dstport = sin6->sin6_port; 6415 srcid = sin6->__sin6_src_id; 6416 } else { 6417 dstaddrp = &sin->sin_addr.s_addr; 6418 dstport = sin->sin_port; 6419 srcid = 0; 6420 } 6421 6422 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6423 return; 6424 default: 6425 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6426 break; 6427 } 6428 /* 6429 * Note: Code below is the "failure" case 6430 */ 6431 /* return error ack and blow away saved option results if any */ 6432 connect_failed: 6433 if (mp != NULL) 6434 putnext(tcp->tcp_rq, mp); 6435 else { 6436 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6437 TSYSERR, ENOMEM); 6438 } 6439 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6440 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6441 } 6442 6443 /* 6444 * Handle connect to IPv4 destinations, including connections for AF_INET6 6445 * sockets connecting to IPv4 mapped IPv6 destinations. 6446 */ 6447 static void 6448 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6449 uint_t srcid) 6450 { 6451 tcph_t *tcph; 6452 mblk_t *mp1; 6453 ipaddr_t dstaddr = *dstaddrp; 6454 int32_t oldstate; 6455 uint16_t lport; 6456 tcp_stack_t *tcps = tcp->tcp_tcps; 6457 6458 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6459 6460 /* Check for attempt to connect to INADDR_ANY */ 6461 if (dstaddr == INADDR_ANY) { 6462 /* 6463 * SunOS 4.x and 4.3 BSD allow an application 6464 * to connect a TCP socket to INADDR_ANY. 6465 * When they do this, the kernel picks the 6466 * address of one interface and uses it 6467 * instead. The kernel usually ends up 6468 * picking the address of the loopback 6469 * interface. This is an undocumented feature. 6470 * However, we provide the same thing here 6471 * in order to have source and binary 6472 * compatibility with SunOS 4.x. 6473 * Update the T_CONN_REQ (sin/sin6) since it is used to 6474 * generate the T_CONN_CON. 6475 */ 6476 dstaddr = htonl(INADDR_LOOPBACK); 6477 *dstaddrp = dstaddr; 6478 } 6479 6480 /* Handle __sin6_src_id if socket not bound to an IP address */ 6481 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6482 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6483 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6484 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6485 tcp->tcp_ipha->ipha_src); 6486 } 6487 6488 /* 6489 * Don't let an endpoint connect to itself. Note that 6490 * the test here does not catch the case where the 6491 * source IP addr was left unspecified by the user. In 6492 * this case, the source addr is set in tcp_adapt_ire() 6493 * using the reply to the T_BIND message that we send 6494 * down to IP here and the check is repeated in tcp_rput_other. 6495 */ 6496 if (dstaddr == tcp->tcp_ipha->ipha_src && 6497 dstport == tcp->tcp_lport) { 6498 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6499 goto failed; 6500 } 6501 6502 tcp->tcp_ipha->ipha_dst = dstaddr; 6503 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6504 6505 /* 6506 * Massage a source route if any putting the first hop 6507 * in iph_dst. Compute a starting value for the checksum which 6508 * takes into account that the original iph_dst should be 6509 * included in the checksum but that ip will include the 6510 * first hop in the source route in the tcp checksum. 6511 */ 6512 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack); 6513 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6514 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6515 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6516 if ((int)tcp->tcp_sum < 0) 6517 tcp->tcp_sum--; 6518 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6519 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6520 (tcp->tcp_sum >> 16)); 6521 tcph = tcp->tcp_tcph; 6522 *(uint16_t *)tcph->th_fport = dstport; 6523 tcp->tcp_fport = dstport; 6524 6525 oldstate = tcp->tcp_state; 6526 /* 6527 * At this point the remote destination address and remote port fields 6528 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6529 * have to see which state tcp was in so we can take apropriate action. 6530 */ 6531 if (oldstate == TCPS_IDLE) { 6532 /* 6533 * We support a quick connect capability here, allowing 6534 * clients to transition directly from IDLE to SYN_SENT 6535 * tcp_bindi will pick an unused port, insert the connection 6536 * in the bind hash and transition to BOUND state. 6537 */ 6538 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6539 tcp, B_TRUE); 6540 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6541 B_FALSE, B_FALSE); 6542 if (lport == 0) { 6543 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6544 goto failed; 6545 } 6546 } 6547 tcp->tcp_state = TCPS_SYN_SENT; 6548 6549 /* 6550 * TODO: allow data with connect requests 6551 * by unlinking M_DATA trailers here and 6552 * linking them in behind the T_OK_ACK mblk. 6553 * The tcp_rput() bind ack handler would then 6554 * feed them to tcp_wput_data() rather than call 6555 * tcp_timer(). 6556 */ 6557 mp = mi_tpi_ok_ack_alloc(mp); 6558 if (!mp) { 6559 tcp->tcp_state = oldstate; 6560 goto failed; 6561 } 6562 if (tcp->tcp_family == AF_INET) { 6563 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6564 sizeof (ipa_conn_t)); 6565 } else { 6566 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6567 sizeof (ipa6_conn_t)); 6568 } 6569 if (mp1) { 6570 /* 6571 * We need to make sure that the conn_recv is set to a non-null 6572 * value before we insert the conn_t into the classifier table. 6573 * This is to avoid a race with an incoming packet which does 6574 * an ipcl_classify(). 6575 */ 6576 tcp->tcp_connp->conn_recv = tcp_input; 6577 6578 /* Hang onto the T_OK_ACK for later. */ 6579 linkb(mp1, mp); 6580 mblk_setcred(mp1, tcp->tcp_cred); 6581 if (tcp->tcp_family == AF_INET) 6582 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6583 else { 6584 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6585 &tcp->tcp_sticky_ipp); 6586 } 6587 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6588 tcp->tcp_active_open = 1; 6589 /* 6590 * If the bind cannot complete immediately 6591 * IP will arrange to call tcp_rput_other 6592 * when the bind completes. 6593 */ 6594 if (mp1 != NULL) 6595 tcp_rput_other(tcp, mp1); 6596 return; 6597 } 6598 /* Error case */ 6599 tcp->tcp_state = oldstate; 6600 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6601 6602 failed: 6603 /* return error ack and blow away saved option results if any */ 6604 if (mp != NULL) 6605 putnext(tcp->tcp_rq, mp); 6606 else { 6607 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6608 TSYSERR, ENOMEM); 6609 } 6610 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6611 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6612 6613 } 6614 6615 /* 6616 * Handle connect to IPv6 destinations. 6617 */ 6618 static void 6619 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6620 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6621 { 6622 tcph_t *tcph; 6623 mblk_t *mp1; 6624 ip6_rthdr_t *rth; 6625 int32_t oldstate; 6626 uint16_t lport; 6627 tcp_stack_t *tcps = tcp->tcp_tcps; 6628 6629 ASSERT(tcp->tcp_family == AF_INET6); 6630 6631 /* 6632 * If we're here, it means that the destination address is a native 6633 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6634 * reason why it might not be IPv6 is if the socket was bound to an 6635 * IPv4-mapped IPv6 address. 6636 */ 6637 if (tcp->tcp_ipversion != IPV6_VERSION) { 6638 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6639 goto failed; 6640 } 6641 6642 /* 6643 * Interpret a zero destination to mean loopback. 6644 * Update the T_CONN_REQ (sin/sin6) since it is used to 6645 * generate the T_CONN_CON. 6646 */ 6647 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6648 *dstaddrp = ipv6_loopback; 6649 } 6650 6651 /* Handle __sin6_src_id if socket not bound to an IP address */ 6652 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6653 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6654 tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack); 6655 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6656 } 6657 6658 /* 6659 * Take care of the scope_id now and add ip6i_t 6660 * if ip6i_t is not already allocated through TCP 6661 * sticky options. At this point tcp_ip6h does not 6662 * have dst info, thus use dstaddrp. 6663 */ 6664 if (scope_id != 0 && 6665 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6666 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6667 ip6i_t *ip6i; 6668 6669 ipp->ipp_ifindex = scope_id; 6670 ip6i = (ip6i_t *)tcp->tcp_iphc; 6671 6672 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6673 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6674 /* Already allocated */ 6675 ip6i->ip6i_flags |= IP6I_IFINDEX; 6676 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6677 ipp->ipp_fields |= IPPF_SCOPE_ID; 6678 } else { 6679 int reterr; 6680 6681 ipp->ipp_fields |= IPPF_SCOPE_ID; 6682 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6683 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6684 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6685 if (reterr != 0) 6686 goto failed; 6687 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6688 } 6689 } 6690 6691 /* 6692 * Don't let an endpoint connect to itself. Note that 6693 * the test here does not catch the case where the 6694 * source IP addr was left unspecified by the user. In 6695 * this case, the source addr is set in tcp_adapt_ire() 6696 * using the reply to the T_BIND message that we send 6697 * down to IP here and the check is repeated in tcp_rput_other. 6698 */ 6699 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6700 (dstport == tcp->tcp_lport)) { 6701 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6702 goto failed; 6703 } 6704 6705 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6706 tcp->tcp_remote_v6 = *dstaddrp; 6707 tcp->tcp_ip6h->ip6_vcf = 6708 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6709 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6710 6711 6712 /* 6713 * Massage a routing header (if present) putting the first hop 6714 * in ip6_dst. Compute a starting value for the checksum which 6715 * takes into account that the original ip6_dst should be 6716 * included in the checksum but that ip will include the 6717 * first hop in the source route in the tcp checksum. 6718 */ 6719 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6720 if (rth != NULL) { 6721 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth, 6722 tcps->tcps_netstack); 6723 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6724 (tcp->tcp_sum >> 16)); 6725 } else { 6726 tcp->tcp_sum = 0; 6727 } 6728 6729 tcph = tcp->tcp_tcph; 6730 *(uint16_t *)tcph->th_fport = dstport; 6731 tcp->tcp_fport = dstport; 6732 6733 oldstate = tcp->tcp_state; 6734 /* 6735 * At this point the remote destination address and remote port fields 6736 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6737 * have to see which state tcp was in so we can take apropriate action. 6738 */ 6739 if (oldstate == TCPS_IDLE) { 6740 /* 6741 * We support a quick connect capability here, allowing 6742 * clients to transition directly from IDLE to SYN_SENT 6743 * tcp_bindi will pick an unused port, insert the connection 6744 * in the bind hash and transition to BOUND state. 6745 */ 6746 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 6747 tcp, B_TRUE); 6748 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6749 B_FALSE, B_FALSE); 6750 if (lport == 0) { 6751 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6752 goto failed; 6753 } 6754 } 6755 tcp->tcp_state = TCPS_SYN_SENT; 6756 /* 6757 * TODO: allow data with connect requests 6758 * by unlinking M_DATA trailers here and 6759 * linking them in behind the T_OK_ACK mblk. 6760 * The tcp_rput() bind ack handler would then 6761 * feed them to tcp_wput_data() rather than call 6762 * tcp_timer(). 6763 */ 6764 mp = mi_tpi_ok_ack_alloc(mp); 6765 if (!mp) { 6766 tcp->tcp_state = oldstate; 6767 goto failed; 6768 } 6769 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6770 if (mp1) { 6771 /* 6772 * We need to make sure that the conn_recv is set to a non-null 6773 * value before we insert the conn_t into the classifier table. 6774 * This is to avoid a race with an incoming packet which does 6775 * an ipcl_classify(). 6776 */ 6777 tcp->tcp_connp->conn_recv = tcp_input; 6778 6779 /* Hang onto the T_OK_ACK for later. */ 6780 linkb(mp1, mp); 6781 mblk_setcred(mp1, tcp->tcp_cred); 6782 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6783 &tcp->tcp_sticky_ipp); 6784 BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens); 6785 tcp->tcp_active_open = 1; 6786 /* ip_bind_v6() may return ACK or ERROR */ 6787 if (mp1 != NULL) 6788 tcp_rput_other(tcp, mp1); 6789 return; 6790 } 6791 /* Error case */ 6792 tcp->tcp_state = oldstate; 6793 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6794 6795 failed: 6796 /* return error ack and blow away saved option results if any */ 6797 if (mp != NULL) 6798 putnext(tcp->tcp_rq, mp); 6799 else { 6800 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6801 TSYSERR, ENOMEM); 6802 } 6803 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6804 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6805 } 6806 6807 /* 6808 * We need a stream q for detached closing tcp connections 6809 * to use. Our client hereby indicates that this q is the 6810 * one to use. 6811 */ 6812 static void 6813 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6814 { 6815 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6816 queue_t *q = tcp->tcp_wq; 6817 tcp_stack_t *tcps = tcp->tcp_tcps; 6818 6819 #ifdef NS_DEBUG 6820 (void) printf("TCP_IOC_DEFAULT_Q for stack %d\n", 6821 tcps->tcps_netstack->netstack_stackid); 6822 #endif 6823 mp->b_datap->db_type = M_IOCACK; 6824 iocp->ioc_count = 0; 6825 mutex_enter(&tcps->tcps_g_q_lock); 6826 if (tcps->tcps_g_q != NULL) { 6827 mutex_exit(&tcps->tcps_g_q_lock); 6828 iocp->ioc_error = EALREADY; 6829 } else { 6830 mblk_t *mp1; 6831 6832 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6833 if (mp1 == NULL) { 6834 mutex_exit(&tcps->tcps_g_q_lock); 6835 iocp->ioc_error = ENOMEM; 6836 } else { 6837 tcps->tcps_g_q = tcp->tcp_rq; 6838 mutex_exit(&tcps->tcps_g_q_lock); 6839 iocp->ioc_error = 0; 6840 iocp->ioc_rval = 0; 6841 /* 6842 * We are passing tcp_sticky_ipp as NULL 6843 * as it is not useful for tcp_default queue 6844 * 6845 * Set conn_recv just in case. 6846 */ 6847 tcp->tcp_connp->conn_recv = tcp_conn_request; 6848 6849 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6850 if (mp1 != NULL) 6851 tcp_rput_other(tcp, mp1); 6852 } 6853 } 6854 qreply(q, mp); 6855 } 6856 6857 /* 6858 * Our client hereby directs us to reject the connection request 6859 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6860 * of sending the appropriate RST, not an ICMP error. 6861 */ 6862 static void 6863 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6864 { 6865 tcp_t *ltcp = NULL; 6866 t_scalar_t seqnum; 6867 conn_t *connp; 6868 tcp_stack_t *tcps = tcp->tcp_tcps; 6869 6870 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6871 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6872 tcp_err_ack(tcp, mp, TPROTO, 0); 6873 return; 6874 } 6875 6876 /* 6877 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6878 * when the stream is in BOUND state. Do not send a reset, 6879 * since the destination IP address is not valid, and it can 6880 * be the initialized value of all zeros (broadcast address). 6881 * 6882 * If TCP has sent down a bind request to IP and has not 6883 * received the reply, reject the request. Otherwise, TCP 6884 * will be confused. 6885 */ 6886 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6887 if (tcp->tcp_debug) { 6888 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6889 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6890 } 6891 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6892 return; 6893 } 6894 6895 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6896 6897 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6898 6899 /* 6900 * According to TPI, for non-listeners, ignore seqnum 6901 * and disconnect. 6902 * Following interpretation of -1 seqnum is historical 6903 * and implied TPI ? (TPI only states that for T_CONN_IND, 6904 * a valid seqnum should not be -1). 6905 * 6906 * -1 means disconnect everything 6907 * regardless even on a listener. 6908 */ 6909 6910 int old_state = tcp->tcp_state; 6911 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 6912 6913 /* 6914 * The connection can't be on the tcp_time_wait_head list 6915 * since it is not detached. 6916 */ 6917 ASSERT(tcp->tcp_time_wait_next == NULL); 6918 ASSERT(tcp->tcp_time_wait_prev == NULL); 6919 ASSERT(tcp->tcp_time_wait_expire == 0); 6920 ltcp = NULL; 6921 /* 6922 * If it used to be a listener, check to make sure no one else 6923 * has taken the port before switching back to LISTEN state. 6924 */ 6925 if (tcp->tcp_ipversion == IPV4_VERSION) { 6926 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6927 tcp->tcp_ipha->ipha_src, 6928 tcp->tcp_connp->conn_zoneid, ipst); 6929 if (connp != NULL) 6930 ltcp = connp->conn_tcp; 6931 } else { 6932 /* Allow tcp_bound_if listeners? */ 6933 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6934 &tcp->tcp_ip6h->ip6_src, 0, 6935 tcp->tcp_connp->conn_zoneid, ipst); 6936 if (connp != NULL) 6937 ltcp = connp->conn_tcp; 6938 } 6939 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6940 tcp->tcp_state = TCPS_LISTEN; 6941 } else if (old_state > TCPS_BOUND) { 6942 tcp->tcp_conn_req_max = 0; 6943 tcp->tcp_state = TCPS_BOUND; 6944 } 6945 if (ltcp != NULL) 6946 CONN_DEC_REF(ltcp->tcp_connp); 6947 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6948 BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails); 6949 } else if (old_state == TCPS_ESTABLISHED || 6950 old_state == TCPS_CLOSE_WAIT) { 6951 BUMP_MIB(&tcps->tcps_mib, tcpEstabResets); 6952 } 6953 6954 if (tcp->tcp_fused) 6955 tcp_unfuse(tcp); 6956 6957 mutex_enter(&tcp->tcp_eager_lock); 6958 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6959 (tcp->tcp_conn_req_cnt_q != 0)) { 6960 tcp_eager_cleanup(tcp, 0); 6961 } 6962 mutex_exit(&tcp->tcp_eager_lock); 6963 6964 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6965 tcp->tcp_rnxt, TH_RST | TH_ACK); 6966 6967 tcp_reinit(tcp); 6968 6969 if (old_state >= TCPS_ESTABLISHED) { 6970 /* Send M_FLUSH according to TPI */ 6971 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6972 } 6973 mp = mi_tpi_ok_ack_alloc(mp); 6974 if (mp) 6975 putnext(tcp->tcp_rq, mp); 6976 return; 6977 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6978 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6979 return; 6980 } 6981 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6982 /* Send M_FLUSH according to TPI */ 6983 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6984 } 6985 mp = mi_tpi_ok_ack_alloc(mp); 6986 if (mp) 6987 putnext(tcp->tcp_rq, mp); 6988 } 6989 6990 /* 6991 * Diagnostic routine used to return a string associated with the tcp state. 6992 * Note that if the caller does not supply a buffer, it will use an internal 6993 * static string. This means that if multiple threads call this function at 6994 * the same time, output can be corrupted... Note also that this function 6995 * does not check the size of the supplied buffer. The caller has to make 6996 * sure that it is big enough. 6997 */ 6998 static char * 6999 tcp_display(tcp_t *tcp, char *sup_buf, char format) 7000 { 7001 char buf1[30]; 7002 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 7003 char *buf; 7004 char *cp; 7005 in6_addr_t local, remote; 7006 char local_addrbuf[INET6_ADDRSTRLEN]; 7007 char remote_addrbuf[INET6_ADDRSTRLEN]; 7008 7009 if (sup_buf != NULL) 7010 buf = sup_buf; 7011 else 7012 buf = priv_buf; 7013 7014 if (tcp == NULL) 7015 return ("NULL_TCP"); 7016 switch (tcp->tcp_state) { 7017 case TCPS_CLOSED: 7018 cp = "TCP_CLOSED"; 7019 break; 7020 case TCPS_IDLE: 7021 cp = "TCP_IDLE"; 7022 break; 7023 case TCPS_BOUND: 7024 cp = "TCP_BOUND"; 7025 break; 7026 case TCPS_LISTEN: 7027 cp = "TCP_LISTEN"; 7028 break; 7029 case TCPS_SYN_SENT: 7030 cp = "TCP_SYN_SENT"; 7031 break; 7032 case TCPS_SYN_RCVD: 7033 cp = "TCP_SYN_RCVD"; 7034 break; 7035 case TCPS_ESTABLISHED: 7036 cp = "TCP_ESTABLISHED"; 7037 break; 7038 case TCPS_CLOSE_WAIT: 7039 cp = "TCP_CLOSE_WAIT"; 7040 break; 7041 case TCPS_FIN_WAIT_1: 7042 cp = "TCP_FIN_WAIT_1"; 7043 break; 7044 case TCPS_CLOSING: 7045 cp = "TCP_CLOSING"; 7046 break; 7047 case TCPS_LAST_ACK: 7048 cp = "TCP_LAST_ACK"; 7049 break; 7050 case TCPS_FIN_WAIT_2: 7051 cp = "TCP_FIN_WAIT_2"; 7052 break; 7053 case TCPS_TIME_WAIT: 7054 cp = "TCP_TIME_WAIT"; 7055 break; 7056 default: 7057 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7058 cp = buf1; 7059 break; 7060 } 7061 switch (format) { 7062 case DISP_ADDR_AND_PORT: 7063 if (tcp->tcp_ipversion == IPV4_VERSION) { 7064 /* 7065 * Note that we use the remote address in the tcp_b 7066 * structure. This means that it will print out 7067 * the real destination address, not the next hop's 7068 * address if source routing is used. 7069 */ 7070 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7071 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7072 7073 } else { 7074 local = tcp->tcp_ip_src_v6; 7075 remote = tcp->tcp_remote_v6; 7076 } 7077 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7078 sizeof (local_addrbuf)); 7079 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7080 sizeof (remote_addrbuf)); 7081 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7082 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7083 ntohs(tcp->tcp_fport), cp); 7084 break; 7085 case DISP_PORT_ONLY: 7086 default: 7087 (void) mi_sprintf(buf, "[%u, %u] %s", 7088 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7089 break; 7090 } 7091 7092 return (buf); 7093 } 7094 7095 /* 7096 * Called via squeue to get on to eager's perimeter. It sends a 7097 * TH_RST if eager is in the fanout table. The listener wants the 7098 * eager to disappear either by means of tcp_eager_blowoff() or 7099 * tcp_eager_cleanup() being called. tcp_eager_kill() can also be 7100 * called (via squeue) if the eager cannot be inserted in the 7101 * fanout table in tcp_conn_request(). 7102 */ 7103 /* ARGSUSED */ 7104 void 7105 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7106 { 7107 conn_t *econnp = (conn_t *)arg; 7108 tcp_t *eager = econnp->conn_tcp; 7109 tcp_t *listener = eager->tcp_listener; 7110 tcp_stack_t *tcps = eager->tcp_tcps; 7111 7112 /* 7113 * We could be called because listener is closing. Since 7114 * the eager is using listener's queue's, its not safe. 7115 * Better use the default queue just to send the TH_RST 7116 * out. 7117 */ 7118 ASSERT(tcps->tcps_g_q != NULL); 7119 eager->tcp_rq = tcps->tcps_g_q; 7120 eager->tcp_wq = WR(tcps->tcps_g_q); 7121 7122 /* 7123 * An eager's conn_fanout will be NULL if it's a duplicate 7124 * for an existing 4-tuples in the conn fanout table. 7125 * We don't want to send an RST out in such case. 7126 */ 7127 if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) { 7128 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7129 eager, eager->tcp_snxt, 0, TH_RST); 7130 } 7131 7132 /* We are here because listener wants this eager gone */ 7133 if (listener != NULL) { 7134 mutex_enter(&listener->tcp_eager_lock); 7135 tcp_eager_unlink(eager); 7136 if (eager->tcp_tconnind_started) { 7137 /* 7138 * The eager has sent a conn_ind up to the 7139 * listener but listener decides to close 7140 * instead. We need to drop the extra ref 7141 * placed on eager in tcp_rput_data() before 7142 * sending the conn_ind to listener. 7143 */ 7144 CONN_DEC_REF(econnp); 7145 } 7146 mutex_exit(&listener->tcp_eager_lock); 7147 CONN_DEC_REF(listener->tcp_connp); 7148 } 7149 7150 if (eager->tcp_state > TCPS_BOUND) 7151 tcp_close_detached(eager); 7152 } 7153 7154 /* 7155 * Reset any eager connection hanging off this listener marked 7156 * with 'seqnum' and then reclaim it's resources. 7157 */ 7158 static boolean_t 7159 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7160 { 7161 tcp_t *eager; 7162 mblk_t *mp; 7163 tcp_stack_t *tcps = listener->tcp_tcps; 7164 7165 TCP_STAT(tcps, tcp_eager_blowoff_calls); 7166 eager = listener; 7167 mutex_enter(&listener->tcp_eager_lock); 7168 do { 7169 eager = eager->tcp_eager_next_q; 7170 if (eager == NULL) { 7171 mutex_exit(&listener->tcp_eager_lock); 7172 return (B_FALSE); 7173 } 7174 } while (eager->tcp_conn_req_seqnum != seqnum); 7175 7176 if (eager->tcp_closemp_used) { 7177 mutex_exit(&listener->tcp_eager_lock); 7178 return (B_TRUE); 7179 } 7180 eager->tcp_closemp_used = B_TRUE; 7181 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7182 CONN_INC_REF(eager->tcp_connp); 7183 mutex_exit(&listener->tcp_eager_lock); 7184 mp = &eager->tcp_closemp; 7185 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7186 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7187 return (B_TRUE); 7188 } 7189 7190 /* 7191 * Reset any eager connection hanging off this listener 7192 * and then reclaim it's resources. 7193 */ 7194 static void 7195 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7196 { 7197 tcp_t *eager; 7198 mblk_t *mp; 7199 tcp_stack_t *tcps = listener->tcp_tcps; 7200 7201 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7202 7203 if (!q0_only) { 7204 /* First cleanup q */ 7205 TCP_STAT(tcps, tcp_eager_blowoff_q); 7206 eager = listener->tcp_eager_next_q; 7207 while (eager != NULL) { 7208 if (!eager->tcp_closemp_used) { 7209 eager->tcp_closemp_used = B_TRUE; 7210 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7211 CONN_INC_REF(eager->tcp_connp); 7212 mp = &eager->tcp_closemp; 7213 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7214 tcp_eager_kill, eager->tcp_connp, 7215 SQTAG_TCP_EAGER_CLEANUP); 7216 } 7217 eager = eager->tcp_eager_next_q; 7218 } 7219 } 7220 /* Then cleanup q0 */ 7221 TCP_STAT(tcps, tcp_eager_blowoff_q0); 7222 eager = listener->tcp_eager_next_q0; 7223 while (eager != listener) { 7224 if (!eager->tcp_closemp_used) { 7225 eager->tcp_closemp_used = B_TRUE; 7226 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7227 CONN_INC_REF(eager->tcp_connp); 7228 mp = &eager->tcp_closemp; 7229 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7230 tcp_eager_kill, eager->tcp_connp, 7231 SQTAG_TCP_EAGER_CLEANUP_Q0); 7232 } 7233 eager = eager->tcp_eager_next_q0; 7234 } 7235 } 7236 7237 /* 7238 * If we are an eager connection hanging off a listener that hasn't 7239 * formally accepted the connection yet, get off his list and blow off 7240 * any data that we have accumulated. 7241 */ 7242 static void 7243 tcp_eager_unlink(tcp_t *tcp) 7244 { 7245 tcp_t *listener = tcp->tcp_listener; 7246 7247 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7248 ASSERT(listener != NULL); 7249 if (tcp->tcp_eager_next_q0 != NULL) { 7250 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7251 7252 /* Remove the eager tcp from q0 */ 7253 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7254 tcp->tcp_eager_prev_q0; 7255 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7256 tcp->tcp_eager_next_q0; 7257 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7258 listener->tcp_conn_req_cnt_q0--; 7259 7260 tcp->tcp_eager_next_q0 = NULL; 7261 tcp->tcp_eager_prev_q0 = NULL; 7262 7263 /* 7264 * Take the eager out, if it is in the list of droppable 7265 * eagers. 7266 */ 7267 MAKE_UNDROPPABLE(tcp); 7268 7269 if (tcp->tcp_syn_rcvd_timeout != 0) { 7270 /* we have timed out before */ 7271 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7272 listener->tcp_syn_rcvd_timeout--; 7273 } 7274 } else { 7275 tcp_t **tcpp = &listener->tcp_eager_next_q; 7276 tcp_t *prev = NULL; 7277 7278 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7279 if (tcpp[0] == tcp) { 7280 if (listener->tcp_eager_last_q == tcp) { 7281 /* 7282 * If we are unlinking the last 7283 * element on the list, adjust 7284 * tail pointer. Set tail pointer 7285 * to nil when list is empty. 7286 */ 7287 ASSERT(tcp->tcp_eager_next_q == NULL); 7288 if (listener->tcp_eager_last_q == 7289 listener->tcp_eager_next_q) { 7290 listener->tcp_eager_last_q = 7291 NULL; 7292 } else { 7293 /* 7294 * We won't get here if there 7295 * is only one eager in the 7296 * list. 7297 */ 7298 ASSERT(prev != NULL); 7299 listener->tcp_eager_last_q = 7300 prev; 7301 } 7302 } 7303 tcpp[0] = tcp->tcp_eager_next_q; 7304 tcp->tcp_eager_next_q = NULL; 7305 tcp->tcp_eager_last_q = NULL; 7306 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7307 listener->tcp_conn_req_cnt_q--; 7308 break; 7309 } 7310 prev = tcpp[0]; 7311 } 7312 } 7313 tcp->tcp_listener = NULL; 7314 } 7315 7316 /* Shorthand to generate and send TPI error acks to our client */ 7317 static void 7318 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7319 { 7320 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7321 putnext(tcp->tcp_rq, mp); 7322 } 7323 7324 /* Shorthand to generate and send TPI error acks to our client */ 7325 static void 7326 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7327 int t_error, int sys_error) 7328 { 7329 struct T_error_ack *teackp; 7330 7331 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7332 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7333 teackp = (struct T_error_ack *)mp->b_rptr; 7334 teackp->ERROR_prim = primitive; 7335 teackp->TLI_error = t_error; 7336 teackp->UNIX_error = sys_error; 7337 putnext(tcp->tcp_rq, mp); 7338 } 7339 } 7340 7341 /* 7342 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7343 * but instead the code relies on: 7344 * - the fact that the address of the array and its size never changes 7345 * - the atomic assignment of the elements of the array 7346 */ 7347 /* ARGSUSED */ 7348 static int 7349 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7350 { 7351 int i; 7352 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7353 7354 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7355 if (tcps->tcps_g_epriv_ports[i] != 0) 7356 (void) mi_mpprintf(mp, "%d ", 7357 tcps->tcps_g_epriv_ports[i]); 7358 } 7359 return (0); 7360 } 7361 7362 /* 7363 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7364 * threads from changing it at the same time. 7365 */ 7366 /* ARGSUSED */ 7367 static int 7368 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7369 cred_t *cr) 7370 { 7371 long new_value; 7372 int i; 7373 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7374 7375 /* 7376 * Fail the request if the new value does not lie within the 7377 * port number limits. 7378 */ 7379 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7380 new_value <= 0 || new_value >= 65536) { 7381 return (EINVAL); 7382 } 7383 7384 mutex_enter(&tcps->tcps_epriv_port_lock); 7385 /* Check if the value is already in the list */ 7386 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7387 if (new_value == tcps->tcps_g_epriv_ports[i]) { 7388 mutex_exit(&tcps->tcps_epriv_port_lock); 7389 return (EEXIST); 7390 } 7391 } 7392 /* Find an empty slot */ 7393 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7394 if (tcps->tcps_g_epriv_ports[i] == 0) 7395 break; 7396 } 7397 if (i == tcps->tcps_g_num_epriv_ports) { 7398 mutex_exit(&tcps->tcps_epriv_port_lock); 7399 return (EOVERFLOW); 7400 } 7401 /* Set the new value */ 7402 tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value; 7403 mutex_exit(&tcps->tcps_epriv_port_lock); 7404 return (0); 7405 } 7406 7407 /* 7408 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7409 * threads from changing it at the same time. 7410 */ 7411 /* ARGSUSED */ 7412 static int 7413 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7414 cred_t *cr) 7415 { 7416 long new_value; 7417 int i; 7418 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 7419 7420 /* 7421 * Fail the request if the new value does not lie within the 7422 * port number limits. 7423 */ 7424 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7425 new_value >= 65536) { 7426 return (EINVAL); 7427 } 7428 7429 mutex_enter(&tcps->tcps_epriv_port_lock); 7430 /* Check that the value is already in the list */ 7431 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 7432 if (tcps->tcps_g_epriv_ports[i] == new_value) 7433 break; 7434 } 7435 if (i == tcps->tcps_g_num_epriv_ports) { 7436 mutex_exit(&tcps->tcps_epriv_port_lock); 7437 return (ESRCH); 7438 } 7439 /* Clear the value */ 7440 tcps->tcps_g_epriv_ports[i] = 0; 7441 mutex_exit(&tcps->tcps_epriv_port_lock); 7442 return (0); 7443 } 7444 7445 /* Return the TPI/TLI equivalent of our current tcp_state */ 7446 static int 7447 tcp_tpistate(tcp_t *tcp) 7448 { 7449 switch (tcp->tcp_state) { 7450 case TCPS_IDLE: 7451 return (TS_UNBND); 7452 case TCPS_LISTEN: 7453 /* 7454 * Return whether there are outstanding T_CONN_IND waiting 7455 * for the matching T_CONN_RES. Therefore don't count q0. 7456 */ 7457 if (tcp->tcp_conn_req_cnt_q > 0) 7458 return (TS_WRES_CIND); 7459 else 7460 return (TS_IDLE); 7461 case TCPS_BOUND: 7462 return (TS_IDLE); 7463 case TCPS_SYN_SENT: 7464 return (TS_WCON_CREQ); 7465 case TCPS_SYN_RCVD: 7466 /* 7467 * Note: assumption: this has to the active open SYN_RCVD. 7468 * The passive instance is detached in SYN_RCVD stage of 7469 * incoming connection processing so we cannot get request 7470 * for T_info_ack on it. 7471 */ 7472 return (TS_WACK_CRES); 7473 case TCPS_ESTABLISHED: 7474 return (TS_DATA_XFER); 7475 case TCPS_CLOSE_WAIT: 7476 return (TS_WREQ_ORDREL); 7477 case TCPS_FIN_WAIT_1: 7478 return (TS_WIND_ORDREL); 7479 case TCPS_FIN_WAIT_2: 7480 return (TS_WIND_ORDREL); 7481 7482 case TCPS_CLOSING: 7483 case TCPS_LAST_ACK: 7484 case TCPS_TIME_WAIT: 7485 case TCPS_CLOSED: 7486 /* 7487 * Following TS_WACK_DREQ7 is a rendition of "not 7488 * yet TS_IDLE" TPI state. There is no best match to any 7489 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7490 * choose a value chosen that will map to TLI/XTI level 7491 * state of TSTATECHNG (state is process of changing) which 7492 * captures what this dummy state represents. 7493 */ 7494 return (TS_WACK_DREQ7); 7495 default: 7496 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7497 tcp->tcp_state, tcp_display(tcp, NULL, 7498 DISP_PORT_ONLY)); 7499 return (TS_UNBND); 7500 } 7501 } 7502 7503 static void 7504 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7505 { 7506 tcp_stack_t *tcps = tcp->tcp_tcps; 7507 7508 if (tcp->tcp_family == AF_INET6) 7509 *tia = tcp_g_t_info_ack_v6; 7510 else 7511 *tia = tcp_g_t_info_ack; 7512 tia->CURRENT_state = tcp_tpistate(tcp); 7513 tia->OPT_size = tcp_max_optsize; 7514 if (tcp->tcp_mss == 0) { 7515 /* Not yet set - tcp_open does not set mss */ 7516 if (tcp->tcp_ipversion == IPV4_VERSION) 7517 tia->TIDU_size = tcps->tcps_mss_def_ipv4; 7518 else 7519 tia->TIDU_size = tcps->tcps_mss_def_ipv6; 7520 } else { 7521 tia->TIDU_size = tcp->tcp_mss; 7522 } 7523 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7524 } 7525 7526 /* 7527 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7528 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7529 * tcp_g_t_info_ack. The current state of the stream is copied from 7530 * tcp_state. 7531 */ 7532 static void 7533 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7534 { 7535 t_uscalar_t cap_bits1; 7536 struct T_capability_ack *tcap; 7537 7538 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7539 freemsg(mp); 7540 return; 7541 } 7542 7543 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7544 7545 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7546 mp->b_datap->db_type, T_CAPABILITY_ACK); 7547 if (mp == NULL) 7548 return; 7549 7550 tcap = (struct T_capability_ack *)mp->b_rptr; 7551 tcap->CAP_bits1 = 0; 7552 7553 if (cap_bits1 & TC1_INFO) { 7554 tcp_copy_info(&tcap->INFO_ack, tcp); 7555 tcap->CAP_bits1 |= TC1_INFO; 7556 } 7557 7558 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7559 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7560 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7561 } 7562 7563 putnext(tcp->tcp_rq, mp); 7564 } 7565 7566 /* 7567 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7568 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7569 * The current state of the stream is copied from tcp_state. 7570 */ 7571 static void 7572 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7573 { 7574 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7575 T_INFO_ACK); 7576 if (!mp) { 7577 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7578 return; 7579 } 7580 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7581 putnext(tcp->tcp_rq, mp); 7582 } 7583 7584 /* Respond to the TPI addr request */ 7585 static void 7586 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7587 { 7588 sin_t *sin; 7589 mblk_t *ackmp; 7590 struct T_addr_ack *taa; 7591 7592 /* Make it large enough for worst case */ 7593 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7594 2 * sizeof (sin6_t), 1); 7595 if (ackmp == NULL) { 7596 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7597 return; 7598 } 7599 7600 if (tcp->tcp_ipversion == IPV6_VERSION) { 7601 tcp_addr_req_ipv6(tcp, ackmp); 7602 return; 7603 } 7604 taa = (struct T_addr_ack *)ackmp->b_rptr; 7605 7606 bzero(taa, sizeof (struct T_addr_ack)); 7607 ackmp->b_wptr = (uchar_t *)&taa[1]; 7608 7609 taa->PRIM_type = T_ADDR_ACK; 7610 ackmp->b_datap->db_type = M_PCPROTO; 7611 7612 /* 7613 * Note: Following code assumes 32 bit alignment of basic 7614 * data structures like sin_t and struct T_addr_ack. 7615 */ 7616 if (tcp->tcp_state >= TCPS_BOUND) { 7617 /* 7618 * Fill in local address 7619 */ 7620 taa->LOCADDR_length = sizeof (sin_t); 7621 taa->LOCADDR_offset = sizeof (*taa); 7622 7623 sin = (sin_t *)&taa[1]; 7624 7625 /* Fill zeroes and then intialize non-zero fields */ 7626 *sin = sin_null; 7627 7628 sin->sin_family = AF_INET; 7629 7630 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7631 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7632 7633 ackmp->b_wptr = (uchar_t *)&sin[1]; 7634 7635 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7636 /* 7637 * Fill in Remote address 7638 */ 7639 taa->REMADDR_length = sizeof (sin_t); 7640 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7641 taa->LOCADDR_length); 7642 7643 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7644 *sin = sin_null; 7645 sin->sin_family = AF_INET; 7646 sin->sin_addr.s_addr = tcp->tcp_remote; 7647 sin->sin_port = tcp->tcp_fport; 7648 7649 ackmp->b_wptr = (uchar_t *)&sin[1]; 7650 } 7651 } 7652 putnext(tcp->tcp_rq, ackmp); 7653 } 7654 7655 /* Assumes that tcp_addr_req gets enough space and alignment */ 7656 static void 7657 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7658 { 7659 sin6_t *sin6; 7660 struct T_addr_ack *taa; 7661 7662 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7663 ASSERT(OK_32PTR(ackmp->b_rptr)); 7664 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7665 2 * sizeof (sin6_t)); 7666 7667 taa = (struct T_addr_ack *)ackmp->b_rptr; 7668 7669 bzero(taa, sizeof (struct T_addr_ack)); 7670 ackmp->b_wptr = (uchar_t *)&taa[1]; 7671 7672 taa->PRIM_type = T_ADDR_ACK; 7673 ackmp->b_datap->db_type = M_PCPROTO; 7674 7675 /* 7676 * Note: Following code assumes 32 bit alignment of basic 7677 * data structures like sin6_t and struct T_addr_ack. 7678 */ 7679 if (tcp->tcp_state >= TCPS_BOUND) { 7680 /* 7681 * Fill in local address 7682 */ 7683 taa->LOCADDR_length = sizeof (sin6_t); 7684 taa->LOCADDR_offset = sizeof (*taa); 7685 7686 sin6 = (sin6_t *)&taa[1]; 7687 *sin6 = sin6_null; 7688 7689 sin6->sin6_family = AF_INET6; 7690 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7691 sin6->sin6_port = tcp->tcp_lport; 7692 7693 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7694 7695 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7696 /* 7697 * Fill in Remote address 7698 */ 7699 taa->REMADDR_length = sizeof (sin6_t); 7700 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7701 taa->LOCADDR_length); 7702 7703 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7704 *sin6 = sin6_null; 7705 sin6->sin6_family = AF_INET6; 7706 sin6->sin6_flowinfo = 7707 tcp->tcp_ip6h->ip6_vcf & 7708 ~IPV6_VERS_AND_FLOW_MASK; 7709 sin6->sin6_addr = tcp->tcp_remote_v6; 7710 sin6->sin6_port = tcp->tcp_fport; 7711 7712 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7713 } 7714 } 7715 putnext(tcp->tcp_rq, ackmp); 7716 } 7717 7718 /* 7719 * Handle reinitialization of a tcp structure. 7720 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7721 */ 7722 static void 7723 tcp_reinit(tcp_t *tcp) 7724 { 7725 mblk_t *mp; 7726 int err; 7727 tcp_stack_t *tcps = tcp->tcp_tcps; 7728 7729 TCP_STAT(tcps, tcp_reinit_calls); 7730 7731 /* tcp_reinit should never be called for detached tcp_t's */ 7732 ASSERT(tcp->tcp_listener == NULL); 7733 ASSERT((tcp->tcp_family == AF_INET && 7734 tcp->tcp_ipversion == IPV4_VERSION) || 7735 (tcp->tcp_family == AF_INET6 && 7736 (tcp->tcp_ipversion == IPV4_VERSION || 7737 tcp->tcp_ipversion == IPV6_VERSION))); 7738 7739 /* Cancel outstanding timers */ 7740 tcp_timers_stop(tcp); 7741 7742 /* 7743 * Reset everything in the state vector, after updating global 7744 * MIB data from instance counters. 7745 */ 7746 UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7747 tcp->tcp_ibsegs = 0; 7748 UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7749 tcp->tcp_obsegs = 0; 7750 7751 tcp_close_mpp(&tcp->tcp_xmit_head); 7752 if (tcp->tcp_snd_zcopy_aware) 7753 tcp_zcopy_notify(tcp); 7754 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7755 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7756 mutex_enter(&tcp->tcp_non_sq_lock); 7757 if (tcp->tcp_flow_stopped && 7758 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7759 tcp_clrqfull(tcp); 7760 } 7761 mutex_exit(&tcp->tcp_non_sq_lock); 7762 tcp_close_mpp(&tcp->tcp_reass_head); 7763 tcp->tcp_reass_tail = NULL; 7764 if (tcp->tcp_rcv_list != NULL) { 7765 /* Free b_next chain */ 7766 tcp_close_mpp(&tcp->tcp_rcv_list); 7767 tcp->tcp_rcv_last_head = NULL; 7768 tcp->tcp_rcv_last_tail = NULL; 7769 tcp->tcp_rcv_cnt = 0; 7770 } 7771 tcp->tcp_rcv_last_tail = NULL; 7772 7773 if ((mp = tcp->tcp_urp_mp) != NULL) { 7774 freemsg(mp); 7775 tcp->tcp_urp_mp = NULL; 7776 } 7777 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7778 freemsg(mp); 7779 tcp->tcp_urp_mark_mp = NULL; 7780 } 7781 if (tcp->tcp_fused_sigurg_mp != NULL) { 7782 freeb(tcp->tcp_fused_sigurg_mp); 7783 tcp->tcp_fused_sigurg_mp = NULL; 7784 } 7785 7786 /* 7787 * Following is a union with two members which are 7788 * identical types and size so the following cleanup 7789 * is enough. 7790 */ 7791 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7792 7793 CL_INET_DISCONNECT(tcp); 7794 7795 /* 7796 * The connection can't be on the tcp_time_wait_head list 7797 * since it is not detached. 7798 */ 7799 ASSERT(tcp->tcp_time_wait_next == NULL); 7800 ASSERT(tcp->tcp_time_wait_prev == NULL); 7801 ASSERT(tcp->tcp_time_wait_expire == 0); 7802 7803 if (tcp->tcp_kssl_pending) { 7804 tcp->tcp_kssl_pending = B_FALSE; 7805 7806 /* Don't reset if the initialized by bind. */ 7807 if (tcp->tcp_kssl_ent != NULL) { 7808 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7809 KSSL_NO_PROXY); 7810 } 7811 } 7812 if (tcp->tcp_kssl_ctx != NULL) { 7813 kssl_release_ctx(tcp->tcp_kssl_ctx); 7814 tcp->tcp_kssl_ctx = NULL; 7815 } 7816 7817 /* 7818 * Reset/preserve other values 7819 */ 7820 tcp_reinit_values(tcp); 7821 ipcl_hash_remove(tcp->tcp_connp); 7822 conn_delete_ire(tcp->tcp_connp, NULL); 7823 tcp_ipsec_cleanup(tcp); 7824 7825 if (tcp->tcp_conn_req_max != 0) { 7826 /* 7827 * This is the case when a TLI program uses the same 7828 * transport end point to accept a connection. This 7829 * makes the TCP both a listener and acceptor. When 7830 * this connection is closed, we need to set the state 7831 * back to TCPS_LISTEN. Make sure that the eager list 7832 * is reinitialized. 7833 * 7834 * Note that this stream is still bound to the four 7835 * tuples of the previous connection in IP. If a new 7836 * SYN with different foreign address comes in, IP will 7837 * not find it and will send it to the global queue. In 7838 * the global queue, TCP will do a tcp_lookup_listener() 7839 * to find this stream. This works because this stream 7840 * is only removed from connected hash. 7841 * 7842 */ 7843 tcp->tcp_state = TCPS_LISTEN; 7844 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7845 tcp->tcp_eager_next_drop_q0 = tcp; 7846 tcp->tcp_eager_prev_drop_q0 = tcp; 7847 tcp->tcp_connp->conn_recv = tcp_conn_request; 7848 if (tcp->tcp_family == AF_INET6) { 7849 ASSERT(tcp->tcp_connp->conn_af_isv6); 7850 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7851 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7852 } else { 7853 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7854 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7855 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7856 } 7857 } else { 7858 tcp->tcp_state = TCPS_BOUND; 7859 } 7860 7861 /* 7862 * Initialize to default values 7863 * Can't fail since enough header template space already allocated 7864 * at open(). 7865 */ 7866 err = tcp_init_values(tcp); 7867 ASSERT(err == 0); 7868 /* Restore state in tcp_tcph */ 7869 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7870 if (tcp->tcp_ipversion == IPV4_VERSION) 7871 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7872 else 7873 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7874 /* 7875 * Copy of the src addr. in tcp_t is needed in tcp_t 7876 * since the lookup funcs can only lookup on tcp_t 7877 */ 7878 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7879 7880 ASSERT(tcp->tcp_ptpbhn != NULL); 7881 tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat; 7882 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 7883 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7884 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 7885 } 7886 7887 /* 7888 * Force values to zero that need be zero. 7889 * Do not touch values asociated with the BOUND or LISTEN state 7890 * since the connection will end up in that state after the reinit. 7891 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7892 * structure! 7893 */ 7894 static void 7895 tcp_reinit_values(tcp) 7896 tcp_t *tcp; 7897 { 7898 tcp_stack_t *tcps = tcp->tcp_tcps; 7899 7900 #ifndef lint 7901 #define DONTCARE(x) 7902 #define PRESERVE(x) 7903 #else 7904 #define DONTCARE(x) ((x) = (x)) 7905 #define PRESERVE(x) ((x) = (x)) 7906 #endif /* lint */ 7907 7908 PRESERVE(tcp->tcp_bind_hash); 7909 PRESERVE(tcp->tcp_ptpbhn); 7910 PRESERVE(tcp->tcp_acceptor_hash); 7911 PRESERVE(tcp->tcp_ptpahn); 7912 7913 /* Should be ASSERT NULL on these with new code! */ 7914 ASSERT(tcp->tcp_time_wait_next == NULL); 7915 ASSERT(tcp->tcp_time_wait_prev == NULL); 7916 ASSERT(tcp->tcp_time_wait_expire == 0); 7917 PRESERVE(tcp->tcp_state); 7918 PRESERVE(tcp->tcp_rq); 7919 PRESERVE(tcp->tcp_wq); 7920 7921 ASSERT(tcp->tcp_xmit_head == NULL); 7922 ASSERT(tcp->tcp_xmit_last == NULL); 7923 ASSERT(tcp->tcp_unsent == 0); 7924 ASSERT(tcp->tcp_xmit_tail == NULL); 7925 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7926 7927 tcp->tcp_snxt = 0; /* Displayed in mib */ 7928 tcp->tcp_suna = 0; /* Displayed in mib */ 7929 tcp->tcp_swnd = 0; 7930 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7931 7932 ASSERT(tcp->tcp_ibsegs == 0); 7933 ASSERT(tcp->tcp_obsegs == 0); 7934 7935 if (tcp->tcp_iphc != NULL) { 7936 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7937 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7938 } 7939 7940 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7941 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7942 DONTCARE(tcp->tcp_ipha); 7943 DONTCARE(tcp->tcp_ip6h); 7944 DONTCARE(tcp->tcp_ip_hdr_len); 7945 DONTCARE(tcp->tcp_tcph); 7946 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7947 tcp->tcp_valid_bits = 0; 7948 7949 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7950 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7951 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7952 tcp->tcp_last_rcv_lbolt = 0; 7953 7954 tcp->tcp_init_cwnd = 0; 7955 7956 tcp->tcp_urp_last_valid = 0; 7957 tcp->tcp_hard_binding = 0; 7958 tcp->tcp_hard_bound = 0; 7959 PRESERVE(tcp->tcp_cred); 7960 PRESERVE(tcp->tcp_cpid); 7961 PRESERVE(tcp->tcp_open_time); 7962 PRESERVE(tcp->tcp_exclbind); 7963 7964 tcp->tcp_fin_acked = 0; 7965 tcp->tcp_fin_rcvd = 0; 7966 tcp->tcp_fin_sent = 0; 7967 tcp->tcp_ordrel_done = 0; 7968 7969 tcp->tcp_debug = 0; 7970 tcp->tcp_dontroute = 0; 7971 tcp->tcp_broadcast = 0; 7972 7973 tcp->tcp_useloopback = 0; 7974 tcp->tcp_reuseaddr = 0; 7975 tcp->tcp_oobinline = 0; 7976 tcp->tcp_dgram_errind = 0; 7977 7978 tcp->tcp_detached = 0; 7979 tcp->tcp_bind_pending = 0; 7980 tcp->tcp_unbind_pending = 0; 7981 tcp->tcp_deferred_clean_death = 0; 7982 7983 tcp->tcp_snd_ws_ok = B_FALSE; 7984 tcp->tcp_snd_ts_ok = B_FALSE; 7985 tcp->tcp_linger = 0; 7986 tcp->tcp_ka_enabled = 0; 7987 tcp->tcp_zero_win_probe = 0; 7988 7989 tcp->tcp_loopback = 0; 7990 tcp->tcp_localnet = 0; 7991 tcp->tcp_syn_defense = 0; 7992 tcp->tcp_set_timer = 0; 7993 7994 tcp->tcp_active_open = 0; 7995 ASSERT(tcp->tcp_timeout == B_FALSE); 7996 tcp->tcp_rexmit = B_FALSE; 7997 tcp->tcp_xmit_zc_clean = B_FALSE; 7998 7999 tcp->tcp_snd_sack_ok = B_FALSE; 8000 PRESERVE(tcp->tcp_recvdstaddr); 8001 tcp->tcp_hwcksum = B_FALSE; 8002 8003 tcp->tcp_ire_ill_check_done = B_FALSE; 8004 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 8005 8006 tcp->tcp_mdt = B_FALSE; 8007 tcp->tcp_mdt_hdr_head = 0; 8008 tcp->tcp_mdt_hdr_tail = 0; 8009 8010 tcp->tcp_conn_def_q0 = 0; 8011 tcp->tcp_ip_forward_progress = B_FALSE; 8012 tcp->tcp_anon_priv_bind = 0; 8013 tcp->tcp_ecn_ok = B_FALSE; 8014 8015 tcp->tcp_cwr = B_FALSE; 8016 tcp->tcp_ecn_echo_on = B_FALSE; 8017 8018 if (tcp->tcp_sack_info != NULL) { 8019 if (tcp->tcp_notsack_list != NULL) { 8020 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 8021 } 8022 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 8023 tcp->tcp_sack_info = NULL; 8024 } 8025 8026 tcp->tcp_rcv_ws = 0; 8027 tcp->tcp_snd_ws = 0; 8028 tcp->tcp_ts_recent = 0; 8029 tcp->tcp_rnxt = 0; /* Displayed in mib */ 8030 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 8031 tcp->tcp_if_mtu = 0; 8032 8033 ASSERT(tcp->tcp_reass_head == NULL); 8034 ASSERT(tcp->tcp_reass_tail == NULL); 8035 8036 tcp->tcp_cwnd_cnt = 0; 8037 8038 ASSERT(tcp->tcp_rcv_list == NULL); 8039 ASSERT(tcp->tcp_rcv_last_head == NULL); 8040 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8041 ASSERT(tcp->tcp_rcv_cnt == 0); 8042 8043 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8044 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8045 tcp->tcp_csuna = 0; 8046 8047 tcp->tcp_rto = 0; /* Displayed in MIB */ 8048 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8049 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8050 tcp->tcp_rtt_update = 0; 8051 8052 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8053 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8054 8055 tcp->tcp_rack = 0; /* Displayed in mib */ 8056 tcp->tcp_rack_cnt = 0; 8057 tcp->tcp_rack_cur_max = 0; 8058 tcp->tcp_rack_abs_max = 0; 8059 8060 tcp->tcp_max_swnd = 0; 8061 8062 ASSERT(tcp->tcp_listener == NULL); 8063 8064 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8065 8066 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8067 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8068 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8069 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8070 8071 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8072 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8073 PRESERVE(tcp->tcp_conn_req_max); 8074 PRESERVE(tcp->tcp_conn_req_seqnum); 8075 8076 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8077 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8078 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8079 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8080 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8081 8082 tcp->tcp_lingertime = 0; 8083 8084 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8085 ASSERT(tcp->tcp_urp_mp == NULL); 8086 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8087 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8088 8089 ASSERT(tcp->tcp_eager_next_q == NULL); 8090 ASSERT(tcp->tcp_eager_last_q == NULL); 8091 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8092 tcp->tcp_eager_prev_q0 == NULL) || 8093 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8094 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8095 8096 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8097 tcp->tcp_eager_prev_drop_q0 == NULL) || 8098 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8099 8100 tcp->tcp_client_errno = 0; 8101 8102 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8103 8104 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8105 8106 PRESERVE(tcp->tcp_bound_source_v6); 8107 tcp->tcp_last_sent_len = 0; 8108 tcp->tcp_dupack_cnt = 0; 8109 8110 tcp->tcp_fport = 0; /* Displayed in MIB */ 8111 PRESERVE(tcp->tcp_lport); 8112 8113 PRESERVE(tcp->tcp_acceptor_lockp); 8114 8115 ASSERT(tcp->tcp_ordrelid == 0); 8116 PRESERVE(tcp->tcp_acceptor_id); 8117 DONTCARE(tcp->tcp_ipsec_overhead); 8118 8119 /* 8120 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8121 * in tcp structure and now tracing), Re-initialize all 8122 * members of tcp_traceinfo. 8123 */ 8124 if (tcp->tcp_tracebuf != NULL) { 8125 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8126 } 8127 8128 PRESERVE(tcp->tcp_family); 8129 if (tcp->tcp_family == AF_INET6) { 8130 tcp->tcp_ipversion = IPV6_VERSION; 8131 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 8132 } else { 8133 tcp->tcp_ipversion = IPV4_VERSION; 8134 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 8135 } 8136 8137 tcp->tcp_bound_if = 0; 8138 tcp->tcp_ipv6_recvancillary = 0; 8139 tcp->tcp_recvifindex = 0; 8140 tcp->tcp_recvhops = 0; 8141 tcp->tcp_closed = 0; 8142 tcp->tcp_cleandeathtag = 0; 8143 if (tcp->tcp_hopopts != NULL) { 8144 mi_free(tcp->tcp_hopopts); 8145 tcp->tcp_hopopts = NULL; 8146 tcp->tcp_hopoptslen = 0; 8147 } 8148 ASSERT(tcp->tcp_hopoptslen == 0); 8149 if (tcp->tcp_dstopts != NULL) { 8150 mi_free(tcp->tcp_dstopts); 8151 tcp->tcp_dstopts = NULL; 8152 tcp->tcp_dstoptslen = 0; 8153 } 8154 ASSERT(tcp->tcp_dstoptslen == 0); 8155 if (tcp->tcp_rtdstopts != NULL) { 8156 mi_free(tcp->tcp_rtdstopts); 8157 tcp->tcp_rtdstopts = NULL; 8158 tcp->tcp_rtdstoptslen = 0; 8159 } 8160 ASSERT(tcp->tcp_rtdstoptslen == 0); 8161 if (tcp->tcp_rthdr != NULL) { 8162 mi_free(tcp->tcp_rthdr); 8163 tcp->tcp_rthdr = NULL; 8164 tcp->tcp_rthdrlen = 0; 8165 } 8166 ASSERT(tcp->tcp_rthdrlen == 0); 8167 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8168 8169 /* Reset fusion-related fields */ 8170 tcp->tcp_fused = B_FALSE; 8171 tcp->tcp_unfusable = B_FALSE; 8172 tcp->tcp_fused_sigurg = B_FALSE; 8173 tcp->tcp_direct_sockfs = B_FALSE; 8174 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8175 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8176 tcp->tcp_loopback_peer = NULL; 8177 tcp->tcp_fuse_rcv_hiwater = 0; 8178 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8179 tcp->tcp_fuse_rcv_unread_cnt = 0; 8180 8181 tcp->tcp_lso = B_FALSE; 8182 8183 tcp->tcp_in_ack_unsent = 0; 8184 tcp->tcp_cork = B_FALSE; 8185 tcp->tcp_tconnind_started = B_FALSE; 8186 8187 PRESERVE(tcp->tcp_squeue_bytes); 8188 8189 ASSERT(tcp->tcp_kssl_ctx == NULL); 8190 ASSERT(!tcp->tcp_kssl_pending); 8191 PRESERVE(tcp->tcp_kssl_ent); 8192 8193 tcp->tcp_closemp_used = B_FALSE; 8194 8195 #ifdef DEBUG 8196 DONTCARE(tcp->tcmp_stk[0]); 8197 #endif 8198 8199 8200 #undef DONTCARE 8201 #undef PRESERVE 8202 } 8203 8204 /* 8205 * Allocate necessary resources and initialize state vector. 8206 * Guaranteed not to fail so that when an error is returned, 8207 * the caller doesn't need to do any additional cleanup. 8208 */ 8209 int 8210 tcp_init(tcp_t *tcp, queue_t *q) 8211 { 8212 int err; 8213 8214 tcp->tcp_rq = q; 8215 tcp->tcp_wq = WR(q); 8216 tcp->tcp_state = TCPS_IDLE; 8217 if ((err = tcp_init_values(tcp)) != 0) 8218 tcp_timers_stop(tcp); 8219 return (err); 8220 } 8221 8222 static int 8223 tcp_init_values(tcp_t *tcp) 8224 { 8225 int err; 8226 tcp_stack_t *tcps = tcp->tcp_tcps; 8227 8228 ASSERT((tcp->tcp_family == AF_INET && 8229 tcp->tcp_ipversion == IPV4_VERSION) || 8230 (tcp->tcp_family == AF_INET6 && 8231 (tcp->tcp_ipversion == IPV4_VERSION || 8232 tcp->tcp_ipversion == IPV6_VERSION))); 8233 8234 /* 8235 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8236 * will be close to tcp_rexmit_interval_initial. By doing this, we 8237 * allow the algorithm to adjust slowly to large fluctuations of RTT 8238 * during first few transmissions of a connection as seen in slow 8239 * links. 8240 */ 8241 tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2; 8242 tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1; 8243 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8244 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8245 tcps->tcps_conn_grace_period; 8246 if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min) 8247 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 8248 tcp->tcp_timer_backoff = 0; 8249 tcp->tcp_ms_we_have_waited = 0; 8250 tcp->tcp_last_recv_time = lbolt; 8251 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 8252 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8253 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8254 8255 tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier; 8256 8257 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 8258 tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval; 8259 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 8260 /* 8261 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8262 * passive open. 8263 */ 8264 tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval; 8265 8266 tcp->tcp_naglim = tcps->tcps_naglim_def; 8267 8268 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8269 8270 tcp->tcp_mdt_hdr_head = 0; 8271 tcp->tcp_mdt_hdr_tail = 0; 8272 8273 /* Reset fusion-related fields */ 8274 tcp->tcp_fused = B_FALSE; 8275 tcp->tcp_unfusable = B_FALSE; 8276 tcp->tcp_fused_sigurg = B_FALSE; 8277 tcp->tcp_direct_sockfs = B_FALSE; 8278 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8279 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8280 tcp->tcp_loopback_peer = NULL; 8281 tcp->tcp_fuse_rcv_hiwater = 0; 8282 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8283 tcp->tcp_fuse_rcv_unread_cnt = 0; 8284 8285 /* Initialize the header template */ 8286 if (tcp->tcp_ipversion == IPV4_VERSION) { 8287 err = tcp_header_init_ipv4(tcp); 8288 } else { 8289 err = tcp_header_init_ipv6(tcp); 8290 } 8291 if (err) 8292 return (err); 8293 8294 /* 8295 * Init the window scale to the max so tcp_rwnd_set() won't pare 8296 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8297 */ 8298 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8299 tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat; 8300 tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat; 8301 8302 tcp->tcp_cork = B_FALSE; 8303 /* 8304 * Init the tcp_debug option. This value determines whether TCP 8305 * calls strlog() to print out debug messages. Doing this 8306 * initialization here means that this value is not inherited thru 8307 * tcp_reinit(). 8308 */ 8309 tcp->tcp_debug = tcps->tcps_dbg; 8310 8311 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 8312 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 8313 8314 return (0); 8315 } 8316 8317 /* 8318 * Initialize the IPv4 header. Loses any record of any IP options. 8319 */ 8320 static int 8321 tcp_header_init_ipv4(tcp_t *tcp) 8322 { 8323 tcph_t *tcph; 8324 uint32_t sum; 8325 conn_t *connp; 8326 tcp_stack_t *tcps = tcp->tcp_tcps; 8327 8328 /* 8329 * This is a simple initialization. If there's 8330 * already a template, it should never be too small, 8331 * so reuse it. Otherwise, allocate space for the new one. 8332 */ 8333 if (tcp->tcp_iphc == NULL) { 8334 ASSERT(tcp->tcp_iphc_len == 0); 8335 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8336 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8337 if (tcp->tcp_iphc == NULL) { 8338 tcp->tcp_iphc_len = 0; 8339 return (ENOMEM); 8340 } 8341 } 8342 8343 /* options are gone; may need a new label */ 8344 connp = tcp->tcp_connp; 8345 connp->conn_mlp_type = mlptSingle; 8346 connp->conn_ulp_labeled = !is_system_labeled(); 8347 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8348 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8349 tcp->tcp_ip6h = NULL; 8350 tcp->tcp_ipversion = IPV4_VERSION; 8351 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8352 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8353 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8354 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8355 tcp->tcp_ipha->ipha_version_and_hdr_length 8356 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8357 tcp->tcp_ipha->ipha_ident = 0; 8358 8359 tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8360 tcp->tcp_tos = 0; 8361 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8362 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 8363 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8364 8365 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8366 tcp->tcp_tcph = tcph; 8367 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8368 /* 8369 * IP wants our header length in the checksum field to 8370 * allow it to perform a single pseudo-header+checksum 8371 * calculation on behalf of TCP. 8372 * Include the adjustment for a source route once IP_OPTIONS is set. 8373 */ 8374 sum = sizeof (tcph_t) + tcp->tcp_sum; 8375 sum = (sum >> 16) + (sum & 0xFFFF); 8376 U16_TO_ABE16(sum, tcph->th_sum); 8377 return (0); 8378 } 8379 8380 /* 8381 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8382 */ 8383 static int 8384 tcp_header_init_ipv6(tcp_t *tcp) 8385 { 8386 tcph_t *tcph; 8387 uint32_t sum; 8388 conn_t *connp; 8389 tcp_stack_t *tcps = tcp->tcp_tcps; 8390 8391 /* 8392 * This is a simple initialization. If there's 8393 * already a template, it should never be too small, 8394 * so reuse it. Otherwise, allocate space for the new one. 8395 * Ensure that there is enough space to "downgrade" the tcp_t 8396 * to an IPv4 tcp_t. This requires having space for a full load 8397 * of IPv4 options, as well as a full load of TCP options 8398 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8399 * than a v6 header and a TCP header with a full load of TCP options 8400 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8401 * We want to avoid reallocation in the "downgraded" case when 8402 * processing outbound IPv4 options. 8403 */ 8404 if (tcp->tcp_iphc == NULL) { 8405 ASSERT(tcp->tcp_iphc_len == 0); 8406 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8407 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8408 if (tcp->tcp_iphc == NULL) { 8409 tcp->tcp_iphc_len = 0; 8410 return (ENOMEM); 8411 } 8412 } 8413 8414 /* options are gone; may need a new label */ 8415 connp = tcp->tcp_connp; 8416 connp->conn_mlp_type = mlptSingle; 8417 connp->conn_ulp_labeled = !is_system_labeled(); 8418 8419 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8420 tcp->tcp_ipversion = IPV6_VERSION; 8421 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8422 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8423 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8424 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8425 tcp->tcp_ipha = NULL; 8426 8427 /* Initialize the header template */ 8428 8429 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8430 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8431 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8432 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit; 8433 8434 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8435 tcp->tcp_tcph = tcph; 8436 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8437 /* 8438 * IP wants our header length in the checksum field to 8439 * allow it to perform a single psuedo-header+checksum 8440 * calculation on behalf of TCP. 8441 * Include the adjustment for a source route when IPV6_RTHDR is set. 8442 */ 8443 sum = sizeof (tcph_t) + tcp->tcp_sum; 8444 sum = (sum >> 16) + (sum & 0xFFFF); 8445 U16_TO_ABE16(sum, tcph->th_sum); 8446 return (0); 8447 } 8448 8449 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8450 #define ICMP_MIN_TCP_HDR 8 8451 8452 /* 8453 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8454 * passed up by IP. The message is always received on the correct tcp_t. 8455 * Assumes that IP has pulled up everything up to and including the ICMP header. 8456 */ 8457 void 8458 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8459 { 8460 icmph_t *icmph; 8461 ipha_t *ipha; 8462 int iph_hdr_length; 8463 tcph_t *tcph; 8464 boolean_t ipsec_mctl = B_FALSE; 8465 boolean_t secure; 8466 mblk_t *first_mp = mp; 8467 uint32_t new_mss; 8468 uint32_t ratio; 8469 size_t mp_size = MBLKL(mp); 8470 uint32_t seg_seq; 8471 tcp_stack_t *tcps = tcp->tcp_tcps; 8472 8473 /* Assume IP provides aligned packets - otherwise toss */ 8474 if (!OK_32PTR(mp->b_rptr)) { 8475 freemsg(mp); 8476 return; 8477 } 8478 8479 /* 8480 * Since ICMP errors are normal data marked with M_CTL when sent 8481 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8482 * packets starting with an ipsec_info_t, see ipsec_info.h. 8483 */ 8484 if ((mp_size == sizeof (ipsec_info_t)) && 8485 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8486 ASSERT(mp->b_cont != NULL); 8487 mp = mp->b_cont; 8488 /* IP should have done this */ 8489 ASSERT(OK_32PTR(mp->b_rptr)); 8490 mp_size = MBLKL(mp); 8491 ipsec_mctl = B_TRUE; 8492 } 8493 8494 /* 8495 * Verify that we have a complete outer IP header. If not, drop it. 8496 */ 8497 if (mp_size < sizeof (ipha_t)) { 8498 noticmpv4: 8499 freemsg(first_mp); 8500 return; 8501 } 8502 8503 ipha = (ipha_t *)mp->b_rptr; 8504 /* 8505 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8506 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8507 */ 8508 switch (IPH_HDR_VERSION(ipha)) { 8509 case IPV6_VERSION: 8510 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8511 return; 8512 case IPV4_VERSION: 8513 break; 8514 default: 8515 goto noticmpv4; 8516 } 8517 8518 /* Skip past the outer IP and ICMP headers */ 8519 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8520 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8521 /* 8522 * If we don't have the correct outer IP header length or if the ULP 8523 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8524 * send it upstream. 8525 */ 8526 if (iph_hdr_length < sizeof (ipha_t) || 8527 ipha->ipha_protocol != IPPROTO_ICMP || 8528 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8529 goto noticmpv4; 8530 } 8531 ipha = (ipha_t *)&icmph[1]; 8532 8533 /* Skip past the inner IP and find the ULP header */ 8534 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8535 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8536 /* 8537 * If we don't have the correct inner IP header length or if the ULP 8538 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8539 * bytes of TCP header, drop it. 8540 */ 8541 if (iph_hdr_length < sizeof (ipha_t) || 8542 ipha->ipha_protocol != IPPROTO_TCP || 8543 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8544 goto noticmpv4; 8545 } 8546 8547 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8548 if (ipsec_mctl) { 8549 secure = ipsec_in_is_secure(first_mp); 8550 } else { 8551 secure = B_FALSE; 8552 } 8553 if (secure) { 8554 /* 8555 * If we are willing to accept this in clear 8556 * we don't have to verify policy. 8557 */ 8558 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8559 if (!tcp_check_policy(tcp, first_mp, 8560 ipha, NULL, secure, ipsec_mctl)) { 8561 /* 8562 * tcp_check_policy called 8563 * ip_drop_packet() on failure. 8564 */ 8565 return; 8566 } 8567 } 8568 } 8569 } else if (ipsec_mctl) { 8570 /* 8571 * This is a hard_bound connection. IP has already 8572 * verified policy. We don't have to do it again. 8573 */ 8574 freeb(first_mp); 8575 first_mp = mp; 8576 ipsec_mctl = B_FALSE; 8577 } 8578 8579 seg_seq = ABE32_TO_U32(tcph->th_seq); 8580 /* 8581 * TCP SHOULD check that the TCP sequence number contained in 8582 * payload of the ICMP error message is within the range 8583 * SND.UNA <= SEG.SEQ < SND.NXT. 8584 */ 8585 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8586 /* 8587 * If the ICMP message is bogus, should we kill the 8588 * connection, or should we just drop the bogus ICMP 8589 * message? It would probably make more sense to just 8590 * drop the message so that if this one managed to get 8591 * in, the real connection should not suffer. 8592 */ 8593 goto noticmpv4; 8594 } 8595 8596 switch (icmph->icmph_type) { 8597 case ICMP_DEST_UNREACHABLE: 8598 switch (icmph->icmph_code) { 8599 case ICMP_FRAGMENTATION_NEEDED: 8600 /* 8601 * Reduce the MSS based on the new MTU. This will 8602 * eliminate any fragmentation locally. 8603 * N.B. There may well be some funny side-effects on 8604 * the local send policy and the remote receive policy. 8605 * Pending further research, we provide 8606 * tcp_ignore_path_mtu just in case this proves 8607 * disastrous somewhere. 8608 * 8609 * After updating the MSS, retransmit part of the 8610 * dropped segment using the new mss by calling 8611 * tcp_wput_data(). Need to adjust all those 8612 * params to make sure tcp_wput_data() work properly. 8613 */ 8614 if (tcps->tcps_ignore_path_mtu) 8615 break; 8616 8617 /* 8618 * Decrease the MSS by time stamp options 8619 * IP options and IPSEC options. tcp_hdr_len 8620 * includes time stamp option and IP option 8621 * length. 8622 */ 8623 8624 new_mss = ntohs(icmph->icmph_du_mtu) - 8625 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8626 8627 /* 8628 * Only update the MSS if the new one is 8629 * smaller than the previous one. This is 8630 * to avoid problems when getting multiple 8631 * ICMP errors for the same MTU. 8632 */ 8633 if (new_mss >= tcp->tcp_mss) 8634 break; 8635 8636 /* 8637 * Stop doing PMTU if new_mss is less than 68 8638 * or less than tcp_mss_min. 8639 * The value 68 comes from rfc 1191. 8640 */ 8641 if (new_mss < MAX(68, tcps->tcps_mss_min)) 8642 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8643 0; 8644 8645 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8646 ASSERT(ratio >= 1); 8647 tcp_mss_set(tcp, new_mss, B_TRUE); 8648 8649 /* 8650 * Make sure we have something to 8651 * send. 8652 */ 8653 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8654 (tcp->tcp_xmit_head != NULL)) { 8655 /* 8656 * Shrink tcp_cwnd in 8657 * proportion to the old MSS/new MSS. 8658 */ 8659 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8660 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8661 (tcp->tcp_unsent == 0)) { 8662 tcp->tcp_rexmit_max = tcp->tcp_fss; 8663 } else { 8664 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8665 } 8666 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8667 tcp->tcp_rexmit = B_TRUE; 8668 tcp->tcp_dupack_cnt = 0; 8669 tcp->tcp_snd_burst = TCP_CWND_SS; 8670 tcp_ss_rexmit(tcp); 8671 } 8672 break; 8673 case ICMP_PORT_UNREACHABLE: 8674 case ICMP_PROTOCOL_UNREACHABLE: 8675 switch (tcp->tcp_state) { 8676 case TCPS_SYN_SENT: 8677 case TCPS_SYN_RCVD: 8678 /* 8679 * ICMP can snipe away incipient 8680 * TCP connections as long as 8681 * seq number is same as initial 8682 * send seq number. 8683 */ 8684 if (seg_seq == tcp->tcp_iss) { 8685 (void) tcp_clean_death(tcp, 8686 ECONNREFUSED, 6); 8687 } 8688 break; 8689 } 8690 break; 8691 case ICMP_HOST_UNREACHABLE: 8692 case ICMP_NET_UNREACHABLE: 8693 /* Record the error in case we finally time out. */ 8694 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8695 tcp->tcp_client_errno = EHOSTUNREACH; 8696 else 8697 tcp->tcp_client_errno = ENETUNREACH; 8698 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8699 if (tcp->tcp_listener != NULL && 8700 tcp->tcp_listener->tcp_syn_defense) { 8701 /* 8702 * Ditch the half-open connection if we 8703 * suspect a SYN attack is under way. 8704 */ 8705 tcp_ip_ire_mark_advice(tcp); 8706 (void) tcp_clean_death(tcp, 8707 tcp->tcp_client_errno, 7); 8708 } 8709 } 8710 break; 8711 default: 8712 break; 8713 } 8714 break; 8715 case ICMP_SOURCE_QUENCH: { 8716 /* 8717 * use a global boolean to control 8718 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8719 * The default is false. 8720 */ 8721 if (tcp_icmp_source_quench) { 8722 /* 8723 * Reduce the sending rate as if we got a 8724 * retransmit timeout 8725 */ 8726 uint32_t npkt; 8727 8728 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8729 tcp->tcp_mss; 8730 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8731 tcp->tcp_cwnd = tcp->tcp_mss; 8732 tcp->tcp_cwnd_cnt = 0; 8733 } 8734 break; 8735 } 8736 } 8737 freemsg(first_mp); 8738 } 8739 8740 /* 8741 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8742 * error messages passed up by IP. 8743 * Assumes that IP has pulled up all the extension headers as well 8744 * as the ICMPv6 header. 8745 */ 8746 static void 8747 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8748 { 8749 icmp6_t *icmp6; 8750 ip6_t *ip6h; 8751 uint16_t iph_hdr_length; 8752 tcpha_t *tcpha; 8753 uint8_t *nexthdrp; 8754 uint32_t new_mss; 8755 uint32_t ratio; 8756 boolean_t secure; 8757 mblk_t *first_mp = mp; 8758 size_t mp_size; 8759 uint32_t seg_seq; 8760 tcp_stack_t *tcps = tcp->tcp_tcps; 8761 8762 /* 8763 * The caller has determined if this is an IPSEC_IN packet and 8764 * set ipsec_mctl appropriately (see tcp_icmp_error). 8765 */ 8766 if (ipsec_mctl) 8767 mp = mp->b_cont; 8768 8769 mp_size = MBLKL(mp); 8770 8771 /* 8772 * Verify that we have a complete IP header. If not, send it upstream. 8773 */ 8774 if (mp_size < sizeof (ip6_t)) { 8775 noticmpv6: 8776 freemsg(first_mp); 8777 return; 8778 } 8779 8780 /* 8781 * Verify this is an ICMPV6 packet, else send it upstream. 8782 */ 8783 ip6h = (ip6_t *)mp->b_rptr; 8784 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8785 iph_hdr_length = IPV6_HDR_LEN; 8786 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8787 &nexthdrp) || 8788 *nexthdrp != IPPROTO_ICMPV6) { 8789 goto noticmpv6; 8790 } 8791 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8792 ip6h = (ip6_t *)&icmp6[1]; 8793 /* 8794 * Verify if we have a complete ICMP and inner IP header. 8795 */ 8796 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8797 goto noticmpv6; 8798 8799 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8800 goto noticmpv6; 8801 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8802 /* 8803 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8804 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8805 * packet. 8806 */ 8807 if ((*nexthdrp != IPPROTO_TCP) || 8808 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8809 goto noticmpv6; 8810 } 8811 8812 /* 8813 * ICMP errors come on the right queue or come on 8814 * listener/global queue for detached connections and 8815 * get switched to the right queue. If it comes on the 8816 * right queue, policy check has already been done by IP 8817 * and thus free the first_mp without verifying the policy. 8818 * If it has come for a non-hard bound connection, we need 8819 * to verify policy as IP may not have done it. 8820 */ 8821 if (!tcp->tcp_hard_bound) { 8822 if (ipsec_mctl) { 8823 secure = ipsec_in_is_secure(first_mp); 8824 } else { 8825 secure = B_FALSE; 8826 } 8827 if (secure) { 8828 /* 8829 * If we are willing to accept this in clear 8830 * we don't have to verify policy. 8831 */ 8832 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8833 if (!tcp_check_policy(tcp, first_mp, 8834 NULL, ip6h, secure, ipsec_mctl)) { 8835 /* 8836 * tcp_check_policy called 8837 * ip_drop_packet() on failure. 8838 */ 8839 return; 8840 } 8841 } 8842 } 8843 } else if (ipsec_mctl) { 8844 /* 8845 * This is a hard_bound connection. IP has already 8846 * verified policy. We don't have to do it again. 8847 */ 8848 freeb(first_mp); 8849 first_mp = mp; 8850 ipsec_mctl = B_FALSE; 8851 } 8852 8853 seg_seq = ntohl(tcpha->tha_seq); 8854 /* 8855 * TCP SHOULD check that the TCP sequence number contained in 8856 * payload of the ICMP error message is within the range 8857 * SND.UNA <= SEG.SEQ < SND.NXT. 8858 */ 8859 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8860 /* 8861 * If the ICMP message is bogus, should we kill the 8862 * connection, or should we just drop the bogus ICMP 8863 * message? It would probably make more sense to just 8864 * drop the message so that if this one managed to get 8865 * in, the real connection should not suffer. 8866 */ 8867 goto noticmpv6; 8868 } 8869 8870 switch (icmp6->icmp6_type) { 8871 case ICMP6_PACKET_TOO_BIG: 8872 /* 8873 * Reduce the MSS based on the new MTU. This will 8874 * eliminate any fragmentation locally. 8875 * N.B. There may well be some funny side-effects on 8876 * the local send policy and the remote receive policy. 8877 * Pending further research, we provide 8878 * tcp_ignore_path_mtu just in case this proves 8879 * disastrous somewhere. 8880 * 8881 * After updating the MSS, retransmit part of the 8882 * dropped segment using the new mss by calling 8883 * tcp_wput_data(). Need to adjust all those 8884 * params to make sure tcp_wput_data() work properly. 8885 */ 8886 if (tcps->tcps_ignore_path_mtu) 8887 break; 8888 8889 /* 8890 * Decrease the MSS by time stamp options 8891 * IP options and IPSEC options. tcp_hdr_len 8892 * includes time stamp option and IP option 8893 * length. 8894 */ 8895 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8896 tcp->tcp_ipsec_overhead; 8897 8898 /* 8899 * Only update the MSS if the new one is 8900 * smaller than the previous one. This is 8901 * to avoid problems when getting multiple 8902 * ICMP errors for the same MTU. 8903 */ 8904 if (new_mss >= tcp->tcp_mss) 8905 break; 8906 8907 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8908 ASSERT(ratio >= 1); 8909 tcp_mss_set(tcp, new_mss, B_TRUE); 8910 8911 /* 8912 * Make sure we have something to 8913 * send. 8914 */ 8915 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8916 (tcp->tcp_xmit_head != NULL)) { 8917 /* 8918 * Shrink tcp_cwnd in 8919 * proportion to the old MSS/new MSS. 8920 */ 8921 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8922 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8923 (tcp->tcp_unsent == 0)) { 8924 tcp->tcp_rexmit_max = tcp->tcp_fss; 8925 } else { 8926 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8927 } 8928 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8929 tcp->tcp_rexmit = B_TRUE; 8930 tcp->tcp_dupack_cnt = 0; 8931 tcp->tcp_snd_burst = TCP_CWND_SS; 8932 tcp_ss_rexmit(tcp); 8933 } 8934 break; 8935 8936 case ICMP6_DST_UNREACH: 8937 switch (icmp6->icmp6_code) { 8938 case ICMP6_DST_UNREACH_NOPORT: 8939 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8940 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8941 (seg_seq == tcp->tcp_iss)) { 8942 (void) tcp_clean_death(tcp, 8943 ECONNREFUSED, 8); 8944 } 8945 break; 8946 8947 case ICMP6_DST_UNREACH_ADMIN: 8948 case ICMP6_DST_UNREACH_NOROUTE: 8949 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8950 case ICMP6_DST_UNREACH_ADDR: 8951 /* Record the error in case we finally time out. */ 8952 tcp->tcp_client_errno = EHOSTUNREACH; 8953 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8954 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8955 (seg_seq == tcp->tcp_iss)) { 8956 if (tcp->tcp_listener != NULL && 8957 tcp->tcp_listener->tcp_syn_defense) { 8958 /* 8959 * Ditch the half-open connection if we 8960 * suspect a SYN attack is under way. 8961 */ 8962 tcp_ip_ire_mark_advice(tcp); 8963 (void) tcp_clean_death(tcp, 8964 tcp->tcp_client_errno, 9); 8965 } 8966 } 8967 8968 8969 break; 8970 default: 8971 break; 8972 } 8973 break; 8974 8975 case ICMP6_PARAM_PROB: 8976 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8977 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8978 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8979 (uchar_t *)nexthdrp) { 8980 if (tcp->tcp_state == TCPS_SYN_SENT || 8981 tcp->tcp_state == TCPS_SYN_RCVD) { 8982 (void) tcp_clean_death(tcp, 8983 ECONNREFUSED, 10); 8984 } 8985 break; 8986 } 8987 break; 8988 8989 case ICMP6_TIME_EXCEEDED: 8990 default: 8991 break; 8992 } 8993 freemsg(first_mp); 8994 } 8995 8996 /* 8997 * IP recognizes seven kinds of bind requests: 8998 * 8999 * - A zero-length address binds only to the protocol number. 9000 * 9001 * - A 4-byte address is treated as a request to 9002 * validate that the address is a valid local IPv4 9003 * address, appropriate for an application to bind to. 9004 * IP does the verification, but does not make any note 9005 * of the address at this time. 9006 * 9007 * - A 16-byte address contains is treated as a request 9008 * to validate a local IPv6 address, as the 4-byte 9009 * address case above. 9010 * 9011 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 9012 * use it for the inbound fanout of packets. 9013 * 9014 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 9015 * use it for the inbound fanout of packets. 9016 * 9017 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 9018 * information consisting of local and remote addresses 9019 * and ports. In this case, the addresses are both 9020 * validated as appropriate for this operation, and, if 9021 * so, the information is retained for use in the 9022 * inbound fanout. 9023 * 9024 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 9025 * fanout information, like the 12-byte case above. 9026 * 9027 * IP will also fill in the IRE request mblk with information 9028 * regarding our peer. In all cases, we notify IP of our protocol 9029 * type by appending a single protocol byte to the bind request. 9030 */ 9031 static mblk_t * 9032 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 9033 { 9034 char *cp; 9035 mblk_t *mp; 9036 struct T_bind_req *tbr; 9037 ipa_conn_t *ac; 9038 ipa6_conn_t *ac6; 9039 sin_t *sin; 9040 sin6_t *sin6; 9041 9042 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9043 ASSERT((tcp->tcp_family == AF_INET && 9044 tcp->tcp_ipversion == IPV4_VERSION) || 9045 (tcp->tcp_family == AF_INET6 && 9046 (tcp->tcp_ipversion == IPV4_VERSION || 9047 tcp->tcp_ipversion == IPV6_VERSION))); 9048 9049 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9050 if (!mp) 9051 return (mp); 9052 mp->b_datap->db_type = M_PROTO; 9053 tbr = (struct T_bind_req *)mp->b_rptr; 9054 tbr->PRIM_type = bind_prim; 9055 tbr->ADDR_offset = sizeof (*tbr); 9056 tbr->CONIND_number = 0; 9057 tbr->ADDR_length = addr_length; 9058 cp = (char *)&tbr[1]; 9059 switch (addr_length) { 9060 case sizeof (ipa_conn_t): 9061 ASSERT(tcp->tcp_family == AF_INET); 9062 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9063 9064 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9065 if (mp->b_cont == NULL) { 9066 freemsg(mp); 9067 return (NULL); 9068 } 9069 mp->b_cont->b_wptr += sizeof (ire_t); 9070 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9071 9072 /* cp known to be 32 bit aligned */ 9073 ac = (ipa_conn_t *)cp; 9074 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9075 ac->ac_faddr = tcp->tcp_remote; 9076 ac->ac_fport = tcp->tcp_fport; 9077 ac->ac_lport = tcp->tcp_lport; 9078 tcp->tcp_hard_binding = 1; 9079 break; 9080 9081 case sizeof (ipa6_conn_t): 9082 ASSERT(tcp->tcp_family == AF_INET6); 9083 9084 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9085 if (mp->b_cont == NULL) { 9086 freemsg(mp); 9087 return (NULL); 9088 } 9089 mp->b_cont->b_wptr += sizeof (ire_t); 9090 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9091 9092 /* cp known to be 32 bit aligned */ 9093 ac6 = (ipa6_conn_t *)cp; 9094 if (tcp->tcp_ipversion == IPV4_VERSION) { 9095 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9096 &ac6->ac6_laddr); 9097 } else { 9098 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9099 } 9100 ac6->ac6_faddr = tcp->tcp_remote_v6; 9101 ac6->ac6_fport = tcp->tcp_fport; 9102 ac6->ac6_lport = tcp->tcp_lport; 9103 tcp->tcp_hard_binding = 1; 9104 break; 9105 9106 case sizeof (sin_t): 9107 /* 9108 * NOTE: IPV6_ADDR_LEN also has same size. 9109 * Use family to discriminate. 9110 */ 9111 if (tcp->tcp_family == AF_INET) { 9112 sin = (sin_t *)cp; 9113 9114 *sin = sin_null; 9115 sin->sin_family = AF_INET; 9116 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9117 sin->sin_port = tcp->tcp_lport; 9118 break; 9119 } else { 9120 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9121 } 9122 break; 9123 9124 case sizeof (sin6_t): 9125 ASSERT(tcp->tcp_family == AF_INET6); 9126 sin6 = (sin6_t *)cp; 9127 9128 *sin6 = sin6_null; 9129 sin6->sin6_family = AF_INET6; 9130 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9131 sin6->sin6_port = tcp->tcp_lport; 9132 break; 9133 9134 case IP_ADDR_LEN: 9135 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9136 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9137 break; 9138 9139 } 9140 /* Add protocol number to end */ 9141 cp[addr_length] = (char)IPPROTO_TCP; 9142 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9143 return (mp); 9144 } 9145 9146 /* 9147 * Notify IP that we are having trouble with this connection. IP should 9148 * blow the IRE away and start over. 9149 */ 9150 static void 9151 tcp_ip_notify(tcp_t *tcp) 9152 { 9153 struct iocblk *iocp; 9154 ipid_t *ipid; 9155 mblk_t *mp; 9156 9157 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9158 if (tcp->tcp_ipversion == IPV6_VERSION) 9159 return; 9160 9161 mp = mkiocb(IP_IOCTL); 9162 if (mp == NULL) 9163 return; 9164 9165 iocp = (struct iocblk *)mp->b_rptr; 9166 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9167 9168 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9169 if (!mp->b_cont) { 9170 freeb(mp); 9171 return; 9172 } 9173 9174 ipid = (ipid_t *)mp->b_cont->b_rptr; 9175 mp->b_cont->b_wptr += iocp->ioc_count; 9176 bzero(ipid, sizeof (*ipid)); 9177 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9178 ipid->ipid_ire_type = IRE_CACHE; 9179 ipid->ipid_addr_offset = sizeof (ipid_t); 9180 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9181 /* 9182 * Note: in the case of source routing we want to blow away the 9183 * route to the first source route hop. 9184 */ 9185 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9186 sizeof (tcp->tcp_ipha->ipha_dst)); 9187 9188 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9189 } 9190 9191 /* Unlink and return any mblk that looks like it contains an ire */ 9192 static mblk_t * 9193 tcp_ire_mp(mblk_t *mp) 9194 { 9195 mblk_t *prev_mp; 9196 9197 for (;;) { 9198 prev_mp = mp; 9199 mp = mp->b_cont; 9200 if (mp == NULL) 9201 break; 9202 switch (DB_TYPE(mp)) { 9203 case IRE_DB_TYPE: 9204 case IRE_DB_REQ_TYPE: 9205 if (prev_mp != NULL) 9206 prev_mp->b_cont = mp->b_cont; 9207 mp->b_cont = NULL; 9208 return (mp); 9209 default: 9210 break; 9211 } 9212 } 9213 return (mp); 9214 } 9215 9216 /* 9217 * Timer callback routine for keepalive probe. We do a fake resend of 9218 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9219 * check to see if we have heard anything from the other end for the last 9220 * RTO period. If we have, set the timer to expire for another 9221 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9222 * RTO << 1 and check again when it expires. Keep exponentially increasing 9223 * the timeout if we have not heard from the other side. If for more than 9224 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9225 * kill the connection unless the keepalive abort threshold is 0. In 9226 * that case, we will probe "forever." 9227 */ 9228 static void 9229 tcp_keepalive_killer(void *arg) 9230 { 9231 mblk_t *mp; 9232 conn_t *connp = (conn_t *)arg; 9233 tcp_t *tcp = connp->conn_tcp; 9234 int32_t firetime; 9235 int32_t idletime; 9236 int32_t ka_intrvl; 9237 tcp_stack_t *tcps = tcp->tcp_tcps; 9238 9239 tcp->tcp_ka_tid = 0; 9240 9241 if (tcp->tcp_fused) 9242 return; 9243 9244 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive); 9245 ka_intrvl = tcp->tcp_ka_interval; 9246 9247 /* 9248 * Keepalive probe should only be sent if the application has not 9249 * done a close on the connection. 9250 */ 9251 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9252 return; 9253 } 9254 /* Timer fired too early, restart it. */ 9255 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9256 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9257 MSEC_TO_TICK(ka_intrvl)); 9258 return; 9259 } 9260 9261 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9262 /* 9263 * If we have not heard from the other side for a long 9264 * time, kill the connection unless the keepalive abort 9265 * threshold is 0. In that case, we will probe "forever." 9266 */ 9267 if (tcp->tcp_ka_abort_thres != 0 && 9268 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9269 BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop); 9270 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9271 tcp->tcp_client_errno : ETIMEDOUT, 11); 9272 return; 9273 } 9274 9275 if (tcp->tcp_snxt == tcp->tcp_suna && 9276 idletime >= ka_intrvl) { 9277 /* Fake resend of last ACKed byte. */ 9278 mblk_t *mp1 = allocb(1, BPRI_LO); 9279 9280 if (mp1 != NULL) { 9281 *mp1->b_wptr++ = '\0'; 9282 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9283 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9284 freeb(mp1); 9285 /* 9286 * if allocation failed, fall through to start the 9287 * timer back. 9288 */ 9289 if (mp != NULL) { 9290 TCP_RECORD_TRACE(tcp, mp, 9291 TCP_TRACE_SEND_PKT); 9292 tcp_send_data(tcp, tcp->tcp_wq, mp); 9293 BUMP_MIB(&tcps->tcps_mib, 9294 tcpTimKeepaliveProbe); 9295 if (tcp->tcp_ka_last_intrvl != 0) { 9296 int max; 9297 /* 9298 * We should probe again at least 9299 * in ka_intrvl, but not more than 9300 * tcp_rexmit_interval_max. 9301 */ 9302 max = tcps->tcps_rexmit_interval_max; 9303 firetime = MIN(ka_intrvl - 1, 9304 tcp->tcp_ka_last_intrvl << 1); 9305 if (firetime > max) 9306 firetime = max; 9307 } else { 9308 firetime = tcp->tcp_rto; 9309 } 9310 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9311 tcp_keepalive_killer, 9312 MSEC_TO_TICK(firetime)); 9313 tcp->tcp_ka_last_intrvl = firetime; 9314 return; 9315 } 9316 } 9317 } else { 9318 tcp->tcp_ka_last_intrvl = 0; 9319 } 9320 9321 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9322 if ((firetime = ka_intrvl - idletime) < 0) { 9323 firetime = ka_intrvl; 9324 } 9325 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9326 MSEC_TO_TICK(firetime)); 9327 } 9328 9329 int 9330 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9331 { 9332 queue_t *q = tcp->tcp_rq; 9333 int32_t mss = tcp->tcp_mss; 9334 int maxpsz; 9335 9336 if (TCP_IS_DETACHED(tcp)) 9337 return (mss); 9338 9339 if (tcp->tcp_fused) { 9340 maxpsz = tcp_fuse_maxpsz_set(tcp); 9341 mss = INFPSZ; 9342 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9343 /* 9344 * Set the sd_qn_maxpsz according to the socket send buffer 9345 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9346 * instruct the stream head to copyin user data into contiguous 9347 * kernel-allocated buffers without breaking it up into smaller 9348 * chunks. We round up the buffer size to the nearest SMSS. 9349 */ 9350 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9351 if (tcp->tcp_kssl_ctx == NULL) 9352 mss = INFPSZ; 9353 else 9354 mss = SSL3_MAX_RECORD_LEN; 9355 } else { 9356 /* 9357 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9358 * (and a multiple of the mss). This instructs the stream 9359 * head to break down larger than SMSS writes into SMSS- 9360 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9361 */ 9362 maxpsz = tcp->tcp_maxpsz * mss; 9363 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9364 maxpsz = tcp->tcp_xmit_hiwater/2; 9365 /* Round up to nearest mss */ 9366 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9367 } 9368 } 9369 (void) setmaxps(q, maxpsz); 9370 tcp->tcp_wq->q_maxpsz = maxpsz; 9371 9372 if (set_maxblk) 9373 (void) mi_set_sth_maxblk(q, mss); 9374 9375 return (mss); 9376 } 9377 9378 /* 9379 * Extract option values from a tcp header. We put any found values into the 9380 * tcpopt struct and return a bitmask saying which options were found. 9381 */ 9382 static int 9383 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9384 { 9385 uchar_t *endp; 9386 int len; 9387 uint32_t mss; 9388 uchar_t *up = (uchar_t *)tcph; 9389 int found = 0; 9390 int32_t sack_len; 9391 tcp_seq sack_begin, sack_end; 9392 tcp_t *tcp; 9393 9394 endp = up + TCP_HDR_LENGTH(tcph); 9395 up += TCP_MIN_HEADER_LENGTH; 9396 while (up < endp) { 9397 len = endp - up; 9398 switch (*up) { 9399 case TCPOPT_EOL: 9400 break; 9401 9402 case TCPOPT_NOP: 9403 up++; 9404 continue; 9405 9406 case TCPOPT_MAXSEG: 9407 if (len < TCPOPT_MAXSEG_LEN || 9408 up[1] != TCPOPT_MAXSEG_LEN) 9409 break; 9410 9411 mss = BE16_TO_U16(up+2); 9412 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9413 tcpopt->tcp_opt_mss = mss; 9414 found |= TCP_OPT_MSS_PRESENT; 9415 9416 up += TCPOPT_MAXSEG_LEN; 9417 continue; 9418 9419 case TCPOPT_WSCALE: 9420 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9421 break; 9422 9423 if (up[2] > TCP_MAX_WINSHIFT) 9424 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9425 else 9426 tcpopt->tcp_opt_wscale = up[2]; 9427 found |= TCP_OPT_WSCALE_PRESENT; 9428 9429 up += TCPOPT_WS_LEN; 9430 continue; 9431 9432 case TCPOPT_SACK_PERMITTED: 9433 if (len < TCPOPT_SACK_OK_LEN || 9434 up[1] != TCPOPT_SACK_OK_LEN) 9435 break; 9436 found |= TCP_OPT_SACK_OK_PRESENT; 9437 up += TCPOPT_SACK_OK_LEN; 9438 continue; 9439 9440 case TCPOPT_SACK: 9441 if (len <= 2 || up[1] <= 2 || len < up[1]) 9442 break; 9443 9444 /* If TCP is not interested in SACK blks... */ 9445 if ((tcp = tcpopt->tcp) == NULL) { 9446 up += up[1]; 9447 continue; 9448 } 9449 sack_len = up[1] - TCPOPT_HEADER_LEN; 9450 up += TCPOPT_HEADER_LEN; 9451 9452 /* 9453 * If the list is empty, allocate one and assume 9454 * nothing is sack'ed. 9455 */ 9456 ASSERT(tcp->tcp_sack_info != NULL); 9457 if (tcp->tcp_notsack_list == NULL) { 9458 tcp_notsack_update(&(tcp->tcp_notsack_list), 9459 tcp->tcp_suna, tcp->tcp_snxt, 9460 &(tcp->tcp_num_notsack_blk), 9461 &(tcp->tcp_cnt_notsack_list)); 9462 9463 /* 9464 * Make sure tcp_notsack_list is not NULL. 9465 * This happens when kmem_alloc(KM_NOSLEEP) 9466 * returns NULL. 9467 */ 9468 if (tcp->tcp_notsack_list == NULL) { 9469 up += sack_len; 9470 continue; 9471 } 9472 tcp->tcp_fack = tcp->tcp_suna; 9473 } 9474 9475 while (sack_len > 0) { 9476 if (up + 8 > endp) { 9477 up = endp; 9478 break; 9479 } 9480 sack_begin = BE32_TO_U32(up); 9481 up += 4; 9482 sack_end = BE32_TO_U32(up); 9483 up += 4; 9484 sack_len -= 8; 9485 /* 9486 * Bounds checking. Make sure the SACK 9487 * info is within tcp_suna and tcp_snxt. 9488 * If this SACK blk is out of bound, ignore 9489 * it but continue to parse the following 9490 * blks. 9491 */ 9492 if (SEQ_LEQ(sack_end, sack_begin) || 9493 SEQ_LT(sack_begin, tcp->tcp_suna) || 9494 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9495 continue; 9496 } 9497 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9498 sack_begin, sack_end, 9499 &(tcp->tcp_num_notsack_blk), 9500 &(tcp->tcp_cnt_notsack_list)); 9501 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9502 tcp->tcp_fack = sack_end; 9503 } 9504 } 9505 found |= TCP_OPT_SACK_PRESENT; 9506 continue; 9507 9508 case TCPOPT_TSTAMP: 9509 if (len < TCPOPT_TSTAMP_LEN || 9510 up[1] != TCPOPT_TSTAMP_LEN) 9511 break; 9512 9513 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9514 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9515 9516 found |= TCP_OPT_TSTAMP_PRESENT; 9517 9518 up += TCPOPT_TSTAMP_LEN; 9519 continue; 9520 9521 default: 9522 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9523 break; 9524 up += up[1]; 9525 continue; 9526 } 9527 break; 9528 } 9529 return (found); 9530 } 9531 9532 /* 9533 * Set the mss associated with a particular tcp based on its current value, 9534 * and a new one passed in. Observe minimums and maximums, and reset 9535 * other state variables that we want to view as multiples of mss. 9536 * 9537 * This function is called in various places mainly because 9538 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9539 * other side's SYN/SYN-ACK packet arrives. 9540 * 2) PMTUd may get us a new MSS. 9541 * 3) If the other side stops sending us timestamp option, we need to 9542 * increase the MSS size to use the extra bytes available. 9543 * 9544 * do_ss is used to control whether we will be doing slow start or 9545 * not if there is a change in the mss. Note that for some events like 9546 * tcp_paws_check() we allow the tcp_cwnd to adjust to the new mss but 9547 * do not perform a slow start specifically. 9548 */ 9549 static void 9550 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss) 9551 { 9552 uint32_t mss_max; 9553 tcp_stack_t *tcps = tcp->tcp_tcps; 9554 9555 if (tcp->tcp_ipversion == IPV4_VERSION) 9556 mss_max = tcps->tcps_mss_max_ipv4; 9557 else 9558 mss_max = tcps->tcps_mss_max_ipv6; 9559 9560 if (mss < tcps->tcps_mss_min) 9561 mss = tcps->tcps_mss_min; 9562 if (mss > mss_max) 9563 mss = mss_max; 9564 /* 9565 * Unless naglim has been set by our client to 9566 * a non-mss value, force naglim to track mss. 9567 * This can help to aggregate small writes. 9568 */ 9569 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9570 tcp->tcp_naglim = mss; 9571 /* 9572 * TCP should be able to buffer at least 4 MSS data for obvious 9573 * performance reason. 9574 */ 9575 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9576 tcp->tcp_xmit_hiwater = mss << 2; 9577 9578 /* 9579 * Check if we need to apply the tcp_init_cwnd here. If 9580 * it is set and the MSS gets bigger (should not happen 9581 * normally), we need to adjust the resulting tcp_cwnd properly. 9582 * The new tcp_cwnd should not get bigger. 9583 */ 9584 /* 9585 * We need to avoid setting tcp_cwnd to its slow start value 9586 * unnecessarily. However we have to let the tcp_cwnd adjust 9587 * to the modified mss. 9588 */ 9589 if (tcp->tcp_init_cwnd == 0 && do_ss) { 9590 tcp->tcp_cwnd = MIN(tcps->tcps_slow_start_initial * 9591 mss, MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9592 } else { 9593 if (tcp->tcp_mss < mss) { 9594 tcp->tcp_cwnd = MAX(1, 9595 (tcp->tcp_init_cwnd * tcp->tcp_mss / 9596 mss)) * mss; 9597 } else { 9598 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9599 } 9600 } 9601 tcp->tcp_mss = mss; 9602 tcp->tcp_cwnd_cnt = 0; 9603 (void) tcp_maxpsz_set(tcp, B_TRUE); 9604 } 9605 9606 /* For /dev/tcp aka AF_INET open */ 9607 static int 9608 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9609 { 9610 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 9611 } 9612 9613 /* For /dev/tcp6 aka AF_INET6 open */ 9614 static int 9615 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9616 { 9617 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 9618 } 9619 9620 static int 9621 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 9622 boolean_t isv6) 9623 { 9624 tcp_t *tcp = NULL; 9625 conn_t *connp; 9626 int err; 9627 vmem_t *minor_arena = NULL; 9628 dev_t conn_dev; 9629 zoneid_t zoneid; 9630 tcp_stack_t *tcps = NULL; 9631 9632 if (q->q_ptr != NULL) 9633 return (0); 9634 9635 if (sflag == MODOPEN) 9636 return (EINVAL); 9637 9638 if (!(flag & SO_ACCEPTOR)) { 9639 /* 9640 * Special case for install: miniroot needs to be able to 9641 * access files via NFS as though it were always in the 9642 * global zone. 9643 */ 9644 if (credp == kcred && nfs_global_client_only != 0) { 9645 zoneid = GLOBAL_ZONEID; 9646 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 9647 netstack_tcp; 9648 ASSERT(tcps != NULL); 9649 } else { 9650 netstack_t *ns; 9651 9652 ns = netstack_find_by_cred(credp); 9653 ASSERT(ns != NULL); 9654 tcps = ns->netstack_tcp; 9655 ASSERT(tcps != NULL); 9656 9657 /* 9658 * For exclusive stacks we set the zoneid to zero 9659 * to make TCP operate as if in the global zone. 9660 */ 9661 if (tcps->tcps_netstack->netstack_stackid != 9662 GLOBAL_NETSTACKID) 9663 zoneid = GLOBAL_ZONEID; 9664 else 9665 zoneid = crgetzoneid(credp); 9666 } 9667 /* 9668 * For stackid zero this is done from strplumb.c, but 9669 * non-zero stackids are handled here. 9670 */ 9671 if (tcps->tcps_g_q == NULL && 9672 tcps->tcps_netstack->netstack_stackid != 9673 GLOBAL_NETSTACKID) { 9674 tcp_g_q_setup(tcps); 9675 } 9676 } 9677 9678 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 9679 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 9680 minor_arena = ip_minor_arena_la; 9681 } else { 9682 /* 9683 * Either minor numbers in the large arena were exhausted 9684 * or a non socket application is doing the open. 9685 * Try to allocate from the small arena. 9686 */ 9687 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 9688 if (tcps != NULL) 9689 netstack_rele(tcps->tcps_netstack); 9690 return (EBUSY); 9691 } 9692 minor_arena = ip_minor_arena_sa; 9693 } 9694 ASSERT(minor_arena != NULL); 9695 9696 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9697 9698 if (flag & SO_ACCEPTOR) { 9699 /* No netstack_find_by_cred, hence no netstack_rele needed */ 9700 ASSERT(tcps == NULL); 9701 q->q_qinfo = &tcp_acceptor_rinit; 9702 /* 9703 * the conn_dev and minor_arena will be subsequently used by 9704 * tcp_wput_accept() and tcpclose_accept() to figure out the 9705 * minor device number for this connection from the q_ptr. 9706 */ 9707 RD(q)->q_ptr = (void *)conn_dev; 9708 WR(q)->q_qinfo = &tcp_acceptor_winit; 9709 WR(q)->q_ptr = (void *)minor_arena; 9710 qprocson(q); 9711 return (0); 9712 } 9713 9714 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt), tcps); 9715 /* 9716 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 9717 * so we drop it by one. 9718 */ 9719 netstack_rele(tcps->tcps_netstack); 9720 if (connp == NULL) { 9721 inet_minor_free(minor_arena, conn_dev); 9722 q->q_ptr = NULL; 9723 return (ENOSR); 9724 } 9725 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9726 tcp = connp->conn_tcp; 9727 9728 q->q_ptr = WR(q)->q_ptr = connp; 9729 if (isv6) { 9730 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9731 connp->conn_send = ip_output_v6; 9732 connp->conn_af_isv6 = B_TRUE; 9733 connp->conn_pkt_isv6 = B_TRUE; 9734 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9735 tcp->tcp_ipversion = IPV6_VERSION; 9736 tcp->tcp_family = AF_INET6; 9737 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 9738 } else { 9739 connp->conn_flags |= IPCL_TCP4; 9740 connp->conn_send = ip_output; 9741 connp->conn_af_isv6 = B_FALSE; 9742 connp->conn_pkt_isv6 = B_FALSE; 9743 tcp->tcp_ipversion = IPV4_VERSION; 9744 tcp->tcp_family = AF_INET; 9745 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 9746 } 9747 9748 /* 9749 * TCP keeps a copy of cred for cache locality reasons but 9750 * we put a reference only once. If connp->conn_cred 9751 * becomes invalid, tcp_cred should also be set to NULL. 9752 */ 9753 tcp->tcp_cred = connp->conn_cred = credp; 9754 crhold(connp->conn_cred); 9755 tcp->tcp_cpid = curproc->p_pid; 9756 tcp->tcp_open_time = lbolt64; 9757 connp->conn_zoneid = zoneid; 9758 connp->conn_mlp_type = mlptSingle; 9759 connp->conn_ulp_labeled = !is_system_labeled(); 9760 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 9761 ASSERT(tcp->tcp_tcps == tcps); 9762 9763 /* 9764 * If the caller has the process-wide flag set, then default to MAC 9765 * exempt mode. This allows read-down to unlabeled hosts. 9766 */ 9767 if (getpflags(NET_MAC_AWARE, credp) != 0) 9768 connp->conn_mac_exempt = B_TRUE; 9769 9770 connp->conn_dev = conn_dev; 9771 connp->conn_minor_arena = minor_arena; 9772 9773 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 9774 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9775 9776 if (flag & SO_SOCKSTR) { 9777 /* 9778 * No need to insert a socket in tcp acceptor hash. 9779 * If it was a socket acceptor stream, we dealt with 9780 * it above. A socket listener can never accept a 9781 * connection and doesn't need acceptor_id. 9782 */ 9783 connp->conn_flags |= IPCL_SOCKET; 9784 tcp->tcp_issocket = 1; 9785 WR(q)->q_qinfo = &tcp_sock_winit; 9786 } else { 9787 #ifdef _ILP32 9788 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9789 #else 9790 tcp->tcp_acceptor_id = conn_dev; 9791 #endif /* _ILP32 */ 9792 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9793 } 9794 9795 if (tcps->tcps_trace) 9796 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9797 9798 err = tcp_init(tcp, q); 9799 if (err != 0) { 9800 inet_minor_free(connp->conn_minor_arena, connp->conn_dev); 9801 tcp_acceptor_hash_remove(tcp); 9802 CONN_DEC_REF(connp); 9803 q->q_ptr = WR(q)->q_ptr = NULL; 9804 return (err); 9805 } 9806 9807 RD(q)->q_hiwat = tcps->tcps_recv_hiwat; 9808 tcp->tcp_rwnd = tcps->tcps_recv_hiwat; 9809 9810 /* Non-zero default values */ 9811 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9812 /* 9813 * Put the ref for TCP. Ref for IP was already put 9814 * by ipcl_conn_create. Also Make the conn_t globally 9815 * visible to walkers 9816 */ 9817 mutex_enter(&connp->conn_lock); 9818 CONN_INC_REF_LOCKED(connp); 9819 ASSERT(connp->conn_ref == 2); 9820 connp->conn_state_flags &= ~CONN_INCIPIENT; 9821 mutex_exit(&connp->conn_lock); 9822 9823 qprocson(q); 9824 return (0); 9825 } 9826 9827 /* 9828 * Some TCP options can be "set" by requesting them in the option 9829 * buffer. This is needed for XTI feature test though we do not 9830 * allow it in general. We interpret that this mechanism is more 9831 * applicable to OSI protocols and need not be allowed in general. 9832 * This routine filters out options for which it is not allowed (most) 9833 * and lets through those (few) for which it is. [ The XTI interface 9834 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9835 * ever implemented will have to be allowed here ]. 9836 */ 9837 static boolean_t 9838 tcp_allow_connopt_set(int level, int name) 9839 { 9840 9841 switch (level) { 9842 case IPPROTO_TCP: 9843 switch (name) { 9844 case TCP_NODELAY: 9845 return (B_TRUE); 9846 default: 9847 return (B_FALSE); 9848 } 9849 /*NOTREACHED*/ 9850 default: 9851 return (B_FALSE); 9852 } 9853 /*NOTREACHED*/ 9854 } 9855 9856 /* 9857 * This routine gets default values of certain options whose default 9858 * values are maintained by protocol specific code 9859 */ 9860 /* ARGSUSED */ 9861 int 9862 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9863 { 9864 int32_t *i1 = (int32_t *)ptr; 9865 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 9866 9867 switch (level) { 9868 case IPPROTO_TCP: 9869 switch (name) { 9870 case TCP_NOTIFY_THRESHOLD: 9871 *i1 = tcps->tcps_ip_notify_interval; 9872 break; 9873 case TCP_ABORT_THRESHOLD: 9874 *i1 = tcps->tcps_ip_abort_interval; 9875 break; 9876 case TCP_CONN_NOTIFY_THRESHOLD: 9877 *i1 = tcps->tcps_ip_notify_cinterval; 9878 break; 9879 case TCP_CONN_ABORT_THRESHOLD: 9880 *i1 = tcps->tcps_ip_abort_cinterval; 9881 break; 9882 default: 9883 return (-1); 9884 } 9885 break; 9886 case IPPROTO_IP: 9887 switch (name) { 9888 case IP_TTL: 9889 *i1 = tcps->tcps_ipv4_ttl; 9890 break; 9891 default: 9892 return (-1); 9893 } 9894 break; 9895 case IPPROTO_IPV6: 9896 switch (name) { 9897 case IPV6_UNICAST_HOPS: 9898 *i1 = tcps->tcps_ipv6_hoplimit; 9899 break; 9900 default: 9901 return (-1); 9902 } 9903 break; 9904 default: 9905 return (-1); 9906 } 9907 return (sizeof (int)); 9908 } 9909 9910 9911 /* 9912 * TCP routine to get the values of options. 9913 */ 9914 int 9915 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9916 { 9917 int *i1 = (int *)ptr; 9918 conn_t *connp = Q_TO_CONN(q); 9919 tcp_t *tcp = connp->conn_tcp; 9920 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9921 9922 switch (level) { 9923 case SOL_SOCKET: 9924 switch (name) { 9925 case SO_LINGER: { 9926 struct linger *lgr = (struct linger *)ptr; 9927 9928 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9929 lgr->l_linger = tcp->tcp_lingertime; 9930 } 9931 return (sizeof (struct linger)); 9932 case SO_DEBUG: 9933 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9934 break; 9935 case SO_KEEPALIVE: 9936 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9937 break; 9938 case SO_DONTROUTE: 9939 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9940 break; 9941 case SO_USELOOPBACK: 9942 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9943 break; 9944 case SO_BROADCAST: 9945 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9946 break; 9947 case SO_REUSEADDR: 9948 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9949 break; 9950 case SO_OOBINLINE: 9951 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9952 break; 9953 case SO_DGRAM_ERRIND: 9954 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9955 break; 9956 case SO_TYPE: 9957 *i1 = SOCK_STREAM; 9958 break; 9959 case SO_SNDBUF: 9960 *i1 = tcp->tcp_xmit_hiwater; 9961 break; 9962 case SO_RCVBUF: 9963 *i1 = RD(q)->q_hiwat; 9964 break; 9965 case SO_SND_COPYAVOID: 9966 *i1 = tcp->tcp_snd_zcopy_on ? 9967 SO_SND_COPYAVOID : 0; 9968 break; 9969 case SO_ALLZONES: 9970 *i1 = connp->conn_allzones ? 1 : 0; 9971 break; 9972 case SO_ANON_MLP: 9973 *i1 = connp->conn_anon_mlp; 9974 break; 9975 case SO_MAC_EXEMPT: 9976 *i1 = connp->conn_mac_exempt; 9977 break; 9978 case SO_EXCLBIND: 9979 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9980 break; 9981 case SO_PROTOTYPE: 9982 *i1 = IPPROTO_TCP; 9983 break; 9984 case SO_DOMAIN: 9985 *i1 = tcp->tcp_family; 9986 break; 9987 default: 9988 return (-1); 9989 } 9990 break; 9991 case IPPROTO_TCP: 9992 switch (name) { 9993 case TCP_NODELAY: 9994 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9995 break; 9996 case TCP_MAXSEG: 9997 *i1 = tcp->tcp_mss; 9998 break; 9999 case TCP_NOTIFY_THRESHOLD: 10000 *i1 = (int)tcp->tcp_first_timer_threshold; 10001 break; 10002 case TCP_ABORT_THRESHOLD: 10003 *i1 = tcp->tcp_second_timer_threshold; 10004 break; 10005 case TCP_CONN_NOTIFY_THRESHOLD: 10006 *i1 = tcp->tcp_first_ctimer_threshold; 10007 break; 10008 case TCP_CONN_ABORT_THRESHOLD: 10009 *i1 = tcp->tcp_second_ctimer_threshold; 10010 break; 10011 case TCP_RECVDSTADDR: 10012 *i1 = tcp->tcp_recvdstaddr; 10013 break; 10014 case TCP_ANONPRIVBIND: 10015 *i1 = tcp->tcp_anon_priv_bind; 10016 break; 10017 case TCP_EXCLBIND: 10018 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 10019 break; 10020 case TCP_INIT_CWND: 10021 *i1 = tcp->tcp_init_cwnd; 10022 break; 10023 case TCP_KEEPALIVE_THRESHOLD: 10024 *i1 = tcp->tcp_ka_interval; 10025 break; 10026 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10027 *i1 = tcp->tcp_ka_abort_thres; 10028 break; 10029 case TCP_CORK: 10030 *i1 = tcp->tcp_cork; 10031 break; 10032 default: 10033 return (-1); 10034 } 10035 break; 10036 case IPPROTO_IP: 10037 if (tcp->tcp_family != AF_INET) 10038 return (-1); 10039 switch (name) { 10040 case IP_OPTIONS: 10041 case T_IP_OPTIONS: { 10042 /* 10043 * This is compatible with BSD in that in only return 10044 * the reverse source route with the final destination 10045 * as the last entry. The first 4 bytes of the option 10046 * will contain the final destination. 10047 */ 10048 int opt_len; 10049 10050 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 10051 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 10052 ASSERT(opt_len >= 0); 10053 /* Caller ensures enough space */ 10054 if (opt_len > 0) { 10055 /* 10056 * TODO: Do we have to handle getsockopt on an 10057 * initiator as well? 10058 */ 10059 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 10060 } 10061 return (0); 10062 } 10063 case IP_TOS: 10064 case T_IP_TOS: 10065 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 10066 break; 10067 case IP_TTL: 10068 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 10069 break; 10070 case IP_NEXTHOP: 10071 /* Handled at IP level */ 10072 return (-EINVAL); 10073 default: 10074 return (-1); 10075 } 10076 break; 10077 case IPPROTO_IPV6: 10078 /* 10079 * IPPROTO_IPV6 options are only supported for sockets 10080 * that are using IPv6 on the wire. 10081 */ 10082 if (tcp->tcp_ipversion != IPV6_VERSION) { 10083 return (-1); 10084 } 10085 switch (name) { 10086 case IPV6_UNICAST_HOPS: 10087 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 10088 break; /* goto sizeof (int) option return */ 10089 case IPV6_BOUND_IF: 10090 /* Zero if not set */ 10091 *i1 = tcp->tcp_bound_if; 10092 break; /* goto sizeof (int) option return */ 10093 case IPV6_RECVPKTINFO: 10094 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 10095 *i1 = 1; 10096 else 10097 *i1 = 0; 10098 break; /* goto sizeof (int) option return */ 10099 case IPV6_RECVTCLASS: 10100 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 10101 *i1 = 1; 10102 else 10103 *i1 = 0; 10104 break; /* goto sizeof (int) option return */ 10105 case IPV6_RECVHOPLIMIT: 10106 if (tcp->tcp_ipv6_recvancillary & 10107 TCP_IPV6_RECVHOPLIMIT) 10108 *i1 = 1; 10109 else 10110 *i1 = 0; 10111 break; /* goto sizeof (int) option return */ 10112 case IPV6_RECVHOPOPTS: 10113 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 10114 *i1 = 1; 10115 else 10116 *i1 = 0; 10117 break; /* goto sizeof (int) option return */ 10118 case IPV6_RECVDSTOPTS: 10119 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10120 *i1 = 1; 10121 else 10122 *i1 = 0; 10123 break; /* goto sizeof (int) option return */ 10124 case _OLD_IPV6_RECVDSTOPTS: 10125 if (tcp->tcp_ipv6_recvancillary & 10126 TCP_OLD_IPV6_RECVDSTOPTS) 10127 *i1 = 1; 10128 else 10129 *i1 = 0; 10130 break; /* goto sizeof (int) option return */ 10131 case IPV6_RECVRTHDR: 10132 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10133 *i1 = 1; 10134 else 10135 *i1 = 0; 10136 break; /* goto sizeof (int) option return */ 10137 case IPV6_RECVRTHDRDSTOPTS: 10138 if (tcp->tcp_ipv6_recvancillary & 10139 TCP_IPV6_RECVRTDSTOPTS) 10140 *i1 = 1; 10141 else 10142 *i1 = 0; 10143 break; /* goto sizeof (int) option return */ 10144 case IPV6_PKTINFO: { 10145 /* XXX assumes that caller has room for max size! */ 10146 struct in6_pktinfo *pkti; 10147 10148 pkti = (struct in6_pktinfo *)ptr; 10149 if (ipp->ipp_fields & IPPF_IFINDEX) 10150 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10151 else 10152 pkti->ipi6_ifindex = 0; 10153 if (ipp->ipp_fields & IPPF_ADDR) 10154 pkti->ipi6_addr = ipp->ipp_addr; 10155 else 10156 pkti->ipi6_addr = ipv6_all_zeros; 10157 return (sizeof (struct in6_pktinfo)); 10158 } 10159 case IPV6_TCLASS: 10160 if (ipp->ipp_fields & IPPF_TCLASS) 10161 *i1 = ipp->ipp_tclass; 10162 else 10163 *i1 = IPV6_FLOW_TCLASS( 10164 IPV6_DEFAULT_VERS_AND_FLOW); 10165 break; /* goto sizeof (int) option return */ 10166 case IPV6_NEXTHOP: { 10167 sin6_t *sin6 = (sin6_t *)ptr; 10168 10169 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10170 return (0); 10171 *sin6 = sin6_null; 10172 sin6->sin6_family = AF_INET6; 10173 sin6->sin6_addr = ipp->ipp_nexthop; 10174 return (sizeof (sin6_t)); 10175 } 10176 case IPV6_HOPOPTS: 10177 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10178 return (0); 10179 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10180 return (0); 10181 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10182 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10183 if (tcp->tcp_label_len > 0) { 10184 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10185 ptr[1] = (ipp->ipp_hopoptslen - 10186 tcp->tcp_label_len + 7) / 8 - 1; 10187 } 10188 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10189 case IPV6_RTHDRDSTOPTS: 10190 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10191 return (0); 10192 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10193 return (ipp->ipp_rtdstoptslen); 10194 case IPV6_RTHDR: 10195 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10196 return (0); 10197 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10198 return (ipp->ipp_rthdrlen); 10199 case IPV6_DSTOPTS: 10200 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10201 return (0); 10202 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10203 return (ipp->ipp_dstoptslen); 10204 case IPV6_SRC_PREFERENCES: 10205 return (ip6_get_src_preferences(connp, 10206 (uint32_t *)ptr)); 10207 case IPV6_PATHMTU: { 10208 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10209 10210 if (tcp->tcp_state < TCPS_ESTABLISHED) 10211 return (-1); 10212 10213 return (ip_fill_mtuinfo(&connp->conn_remv6, 10214 connp->conn_fport, mtuinfo, 10215 connp->conn_netstack)); 10216 } 10217 default: 10218 return (-1); 10219 } 10220 break; 10221 default: 10222 return (-1); 10223 } 10224 return (sizeof (int)); 10225 } 10226 10227 /* 10228 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10229 * Parameters are assumed to be verified by the caller. 10230 */ 10231 /* ARGSUSED */ 10232 int 10233 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10234 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10235 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10236 { 10237 conn_t *connp = Q_TO_CONN(q); 10238 tcp_t *tcp = connp->conn_tcp; 10239 int *i1 = (int *)invalp; 10240 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10241 boolean_t checkonly; 10242 int reterr; 10243 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 10244 10245 switch (optset_context) { 10246 case SETFN_OPTCOM_CHECKONLY: 10247 checkonly = B_TRUE; 10248 /* 10249 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10250 * inlen != 0 implies value supplied and 10251 * we have to "pretend" to set it. 10252 * inlen == 0 implies that there is no 10253 * value part in T_CHECK request and just validation 10254 * done elsewhere should be enough, we just return here. 10255 */ 10256 if (inlen == 0) { 10257 *outlenp = 0; 10258 return (0); 10259 } 10260 break; 10261 case SETFN_OPTCOM_NEGOTIATE: 10262 checkonly = B_FALSE; 10263 break; 10264 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10265 case SETFN_CONN_NEGOTIATE: 10266 checkonly = B_FALSE; 10267 /* 10268 * Negotiating local and "association-related" options 10269 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10270 * primitives is allowed by XTI, but we choose 10271 * to not implement this style negotiation for Internet 10272 * protocols (We interpret it is a must for OSI world but 10273 * optional for Internet protocols) for all options. 10274 * [ Will do only for the few options that enable test 10275 * suites that our XTI implementation of this feature 10276 * works for transports that do allow it ] 10277 */ 10278 if (!tcp_allow_connopt_set(level, name)) { 10279 *outlenp = 0; 10280 return (EINVAL); 10281 } 10282 break; 10283 default: 10284 /* 10285 * We should never get here 10286 */ 10287 *outlenp = 0; 10288 return (EINVAL); 10289 } 10290 10291 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10292 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10293 10294 /* 10295 * For TCP, we should have no ancillary data sent down 10296 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10297 * has to be zero. 10298 */ 10299 ASSERT(thisdg_attrs == NULL); 10300 10301 /* 10302 * For fixed length options, no sanity check 10303 * of passed in length is done. It is assumed *_optcom_req() 10304 * routines do the right thing. 10305 */ 10306 10307 switch (level) { 10308 case SOL_SOCKET: 10309 switch (name) { 10310 case SO_LINGER: { 10311 struct linger *lgr = (struct linger *)invalp; 10312 10313 if (!checkonly) { 10314 if (lgr->l_onoff) { 10315 tcp->tcp_linger = 1; 10316 tcp->tcp_lingertime = lgr->l_linger; 10317 } else { 10318 tcp->tcp_linger = 0; 10319 tcp->tcp_lingertime = 0; 10320 } 10321 /* struct copy */ 10322 *(struct linger *)outvalp = *lgr; 10323 } else { 10324 if (!lgr->l_onoff) { 10325 ((struct linger *) 10326 outvalp)->l_onoff = 0; 10327 ((struct linger *) 10328 outvalp)->l_linger = 0; 10329 } else { 10330 /* struct copy */ 10331 *(struct linger *)outvalp = *lgr; 10332 } 10333 } 10334 *outlenp = sizeof (struct linger); 10335 return (0); 10336 } 10337 case SO_DEBUG: 10338 if (!checkonly) 10339 tcp->tcp_debug = onoff; 10340 break; 10341 case SO_KEEPALIVE: 10342 if (checkonly) { 10343 /* T_CHECK case */ 10344 break; 10345 } 10346 10347 if (!onoff) { 10348 if (tcp->tcp_ka_enabled) { 10349 if (tcp->tcp_ka_tid != 0) { 10350 (void) TCP_TIMER_CANCEL(tcp, 10351 tcp->tcp_ka_tid); 10352 tcp->tcp_ka_tid = 0; 10353 } 10354 tcp->tcp_ka_enabled = 0; 10355 } 10356 break; 10357 } 10358 if (!tcp->tcp_ka_enabled) { 10359 /* Crank up the keepalive timer */ 10360 tcp->tcp_ka_last_intrvl = 0; 10361 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10362 tcp_keepalive_killer, 10363 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10364 tcp->tcp_ka_enabled = 1; 10365 } 10366 break; 10367 case SO_DONTROUTE: 10368 /* 10369 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10370 * only of interest to IP. We track them here only so 10371 * that we can report their current value. 10372 */ 10373 if (!checkonly) { 10374 tcp->tcp_dontroute = onoff; 10375 tcp->tcp_connp->conn_dontroute = onoff; 10376 } 10377 break; 10378 case SO_USELOOPBACK: 10379 if (!checkonly) { 10380 tcp->tcp_useloopback = onoff; 10381 tcp->tcp_connp->conn_loopback = onoff; 10382 } 10383 break; 10384 case SO_BROADCAST: 10385 if (!checkonly) { 10386 tcp->tcp_broadcast = onoff; 10387 tcp->tcp_connp->conn_broadcast = onoff; 10388 } 10389 break; 10390 case SO_REUSEADDR: 10391 if (!checkonly) { 10392 tcp->tcp_reuseaddr = onoff; 10393 tcp->tcp_connp->conn_reuseaddr = onoff; 10394 } 10395 break; 10396 case SO_OOBINLINE: 10397 if (!checkonly) 10398 tcp->tcp_oobinline = onoff; 10399 break; 10400 case SO_DGRAM_ERRIND: 10401 if (!checkonly) 10402 tcp->tcp_dgram_errind = onoff; 10403 break; 10404 case SO_SNDBUF: { 10405 if (*i1 > tcps->tcps_max_buf) { 10406 *outlenp = 0; 10407 return (ENOBUFS); 10408 } 10409 if (checkonly) 10410 break; 10411 10412 tcp->tcp_xmit_hiwater = *i1; 10413 if (tcps->tcps_snd_lowat_fraction != 0) 10414 tcp->tcp_xmit_lowater = 10415 tcp->tcp_xmit_hiwater / 10416 tcps->tcps_snd_lowat_fraction; 10417 (void) tcp_maxpsz_set(tcp, B_TRUE); 10418 /* 10419 * If we are flow-controlled, recheck the condition. 10420 * There are apps that increase SO_SNDBUF size when 10421 * flow-controlled (EWOULDBLOCK), and expect the flow 10422 * control condition to be lifted right away. 10423 */ 10424 mutex_enter(&tcp->tcp_non_sq_lock); 10425 if (tcp->tcp_flow_stopped && 10426 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10427 tcp_clrqfull(tcp); 10428 } 10429 mutex_exit(&tcp->tcp_non_sq_lock); 10430 break; 10431 } 10432 case SO_RCVBUF: 10433 if (*i1 > tcps->tcps_max_buf) { 10434 *outlenp = 0; 10435 return (ENOBUFS); 10436 } 10437 /* Silently ignore zero */ 10438 if (!checkonly && *i1 != 0) { 10439 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10440 (void) tcp_rwnd_set(tcp, *i1); 10441 } 10442 /* 10443 * XXX should we return the rwnd here 10444 * and tcp_opt_get ? 10445 */ 10446 break; 10447 case SO_SND_COPYAVOID: 10448 if (!checkonly) { 10449 /* we only allow enable at most once for now */ 10450 if (tcp->tcp_loopback || 10451 (!tcp->tcp_snd_zcopy_aware && 10452 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10453 *outlenp = 0; 10454 return (EOPNOTSUPP); 10455 } 10456 tcp->tcp_snd_zcopy_aware = 1; 10457 } 10458 break; 10459 case SO_ALLZONES: 10460 /* Handled at the IP level */ 10461 return (-EINVAL); 10462 case SO_ANON_MLP: 10463 if (!checkonly) { 10464 mutex_enter(&connp->conn_lock); 10465 connp->conn_anon_mlp = onoff; 10466 mutex_exit(&connp->conn_lock); 10467 } 10468 break; 10469 case SO_MAC_EXEMPT: 10470 if (secpolicy_net_mac_aware(cr) != 0 || 10471 IPCL_IS_BOUND(connp)) 10472 return (EACCES); 10473 if (!checkonly) { 10474 mutex_enter(&connp->conn_lock); 10475 connp->conn_mac_exempt = onoff; 10476 mutex_exit(&connp->conn_lock); 10477 } 10478 break; 10479 case SO_EXCLBIND: 10480 if (!checkonly) 10481 tcp->tcp_exclbind = onoff; 10482 break; 10483 default: 10484 *outlenp = 0; 10485 return (EINVAL); 10486 } 10487 break; 10488 case IPPROTO_TCP: 10489 switch (name) { 10490 case TCP_NODELAY: 10491 if (!checkonly) 10492 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10493 break; 10494 case TCP_NOTIFY_THRESHOLD: 10495 if (!checkonly) 10496 tcp->tcp_first_timer_threshold = *i1; 10497 break; 10498 case TCP_ABORT_THRESHOLD: 10499 if (!checkonly) 10500 tcp->tcp_second_timer_threshold = *i1; 10501 break; 10502 case TCP_CONN_NOTIFY_THRESHOLD: 10503 if (!checkonly) 10504 tcp->tcp_first_ctimer_threshold = *i1; 10505 break; 10506 case TCP_CONN_ABORT_THRESHOLD: 10507 if (!checkonly) 10508 tcp->tcp_second_ctimer_threshold = *i1; 10509 break; 10510 case TCP_RECVDSTADDR: 10511 if (tcp->tcp_state > TCPS_LISTEN) 10512 return (EOPNOTSUPP); 10513 if (!checkonly) 10514 tcp->tcp_recvdstaddr = onoff; 10515 break; 10516 case TCP_ANONPRIVBIND: 10517 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10518 *outlenp = 0; 10519 return (reterr); 10520 } 10521 if (!checkonly) { 10522 tcp->tcp_anon_priv_bind = onoff; 10523 } 10524 break; 10525 case TCP_EXCLBIND: 10526 if (!checkonly) 10527 tcp->tcp_exclbind = onoff; 10528 break; /* goto sizeof (int) option return */ 10529 case TCP_INIT_CWND: { 10530 uint32_t init_cwnd = *((uint32_t *)invalp); 10531 10532 if (checkonly) 10533 break; 10534 10535 /* 10536 * Only allow socket with network configuration 10537 * privilege to set the initial cwnd to be larger 10538 * than allowed by RFC 3390. 10539 */ 10540 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10541 tcp->tcp_init_cwnd = init_cwnd; 10542 break; 10543 } 10544 if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) { 10545 *outlenp = 0; 10546 return (reterr); 10547 } 10548 if (init_cwnd > TCP_MAX_INIT_CWND) { 10549 *outlenp = 0; 10550 return (EINVAL); 10551 } 10552 tcp->tcp_init_cwnd = init_cwnd; 10553 break; 10554 } 10555 case TCP_KEEPALIVE_THRESHOLD: 10556 if (checkonly) 10557 break; 10558 10559 if (*i1 < tcps->tcps_keepalive_interval_low || 10560 *i1 > tcps->tcps_keepalive_interval_high) { 10561 *outlenp = 0; 10562 return (EINVAL); 10563 } 10564 if (*i1 != tcp->tcp_ka_interval) { 10565 tcp->tcp_ka_interval = *i1; 10566 /* 10567 * Check if we need to restart the 10568 * keepalive timer. 10569 */ 10570 if (tcp->tcp_ka_tid != 0) { 10571 ASSERT(tcp->tcp_ka_enabled); 10572 (void) TCP_TIMER_CANCEL(tcp, 10573 tcp->tcp_ka_tid); 10574 tcp->tcp_ka_last_intrvl = 0; 10575 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10576 tcp_keepalive_killer, 10577 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10578 } 10579 } 10580 break; 10581 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10582 if (!checkonly) { 10583 if (*i1 < 10584 tcps->tcps_keepalive_abort_interval_low || 10585 *i1 > 10586 tcps->tcps_keepalive_abort_interval_high) { 10587 *outlenp = 0; 10588 return (EINVAL); 10589 } 10590 tcp->tcp_ka_abort_thres = *i1; 10591 } 10592 break; 10593 case TCP_CORK: 10594 if (!checkonly) { 10595 /* 10596 * if tcp->tcp_cork was set and is now 10597 * being unset, we have to make sure that 10598 * the remaining data gets sent out. Also 10599 * unset tcp->tcp_cork so that tcp_wput_data() 10600 * can send data even if it is less than mss 10601 */ 10602 if (tcp->tcp_cork && onoff == 0 && 10603 tcp->tcp_unsent > 0) { 10604 tcp->tcp_cork = B_FALSE; 10605 tcp_wput_data(tcp, NULL, B_FALSE); 10606 } 10607 tcp->tcp_cork = onoff; 10608 } 10609 break; 10610 default: 10611 *outlenp = 0; 10612 return (EINVAL); 10613 } 10614 break; 10615 case IPPROTO_IP: 10616 if (tcp->tcp_family != AF_INET) { 10617 *outlenp = 0; 10618 return (ENOPROTOOPT); 10619 } 10620 switch (name) { 10621 case IP_OPTIONS: 10622 case T_IP_OPTIONS: 10623 reterr = tcp_opt_set_header(tcp, checkonly, 10624 invalp, inlen); 10625 if (reterr) { 10626 *outlenp = 0; 10627 return (reterr); 10628 } 10629 /* OK return - copy input buffer into output buffer */ 10630 if (invalp != outvalp) { 10631 /* don't trust bcopy for identical src/dst */ 10632 bcopy(invalp, outvalp, inlen); 10633 } 10634 *outlenp = inlen; 10635 return (0); 10636 case IP_TOS: 10637 case T_IP_TOS: 10638 if (!checkonly) { 10639 tcp->tcp_ipha->ipha_type_of_service = 10640 (uchar_t)*i1; 10641 tcp->tcp_tos = (uchar_t)*i1; 10642 } 10643 break; 10644 case IP_TTL: 10645 if (!checkonly) { 10646 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10647 tcp->tcp_ttl = (uchar_t)*i1; 10648 } 10649 break; 10650 case IP_BOUND_IF: 10651 case IP_NEXTHOP: 10652 /* Handled at the IP level */ 10653 return (-EINVAL); 10654 case IP_SEC_OPT: 10655 /* 10656 * We should not allow policy setting after 10657 * we start listening for connections. 10658 */ 10659 if (tcp->tcp_state == TCPS_LISTEN) { 10660 return (EINVAL); 10661 } else { 10662 /* Handled at the IP level */ 10663 return (-EINVAL); 10664 } 10665 default: 10666 *outlenp = 0; 10667 return (EINVAL); 10668 } 10669 break; 10670 case IPPROTO_IPV6: { 10671 ip6_pkt_t *ipp; 10672 10673 /* 10674 * IPPROTO_IPV6 options are only supported for sockets 10675 * that are using IPv6 on the wire. 10676 */ 10677 if (tcp->tcp_ipversion != IPV6_VERSION) { 10678 *outlenp = 0; 10679 return (ENOPROTOOPT); 10680 } 10681 /* 10682 * Only sticky options; no ancillary data 10683 */ 10684 ASSERT(thisdg_attrs == NULL); 10685 ipp = &tcp->tcp_sticky_ipp; 10686 10687 switch (name) { 10688 case IPV6_UNICAST_HOPS: 10689 /* -1 means use default */ 10690 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10691 *outlenp = 0; 10692 return (EINVAL); 10693 } 10694 if (!checkonly) { 10695 if (*i1 == -1) { 10696 tcp->tcp_ip6h->ip6_hops = 10697 ipp->ipp_unicast_hops = 10698 (uint8_t)tcps->tcps_ipv6_hoplimit; 10699 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10700 /* Pass modified value to IP. */ 10701 *i1 = tcp->tcp_ip6h->ip6_hops; 10702 } else { 10703 tcp->tcp_ip6h->ip6_hops = 10704 ipp->ipp_unicast_hops = 10705 (uint8_t)*i1; 10706 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10707 } 10708 reterr = tcp_build_hdrs(q, tcp); 10709 if (reterr != 0) 10710 return (reterr); 10711 } 10712 break; 10713 case IPV6_BOUND_IF: 10714 if (!checkonly) { 10715 int error = 0; 10716 10717 tcp->tcp_bound_if = *i1; 10718 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10719 B_TRUE, checkonly, level, name, mblk); 10720 if (error != 0) { 10721 *outlenp = 0; 10722 return (error); 10723 } 10724 } 10725 break; 10726 /* 10727 * Set boolean switches for ancillary data delivery 10728 */ 10729 case IPV6_RECVPKTINFO: 10730 if (!checkonly) { 10731 if (onoff) 10732 tcp->tcp_ipv6_recvancillary |= 10733 TCP_IPV6_RECVPKTINFO; 10734 else 10735 tcp->tcp_ipv6_recvancillary &= 10736 ~TCP_IPV6_RECVPKTINFO; 10737 /* Force it to be sent up with the next msg */ 10738 tcp->tcp_recvifindex = 0; 10739 } 10740 break; 10741 case IPV6_RECVTCLASS: 10742 if (!checkonly) { 10743 if (onoff) 10744 tcp->tcp_ipv6_recvancillary |= 10745 TCP_IPV6_RECVTCLASS; 10746 else 10747 tcp->tcp_ipv6_recvancillary &= 10748 ~TCP_IPV6_RECVTCLASS; 10749 } 10750 break; 10751 case IPV6_RECVHOPLIMIT: 10752 if (!checkonly) { 10753 if (onoff) 10754 tcp->tcp_ipv6_recvancillary |= 10755 TCP_IPV6_RECVHOPLIMIT; 10756 else 10757 tcp->tcp_ipv6_recvancillary &= 10758 ~TCP_IPV6_RECVHOPLIMIT; 10759 /* Force it to be sent up with the next msg */ 10760 tcp->tcp_recvhops = 0xffffffffU; 10761 } 10762 break; 10763 case IPV6_RECVHOPOPTS: 10764 if (!checkonly) { 10765 if (onoff) 10766 tcp->tcp_ipv6_recvancillary |= 10767 TCP_IPV6_RECVHOPOPTS; 10768 else 10769 tcp->tcp_ipv6_recvancillary &= 10770 ~TCP_IPV6_RECVHOPOPTS; 10771 } 10772 break; 10773 case IPV6_RECVDSTOPTS: 10774 if (!checkonly) { 10775 if (onoff) 10776 tcp->tcp_ipv6_recvancillary |= 10777 TCP_IPV6_RECVDSTOPTS; 10778 else 10779 tcp->tcp_ipv6_recvancillary &= 10780 ~TCP_IPV6_RECVDSTOPTS; 10781 } 10782 break; 10783 case _OLD_IPV6_RECVDSTOPTS: 10784 if (!checkonly) { 10785 if (onoff) 10786 tcp->tcp_ipv6_recvancillary |= 10787 TCP_OLD_IPV6_RECVDSTOPTS; 10788 else 10789 tcp->tcp_ipv6_recvancillary &= 10790 ~TCP_OLD_IPV6_RECVDSTOPTS; 10791 } 10792 break; 10793 case IPV6_RECVRTHDR: 10794 if (!checkonly) { 10795 if (onoff) 10796 tcp->tcp_ipv6_recvancillary |= 10797 TCP_IPV6_RECVRTHDR; 10798 else 10799 tcp->tcp_ipv6_recvancillary &= 10800 ~TCP_IPV6_RECVRTHDR; 10801 } 10802 break; 10803 case IPV6_RECVRTHDRDSTOPTS: 10804 if (!checkonly) { 10805 if (onoff) 10806 tcp->tcp_ipv6_recvancillary |= 10807 TCP_IPV6_RECVRTDSTOPTS; 10808 else 10809 tcp->tcp_ipv6_recvancillary &= 10810 ~TCP_IPV6_RECVRTDSTOPTS; 10811 } 10812 break; 10813 case IPV6_PKTINFO: 10814 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10815 return (EINVAL); 10816 if (checkonly) 10817 break; 10818 10819 if (inlen == 0) { 10820 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10821 } else { 10822 struct in6_pktinfo *pkti; 10823 10824 pkti = (struct in6_pktinfo *)invalp; 10825 /* 10826 * RFC 3542 states that ipi6_addr must be 10827 * the unspecified address when setting the 10828 * IPV6_PKTINFO sticky socket option on a 10829 * TCP socket. 10830 */ 10831 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10832 return (EINVAL); 10833 /* 10834 * ip6_set_pktinfo() validates the source 10835 * address and interface index. 10836 */ 10837 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10838 pkti, mblk); 10839 if (reterr != 0) 10840 return (reterr); 10841 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10842 ipp->ipp_addr = pkti->ipi6_addr; 10843 if (ipp->ipp_ifindex != 0) 10844 ipp->ipp_fields |= IPPF_IFINDEX; 10845 else 10846 ipp->ipp_fields &= ~IPPF_IFINDEX; 10847 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10848 ipp->ipp_fields |= IPPF_ADDR; 10849 else 10850 ipp->ipp_fields &= ~IPPF_ADDR; 10851 } 10852 reterr = tcp_build_hdrs(q, tcp); 10853 if (reterr != 0) 10854 return (reterr); 10855 break; 10856 case IPV6_TCLASS: 10857 if (inlen != 0 && inlen != sizeof (int)) 10858 return (EINVAL); 10859 if (checkonly) 10860 break; 10861 10862 if (inlen == 0) { 10863 ipp->ipp_fields &= ~IPPF_TCLASS; 10864 } else { 10865 if (*i1 > 255 || *i1 < -1) 10866 return (EINVAL); 10867 if (*i1 == -1) { 10868 ipp->ipp_tclass = 0; 10869 *i1 = 0; 10870 } else { 10871 ipp->ipp_tclass = *i1; 10872 } 10873 ipp->ipp_fields |= IPPF_TCLASS; 10874 } 10875 reterr = tcp_build_hdrs(q, tcp); 10876 if (reterr != 0) 10877 return (reterr); 10878 break; 10879 case IPV6_NEXTHOP: 10880 /* 10881 * IP will verify that the nexthop is reachable 10882 * and fail for sticky options. 10883 */ 10884 if (inlen != 0 && inlen != sizeof (sin6_t)) 10885 return (EINVAL); 10886 if (checkonly) 10887 break; 10888 10889 if (inlen == 0) { 10890 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10891 } else { 10892 sin6_t *sin6 = (sin6_t *)invalp; 10893 10894 if (sin6->sin6_family != AF_INET6) 10895 return (EAFNOSUPPORT); 10896 if (IN6_IS_ADDR_V4MAPPED( 10897 &sin6->sin6_addr)) 10898 return (EADDRNOTAVAIL); 10899 ipp->ipp_nexthop = sin6->sin6_addr; 10900 if (!IN6_IS_ADDR_UNSPECIFIED( 10901 &ipp->ipp_nexthop)) 10902 ipp->ipp_fields |= IPPF_NEXTHOP; 10903 else 10904 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10905 } 10906 reterr = tcp_build_hdrs(q, tcp); 10907 if (reterr != 0) 10908 return (reterr); 10909 break; 10910 case IPV6_HOPOPTS: { 10911 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10912 10913 /* 10914 * Sanity checks - minimum size, size a multiple of 10915 * eight bytes, and matching size passed in. 10916 */ 10917 if (inlen != 0 && 10918 inlen != (8 * (hopts->ip6h_len + 1))) 10919 return (EINVAL); 10920 10921 if (checkonly) 10922 break; 10923 10924 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10925 (uchar_t **)&ipp->ipp_hopopts, 10926 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10927 if (reterr != 0) 10928 return (reterr); 10929 if (ipp->ipp_hopoptslen == 0) 10930 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10931 else 10932 ipp->ipp_fields |= IPPF_HOPOPTS; 10933 reterr = tcp_build_hdrs(q, tcp); 10934 if (reterr != 0) 10935 return (reterr); 10936 break; 10937 } 10938 case IPV6_RTHDRDSTOPTS: { 10939 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10940 10941 /* 10942 * Sanity checks - minimum size, size a multiple of 10943 * eight bytes, and matching size passed in. 10944 */ 10945 if (inlen != 0 && 10946 inlen != (8 * (dopts->ip6d_len + 1))) 10947 return (EINVAL); 10948 10949 if (checkonly) 10950 break; 10951 10952 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10953 (uchar_t **)&ipp->ipp_rtdstopts, 10954 &ipp->ipp_rtdstoptslen, 0); 10955 if (reterr != 0) 10956 return (reterr); 10957 if (ipp->ipp_rtdstoptslen == 0) 10958 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10959 else 10960 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10961 reterr = tcp_build_hdrs(q, tcp); 10962 if (reterr != 0) 10963 return (reterr); 10964 break; 10965 } 10966 case IPV6_DSTOPTS: { 10967 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10968 10969 /* 10970 * Sanity checks - minimum size, size a multiple of 10971 * eight bytes, and matching size passed in. 10972 */ 10973 if (inlen != 0 && 10974 inlen != (8 * (dopts->ip6d_len + 1))) 10975 return (EINVAL); 10976 10977 if (checkonly) 10978 break; 10979 10980 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10981 (uchar_t **)&ipp->ipp_dstopts, 10982 &ipp->ipp_dstoptslen, 0); 10983 if (reterr != 0) 10984 return (reterr); 10985 if (ipp->ipp_dstoptslen == 0) 10986 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10987 else 10988 ipp->ipp_fields |= IPPF_DSTOPTS; 10989 reterr = tcp_build_hdrs(q, tcp); 10990 if (reterr != 0) 10991 return (reterr); 10992 break; 10993 } 10994 case IPV6_RTHDR: { 10995 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10996 10997 /* 10998 * Sanity checks - minimum size, size a multiple of 10999 * eight bytes, and matching size passed in. 11000 */ 11001 if (inlen != 0 && 11002 inlen != (8 * (rt->ip6r_len + 1))) 11003 return (EINVAL); 11004 11005 if (checkonly) 11006 break; 11007 11008 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 11009 (uchar_t **)&ipp->ipp_rthdr, 11010 &ipp->ipp_rthdrlen, 0); 11011 if (reterr != 0) 11012 return (reterr); 11013 if (ipp->ipp_rthdrlen == 0) 11014 ipp->ipp_fields &= ~IPPF_RTHDR; 11015 else 11016 ipp->ipp_fields |= IPPF_RTHDR; 11017 reterr = tcp_build_hdrs(q, tcp); 11018 if (reterr != 0) 11019 return (reterr); 11020 break; 11021 } 11022 case IPV6_V6ONLY: 11023 if (!checkonly) 11024 tcp->tcp_connp->conn_ipv6_v6only = onoff; 11025 break; 11026 case IPV6_USE_MIN_MTU: 11027 if (inlen != sizeof (int)) 11028 return (EINVAL); 11029 11030 if (*i1 < -1 || *i1 > 1) 11031 return (EINVAL); 11032 11033 if (checkonly) 11034 break; 11035 11036 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 11037 ipp->ipp_use_min_mtu = *i1; 11038 break; 11039 case IPV6_BOUND_PIF: 11040 /* Handled at the IP level */ 11041 return (-EINVAL); 11042 case IPV6_SEC_OPT: 11043 /* 11044 * We should not allow policy setting after 11045 * we start listening for connections. 11046 */ 11047 if (tcp->tcp_state == TCPS_LISTEN) { 11048 return (EINVAL); 11049 } else { 11050 /* Handled at the IP level */ 11051 return (-EINVAL); 11052 } 11053 case IPV6_SRC_PREFERENCES: 11054 if (inlen != sizeof (uint32_t)) 11055 return (EINVAL); 11056 reterr = ip6_set_src_preferences(tcp->tcp_connp, 11057 *(uint32_t *)invalp); 11058 if (reterr != 0) { 11059 *outlenp = 0; 11060 return (reterr); 11061 } 11062 break; 11063 default: 11064 *outlenp = 0; 11065 return (EINVAL); 11066 } 11067 break; 11068 } /* end IPPROTO_IPV6 */ 11069 default: 11070 *outlenp = 0; 11071 return (EINVAL); 11072 } 11073 /* 11074 * Common case of OK return with outval same as inval 11075 */ 11076 if (invalp != outvalp) { 11077 /* don't trust bcopy for identical src/dst */ 11078 (void) bcopy(invalp, outvalp, inlen); 11079 } 11080 *outlenp = inlen; 11081 return (0); 11082 } 11083 11084 /* 11085 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 11086 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 11087 * headers, and the maximum size tcp header (to avoid reallocation 11088 * on the fly for additional tcp options). 11089 * Returns failure if can't allocate memory. 11090 */ 11091 static int 11092 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 11093 { 11094 char *hdrs; 11095 uint_t hdrs_len; 11096 ip6i_t *ip6i; 11097 char buf[TCP_MAX_HDR_LENGTH]; 11098 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 11099 in6_addr_t src, dst; 11100 tcp_stack_t *tcps = tcp->tcp_tcps; 11101 11102 /* 11103 * save the existing tcp header and source/dest IP addresses 11104 */ 11105 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 11106 src = tcp->tcp_ip6h->ip6_src; 11107 dst = tcp->tcp_ip6h->ip6_dst; 11108 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 11109 ASSERT(hdrs_len != 0); 11110 if (hdrs_len > tcp->tcp_iphc_len) { 11111 /* Need to reallocate */ 11112 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 11113 if (hdrs == NULL) 11114 return (ENOMEM); 11115 if (tcp->tcp_iphc != NULL) { 11116 if (tcp->tcp_hdr_grown) { 11117 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 11118 } else { 11119 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 11120 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 11121 } 11122 tcp->tcp_iphc_len = 0; 11123 } 11124 ASSERT(tcp->tcp_iphc_len == 0); 11125 tcp->tcp_iphc = hdrs; 11126 tcp->tcp_iphc_len = hdrs_len; 11127 tcp->tcp_hdr_grown = B_TRUE; 11128 } 11129 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11130 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11131 11132 /* Set header fields not in ipp */ 11133 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11134 ip6i = (ip6i_t *)tcp->tcp_iphc; 11135 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11136 } else { 11137 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11138 } 11139 /* 11140 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11141 * 11142 * tcp->tcp_tcp_hdr_len doesn't change here. 11143 */ 11144 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11145 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11146 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11147 11148 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11149 11150 tcp->tcp_ip6h->ip6_src = src; 11151 tcp->tcp_ip6h->ip6_dst = dst; 11152 11153 /* 11154 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11155 * the default value for TCP. 11156 */ 11157 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11158 tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit; 11159 11160 /* 11161 * If we're setting extension headers after a connection 11162 * has been established, and if we have a routing header 11163 * among the extension headers, call ip_massage_options_v6 to 11164 * manipulate the routing header/ip6_dst set the checksum 11165 * difference in the tcp header template. 11166 * (This happens in tcp_connect_ipv6 if the routing header 11167 * is set prior to the connect.) 11168 * Set the tcp_sum to zero first in case we've cleared a 11169 * routing header or don't have one at all. 11170 */ 11171 tcp->tcp_sum = 0; 11172 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11173 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11174 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11175 (uint8_t *)tcp->tcp_tcph); 11176 if (rth != NULL) { 11177 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11178 rth, tcps->tcps_netstack); 11179 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11180 (tcp->tcp_sum >> 16)); 11181 } 11182 } 11183 11184 /* Try to get everything in a single mblk */ 11185 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcps->tcps_wroff_xtra); 11186 return (0); 11187 } 11188 11189 /* 11190 * Transfer any source route option from ipha to buf/dst in reversed form. 11191 */ 11192 static int 11193 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11194 { 11195 ipoptp_t opts; 11196 uchar_t *opt; 11197 uint8_t optval; 11198 uint8_t optlen; 11199 uint32_t len = 0; 11200 11201 for (optval = ipoptp_first(&opts, ipha); 11202 optval != IPOPT_EOL; 11203 optval = ipoptp_next(&opts)) { 11204 opt = opts.ipoptp_cur; 11205 optlen = opts.ipoptp_len; 11206 switch (optval) { 11207 int off1, off2; 11208 case IPOPT_SSRR: 11209 case IPOPT_LSRR: 11210 11211 /* Reverse source route */ 11212 /* 11213 * First entry should be the next to last one in the 11214 * current source route (the last entry is our 11215 * address.) 11216 * The last entry should be the final destination. 11217 */ 11218 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11219 buf[IPOPT_OLEN] = (uint8_t)optlen; 11220 off1 = IPOPT_MINOFF_SR - 1; 11221 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11222 if (off2 < 0) { 11223 /* No entries in source route */ 11224 break; 11225 } 11226 bcopy(opt + off2, dst, IP_ADDR_LEN); 11227 /* 11228 * Note: use src since ipha has not had its src 11229 * and dst reversed (it is in the state it was 11230 * received. 11231 */ 11232 bcopy(&ipha->ipha_src, buf + off2, 11233 IP_ADDR_LEN); 11234 off2 -= IP_ADDR_LEN; 11235 11236 while (off2 > 0) { 11237 bcopy(opt + off2, buf + off1, 11238 IP_ADDR_LEN); 11239 off1 += IP_ADDR_LEN; 11240 off2 -= IP_ADDR_LEN; 11241 } 11242 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11243 buf += optlen; 11244 len += optlen; 11245 break; 11246 } 11247 } 11248 done: 11249 /* Pad the resulting options */ 11250 while (len & 0x3) { 11251 *buf++ = IPOPT_EOL; 11252 len++; 11253 } 11254 return (len); 11255 } 11256 11257 11258 /* 11259 * Extract and revert a source route from ipha (if any) 11260 * and then update the relevant fields in both tcp_t and the standard header. 11261 */ 11262 static void 11263 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11264 { 11265 char buf[TCP_MAX_HDR_LENGTH]; 11266 uint_t tcph_len; 11267 int len; 11268 11269 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11270 len = IPH_HDR_LENGTH(ipha); 11271 if (len == IP_SIMPLE_HDR_LENGTH) 11272 /* Nothing to do */ 11273 return; 11274 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11275 (len & 0x3)) 11276 return; 11277 11278 tcph_len = tcp->tcp_tcp_hdr_len; 11279 bcopy(tcp->tcp_tcph, buf, tcph_len); 11280 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11281 (tcp->tcp_ipha->ipha_dst & 0xffff); 11282 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11283 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11284 len += IP_SIMPLE_HDR_LENGTH; 11285 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11286 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11287 if ((int)tcp->tcp_sum < 0) 11288 tcp->tcp_sum--; 11289 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11290 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11291 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11292 bcopy(buf, tcp->tcp_tcph, tcph_len); 11293 tcp->tcp_ip_hdr_len = len; 11294 tcp->tcp_ipha->ipha_version_and_hdr_length = 11295 (IP_VERSION << 4) | (len >> 2); 11296 len += tcph_len; 11297 tcp->tcp_hdr_len = len; 11298 } 11299 11300 /* 11301 * Copy the standard header into its new location, 11302 * lay in the new options and then update the relevant 11303 * fields in both tcp_t and the standard header. 11304 */ 11305 static int 11306 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11307 { 11308 uint_t tcph_len; 11309 uint8_t *ip_optp; 11310 tcph_t *new_tcph; 11311 tcp_stack_t *tcps = tcp->tcp_tcps; 11312 11313 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11314 return (EINVAL); 11315 11316 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11317 return (EINVAL); 11318 11319 if (checkonly) { 11320 /* 11321 * do not really set, just pretend to - T_CHECK 11322 */ 11323 return (0); 11324 } 11325 11326 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11327 if (tcp->tcp_label_len > 0) { 11328 int padlen; 11329 uint8_t opt; 11330 11331 /* convert list termination to no-ops */ 11332 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11333 ip_optp += ip_optp[IPOPT_OLEN]; 11334 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11335 while (--padlen >= 0) 11336 *ip_optp++ = opt; 11337 } 11338 tcph_len = tcp->tcp_tcp_hdr_len; 11339 new_tcph = (tcph_t *)(ip_optp + len); 11340 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11341 tcp->tcp_tcph = new_tcph; 11342 bcopy(ptr, ip_optp, len); 11343 11344 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11345 11346 tcp->tcp_ip_hdr_len = len; 11347 tcp->tcp_ipha->ipha_version_and_hdr_length = 11348 (IP_VERSION << 4) | (len >> 2); 11349 tcp->tcp_hdr_len = len + tcph_len; 11350 if (!TCP_IS_DETACHED(tcp)) { 11351 /* Always allocate room for all options. */ 11352 (void) mi_set_sth_wroff(tcp->tcp_rq, 11353 TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra); 11354 } 11355 return (0); 11356 } 11357 11358 /* Get callback routine passed to nd_load by tcp_param_register */ 11359 /* ARGSUSED */ 11360 static int 11361 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11362 { 11363 tcpparam_t *tcppa = (tcpparam_t *)cp; 11364 11365 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11366 return (0); 11367 } 11368 11369 /* 11370 * Walk through the param array specified registering each element with the 11371 * named dispatch handler. 11372 */ 11373 static boolean_t 11374 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps) 11375 { 11376 for (; cnt-- > 0; tcppa++) { 11377 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11378 if (!nd_load(ndp, tcppa->tcp_param_name, 11379 tcp_param_get, tcp_param_set, 11380 (caddr_t)tcppa)) { 11381 nd_free(ndp); 11382 return (B_FALSE); 11383 } 11384 } 11385 } 11386 tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t), 11387 KM_SLEEP); 11388 bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param, 11389 sizeof (tcpparam_t)); 11390 if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name, 11391 tcp_param_get, tcp_param_set_aligned, 11392 (caddr_t)tcps->tcps_wroff_xtra_param)) { 11393 nd_free(ndp); 11394 return (B_FALSE); 11395 } 11396 tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t), 11397 KM_SLEEP); 11398 bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param, 11399 sizeof (tcpparam_t)); 11400 if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name, 11401 tcp_param_get, tcp_param_set_aligned, 11402 (caddr_t)tcps->tcps_mdt_head_param)) { 11403 nd_free(ndp); 11404 return (B_FALSE); 11405 } 11406 tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t), 11407 KM_SLEEP); 11408 bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param, 11409 sizeof (tcpparam_t)); 11410 if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name, 11411 tcp_param_get, tcp_param_set_aligned, 11412 (caddr_t)tcps->tcps_mdt_tail_param)) { 11413 nd_free(ndp); 11414 return (B_FALSE); 11415 } 11416 tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t), 11417 KM_SLEEP); 11418 bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param, 11419 sizeof (tcpparam_t)); 11420 if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name, 11421 tcp_param_get, tcp_param_set_aligned, 11422 (caddr_t)tcps->tcps_mdt_max_pbufs_param)) { 11423 nd_free(ndp); 11424 return (B_FALSE); 11425 } 11426 if (!nd_load(ndp, "tcp_extra_priv_ports", 11427 tcp_extra_priv_ports_get, NULL, NULL)) { 11428 nd_free(ndp); 11429 return (B_FALSE); 11430 } 11431 if (!nd_load(ndp, "tcp_extra_priv_ports_add", 11432 NULL, tcp_extra_priv_ports_add, NULL)) { 11433 nd_free(ndp); 11434 return (B_FALSE); 11435 } 11436 if (!nd_load(ndp, "tcp_extra_priv_ports_del", 11437 NULL, tcp_extra_priv_ports_del, NULL)) { 11438 nd_free(ndp); 11439 return (B_FALSE); 11440 } 11441 if (!nd_load(ndp, "tcp_status", tcp_status_report, NULL, 11442 NULL)) { 11443 nd_free(ndp); 11444 return (B_FALSE); 11445 } 11446 if (!nd_load(ndp, "tcp_bind_hash", tcp_bind_hash_report, 11447 NULL, NULL)) { 11448 nd_free(ndp); 11449 return (B_FALSE); 11450 } 11451 if (!nd_load(ndp, "tcp_listen_hash", 11452 tcp_listen_hash_report, NULL, NULL)) { 11453 nd_free(ndp); 11454 return (B_FALSE); 11455 } 11456 if (!nd_load(ndp, "tcp_conn_hash", tcp_conn_hash_report, 11457 NULL, NULL)) { 11458 nd_free(ndp); 11459 return (B_FALSE); 11460 } 11461 if (!nd_load(ndp, "tcp_acceptor_hash", 11462 tcp_acceptor_hash_report, NULL, NULL)) { 11463 nd_free(ndp); 11464 return (B_FALSE); 11465 } 11466 if (!nd_load(ndp, "tcp_host_param", tcp_host_param_report, 11467 tcp_host_param_set, NULL)) { 11468 nd_free(ndp); 11469 return (B_FALSE); 11470 } 11471 if (!nd_load(ndp, "tcp_host_param_ipv6", 11472 tcp_host_param_report, tcp_host_param_set_ipv6, NULL)) { 11473 nd_free(ndp); 11474 return (B_FALSE); 11475 } 11476 if (!nd_load(ndp, "tcp_1948_phrase", NULL, 11477 tcp_1948_phrase_set, NULL)) { 11478 nd_free(ndp); 11479 return (B_FALSE); 11480 } 11481 if (!nd_load(ndp, "tcp_reserved_port_list", 11482 tcp_reserved_port_list, NULL, NULL)) { 11483 nd_free(ndp); 11484 return (B_FALSE); 11485 } 11486 /* 11487 * Dummy ndd variables - only to convey obsolescence information 11488 * through printing of their name (no get or set routines) 11489 * XXX Remove in future releases ? 11490 */ 11491 if (!nd_load(ndp, 11492 "tcp_close_wait_interval(obsoleted - " 11493 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11494 nd_free(ndp); 11495 return (B_FALSE); 11496 } 11497 return (B_TRUE); 11498 } 11499 11500 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11501 /* ARGSUSED */ 11502 static int 11503 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11504 cred_t *cr) 11505 { 11506 long new_value; 11507 tcpparam_t *tcppa = (tcpparam_t *)cp; 11508 11509 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11510 new_value < tcppa->tcp_param_min || 11511 new_value > tcppa->tcp_param_max) { 11512 return (EINVAL); 11513 } 11514 /* 11515 * Need to make sure new_value is a multiple of 4. If it is not, 11516 * round it up. For future 64 bit requirement, we actually make it 11517 * a multiple of 8. 11518 */ 11519 if (new_value & 0x7) { 11520 new_value = (new_value & ~0x7) + 0x8; 11521 } 11522 tcppa->tcp_param_val = new_value; 11523 return (0); 11524 } 11525 11526 /* Set callback routine passed to nd_load by tcp_param_register */ 11527 /* ARGSUSED */ 11528 static int 11529 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11530 { 11531 long new_value; 11532 tcpparam_t *tcppa = (tcpparam_t *)cp; 11533 11534 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11535 new_value < tcppa->tcp_param_min || 11536 new_value > tcppa->tcp_param_max) { 11537 return (EINVAL); 11538 } 11539 tcppa->tcp_param_val = new_value; 11540 return (0); 11541 } 11542 11543 /* 11544 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11545 * is filled, return as much as we can. The message passed in may be 11546 * multi-part, chained using b_cont. "start" is the starting sequence 11547 * number for this piece. 11548 */ 11549 static mblk_t * 11550 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11551 { 11552 uint32_t end; 11553 mblk_t *mp1; 11554 mblk_t *mp2; 11555 mblk_t *next_mp; 11556 uint32_t u1; 11557 tcp_stack_t *tcps = tcp->tcp_tcps; 11558 11559 /* Walk through all the new pieces. */ 11560 do { 11561 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11562 (uintptr_t)INT_MAX); 11563 end = start + (int)(mp->b_wptr - mp->b_rptr); 11564 next_mp = mp->b_cont; 11565 if (start == end) { 11566 /* Empty. Blast it. */ 11567 freeb(mp); 11568 continue; 11569 } 11570 mp->b_cont = NULL; 11571 TCP_REASS_SET_SEQ(mp, start); 11572 TCP_REASS_SET_END(mp, end); 11573 mp1 = tcp->tcp_reass_tail; 11574 if (!mp1) { 11575 tcp->tcp_reass_tail = mp; 11576 tcp->tcp_reass_head = mp; 11577 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11578 UPDATE_MIB(&tcps->tcps_mib, 11579 tcpInDataUnorderBytes, end - start); 11580 continue; 11581 } 11582 /* New stuff completely beyond tail? */ 11583 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11584 /* Link it on end. */ 11585 mp1->b_cont = mp; 11586 tcp->tcp_reass_tail = mp; 11587 BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs); 11588 UPDATE_MIB(&tcps->tcps_mib, 11589 tcpInDataUnorderBytes, end - start); 11590 continue; 11591 } 11592 mp1 = tcp->tcp_reass_head; 11593 u1 = TCP_REASS_SEQ(mp1); 11594 /* New stuff at the front? */ 11595 if (SEQ_LT(start, u1)) { 11596 /* Yes... Check for overlap. */ 11597 mp->b_cont = mp1; 11598 tcp->tcp_reass_head = mp; 11599 tcp_reass_elim_overlap(tcp, mp); 11600 continue; 11601 } 11602 /* 11603 * The new piece fits somewhere between the head and tail. 11604 * We find our slot, where mp1 precedes us and mp2 trails. 11605 */ 11606 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11607 u1 = TCP_REASS_SEQ(mp2); 11608 if (SEQ_LEQ(start, u1)) 11609 break; 11610 } 11611 /* Link ourselves in */ 11612 mp->b_cont = mp2; 11613 mp1->b_cont = mp; 11614 11615 /* Trim overlap with following mblk(s) first */ 11616 tcp_reass_elim_overlap(tcp, mp); 11617 11618 /* Trim overlap with preceding mblk */ 11619 tcp_reass_elim_overlap(tcp, mp1); 11620 11621 } while (start = end, mp = next_mp); 11622 mp1 = tcp->tcp_reass_head; 11623 /* Anything ready to go? */ 11624 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11625 return (NULL); 11626 /* Eat what we can off the queue */ 11627 for (;;) { 11628 mp = mp1->b_cont; 11629 end = TCP_REASS_END(mp1); 11630 TCP_REASS_SET_SEQ(mp1, 0); 11631 TCP_REASS_SET_END(mp1, 0); 11632 if (!mp) { 11633 tcp->tcp_reass_tail = NULL; 11634 break; 11635 } 11636 if (end != TCP_REASS_SEQ(mp)) { 11637 mp1->b_cont = NULL; 11638 break; 11639 } 11640 mp1 = mp; 11641 } 11642 mp1 = tcp->tcp_reass_head; 11643 tcp->tcp_reass_head = mp; 11644 return (mp1); 11645 } 11646 11647 /* Eliminate any overlap that mp may have over later mblks */ 11648 static void 11649 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11650 { 11651 uint32_t end; 11652 mblk_t *mp1; 11653 uint32_t u1; 11654 tcp_stack_t *tcps = tcp->tcp_tcps; 11655 11656 end = TCP_REASS_END(mp); 11657 while ((mp1 = mp->b_cont) != NULL) { 11658 u1 = TCP_REASS_SEQ(mp1); 11659 if (!SEQ_GT(end, u1)) 11660 break; 11661 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11662 mp->b_wptr -= end - u1; 11663 TCP_REASS_SET_END(mp, u1); 11664 BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs); 11665 UPDATE_MIB(&tcps->tcps_mib, 11666 tcpInDataPartDupBytes, end - u1); 11667 break; 11668 } 11669 mp->b_cont = mp1->b_cont; 11670 TCP_REASS_SET_SEQ(mp1, 0); 11671 TCP_REASS_SET_END(mp1, 0); 11672 freeb(mp1); 11673 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 11674 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1); 11675 } 11676 if (!mp1) 11677 tcp->tcp_reass_tail = mp; 11678 } 11679 11680 /* 11681 * Send up all messages queued on tcp_rcv_list. 11682 */ 11683 static uint_t 11684 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11685 { 11686 mblk_t *mp; 11687 uint_t ret = 0; 11688 uint_t thwin; 11689 #ifdef DEBUG 11690 uint_t cnt = 0; 11691 #endif 11692 tcp_stack_t *tcps = tcp->tcp_tcps; 11693 11694 /* Can't drain on an eager connection */ 11695 if (tcp->tcp_listener != NULL) 11696 return (ret); 11697 11698 /* 11699 * Handle two cases here: we are currently fused or we were 11700 * previously fused and have some urgent data to be delivered 11701 * upstream. The latter happens because we either ran out of 11702 * memory or were detached and therefore sending the SIGURG was 11703 * deferred until this point. In either case we pass control 11704 * over to tcp_fuse_rcv_drain() since it may need to complete 11705 * some work. 11706 */ 11707 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11708 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11709 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11710 &tcp->tcp_fused_sigurg_mp)) 11711 return (ret); 11712 } 11713 11714 while ((mp = tcp->tcp_rcv_list) != NULL) { 11715 tcp->tcp_rcv_list = mp->b_next; 11716 mp->b_next = NULL; 11717 #ifdef DEBUG 11718 cnt += msgdsize(mp); 11719 #endif 11720 /* Does this need SSL processing first? */ 11721 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11722 tcp_kssl_input(tcp, mp); 11723 continue; 11724 } 11725 putnext(q, mp); 11726 } 11727 ASSERT(cnt == tcp->tcp_rcv_cnt); 11728 tcp->tcp_rcv_last_head = NULL; 11729 tcp->tcp_rcv_last_tail = NULL; 11730 tcp->tcp_rcv_cnt = 0; 11731 11732 /* Learn the latest rwnd information that we sent to the other side. */ 11733 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11734 << tcp->tcp_rcv_ws; 11735 /* This is peer's calculated send window (our receive window). */ 11736 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11737 /* 11738 * Increase the receive window to max. But we need to do receiver 11739 * SWS avoidance. This means that we need to check the increase of 11740 * of receive window is at least 1 MSS. 11741 */ 11742 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11743 /* 11744 * If the window that the other side knows is less than max 11745 * deferred acks segments, send an update immediately. 11746 */ 11747 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11748 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 11749 ret = TH_ACK_NEEDED; 11750 } 11751 tcp->tcp_rwnd = q->q_hiwat; 11752 } 11753 /* No need for the push timer now. */ 11754 if (tcp->tcp_push_tid != 0) { 11755 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11756 tcp->tcp_push_tid = 0; 11757 } 11758 return (ret); 11759 } 11760 11761 /* 11762 * Queue data on tcp_rcv_list which is a b_next chain. 11763 * tcp_rcv_last_head/tail is the last element of this chain. 11764 * Each element of the chain is a b_cont chain. 11765 * 11766 * M_DATA messages are added to the current element. 11767 * Other messages are added as new (b_next) elements. 11768 */ 11769 void 11770 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11771 { 11772 ASSERT(seg_len == msgdsize(mp)); 11773 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11774 11775 if (tcp->tcp_rcv_list == NULL) { 11776 ASSERT(tcp->tcp_rcv_last_head == NULL); 11777 tcp->tcp_rcv_list = mp; 11778 tcp->tcp_rcv_last_head = mp; 11779 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11780 tcp->tcp_rcv_last_tail->b_cont = mp; 11781 } else { 11782 tcp->tcp_rcv_last_head->b_next = mp; 11783 tcp->tcp_rcv_last_head = mp; 11784 } 11785 11786 while (mp->b_cont) 11787 mp = mp->b_cont; 11788 11789 tcp->tcp_rcv_last_tail = mp; 11790 tcp->tcp_rcv_cnt += seg_len; 11791 tcp->tcp_rwnd -= seg_len; 11792 } 11793 11794 /* 11795 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11796 * 11797 * This is the default entry function into TCP on the read side. TCP is 11798 * always entered via squeue i.e. using squeue's for mutual exclusion. 11799 * When classifier does a lookup to find the tcp, it also puts a reference 11800 * on the conn structure associated so the tcp is guaranteed to exist 11801 * when we come here. We still need to check the state because it might 11802 * as well has been closed. The squeue processing function i.e. squeue_enter, 11803 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11804 * CONN_DEC_REF. 11805 * 11806 * Apart from the default entry point, IP also sends packets directly to 11807 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11808 * connections. 11809 */ 11810 void 11811 tcp_input(void *arg, mblk_t *mp, void *arg2) 11812 { 11813 conn_t *connp = (conn_t *)arg; 11814 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11815 11816 /* arg2 is the sqp */ 11817 ASSERT(arg2 != NULL); 11818 ASSERT(mp != NULL); 11819 11820 /* 11821 * Don't accept any input on a closed tcp as this TCP logically does 11822 * not exist on the system. Don't proceed further with this TCP. 11823 * For eg. this packet could trigger another close of this tcp 11824 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11825 * tcp_clean_death / tcp_closei_local must be called at most once 11826 * on a TCP. In this case we need to refeed the packet into the 11827 * classifier and figure out where the packet should go. Need to 11828 * preserve the recv_ill somehow. Until we figure that out, for 11829 * now just drop the packet if we can't classify the packet. 11830 */ 11831 if (tcp->tcp_state == TCPS_CLOSED || 11832 tcp->tcp_state == TCPS_BOUND) { 11833 conn_t *new_connp; 11834 ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip; 11835 11836 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 11837 if (new_connp != NULL) { 11838 tcp_reinput(new_connp, mp, arg2); 11839 return; 11840 } 11841 /* We failed to classify. For now just drop the packet */ 11842 freemsg(mp); 11843 return; 11844 } 11845 11846 if (DB_TYPE(mp) == M_DATA) 11847 tcp_rput_data(connp, mp, arg2); 11848 else 11849 tcp_rput_common(tcp, mp); 11850 } 11851 11852 /* 11853 * The read side put procedure. 11854 * The packets passed up by ip are assume to be aligned according to 11855 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11856 */ 11857 static void 11858 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11859 { 11860 /* 11861 * tcp_rput_data() does not expect M_CTL except for the case 11862 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11863 * type. Need to make sure that any other M_CTLs don't make 11864 * it to tcp_rput_data since it is not expecting any and doesn't 11865 * check for it. 11866 */ 11867 if (DB_TYPE(mp) == M_CTL) { 11868 switch (*(uint32_t *)(mp->b_rptr)) { 11869 case TCP_IOC_ABORT_CONN: 11870 /* 11871 * Handle connection abort request. 11872 */ 11873 tcp_ioctl_abort_handler(tcp, mp); 11874 return; 11875 case IPSEC_IN: 11876 /* 11877 * Only secure icmp arrive in TCP and they 11878 * don't go through data path. 11879 */ 11880 tcp_icmp_error(tcp, mp); 11881 return; 11882 case IN_PKTINFO: 11883 /* 11884 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11885 * sockets that are receiving IPv4 traffic. tcp 11886 */ 11887 ASSERT(tcp->tcp_family == AF_INET6); 11888 ASSERT(tcp->tcp_ipv6_recvancillary & 11889 TCP_IPV6_RECVPKTINFO); 11890 tcp_rput_data(tcp->tcp_connp, mp, 11891 tcp->tcp_connp->conn_sqp); 11892 return; 11893 case MDT_IOC_INFO_UPDATE: 11894 /* 11895 * Handle Multidata information update; the 11896 * following routine will free the message. 11897 */ 11898 if (tcp->tcp_connp->conn_mdt_ok) { 11899 tcp_mdt_update(tcp, 11900 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11901 B_FALSE); 11902 } 11903 freemsg(mp); 11904 return; 11905 case LSO_IOC_INFO_UPDATE: 11906 /* 11907 * Handle LSO information update; the following 11908 * routine will free the message. 11909 */ 11910 if (tcp->tcp_connp->conn_lso_ok) { 11911 tcp_lso_update(tcp, 11912 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11913 } 11914 freemsg(mp); 11915 return; 11916 default: 11917 /* 11918 * tcp_icmp_err() will process the M_CTL packets. 11919 * Non-ICMP packets, if any, will be discarded in 11920 * tcp_icmp_err(). We will process the ICMP packet 11921 * even if we are TCP_IS_DETACHED_NONEAGER as the 11922 * incoming ICMP packet may result in changing 11923 * the tcp_mss, which we would need if we have 11924 * packets to retransmit. 11925 */ 11926 tcp_icmp_error(tcp, mp); 11927 return; 11928 } 11929 } 11930 11931 /* No point processing the message if tcp is already closed */ 11932 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11933 freemsg(mp); 11934 return; 11935 } 11936 11937 tcp_rput_other(tcp, mp); 11938 } 11939 11940 11941 /* The minimum of smoothed mean deviation in RTO calculation. */ 11942 #define TCP_SD_MIN 400 11943 11944 /* 11945 * Set RTO for this connection. The formula is from Jacobson and Karels' 11946 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11947 * are the same as those in Appendix A.2 of that paper. 11948 * 11949 * m = new measurement 11950 * sa = smoothed RTT average (8 * average estimates). 11951 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11952 */ 11953 static void 11954 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11955 { 11956 long m = TICK_TO_MSEC(rtt); 11957 clock_t sa = tcp->tcp_rtt_sa; 11958 clock_t sv = tcp->tcp_rtt_sd; 11959 clock_t rto; 11960 tcp_stack_t *tcps = tcp->tcp_tcps; 11961 11962 BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate); 11963 tcp->tcp_rtt_update++; 11964 11965 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11966 if (sa != 0) { 11967 /* 11968 * Update average estimator: 11969 * new rtt = 7/8 old rtt + 1/8 Error 11970 */ 11971 11972 /* m is now Error in estimate. */ 11973 m -= sa >> 3; 11974 if ((sa += m) <= 0) { 11975 /* 11976 * Don't allow the smoothed average to be negative. 11977 * We use 0 to denote reinitialization of the 11978 * variables. 11979 */ 11980 sa = 1; 11981 } 11982 11983 /* 11984 * Update deviation estimator: 11985 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11986 */ 11987 if (m < 0) 11988 m = -m; 11989 m -= sv >> 2; 11990 sv += m; 11991 } else { 11992 /* 11993 * This follows BSD's implementation. So the reinitialized 11994 * RTO is 3 * m. We cannot go less than 2 because if the 11995 * link is bandwidth dominated, doubling the window size 11996 * during slow start means doubling the RTT. We want to be 11997 * more conservative when we reinitialize our estimates. 3 11998 * is just a convenient number. 11999 */ 12000 sa = m << 3; 12001 sv = m << 1; 12002 } 12003 if (sv < TCP_SD_MIN) { 12004 /* 12005 * We do not know that if sa captures the delay ACK 12006 * effect as in a long train of segments, a receiver 12007 * does not delay its ACKs. So set the minimum of sv 12008 * to be TCP_SD_MIN, which is default to 400 ms, twice 12009 * of BSD DATO. That means the minimum of mean 12010 * deviation is 100 ms. 12011 * 12012 */ 12013 sv = TCP_SD_MIN; 12014 } 12015 tcp->tcp_rtt_sa = sa; 12016 tcp->tcp_rtt_sd = sv; 12017 /* 12018 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 12019 * 12020 * Add tcp_rexmit_interval extra in case of extreme environment 12021 * where the algorithm fails to work. The default value of 12022 * tcp_rexmit_interval_extra should be 0. 12023 * 12024 * As we use a finer grained clock than BSD and update 12025 * RTO for every ACKs, add in another .25 of RTT to the 12026 * deviation of RTO to accomodate burstiness of 1/4 of 12027 * window size. 12028 */ 12029 rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5); 12030 12031 if (rto > tcps->tcps_rexmit_interval_max) { 12032 tcp->tcp_rto = tcps->tcps_rexmit_interval_max; 12033 } else if (rto < tcps->tcps_rexmit_interval_min) { 12034 tcp->tcp_rto = tcps->tcps_rexmit_interval_min; 12035 } else { 12036 tcp->tcp_rto = rto; 12037 } 12038 12039 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 12040 tcp->tcp_timer_backoff = 0; 12041 } 12042 12043 /* 12044 * tcp_get_seg_mp() is called to get the pointer to a segment in the 12045 * send queue which starts at the given seq. no. 12046 * 12047 * Parameters: 12048 * tcp_t *tcp: the tcp instance pointer. 12049 * uint32_t seq: the starting seq. no of the requested segment. 12050 * int32_t *off: after the execution, *off will be the offset to 12051 * the returned mblk which points to the requested seq no. 12052 * It is the caller's responsibility to send in a non-null off. 12053 * 12054 * Return: 12055 * A mblk_t pointer pointing to the requested segment in send queue. 12056 */ 12057 static mblk_t * 12058 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 12059 { 12060 int32_t cnt; 12061 mblk_t *mp; 12062 12063 /* Defensive coding. Make sure we don't send incorrect data. */ 12064 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 12065 return (NULL); 12066 12067 cnt = seq - tcp->tcp_suna; 12068 mp = tcp->tcp_xmit_head; 12069 while (cnt > 0 && mp != NULL) { 12070 cnt -= mp->b_wptr - mp->b_rptr; 12071 if (cnt < 0) { 12072 cnt += mp->b_wptr - mp->b_rptr; 12073 break; 12074 } 12075 mp = mp->b_cont; 12076 } 12077 ASSERT(mp != NULL); 12078 *off = cnt; 12079 return (mp); 12080 } 12081 12082 /* 12083 * This function handles all retransmissions if SACK is enabled for this 12084 * connection. First it calculates how many segments can be retransmitted 12085 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 12086 * segments. A segment is eligible if sack_cnt for that segment is greater 12087 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 12088 * all eligible segments, it checks to see if TCP can send some new segments 12089 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 12090 * 12091 * Parameters: 12092 * tcp_t *tcp: the tcp structure of the connection. 12093 * uint_t *flags: in return, appropriate value will be set for 12094 * tcp_rput_data(). 12095 */ 12096 static void 12097 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 12098 { 12099 notsack_blk_t *notsack_blk; 12100 int32_t usable_swnd; 12101 int32_t mss; 12102 uint32_t seg_len; 12103 mblk_t *xmit_mp; 12104 tcp_stack_t *tcps = tcp->tcp_tcps; 12105 12106 ASSERT(tcp->tcp_sack_info != NULL); 12107 ASSERT(tcp->tcp_notsack_list != NULL); 12108 ASSERT(tcp->tcp_rexmit == B_FALSE); 12109 12110 /* Defensive coding in case there is a bug... */ 12111 if (tcp->tcp_notsack_list == NULL) { 12112 return; 12113 } 12114 notsack_blk = tcp->tcp_notsack_list; 12115 mss = tcp->tcp_mss; 12116 12117 /* 12118 * Limit the num of outstanding data in the network to be 12119 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 12120 */ 12121 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12122 12123 /* At least retransmit 1 MSS of data. */ 12124 if (usable_swnd <= 0) { 12125 usable_swnd = mss; 12126 } 12127 12128 /* Make sure no new RTT samples will be taken. */ 12129 tcp->tcp_csuna = tcp->tcp_snxt; 12130 12131 notsack_blk = tcp->tcp_notsack_list; 12132 while (usable_swnd > 0) { 12133 mblk_t *snxt_mp, *tmp_mp; 12134 tcp_seq begin = tcp->tcp_sack_snxt; 12135 tcp_seq end; 12136 int32_t off; 12137 12138 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 12139 if (SEQ_GT(notsack_blk->end, begin) && 12140 (notsack_blk->sack_cnt >= 12141 tcps->tcps_dupack_fast_retransmit)) { 12142 end = notsack_blk->end; 12143 if (SEQ_LT(begin, notsack_blk->begin)) { 12144 begin = notsack_blk->begin; 12145 } 12146 break; 12147 } 12148 } 12149 /* 12150 * All holes are filled. Manipulate tcp_cwnd to send more 12151 * if we can. Note that after the SACK recovery, tcp_cwnd is 12152 * set to tcp_cwnd_ssthresh. 12153 */ 12154 if (notsack_blk == NULL) { 12155 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12156 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12157 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12158 ASSERT(tcp->tcp_cwnd > 0); 12159 return; 12160 } else { 12161 usable_swnd = usable_swnd / mss; 12162 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12163 MAX(usable_swnd * mss, mss); 12164 *flags |= TH_XMIT_NEEDED; 12165 return; 12166 } 12167 } 12168 12169 /* 12170 * Note that we may send more than usable_swnd allows here 12171 * because of round off, but no more than 1 MSS of data. 12172 */ 12173 seg_len = end - begin; 12174 if (seg_len > mss) 12175 seg_len = mss; 12176 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12177 ASSERT(snxt_mp != NULL); 12178 /* This should not happen. Defensive coding again... */ 12179 if (snxt_mp == NULL) { 12180 return; 12181 } 12182 12183 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12184 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12185 if (xmit_mp == NULL) 12186 return; 12187 12188 usable_swnd -= seg_len; 12189 tcp->tcp_pipe += seg_len; 12190 tcp->tcp_sack_snxt = begin + seg_len; 12191 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12192 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12193 12194 /* 12195 * Update the send timestamp to avoid false retransmission. 12196 */ 12197 snxt_mp->b_prev = (mblk_t *)lbolt; 12198 12199 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12200 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len); 12201 BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs); 12202 /* 12203 * Update tcp_rexmit_max to extend this SACK recovery phase. 12204 * This happens when new data sent during fast recovery is 12205 * also lost. If TCP retransmits those new data, it needs 12206 * to extend SACK recover phase to avoid starting another 12207 * fast retransmit/recovery unnecessarily. 12208 */ 12209 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12210 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12211 } 12212 } 12213 } 12214 12215 /* 12216 * This function handles policy checking at TCP level for non-hard_bound/ 12217 * detached connections. 12218 */ 12219 static boolean_t 12220 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12221 boolean_t secure, boolean_t mctl_present) 12222 { 12223 ipsec_latch_t *ipl = NULL; 12224 ipsec_action_t *act = NULL; 12225 mblk_t *data_mp; 12226 ipsec_in_t *ii; 12227 const char *reason; 12228 kstat_named_t *counter; 12229 tcp_stack_t *tcps = tcp->tcp_tcps; 12230 ipsec_stack_t *ipss; 12231 ip_stack_t *ipst; 12232 12233 ASSERT(mctl_present || !secure); 12234 12235 ASSERT((ipha == NULL && ip6h != NULL) || 12236 (ip6h == NULL && ipha != NULL)); 12237 12238 /* 12239 * We don't necessarily have an ipsec_in_act action to verify 12240 * policy because of assymetrical policy where we have only 12241 * outbound policy and no inbound policy (possible with global 12242 * policy). 12243 */ 12244 if (!secure) { 12245 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12246 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12247 return (B_TRUE); 12248 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12249 "tcp_check_policy", ipha, ip6h, secure, 12250 tcps->tcps_netstack); 12251 ipss = tcps->tcps_netstack->netstack_ipsec; 12252 12253 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12254 DROPPER(ipss, ipds_tcp_clear), 12255 &tcps->tcps_dropper); 12256 return (B_FALSE); 12257 } 12258 12259 /* 12260 * We have a secure packet. 12261 */ 12262 if (act == NULL) { 12263 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12264 "tcp_check_policy", ipha, ip6h, secure, 12265 tcps->tcps_netstack); 12266 ipss = tcps->tcps_netstack->netstack_ipsec; 12267 12268 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12269 DROPPER(ipss, ipds_tcp_secure), 12270 &tcps->tcps_dropper); 12271 return (B_FALSE); 12272 } 12273 12274 /* 12275 * XXX This whole routine is currently incorrect. ipl should 12276 * be set to the latch pointer, but is currently not set, so 12277 * we initialize it to NULL to avoid picking up random garbage. 12278 */ 12279 if (ipl == NULL) 12280 return (B_TRUE); 12281 12282 data_mp = first_mp->b_cont; 12283 12284 ii = (ipsec_in_t *)first_mp->b_rptr; 12285 12286 ipst = tcps->tcps_netstack->netstack_ip; 12287 12288 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12289 &counter, tcp->tcp_connp)) { 12290 BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded); 12291 return (B_TRUE); 12292 } 12293 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12294 "tcp inbound policy mismatch: %s, packet dropped\n", 12295 reason); 12296 BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed); 12297 12298 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, 12299 &tcps->tcps_dropper); 12300 return (B_FALSE); 12301 } 12302 12303 /* 12304 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12305 * retransmission after a timeout. 12306 * 12307 * To limit the number of duplicate segments, we limit the number of segment 12308 * to be sent in one time to tcp_snd_burst, the burst variable. 12309 */ 12310 static void 12311 tcp_ss_rexmit(tcp_t *tcp) 12312 { 12313 uint32_t snxt; 12314 uint32_t smax; 12315 int32_t win; 12316 int32_t mss; 12317 int32_t off; 12318 int32_t burst = tcp->tcp_snd_burst; 12319 mblk_t *snxt_mp; 12320 tcp_stack_t *tcps = tcp->tcp_tcps; 12321 12322 /* 12323 * Note that tcp_rexmit can be set even though TCP has retransmitted 12324 * all unack'ed segments. 12325 */ 12326 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12327 smax = tcp->tcp_rexmit_max; 12328 snxt = tcp->tcp_rexmit_nxt; 12329 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12330 snxt = tcp->tcp_suna; 12331 } 12332 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12333 win -= snxt - tcp->tcp_suna; 12334 mss = tcp->tcp_mss; 12335 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12336 12337 while (SEQ_LT(snxt, smax) && (win > 0) && 12338 (burst > 0) && (snxt_mp != NULL)) { 12339 mblk_t *xmit_mp; 12340 mblk_t *old_snxt_mp = snxt_mp; 12341 uint32_t cnt = mss; 12342 12343 if (win < cnt) { 12344 cnt = win; 12345 } 12346 if (SEQ_GT(snxt + cnt, smax)) { 12347 cnt = smax - snxt; 12348 } 12349 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12350 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12351 if (xmit_mp == NULL) 12352 return; 12353 12354 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12355 12356 snxt += cnt; 12357 win -= cnt; 12358 /* 12359 * Update the send timestamp to avoid false 12360 * retransmission. 12361 */ 12362 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12363 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 12364 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt); 12365 12366 tcp->tcp_rexmit_nxt = snxt; 12367 burst--; 12368 } 12369 /* 12370 * If we have transmitted all we have at the time 12371 * we started the retranmission, we can leave 12372 * the rest of the job to tcp_wput_data(). But we 12373 * need to check the send window first. If the 12374 * win is not 0, go on with tcp_wput_data(). 12375 */ 12376 if (SEQ_LT(snxt, smax) || win == 0) { 12377 return; 12378 } 12379 } 12380 /* Only call tcp_wput_data() if there is data to be sent. */ 12381 if (tcp->tcp_unsent) { 12382 tcp_wput_data(tcp, NULL, B_FALSE); 12383 } 12384 } 12385 12386 /* 12387 * Process all TCP option in SYN segment. Note that this function should 12388 * be called after tcp_adapt_ire() is called so that the necessary info 12389 * from IRE is already set in the tcp structure. 12390 * 12391 * This function sets up the correct tcp_mss value according to the 12392 * MSS option value and our header size. It also sets up the window scale 12393 * and timestamp values, and initialize SACK info blocks. But it does not 12394 * change receive window size after setting the tcp_mss value. The caller 12395 * should do the appropriate change. 12396 */ 12397 void 12398 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12399 { 12400 int options; 12401 tcp_opt_t tcpopt; 12402 uint32_t mss_max; 12403 char *tmp_tcph; 12404 tcp_stack_t *tcps = tcp->tcp_tcps; 12405 12406 tcpopt.tcp = NULL; 12407 options = tcp_parse_options(tcph, &tcpopt); 12408 12409 /* 12410 * Process MSS option. Note that MSS option value does not account 12411 * for IP or TCP options. This means that it is equal to MTU - minimum 12412 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12413 * IPv6. 12414 */ 12415 if (!(options & TCP_OPT_MSS_PRESENT)) { 12416 if (tcp->tcp_ipversion == IPV4_VERSION) 12417 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4; 12418 else 12419 tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6; 12420 } else { 12421 if (tcp->tcp_ipversion == IPV4_VERSION) 12422 mss_max = tcps->tcps_mss_max_ipv4; 12423 else 12424 mss_max = tcps->tcps_mss_max_ipv6; 12425 if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min) 12426 tcpopt.tcp_opt_mss = tcps->tcps_mss_min; 12427 else if (tcpopt.tcp_opt_mss > mss_max) 12428 tcpopt.tcp_opt_mss = mss_max; 12429 } 12430 12431 /* Process Window Scale option. */ 12432 if (options & TCP_OPT_WSCALE_PRESENT) { 12433 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12434 tcp->tcp_snd_ws_ok = B_TRUE; 12435 } else { 12436 tcp->tcp_snd_ws = B_FALSE; 12437 tcp->tcp_snd_ws_ok = B_FALSE; 12438 tcp->tcp_rcv_ws = B_FALSE; 12439 } 12440 12441 /* Process Timestamp option. */ 12442 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12443 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12444 tmp_tcph = (char *)tcp->tcp_tcph; 12445 12446 tcp->tcp_snd_ts_ok = B_TRUE; 12447 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12448 tcp->tcp_last_rcv_lbolt = lbolt64; 12449 ASSERT(OK_32PTR(tmp_tcph)); 12450 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12451 12452 /* Fill in our template header with basic timestamp option. */ 12453 tmp_tcph += tcp->tcp_tcp_hdr_len; 12454 tmp_tcph[0] = TCPOPT_NOP; 12455 tmp_tcph[1] = TCPOPT_NOP; 12456 tmp_tcph[2] = TCPOPT_TSTAMP; 12457 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12458 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12459 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12460 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12461 } else { 12462 tcp->tcp_snd_ts_ok = B_FALSE; 12463 } 12464 12465 /* 12466 * Process SACK options. If SACK is enabled for this connection, 12467 * then allocate the SACK info structure. Note the following ways 12468 * when tcp_snd_sack_ok is set to true. 12469 * 12470 * For active connection: in tcp_adapt_ire() called in 12471 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12472 * is checked. 12473 * 12474 * For passive connection: in tcp_adapt_ire() called in 12475 * tcp_accept_comm(). 12476 * 12477 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12478 * That check makes sure that if we did not send a SACK OK option, 12479 * we will not enable SACK for this connection even though the other 12480 * side sends us SACK OK option. For active connection, the SACK 12481 * info structure has already been allocated. So we need to free 12482 * it if SACK is disabled. 12483 */ 12484 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12485 (tcp->tcp_snd_sack_ok || 12486 (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12487 /* This should be true only in the passive case. */ 12488 if (tcp->tcp_sack_info == NULL) { 12489 ASSERT(TCP_IS_DETACHED(tcp)); 12490 tcp->tcp_sack_info = 12491 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12492 } 12493 if (tcp->tcp_sack_info == NULL) { 12494 tcp->tcp_snd_sack_ok = B_FALSE; 12495 } else { 12496 tcp->tcp_snd_sack_ok = B_TRUE; 12497 if (tcp->tcp_snd_ts_ok) { 12498 tcp->tcp_max_sack_blk = 3; 12499 } else { 12500 tcp->tcp_max_sack_blk = 4; 12501 } 12502 } 12503 } else { 12504 /* 12505 * Resetting tcp_snd_sack_ok to B_FALSE so that 12506 * no SACK info will be used for this 12507 * connection. This assumes that SACK usage 12508 * permission is negotiated. This may need 12509 * to be changed once this is clarified. 12510 */ 12511 if (tcp->tcp_sack_info != NULL) { 12512 ASSERT(tcp->tcp_notsack_list == NULL); 12513 kmem_cache_free(tcp_sack_info_cache, 12514 tcp->tcp_sack_info); 12515 tcp->tcp_sack_info = NULL; 12516 } 12517 tcp->tcp_snd_sack_ok = B_FALSE; 12518 } 12519 12520 /* 12521 * Now we know the exact TCP/IP header length, subtract 12522 * that from tcp_mss to get our side's MSS. 12523 */ 12524 tcp->tcp_mss -= tcp->tcp_hdr_len; 12525 /* 12526 * Here we assume that the other side's header size will be equal to 12527 * our header size. We calculate the real MSS accordingly. Need to 12528 * take into additional stuffs IPsec puts in. 12529 * 12530 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12531 */ 12532 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12533 ((tcp->tcp_ipversion == IPV4_VERSION ? 12534 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12535 12536 /* 12537 * Set MSS to the smaller one of both ends of the connection. 12538 * We should not have called tcp_mss_set() before, but our 12539 * side of the MSS should have been set to a proper value 12540 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12541 * STREAM head parameters properly. 12542 * 12543 * If we have a larger-than-16-bit window but the other side 12544 * didn't want to do window scale, tcp_rwnd_set() will take 12545 * care of that. 12546 */ 12547 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE); 12548 } 12549 12550 /* 12551 * Sends the T_CONN_IND to the listener. The caller calls this 12552 * functions via squeue to get inside the listener's perimeter 12553 * once the 3 way hand shake is done a T_CONN_IND needs to be 12554 * sent. As an optimization, the caller can call this directly 12555 * if listener's perimeter is same as eager's. 12556 */ 12557 /* ARGSUSED */ 12558 void 12559 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12560 { 12561 conn_t *lconnp = (conn_t *)arg; 12562 tcp_t *listener = lconnp->conn_tcp; 12563 tcp_t *tcp; 12564 struct T_conn_ind *conn_ind; 12565 ipaddr_t *addr_cache; 12566 boolean_t need_send_conn_ind = B_FALSE; 12567 tcp_stack_t *tcps = listener->tcp_tcps; 12568 12569 /* retrieve the eager */ 12570 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12571 ASSERT(conn_ind->OPT_offset != 0 && 12572 conn_ind->OPT_length == sizeof (intptr_t)); 12573 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12574 conn_ind->OPT_length); 12575 12576 /* 12577 * TLI/XTI applications will get confused by 12578 * sending eager as an option since it violates 12579 * the option semantics. So remove the eager as 12580 * option since TLI/XTI app doesn't need it anyway. 12581 */ 12582 if (!TCP_IS_SOCKET(listener)) { 12583 conn_ind->OPT_length = 0; 12584 conn_ind->OPT_offset = 0; 12585 } 12586 if (listener->tcp_state == TCPS_CLOSED || 12587 TCP_IS_DETACHED(listener)) { 12588 /* 12589 * If listener has closed, it would have caused a 12590 * a cleanup/blowoff to happen for the eager. We 12591 * just need to return. 12592 */ 12593 freemsg(mp); 12594 return; 12595 } 12596 12597 12598 /* 12599 * if the conn_req_q is full defer passing up the 12600 * T_CONN_IND until space is availabe after t_accept() 12601 * processing 12602 */ 12603 mutex_enter(&listener->tcp_eager_lock); 12604 12605 /* 12606 * Take the eager out, if it is in the list of droppable eagers 12607 * as we are here because the 3W handshake is over. 12608 */ 12609 MAKE_UNDROPPABLE(tcp); 12610 12611 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12612 tcp_t *tail; 12613 12614 /* 12615 * The eager already has an extra ref put in tcp_rput_data 12616 * so that it stays till accept comes back even though it 12617 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12618 */ 12619 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12620 listener->tcp_conn_req_cnt_q0--; 12621 listener->tcp_conn_req_cnt_q++; 12622 12623 /* Move from SYN_RCVD to ESTABLISHED list */ 12624 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12625 tcp->tcp_eager_prev_q0; 12626 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12627 tcp->tcp_eager_next_q0; 12628 tcp->tcp_eager_prev_q0 = NULL; 12629 tcp->tcp_eager_next_q0 = NULL; 12630 12631 /* 12632 * Insert at end of the queue because sockfs 12633 * sends down T_CONN_RES in chronological 12634 * order. Leaving the older conn indications 12635 * at front of the queue helps reducing search 12636 * time. 12637 */ 12638 tail = listener->tcp_eager_last_q; 12639 if (tail != NULL) 12640 tail->tcp_eager_next_q = tcp; 12641 else 12642 listener->tcp_eager_next_q = tcp; 12643 listener->tcp_eager_last_q = tcp; 12644 tcp->tcp_eager_next_q = NULL; 12645 /* 12646 * Delay sending up the T_conn_ind until we are 12647 * done with the eager. Once we have have sent up 12648 * the T_conn_ind, the accept can potentially complete 12649 * any time and release the refhold we have on the eager. 12650 */ 12651 need_send_conn_ind = B_TRUE; 12652 } else { 12653 /* 12654 * Defer connection on q0 and set deferred 12655 * connection bit true 12656 */ 12657 tcp->tcp_conn_def_q0 = B_TRUE; 12658 12659 /* take tcp out of q0 ... */ 12660 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12661 tcp->tcp_eager_next_q0; 12662 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12663 tcp->tcp_eager_prev_q0; 12664 12665 /* ... and place it at the end of q0 */ 12666 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12667 tcp->tcp_eager_next_q0 = listener; 12668 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12669 listener->tcp_eager_prev_q0 = tcp; 12670 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12671 } 12672 12673 /* we have timed out before */ 12674 if (tcp->tcp_syn_rcvd_timeout != 0) { 12675 tcp->tcp_syn_rcvd_timeout = 0; 12676 listener->tcp_syn_rcvd_timeout--; 12677 if (listener->tcp_syn_defense && 12678 listener->tcp_syn_rcvd_timeout <= 12679 (tcps->tcps_conn_req_max_q0 >> 5) && 12680 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12681 listener->tcp_last_rcv_lbolt)) { 12682 /* 12683 * Turn off the defense mode if we 12684 * believe the SYN attack is over. 12685 */ 12686 listener->tcp_syn_defense = B_FALSE; 12687 if (listener->tcp_ip_addr_cache) { 12688 kmem_free((void *)listener->tcp_ip_addr_cache, 12689 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12690 listener->tcp_ip_addr_cache = NULL; 12691 } 12692 } 12693 } 12694 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12695 if (addr_cache != NULL) { 12696 /* 12697 * We have finished a 3-way handshake with this 12698 * remote host. This proves the IP addr is good. 12699 * Cache it! 12700 */ 12701 addr_cache[IP_ADDR_CACHE_HASH( 12702 tcp->tcp_remote)] = tcp->tcp_remote; 12703 } 12704 mutex_exit(&listener->tcp_eager_lock); 12705 if (need_send_conn_ind) 12706 putnext(listener->tcp_rq, mp); 12707 } 12708 12709 mblk_t * 12710 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12711 uint_t *ifindexp, ip6_pkt_t *ippp) 12712 { 12713 ip_pktinfo_t *pinfo; 12714 ip6_t *ip6h; 12715 uchar_t *rptr; 12716 mblk_t *first_mp = mp; 12717 boolean_t mctl_present = B_FALSE; 12718 uint_t ifindex = 0; 12719 ip6_pkt_t ipp; 12720 uint_t ipvers; 12721 uint_t ip_hdr_len; 12722 tcp_stack_t *tcps = tcp->tcp_tcps; 12723 12724 rptr = mp->b_rptr; 12725 ASSERT(OK_32PTR(rptr)); 12726 ASSERT(tcp != NULL); 12727 ipp.ipp_fields = 0; 12728 12729 switch DB_TYPE(mp) { 12730 case M_CTL: 12731 mp = mp->b_cont; 12732 if (mp == NULL) { 12733 freemsg(first_mp); 12734 return (NULL); 12735 } 12736 if (DB_TYPE(mp) != M_DATA) { 12737 freemsg(first_mp); 12738 return (NULL); 12739 } 12740 mctl_present = B_TRUE; 12741 break; 12742 case M_DATA: 12743 break; 12744 default: 12745 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12746 freemsg(mp); 12747 return (NULL); 12748 } 12749 ipvers = IPH_HDR_VERSION(rptr); 12750 if (ipvers == IPV4_VERSION) { 12751 if (tcp == NULL) { 12752 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12753 goto done; 12754 } 12755 12756 ipp.ipp_fields |= IPPF_HOPLIMIT; 12757 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12758 12759 /* 12760 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12761 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12762 */ 12763 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12764 mctl_present) { 12765 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12766 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12767 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12768 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12769 ipp.ipp_fields |= IPPF_IFINDEX; 12770 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12771 ifindex = pinfo->ip_pkt_ifindex; 12772 } 12773 freeb(first_mp); 12774 mctl_present = B_FALSE; 12775 } 12776 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12777 } else { 12778 ip6h = (ip6_t *)rptr; 12779 12780 ASSERT(ipvers == IPV6_VERSION); 12781 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12782 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12783 ipp.ipp_hoplimit = ip6h->ip6_hops; 12784 12785 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12786 uint8_t nexthdrp; 12787 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 12788 12789 /* Look for ifindex information */ 12790 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12791 ip6i_t *ip6i = (ip6i_t *)ip6h; 12792 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12793 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12794 freemsg(first_mp); 12795 return (NULL); 12796 } 12797 12798 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12799 ASSERT(ip6i->ip6i_ifindex != 0); 12800 ipp.ipp_fields |= IPPF_IFINDEX; 12801 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12802 ifindex = ip6i->ip6i_ifindex; 12803 } 12804 rptr = (uchar_t *)&ip6i[1]; 12805 mp->b_rptr = rptr; 12806 if (rptr == mp->b_wptr) { 12807 mblk_t *mp1; 12808 mp1 = mp->b_cont; 12809 freeb(mp); 12810 mp = mp1; 12811 rptr = mp->b_rptr; 12812 } 12813 if (MBLKL(mp) < IPV6_HDR_LEN + 12814 sizeof (tcph_t)) { 12815 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12816 freemsg(first_mp); 12817 return (NULL); 12818 } 12819 ip6h = (ip6_t *)rptr; 12820 } 12821 12822 /* 12823 * Find any potentially interesting extension headers 12824 * as well as the length of the IPv6 + extension 12825 * headers. 12826 */ 12827 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12828 /* Verify if this is a TCP packet */ 12829 if (nexthdrp != IPPROTO_TCP) { 12830 BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs); 12831 freemsg(first_mp); 12832 return (NULL); 12833 } 12834 } else { 12835 ip_hdr_len = IPV6_HDR_LEN; 12836 } 12837 } 12838 12839 done: 12840 if (ipversp != NULL) 12841 *ipversp = ipvers; 12842 if (ip_hdr_lenp != NULL) 12843 *ip_hdr_lenp = ip_hdr_len; 12844 if (ippp != NULL) 12845 *ippp = ipp; 12846 if (ifindexp != NULL) 12847 *ifindexp = ifindex; 12848 if (mctl_present) { 12849 freeb(first_mp); 12850 } 12851 return (mp); 12852 } 12853 12854 /* 12855 * Handle M_DATA messages from IP. Its called directly from IP via 12856 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12857 * in this path. 12858 * 12859 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12860 * v4 and v6), we are called through tcp_input() and a M_CTL can 12861 * be present for options but tcp_find_pktinfo() deals with it. We 12862 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12863 * 12864 * The first argument is always the connp/tcp to which the mp belongs. 12865 * There are no exceptions to this rule. The caller has already put 12866 * a reference on this connp/tcp and once tcp_rput_data() returns, 12867 * the squeue will do the refrele. 12868 * 12869 * The TH_SYN for the listener directly go to tcp_conn_request via 12870 * squeue. 12871 * 12872 * sqp: NULL = recursive, sqp != NULL means called from squeue 12873 */ 12874 void 12875 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12876 { 12877 int32_t bytes_acked; 12878 int32_t gap; 12879 mblk_t *mp1; 12880 uint_t flags; 12881 uint32_t new_swnd = 0; 12882 uchar_t *iphdr; 12883 uchar_t *rptr; 12884 int32_t rgap; 12885 uint32_t seg_ack; 12886 int seg_len; 12887 uint_t ip_hdr_len; 12888 uint32_t seg_seq; 12889 tcph_t *tcph; 12890 int urp; 12891 tcp_opt_t tcpopt; 12892 uint_t ipvers; 12893 ip6_pkt_t ipp; 12894 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12895 uint32_t cwnd; 12896 uint32_t add; 12897 int npkt; 12898 int mss; 12899 conn_t *connp = (conn_t *)arg; 12900 squeue_t *sqp = (squeue_t *)arg2; 12901 tcp_t *tcp = connp->conn_tcp; 12902 tcp_stack_t *tcps = tcp->tcp_tcps; 12903 12904 /* 12905 * RST from fused tcp loopback peer should trigger an unfuse. 12906 */ 12907 if (tcp->tcp_fused) { 12908 TCP_STAT(tcps, tcp_fusion_aborted); 12909 tcp_unfuse(tcp); 12910 } 12911 12912 iphdr = mp->b_rptr; 12913 rptr = mp->b_rptr; 12914 ASSERT(OK_32PTR(rptr)); 12915 12916 /* 12917 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12918 * processing here. For rest call tcp_find_pktinfo to fill up the 12919 * necessary information. 12920 */ 12921 if (IPCL_IS_TCP4(connp)) { 12922 ipvers = IPV4_VERSION; 12923 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12924 } else { 12925 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12926 NULL, &ipp); 12927 if (mp == NULL) { 12928 TCP_STAT(tcps, tcp_rput_v6_error); 12929 return; 12930 } 12931 iphdr = mp->b_rptr; 12932 rptr = mp->b_rptr; 12933 } 12934 ASSERT(DB_TYPE(mp) == M_DATA); 12935 12936 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12937 seg_seq = ABE32_TO_U32(tcph->th_seq); 12938 seg_ack = ABE32_TO_U32(tcph->th_ack); 12939 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12940 seg_len = (int)(mp->b_wptr - rptr) - 12941 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12942 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12943 do { 12944 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12945 (uintptr_t)INT_MAX); 12946 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12947 } while ((mp1 = mp1->b_cont) != NULL && 12948 mp1->b_datap->db_type == M_DATA); 12949 } 12950 12951 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12952 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12953 seg_len, tcph); 12954 return; 12955 } 12956 12957 if (sqp != NULL) { 12958 /* 12959 * This is the correct place to update tcp_last_recv_time. Note 12960 * that it is also updated for tcp structure that belongs to 12961 * global and listener queues which do not really need updating. 12962 * But that should not cause any harm. And it is updated for 12963 * all kinds of incoming segments, not only for data segments. 12964 */ 12965 tcp->tcp_last_recv_time = lbolt; 12966 } 12967 12968 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12969 12970 BUMP_LOCAL(tcp->tcp_ibsegs); 12971 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12972 12973 if ((flags & TH_URG) && sqp != NULL) { 12974 /* 12975 * TCP can't handle urgent pointers that arrive before 12976 * the connection has been accept()ed since it can't 12977 * buffer OOB data. Discard segment if this happens. 12978 * 12979 * We can't just rely on a non-null tcp_listener to indicate 12980 * that the accept() has completed since unlinking of the 12981 * eager and completion of the accept are not atomic. 12982 * tcp_detached, when it is not set (B_FALSE) indicates 12983 * that the accept() has completed. 12984 * 12985 * Nor can it reassemble urgent pointers, so discard 12986 * if it's not the next segment expected. 12987 * 12988 * Otherwise, collapse chain into one mblk (discard if 12989 * that fails). This makes sure the headers, retransmitted 12990 * data, and new data all are in the same mblk. 12991 */ 12992 ASSERT(mp != NULL); 12993 if (tcp->tcp_detached || !pullupmsg(mp, -1)) { 12994 freemsg(mp); 12995 return; 12996 } 12997 /* Update pointers into message */ 12998 iphdr = rptr = mp->b_rptr; 12999 tcph = (tcph_t *)&rptr[ip_hdr_len]; 13000 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 13001 /* 13002 * Since we can't handle any data with this urgent 13003 * pointer that is out of sequence, we expunge 13004 * the data. This allows us to still register 13005 * the urgent mark and generate the M_PCSIG, 13006 * which we can do. 13007 */ 13008 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13009 seg_len = 0; 13010 } 13011 } 13012 13013 switch (tcp->tcp_state) { 13014 case TCPS_SYN_SENT: 13015 if (flags & TH_ACK) { 13016 /* 13017 * Note that our stack cannot send data before a 13018 * connection is established, therefore the 13019 * following check is valid. Otherwise, it has 13020 * to be changed. 13021 */ 13022 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 13023 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13024 freemsg(mp); 13025 if (flags & TH_RST) 13026 return; 13027 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 13028 tcp, seg_ack, 0, TH_RST); 13029 return; 13030 } 13031 ASSERT(tcp->tcp_suna + 1 == seg_ack); 13032 } 13033 if (flags & TH_RST) { 13034 freemsg(mp); 13035 if (flags & TH_ACK) 13036 (void) tcp_clean_death(tcp, 13037 ECONNREFUSED, 13); 13038 return; 13039 } 13040 if (!(flags & TH_SYN)) { 13041 freemsg(mp); 13042 return; 13043 } 13044 13045 /* Process all TCP options. */ 13046 tcp_process_options(tcp, tcph); 13047 /* 13048 * The following changes our rwnd to be a multiple of the 13049 * MIN(peer MSS, our MSS) for performance reason. 13050 */ 13051 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 13052 tcp->tcp_mss)); 13053 13054 /* Is the other end ECN capable? */ 13055 if (tcp->tcp_ecn_ok) { 13056 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 13057 tcp->tcp_ecn_ok = B_FALSE; 13058 } 13059 } 13060 /* 13061 * Clear ECN flags because it may interfere with later 13062 * processing. 13063 */ 13064 flags &= ~(TH_ECE|TH_CWR); 13065 13066 tcp->tcp_irs = seg_seq; 13067 tcp->tcp_rack = seg_seq; 13068 tcp->tcp_rnxt = seg_seq + 1; 13069 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13070 if (!TCP_IS_DETACHED(tcp)) { 13071 /* Allocate room for SACK options if needed. */ 13072 if (tcp->tcp_snd_sack_ok) { 13073 (void) mi_set_sth_wroff(tcp->tcp_rq, 13074 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 13075 (tcp->tcp_loopback ? 0 : 13076 tcps->tcps_wroff_xtra)); 13077 } else { 13078 (void) mi_set_sth_wroff(tcp->tcp_rq, 13079 tcp->tcp_hdr_len + 13080 (tcp->tcp_loopback ? 0 : 13081 tcps->tcps_wroff_xtra)); 13082 } 13083 } 13084 if (flags & TH_ACK) { 13085 /* 13086 * If we can't get the confirmation upstream, pretend 13087 * we didn't even see this one. 13088 * 13089 * XXX: how can we pretend we didn't see it if we 13090 * have updated rnxt et. al. 13091 * 13092 * For loopback we defer sending up the T_CONN_CON 13093 * until after some checks below. 13094 */ 13095 mp1 = NULL; 13096 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 13097 tcp->tcp_loopback ? &mp1 : NULL)) { 13098 freemsg(mp); 13099 return; 13100 } 13101 /* SYN was acked - making progress */ 13102 if (tcp->tcp_ipversion == IPV6_VERSION) 13103 tcp->tcp_ip_forward_progress = B_TRUE; 13104 13105 /* One for the SYN */ 13106 tcp->tcp_suna = tcp->tcp_iss + 1; 13107 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13108 tcp->tcp_state = TCPS_ESTABLISHED; 13109 13110 /* 13111 * If SYN was retransmitted, need to reset all 13112 * retransmission info. This is because this 13113 * segment will be treated as a dup ACK. 13114 */ 13115 if (tcp->tcp_rexmit) { 13116 tcp->tcp_rexmit = B_FALSE; 13117 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13118 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13119 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13120 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13121 tcp->tcp_ms_we_have_waited = 0; 13122 13123 /* 13124 * Set tcp_cwnd back to 1 MSS, per 13125 * recommendation from 13126 * draft-floyd-incr-init-win-01.txt, 13127 * Increasing TCP's Initial Window. 13128 */ 13129 tcp->tcp_cwnd = tcp->tcp_mss; 13130 } 13131 13132 tcp->tcp_swl1 = seg_seq; 13133 tcp->tcp_swl2 = seg_ack; 13134 13135 new_swnd = BE16_TO_U16(tcph->th_win); 13136 tcp->tcp_swnd = new_swnd; 13137 if (new_swnd > tcp->tcp_max_swnd) 13138 tcp->tcp_max_swnd = new_swnd; 13139 13140 /* 13141 * Always send the three-way handshake ack immediately 13142 * in order to make the connection complete as soon as 13143 * possible on the accepting host. 13144 */ 13145 flags |= TH_ACK_NEEDED; 13146 13147 /* 13148 * Special case for loopback. At this point we have 13149 * received SYN-ACK from the remote endpoint. In 13150 * order to ensure that both endpoints reach the 13151 * fused state prior to any data exchange, the final 13152 * ACK needs to be sent before we indicate T_CONN_CON 13153 * to the module upstream. 13154 */ 13155 if (tcp->tcp_loopback) { 13156 mblk_t *ack_mp; 13157 13158 ASSERT(!tcp->tcp_unfusable); 13159 ASSERT(mp1 != NULL); 13160 /* 13161 * For loopback, we always get a pure SYN-ACK 13162 * and only need to send back the final ACK 13163 * with no data (this is because the other 13164 * tcp is ours and we don't do T/TCP). This 13165 * final ACK triggers the passive side to 13166 * perform fusion in ESTABLISHED state. 13167 */ 13168 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 13169 if (tcp->tcp_ack_tid != 0) { 13170 (void) TCP_TIMER_CANCEL(tcp, 13171 tcp->tcp_ack_tid); 13172 tcp->tcp_ack_tid = 0; 13173 } 13174 TCP_RECORD_TRACE(tcp, ack_mp, 13175 TCP_TRACE_SEND_PKT); 13176 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 13177 BUMP_LOCAL(tcp->tcp_obsegs); 13178 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 13179 13180 /* Send up T_CONN_CON */ 13181 putnext(tcp->tcp_rq, mp1); 13182 13183 freemsg(mp); 13184 return; 13185 } 13186 /* 13187 * Forget fusion; we need to handle more 13188 * complex cases below. Send the deferred 13189 * T_CONN_CON message upstream and proceed 13190 * as usual. Mark this tcp as not capable 13191 * of fusion. 13192 */ 13193 TCP_STAT(tcps, tcp_fusion_unfusable); 13194 tcp->tcp_unfusable = B_TRUE; 13195 putnext(tcp->tcp_rq, mp1); 13196 } 13197 13198 /* 13199 * Check to see if there is data to be sent. If 13200 * yes, set the transmit flag. Then check to see 13201 * if received data processing needs to be done. 13202 * If not, go straight to xmit_check. This short 13203 * cut is OK as we don't support T/TCP. 13204 */ 13205 if (tcp->tcp_unsent) 13206 flags |= TH_XMIT_NEEDED; 13207 13208 if (seg_len == 0 && !(flags & TH_URG)) { 13209 freemsg(mp); 13210 goto xmit_check; 13211 } 13212 13213 flags &= ~TH_SYN; 13214 seg_seq++; 13215 break; 13216 } 13217 tcp->tcp_state = TCPS_SYN_RCVD; 13218 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13219 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13220 if (mp1) { 13221 DB_CPID(mp1) = tcp->tcp_cpid; 13222 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13223 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13224 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13225 } 13226 freemsg(mp); 13227 return; 13228 case TCPS_SYN_RCVD: 13229 if (flags & TH_ACK) { 13230 /* 13231 * In this state, a SYN|ACK packet is either bogus 13232 * because the other side must be ACKing our SYN which 13233 * indicates it has seen the ACK for their SYN and 13234 * shouldn't retransmit it or we're crossing SYNs 13235 * on active open. 13236 */ 13237 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13238 freemsg(mp); 13239 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13240 tcp, seg_ack, 0, TH_RST); 13241 return; 13242 } 13243 /* 13244 * NOTE: RFC 793 pg. 72 says this should be 13245 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13246 * but that would mean we have an ack that ignored 13247 * our SYN. 13248 */ 13249 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13250 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13251 freemsg(mp); 13252 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13253 tcp, seg_ack, 0, TH_RST); 13254 return; 13255 } 13256 } 13257 break; 13258 case TCPS_LISTEN: 13259 /* 13260 * Only a TLI listener can come through this path when a 13261 * acceptor is going back to be a listener and a packet 13262 * for the acceptor hits the classifier. For a socket 13263 * listener, this can never happen because a listener 13264 * can never accept connection on itself and hence a 13265 * socket acceptor can not go back to being a listener. 13266 */ 13267 ASSERT(!TCP_IS_SOCKET(tcp)); 13268 /*FALLTHRU*/ 13269 case TCPS_CLOSED: 13270 case TCPS_BOUND: { 13271 conn_t *new_connp; 13272 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 13273 13274 new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst); 13275 if (new_connp != NULL) { 13276 tcp_reinput(new_connp, mp, connp->conn_sqp); 13277 return; 13278 } 13279 /* We failed to classify. For now just drop the packet */ 13280 freemsg(mp); 13281 return; 13282 } 13283 case TCPS_IDLE: 13284 /* 13285 * Handle the case where the tcp_clean_death() has happened 13286 * on a connection (application hasn't closed yet) but a packet 13287 * was already queued on squeue before tcp_clean_death() 13288 * was processed. Calling tcp_clean_death() twice on same 13289 * connection can result in weird behaviour. 13290 */ 13291 freemsg(mp); 13292 return; 13293 default: 13294 break; 13295 } 13296 13297 /* 13298 * Already on the correct queue/perimeter. 13299 * If this is a detached connection and not an eager 13300 * connection hanging off a listener then new data 13301 * (past the FIN) will cause a reset. 13302 * We do a special check here where it 13303 * is out of the main line, rather than check 13304 * if we are detached every time we see new 13305 * data down below. 13306 */ 13307 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13308 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13309 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 13310 TCP_RECORD_TRACE(tcp, 13311 mp, TCP_TRACE_RECV_PKT); 13312 13313 freemsg(mp); 13314 /* 13315 * This could be an SSL closure alert. We're detached so just 13316 * acknowledge it this last time. 13317 */ 13318 if (tcp->tcp_kssl_ctx != NULL) { 13319 kssl_release_ctx(tcp->tcp_kssl_ctx); 13320 tcp->tcp_kssl_ctx = NULL; 13321 13322 tcp->tcp_rnxt += seg_len; 13323 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13324 flags |= TH_ACK_NEEDED; 13325 goto ack_check; 13326 } 13327 13328 tcp_xmit_ctl("new data when detached", tcp, 13329 tcp->tcp_snxt, 0, TH_RST); 13330 (void) tcp_clean_death(tcp, EPROTO, 12); 13331 return; 13332 } 13333 13334 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13335 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13336 new_swnd = BE16_TO_U16(tcph->th_win) << 13337 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13338 13339 if (tcp->tcp_snd_ts_ok) { 13340 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13341 /* 13342 * This segment is not acceptable. 13343 * Drop it and send back an ACK. 13344 */ 13345 freemsg(mp); 13346 flags |= TH_ACK_NEEDED; 13347 goto ack_check; 13348 } 13349 } else if (tcp->tcp_snd_sack_ok) { 13350 ASSERT(tcp->tcp_sack_info != NULL); 13351 tcpopt.tcp = tcp; 13352 /* 13353 * SACK info in already updated in tcp_parse_options. Ignore 13354 * all other TCP options... 13355 */ 13356 (void) tcp_parse_options(tcph, &tcpopt); 13357 } 13358 try_again:; 13359 mss = tcp->tcp_mss; 13360 gap = seg_seq - tcp->tcp_rnxt; 13361 rgap = tcp->tcp_rwnd - (gap + seg_len); 13362 /* 13363 * gap is the amount of sequence space between what we expect to see 13364 * and what we got for seg_seq. A positive value for gap means 13365 * something got lost. A negative value means we got some old stuff. 13366 */ 13367 if (gap < 0) { 13368 /* Old stuff present. Is the SYN in there? */ 13369 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13370 (seg_len != 0)) { 13371 flags &= ~TH_SYN; 13372 seg_seq++; 13373 urp--; 13374 /* Recompute the gaps after noting the SYN. */ 13375 goto try_again; 13376 } 13377 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 13378 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 13379 (seg_len > -gap ? -gap : seg_len)); 13380 /* Remove the old stuff from seg_len. */ 13381 seg_len += gap; 13382 /* 13383 * Anything left? 13384 * Make sure to check for unack'd FIN when rest of data 13385 * has been previously ack'd. 13386 */ 13387 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13388 /* 13389 * Resets are only valid if they lie within our offered 13390 * window. If the RST bit is set, we just ignore this 13391 * segment. 13392 */ 13393 if (flags & TH_RST) { 13394 freemsg(mp); 13395 return; 13396 } 13397 13398 /* 13399 * The arriving of dup data packets indicate that we 13400 * may have postponed an ack for too long, or the other 13401 * side's RTT estimate is out of shape. Start acking 13402 * more often. 13403 */ 13404 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13405 tcp->tcp_rack_cnt >= 1 && 13406 tcp->tcp_rack_abs_max > 2) { 13407 tcp->tcp_rack_abs_max--; 13408 } 13409 tcp->tcp_rack_cur_max = 1; 13410 13411 /* 13412 * This segment is "unacceptable". None of its 13413 * sequence space lies within our advertized window. 13414 * 13415 * Adjust seg_len to the original value for tracing. 13416 */ 13417 seg_len -= gap; 13418 if (tcp->tcp_debug) { 13419 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13420 "tcp_rput: unacceptable, gap %d, rgap %d, " 13421 "flags 0x%x, seg_seq %u, seg_ack %u, " 13422 "seg_len %d, rnxt %u, snxt %u, %s", 13423 gap, rgap, flags, seg_seq, seg_ack, 13424 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13425 tcp_display(tcp, NULL, 13426 DISP_ADDR_AND_PORT)); 13427 } 13428 13429 /* 13430 * Arrange to send an ACK in response to the 13431 * unacceptable segment per RFC 793 page 69. There 13432 * is only one small difference between ours and the 13433 * acceptability test in the RFC - we accept ACK-only 13434 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13435 * will be generated. 13436 * 13437 * Note that we have to ACK an ACK-only packet at least 13438 * for stacks that send 0-length keep-alives with 13439 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13440 * section 4.2.3.6. As long as we don't ever generate 13441 * an unacceptable packet in response to an incoming 13442 * packet that is unacceptable, it should not cause 13443 * "ACK wars". 13444 */ 13445 flags |= TH_ACK_NEEDED; 13446 13447 /* 13448 * Continue processing this segment in order to use the 13449 * ACK information it contains, but skip all other 13450 * sequence-number processing. Processing the ACK 13451 * information is necessary in order to 13452 * re-synchronize connections that may have lost 13453 * synchronization. 13454 * 13455 * We clear seg_len and flag fields related to 13456 * sequence number processing as they are not 13457 * to be trusted for an unacceptable segment. 13458 */ 13459 seg_len = 0; 13460 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13461 goto process_ack; 13462 } 13463 13464 /* Fix seg_seq, and chew the gap off the front. */ 13465 seg_seq = tcp->tcp_rnxt; 13466 urp += gap; 13467 do { 13468 mblk_t *mp2; 13469 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13470 (uintptr_t)UINT_MAX); 13471 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13472 if (gap > 0) { 13473 mp->b_rptr = mp->b_wptr - gap; 13474 break; 13475 } 13476 mp2 = mp; 13477 mp = mp->b_cont; 13478 freeb(mp2); 13479 } while (gap < 0); 13480 /* 13481 * If the urgent data has already been acknowledged, we 13482 * should ignore TH_URG below 13483 */ 13484 if (urp < 0) 13485 flags &= ~TH_URG; 13486 } 13487 /* 13488 * rgap is the amount of stuff received out of window. A negative 13489 * value is the amount out of window. 13490 */ 13491 if (rgap < 0) { 13492 mblk_t *mp2; 13493 13494 if (tcp->tcp_rwnd == 0) { 13495 BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe); 13496 } else { 13497 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 13498 UPDATE_MIB(&tcps->tcps_mib, 13499 tcpInDataPastWinBytes, -rgap); 13500 } 13501 13502 /* 13503 * seg_len does not include the FIN, so if more than 13504 * just the FIN is out of window, we act like we don't 13505 * see it. (If just the FIN is out of window, rgap 13506 * will be zero and we will go ahead and acknowledge 13507 * the FIN.) 13508 */ 13509 flags &= ~TH_FIN; 13510 13511 /* Fix seg_len and make sure there is something left. */ 13512 seg_len += rgap; 13513 if (seg_len <= 0) { 13514 /* 13515 * Resets are only valid if they lie within our offered 13516 * window. If the RST bit is set, we just ignore this 13517 * segment. 13518 */ 13519 if (flags & TH_RST) { 13520 freemsg(mp); 13521 return; 13522 } 13523 13524 /* Per RFC 793, we need to send back an ACK. */ 13525 flags |= TH_ACK_NEEDED; 13526 13527 /* 13528 * Send SIGURG as soon as possible i.e. even 13529 * if the TH_URG was delivered in a window probe 13530 * packet (which will be unacceptable). 13531 * 13532 * We generate a signal if none has been generated 13533 * for this connection or if this is a new urgent 13534 * byte. Also send a zero-length "unmarked" message 13535 * to inform SIOCATMARK that this is not the mark. 13536 * 13537 * tcp_urp_last_valid is cleared when the T_exdata_ind 13538 * is sent up. This plus the check for old data 13539 * (gap >= 0) handles the wraparound of the sequence 13540 * number space without having to always track the 13541 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13542 * this max in its rcv_up variable). 13543 * 13544 * This prevents duplicate SIGURGS due to a "late" 13545 * zero-window probe when the T_EXDATA_IND has already 13546 * been sent up. 13547 */ 13548 if ((flags & TH_URG) && 13549 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13550 tcp->tcp_urp_last))) { 13551 mp1 = allocb(0, BPRI_MED); 13552 if (mp1 == NULL) { 13553 freemsg(mp); 13554 return; 13555 } 13556 if (!TCP_IS_DETACHED(tcp) && 13557 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13558 SIGURG)) { 13559 /* Try again on the rexmit. */ 13560 freemsg(mp1); 13561 freemsg(mp); 13562 return; 13563 } 13564 /* 13565 * If the next byte would be the mark 13566 * then mark with MARKNEXT else mark 13567 * with NOTMARKNEXT. 13568 */ 13569 if (gap == 0 && urp == 0) 13570 mp1->b_flag |= MSGMARKNEXT; 13571 else 13572 mp1->b_flag |= MSGNOTMARKNEXT; 13573 freemsg(tcp->tcp_urp_mark_mp); 13574 tcp->tcp_urp_mark_mp = mp1; 13575 flags |= TH_SEND_URP_MARK; 13576 tcp->tcp_urp_last_valid = B_TRUE; 13577 tcp->tcp_urp_last = urp + seg_seq; 13578 } 13579 /* 13580 * If this is a zero window probe, continue to 13581 * process the ACK part. But we need to set seg_len 13582 * to 0 to avoid data processing. Otherwise just 13583 * drop the segment and send back an ACK. 13584 */ 13585 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13586 flags &= ~(TH_SYN | TH_URG); 13587 seg_len = 0; 13588 goto process_ack; 13589 } else { 13590 freemsg(mp); 13591 goto ack_check; 13592 } 13593 } 13594 /* Pitch out of window stuff off the end. */ 13595 rgap = seg_len; 13596 mp2 = mp; 13597 do { 13598 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13599 (uintptr_t)INT_MAX); 13600 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13601 if (rgap < 0) { 13602 mp2->b_wptr += rgap; 13603 if ((mp1 = mp2->b_cont) != NULL) { 13604 mp2->b_cont = NULL; 13605 freemsg(mp1); 13606 } 13607 break; 13608 } 13609 } while ((mp2 = mp2->b_cont) != NULL); 13610 } 13611 ok:; 13612 /* 13613 * TCP should check ECN info for segments inside the window only. 13614 * Therefore the check should be done here. 13615 */ 13616 if (tcp->tcp_ecn_ok) { 13617 if (flags & TH_CWR) { 13618 tcp->tcp_ecn_echo_on = B_FALSE; 13619 } 13620 /* 13621 * Note that both ECN_CE and CWR can be set in the 13622 * same segment. In this case, we once again turn 13623 * on ECN_ECHO. 13624 */ 13625 if (tcp->tcp_ipversion == IPV4_VERSION) { 13626 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13627 13628 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13629 tcp->tcp_ecn_echo_on = B_TRUE; 13630 } 13631 } else { 13632 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13633 13634 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13635 htonl(IPH_ECN_CE << 20)) { 13636 tcp->tcp_ecn_echo_on = B_TRUE; 13637 } 13638 } 13639 } 13640 13641 /* 13642 * Check whether we can update tcp_ts_recent. This test is 13643 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13644 * Extensions for High Performance: An Update", Internet Draft. 13645 */ 13646 if (tcp->tcp_snd_ts_ok && 13647 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13648 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13649 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13650 tcp->tcp_last_rcv_lbolt = lbolt64; 13651 } 13652 13653 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13654 /* 13655 * FIN in an out of order segment. We record this in 13656 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13657 * Clear the FIN so that any check on FIN flag will fail. 13658 * Remember that FIN also counts in the sequence number 13659 * space. So we need to ack out of order FIN only segments. 13660 */ 13661 if (flags & TH_FIN) { 13662 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13663 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13664 flags &= ~TH_FIN; 13665 flags |= TH_ACK_NEEDED; 13666 } 13667 if (seg_len > 0) { 13668 /* Fill in the SACK blk list. */ 13669 if (tcp->tcp_snd_sack_ok) { 13670 ASSERT(tcp->tcp_sack_info != NULL); 13671 tcp_sack_insert(tcp->tcp_sack_list, 13672 seg_seq, seg_seq + seg_len, 13673 &(tcp->tcp_num_sack_blk)); 13674 } 13675 13676 /* 13677 * Attempt reassembly and see if we have something 13678 * ready to go. 13679 */ 13680 mp = tcp_reass(tcp, mp, seg_seq); 13681 /* Always ack out of order packets */ 13682 flags |= TH_ACK_NEEDED | TH_PUSH; 13683 if (mp) { 13684 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13685 (uintptr_t)INT_MAX); 13686 seg_len = mp->b_cont ? msgdsize(mp) : 13687 (int)(mp->b_wptr - mp->b_rptr); 13688 seg_seq = tcp->tcp_rnxt; 13689 /* 13690 * A gap is filled and the seq num and len 13691 * of the gap match that of a previously 13692 * received FIN, put the FIN flag back in. 13693 */ 13694 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13695 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13696 flags |= TH_FIN; 13697 tcp->tcp_valid_bits &= 13698 ~TCP_OFO_FIN_VALID; 13699 } 13700 } else { 13701 /* 13702 * Keep going even with NULL mp. 13703 * There may be a useful ACK or something else 13704 * we don't want to miss. 13705 * 13706 * But TCP should not perform fast retransmit 13707 * because of the ack number. TCP uses 13708 * seg_len == 0 to determine if it is a pure 13709 * ACK. And this is not a pure ACK. 13710 */ 13711 seg_len = 0; 13712 ofo_seg = B_TRUE; 13713 } 13714 } 13715 } else if (seg_len > 0) { 13716 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 13717 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 13718 /* 13719 * If an out of order FIN was received before, and the seq 13720 * num and len of the new segment match that of the FIN, 13721 * put the FIN flag back in. 13722 */ 13723 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13724 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13725 flags |= TH_FIN; 13726 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13727 } 13728 } 13729 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13730 if (flags & TH_RST) { 13731 freemsg(mp); 13732 switch (tcp->tcp_state) { 13733 case TCPS_SYN_RCVD: 13734 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13735 break; 13736 case TCPS_ESTABLISHED: 13737 case TCPS_FIN_WAIT_1: 13738 case TCPS_FIN_WAIT_2: 13739 case TCPS_CLOSE_WAIT: 13740 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13741 break; 13742 case TCPS_CLOSING: 13743 case TCPS_LAST_ACK: 13744 (void) tcp_clean_death(tcp, 0, 16); 13745 break; 13746 default: 13747 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13748 (void) tcp_clean_death(tcp, ENXIO, 17); 13749 break; 13750 } 13751 return; 13752 } 13753 if (flags & TH_SYN) { 13754 /* 13755 * See RFC 793, Page 71 13756 * 13757 * The seq number must be in the window as it should 13758 * be "fixed" above. If it is outside window, it should 13759 * be already rejected. Note that we allow seg_seq to be 13760 * rnxt + rwnd because we want to accept 0 window probe. 13761 */ 13762 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13763 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13764 freemsg(mp); 13765 /* 13766 * If the ACK flag is not set, just use our snxt as the 13767 * seq number of the RST segment. 13768 */ 13769 if (!(flags & TH_ACK)) { 13770 seg_ack = tcp->tcp_snxt; 13771 } 13772 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13773 TH_RST|TH_ACK); 13774 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13775 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13776 return; 13777 } 13778 /* 13779 * urp could be -1 when the urp field in the packet is 0 13780 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13781 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13782 */ 13783 if (flags & TH_URG && urp >= 0) { 13784 if (!tcp->tcp_urp_last_valid || 13785 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13786 /* 13787 * If we haven't generated the signal yet for this 13788 * urgent pointer value, do it now. Also, send up a 13789 * zero-length M_DATA indicating whether or not this is 13790 * the mark. The latter is not needed when a 13791 * T_EXDATA_IND is sent up. However, if there are 13792 * allocation failures this code relies on the sender 13793 * retransmitting and the socket code for determining 13794 * the mark should not block waiting for the peer to 13795 * transmit. Thus, for simplicity we always send up the 13796 * mark indication. 13797 */ 13798 mp1 = allocb(0, BPRI_MED); 13799 if (mp1 == NULL) { 13800 freemsg(mp); 13801 return; 13802 } 13803 if (!TCP_IS_DETACHED(tcp) && 13804 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13805 /* Try again on the rexmit. */ 13806 freemsg(mp1); 13807 freemsg(mp); 13808 return; 13809 } 13810 /* 13811 * Mark with NOTMARKNEXT for now. 13812 * The code below will change this to MARKNEXT 13813 * if we are at the mark. 13814 * 13815 * If there are allocation failures (e.g. in dupmsg 13816 * below) the next time tcp_rput_data sees the urgent 13817 * segment it will send up the MSG*MARKNEXT message. 13818 */ 13819 mp1->b_flag |= MSGNOTMARKNEXT; 13820 freemsg(tcp->tcp_urp_mark_mp); 13821 tcp->tcp_urp_mark_mp = mp1; 13822 flags |= TH_SEND_URP_MARK; 13823 #ifdef DEBUG 13824 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13825 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13826 "last %x, %s", 13827 seg_seq, urp, tcp->tcp_urp_last, 13828 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13829 #endif /* DEBUG */ 13830 tcp->tcp_urp_last_valid = B_TRUE; 13831 tcp->tcp_urp_last = urp + seg_seq; 13832 } else if (tcp->tcp_urp_mark_mp != NULL) { 13833 /* 13834 * An allocation failure prevented the previous 13835 * tcp_rput_data from sending up the allocated 13836 * MSG*MARKNEXT message - send it up this time 13837 * around. 13838 */ 13839 flags |= TH_SEND_URP_MARK; 13840 } 13841 13842 /* 13843 * If the urgent byte is in this segment, make sure that it is 13844 * all by itself. This makes it much easier to deal with the 13845 * possibility of an allocation failure on the T_exdata_ind. 13846 * Note that seg_len is the number of bytes in the segment, and 13847 * urp is the offset into the segment of the urgent byte. 13848 * urp < seg_len means that the urgent byte is in this segment. 13849 */ 13850 if (urp < seg_len) { 13851 if (seg_len != 1) { 13852 uint32_t tmp_rnxt; 13853 /* 13854 * Break it up and feed it back in. 13855 * Re-attach the IP header. 13856 */ 13857 mp->b_rptr = iphdr; 13858 if (urp > 0) { 13859 /* 13860 * There is stuff before the urgent 13861 * byte. 13862 */ 13863 mp1 = dupmsg(mp); 13864 if (!mp1) { 13865 /* 13866 * Trim from urgent byte on. 13867 * The rest will come back. 13868 */ 13869 (void) adjmsg(mp, 13870 urp - seg_len); 13871 tcp_rput_data(connp, 13872 mp, NULL); 13873 return; 13874 } 13875 (void) adjmsg(mp1, urp - seg_len); 13876 /* Feed this piece back in. */ 13877 tmp_rnxt = tcp->tcp_rnxt; 13878 tcp_rput_data(connp, mp1, NULL); 13879 /* 13880 * If the data passed back in was not 13881 * processed (ie: bad ACK) sending 13882 * the remainder back in will cause a 13883 * loop. In this case, drop the 13884 * packet and let the sender try 13885 * sending a good packet. 13886 */ 13887 if (tmp_rnxt == tcp->tcp_rnxt) { 13888 freemsg(mp); 13889 return; 13890 } 13891 } 13892 if (urp != seg_len - 1) { 13893 uint32_t tmp_rnxt; 13894 /* 13895 * There is stuff after the urgent 13896 * byte. 13897 */ 13898 mp1 = dupmsg(mp); 13899 if (!mp1) { 13900 /* 13901 * Trim everything beyond the 13902 * urgent byte. The rest will 13903 * come back. 13904 */ 13905 (void) adjmsg(mp, 13906 urp + 1 - seg_len); 13907 tcp_rput_data(connp, 13908 mp, NULL); 13909 return; 13910 } 13911 (void) adjmsg(mp1, urp + 1 - seg_len); 13912 tmp_rnxt = tcp->tcp_rnxt; 13913 tcp_rput_data(connp, mp1, NULL); 13914 /* 13915 * If the data passed back in was not 13916 * processed (ie: bad ACK) sending 13917 * the remainder back in will cause a 13918 * loop. In this case, drop the 13919 * packet and let the sender try 13920 * sending a good packet. 13921 */ 13922 if (tmp_rnxt == tcp->tcp_rnxt) { 13923 freemsg(mp); 13924 return; 13925 } 13926 } 13927 tcp_rput_data(connp, mp, NULL); 13928 return; 13929 } 13930 /* 13931 * This segment contains only the urgent byte. We 13932 * have to allocate the T_exdata_ind, if we can. 13933 */ 13934 if (!tcp->tcp_urp_mp) { 13935 struct T_exdata_ind *tei; 13936 mp1 = allocb(sizeof (struct T_exdata_ind), 13937 BPRI_MED); 13938 if (!mp1) { 13939 /* 13940 * Sigh... It'll be back. 13941 * Generate any MSG*MARK message now. 13942 */ 13943 freemsg(mp); 13944 seg_len = 0; 13945 if (flags & TH_SEND_URP_MARK) { 13946 13947 13948 ASSERT(tcp->tcp_urp_mark_mp); 13949 tcp->tcp_urp_mark_mp->b_flag &= 13950 ~MSGNOTMARKNEXT; 13951 tcp->tcp_urp_mark_mp->b_flag |= 13952 MSGMARKNEXT; 13953 } 13954 goto ack_check; 13955 } 13956 mp1->b_datap->db_type = M_PROTO; 13957 tei = (struct T_exdata_ind *)mp1->b_rptr; 13958 tei->PRIM_type = T_EXDATA_IND; 13959 tei->MORE_flag = 0; 13960 mp1->b_wptr = (uchar_t *)&tei[1]; 13961 tcp->tcp_urp_mp = mp1; 13962 #ifdef DEBUG 13963 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13964 "tcp_rput: allocated exdata_ind %s", 13965 tcp_display(tcp, NULL, 13966 DISP_PORT_ONLY)); 13967 #endif /* DEBUG */ 13968 /* 13969 * There is no need to send a separate MSG*MARK 13970 * message since the T_EXDATA_IND will be sent 13971 * now. 13972 */ 13973 flags &= ~TH_SEND_URP_MARK; 13974 freemsg(tcp->tcp_urp_mark_mp); 13975 tcp->tcp_urp_mark_mp = NULL; 13976 } 13977 /* 13978 * Now we are all set. On the next putnext upstream, 13979 * tcp_urp_mp will be non-NULL and will get prepended 13980 * to what has to be this piece containing the urgent 13981 * byte. If for any reason we abort this segment below, 13982 * if it comes back, we will have this ready, or it 13983 * will get blown off in close. 13984 */ 13985 } else if (urp == seg_len) { 13986 /* 13987 * The urgent byte is the next byte after this sequence 13988 * number. If there is data it is marked with 13989 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13990 * since it is not needed. Otherwise, if the code 13991 * above just allocated a zero-length tcp_urp_mark_mp 13992 * message, that message is tagged with MSGMARKNEXT. 13993 * Sending up these MSGMARKNEXT messages makes 13994 * SIOCATMARK work correctly even though 13995 * the T_EXDATA_IND will not be sent up until the 13996 * urgent byte arrives. 13997 */ 13998 if (seg_len != 0) { 13999 flags |= TH_MARKNEXT_NEEDED; 14000 freemsg(tcp->tcp_urp_mark_mp); 14001 tcp->tcp_urp_mark_mp = NULL; 14002 flags &= ~TH_SEND_URP_MARK; 14003 } else if (tcp->tcp_urp_mark_mp != NULL) { 14004 flags |= TH_SEND_URP_MARK; 14005 tcp->tcp_urp_mark_mp->b_flag &= 14006 ~MSGNOTMARKNEXT; 14007 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 14008 } 14009 #ifdef DEBUG 14010 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14011 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 14012 seg_len, flags, 14013 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14014 #endif /* DEBUG */ 14015 } else { 14016 /* Data left until we hit mark */ 14017 #ifdef DEBUG 14018 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14019 "tcp_rput: URP %d bytes left, %s", 14020 urp - seg_len, tcp_display(tcp, NULL, 14021 DISP_PORT_ONLY)); 14022 #endif /* DEBUG */ 14023 } 14024 } 14025 14026 process_ack: 14027 if (!(flags & TH_ACK)) { 14028 freemsg(mp); 14029 goto xmit_check; 14030 } 14031 } 14032 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 14033 14034 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 14035 tcp->tcp_ip_forward_progress = B_TRUE; 14036 if (tcp->tcp_state == TCPS_SYN_RCVD) { 14037 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 14038 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 14039 /* 3-way handshake complete - pass up the T_CONN_IND */ 14040 tcp_t *listener = tcp->tcp_listener; 14041 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 14042 14043 tcp->tcp_tconnind_started = B_TRUE; 14044 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 14045 /* 14046 * We are here means eager is fine but it can 14047 * get a TH_RST at any point between now and till 14048 * accept completes and disappear. We need to 14049 * ensure that reference to eager is valid after 14050 * we get out of eager's perimeter. So we do 14051 * an extra refhold. 14052 */ 14053 CONN_INC_REF(connp); 14054 14055 /* 14056 * The listener also exists because of the refhold 14057 * done in tcp_conn_request. Its possible that it 14058 * might have closed. We will check that once we 14059 * get inside listeners context. 14060 */ 14061 CONN_INC_REF(listener->tcp_connp); 14062 if (listener->tcp_connp->conn_sqp == 14063 connp->conn_sqp) { 14064 tcp_send_conn_ind(listener->tcp_connp, mp, 14065 listener->tcp_connp->conn_sqp); 14066 CONN_DEC_REF(listener->tcp_connp); 14067 } else if (!tcp->tcp_loopback) { 14068 squeue_fill(listener->tcp_connp->conn_sqp, mp, 14069 tcp_send_conn_ind, 14070 listener->tcp_connp, SQTAG_TCP_CONN_IND); 14071 } else { 14072 squeue_enter(listener->tcp_connp->conn_sqp, mp, 14073 tcp_send_conn_ind, listener->tcp_connp, 14074 SQTAG_TCP_CONN_IND); 14075 } 14076 } 14077 14078 if (tcp->tcp_active_open) { 14079 /* 14080 * We are seeing the final ack in the three way 14081 * hand shake of a active open'ed connection 14082 * so we must send up a T_CONN_CON 14083 */ 14084 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 14085 freemsg(mp); 14086 return; 14087 } 14088 /* 14089 * Don't fuse the loopback endpoints for 14090 * simultaneous active opens. 14091 */ 14092 if (tcp->tcp_loopback) { 14093 TCP_STAT(tcps, tcp_fusion_unfusable); 14094 tcp->tcp_unfusable = B_TRUE; 14095 } 14096 } 14097 14098 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 14099 bytes_acked--; 14100 /* SYN was acked - making progress */ 14101 if (tcp->tcp_ipversion == IPV6_VERSION) 14102 tcp->tcp_ip_forward_progress = B_TRUE; 14103 14104 /* 14105 * If SYN was retransmitted, need to reset all 14106 * retransmission info as this segment will be 14107 * treated as a dup ACK. 14108 */ 14109 if (tcp->tcp_rexmit) { 14110 tcp->tcp_rexmit = B_FALSE; 14111 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14112 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14113 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14114 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14115 tcp->tcp_ms_we_have_waited = 0; 14116 tcp->tcp_cwnd = mss; 14117 } 14118 14119 /* 14120 * We set the send window to zero here. 14121 * This is needed if there is data to be 14122 * processed already on the queue. 14123 * Later (at swnd_update label), the 14124 * "new_swnd > tcp_swnd" condition is satisfied 14125 * the XMIT_NEEDED flag is set in the current 14126 * (SYN_RCVD) state. This ensures tcp_wput_data() is 14127 * called if there is already data on queue in 14128 * this state. 14129 */ 14130 tcp->tcp_swnd = 0; 14131 14132 if (new_swnd > tcp->tcp_max_swnd) 14133 tcp->tcp_max_swnd = new_swnd; 14134 tcp->tcp_swl1 = seg_seq; 14135 tcp->tcp_swl2 = seg_ack; 14136 tcp->tcp_state = TCPS_ESTABLISHED; 14137 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 14138 14139 /* Fuse when both sides are in ESTABLISHED state */ 14140 if (tcp->tcp_loopback && do_tcp_fusion) 14141 tcp_fuse(tcp, iphdr, tcph); 14142 14143 } 14144 /* This code follows 4.4BSD-Lite2 mostly. */ 14145 if (bytes_acked < 0) 14146 goto est; 14147 14148 /* 14149 * If TCP is ECN capable and the congestion experience bit is 14150 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 14151 * done once per window (or more loosely, per RTT). 14152 */ 14153 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 14154 tcp->tcp_cwr = B_FALSE; 14155 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 14156 if (!tcp->tcp_cwr) { 14157 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 14158 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 14159 tcp->tcp_cwnd = npkt * mss; 14160 /* 14161 * If the cwnd is 0, use the timer to clock out 14162 * new segments. This is required by the ECN spec. 14163 */ 14164 if (npkt == 0) { 14165 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14166 /* 14167 * This makes sure that when the ACK comes 14168 * back, we will increase tcp_cwnd by 1 MSS. 14169 */ 14170 tcp->tcp_cwnd_cnt = 0; 14171 } 14172 tcp->tcp_cwr = B_TRUE; 14173 /* 14174 * This marks the end of the current window of in 14175 * flight data. That is why we don't use 14176 * tcp_suna + tcp_swnd. Only data in flight can 14177 * provide ECN info. 14178 */ 14179 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14180 tcp->tcp_ecn_cwr_sent = B_FALSE; 14181 } 14182 } 14183 14184 mp1 = tcp->tcp_xmit_head; 14185 if (bytes_acked == 0) { 14186 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14187 int dupack_cnt; 14188 14189 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 14190 /* 14191 * Fast retransmit. When we have seen exactly three 14192 * identical ACKs while we have unacked data 14193 * outstanding we take it as a hint that our peer 14194 * dropped something. 14195 * 14196 * If TCP is retransmitting, don't do fast retransmit. 14197 */ 14198 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14199 ! tcp->tcp_rexmit) { 14200 /* Do Limited Transmit */ 14201 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14202 tcps->tcps_dupack_fast_retransmit) { 14203 /* 14204 * RFC 3042 14205 * 14206 * What we need to do is temporarily 14207 * increase tcp_cwnd so that new 14208 * data can be sent if it is allowed 14209 * by the receive window (tcp_rwnd). 14210 * tcp_wput_data() will take care of 14211 * the rest. 14212 * 14213 * If the connection is SACK capable, 14214 * only do limited xmit when there 14215 * is SACK info. 14216 * 14217 * Note how tcp_cwnd is incremented. 14218 * The first dup ACK will increase 14219 * it by 1 MSS. The second dup ACK 14220 * will increase it by 2 MSS. This 14221 * means that only 1 new segment will 14222 * be sent for each dup ACK. 14223 */ 14224 if (tcp->tcp_unsent > 0 && 14225 (!tcp->tcp_snd_sack_ok || 14226 (tcp->tcp_snd_sack_ok && 14227 tcp->tcp_notsack_list != NULL))) { 14228 tcp->tcp_cwnd += mss << 14229 (tcp->tcp_dupack_cnt - 1); 14230 flags |= TH_LIMIT_XMIT; 14231 } 14232 } else if (dupack_cnt == 14233 tcps->tcps_dupack_fast_retransmit) { 14234 14235 /* 14236 * If we have reduced tcp_ssthresh 14237 * because of ECN, do not reduce it again 14238 * unless it is already one window of data 14239 * away. After one window of data, tcp_cwr 14240 * should then be cleared. Note that 14241 * for non ECN capable connection, tcp_cwr 14242 * should always be false. 14243 * 14244 * Adjust cwnd since the duplicate 14245 * ack indicates that a packet was 14246 * dropped (due to congestion.) 14247 */ 14248 if (!tcp->tcp_cwr) { 14249 npkt = ((tcp->tcp_snxt - 14250 tcp->tcp_suna) >> 1) / mss; 14251 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14252 mss; 14253 tcp->tcp_cwnd = (npkt + 14254 tcp->tcp_dupack_cnt) * mss; 14255 } 14256 if (tcp->tcp_ecn_ok) { 14257 tcp->tcp_cwr = B_TRUE; 14258 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14259 tcp->tcp_ecn_cwr_sent = B_FALSE; 14260 } 14261 14262 /* 14263 * We do Hoe's algorithm. Refer to her 14264 * paper "Improving the Start-up Behavior 14265 * of a Congestion Control Scheme for TCP," 14266 * appeared in SIGCOMM'96. 14267 * 14268 * Save highest seq no we have sent so far. 14269 * Be careful about the invisible FIN byte. 14270 */ 14271 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14272 (tcp->tcp_unsent == 0)) { 14273 tcp->tcp_rexmit_max = tcp->tcp_fss; 14274 } else { 14275 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14276 } 14277 14278 /* 14279 * Do not allow bursty traffic during. 14280 * fast recovery. Refer to Fall and Floyd's 14281 * paper "Simulation-based Comparisons of 14282 * Tahoe, Reno and SACK TCP" (in CCR?) 14283 * This is a best current practise. 14284 */ 14285 tcp->tcp_snd_burst = TCP_CWND_SS; 14286 14287 /* 14288 * For SACK: 14289 * Calculate tcp_pipe, which is the 14290 * estimated number of bytes in 14291 * network. 14292 * 14293 * tcp_fack is the highest sack'ed seq num 14294 * TCP has received. 14295 * 14296 * tcp_pipe is explained in the above quoted 14297 * Fall and Floyd's paper. tcp_fack is 14298 * explained in Mathis and Mahdavi's 14299 * "Forward Acknowledgment: Refining TCP 14300 * Congestion Control" in SIGCOMM '96. 14301 */ 14302 if (tcp->tcp_snd_sack_ok) { 14303 ASSERT(tcp->tcp_sack_info != NULL); 14304 if (tcp->tcp_notsack_list != NULL) { 14305 tcp->tcp_pipe = tcp->tcp_snxt - 14306 tcp->tcp_fack; 14307 tcp->tcp_sack_snxt = seg_ack; 14308 flags |= TH_NEED_SACK_REXMIT; 14309 } else { 14310 /* 14311 * Always initialize tcp_pipe 14312 * even though we don't have 14313 * any SACK info. If later 14314 * we get SACK info and 14315 * tcp_pipe is not initialized, 14316 * funny things will happen. 14317 */ 14318 tcp->tcp_pipe = 14319 tcp->tcp_cwnd_ssthresh; 14320 } 14321 } else { 14322 flags |= TH_REXMIT_NEEDED; 14323 } /* tcp_snd_sack_ok */ 14324 14325 } else { 14326 /* 14327 * Here we perform congestion 14328 * avoidance, but NOT slow start. 14329 * This is known as the Fast 14330 * Recovery Algorithm. 14331 */ 14332 if (tcp->tcp_snd_sack_ok && 14333 tcp->tcp_notsack_list != NULL) { 14334 flags |= TH_NEED_SACK_REXMIT; 14335 tcp->tcp_pipe -= mss; 14336 if (tcp->tcp_pipe < 0) 14337 tcp->tcp_pipe = 0; 14338 } else { 14339 /* 14340 * We know that one more packet has 14341 * left the pipe thus we can update 14342 * cwnd. 14343 */ 14344 cwnd = tcp->tcp_cwnd + mss; 14345 if (cwnd > tcp->tcp_cwnd_max) 14346 cwnd = tcp->tcp_cwnd_max; 14347 tcp->tcp_cwnd = cwnd; 14348 if (tcp->tcp_unsent > 0) 14349 flags |= TH_XMIT_NEEDED; 14350 } 14351 } 14352 } 14353 } else if (tcp->tcp_zero_win_probe) { 14354 /* 14355 * If the window has opened, need to arrange 14356 * to send additional data. 14357 */ 14358 if (new_swnd != 0) { 14359 /* tcp_suna != tcp_snxt */ 14360 /* Packet contains a window update */ 14361 BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate); 14362 tcp->tcp_zero_win_probe = 0; 14363 tcp->tcp_timer_backoff = 0; 14364 tcp->tcp_ms_we_have_waited = 0; 14365 14366 /* 14367 * Transmit starting with tcp_suna since 14368 * the one byte probe is not ack'ed. 14369 * If TCP has sent more than one identical 14370 * probe, tcp_rexmit will be set. That means 14371 * tcp_ss_rexmit() will send out the one 14372 * byte along with new data. Otherwise, 14373 * fake the retransmission. 14374 */ 14375 flags |= TH_XMIT_NEEDED; 14376 if (!tcp->tcp_rexmit) { 14377 tcp->tcp_rexmit = B_TRUE; 14378 tcp->tcp_dupack_cnt = 0; 14379 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14380 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14381 } 14382 } 14383 } 14384 goto swnd_update; 14385 } 14386 14387 /* 14388 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14389 * If the ACK value acks something that we have not yet sent, it might 14390 * be an old duplicate segment. Send an ACK to re-synchronize the 14391 * other side. 14392 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14393 * state is handled above, so we can always just drop the segment and 14394 * send an ACK here. 14395 * 14396 * Should we send ACKs in response to ACK only segments? 14397 */ 14398 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14399 BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent); 14400 /* drop the received segment */ 14401 freemsg(mp); 14402 14403 /* 14404 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14405 * greater than 0, check if the number of such 14406 * bogus ACks is greater than that count. If yes, 14407 * don't send back any ACK. This prevents TCP from 14408 * getting into an ACK storm if somehow an attacker 14409 * successfully spoofs an acceptable segment to our 14410 * peer. 14411 */ 14412 if (tcp_drop_ack_unsent_cnt > 0 && 14413 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14414 TCP_STAT(tcps, tcp_in_ack_unsent_drop); 14415 return; 14416 } 14417 mp = tcp_ack_mp(tcp); 14418 if (mp != NULL) { 14419 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14420 BUMP_LOCAL(tcp->tcp_obsegs); 14421 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 14422 tcp_send_data(tcp, tcp->tcp_wq, mp); 14423 } 14424 return; 14425 } 14426 14427 /* 14428 * TCP gets a new ACK, update the notsack'ed list to delete those 14429 * blocks that are covered by this ACK. 14430 */ 14431 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14432 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14433 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14434 } 14435 14436 /* 14437 * If we got an ACK after fast retransmit, check to see 14438 * if it is a partial ACK. If it is not and the congestion 14439 * window was inflated to account for the other side's 14440 * cached packets, retract it. If it is, do Hoe's algorithm. 14441 */ 14442 if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) { 14443 ASSERT(tcp->tcp_rexmit == B_FALSE); 14444 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14445 tcp->tcp_dupack_cnt = 0; 14446 /* 14447 * Restore the orig tcp_cwnd_ssthresh after 14448 * fast retransmit phase. 14449 */ 14450 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14451 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14452 } 14453 tcp->tcp_rexmit_max = seg_ack; 14454 tcp->tcp_cwnd_cnt = 0; 14455 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14456 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14457 14458 /* 14459 * Remove all notsack info to avoid confusion with 14460 * the next fast retrasnmit/recovery phase. 14461 */ 14462 if (tcp->tcp_snd_sack_ok && 14463 tcp->tcp_notsack_list != NULL) { 14464 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14465 } 14466 } else { 14467 if (tcp->tcp_snd_sack_ok && 14468 tcp->tcp_notsack_list != NULL) { 14469 flags |= TH_NEED_SACK_REXMIT; 14470 tcp->tcp_pipe -= mss; 14471 if (tcp->tcp_pipe < 0) 14472 tcp->tcp_pipe = 0; 14473 } else { 14474 /* 14475 * Hoe's algorithm: 14476 * 14477 * Retransmit the unack'ed segment and 14478 * restart fast recovery. Note that we 14479 * need to scale back tcp_cwnd to the 14480 * original value when we started fast 14481 * recovery. This is to prevent overly 14482 * aggressive behaviour in sending new 14483 * segments. 14484 */ 14485 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14486 tcps->tcps_dupack_fast_retransmit * mss; 14487 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14488 flags |= TH_REXMIT_NEEDED; 14489 } 14490 } 14491 } else { 14492 tcp->tcp_dupack_cnt = 0; 14493 if (tcp->tcp_rexmit) { 14494 /* 14495 * TCP is retranmitting. If the ACK ack's all 14496 * outstanding data, update tcp_rexmit_max and 14497 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14498 * to the correct value. 14499 * 14500 * Note that SEQ_LEQ() is used. This is to avoid 14501 * unnecessary fast retransmit caused by dup ACKs 14502 * received when TCP does slow start retransmission 14503 * after a time out. During this phase, TCP may 14504 * send out segments which are already received. 14505 * This causes dup ACKs to be sent back. 14506 */ 14507 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14508 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14509 tcp->tcp_rexmit_nxt = seg_ack; 14510 } 14511 if (seg_ack != tcp->tcp_rexmit_max) { 14512 flags |= TH_XMIT_NEEDED; 14513 } 14514 } else { 14515 tcp->tcp_rexmit = B_FALSE; 14516 tcp->tcp_xmit_zc_clean = B_FALSE; 14517 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14518 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14519 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14520 } 14521 tcp->tcp_ms_we_have_waited = 0; 14522 } 14523 } 14524 14525 BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs); 14526 UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked); 14527 tcp->tcp_suna = seg_ack; 14528 if (tcp->tcp_zero_win_probe != 0) { 14529 tcp->tcp_zero_win_probe = 0; 14530 tcp->tcp_timer_backoff = 0; 14531 } 14532 14533 /* 14534 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14535 * Note that it cannot be the SYN being ack'ed. The code flow 14536 * will not reach here. 14537 */ 14538 if (mp1 == NULL) { 14539 goto fin_acked; 14540 } 14541 14542 /* 14543 * Update the congestion window. 14544 * 14545 * If TCP is not ECN capable or TCP is ECN capable but the 14546 * congestion experience bit is not set, increase the tcp_cwnd as 14547 * usual. 14548 */ 14549 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14550 cwnd = tcp->tcp_cwnd; 14551 add = mss; 14552 14553 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14554 /* 14555 * This is to prevent an increase of less than 1 MSS of 14556 * tcp_cwnd. With partial increase, tcp_wput_data() 14557 * may send out tinygrams in order to preserve mblk 14558 * boundaries. 14559 * 14560 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14561 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14562 * increased by 1 MSS for every RTTs. 14563 */ 14564 if (tcp->tcp_cwnd_cnt <= 0) { 14565 tcp->tcp_cwnd_cnt = cwnd + add; 14566 } else { 14567 tcp->tcp_cwnd_cnt -= add; 14568 add = 0; 14569 } 14570 } 14571 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14572 } 14573 14574 /* See if the latest urgent data has been acknowledged */ 14575 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14576 SEQ_GT(seg_ack, tcp->tcp_urg)) 14577 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14578 14579 /* Can we update the RTT estimates? */ 14580 if (tcp->tcp_snd_ts_ok) { 14581 /* Ignore zero timestamp echo-reply. */ 14582 if (tcpopt.tcp_opt_ts_ecr != 0) { 14583 tcp_set_rto(tcp, (int32_t)lbolt - 14584 (int32_t)tcpopt.tcp_opt_ts_ecr); 14585 } 14586 14587 /* If needed, restart the timer. */ 14588 if (tcp->tcp_set_timer == 1) { 14589 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14590 tcp->tcp_set_timer = 0; 14591 } 14592 /* 14593 * Update tcp_csuna in case the other side stops sending 14594 * us timestamps. 14595 */ 14596 tcp->tcp_csuna = tcp->tcp_snxt; 14597 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14598 /* 14599 * An ACK sequence we haven't seen before, so get the RTT 14600 * and update the RTO. But first check if the timestamp is 14601 * valid to use. 14602 */ 14603 if ((mp1->b_next != NULL) && 14604 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14605 tcp_set_rto(tcp, (int32_t)lbolt - 14606 (int32_t)(intptr_t)mp1->b_prev); 14607 else 14608 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14609 14610 /* Remeber the last sequence to be ACKed */ 14611 tcp->tcp_csuna = seg_ack; 14612 if (tcp->tcp_set_timer == 1) { 14613 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14614 tcp->tcp_set_timer = 0; 14615 } 14616 } else { 14617 BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate); 14618 } 14619 14620 /* Eat acknowledged bytes off the xmit queue. */ 14621 for (;;) { 14622 mblk_t *mp2; 14623 uchar_t *wptr; 14624 14625 wptr = mp1->b_wptr; 14626 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14627 bytes_acked -= (int)(wptr - mp1->b_rptr); 14628 if (bytes_acked < 0) { 14629 mp1->b_rptr = wptr + bytes_acked; 14630 /* 14631 * Set a new timestamp if all the bytes timed by the 14632 * old timestamp have been ack'ed. 14633 */ 14634 if (SEQ_GT(seg_ack, 14635 (uint32_t)(uintptr_t)(mp1->b_next))) { 14636 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14637 mp1->b_next = NULL; 14638 } 14639 break; 14640 } 14641 mp1->b_next = NULL; 14642 mp1->b_prev = NULL; 14643 mp2 = mp1; 14644 mp1 = mp1->b_cont; 14645 14646 /* 14647 * This notification is required for some zero-copy 14648 * clients to maintain a copy semantic. After the data 14649 * is ack'ed, client is safe to modify or reuse the buffer. 14650 */ 14651 if (tcp->tcp_snd_zcopy_aware && 14652 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14653 tcp_zcopy_notify(tcp); 14654 freeb(mp2); 14655 if (bytes_acked == 0) { 14656 if (mp1 == NULL) { 14657 /* Everything is ack'ed, clear the tail. */ 14658 tcp->tcp_xmit_tail = NULL; 14659 /* 14660 * Cancel the timer unless we are still 14661 * waiting for an ACK for the FIN packet. 14662 */ 14663 if (tcp->tcp_timer_tid != 0 && 14664 tcp->tcp_snxt == tcp->tcp_suna) { 14665 (void) TCP_TIMER_CANCEL(tcp, 14666 tcp->tcp_timer_tid); 14667 tcp->tcp_timer_tid = 0; 14668 } 14669 goto pre_swnd_update; 14670 } 14671 if (mp2 != tcp->tcp_xmit_tail) 14672 break; 14673 tcp->tcp_xmit_tail = mp1; 14674 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14675 (uintptr_t)INT_MAX); 14676 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14677 mp1->b_rptr); 14678 break; 14679 } 14680 if (mp1 == NULL) { 14681 /* 14682 * More was acked but there is nothing more 14683 * outstanding. This means that the FIN was 14684 * just acked or that we're talking to a clown. 14685 */ 14686 fin_acked: 14687 ASSERT(tcp->tcp_fin_sent); 14688 tcp->tcp_xmit_tail = NULL; 14689 if (tcp->tcp_fin_sent) { 14690 /* FIN was acked - making progress */ 14691 if (tcp->tcp_ipversion == IPV6_VERSION && 14692 !tcp->tcp_fin_acked) 14693 tcp->tcp_ip_forward_progress = B_TRUE; 14694 tcp->tcp_fin_acked = B_TRUE; 14695 if (tcp->tcp_linger_tid != 0 && 14696 TCP_TIMER_CANCEL(tcp, 14697 tcp->tcp_linger_tid) >= 0) { 14698 tcp_stop_lingering(tcp); 14699 freemsg(mp); 14700 mp = NULL; 14701 } 14702 } else { 14703 /* 14704 * We should never get here because 14705 * we have already checked that the 14706 * number of bytes ack'ed should be 14707 * smaller than or equal to what we 14708 * have sent so far (it is the 14709 * acceptability check of the ACK). 14710 * We can only get here if the send 14711 * queue is corrupted. 14712 * 14713 * Terminate the connection and 14714 * panic the system. It is better 14715 * for us to panic instead of 14716 * continuing to avoid other disaster. 14717 */ 14718 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14719 tcp->tcp_rnxt, TH_RST|TH_ACK); 14720 panic("Memory corruption " 14721 "detected for connection %s.", 14722 tcp_display(tcp, NULL, 14723 DISP_ADDR_AND_PORT)); 14724 /*NOTREACHED*/ 14725 } 14726 goto pre_swnd_update; 14727 } 14728 ASSERT(mp2 != tcp->tcp_xmit_tail); 14729 } 14730 if (tcp->tcp_unsent) { 14731 flags |= TH_XMIT_NEEDED; 14732 } 14733 pre_swnd_update: 14734 tcp->tcp_xmit_head = mp1; 14735 swnd_update: 14736 /* 14737 * The following check is different from most other implementations. 14738 * For bi-directional transfer, when segments are dropped, the 14739 * "normal" check will not accept a window update in those 14740 * retransmitted segemnts. Failing to do that, TCP may send out 14741 * segments which are outside receiver's window. As TCP accepts 14742 * the ack in those retransmitted segments, if the window update in 14743 * the same segment is not accepted, TCP will incorrectly calculates 14744 * that it can send more segments. This can create a deadlock 14745 * with the receiver if its window becomes zero. 14746 */ 14747 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14748 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14749 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14750 /* 14751 * The criteria for update is: 14752 * 14753 * 1. the segment acknowledges some data. Or 14754 * 2. the segment is new, i.e. it has a higher seq num. Or 14755 * 3. the segment is not old and the advertised window is 14756 * larger than the previous advertised window. 14757 */ 14758 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14759 flags |= TH_XMIT_NEEDED; 14760 tcp->tcp_swnd = new_swnd; 14761 if (new_swnd > tcp->tcp_max_swnd) 14762 tcp->tcp_max_swnd = new_swnd; 14763 tcp->tcp_swl1 = seg_seq; 14764 tcp->tcp_swl2 = seg_ack; 14765 } 14766 est: 14767 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14768 14769 switch (tcp->tcp_state) { 14770 case TCPS_FIN_WAIT_1: 14771 if (tcp->tcp_fin_acked) { 14772 tcp->tcp_state = TCPS_FIN_WAIT_2; 14773 /* 14774 * We implement the non-standard BSD/SunOS 14775 * FIN_WAIT_2 flushing algorithm. 14776 * If there is no user attached to this 14777 * TCP endpoint, then this TCP struct 14778 * could hang around forever in FIN_WAIT_2 14779 * state if the peer forgets to send us 14780 * a FIN. To prevent this, we wait only 14781 * 2*MSL (a convenient time value) for 14782 * the FIN to arrive. If it doesn't show up, 14783 * we flush the TCP endpoint. This algorithm, 14784 * though a violation of RFC-793, has worked 14785 * for over 10 years in BSD systems. 14786 * Note: SunOS 4.x waits 675 seconds before 14787 * flushing the FIN_WAIT_2 connection. 14788 */ 14789 TCP_TIMER_RESTART(tcp, 14790 tcps->tcps_fin_wait_2_flush_interval); 14791 } 14792 break; 14793 case TCPS_FIN_WAIT_2: 14794 break; /* Shutdown hook? */ 14795 case TCPS_LAST_ACK: 14796 freemsg(mp); 14797 if (tcp->tcp_fin_acked) { 14798 (void) tcp_clean_death(tcp, 0, 19); 14799 return; 14800 } 14801 goto xmit_check; 14802 case TCPS_CLOSING: 14803 if (tcp->tcp_fin_acked) { 14804 tcp->tcp_state = TCPS_TIME_WAIT; 14805 /* 14806 * Unconditionally clear the exclusive binding 14807 * bit so this TIME-WAIT connection won't 14808 * interfere with new ones. 14809 */ 14810 tcp->tcp_exclbind = 0; 14811 if (!TCP_IS_DETACHED(tcp)) { 14812 TCP_TIMER_RESTART(tcp, 14813 tcps->tcps_time_wait_interval); 14814 } else { 14815 tcp_time_wait_append(tcp); 14816 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14817 } 14818 } 14819 /*FALLTHRU*/ 14820 case TCPS_CLOSE_WAIT: 14821 freemsg(mp); 14822 goto xmit_check; 14823 default: 14824 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14825 break; 14826 } 14827 } 14828 if (flags & TH_FIN) { 14829 /* Make sure we ack the fin */ 14830 flags |= TH_ACK_NEEDED; 14831 if (!tcp->tcp_fin_rcvd) { 14832 tcp->tcp_fin_rcvd = B_TRUE; 14833 tcp->tcp_rnxt++; 14834 tcph = tcp->tcp_tcph; 14835 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14836 14837 /* 14838 * Generate the ordrel_ind at the end unless we 14839 * are an eager guy. 14840 * In the eager case tcp_rsrv will do this when run 14841 * after tcp_accept is done. 14842 */ 14843 if (tcp->tcp_listener == NULL && 14844 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14845 flags |= TH_ORDREL_NEEDED; 14846 switch (tcp->tcp_state) { 14847 case TCPS_SYN_RCVD: 14848 case TCPS_ESTABLISHED: 14849 tcp->tcp_state = TCPS_CLOSE_WAIT; 14850 /* Keepalive? */ 14851 break; 14852 case TCPS_FIN_WAIT_1: 14853 if (!tcp->tcp_fin_acked) { 14854 tcp->tcp_state = TCPS_CLOSING; 14855 break; 14856 } 14857 /* FALLTHRU */ 14858 case TCPS_FIN_WAIT_2: 14859 tcp->tcp_state = TCPS_TIME_WAIT; 14860 /* 14861 * Unconditionally clear the exclusive binding 14862 * bit so this TIME-WAIT connection won't 14863 * interfere with new ones. 14864 */ 14865 tcp->tcp_exclbind = 0; 14866 if (!TCP_IS_DETACHED(tcp)) { 14867 TCP_TIMER_RESTART(tcp, 14868 tcps->tcps_time_wait_interval); 14869 } else { 14870 tcp_time_wait_append(tcp); 14871 TCP_DBGSTAT(tcps, tcp_rput_time_wait); 14872 } 14873 if (seg_len) { 14874 /* 14875 * implies data piggybacked on FIN. 14876 * break to handle data. 14877 */ 14878 break; 14879 } 14880 freemsg(mp); 14881 goto ack_check; 14882 } 14883 } 14884 } 14885 if (mp == NULL) 14886 goto xmit_check; 14887 if (seg_len == 0) { 14888 freemsg(mp); 14889 goto xmit_check; 14890 } 14891 if (mp->b_rptr == mp->b_wptr) { 14892 /* 14893 * The header has been consumed, so we remove the 14894 * zero-length mblk here. 14895 */ 14896 mp1 = mp; 14897 mp = mp->b_cont; 14898 freeb(mp1); 14899 } 14900 tcph = tcp->tcp_tcph; 14901 tcp->tcp_rack_cnt++; 14902 { 14903 uint32_t cur_max; 14904 14905 cur_max = tcp->tcp_rack_cur_max; 14906 if (tcp->tcp_rack_cnt >= cur_max) { 14907 /* 14908 * We have more unacked data than we should - send 14909 * an ACK now. 14910 */ 14911 flags |= TH_ACK_NEEDED; 14912 cur_max++; 14913 if (cur_max > tcp->tcp_rack_abs_max) 14914 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14915 else 14916 tcp->tcp_rack_cur_max = cur_max; 14917 } else if (TCP_IS_DETACHED(tcp)) { 14918 /* We don't have an ACK timer for detached TCP. */ 14919 flags |= TH_ACK_NEEDED; 14920 } else if (seg_len < mss) { 14921 /* 14922 * If we get a segment that is less than an mss, and we 14923 * already have unacknowledged data, and the amount 14924 * unacknowledged is not a multiple of mss, then we 14925 * better generate an ACK now. Otherwise, this may be 14926 * the tail piece of a transaction, and we would rather 14927 * wait for the response. 14928 */ 14929 uint32_t udif; 14930 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14931 (uintptr_t)INT_MAX); 14932 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14933 if (udif && (udif % mss)) 14934 flags |= TH_ACK_NEEDED; 14935 else 14936 flags |= TH_ACK_TIMER_NEEDED; 14937 } else { 14938 /* Start delayed ack timer */ 14939 flags |= TH_ACK_TIMER_NEEDED; 14940 } 14941 } 14942 tcp->tcp_rnxt += seg_len; 14943 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14944 14945 /* Update SACK list */ 14946 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14947 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14948 &(tcp->tcp_num_sack_blk)); 14949 } 14950 14951 if (tcp->tcp_urp_mp) { 14952 tcp->tcp_urp_mp->b_cont = mp; 14953 mp = tcp->tcp_urp_mp; 14954 tcp->tcp_urp_mp = NULL; 14955 /* Ready for a new signal. */ 14956 tcp->tcp_urp_last_valid = B_FALSE; 14957 #ifdef DEBUG 14958 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14959 "tcp_rput: sending exdata_ind %s", 14960 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14961 #endif /* DEBUG */ 14962 } 14963 14964 /* 14965 * Check for ancillary data changes compared to last segment. 14966 */ 14967 if (tcp->tcp_ipv6_recvancillary != 0) { 14968 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14969 if (mp == NULL) 14970 return; 14971 } 14972 14973 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14974 /* 14975 * Side queue inbound data until the accept happens. 14976 * tcp_accept/tcp_rput drains this when the accept happens. 14977 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14978 * T_EXDATA_IND) it is queued on b_next. 14979 * XXX Make urgent data use this. Requires: 14980 * Removing tcp_listener check for TH_URG 14981 * Making M_PCPROTO and MARK messages skip the eager case 14982 */ 14983 14984 if (tcp->tcp_kssl_pending) { 14985 tcp_kssl_input(tcp, mp); 14986 } else { 14987 tcp_rcv_enqueue(tcp, mp, seg_len); 14988 } 14989 } else { 14990 if (mp->b_datap->db_type != M_DATA || 14991 (flags & TH_MARKNEXT_NEEDED)) { 14992 if (tcp->tcp_rcv_list != NULL) { 14993 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14994 } 14995 ASSERT(tcp->tcp_rcv_list == NULL || 14996 tcp->tcp_fused_sigurg); 14997 if (flags & TH_MARKNEXT_NEEDED) { 14998 #ifdef DEBUG 14999 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15000 "tcp_rput: sending MSGMARKNEXT %s", 15001 tcp_display(tcp, NULL, 15002 DISP_PORT_ONLY)); 15003 #endif /* DEBUG */ 15004 mp->b_flag |= MSGMARKNEXT; 15005 flags &= ~TH_MARKNEXT_NEEDED; 15006 } 15007 15008 /* Does this need SSL processing first? */ 15009 if ((tcp->tcp_kssl_ctx != NULL) && 15010 (DB_TYPE(mp) == M_DATA)) { 15011 tcp_kssl_input(tcp, mp); 15012 } else { 15013 putnext(tcp->tcp_rq, mp); 15014 if (!canputnext(tcp->tcp_rq)) 15015 tcp->tcp_rwnd -= seg_len; 15016 } 15017 } else if ((flags & (TH_PUSH|TH_FIN)) || 15018 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 15019 if (tcp->tcp_rcv_list != NULL) { 15020 /* 15021 * Enqueue the new segment first and then 15022 * call tcp_rcv_drain() to send all data 15023 * up. The other way to do this is to 15024 * send all queued data up and then call 15025 * putnext() to send the new segment up. 15026 * This way can remove the else part later 15027 * on. 15028 * 15029 * We don't this to avoid one more call to 15030 * canputnext() as tcp_rcv_drain() needs to 15031 * call canputnext(). 15032 */ 15033 tcp_rcv_enqueue(tcp, mp, seg_len); 15034 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15035 } else { 15036 /* Does this need SSL processing first? */ 15037 if ((tcp->tcp_kssl_ctx != NULL) && 15038 (DB_TYPE(mp) == M_DATA)) { 15039 tcp_kssl_input(tcp, mp); 15040 } else { 15041 putnext(tcp->tcp_rq, mp); 15042 if (!canputnext(tcp->tcp_rq)) 15043 tcp->tcp_rwnd -= seg_len; 15044 } 15045 } 15046 } else { 15047 /* 15048 * Enqueue all packets when processing an mblk 15049 * from the co queue and also enqueue normal packets. 15050 * For packets which belong to SSL stream do SSL 15051 * processing first. 15052 */ 15053 if ((tcp->tcp_kssl_ctx != NULL) && 15054 (DB_TYPE(mp) == M_DATA)) { 15055 tcp_kssl_input(tcp, mp); 15056 } else { 15057 tcp_rcv_enqueue(tcp, mp, seg_len); 15058 } 15059 } 15060 /* 15061 * Make sure the timer is running if we have data waiting 15062 * for a push bit. This provides resiliency against 15063 * implementations that do not correctly generate push bits. 15064 */ 15065 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 15066 /* 15067 * The connection may be closed at this point, so don't 15068 * do anything for a detached tcp. 15069 */ 15070 if (!TCP_IS_DETACHED(tcp)) 15071 tcp->tcp_push_tid = TCP_TIMER(tcp, 15072 tcp_push_timer, 15073 MSEC_TO_TICK( 15074 tcps->tcps_push_timer_interval)); 15075 } 15076 } 15077 xmit_check: 15078 /* Is there anything left to do? */ 15079 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15080 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 15081 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 15082 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15083 goto done; 15084 15085 /* Any transmit work to do and a non-zero window? */ 15086 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 15087 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 15088 if (flags & TH_REXMIT_NEEDED) { 15089 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 15090 15091 BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans); 15092 if (snd_size > mss) 15093 snd_size = mss; 15094 if (snd_size > tcp->tcp_swnd) 15095 snd_size = tcp->tcp_swnd; 15096 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 15097 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 15098 B_TRUE); 15099 15100 if (mp1 != NULL) { 15101 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15102 tcp->tcp_csuna = tcp->tcp_snxt; 15103 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 15104 UPDATE_MIB(&tcps->tcps_mib, 15105 tcpRetransBytes, snd_size); 15106 TCP_RECORD_TRACE(tcp, mp1, 15107 TCP_TRACE_SEND_PKT); 15108 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15109 } 15110 } 15111 if (flags & TH_NEED_SACK_REXMIT) { 15112 tcp_sack_rxmit(tcp, &flags); 15113 } 15114 /* 15115 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 15116 * out new segment. Note that tcp_rexmit should not be 15117 * set, otherwise TH_LIMIT_XMIT should not be set. 15118 */ 15119 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 15120 if (!tcp->tcp_rexmit) { 15121 tcp_wput_data(tcp, NULL, B_FALSE); 15122 } else { 15123 tcp_ss_rexmit(tcp); 15124 } 15125 } 15126 /* 15127 * Adjust tcp_cwnd back to normal value after sending 15128 * new data segments. 15129 */ 15130 if (flags & TH_LIMIT_XMIT) { 15131 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 15132 /* 15133 * This will restart the timer. Restarting the 15134 * timer is used to avoid a timeout before the 15135 * limited transmitted segment's ACK gets back. 15136 */ 15137 if (tcp->tcp_xmit_head != NULL) 15138 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 15139 } 15140 15141 /* Anything more to do? */ 15142 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 15143 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 15144 goto done; 15145 } 15146 ack_check: 15147 if (flags & TH_SEND_URP_MARK) { 15148 ASSERT(tcp->tcp_urp_mark_mp); 15149 /* 15150 * Send up any queued data and then send the mark message 15151 */ 15152 if (tcp->tcp_rcv_list != NULL) { 15153 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15154 } 15155 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15156 15157 mp1 = tcp->tcp_urp_mark_mp; 15158 tcp->tcp_urp_mark_mp = NULL; 15159 #ifdef DEBUG 15160 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 15161 "tcp_rput: sending zero-length %s %s", 15162 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 15163 "MSGNOTMARKNEXT"), 15164 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 15165 #endif /* DEBUG */ 15166 putnext(tcp->tcp_rq, mp1); 15167 flags &= ~TH_SEND_URP_MARK; 15168 } 15169 if (flags & TH_ACK_NEEDED) { 15170 /* 15171 * Time to send an ack for some reason. 15172 */ 15173 mp1 = tcp_ack_mp(tcp); 15174 15175 if (mp1 != NULL) { 15176 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 15177 tcp_send_data(tcp, tcp->tcp_wq, mp1); 15178 BUMP_LOCAL(tcp->tcp_obsegs); 15179 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 15180 } 15181 if (tcp->tcp_ack_tid != 0) { 15182 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 15183 tcp->tcp_ack_tid = 0; 15184 } 15185 } 15186 if (flags & TH_ACK_TIMER_NEEDED) { 15187 /* 15188 * Arrange for deferred ACK or push wait timeout. 15189 * Start timer if it is not already running. 15190 */ 15191 if (tcp->tcp_ack_tid == 0) { 15192 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15193 MSEC_TO_TICK(tcp->tcp_localnet ? 15194 (clock_t)tcps->tcps_local_dack_interval : 15195 (clock_t)tcps->tcps_deferred_ack_interval)); 15196 } 15197 } 15198 if (flags & TH_ORDREL_NEEDED) { 15199 /* 15200 * Send up the ordrel_ind unless we are an eager guy. 15201 * In the eager case tcp_rsrv will do this when run 15202 * after tcp_accept is done. 15203 */ 15204 ASSERT(tcp->tcp_listener == NULL); 15205 if (tcp->tcp_rcv_list != NULL) { 15206 /* 15207 * Push any mblk(s) enqueued from co processing. 15208 */ 15209 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15210 } 15211 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15212 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15213 tcp->tcp_ordrel_done = B_TRUE; 15214 putnext(tcp->tcp_rq, mp1); 15215 if (tcp->tcp_deferred_clean_death) { 15216 /* 15217 * tcp_clean_death was deferred 15218 * for T_ORDREL_IND - do it now 15219 */ 15220 (void) tcp_clean_death(tcp, 15221 tcp->tcp_client_errno, 20); 15222 tcp->tcp_deferred_clean_death = B_FALSE; 15223 } 15224 } else { 15225 /* 15226 * Run the orderly release in the 15227 * service routine. 15228 */ 15229 qenable(tcp->tcp_rq); 15230 /* 15231 * Caveat(XXX): The machine may be so 15232 * overloaded that tcp_rsrv() is not scheduled 15233 * until after the endpoint has transitioned 15234 * to TCPS_TIME_WAIT 15235 * and tcp_time_wait_interval expires. Then 15236 * tcp_timer() will blow away state in tcp_t 15237 * and T_ORDREL_IND will never be delivered 15238 * upstream. Unlikely but potentially 15239 * a problem. 15240 */ 15241 } 15242 } 15243 done: 15244 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15245 } 15246 15247 /* 15248 * This function does PAWS protection check. Returns B_TRUE if the 15249 * segment passes the PAWS test, else returns B_FALSE. 15250 */ 15251 boolean_t 15252 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15253 { 15254 uint8_t flags; 15255 int options; 15256 uint8_t *up; 15257 15258 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15259 /* 15260 * If timestamp option is aligned nicely, get values inline, 15261 * otherwise call general routine to parse. Only do that 15262 * if timestamp is the only option. 15263 */ 15264 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15265 TCPOPT_REAL_TS_LEN && 15266 OK_32PTR((up = ((uint8_t *)tcph) + 15267 TCP_MIN_HEADER_LENGTH)) && 15268 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15269 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15270 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15271 15272 options = TCP_OPT_TSTAMP_PRESENT; 15273 } else { 15274 if (tcp->tcp_snd_sack_ok) { 15275 tcpoptp->tcp = tcp; 15276 } else { 15277 tcpoptp->tcp = NULL; 15278 } 15279 options = tcp_parse_options(tcph, tcpoptp); 15280 } 15281 15282 if (options & TCP_OPT_TSTAMP_PRESENT) { 15283 /* 15284 * Do PAWS per RFC 1323 section 4.2. Accept RST 15285 * regardless of the timestamp, page 18 RFC 1323.bis. 15286 */ 15287 if ((flags & TH_RST) == 0 && 15288 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15289 tcp->tcp_ts_recent)) { 15290 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15291 PAWS_TIMEOUT)) { 15292 /* This segment is not acceptable. */ 15293 return (B_FALSE); 15294 } else { 15295 /* 15296 * Connection has been idle for 15297 * too long. Reset the timestamp 15298 * and assume the segment is valid. 15299 */ 15300 tcp->tcp_ts_recent = 15301 tcpoptp->tcp_opt_ts_val; 15302 } 15303 } 15304 } else { 15305 /* 15306 * If we don't get a timestamp on every packet, we 15307 * figure we can't really trust 'em, so we stop sending 15308 * and parsing them. 15309 */ 15310 tcp->tcp_snd_ts_ok = B_FALSE; 15311 15312 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15313 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15314 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15315 /* 15316 * Adjust the tcp_mss accordingly. We also need to 15317 * adjust tcp_cwnd here in accordance with the new mss. 15318 * But we avoid doing a slow start here so as to not 15319 * to lose on the transfer rate built up so far. 15320 */ 15321 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE); 15322 if (tcp->tcp_snd_sack_ok) { 15323 ASSERT(tcp->tcp_sack_info != NULL); 15324 tcp->tcp_max_sack_blk = 4; 15325 } 15326 } 15327 return (B_TRUE); 15328 } 15329 15330 /* 15331 * Attach ancillary data to a received TCP segments for the 15332 * ancillary pieces requested by the application that are 15333 * different than they were in the previous data segment. 15334 * 15335 * Save the "current" values once memory allocation is ok so that 15336 * when memory allocation fails we can just wait for the next data segment. 15337 */ 15338 static mblk_t * 15339 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15340 { 15341 struct T_optdata_ind *todi; 15342 int optlen; 15343 uchar_t *optptr; 15344 struct T_opthdr *toh; 15345 uint_t addflag; /* Which pieces to add */ 15346 mblk_t *mp1; 15347 15348 optlen = 0; 15349 addflag = 0; 15350 /* If app asked for pktinfo and the index has changed ... */ 15351 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15352 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15353 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15354 optlen += sizeof (struct T_opthdr) + 15355 sizeof (struct in6_pktinfo); 15356 addflag |= TCP_IPV6_RECVPKTINFO; 15357 } 15358 /* If app asked for hoplimit and it has changed ... */ 15359 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15360 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15361 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15362 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15363 addflag |= TCP_IPV6_RECVHOPLIMIT; 15364 } 15365 /* If app asked for tclass and it has changed ... */ 15366 if ((ipp->ipp_fields & IPPF_TCLASS) && 15367 ipp->ipp_tclass != tcp->tcp_recvtclass && 15368 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15369 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15370 addflag |= TCP_IPV6_RECVTCLASS; 15371 } 15372 /* 15373 * If app asked for hopbyhop headers and it has changed ... 15374 * For security labels, note that (1) security labels can't change on 15375 * a connected socket at all, (2) we're connected to at most one peer, 15376 * (3) if anything changes, then it must be some other extra option. 15377 */ 15378 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15379 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15380 (ipp->ipp_fields & IPPF_HOPOPTS), 15381 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15382 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15383 tcp->tcp_label_len; 15384 addflag |= TCP_IPV6_RECVHOPOPTS; 15385 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15386 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15387 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15388 return (mp); 15389 } 15390 /* If app asked for dst headers before routing headers ... */ 15391 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15392 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15393 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15394 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15395 optlen += sizeof (struct T_opthdr) + 15396 ipp->ipp_rtdstoptslen; 15397 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15398 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15399 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15400 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15401 return (mp); 15402 } 15403 /* If app asked for routing headers and it has changed ... */ 15404 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15405 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15406 (ipp->ipp_fields & IPPF_RTHDR), 15407 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15408 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15409 addflag |= TCP_IPV6_RECVRTHDR; 15410 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15411 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15412 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15413 return (mp); 15414 } 15415 /* If app asked for dest headers and it has changed ... */ 15416 if ((tcp->tcp_ipv6_recvancillary & 15417 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15418 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15419 (ipp->ipp_fields & IPPF_DSTOPTS), 15420 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15421 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15422 addflag |= TCP_IPV6_RECVDSTOPTS; 15423 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15424 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15425 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15426 return (mp); 15427 } 15428 15429 if (optlen == 0) { 15430 /* Nothing to add */ 15431 return (mp); 15432 } 15433 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15434 if (mp1 == NULL) { 15435 /* 15436 * Defer sending ancillary data until the next TCP segment 15437 * arrives. 15438 */ 15439 return (mp); 15440 } 15441 mp1->b_cont = mp; 15442 mp = mp1; 15443 mp->b_wptr += sizeof (*todi) + optlen; 15444 mp->b_datap->db_type = M_PROTO; 15445 todi = (struct T_optdata_ind *)mp->b_rptr; 15446 todi->PRIM_type = T_OPTDATA_IND; 15447 todi->DATA_flag = 1; /* MORE data */ 15448 todi->OPT_length = optlen; 15449 todi->OPT_offset = sizeof (*todi); 15450 optptr = (uchar_t *)&todi[1]; 15451 /* 15452 * If app asked for pktinfo and the index has changed ... 15453 * Note that the local address never changes for the connection. 15454 */ 15455 if (addflag & TCP_IPV6_RECVPKTINFO) { 15456 struct in6_pktinfo *pkti; 15457 15458 toh = (struct T_opthdr *)optptr; 15459 toh->level = IPPROTO_IPV6; 15460 toh->name = IPV6_PKTINFO; 15461 toh->len = sizeof (*toh) + sizeof (*pkti); 15462 toh->status = 0; 15463 optptr += sizeof (*toh); 15464 pkti = (struct in6_pktinfo *)optptr; 15465 if (tcp->tcp_ipversion == IPV6_VERSION) 15466 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15467 else 15468 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15469 &pkti->ipi6_addr); 15470 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15471 optptr += sizeof (*pkti); 15472 ASSERT(OK_32PTR(optptr)); 15473 /* Save as "last" value */ 15474 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15475 } 15476 /* If app asked for hoplimit and it has changed ... */ 15477 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15478 toh = (struct T_opthdr *)optptr; 15479 toh->level = IPPROTO_IPV6; 15480 toh->name = IPV6_HOPLIMIT; 15481 toh->len = sizeof (*toh) + sizeof (uint_t); 15482 toh->status = 0; 15483 optptr += sizeof (*toh); 15484 *(uint_t *)optptr = ipp->ipp_hoplimit; 15485 optptr += sizeof (uint_t); 15486 ASSERT(OK_32PTR(optptr)); 15487 /* Save as "last" value */ 15488 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15489 } 15490 /* If app asked for tclass and it has changed ... */ 15491 if (addflag & TCP_IPV6_RECVTCLASS) { 15492 toh = (struct T_opthdr *)optptr; 15493 toh->level = IPPROTO_IPV6; 15494 toh->name = IPV6_TCLASS; 15495 toh->len = sizeof (*toh) + sizeof (uint_t); 15496 toh->status = 0; 15497 optptr += sizeof (*toh); 15498 *(uint_t *)optptr = ipp->ipp_tclass; 15499 optptr += sizeof (uint_t); 15500 ASSERT(OK_32PTR(optptr)); 15501 /* Save as "last" value */ 15502 tcp->tcp_recvtclass = ipp->ipp_tclass; 15503 } 15504 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15505 toh = (struct T_opthdr *)optptr; 15506 toh->level = IPPROTO_IPV6; 15507 toh->name = IPV6_HOPOPTS; 15508 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15509 tcp->tcp_label_len; 15510 toh->status = 0; 15511 optptr += sizeof (*toh); 15512 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15513 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15514 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15515 ASSERT(OK_32PTR(optptr)); 15516 /* Save as last value */ 15517 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15518 (ipp->ipp_fields & IPPF_HOPOPTS), 15519 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15520 } 15521 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15522 toh = (struct T_opthdr *)optptr; 15523 toh->level = IPPROTO_IPV6; 15524 toh->name = IPV6_RTHDRDSTOPTS; 15525 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15526 toh->status = 0; 15527 optptr += sizeof (*toh); 15528 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15529 optptr += ipp->ipp_rtdstoptslen; 15530 ASSERT(OK_32PTR(optptr)); 15531 /* Save as last value */ 15532 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15533 &tcp->tcp_rtdstoptslen, 15534 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15535 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15536 } 15537 if (addflag & TCP_IPV6_RECVRTHDR) { 15538 toh = (struct T_opthdr *)optptr; 15539 toh->level = IPPROTO_IPV6; 15540 toh->name = IPV6_RTHDR; 15541 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15542 toh->status = 0; 15543 optptr += sizeof (*toh); 15544 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15545 optptr += ipp->ipp_rthdrlen; 15546 ASSERT(OK_32PTR(optptr)); 15547 /* Save as last value */ 15548 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15549 (ipp->ipp_fields & IPPF_RTHDR), 15550 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15551 } 15552 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15553 toh = (struct T_opthdr *)optptr; 15554 toh->level = IPPROTO_IPV6; 15555 toh->name = IPV6_DSTOPTS; 15556 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15557 toh->status = 0; 15558 optptr += sizeof (*toh); 15559 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15560 optptr += ipp->ipp_dstoptslen; 15561 ASSERT(OK_32PTR(optptr)); 15562 /* Save as last value */ 15563 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15564 (ipp->ipp_fields & IPPF_DSTOPTS), 15565 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15566 } 15567 ASSERT(optptr == mp->b_wptr); 15568 return (mp); 15569 } 15570 15571 15572 /* 15573 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15574 * or a "bad" IRE detected by tcp_adapt_ire. 15575 * We can't tell if the failure was due to the laddr or the faddr 15576 * thus we clear out all addresses and ports. 15577 */ 15578 static void 15579 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15580 { 15581 queue_t *q = tcp->tcp_rq; 15582 tcph_t *tcph; 15583 struct T_error_ack *tea; 15584 conn_t *connp = tcp->tcp_connp; 15585 15586 15587 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15588 15589 if (mp->b_cont) { 15590 freemsg(mp->b_cont); 15591 mp->b_cont = NULL; 15592 } 15593 tea = (struct T_error_ack *)mp->b_rptr; 15594 switch (tea->PRIM_type) { 15595 case T_BIND_ACK: 15596 /* 15597 * Need to unbind with classifier since we were just told that 15598 * our bind succeeded. 15599 */ 15600 tcp->tcp_hard_bound = B_FALSE; 15601 tcp->tcp_hard_binding = B_FALSE; 15602 15603 ipcl_hash_remove(connp); 15604 /* Reuse the mblk if possible */ 15605 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15606 sizeof (*tea)); 15607 mp->b_rptr = mp->b_datap->db_base; 15608 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15609 tea = (struct T_error_ack *)mp->b_rptr; 15610 tea->PRIM_type = T_ERROR_ACK; 15611 tea->TLI_error = TSYSERR; 15612 tea->UNIX_error = error; 15613 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15614 tea->ERROR_prim = T_CONN_REQ; 15615 } else { 15616 tea->ERROR_prim = O_T_BIND_REQ; 15617 } 15618 break; 15619 15620 case T_ERROR_ACK: 15621 if (tcp->tcp_state >= TCPS_SYN_SENT) 15622 tea->ERROR_prim = T_CONN_REQ; 15623 break; 15624 default: 15625 panic("tcp_bind_failed: unexpected TPI type"); 15626 /*NOTREACHED*/ 15627 } 15628 15629 tcp->tcp_state = TCPS_IDLE; 15630 if (tcp->tcp_ipversion == IPV4_VERSION) 15631 tcp->tcp_ipha->ipha_src = 0; 15632 else 15633 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15634 /* 15635 * Copy of the src addr. in tcp_t is needed since 15636 * the lookup funcs. can only look at tcp_t 15637 */ 15638 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15639 15640 tcph = tcp->tcp_tcph; 15641 tcph->th_lport[0] = 0; 15642 tcph->th_lport[1] = 0; 15643 tcp_bind_hash_remove(tcp); 15644 bzero(&connp->u_port, sizeof (connp->u_port)); 15645 /* blow away saved option results if any */ 15646 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15647 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15648 15649 conn_delete_ire(tcp->tcp_connp, NULL); 15650 putnext(q, mp); 15651 } 15652 15653 /* 15654 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15655 * messages. 15656 */ 15657 void 15658 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15659 { 15660 mblk_t *mp1; 15661 uchar_t *rptr = mp->b_rptr; 15662 queue_t *q = tcp->tcp_rq; 15663 struct T_error_ack *tea; 15664 uint32_t mss; 15665 mblk_t *syn_mp; 15666 mblk_t *mdti; 15667 mblk_t *lsoi; 15668 int retval; 15669 mblk_t *ire_mp; 15670 tcp_stack_t *tcps = tcp->tcp_tcps; 15671 15672 switch (mp->b_datap->db_type) { 15673 case M_PROTO: 15674 case M_PCPROTO: 15675 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15676 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15677 break; 15678 tea = (struct T_error_ack *)rptr; 15679 switch (tea->PRIM_type) { 15680 case T_BIND_ACK: 15681 /* 15682 * Adapt Multidata information, if any. The 15683 * following tcp_mdt_update routine will free 15684 * the message. 15685 */ 15686 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15687 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15688 b_rptr)->mdt_capab, B_TRUE); 15689 freemsg(mdti); 15690 } 15691 15692 /* 15693 * Check to update LSO information with tcp, and 15694 * tcp_lso_update routine will free the message. 15695 */ 15696 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15697 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15698 b_rptr)->lso_capab); 15699 freemsg(lsoi); 15700 } 15701 15702 /* Get the IRE, if we had requested for it */ 15703 ire_mp = tcp_ire_mp(mp); 15704 15705 if (tcp->tcp_hard_binding) { 15706 tcp->tcp_hard_binding = B_FALSE; 15707 tcp->tcp_hard_bound = B_TRUE; 15708 CL_INET_CONNECT(tcp); 15709 } else { 15710 if (ire_mp != NULL) 15711 freeb(ire_mp); 15712 goto after_syn_sent; 15713 } 15714 15715 retval = tcp_adapt_ire(tcp, ire_mp); 15716 if (ire_mp != NULL) 15717 freeb(ire_mp); 15718 if (retval == 0) { 15719 tcp_bind_failed(tcp, mp, 15720 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15721 ENETUNREACH : EADDRNOTAVAIL)); 15722 return; 15723 } 15724 /* 15725 * Don't let an endpoint connect to itself. 15726 * Also checked in tcp_connect() but that 15727 * check can't handle the case when the 15728 * local IP address is INADDR_ANY. 15729 */ 15730 if (tcp->tcp_ipversion == IPV4_VERSION) { 15731 if ((tcp->tcp_ipha->ipha_dst == 15732 tcp->tcp_ipha->ipha_src) && 15733 (BE16_EQL(tcp->tcp_tcph->th_lport, 15734 tcp->tcp_tcph->th_fport))) { 15735 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15736 return; 15737 } 15738 } else { 15739 if (IN6_ARE_ADDR_EQUAL( 15740 &tcp->tcp_ip6h->ip6_dst, 15741 &tcp->tcp_ip6h->ip6_src) && 15742 (BE16_EQL(tcp->tcp_tcph->th_lport, 15743 tcp->tcp_tcph->th_fport))) { 15744 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15745 return; 15746 } 15747 } 15748 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15749 /* 15750 * This should not be possible! Just for 15751 * defensive coding... 15752 */ 15753 if (tcp->tcp_state != TCPS_SYN_SENT) 15754 goto after_syn_sent; 15755 15756 if (is_system_labeled() && 15757 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15758 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15759 return; 15760 } 15761 15762 ASSERT(q == tcp->tcp_rq); 15763 /* 15764 * tcp_adapt_ire() does not adjust 15765 * for TCP/IP header length. 15766 */ 15767 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15768 15769 /* 15770 * Just make sure our rwnd is at 15771 * least tcp_recv_hiwat_mss * MSS 15772 * large, and round up to the nearest 15773 * MSS. 15774 * 15775 * We do the round up here because 15776 * we need to get the interface 15777 * MTU first before we can do the 15778 * round up. 15779 */ 15780 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15781 tcps->tcps_recv_hiwat_minmss * mss); 15782 q->q_hiwat = tcp->tcp_rwnd; 15783 tcp_set_ws_value(tcp); 15784 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15785 tcp->tcp_tcph->th_win); 15786 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 15787 tcp->tcp_snd_ws_ok = B_TRUE; 15788 15789 /* 15790 * Set tcp_snd_ts_ok to true 15791 * so that tcp_xmit_mp will 15792 * include the timestamp 15793 * option in the SYN segment. 15794 */ 15795 if (tcps->tcps_tstamp_always || 15796 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 15797 tcp->tcp_snd_ts_ok = B_TRUE; 15798 } 15799 15800 /* 15801 * tcp_snd_sack_ok can be set in 15802 * tcp_adapt_ire() if the sack metric 15803 * is set. So check it here also. 15804 */ 15805 if (tcps->tcps_sack_permitted == 2 || 15806 tcp->tcp_snd_sack_ok) { 15807 if (tcp->tcp_sack_info == NULL) { 15808 tcp->tcp_sack_info = 15809 kmem_cache_alloc( 15810 tcp_sack_info_cache, 15811 KM_SLEEP); 15812 } 15813 tcp->tcp_snd_sack_ok = B_TRUE; 15814 } 15815 15816 /* 15817 * Should we use ECN? Note that the current 15818 * default value (SunOS 5.9) of tcp_ecn_permitted 15819 * is 1. The reason for doing this is that there 15820 * are equipments out there that will drop ECN 15821 * enabled IP packets. Setting it to 1 avoids 15822 * compatibility problems. 15823 */ 15824 if (tcps->tcps_ecn_permitted == 2) 15825 tcp->tcp_ecn_ok = B_TRUE; 15826 15827 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15828 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15829 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15830 if (syn_mp) { 15831 cred_t *cr; 15832 pid_t pid; 15833 15834 /* 15835 * Obtain the credential from the 15836 * thread calling connect(); the credential 15837 * lives on in the second mblk which 15838 * originated from T_CONN_REQ and is echoed 15839 * with the T_BIND_ACK from ip. If none 15840 * can be found, default to the creator 15841 * of the socket. 15842 */ 15843 if (mp->b_cont == NULL || 15844 (cr = DB_CRED(mp->b_cont)) == NULL) { 15845 cr = tcp->tcp_cred; 15846 pid = tcp->tcp_cpid; 15847 } else { 15848 pid = DB_CPID(mp->b_cont); 15849 } 15850 15851 TCP_RECORD_TRACE(tcp, syn_mp, 15852 TCP_TRACE_SEND_PKT); 15853 mblk_setcred(syn_mp, cr); 15854 DB_CPID(syn_mp) = pid; 15855 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15856 } 15857 after_syn_sent: 15858 /* 15859 * A trailer mblk indicates a waiting client upstream. 15860 * We complete here the processing begun in 15861 * either tcp_bind() or tcp_connect() by passing 15862 * upstream the reply message they supplied. 15863 */ 15864 mp1 = mp; 15865 mp = mp->b_cont; 15866 freeb(mp1); 15867 if (mp) 15868 break; 15869 return; 15870 case T_ERROR_ACK: 15871 if (tcp->tcp_debug) { 15872 (void) strlog(TCP_MOD_ID, 0, 1, 15873 SL_TRACE|SL_ERROR, 15874 "tcp_rput_other: case T_ERROR_ACK, " 15875 "ERROR_prim == %d", 15876 tea->ERROR_prim); 15877 } 15878 switch (tea->ERROR_prim) { 15879 case O_T_BIND_REQ: 15880 case T_BIND_REQ: 15881 tcp_bind_failed(tcp, mp, 15882 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15883 ENETUNREACH : EADDRNOTAVAIL)); 15884 return; 15885 case T_UNBIND_REQ: 15886 tcp->tcp_hard_binding = B_FALSE; 15887 tcp->tcp_hard_bound = B_FALSE; 15888 if (mp->b_cont) { 15889 freemsg(mp->b_cont); 15890 mp->b_cont = NULL; 15891 } 15892 if (tcp->tcp_unbind_pending) 15893 tcp->tcp_unbind_pending = 0; 15894 else { 15895 /* From tcp_ip_unbind() - free */ 15896 freemsg(mp); 15897 return; 15898 } 15899 break; 15900 case T_SVR4_OPTMGMT_REQ: 15901 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15902 /* T_OPTMGMT_REQ generated by TCP */ 15903 printf("T_SVR4_OPTMGMT_REQ failed " 15904 "%d/%d - dropped (cnt %d)\n", 15905 tea->TLI_error, tea->UNIX_error, 15906 tcp->tcp_drop_opt_ack_cnt); 15907 freemsg(mp); 15908 tcp->tcp_drop_opt_ack_cnt--; 15909 return; 15910 } 15911 break; 15912 } 15913 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15914 tcp->tcp_drop_opt_ack_cnt > 0) { 15915 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15916 "- dropped (cnt %d)\n", 15917 tea->TLI_error, tea->UNIX_error, 15918 tcp->tcp_drop_opt_ack_cnt); 15919 freemsg(mp); 15920 tcp->tcp_drop_opt_ack_cnt--; 15921 return; 15922 } 15923 break; 15924 case T_OPTMGMT_ACK: 15925 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15926 /* T_OPTMGMT_REQ generated by TCP */ 15927 freemsg(mp); 15928 tcp->tcp_drop_opt_ack_cnt--; 15929 return; 15930 } 15931 break; 15932 default: 15933 break; 15934 } 15935 break; 15936 case M_FLUSH: 15937 if (*rptr & FLUSHR) 15938 flushq(q, FLUSHDATA); 15939 break; 15940 default: 15941 /* M_CTL will be directly sent to tcp_icmp_error() */ 15942 ASSERT(DB_TYPE(mp) != M_CTL); 15943 break; 15944 } 15945 /* 15946 * Make sure we set this bit before sending the ACK for 15947 * bind. Otherwise accept could possibly run and free 15948 * this tcp struct. 15949 */ 15950 putnext(q, mp); 15951 } 15952 15953 /* 15954 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15955 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15956 * tcp_rsrv() try again. 15957 */ 15958 static void 15959 tcp_ordrel_kick(void *arg) 15960 { 15961 conn_t *connp = (conn_t *)arg; 15962 tcp_t *tcp = connp->conn_tcp; 15963 15964 tcp->tcp_ordrelid = 0; 15965 tcp->tcp_timeout = B_FALSE; 15966 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15967 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15968 qenable(tcp->tcp_rq); 15969 } 15970 } 15971 15972 /* ARGSUSED */ 15973 static void 15974 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15975 { 15976 conn_t *connp = (conn_t *)arg; 15977 tcp_t *tcp = connp->conn_tcp; 15978 queue_t *q = tcp->tcp_rq; 15979 uint_t thwin; 15980 tcp_stack_t *tcps = tcp->tcp_tcps; 15981 15982 freeb(mp); 15983 15984 TCP_STAT(tcps, tcp_rsrv_calls); 15985 15986 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15987 return; 15988 } 15989 15990 if (tcp->tcp_fused) { 15991 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15992 15993 ASSERT(tcp->tcp_fused); 15994 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15995 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15996 ASSERT(!TCP_IS_DETACHED(tcp)); 15997 ASSERT(tcp->tcp_connp->conn_sqp == 15998 peer_tcp->tcp_connp->conn_sqp); 15999 16000 /* 16001 * Normally we would not get backenabled in synchronous 16002 * streams mode, but in case this happens, we need to plug 16003 * synchronous streams during our drain to prevent a race 16004 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 16005 */ 16006 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 16007 if (tcp->tcp_rcv_list != NULL) 16008 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 16009 16010 if (peer_tcp > tcp) { 16011 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16012 mutex_enter(&tcp->tcp_non_sq_lock); 16013 } else { 16014 mutex_enter(&tcp->tcp_non_sq_lock); 16015 mutex_enter(&peer_tcp->tcp_non_sq_lock); 16016 } 16017 16018 if (peer_tcp->tcp_flow_stopped && 16019 (TCP_UNSENT_BYTES(peer_tcp) <= 16020 peer_tcp->tcp_xmit_lowater)) { 16021 tcp_clrqfull(peer_tcp); 16022 } 16023 mutex_exit(&peer_tcp->tcp_non_sq_lock); 16024 mutex_exit(&tcp->tcp_non_sq_lock); 16025 16026 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 16027 TCP_STAT(tcps, tcp_fusion_backenabled); 16028 return; 16029 } 16030 16031 if (canputnext(q)) { 16032 tcp->tcp_rwnd = q->q_hiwat; 16033 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 16034 << tcp->tcp_rcv_ws; 16035 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 16036 /* 16037 * Send back a window update immediately if TCP is above 16038 * ESTABLISHED state and the increase of the rcv window 16039 * that the other side knows is at least 1 MSS after flow 16040 * control is lifted. 16041 */ 16042 if (tcp->tcp_state >= TCPS_ESTABLISHED && 16043 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 16044 tcp_xmit_ctl(NULL, tcp, 16045 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 16046 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 16047 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 16048 } 16049 } 16050 /* Handle a failure to allocate a T_ORDREL_IND here */ 16051 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 16052 ASSERT(tcp->tcp_listener == NULL); 16053 if (tcp->tcp_rcv_list != NULL) { 16054 (void) tcp_rcv_drain(q, tcp); 16055 } 16056 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 16057 mp = mi_tpi_ordrel_ind(); 16058 if (mp) { 16059 tcp->tcp_ordrel_done = B_TRUE; 16060 putnext(q, mp); 16061 if (tcp->tcp_deferred_clean_death) { 16062 /* 16063 * tcp_clean_death was deferred for 16064 * T_ORDREL_IND - do it now 16065 */ 16066 tcp->tcp_deferred_clean_death = B_FALSE; 16067 (void) tcp_clean_death(tcp, 16068 tcp->tcp_client_errno, 22); 16069 } 16070 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16071 /* 16072 * If there isn't already a timer running 16073 * start one. Use a 4 second 16074 * timer as a fallback since it can't fail. 16075 */ 16076 tcp->tcp_timeout = B_TRUE; 16077 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16078 MSEC_TO_TICK(4000)); 16079 } 16080 } 16081 } 16082 16083 /* 16084 * The read side service routine is called mostly when we get back-enabled as a 16085 * result of flow control relief. Since we don't actually queue anything in 16086 * TCP, we have no data to send out of here. What we do is clear the receive 16087 * window, and send out a window update. 16088 * This routine is also called to drive an orderly release message upstream 16089 * if the attempt in tcp_rput failed. 16090 */ 16091 static void 16092 tcp_rsrv(queue_t *q) 16093 { 16094 conn_t *connp = Q_TO_CONN(q); 16095 tcp_t *tcp = connp->conn_tcp; 16096 mblk_t *mp; 16097 tcp_stack_t *tcps = tcp->tcp_tcps; 16098 16099 /* No code does a putq on the read side */ 16100 ASSERT(q->q_first == NULL); 16101 16102 /* Nothing to do for the default queue */ 16103 if (q == tcps->tcps_g_q) { 16104 return; 16105 } 16106 16107 mp = allocb(0, BPRI_HI); 16108 if (mp == NULL) { 16109 /* 16110 * We are under memory pressure. Return for now and we 16111 * we will be called again later. 16112 */ 16113 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 16114 /* 16115 * If there isn't already a timer running 16116 * start one. Use a 4 second 16117 * timer as a fallback since it can't fail. 16118 */ 16119 tcp->tcp_timeout = B_TRUE; 16120 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 16121 MSEC_TO_TICK(4000)); 16122 } 16123 return; 16124 } 16125 CONN_INC_REF(connp); 16126 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 16127 SQTAG_TCP_RSRV); 16128 } 16129 16130 /* 16131 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 16132 * We do not allow the receive window to shrink. After setting rwnd, 16133 * set the flow control hiwat of the stream. 16134 * 16135 * This function is called in 2 cases: 16136 * 16137 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 16138 * connection (passive open) and in tcp_rput_data() for active connect. 16139 * This is called after tcp_mss_set() when the desired MSS value is known. 16140 * This makes sure that our window size is a mutiple of the other side's 16141 * MSS. 16142 * 2) Handling SO_RCVBUF option. 16143 * 16144 * It is ASSUMED that the requested size is a multiple of the current MSS. 16145 * 16146 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 16147 * user requests so. 16148 */ 16149 static int 16150 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 16151 { 16152 uint32_t mss = tcp->tcp_mss; 16153 uint32_t old_max_rwnd; 16154 uint32_t max_transmittable_rwnd; 16155 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 16156 tcp_stack_t *tcps = tcp->tcp_tcps; 16157 16158 if (tcp->tcp_fused) { 16159 size_t sth_hiwat; 16160 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 16161 16162 ASSERT(peer_tcp != NULL); 16163 /* 16164 * Record the stream head's high water mark for 16165 * this endpoint; this is used for flow-control 16166 * purposes in tcp_fuse_output(). 16167 */ 16168 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 16169 if (!tcp_detached) 16170 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 16171 16172 /* 16173 * In the fusion case, the maxpsz stream head value of 16174 * our peer is set according to its send buffer size 16175 * and our receive buffer size; since the latter may 16176 * have changed we need to update the peer's maxpsz. 16177 */ 16178 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 16179 return (rwnd); 16180 } 16181 16182 if (tcp_detached) 16183 old_max_rwnd = tcp->tcp_rwnd; 16184 else 16185 old_max_rwnd = tcp->tcp_rq->q_hiwat; 16186 16187 /* 16188 * Insist on a receive window that is at least 16189 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 16190 * funny TCP interactions of Nagle algorithm, SWS avoidance 16191 * and delayed acknowledgement. 16192 */ 16193 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 16194 16195 /* 16196 * If window size info has already been exchanged, TCP should not 16197 * shrink the window. Shrinking window is doable if done carefully. 16198 * We may add that support later. But so far there is not a real 16199 * need to do that. 16200 */ 16201 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 16202 /* MSS may have changed, do a round up again. */ 16203 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 16204 } 16205 16206 /* 16207 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 16208 * can be applied even before the window scale option is decided. 16209 */ 16210 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 16211 if (rwnd > max_transmittable_rwnd) { 16212 rwnd = max_transmittable_rwnd - 16213 (max_transmittable_rwnd % mss); 16214 if (rwnd < mss) 16215 rwnd = max_transmittable_rwnd; 16216 /* 16217 * If we're over the limit we may have to back down tcp_rwnd. 16218 * The increment below won't work for us. So we set all three 16219 * here and the increment below will have no effect. 16220 */ 16221 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16222 } 16223 if (tcp->tcp_localnet) { 16224 tcp->tcp_rack_abs_max = 16225 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 16226 } else { 16227 /* 16228 * For a remote host on a different subnet (through a router), 16229 * we ack every other packet to be conforming to RFC1122. 16230 * tcp_deferred_acks_max is default to 2. 16231 */ 16232 tcp->tcp_rack_abs_max = 16233 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 16234 } 16235 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16236 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16237 else 16238 tcp->tcp_rack_cur_max = 0; 16239 /* 16240 * Increment the current rwnd by the amount the maximum grew (we 16241 * can not overwrite it since we might be in the middle of a 16242 * connection.) 16243 */ 16244 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16245 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16246 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16247 tcp->tcp_cwnd_max = rwnd; 16248 16249 if (tcp_detached) 16250 return (rwnd); 16251 /* 16252 * We set the maximum receive window into rq->q_hiwat. 16253 * This is not actually used for flow control. 16254 */ 16255 tcp->tcp_rq->q_hiwat = rwnd; 16256 /* 16257 * Set the Stream head high water mark. This doesn't have to be 16258 * here, since we are simply using default values, but we would 16259 * prefer to choose these values algorithmically, with a likely 16260 * relationship to rwnd. 16261 */ 16262 (void) mi_set_sth_hiwat(tcp->tcp_rq, 16263 MAX(rwnd, tcps->tcps_sth_rcv_hiwat)); 16264 return (rwnd); 16265 } 16266 16267 /* 16268 * Return SNMP stuff in buffer in mpdata. 16269 */ 16270 mblk_t * 16271 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16272 { 16273 mblk_t *mpdata; 16274 mblk_t *mp_conn_ctl = NULL; 16275 mblk_t *mp_conn_tail; 16276 mblk_t *mp_attr_ctl = NULL; 16277 mblk_t *mp_attr_tail; 16278 mblk_t *mp6_conn_ctl = NULL; 16279 mblk_t *mp6_conn_tail; 16280 mblk_t *mp6_attr_ctl = NULL; 16281 mblk_t *mp6_attr_tail; 16282 struct opthdr *optp; 16283 mib2_tcpConnEntry_t tce; 16284 mib2_tcp6ConnEntry_t tce6; 16285 mib2_transportMLPEntry_t mlp; 16286 connf_t *connfp; 16287 int i; 16288 boolean_t ispriv; 16289 zoneid_t zoneid; 16290 int v4_conn_idx; 16291 int v6_conn_idx; 16292 conn_t *connp = Q_TO_CONN(q); 16293 tcp_stack_t *tcps; 16294 ip_stack_t *ipst; 16295 mblk_t *mp2ctl; 16296 16297 /* 16298 * make a copy of the original message 16299 */ 16300 mp2ctl = copymsg(mpctl); 16301 16302 if (mpctl == NULL || 16303 (mpdata = mpctl->b_cont) == NULL || 16304 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16305 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16306 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16307 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16308 freemsg(mp_conn_ctl); 16309 freemsg(mp_attr_ctl); 16310 freemsg(mp6_conn_ctl); 16311 freemsg(mp6_attr_ctl); 16312 freemsg(mpctl); 16313 freemsg(mp2ctl); 16314 return (NULL); 16315 } 16316 16317 ipst = connp->conn_netstack->netstack_ip; 16318 tcps = connp->conn_netstack->netstack_tcp; 16319 16320 /* build table of connections -- need count in fixed part */ 16321 SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4); /* vanj */ 16322 SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min); 16323 SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max); 16324 SET_MIB(tcps->tcps_mib.tcpMaxConn, -1); 16325 SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0); 16326 16327 ispriv = 16328 secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16329 zoneid = Q_TO_CONN(q)->conn_zoneid; 16330 16331 v4_conn_idx = v6_conn_idx = 0; 16332 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16333 16334 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16335 ipst = tcps->tcps_netstack->netstack_ip; 16336 16337 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16338 16339 connp = NULL; 16340 16341 while ((connp = 16342 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16343 tcp_t *tcp; 16344 boolean_t needattr; 16345 16346 if (connp->conn_zoneid != zoneid) 16347 continue; /* not in this zone */ 16348 16349 tcp = connp->conn_tcp; 16350 UPDATE_MIB(&tcps->tcps_mib, 16351 tcpHCInSegs, tcp->tcp_ibsegs); 16352 tcp->tcp_ibsegs = 0; 16353 UPDATE_MIB(&tcps->tcps_mib, 16354 tcpHCOutSegs, tcp->tcp_obsegs); 16355 tcp->tcp_obsegs = 0; 16356 16357 tce6.tcp6ConnState = tce.tcpConnState = 16358 tcp_snmp_state(tcp); 16359 if (tce.tcpConnState == MIB2_TCP_established || 16360 tce.tcpConnState == MIB2_TCP_closeWait) 16361 BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab); 16362 16363 needattr = B_FALSE; 16364 bzero(&mlp, sizeof (mlp)); 16365 if (connp->conn_mlp_type != mlptSingle) { 16366 if (connp->conn_mlp_type == mlptShared || 16367 connp->conn_mlp_type == mlptBoth) 16368 mlp.tme_flags |= MIB2_TMEF_SHARED; 16369 if (connp->conn_mlp_type == mlptPrivate || 16370 connp->conn_mlp_type == mlptBoth) 16371 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16372 needattr = B_TRUE; 16373 } 16374 if (connp->conn_peercred != NULL) { 16375 ts_label_t *tsl; 16376 16377 tsl = crgetlabel(connp->conn_peercred); 16378 mlp.tme_doi = label2doi(tsl); 16379 mlp.tme_label = *label2bslabel(tsl); 16380 needattr = B_TRUE; 16381 } 16382 16383 /* Create a message to report on IPv6 entries */ 16384 if (tcp->tcp_ipversion == IPV6_VERSION) { 16385 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16386 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16387 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16388 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16389 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16390 /* Don't want just anybody seeing these... */ 16391 if (ispriv) { 16392 tce6.tcp6ConnEntryInfo.ce_snxt = 16393 tcp->tcp_snxt; 16394 tce6.tcp6ConnEntryInfo.ce_suna = 16395 tcp->tcp_suna; 16396 tce6.tcp6ConnEntryInfo.ce_rnxt = 16397 tcp->tcp_rnxt; 16398 tce6.tcp6ConnEntryInfo.ce_rack = 16399 tcp->tcp_rack; 16400 } else { 16401 /* 16402 * Netstat, unfortunately, uses this to 16403 * get send/receive queue sizes. How to fix? 16404 * Why not compute the difference only? 16405 */ 16406 tce6.tcp6ConnEntryInfo.ce_snxt = 16407 tcp->tcp_snxt - tcp->tcp_suna; 16408 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16409 tce6.tcp6ConnEntryInfo.ce_rnxt = 16410 tcp->tcp_rnxt - tcp->tcp_rack; 16411 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16412 } 16413 16414 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16415 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16416 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16417 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16418 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16419 16420 tce6.tcp6ConnCreationProcess = 16421 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16422 tcp->tcp_cpid; 16423 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16424 16425 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16426 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16427 16428 mlp.tme_connidx = v6_conn_idx++; 16429 if (needattr) 16430 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16431 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16432 } 16433 /* 16434 * Create an IPv4 table entry for IPv4 entries and also 16435 * for IPv6 entries which are bound to in6addr_any 16436 * but don't have IPV6_V6ONLY set. 16437 * (i.e. anything an IPv4 peer could connect to) 16438 */ 16439 if (tcp->tcp_ipversion == IPV4_VERSION || 16440 (tcp->tcp_state <= TCPS_LISTEN && 16441 !tcp->tcp_connp->conn_ipv6_v6only && 16442 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16443 if (tcp->tcp_ipversion == IPV6_VERSION) { 16444 tce.tcpConnRemAddress = INADDR_ANY; 16445 tce.tcpConnLocalAddress = INADDR_ANY; 16446 } else { 16447 tce.tcpConnRemAddress = 16448 tcp->tcp_remote; 16449 tce.tcpConnLocalAddress = 16450 tcp->tcp_ip_src; 16451 } 16452 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16453 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16454 /* Don't want just anybody seeing these... */ 16455 if (ispriv) { 16456 tce.tcpConnEntryInfo.ce_snxt = 16457 tcp->tcp_snxt; 16458 tce.tcpConnEntryInfo.ce_suna = 16459 tcp->tcp_suna; 16460 tce.tcpConnEntryInfo.ce_rnxt = 16461 tcp->tcp_rnxt; 16462 tce.tcpConnEntryInfo.ce_rack = 16463 tcp->tcp_rack; 16464 } else { 16465 /* 16466 * Netstat, unfortunately, uses this to 16467 * get send/receive queue sizes. How 16468 * to fix? 16469 * Why not compute the difference only? 16470 */ 16471 tce.tcpConnEntryInfo.ce_snxt = 16472 tcp->tcp_snxt - tcp->tcp_suna; 16473 tce.tcpConnEntryInfo.ce_suna = 0; 16474 tce.tcpConnEntryInfo.ce_rnxt = 16475 tcp->tcp_rnxt - tcp->tcp_rack; 16476 tce.tcpConnEntryInfo.ce_rack = 0; 16477 } 16478 16479 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16480 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16481 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16482 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16483 tce.tcpConnEntryInfo.ce_state = 16484 tcp->tcp_state; 16485 16486 tce.tcpConnCreationProcess = 16487 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16488 tcp->tcp_cpid; 16489 tce.tcpConnCreationTime = tcp->tcp_open_time; 16490 16491 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16492 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16493 16494 mlp.tme_connidx = v4_conn_idx++; 16495 if (needattr) 16496 (void) snmp_append_data2( 16497 mp_attr_ctl->b_cont, 16498 &mp_attr_tail, (char *)&mlp, 16499 sizeof (mlp)); 16500 } 16501 } 16502 } 16503 16504 /* fixed length structure for IPv4 and IPv6 counters */ 16505 SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16506 SET_MIB(tcps->tcps_mib.tcp6ConnTableSize, 16507 sizeof (mib2_tcp6ConnEntry_t)); 16508 /* synchronize 32- and 64-bit counters */ 16509 SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs); 16510 SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs); 16511 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16512 optp->level = MIB2_TCP; 16513 optp->name = 0; 16514 (void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib, 16515 sizeof (tcps->tcps_mib)); 16516 optp->len = msgdsize(mpdata); 16517 qreply(q, mpctl); 16518 16519 /* table of connections... */ 16520 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16521 sizeof (struct T_optmgmt_ack)]; 16522 optp->level = MIB2_TCP; 16523 optp->name = MIB2_TCP_CONN; 16524 optp->len = msgdsize(mp_conn_ctl->b_cont); 16525 qreply(q, mp_conn_ctl); 16526 16527 /* table of MLP attributes... */ 16528 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16529 sizeof (struct T_optmgmt_ack)]; 16530 optp->level = MIB2_TCP; 16531 optp->name = EXPER_XPORT_MLP; 16532 optp->len = msgdsize(mp_attr_ctl->b_cont); 16533 if (optp->len == 0) 16534 freemsg(mp_attr_ctl); 16535 else 16536 qreply(q, mp_attr_ctl); 16537 16538 /* table of IPv6 connections... */ 16539 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16540 sizeof (struct T_optmgmt_ack)]; 16541 optp->level = MIB2_TCP6; 16542 optp->name = MIB2_TCP6_CONN; 16543 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16544 qreply(q, mp6_conn_ctl); 16545 16546 /* table of IPv6 MLP attributes... */ 16547 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16548 sizeof (struct T_optmgmt_ack)]; 16549 optp->level = MIB2_TCP6; 16550 optp->name = EXPER_XPORT_MLP; 16551 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16552 if (optp->len == 0) 16553 freemsg(mp6_attr_ctl); 16554 else 16555 qreply(q, mp6_attr_ctl); 16556 return (mp2ctl); 16557 } 16558 16559 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16560 /* ARGSUSED */ 16561 int 16562 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16563 { 16564 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16565 16566 switch (level) { 16567 case MIB2_TCP: 16568 switch (name) { 16569 case 13: 16570 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16571 return (0); 16572 /* TODO: delete entry defined by tce */ 16573 return (1); 16574 default: 16575 return (0); 16576 } 16577 default: 16578 return (1); 16579 } 16580 } 16581 16582 /* Translate TCP state to MIB2 TCP state. */ 16583 static int 16584 tcp_snmp_state(tcp_t *tcp) 16585 { 16586 if (tcp == NULL) 16587 return (0); 16588 16589 switch (tcp->tcp_state) { 16590 case TCPS_CLOSED: 16591 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16592 case TCPS_BOUND: 16593 return (MIB2_TCP_closed); 16594 case TCPS_LISTEN: 16595 return (MIB2_TCP_listen); 16596 case TCPS_SYN_SENT: 16597 return (MIB2_TCP_synSent); 16598 case TCPS_SYN_RCVD: 16599 return (MIB2_TCP_synReceived); 16600 case TCPS_ESTABLISHED: 16601 return (MIB2_TCP_established); 16602 case TCPS_CLOSE_WAIT: 16603 return (MIB2_TCP_closeWait); 16604 case TCPS_FIN_WAIT_1: 16605 return (MIB2_TCP_finWait1); 16606 case TCPS_CLOSING: 16607 return (MIB2_TCP_closing); 16608 case TCPS_LAST_ACK: 16609 return (MIB2_TCP_lastAck); 16610 case TCPS_FIN_WAIT_2: 16611 return (MIB2_TCP_finWait2); 16612 case TCPS_TIME_WAIT: 16613 return (MIB2_TCP_timeWait); 16614 default: 16615 return (0); 16616 } 16617 } 16618 16619 static char tcp_report_header[] = 16620 "TCP " MI_COL_HDRPAD_STR 16621 "zone dest snxt suna " 16622 "swnd rnxt rack rwnd rto mss w sw rw t " 16623 "recent [lport,fport] state"; 16624 16625 /* 16626 * TCP status report triggered via the Named Dispatch mechanism. 16627 */ 16628 /* ARGSUSED */ 16629 static void 16630 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16631 cred_t *cr) 16632 { 16633 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16634 boolean_t ispriv = secpolicy_ip_config(cr, B_TRUE) == 0; 16635 char cflag; 16636 in6_addr_t v6dst; 16637 char buf[80]; 16638 uint_t print_len, buf_len; 16639 16640 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16641 if (buf_len <= 0) 16642 return; 16643 16644 if (hashval >= 0) 16645 (void) sprintf(hash, "%03d ", hashval); 16646 else 16647 hash[0] = '\0'; 16648 16649 /* 16650 * Note that we use the remote address in the tcp_b structure. 16651 * This means that it will print out the real destination address, 16652 * not the next hop's address if source routing is used. This 16653 * avoid the confusion on the output because user may not 16654 * know that source routing is used for a connection. 16655 */ 16656 if (tcp->tcp_ipversion == IPV4_VERSION) { 16657 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16658 } else { 16659 v6dst = tcp->tcp_remote_v6; 16660 } 16661 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16662 /* 16663 * the ispriv checks are so that normal users cannot determine 16664 * sequence number information using NDD. 16665 */ 16666 16667 if (TCP_IS_DETACHED(tcp)) 16668 cflag = '*'; 16669 else 16670 cflag = ' '; 16671 print_len = snprintf((char *)mp->b_wptr, buf_len, 16672 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16673 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16674 hash, 16675 (void *)tcp, 16676 tcp->tcp_connp->conn_zoneid, 16677 addrbuf, 16678 (ispriv) ? tcp->tcp_snxt : 0, 16679 (ispriv) ? tcp->tcp_suna : 0, 16680 tcp->tcp_swnd, 16681 (ispriv) ? tcp->tcp_rnxt : 0, 16682 (ispriv) ? tcp->tcp_rack : 0, 16683 tcp->tcp_rwnd, 16684 tcp->tcp_rto, 16685 tcp->tcp_mss, 16686 tcp->tcp_snd_ws_ok, 16687 tcp->tcp_snd_ws, 16688 tcp->tcp_rcv_ws, 16689 tcp->tcp_snd_ts_ok, 16690 tcp->tcp_ts_recent, 16691 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16692 if (print_len < buf_len) { 16693 ((mblk_t *)mp)->b_wptr += print_len; 16694 } else { 16695 ((mblk_t *)mp)->b_wptr += buf_len; 16696 } 16697 } 16698 16699 /* 16700 * TCP status report (for listeners only) triggered via the Named Dispatch 16701 * mechanism. 16702 */ 16703 /* ARGSUSED */ 16704 static void 16705 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16706 { 16707 char addrbuf[INET6_ADDRSTRLEN]; 16708 in6_addr_t v6dst; 16709 uint_t print_len, buf_len; 16710 16711 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16712 if (buf_len <= 0) 16713 return; 16714 16715 if (tcp->tcp_ipversion == IPV4_VERSION) { 16716 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16717 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16718 } else { 16719 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16720 addrbuf, sizeof (addrbuf)); 16721 } 16722 print_len = snprintf((char *)mp->b_wptr, buf_len, 16723 "%03d " 16724 MI_COL_PTRFMT_STR 16725 "%d %s %05u %08u %d/%d/%d%c\n", 16726 hashval, (void *)tcp, 16727 tcp->tcp_connp->conn_zoneid, 16728 addrbuf, 16729 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16730 tcp->tcp_conn_req_seqnum, 16731 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16732 tcp->tcp_conn_req_max, 16733 tcp->tcp_syn_defense ? '*' : ' '); 16734 if (print_len < buf_len) { 16735 ((mblk_t *)mp)->b_wptr += print_len; 16736 } else { 16737 ((mblk_t *)mp)->b_wptr += buf_len; 16738 } 16739 } 16740 16741 /* TCP status report triggered via the Named Dispatch mechanism. */ 16742 /* ARGSUSED */ 16743 static int 16744 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16745 { 16746 tcp_t *tcp; 16747 int i; 16748 conn_t *connp; 16749 connf_t *connfp; 16750 zoneid_t zoneid; 16751 tcp_stack_t *tcps; 16752 ip_stack_t *ipst; 16753 16754 zoneid = Q_TO_CONN(q)->conn_zoneid; 16755 tcps = Q_TO_TCP(q)->tcp_tcps; 16756 16757 /* 16758 * Because of the ndd constraint, at most we can have 64K buffer 16759 * to put in all TCP info. So to be more efficient, just 16760 * allocate a 64K buffer here, assuming we need that large buffer. 16761 * This may be a problem as any user can read tcp_status. Therefore 16762 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16763 * This should be OK as normal users should not do this too often. 16764 */ 16765 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16766 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16767 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16768 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16769 return (0); 16770 } 16771 } 16772 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16773 /* The following may work even if we cannot get a large buf. */ 16774 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16775 return (0); 16776 } 16777 16778 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16779 16780 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16781 16782 ipst = tcps->tcps_netstack->netstack_ip; 16783 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 16784 16785 connp = NULL; 16786 16787 while ((connp = 16788 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16789 tcp = connp->conn_tcp; 16790 if (zoneid != GLOBAL_ZONEID && 16791 zoneid != connp->conn_zoneid) 16792 continue; 16793 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16794 cr); 16795 } 16796 16797 } 16798 16799 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16800 return (0); 16801 } 16802 16803 /* TCP status report triggered via the Named Dispatch mechanism. */ 16804 /* ARGSUSED */ 16805 static int 16806 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16807 { 16808 tf_t *tbf; 16809 tcp_t *tcp; 16810 int i; 16811 zoneid_t zoneid; 16812 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 16813 16814 zoneid = Q_TO_CONN(q)->conn_zoneid; 16815 16816 /* Refer to comments in tcp_status_report(). */ 16817 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16818 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16819 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16820 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16821 return (0); 16822 } 16823 } 16824 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16825 /* The following may work even if we cannot get a large buf. */ 16826 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16827 return (0); 16828 } 16829 16830 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16831 16832 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 16833 tbf = &tcps->tcps_bind_fanout[i]; 16834 mutex_enter(&tbf->tf_lock); 16835 for (tcp = tbf->tf_tcp; tcp != NULL; 16836 tcp = tcp->tcp_bind_hash) { 16837 if (zoneid != GLOBAL_ZONEID && 16838 zoneid != tcp->tcp_connp->conn_zoneid) 16839 continue; 16840 CONN_INC_REF(tcp->tcp_connp); 16841 tcp_report_item(mp->b_cont, tcp, i, 16842 Q_TO_TCP(q), cr); 16843 CONN_DEC_REF(tcp->tcp_connp); 16844 } 16845 mutex_exit(&tbf->tf_lock); 16846 } 16847 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16848 return (0); 16849 } 16850 16851 /* TCP status report triggered via the Named Dispatch mechanism. */ 16852 /* ARGSUSED */ 16853 static int 16854 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16855 { 16856 connf_t *connfp; 16857 conn_t *connp; 16858 tcp_t *tcp; 16859 int i; 16860 zoneid_t zoneid; 16861 tcp_stack_t *tcps; 16862 ip_stack_t *ipst; 16863 16864 zoneid = Q_TO_CONN(q)->conn_zoneid; 16865 tcps = Q_TO_TCP(q)->tcp_tcps; 16866 16867 /* Refer to comments in tcp_status_report(). */ 16868 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16869 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16870 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16871 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16872 return (0); 16873 } 16874 } 16875 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16876 /* The following may work even if we cannot get a large buf. */ 16877 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16878 return (0); 16879 } 16880 16881 (void) mi_mpprintf(mp, 16882 " TCP " MI_COL_HDRPAD_STR 16883 "zone IP addr port seqnum backlog (q0/q/max)"); 16884 16885 ipst = tcps->tcps_netstack->netstack_ip; 16886 16887 for (i = 0; i < ipst->ips_ipcl_bind_fanout_size; i++) { 16888 connfp = &ipst->ips_ipcl_bind_fanout[i]; 16889 connp = NULL; 16890 while ((connp = 16891 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16892 tcp = connp->conn_tcp; 16893 if (zoneid != GLOBAL_ZONEID && 16894 zoneid != connp->conn_zoneid) 16895 continue; 16896 tcp_report_listener(mp->b_cont, tcp, i); 16897 } 16898 } 16899 16900 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16901 return (0); 16902 } 16903 16904 /* TCP status report triggered via the Named Dispatch mechanism. */ 16905 /* ARGSUSED */ 16906 static int 16907 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16908 { 16909 connf_t *connfp; 16910 conn_t *connp; 16911 tcp_t *tcp; 16912 int i; 16913 zoneid_t zoneid; 16914 tcp_stack_t *tcps; 16915 ip_stack_t *ipst; 16916 16917 zoneid = Q_TO_CONN(q)->conn_zoneid; 16918 tcps = Q_TO_TCP(q)->tcp_tcps; 16919 ipst = tcps->tcps_netstack->netstack_ip; 16920 16921 /* Refer to comments in tcp_status_report(). */ 16922 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16923 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16924 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16925 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16926 return (0); 16927 } 16928 } 16929 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16930 /* The following may work even if we cannot get a large buf. */ 16931 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16932 return (0); 16933 } 16934 16935 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16936 ipst->ips_ipcl_conn_fanout_size); 16937 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16938 16939 for (i = 0; i < ipst->ips_ipcl_conn_fanout_size; i++) { 16940 connfp = &ipst->ips_ipcl_conn_fanout[i]; 16941 connp = NULL; 16942 while ((connp = 16943 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16944 tcp = connp->conn_tcp; 16945 if (zoneid != GLOBAL_ZONEID && 16946 zoneid != connp->conn_zoneid) 16947 continue; 16948 tcp_report_item(mp->b_cont, tcp, i, 16949 Q_TO_TCP(q), cr); 16950 } 16951 } 16952 16953 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 16954 return (0); 16955 } 16956 16957 /* TCP status report triggered via the Named Dispatch mechanism. */ 16958 /* ARGSUSED */ 16959 static int 16960 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16961 { 16962 tf_t *tf; 16963 tcp_t *tcp; 16964 int i; 16965 zoneid_t zoneid; 16966 tcp_stack_t *tcps; 16967 16968 zoneid = Q_TO_CONN(q)->conn_zoneid; 16969 tcps = Q_TO_TCP(q)->tcp_tcps; 16970 16971 /* Refer to comments in tcp_status_report(). */ 16972 if (cr == NULL || secpolicy_ip_config(cr, B_TRUE) != 0) { 16973 if (ddi_get_lbolt() - tcps->tcps_last_ndd_get_info_time < 16974 drv_usectohz(tcps->tcps_ndd_get_info_interval * 1000)) { 16975 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16976 return (0); 16977 } 16978 } 16979 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16980 /* The following may work even if we cannot get a large buf. */ 16981 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16982 return (0); 16983 } 16984 16985 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16986 16987 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 16988 tf = &tcps->tcps_acceptor_fanout[i]; 16989 mutex_enter(&tf->tf_lock); 16990 for (tcp = tf->tf_tcp; tcp != NULL; 16991 tcp = tcp->tcp_acceptor_hash) { 16992 if (zoneid != GLOBAL_ZONEID && 16993 zoneid != tcp->tcp_connp->conn_zoneid) 16994 continue; 16995 tcp_report_item(mp->b_cont, tcp, i, 16996 Q_TO_TCP(q), cr); 16997 } 16998 mutex_exit(&tf->tf_lock); 16999 } 17000 tcps->tcps_last_ndd_get_info_time = ddi_get_lbolt(); 17001 return (0); 17002 } 17003 17004 /* 17005 * tcp_timer is the timer service routine. It handles the retransmission, 17006 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 17007 * from the state of the tcp instance what kind of action needs to be done 17008 * at the time it is called. 17009 */ 17010 static void 17011 tcp_timer(void *arg) 17012 { 17013 mblk_t *mp; 17014 clock_t first_threshold; 17015 clock_t second_threshold; 17016 clock_t ms; 17017 uint32_t mss; 17018 conn_t *connp = (conn_t *)arg; 17019 tcp_t *tcp = connp->conn_tcp; 17020 tcp_stack_t *tcps = tcp->tcp_tcps; 17021 17022 tcp->tcp_timer_tid = 0; 17023 17024 if (tcp->tcp_fused) 17025 return; 17026 17027 first_threshold = tcp->tcp_first_timer_threshold; 17028 second_threshold = tcp->tcp_second_timer_threshold; 17029 switch (tcp->tcp_state) { 17030 case TCPS_IDLE: 17031 case TCPS_BOUND: 17032 case TCPS_LISTEN: 17033 return; 17034 case TCPS_SYN_RCVD: { 17035 tcp_t *listener = tcp->tcp_listener; 17036 17037 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 17038 ASSERT(tcp->tcp_rq == listener->tcp_rq); 17039 /* it's our first timeout */ 17040 tcp->tcp_syn_rcvd_timeout = 1; 17041 mutex_enter(&listener->tcp_eager_lock); 17042 listener->tcp_syn_rcvd_timeout++; 17043 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 17044 /* 17045 * Make this eager available for drop if we 17046 * need to drop one to accomodate a new 17047 * incoming SYN request. 17048 */ 17049 MAKE_DROPPABLE(listener, tcp); 17050 } 17051 if (!listener->tcp_syn_defense && 17052 (listener->tcp_syn_rcvd_timeout > 17053 (tcps->tcps_conn_req_max_q0 >> 2)) && 17054 (tcps->tcps_conn_req_max_q0 > 200)) { 17055 /* We may be under attack. Put on a defense. */ 17056 listener->tcp_syn_defense = B_TRUE; 17057 cmn_err(CE_WARN, "High TCP connect timeout " 17058 "rate! System (port %d) may be under a " 17059 "SYN flood attack!", 17060 BE16_TO_U16(listener->tcp_tcph->th_lport)); 17061 17062 listener->tcp_ip_addr_cache = kmem_zalloc( 17063 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 17064 KM_NOSLEEP); 17065 } 17066 mutex_exit(&listener->tcp_eager_lock); 17067 } else if (listener != NULL) { 17068 mutex_enter(&listener->tcp_eager_lock); 17069 tcp->tcp_syn_rcvd_timeout++; 17070 if (tcp->tcp_syn_rcvd_timeout > 1 && 17071 !tcp->tcp_closemp_used) { 17072 /* 17073 * This is our second timeout. Put the tcp in 17074 * the list of droppable eagers to allow it to 17075 * be dropped, if needed. We don't check 17076 * whether tcp_dontdrop is set or not to 17077 * protect ourselve from a SYN attack where a 17078 * remote host can spoof itself as one of the 17079 * good IP source and continue to hold 17080 * resources too long. 17081 */ 17082 MAKE_DROPPABLE(listener, tcp); 17083 } 17084 mutex_exit(&listener->tcp_eager_lock); 17085 } 17086 } 17087 /* FALLTHRU */ 17088 case TCPS_SYN_SENT: 17089 first_threshold = tcp->tcp_first_ctimer_threshold; 17090 second_threshold = tcp->tcp_second_ctimer_threshold; 17091 break; 17092 case TCPS_ESTABLISHED: 17093 case TCPS_FIN_WAIT_1: 17094 case TCPS_CLOSING: 17095 case TCPS_CLOSE_WAIT: 17096 case TCPS_LAST_ACK: 17097 /* If we have data to rexmit */ 17098 if (tcp->tcp_suna != tcp->tcp_snxt) { 17099 clock_t time_to_wait; 17100 17101 BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans); 17102 if (!tcp->tcp_xmit_head) 17103 break; 17104 time_to_wait = lbolt - 17105 (clock_t)tcp->tcp_xmit_head->b_prev; 17106 time_to_wait = tcp->tcp_rto - 17107 TICK_TO_MSEC(time_to_wait); 17108 /* 17109 * If the timer fires too early, 1 clock tick earlier, 17110 * restart the timer. 17111 */ 17112 if (time_to_wait > msec_per_tick) { 17113 TCP_STAT(tcps, tcp_timer_fire_early); 17114 TCP_TIMER_RESTART(tcp, time_to_wait); 17115 return; 17116 } 17117 /* 17118 * When we probe zero windows, we force the swnd open. 17119 * If our peer acks with a closed window swnd will be 17120 * set to zero by tcp_rput(). As long as we are 17121 * receiving acks tcp_rput will 17122 * reset 'tcp_ms_we_have_waited' so as not to trip the 17123 * first and second interval actions. NOTE: the timer 17124 * interval is allowed to continue its exponential 17125 * backoff. 17126 */ 17127 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 17128 if (tcp->tcp_debug) { 17129 (void) strlog(TCP_MOD_ID, 0, 1, 17130 SL_TRACE, "tcp_timer: zero win"); 17131 } 17132 } else { 17133 /* 17134 * After retransmission, we need to do 17135 * slow start. Set the ssthresh to one 17136 * half of current effective window and 17137 * cwnd to one MSS. Also reset 17138 * tcp_cwnd_cnt. 17139 * 17140 * Note that if tcp_ssthresh is reduced because 17141 * of ECN, do not reduce it again unless it is 17142 * already one window of data away (tcp_cwr 17143 * should then be cleared) or this is a 17144 * timeout for a retransmitted segment. 17145 */ 17146 uint32_t npkt; 17147 17148 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 17149 npkt = ((tcp->tcp_timer_backoff ? 17150 tcp->tcp_cwnd_ssthresh : 17151 tcp->tcp_snxt - 17152 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 17153 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 17154 tcp->tcp_mss; 17155 } 17156 tcp->tcp_cwnd = tcp->tcp_mss; 17157 tcp->tcp_cwnd_cnt = 0; 17158 if (tcp->tcp_ecn_ok) { 17159 tcp->tcp_cwr = B_TRUE; 17160 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 17161 tcp->tcp_ecn_cwr_sent = B_FALSE; 17162 } 17163 } 17164 break; 17165 } 17166 /* 17167 * We have something to send yet we cannot send. The 17168 * reason can be: 17169 * 17170 * 1. Zero send window: we need to do zero window probe. 17171 * 2. Zero cwnd: because of ECN, we need to "clock out 17172 * segments. 17173 * 3. SWS avoidance: receiver may have shrunk window, 17174 * reset our knowledge. 17175 * 17176 * Note that condition 2 can happen with either 1 or 17177 * 3. But 1 and 3 are exclusive. 17178 */ 17179 if (tcp->tcp_unsent != 0) { 17180 if (tcp->tcp_cwnd == 0) { 17181 /* 17182 * Set tcp_cwnd to 1 MSS so that a 17183 * new segment can be sent out. We 17184 * are "clocking out" new data when 17185 * the network is really congested. 17186 */ 17187 ASSERT(tcp->tcp_ecn_ok); 17188 tcp->tcp_cwnd = tcp->tcp_mss; 17189 } 17190 if (tcp->tcp_swnd == 0) { 17191 /* Extend window for zero window probe */ 17192 tcp->tcp_swnd++; 17193 tcp->tcp_zero_win_probe = B_TRUE; 17194 BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe); 17195 } else { 17196 /* 17197 * Handle timeout from sender SWS avoidance. 17198 * Reset our knowledge of the max send window 17199 * since the receiver might have reduced its 17200 * receive buffer. Avoid setting tcp_max_swnd 17201 * to one since that will essentially disable 17202 * the SWS checks. 17203 * 17204 * Note that since we don't have a SWS 17205 * state variable, if the timeout is set 17206 * for ECN but not for SWS, this 17207 * code will also be executed. This is 17208 * fine as tcp_max_swnd is updated 17209 * constantly and it will not affect 17210 * anything. 17211 */ 17212 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 17213 } 17214 tcp_wput_data(tcp, NULL, B_FALSE); 17215 return; 17216 } 17217 /* Is there a FIN that needs to be to re retransmitted? */ 17218 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17219 !tcp->tcp_fin_acked) 17220 break; 17221 /* Nothing to do, return without restarting timer. */ 17222 TCP_STAT(tcps, tcp_timer_fire_miss); 17223 return; 17224 case TCPS_FIN_WAIT_2: 17225 /* 17226 * User closed the TCP endpoint and peer ACK'ed our FIN. 17227 * We waited some time for for peer's FIN, but it hasn't 17228 * arrived. We flush the connection now to avoid 17229 * case where the peer has rebooted. 17230 */ 17231 if (TCP_IS_DETACHED(tcp)) { 17232 (void) tcp_clean_death(tcp, 0, 23); 17233 } else { 17234 TCP_TIMER_RESTART(tcp, 17235 tcps->tcps_fin_wait_2_flush_interval); 17236 } 17237 return; 17238 case TCPS_TIME_WAIT: 17239 (void) tcp_clean_death(tcp, 0, 24); 17240 return; 17241 default: 17242 if (tcp->tcp_debug) { 17243 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 17244 "tcp_timer: strange state (%d) %s", 17245 tcp->tcp_state, tcp_display(tcp, NULL, 17246 DISP_PORT_ONLY)); 17247 } 17248 return; 17249 } 17250 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 17251 /* 17252 * For zero window probe, we need to send indefinitely, 17253 * unless we have not heard from the other side for some 17254 * time... 17255 */ 17256 if ((tcp->tcp_zero_win_probe == 0) || 17257 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17258 second_threshold)) { 17259 BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop); 17260 /* 17261 * If TCP is in SYN_RCVD state, send back a 17262 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17263 * should be zero in TCPS_SYN_RCVD state. 17264 */ 17265 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17266 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17267 "in SYN_RCVD", 17268 tcp, tcp->tcp_snxt, 17269 tcp->tcp_rnxt, TH_RST | TH_ACK); 17270 } 17271 (void) tcp_clean_death(tcp, 17272 tcp->tcp_client_errno ? 17273 tcp->tcp_client_errno : ETIMEDOUT, 25); 17274 return; 17275 } else { 17276 /* 17277 * Set tcp_ms_we_have_waited to second_threshold 17278 * so that in next timeout, we will do the above 17279 * check (lbolt - tcp_last_recv_time). This is 17280 * also to avoid overflow. 17281 * 17282 * We don't need to decrement tcp_timer_backoff 17283 * to avoid overflow because it will be decremented 17284 * later if new timeout value is greater than 17285 * tcp_rexmit_interval_max. In the case when 17286 * tcp_rexmit_interval_max is greater than 17287 * second_threshold, it means that we will wait 17288 * longer than second_threshold to send the next 17289 * window probe. 17290 */ 17291 tcp->tcp_ms_we_have_waited = second_threshold; 17292 } 17293 } else if (ms > first_threshold) { 17294 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17295 tcp->tcp_xmit_head != NULL) { 17296 tcp->tcp_xmit_head = 17297 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17298 } 17299 /* 17300 * We have been retransmitting for too long... The RTT 17301 * we calculated is probably incorrect. Reinitialize it. 17302 * Need to compensate for 0 tcp_rtt_sa. Reset 17303 * tcp_rtt_update so that we won't accidentally cache a 17304 * bad value. But only do this if this is not a zero 17305 * window probe. 17306 */ 17307 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17308 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17309 (tcp->tcp_rtt_sa >> 5); 17310 tcp->tcp_rtt_sa = 0; 17311 tcp_ip_notify(tcp); 17312 tcp->tcp_rtt_update = 0; 17313 } 17314 } 17315 tcp->tcp_timer_backoff++; 17316 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17317 tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17318 tcps->tcps_rexmit_interval_min) { 17319 /* 17320 * This means the original RTO is tcp_rexmit_interval_min. 17321 * So we will use tcp_rexmit_interval_min as the RTO value 17322 * and do the backoff. 17323 */ 17324 ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff; 17325 } else { 17326 ms <<= tcp->tcp_timer_backoff; 17327 } 17328 if (ms > tcps->tcps_rexmit_interval_max) { 17329 ms = tcps->tcps_rexmit_interval_max; 17330 /* 17331 * ms is at max, decrement tcp_timer_backoff to avoid 17332 * overflow. 17333 */ 17334 tcp->tcp_timer_backoff--; 17335 } 17336 tcp->tcp_ms_we_have_waited += ms; 17337 if (tcp->tcp_zero_win_probe == 0) { 17338 tcp->tcp_rto = ms; 17339 } 17340 TCP_TIMER_RESTART(tcp, ms); 17341 /* 17342 * This is after a timeout and tcp_rto is backed off. Set 17343 * tcp_set_timer to 1 so that next time RTO is updated, we will 17344 * restart the timer with a correct value. 17345 */ 17346 tcp->tcp_set_timer = 1; 17347 mss = tcp->tcp_snxt - tcp->tcp_suna; 17348 if (mss > tcp->tcp_mss) 17349 mss = tcp->tcp_mss; 17350 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17351 mss = tcp->tcp_swnd; 17352 17353 if ((mp = tcp->tcp_xmit_head) != NULL) 17354 mp->b_prev = (mblk_t *)lbolt; 17355 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17356 B_TRUE); 17357 17358 /* 17359 * When slow start after retransmission begins, start with 17360 * this seq no. tcp_rexmit_max marks the end of special slow 17361 * start phase. tcp_snd_burst controls how many segments 17362 * can be sent because of an ack. 17363 */ 17364 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17365 tcp->tcp_snd_burst = TCP_CWND_SS; 17366 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17367 (tcp->tcp_unsent == 0)) { 17368 tcp->tcp_rexmit_max = tcp->tcp_fss; 17369 } else { 17370 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17371 } 17372 tcp->tcp_rexmit = B_TRUE; 17373 tcp->tcp_dupack_cnt = 0; 17374 17375 /* 17376 * Remove all rexmit SACK blk to start from fresh. 17377 */ 17378 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17379 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17380 tcp->tcp_num_notsack_blk = 0; 17381 tcp->tcp_cnt_notsack_list = 0; 17382 } 17383 if (mp == NULL) { 17384 return; 17385 } 17386 /* Attach credentials to retransmitted initial SYNs. */ 17387 if (tcp->tcp_state == TCPS_SYN_SENT) { 17388 mblk_setcred(mp, tcp->tcp_cred); 17389 DB_CPID(mp) = tcp->tcp_cpid; 17390 } 17391 17392 tcp->tcp_csuna = tcp->tcp_snxt; 17393 BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs); 17394 UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss); 17395 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17396 tcp_send_data(tcp, tcp->tcp_wq, mp); 17397 17398 } 17399 17400 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17401 static void 17402 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17403 { 17404 conn_t *connp; 17405 17406 switch (tcp->tcp_state) { 17407 case TCPS_BOUND: 17408 case TCPS_LISTEN: 17409 break; 17410 default: 17411 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17412 return; 17413 } 17414 17415 /* 17416 * Need to clean up all the eagers since after the unbind, segments 17417 * will no longer be delivered to this listener stream. 17418 */ 17419 mutex_enter(&tcp->tcp_eager_lock); 17420 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17421 tcp_eager_cleanup(tcp, 0); 17422 } 17423 mutex_exit(&tcp->tcp_eager_lock); 17424 17425 if (tcp->tcp_ipversion == IPV4_VERSION) { 17426 tcp->tcp_ipha->ipha_src = 0; 17427 } else { 17428 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17429 } 17430 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17431 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17432 tcp_bind_hash_remove(tcp); 17433 tcp->tcp_state = TCPS_IDLE; 17434 tcp->tcp_mdt = B_FALSE; 17435 /* Send M_FLUSH according to TPI */ 17436 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17437 connp = tcp->tcp_connp; 17438 connp->conn_mdt_ok = B_FALSE; 17439 ipcl_hash_remove(connp); 17440 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17441 mp = mi_tpi_ok_ack_alloc(mp); 17442 putnext(tcp->tcp_rq, mp); 17443 } 17444 17445 /* 17446 * Don't let port fall into the privileged range. 17447 * Since the extra privileged ports can be arbitrary we also 17448 * ensure that we exclude those from consideration. 17449 * tcp_g_epriv_ports is not sorted thus we loop over it until 17450 * there are no changes. 17451 * 17452 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17453 * but instead the code relies on: 17454 * - the fact that the address of the array and its size never changes 17455 * - the atomic assignment of the elements of the array 17456 * 17457 * Returns 0 if there are no more ports available. 17458 * 17459 * TS note: skip multilevel ports. 17460 */ 17461 static in_port_t 17462 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17463 { 17464 int i; 17465 boolean_t restart = B_FALSE; 17466 tcp_stack_t *tcps = tcp->tcp_tcps; 17467 17468 if (random && tcp_random_anon_port != 0) { 17469 (void) random_get_pseudo_bytes((uint8_t *)&port, 17470 sizeof (in_port_t)); 17471 /* 17472 * Unless changed by a sys admin, the smallest anon port 17473 * is 32768 and the largest anon port is 65535. It is 17474 * very likely (50%) for the random port to be smaller 17475 * than the smallest anon port. When that happens, 17476 * add port % (anon port range) to the smallest anon 17477 * port to get the random port. It should fall into the 17478 * valid anon port range. 17479 */ 17480 if (port < tcps->tcps_smallest_anon_port) { 17481 port = tcps->tcps_smallest_anon_port + 17482 port % (tcps->tcps_largest_anon_port - 17483 tcps->tcps_smallest_anon_port); 17484 } 17485 } 17486 17487 retry: 17488 if (port < tcps->tcps_smallest_anon_port) 17489 port = (in_port_t)tcps->tcps_smallest_anon_port; 17490 17491 if (port > tcps->tcps_largest_anon_port) { 17492 if (restart) 17493 return (0); 17494 restart = B_TRUE; 17495 port = (in_port_t)tcps->tcps_smallest_anon_port; 17496 } 17497 17498 if (port < tcps->tcps_smallest_nonpriv_port) 17499 port = (in_port_t)tcps->tcps_smallest_nonpriv_port; 17500 17501 for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) { 17502 if (port == tcps->tcps_g_epriv_ports[i]) { 17503 port++; 17504 /* 17505 * Make sure whether the port is in the 17506 * valid range. 17507 */ 17508 goto retry; 17509 } 17510 } 17511 if (is_system_labeled() && 17512 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17513 IPPROTO_TCP, B_TRUE)) != 0) { 17514 port = i; 17515 goto retry; 17516 } 17517 return (port); 17518 } 17519 17520 /* 17521 * Return the next anonymous port in the privileged port range for 17522 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17523 * downwards. This is the same behavior as documented in the userland 17524 * library call rresvport(3N). 17525 * 17526 * TS note: skip multilevel ports. 17527 */ 17528 static in_port_t 17529 tcp_get_next_priv_port(const tcp_t *tcp) 17530 { 17531 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17532 in_port_t nextport; 17533 boolean_t restart = B_FALSE; 17534 tcp_stack_t *tcps = tcp->tcp_tcps; 17535 retry: 17536 if (next_priv_port < tcps->tcps_min_anonpriv_port || 17537 next_priv_port >= IPPORT_RESERVED) { 17538 next_priv_port = IPPORT_RESERVED - 1; 17539 if (restart) 17540 return (0); 17541 restart = B_TRUE; 17542 } 17543 if (is_system_labeled() && 17544 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17545 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17546 next_priv_port = nextport; 17547 goto retry; 17548 } 17549 return (next_priv_port--); 17550 } 17551 17552 /* The write side r/w procedure. */ 17553 17554 #if CCS_STATS 17555 struct { 17556 struct { 17557 int64_t count, bytes; 17558 } tot, hit; 17559 } wrw_stats; 17560 #endif 17561 17562 /* 17563 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17564 * messages. 17565 */ 17566 /* ARGSUSED */ 17567 static void 17568 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17569 { 17570 conn_t *connp = (conn_t *)arg; 17571 tcp_t *tcp = connp->conn_tcp; 17572 queue_t *q = tcp->tcp_wq; 17573 17574 ASSERT(DB_TYPE(mp) != M_IOCTL); 17575 /* 17576 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17577 * Once the close starts, streamhead and sockfs will not let any data 17578 * packets come down (close ensures that there are no threads using the 17579 * queue and no new threads will come down) but since qprocsoff() 17580 * hasn't happened yet, a M_FLUSH or some non data message might 17581 * get reflected back (in response to our own FLUSHRW) and get 17582 * processed after tcp_close() is done. The conn would still be valid 17583 * because a ref would have added but we need to check the state 17584 * before actually processing the packet. 17585 */ 17586 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17587 freemsg(mp); 17588 return; 17589 } 17590 17591 switch (DB_TYPE(mp)) { 17592 case M_IOCDATA: 17593 tcp_wput_iocdata(tcp, mp); 17594 break; 17595 case M_FLUSH: 17596 tcp_wput_flush(tcp, mp); 17597 break; 17598 default: 17599 CALL_IP_WPUT(connp, q, mp); 17600 break; 17601 } 17602 } 17603 17604 /* 17605 * The TCP fast path write put procedure. 17606 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17607 */ 17608 /* ARGSUSED */ 17609 void 17610 tcp_output(void *arg, mblk_t *mp, void *arg2) 17611 { 17612 int len; 17613 int hdrlen; 17614 int plen; 17615 mblk_t *mp1; 17616 uchar_t *rptr; 17617 uint32_t snxt; 17618 tcph_t *tcph; 17619 struct datab *db; 17620 uint32_t suna; 17621 uint32_t mss; 17622 ipaddr_t *dst; 17623 ipaddr_t *src; 17624 uint32_t sum; 17625 int usable; 17626 conn_t *connp = (conn_t *)arg; 17627 tcp_t *tcp = connp->conn_tcp; 17628 uint32_t msize; 17629 tcp_stack_t *tcps = tcp->tcp_tcps; 17630 17631 /* 17632 * Try and ASSERT the minimum possible references on the 17633 * conn early enough. Since we are executing on write side, 17634 * the connection is obviously not detached and that means 17635 * there is a ref each for TCP and IP. Since we are behind 17636 * the squeue, the minimum references needed are 3. If the 17637 * conn is in classifier hash list, there should be an 17638 * extra ref for that (we check both the possibilities). 17639 */ 17640 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17641 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17642 17643 ASSERT(DB_TYPE(mp) == M_DATA); 17644 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17645 17646 mutex_enter(&tcp->tcp_non_sq_lock); 17647 tcp->tcp_squeue_bytes -= msize; 17648 mutex_exit(&tcp->tcp_non_sq_lock); 17649 17650 /* Bypass tcp protocol for fused tcp loopback */ 17651 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17652 return; 17653 17654 mss = tcp->tcp_mss; 17655 if (tcp->tcp_xmit_zc_clean) 17656 mp = tcp_zcopy_backoff(tcp, mp, 0); 17657 17658 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17659 len = (int)(mp->b_wptr - mp->b_rptr); 17660 17661 /* 17662 * Criteria for fast path: 17663 * 17664 * 1. no unsent data 17665 * 2. single mblk in request 17666 * 3. connection established 17667 * 4. data in mblk 17668 * 5. len <= mss 17669 * 6. no tcp_valid bits 17670 */ 17671 if ((tcp->tcp_unsent != 0) || 17672 (tcp->tcp_cork) || 17673 (mp->b_cont != NULL) || 17674 (tcp->tcp_state != TCPS_ESTABLISHED) || 17675 (len == 0) || 17676 (len > mss) || 17677 (tcp->tcp_valid_bits != 0)) { 17678 tcp_wput_data(tcp, mp, B_FALSE); 17679 return; 17680 } 17681 17682 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17683 ASSERT(tcp->tcp_fin_sent == 0); 17684 17685 /* queue new packet onto retransmission queue */ 17686 if (tcp->tcp_xmit_head == NULL) { 17687 tcp->tcp_xmit_head = mp; 17688 } else { 17689 tcp->tcp_xmit_last->b_cont = mp; 17690 } 17691 tcp->tcp_xmit_last = mp; 17692 tcp->tcp_xmit_tail = mp; 17693 17694 /* find out how much we can send */ 17695 /* BEGIN CSTYLED */ 17696 /* 17697 * un-acked usable 17698 * |--------------|-----------------| 17699 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17700 */ 17701 /* END CSTYLED */ 17702 17703 /* start sending from tcp_snxt */ 17704 snxt = tcp->tcp_snxt; 17705 17706 /* 17707 * Check to see if this connection has been idled for some 17708 * time and no ACK is expected. If it is, we need to slow 17709 * start again to get back the connection's "self-clock" as 17710 * described in VJ's paper. 17711 * 17712 * Refer to the comment in tcp_mss_set() for the calculation 17713 * of tcp_cwnd after idle. 17714 */ 17715 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17716 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17717 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 17718 } 17719 17720 usable = tcp->tcp_swnd; /* tcp window size */ 17721 if (usable > tcp->tcp_cwnd) 17722 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17723 usable -= snxt; /* subtract stuff already sent */ 17724 suna = tcp->tcp_suna; 17725 usable += suna; 17726 /* usable can be < 0 if the congestion window is smaller */ 17727 if (len > usable) { 17728 /* Can't send complete M_DATA in one shot */ 17729 goto slow; 17730 } 17731 17732 mutex_enter(&tcp->tcp_non_sq_lock); 17733 if (tcp->tcp_flow_stopped && 17734 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17735 tcp_clrqfull(tcp); 17736 } 17737 mutex_exit(&tcp->tcp_non_sq_lock); 17738 17739 /* 17740 * determine if anything to send (Nagle). 17741 * 17742 * 1. len < tcp_mss (i.e. small) 17743 * 2. unacknowledged data present 17744 * 3. len < nagle limit 17745 * 4. last packet sent < nagle limit (previous packet sent) 17746 */ 17747 if ((len < mss) && (snxt != suna) && 17748 (len < (int)tcp->tcp_naglim) && 17749 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17750 /* 17751 * This was the first unsent packet and normally 17752 * mss < xmit_hiwater so there is no need to worry 17753 * about flow control. The next packet will go 17754 * through the flow control check in tcp_wput_data(). 17755 */ 17756 /* leftover work from above */ 17757 tcp->tcp_unsent = len; 17758 tcp->tcp_xmit_tail_unsent = len; 17759 17760 return; 17761 } 17762 17763 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17764 17765 if (snxt == suna) { 17766 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17767 } 17768 17769 /* we have always sent something */ 17770 tcp->tcp_rack_cnt = 0; 17771 17772 tcp->tcp_snxt = snxt + len; 17773 tcp->tcp_rack = tcp->tcp_rnxt; 17774 17775 if ((mp1 = dupb(mp)) == 0) 17776 goto no_memory; 17777 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17778 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17779 17780 /* adjust tcp header information */ 17781 tcph = tcp->tcp_tcph; 17782 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17783 17784 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17785 sum = (sum >> 16) + (sum & 0xFFFF); 17786 U16_TO_ABE16(sum, tcph->th_sum); 17787 17788 U32_TO_ABE32(snxt, tcph->th_seq); 17789 17790 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 17791 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 17792 BUMP_LOCAL(tcp->tcp_obsegs); 17793 17794 /* Update the latest receive window size in TCP header. */ 17795 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17796 tcph->th_win); 17797 17798 tcp->tcp_last_sent_len = (ushort_t)len; 17799 17800 plen = len + tcp->tcp_hdr_len; 17801 17802 if (tcp->tcp_ipversion == IPV4_VERSION) { 17803 tcp->tcp_ipha->ipha_length = htons(plen); 17804 } else { 17805 tcp->tcp_ip6h->ip6_plen = htons(plen - 17806 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17807 } 17808 17809 /* see if we need to allocate a mblk for the headers */ 17810 hdrlen = tcp->tcp_hdr_len; 17811 rptr = mp1->b_rptr - hdrlen; 17812 db = mp1->b_datap; 17813 if ((db->db_ref != 2) || rptr < db->db_base || 17814 (!OK_32PTR(rptr))) { 17815 /* NOTE: we assume allocb returns an OK_32PTR */ 17816 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17817 tcps->tcps_wroff_xtra, BPRI_MED); 17818 if (!mp) { 17819 freemsg(mp1); 17820 goto no_memory; 17821 } 17822 mp->b_cont = mp1; 17823 mp1 = mp; 17824 /* Leave room for Link Level header */ 17825 /* hdrlen = tcp->tcp_hdr_len; */ 17826 rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra]; 17827 mp1->b_wptr = &rptr[hdrlen]; 17828 } 17829 mp1->b_rptr = rptr; 17830 17831 /* Fill in the timestamp option. */ 17832 if (tcp->tcp_snd_ts_ok) { 17833 U32_TO_BE32((uint32_t)lbolt, 17834 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17835 U32_TO_BE32(tcp->tcp_ts_recent, 17836 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17837 } else { 17838 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17839 } 17840 17841 /* copy header into outgoing packet */ 17842 dst = (ipaddr_t *)rptr; 17843 src = (ipaddr_t *)tcp->tcp_iphc; 17844 dst[0] = src[0]; 17845 dst[1] = src[1]; 17846 dst[2] = src[2]; 17847 dst[3] = src[3]; 17848 dst[4] = src[4]; 17849 dst[5] = src[5]; 17850 dst[6] = src[6]; 17851 dst[7] = src[7]; 17852 dst[8] = src[8]; 17853 dst[9] = src[9]; 17854 if (hdrlen -= 40) { 17855 hdrlen >>= 2; 17856 dst += 10; 17857 src += 10; 17858 do { 17859 *dst++ = *src++; 17860 } while (--hdrlen); 17861 } 17862 17863 /* 17864 * Set the ECN info in the TCP header. Note that this 17865 * is not the template header. 17866 */ 17867 if (tcp->tcp_ecn_ok) { 17868 SET_ECT(tcp, rptr); 17869 17870 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17871 if (tcp->tcp_ecn_echo_on) 17872 tcph->th_flags[0] |= TH_ECE; 17873 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17874 tcph->th_flags[0] |= TH_CWR; 17875 tcp->tcp_ecn_cwr_sent = B_TRUE; 17876 } 17877 } 17878 17879 if (tcp->tcp_ip_forward_progress) { 17880 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17881 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17882 tcp->tcp_ip_forward_progress = B_FALSE; 17883 } 17884 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17885 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17886 return; 17887 17888 /* 17889 * If we ran out of memory, we pretend to have sent the packet 17890 * and that it was lost on the wire. 17891 */ 17892 no_memory: 17893 return; 17894 17895 slow: 17896 /* leftover work from above */ 17897 tcp->tcp_unsent = len; 17898 tcp->tcp_xmit_tail_unsent = len; 17899 tcp_wput_data(tcp, NULL, B_FALSE); 17900 } 17901 17902 /* 17903 * The function called through squeue to get behind eager's perimeter to 17904 * finish the accept processing. 17905 */ 17906 /* ARGSUSED */ 17907 void 17908 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17909 { 17910 conn_t *connp = (conn_t *)arg; 17911 tcp_t *tcp = connp->conn_tcp; 17912 queue_t *q = tcp->tcp_rq; 17913 mblk_t *mp1; 17914 mblk_t *stropt_mp = mp; 17915 struct stroptions *stropt; 17916 uint_t thwin; 17917 tcp_stack_t *tcps = tcp->tcp_tcps; 17918 17919 /* 17920 * Drop the eager's ref on the listener, that was placed when 17921 * this eager began life in tcp_conn_request. 17922 */ 17923 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17924 17925 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17926 /* 17927 * Someone blewoff the eager before we could finish 17928 * the accept. 17929 * 17930 * The only reason eager exists it because we put in 17931 * a ref on it when conn ind went up. We need to send 17932 * a disconnect indication up while the last reference 17933 * on the eager will be dropped by the squeue when we 17934 * return. 17935 */ 17936 ASSERT(tcp->tcp_listener == NULL); 17937 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17938 struct T_discon_ind *tdi; 17939 17940 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17941 /* 17942 * Let us reuse the incoming mblk to avoid memory 17943 * allocation failure problems. We know that the 17944 * size of the incoming mblk i.e. stroptions is greater 17945 * than sizeof T_discon_ind. So the reallocb below 17946 * can't fail. 17947 */ 17948 freemsg(mp->b_cont); 17949 mp->b_cont = NULL; 17950 ASSERT(DB_REF(mp) == 1); 17951 mp = reallocb(mp, sizeof (struct T_discon_ind), 17952 B_FALSE); 17953 ASSERT(mp != NULL); 17954 DB_TYPE(mp) = M_PROTO; 17955 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17956 tdi = (struct T_discon_ind *)mp->b_rptr; 17957 if (tcp->tcp_issocket) { 17958 tdi->DISCON_reason = ECONNREFUSED; 17959 tdi->SEQ_number = 0; 17960 } else { 17961 tdi->DISCON_reason = ENOPROTOOPT; 17962 tdi->SEQ_number = 17963 tcp->tcp_conn_req_seqnum; 17964 } 17965 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17966 putnext(q, mp); 17967 } else { 17968 freemsg(mp); 17969 } 17970 if (tcp->tcp_hard_binding) { 17971 tcp->tcp_hard_binding = B_FALSE; 17972 tcp->tcp_hard_bound = B_TRUE; 17973 } 17974 tcp->tcp_detached = B_FALSE; 17975 return; 17976 } 17977 17978 mp1 = stropt_mp->b_cont; 17979 stropt_mp->b_cont = NULL; 17980 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17981 stropt = (struct stroptions *)stropt_mp->b_rptr; 17982 17983 while (mp1 != NULL) { 17984 mp = mp1; 17985 mp1 = mp1->b_cont; 17986 mp->b_cont = NULL; 17987 tcp->tcp_drop_opt_ack_cnt++; 17988 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17989 } 17990 mp = NULL; 17991 17992 /* 17993 * For a loopback connection with tcp_direct_sockfs on, note that 17994 * we don't have to protect tcp_rcv_list yet because synchronous 17995 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17996 * possibly race with us. 17997 */ 17998 17999 /* 18000 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 18001 * properly. This is the first time we know of the acceptor' 18002 * queue. So we do it here. 18003 */ 18004 if (tcp->tcp_rcv_list == NULL) { 18005 /* 18006 * Recv queue is empty, tcp_rwnd should not have changed. 18007 * That means it should be equal to the listener's tcp_rwnd. 18008 */ 18009 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 18010 } else { 18011 #ifdef DEBUG 18012 uint_t cnt = 0; 18013 18014 mp1 = tcp->tcp_rcv_list; 18015 while ((mp = mp1) != NULL) { 18016 mp1 = mp->b_next; 18017 cnt += msgdsize(mp); 18018 } 18019 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 18020 #endif 18021 /* There is some data, add them back to get the max. */ 18022 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 18023 } 18024 18025 stropt->so_flags = SO_HIWAT; 18026 stropt->so_hiwat = MAX(q->q_hiwat, tcps->tcps_sth_rcv_hiwat); 18027 18028 stropt->so_flags |= SO_MAXBLK; 18029 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 18030 18031 /* 18032 * This is the first time we run on the correct 18033 * queue after tcp_accept. So fix all the q parameters 18034 * here. 18035 */ 18036 /* Allocate room for SACK options if needed. */ 18037 stropt->so_flags |= SO_WROFF; 18038 if (tcp->tcp_fused) { 18039 ASSERT(tcp->tcp_loopback); 18040 ASSERT(tcp->tcp_loopback_peer != NULL); 18041 /* 18042 * For fused tcp loopback, set the stream head's write 18043 * offset value to zero since we won't be needing any room 18044 * for TCP/IP headers. This would also improve performance 18045 * since it would reduce the amount of work done by kmem. 18046 * Non-fused tcp loopback case is handled separately below. 18047 */ 18048 stropt->so_wroff = 0; 18049 /* 18050 * Record the stream head's high water mark for this endpoint; 18051 * this is used for flow-control purposes in tcp_fuse_output(). 18052 */ 18053 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 18054 /* 18055 * Update the peer's transmit parameters according to 18056 * our recently calculated high water mark value. 18057 */ 18058 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 18059 } else if (tcp->tcp_snd_sack_ok) { 18060 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 18061 (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra); 18062 } else { 18063 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 18064 tcps->tcps_wroff_xtra); 18065 } 18066 18067 /* 18068 * If this is endpoint is handling SSL, then reserve extra 18069 * offset and space at the end. 18070 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 18071 * overriding the previous setting. The extra cost of signing and 18072 * encrypting multiple MSS-size records (12 of them with Ethernet), 18073 * instead of a single contiguous one by the stream head 18074 * largely outweighs the statistical reduction of ACKs, when 18075 * applicable. The peer will also save on decyption and verification 18076 * costs. 18077 */ 18078 if (tcp->tcp_kssl_ctx != NULL) { 18079 stropt->so_wroff += SSL3_WROFFSET; 18080 18081 stropt->so_flags |= SO_TAIL; 18082 stropt->so_tail = SSL3_MAX_TAIL_LEN; 18083 18084 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 18085 } 18086 18087 /* Send the options up */ 18088 putnext(q, stropt_mp); 18089 18090 /* 18091 * Pass up any data and/or a fin that has been received. 18092 * 18093 * Adjust receive window in case it had decreased 18094 * (because there is data <=> tcp_rcv_list != NULL) 18095 * while the connection was detached. Note that 18096 * in case the eager was flow-controlled, w/o this 18097 * code, the rwnd may never open up again! 18098 */ 18099 if (tcp->tcp_rcv_list != NULL) { 18100 /* We drain directly in case of fused tcp loopback */ 18101 if (!tcp->tcp_fused && canputnext(q)) { 18102 tcp->tcp_rwnd = q->q_hiwat; 18103 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 18104 << tcp->tcp_rcv_ws; 18105 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 18106 if (tcp->tcp_state >= TCPS_ESTABLISHED && 18107 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 18108 tcp_xmit_ctl(NULL, 18109 tcp, (tcp->tcp_swnd == 0) ? 18110 tcp->tcp_suna : tcp->tcp_snxt, 18111 tcp->tcp_rnxt, TH_ACK); 18112 BUMP_MIB(&tcps->tcps_mib, tcpOutWinUpdate); 18113 } 18114 18115 } 18116 (void) tcp_rcv_drain(q, tcp); 18117 18118 /* 18119 * For fused tcp loopback, back-enable peer endpoint 18120 * if it's currently flow-controlled. 18121 */ 18122 if (tcp->tcp_fused) { 18123 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 18124 18125 ASSERT(peer_tcp != NULL); 18126 ASSERT(peer_tcp->tcp_fused); 18127 /* 18128 * In order to change the peer's tcp_flow_stopped, 18129 * we need to take locks for both end points. The 18130 * highest address is taken first. 18131 */ 18132 if (peer_tcp > tcp) { 18133 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18134 mutex_enter(&tcp->tcp_non_sq_lock); 18135 } else { 18136 mutex_enter(&tcp->tcp_non_sq_lock); 18137 mutex_enter(&peer_tcp->tcp_non_sq_lock); 18138 } 18139 if (peer_tcp->tcp_flow_stopped) { 18140 tcp_clrqfull(peer_tcp); 18141 TCP_STAT(tcps, tcp_fusion_backenabled); 18142 } 18143 mutex_exit(&peer_tcp->tcp_non_sq_lock); 18144 mutex_exit(&tcp->tcp_non_sq_lock); 18145 } 18146 } 18147 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 18148 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 18149 mp = mi_tpi_ordrel_ind(); 18150 if (mp) { 18151 tcp->tcp_ordrel_done = B_TRUE; 18152 putnext(q, mp); 18153 if (tcp->tcp_deferred_clean_death) { 18154 /* 18155 * tcp_clean_death was deferred 18156 * for T_ORDREL_IND - do it now 18157 */ 18158 (void) tcp_clean_death(tcp, 18159 tcp->tcp_client_errno, 21); 18160 tcp->tcp_deferred_clean_death = B_FALSE; 18161 } 18162 } else { 18163 /* 18164 * Run the orderly release in the 18165 * service routine. 18166 */ 18167 qenable(q); 18168 } 18169 } 18170 if (tcp->tcp_hard_binding) { 18171 tcp->tcp_hard_binding = B_FALSE; 18172 tcp->tcp_hard_bound = B_TRUE; 18173 } 18174 18175 tcp->tcp_detached = B_FALSE; 18176 18177 /* We can enable synchronous streams now */ 18178 if (tcp->tcp_fused) { 18179 tcp_fuse_syncstr_enable_pair(tcp); 18180 } 18181 18182 if (tcp->tcp_ka_enabled) { 18183 tcp->tcp_ka_last_intrvl = 0; 18184 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 18185 MSEC_TO_TICK(tcp->tcp_ka_interval)); 18186 } 18187 18188 /* 18189 * At this point, eager is fully established and will 18190 * have the following references - 18191 * 18192 * 2 references for connection to exist (1 for TCP and 1 for IP). 18193 * 1 reference for the squeue which will be dropped by the squeue as 18194 * soon as this function returns. 18195 * There will be 1 additonal reference for being in classifier 18196 * hash list provided something bad hasn't happened. 18197 */ 18198 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 18199 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 18200 } 18201 18202 /* 18203 * The function called through squeue to get behind listener's perimeter to 18204 * send a deffered conn_ind. 18205 */ 18206 /* ARGSUSED */ 18207 void 18208 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 18209 { 18210 conn_t *connp = (conn_t *)arg; 18211 tcp_t *listener = connp->conn_tcp; 18212 18213 if (listener->tcp_state == TCPS_CLOSED || 18214 TCP_IS_DETACHED(listener)) { 18215 /* 18216 * If listener has closed, it would have caused a 18217 * a cleanup/blowoff to happen for the eager. 18218 */ 18219 tcp_t *tcp; 18220 struct T_conn_ind *conn_ind; 18221 18222 conn_ind = (struct T_conn_ind *)mp->b_rptr; 18223 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 18224 conn_ind->OPT_length); 18225 /* 18226 * We need to drop the ref on eager that was put 18227 * tcp_rput_data() before trying to send the conn_ind 18228 * to listener. The conn_ind was deferred in tcp_send_conn_ind 18229 * and tcp_wput_accept() is sending this deferred conn_ind but 18230 * listener is closed so we drop the ref. 18231 */ 18232 CONN_DEC_REF(tcp->tcp_connp); 18233 freemsg(mp); 18234 return; 18235 } 18236 putnext(listener->tcp_rq, mp); 18237 } 18238 18239 18240 /* 18241 * This is the STREAMS entry point for T_CONN_RES coming down on 18242 * Acceptor STREAM when sockfs listener does accept processing. 18243 * Read the block comment on top of tcp_conn_request(). 18244 */ 18245 void 18246 tcp_wput_accept(queue_t *q, mblk_t *mp) 18247 { 18248 queue_t *rq = RD(q); 18249 struct T_conn_res *conn_res; 18250 tcp_t *eager; 18251 tcp_t *listener; 18252 struct T_ok_ack *ok; 18253 t_scalar_t PRIM_type; 18254 mblk_t *opt_mp; 18255 conn_t *econnp; 18256 18257 ASSERT(DB_TYPE(mp) == M_PROTO); 18258 18259 conn_res = (struct T_conn_res *)mp->b_rptr; 18260 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18261 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18262 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18263 if (mp != NULL) 18264 putnext(rq, mp); 18265 return; 18266 } 18267 switch (conn_res->PRIM_type) { 18268 case O_T_CONN_RES: 18269 case T_CONN_RES: 18270 /* 18271 * We pass up an err ack if allocb fails. This will 18272 * cause sockfs to issue a T_DISCON_REQ which will cause 18273 * tcp_eager_blowoff to be called. sockfs will then call 18274 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18275 * we need to do the allocb up here because we have to 18276 * make sure rq->q_qinfo->qi_qclose still points to the 18277 * correct function (tcpclose_accept) in case allocb 18278 * fails. 18279 */ 18280 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18281 if (opt_mp == NULL) { 18282 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18283 if (mp != NULL) 18284 putnext(rq, mp); 18285 return; 18286 } 18287 18288 bcopy(mp->b_rptr + conn_res->OPT_offset, 18289 &eager, conn_res->OPT_length); 18290 PRIM_type = conn_res->PRIM_type; 18291 mp->b_datap->db_type = M_PCPROTO; 18292 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18293 ok = (struct T_ok_ack *)mp->b_rptr; 18294 ok->PRIM_type = T_OK_ACK; 18295 ok->CORRECT_prim = PRIM_type; 18296 econnp = eager->tcp_connp; 18297 econnp->conn_dev = (dev_t)RD(q)->q_ptr; 18298 econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr); 18299 eager->tcp_rq = rq; 18300 eager->tcp_wq = q; 18301 rq->q_ptr = econnp; 18302 rq->q_qinfo = &tcp_rinitv4; /* No open - same as rinitv6 */ 18303 q->q_ptr = econnp; 18304 q->q_qinfo = &tcp_winit; 18305 listener = eager->tcp_listener; 18306 eager->tcp_issocket = B_TRUE; 18307 18308 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18309 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18310 ASSERT(econnp->conn_netstack == 18311 listener->tcp_connp->conn_netstack); 18312 ASSERT(eager->tcp_tcps == listener->tcp_tcps); 18313 18314 /* Put the ref for IP */ 18315 CONN_INC_REF(econnp); 18316 18317 /* 18318 * We should have minimum of 3 references on the conn 18319 * at this point. One each for TCP and IP and one for 18320 * the T_conn_ind that was sent up when the 3-way handshake 18321 * completed. In the normal case we would also have another 18322 * reference (making a total of 4) for the conn being in the 18323 * classifier hash list. However the eager could have received 18324 * an RST subsequently and tcp_closei_local could have removed 18325 * the eager from the classifier hash list, hence we can't 18326 * assert that reference. 18327 */ 18328 ASSERT(econnp->conn_ref >= 3); 18329 18330 /* 18331 * Send the new local address also up to sockfs. There 18332 * should already be enough space in the mp that came 18333 * down from soaccept(). 18334 */ 18335 if (eager->tcp_family == AF_INET) { 18336 sin_t *sin; 18337 18338 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18339 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18340 sin = (sin_t *)mp->b_wptr; 18341 mp->b_wptr += sizeof (sin_t); 18342 sin->sin_family = AF_INET; 18343 sin->sin_port = eager->tcp_lport; 18344 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18345 } else { 18346 sin6_t *sin6; 18347 18348 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18349 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18350 sin6 = (sin6_t *)mp->b_wptr; 18351 mp->b_wptr += sizeof (sin6_t); 18352 sin6->sin6_family = AF_INET6; 18353 sin6->sin6_port = eager->tcp_lport; 18354 if (eager->tcp_ipversion == IPV4_VERSION) { 18355 sin6->sin6_flowinfo = 0; 18356 IN6_IPADDR_TO_V4MAPPED( 18357 eager->tcp_ipha->ipha_src, 18358 &sin6->sin6_addr); 18359 } else { 18360 ASSERT(eager->tcp_ip6h != NULL); 18361 sin6->sin6_flowinfo = 18362 eager->tcp_ip6h->ip6_vcf & 18363 ~IPV6_VERS_AND_FLOW_MASK; 18364 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18365 } 18366 sin6->sin6_scope_id = 0; 18367 sin6->__sin6_src_id = 0; 18368 } 18369 18370 putnext(rq, mp); 18371 18372 opt_mp->b_datap->db_type = M_SETOPTS; 18373 opt_mp->b_wptr += sizeof (struct stroptions); 18374 18375 /* 18376 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18377 * from listener to acceptor. The message is chained on the 18378 * bind_mp which tcp_rput_other will send down to IP. 18379 */ 18380 if (listener->tcp_bound_if != 0) { 18381 /* allocate optmgmt req */ 18382 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18383 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18384 sizeof (int)); 18385 if (mp != NULL) 18386 linkb(opt_mp, mp); 18387 } 18388 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18389 uint_t on = 1; 18390 18391 /* allocate optmgmt req */ 18392 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18393 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18394 if (mp != NULL) 18395 linkb(opt_mp, mp); 18396 } 18397 18398 18399 mutex_enter(&listener->tcp_eager_lock); 18400 18401 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18402 18403 tcp_t *tail; 18404 tcp_t *tcp; 18405 mblk_t *mp1; 18406 18407 tcp = listener->tcp_eager_prev_q0; 18408 /* 18409 * listener->tcp_eager_prev_q0 points to the TAIL of the 18410 * deferred T_conn_ind queue. We need to get to the head 18411 * of the queue in order to send up T_conn_ind the same 18412 * order as how the 3WHS is completed. 18413 */ 18414 while (tcp != listener) { 18415 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18416 !tcp->tcp_kssl_pending) 18417 break; 18418 else 18419 tcp = tcp->tcp_eager_prev_q0; 18420 } 18421 /* None of the pending eagers can be sent up now */ 18422 if (tcp == listener) 18423 goto no_more_eagers; 18424 18425 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18426 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18427 /* Move from q0 to q */ 18428 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18429 listener->tcp_conn_req_cnt_q0--; 18430 listener->tcp_conn_req_cnt_q++; 18431 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18432 tcp->tcp_eager_prev_q0; 18433 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18434 tcp->tcp_eager_next_q0; 18435 tcp->tcp_eager_prev_q0 = NULL; 18436 tcp->tcp_eager_next_q0 = NULL; 18437 tcp->tcp_conn_def_q0 = B_FALSE; 18438 18439 /* Make sure the tcp isn't in the list of droppables */ 18440 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18441 tcp->tcp_eager_prev_drop_q0 == NULL); 18442 18443 /* 18444 * Insert at end of the queue because sockfs sends 18445 * down T_CONN_RES in chronological order. Leaving 18446 * the older conn indications at front of the queue 18447 * helps reducing search time. 18448 */ 18449 tail = listener->tcp_eager_last_q; 18450 if (tail != NULL) { 18451 tail->tcp_eager_next_q = tcp; 18452 } else { 18453 listener->tcp_eager_next_q = tcp; 18454 } 18455 listener->tcp_eager_last_q = tcp; 18456 tcp->tcp_eager_next_q = NULL; 18457 18458 /* Need to get inside the listener perimeter */ 18459 CONN_INC_REF(listener->tcp_connp); 18460 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18461 tcp_send_pending, listener->tcp_connp, 18462 SQTAG_TCP_SEND_PENDING); 18463 } 18464 no_more_eagers: 18465 tcp_eager_unlink(eager); 18466 mutex_exit(&listener->tcp_eager_lock); 18467 18468 /* 18469 * At this point, the eager is detached from the listener 18470 * but we still have an extra refs on eager (apart from the 18471 * usual tcp references). The ref was placed in tcp_rput_data 18472 * before sending the conn_ind in tcp_send_conn_ind. 18473 * The ref will be dropped in tcp_accept_finish(). 18474 */ 18475 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18476 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18477 return; 18478 default: 18479 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18480 if (mp != NULL) 18481 putnext(rq, mp); 18482 return; 18483 } 18484 } 18485 18486 void 18487 tcp_wput(queue_t *q, mblk_t *mp) 18488 { 18489 conn_t *connp = Q_TO_CONN(q); 18490 tcp_t *tcp; 18491 void (*output_proc)(); 18492 t_scalar_t type; 18493 uchar_t *rptr; 18494 struct iocblk *iocp; 18495 uint32_t msize; 18496 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 18497 18498 ASSERT(connp->conn_ref >= 2); 18499 18500 switch (DB_TYPE(mp)) { 18501 case M_DATA: 18502 tcp = connp->conn_tcp; 18503 ASSERT(tcp != NULL); 18504 18505 msize = msgdsize(mp); 18506 18507 mutex_enter(&tcp->tcp_non_sq_lock); 18508 tcp->tcp_squeue_bytes += msize; 18509 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18510 tcp_setqfull(tcp); 18511 } 18512 mutex_exit(&tcp->tcp_non_sq_lock); 18513 18514 CONN_INC_REF(connp); 18515 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18516 tcp_output, connp, SQTAG_TCP_OUTPUT); 18517 return; 18518 case M_PROTO: 18519 case M_PCPROTO: 18520 /* 18521 * if it is a snmp message, don't get behind the squeue 18522 */ 18523 tcp = connp->conn_tcp; 18524 rptr = mp->b_rptr; 18525 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18526 type = ((union T_primitives *)rptr)->type; 18527 } else { 18528 if (tcp->tcp_debug) { 18529 (void) strlog(TCP_MOD_ID, 0, 1, 18530 SL_ERROR|SL_TRACE, 18531 "tcp_wput_proto, dropping one..."); 18532 } 18533 freemsg(mp); 18534 return; 18535 } 18536 if (type == T_SVR4_OPTMGMT_REQ) { 18537 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18538 if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get, 18539 cr)) { 18540 /* 18541 * This was a SNMP request 18542 */ 18543 return; 18544 } else { 18545 output_proc = tcp_wput_proto; 18546 } 18547 } else { 18548 output_proc = tcp_wput_proto; 18549 } 18550 break; 18551 case M_IOCTL: 18552 /* 18553 * Most ioctls can be processed right away without going via 18554 * squeues - process them right here. Those that do require 18555 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18556 * are processed by tcp_wput_ioctl(). 18557 */ 18558 iocp = (struct iocblk *)mp->b_rptr; 18559 tcp = connp->conn_tcp; 18560 18561 switch (iocp->ioc_cmd) { 18562 case TCP_IOC_ABORT_CONN: 18563 tcp_ioctl_abort_conn(q, mp); 18564 return; 18565 case TI_GETPEERNAME: 18566 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18567 iocp->ioc_error = ENOTCONN; 18568 iocp->ioc_count = 0; 18569 mp->b_datap->db_type = M_IOCACK; 18570 qreply(q, mp); 18571 return; 18572 } 18573 /* FALLTHRU */ 18574 case TI_GETMYNAME: 18575 mi_copyin(q, mp, NULL, 18576 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18577 return; 18578 case ND_SET: 18579 /* nd_getset does the necessary checks */ 18580 case ND_GET: 18581 if (!nd_getset(q, tcps->tcps_g_nd, mp)) { 18582 CALL_IP_WPUT(connp, q, mp); 18583 return; 18584 } 18585 qreply(q, mp); 18586 return; 18587 case TCP_IOC_DEFAULT_Q: 18588 /* 18589 * Wants to be the default wq. Check the credentials 18590 * first, the rest is executed via squeue. 18591 */ 18592 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 18593 iocp->ioc_error = EPERM; 18594 iocp->ioc_count = 0; 18595 mp->b_datap->db_type = M_IOCACK; 18596 qreply(q, mp); 18597 return; 18598 } 18599 output_proc = tcp_wput_ioctl; 18600 break; 18601 default: 18602 output_proc = tcp_wput_ioctl; 18603 break; 18604 } 18605 break; 18606 default: 18607 output_proc = tcp_wput_nondata; 18608 break; 18609 } 18610 18611 CONN_INC_REF(connp); 18612 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18613 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18614 } 18615 18616 /* 18617 * Initial STREAMS write side put() procedure for sockets. It tries to 18618 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18619 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18620 * are handled by tcp_wput() as usual. 18621 * 18622 * All further messages will also be handled by tcp_wput() because we cannot 18623 * be sure that the above short cut is safe later. 18624 */ 18625 static void 18626 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18627 { 18628 conn_t *connp = Q_TO_CONN(wq); 18629 tcp_t *tcp = connp->conn_tcp; 18630 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18631 18632 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18633 wq->q_qinfo = &tcp_winit; 18634 18635 ASSERT(IPCL_IS_TCP(connp)); 18636 ASSERT(TCP_IS_SOCKET(tcp)); 18637 18638 if (DB_TYPE(mp) == M_PCPROTO && 18639 MBLKL(mp) == sizeof (struct T_capability_req) && 18640 car->PRIM_type == T_CAPABILITY_REQ) { 18641 tcp_capability_req(tcp, mp); 18642 return; 18643 } 18644 18645 tcp_wput(wq, mp); 18646 } 18647 18648 static boolean_t 18649 tcp_zcopy_check(tcp_t *tcp) 18650 { 18651 conn_t *connp = tcp->tcp_connp; 18652 ire_t *ire; 18653 boolean_t zc_enabled = B_FALSE; 18654 tcp_stack_t *tcps = tcp->tcp_tcps; 18655 18656 if (do_tcpzcopy == 2) 18657 zc_enabled = B_TRUE; 18658 else if (tcp->tcp_ipversion == IPV4_VERSION && 18659 IPCL_IS_CONNECTED(connp) && 18660 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18661 connp->conn_dontroute == 0 && 18662 !connp->conn_nexthop_set && 18663 connp->conn_outgoing_ill == NULL && 18664 connp->conn_nofailover_ill == NULL && 18665 do_tcpzcopy == 1) { 18666 /* 18667 * the checks above closely resemble the fast path checks 18668 * in tcp_send_data(). 18669 */ 18670 mutex_enter(&connp->conn_lock); 18671 ire = connp->conn_ire_cache; 18672 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18673 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18674 IRE_REFHOLD(ire); 18675 if (ire->ire_stq != NULL) { 18676 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18677 18678 zc_enabled = ill && (ill->ill_capabilities & 18679 ILL_CAPAB_ZEROCOPY) && 18680 (ill->ill_zerocopy_capab-> 18681 ill_zerocopy_flags != 0); 18682 } 18683 IRE_REFRELE(ire); 18684 } 18685 mutex_exit(&connp->conn_lock); 18686 } 18687 tcp->tcp_snd_zcopy_on = zc_enabled; 18688 if (!TCP_IS_DETACHED(tcp)) { 18689 if (zc_enabled) { 18690 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18691 TCP_STAT(tcps, tcp_zcopy_on); 18692 } else { 18693 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18694 TCP_STAT(tcps, tcp_zcopy_off); 18695 } 18696 } 18697 return (zc_enabled); 18698 } 18699 18700 static mblk_t * 18701 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18702 { 18703 tcp_stack_t *tcps = tcp->tcp_tcps; 18704 18705 if (do_tcpzcopy == 2) 18706 return (bp); 18707 else if (tcp->tcp_snd_zcopy_on) { 18708 tcp->tcp_snd_zcopy_on = B_FALSE; 18709 if (!TCP_IS_DETACHED(tcp)) { 18710 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18711 TCP_STAT(tcps, tcp_zcopy_disable); 18712 } 18713 } 18714 return (tcp_zcopy_backoff(tcp, bp, 0)); 18715 } 18716 18717 /* 18718 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18719 * the original desballoca'ed segmapped mblk. 18720 */ 18721 static mblk_t * 18722 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18723 { 18724 mblk_t *head, *tail, *nbp; 18725 tcp_stack_t *tcps = tcp->tcp_tcps; 18726 18727 if (IS_VMLOANED_MBLK(bp)) { 18728 TCP_STAT(tcps, tcp_zcopy_backoff); 18729 if ((head = copyb(bp)) == NULL) { 18730 /* fail to backoff; leave it for the next backoff */ 18731 tcp->tcp_xmit_zc_clean = B_FALSE; 18732 return (bp); 18733 } 18734 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18735 if (fix_xmitlist) 18736 tcp_zcopy_notify(tcp); 18737 else 18738 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18739 } 18740 nbp = bp->b_cont; 18741 if (fix_xmitlist) { 18742 head->b_prev = bp->b_prev; 18743 head->b_next = bp->b_next; 18744 if (tcp->tcp_xmit_tail == bp) 18745 tcp->tcp_xmit_tail = head; 18746 } 18747 bp->b_next = NULL; 18748 bp->b_prev = NULL; 18749 freeb(bp); 18750 } else { 18751 head = bp; 18752 nbp = bp->b_cont; 18753 } 18754 tail = head; 18755 while (nbp) { 18756 if (IS_VMLOANED_MBLK(nbp)) { 18757 TCP_STAT(tcps, tcp_zcopy_backoff); 18758 if ((tail->b_cont = copyb(nbp)) == NULL) { 18759 tcp->tcp_xmit_zc_clean = B_FALSE; 18760 tail->b_cont = nbp; 18761 return (head); 18762 } 18763 tail = tail->b_cont; 18764 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18765 if (fix_xmitlist) 18766 tcp_zcopy_notify(tcp); 18767 else 18768 tail->b_datap->db_struioflag |= 18769 STRUIO_ZCNOTIFY; 18770 } 18771 bp = nbp; 18772 nbp = nbp->b_cont; 18773 if (fix_xmitlist) { 18774 tail->b_prev = bp->b_prev; 18775 tail->b_next = bp->b_next; 18776 if (tcp->tcp_xmit_tail == bp) 18777 tcp->tcp_xmit_tail = tail; 18778 } 18779 bp->b_next = NULL; 18780 bp->b_prev = NULL; 18781 freeb(bp); 18782 } else { 18783 tail->b_cont = nbp; 18784 tail = nbp; 18785 nbp = nbp->b_cont; 18786 } 18787 } 18788 if (fix_xmitlist) { 18789 tcp->tcp_xmit_last = tail; 18790 tcp->tcp_xmit_zc_clean = B_TRUE; 18791 } 18792 return (head); 18793 } 18794 18795 static void 18796 tcp_zcopy_notify(tcp_t *tcp) 18797 { 18798 struct stdata *stp; 18799 18800 if (tcp->tcp_detached) 18801 return; 18802 stp = STREAM(tcp->tcp_rq); 18803 mutex_enter(&stp->sd_lock); 18804 stp->sd_flag |= STZCNOTIFY; 18805 cv_broadcast(&stp->sd_zcopy_wait); 18806 mutex_exit(&stp->sd_lock); 18807 } 18808 18809 static boolean_t 18810 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18811 { 18812 ire_t *ire; 18813 conn_t *connp = tcp->tcp_connp; 18814 tcp_stack_t *tcps = tcp->tcp_tcps; 18815 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18816 18817 mutex_enter(&connp->conn_lock); 18818 ire = connp->conn_ire_cache; 18819 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18820 18821 if ((ire != NULL) && 18822 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18823 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18824 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18825 IRE_REFHOLD(ire); 18826 mutex_exit(&connp->conn_lock); 18827 } else { 18828 boolean_t cached = B_FALSE; 18829 ts_label_t *tsl; 18830 18831 /* force a recheck later on */ 18832 tcp->tcp_ire_ill_check_done = B_FALSE; 18833 18834 TCP_DBGSTAT(tcps, tcp_ire_null1); 18835 connp->conn_ire_cache = NULL; 18836 mutex_exit(&connp->conn_lock); 18837 18838 if (ire != NULL) 18839 IRE_REFRELE_NOTR(ire); 18840 18841 tsl = crgetlabel(CONN_CRED(connp)); 18842 ire = (dst ? 18843 ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) : 18844 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18845 connp->conn_zoneid, tsl, ipst)); 18846 18847 if (ire == NULL) { 18848 TCP_STAT(tcps, tcp_ire_null); 18849 return (B_FALSE); 18850 } 18851 18852 IRE_REFHOLD_NOTR(ire); 18853 /* 18854 * Since we are inside the squeue, there cannot be another 18855 * thread in TCP trying to set the conn_ire_cache now. The 18856 * check for IRE_MARK_CONDEMNED ensures that an interface 18857 * unplumb thread has not yet started cleaning up the conns. 18858 * Hence we don't need to grab the conn lock. 18859 */ 18860 if (CONN_CACHE_IRE(connp)) { 18861 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18862 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18863 TCP_CHECK_IREINFO(tcp, ire); 18864 connp->conn_ire_cache = ire; 18865 cached = B_TRUE; 18866 } 18867 rw_exit(&ire->ire_bucket->irb_lock); 18868 } 18869 18870 /* 18871 * We can continue to use the ire but since it was 18872 * not cached, we should drop the extra reference. 18873 */ 18874 if (!cached) 18875 IRE_REFRELE_NOTR(ire); 18876 18877 /* 18878 * Rampart note: no need to select a new label here, since 18879 * labels are not allowed to change during the life of a TCP 18880 * connection. 18881 */ 18882 } 18883 18884 *irep = ire; 18885 18886 return (B_TRUE); 18887 } 18888 18889 /* 18890 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18891 * 18892 * 0 = success; 18893 * 1 = failed to find ire and ill. 18894 */ 18895 static boolean_t 18896 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18897 { 18898 ipha_t *ipha; 18899 ipaddr_t dst; 18900 ire_t *ire; 18901 ill_t *ill; 18902 conn_t *connp = tcp->tcp_connp; 18903 mblk_t *ire_fp_mp; 18904 tcp_stack_t *tcps = tcp->tcp_tcps; 18905 18906 if (mp != NULL) 18907 ipha = (ipha_t *)mp->b_rptr; 18908 else 18909 ipha = tcp->tcp_ipha; 18910 dst = ipha->ipha_dst; 18911 18912 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18913 return (B_FALSE); 18914 18915 if ((ire->ire_flags & RTF_MULTIRT) || 18916 (ire->ire_stq == NULL) || 18917 (ire->ire_nce == NULL) || 18918 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18919 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18920 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18921 TCP_STAT(tcps, tcp_ip_ire_send); 18922 IRE_REFRELE(ire); 18923 return (B_FALSE); 18924 } 18925 18926 ill = ire_to_ill(ire); 18927 if (connp->conn_outgoing_ill != NULL) { 18928 ill_t *conn_outgoing_ill = NULL; 18929 /* 18930 * Choose a good ill in the group to send the packets on. 18931 */ 18932 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18933 ill = ire_to_ill(ire); 18934 } 18935 ASSERT(ill != NULL); 18936 18937 if (!tcp->tcp_ire_ill_check_done) { 18938 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18939 tcp->tcp_ire_ill_check_done = B_TRUE; 18940 } 18941 18942 *irep = ire; 18943 *illp = ill; 18944 18945 return (B_TRUE); 18946 } 18947 18948 static void 18949 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18950 { 18951 ipha_t *ipha; 18952 ipaddr_t src; 18953 ipaddr_t dst; 18954 uint32_t cksum; 18955 ire_t *ire; 18956 uint16_t *up; 18957 ill_t *ill; 18958 conn_t *connp = tcp->tcp_connp; 18959 uint32_t hcksum_txflags = 0; 18960 mblk_t *ire_fp_mp; 18961 uint_t ire_fp_mp_len; 18962 tcp_stack_t *tcps = tcp->tcp_tcps; 18963 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 18964 18965 ASSERT(DB_TYPE(mp) == M_DATA); 18966 18967 if (DB_CRED(mp) == NULL) 18968 mblk_setcred(mp, CONN_CRED(connp)); 18969 18970 ipha = (ipha_t *)mp->b_rptr; 18971 src = ipha->ipha_src; 18972 dst = ipha->ipha_dst; 18973 18974 /* 18975 * Drop off fast path for IPv6 and also if options are present or 18976 * we need to resolve a TS label. 18977 */ 18978 if (tcp->tcp_ipversion != IPV4_VERSION || 18979 !IPCL_IS_CONNECTED(connp) || 18980 !CONN_IS_LSO_MD_FASTPATH(connp) || 18981 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18982 !connp->conn_ulp_labeled || 18983 ipha->ipha_ident == IP_HDR_INCLUDED || 18984 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18985 IPP_ENABLED(IPP_LOCAL_OUT, ipst)) { 18986 if (tcp->tcp_snd_zcopy_aware) 18987 mp = tcp_zcopy_disable(tcp, mp); 18988 TCP_STAT(tcps, tcp_ip_send); 18989 CALL_IP_WPUT(connp, q, mp); 18990 return; 18991 } 18992 18993 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18994 if (tcp->tcp_snd_zcopy_aware) 18995 mp = tcp_zcopy_backoff(tcp, mp, 0); 18996 CALL_IP_WPUT(connp, q, mp); 18997 return; 18998 } 18999 ire_fp_mp = ire->ire_nce->nce_fp_mp; 19000 ire_fp_mp_len = MBLKL(ire_fp_mp); 19001 19002 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 19003 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 19004 #ifndef _BIG_ENDIAN 19005 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 19006 #endif 19007 19008 /* 19009 * Check to see if we need to re-enable LSO/MDT for this connection 19010 * because it was previously disabled due to changes in the ill; 19011 * note that by doing it here, this re-enabling only applies when 19012 * the packet is not dispatched through CALL_IP_WPUT(). 19013 * 19014 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 19015 * case, since that's how we ended up here. For IPv6, we do the 19016 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 19017 */ 19018 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 19019 /* 19020 * Restore LSO for this connection, so that next time around 19021 * it is eligible to go through tcp_lsosend() path again. 19022 */ 19023 TCP_STAT(tcps, tcp_lso_enabled); 19024 tcp->tcp_lso = B_TRUE; 19025 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 19026 "interface %s\n", (void *)connp, ill->ill_name)); 19027 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 19028 /* 19029 * Restore MDT for this connection, so that next time around 19030 * it is eligible to go through tcp_multisend() path again. 19031 */ 19032 TCP_STAT(tcps, tcp_mdt_conn_resumed1); 19033 tcp->tcp_mdt = B_TRUE; 19034 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 19035 "interface %s\n", (void *)connp, ill->ill_name)); 19036 } 19037 19038 if (tcp->tcp_snd_zcopy_aware) { 19039 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 19040 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 19041 mp = tcp_zcopy_disable(tcp, mp); 19042 /* 19043 * we shouldn't need to reset ipha as the mp containing 19044 * ipha should never be a zero-copy mp. 19045 */ 19046 } 19047 19048 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 19049 ASSERT(ill->ill_hcksum_capab != NULL); 19050 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 19051 } 19052 19053 /* pseudo-header checksum (do it in parts for IP header checksum) */ 19054 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 19055 19056 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 19057 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 19058 19059 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 19060 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 19061 19062 /* Software checksum? */ 19063 if (DB_CKSUMFLAGS(mp) == 0) { 19064 TCP_STAT(tcps, tcp_out_sw_cksum); 19065 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 19066 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 19067 } 19068 19069 ipha->ipha_fragment_offset_and_flags |= 19070 (uint32_t)htons(ire->ire_frag_flag); 19071 19072 /* Calculate IP header checksum if hardware isn't capable */ 19073 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 19074 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 19075 ((uint16_t *)ipha)[4]); 19076 } 19077 19078 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 19079 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 19080 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 19081 19082 UPDATE_OB_PKT_COUNT(ire); 19083 ire->ire_last_used_time = lbolt; 19084 19085 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 19086 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 19087 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 19088 ntohs(ipha->ipha_length)); 19089 19090 if (ILL_DLS_CAPABLE(ill)) { 19091 /* 19092 * Send the packet directly to DLD, where it may be queued 19093 * depending on the availability of transmit resources at 19094 * the media layer. 19095 */ 19096 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 19097 } else { 19098 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 19099 DTRACE_PROBE4(ip4__physical__out__start, 19100 ill_t *, NULL, ill_t *, out_ill, 19101 ipha_t *, ipha, mblk_t *, mp); 19102 FW_HOOKS(ipst->ips_ip4_physical_out_event, 19103 ipst->ips_ipv4firewall_physical_out, 19104 NULL, out_ill, ipha, mp, mp, ipst); 19105 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 19106 if (mp != NULL) 19107 putnext(ire->ire_stq, mp); 19108 } 19109 IRE_REFRELE(ire); 19110 } 19111 19112 /* 19113 * This handles the case when the receiver has shrunk its win. Per RFC 1122 19114 * if the receiver shrinks the window, i.e. moves the right window to the 19115 * left, the we should not send new data, but should retransmit normally the 19116 * old unacked data between suna and suna + swnd. We might has sent data 19117 * that is now outside the new window, pretend that we didn't send it. 19118 */ 19119 static void 19120 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 19121 { 19122 uint32_t snxt = tcp->tcp_snxt; 19123 mblk_t *xmit_tail; 19124 int32_t offset; 19125 19126 ASSERT(shrunk_count > 0); 19127 19128 /* Pretend we didn't send the data outside the window */ 19129 snxt -= shrunk_count; 19130 19131 /* Get the mblk and the offset in it per the shrunk window */ 19132 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 19133 19134 ASSERT(xmit_tail != NULL); 19135 19136 /* Reset all the values per the now shrunk window */ 19137 tcp->tcp_snxt = snxt; 19138 tcp->tcp_xmit_tail = xmit_tail; 19139 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 19140 offset; 19141 tcp->tcp_unsent += shrunk_count; 19142 19143 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 19144 /* 19145 * Make sure the timer is running so that we will probe a zero 19146 * window. 19147 */ 19148 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19149 } 19150 19151 19152 /* 19153 * The TCP normal data output path. 19154 * NOTE: the logic of the fast path is duplicated from this function. 19155 */ 19156 static void 19157 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 19158 { 19159 int len; 19160 mblk_t *local_time; 19161 mblk_t *mp1; 19162 uint32_t snxt; 19163 int tail_unsent; 19164 int tcpstate; 19165 int usable = 0; 19166 mblk_t *xmit_tail; 19167 queue_t *q = tcp->tcp_wq; 19168 int32_t mss; 19169 int32_t num_sack_blk = 0; 19170 int32_t tcp_hdr_len; 19171 int32_t tcp_tcp_hdr_len; 19172 int mdt_thres; 19173 int rc; 19174 tcp_stack_t *tcps = tcp->tcp_tcps; 19175 ip_stack_t *ipst; 19176 19177 tcpstate = tcp->tcp_state; 19178 if (mp == NULL) { 19179 /* 19180 * tcp_wput_data() with NULL mp should only be called when 19181 * there is unsent data. 19182 */ 19183 ASSERT(tcp->tcp_unsent > 0); 19184 /* Really tacky... but we need this for detached closes. */ 19185 len = tcp->tcp_unsent; 19186 goto data_null; 19187 } 19188 19189 #if CCS_STATS 19190 wrw_stats.tot.count++; 19191 wrw_stats.tot.bytes += msgdsize(mp); 19192 #endif 19193 ASSERT(mp->b_datap->db_type == M_DATA); 19194 /* 19195 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 19196 * or before a connection attempt has begun. 19197 */ 19198 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 19199 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19200 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 19201 #ifdef DEBUG 19202 cmn_err(CE_WARN, 19203 "tcp_wput_data: data after ordrel, %s", 19204 tcp_display(tcp, NULL, 19205 DISP_ADDR_AND_PORT)); 19206 #else 19207 if (tcp->tcp_debug) { 19208 (void) strlog(TCP_MOD_ID, 0, 1, 19209 SL_TRACE|SL_ERROR, 19210 "tcp_wput_data: data after ordrel, %s\n", 19211 tcp_display(tcp, NULL, 19212 DISP_ADDR_AND_PORT)); 19213 } 19214 #endif /* DEBUG */ 19215 } 19216 if (tcp->tcp_snd_zcopy_aware && 19217 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 19218 tcp_zcopy_notify(tcp); 19219 freemsg(mp); 19220 mutex_enter(&tcp->tcp_non_sq_lock); 19221 if (tcp->tcp_flow_stopped && 19222 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19223 tcp_clrqfull(tcp); 19224 } 19225 mutex_exit(&tcp->tcp_non_sq_lock); 19226 return; 19227 } 19228 19229 /* Strip empties */ 19230 for (;;) { 19231 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 19232 (uintptr_t)INT_MAX); 19233 len = (int)(mp->b_wptr - mp->b_rptr); 19234 if (len > 0) 19235 break; 19236 mp1 = mp; 19237 mp = mp->b_cont; 19238 freeb(mp1); 19239 if (!mp) { 19240 return; 19241 } 19242 } 19243 19244 /* If we are the first on the list ... */ 19245 if (tcp->tcp_xmit_head == NULL) { 19246 tcp->tcp_xmit_head = mp; 19247 tcp->tcp_xmit_tail = mp; 19248 tcp->tcp_xmit_tail_unsent = len; 19249 } else { 19250 /* If tiny tx and room in txq tail, pullup to save mblks. */ 19251 struct datab *dp; 19252 19253 mp1 = tcp->tcp_xmit_last; 19254 if (len < tcp_tx_pull_len && 19255 (dp = mp1->b_datap)->db_ref == 1 && 19256 dp->db_lim - mp1->b_wptr >= len) { 19257 ASSERT(len > 0); 19258 ASSERT(!mp1->b_cont); 19259 if (len == 1) { 19260 *mp1->b_wptr++ = *mp->b_rptr; 19261 } else { 19262 bcopy(mp->b_rptr, mp1->b_wptr, len); 19263 mp1->b_wptr += len; 19264 } 19265 if (mp1 == tcp->tcp_xmit_tail) 19266 tcp->tcp_xmit_tail_unsent += len; 19267 mp1->b_cont = mp->b_cont; 19268 if (tcp->tcp_snd_zcopy_aware && 19269 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 19270 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 19271 freeb(mp); 19272 mp = mp1; 19273 } else { 19274 tcp->tcp_xmit_last->b_cont = mp; 19275 } 19276 len += tcp->tcp_unsent; 19277 } 19278 19279 /* Tack on however many more positive length mblks we have */ 19280 if ((mp1 = mp->b_cont) != NULL) { 19281 do { 19282 int tlen; 19283 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19284 (uintptr_t)INT_MAX); 19285 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19286 if (tlen <= 0) { 19287 mp->b_cont = mp1->b_cont; 19288 freeb(mp1); 19289 } else { 19290 len += tlen; 19291 mp = mp1; 19292 } 19293 } while ((mp1 = mp->b_cont) != NULL); 19294 } 19295 tcp->tcp_xmit_last = mp; 19296 tcp->tcp_unsent = len; 19297 19298 if (urgent) 19299 usable = 1; 19300 19301 data_null: 19302 snxt = tcp->tcp_snxt; 19303 xmit_tail = tcp->tcp_xmit_tail; 19304 tail_unsent = tcp->tcp_xmit_tail_unsent; 19305 19306 /* 19307 * Note that tcp_mss has been adjusted to take into account the 19308 * timestamp option if applicable. Because SACK options do not 19309 * appear in every TCP segments and they are of variable lengths, 19310 * they cannot be included in tcp_mss. Thus we need to calculate 19311 * the actual segment length when we need to send a segment which 19312 * includes SACK options. 19313 */ 19314 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19315 int32_t opt_len; 19316 19317 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19318 tcp->tcp_num_sack_blk); 19319 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19320 2 + TCPOPT_HEADER_LEN; 19321 mss = tcp->tcp_mss - opt_len; 19322 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19323 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19324 } else { 19325 mss = tcp->tcp_mss; 19326 tcp_hdr_len = tcp->tcp_hdr_len; 19327 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19328 } 19329 19330 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19331 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19332 SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle); 19333 } 19334 if (tcpstate == TCPS_SYN_RCVD) { 19335 /* 19336 * The three-way connection establishment handshake is not 19337 * complete yet. We want to queue the data for transmission 19338 * after entering ESTABLISHED state (RFC793). A jump to 19339 * "done" label effectively leaves data on the queue. 19340 */ 19341 goto done; 19342 } else { 19343 int usable_r; 19344 19345 /* 19346 * In the special case when cwnd is zero, which can only 19347 * happen if the connection is ECN capable, return now. 19348 * New segments is sent using tcp_timer(). The timer 19349 * is set in tcp_rput_data(). 19350 */ 19351 if (tcp->tcp_cwnd == 0) { 19352 /* 19353 * Note that tcp_cwnd is 0 before 3-way handshake is 19354 * finished. 19355 */ 19356 ASSERT(tcp->tcp_ecn_ok || 19357 tcp->tcp_state < TCPS_ESTABLISHED); 19358 return; 19359 } 19360 19361 /* NOTE: trouble if xmitting while SYN not acked? */ 19362 usable_r = snxt - tcp->tcp_suna; 19363 usable_r = tcp->tcp_swnd - usable_r; 19364 19365 /* 19366 * Check if the receiver has shrunk the window. If 19367 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19368 * cannot be set as there is unsent data, so FIN cannot 19369 * be sent out. Otherwise, we need to take into account 19370 * of FIN as it consumes an "invisible" sequence number. 19371 */ 19372 ASSERT(tcp->tcp_fin_sent == 0); 19373 if (usable_r < 0) { 19374 /* 19375 * The receiver has shrunk the window and we have sent 19376 * -usable_r date beyond the window, re-adjust. 19377 * 19378 * If TCP window scaling is enabled, there can be 19379 * round down error as the advertised receive window 19380 * is actually right shifted n bits. This means that 19381 * the lower n bits info is wiped out. It will look 19382 * like the window is shrunk. Do a check here to 19383 * see if the shrunk amount is actually within the 19384 * error in window calculation. If it is, just 19385 * return. Note that this check is inside the 19386 * shrunk window check. This makes sure that even 19387 * though tcp_process_shrunk_swnd() is not called, 19388 * we will stop further processing. 19389 */ 19390 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19391 tcp_process_shrunk_swnd(tcp, -usable_r); 19392 } 19393 return; 19394 } 19395 19396 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19397 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19398 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19399 19400 /* usable = MIN(usable, unsent) */ 19401 if (usable_r > len) 19402 usable_r = len; 19403 19404 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19405 if (usable_r > 0) { 19406 usable = usable_r; 19407 } else { 19408 /* Bypass all other unnecessary processing. */ 19409 goto done; 19410 } 19411 } 19412 19413 local_time = (mblk_t *)lbolt; 19414 19415 /* 19416 * "Our" Nagle Algorithm. This is not the same as in the old 19417 * BSD. This is more in line with the true intent of Nagle. 19418 * 19419 * The conditions are: 19420 * 1. The amount of unsent data (or amount of data which can be 19421 * sent, whichever is smaller) is less than Nagle limit. 19422 * 2. The last sent size is also less than Nagle limit. 19423 * 3. There is unack'ed data. 19424 * 4. Urgent pointer is not set. Send urgent data ignoring the 19425 * Nagle algorithm. This reduces the probability that urgent 19426 * bytes get "merged" together. 19427 * 5. The app has not closed the connection. This eliminates the 19428 * wait time of the receiving side waiting for the last piece of 19429 * (small) data. 19430 * 19431 * If all are satisified, exit without sending anything. Note 19432 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19433 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19434 * 4095). 19435 */ 19436 if (usable < (int)tcp->tcp_naglim && 19437 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19438 snxt != tcp->tcp_suna && 19439 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19440 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19441 goto done; 19442 } 19443 19444 if (tcp->tcp_cork) { 19445 /* 19446 * if the tcp->tcp_cork option is set, then we have to force 19447 * TCP not to send partial segment (smaller than MSS bytes). 19448 * We are calculating the usable now based on full mss and 19449 * will save the rest of remaining data for later. 19450 */ 19451 if (usable < mss) 19452 goto done; 19453 usable = (usable / mss) * mss; 19454 } 19455 19456 /* Update the latest receive window size in TCP header. */ 19457 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19458 tcp->tcp_tcph->th_win); 19459 19460 /* 19461 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19462 * 19463 * 1. Simple TCP/IP{v4,v6} (no options). 19464 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19465 * 3. If the TCP connection is in ESTABLISHED state. 19466 * 4. The TCP is not detached. 19467 * 19468 * If any of the above conditions have changed during the 19469 * connection, stop using LSO/MDT and restore the stream head 19470 * parameters accordingly. 19471 */ 19472 ipst = tcps->tcps_netstack->netstack_ip; 19473 19474 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19475 ((tcp->tcp_ipversion == IPV4_VERSION && 19476 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19477 (tcp->tcp_ipversion == IPV6_VERSION && 19478 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19479 tcp->tcp_state != TCPS_ESTABLISHED || 19480 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19481 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19482 IPP_ENABLED(IPP_LOCAL_OUT, ipst))) { 19483 if (tcp->tcp_lso) { 19484 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19485 tcp->tcp_lso = B_FALSE; 19486 } else { 19487 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19488 tcp->tcp_mdt = B_FALSE; 19489 } 19490 19491 /* Anything other than detached is considered pathological */ 19492 if (!TCP_IS_DETACHED(tcp)) { 19493 if (tcp->tcp_lso) 19494 TCP_STAT(tcps, tcp_lso_disabled); 19495 else 19496 TCP_STAT(tcps, tcp_mdt_conn_halted1); 19497 (void) tcp_maxpsz_set(tcp, B_TRUE); 19498 } 19499 } 19500 19501 /* Use MDT if sendable amount is greater than the threshold */ 19502 if (tcp->tcp_mdt && 19503 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19504 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19505 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19506 (tcp->tcp_valid_bits == 0 || 19507 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19508 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19509 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19510 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19511 local_time, mdt_thres); 19512 } else { 19513 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19514 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19515 local_time, INT_MAX); 19516 } 19517 19518 /* Pretend that all we were trying to send really got sent */ 19519 if (rc < 0 && tail_unsent < 0) { 19520 do { 19521 xmit_tail = xmit_tail->b_cont; 19522 xmit_tail->b_prev = local_time; 19523 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19524 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19525 tail_unsent += (int)(xmit_tail->b_wptr - 19526 xmit_tail->b_rptr); 19527 } while (tail_unsent < 0); 19528 } 19529 done:; 19530 tcp->tcp_xmit_tail = xmit_tail; 19531 tcp->tcp_xmit_tail_unsent = tail_unsent; 19532 len = tcp->tcp_snxt - snxt; 19533 if (len) { 19534 /* 19535 * If new data was sent, need to update the notsack 19536 * list, which is, afterall, data blocks that have 19537 * not been sack'ed by the receiver. New data is 19538 * not sack'ed. 19539 */ 19540 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19541 /* len is a negative value. */ 19542 tcp->tcp_pipe -= len; 19543 tcp_notsack_update(&(tcp->tcp_notsack_list), 19544 tcp->tcp_snxt, snxt, 19545 &(tcp->tcp_num_notsack_blk), 19546 &(tcp->tcp_cnt_notsack_list)); 19547 } 19548 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19549 tcp->tcp_rack = tcp->tcp_rnxt; 19550 tcp->tcp_rack_cnt = 0; 19551 if ((snxt + len) == tcp->tcp_suna) { 19552 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19553 } 19554 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19555 /* 19556 * Didn't send anything. Make sure the timer is running 19557 * so that we will probe a zero window. 19558 */ 19559 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19560 } 19561 /* Note that len is the amount we just sent but with a negative sign */ 19562 tcp->tcp_unsent += len; 19563 mutex_enter(&tcp->tcp_non_sq_lock); 19564 if (tcp->tcp_flow_stopped) { 19565 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19566 tcp_clrqfull(tcp); 19567 } 19568 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19569 tcp_setqfull(tcp); 19570 } 19571 mutex_exit(&tcp->tcp_non_sq_lock); 19572 } 19573 19574 /* 19575 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19576 * outgoing TCP header with the template header, as well as other 19577 * options such as time-stamp, ECN and/or SACK. 19578 */ 19579 static void 19580 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19581 { 19582 tcph_t *tcp_tmpl, *tcp_h; 19583 uint32_t *dst, *src; 19584 int hdrlen; 19585 19586 ASSERT(OK_32PTR(rptr)); 19587 19588 /* Template header */ 19589 tcp_tmpl = tcp->tcp_tcph; 19590 19591 /* Header of outgoing packet */ 19592 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19593 19594 /* dst and src are opaque 32-bit fields, used for copying */ 19595 dst = (uint32_t *)rptr; 19596 src = (uint32_t *)tcp->tcp_iphc; 19597 hdrlen = tcp->tcp_hdr_len; 19598 19599 /* Fill time-stamp option if needed */ 19600 if (tcp->tcp_snd_ts_ok) { 19601 U32_TO_BE32((uint32_t)now, 19602 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19603 U32_TO_BE32(tcp->tcp_ts_recent, 19604 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19605 } else { 19606 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19607 } 19608 19609 /* 19610 * Copy the template header; is this really more efficient than 19611 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19612 * but perhaps not for other scenarios. 19613 */ 19614 dst[0] = src[0]; 19615 dst[1] = src[1]; 19616 dst[2] = src[2]; 19617 dst[3] = src[3]; 19618 dst[4] = src[4]; 19619 dst[5] = src[5]; 19620 dst[6] = src[6]; 19621 dst[7] = src[7]; 19622 dst[8] = src[8]; 19623 dst[9] = src[9]; 19624 if (hdrlen -= 40) { 19625 hdrlen >>= 2; 19626 dst += 10; 19627 src += 10; 19628 do { 19629 *dst++ = *src++; 19630 } while (--hdrlen); 19631 } 19632 19633 /* 19634 * Set the ECN info in the TCP header if it is not a zero 19635 * window probe. Zero window probe is only sent in 19636 * tcp_wput_data() and tcp_timer(). 19637 */ 19638 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19639 SET_ECT(tcp, rptr); 19640 19641 if (tcp->tcp_ecn_echo_on) 19642 tcp_h->th_flags[0] |= TH_ECE; 19643 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19644 tcp_h->th_flags[0] |= TH_CWR; 19645 tcp->tcp_ecn_cwr_sent = B_TRUE; 19646 } 19647 } 19648 19649 /* Fill in SACK options */ 19650 if (num_sack_blk > 0) { 19651 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19652 sack_blk_t *tmp; 19653 int32_t i; 19654 19655 wptr[0] = TCPOPT_NOP; 19656 wptr[1] = TCPOPT_NOP; 19657 wptr[2] = TCPOPT_SACK; 19658 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19659 sizeof (sack_blk_t); 19660 wptr += TCPOPT_REAL_SACK_LEN; 19661 19662 tmp = tcp->tcp_sack_list; 19663 for (i = 0; i < num_sack_blk; i++) { 19664 U32_TO_BE32(tmp[i].begin, wptr); 19665 wptr += sizeof (tcp_seq); 19666 U32_TO_BE32(tmp[i].end, wptr); 19667 wptr += sizeof (tcp_seq); 19668 } 19669 tcp_h->th_offset_and_rsrvd[0] += 19670 ((num_sack_blk * 2 + 1) << 4); 19671 } 19672 } 19673 19674 /* 19675 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19676 * the destination address and SAP attribute, and if necessary, the 19677 * hardware checksum offload attribute to a Multidata message. 19678 */ 19679 static int 19680 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19681 const uint32_t start, const uint32_t stuff, const uint32_t end, 19682 const uint32_t flags, tcp_stack_t *tcps) 19683 { 19684 /* Add global destination address & SAP attribute */ 19685 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19686 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19687 "destination address+SAP\n")); 19688 19689 if (dlmp != NULL) 19690 TCP_STAT(tcps, tcp_mdt_allocfail); 19691 return (-1); 19692 } 19693 19694 /* Add global hwcksum attribute */ 19695 if (hwcksum && 19696 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19697 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19698 "checksum attribute\n")); 19699 19700 TCP_STAT(tcps, tcp_mdt_allocfail); 19701 return (-1); 19702 } 19703 19704 return (0); 19705 } 19706 19707 /* 19708 * Smaller and private version of pdescinfo_t used specifically for TCP, 19709 * which allows for only two payload spans per packet. 19710 */ 19711 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19712 19713 /* 19714 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19715 * scheme, and returns one the following: 19716 * 19717 * -1 = failed allocation. 19718 * 0 = success; burst count reached, or usable send window is too small, 19719 * and that we'd rather wait until later before sending again. 19720 */ 19721 static int 19722 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19723 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19724 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19725 const int mdt_thres) 19726 { 19727 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19728 multidata_t *mmd; 19729 uint_t obsegs, obbytes, hdr_frag_sz; 19730 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19731 int num_burst_seg, max_pld; 19732 pdesc_t *pkt; 19733 tcp_pdescinfo_t tcp_pkt_info; 19734 pdescinfo_t *pkt_info; 19735 int pbuf_idx, pbuf_idx_nxt; 19736 int seg_len, len, spill, af; 19737 boolean_t add_buffer, zcopy, clusterwide; 19738 boolean_t buf_trunked = B_FALSE; 19739 boolean_t rconfirm = B_FALSE; 19740 boolean_t done = B_FALSE; 19741 uint32_t cksum; 19742 uint32_t hwcksum_flags; 19743 ire_t *ire = NULL; 19744 ill_t *ill; 19745 ipha_t *ipha; 19746 ip6_t *ip6h; 19747 ipaddr_t src, dst; 19748 ill_zerocopy_capab_t *zc_cap = NULL; 19749 uint16_t *up; 19750 int err; 19751 conn_t *connp; 19752 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19753 uchar_t *pld_start; 19754 tcp_stack_t *tcps = tcp->tcp_tcps; 19755 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 19756 19757 #ifdef _BIG_ENDIAN 19758 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19759 #else 19760 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19761 #endif 19762 19763 #define PREP_NEW_MULTIDATA() { \ 19764 mmd = NULL; \ 19765 md_mp = md_hbuf = NULL; \ 19766 cur_hdr_off = 0; \ 19767 max_pld = tcp->tcp_mdt_max_pld; \ 19768 pbuf_idx = pbuf_idx_nxt = -1; \ 19769 add_buffer = B_TRUE; \ 19770 zcopy = B_FALSE; \ 19771 } 19772 19773 #define PREP_NEW_PBUF() { \ 19774 md_pbuf = md_pbuf_nxt = NULL; \ 19775 pbuf_idx = pbuf_idx_nxt = -1; \ 19776 cur_pld_off = 0; \ 19777 first_snxt = *snxt; \ 19778 ASSERT(*tail_unsent > 0); \ 19779 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19780 } 19781 19782 ASSERT(mdt_thres >= mss); 19783 ASSERT(*usable > 0 && *usable > mdt_thres); 19784 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19785 ASSERT(!TCP_IS_DETACHED(tcp)); 19786 ASSERT(tcp->tcp_valid_bits == 0 || 19787 tcp->tcp_valid_bits == TCP_FSS_VALID); 19788 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19789 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19790 (tcp->tcp_ipversion == IPV6_VERSION && 19791 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19792 19793 connp = tcp->tcp_connp; 19794 ASSERT(connp != NULL); 19795 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19796 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19797 19798 /* 19799 * Note that tcp will only declare at most 2 payload spans per 19800 * packet, which is much lower than the maximum allowable number 19801 * of packet spans per Multidata. For this reason, we use the 19802 * privately declared and smaller descriptor info structure, in 19803 * order to save some stack space. 19804 */ 19805 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19806 19807 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19808 if (af == AF_INET) { 19809 dst = tcp->tcp_ipha->ipha_dst; 19810 src = tcp->tcp_ipha->ipha_src; 19811 ASSERT(!CLASSD(dst)); 19812 } 19813 ASSERT(af == AF_INET || 19814 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19815 19816 obsegs = obbytes = 0; 19817 num_burst_seg = tcp->tcp_snd_burst; 19818 md_mp_head = NULL; 19819 PREP_NEW_MULTIDATA(); 19820 19821 /* 19822 * Before we go on further, make sure there is an IRE that we can 19823 * use, and that the ILL supports MDT. Otherwise, there's no point 19824 * in proceeding any further, and we should just hand everything 19825 * off to the legacy path. 19826 */ 19827 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19828 goto legacy_send_no_md; 19829 19830 ASSERT(ire != NULL); 19831 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19832 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19833 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19834 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19835 /* 19836 * If we do support loopback for MDT (which requires modifications 19837 * to the receiving paths), the following assertions should go away, 19838 * and we would be sending the Multidata to loopback conn later on. 19839 */ 19840 ASSERT(!IRE_IS_LOCAL(ire)); 19841 ASSERT(ire->ire_stq != NULL); 19842 19843 ill = ire_to_ill(ire); 19844 ASSERT(ill != NULL); 19845 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19846 19847 if (!tcp->tcp_ire_ill_check_done) { 19848 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19849 tcp->tcp_ire_ill_check_done = B_TRUE; 19850 } 19851 19852 /* 19853 * If the underlying interface conditions have changed, or if the 19854 * new interface does not support MDT, go back to legacy path. 19855 */ 19856 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19857 /* don't go through this path anymore for this connection */ 19858 TCP_STAT(tcps, tcp_mdt_conn_halted2); 19859 tcp->tcp_mdt = B_FALSE; 19860 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19861 "interface %s\n", (void *)connp, ill->ill_name)); 19862 /* IRE will be released prior to returning */ 19863 goto legacy_send_no_md; 19864 } 19865 19866 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19867 zc_cap = ill->ill_zerocopy_capab; 19868 19869 /* 19870 * Check if we can take tcp fast-path. Note that "incomplete" 19871 * ire's (where the link-layer for next hop is not resolved 19872 * or where the fast-path header in nce_fp_mp is not available 19873 * yet) are sent down the legacy (slow) path. 19874 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19875 */ 19876 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19877 /* IRE will be released prior to returning */ 19878 goto legacy_send_no_md; 19879 } 19880 19881 /* go to legacy path if interface doesn't support zerocopy */ 19882 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19883 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19884 /* IRE will be released prior to returning */ 19885 goto legacy_send_no_md; 19886 } 19887 19888 /* does the interface support hardware checksum offload? */ 19889 hwcksum_flags = 0; 19890 if (ILL_HCKSUM_CAPABLE(ill) && 19891 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19892 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19893 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19894 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19895 HCKSUM_IPHDRCKSUM) 19896 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19897 19898 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19899 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19900 hwcksum_flags |= HCK_FULLCKSUM; 19901 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19902 HCKSUM_INET_PARTIAL) 19903 hwcksum_flags |= HCK_PARTIALCKSUM; 19904 } 19905 19906 /* 19907 * Each header fragment consists of the leading extra space, 19908 * followed by the TCP/IP header, and the trailing extra space. 19909 * We make sure that each header fragment begins on a 32-bit 19910 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19911 * aligned in tcp_mdt_update). 19912 */ 19913 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19914 tcp->tcp_mdt_hdr_tail), 4); 19915 19916 /* are we starting from the beginning of data block? */ 19917 if (*tail_unsent == 0) { 19918 *xmit_tail = (*xmit_tail)->b_cont; 19919 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19920 *tail_unsent = (int)MBLKL(*xmit_tail); 19921 } 19922 19923 /* 19924 * Here we create one or more Multidata messages, each made up of 19925 * one header buffer and up to N payload buffers. This entire 19926 * operation is done within two loops: 19927 * 19928 * The outer loop mostly deals with creating the Multidata message, 19929 * as well as the header buffer that gets added to it. It also 19930 * links the Multidata messages together such that all of them can 19931 * be sent down to the lower layer in a single putnext call; this 19932 * linking behavior depends on the tcp_mdt_chain tunable. 19933 * 19934 * The inner loop takes an existing Multidata message, and adds 19935 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19936 * packetizes those buffers by filling up the corresponding header 19937 * buffer fragments with the proper IP and TCP headers, and by 19938 * describing the layout of each packet in the packet descriptors 19939 * that get added to the Multidata. 19940 */ 19941 do { 19942 /* 19943 * If usable send window is too small, or data blocks in 19944 * transmit list are smaller than our threshold (i.e. app 19945 * performs large writes followed by small ones), we hand 19946 * off the control over to the legacy path. Note that we'll 19947 * get back the control once it encounters a large block. 19948 */ 19949 if (*usable < mss || (*tail_unsent <= mdt_thres && 19950 (*xmit_tail)->b_cont != NULL && 19951 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19952 /* send down what we've got so far */ 19953 if (md_mp_head != NULL) { 19954 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19955 obsegs, obbytes, &rconfirm); 19956 } 19957 /* 19958 * Pass control over to tcp_send(), but tell it to 19959 * return to us once a large-size transmission is 19960 * possible. 19961 */ 19962 TCP_STAT(tcps, tcp_mdt_legacy_small); 19963 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19964 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19965 tail_unsent, xmit_tail, local_time, 19966 mdt_thres)) <= 0) { 19967 /* burst count reached, or alloc failed */ 19968 IRE_REFRELE(ire); 19969 return (err); 19970 } 19971 19972 /* tcp_send() may have sent everything, so check */ 19973 if (*usable <= 0) { 19974 IRE_REFRELE(ire); 19975 return (0); 19976 } 19977 19978 TCP_STAT(tcps, tcp_mdt_legacy_ret); 19979 /* 19980 * We may have delivered the Multidata, so make sure 19981 * to re-initialize before the next round. 19982 */ 19983 md_mp_head = NULL; 19984 obsegs = obbytes = 0; 19985 num_burst_seg = tcp->tcp_snd_burst; 19986 PREP_NEW_MULTIDATA(); 19987 19988 /* are we starting from the beginning of data block? */ 19989 if (*tail_unsent == 0) { 19990 *xmit_tail = (*xmit_tail)->b_cont; 19991 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19992 (uintptr_t)INT_MAX); 19993 *tail_unsent = (int)MBLKL(*xmit_tail); 19994 } 19995 } 19996 19997 /* 19998 * max_pld limits the number of mblks in tcp's transmit 19999 * queue that can be added to a Multidata message. Once 20000 * this counter reaches zero, no more additional mblks 20001 * can be added to it. What happens afterwards depends 20002 * on whether or not we are set to chain the Multidata 20003 * messages. If we are to link them together, reset 20004 * max_pld to its original value (tcp_mdt_max_pld) and 20005 * prepare to create a new Multidata message which will 20006 * get linked to md_mp_head. Else, leave it alone and 20007 * let the inner loop break on its own. 20008 */ 20009 if (tcp_mdt_chain && max_pld == 0) 20010 PREP_NEW_MULTIDATA(); 20011 20012 /* adding a payload buffer; re-initialize values */ 20013 if (add_buffer) 20014 PREP_NEW_PBUF(); 20015 20016 /* 20017 * If we don't have a Multidata, either because we just 20018 * (re)entered this outer loop, or after we branched off 20019 * to tcp_send above, setup the Multidata and header 20020 * buffer to be used. 20021 */ 20022 if (md_mp == NULL) { 20023 int md_hbuflen; 20024 uint32_t start, stuff; 20025 20026 /* 20027 * Calculate Multidata header buffer size large enough 20028 * to hold all of the headers that can possibly be 20029 * sent at this moment. We'd rather over-estimate 20030 * the size than running out of space; this is okay 20031 * since this buffer is small anyway. 20032 */ 20033 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 20034 20035 /* 20036 * Start and stuff offset for partial hardware 20037 * checksum offload; these are currently for IPv4. 20038 * For full checksum offload, they are set to zero. 20039 */ 20040 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 20041 if (af == AF_INET) { 20042 start = IP_SIMPLE_HDR_LENGTH; 20043 stuff = IP_SIMPLE_HDR_LENGTH + 20044 TCP_CHECKSUM_OFFSET; 20045 } else { 20046 start = IPV6_HDR_LEN; 20047 stuff = IPV6_HDR_LEN + 20048 TCP_CHECKSUM_OFFSET; 20049 } 20050 } else { 20051 start = stuff = 0; 20052 } 20053 20054 /* 20055 * Create the header buffer, Multidata, as well as 20056 * any necessary attributes (destination address, 20057 * SAP and hardware checksum offload) that should 20058 * be associated with the Multidata message. 20059 */ 20060 ASSERT(cur_hdr_off == 0); 20061 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 20062 ((md_hbuf->b_wptr += md_hbuflen), 20063 (mmd = mmd_alloc(md_hbuf, &md_mp, 20064 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 20065 /* fastpath mblk */ 20066 ire->ire_nce->nce_res_mp, 20067 /* hardware checksum enabled */ 20068 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 20069 /* hardware checksum offsets */ 20070 start, stuff, 0, 20071 /* hardware checksum flag */ 20072 hwcksum_flags, tcps) != 0)) { 20073 legacy_send: 20074 if (md_mp != NULL) { 20075 /* Unlink message from the chain */ 20076 if (md_mp_head != NULL) { 20077 err = (intptr_t)rmvb(md_mp_head, 20078 md_mp); 20079 /* 20080 * We can't assert that rmvb 20081 * did not return -1, since we 20082 * may get here before linkb 20083 * happens. We do, however, 20084 * check if we just removed the 20085 * only element in the list. 20086 */ 20087 if (err == 0) 20088 md_mp_head = NULL; 20089 } 20090 /* md_hbuf gets freed automatically */ 20091 TCP_STAT(tcps, tcp_mdt_discarded); 20092 freeb(md_mp); 20093 } else { 20094 /* Either allocb or mmd_alloc failed */ 20095 TCP_STAT(tcps, tcp_mdt_allocfail); 20096 if (md_hbuf != NULL) 20097 freeb(md_hbuf); 20098 } 20099 20100 /* send down what we've got so far */ 20101 if (md_mp_head != NULL) { 20102 tcp_multisend_data(tcp, ire, ill, 20103 md_mp_head, obsegs, obbytes, 20104 &rconfirm); 20105 } 20106 legacy_send_no_md: 20107 if (ire != NULL) 20108 IRE_REFRELE(ire); 20109 /* 20110 * Too bad; let the legacy path handle this. 20111 * We specify INT_MAX for the threshold, since 20112 * we gave up with the Multidata processings 20113 * and let the old path have it all. 20114 */ 20115 TCP_STAT(tcps, tcp_mdt_legacy_all); 20116 return (tcp_send(q, tcp, mss, tcp_hdr_len, 20117 tcp_tcp_hdr_len, num_sack_blk, usable, 20118 snxt, tail_unsent, xmit_tail, local_time, 20119 INT_MAX)); 20120 } 20121 20122 /* link to any existing ones, if applicable */ 20123 TCP_STAT(tcps, tcp_mdt_allocd); 20124 if (md_mp_head == NULL) { 20125 md_mp_head = md_mp; 20126 } else if (tcp_mdt_chain) { 20127 TCP_STAT(tcps, tcp_mdt_linked); 20128 linkb(md_mp_head, md_mp); 20129 } 20130 } 20131 20132 ASSERT(md_mp_head != NULL); 20133 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 20134 ASSERT(md_mp != NULL && mmd != NULL); 20135 ASSERT(md_hbuf != NULL); 20136 20137 /* 20138 * Packetize the transmittable portion of the data block; 20139 * each data block is essentially added to the Multidata 20140 * as a payload buffer. We also deal with adding more 20141 * than one payload buffers, which happens when the remaining 20142 * packetized portion of the current payload buffer is less 20143 * than MSS, while the next data block in transmit queue 20144 * has enough data to make up for one. This "spillover" 20145 * case essentially creates a split-packet, where portions 20146 * of the packet's payload fragments may span across two 20147 * virtually discontiguous address blocks. 20148 */ 20149 seg_len = mss; 20150 do { 20151 len = seg_len; 20152 20153 ASSERT(len > 0); 20154 ASSERT(max_pld >= 0); 20155 ASSERT(!add_buffer || cur_pld_off == 0); 20156 20157 /* 20158 * First time around for this payload buffer; note 20159 * in the case of a spillover, the following has 20160 * been done prior to adding the split-packet 20161 * descriptor to Multidata, and we don't want to 20162 * repeat the process. 20163 */ 20164 if (add_buffer) { 20165 ASSERT(mmd != NULL); 20166 ASSERT(md_pbuf == NULL); 20167 ASSERT(md_pbuf_nxt == NULL); 20168 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 20169 20170 /* 20171 * Have we reached the limit? We'd get to 20172 * this case when we're not chaining the 20173 * Multidata messages together, and since 20174 * we're done, terminate this loop. 20175 */ 20176 if (max_pld == 0) 20177 break; /* done */ 20178 20179 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 20180 TCP_STAT(tcps, tcp_mdt_allocfail); 20181 goto legacy_send; /* out_of_mem */ 20182 } 20183 20184 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 20185 zc_cap != NULL) { 20186 if (!ip_md_zcopy_attr(mmd, NULL, 20187 zc_cap->ill_zerocopy_flags)) { 20188 freeb(md_pbuf); 20189 TCP_STAT(tcps, 20190 tcp_mdt_allocfail); 20191 /* out_of_mem */ 20192 goto legacy_send; 20193 } 20194 zcopy = B_TRUE; 20195 } 20196 20197 md_pbuf->b_rptr += base_pld_off; 20198 20199 /* 20200 * Add a payload buffer to the Multidata; this 20201 * operation must not fail, or otherwise our 20202 * logic in this routine is broken. There 20203 * is no memory allocation done by the 20204 * routine, so any returned failure simply 20205 * tells us that we've done something wrong. 20206 * 20207 * A failure tells us that either we're adding 20208 * the same payload buffer more than once, or 20209 * we're trying to add more buffers than 20210 * allowed (max_pld calculation is wrong). 20211 * None of the above cases should happen, and 20212 * we panic because either there's horrible 20213 * heap corruption, and/or programming mistake. 20214 */ 20215 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 20216 if (pbuf_idx < 0) { 20217 cmn_err(CE_PANIC, "tcp_multisend: " 20218 "payload buffer logic error " 20219 "detected for tcp %p mmd %p " 20220 "pbuf %p (%d)\n", 20221 (void *)tcp, (void *)mmd, 20222 (void *)md_pbuf, pbuf_idx); 20223 } 20224 20225 ASSERT(max_pld > 0); 20226 --max_pld; 20227 add_buffer = B_FALSE; 20228 } 20229 20230 ASSERT(md_mp_head != NULL); 20231 ASSERT(md_pbuf != NULL); 20232 ASSERT(md_pbuf_nxt == NULL); 20233 ASSERT(pbuf_idx != -1); 20234 ASSERT(pbuf_idx_nxt == -1); 20235 ASSERT(*usable > 0); 20236 20237 /* 20238 * We spillover to the next payload buffer only 20239 * if all of the following is true: 20240 * 20241 * 1. There is not enough data on the current 20242 * payload buffer to make up `len', 20243 * 2. We are allowed to send `len', 20244 * 3. The next payload buffer length is large 20245 * enough to accomodate `spill'. 20246 */ 20247 if ((spill = len - *tail_unsent) > 0 && 20248 *usable >= len && 20249 MBLKL((*xmit_tail)->b_cont) >= spill && 20250 max_pld > 0) { 20251 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 20252 if (md_pbuf_nxt == NULL) { 20253 TCP_STAT(tcps, tcp_mdt_allocfail); 20254 goto legacy_send; /* out_of_mem */ 20255 } 20256 20257 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 20258 zc_cap != NULL) { 20259 if (!ip_md_zcopy_attr(mmd, NULL, 20260 zc_cap->ill_zerocopy_flags)) { 20261 freeb(md_pbuf_nxt); 20262 TCP_STAT(tcps, 20263 tcp_mdt_allocfail); 20264 /* out_of_mem */ 20265 goto legacy_send; 20266 } 20267 zcopy = B_TRUE; 20268 } 20269 20270 /* 20271 * See comments above on the first call to 20272 * mmd_addpldbuf for explanation on the panic. 20273 */ 20274 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 20275 if (pbuf_idx_nxt < 0) { 20276 panic("tcp_multisend: " 20277 "next payload buffer logic error " 20278 "detected for tcp %p mmd %p " 20279 "pbuf %p (%d)\n", 20280 (void *)tcp, (void *)mmd, 20281 (void *)md_pbuf_nxt, pbuf_idx_nxt); 20282 } 20283 20284 ASSERT(max_pld > 0); 20285 --max_pld; 20286 } else if (spill > 0) { 20287 /* 20288 * If there's a spillover, but the following 20289 * xmit_tail couldn't give us enough octets 20290 * to reach "len", then stop the current 20291 * Multidata creation and let the legacy 20292 * tcp_send() path take over. We don't want 20293 * to send the tiny segment as part of this 20294 * Multidata for performance reasons; instead, 20295 * we let the legacy path deal with grouping 20296 * it with the subsequent small mblks. 20297 */ 20298 if (*usable >= len && 20299 MBLKL((*xmit_tail)->b_cont) < spill) { 20300 max_pld = 0; 20301 break; /* done */ 20302 } 20303 20304 /* 20305 * We can't spillover, and we are near 20306 * the end of the current payload buffer, 20307 * so send what's left. 20308 */ 20309 ASSERT(*tail_unsent > 0); 20310 len = *tail_unsent; 20311 } 20312 20313 /* tail_unsent is negated if there is a spillover */ 20314 *tail_unsent -= len; 20315 *usable -= len; 20316 ASSERT(*usable >= 0); 20317 20318 if (*usable < mss) 20319 seg_len = *usable; 20320 /* 20321 * Sender SWS avoidance; see comments in tcp_send(); 20322 * everything else is the same, except that we only 20323 * do this here if there is no more data to be sent 20324 * following the current xmit_tail. We don't check 20325 * for 1-byte urgent data because we shouldn't get 20326 * here if TCP_URG_VALID is set. 20327 */ 20328 if (*usable > 0 && *usable < mss && 20329 ((md_pbuf_nxt == NULL && 20330 (*xmit_tail)->b_cont == NULL) || 20331 (md_pbuf_nxt != NULL && 20332 (*xmit_tail)->b_cont->b_cont == NULL)) && 20333 seg_len < (tcp->tcp_max_swnd >> 1) && 20334 (tcp->tcp_unsent - 20335 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20336 !tcp->tcp_zero_win_probe) { 20337 if ((*snxt + len) == tcp->tcp_snxt && 20338 (*snxt + len) == tcp->tcp_suna) { 20339 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20340 } 20341 done = B_TRUE; 20342 } 20343 20344 /* 20345 * Prime pump for IP's checksumming on our behalf; 20346 * include the adjustment for a source route if any. 20347 * Do this only for software/partial hardware checksum 20348 * offload, as this field gets zeroed out later for 20349 * the full hardware checksum offload case. 20350 */ 20351 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20352 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20353 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20354 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20355 } 20356 20357 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20358 *snxt += len; 20359 20360 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20361 /* 20362 * We set the PUSH bit only if TCP has no more buffered 20363 * data to be transmitted (or if sender SWS avoidance 20364 * takes place), as opposed to setting it for every 20365 * last packet in the burst. 20366 */ 20367 if (done || 20368 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20369 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20370 20371 /* 20372 * Set FIN bit if this is our last segment; snxt 20373 * already includes its length, and it will not 20374 * be adjusted after this point. 20375 */ 20376 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20377 *snxt == tcp->tcp_fss) { 20378 if (!tcp->tcp_fin_acked) { 20379 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20380 BUMP_MIB(&tcps->tcps_mib, 20381 tcpOutControl); 20382 } 20383 if (!tcp->tcp_fin_sent) { 20384 tcp->tcp_fin_sent = B_TRUE; 20385 /* 20386 * tcp state must be ESTABLISHED 20387 * in order for us to get here in 20388 * the first place. 20389 */ 20390 tcp->tcp_state = TCPS_FIN_WAIT_1; 20391 20392 /* 20393 * Upon returning from this routine, 20394 * tcp_wput_data() will set tcp_snxt 20395 * to be equal to snxt + tcp_fin_sent. 20396 * This is essentially the same as 20397 * setting it to tcp_fss + 1. 20398 */ 20399 } 20400 } 20401 20402 tcp->tcp_last_sent_len = (ushort_t)len; 20403 20404 len += tcp_hdr_len; 20405 if (tcp->tcp_ipversion == IPV4_VERSION) 20406 tcp->tcp_ipha->ipha_length = htons(len); 20407 else 20408 tcp->tcp_ip6h->ip6_plen = htons(len - 20409 ((char *)&tcp->tcp_ip6h[1] - 20410 tcp->tcp_iphc)); 20411 20412 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20413 20414 /* setup header fragment */ 20415 PDESC_HDR_ADD(pkt_info, 20416 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20417 tcp->tcp_mdt_hdr_head, /* head room */ 20418 tcp_hdr_len, /* len */ 20419 tcp->tcp_mdt_hdr_tail); /* tail room */ 20420 20421 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20422 hdr_frag_sz); 20423 ASSERT(MBLKIN(md_hbuf, 20424 (pkt_info->hdr_base - md_hbuf->b_rptr), 20425 PDESC_HDRSIZE(pkt_info))); 20426 20427 /* setup first payload fragment */ 20428 PDESC_PLD_INIT(pkt_info); 20429 PDESC_PLD_SPAN_ADD(pkt_info, 20430 pbuf_idx, /* index */ 20431 md_pbuf->b_rptr + cur_pld_off, /* start */ 20432 tcp->tcp_last_sent_len); /* len */ 20433 20434 /* create a split-packet in case of a spillover */ 20435 if (md_pbuf_nxt != NULL) { 20436 ASSERT(spill > 0); 20437 ASSERT(pbuf_idx_nxt > pbuf_idx); 20438 ASSERT(!add_buffer); 20439 20440 md_pbuf = md_pbuf_nxt; 20441 md_pbuf_nxt = NULL; 20442 pbuf_idx = pbuf_idx_nxt; 20443 pbuf_idx_nxt = -1; 20444 cur_pld_off = spill; 20445 20446 /* trim out first payload fragment */ 20447 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20448 20449 /* setup second payload fragment */ 20450 PDESC_PLD_SPAN_ADD(pkt_info, 20451 pbuf_idx, /* index */ 20452 md_pbuf->b_rptr, /* start */ 20453 spill); /* len */ 20454 20455 if ((*xmit_tail)->b_next == NULL) { 20456 /* 20457 * Store the lbolt used for RTT 20458 * estimation. We can only record one 20459 * timestamp per mblk so we do it when 20460 * we reach the end of the payload 20461 * buffer. Also we only take a new 20462 * timestamp sample when the previous 20463 * timed data from the same mblk has 20464 * been ack'ed. 20465 */ 20466 (*xmit_tail)->b_prev = local_time; 20467 (*xmit_tail)->b_next = 20468 (mblk_t *)(uintptr_t)first_snxt; 20469 } 20470 20471 first_snxt = *snxt - spill; 20472 20473 /* 20474 * Advance xmit_tail; usable could be 0 by 20475 * the time we got here, but we made sure 20476 * above that we would only spillover to 20477 * the next data block if usable includes 20478 * the spilled-over amount prior to the 20479 * subtraction. Therefore, we are sure 20480 * that xmit_tail->b_cont can't be NULL. 20481 */ 20482 ASSERT((*xmit_tail)->b_cont != NULL); 20483 *xmit_tail = (*xmit_tail)->b_cont; 20484 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20485 (uintptr_t)INT_MAX); 20486 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20487 } else { 20488 cur_pld_off += tcp->tcp_last_sent_len; 20489 } 20490 20491 /* 20492 * Fill in the header using the template header, and 20493 * add options such as time-stamp, ECN and/or SACK, 20494 * as needed. 20495 */ 20496 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20497 (clock_t)local_time, num_sack_blk); 20498 20499 /* take care of some IP header businesses */ 20500 if (af == AF_INET) { 20501 ipha = (ipha_t *)pkt_info->hdr_rptr; 20502 20503 ASSERT(OK_32PTR((uchar_t *)ipha)); 20504 ASSERT(PDESC_HDRL(pkt_info) >= 20505 IP_SIMPLE_HDR_LENGTH); 20506 ASSERT(ipha->ipha_version_and_hdr_length == 20507 IP_SIMPLE_HDR_VERSION); 20508 20509 /* 20510 * Assign ident value for current packet; see 20511 * related comments in ip_wput_ire() about the 20512 * contract private interface with clustering 20513 * group. 20514 */ 20515 clusterwide = B_FALSE; 20516 if (cl_inet_ipident != NULL) { 20517 ASSERT(cl_inet_isclusterwide != NULL); 20518 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20519 AF_INET, 20520 (uint8_t *)(uintptr_t)src)) { 20521 ipha->ipha_ident = 20522 (*cl_inet_ipident) 20523 (IPPROTO_IP, AF_INET, 20524 (uint8_t *)(uintptr_t)src, 20525 (uint8_t *)(uintptr_t)dst); 20526 clusterwide = B_TRUE; 20527 } 20528 } 20529 20530 if (!clusterwide) { 20531 ipha->ipha_ident = (uint16_t) 20532 atomic_add_32_nv( 20533 &ire->ire_ident, 1); 20534 } 20535 #ifndef _BIG_ENDIAN 20536 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20537 (ipha->ipha_ident >> 8); 20538 #endif 20539 } else { 20540 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20541 20542 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20543 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20544 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20545 ASSERT(PDESC_HDRL(pkt_info) >= 20546 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20547 TCP_CHECKSUM_SIZE)); 20548 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20549 20550 if (tcp->tcp_ip_forward_progress) { 20551 rconfirm = B_TRUE; 20552 tcp->tcp_ip_forward_progress = B_FALSE; 20553 } 20554 } 20555 20556 /* at least one payload span, and at most two */ 20557 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20558 20559 /* add the packet descriptor to Multidata */ 20560 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20561 KM_NOSLEEP)) == NULL) { 20562 /* 20563 * Any failure other than ENOMEM indicates 20564 * that we have passed in invalid pkt_info 20565 * or parameters to mmd_addpdesc, which must 20566 * not happen. 20567 * 20568 * EINVAL is a result of failure on boundary 20569 * checks against the pkt_info contents. It 20570 * should not happen, and we panic because 20571 * either there's horrible heap corruption, 20572 * and/or programming mistake. 20573 */ 20574 if (err != ENOMEM) { 20575 cmn_err(CE_PANIC, "tcp_multisend: " 20576 "pdesc logic error detected for " 20577 "tcp %p mmd %p pinfo %p (%d)\n", 20578 (void *)tcp, (void *)mmd, 20579 (void *)pkt_info, err); 20580 } 20581 TCP_STAT(tcps, tcp_mdt_addpdescfail); 20582 goto legacy_send; /* out_of_mem */ 20583 } 20584 ASSERT(pkt != NULL); 20585 20586 /* calculate IP header and TCP checksums */ 20587 if (af == AF_INET) { 20588 /* calculate pseudo-header checksum */ 20589 cksum = (dst >> 16) + (dst & 0xFFFF) + 20590 (src >> 16) + (src & 0xFFFF); 20591 20592 /* offset for TCP header checksum */ 20593 up = IPH_TCPH_CHECKSUMP(ipha, 20594 IP_SIMPLE_HDR_LENGTH); 20595 } else { 20596 up = (uint16_t *)&ip6h->ip6_src; 20597 20598 /* calculate pseudo-header checksum */ 20599 cksum = up[0] + up[1] + up[2] + up[3] + 20600 up[4] + up[5] + up[6] + up[7] + 20601 up[8] + up[9] + up[10] + up[11] + 20602 up[12] + up[13] + up[14] + up[15]; 20603 20604 /* Fold the initial sum */ 20605 cksum = (cksum & 0xffff) + (cksum >> 16); 20606 20607 up = (uint16_t *)(((uchar_t *)ip6h) + 20608 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20609 } 20610 20611 if (hwcksum_flags & HCK_FULLCKSUM) { 20612 /* clear checksum field for hardware */ 20613 *up = 0; 20614 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20615 uint32_t sum; 20616 20617 /* pseudo-header checksumming */ 20618 sum = *up + cksum + IP_TCP_CSUM_COMP; 20619 sum = (sum & 0xFFFF) + (sum >> 16); 20620 *up = (sum & 0xFFFF) + (sum >> 16); 20621 } else { 20622 /* software checksumming */ 20623 TCP_STAT(tcps, tcp_out_sw_cksum); 20624 TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes, 20625 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20626 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20627 cksum + IP_TCP_CSUM_COMP); 20628 if (*up == 0) 20629 *up = 0xFFFF; 20630 } 20631 20632 /* IPv4 header checksum */ 20633 if (af == AF_INET) { 20634 ipha->ipha_fragment_offset_and_flags |= 20635 (uint32_t)htons(ire->ire_frag_flag); 20636 20637 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20638 ipha->ipha_hdr_checksum = 0; 20639 } else { 20640 IP_HDR_CKSUM(ipha, cksum, 20641 ((uint32_t *)ipha)[0], 20642 ((uint16_t *)ipha)[4]); 20643 } 20644 } 20645 20646 if (af == AF_INET && 20647 HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) || 20648 af == AF_INET6 && 20649 HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) { 20650 /* build header(IP/TCP) mblk for this segment */ 20651 if ((mp = dupb(md_hbuf)) == NULL) 20652 goto legacy_send; 20653 20654 mp->b_rptr = pkt_info->hdr_rptr; 20655 mp->b_wptr = pkt_info->hdr_wptr; 20656 20657 /* build payload mblk for this segment */ 20658 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20659 freemsg(mp); 20660 goto legacy_send; 20661 } 20662 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20663 mp1->b_rptr = mp1->b_wptr - 20664 tcp->tcp_last_sent_len; 20665 linkb(mp, mp1); 20666 20667 pld_start = mp1->b_rptr; 20668 20669 if (af == AF_INET) { 20670 DTRACE_PROBE4( 20671 ip4__physical__out__start, 20672 ill_t *, NULL, 20673 ill_t *, ill, 20674 ipha_t *, ipha, 20675 mblk_t *, mp); 20676 FW_HOOKS( 20677 ipst->ips_ip4_physical_out_event, 20678 ipst->ips_ipv4firewall_physical_out, 20679 NULL, ill, ipha, mp, mp, ipst); 20680 DTRACE_PROBE1( 20681 ip4__physical__out__end, 20682 mblk_t *, mp); 20683 } else { 20684 DTRACE_PROBE4( 20685 ip6__physical__out_start, 20686 ill_t *, NULL, 20687 ill_t *, ill, 20688 ip6_t *, ip6h, 20689 mblk_t *, mp); 20690 FW_HOOKS6( 20691 ipst->ips_ip6_physical_out_event, 20692 ipst->ips_ipv6firewall_physical_out, 20693 NULL, ill, ip6h, mp, mp, ipst); 20694 DTRACE_PROBE1( 20695 ip6__physical__out__end, 20696 mblk_t *, mp); 20697 } 20698 20699 if (buf_trunked && mp != NULL) { 20700 /* 20701 * Need to pass it to normal path. 20702 */ 20703 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20704 } else if (mp == NULL || 20705 mp->b_rptr != pkt_info->hdr_rptr || 20706 mp->b_wptr != pkt_info->hdr_wptr || 20707 (mp1 = mp->b_cont) == NULL || 20708 mp1->b_rptr != pld_start || 20709 mp1->b_wptr != pld_start + 20710 tcp->tcp_last_sent_len || 20711 mp1->b_cont != NULL) { 20712 /* 20713 * Need to pass all packets of this 20714 * buffer to normal path, either when 20715 * packet is blocked, or when boundary 20716 * of header buffer or payload buffer 20717 * has been changed by FW_HOOKS[6]. 20718 */ 20719 buf_trunked = B_TRUE; 20720 if (md_mp_head != NULL) { 20721 err = (intptr_t)rmvb(md_mp_head, 20722 md_mp); 20723 if (err == 0) 20724 md_mp_head = NULL; 20725 } 20726 20727 /* send down what we've got so far */ 20728 if (md_mp_head != NULL) { 20729 tcp_multisend_data(tcp, ire, 20730 ill, md_mp_head, obsegs, 20731 obbytes, &rconfirm); 20732 } 20733 md_mp_head = NULL; 20734 20735 if (mp != NULL) 20736 CALL_IP_WPUT(tcp->tcp_connp, 20737 q, mp); 20738 20739 mp1 = fw_mp_head; 20740 do { 20741 mp = mp1; 20742 mp1 = mp1->b_next; 20743 mp->b_next = NULL; 20744 mp->b_prev = NULL; 20745 CALL_IP_WPUT(tcp->tcp_connp, 20746 q, mp); 20747 } while (mp1 != NULL); 20748 20749 fw_mp_head = NULL; 20750 } else { 20751 if (fw_mp_head == NULL) 20752 fw_mp_head = mp; 20753 else 20754 fw_mp_head->b_prev->b_next = mp; 20755 fw_mp_head->b_prev = mp; 20756 } 20757 } 20758 20759 /* advance header offset */ 20760 cur_hdr_off += hdr_frag_sz; 20761 20762 obbytes += tcp->tcp_last_sent_len; 20763 ++obsegs; 20764 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20765 *tail_unsent > 0); 20766 20767 if ((*xmit_tail)->b_next == NULL) { 20768 /* 20769 * Store the lbolt used for RTT estimation. We can only 20770 * record one timestamp per mblk so we do it when we 20771 * reach the end of the payload buffer. Also we only 20772 * take a new timestamp sample when the previous timed 20773 * data from the same mblk has been ack'ed. 20774 */ 20775 (*xmit_tail)->b_prev = local_time; 20776 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20777 } 20778 20779 ASSERT(*tail_unsent >= 0); 20780 if (*tail_unsent > 0) { 20781 /* 20782 * We got here because we broke out of the above 20783 * loop due to of one of the following cases: 20784 * 20785 * 1. len < adjusted MSS (i.e. small), 20786 * 2. Sender SWS avoidance, 20787 * 3. max_pld is zero. 20788 * 20789 * We are done for this Multidata, so trim our 20790 * last payload buffer (if any) accordingly. 20791 */ 20792 if (md_pbuf != NULL) 20793 md_pbuf->b_wptr -= *tail_unsent; 20794 } else if (*usable > 0) { 20795 *xmit_tail = (*xmit_tail)->b_cont; 20796 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20797 (uintptr_t)INT_MAX); 20798 *tail_unsent = (int)MBLKL(*xmit_tail); 20799 add_buffer = B_TRUE; 20800 } 20801 20802 while (fw_mp_head) { 20803 mp = fw_mp_head; 20804 fw_mp_head = fw_mp_head->b_next; 20805 mp->b_prev = mp->b_next = NULL; 20806 freemsg(mp); 20807 } 20808 if (buf_trunked) { 20809 TCP_STAT(tcps, tcp_mdt_discarded); 20810 freeb(md_mp); 20811 buf_trunked = B_FALSE; 20812 } 20813 } while (!done && *usable > 0 && num_burst_seg > 0 && 20814 (tcp_mdt_chain || max_pld > 0)); 20815 20816 if (md_mp_head != NULL) { 20817 /* send everything down */ 20818 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20819 &rconfirm); 20820 } 20821 20822 #undef PREP_NEW_MULTIDATA 20823 #undef PREP_NEW_PBUF 20824 #undef IPVER 20825 20826 IRE_REFRELE(ire); 20827 return (0); 20828 } 20829 20830 /* 20831 * A wrapper function for sending one or more Multidata messages down to 20832 * the module below ip; this routine does not release the reference of the 20833 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20834 */ 20835 static void 20836 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20837 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20838 { 20839 uint64_t delta; 20840 nce_t *nce; 20841 tcp_stack_t *tcps = tcp->tcp_tcps; 20842 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20843 20844 ASSERT(ire != NULL && ill != NULL); 20845 ASSERT(ire->ire_stq != NULL); 20846 ASSERT(md_mp_head != NULL); 20847 ASSERT(rconfirm != NULL); 20848 20849 /* adjust MIBs and IRE timestamp */ 20850 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20851 tcp->tcp_obsegs += obsegs; 20852 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs); 20853 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes); 20854 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs); 20855 20856 if (tcp->tcp_ipversion == IPV4_VERSION) { 20857 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs); 20858 } else { 20859 TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs); 20860 } 20861 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20862 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20863 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20864 20865 ire->ire_ob_pkt_count += obsegs; 20866 if (ire->ire_ipif != NULL) 20867 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20868 ire->ire_last_used_time = lbolt; 20869 20870 /* send it down */ 20871 putnext(ire->ire_stq, md_mp_head); 20872 20873 /* we're done for TCP/IPv4 */ 20874 if (tcp->tcp_ipversion == IPV4_VERSION) 20875 return; 20876 20877 nce = ire->ire_nce; 20878 20879 ASSERT(nce != NULL); 20880 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20881 ASSERT(nce->nce_state != ND_INCOMPLETE); 20882 20883 /* reachability confirmation? */ 20884 if (*rconfirm) { 20885 nce->nce_last = TICK_TO_MSEC(lbolt64); 20886 if (nce->nce_state != ND_REACHABLE) { 20887 mutex_enter(&nce->nce_lock); 20888 nce->nce_state = ND_REACHABLE; 20889 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20890 mutex_exit(&nce->nce_lock); 20891 (void) untimeout(nce->nce_timeout_id); 20892 if (ip_debug > 2) { 20893 /* ip1dbg */ 20894 pr_addr_dbg("tcp_multisend_data: state " 20895 "for %s changed to REACHABLE\n", 20896 AF_INET6, &ire->ire_addr_v6); 20897 } 20898 } 20899 /* reset transport reachability confirmation */ 20900 *rconfirm = B_FALSE; 20901 } 20902 20903 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20904 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20905 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20906 20907 if (delta > (uint64_t)ill->ill_reachable_time) { 20908 mutex_enter(&nce->nce_lock); 20909 switch (nce->nce_state) { 20910 case ND_REACHABLE: 20911 case ND_STALE: 20912 /* 20913 * ND_REACHABLE is identical to ND_STALE in this 20914 * specific case. If reachable time has expired for 20915 * this neighbor (delta is greater than reachable 20916 * time), conceptually, the neighbor cache is no 20917 * longer in REACHABLE state, but already in STALE 20918 * state. So the correct transition here is to 20919 * ND_DELAY. 20920 */ 20921 nce->nce_state = ND_DELAY; 20922 mutex_exit(&nce->nce_lock); 20923 NDP_RESTART_TIMER(nce, 20924 ipst->ips_delay_first_probe_time); 20925 if (ip_debug > 3) { 20926 /* ip2dbg */ 20927 pr_addr_dbg("tcp_multisend_data: state " 20928 "for %s changed to DELAY\n", 20929 AF_INET6, &ire->ire_addr_v6); 20930 } 20931 break; 20932 case ND_DELAY: 20933 case ND_PROBE: 20934 mutex_exit(&nce->nce_lock); 20935 /* Timers have already started */ 20936 break; 20937 case ND_UNREACHABLE: 20938 /* 20939 * ndp timer has detected that this nce is 20940 * unreachable and initiated deleting this nce 20941 * and all its associated IREs. This is a race 20942 * where we found the ire before it was deleted 20943 * and have just sent out a packet using this 20944 * unreachable nce. 20945 */ 20946 mutex_exit(&nce->nce_lock); 20947 break; 20948 default: 20949 ASSERT(0); 20950 } 20951 } 20952 } 20953 20954 /* 20955 * Derived from tcp_send_data(). 20956 */ 20957 static void 20958 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20959 int num_lso_seg) 20960 { 20961 ipha_t *ipha; 20962 mblk_t *ire_fp_mp; 20963 uint_t ire_fp_mp_len; 20964 uint32_t hcksum_txflags = 0; 20965 ipaddr_t src; 20966 ipaddr_t dst; 20967 uint32_t cksum; 20968 uint16_t *up; 20969 tcp_stack_t *tcps = tcp->tcp_tcps; 20970 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 20971 20972 ASSERT(DB_TYPE(mp) == M_DATA); 20973 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20974 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20975 ASSERT(tcp->tcp_connp != NULL); 20976 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20977 20978 ipha = (ipha_t *)mp->b_rptr; 20979 src = ipha->ipha_src; 20980 dst = ipha->ipha_dst; 20981 20982 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20983 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20984 num_lso_seg); 20985 #ifndef _BIG_ENDIAN 20986 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20987 #endif 20988 if (tcp->tcp_snd_zcopy_aware) { 20989 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20990 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20991 mp = tcp_zcopy_disable(tcp, mp); 20992 } 20993 20994 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20995 ASSERT(ill->ill_hcksum_capab != NULL); 20996 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20997 } 20998 20999 /* 21000 * Since the TCP checksum should be recalculated by h/w, we can just 21001 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 21002 * pseudo-header checksum for HCK_PARTIALCKSUM. 21003 * The partial pseudo-header excludes TCP length, that was calculated 21004 * in tcp_send(), so to zero *up before further processing. 21005 */ 21006 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 21007 21008 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 21009 *up = 0; 21010 21011 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 21012 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 21013 21014 /* 21015 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 21016 */ 21017 DB_LSOFLAGS(mp) |= HW_LSO; 21018 DB_LSOMSS(mp) = mss; 21019 21020 ipha->ipha_fragment_offset_and_flags |= 21021 (uint32_t)htons(ire->ire_frag_flag); 21022 21023 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21024 ire_fp_mp_len = MBLKL(ire_fp_mp); 21025 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 21026 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 21027 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 21028 21029 UPDATE_OB_PKT_COUNT(ire); 21030 ire->ire_last_used_time = lbolt; 21031 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 21032 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 21033 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 21034 ntohs(ipha->ipha_length)); 21035 21036 if (ILL_DLS_CAPABLE(ill)) { 21037 /* 21038 * Send the packet directly to DLD, where it may be queued 21039 * depending on the availability of transmit resources at 21040 * the media layer. 21041 */ 21042 IP_DLS_ILL_TX(ill, ipha, mp, ipst); 21043 } else { 21044 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 21045 DTRACE_PROBE4(ip4__physical__out__start, 21046 ill_t *, NULL, ill_t *, out_ill, 21047 ipha_t *, ipha, mblk_t *, mp); 21048 FW_HOOKS(ipst->ips_ip4_physical_out_event, 21049 ipst->ips_ipv4firewall_physical_out, 21050 NULL, out_ill, ipha, mp, mp, ipst); 21051 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 21052 if (mp != NULL) 21053 putnext(ire->ire_stq, mp); 21054 } 21055 } 21056 21057 /* 21058 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 21059 * scheme, and returns one of the following: 21060 * 21061 * -1 = failed allocation. 21062 * 0 = success; burst count reached, or usable send window is too small, 21063 * and that we'd rather wait until later before sending again. 21064 * 1 = success; we are called from tcp_multisend(), and both usable send 21065 * window and tail_unsent are greater than the MDT threshold, and thus 21066 * Multidata Transmit should be used instead. 21067 */ 21068 static int 21069 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 21070 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 21071 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 21072 const int mdt_thres) 21073 { 21074 int num_burst_seg = tcp->tcp_snd_burst; 21075 ire_t *ire = NULL; 21076 ill_t *ill = NULL; 21077 mblk_t *ire_fp_mp = NULL; 21078 uint_t ire_fp_mp_len = 0; 21079 int num_lso_seg = 1; 21080 uint_t lso_usable; 21081 boolean_t do_lso_send = B_FALSE; 21082 tcp_stack_t *tcps = tcp->tcp_tcps; 21083 21084 /* 21085 * Check LSO capability before any further work. And the similar check 21086 * need to be done in for(;;) loop. 21087 * LSO will be deployed when therer is more than one mss of available 21088 * data and a burst transmission is allowed. 21089 */ 21090 if (tcp->tcp_lso && 21091 (tcp->tcp_valid_bits == 0 || 21092 tcp->tcp_valid_bits == TCP_FSS_VALID) && 21093 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21094 /* 21095 * Try to find usable IRE/ILL and do basic check to the ILL. 21096 */ 21097 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 21098 /* 21099 * Enable LSO with this transmission. 21100 * Since IRE has been hold in 21101 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 21102 * should be called before return. 21103 */ 21104 do_lso_send = B_TRUE; 21105 ire_fp_mp = ire->ire_nce->nce_fp_mp; 21106 ire_fp_mp_len = MBLKL(ire_fp_mp); 21107 /* Round up to multiple of 4 */ 21108 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 21109 } else { 21110 do_lso_send = B_FALSE; 21111 ill = NULL; 21112 } 21113 } 21114 21115 for (;;) { 21116 struct datab *db; 21117 tcph_t *tcph; 21118 uint32_t sum; 21119 mblk_t *mp, *mp1; 21120 uchar_t *rptr; 21121 int len; 21122 21123 /* 21124 * If we're called by tcp_multisend(), and the amount of 21125 * sendable data as well as the size of current xmit_tail 21126 * is beyond the MDT threshold, return to the caller and 21127 * let the large data transmit be done using MDT. 21128 */ 21129 if (*usable > 0 && *usable > mdt_thres && 21130 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 21131 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 21132 ASSERT(tcp->tcp_mdt); 21133 return (1); /* success; do large send */ 21134 } 21135 21136 if (num_burst_seg == 0) 21137 break; /* success; burst count reached */ 21138 21139 /* 21140 * Calculate the maximum payload length we can send in *one* 21141 * time. 21142 */ 21143 if (do_lso_send) { 21144 /* 21145 * Check whether need to do LSO any more. 21146 */ 21147 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 21148 lso_usable = MIN(tcp->tcp_lso_max, *usable); 21149 lso_usable = MIN(lso_usable, 21150 num_burst_seg * mss); 21151 21152 num_lso_seg = lso_usable / mss; 21153 if (lso_usable % mss) { 21154 num_lso_seg++; 21155 tcp->tcp_last_sent_len = (ushort_t) 21156 (lso_usable % mss); 21157 } else { 21158 tcp->tcp_last_sent_len = (ushort_t)mss; 21159 } 21160 } else { 21161 do_lso_send = B_FALSE; 21162 num_lso_seg = 1; 21163 lso_usable = mss; 21164 } 21165 } 21166 21167 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 21168 21169 /* 21170 * Adjust num_burst_seg here. 21171 */ 21172 num_burst_seg -= num_lso_seg; 21173 21174 len = mss; 21175 if (len > *usable) { 21176 ASSERT(do_lso_send == B_FALSE); 21177 21178 len = *usable; 21179 if (len <= 0) { 21180 /* Terminate the loop */ 21181 break; /* success; too small */ 21182 } 21183 /* 21184 * Sender silly-window avoidance. 21185 * Ignore this if we are going to send a 21186 * zero window probe out. 21187 * 21188 * TODO: force data into microscopic window? 21189 * ==> (!pushed || (unsent > usable)) 21190 */ 21191 if (len < (tcp->tcp_max_swnd >> 1) && 21192 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 21193 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 21194 len == 1) && (! tcp->tcp_zero_win_probe)) { 21195 /* 21196 * If the retransmit timer is not running 21197 * we start it so that we will retransmit 21198 * in the case when the the receiver has 21199 * decremented the window. 21200 */ 21201 if (*snxt == tcp->tcp_snxt && 21202 *snxt == tcp->tcp_suna) { 21203 /* 21204 * We are not supposed to send 21205 * anything. So let's wait a little 21206 * bit longer before breaking SWS 21207 * avoidance. 21208 * 21209 * What should the value be? 21210 * Suggestion: MAX(init rexmit time, 21211 * tcp->tcp_rto) 21212 */ 21213 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 21214 } 21215 break; /* success; too small */ 21216 } 21217 } 21218 21219 tcph = tcp->tcp_tcph; 21220 21221 /* 21222 * The reason to adjust len here is that we need to set flags 21223 * and calculate checksum. 21224 */ 21225 if (do_lso_send) 21226 len = lso_usable; 21227 21228 *usable -= len; /* Approximate - can be adjusted later */ 21229 if (*usable > 0) 21230 tcph->th_flags[0] = TH_ACK; 21231 else 21232 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 21233 21234 /* 21235 * Prime pump for IP's checksumming on our behalf 21236 * Include the adjustment for a source route if any. 21237 */ 21238 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 21239 sum = (sum >> 16) + (sum & 0xFFFF); 21240 U16_TO_ABE16(sum, tcph->th_sum); 21241 21242 U32_TO_ABE32(*snxt, tcph->th_seq); 21243 21244 /* 21245 * Branch off to tcp_xmit_mp() if any of the VALID bits is 21246 * set. For the case when TCP_FSS_VALID is the only valid 21247 * bit (normal active close), branch off only when we think 21248 * that the FIN flag needs to be set. Note for this case, 21249 * that (snxt + len) may not reflect the actual seg_len, 21250 * as len may be further reduced in tcp_xmit_mp(). If len 21251 * gets modified, we will end up here again. 21252 */ 21253 if (tcp->tcp_valid_bits != 0 && 21254 (tcp->tcp_valid_bits != TCP_FSS_VALID || 21255 ((*snxt + len) == tcp->tcp_fss))) { 21256 uchar_t *prev_rptr; 21257 uint32_t prev_snxt = tcp->tcp_snxt; 21258 21259 if (*tail_unsent == 0) { 21260 ASSERT((*xmit_tail)->b_cont != NULL); 21261 *xmit_tail = (*xmit_tail)->b_cont; 21262 prev_rptr = (*xmit_tail)->b_rptr; 21263 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21264 (*xmit_tail)->b_rptr); 21265 } else { 21266 prev_rptr = (*xmit_tail)->b_rptr; 21267 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 21268 *tail_unsent; 21269 } 21270 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 21271 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 21272 /* Restore tcp_snxt so we get amount sent right. */ 21273 tcp->tcp_snxt = prev_snxt; 21274 if (prev_rptr == (*xmit_tail)->b_rptr) { 21275 /* 21276 * If the previous timestamp is still in use, 21277 * don't stomp on it. 21278 */ 21279 if ((*xmit_tail)->b_next == NULL) { 21280 (*xmit_tail)->b_prev = local_time; 21281 (*xmit_tail)->b_next = 21282 (mblk_t *)(uintptr_t)(*snxt); 21283 } 21284 } else 21285 (*xmit_tail)->b_rptr = prev_rptr; 21286 21287 if (mp == NULL) { 21288 if (ire != NULL) 21289 IRE_REFRELE(ire); 21290 return (-1); 21291 } 21292 mp1 = mp->b_cont; 21293 21294 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21295 tcp->tcp_last_sent_len = (ushort_t)len; 21296 while (mp1->b_cont) { 21297 *xmit_tail = (*xmit_tail)->b_cont; 21298 (*xmit_tail)->b_prev = local_time; 21299 (*xmit_tail)->b_next = 21300 (mblk_t *)(uintptr_t)(*snxt); 21301 mp1 = mp1->b_cont; 21302 } 21303 *snxt += len; 21304 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21305 BUMP_LOCAL(tcp->tcp_obsegs); 21306 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21307 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21308 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21309 tcp_send_data(tcp, q, mp); 21310 continue; 21311 } 21312 21313 *snxt += len; /* Adjust later if we don't send all of len */ 21314 BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs); 21315 UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len); 21316 21317 if (*tail_unsent) { 21318 /* Are the bytes above us in flight? */ 21319 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21320 if (rptr != (*xmit_tail)->b_rptr) { 21321 *tail_unsent -= len; 21322 if (len <= mss) /* LSO is unusable */ 21323 tcp->tcp_last_sent_len = (ushort_t)len; 21324 len += tcp_hdr_len; 21325 if (tcp->tcp_ipversion == IPV4_VERSION) 21326 tcp->tcp_ipha->ipha_length = htons(len); 21327 else 21328 tcp->tcp_ip6h->ip6_plen = 21329 htons(len - 21330 ((char *)&tcp->tcp_ip6h[1] - 21331 tcp->tcp_iphc)); 21332 mp = dupb(*xmit_tail); 21333 if (mp == NULL) { 21334 if (ire != NULL) 21335 IRE_REFRELE(ire); 21336 return (-1); /* out_of_mem */ 21337 } 21338 mp->b_rptr = rptr; 21339 /* 21340 * If the old timestamp is no longer in use, 21341 * sample a new timestamp now. 21342 */ 21343 if ((*xmit_tail)->b_next == NULL) { 21344 (*xmit_tail)->b_prev = local_time; 21345 (*xmit_tail)->b_next = 21346 (mblk_t *)(uintptr_t)(*snxt-len); 21347 } 21348 goto must_alloc; 21349 } 21350 } else { 21351 *xmit_tail = (*xmit_tail)->b_cont; 21352 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21353 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21354 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21355 (*xmit_tail)->b_rptr); 21356 } 21357 21358 (*xmit_tail)->b_prev = local_time; 21359 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21360 21361 *tail_unsent -= len; 21362 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21363 tcp->tcp_last_sent_len = (ushort_t)len; 21364 21365 len += tcp_hdr_len; 21366 if (tcp->tcp_ipversion == IPV4_VERSION) 21367 tcp->tcp_ipha->ipha_length = htons(len); 21368 else 21369 tcp->tcp_ip6h->ip6_plen = htons(len - 21370 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21371 21372 mp = dupb(*xmit_tail); 21373 if (mp == NULL) { 21374 if (ire != NULL) 21375 IRE_REFRELE(ire); 21376 return (-1); /* out_of_mem */ 21377 } 21378 21379 len = tcp_hdr_len; 21380 /* 21381 * There are four reasons to allocate a new hdr mblk: 21382 * 1) The bytes above us are in use by another packet 21383 * 2) We don't have good alignment 21384 * 3) The mblk is being shared 21385 * 4) We don't have enough room for a header 21386 */ 21387 rptr = mp->b_rptr - len; 21388 if (!OK_32PTR(rptr) || 21389 ((db = mp->b_datap), db->db_ref != 2) || 21390 rptr < db->db_base + ire_fp_mp_len) { 21391 /* NOTE: we assume allocb returns an OK_32PTR */ 21392 21393 must_alloc:; 21394 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21395 tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21396 if (mp1 == NULL) { 21397 freemsg(mp); 21398 if (ire != NULL) 21399 IRE_REFRELE(ire); 21400 return (-1); /* out_of_mem */ 21401 } 21402 mp1->b_cont = mp; 21403 mp = mp1; 21404 /* Leave room for Link Level header */ 21405 len = tcp_hdr_len; 21406 rptr = 21407 &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len]; 21408 mp->b_wptr = &rptr[len]; 21409 } 21410 21411 /* 21412 * Fill in the header using the template header, and add 21413 * options such as time-stamp, ECN and/or SACK, as needed. 21414 */ 21415 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21416 21417 mp->b_rptr = rptr; 21418 21419 if (*tail_unsent) { 21420 int spill = *tail_unsent; 21421 21422 mp1 = mp->b_cont; 21423 if (mp1 == NULL) 21424 mp1 = mp; 21425 21426 /* 21427 * If we're a little short, tack on more mblks until 21428 * there is no more spillover. 21429 */ 21430 while (spill < 0) { 21431 mblk_t *nmp; 21432 int nmpsz; 21433 21434 nmp = (*xmit_tail)->b_cont; 21435 nmpsz = MBLKL(nmp); 21436 21437 /* 21438 * Excess data in mblk; can we split it? 21439 * If MDT is enabled for the connection, 21440 * keep on splitting as this is a transient 21441 * send path. 21442 */ 21443 if (!do_lso_send && !tcp->tcp_mdt && 21444 (spill + nmpsz > 0)) { 21445 /* 21446 * Don't split if stream head was 21447 * told to break up larger writes 21448 * into smaller ones. 21449 */ 21450 if (tcp->tcp_maxpsz > 0) 21451 break; 21452 21453 /* 21454 * Next mblk is less than SMSS/2 21455 * rounded up to nearest 64-byte; 21456 * let it get sent as part of the 21457 * next segment. 21458 */ 21459 if (tcp->tcp_localnet && 21460 !tcp->tcp_cork && 21461 (nmpsz < roundup((mss >> 1), 64))) 21462 break; 21463 } 21464 21465 *xmit_tail = nmp; 21466 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21467 /* Stash for rtt use later */ 21468 (*xmit_tail)->b_prev = local_time; 21469 (*xmit_tail)->b_next = 21470 (mblk_t *)(uintptr_t)(*snxt - len); 21471 mp1->b_cont = dupb(*xmit_tail); 21472 mp1 = mp1->b_cont; 21473 21474 spill += nmpsz; 21475 if (mp1 == NULL) { 21476 *tail_unsent = spill; 21477 freemsg(mp); 21478 if (ire != NULL) 21479 IRE_REFRELE(ire); 21480 return (-1); /* out_of_mem */ 21481 } 21482 } 21483 21484 /* Trim back any surplus on the last mblk */ 21485 if (spill >= 0) { 21486 mp1->b_wptr -= spill; 21487 *tail_unsent = spill; 21488 } else { 21489 /* 21490 * We did not send everything we could in 21491 * order to remain within the b_cont limit. 21492 */ 21493 *usable -= spill; 21494 *snxt += spill; 21495 tcp->tcp_last_sent_len += spill; 21496 UPDATE_MIB(&tcps->tcps_mib, 21497 tcpOutDataBytes, spill); 21498 /* 21499 * Adjust the checksum 21500 */ 21501 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21502 sum += spill; 21503 sum = (sum >> 16) + (sum & 0xFFFF); 21504 U16_TO_ABE16(sum, tcph->th_sum); 21505 if (tcp->tcp_ipversion == IPV4_VERSION) { 21506 sum = ntohs( 21507 ((ipha_t *)rptr)->ipha_length) + 21508 spill; 21509 ((ipha_t *)rptr)->ipha_length = 21510 htons(sum); 21511 } else { 21512 sum = ntohs( 21513 ((ip6_t *)rptr)->ip6_plen) + 21514 spill; 21515 ((ip6_t *)rptr)->ip6_plen = 21516 htons(sum); 21517 } 21518 *tail_unsent = 0; 21519 } 21520 } 21521 if (tcp->tcp_ip_forward_progress) { 21522 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21523 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21524 tcp->tcp_ip_forward_progress = B_FALSE; 21525 } 21526 21527 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21528 if (do_lso_send) { 21529 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21530 num_lso_seg); 21531 tcp->tcp_obsegs += num_lso_seg; 21532 21533 TCP_STAT(tcps, tcp_lso_times); 21534 TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg); 21535 } else { 21536 tcp_send_data(tcp, q, mp); 21537 BUMP_LOCAL(tcp->tcp_obsegs); 21538 } 21539 } 21540 21541 if (ire != NULL) 21542 IRE_REFRELE(ire); 21543 return (0); 21544 } 21545 21546 /* Unlink and return any mblk that looks like it contains a MDT info */ 21547 static mblk_t * 21548 tcp_mdt_info_mp(mblk_t *mp) 21549 { 21550 mblk_t *prev_mp; 21551 21552 for (;;) { 21553 prev_mp = mp; 21554 /* no more to process? */ 21555 if ((mp = mp->b_cont) == NULL) 21556 break; 21557 21558 switch (DB_TYPE(mp)) { 21559 case M_CTL: 21560 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21561 continue; 21562 ASSERT(prev_mp != NULL); 21563 prev_mp->b_cont = mp->b_cont; 21564 mp->b_cont = NULL; 21565 return (mp); 21566 default: 21567 break; 21568 } 21569 } 21570 return (mp); 21571 } 21572 21573 /* MDT info update routine, called when IP notifies us about MDT */ 21574 static void 21575 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21576 { 21577 boolean_t prev_state; 21578 tcp_stack_t *tcps = tcp->tcp_tcps; 21579 21580 /* 21581 * IP is telling us to abort MDT on this connection? We know 21582 * this because the capability is only turned off when IP 21583 * encounters some pathological cases, e.g. link-layer change 21584 * where the new driver doesn't support MDT, or in situation 21585 * where MDT usage on the link-layer has been switched off. 21586 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21587 * if the link-layer doesn't support MDT, and if it does, it 21588 * will indicate that the feature is to be turned on. 21589 */ 21590 prev_state = tcp->tcp_mdt; 21591 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21592 if (!tcp->tcp_mdt && !first) { 21593 TCP_STAT(tcps, tcp_mdt_conn_halted3); 21594 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21595 (void *)tcp->tcp_connp)); 21596 } 21597 21598 /* 21599 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21600 * so disable MDT otherwise. The checks are done here 21601 * and in tcp_wput_data(). 21602 */ 21603 if (tcp->tcp_mdt && 21604 (tcp->tcp_ipversion == IPV4_VERSION && 21605 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21606 (tcp->tcp_ipversion == IPV6_VERSION && 21607 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21608 tcp->tcp_mdt = B_FALSE; 21609 21610 if (tcp->tcp_mdt) { 21611 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21612 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21613 "version (%d), expected version is %d", 21614 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21615 tcp->tcp_mdt = B_FALSE; 21616 return; 21617 } 21618 21619 /* 21620 * We need the driver to be able to handle at least three 21621 * spans per packet in order for tcp MDT to be utilized. 21622 * The first is for the header portion, while the rest are 21623 * needed to handle a packet that straddles across two 21624 * virtually non-contiguous buffers; a typical tcp packet 21625 * therefore consists of only two spans. Note that we take 21626 * a zero as "don't care". 21627 */ 21628 if (mdt_capab->ill_mdt_span_limit > 0 && 21629 mdt_capab->ill_mdt_span_limit < 3) { 21630 tcp->tcp_mdt = B_FALSE; 21631 return; 21632 } 21633 21634 /* a zero means driver wants default value */ 21635 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21636 tcps->tcps_mdt_max_pbufs); 21637 if (tcp->tcp_mdt_max_pld == 0) 21638 tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs; 21639 21640 /* ensure 32-bit alignment */ 21641 tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min, 21642 mdt_capab->ill_mdt_hdr_head), 4); 21643 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min, 21644 mdt_capab->ill_mdt_hdr_tail), 4); 21645 21646 if (!first && !prev_state) { 21647 TCP_STAT(tcps, tcp_mdt_conn_resumed2); 21648 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21649 (void *)tcp->tcp_connp)); 21650 } 21651 } 21652 } 21653 21654 /* Unlink and return any mblk that looks like it contains a LSO info */ 21655 static mblk_t * 21656 tcp_lso_info_mp(mblk_t *mp) 21657 { 21658 mblk_t *prev_mp; 21659 21660 for (;;) { 21661 prev_mp = mp; 21662 /* no more to process? */ 21663 if ((mp = mp->b_cont) == NULL) 21664 break; 21665 21666 switch (DB_TYPE(mp)) { 21667 case M_CTL: 21668 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21669 continue; 21670 ASSERT(prev_mp != NULL); 21671 prev_mp->b_cont = mp->b_cont; 21672 mp->b_cont = NULL; 21673 return (mp); 21674 default: 21675 break; 21676 } 21677 } 21678 21679 return (mp); 21680 } 21681 21682 /* LSO info update routine, called when IP notifies us about LSO */ 21683 static void 21684 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21685 { 21686 tcp_stack_t *tcps = tcp->tcp_tcps; 21687 21688 /* 21689 * IP is telling us to abort LSO on this connection? We know 21690 * this because the capability is only turned off when IP 21691 * encounters some pathological cases, e.g. link-layer change 21692 * where the new NIC/driver doesn't support LSO, or in situation 21693 * where LSO usage on the link-layer has been switched off. 21694 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21695 * if the link-layer doesn't support LSO, and if it does, it 21696 * will indicate that the feature is to be turned on. 21697 */ 21698 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21699 TCP_STAT(tcps, tcp_lso_enabled); 21700 21701 /* 21702 * We currently only support LSO on simple TCP/IPv4, 21703 * so disable LSO otherwise. The checks are done here 21704 * and in tcp_wput_data(). 21705 */ 21706 if (tcp->tcp_lso && 21707 (tcp->tcp_ipversion == IPV4_VERSION && 21708 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21709 (tcp->tcp_ipversion == IPV6_VERSION)) { 21710 tcp->tcp_lso = B_FALSE; 21711 TCP_STAT(tcps, tcp_lso_disabled); 21712 } else { 21713 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21714 lso_capab->ill_lso_max); 21715 } 21716 } 21717 21718 static void 21719 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21720 { 21721 conn_t *connp = tcp->tcp_connp; 21722 tcp_stack_t *tcps = tcp->tcp_tcps; 21723 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 21724 21725 ASSERT(ire != NULL); 21726 21727 /* 21728 * We may be in the fastpath here, and although we essentially do 21729 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21730 * we try to keep things as brief as possible. After all, these 21731 * are only best-effort checks, and we do more thorough ones prior 21732 * to calling tcp_send()/tcp_multisend(). 21733 */ 21734 if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) && 21735 check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21736 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21737 !(ire->ire_flags & RTF_MULTIRT) && 21738 !IPP_ENABLED(IPP_LOCAL_OUT, ipst) && 21739 CONN_IS_LSO_MD_FASTPATH(connp)) { 21740 if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21741 /* Cache the result */ 21742 connp->conn_lso_ok = B_TRUE; 21743 21744 ASSERT(ill->ill_lso_capab != NULL); 21745 if (!ill->ill_lso_capab->ill_lso_on) { 21746 ill->ill_lso_capab->ill_lso_on = 1; 21747 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21748 "LSO for interface %s\n", (void *)connp, 21749 ill->ill_name)); 21750 } 21751 tcp_lso_update(tcp, ill->ill_lso_capab); 21752 } else if (ipst->ips_ip_multidata_outbound && 21753 ILL_MDT_CAPABLE(ill)) { 21754 /* Cache the result */ 21755 connp->conn_mdt_ok = B_TRUE; 21756 21757 ASSERT(ill->ill_mdt_capab != NULL); 21758 if (!ill->ill_mdt_capab->ill_mdt_on) { 21759 ill->ill_mdt_capab->ill_mdt_on = 1; 21760 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21761 "MDT for interface %s\n", (void *)connp, 21762 ill->ill_name)); 21763 } 21764 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21765 } 21766 } 21767 21768 /* 21769 * The goal is to reduce the number of generated tcp segments by 21770 * setting the maxpsz multiplier to 0; this will have an affect on 21771 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21772 * into each packet, up to SMSS bytes. Doing this reduces the number 21773 * of outbound segments and incoming ACKs, thus allowing for better 21774 * network and system performance. In contrast the legacy behavior 21775 * may result in sending less than SMSS size, because the last mblk 21776 * for some packets may have more data than needed to make up SMSS, 21777 * and the legacy code refused to "split" it. 21778 * 21779 * We apply the new behavior on following situations: 21780 * 21781 * 1) Loopback connections, 21782 * 2) Connections in which the remote peer is not on local subnet, 21783 * 3) Local subnet connections over the bge interface (see below). 21784 * 21785 * Ideally, we would like this behavior to apply for interfaces other 21786 * than bge. However, doing so would negatively impact drivers which 21787 * perform dynamic mapping and unmapping of DMA resources, which are 21788 * increased by setting the maxpsz multiplier to 0 (more mblks per 21789 * packet will be generated by tcp). The bge driver does not suffer 21790 * from this, as it copies the mblks into pre-mapped buffers, and 21791 * therefore does not require more I/O resources than before. 21792 * 21793 * Otherwise, this behavior is present on all network interfaces when 21794 * the destination endpoint is non-local, since reducing the number 21795 * of packets in general is good for the network. 21796 * 21797 * TODO We need to remove this hard-coded conditional for bge once 21798 * a better "self-tuning" mechanism, or a way to comprehend 21799 * the driver transmit strategy is devised. Until the solution 21800 * is found and well understood, we live with this hack. 21801 */ 21802 if (!tcp_static_maxpsz && 21803 (tcp->tcp_loopback || !tcp->tcp_localnet || 21804 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21805 /* override the default value */ 21806 tcp->tcp_maxpsz = 0; 21807 21808 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21809 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21810 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21811 } 21812 21813 /* set the stream head parameters accordingly */ 21814 (void) tcp_maxpsz_set(tcp, B_TRUE); 21815 } 21816 21817 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21818 static void 21819 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21820 { 21821 uchar_t fval = *mp->b_rptr; 21822 mblk_t *tail; 21823 queue_t *q = tcp->tcp_wq; 21824 21825 /* TODO: How should flush interact with urgent data? */ 21826 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21827 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21828 /* 21829 * Flush only data that has not yet been put on the wire. If 21830 * we flush data that we have already transmitted, life, as we 21831 * know it, may come to an end. 21832 */ 21833 tail = tcp->tcp_xmit_tail; 21834 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21835 tcp->tcp_xmit_tail_unsent = 0; 21836 tcp->tcp_unsent = 0; 21837 if (tail->b_wptr != tail->b_rptr) 21838 tail = tail->b_cont; 21839 if (tail) { 21840 mblk_t **excess = &tcp->tcp_xmit_head; 21841 for (;;) { 21842 mblk_t *mp1 = *excess; 21843 if (mp1 == tail) 21844 break; 21845 tcp->tcp_xmit_tail = mp1; 21846 tcp->tcp_xmit_last = mp1; 21847 excess = &mp1->b_cont; 21848 } 21849 *excess = NULL; 21850 tcp_close_mpp(&tail); 21851 if (tcp->tcp_snd_zcopy_aware) 21852 tcp_zcopy_notify(tcp); 21853 } 21854 /* 21855 * We have no unsent data, so unsent must be less than 21856 * tcp_xmit_lowater, so re-enable flow. 21857 */ 21858 mutex_enter(&tcp->tcp_non_sq_lock); 21859 if (tcp->tcp_flow_stopped) { 21860 tcp_clrqfull(tcp); 21861 } 21862 mutex_exit(&tcp->tcp_non_sq_lock); 21863 } 21864 /* 21865 * TODO: you can't just flush these, you have to increase rwnd for one 21866 * thing. For another, how should urgent data interact? 21867 */ 21868 if (fval & FLUSHR) { 21869 *mp->b_rptr = fval & ~FLUSHW; 21870 /* XXX */ 21871 qreply(q, mp); 21872 return; 21873 } 21874 freemsg(mp); 21875 } 21876 21877 /* 21878 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21879 * messages. 21880 */ 21881 static void 21882 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21883 { 21884 mblk_t *mp1; 21885 STRUCT_HANDLE(strbuf, sb); 21886 uint16_t port; 21887 queue_t *q = tcp->tcp_wq; 21888 in6_addr_t v6addr; 21889 ipaddr_t v4addr; 21890 uint32_t flowinfo = 0; 21891 int addrlen; 21892 21893 /* Make sure it is one of ours. */ 21894 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21895 case TI_GETMYNAME: 21896 case TI_GETPEERNAME: 21897 break; 21898 default: 21899 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21900 return; 21901 } 21902 switch (mi_copy_state(q, mp, &mp1)) { 21903 case -1: 21904 return; 21905 case MI_COPY_CASE(MI_COPY_IN, 1): 21906 break; 21907 case MI_COPY_CASE(MI_COPY_OUT, 1): 21908 /* Copy out the strbuf. */ 21909 mi_copyout(q, mp); 21910 return; 21911 case MI_COPY_CASE(MI_COPY_OUT, 2): 21912 /* All done. */ 21913 mi_copy_done(q, mp, 0); 21914 return; 21915 default: 21916 mi_copy_done(q, mp, EPROTO); 21917 return; 21918 } 21919 /* Check alignment of the strbuf */ 21920 if (!OK_32PTR(mp1->b_rptr)) { 21921 mi_copy_done(q, mp, EINVAL); 21922 return; 21923 } 21924 21925 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21926 (void *)mp1->b_rptr); 21927 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21928 21929 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21930 mi_copy_done(q, mp, EINVAL); 21931 return; 21932 } 21933 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21934 case TI_GETMYNAME: 21935 if (tcp->tcp_family == AF_INET) { 21936 if (tcp->tcp_ipversion == IPV4_VERSION) { 21937 v4addr = tcp->tcp_ipha->ipha_src; 21938 } else { 21939 /* can't return an address in this case */ 21940 v4addr = 0; 21941 } 21942 } else { 21943 /* tcp->tcp_family == AF_INET6 */ 21944 if (tcp->tcp_ipversion == IPV4_VERSION) { 21945 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21946 &v6addr); 21947 } else { 21948 v6addr = tcp->tcp_ip6h->ip6_src; 21949 } 21950 } 21951 port = tcp->tcp_lport; 21952 break; 21953 case TI_GETPEERNAME: 21954 if (tcp->tcp_family == AF_INET) { 21955 if (tcp->tcp_ipversion == IPV4_VERSION) { 21956 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21957 v4addr); 21958 } else { 21959 /* can't return an address in this case */ 21960 v4addr = 0; 21961 } 21962 } else { 21963 /* tcp->tcp_family == AF_INET6) */ 21964 v6addr = tcp->tcp_remote_v6; 21965 if (tcp->tcp_ipversion == IPV6_VERSION) { 21966 /* 21967 * No flowinfo if tcp->tcp_ipversion is v4. 21968 * 21969 * flowinfo was already initialized to zero 21970 * where it was declared above, so only 21971 * set it if ipversion is v6. 21972 */ 21973 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21974 ~IPV6_VERS_AND_FLOW_MASK; 21975 } 21976 } 21977 port = tcp->tcp_fport; 21978 break; 21979 default: 21980 mi_copy_done(q, mp, EPROTO); 21981 return; 21982 } 21983 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21984 if (!mp1) 21985 return; 21986 21987 if (tcp->tcp_family == AF_INET) { 21988 sin_t *sin; 21989 21990 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21991 sin = (sin_t *)mp1->b_rptr; 21992 mp1->b_wptr = (uchar_t *)&sin[1]; 21993 *sin = sin_null; 21994 sin->sin_family = AF_INET; 21995 sin->sin_addr.s_addr = v4addr; 21996 sin->sin_port = port; 21997 } else { 21998 /* tcp->tcp_family == AF_INET6 */ 21999 sin6_t *sin6; 22000 22001 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 22002 sin6 = (sin6_t *)mp1->b_rptr; 22003 mp1->b_wptr = (uchar_t *)&sin6[1]; 22004 *sin6 = sin6_null; 22005 sin6->sin6_family = AF_INET6; 22006 sin6->sin6_flowinfo = flowinfo; 22007 sin6->sin6_addr = v6addr; 22008 sin6->sin6_port = port; 22009 } 22010 /* Copy out the address */ 22011 mi_copyout(q, mp); 22012 } 22013 22014 /* 22015 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 22016 * messages. 22017 */ 22018 /* ARGSUSED */ 22019 static void 22020 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 22021 { 22022 conn_t *connp = (conn_t *)arg; 22023 tcp_t *tcp = connp->conn_tcp; 22024 queue_t *q = tcp->tcp_wq; 22025 struct iocblk *iocp; 22026 tcp_stack_t *tcps = tcp->tcp_tcps; 22027 22028 ASSERT(DB_TYPE(mp) == M_IOCTL); 22029 /* 22030 * Try and ASSERT the minimum possible references on the 22031 * conn early enough. Since we are executing on write side, 22032 * the connection is obviously not detached and that means 22033 * there is a ref each for TCP and IP. Since we are behind 22034 * the squeue, the minimum references needed are 3. If the 22035 * conn is in classifier hash list, there should be an 22036 * extra ref for that (we check both the possibilities). 22037 */ 22038 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22039 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22040 22041 iocp = (struct iocblk *)mp->b_rptr; 22042 switch (iocp->ioc_cmd) { 22043 case TCP_IOC_DEFAULT_Q: 22044 /* Wants to be the default wq. */ 22045 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 22046 iocp->ioc_error = EPERM; 22047 iocp->ioc_count = 0; 22048 mp->b_datap->db_type = M_IOCACK; 22049 qreply(q, mp); 22050 return; 22051 } 22052 tcp_def_q_set(tcp, mp); 22053 return; 22054 case _SIOCSOCKFALLBACK: 22055 /* 22056 * Either sockmod is about to be popped and the socket 22057 * would now be treated as a plain stream, or a module 22058 * is about to be pushed so we could no longer use read- 22059 * side synchronous streams for fused loopback tcp. 22060 * Drain any queued data and disable direct sockfs 22061 * interface from now on. 22062 */ 22063 if (!tcp->tcp_issocket) { 22064 DB_TYPE(mp) = M_IOCNAK; 22065 iocp->ioc_error = EINVAL; 22066 } else { 22067 #ifdef _ILP32 22068 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 22069 #else 22070 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 22071 #endif 22072 /* 22073 * Insert this socket into the acceptor hash. 22074 * We might need it for T_CONN_RES message 22075 */ 22076 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 22077 22078 if (tcp->tcp_fused) { 22079 /* 22080 * This is a fused loopback tcp; disable 22081 * read-side synchronous streams interface 22082 * and drain any queued data. It is okay 22083 * to do this for non-synchronous streams 22084 * fused tcp as well. 22085 */ 22086 tcp_fuse_disable_pair(tcp, B_FALSE); 22087 } 22088 tcp->tcp_issocket = B_FALSE; 22089 TCP_STAT(tcps, tcp_sock_fallback); 22090 22091 DB_TYPE(mp) = M_IOCACK; 22092 iocp->ioc_error = 0; 22093 } 22094 iocp->ioc_count = 0; 22095 iocp->ioc_rval = 0; 22096 qreply(q, mp); 22097 return; 22098 } 22099 CALL_IP_WPUT(connp, q, mp); 22100 } 22101 22102 /* 22103 * This routine is called by tcp_wput() to handle all TPI requests. 22104 */ 22105 /* ARGSUSED */ 22106 static void 22107 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 22108 { 22109 conn_t *connp = (conn_t *)arg; 22110 tcp_t *tcp = connp->conn_tcp; 22111 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 22112 uchar_t *rptr; 22113 t_scalar_t type; 22114 int len; 22115 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 22116 22117 /* 22118 * Try and ASSERT the minimum possible references on the 22119 * conn early enough. Since we are executing on write side, 22120 * the connection is obviously not detached and that means 22121 * there is a ref each for TCP and IP. Since we are behind 22122 * the squeue, the minimum references needed are 3. If the 22123 * conn is in classifier hash list, there should be an 22124 * extra ref for that (we check both the possibilities). 22125 */ 22126 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 22127 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 22128 22129 rptr = mp->b_rptr; 22130 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22131 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 22132 type = ((union T_primitives *)rptr)->type; 22133 if (type == T_EXDATA_REQ) { 22134 uint32_t msize = msgdsize(mp->b_cont); 22135 22136 len = msize - 1; 22137 if (len < 0) { 22138 freemsg(mp); 22139 return; 22140 } 22141 /* 22142 * Try to force urgent data out on the wire. 22143 * Even if we have unsent data this will 22144 * at least send the urgent flag. 22145 * XXX does not handle more flag correctly. 22146 */ 22147 len += tcp->tcp_unsent; 22148 len += tcp->tcp_snxt; 22149 tcp->tcp_urg = len; 22150 tcp->tcp_valid_bits |= TCP_URG_VALID; 22151 22152 /* Bypass tcp protocol for fused tcp loopback */ 22153 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 22154 return; 22155 } else if (type != T_DATA_REQ) { 22156 goto non_urgent_data; 22157 } 22158 /* TODO: options, flags, ... from user */ 22159 /* Set length to zero for reclamation below */ 22160 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 22161 freeb(mp); 22162 return; 22163 } else { 22164 if (tcp->tcp_debug) { 22165 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22166 "tcp_wput_proto, dropping one..."); 22167 } 22168 freemsg(mp); 22169 return; 22170 } 22171 22172 non_urgent_data: 22173 22174 switch ((int)tprim->type) { 22175 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 22176 /* 22177 * save the kssl_ent_t from the next block, and convert this 22178 * back to a normal bind_req. 22179 */ 22180 if (mp->b_cont != NULL) { 22181 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 22182 22183 if (tcp->tcp_kssl_ent != NULL) { 22184 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 22185 KSSL_NO_PROXY); 22186 tcp->tcp_kssl_ent = NULL; 22187 } 22188 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 22189 sizeof (kssl_ent_t)); 22190 kssl_hold_ent(tcp->tcp_kssl_ent); 22191 freemsg(mp->b_cont); 22192 mp->b_cont = NULL; 22193 } 22194 tprim->type = T_BIND_REQ; 22195 22196 /* FALLTHROUGH */ 22197 case O_T_BIND_REQ: /* bind request */ 22198 case T_BIND_REQ: /* new semantics bind request */ 22199 tcp_bind(tcp, mp); 22200 break; 22201 case T_UNBIND_REQ: /* unbind request */ 22202 tcp_unbind(tcp, mp); 22203 break; 22204 case O_T_CONN_RES: /* old connection response XXX */ 22205 case T_CONN_RES: /* connection response */ 22206 tcp_accept(tcp, mp); 22207 break; 22208 case T_CONN_REQ: /* connection request */ 22209 tcp_connect(tcp, mp); 22210 break; 22211 case T_DISCON_REQ: /* disconnect request */ 22212 tcp_disconnect(tcp, mp); 22213 break; 22214 case T_CAPABILITY_REQ: 22215 tcp_capability_req(tcp, mp); /* capability request */ 22216 break; 22217 case T_INFO_REQ: /* information request */ 22218 tcp_info_req(tcp, mp); 22219 break; 22220 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 22221 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, 22222 &tcp_opt_obj, B_TRUE); 22223 break; 22224 case T_OPTMGMT_REQ: 22225 /* 22226 * Note: no support for snmpcom_req() through new 22227 * T_OPTMGMT_REQ. See comments in ip.c 22228 */ 22229 /* Only IP is allowed to return meaningful value */ 22230 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj, 22231 B_TRUE); 22232 break; 22233 22234 case T_UNITDATA_REQ: /* unitdata request */ 22235 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22236 break; 22237 case T_ORDREL_REQ: /* orderly release req */ 22238 freemsg(mp); 22239 22240 if (tcp->tcp_fused) 22241 tcp_unfuse(tcp); 22242 22243 if (tcp_xmit_end(tcp) != 0) { 22244 /* 22245 * We were crossing FINs and got a reset from 22246 * the other side. Just ignore it. 22247 */ 22248 if (tcp->tcp_debug) { 22249 (void) strlog(TCP_MOD_ID, 0, 1, 22250 SL_ERROR|SL_TRACE, 22251 "tcp_wput_proto, T_ORDREL_REQ out of " 22252 "state %s", 22253 tcp_display(tcp, NULL, 22254 DISP_ADDR_AND_PORT)); 22255 } 22256 } 22257 break; 22258 case T_ADDR_REQ: 22259 tcp_addr_req(tcp, mp); 22260 break; 22261 default: 22262 if (tcp->tcp_debug) { 22263 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 22264 "tcp_wput_proto, bogus TPI msg, type %d", 22265 tprim->type); 22266 } 22267 /* 22268 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 22269 * to recover. 22270 */ 22271 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 22272 break; 22273 } 22274 } 22275 22276 /* 22277 * The TCP write service routine should never be called... 22278 */ 22279 /* ARGSUSED */ 22280 static void 22281 tcp_wsrv(queue_t *q) 22282 { 22283 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 22284 22285 TCP_STAT(tcps, tcp_wsrv_called); 22286 } 22287 22288 /* Non overlapping byte exchanger */ 22289 static void 22290 tcp_xchg(uchar_t *a, uchar_t *b, int len) 22291 { 22292 uchar_t uch; 22293 22294 while (len-- > 0) { 22295 uch = a[len]; 22296 a[len] = b[len]; 22297 b[len] = uch; 22298 } 22299 } 22300 22301 /* 22302 * Send out a control packet on the tcp connection specified. This routine 22303 * is typically called where we need a simple ACK or RST generated. 22304 */ 22305 static void 22306 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22307 { 22308 uchar_t *rptr; 22309 tcph_t *tcph; 22310 ipha_t *ipha = NULL; 22311 ip6_t *ip6h = NULL; 22312 uint32_t sum; 22313 int tcp_hdr_len; 22314 int tcp_ip_hdr_len; 22315 mblk_t *mp; 22316 tcp_stack_t *tcps = tcp->tcp_tcps; 22317 22318 /* 22319 * Save sum for use in source route later. 22320 */ 22321 ASSERT(tcp != NULL); 22322 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22323 tcp_hdr_len = tcp->tcp_hdr_len; 22324 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22325 22326 /* If a text string is passed in with the request, pass it to strlog. */ 22327 if (str != NULL && tcp->tcp_debug) { 22328 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22329 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22330 str, seq, ack, ctl); 22331 } 22332 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra, 22333 BPRI_MED); 22334 if (mp == NULL) { 22335 return; 22336 } 22337 rptr = &mp->b_rptr[tcps->tcps_wroff_xtra]; 22338 mp->b_rptr = rptr; 22339 mp->b_wptr = &rptr[tcp_hdr_len]; 22340 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22341 22342 if (tcp->tcp_ipversion == IPV4_VERSION) { 22343 ipha = (ipha_t *)rptr; 22344 ipha->ipha_length = htons(tcp_hdr_len); 22345 } else { 22346 ip6h = (ip6_t *)rptr; 22347 ASSERT(tcp != NULL); 22348 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22349 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22350 } 22351 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22352 tcph->th_flags[0] = (uint8_t)ctl; 22353 if (ctl & TH_RST) { 22354 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22355 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22356 /* 22357 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22358 */ 22359 if (tcp->tcp_snd_ts_ok && 22360 tcp->tcp_state > TCPS_SYN_SENT) { 22361 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22362 *(mp->b_wptr) = TCPOPT_EOL; 22363 if (tcp->tcp_ipversion == IPV4_VERSION) { 22364 ipha->ipha_length = htons(tcp_hdr_len - 22365 TCPOPT_REAL_TS_LEN); 22366 } else { 22367 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22368 TCPOPT_REAL_TS_LEN); 22369 } 22370 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22371 sum -= TCPOPT_REAL_TS_LEN; 22372 } 22373 } 22374 if (ctl & TH_ACK) { 22375 if (tcp->tcp_snd_ts_ok) { 22376 U32_TO_BE32(lbolt, 22377 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22378 U32_TO_BE32(tcp->tcp_ts_recent, 22379 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22380 } 22381 22382 /* Update the latest receive window size in TCP header. */ 22383 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22384 tcph->th_win); 22385 tcp->tcp_rack = ack; 22386 tcp->tcp_rack_cnt = 0; 22387 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 22388 } 22389 BUMP_LOCAL(tcp->tcp_obsegs); 22390 U32_TO_BE32(seq, tcph->th_seq); 22391 U32_TO_BE32(ack, tcph->th_ack); 22392 /* 22393 * Include the adjustment for a source route if any. 22394 */ 22395 sum = (sum >> 16) + (sum & 0xFFFF); 22396 U16_TO_BE16(sum, tcph->th_sum); 22397 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22398 tcp_send_data(tcp, tcp->tcp_wq, mp); 22399 } 22400 22401 /* 22402 * If this routine returns B_TRUE, TCP can generate a RST in response 22403 * to a segment. If it returns B_FALSE, TCP should not respond. 22404 */ 22405 static boolean_t 22406 tcp_send_rst_chk(tcp_stack_t *tcps) 22407 { 22408 clock_t now; 22409 22410 /* 22411 * TCP needs to protect itself from generating too many RSTs. 22412 * This can be a DoS attack by sending us random segments 22413 * soliciting RSTs. 22414 * 22415 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22416 * in each 1 second interval. In this way, TCP still generate 22417 * RSTs in normal cases but when under attack, the impact is 22418 * limited. 22419 */ 22420 if (tcps->tcps_rst_sent_rate_enabled != 0) { 22421 now = lbolt; 22422 /* lbolt can wrap around. */ 22423 if ((tcps->tcps_last_rst_intrvl > now) || 22424 (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) > 22425 1*SECONDS)) { 22426 tcps->tcps_last_rst_intrvl = now; 22427 tcps->tcps_rst_cnt = 1; 22428 } else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) { 22429 return (B_FALSE); 22430 } 22431 } 22432 return (B_TRUE); 22433 } 22434 22435 /* 22436 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22437 */ 22438 static void 22439 tcp_ip_ire_mark_advice(tcp_t *tcp) 22440 { 22441 mblk_t *mp; 22442 ipic_t *ipic; 22443 22444 if (tcp->tcp_ipversion == IPV4_VERSION) { 22445 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22446 &ipic); 22447 } else { 22448 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22449 &ipic); 22450 } 22451 if (mp == NULL) 22452 return; 22453 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22454 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22455 } 22456 22457 /* 22458 * Return an IP advice ioctl mblk and set ipic to be the pointer 22459 * to the advice structure. 22460 */ 22461 static mblk_t * 22462 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22463 { 22464 struct iocblk *ioc; 22465 mblk_t *mp, *mp1; 22466 22467 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22468 if (mp == NULL) 22469 return (NULL); 22470 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22471 *ipic = (ipic_t *)mp->b_rptr; 22472 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22473 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22474 22475 bcopy(addr, *ipic + 1, addr_len); 22476 22477 (*ipic)->ipic_addr_length = addr_len; 22478 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22479 22480 mp1 = mkiocb(IP_IOCTL); 22481 if (mp1 == NULL) { 22482 freemsg(mp); 22483 return (NULL); 22484 } 22485 mp1->b_cont = mp; 22486 ioc = (struct iocblk *)mp1->b_rptr; 22487 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22488 22489 return (mp1); 22490 } 22491 22492 /* 22493 * Generate a reset based on an inbound packet, connp is set by caller 22494 * when RST is in response to an unexpected inbound packet for which 22495 * there is active tcp state in the system. 22496 * 22497 * IPSEC NOTE : Try to send the reply with the same protection as it came 22498 * in. We still have the ipsec_mp that the packet was attached to. Thus 22499 * the packet will go out at the same level of protection as it came in by 22500 * converting the IPSEC_IN to IPSEC_OUT. 22501 */ 22502 static void 22503 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22504 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid, 22505 tcp_stack_t *tcps, conn_t *connp) 22506 { 22507 ipha_t *ipha = NULL; 22508 ip6_t *ip6h = NULL; 22509 ushort_t len; 22510 tcph_t *tcph; 22511 int i; 22512 mblk_t *ipsec_mp; 22513 boolean_t mctl_present; 22514 ipic_t *ipic; 22515 ipaddr_t v4addr; 22516 in6_addr_t v6addr; 22517 int addr_len; 22518 void *addr; 22519 queue_t *q = tcps->tcps_g_q; 22520 tcp_t *tcp; 22521 cred_t *cr; 22522 mblk_t *nmp; 22523 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 22524 22525 if (tcps->tcps_g_q == NULL) { 22526 /* 22527 * For non-zero stackids the default queue isn't created 22528 * until the first open, thus there can be a need to send 22529 * a reset before then. But we can't do that, hence we just 22530 * drop the packet. Later during boot, when the default queue 22531 * has been setup, a retransmitted packet from the peer 22532 * will result in a reset. 22533 */ 22534 ASSERT(tcps->tcps_netstack->netstack_stackid != 22535 GLOBAL_NETSTACKID); 22536 freemsg(mp); 22537 return; 22538 } 22539 22540 if (connp != NULL) 22541 tcp = connp->conn_tcp; 22542 else 22543 tcp = Q_TO_TCP(q); 22544 22545 if (!tcp_send_rst_chk(tcps)) { 22546 tcps->tcps_rst_unsent++; 22547 freemsg(mp); 22548 return; 22549 } 22550 22551 if (mp->b_datap->db_type == M_CTL) { 22552 ipsec_mp = mp; 22553 mp = mp->b_cont; 22554 mctl_present = B_TRUE; 22555 } else { 22556 ipsec_mp = mp; 22557 mctl_present = B_FALSE; 22558 } 22559 22560 if (str && q && tcps->tcps_dbg) { 22561 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22562 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22563 "flags 0x%x", 22564 str, seq, ack, ctl); 22565 } 22566 if (mp->b_datap->db_ref != 1) { 22567 mblk_t *mp1 = copyb(mp); 22568 freemsg(mp); 22569 mp = mp1; 22570 if (!mp) { 22571 if (mctl_present) 22572 freeb(ipsec_mp); 22573 return; 22574 } else { 22575 if (mctl_present) { 22576 ipsec_mp->b_cont = mp; 22577 } else { 22578 ipsec_mp = mp; 22579 } 22580 } 22581 } else if (mp->b_cont) { 22582 freemsg(mp->b_cont); 22583 mp->b_cont = NULL; 22584 } 22585 /* 22586 * We skip reversing source route here. 22587 * (for now we replace all IP options with EOL) 22588 */ 22589 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22590 ipha = (ipha_t *)mp->b_rptr; 22591 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22592 mp->b_rptr[i] = IPOPT_EOL; 22593 /* 22594 * Make sure that src address isn't flagrantly invalid. 22595 * Not all broadcast address checking for the src address 22596 * is possible, since we don't know the netmask of the src 22597 * addr. No check for destination address is done, since 22598 * IP will not pass up a packet with a broadcast dest 22599 * address to TCP. Similar checks are done below for IPv6. 22600 */ 22601 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22602 CLASSD(ipha->ipha_src)) { 22603 freemsg(ipsec_mp); 22604 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards); 22605 return; 22606 } 22607 } else { 22608 ip6h = (ip6_t *)mp->b_rptr; 22609 22610 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22611 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22612 freemsg(ipsec_mp); 22613 BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards); 22614 return; 22615 } 22616 22617 /* Remove any extension headers assuming partial overlay */ 22618 if (ip_hdr_len > IPV6_HDR_LEN) { 22619 uint8_t *to; 22620 22621 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22622 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22623 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22624 ip_hdr_len = IPV6_HDR_LEN; 22625 ip6h = (ip6_t *)mp->b_rptr; 22626 ip6h->ip6_nxt = IPPROTO_TCP; 22627 } 22628 } 22629 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22630 if (tcph->th_flags[0] & TH_RST) { 22631 freemsg(ipsec_mp); 22632 return; 22633 } 22634 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22635 len = ip_hdr_len + sizeof (tcph_t); 22636 mp->b_wptr = &mp->b_rptr[len]; 22637 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22638 ipha->ipha_length = htons(len); 22639 /* Swap addresses */ 22640 v4addr = ipha->ipha_src; 22641 ipha->ipha_src = ipha->ipha_dst; 22642 ipha->ipha_dst = v4addr; 22643 ipha->ipha_ident = 0; 22644 ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl; 22645 addr_len = IP_ADDR_LEN; 22646 addr = &v4addr; 22647 } else { 22648 /* No ip6i_t in this case */ 22649 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22650 /* Swap addresses */ 22651 v6addr = ip6h->ip6_src; 22652 ip6h->ip6_src = ip6h->ip6_dst; 22653 ip6h->ip6_dst = v6addr; 22654 ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit; 22655 addr_len = IPV6_ADDR_LEN; 22656 addr = &v6addr; 22657 } 22658 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22659 U32_TO_BE32(ack, tcph->th_ack); 22660 U32_TO_BE32(seq, tcph->th_seq); 22661 U16_TO_BE16(0, tcph->th_win); 22662 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22663 tcph->th_flags[0] = (uint8_t)ctl; 22664 if (ctl & TH_RST) { 22665 BUMP_MIB(&tcps->tcps_mib, tcpOutRsts); 22666 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 22667 } 22668 22669 /* IP trusts us to set up labels when required. */ 22670 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22671 crgetlabel(cr) != NULL) { 22672 int err, adjust; 22673 22674 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22675 err = tsol_check_label(cr, &mp, &adjust, 22676 tcp->tcp_connp->conn_mac_exempt, 22677 tcps->tcps_netstack->netstack_ip); 22678 else 22679 err = tsol_check_label_v6(cr, &mp, &adjust, 22680 tcp->tcp_connp->conn_mac_exempt, 22681 tcps->tcps_netstack->netstack_ip); 22682 if (mctl_present) 22683 ipsec_mp->b_cont = mp; 22684 else 22685 ipsec_mp = mp; 22686 if (err != 0) { 22687 freemsg(ipsec_mp); 22688 return; 22689 } 22690 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22691 ipha = (ipha_t *)mp->b_rptr; 22692 adjust += ntohs(ipha->ipha_length); 22693 ipha->ipha_length = htons(adjust); 22694 } else { 22695 ip6h = (ip6_t *)mp->b_rptr; 22696 } 22697 } 22698 22699 if (mctl_present) { 22700 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22701 22702 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22703 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22704 return; 22705 } 22706 } 22707 if (zoneid == ALL_ZONES) 22708 zoneid = GLOBAL_ZONEID; 22709 22710 /* Add the zoneid so ip_output routes it properly */ 22711 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) { 22712 freemsg(ipsec_mp); 22713 return; 22714 } 22715 ipsec_mp = nmp; 22716 22717 /* 22718 * NOTE: one might consider tracing a TCP packet here, but 22719 * this function has no active TCP state and no tcp structure 22720 * that has a trace buffer. If we traced here, we would have 22721 * to keep a local trace buffer in tcp_record_trace(). 22722 * 22723 * TSol note: The mblk that contains the incoming packet was 22724 * reused by tcp_xmit_listener_reset, so it already contains 22725 * the right credentials and we don't need to call mblk_setcred. 22726 * Also the conn's cred is not right since it is associated 22727 * with tcps_g_q. 22728 */ 22729 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22730 22731 /* 22732 * Tell IP to mark the IRE used for this destination temporary. 22733 * This way, we can limit our exposure to DoS attack because IP 22734 * creates an IRE for each destination. If there are too many, 22735 * the time to do any routing lookup will be extremely long. And 22736 * the lookup can be in interrupt context. 22737 * 22738 * Note that in normal circumstances, this marking should not 22739 * affect anything. It would be nice if only 1 message is 22740 * needed to inform IP that the IRE created for this RST should 22741 * not be added to the cache table. But there is currently 22742 * not such communication mechanism between TCP and IP. So 22743 * the best we can do now is to send the advice ioctl to IP 22744 * to mark the IRE temporary. 22745 */ 22746 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22747 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22748 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22749 } 22750 } 22751 22752 /* 22753 * Initiate closedown sequence on an active connection. (May be called as 22754 * writer.) Return value zero for OK return, non-zero for error return. 22755 */ 22756 static int 22757 tcp_xmit_end(tcp_t *tcp) 22758 { 22759 ipic_t *ipic; 22760 mblk_t *mp; 22761 tcp_stack_t *tcps = tcp->tcp_tcps; 22762 22763 if (tcp->tcp_state < TCPS_SYN_RCVD || 22764 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22765 /* 22766 * Invalid state, only states TCPS_SYN_RCVD, 22767 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22768 */ 22769 return (-1); 22770 } 22771 22772 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22773 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22774 /* 22775 * If there is nothing more unsent, send the FIN now. 22776 * Otherwise, it will go out with the last segment. 22777 */ 22778 if (tcp->tcp_unsent == 0) { 22779 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22780 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22781 22782 if (mp) { 22783 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22784 tcp_send_data(tcp, tcp->tcp_wq, mp); 22785 } else { 22786 /* 22787 * Couldn't allocate msg. Pretend we got it out. 22788 * Wait for rexmit timeout. 22789 */ 22790 tcp->tcp_snxt = tcp->tcp_fss + 1; 22791 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22792 } 22793 22794 /* 22795 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22796 * changed. 22797 */ 22798 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22799 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22800 } 22801 } else { 22802 /* 22803 * If tcp->tcp_cork is set, then the data will not get sent, 22804 * so we have to check that and unset it first. 22805 */ 22806 if (tcp->tcp_cork) 22807 tcp->tcp_cork = B_FALSE; 22808 tcp_wput_data(tcp, NULL, B_FALSE); 22809 } 22810 22811 /* 22812 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22813 * is 0, don't update the cache. 22814 */ 22815 if (tcps->tcps_rtt_updates == 0 || 22816 tcp->tcp_rtt_update < tcps->tcps_rtt_updates) 22817 return (0); 22818 22819 /* 22820 * NOTE: should not update if source routes i.e. if tcp_remote if 22821 * different from the destination. 22822 */ 22823 if (tcp->tcp_ipversion == IPV4_VERSION) { 22824 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22825 return (0); 22826 } 22827 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22828 &ipic); 22829 } else { 22830 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22831 &tcp->tcp_ip6h->ip6_dst))) { 22832 return (0); 22833 } 22834 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22835 &ipic); 22836 } 22837 22838 /* Record route attributes in the IRE for use by future connections. */ 22839 if (mp == NULL) 22840 return (0); 22841 22842 /* 22843 * We do not have a good algorithm to update ssthresh at this time. 22844 * So don't do any update. 22845 */ 22846 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22847 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22848 22849 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22850 return (0); 22851 } 22852 22853 /* 22854 * Generate a "no listener here" RST in response to an "unknown" segment. 22855 * connp is set by caller when RST is in response to an unexpected 22856 * inbound packet for which there is active tcp state in the system. 22857 * Note that we are reusing the incoming mp to construct the outgoing RST. 22858 */ 22859 void 22860 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid, 22861 tcp_stack_t *tcps, conn_t *connp) 22862 { 22863 uchar_t *rptr; 22864 uint32_t seg_len; 22865 tcph_t *tcph; 22866 uint32_t seg_seq; 22867 uint32_t seg_ack; 22868 uint_t flags; 22869 mblk_t *ipsec_mp; 22870 ipha_t *ipha; 22871 ip6_t *ip6h; 22872 boolean_t mctl_present = B_FALSE; 22873 boolean_t check = B_TRUE; 22874 boolean_t policy_present; 22875 ipsec_stack_t *ipss = tcps->tcps_netstack->netstack_ipsec; 22876 22877 TCP_STAT(tcps, tcp_no_listener); 22878 22879 ipsec_mp = mp; 22880 22881 if (mp->b_datap->db_type == M_CTL) { 22882 ipsec_in_t *ii; 22883 22884 mctl_present = B_TRUE; 22885 mp = mp->b_cont; 22886 22887 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22888 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22889 if (ii->ipsec_in_dont_check) { 22890 check = B_FALSE; 22891 if (!ii->ipsec_in_secure) { 22892 freeb(ipsec_mp); 22893 mctl_present = B_FALSE; 22894 ipsec_mp = mp; 22895 } 22896 } 22897 } 22898 22899 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22900 policy_present = ipss->ipsec_inbound_v4_policy_present; 22901 ipha = (ipha_t *)mp->b_rptr; 22902 ip6h = NULL; 22903 } else { 22904 policy_present = ipss->ipsec_inbound_v6_policy_present; 22905 ipha = NULL; 22906 ip6h = (ip6_t *)mp->b_rptr; 22907 } 22908 22909 if (check && policy_present) { 22910 /* 22911 * The conn_t parameter is NULL because we already know 22912 * nobody's home. 22913 */ 22914 ipsec_mp = ipsec_check_global_policy( 22915 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present, 22916 tcps->tcps_netstack); 22917 if (ipsec_mp == NULL) 22918 return; 22919 } 22920 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22921 DTRACE_PROBE2( 22922 tx__ip__log__error__nolistener__tcp, 22923 char *, "Could not reply with RST to mp(1)", 22924 mblk_t *, mp); 22925 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22926 freemsg(ipsec_mp); 22927 return; 22928 } 22929 22930 rptr = mp->b_rptr; 22931 22932 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22933 seg_seq = BE32_TO_U32(tcph->th_seq); 22934 seg_ack = BE32_TO_U32(tcph->th_ack); 22935 flags = tcph->th_flags[0]; 22936 22937 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22938 if (flags & TH_RST) { 22939 freemsg(ipsec_mp); 22940 } else if (flags & TH_ACK) { 22941 tcp_xmit_early_reset("no tcp, reset", 22942 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps, 22943 connp); 22944 } else { 22945 if (flags & TH_SYN) { 22946 seg_len++; 22947 } else { 22948 /* 22949 * Here we violate the RFC. Note that a normal 22950 * TCP will never send a segment without the ACK 22951 * flag, except for RST or SYN segment. This 22952 * segment is neither. Just drop it on the 22953 * floor. 22954 */ 22955 freemsg(ipsec_mp); 22956 tcps->tcps_rst_unsent++; 22957 return; 22958 } 22959 22960 tcp_xmit_early_reset("no tcp, reset/ack", 22961 ipsec_mp, 0, seg_seq + seg_len, 22962 TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp); 22963 } 22964 } 22965 22966 /* 22967 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22968 * ip and tcp header ready to pass down to IP. If the mp passed in is 22969 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22970 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22971 * otherwise it will dup partial mblks.) 22972 * Otherwise, an appropriate ACK packet will be generated. This 22973 * routine is not usually called to send new data for the first time. It 22974 * is mostly called out of the timer for retransmits, and to generate ACKs. 22975 * 22976 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22977 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22978 * of the original mblk chain will be returned in *offset and *end_mp. 22979 */ 22980 mblk_t * 22981 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22982 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22983 boolean_t rexmit) 22984 { 22985 int data_length; 22986 int32_t off = 0; 22987 uint_t flags; 22988 mblk_t *mp1; 22989 mblk_t *mp2; 22990 uchar_t *rptr; 22991 tcph_t *tcph; 22992 int32_t num_sack_blk = 0; 22993 int32_t sack_opt_len = 0; 22994 tcp_stack_t *tcps = tcp->tcp_tcps; 22995 22996 /* Allocate for our maximum TCP header + link-level */ 22997 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 22998 tcps->tcps_wroff_xtra, BPRI_MED); 22999 if (!mp1) 23000 return (NULL); 23001 data_length = 0; 23002 23003 /* 23004 * Note that tcp_mss has been adjusted to take into account the 23005 * timestamp option if applicable. Because SACK options do not 23006 * appear in every TCP segments and they are of variable lengths, 23007 * they cannot be included in tcp_mss. Thus we need to calculate 23008 * the actual segment length when we need to send a segment which 23009 * includes SACK options. 23010 */ 23011 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23012 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23013 tcp->tcp_num_sack_blk); 23014 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23015 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23016 if (max_to_send + sack_opt_len > tcp->tcp_mss) 23017 max_to_send -= sack_opt_len; 23018 } 23019 23020 if (offset != NULL) { 23021 off = *offset; 23022 /* We use offset as an indicator that end_mp is not NULL. */ 23023 *end_mp = NULL; 23024 } 23025 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 23026 /* This could be faster with cooperation from downstream */ 23027 if (mp2 != mp1 && !sendall && 23028 data_length + (int)(mp->b_wptr - mp->b_rptr) > 23029 max_to_send) 23030 /* 23031 * Don't send the next mblk since the whole mblk 23032 * does not fit. 23033 */ 23034 break; 23035 mp2->b_cont = dupb(mp); 23036 mp2 = mp2->b_cont; 23037 if (!mp2) { 23038 freemsg(mp1); 23039 return (NULL); 23040 } 23041 mp2->b_rptr += off; 23042 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 23043 (uintptr_t)INT_MAX); 23044 23045 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 23046 if (data_length > max_to_send) { 23047 mp2->b_wptr -= data_length - max_to_send; 23048 data_length = max_to_send; 23049 off = mp2->b_wptr - mp->b_rptr; 23050 break; 23051 } else { 23052 off = 0; 23053 } 23054 } 23055 if (offset != NULL) { 23056 *offset = off; 23057 *end_mp = mp; 23058 } 23059 if (seg_len != NULL) { 23060 *seg_len = data_length; 23061 } 23062 23063 /* Update the latest receive window size in TCP header. */ 23064 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23065 tcp->tcp_tcph->th_win); 23066 23067 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23068 mp1->b_rptr = rptr; 23069 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 23070 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23071 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23072 U32_TO_ABE32(seq, tcph->th_seq); 23073 23074 /* 23075 * Use tcp_unsent to determine if the PUSH bit should be used assumes 23076 * that this function was called from tcp_wput_data. Thus, when called 23077 * to retransmit data the setting of the PUSH bit may appear some 23078 * what random in that it might get set when it should not. This 23079 * should not pose any performance issues. 23080 */ 23081 if (data_length != 0 && (tcp->tcp_unsent == 0 || 23082 tcp->tcp_unsent == data_length)) { 23083 flags = TH_ACK | TH_PUSH; 23084 } else { 23085 flags = TH_ACK; 23086 } 23087 23088 if (tcp->tcp_ecn_ok) { 23089 if (tcp->tcp_ecn_echo_on) 23090 flags |= TH_ECE; 23091 23092 /* 23093 * Only set ECT bit and ECN_CWR if a segment contains new data. 23094 * There is no TCP flow control for non-data segments, and 23095 * only data segment is transmitted reliably. 23096 */ 23097 if (data_length > 0 && !rexmit) { 23098 SET_ECT(tcp, rptr); 23099 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 23100 flags |= TH_CWR; 23101 tcp->tcp_ecn_cwr_sent = B_TRUE; 23102 } 23103 } 23104 } 23105 23106 if (tcp->tcp_valid_bits) { 23107 uint32_t u1; 23108 23109 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 23110 seq == tcp->tcp_iss) { 23111 uchar_t *wptr; 23112 23113 /* 23114 * If TCP_ISS_VALID and the seq number is tcp_iss, 23115 * TCP can only be in SYN-SENT, SYN-RCVD or 23116 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 23117 * our SYN is not ack'ed but the app closes this 23118 * TCP connection. 23119 */ 23120 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 23121 tcp->tcp_state == TCPS_SYN_RCVD || 23122 tcp->tcp_state == TCPS_FIN_WAIT_1); 23123 23124 /* 23125 * Tack on the MSS option. It is always needed 23126 * for both active and passive open. 23127 * 23128 * MSS option value should be interface MTU - MIN 23129 * TCP/IP header according to RFC 793 as it means 23130 * the maximum segment size TCP can receive. But 23131 * to get around some broken middle boxes/end hosts 23132 * out there, we allow the option value to be the 23133 * same as the MSS option size on the peer side. 23134 * In this way, the other side will not send 23135 * anything larger than they can receive. 23136 * 23137 * Note that for SYN_SENT state, the ndd param 23138 * tcp_use_smss_as_mss_opt has no effect as we 23139 * don't know the peer's MSS option value. So 23140 * the only case we need to take care of is in 23141 * SYN_RCVD state, which is done later. 23142 */ 23143 wptr = mp1->b_wptr; 23144 wptr[0] = TCPOPT_MAXSEG; 23145 wptr[1] = TCPOPT_MAXSEG_LEN; 23146 wptr += 2; 23147 u1 = tcp->tcp_if_mtu - 23148 (tcp->tcp_ipversion == IPV4_VERSION ? 23149 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 23150 TCP_MIN_HEADER_LENGTH; 23151 U16_TO_BE16(u1, wptr); 23152 mp1->b_wptr = wptr + 2; 23153 /* Update the offset to cover the additional word */ 23154 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23155 23156 /* 23157 * Note that the following way of filling in 23158 * TCP options are not optimal. Some NOPs can 23159 * be saved. But there is no need at this time 23160 * to optimize it. When it is needed, we will 23161 * do it. 23162 */ 23163 switch (tcp->tcp_state) { 23164 case TCPS_SYN_SENT: 23165 flags = TH_SYN; 23166 23167 if (tcp->tcp_snd_ts_ok) { 23168 uint32_t llbolt = (uint32_t)lbolt; 23169 23170 wptr = mp1->b_wptr; 23171 wptr[0] = TCPOPT_NOP; 23172 wptr[1] = TCPOPT_NOP; 23173 wptr[2] = TCPOPT_TSTAMP; 23174 wptr[3] = TCPOPT_TSTAMP_LEN; 23175 wptr += 4; 23176 U32_TO_BE32(llbolt, wptr); 23177 wptr += 4; 23178 ASSERT(tcp->tcp_ts_recent == 0); 23179 U32_TO_BE32(0L, wptr); 23180 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 23181 tcph->th_offset_and_rsrvd[0] += 23182 (3 << 4); 23183 } 23184 23185 /* 23186 * Set up all the bits to tell other side 23187 * we are ECN capable. 23188 */ 23189 if (tcp->tcp_ecn_ok) { 23190 flags |= (TH_ECE | TH_CWR); 23191 } 23192 break; 23193 case TCPS_SYN_RCVD: 23194 flags |= TH_SYN; 23195 23196 /* 23197 * Reset the MSS option value to be SMSS 23198 * We should probably add back the bytes 23199 * for timestamp option and IPsec. We 23200 * don't do that as this is a workaround 23201 * for broken middle boxes/end hosts, it 23202 * is better for us to be more cautious. 23203 * They may not take these things into 23204 * account in their SMSS calculation. Thus 23205 * the peer's calculated SMSS may be smaller 23206 * than what it can be. This should be OK. 23207 */ 23208 if (tcps->tcps_use_smss_as_mss_opt) { 23209 u1 = tcp->tcp_mss; 23210 U16_TO_BE16(u1, wptr); 23211 } 23212 23213 /* 23214 * If the other side is ECN capable, reply 23215 * that we are also ECN capable. 23216 */ 23217 if (tcp->tcp_ecn_ok) 23218 flags |= TH_ECE; 23219 break; 23220 default: 23221 /* 23222 * The above ASSERT() makes sure that this 23223 * must be FIN-WAIT-1 state. Our SYN has 23224 * not been ack'ed so retransmit it. 23225 */ 23226 flags |= TH_SYN; 23227 break; 23228 } 23229 23230 if (tcp->tcp_snd_ws_ok) { 23231 wptr = mp1->b_wptr; 23232 wptr[0] = TCPOPT_NOP; 23233 wptr[1] = TCPOPT_WSCALE; 23234 wptr[2] = TCPOPT_WS_LEN; 23235 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 23236 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 23237 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23238 } 23239 23240 if (tcp->tcp_snd_sack_ok) { 23241 wptr = mp1->b_wptr; 23242 wptr[0] = TCPOPT_NOP; 23243 wptr[1] = TCPOPT_NOP; 23244 wptr[2] = TCPOPT_SACK_PERMITTED; 23245 wptr[3] = TCPOPT_SACK_OK_LEN; 23246 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 23247 tcph->th_offset_and_rsrvd[0] += (1 << 4); 23248 } 23249 23250 /* allocb() of adequate mblk assures space */ 23251 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 23252 (uintptr_t)INT_MAX); 23253 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 23254 /* 23255 * Get IP set to checksum on our behalf 23256 * Include the adjustment for a source route if any. 23257 */ 23258 u1 += tcp->tcp_sum; 23259 u1 = (u1 >> 16) + (u1 & 0xFFFF); 23260 U16_TO_BE16(u1, tcph->th_sum); 23261 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23262 } 23263 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 23264 (seq + data_length) == tcp->tcp_fss) { 23265 if (!tcp->tcp_fin_acked) { 23266 flags |= TH_FIN; 23267 BUMP_MIB(&tcps->tcps_mib, tcpOutControl); 23268 } 23269 if (!tcp->tcp_fin_sent) { 23270 tcp->tcp_fin_sent = B_TRUE; 23271 switch (tcp->tcp_state) { 23272 case TCPS_SYN_RCVD: 23273 case TCPS_ESTABLISHED: 23274 tcp->tcp_state = TCPS_FIN_WAIT_1; 23275 break; 23276 case TCPS_CLOSE_WAIT: 23277 tcp->tcp_state = TCPS_LAST_ACK; 23278 break; 23279 } 23280 if (tcp->tcp_suna == tcp->tcp_snxt) 23281 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 23282 tcp->tcp_snxt = tcp->tcp_fss + 1; 23283 } 23284 } 23285 /* 23286 * Note the trick here. u1 is unsigned. When tcp_urg 23287 * is smaller than seq, u1 will become a very huge value. 23288 * So the comparison will fail. Also note that tcp_urp 23289 * should be positive, see RFC 793 page 17. 23290 */ 23291 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 23292 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 23293 u1 < (uint32_t)(64 * 1024)) { 23294 flags |= TH_URG; 23295 BUMP_MIB(&tcps->tcps_mib, tcpOutUrg); 23296 U32_TO_ABE16(u1, tcph->th_urp); 23297 } 23298 } 23299 tcph->th_flags[0] = (uchar_t)flags; 23300 tcp->tcp_rack = tcp->tcp_rnxt; 23301 tcp->tcp_rack_cnt = 0; 23302 23303 if (tcp->tcp_snd_ts_ok) { 23304 if (tcp->tcp_state != TCPS_SYN_SENT) { 23305 uint32_t llbolt = (uint32_t)lbolt; 23306 23307 U32_TO_BE32(llbolt, 23308 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23309 U32_TO_BE32(tcp->tcp_ts_recent, 23310 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23311 } 23312 } 23313 23314 if (num_sack_blk > 0) { 23315 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23316 sack_blk_t *tmp; 23317 int32_t i; 23318 23319 wptr[0] = TCPOPT_NOP; 23320 wptr[1] = TCPOPT_NOP; 23321 wptr[2] = TCPOPT_SACK; 23322 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23323 sizeof (sack_blk_t); 23324 wptr += TCPOPT_REAL_SACK_LEN; 23325 23326 tmp = tcp->tcp_sack_list; 23327 for (i = 0; i < num_sack_blk; i++) { 23328 U32_TO_BE32(tmp[i].begin, wptr); 23329 wptr += sizeof (tcp_seq); 23330 U32_TO_BE32(tmp[i].end, wptr); 23331 wptr += sizeof (tcp_seq); 23332 } 23333 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 23334 } 23335 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 23336 data_length += (int)(mp1->b_wptr - rptr); 23337 if (tcp->tcp_ipversion == IPV4_VERSION) { 23338 ((ipha_t *)rptr)->ipha_length = htons(data_length); 23339 } else { 23340 ip6_t *ip6 = (ip6_t *)(rptr + 23341 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23342 sizeof (ip6i_t) : 0)); 23343 23344 ip6->ip6_plen = htons(data_length - 23345 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23346 } 23347 23348 /* 23349 * Prime pump for IP 23350 * Include the adjustment for a source route if any. 23351 */ 23352 data_length -= tcp->tcp_ip_hdr_len; 23353 data_length += tcp->tcp_sum; 23354 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23355 U16_TO_ABE16(data_length, tcph->th_sum); 23356 if (tcp->tcp_ip_forward_progress) { 23357 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23358 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23359 tcp->tcp_ip_forward_progress = B_FALSE; 23360 } 23361 return (mp1); 23362 } 23363 23364 /* This function handles the push timeout. */ 23365 void 23366 tcp_push_timer(void *arg) 23367 { 23368 conn_t *connp = (conn_t *)arg; 23369 tcp_t *tcp = connp->conn_tcp; 23370 tcp_stack_t *tcps = tcp->tcp_tcps; 23371 23372 TCP_DBGSTAT(tcps, tcp_push_timer_cnt); 23373 23374 ASSERT(tcp->tcp_listener == NULL); 23375 23376 /* 23377 * We need to plug synchronous streams during our drain to prevent 23378 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23379 */ 23380 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23381 tcp->tcp_push_tid = 0; 23382 if ((tcp->tcp_rcv_list != NULL) && 23383 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 23384 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23385 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23386 } 23387 23388 /* 23389 * This function handles delayed ACK timeout. 23390 */ 23391 static void 23392 tcp_ack_timer(void *arg) 23393 { 23394 conn_t *connp = (conn_t *)arg; 23395 tcp_t *tcp = connp->conn_tcp; 23396 mblk_t *mp; 23397 tcp_stack_t *tcps = tcp->tcp_tcps; 23398 23399 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 23400 23401 tcp->tcp_ack_tid = 0; 23402 23403 if (tcp->tcp_fused) 23404 return; 23405 23406 /* 23407 * Do not send ACK if there is no outstanding unack'ed data. 23408 */ 23409 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23410 return; 23411 } 23412 23413 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23414 /* 23415 * Make sure we don't allow deferred ACKs to result in 23416 * timer-based ACKing. If we have held off an ACK 23417 * when there was more than an mss here, and the timer 23418 * goes off, we have to worry about the possibility 23419 * that the sender isn't doing slow-start, or is out 23420 * of step with us for some other reason. We fall 23421 * permanently back in the direction of 23422 * ACK-every-other-packet as suggested in RFC 1122. 23423 */ 23424 if (tcp->tcp_rack_abs_max > 2) 23425 tcp->tcp_rack_abs_max--; 23426 tcp->tcp_rack_cur_max = 2; 23427 } 23428 mp = tcp_ack_mp(tcp); 23429 23430 if (mp != NULL) { 23431 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23432 BUMP_LOCAL(tcp->tcp_obsegs); 23433 BUMP_MIB(&tcps->tcps_mib, tcpOutAck); 23434 BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed); 23435 tcp_send_data(tcp, tcp->tcp_wq, mp); 23436 } 23437 } 23438 23439 23440 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23441 static mblk_t * 23442 tcp_ack_mp(tcp_t *tcp) 23443 { 23444 uint32_t seq_no; 23445 tcp_stack_t *tcps = tcp->tcp_tcps; 23446 23447 /* 23448 * There are a few cases to be considered while setting the sequence no. 23449 * Essentially, we can come here while processing an unacceptable pkt 23450 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23451 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23452 * If we are here for a zero window probe, stick with suna. In all 23453 * other cases, we check if suna + swnd encompasses snxt and set 23454 * the sequence number to snxt, if so. If snxt falls outside the 23455 * window (the receiver probably shrunk its window), we will go with 23456 * suna + swnd, otherwise the sequence no will be unacceptable to the 23457 * receiver. 23458 */ 23459 if (tcp->tcp_zero_win_probe) { 23460 seq_no = tcp->tcp_suna; 23461 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23462 ASSERT(tcp->tcp_swnd == 0); 23463 seq_no = tcp->tcp_snxt; 23464 } else { 23465 seq_no = SEQ_GT(tcp->tcp_snxt, 23466 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23467 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23468 } 23469 23470 if (tcp->tcp_valid_bits) { 23471 /* 23472 * For the complex case where we have to send some 23473 * controls (FIN or SYN), let tcp_xmit_mp do it. 23474 */ 23475 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23476 NULL, B_FALSE)); 23477 } else { 23478 /* Generate a simple ACK */ 23479 int data_length; 23480 uchar_t *rptr; 23481 tcph_t *tcph; 23482 mblk_t *mp1; 23483 int32_t tcp_hdr_len; 23484 int32_t tcp_tcp_hdr_len; 23485 int32_t num_sack_blk = 0; 23486 int32_t sack_opt_len; 23487 23488 /* 23489 * Allocate space for TCP + IP headers 23490 * and link-level header 23491 */ 23492 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23493 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23494 tcp->tcp_num_sack_blk); 23495 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23496 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23497 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23498 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23499 } else { 23500 tcp_hdr_len = tcp->tcp_hdr_len; 23501 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23502 } 23503 mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED); 23504 if (!mp1) 23505 return (NULL); 23506 23507 /* Update the latest receive window size in TCP header. */ 23508 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23509 tcp->tcp_tcph->th_win); 23510 /* copy in prototype TCP + IP header */ 23511 rptr = mp1->b_rptr + tcps->tcps_wroff_xtra; 23512 mp1->b_rptr = rptr; 23513 mp1->b_wptr = rptr + tcp_hdr_len; 23514 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23515 23516 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23517 23518 /* Set the TCP sequence number. */ 23519 U32_TO_ABE32(seq_no, tcph->th_seq); 23520 23521 /* Set up the TCP flag field. */ 23522 tcph->th_flags[0] = (uchar_t)TH_ACK; 23523 if (tcp->tcp_ecn_echo_on) 23524 tcph->th_flags[0] |= TH_ECE; 23525 23526 tcp->tcp_rack = tcp->tcp_rnxt; 23527 tcp->tcp_rack_cnt = 0; 23528 23529 /* fill in timestamp option if in use */ 23530 if (tcp->tcp_snd_ts_ok) { 23531 uint32_t llbolt = (uint32_t)lbolt; 23532 23533 U32_TO_BE32(llbolt, 23534 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23535 U32_TO_BE32(tcp->tcp_ts_recent, 23536 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23537 } 23538 23539 /* Fill in SACK options */ 23540 if (num_sack_blk > 0) { 23541 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23542 sack_blk_t *tmp; 23543 int32_t i; 23544 23545 wptr[0] = TCPOPT_NOP; 23546 wptr[1] = TCPOPT_NOP; 23547 wptr[2] = TCPOPT_SACK; 23548 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23549 sizeof (sack_blk_t); 23550 wptr += TCPOPT_REAL_SACK_LEN; 23551 23552 tmp = tcp->tcp_sack_list; 23553 for (i = 0; i < num_sack_blk; i++) { 23554 U32_TO_BE32(tmp[i].begin, wptr); 23555 wptr += sizeof (tcp_seq); 23556 U32_TO_BE32(tmp[i].end, wptr); 23557 wptr += sizeof (tcp_seq); 23558 } 23559 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23560 << 4); 23561 } 23562 23563 if (tcp->tcp_ipversion == IPV4_VERSION) { 23564 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23565 } else { 23566 /* Check for ip6i_t header in sticky hdrs */ 23567 ip6_t *ip6 = (ip6_t *)(rptr + 23568 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23569 sizeof (ip6i_t) : 0)); 23570 23571 ip6->ip6_plen = htons(tcp_hdr_len - 23572 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23573 } 23574 23575 /* 23576 * Prime pump for checksum calculation in IP. Include the 23577 * adjustment for a source route if any. 23578 */ 23579 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23580 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23581 U16_TO_ABE16(data_length, tcph->th_sum); 23582 23583 if (tcp->tcp_ip_forward_progress) { 23584 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23585 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23586 tcp->tcp_ip_forward_progress = B_FALSE; 23587 } 23588 return (mp1); 23589 } 23590 } 23591 23592 /* 23593 * To create a temporary tcp structure for inserting into bind hash list. 23594 * The parameter is assumed to be in network byte order, ready for use. 23595 */ 23596 /* ARGSUSED */ 23597 static tcp_t * 23598 tcp_alloc_temp_tcp(in_port_t port, tcp_stack_t *tcps) 23599 { 23600 conn_t *connp; 23601 tcp_t *tcp; 23602 23603 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP, tcps->tcps_netstack); 23604 if (connp == NULL) 23605 return (NULL); 23606 23607 tcp = connp->conn_tcp; 23608 tcp->tcp_tcps = tcps; 23609 TCPS_REFHOLD(tcps); 23610 23611 /* 23612 * Only initialize the necessary info in those structures. Note 23613 * that since INADDR_ANY is all 0, we do not need to set 23614 * tcp_bound_source to INADDR_ANY here. 23615 */ 23616 tcp->tcp_state = TCPS_BOUND; 23617 tcp->tcp_lport = port; 23618 tcp->tcp_exclbind = 1; 23619 tcp->tcp_reserved_port = 1; 23620 23621 /* Just for place holding... */ 23622 tcp->tcp_ipversion = IPV4_VERSION; 23623 23624 return (tcp); 23625 } 23626 23627 /* 23628 * To remove a port range specified by lo_port and hi_port from the 23629 * reserved port ranges. This is one of the three public functions of 23630 * the reserved port interface. Note that a port range has to be removed 23631 * as a whole. Ports in a range cannot be removed individually. 23632 * 23633 * Params: 23634 * in_port_t lo_port: the beginning port of the reserved port range to 23635 * be deleted. 23636 * in_port_t hi_port: the ending port of the reserved port range to 23637 * be deleted. 23638 * 23639 * Return: 23640 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23641 * 23642 * Assumes that nca is only for zoneid=0 23643 */ 23644 boolean_t 23645 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23646 { 23647 int i, j; 23648 int size; 23649 tcp_t **temp_tcp_array; 23650 tcp_t *tcp; 23651 tcp_stack_t *tcps; 23652 23653 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23654 ASSERT(tcps != NULL); 23655 23656 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23657 23658 /* First make sure that the port ranage is indeed reserved. */ 23659 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23660 if (tcps->tcps_reserved_port[i].lo_port == lo_port) { 23661 hi_port = tcps->tcps_reserved_port[i].hi_port; 23662 temp_tcp_array = 23663 tcps->tcps_reserved_port[i].temp_tcp_array; 23664 break; 23665 } 23666 } 23667 if (i == tcps->tcps_reserved_port_array_size) { 23668 rw_exit(&tcps->tcps_reserved_port_lock); 23669 netstack_rele(tcps->tcps_netstack); 23670 return (B_FALSE); 23671 } 23672 23673 /* 23674 * Remove the range from the array. This simple loop is possible 23675 * because port ranges are inserted in ascending order. 23676 */ 23677 for (j = i; j < tcps->tcps_reserved_port_array_size - 1; j++) { 23678 tcps->tcps_reserved_port[j].lo_port = 23679 tcps->tcps_reserved_port[j+1].lo_port; 23680 tcps->tcps_reserved_port[j].hi_port = 23681 tcps->tcps_reserved_port[j+1].hi_port; 23682 tcps->tcps_reserved_port[j].temp_tcp_array = 23683 tcps->tcps_reserved_port[j+1].temp_tcp_array; 23684 } 23685 23686 /* Remove all the temporary tcp structures. */ 23687 size = hi_port - lo_port + 1; 23688 while (size > 0) { 23689 tcp = temp_tcp_array[size - 1]; 23690 ASSERT(tcp != NULL); 23691 tcp_bind_hash_remove(tcp); 23692 CONN_DEC_REF(tcp->tcp_connp); 23693 size--; 23694 } 23695 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23696 tcps->tcps_reserved_port_array_size--; 23697 rw_exit(&tcps->tcps_reserved_port_lock); 23698 netstack_rele(tcps->tcps_netstack); 23699 return (B_TRUE); 23700 } 23701 23702 /* 23703 * Macro to remove temporary tcp structure from the bind hash list. The 23704 * first parameter is the list of tcp to be removed. The second parameter 23705 * is the number of tcps in the array. 23706 */ 23707 #define TCP_TMP_TCP_REMOVE(tcp_array, num, tcps) \ 23708 { \ 23709 while ((num) > 0) { \ 23710 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23711 tf_t *tbf; \ 23712 tcp_t *tcpnext; \ 23713 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23714 mutex_enter(&tbf->tf_lock); \ 23715 tcpnext = tcp->tcp_bind_hash; \ 23716 if (tcpnext) { \ 23717 tcpnext->tcp_ptpbhn = \ 23718 tcp->tcp_ptpbhn; \ 23719 } \ 23720 *tcp->tcp_ptpbhn = tcpnext; \ 23721 mutex_exit(&tbf->tf_lock); \ 23722 kmem_free(tcp, sizeof (tcp_t)); \ 23723 (tcp_array)[(num) - 1] = NULL; \ 23724 (num)--; \ 23725 } \ 23726 } 23727 23728 /* 23729 * The public interface for other modules to call to reserve a port range 23730 * in TCP. The caller passes in how large a port range it wants. TCP 23731 * will try to find a range and return it via lo_port and hi_port. This is 23732 * used by NCA's nca_conn_init. 23733 * NCA can only be used in the global zone so this only affects the global 23734 * zone's ports. 23735 * 23736 * Params: 23737 * int size: the size of the port range to be reserved. 23738 * in_port_t *lo_port (referenced): returns the beginning port of the 23739 * reserved port range added. 23740 * in_port_t *hi_port (referenced): returns the ending port of the 23741 * reserved port range added. 23742 * 23743 * Return: 23744 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23745 * 23746 * Assumes that nca is only for zoneid=0 23747 */ 23748 boolean_t 23749 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23750 { 23751 tcp_t *tcp; 23752 tcp_t *tmp_tcp; 23753 tcp_t **temp_tcp_array; 23754 tf_t *tbf; 23755 in_port_t net_port; 23756 in_port_t port; 23757 int32_t cur_size; 23758 int i, j; 23759 boolean_t used; 23760 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23761 zoneid_t zoneid = GLOBAL_ZONEID; 23762 tcp_stack_t *tcps; 23763 23764 /* Sanity check. */ 23765 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23766 return (B_FALSE); 23767 } 23768 23769 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_tcp; 23770 ASSERT(tcps != NULL); 23771 23772 rw_enter(&tcps->tcps_reserved_port_lock, RW_WRITER); 23773 if (tcps->tcps_reserved_port_array_size == 23774 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23775 rw_exit(&tcps->tcps_reserved_port_lock); 23776 netstack_rele(tcps->tcps_netstack); 23777 return (B_FALSE); 23778 } 23779 23780 /* 23781 * Find the starting port to try. Since the port ranges are ordered 23782 * in the reserved port array, we can do a simple search here. 23783 */ 23784 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23785 *hi_port = TCP_LARGEST_RESERVED_PORT; 23786 for (i = 0; i < tcps->tcps_reserved_port_array_size; 23787 *lo_port = tcps->tcps_reserved_port[i].hi_port + 1, i++) { 23788 if (tcps->tcps_reserved_port[i].lo_port - *lo_port >= size) { 23789 *hi_port = tcps->tcps_reserved_port[i].lo_port - 1; 23790 break; 23791 } 23792 } 23793 /* No available port range. */ 23794 if (i == tcps->tcps_reserved_port_array_size && 23795 *hi_port - *lo_port < size) { 23796 rw_exit(&tcps->tcps_reserved_port_lock); 23797 netstack_rele(tcps->tcps_netstack); 23798 return (B_FALSE); 23799 } 23800 23801 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23802 if (temp_tcp_array == NULL) { 23803 rw_exit(&tcps->tcps_reserved_port_lock); 23804 netstack_rele(tcps->tcps_netstack); 23805 return (B_FALSE); 23806 } 23807 23808 /* Go thru the port range to see if some ports are already bound. */ 23809 for (port = *lo_port, cur_size = 0; 23810 cur_size < size && port <= *hi_port; 23811 cur_size++, port++) { 23812 used = B_FALSE; 23813 net_port = htons(port); 23814 tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(net_port)]; 23815 mutex_enter(&tbf->tf_lock); 23816 for (tcp = tbf->tf_tcp; tcp != NULL; 23817 tcp = tcp->tcp_bind_hash) { 23818 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23819 net_port == tcp->tcp_lport) { 23820 /* 23821 * A port is already bound. Search again 23822 * starting from port + 1. Release all 23823 * temporary tcps. 23824 */ 23825 mutex_exit(&tbf->tf_lock); 23826 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23827 tcps); 23828 *lo_port = port + 1; 23829 cur_size = -1; 23830 used = B_TRUE; 23831 break; 23832 } 23833 } 23834 if (!used) { 23835 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port, tcps)) == 23836 NULL) { 23837 /* 23838 * Allocation failure. Just fail the request. 23839 * Need to remove all those temporary tcp 23840 * structures. 23841 */ 23842 mutex_exit(&tbf->tf_lock); 23843 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, 23844 tcps); 23845 rw_exit(&tcps->tcps_reserved_port_lock); 23846 kmem_free(temp_tcp_array, 23847 (hi_port - lo_port + 1) * 23848 sizeof (tcp_t *)); 23849 netstack_rele(tcps->tcps_netstack); 23850 return (B_FALSE); 23851 } 23852 temp_tcp_array[cur_size] = tmp_tcp; 23853 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23854 mutex_exit(&tbf->tf_lock); 23855 } 23856 } 23857 23858 /* 23859 * The current range is not large enough. We can actually do another 23860 * search if this search is done between 2 reserved port ranges. But 23861 * for first release, we just stop here and return saying that no port 23862 * range is available. 23863 */ 23864 if (cur_size < size) { 23865 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size, tcps); 23866 rw_exit(&tcps->tcps_reserved_port_lock); 23867 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23868 netstack_rele(tcps->tcps_netstack); 23869 return (B_FALSE); 23870 } 23871 *hi_port = port - 1; 23872 23873 /* 23874 * Insert range into array in ascending order. Since this function 23875 * must not be called often, we choose to use the simplest method. 23876 * The above array should not consume excessive stack space as 23877 * the size must be very small. If in future releases, we find 23878 * that we should provide more reserved port ranges, this function 23879 * has to be modified to be more efficient. 23880 */ 23881 if (tcps->tcps_reserved_port_array_size == 0) { 23882 tcps->tcps_reserved_port[0].lo_port = *lo_port; 23883 tcps->tcps_reserved_port[0].hi_port = *hi_port; 23884 tcps->tcps_reserved_port[0].temp_tcp_array = temp_tcp_array; 23885 } else { 23886 for (i = 0, j = 0; i < tcps->tcps_reserved_port_array_size; 23887 i++, j++) { 23888 if (*lo_port < tcps->tcps_reserved_port[i].lo_port && 23889 i == j) { 23890 tmp_ports[j].lo_port = *lo_port; 23891 tmp_ports[j].hi_port = *hi_port; 23892 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23893 j++; 23894 } 23895 tmp_ports[j].lo_port = 23896 tcps->tcps_reserved_port[i].lo_port; 23897 tmp_ports[j].hi_port = 23898 tcps->tcps_reserved_port[i].hi_port; 23899 tmp_ports[j].temp_tcp_array = 23900 tcps->tcps_reserved_port[i].temp_tcp_array; 23901 } 23902 if (j == i) { 23903 tmp_ports[j].lo_port = *lo_port; 23904 tmp_ports[j].hi_port = *hi_port; 23905 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23906 } 23907 bcopy(tmp_ports, tcps->tcps_reserved_port, sizeof (tmp_ports)); 23908 } 23909 tcps->tcps_reserved_port_array_size++; 23910 rw_exit(&tcps->tcps_reserved_port_lock); 23911 netstack_rele(tcps->tcps_netstack); 23912 return (B_TRUE); 23913 } 23914 23915 /* 23916 * Check to see if a port is in any reserved port range. 23917 * 23918 * Params: 23919 * in_port_t port: the port to be verified. 23920 * 23921 * Return: 23922 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23923 */ 23924 boolean_t 23925 tcp_reserved_port_check(in_port_t port, tcp_stack_t *tcps) 23926 { 23927 int i; 23928 23929 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23930 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23931 if (port >= tcps->tcps_reserved_port[i].lo_port || 23932 port <= tcps->tcps_reserved_port[i].hi_port) { 23933 rw_exit(&tcps->tcps_reserved_port_lock); 23934 return (B_TRUE); 23935 } 23936 } 23937 rw_exit(&tcps->tcps_reserved_port_lock); 23938 return (B_FALSE); 23939 } 23940 23941 /* 23942 * To list all reserved port ranges. This is the function to handle 23943 * ndd tcp_reserved_port_list. 23944 */ 23945 /* ARGSUSED */ 23946 static int 23947 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23948 { 23949 int i; 23950 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 23951 23952 rw_enter(&tcps->tcps_reserved_port_lock, RW_READER); 23953 if (tcps->tcps_reserved_port_array_size > 0) 23954 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23955 else 23956 (void) mi_mpprintf(mp, "No port is reserved."); 23957 for (i = 0; i < tcps->tcps_reserved_port_array_size; i++) { 23958 (void) mi_mpprintf(mp, "%d-%d", 23959 tcps->tcps_reserved_port[i].lo_port, 23960 tcps->tcps_reserved_port[i].hi_port); 23961 } 23962 rw_exit(&tcps->tcps_reserved_port_lock); 23963 return (0); 23964 } 23965 23966 /* 23967 * Hash list insertion routine for tcp_t structures. 23968 * Inserts entries with the ones bound to a specific IP address first 23969 * followed by those bound to INADDR_ANY. 23970 */ 23971 static void 23972 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23973 { 23974 tcp_t **tcpp; 23975 tcp_t *tcpnext; 23976 23977 if (tcp->tcp_ptpbhn != NULL) { 23978 ASSERT(!caller_holds_lock); 23979 tcp_bind_hash_remove(tcp); 23980 } 23981 tcpp = &tbf->tf_tcp; 23982 if (!caller_holds_lock) { 23983 mutex_enter(&tbf->tf_lock); 23984 } else { 23985 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23986 } 23987 tcpnext = tcpp[0]; 23988 if (tcpnext) { 23989 /* 23990 * If the new tcp bound to the INADDR_ANY address 23991 * and the first one in the list is not bound to 23992 * INADDR_ANY we skip all entries until we find the 23993 * first one bound to INADDR_ANY. 23994 * This makes sure that applications binding to a 23995 * specific address get preference over those binding to 23996 * INADDR_ANY. 23997 */ 23998 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23999 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 24000 while ((tcpnext = tcpp[0]) != NULL && 24001 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 24002 tcpp = &(tcpnext->tcp_bind_hash); 24003 if (tcpnext) 24004 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24005 } else 24006 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 24007 } 24008 tcp->tcp_bind_hash = tcpnext; 24009 tcp->tcp_ptpbhn = tcpp; 24010 tcpp[0] = tcp; 24011 if (!caller_holds_lock) 24012 mutex_exit(&tbf->tf_lock); 24013 } 24014 24015 /* 24016 * Hash list removal routine for tcp_t structures. 24017 */ 24018 static void 24019 tcp_bind_hash_remove(tcp_t *tcp) 24020 { 24021 tcp_t *tcpnext; 24022 kmutex_t *lockp; 24023 tcp_stack_t *tcps = tcp->tcp_tcps; 24024 24025 if (tcp->tcp_ptpbhn == NULL) 24026 return; 24027 24028 /* 24029 * Extract the lock pointer in case there are concurrent 24030 * hash_remove's for this instance. 24031 */ 24032 ASSERT(tcp->tcp_lport != 0); 24033 lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 24034 24035 ASSERT(lockp != NULL); 24036 mutex_enter(lockp); 24037 if (tcp->tcp_ptpbhn) { 24038 tcpnext = tcp->tcp_bind_hash; 24039 if (tcpnext) { 24040 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 24041 tcp->tcp_bind_hash = NULL; 24042 } 24043 *tcp->tcp_ptpbhn = tcpnext; 24044 tcp->tcp_ptpbhn = NULL; 24045 } 24046 mutex_exit(lockp); 24047 } 24048 24049 24050 /* 24051 * Hash list lookup routine for tcp_t structures. 24052 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 24053 */ 24054 static tcp_t * 24055 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 24056 { 24057 tf_t *tf; 24058 tcp_t *tcp; 24059 24060 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24061 mutex_enter(&tf->tf_lock); 24062 for (tcp = tf->tf_tcp; tcp != NULL; 24063 tcp = tcp->tcp_acceptor_hash) { 24064 if (tcp->tcp_acceptor_id == id) { 24065 CONN_INC_REF(tcp->tcp_connp); 24066 mutex_exit(&tf->tf_lock); 24067 return (tcp); 24068 } 24069 } 24070 mutex_exit(&tf->tf_lock); 24071 return (NULL); 24072 } 24073 24074 24075 /* 24076 * Hash list insertion routine for tcp_t structures. 24077 */ 24078 void 24079 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 24080 { 24081 tf_t *tf; 24082 tcp_t **tcpp; 24083 tcp_t *tcpnext; 24084 tcp_stack_t *tcps = tcp->tcp_tcps; 24085 24086 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 24087 24088 if (tcp->tcp_ptpahn != NULL) 24089 tcp_acceptor_hash_remove(tcp); 24090 tcpp = &tf->tf_tcp; 24091 mutex_enter(&tf->tf_lock); 24092 tcpnext = tcpp[0]; 24093 if (tcpnext) 24094 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 24095 tcp->tcp_acceptor_hash = tcpnext; 24096 tcp->tcp_ptpahn = tcpp; 24097 tcpp[0] = tcp; 24098 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 24099 mutex_exit(&tf->tf_lock); 24100 } 24101 24102 /* 24103 * Hash list removal routine for tcp_t structures. 24104 */ 24105 static void 24106 tcp_acceptor_hash_remove(tcp_t *tcp) 24107 { 24108 tcp_t *tcpnext; 24109 kmutex_t *lockp; 24110 24111 /* 24112 * Extract the lock pointer in case there are concurrent 24113 * hash_remove's for this instance. 24114 */ 24115 lockp = tcp->tcp_acceptor_lockp; 24116 24117 if (tcp->tcp_ptpahn == NULL) 24118 return; 24119 24120 ASSERT(lockp != NULL); 24121 mutex_enter(lockp); 24122 if (tcp->tcp_ptpahn) { 24123 tcpnext = tcp->tcp_acceptor_hash; 24124 if (tcpnext) { 24125 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 24126 tcp->tcp_acceptor_hash = NULL; 24127 } 24128 *tcp->tcp_ptpahn = tcpnext; 24129 tcp->tcp_ptpahn = NULL; 24130 } 24131 mutex_exit(lockp); 24132 tcp->tcp_acceptor_lockp = NULL; 24133 } 24134 24135 /* ARGSUSED */ 24136 static int 24137 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 24138 { 24139 int error = 0; 24140 int retval; 24141 char *end; 24142 tcp_hsp_t *hsp; 24143 tcp_hsp_t *hspprev; 24144 ipaddr_t addr = 0; /* Address we're looking for */ 24145 in6_addr_t v6addr; /* Address we're looking for */ 24146 uint32_t hash; /* Hash of that address */ 24147 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24148 24149 /* 24150 * If the following variables are still zero after parsing the input 24151 * string, the user didn't specify them and we don't change them in 24152 * the HSP. 24153 */ 24154 24155 ipaddr_t mask = 0; /* Subnet mask */ 24156 in6_addr_t v6mask; 24157 long sendspace = 0; /* Send buffer size */ 24158 long recvspace = 0; /* Receive buffer size */ 24159 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 24160 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 24161 24162 rw_enter(&tcps->tcps_hsp_lock, RW_WRITER); 24163 24164 /* Parse and validate address */ 24165 if (af == AF_INET) { 24166 retval = inet_pton(af, value, &addr); 24167 if (retval == 1) 24168 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 24169 } else if (af == AF_INET6) { 24170 retval = inet_pton(af, value, &v6addr); 24171 } else { 24172 error = EINVAL; 24173 goto done; 24174 } 24175 if (retval == 0) { 24176 error = EINVAL; 24177 goto done; 24178 } 24179 24180 while ((*value) && *value != ' ') 24181 value++; 24182 24183 /* Parse individual keywords, set variables if found */ 24184 while (*value) { 24185 /* Skip leading blanks */ 24186 24187 while (*value == ' ' || *value == '\t') 24188 value++; 24189 24190 /* If at end of string, we're done */ 24191 24192 if (!*value) 24193 break; 24194 24195 /* We have a word, figure out what it is */ 24196 24197 if (strncmp("mask", value, 4) == 0) { 24198 value += 4; 24199 while (*value == ' ' || *value == '\t') 24200 value++; 24201 /* Parse subnet mask */ 24202 if (af == AF_INET) { 24203 retval = inet_pton(af, value, &mask); 24204 if (retval == 1) { 24205 V4MASK_TO_V6(mask, v6mask); 24206 } 24207 } else if (af == AF_INET6) { 24208 retval = inet_pton(af, value, &v6mask); 24209 } 24210 if (retval != 1) { 24211 error = EINVAL; 24212 goto done; 24213 } 24214 while ((*value) && *value != ' ') 24215 value++; 24216 } else if (strncmp("sendspace", value, 9) == 0) { 24217 value += 9; 24218 24219 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 24220 sendspace < TCP_XMIT_HIWATER || 24221 sendspace >= (1L<<30)) { 24222 error = EINVAL; 24223 goto done; 24224 } 24225 value = end; 24226 } else if (strncmp("recvspace", value, 9) == 0) { 24227 value += 9; 24228 24229 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 24230 recvspace < TCP_RECV_HIWATER || 24231 recvspace >= (1L<<30)) { 24232 error = EINVAL; 24233 goto done; 24234 } 24235 value = end; 24236 } else if (strncmp("timestamp", value, 9) == 0) { 24237 value += 9; 24238 24239 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 24240 timestamp < 0 || timestamp > 1) { 24241 error = EINVAL; 24242 goto done; 24243 } 24244 24245 /* 24246 * We increment timestamp so we know it's been set; 24247 * this is undone when we put it in the HSP 24248 */ 24249 timestamp++; 24250 value = end; 24251 } else if (strncmp("delete", value, 6) == 0) { 24252 value += 6; 24253 delete = B_TRUE; 24254 } else { 24255 error = EINVAL; 24256 goto done; 24257 } 24258 } 24259 24260 /* Hash address for lookup */ 24261 24262 hash = TCP_HSP_HASH(addr); 24263 24264 if (delete) { 24265 /* 24266 * Note that deletes don't return an error if the thing 24267 * we're trying to delete isn't there. 24268 */ 24269 if (tcps->tcps_hsp_hash == NULL) 24270 goto done; 24271 hsp = tcps->tcps_hsp_hash[hash]; 24272 24273 if (hsp) { 24274 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24275 &v6addr)) { 24276 tcps->tcps_hsp_hash[hash] = hsp->tcp_hsp_next; 24277 mi_free((char *)hsp); 24278 } else { 24279 hspprev = hsp; 24280 while ((hsp = hsp->tcp_hsp_next) != NULL) { 24281 if (IN6_ARE_ADDR_EQUAL( 24282 &hsp->tcp_hsp_addr_v6, &v6addr)) { 24283 hspprev->tcp_hsp_next = 24284 hsp->tcp_hsp_next; 24285 mi_free((char *)hsp); 24286 break; 24287 } 24288 hspprev = hsp; 24289 } 24290 } 24291 } 24292 } else { 24293 /* 24294 * We're adding/modifying an HSP. If we haven't already done 24295 * so, allocate the hash table. 24296 */ 24297 24298 if (!tcps->tcps_hsp_hash) { 24299 tcps->tcps_hsp_hash = (tcp_hsp_t **) 24300 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 24301 if (!tcps->tcps_hsp_hash) { 24302 error = EINVAL; 24303 goto done; 24304 } 24305 } 24306 24307 /* Get head of hash chain */ 24308 24309 hsp = tcps->tcps_hsp_hash[hash]; 24310 24311 /* Try to find pre-existing hsp on hash chain */ 24312 /* Doesn't handle CIDR prefixes. */ 24313 while (hsp) { 24314 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 24315 break; 24316 hsp = hsp->tcp_hsp_next; 24317 } 24318 24319 /* 24320 * If we didn't, create one with default values and put it 24321 * at head of hash chain 24322 */ 24323 24324 if (!hsp) { 24325 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 24326 if (!hsp) { 24327 error = EINVAL; 24328 goto done; 24329 } 24330 hsp->tcp_hsp_next = tcps->tcps_hsp_hash[hash]; 24331 tcps->tcps_hsp_hash[hash] = hsp; 24332 } 24333 24334 /* Set values that the user asked us to change */ 24335 24336 hsp->tcp_hsp_addr_v6 = v6addr; 24337 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 24338 hsp->tcp_hsp_vers = IPV4_VERSION; 24339 else 24340 hsp->tcp_hsp_vers = IPV6_VERSION; 24341 hsp->tcp_hsp_subnet_v6 = v6mask; 24342 if (sendspace > 0) 24343 hsp->tcp_hsp_sendspace = sendspace; 24344 if (recvspace > 0) 24345 hsp->tcp_hsp_recvspace = recvspace; 24346 if (timestamp > 0) 24347 hsp->tcp_hsp_tstamp = timestamp - 1; 24348 } 24349 24350 done: 24351 rw_exit(&tcps->tcps_hsp_lock); 24352 return (error); 24353 } 24354 24355 /* Set callback routine passed to nd_load by tcp_param_register. */ 24356 /* ARGSUSED */ 24357 static int 24358 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 24359 { 24360 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 24361 } 24362 /* ARGSUSED */ 24363 static int 24364 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24365 cred_t *cr) 24366 { 24367 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 24368 } 24369 24370 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 24371 /* ARGSUSED */ 24372 static int 24373 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 24374 { 24375 tcp_hsp_t *hsp; 24376 int i; 24377 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 24378 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24379 24380 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24381 (void) mi_mpprintf(mp, 24382 "Hash HSP " MI_COL_HDRPAD_STR 24383 "Address Subnet Mask Send Receive TStamp"); 24384 if (tcps->tcps_hsp_hash) { 24385 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 24386 hsp = tcps->tcps_hsp_hash[i]; 24387 while (hsp) { 24388 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 24389 (void) inet_ntop(AF_INET, 24390 &hsp->tcp_hsp_addr, 24391 addrbuf, sizeof (addrbuf)); 24392 (void) inet_ntop(AF_INET, 24393 &hsp->tcp_hsp_subnet, 24394 subnetbuf, sizeof (subnetbuf)); 24395 } else { 24396 (void) inet_ntop(AF_INET6, 24397 &hsp->tcp_hsp_addr_v6, 24398 addrbuf, sizeof (addrbuf)); 24399 (void) inet_ntop(AF_INET6, 24400 &hsp->tcp_hsp_subnet_v6, 24401 subnetbuf, sizeof (subnetbuf)); 24402 } 24403 (void) mi_mpprintf(mp, 24404 " %03d " MI_COL_PTRFMT_STR 24405 "%s %s %010d %010d %d", 24406 i, 24407 (void *)hsp, 24408 addrbuf, 24409 subnetbuf, 24410 hsp->tcp_hsp_sendspace, 24411 hsp->tcp_hsp_recvspace, 24412 hsp->tcp_hsp_tstamp); 24413 24414 hsp = hsp->tcp_hsp_next; 24415 } 24416 } 24417 } 24418 rw_exit(&tcps->tcps_hsp_lock); 24419 return (0); 24420 } 24421 24422 24423 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24424 24425 static ipaddr_t netmasks[] = { 24426 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24427 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24428 }; 24429 24430 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24431 24432 /* 24433 * XXX This routine should go away and instead we should use the metrics 24434 * associated with the routes to determine the default sndspace and rcvspace. 24435 */ 24436 static tcp_hsp_t * 24437 tcp_hsp_lookup(ipaddr_t addr, tcp_stack_t *tcps) 24438 { 24439 tcp_hsp_t *hsp = NULL; 24440 24441 /* Quick check without acquiring the lock. */ 24442 if (tcps->tcps_hsp_hash == NULL) 24443 return (NULL); 24444 24445 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24446 24447 /* This routine finds the best-matching HSP for address addr. */ 24448 24449 if (tcps->tcps_hsp_hash) { 24450 int i; 24451 ipaddr_t srchaddr; 24452 tcp_hsp_t *hsp_net; 24453 24454 /* We do three passes: host, network, and subnet. */ 24455 24456 srchaddr = addr; 24457 24458 for (i = 1; i <= 3; i++) { 24459 /* Look for exact match on srchaddr */ 24460 24461 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24462 while (hsp) { 24463 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24464 hsp->tcp_hsp_addr == srchaddr) 24465 break; 24466 hsp = hsp->tcp_hsp_next; 24467 } 24468 ASSERT(hsp == NULL || 24469 hsp->tcp_hsp_vers == IPV4_VERSION); 24470 24471 /* 24472 * If this is the first pass: 24473 * If we found a match, great, return it. 24474 * If not, search for the network on the second pass. 24475 */ 24476 24477 if (i == 1) 24478 if (hsp) 24479 break; 24480 else 24481 { 24482 srchaddr = addr & netmask(addr); 24483 continue; 24484 } 24485 24486 /* 24487 * If this is the second pass: 24488 * If we found a match, but there's a subnet mask, 24489 * save the match but try again using the subnet 24490 * mask on the third pass. 24491 * Otherwise, return whatever we found. 24492 */ 24493 24494 if (i == 2) { 24495 if (hsp && hsp->tcp_hsp_subnet) { 24496 hsp_net = hsp; 24497 srchaddr = addr & hsp->tcp_hsp_subnet; 24498 continue; 24499 } else { 24500 break; 24501 } 24502 } 24503 24504 /* 24505 * This must be the third pass. If we didn't find 24506 * anything, return the saved network HSP instead. 24507 */ 24508 24509 if (!hsp) 24510 hsp = hsp_net; 24511 } 24512 } 24513 24514 rw_exit(&tcps->tcps_hsp_lock); 24515 return (hsp); 24516 } 24517 24518 /* 24519 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24520 * match lookup. 24521 */ 24522 static tcp_hsp_t * 24523 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr, tcp_stack_t *tcps) 24524 { 24525 tcp_hsp_t *hsp = NULL; 24526 24527 /* Quick check without acquiring the lock. */ 24528 if (tcps->tcps_hsp_hash == NULL) 24529 return (NULL); 24530 24531 rw_enter(&tcps->tcps_hsp_lock, RW_READER); 24532 24533 /* This routine finds the best-matching HSP for address addr. */ 24534 24535 if (tcps->tcps_hsp_hash) { 24536 int i; 24537 in6_addr_t v6srchaddr; 24538 tcp_hsp_t *hsp_net; 24539 24540 /* We do three passes: host, network, and subnet. */ 24541 24542 v6srchaddr = *v6addr; 24543 24544 for (i = 1; i <= 3; i++) { 24545 /* Look for exact match on srchaddr */ 24546 24547 hsp = tcps->tcps_hsp_hash[TCP_HSP_HASH( 24548 V4_PART_OF_V6(v6srchaddr))]; 24549 while (hsp) { 24550 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24551 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24552 &v6srchaddr)) 24553 break; 24554 hsp = hsp->tcp_hsp_next; 24555 } 24556 24557 /* 24558 * If this is the first pass: 24559 * If we found a match, great, return it. 24560 * If not, search for the network on the second pass. 24561 */ 24562 24563 if (i == 1) 24564 if (hsp) 24565 break; 24566 else { 24567 /* Assume a 64 bit mask */ 24568 v6srchaddr.s6_addr32[0] = 24569 v6addr->s6_addr32[0]; 24570 v6srchaddr.s6_addr32[1] = 24571 v6addr->s6_addr32[1]; 24572 v6srchaddr.s6_addr32[2] = 0; 24573 v6srchaddr.s6_addr32[3] = 0; 24574 continue; 24575 } 24576 24577 /* 24578 * If this is the second pass: 24579 * If we found a match, but there's a subnet mask, 24580 * save the match but try again using the subnet 24581 * mask on the third pass. 24582 * Otherwise, return whatever we found. 24583 */ 24584 24585 if (i == 2) { 24586 ASSERT(hsp == NULL || 24587 hsp->tcp_hsp_vers == IPV6_VERSION); 24588 if (hsp && 24589 !IN6_IS_ADDR_UNSPECIFIED( 24590 &hsp->tcp_hsp_subnet_v6)) { 24591 hsp_net = hsp; 24592 V6_MASK_COPY(*v6addr, 24593 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24594 continue; 24595 } else { 24596 break; 24597 } 24598 } 24599 24600 /* 24601 * This must be the third pass. If we didn't find 24602 * anything, return the saved network HSP instead. 24603 */ 24604 24605 if (!hsp) 24606 hsp = hsp_net; 24607 } 24608 } 24609 24610 rw_exit(&tcps->tcps_hsp_lock); 24611 return (hsp); 24612 } 24613 24614 /* 24615 * Type three generator adapted from the random() function in 4.4 BSD: 24616 */ 24617 24618 /* 24619 * Copyright (c) 1983, 1993 24620 * The Regents of the University of California. All rights reserved. 24621 * 24622 * Redistribution and use in source and binary forms, with or without 24623 * modification, are permitted provided that the following conditions 24624 * are met: 24625 * 1. Redistributions of source code must retain the above copyright 24626 * notice, this list of conditions and the following disclaimer. 24627 * 2. Redistributions in binary form must reproduce the above copyright 24628 * notice, this list of conditions and the following disclaimer in the 24629 * documentation and/or other materials provided with the distribution. 24630 * 3. All advertising materials mentioning features or use of this software 24631 * must display the following acknowledgement: 24632 * This product includes software developed by the University of 24633 * California, Berkeley and its contributors. 24634 * 4. Neither the name of the University nor the names of its contributors 24635 * may be used to endorse or promote products derived from this software 24636 * without specific prior written permission. 24637 * 24638 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24639 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24640 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24641 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24642 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24643 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24644 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24645 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24646 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24647 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24648 * SUCH DAMAGE. 24649 */ 24650 24651 /* Type 3 -- x**31 + x**3 + 1 */ 24652 #define DEG_3 31 24653 #define SEP_3 3 24654 24655 24656 /* Protected by tcp_random_lock */ 24657 static int tcp_randtbl[DEG_3 + 1]; 24658 24659 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24660 static int *tcp_random_rptr = &tcp_randtbl[1]; 24661 24662 static int *tcp_random_state = &tcp_randtbl[1]; 24663 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24664 24665 kmutex_t tcp_random_lock; 24666 24667 void 24668 tcp_random_init(void) 24669 { 24670 int i; 24671 hrtime_t hrt; 24672 time_t wallclock; 24673 uint64_t result; 24674 24675 /* 24676 * Use high-res timer and current time for seed. Gethrtime() returns 24677 * a longlong, which may contain resolution down to nanoseconds. 24678 * The current time will either be a 32-bit or a 64-bit quantity. 24679 * XOR the two together in a 64-bit result variable. 24680 * Convert the result to a 32-bit value by multiplying the high-order 24681 * 32-bits by the low-order 32-bits. 24682 */ 24683 24684 hrt = gethrtime(); 24685 (void) drv_getparm(TIME, &wallclock); 24686 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24687 mutex_enter(&tcp_random_lock); 24688 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24689 (result & 0xffffffff); 24690 24691 for (i = 1; i < DEG_3; i++) 24692 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24693 + 12345; 24694 tcp_random_fptr = &tcp_random_state[SEP_3]; 24695 tcp_random_rptr = &tcp_random_state[0]; 24696 mutex_exit(&tcp_random_lock); 24697 for (i = 0; i < 10 * DEG_3; i++) 24698 (void) tcp_random(); 24699 } 24700 24701 /* 24702 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24703 * This range is selected to be approximately centered on TCP_ISS / 2, 24704 * and easy to compute. We get this value by generating a 32-bit random 24705 * number, selecting out the high-order 17 bits, and then adding one so 24706 * that we never return zero. 24707 */ 24708 int 24709 tcp_random(void) 24710 { 24711 int i; 24712 24713 mutex_enter(&tcp_random_lock); 24714 *tcp_random_fptr += *tcp_random_rptr; 24715 24716 /* 24717 * The high-order bits are more random than the low-order bits, 24718 * so we select out the high-order 17 bits and add one so that 24719 * we never return zero. 24720 */ 24721 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24722 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24723 tcp_random_fptr = tcp_random_state; 24724 ++tcp_random_rptr; 24725 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24726 tcp_random_rptr = tcp_random_state; 24727 24728 mutex_exit(&tcp_random_lock); 24729 return (i); 24730 } 24731 24732 /* 24733 * XXX This will go away when TPI is extended to send 24734 * info reqs to sockfs/timod ..... 24735 * Given a queue, set the max packet size for the write 24736 * side of the queue below stream head. This value is 24737 * cached on the stream head. 24738 * Returns 1 on success, 0 otherwise. 24739 */ 24740 static int 24741 setmaxps(queue_t *q, int maxpsz) 24742 { 24743 struct stdata *stp; 24744 queue_t *wq; 24745 stp = STREAM(q); 24746 24747 /* 24748 * At this point change of a queue parameter is not allowed 24749 * when a multiplexor is sitting on top. 24750 */ 24751 if (stp->sd_flag & STPLEX) 24752 return (0); 24753 24754 claimstr(stp->sd_wrq); 24755 wq = stp->sd_wrq->q_next; 24756 ASSERT(wq != NULL); 24757 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24758 releasestr(stp->sd_wrq); 24759 return (1); 24760 } 24761 24762 static int 24763 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24764 int *t_errorp, int *sys_errorp) 24765 { 24766 int error; 24767 int is_absreq_failure; 24768 t_scalar_t *opt_lenp; 24769 t_scalar_t opt_offset; 24770 int prim_type; 24771 struct T_conn_req *tcreqp; 24772 struct T_conn_res *tcresp; 24773 cred_t *cr; 24774 24775 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24776 24777 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24778 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24779 prim_type == T_CONN_RES); 24780 24781 switch (prim_type) { 24782 case T_CONN_REQ: 24783 tcreqp = (struct T_conn_req *)mp->b_rptr; 24784 opt_offset = tcreqp->OPT_offset; 24785 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24786 break; 24787 case O_T_CONN_RES: 24788 case T_CONN_RES: 24789 tcresp = (struct T_conn_res *)mp->b_rptr; 24790 opt_offset = tcresp->OPT_offset; 24791 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24792 break; 24793 } 24794 24795 *t_errorp = 0; 24796 *sys_errorp = 0; 24797 *do_disconnectp = 0; 24798 24799 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24800 opt_offset, cr, &tcp_opt_obj, 24801 NULL, &is_absreq_failure); 24802 24803 switch (error) { 24804 case 0: /* no error */ 24805 ASSERT(is_absreq_failure == 0); 24806 return (0); 24807 case ENOPROTOOPT: 24808 *t_errorp = TBADOPT; 24809 break; 24810 case EACCES: 24811 *t_errorp = TACCES; 24812 break; 24813 default: 24814 *t_errorp = TSYSERR; *sys_errorp = error; 24815 break; 24816 } 24817 if (is_absreq_failure != 0) { 24818 /* 24819 * The connection request should get the local ack 24820 * T_OK_ACK and then a T_DISCON_IND. 24821 */ 24822 *do_disconnectp = 1; 24823 } 24824 return (-1); 24825 } 24826 24827 /* 24828 * Split this function out so that if the secret changes, I'm okay. 24829 * 24830 * Initialize the tcp_iss_cookie and tcp_iss_key. 24831 */ 24832 24833 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24834 24835 static void 24836 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 24837 { 24838 struct { 24839 int32_t current_time; 24840 uint32_t randnum; 24841 uint16_t pad; 24842 uint8_t ether[6]; 24843 uint8_t passwd[PASSWD_SIZE]; 24844 } tcp_iss_cookie; 24845 time_t t; 24846 24847 /* 24848 * Start with the current absolute time. 24849 */ 24850 (void) drv_getparm(TIME, &t); 24851 tcp_iss_cookie.current_time = t; 24852 24853 /* 24854 * XXX - Need a more random number per RFC 1750, not this crap. 24855 * OTOH, if what follows is pretty random, then I'm in better shape. 24856 */ 24857 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24858 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24859 24860 /* 24861 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24862 * as a good template. 24863 */ 24864 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24865 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24866 24867 /* 24868 * The pass-phrase. Normally this is supplied by user-called NDD. 24869 */ 24870 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24871 24872 /* 24873 * See 4010593 if this section becomes a problem again, 24874 * but the local ethernet address is useful here. 24875 */ 24876 (void) localetheraddr(NULL, 24877 (struct ether_addr *)&tcp_iss_cookie.ether); 24878 24879 /* 24880 * Hash 'em all together. The MD5Final is called per-connection. 24881 */ 24882 mutex_enter(&tcps->tcps_iss_key_lock); 24883 MD5Init(&tcps->tcps_iss_key); 24884 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 24885 sizeof (tcp_iss_cookie)); 24886 mutex_exit(&tcps->tcps_iss_key_lock); 24887 } 24888 24889 /* 24890 * Set the RFC 1948 pass phrase 24891 */ 24892 /* ARGSUSED */ 24893 static int 24894 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24895 cred_t *cr) 24896 { 24897 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 24898 24899 /* 24900 * Basically, value contains a new pass phrase. Pass it along! 24901 */ 24902 tcp_iss_key_init((uint8_t *)value, strlen(value), tcps); 24903 return (0); 24904 } 24905 24906 /* ARGSUSED */ 24907 static int 24908 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24909 { 24910 bzero(buf, sizeof (tcp_sack_info_t)); 24911 return (0); 24912 } 24913 24914 /* ARGSUSED */ 24915 static int 24916 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24917 { 24918 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24919 return (0); 24920 } 24921 24922 /* 24923 * Make sure we wait until the default queue is setup, yet allow 24924 * tcp_g_q_create() to open a TCP stream. 24925 * We need to allow tcp_g_q_create() do do an open 24926 * of tcp, hence we compare curhread. 24927 * All others have to wait until the tcps_g_q has been 24928 * setup. 24929 */ 24930 void 24931 tcp_g_q_setup(tcp_stack_t *tcps) 24932 { 24933 mutex_enter(&tcps->tcps_g_q_lock); 24934 if (tcps->tcps_g_q != NULL) { 24935 mutex_exit(&tcps->tcps_g_q_lock); 24936 return; 24937 } 24938 if (tcps->tcps_g_q_creator == NULL) { 24939 /* This thread will set it up */ 24940 tcps->tcps_g_q_creator = curthread; 24941 mutex_exit(&tcps->tcps_g_q_lock); 24942 tcp_g_q_create(tcps); 24943 mutex_enter(&tcps->tcps_g_q_lock); 24944 ASSERT(tcps->tcps_g_q_creator == curthread); 24945 tcps->tcps_g_q_creator = NULL; 24946 cv_signal(&tcps->tcps_g_q_cv); 24947 ASSERT(tcps->tcps_g_q != NULL); 24948 mutex_exit(&tcps->tcps_g_q_lock); 24949 return; 24950 } 24951 /* Everybody but the creator has to wait */ 24952 if (tcps->tcps_g_q_creator != curthread) { 24953 while (tcps->tcps_g_q == NULL) 24954 cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock); 24955 } 24956 mutex_exit(&tcps->tcps_g_q_lock); 24957 } 24958 24959 #define IP "ip" 24960 24961 #define TCP6DEV "/devices/pseudo/tcp6@0:tcp6" 24962 24963 /* 24964 * Create a default tcp queue here instead of in strplumb 24965 */ 24966 void 24967 tcp_g_q_create(tcp_stack_t *tcps) 24968 { 24969 int error; 24970 ldi_handle_t lh = NULL; 24971 ldi_ident_t li = NULL; 24972 int rval; 24973 cred_t *cr; 24974 major_t IP_MAJ; 24975 24976 #ifdef NS_DEBUG 24977 (void) printf("tcp_g_q_create()\n"); 24978 #endif 24979 24980 IP_MAJ = ddi_name_to_major(IP); 24981 24982 ASSERT(tcps->tcps_g_q_creator == curthread); 24983 24984 error = ldi_ident_from_major(IP_MAJ, &li); 24985 if (error) { 24986 #ifdef DEBUG 24987 printf("tcp_g_q_create: lyr ident get failed error %d\n", 24988 error); 24989 #endif 24990 return; 24991 } 24992 24993 cr = zone_get_kcred(netstackid_to_zoneid( 24994 tcps->tcps_netstack->netstack_stackid)); 24995 ASSERT(cr != NULL); 24996 /* 24997 * We set the tcp default queue to IPv6 because IPv4 falls 24998 * back to IPv6 when it can't find a client, but 24999 * IPv6 does not fall back to IPv4. 25000 */ 25001 error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li); 25002 if (error) { 25003 #ifdef DEBUG 25004 printf("tcp_g_q_create: open of TCP6DEV failed error %d\n", 25005 error); 25006 #endif 25007 goto out; 25008 } 25009 25010 /* 25011 * This ioctl causes the tcp framework to cache a pointer to 25012 * this stream, so we don't want to close the stream after 25013 * this operation. 25014 * Use the kernel credentials that are for the zone we're in. 25015 */ 25016 error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q, 25017 (intptr_t)0, FKIOCTL, cr, &rval); 25018 if (error) { 25019 #ifdef DEBUG 25020 printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed " 25021 "error %d\n", error); 25022 #endif 25023 goto out; 25024 } 25025 tcps->tcps_g_q_lh = lh; /* For tcp_g_q_close */ 25026 lh = NULL; 25027 out: 25028 /* Close layered handles */ 25029 if (li) 25030 ldi_ident_release(li); 25031 /* Keep cred around until _inactive needs it */ 25032 tcps->tcps_g_q_cr = cr; 25033 } 25034 25035 /* 25036 * We keep tcp_g_q set until all other tcp_t's in the zone 25037 * has gone away, and then when tcp_g_q_inactive() is called 25038 * we clear it. 25039 */ 25040 void 25041 tcp_g_q_destroy(tcp_stack_t *tcps) 25042 { 25043 #ifdef NS_DEBUG 25044 (void) printf("tcp_g_q_destroy()for stack %d\n", 25045 tcps->tcps_netstack->netstack_stackid); 25046 #endif 25047 25048 if (tcps->tcps_g_q == NULL) { 25049 return; /* Nothing to cleanup */ 25050 } 25051 /* 25052 * Drop reference corresponding to the default queue. 25053 * This reference was added from tcp_open when the default queue 25054 * was created, hence we compensate for this extra drop in 25055 * tcp_g_q_close. If the refcnt drops to zero here it means 25056 * the default queue was the last one to be open, in which 25057 * case, then tcp_g_q_inactive will be 25058 * called as a result of the refrele. 25059 */ 25060 TCPS_REFRELE(tcps); 25061 } 25062 25063 /* 25064 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25065 * Run by tcp_q_q_inactive using a taskq. 25066 */ 25067 static void 25068 tcp_g_q_close(void *arg) 25069 { 25070 tcp_stack_t *tcps = arg; 25071 int error; 25072 ldi_handle_t lh = NULL; 25073 ldi_ident_t li = NULL; 25074 cred_t *cr; 25075 major_t IP_MAJ; 25076 25077 IP_MAJ = ddi_name_to_major(IP); 25078 25079 #ifdef NS_DEBUG 25080 (void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n", 25081 tcps->tcps_netstack->netstack_stackid, 25082 tcps->tcps_netstack->netstack_refcnt); 25083 #endif 25084 lh = tcps->tcps_g_q_lh; 25085 if (lh == NULL) 25086 return; /* Nothing to cleanup */ 25087 25088 ASSERT(tcps->tcps_refcnt == 1); 25089 ASSERT(tcps->tcps_g_q != NULL); 25090 25091 error = ldi_ident_from_major(IP_MAJ, &li); 25092 if (error) { 25093 #ifdef DEBUG 25094 printf("tcp_g_q_inactive: lyr ident get failed error %d\n", 25095 error); 25096 #endif 25097 return; 25098 } 25099 25100 cr = tcps->tcps_g_q_cr; 25101 tcps->tcps_g_q_cr = NULL; 25102 ASSERT(cr != NULL); 25103 25104 /* 25105 * Make sure we can break the recursion when tcp_close decrements 25106 * the reference count causing g_q_inactive to be called again. 25107 */ 25108 tcps->tcps_g_q_lh = NULL; 25109 25110 /* close the default queue */ 25111 (void) ldi_close(lh, FREAD|FWRITE, cr); 25112 /* 25113 * At this point in time tcps and the rest of netstack_t might 25114 * have been deleted. 25115 */ 25116 tcps = NULL; 25117 25118 /* Close layered handles */ 25119 ldi_ident_release(li); 25120 crfree(cr); 25121 } 25122 25123 /* 25124 * Called when last tcp_t drops reference count using TCPS_REFRELE. 25125 * 25126 * Have to ensure that the ldi routines are not used by an 25127 * interrupt thread by using a taskq. 25128 */ 25129 void 25130 tcp_g_q_inactive(tcp_stack_t *tcps) 25131 { 25132 if (tcps->tcps_g_q_lh == NULL) 25133 return; /* Nothing to cleanup */ 25134 25135 ASSERT(tcps->tcps_refcnt == 0); 25136 TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */ 25137 25138 if (servicing_interrupt()) { 25139 (void) taskq_dispatch(tcp_taskq, tcp_g_q_close, 25140 (void *) tcps, TQ_SLEEP); 25141 } else { 25142 tcp_g_q_close(tcps); 25143 } 25144 } 25145 25146 /* 25147 * Called by IP when IP is loaded into the kernel 25148 */ 25149 void 25150 tcp_ddi_g_init(void) 25151 { 25152 tcp_timercache = kmem_cache_create("tcp_timercache", 25153 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 25154 NULL, NULL, NULL, NULL, NULL, 0); 25155 25156 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 25157 sizeof (tcp_sack_info_t), 0, 25158 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 25159 25160 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 25161 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 25162 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 25163 25164 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 25165 25166 /* Initialize the random number generator */ 25167 tcp_random_init(); 25168 25169 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 25170 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 25171 25172 /* A single callback independently of how many netstacks we have */ 25173 ip_squeue_init(tcp_squeue_add); 25174 25175 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 25176 25177 tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1, 25178 TASKQ_PREPOPULATE); 25179 25180 /* 25181 * We want to be informed each time a stack is created or 25182 * destroyed in the kernel, so we can maintain the 25183 * set of tcp_stack_t's. 25184 */ 25185 netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown, 25186 tcp_stack_fini); 25187 } 25188 25189 25190 /* 25191 * Initialize the TCP stack instance. 25192 */ 25193 static void * 25194 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 25195 { 25196 tcp_stack_t *tcps; 25197 tcpparam_t *pa; 25198 int i; 25199 25200 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 25201 tcps->tcps_netstack = ns; 25202 25203 /* Initialize locks */ 25204 rw_init(&tcps->tcps_hsp_lock, NULL, RW_DEFAULT, NULL); 25205 mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 25206 cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL); 25207 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 25208 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 25209 rw_init(&tcps->tcps_reserved_port_lock, NULL, RW_DEFAULT, NULL); 25210 25211 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 25212 tcps->tcps_g_epriv_ports[0] = 2049; 25213 tcps->tcps_g_epriv_ports[1] = 4045; 25214 tcps->tcps_min_anonpriv_port = 512; 25215 25216 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 25217 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 25218 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 25219 TCP_FANOUT_SIZE, KM_SLEEP); 25220 tcps->tcps_reserved_port = kmem_zalloc(sizeof (tcp_rport_t) * 25221 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE, KM_SLEEP); 25222 25223 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25224 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 25225 MUTEX_DEFAULT, NULL); 25226 } 25227 25228 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25229 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 25230 MUTEX_DEFAULT, NULL); 25231 } 25232 25233 /* TCP's IPsec code calls the packet dropper. */ 25234 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 25235 25236 pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP); 25237 tcps->tcps_params = pa; 25238 bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25239 25240 (void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params, 25241 A_CNT(lcl_tcp_param_arr), tcps); 25242 25243 /* 25244 * Note: To really walk the device tree you need the devinfo 25245 * pointer to your device which is only available after probe/attach. 25246 * The following is safe only because it uses ddi_root_node() 25247 */ 25248 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 25249 tcp_opt_obj.odb_opt_arr_cnt); 25250 25251 /* 25252 * Initialize RFC 1948 secret values. This will probably be reset once 25253 * by the boot scripts. 25254 * 25255 * Use NULL name, as the name is caught by the new lockstats. 25256 * 25257 * Initialize with some random, non-guessable string, like the global 25258 * T_INFO_ACK. 25259 */ 25260 25261 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 25262 sizeof (tcp_g_t_info_ack), tcps); 25263 25264 tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics); 25265 tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps); 25266 25267 return (tcps); 25268 } 25269 25270 /* 25271 * Called when the IP module is about to be unloaded. 25272 */ 25273 void 25274 tcp_ddi_g_destroy(void) 25275 { 25276 tcp_g_kstat_fini(tcp_g_kstat); 25277 tcp_g_kstat = NULL; 25278 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 25279 25280 mutex_destroy(&tcp_random_lock); 25281 25282 kmem_cache_destroy(tcp_timercache); 25283 kmem_cache_destroy(tcp_sack_info_cache); 25284 kmem_cache_destroy(tcp_iphc_cache); 25285 25286 netstack_unregister(NS_TCP); 25287 taskq_destroy(tcp_taskq); 25288 } 25289 25290 /* 25291 * Shut down the TCP stack instance. 25292 */ 25293 /* ARGSUSED */ 25294 static void 25295 tcp_stack_shutdown(netstackid_t stackid, void *arg) 25296 { 25297 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25298 25299 tcp_g_q_destroy(tcps); 25300 } 25301 25302 /* 25303 * Free the TCP stack instance. 25304 */ 25305 static void 25306 tcp_stack_fini(netstackid_t stackid, void *arg) 25307 { 25308 tcp_stack_t *tcps = (tcp_stack_t *)arg; 25309 int i; 25310 25311 nd_free(&tcps->tcps_g_nd); 25312 kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr)); 25313 tcps->tcps_params = NULL; 25314 kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t)); 25315 tcps->tcps_wroff_xtra_param = NULL; 25316 kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t)); 25317 tcps->tcps_mdt_head_param = NULL; 25318 kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t)); 25319 tcps->tcps_mdt_tail_param = NULL; 25320 kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t)); 25321 tcps->tcps_mdt_max_pbufs_param = NULL; 25322 25323 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 25324 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 25325 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 25326 } 25327 25328 for (i = 0; i < TCP_FANOUT_SIZE; i++) { 25329 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 25330 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 25331 } 25332 25333 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 25334 tcps->tcps_bind_fanout = NULL; 25335 25336 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE); 25337 tcps->tcps_acceptor_fanout = NULL; 25338 25339 kmem_free(tcps->tcps_reserved_port, sizeof (tcp_rport_t) * 25340 TCP_RESERVED_PORTS_ARRAY_MAX_SIZE); 25341 tcps->tcps_reserved_port = NULL; 25342 25343 mutex_destroy(&tcps->tcps_iss_key_lock); 25344 rw_destroy(&tcps->tcps_hsp_lock); 25345 mutex_destroy(&tcps->tcps_g_q_lock); 25346 cv_destroy(&tcps->tcps_g_q_cv); 25347 mutex_destroy(&tcps->tcps_epriv_port_lock); 25348 rw_destroy(&tcps->tcps_reserved_port_lock); 25349 25350 ip_drop_unregister(&tcps->tcps_dropper); 25351 25352 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 25353 tcps->tcps_kstat = NULL; 25354 bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics)); 25355 25356 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 25357 tcps->tcps_mibkp = NULL; 25358 25359 kmem_free(tcps, sizeof (*tcps)); 25360 } 25361 25362 /* 25363 * Generate ISS, taking into account NDD changes may happen halfway through. 25364 * (If the iss is not zero, set it.) 25365 */ 25366 25367 static void 25368 tcp_iss_init(tcp_t *tcp) 25369 { 25370 MD5_CTX context; 25371 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 25372 uint32_t answer[4]; 25373 tcp_stack_t *tcps = tcp->tcp_tcps; 25374 25375 tcps->tcps_iss_incr_extra += (ISS_INCR >> 1); 25376 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 25377 switch (tcps->tcps_strong_iss) { 25378 case 2: 25379 mutex_enter(&tcps->tcps_iss_key_lock); 25380 context = tcps->tcps_iss_key; 25381 mutex_exit(&tcps->tcps_iss_key_lock); 25382 arg.ports = tcp->tcp_ports; 25383 if (tcp->tcp_ipversion == IPV4_VERSION) { 25384 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 25385 &arg.src); 25386 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 25387 &arg.dst); 25388 } else { 25389 arg.src = tcp->tcp_ip6h->ip6_src; 25390 arg.dst = tcp->tcp_ip6h->ip6_dst; 25391 } 25392 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 25393 MD5Final((uchar_t *)answer, &context); 25394 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 25395 /* 25396 * Now that we've hashed into a unique per-connection sequence 25397 * space, add a random increment per strong_iss == 1. So I 25398 * guess we'll have to... 25399 */ 25400 /* FALLTHRU */ 25401 case 1: 25402 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 25403 break; 25404 default: 25405 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25406 break; 25407 } 25408 tcp->tcp_valid_bits = TCP_ISS_VALID; 25409 tcp->tcp_fss = tcp->tcp_iss - 1; 25410 tcp->tcp_suna = tcp->tcp_iss; 25411 tcp->tcp_snxt = tcp->tcp_iss + 1; 25412 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 25413 tcp->tcp_csuna = tcp->tcp_snxt; 25414 } 25415 25416 /* 25417 * Exported routine for extracting active tcp connection status. 25418 * 25419 * This is used by the Solaris Cluster Networking software to 25420 * gather a list of connections that need to be forwarded to 25421 * specific nodes in the cluster when configuration changes occur. 25422 * 25423 * The callback is invoked for each tcp_t structure. Returning 25424 * non-zero from the callback routine terminates the search. 25425 */ 25426 int 25427 cl_tcp_walk_list(int (*cl_callback)(cl_tcp_info_t *, void *), 25428 void *arg) 25429 { 25430 netstack_handle_t nh; 25431 netstack_t *ns; 25432 int ret = 0; 25433 25434 netstack_next_init(&nh); 25435 while ((ns = netstack_next(&nh)) != NULL) { 25436 ret = cl_tcp_walk_list_stack(cl_callback, arg, 25437 ns->netstack_tcp); 25438 netstack_rele(ns); 25439 } 25440 netstack_next_fini(&nh); 25441 return (ret); 25442 } 25443 25444 static int 25445 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg, 25446 tcp_stack_t *tcps) 25447 { 25448 tcp_t *tcp; 25449 cl_tcp_info_t cl_tcpi; 25450 connf_t *connfp; 25451 conn_t *connp; 25452 int i; 25453 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25454 25455 ASSERT(callback != NULL); 25456 25457 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25458 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 25459 connp = NULL; 25460 25461 while ((connp = 25462 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25463 25464 tcp = connp->conn_tcp; 25465 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 25466 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 25467 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 25468 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 25469 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 25470 /* 25471 * The macros tcp_laddr and tcp_faddr give the IPv4 25472 * addresses. They are copied implicitly below as 25473 * mapped addresses. 25474 */ 25475 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 25476 if (tcp->tcp_ipversion == IPV4_VERSION) { 25477 cl_tcpi.cl_tcpi_faddr = 25478 tcp->tcp_ipha->ipha_dst; 25479 } else { 25480 cl_tcpi.cl_tcpi_faddr_v6 = 25481 tcp->tcp_ip6h->ip6_dst; 25482 } 25483 25484 /* 25485 * If the callback returns non-zero 25486 * we terminate the traversal. 25487 */ 25488 if ((*callback)(&cl_tcpi, arg) != 0) { 25489 CONN_DEC_REF(tcp->tcp_connp); 25490 return (1); 25491 } 25492 } 25493 } 25494 25495 return (0); 25496 } 25497 25498 /* 25499 * Macros used for accessing the different types of sockaddr 25500 * structures inside a tcp_ioc_abort_conn_t. 25501 */ 25502 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 25503 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 25504 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 25505 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 25506 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 25507 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 25508 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 25509 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 25510 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 25511 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 25512 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 25513 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 25514 25515 /* 25516 * Return the correct error code to mimic the behavior 25517 * of a connection reset. 25518 */ 25519 #define TCP_AC_GET_ERRCODE(state, err) { \ 25520 switch ((state)) { \ 25521 case TCPS_SYN_SENT: \ 25522 case TCPS_SYN_RCVD: \ 25523 (err) = ECONNREFUSED; \ 25524 break; \ 25525 case TCPS_ESTABLISHED: \ 25526 case TCPS_FIN_WAIT_1: \ 25527 case TCPS_FIN_WAIT_2: \ 25528 case TCPS_CLOSE_WAIT: \ 25529 (err) = ECONNRESET; \ 25530 break; \ 25531 case TCPS_CLOSING: \ 25532 case TCPS_LAST_ACK: \ 25533 case TCPS_TIME_WAIT: \ 25534 (err) = 0; \ 25535 break; \ 25536 default: \ 25537 (err) = ENXIO; \ 25538 } \ 25539 } 25540 25541 /* 25542 * Check if a tcp structure matches the info in acp. 25543 */ 25544 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 25545 (((acp)->ac_local.ss_family == AF_INET) ? \ 25546 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 25547 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 25548 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 25549 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 25550 (TCP_AC_V4LPORT((acp)) == 0 || \ 25551 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 25552 (TCP_AC_V4RPORT((acp)) == 0 || \ 25553 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 25554 (acp)->ac_start <= (tcp)->tcp_state && \ 25555 (acp)->ac_end >= (tcp)->tcp_state) : \ 25556 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 25557 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 25558 &(tcp)->tcp_ip_src_v6)) && \ 25559 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 25560 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 25561 &(tcp)->tcp_remote_v6)) && \ 25562 (TCP_AC_V6LPORT((acp)) == 0 || \ 25563 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 25564 (TCP_AC_V6RPORT((acp)) == 0 || \ 25565 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 25566 (acp)->ac_start <= (tcp)->tcp_state && \ 25567 (acp)->ac_end >= (tcp)->tcp_state)) 25568 25569 #define TCP_AC_MATCH(acp, tcp) \ 25570 (((acp)->ac_zoneid == ALL_ZONES || \ 25571 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 25572 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 25573 25574 /* 25575 * Build a message containing a tcp_ioc_abort_conn_t structure 25576 * which is filled in with information from acp and tp. 25577 */ 25578 static mblk_t * 25579 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 25580 { 25581 mblk_t *mp; 25582 tcp_ioc_abort_conn_t *tacp; 25583 25584 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 25585 if (mp == NULL) 25586 return (NULL); 25587 25588 mp->b_datap->db_type = M_CTL; 25589 25590 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 25591 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 25592 sizeof (uint32_t)); 25593 25594 tacp->ac_start = acp->ac_start; 25595 tacp->ac_end = acp->ac_end; 25596 tacp->ac_zoneid = acp->ac_zoneid; 25597 25598 if (acp->ac_local.ss_family == AF_INET) { 25599 tacp->ac_local.ss_family = AF_INET; 25600 tacp->ac_remote.ss_family = AF_INET; 25601 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 25602 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 25603 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 25604 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 25605 } else { 25606 tacp->ac_local.ss_family = AF_INET6; 25607 tacp->ac_remote.ss_family = AF_INET6; 25608 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 25609 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 25610 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 25611 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 25612 } 25613 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 25614 return (mp); 25615 } 25616 25617 /* 25618 * Print a tcp_ioc_abort_conn_t structure. 25619 */ 25620 static void 25621 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 25622 { 25623 char lbuf[128]; 25624 char rbuf[128]; 25625 sa_family_t af; 25626 in_port_t lport, rport; 25627 ushort_t logflags; 25628 25629 af = acp->ac_local.ss_family; 25630 25631 if (af == AF_INET) { 25632 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 25633 lbuf, 128); 25634 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 25635 rbuf, 128); 25636 lport = ntohs(TCP_AC_V4LPORT(acp)); 25637 rport = ntohs(TCP_AC_V4RPORT(acp)); 25638 } else { 25639 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 25640 lbuf, 128); 25641 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 25642 rbuf, 128); 25643 lport = ntohs(TCP_AC_V6LPORT(acp)); 25644 rport = ntohs(TCP_AC_V6RPORT(acp)); 25645 } 25646 25647 logflags = SL_TRACE | SL_NOTE; 25648 /* 25649 * Don't print this message to the console if the operation was done 25650 * to a non-global zone. 25651 */ 25652 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25653 logflags |= SL_CONSOLE; 25654 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 25655 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 25656 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 25657 acp->ac_start, acp->ac_end); 25658 } 25659 25660 /* 25661 * Called inside tcp_rput when a message built using 25662 * tcp_ioctl_abort_build_msg is put into a queue. 25663 * Note that when we get here there is no wildcard in acp any more. 25664 */ 25665 static void 25666 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 25667 { 25668 tcp_ioc_abort_conn_t *acp; 25669 25670 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 25671 if (tcp->tcp_state <= acp->ac_end) { 25672 /* 25673 * If we get here, we are already on the correct 25674 * squeue. This ioctl follows the following path 25675 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 25676 * ->tcp_ioctl_abort->squeue_fill (if on a 25677 * different squeue) 25678 */ 25679 int errcode; 25680 25681 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 25682 (void) tcp_clean_death(tcp, errcode, 26); 25683 } 25684 freemsg(mp); 25685 } 25686 25687 /* 25688 * Abort all matching connections on a hash chain. 25689 */ 25690 static int 25691 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 25692 boolean_t exact, tcp_stack_t *tcps) 25693 { 25694 int nmatch, err = 0; 25695 tcp_t *tcp; 25696 MBLKP mp, last, listhead = NULL; 25697 conn_t *tconnp; 25698 connf_t *connfp; 25699 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25700 25701 connfp = &ipst->ips_ipcl_conn_fanout[index]; 25702 25703 startover: 25704 nmatch = 0; 25705 25706 mutex_enter(&connfp->connf_lock); 25707 for (tconnp = connfp->connf_head; tconnp != NULL; 25708 tconnp = tconnp->conn_next) { 25709 tcp = tconnp->conn_tcp; 25710 if (TCP_AC_MATCH(acp, tcp)) { 25711 CONN_INC_REF(tcp->tcp_connp); 25712 mp = tcp_ioctl_abort_build_msg(acp, tcp); 25713 if (mp == NULL) { 25714 err = ENOMEM; 25715 CONN_DEC_REF(tcp->tcp_connp); 25716 break; 25717 } 25718 mp->b_prev = (mblk_t *)tcp; 25719 25720 if (listhead == NULL) { 25721 listhead = mp; 25722 last = mp; 25723 } else { 25724 last->b_next = mp; 25725 last = mp; 25726 } 25727 nmatch++; 25728 if (exact) 25729 break; 25730 } 25731 25732 /* Avoid holding lock for too long. */ 25733 if (nmatch >= 500) 25734 break; 25735 } 25736 mutex_exit(&connfp->connf_lock); 25737 25738 /* Pass mp into the correct tcp */ 25739 while ((mp = listhead) != NULL) { 25740 listhead = listhead->b_next; 25741 tcp = (tcp_t *)mp->b_prev; 25742 mp->b_next = mp->b_prev = NULL; 25743 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 25744 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 25745 } 25746 25747 *count += nmatch; 25748 if (nmatch >= 500 && err == 0) 25749 goto startover; 25750 return (err); 25751 } 25752 25753 /* 25754 * Abort all connections that matches the attributes specified in acp. 25755 */ 25756 static int 25757 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps) 25758 { 25759 sa_family_t af; 25760 uint32_t ports; 25761 uint16_t *pports; 25762 int err = 0, count = 0; 25763 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25764 int index = -1; 25765 ushort_t logflags; 25766 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25767 25768 af = acp->ac_local.ss_family; 25769 25770 if (af == AF_INET) { 25771 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25772 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25773 pports = (uint16_t *)&ports; 25774 pports[1] = TCP_AC_V4LPORT(acp); 25775 pports[0] = TCP_AC_V4RPORT(acp); 25776 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25777 } 25778 } else { 25779 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25780 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25781 pports = (uint16_t *)&ports; 25782 pports[1] = TCP_AC_V6LPORT(acp); 25783 pports[0] = TCP_AC_V6RPORT(acp); 25784 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25785 } 25786 } 25787 25788 /* 25789 * For cases where remote addr, local port, and remote port are non- 25790 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25791 */ 25792 if (index != -1) { 25793 err = tcp_ioctl_abort_bucket(acp, index, 25794 &count, exact, tcps); 25795 } else { 25796 /* 25797 * loop through all entries for wildcard case 25798 */ 25799 for (index = 0; 25800 index < ipst->ips_ipcl_conn_fanout_size; 25801 index++) { 25802 err = tcp_ioctl_abort_bucket(acp, index, 25803 &count, exact, tcps); 25804 if (err != 0) 25805 break; 25806 } 25807 } 25808 25809 logflags = SL_TRACE | SL_NOTE; 25810 /* 25811 * Don't print this message to the console if the operation was done 25812 * to a non-global zone. 25813 */ 25814 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25815 logflags |= SL_CONSOLE; 25816 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25817 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25818 if (err == 0 && count == 0) 25819 err = ENOENT; 25820 return (err); 25821 } 25822 25823 /* 25824 * Process the TCP_IOC_ABORT_CONN ioctl request. 25825 */ 25826 static void 25827 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25828 { 25829 int err; 25830 IOCP iocp; 25831 MBLKP mp1; 25832 sa_family_t laf, raf; 25833 tcp_ioc_abort_conn_t *acp; 25834 zone_t *zptr; 25835 conn_t *connp = Q_TO_CONN(q); 25836 zoneid_t zoneid = connp->conn_zoneid; 25837 tcp_t *tcp = connp->conn_tcp; 25838 tcp_stack_t *tcps = tcp->tcp_tcps; 25839 25840 iocp = (IOCP)mp->b_rptr; 25841 25842 if ((mp1 = mp->b_cont) == NULL || 25843 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25844 err = EINVAL; 25845 goto out; 25846 } 25847 25848 /* check permissions */ 25849 if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) { 25850 err = EPERM; 25851 goto out; 25852 } 25853 25854 if (mp1->b_cont != NULL) { 25855 freemsg(mp1->b_cont); 25856 mp1->b_cont = NULL; 25857 } 25858 25859 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25860 laf = acp->ac_local.ss_family; 25861 raf = acp->ac_remote.ss_family; 25862 25863 /* check that a zone with the supplied zoneid exists */ 25864 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25865 zptr = zone_find_by_id(zoneid); 25866 if (zptr != NULL) { 25867 zone_rele(zptr); 25868 } else { 25869 err = EINVAL; 25870 goto out; 25871 } 25872 } 25873 25874 /* 25875 * For exclusive stacks we set the zoneid to zero 25876 * to make TCP operate as if in the global zone. 25877 */ 25878 if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID) 25879 acp->ac_zoneid = GLOBAL_ZONEID; 25880 25881 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25882 acp->ac_start > acp->ac_end || laf != raf || 25883 (laf != AF_INET && laf != AF_INET6)) { 25884 err = EINVAL; 25885 goto out; 25886 } 25887 25888 tcp_ioctl_abort_dump(acp); 25889 err = tcp_ioctl_abort(acp, tcps); 25890 25891 out: 25892 if (mp1 != NULL) { 25893 freemsg(mp1); 25894 mp->b_cont = NULL; 25895 } 25896 25897 if (err != 0) 25898 miocnak(q, mp, 0, err); 25899 else 25900 miocack(q, mp, 0, 0); 25901 } 25902 25903 /* 25904 * tcp_time_wait_processing() handles processing of incoming packets when 25905 * the tcp is in the TIME_WAIT state. 25906 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25907 * on the time wait list. 25908 */ 25909 void 25910 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25911 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25912 { 25913 int32_t bytes_acked; 25914 int32_t gap; 25915 int32_t rgap; 25916 tcp_opt_t tcpopt; 25917 uint_t flags; 25918 uint32_t new_swnd = 0; 25919 conn_t *connp; 25920 tcp_stack_t *tcps = tcp->tcp_tcps; 25921 25922 BUMP_LOCAL(tcp->tcp_ibsegs); 25923 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25924 25925 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25926 new_swnd = BE16_TO_U16(tcph->th_win) << 25927 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25928 if (tcp->tcp_snd_ts_ok) { 25929 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25930 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25931 tcp->tcp_rnxt, TH_ACK); 25932 goto done; 25933 } 25934 } 25935 gap = seg_seq - tcp->tcp_rnxt; 25936 rgap = tcp->tcp_rwnd - (gap + seg_len); 25937 if (gap < 0) { 25938 BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs); 25939 UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, 25940 (seg_len > -gap ? -gap : seg_len)); 25941 seg_len += gap; 25942 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25943 if (flags & TH_RST) { 25944 goto done; 25945 } 25946 if ((flags & TH_FIN) && seg_len == -1) { 25947 /* 25948 * When TCP receives a duplicate FIN in 25949 * TIME_WAIT state, restart the 2 MSL timer. 25950 * See page 73 in RFC 793. Make sure this TCP 25951 * is already on the TIME_WAIT list. If not, 25952 * just restart the timer. 25953 */ 25954 if (TCP_IS_DETACHED(tcp)) { 25955 if (tcp_time_wait_remove(tcp, NULL) == 25956 B_TRUE) { 25957 tcp_time_wait_append(tcp); 25958 TCP_DBGSTAT(tcps, 25959 tcp_rput_time_wait); 25960 } 25961 } else { 25962 ASSERT(tcp != NULL); 25963 TCP_TIMER_RESTART(tcp, 25964 tcps->tcps_time_wait_interval); 25965 } 25966 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25967 tcp->tcp_rnxt, TH_ACK); 25968 goto done; 25969 } 25970 flags |= TH_ACK_NEEDED; 25971 seg_len = 0; 25972 goto process_ack; 25973 } 25974 25975 /* Fix seg_seq, and chew the gap off the front. */ 25976 seg_seq = tcp->tcp_rnxt; 25977 } 25978 25979 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25980 /* 25981 * Make sure that when we accept the connection, pick 25982 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25983 * old connection. 25984 * 25985 * The next ISS generated is equal to tcp_iss_incr_extra 25986 * + ISS_INCR/2 + other components depending on the 25987 * value of tcp_strong_iss. We pre-calculate the new 25988 * ISS here and compare with tcp_snxt to determine if 25989 * we need to make adjustment to tcp_iss_incr_extra. 25990 * 25991 * The above calculation is ugly and is a 25992 * waste of CPU cycles... 25993 */ 25994 uint32_t new_iss = tcps->tcps_iss_incr_extra; 25995 int32_t adj; 25996 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 25997 25998 switch (tcps->tcps_strong_iss) { 25999 case 2: { 26000 /* Add time and MD5 components. */ 26001 uint32_t answer[4]; 26002 struct { 26003 uint32_t ports; 26004 in6_addr_t src; 26005 in6_addr_t dst; 26006 } arg; 26007 MD5_CTX context; 26008 26009 mutex_enter(&tcps->tcps_iss_key_lock); 26010 context = tcps->tcps_iss_key; 26011 mutex_exit(&tcps->tcps_iss_key_lock); 26012 arg.ports = tcp->tcp_ports; 26013 /* We use MAPPED addresses in tcp_iss_init */ 26014 arg.src = tcp->tcp_ip_src_v6; 26015 if (tcp->tcp_ipversion == IPV4_VERSION) { 26016 IN6_IPADDR_TO_V4MAPPED( 26017 tcp->tcp_ipha->ipha_dst, 26018 &arg.dst); 26019 } else { 26020 arg.dst = 26021 tcp->tcp_ip6h->ip6_dst; 26022 } 26023 MD5Update(&context, (uchar_t *)&arg, 26024 sizeof (arg)); 26025 MD5Final((uchar_t *)answer, &context); 26026 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 26027 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 26028 break; 26029 } 26030 case 1: 26031 /* Add time component and min random (i.e. 1). */ 26032 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 26033 break; 26034 default: 26035 /* Add only time component. */ 26036 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 26037 break; 26038 } 26039 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 26040 /* 26041 * New ISS not guaranteed to be ISS_INCR/2 26042 * ahead of the current tcp_snxt, so add the 26043 * difference to tcp_iss_incr_extra. 26044 */ 26045 tcps->tcps_iss_incr_extra += adj; 26046 } 26047 /* 26048 * If tcp_clean_death() can not perform the task now, 26049 * drop the SYN packet and let the other side re-xmit. 26050 * Otherwise pass the SYN packet back in, since the 26051 * old tcp state has been cleaned up or freed. 26052 */ 26053 if (tcp_clean_death(tcp, 0, 27) == -1) 26054 goto done; 26055 /* 26056 * We will come back to tcp_rput_data 26057 * on the global queue. Packets destined 26058 * for the global queue will be checked 26059 * with global policy. But the policy for 26060 * this packet has already been checked as 26061 * this was destined for the detached 26062 * connection. We need to bypass policy 26063 * check this time by attaching a dummy 26064 * ipsec_in with ipsec_in_dont_check set. 26065 */ 26066 connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst); 26067 if (connp != NULL) { 26068 TCP_STAT(tcps, tcp_time_wait_syn_success); 26069 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 26070 return; 26071 } 26072 goto done; 26073 } 26074 26075 /* 26076 * rgap is the amount of stuff received out of window. A negative 26077 * value is the amount out of window. 26078 */ 26079 if (rgap < 0) { 26080 BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs); 26081 UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap); 26082 /* Fix seg_len and make sure there is something left. */ 26083 seg_len += rgap; 26084 if (seg_len <= 0) { 26085 if (flags & TH_RST) { 26086 goto done; 26087 } 26088 flags |= TH_ACK_NEEDED; 26089 seg_len = 0; 26090 goto process_ack; 26091 } 26092 } 26093 /* 26094 * Check whether we can update tcp_ts_recent. This test is 26095 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 26096 * Extensions for High Performance: An Update", Internet Draft. 26097 */ 26098 if (tcp->tcp_snd_ts_ok && 26099 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 26100 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 26101 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 26102 tcp->tcp_last_rcv_lbolt = lbolt64; 26103 } 26104 26105 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 26106 /* Always ack out of order packets */ 26107 flags |= TH_ACK_NEEDED; 26108 seg_len = 0; 26109 } else if (seg_len > 0) { 26110 BUMP_MIB(&tcps->tcps_mib, tcpInClosed); 26111 BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs); 26112 UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len); 26113 } 26114 if (flags & TH_RST) { 26115 (void) tcp_clean_death(tcp, 0, 28); 26116 goto done; 26117 } 26118 if (flags & TH_SYN) { 26119 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 26120 TH_RST|TH_ACK); 26121 /* 26122 * Do not delete the TCP structure if it is in 26123 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 26124 */ 26125 goto done; 26126 } 26127 process_ack: 26128 if (flags & TH_ACK) { 26129 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 26130 if (bytes_acked <= 0) { 26131 if (bytes_acked == 0 && seg_len == 0 && 26132 new_swnd == tcp->tcp_swnd) 26133 BUMP_MIB(&tcps->tcps_mib, tcpInDupAck); 26134 } else { 26135 /* Acks something not sent */ 26136 flags |= TH_ACK_NEEDED; 26137 } 26138 } 26139 if (flags & TH_ACK_NEEDED) { 26140 /* 26141 * Time to send an ack for some reason. 26142 */ 26143 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 26144 tcp->tcp_rnxt, TH_ACK); 26145 } 26146 done: 26147 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26148 DB_CKSUMSTART(mp) = 0; 26149 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 26150 TCP_STAT(tcps, tcp_time_wait_syn_fail); 26151 } 26152 freemsg(mp); 26153 } 26154 26155 /* 26156 * Allocate a T_SVR4_OPTMGMT_REQ. 26157 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 26158 * that tcp_rput_other can drop the acks. 26159 */ 26160 static mblk_t * 26161 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 26162 { 26163 mblk_t *mp; 26164 struct T_optmgmt_req *tor; 26165 struct opthdr *oh; 26166 uint_t size; 26167 char *optptr; 26168 26169 size = sizeof (*tor) + sizeof (*oh) + optlen; 26170 mp = allocb(size, BPRI_MED); 26171 if (mp == NULL) 26172 return (NULL); 26173 26174 mp->b_wptr += size; 26175 mp->b_datap->db_type = M_PROTO; 26176 tor = (struct T_optmgmt_req *)mp->b_rptr; 26177 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 26178 tor->MGMT_flags = T_NEGOTIATE; 26179 tor->OPT_length = sizeof (*oh) + optlen; 26180 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 26181 26182 oh = (struct opthdr *)&tor[1]; 26183 oh->level = level; 26184 oh->name = cmd; 26185 oh->len = optlen; 26186 if (optlen != 0) { 26187 optptr = (char *)&oh[1]; 26188 bcopy(opt, optptr, optlen); 26189 } 26190 return (mp); 26191 } 26192 26193 /* 26194 * TCP Timers Implementation. 26195 */ 26196 timeout_id_t 26197 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 26198 { 26199 mblk_t *mp; 26200 tcp_timer_t *tcpt; 26201 tcp_t *tcp = connp->conn_tcp; 26202 tcp_stack_t *tcps = tcp->tcp_tcps; 26203 26204 ASSERT(connp->conn_sqp != NULL); 26205 26206 TCP_DBGSTAT(tcps, tcp_timeout_calls); 26207 26208 if (tcp->tcp_timercache == NULL) { 26209 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 26210 } else { 26211 TCP_DBGSTAT(tcps, tcp_timeout_cached_alloc); 26212 mp = tcp->tcp_timercache; 26213 tcp->tcp_timercache = mp->b_next; 26214 mp->b_next = NULL; 26215 ASSERT(mp->b_wptr == NULL); 26216 } 26217 26218 CONN_INC_REF(connp); 26219 tcpt = (tcp_timer_t *)mp->b_rptr; 26220 tcpt->connp = connp; 26221 tcpt->tcpt_proc = f; 26222 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 26223 return ((timeout_id_t)mp); 26224 } 26225 26226 static void 26227 tcp_timer_callback(void *arg) 26228 { 26229 mblk_t *mp = (mblk_t *)arg; 26230 tcp_timer_t *tcpt; 26231 conn_t *connp; 26232 26233 tcpt = (tcp_timer_t *)mp->b_rptr; 26234 connp = tcpt->connp; 26235 squeue_fill(connp->conn_sqp, mp, 26236 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 26237 } 26238 26239 static void 26240 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 26241 { 26242 tcp_timer_t *tcpt; 26243 conn_t *connp = (conn_t *)arg; 26244 tcp_t *tcp = connp->conn_tcp; 26245 26246 tcpt = (tcp_timer_t *)mp->b_rptr; 26247 ASSERT(connp == tcpt->connp); 26248 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 26249 26250 /* 26251 * If the TCP has reached the closed state, don't proceed any 26252 * further. This TCP logically does not exist on the system. 26253 * tcpt_proc could for example access queues, that have already 26254 * been qprocoff'ed off. Also see comments at the start of tcp_input 26255 */ 26256 if (tcp->tcp_state != TCPS_CLOSED) { 26257 (*tcpt->tcpt_proc)(connp); 26258 } else { 26259 tcp->tcp_timer_tid = 0; 26260 } 26261 tcp_timer_free(connp->conn_tcp, mp); 26262 } 26263 26264 /* 26265 * There is potential race with untimeout and the handler firing at the same 26266 * time. The mblock may be freed by the handler while we are trying to use 26267 * it. But since both should execute on the same squeue, this race should not 26268 * occur. 26269 */ 26270 clock_t 26271 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 26272 { 26273 mblk_t *mp = (mblk_t *)id; 26274 tcp_timer_t *tcpt; 26275 clock_t delta; 26276 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26277 26278 TCP_DBGSTAT(tcps, tcp_timeout_cancel_reqs); 26279 26280 if (mp == NULL) 26281 return (-1); 26282 26283 tcpt = (tcp_timer_t *)mp->b_rptr; 26284 ASSERT(tcpt->connp == connp); 26285 26286 delta = untimeout(tcpt->tcpt_tid); 26287 26288 if (delta >= 0) { 26289 TCP_DBGSTAT(tcps, tcp_timeout_canceled); 26290 tcp_timer_free(connp->conn_tcp, mp); 26291 CONN_DEC_REF(connp); 26292 } 26293 26294 return (delta); 26295 } 26296 26297 /* 26298 * Allocate space for the timer event. The allocation looks like mblk, but it is 26299 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 26300 * 26301 * Dealing with failures: If we can't allocate from the timer cache we try 26302 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 26303 * points to b_rptr. 26304 * If we can't allocate anything using allocb_tryhard(), we perform a last 26305 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 26306 * save the actual allocation size in b_datap. 26307 */ 26308 mblk_t * 26309 tcp_timermp_alloc(int kmflags) 26310 { 26311 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 26312 kmflags & ~KM_PANIC); 26313 26314 if (mp != NULL) { 26315 mp->b_next = mp->b_prev = NULL; 26316 mp->b_rptr = (uchar_t *)(&mp[1]); 26317 mp->b_wptr = NULL; 26318 mp->b_datap = NULL; 26319 mp->b_queue = NULL; 26320 mp->b_cont = NULL; 26321 } else if (kmflags & KM_PANIC) { 26322 /* 26323 * Failed to allocate memory for the timer. Try allocating from 26324 * dblock caches. 26325 */ 26326 /* ipclassifier calls this from a constructor - hence no tcps */ 26327 TCP_G_STAT(tcp_timermp_allocfail); 26328 mp = allocb_tryhard(sizeof (tcp_timer_t)); 26329 if (mp == NULL) { 26330 size_t size = 0; 26331 /* 26332 * Memory is really low. Try tryhard allocation. 26333 * 26334 * ipclassifier calls this from a constructor - 26335 * hence no tcps 26336 */ 26337 TCP_G_STAT(tcp_timermp_allocdblfail); 26338 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 26339 sizeof (tcp_timer_t), &size, kmflags); 26340 mp->b_rptr = (uchar_t *)(&mp[1]); 26341 mp->b_next = mp->b_prev = NULL; 26342 mp->b_wptr = (uchar_t *)-1; 26343 mp->b_datap = (dblk_t *)size; 26344 mp->b_queue = NULL; 26345 mp->b_cont = NULL; 26346 } 26347 ASSERT(mp->b_wptr != NULL); 26348 } 26349 /* ipclassifier calls this from a constructor - hence no tcps */ 26350 TCP_G_DBGSTAT(tcp_timermp_alloced); 26351 26352 return (mp); 26353 } 26354 26355 /* 26356 * Free per-tcp timer cache. 26357 * It can only contain entries from tcp_timercache. 26358 */ 26359 void 26360 tcp_timermp_free(tcp_t *tcp) 26361 { 26362 mblk_t *mp; 26363 26364 while ((mp = tcp->tcp_timercache) != NULL) { 26365 ASSERT(mp->b_wptr == NULL); 26366 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 26367 kmem_cache_free(tcp_timercache, mp); 26368 } 26369 } 26370 26371 /* 26372 * Free timer event. Put it on the per-tcp timer cache if there is not too many 26373 * events there already (currently at most two events are cached). 26374 * If the event is not allocated from the timer cache, free it right away. 26375 */ 26376 static void 26377 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 26378 { 26379 mblk_t *mp1 = tcp->tcp_timercache; 26380 tcp_stack_t *tcps = tcp->tcp_tcps; 26381 26382 if (mp->b_wptr != NULL) { 26383 /* 26384 * This allocation is not from a timer cache, free it right 26385 * away. 26386 */ 26387 if (mp->b_wptr != (uchar_t *)-1) 26388 freeb(mp); 26389 else 26390 kmem_free(mp, (size_t)mp->b_datap); 26391 } else if (mp1 == NULL || mp1->b_next == NULL) { 26392 /* Cache this timer block for future allocations */ 26393 mp->b_rptr = (uchar_t *)(&mp[1]); 26394 mp->b_next = mp1; 26395 tcp->tcp_timercache = mp; 26396 } else { 26397 kmem_cache_free(tcp_timercache, mp); 26398 TCP_DBGSTAT(tcps, tcp_timermp_freed); 26399 } 26400 } 26401 26402 /* 26403 * End of TCP Timers implementation. 26404 */ 26405 26406 /* 26407 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 26408 * on the specified backing STREAMS q. Note, the caller may make the 26409 * decision to call based on the tcp_t.tcp_flow_stopped value which 26410 * when check outside the q's lock is only an advisory check ... 26411 */ 26412 26413 void 26414 tcp_setqfull(tcp_t *tcp) 26415 { 26416 queue_t *q = tcp->tcp_wq; 26417 tcp_stack_t *tcps = tcp->tcp_tcps; 26418 26419 if (!(q->q_flag & QFULL)) { 26420 mutex_enter(QLOCK(q)); 26421 if (!(q->q_flag & QFULL)) { 26422 /* still need to set QFULL */ 26423 q->q_flag |= QFULL; 26424 tcp->tcp_flow_stopped = B_TRUE; 26425 mutex_exit(QLOCK(q)); 26426 TCP_STAT(tcps, tcp_flwctl_on); 26427 } else { 26428 mutex_exit(QLOCK(q)); 26429 } 26430 } 26431 } 26432 26433 void 26434 tcp_clrqfull(tcp_t *tcp) 26435 { 26436 queue_t *q = tcp->tcp_wq; 26437 26438 if (q->q_flag & QFULL) { 26439 mutex_enter(QLOCK(q)); 26440 if (q->q_flag & QFULL) { 26441 q->q_flag &= ~QFULL; 26442 tcp->tcp_flow_stopped = B_FALSE; 26443 mutex_exit(QLOCK(q)); 26444 if (q->q_flag & QWANTW) 26445 qbackenable(q, 0); 26446 } else { 26447 mutex_exit(QLOCK(q)); 26448 } 26449 } 26450 } 26451 26452 26453 /* 26454 * kstats related to squeues i.e. not per IP instance 26455 */ 26456 static void * 26457 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp) 26458 { 26459 kstat_t *ksp; 26460 26461 tcp_g_stat_t template = { 26462 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 26463 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 26464 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 26465 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 26466 }; 26467 26468 ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net", 26469 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26470 KSTAT_FLAG_VIRTUAL); 26471 26472 if (ksp == NULL) 26473 return (NULL); 26474 26475 bcopy(&template, tcp_g_statp, sizeof (template)); 26476 ksp->ks_data = (void *)tcp_g_statp; 26477 26478 kstat_install(ksp); 26479 return (ksp); 26480 } 26481 26482 static void 26483 tcp_g_kstat_fini(kstat_t *ksp) 26484 { 26485 if (ksp != NULL) { 26486 kstat_delete(ksp); 26487 } 26488 } 26489 26490 26491 static void * 26492 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp) 26493 { 26494 kstat_t *ksp; 26495 26496 tcp_stat_t template = { 26497 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 26498 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 26499 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 26500 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 26501 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 26502 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 26503 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 26504 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 26505 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 26506 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 26507 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 26508 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 26509 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 26510 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 26511 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 26512 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 26513 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 26514 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 26515 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 26516 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 26517 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 26518 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 26519 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 26520 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 26521 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 26522 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 26523 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 26524 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 26525 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 26526 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 26527 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 26528 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 26529 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 26530 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 26531 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 26532 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 26533 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 26534 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 26535 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 26536 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 26537 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 26538 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 26539 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 26540 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 26541 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 26542 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 26543 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 26544 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 26545 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 26546 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 26547 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 26548 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 26549 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 26550 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 26551 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 26552 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 26553 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 26554 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 26555 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 26556 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 26557 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 26558 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 26559 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 26560 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 26561 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 26562 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 26563 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 26564 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 26565 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 26566 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 26567 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 26568 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 26569 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 26570 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 26571 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 26572 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 26573 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 26574 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 26575 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 26576 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 26577 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 26578 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 26579 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 26580 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 26581 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 26582 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 26583 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 26584 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 26585 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 26586 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 26587 }; 26588 26589 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net", 26590 KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t), 26591 KSTAT_FLAG_VIRTUAL, stackid); 26592 26593 if (ksp == NULL) 26594 return (NULL); 26595 26596 bcopy(&template, tcps_statisticsp, sizeof (template)); 26597 ksp->ks_data = (void *)tcps_statisticsp; 26598 ksp->ks_private = (void *)(uintptr_t)stackid; 26599 26600 kstat_install(ksp); 26601 return (ksp); 26602 } 26603 26604 static void 26605 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp) 26606 { 26607 if (ksp != NULL) { 26608 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26609 kstat_delete_netstack(ksp, stackid); 26610 } 26611 } 26612 26613 /* 26614 * TCP Kstats implementation 26615 */ 26616 static void * 26617 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps) 26618 { 26619 kstat_t *ksp; 26620 26621 tcp_named_kstat_t template = { 26622 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 26623 { "rtoMin", KSTAT_DATA_INT32, 0 }, 26624 { "rtoMax", KSTAT_DATA_INT32, 0 }, 26625 { "maxConn", KSTAT_DATA_INT32, 0 }, 26626 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 26627 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 26628 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 26629 { "estabResets", KSTAT_DATA_UINT32, 0 }, 26630 { "currEstab", KSTAT_DATA_UINT32, 0 }, 26631 { "inSegs", KSTAT_DATA_UINT64, 0 }, 26632 { "outSegs", KSTAT_DATA_UINT64, 0 }, 26633 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 26634 { "connTableSize", KSTAT_DATA_INT32, 0 }, 26635 { "outRsts", KSTAT_DATA_UINT32, 0 }, 26636 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 26637 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 26638 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 26639 { "outAck", KSTAT_DATA_UINT32, 0 }, 26640 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 26641 { "outUrg", KSTAT_DATA_UINT32, 0 }, 26642 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 26643 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 26644 { "outControl", KSTAT_DATA_UINT32, 0 }, 26645 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 26646 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 26647 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 26648 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 26649 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 26650 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 26651 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 26652 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 26653 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 26654 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 26655 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 26656 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 26657 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 26658 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 26659 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 26660 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 26661 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 26662 { "inClosed", KSTAT_DATA_UINT32, 0 }, 26663 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 26664 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 26665 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 26666 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 26667 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 26668 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 26669 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 26670 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 26671 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 26672 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 26673 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 26674 { "connTableSize6", KSTAT_DATA_INT32, 0 } 26675 }; 26676 26677 ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2", 26678 KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid); 26679 26680 if (ksp == NULL) 26681 return (NULL); 26682 26683 template.rtoAlgorithm.value.ui32 = 4; 26684 template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min; 26685 template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max; 26686 template.maxConn.value.i32 = -1; 26687 26688 bcopy(&template, ksp->ks_data, sizeof (template)); 26689 ksp->ks_update = tcp_kstat_update; 26690 ksp->ks_private = (void *)(uintptr_t)stackid; 26691 26692 kstat_install(ksp); 26693 return (ksp); 26694 } 26695 26696 static void 26697 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp) 26698 { 26699 if (ksp != NULL) { 26700 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private); 26701 kstat_delete_netstack(ksp, stackid); 26702 } 26703 } 26704 26705 static int 26706 tcp_kstat_update(kstat_t *kp, int rw) 26707 { 26708 tcp_named_kstat_t *tcpkp; 26709 tcp_t *tcp; 26710 connf_t *connfp; 26711 conn_t *connp; 26712 int i; 26713 netstackid_t stackid = (netstackid_t)(uintptr_t)kp->ks_private; 26714 netstack_t *ns; 26715 tcp_stack_t *tcps; 26716 ip_stack_t *ipst; 26717 26718 if ((kp == NULL) || (kp->ks_data == NULL)) 26719 return (EIO); 26720 26721 if (rw == KSTAT_WRITE) 26722 return (EACCES); 26723 26724 ns = netstack_find_by_stackid(stackid); 26725 if (ns == NULL) 26726 return (-1); 26727 tcps = ns->netstack_tcp; 26728 if (tcps == NULL) { 26729 netstack_rele(ns); 26730 return (-1); 26731 } 26732 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 26733 26734 tcpkp->currEstab.value.ui32 = 0; 26735 26736 ipst = ns->netstack_ip; 26737 26738 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 26739 connfp = &ipst->ips_ipcl_globalhash_fanout[i]; 26740 connp = NULL; 26741 while ((connp = 26742 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 26743 tcp = connp->conn_tcp; 26744 switch (tcp_snmp_state(tcp)) { 26745 case MIB2_TCP_established: 26746 case MIB2_TCP_closeWait: 26747 tcpkp->currEstab.value.ui32++; 26748 break; 26749 } 26750 } 26751 } 26752 26753 tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens; 26754 tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens; 26755 tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails; 26756 tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets; 26757 tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs; 26758 tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs; 26759 tcpkp->retransSegs.value.ui32 = tcps->tcps_mib.tcpRetransSegs; 26760 tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize; 26761 tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts; 26762 tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs; 26763 tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes; 26764 tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes; 26765 tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck; 26766 tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed; 26767 tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg; 26768 tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate; 26769 tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe; 26770 tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl; 26771 tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans; 26772 tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs; 26773 tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes; 26774 tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck; 26775 tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent; 26776 tcpkp->inDataInorderSegs.value.ui32 = 26777 tcps->tcps_mib.tcpInDataInorderSegs; 26778 tcpkp->inDataInorderBytes.value.ui32 = 26779 tcps->tcps_mib.tcpInDataInorderBytes; 26780 tcpkp->inDataUnorderSegs.value.ui32 = 26781 tcps->tcps_mib.tcpInDataUnorderSegs; 26782 tcpkp->inDataUnorderBytes.value.ui32 = 26783 tcps->tcps_mib.tcpInDataUnorderBytes; 26784 tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs; 26785 tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes; 26786 tcpkp->inDataPartDupSegs.value.ui32 = 26787 tcps->tcps_mib.tcpInDataPartDupSegs; 26788 tcpkp->inDataPartDupBytes.value.ui32 = 26789 tcps->tcps_mib.tcpInDataPartDupBytes; 26790 tcpkp->inDataPastWinSegs.value.ui32 = 26791 tcps->tcps_mib.tcpInDataPastWinSegs; 26792 tcpkp->inDataPastWinBytes.value.ui32 = 26793 tcps->tcps_mib.tcpInDataPastWinBytes; 26794 tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe; 26795 tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate; 26796 tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed; 26797 tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate; 26798 tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate; 26799 tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans; 26800 tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop; 26801 tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive; 26802 tcpkp->timKeepaliveProbe.value.ui32 = 26803 tcps->tcps_mib.tcpTimKeepaliveProbe; 26804 tcpkp->timKeepaliveDrop.value.ui32 = 26805 tcps->tcps_mib.tcpTimKeepaliveDrop; 26806 tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop; 26807 tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0; 26808 tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop; 26809 tcpkp->outSackRetransSegs.value.ui32 = 26810 tcps->tcps_mib.tcpOutSackRetransSegs; 26811 tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize; 26812 26813 netstack_rele(ns); 26814 return (0); 26815 } 26816 26817 void 26818 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 26819 { 26820 uint16_t hdr_len; 26821 ipha_t *ipha; 26822 uint8_t *nexthdrp; 26823 tcph_t *tcph; 26824 tcp_stack_t *tcps = connp->conn_tcp->tcp_tcps; 26825 26826 /* Already has an eager */ 26827 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 26828 TCP_STAT(tcps, tcp_reinput_syn); 26829 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 26830 connp, SQTAG_TCP_REINPUT_EAGER); 26831 return; 26832 } 26833 26834 switch (IPH_HDR_VERSION(mp->b_rptr)) { 26835 case IPV4_VERSION: 26836 ipha = (ipha_t *)mp->b_rptr; 26837 hdr_len = IPH_HDR_LENGTH(ipha); 26838 break; 26839 case IPV6_VERSION: 26840 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 26841 &hdr_len, &nexthdrp)) { 26842 CONN_DEC_REF(connp); 26843 freemsg(mp); 26844 return; 26845 } 26846 break; 26847 } 26848 26849 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 26850 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 26851 mp->b_datap->db_struioflag |= STRUIO_EAGER; 26852 DB_CKSUMSTART(mp) = (intptr_t)sqp; 26853 } 26854 26855 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 26856 SQTAG_TCP_REINPUT); 26857 } 26858 26859 static squeue_func_t 26860 tcp_squeue_switch(int val) 26861 { 26862 squeue_func_t rval = squeue_fill; 26863 26864 switch (val) { 26865 case 1: 26866 rval = squeue_enter_nodrain; 26867 break; 26868 case 2: 26869 rval = squeue_enter; 26870 break; 26871 default: 26872 break; 26873 } 26874 return (rval); 26875 } 26876 26877 /* 26878 * This is called once for each squeue - globally for all stack 26879 * instances. 26880 */ 26881 static void 26882 tcp_squeue_add(squeue_t *sqp) 26883 { 26884 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 26885 sizeof (tcp_squeue_priv_t), KM_SLEEP); 26886 26887 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 26888 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 26889 sqp, TCP_TIME_WAIT_DELAY); 26890 if (tcp_free_list_max_cnt == 0) { 26891 int tcp_ncpus = ((boot_max_ncpus == -1) ? 26892 max_ncpus : boot_max_ncpus); 26893 26894 /* 26895 * Limit number of entries to 1% of availble memory / tcp_ncpus 26896 */ 26897 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 26898 (tcp_ncpus * sizeof (tcp_t) * 100); 26899 } 26900 tcp_time_wait->tcp_free_list_cnt = 0; 26901 } 26902