1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 const char tcp_version[] = "%Z%%M% %I% %E% SMI"; 30 31 32 #include <sys/types.h> 33 #include <sys/stream.h> 34 #include <sys/strsun.h> 35 #include <sys/strsubr.h> 36 #include <sys/stropts.h> 37 #include <sys/strlog.h> 38 #include <sys/strsun.h> 39 #define _SUN_TPI_VERSION 2 40 #include <sys/tihdr.h> 41 #include <sys/timod.h> 42 #include <sys/ddi.h> 43 #include <sys/sunddi.h> 44 #include <sys/suntpi.h> 45 #include <sys/xti_inet.h> 46 #include <sys/cmn_err.h> 47 #include <sys/debug.h> 48 #include <sys/sdt.h> 49 #include <sys/vtrace.h> 50 #include <sys/kmem.h> 51 #include <sys/ethernet.h> 52 #include <sys/cpuvar.h> 53 #include <sys/dlpi.h> 54 #include <sys/multidata.h> 55 #include <sys/multidata_impl.h> 56 #include <sys/pattr.h> 57 #include <sys/policy.h> 58 #include <sys/priv.h> 59 #include <sys/zone.h> 60 61 #include <sys/errno.h> 62 #include <sys/signal.h> 63 #include <sys/socket.h> 64 #include <sys/sockio.h> 65 #include <sys/isa_defs.h> 66 #include <sys/md5.h> 67 #include <sys/random.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/mi.h> 82 #include <inet/mib2.h> 83 #include <inet/nd.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/ipdrop.h> 92 #include <inet/tcp_trace.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue.h> 101 #include <inet/kssl/ksslapi.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <sys/sdt.h> 105 #include <rpc/pmap_prot.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or 129 * squeue_fill). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. ip_tcpopen() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_conn_request(). But briefly, the squeue is picked by 176 * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU. 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provision for (AF_INET, SOCK_STREAM) sockets which 202 * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP 203 * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles 204 * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY 205 * check to send packets directly to tcp_rput_data via squeue. Everyone 206 * else comes through tcp_input() on the read side. 207 * 208 * We also make special provisions for sockfs by marking tcp_issocket 209 * whenever we have only sockfs on top of TCP. This allows us to skip 210 * putting the tcp in acceptor hash since a sockfs listener can never 211 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 212 * since eager has already been allocated and the accept now happens 213 * on acceptor STREAM. There is a big blob of comment on top of 214 * tcp_conn_request explaining the new accept. When socket is POP'd, 215 * sockfs sends us an ioctl to mark the fact and we go back to old 216 * behaviour. Once tcp_issocket is unset, its never set for the 217 * life of that connection. 218 * 219 * IPsec notes : 220 * 221 * Since a packet is always executed on the correct TCP perimeter 222 * all IPsec processing is defered to IP including checking new 223 * connections and setting IPSEC policies for new connection. The 224 * only exception is tcp_xmit_listeners_reset() which is called 225 * directly from IP and needs to policy check to see if TH_RST 226 * can be sent out. 227 * 228 * PFHooks notes : 229 * 230 * For mdt case, one meta buffer contains multiple packets. Mblks for every 231 * packet are assembled and passed to the hooks. When packets are blocked, 232 * or boundary of any packet is changed, the mdt processing is stopped, and 233 * packets of the meta buffer are send to the IP path one by one. 234 */ 235 236 extern major_t TCP6_MAJ; 237 238 /* 239 * Values for squeue switch: 240 * 1: squeue_enter_nodrain 241 * 2: squeue_enter 242 * 3: squeue_fill 243 */ 244 int tcp_squeue_close = 2; 245 int tcp_squeue_wput = 2; 246 247 squeue_func_t tcp_squeue_close_proc; 248 squeue_func_t tcp_squeue_wput_proc; 249 250 /* 251 * This controls how tiny a write must be before we try to copy it 252 * into the the mblk on the tail of the transmit queue. Not much 253 * speedup is observed for values larger than sixteen. Zero will 254 * disable the optimisation. 255 */ 256 int tcp_tx_pull_len = 16; 257 258 /* 259 * TCP Statistics. 260 * 261 * How TCP statistics work. 262 * 263 * There are two types of statistics invoked by two macros. 264 * 265 * TCP_STAT(name) does non-atomic increment of a named stat counter. It is 266 * supposed to be used in non MT-hot paths of the code. 267 * 268 * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is 269 * supposed to be used for DEBUG purposes and may be used on a hot path. 270 * 271 * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat 272 * (use "kstat tcp" to get them). 273 * 274 * There is also additional debugging facility that marks tcp_clean_death() 275 * instances and saves them in tcp_t structure. It is triggered by 276 * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for 277 * tcp_clean_death() calls that counts the number of times each tag was hit. It 278 * is triggered by TCP_CLD_COUNTERS define. 279 * 280 * How to add new counters. 281 * 282 * 1) Add a field in the tcp_stat structure describing your counter. 283 * 2) Add a line in tcp_statistics with the name of the counter. 284 * 285 * IMPORTANT!! - make sure that both are in sync !! 286 * 3) Use either TCP_STAT or TCP_DBGSTAT with the name. 287 * 288 * Please avoid using private counters which are not kstat-exported. 289 * 290 * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances 291 * in tcp_t structure. 292 * 293 * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags. 294 */ 295 296 #ifndef TCP_DEBUG_COUNTER 297 #ifdef DEBUG 298 #define TCP_DEBUG_COUNTER 1 299 #else 300 #define TCP_DEBUG_COUNTER 0 301 #endif 302 #endif 303 304 #define TCP_CLD_COUNTERS 0 305 306 #define TCP_TAG_CLEAN_DEATH 1 307 #define TCP_MAX_CLEAN_DEATH_TAG 32 308 309 #ifdef lint 310 static int _lint_dummy_; 311 #endif 312 313 #if TCP_CLD_COUNTERS 314 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG]; 315 #define TCP_CLD_STAT(x) tcp_clean_death_stat[x]++ 316 #elif defined(lint) 317 #define TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0); 318 #else 319 #define TCP_CLD_STAT(x) 320 #endif 321 322 #if TCP_DEBUG_COUNTER 323 #define TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1) 324 #elif defined(lint) 325 #define TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0); 326 #else 327 #define TCP_DBGSTAT(x) 328 #endif 329 330 tcp_stat_t tcp_statistics = { 331 { "tcp_time_wait", KSTAT_DATA_UINT64 }, 332 { "tcp_time_wait_syn", KSTAT_DATA_UINT64 }, 333 { "tcp_time_wait_success", KSTAT_DATA_UINT64 }, 334 { "tcp_time_wait_fail", KSTAT_DATA_UINT64 }, 335 { "tcp_reinput_syn", KSTAT_DATA_UINT64 }, 336 { "tcp_ip_output", KSTAT_DATA_UINT64 }, 337 { "tcp_detach_non_time_wait", KSTAT_DATA_UINT64 }, 338 { "tcp_detach_time_wait", KSTAT_DATA_UINT64 }, 339 { "tcp_time_wait_reap", KSTAT_DATA_UINT64 }, 340 { "tcp_clean_death_nondetached", KSTAT_DATA_UINT64 }, 341 { "tcp_reinit_calls", KSTAT_DATA_UINT64 }, 342 { "tcp_eager_err1", KSTAT_DATA_UINT64 }, 343 { "tcp_eager_err2", KSTAT_DATA_UINT64 }, 344 { "tcp_eager_blowoff_calls", KSTAT_DATA_UINT64 }, 345 { "tcp_eager_blowoff_q", KSTAT_DATA_UINT64 }, 346 { "tcp_eager_blowoff_q0", KSTAT_DATA_UINT64 }, 347 { "tcp_not_hard_bound", KSTAT_DATA_UINT64 }, 348 { "tcp_no_listener", KSTAT_DATA_UINT64 }, 349 { "tcp_found_eager", KSTAT_DATA_UINT64 }, 350 { "tcp_wrong_queue", KSTAT_DATA_UINT64 }, 351 { "tcp_found_eager_binding1", KSTAT_DATA_UINT64 }, 352 { "tcp_found_eager_bound1", KSTAT_DATA_UINT64 }, 353 { "tcp_eager_has_listener1", KSTAT_DATA_UINT64 }, 354 { "tcp_open_alloc", KSTAT_DATA_UINT64 }, 355 { "tcp_open_detached_alloc", KSTAT_DATA_UINT64 }, 356 { "tcp_rput_time_wait", KSTAT_DATA_UINT64 }, 357 { "tcp_listendrop", KSTAT_DATA_UINT64 }, 358 { "tcp_listendropq0", KSTAT_DATA_UINT64 }, 359 { "tcp_wrong_rq", KSTAT_DATA_UINT64 }, 360 { "tcp_rsrv_calls", KSTAT_DATA_UINT64 }, 361 { "tcp_eagerfree2", KSTAT_DATA_UINT64 }, 362 { "tcp_eagerfree3", KSTAT_DATA_UINT64 }, 363 { "tcp_eagerfree4", KSTAT_DATA_UINT64 }, 364 { "tcp_eagerfree5", KSTAT_DATA_UINT64 }, 365 { "tcp_timewait_syn_fail", KSTAT_DATA_UINT64 }, 366 { "tcp_listen_badflags", KSTAT_DATA_UINT64 }, 367 { "tcp_timeout_calls", KSTAT_DATA_UINT64 }, 368 { "tcp_timeout_cached_alloc", KSTAT_DATA_UINT64 }, 369 { "tcp_timeout_cancel_reqs", KSTAT_DATA_UINT64 }, 370 { "tcp_timeout_canceled", KSTAT_DATA_UINT64 }, 371 { "tcp_timermp_alloced", KSTAT_DATA_UINT64 }, 372 { "tcp_timermp_freed", KSTAT_DATA_UINT64 }, 373 { "tcp_timermp_allocfail", KSTAT_DATA_UINT64 }, 374 { "tcp_timermp_allocdblfail", KSTAT_DATA_UINT64 }, 375 { "tcp_push_timer_cnt", KSTAT_DATA_UINT64 }, 376 { "tcp_ack_timer_cnt", KSTAT_DATA_UINT64 }, 377 { "tcp_ire_null1", KSTAT_DATA_UINT64 }, 378 { "tcp_ire_null", KSTAT_DATA_UINT64 }, 379 { "tcp_ip_send", KSTAT_DATA_UINT64 }, 380 { "tcp_ip_ire_send", KSTAT_DATA_UINT64 }, 381 { "tcp_wsrv_called", KSTAT_DATA_UINT64 }, 382 { "tcp_flwctl_on", KSTAT_DATA_UINT64 }, 383 { "tcp_timer_fire_early", KSTAT_DATA_UINT64 }, 384 { "tcp_timer_fire_miss", KSTAT_DATA_UINT64 }, 385 { "tcp_freelist_cleanup", KSTAT_DATA_UINT64 }, 386 { "tcp_rput_v6_error", KSTAT_DATA_UINT64 }, 387 { "tcp_out_sw_cksum", KSTAT_DATA_UINT64 }, 388 { "tcp_out_sw_cksum_bytes", KSTAT_DATA_UINT64 }, 389 { "tcp_zcopy_on", KSTAT_DATA_UINT64 }, 390 { "tcp_zcopy_off", KSTAT_DATA_UINT64 }, 391 { "tcp_zcopy_backoff", KSTAT_DATA_UINT64 }, 392 { "tcp_zcopy_disable", KSTAT_DATA_UINT64 }, 393 { "tcp_mdt_pkt_out", KSTAT_DATA_UINT64 }, 394 { "tcp_mdt_pkt_out_v4", KSTAT_DATA_UINT64 }, 395 { "tcp_mdt_pkt_out_v6", KSTAT_DATA_UINT64 }, 396 { "tcp_mdt_discarded", KSTAT_DATA_UINT64 }, 397 { "tcp_mdt_conn_halted1", KSTAT_DATA_UINT64 }, 398 { "tcp_mdt_conn_halted2", KSTAT_DATA_UINT64 }, 399 { "tcp_mdt_conn_halted3", KSTAT_DATA_UINT64 }, 400 { "tcp_mdt_conn_resumed1", KSTAT_DATA_UINT64 }, 401 { "tcp_mdt_conn_resumed2", KSTAT_DATA_UINT64 }, 402 { "tcp_mdt_legacy_small", KSTAT_DATA_UINT64 }, 403 { "tcp_mdt_legacy_all", KSTAT_DATA_UINT64 }, 404 { "tcp_mdt_legacy_ret", KSTAT_DATA_UINT64 }, 405 { "tcp_mdt_allocfail", KSTAT_DATA_UINT64 }, 406 { "tcp_mdt_addpdescfail", KSTAT_DATA_UINT64 }, 407 { "tcp_mdt_allocd", KSTAT_DATA_UINT64 }, 408 { "tcp_mdt_linked", KSTAT_DATA_UINT64 }, 409 { "tcp_fusion_flowctl", KSTAT_DATA_UINT64 }, 410 { "tcp_fusion_backenabled", KSTAT_DATA_UINT64 }, 411 { "tcp_fusion_urg", KSTAT_DATA_UINT64 }, 412 { "tcp_fusion_putnext", KSTAT_DATA_UINT64 }, 413 { "tcp_fusion_unfusable", KSTAT_DATA_UINT64 }, 414 { "tcp_fusion_aborted", KSTAT_DATA_UINT64 }, 415 { "tcp_fusion_unqualified", KSTAT_DATA_UINT64 }, 416 { "tcp_fusion_rrw_busy", KSTAT_DATA_UINT64 }, 417 { "tcp_fusion_rrw_msgcnt", KSTAT_DATA_UINT64 }, 418 { "tcp_fusion_rrw_plugged", KSTAT_DATA_UINT64 }, 419 { "tcp_in_ack_unsent_drop", KSTAT_DATA_UINT64 }, 420 { "tcp_sock_fallback", KSTAT_DATA_UINT64 }, 421 { "tcp_lso_enabled", KSTAT_DATA_UINT64 }, 422 { "tcp_lso_disabled", KSTAT_DATA_UINT64 }, 423 { "tcp_lso_times", KSTAT_DATA_UINT64 }, 424 { "tcp_lso_pkt_out", KSTAT_DATA_UINT64 }, 425 }; 426 427 static kstat_t *tcp_kstat; 428 429 /* 430 * Call either ip_output or ip_output_v6. This replaces putnext() calls on the 431 * tcp write side. 432 */ 433 #define CALL_IP_WPUT(connp, q, mp) { \ 434 ASSERT(((q)->q_flag & QREADR) == 0); \ 435 TCP_DBGSTAT(tcp_ip_output); \ 436 connp->conn_send(connp, (mp), (q), IP_WPUT); \ 437 } 438 439 /* Macros for timestamp comparisons */ 440 #define TSTMP_GEQ(a, b) ((int32_t)((a)-(b)) >= 0) 441 #define TSTMP_LT(a, b) ((int32_t)((a)-(b)) < 0) 442 443 /* 444 * Parameters for TCP Initial Send Sequence number (ISS) generation. When 445 * tcp_strong_iss is set to 1, which is the default, the ISS is calculated 446 * by adding three components: a time component which grows by 1 every 4096 447 * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27); 448 * a per-connection component which grows by 125000 for every new connection; 449 * and an "extra" component that grows by a random amount centered 450 * approximately on 64000. This causes the the ISS generator to cycle every 451 * 4.89 hours if no TCP connections are made, and faster if connections are 452 * made. 453 * 454 * When tcp_strong_iss is set to 0, ISS is calculated by adding two 455 * components: a time component which grows by 250000 every second; and 456 * a per-connection component which grows by 125000 for every new connections. 457 * 458 * A third method, when tcp_strong_iss is set to 2, for generating ISS is 459 * prescribed by Steve Bellovin. This involves adding time, the 125000 per 460 * connection, and a one-way hash (MD5) of the connection ID <sport, dport, 461 * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered 462 * password. 463 */ 464 #define ISS_INCR 250000 465 #define ISS_NSEC_SHT 12 466 467 static uint32_t tcp_iss_incr_extra; /* Incremented for each connection */ 468 static kmutex_t tcp_iss_key_lock; 469 static MD5_CTX tcp_iss_key; 470 static sin_t sin_null; /* Zero address for quick clears */ 471 static sin6_t sin6_null; /* Zero address for quick clears */ 472 473 /* Packet dropper for TCP IPsec policy drops. */ 474 static ipdropper_t tcp_dropper; 475 476 /* 477 * This implementation follows the 4.3BSD interpretation of the urgent 478 * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause 479 * incompatible changes in protocols like telnet and rlogin. 480 */ 481 #define TCP_OLD_URP_INTERPRETATION 1 482 483 #define TCP_IS_DETACHED_NONEAGER(tcp) \ 484 (TCP_IS_DETACHED(tcp) && \ 485 (!(tcp)->tcp_hard_binding)) 486 487 /* 488 * TCP reassembly macros. We hide starting and ending sequence numbers in 489 * b_next and b_prev of messages on the reassembly queue. The messages are 490 * chained using b_cont. These macros are used in tcp_reass() so we don't 491 * have to see the ugly casts and assignments. 492 */ 493 #define TCP_REASS_SEQ(mp) ((uint32_t)(uintptr_t)((mp)->b_next)) 494 #define TCP_REASS_SET_SEQ(mp, u) ((mp)->b_next = \ 495 (mblk_t *)(uintptr_t)(u)) 496 #define TCP_REASS_END(mp) ((uint32_t)(uintptr_t)((mp)->b_prev)) 497 #define TCP_REASS_SET_END(mp, u) ((mp)->b_prev = \ 498 (mblk_t *)(uintptr_t)(u)) 499 500 /* 501 * Implementation of TCP Timers. 502 * ============================= 503 * 504 * INTERFACE: 505 * 506 * There are two basic functions dealing with tcp timers: 507 * 508 * timeout_id_t tcp_timeout(connp, func, time) 509 * clock_t tcp_timeout_cancel(connp, timeout_id) 510 * TCP_TIMER_RESTART(tcp, intvl) 511 * 512 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 513 * after 'time' ticks passed. The function called by timeout() must adhere to 514 * the same restrictions as a driver soft interrupt handler - it must not sleep 515 * or call other functions that might sleep. The value returned is the opaque 516 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 517 * cancel the request. The call to tcp_timeout() may fail in which case it 518 * returns zero. This is different from the timeout(9F) function which never 519 * fails. 520 * 521 * The call-back function 'func' always receives 'connp' as its single 522 * argument. It is always executed in the squeue corresponding to the tcp 523 * structure. The tcp structure is guaranteed to be present at the time the 524 * call-back is called. 525 * 526 * NOTE: The call-back function 'func' is never called if tcp is in 527 * the TCPS_CLOSED state. 528 * 529 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 530 * request. locks acquired by the call-back routine should not be held across 531 * the call to tcp_timeout_cancel() or a deadlock may result. 532 * 533 * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request. 534 * Otherwise, it returns an integer value greater than or equal to 0. In 535 * particular, if the call-back function is already placed on the squeue, it can 536 * not be canceled. 537 * 538 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 539 * within squeue context corresponding to the tcp instance. Since the 540 * call-back is also called via the same squeue, there are no race 541 * conditions described in untimeout(9F) manual page since all calls are 542 * strictly serialized. 543 * 544 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 545 * stored in tcp_timer_tid and starts a new one using 546 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 547 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 548 * field. 549 * 550 * NOTE: since the timeout cancellation is not guaranteed, the cancelled 551 * call-back may still be called, so it is possible tcp_timer() will be 552 * called several times. This should not be a problem since tcp_timer() 553 * should always check the tcp instance state. 554 * 555 * 556 * IMPLEMENTATION: 557 * 558 * TCP timers are implemented using three-stage process. The call to 559 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 560 * when the timer expires. The tcp_timer_callback() arranges the call of the 561 * tcp_timer_handler() function via squeue corresponding to the tcp 562 * instance. The tcp_timer_handler() calls actual requested timeout call-back 563 * and passes tcp instance as an argument to it. Information is passed between 564 * stages using the tcp_timer_t structure which contains the connp pointer, the 565 * tcp call-back to call and the timeout id returned by the timeout(9F). 566 * 567 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 568 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 569 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 570 * returns the pointer to this mblk. 571 * 572 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 573 * looks like a normal mblk without actual dblk attached to it. 574 * 575 * To optimize performance each tcp instance holds a small cache of timer 576 * mblocks. In the current implementation it caches up to two timer mblocks per 577 * tcp instance. The cache is preserved over tcp frees and is only freed when 578 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 579 * timer processing happens on a corresponding squeue, the cache manipulation 580 * does not require any locks. Experiments show that majority of timer mblocks 581 * allocations are satisfied from the tcp cache and do not involve kmem calls. 582 * 583 * The tcp_timeout() places a refhold on the connp instance which guarantees 584 * that it will be present at the time the call-back function fires. The 585 * tcp_timer_handler() drops the reference after calling the call-back, so the 586 * call-back function does not need to manipulate the references explicitly. 587 */ 588 589 typedef struct tcp_timer_s { 590 conn_t *connp; 591 void (*tcpt_proc)(void *); 592 timeout_id_t tcpt_tid; 593 } tcp_timer_t; 594 595 static kmem_cache_t *tcp_timercache; 596 kmem_cache_t *tcp_sack_info_cache; 597 kmem_cache_t *tcp_iphc_cache; 598 599 /* 600 * For scalability, we must not run a timer for every TCP connection 601 * in TIME_WAIT state. To see why, consider (for time wait interval of 602 * 4 minutes): 603 * 1000 connections/sec * 240 seconds/time wait = 240,000 active conn's 604 * 605 * This list is ordered by time, so you need only delete from the head 606 * until you get to entries which aren't old enough to delete yet. 607 * The list consists of only the detached TIME_WAIT connections. 608 * 609 * Note that the timer (tcp_time_wait_expire) is started when the tcp_t 610 * becomes detached TIME_WAIT (either by changing the state and already 611 * being detached or the other way around). This means that the TIME_WAIT 612 * state can be extended (up to doubled) if the connection doesn't become 613 * detached for a long time. 614 * 615 * The list manipulations (including tcp_time_wait_next/prev) 616 * are protected by the tcp_time_wait_lock. The content of the 617 * detached TIME_WAIT connections is protected by the normal perimeters. 618 */ 619 620 typedef struct tcp_squeue_priv_s { 621 kmutex_t tcp_time_wait_lock; 622 /* Protects the next 3 globals */ 623 timeout_id_t tcp_time_wait_tid; 624 tcp_t *tcp_time_wait_head; 625 tcp_t *tcp_time_wait_tail; 626 tcp_t *tcp_free_list; 627 uint_t tcp_free_list_cnt; 628 } tcp_squeue_priv_t; 629 630 /* 631 * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs. 632 * Running it every 5 seconds seems to give the best results. 633 */ 634 #define TCP_TIME_WAIT_DELAY drv_usectohz(5000000) 635 636 /* 637 * To prevent memory hog, limit the number of entries in tcp_free_list 638 * to 1% of available memory / number of cpus 639 */ 640 uint_t tcp_free_list_max_cnt = 0; 641 642 #define TCP_XMIT_LOWATER 4096 643 #define TCP_XMIT_HIWATER 49152 644 #define TCP_RECV_LOWATER 2048 645 #define TCP_RECV_HIWATER 49152 646 647 /* 648 * PAWS needs a timer for 24 days. This is the number of ticks in 24 days 649 */ 650 #define PAWS_TIMEOUT ((clock_t)(24*24*60*60*hz)) 651 652 #define TIDUSZ 4096 /* transport interface data unit size */ 653 654 /* 655 * Bind hash list size and has function. It has to be a power of 2 for 656 * hashing. 657 */ 658 #define TCP_BIND_FANOUT_SIZE 512 659 #define TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1)) 660 /* 661 * Size of listen and acceptor hash list. It has to be a power of 2 for 662 * hashing. 663 */ 664 #define TCP_FANOUT_SIZE 256 665 666 #ifdef _ILP32 667 #define TCP_ACCEPTOR_HASH(accid) \ 668 (((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1)) 669 #else 670 #define TCP_ACCEPTOR_HASH(accid) \ 671 ((uint_t)(accid) & (TCP_FANOUT_SIZE - 1)) 672 #endif /* _ILP32 */ 673 674 #define IP_ADDR_CACHE_SIZE 2048 675 #define IP_ADDR_CACHE_HASH(faddr) \ 676 (ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1)) 677 678 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */ 679 #define TCP_HSP_HASH_SIZE 256 680 681 #define TCP_HSP_HASH(addr) \ 682 (((addr>>24) ^ (addr >>16) ^ \ 683 (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE) 684 685 /* 686 * TCP options struct returned from tcp_parse_options. 687 */ 688 typedef struct tcp_opt_s { 689 uint32_t tcp_opt_mss; 690 uint32_t tcp_opt_wscale; 691 uint32_t tcp_opt_ts_val; 692 uint32_t tcp_opt_ts_ecr; 693 tcp_t *tcp; 694 } tcp_opt_t; 695 696 /* 697 * RFC1323-recommended phrasing of TSTAMP option, for easier parsing 698 */ 699 700 #ifdef _BIG_ENDIAN 701 #define TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 702 (TCPOPT_TSTAMP << 8) | 10) 703 #else 704 #define TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \ 705 (TCPOPT_NOP << 8) | TCPOPT_NOP) 706 #endif 707 708 /* 709 * Flags returned from tcp_parse_options. 710 */ 711 #define TCP_OPT_MSS_PRESENT 1 712 #define TCP_OPT_WSCALE_PRESENT 2 713 #define TCP_OPT_TSTAMP_PRESENT 4 714 #define TCP_OPT_SACK_OK_PRESENT 8 715 #define TCP_OPT_SACK_PRESENT 16 716 717 /* TCP option length */ 718 #define TCPOPT_NOP_LEN 1 719 #define TCPOPT_MAXSEG_LEN 4 720 #define TCPOPT_WS_LEN 3 721 #define TCPOPT_REAL_WS_LEN (TCPOPT_WS_LEN+1) 722 #define TCPOPT_TSTAMP_LEN 10 723 #define TCPOPT_REAL_TS_LEN (TCPOPT_TSTAMP_LEN+2) 724 #define TCPOPT_SACK_OK_LEN 2 725 #define TCPOPT_REAL_SACK_OK_LEN (TCPOPT_SACK_OK_LEN+2) 726 #define TCPOPT_REAL_SACK_LEN 4 727 #define TCPOPT_MAX_SACK_LEN 36 728 #define TCPOPT_HEADER_LEN 2 729 730 /* TCP cwnd burst factor. */ 731 #define TCP_CWND_INFINITE 65535 732 #define TCP_CWND_SS 3 733 #define TCP_CWND_NORMAL 5 734 735 /* Maximum TCP initial cwin (start/restart). */ 736 #define TCP_MAX_INIT_CWND 8 737 738 /* 739 * Initialize cwnd according to RFC 3390. def_max_init_cwnd is 740 * either tcp_slow_start_initial or tcp_slow_start_after idle 741 * depending on the caller. If the upper layer has not used the 742 * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd 743 * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd. 744 * If the upper layer has changed set the tcp_init_cwnd, just use 745 * it to calculate the tcp_cwnd. 746 */ 747 #define SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd) \ 748 { \ 749 if ((tcp)->tcp_init_cwnd == 0) { \ 750 (tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss), \ 751 MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \ 752 } else { \ 753 (tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss); \ 754 } \ 755 tcp->tcp_cwnd_cnt = 0; \ 756 } 757 758 /* TCP Timer control structure */ 759 typedef struct tcpt_s { 760 pfv_t tcpt_pfv; /* The routine we are to call */ 761 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 762 } tcpt_t; 763 764 /* Host Specific Parameter structure */ 765 typedef struct tcp_hsp { 766 struct tcp_hsp *tcp_hsp_next; 767 in6_addr_t tcp_hsp_addr_v6; 768 in6_addr_t tcp_hsp_subnet_v6; 769 uint_t tcp_hsp_vers; /* IPV4_VERSION | IPV6_VERSION */ 770 int32_t tcp_hsp_sendspace; 771 int32_t tcp_hsp_recvspace; 772 int32_t tcp_hsp_tstamp; 773 } tcp_hsp_t; 774 #define tcp_hsp_addr V4_PART_OF_V6(tcp_hsp_addr_v6) 775 #define tcp_hsp_subnet V4_PART_OF_V6(tcp_hsp_subnet_v6) 776 777 /* 778 * Functions called directly via squeue having a prototype of edesc_t. 779 */ 780 void tcp_conn_request(void *arg, mblk_t *mp, void *arg2); 781 static void tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2); 782 void tcp_accept_finish(void *arg, mblk_t *mp, void *arg2); 783 static void tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2); 784 static void tcp_wput_proto(void *arg, mblk_t *mp, void *arg2); 785 void tcp_input(void *arg, mblk_t *mp, void *arg2); 786 void tcp_rput_data(void *arg, mblk_t *mp, void *arg2); 787 static void tcp_close_output(void *arg, mblk_t *mp, void *arg2); 788 void tcp_output(void *arg, mblk_t *mp, void *arg2); 789 static void tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2); 790 static void tcp_timer_handler(void *arg, mblk_t *mp, void *arg2); 791 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2); 792 793 794 /* Prototype for TCP functions */ 795 static void tcp_random_init(void); 796 int tcp_random(void); 797 static void tcp_accept(tcp_t *tcp, mblk_t *mp); 798 static void tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, 799 tcp_t *eager); 800 static int tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp); 801 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 802 int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only, 803 boolean_t user_specified); 804 static void tcp_closei_local(tcp_t *tcp); 805 static void tcp_close_detached(tcp_t *tcp); 806 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, 807 mblk_t *idmp, mblk_t **defermp); 808 static void tcp_connect(tcp_t *tcp, mblk_t *mp); 809 static void tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, 810 in_port_t dstport, uint_t srcid); 811 static void tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 812 in_port_t dstport, uint32_t flowinfo, uint_t srcid, 813 uint32_t scope_id); 814 static int tcp_clean_death(tcp_t *tcp, int err, uint8_t tag); 815 static void tcp_def_q_set(tcp_t *tcp, mblk_t *mp); 816 static void tcp_disconnect(tcp_t *tcp, mblk_t *mp); 817 static char *tcp_display(tcp_t *tcp, char *, char); 818 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum); 819 static void tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only); 820 static void tcp_eager_unlink(tcp_t *tcp); 821 static void tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr, 822 int unixerr); 823 static void tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 824 int tlierr, int unixerr); 825 static int tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, 826 cred_t *cr); 827 static int tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, 828 char *value, caddr_t cp, cred_t *cr); 829 static int tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, 830 char *value, caddr_t cp, cred_t *cr); 831 static int tcp_tpistate(tcp_t *tcp); 832 static void tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp, 833 int caller_holds_lock); 834 static void tcp_bind_hash_remove(tcp_t *tcp); 835 static tcp_t *tcp_acceptor_hash_lookup(t_uscalar_t id); 836 void tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp); 837 static void tcp_acceptor_hash_remove(tcp_t *tcp); 838 static void tcp_capability_req(tcp_t *tcp, mblk_t *mp); 839 static void tcp_info_req(tcp_t *tcp, mblk_t *mp); 840 static void tcp_addr_req(tcp_t *tcp, mblk_t *mp); 841 static void tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp); 842 static int tcp_header_init_ipv4(tcp_t *tcp); 843 static int tcp_header_init_ipv6(tcp_t *tcp); 844 int tcp_init(tcp_t *tcp, queue_t *q); 845 static int tcp_init_values(tcp_t *tcp); 846 static mblk_t *tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic); 847 static mblk_t *tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, 848 t_scalar_t addr_length); 849 static void tcp_ip_ire_mark_advice(tcp_t *tcp); 850 static void tcp_ip_notify(tcp_t *tcp); 851 static mblk_t *tcp_ire_mp(mblk_t *mp); 852 static void tcp_iss_init(tcp_t *tcp); 853 static void tcp_keepalive_killer(void *arg); 854 static int tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt); 855 static void tcp_mss_set(tcp_t *tcp, uint32_t size); 856 static int tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, 857 int *do_disconnectp, int *t_errorp, int *sys_errorp); 858 static boolean_t tcp_allow_connopt_set(int level, int name); 859 int tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr); 860 int tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr); 861 int tcp_opt_set(queue_t *q, uint_t optset_context, int level, 862 int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, 863 uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, 864 mblk_t *mblk); 865 static void tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha); 866 static int tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, 867 uchar_t *ptr, uint_t len); 868 static int tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr); 869 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt); 870 static int tcp_param_set(queue_t *q, mblk_t *mp, char *value, 871 caddr_t cp, cred_t *cr); 872 static int tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, 873 caddr_t cp, cred_t *cr); 874 static void tcp_iss_key_init(uint8_t *phrase, int len); 875 static int tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, 876 caddr_t cp, cred_t *cr); 877 static void tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt); 878 static mblk_t *tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start); 879 static void tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp); 880 static void tcp_reinit(tcp_t *tcp); 881 static void tcp_reinit_values(tcp_t *tcp); 882 static void tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, 883 tcp_t *thisstream, cred_t *cr); 884 885 static uint_t tcp_rcv_drain(queue_t *q, tcp_t *tcp); 886 static void tcp_sack_rxmit(tcp_t *tcp, uint_t *flags); 887 static boolean_t tcp_send_rst_chk(void); 888 static void tcp_ss_rexmit(tcp_t *tcp); 889 static mblk_t *tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp); 890 static void tcp_process_options(tcp_t *, tcph_t *); 891 static void tcp_rput_common(tcp_t *tcp, mblk_t *mp); 892 static void tcp_rsrv(queue_t *q); 893 static int tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd); 894 static int tcp_snmp_state(tcp_t *tcp); 895 static int tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, 896 cred_t *cr); 897 static int tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 898 cred_t *cr); 899 static int tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 900 cred_t *cr); 901 static int tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 902 cred_t *cr); 903 static int tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, 904 cred_t *cr); 905 static int tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, 906 caddr_t cp, cred_t *cr); 907 static int tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, 908 caddr_t cp, cred_t *cr); 909 static int tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, 910 cred_t *cr); 911 static void tcp_timer(void *arg); 912 static void tcp_timer_callback(void *); 913 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp, 914 boolean_t random); 915 static in_port_t tcp_get_next_priv_port(const tcp_t *); 916 static void tcp_wput_sock(queue_t *q, mblk_t *mp); 917 void tcp_wput_accept(queue_t *q, mblk_t *mp); 918 static void tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent); 919 static void tcp_wput_flush(tcp_t *tcp, mblk_t *mp); 920 static void tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp); 921 static int tcp_send(queue_t *q, tcp_t *tcp, const int mss, 922 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 923 const int num_sack_blk, int *usable, uint_t *snxt, 924 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 925 const int mdt_thres); 926 static int tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, 927 const int tcp_hdr_len, const int tcp_tcp_hdr_len, 928 const int num_sack_blk, int *usable, uint_t *snxt, 929 int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 930 const int mdt_thres); 931 static void tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, 932 int num_sack_blk); 933 static void tcp_wsrv(queue_t *q); 934 static int tcp_xmit_end(tcp_t *tcp); 935 static void tcp_ack_timer(void *arg); 936 static mblk_t *tcp_ack_mp(tcp_t *tcp); 937 static void tcp_xmit_early_reset(char *str, mblk_t *mp, 938 uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len, 939 zoneid_t zoneid); 940 static void tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, 941 uint32_t ack, int ctl); 942 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr); 943 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr); 944 static int setmaxps(queue_t *q, int maxpsz); 945 static void tcp_set_rto(tcp_t *, time_t); 946 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *, 947 boolean_t, boolean_t); 948 static void tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, 949 boolean_t ipsec_mctl); 950 static mblk_t *tcp_setsockopt_mp(int level, int cmd, 951 char *opt, int optlen); 952 static int tcp_build_hdrs(queue_t *, tcp_t *); 953 static void tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, 954 uint32_t seg_seq, uint32_t seg_ack, int seg_len, 955 tcph_t *tcph); 956 boolean_t tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp); 957 boolean_t tcp_reserved_port_add(int, in_port_t *, in_port_t *); 958 boolean_t tcp_reserved_port_del(in_port_t, in_port_t); 959 boolean_t tcp_reserved_port_check(in_port_t); 960 static tcp_t *tcp_alloc_temp_tcp(in_port_t); 961 static int tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *); 962 static mblk_t *tcp_mdt_info_mp(mblk_t *); 963 static void tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t); 964 static int tcp_mdt_add_attrs(multidata_t *, const mblk_t *, 965 const boolean_t, const uint32_t, const uint32_t, 966 const uint32_t, const uint32_t); 967 static void tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *, 968 const uint_t, const uint_t, boolean_t *); 969 static mblk_t *tcp_lso_info_mp(mblk_t *); 970 static void tcp_lso_update(tcp_t *, ill_lso_capab_t *); 971 static void tcp_send_data(tcp_t *, queue_t *, mblk_t *); 972 extern mblk_t *tcp_timermp_alloc(int); 973 extern void tcp_timermp_free(tcp_t *); 974 static void tcp_timer_free(tcp_t *tcp, mblk_t *mp); 975 static void tcp_stop_lingering(tcp_t *tcp); 976 static void tcp_close_linger_timeout(void *arg); 977 void tcp_ddi_init(void); 978 void tcp_ddi_destroy(void); 979 static void tcp_kstat_init(void); 980 static void tcp_kstat_fini(void); 981 static int tcp_kstat_update(kstat_t *kp, int rw); 982 void tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp); 983 static int tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 984 tcph_t *tcph, uint_t ipvers, mblk_t *idmp); 985 static int tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 986 tcph_t *tcph, mblk_t *idmp); 987 static squeue_func_t tcp_squeue_switch(int); 988 989 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *); 990 static int tcp_close(queue_t *, int); 991 static int tcpclose_accept(queue_t *); 992 static int tcp_modclose(queue_t *); 993 static void tcp_wput_mod(queue_t *, mblk_t *); 994 995 static void tcp_squeue_add(squeue_t *); 996 static boolean_t tcp_zcopy_check(tcp_t *); 997 static void tcp_zcopy_notify(tcp_t *); 998 static mblk_t *tcp_zcopy_disable(tcp_t *, mblk_t *); 999 static mblk_t *tcp_zcopy_backoff(tcp_t *, mblk_t *, int); 1000 static void tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t); 1001 1002 extern void tcp_kssl_input(tcp_t *, mblk_t *); 1003 1004 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2); 1005 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2); 1006 1007 /* 1008 * Routines related to the TCP_IOC_ABORT_CONN ioctl command. 1009 * 1010 * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting 1011 * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure 1012 * (defined in tcp.h) needs to be filled in and passed into the kernel 1013 * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t 1014 * structure contains the four-tuple of a TCP connection and a range of TCP 1015 * states (specified by ac_start and ac_end). The use of wildcard addresses 1016 * and ports is allowed. Connections with a matching four tuple and a state 1017 * within the specified range will be aborted. The valid states for the 1018 * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT, 1019 * inclusive. 1020 * 1021 * An application which has its connection aborted by this ioctl will receive 1022 * an error that is dependent on the connection state at the time of the abort. 1023 * If the connection state is < TCPS_TIME_WAIT, an application should behave as 1024 * though a RST packet has been received. If the connection state is equal to 1025 * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel 1026 * and all resources associated with the connection will be freed. 1027 */ 1028 static mblk_t *tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *); 1029 static void tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *); 1030 static void tcp_ioctl_abort_handler(tcp_t *, mblk_t *); 1031 static int tcp_ioctl_abort(tcp_ioc_abort_conn_t *); 1032 static void tcp_ioctl_abort_conn(queue_t *, mblk_t *); 1033 static int tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *, 1034 boolean_t); 1035 1036 static struct module_info tcp_rinfo = { 1037 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 1038 }; 1039 1040 static struct module_info tcp_winfo = { 1041 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 1042 }; 1043 1044 /* 1045 * Entry points for TCP as a module. It only allows SNMP requests 1046 * to pass through. 1047 */ 1048 struct qinit tcp_mod_rinit = { 1049 (pfi_t)putnext, NULL, tcp_open, ip_snmpmod_close, NULL, &tcp_rinfo, 1050 }; 1051 1052 struct qinit tcp_mod_winit = { 1053 (pfi_t)ip_snmpmod_wput, NULL, tcp_open, ip_snmpmod_close, NULL, 1054 &tcp_rinfo 1055 }; 1056 1057 /* 1058 * Entry points for TCP as a device. The normal case which supports 1059 * the TCP functionality. 1060 */ 1061 struct qinit tcp_rinit = { 1062 NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo 1063 }; 1064 1065 struct qinit tcp_winit = { 1066 (pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1067 }; 1068 1069 /* Initial entry point for TCP in socket mode. */ 1070 struct qinit tcp_sock_winit = { 1071 (pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 1072 }; 1073 1074 /* 1075 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 1076 * an accept. Avoid allocating data structures since eager has already 1077 * been created. 1078 */ 1079 struct qinit tcp_acceptor_rinit = { 1080 NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo 1081 }; 1082 1083 struct qinit tcp_acceptor_winit = { 1084 (pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo 1085 }; 1086 1087 /* 1088 * Entry points for TCP loopback (read side only) 1089 */ 1090 struct qinit tcp_loopback_rinit = { 1091 (pfi_t)0, (pfi_t)tcp_rsrv, tcp_open, tcp_close, (pfi_t)0, 1092 &tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD 1093 }; 1094 1095 struct streamtab tcpinfo = { 1096 &tcp_rinit, &tcp_winit 1097 }; 1098 1099 extern squeue_func_t tcp_squeue_wput_proc; 1100 extern squeue_func_t tcp_squeue_timer_proc; 1101 1102 /* Protected by tcp_g_q_lock */ 1103 static queue_t *tcp_g_q; /* Default queue used during detached closes */ 1104 kmutex_t tcp_g_q_lock; 1105 1106 /* Protected by tcp_hsp_lock */ 1107 /* 1108 * XXX The host param mechanism should go away and instead we should use 1109 * the metrics associated with the routes to determine the default sndspace 1110 * and rcvspace. 1111 */ 1112 static tcp_hsp_t **tcp_hsp_hash; /* Hash table for HSPs */ 1113 krwlock_t tcp_hsp_lock; 1114 1115 /* 1116 * Extra privileged ports. In host byte order. 1117 * Protected by tcp_epriv_port_lock. 1118 */ 1119 #define TCP_NUM_EPRIV_PORTS 64 1120 static int tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 1121 static uint16_t tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 }; 1122 kmutex_t tcp_epriv_port_lock; 1123 1124 /* 1125 * The smallest anonymous port in the privileged port range which TCP 1126 * looks for free port. Use in the option TCP_ANONPRIVBIND. 1127 */ 1128 static in_port_t tcp_min_anonpriv_port = 512; 1129 1130 /* Only modified during _init and _fini thus no locking is needed. */ 1131 static caddr_t tcp_g_nd; /* Head of 'named dispatch' variable list */ 1132 1133 /* Hint not protected by any lock */ 1134 static uint_t tcp_next_port_to_try; 1135 1136 1137 /* TCP bind hash list - all tcp_t with state >= BOUND. */ 1138 tf_t tcp_bind_fanout[TCP_BIND_FANOUT_SIZE]; 1139 1140 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */ 1141 static tf_t tcp_acceptor_fanout[TCP_FANOUT_SIZE]; 1142 1143 /* 1144 * TCP has a private interface for other kernel modules to reserve a 1145 * port range for them to use. Once reserved, TCP will not use any ports 1146 * in the range. This interface relies on the TCP_EXCLBIND feature. If 1147 * the semantics of TCP_EXCLBIND is changed, implementation of this interface 1148 * has to be verified. 1149 * 1150 * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges. Each port 1151 * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports. A port 1152 * range is [port a, port b] inclusive. And each port range is between 1153 * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive. 1154 * 1155 * Note that the default anonymous port range starts from 32768. There is 1156 * no port "collision" between that and the reserved port range. If there 1157 * is port collision (because the default smallest anonymous port is lowered 1158 * or some apps specifically bind to ports in the reserved port range), the 1159 * system may not be able to reserve a port range even there are enough 1160 * unbound ports as a reserved port range contains consecutive ports . 1161 */ 1162 #define TCP_RESERVED_PORTS_ARRAY_MAX_SIZE 5 1163 #define TCP_RESERVED_PORTS_RANGE_MAX 1000 1164 #define TCP_SMALLEST_RESERVED_PORT 10240 1165 #define TCP_LARGEST_RESERVED_PORT 20480 1166 1167 /* Structure to represent those reserved port ranges. */ 1168 typedef struct tcp_rport_s { 1169 in_port_t lo_port; 1170 in_port_t hi_port; 1171 tcp_t **temp_tcp_array; 1172 } tcp_rport_t; 1173 1174 /* The reserved port array. */ 1175 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 1176 1177 /* Locks to protect the tcp_reserved_ports array. */ 1178 static krwlock_t tcp_reserved_port_lock; 1179 1180 /* The number of ranges in the array. */ 1181 uint32_t tcp_reserved_port_array_size = 0; 1182 1183 /* 1184 * MIB-2 stuff for SNMP 1185 * Note: tcpInErrs {tcp 15} is accumulated in ip.c 1186 */ 1187 mib2_tcp_t tcp_mib; /* SNMP fixed size info */ 1188 kstat_t *tcp_mibkp; /* kstat exporting tcp_mib data */ 1189 1190 boolean_t tcp_icmp_source_quench = B_FALSE; 1191 /* 1192 * Following assumes TPI alignment requirements stay along 32 bit 1193 * boundaries 1194 */ 1195 #define ROUNDUP32(x) \ 1196 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 1197 1198 /* Template for response to info request. */ 1199 static struct T_info_ack tcp_g_t_info_ack = { 1200 T_INFO_ACK, /* PRIM_type */ 1201 0, /* TSDU_size */ 1202 T_INFINITE, /* ETSDU_size */ 1203 T_INVALID, /* CDATA_size */ 1204 T_INVALID, /* DDATA_size */ 1205 sizeof (sin_t), /* ADDR_size */ 1206 0, /* OPT_size - not initialized here */ 1207 TIDUSZ, /* TIDU_size */ 1208 T_COTS_ORD, /* SERV_type */ 1209 TCPS_IDLE, /* CURRENT_state */ 1210 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1211 }; 1212 1213 static struct T_info_ack tcp_g_t_info_ack_v6 = { 1214 T_INFO_ACK, /* PRIM_type */ 1215 0, /* TSDU_size */ 1216 T_INFINITE, /* ETSDU_size */ 1217 T_INVALID, /* CDATA_size */ 1218 T_INVALID, /* DDATA_size */ 1219 sizeof (sin6_t), /* ADDR_size */ 1220 0, /* OPT_size - not initialized here */ 1221 TIDUSZ, /* TIDU_size */ 1222 T_COTS_ORD, /* SERV_type */ 1223 TCPS_IDLE, /* CURRENT_state */ 1224 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 1225 }; 1226 1227 #define MS 1L 1228 #define SECONDS (1000 * MS) 1229 #define MINUTES (60 * SECONDS) 1230 #define HOURS (60 * MINUTES) 1231 #define DAYS (24 * HOURS) 1232 1233 #define PARAM_MAX (~(uint32_t)0) 1234 1235 /* Max size IP datagram is 64k - 1 */ 1236 #define TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t))) 1237 #define TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t))) 1238 /* Max of the above */ 1239 #define TCP_MSS_MAX TCP_MSS_MAX_IPV4 1240 1241 /* Largest TCP port number */ 1242 #define TCP_MAX_PORT (64 * 1024 - 1) 1243 1244 /* 1245 * tcp_wroff_xtra is the extra space in front of TCP/IP header for link 1246 * layer header. It has to be a multiple of 4. 1247 */ 1248 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" }; 1249 #define tcp_wroff_xtra tcp_wroff_xtra_param.tcp_param_val 1250 1251 /* 1252 * All of these are alterable, within the min/max values given, at run time. 1253 * Note that the default value of "tcp_time_wait_interval" is four minutes, 1254 * per the TCP spec. 1255 */ 1256 /* BEGIN CSTYLED */ 1257 tcpparam_t tcp_param_arr[] = { 1258 /*min max value name */ 1259 { 1*SECONDS, 10*MINUTES, 1*MINUTES, "tcp_time_wait_interval"}, 1260 { 1, PARAM_MAX, 128, "tcp_conn_req_max_q" }, 1261 { 0, PARAM_MAX, 1024, "tcp_conn_req_max_q0" }, 1262 { 1, 1024, 1, "tcp_conn_req_min" }, 1263 { 0*MS, 20*SECONDS, 0*MS, "tcp_conn_grace_period" }, 1264 { 128, (1<<30), 1024*1024, "tcp_cwnd_max" }, 1265 { 0, 10, 0, "tcp_debug" }, 1266 { 1024, (32*1024), 1024, "tcp_smallest_nonpriv_port"}, 1267 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_cinterval"}, 1268 { 1*SECONDS, PARAM_MAX, 3*MINUTES, "tcp_ip_abort_linterval"}, 1269 { 500*MS, PARAM_MAX, 8*MINUTES, "tcp_ip_abort_interval"}, 1270 { 1*SECONDS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_cinterval"}, 1271 { 500*MS, PARAM_MAX, 10*SECONDS, "tcp_ip_notify_interval"}, 1272 { 1, 255, 64, "tcp_ipv4_ttl"}, 1273 { 10*SECONDS, 10*DAYS, 2*HOURS, "tcp_keepalive_interval"}, 1274 { 0, 100, 10, "tcp_maxpsz_multiplier" }, 1275 { 1, TCP_MSS_MAX_IPV4, 536, "tcp_mss_def_ipv4"}, 1276 { 1, TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"}, 1277 { 1, TCP_MSS_MAX, 108, "tcp_mss_min"}, 1278 { 1, (64*1024)-1, (4*1024)-1, "tcp_naglim_def"}, 1279 { 1*MS, 20*SECONDS, 3*SECONDS, "tcp_rexmit_interval_initial"}, 1280 { 1*MS, 2*HOURS, 60*SECONDS, "tcp_rexmit_interval_max"}, 1281 { 1*MS, 2*HOURS, 400*MS, "tcp_rexmit_interval_min"}, 1282 { 1*MS, 1*MINUTES, 100*MS, "tcp_deferred_ack_interval" }, 1283 { 0, 16, 0, "tcp_snd_lowat_fraction" }, 1284 { 0, 128000, 0, "tcp_sth_rcv_hiwat" }, 1285 { 0, 128000, 0, "tcp_sth_rcv_lowat" }, 1286 { 1, 10000, 3, "tcp_dupack_fast_retransmit" }, 1287 { 0, 1, 0, "tcp_ignore_path_mtu" }, 1288 { 1024, TCP_MAX_PORT, 32*1024, "tcp_smallest_anon_port"}, 1289 { 1024, TCP_MAX_PORT, TCP_MAX_PORT, "tcp_largest_anon_port"}, 1290 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"}, 1291 { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"}, 1292 { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"}, 1293 { 1, 65536, 4, "tcp_recv_hiwat_minmss"}, 1294 { 1*SECONDS, PARAM_MAX, 675*SECONDS, "tcp_fin_wait_2_flush_interval"}, 1295 { 0, TCP_MSS_MAX, 64, "tcp_co_min"}, 1296 { 8192, (1<<30), 1024*1024, "tcp_max_buf"}, 1297 /* 1298 * Question: What default value should I set for tcp_strong_iss? 1299 */ 1300 { 0, 2, 1, "tcp_strong_iss"}, 1301 { 0, 65536, 20, "tcp_rtt_updates"}, 1302 { 0, 1, 1, "tcp_wscale_always"}, 1303 { 0, 1, 0, "tcp_tstamp_always"}, 1304 { 0, 1, 1, "tcp_tstamp_if_wscale"}, 1305 { 0*MS, 2*HOURS, 0*MS, "tcp_rexmit_interval_extra"}, 1306 { 0, 16, 2, "tcp_deferred_acks_max"}, 1307 { 1, 16384, 4, "tcp_slow_start_after_idle"}, 1308 { 1, 4, 4, "tcp_slow_start_initial"}, 1309 { 10*MS, 50*MS, 20*MS, "tcp_co_timer_interval"}, 1310 { 0, 2, 2, "tcp_sack_permitted"}, 1311 { 0, 1, 0, "tcp_trace"}, 1312 { 0, 1, 1, "tcp_compression_enabled"}, 1313 { 0, IPV6_MAX_HOPS, IPV6_DEFAULT_HOPS, "tcp_ipv6_hoplimit"}, 1314 { 1, TCP_MSS_MAX_IPV6, 1220, "tcp_mss_def_ipv6"}, 1315 { 1, TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"}, 1316 { 0, 1, 0, "tcp_rev_src_routes"}, 1317 { 10*MS, 500*MS, 50*MS, "tcp_local_dack_interval"}, 1318 { 100*MS, 60*SECONDS, 1*SECONDS, "tcp_ndd_get_info_interval"}, 1319 { 0, 16, 8, "tcp_local_dacks_max"}, 1320 { 0, 2, 1, "tcp_ecn_permitted"}, 1321 { 0, 1, 1, "tcp_rst_sent_rate_enabled"}, 1322 { 0, PARAM_MAX, 40, "tcp_rst_sent_rate"}, 1323 { 0, 100*MS, 50*MS, "tcp_push_timer_interval"}, 1324 { 0, 1, 0, "tcp_use_smss_as_mss_opt"}, 1325 { 0, PARAM_MAX, 8*MINUTES, "tcp_keepalive_abort_interval"}, 1326 }; 1327 /* END CSTYLED */ 1328 1329 /* 1330 * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of 1331 * each header fragment in the header buffer. Each parameter value has 1332 * to be a multiple of 4 (32-bit aligned). 1333 */ 1334 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" }; 1335 static tcpparam_t tcp_mdt_tail_param = { 0, 256, 32, "tcp_mdt_hdr_tail_min" }; 1336 #define tcp_mdt_hdr_head_min tcp_mdt_head_param.tcp_param_val 1337 #define tcp_mdt_hdr_tail_min tcp_mdt_tail_param.tcp_param_val 1338 1339 /* 1340 * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out 1341 * the maximum number of payload buffers associated per Multidata. 1342 */ 1343 static tcpparam_t tcp_mdt_max_pbufs_param = 1344 { 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" }; 1345 #define tcp_mdt_max_pbufs tcp_mdt_max_pbufs_param.tcp_param_val 1346 1347 /* Round up the value to the nearest mss. */ 1348 #define MSS_ROUNDUP(value, mss) ((((value) - 1) / (mss) + 1) * (mss)) 1349 1350 /* 1351 * Set ECN capable transport (ECT) code point in IP header. 1352 * 1353 * Note that there are 2 ECT code points '01' and '10', which are called 1354 * ECT(1) and ECT(0) respectively. Here we follow the original ECT code 1355 * point ECT(0) for TCP as described in RFC 2481. 1356 */ 1357 #define SET_ECT(tcp, iph) \ 1358 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1359 /* We need to clear the code point first. */ \ 1360 ((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \ 1361 ((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \ 1362 } else { \ 1363 ((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \ 1364 ((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \ 1365 } 1366 1367 /* 1368 * The format argument to pass to tcp_display(). 1369 * DISP_PORT_ONLY means that the returned string has only port info. 1370 * DISP_ADDR_AND_PORT means that the returned string also contains the 1371 * remote and local IP address. 1372 */ 1373 #define DISP_PORT_ONLY 1 1374 #define DISP_ADDR_AND_PORT 2 1375 1376 /* 1377 * This controls the rate some ndd info report functions can be used 1378 * by non-privileged users. It stores the last time such info is 1379 * requested. When those report functions are called again, this 1380 * is checked with the current time and compare with the ndd param 1381 * tcp_ndd_get_info_interval. 1382 */ 1383 static clock_t tcp_last_ndd_get_info_time = 0; 1384 #define NDD_TOO_QUICK_MSG \ 1385 "ndd get info rate too high for non-privileged users, try again " \ 1386 "later.\n" 1387 #define NDD_OUT_OF_BUF_MSG "<< Out of buffer >>\n" 1388 1389 #define IS_VMLOANED_MBLK(mp) \ 1390 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 1391 1392 /* 1393 * These two variables control the rate for TCP to generate RSTs in 1394 * response to segments not belonging to any connections. We limit 1395 * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in 1396 * each 1 second interval. This is to protect TCP against DoS attack. 1397 */ 1398 static clock_t tcp_last_rst_intrvl; 1399 static uint32_t tcp_rst_cnt; 1400 1401 /* The number of RST not sent because of the rate limit. */ 1402 static uint32_t tcp_rst_unsent; 1403 1404 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */ 1405 boolean_t tcp_mdt_chain = B_TRUE; 1406 1407 /* 1408 * MDT threshold in the form of effective send MSS multiplier; we take 1409 * the MDT path if the amount of unsent data exceeds the threshold value 1410 * (default threshold is 1*SMSS). 1411 */ 1412 uint_t tcp_mdt_smss_threshold = 1; 1413 1414 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 1415 1416 /* 1417 * Forces all connections to obey the value of the tcp_maxpsz_multiplier 1418 * tunable settable via NDD. Otherwise, the per-connection behavior is 1419 * determined dynamically during tcp_adapt_ire(), which is the default. 1420 */ 1421 boolean_t tcp_static_maxpsz = B_FALSE; 1422 1423 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */ 1424 uint32_t tcp_random_anon_port = 1; 1425 1426 /* 1427 * To reach to an eager in Q0 which can be dropped due to an incoming 1428 * new SYN request when Q0 is full, a new doubly linked list is 1429 * introduced. This list allows to select an eager from Q0 in O(1) time. 1430 * This is needed to avoid spending too much time walking through the 1431 * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of 1432 * this new list has to be a member of Q0. 1433 * This list is headed by listener's tcp_t. When the list is empty, 1434 * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0, 1435 * of listener's tcp_t point to listener's tcp_t itself. 1436 * 1437 * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager 1438 * in the list. MAKE_UNDROPPABLE() takes the eager out of the list. 1439 * These macros do not affect the eager's membership to Q0. 1440 */ 1441 1442 1443 #define MAKE_DROPPABLE(listener, eager) \ 1444 if ((eager)->tcp_eager_next_drop_q0 == NULL) { \ 1445 (listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\ 1446 = (eager); \ 1447 (eager)->tcp_eager_prev_drop_q0 = (listener); \ 1448 (eager)->tcp_eager_next_drop_q0 = \ 1449 (listener)->tcp_eager_next_drop_q0; \ 1450 (listener)->tcp_eager_next_drop_q0 = (eager); \ 1451 } 1452 1453 #define MAKE_UNDROPPABLE(eager) \ 1454 if ((eager)->tcp_eager_next_drop_q0 != NULL) { \ 1455 (eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0 \ 1456 = (eager)->tcp_eager_prev_drop_q0; \ 1457 (eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0 \ 1458 = (eager)->tcp_eager_next_drop_q0; \ 1459 (eager)->tcp_eager_prev_drop_q0 = NULL; \ 1460 (eager)->tcp_eager_next_drop_q0 = NULL; \ 1461 } 1462 1463 /* 1464 * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more 1465 * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent 1466 * data, TCP will not respond with an ACK. RFC 793 requires that 1467 * TCP responds with an ACK for such a bogus ACK. By not following 1468 * the RFC, we prevent TCP from getting into an ACK storm if somehow 1469 * an attacker successfully spoofs an acceptable segment to our 1470 * peer; or when our peer is "confused." 1471 */ 1472 uint32_t tcp_drop_ack_unsent_cnt = 10; 1473 1474 /* 1475 * Hook functions to enable cluster networking 1476 * On non-clustered systems these vectors must always be NULL. 1477 */ 1478 1479 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family, 1480 uint8_t *laddrp, in_port_t lport) = NULL; 1481 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family, 1482 uint8_t *laddrp, in_port_t lport) = NULL; 1483 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family, 1484 uint8_t *laddrp, in_port_t lport, 1485 uint8_t *faddrp, in_port_t fport) = NULL; 1486 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family, 1487 uint8_t *laddrp, in_port_t lport, 1488 uint8_t *faddrp, in_port_t fport) = NULL; 1489 1490 /* 1491 * The following are defined in ip.c 1492 */ 1493 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family, 1494 uint8_t *laddrp); 1495 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family, 1496 uint8_t *laddrp, uint8_t *faddrp); 1497 1498 #define CL_INET_CONNECT(tcp) { \ 1499 if (cl_inet_connect != NULL) { \ 1500 /* \ 1501 * Running in cluster mode - register active connection \ 1502 * information \ 1503 */ \ 1504 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1505 if ((tcp)->tcp_ipha->ipha_src != 0) { \ 1506 (*cl_inet_connect)(IPPROTO_TCP, AF_INET,\ 1507 (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\ 1508 (in_port_t)(tcp)->tcp_lport, \ 1509 (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\ 1510 (in_port_t)(tcp)->tcp_fport); \ 1511 } \ 1512 } else { \ 1513 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1514 &(tcp)->tcp_ip6h->ip6_src)) {\ 1515 (*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\ 1516 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\ 1517 (in_port_t)(tcp)->tcp_lport, \ 1518 (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\ 1519 (in_port_t)(tcp)->tcp_fport); \ 1520 } \ 1521 } \ 1522 } \ 1523 } 1524 1525 #define CL_INET_DISCONNECT(tcp) { \ 1526 if (cl_inet_disconnect != NULL) { \ 1527 /* \ 1528 * Running in cluster mode - deregister active \ 1529 * connection information \ 1530 */ \ 1531 if ((tcp)->tcp_ipversion == IPV4_VERSION) { \ 1532 if ((tcp)->tcp_ip_src != 0) { \ 1533 (*cl_inet_disconnect)(IPPROTO_TCP, \ 1534 AF_INET, \ 1535 (uint8_t *)(&((tcp)->tcp_ip_src)),\ 1536 (in_port_t)(tcp)->tcp_lport, \ 1537 (uint8_t *) \ 1538 (&((tcp)->tcp_ipha->ipha_dst)),\ 1539 (in_port_t)(tcp)->tcp_fport); \ 1540 } \ 1541 } else { \ 1542 if (!IN6_IS_ADDR_UNSPECIFIED( \ 1543 &(tcp)->tcp_ip_src_v6)) { \ 1544 (*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\ 1545 (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\ 1546 (in_port_t)(tcp)->tcp_lport, \ 1547 (uint8_t *) \ 1548 (&((tcp)->tcp_ip6h->ip6_dst)),\ 1549 (in_port_t)(tcp)->tcp_fport); \ 1550 } \ 1551 } \ 1552 } \ 1553 } 1554 1555 /* 1556 * Cluster networking hook for traversing current connection list. 1557 * This routine is used to extract the current list of live connections 1558 * which must continue to to be dispatched to this node. 1559 */ 1560 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg); 1561 1562 /* 1563 * Figure out the value of window scale opton. Note that the rwnd is 1564 * ASSUMED to be rounded up to the nearest MSS before the calculation. 1565 * We cannot find the scale value and then do a round up of tcp_rwnd 1566 * because the scale value may not be correct after that. 1567 * 1568 * Set the compiler flag to make this function inline. 1569 */ 1570 static void 1571 tcp_set_ws_value(tcp_t *tcp) 1572 { 1573 int i; 1574 uint32_t rwnd = tcp->tcp_rwnd; 1575 1576 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 1577 i++, rwnd >>= 1) 1578 ; 1579 tcp->tcp_rcv_ws = i; 1580 } 1581 1582 /* 1583 * Remove a connection from the list of detached TIME_WAIT connections. 1584 * It returns B_FALSE if it can't remove the connection from the list 1585 * as the connection has already been removed from the list due to an 1586 * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE. 1587 */ 1588 static boolean_t 1589 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait) 1590 { 1591 boolean_t locked = B_FALSE; 1592 1593 if (tcp_time_wait == NULL) { 1594 tcp_time_wait = *((tcp_squeue_priv_t **) 1595 squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP)); 1596 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1597 locked = B_TRUE; 1598 } 1599 1600 if (tcp->tcp_time_wait_expire == 0) { 1601 ASSERT(tcp->tcp_time_wait_next == NULL); 1602 ASSERT(tcp->tcp_time_wait_prev == NULL); 1603 if (locked) 1604 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1605 return (B_FALSE); 1606 } 1607 ASSERT(TCP_IS_DETACHED(tcp)); 1608 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1609 1610 if (tcp == tcp_time_wait->tcp_time_wait_head) { 1611 ASSERT(tcp->tcp_time_wait_prev == NULL); 1612 tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next; 1613 if (tcp_time_wait->tcp_time_wait_head != NULL) { 1614 tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev = 1615 NULL; 1616 } else { 1617 tcp_time_wait->tcp_time_wait_tail = NULL; 1618 } 1619 } else if (tcp == tcp_time_wait->tcp_time_wait_tail) { 1620 ASSERT(tcp != tcp_time_wait->tcp_time_wait_head); 1621 ASSERT(tcp->tcp_time_wait_next == NULL); 1622 tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev; 1623 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1624 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL; 1625 } else { 1626 ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp); 1627 ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp); 1628 tcp->tcp_time_wait_prev->tcp_time_wait_next = 1629 tcp->tcp_time_wait_next; 1630 tcp->tcp_time_wait_next->tcp_time_wait_prev = 1631 tcp->tcp_time_wait_prev; 1632 } 1633 tcp->tcp_time_wait_next = NULL; 1634 tcp->tcp_time_wait_prev = NULL; 1635 tcp->tcp_time_wait_expire = 0; 1636 1637 if (locked) 1638 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1639 return (B_TRUE); 1640 } 1641 1642 /* 1643 * Add a connection to the list of detached TIME_WAIT connections 1644 * and set its time to expire. 1645 */ 1646 static void 1647 tcp_time_wait_append(tcp_t *tcp) 1648 { 1649 tcp_squeue_priv_t *tcp_time_wait = 1650 *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp, 1651 SQPRIVATE_TCP)); 1652 1653 tcp_timers_stop(tcp); 1654 1655 /* Freed above */ 1656 ASSERT(tcp->tcp_timer_tid == 0); 1657 ASSERT(tcp->tcp_ack_tid == 0); 1658 1659 /* must have happened at the time of detaching the tcp */ 1660 ASSERT(tcp->tcp_ptpahn == NULL); 1661 ASSERT(tcp->tcp_flow_stopped == 0); 1662 ASSERT(tcp->tcp_time_wait_next == NULL); 1663 ASSERT(tcp->tcp_time_wait_prev == NULL); 1664 ASSERT(tcp->tcp_time_wait_expire == NULL); 1665 ASSERT(tcp->tcp_listener == NULL); 1666 1667 tcp->tcp_time_wait_expire = ddi_get_lbolt(); 1668 /* 1669 * The value computed below in tcp->tcp_time_wait_expire may 1670 * appear negative or wrap around. That is ok since our 1671 * interest is only in the difference between the current lbolt 1672 * value and tcp->tcp_time_wait_expire. But the value should not 1673 * be zero, since it means the tcp is not in the TIME_WAIT list. 1674 * The corresponding comparison in tcp_time_wait_collector() uses 1675 * modular arithmetic. 1676 */ 1677 tcp->tcp_time_wait_expire += 1678 drv_usectohz(tcp_time_wait_interval * 1000); 1679 if (tcp->tcp_time_wait_expire == 0) 1680 tcp->tcp_time_wait_expire = 1; 1681 1682 ASSERT(TCP_IS_DETACHED(tcp)); 1683 ASSERT(tcp->tcp_state == TCPS_TIME_WAIT); 1684 ASSERT(tcp->tcp_time_wait_next == NULL); 1685 ASSERT(tcp->tcp_time_wait_prev == NULL); 1686 TCP_DBGSTAT(tcp_time_wait); 1687 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1688 if (tcp_time_wait->tcp_time_wait_head == NULL) { 1689 ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL); 1690 tcp_time_wait->tcp_time_wait_head = tcp; 1691 } else { 1692 ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL); 1693 ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state == 1694 TCPS_TIME_WAIT); 1695 tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp; 1696 tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail; 1697 } 1698 tcp_time_wait->tcp_time_wait_tail = tcp; 1699 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1700 } 1701 1702 /* ARGSUSED */ 1703 void 1704 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2) 1705 { 1706 conn_t *connp = (conn_t *)arg; 1707 tcp_t *tcp = connp->conn_tcp; 1708 1709 ASSERT(tcp != NULL); 1710 if (tcp->tcp_state == TCPS_CLOSED) { 1711 return; 1712 } 1713 1714 ASSERT((tcp->tcp_family == AF_INET && 1715 tcp->tcp_ipversion == IPV4_VERSION) || 1716 (tcp->tcp_family == AF_INET6 && 1717 (tcp->tcp_ipversion == IPV4_VERSION || 1718 tcp->tcp_ipversion == IPV6_VERSION))); 1719 ASSERT(!tcp->tcp_listener); 1720 1721 TCP_STAT(tcp_time_wait_reap); 1722 ASSERT(TCP_IS_DETACHED(tcp)); 1723 1724 /* 1725 * Because they have no upstream client to rebind or tcp_close() 1726 * them later, we axe the connection here and now. 1727 */ 1728 tcp_close_detached(tcp); 1729 } 1730 1731 void 1732 tcp_cleanup(tcp_t *tcp) 1733 { 1734 mblk_t *mp; 1735 char *tcp_iphc; 1736 int tcp_iphc_len; 1737 int tcp_hdr_grown; 1738 tcp_sack_info_t *tcp_sack_info; 1739 conn_t *connp = tcp->tcp_connp; 1740 1741 tcp_bind_hash_remove(tcp); 1742 tcp_free(tcp); 1743 1744 /* Release any SSL context */ 1745 if (tcp->tcp_kssl_ent != NULL) { 1746 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 1747 tcp->tcp_kssl_ent = NULL; 1748 } 1749 1750 if (tcp->tcp_kssl_ctx != NULL) { 1751 kssl_release_ctx(tcp->tcp_kssl_ctx); 1752 tcp->tcp_kssl_ctx = NULL; 1753 } 1754 tcp->tcp_kssl_pending = B_FALSE; 1755 1756 conn_delete_ire(connp, NULL); 1757 if (connp->conn_flags & IPCL_TCPCONN) { 1758 if (connp->conn_latch != NULL) 1759 IPLATCH_REFRELE(connp->conn_latch); 1760 if (connp->conn_policy != NULL) 1761 IPPH_REFRELE(connp->conn_policy); 1762 } 1763 1764 /* 1765 * Since we will bzero the entire structure, we need to 1766 * remove it and reinsert it in global hash list. We 1767 * know the walkers can't get to this conn because we 1768 * had set CONDEMNED flag earlier and checked reference 1769 * under conn_lock so walker won't pick it and when we 1770 * go the ipcl_globalhash_remove() below, no walker 1771 * can get to it. 1772 */ 1773 ipcl_globalhash_remove(connp); 1774 1775 /* Save some state */ 1776 mp = tcp->tcp_timercache; 1777 1778 tcp_sack_info = tcp->tcp_sack_info; 1779 tcp_iphc = tcp->tcp_iphc; 1780 tcp_iphc_len = tcp->tcp_iphc_len; 1781 tcp_hdr_grown = tcp->tcp_hdr_grown; 1782 1783 if (connp->conn_cred != NULL) 1784 crfree(connp->conn_cred); 1785 if (connp->conn_peercred != NULL) 1786 crfree(connp->conn_peercred); 1787 bzero(connp, sizeof (conn_t)); 1788 bzero(tcp, sizeof (tcp_t)); 1789 1790 /* restore the state */ 1791 tcp->tcp_timercache = mp; 1792 1793 tcp->tcp_sack_info = tcp_sack_info; 1794 tcp->tcp_iphc = tcp_iphc; 1795 tcp->tcp_iphc_len = tcp_iphc_len; 1796 tcp->tcp_hdr_grown = tcp_hdr_grown; 1797 1798 1799 tcp->tcp_connp = connp; 1800 1801 connp->conn_tcp = tcp; 1802 connp->conn_flags = IPCL_TCPCONN; 1803 connp->conn_state_flags = CONN_INCIPIENT; 1804 connp->conn_ulp = IPPROTO_TCP; 1805 connp->conn_ref = 1; 1806 1807 ipcl_globalhash_insert(connp); 1808 } 1809 1810 /* 1811 * Blows away all tcps whose TIME_WAIT has expired. List traversal 1812 * is done forwards from the head. 1813 */ 1814 /* ARGSUSED */ 1815 void 1816 tcp_time_wait_collector(void *arg) 1817 { 1818 tcp_t *tcp; 1819 clock_t now; 1820 mblk_t *mp; 1821 conn_t *connp; 1822 kmutex_t *lock; 1823 boolean_t removed; 1824 1825 squeue_t *sqp = (squeue_t *)arg; 1826 tcp_squeue_priv_t *tcp_time_wait = 1827 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1828 1829 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1830 tcp_time_wait->tcp_time_wait_tid = 0; 1831 1832 if (tcp_time_wait->tcp_free_list != NULL && 1833 tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) { 1834 TCP_STAT(tcp_freelist_cleanup); 1835 while ((tcp = tcp_time_wait->tcp_free_list) != NULL) { 1836 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1837 CONN_DEC_REF(tcp->tcp_connp); 1838 } 1839 tcp_time_wait->tcp_free_list_cnt = 0; 1840 } 1841 1842 /* 1843 * In order to reap time waits reliably, we should use a 1844 * source of time that is not adjustable by the user -- hence 1845 * the call to ddi_get_lbolt(). 1846 */ 1847 now = ddi_get_lbolt(); 1848 while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) { 1849 /* 1850 * Compare times using modular arithmetic, since 1851 * lbolt can wrapover. 1852 */ 1853 if ((now - tcp->tcp_time_wait_expire) < 0) { 1854 break; 1855 } 1856 1857 removed = tcp_time_wait_remove(tcp, tcp_time_wait); 1858 ASSERT(removed); 1859 1860 connp = tcp->tcp_connp; 1861 ASSERT(connp->conn_fanout != NULL); 1862 lock = &connp->conn_fanout->connf_lock; 1863 /* 1864 * This is essentially a TW reclaim fast path optimization for 1865 * performance where the timewait collector checks under the 1866 * fanout lock (so that no one else can get access to the 1867 * conn_t) that the refcnt is 2 i.e. one for TCP and one for 1868 * the classifier hash list. If ref count is indeed 2, we can 1869 * just remove the conn under the fanout lock and avoid 1870 * cleaning up the conn under the squeue, provided that 1871 * clustering callbacks are not enabled. If clustering is 1872 * enabled, we need to make the clustering callback before 1873 * setting the CONDEMNED flag and after dropping all locks and 1874 * so we forego this optimization and fall back to the slow 1875 * path. Also please see the comments in tcp_closei_local 1876 * regarding the refcnt logic. 1877 * 1878 * Since we are holding the tcp_time_wait_lock, its better 1879 * not to block on the fanout_lock because other connections 1880 * can't add themselves to time_wait list. So we do a 1881 * tryenter instead of mutex_enter. 1882 */ 1883 if (mutex_tryenter(lock)) { 1884 mutex_enter(&connp->conn_lock); 1885 if ((connp->conn_ref == 2) && 1886 (cl_inet_disconnect == NULL)) { 1887 ipcl_hash_remove_locked(connp, 1888 connp->conn_fanout); 1889 /* 1890 * Set the CONDEMNED flag now itself so that 1891 * the refcnt cannot increase due to any 1892 * walker. But we have still not cleaned up 1893 * conn_ire_cache. This is still ok since 1894 * we are going to clean it up in tcp_cleanup 1895 * immediately and any interface unplumb 1896 * thread will wait till the ire is blown away 1897 */ 1898 connp->conn_state_flags |= CONN_CONDEMNED; 1899 mutex_exit(lock); 1900 mutex_exit(&connp->conn_lock); 1901 if (tcp_time_wait->tcp_free_list_cnt < 1902 tcp_free_list_max_cnt) { 1903 /* Add to head of tcp_free_list */ 1904 mutex_exit( 1905 &tcp_time_wait->tcp_time_wait_lock); 1906 tcp_cleanup(tcp); 1907 mutex_enter( 1908 &tcp_time_wait->tcp_time_wait_lock); 1909 tcp->tcp_time_wait_next = 1910 tcp_time_wait->tcp_free_list; 1911 tcp_time_wait->tcp_free_list = tcp; 1912 tcp_time_wait->tcp_free_list_cnt++; 1913 continue; 1914 } else { 1915 /* Do not add to tcp_free_list */ 1916 mutex_exit( 1917 &tcp_time_wait->tcp_time_wait_lock); 1918 tcp_bind_hash_remove(tcp); 1919 conn_delete_ire(tcp->tcp_connp, NULL); 1920 CONN_DEC_REF(tcp->tcp_connp); 1921 } 1922 } else { 1923 CONN_INC_REF_LOCKED(connp); 1924 mutex_exit(lock); 1925 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1926 mutex_exit(&connp->conn_lock); 1927 /* 1928 * We can reuse the closemp here since conn has 1929 * detached (otherwise we wouldn't even be in 1930 * time_wait list). tcp_closemp_used can safely 1931 * be changed without taking a lock as no other 1932 * thread can concurrently access it at this 1933 * point in the connection lifecycle. We 1934 * increment tcp_closemp_used to record any 1935 * attempt to reuse tcp_closemp while it is 1936 * still in use. 1937 */ 1938 1939 if (tcp->tcp_closemp.b_prev == NULL) 1940 tcp->tcp_closemp_used = 1; 1941 else 1942 tcp->tcp_closemp_used++; 1943 1944 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1945 mp = &tcp->tcp_closemp; 1946 squeue_fill(connp->conn_sqp, mp, 1947 tcp_timewait_output, connp, 1948 SQTAG_TCP_TIMEWAIT); 1949 } 1950 } else { 1951 mutex_enter(&connp->conn_lock); 1952 CONN_INC_REF_LOCKED(connp); 1953 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1954 mutex_exit(&connp->conn_lock); 1955 /* 1956 * We can reuse the closemp here since conn has 1957 * detached (otherwise we wouldn't even be in 1958 * time_wait list). tcp_closemp_used can safely 1959 * be changed without taking a lock as no other 1960 * thread can concurrently access it at this 1961 * point in the connection lifecycle. We 1962 * increment tcp_closemp_used to record any 1963 * attempt to reuse tcp_closemp while it is 1964 * still in use. 1965 */ 1966 1967 if (tcp->tcp_closemp.b_prev == NULL) 1968 tcp->tcp_closemp_used = 1; 1969 else 1970 tcp->tcp_closemp_used++; 1971 1972 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1973 mp = &tcp->tcp_closemp; 1974 squeue_fill(connp->conn_sqp, mp, 1975 tcp_timewait_output, connp, 0); 1976 } 1977 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1978 } 1979 1980 if (tcp_time_wait->tcp_free_list != NULL) 1981 tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE; 1982 1983 tcp_time_wait->tcp_time_wait_tid = 1984 timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY); 1985 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1986 } 1987 1988 /* 1989 * Reply to a clients T_CONN_RES TPI message. This function 1990 * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES 1991 * on the acceptor STREAM and processed in tcp_wput_accept(). 1992 * Read the block comment on top of tcp_conn_request(). 1993 */ 1994 static void 1995 tcp_accept(tcp_t *listener, mblk_t *mp) 1996 { 1997 tcp_t *acceptor; 1998 tcp_t *eager; 1999 tcp_t *tcp; 2000 struct T_conn_res *tcr; 2001 t_uscalar_t acceptor_id; 2002 t_scalar_t seqnum; 2003 mblk_t *opt_mp = NULL; /* T_OPTMGMT_REQ messages */ 2004 mblk_t *ok_mp; 2005 mblk_t *mp1; 2006 2007 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 2008 tcp_err_ack(listener, mp, TPROTO, 0); 2009 return; 2010 } 2011 tcr = (struct T_conn_res *)mp->b_rptr; 2012 2013 /* 2014 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the 2015 * read side queue of the streams device underneath us i.e. the 2016 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we 2017 * look it up in the queue_hash. Under LP64 it sends down the 2018 * minor_t of the accepting endpoint. 2019 * 2020 * Once the acceptor/eager are modified (in tcp_accept_swap) the 2021 * fanout hash lock is held. 2022 * This prevents any thread from entering the acceptor queue from 2023 * below (since it has not been hard bound yet i.e. any inbound 2024 * packets will arrive on the listener or default tcp queue and 2025 * go through tcp_lookup). 2026 * The CONN_INC_REF will prevent the acceptor from closing. 2027 * 2028 * XXX It is still possible for a tli application to send down data 2029 * on the accepting stream while another thread calls t_accept. 2030 * This should not be a problem for well-behaved applications since 2031 * the T_OK_ACK is sent after the queue swapping is completed. 2032 * 2033 * If the accepting fd is the same as the listening fd, avoid 2034 * queue hash lookup since that will return an eager listener in a 2035 * already established state. 2036 */ 2037 acceptor_id = tcr->ACCEPTOR_id; 2038 mutex_enter(&listener->tcp_eager_lock); 2039 if (listener->tcp_acceptor_id == acceptor_id) { 2040 eager = listener->tcp_eager_next_q; 2041 /* only count how many T_CONN_INDs so don't count q0 */ 2042 if ((listener->tcp_conn_req_cnt_q != 1) || 2043 (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) { 2044 mutex_exit(&listener->tcp_eager_lock); 2045 tcp_err_ack(listener, mp, TBADF, 0); 2046 return; 2047 } 2048 if (listener->tcp_conn_req_cnt_q0 != 0) { 2049 /* Throw away all the eagers on q0. */ 2050 tcp_eager_cleanup(listener, 1); 2051 } 2052 if (listener->tcp_syn_defense) { 2053 listener->tcp_syn_defense = B_FALSE; 2054 if (listener->tcp_ip_addr_cache != NULL) { 2055 kmem_free(listener->tcp_ip_addr_cache, 2056 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 2057 listener->tcp_ip_addr_cache = NULL; 2058 } 2059 } 2060 /* 2061 * Transfer tcp_conn_req_max to the eager so that when 2062 * a disconnect occurs we can revert the endpoint to the 2063 * listen state. 2064 */ 2065 eager->tcp_conn_req_max = listener->tcp_conn_req_max; 2066 ASSERT(listener->tcp_conn_req_cnt_q0 == 0); 2067 /* 2068 * Get a reference on the acceptor just like the 2069 * tcp_acceptor_hash_lookup below. 2070 */ 2071 acceptor = listener; 2072 CONN_INC_REF(acceptor->tcp_connp); 2073 } else { 2074 acceptor = tcp_acceptor_hash_lookup(acceptor_id); 2075 if (acceptor == NULL) { 2076 if (listener->tcp_debug) { 2077 (void) strlog(TCP_MOD_ID, 0, 1, 2078 SL_ERROR|SL_TRACE, 2079 "tcp_accept: did not find acceptor 0x%x\n", 2080 acceptor_id); 2081 } 2082 mutex_exit(&listener->tcp_eager_lock); 2083 tcp_err_ack(listener, mp, TPROVMISMATCH, 0); 2084 return; 2085 } 2086 /* 2087 * Verify acceptor state. The acceptable states for an acceptor 2088 * include TCPS_IDLE and TCPS_BOUND. 2089 */ 2090 switch (acceptor->tcp_state) { 2091 case TCPS_IDLE: 2092 /* FALLTHRU */ 2093 case TCPS_BOUND: 2094 break; 2095 default: 2096 CONN_DEC_REF(acceptor->tcp_connp); 2097 mutex_exit(&listener->tcp_eager_lock); 2098 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2099 return; 2100 } 2101 } 2102 2103 /* The listener must be in TCPS_LISTEN */ 2104 if (listener->tcp_state != TCPS_LISTEN) { 2105 CONN_DEC_REF(acceptor->tcp_connp); 2106 mutex_exit(&listener->tcp_eager_lock); 2107 tcp_err_ack(listener, mp, TOUTSTATE, 0); 2108 return; 2109 } 2110 2111 /* 2112 * Rendezvous with an eager connection request packet hanging off 2113 * 'tcp' that has the 'seqnum' tag. We tagged the detached open 2114 * tcp structure when the connection packet arrived in 2115 * tcp_conn_request(). 2116 */ 2117 seqnum = tcr->SEQ_number; 2118 eager = listener; 2119 do { 2120 eager = eager->tcp_eager_next_q; 2121 if (eager == NULL) { 2122 CONN_DEC_REF(acceptor->tcp_connp); 2123 mutex_exit(&listener->tcp_eager_lock); 2124 tcp_err_ack(listener, mp, TBADSEQ, 0); 2125 return; 2126 } 2127 } while (eager->tcp_conn_req_seqnum != seqnum); 2128 mutex_exit(&listener->tcp_eager_lock); 2129 2130 /* 2131 * At this point, both acceptor and listener have 2 ref 2132 * that they begin with. Acceptor has one additional ref 2133 * we placed in lookup while listener has 3 additional 2134 * ref for being behind the squeue (tcp_accept() is 2135 * done on listener's squeue); being in classifier hash; 2136 * and eager's ref on listener. 2137 */ 2138 ASSERT(listener->tcp_connp->conn_ref >= 5); 2139 ASSERT(acceptor->tcp_connp->conn_ref >= 3); 2140 2141 /* 2142 * The eager at this point is set in its own squeue and 2143 * could easily have been killed (tcp_accept_finish will 2144 * deal with that) because of a TH_RST so we can only 2145 * ASSERT for a single ref. 2146 */ 2147 ASSERT(eager->tcp_connp->conn_ref >= 1); 2148 2149 /* Pre allocate the stroptions mblk also */ 2150 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 2151 if (opt_mp == NULL) { 2152 CONN_DEC_REF(acceptor->tcp_connp); 2153 CONN_DEC_REF(eager->tcp_connp); 2154 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2155 return; 2156 } 2157 DB_TYPE(opt_mp) = M_SETOPTS; 2158 opt_mp->b_wptr += sizeof (struct stroptions); 2159 2160 /* 2161 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 2162 * from listener to acceptor. The message is chained on opt_mp 2163 * which will be sent onto eager's squeue. 2164 */ 2165 if (listener->tcp_bound_if != 0) { 2166 /* allocate optmgmt req */ 2167 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2168 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 2169 sizeof (int)); 2170 if (mp1 != NULL) 2171 linkb(opt_mp, mp1); 2172 } 2173 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 2174 uint_t on = 1; 2175 2176 /* allocate optmgmt req */ 2177 mp1 = tcp_setsockopt_mp(IPPROTO_IPV6, 2178 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 2179 if (mp1 != NULL) 2180 linkb(opt_mp, mp1); 2181 } 2182 2183 /* Re-use mp1 to hold a copy of mp, in case reallocb fails */ 2184 if ((mp1 = copymsg(mp)) == NULL) { 2185 CONN_DEC_REF(acceptor->tcp_connp); 2186 CONN_DEC_REF(eager->tcp_connp); 2187 freemsg(opt_mp); 2188 tcp_err_ack(listener, mp, TSYSERR, ENOMEM); 2189 return; 2190 } 2191 2192 tcr = (struct T_conn_res *)mp1->b_rptr; 2193 2194 /* 2195 * This is an expanded version of mi_tpi_ok_ack_alloc() 2196 * which allocates a larger mblk and appends the new 2197 * local address to the ok_ack. The address is copied by 2198 * soaccept() for getsockname(). 2199 */ 2200 { 2201 int extra; 2202 2203 extra = (eager->tcp_family == AF_INET) ? 2204 sizeof (sin_t) : sizeof (sin6_t); 2205 2206 /* 2207 * Try to re-use mp, if possible. Otherwise, allocate 2208 * an mblk and return it as ok_mp. In any case, mp 2209 * is no longer usable upon return. 2210 */ 2211 if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) { 2212 CONN_DEC_REF(acceptor->tcp_connp); 2213 CONN_DEC_REF(eager->tcp_connp); 2214 freemsg(opt_mp); 2215 /* Original mp has been freed by now, so use mp1 */ 2216 tcp_err_ack(listener, mp1, TSYSERR, ENOMEM); 2217 return; 2218 } 2219 2220 mp = NULL; /* We should never use mp after this point */ 2221 2222 switch (extra) { 2223 case sizeof (sin_t): { 2224 sin_t *sin = (sin_t *)ok_mp->b_wptr; 2225 2226 ok_mp->b_wptr += extra; 2227 sin->sin_family = AF_INET; 2228 sin->sin_port = eager->tcp_lport; 2229 sin->sin_addr.s_addr = 2230 eager->tcp_ipha->ipha_src; 2231 break; 2232 } 2233 case sizeof (sin6_t): { 2234 sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr; 2235 2236 ok_mp->b_wptr += extra; 2237 sin6->sin6_family = AF_INET6; 2238 sin6->sin6_port = eager->tcp_lport; 2239 if (eager->tcp_ipversion == IPV4_VERSION) { 2240 sin6->sin6_flowinfo = 0; 2241 IN6_IPADDR_TO_V4MAPPED( 2242 eager->tcp_ipha->ipha_src, 2243 &sin6->sin6_addr); 2244 } else { 2245 ASSERT(eager->tcp_ip6h != NULL); 2246 sin6->sin6_flowinfo = 2247 eager->tcp_ip6h->ip6_vcf & 2248 ~IPV6_VERS_AND_FLOW_MASK; 2249 sin6->sin6_addr = 2250 eager->tcp_ip6h->ip6_src; 2251 } 2252 break; 2253 } 2254 default: 2255 break; 2256 } 2257 ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim); 2258 } 2259 2260 /* 2261 * If there are no options we know that the T_CONN_RES will 2262 * succeed. However, we can't send the T_OK_ACK upstream until 2263 * the tcp_accept_swap is done since it would be dangerous to 2264 * let the application start using the new fd prior to the swap. 2265 */ 2266 tcp_accept_swap(listener, acceptor, eager); 2267 2268 /* 2269 * tcp_accept_swap unlinks eager from listener but does not drop 2270 * the eager's reference on the listener. 2271 */ 2272 ASSERT(eager->tcp_listener == NULL); 2273 ASSERT(listener->tcp_connp->conn_ref >= 5); 2274 2275 /* 2276 * The eager is now associated with its own queue. Insert in 2277 * the hash so that the connection can be reused for a future 2278 * T_CONN_RES. 2279 */ 2280 tcp_acceptor_hash_insert(acceptor_id, eager); 2281 2282 /* 2283 * We now do the processing of options with T_CONN_RES. 2284 * We delay till now since we wanted to have queue to pass to 2285 * option processing routines that points back to the right 2286 * instance structure which does not happen until after 2287 * tcp_accept_swap(). 2288 * 2289 * Note: 2290 * The sanity of the logic here assumes that whatever options 2291 * are appropriate to inherit from listner=>eager are done 2292 * before this point, and whatever were to be overridden (or not) 2293 * in transfer logic from eager=>acceptor in tcp_accept_swap(). 2294 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it 2295 * before its ACCEPTOR_id comes down in T_CONN_RES ] 2296 * This may not be true at this point in time but can be fixed 2297 * independently. This option processing code starts with 2298 * the instantiated acceptor instance and the final queue at 2299 * this point. 2300 */ 2301 2302 if (tcr->OPT_length != 0) { 2303 /* Options to process */ 2304 int t_error = 0; 2305 int sys_error = 0; 2306 int do_disconnect = 0; 2307 2308 if (tcp_conprim_opt_process(eager, mp1, 2309 &do_disconnect, &t_error, &sys_error) < 0) { 2310 eager->tcp_accept_error = 1; 2311 if (do_disconnect) { 2312 /* 2313 * An option failed which does not allow 2314 * connection to be accepted. 2315 * 2316 * We allow T_CONN_RES to succeed and 2317 * put a T_DISCON_IND on the eager queue. 2318 */ 2319 ASSERT(t_error == 0 && sys_error == 0); 2320 eager->tcp_send_discon_ind = 1; 2321 } else { 2322 ASSERT(t_error != 0); 2323 freemsg(ok_mp); 2324 /* 2325 * Original mp was either freed or set 2326 * to ok_mp above, so use mp1 instead. 2327 */ 2328 tcp_err_ack(listener, mp1, t_error, sys_error); 2329 goto finish; 2330 } 2331 } 2332 /* 2333 * Most likely success in setting options (except if 2334 * eager->tcp_send_discon_ind set). 2335 * mp1 option buffer represented by OPT_length/offset 2336 * potentially modified and contains results of setting 2337 * options at this point 2338 */ 2339 } 2340 2341 /* We no longer need mp1, since all options processing has passed */ 2342 freemsg(mp1); 2343 2344 putnext(listener->tcp_rq, ok_mp); 2345 2346 mutex_enter(&listener->tcp_eager_lock); 2347 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 2348 tcp_t *tail; 2349 mblk_t *conn_ind; 2350 2351 /* 2352 * This path should not be executed if listener and 2353 * acceptor streams are the same. 2354 */ 2355 ASSERT(listener != acceptor); 2356 2357 tcp = listener->tcp_eager_prev_q0; 2358 /* 2359 * listener->tcp_eager_prev_q0 points to the TAIL of the 2360 * deferred T_conn_ind queue. We need to get to the head of 2361 * the queue in order to send up T_conn_ind the same order as 2362 * how the 3WHS is completed. 2363 */ 2364 while (tcp != listener) { 2365 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0) 2366 break; 2367 else 2368 tcp = tcp->tcp_eager_prev_q0; 2369 } 2370 ASSERT(tcp != listener); 2371 conn_ind = tcp->tcp_conn.tcp_eager_conn_ind; 2372 ASSERT(conn_ind != NULL); 2373 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 2374 2375 /* Move from q0 to q */ 2376 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 2377 listener->tcp_conn_req_cnt_q0--; 2378 listener->tcp_conn_req_cnt_q++; 2379 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 2380 tcp->tcp_eager_prev_q0; 2381 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 2382 tcp->tcp_eager_next_q0; 2383 tcp->tcp_eager_prev_q0 = NULL; 2384 tcp->tcp_eager_next_q0 = NULL; 2385 tcp->tcp_conn_def_q0 = B_FALSE; 2386 2387 /* Make sure the tcp isn't in the list of droppables */ 2388 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 2389 tcp->tcp_eager_prev_drop_q0 == NULL); 2390 2391 /* 2392 * Insert at end of the queue because sockfs sends 2393 * down T_CONN_RES in chronological order. Leaving 2394 * the older conn indications at front of the queue 2395 * helps reducing search time. 2396 */ 2397 tail = listener->tcp_eager_last_q; 2398 if (tail != NULL) 2399 tail->tcp_eager_next_q = tcp; 2400 else 2401 listener->tcp_eager_next_q = tcp; 2402 listener->tcp_eager_last_q = tcp; 2403 tcp->tcp_eager_next_q = NULL; 2404 mutex_exit(&listener->tcp_eager_lock); 2405 putnext(tcp->tcp_rq, conn_ind); 2406 } else { 2407 mutex_exit(&listener->tcp_eager_lock); 2408 } 2409 2410 /* 2411 * Done with the acceptor - free it 2412 * 2413 * Note: from this point on, no access to listener should be made 2414 * as listener can be equal to acceptor. 2415 */ 2416 finish: 2417 ASSERT(acceptor->tcp_detached); 2418 acceptor->tcp_rq = tcp_g_q; 2419 acceptor->tcp_wq = WR(tcp_g_q); 2420 (void) tcp_clean_death(acceptor, 0, 2); 2421 CONN_DEC_REF(acceptor->tcp_connp); 2422 2423 /* 2424 * In case we already received a FIN we have to make tcp_rput send 2425 * the ordrel_ind. This will also send up a window update if the window 2426 * has opened up. 2427 * 2428 * In the normal case of a successful connection acceptance 2429 * we give the O_T_BIND_REQ to the read side put procedure as an 2430 * indication that this was just accepted. This tells tcp_rput to 2431 * pass up any data queued in tcp_rcv_list. 2432 * 2433 * In the fringe case where options sent with T_CONN_RES failed and 2434 * we required, we would be indicating a T_DISCON_IND to blow 2435 * away this connection. 2436 */ 2437 2438 /* 2439 * XXX: we currently have a problem if XTI application closes the 2440 * acceptor stream in between. This problem exists in on10-gate also 2441 * and is well know but nothing can be done short of major rewrite 2442 * to fix it. Now it is possible to take care of it by assigning TLI/XTI 2443 * eager same squeue as listener (we can distinguish non socket 2444 * listeners at the time of handling a SYN in tcp_conn_request) 2445 * and do most of the work that tcp_accept_finish does here itself 2446 * and then get behind the acceptor squeue to access the acceptor 2447 * queue. 2448 */ 2449 /* 2450 * We already have a ref on tcp so no need to do one before squeue_fill 2451 */ 2452 squeue_fill(eager->tcp_connp->conn_sqp, opt_mp, 2453 tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH); 2454 } 2455 2456 /* 2457 * Swap information between the eager and acceptor for a TLI/XTI client. 2458 * The sockfs accept is done on the acceptor stream and control goes 2459 * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not 2460 * called. In either case, both the eager and listener are in their own 2461 * perimeter (squeue) and the code has to deal with potential race. 2462 * 2463 * See the block comment on top of tcp_accept() and tcp_wput_accept(). 2464 */ 2465 static void 2466 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager) 2467 { 2468 conn_t *econnp, *aconnp; 2469 2470 ASSERT(eager->tcp_rq == listener->tcp_rq); 2471 ASSERT(eager->tcp_detached && !acceptor->tcp_detached); 2472 ASSERT(!eager->tcp_hard_bound); 2473 ASSERT(!TCP_IS_SOCKET(acceptor)); 2474 ASSERT(!TCP_IS_SOCKET(eager)); 2475 ASSERT(!TCP_IS_SOCKET(listener)); 2476 2477 acceptor->tcp_detached = B_TRUE; 2478 /* 2479 * To permit stream re-use by TLI/XTI, the eager needs a copy of 2480 * the acceptor id. 2481 */ 2482 eager->tcp_acceptor_id = acceptor->tcp_acceptor_id; 2483 2484 /* remove eager from listen list... */ 2485 mutex_enter(&listener->tcp_eager_lock); 2486 tcp_eager_unlink(eager); 2487 ASSERT(eager->tcp_eager_next_q == NULL && 2488 eager->tcp_eager_last_q == NULL); 2489 ASSERT(eager->tcp_eager_next_q0 == NULL && 2490 eager->tcp_eager_prev_q0 == NULL); 2491 mutex_exit(&listener->tcp_eager_lock); 2492 eager->tcp_rq = acceptor->tcp_rq; 2493 eager->tcp_wq = acceptor->tcp_wq; 2494 2495 econnp = eager->tcp_connp; 2496 aconnp = acceptor->tcp_connp; 2497 2498 eager->tcp_rq->q_ptr = econnp; 2499 eager->tcp_wq->q_ptr = econnp; 2500 2501 /* 2502 * In the TLI/XTI loopback case, we are inside the listener's squeue, 2503 * which might be a different squeue from our peer TCP instance. 2504 * For TCP Fusion, the peer expects that whenever tcp_detached is 2505 * clear, our TCP queues point to the acceptor's queues. Thus, use 2506 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq 2507 * above reach global visibility prior to the clearing of tcp_detached. 2508 */ 2509 membar_producer(); 2510 eager->tcp_detached = B_FALSE; 2511 2512 ASSERT(eager->tcp_ack_tid == 0); 2513 2514 econnp->conn_dev = aconnp->conn_dev; 2515 if (eager->tcp_cred != NULL) 2516 crfree(eager->tcp_cred); 2517 eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred; 2518 aconnp->conn_cred = NULL; 2519 2520 econnp->conn_zoneid = aconnp->conn_zoneid; 2521 econnp->conn_allzones = aconnp->conn_allzones; 2522 2523 econnp->conn_mac_exempt = aconnp->conn_mac_exempt; 2524 aconnp->conn_mac_exempt = B_FALSE; 2525 2526 ASSERT(aconnp->conn_peercred == NULL); 2527 2528 /* Do the IPC initialization */ 2529 CONN_INC_REF(econnp); 2530 2531 econnp->conn_multicast_loop = aconnp->conn_multicast_loop; 2532 econnp->conn_af_isv6 = aconnp->conn_af_isv6; 2533 econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6; 2534 econnp->conn_ulp = aconnp->conn_ulp; 2535 2536 /* Done with old IPC. Drop its ref on its connp */ 2537 CONN_DEC_REF(aconnp); 2538 } 2539 2540 2541 /* 2542 * Adapt to the information, such as rtt and rtt_sd, provided from the 2543 * ire cached in conn_cache_ire. If no ire cached, do a ire lookup. 2544 * 2545 * Checks for multicast and broadcast destination address. 2546 * Returns zero on failure; non-zero if ok. 2547 * 2548 * Note that the MSS calculation here is based on the info given in 2549 * the IRE. We do not do any calculation based on TCP options. They 2550 * will be handled in tcp_rput_other() and tcp_rput_data() when TCP 2551 * knows which options to use. 2552 * 2553 * Note on how TCP gets its parameters for a connection. 2554 * 2555 * When a tcp_t structure is allocated, it gets all the default parameters. 2556 * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd, 2557 * spipe, rpipe, ... from the route metrics. Route metric overrides the 2558 * default. But if there is an associated tcp_host_param, it will override 2559 * the metrics. 2560 * 2561 * An incoming SYN with a multicast or broadcast destination address, is dropped 2562 * in 1 of 2 places. 2563 * 2564 * 1. If the packet was received over the wire it is dropped in 2565 * ip_rput_process_broadcast() 2566 * 2567 * 2. If the packet was received through internal IP loopback, i.e. the packet 2568 * was generated and received on the same machine, it is dropped in 2569 * ip_wput_local() 2570 * 2571 * An incoming SYN with a multicast or broadcast source address is always 2572 * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to 2573 * reject an attempt to connect to a broadcast or multicast (destination) 2574 * address. 2575 */ 2576 static int 2577 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp) 2578 { 2579 tcp_hsp_t *hsp; 2580 ire_t *ire; 2581 ire_t *sire = NULL; 2582 iulp_t *ire_uinfo = NULL; 2583 uint32_t mss_max; 2584 uint32_t mss; 2585 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2586 conn_t *connp = tcp->tcp_connp; 2587 boolean_t ire_cacheable = B_FALSE; 2588 zoneid_t zoneid = connp->conn_zoneid; 2589 int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | 2590 MATCH_IRE_SECATTR; 2591 ts_label_t *tsl = crgetlabel(CONN_CRED(connp)); 2592 ill_t *ill = NULL; 2593 boolean_t incoming = (ire_mp == NULL); 2594 2595 ASSERT(connp->conn_ire_cache == NULL); 2596 2597 if (tcp->tcp_ipversion == IPV4_VERSION) { 2598 2599 if (CLASSD(tcp->tcp_connp->conn_rem)) { 2600 BUMP_MIB(&ip_mib, ipIfStatsInDiscards); 2601 return (0); 2602 } 2603 /* 2604 * If IP_NEXTHOP is set, then look for an IRE_CACHE 2605 * for the destination with the nexthop as gateway. 2606 * ire_ctable_lookup() is used because this particular 2607 * ire, if it exists, will be marked private. 2608 * If that is not available, use the interface ire 2609 * for the nexthop. 2610 * 2611 * TSol: tcp_update_label will detect label mismatches based 2612 * only on the destination's label, but that would not 2613 * detect label mismatches based on the security attributes 2614 * of routes or next hop gateway. Hence we need to pass the 2615 * label to ire_ftable_lookup below in order to locate the 2616 * right prefix (and/or) ire cache. Similarly we also need 2617 * pass the label to the ire_cache_lookup below to locate 2618 * the right ire that also matches on the label. 2619 */ 2620 if (tcp->tcp_connp->conn_nexthop_set) { 2621 ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem, 2622 tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid, 2623 tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW); 2624 if (ire == NULL) { 2625 ire = ire_ftable_lookup( 2626 tcp->tcp_connp->conn_nexthop_v4, 2627 0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0, 2628 tsl, match_flags); 2629 if (ire == NULL) 2630 return (0); 2631 } else { 2632 ire_uinfo = &ire->ire_uinfo; 2633 } 2634 } else { 2635 ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, 2636 zoneid, tsl); 2637 if (ire != NULL) { 2638 ire_cacheable = B_TRUE; 2639 ire_uinfo = (ire_mp != NULL) ? 2640 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2641 &ire->ire_uinfo; 2642 2643 } else { 2644 if (ire_mp == NULL) { 2645 ire = ire_ftable_lookup( 2646 tcp->tcp_connp->conn_rem, 2647 0, 0, 0, NULL, &sire, zoneid, 0, 2648 tsl, (MATCH_IRE_RECURSIVE | 2649 MATCH_IRE_DEFAULT)); 2650 if (ire == NULL) 2651 return (0); 2652 ire_uinfo = (sire != NULL) ? 2653 &sire->ire_uinfo : 2654 &ire->ire_uinfo; 2655 } else { 2656 ire = (ire_t *)ire_mp->b_rptr; 2657 ire_uinfo = 2658 &((ire_t *) 2659 ire_mp->b_rptr)->ire_uinfo; 2660 } 2661 } 2662 } 2663 ASSERT(ire != NULL); 2664 2665 if ((ire->ire_src_addr == INADDR_ANY) || 2666 (ire->ire_type & IRE_BROADCAST)) { 2667 /* 2668 * ire->ire_mp is non null when ire_mp passed in is used 2669 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2670 */ 2671 if (ire->ire_mp == NULL) 2672 ire_refrele(ire); 2673 if (sire != NULL) 2674 ire_refrele(sire); 2675 return (0); 2676 } 2677 2678 if (tcp->tcp_ipha->ipha_src == INADDR_ANY) { 2679 ipaddr_t src_addr; 2680 2681 /* 2682 * ip_bind_connected() has stored the correct source 2683 * address in conn_src. 2684 */ 2685 src_addr = tcp->tcp_connp->conn_src; 2686 tcp->tcp_ipha->ipha_src = src_addr; 2687 /* 2688 * Copy of the src addr. in tcp_t is needed 2689 * for the lookup funcs. 2690 */ 2691 IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6); 2692 } 2693 /* 2694 * Set the fragment bit so that IP will tell us if the MTU 2695 * should change. IP tells us the latest setting of 2696 * ip_path_mtu_discovery through ire_frag_flag. 2697 */ 2698 if (ip_path_mtu_discovery) { 2699 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 2700 htons(IPH_DF); 2701 } 2702 /* 2703 * If ire_uinfo is NULL, this is the IRE_INTERFACE case 2704 * for IP_NEXTHOP. No cache ire has been found for the 2705 * destination and we are working with the nexthop's 2706 * interface ire. Since we need to forward all packets 2707 * to the nexthop first, we "blindly" set tcp_localnet 2708 * to false, eventhough the destination may also be 2709 * onlink. 2710 */ 2711 if (ire_uinfo == NULL) 2712 tcp->tcp_localnet = 0; 2713 else 2714 tcp->tcp_localnet = (ire->ire_gateway_addr == 0); 2715 } else { 2716 /* 2717 * For incoming connection ire_mp = NULL 2718 * For outgoing connection ire_mp != NULL 2719 * Technically we should check conn_incoming_ill 2720 * when ire_mp is NULL and conn_outgoing_ill when 2721 * ire_mp is non-NULL. But this is performance 2722 * critical path and for IPV*_BOUND_IF, outgoing 2723 * and incoming ill are always set to the same value. 2724 */ 2725 ill_t *dst_ill = NULL; 2726 ipif_t *dst_ipif = NULL; 2727 2728 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 2729 2730 if (connp->conn_outgoing_ill != NULL) { 2731 /* Outgoing or incoming path */ 2732 int err; 2733 2734 dst_ill = conn_get_held_ill(connp, 2735 &connp->conn_outgoing_ill, &err); 2736 if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) { 2737 ip1dbg(("tcp_adapt_ire: ill_lookup failed\n")); 2738 return (0); 2739 } 2740 match_flags |= MATCH_IRE_ILL; 2741 dst_ipif = dst_ill->ill_ipif; 2742 } 2743 ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6, 2744 0, 0, dst_ipif, zoneid, tsl, match_flags); 2745 2746 if (ire != NULL) { 2747 ire_cacheable = B_TRUE; 2748 ire_uinfo = (ire_mp != NULL) ? 2749 &((ire_t *)ire_mp->b_rptr)->ire_uinfo: 2750 &ire->ire_uinfo; 2751 } else { 2752 if (ire_mp == NULL) { 2753 ire = ire_ftable_lookup_v6( 2754 &tcp->tcp_connp->conn_remv6, 2755 0, 0, 0, dst_ipif, &sire, zoneid, 2756 0, tsl, match_flags); 2757 if (ire == NULL) { 2758 if (dst_ill != NULL) 2759 ill_refrele(dst_ill); 2760 return (0); 2761 } 2762 ire_uinfo = (sire != NULL) ? &sire->ire_uinfo : 2763 &ire->ire_uinfo; 2764 } else { 2765 ire = (ire_t *)ire_mp->b_rptr; 2766 ire_uinfo = 2767 &((ire_t *)ire_mp->b_rptr)->ire_uinfo; 2768 } 2769 } 2770 if (dst_ill != NULL) 2771 ill_refrele(dst_ill); 2772 2773 ASSERT(ire != NULL); 2774 ASSERT(ire_uinfo != NULL); 2775 2776 if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) || 2777 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 2778 /* 2779 * ire->ire_mp is non null when ire_mp passed in is used 2780 * ire->ire_mp is set in ip_bind_insert_ire[_v6](). 2781 */ 2782 if (ire->ire_mp == NULL) 2783 ire_refrele(ire); 2784 if (sire != NULL) 2785 ire_refrele(sire); 2786 return (0); 2787 } 2788 2789 if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 2790 in6_addr_t src_addr; 2791 2792 /* 2793 * ip_bind_connected_v6() has stored the correct source 2794 * address per IPv6 addr. selection policy in 2795 * conn_src_v6. 2796 */ 2797 src_addr = tcp->tcp_connp->conn_srcv6; 2798 2799 tcp->tcp_ip6h->ip6_src = src_addr; 2800 /* 2801 * Copy of the src addr. in tcp_t is needed 2802 * for the lookup funcs. 2803 */ 2804 tcp->tcp_ip_src_v6 = src_addr; 2805 ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src, 2806 &connp->conn_srcv6)); 2807 } 2808 tcp->tcp_localnet = 2809 IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6); 2810 } 2811 2812 /* 2813 * This allows applications to fail quickly when connections are made 2814 * to dead hosts. Hosts can be labeled dead by adding a reject route 2815 * with both the RTF_REJECT and RTF_PRIVATE flags set. 2816 */ 2817 if ((ire->ire_flags & RTF_REJECT) && 2818 (ire->ire_flags & RTF_PRIVATE)) 2819 goto error; 2820 2821 /* 2822 * Make use of the cached rtt and rtt_sd values to calculate the 2823 * initial RTO. Note that they are already initialized in 2824 * tcp_init_values(). 2825 * If ire_uinfo is NULL, i.e., we do not have a cache ire for 2826 * IP_NEXTHOP, but instead are using the interface ire for the 2827 * nexthop, then we do not use the ire_uinfo from that ire to 2828 * do any initializations. 2829 */ 2830 if (ire_uinfo != NULL) { 2831 if (ire_uinfo->iulp_rtt != 0) { 2832 clock_t rto; 2833 2834 tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt; 2835 tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd; 2836 rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 2837 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5); 2838 2839 if (rto > tcp_rexmit_interval_max) { 2840 tcp->tcp_rto = tcp_rexmit_interval_max; 2841 } else if (rto < tcp_rexmit_interval_min) { 2842 tcp->tcp_rto = tcp_rexmit_interval_min; 2843 } else { 2844 tcp->tcp_rto = rto; 2845 } 2846 } 2847 if (ire_uinfo->iulp_ssthresh != 0) 2848 tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh; 2849 else 2850 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2851 if (ire_uinfo->iulp_spipe > 0) { 2852 tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe, 2853 tcp_max_buf); 2854 if (tcp_snd_lowat_fraction != 0) 2855 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2856 tcp_snd_lowat_fraction; 2857 (void) tcp_maxpsz_set(tcp, B_TRUE); 2858 } 2859 /* 2860 * Note that up till now, acceptor always inherits receive 2861 * window from the listener. But if there is a metrics 2862 * associated with a host, we should use that instead of 2863 * inheriting it from listener. Thus we need to pass this 2864 * info back to the caller. 2865 */ 2866 if (ire_uinfo->iulp_rpipe > 0) { 2867 tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf); 2868 } 2869 2870 if (ire_uinfo->iulp_rtomax > 0) { 2871 tcp->tcp_second_timer_threshold = 2872 ire_uinfo->iulp_rtomax; 2873 } 2874 2875 /* 2876 * Use the metric option settings, iulp_tstamp_ok and 2877 * iulp_wscale_ok, only for active open. What this means 2878 * is that if the other side uses timestamp or window 2879 * scale option, TCP will also use those options. That 2880 * is for passive open. If the application sets a 2881 * large window, window scale is enabled regardless of 2882 * the value in iulp_wscale_ok. This is the behavior 2883 * since 2.6. So we keep it. 2884 * The only case left in passive open processing is the 2885 * check for SACK. 2886 * For ECN, it should probably be like SACK. But the 2887 * current value is binary, so we treat it like the other 2888 * cases. The metric only controls active open.For passive 2889 * open, the ndd param, tcp_ecn_permitted, controls the 2890 * behavior. 2891 */ 2892 if (!tcp_detached) { 2893 /* 2894 * The if check means that the following can only 2895 * be turned on by the metrics only IRE, but not off. 2896 */ 2897 if (ire_uinfo->iulp_tstamp_ok) 2898 tcp->tcp_snd_ts_ok = B_TRUE; 2899 if (ire_uinfo->iulp_wscale_ok) 2900 tcp->tcp_snd_ws_ok = B_TRUE; 2901 if (ire_uinfo->iulp_sack == 2) 2902 tcp->tcp_snd_sack_ok = B_TRUE; 2903 if (ire_uinfo->iulp_ecn_ok) 2904 tcp->tcp_ecn_ok = B_TRUE; 2905 } else { 2906 /* 2907 * Passive open. 2908 * 2909 * As above, the if check means that SACK can only be 2910 * turned on by the metric only IRE. 2911 */ 2912 if (ire_uinfo->iulp_sack > 0) { 2913 tcp->tcp_snd_sack_ok = B_TRUE; 2914 } 2915 } 2916 } 2917 2918 2919 /* 2920 * XXX: Note that currently, ire_max_frag can be as small as 68 2921 * because of PMTUd. So tcp_mss may go to negative if combined 2922 * length of all those options exceeds 28 bytes. But because 2923 * of the tcp_mss_min check below, we may not have a problem if 2924 * tcp_mss_min is of a reasonable value. The default is 1 so 2925 * the negative problem still exists. And the check defeats PMTUd. 2926 * In fact, if PMTUd finds that the MSS should be smaller than 2927 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 2928 * value. 2929 * 2930 * We do not deal with that now. All those problems related to 2931 * PMTUd will be fixed later. 2932 */ 2933 ASSERT(ire->ire_max_frag != 0); 2934 mss = tcp->tcp_if_mtu = ire->ire_max_frag; 2935 if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) { 2936 if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) { 2937 mss = MIN(mss, IPV6_MIN_MTU); 2938 } 2939 } 2940 2941 /* Sanity check for MSS value. */ 2942 if (tcp->tcp_ipversion == IPV4_VERSION) 2943 mss_max = tcp_mss_max_ipv4; 2944 else 2945 mss_max = tcp_mss_max_ipv6; 2946 2947 if (tcp->tcp_ipversion == IPV6_VERSION && 2948 (ire->ire_frag_flag & IPH_FRAG_HDR)) { 2949 /* 2950 * After receiving an ICMPv6 "packet too big" message with a 2951 * MTU < 1280, and for multirouted IPv6 packets, the IP layer 2952 * will insert a 8-byte fragment header in every packet; we 2953 * reduce the MSS by that amount here. 2954 */ 2955 mss -= sizeof (ip6_frag_t); 2956 } 2957 2958 if (tcp->tcp_ipsec_overhead == 0) 2959 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 2960 2961 mss -= tcp->tcp_ipsec_overhead; 2962 2963 if (mss < tcp_mss_min) 2964 mss = tcp_mss_min; 2965 if (mss > mss_max) 2966 mss = mss_max; 2967 2968 /* Note that this is the maximum MSS, excluding all options. */ 2969 tcp->tcp_mss = mss; 2970 2971 /* 2972 * Initialize the ISS here now that we have the full connection ID. 2973 * The RFC 1948 method of initial sequence number generation requires 2974 * knowledge of the full connection ID before setting the ISS. 2975 */ 2976 2977 tcp_iss_init(tcp); 2978 2979 if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL)) 2980 tcp->tcp_loopback = B_TRUE; 2981 2982 if (tcp->tcp_ipversion == IPV4_VERSION) { 2983 hsp = tcp_hsp_lookup(tcp->tcp_remote); 2984 } else { 2985 hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6); 2986 } 2987 2988 if (hsp != NULL) { 2989 /* Only modify if we're going to make them bigger */ 2990 if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) { 2991 tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace; 2992 if (tcp_snd_lowat_fraction != 0) 2993 tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater / 2994 tcp_snd_lowat_fraction; 2995 } 2996 2997 if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) { 2998 tcp->tcp_rwnd = hsp->tcp_hsp_recvspace; 2999 } 3000 3001 /* Copy timestamp flag only for active open */ 3002 if (!tcp_detached) 3003 tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp; 3004 } 3005 3006 if (sire != NULL) 3007 IRE_REFRELE(sire); 3008 3009 /* 3010 * If we got an IRE_CACHE and an ILL, go through their properties; 3011 * otherwise, this is deferred until later when we have an IRE_CACHE. 3012 */ 3013 if (tcp->tcp_loopback || 3014 (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) { 3015 /* 3016 * For incoming, see if this tcp may be MDT-capable. For 3017 * outgoing, this process has been taken care of through 3018 * tcp_rput_other. 3019 */ 3020 tcp_ire_ill_check(tcp, ire, ill, incoming); 3021 tcp->tcp_ire_ill_check_done = B_TRUE; 3022 } 3023 3024 mutex_enter(&connp->conn_lock); 3025 /* 3026 * Make sure that conn is not marked incipient 3027 * for incoming connections. A blind 3028 * removal of incipient flag is cheaper than 3029 * check and removal. 3030 */ 3031 connp->conn_state_flags &= ~CONN_INCIPIENT; 3032 3033 /* Must not cache forwarding table routes. */ 3034 if (ire_cacheable) { 3035 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 3036 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 3037 connp->conn_ire_cache = ire; 3038 IRE_UNTRACE_REF(ire); 3039 rw_exit(&ire->ire_bucket->irb_lock); 3040 mutex_exit(&connp->conn_lock); 3041 return (1); 3042 } 3043 rw_exit(&ire->ire_bucket->irb_lock); 3044 } 3045 mutex_exit(&connp->conn_lock); 3046 3047 if (ire->ire_mp == NULL) 3048 ire_refrele(ire); 3049 return (1); 3050 3051 error: 3052 if (ire->ire_mp == NULL) 3053 ire_refrele(ire); 3054 if (sire != NULL) 3055 ire_refrele(sire); 3056 return (0); 3057 } 3058 3059 /* 3060 * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a 3061 * O_T_BIND_REQ/T_BIND_REQ message. 3062 */ 3063 static void 3064 tcp_bind(tcp_t *tcp, mblk_t *mp) 3065 { 3066 sin_t *sin; 3067 sin6_t *sin6; 3068 mblk_t *mp1; 3069 in_port_t requested_port; 3070 in_port_t allocated_port; 3071 struct T_bind_req *tbr; 3072 boolean_t bind_to_req_port_only; 3073 boolean_t backlog_update = B_FALSE; 3074 boolean_t user_specified; 3075 in6_addr_t v6addr; 3076 ipaddr_t v4addr; 3077 uint_t origipversion; 3078 int err; 3079 queue_t *q = tcp->tcp_wq; 3080 conn_t *connp; 3081 mlp_type_t addrtype, mlptype; 3082 zone_t *zone; 3083 cred_t *cr; 3084 in_port_t mlp_port; 3085 3086 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 3087 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) { 3088 if (tcp->tcp_debug) { 3089 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3090 "tcp_bind: bad req, len %u", 3091 (uint_t)(mp->b_wptr - mp->b_rptr)); 3092 } 3093 tcp_err_ack(tcp, mp, TPROTO, 0); 3094 return; 3095 } 3096 /* Make sure the largest address fits */ 3097 mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1); 3098 if (mp1 == NULL) { 3099 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3100 return; 3101 } 3102 mp = mp1; 3103 tbr = (struct T_bind_req *)mp->b_rptr; 3104 if (tcp->tcp_state >= TCPS_BOUND) { 3105 if ((tcp->tcp_state == TCPS_BOUND || 3106 tcp->tcp_state == TCPS_LISTEN) && 3107 tcp->tcp_conn_req_max != tbr->CONIND_number && 3108 tbr->CONIND_number > 0) { 3109 /* 3110 * Handle listen() increasing CONIND_number. 3111 * This is more "liberal" then what the TPI spec 3112 * requires but is needed to avoid a t_unbind 3113 * when handling listen() since the port number 3114 * might be "stolen" between the unbind and bind. 3115 */ 3116 backlog_update = B_TRUE; 3117 goto do_bind; 3118 } 3119 if (tcp->tcp_debug) { 3120 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3121 "tcp_bind: bad state, %d", tcp->tcp_state); 3122 } 3123 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 3124 return; 3125 } 3126 origipversion = tcp->tcp_ipversion; 3127 3128 switch (tbr->ADDR_length) { 3129 case 0: /* request for a generic port */ 3130 tbr->ADDR_offset = sizeof (struct T_bind_req); 3131 if (tcp->tcp_family == AF_INET) { 3132 tbr->ADDR_length = sizeof (sin_t); 3133 sin = (sin_t *)&tbr[1]; 3134 *sin = sin_null; 3135 sin->sin_family = AF_INET; 3136 mp->b_wptr = (uchar_t *)&sin[1]; 3137 tcp->tcp_ipversion = IPV4_VERSION; 3138 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr); 3139 } else { 3140 ASSERT(tcp->tcp_family == AF_INET6); 3141 tbr->ADDR_length = sizeof (sin6_t); 3142 sin6 = (sin6_t *)&tbr[1]; 3143 *sin6 = sin6_null; 3144 sin6->sin6_family = AF_INET6; 3145 mp->b_wptr = (uchar_t *)&sin6[1]; 3146 tcp->tcp_ipversion = IPV6_VERSION; 3147 V6_SET_ZERO(v6addr); 3148 } 3149 requested_port = 0; 3150 break; 3151 3152 case sizeof (sin_t): /* Complete IPv4 address */ 3153 sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset, 3154 sizeof (sin_t)); 3155 if (sin == NULL || !OK_32PTR((char *)sin)) { 3156 if (tcp->tcp_debug) { 3157 (void) strlog(TCP_MOD_ID, 0, 1, 3158 SL_ERROR|SL_TRACE, 3159 "tcp_bind: bad address parameter, " 3160 "offset %d, len %d", 3161 tbr->ADDR_offset, tbr->ADDR_length); 3162 } 3163 tcp_err_ack(tcp, mp, TPROTO, 0); 3164 return; 3165 } 3166 /* 3167 * With sockets sockfs will accept bogus sin_family in 3168 * bind() and replace it with the family used in the socket 3169 * call. 3170 */ 3171 if (sin->sin_family != AF_INET || 3172 tcp->tcp_family != AF_INET) { 3173 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3174 return; 3175 } 3176 requested_port = ntohs(sin->sin_port); 3177 tcp->tcp_ipversion = IPV4_VERSION; 3178 v4addr = sin->sin_addr.s_addr; 3179 IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr); 3180 break; 3181 3182 case sizeof (sin6_t): /* Complete IPv6 address */ 3183 sin6 = (sin6_t *)mi_offset_param(mp, 3184 tbr->ADDR_offset, sizeof (sin6_t)); 3185 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 3186 if (tcp->tcp_debug) { 3187 (void) strlog(TCP_MOD_ID, 0, 1, 3188 SL_ERROR|SL_TRACE, 3189 "tcp_bind: bad IPv6 address parameter, " 3190 "offset %d, len %d", tbr->ADDR_offset, 3191 tbr->ADDR_length); 3192 } 3193 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 3194 return; 3195 } 3196 if (sin6->sin6_family != AF_INET6 || 3197 tcp->tcp_family != AF_INET6) { 3198 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 3199 return; 3200 } 3201 requested_port = ntohs(sin6->sin6_port); 3202 tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ? 3203 IPV4_VERSION : IPV6_VERSION; 3204 v6addr = sin6->sin6_addr; 3205 break; 3206 3207 default: 3208 if (tcp->tcp_debug) { 3209 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 3210 "tcp_bind: bad address length, %d", 3211 tbr->ADDR_length); 3212 } 3213 tcp_err_ack(tcp, mp, TBADADDR, 0); 3214 return; 3215 } 3216 tcp->tcp_bound_source_v6 = v6addr; 3217 3218 /* Check for change in ipversion */ 3219 if (origipversion != tcp->tcp_ipversion) { 3220 ASSERT(tcp->tcp_family == AF_INET6); 3221 err = tcp->tcp_ipversion == IPV6_VERSION ? 3222 tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp); 3223 if (err) { 3224 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3225 return; 3226 } 3227 } 3228 3229 /* 3230 * Initialize family specific fields. Copy of the src addr. 3231 * in tcp_t is needed for the lookup funcs. 3232 */ 3233 if (tcp->tcp_ipversion == IPV6_VERSION) { 3234 tcp->tcp_ip6h->ip6_src = v6addr; 3235 } else { 3236 IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src); 3237 } 3238 tcp->tcp_ip_src_v6 = v6addr; 3239 3240 /* 3241 * For O_T_BIND_REQ: 3242 * Verify that the target port/addr is available, or choose 3243 * another. 3244 * For T_BIND_REQ: 3245 * Verify that the target port/addr is available or fail. 3246 * In both cases when it succeeds the tcp is inserted in the 3247 * bind hash table. This ensures that the operation is atomic 3248 * under the lock on the hash bucket. 3249 */ 3250 bind_to_req_port_only = requested_port != 0 && 3251 tbr->PRIM_type != O_T_BIND_REQ; 3252 /* 3253 * Get a valid port (within the anonymous range and should not 3254 * be a privileged one) to use if the user has not given a port. 3255 * If multiple threads are here, they may all start with 3256 * with the same initial port. But, it should be fine as long as 3257 * tcp_bindi will ensure that no two threads will be assigned 3258 * the same port. 3259 * 3260 * NOTE: XXX If a privileged process asks for an anonymous port, we 3261 * still check for ports only in the range > tcp_smallest_non_priv_port, 3262 * unless TCP_ANONPRIVBIND option is set. 3263 */ 3264 mlptype = mlptSingle; 3265 mlp_port = requested_port; 3266 if (requested_port == 0) { 3267 requested_port = tcp->tcp_anon_priv_bind ? 3268 tcp_get_next_priv_port(tcp) : 3269 tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 3270 if (requested_port == 0) { 3271 tcp_err_ack(tcp, mp, TNOADDR, 0); 3272 return; 3273 } 3274 user_specified = B_FALSE; 3275 3276 /* 3277 * If the user went through one of the RPC interfaces to create 3278 * this socket and RPC is MLP in this zone, then give him an 3279 * anonymous MLP. 3280 */ 3281 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3282 connp = tcp->tcp_connp; 3283 if (connp->conn_anon_mlp && is_system_labeled()) { 3284 zone = crgetzone(cr); 3285 addrtype = tsol_mlp_addr_type(zone->zone_id, 3286 IPV6_VERSION, &v6addr); 3287 if (addrtype == mlptSingle) { 3288 tcp_err_ack(tcp, mp, TNOADDR, 0); 3289 return; 3290 } 3291 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3292 PMAPPORT, addrtype); 3293 mlp_port = PMAPPORT; 3294 } 3295 } else { 3296 int i; 3297 boolean_t priv = B_FALSE; 3298 3299 /* 3300 * If the requested_port is in the well-known privileged range, 3301 * verify that the stream was opened by a privileged user. 3302 * Note: No locks are held when inspecting tcp_g_*epriv_ports 3303 * but instead the code relies on: 3304 * - the fact that the address of the array and its size never 3305 * changes 3306 * - the atomic assignment of the elements of the array 3307 */ 3308 cr = DB_CREDDEF(mp, tcp->tcp_cred); 3309 if (requested_port < tcp_smallest_nonpriv_port) { 3310 priv = B_TRUE; 3311 } else { 3312 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 3313 if (requested_port == 3314 tcp_g_epriv_ports[i]) { 3315 priv = B_TRUE; 3316 break; 3317 } 3318 } 3319 } 3320 if (priv) { 3321 if (secpolicy_net_privaddr(cr, requested_port) != 0) { 3322 if (tcp->tcp_debug) { 3323 (void) strlog(TCP_MOD_ID, 0, 1, 3324 SL_ERROR|SL_TRACE, 3325 "tcp_bind: no priv for port %d", 3326 requested_port); 3327 } 3328 tcp_err_ack(tcp, mp, TACCES, 0); 3329 return; 3330 } 3331 } 3332 user_specified = B_TRUE; 3333 3334 connp = tcp->tcp_connp; 3335 if (is_system_labeled()) { 3336 zone = crgetzone(cr); 3337 addrtype = tsol_mlp_addr_type(zone->zone_id, 3338 IPV6_VERSION, &v6addr); 3339 if (addrtype == mlptSingle) { 3340 tcp_err_ack(tcp, mp, TNOADDR, 0); 3341 return; 3342 } 3343 mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP, 3344 requested_port, addrtype); 3345 } 3346 } 3347 3348 if (mlptype != mlptSingle) { 3349 if (secpolicy_net_bindmlp(cr) != 0) { 3350 if (tcp->tcp_debug) { 3351 (void) strlog(TCP_MOD_ID, 0, 1, 3352 SL_ERROR|SL_TRACE, 3353 "tcp_bind: no priv for multilevel port %d", 3354 requested_port); 3355 } 3356 tcp_err_ack(tcp, mp, TACCES, 0); 3357 return; 3358 } 3359 3360 /* 3361 * If we're specifically binding a shared IP address and the 3362 * port is MLP on shared addresses, then check to see if this 3363 * zone actually owns the MLP. Reject if not. 3364 */ 3365 if (mlptype == mlptShared && addrtype == mlptShared) { 3366 zoneid_t mlpzone; 3367 3368 mlpzone = tsol_mlp_findzone(IPPROTO_TCP, 3369 htons(mlp_port)); 3370 if (connp->conn_zoneid != mlpzone) { 3371 if (tcp->tcp_debug) { 3372 (void) strlog(TCP_MOD_ID, 0, 1, 3373 SL_ERROR|SL_TRACE, 3374 "tcp_bind: attempt to bind port " 3375 "%d on shared addr in zone %d " 3376 "(should be %d)", 3377 mlp_port, connp->conn_zoneid, 3378 mlpzone); 3379 } 3380 tcp_err_ack(tcp, mp, TACCES, 0); 3381 return; 3382 } 3383 } 3384 3385 if (!user_specified) { 3386 err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3387 requested_port, B_TRUE); 3388 if (err != 0) { 3389 if (tcp->tcp_debug) { 3390 (void) strlog(TCP_MOD_ID, 0, 1, 3391 SL_ERROR|SL_TRACE, 3392 "tcp_bind: cannot establish anon " 3393 "MLP for port %d", 3394 requested_port); 3395 } 3396 tcp_err_ack(tcp, mp, TSYSERR, err); 3397 return; 3398 } 3399 connp->conn_anon_port = B_TRUE; 3400 } 3401 connp->conn_mlp_type = mlptype; 3402 } 3403 3404 allocated_port = tcp_bindi(tcp, requested_port, &v6addr, 3405 tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified); 3406 3407 if (allocated_port == 0) { 3408 connp->conn_mlp_type = mlptSingle; 3409 if (connp->conn_anon_port) { 3410 connp->conn_anon_port = B_FALSE; 3411 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3412 requested_port, B_FALSE); 3413 } 3414 if (bind_to_req_port_only) { 3415 if (tcp->tcp_debug) { 3416 (void) strlog(TCP_MOD_ID, 0, 1, 3417 SL_ERROR|SL_TRACE, 3418 "tcp_bind: requested addr busy"); 3419 } 3420 tcp_err_ack(tcp, mp, TADDRBUSY, 0); 3421 } else { 3422 /* If we are out of ports, fail the bind. */ 3423 if (tcp->tcp_debug) { 3424 (void) strlog(TCP_MOD_ID, 0, 1, 3425 SL_ERROR|SL_TRACE, 3426 "tcp_bind: out of ports?"); 3427 } 3428 tcp_err_ack(tcp, mp, TNOADDR, 0); 3429 } 3430 return; 3431 } 3432 ASSERT(tcp->tcp_state == TCPS_BOUND); 3433 do_bind: 3434 if (!backlog_update) { 3435 if (tcp->tcp_family == AF_INET) 3436 sin->sin_port = htons(allocated_port); 3437 else 3438 sin6->sin6_port = htons(allocated_port); 3439 } 3440 if (tcp->tcp_family == AF_INET) { 3441 if (tbr->CONIND_number != 0) { 3442 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3443 sizeof (sin_t)); 3444 } else { 3445 /* Just verify the local IP address */ 3446 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN); 3447 } 3448 } else { 3449 if (tbr->CONIND_number != 0) { 3450 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3451 sizeof (sin6_t)); 3452 } else { 3453 /* Just verify the local IP address */ 3454 mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, 3455 IPV6_ADDR_LEN); 3456 } 3457 } 3458 if (mp1 == NULL) { 3459 if (connp->conn_anon_port) { 3460 connp->conn_anon_port = B_FALSE; 3461 (void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp, 3462 requested_port, B_FALSE); 3463 } 3464 connp->conn_mlp_type = mlptSingle; 3465 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 3466 return; 3467 } 3468 3469 tbr->PRIM_type = T_BIND_ACK; 3470 mp->b_datap->db_type = M_PCPROTO; 3471 3472 /* Chain in the reply mp for tcp_rput() */ 3473 mp1->b_cont = mp; 3474 mp = mp1; 3475 3476 tcp->tcp_conn_req_max = tbr->CONIND_number; 3477 if (tcp->tcp_conn_req_max) { 3478 if (tcp->tcp_conn_req_max < tcp_conn_req_min) 3479 tcp->tcp_conn_req_max = tcp_conn_req_min; 3480 if (tcp->tcp_conn_req_max > tcp_conn_req_max_q) 3481 tcp->tcp_conn_req_max = tcp_conn_req_max_q; 3482 /* 3483 * If this is a listener, do not reset the eager list 3484 * and other stuffs. Note that we don't check if the 3485 * existing eager list meets the new tcp_conn_req_max 3486 * requirement. 3487 */ 3488 if (tcp->tcp_state != TCPS_LISTEN) { 3489 tcp->tcp_state = TCPS_LISTEN; 3490 /* Initialize the chain. Don't need the eager_lock */ 3491 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 3492 tcp->tcp_eager_next_drop_q0 = tcp; 3493 tcp->tcp_eager_prev_drop_q0 = tcp; 3494 tcp->tcp_second_ctimer_threshold = 3495 tcp_ip_abort_linterval; 3496 } 3497 } 3498 3499 /* 3500 * We can call ip_bind directly which returns a T_BIND_ACK mp. The 3501 * processing continues in tcp_rput_other(). 3502 */ 3503 if (tcp->tcp_family == AF_INET6) { 3504 ASSERT(tcp->tcp_connp->conn_af_isv6); 3505 mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp); 3506 } else { 3507 ASSERT(!tcp->tcp_connp->conn_af_isv6); 3508 mp = ip_bind_v4(q, mp, tcp->tcp_connp); 3509 } 3510 /* 3511 * If the bind cannot complete immediately 3512 * IP will arrange to call tcp_rput_other 3513 * when the bind completes. 3514 */ 3515 if (mp != NULL) { 3516 tcp_rput_other(tcp, mp); 3517 } else { 3518 /* 3519 * Bind will be resumed later. Need to ensure 3520 * that conn doesn't disappear when that happens. 3521 * This will be decremented in ip_resume_tcp_bind(). 3522 */ 3523 CONN_INC_REF(tcp->tcp_connp); 3524 } 3525 } 3526 3527 3528 /* 3529 * If the "bind_to_req_port_only" parameter is set, if the requested port 3530 * number is available, return it, If not return 0 3531 * 3532 * If "bind_to_req_port_only" parameter is not set and 3533 * If the requested port number is available, return it. If not, return 3534 * the first anonymous port we happen across. If no anonymous ports are 3535 * available, return 0. addr is the requested local address, if any. 3536 * 3537 * In either case, when succeeding update the tcp_t to record the port number 3538 * and insert it in the bind hash table. 3539 * 3540 * Note that TCP over IPv4 and IPv6 sockets can use the same port number 3541 * without setting SO_REUSEADDR. This is needed so that they 3542 * can be viewed as two independent transport protocols. 3543 */ 3544 static in_port_t 3545 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, 3546 int reuseaddr, boolean_t quick_connect, 3547 boolean_t bind_to_req_port_only, boolean_t user_specified) 3548 { 3549 /* number of times we have run around the loop */ 3550 int count = 0; 3551 /* maximum number of times to run around the loop */ 3552 int loopmax; 3553 conn_t *connp = tcp->tcp_connp; 3554 zoneid_t zoneid = connp->conn_zoneid; 3555 3556 /* 3557 * Lookup for free addresses is done in a loop and "loopmax" 3558 * influences how long we spin in the loop 3559 */ 3560 if (bind_to_req_port_only) { 3561 /* 3562 * If the requested port is busy, don't bother to look 3563 * for a new one. Setting loop maximum count to 1 has 3564 * that effect. 3565 */ 3566 loopmax = 1; 3567 } else { 3568 /* 3569 * If the requested port is busy, look for a free one 3570 * in the anonymous port range. 3571 * Set loopmax appropriately so that one does not look 3572 * forever in the case all of the anonymous ports are in use. 3573 */ 3574 if (tcp->tcp_anon_priv_bind) { 3575 /* 3576 * loopmax = 3577 * (IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1 3578 */ 3579 loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port; 3580 } else { 3581 loopmax = (tcp_largest_anon_port - 3582 tcp_smallest_anon_port + 1); 3583 } 3584 } 3585 do { 3586 uint16_t lport; 3587 tf_t *tbf; 3588 tcp_t *ltcp; 3589 conn_t *lconnp; 3590 3591 lport = htons(port); 3592 3593 /* 3594 * Ensure that the tcp_t is not currently in the bind hash. 3595 * Hold the lock on the hash bucket to ensure that 3596 * the duplicate check plus the insertion is an atomic 3597 * operation. 3598 * 3599 * This function does an inline lookup on the bind hash list 3600 * Make sure that we access only members of tcp_t 3601 * and that we don't look at tcp_tcp, since we are not 3602 * doing a CONN_INC_REF. 3603 */ 3604 tcp_bind_hash_remove(tcp); 3605 tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)]; 3606 mutex_enter(&tbf->tf_lock); 3607 for (ltcp = tbf->tf_tcp; ltcp != NULL; 3608 ltcp = ltcp->tcp_bind_hash) { 3609 boolean_t not_socket; 3610 boolean_t exclbind; 3611 3612 if (lport != ltcp->tcp_lport) 3613 continue; 3614 3615 lconnp = ltcp->tcp_connp; 3616 3617 /* 3618 * On a labeled system, we must treat bindings to ports 3619 * on shared IP addresses by sockets with MAC exemption 3620 * privilege as being in all zones, as there's 3621 * otherwise no way to identify the right receiver. 3622 */ 3623 if (!IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) && 3624 !lconnp->conn_mac_exempt && 3625 !connp->conn_mac_exempt) 3626 continue; 3627 3628 /* 3629 * If TCP_EXCLBIND is set for either the bound or 3630 * binding endpoint, the semantics of bind 3631 * is changed according to the following. 3632 * 3633 * spec = specified address (v4 or v6) 3634 * unspec = unspecified address (v4 or v6) 3635 * A = specified addresses are different for endpoints 3636 * 3637 * bound bind to allowed 3638 * ------------------------------------- 3639 * unspec unspec no 3640 * unspec spec no 3641 * spec unspec no 3642 * spec spec yes if A 3643 * 3644 * For labeled systems, SO_MAC_EXEMPT behaves the same 3645 * as TCP_EXCLBIND, except that zoneid is ignored. 3646 * 3647 * Note: 3648 * 3649 * 1. Because of TLI semantics, an endpoint can go 3650 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or 3651 * TCPS_BOUND, depending on whether it is originally 3652 * a listener or not. That is why we need to check 3653 * for states greater than or equal to TCPS_BOUND 3654 * here. 3655 * 3656 * 2. Ideally, we should only check for state equals 3657 * to TCPS_LISTEN. And the following check should be 3658 * added. 3659 * 3660 * if (ltcp->tcp_state == TCPS_LISTEN || 3661 * !reuseaddr || !ltcp->tcp_reuseaddr) { 3662 * ... 3663 * } 3664 * 3665 * The semantics will be changed to this. If the 3666 * endpoint on the list is in state not equal to 3667 * TCPS_LISTEN and both endpoints have SO_REUSEADDR 3668 * set, let the bind succeed. 3669 * 3670 * Because of (1), we cannot do that for TLI 3671 * endpoints. But we can do that for socket endpoints. 3672 * If in future, we can change this going back 3673 * semantics, we can use the above check for TLI also. 3674 */ 3675 not_socket = !(TCP_IS_SOCKET(ltcp) && 3676 TCP_IS_SOCKET(tcp)); 3677 exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind; 3678 3679 if (lconnp->conn_mac_exempt || connp->conn_mac_exempt || 3680 (exclbind && (not_socket || 3681 ltcp->tcp_state <= TCPS_ESTABLISHED))) { 3682 if (V6_OR_V4_INADDR_ANY( 3683 ltcp->tcp_bound_source_v6) || 3684 V6_OR_V4_INADDR_ANY(*laddr) || 3685 IN6_ARE_ADDR_EQUAL(laddr, 3686 <cp->tcp_bound_source_v6)) { 3687 break; 3688 } 3689 continue; 3690 } 3691 3692 /* 3693 * Check ipversion to allow IPv4 and IPv6 sockets to 3694 * have disjoint port number spaces, if *_EXCLBIND 3695 * is not set and only if the application binds to a 3696 * specific port. We use the same autoassigned port 3697 * number space for IPv4 and IPv6 sockets. 3698 */ 3699 if (tcp->tcp_ipversion != ltcp->tcp_ipversion && 3700 bind_to_req_port_only) 3701 continue; 3702 3703 /* 3704 * Ideally, we should make sure that the source 3705 * address, remote address, and remote port in the 3706 * four tuple for this tcp-connection is unique. 3707 * However, trying to find out the local source 3708 * address would require too much code duplication 3709 * with IP, since IP needs needs to have that code 3710 * to support userland TCP implementations. 3711 */ 3712 if (quick_connect && 3713 (ltcp->tcp_state > TCPS_LISTEN) && 3714 ((tcp->tcp_fport != ltcp->tcp_fport) || 3715 !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 3716 <cp->tcp_remote_v6))) 3717 continue; 3718 3719 if (!reuseaddr) { 3720 /* 3721 * No socket option SO_REUSEADDR. 3722 * If existing port is bound to 3723 * a non-wildcard IP address 3724 * and the requesting stream is 3725 * bound to a distinct 3726 * different IP addresses 3727 * (non-wildcard, also), keep 3728 * going. 3729 */ 3730 if (!V6_OR_V4_INADDR_ANY(*laddr) && 3731 !V6_OR_V4_INADDR_ANY( 3732 ltcp->tcp_bound_source_v6) && 3733 !IN6_ARE_ADDR_EQUAL(laddr, 3734 <cp->tcp_bound_source_v6)) 3735 continue; 3736 if (ltcp->tcp_state >= TCPS_BOUND) { 3737 /* 3738 * This port is being used and 3739 * its state is >= TCPS_BOUND, 3740 * so we can't bind to it. 3741 */ 3742 break; 3743 } 3744 } else { 3745 /* 3746 * socket option SO_REUSEADDR is set on the 3747 * binding tcp_t. 3748 * 3749 * If two streams are bound to 3750 * same IP address or both addr 3751 * and bound source are wildcards 3752 * (INADDR_ANY), we want to stop 3753 * searching. 3754 * We have found a match of IP source 3755 * address and source port, which is 3756 * refused regardless of the 3757 * SO_REUSEADDR setting, so we break. 3758 */ 3759 if (IN6_ARE_ADDR_EQUAL(laddr, 3760 <cp->tcp_bound_source_v6) && 3761 (ltcp->tcp_state == TCPS_LISTEN || 3762 ltcp->tcp_state == TCPS_BOUND)) 3763 break; 3764 } 3765 } 3766 if (ltcp != NULL) { 3767 /* The port number is busy */ 3768 mutex_exit(&tbf->tf_lock); 3769 } else { 3770 /* 3771 * This port is ours. Insert in fanout and mark as 3772 * bound to prevent others from getting the port 3773 * number. 3774 */ 3775 tcp->tcp_state = TCPS_BOUND; 3776 tcp->tcp_lport = htons(port); 3777 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 3778 3779 ASSERT(&tcp_bind_fanout[TCP_BIND_HASH( 3780 tcp->tcp_lport)] == tbf); 3781 tcp_bind_hash_insert(tbf, tcp, 1); 3782 3783 mutex_exit(&tbf->tf_lock); 3784 3785 /* 3786 * We don't want tcp_next_port_to_try to "inherit" 3787 * a port number supplied by the user in a bind. 3788 */ 3789 if (user_specified) 3790 return (port); 3791 3792 /* 3793 * This is the only place where tcp_next_port_to_try 3794 * is updated. After the update, it may or may not 3795 * be in the valid range. 3796 */ 3797 if (!tcp->tcp_anon_priv_bind) 3798 tcp_next_port_to_try = port + 1; 3799 return (port); 3800 } 3801 3802 if (tcp->tcp_anon_priv_bind) { 3803 port = tcp_get_next_priv_port(tcp); 3804 } else { 3805 if (count == 0 && user_specified) { 3806 /* 3807 * We may have to return an anonymous port. So 3808 * get one to start with. 3809 */ 3810 port = 3811 tcp_update_next_port(tcp_next_port_to_try, 3812 tcp, B_TRUE); 3813 user_specified = B_FALSE; 3814 } else { 3815 port = tcp_update_next_port(port + 1, tcp, 3816 B_FALSE); 3817 } 3818 } 3819 if (port == 0) 3820 break; 3821 3822 /* 3823 * Don't let this loop run forever in the case where 3824 * all of the anonymous ports are in use. 3825 */ 3826 } while (++count < loopmax); 3827 return (0); 3828 } 3829 3830 /* 3831 * tcp_clean_death / tcp_close_detached must not be called more than once 3832 * on a tcp. Thus every function that potentially calls tcp_clean_death 3833 * must check for the tcp state before calling tcp_clean_death. 3834 * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper, 3835 * tcp_timer_handler, all check for the tcp state. 3836 */ 3837 /* ARGSUSED */ 3838 void 3839 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2) 3840 { 3841 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 3842 3843 freemsg(mp); 3844 if (tcp->tcp_state > TCPS_BOUND) 3845 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT, 5); 3846 } 3847 3848 /* 3849 * We are dying for some reason. Try to do it gracefully. (May be called 3850 * as writer.) 3851 * 3852 * Return -1 if the structure was not cleaned up (if the cleanup had to be 3853 * done by a service procedure). 3854 * TBD - Should the return value distinguish between the tcp_t being 3855 * freed and it being reinitialized? 3856 */ 3857 static int 3858 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag) 3859 { 3860 mblk_t *mp; 3861 queue_t *q; 3862 3863 TCP_CLD_STAT(tag); 3864 3865 #if TCP_TAG_CLEAN_DEATH 3866 tcp->tcp_cleandeathtag = tag; 3867 #endif 3868 3869 if (tcp->tcp_fused) 3870 tcp_unfuse(tcp); 3871 3872 if (tcp->tcp_linger_tid != 0 && 3873 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 3874 tcp_stop_lingering(tcp); 3875 } 3876 3877 ASSERT(tcp != NULL); 3878 ASSERT((tcp->tcp_family == AF_INET && 3879 tcp->tcp_ipversion == IPV4_VERSION) || 3880 (tcp->tcp_family == AF_INET6 && 3881 (tcp->tcp_ipversion == IPV4_VERSION || 3882 tcp->tcp_ipversion == IPV6_VERSION))); 3883 3884 if (TCP_IS_DETACHED(tcp)) { 3885 if (tcp->tcp_hard_binding) { 3886 /* 3887 * Its an eager that we are dealing with. We close the 3888 * eager but in case a conn_ind has already gone to the 3889 * listener, let tcp_accept_finish() send a discon_ind 3890 * to the listener and drop the last reference. If the 3891 * listener doesn't even know about the eager i.e. the 3892 * conn_ind hasn't gone up, blow away the eager and drop 3893 * the last reference as well. If the conn_ind has gone 3894 * up, state should be BOUND. tcp_accept_finish 3895 * will figure out that the connection has received a 3896 * RST and will send a DISCON_IND to the application. 3897 */ 3898 tcp_closei_local(tcp); 3899 if (!tcp->tcp_tconnind_started) { 3900 CONN_DEC_REF(tcp->tcp_connp); 3901 } else { 3902 tcp->tcp_state = TCPS_BOUND; 3903 } 3904 } else { 3905 tcp_close_detached(tcp); 3906 } 3907 return (0); 3908 } 3909 3910 TCP_STAT(tcp_clean_death_nondetached); 3911 3912 /* 3913 * If T_ORDREL_IND has not been sent yet (done when service routine 3914 * is run) postpone cleaning up the endpoint until service routine 3915 * has sent up the T_ORDREL_IND. Avoid clearing out an existing 3916 * client_errno since tcp_close uses the client_errno field. 3917 */ 3918 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 3919 if (err != 0) 3920 tcp->tcp_client_errno = err; 3921 3922 tcp->tcp_deferred_clean_death = B_TRUE; 3923 return (-1); 3924 } 3925 3926 q = tcp->tcp_rq; 3927 3928 /* Trash all inbound data */ 3929 flushq(q, FLUSHALL); 3930 3931 /* 3932 * If we are at least part way open and there is error 3933 * (err==0 implies no error) 3934 * notify our client by a T_DISCON_IND. 3935 */ 3936 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 3937 if (tcp->tcp_state >= TCPS_ESTABLISHED && 3938 !TCP_IS_SOCKET(tcp)) { 3939 /* 3940 * Send M_FLUSH according to TPI. Because sockets will 3941 * (and must) ignore FLUSHR we do that only for TPI 3942 * endpoints and sockets in STREAMS mode. 3943 */ 3944 (void) putnextctl1(q, M_FLUSH, FLUSHR); 3945 } 3946 if (tcp->tcp_debug) { 3947 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 3948 "tcp_clean_death: discon err %d", err); 3949 } 3950 mp = mi_tpi_discon_ind(NULL, err, 0); 3951 if (mp != NULL) { 3952 putnext(q, mp); 3953 } else { 3954 if (tcp->tcp_debug) { 3955 (void) strlog(TCP_MOD_ID, 0, 1, 3956 SL_ERROR|SL_TRACE, 3957 "tcp_clean_death, sending M_ERROR"); 3958 } 3959 (void) putnextctl1(q, M_ERROR, EPROTO); 3960 } 3961 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 3962 /* SYN_SENT or SYN_RCVD */ 3963 BUMP_MIB(&tcp_mib, tcpAttemptFails); 3964 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 3965 /* ESTABLISHED or CLOSE_WAIT */ 3966 BUMP_MIB(&tcp_mib, tcpEstabResets); 3967 } 3968 } 3969 3970 tcp_reinit(tcp); 3971 return (-1); 3972 } 3973 3974 /* 3975 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 3976 * to expire, stop the wait and finish the close. 3977 */ 3978 static void 3979 tcp_stop_lingering(tcp_t *tcp) 3980 { 3981 clock_t delta = 0; 3982 3983 tcp->tcp_linger_tid = 0; 3984 if (tcp->tcp_state > TCPS_LISTEN) { 3985 tcp_acceptor_hash_remove(tcp); 3986 mutex_enter(&tcp->tcp_non_sq_lock); 3987 if (tcp->tcp_flow_stopped) { 3988 tcp_clrqfull(tcp); 3989 } 3990 mutex_exit(&tcp->tcp_non_sq_lock); 3991 3992 if (tcp->tcp_timer_tid != 0) { 3993 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 3994 tcp->tcp_timer_tid = 0; 3995 } 3996 /* 3997 * Need to cancel those timers which will not be used when 3998 * TCP is detached. This has to be done before the tcp_wq 3999 * is set to the global queue. 4000 */ 4001 tcp_timers_stop(tcp); 4002 4003 4004 tcp->tcp_detached = B_TRUE; 4005 tcp->tcp_rq = tcp_g_q; 4006 tcp->tcp_wq = WR(tcp_g_q); 4007 4008 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4009 tcp_time_wait_append(tcp); 4010 TCP_DBGSTAT(tcp_detach_time_wait); 4011 goto finish; 4012 } 4013 4014 /* 4015 * If delta is zero the timer event wasn't executed and was 4016 * successfully canceled. In this case we need to restart it 4017 * with the minimal delta possible. 4018 */ 4019 if (delta >= 0) { 4020 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4021 delta ? delta : 1); 4022 } 4023 } else { 4024 tcp_closei_local(tcp); 4025 CONN_DEC_REF(tcp->tcp_connp); 4026 } 4027 finish: 4028 /* Signal closing thread that it can complete close */ 4029 mutex_enter(&tcp->tcp_closelock); 4030 tcp->tcp_detached = B_TRUE; 4031 tcp->tcp_rq = tcp_g_q; 4032 tcp->tcp_wq = WR(tcp_g_q); 4033 tcp->tcp_closed = 1; 4034 cv_signal(&tcp->tcp_closecv); 4035 mutex_exit(&tcp->tcp_closelock); 4036 } 4037 4038 /* 4039 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 4040 * expires. 4041 */ 4042 static void 4043 tcp_close_linger_timeout(void *arg) 4044 { 4045 conn_t *connp = (conn_t *)arg; 4046 tcp_t *tcp = connp->conn_tcp; 4047 4048 tcp->tcp_client_errno = ETIMEDOUT; 4049 tcp_stop_lingering(tcp); 4050 } 4051 4052 static int 4053 tcp_close(queue_t *q, int flags) 4054 { 4055 conn_t *connp = Q_TO_CONN(q); 4056 tcp_t *tcp = connp->conn_tcp; 4057 mblk_t *mp = &tcp->tcp_closemp; 4058 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 4059 boolean_t linger_interrupted = B_FALSE; 4060 mblk_t *bp; 4061 4062 ASSERT(WR(q)->q_next == NULL); 4063 ASSERT(connp->conn_ref >= 2); 4064 ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0); 4065 4066 /* 4067 * We are being closed as /dev/tcp or /dev/tcp6. 4068 * 4069 * Mark the conn as closing. ill_pending_mp_add will not 4070 * add any mp to the pending mp list, after this conn has 4071 * started closing. Same for sq_pending_mp_add 4072 */ 4073 mutex_enter(&connp->conn_lock); 4074 connp->conn_state_flags |= CONN_CLOSING; 4075 if (connp->conn_oper_pending_ill != NULL) 4076 conn_ioctl_cleanup_reqd = B_TRUE; 4077 CONN_INC_REF_LOCKED(connp); 4078 mutex_exit(&connp->conn_lock); 4079 tcp->tcp_closeflags = (uint8_t)flags; 4080 ASSERT(connp->conn_ref >= 3); 4081 4082 /* 4083 * tcp_closemp_used is used below without any protection of a lock 4084 * as we don't expect any one else to use it concurrently at this 4085 * point otherwise it would be a major defect, though we do 4086 * increment tcp_closemp_used to record any attempt to reuse 4087 * tcp_closemp while it is still in use. This would help debugging. 4088 */ 4089 4090 if (mp->b_prev == NULL) { 4091 tcp->tcp_closemp_used = 1; 4092 } else { 4093 tcp->tcp_closemp_used++; 4094 ASSERT(mp->b_prev == NULL); 4095 } 4096 4097 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 4098 4099 (*tcp_squeue_close_proc)(connp->conn_sqp, mp, 4100 tcp_close_output, connp, SQTAG_IP_TCP_CLOSE); 4101 4102 mutex_enter(&tcp->tcp_closelock); 4103 while (!tcp->tcp_closed) { 4104 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 4105 /* 4106 * We got interrupted. Check if we are lingering, 4107 * if yes, post a message to stop and wait until 4108 * tcp_closed is set. If we aren't lingering, 4109 * just go back around. 4110 */ 4111 if (tcp->tcp_linger && 4112 tcp->tcp_lingertime > 0 && 4113 !linger_interrupted) { 4114 mutex_exit(&tcp->tcp_closelock); 4115 /* Entering squeue, bump ref count. */ 4116 CONN_INC_REF(connp); 4117 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 4118 squeue_enter(connp->conn_sqp, bp, 4119 tcp_linger_interrupted, connp, 4120 SQTAG_IP_TCP_CLOSE); 4121 linger_interrupted = B_TRUE; 4122 mutex_enter(&tcp->tcp_closelock); 4123 } 4124 } 4125 } 4126 mutex_exit(&tcp->tcp_closelock); 4127 4128 /* 4129 * In the case of listener streams that have eagers in the q or q0 4130 * we wait for the eagers to drop their reference to us. tcp_rq and 4131 * tcp_wq of the eagers point to our queues. By waiting for the 4132 * refcnt to drop to 1, we are sure that the eagers have cleaned 4133 * up their queue pointers and also dropped their references to us. 4134 */ 4135 if (tcp->tcp_wait_for_eagers) { 4136 mutex_enter(&connp->conn_lock); 4137 while (connp->conn_ref != 1) { 4138 cv_wait(&connp->conn_cv, &connp->conn_lock); 4139 } 4140 mutex_exit(&connp->conn_lock); 4141 } 4142 /* 4143 * ioctl cleanup. The mp is queued in the 4144 * ill_pending_mp or in the sq_pending_mp. 4145 */ 4146 if (conn_ioctl_cleanup_reqd) 4147 conn_ioctl_cleanup(connp); 4148 4149 qprocsoff(q); 4150 inet_minor_free(ip_minor_arena, connp->conn_dev); 4151 4152 tcp->tcp_cpid = -1; 4153 4154 /* 4155 * Drop IP's reference on the conn. This is the last reference 4156 * on the connp if the state was less than established. If the 4157 * connection has gone into timewait state, then we will have 4158 * one ref for the TCP and one more ref (total of two) for the 4159 * classifier connected hash list (a timewait connections stays 4160 * in connected hash till closed). 4161 * 4162 * We can't assert the references because there might be other 4163 * transient reference places because of some walkers or queued 4164 * packets in squeue for the timewait state. 4165 */ 4166 CONN_DEC_REF(connp); 4167 q->q_ptr = WR(q)->q_ptr = NULL; 4168 return (0); 4169 } 4170 4171 static int 4172 tcpclose_accept(queue_t *q) 4173 { 4174 ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit); 4175 4176 /* 4177 * We had opened an acceptor STREAM for sockfs which is 4178 * now being closed due to some error. 4179 */ 4180 qprocsoff(q); 4181 inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr); 4182 q->q_ptr = WR(q)->q_ptr = NULL; 4183 return (0); 4184 } 4185 4186 /* 4187 * Called by tcp_close() routine via squeue when lingering is 4188 * interrupted by a signal. 4189 */ 4190 4191 /* ARGSUSED */ 4192 static void 4193 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2) 4194 { 4195 conn_t *connp = (conn_t *)arg; 4196 tcp_t *tcp = connp->conn_tcp; 4197 4198 freeb(mp); 4199 if (tcp->tcp_linger_tid != 0 && 4200 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 4201 tcp_stop_lingering(tcp); 4202 tcp->tcp_client_errno = EINTR; 4203 } 4204 } 4205 4206 /* 4207 * Called by streams close routine via squeues when our client blows off her 4208 * descriptor, we take this to mean: "close the stream state NOW, close the tcp 4209 * connection politely" When SO_LINGER is set (with a non-zero linger time and 4210 * it is not a nonblocking socket) then this routine sleeps until the FIN is 4211 * acked. 4212 * 4213 * NOTE: tcp_close potentially returns error when lingering. 4214 * However, the stream head currently does not pass these errors 4215 * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK 4216 * errors to the application (from tsleep()) and not errors 4217 * like ECONNRESET caused by receiving a reset packet. 4218 */ 4219 4220 /* ARGSUSED */ 4221 static void 4222 tcp_close_output(void *arg, mblk_t *mp, void *arg2) 4223 { 4224 char *msg; 4225 conn_t *connp = (conn_t *)arg; 4226 tcp_t *tcp = connp->conn_tcp; 4227 clock_t delta = 0; 4228 4229 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 4230 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 4231 4232 /* Cancel any pending timeout */ 4233 if (tcp->tcp_ordrelid != 0) { 4234 if (tcp->tcp_timeout) { 4235 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid); 4236 } 4237 tcp->tcp_ordrelid = 0; 4238 tcp->tcp_timeout = B_FALSE; 4239 } 4240 4241 mutex_enter(&tcp->tcp_eager_lock); 4242 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 4243 /* Cleanup for listener */ 4244 tcp_eager_cleanup(tcp, 0); 4245 tcp->tcp_wait_for_eagers = 1; 4246 } 4247 mutex_exit(&tcp->tcp_eager_lock); 4248 4249 connp->conn_mdt_ok = B_FALSE; 4250 tcp->tcp_mdt = B_FALSE; 4251 4252 connp->conn_lso_ok = B_FALSE; 4253 tcp->tcp_lso = B_FALSE; 4254 4255 msg = NULL; 4256 switch (tcp->tcp_state) { 4257 case TCPS_CLOSED: 4258 case TCPS_IDLE: 4259 case TCPS_BOUND: 4260 case TCPS_LISTEN: 4261 break; 4262 case TCPS_SYN_SENT: 4263 msg = "tcp_close, during connect"; 4264 break; 4265 case TCPS_SYN_RCVD: 4266 /* 4267 * Close during the connect 3-way handshake 4268 * but here there may or may not be pending data 4269 * already on queue. Process almost same as in 4270 * the ESTABLISHED state. 4271 */ 4272 /* FALLTHRU */ 4273 default: 4274 if (tcp->tcp_fused) 4275 tcp_unfuse(tcp); 4276 4277 /* 4278 * If SO_LINGER has set a zero linger time, abort the 4279 * connection with a reset. 4280 */ 4281 if (tcp->tcp_linger && tcp->tcp_lingertime == 0) { 4282 msg = "tcp_close, zero lingertime"; 4283 break; 4284 } 4285 4286 ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding); 4287 /* 4288 * Abort connection if there is unread data queued. 4289 */ 4290 if (tcp->tcp_rcv_list || tcp->tcp_reass_head) { 4291 msg = "tcp_close, unread data"; 4292 break; 4293 } 4294 /* 4295 * tcp_hard_bound is now cleared thus all packets go through 4296 * tcp_lookup. This fact is used by tcp_detach below. 4297 * 4298 * We have done a qwait() above which could have possibly 4299 * drained more messages in turn causing transition to a 4300 * different state. Check whether we have to do the rest 4301 * of the processing or not. 4302 */ 4303 if (tcp->tcp_state <= TCPS_LISTEN) 4304 break; 4305 4306 /* 4307 * Transmit the FIN before detaching the tcp_t. 4308 * After tcp_detach returns this queue/perimeter 4309 * no longer owns the tcp_t thus others can modify it. 4310 */ 4311 (void) tcp_xmit_end(tcp); 4312 4313 /* 4314 * If lingering on close then wait until the fin is acked, 4315 * the SO_LINGER time passes, or a reset is sent/received. 4316 */ 4317 if (tcp->tcp_linger && tcp->tcp_lingertime > 0 && 4318 !(tcp->tcp_fin_acked) && 4319 tcp->tcp_state >= TCPS_ESTABLISHED) { 4320 if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) { 4321 tcp->tcp_client_errno = EWOULDBLOCK; 4322 } else if (tcp->tcp_client_errno == 0) { 4323 4324 ASSERT(tcp->tcp_linger_tid == 0); 4325 4326 tcp->tcp_linger_tid = TCP_TIMER(tcp, 4327 tcp_close_linger_timeout, 4328 tcp->tcp_lingertime * hz); 4329 4330 /* tcp_close_linger_timeout will finish close */ 4331 if (tcp->tcp_linger_tid == 0) 4332 tcp->tcp_client_errno = ENOSR; 4333 else 4334 return; 4335 } 4336 4337 /* 4338 * Check if we need to detach or just close 4339 * the instance. 4340 */ 4341 if (tcp->tcp_state <= TCPS_LISTEN) 4342 break; 4343 } 4344 4345 /* 4346 * Make sure that no other thread will access the tcp_rq of 4347 * this instance (through lookups etc.) as tcp_rq will go 4348 * away shortly. 4349 */ 4350 tcp_acceptor_hash_remove(tcp); 4351 4352 mutex_enter(&tcp->tcp_non_sq_lock); 4353 if (tcp->tcp_flow_stopped) { 4354 tcp_clrqfull(tcp); 4355 } 4356 mutex_exit(&tcp->tcp_non_sq_lock); 4357 4358 if (tcp->tcp_timer_tid != 0) { 4359 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4360 tcp->tcp_timer_tid = 0; 4361 } 4362 /* 4363 * Need to cancel those timers which will not be used when 4364 * TCP is detached. This has to be done before the tcp_wq 4365 * is set to the global queue. 4366 */ 4367 tcp_timers_stop(tcp); 4368 4369 tcp->tcp_detached = B_TRUE; 4370 if (tcp->tcp_state == TCPS_TIME_WAIT) { 4371 tcp_time_wait_append(tcp); 4372 TCP_DBGSTAT(tcp_detach_time_wait); 4373 ASSERT(connp->conn_ref >= 3); 4374 goto finish; 4375 } 4376 4377 /* 4378 * If delta is zero the timer event wasn't executed and was 4379 * successfully canceled. In this case we need to restart it 4380 * with the minimal delta possible. 4381 */ 4382 if (delta >= 0) 4383 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 4384 delta ? delta : 1); 4385 4386 ASSERT(connp->conn_ref >= 3); 4387 goto finish; 4388 } 4389 4390 /* Detach did not complete. Still need to remove q from stream. */ 4391 if (msg) { 4392 if (tcp->tcp_state == TCPS_ESTABLISHED || 4393 tcp->tcp_state == TCPS_CLOSE_WAIT) 4394 BUMP_MIB(&tcp_mib, tcpEstabResets); 4395 if (tcp->tcp_state == TCPS_SYN_SENT || 4396 tcp->tcp_state == TCPS_SYN_RCVD) 4397 BUMP_MIB(&tcp_mib, tcpAttemptFails); 4398 tcp_xmit_ctl(msg, tcp, tcp->tcp_snxt, 0, TH_RST); 4399 } 4400 4401 tcp_closei_local(tcp); 4402 CONN_DEC_REF(connp); 4403 ASSERT(connp->conn_ref >= 2); 4404 4405 finish: 4406 /* 4407 * Although packets are always processed on the correct 4408 * tcp's perimeter and access is serialized via squeue's, 4409 * IP still needs a queue when sending packets in time_wait 4410 * state so use WR(tcp_g_q) till ip_output() can be 4411 * changed to deal with just connp. For read side, we 4412 * could have set tcp_rq to NULL but there are some cases 4413 * in tcp_rput_data() from early days of this code which 4414 * do a putnext without checking if tcp is closed. Those 4415 * need to be identified before both tcp_rq and tcp_wq 4416 * can be set to NULL and tcp_q_q can disappear forever. 4417 */ 4418 mutex_enter(&tcp->tcp_closelock); 4419 /* 4420 * Don't change the queues in the case of a listener that has 4421 * eagers in its q or q0. It could surprise the eagers. 4422 * Instead wait for the eagers outside the squeue. 4423 */ 4424 if (!tcp->tcp_wait_for_eagers) { 4425 tcp->tcp_detached = B_TRUE; 4426 tcp->tcp_rq = tcp_g_q; 4427 tcp->tcp_wq = WR(tcp_g_q); 4428 } 4429 4430 /* Signal tcp_close() to finish closing. */ 4431 tcp->tcp_closed = 1; 4432 cv_signal(&tcp->tcp_closecv); 4433 mutex_exit(&tcp->tcp_closelock); 4434 } 4435 4436 4437 /* 4438 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 4439 * Some stream heads get upset if they see these later on as anything but NULL. 4440 */ 4441 static void 4442 tcp_close_mpp(mblk_t **mpp) 4443 { 4444 mblk_t *mp; 4445 4446 if ((mp = *mpp) != NULL) { 4447 do { 4448 mp->b_next = NULL; 4449 mp->b_prev = NULL; 4450 } while ((mp = mp->b_cont) != NULL); 4451 4452 mp = *mpp; 4453 *mpp = NULL; 4454 freemsg(mp); 4455 } 4456 } 4457 4458 /* Do detached close. */ 4459 static void 4460 tcp_close_detached(tcp_t *tcp) 4461 { 4462 if (tcp->tcp_fused) 4463 tcp_unfuse(tcp); 4464 4465 /* 4466 * Clustering code serializes TCP disconnect callbacks and 4467 * cluster tcp list walks by blocking a TCP disconnect callback 4468 * if a cluster tcp list walk is in progress. This ensures 4469 * accurate accounting of TCPs in the cluster code even though 4470 * the TCP list walk itself is not atomic. 4471 */ 4472 tcp_closei_local(tcp); 4473 CONN_DEC_REF(tcp->tcp_connp); 4474 } 4475 4476 /* 4477 * Stop all TCP timers, and free the timer mblks if requested. 4478 */ 4479 void 4480 tcp_timers_stop(tcp_t *tcp) 4481 { 4482 if (tcp->tcp_timer_tid != 0) { 4483 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 4484 tcp->tcp_timer_tid = 0; 4485 } 4486 if (tcp->tcp_ka_tid != 0) { 4487 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 4488 tcp->tcp_ka_tid = 0; 4489 } 4490 if (tcp->tcp_ack_tid != 0) { 4491 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 4492 tcp->tcp_ack_tid = 0; 4493 } 4494 if (tcp->tcp_push_tid != 0) { 4495 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 4496 tcp->tcp_push_tid = 0; 4497 } 4498 } 4499 4500 /* 4501 * The tcp_t is going away. Remove it from all lists and set it 4502 * to TCPS_CLOSED. The freeing up of memory is deferred until 4503 * tcp_inactive. This is needed since a thread in tcp_rput might have 4504 * done a CONN_INC_REF on this structure before it was removed from the 4505 * hashes. 4506 */ 4507 static void 4508 tcp_closei_local(tcp_t *tcp) 4509 { 4510 ire_t *ire; 4511 conn_t *connp = tcp->tcp_connp; 4512 4513 if (!TCP_IS_SOCKET(tcp)) 4514 tcp_acceptor_hash_remove(tcp); 4515 4516 UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs); 4517 tcp->tcp_ibsegs = 0; 4518 UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs); 4519 tcp->tcp_obsegs = 0; 4520 4521 /* 4522 * If we are an eager connection hanging off a listener that 4523 * hasn't formally accepted the connection yet, get off his 4524 * list and blow off any data that we have accumulated. 4525 */ 4526 if (tcp->tcp_listener != NULL) { 4527 tcp_t *listener = tcp->tcp_listener; 4528 mutex_enter(&listener->tcp_eager_lock); 4529 /* 4530 * tcp_tconnind_started == B_TRUE means that the 4531 * conn_ind has already gone to listener. At 4532 * this point, eager will be closed but we 4533 * leave it in listeners eager list so that 4534 * if listener decides to close without doing 4535 * accept, we can clean this up. In tcp_wput_accept 4536 * we take care of the case of accept on closed 4537 * eager. 4538 */ 4539 if (!tcp->tcp_tconnind_started) { 4540 tcp_eager_unlink(tcp); 4541 mutex_exit(&listener->tcp_eager_lock); 4542 /* 4543 * We don't want to have any pointers to the 4544 * listener queue, after we have released our 4545 * reference on the listener 4546 */ 4547 tcp->tcp_rq = tcp_g_q; 4548 tcp->tcp_wq = WR(tcp_g_q); 4549 CONN_DEC_REF(listener->tcp_connp); 4550 } else { 4551 mutex_exit(&listener->tcp_eager_lock); 4552 } 4553 } 4554 4555 /* Stop all the timers */ 4556 tcp_timers_stop(tcp); 4557 4558 if (tcp->tcp_state == TCPS_LISTEN) { 4559 if (tcp->tcp_ip_addr_cache) { 4560 kmem_free((void *)tcp->tcp_ip_addr_cache, 4561 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 4562 tcp->tcp_ip_addr_cache = NULL; 4563 } 4564 } 4565 mutex_enter(&tcp->tcp_non_sq_lock); 4566 if (tcp->tcp_flow_stopped) 4567 tcp_clrqfull(tcp); 4568 mutex_exit(&tcp->tcp_non_sq_lock); 4569 4570 tcp_bind_hash_remove(tcp); 4571 /* 4572 * If the tcp_time_wait_collector (which runs outside the squeue) 4573 * is trying to remove this tcp from the time wait list, we will 4574 * block in tcp_time_wait_remove while trying to acquire the 4575 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 4576 * requires the ipcl_hash_remove to be ordered after the 4577 * tcp_time_wait_remove for the refcnt checks to work correctly. 4578 */ 4579 if (tcp->tcp_state == TCPS_TIME_WAIT) 4580 (void) tcp_time_wait_remove(tcp, NULL); 4581 CL_INET_DISCONNECT(tcp); 4582 ipcl_hash_remove(connp); 4583 4584 /* 4585 * Delete the cached ire in conn_ire_cache and also mark 4586 * the conn as CONDEMNED 4587 */ 4588 mutex_enter(&connp->conn_lock); 4589 connp->conn_state_flags |= CONN_CONDEMNED; 4590 ire = connp->conn_ire_cache; 4591 connp->conn_ire_cache = NULL; 4592 mutex_exit(&connp->conn_lock); 4593 if (ire != NULL) 4594 IRE_REFRELE_NOTR(ire); 4595 4596 /* Need to cleanup any pending ioctls */ 4597 ASSERT(tcp->tcp_time_wait_next == NULL); 4598 ASSERT(tcp->tcp_time_wait_prev == NULL); 4599 ASSERT(tcp->tcp_time_wait_expire == 0); 4600 tcp->tcp_state = TCPS_CLOSED; 4601 4602 /* Release any SSL context */ 4603 if (tcp->tcp_kssl_ent != NULL) { 4604 kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY); 4605 tcp->tcp_kssl_ent = NULL; 4606 } 4607 if (tcp->tcp_kssl_ctx != NULL) { 4608 kssl_release_ctx(tcp->tcp_kssl_ctx); 4609 tcp->tcp_kssl_ctx = NULL; 4610 } 4611 tcp->tcp_kssl_pending = B_FALSE; 4612 } 4613 4614 /* 4615 * tcp is dying (called from ipcl_conn_destroy and error cases). 4616 * Free the tcp_t in either case. 4617 */ 4618 void 4619 tcp_free(tcp_t *tcp) 4620 { 4621 mblk_t *mp; 4622 ip6_pkt_t *ipp; 4623 4624 ASSERT(tcp != NULL); 4625 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 4626 4627 tcp->tcp_rq = NULL; 4628 tcp->tcp_wq = NULL; 4629 4630 tcp_close_mpp(&tcp->tcp_xmit_head); 4631 tcp_close_mpp(&tcp->tcp_reass_head); 4632 if (tcp->tcp_rcv_list != NULL) { 4633 /* Free b_next chain */ 4634 tcp_close_mpp(&tcp->tcp_rcv_list); 4635 } 4636 if ((mp = tcp->tcp_urp_mp) != NULL) { 4637 freemsg(mp); 4638 } 4639 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 4640 freemsg(mp); 4641 } 4642 4643 if (tcp->tcp_fused_sigurg_mp != NULL) { 4644 freeb(tcp->tcp_fused_sigurg_mp); 4645 tcp->tcp_fused_sigurg_mp = NULL; 4646 } 4647 4648 if (tcp->tcp_sack_info != NULL) { 4649 if (tcp->tcp_notsack_list != NULL) { 4650 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 4651 } 4652 bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 4653 } 4654 4655 if (tcp->tcp_hopopts != NULL) { 4656 mi_free(tcp->tcp_hopopts); 4657 tcp->tcp_hopopts = NULL; 4658 tcp->tcp_hopoptslen = 0; 4659 } 4660 ASSERT(tcp->tcp_hopoptslen == 0); 4661 if (tcp->tcp_dstopts != NULL) { 4662 mi_free(tcp->tcp_dstopts); 4663 tcp->tcp_dstopts = NULL; 4664 tcp->tcp_dstoptslen = 0; 4665 } 4666 ASSERT(tcp->tcp_dstoptslen == 0); 4667 if (tcp->tcp_rtdstopts != NULL) { 4668 mi_free(tcp->tcp_rtdstopts); 4669 tcp->tcp_rtdstopts = NULL; 4670 tcp->tcp_rtdstoptslen = 0; 4671 } 4672 ASSERT(tcp->tcp_rtdstoptslen == 0); 4673 if (tcp->tcp_rthdr != NULL) { 4674 mi_free(tcp->tcp_rthdr); 4675 tcp->tcp_rthdr = NULL; 4676 tcp->tcp_rthdrlen = 0; 4677 } 4678 ASSERT(tcp->tcp_rthdrlen == 0); 4679 4680 ipp = &tcp->tcp_sticky_ipp; 4681 if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS | 4682 IPPF_RTHDR)) 4683 ip6_pkt_free(ipp); 4684 4685 /* 4686 * Free memory associated with the tcp/ip header template. 4687 */ 4688 4689 if (tcp->tcp_iphc != NULL) 4690 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 4691 4692 /* 4693 * Following is really a blowing away a union. 4694 * It happens to have exactly two members of identical size 4695 * the following code is enough. 4696 */ 4697 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 4698 4699 if (tcp->tcp_tracebuf != NULL) { 4700 kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 4701 tcp->tcp_tracebuf = NULL; 4702 } 4703 } 4704 4705 4706 /* 4707 * Put a connection confirmation message upstream built from the 4708 * address information within 'iph' and 'tcph'. Report our success or failure. 4709 */ 4710 static boolean_t 4711 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp, 4712 mblk_t **defermp) 4713 { 4714 sin_t sin; 4715 sin6_t sin6; 4716 mblk_t *mp; 4717 char *optp = NULL; 4718 int optlen = 0; 4719 cred_t *cr; 4720 4721 if (defermp != NULL) 4722 *defermp = NULL; 4723 4724 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) { 4725 /* 4726 * Return in T_CONN_CON results of option negotiation through 4727 * the T_CONN_REQ. Note: If there is an real end-to-end option 4728 * negotiation, then what is received from remote end needs 4729 * to be taken into account but there is no such thing (yet?) 4730 * in our TCP/IP. 4731 * Note: We do not use mi_offset_param() here as 4732 * tcp_opts_conn_req contents do not directly come from 4733 * an application and are either generated in kernel or 4734 * from user input that was already verified. 4735 */ 4736 mp = tcp->tcp_conn.tcp_opts_conn_req; 4737 optp = (char *)(mp->b_rptr + 4738 ((struct T_conn_req *)mp->b_rptr)->OPT_offset); 4739 optlen = (int) 4740 ((struct T_conn_req *)mp->b_rptr)->OPT_length; 4741 } 4742 4743 if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) { 4744 ipha_t *ipha = (ipha_t *)iphdr; 4745 4746 /* packet is IPv4 */ 4747 if (tcp->tcp_family == AF_INET) { 4748 sin = sin_null; 4749 sin.sin_addr.s_addr = ipha->ipha_src; 4750 sin.sin_port = *(uint16_t *)tcph->th_lport; 4751 sin.sin_family = AF_INET; 4752 mp = mi_tpi_conn_con(NULL, (char *)&sin, 4753 (int)sizeof (sin_t), optp, optlen); 4754 } else { 4755 sin6 = sin6_null; 4756 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4757 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4758 sin6.sin6_family = AF_INET6; 4759 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4760 (int)sizeof (sin6_t), optp, optlen); 4761 4762 } 4763 } else { 4764 ip6_t *ip6h = (ip6_t *)iphdr; 4765 4766 ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION); 4767 ASSERT(tcp->tcp_family == AF_INET6); 4768 sin6 = sin6_null; 4769 sin6.sin6_addr = ip6h->ip6_src; 4770 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4771 sin6.sin6_family = AF_INET6; 4772 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4773 mp = mi_tpi_conn_con(NULL, (char *)&sin6, 4774 (int)sizeof (sin6_t), optp, optlen); 4775 } 4776 4777 if (!mp) 4778 return (B_FALSE); 4779 4780 if ((cr = DB_CRED(idmp)) != NULL) { 4781 mblk_setcred(mp, cr); 4782 DB_CPID(mp) = DB_CPID(idmp); 4783 } 4784 4785 if (defermp == NULL) 4786 putnext(tcp->tcp_rq, mp); 4787 else 4788 *defermp = mp; 4789 4790 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4791 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4792 return (B_TRUE); 4793 } 4794 4795 /* 4796 * Defense for the SYN attack - 4797 * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest 4798 * one from the list of droppable eagers. This list is a subset of q0. 4799 * see comments before the definition of MAKE_DROPPABLE(). 4800 * 2. Don't drop a SYN request before its first timeout. This gives every 4801 * request at least til the first timeout to complete its 3-way handshake. 4802 * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many 4803 * requests currently on the queue that has timed out. This will be used 4804 * as an indicator of whether an attack is under way, so that appropriate 4805 * actions can be taken. (It's incremented in tcp_timer() and decremented 4806 * either when eager goes into ESTABLISHED, or gets freed up.) 4807 * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on 4808 * # of timeout drops back to <= q0len/32 => SYN alert off 4809 */ 4810 static boolean_t 4811 tcp_drop_q0(tcp_t *tcp) 4812 { 4813 tcp_t *eager; 4814 mblk_t *mp; 4815 4816 ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock)); 4817 ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0); 4818 4819 /* Pick oldest eager from the list of droppable eagers */ 4820 eager = tcp->tcp_eager_prev_drop_q0; 4821 4822 /* If list is empty. return B_FALSE */ 4823 if (eager == tcp) { 4824 return (B_FALSE); 4825 } 4826 4827 /* If allocated, the mp will be freed in tcp_clean_death_wrapper() */ 4828 if ((mp = allocb(0, BPRI_HI)) == NULL) 4829 return (B_FALSE); 4830 4831 /* 4832 * Take this eager out from the list of droppable eagers since we are 4833 * going to drop it. 4834 */ 4835 MAKE_UNDROPPABLE(eager); 4836 4837 if (tcp->tcp_debug) { 4838 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 4839 "tcp_drop_q0: listen half-open queue (max=%d) overflow" 4840 " (%d pending) on %s, drop one", tcp_conn_req_max_q0, 4841 tcp->tcp_conn_req_cnt_q0, 4842 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 4843 } 4844 4845 BUMP_MIB(&tcp_mib, tcpHalfOpenDrop); 4846 4847 /* Put a reference on the conn as we are enqueueing it in the sqeue */ 4848 CONN_INC_REF(eager->tcp_connp); 4849 4850 /* Mark the IRE created for this SYN request temporary */ 4851 tcp_ip_ire_mark_advice(eager); 4852 squeue_fill(eager->tcp_connp->conn_sqp, mp, 4853 tcp_clean_death_wrapper, eager->tcp_connp, SQTAG_TCP_DROP_Q0); 4854 4855 return (B_TRUE); 4856 } 4857 4858 int 4859 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp, 4860 tcph_t *tcph, uint_t ipvers, mblk_t *idmp) 4861 { 4862 tcp_t *ltcp = lconnp->conn_tcp; 4863 tcp_t *tcp = connp->conn_tcp; 4864 mblk_t *tpi_mp; 4865 ipha_t *ipha; 4866 ip6_t *ip6h; 4867 sin6_t sin6; 4868 in6_addr_t v6dst; 4869 int err; 4870 int ifindex = 0; 4871 cred_t *cr; 4872 4873 if (ipvers == IPV4_VERSION) { 4874 ipha = (ipha_t *)mp->b_rptr; 4875 4876 connp->conn_send = ip_output; 4877 connp->conn_recv = tcp_input; 4878 4879 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 4880 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 4881 4882 sin6 = sin6_null; 4883 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr); 4884 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst); 4885 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4886 sin6.sin6_family = AF_INET6; 4887 sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst, 4888 lconnp->conn_zoneid); 4889 if (tcp->tcp_recvdstaddr) { 4890 sin6_t sin6d; 4891 4892 sin6d = sin6_null; 4893 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, 4894 &sin6d.sin6_addr); 4895 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4896 sin6d.sin6_family = AF_INET; 4897 tpi_mp = mi_tpi_extconn_ind(NULL, 4898 (char *)&sin6d, sizeof (sin6_t), 4899 (char *)&tcp, 4900 (t_scalar_t)sizeof (intptr_t), 4901 (char *)&sin6d, sizeof (sin6_t), 4902 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4903 } else { 4904 tpi_mp = mi_tpi_conn_ind(NULL, 4905 (char *)&sin6, sizeof (sin6_t), 4906 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4907 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4908 } 4909 } else { 4910 ip6h = (ip6_t *)mp->b_rptr; 4911 4912 connp->conn_send = ip_output_v6; 4913 connp->conn_recv = tcp_input; 4914 4915 connp->conn_srcv6 = ip6h->ip6_dst; 4916 connp->conn_remv6 = ip6h->ip6_src; 4917 4918 /* db_cksumstuff is set at ip_fanout_tcp_v6 */ 4919 ifindex = (int)DB_CKSUMSTUFF(mp); 4920 DB_CKSUMSTUFF(mp) = 0; 4921 4922 sin6 = sin6_null; 4923 sin6.sin6_addr = ip6h->ip6_src; 4924 sin6.sin6_port = *(uint16_t *)tcph->th_lport; 4925 sin6.sin6_family = AF_INET6; 4926 sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK; 4927 sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst, 4928 lconnp->conn_zoneid); 4929 4930 if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4931 /* Pass up the scope_id of remote addr */ 4932 sin6.sin6_scope_id = ifindex; 4933 } else { 4934 sin6.sin6_scope_id = 0; 4935 } 4936 if (tcp->tcp_recvdstaddr) { 4937 sin6_t sin6d; 4938 4939 sin6d = sin6_null; 4940 sin6.sin6_addr = ip6h->ip6_dst; 4941 sin6d.sin6_port = *(uint16_t *)tcph->th_fport; 4942 sin6d.sin6_family = AF_INET; 4943 tpi_mp = mi_tpi_extconn_ind(NULL, 4944 (char *)&sin6d, sizeof (sin6_t), 4945 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4946 (char *)&sin6d, sizeof (sin6_t), 4947 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4948 } else { 4949 tpi_mp = mi_tpi_conn_ind(NULL, 4950 (char *)&sin6, sizeof (sin6_t), 4951 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 4952 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 4953 } 4954 } 4955 4956 if (tpi_mp == NULL) 4957 return (ENOMEM); 4958 4959 connp->conn_fport = *(uint16_t *)tcph->th_lport; 4960 connp->conn_lport = *(uint16_t *)tcph->th_fport; 4961 connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER); 4962 connp->conn_fully_bound = B_FALSE; 4963 4964 if (tcp_trace) 4965 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 4966 4967 /* Inherit information from the "parent" */ 4968 tcp->tcp_ipversion = ltcp->tcp_ipversion; 4969 tcp->tcp_family = ltcp->tcp_family; 4970 tcp->tcp_wq = ltcp->tcp_wq; 4971 tcp->tcp_rq = ltcp->tcp_rq; 4972 tcp->tcp_mss = tcp_mss_def_ipv6; 4973 tcp->tcp_detached = B_TRUE; 4974 if ((err = tcp_init_values(tcp)) != 0) { 4975 freemsg(tpi_mp); 4976 return (err); 4977 } 4978 4979 if (ipvers == IPV4_VERSION) { 4980 if ((err = tcp_header_init_ipv4(tcp)) != 0) { 4981 freemsg(tpi_mp); 4982 return (err); 4983 } 4984 ASSERT(tcp->tcp_ipha != NULL); 4985 } else { 4986 /* ifindex must be already set */ 4987 ASSERT(ifindex != 0); 4988 4989 if (ltcp->tcp_bound_if != 0) { 4990 /* 4991 * Set newtcp's bound_if equal to 4992 * listener's value. If ifindex is 4993 * not the same as ltcp->tcp_bound_if, 4994 * it must be a packet for the ipmp group 4995 * of interfaces 4996 */ 4997 tcp->tcp_bound_if = ltcp->tcp_bound_if; 4998 } else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) { 4999 tcp->tcp_bound_if = ifindex; 5000 } 5001 5002 tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary; 5003 tcp->tcp_recvifindex = 0; 5004 tcp->tcp_recvhops = 0xffffffffU; 5005 ASSERT(tcp->tcp_ip6h != NULL); 5006 } 5007 5008 tcp->tcp_lport = ltcp->tcp_lport; 5009 5010 if (ltcp->tcp_ipversion == tcp->tcp_ipversion) { 5011 if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) { 5012 /* 5013 * Listener had options of some sort; eager inherits. 5014 * Free up the eager template and allocate one 5015 * of the right size. 5016 */ 5017 if (tcp->tcp_hdr_grown) { 5018 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 5019 } else { 5020 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 5021 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 5022 } 5023 tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len, 5024 KM_NOSLEEP); 5025 if (tcp->tcp_iphc == NULL) { 5026 tcp->tcp_iphc_len = 0; 5027 freemsg(tpi_mp); 5028 return (ENOMEM); 5029 } 5030 tcp->tcp_iphc_len = ltcp->tcp_iphc_len; 5031 tcp->tcp_hdr_grown = B_TRUE; 5032 } 5033 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5034 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5035 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5036 tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops; 5037 tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf; 5038 5039 /* 5040 * Copy the IP+TCP header template from listener to eager 5041 */ 5042 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5043 if (tcp->tcp_ipversion == IPV6_VERSION) { 5044 if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt == 5045 IPPROTO_RAW) { 5046 tcp->tcp_ip6h = 5047 (ip6_t *)(tcp->tcp_iphc + 5048 sizeof (ip6i_t)); 5049 } else { 5050 tcp->tcp_ip6h = 5051 (ip6_t *)(tcp->tcp_iphc); 5052 } 5053 tcp->tcp_ipha = NULL; 5054 } else { 5055 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5056 tcp->tcp_ip6h = NULL; 5057 } 5058 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5059 tcp->tcp_ip_hdr_len); 5060 } else { 5061 /* 5062 * only valid case when ipversion of listener and 5063 * eager differ is when listener is IPv6 and 5064 * eager is IPv4. 5065 * Eager header template has been initialized to the 5066 * maximum v4 header sizes, which includes space for 5067 * TCP and IP options. 5068 */ 5069 ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) && 5070 (tcp->tcp_ipversion == IPV4_VERSION)); 5071 ASSERT(tcp->tcp_iphc_len >= 5072 TCP_MAX_COMBINED_HEADER_LENGTH); 5073 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5074 /* copy IP header fields individually */ 5075 tcp->tcp_ipha->ipha_ttl = 5076 ltcp->tcp_ip6h->ip6_hops; 5077 bcopy(ltcp->tcp_tcph->th_lport, 5078 tcp->tcp_tcph->th_lport, sizeof (ushort_t)); 5079 } 5080 5081 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5082 bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport, 5083 sizeof (in_port_t)); 5084 5085 if (ltcp->tcp_lport == 0) { 5086 tcp->tcp_lport = *(in_port_t *)tcph->th_fport; 5087 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, 5088 sizeof (in_port_t)); 5089 } 5090 5091 if (tcp->tcp_ipversion == IPV4_VERSION) { 5092 ASSERT(ipha != NULL); 5093 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5094 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5095 5096 /* Source routing option copyover (reverse it) */ 5097 if (tcp_rev_src_routes) 5098 tcp_opt_reverse(tcp, ipha); 5099 } else { 5100 ASSERT(ip6h != NULL); 5101 tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src; 5102 tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst; 5103 } 5104 5105 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5106 ASSERT(!tcp->tcp_tconnind_started); 5107 /* 5108 * If the SYN contains a credential, it's a loopback packet; attach 5109 * the credential to the TPI message. 5110 */ 5111 if ((cr = DB_CRED(idmp)) != NULL) { 5112 mblk_setcred(tpi_mp, cr); 5113 DB_CPID(tpi_mp) = DB_CPID(idmp); 5114 } 5115 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5116 5117 /* Inherit the listener's SSL protection state */ 5118 5119 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5120 kssl_hold_ent(tcp->tcp_kssl_ent); 5121 tcp->tcp_kssl_pending = B_TRUE; 5122 } 5123 5124 return (0); 5125 } 5126 5127 5128 int 5129 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha, 5130 tcph_t *tcph, mblk_t *idmp) 5131 { 5132 tcp_t *ltcp = lconnp->conn_tcp; 5133 tcp_t *tcp = connp->conn_tcp; 5134 sin_t sin; 5135 mblk_t *tpi_mp = NULL; 5136 int err; 5137 cred_t *cr; 5138 5139 sin = sin_null; 5140 sin.sin_addr.s_addr = ipha->ipha_src; 5141 sin.sin_port = *(uint16_t *)tcph->th_lport; 5142 sin.sin_family = AF_INET; 5143 if (ltcp->tcp_recvdstaddr) { 5144 sin_t sind; 5145 5146 sind = sin_null; 5147 sind.sin_addr.s_addr = ipha->ipha_dst; 5148 sind.sin_port = *(uint16_t *)tcph->th_fport; 5149 sind.sin_family = AF_INET; 5150 tpi_mp = mi_tpi_extconn_ind(NULL, 5151 (char *)&sind, sizeof (sin_t), (char *)&tcp, 5152 (t_scalar_t)sizeof (intptr_t), (char *)&sind, 5153 sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5154 } else { 5155 tpi_mp = mi_tpi_conn_ind(NULL, 5156 (char *)&sin, sizeof (sin_t), 5157 (char *)&tcp, (t_scalar_t)sizeof (intptr_t), 5158 (t_scalar_t)ltcp->tcp_conn_req_seqnum); 5159 } 5160 5161 if (tpi_mp == NULL) { 5162 return (ENOMEM); 5163 } 5164 5165 connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER); 5166 connp->conn_send = ip_output; 5167 connp->conn_recv = tcp_input; 5168 connp->conn_fully_bound = B_FALSE; 5169 5170 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6); 5171 IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6); 5172 connp->conn_fport = *(uint16_t *)tcph->th_lport; 5173 connp->conn_lport = *(uint16_t *)tcph->th_fport; 5174 5175 if (tcp_trace) { 5176 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP); 5177 } 5178 5179 /* Inherit information from the "parent" */ 5180 tcp->tcp_ipversion = ltcp->tcp_ipversion; 5181 tcp->tcp_family = ltcp->tcp_family; 5182 tcp->tcp_wq = ltcp->tcp_wq; 5183 tcp->tcp_rq = ltcp->tcp_rq; 5184 tcp->tcp_mss = tcp_mss_def_ipv4; 5185 tcp->tcp_detached = B_TRUE; 5186 if ((err = tcp_init_values(tcp)) != 0) { 5187 freemsg(tpi_mp); 5188 return (err); 5189 } 5190 5191 /* 5192 * Let's make sure that eager tcp template has enough space to 5193 * copy IPv4 listener's tcp template. Since the conn_t structure is 5194 * preserved and tcp_iphc_len is also preserved, an eager conn_t may 5195 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or 5196 * more (in case of re-allocation of conn_t with tcp-IPv6 template with 5197 * extension headers or with ip6i_t struct). Note that bcopy() below 5198 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_ 5199 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener. 5200 */ 5201 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 5202 ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH); 5203 5204 tcp->tcp_hdr_len = ltcp->tcp_hdr_len; 5205 tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len; 5206 tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len; 5207 tcp->tcp_ttl = ltcp->tcp_ttl; 5208 tcp->tcp_tos = ltcp->tcp_tos; 5209 5210 /* Copy the IP+TCP header template from listener to eager */ 5211 bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len); 5212 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 5213 tcp->tcp_ip6h = NULL; 5214 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + 5215 tcp->tcp_ip_hdr_len); 5216 5217 /* Initialize the IP addresses and Ports */ 5218 tcp->tcp_ipha->ipha_dst = ipha->ipha_src; 5219 tcp->tcp_ipha->ipha_src = ipha->ipha_dst; 5220 bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t)); 5221 bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t)); 5222 5223 /* Source routing option copyover (reverse it) */ 5224 if (tcp_rev_src_routes) 5225 tcp_opt_reverse(tcp, ipha); 5226 5227 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 5228 ASSERT(!tcp->tcp_tconnind_started); 5229 5230 /* 5231 * If the SYN contains a credential, it's a loopback packet; attach 5232 * the credential to the TPI message. 5233 */ 5234 if ((cr = DB_CRED(idmp)) != NULL) { 5235 mblk_setcred(tpi_mp, cr); 5236 DB_CPID(tpi_mp) = DB_CPID(idmp); 5237 } 5238 tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp; 5239 5240 /* Inherit the listener's SSL protection state */ 5241 if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) { 5242 kssl_hold_ent(tcp->tcp_kssl_ent); 5243 tcp->tcp_kssl_pending = B_TRUE; 5244 } 5245 5246 return (0); 5247 } 5248 5249 /* 5250 * sets up conn for ipsec. 5251 * if the first mblk is M_CTL it is consumed and mpp is updated. 5252 * in case of error mpp is freed. 5253 */ 5254 conn_t * 5255 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp) 5256 { 5257 conn_t *connp = tcp->tcp_connp; 5258 conn_t *econnp; 5259 squeue_t *new_sqp; 5260 mblk_t *first_mp = *mpp; 5261 mblk_t *mp = *mpp; 5262 boolean_t mctl_present = B_FALSE; 5263 uint_t ipvers; 5264 5265 econnp = tcp_get_conn(sqp); 5266 if (econnp == NULL) { 5267 freemsg(first_mp); 5268 return (NULL); 5269 } 5270 if (DB_TYPE(mp) == M_CTL) { 5271 if (mp->b_cont == NULL || 5272 mp->b_cont->b_datap->db_type != M_DATA) { 5273 freemsg(first_mp); 5274 return (NULL); 5275 } 5276 mp = mp->b_cont; 5277 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) { 5278 freemsg(first_mp); 5279 return (NULL); 5280 } 5281 5282 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5283 first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5284 mctl_present = B_TRUE; 5285 } else { 5286 ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY); 5287 mp->b_datap->db_struioflag &= ~STRUIO_POLICY; 5288 } 5289 5290 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5291 DB_CKSUMSTART(mp) = 0; 5292 5293 ASSERT(OK_32PTR(mp->b_rptr)); 5294 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5295 if (ipvers == IPV4_VERSION) { 5296 uint16_t *up; 5297 uint32_t ports; 5298 ipha_t *ipha; 5299 5300 ipha = (ipha_t *)mp->b_rptr; 5301 up = (uint16_t *)((uchar_t *)ipha + 5302 IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET); 5303 ports = *(uint32_t *)up; 5304 IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP, 5305 ipha->ipha_dst, ipha->ipha_src, ports); 5306 } else { 5307 uint16_t *up; 5308 uint32_t ports; 5309 uint16_t ip_hdr_len; 5310 uint8_t *nexthdrp; 5311 ip6_t *ip6h; 5312 tcph_t *tcph; 5313 5314 ip6h = (ip6_t *)mp->b_rptr; 5315 if (ip6h->ip6_nxt == IPPROTO_TCP) { 5316 ip_hdr_len = IPV6_HDR_LEN; 5317 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len, 5318 &nexthdrp) || *nexthdrp != IPPROTO_TCP) { 5319 CONN_DEC_REF(econnp); 5320 freemsg(first_mp); 5321 return (NULL); 5322 } 5323 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5324 up = (uint16_t *)tcph->th_lport; 5325 ports = *(uint32_t *)up; 5326 IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP, 5327 ip6h->ip6_dst, ip6h->ip6_src, ports); 5328 } 5329 5330 /* 5331 * The caller already ensured that there is a sqp present. 5332 */ 5333 econnp->conn_sqp = new_sqp; 5334 5335 if (connp->conn_policy != NULL) { 5336 ipsec_in_t *ii; 5337 ii = (ipsec_in_t *)(first_mp->b_rptr); 5338 ASSERT(ii->ipsec_in_policy == NULL); 5339 IPPH_REFHOLD(connp->conn_policy); 5340 ii->ipsec_in_policy = connp->conn_policy; 5341 5342 first_mp->b_datap->db_type = IPSEC_POLICY_SET; 5343 if (!ip_bind_ipsec_policy_set(econnp, first_mp)) { 5344 CONN_DEC_REF(econnp); 5345 freemsg(first_mp); 5346 return (NULL); 5347 } 5348 } 5349 5350 if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) { 5351 CONN_DEC_REF(econnp); 5352 freemsg(first_mp); 5353 return (NULL); 5354 } 5355 5356 /* 5357 * If we know we have some policy, pass the "IPSEC" 5358 * options size TCP uses this adjust the MSS. 5359 */ 5360 econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp); 5361 if (mctl_present) { 5362 freeb(first_mp); 5363 *mpp = mp; 5364 } 5365 5366 return (econnp); 5367 } 5368 5369 /* 5370 * tcp_get_conn/tcp_free_conn 5371 * 5372 * tcp_get_conn is used to get a clean tcp connection structure. 5373 * It tries to reuse the connections put on the freelist by the 5374 * time_wait_collector failing which it goes to kmem_cache. This 5375 * way has two benefits compared to just allocating from and 5376 * freeing to kmem_cache. 5377 * 1) The time_wait_collector can free (which includes the cleanup) 5378 * outside the squeue. So when the interrupt comes, we have a clean 5379 * connection sitting in the freelist. Obviously, this buys us 5380 * performance. 5381 * 5382 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request 5383 * has multiple disadvantages - tying up the squeue during alloc, and the 5384 * fact that IPSec policy initialization has to happen here which 5385 * requires us sending a M_CTL and checking for it i.e. real ugliness. 5386 * But allocating the conn/tcp in IP land is also not the best since 5387 * we can't check the 'q' and 'q0' which are protected by squeue and 5388 * blindly allocate memory which might have to be freed here if we are 5389 * not allowed to accept the connection. By using the freelist and 5390 * putting the conn/tcp back in freelist, we don't pay a penalty for 5391 * allocating memory without checking 'q/q0' and freeing it if we can't 5392 * accept the connection. 5393 * 5394 * Care should be taken to put the conn back in the same squeue's freelist 5395 * from which it was allocated. Best results are obtained if conn is 5396 * allocated from listener's squeue and freed to the same. Time wait 5397 * collector will free up the freelist is the connection ends up sitting 5398 * there for too long. 5399 */ 5400 void * 5401 tcp_get_conn(void *arg) 5402 { 5403 tcp_t *tcp = NULL; 5404 conn_t *connp = NULL; 5405 squeue_t *sqp = (squeue_t *)arg; 5406 tcp_squeue_priv_t *tcp_time_wait; 5407 5408 tcp_time_wait = 5409 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 5410 5411 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 5412 tcp = tcp_time_wait->tcp_free_list; 5413 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 5414 if (tcp != NULL) { 5415 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 5416 tcp_time_wait->tcp_free_list_cnt--; 5417 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5418 tcp->tcp_time_wait_next = NULL; 5419 connp = tcp->tcp_connp; 5420 connp->conn_flags |= IPCL_REUSED; 5421 return ((void *)connp); 5422 } 5423 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 5424 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 5425 return (NULL); 5426 return ((void *)connp); 5427 } 5428 5429 /* 5430 * Update the cached label for the given tcp_t. This should be called once per 5431 * connection, and before any packets are sent or tcp_process_options is 5432 * invoked. Returns B_FALSE if the correct label could not be constructed. 5433 */ 5434 static boolean_t 5435 tcp_update_label(tcp_t *tcp, const cred_t *cr) 5436 { 5437 conn_t *connp = tcp->tcp_connp; 5438 5439 if (tcp->tcp_ipversion == IPV4_VERSION) { 5440 uchar_t optbuf[IP_MAX_OPT_LENGTH]; 5441 int added; 5442 5443 if (tsol_compute_label(cr, tcp->tcp_remote, optbuf, 5444 connp->conn_mac_exempt) != 0) 5445 return (B_FALSE); 5446 5447 added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len); 5448 if (added == -1) 5449 return (B_FALSE); 5450 tcp->tcp_hdr_len += added; 5451 tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added); 5452 tcp->tcp_ip_hdr_len += added; 5453 if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) { 5454 tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3; 5455 added = tsol_prepend_option(optbuf, tcp->tcp_ipha, 5456 tcp->tcp_hdr_len); 5457 if (added == -1) 5458 return (B_FALSE); 5459 tcp->tcp_hdr_len += added; 5460 tcp->tcp_tcph = (tcph_t *) 5461 ((uchar_t *)tcp->tcp_tcph + added); 5462 tcp->tcp_ip_hdr_len += added; 5463 } 5464 } else { 5465 uchar_t optbuf[TSOL_MAX_IPV6_OPTION]; 5466 5467 if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf, 5468 connp->conn_mac_exempt) != 0) 5469 return (B_FALSE); 5470 if (tsol_update_sticky(&tcp->tcp_sticky_ipp, 5471 &tcp->tcp_label_len, optbuf) != 0) 5472 return (B_FALSE); 5473 if (tcp_build_hdrs(tcp->tcp_rq, tcp) != 0) 5474 return (B_FALSE); 5475 } 5476 5477 connp->conn_ulp_labeled = 1; 5478 5479 return (B_TRUE); 5480 } 5481 5482 /* BEGIN CSTYLED */ 5483 /* 5484 * 5485 * The sockfs ACCEPT path: 5486 * ======================= 5487 * 5488 * The eager is now established in its own perimeter as soon as SYN is 5489 * received in tcp_conn_request(). When sockfs receives conn_ind, it 5490 * completes the accept processing on the acceptor STREAM. The sending 5491 * of conn_ind part is common for both sockfs listener and a TLI/XTI 5492 * listener but a TLI/XTI listener completes the accept processing 5493 * on the listener perimeter. 5494 * 5495 * Common control flow for 3 way handshake: 5496 * ---------------------------------------- 5497 * 5498 * incoming SYN (listener perimeter) -> tcp_rput_data() 5499 * -> tcp_conn_request() 5500 * 5501 * incoming SYN-ACK-ACK (eager perim) -> tcp_rput_data() 5502 * send T_CONN_IND (listener perim) -> tcp_send_conn_ind() 5503 * 5504 * Sockfs ACCEPT Path: 5505 * ------------------- 5506 * 5507 * open acceptor stream (ip_tcpopen allocates tcp_wput_accept() 5508 * as STREAM entry point) 5509 * 5510 * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept() 5511 * 5512 * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager 5513 * association (we are not behind eager's squeue but sockfs is protecting us 5514 * and no one knows about this stream yet. The STREAMS entry point q->q_info 5515 * is changed to point at tcp_wput(). 5516 * 5517 * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to 5518 * listener (done on listener's perimeter). 5519 * 5520 * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish 5521 * accept. 5522 * 5523 * TLI/XTI client ACCEPT path: 5524 * --------------------------- 5525 * 5526 * soaccept() sends T_CONN_RES on the listener STREAM. 5527 * 5528 * tcp_accept() -> tcp_accept_swap() complete the processing and send 5529 * the bind_mp to eager perimeter to finish accept (tcp_rput_other()). 5530 * 5531 * Locks: 5532 * ====== 5533 * 5534 * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and 5535 * and listeners->tcp_eager_next_q. 5536 * 5537 * Referencing: 5538 * ============ 5539 * 5540 * 1) We start out in tcp_conn_request by eager placing a ref on 5541 * listener and listener adding eager to listeners->tcp_eager_next_q0. 5542 * 5543 * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before 5544 * doing so we place a ref on the eager. This ref is finally dropped at the 5545 * end of tcp_accept_finish() while unwinding from the squeue, i.e. the 5546 * reference is dropped by the squeue framework. 5547 * 5548 * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish 5549 * 5550 * The reference must be released by the same entity that added the reference 5551 * In the above scheme, the eager is the entity that adds and releases the 5552 * references. Note that tcp_accept_finish executes in the squeue of the eager 5553 * (albeit after it is attached to the acceptor stream). Though 1. executes 5554 * in the listener's squeue, the eager is nascent at this point and the 5555 * reference can be considered to have been added on behalf of the eager. 5556 * 5557 * Eager getting a Reset or listener closing: 5558 * ========================================== 5559 * 5560 * Once the listener and eager are linked, the listener never does the unlink. 5561 * If the listener needs to close, tcp_eager_cleanup() is called which queues 5562 * a message on all eager perimeter. The eager then does the unlink, clears 5563 * any pointers to the listener's queue and drops the reference to the 5564 * listener. The listener waits in tcp_close outside the squeue until its 5565 * refcount has dropped to 1. This ensures that the listener has waited for 5566 * all eagers to clear their association with the listener. 5567 * 5568 * Similarly, if eager decides to go away, it can unlink itself and close. 5569 * When the T_CONN_RES comes down, we check if eager has closed. Note that 5570 * the reference to eager is still valid because of the extra ref we put 5571 * in tcp_send_conn_ind. 5572 * 5573 * Listener can always locate the eager under the protection 5574 * of the listener->tcp_eager_lock, and then do a refhold 5575 * on the eager during the accept processing. 5576 * 5577 * The acceptor stream accesses the eager in the accept processing 5578 * based on the ref placed on eager before sending T_conn_ind. 5579 * The only entity that can negate this refhold is a listener close 5580 * which is mutually exclusive with an active acceptor stream. 5581 * 5582 * Eager's reference on the listener 5583 * =================================== 5584 * 5585 * If the accept happens (even on a closed eager) the eager drops its 5586 * reference on the listener at the start of tcp_accept_finish. If the 5587 * eager is killed due to an incoming RST before the T_conn_ind is sent up, 5588 * the reference is dropped in tcp_closei_local. If the listener closes, 5589 * the reference is dropped in tcp_eager_kill. In all cases the reference 5590 * is dropped while executing in the eager's context (squeue). 5591 */ 5592 /* END CSTYLED */ 5593 5594 /* Process the SYN packet, mp, directed at the listener 'tcp' */ 5595 5596 /* 5597 * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN. 5598 * tcp_rput_data will not see any SYN packets. 5599 */ 5600 /* ARGSUSED */ 5601 void 5602 tcp_conn_request(void *arg, mblk_t *mp, void *arg2) 5603 { 5604 tcph_t *tcph; 5605 uint32_t seg_seq; 5606 tcp_t *eager; 5607 uint_t ipvers; 5608 ipha_t *ipha; 5609 ip6_t *ip6h; 5610 int err; 5611 conn_t *econnp = NULL; 5612 squeue_t *new_sqp; 5613 mblk_t *mp1; 5614 uint_t ip_hdr_len; 5615 conn_t *connp = (conn_t *)arg; 5616 tcp_t *tcp = connp->conn_tcp; 5617 ire_t *ire; 5618 cred_t *credp; 5619 5620 if (tcp->tcp_state != TCPS_LISTEN) 5621 goto error2; 5622 5623 ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0); 5624 5625 mutex_enter(&tcp->tcp_eager_lock); 5626 if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) { 5627 mutex_exit(&tcp->tcp_eager_lock); 5628 TCP_STAT(tcp_listendrop); 5629 BUMP_MIB(&tcp_mib, tcpListenDrop); 5630 if (tcp->tcp_debug) { 5631 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 5632 "tcp_conn_request: listen backlog (max=%d) " 5633 "overflow (%d pending) on %s", 5634 tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q, 5635 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 5636 } 5637 goto error2; 5638 } 5639 5640 if (tcp->tcp_conn_req_cnt_q0 >= 5641 tcp->tcp_conn_req_max + tcp_conn_req_max_q0) { 5642 /* 5643 * Q0 is full. Drop a pending half-open req from the queue 5644 * to make room for the new SYN req. Also mark the time we 5645 * drop a SYN. 5646 * 5647 * A more aggressive defense against SYN attack will 5648 * be to set the "tcp_syn_defense" flag now. 5649 */ 5650 TCP_STAT(tcp_listendropq0); 5651 tcp->tcp_last_rcv_lbolt = lbolt64; 5652 if (!tcp_drop_q0(tcp)) { 5653 mutex_exit(&tcp->tcp_eager_lock); 5654 BUMP_MIB(&tcp_mib, tcpListenDropQ0); 5655 if (tcp->tcp_debug) { 5656 (void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE, 5657 "tcp_conn_request: listen half-open queue " 5658 "(max=%d) full (%d pending) on %s", 5659 tcp_conn_req_max_q0, 5660 tcp->tcp_conn_req_cnt_q0, 5661 tcp_display(tcp, NULL, 5662 DISP_PORT_ONLY)); 5663 } 5664 goto error2; 5665 } 5666 } 5667 mutex_exit(&tcp->tcp_eager_lock); 5668 5669 /* 5670 * IP adds STRUIO_EAGER and ensures that the received packet is 5671 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6 5672 * link local address. If IPSec is enabled, db_struioflag has 5673 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER); 5674 * otherwise an error case if neither of them is set. 5675 */ 5676 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 5677 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 5678 DB_CKSUMSTART(mp) = 0; 5679 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 5680 econnp = (conn_t *)tcp_get_conn(arg2); 5681 if (econnp == NULL) 5682 goto error2; 5683 econnp->conn_sqp = new_sqp; 5684 } else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) { 5685 /* 5686 * mp is updated in tcp_get_ipsec_conn(). 5687 */ 5688 econnp = tcp_get_ipsec_conn(tcp, arg2, &mp); 5689 if (econnp == NULL) { 5690 /* 5691 * mp freed by tcp_get_ipsec_conn. 5692 */ 5693 return; 5694 } 5695 } else { 5696 goto error2; 5697 } 5698 5699 ASSERT(DB_TYPE(mp) == M_DATA); 5700 5701 ipvers = IPH_HDR_VERSION(mp->b_rptr); 5702 ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION); 5703 ASSERT(OK_32PTR(mp->b_rptr)); 5704 if (ipvers == IPV4_VERSION) { 5705 ipha = (ipha_t *)mp->b_rptr; 5706 ip_hdr_len = IPH_HDR_LENGTH(ipha); 5707 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5708 } else { 5709 ip6h = (ip6_t *)mp->b_rptr; 5710 ip_hdr_len = ip_hdr_length_v6(mp, ip6h); 5711 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 5712 } 5713 5714 if (tcp->tcp_family == AF_INET) { 5715 ASSERT(ipvers == IPV4_VERSION); 5716 err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp); 5717 } else { 5718 err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp); 5719 } 5720 5721 if (err) 5722 goto error3; 5723 5724 eager = econnp->conn_tcp; 5725 5726 /* Inherit various TCP parameters from the listener */ 5727 eager->tcp_naglim = tcp->tcp_naglim; 5728 eager->tcp_first_timer_threshold = 5729 tcp->tcp_first_timer_threshold; 5730 eager->tcp_second_timer_threshold = 5731 tcp->tcp_second_timer_threshold; 5732 5733 eager->tcp_first_ctimer_threshold = 5734 tcp->tcp_first_ctimer_threshold; 5735 eager->tcp_second_ctimer_threshold = 5736 tcp->tcp_second_ctimer_threshold; 5737 5738 /* 5739 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics. 5740 * If it does not, the eager's receive window will be set to the 5741 * listener's receive window later in this function. 5742 */ 5743 eager->tcp_rwnd = 0; 5744 5745 /* 5746 * Inherit listener's tcp_init_cwnd. Need to do this before 5747 * calling tcp_process_options() where tcp_mss_set() is called 5748 * to set the initial cwnd. 5749 */ 5750 eager->tcp_init_cwnd = tcp->tcp_init_cwnd; 5751 5752 /* 5753 * Zones: tcp_adapt_ire() and tcp_send_data() both need the 5754 * zone id before the accept is completed in tcp_wput_accept(). 5755 */ 5756 econnp->conn_zoneid = connp->conn_zoneid; 5757 econnp->conn_allzones = connp->conn_allzones; 5758 5759 /* Copy nexthop information from listener to eager */ 5760 if (connp->conn_nexthop_set) { 5761 econnp->conn_nexthop_set = connp->conn_nexthop_set; 5762 econnp->conn_nexthop_v4 = connp->conn_nexthop_v4; 5763 } 5764 5765 /* 5766 * TSOL: tsol_input_proc() needs the eager's cred before the 5767 * eager is accepted 5768 */ 5769 econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred; 5770 crhold(credp); 5771 5772 /* 5773 * If the caller has the process-wide flag set, then default to MAC 5774 * exempt mode. This allows read-down to unlabeled hosts. 5775 */ 5776 if (getpflags(NET_MAC_AWARE, credp) != 0) 5777 econnp->conn_mac_exempt = B_TRUE; 5778 5779 if (is_system_labeled()) { 5780 cred_t *cr; 5781 5782 if (connp->conn_mlp_type != mlptSingle) { 5783 cr = econnp->conn_peercred = DB_CRED(mp); 5784 if (cr != NULL) 5785 crhold(cr); 5786 else 5787 cr = econnp->conn_cred; 5788 DTRACE_PROBE2(mlp_syn_accept, conn_t *, 5789 econnp, cred_t *, cr) 5790 } else { 5791 cr = econnp->conn_cred; 5792 DTRACE_PROBE2(syn_accept, conn_t *, 5793 econnp, cred_t *, cr) 5794 } 5795 5796 if (!tcp_update_label(eager, cr)) { 5797 DTRACE_PROBE3( 5798 tx__ip__log__error__connrequest__tcp, 5799 char *, "eager connp(1) label on SYN mp(2) failed", 5800 conn_t *, econnp, mblk_t *, mp); 5801 goto error3; 5802 } 5803 } 5804 5805 eager->tcp_hard_binding = B_TRUE; 5806 5807 tcp_bind_hash_insert(&tcp_bind_fanout[ 5808 TCP_BIND_HASH(eager->tcp_lport)], eager, 0); 5809 5810 CL_INET_CONNECT(eager); 5811 5812 /* 5813 * No need to check for multicast destination since ip will only pass 5814 * up multicasts to those that have expressed interest 5815 * TODO: what about rejecting broadcasts? 5816 * Also check that source is not a multicast or broadcast address. 5817 */ 5818 eager->tcp_state = TCPS_SYN_RCVD; 5819 5820 5821 /* 5822 * There should be no ire in the mp as we are being called after 5823 * receiving the SYN. 5824 */ 5825 ASSERT(tcp_ire_mp(mp) == NULL); 5826 5827 /* 5828 * Adapt our mss, ttl, ... according to information provided in IRE. 5829 */ 5830 5831 if (tcp_adapt_ire(eager, NULL) == 0) { 5832 /* Undo the bind_hash_insert */ 5833 tcp_bind_hash_remove(eager); 5834 goto error3; 5835 } 5836 5837 /* Process all TCP options. */ 5838 tcp_process_options(eager, tcph); 5839 5840 /* Is the other end ECN capable? */ 5841 if (tcp_ecn_permitted >= 1 && 5842 (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) { 5843 eager->tcp_ecn_ok = B_TRUE; 5844 } 5845 5846 /* 5847 * listener->tcp_rq->q_hiwat should be the default window size or a 5848 * window size changed via SO_RCVBUF option. First round up the 5849 * eager's tcp_rwnd to the nearest MSS. Then find out the window 5850 * scale option value if needed. Call tcp_rwnd_set() to finish the 5851 * setting. 5852 * 5853 * Note if there is a rpipe metric associated with the remote host, 5854 * we should not inherit receive window size from listener. 5855 */ 5856 eager->tcp_rwnd = MSS_ROUNDUP( 5857 (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat : 5858 eager->tcp_rwnd), eager->tcp_mss); 5859 if (eager->tcp_snd_ws_ok) 5860 tcp_set_ws_value(eager); 5861 /* 5862 * Note that this is the only place tcp_rwnd_set() is called for 5863 * accepting a connection. We need to call it here instead of 5864 * after the 3-way handshake because we need to tell the other 5865 * side our rwnd in the SYN-ACK segment. 5866 */ 5867 (void) tcp_rwnd_set(eager, eager->tcp_rwnd); 5868 5869 /* 5870 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ 5871 * via soaccept()->soinheritoptions() which essentially applies 5872 * all the listener options to the new STREAM. The options that we 5873 * need to take care of are: 5874 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST, 5875 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER, 5876 * SO_SNDBUF, SO_RCVBUF. 5877 * 5878 * SO_RCVBUF: tcp_rwnd_set() above takes care of it. 5879 * SO_SNDBUF: Set the tcp_xmit_hiwater for the eager. When 5880 * tcp_maxpsz_set() gets called later from 5881 * tcp_accept_finish(), the option takes effect. 5882 * 5883 */ 5884 /* Set the TCP options */ 5885 eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater; 5886 eager->tcp_dgram_errind = tcp->tcp_dgram_errind; 5887 eager->tcp_oobinline = tcp->tcp_oobinline; 5888 eager->tcp_reuseaddr = tcp->tcp_reuseaddr; 5889 eager->tcp_broadcast = tcp->tcp_broadcast; 5890 eager->tcp_useloopback = tcp->tcp_useloopback; 5891 eager->tcp_dontroute = tcp->tcp_dontroute; 5892 eager->tcp_linger = tcp->tcp_linger; 5893 eager->tcp_lingertime = tcp->tcp_lingertime; 5894 if (tcp->tcp_ka_enabled) 5895 eager->tcp_ka_enabled = 1; 5896 5897 /* Set the IP options */ 5898 econnp->conn_broadcast = connp->conn_broadcast; 5899 econnp->conn_loopback = connp->conn_loopback; 5900 econnp->conn_dontroute = connp->conn_dontroute; 5901 econnp->conn_reuseaddr = connp->conn_reuseaddr; 5902 5903 /* Put a ref on the listener for the eager. */ 5904 CONN_INC_REF(connp); 5905 mutex_enter(&tcp->tcp_eager_lock); 5906 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager; 5907 eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0; 5908 tcp->tcp_eager_next_q0 = eager; 5909 eager->tcp_eager_prev_q0 = tcp; 5910 5911 /* Set tcp_listener before adding it to tcp_conn_fanout */ 5912 eager->tcp_listener = tcp; 5913 eager->tcp_saved_listener = tcp; 5914 5915 /* 5916 * Tag this detached tcp vector for later retrieval 5917 * by our listener client in tcp_accept(). 5918 */ 5919 eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum; 5920 tcp->tcp_conn_req_cnt_q0++; 5921 if (++tcp->tcp_conn_req_seqnum == -1) { 5922 /* 5923 * -1 is "special" and defined in TPI as something 5924 * that should never be used in T_CONN_IND 5925 */ 5926 ++tcp->tcp_conn_req_seqnum; 5927 } 5928 mutex_exit(&tcp->tcp_eager_lock); 5929 5930 if (tcp->tcp_syn_defense) { 5931 /* Don't drop the SYN that comes from a good IP source */ 5932 ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache); 5933 if (addr_cache != NULL && eager->tcp_remote == 5934 addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) { 5935 eager->tcp_dontdrop = B_TRUE; 5936 } 5937 } 5938 5939 /* 5940 * We need to insert the eager in its own perimeter but as soon 5941 * as we do that, we expose the eager to the classifier and 5942 * should not touch any field outside the eager's perimeter. 5943 * So do all the work necessary before inserting the eager 5944 * in its own perimeter. Be optimistic that ipcl_conn_insert() 5945 * will succeed but undo everything if it fails. 5946 */ 5947 seg_seq = ABE32_TO_U32(tcph->th_seq); 5948 eager->tcp_irs = seg_seq; 5949 eager->tcp_rack = seg_seq; 5950 eager->tcp_rnxt = seg_seq + 1; 5951 U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack); 5952 BUMP_MIB(&tcp_mib, tcpPassiveOpens); 5953 eager->tcp_state = TCPS_SYN_RCVD; 5954 mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss, 5955 NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE); 5956 if (mp1 == NULL) 5957 goto error1; 5958 DB_CPID(mp1) = tcp->tcp_cpid; 5959 eager->tcp_cpid = tcp->tcp_cpid; 5960 eager->tcp_open_time = lbolt64; 5961 5962 /* 5963 * We need to start the rto timer. In normal case, we start 5964 * the timer after sending the packet on the wire (or at 5965 * least believing that packet was sent by waiting for 5966 * CALL_IP_WPUT() to return). Since this is the first packet 5967 * being sent on the wire for the eager, our initial tcp_rto 5968 * is at least tcp_rexmit_interval_min which is a fairly 5969 * large value to allow the algorithm to adjust slowly to large 5970 * fluctuations of RTT during first few transmissions. 5971 * 5972 * Starting the timer first and then sending the packet in this 5973 * case shouldn't make much difference since tcp_rexmit_interval_min 5974 * is of the order of several 100ms and starting the timer 5975 * first and then sending the packet will result in difference 5976 * of few micro seconds. 5977 * 5978 * Without this optimization, we are forced to hold the fanout 5979 * lock across the ipcl_bind_insert() and sending the packet 5980 * so that we don't race against an incoming packet (maybe RST) 5981 * for this eager. 5982 */ 5983 5984 TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT); 5985 TCP_TIMER_RESTART(eager, eager->tcp_rto); 5986 5987 5988 /* 5989 * Insert the eager in its own perimeter now. We are ready to deal 5990 * with any packets on eager. 5991 */ 5992 if (eager->tcp_ipversion == IPV4_VERSION) { 5993 if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) { 5994 goto error; 5995 } 5996 } else { 5997 if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) { 5998 goto error; 5999 } 6000 } 6001 6002 /* mark conn as fully-bound */ 6003 econnp->conn_fully_bound = B_TRUE; 6004 6005 /* Send the SYN-ACK */ 6006 tcp_send_data(eager, eager->tcp_wq, mp1); 6007 freemsg(mp); 6008 6009 return; 6010 error: 6011 (void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid); 6012 freemsg(mp1); 6013 error1: 6014 /* Undo what we did above */ 6015 mutex_enter(&tcp->tcp_eager_lock); 6016 tcp_eager_unlink(eager); 6017 mutex_exit(&tcp->tcp_eager_lock); 6018 /* Drop eager's reference on the listener */ 6019 CONN_DEC_REF(connp); 6020 6021 /* 6022 * Delete the cached ire in conn_ire_cache and also mark 6023 * the conn as CONDEMNED 6024 */ 6025 mutex_enter(&econnp->conn_lock); 6026 econnp->conn_state_flags |= CONN_CONDEMNED; 6027 ire = econnp->conn_ire_cache; 6028 econnp->conn_ire_cache = NULL; 6029 mutex_exit(&econnp->conn_lock); 6030 if (ire != NULL) 6031 IRE_REFRELE_NOTR(ire); 6032 6033 /* 6034 * tcp_accept_comm inserts the eager to the bind_hash 6035 * we need to remove it from the hash if ipcl_conn_insert 6036 * fails. 6037 */ 6038 tcp_bind_hash_remove(eager); 6039 /* Drop the eager ref placed in tcp_open_detached */ 6040 CONN_DEC_REF(econnp); 6041 6042 /* 6043 * If a connection already exists, send the mp to that connections so 6044 * that it can be appropriately dealt with. 6045 */ 6046 if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) { 6047 if (!IPCL_IS_CONNECTED(econnp)) { 6048 /* 6049 * Something bad happened. ipcl_conn_insert() 6050 * failed because a connection already existed 6051 * in connected hash but we can't find it 6052 * anymore (someone blew it away). Just 6053 * free this message and hopefully remote 6054 * will retransmit at which time the SYN can be 6055 * treated as a new connection or dealth with 6056 * a TH_RST if a connection already exists. 6057 */ 6058 CONN_DEC_REF(econnp); 6059 freemsg(mp); 6060 } else { 6061 squeue_fill(econnp->conn_sqp, mp, tcp_input, 6062 econnp, SQTAG_TCP_CONN_REQ); 6063 } 6064 } else { 6065 /* Nobody wants this packet */ 6066 freemsg(mp); 6067 } 6068 return; 6069 error2: 6070 freemsg(mp); 6071 return; 6072 error3: 6073 CONN_DEC_REF(econnp); 6074 freemsg(mp); 6075 } 6076 6077 /* 6078 * In an ideal case of vertical partition in NUMA architecture, its 6079 * beneficial to have the listener and all the incoming connections 6080 * tied to the same squeue. The other constraint is that incoming 6081 * connections should be tied to the squeue attached to interrupted 6082 * CPU for obvious locality reason so this leaves the listener to 6083 * be tied to the same squeue. Our only problem is that when listener 6084 * is binding, the CPU that will get interrupted by the NIC whose 6085 * IP address the listener is binding to is not even known. So 6086 * the code below allows us to change that binding at the time the 6087 * CPU is interrupted by virtue of incoming connection's squeue. 6088 * 6089 * This is usefull only in case of a listener bound to a specific IP 6090 * address. For other kind of listeners, they get bound the 6091 * very first time and there is no attempt to rebind them. 6092 */ 6093 void 6094 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2) 6095 { 6096 conn_t *connp = (conn_t *)arg; 6097 squeue_t *sqp = (squeue_t *)arg2; 6098 squeue_t *new_sqp; 6099 uint32_t conn_flags; 6100 6101 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 6102 new_sqp = (squeue_t *)DB_CKSUMSTART(mp); 6103 } else { 6104 goto done; 6105 } 6106 6107 if (connp->conn_fanout == NULL) 6108 goto done; 6109 6110 if (!(connp->conn_flags & IPCL_FULLY_BOUND)) { 6111 mutex_enter(&connp->conn_fanout->connf_lock); 6112 mutex_enter(&connp->conn_lock); 6113 /* 6114 * No one from read or write side can access us now 6115 * except for already queued packets on this squeue. 6116 * But since we haven't changed the squeue yet, they 6117 * can't execute. If they are processed after we have 6118 * changed the squeue, they are sent back to the 6119 * correct squeue down below. 6120 * But a listner close can race with processing of 6121 * incoming SYN. If incoming SYN processing changes 6122 * the squeue then the listener close which is waiting 6123 * to enter the squeue would operate on the wrong 6124 * squeue. Hence we don't change the squeue here unless 6125 * the refcount is exactly the minimum refcount. The 6126 * minimum refcount of 4 is counted as - 1 each for 6127 * TCP and IP, 1 for being in the classifier hash, and 6128 * 1 for the mblk being processed. 6129 */ 6130 6131 if (connp->conn_ref != 4 || 6132 connp->conn_tcp->tcp_state != TCPS_LISTEN) { 6133 mutex_exit(&connp->conn_lock); 6134 mutex_exit(&connp->conn_fanout->connf_lock); 6135 goto done; 6136 } 6137 if (connp->conn_sqp != new_sqp) { 6138 while (connp->conn_sqp != new_sqp) 6139 (void) casptr(&connp->conn_sqp, sqp, new_sqp); 6140 } 6141 6142 do { 6143 conn_flags = connp->conn_flags; 6144 conn_flags |= IPCL_FULLY_BOUND; 6145 (void) cas32(&connp->conn_flags, connp->conn_flags, 6146 conn_flags); 6147 } while (!(connp->conn_flags & IPCL_FULLY_BOUND)); 6148 6149 mutex_exit(&connp->conn_fanout->connf_lock); 6150 mutex_exit(&connp->conn_lock); 6151 } 6152 6153 done: 6154 if (connp->conn_sqp != sqp) { 6155 CONN_INC_REF(connp); 6156 squeue_fill(connp->conn_sqp, mp, 6157 connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND); 6158 } else { 6159 tcp_conn_request(connp, mp, sqp); 6160 } 6161 } 6162 6163 /* 6164 * Successful connect request processing begins when our client passes 6165 * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes 6166 * our T_OK_ACK reply message upstream. The control flow looks like this: 6167 * upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP 6168 * upstream <- tcp_rput() <- IP 6169 * After various error checks are completed, tcp_connect() lays 6170 * the target address and port into the composite header template, 6171 * preallocates the T_OK_ACK reply message, construct a full 12 byte bind 6172 * request followed by an IRE request, and passes the three mblk message 6173 * down to IP looking like this: 6174 * O_T_BIND_REQ for IP --> IRE req --> T_OK_ACK for our client 6175 * Processing continues in tcp_rput() when we receive the following message: 6176 * T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client 6177 * After consuming the first two mblks, tcp_rput() calls tcp_timer(), 6178 * to fire off the connection request, and then passes the T_OK_ACK mblk 6179 * upstream that we filled in below. There are, of course, numerous 6180 * error conditions along the way which truncate the processing described 6181 * above. 6182 */ 6183 static void 6184 tcp_connect(tcp_t *tcp, mblk_t *mp) 6185 { 6186 sin_t *sin; 6187 sin6_t *sin6; 6188 queue_t *q = tcp->tcp_wq; 6189 struct T_conn_req *tcr; 6190 ipaddr_t *dstaddrp; 6191 in_port_t dstport; 6192 uint_t srcid; 6193 6194 tcr = (struct T_conn_req *)mp->b_rptr; 6195 6196 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6197 if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) { 6198 tcp_err_ack(tcp, mp, TPROTO, 0); 6199 return; 6200 } 6201 6202 /* 6203 * Determine packet type based on type of address passed in 6204 * the request should contain an IPv4 or IPv6 address. 6205 * Make sure that address family matches the type of 6206 * family of the the address passed down 6207 */ 6208 switch (tcr->DEST_length) { 6209 default: 6210 tcp_err_ack(tcp, mp, TBADADDR, 0); 6211 return; 6212 6213 case (sizeof (sin_t) - sizeof (sin->sin_zero)): { 6214 /* 6215 * XXX: The check for valid DEST_length was not there 6216 * in earlier releases and some buggy 6217 * TLI apps (e.g Sybase) got away with not feeding 6218 * in sin_zero part of address. 6219 * We allow that bug to keep those buggy apps humming. 6220 * Test suites require the check on DEST_length. 6221 * We construct a new mblk with valid DEST_length 6222 * free the original so the rest of the code does 6223 * not have to keep track of this special shorter 6224 * length address case. 6225 */ 6226 mblk_t *nmp; 6227 struct T_conn_req *ntcr; 6228 sin_t *nsin; 6229 6230 nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) + 6231 tcr->OPT_length, BPRI_HI); 6232 if (nmp == NULL) { 6233 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 6234 return; 6235 } 6236 ntcr = (struct T_conn_req *)nmp->b_rptr; 6237 bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */ 6238 ntcr->PRIM_type = T_CONN_REQ; 6239 ntcr->DEST_length = sizeof (sin_t); 6240 ntcr->DEST_offset = sizeof (struct T_conn_req); 6241 6242 nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset); 6243 *nsin = sin_null; 6244 /* Get pointer to shorter address to copy from original mp */ 6245 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6246 tcr->DEST_length); /* extract DEST_length worth of sin_t */ 6247 if (sin == NULL || !OK_32PTR((char *)sin)) { 6248 freemsg(nmp); 6249 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6250 return; 6251 } 6252 nsin->sin_family = sin->sin_family; 6253 nsin->sin_port = sin->sin_port; 6254 nsin->sin_addr = sin->sin_addr; 6255 /* Note:nsin->sin_zero zero-fill with sin_null assign above */ 6256 nmp->b_wptr = (uchar_t *)&nsin[1]; 6257 if (tcr->OPT_length != 0) { 6258 ntcr->OPT_length = tcr->OPT_length; 6259 ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr; 6260 bcopy((uchar_t *)tcr + tcr->OPT_offset, 6261 (uchar_t *)ntcr + ntcr->OPT_offset, 6262 tcr->OPT_length); 6263 nmp->b_wptr += tcr->OPT_length; 6264 } 6265 freemsg(mp); /* original mp freed */ 6266 mp = nmp; /* re-initialize original variables */ 6267 tcr = ntcr; 6268 } 6269 /* FALLTHRU */ 6270 6271 case sizeof (sin_t): 6272 sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset, 6273 sizeof (sin_t)); 6274 if (sin == NULL || !OK_32PTR((char *)sin)) { 6275 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6276 return; 6277 } 6278 if (tcp->tcp_family != AF_INET || 6279 sin->sin_family != AF_INET) { 6280 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6281 return; 6282 } 6283 if (sin->sin_port == 0) { 6284 tcp_err_ack(tcp, mp, TBADADDR, 0); 6285 return; 6286 } 6287 if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) { 6288 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6289 return; 6290 } 6291 6292 break; 6293 6294 case sizeof (sin6_t): 6295 sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset, 6296 sizeof (sin6_t)); 6297 if (sin6 == NULL || !OK_32PTR((char *)sin6)) { 6298 tcp_err_ack(tcp, mp, TSYSERR, EINVAL); 6299 return; 6300 } 6301 if (tcp->tcp_family != AF_INET6 || 6302 sin6->sin6_family != AF_INET6) { 6303 tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT); 6304 return; 6305 } 6306 if (sin6->sin6_port == 0) { 6307 tcp_err_ack(tcp, mp, TBADADDR, 0); 6308 return; 6309 } 6310 break; 6311 } 6312 /* 6313 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we 6314 * should key on their sequence number and cut them loose. 6315 */ 6316 6317 /* 6318 * If options passed in, feed it for verification and handling 6319 */ 6320 if (tcr->OPT_length != 0) { 6321 mblk_t *ok_mp; 6322 mblk_t *discon_mp; 6323 mblk_t *conn_opts_mp; 6324 int t_error, sys_error, do_disconnect; 6325 6326 conn_opts_mp = NULL; 6327 6328 if (tcp_conprim_opt_process(tcp, mp, 6329 &do_disconnect, &t_error, &sys_error) < 0) { 6330 if (do_disconnect) { 6331 ASSERT(t_error == 0 && sys_error == 0); 6332 discon_mp = mi_tpi_discon_ind(NULL, 6333 ECONNREFUSED, 0); 6334 if (!discon_mp) { 6335 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6336 TSYSERR, ENOMEM); 6337 return; 6338 } 6339 ok_mp = mi_tpi_ok_ack_alloc(mp); 6340 if (!ok_mp) { 6341 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6342 TSYSERR, ENOMEM); 6343 return; 6344 } 6345 qreply(q, ok_mp); 6346 qreply(q, discon_mp); /* no flush! */ 6347 } else { 6348 ASSERT(t_error != 0); 6349 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error, 6350 sys_error); 6351 } 6352 return; 6353 } 6354 /* 6355 * Success in setting options, the mp option buffer represented 6356 * by OPT_length/offset has been potentially modified and 6357 * contains results of option processing. We copy it in 6358 * another mp to save it for potentially influencing returning 6359 * it in T_CONN_CONN. 6360 */ 6361 if (tcr->OPT_length != 0) { /* there are resulting options */ 6362 conn_opts_mp = copyb(mp); 6363 if (!conn_opts_mp) { 6364 tcp_err_ack_prim(tcp, mp, T_CONN_REQ, 6365 TSYSERR, ENOMEM); 6366 return; 6367 } 6368 ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL); 6369 tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp; 6370 /* 6371 * Note: 6372 * These resulting option negotiation can include any 6373 * end-to-end negotiation options but there no such 6374 * thing (yet?) in our TCP/IP. 6375 */ 6376 } 6377 } 6378 6379 /* 6380 * If we're connecting to an IPv4-mapped IPv6 address, we need to 6381 * make sure that the template IP header in the tcp structure is an 6382 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION. We 6383 * need to this before we call tcp_bindi() so that the port lookup 6384 * code will look for ports in the correct port space (IPv4 and 6385 * IPv6 have separate port spaces). 6386 */ 6387 if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION && 6388 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6389 int err = 0; 6390 6391 err = tcp_header_init_ipv4(tcp); 6392 if (err != 0) { 6393 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6394 goto connect_failed; 6395 } 6396 if (tcp->tcp_lport != 0) 6397 *(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport; 6398 } 6399 6400 switch (tcp->tcp_state) { 6401 case TCPS_IDLE: 6402 /* 6403 * We support quick connect, refer to comments in 6404 * tcp_connect_*() 6405 */ 6406 /* FALLTHRU */ 6407 case TCPS_BOUND: 6408 case TCPS_LISTEN: 6409 if (tcp->tcp_family == AF_INET6) { 6410 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 6411 tcp_connect_ipv6(tcp, mp, 6412 &sin6->sin6_addr, 6413 sin6->sin6_port, sin6->sin6_flowinfo, 6414 sin6->__sin6_src_id, sin6->sin6_scope_id); 6415 return; 6416 } 6417 /* 6418 * Destination adress is mapped IPv6 address. 6419 * Source bound address should be unspecified or 6420 * IPv6 mapped address as well. 6421 */ 6422 if (!IN6_IS_ADDR_UNSPECIFIED( 6423 &tcp->tcp_bound_source_v6) && 6424 !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) { 6425 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, 6426 EADDRNOTAVAIL); 6427 break; 6428 } 6429 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 6430 dstport = sin6->sin6_port; 6431 srcid = sin6->__sin6_src_id; 6432 } else { 6433 dstaddrp = &sin->sin_addr.s_addr; 6434 dstport = sin->sin_port; 6435 srcid = 0; 6436 } 6437 6438 tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid); 6439 return; 6440 default: 6441 mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0); 6442 break; 6443 } 6444 /* 6445 * Note: Code below is the "failure" case 6446 */ 6447 /* return error ack and blow away saved option results if any */ 6448 connect_failed: 6449 if (mp != NULL) 6450 putnext(tcp->tcp_rq, mp); 6451 else { 6452 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6453 TSYSERR, ENOMEM); 6454 } 6455 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6456 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6457 } 6458 6459 /* 6460 * Handle connect to IPv4 destinations, including connections for AF_INET6 6461 * sockets connecting to IPv4 mapped IPv6 destinations. 6462 */ 6463 static void 6464 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport, 6465 uint_t srcid) 6466 { 6467 tcph_t *tcph; 6468 mblk_t *mp1; 6469 ipaddr_t dstaddr = *dstaddrp; 6470 int32_t oldstate; 6471 uint16_t lport; 6472 6473 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 6474 6475 /* Check for attempt to connect to INADDR_ANY */ 6476 if (dstaddr == INADDR_ANY) { 6477 /* 6478 * SunOS 4.x and 4.3 BSD allow an application 6479 * to connect a TCP socket to INADDR_ANY. 6480 * When they do this, the kernel picks the 6481 * address of one interface and uses it 6482 * instead. The kernel usually ends up 6483 * picking the address of the loopback 6484 * interface. This is an undocumented feature. 6485 * However, we provide the same thing here 6486 * in order to have source and binary 6487 * compatibility with SunOS 4.x. 6488 * Update the T_CONN_REQ (sin/sin6) since it is used to 6489 * generate the T_CONN_CON. 6490 */ 6491 dstaddr = htonl(INADDR_LOOPBACK); 6492 *dstaddrp = dstaddr; 6493 } 6494 6495 /* Handle __sin6_src_id if socket not bound to an IP address */ 6496 if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) { 6497 ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6, 6498 tcp->tcp_connp->conn_zoneid); 6499 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6, 6500 tcp->tcp_ipha->ipha_src); 6501 } 6502 6503 /* 6504 * Don't let an endpoint connect to itself. Note that 6505 * the test here does not catch the case where the 6506 * source IP addr was left unspecified by the user. In 6507 * this case, the source addr is set in tcp_adapt_ire() 6508 * using the reply to the T_BIND message that we send 6509 * down to IP here and the check is repeated in tcp_rput_other. 6510 */ 6511 if (dstaddr == tcp->tcp_ipha->ipha_src && 6512 dstport == tcp->tcp_lport) { 6513 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6514 goto failed; 6515 } 6516 6517 tcp->tcp_ipha->ipha_dst = dstaddr; 6518 IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6); 6519 6520 /* 6521 * Massage a source route if any putting the first hop 6522 * in iph_dst. Compute a starting value for the checksum which 6523 * takes into account that the original iph_dst should be 6524 * included in the checksum but that ip will include the 6525 * first hop in the source route in the tcp checksum. 6526 */ 6527 tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha); 6528 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6529 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 6530 (tcp->tcp_ipha->ipha_dst & 0xffff)); 6531 if ((int)tcp->tcp_sum < 0) 6532 tcp->tcp_sum--; 6533 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 6534 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6535 (tcp->tcp_sum >> 16)); 6536 tcph = tcp->tcp_tcph; 6537 *(uint16_t *)tcph->th_fport = dstport; 6538 tcp->tcp_fport = dstport; 6539 6540 oldstate = tcp->tcp_state; 6541 /* 6542 * At this point the remote destination address and remote port fields 6543 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6544 * have to see which state tcp was in so we can take apropriate action. 6545 */ 6546 if (oldstate == TCPS_IDLE) { 6547 /* 6548 * We support a quick connect capability here, allowing 6549 * clients to transition directly from IDLE to SYN_SENT 6550 * tcp_bindi will pick an unused port, insert the connection 6551 * in the bind hash and transition to BOUND state. 6552 */ 6553 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6554 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6555 B_FALSE, B_FALSE); 6556 if (lport == 0) { 6557 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6558 goto failed; 6559 } 6560 } 6561 tcp->tcp_state = TCPS_SYN_SENT; 6562 6563 /* 6564 * TODO: allow data with connect requests 6565 * by unlinking M_DATA trailers here and 6566 * linking them in behind the T_OK_ACK mblk. 6567 * The tcp_rput() bind ack handler would then 6568 * feed them to tcp_wput_data() rather than call 6569 * tcp_timer(). 6570 */ 6571 mp = mi_tpi_ok_ack_alloc(mp); 6572 if (!mp) { 6573 tcp->tcp_state = oldstate; 6574 goto failed; 6575 } 6576 if (tcp->tcp_family == AF_INET) { 6577 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6578 sizeof (ipa_conn_t)); 6579 } else { 6580 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 6581 sizeof (ipa6_conn_t)); 6582 } 6583 if (mp1) { 6584 /* Hang onto the T_OK_ACK for later. */ 6585 linkb(mp1, mp); 6586 mblk_setcred(mp1, tcp->tcp_cred); 6587 if (tcp->tcp_family == AF_INET) 6588 mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp); 6589 else { 6590 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6591 &tcp->tcp_sticky_ipp); 6592 } 6593 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6594 tcp->tcp_active_open = 1; 6595 /* 6596 * If the bind cannot complete immediately 6597 * IP will arrange to call tcp_rput_other 6598 * when the bind completes. 6599 */ 6600 if (mp1 != NULL) 6601 tcp_rput_other(tcp, mp1); 6602 return; 6603 } 6604 /* Error case */ 6605 tcp->tcp_state = oldstate; 6606 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6607 6608 failed: 6609 /* return error ack and blow away saved option results if any */ 6610 if (mp != NULL) 6611 putnext(tcp->tcp_rq, mp); 6612 else { 6613 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6614 TSYSERR, ENOMEM); 6615 } 6616 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6617 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6618 6619 } 6620 6621 /* 6622 * Handle connect to IPv6 destinations. 6623 */ 6624 static void 6625 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp, 6626 in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 6627 { 6628 tcph_t *tcph; 6629 mblk_t *mp1; 6630 ip6_rthdr_t *rth; 6631 int32_t oldstate; 6632 uint16_t lport; 6633 6634 ASSERT(tcp->tcp_family == AF_INET6); 6635 6636 /* 6637 * If we're here, it means that the destination address is a native 6638 * IPv6 address. Return an error if tcp_ipversion is not IPv6. A 6639 * reason why it might not be IPv6 is if the socket was bound to an 6640 * IPv4-mapped IPv6 address. 6641 */ 6642 if (tcp->tcp_ipversion != IPV6_VERSION) { 6643 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6644 goto failed; 6645 } 6646 6647 /* 6648 * Interpret a zero destination to mean loopback. 6649 * Update the T_CONN_REQ (sin/sin6) since it is used to 6650 * generate the T_CONN_CON. 6651 */ 6652 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) { 6653 *dstaddrp = ipv6_loopback; 6654 } 6655 6656 /* Handle __sin6_src_id if socket not bound to an IP address */ 6657 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) { 6658 ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src, 6659 tcp->tcp_connp->conn_zoneid); 6660 tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src; 6661 } 6662 6663 /* 6664 * Take care of the scope_id now and add ip6i_t 6665 * if ip6i_t is not already allocated through TCP 6666 * sticky options. At this point tcp_ip6h does not 6667 * have dst info, thus use dstaddrp. 6668 */ 6669 if (scope_id != 0 && 6670 IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 6671 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 6672 ip6i_t *ip6i; 6673 6674 ipp->ipp_ifindex = scope_id; 6675 ip6i = (ip6i_t *)tcp->tcp_iphc; 6676 6677 if ((ipp->ipp_fields & IPPF_HAS_IP6I) && 6678 ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) { 6679 /* Already allocated */ 6680 ip6i->ip6i_flags |= IP6I_IFINDEX; 6681 ip6i->ip6i_ifindex = ipp->ipp_ifindex; 6682 ipp->ipp_fields |= IPPF_SCOPE_ID; 6683 } else { 6684 int reterr; 6685 6686 ipp->ipp_fields |= IPPF_SCOPE_ID; 6687 if (ipp->ipp_fields & IPPF_HAS_IP6I) 6688 ip2dbg(("tcp_connect_v6: SCOPE_ID set\n")); 6689 reterr = tcp_build_hdrs(tcp->tcp_rq, tcp); 6690 if (reterr != 0) 6691 goto failed; 6692 ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n")); 6693 } 6694 } 6695 6696 /* 6697 * Don't let an endpoint connect to itself. Note that 6698 * the test here does not catch the case where the 6699 * source IP addr was left unspecified by the user. In 6700 * this case, the source addr is set in tcp_adapt_ire() 6701 * using the reply to the T_BIND message that we send 6702 * down to IP here and the check is repeated in tcp_rput_other. 6703 */ 6704 if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) && 6705 (dstport == tcp->tcp_lport)) { 6706 mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0); 6707 goto failed; 6708 } 6709 6710 tcp->tcp_ip6h->ip6_dst = *dstaddrp; 6711 tcp->tcp_remote_v6 = *dstaddrp; 6712 tcp->tcp_ip6h->ip6_vcf = 6713 (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) | 6714 (flowinfo & ~IPV6_VERS_AND_FLOW_MASK); 6715 6716 6717 /* 6718 * Massage a routing header (if present) putting the first hop 6719 * in ip6_dst. Compute a starting value for the checksum which 6720 * takes into account that the original ip6_dst should be 6721 * included in the checksum but that ip will include the 6722 * first hop in the source route in the tcp checksum. 6723 */ 6724 rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph); 6725 if (rth != NULL) { 6726 6727 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth); 6728 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 6729 (tcp->tcp_sum >> 16)); 6730 } else { 6731 tcp->tcp_sum = 0; 6732 } 6733 6734 tcph = tcp->tcp_tcph; 6735 *(uint16_t *)tcph->th_fport = dstport; 6736 tcp->tcp_fport = dstport; 6737 6738 oldstate = tcp->tcp_state; 6739 /* 6740 * At this point the remote destination address and remote port fields 6741 * in the tcp-four-tuple have been filled in the tcp structure. Now we 6742 * have to see which state tcp was in so we can take apropriate action. 6743 */ 6744 if (oldstate == TCPS_IDLE) { 6745 /* 6746 * We support a quick connect capability here, allowing 6747 * clients to transition directly from IDLE to SYN_SENT 6748 * tcp_bindi will pick an unused port, insert the connection 6749 * in the bind hash and transition to BOUND state. 6750 */ 6751 lport = tcp_update_next_port(tcp_next_port_to_try, tcp, B_TRUE); 6752 lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE, 6753 B_FALSE, B_FALSE); 6754 if (lport == 0) { 6755 mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0); 6756 goto failed; 6757 } 6758 } 6759 tcp->tcp_state = TCPS_SYN_SENT; 6760 /* 6761 * TODO: allow data with connect requests 6762 * by unlinking M_DATA trailers here and 6763 * linking them in behind the T_OK_ACK mblk. 6764 * The tcp_rput() bind ack handler would then 6765 * feed them to tcp_wput_data() rather than call 6766 * tcp_timer(). 6767 */ 6768 mp = mi_tpi_ok_ack_alloc(mp); 6769 if (!mp) { 6770 tcp->tcp_state = oldstate; 6771 goto failed; 6772 } 6773 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t)); 6774 if (mp1) { 6775 /* Hang onto the T_OK_ACK for later. */ 6776 linkb(mp1, mp); 6777 mblk_setcred(mp1, tcp->tcp_cred); 6778 mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp, 6779 &tcp->tcp_sticky_ipp); 6780 BUMP_MIB(&tcp_mib, tcpActiveOpens); 6781 tcp->tcp_active_open = 1; 6782 /* ip_bind_v6() may return ACK or ERROR */ 6783 if (mp1 != NULL) 6784 tcp_rput_other(tcp, mp1); 6785 return; 6786 } 6787 /* Error case */ 6788 tcp->tcp_state = oldstate; 6789 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM); 6790 6791 failed: 6792 /* return error ack and blow away saved option results if any */ 6793 if (mp != NULL) 6794 putnext(tcp->tcp_rq, mp); 6795 else { 6796 tcp_err_ack_prim(tcp, NULL, T_CONN_REQ, 6797 TSYSERR, ENOMEM); 6798 } 6799 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 6800 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 6801 } 6802 6803 /* 6804 * We need a stream q for detached closing tcp connections 6805 * to use. Our client hereby indicates that this q is the 6806 * one to use. 6807 */ 6808 static void 6809 tcp_def_q_set(tcp_t *tcp, mblk_t *mp) 6810 { 6811 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 6812 queue_t *q = tcp->tcp_wq; 6813 6814 mp->b_datap->db_type = M_IOCACK; 6815 iocp->ioc_count = 0; 6816 mutex_enter(&tcp_g_q_lock); 6817 if (tcp_g_q != NULL) { 6818 mutex_exit(&tcp_g_q_lock); 6819 iocp->ioc_error = EALREADY; 6820 } else { 6821 mblk_t *mp1; 6822 6823 mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0); 6824 if (mp1 == NULL) { 6825 mutex_exit(&tcp_g_q_lock); 6826 iocp->ioc_error = ENOMEM; 6827 } else { 6828 tcp_g_q = tcp->tcp_rq; 6829 mutex_exit(&tcp_g_q_lock); 6830 iocp->ioc_error = 0; 6831 iocp->ioc_rval = 0; 6832 /* 6833 * We are passing tcp_sticky_ipp as NULL 6834 * as it is not useful for tcp_default queue 6835 */ 6836 mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL); 6837 if (mp1 != NULL) 6838 tcp_rput_other(tcp, mp1); 6839 } 6840 } 6841 qreply(q, mp); 6842 } 6843 6844 /* 6845 * Our client hereby directs us to reject the connection request 6846 * that tcp_conn_request() marked with 'seqnum'. Rejection consists 6847 * of sending the appropriate RST, not an ICMP error. 6848 */ 6849 static void 6850 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 6851 { 6852 tcp_t *ltcp = NULL; 6853 t_scalar_t seqnum; 6854 conn_t *connp; 6855 6856 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 6857 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 6858 tcp_err_ack(tcp, mp, TPROTO, 0); 6859 return; 6860 } 6861 6862 /* 6863 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 6864 * when the stream is in BOUND state. Do not send a reset, 6865 * since the destination IP address is not valid, and it can 6866 * be the initialized value of all zeros (broadcast address). 6867 * 6868 * If TCP has sent down a bind request to IP and has not 6869 * received the reply, reject the request. Otherwise, TCP 6870 * will be confused. 6871 */ 6872 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) { 6873 if (tcp->tcp_debug) { 6874 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 6875 "tcp_disconnect: bad state, %d", tcp->tcp_state); 6876 } 6877 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 6878 return; 6879 } 6880 6881 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 6882 6883 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 6884 6885 /* 6886 * According to TPI, for non-listeners, ignore seqnum 6887 * and disconnect. 6888 * Following interpretation of -1 seqnum is historical 6889 * and implied TPI ? (TPI only states that for T_CONN_IND, 6890 * a valid seqnum should not be -1). 6891 * 6892 * -1 means disconnect everything 6893 * regardless even on a listener. 6894 */ 6895 6896 int old_state = tcp->tcp_state; 6897 6898 /* 6899 * The connection can't be on the tcp_time_wait_head list 6900 * since it is not detached. 6901 */ 6902 ASSERT(tcp->tcp_time_wait_next == NULL); 6903 ASSERT(tcp->tcp_time_wait_prev == NULL); 6904 ASSERT(tcp->tcp_time_wait_expire == 0); 6905 ltcp = NULL; 6906 /* 6907 * If it used to be a listener, check to make sure no one else 6908 * has taken the port before switching back to LISTEN state. 6909 */ 6910 if (tcp->tcp_ipversion == IPV4_VERSION) { 6911 connp = ipcl_lookup_listener_v4(tcp->tcp_lport, 6912 tcp->tcp_ipha->ipha_src, 6913 tcp->tcp_connp->conn_zoneid); 6914 if (connp != NULL) 6915 ltcp = connp->conn_tcp; 6916 } else { 6917 /* Allow tcp_bound_if listeners? */ 6918 connp = ipcl_lookup_listener_v6(tcp->tcp_lport, 6919 &tcp->tcp_ip6h->ip6_src, 0, 6920 tcp->tcp_connp->conn_zoneid); 6921 if (connp != NULL) 6922 ltcp = connp->conn_tcp; 6923 } 6924 if (tcp->tcp_conn_req_max && ltcp == NULL) { 6925 tcp->tcp_state = TCPS_LISTEN; 6926 } else if (old_state > TCPS_BOUND) { 6927 tcp->tcp_conn_req_max = 0; 6928 tcp->tcp_state = TCPS_BOUND; 6929 } 6930 if (ltcp != NULL) 6931 CONN_DEC_REF(ltcp->tcp_connp); 6932 if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) { 6933 BUMP_MIB(&tcp_mib, tcpAttemptFails); 6934 } else if (old_state == TCPS_ESTABLISHED || 6935 old_state == TCPS_CLOSE_WAIT) { 6936 BUMP_MIB(&tcp_mib, tcpEstabResets); 6937 } 6938 6939 if (tcp->tcp_fused) 6940 tcp_unfuse(tcp); 6941 6942 mutex_enter(&tcp->tcp_eager_lock); 6943 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 6944 (tcp->tcp_conn_req_cnt_q != 0)) { 6945 tcp_eager_cleanup(tcp, 0); 6946 } 6947 mutex_exit(&tcp->tcp_eager_lock); 6948 6949 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 6950 tcp->tcp_rnxt, TH_RST | TH_ACK); 6951 6952 tcp_reinit(tcp); 6953 6954 if (old_state >= TCPS_ESTABLISHED) { 6955 /* Send M_FLUSH according to TPI */ 6956 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6957 } 6958 mp = mi_tpi_ok_ack_alloc(mp); 6959 if (mp) 6960 putnext(tcp->tcp_rq, mp); 6961 return; 6962 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 6963 tcp_err_ack(tcp, mp, TBADSEQ, 0); 6964 return; 6965 } 6966 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 6967 /* Send M_FLUSH according to TPI */ 6968 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 6969 } 6970 mp = mi_tpi_ok_ack_alloc(mp); 6971 if (mp) 6972 putnext(tcp->tcp_rq, mp); 6973 } 6974 6975 /* 6976 * Diagnostic routine used to return a string associated with the tcp state. 6977 * Note that if the caller does not supply a buffer, it will use an internal 6978 * static string. This means that if multiple threads call this function at 6979 * the same time, output can be corrupted... Note also that this function 6980 * does not check the size of the supplied buffer. The caller has to make 6981 * sure that it is big enough. 6982 */ 6983 static char * 6984 tcp_display(tcp_t *tcp, char *sup_buf, char format) 6985 { 6986 char buf1[30]; 6987 static char priv_buf[INET6_ADDRSTRLEN * 2 + 80]; 6988 char *buf; 6989 char *cp; 6990 in6_addr_t local, remote; 6991 char local_addrbuf[INET6_ADDRSTRLEN]; 6992 char remote_addrbuf[INET6_ADDRSTRLEN]; 6993 6994 if (sup_buf != NULL) 6995 buf = sup_buf; 6996 else 6997 buf = priv_buf; 6998 6999 if (tcp == NULL) 7000 return ("NULL_TCP"); 7001 switch (tcp->tcp_state) { 7002 case TCPS_CLOSED: 7003 cp = "TCP_CLOSED"; 7004 break; 7005 case TCPS_IDLE: 7006 cp = "TCP_IDLE"; 7007 break; 7008 case TCPS_BOUND: 7009 cp = "TCP_BOUND"; 7010 break; 7011 case TCPS_LISTEN: 7012 cp = "TCP_LISTEN"; 7013 break; 7014 case TCPS_SYN_SENT: 7015 cp = "TCP_SYN_SENT"; 7016 break; 7017 case TCPS_SYN_RCVD: 7018 cp = "TCP_SYN_RCVD"; 7019 break; 7020 case TCPS_ESTABLISHED: 7021 cp = "TCP_ESTABLISHED"; 7022 break; 7023 case TCPS_CLOSE_WAIT: 7024 cp = "TCP_CLOSE_WAIT"; 7025 break; 7026 case TCPS_FIN_WAIT_1: 7027 cp = "TCP_FIN_WAIT_1"; 7028 break; 7029 case TCPS_CLOSING: 7030 cp = "TCP_CLOSING"; 7031 break; 7032 case TCPS_LAST_ACK: 7033 cp = "TCP_LAST_ACK"; 7034 break; 7035 case TCPS_FIN_WAIT_2: 7036 cp = "TCP_FIN_WAIT_2"; 7037 break; 7038 case TCPS_TIME_WAIT: 7039 cp = "TCP_TIME_WAIT"; 7040 break; 7041 default: 7042 (void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state); 7043 cp = buf1; 7044 break; 7045 } 7046 switch (format) { 7047 case DISP_ADDR_AND_PORT: 7048 if (tcp->tcp_ipversion == IPV4_VERSION) { 7049 /* 7050 * Note that we use the remote address in the tcp_b 7051 * structure. This means that it will print out 7052 * the real destination address, not the next hop's 7053 * address if source routing is used. 7054 */ 7055 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local); 7056 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote); 7057 7058 } else { 7059 local = tcp->tcp_ip_src_v6; 7060 remote = tcp->tcp_remote_v6; 7061 } 7062 (void) inet_ntop(AF_INET6, &local, local_addrbuf, 7063 sizeof (local_addrbuf)); 7064 (void) inet_ntop(AF_INET6, &remote, remote_addrbuf, 7065 sizeof (remote_addrbuf)); 7066 (void) mi_sprintf(buf, "[%s.%u, %s.%u] %s", 7067 local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf, 7068 ntohs(tcp->tcp_fport), cp); 7069 break; 7070 case DISP_PORT_ONLY: 7071 default: 7072 (void) mi_sprintf(buf, "[%u, %u] %s", 7073 ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp); 7074 break; 7075 } 7076 7077 return (buf); 7078 } 7079 7080 /* 7081 * Called via squeue to get on to eager's perimeter to send a 7082 * TH_RST. The listener wants the eager to disappear either 7083 * by means of tcp_eager_blowoff() or tcp_eager_cleanup() 7084 * being called. 7085 */ 7086 /* ARGSUSED */ 7087 void 7088 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2) 7089 { 7090 conn_t *econnp = (conn_t *)arg; 7091 tcp_t *eager = econnp->conn_tcp; 7092 tcp_t *listener = eager->tcp_listener; 7093 7094 /* 7095 * We could be called because listener is closing. Since 7096 * the eager is using listener's queue's, its not safe. 7097 * Better use the default queue just to send the TH_RST 7098 * out. 7099 */ 7100 eager->tcp_rq = tcp_g_q; 7101 eager->tcp_wq = WR(tcp_g_q); 7102 7103 if (eager->tcp_state > TCPS_LISTEN) { 7104 tcp_xmit_ctl("tcp_eager_kill, can't wait", 7105 eager, eager->tcp_snxt, 0, TH_RST); 7106 } 7107 7108 /* We are here because listener wants this eager gone */ 7109 if (listener != NULL) { 7110 mutex_enter(&listener->tcp_eager_lock); 7111 tcp_eager_unlink(eager); 7112 if (eager->tcp_tconnind_started) { 7113 /* 7114 * The eager has sent a conn_ind up to the 7115 * listener but listener decides to close 7116 * instead. We need to drop the extra ref 7117 * placed on eager in tcp_rput_data() before 7118 * sending the conn_ind to listener. 7119 */ 7120 CONN_DEC_REF(econnp); 7121 } 7122 mutex_exit(&listener->tcp_eager_lock); 7123 CONN_DEC_REF(listener->tcp_connp); 7124 } 7125 7126 if (eager->tcp_state > TCPS_BOUND) 7127 tcp_close_detached(eager); 7128 } 7129 7130 /* 7131 * Reset any eager connection hanging off this listener marked 7132 * with 'seqnum' and then reclaim it's resources. 7133 */ 7134 static boolean_t 7135 tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum) 7136 { 7137 tcp_t *eager; 7138 mblk_t *mp; 7139 7140 TCP_STAT(tcp_eager_blowoff_calls); 7141 eager = listener; 7142 mutex_enter(&listener->tcp_eager_lock); 7143 do { 7144 eager = eager->tcp_eager_next_q; 7145 if (eager == NULL) { 7146 mutex_exit(&listener->tcp_eager_lock); 7147 return (B_FALSE); 7148 } 7149 } while (eager->tcp_conn_req_seqnum != seqnum); 7150 7151 if (eager->tcp_closemp_used > 0) { 7152 mutex_exit(&listener->tcp_eager_lock); 7153 return (B_TRUE); 7154 } 7155 eager->tcp_closemp_used = 1; 7156 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7157 CONN_INC_REF(eager->tcp_connp); 7158 mutex_exit(&listener->tcp_eager_lock); 7159 mp = &eager->tcp_closemp; 7160 squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill, 7161 eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF); 7162 return (B_TRUE); 7163 } 7164 7165 /* 7166 * Reset any eager connection hanging off this listener 7167 * and then reclaim it's resources. 7168 */ 7169 static void 7170 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only) 7171 { 7172 tcp_t *eager; 7173 mblk_t *mp; 7174 7175 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7176 7177 if (!q0_only) { 7178 /* First cleanup q */ 7179 TCP_STAT(tcp_eager_blowoff_q); 7180 eager = listener->tcp_eager_next_q; 7181 while (eager != NULL) { 7182 if (eager->tcp_closemp_used == 0) { 7183 eager->tcp_closemp_used = 1; 7184 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7185 CONN_INC_REF(eager->tcp_connp); 7186 mp = &eager->tcp_closemp; 7187 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7188 tcp_eager_kill, eager->tcp_connp, 7189 SQTAG_TCP_EAGER_CLEANUP); 7190 } 7191 eager = eager->tcp_eager_next_q; 7192 } 7193 } 7194 /* Then cleanup q0 */ 7195 TCP_STAT(tcp_eager_blowoff_q0); 7196 eager = listener->tcp_eager_next_q0; 7197 while (eager != listener) { 7198 if (eager->tcp_closemp_used == 0) { 7199 eager->tcp_closemp_used = 1; 7200 TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15); 7201 CONN_INC_REF(eager->tcp_connp); 7202 mp = &eager->tcp_closemp; 7203 squeue_fill(eager->tcp_connp->conn_sqp, mp, 7204 tcp_eager_kill, eager->tcp_connp, 7205 SQTAG_TCP_EAGER_CLEANUP_Q0); 7206 } 7207 eager = eager->tcp_eager_next_q0; 7208 } 7209 } 7210 7211 /* 7212 * If we are an eager connection hanging off a listener that hasn't 7213 * formally accepted the connection yet, get off his list and blow off 7214 * any data that we have accumulated. 7215 */ 7216 static void 7217 tcp_eager_unlink(tcp_t *tcp) 7218 { 7219 tcp_t *listener = tcp->tcp_listener; 7220 7221 ASSERT(MUTEX_HELD(&listener->tcp_eager_lock)); 7222 ASSERT(listener != NULL); 7223 if (tcp->tcp_eager_next_q0 != NULL) { 7224 ASSERT(tcp->tcp_eager_prev_q0 != NULL); 7225 7226 /* Remove the eager tcp from q0 */ 7227 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 7228 tcp->tcp_eager_prev_q0; 7229 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 7230 tcp->tcp_eager_next_q0; 7231 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 7232 listener->tcp_conn_req_cnt_q0--; 7233 7234 tcp->tcp_eager_next_q0 = NULL; 7235 tcp->tcp_eager_prev_q0 = NULL; 7236 7237 /* 7238 * Take the eager out, if it is in the list of droppable 7239 * eagers. 7240 */ 7241 MAKE_UNDROPPABLE(tcp); 7242 7243 if (tcp->tcp_syn_rcvd_timeout != 0) { 7244 /* we have timed out before */ 7245 ASSERT(listener->tcp_syn_rcvd_timeout > 0); 7246 listener->tcp_syn_rcvd_timeout--; 7247 } 7248 } else { 7249 tcp_t **tcpp = &listener->tcp_eager_next_q; 7250 tcp_t *prev = NULL; 7251 7252 for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) { 7253 if (tcpp[0] == tcp) { 7254 if (listener->tcp_eager_last_q == tcp) { 7255 /* 7256 * If we are unlinking the last 7257 * element on the list, adjust 7258 * tail pointer. Set tail pointer 7259 * to nil when list is empty. 7260 */ 7261 ASSERT(tcp->tcp_eager_next_q == NULL); 7262 if (listener->tcp_eager_last_q == 7263 listener->tcp_eager_next_q) { 7264 listener->tcp_eager_last_q = 7265 NULL; 7266 } else { 7267 /* 7268 * We won't get here if there 7269 * is only one eager in the 7270 * list. 7271 */ 7272 ASSERT(prev != NULL); 7273 listener->tcp_eager_last_q = 7274 prev; 7275 } 7276 } 7277 tcpp[0] = tcp->tcp_eager_next_q; 7278 tcp->tcp_eager_next_q = NULL; 7279 tcp->tcp_eager_last_q = NULL; 7280 ASSERT(listener->tcp_conn_req_cnt_q > 0); 7281 listener->tcp_conn_req_cnt_q--; 7282 break; 7283 } 7284 prev = tcpp[0]; 7285 } 7286 } 7287 tcp->tcp_listener = NULL; 7288 } 7289 7290 /* Shorthand to generate and send TPI error acks to our client */ 7291 static void 7292 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error) 7293 { 7294 if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) 7295 putnext(tcp->tcp_rq, mp); 7296 } 7297 7298 /* Shorthand to generate and send TPI error acks to our client */ 7299 static void 7300 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive, 7301 int t_error, int sys_error) 7302 { 7303 struct T_error_ack *teackp; 7304 7305 if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack), 7306 M_PCPROTO, T_ERROR_ACK)) != NULL) { 7307 teackp = (struct T_error_ack *)mp->b_rptr; 7308 teackp->ERROR_prim = primitive; 7309 teackp->TLI_error = t_error; 7310 teackp->UNIX_error = sys_error; 7311 putnext(tcp->tcp_rq, mp); 7312 } 7313 } 7314 7315 /* 7316 * Note: No locks are held when inspecting tcp_g_*epriv_ports 7317 * but instead the code relies on: 7318 * - the fact that the address of the array and its size never changes 7319 * - the atomic assignment of the elements of the array 7320 */ 7321 /* ARGSUSED */ 7322 static int 7323 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 7324 { 7325 int i; 7326 7327 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7328 if (tcp_g_epriv_ports[i] != 0) 7329 (void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]); 7330 } 7331 return (0); 7332 } 7333 7334 /* 7335 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7336 * threads from changing it at the same time. 7337 */ 7338 /* ARGSUSED */ 7339 static int 7340 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7341 cred_t *cr) 7342 { 7343 long new_value; 7344 int i; 7345 7346 /* 7347 * Fail the request if the new value does not lie within the 7348 * port number limits. 7349 */ 7350 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 7351 new_value <= 0 || new_value >= 65536) { 7352 return (EINVAL); 7353 } 7354 7355 mutex_enter(&tcp_epriv_port_lock); 7356 /* Check if the value is already in the list */ 7357 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7358 if (new_value == tcp_g_epriv_ports[i]) { 7359 mutex_exit(&tcp_epriv_port_lock); 7360 return (EEXIST); 7361 } 7362 } 7363 /* Find an empty slot */ 7364 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7365 if (tcp_g_epriv_ports[i] == 0) 7366 break; 7367 } 7368 if (i == tcp_g_num_epriv_ports) { 7369 mutex_exit(&tcp_epriv_port_lock); 7370 return (EOVERFLOW); 7371 } 7372 /* Set the new value */ 7373 tcp_g_epriv_ports[i] = (uint16_t)new_value; 7374 mutex_exit(&tcp_epriv_port_lock); 7375 return (0); 7376 } 7377 7378 /* 7379 * Hold a lock while changing tcp_g_epriv_ports to prevent multiple 7380 * threads from changing it at the same time. 7381 */ 7382 /* ARGSUSED */ 7383 static int 7384 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 7385 cred_t *cr) 7386 { 7387 long new_value; 7388 int i; 7389 7390 /* 7391 * Fail the request if the new value does not lie within the 7392 * port number limits. 7393 */ 7394 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 || 7395 new_value >= 65536) { 7396 return (EINVAL); 7397 } 7398 7399 mutex_enter(&tcp_epriv_port_lock); 7400 /* Check that the value is already in the list */ 7401 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 7402 if (tcp_g_epriv_ports[i] == new_value) 7403 break; 7404 } 7405 if (i == tcp_g_num_epriv_ports) { 7406 mutex_exit(&tcp_epriv_port_lock); 7407 return (ESRCH); 7408 } 7409 /* Clear the value */ 7410 tcp_g_epriv_ports[i] = 0; 7411 mutex_exit(&tcp_epriv_port_lock); 7412 return (0); 7413 } 7414 7415 /* Return the TPI/TLI equivalent of our current tcp_state */ 7416 static int 7417 tcp_tpistate(tcp_t *tcp) 7418 { 7419 switch (tcp->tcp_state) { 7420 case TCPS_IDLE: 7421 return (TS_UNBND); 7422 case TCPS_LISTEN: 7423 /* 7424 * Return whether there are outstanding T_CONN_IND waiting 7425 * for the matching T_CONN_RES. Therefore don't count q0. 7426 */ 7427 if (tcp->tcp_conn_req_cnt_q > 0) 7428 return (TS_WRES_CIND); 7429 else 7430 return (TS_IDLE); 7431 case TCPS_BOUND: 7432 return (TS_IDLE); 7433 case TCPS_SYN_SENT: 7434 return (TS_WCON_CREQ); 7435 case TCPS_SYN_RCVD: 7436 /* 7437 * Note: assumption: this has to the active open SYN_RCVD. 7438 * The passive instance is detached in SYN_RCVD stage of 7439 * incoming connection processing so we cannot get request 7440 * for T_info_ack on it. 7441 */ 7442 return (TS_WACK_CRES); 7443 case TCPS_ESTABLISHED: 7444 return (TS_DATA_XFER); 7445 case TCPS_CLOSE_WAIT: 7446 return (TS_WREQ_ORDREL); 7447 case TCPS_FIN_WAIT_1: 7448 return (TS_WIND_ORDREL); 7449 case TCPS_FIN_WAIT_2: 7450 return (TS_WIND_ORDREL); 7451 7452 case TCPS_CLOSING: 7453 case TCPS_LAST_ACK: 7454 case TCPS_TIME_WAIT: 7455 case TCPS_CLOSED: 7456 /* 7457 * Following TS_WACK_DREQ7 is a rendition of "not 7458 * yet TS_IDLE" TPI state. There is no best match to any 7459 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we 7460 * choose a value chosen that will map to TLI/XTI level 7461 * state of TSTATECHNG (state is process of changing) which 7462 * captures what this dummy state represents. 7463 */ 7464 return (TS_WACK_DREQ7); 7465 default: 7466 cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s", 7467 tcp->tcp_state, tcp_display(tcp, NULL, 7468 DISP_PORT_ONLY)); 7469 return (TS_UNBND); 7470 } 7471 } 7472 7473 static void 7474 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp) 7475 { 7476 if (tcp->tcp_family == AF_INET6) 7477 *tia = tcp_g_t_info_ack_v6; 7478 else 7479 *tia = tcp_g_t_info_ack; 7480 tia->CURRENT_state = tcp_tpistate(tcp); 7481 tia->OPT_size = tcp_max_optsize; 7482 if (tcp->tcp_mss == 0) { 7483 /* Not yet set - tcp_open does not set mss */ 7484 if (tcp->tcp_ipversion == IPV4_VERSION) 7485 tia->TIDU_size = tcp_mss_def_ipv4; 7486 else 7487 tia->TIDU_size = tcp_mss_def_ipv6; 7488 } else { 7489 tia->TIDU_size = tcp->tcp_mss; 7490 } 7491 /* TODO: Default ETSDU is 1. Is that correct for tcp? */ 7492 } 7493 7494 /* 7495 * This routine responds to T_CAPABILITY_REQ messages. It is called by 7496 * tcp_wput. Much of the T_CAPABILITY_ACK information is copied from 7497 * tcp_g_t_info_ack. The current state of the stream is copied from 7498 * tcp_state. 7499 */ 7500 static void 7501 tcp_capability_req(tcp_t *tcp, mblk_t *mp) 7502 { 7503 t_uscalar_t cap_bits1; 7504 struct T_capability_ack *tcap; 7505 7506 if (MBLKL(mp) < sizeof (struct T_capability_req)) { 7507 freemsg(mp); 7508 return; 7509 } 7510 7511 cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; 7512 7513 mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), 7514 mp->b_datap->db_type, T_CAPABILITY_ACK); 7515 if (mp == NULL) 7516 return; 7517 7518 tcap = (struct T_capability_ack *)mp->b_rptr; 7519 tcap->CAP_bits1 = 0; 7520 7521 if (cap_bits1 & TC1_INFO) { 7522 tcp_copy_info(&tcap->INFO_ack, tcp); 7523 tcap->CAP_bits1 |= TC1_INFO; 7524 } 7525 7526 if (cap_bits1 & TC1_ACCEPTOR_ID) { 7527 tcap->ACCEPTOR_id = tcp->tcp_acceptor_id; 7528 tcap->CAP_bits1 |= TC1_ACCEPTOR_ID; 7529 } 7530 7531 putnext(tcp->tcp_rq, mp); 7532 } 7533 7534 /* 7535 * This routine responds to T_INFO_REQ messages. It is called by tcp_wput. 7536 * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack. 7537 * The current state of the stream is copied from tcp_state. 7538 */ 7539 static void 7540 tcp_info_req(tcp_t *tcp, mblk_t *mp) 7541 { 7542 mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, 7543 T_INFO_ACK); 7544 if (!mp) { 7545 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7546 return; 7547 } 7548 tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp); 7549 putnext(tcp->tcp_rq, mp); 7550 } 7551 7552 /* Respond to the TPI addr request */ 7553 static void 7554 tcp_addr_req(tcp_t *tcp, mblk_t *mp) 7555 { 7556 sin_t *sin; 7557 mblk_t *ackmp; 7558 struct T_addr_ack *taa; 7559 7560 /* Make it large enough for worst case */ 7561 ackmp = reallocb(mp, sizeof (struct T_addr_ack) + 7562 2 * sizeof (sin6_t), 1); 7563 if (ackmp == NULL) { 7564 tcp_err_ack(tcp, mp, TSYSERR, ENOMEM); 7565 return; 7566 } 7567 7568 if (tcp->tcp_ipversion == IPV6_VERSION) { 7569 tcp_addr_req_ipv6(tcp, ackmp); 7570 return; 7571 } 7572 taa = (struct T_addr_ack *)ackmp->b_rptr; 7573 7574 bzero(taa, sizeof (struct T_addr_ack)); 7575 ackmp->b_wptr = (uchar_t *)&taa[1]; 7576 7577 taa->PRIM_type = T_ADDR_ACK; 7578 ackmp->b_datap->db_type = M_PCPROTO; 7579 7580 /* 7581 * Note: Following code assumes 32 bit alignment of basic 7582 * data structures like sin_t and struct T_addr_ack. 7583 */ 7584 if (tcp->tcp_state >= TCPS_BOUND) { 7585 /* 7586 * Fill in local address 7587 */ 7588 taa->LOCADDR_length = sizeof (sin_t); 7589 taa->LOCADDR_offset = sizeof (*taa); 7590 7591 sin = (sin_t *)&taa[1]; 7592 7593 /* Fill zeroes and then intialize non-zero fields */ 7594 *sin = sin_null; 7595 7596 sin->sin_family = AF_INET; 7597 7598 sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src; 7599 sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport; 7600 7601 ackmp->b_wptr = (uchar_t *)&sin[1]; 7602 7603 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7604 /* 7605 * Fill in Remote address 7606 */ 7607 taa->REMADDR_length = sizeof (sin_t); 7608 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7609 taa->LOCADDR_length); 7610 7611 sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7612 *sin = sin_null; 7613 sin->sin_family = AF_INET; 7614 sin->sin_addr.s_addr = tcp->tcp_remote; 7615 sin->sin_port = tcp->tcp_fport; 7616 7617 ackmp->b_wptr = (uchar_t *)&sin[1]; 7618 } 7619 } 7620 putnext(tcp->tcp_rq, ackmp); 7621 } 7622 7623 /* Assumes that tcp_addr_req gets enough space and alignment */ 7624 static void 7625 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp) 7626 { 7627 sin6_t *sin6; 7628 struct T_addr_ack *taa; 7629 7630 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 7631 ASSERT(OK_32PTR(ackmp->b_rptr)); 7632 ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) + 7633 2 * sizeof (sin6_t)); 7634 7635 taa = (struct T_addr_ack *)ackmp->b_rptr; 7636 7637 bzero(taa, sizeof (struct T_addr_ack)); 7638 ackmp->b_wptr = (uchar_t *)&taa[1]; 7639 7640 taa->PRIM_type = T_ADDR_ACK; 7641 ackmp->b_datap->db_type = M_PCPROTO; 7642 7643 /* 7644 * Note: Following code assumes 32 bit alignment of basic 7645 * data structures like sin6_t and struct T_addr_ack. 7646 */ 7647 if (tcp->tcp_state >= TCPS_BOUND) { 7648 /* 7649 * Fill in local address 7650 */ 7651 taa->LOCADDR_length = sizeof (sin6_t); 7652 taa->LOCADDR_offset = sizeof (*taa); 7653 7654 sin6 = (sin6_t *)&taa[1]; 7655 *sin6 = sin6_null; 7656 7657 sin6->sin6_family = AF_INET6; 7658 sin6->sin6_addr = tcp->tcp_ip6h->ip6_src; 7659 sin6->sin6_port = tcp->tcp_lport; 7660 7661 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7662 7663 if (tcp->tcp_state >= TCPS_SYN_RCVD) { 7664 /* 7665 * Fill in Remote address 7666 */ 7667 taa->REMADDR_length = sizeof (sin6_t); 7668 taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset + 7669 taa->LOCADDR_length); 7670 7671 sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset); 7672 *sin6 = sin6_null; 7673 sin6->sin6_family = AF_INET6; 7674 sin6->sin6_flowinfo = 7675 tcp->tcp_ip6h->ip6_vcf & 7676 ~IPV6_VERS_AND_FLOW_MASK; 7677 sin6->sin6_addr = tcp->tcp_remote_v6; 7678 sin6->sin6_port = tcp->tcp_fport; 7679 7680 ackmp->b_wptr = (uchar_t *)&sin6[1]; 7681 } 7682 } 7683 putnext(tcp->tcp_rq, ackmp); 7684 } 7685 7686 /* 7687 * Handle reinitialization of a tcp structure. 7688 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 7689 */ 7690 static void 7691 tcp_reinit(tcp_t *tcp) 7692 { 7693 mblk_t *mp; 7694 int err; 7695 7696 TCP_STAT(tcp_reinit_calls); 7697 7698 /* tcp_reinit should never be called for detached tcp_t's */ 7699 ASSERT(tcp->tcp_listener == NULL); 7700 ASSERT((tcp->tcp_family == AF_INET && 7701 tcp->tcp_ipversion == IPV4_VERSION) || 7702 (tcp->tcp_family == AF_INET6 && 7703 (tcp->tcp_ipversion == IPV4_VERSION || 7704 tcp->tcp_ipversion == IPV6_VERSION))); 7705 7706 /* Cancel outstanding timers */ 7707 tcp_timers_stop(tcp); 7708 7709 /* 7710 * Reset everything in the state vector, after updating global 7711 * MIB data from instance counters. 7712 */ 7713 UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs); 7714 tcp->tcp_ibsegs = 0; 7715 UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs); 7716 tcp->tcp_obsegs = 0; 7717 7718 tcp_close_mpp(&tcp->tcp_xmit_head); 7719 if (tcp->tcp_snd_zcopy_aware) 7720 tcp_zcopy_notify(tcp); 7721 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 7722 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 7723 mutex_enter(&tcp->tcp_non_sq_lock); 7724 if (tcp->tcp_flow_stopped && 7725 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 7726 tcp_clrqfull(tcp); 7727 } 7728 mutex_exit(&tcp->tcp_non_sq_lock); 7729 tcp_close_mpp(&tcp->tcp_reass_head); 7730 tcp->tcp_reass_tail = NULL; 7731 if (tcp->tcp_rcv_list != NULL) { 7732 /* Free b_next chain */ 7733 tcp_close_mpp(&tcp->tcp_rcv_list); 7734 tcp->tcp_rcv_last_head = NULL; 7735 tcp->tcp_rcv_last_tail = NULL; 7736 tcp->tcp_rcv_cnt = 0; 7737 } 7738 tcp->tcp_rcv_last_tail = NULL; 7739 7740 if ((mp = tcp->tcp_urp_mp) != NULL) { 7741 freemsg(mp); 7742 tcp->tcp_urp_mp = NULL; 7743 } 7744 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 7745 freemsg(mp); 7746 tcp->tcp_urp_mark_mp = NULL; 7747 } 7748 if (tcp->tcp_fused_sigurg_mp != NULL) { 7749 freeb(tcp->tcp_fused_sigurg_mp); 7750 tcp->tcp_fused_sigurg_mp = NULL; 7751 } 7752 7753 /* 7754 * Following is a union with two members which are 7755 * identical types and size so the following cleanup 7756 * is enough. 7757 */ 7758 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 7759 7760 CL_INET_DISCONNECT(tcp); 7761 7762 /* 7763 * The connection can't be on the tcp_time_wait_head list 7764 * since it is not detached. 7765 */ 7766 ASSERT(tcp->tcp_time_wait_next == NULL); 7767 ASSERT(tcp->tcp_time_wait_prev == NULL); 7768 ASSERT(tcp->tcp_time_wait_expire == 0); 7769 7770 if (tcp->tcp_kssl_pending) { 7771 tcp->tcp_kssl_pending = B_FALSE; 7772 7773 /* Don't reset if the initialized by bind. */ 7774 if (tcp->tcp_kssl_ent != NULL) { 7775 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 7776 KSSL_NO_PROXY); 7777 } 7778 } 7779 if (tcp->tcp_kssl_ctx != NULL) { 7780 kssl_release_ctx(tcp->tcp_kssl_ctx); 7781 tcp->tcp_kssl_ctx = NULL; 7782 } 7783 7784 /* 7785 * Reset/preserve other values 7786 */ 7787 tcp_reinit_values(tcp); 7788 ipcl_hash_remove(tcp->tcp_connp); 7789 conn_delete_ire(tcp->tcp_connp, NULL); 7790 7791 if (tcp->tcp_conn_req_max != 0) { 7792 /* 7793 * This is the case when a TLI program uses the same 7794 * transport end point to accept a connection. This 7795 * makes the TCP both a listener and acceptor. When 7796 * this connection is closed, we need to set the state 7797 * back to TCPS_LISTEN. Make sure that the eager list 7798 * is reinitialized. 7799 * 7800 * Note that this stream is still bound to the four 7801 * tuples of the previous connection in IP. If a new 7802 * SYN with different foreign address comes in, IP will 7803 * not find it and will send it to the global queue. In 7804 * the global queue, TCP will do a tcp_lookup_listener() 7805 * to find this stream. This works because this stream 7806 * is only removed from connected hash. 7807 * 7808 */ 7809 tcp->tcp_state = TCPS_LISTEN; 7810 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 7811 tcp->tcp_eager_next_drop_q0 = tcp; 7812 tcp->tcp_eager_prev_drop_q0 = tcp; 7813 tcp->tcp_connp->conn_recv = tcp_conn_request; 7814 if (tcp->tcp_family == AF_INET6) { 7815 ASSERT(tcp->tcp_connp->conn_af_isv6); 7816 (void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP, 7817 &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport); 7818 } else { 7819 ASSERT(!tcp->tcp_connp->conn_af_isv6); 7820 (void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP, 7821 tcp->tcp_ipha->ipha_src, tcp->tcp_lport); 7822 } 7823 } else { 7824 tcp->tcp_state = TCPS_BOUND; 7825 } 7826 7827 /* 7828 * Initialize to default values 7829 * Can't fail since enough header template space already allocated 7830 * at open(). 7831 */ 7832 err = tcp_init_values(tcp); 7833 ASSERT(err == 0); 7834 /* Restore state in tcp_tcph */ 7835 bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN); 7836 if (tcp->tcp_ipversion == IPV4_VERSION) 7837 tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source; 7838 else 7839 tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6; 7840 /* 7841 * Copy of the src addr. in tcp_t is needed in tcp_t 7842 * since the lookup funcs can only lookup on tcp_t 7843 */ 7844 tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6; 7845 7846 ASSERT(tcp->tcp_ptpbhn != NULL); 7847 tcp->tcp_rq->q_hiwat = tcp_recv_hiwat; 7848 tcp->tcp_rwnd = tcp_recv_hiwat; 7849 tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ? 7850 tcp_mss_def_ipv6 : tcp_mss_def_ipv4; 7851 } 7852 7853 /* 7854 * Force values to zero that need be zero. 7855 * Do not touch values asociated with the BOUND or LISTEN state 7856 * since the connection will end up in that state after the reinit. 7857 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 7858 * structure! 7859 */ 7860 static void 7861 tcp_reinit_values(tcp) 7862 tcp_t *tcp; 7863 { 7864 #ifndef lint 7865 #define DONTCARE(x) 7866 #define PRESERVE(x) 7867 #else 7868 #define DONTCARE(x) ((x) = (x)) 7869 #define PRESERVE(x) ((x) = (x)) 7870 #endif /* lint */ 7871 7872 PRESERVE(tcp->tcp_bind_hash); 7873 PRESERVE(tcp->tcp_ptpbhn); 7874 PRESERVE(tcp->tcp_acceptor_hash); 7875 PRESERVE(tcp->tcp_ptpahn); 7876 7877 /* Should be ASSERT NULL on these with new code! */ 7878 ASSERT(tcp->tcp_time_wait_next == NULL); 7879 ASSERT(tcp->tcp_time_wait_prev == NULL); 7880 ASSERT(tcp->tcp_time_wait_expire == 0); 7881 PRESERVE(tcp->tcp_state); 7882 PRESERVE(tcp->tcp_rq); 7883 PRESERVE(tcp->tcp_wq); 7884 7885 ASSERT(tcp->tcp_xmit_head == NULL); 7886 ASSERT(tcp->tcp_xmit_last == NULL); 7887 ASSERT(tcp->tcp_unsent == 0); 7888 ASSERT(tcp->tcp_xmit_tail == NULL); 7889 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 7890 7891 tcp->tcp_snxt = 0; /* Displayed in mib */ 7892 tcp->tcp_suna = 0; /* Displayed in mib */ 7893 tcp->tcp_swnd = 0; 7894 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_mss_set */ 7895 7896 ASSERT(tcp->tcp_ibsegs == 0); 7897 ASSERT(tcp->tcp_obsegs == 0); 7898 7899 if (tcp->tcp_iphc != NULL) { 7900 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 7901 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 7902 } 7903 7904 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 7905 DONTCARE(tcp->tcp_hdr_len); /* Init in tcp_init_values */ 7906 DONTCARE(tcp->tcp_ipha); 7907 DONTCARE(tcp->tcp_ip6h); 7908 DONTCARE(tcp->tcp_ip_hdr_len); 7909 DONTCARE(tcp->tcp_tcph); 7910 DONTCARE(tcp->tcp_tcp_hdr_len); /* Init in tcp_init_values */ 7911 tcp->tcp_valid_bits = 0; 7912 7913 DONTCARE(tcp->tcp_xmit_hiwater); /* Init in tcp_init_values */ 7914 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 7915 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 7916 tcp->tcp_last_rcv_lbolt = 0; 7917 7918 tcp->tcp_init_cwnd = 0; 7919 7920 tcp->tcp_urp_last_valid = 0; 7921 tcp->tcp_hard_binding = 0; 7922 tcp->tcp_hard_bound = 0; 7923 PRESERVE(tcp->tcp_cred); 7924 PRESERVE(tcp->tcp_cpid); 7925 PRESERVE(tcp->tcp_open_time); 7926 PRESERVE(tcp->tcp_exclbind); 7927 7928 tcp->tcp_fin_acked = 0; 7929 tcp->tcp_fin_rcvd = 0; 7930 tcp->tcp_fin_sent = 0; 7931 tcp->tcp_ordrel_done = 0; 7932 7933 tcp->tcp_debug = 0; 7934 tcp->tcp_dontroute = 0; 7935 tcp->tcp_broadcast = 0; 7936 7937 tcp->tcp_useloopback = 0; 7938 tcp->tcp_reuseaddr = 0; 7939 tcp->tcp_oobinline = 0; 7940 tcp->tcp_dgram_errind = 0; 7941 7942 tcp->tcp_detached = 0; 7943 tcp->tcp_bind_pending = 0; 7944 tcp->tcp_unbind_pending = 0; 7945 tcp->tcp_deferred_clean_death = 0; 7946 7947 tcp->tcp_snd_ws_ok = B_FALSE; 7948 tcp->tcp_snd_ts_ok = B_FALSE; 7949 tcp->tcp_linger = 0; 7950 tcp->tcp_ka_enabled = 0; 7951 tcp->tcp_zero_win_probe = 0; 7952 7953 tcp->tcp_loopback = 0; 7954 tcp->tcp_localnet = 0; 7955 tcp->tcp_syn_defense = 0; 7956 tcp->tcp_set_timer = 0; 7957 7958 tcp->tcp_active_open = 0; 7959 ASSERT(tcp->tcp_timeout == B_FALSE); 7960 tcp->tcp_rexmit = B_FALSE; 7961 tcp->tcp_xmit_zc_clean = B_FALSE; 7962 7963 tcp->tcp_snd_sack_ok = B_FALSE; 7964 PRESERVE(tcp->tcp_recvdstaddr); 7965 tcp->tcp_hwcksum = B_FALSE; 7966 7967 tcp->tcp_ire_ill_check_done = B_FALSE; 7968 DONTCARE(tcp->tcp_maxpsz); /* Init in tcp_init_values */ 7969 7970 tcp->tcp_mdt = B_FALSE; 7971 tcp->tcp_mdt_hdr_head = 0; 7972 tcp->tcp_mdt_hdr_tail = 0; 7973 7974 tcp->tcp_conn_def_q0 = 0; 7975 tcp->tcp_ip_forward_progress = B_FALSE; 7976 tcp->tcp_anon_priv_bind = 0; 7977 tcp->tcp_ecn_ok = B_FALSE; 7978 7979 tcp->tcp_cwr = B_FALSE; 7980 tcp->tcp_ecn_echo_on = B_FALSE; 7981 7982 if (tcp->tcp_sack_info != NULL) { 7983 if (tcp->tcp_notsack_list != NULL) { 7984 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 7985 } 7986 kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info); 7987 tcp->tcp_sack_info = NULL; 7988 } 7989 7990 tcp->tcp_rcv_ws = 0; 7991 tcp->tcp_snd_ws = 0; 7992 tcp->tcp_ts_recent = 0; 7993 tcp->tcp_rnxt = 0; /* Displayed in mib */ 7994 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 7995 tcp->tcp_if_mtu = 0; 7996 7997 ASSERT(tcp->tcp_reass_head == NULL); 7998 ASSERT(tcp->tcp_reass_tail == NULL); 7999 8000 tcp->tcp_cwnd_cnt = 0; 8001 8002 ASSERT(tcp->tcp_rcv_list == NULL); 8003 ASSERT(tcp->tcp_rcv_last_head == NULL); 8004 ASSERT(tcp->tcp_rcv_last_tail == NULL); 8005 ASSERT(tcp->tcp_rcv_cnt == 0); 8006 8007 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_adapt_ire */ 8008 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 8009 tcp->tcp_csuna = 0; 8010 8011 tcp->tcp_rto = 0; /* Displayed in MIB */ 8012 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 8013 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 8014 tcp->tcp_rtt_update = 0; 8015 8016 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8017 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 8018 8019 tcp->tcp_rack = 0; /* Displayed in mib */ 8020 tcp->tcp_rack_cnt = 0; 8021 tcp->tcp_rack_cur_max = 0; 8022 tcp->tcp_rack_abs_max = 0; 8023 8024 tcp->tcp_max_swnd = 0; 8025 8026 ASSERT(tcp->tcp_listener == NULL); 8027 8028 DONTCARE(tcp->tcp_xmit_lowater); /* Init in tcp_init_values */ 8029 8030 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 8031 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 8032 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 8033 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 8034 8035 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 8036 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 8037 PRESERVE(tcp->tcp_conn_req_max); 8038 PRESERVE(tcp->tcp_conn_req_seqnum); 8039 8040 DONTCARE(tcp->tcp_ip_hdr_len); /* Init in tcp_init_values */ 8041 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 8042 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 8043 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 8044 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 8045 8046 tcp->tcp_lingertime = 0; 8047 8048 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 8049 ASSERT(tcp->tcp_urp_mp == NULL); 8050 ASSERT(tcp->tcp_urp_mark_mp == NULL); 8051 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 8052 8053 ASSERT(tcp->tcp_eager_next_q == NULL); 8054 ASSERT(tcp->tcp_eager_last_q == NULL); 8055 ASSERT((tcp->tcp_eager_next_q0 == NULL && 8056 tcp->tcp_eager_prev_q0 == NULL) || 8057 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 8058 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 8059 8060 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 8061 tcp->tcp_eager_prev_drop_q0 == NULL) || 8062 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 8063 8064 tcp->tcp_client_errno = 0; 8065 8066 DONTCARE(tcp->tcp_sum); /* Init in tcp_init_values */ 8067 8068 tcp->tcp_remote_v6 = ipv6_all_zeros; /* Displayed in MIB */ 8069 8070 PRESERVE(tcp->tcp_bound_source_v6); 8071 tcp->tcp_last_sent_len = 0; 8072 tcp->tcp_dupack_cnt = 0; 8073 8074 tcp->tcp_fport = 0; /* Displayed in MIB */ 8075 PRESERVE(tcp->tcp_lport); 8076 8077 PRESERVE(tcp->tcp_acceptor_lockp); 8078 8079 ASSERT(tcp->tcp_ordrelid == 0); 8080 PRESERVE(tcp->tcp_acceptor_id); 8081 DONTCARE(tcp->tcp_ipsec_overhead); 8082 8083 /* 8084 * If tcp_tracing flag is ON (i.e. We have a trace buffer 8085 * in tcp structure and now tracing), Re-initialize all 8086 * members of tcp_traceinfo. 8087 */ 8088 if (tcp->tcp_tracebuf != NULL) { 8089 bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t)); 8090 } 8091 8092 PRESERVE(tcp->tcp_family); 8093 if (tcp->tcp_family == AF_INET6) { 8094 tcp->tcp_ipversion = IPV6_VERSION; 8095 tcp->tcp_mss = tcp_mss_def_ipv6; 8096 } else { 8097 tcp->tcp_ipversion = IPV4_VERSION; 8098 tcp->tcp_mss = tcp_mss_def_ipv4; 8099 } 8100 8101 tcp->tcp_bound_if = 0; 8102 tcp->tcp_ipv6_recvancillary = 0; 8103 tcp->tcp_recvifindex = 0; 8104 tcp->tcp_recvhops = 0; 8105 tcp->tcp_closed = 0; 8106 tcp->tcp_cleandeathtag = 0; 8107 if (tcp->tcp_hopopts != NULL) { 8108 mi_free(tcp->tcp_hopopts); 8109 tcp->tcp_hopopts = NULL; 8110 tcp->tcp_hopoptslen = 0; 8111 } 8112 ASSERT(tcp->tcp_hopoptslen == 0); 8113 if (tcp->tcp_dstopts != NULL) { 8114 mi_free(tcp->tcp_dstopts); 8115 tcp->tcp_dstopts = NULL; 8116 tcp->tcp_dstoptslen = 0; 8117 } 8118 ASSERT(tcp->tcp_dstoptslen == 0); 8119 if (tcp->tcp_rtdstopts != NULL) { 8120 mi_free(tcp->tcp_rtdstopts); 8121 tcp->tcp_rtdstopts = NULL; 8122 tcp->tcp_rtdstoptslen = 0; 8123 } 8124 ASSERT(tcp->tcp_rtdstoptslen == 0); 8125 if (tcp->tcp_rthdr != NULL) { 8126 mi_free(tcp->tcp_rthdr); 8127 tcp->tcp_rthdr = NULL; 8128 tcp->tcp_rthdrlen = 0; 8129 } 8130 ASSERT(tcp->tcp_rthdrlen == 0); 8131 PRESERVE(tcp->tcp_drop_opt_ack_cnt); 8132 8133 /* Reset fusion-related fields */ 8134 tcp->tcp_fused = B_FALSE; 8135 tcp->tcp_unfusable = B_FALSE; 8136 tcp->tcp_fused_sigurg = B_FALSE; 8137 tcp->tcp_direct_sockfs = B_FALSE; 8138 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8139 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8140 tcp->tcp_loopback_peer = NULL; 8141 tcp->tcp_fuse_rcv_hiwater = 0; 8142 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8143 tcp->tcp_fuse_rcv_unread_cnt = 0; 8144 8145 tcp->tcp_lso = B_FALSE; 8146 8147 tcp->tcp_in_ack_unsent = 0; 8148 tcp->tcp_cork = B_FALSE; 8149 tcp->tcp_tconnind_started = B_FALSE; 8150 8151 PRESERVE(tcp->tcp_squeue_bytes); 8152 8153 ASSERT(tcp->tcp_kssl_ctx == NULL); 8154 ASSERT(!tcp->tcp_kssl_pending); 8155 PRESERVE(tcp->tcp_kssl_ent); 8156 8157 tcp->tcp_closemp_used = 0; 8158 8159 #ifdef DEBUG 8160 DONTCARE(tcp->tcmp_stk[0]); 8161 #endif 8162 8163 8164 #undef DONTCARE 8165 #undef PRESERVE 8166 } 8167 8168 /* 8169 * Allocate necessary resources and initialize state vector. 8170 * Guaranteed not to fail so that when an error is returned, 8171 * the caller doesn't need to do any additional cleanup. 8172 */ 8173 int 8174 tcp_init(tcp_t *tcp, queue_t *q) 8175 { 8176 int err; 8177 8178 tcp->tcp_rq = q; 8179 tcp->tcp_wq = WR(q); 8180 tcp->tcp_state = TCPS_IDLE; 8181 if ((err = tcp_init_values(tcp)) != 0) 8182 tcp_timers_stop(tcp); 8183 return (err); 8184 } 8185 8186 static int 8187 tcp_init_values(tcp_t *tcp) 8188 { 8189 int err; 8190 8191 ASSERT((tcp->tcp_family == AF_INET && 8192 tcp->tcp_ipversion == IPV4_VERSION) || 8193 (tcp->tcp_family == AF_INET6 && 8194 (tcp->tcp_ipversion == IPV4_VERSION || 8195 tcp->tcp_ipversion == IPV6_VERSION))); 8196 8197 /* 8198 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 8199 * will be close to tcp_rexmit_interval_initial. By doing this, we 8200 * allow the algorithm to adjust slowly to large fluctuations of RTT 8201 * during first few transmissions of a connection as seen in slow 8202 * links. 8203 */ 8204 tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2; 8205 tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1; 8206 tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 8207 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) + 8208 tcp_conn_grace_period; 8209 if (tcp->tcp_rto < tcp_rexmit_interval_min) 8210 tcp->tcp_rto = tcp_rexmit_interval_min; 8211 tcp->tcp_timer_backoff = 0; 8212 tcp->tcp_ms_we_have_waited = 0; 8213 tcp->tcp_last_recv_time = lbolt; 8214 tcp->tcp_cwnd_max = tcp_cwnd_max_; 8215 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 8216 tcp->tcp_snd_burst = TCP_CWND_INFINITE; 8217 8218 tcp->tcp_maxpsz = tcp_maxpsz_multiplier; 8219 8220 tcp->tcp_first_timer_threshold = tcp_ip_notify_interval; 8221 tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval; 8222 tcp->tcp_second_timer_threshold = tcp_ip_abort_interval; 8223 /* 8224 * Fix it to tcp_ip_abort_linterval later if it turns out to be a 8225 * passive open. 8226 */ 8227 tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval; 8228 8229 tcp->tcp_naglim = tcp_naglim_def; 8230 8231 /* NOTE: ISS is now set in tcp_adapt_ire(). */ 8232 8233 tcp->tcp_mdt_hdr_head = 0; 8234 tcp->tcp_mdt_hdr_tail = 0; 8235 8236 /* Reset fusion-related fields */ 8237 tcp->tcp_fused = B_FALSE; 8238 tcp->tcp_unfusable = B_FALSE; 8239 tcp->tcp_fused_sigurg = B_FALSE; 8240 tcp->tcp_direct_sockfs = B_FALSE; 8241 tcp->tcp_fuse_syncstr_stopped = B_FALSE; 8242 tcp->tcp_fuse_syncstr_plugged = B_FALSE; 8243 tcp->tcp_loopback_peer = NULL; 8244 tcp->tcp_fuse_rcv_hiwater = 0; 8245 tcp->tcp_fuse_rcv_unread_hiwater = 0; 8246 tcp->tcp_fuse_rcv_unread_cnt = 0; 8247 8248 /* Initialize the header template */ 8249 if (tcp->tcp_ipversion == IPV4_VERSION) { 8250 err = tcp_header_init_ipv4(tcp); 8251 } else { 8252 err = tcp_header_init_ipv6(tcp); 8253 } 8254 if (err) 8255 return (err); 8256 8257 /* 8258 * Init the window scale to the max so tcp_rwnd_set() won't pare 8259 * down tcp_rwnd. tcp_adapt_ire() will set the right value later. 8260 */ 8261 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 8262 tcp->tcp_xmit_lowater = tcp_xmit_lowat; 8263 tcp->tcp_xmit_hiwater = tcp_xmit_hiwat; 8264 8265 tcp->tcp_cork = B_FALSE; 8266 /* 8267 * Init the tcp_debug option. This value determines whether TCP 8268 * calls strlog() to print out debug messages. Doing this 8269 * initialization here means that this value is not inherited thru 8270 * tcp_reinit(). 8271 */ 8272 tcp->tcp_debug = tcp_dbg; 8273 8274 tcp->tcp_ka_interval = tcp_keepalive_interval; 8275 tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval; 8276 8277 return (0); 8278 } 8279 8280 /* 8281 * Initialize the IPv4 header. Loses any record of any IP options. 8282 */ 8283 static int 8284 tcp_header_init_ipv4(tcp_t *tcp) 8285 { 8286 tcph_t *tcph; 8287 uint32_t sum; 8288 conn_t *connp; 8289 8290 /* 8291 * This is a simple initialization. If there's 8292 * already a template, it should never be too small, 8293 * so reuse it. Otherwise, allocate space for the new one. 8294 */ 8295 if (tcp->tcp_iphc == NULL) { 8296 ASSERT(tcp->tcp_iphc_len == 0); 8297 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8298 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8299 if (tcp->tcp_iphc == NULL) { 8300 tcp->tcp_iphc_len = 0; 8301 return (ENOMEM); 8302 } 8303 } 8304 8305 /* options are gone; may need a new label */ 8306 connp = tcp->tcp_connp; 8307 connp->conn_mlp_type = mlptSingle; 8308 connp->conn_ulp_labeled = !is_system_labeled(); 8309 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8310 tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc; 8311 tcp->tcp_ip6h = NULL; 8312 tcp->tcp_ipversion = IPV4_VERSION; 8313 tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t); 8314 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8315 tcp->tcp_ip_hdr_len = sizeof (ipha_t); 8316 tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t)); 8317 tcp->tcp_ipha->ipha_version_and_hdr_length 8318 = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS; 8319 tcp->tcp_ipha->ipha_ident = 0; 8320 8321 tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl; 8322 tcp->tcp_tos = 0; 8323 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 8324 tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 8325 tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP; 8326 8327 tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t)); 8328 tcp->tcp_tcph = tcph; 8329 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8330 /* 8331 * IP wants our header length in the checksum field to 8332 * allow it to perform a single pseudo-header+checksum 8333 * calculation on behalf of TCP. 8334 * Include the adjustment for a source route once IP_OPTIONS is set. 8335 */ 8336 sum = sizeof (tcph_t) + tcp->tcp_sum; 8337 sum = (sum >> 16) + (sum & 0xFFFF); 8338 U16_TO_ABE16(sum, tcph->th_sum); 8339 return (0); 8340 } 8341 8342 /* 8343 * Initialize the IPv6 header. Loses any record of any IPv6 extension headers. 8344 */ 8345 static int 8346 tcp_header_init_ipv6(tcp_t *tcp) 8347 { 8348 tcph_t *tcph; 8349 uint32_t sum; 8350 conn_t *connp; 8351 8352 /* 8353 * This is a simple initialization. If there's 8354 * already a template, it should never be too small, 8355 * so reuse it. Otherwise, allocate space for the new one. 8356 * Ensure that there is enough space to "downgrade" the tcp_t 8357 * to an IPv4 tcp_t. This requires having space for a full load 8358 * of IPv4 options, as well as a full load of TCP options 8359 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space 8360 * than a v6 header and a TCP header with a full load of TCP options 8361 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes). 8362 * We want to avoid reallocation in the "downgraded" case when 8363 * processing outbound IPv4 options. 8364 */ 8365 if (tcp->tcp_iphc == NULL) { 8366 ASSERT(tcp->tcp_iphc_len == 0); 8367 tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH; 8368 tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP); 8369 if (tcp->tcp_iphc == NULL) { 8370 tcp->tcp_iphc_len = 0; 8371 return (ENOMEM); 8372 } 8373 } 8374 8375 /* options are gone; may need a new label */ 8376 connp = tcp->tcp_connp; 8377 connp->conn_mlp_type = mlptSingle; 8378 connp->conn_ulp_labeled = !is_system_labeled(); 8379 8380 ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH); 8381 tcp->tcp_ipversion = IPV6_VERSION; 8382 tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t); 8383 tcp->tcp_tcp_hdr_len = sizeof (tcph_t); 8384 tcp->tcp_ip_hdr_len = IPV6_HDR_LEN; 8385 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 8386 tcp->tcp_ipha = NULL; 8387 8388 /* Initialize the header template */ 8389 8390 tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW; 8391 tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t)); 8392 tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP; 8393 tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit; 8394 8395 tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN); 8396 tcp->tcp_tcph = tcph; 8397 tcph->th_offset_and_rsrvd[0] = (5 << 4); 8398 /* 8399 * IP wants our header length in the checksum field to 8400 * allow it to perform a single psuedo-header+checksum 8401 * calculation on behalf of TCP. 8402 * Include the adjustment for a source route when IPV6_RTHDR is set. 8403 */ 8404 sum = sizeof (tcph_t) + tcp->tcp_sum; 8405 sum = (sum >> 16) + (sum & 0xFFFF); 8406 U16_TO_ABE16(sum, tcph->th_sum); 8407 return (0); 8408 } 8409 8410 /* At minimum we need 8 bytes in the TCP header for the lookup */ 8411 #define ICMP_MIN_TCP_HDR 8 8412 8413 /* 8414 * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages 8415 * passed up by IP. The message is always received on the correct tcp_t. 8416 * Assumes that IP has pulled up everything up to and including the ICMP header. 8417 */ 8418 void 8419 tcp_icmp_error(tcp_t *tcp, mblk_t *mp) 8420 { 8421 icmph_t *icmph; 8422 ipha_t *ipha; 8423 int iph_hdr_length; 8424 tcph_t *tcph; 8425 boolean_t ipsec_mctl = B_FALSE; 8426 boolean_t secure; 8427 mblk_t *first_mp = mp; 8428 uint32_t new_mss; 8429 uint32_t ratio; 8430 size_t mp_size = MBLKL(mp); 8431 uint32_t seg_seq; 8432 8433 /* Assume IP provides aligned packets - otherwise toss */ 8434 if (!OK_32PTR(mp->b_rptr)) { 8435 freemsg(mp); 8436 return; 8437 } 8438 8439 /* 8440 * Since ICMP errors are normal data marked with M_CTL when sent 8441 * to TCP or UDP, we have to look for a IPSEC_IN value to identify 8442 * packets starting with an ipsec_info_t, see ipsec_info.h. 8443 */ 8444 if ((mp_size == sizeof (ipsec_info_t)) && 8445 (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) { 8446 ASSERT(mp->b_cont != NULL); 8447 mp = mp->b_cont; 8448 /* IP should have done this */ 8449 ASSERT(OK_32PTR(mp->b_rptr)); 8450 mp_size = MBLKL(mp); 8451 ipsec_mctl = B_TRUE; 8452 } 8453 8454 /* 8455 * Verify that we have a complete outer IP header. If not, drop it. 8456 */ 8457 if (mp_size < sizeof (ipha_t)) { 8458 noticmpv4: 8459 freemsg(first_mp); 8460 return; 8461 } 8462 8463 ipha = (ipha_t *)mp->b_rptr; 8464 /* 8465 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent 8466 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6. 8467 */ 8468 switch (IPH_HDR_VERSION(ipha)) { 8469 case IPV6_VERSION: 8470 tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl); 8471 return; 8472 case IPV4_VERSION: 8473 break; 8474 default: 8475 goto noticmpv4; 8476 } 8477 8478 /* Skip past the outer IP and ICMP headers */ 8479 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8480 icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length]; 8481 /* 8482 * If we don't have the correct outer IP header length or if the ULP 8483 * is not IPPROTO_ICMP or if we don't have a complete inner IP header 8484 * send it upstream. 8485 */ 8486 if (iph_hdr_length < sizeof (ipha_t) || 8487 ipha->ipha_protocol != IPPROTO_ICMP || 8488 (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) { 8489 goto noticmpv4; 8490 } 8491 ipha = (ipha_t *)&icmph[1]; 8492 8493 /* Skip past the inner IP and find the ULP header */ 8494 iph_hdr_length = IPH_HDR_LENGTH(ipha); 8495 tcph = (tcph_t *)((char *)ipha + iph_hdr_length); 8496 /* 8497 * If we don't have the correct inner IP header length or if the ULP 8498 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR 8499 * bytes of TCP header, drop it. 8500 */ 8501 if (iph_hdr_length < sizeof (ipha_t) || 8502 ipha->ipha_protocol != IPPROTO_TCP || 8503 (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) { 8504 goto noticmpv4; 8505 } 8506 8507 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 8508 if (ipsec_mctl) { 8509 secure = ipsec_in_is_secure(first_mp); 8510 } else { 8511 secure = B_FALSE; 8512 } 8513 if (secure) { 8514 /* 8515 * If we are willing to accept this in clear 8516 * we don't have to verify policy. 8517 */ 8518 if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) { 8519 if (!tcp_check_policy(tcp, first_mp, 8520 ipha, NULL, secure, ipsec_mctl)) { 8521 /* 8522 * tcp_check_policy called 8523 * ip_drop_packet() on failure. 8524 */ 8525 return; 8526 } 8527 } 8528 } 8529 } else if (ipsec_mctl) { 8530 /* 8531 * This is a hard_bound connection. IP has already 8532 * verified policy. We don't have to do it again. 8533 */ 8534 freeb(first_mp); 8535 first_mp = mp; 8536 ipsec_mctl = B_FALSE; 8537 } 8538 8539 seg_seq = ABE32_TO_U32(tcph->th_seq); 8540 /* 8541 * TCP SHOULD check that the TCP sequence number contained in 8542 * payload of the ICMP error message is within the range 8543 * SND.UNA <= SEG.SEQ < SND.NXT. 8544 */ 8545 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8546 /* 8547 * If the ICMP message is bogus, should we kill the 8548 * connection, or should we just drop the bogus ICMP 8549 * message? It would probably make more sense to just 8550 * drop the message so that if this one managed to get 8551 * in, the real connection should not suffer. 8552 */ 8553 goto noticmpv4; 8554 } 8555 8556 switch (icmph->icmph_type) { 8557 case ICMP_DEST_UNREACHABLE: 8558 switch (icmph->icmph_code) { 8559 case ICMP_FRAGMENTATION_NEEDED: 8560 /* 8561 * Reduce the MSS based on the new MTU. This will 8562 * eliminate any fragmentation locally. 8563 * N.B. There may well be some funny side-effects on 8564 * the local send policy and the remote receive policy. 8565 * Pending further research, we provide 8566 * tcp_ignore_path_mtu just in case this proves 8567 * disastrous somewhere. 8568 * 8569 * After updating the MSS, retransmit part of the 8570 * dropped segment using the new mss by calling 8571 * tcp_wput_data(). Need to adjust all those 8572 * params to make sure tcp_wput_data() work properly. 8573 */ 8574 if (tcp_ignore_path_mtu) 8575 break; 8576 8577 /* 8578 * Decrease the MSS by time stamp options 8579 * IP options and IPSEC options. tcp_hdr_len 8580 * includes time stamp option and IP option 8581 * length. 8582 */ 8583 8584 new_mss = ntohs(icmph->icmph_du_mtu) - 8585 tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead; 8586 8587 /* 8588 * Only update the MSS if the new one is 8589 * smaller than the previous one. This is 8590 * to avoid problems when getting multiple 8591 * ICMP errors for the same MTU. 8592 */ 8593 if (new_mss >= tcp->tcp_mss) 8594 break; 8595 8596 /* 8597 * Stop doing PMTU if new_mss is less than 68 8598 * or less than tcp_mss_min. 8599 * The value 68 comes from rfc 1191. 8600 */ 8601 if (new_mss < MAX(68, tcp_mss_min)) 8602 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 8603 0; 8604 8605 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8606 ASSERT(ratio >= 1); 8607 tcp_mss_set(tcp, new_mss); 8608 8609 /* 8610 * Make sure we have something to 8611 * send. 8612 */ 8613 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8614 (tcp->tcp_xmit_head != NULL)) { 8615 /* 8616 * Shrink tcp_cwnd in 8617 * proportion to the old MSS/new MSS. 8618 */ 8619 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8620 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8621 (tcp->tcp_unsent == 0)) { 8622 tcp->tcp_rexmit_max = tcp->tcp_fss; 8623 } else { 8624 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8625 } 8626 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8627 tcp->tcp_rexmit = B_TRUE; 8628 tcp->tcp_dupack_cnt = 0; 8629 tcp->tcp_snd_burst = TCP_CWND_SS; 8630 tcp_ss_rexmit(tcp); 8631 } 8632 break; 8633 case ICMP_PORT_UNREACHABLE: 8634 case ICMP_PROTOCOL_UNREACHABLE: 8635 switch (tcp->tcp_state) { 8636 case TCPS_SYN_SENT: 8637 case TCPS_SYN_RCVD: 8638 /* 8639 * ICMP can snipe away incipient 8640 * TCP connections as long as 8641 * seq number is same as initial 8642 * send seq number. 8643 */ 8644 if (seg_seq == tcp->tcp_iss) { 8645 (void) tcp_clean_death(tcp, 8646 ECONNREFUSED, 6); 8647 } 8648 break; 8649 } 8650 break; 8651 case ICMP_HOST_UNREACHABLE: 8652 case ICMP_NET_UNREACHABLE: 8653 /* Record the error in case we finally time out. */ 8654 if (icmph->icmph_code == ICMP_HOST_UNREACHABLE) 8655 tcp->tcp_client_errno = EHOSTUNREACH; 8656 else 8657 tcp->tcp_client_errno = ENETUNREACH; 8658 if (tcp->tcp_state == TCPS_SYN_RCVD) { 8659 if (tcp->tcp_listener != NULL && 8660 tcp->tcp_listener->tcp_syn_defense) { 8661 /* 8662 * Ditch the half-open connection if we 8663 * suspect a SYN attack is under way. 8664 */ 8665 tcp_ip_ire_mark_advice(tcp); 8666 (void) tcp_clean_death(tcp, 8667 tcp->tcp_client_errno, 7); 8668 } 8669 } 8670 break; 8671 default: 8672 break; 8673 } 8674 break; 8675 case ICMP_SOURCE_QUENCH: { 8676 /* 8677 * use a global boolean to control 8678 * whether TCP should respond to ICMP_SOURCE_QUENCH. 8679 * The default is false. 8680 */ 8681 if (tcp_icmp_source_quench) { 8682 /* 8683 * Reduce the sending rate as if we got a 8684 * retransmit timeout 8685 */ 8686 uint32_t npkt; 8687 8688 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / 8689 tcp->tcp_mss; 8690 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss; 8691 tcp->tcp_cwnd = tcp->tcp_mss; 8692 tcp->tcp_cwnd_cnt = 0; 8693 } 8694 break; 8695 } 8696 } 8697 freemsg(first_mp); 8698 } 8699 8700 /* 8701 * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6 8702 * error messages passed up by IP. 8703 * Assumes that IP has pulled up all the extension headers as well 8704 * as the ICMPv6 header. 8705 */ 8706 static void 8707 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl) 8708 { 8709 icmp6_t *icmp6; 8710 ip6_t *ip6h; 8711 uint16_t iph_hdr_length; 8712 tcpha_t *tcpha; 8713 uint8_t *nexthdrp; 8714 uint32_t new_mss; 8715 uint32_t ratio; 8716 boolean_t secure; 8717 mblk_t *first_mp = mp; 8718 size_t mp_size; 8719 uint32_t seg_seq; 8720 8721 /* 8722 * The caller has determined if this is an IPSEC_IN packet and 8723 * set ipsec_mctl appropriately (see tcp_icmp_error). 8724 */ 8725 if (ipsec_mctl) 8726 mp = mp->b_cont; 8727 8728 mp_size = MBLKL(mp); 8729 8730 /* 8731 * Verify that we have a complete IP header. If not, send it upstream. 8732 */ 8733 if (mp_size < sizeof (ip6_t)) { 8734 noticmpv6: 8735 freemsg(first_mp); 8736 return; 8737 } 8738 8739 /* 8740 * Verify this is an ICMPV6 packet, else send it upstream. 8741 */ 8742 ip6h = (ip6_t *)mp->b_rptr; 8743 if (ip6h->ip6_nxt == IPPROTO_ICMPV6) { 8744 iph_hdr_length = IPV6_HDR_LEN; 8745 } else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, 8746 &nexthdrp) || 8747 *nexthdrp != IPPROTO_ICMPV6) { 8748 goto noticmpv6; 8749 } 8750 icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length]; 8751 ip6h = (ip6_t *)&icmp6[1]; 8752 /* 8753 * Verify if we have a complete ICMP and inner IP header. 8754 */ 8755 if ((uchar_t *)&ip6h[1] > mp->b_wptr) 8756 goto noticmpv6; 8757 8758 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp)) 8759 goto noticmpv6; 8760 tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length); 8761 /* 8762 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't 8763 * have at least ICMP_MIN_TCP_HDR bytes of TCP header drop the 8764 * packet. 8765 */ 8766 if ((*nexthdrp != IPPROTO_TCP) || 8767 ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) { 8768 goto noticmpv6; 8769 } 8770 8771 /* 8772 * ICMP errors come on the right queue or come on 8773 * listener/global queue for detached connections and 8774 * get switched to the right queue. If it comes on the 8775 * right queue, policy check has already been done by IP 8776 * and thus free the first_mp without verifying the policy. 8777 * If it has come for a non-hard bound connection, we need 8778 * to verify policy as IP may not have done it. 8779 */ 8780 if (!tcp->tcp_hard_bound) { 8781 if (ipsec_mctl) { 8782 secure = ipsec_in_is_secure(first_mp); 8783 } else { 8784 secure = B_FALSE; 8785 } 8786 if (secure) { 8787 /* 8788 * If we are willing to accept this in clear 8789 * we don't have to verify policy. 8790 */ 8791 if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) { 8792 if (!tcp_check_policy(tcp, first_mp, 8793 NULL, ip6h, secure, ipsec_mctl)) { 8794 /* 8795 * tcp_check_policy called 8796 * ip_drop_packet() on failure. 8797 */ 8798 return; 8799 } 8800 } 8801 } 8802 } else if (ipsec_mctl) { 8803 /* 8804 * This is a hard_bound connection. IP has already 8805 * verified policy. We don't have to do it again. 8806 */ 8807 freeb(first_mp); 8808 first_mp = mp; 8809 ipsec_mctl = B_FALSE; 8810 } 8811 8812 seg_seq = ntohl(tcpha->tha_seq); 8813 /* 8814 * TCP SHOULD check that the TCP sequence number contained in 8815 * payload of the ICMP error message is within the range 8816 * SND.UNA <= SEG.SEQ < SND.NXT. 8817 */ 8818 if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) { 8819 /* 8820 * If the ICMP message is bogus, should we kill the 8821 * connection, or should we just drop the bogus ICMP 8822 * message? It would probably make more sense to just 8823 * drop the message so that if this one managed to get 8824 * in, the real connection should not suffer. 8825 */ 8826 goto noticmpv6; 8827 } 8828 8829 switch (icmp6->icmp6_type) { 8830 case ICMP6_PACKET_TOO_BIG: 8831 /* 8832 * Reduce the MSS based on the new MTU. This will 8833 * eliminate any fragmentation locally. 8834 * N.B. There may well be some funny side-effects on 8835 * the local send policy and the remote receive policy. 8836 * Pending further research, we provide 8837 * tcp_ignore_path_mtu just in case this proves 8838 * disastrous somewhere. 8839 * 8840 * After updating the MSS, retransmit part of the 8841 * dropped segment using the new mss by calling 8842 * tcp_wput_data(). Need to adjust all those 8843 * params to make sure tcp_wput_data() work properly. 8844 */ 8845 if (tcp_ignore_path_mtu) 8846 break; 8847 8848 /* 8849 * Decrease the MSS by time stamp options 8850 * IP options and IPSEC options. tcp_hdr_len 8851 * includes time stamp option and IP option 8852 * length. 8853 */ 8854 new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len - 8855 tcp->tcp_ipsec_overhead; 8856 8857 /* 8858 * Only update the MSS if the new one is 8859 * smaller than the previous one. This is 8860 * to avoid problems when getting multiple 8861 * ICMP errors for the same MTU. 8862 */ 8863 if (new_mss >= tcp->tcp_mss) 8864 break; 8865 8866 ratio = tcp->tcp_cwnd / tcp->tcp_mss; 8867 ASSERT(ratio >= 1); 8868 tcp_mss_set(tcp, new_mss); 8869 8870 /* 8871 * Make sure we have something to 8872 * send. 8873 */ 8874 if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) && 8875 (tcp->tcp_xmit_head != NULL)) { 8876 /* 8877 * Shrink tcp_cwnd in 8878 * proportion to the old MSS/new MSS. 8879 */ 8880 tcp->tcp_cwnd = ratio * tcp->tcp_mss; 8881 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 8882 (tcp->tcp_unsent == 0)) { 8883 tcp->tcp_rexmit_max = tcp->tcp_fss; 8884 } else { 8885 tcp->tcp_rexmit_max = tcp->tcp_snxt; 8886 } 8887 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 8888 tcp->tcp_rexmit = B_TRUE; 8889 tcp->tcp_dupack_cnt = 0; 8890 tcp->tcp_snd_burst = TCP_CWND_SS; 8891 tcp_ss_rexmit(tcp); 8892 } 8893 break; 8894 8895 case ICMP6_DST_UNREACH: 8896 switch (icmp6->icmp6_code) { 8897 case ICMP6_DST_UNREACH_NOPORT: 8898 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8899 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8900 (seg_seq == tcp->tcp_iss)) { 8901 (void) tcp_clean_death(tcp, 8902 ECONNREFUSED, 8); 8903 } 8904 break; 8905 8906 case ICMP6_DST_UNREACH_ADMIN: 8907 case ICMP6_DST_UNREACH_NOROUTE: 8908 case ICMP6_DST_UNREACH_BEYONDSCOPE: 8909 case ICMP6_DST_UNREACH_ADDR: 8910 /* Record the error in case we finally time out. */ 8911 tcp->tcp_client_errno = EHOSTUNREACH; 8912 if (((tcp->tcp_state == TCPS_SYN_SENT) || 8913 (tcp->tcp_state == TCPS_SYN_RCVD)) && 8914 (seg_seq == tcp->tcp_iss)) { 8915 if (tcp->tcp_listener != NULL && 8916 tcp->tcp_listener->tcp_syn_defense) { 8917 /* 8918 * Ditch the half-open connection if we 8919 * suspect a SYN attack is under way. 8920 */ 8921 tcp_ip_ire_mark_advice(tcp); 8922 (void) tcp_clean_death(tcp, 8923 tcp->tcp_client_errno, 9); 8924 } 8925 } 8926 8927 8928 break; 8929 default: 8930 break; 8931 } 8932 break; 8933 8934 case ICMP6_PARAM_PROB: 8935 /* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */ 8936 if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER && 8937 (uchar_t *)ip6h + icmp6->icmp6_pptr == 8938 (uchar_t *)nexthdrp) { 8939 if (tcp->tcp_state == TCPS_SYN_SENT || 8940 tcp->tcp_state == TCPS_SYN_RCVD) { 8941 (void) tcp_clean_death(tcp, 8942 ECONNREFUSED, 10); 8943 } 8944 break; 8945 } 8946 break; 8947 8948 case ICMP6_TIME_EXCEEDED: 8949 default: 8950 break; 8951 } 8952 freemsg(first_mp); 8953 } 8954 8955 /* 8956 * IP recognizes seven kinds of bind requests: 8957 * 8958 * - A zero-length address binds only to the protocol number. 8959 * 8960 * - A 4-byte address is treated as a request to 8961 * validate that the address is a valid local IPv4 8962 * address, appropriate for an application to bind to. 8963 * IP does the verification, but does not make any note 8964 * of the address at this time. 8965 * 8966 * - A 16-byte address contains is treated as a request 8967 * to validate a local IPv6 address, as the 4-byte 8968 * address case above. 8969 * 8970 * - A 16-byte sockaddr_in to validate the local IPv4 address and also 8971 * use it for the inbound fanout of packets. 8972 * 8973 * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also 8974 * use it for the inbound fanout of packets. 8975 * 8976 * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout 8977 * information consisting of local and remote addresses 8978 * and ports. In this case, the addresses are both 8979 * validated as appropriate for this operation, and, if 8980 * so, the information is retained for use in the 8981 * inbound fanout. 8982 * 8983 * - A 36-byte address address (ipa6_conn_t) containing complete IPv6 8984 * fanout information, like the 12-byte case above. 8985 * 8986 * IP will also fill in the IRE request mblk with information 8987 * regarding our peer. In all cases, we notify IP of our protocol 8988 * type by appending a single protocol byte to the bind request. 8989 */ 8990 static mblk_t * 8991 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length) 8992 { 8993 char *cp; 8994 mblk_t *mp; 8995 struct T_bind_req *tbr; 8996 ipa_conn_t *ac; 8997 ipa6_conn_t *ac6; 8998 sin_t *sin; 8999 sin6_t *sin6; 9000 9001 ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ); 9002 ASSERT((tcp->tcp_family == AF_INET && 9003 tcp->tcp_ipversion == IPV4_VERSION) || 9004 (tcp->tcp_family == AF_INET6 && 9005 (tcp->tcp_ipversion == IPV4_VERSION || 9006 tcp->tcp_ipversion == IPV6_VERSION))); 9007 9008 mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI); 9009 if (!mp) 9010 return (mp); 9011 mp->b_datap->db_type = M_PROTO; 9012 tbr = (struct T_bind_req *)mp->b_rptr; 9013 tbr->PRIM_type = bind_prim; 9014 tbr->ADDR_offset = sizeof (*tbr); 9015 tbr->CONIND_number = 0; 9016 tbr->ADDR_length = addr_length; 9017 cp = (char *)&tbr[1]; 9018 switch (addr_length) { 9019 case sizeof (ipa_conn_t): 9020 ASSERT(tcp->tcp_family == AF_INET); 9021 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9022 9023 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9024 if (mp->b_cont == NULL) { 9025 freemsg(mp); 9026 return (NULL); 9027 } 9028 mp->b_cont->b_wptr += sizeof (ire_t); 9029 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9030 9031 /* cp known to be 32 bit aligned */ 9032 ac = (ipa_conn_t *)cp; 9033 ac->ac_laddr = tcp->tcp_ipha->ipha_src; 9034 ac->ac_faddr = tcp->tcp_remote; 9035 ac->ac_fport = tcp->tcp_fport; 9036 ac->ac_lport = tcp->tcp_lport; 9037 tcp->tcp_hard_binding = 1; 9038 break; 9039 9040 case sizeof (ipa6_conn_t): 9041 ASSERT(tcp->tcp_family == AF_INET6); 9042 9043 mp->b_cont = allocb(sizeof (ire_t), BPRI_HI); 9044 if (mp->b_cont == NULL) { 9045 freemsg(mp); 9046 return (NULL); 9047 } 9048 mp->b_cont->b_wptr += sizeof (ire_t); 9049 mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE; 9050 9051 /* cp known to be 32 bit aligned */ 9052 ac6 = (ipa6_conn_t *)cp; 9053 if (tcp->tcp_ipversion == IPV4_VERSION) { 9054 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 9055 &ac6->ac6_laddr); 9056 } else { 9057 ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src; 9058 } 9059 ac6->ac6_faddr = tcp->tcp_remote_v6; 9060 ac6->ac6_fport = tcp->tcp_fport; 9061 ac6->ac6_lport = tcp->tcp_lport; 9062 tcp->tcp_hard_binding = 1; 9063 break; 9064 9065 case sizeof (sin_t): 9066 /* 9067 * NOTE: IPV6_ADDR_LEN also has same size. 9068 * Use family to discriminate. 9069 */ 9070 if (tcp->tcp_family == AF_INET) { 9071 sin = (sin_t *)cp; 9072 9073 *sin = sin_null; 9074 sin->sin_family = AF_INET; 9075 sin->sin_addr.s_addr = tcp->tcp_bound_source; 9076 sin->sin_port = tcp->tcp_lport; 9077 break; 9078 } else { 9079 *(in6_addr_t *)cp = tcp->tcp_bound_source_v6; 9080 } 9081 break; 9082 9083 case sizeof (sin6_t): 9084 ASSERT(tcp->tcp_family == AF_INET6); 9085 sin6 = (sin6_t *)cp; 9086 9087 *sin6 = sin6_null; 9088 sin6->sin6_family = AF_INET6; 9089 sin6->sin6_addr = tcp->tcp_bound_source_v6; 9090 sin6->sin6_port = tcp->tcp_lport; 9091 break; 9092 9093 case IP_ADDR_LEN: 9094 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 9095 *(uint32_t *)cp = tcp->tcp_ipha->ipha_src; 9096 break; 9097 9098 } 9099 /* Add protocol number to end */ 9100 cp[addr_length] = (char)IPPROTO_TCP; 9101 mp->b_wptr = (uchar_t *)&cp[addr_length + 1]; 9102 return (mp); 9103 } 9104 9105 /* 9106 * Notify IP that we are having trouble with this connection. IP should 9107 * blow the IRE away and start over. 9108 */ 9109 static void 9110 tcp_ip_notify(tcp_t *tcp) 9111 { 9112 struct iocblk *iocp; 9113 ipid_t *ipid; 9114 mblk_t *mp; 9115 9116 /* IPv6 has NUD thus notification to delete the IRE is not needed */ 9117 if (tcp->tcp_ipversion == IPV6_VERSION) 9118 return; 9119 9120 mp = mkiocb(IP_IOCTL); 9121 if (mp == NULL) 9122 return; 9123 9124 iocp = (struct iocblk *)mp->b_rptr; 9125 iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst); 9126 9127 mp->b_cont = allocb(iocp->ioc_count, BPRI_HI); 9128 if (!mp->b_cont) { 9129 freeb(mp); 9130 return; 9131 } 9132 9133 ipid = (ipid_t *)mp->b_cont->b_rptr; 9134 mp->b_cont->b_wptr += iocp->ioc_count; 9135 bzero(ipid, sizeof (*ipid)); 9136 ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY; 9137 ipid->ipid_ire_type = IRE_CACHE; 9138 ipid->ipid_addr_offset = sizeof (ipid_t); 9139 ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst); 9140 /* 9141 * Note: in the case of source routing we want to blow away the 9142 * route to the first source route hop. 9143 */ 9144 bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1], 9145 sizeof (tcp->tcp_ipha->ipha_dst)); 9146 9147 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 9148 } 9149 9150 /* Unlink and return any mblk that looks like it contains an ire */ 9151 static mblk_t * 9152 tcp_ire_mp(mblk_t *mp) 9153 { 9154 mblk_t *prev_mp; 9155 9156 for (;;) { 9157 prev_mp = mp; 9158 mp = mp->b_cont; 9159 if (mp == NULL) 9160 break; 9161 switch (DB_TYPE(mp)) { 9162 case IRE_DB_TYPE: 9163 case IRE_DB_REQ_TYPE: 9164 if (prev_mp != NULL) 9165 prev_mp->b_cont = mp->b_cont; 9166 mp->b_cont = NULL; 9167 return (mp); 9168 default: 9169 break; 9170 } 9171 } 9172 return (mp); 9173 } 9174 9175 /* 9176 * Timer callback routine for keepalive probe. We do a fake resend of 9177 * last ACKed byte. Then set a timer using RTO. When the timer expires, 9178 * check to see if we have heard anything from the other end for the last 9179 * RTO period. If we have, set the timer to expire for another 9180 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 9181 * RTO << 1 and check again when it expires. Keep exponentially increasing 9182 * the timeout if we have not heard from the other side. If for more than 9183 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 9184 * kill the connection unless the keepalive abort threshold is 0. In 9185 * that case, we will probe "forever." 9186 */ 9187 static void 9188 tcp_keepalive_killer(void *arg) 9189 { 9190 mblk_t *mp; 9191 conn_t *connp = (conn_t *)arg; 9192 tcp_t *tcp = connp->conn_tcp; 9193 int32_t firetime; 9194 int32_t idletime; 9195 int32_t ka_intrvl; 9196 9197 tcp->tcp_ka_tid = 0; 9198 9199 if (tcp->tcp_fused) 9200 return; 9201 9202 BUMP_MIB(&tcp_mib, tcpTimKeepalive); 9203 ka_intrvl = tcp->tcp_ka_interval; 9204 9205 /* 9206 * Keepalive probe should only be sent if the application has not 9207 * done a close on the connection. 9208 */ 9209 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 9210 return; 9211 } 9212 /* Timer fired too early, restart it. */ 9213 if (tcp->tcp_state < TCPS_ESTABLISHED) { 9214 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9215 MSEC_TO_TICK(ka_intrvl)); 9216 return; 9217 } 9218 9219 idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time); 9220 /* 9221 * If we have not heard from the other side for a long 9222 * time, kill the connection unless the keepalive abort 9223 * threshold is 0. In that case, we will probe "forever." 9224 */ 9225 if (tcp->tcp_ka_abort_thres != 0 && 9226 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 9227 BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop); 9228 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 9229 tcp->tcp_client_errno : ETIMEDOUT, 11); 9230 return; 9231 } 9232 9233 if (tcp->tcp_snxt == tcp->tcp_suna && 9234 idletime >= ka_intrvl) { 9235 /* Fake resend of last ACKed byte. */ 9236 mblk_t *mp1 = allocb(1, BPRI_LO); 9237 9238 if (mp1 != NULL) { 9239 *mp1->b_wptr++ = '\0'; 9240 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 9241 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 9242 freeb(mp1); 9243 /* 9244 * if allocation failed, fall through to start the 9245 * timer back. 9246 */ 9247 if (mp != NULL) { 9248 TCP_RECORD_TRACE(tcp, mp, 9249 TCP_TRACE_SEND_PKT); 9250 tcp_send_data(tcp, tcp->tcp_wq, mp); 9251 BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe); 9252 if (tcp->tcp_ka_last_intrvl != 0) { 9253 /* 9254 * We should probe again at least 9255 * in ka_intrvl, but not more than 9256 * tcp_rexmit_interval_max. 9257 */ 9258 firetime = MIN(ka_intrvl - 1, 9259 tcp->tcp_ka_last_intrvl << 1); 9260 if (firetime > tcp_rexmit_interval_max) 9261 firetime = 9262 tcp_rexmit_interval_max; 9263 } else { 9264 firetime = tcp->tcp_rto; 9265 } 9266 tcp->tcp_ka_tid = TCP_TIMER(tcp, 9267 tcp_keepalive_killer, 9268 MSEC_TO_TICK(firetime)); 9269 tcp->tcp_ka_last_intrvl = firetime; 9270 return; 9271 } 9272 } 9273 } else { 9274 tcp->tcp_ka_last_intrvl = 0; 9275 } 9276 9277 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 9278 if ((firetime = ka_intrvl - idletime) < 0) { 9279 firetime = ka_intrvl; 9280 } 9281 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 9282 MSEC_TO_TICK(firetime)); 9283 } 9284 9285 int 9286 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 9287 { 9288 queue_t *q = tcp->tcp_rq; 9289 int32_t mss = tcp->tcp_mss; 9290 int maxpsz; 9291 9292 if (TCP_IS_DETACHED(tcp)) 9293 return (mss); 9294 9295 if (tcp->tcp_fused) { 9296 maxpsz = tcp_fuse_maxpsz_set(tcp); 9297 mss = INFPSZ; 9298 } else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) { 9299 /* 9300 * Set the sd_qn_maxpsz according to the socket send buffer 9301 * size, and sd_maxblk to INFPSZ (-1). This will essentially 9302 * instruct the stream head to copyin user data into contiguous 9303 * kernel-allocated buffers without breaking it up into smaller 9304 * chunks. We round up the buffer size to the nearest SMSS. 9305 */ 9306 maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss); 9307 if (tcp->tcp_kssl_ctx == NULL) 9308 mss = INFPSZ; 9309 else 9310 mss = SSL3_MAX_RECORD_LEN; 9311 } else { 9312 /* 9313 * Set sd_qn_maxpsz to approx half the (receivers) buffer 9314 * (and a multiple of the mss). This instructs the stream 9315 * head to break down larger than SMSS writes into SMSS- 9316 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 9317 */ 9318 maxpsz = tcp->tcp_maxpsz * mss; 9319 if (maxpsz > tcp->tcp_xmit_hiwater/2) { 9320 maxpsz = tcp->tcp_xmit_hiwater/2; 9321 /* Round up to nearest mss */ 9322 maxpsz = MSS_ROUNDUP(maxpsz, mss); 9323 } 9324 } 9325 (void) setmaxps(q, maxpsz); 9326 tcp->tcp_wq->q_maxpsz = maxpsz; 9327 9328 if (set_maxblk) 9329 (void) mi_set_sth_maxblk(q, mss); 9330 9331 return (mss); 9332 } 9333 9334 /* 9335 * Extract option values from a tcp header. We put any found values into the 9336 * tcpopt struct and return a bitmask saying which options were found. 9337 */ 9338 static int 9339 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt) 9340 { 9341 uchar_t *endp; 9342 int len; 9343 uint32_t mss; 9344 uchar_t *up = (uchar_t *)tcph; 9345 int found = 0; 9346 int32_t sack_len; 9347 tcp_seq sack_begin, sack_end; 9348 tcp_t *tcp; 9349 9350 endp = up + TCP_HDR_LENGTH(tcph); 9351 up += TCP_MIN_HEADER_LENGTH; 9352 while (up < endp) { 9353 len = endp - up; 9354 switch (*up) { 9355 case TCPOPT_EOL: 9356 break; 9357 9358 case TCPOPT_NOP: 9359 up++; 9360 continue; 9361 9362 case TCPOPT_MAXSEG: 9363 if (len < TCPOPT_MAXSEG_LEN || 9364 up[1] != TCPOPT_MAXSEG_LEN) 9365 break; 9366 9367 mss = BE16_TO_U16(up+2); 9368 /* Caller must handle tcp_mss_min and tcp_mss_max_* */ 9369 tcpopt->tcp_opt_mss = mss; 9370 found |= TCP_OPT_MSS_PRESENT; 9371 9372 up += TCPOPT_MAXSEG_LEN; 9373 continue; 9374 9375 case TCPOPT_WSCALE: 9376 if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN) 9377 break; 9378 9379 if (up[2] > TCP_MAX_WINSHIFT) 9380 tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT; 9381 else 9382 tcpopt->tcp_opt_wscale = up[2]; 9383 found |= TCP_OPT_WSCALE_PRESENT; 9384 9385 up += TCPOPT_WS_LEN; 9386 continue; 9387 9388 case TCPOPT_SACK_PERMITTED: 9389 if (len < TCPOPT_SACK_OK_LEN || 9390 up[1] != TCPOPT_SACK_OK_LEN) 9391 break; 9392 found |= TCP_OPT_SACK_OK_PRESENT; 9393 up += TCPOPT_SACK_OK_LEN; 9394 continue; 9395 9396 case TCPOPT_SACK: 9397 if (len <= 2 || up[1] <= 2 || len < up[1]) 9398 break; 9399 9400 /* If TCP is not interested in SACK blks... */ 9401 if ((tcp = tcpopt->tcp) == NULL) { 9402 up += up[1]; 9403 continue; 9404 } 9405 sack_len = up[1] - TCPOPT_HEADER_LEN; 9406 up += TCPOPT_HEADER_LEN; 9407 9408 /* 9409 * If the list is empty, allocate one and assume 9410 * nothing is sack'ed. 9411 */ 9412 ASSERT(tcp->tcp_sack_info != NULL); 9413 if (tcp->tcp_notsack_list == NULL) { 9414 tcp_notsack_update(&(tcp->tcp_notsack_list), 9415 tcp->tcp_suna, tcp->tcp_snxt, 9416 &(tcp->tcp_num_notsack_blk), 9417 &(tcp->tcp_cnt_notsack_list)); 9418 9419 /* 9420 * Make sure tcp_notsack_list is not NULL. 9421 * This happens when kmem_alloc(KM_NOSLEEP) 9422 * returns NULL. 9423 */ 9424 if (tcp->tcp_notsack_list == NULL) { 9425 up += sack_len; 9426 continue; 9427 } 9428 tcp->tcp_fack = tcp->tcp_suna; 9429 } 9430 9431 while (sack_len > 0) { 9432 if (up + 8 > endp) { 9433 up = endp; 9434 break; 9435 } 9436 sack_begin = BE32_TO_U32(up); 9437 up += 4; 9438 sack_end = BE32_TO_U32(up); 9439 up += 4; 9440 sack_len -= 8; 9441 /* 9442 * Bounds checking. Make sure the SACK 9443 * info is within tcp_suna and tcp_snxt. 9444 * If this SACK blk is out of bound, ignore 9445 * it but continue to parse the following 9446 * blks. 9447 */ 9448 if (SEQ_LEQ(sack_end, sack_begin) || 9449 SEQ_LT(sack_begin, tcp->tcp_suna) || 9450 SEQ_GT(sack_end, tcp->tcp_snxt)) { 9451 continue; 9452 } 9453 tcp_notsack_insert(&(tcp->tcp_notsack_list), 9454 sack_begin, sack_end, 9455 &(tcp->tcp_num_notsack_blk), 9456 &(tcp->tcp_cnt_notsack_list)); 9457 if (SEQ_GT(sack_end, tcp->tcp_fack)) { 9458 tcp->tcp_fack = sack_end; 9459 } 9460 } 9461 found |= TCP_OPT_SACK_PRESENT; 9462 continue; 9463 9464 case TCPOPT_TSTAMP: 9465 if (len < TCPOPT_TSTAMP_LEN || 9466 up[1] != TCPOPT_TSTAMP_LEN) 9467 break; 9468 9469 tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2); 9470 tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6); 9471 9472 found |= TCP_OPT_TSTAMP_PRESENT; 9473 9474 up += TCPOPT_TSTAMP_LEN; 9475 continue; 9476 9477 default: 9478 if (len <= 1 || len < (int)up[1] || up[1] == 0) 9479 break; 9480 up += up[1]; 9481 continue; 9482 } 9483 break; 9484 } 9485 return (found); 9486 } 9487 9488 /* 9489 * Set the mss associated with a particular tcp based on its current value, 9490 * and a new one passed in. Observe minimums and maximums, and reset 9491 * other state variables that we want to view as multiples of mss. 9492 * 9493 * This function is called in various places mainly because 9494 * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the 9495 * other side's SYN/SYN-ACK packet arrives. 9496 * 2) PMTUd may get us a new MSS. 9497 * 3) If the other side stops sending us timestamp option, we need to 9498 * increase the MSS size to use the extra bytes available. 9499 */ 9500 static void 9501 tcp_mss_set(tcp_t *tcp, uint32_t mss) 9502 { 9503 uint32_t mss_max; 9504 9505 if (tcp->tcp_ipversion == IPV4_VERSION) 9506 mss_max = tcp_mss_max_ipv4; 9507 else 9508 mss_max = tcp_mss_max_ipv6; 9509 9510 if (mss < tcp_mss_min) 9511 mss = tcp_mss_min; 9512 if (mss > mss_max) 9513 mss = mss_max; 9514 /* 9515 * Unless naglim has been set by our client to 9516 * a non-mss value, force naglim to track mss. 9517 * This can help to aggregate small writes. 9518 */ 9519 if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim) 9520 tcp->tcp_naglim = mss; 9521 /* 9522 * TCP should be able to buffer at least 4 MSS data for obvious 9523 * performance reason. 9524 */ 9525 if ((mss << 2) > tcp->tcp_xmit_hiwater) 9526 tcp->tcp_xmit_hiwater = mss << 2; 9527 9528 /* 9529 * Check if we need to apply the tcp_init_cwnd here. If 9530 * it is set and the MSS gets bigger (should not happen 9531 * normally), we need to adjust the resulting tcp_cwnd properly. 9532 * The new tcp_cwnd should not get bigger. 9533 */ 9534 if (tcp->tcp_init_cwnd == 0) { 9535 tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss, 9536 MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss))); 9537 } else { 9538 if (tcp->tcp_mss < mss) { 9539 tcp->tcp_cwnd = MAX(1, 9540 (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss; 9541 } else { 9542 tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss; 9543 } 9544 } 9545 tcp->tcp_mss = mss; 9546 tcp->tcp_cwnd_cnt = 0; 9547 (void) tcp_maxpsz_set(tcp, B_TRUE); 9548 } 9549 9550 static int 9551 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 9552 { 9553 tcp_t *tcp = NULL; 9554 conn_t *connp; 9555 int err; 9556 dev_t conn_dev; 9557 zoneid_t zoneid = getzoneid(); 9558 9559 /* 9560 * Special case for install: miniroot needs to be able to access files 9561 * via NFS as though it were always in the global zone. 9562 */ 9563 if (credp == kcred && nfs_global_client_only != 0) 9564 zoneid = GLOBAL_ZONEID; 9565 9566 if (q->q_ptr != NULL) 9567 return (0); 9568 9569 if (sflag == MODOPEN) { 9570 /* 9571 * This is a special case. The purpose of a modopen 9572 * is to allow just the T_SVR4_OPTMGMT_REQ to pass 9573 * through for MIB browsers. Everything else is failed. 9574 */ 9575 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9576 9577 if (connp == NULL) 9578 return (ENOMEM); 9579 9580 connp->conn_flags |= IPCL_TCPMOD; 9581 connp->conn_cred = credp; 9582 connp->conn_zoneid = zoneid; 9583 q->q_ptr = WR(q)->q_ptr = connp; 9584 crhold(credp); 9585 q->q_qinfo = &tcp_mod_rinit; 9586 WR(q)->q_qinfo = &tcp_mod_winit; 9587 qprocson(q); 9588 return (0); 9589 } 9590 9591 if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0) 9592 return (EBUSY); 9593 9594 *devp = makedevice(getemajor(*devp), (minor_t)conn_dev); 9595 9596 if (flag & SO_ACCEPTOR) { 9597 q->q_qinfo = &tcp_acceptor_rinit; 9598 q->q_ptr = (void *)conn_dev; 9599 WR(q)->q_qinfo = &tcp_acceptor_winit; 9600 WR(q)->q_ptr = (void *)conn_dev; 9601 qprocson(q); 9602 return (0); 9603 } 9604 9605 connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt)); 9606 if (connp == NULL) { 9607 inet_minor_free(ip_minor_arena, conn_dev); 9608 q->q_ptr = NULL; 9609 return (ENOSR); 9610 } 9611 connp->conn_sqp = IP_SQUEUE_GET(lbolt); 9612 tcp = connp->conn_tcp; 9613 9614 q->q_ptr = WR(q)->q_ptr = connp; 9615 if (getmajor(*devp) == TCP6_MAJ) { 9616 connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6); 9617 connp->conn_send = ip_output_v6; 9618 connp->conn_af_isv6 = B_TRUE; 9619 connp->conn_pkt_isv6 = B_TRUE; 9620 connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT; 9621 tcp->tcp_ipversion = IPV6_VERSION; 9622 tcp->tcp_family = AF_INET6; 9623 tcp->tcp_mss = tcp_mss_def_ipv6; 9624 } else { 9625 connp->conn_flags |= IPCL_TCP4; 9626 connp->conn_send = ip_output; 9627 connp->conn_af_isv6 = B_FALSE; 9628 connp->conn_pkt_isv6 = B_FALSE; 9629 tcp->tcp_ipversion = IPV4_VERSION; 9630 tcp->tcp_family = AF_INET; 9631 tcp->tcp_mss = tcp_mss_def_ipv4; 9632 } 9633 9634 /* 9635 * TCP keeps a copy of cred for cache locality reasons but 9636 * we put a reference only once. If connp->conn_cred 9637 * becomes invalid, tcp_cred should also be set to NULL. 9638 */ 9639 tcp->tcp_cred = connp->conn_cred = credp; 9640 crhold(connp->conn_cred); 9641 tcp->tcp_cpid = curproc->p_pid; 9642 tcp->tcp_open_time = lbolt64; 9643 connp->conn_zoneid = zoneid; 9644 connp->conn_mlp_type = mlptSingle; 9645 connp->conn_ulp_labeled = !is_system_labeled(); 9646 9647 /* 9648 * If the caller has the process-wide flag set, then default to MAC 9649 * exempt mode. This allows read-down to unlabeled hosts. 9650 */ 9651 if (getpflags(NET_MAC_AWARE, credp) != 0) 9652 connp->conn_mac_exempt = B_TRUE; 9653 9654 connp->conn_dev = conn_dev; 9655 9656 ASSERT(q->q_qinfo == &tcp_rinit); 9657 ASSERT(WR(q)->q_qinfo == &tcp_winit); 9658 9659 if (flag & SO_SOCKSTR) { 9660 /* 9661 * No need to insert a socket in tcp acceptor hash. 9662 * If it was a socket acceptor stream, we dealt with 9663 * it above. A socket listener can never accept a 9664 * connection and doesn't need acceptor_id. 9665 */ 9666 connp->conn_flags |= IPCL_SOCKET; 9667 tcp->tcp_issocket = 1; 9668 WR(q)->q_qinfo = &tcp_sock_winit; 9669 } else { 9670 #ifdef _ILP32 9671 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 9672 #else 9673 tcp->tcp_acceptor_id = conn_dev; 9674 #endif /* _ILP32 */ 9675 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 9676 } 9677 9678 if (tcp_trace) 9679 tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP); 9680 9681 err = tcp_init(tcp, q); 9682 if (err != 0) { 9683 inet_minor_free(ip_minor_arena, connp->conn_dev); 9684 tcp_acceptor_hash_remove(tcp); 9685 CONN_DEC_REF(connp); 9686 q->q_ptr = WR(q)->q_ptr = NULL; 9687 return (err); 9688 } 9689 9690 RD(q)->q_hiwat = tcp_recv_hiwat; 9691 tcp->tcp_rwnd = tcp_recv_hiwat; 9692 9693 /* Non-zero default values */ 9694 connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP; 9695 /* 9696 * Put the ref for TCP. Ref for IP was already put 9697 * by ipcl_conn_create. Also Make the conn_t globally 9698 * visible to walkers 9699 */ 9700 mutex_enter(&connp->conn_lock); 9701 CONN_INC_REF_LOCKED(connp); 9702 ASSERT(connp->conn_ref == 2); 9703 connp->conn_state_flags &= ~CONN_INCIPIENT; 9704 mutex_exit(&connp->conn_lock); 9705 9706 qprocson(q); 9707 return (0); 9708 } 9709 9710 /* 9711 * Some TCP options can be "set" by requesting them in the option 9712 * buffer. This is needed for XTI feature test though we do not 9713 * allow it in general. We interpret that this mechanism is more 9714 * applicable to OSI protocols and need not be allowed in general. 9715 * This routine filters out options for which it is not allowed (most) 9716 * and lets through those (few) for which it is. [ The XTI interface 9717 * test suite specifics will imply that any XTI_GENERIC level XTI_* if 9718 * ever implemented will have to be allowed here ]. 9719 */ 9720 static boolean_t 9721 tcp_allow_connopt_set(int level, int name) 9722 { 9723 9724 switch (level) { 9725 case IPPROTO_TCP: 9726 switch (name) { 9727 case TCP_NODELAY: 9728 return (B_TRUE); 9729 default: 9730 return (B_FALSE); 9731 } 9732 /*NOTREACHED*/ 9733 default: 9734 return (B_FALSE); 9735 } 9736 /*NOTREACHED*/ 9737 } 9738 9739 /* 9740 * This routine gets default values of certain options whose default 9741 * values are maintained by protocol specific code 9742 */ 9743 /* ARGSUSED */ 9744 int 9745 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr) 9746 { 9747 int32_t *i1 = (int32_t *)ptr; 9748 9749 switch (level) { 9750 case IPPROTO_TCP: 9751 switch (name) { 9752 case TCP_NOTIFY_THRESHOLD: 9753 *i1 = tcp_ip_notify_interval; 9754 break; 9755 case TCP_ABORT_THRESHOLD: 9756 *i1 = tcp_ip_abort_interval; 9757 break; 9758 case TCP_CONN_NOTIFY_THRESHOLD: 9759 *i1 = tcp_ip_notify_cinterval; 9760 break; 9761 case TCP_CONN_ABORT_THRESHOLD: 9762 *i1 = tcp_ip_abort_cinterval; 9763 break; 9764 default: 9765 return (-1); 9766 } 9767 break; 9768 case IPPROTO_IP: 9769 switch (name) { 9770 case IP_TTL: 9771 *i1 = tcp_ipv4_ttl; 9772 break; 9773 default: 9774 return (-1); 9775 } 9776 break; 9777 case IPPROTO_IPV6: 9778 switch (name) { 9779 case IPV6_UNICAST_HOPS: 9780 *i1 = tcp_ipv6_hoplimit; 9781 break; 9782 default: 9783 return (-1); 9784 } 9785 break; 9786 default: 9787 return (-1); 9788 } 9789 return (sizeof (int)); 9790 } 9791 9792 9793 /* 9794 * TCP routine to get the values of options. 9795 */ 9796 int 9797 tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr) 9798 { 9799 int *i1 = (int *)ptr; 9800 conn_t *connp = Q_TO_CONN(q); 9801 tcp_t *tcp = connp->conn_tcp; 9802 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 9803 9804 switch (level) { 9805 case SOL_SOCKET: 9806 switch (name) { 9807 case SO_LINGER: { 9808 struct linger *lgr = (struct linger *)ptr; 9809 9810 lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0; 9811 lgr->l_linger = tcp->tcp_lingertime; 9812 } 9813 return (sizeof (struct linger)); 9814 case SO_DEBUG: 9815 *i1 = tcp->tcp_debug ? SO_DEBUG : 0; 9816 break; 9817 case SO_KEEPALIVE: 9818 *i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0; 9819 break; 9820 case SO_DONTROUTE: 9821 *i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0; 9822 break; 9823 case SO_USELOOPBACK: 9824 *i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0; 9825 break; 9826 case SO_BROADCAST: 9827 *i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0; 9828 break; 9829 case SO_REUSEADDR: 9830 *i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0; 9831 break; 9832 case SO_OOBINLINE: 9833 *i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0; 9834 break; 9835 case SO_DGRAM_ERRIND: 9836 *i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0; 9837 break; 9838 case SO_TYPE: 9839 *i1 = SOCK_STREAM; 9840 break; 9841 case SO_SNDBUF: 9842 *i1 = tcp->tcp_xmit_hiwater; 9843 break; 9844 case SO_RCVBUF: 9845 *i1 = RD(q)->q_hiwat; 9846 break; 9847 case SO_SND_COPYAVOID: 9848 *i1 = tcp->tcp_snd_zcopy_on ? 9849 SO_SND_COPYAVOID : 0; 9850 break; 9851 case SO_ALLZONES: 9852 *i1 = connp->conn_allzones ? 1 : 0; 9853 break; 9854 case SO_ANON_MLP: 9855 *i1 = connp->conn_anon_mlp; 9856 break; 9857 case SO_MAC_EXEMPT: 9858 *i1 = connp->conn_mac_exempt; 9859 break; 9860 case SO_EXCLBIND: 9861 *i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0; 9862 break; 9863 case SO_PROTOTYPE: 9864 *i1 = IPPROTO_TCP; 9865 break; 9866 case SO_DOMAIN: 9867 *i1 = tcp->tcp_family; 9868 break; 9869 default: 9870 return (-1); 9871 } 9872 break; 9873 case IPPROTO_TCP: 9874 switch (name) { 9875 case TCP_NODELAY: 9876 *i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0; 9877 break; 9878 case TCP_MAXSEG: 9879 *i1 = tcp->tcp_mss; 9880 break; 9881 case TCP_NOTIFY_THRESHOLD: 9882 *i1 = (int)tcp->tcp_first_timer_threshold; 9883 break; 9884 case TCP_ABORT_THRESHOLD: 9885 *i1 = tcp->tcp_second_timer_threshold; 9886 break; 9887 case TCP_CONN_NOTIFY_THRESHOLD: 9888 *i1 = tcp->tcp_first_ctimer_threshold; 9889 break; 9890 case TCP_CONN_ABORT_THRESHOLD: 9891 *i1 = tcp->tcp_second_ctimer_threshold; 9892 break; 9893 case TCP_RECVDSTADDR: 9894 *i1 = tcp->tcp_recvdstaddr; 9895 break; 9896 case TCP_ANONPRIVBIND: 9897 *i1 = tcp->tcp_anon_priv_bind; 9898 break; 9899 case TCP_EXCLBIND: 9900 *i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0; 9901 break; 9902 case TCP_INIT_CWND: 9903 *i1 = tcp->tcp_init_cwnd; 9904 break; 9905 case TCP_KEEPALIVE_THRESHOLD: 9906 *i1 = tcp->tcp_ka_interval; 9907 break; 9908 case TCP_KEEPALIVE_ABORT_THRESHOLD: 9909 *i1 = tcp->tcp_ka_abort_thres; 9910 break; 9911 case TCP_CORK: 9912 *i1 = tcp->tcp_cork; 9913 break; 9914 default: 9915 return (-1); 9916 } 9917 break; 9918 case IPPROTO_IP: 9919 if (tcp->tcp_family != AF_INET) 9920 return (-1); 9921 switch (name) { 9922 case IP_OPTIONS: 9923 case T_IP_OPTIONS: { 9924 /* 9925 * This is compatible with BSD in that in only return 9926 * the reverse source route with the final destination 9927 * as the last entry. The first 4 bytes of the option 9928 * will contain the final destination. 9929 */ 9930 int opt_len; 9931 9932 opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha; 9933 opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH; 9934 ASSERT(opt_len >= 0); 9935 /* Caller ensures enough space */ 9936 if (opt_len > 0) { 9937 /* 9938 * TODO: Do we have to handle getsockopt on an 9939 * initiator as well? 9940 */ 9941 return (ip_opt_get_user(tcp->tcp_ipha, ptr)); 9942 } 9943 return (0); 9944 } 9945 case IP_TOS: 9946 case T_IP_TOS: 9947 *i1 = (int)tcp->tcp_ipha->ipha_type_of_service; 9948 break; 9949 case IP_TTL: 9950 *i1 = (int)tcp->tcp_ipha->ipha_ttl; 9951 break; 9952 case IP_NEXTHOP: 9953 /* Handled at IP level */ 9954 return (-EINVAL); 9955 default: 9956 return (-1); 9957 } 9958 break; 9959 case IPPROTO_IPV6: 9960 /* 9961 * IPPROTO_IPV6 options are only supported for sockets 9962 * that are using IPv6 on the wire. 9963 */ 9964 if (tcp->tcp_ipversion != IPV6_VERSION) { 9965 return (-1); 9966 } 9967 switch (name) { 9968 case IPV6_UNICAST_HOPS: 9969 *i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops; 9970 break; /* goto sizeof (int) option return */ 9971 case IPV6_BOUND_IF: 9972 /* Zero if not set */ 9973 *i1 = tcp->tcp_bound_if; 9974 break; /* goto sizeof (int) option return */ 9975 case IPV6_RECVPKTINFO: 9976 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) 9977 *i1 = 1; 9978 else 9979 *i1 = 0; 9980 break; /* goto sizeof (int) option return */ 9981 case IPV6_RECVTCLASS: 9982 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS) 9983 *i1 = 1; 9984 else 9985 *i1 = 0; 9986 break; /* goto sizeof (int) option return */ 9987 case IPV6_RECVHOPLIMIT: 9988 if (tcp->tcp_ipv6_recvancillary & 9989 TCP_IPV6_RECVHOPLIMIT) 9990 *i1 = 1; 9991 else 9992 *i1 = 0; 9993 break; /* goto sizeof (int) option return */ 9994 case IPV6_RECVHOPOPTS: 9995 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) 9996 *i1 = 1; 9997 else 9998 *i1 = 0; 9999 break; /* goto sizeof (int) option return */ 10000 case IPV6_RECVDSTOPTS: 10001 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS) 10002 *i1 = 1; 10003 else 10004 *i1 = 0; 10005 break; /* goto sizeof (int) option return */ 10006 case _OLD_IPV6_RECVDSTOPTS: 10007 if (tcp->tcp_ipv6_recvancillary & 10008 TCP_OLD_IPV6_RECVDSTOPTS) 10009 *i1 = 1; 10010 else 10011 *i1 = 0; 10012 break; /* goto sizeof (int) option return */ 10013 case IPV6_RECVRTHDR: 10014 if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) 10015 *i1 = 1; 10016 else 10017 *i1 = 0; 10018 break; /* goto sizeof (int) option return */ 10019 case IPV6_RECVRTHDRDSTOPTS: 10020 if (tcp->tcp_ipv6_recvancillary & 10021 TCP_IPV6_RECVRTDSTOPTS) 10022 *i1 = 1; 10023 else 10024 *i1 = 0; 10025 break; /* goto sizeof (int) option return */ 10026 case IPV6_PKTINFO: { 10027 /* XXX assumes that caller has room for max size! */ 10028 struct in6_pktinfo *pkti; 10029 10030 pkti = (struct in6_pktinfo *)ptr; 10031 if (ipp->ipp_fields & IPPF_IFINDEX) 10032 pkti->ipi6_ifindex = ipp->ipp_ifindex; 10033 else 10034 pkti->ipi6_ifindex = 0; 10035 if (ipp->ipp_fields & IPPF_ADDR) 10036 pkti->ipi6_addr = ipp->ipp_addr; 10037 else 10038 pkti->ipi6_addr = ipv6_all_zeros; 10039 return (sizeof (struct in6_pktinfo)); 10040 } 10041 case IPV6_TCLASS: 10042 if (ipp->ipp_fields & IPPF_TCLASS) 10043 *i1 = ipp->ipp_tclass; 10044 else 10045 *i1 = IPV6_FLOW_TCLASS( 10046 IPV6_DEFAULT_VERS_AND_FLOW); 10047 break; /* goto sizeof (int) option return */ 10048 case IPV6_NEXTHOP: { 10049 sin6_t *sin6 = (sin6_t *)ptr; 10050 10051 if (!(ipp->ipp_fields & IPPF_NEXTHOP)) 10052 return (0); 10053 *sin6 = sin6_null; 10054 sin6->sin6_family = AF_INET6; 10055 sin6->sin6_addr = ipp->ipp_nexthop; 10056 return (sizeof (sin6_t)); 10057 } 10058 case IPV6_HOPOPTS: 10059 if (!(ipp->ipp_fields & IPPF_HOPOPTS)) 10060 return (0); 10061 if (ipp->ipp_hopoptslen <= tcp->tcp_label_len) 10062 return (0); 10063 bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len, 10064 ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len); 10065 if (tcp->tcp_label_len > 0) { 10066 ptr[0] = ((char *)ipp->ipp_hopopts)[0]; 10067 ptr[1] = (ipp->ipp_hopoptslen - 10068 tcp->tcp_label_len + 7) / 8 - 1; 10069 } 10070 return (ipp->ipp_hopoptslen - tcp->tcp_label_len); 10071 case IPV6_RTHDRDSTOPTS: 10072 if (!(ipp->ipp_fields & IPPF_RTDSTOPTS)) 10073 return (0); 10074 bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen); 10075 return (ipp->ipp_rtdstoptslen); 10076 case IPV6_RTHDR: 10077 if (!(ipp->ipp_fields & IPPF_RTHDR)) 10078 return (0); 10079 bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen); 10080 return (ipp->ipp_rthdrlen); 10081 case IPV6_DSTOPTS: 10082 if (!(ipp->ipp_fields & IPPF_DSTOPTS)) 10083 return (0); 10084 bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen); 10085 return (ipp->ipp_dstoptslen); 10086 case IPV6_SRC_PREFERENCES: 10087 return (ip6_get_src_preferences(connp, 10088 (uint32_t *)ptr)); 10089 case IPV6_PATHMTU: { 10090 struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr; 10091 10092 if (tcp->tcp_state < TCPS_ESTABLISHED) 10093 return (-1); 10094 10095 return (ip_fill_mtuinfo(&connp->conn_remv6, 10096 connp->conn_fport, mtuinfo)); 10097 } 10098 default: 10099 return (-1); 10100 } 10101 break; 10102 default: 10103 return (-1); 10104 } 10105 return (sizeof (int)); 10106 } 10107 10108 /* 10109 * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements. 10110 * Parameters are assumed to be verified by the caller. 10111 */ 10112 /* ARGSUSED */ 10113 int 10114 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name, 10115 uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, 10116 void *thisdg_attrs, cred_t *cr, mblk_t *mblk) 10117 { 10118 conn_t *connp = Q_TO_CONN(q); 10119 tcp_t *tcp = connp->conn_tcp; 10120 int *i1 = (int *)invalp; 10121 boolean_t onoff = (*i1 == 0) ? 0 : 1; 10122 boolean_t checkonly; 10123 int reterr; 10124 10125 switch (optset_context) { 10126 case SETFN_OPTCOM_CHECKONLY: 10127 checkonly = B_TRUE; 10128 /* 10129 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ 10130 * inlen != 0 implies value supplied and 10131 * we have to "pretend" to set it. 10132 * inlen == 0 implies that there is no 10133 * value part in T_CHECK request and just validation 10134 * done elsewhere should be enough, we just return here. 10135 */ 10136 if (inlen == 0) { 10137 *outlenp = 0; 10138 return (0); 10139 } 10140 break; 10141 case SETFN_OPTCOM_NEGOTIATE: 10142 checkonly = B_FALSE; 10143 break; 10144 case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */ 10145 case SETFN_CONN_NEGOTIATE: 10146 checkonly = B_FALSE; 10147 /* 10148 * Negotiating local and "association-related" options 10149 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ) 10150 * primitives is allowed by XTI, but we choose 10151 * to not implement this style negotiation for Internet 10152 * protocols (We interpret it is a must for OSI world but 10153 * optional for Internet protocols) for all options. 10154 * [ Will do only for the few options that enable test 10155 * suites that our XTI implementation of this feature 10156 * works for transports that do allow it ] 10157 */ 10158 if (!tcp_allow_connopt_set(level, name)) { 10159 *outlenp = 0; 10160 return (EINVAL); 10161 } 10162 break; 10163 default: 10164 /* 10165 * We should never get here 10166 */ 10167 *outlenp = 0; 10168 return (EINVAL); 10169 } 10170 10171 ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) || 10172 (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0)); 10173 10174 /* 10175 * For TCP, we should have no ancillary data sent down 10176 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs 10177 * has to be zero. 10178 */ 10179 ASSERT(thisdg_attrs == NULL); 10180 10181 /* 10182 * For fixed length options, no sanity check 10183 * of passed in length is done. It is assumed *_optcom_req() 10184 * routines do the right thing. 10185 */ 10186 10187 switch (level) { 10188 case SOL_SOCKET: 10189 switch (name) { 10190 case SO_LINGER: { 10191 struct linger *lgr = (struct linger *)invalp; 10192 10193 if (!checkonly) { 10194 if (lgr->l_onoff) { 10195 tcp->tcp_linger = 1; 10196 tcp->tcp_lingertime = lgr->l_linger; 10197 } else { 10198 tcp->tcp_linger = 0; 10199 tcp->tcp_lingertime = 0; 10200 } 10201 /* struct copy */ 10202 *(struct linger *)outvalp = *lgr; 10203 } else { 10204 if (!lgr->l_onoff) { 10205 ((struct linger *)outvalp)->l_onoff = 0; 10206 ((struct linger *)outvalp)->l_linger = 0; 10207 } else { 10208 /* struct copy */ 10209 *(struct linger *)outvalp = *lgr; 10210 } 10211 } 10212 *outlenp = sizeof (struct linger); 10213 return (0); 10214 } 10215 case SO_DEBUG: 10216 if (!checkonly) 10217 tcp->tcp_debug = onoff; 10218 break; 10219 case SO_KEEPALIVE: 10220 if (checkonly) { 10221 /* T_CHECK case */ 10222 break; 10223 } 10224 10225 if (!onoff) { 10226 if (tcp->tcp_ka_enabled) { 10227 if (tcp->tcp_ka_tid != 0) { 10228 (void) TCP_TIMER_CANCEL(tcp, 10229 tcp->tcp_ka_tid); 10230 tcp->tcp_ka_tid = 0; 10231 } 10232 tcp->tcp_ka_enabled = 0; 10233 } 10234 break; 10235 } 10236 if (!tcp->tcp_ka_enabled) { 10237 /* Crank up the keepalive timer */ 10238 tcp->tcp_ka_last_intrvl = 0; 10239 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10240 tcp_keepalive_killer, 10241 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10242 tcp->tcp_ka_enabled = 1; 10243 } 10244 break; 10245 case SO_DONTROUTE: 10246 /* 10247 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are 10248 * only of interest to IP. We track them here only so 10249 * that we can report their current value. 10250 */ 10251 if (!checkonly) { 10252 tcp->tcp_dontroute = onoff; 10253 tcp->tcp_connp->conn_dontroute = onoff; 10254 } 10255 break; 10256 case SO_USELOOPBACK: 10257 if (!checkonly) { 10258 tcp->tcp_useloopback = onoff; 10259 tcp->tcp_connp->conn_loopback = onoff; 10260 } 10261 break; 10262 case SO_BROADCAST: 10263 if (!checkonly) { 10264 tcp->tcp_broadcast = onoff; 10265 tcp->tcp_connp->conn_broadcast = onoff; 10266 } 10267 break; 10268 case SO_REUSEADDR: 10269 if (!checkonly) { 10270 tcp->tcp_reuseaddr = onoff; 10271 tcp->tcp_connp->conn_reuseaddr = onoff; 10272 } 10273 break; 10274 case SO_OOBINLINE: 10275 if (!checkonly) 10276 tcp->tcp_oobinline = onoff; 10277 break; 10278 case SO_DGRAM_ERRIND: 10279 if (!checkonly) 10280 tcp->tcp_dgram_errind = onoff; 10281 break; 10282 case SO_SNDBUF: { 10283 if (*i1 > tcp_max_buf) { 10284 *outlenp = 0; 10285 return (ENOBUFS); 10286 } 10287 if (checkonly) 10288 break; 10289 10290 tcp->tcp_xmit_hiwater = *i1; 10291 if (tcp_snd_lowat_fraction != 0) 10292 tcp->tcp_xmit_lowater = 10293 tcp->tcp_xmit_hiwater / 10294 tcp_snd_lowat_fraction; 10295 (void) tcp_maxpsz_set(tcp, B_TRUE); 10296 /* 10297 * If we are flow-controlled, recheck the condition. 10298 * There are apps that increase SO_SNDBUF size when 10299 * flow-controlled (EWOULDBLOCK), and expect the flow 10300 * control condition to be lifted right away. 10301 */ 10302 mutex_enter(&tcp->tcp_non_sq_lock); 10303 if (tcp->tcp_flow_stopped && 10304 TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) { 10305 tcp_clrqfull(tcp); 10306 } 10307 mutex_exit(&tcp->tcp_non_sq_lock); 10308 break; 10309 } 10310 case SO_RCVBUF: 10311 if (*i1 > tcp_max_buf) { 10312 *outlenp = 0; 10313 return (ENOBUFS); 10314 } 10315 /* Silently ignore zero */ 10316 if (!checkonly && *i1 != 0) { 10317 *i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss); 10318 (void) tcp_rwnd_set(tcp, *i1); 10319 } 10320 /* 10321 * XXX should we return the rwnd here 10322 * and tcp_opt_get ? 10323 */ 10324 break; 10325 case SO_SND_COPYAVOID: 10326 if (!checkonly) { 10327 /* we only allow enable at most once for now */ 10328 if (tcp->tcp_loopback || 10329 (!tcp->tcp_snd_zcopy_aware && 10330 (onoff != 1 || !tcp_zcopy_check(tcp)))) { 10331 *outlenp = 0; 10332 return (EOPNOTSUPP); 10333 } 10334 tcp->tcp_snd_zcopy_aware = 1; 10335 } 10336 break; 10337 case SO_ALLZONES: 10338 /* Handled at the IP level */ 10339 return (-EINVAL); 10340 case SO_ANON_MLP: 10341 if (!checkonly) { 10342 mutex_enter(&connp->conn_lock); 10343 connp->conn_anon_mlp = onoff; 10344 mutex_exit(&connp->conn_lock); 10345 } 10346 break; 10347 case SO_MAC_EXEMPT: 10348 if (secpolicy_net_mac_aware(cr) != 0 || 10349 IPCL_IS_BOUND(connp)) 10350 return (EACCES); 10351 if (!checkonly) { 10352 mutex_enter(&connp->conn_lock); 10353 connp->conn_mac_exempt = onoff; 10354 mutex_exit(&connp->conn_lock); 10355 } 10356 break; 10357 case SO_EXCLBIND: 10358 if (!checkonly) 10359 tcp->tcp_exclbind = onoff; 10360 break; 10361 default: 10362 *outlenp = 0; 10363 return (EINVAL); 10364 } 10365 break; 10366 case IPPROTO_TCP: 10367 switch (name) { 10368 case TCP_NODELAY: 10369 if (!checkonly) 10370 tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss; 10371 break; 10372 case TCP_NOTIFY_THRESHOLD: 10373 if (!checkonly) 10374 tcp->tcp_first_timer_threshold = *i1; 10375 break; 10376 case TCP_ABORT_THRESHOLD: 10377 if (!checkonly) 10378 tcp->tcp_second_timer_threshold = *i1; 10379 break; 10380 case TCP_CONN_NOTIFY_THRESHOLD: 10381 if (!checkonly) 10382 tcp->tcp_first_ctimer_threshold = *i1; 10383 break; 10384 case TCP_CONN_ABORT_THRESHOLD: 10385 if (!checkonly) 10386 tcp->tcp_second_ctimer_threshold = *i1; 10387 break; 10388 case TCP_RECVDSTADDR: 10389 if (tcp->tcp_state > TCPS_LISTEN) 10390 return (EOPNOTSUPP); 10391 if (!checkonly) 10392 tcp->tcp_recvdstaddr = onoff; 10393 break; 10394 case TCP_ANONPRIVBIND: 10395 if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) { 10396 *outlenp = 0; 10397 return (reterr); 10398 } 10399 if (!checkonly) { 10400 tcp->tcp_anon_priv_bind = onoff; 10401 } 10402 break; 10403 case TCP_EXCLBIND: 10404 if (!checkonly) 10405 tcp->tcp_exclbind = onoff; 10406 break; /* goto sizeof (int) option return */ 10407 case TCP_INIT_CWND: { 10408 uint32_t init_cwnd = *((uint32_t *)invalp); 10409 10410 if (checkonly) 10411 break; 10412 10413 /* 10414 * Only allow socket with network configuration 10415 * privilege to set the initial cwnd to be larger 10416 * than allowed by RFC 3390. 10417 */ 10418 if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) { 10419 tcp->tcp_init_cwnd = init_cwnd; 10420 break; 10421 } 10422 if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) { 10423 *outlenp = 0; 10424 return (reterr); 10425 } 10426 if (init_cwnd > TCP_MAX_INIT_CWND) { 10427 *outlenp = 0; 10428 return (EINVAL); 10429 } 10430 tcp->tcp_init_cwnd = init_cwnd; 10431 break; 10432 } 10433 case TCP_KEEPALIVE_THRESHOLD: 10434 if (checkonly) 10435 break; 10436 10437 if (*i1 < tcp_keepalive_interval_low || 10438 *i1 > tcp_keepalive_interval_high) { 10439 *outlenp = 0; 10440 return (EINVAL); 10441 } 10442 if (*i1 != tcp->tcp_ka_interval) { 10443 tcp->tcp_ka_interval = *i1; 10444 /* 10445 * Check if we need to restart the 10446 * keepalive timer. 10447 */ 10448 if (tcp->tcp_ka_tid != 0) { 10449 ASSERT(tcp->tcp_ka_enabled); 10450 (void) TCP_TIMER_CANCEL(tcp, 10451 tcp->tcp_ka_tid); 10452 tcp->tcp_ka_last_intrvl = 0; 10453 tcp->tcp_ka_tid = TCP_TIMER(tcp, 10454 tcp_keepalive_killer, 10455 MSEC_TO_TICK(tcp->tcp_ka_interval)); 10456 } 10457 } 10458 break; 10459 case TCP_KEEPALIVE_ABORT_THRESHOLD: 10460 if (!checkonly) { 10461 if (*i1 < tcp_keepalive_abort_interval_low || 10462 *i1 > tcp_keepalive_abort_interval_high) { 10463 *outlenp = 0; 10464 return (EINVAL); 10465 } 10466 tcp->tcp_ka_abort_thres = *i1; 10467 } 10468 break; 10469 case TCP_CORK: 10470 if (!checkonly) { 10471 /* 10472 * if tcp->tcp_cork was set and is now 10473 * being unset, we have to make sure that 10474 * the remaining data gets sent out. Also 10475 * unset tcp->tcp_cork so that tcp_wput_data() 10476 * can send data even if it is less than mss 10477 */ 10478 if (tcp->tcp_cork && onoff == 0 && 10479 tcp->tcp_unsent > 0) { 10480 tcp->tcp_cork = B_FALSE; 10481 tcp_wput_data(tcp, NULL, B_FALSE); 10482 } 10483 tcp->tcp_cork = onoff; 10484 } 10485 break; 10486 default: 10487 *outlenp = 0; 10488 return (EINVAL); 10489 } 10490 break; 10491 case IPPROTO_IP: 10492 if (tcp->tcp_family != AF_INET) { 10493 *outlenp = 0; 10494 return (ENOPROTOOPT); 10495 } 10496 switch (name) { 10497 case IP_OPTIONS: 10498 case T_IP_OPTIONS: 10499 reterr = tcp_opt_set_header(tcp, checkonly, 10500 invalp, inlen); 10501 if (reterr) { 10502 *outlenp = 0; 10503 return (reterr); 10504 } 10505 /* OK return - copy input buffer into output buffer */ 10506 if (invalp != outvalp) { 10507 /* don't trust bcopy for identical src/dst */ 10508 bcopy(invalp, outvalp, inlen); 10509 } 10510 *outlenp = inlen; 10511 return (0); 10512 case IP_TOS: 10513 case T_IP_TOS: 10514 if (!checkonly) { 10515 tcp->tcp_ipha->ipha_type_of_service = 10516 (uchar_t)*i1; 10517 tcp->tcp_tos = (uchar_t)*i1; 10518 } 10519 break; 10520 case IP_TTL: 10521 if (!checkonly) { 10522 tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1; 10523 tcp->tcp_ttl = (uchar_t)*i1; 10524 } 10525 break; 10526 case IP_BOUND_IF: 10527 case IP_NEXTHOP: 10528 /* Handled at the IP level */ 10529 return (-EINVAL); 10530 case IP_SEC_OPT: 10531 /* 10532 * We should not allow policy setting after 10533 * we start listening for connections. 10534 */ 10535 if (tcp->tcp_state == TCPS_LISTEN) { 10536 return (EINVAL); 10537 } else { 10538 /* Handled at the IP level */ 10539 return (-EINVAL); 10540 } 10541 default: 10542 *outlenp = 0; 10543 return (EINVAL); 10544 } 10545 break; 10546 case IPPROTO_IPV6: { 10547 ip6_pkt_t *ipp; 10548 10549 /* 10550 * IPPROTO_IPV6 options are only supported for sockets 10551 * that are using IPv6 on the wire. 10552 */ 10553 if (tcp->tcp_ipversion != IPV6_VERSION) { 10554 *outlenp = 0; 10555 return (ENOPROTOOPT); 10556 } 10557 /* 10558 * Only sticky options; no ancillary data 10559 */ 10560 ASSERT(thisdg_attrs == NULL); 10561 ipp = &tcp->tcp_sticky_ipp; 10562 10563 switch (name) { 10564 case IPV6_UNICAST_HOPS: 10565 /* -1 means use default */ 10566 if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) { 10567 *outlenp = 0; 10568 return (EINVAL); 10569 } 10570 if (!checkonly) { 10571 if (*i1 == -1) { 10572 tcp->tcp_ip6h->ip6_hops = 10573 ipp->ipp_unicast_hops = 10574 (uint8_t)tcp_ipv6_hoplimit; 10575 ipp->ipp_fields &= ~IPPF_UNICAST_HOPS; 10576 /* Pass modified value to IP. */ 10577 *i1 = tcp->tcp_ip6h->ip6_hops; 10578 } else { 10579 tcp->tcp_ip6h->ip6_hops = 10580 ipp->ipp_unicast_hops = 10581 (uint8_t)*i1; 10582 ipp->ipp_fields |= IPPF_UNICAST_HOPS; 10583 } 10584 reterr = tcp_build_hdrs(q, tcp); 10585 if (reterr != 0) 10586 return (reterr); 10587 } 10588 break; 10589 case IPV6_BOUND_IF: 10590 if (!checkonly) { 10591 int error = 0; 10592 10593 tcp->tcp_bound_if = *i1; 10594 error = ip_opt_set_ill(tcp->tcp_connp, *i1, 10595 B_TRUE, checkonly, level, name, mblk); 10596 if (error != 0) { 10597 *outlenp = 0; 10598 return (error); 10599 } 10600 } 10601 break; 10602 /* 10603 * Set boolean switches for ancillary data delivery 10604 */ 10605 case IPV6_RECVPKTINFO: 10606 if (!checkonly) { 10607 if (onoff) 10608 tcp->tcp_ipv6_recvancillary |= 10609 TCP_IPV6_RECVPKTINFO; 10610 else 10611 tcp->tcp_ipv6_recvancillary &= 10612 ~TCP_IPV6_RECVPKTINFO; 10613 /* Force it to be sent up with the next msg */ 10614 tcp->tcp_recvifindex = 0; 10615 } 10616 break; 10617 case IPV6_RECVTCLASS: 10618 if (!checkonly) { 10619 if (onoff) 10620 tcp->tcp_ipv6_recvancillary |= 10621 TCP_IPV6_RECVTCLASS; 10622 else 10623 tcp->tcp_ipv6_recvancillary &= 10624 ~TCP_IPV6_RECVTCLASS; 10625 } 10626 break; 10627 case IPV6_RECVHOPLIMIT: 10628 if (!checkonly) { 10629 if (onoff) 10630 tcp->tcp_ipv6_recvancillary |= 10631 TCP_IPV6_RECVHOPLIMIT; 10632 else 10633 tcp->tcp_ipv6_recvancillary &= 10634 ~TCP_IPV6_RECVHOPLIMIT; 10635 /* Force it to be sent up with the next msg */ 10636 tcp->tcp_recvhops = 0xffffffffU; 10637 } 10638 break; 10639 case IPV6_RECVHOPOPTS: 10640 if (!checkonly) { 10641 if (onoff) 10642 tcp->tcp_ipv6_recvancillary |= 10643 TCP_IPV6_RECVHOPOPTS; 10644 else 10645 tcp->tcp_ipv6_recvancillary &= 10646 ~TCP_IPV6_RECVHOPOPTS; 10647 } 10648 break; 10649 case IPV6_RECVDSTOPTS: 10650 if (!checkonly) { 10651 if (onoff) 10652 tcp->tcp_ipv6_recvancillary |= 10653 TCP_IPV6_RECVDSTOPTS; 10654 else 10655 tcp->tcp_ipv6_recvancillary &= 10656 ~TCP_IPV6_RECVDSTOPTS; 10657 } 10658 break; 10659 case _OLD_IPV6_RECVDSTOPTS: 10660 if (!checkonly) { 10661 if (onoff) 10662 tcp->tcp_ipv6_recvancillary |= 10663 TCP_OLD_IPV6_RECVDSTOPTS; 10664 else 10665 tcp->tcp_ipv6_recvancillary &= 10666 ~TCP_OLD_IPV6_RECVDSTOPTS; 10667 } 10668 break; 10669 case IPV6_RECVRTHDR: 10670 if (!checkonly) { 10671 if (onoff) 10672 tcp->tcp_ipv6_recvancillary |= 10673 TCP_IPV6_RECVRTHDR; 10674 else 10675 tcp->tcp_ipv6_recvancillary &= 10676 ~TCP_IPV6_RECVRTHDR; 10677 } 10678 break; 10679 case IPV6_RECVRTHDRDSTOPTS: 10680 if (!checkonly) { 10681 if (onoff) 10682 tcp->tcp_ipv6_recvancillary |= 10683 TCP_IPV6_RECVRTDSTOPTS; 10684 else 10685 tcp->tcp_ipv6_recvancillary &= 10686 ~TCP_IPV6_RECVRTDSTOPTS; 10687 } 10688 break; 10689 case IPV6_PKTINFO: 10690 if (inlen != 0 && inlen != sizeof (struct in6_pktinfo)) 10691 return (EINVAL); 10692 if (checkonly) 10693 break; 10694 10695 if (inlen == 0) { 10696 ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR); 10697 } else { 10698 struct in6_pktinfo *pkti; 10699 10700 pkti = (struct in6_pktinfo *)invalp; 10701 /* 10702 * RFC 3542 states that ipi6_addr must be 10703 * the unspecified address when setting the 10704 * IPV6_PKTINFO sticky socket option on a 10705 * TCP socket. 10706 */ 10707 if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr)) 10708 return (EINVAL); 10709 /* 10710 * ip6_set_pktinfo() validates the source 10711 * address and interface index. 10712 */ 10713 reterr = ip6_set_pktinfo(cr, tcp->tcp_connp, 10714 pkti, mblk); 10715 if (reterr != 0) 10716 return (reterr); 10717 ipp->ipp_ifindex = pkti->ipi6_ifindex; 10718 ipp->ipp_addr = pkti->ipi6_addr; 10719 if (ipp->ipp_ifindex != 0) 10720 ipp->ipp_fields |= IPPF_IFINDEX; 10721 else 10722 ipp->ipp_fields &= ~IPPF_IFINDEX; 10723 if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr)) 10724 ipp->ipp_fields |= IPPF_ADDR; 10725 else 10726 ipp->ipp_fields &= ~IPPF_ADDR; 10727 } 10728 reterr = tcp_build_hdrs(q, tcp); 10729 if (reterr != 0) 10730 return (reterr); 10731 break; 10732 case IPV6_TCLASS: 10733 if (inlen != 0 && inlen != sizeof (int)) 10734 return (EINVAL); 10735 if (checkonly) 10736 break; 10737 10738 if (inlen == 0) { 10739 ipp->ipp_fields &= ~IPPF_TCLASS; 10740 } else { 10741 if (*i1 > 255 || *i1 < -1) 10742 return (EINVAL); 10743 if (*i1 == -1) { 10744 ipp->ipp_tclass = 0; 10745 *i1 = 0; 10746 } else { 10747 ipp->ipp_tclass = *i1; 10748 } 10749 ipp->ipp_fields |= IPPF_TCLASS; 10750 } 10751 reterr = tcp_build_hdrs(q, tcp); 10752 if (reterr != 0) 10753 return (reterr); 10754 break; 10755 case IPV6_NEXTHOP: 10756 /* 10757 * IP will verify that the nexthop is reachable 10758 * and fail for sticky options. 10759 */ 10760 if (inlen != 0 && inlen != sizeof (sin6_t)) 10761 return (EINVAL); 10762 if (checkonly) 10763 break; 10764 10765 if (inlen == 0) { 10766 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10767 } else { 10768 sin6_t *sin6 = (sin6_t *)invalp; 10769 10770 if (sin6->sin6_family != AF_INET6) 10771 return (EAFNOSUPPORT); 10772 if (IN6_IS_ADDR_V4MAPPED( 10773 &sin6->sin6_addr)) 10774 return (EADDRNOTAVAIL); 10775 ipp->ipp_nexthop = sin6->sin6_addr; 10776 if (!IN6_IS_ADDR_UNSPECIFIED( 10777 &ipp->ipp_nexthop)) 10778 ipp->ipp_fields |= IPPF_NEXTHOP; 10779 else 10780 ipp->ipp_fields &= ~IPPF_NEXTHOP; 10781 } 10782 reterr = tcp_build_hdrs(q, tcp); 10783 if (reterr != 0) 10784 return (reterr); 10785 break; 10786 case IPV6_HOPOPTS: { 10787 ip6_hbh_t *hopts = (ip6_hbh_t *)invalp; 10788 10789 /* 10790 * Sanity checks - minimum size, size a multiple of 10791 * eight bytes, and matching size passed in. 10792 */ 10793 if (inlen != 0 && 10794 inlen != (8 * (hopts->ip6h_len + 1))) 10795 return (EINVAL); 10796 10797 if (checkonly) 10798 break; 10799 10800 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10801 (uchar_t **)&ipp->ipp_hopopts, 10802 &ipp->ipp_hopoptslen, tcp->tcp_label_len); 10803 if (reterr != 0) 10804 return (reterr); 10805 if (ipp->ipp_hopoptslen == 0) 10806 ipp->ipp_fields &= ~IPPF_HOPOPTS; 10807 else 10808 ipp->ipp_fields |= IPPF_HOPOPTS; 10809 reterr = tcp_build_hdrs(q, tcp); 10810 if (reterr != 0) 10811 return (reterr); 10812 break; 10813 } 10814 case IPV6_RTHDRDSTOPTS: { 10815 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10816 10817 /* 10818 * Sanity checks - minimum size, size a multiple of 10819 * eight bytes, and matching size passed in. 10820 */ 10821 if (inlen != 0 && 10822 inlen != (8 * (dopts->ip6d_len + 1))) 10823 return (EINVAL); 10824 10825 if (checkonly) 10826 break; 10827 10828 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10829 (uchar_t **)&ipp->ipp_rtdstopts, 10830 &ipp->ipp_rtdstoptslen, 0); 10831 if (reterr != 0) 10832 return (reterr); 10833 if (ipp->ipp_rtdstoptslen == 0) 10834 ipp->ipp_fields &= ~IPPF_RTDSTOPTS; 10835 else 10836 ipp->ipp_fields |= IPPF_RTDSTOPTS; 10837 reterr = tcp_build_hdrs(q, tcp); 10838 if (reterr != 0) 10839 return (reterr); 10840 break; 10841 } 10842 case IPV6_DSTOPTS: { 10843 ip6_dest_t *dopts = (ip6_dest_t *)invalp; 10844 10845 /* 10846 * Sanity checks - minimum size, size a multiple of 10847 * eight bytes, and matching size passed in. 10848 */ 10849 if (inlen != 0 && 10850 inlen != (8 * (dopts->ip6d_len + 1))) 10851 return (EINVAL); 10852 10853 if (checkonly) 10854 break; 10855 10856 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10857 (uchar_t **)&ipp->ipp_dstopts, 10858 &ipp->ipp_dstoptslen, 0); 10859 if (reterr != 0) 10860 return (reterr); 10861 if (ipp->ipp_dstoptslen == 0) 10862 ipp->ipp_fields &= ~IPPF_DSTOPTS; 10863 else 10864 ipp->ipp_fields |= IPPF_DSTOPTS; 10865 reterr = tcp_build_hdrs(q, tcp); 10866 if (reterr != 0) 10867 return (reterr); 10868 break; 10869 } 10870 case IPV6_RTHDR: { 10871 ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp; 10872 10873 /* 10874 * Sanity checks - minimum size, size a multiple of 10875 * eight bytes, and matching size passed in. 10876 */ 10877 if (inlen != 0 && 10878 inlen != (8 * (rt->ip6r_len + 1))) 10879 return (EINVAL); 10880 10881 if (checkonly) 10882 break; 10883 10884 reterr = optcom_pkt_set(invalp, inlen, B_TRUE, 10885 (uchar_t **)&ipp->ipp_rthdr, 10886 &ipp->ipp_rthdrlen, 0); 10887 if (reterr != 0) 10888 return (reterr); 10889 if (ipp->ipp_rthdrlen == 0) 10890 ipp->ipp_fields &= ~IPPF_RTHDR; 10891 else 10892 ipp->ipp_fields |= IPPF_RTHDR; 10893 reterr = tcp_build_hdrs(q, tcp); 10894 if (reterr != 0) 10895 return (reterr); 10896 break; 10897 } 10898 case IPV6_V6ONLY: 10899 if (!checkonly) 10900 tcp->tcp_connp->conn_ipv6_v6only = onoff; 10901 break; 10902 case IPV6_USE_MIN_MTU: 10903 if (inlen != sizeof (int)) 10904 return (EINVAL); 10905 10906 if (*i1 < -1 || *i1 > 1) 10907 return (EINVAL); 10908 10909 if (checkonly) 10910 break; 10911 10912 ipp->ipp_fields |= IPPF_USE_MIN_MTU; 10913 ipp->ipp_use_min_mtu = *i1; 10914 break; 10915 case IPV6_BOUND_PIF: 10916 /* Handled at the IP level */ 10917 return (-EINVAL); 10918 case IPV6_SEC_OPT: 10919 /* 10920 * We should not allow policy setting after 10921 * we start listening for connections. 10922 */ 10923 if (tcp->tcp_state == TCPS_LISTEN) { 10924 return (EINVAL); 10925 } else { 10926 /* Handled at the IP level */ 10927 return (-EINVAL); 10928 } 10929 case IPV6_SRC_PREFERENCES: 10930 if (inlen != sizeof (uint32_t)) 10931 return (EINVAL); 10932 reterr = ip6_set_src_preferences(tcp->tcp_connp, 10933 *(uint32_t *)invalp); 10934 if (reterr != 0) { 10935 *outlenp = 0; 10936 return (reterr); 10937 } 10938 break; 10939 default: 10940 *outlenp = 0; 10941 return (EINVAL); 10942 } 10943 break; 10944 } /* end IPPROTO_IPV6 */ 10945 default: 10946 *outlenp = 0; 10947 return (EINVAL); 10948 } 10949 /* 10950 * Common case of OK return with outval same as inval 10951 */ 10952 if (invalp != outvalp) { 10953 /* don't trust bcopy for identical src/dst */ 10954 (void) bcopy(invalp, outvalp, inlen); 10955 } 10956 *outlenp = inlen; 10957 return (0); 10958 } 10959 10960 /* 10961 * Update tcp_sticky_hdrs based on tcp_sticky_ipp. 10962 * The headers include ip6i_t (if needed), ip6_t, any sticky extension 10963 * headers, and the maximum size tcp header (to avoid reallocation 10964 * on the fly for additional tcp options). 10965 * Returns failure if can't allocate memory. 10966 */ 10967 static int 10968 tcp_build_hdrs(queue_t *q, tcp_t *tcp) 10969 { 10970 char *hdrs; 10971 uint_t hdrs_len; 10972 ip6i_t *ip6i; 10973 char buf[TCP_MAX_HDR_LENGTH]; 10974 ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp; 10975 in6_addr_t src, dst; 10976 10977 /* 10978 * save the existing tcp header and source/dest IP addresses 10979 */ 10980 bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len); 10981 src = tcp->tcp_ip6h->ip6_src; 10982 dst = tcp->tcp_ip6h->ip6_dst; 10983 hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH; 10984 ASSERT(hdrs_len != 0); 10985 if (hdrs_len > tcp->tcp_iphc_len) { 10986 /* Need to reallocate */ 10987 hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP); 10988 if (hdrs == NULL) 10989 return (ENOMEM); 10990 if (tcp->tcp_iphc != NULL) { 10991 if (tcp->tcp_hdr_grown) { 10992 kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len); 10993 } else { 10994 bzero(tcp->tcp_iphc, tcp->tcp_iphc_len); 10995 kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc); 10996 } 10997 tcp->tcp_iphc_len = 0; 10998 } 10999 ASSERT(tcp->tcp_iphc_len == 0); 11000 tcp->tcp_iphc = hdrs; 11001 tcp->tcp_iphc_len = hdrs_len; 11002 tcp->tcp_hdr_grown = B_TRUE; 11003 } 11004 ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc, 11005 hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP); 11006 11007 /* Set header fields not in ipp */ 11008 if (ipp->ipp_fields & IPPF_HAS_IP6I) { 11009 ip6i = (ip6i_t *)tcp->tcp_iphc; 11010 tcp->tcp_ip6h = (ip6_t *)&ip6i[1]; 11011 } else { 11012 tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc; 11013 } 11014 /* 11015 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one. 11016 * 11017 * tcp->tcp_tcp_hdr_len doesn't change here. 11018 */ 11019 tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH; 11020 tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len); 11021 tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len; 11022 11023 bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len); 11024 11025 tcp->tcp_ip6h->ip6_src = src; 11026 tcp->tcp_ip6h->ip6_dst = dst; 11027 11028 /* 11029 * If the hop limit was not set by ip_build_hdrs_v6(), set it to 11030 * the default value for TCP. 11031 */ 11032 if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS)) 11033 tcp->tcp_ip6h->ip6_hops = tcp_ipv6_hoplimit; 11034 11035 /* 11036 * If we're setting extension headers after a connection 11037 * has been established, and if we have a routing header 11038 * among the extension headers, call ip_massage_options_v6 to 11039 * manipulate the routing header/ip6_dst set the checksum 11040 * difference in the tcp header template. 11041 * (This happens in tcp_connect_ipv6 if the routing header 11042 * is set prior to the connect.) 11043 * Set the tcp_sum to zero first in case we've cleared a 11044 * routing header or don't have one at all. 11045 */ 11046 tcp->tcp_sum = 0; 11047 if ((tcp->tcp_state >= TCPS_SYN_SENT) && 11048 (tcp->tcp_ipp_fields & IPPF_RTHDR)) { 11049 ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h, 11050 (uint8_t *)tcp->tcp_tcph); 11051 if (rth != NULL) { 11052 tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, 11053 rth); 11054 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + 11055 (tcp->tcp_sum >> 16)); 11056 } 11057 } 11058 11059 /* Try to get everything in a single mblk */ 11060 (void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra); 11061 return (0); 11062 } 11063 11064 /* 11065 * Transfer any source route option from ipha to buf/dst in reversed form. 11066 */ 11067 static int 11068 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst) 11069 { 11070 ipoptp_t opts; 11071 uchar_t *opt; 11072 uint8_t optval; 11073 uint8_t optlen; 11074 uint32_t len = 0; 11075 11076 for (optval = ipoptp_first(&opts, ipha); 11077 optval != IPOPT_EOL; 11078 optval = ipoptp_next(&opts)) { 11079 opt = opts.ipoptp_cur; 11080 optlen = opts.ipoptp_len; 11081 switch (optval) { 11082 int off1, off2; 11083 case IPOPT_SSRR: 11084 case IPOPT_LSRR: 11085 11086 /* Reverse source route */ 11087 /* 11088 * First entry should be the next to last one in the 11089 * current source route (the last entry is our 11090 * address.) 11091 * The last entry should be the final destination. 11092 */ 11093 buf[IPOPT_OPTVAL] = (uint8_t)optval; 11094 buf[IPOPT_OLEN] = (uint8_t)optlen; 11095 off1 = IPOPT_MINOFF_SR - 1; 11096 off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1; 11097 if (off2 < 0) { 11098 /* No entries in source route */ 11099 break; 11100 } 11101 bcopy(opt + off2, dst, IP_ADDR_LEN); 11102 /* 11103 * Note: use src since ipha has not had its src 11104 * and dst reversed (it is in the state it was 11105 * received. 11106 */ 11107 bcopy(&ipha->ipha_src, buf + off2, 11108 IP_ADDR_LEN); 11109 off2 -= IP_ADDR_LEN; 11110 11111 while (off2 > 0) { 11112 bcopy(opt + off2, buf + off1, 11113 IP_ADDR_LEN); 11114 off1 += IP_ADDR_LEN; 11115 off2 -= IP_ADDR_LEN; 11116 } 11117 buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR; 11118 buf += optlen; 11119 len += optlen; 11120 break; 11121 } 11122 } 11123 done: 11124 /* Pad the resulting options */ 11125 while (len & 0x3) { 11126 *buf++ = IPOPT_EOL; 11127 len++; 11128 } 11129 return (len); 11130 } 11131 11132 11133 /* 11134 * Extract and revert a source route from ipha (if any) 11135 * and then update the relevant fields in both tcp_t and the standard header. 11136 */ 11137 static void 11138 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha) 11139 { 11140 char buf[TCP_MAX_HDR_LENGTH]; 11141 uint_t tcph_len; 11142 int len; 11143 11144 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION); 11145 len = IPH_HDR_LENGTH(ipha); 11146 if (len == IP_SIMPLE_HDR_LENGTH) 11147 /* Nothing to do */ 11148 return; 11149 if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH || 11150 (len & 0x3)) 11151 return; 11152 11153 tcph_len = tcp->tcp_tcp_hdr_len; 11154 bcopy(tcp->tcp_tcph, buf, tcph_len); 11155 tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) + 11156 (tcp->tcp_ipha->ipha_dst & 0xffff); 11157 len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha + 11158 IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst); 11159 len += IP_SIMPLE_HDR_LENGTH; 11160 tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) + 11161 (tcp->tcp_ipha->ipha_dst & 0xffff)); 11162 if ((int)tcp->tcp_sum < 0) 11163 tcp->tcp_sum--; 11164 tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16); 11165 tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16)); 11166 tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len); 11167 bcopy(buf, tcp->tcp_tcph, tcph_len); 11168 tcp->tcp_ip_hdr_len = len; 11169 tcp->tcp_ipha->ipha_version_and_hdr_length = 11170 (IP_VERSION << 4) | (len >> 2); 11171 len += tcph_len; 11172 tcp->tcp_hdr_len = len; 11173 } 11174 11175 /* 11176 * Copy the standard header into its new location, 11177 * lay in the new options and then update the relevant 11178 * fields in both tcp_t and the standard header. 11179 */ 11180 static int 11181 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len) 11182 { 11183 uint_t tcph_len; 11184 uint8_t *ip_optp; 11185 tcph_t *new_tcph; 11186 11187 if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3)) 11188 return (EINVAL); 11189 11190 if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len) 11191 return (EINVAL); 11192 11193 if (checkonly) { 11194 /* 11195 * do not really set, just pretend to - T_CHECK 11196 */ 11197 return (0); 11198 } 11199 11200 ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH; 11201 if (tcp->tcp_label_len > 0) { 11202 int padlen; 11203 uint8_t opt; 11204 11205 /* convert list termination to no-ops */ 11206 padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN]; 11207 ip_optp += ip_optp[IPOPT_OLEN]; 11208 opt = len > 0 ? IPOPT_NOP : IPOPT_EOL; 11209 while (--padlen >= 0) 11210 *ip_optp++ = opt; 11211 } 11212 tcph_len = tcp->tcp_tcp_hdr_len; 11213 new_tcph = (tcph_t *)(ip_optp + len); 11214 ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len); 11215 tcp->tcp_tcph = new_tcph; 11216 bcopy(ptr, ip_optp, len); 11217 11218 len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len; 11219 11220 tcp->tcp_ip_hdr_len = len; 11221 tcp->tcp_ipha->ipha_version_and_hdr_length = 11222 (IP_VERSION << 4) | (len >> 2); 11223 tcp->tcp_hdr_len = len + tcph_len; 11224 if (!TCP_IS_DETACHED(tcp)) { 11225 /* Always allocate room for all options. */ 11226 (void) mi_set_sth_wroff(tcp->tcp_rq, 11227 TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra); 11228 } 11229 return (0); 11230 } 11231 11232 /* Get callback routine passed to nd_load by tcp_param_register */ 11233 /* ARGSUSED */ 11234 static int 11235 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 11236 { 11237 tcpparam_t *tcppa = (tcpparam_t *)cp; 11238 11239 (void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val); 11240 return (0); 11241 } 11242 11243 /* 11244 * Walk through the param array specified registering each element with the 11245 * named dispatch handler. 11246 */ 11247 static boolean_t 11248 tcp_param_register(tcpparam_t *tcppa, int cnt) 11249 { 11250 for (; cnt-- > 0; tcppa++) { 11251 if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) { 11252 if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name, 11253 tcp_param_get, tcp_param_set, 11254 (caddr_t)tcppa)) { 11255 nd_free(&tcp_g_nd); 11256 return (B_FALSE); 11257 } 11258 } 11259 } 11260 if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name, 11261 tcp_param_get, tcp_param_set_aligned, 11262 (caddr_t)&tcp_wroff_xtra_param)) { 11263 nd_free(&tcp_g_nd); 11264 return (B_FALSE); 11265 } 11266 if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name, 11267 tcp_param_get, tcp_param_set_aligned, 11268 (caddr_t)&tcp_mdt_head_param)) { 11269 nd_free(&tcp_g_nd); 11270 return (B_FALSE); 11271 } 11272 if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name, 11273 tcp_param_get, tcp_param_set_aligned, 11274 (caddr_t)&tcp_mdt_tail_param)) { 11275 nd_free(&tcp_g_nd); 11276 return (B_FALSE); 11277 } 11278 if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name, 11279 tcp_param_get, tcp_param_set, 11280 (caddr_t)&tcp_mdt_max_pbufs_param)) { 11281 nd_free(&tcp_g_nd); 11282 return (B_FALSE); 11283 } 11284 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports", 11285 tcp_extra_priv_ports_get, NULL, NULL)) { 11286 nd_free(&tcp_g_nd); 11287 return (B_FALSE); 11288 } 11289 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add", 11290 NULL, tcp_extra_priv_ports_add, NULL)) { 11291 nd_free(&tcp_g_nd); 11292 return (B_FALSE); 11293 } 11294 if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del", 11295 NULL, tcp_extra_priv_ports_del, NULL)) { 11296 nd_free(&tcp_g_nd); 11297 return (B_FALSE); 11298 } 11299 if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL, 11300 NULL)) { 11301 nd_free(&tcp_g_nd); 11302 return (B_FALSE); 11303 } 11304 if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report, 11305 NULL, NULL)) { 11306 nd_free(&tcp_g_nd); 11307 return (B_FALSE); 11308 } 11309 if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report, 11310 NULL, NULL)) { 11311 nd_free(&tcp_g_nd); 11312 return (B_FALSE); 11313 } 11314 if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report, 11315 NULL, NULL)) { 11316 nd_free(&tcp_g_nd); 11317 return (B_FALSE); 11318 } 11319 if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report, 11320 NULL, NULL)) { 11321 nd_free(&tcp_g_nd); 11322 return (B_FALSE); 11323 } 11324 if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report, 11325 tcp_host_param_set, NULL)) { 11326 nd_free(&tcp_g_nd); 11327 return (B_FALSE); 11328 } 11329 if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report, 11330 tcp_host_param_set_ipv6, NULL)) { 11331 nd_free(&tcp_g_nd); 11332 return (B_FALSE); 11333 } 11334 if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set, 11335 NULL)) { 11336 nd_free(&tcp_g_nd); 11337 return (B_FALSE); 11338 } 11339 if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list", 11340 tcp_reserved_port_list, NULL, NULL)) { 11341 nd_free(&tcp_g_nd); 11342 return (B_FALSE); 11343 } 11344 /* 11345 * Dummy ndd variables - only to convey obsolescence information 11346 * through printing of their name (no get or set routines) 11347 * XXX Remove in future releases ? 11348 */ 11349 if (!nd_load(&tcp_g_nd, 11350 "tcp_close_wait_interval(obsoleted - " 11351 "use tcp_time_wait_interval)", NULL, NULL, NULL)) { 11352 nd_free(&tcp_g_nd); 11353 return (B_FALSE); 11354 } 11355 return (B_TRUE); 11356 } 11357 11358 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */ 11359 /* ARGSUSED */ 11360 static int 11361 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 11362 cred_t *cr) 11363 { 11364 long new_value; 11365 tcpparam_t *tcppa = (tcpparam_t *)cp; 11366 11367 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11368 new_value < tcppa->tcp_param_min || 11369 new_value > tcppa->tcp_param_max) { 11370 return (EINVAL); 11371 } 11372 /* 11373 * Need to make sure new_value is a multiple of 4. If it is not, 11374 * round it up. For future 64 bit requirement, we actually make it 11375 * a multiple of 8. 11376 */ 11377 if (new_value & 0x7) { 11378 new_value = (new_value & ~0x7) + 0x8; 11379 } 11380 tcppa->tcp_param_val = new_value; 11381 return (0); 11382 } 11383 11384 /* Set callback routine passed to nd_load by tcp_param_register */ 11385 /* ARGSUSED */ 11386 static int 11387 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 11388 { 11389 long new_value; 11390 tcpparam_t *tcppa = (tcpparam_t *)cp; 11391 11392 if (ddi_strtol(value, NULL, 10, &new_value) != 0 || 11393 new_value < tcppa->tcp_param_min || 11394 new_value > tcppa->tcp_param_max) { 11395 return (EINVAL); 11396 } 11397 tcppa->tcp_param_val = new_value; 11398 return (0); 11399 } 11400 11401 /* 11402 * Add a new piece to the tcp reassembly queue. If the gap at the beginning 11403 * is filled, return as much as we can. The message passed in may be 11404 * multi-part, chained using b_cont. "start" is the starting sequence 11405 * number for this piece. 11406 */ 11407 static mblk_t * 11408 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start) 11409 { 11410 uint32_t end; 11411 mblk_t *mp1; 11412 mblk_t *mp2; 11413 mblk_t *next_mp; 11414 uint32_t u1; 11415 11416 /* Walk through all the new pieces. */ 11417 do { 11418 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 11419 (uintptr_t)INT_MAX); 11420 end = start + (int)(mp->b_wptr - mp->b_rptr); 11421 next_mp = mp->b_cont; 11422 if (start == end) { 11423 /* Empty. Blast it. */ 11424 freeb(mp); 11425 continue; 11426 } 11427 mp->b_cont = NULL; 11428 TCP_REASS_SET_SEQ(mp, start); 11429 TCP_REASS_SET_END(mp, end); 11430 mp1 = tcp->tcp_reass_tail; 11431 if (!mp1) { 11432 tcp->tcp_reass_tail = mp; 11433 tcp->tcp_reass_head = mp; 11434 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11435 UPDATE_MIB(&tcp_mib, 11436 tcpInDataUnorderBytes, end - start); 11437 continue; 11438 } 11439 /* New stuff completely beyond tail? */ 11440 if (SEQ_GEQ(start, TCP_REASS_END(mp1))) { 11441 /* Link it on end. */ 11442 mp1->b_cont = mp; 11443 tcp->tcp_reass_tail = mp; 11444 BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs); 11445 UPDATE_MIB(&tcp_mib, 11446 tcpInDataUnorderBytes, end - start); 11447 continue; 11448 } 11449 mp1 = tcp->tcp_reass_head; 11450 u1 = TCP_REASS_SEQ(mp1); 11451 /* New stuff at the front? */ 11452 if (SEQ_LT(start, u1)) { 11453 /* Yes... Check for overlap. */ 11454 mp->b_cont = mp1; 11455 tcp->tcp_reass_head = mp; 11456 tcp_reass_elim_overlap(tcp, mp); 11457 continue; 11458 } 11459 /* 11460 * The new piece fits somewhere between the head and tail. 11461 * We find our slot, where mp1 precedes us and mp2 trails. 11462 */ 11463 for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) { 11464 u1 = TCP_REASS_SEQ(mp2); 11465 if (SEQ_LEQ(start, u1)) 11466 break; 11467 } 11468 /* Link ourselves in */ 11469 mp->b_cont = mp2; 11470 mp1->b_cont = mp; 11471 11472 /* Trim overlap with following mblk(s) first */ 11473 tcp_reass_elim_overlap(tcp, mp); 11474 11475 /* Trim overlap with preceding mblk */ 11476 tcp_reass_elim_overlap(tcp, mp1); 11477 11478 } while (start = end, mp = next_mp); 11479 mp1 = tcp->tcp_reass_head; 11480 /* Anything ready to go? */ 11481 if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt) 11482 return (NULL); 11483 /* Eat what we can off the queue */ 11484 for (;;) { 11485 mp = mp1->b_cont; 11486 end = TCP_REASS_END(mp1); 11487 TCP_REASS_SET_SEQ(mp1, 0); 11488 TCP_REASS_SET_END(mp1, 0); 11489 if (!mp) { 11490 tcp->tcp_reass_tail = NULL; 11491 break; 11492 } 11493 if (end != TCP_REASS_SEQ(mp)) { 11494 mp1->b_cont = NULL; 11495 break; 11496 } 11497 mp1 = mp; 11498 } 11499 mp1 = tcp->tcp_reass_head; 11500 tcp->tcp_reass_head = mp; 11501 return (mp1); 11502 } 11503 11504 /* Eliminate any overlap that mp may have over later mblks */ 11505 static void 11506 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp) 11507 { 11508 uint32_t end; 11509 mblk_t *mp1; 11510 uint32_t u1; 11511 11512 end = TCP_REASS_END(mp); 11513 while ((mp1 = mp->b_cont) != NULL) { 11514 u1 = TCP_REASS_SEQ(mp1); 11515 if (!SEQ_GT(end, u1)) 11516 break; 11517 if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) { 11518 mp->b_wptr -= end - u1; 11519 TCP_REASS_SET_END(mp, u1); 11520 BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs); 11521 UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1); 11522 break; 11523 } 11524 mp->b_cont = mp1->b_cont; 11525 TCP_REASS_SET_SEQ(mp1, 0); 11526 TCP_REASS_SET_END(mp1, 0); 11527 freeb(mp1); 11528 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 11529 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1); 11530 } 11531 if (!mp1) 11532 tcp->tcp_reass_tail = mp; 11533 } 11534 11535 /* 11536 * Send up all messages queued on tcp_rcv_list. 11537 */ 11538 static uint_t 11539 tcp_rcv_drain(queue_t *q, tcp_t *tcp) 11540 { 11541 mblk_t *mp; 11542 uint_t ret = 0; 11543 uint_t thwin; 11544 #ifdef DEBUG 11545 uint_t cnt = 0; 11546 #endif 11547 /* Can't drain on an eager connection */ 11548 if (tcp->tcp_listener != NULL) 11549 return (ret); 11550 11551 /* 11552 * Handle two cases here: we are currently fused or we were 11553 * previously fused and have some urgent data to be delivered 11554 * upstream. The latter happens because we either ran out of 11555 * memory or were detached and therefore sending the SIGURG was 11556 * deferred until this point. In either case we pass control 11557 * over to tcp_fuse_rcv_drain() since it may need to complete 11558 * some work. 11559 */ 11560 if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) { 11561 ASSERT(tcp->tcp_fused_sigurg_mp != NULL); 11562 if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL : 11563 &tcp->tcp_fused_sigurg_mp)) 11564 return (ret); 11565 } 11566 11567 while ((mp = tcp->tcp_rcv_list) != NULL) { 11568 tcp->tcp_rcv_list = mp->b_next; 11569 mp->b_next = NULL; 11570 #ifdef DEBUG 11571 cnt += msgdsize(mp); 11572 #endif 11573 /* Does this need SSL processing first? */ 11574 if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) { 11575 tcp_kssl_input(tcp, mp); 11576 continue; 11577 } 11578 putnext(q, mp); 11579 } 11580 ASSERT(cnt == tcp->tcp_rcv_cnt); 11581 tcp->tcp_rcv_last_head = NULL; 11582 tcp->tcp_rcv_last_tail = NULL; 11583 tcp->tcp_rcv_cnt = 0; 11584 11585 /* Learn the latest rwnd information that we sent to the other side. */ 11586 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 11587 << tcp->tcp_rcv_ws; 11588 /* This is peer's calculated send window (our receive window). */ 11589 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 11590 /* 11591 * Increase the receive window to max. But we need to do receiver 11592 * SWS avoidance. This means that we need to check the increase of 11593 * of receive window is at least 1 MSS. 11594 */ 11595 if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) { 11596 /* 11597 * If the window that the other side knows is less than max 11598 * deferred acks segments, send an update immediately. 11599 */ 11600 if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) { 11601 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 11602 ret = TH_ACK_NEEDED; 11603 } 11604 tcp->tcp_rwnd = q->q_hiwat; 11605 } 11606 /* No need for the push timer now. */ 11607 if (tcp->tcp_push_tid != 0) { 11608 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 11609 tcp->tcp_push_tid = 0; 11610 } 11611 return (ret); 11612 } 11613 11614 /* 11615 * Queue data on tcp_rcv_list which is a b_next chain. 11616 * tcp_rcv_last_head/tail is the last element of this chain. 11617 * Each element of the chain is a b_cont chain. 11618 * 11619 * M_DATA messages are added to the current element. 11620 * Other messages are added as new (b_next) elements. 11621 */ 11622 void 11623 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len) 11624 { 11625 ASSERT(seg_len == msgdsize(mp)); 11626 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL); 11627 11628 if (tcp->tcp_rcv_list == NULL) { 11629 ASSERT(tcp->tcp_rcv_last_head == NULL); 11630 tcp->tcp_rcv_list = mp; 11631 tcp->tcp_rcv_last_head = mp; 11632 } else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) { 11633 tcp->tcp_rcv_last_tail->b_cont = mp; 11634 } else { 11635 tcp->tcp_rcv_last_head->b_next = mp; 11636 tcp->tcp_rcv_last_head = mp; 11637 } 11638 11639 while (mp->b_cont) 11640 mp = mp->b_cont; 11641 11642 tcp->tcp_rcv_last_tail = mp; 11643 tcp->tcp_rcv_cnt += seg_len; 11644 tcp->tcp_rwnd -= seg_len; 11645 } 11646 11647 /* 11648 * DEFAULT TCP ENTRY POINT via squeue on READ side. 11649 * 11650 * This is the default entry function into TCP on the read side. TCP is 11651 * always entered via squeue i.e. using squeue's for mutual exclusion. 11652 * When classifier does a lookup to find the tcp, it also puts a reference 11653 * on the conn structure associated so the tcp is guaranteed to exist 11654 * when we come here. We still need to check the state because it might 11655 * as well has been closed. The squeue processing function i.e. squeue_enter, 11656 * squeue_enter_nodrain, or squeue_drain is responsible for doing the 11657 * CONN_DEC_REF. 11658 * 11659 * Apart from the default entry point, IP also sends packets directly to 11660 * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming 11661 * connections. 11662 */ 11663 void 11664 tcp_input(void *arg, mblk_t *mp, void *arg2) 11665 { 11666 conn_t *connp = (conn_t *)arg; 11667 tcp_t *tcp = (tcp_t *)connp->conn_tcp; 11668 11669 /* arg2 is the sqp */ 11670 ASSERT(arg2 != NULL); 11671 ASSERT(mp != NULL); 11672 11673 /* 11674 * Don't accept any input on a closed tcp as this TCP logically does 11675 * not exist on the system. Don't proceed further with this TCP. 11676 * For eg. this packet could trigger another close of this tcp 11677 * which would be disastrous for tcp_refcnt. tcp_close_detached / 11678 * tcp_clean_death / tcp_closei_local must be called at most once 11679 * on a TCP. In this case we need to refeed the packet into the 11680 * classifier and figure out where the packet should go. Need to 11681 * preserve the recv_ill somehow. Until we figure that out, for 11682 * now just drop the packet if we can't classify the packet. 11683 */ 11684 if (tcp->tcp_state == TCPS_CLOSED || 11685 tcp->tcp_state == TCPS_BOUND) { 11686 conn_t *new_connp; 11687 11688 new_connp = ipcl_classify(mp, connp->conn_zoneid); 11689 if (new_connp != NULL) { 11690 tcp_reinput(new_connp, mp, arg2); 11691 return; 11692 } 11693 /* We failed to classify. For now just drop the packet */ 11694 freemsg(mp); 11695 return; 11696 } 11697 11698 if (DB_TYPE(mp) == M_DATA) 11699 tcp_rput_data(connp, mp, arg2); 11700 else 11701 tcp_rput_common(tcp, mp); 11702 } 11703 11704 /* 11705 * The read side put procedure. 11706 * The packets passed up by ip are assume to be aligned according to 11707 * OK_32PTR and the IP+TCP headers fitting in the first mblk. 11708 */ 11709 static void 11710 tcp_rput_common(tcp_t *tcp, mblk_t *mp) 11711 { 11712 /* 11713 * tcp_rput_data() does not expect M_CTL except for the case 11714 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO 11715 * type. Need to make sure that any other M_CTLs don't make 11716 * it to tcp_rput_data since it is not expecting any and doesn't 11717 * check for it. 11718 */ 11719 if (DB_TYPE(mp) == M_CTL) { 11720 switch (*(uint32_t *)(mp->b_rptr)) { 11721 case TCP_IOC_ABORT_CONN: 11722 /* 11723 * Handle connection abort request. 11724 */ 11725 tcp_ioctl_abort_handler(tcp, mp); 11726 return; 11727 case IPSEC_IN: 11728 /* 11729 * Only secure icmp arrive in TCP and they 11730 * don't go through data path. 11731 */ 11732 tcp_icmp_error(tcp, mp); 11733 return; 11734 case IN_PKTINFO: 11735 /* 11736 * Handle IPV6_RECVPKTINFO socket option on AF_INET6 11737 * sockets that are receiving IPv4 traffic. tcp 11738 */ 11739 ASSERT(tcp->tcp_family == AF_INET6); 11740 ASSERT(tcp->tcp_ipv6_recvancillary & 11741 TCP_IPV6_RECVPKTINFO); 11742 tcp_rput_data(tcp->tcp_connp, mp, 11743 tcp->tcp_connp->conn_sqp); 11744 return; 11745 case MDT_IOC_INFO_UPDATE: 11746 /* 11747 * Handle Multidata information update; the 11748 * following routine will free the message. 11749 */ 11750 if (tcp->tcp_connp->conn_mdt_ok) { 11751 tcp_mdt_update(tcp, 11752 &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab, 11753 B_FALSE); 11754 } 11755 freemsg(mp); 11756 return; 11757 case LSO_IOC_INFO_UPDATE: 11758 /* 11759 * Handle LSO information update; the following 11760 * routine will free the message. 11761 */ 11762 if (tcp->tcp_connp->conn_lso_ok) { 11763 tcp_lso_update(tcp, 11764 &((ip_lso_info_t *)mp->b_rptr)->lso_capab); 11765 } 11766 freemsg(mp); 11767 return; 11768 default: 11769 /* 11770 * tcp_icmp_err() will process the M_CTL packets. 11771 * Non-ICMP packets, if any, will be discarded in 11772 * tcp_icmp_err(). We will process the ICMP packet 11773 * even if we are TCP_IS_DETACHED_NONEAGER as the 11774 * incoming ICMP packet may result in changing 11775 * the tcp_mss, which we would need if we have 11776 * packets to retransmit. 11777 */ 11778 tcp_icmp_error(tcp, mp); 11779 return; 11780 } 11781 } 11782 11783 /* No point processing the message if tcp is already closed */ 11784 if (TCP_IS_DETACHED_NONEAGER(tcp)) { 11785 freemsg(mp); 11786 return; 11787 } 11788 11789 tcp_rput_other(tcp, mp); 11790 } 11791 11792 11793 /* The minimum of smoothed mean deviation in RTO calculation. */ 11794 #define TCP_SD_MIN 400 11795 11796 /* 11797 * Set RTO for this connection. The formula is from Jacobson and Karels' 11798 * "Congestion Avoidance and Control" in SIGCOMM '88. The variable names 11799 * are the same as those in Appendix A.2 of that paper. 11800 * 11801 * m = new measurement 11802 * sa = smoothed RTT average (8 * average estimates). 11803 * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates). 11804 */ 11805 static void 11806 tcp_set_rto(tcp_t *tcp, clock_t rtt) 11807 { 11808 long m = TICK_TO_MSEC(rtt); 11809 clock_t sa = tcp->tcp_rtt_sa; 11810 clock_t sv = tcp->tcp_rtt_sd; 11811 clock_t rto; 11812 11813 BUMP_MIB(&tcp_mib, tcpRttUpdate); 11814 tcp->tcp_rtt_update++; 11815 11816 /* tcp_rtt_sa is not 0 means this is a new sample. */ 11817 if (sa != 0) { 11818 /* 11819 * Update average estimator: 11820 * new rtt = 7/8 old rtt + 1/8 Error 11821 */ 11822 11823 /* m is now Error in estimate. */ 11824 m -= sa >> 3; 11825 if ((sa += m) <= 0) { 11826 /* 11827 * Don't allow the smoothed average to be negative. 11828 * We use 0 to denote reinitialization of the 11829 * variables. 11830 */ 11831 sa = 1; 11832 } 11833 11834 /* 11835 * Update deviation estimator: 11836 * new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev) 11837 */ 11838 if (m < 0) 11839 m = -m; 11840 m -= sv >> 2; 11841 sv += m; 11842 } else { 11843 /* 11844 * This follows BSD's implementation. So the reinitialized 11845 * RTO is 3 * m. We cannot go less than 2 because if the 11846 * link is bandwidth dominated, doubling the window size 11847 * during slow start means doubling the RTT. We want to be 11848 * more conservative when we reinitialize our estimates. 3 11849 * is just a convenient number. 11850 */ 11851 sa = m << 3; 11852 sv = m << 1; 11853 } 11854 if (sv < TCP_SD_MIN) { 11855 /* 11856 * We do not know that if sa captures the delay ACK 11857 * effect as in a long train of segments, a receiver 11858 * does not delay its ACKs. So set the minimum of sv 11859 * to be TCP_SD_MIN, which is default to 400 ms, twice 11860 * of BSD DATO. That means the minimum of mean 11861 * deviation is 100 ms. 11862 * 11863 */ 11864 sv = TCP_SD_MIN; 11865 } 11866 tcp->tcp_rtt_sa = sa; 11867 tcp->tcp_rtt_sd = sv; 11868 /* 11869 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv) 11870 * 11871 * Add tcp_rexmit_interval extra in case of extreme environment 11872 * where the algorithm fails to work. The default value of 11873 * tcp_rexmit_interval_extra should be 0. 11874 * 11875 * As we use a finer grained clock than BSD and update 11876 * RTO for every ACKs, add in another .25 of RTT to the 11877 * deviation of RTO to accomodate burstiness of 1/4 of 11878 * window size. 11879 */ 11880 rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5); 11881 11882 if (rto > tcp_rexmit_interval_max) { 11883 tcp->tcp_rto = tcp_rexmit_interval_max; 11884 } else if (rto < tcp_rexmit_interval_min) { 11885 tcp->tcp_rto = tcp_rexmit_interval_min; 11886 } else { 11887 tcp->tcp_rto = rto; 11888 } 11889 11890 /* Now, we can reset tcp_timer_backoff to use the new RTO... */ 11891 tcp->tcp_timer_backoff = 0; 11892 } 11893 11894 /* 11895 * tcp_get_seg_mp() is called to get the pointer to a segment in the 11896 * send queue which starts at the given seq. no. 11897 * 11898 * Parameters: 11899 * tcp_t *tcp: the tcp instance pointer. 11900 * uint32_t seq: the starting seq. no of the requested segment. 11901 * int32_t *off: after the execution, *off will be the offset to 11902 * the returned mblk which points to the requested seq no. 11903 * It is the caller's responsibility to send in a non-null off. 11904 * 11905 * Return: 11906 * A mblk_t pointer pointing to the requested segment in send queue. 11907 */ 11908 static mblk_t * 11909 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off) 11910 { 11911 int32_t cnt; 11912 mblk_t *mp; 11913 11914 /* Defensive coding. Make sure we don't send incorrect data. */ 11915 if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt)) 11916 return (NULL); 11917 11918 cnt = seq - tcp->tcp_suna; 11919 mp = tcp->tcp_xmit_head; 11920 while (cnt > 0 && mp != NULL) { 11921 cnt -= mp->b_wptr - mp->b_rptr; 11922 if (cnt < 0) { 11923 cnt += mp->b_wptr - mp->b_rptr; 11924 break; 11925 } 11926 mp = mp->b_cont; 11927 } 11928 ASSERT(mp != NULL); 11929 *off = cnt; 11930 return (mp); 11931 } 11932 11933 /* 11934 * This function handles all retransmissions if SACK is enabled for this 11935 * connection. First it calculates how many segments can be retransmitted 11936 * based on tcp_pipe. Then it goes thru the notsack list to find eligible 11937 * segments. A segment is eligible if sack_cnt for that segment is greater 11938 * than or equal tcp_dupack_fast_retransmit. After it has retransmitted 11939 * all eligible segments, it checks to see if TCP can send some new segments 11940 * (fast recovery). If it can, set the appropriate flag for tcp_rput_data(). 11941 * 11942 * Parameters: 11943 * tcp_t *tcp: the tcp structure of the connection. 11944 * uint_t *flags: in return, appropriate value will be set for 11945 * tcp_rput_data(). 11946 */ 11947 static void 11948 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags) 11949 { 11950 notsack_blk_t *notsack_blk; 11951 int32_t usable_swnd; 11952 int32_t mss; 11953 uint32_t seg_len; 11954 mblk_t *xmit_mp; 11955 11956 ASSERT(tcp->tcp_sack_info != NULL); 11957 ASSERT(tcp->tcp_notsack_list != NULL); 11958 ASSERT(tcp->tcp_rexmit == B_FALSE); 11959 11960 /* Defensive coding in case there is a bug... */ 11961 if (tcp->tcp_notsack_list == NULL) { 11962 return; 11963 } 11964 notsack_blk = tcp->tcp_notsack_list; 11965 mss = tcp->tcp_mss; 11966 11967 /* 11968 * Limit the num of outstanding data in the network to be 11969 * tcp_cwnd_ssthresh, which is half of the original congestion wnd. 11970 */ 11971 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 11972 11973 /* At least retransmit 1 MSS of data. */ 11974 if (usable_swnd <= 0) { 11975 usable_swnd = mss; 11976 } 11977 11978 /* Make sure no new RTT samples will be taken. */ 11979 tcp->tcp_csuna = tcp->tcp_snxt; 11980 11981 notsack_blk = tcp->tcp_notsack_list; 11982 while (usable_swnd > 0) { 11983 mblk_t *snxt_mp, *tmp_mp; 11984 tcp_seq begin = tcp->tcp_sack_snxt; 11985 tcp_seq end; 11986 int32_t off; 11987 11988 for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) { 11989 if (SEQ_GT(notsack_blk->end, begin) && 11990 (notsack_blk->sack_cnt >= 11991 tcp_dupack_fast_retransmit)) { 11992 end = notsack_blk->end; 11993 if (SEQ_LT(begin, notsack_blk->begin)) { 11994 begin = notsack_blk->begin; 11995 } 11996 break; 11997 } 11998 } 11999 /* 12000 * All holes are filled. Manipulate tcp_cwnd to send more 12001 * if we can. Note that after the SACK recovery, tcp_cwnd is 12002 * set to tcp_cwnd_ssthresh. 12003 */ 12004 if (notsack_blk == NULL) { 12005 usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe; 12006 if (usable_swnd <= 0 || tcp->tcp_unsent == 0) { 12007 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna; 12008 ASSERT(tcp->tcp_cwnd > 0); 12009 return; 12010 } else { 12011 usable_swnd = usable_swnd / mss; 12012 tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna + 12013 MAX(usable_swnd * mss, mss); 12014 *flags |= TH_XMIT_NEEDED; 12015 return; 12016 } 12017 } 12018 12019 /* 12020 * Note that we may send more than usable_swnd allows here 12021 * because of round off, but no more than 1 MSS of data. 12022 */ 12023 seg_len = end - begin; 12024 if (seg_len > mss) 12025 seg_len = mss; 12026 snxt_mp = tcp_get_seg_mp(tcp, begin, &off); 12027 ASSERT(snxt_mp != NULL); 12028 /* This should not happen. Defensive coding again... */ 12029 if (snxt_mp == NULL) { 12030 return; 12031 } 12032 12033 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off, 12034 &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE); 12035 if (xmit_mp == NULL) 12036 return; 12037 12038 usable_swnd -= seg_len; 12039 tcp->tcp_pipe += seg_len; 12040 tcp->tcp_sack_snxt = begin + seg_len; 12041 TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT); 12042 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12043 12044 /* 12045 * Update the send timestamp to avoid false retransmission. 12046 */ 12047 snxt_mp->b_prev = (mblk_t *)lbolt; 12048 12049 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12050 UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len); 12051 BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs); 12052 /* 12053 * Update tcp_rexmit_max to extend this SACK recovery phase. 12054 * This happens when new data sent during fast recovery is 12055 * also lost. If TCP retransmits those new data, it needs 12056 * to extend SACK recover phase to avoid starting another 12057 * fast retransmit/recovery unnecessarily. 12058 */ 12059 if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) { 12060 tcp->tcp_rexmit_max = tcp->tcp_sack_snxt; 12061 } 12062 } 12063 } 12064 12065 /* 12066 * This function handles policy checking at TCP level for non-hard_bound/ 12067 * detached connections. 12068 */ 12069 static boolean_t 12070 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h, 12071 boolean_t secure, boolean_t mctl_present) 12072 { 12073 ipsec_latch_t *ipl = NULL; 12074 ipsec_action_t *act = NULL; 12075 mblk_t *data_mp; 12076 ipsec_in_t *ii; 12077 const char *reason; 12078 kstat_named_t *counter; 12079 12080 ASSERT(mctl_present || !secure); 12081 12082 ASSERT((ipha == NULL && ip6h != NULL) || 12083 (ip6h == NULL && ipha != NULL)); 12084 12085 /* 12086 * We don't necessarily have an ipsec_in_act action to verify 12087 * policy because of assymetrical policy where we have only 12088 * outbound policy and no inbound policy (possible with global 12089 * policy). 12090 */ 12091 if (!secure) { 12092 if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS || 12093 act->ipa_act.ipa_type == IPSEC_ACT_CLEAR) 12094 return (B_TRUE); 12095 ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH, 12096 "tcp_check_policy", ipha, ip6h, secure); 12097 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12098 &ipdrops_tcp_clear, &tcp_dropper); 12099 return (B_FALSE); 12100 } 12101 12102 /* 12103 * We have a secure packet. 12104 */ 12105 if (act == NULL) { 12106 ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED, 12107 "tcp_check_policy", ipha, ip6h, secure); 12108 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, 12109 &ipdrops_tcp_secure, &tcp_dropper); 12110 return (B_FALSE); 12111 } 12112 12113 /* 12114 * XXX This whole routine is currently incorrect. ipl should 12115 * be set to the latch pointer, but is currently not set, so 12116 * we initialize it to NULL to avoid picking up random garbage. 12117 */ 12118 if (ipl == NULL) 12119 return (B_TRUE); 12120 12121 data_mp = first_mp->b_cont; 12122 12123 ii = (ipsec_in_t *)first_mp->b_rptr; 12124 12125 if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason, 12126 &counter, tcp->tcp_connp)) { 12127 BUMP_MIB(&ip_mib, ipsecInSucceeded); 12128 return (B_TRUE); 12129 } 12130 (void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE, 12131 "tcp inbound policy mismatch: %s, packet dropped\n", 12132 reason); 12133 BUMP_MIB(&ip_mib, ipsecInFailed); 12134 12135 ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper); 12136 return (B_FALSE); 12137 } 12138 12139 /* 12140 * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start 12141 * retransmission after a timeout. 12142 * 12143 * To limit the number of duplicate segments, we limit the number of segment 12144 * to be sent in one time to tcp_snd_burst, the burst variable. 12145 */ 12146 static void 12147 tcp_ss_rexmit(tcp_t *tcp) 12148 { 12149 uint32_t snxt; 12150 uint32_t smax; 12151 int32_t win; 12152 int32_t mss; 12153 int32_t off; 12154 int32_t burst = tcp->tcp_snd_burst; 12155 mblk_t *snxt_mp; 12156 12157 /* 12158 * Note that tcp_rexmit can be set even though TCP has retransmitted 12159 * all unack'ed segments. 12160 */ 12161 if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) { 12162 smax = tcp->tcp_rexmit_max; 12163 snxt = tcp->tcp_rexmit_nxt; 12164 if (SEQ_LT(snxt, tcp->tcp_suna)) { 12165 snxt = tcp->tcp_suna; 12166 } 12167 win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd); 12168 win -= snxt - tcp->tcp_suna; 12169 mss = tcp->tcp_mss; 12170 snxt_mp = tcp_get_seg_mp(tcp, snxt, &off); 12171 12172 while (SEQ_LT(snxt, smax) && (win > 0) && 12173 (burst > 0) && (snxt_mp != NULL)) { 12174 mblk_t *xmit_mp; 12175 mblk_t *old_snxt_mp = snxt_mp; 12176 uint32_t cnt = mss; 12177 12178 if (win < cnt) { 12179 cnt = win; 12180 } 12181 if (SEQ_GT(snxt + cnt, smax)) { 12182 cnt = smax - snxt; 12183 } 12184 xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off, 12185 &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE); 12186 if (xmit_mp == NULL) 12187 return; 12188 12189 tcp_send_data(tcp, tcp->tcp_wq, xmit_mp); 12190 12191 snxt += cnt; 12192 win -= cnt; 12193 /* 12194 * Update the send timestamp to avoid false 12195 * retransmission. 12196 */ 12197 old_snxt_mp->b_prev = (mblk_t *)lbolt; 12198 BUMP_MIB(&tcp_mib, tcpRetransSegs); 12199 UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt); 12200 12201 tcp->tcp_rexmit_nxt = snxt; 12202 burst--; 12203 } 12204 /* 12205 * If we have transmitted all we have at the time 12206 * we started the retranmission, we can leave 12207 * the rest of the job to tcp_wput_data(). But we 12208 * need to check the send window first. If the 12209 * win is not 0, go on with tcp_wput_data(). 12210 */ 12211 if (SEQ_LT(snxt, smax) || win == 0) { 12212 return; 12213 } 12214 } 12215 /* Only call tcp_wput_data() if there is data to be sent. */ 12216 if (tcp->tcp_unsent) { 12217 tcp_wput_data(tcp, NULL, B_FALSE); 12218 } 12219 } 12220 12221 /* 12222 * Process all TCP option in SYN segment. Note that this function should 12223 * be called after tcp_adapt_ire() is called so that the necessary info 12224 * from IRE is already set in the tcp structure. 12225 * 12226 * This function sets up the correct tcp_mss value according to the 12227 * MSS option value and our header size. It also sets up the window scale 12228 * and timestamp values, and initialize SACK info blocks. But it does not 12229 * change receive window size after setting the tcp_mss value. The caller 12230 * should do the appropriate change. 12231 */ 12232 void 12233 tcp_process_options(tcp_t *tcp, tcph_t *tcph) 12234 { 12235 int options; 12236 tcp_opt_t tcpopt; 12237 uint32_t mss_max; 12238 char *tmp_tcph; 12239 12240 tcpopt.tcp = NULL; 12241 options = tcp_parse_options(tcph, &tcpopt); 12242 12243 /* 12244 * Process MSS option. Note that MSS option value does not account 12245 * for IP or TCP options. This means that it is equal to MTU - minimum 12246 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for 12247 * IPv6. 12248 */ 12249 if (!(options & TCP_OPT_MSS_PRESENT)) { 12250 if (tcp->tcp_ipversion == IPV4_VERSION) 12251 tcpopt.tcp_opt_mss = tcp_mss_def_ipv4; 12252 else 12253 tcpopt.tcp_opt_mss = tcp_mss_def_ipv6; 12254 } else { 12255 if (tcp->tcp_ipversion == IPV4_VERSION) 12256 mss_max = tcp_mss_max_ipv4; 12257 else 12258 mss_max = tcp_mss_max_ipv6; 12259 if (tcpopt.tcp_opt_mss < tcp_mss_min) 12260 tcpopt.tcp_opt_mss = tcp_mss_min; 12261 else if (tcpopt.tcp_opt_mss > mss_max) 12262 tcpopt.tcp_opt_mss = mss_max; 12263 } 12264 12265 /* Process Window Scale option. */ 12266 if (options & TCP_OPT_WSCALE_PRESENT) { 12267 tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale; 12268 tcp->tcp_snd_ws_ok = B_TRUE; 12269 } else { 12270 tcp->tcp_snd_ws = B_FALSE; 12271 tcp->tcp_snd_ws_ok = B_FALSE; 12272 tcp->tcp_rcv_ws = B_FALSE; 12273 } 12274 12275 /* Process Timestamp option. */ 12276 if ((options & TCP_OPT_TSTAMP_PRESENT) && 12277 (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) { 12278 tmp_tcph = (char *)tcp->tcp_tcph; 12279 12280 tcp->tcp_snd_ts_ok = B_TRUE; 12281 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 12282 tcp->tcp_last_rcv_lbolt = lbolt64; 12283 ASSERT(OK_32PTR(tmp_tcph)); 12284 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 12285 12286 /* Fill in our template header with basic timestamp option. */ 12287 tmp_tcph += tcp->tcp_tcp_hdr_len; 12288 tmp_tcph[0] = TCPOPT_NOP; 12289 tmp_tcph[1] = TCPOPT_NOP; 12290 tmp_tcph[2] = TCPOPT_TSTAMP; 12291 tmp_tcph[3] = TCPOPT_TSTAMP_LEN; 12292 tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12293 tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN; 12294 tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4); 12295 } else { 12296 tcp->tcp_snd_ts_ok = B_FALSE; 12297 } 12298 12299 /* 12300 * Process SACK options. If SACK is enabled for this connection, 12301 * then allocate the SACK info structure. Note the following ways 12302 * when tcp_snd_sack_ok is set to true. 12303 * 12304 * For active connection: in tcp_adapt_ire() called in 12305 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted 12306 * is checked. 12307 * 12308 * For passive connection: in tcp_adapt_ire() called in 12309 * tcp_accept_comm(). 12310 * 12311 * That's the reason why the extra TCP_IS_DETACHED() check is there. 12312 * That check makes sure that if we did not send a SACK OK option, 12313 * we will not enable SACK for this connection even though the other 12314 * side sends us SACK OK option. For active connection, the SACK 12315 * info structure has already been allocated. So we need to free 12316 * it if SACK is disabled. 12317 */ 12318 if ((options & TCP_OPT_SACK_OK_PRESENT) && 12319 (tcp->tcp_snd_sack_ok || 12320 (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) { 12321 /* This should be true only in the passive case. */ 12322 if (tcp->tcp_sack_info == NULL) { 12323 ASSERT(TCP_IS_DETACHED(tcp)); 12324 tcp->tcp_sack_info = 12325 kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP); 12326 } 12327 if (tcp->tcp_sack_info == NULL) { 12328 tcp->tcp_snd_sack_ok = B_FALSE; 12329 } else { 12330 tcp->tcp_snd_sack_ok = B_TRUE; 12331 if (tcp->tcp_snd_ts_ok) { 12332 tcp->tcp_max_sack_blk = 3; 12333 } else { 12334 tcp->tcp_max_sack_blk = 4; 12335 } 12336 } 12337 } else { 12338 /* 12339 * Resetting tcp_snd_sack_ok to B_FALSE so that 12340 * no SACK info will be used for this 12341 * connection. This assumes that SACK usage 12342 * permission is negotiated. This may need 12343 * to be changed once this is clarified. 12344 */ 12345 if (tcp->tcp_sack_info != NULL) { 12346 ASSERT(tcp->tcp_notsack_list == NULL); 12347 kmem_cache_free(tcp_sack_info_cache, 12348 tcp->tcp_sack_info); 12349 tcp->tcp_sack_info = NULL; 12350 } 12351 tcp->tcp_snd_sack_ok = B_FALSE; 12352 } 12353 12354 /* 12355 * Now we know the exact TCP/IP header length, subtract 12356 * that from tcp_mss to get our side's MSS. 12357 */ 12358 tcp->tcp_mss -= tcp->tcp_hdr_len; 12359 /* 12360 * Here we assume that the other side's header size will be equal to 12361 * our header size. We calculate the real MSS accordingly. Need to 12362 * take into additional stuffs IPsec puts in. 12363 * 12364 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header) 12365 */ 12366 tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead - 12367 ((tcp->tcp_ipversion == IPV4_VERSION ? 12368 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH); 12369 12370 /* 12371 * Set MSS to the smaller one of both ends of the connection. 12372 * We should not have called tcp_mss_set() before, but our 12373 * side of the MSS should have been set to a proper value 12374 * by tcp_adapt_ire(). tcp_mss_set() will also set up the 12375 * STREAM head parameters properly. 12376 * 12377 * If we have a larger-than-16-bit window but the other side 12378 * didn't want to do window scale, tcp_rwnd_set() will take 12379 * care of that. 12380 */ 12381 tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss)); 12382 } 12383 12384 /* 12385 * Sends the T_CONN_IND to the listener. The caller calls this 12386 * functions via squeue to get inside the listener's perimeter 12387 * once the 3 way hand shake is done a T_CONN_IND needs to be 12388 * sent. As an optimization, the caller can call this directly 12389 * if listener's perimeter is same as eager's. 12390 */ 12391 /* ARGSUSED */ 12392 void 12393 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2) 12394 { 12395 conn_t *lconnp = (conn_t *)arg; 12396 tcp_t *listener = lconnp->conn_tcp; 12397 tcp_t *tcp; 12398 struct T_conn_ind *conn_ind; 12399 ipaddr_t *addr_cache; 12400 boolean_t need_send_conn_ind = B_FALSE; 12401 12402 /* retrieve the eager */ 12403 conn_ind = (struct T_conn_ind *)mp->b_rptr; 12404 ASSERT(conn_ind->OPT_offset != 0 && 12405 conn_ind->OPT_length == sizeof (intptr_t)); 12406 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 12407 conn_ind->OPT_length); 12408 12409 /* 12410 * TLI/XTI applications will get confused by 12411 * sending eager as an option since it violates 12412 * the option semantics. So remove the eager as 12413 * option since TLI/XTI app doesn't need it anyway. 12414 */ 12415 if (!TCP_IS_SOCKET(listener)) { 12416 conn_ind->OPT_length = 0; 12417 conn_ind->OPT_offset = 0; 12418 } 12419 if (listener->tcp_state == TCPS_CLOSED || 12420 TCP_IS_DETACHED(listener)) { 12421 /* 12422 * If listener has closed, it would have caused a 12423 * a cleanup/blowoff to happen for the eager. We 12424 * just need to return. 12425 */ 12426 freemsg(mp); 12427 return; 12428 } 12429 12430 12431 /* 12432 * if the conn_req_q is full defer passing up the 12433 * T_CONN_IND until space is availabe after t_accept() 12434 * processing 12435 */ 12436 mutex_enter(&listener->tcp_eager_lock); 12437 12438 /* 12439 * Take the eager out, if it is in the list of droppable eagers 12440 * as we are here because the 3W handshake is over. 12441 */ 12442 MAKE_UNDROPPABLE(tcp); 12443 12444 if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) { 12445 tcp_t *tail; 12446 12447 /* 12448 * The eager already has an extra ref put in tcp_rput_data 12449 * so that it stays till accept comes back even though it 12450 * might get into TCPS_CLOSED as a result of a TH_RST etc. 12451 */ 12452 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 12453 listener->tcp_conn_req_cnt_q0--; 12454 listener->tcp_conn_req_cnt_q++; 12455 12456 /* Move from SYN_RCVD to ESTABLISHED list */ 12457 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12458 tcp->tcp_eager_prev_q0; 12459 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12460 tcp->tcp_eager_next_q0; 12461 tcp->tcp_eager_prev_q0 = NULL; 12462 tcp->tcp_eager_next_q0 = NULL; 12463 12464 /* 12465 * Insert at end of the queue because sockfs 12466 * sends down T_CONN_RES in chronological 12467 * order. Leaving the older conn indications 12468 * at front of the queue helps reducing search 12469 * time. 12470 */ 12471 tail = listener->tcp_eager_last_q; 12472 if (tail != NULL) 12473 tail->tcp_eager_next_q = tcp; 12474 else 12475 listener->tcp_eager_next_q = tcp; 12476 listener->tcp_eager_last_q = tcp; 12477 tcp->tcp_eager_next_q = NULL; 12478 /* 12479 * Delay sending up the T_conn_ind until we are 12480 * done with the eager. Once we have have sent up 12481 * the T_conn_ind, the accept can potentially complete 12482 * any time and release the refhold we have on the eager. 12483 */ 12484 need_send_conn_ind = B_TRUE; 12485 } else { 12486 /* 12487 * Defer connection on q0 and set deferred 12488 * connection bit true 12489 */ 12490 tcp->tcp_conn_def_q0 = B_TRUE; 12491 12492 /* take tcp out of q0 ... */ 12493 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 12494 tcp->tcp_eager_next_q0; 12495 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 12496 tcp->tcp_eager_prev_q0; 12497 12498 /* ... and place it at the end of q0 */ 12499 tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0; 12500 tcp->tcp_eager_next_q0 = listener; 12501 listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp; 12502 listener->tcp_eager_prev_q0 = tcp; 12503 tcp->tcp_conn.tcp_eager_conn_ind = mp; 12504 } 12505 12506 /* we have timed out before */ 12507 if (tcp->tcp_syn_rcvd_timeout != 0) { 12508 tcp->tcp_syn_rcvd_timeout = 0; 12509 listener->tcp_syn_rcvd_timeout--; 12510 if (listener->tcp_syn_defense && 12511 listener->tcp_syn_rcvd_timeout <= 12512 (tcp_conn_req_max_q0 >> 5) && 12513 10*MINUTES < TICK_TO_MSEC(lbolt64 - 12514 listener->tcp_last_rcv_lbolt)) { 12515 /* 12516 * Turn off the defense mode if we 12517 * believe the SYN attack is over. 12518 */ 12519 listener->tcp_syn_defense = B_FALSE; 12520 if (listener->tcp_ip_addr_cache) { 12521 kmem_free((void *)listener->tcp_ip_addr_cache, 12522 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 12523 listener->tcp_ip_addr_cache = NULL; 12524 } 12525 } 12526 } 12527 addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache); 12528 if (addr_cache != NULL) { 12529 /* 12530 * We have finished a 3-way handshake with this 12531 * remote host. This proves the IP addr is good. 12532 * Cache it! 12533 */ 12534 addr_cache[IP_ADDR_CACHE_HASH( 12535 tcp->tcp_remote)] = tcp->tcp_remote; 12536 } 12537 mutex_exit(&listener->tcp_eager_lock); 12538 if (need_send_conn_ind) 12539 putnext(listener->tcp_rq, mp); 12540 } 12541 12542 mblk_t * 12543 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp, 12544 uint_t *ifindexp, ip6_pkt_t *ippp) 12545 { 12546 ip_pktinfo_t *pinfo; 12547 ip6_t *ip6h; 12548 uchar_t *rptr; 12549 mblk_t *first_mp = mp; 12550 boolean_t mctl_present = B_FALSE; 12551 uint_t ifindex = 0; 12552 ip6_pkt_t ipp; 12553 uint_t ipvers; 12554 uint_t ip_hdr_len; 12555 12556 rptr = mp->b_rptr; 12557 ASSERT(OK_32PTR(rptr)); 12558 ASSERT(tcp != NULL); 12559 ipp.ipp_fields = 0; 12560 12561 switch DB_TYPE(mp) { 12562 case M_CTL: 12563 mp = mp->b_cont; 12564 if (mp == NULL) { 12565 freemsg(first_mp); 12566 return (NULL); 12567 } 12568 if (DB_TYPE(mp) != M_DATA) { 12569 freemsg(first_mp); 12570 return (NULL); 12571 } 12572 mctl_present = B_TRUE; 12573 break; 12574 case M_DATA: 12575 break; 12576 default: 12577 cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type"); 12578 freemsg(mp); 12579 return (NULL); 12580 } 12581 ipvers = IPH_HDR_VERSION(rptr); 12582 if (ipvers == IPV4_VERSION) { 12583 if (tcp == NULL) { 12584 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12585 goto done; 12586 } 12587 12588 ipp.ipp_fields |= IPPF_HOPLIMIT; 12589 ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl; 12590 12591 /* 12592 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary 12593 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp. 12594 */ 12595 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) && 12596 mctl_present) { 12597 pinfo = (ip_pktinfo_t *)first_mp->b_rptr; 12598 if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) && 12599 (pinfo->ip_pkt_ulp_type == IN_PKTINFO) && 12600 (pinfo->ip_pkt_flags & IPF_RECVIF)) { 12601 ipp.ipp_fields |= IPPF_IFINDEX; 12602 ipp.ipp_ifindex = pinfo->ip_pkt_ifindex; 12603 ifindex = pinfo->ip_pkt_ifindex; 12604 } 12605 freeb(first_mp); 12606 mctl_present = B_FALSE; 12607 } 12608 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12609 } else { 12610 ip6h = (ip6_t *)rptr; 12611 12612 ASSERT(ipvers == IPV6_VERSION); 12613 ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS; 12614 ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20; 12615 ipp.ipp_hoplimit = ip6h->ip6_hops; 12616 12617 if (ip6h->ip6_nxt != IPPROTO_TCP) { 12618 uint8_t nexthdrp; 12619 12620 /* Look for ifindex information */ 12621 if (ip6h->ip6_nxt == IPPROTO_RAW) { 12622 ip6i_t *ip6i = (ip6i_t *)ip6h; 12623 if ((uchar_t *)&ip6i[1] > mp->b_wptr) { 12624 BUMP_MIB(&ip_mib, tcpInErrs); 12625 freemsg(first_mp); 12626 return (NULL); 12627 } 12628 12629 if (ip6i->ip6i_flags & IP6I_IFINDEX) { 12630 ASSERT(ip6i->ip6i_ifindex != 0); 12631 ipp.ipp_fields |= IPPF_IFINDEX; 12632 ipp.ipp_ifindex = ip6i->ip6i_ifindex; 12633 ifindex = ip6i->ip6i_ifindex; 12634 } 12635 rptr = (uchar_t *)&ip6i[1]; 12636 mp->b_rptr = rptr; 12637 if (rptr == mp->b_wptr) { 12638 mblk_t *mp1; 12639 mp1 = mp->b_cont; 12640 freeb(mp); 12641 mp = mp1; 12642 rptr = mp->b_rptr; 12643 } 12644 if (MBLKL(mp) < IPV6_HDR_LEN + 12645 sizeof (tcph_t)) { 12646 BUMP_MIB(&ip_mib, tcpInErrs); 12647 freemsg(first_mp); 12648 return (NULL); 12649 } 12650 ip6h = (ip6_t *)rptr; 12651 } 12652 12653 /* 12654 * Find any potentially interesting extension headers 12655 * as well as the length of the IPv6 + extension 12656 * headers. 12657 */ 12658 ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp); 12659 /* Verify if this is a TCP packet */ 12660 if (nexthdrp != IPPROTO_TCP) { 12661 BUMP_MIB(&ip_mib, tcpInErrs); 12662 freemsg(first_mp); 12663 return (NULL); 12664 } 12665 } else { 12666 ip_hdr_len = IPV6_HDR_LEN; 12667 } 12668 } 12669 12670 done: 12671 if (ipversp != NULL) 12672 *ipversp = ipvers; 12673 if (ip_hdr_lenp != NULL) 12674 *ip_hdr_lenp = ip_hdr_len; 12675 if (ippp != NULL) 12676 *ippp = ipp; 12677 if (ifindexp != NULL) 12678 *ifindexp = ifindex; 12679 if (mctl_present) { 12680 freeb(first_mp); 12681 } 12682 return (mp); 12683 } 12684 12685 /* 12686 * Handle M_DATA messages from IP. Its called directly from IP via 12687 * squeue for AF_INET type sockets fast path. No M_CTL are expected 12688 * in this path. 12689 * 12690 * For everything else (including AF_INET6 sockets with 'tcp_ipversion' 12691 * v4 and v6), we are called through tcp_input() and a M_CTL can 12692 * be present for options but tcp_find_pktinfo() deals with it. We 12693 * only expect M_DATA packets after tcp_find_pktinfo() is done. 12694 * 12695 * The first argument is always the connp/tcp to which the mp belongs. 12696 * There are no exceptions to this rule. The caller has already put 12697 * a reference on this connp/tcp and once tcp_rput_data() returns, 12698 * the squeue will do the refrele. 12699 * 12700 * The TH_SYN for the listener directly go to tcp_conn_request via 12701 * squeue. 12702 * 12703 * sqp: NULL = recursive, sqp != NULL means called from squeue 12704 */ 12705 void 12706 tcp_rput_data(void *arg, mblk_t *mp, void *arg2) 12707 { 12708 int32_t bytes_acked; 12709 int32_t gap; 12710 mblk_t *mp1; 12711 uint_t flags; 12712 uint32_t new_swnd = 0; 12713 uchar_t *iphdr; 12714 uchar_t *rptr; 12715 int32_t rgap; 12716 uint32_t seg_ack; 12717 int seg_len; 12718 uint_t ip_hdr_len; 12719 uint32_t seg_seq; 12720 tcph_t *tcph; 12721 int urp; 12722 tcp_opt_t tcpopt; 12723 uint_t ipvers; 12724 ip6_pkt_t ipp; 12725 boolean_t ofo_seg = B_FALSE; /* Out of order segment */ 12726 uint32_t cwnd; 12727 uint32_t add; 12728 int npkt; 12729 int mss; 12730 conn_t *connp = (conn_t *)arg; 12731 squeue_t *sqp = (squeue_t *)arg2; 12732 tcp_t *tcp = connp->conn_tcp; 12733 12734 /* 12735 * RST from fused tcp loopback peer should trigger an unfuse. 12736 */ 12737 if (tcp->tcp_fused) { 12738 TCP_STAT(tcp_fusion_aborted); 12739 tcp_unfuse(tcp); 12740 } 12741 12742 iphdr = mp->b_rptr; 12743 rptr = mp->b_rptr; 12744 ASSERT(OK_32PTR(rptr)); 12745 12746 /* 12747 * An AF_INET socket is not capable of receiving any pktinfo. Do inline 12748 * processing here. For rest call tcp_find_pktinfo to fill up the 12749 * necessary information. 12750 */ 12751 if (IPCL_IS_TCP4(connp)) { 12752 ipvers = IPV4_VERSION; 12753 ip_hdr_len = IPH_HDR_LENGTH(rptr); 12754 } else { 12755 mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len, 12756 NULL, &ipp); 12757 if (mp == NULL) { 12758 TCP_STAT(tcp_rput_v6_error); 12759 return; 12760 } 12761 iphdr = mp->b_rptr; 12762 rptr = mp->b_rptr; 12763 } 12764 ASSERT(DB_TYPE(mp) == M_DATA); 12765 12766 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12767 seg_seq = ABE32_TO_U32(tcph->th_seq); 12768 seg_ack = ABE32_TO_U32(tcph->th_ack); 12769 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 12770 seg_len = (int)(mp->b_wptr - rptr) - 12771 (ip_hdr_len + TCP_HDR_LENGTH(tcph)); 12772 if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) { 12773 do { 12774 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 12775 (uintptr_t)INT_MAX); 12776 seg_len += (int)(mp1->b_wptr - mp1->b_rptr); 12777 } while ((mp1 = mp1->b_cont) != NULL && 12778 mp1->b_datap->db_type == M_DATA); 12779 } 12780 12781 if (tcp->tcp_state == TCPS_TIME_WAIT) { 12782 tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack, 12783 seg_len, tcph); 12784 return; 12785 } 12786 12787 if (sqp != NULL) { 12788 /* 12789 * This is the correct place to update tcp_last_recv_time. Note 12790 * that it is also updated for tcp structure that belongs to 12791 * global and listener queues which do not really need updating. 12792 * But that should not cause any harm. And it is updated for 12793 * all kinds of incoming segments, not only for data segments. 12794 */ 12795 tcp->tcp_last_recv_time = lbolt; 12796 } 12797 12798 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 12799 12800 BUMP_LOCAL(tcp->tcp_ibsegs); 12801 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 12802 12803 if ((flags & TH_URG) && sqp != NULL) { 12804 /* 12805 * TCP can't handle urgent pointers that arrive before 12806 * the connection has been accept()ed since it can't 12807 * buffer OOB data. Discard segment if this happens. 12808 * 12809 * Nor can it reassemble urgent pointers, so discard 12810 * if it's not the next segment expected. 12811 * 12812 * Otherwise, collapse chain into one mblk (discard if 12813 * that fails). This makes sure the headers, retransmitted 12814 * data, and new data all are in the same mblk. 12815 */ 12816 ASSERT(mp != NULL); 12817 if (tcp->tcp_listener || !pullupmsg(mp, -1)) { 12818 freemsg(mp); 12819 return; 12820 } 12821 /* Update pointers into message */ 12822 iphdr = rptr = mp->b_rptr; 12823 tcph = (tcph_t *)&rptr[ip_hdr_len]; 12824 if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) { 12825 /* 12826 * Since we can't handle any data with this urgent 12827 * pointer that is out of sequence, we expunge 12828 * the data. This allows us to still register 12829 * the urgent mark and generate the M_PCSIG, 12830 * which we can do. 12831 */ 12832 mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 12833 seg_len = 0; 12834 } 12835 } 12836 12837 switch (tcp->tcp_state) { 12838 case TCPS_SYN_SENT: 12839 if (flags & TH_ACK) { 12840 /* 12841 * Note that our stack cannot send data before a 12842 * connection is established, therefore the 12843 * following check is valid. Otherwise, it has 12844 * to be changed. 12845 */ 12846 if (SEQ_LEQ(seg_ack, tcp->tcp_iss) || 12847 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 12848 freemsg(mp); 12849 if (flags & TH_RST) 12850 return; 12851 tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq", 12852 tcp, seg_ack, 0, TH_RST); 12853 return; 12854 } 12855 ASSERT(tcp->tcp_suna + 1 == seg_ack); 12856 } 12857 if (flags & TH_RST) { 12858 freemsg(mp); 12859 if (flags & TH_ACK) 12860 (void) tcp_clean_death(tcp, 12861 ECONNREFUSED, 13); 12862 return; 12863 } 12864 if (!(flags & TH_SYN)) { 12865 freemsg(mp); 12866 return; 12867 } 12868 12869 /* Process all TCP options. */ 12870 tcp_process_options(tcp, tcph); 12871 /* 12872 * The following changes our rwnd to be a multiple of the 12873 * MIN(peer MSS, our MSS) for performance reason. 12874 */ 12875 (void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat, 12876 tcp->tcp_mss)); 12877 12878 /* Is the other end ECN capable? */ 12879 if (tcp->tcp_ecn_ok) { 12880 if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) { 12881 tcp->tcp_ecn_ok = B_FALSE; 12882 } 12883 } 12884 /* 12885 * Clear ECN flags because it may interfere with later 12886 * processing. 12887 */ 12888 flags &= ~(TH_ECE|TH_CWR); 12889 12890 tcp->tcp_irs = seg_seq; 12891 tcp->tcp_rack = seg_seq; 12892 tcp->tcp_rnxt = seg_seq + 1; 12893 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 12894 if (!TCP_IS_DETACHED(tcp)) { 12895 /* Allocate room for SACK options if needed. */ 12896 if (tcp->tcp_snd_sack_ok) { 12897 (void) mi_set_sth_wroff(tcp->tcp_rq, 12898 tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 12899 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12900 } else { 12901 (void) mi_set_sth_wroff(tcp->tcp_rq, 12902 tcp->tcp_hdr_len + 12903 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra)); 12904 } 12905 } 12906 if (flags & TH_ACK) { 12907 /* 12908 * If we can't get the confirmation upstream, pretend 12909 * we didn't even see this one. 12910 * 12911 * XXX: how can we pretend we didn't see it if we 12912 * have updated rnxt et. al. 12913 * 12914 * For loopback we defer sending up the T_CONN_CON 12915 * until after some checks below. 12916 */ 12917 mp1 = NULL; 12918 if (!tcp_conn_con(tcp, iphdr, tcph, mp, 12919 tcp->tcp_loopback ? &mp1 : NULL)) { 12920 freemsg(mp); 12921 return; 12922 } 12923 /* SYN was acked - making progress */ 12924 if (tcp->tcp_ipversion == IPV6_VERSION) 12925 tcp->tcp_ip_forward_progress = B_TRUE; 12926 12927 /* One for the SYN */ 12928 tcp->tcp_suna = tcp->tcp_iss + 1; 12929 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 12930 tcp->tcp_state = TCPS_ESTABLISHED; 12931 12932 /* 12933 * If SYN was retransmitted, need to reset all 12934 * retransmission info. This is because this 12935 * segment will be treated as a dup ACK. 12936 */ 12937 if (tcp->tcp_rexmit) { 12938 tcp->tcp_rexmit = B_FALSE; 12939 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 12940 tcp->tcp_rexmit_max = tcp->tcp_snxt; 12941 tcp->tcp_snd_burst = tcp->tcp_localnet ? 12942 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 12943 tcp->tcp_ms_we_have_waited = 0; 12944 12945 /* 12946 * Set tcp_cwnd back to 1 MSS, per 12947 * recommendation from 12948 * draft-floyd-incr-init-win-01.txt, 12949 * Increasing TCP's Initial Window. 12950 */ 12951 tcp->tcp_cwnd = tcp->tcp_mss; 12952 } 12953 12954 tcp->tcp_swl1 = seg_seq; 12955 tcp->tcp_swl2 = seg_ack; 12956 12957 new_swnd = BE16_TO_U16(tcph->th_win); 12958 tcp->tcp_swnd = new_swnd; 12959 if (new_swnd > tcp->tcp_max_swnd) 12960 tcp->tcp_max_swnd = new_swnd; 12961 12962 /* 12963 * Always send the three-way handshake ack immediately 12964 * in order to make the connection complete as soon as 12965 * possible on the accepting host. 12966 */ 12967 flags |= TH_ACK_NEEDED; 12968 12969 /* 12970 * Special case for loopback. At this point we have 12971 * received SYN-ACK from the remote endpoint. In 12972 * order to ensure that both endpoints reach the 12973 * fused state prior to any data exchange, the final 12974 * ACK needs to be sent before we indicate T_CONN_CON 12975 * to the module upstream. 12976 */ 12977 if (tcp->tcp_loopback) { 12978 mblk_t *ack_mp; 12979 12980 ASSERT(!tcp->tcp_unfusable); 12981 ASSERT(mp1 != NULL); 12982 /* 12983 * For loopback, we always get a pure SYN-ACK 12984 * and only need to send back the final ACK 12985 * with no data (this is because the other 12986 * tcp is ours and we don't do T/TCP). This 12987 * final ACK triggers the passive side to 12988 * perform fusion in ESTABLISHED state. 12989 */ 12990 if ((ack_mp = tcp_ack_mp(tcp)) != NULL) { 12991 if (tcp->tcp_ack_tid != 0) { 12992 (void) TCP_TIMER_CANCEL(tcp, 12993 tcp->tcp_ack_tid); 12994 tcp->tcp_ack_tid = 0; 12995 } 12996 TCP_RECORD_TRACE(tcp, ack_mp, 12997 TCP_TRACE_SEND_PKT); 12998 tcp_send_data(tcp, tcp->tcp_wq, ack_mp); 12999 BUMP_LOCAL(tcp->tcp_obsegs); 13000 BUMP_MIB(&tcp_mib, tcpOutAck); 13001 13002 /* Send up T_CONN_CON */ 13003 putnext(tcp->tcp_rq, mp1); 13004 13005 freemsg(mp); 13006 return; 13007 } 13008 /* 13009 * Forget fusion; we need to handle more 13010 * complex cases below. Send the deferred 13011 * T_CONN_CON message upstream and proceed 13012 * as usual. Mark this tcp as not capable 13013 * of fusion. 13014 */ 13015 TCP_STAT(tcp_fusion_unfusable); 13016 tcp->tcp_unfusable = B_TRUE; 13017 putnext(tcp->tcp_rq, mp1); 13018 } 13019 13020 /* 13021 * Check to see if there is data to be sent. If 13022 * yes, set the transmit flag. Then check to see 13023 * if received data processing needs to be done. 13024 * If not, go straight to xmit_check. This short 13025 * cut is OK as we don't support T/TCP. 13026 */ 13027 if (tcp->tcp_unsent) 13028 flags |= TH_XMIT_NEEDED; 13029 13030 if (seg_len == 0 && !(flags & TH_URG)) { 13031 freemsg(mp); 13032 goto xmit_check; 13033 } 13034 13035 flags &= ~TH_SYN; 13036 seg_seq++; 13037 break; 13038 } 13039 tcp->tcp_state = TCPS_SYN_RCVD; 13040 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss, 13041 NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 13042 if (mp1) { 13043 DB_CPID(mp1) = tcp->tcp_cpid; 13044 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 13045 tcp_send_data(tcp, tcp->tcp_wq, mp1); 13046 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13047 } 13048 freemsg(mp); 13049 return; 13050 case TCPS_SYN_RCVD: 13051 if (flags & TH_ACK) { 13052 /* 13053 * In this state, a SYN|ACK packet is either bogus 13054 * because the other side must be ACKing our SYN which 13055 * indicates it has seen the ACK for their SYN and 13056 * shouldn't retransmit it or we're crossing SYNs 13057 * on active open. 13058 */ 13059 if ((flags & TH_SYN) && !tcp->tcp_active_open) { 13060 freemsg(mp); 13061 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn", 13062 tcp, seg_ack, 0, TH_RST); 13063 return; 13064 } 13065 /* 13066 * NOTE: RFC 793 pg. 72 says this should be 13067 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt 13068 * but that would mean we have an ack that ignored 13069 * our SYN. 13070 */ 13071 if (SEQ_LEQ(seg_ack, tcp->tcp_suna) || 13072 SEQ_GT(seg_ack, tcp->tcp_snxt)) { 13073 freemsg(mp); 13074 tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack", 13075 tcp, seg_ack, 0, TH_RST); 13076 return; 13077 } 13078 } 13079 break; 13080 case TCPS_LISTEN: 13081 /* 13082 * Only a TLI listener can come through this path when a 13083 * acceptor is going back to be a listener and a packet 13084 * for the acceptor hits the classifier. For a socket 13085 * listener, this can never happen because a listener 13086 * can never accept connection on itself and hence a 13087 * socket acceptor can not go back to being a listener. 13088 */ 13089 ASSERT(!TCP_IS_SOCKET(tcp)); 13090 /*FALLTHRU*/ 13091 case TCPS_CLOSED: 13092 case TCPS_BOUND: { 13093 conn_t *new_connp; 13094 13095 new_connp = ipcl_classify(mp, connp->conn_zoneid); 13096 if (new_connp != NULL) { 13097 tcp_reinput(new_connp, mp, connp->conn_sqp); 13098 return; 13099 } 13100 /* We failed to classify. For now just drop the packet */ 13101 freemsg(mp); 13102 return; 13103 } 13104 case TCPS_IDLE: 13105 /* 13106 * Handle the case where the tcp_clean_death() has happened 13107 * on a connection (application hasn't closed yet) but a packet 13108 * was already queued on squeue before tcp_clean_death() 13109 * was processed. Calling tcp_clean_death() twice on same 13110 * connection can result in weird behaviour. 13111 */ 13112 freemsg(mp); 13113 return; 13114 default: 13115 break; 13116 } 13117 13118 /* 13119 * Already on the correct queue/perimeter. 13120 * If this is a detached connection and not an eager 13121 * connection hanging off a listener then new data 13122 * (past the FIN) will cause a reset. 13123 * We do a special check here where it 13124 * is out of the main line, rather than check 13125 * if we are detached every time we see new 13126 * data down below. 13127 */ 13128 if (TCP_IS_DETACHED_NONEAGER(tcp) && 13129 (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) { 13130 BUMP_MIB(&tcp_mib, tcpInClosed); 13131 TCP_RECORD_TRACE(tcp, 13132 mp, TCP_TRACE_RECV_PKT); 13133 13134 freemsg(mp); 13135 /* 13136 * This could be an SSL closure alert. We're detached so just 13137 * acknowledge it this last time. 13138 */ 13139 if (tcp->tcp_kssl_ctx != NULL) { 13140 kssl_release_ctx(tcp->tcp_kssl_ctx); 13141 tcp->tcp_kssl_ctx = NULL; 13142 13143 tcp->tcp_rnxt += seg_len; 13144 U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack); 13145 flags |= TH_ACK_NEEDED; 13146 goto ack_check; 13147 } 13148 13149 tcp_xmit_ctl("new data when detached", tcp, 13150 tcp->tcp_snxt, 0, TH_RST); 13151 (void) tcp_clean_death(tcp, EPROTO, 12); 13152 return; 13153 } 13154 13155 mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph); 13156 urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION; 13157 new_swnd = BE16_TO_U16(tcph->th_win) << 13158 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 13159 mss = tcp->tcp_mss; 13160 13161 if (tcp->tcp_snd_ts_ok) { 13162 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 13163 /* 13164 * This segment is not acceptable. 13165 * Drop it and send back an ACK. 13166 */ 13167 freemsg(mp); 13168 flags |= TH_ACK_NEEDED; 13169 goto ack_check; 13170 } 13171 } else if (tcp->tcp_snd_sack_ok) { 13172 ASSERT(tcp->tcp_sack_info != NULL); 13173 tcpopt.tcp = tcp; 13174 /* 13175 * SACK info in already updated in tcp_parse_options. Ignore 13176 * all other TCP options... 13177 */ 13178 (void) tcp_parse_options(tcph, &tcpopt); 13179 } 13180 try_again:; 13181 gap = seg_seq - tcp->tcp_rnxt; 13182 rgap = tcp->tcp_rwnd - (gap + seg_len); 13183 /* 13184 * gap is the amount of sequence space between what we expect to see 13185 * and what we got for seg_seq. A positive value for gap means 13186 * something got lost. A negative value means we got some old stuff. 13187 */ 13188 if (gap < 0) { 13189 /* Old stuff present. Is the SYN in there? */ 13190 if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) && 13191 (seg_len != 0)) { 13192 flags &= ~TH_SYN; 13193 seg_seq++; 13194 urp--; 13195 /* Recompute the gaps after noting the SYN. */ 13196 goto try_again; 13197 } 13198 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 13199 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 13200 (seg_len > -gap ? -gap : seg_len)); 13201 /* Remove the old stuff from seg_len. */ 13202 seg_len += gap; 13203 /* 13204 * Anything left? 13205 * Make sure to check for unack'd FIN when rest of data 13206 * has been previously ack'd. 13207 */ 13208 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 13209 /* 13210 * Resets are only valid if they lie within our offered 13211 * window. If the RST bit is set, we just ignore this 13212 * segment. 13213 */ 13214 if (flags & TH_RST) { 13215 freemsg(mp); 13216 return; 13217 } 13218 13219 /* 13220 * The arriving of dup data packets indicate that we 13221 * may have postponed an ack for too long, or the other 13222 * side's RTT estimate is out of shape. Start acking 13223 * more often. 13224 */ 13225 if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) && 13226 tcp->tcp_rack_cnt >= 1 && 13227 tcp->tcp_rack_abs_max > 2) { 13228 tcp->tcp_rack_abs_max--; 13229 } 13230 tcp->tcp_rack_cur_max = 1; 13231 13232 /* 13233 * This segment is "unacceptable". None of its 13234 * sequence space lies within our advertized window. 13235 * 13236 * Adjust seg_len to the original value for tracing. 13237 */ 13238 seg_len -= gap; 13239 if (tcp->tcp_debug) { 13240 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13241 "tcp_rput: unacceptable, gap %d, rgap %d, " 13242 "flags 0x%x, seg_seq %u, seg_ack %u, " 13243 "seg_len %d, rnxt %u, snxt %u, %s", 13244 gap, rgap, flags, seg_seq, seg_ack, 13245 seg_len, tcp->tcp_rnxt, tcp->tcp_snxt, 13246 tcp_display(tcp, NULL, 13247 DISP_ADDR_AND_PORT)); 13248 } 13249 13250 /* 13251 * Arrange to send an ACK in response to the 13252 * unacceptable segment per RFC 793 page 69. There 13253 * is only one small difference between ours and the 13254 * acceptability test in the RFC - we accept ACK-only 13255 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK 13256 * will be generated. 13257 * 13258 * Note that we have to ACK an ACK-only packet at least 13259 * for stacks that send 0-length keep-alives with 13260 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122, 13261 * section 4.2.3.6. As long as we don't ever generate 13262 * an unacceptable packet in response to an incoming 13263 * packet that is unacceptable, it should not cause 13264 * "ACK wars". 13265 */ 13266 flags |= TH_ACK_NEEDED; 13267 13268 /* 13269 * Continue processing this segment in order to use the 13270 * ACK information it contains, but skip all other 13271 * sequence-number processing. Processing the ACK 13272 * information is necessary in order to 13273 * re-synchronize connections that may have lost 13274 * synchronization. 13275 * 13276 * We clear seg_len and flag fields related to 13277 * sequence number processing as they are not 13278 * to be trusted for an unacceptable segment. 13279 */ 13280 seg_len = 0; 13281 flags &= ~(TH_SYN | TH_FIN | TH_URG); 13282 goto process_ack; 13283 } 13284 13285 /* Fix seg_seq, and chew the gap off the front. */ 13286 seg_seq = tcp->tcp_rnxt; 13287 urp += gap; 13288 do { 13289 mblk_t *mp2; 13290 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13291 (uintptr_t)UINT_MAX); 13292 gap += (uint_t)(mp->b_wptr - mp->b_rptr); 13293 if (gap > 0) { 13294 mp->b_rptr = mp->b_wptr - gap; 13295 break; 13296 } 13297 mp2 = mp; 13298 mp = mp->b_cont; 13299 freeb(mp2); 13300 } while (gap < 0); 13301 /* 13302 * If the urgent data has already been acknowledged, we 13303 * should ignore TH_URG below 13304 */ 13305 if (urp < 0) 13306 flags &= ~TH_URG; 13307 } 13308 /* 13309 * rgap is the amount of stuff received out of window. A negative 13310 * value is the amount out of window. 13311 */ 13312 if (rgap < 0) { 13313 mblk_t *mp2; 13314 13315 if (tcp->tcp_rwnd == 0) { 13316 BUMP_MIB(&tcp_mib, tcpInWinProbe); 13317 } else { 13318 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 13319 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 13320 } 13321 13322 /* 13323 * seg_len does not include the FIN, so if more than 13324 * just the FIN is out of window, we act like we don't 13325 * see it. (If just the FIN is out of window, rgap 13326 * will be zero and we will go ahead and acknowledge 13327 * the FIN.) 13328 */ 13329 flags &= ~TH_FIN; 13330 13331 /* Fix seg_len and make sure there is something left. */ 13332 seg_len += rgap; 13333 if (seg_len <= 0) { 13334 /* 13335 * Resets are only valid if they lie within our offered 13336 * window. If the RST bit is set, we just ignore this 13337 * segment. 13338 */ 13339 if (flags & TH_RST) { 13340 freemsg(mp); 13341 return; 13342 } 13343 13344 /* Per RFC 793, we need to send back an ACK. */ 13345 flags |= TH_ACK_NEEDED; 13346 13347 /* 13348 * Send SIGURG as soon as possible i.e. even 13349 * if the TH_URG was delivered in a window probe 13350 * packet (which will be unacceptable). 13351 * 13352 * We generate a signal if none has been generated 13353 * for this connection or if this is a new urgent 13354 * byte. Also send a zero-length "unmarked" message 13355 * to inform SIOCATMARK that this is not the mark. 13356 * 13357 * tcp_urp_last_valid is cleared when the T_exdata_ind 13358 * is sent up. This plus the check for old data 13359 * (gap >= 0) handles the wraparound of the sequence 13360 * number space without having to always track the 13361 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks 13362 * this max in its rcv_up variable). 13363 * 13364 * This prevents duplicate SIGURGS due to a "late" 13365 * zero-window probe when the T_EXDATA_IND has already 13366 * been sent up. 13367 */ 13368 if ((flags & TH_URG) && 13369 (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq, 13370 tcp->tcp_urp_last))) { 13371 mp1 = allocb(0, BPRI_MED); 13372 if (mp1 == NULL) { 13373 freemsg(mp); 13374 return; 13375 } 13376 if (!TCP_IS_DETACHED(tcp) && 13377 !putnextctl1(tcp->tcp_rq, M_PCSIG, 13378 SIGURG)) { 13379 /* Try again on the rexmit. */ 13380 freemsg(mp1); 13381 freemsg(mp); 13382 return; 13383 } 13384 /* 13385 * If the next byte would be the mark 13386 * then mark with MARKNEXT else mark 13387 * with NOTMARKNEXT. 13388 */ 13389 if (gap == 0 && urp == 0) 13390 mp1->b_flag |= MSGMARKNEXT; 13391 else 13392 mp1->b_flag |= MSGNOTMARKNEXT; 13393 freemsg(tcp->tcp_urp_mark_mp); 13394 tcp->tcp_urp_mark_mp = mp1; 13395 flags |= TH_SEND_URP_MARK; 13396 tcp->tcp_urp_last_valid = B_TRUE; 13397 tcp->tcp_urp_last = urp + seg_seq; 13398 } 13399 /* 13400 * If this is a zero window probe, continue to 13401 * process the ACK part. But we need to set seg_len 13402 * to 0 to avoid data processing. Otherwise just 13403 * drop the segment and send back an ACK. 13404 */ 13405 if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) { 13406 flags &= ~(TH_SYN | TH_URG); 13407 seg_len = 0; 13408 goto process_ack; 13409 } else { 13410 freemsg(mp); 13411 goto ack_check; 13412 } 13413 } 13414 /* Pitch out of window stuff off the end. */ 13415 rgap = seg_len; 13416 mp2 = mp; 13417 do { 13418 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 13419 (uintptr_t)INT_MAX); 13420 rgap -= (int)(mp2->b_wptr - mp2->b_rptr); 13421 if (rgap < 0) { 13422 mp2->b_wptr += rgap; 13423 if ((mp1 = mp2->b_cont) != NULL) { 13424 mp2->b_cont = NULL; 13425 freemsg(mp1); 13426 } 13427 break; 13428 } 13429 } while ((mp2 = mp2->b_cont) != NULL); 13430 } 13431 ok:; 13432 /* 13433 * TCP should check ECN info for segments inside the window only. 13434 * Therefore the check should be done here. 13435 */ 13436 if (tcp->tcp_ecn_ok) { 13437 if (flags & TH_CWR) { 13438 tcp->tcp_ecn_echo_on = B_FALSE; 13439 } 13440 /* 13441 * Note that both ECN_CE and CWR can be set in the 13442 * same segment. In this case, we once again turn 13443 * on ECN_ECHO. 13444 */ 13445 if (tcp->tcp_ipversion == IPV4_VERSION) { 13446 uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service; 13447 13448 if ((tos & IPH_ECN_CE) == IPH_ECN_CE) { 13449 tcp->tcp_ecn_echo_on = B_TRUE; 13450 } 13451 } else { 13452 uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf; 13453 13454 if ((vcf & htonl(IPH_ECN_CE << 20)) == 13455 htonl(IPH_ECN_CE << 20)) { 13456 tcp->tcp_ecn_echo_on = B_TRUE; 13457 } 13458 } 13459 } 13460 13461 /* 13462 * Check whether we can update tcp_ts_recent. This test is 13463 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 13464 * Extensions for High Performance: An Update", Internet Draft. 13465 */ 13466 if (tcp->tcp_snd_ts_ok && 13467 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 13468 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 13469 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 13470 tcp->tcp_last_rcv_lbolt = lbolt64; 13471 } 13472 13473 if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) { 13474 /* 13475 * FIN in an out of order segment. We record this in 13476 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq. 13477 * Clear the FIN so that any check on FIN flag will fail. 13478 * Remember that FIN also counts in the sequence number 13479 * space. So we need to ack out of order FIN only segments. 13480 */ 13481 if (flags & TH_FIN) { 13482 tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID; 13483 tcp->tcp_ofo_fin_seq = seg_seq + seg_len; 13484 flags &= ~TH_FIN; 13485 flags |= TH_ACK_NEEDED; 13486 } 13487 if (seg_len > 0) { 13488 /* Fill in the SACK blk list. */ 13489 if (tcp->tcp_snd_sack_ok) { 13490 ASSERT(tcp->tcp_sack_info != NULL); 13491 tcp_sack_insert(tcp->tcp_sack_list, 13492 seg_seq, seg_seq + seg_len, 13493 &(tcp->tcp_num_sack_blk)); 13494 } 13495 13496 /* 13497 * Attempt reassembly and see if we have something 13498 * ready to go. 13499 */ 13500 mp = tcp_reass(tcp, mp, seg_seq); 13501 /* Always ack out of order packets */ 13502 flags |= TH_ACK_NEEDED | TH_PUSH; 13503 if (mp) { 13504 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 13505 (uintptr_t)INT_MAX); 13506 seg_len = mp->b_cont ? msgdsize(mp) : 13507 (int)(mp->b_wptr - mp->b_rptr); 13508 seg_seq = tcp->tcp_rnxt; 13509 /* 13510 * A gap is filled and the seq num and len 13511 * of the gap match that of a previously 13512 * received FIN, put the FIN flag back in. 13513 */ 13514 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13515 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13516 flags |= TH_FIN; 13517 tcp->tcp_valid_bits &= 13518 ~TCP_OFO_FIN_VALID; 13519 } 13520 } else { 13521 /* 13522 * Keep going even with NULL mp. 13523 * There may be a useful ACK or something else 13524 * we don't want to miss. 13525 * 13526 * But TCP should not perform fast retransmit 13527 * because of the ack number. TCP uses 13528 * seg_len == 0 to determine if it is a pure 13529 * ACK. And this is not a pure ACK. 13530 */ 13531 seg_len = 0; 13532 ofo_seg = B_TRUE; 13533 } 13534 } 13535 } else if (seg_len > 0) { 13536 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 13537 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 13538 /* 13539 * If an out of order FIN was received before, and the seq 13540 * num and len of the new segment match that of the FIN, 13541 * put the FIN flag back in. 13542 */ 13543 if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) && 13544 seg_seq + seg_len == tcp->tcp_ofo_fin_seq) { 13545 flags |= TH_FIN; 13546 tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID; 13547 } 13548 } 13549 if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) { 13550 if (flags & TH_RST) { 13551 freemsg(mp); 13552 switch (tcp->tcp_state) { 13553 case TCPS_SYN_RCVD: 13554 (void) tcp_clean_death(tcp, ECONNREFUSED, 14); 13555 break; 13556 case TCPS_ESTABLISHED: 13557 case TCPS_FIN_WAIT_1: 13558 case TCPS_FIN_WAIT_2: 13559 case TCPS_CLOSE_WAIT: 13560 (void) tcp_clean_death(tcp, ECONNRESET, 15); 13561 break; 13562 case TCPS_CLOSING: 13563 case TCPS_LAST_ACK: 13564 (void) tcp_clean_death(tcp, 0, 16); 13565 break; 13566 default: 13567 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13568 (void) tcp_clean_death(tcp, ENXIO, 17); 13569 break; 13570 } 13571 return; 13572 } 13573 if (flags & TH_SYN) { 13574 /* 13575 * See RFC 793, Page 71 13576 * 13577 * The seq number must be in the window as it should 13578 * be "fixed" above. If it is outside window, it should 13579 * be already rejected. Note that we allow seg_seq to be 13580 * rnxt + rwnd because we want to accept 0 window probe. 13581 */ 13582 ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) && 13583 SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd)); 13584 freemsg(mp); 13585 /* 13586 * If the ACK flag is not set, just use our snxt as the 13587 * seq number of the RST segment. 13588 */ 13589 if (!(flags & TH_ACK)) { 13590 seg_ack = tcp->tcp_snxt; 13591 } 13592 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 13593 TH_RST|TH_ACK); 13594 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 13595 (void) tcp_clean_death(tcp, ECONNRESET, 18); 13596 return; 13597 } 13598 /* 13599 * urp could be -1 when the urp field in the packet is 0 13600 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent 13601 * byte was at seg_seq - 1, in which case we ignore the urgent flag. 13602 */ 13603 if (flags & TH_URG && urp >= 0) { 13604 if (!tcp->tcp_urp_last_valid || 13605 SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) { 13606 /* 13607 * If we haven't generated the signal yet for this 13608 * urgent pointer value, do it now. Also, send up a 13609 * zero-length M_DATA indicating whether or not this is 13610 * the mark. The latter is not needed when a 13611 * T_EXDATA_IND is sent up. However, if there are 13612 * allocation failures this code relies on the sender 13613 * retransmitting and the socket code for determining 13614 * the mark should not block waiting for the peer to 13615 * transmit. Thus, for simplicity we always send up the 13616 * mark indication. 13617 */ 13618 mp1 = allocb(0, BPRI_MED); 13619 if (mp1 == NULL) { 13620 freemsg(mp); 13621 return; 13622 } 13623 if (!TCP_IS_DETACHED(tcp) && 13624 !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) { 13625 /* Try again on the rexmit. */ 13626 freemsg(mp1); 13627 freemsg(mp); 13628 return; 13629 } 13630 /* 13631 * Mark with NOTMARKNEXT for now. 13632 * The code below will change this to MARKNEXT 13633 * if we are at the mark. 13634 * 13635 * If there are allocation failures (e.g. in dupmsg 13636 * below) the next time tcp_rput_data sees the urgent 13637 * segment it will send up the MSG*MARKNEXT message. 13638 */ 13639 mp1->b_flag |= MSGNOTMARKNEXT; 13640 freemsg(tcp->tcp_urp_mark_mp); 13641 tcp->tcp_urp_mark_mp = mp1; 13642 flags |= TH_SEND_URP_MARK; 13643 #ifdef DEBUG 13644 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13645 "tcp_rput: sent M_PCSIG 2 seq %x urp %x " 13646 "last %x, %s", 13647 seg_seq, urp, tcp->tcp_urp_last, 13648 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13649 #endif /* DEBUG */ 13650 tcp->tcp_urp_last_valid = B_TRUE; 13651 tcp->tcp_urp_last = urp + seg_seq; 13652 } else if (tcp->tcp_urp_mark_mp != NULL) { 13653 /* 13654 * An allocation failure prevented the previous 13655 * tcp_rput_data from sending up the allocated 13656 * MSG*MARKNEXT message - send it up this time 13657 * around. 13658 */ 13659 flags |= TH_SEND_URP_MARK; 13660 } 13661 13662 /* 13663 * If the urgent byte is in this segment, make sure that it is 13664 * all by itself. This makes it much easier to deal with the 13665 * possibility of an allocation failure on the T_exdata_ind. 13666 * Note that seg_len is the number of bytes in the segment, and 13667 * urp is the offset into the segment of the urgent byte. 13668 * urp < seg_len means that the urgent byte is in this segment. 13669 */ 13670 if (urp < seg_len) { 13671 if (seg_len != 1) { 13672 uint32_t tmp_rnxt; 13673 /* 13674 * Break it up and feed it back in. 13675 * Re-attach the IP header. 13676 */ 13677 mp->b_rptr = iphdr; 13678 if (urp > 0) { 13679 /* 13680 * There is stuff before the urgent 13681 * byte. 13682 */ 13683 mp1 = dupmsg(mp); 13684 if (!mp1) { 13685 /* 13686 * Trim from urgent byte on. 13687 * The rest will come back. 13688 */ 13689 (void) adjmsg(mp, 13690 urp - seg_len); 13691 tcp_rput_data(connp, 13692 mp, NULL); 13693 return; 13694 } 13695 (void) adjmsg(mp1, urp - seg_len); 13696 /* Feed this piece back in. */ 13697 tmp_rnxt = tcp->tcp_rnxt; 13698 tcp_rput_data(connp, mp1, NULL); 13699 /* 13700 * If the data passed back in was not 13701 * processed (ie: bad ACK) sending 13702 * the remainder back in will cause a 13703 * loop. In this case, drop the 13704 * packet and let the sender try 13705 * sending a good packet. 13706 */ 13707 if (tmp_rnxt == tcp->tcp_rnxt) { 13708 freemsg(mp); 13709 return; 13710 } 13711 } 13712 if (urp != seg_len - 1) { 13713 uint32_t tmp_rnxt; 13714 /* 13715 * There is stuff after the urgent 13716 * byte. 13717 */ 13718 mp1 = dupmsg(mp); 13719 if (!mp1) { 13720 /* 13721 * Trim everything beyond the 13722 * urgent byte. The rest will 13723 * come back. 13724 */ 13725 (void) adjmsg(mp, 13726 urp + 1 - seg_len); 13727 tcp_rput_data(connp, 13728 mp, NULL); 13729 return; 13730 } 13731 (void) adjmsg(mp1, urp + 1 - seg_len); 13732 tmp_rnxt = tcp->tcp_rnxt; 13733 tcp_rput_data(connp, mp1, NULL); 13734 /* 13735 * If the data passed back in was not 13736 * processed (ie: bad ACK) sending 13737 * the remainder back in will cause a 13738 * loop. In this case, drop the 13739 * packet and let the sender try 13740 * sending a good packet. 13741 */ 13742 if (tmp_rnxt == tcp->tcp_rnxt) { 13743 freemsg(mp); 13744 return; 13745 } 13746 } 13747 tcp_rput_data(connp, mp, NULL); 13748 return; 13749 } 13750 /* 13751 * This segment contains only the urgent byte. We 13752 * have to allocate the T_exdata_ind, if we can. 13753 */ 13754 if (!tcp->tcp_urp_mp) { 13755 struct T_exdata_ind *tei; 13756 mp1 = allocb(sizeof (struct T_exdata_ind), 13757 BPRI_MED); 13758 if (!mp1) { 13759 /* 13760 * Sigh... It'll be back. 13761 * Generate any MSG*MARK message now. 13762 */ 13763 freemsg(mp); 13764 seg_len = 0; 13765 if (flags & TH_SEND_URP_MARK) { 13766 13767 13768 ASSERT(tcp->tcp_urp_mark_mp); 13769 tcp->tcp_urp_mark_mp->b_flag &= 13770 ~MSGNOTMARKNEXT; 13771 tcp->tcp_urp_mark_mp->b_flag |= 13772 MSGMARKNEXT; 13773 } 13774 goto ack_check; 13775 } 13776 mp1->b_datap->db_type = M_PROTO; 13777 tei = (struct T_exdata_ind *)mp1->b_rptr; 13778 tei->PRIM_type = T_EXDATA_IND; 13779 tei->MORE_flag = 0; 13780 mp1->b_wptr = (uchar_t *)&tei[1]; 13781 tcp->tcp_urp_mp = mp1; 13782 #ifdef DEBUG 13783 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13784 "tcp_rput: allocated exdata_ind %s", 13785 tcp_display(tcp, NULL, 13786 DISP_PORT_ONLY)); 13787 #endif /* DEBUG */ 13788 /* 13789 * There is no need to send a separate MSG*MARK 13790 * message since the T_EXDATA_IND will be sent 13791 * now. 13792 */ 13793 flags &= ~TH_SEND_URP_MARK; 13794 freemsg(tcp->tcp_urp_mark_mp); 13795 tcp->tcp_urp_mark_mp = NULL; 13796 } 13797 /* 13798 * Now we are all set. On the next putnext upstream, 13799 * tcp_urp_mp will be non-NULL and will get prepended 13800 * to what has to be this piece containing the urgent 13801 * byte. If for any reason we abort this segment below, 13802 * if it comes back, we will have this ready, or it 13803 * will get blown off in close. 13804 */ 13805 } else if (urp == seg_len) { 13806 /* 13807 * The urgent byte is the next byte after this sequence 13808 * number. If there is data it is marked with 13809 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded 13810 * since it is not needed. Otherwise, if the code 13811 * above just allocated a zero-length tcp_urp_mark_mp 13812 * message, that message is tagged with MSGMARKNEXT. 13813 * Sending up these MSGMARKNEXT messages makes 13814 * SIOCATMARK work correctly even though 13815 * the T_EXDATA_IND will not be sent up until the 13816 * urgent byte arrives. 13817 */ 13818 if (seg_len != 0) { 13819 flags |= TH_MARKNEXT_NEEDED; 13820 freemsg(tcp->tcp_urp_mark_mp); 13821 tcp->tcp_urp_mark_mp = NULL; 13822 flags &= ~TH_SEND_URP_MARK; 13823 } else if (tcp->tcp_urp_mark_mp != NULL) { 13824 flags |= TH_SEND_URP_MARK; 13825 tcp->tcp_urp_mark_mp->b_flag &= 13826 ~MSGNOTMARKNEXT; 13827 tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT; 13828 } 13829 #ifdef DEBUG 13830 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13831 "tcp_rput: AT MARK, len %d, flags 0x%x, %s", 13832 seg_len, flags, 13833 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 13834 #endif /* DEBUG */ 13835 } else { 13836 /* Data left until we hit mark */ 13837 #ifdef DEBUG 13838 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 13839 "tcp_rput: URP %d bytes left, %s", 13840 urp - seg_len, tcp_display(tcp, NULL, 13841 DISP_PORT_ONLY)); 13842 #endif /* DEBUG */ 13843 } 13844 } 13845 13846 process_ack: 13847 if (!(flags & TH_ACK)) { 13848 freemsg(mp); 13849 goto xmit_check; 13850 } 13851 } 13852 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 13853 13854 if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0) 13855 tcp->tcp_ip_forward_progress = B_TRUE; 13856 if (tcp->tcp_state == TCPS_SYN_RCVD) { 13857 if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) && 13858 ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) { 13859 /* 3-way handshake complete - pass up the T_CONN_IND */ 13860 tcp_t *listener = tcp->tcp_listener; 13861 mblk_t *mp = tcp->tcp_conn.tcp_eager_conn_ind; 13862 13863 tcp->tcp_tconnind_started = B_TRUE; 13864 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 13865 /* 13866 * We are here means eager is fine but it can 13867 * get a TH_RST at any point between now and till 13868 * accept completes and disappear. We need to 13869 * ensure that reference to eager is valid after 13870 * we get out of eager's perimeter. So we do 13871 * an extra refhold. 13872 */ 13873 CONN_INC_REF(connp); 13874 13875 /* 13876 * The listener also exists because of the refhold 13877 * done in tcp_conn_request. Its possible that it 13878 * might have closed. We will check that once we 13879 * get inside listeners context. 13880 */ 13881 CONN_INC_REF(listener->tcp_connp); 13882 if (listener->tcp_connp->conn_sqp == 13883 connp->conn_sqp) { 13884 tcp_send_conn_ind(listener->tcp_connp, mp, 13885 listener->tcp_connp->conn_sqp); 13886 CONN_DEC_REF(listener->tcp_connp); 13887 } else if (!tcp->tcp_loopback) { 13888 squeue_fill(listener->tcp_connp->conn_sqp, mp, 13889 tcp_send_conn_ind, 13890 listener->tcp_connp, SQTAG_TCP_CONN_IND); 13891 } else { 13892 squeue_enter(listener->tcp_connp->conn_sqp, mp, 13893 tcp_send_conn_ind, listener->tcp_connp, 13894 SQTAG_TCP_CONN_IND); 13895 } 13896 } 13897 13898 if (tcp->tcp_active_open) { 13899 /* 13900 * We are seeing the final ack in the three way 13901 * hand shake of a active open'ed connection 13902 * so we must send up a T_CONN_CON 13903 */ 13904 if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) { 13905 freemsg(mp); 13906 return; 13907 } 13908 /* 13909 * Don't fuse the loopback endpoints for 13910 * simultaneous active opens. 13911 */ 13912 if (tcp->tcp_loopback) { 13913 TCP_STAT(tcp_fusion_unfusable); 13914 tcp->tcp_unfusable = B_TRUE; 13915 } 13916 } 13917 13918 tcp->tcp_suna = tcp->tcp_iss + 1; /* One for the SYN */ 13919 bytes_acked--; 13920 /* SYN was acked - making progress */ 13921 if (tcp->tcp_ipversion == IPV6_VERSION) 13922 tcp->tcp_ip_forward_progress = B_TRUE; 13923 13924 /* 13925 * If SYN was retransmitted, need to reset all 13926 * retransmission info as this segment will be 13927 * treated as a dup ACK. 13928 */ 13929 if (tcp->tcp_rexmit) { 13930 tcp->tcp_rexmit = B_FALSE; 13931 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 13932 tcp->tcp_rexmit_max = tcp->tcp_snxt; 13933 tcp->tcp_snd_burst = tcp->tcp_localnet ? 13934 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 13935 tcp->tcp_ms_we_have_waited = 0; 13936 tcp->tcp_cwnd = mss; 13937 } 13938 13939 /* 13940 * We set the send window to zero here. 13941 * This is needed if there is data to be 13942 * processed already on the queue. 13943 * Later (at swnd_update label), the 13944 * "new_swnd > tcp_swnd" condition is satisfied 13945 * the XMIT_NEEDED flag is set in the current 13946 * (SYN_RCVD) state. This ensures tcp_wput_data() is 13947 * called if there is already data on queue in 13948 * this state. 13949 */ 13950 tcp->tcp_swnd = 0; 13951 13952 if (new_swnd > tcp->tcp_max_swnd) 13953 tcp->tcp_max_swnd = new_swnd; 13954 tcp->tcp_swl1 = seg_seq; 13955 tcp->tcp_swl2 = seg_ack; 13956 tcp->tcp_state = TCPS_ESTABLISHED; 13957 tcp->tcp_valid_bits &= ~TCP_ISS_VALID; 13958 13959 /* Fuse when both sides are in ESTABLISHED state */ 13960 if (tcp->tcp_loopback && do_tcp_fusion) 13961 tcp_fuse(tcp, iphdr, tcph); 13962 13963 } 13964 /* This code follows 4.4BSD-Lite2 mostly. */ 13965 if (bytes_acked < 0) 13966 goto est; 13967 13968 /* 13969 * If TCP is ECN capable and the congestion experience bit is 13970 * set, reduce tcp_cwnd and tcp_ssthresh. But this should only be 13971 * done once per window (or more loosely, per RTT). 13972 */ 13973 if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max)) 13974 tcp->tcp_cwr = B_FALSE; 13975 if (tcp->tcp_ecn_ok && (flags & TH_ECE)) { 13976 if (!tcp->tcp_cwr) { 13977 npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss; 13978 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss; 13979 tcp->tcp_cwnd = npkt * mss; 13980 /* 13981 * If the cwnd is 0, use the timer to clock out 13982 * new segments. This is required by the ECN spec. 13983 */ 13984 if (npkt == 0) { 13985 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 13986 /* 13987 * This makes sure that when the ACK comes 13988 * back, we will increase tcp_cwnd by 1 MSS. 13989 */ 13990 tcp->tcp_cwnd_cnt = 0; 13991 } 13992 tcp->tcp_cwr = B_TRUE; 13993 /* 13994 * This marks the end of the current window of in 13995 * flight data. That is why we don't use 13996 * tcp_suna + tcp_swnd. Only data in flight can 13997 * provide ECN info. 13998 */ 13999 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14000 tcp->tcp_ecn_cwr_sent = B_FALSE; 14001 } 14002 } 14003 14004 mp1 = tcp->tcp_xmit_head; 14005 if (bytes_acked == 0) { 14006 if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) { 14007 int dupack_cnt; 14008 14009 BUMP_MIB(&tcp_mib, tcpInDupAck); 14010 /* 14011 * Fast retransmit. When we have seen exactly three 14012 * identical ACKs while we have unacked data 14013 * outstanding we take it as a hint that our peer 14014 * dropped something. 14015 * 14016 * If TCP is retransmitting, don't do fast retransmit. 14017 */ 14018 if (mp1 && tcp->tcp_suna != tcp->tcp_snxt && 14019 ! tcp->tcp_rexmit) { 14020 /* Do Limited Transmit */ 14021 if ((dupack_cnt = ++tcp->tcp_dupack_cnt) < 14022 tcp_dupack_fast_retransmit) { 14023 /* 14024 * RFC 3042 14025 * 14026 * What we need to do is temporarily 14027 * increase tcp_cwnd so that new 14028 * data can be sent if it is allowed 14029 * by the receive window (tcp_rwnd). 14030 * tcp_wput_data() will take care of 14031 * the rest. 14032 * 14033 * If the connection is SACK capable, 14034 * only do limited xmit when there 14035 * is SACK info. 14036 * 14037 * Note how tcp_cwnd is incremented. 14038 * The first dup ACK will increase 14039 * it by 1 MSS. The second dup ACK 14040 * will increase it by 2 MSS. This 14041 * means that only 1 new segment will 14042 * be sent for each dup ACK. 14043 */ 14044 if (tcp->tcp_unsent > 0 && 14045 (!tcp->tcp_snd_sack_ok || 14046 (tcp->tcp_snd_sack_ok && 14047 tcp->tcp_notsack_list != NULL))) { 14048 tcp->tcp_cwnd += mss << 14049 (tcp->tcp_dupack_cnt - 1); 14050 flags |= TH_LIMIT_XMIT; 14051 } 14052 } else if (dupack_cnt == 14053 tcp_dupack_fast_retransmit) { 14054 14055 /* 14056 * If we have reduced tcp_ssthresh 14057 * because of ECN, do not reduce it again 14058 * unless it is already one window of data 14059 * away. After one window of data, tcp_cwr 14060 * should then be cleared. Note that 14061 * for non ECN capable connection, tcp_cwr 14062 * should always be false. 14063 * 14064 * Adjust cwnd since the duplicate 14065 * ack indicates that a packet was 14066 * dropped (due to congestion.) 14067 */ 14068 if (!tcp->tcp_cwr) { 14069 npkt = ((tcp->tcp_snxt - 14070 tcp->tcp_suna) >> 1) / mss; 14071 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 14072 mss; 14073 tcp->tcp_cwnd = (npkt + 14074 tcp->tcp_dupack_cnt) * mss; 14075 } 14076 if (tcp->tcp_ecn_ok) { 14077 tcp->tcp_cwr = B_TRUE; 14078 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 14079 tcp->tcp_ecn_cwr_sent = B_FALSE; 14080 } 14081 14082 /* 14083 * We do Hoe's algorithm. Refer to her 14084 * paper "Improving the Start-up Behavior 14085 * of a Congestion Control Scheme for TCP," 14086 * appeared in SIGCOMM'96. 14087 * 14088 * Save highest seq no we have sent so far. 14089 * Be careful about the invisible FIN byte. 14090 */ 14091 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 14092 (tcp->tcp_unsent == 0)) { 14093 tcp->tcp_rexmit_max = tcp->tcp_fss; 14094 } else { 14095 tcp->tcp_rexmit_max = tcp->tcp_snxt; 14096 } 14097 14098 /* 14099 * Do not allow bursty traffic during. 14100 * fast recovery. Refer to Fall and Floyd's 14101 * paper "Simulation-based Comparisons of 14102 * Tahoe, Reno and SACK TCP" (in CCR?) 14103 * This is a best current practise. 14104 */ 14105 tcp->tcp_snd_burst = TCP_CWND_SS; 14106 14107 /* 14108 * For SACK: 14109 * Calculate tcp_pipe, which is the 14110 * estimated number of bytes in 14111 * network. 14112 * 14113 * tcp_fack is the highest sack'ed seq num 14114 * TCP has received. 14115 * 14116 * tcp_pipe is explained in the above quoted 14117 * Fall and Floyd's paper. tcp_fack is 14118 * explained in Mathis and Mahdavi's 14119 * "Forward Acknowledgment: Refining TCP 14120 * Congestion Control" in SIGCOMM '96. 14121 */ 14122 if (tcp->tcp_snd_sack_ok) { 14123 ASSERT(tcp->tcp_sack_info != NULL); 14124 if (tcp->tcp_notsack_list != NULL) { 14125 tcp->tcp_pipe = tcp->tcp_snxt - 14126 tcp->tcp_fack; 14127 tcp->tcp_sack_snxt = seg_ack; 14128 flags |= TH_NEED_SACK_REXMIT; 14129 } else { 14130 /* 14131 * Always initialize tcp_pipe 14132 * even though we don't have 14133 * any SACK info. If later 14134 * we get SACK info and 14135 * tcp_pipe is not initialized, 14136 * funny things will happen. 14137 */ 14138 tcp->tcp_pipe = 14139 tcp->tcp_cwnd_ssthresh; 14140 } 14141 } else { 14142 flags |= TH_REXMIT_NEEDED; 14143 } /* tcp_snd_sack_ok */ 14144 14145 } else { 14146 /* 14147 * Here we perform congestion 14148 * avoidance, but NOT slow start. 14149 * This is known as the Fast 14150 * Recovery Algorithm. 14151 */ 14152 if (tcp->tcp_snd_sack_ok && 14153 tcp->tcp_notsack_list != NULL) { 14154 flags |= TH_NEED_SACK_REXMIT; 14155 tcp->tcp_pipe -= mss; 14156 if (tcp->tcp_pipe < 0) 14157 tcp->tcp_pipe = 0; 14158 } else { 14159 /* 14160 * We know that one more packet has 14161 * left the pipe thus we can update 14162 * cwnd. 14163 */ 14164 cwnd = tcp->tcp_cwnd + mss; 14165 if (cwnd > tcp->tcp_cwnd_max) 14166 cwnd = tcp->tcp_cwnd_max; 14167 tcp->tcp_cwnd = cwnd; 14168 if (tcp->tcp_unsent > 0) 14169 flags |= TH_XMIT_NEEDED; 14170 } 14171 } 14172 } 14173 } else if (tcp->tcp_zero_win_probe) { 14174 /* 14175 * If the window has opened, need to arrange 14176 * to send additional data. 14177 */ 14178 if (new_swnd != 0) { 14179 /* tcp_suna != tcp_snxt */ 14180 /* Packet contains a window update */ 14181 BUMP_MIB(&tcp_mib, tcpInWinUpdate); 14182 tcp->tcp_zero_win_probe = 0; 14183 tcp->tcp_timer_backoff = 0; 14184 tcp->tcp_ms_we_have_waited = 0; 14185 14186 /* 14187 * Transmit starting with tcp_suna since 14188 * the one byte probe is not ack'ed. 14189 * If TCP has sent more than one identical 14190 * probe, tcp_rexmit will be set. That means 14191 * tcp_ss_rexmit() will send out the one 14192 * byte along with new data. Otherwise, 14193 * fake the retransmission. 14194 */ 14195 flags |= TH_XMIT_NEEDED; 14196 if (!tcp->tcp_rexmit) { 14197 tcp->tcp_rexmit = B_TRUE; 14198 tcp->tcp_dupack_cnt = 0; 14199 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 14200 tcp->tcp_rexmit_max = tcp->tcp_suna + 1; 14201 } 14202 } 14203 } 14204 goto swnd_update; 14205 } 14206 14207 /* 14208 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73. 14209 * If the ACK value acks something that we have not yet sent, it might 14210 * be an old duplicate segment. Send an ACK to re-synchronize the 14211 * other side. 14212 * Note: reset in response to unacceptable ACK in SYN_RECEIVE 14213 * state is handled above, so we can always just drop the segment and 14214 * send an ACK here. 14215 * 14216 * Should we send ACKs in response to ACK only segments? 14217 */ 14218 if (SEQ_GT(seg_ack, tcp->tcp_snxt)) { 14219 BUMP_MIB(&tcp_mib, tcpInAckUnsent); 14220 /* drop the received segment */ 14221 freemsg(mp); 14222 14223 /* 14224 * Send back an ACK. If tcp_drop_ack_unsent_cnt is 14225 * greater than 0, check if the number of such 14226 * bogus ACks is greater than that count. If yes, 14227 * don't send back any ACK. This prevents TCP from 14228 * getting into an ACK storm if somehow an attacker 14229 * successfully spoofs an acceptable segment to our 14230 * peer. 14231 */ 14232 if (tcp_drop_ack_unsent_cnt > 0 && 14233 ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) { 14234 TCP_STAT(tcp_in_ack_unsent_drop); 14235 return; 14236 } 14237 mp = tcp_ack_mp(tcp); 14238 if (mp != NULL) { 14239 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 14240 BUMP_LOCAL(tcp->tcp_obsegs); 14241 BUMP_MIB(&tcp_mib, tcpOutAck); 14242 tcp_send_data(tcp, tcp->tcp_wq, mp); 14243 } 14244 return; 14245 } 14246 14247 /* 14248 * TCP gets a new ACK, update the notsack'ed list to delete those 14249 * blocks that are covered by this ACK. 14250 */ 14251 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 14252 tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack, 14253 &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list)); 14254 } 14255 14256 /* 14257 * If we got an ACK after fast retransmit, check to see 14258 * if it is a partial ACK. If it is not and the congestion 14259 * window was inflated to account for the other side's 14260 * cached packets, retract it. If it is, do Hoe's algorithm. 14261 */ 14262 if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) { 14263 ASSERT(tcp->tcp_rexmit == B_FALSE); 14264 if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) { 14265 tcp->tcp_dupack_cnt = 0; 14266 /* 14267 * Restore the orig tcp_cwnd_ssthresh after 14268 * fast retransmit phase. 14269 */ 14270 if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) { 14271 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh; 14272 } 14273 tcp->tcp_rexmit_max = seg_ack; 14274 tcp->tcp_cwnd_cnt = 0; 14275 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14276 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14277 14278 /* 14279 * Remove all notsack info to avoid confusion with 14280 * the next fast retrasnmit/recovery phase. 14281 */ 14282 if (tcp->tcp_snd_sack_ok && 14283 tcp->tcp_notsack_list != NULL) { 14284 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 14285 } 14286 } else { 14287 if (tcp->tcp_snd_sack_ok && 14288 tcp->tcp_notsack_list != NULL) { 14289 flags |= TH_NEED_SACK_REXMIT; 14290 tcp->tcp_pipe -= mss; 14291 if (tcp->tcp_pipe < 0) 14292 tcp->tcp_pipe = 0; 14293 } else { 14294 /* 14295 * Hoe's algorithm: 14296 * 14297 * Retransmit the unack'ed segment and 14298 * restart fast recovery. Note that we 14299 * need to scale back tcp_cwnd to the 14300 * original value when we started fast 14301 * recovery. This is to prevent overly 14302 * aggressive behaviour in sending new 14303 * segments. 14304 */ 14305 tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh + 14306 tcp_dupack_fast_retransmit * mss; 14307 tcp->tcp_cwnd_cnt = tcp->tcp_cwnd; 14308 flags |= TH_REXMIT_NEEDED; 14309 } 14310 } 14311 } else { 14312 tcp->tcp_dupack_cnt = 0; 14313 if (tcp->tcp_rexmit) { 14314 /* 14315 * TCP is retranmitting. If the ACK ack's all 14316 * outstanding data, update tcp_rexmit_max and 14317 * tcp_rexmit_nxt. Otherwise, update tcp_rexmit_nxt 14318 * to the correct value. 14319 * 14320 * Note that SEQ_LEQ() is used. This is to avoid 14321 * unnecessary fast retransmit caused by dup ACKs 14322 * received when TCP does slow start retransmission 14323 * after a time out. During this phase, TCP may 14324 * send out segments which are already received. 14325 * This causes dup ACKs to be sent back. 14326 */ 14327 if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) { 14328 if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) { 14329 tcp->tcp_rexmit_nxt = seg_ack; 14330 } 14331 if (seg_ack != tcp->tcp_rexmit_max) { 14332 flags |= TH_XMIT_NEEDED; 14333 } 14334 } else { 14335 tcp->tcp_rexmit = B_FALSE; 14336 tcp->tcp_xmit_zc_clean = B_FALSE; 14337 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 14338 tcp->tcp_snd_burst = tcp->tcp_localnet ? 14339 TCP_CWND_INFINITE : TCP_CWND_NORMAL; 14340 } 14341 tcp->tcp_ms_we_have_waited = 0; 14342 } 14343 } 14344 14345 BUMP_MIB(&tcp_mib, tcpInAckSegs); 14346 UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked); 14347 tcp->tcp_suna = seg_ack; 14348 if (tcp->tcp_zero_win_probe != 0) { 14349 tcp->tcp_zero_win_probe = 0; 14350 tcp->tcp_timer_backoff = 0; 14351 } 14352 14353 /* 14354 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed. 14355 * Note that it cannot be the SYN being ack'ed. The code flow 14356 * will not reach here. 14357 */ 14358 if (mp1 == NULL) { 14359 goto fin_acked; 14360 } 14361 14362 /* 14363 * Update the congestion window. 14364 * 14365 * If TCP is not ECN capable or TCP is ECN capable but the 14366 * congestion experience bit is not set, increase the tcp_cwnd as 14367 * usual. 14368 */ 14369 if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) { 14370 cwnd = tcp->tcp_cwnd; 14371 add = mss; 14372 14373 if (cwnd >= tcp->tcp_cwnd_ssthresh) { 14374 /* 14375 * This is to prevent an increase of less than 1 MSS of 14376 * tcp_cwnd. With partial increase, tcp_wput_data() 14377 * may send out tinygrams in order to preserve mblk 14378 * boundaries. 14379 * 14380 * By initializing tcp_cwnd_cnt to new tcp_cwnd and 14381 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is 14382 * increased by 1 MSS for every RTTs. 14383 */ 14384 if (tcp->tcp_cwnd_cnt <= 0) { 14385 tcp->tcp_cwnd_cnt = cwnd + add; 14386 } else { 14387 tcp->tcp_cwnd_cnt -= add; 14388 add = 0; 14389 } 14390 } 14391 tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max); 14392 } 14393 14394 /* See if the latest urgent data has been acknowledged */ 14395 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 14396 SEQ_GT(seg_ack, tcp->tcp_urg)) 14397 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 14398 14399 /* Can we update the RTT estimates? */ 14400 if (tcp->tcp_snd_ts_ok) { 14401 /* Ignore zero timestamp echo-reply. */ 14402 if (tcpopt.tcp_opt_ts_ecr != 0) { 14403 tcp_set_rto(tcp, (int32_t)lbolt - 14404 (int32_t)tcpopt.tcp_opt_ts_ecr); 14405 } 14406 14407 /* If needed, restart the timer. */ 14408 if (tcp->tcp_set_timer == 1) { 14409 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14410 tcp->tcp_set_timer = 0; 14411 } 14412 /* 14413 * Update tcp_csuna in case the other side stops sending 14414 * us timestamps. 14415 */ 14416 tcp->tcp_csuna = tcp->tcp_snxt; 14417 } else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) { 14418 /* 14419 * An ACK sequence we haven't seen before, so get the RTT 14420 * and update the RTO. But first check if the timestamp is 14421 * valid to use. 14422 */ 14423 if ((mp1->b_next != NULL) && 14424 SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next))) 14425 tcp_set_rto(tcp, (int32_t)lbolt - 14426 (int32_t)(intptr_t)mp1->b_prev); 14427 else 14428 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14429 14430 /* Remeber the last sequence to be ACKed */ 14431 tcp->tcp_csuna = seg_ack; 14432 if (tcp->tcp_set_timer == 1) { 14433 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 14434 tcp->tcp_set_timer = 0; 14435 } 14436 } else { 14437 BUMP_MIB(&tcp_mib, tcpRttNoUpdate); 14438 } 14439 14440 /* Eat acknowledged bytes off the xmit queue. */ 14441 for (;;) { 14442 mblk_t *mp2; 14443 uchar_t *wptr; 14444 14445 wptr = mp1->b_wptr; 14446 ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX); 14447 bytes_acked -= (int)(wptr - mp1->b_rptr); 14448 if (bytes_acked < 0) { 14449 mp1->b_rptr = wptr + bytes_acked; 14450 /* 14451 * Set a new timestamp if all the bytes timed by the 14452 * old timestamp have been ack'ed. 14453 */ 14454 if (SEQ_GT(seg_ack, 14455 (uint32_t)(uintptr_t)(mp1->b_next))) { 14456 mp1->b_prev = (mblk_t *)(uintptr_t)lbolt; 14457 mp1->b_next = NULL; 14458 } 14459 break; 14460 } 14461 mp1->b_next = NULL; 14462 mp1->b_prev = NULL; 14463 mp2 = mp1; 14464 mp1 = mp1->b_cont; 14465 14466 /* 14467 * This notification is required for some zero-copy 14468 * clients to maintain a copy semantic. After the data 14469 * is ack'ed, client is safe to modify or reuse the buffer. 14470 */ 14471 if (tcp->tcp_snd_zcopy_aware && 14472 (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 14473 tcp_zcopy_notify(tcp); 14474 freeb(mp2); 14475 if (bytes_acked == 0) { 14476 if (mp1 == NULL) { 14477 /* Everything is ack'ed, clear the tail. */ 14478 tcp->tcp_xmit_tail = NULL; 14479 /* 14480 * Cancel the timer unless we are still 14481 * waiting for an ACK for the FIN packet. 14482 */ 14483 if (tcp->tcp_timer_tid != 0 && 14484 tcp->tcp_snxt == tcp->tcp_suna) { 14485 (void) TCP_TIMER_CANCEL(tcp, 14486 tcp->tcp_timer_tid); 14487 tcp->tcp_timer_tid = 0; 14488 } 14489 goto pre_swnd_update; 14490 } 14491 if (mp2 != tcp->tcp_xmit_tail) 14492 break; 14493 tcp->tcp_xmit_tail = mp1; 14494 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 14495 (uintptr_t)INT_MAX); 14496 tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr - 14497 mp1->b_rptr); 14498 break; 14499 } 14500 if (mp1 == NULL) { 14501 /* 14502 * More was acked but there is nothing more 14503 * outstanding. This means that the FIN was 14504 * just acked or that we're talking to a clown. 14505 */ 14506 fin_acked: 14507 ASSERT(tcp->tcp_fin_sent); 14508 tcp->tcp_xmit_tail = NULL; 14509 if (tcp->tcp_fin_sent) { 14510 /* FIN was acked - making progress */ 14511 if (tcp->tcp_ipversion == IPV6_VERSION && 14512 !tcp->tcp_fin_acked) 14513 tcp->tcp_ip_forward_progress = B_TRUE; 14514 tcp->tcp_fin_acked = B_TRUE; 14515 if (tcp->tcp_linger_tid != 0 && 14516 TCP_TIMER_CANCEL(tcp, 14517 tcp->tcp_linger_tid) >= 0) { 14518 tcp_stop_lingering(tcp); 14519 } 14520 } else { 14521 /* 14522 * We should never get here because 14523 * we have already checked that the 14524 * number of bytes ack'ed should be 14525 * smaller than or equal to what we 14526 * have sent so far (it is the 14527 * acceptability check of the ACK). 14528 * We can only get here if the send 14529 * queue is corrupted. 14530 * 14531 * Terminate the connection and 14532 * panic the system. It is better 14533 * for us to panic instead of 14534 * continuing to avoid other disaster. 14535 */ 14536 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 14537 tcp->tcp_rnxt, TH_RST|TH_ACK); 14538 panic("Memory corruption " 14539 "detected for connection %s.", 14540 tcp_display(tcp, NULL, 14541 DISP_ADDR_AND_PORT)); 14542 /*NOTREACHED*/ 14543 } 14544 goto pre_swnd_update; 14545 } 14546 ASSERT(mp2 != tcp->tcp_xmit_tail); 14547 } 14548 if (tcp->tcp_unsent) { 14549 flags |= TH_XMIT_NEEDED; 14550 } 14551 pre_swnd_update: 14552 tcp->tcp_xmit_head = mp1; 14553 swnd_update: 14554 /* 14555 * The following check is different from most other implementations. 14556 * For bi-directional transfer, when segments are dropped, the 14557 * "normal" check will not accept a window update in those 14558 * retransmitted segemnts. Failing to do that, TCP may send out 14559 * segments which are outside receiver's window. As TCP accepts 14560 * the ack in those retransmitted segments, if the window update in 14561 * the same segment is not accepted, TCP will incorrectly calculates 14562 * that it can send more segments. This can create a deadlock 14563 * with the receiver if its window becomes zero. 14564 */ 14565 if (SEQ_LT(tcp->tcp_swl2, seg_ack) || 14566 SEQ_LT(tcp->tcp_swl1, seg_seq) || 14567 (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) { 14568 /* 14569 * The criteria for update is: 14570 * 14571 * 1. the segment acknowledges some data. Or 14572 * 2. the segment is new, i.e. it has a higher seq num. Or 14573 * 3. the segment is not old and the advertised window is 14574 * larger than the previous advertised window. 14575 */ 14576 if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd) 14577 flags |= TH_XMIT_NEEDED; 14578 tcp->tcp_swnd = new_swnd; 14579 if (new_swnd > tcp->tcp_max_swnd) 14580 tcp->tcp_max_swnd = new_swnd; 14581 tcp->tcp_swl1 = seg_seq; 14582 tcp->tcp_swl2 = seg_ack; 14583 } 14584 est: 14585 if (tcp->tcp_state > TCPS_ESTABLISHED) { 14586 14587 switch (tcp->tcp_state) { 14588 case TCPS_FIN_WAIT_1: 14589 if (tcp->tcp_fin_acked) { 14590 tcp->tcp_state = TCPS_FIN_WAIT_2; 14591 /* 14592 * We implement the non-standard BSD/SunOS 14593 * FIN_WAIT_2 flushing algorithm. 14594 * If there is no user attached to this 14595 * TCP endpoint, then this TCP struct 14596 * could hang around forever in FIN_WAIT_2 14597 * state if the peer forgets to send us 14598 * a FIN. To prevent this, we wait only 14599 * 2*MSL (a convenient time value) for 14600 * the FIN to arrive. If it doesn't show up, 14601 * we flush the TCP endpoint. This algorithm, 14602 * though a violation of RFC-793, has worked 14603 * for over 10 years in BSD systems. 14604 * Note: SunOS 4.x waits 675 seconds before 14605 * flushing the FIN_WAIT_2 connection. 14606 */ 14607 TCP_TIMER_RESTART(tcp, 14608 tcp_fin_wait_2_flush_interval); 14609 } 14610 break; 14611 case TCPS_FIN_WAIT_2: 14612 break; /* Shutdown hook? */ 14613 case TCPS_LAST_ACK: 14614 freemsg(mp); 14615 if (tcp->tcp_fin_acked) { 14616 (void) tcp_clean_death(tcp, 0, 19); 14617 return; 14618 } 14619 goto xmit_check; 14620 case TCPS_CLOSING: 14621 if (tcp->tcp_fin_acked) { 14622 tcp->tcp_state = TCPS_TIME_WAIT; 14623 /* 14624 * Unconditionally clear the exclusive binding 14625 * bit so this TIME-WAIT connection won't 14626 * interfere with new ones. 14627 */ 14628 tcp->tcp_exclbind = 0; 14629 if (!TCP_IS_DETACHED(tcp)) { 14630 TCP_TIMER_RESTART(tcp, 14631 tcp_time_wait_interval); 14632 } else { 14633 tcp_time_wait_append(tcp); 14634 TCP_DBGSTAT(tcp_rput_time_wait); 14635 } 14636 } 14637 /*FALLTHRU*/ 14638 case TCPS_CLOSE_WAIT: 14639 freemsg(mp); 14640 goto xmit_check; 14641 default: 14642 ASSERT(tcp->tcp_state != TCPS_TIME_WAIT); 14643 break; 14644 } 14645 } 14646 if (flags & TH_FIN) { 14647 /* Make sure we ack the fin */ 14648 flags |= TH_ACK_NEEDED; 14649 if (!tcp->tcp_fin_rcvd) { 14650 tcp->tcp_fin_rcvd = B_TRUE; 14651 tcp->tcp_rnxt++; 14652 tcph = tcp->tcp_tcph; 14653 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14654 14655 /* 14656 * Generate the ordrel_ind at the end unless we 14657 * are an eager guy. 14658 * In the eager case tcp_rsrv will do this when run 14659 * after tcp_accept is done. 14660 */ 14661 if (tcp->tcp_listener == NULL && 14662 !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding)) 14663 flags |= TH_ORDREL_NEEDED; 14664 switch (tcp->tcp_state) { 14665 case TCPS_SYN_RCVD: 14666 case TCPS_ESTABLISHED: 14667 tcp->tcp_state = TCPS_CLOSE_WAIT; 14668 /* Keepalive? */ 14669 break; 14670 case TCPS_FIN_WAIT_1: 14671 if (!tcp->tcp_fin_acked) { 14672 tcp->tcp_state = TCPS_CLOSING; 14673 break; 14674 } 14675 /* FALLTHRU */ 14676 case TCPS_FIN_WAIT_2: 14677 tcp->tcp_state = TCPS_TIME_WAIT; 14678 /* 14679 * Unconditionally clear the exclusive binding 14680 * bit so this TIME-WAIT connection won't 14681 * interfere with new ones. 14682 */ 14683 tcp->tcp_exclbind = 0; 14684 if (!TCP_IS_DETACHED(tcp)) { 14685 TCP_TIMER_RESTART(tcp, 14686 tcp_time_wait_interval); 14687 } else { 14688 tcp_time_wait_append(tcp); 14689 TCP_DBGSTAT(tcp_rput_time_wait); 14690 } 14691 if (seg_len) { 14692 /* 14693 * implies data piggybacked on FIN. 14694 * break to handle data. 14695 */ 14696 break; 14697 } 14698 freemsg(mp); 14699 goto ack_check; 14700 } 14701 } 14702 } 14703 if (mp == NULL) 14704 goto xmit_check; 14705 if (seg_len == 0) { 14706 freemsg(mp); 14707 goto xmit_check; 14708 } 14709 if (mp->b_rptr == mp->b_wptr) { 14710 /* 14711 * The header has been consumed, so we remove the 14712 * zero-length mblk here. 14713 */ 14714 mp1 = mp; 14715 mp = mp->b_cont; 14716 freeb(mp1); 14717 } 14718 tcph = tcp->tcp_tcph; 14719 tcp->tcp_rack_cnt++; 14720 { 14721 uint32_t cur_max; 14722 14723 cur_max = tcp->tcp_rack_cur_max; 14724 if (tcp->tcp_rack_cnt >= cur_max) { 14725 /* 14726 * We have more unacked data than we should - send 14727 * an ACK now. 14728 */ 14729 flags |= TH_ACK_NEEDED; 14730 cur_max++; 14731 if (cur_max > tcp->tcp_rack_abs_max) 14732 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 14733 else 14734 tcp->tcp_rack_cur_max = cur_max; 14735 } else if (TCP_IS_DETACHED(tcp)) { 14736 /* We don't have an ACK timer for detached TCP. */ 14737 flags |= TH_ACK_NEEDED; 14738 } else if (seg_len < mss) { 14739 /* 14740 * If we get a segment that is less than an mss, and we 14741 * already have unacknowledged data, and the amount 14742 * unacknowledged is not a multiple of mss, then we 14743 * better generate an ACK now. Otherwise, this may be 14744 * the tail piece of a transaction, and we would rather 14745 * wait for the response. 14746 */ 14747 uint32_t udif; 14748 ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <= 14749 (uintptr_t)INT_MAX); 14750 udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack); 14751 if (udif && (udif % mss)) 14752 flags |= TH_ACK_NEEDED; 14753 else 14754 flags |= TH_ACK_TIMER_NEEDED; 14755 } else { 14756 /* Start delayed ack timer */ 14757 flags |= TH_ACK_TIMER_NEEDED; 14758 } 14759 } 14760 tcp->tcp_rnxt += seg_len; 14761 U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack); 14762 14763 /* Update SACK list */ 14764 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 14765 tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt, 14766 &(tcp->tcp_num_sack_blk)); 14767 } 14768 14769 if (tcp->tcp_urp_mp) { 14770 tcp->tcp_urp_mp->b_cont = mp; 14771 mp = tcp->tcp_urp_mp; 14772 tcp->tcp_urp_mp = NULL; 14773 /* Ready for a new signal. */ 14774 tcp->tcp_urp_last_valid = B_FALSE; 14775 #ifdef DEBUG 14776 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14777 "tcp_rput: sending exdata_ind %s", 14778 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14779 #endif /* DEBUG */ 14780 } 14781 14782 /* 14783 * Check for ancillary data changes compared to last segment. 14784 */ 14785 if (tcp->tcp_ipv6_recvancillary != 0) { 14786 mp = tcp_rput_add_ancillary(tcp, mp, &ipp); 14787 if (mp == NULL) 14788 return; 14789 } 14790 14791 if (tcp->tcp_listener || tcp->tcp_hard_binding) { 14792 /* 14793 * Side queue inbound data until the accept happens. 14794 * tcp_accept/tcp_rput drains this when the accept happens. 14795 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or 14796 * T_EXDATA_IND) it is queued on b_next. 14797 * XXX Make urgent data use this. Requires: 14798 * Removing tcp_listener check for TH_URG 14799 * Making M_PCPROTO and MARK messages skip the eager case 14800 */ 14801 14802 if (tcp->tcp_kssl_pending) { 14803 tcp_kssl_input(tcp, mp); 14804 } else { 14805 tcp_rcv_enqueue(tcp, mp, seg_len); 14806 } 14807 } else { 14808 if (mp->b_datap->db_type != M_DATA || 14809 (flags & TH_MARKNEXT_NEEDED)) { 14810 if (tcp->tcp_rcv_list != NULL) { 14811 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14812 } 14813 ASSERT(tcp->tcp_rcv_list == NULL || 14814 tcp->tcp_fused_sigurg); 14815 if (flags & TH_MARKNEXT_NEEDED) { 14816 #ifdef DEBUG 14817 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14818 "tcp_rput: sending MSGMARKNEXT %s", 14819 tcp_display(tcp, NULL, 14820 DISP_PORT_ONLY)); 14821 #endif /* DEBUG */ 14822 mp->b_flag |= MSGMARKNEXT; 14823 flags &= ~TH_MARKNEXT_NEEDED; 14824 } 14825 14826 /* Does this need SSL processing first? */ 14827 if ((tcp->tcp_kssl_ctx != NULL) && 14828 (DB_TYPE(mp) == M_DATA)) { 14829 tcp_kssl_input(tcp, mp); 14830 } else { 14831 putnext(tcp->tcp_rq, mp); 14832 if (!canputnext(tcp->tcp_rq)) 14833 tcp->tcp_rwnd -= seg_len; 14834 } 14835 } else if ((flags & (TH_PUSH|TH_FIN)) || 14836 tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) { 14837 if (tcp->tcp_rcv_list != NULL) { 14838 /* 14839 * Enqueue the new segment first and then 14840 * call tcp_rcv_drain() to send all data 14841 * up. The other way to do this is to 14842 * send all queued data up and then call 14843 * putnext() to send the new segment up. 14844 * This way can remove the else part later 14845 * on. 14846 * 14847 * We don't this to avoid one more call to 14848 * canputnext() as tcp_rcv_drain() needs to 14849 * call canputnext(). 14850 */ 14851 tcp_rcv_enqueue(tcp, mp, seg_len); 14852 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14853 } else { 14854 /* Does this need SSL processing first? */ 14855 if ((tcp->tcp_kssl_ctx != NULL) && 14856 (DB_TYPE(mp) == M_DATA)) { 14857 tcp_kssl_input(tcp, mp); 14858 } else { 14859 putnext(tcp->tcp_rq, mp); 14860 if (!canputnext(tcp->tcp_rq)) 14861 tcp->tcp_rwnd -= seg_len; 14862 } 14863 } 14864 } else { 14865 /* 14866 * Enqueue all packets when processing an mblk 14867 * from the co queue and also enqueue normal packets. 14868 */ 14869 tcp_rcv_enqueue(tcp, mp, seg_len); 14870 } 14871 /* 14872 * Make sure the timer is running if we have data waiting 14873 * for a push bit. This provides resiliency against 14874 * implementations that do not correctly generate push bits. 14875 */ 14876 if (tcp->tcp_rcv_list != NULL && tcp->tcp_push_tid == 0) { 14877 /* 14878 * The connection may be closed at this point, so don't 14879 * do anything for a detached tcp. 14880 */ 14881 if (!TCP_IS_DETACHED(tcp)) 14882 tcp->tcp_push_tid = TCP_TIMER(tcp, 14883 tcp_push_timer, 14884 MSEC_TO_TICK(tcp_push_timer_interval)); 14885 } 14886 } 14887 xmit_check: 14888 /* Is there anything left to do? */ 14889 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 14890 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED| 14891 TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED| 14892 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14893 goto done; 14894 14895 /* Any transmit work to do and a non-zero window? */ 14896 if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT| 14897 TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) { 14898 if (flags & TH_REXMIT_NEEDED) { 14899 uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna; 14900 14901 BUMP_MIB(&tcp_mib, tcpOutFastRetrans); 14902 if (snd_size > mss) 14903 snd_size = mss; 14904 if (snd_size > tcp->tcp_swnd) 14905 snd_size = tcp->tcp_swnd; 14906 mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size, 14907 NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size, 14908 B_TRUE); 14909 14910 if (mp1 != NULL) { 14911 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14912 tcp->tcp_csuna = tcp->tcp_snxt; 14913 BUMP_MIB(&tcp_mib, tcpRetransSegs); 14914 UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size); 14915 TCP_RECORD_TRACE(tcp, mp1, 14916 TCP_TRACE_SEND_PKT); 14917 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14918 } 14919 } 14920 if (flags & TH_NEED_SACK_REXMIT) { 14921 tcp_sack_rxmit(tcp, &flags); 14922 } 14923 /* 14924 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send 14925 * out new segment. Note that tcp_rexmit should not be 14926 * set, otherwise TH_LIMIT_XMIT should not be set. 14927 */ 14928 if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) { 14929 if (!tcp->tcp_rexmit) { 14930 tcp_wput_data(tcp, NULL, B_FALSE); 14931 } else { 14932 tcp_ss_rexmit(tcp); 14933 } 14934 } 14935 /* 14936 * Adjust tcp_cwnd back to normal value after sending 14937 * new data segments. 14938 */ 14939 if (flags & TH_LIMIT_XMIT) { 14940 tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1); 14941 /* 14942 * This will restart the timer. Restarting the 14943 * timer is used to avoid a timeout before the 14944 * limited transmitted segment's ACK gets back. 14945 */ 14946 if (tcp->tcp_xmit_head != NULL) 14947 tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt; 14948 } 14949 14950 /* Anything more to do? */ 14951 if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED| 14952 TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0) 14953 goto done; 14954 } 14955 ack_check: 14956 if (flags & TH_SEND_URP_MARK) { 14957 ASSERT(tcp->tcp_urp_mark_mp); 14958 /* 14959 * Send up any queued data and then send the mark message 14960 */ 14961 if (tcp->tcp_rcv_list != NULL) { 14962 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 14963 } 14964 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 14965 14966 mp1 = tcp->tcp_urp_mark_mp; 14967 tcp->tcp_urp_mark_mp = NULL; 14968 #ifdef DEBUG 14969 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 14970 "tcp_rput: sending zero-length %s %s", 14971 ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" : 14972 "MSGNOTMARKNEXT"), 14973 tcp_display(tcp, NULL, DISP_PORT_ONLY)); 14974 #endif /* DEBUG */ 14975 putnext(tcp->tcp_rq, mp1); 14976 flags &= ~TH_SEND_URP_MARK; 14977 } 14978 if (flags & TH_ACK_NEEDED) { 14979 /* 14980 * Time to send an ack for some reason. 14981 */ 14982 mp1 = tcp_ack_mp(tcp); 14983 14984 if (mp1 != NULL) { 14985 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 14986 tcp_send_data(tcp, tcp->tcp_wq, mp1); 14987 BUMP_LOCAL(tcp->tcp_obsegs); 14988 BUMP_MIB(&tcp_mib, tcpOutAck); 14989 } 14990 if (tcp->tcp_ack_tid != 0) { 14991 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 14992 tcp->tcp_ack_tid = 0; 14993 } 14994 } 14995 if (flags & TH_ACK_TIMER_NEEDED) { 14996 /* 14997 * Arrange for deferred ACK or push wait timeout. 14998 * Start timer if it is not already running. 14999 */ 15000 if (tcp->tcp_ack_tid == 0) { 15001 tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer, 15002 MSEC_TO_TICK(tcp->tcp_localnet ? 15003 (clock_t)tcp_local_dack_interval : 15004 (clock_t)tcp_deferred_ack_interval)); 15005 } 15006 } 15007 if (flags & TH_ORDREL_NEEDED) { 15008 /* 15009 * Send up the ordrel_ind unless we are an eager guy. 15010 * In the eager case tcp_rsrv will do this when run 15011 * after tcp_accept is done. 15012 */ 15013 ASSERT(tcp->tcp_listener == NULL); 15014 if (tcp->tcp_rcv_list != NULL) { 15015 /* 15016 * Push any mblk(s) enqueued from co processing. 15017 */ 15018 flags |= tcp_rcv_drain(tcp->tcp_rq, tcp); 15019 } 15020 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15021 if ((mp1 = mi_tpi_ordrel_ind()) != NULL) { 15022 tcp->tcp_ordrel_done = B_TRUE; 15023 putnext(tcp->tcp_rq, mp1); 15024 if (tcp->tcp_deferred_clean_death) { 15025 /* 15026 * tcp_clean_death was deferred 15027 * for T_ORDREL_IND - do it now 15028 */ 15029 (void) tcp_clean_death(tcp, 15030 tcp->tcp_client_errno, 20); 15031 tcp->tcp_deferred_clean_death = B_FALSE; 15032 } 15033 } else { 15034 /* 15035 * Run the orderly release in the 15036 * service routine. 15037 */ 15038 qenable(tcp->tcp_rq); 15039 /* 15040 * Caveat(XXX): The machine may be so 15041 * overloaded that tcp_rsrv() is not scheduled 15042 * until after the endpoint has transitioned 15043 * to TCPS_TIME_WAIT 15044 * and tcp_time_wait_interval expires. Then 15045 * tcp_timer() will blow away state in tcp_t 15046 * and T_ORDREL_IND will never be delivered 15047 * upstream. Unlikely but potentially 15048 * a problem. 15049 */ 15050 } 15051 } 15052 done: 15053 ASSERT(!(flags & TH_MARKNEXT_NEEDED)); 15054 } 15055 15056 /* 15057 * This function does PAWS protection check. Returns B_TRUE if the 15058 * segment passes the PAWS test, else returns B_FALSE. 15059 */ 15060 boolean_t 15061 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp) 15062 { 15063 uint8_t flags; 15064 int options; 15065 uint8_t *up; 15066 15067 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 15068 /* 15069 * If timestamp option is aligned nicely, get values inline, 15070 * otherwise call general routine to parse. Only do that 15071 * if timestamp is the only option. 15072 */ 15073 if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH + 15074 TCPOPT_REAL_TS_LEN && 15075 OK_32PTR((up = ((uint8_t *)tcph) + 15076 TCP_MIN_HEADER_LENGTH)) && 15077 *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) { 15078 tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4)); 15079 tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8)); 15080 15081 options = TCP_OPT_TSTAMP_PRESENT; 15082 } else { 15083 if (tcp->tcp_snd_sack_ok) { 15084 tcpoptp->tcp = tcp; 15085 } else { 15086 tcpoptp->tcp = NULL; 15087 } 15088 options = tcp_parse_options(tcph, tcpoptp); 15089 } 15090 15091 if (options & TCP_OPT_TSTAMP_PRESENT) { 15092 /* 15093 * Do PAWS per RFC 1323 section 4.2. Accept RST 15094 * regardless of the timestamp, page 18 RFC 1323.bis. 15095 */ 15096 if ((flags & TH_RST) == 0 && 15097 TSTMP_LT(tcpoptp->tcp_opt_ts_val, 15098 tcp->tcp_ts_recent)) { 15099 if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt + 15100 PAWS_TIMEOUT)) { 15101 /* This segment is not acceptable. */ 15102 return (B_FALSE); 15103 } else { 15104 /* 15105 * Connection has been idle for 15106 * too long. Reset the timestamp 15107 * and assume the segment is valid. 15108 */ 15109 tcp->tcp_ts_recent = 15110 tcpoptp->tcp_opt_ts_val; 15111 } 15112 } 15113 } else { 15114 /* 15115 * If we don't get a timestamp on every packet, we 15116 * figure we can't really trust 'em, so we stop sending 15117 * and parsing them. 15118 */ 15119 tcp->tcp_snd_ts_ok = B_FALSE; 15120 15121 tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15122 tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN; 15123 tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4); 15124 tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN); 15125 if (tcp->tcp_snd_sack_ok) { 15126 ASSERT(tcp->tcp_sack_info != NULL); 15127 tcp->tcp_max_sack_blk = 4; 15128 } 15129 } 15130 return (B_TRUE); 15131 } 15132 15133 /* 15134 * Attach ancillary data to a received TCP segments for the 15135 * ancillary pieces requested by the application that are 15136 * different than they were in the previous data segment. 15137 * 15138 * Save the "current" values once memory allocation is ok so that 15139 * when memory allocation fails we can just wait for the next data segment. 15140 */ 15141 static mblk_t * 15142 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp) 15143 { 15144 struct T_optdata_ind *todi; 15145 int optlen; 15146 uchar_t *optptr; 15147 struct T_opthdr *toh; 15148 uint_t addflag; /* Which pieces to add */ 15149 mblk_t *mp1; 15150 15151 optlen = 0; 15152 addflag = 0; 15153 /* If app asked for pktinfo and the index has changed ... */ 15154 if ((ipp->ipp_fields & IPPF_IFINDEX) && 15155 ipp->ipp_ifindex != tcp->tcp_recvifindex && 15156 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) { 15157 optlen += sizeof (struct T_opthdr) + 15158 sizeof (struct in6_pktinfo); 15159 addflag |= TCP_IPV6_RECVPKTINFO; 15160 } 15161 /* If app asked for hoplimit and it has changed ... */ 15162 if ((ipp->ipp_fields & IPPF_HOPLIMIT) && 15163 ipp->ipp_hoplimit != tcp->tcp_recvhops && 15164 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) { 15165 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15166 addflag |= TCP_IPV6_RECVHOPLIMIT; 15167 } 15168 /* If app asked for tclass and it has changed ... */ 15169 if ((ipp->ipp_fields & IPPF_TCLASS) && 15170 ipp->ipp_tclass != tcp->tcp_recvtclass && 15171 (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) { 15172 optlen += sizeof (struct T_opthdr) + sizeof (uint_t); 15173 addflag |= TCP_IPV6_RECVTCLASS; 15174 } 15175 /* 15176 * If app asked for hopbyhop headers and it has changed ... 15177 * For security labels, note that (1) security labels can't change on 15178 * a connected socket at all, (2) we're connected to at most one peer, 15179 * (3) if anything changes, then it must be some other extra option. 15180 */ 15181 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) && 15182 ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen, 15183 (ipp->ipp_fields & IPPF_HOPOPTS), 15184 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) { 15185 optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen - 15186 tcp->tcp_label_len; 15187 addflag |= TCP_IPV6_RECVHOPOPTS; 15188 if (!ip_allocbuf((void **)&tcp->tcp_hopopts, 15189 &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS), 15190 ipp->ipp_hopopts, ipp->ipp_hopoptslen)) 15191 return (mp); 15192 } 15193 /* If app asked for dst headers before routing headers ... */ 15194 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) && 15195 ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen, 15196 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15197 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) { 15198 optlen += sizeof (struct T_opthdr) + 15199 ipp->ipp_rtdstoptslen; 15200 addflag |= TCP_IPV6_RECVRTDSTOPTS; 15201 if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts, 15202 &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS), 15203 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) 15204 return (mp); 15205 } 15206 /* If app asked for routing headers and it has changed ... */ 15207 if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) && 15208 ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen, 15209 (ipp->ipp_fields & IPPF_RTHDR), 15210 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) { 15211 optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen; 15212 addflag |= TCP_IPV6_RECVRTHDR; 15213 if (!ip_allocbuf((void **)&tcp->tcp_rthdr, 15214 &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR), 15215 ipp->ipp_rthdr, ipp->ipp_rthdrlen)) 15216 return (mp); 15217 } 15218 /* If app asked for dest headers and it has changed ... */ 15219 if ((tcp->tcp_ipv6_recvancillary & 15220 (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) && 15221 ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen, 15222 (ipp->ipp_fields & IPPF_DSTOPTS), 15223 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) { 15224 optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen; 15225 addflag |= TCP_IPV6_RECVDSTOPTS; 15226 if (!ip_allocbuf((void **)&tcp->tcp_dstopts, 15227 &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS), 15228 ipp->ipp_dstopts, ipp->ipp_dstoptslen)) 15229 return (mp); 15230 } 15231 15232 if (optlen == 0) { 15233 /* Nothing to add */ 15234 return (mp); 15235 } 15236 mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED); 15237 if (mp1 == NULL) { 15238 /* 15239 * Defer sending ancillary data until the next TCP segment 15240 * arrives. 15241 */ 15242 return (mp); 15243 } 15244 mp1->b_cont = mp; 15245 mp = mp1; 15246 mp->b_wptr += sizeof (*todi) + optlen; 15247 mp->b_datap->db_type = M_PROTO; 15248 todi = (struct T_optdata_ind *)mp->b_rptr; 15249 todi->PRIM_type = T_OPTDATA_IND; 15250 todi->DATA_flag = 1; /* MORE data */ 15251 todi->OPT_length = optlen; 15252 todi->OPT_offset = sizeof (*todi); 15253 optptr = (uchar_t *)&todi[1]; 15254 /* 15255 * If app asked for pktinfo and the index has changed ... 15256 * Note that the local address never changes for the connection. 15257 */ 15258 if (addflag & TCP_IPV6_RECVPKTINFO) { 15259 struct in6_pktinfo *pkti; 15260 15261 toh = (struct T_opthdr *)optptr; 15262 toh->level = IPPROTO_IPV6; 15263 toh->name = IPV6_PKTINFO; 15264 toh->len = sizeof (*toh) + sizeof (*pkti); 15265 toh->status = 0; 15266 optptr += sizeof (*toh); 15267 pkti = (struct in6_pktinfo *)optptr; 15268 if (tcp->tcp_ipversion == IPV6_VERSION) 15269 pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src; 15270 else 15271 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 15272 &pkti->ipi6_addr); 15273 pkti->ipi6_ifindex = ipp->ipp_ifindex; 15274 optptr += sizeof (*pkti); 15275 ASSERT(OK_32PTR(optptr)); 15276 /* Save as "last" value */ 15277 tcp->tcp_recvifindex = ipp->ipp_ifindex; 15278 } 15279 /* If app asked for hoplimit and it has changed ... */ 15280 if (addflag & TCP_IPV6_RECVHOPLIMIT) { 15281 toh = (struct T_opthdr *)optptr; 15282 toh->level = IPPROTO_IPV6; 15283 toh->name = IPV6_HOPLIMIT; 15284 toh->len = sizeof (*toh) + sizeof (uint_t); 15285 toh->status = 0; 15286 optptr += sizeof (*toh); 15287 *(uint_t *)optptr = ipp->ipp_hoplimit; 15288 optptr += sizeof (uint_t); 15289 ASSERT(OK_32PTR(optptr)); 15290 /* Save as "last" value */ 15291 tcp->tcp_recvhops = ipp->ipp_hoplimit; 15292 } 15293 /* If app asked for tclass and it has changed ... */ 15294 if (addflag & TCP_IPV6_RECVTCLASS) { 15295 toh = (struct T_opthdr *)optptr; 15296 toh->level = IPPROTO_IPV6; 15297 toh->name = IPV6_TCLASS; 15298 toh->len = sizeof (*toh) + sizeof (uint_t); 15299 toh->status = 0; 15300 optptr += sizeof (*toh); 15301 *(uint_t *)optptr = ipp->ipp_tclass; 15302 optptr += sizeof (uint_t); 15303 ASSERT(OK_32PTR(optptr)); 15304 /* Save as "last" value */ 15305 tcp->tcp_recvtclass = ipp->ipp_tclass; 15306 } 15307 if (addflag & TCP_IPV6_RECVHOPOPTS) { 15308 toh = (struct T_opthdr *)optptr; 15309 toh->level = IPPROTO_IPV6; 15310 toh->name = IPV6_HOPOPTS; 15311 toh->len = sizeof (*toh) + ipp->ipp_hopoptslen - 15312 tcp->tcp_label_len; 15313 toh->status = 0; 15314 optptr += sizeof (*toh); 15315 bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr, 15316 ipp->ipp_hopoptslen - tcp->tcp_label_len); 15317 optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len; 15318 ASSERT(OK_32PTR(optptr)); 15319 /* Save as last value */ 15320 ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen, 15321 (ipp->ipp_fields & IPPF_HOPOPTS), 15322 ipp->ipp_hopopts, ipp->ipp_hopoptslen); 15323 } 15324 if (addflag & TCP_IPV6_RECVRTDSTOPTS) { 15325 toh = (struct T_opthdr *)optptr; 15326 toh->level = IPPROTO_IPV6; 15327 toh->name = IPV6_RTHDRDSTOPTS; 15328 toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen; 15329 toh->status = 0; 15330 optptr += sizeof (*toh); 15331 bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen); 15332 optptr += ipp->ipp_rtdstoptslen; 15333 ASSERT(OK_32PTR(optptr)); 15334 /* Save as last value */ 15335 ip_savebuf((void **)&tcp->tcp_rtdstopts, 15336 &tcp->tcp_rtdstoptslen, 15337 (ipp->ipp_fields & IPPF_RTDSTOPTS), 15338 ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen); 15339 } 15340 if (addflag & TCP_IPV6_RECVRTHDR) { 15341 toh = (struct T_opthdr *)optptr; 15342 toh->level = IPPROTO_IPV6; 15343 toh->name = IPV6_RTHDR; 15344 toh->len = sizeof (*toh) + ipp->ipp_rthdrlen; 15345 toh->status = 0; 15346 optptr += sizeof (*toh); 15347 bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen); 15348 optptr += ipp->ipp_rthdrlen; 15349 ASSERT(OK_32PTR(optptr)); 15350 /* Save as last value */ 15351 ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen, 15352 (ipp->ipp_fields & IPPF_RTHDR), 15353 ipp->ipp_rthdr, ipp->ipp_rthdrlen); 15354 } 15355 if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) { 15356 toh = (struct T_opthdr *)optptr; 15357 toh->level = IPPROTO_IPV6; 15358 toh->name = IPV6_DSTOPTS; 15359 toh->len = sizeof (*toh) + ipp->ipp_dstoptslen; 15360 toh->status = 0; 15361 optptr += sizeof (*toh); 15362 bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen); 15363 optptr += ipp->ipp_dstoptslen; 15364 ASSERT(OK_32PTR(optptr)); 15365 /* Save as last value */ 15366 ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen, 15367 (ipp->ipp_fields & IPPF_DSTOPTS), 15368 ipp->ipp_dstopts, ipp->ipp_dstoptslen); 15369 } 15370 ASSERT(optptr == mp->b_wptr); 15371 return (mp); 15372 } 15373 15374 15375 /* 15376 * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK 15377 * or a "bad" IRE detected by tcp_adapt_ire. 15378 * We can't tell if the failure was due to the laddr or the faddr 15379 * thus we clear out all addresses and ports. 15380 */ 15381 static void 15382 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error) 15383 { 15384 queue_t *q = tcp->tcp_rq; 15385 tcph_t *tcph; 15386 struct T_error_ack *tea; 15387 conn_t *connp = tcp->tcp_connp; 15388 15389 15390 ASSERT(mp->b_datap->db_type == M_PCPROTO); 15391 15392 if (mp->b_cont) { 15393 freemsg(mp->b_cont); 15394 mp->b_cont = NULL; 15395 } 15396 tea = (struct T_error_ack *)mp->b_rptr; 15397 switch (tea->PRIM_type) { 15398 case T_BIND_ACK: 15399 /* 15400 * Need to unbind with classifier since we were just told that 15401 * our bind succeeded. 15402 */ 15403 tcp->tcp_hard_bound = B_FALSE; 15404 tcp->tcp_hard_binding = B_FALSE; 15405 15406 ipcl_hash_remove(connp); 15407 /* Reuse the mblk if possible */ 15408 ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >= 15409 sizeof (*tea)); 15410 mp->b_rptr = mp->b_datap->db_base; 15411 mp->b_wptr = mp->b_rptr + sizeof (*tea); 15412 tea = (struct T_error_ack *)mp->b_rptr; 15413 tea->PRIM_type = T_ERROR_ACK; 15414 tea->TLI_error = TSYSERR; 15415 tea->UNIX_error = error; 15416 if (tcp->tcp_state >= TCPS_SYN_SENT) { 15417 tea->ERROR_prim = T_CONN_REQ; 15418 } else { 15419 tea->ERROR_prim = O_T_BIND_REQ; 15420 } 15421 break; 15422 15423 case T_ERROR_ACK: 15424 if (tcp->tcp_state >= TCPS_SYN_SENT) 15425 tea->ERROR_prim = T_CONN_REQ; 15426 break; 15427 default: 15428 panic("tcp_bind_failed: unexpected TPI type"); 15429 /*NOTREACHED*/ 15430 } 15431 15432 tcp->tcp_state = TCPS_IDLE; 15433 if (tcp->tcp_ipversion == IPV4_VERSION) 15434 tcp->tcp_ipha->ipha_src = 0; 15435 else 15436 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 15437 /* 15438 * Copy of the src addr. in tcp_t is needed since 15439 * the lookup funcs. can only look at tcp_t 15440 */ 15441 V6_SET_ZERO(tcp->tcp_ip_src_v6); 15442 15443 tcph = tcp->tcp_tcph; 15444 tcph->th_lport[0] = 0; 15445 tcph->th_lport[1] = 0; 15446 tcp_bind_hash_remove(tcp); 15447 bzero(&connp->u_port, sizeof (connp->u_port)); 15448 /* blow away saved option results if any */ 15449 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 15450 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 15451 15452 conn_delete_ire(tcp->tcp_connp, NULL); 15453 putnext(q, mp); 15454 } 15455 15456 /* 15457 * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA 15458 * messages. 15459 */ 15460 void 15461 tcp_rput_other(tcp_t *tcp, mblk_t *mp) 15462 { 15463 mblk_t *mp1; 15464 uchar_t *rptr = mp->b_rptr; 15465 queue_t *q = tcp->tcp_rq; 15466 struct T_error_ack *tea; 15467 uint32_t mss; 15468 mblk_t *syn_mp; 15469 mblk_t *mdti; 15470 mblk_t *lsoi; 15471 int retval; 15472 mblk_t *ire_mp; 15473 15474 switch (mp->b_datap->db_type) { 15475 case M_PROTO: 15476 case M_PCPROTO: 15477 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 15478 if ((mp->b_wptr - rptr) < sizeof (t_scalar_t)) 15479 break; 15480 tea = (struct T_error_ack *)rptr; 15481 switch (tea->PRIM_type) { 15482 case T_BIND_ACK: 15483 /* 15484 * Adapt Multidata information, if any. The 15485 * following tcp_mdt_update routine will free 15486 * the message. 15487 */ 15488 if ((mdti = tcp_mdt_info_mp(mp)) != NULL) { 15489 tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti-> 15490 b_rptr)->mdt_capab, B_TRUE); 15491 freemsg(mdti); 15492 } 15493 15494 /* 15495 * Check to update LSO information with tcp, and 15496 * tcp_lso_update routine will free the message. 15497 */ 15498 if ((lsoi = tcp_lso_info_mp(mp)) != NULL) { 15499 tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi-> 15500 b_rptr)->lso_capab); 15501 freemsg(lsoi); 15502 } 15503 15504 /* Get the IRE, if we had requested for it */ 15505 ire_mp = tcp_ire_mp(mp); 15506 15507 if (tcp->tcp_hard_binding) { 15508 tcp->tcp_hard_binding = B_FALSE; 15509 tcp->tcp_hard_bound = B_TRUE; 15510 CL_INET_CONNECT(tcp); 15511 } else { 15512 if (ire_mp != NULL) 15513 freeb(ire_mp); 15514 goto after_syn_sent; 15515 } 15516 15517 retval = tcp_adapt_ire(tcp, ire_mp); 15518 if (ire_mp != NULL) 15519 freeb(ire_mp); 15520 if (retval == 0) { 15521 tcp_bind_failed(tcp, mp, 15522 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15523 ENETUNREACH : EADDRNOTAVAIL)); 15524 return; 15525 } 15526 /* 15527 * Don't let an endpoint connect to itself. 15528 * Also checked in tcp_connect() but that 15529 * check can't handle the case when the 15530 * local IP address is INADDR_ANY. 15531 */ 15532 if (tcp->tcp_ipversion == IPV4_VERSION) { 15533 if ((tcp->tcp_ipha->ipha_dst == 15534 tcp->tcp_ipha->ipha_src) && 15535 (BE16_EQL(tcp->tcp_tcph->th_lport, 15536 tcp->tcp_tcph->th_fport))) { 15537 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15538 return; 15539 } 15540 } else { 15541 if (IN6_ARE_ADDR_EQUAL( 15542 &tcp->tcp_ip6h->ip6_dst, 15543 &tcp->tcp_ip6h->ip6_src) && 15544 (BE16_EQL(tcp->tcp_tcph->th_lport, 15545 tcp->tcp_tcph->th_fport))) { 15546 tcp_bind_failed(tcp, mp, EADDRNOTAVAIL); 15547 return; 15548 } 15549 } 15550 ASSERT(tcp->tcp_state == TCPS_SYN_SENT); 15551 /* 15552 * This should not be possible! Just for 15553 * defensive coding... 15554 */ 15555 if (tcp->tcp_state != TCPS_SYN_SENT) 15556 goto after_syn_sent; 15557 15558 if (is_system_labeled() && 15559 !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) { 15560 tcp_bind_failed(tcp, mp, EHOSTUNREACH); 15561 return; 15562 } 15563 15564 ASSERT(q == tcp->tcp_rq); 15565 /* 15566 * tcp_adapt_ire() does not adjust 15567 * for TCP/IP header length. 15568 */ 15569 mss = tcp->tcp_mss - tcp->tcp_hdr_len; 15570 15571 /* 15572 * Just make sure our rwnd is at 15573 * least tcp_recv_hiwat_mss * MSS 15574 * large, and round up to the nearest 15575 * MSS. 15576 * 15577 * We do the round up here because 15578 * we need to get the interface 15579 * MTU first before we can do the 15580 * round up. 15581 */ 15582 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 15583 tcp_recv_hiwat_minmss * mss); 15584 q->q_hiwat = tcp->tcp_rwnd; 15585 tcp_set_ws_value(tcp); 15586 U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws), 15587 tcp->tcp_tcph->th_win); 15588 if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always) 15589 tcp->tcp_snd_ws_ok = B_TRUE; 15590 15591 /* 15592 * Set tcp_snd_ts_ok to true 15593 * so that tcp_xmit_mp will 15594 * include the timestamp 15595 * option in the SYN segment. 15596 */ 15597 if (tcp_tstamp_always || 15598 (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) { 15599 tcp->tcp_snd_ts_ok = B_TRUE; 15600 } 15601 15602 /* 15603 * tcp_snd_sack_ok can be set in 15604 * tcp_adapt_ire() if the sack metric 15605 * is set. So check it here also. 15606 */ 15607 if (tcp_sack_permitted == 2 || 15608 tcp->tcp_snd_sack_ok) { 15609 if (tcp->tcp_sack_info == NULL) { 15610 tcp->tcp_sack_info = 15611 kmem_cache_alloc(tcp_sack_info_cache, 15612 KM_SLEEP); 15613 } 15614 tcp->tcp_snd_sack_ok = B_TRUE; 15615 } 15616 15617 /* 15618 * Should we use ECN? Note that the current 15619 * default value (SunOS 5.9) of tcp_ecn_permitted 15620 * is 1. The reason for doing this is that there 15621 * are equipments out there that will drop ECN 15622 * enabled IP packets. Setting it to 1 avoids 15623 * compatibility problems. 15624 */ 15625 if (tcp_ecn_permitted == 2) 15626 tcp->tcp_ecn_ok = B_TRUE; 15627 15628 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 15629 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 15630 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 15631 if (syn_mp) { 15632 cred_t *cr; 15633 pid_t pid; 15634 15635 /* 15636 * Obtain the credential from the 15637 * thread calling connect(); the credential 15638 * lives on in the second mblk which 15639 * originated from T_CONN_REQ and is echoed 15640 * with the T_BIND_ACK from ip. If none 15641 * can be found, default to the creator 15642 * of the socket. 15643 */ 15644 if (mp->b_cont == NULL || 15645 (cr = DB_CRED(mp->b_cont)) == NULL) { 15646 cr = tcp->tcp_cred; 15647 pid = tcp->tcp_cpid; 15648 } else { 15649 pid = DB_CPID(mp->b_cont); 15650 } 15651 15652 TCP_RECORD_TRACE(tcp, syn_mp, 15653 TCP_TRACE_SEND_PKT); 15654 mblk_setcred(syn_mp, cr); 15655 DB_CPID(syn_mp) = pid; 15656 tcp_send_data(tcp, tcp->tcp_wq, syn_mp); 15657 } 15658 after_syn_sent: 15659 /* 15660 * A trailer mblk indicates a waiting client upstream. 15661 * We complete here the processing begun in 15662 * either tcp_bind() or tcp_connect() by passing 15663 * upstream the reply message they supplied. 15664 */ 15665 mp1 = mp; 15666 mp = mp->b_cont; 15667 freeb(mp1); 15668 if (mp) 15669 break; 15670 return; 15671 case T_ERROR_ACK: 15672 if (tcp->tcp_debug) { 15673 (void) strlog(TCP_MOD_ID, 0, 1, 15674 SL_TRACE|SL_ERROR, 15675 "tcp_rput_other: case T_ERROR_ACK, " 15676 "ERROR_prim == %d", 15677 tea->ERROR_prim); 15678 } 15679 switch (tea->ERROR_prim) { 15680 case O_T_BIND_REQ: 15681 case T_BIND_REQ: 15682 tcp_bind_failed(tcp, mp, 15683 (int)((tcp->tcp_state >= TCPS_SYN_SENT) ? 15684 ENETUNREACH : EADDRNOTAVAIL)); 15685 return; 15686 case T_UNBIND_REQ: 15687 tcp->tcp_hard_binding = B_FALSE; 15688 tcp->tcp_hard_bound = B_FALSE; 15689 if (mp->b_cont) { 15690 freemsg(mp->b_cont); 15691 mp->b_cont = NULL; 15692 } 15693 if (tcp->tcp_unbind_pending) 15694 tcp->tcp_unbind_pending = 0; 15695 else { 15696 /* From tcp_ip_unbind() - free */ 15697 freemsg(mp); 15698 return; 15699 } 15700 break; 15701 case T_SVR4_OPTMGMT_REQ: 15702 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15703 /* T_OPTMGMT_REQ generated by TCP */ 15704 printf("T_SVR4_OPTMGMT_REQ failed " 15705 "%d/%d - dropped (cnt %d)\n", 15706 tea->TLI_error, tea->UNIX_error, 15707 tcp->tcp_drop_opt_ack_cnt); 15708 freemsg(mp); 15709 tcp->tcp_drop_opt_ack_cnt--; 15710 return; 15711 } 15712 break; 15713 } 15714 if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ && 15715 tcp->tcp_drop_opt_ack_cnt > 0) { 15716 printf("T_SVR4_OPTMGMT_REQ failed %d/%d " 15717 "- dropped (cnt %d)\n", 15718 tea->TLI_error, tea->UNIX_error, 15719 tcp->tcp_drop_opt_ack_cnt); 15720 freemsg(mp); 15721 tcp->tcp_drop_opt_ack_cnt--; 15722 return; 15723 } 15724 break; 15725 case T_OPTMGMT_ACK: 15726 if (tcp->tcp_drop_opt_ack_cnt > 0) { 15727 /* T_OPTMGMT_REQ generated by TCP */ 15728 freemsg(mp); 15729 tcp->tcp_drop_opt_ack_cnt--; 15730 return; 15731 } 15732 break; 15733 default: 15734 break; 15735 } 15736 break; 15737 case M_FLUSH: 15738 if (*rptr & FLUSHR) 15739 flushq(q, FLUSHDATA); 15740 break; 15741 default: 15742 /* M_CTL will be directly sent to tcp_icmp_error() */ 15743 ASSERT(DB_TYPE(mp) != M_CTL); 15744 break; 15745 } 15746 /* 15747 * Make sure we set this bit before sending the ACK for 15748 * bind. Otherwise accept could possibly run and free 15749 * this tcp struct. 15750 */ 15751 putnext(q, mp); 15752 } 15753 15754 /* 15755 * Called as the result of a qbufcall or a qtimeout to remedy a failure 15756 * to allocate a T_ordrel_ind in tcp_rsrv(). qenable(q) will make 15757 * tcp_rsrv() try again. 15758 */ 15759 static void 15760 tcp_ordrel_kick(void *arg) 15761 { 15762 conn_t *connp = (conn_t *)arg; 15763 tcp_t *tcp = connp->conn_tcp; 15764 15765 tcp->tcp_ordrelid = 0; 15766 tcp->tcp_timeout = B_FALSE; 15767 if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL && 15768 tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15769 qenable(tcp->tcp_rq); 15770 } 15771 } 15772 15773 /* ARGSUSED */ 15774 static void 15775 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2) 15776 { 15777 conn_t *connp = (conn_t *)arg; 15778 tcp_t *tcp = connp->conn_tcp; 15779 queue_t *q = tcp->tcp_rq; 15780 uint_t thwin; 15781 15782 freeb(mp); 15783 15784 TCP_STAT(tcp_rsrv_calls); 15785 15786 if (TCP_IS_DETACHED(tcp) || q == NULL) { 15787 return; 15788 } 15789 15790 if (tcp->tcp_fused) { 15791 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15792 15793 ASSERT(tcp->tcp_fused); 15794 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 15795 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 15796 ASSERT(!TCP_IS_DETACHED(tcp)); 15797 ASSERT(tcp->tcp_connp->conn_sqp == 15798 peer_tcp->tcp_connp->conn_sqp); 15799 15800 /* 15801 * Normally we would not get backenabled in synchronous 15802 * streams mode, but in case this happens, we need to plug 15803 * synchronous streams during our drain to prevent a race 15804 * with tcp_fuse_rrw() or tcp_fuse_rinfop(). 15805 */ 15806 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 15807 if (tcp->tcp_rcv_list != NULL) 15808 (void) tcp_rcv_drain(tcp->tcp_rq, tcp); 15809 15810 tcp_clrqfull(peer_tcp); 15811 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 15812 TCP_STAT(tcp_fusion_backenabled); 15813 return; 15814 } 15815 15816 if (canputnext(q)) { 15817 tcp->tcp_rwnd = q->q_hiwat; 15818 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 15819 << tcp->tcp_rcv_ws; 15820 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 15821 /* 15822 * Send back a window update immediately if TCP is above 15823 * ESTABLISHED state and the increase of the rcv window 15824 * that the other side knows is at least 1 MSS after flow 15825 * control is lifted. 15826 */ 15827 if (tcp->tcp_state >= TCPS_ESTABLISHED && 15828 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 15829 tcp_xmit_ctl(NULL, tcp, 15830 (tcp->tcp_swnd == 0) ? tcp->tcp_suna : 15831 tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 15832 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 15833 } 15834 } 15835 /* Handle a failure to allocate a T_ORDREL_IND here */ 15836 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 15837 ASSERT(tcp->tcp_listener == NULL); 15838 if (tcp->tcp_rcv_list != NULL) { 15839 (void) tcp_rcv_drain(q, tcp); 15840 } 15841 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 15842 mp = mi_tpi_ordrel_ind(); 15843 if (mp) { 15844 tcp->tcp_ordrel_done = B_TRUE; 15845 putnext(q, mp); 15846 if (tcp->tcp_deferred_clean_death) { 15847 /* 15848 * tcp_clean_death was deferred for 15849 * T_ORDREL_IND - do it now 15850 */ 15851 tcp->tcp_deferred_clean_death = B_FALSE; 15852 (void) tcp_clean_death(tcp, 15853 tcp->tcp_client_errno, 22); 15854 } 15855 } else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15856 /* 15857 * If there isn't already a timer running 15858 * start one. Use a 4 second 15859 * timer as a fallback since it can't fail. 15860 */ 15861 tcp->tcp_timeout = B_TRUE; 15862 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15863 MSEC_TO_TICK(4000)); 15864 } 15865 } 15866 } 15867 15868 /* 15869 * The read side service routine is called mostly when we get back-enabled as a 15870 * result of flow control relief. Since we don't actually queue anything in 15871 * TCP, we have no data to send out of here. What we do is clear the receive 15872 * window, and send out a window update. 15873 * This routine is also called to drive an orderly release message upstream 15874 * if the attempt in tcp_rput failed. 15875 */ 15876 static void 15877 tcp_rsrv(queue_t *q) 15878 { 15879 conn_t *connp = Q_TO_CONN(q); 15880 tcp_t *tcp = connp->conn_tcp; 15881 mblk_t *mp; 15882 15883 /* No code does a putq on the read side */ 15884 ASSERT(q->q_first == NULL); 15885 15886 /* Nothing to do for the default queue */ 15887 if (q == tcp_g_q) { 15888 return; 15889 } 15890 15891 mp = allocb(0, BPRI_HI); 15892 if (mp == NULL) { 15893 /* 15894 * We are under memory pressure. Return for now and we 15895 * we will be called again later. 15896 */ 15897 if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) { 15898 /* 15899 * If there isn't already a timer running 15900 * start one. Use a 4 second 15901 * timer as a fallback since it can't fail. 15902 */ 15903 tcp->tcp_timeout = B_TRUE; 15904 tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick, 15905 MSEC_TO_TICK(4000)); 15906 } 15907 return; 15908 } 15909 CONN_INC_REF(connp); 15910 squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp, 15911 SQTAG_TCP_RSRV); 15912 } 15913 15914 /* 15915 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 15916 * We do not allow the receive window to shrink. After setting rwnd, 15917 * set the flow control hiwat of the stream. 15918 * 15919 * This function is called in 2 cases: 15920 * 15921 * 1) Before data transfer begins, in tcp_accept_comm() for accepting a 15922 * connection (passive open) and in tcp_rput_data() for active connect. 15923 * This is called after tcp_mss_set() when the desired MSS value is known. 15924 * This makes sure that our window size is a mutiple of the other side's 15925 * MSS. 15926 * 2) Handling SO_RCVBUF option. 15927 * 15928 * It is ASSUMED that the requested size is a multiple of the current MSS. 15929 * 15930 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 15931 * user requests so. 15932 */ 15933 static int 15934 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 15935 { 15936 uint32_t mss = tcp->tcp_mss; 15937 uint32_t old_max_rwnd; 15938 uint32_t max_transmittable_rwnd; 15939 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 15940 15941 if (tcp->tcp_fused) { 15942 size_t sth_hiwat; 15943 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 15944 15945 ASSERT(peer_tcp != NULL); 15946 /* 15947 * Record the stream head's high water mark for 15948 * this endpoint; this is used for flow-control 15949 * purposes in tcp_fuse_output(). 15950 */ 15951 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 15952 if (!tcp_detached) 15953 (void) mi_set_sth_hiwat(tcp->tcp_rq, sth_hiwat); 15954 15955 /* 15956 * In the fusion case, the maxpsz stream head value of 15957 * our peer is set according to its send buffer size 15958 * and our receive buffer size; since the latter may 15959 * have changed we need to update the peer's maxpsz. 15960 */ 15961 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 15962 return (rwnd); 15963 } 15964 15965 if (tcp_detached) 15966 old_max_rwnd = tcp->tcp_rwnd; 15967 else 15968 old_max_rwnd = tcp->tcp_rq->q_hiwat; 15969 15970 /* 15971 * Insist on a receive window that is at least 15972 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 15973 * funny TCP interactions of Nagle algorithm, SWS avoidance 15974 * and delayed acknowledgement. 15975 */ 15976 rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss); 15977 15978 /* 15979 * If window size info has already been exchanged, TCP should not 15980 * shrink the window. Shrinking window is doable if done carefully. 15981 * We may add that support later. But so far there is not a real 15982 * need to do that. 15983 */ 15984 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 15985 /* MSS may have changed, do a round up again. */ 15986 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 15987 } 15988 15989 /* 15990 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 15991 * can be applied even before the window scale option is decided. 15992 */ 15993 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 15994 if (rwnd > max_transmittable_rwnd) { 15995 rwnd = max_transmittable_rwnd - 15996 (max_transmittable_rwnd % mss); 15997 if (rwnd < mss) 15998 rwnd = max_transmittable_rwnd; 15999 /* 16000 * If we're over the limit we may have to back down tcp_rwnd. 16001 * The increment below won't work for us. So we set all three 16002 * here and the increment below will have no effect. 16003 */ 16004 tcp->tcp_rwnd = old_max_rwnd = rwnd; 16005 } 16006 if (tcp->tcp_localnet) { 16007 tcp->tcp_rack_abs_max = 16008 MIN(tcp_local_dacks_max, rwnd / mss / 2); 16009 } else { 16010 /* 16011 * For a remote host on a different subnet (through a router), 16012 * we ack every other packet to be conforming to RFC1122. 16013 * tcp_deferred_acks_max is default to 2. 16014 */ 16015 tcp->tcp_rack_abs_max = 16016 MIN(tcp_deferred_acks_max, rwnd / mss / 2); 16017 } 16018 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 16019 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 16020 else 16021 tcp->tcp_rack_cur_max = 0; 16022 /* 16023 * Increment the current rwnd by the amount the maximum grew (we 16024 * can not overwrite it since we might be in the middle of a 16025 * connection.) 16026 */ 16027 tcp->tcp_rwnd += rwnd - old_max_rwnd; 16028 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win); 16029 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 16030 tcp->tcp_cwnd_max = rwnd; 16031 16032 if (tcp_detached) 16033 return (rwnd); 16034 /* 16035 * We set the maximum receive window into rq->q_hiwat. 16036 * This is not actually used for flow control. 16037 */ 16038 tcp->tcp_rq->q_hiwat = rwnd; 16039 /* 16040 * Set the Stream head high water mark. This doesn't have to be 16041 * here, since we are simply using default values, but we would 16042 * prefer to choose these values algorithmically, with a likely 16043 * relationship to rwnd. 16044 */ 16045 (void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd, tcp_sth_rcv_hiwat)); 16046 return (rwnd); 16047 } 16048 16049 /* 16050 * Return SNMP stuff in buffer in mpdata. 16051 */ 16052 int 16053 tcp_snmp_get(queue_t *q, mblk_t *mpctl) 16054 { 16055 mblk_t *mpdata; 16056 mblk_t *mp_conn_ctl = NULL; 16057 mblk_t *mp_conn_tail; 16058 mblk_t *mp_attr_ctl = NULL; 16059 mblk_t *mp_attr_tail; 16060 mblk_t *mp6_conn_ctl = NULL; 16061 mblk_t *mp6_conn_tail; 16062 mblk_t *mp6_attr_ctl = NULL; 16063 mblk_t *mp6_attr_tail; 16064 struct opthdr *optp; 16065 mib2_tcpConnEntry_t tce; 16066 mib2_tcp6ConnEntry_t tce6; 16067 mib2_transportMLPEntry_t mlp; 16068 connf_t *connfp; 16069 conn_t *connp; 16070 int i; 16071 boolean_t ispriv; 16072 zoneid_t zoneid; 16073 int v4_conn_idx; 16074 int v6_conn_idx; 16075 16076 if (mpctl == NULL || 16077 (mpdata = mpctl->b_cont) == NULL || 16078 (mp_conn_ctl = copymsg(mpctl)) == NULL || 16079 (mp_attr_ctl = copymsg(mpctl)) == NULL || 16080 (mp6_conn_ctl = copymsg(mpctl)) == NULL || 16081 (mp6_attr_ctl = copymsg(mpctl)) == NULL) { 16082 freemsg(mp_conn_ctl); 16083 freemsg(mp_attr_ctl); 16084 freemsg(mp6_conn_ctl); 16085 freemsg(mp6_attr_ctl); 16086 return (0); 16087 } 16088 16089 /* build table of connections -- need count in fixed part */ 16090 SET_MIB(tcp_mib.tcpRtoAlgorithm, 4); /* vanj */ 16091 SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min); 16092 SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max); 16093 SET_MIB(tcp_mib.tcpMaxConn, -1); 16094 SET_MIB(tcp_mib.tcpCurrEstab, 0); 16095 16096 ispriv = 16097 secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0; 16098 zoneid = Q_TO_CONN(q)->conn_zoneid; 16099 16100 v4_conn_idx = v6_conn_idx = 0; 16101 mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL; 16102 16103 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16104 16105 connfp = &ipcl_globalhash_fanout[i]; 16106 16107 connp = NULL; 16108 16109 while ((connp = 16110 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16111 tcp_t *tcp; 16112 boolean_t needattr; 16113 16114 if (connp->conn_zoneid != zoneid) 16115 continue; /* not in this zone */ 16116 16117 tcp = connp->conn_tcp; 16118 UPDATE_MIB(&tcp_mib, tcpHCInSegs, tcp->tcp_ibsegs); 16119 tcp->tcp_ibsegs = 0; 16120 UPDATE_MIB(&tcp_mib, tcpHCOutSegs, tcp->tcp_obsegs); 16121 tcp->tcp_obsegs = 0; 16122 16123 tce6.tcp6ConnState = tce.tcpConnState = 16124 tcp_snmp_state(tcp); 16125 if (tce.tcpConnState == MIB2_TCP_established || 16126 tce.tcpConnState == MIB2_TCP_closeWait) 16127 BUMP_MIB(&tcp_mib, tcpCurrEstab); 16128 16129 needattr = B_FALSE; 16130 bzero(&mlp, sizeof (mlp)); 16131 if (connp->conn_mlp_type != mlptSingle) { 16132 if (connp->conn_mlp_type == mlptShared || 16133 connp->conn_mlp_type == mlptBoth) 16134 mlp.tme_flags |= MIB2_TMEF_SHARED; 16135 if (connp->conn_mlp_type == mlptPrivate || 16136 connp->conn_mlp_type == mlptBoth) 16137 mlp.tme_flags |= MIB2_TMEF_PRIVATE; 16138 needattr = B_TRUE; 16139 } 16140 if (connp->conn_peercred != NULL) { 16141 ts_label_t *tsl; 16142 16143 tsl = crgetlabel(connp->conn_peercred); 16144 mlp.tme_doi = label2doi(tsl); 16145 mlp.tme_label = *label2bslabel(tsl); 16146 needattr = B_TRUE; 16147 } 16148 16149 /* Create a message to report on IPv6 entries */ 16150 if (tcp->tcp_ipversion == IPV6_VERSION) { 16151 tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6; 16152 tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6; 16153 tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport); 16154 tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport); 16155 tce6.tcp6ConnIfIndex = tcp->tcp_bound_if; 16156 /* Don't want just anybody seeing these... */ 16157 if (ispriv) { 16158 tce6.tcp6ConnEntryInfo.ce_snxt = 16159 tcp->tcp_snxt; 16160 tce6.tcp6ConnEntryInfo.ce_suna = 16161 tcp->tcp_suna; 16162 tce6.tcp6ConnEntryInfo.ce_rnxt = 16163 tcp->tcp_rnxt; 16164 tce6.tcp6ConnEntryInfo.ce_rack = 16165 tcp->tcp_rack; 16166 } else { 16167 /* 16168 * Netstat, unfortunately, uses this to 16169 * get send/receive queue sizes. How to fix? 16170 * Why not compute the difference only? 16171 */ 16172 tce6.tcp6ConnEntryInfo.ce_snxt = 16173 tcp->tcp_snxt - tcp->tcp_suna; 16174 tce6.tcp6ConnEntryInfo.ce_suna = 0; 16175 tce6.tcp6ConnEntryInfo.ce_rnxt = 16176 tcp->tcp_rnxt - tcp->tcp_rack; 16177 tce6.tcp6ConnEntryInfo.ce_rack = 0; 16178 } 16179 16180 tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16181 tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16182 tce6.tcp6ConnEntryInfo.ce_rto = tcp->tcp_rto; 16183 tce6.tcp6ConnEntryInfo.ce_mss = tcp->tcp_mss; 16184 tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state; 16185 16186 tce6.tcp6ConnCreationProcess = 16187 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16188 tcp->tcp_cpid; 16189 tce6.tcp6ConnCreationTime = tcp->tcp_open_time; 16190 16191 (void) snmp_append_data2(mp6_conn_ctl->b_cont, 16192 &mp6_conn_tail, (char *)&tce6, sizeof (tce6)); 16193 16194 mlp.tme_connidx = v6_conn_idx++; 16195 if (needattr) 16196 (void) snmp_append_data2(mp6_attr_ctl->b_cont, 16197 &mp6_attr_tail, (char *)&mlp, sizeof (mlp)); 16198 } 16199 /* 16200 * Create an IPv4 table entry for IPv4 entries and also 16201 * for IPv6 entries which are bound to in6addr_any 16202 * but don't have IPV6_V6ONLY set. 16203 * (i.e. anything an IPv4 peer could connect to) 16204 */ 16205 if (tcp->tcp_ipversion == IPV4_VERSION || 16206 (tcp->tcp_state <= TCPS_LISTEN && 16207 !tcp->tcp_connp->conn_ipv6_v6only && 16208 IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) { 16209 if (tcp->tcp_ipversion == IPV6_VERSION) { 16210 tce.tcpConnRemAddress = INADDR_ANY; 16211 tce.tcpConnLocalAddress = INADDR_ANY; 16212 } else { 16213 tce.tcpConnRemAddress = 16214 tcp->tcp_remote; 16215 tce.tcpConnLocalAddress = 16216 tcp->tcp_ip_src; 16217 } 16218 tce.tcpConnLocalPort = ntohs(tcp->tcp_lport); 16219 tce.tcpConnRemPort = ntohs(tcp->tcp_fport); 16220 /* Don't want just anybody seeing these... */ 16221 if (ispriv) { 16222 tce.tcpConnEntryInfo.ce_snxt = 16223 tcp->tcp_snxt; 16224 tce.tcpConnEntryInfo.ce_suna = 16225 tcp->tcp_suna; 16226 tce.tcpConnEntryInfo.ce_rnxt = 16227 tcp->tcp_rnxt; 16228 tce.tcpConnEntryInfo.ce_rack = 16229 tcp->tcp_rack; 16230 } else { 16231 /* 16232 * Netstat, unfortunately, uses this to 16233 * get send/receive queue sizes. How 16234 * to fix? 16235 * Why not compute the difference only? 16236 */ 16237 tce.tcpConnEntryInfo.ce_snxt = 16238 tcp->tcp_snxt - tcp->tcp_suna; 16239 tce.tcpConnEntryInfo.ce_suna = 0; 16240 tce.tcpConnEntryInfo.ce_rnxt = 16241 tcp->tcp_rnxt - tcp->tcp_rack; 16242 tce.tcpConnEntryInfo.ce_rack = 0; 16243 } 16244 16245 tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd; 16246 tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd; 16247 tce.tcpConnEntryInfo.ce_rto = tcp->tcp_rto; 16248 tce.tcpConnEntryInfo.ce_mss = tcp->tcp_mss; 16249 tce.tcpConnEntryInfo.ce_state = 16250 tcp->tcp_state; 16251 16252 tce.tcpConnCreationProcess = 16253 (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS : 16254 tcp->tcp_cpid; 16255 tce.tcpConnCreationTime = tcp->tcp_open_time; 16256 16257 (void) snmp_append_data2(mp_conn_ctl->b_cont, 16258 &mp_conn_tail, (char *)&tce, sizeof (tce)); 16259 16260 mlp.tme_connidx = v4_conn_idx++; 16261 if (needattr) 16262 (void) snmp_append_data2( 16263 mp_attr_ctl->b_cont, 16264 &mp_attr_tail, (char *)&mlp, 16265 sizeof (mlp)); 16266 } 16267 } 16268 } 16269 16270 /* fixed length structure for IPv4 and IPv6 counters */ 16271 SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t)); 16272 SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t)); 16273 /* synchronize 32- and 64-bit counters */ 16274 SYNC32_MIB(&tcp_mib, tcpInSegs, tcpHCInSegs); 16275 SYNC32_MIB(&tcp_mib, tcpOutSegs, tcpHCOutSegs); 16276 optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)]; 16277 optp->level = MIB2_TCP; 16278 optp->name = 0; 16279 (void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib)); 16280 optp->len = msgdsize(mpdata); 16281 qreply(q, mpctl); 16282 16283 /* table of connections... */ 16284 optp = (struct opthdr *)&mp_conn_ctl->b_rptr[ 16285 sizeof (struct T_optmgmt_ack)]; 16286 optp->level = MIB2_TCP; 16287 optp->name = MIB2_TCP_CONN; 16288 optp->len = msgdsize(mp_conn_ctl->b_cont); 16289 qreply(q, mp_conn_ctl); 16290 16291 /* table of MLP attributes... */ 16292 optp = (struct opthdr *)&mp_attr_ctl->b_rptr[ 16293 sizeof (struct T_optmgmt_ack)]; 16294 optp->level = MIB2_TCP; 16295 optp->name = EXPER_XPORT_MLP; 16296 optp->len = msgdsize(mp_attr_ctl->b_cont); 16297 if (optp->len == 0) 16298 freemsg(mp_attr_ctl); 16299 else 16300 qreply(q, mp_attr_ctl); 16301 16302 /* table of IPv6 connections... */ 16303 optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[ 16304 sizeof (struct T_optmgmt_ack)]; 16305 optp->level = MIB2_TCP6; 16306 optp->name = MIB2_TCP6_CONN; 16307 optp->len = msgdsize(mp6_conn_ctl->b_cont); 16308 qreply(q, mp6_conn_ctl); 16309 16310 /* table of IPv6 MLP attributes... */ 16311 optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[ 16312 sizeof (struct T_optmgmt_ack)]; 16313 optp->level = MIB2_TCP6; 16314 optp->name = EXPER_XPORT_MLP; 16315 optp->len = msgdsize(mp6_attr_ctl->b_cont); 16316 if (optp->len == 0) 16317 freemsg(mp6_attr_ctl); 16318 else 16319 qreply(q, mp6_attr_ctl); 16320 return (1); 16321 } 16322 16323 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests */ 16324 /* ARGSUSED */ 16325 int 16326 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len) 16327 { 16328 mib2_tcpConnEntry_t *tce = (mib2_tcpConnEntry_t *)ptr; 16329 16330 switch (level) { 16331 case MIB2_TCP: 16332 switch (name) { 16333 case 13: 16334 if (tce->tcpConnState != MIB2_TCP_deleteTCB) 16335 return (0); 16336 /* TODO: delete entry defined by tce */ 16337 return (1); 16338 default: 16339 return (0); 16340 } 16341 default: 16342 return (1); 16343 } 16344 } 16345 16346 /* Translate TCP state to MIB2 TCP state. */ 16347 static int 16348 tcp_snmp_state(tcp_t *tcp) 16349 { 16350 if (tcp == NULL) 16351 return (0); 16352 16353 switch (tcp->tcp_state) { 16354 case TCPS_CLOSED: 16355 case TCPS_IDLE: /* RFC1213 doesn't have analogue for IDLE & BOUND */ 16356 case TCPS_BOUND: 16357 return (MIB2_TCP_closed); 16358 case TCPS_LISTEN: 16359 return (MIB2_TCP_listen); 16360 case TCPS_SYN_SENT: 16361 return (MIB2_TCP_synSent); 16362 case TCPS_SYN_RCVD: 16363 return (MIB2_TCP_synReceived); 16364 case TCPS_ESTABLISHED: 16365 return (MIB2_TCP_established); 16366 case TCPS_CLOSE_WAIT: 16367 return (MIB2_TCP_closeWait); 16368 case TCPS_FIN_WAIT_1: 16369 return (MIB2_TCP_finWait1); 16370 case TCPS_CLOSING: 16371 return (MIB2_TCP_closing); 16372 case TCPS_LAST_ACK: 16373 return (MIB2_TCP_lastAck); 16374 case TCPS_FIN_WAIT_2: 16375 return (MIB2_TCP_finWait2); 16376 case TCPS_TIME_WAIT: 16377 return (MIB2_TCP_timeWait); 16378 default: 16379 return (0); 16380 } 16381 } 16382 16383 static char tcp_report_header[] = 16384 "TCP " MI_COL_HDRPAD_STR 16385 "zone dest snxt suna " 16386 "swnd rnxt rack rwnd rto mss w sw rw t " 16387 "recent [lport,fport] state"; 16388 16389 /* 16390 * TCP status report triggered via the Named Dispatch mechanism. 16391 */ 16392 /* ARGSUSED */ 16393 static void 16394 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream, 16395 cred_t *cr) 16396 { 16397 char hash[10], addrbuf[INET6_ADDRSTRLEN]; 16398 boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0; 16399 char cflag; 16400 in6_addr_t v6dst; 16401 char buf[80]; 16402 uint_t print_len, buf_len; 16403 16404 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16405 if (buf_len <= 0) 16406 return; 16407 16408 if (hashval >= 0) 16409 (void) sprintf(hash, "%03d ", hashval); 16410 else 16411 hash[0] = '\0'; 16412 16413 /* 16414 * Note that we use the remote address in the tcp_b structure. 16415 * This means that it will print out the real destination address, 16416 * not the next hop's address if source routing is used. This 16417 * avoid the confusion on the output because user may not 16418 * know that source routing is used for a connection. 16419 */ 16420 if (tcp->tcp_ipversion == IPV4_VERSION) { 16421 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst); 16422 } else { 16423 v6dst = tcp->tcp_remote_v6; 16424 } 16425 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16426 /* 16427 * the ispriv checks are so that normal users cannot determine 16428 * sequence number information using NDD. 16429 */ 16430 16431 if (TCP_IS_DETACHED(tcp)) 16432 cflag = '*'; 16433 else 16434 cflag = ' '; 16435 print_len = snprintf((char *)mp->b_wptr, buf_len, 16436 "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x " 16437 "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n", 16438 hash, 16439 (void *)tcp, 16440 tcp->tcp_connp->conn_zoneid, 16441 addrbuf, 16442 (ispriv) ? tcp->tcp_snxt : 0, 16443 (ispriv) ? tcp->tcp_suna : 0, 16444 tcp->tcp_swnd, 16445 (ispriv) ? tcp->tcp_rnxt : 0, 16446 (ispriv) ? tcp->tcp_rack : 0, 16447 tcp->tcp_rwnd, 16448 tcp->tcp_rto, 16449 tcp->tcp_mss, 16450 tcp->tcp_snd_ws_ok, 16451 tcp->tcp_snd_ws, 16452 tcp->tcp_rcv_ws, 16453 tcp->tcp_snd_ts_ok, 16454 tcp->tcp_ts_recent, 16455 tcp_display(tcp, buf, DISP_PORT_ONLY), cflag); 16456 if (print_len < buf_len) { 16457 ((mblk_t *)mp)->b_wptr += print_len; 16458 } else { 16459 ((mblk_t *)mp)->b_wptr += buf_len; 16460 } 16461 } 16462 16463 /* 16464 * TCP status report (for listeners only) triggered via the Named Dispatch 16465 * mechanism. 16466 */ 16467 /* ARGSUSED */ 16468 static void 16469 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval) 16470 { 16471 char addrbuf[INET6_ADDRSTRLEN]; 16472 in6_addr_t v6dst; 16473 uint_t print_len, buf_len; 16474 16475 buf_len = mp->b_datap->db_lim - mp->b_wptr; 16476 if (buf_len <= 0) 16477 return; 16478 16479 if (tcp->tcp_ipversion == IPV4_VERSION) { 16480 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst); 16481 (void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf)); 16482 } else { 16483 (void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src, 16484 addrbuf, sizeof (addrbuf)); 16485 } 16486 print_len = snprintf((char *)mp->b_wptr, buf_len, 16487 "%03d " 16488 MI_COL_PTRFMT_STR 16489 "%d %s %05u %08u %d/%d/%d%c\n", 16490 hashval, (void *)tcp, 16491 tcp->tcp_connp->conn_zoneid, 16492 addrbuf, 16493 (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport), 16494 tcp->tcp_conn_req_seqnum, 16495 tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q, 16496 tcp->tcp_conn_req_max, 16497 tcp->tcp_syn_defense ? '*' : ' '); 16498 if (print_len < buf_len) { 16499 ((mblk_t *)mp)->b_wptr += print_len; 16500 } else { 16501 ((mblk_t *)mp)->b_wptr += buf_len; 16502 } 16503 } 16504 16505 /* TCP status report triggered via the Named Dispatch mechanism. */ 16506 /* ARGSUSED */ 16507 static int 16508 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16509 { 16510 tcp_t *tcp; 16511 int i; 16512 conn_t *connp; 16513 connf_t *connfp; 16514 zoneid_t zoneid; 16515 16516 /* 16517 * Because of the ndd constraint, at most we can have 64K buffer 16518 * to put in all TCP info. So to be more efficient, just 16519 * allocate a 64K buffer here, assuming we need that large buffer. 16520 * This may be a problem as any user can read tcp_status. Therefore 16521 * we limit the rate of doing this using tcp_ndd_get_info_interval. 16522 * This should be OK as normal users should not do this too often. 16523 */ 16524 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16525 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16526 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16527 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16528 return (0); 16529 } 16530 } 16531 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16532 /* The following may work even if we cannot get a large buf. */ 16533 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16534 return (0); 16535 } 16536 16537 (void) mi_mpprintf(mp, "%s", tcp_report_header); 16538 16539 zoneid = Q_TO_CONN(q)->conn_zoneid; 16540 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 16541 16542 connfp = &ipcl_globalhash_fanout[i]; 16543 16544 connp = NULL; 16545 16546 while ((connp = 16547 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16548 tcp = connp->conn_tcp; 16549 if (zoneid != GLOBAL_ZONEID && 16550 zoneid != connp->conn_zoneid) 16551 continue; 16552 tcp_report_item(mp->b_cont, tcp, -1, tcp, 16553 cr); 16554 } 16555 16556 } 16557 16558 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16559 return (0); 16560 } 16561 16562 /* TCP status report triggered via the Named Dispatch mechanism. */ 16563 /* ARGSUSED */ 16564 static int 16565 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16566 { 16567 tf_t *tbf; 16568 tcp_t *tcp; 16569 int i; 16570 zoneid_t zoneid; 16571 16572 /* Refer to comments in tcp_status_report(). */ 16573 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16574 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16575 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16576 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16577 return (0); 16578 } 16579 } 16580 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16581 /* The following may work even if we cannot get a large buf. */ 16582 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16583 return (0); 16584 } 16585 16586 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16587 16588 zoneid = Q_TO_CONN(q)->conn_zoneid; 16589 16590 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 16591 tbf = &tcp_bind_fanout[i]; 16592 mutex_enter(&tbf->tf_lock); 16593 for (tcp = tbf->tf_tcp; tcp != NULL; 16594 tcp = tcp->tcp_bind_hash) { 16595 if (zoneid != GLOBAL_ZONEID && 16596 zoneid != tcp->tcp_connp->conn_zoneid) 16597 continue; 16598 CONN_INC_REF(tcp->tcp_connp); 16599 tcp_report_item(mp->b_cont, tcp, i, 16600 Q_TO_TCP(q), cr); 16601 CONN_DEC_REF(tcp->tcp_connp); 16602 } 16603 mutex_exit(&tbf->tf_lock); 16604 } 16605 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16606 return (0); 16607 } 16608 16609 /* TCP status report triggered via the Named Dispatch mechanism. */ 16610 /* ARGSUSED */ 16611 static int 16612 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16613 { 16614 connf_t *connfp; 16615 conn_t *connp; 16616 tcp_t *tcp; 16617 int i; 16618 zoneid_t zoneid; 16619 16620 /* Refer to comments in tcp_status_report(). */ 16621 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16622 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16623 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16624 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16625 return (0); 16626 } 16627 } 16628 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16629 /* The following may work even if we cannot get a large buf. */ 16630 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16631 return (0); 16632 } 16633 16634 (void) mi_mpprintf(mp, 16635 " TCP " MI_COL_HDRPAD_STR 16636 "zone IP addr port seqnum backlog (q0/q/max)"); 16637 16638 zoneid = Q_TO_CONN(q)->conn_zoneid; 16639 16640 for (i = 0; i < ipcl_bind_fanout_size; i++) { 16641 connfp = &ipcl_bind_fanout[i]; 16642 connp = NULL; 16643 while ((connp = 16644 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16645 tcp = connp->conn_tcp; 16646 if (zoneid != GLOBAL_ZONEID && 16647 zoneid != connp->conn_zoneid) 16648 continue; 16649 tcp_report_listener(mp->b_cont, tcp, i); 16650 } 16651 } 16652 16653 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16654 return (0); 16655 } 16656 16657 /* TCP status report triggered via the Named Dispatch mechanism. */ 16658 /* ARGSUSED */ 16659 static int 16660 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16661 { 16662 connf_t *connfp; 16663 conn_t *connp; 16664 tcp_t *tcp; 16665 int i; 16666 zoneid_t zoneid; 16667 16668 /* Refer to comments in tcp_status_report(). */ 16669 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16670 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16671 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16672 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16673 return (0); 16674 } 16675 } 16676 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16677 /* The following may work even if we cannot get a large buf. */ 16678 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16679 return (0); 16680 } 16681 16682 (void) mi_mpprintf(mp, "tcp_conn_hash_size = %d", 16683 ipcl_conn_fanout_size); 16684 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16685 16686 zoneid = Q_TO_CONN(q)->conn_zoneid; 16687 16688 for (i = 0; i < ipcl_conn_fanout_size; i++) { 16689 connfp = &ipcl_conn_fanout[i]; 16690 connp = NULL; 16691 while ((connp = 16692 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 16693 tcp = connp->conn_tcp; 16694 if (zoneid != GLOBAL_ZONEID && 16695 zoneid != connp->conn_zoneid) 16696 continue; 16697 tcp_report_item(mp->b_cont, tcp, i, 16698 Q_TO_TCP(q), cr); 16699 } 16700 } 16701 16702 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16703 return (0); 16704 } 16705 16706 /* TCP status report triggered via the Named Dispatch mechanism. */ 16707 /* ARGSUSED */ 16708 static int 16709 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 16710 { 16711 tf_t *tf; 16712 tcp_t *tcp; 16713 int i; 16714 zoneid_t zoneid; 16715 16716 /* Refer to comments in tcp_status_report(). */ 16717 if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) { 16718 if (ddi_get_lbolt() - tcp_last_ndd_get_info_time < 16719 drv_usectohz(tcp_ndd_get_info_interval * 1000)) { 16720 (void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG); 16721 return (0); 16722 } 16723 } 16724 if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) { 16725 /* The following may work even if we cannot get a large buf. */ 16726 (void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG); 16727 return (0); 16728 } 16729 16730 (void) mi_mpprintf(mp, " %s", tcp_report_header); 16731 16732 zoneid = Q_TO_CONN(q)->conn_zoneid; 16733 16734 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 16735 tf = &tcp_acceptor_fanout[i]; 16736 mutex_enter(&tf->tf_lock); 16737 for (tcp = tf->tf_tcp; tcp != NULL; 16738 tcp = tcp->tcp_acceptor_hash) { 16739 if (zoneid != GLOBAL_ZONEID && 16740 zoneid != tcp->tcp_connp->conn_zoneid) 16741 continue; 16742 tcp_report_item(mp->b_cont, tcp, i, 16743 Q_TO_TCP(q), cr); 16744 } 16745 mutex_exit(&tf->tf_lock); 16746 } 16747 tcp_last_ndd_get_info_time = ddi_get_lbolt(); 16748 return (0); 16749 } 16750 16751 /* 16752 * tcp_timer is the timer service routine. It handles the retransmission, 16753 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 16754 * from the state of the tcp instance what kind of action needs to be done 16755 * at the time it is called. 16756 */ 16757 static void 16758 tcp_timer(void *arg) 16759 { 16760 mblk_t *mp; 16761 clock_t first_threshold; 16762 clock_t second_threshold; 16763 clock_t ms; 16764 uint32_t mss; 16765 conn_t *connp = (conn_t *)arg; 16766 tcp_t *tcp = connp->conn_tcp; 16767 16768 tcp->tcp_timer_tid = 0; 16769 16770 if (tcp->tcp_fused) 16771 return; 16772 16773 first_threshold = tcp->tcp_first_timer_threshold; 16774 second_threshold = tcp->tcp_second_timer_threshold; 16775 switch (tcp->tcp_state) { 16776 case TCPS_IDLE: 16777 case TCPS_BOUND: 16778 case TCPS_LISTEN: 16779 return; 16780 case TCPS_SYN_RCVD: { 16781 tcp_t *listener = tcp->tcp_listener; 16782 16783 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 16784 ASSERT(tcp->tcp_rq == listener->tcp_rq); 16785 /* it's our first timeout */ 16786 tcp->tcp_syn_rcvd_timeout = 1; 16787 mutex_enter(&listener->tcp_eager_lock); 16788 listener->tcp_syn_rcvd_timeout++; 16789 if (!tcp->tcp_dontdrop && tcp->tcp_closemp_used == 0) { 16790 /* 16791 * Make this eager available for drop if we 16792 * need to drop one to accomodate a new 16793 * incoming SYN request. 16794 */ 16795 MAKE_DROPPABLE(listener, tcp); 16796 } 16797 if (!listener->tcp_syn_defense && 16798 (listener->tcp_syn_rcvd_timeout > 16799 (tcp_conn_req_max_q0 >> 2)) && 16800 (tcp_conn_req_max_q0 > 200)) { 16801 /* We may be under attack. Put on a defense. */ 16802 listener->tcp_syn_defense = B_TRUE; 16803 cmn_err(CE_WARN, "High TCP connect timeout " 16804 "rate! System (port %d) may be under a " 16805 "SYN flood attack!", 16806 BE16_TO_U16(listener->tcp_tcph->th_lport)); 16807 16808 listener->tcp_ip_addr_cache = kmem_zalloc( 16809 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 16810 KM_NOSLEEP); 16811 } 16812 mutex_exit(&listener->tcp_eager_lock); 16813 } else if (listener != NULL) { 16814 mutex_enter(&listener->tcp_eager_lock); 16815 tcp->tcp_syn_rcvd_timeout++; 16816 if (tcp->tcp_syn_rcvd_timeout > 1 && 16817 tcp->tcp_closemp_used == 0) { 16818 /* 16819 * This is our second timeout. Put the tcp in 16820 * the list of droppable eagers to allow it to 16821 * be dropped, if needed. We don't check 16822 * whether tcp_dontdrop is set or not to 16823 * protect ourselve from a SYN attack where a 16824 * remote host can spoof itself as one of the 16825 * good IP source and continue to hold 16826 * resources too long. 16827 */ 16828 MAKE_DROPPABLE(listener, tcp); 16829 } 16830 mutex_exit(&listener->tcp_eager_lock); 16831 } 16832 } 16833 /* FALLTHRU */ 16834 case TCPS_SYN_SENT: 16835 first_threshold = tcp->tcp_first_ctimer_threshold; 16836 second_threshold = tcp->tcp_second_ctimer_threshold; 16837 break; 16838 case TCPS_ESTABLISHED: 16839 case TCPS_FIN_WAIT_1: 16840 case TCPS_CLOSING: 16841 case TCPS_CLOSE_WAIT: 16842 case TCPS_LAST_ACK: 16843 /* If we have data to rexmit */ 16844 if (tcp->tcp_suna != tcp->tcp_snxt) { 16845 clock_t time_to_wait; 16846 16847 BUMP_MIB(&tcp_mib, tcpTimRetrans); 16848 if (!tcp->tcp_xmit_head) 16849 break; 16850 time_to_wait = lbolt - 16851 (clock_t)tcp->tcp_xmit_head->b_prev; 16852 time_to_wait = tcp->tcp_rto - 16853 TICK_TO_MSEC(time_to_wait); 16854 /* 16855 * If the timer fires too early, 1 clock tick earlier, 16856 * restart the timer. 16857 */ 16858 if (time_to_wait > msec_per_tick) { 16859 TCP_STAT(tcp_timer_fire_early); 16860 TCP_TIMER_RESTART(tcp, time_to_wait); 16861 return; 16862 } 16863 /* 16864 * When we probe zero windows, we force the swnd open. 16865 * If our peer acks with a closed window swnd will be 16866 * set to zero by tcp_rput(). As long as we are 16867 * receiving acks tcp_rput will 16868 * reset 'tcp_ms_we_have_waited' so as not to trip the 16869 * first and second interval actions. NOTE: the timer 16870 * interval is allowed to continue its exponential 16871 * backoff. 16872 */ 16873 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 16874 if (tcp->tcp_debug) { 16875 (void) strlog(TCP_MOD_ID, 0, 1, 16876 SL_TRACE, "tcp_timer: zero win"); 16877 } 16878 } else { 16879 /* 16880 * After retransmission, we need to do 16881 * slow start. Set the ssthresh to one 16882 * half of current effective window and 16883 * cwnd to one MSS. Also reset 16884 * tcp_cwnd_cnt. 16885 * 16886 * Note that if tcp_ssthresh is reduced because 16887 * of ECN, do not reduce it again unless it is 16888 * already one window of data away (tcp_cwr 16889 * should then be cleared) or this is a 16890 * timeout for a retransmitted segment. 16891 */ 16892 uint32_t npkt; 16893 16894 if (!tcp->tcp_cwr || tcp->tcp_rexmit) { 16895 npkt = ((tcp->tcp_timer_backoff ? 16896 tcp->tcp_cwnd_ssthresh : 16897 tcp->tcp_snxt - 16898 tcp->tcp_suna) >> 1) / tcp->tcp_mss; 16899 tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * 16900 tcp->tcp_mss; 16901 } 16902 tcp->tcp_cwnd = tcp->tcp_mss; 16903 tcp->tcp_cwnd_cnt = 0; 16904 if (tcp->tcp_ecn_ok) { 16905 tcp->tcp_cwr = B_TRUE; 16906 tcp->tcp_cwr_snd_max = tcp->tcp_snxt; 16907 tcp->tcp_ecn_cwr_sent = B_FALSE; 16908 } 16909 } 16910 break; 16911 } 16912 /* 16913 * We have something to send yet we cannot send. The 16914 * reason can be: 16915 * 16916 * 1. Zero send window: we need to do zero window probe. 16917 * 2. Zero cwnd: because of ECN, we need to "clock out 16918 * segments. 16919 * 3. SWS avoidance: receiver may have shrunk window, 16920 * reset our knowledge. 16921 * 16922 * Note that condition 2 can happen with either 1 or 16923 * 3. But 1 and 3 are exclusive. 16924 */ 16925 if (tcp->tcp_unsent != 0) { 16926 if (tcp->tcp_cwnd == 0) { 16927 /* 16928 * Set tcp_cwnd to 1 MSS so that a 16929 * new segment can be sent out. We 16930 * are "clocking out" new data when 16931 * the network is really congested. 16932 */ 16933 ASSERT(tcp->tcp_ecn_ok); 16934 tcp->tcp_cwnd = tcp->tcp_mss; 16935 } 16936 if (tcp->tcp_swnd == 0) { 16937 /* Extend window for zero window probe */ 16938 tcp->tcp_swnd++; 16939 tcp->tcp_zero_win_probe = B_TRUE; 16940 BUMP_MIB(&tcp_mib, tcpOutWinProbe); 16941 } else { 16942 /* 16943 * Handle timeout from sender SWS avoidance. 16944 * Reset our knowledge of the max send window 16945 * since the receiver might have reduced its 16946 * receive buffer. Avoid setting tcp_max_swnd 16947 * to one since that will essentially disable 16948 * the SWS checks. 16949 * 16950 * Note that since we don't have a SWS 16951 * state variable, if the timeout is set 16952 * for ECN but not for SWS, this 16953 * code will also be executed. This is 16954 * fine as tcp_max_swnd is updated 16955 * constantly and it will not affect 16956 * anything. 16957 */ 16958 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 16959 } 16960 tcp_wput_data(tcp, NULL, B_FALSE); 16961 return; 16962 } 16963 /* Is there a FIN that needs to be to re retransmitted? */ 16964 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 16965 !tcp->tcp_fin_acked) 16966 break; 16967 /* Nothing to do, return without restarting timer. */ 16968 TCP_STAT(tcp_timer_fire_miss); 16969 return; 16970 case TCPS_FIN_WAIT_2: 16971 /* 16972 * User closed the TCP endpoint and peer ACK'ed our FIN. 16973 * We waited some time for for peer's FIN, but it hasn't 16974 * arrived. We flush the connection now to avoid 16975 * case where the peer has rebooted. 16976 */ 16977 if (TCP_IS_DETACHED(tcp)) { 16978 (void) tcp_clean_death(tcp, 0, 23); 16979 } else { 16980 TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval); 16981 } 16982 return; 16983 case TCPS_TIME_WAIT: 16984 (void) tcp_clean_death(tcp, 0, 24); 16985 return; 16986 default: 16987 if (tcp->tcp_debug) { 16988 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 16989 "tcp_timer: strange state (%d) %s", 16990 tcp->tcp_state, tcp_display(tcp, NULL, 16991 DISP_PORT_ONLY)); 16992 } 16993 return; 16994 } 16995 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 16996 /* 16997 * For zero window probe, we need to send indefinitely, 16998 * unless we have not heard from the other side for some 16999 * time... 17000 */ 17001 if ((tcp->tcp_zero_win_probe == 0) || 17002 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) > 17003 second_threshold)) { 17004 BUMP_MIB(&tcp_mib, tcpTimRetransDrop); 17005 /* 17006 * If TCP is in SYN_RCVD state, send back a 17007 * RST|ACK as BSD does. Note that tcp_zero_win_probe 17008 * should be zero in TCPS_SYN_RCVD state. 17009 */ 17010 if (tcp->tcp_state == TCPS_SYN_RCVD) { 17011 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 17012 "in SYN_RCVD", 17013 tcp, tcp->tcp_snxt, 17014 tcp->tcp_rnxt, TH_RST | TH_ACK); 17015 } 17016 (void) tcp_clean_death(tcp, 17017 tcp->tcp_client_errno ? 17018 tcp->tcp_client_errno : ETIMEDOUT, 25); 17019 return; 17020 } else { 17021 /* 17022 * Set tcp_ms_we_have_waited to second_threshold 17023 * so that in next timeout, we will do the above 17024 * check (lbolt - tcp_last_recv_time). This is 17025 * also to avoid overflow. 17026 * 17027 * We don't need to decrement tcp_timer_backoff 17028 * to avoid overflow because it will be decremented 17029 * later if new timeout value is greater than 17030 * tcp_rexmit_interval_max. In the case when 17031 * tcp_rexmit_interval_max is greater than 17032 * second_threshold, it means that we will wait 17033 * longer than second_threshold to send the next 17034 * window probe. 17035 */ 17036 tcp->tcp_ms_we_have_waited = second_threshold; 17037 } 17038 } else if (ms > first_threshold) { 17039 if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) && 17040 tcp->tcp_xmit_head != NULL) { 17041 tcp->tcp_xmit_head = 17042 tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1); 17043 } 17044 /* 17045 * We have been retransmitting for too long... The RTT 17046 * we calculated is probably incorrect. Reinitialize it. 17047 * Need to compensate for 0 tcp_rtt_sa. Reset 17048 * tcp_rtt_update so that we won't accidentally cache a 17049 * bad value. But only do this if this is not a zero 17050 * window probe. 17051 */ 17052 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 17053 tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) + 17054 (tcp->tcp_rtt_sa >> 5); 17055 tcp->tcp_rtt_sa = 0; 17056 tcp_ip_notify(tcp); 17057 tcp->tcp_rtt_update = 0; 17058 } 17059 } 17060 tcp->tcp_timer_backoff++; 17061 if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd + 17062 tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) < 17063 tcp_rexmit_interval_min) { 17064 /* 17065 * This means the original RTO is tcp_rexmit_interval_min. 17066 * So we will use tcp_rexmit_interval_min as the RTO value 17067 * and do the backoff. 17068 */ 17069 ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff; 17070 } else { 17071 ms <<= tcp->tcp_timer_backoff; 17072 } 17073 if (ms > tcp_rexmit_interval_max) { 17074 ms = tcp_rexmit_interval_max; 17075 /* 17076 * ms is at max, decrement tcp_timer_backoff to avoid 17077 * overflow. 17078 */ 17079 tcp->tcp_timer_backoff--; 17080 } 17081 tcp->tcp_ms_we_have_waited += ms; 17082 if (tcp->tcp_zero_win_probe == 0) { 17083 tcp->tcp_rto = ms; 17084 } 17085 TCP_TIMER_RESTART(tcp, ms); 17086 /* 17087 * This is after a timeout and tcp_rto is backed off. Set 17088 * tcp_set_timer to 1 so that next time RTO is updated, we will 17089 * restart the timer with a correct value. 17090 */ 17091 tcp->tcp_set_timer = 1; 17092 mss = tcp->tcp_snxt - tcp->tcp_suna; 17093 if (mss > tcp->tcp_mss) 17094 mss = tcp->tcp_mss; 17095 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 17096 mss = tcp->tcp_swnd; 17097 17098 if ((mp = tcp->tcp_xmit_head) != NULL) 17099 mp->b_prev = (mblk_t *)lbolt; 17100 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 17101 B_TRUE); 17102 17103 /* 17104 * When slow start after retransmission begins, start with 17105 * this seq no. tcp_rexmit_max marks the end of special slow 17106 * start phase. tcp_snd_burst controls how many segments 17107 * can be sent because of an ack. 17108 */ 17109 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 17110 tcp->tcp_snd_burst = TCP_CWND_SS; 17111 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 17112 (tcp->tcp_unsent == 0)) { 17113 tcp->tcp_rexmit_max = tcp->tcp_fss; 17114 } else { 17115 tcp->tcp_rexmit_max = tcp->tcp_snxt; 17116 } 17117 tcp->tcp_rexmit = B_TRUE; 17118 tcp->tcp_dupack_cnt = 0; 17119 17120 /* 17121 * Remove all rexmit SACK blk to start from fresh. 17122 */ 17123 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 17124 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list); 17125 tcp->tcp_num_notsack_blk = 0; 17126 tcp->tcp_cnt_notsack_list = 0; 17127 } 17128 if (mp == NULL) { 17129 return; 17130 } 17131 /* Attach credentials to retransmitted initial SYNs. */ 17132 if (tcp->tcp_state == TCPS_SYN_SENT) { 17133 mblk_setcred(mp, tcp->tcp_cred); 17134 DB_CPID(mp) = tcp->tcp_cpid; 17135 } 17136 17137 tcp->tcp_csuna = tcp->tcp_snxt; 17138 BUMP_MIB(&tcp_mib, tcpRetransSegs); 17139 UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss); 17140 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 17141 tcp_send_data(tcp, tcp->tcp_wq, mp); 17142 17143 } 17144 17145 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */ 17146 static void 17147 tcp_unbind(tcp_t *tcp, mblk_t *mp) 17148 { 17149 conn_t *connp; 17150 17151 switch (tcp->tcp_state) { 17152 case TCPS_BOUND: 17153 case TCPS_LISTEN: 17154 break; 17155 default: 17156 tcp_err_ack(tcp, mp, TOUTSTATE, 0); 17157 return; 17158 } 17159 17160 /* 17161 * Need to clean up all the eagers since after the unbind, segments 17162 * will no longer be delivered to this listener stream. 17163 */ 17164 mutex_enter(&tcp->tcp_eager_lock); 17165 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 17166 tcp_eager_cleanup(tcp, 0); 17167 } 17168 mutex_exit(&tcp->tcp_eager_lock); 17169 17170 if (tcp->tcp_ipversion == IPV4_VERSION) { 17171 tcp->tcp_ipha->ipha_src = 0; 17172 } else { 17173 V6_SET_ZERO(tcp->tcp_ip6h->ip6_src); 17174 } 17175 V6_SET_ZERO(tcp->tcp_ip_src_v6); 17176 bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport)); 17177 tcp_bind_hash_remove(tcp); 17178 tcp->tcp_state = TCPS_IDLE; 17179 tcp->tcp_mdt = B_FALSE; 17180 /* Send M_FLUSH according to TPI */ 17181 (void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW); 17182 connp = tcp->tcp_connp; 17183 connp->conn_mdt_ok = B_FALSE; 17184 ipcl_hash_remove(connp); 17185 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 17186 mp = mi_tpi_ok_ack_alloc(mp); 17187 putnext(tcp->tcp_rq, mp); 17188 } 17189 17190 /* 17191 * Don't let port fall into the privileged range. 17192 * Since the extra privileged ports can be arbitrary we also 17193 * ensure that we exclude those from consideration. 17194 * tcp_g_epriv_ports is not sorted thus we loop over it until 17195 * there are no changes. 17196 * 17197 * Note: No locks are held when inspecting tcp_g_*epriv_ports 17198 * but instead the code relies on: 17199 * - the fact that the address of the array and its size never changes 17200 * - the atomic assignment of the elements of the array 17201 * 17202 * Returns 0 if there are no more ports available. 17203 * 17204 * TS note: skip multilevel ports. 17205 */ 17206 static in_port_t 17207 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random) 17208 { 17209 int i; 17210 boolean_t restart = B_FALSE; 17211 17212 if (random && tcp_random_anon_port != 0) { 17213 (void) random_get_pseudo_bytes((uint8_t *)&port, 17214 sizeof (in_port_t)); 17215 /* 17216 * Unless changed by a sys admin, the smallest anon port 17217 * is 32768 and the largest anon port is 65535. It is 17218 * very likely (50%) for the random port to be smaller 17219 * than the smallest anon port. When that happens, 17220 * add port % (anon port range) to the smallest anon 17221 * port to get the random port. It should fall into the 17222 * valid anon port range. 17223 */ 17224 if (port < tcp_smallest_anon_port) { 17225 port = tcp_smallest_anon_port + 17226 port % (tcp_largest_anon_port - 17227 tcp_smallest_anon_port); 17228 } 17229 } 17230 17231 retry: 17232 if (port < tcp_smallest_anon_port) 17233 port = (in_port_t)tcp_smallest_anon_port; 17234 17235 if (port > tcp_largest_anon_port) { 17236 if (restart) 17237 return (0); 17238 restart = B_TRUE; 17239 port = (in_port_t)tcp_smallest_anon_port; 17240 } 17241 17242 if (port < tcp_smallest_nonpriv_port) 17243 port = (in_port_t)tcp_smallest_nonpriv_port; 17244 17245 for (i = 0; i < tcp_g_num_epriv_ports; i++) { 17246 if (port == tcp_g_epriv_ports[i]) { 17247 port++; 17248 /* 17249 * Make sure whether the port is in the 17250 * valid range. 17251 */ 17252 goto retry; 17253 } 17254 } 17255 if (is_system_labeled() && 17256 (i = tsol_next_port(crgetzone(tcp->tcp_cred), port, 17257 IPPROTO_TCP, B_TRUE)) != 0) { 17258 port = i; 17259 goto retry; 17260 } 17261 return (port); 17262 } 17263 17264 /* 17265 * Return the next anonymous port in the privileged port range for 17266 * bind checking. It starts at IPPORT_RESERVED - 1 and goes 17267 * downwards. This is the same behavior as documented in the userland 17268 * library call rresvport(3N). 17269 * 17270 * TS note: skip multilevel ports. 17271 */ 17272 static in_port_t 17273 tcp_get_next_priv_port(const tcp_t *tcp) 17274 { 17275 static in_port_t next_priv_port = IPPORT_RESERVED - 1; 17276 in_port_t nextport; 17277 boolean_t restart = B_FALSE; 17278 17279 retry: 17280 if (next_priv_port < tcp_min_anonpriv_port || 17281 next_priv_port >= IPPORT_RESERVED) { 17282 next_priv_port = IPPORT_RESERVED - 1; 17283 if (restart) 17284 return (0); 17285 restart = B_TRUE; 17286 } 17287 if (is_system_labeled() && 17288 (nextport = tsol_next_port(crgetzone(tcp->tcp_cred), 17289 next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) { 17290 next_priv_port = nextport; 17291 goto retry; 17292 } 17293 return (next_priv_port--); 17294 } 17295 17296 /* The write side r/w procedure. */ 17297 17298 #if CCS_STATS 17299 struct { 17300 struct { 17301 int64_t count, bytes; 17302 } tot, hit; 17303 } wrw_stats; 17304 #endif 17305 17306 /* 17307 * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO, 17308 * messages. 17309 */ 17310 /* ARGSUSED */ 17311 static void 17312 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2) 17313 { 17314 conn_t *connp = (conn_t *)arg; 17315 tcp_t *tcp = connp->conn_tcp; 17316 queue_t *q = tcp->tcp_wq; 17317 17318 ASSERT(DB_TYPE(mp) != M_IOCTL); 17319 /* 17320 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close. 17321 * Once the close starts, streamhead and sockfs will not let any data 17322 * packets come down (close ensures that there are no threads using the 17323 * queue and no new threads will come down) but since qprocsoff() 17324 * hasn't happened yet, a M_FLUSH or some non data message might 17325 * get reflected back (in response to our own FLUSHRW) and get 17326 * processed after tcp_close() is done. The conn would still be valid 17327 * because a ref would have added but we need to check the state 17328 * before actually processing the packet. 17329 */ 17330 if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) { 17331 freemsg(mp); 17332 return; 17333 } 17334 17335 switch (DB_TYPE(mp)) { 17336 case M_IOCDATA: 17337 tcp_wput_iocdata(tcp, mp); 17338 break; 17339 case M_FLUSH: 17340 tcp_wput_flush(tcp, mp); 17341 break; 17342 default: 17343 CALL_IP_WPUT(connp, q, mp); 17344 break; 17345 } 17346 } 17347 17348 /* 17349 * The TCP fast path write put procedure. 17350 * NOTE: the logic of the fast path is duplicated from tcp_wput_data() 17351 */ 17352 /* ARGSUSED */ 17353 void 17354 tcp_output(void *arg, mblk_t *mp, void *arg2) 17355 { 17356 int len; 17357 int hdrlen; 17358 int plen; 17359 mblk_t *mp1; 17360 uchar_t *rptr; 17361 uint32_t snxt; 17362 tcph_t *tcph; 17363 struct datab *db; 17364 uint32_t suna; 17365 uint32_t mss; 17366 ipaddr_t *dst; 17367 ipaddr_t *src; 17368 uint32_t sum; 17369 int usable; 17370 conn_t *connp = (conn_t *)arg; 17371 tcp_t *tcp = connp->conn_tcp; 17372 uint32_t msize; 17373 17374 /* 17375 * Try and ASSERT the minimum possible references on the 17376 * conn early enough. Since we are executing on write side, 17377 * the connection is obviously not detached and that means 17378 * there is a ref each for TCP and IP. Since we are behind 17379 * the squeue, the minimum references needed are 3. If the 17380 * conn is in classifier hash list, there should be an 17381 * extra ref for that (we check both the possibilities). 17382 */ 17383 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17384 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17385 17386 ASSERT(DB_TYPE(mp) == M_DATA); 17387 msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp); 17388 17389 mutex_enter(&tcp->tcp_non_sq_lock); 17390 tcp->tcp_squeue_bytes -= msize; 17391 mutex_exit(&tcp->tcp_non_sq_lock); 17392 17393 /* Bypass tcp protocol for fused tcp loopback */ 17394 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 17395 return; 17396 17397 mss = tcp->tcp_mss; 17398 if (tcp->tcp_xmit_zc_clean) 17399 mp = tcp_zcopy_backoff(tcp, mp, 0); 17400 17401 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 17402 len = (int)(mp->b_wptr - mp->b_rptr); 17403 17404 /* 17405 * Criteria for fast path: 17406 * 17407 * 1. no unsent data 17408 * 2. single mblk in request 17409 * 3. connection established 17410 * 4. data in mblk 17411 * 5. len <= mss 17412 * 6. no tcp_valid bits 17413 */ 17414 if ((tcp->tcp_unsent != 0) || 17415 (tcp->tcp_cork) || 17416 (mp->b_cont != NULL) || 17417 (tcp->tcp_state != TCPS_ESTABLISHED) || 17418 (len == 0) || 17419 (len > mss) || 17420 (tcp->tcp_valid_bits != 0)) { 17421 tcp_wput_data(tcp, mp, B_FALSE); 17422 return; 17423 } 17424 17425 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 17426 ASSERT(tcp->tcp_fin_sent == 0); 17427 17428 /* queue new packet onto retransmission queue */ 17429 if (tcp->tcp_xmit_head == NULL) { 17430 tcp->tcp_xmit_head = mp; 17431 } else { 17432 tcp->tcp_xmit_last->b_cont = mp; 17433 } 17434 tcp->tcp_xmit_last = mp; 17435 tcp->tcp_xmit_tail = mp; 17436 17437 /* find out how much we can send */ 17438 /* BEGIN CSTYLED */ 17439 /* 17440 * un-acked usable 17441 * |--------------|-----------------| 17442 * tcp_suna tcp_snxt tcp_suna+tcp_swnd 17443 */ 17444 /* END CSTYLED */ 17445 17446 /* start sending from tcp_snxt */ 17447 snxt = tcp->tcp_snxt; 17448 17449 /* 17450 * Check to see if this connection has been idled for some 17451 * time and no ACK is expected. If it is, we need to slow 17452 * start again to get back the connection's "self-clock" as 17453 * described in VJ's paper. 17454 * 17455 * Refer to the comment in tcp_mss_set() for the calculation 17456 * of tcp_cwnd after idle. 17457 */ 17458 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 17459 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 17460 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 17461 } 17462 17463 usable = tcp->tcp_swnd; /* tcp window size */ 17464 if (usable > tcp->tcp_cwnd) 17465 usable = tcp->tcp_cwnd; /* congestion window smaller */ 17466 usable -= snxt; /* subtract stuff already sent */ 17467 suna = tcp->tcp_suna; 17468 usable += suna; 17469 /* usable can be < 0 if the congestion window is smaller */ 17470 if (len > usable) { 17471 /* Can't send complete M_DATA in one shot */ 17472 goto slow; 17473 } 17474 17475 mutex_enter(&tcp->tcp_non_sq_lock); 17476 if (tcp->tcp_flow_stopped && 17477 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 17478 tcp_clrqfull(tcp); 17479 } 17480 mutex_exit(&tcp->tcp_non_sq_lock); 17481 17482 /* 17483 * determine if anything to send (Nagle). 17484 * 17485 * 1. len < tcp_mss (i.e. small) 17486 * 2. unacknowledged data present 17487 * 3. len < nagle limit 17488 * 4. last packet sent < nagle limit (previous packet sent) 17489 */ 17490 if ((len < mss) && (snxt != suna) && 17491 (len < (int)tcp->tcp_naglim) && 17492 (tcp->tcp_last_sent_len < tcp->tcp_naglim)) { 17493 /* 17494 * This was the first unsent packet and normally 17495 * mss < xmit_hiwater so there is no need to worry 17496 * about flow control. The next packet will go 17497 * through the flow control check in tcp_wput_data(). 17498 */ 17499 /* leftover work from above */ 17500 tcp->tcp_unsent = len; 17501 tcp->tcp_xmit_tail_unsent = len; 17502 17503 return; 17504 } 17505 17506 /* len <= tcp->tcp_mss && len == unsent so no silly window */ 17507 17508 if (snxt == suna) { 17509 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 17510 } 17511 17512 /* we have always sent something */ 17513 tcp->tcp_rack_cnt = 0; 17514 17515 tcp->tcp_snxt = snxt + len; 17516 tcp->tcp_rack = tcp->tcp_rnxt; 17517 17518 if ((mp1 = dupb(mp)) == 0) 17519 goto no_memory; 17520 mp->b_prev = (mblk_t *)(uintptr_t)lbolt; 17521 mp->b_next = (mblk_t *)(uintptr_t)snxt; 17522 17523 /* adjust tcp header information */ 17524 tcph = tcp->tcp_tcph; 17525 tcph->th_flags[0] = (TH_ACK|TH_PUSH); 17526 17527 sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 17528 sum = (sum >> 16) + (sum & 0xFFFF); 17529 U16_TO_ABE16(sum, tcph->th_sum); 17530 17531 U32_TO_ABE32(snxt, tcph->th_seq); 17532 17533 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 17534 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 17535 BUMP_LOCAL(tcp->tcp_obsegs); 17536 17537 /* Update the latest receive window size in TCP header. */ 17538 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 17539 tcph->th_win); 17540 17541 tcp->tcp_last_sent_len = (ushort_t)len; 17542 17543 plen = len + tcp->tcp_hdr_len; 17544 17545 if (tcp->tcp_ipversion == IPV4_VERSION) { 17546 tcp->tcp_ipha->ipha_length = htons(plen); 17547 } else { 17548 tcp->tcp_ip6h->ip6_plen = htons(plen - 17549 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 17550 } 17551 17552 /* see if we need to allocate a mblk for the headers */ 17553 hdrlen = tcp->tcp_hdr_len; 17554 rptr = mp1->b_rptr - hdrlen; 17555 db = mp1->b_datap; 17556 if ((db->db_ref != 2) || rptr < db->db_base || 17557 (!OK_32PTR(rptr))) { 17558 /* NOTE: we assume allocb returns an OK_32PTR */ 17559 mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 17560 tcp_wroff_xtra, BPRI_MED); 17561 if (!mp) { 17562 freemsg(mp1); 17563 goto no_memory; 17564 } 17565 mp->b_cont = mp1; 17566 mp1 = mp; 17567 /* Leave room for Link Level header */ 17568 /* hdrlen = tcp->tcp_hdr_len; */ 17569 rptr = &mp1->b_rptr[tcp_wroff_xtra]; 17570 mp1->b_wptr = &rptr[hdrlen]; 17571 } 17572 mp1->b_rptr = rptr; 17573 17574 /* Fill in the timestamp option. */ 17575 if (tcp->tcp_snd_ts_ok) { 17576 U32_TO_BE32((uint32_t)lbolt, 17577 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 17578 U32_TO_BE32(tcp->tcp_ts_recent, 17579 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 17580 } else { 17581 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 17582 } 17583 17584 /* copy header into outgoing packet */ 17585 dst = (ipaddr_t *)rptr; 17586 src = (ipaddr_t *)tcp->tcp_iphc; 17587 dst[0] = src[0]; 17588 dst[1] = src[1]; 17589 dst[2] = src[2]; 17590 dst[3] = src[3]; 17591 dst[4] = src[4]; 17592 dst[5] = src[5]; 17593 dst[6] = src[6]; 17594 dst[7] = src[7]; 17595 dst[8] = src[8]; 17596 dst[9] = src[9]; 17597 if (hdrlen -= 40) { 17598 hdrlen >>= 2; 17599 dst += 10; 17600 src += 10; 17601 do { 17602 *dst++ = *src++; 17603 } while (--hdrlen); 17604 } 17605 17606 /* 17607 * Set the ECN info in the TCP header. Note that this 17608 * is not the template header. 17609 */ 17610 if (tcp->tcp_ecn_ok) { 17611 SET_ECT(tcp, rptr); 17612 17613 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 17614 if (tcp->tcp_ecn_echo_on) 17615 tcph->th_flags[0] |= TH_ECE; 17616 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 17617 tcph->th_flags[0] |= TH_CWR; 17618 tcp->tcp_ecn_cwr_sent = B_TRUE; 17619 } 17620 } 17621 17622 if (tcp->tcp_ip_forward_progress) { 17623 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 17624 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 17625 tcp->tcp_ip_forward_progress = B_FALSE; 17626 } 17627 TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT); 17628 tcp_send_data(tcp, tcp->tcp_wq, mp1); 17629 return; 17630 17631 /* 17632 * If we ran out of memory, we pretend to have sent the packet 17633 * and that it was lost on the wire. 17634 */ 17635 no_memory: 17636 return; 17637 17638 slow: 17639 /* leftover work from above */ 17640 tcp->tcp_unsent = len; 17641 tcp->tcp_xmit_tail_unsent = len; 17642 tcp_wput_data(tcp, NULL, B_FALSE); 17643 } 17644 17645 /* 17646 * The function called through squeue to get behind eager's perimeter to 17647 * finish the accept processing. 17648 */ 17649 /* ARGSUSED */ 17650 void 17651 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2) 17652 { 17653 conn_t *connp = (conn_t *)arg; 17654 tcp_t *tcp = connp->conn_tcp; 17655 queue_t *q = tcp->tcp_rq; 17656 mblk_t *mp1; 17657 mblk_t *stropt_mp = mp; 17658 struct stroptions *stropt; 17659 uint_t thwin; 17660 17661 /* 17662 * Drop the eager's ref on the listener, that was placed when 17663 * this eager began life in tcp_conn_request. 17664 */ 17665 CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp); 17666 17667 if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) { 17668 /* 17669 * Someone blewoff the eager before we could finish 17670 * the accept. 17671 * 17672 * The only reason eager exists it because we put in 17673 * a ref on it when conn ind went up. We need to send 17674 * a disconnect indication up while the last reference 17675 * on the eager will be dropped by the squeue when we 17676 * return. 17677 */ 17678 ASSERT(tcp->tcp_listener == NULL); 17679 if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) { 17680 struct T_discon_ind *tdi; 17681 17682 (void) putnextctl1(q, M_FLUSH, FLUSHRW); 17683 /* 17684 * Let us reuse the incoming mblk to avoid memory 17685 * allocation failure problems. We know that the 17686 * size of the incoming mblk i.e. stroptions is greater 17687 * than sizeof T_discon_ind. So the reallocb below 17688 * can't fail. 17689 */ 17690 freemsg(mp->b_cont); 17691 mp->b_cont = NULL; 17692 ASSERT(DB_REF(mp) == 1); 17693 mp = reallocb(mp, sizeof (struct T_discon_ind), 17694 B_FALSE); 17695 ASSERT(mp != NULL); 17696 DB_TYPE(mp) = M_PROTO; 17697 ((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND; 17698 tdi = (struct T_discon_ind *)mp->b_rptr; 17699 if (tcp->tcp_issocket) { 17700 tdi->DISCON_reason = ECONNREFUSED; 17701 tdi->SEQ_number = 0; 17702 } else { 17703 tdi->DISCON_reason = ENOPROTOOPT; 17704 tdi->SEQ_number = 17705 tcp->tcp_conn_req_seqnum; 17706 } 17707 mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind); 17708 putnext(q, mp); 17709 } else { 17710 freemsg(mp); 17711 } 17712 if (tcp->tcp_hard_binding) { 17713 tcp->tcp_hard_binding = B_FALSE; 17714 tcp->tcp_hard_bound = B_TRUE; 17715 } 17716 tcp->tcp_detached = B_FALSE; 17717 return; 17718 } 17719 17720 mp1 = stropt_mp->b_cont; 17721 stropt_mp->b_cont = NULL; 17722 ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS); 17723 stropt = (struct stroptions *)stropt_mp->b_rptr; 17724 17725 while (mp1 != NULL) { 17726 mp = mp1; 17727 mp1 = mp1->b_cont; 17728 mp->b_cont = NULL; 17729 tcp->tcp_drop_opt_ack_cnt++; 17730 CALL_IP_WPUT(connp, tcp->tcp_wq, mp); 17731 } 17732 mp = NULL; 17733 17734 /* 17735 * For a loopback connection with tcp_direct_sockfs on, note that 17736 * we don't have to protect tcp_rcv_list yet because synchronous 17737 * streams has not yet been enabled and tcp_fuse_rrw() cannot 17738 * possibly race with us. 17739 */ 17740 17741 /* 17742 * Set the max window size (tcp_rq->q_hiwat) of the acceptor 17743 * properly. This is the first time we know of the acceptor' 17744 * queue. So we do it here. 17745 */ 17746 if (tcp->tcp_rcv_list == NULL) { 17747 /* 17748 * Recv queue is empty, tcp_rwnd should not have changed. 17749 * That means it should be equal to the listener's tcp_rwnd. 17750 */ 17751 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd; 17752 } else { 17753 #ifdef DEBUG 17754 uint_t cnt = 0; 17755 17756 mp1 = tcp->tcp_rcv_list; 17757 while ((mp = mp1) != NULL) { 17758 mp1 = mp->b_next; 17759 cnt += msgdsize(mp); 17760 } 17761 ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt); 17762 #endif 17763 /* There is some data, add them back to get the max. */ 17764 tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt; 17765 } 17766 17767 stropt->so_flags = SO_HIWAT; 17768 stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat); 17769 17770 stropt->so_flags |= SO_MAXBLK; 17771 stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 17772 17773 /* 17774 * This is the first time we run on the correct 17775 * queue after tcp_accept. So fix all the q parameters 17776 * here. 17777 */ 17778 /* Allocate room for SACK options if needed. */ 17779 stropt->so_flags |= SO_WROFF; 17780 if (tcp->tcp_fused) { 17781 ASSERT(tcp->tcp_loopback); 17782 ASSERT(tcp->tcp_loopback_peer != NULL); 17783 /* 17784 * For fused tcp loopback, set the stream head's write 17785 * offset value to zero since we won't be needing any room 17786 * for TCP/IP headers. This would also improve performance 17787 * since it would reduce the amount of work done by kmem. 17788 * Non-fused tcp loopback case is handled separately below. 17789 */ 17790 stropt->so_wroff = 0; 17791 /* 17792 * Record the stream head's high water mark for this endpoint; 17793 * this is used for flow-control purposes in tcp_fuse_output(). 17794 */ 17795 stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(tcp, q->q_hiwat); 17796 /* 17797 * Update the peer's transmit parameters according to 17798 * our recently calculated high water mark value. 17799 */ 17800 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 17801 } else if (tcp->tcp_snd_sack_ok) { 17802 stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN + 17803 (tcp->tcp_loopback ? 0 : tcp_wroff_xtra); 17804 } else { 17805 stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 : 17806 tcp_wroff_xtra); 17807 } 17808 17809 /* 17810 * If this is endpoint is handling SSL, then reserve extra 17811 * offset and space at the end. 17812 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets, 17813 * overriding the previous setting. The extra cost of signing and 17814 * encrypting multiple MSS-size records (12 of them with Ethernet), 17815 * instead of a single contiguous one by the stream head 17816 * largely outweighs the statistical reduction of ACKs, when 17817 * applicable. The peer will also save on decyption and verification 17818 * costs. 17819 */ 17820 if (tcp->tcp_kssl_ctx != NULL) { 17821 stropt->so_wroff += SSL3_WROFFSET; 17822 17823 stropt->so_flags |= SO_TAIL; 17824 stropt->so_tail = SSL3_MAX_TAIL_LEN; 17825 17826 stropt->so_maxblk = SSL3_MAX_RECORD_LEN; 17827 } 17828 17829 /* Send the options up */ 17830 putnext(q, stropt_mp); 17831 17832 /* 17833 * Pass up any data and/or a fin that has been received. 17834 * 17835 * Adjust receive window in case it had decreased 17836 * (because there is data <=> tcp_rcv_list != NULL) 17837 * while the connection was detached. Note that 17838 * in case the eager was flow-controlled, w/o this 17839 * code, the rwnd may never open up again! 17840 */ 17841 if (tcp->tcp_rcv_list != NULL) { 17842 /* We drain directly in case of fused tcp loopback */ 17843 if (!tcp->tcp_fused && canputnext(q)) { 17844 tcp->tcp_rwnd = q->q_hiwat; 17845 thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win)) 17846 << tcp->tcp_rcv_ws; 17847 thwin -= tcp->tcp_rnxt - tcp->tcp_rack; 17848 if (tcp->tcp_state >= TCPS_ESTABLISHED && 17849 (q->q_hiwat - thwin >= tcp->tcp_mss)) { 17850 tcp_xmit_ctl(NULL, 17851 tcp, (tcp->tcp_swnd == 0) ? 17852 tcp->tcp_suna : tcp->tcp_snxt, 17853 tcp->tcp_rnxt, TH_ACK); 17854 BUMP_MIB(&tcp_mib, tcpOutWinUpdate); 17855 } 17856 17857 } 17858 (void) tcp_rcv_drain(q, tcp); 17859 17860 /* 17861 * For fused tcp loopback, back-enable peer endpoint 17862 * if it's currently flow-controlled. 17863 */ 17864 if (tcp->tcp_fused) { 17865 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 17866 17867 ASSERT(peer_tcp != NULL); 17868 ASSERT(peer_tcp->tcp_fused); 17869 /* 17870 * In order to change the peer's tcp_flow_stopped, 17871 * we need to take locks for both end points. The 17872 * highest address is taken first. 17873 */ 17874 if (peer_tcp > tcp) { 17875 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17876 mutex_enter(&tcp->tcp_non_sq_lock); 17877 } else { 17878 mutex_enter(&tcp->tcp_non_sq_lock); 17879 mutex_enter(&peer_tcp->tcp_non_sq_lock); 17880 } 17881 if (peer_tcp->tcp_flow_stopped) { 17882 tcp_clrqfull(peer_tcp); 17883 TCP_STAT(tcp_fusion_backenabled); 17884 } 17885 mutex_exit(&peer_tcp->tcp_non_sq_lock); 17886 mutex_exit(&tcp->tcp_non_sq_lock); 17887 } 17888 } 17889 ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg); 17890 if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) { 17891 mp = mi_tpi_ordrel_ind(); 17892 if (mp) { 17893 tcp->tcp_ordrel_done = B_TRUE; 17894 putnext(q, mp); 17895 if (tcp->tcp_deferred_clean_death) { 17896 /* 17897 * tcp_clean_death was deferred 17898 * for T_ORDREL_IND - do it now 17899 */ 17900 (void) tcp_clean_death(tcp, 17901 tcp->tcp_client_errno, 21); 17902 tcp->tcp_deferred_clean_death = B_FALSE; 17903 } 17904 } else { 17905 /* 17906 * Run the orderly release in the 17907 * service routine. 17908 */ 17909 qenable(q); 17910 } 17911 } 17912 if (tcp->tcp_hard_binding) { 17913 tcp->tcp_hard_binding = B_FALSE; 17914 tcp->tcp_hard_bound = B_TRUE; 17915 } 17916 17917 tcp->tcp_detached = B_FALSE; 17918 17919 /* We can enable synchronous streams now */ 17920 if (tcp->tcp_fused) { 17921 tcp_fuse_syncstr_enable_pair(tcp); 17922 } 17923 17924 if (tcp->tcp_ka_enabled) { 17925 tcp->tcp_ka_last_intrvl = 0; 17926 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer, 17927 MSEC_TO_TICK(tcp->tcp_ka_interval)); 17928 } 17929 17930 /* 17931 * At this point, eager is fully established and will 17932 * have the following references - 17933 * 17934 * 2 references for connection to exist (1 for TCP and 1 for IP). 17935 * 1 reference for the squeue which will be dropped by the squeue as 17936 * soon as this function returns. 17937 * There will be 1 additonal reference for being in classifier 17938 * hash list provided something bad hasn't happened. 17939 */ 17940 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 17941 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 17942 } 17943 17944 /* 17945 * The function called through squeue to get behind listener's perimeter to 17946 * send a deffered conn_ind. 17947 */ 17948 /* ARGSUSED */ 17949 void 17950 tcp_send_pending(void *arg, mblk_t *mp, void *arg2) 17951 { 17952 conn_t *connp = (conn_t *)arg; 17953 tcp_t *listener = connp->conn_tcp; 17954 17955 if (listener->tcp_state == TCPS_CLOSED || 17956 TCP_IS_DETACHED(listener)) { 17957 /* 17958 * If listener has closed, it would have caused a 17959 * a cleanup/blowoff to happen for the eager. 17960 */ 17961 tcp_t *tcp; 17962 struct T_conn_ind *conn_ind; 17963 17964 conn_ind = (struct T_conn_ind *)mp->b_rptr; 17965 bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp, 17966 conn_ind->OPT_length); 17967 /* 17968 * We need to drop the ref on eager that was put 17969 * tcp_rput_data() before trying to send the conn_ind 17970 * to listener. The conn_ind was deferred in tcp_send_conn_ind 17971 * and tcp_wput_accept() is sending this deferred conn_ind but 17972 * listener is closed so we drop the ref. 17973 */ 17974 CONN_DEC_REF(tcp->tcp_connp); 17975 freemsg(mp); 17976 return; 17977 } 17978 putnext(listener->tcp_rq, mp); 17979 } 17980 17981 17982 /* 17983 * This is the STREAMS entry point for T_CONN_RES coming down on 17984 * Acceptor STREAM when sockfs listener does accept processing. 17985 * Read the block comment on top pf tcp_conn_request(). 17986 */ 17987 void 17988 tcp_wput_accept(queue_t *q, mblk_t *mp) 17989 { 17990 queue_t *rq = RD(q); 17991 struct T_conn_res *conn_res; 17992 tcp_t *eager; 17993 tcp_t *listener; 17994 struct T_ok_ack *ok; 17995 t_scalar_t PRIM_type; 17996 mblk_t *opt_mp; 17997 conn_t *econnp; 17998 17999 ASSERT(DB_TYPE(mp) == M_PROTO); 18000 18001 conn_res = (struct T_conn_res *)mp->b_rptr; 18002 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 18003 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) { 18004 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18005 if (mp != NULL) 18006 putnext(rq, mp); 18007 return; 18008 } 18009 switch (conn_res->PRIM_type) { 18010 case O_T_CONN_RES: 18011 case T_CONN_RES: 18012 /* 18013 * We pass up an err ack if allocb fails. This will 18014 * cause sockfs to issue a T_DISCON_REQ which will cause 18015 * tcp_eager_blowoff to be called. sockfs will then call 18016 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream. 18017 * we need to do the allocb up here because we have to 18018 * make sure rq->q_qinfo->qi_qclose still points to the 18019 * correct function (tcpclose_accept) in case allocb 18020 * fails. 18021 */ 18022 opt_mp = allocb(sizeof (struct stroptions), BPRI_HI); 18023 if (opt_mp == NULL) { 18024 mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0); 18025 if (mp != NULL) 18026 putnext(rq, mp); 18027 return; 18028 } 18029 18030 bcopy(mp->b_rptr + conn_res->OPT_offset, 18031 &eager, conn_res->OPT_length); 18032 PRIM_type = conn_res->PRIM_type; 18033 mp->b_datap->db_type = M_PCPROTO; 18034 mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack); 18035 ok = (struct T_ok_ack *)mp->b_rptr; 18036 ok->PRIM_type = T_OK_ACK; 18037 ok->CORRECT_prim = PRIM_type; 18038 econnp = eager->tcp_connp; 18039 econnp->conn_dev = (dev_t)q->q_ptr; 18040 eager->tcp_rq = rq; 18041 eager->tcp_wq = q; 18042 rq->q_ptr = econnp; 18043 rq->q_qinfo = &tcp_rinit; 18044 q->q_ptr = econnp; 18045 q->q_qinfo = &tcp_winit; 18046 listener = eager->tcp_listener; 18047 eager->tcp_issocket = B_TRUE; 18048 18049 econnp->conn_zoneid = listener->tcp_connp->conn_zoneid; 18050 econnp->conn_allzones = listener->tcp_connp->conn_allzones; 18051 18052 /* Put the ref for IP */ 18053 CONN_INC_REF(econnp); 18054 18055 /* 18056 * We should have minimum of 3 references on the conn 18057 * at this point. One each for TCP and IP and one for 18058 * the T_conn_ind that was sent up when the 3-way handshake 18059 * completed. In the normal case we would also have another 18060 * reference (making a total of 4) for the conn being in the 18061 * classifier hash list. However the eager could have received 18062 * an RST subsequently and tcp_closei_local could have removed 18063 * the eager from the classifier hash list, hence we can't 18064 * assert that reference. 18065 */ 18066 ASSERT(econnp->conn_ref >= 3); 18067 18068 /* 18069 * Send the new local address also up to sockfs. There 18070 * should already be enough space in the mp that came 18071 * down from soaccept(). 18072 */ 18073 if (eager->tcp_family == AF_INET) { 18074 sin_t *sin; 18075 18076 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18077 (sizeof (struct T_ok_ack) + sizeof (sin_t))); 18078 sin = (sin_t *)mp->b_wptr; 18079 mp->b_wptr += sizeof (sin_t); 18080 sin->sin_family = AF_INET; 18081 sin->sin_port = eager->tcp_lport; 18082 sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src; 18083 } else { 18084 sin6_t *sin6; 18085 18086 ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >= 18087 sizeof (struct T_ok_ack) + sizeof (sin6_t)); 18088 sin6 = (sin6_t *)mp->b_wptr; 18089 mp->b_wptr += sizeof (sin6_t); 18090 sin6->sin6_family = AF_INET6; 18091 sin6->sin6_port = eager->tcp_lport; 18092 if (eager->tcp_ipversion == IPV4_VERSION) { 18093 sin6->sin6_flowinfo = 0; 18094 IN6_IPADDR_TO_V4MAPPED( 18095 eager->tcp_ipha->ipha_src, 18096 &sin6->sin6_addr); 18097 } else { 18098 ASSERT(eager->tcp_ip6h != NULL); 18099 sin6->sin6_flowinfo = 18100 eager->tcp_ip6h->ip6_vcf & 18101 ~IPV6_VERS_AND_FLOW_MASK; 18102 sin6->sin6_addr = eager->tcp_ip6h->ip6_src; 18103 } 18104 sin6->sin6_scope_id = 0; 18105 sin6->__sin6_src_id = 0; 18106 } 18107 18108 putnext(rq, mp); 18109 18110 opt_mp->b_datap->db_type = M_SETOPTS; 18111 opt_mp->b_wptr += sizeof (struct stroptions); 18112 18113 /* 18114 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO 18115 * from listener to acceptor. The message is chained on the 18116 * bind_mp which tcp_rput_other will send down to IP. 18117 */ 18118 if (listener->tcp_bound_if != 0) { 18119 /* allocate optmgmt req */ 18120 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18121 IPV6_BOUND_IF, (char *)&listener->tcp_bound_if, 18122 sizeof (int)); 18123 if (mp != NULL) 18124 linkb(opt_mp, mp); 18125 } 18126 if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) { 18127 uint_t on = 1; 18128 18129 /* allocate optmgmt req */ 18130 mp = tcp_setsockopt_mp(IPPROTO_IPV6, 18131 IPV6_RECVPKTINFO, (char *)&on, sizeof (on)); 18132 if (mp != NULL) 18133 linkb(opt_mp, mp); 18134 } 18135 18136 18137 mutex_enter(&listener->tcp_eager_lock); 18138 18139 if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) { 18140 18141 tcp_t *tail; 18142 tcp_t *tcp; 18143 mblk_t *mp1; 18144 18145 tcp = listener->tcp_eager_prev_q0; 18146 /* 18147 * listener->tcp_eager_prev_q0 points to the TAIL of the 18148 * deferred T_conn_ind queue. We need to get to the head 18149 * of the queue in order to send up T_conn_ind the same 18150 * order as how the 3WHS is completed. 18151 */ 18152 while (tcp != listener) { 18153 if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 && 18154 !tcp->tcp_kssl_pending) 18155 break; 18156 else 18157 tcp = tcp->tcp_eager_prev_q0; 18158 } 18159 /* None of the pending eagers can be sent up now */ 18160 if (tcp == listener) 18161 goto no_more_eagers; 18162 18163 mp1 = tcp->tcp_conn.tcp_eager_conn_ind; 18164 tcp->tcp_conn.tcp_eager_conn_ind = NULL; 18165 /* Move from q0 to q */ 18166 ASSERT(listener->tcp_conn_req_cnt_q0 > 0); 18167 listener->tcp_conn_req_cnt_q0--; 18168 listener->tcp_conn_req_cnt_q++; 18169 tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = 18170 tcp->tcp_eager_prev_q0; 18171 tcp->tcp_eager_prev_q0->tcp_eager_next_q0 = 18172 tcp->tcp_eager_next_q0; 18173 tcp->tcp_eager_prev_q0 = NULL; 18174 tcp->tcp_eager_next_q0 = NULL; 18175 tcp->tcp_conn_def_q0 = B_FALSE; 18176 18177 /* Make sure the tcp isn't in the list of droppables */ 18178 ASSERT(tcp->tcp_eager_next_drop_q0 == NULL && 18179 tcp->tcp_eager_prev_drop_q0 == NULL); 18180 18181 /* 18182 * Insert at end of the queue because sockfs sends 18183 * down T_CONN_RES in chronological order. Leaving 18184 * the older conn indications at front of the queue 18185 * helps reducing search time. 18186 */ 18187 tail = listener->tcp_eager_last_q; 18188 if (tail != NULL) { 18189 tail->tcp_eager_next_q = tcp; 18190 } else { 18191 listener->tcp_eager_next_q = tcp; 18192 } 18193 listener->tcp_eager_last_q = tcp; 18194 tcp->tcp_eager_next_q = NULL; 18195 18196 /* Need to get inside the listener perimeter */ 18197 CONN_INC_REF(listener->tcp_connp); 18198 squeue_fill(listener->tcp_connp->conn_sqp, mp1, 18199 tcp_send_pending, listener->tcp_connp, 18200 SQTAG_TCP_SEND_PENDING); 18201 } 18202 no_more_eagers: 18203 tcp_eager_unlink(eager); 18204 mutex_exit(&listener->tcp_eager_lock); 18205 18206 /* 18207 * At this point, the eager is detached from the listener 18208 * but we still have an extra refs on eager (apart from the 18209 * usual tcp references). The ref was placed in tcp_rput_data 18210 * before sending the conn_ind in tcp_send_conn_ind. 18211 * The ref will be dropped in tcp_accept_finish(). 18212 */ 18213 squeue_enter_nodrain(econnp->conn_sqp, opt_mp, 18214 tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0); 18215 return; 18216 default: 18217 mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0); 18218 if (mp != NULL) 18219 putnext(rq, mp); 18220 return; 18221 } 18222 } 18223 18224 void 18225 tcp_wput(queue_t *q, mblk_t *mp) 18226 { 18227 conn_t *connp = Q_TO_CONN(q); 18228 tcp_t *tcp; 18229 void (*output_proc)(); 18230 t_scalar_t type; 18231 uchar_t *rptr; 18232 struct iocblk *iocp; 18233 uint32_t msize; 18234 18235 ASSERT(connp->conn_ref >= 2); 18236 18237 switch (DB_TYPE(mp)) { 18238 case M_DATA: 18239 tcp = connp->conn_tcp; 18240 ASSERT(tcp != NULL); 18241 18242 msize = msgdsize(mp); 18243 18244 mutex_enter(&tcp->tcp_non_sq_lock); 18245 tcp->tcp_squeue_bytes += msize; 18246 if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) { 18247 tcp_setqfull(tcp); 18248 } 18249 mutex_exit(&tcp->tcp_non_sq_lock); 18250 18251 CONN_INC_REF(connp); 18252 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18253 tcp_output, connp, SQTAG_TCP_OUTPUT); 18254 return; 18255 case M_PROTO: 18256 case M_PCPROTO: 18257 /* 18258 * if it is a snmp message, don't get behind the squeue 18259 */ 18260 tcp = connp->conn_tcp; 18261 rptr = mp->b_rptr; 18262 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 18263 type = ((union T_primitives *)rptr)->type; 18264 } else { 18265 if (tcp->tcp_debug) { 18266 (void) strlog(TCP_MOD_ID, 0, 1, 18267 SL_ERROR|SL_TRACE, 18268 "tcp_wput_proto, dropping one..."); 18269 } 18270 freemsg(mp); 18271 return; 18272 } 18273 if (type == T_SVR4_OPTMGMT_REQ) { 18274 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 18275 if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get, 18276 cr)) { 18277 /* 18278 * This was a SNMP request 18279 */ 18280 return; 18281 } else { 18282 output_proc = tcp_wput_proto; 18283 } 18284 } else { 18285 output_proc = tcp_wput_proto; 18286 } 18287 break; 18288 case M_IOCTL: 18289 /* 18290 * Most ioctls can be processed right away without going via 18291 * squeues - process them right here. Those that do require 18292 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK) 18293 * are processed by tcp_wput_ioctl(). 18294 */ 18295 iocp = (struct iocblk *)mp->b_rptr; 18296 tcp = connp->conn_tcp; 18297 18298 switch (iocp->ioc_cmd) { 18299 case TCP_IOC_ABORT_CONN: 18300 tcp_ioctl_abort_conn(q, mp); 18301 return; 18302 case TI_GETPEERNAME: 18303 if (tcp->tcp_state < TCPS_SYN_RCVD) { 18304 iocp->ioc_error = ENOTCONN; 18305 iocp->ioc_count = 0; 18306 mp->b_datap->db_type = M_IOCACK; 18307 qreply(q, mp); 18308 return; 18309 } 18310 /* FALLTHRU */ 18311 case TI_GETMYNAME: 18312 mi_copyin(q, mp, NULL, 18313 SIZEOF_STRUCT(strbuf, iocp->ioc_flag)); 18314 return; 18315 case ND_SET: 18316 /* nd_getset does the necessary checks */ 18317 case ND_GET: 18318 if (!nd_getset(q, tcp_g_nd, mp)) { 18319 CALL_IP_WPUT(connp, q, mp); 18320 return; 18321 } 18322 qreply(q, mp); 18323 return; 18324 case TCP_IOC_DEFAULT_Q: 18325 /* 18326 * Wants to be the default wq. Check the credentials 18327 * first, the rest is executed via squeue. 18328 */ 18329 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 18330 iocp->ioc_error = EPERM; 18331 iocp->ioc_count = 0; 18332 mp->b_datap->db_type = M_IOCACK; 18333 qreply(q, mp); 18334 return; 18335 } 18336 output_proc = tcp_wput_ioctl; 18337 break; 18338 default: 18339 output_proc = tcp_wput_ioctl; 18340 break; 18341 } 18342 break; 18343 default: 18344 output_proc = tcp_wput_nondata; 18345 break; 18346 } 18347 18348 CONN_INC_REF(connp); 18349 (*tcp_squeue_wput_proc)(connp->conn_sqp, mp, 18350 output_proc, connp, SQTAG_TCP_WPUT_OTHER); 18351 } 18352 18353 /* 18354 * Initial STREAMS write side put() procedure for sockets. It tries to 18355 * handle the T_CAPABILITY_REQ which sockfs sends down while setting 18356 * up the socket without using the squeue. Non T_CAPABILITY_REQ messages 18357 * are handled by tcp_wput() as usual. 18358 * 18359 * All further messages will also be handled by tcp_wput() because we cannot 18360 * be sure that the above short cut is safe later. 18361 */ 18362 static void 18363 tcp_wput_sock(queue_t *wq, mblk_t *mp) 18364 { 18365 conn_t *connp = Q_TO_CONN(wq); 18366 tcp_t *tcp = connp->conn_tcp; 18367 struct T_capability_req *car = (struct T_capability_req *)mp->b_rptr; 18368 18369 ASSERT(wq->q_qinfo == &tcp_sock_winit); 18370 wq->q_qinfo = &tcp_winit; 18371 18372 ASSERT(IPCL_IS_TCP(connp)); 18373 ASSERT(TCP_IS_SOCKET(tcp)); 18374 18375 if (DB_TYPE(mp) == M_PCPROTO && 18376 MBLKL(mp) == sizeof (struct T_capability_req) && 18377 car->PRIM_type == T_CAPABILITY_REQ) { 18378 tcp_capability_req(tcp, mp); 18379 return; 18380 } 18381 18382 tcp_wput(wq, mp); 18383 } 18384 18385 static boolean_t 18386 tcp_zcopy_check(tcp_t *tcp) 18387 { 18388 conn_t *connp = tcp->tcp_connp; 18389 ire_t *ire; 18390 boolean_t zc_enabled = B_FALSE; 18391 18392 if (do_tcpzcopy == 2) 18393 zc_enabled = B_TRUE; 18394 else if (tcp->tcp_ipversion == IPV4_VERSION && 18395 IPCL_IS_CONNECTED(connp) && 18396 (connp->conn_flags & IPCL_CHECK_POLICY) == 0 && 18397 connp->conn_dontroute == 0 && 18398 !connp->conn_nexthop_set && 18399 connp->conn_xmit_if_ill == NULL && 18400 connp->conn_nofailover_ill == NULL && 18401 do_tcpzcopy == 1) { 18402 /* 18403 * the checks above closely resemble the fast path checks 18404 * in tcp_send_data(). 18405 */ 18406 mutex_enter(&connp->conn_lock); 18407 ire = connp->conn_ire_cache; 18408 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18409 if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18410 IRE_REFHOLD(ire); 18411 if (ire->ire_stq != NULL) { 18412 ill_t *ill = (ill_t *)ire->ire_stq->q_ptr; 18413 18414 zc_enabled = ill && (ill->ill_capabilities & 18415 ILL_CAPAB_ZEROCOPY) && 18416 (ill->ill_zerocopy_capab-> 18417 ill_zerocopy_flags != 0); 18418 } 18419 IRE_REFRELE(ire); 18420 } 18421 mutex_exit(&connp->conn_lock); 18422 } 18423 tcp->tcp_snd_zcopy_on = zc_enabled; 18424 if (!TCP_IS_DETACHED(tcp)) { 18425 if (zc_enabled) { 18426 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE); 18427 TCP_STAT(tcp_zcopy_on); 18428 } else { 18429 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18430 TCP_STAT(tcp_zcopy_off); 18431 } 18432 } 18433 return (zc_enabled); 18434 } 18435 18436 static mblk_t * 18437 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp) 18438 { 18439 if (do_tcpzcopy == 2) 18440 return (bp); 18441 else if (tcp->tcp_snd_zcopy_on) { 18442 tcp->tcp_snd_zcopy_on = B_FALSE; 18443 if (!TCP_IS_DETACHED(tcp)) { 18444 (void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE); 18445 TCP_STAT(tcp_zcopy_disable); 18446 } 18447 } 18448 return (tcp_zcopy_backoff(tcp, bp, 0)); 18449 } 18450 18451 /* 18452 * Backoff from a zero-copy mblk by copying data to a new mblk and freeing 18453 * the original desballoca'ed segmapped mblk. 18454 */ 18455 static mblk_t * 18456 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist) 18457 { 18458 mblk_t *head, *tail, *nbp; 18459 if (IS_VMLOANED_MBLK(bp)) { 18460 TCP_STAT(tcp_zcopy_backoff); 18461 if ((head = copyb(bp)) == NULL) { 18462 /* fail to backoff; leave it for the next backoff */ 18463 tcp->tcp_xmit_zc_clean = B_FALSE; 18464 return (bp); 18465 } 18466 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18467 if (fix_xmitlist) 18468 tcp_zcopy_notify(tcp); 18469 else 18470 head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18471 } 18472 nbp = bp->b_cont; 18473 if (fix_xmitlist) { 18474 head->b_prev = bp->b_prev; 18475 head->b_next = bp->b_next; 18476 if (tcp->tcp_xmit_tail == bp) 18477 tcp->tcp_xmit_tail = head; 18478 } 18479 bp->b_next = NULL; 18480 bp->b_prev = NULL; 18481 freeb(bp); 18482 } else { 18483 head = bp; 18484 nbp = bp->b_cont; 18485 } 18486 tail = head; 18487 while (nbp) { 18488 if (IS_VMLOANED_MBLK(nbp)) { 18489 TCP_STAT(tcp_zcopy_backoff); 18490 if ((tail->b_cont = copyb(nbp)) == NULL) { 18491 tcp->tcp_xmit_zc_clean = B_FALSE; 18492 tail->b_cont = nbp; 18493 return (head); 18494 } 18495 tail = tail->b_cont; 18496 if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 18497 if (fix_xmitlist) 18498 tcp_zcopy_notify(tcp); 18499 else 18500 tail->b_datap->db_struioflag |= 18501 STRUIO_ZCNOTIFY; 18502 } 18503 bp = nbp; 18504 nbp = nbp->b_cont; 18505 if (fix_xmitlist) { 18506 tail->b_prev = bp->b_prev; 18507 tail->b_next = bp->b_next; 18508 if (tcp->tcp_xmit_tail == bp) 18509 tcp->tcp_xmit_tail = tail; 18510 } 18511 bp->b_next = NULL; 18512 bp->b_prev = NULL; 18513 freeb(bp); 18514 } else { 18515 tail->b_cont = nbp; 18516 tail = nbp; 18517 nbp = nbp->b_cont; 18518 } 18519 } 18520 if (fix_xmitlist) { 18521 tcp->tcp_xmit_last = tail; 18522 tcp->tcp_xmit_zc_clean = B_TRUE; 18523 } 18524 return (head); 18525 } 18526 18527 static void 18528 tcp_zcopy_notify(tcp_t *tcp) 18529 { 18530 struct stdata *stp; 18531 18532 if (tcp->tcp_detached) 18533 return; 18534 stp = STREAM(tcp->tcp_rq); 18535 mutex_enter(&stp->sd_lock); 18536 stp->sd_flag |= STZCNOTIFY; 18537 cv_broadcast(&stp->sd_zcopy_wait); 18538 mutex_exit(&stp->sd_lock); 18539 } 18540 18541 static boolean_t 18542 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep) 18543 { 18544 ire_t *ire; 18545 conn_t *connp = tcp->tcp_connp; 18546 18547 18548 mutex_enter(&connp->conn_lock); 18549 ire = connp->conn_ire_cache; 18550 ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT)); 18551 18552 if ((ire != NULL) && 18553 (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) && 18554 IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) && 18555 !(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18556 IRE_REFHOLD(ire); 18557 mutex_exit(&connp->conn_lock); 18558 } else { 18559 boolean_t cached = B_FALSE; 18560 ts_label_t *tsl; 18561 18562 /* force a recheck later on */ 18563 tcp->tcp_ire_ill_check_done = B_FALSE; 18564 18565 TCP_DBGSTAT(tcp_ire_null1); 18566 connp->conn_ire_cache = NULL; 18567 mutex_exit(&connp->conn_lock); 18568 18569 if (ire != NULL) 18570 IRE_REFRELE_NOTR(ire); 18571 18572 tsl = crgetlabel(CONN_CRED(connp)); 18573 ire = (dst ? ire_cache_lookup(*dst, connp->conn_zoneid, tsl) : 18574 ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst, 18575 connp->conn_zoneid, tsl)); 18576 18577 if (ire == NULL) { 18578 TCP_STAT(tcp_ire_null); 18579 return (B_FALSE); 18580 } 18581 18582 IRE_REFHOLD_NOTR(ire); 18583 /* 18584 * Since we are inside the squeue, there cannot be another 18585 * thread in TCP trying to set the conn_ire_cache now. The 18586 * check for IRE_MARK_CONDEMNED ensures that an interface 18587 * unplumb thread has not yet started cleaning up the conns. 18588 * Hence we don't need to grab the conn lock. 18589 */ 18590 if (!(connp->conn_state_flags & CONN_CLOSING)) { 18591 rw_enter(&ire->ire_bucket->irb_lock, RW_READER); 18592 if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) { 18593 connp->conn_ire_cache = ire; 18594 cached = B_TRUE; 18595 } 18596 rw_exit(&ire->ire_bucket->irb_lock); 18597 } 18598 18599 /* 18600 * We can continue to use the ire but since it was 18601 * not cached, we should drop the extra reference. 18602 */ 18603 if (!cached) 18604 IRE_REFRELE_NOTR(ire); 18605 18606 /* 18607 * Rampart note: no need to select a new label here, since 18608 * labels are not allowed to change during the life of a TCP 18609 * connection. 18610 */ 18611 } 18612 18613 *irep = ire; 18614 18615 return (B_TRUE); 18616 } 18617 18618 /* 18619 * Called from tcp_send() or tcp_send_data() to find workable IRE. 18620 * 18621 * 0 = success; 18622 * 1 = failed to find ire and ill. 18623 */ 18624 static boolean_t 18625 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp) 18626 { 18627 ipha_t *ipha; 18628 ipaddr_t dst; 18629 ire_t *ire; 18630 ill_t *ill; 18631 conn_t *connp = tcp->tcp_connp; 18632 mblk_t *ire_fp_mp; 18633 18634 if (mp != NULL) 18635 ipha = (ipha_t *)mp->b_rptr; 18636 else 18637 ipha = tcp->tcp_ipha; 18638 dst = ipha->ipha_dst; 18639 18640 if (!tcp_send_find_ire(tcp, &dst, &ire)) 18641 return (B_FALSE); 18642 18643 if ((ire->ire_flags & RTF_MULTIRT) || 18644 (ire->ire_stq == NULL) || 18645 (ire->ire_nce == NULL) || 18646 ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) || 18647 ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) || 18648 MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) { 18649 TCP_STAT(tcp_ip_ire_send); 18650 IRE_REFRELE(ire); 18651 return (B_FALSE); 18652 } 18653 18654 ill = ire_to_ill(ire); 18655 if (connp->conn_outgoing_ill != NULL) { 18656 ill_t *conn_outgoing_ill = NULL; 18657 /* 18658 * Choose a good ill in the group to send the packets on. 18659 */ 18660 ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill); 18661 ill = ire_to_ill(ire); 18662 } 18663 ASSERT(ill != NULL); 18664 18665 if (!tcp->tcp_ire_ill_check_done) { 18666 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 18667 tcp->tcp_ire_ill_check_done = B_TRUE; 18668 } 18669 18670 *irep = ire; 18671 *illp = ill; 18672 18673 return (B_TRUE); 18674 } 18675 18676 static void 18677 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp) 18678 { 18679 ipha_t *ipha; 18680 ipaddr_t src; 18681 ipaddr_t dst; 18682 uint32_t cksum; 18683 ire_t *ire; 18684 uint16_t *up; 18685 ill_t *ill; 18686 conn_t *connp = tcp->tcp_connp; 18687 uint32_t hcksum_txflags = 0; 18688 mblk_t *ire_fp_mp; 18689 uint_t ire_fp_mp_len; 18690 18691 ASSERT(DB_TYPE(mp) == M_DATA); 18692 18693 if (DB_CRED(mp) == NULL) 18694 mblk_setcred(mp, CONN_CRED(connp)); 18695 18696 ipha = (ipha_t *)mp->b_rptr; 18697 src = ipha->ipha_src; 18698 dst = ipha->ipha_dst; 18699 18700 /* 18701 * Drop off fast path for IPv6 and also if options are present or 18702 * we need to resolve a TS label. 18703 */ 18704 if (tcp->tcp_ipversion != IPV4_VERSION || 18705 !IPCL_IS_CONNECTED(connp) || 18706 !CONN_IS_LSO_MD_FASTPATH(connp) || 18707 (connp->conn_flags & IPCL_CHECK_POLICY) != 0 || 18708 !connp->conn_ulp_labeled || 18709 ipha->ipha_ident == IP_HDR_INCLUDED || 18710 ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION || 18711 IPP_ENABLED(IPP_LOCAL_OUT)) { 18712 if (tcp->tcp_snd_zcopy_aware) 18713 mp = tcp_zcopy_disable(tcp, mp); 18714 TCP_STAT(tcp_ip_send); 18715 CALL_IP_WPUT(connp, q, mp); 18716 return; 18717 } 18718 18719 if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) { 18720 if (tcp->tcp_snd_zcopy_aware) 18721 mp = tcp_zcopy_backoff(tcp, mp, 0); 18722 CALL_IP_WPUT(connp, q, mp); 18723 return; 18724 } 18725 ire_fp_mp = ire->ire_nce->nce_fp_mp; 18726 ire_fp_mp_len = MBLKL(ire_fp_mp); 18727 18728 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 18729 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1); 18730 #ifndef _BIG_ENDIAN 18731 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 18732 #endif 18733 18734 /* 18735 * Check to see if we need to re-enable LSO/MDT for this connection 18736 * because it was previously disabled due to changes in the ill; 18737 * note that by doing it here, this re-enabling only applies when 18738 * the packet is not dispatched through CALL_IP_WPUT(). 18739 * 18740 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath 18741 * case, since that's how we ended up here. For IPv6, we do the 18742 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue. 18743 */ 18744 if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) { 18745 /* 18746 * Restore LSO for this connection, so that next time around 18747 * it is eligible to go through tcp_lsosend() path again. 18748 */ 18749 TCP_STAT(tcp_lso_enabled); 18750 tcp->tcp_lso = B_TRUE; 18751 ip1dbg(("tcp_send_data: reenabling LSO for connp %p on " 18752 "interface %s\n", (void *)connp, ill->ill_name)); 18753 } else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) { 18754 /* 18755 * Restore MDT for this connection, so that next time around 18756 * it is eligible to go through tcp_multisend() path again. 18757 */ 18758 TCP_STAT(tcp_mdt_conn_resumed1); 18759 tcp->tcp_mdt = B_TRUE; 18760 ip1dbg(("tcp_send_data: reenabling MDT for connp %p on " 18761 "interface %s\n", (void *)connp, ill->ill_name)); 18762 } 18763 18764 if (tcp->tcp_snd_zcopy_aware) { 18765 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 18766 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 18767 mp = tcp_zcopy_disable(tcp, mp); 18768 /* 18769 * we shouldn't need to reset ipha as the mp containing 18770 * ipha should never be a zero-copy mp. 18771 */ 18772 } 18773 18774 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 18775 ASSERT(ill->ill_hcksum_capab != NULL); 18776 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 18777 } 18778 18779 /* pseudo-header checksum (do it in parts for IP header checksum) */ 18780 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 18781 18782 ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION); 18783 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 18784 18785 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 18786 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 18787 18788 /* Software checksum? */ 18789 if (DB_CKSUMFLAGS(mp) == 0) { 18790 TCP_STAT(tcp_out_sw_cksum); 18791 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 18792 ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH); 18793 } 18794 18795 ipha->ipha_fragment_offset_and_flags |= 18796 (uint32_t)htons(ire->ire_frag_flag); 18797 18798 /* Calculate IP header checksum if hardware isn't capable */ 18799 if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) { 18800 IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0], 18801 ((uint16_t *)ipha)[4]); 18802 } 18803 18804 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 18805 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 18806 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 18807 18808 UPDATE_OB_PKT_COUNT(ire); 18809 ire->ire_last_used_time = lbolt; 18810 18811 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 18812 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 18813 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 18814 ntohs(ipha->ipha_length)); 18815 18816 if (ILL_DLS_CAPABLE(ill)) { 18817 /* 18818 * Send the packet directly to DLD, where it may be queued 18819 * depending on the availability of transmit resources at 18820 * the media layer. 18821 */ 18822 IP_DLS_ILL_TX(ill, ipha, mp); 18823 } else { 18824 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 18825 DTRACE_PROBE4(ip4__physical__out__start, 18826 ill_t *, NULL, ill_t *, out_ill, 18827 ipha_t *, ipha, mblk_t *, mp); 18828 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 18829 NULL, out_ill, ipha, mp, mp); 18830 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 18831 if (mp != NULL) 18832 putnext(ire->ire_stq, mp); 18833 } 18834 IRE_REFRELE(ire); 18835 } 18836 18837 /* 18838 * This handles the case when the receiver has shrunk its win. Per RFC 1122 18839 * if the receiver shrinks the window, i.e. moves the right window to the 18840 * left, the we should not send new data, but should retransmit normally the 18841 * old unacked data between suna and suna + swnd. We might has sent data 18842 * that is now outside the new window, pretend that we didn't send it. 18843 */ 18844 static void 18845 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count) 18846 { 18847 uint32_t snxt = tcp->tcp_snxt; 18848 mblk_t *xmit_tail; 18849 int32_t offset; 18850 18851 ASSERT(shrunk_count > 0); 18852 18853 /* Pretend we didn't send the data outside the window */ 18854 snxt -= shrunk_count; 18855 18856 /* Get the mblk and the offset in it per the shrunk window */ 18857 xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset); 18858 18859 ASSERT(xmit_tail != NULL); 18860 18861 /* Reset all the values per the now shrunk window */ 18862 tcp->tcp_snxt = snxt; 18863 tcp->tcp_xmit_tail = xmit_tail; 18864 tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr - 18865 offset; 18866 tcp->tcp_unsent += shrunk_count; 18867 18868 if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0) 18869 /* 18870 * Make sure the timer is running so that we will probe a zero 18871 * window. 18872 */ 18873 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 18874 } 18875 18876 18877 /* 18878 * The TCP normal data output path. 18879 * NOTE: the logic of the fast path is duplicated from this function. 18880 */ 18881 static void 18882 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent) 18883 { 18884 int len; 18885 mblk_t *local_time; 18886 mblk_t *mp1; 18887 uint32_t snxt; 18888 int tail_unsent; 18889 int tcpstate; 18890 int usable = 0; 18891 mblk_t *xmit_tail; 18892 queue_t *q = tcp->tcp_wq; 18893 int32_t mss; 18894 int32_t num_sack_blk = 0; 18895 int32_t tcp_hdr_len; 18896 int32_t tcp_tcp_hdr_len; 18897 int mdt_thres; 18898 int rc; 18899 18900 tcpstate = tcp->tcp_state; 18901 if (mp == NULL) { 18902 /* 18903 * tcp_wput_data() with NULL mp should only be called when 18904 * there is unsent data. 18905 */ 18906 ASSERT(tcp->tcp_unsent > 0); 18907 /* Really tacky... but we need this for detached closes. */ 18908 len = tcp->tcp_unsent; 18909 goto data_null; 18910 } 18911 18912 #if CCS_STATS 18913 wrw_stats.tot.count++; 18914 wrw_stats.tot.bytes += msgdsize(mp); 18915 #endif 18916 ASSERT(mp->b_datap->db_type == M_DATA); 18917 /* 18918 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ, 18919 * or before a connection attempt has begun. 18920 */ 18921 if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT || 18922 (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18923 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) { 18924 #ifdef DEBUG 18925 cmn_err(CE_WARN, 18926 "tcp_wput_data: data after ordrel, %s", 18927 tcp_display(tcp, NULL, 18928 DISP_ADDR_AND_PORT)); 18929 #else 18930 if (tcp->tcp_debug) { 18931 (void) strlog(TCP_MOD_ID, 0, 1, 18932 SL_TRACE|SL_ERROR, 18933 "tcp_wput_data: data after ordrel, %s\n", 18934 tcp_display(tcp, NULL, 18935 DISP_ADDR_AND_PORT)); 18936 } 18937 #endif /* DEBUG */ 18938 } 18939 if (tcp->tcp_snd_zcopy_aware && 18940 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0) 18941 tcp_zcopy_notify(tcp); 18942 freemsg(mp); 18943 mutex_enter(&tcp->tcp_non_sq_lock); 18944 if (tcp->tcp_flow_stopped && 18945 TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 18946 tcp_clrqfull(tcp); 18947 } 18948 mutex_exit(&tcp->tcp_non_sq_lock); 18949 return; 18950 } 18951 18952 /* Strip empties */ 18953 for (;;) { 18954 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= 18955 (uintptr_t)INT_MAX); 18956 len = (int)(mp->b_wptr - mp->b_rptr); 18957 if (len > 0) 18958 break; 18959 mp1 = mp; 18960 mp = mp->b_cont; 18961 freeb(mp1); 18962 if (!mp) { 18963 return; 18964 } 18965 } 18966 18967 /* If we are the first on the list ... */ 18968 if (tcp->tcp_xmit_head == NULL) { 18969 tcp->tcp_xmit_head = mp; 18970 tcp->tcp_xmit_tail = mp; 18971 tcp->tcp_xmit_tail_unsent = len; 18972 } else { 18973 /* If tiny tx and room in txq tail, pullup to save mblks. */ 18974 struct datab *dp; 18975 18976 mp1 = tcp->tcp_xmit_last; 18977 if (len < tcp_tx_pull_len && 18978 (dp = mp1->b_datap)->db_ref == 1 && 18979 dp->db_lim - mp1->b_wptr >= len) { 18980 ASSERT(len > 0); 18981 ASSERT(!mp1->b_cont); 18982 if (len == 1) { 18983 *mp1->b_wptr++ = *mp->b_rptr; 18984 } else { 18985 bcopy(mp->b_rptr, mp1->b_wptr, len); 18986 mp1->b_wptr += len; 18987 } 18988 if (mp1 == tcp->tcp_xmit_tail) 18989 tcp->tcp_xmit_tail_unsent += len; 18990 mp1->b_cont = mp->b_cont; 18991 if (tcp->tcp_snd_zcopy_aware && 18992 (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY)) 18993 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 18994 freeb(mp); 18995 mp = mp1; 18996 } else { 18997 tcp->tcp_xmit_last->b_cont = mp; 18998 } 18999 len += tcp->tcp_unsent; 19000 } 19001 19002 /* Tack on however many more positive length mblks we have */ 19003 if ((mp1 = mp->b_cont) != NULL) { 19004 do { 19005 int tlen; 19006 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 19007 (uintptr_t)INT_MAX); 19008 tlen = (int)(mp1->b_wptr - mp1->b_rptr); 19009 if (tlen <= 0) { 19010 mp->b_cont = mp1->b_cont; 19011 freeb(mp1); 19012 } else { 19013 len += tlen; 19014 mp = mp1; 19015 } 19016 } while ((mp1 = mp->b_cont) != NULL); 19017 } 19018 tcp->tcp_xmit_last = mp; 19019 tcp->tcp_unsent = len; 19020 19021 if (urgent) 19022 usable = 1; 19023 19024 data_null: 19025 snxt = tcp->tcp_snxt; 19026 xmit_tail = tcp->tcp_xmit_tail; 19027 tail_unsent = tcp->tcp_xmit_tail_unsent; 19028 19029 /* 19030 * Note that tcp_mss has been adjusted to take into account the 19031 * timestamp option if applicable. Because SACK options do not 19032 * appear in every TCP segments and they are of variable lengths, 19033 * they cannot be included in tcp_mss. Thus we need to calculate 19034 * the actual segment length when we need to send a segment which 19035 * includes SACK options. 19036 */ 19037 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 19038 int32_t opt_len; 19039 19040 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 19041 tcp->tcp_num_sack_blk); 19042 opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN * 19043 2 + TCPOPT_HEADER_LEN; 19044 mss = tcp->tcp_mss - opt_len; 19045 tcp_hdr_len = tcp->tcp_hdr_len + opt_len; 19046 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len; 19047 } else { 19048 mss = tcp->tcp_mss; 19049 tcp_hdr_len = tcp->tcp_hdr_len; 19050 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 19051 } 19052 19053 if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet && 19054 (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) { 19055 SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle); 19056 } 19057 if (tcpstate == TCPS_SYN_RCVD) { 19058 /* 19059 * The three-way connection establishment handshake is not 19060 * complete yet. We want to queue the data for transmission 19061 * after entering ESTABLISHED state (RFC793). A jump to 19062 * "done" label effectively leaves data on the queue. 19063 */ 19064 goto done; 19065 } else { 19066 int usable_r; 19067 19068 /* 19069 * In the special case when cwnd is zero, which can only 19070 * happen if the connection is ECN capable, return now. 19071 * New segments is sent using tcp_timer(). The timer 19072 * is set in tcp_rput_data(). 19073 */ 19074 if (tcp->tcp_cwnd == 0) { 19075 /* 19076 * Note that tcp_cwnd is 0 before 3-way handshake is 19077 * finished. 19078 */ 19079 ASSERT(tcp->tcp_ecn_ok || 19080 tcp->tcp_state < TCPS_ESTABLISHED); 19081 return; 19082 } 19083 19084 /* NOTE: trouble if xmitting while SYN not acked? */ 19085 usable_r = snxt - tcp->tcp_suna; 19086 usable_r = tcp->tcp_swnd - usable_r; 19087 19088 /* 19089 * Check if the receiver has shrunk the window. If 19090 * tcp_wput_data() with NULL mp is called, tcp_fin_sent 19091 * cannot be set as there is unsent data, so FIN cannot 19092 * be sent out. Otherwise, we need to take into account 19093 * of FIN as it consumes an "invisible" sequence number. 19094 */ 19095 ASSERT(tcp->tcp_fin_sent == 0); 19096 if (usable_r < 0) { 19097 /* 19098 * The receiver has shrunk the window and we have sent 19099 * -usable_r date beyond the window, re-adjust. 19100 * 19101 * If TCP window scaling is enabled, there can be 19102 * round down error as the advertised receive window 19103 * is actually right shifted n bits. This means that 19104 * the lower n bits info is wiped out. It will look 19105 * like the window is shrunk. Do a check here to 19106 * see if the shrunk amount is actually within the 19107 * error in window calculation. If it is, just 19108 * return. Note that this check is inside the 19109 * shrunk window check. This makes sure that even 19110 * though tcp_process_shrunk_swnd() is not called, 19111 * we will stop further processing. 19112 */ 19113 if ((-usable_r >> tcp->tcp_snd_ws) > 0) { 19114 tcp_process_shrunk_swnd(tcp, -usable_r); 19115 } 19116 return; 19117 } 19118 19119 /* usable = MIN(swnd, cwnd) - unacked_bytes */ 19120 if (tcp->tcp_swnd > tcp->tcp_cwnd) 19121 usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd; 19122 19123 /* usable = MIN(usable, unsent) */ 19124 if (usable_r > len) 19125 usable_r = len; 19126 19127 /* usable = MAX(usable, {1 for urgent, 0 for data}) */ 19128 if (usable_r > 0) { 19129 usable = usable_r; 19130 } else { 19131 /* Bypass all other unnecessary processing. */ 19132 goto done; 19133 } 19134 } 19135 19136 local_time = (mblk_t *)lbolt; 19137 19138 /* 19139 * "Our" Nagle Algorithm. This is not the same as in the old 19140 * BSD. This is more in line with the true intent of Nagle. 19141 * 19142 * The conditions are: 19143 * 1. The amount of unsent data (or amount of data which can be 19144 * sent, whichever is smaller) is less than Nagle limit. 19145 * 2. The last sent size is also less than Nagle limit. 19146 * 3. There is unack'ed data. 19147 * 4. Urgent pointer is not set. Send urgent data ignoring the 19148 * Nagle algorithm. This reduces the probability that urgent 19149 * bytes get "merged" together. 19150 * 5. The app has not closed the connection. This eliminates the 19151 * wait time of the receiving side waiting for the last piece of 19152 * (small) data. 19153 * 19154 * If all are satisified, exit without sending anything. Note 19155 * that Nagle limit can be smaller than 1 MSS. Nagle limit is 19156 * the smaller of 1 MSS and global tcp_naglim_def (default to be 19157 * 4095). 19158 */ 19159 if (usable < (int)tcp->tcp_naglim && 19160 tcp->tcp_naglim > tcp->tcp_last_sent_len && 19161 snxt != tcp->tcp_suna && 19162 !(tcp->tcp_valid_bits & TCP_URG_VALID) && 19163 !(tcp->tcp_valid_bits & TCP_FSS_VALID)) { 19164 goto done; 19165 } 19166 19167 if (tcp->tcp_cork) { 19168 /* 19169 * if the tcp->tcp_cork option is set, then we have to force 19170 * TCP not to send partial segment (smaller than MSS bytes). 19171 * We are calculating the usable now based on full mss and 19172 * will save the rest of remaining data for later. 19173 */ 19174 if (usable < mss) 19175 goto done; 19176 usable = (usable / mss) * mss; 19177 } 19178 19179 /* Update the latest receive window size in TCP header. */ 19180 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 19181 tcp->tcp_tcph->th_win); 19182 19183 /* 19184 * Determine if it's worthwhile to attempt LSO or MDT, based on: 19185 * 19186 * 1. Simple TCP/IP{v4,v6} (no options). 19187 * 2. IPSEC/IPQoS processing is not needed for the TCP connection. 19188 * 3. If the TCP connection is in ESTABLISHED state. 19189 * 4. The TCP is not detached. 19190 * 19191 * If any of the above conditions have changed during the 19192 * connection, stop using LSO/MDT and restore the stream head 19193 * parameters accordingly. 19194 */ 19195 if ((tcp->tcp_lso || tcp->tcp_mdt) && 19196 ((tcp->tcp_ipversion == IPV4_VERSION && 19197 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 19198 (tcp->tcp_ipversion == IPV6_VERSION && 19199 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) || 19200 tcp->tcp_state != TCPS_ESTABLISHED || 19201 TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) || 19202 CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) || 19203 IPP_ENABLED(IPP_LOCAL_OUT))) { 19204 if (tcp->tcp_lso) { 19205 tcp->tcp_connp->conn_lso_ok = B_FALSE; 19206 tcp->tcp_lso = B_FALSE; 19207 } else { 19208 tcp->tcp_connp->conn_mdt_ok = B_FALSE; 19209 tcp->tcp_mdt = B_FALSE; 19210 } 19211 19212 /* Anything other than detached is considered pathological */ 19213 if (!TCP_IS_DETACHED(tcp)) { 19214 if (tcp->tcp_lso) 19215 TCP_STAT(tcp_lso_disabled); 19216 else 19217 TCP_STAT(tcp_mdt_conn_halted1); 19218 (void) tcp_maxpsz_set(tcp, B_TRUE); 19219 } 19220 } 19221 19222 /* Use MDT if sendable amount is greater than the threshold */ 19223 if (tcp->tcp_mdt && 19224 (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) && 19225 (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL && 19226 MBLKL(xmit_tail->b_cont) > mdt_thres)) && 19227 (tcp->tcp_valid_bits == 0 || 19228 tcp->tcp_valid_bits == TCP_FSS_VALID)) { 19229 ASSERT(tcp->tcp_connp->conn_mdt_ok); 19230 rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19231 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19232 local_time, mdt_thres); 19233 } else { 19234 rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len, 19235 num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail, 19236 local_time, INT_MAX); 19237 } 19238 19239 /* Pretend that all we were trying to send really got sent */ 19240 if (rc < 0 && tail_unsent < 0) { 19241 do { 19242 xmit_tail = xmit_tail->b_cont; 19243 xmit_tail->b_prev = local_time; 19244 ASSERT((uintptr_t)(xmit_tail->b_wptr - 19245 xmit_tail->b_rptr) <= (uintptr_t)INT_MAX); 19246 tail_unsent += (int)(xmit_tail->b_wptr - 19247 xmit_tail->b_rptr); 19248 } while (tail_unsent < 0); 19249 } 19250 done:; 19251 tcp->tcp_xmit_tail = xmit_tail; 19252 tcp->tcp_xmit_tail_unsent = tail_unsent; 19253 len = tcp->tcp_snxt - snxt; 19254 if (len) { 19255 /* 19256 * If new data was sent, need to update the notsack 19257 * list, which is, afterall, data blocks that have 19258 * not been sack'ed by the receiver. New data is 19259 * not sack'ed. 19260 */ 19261 if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) { 19262 /* len is a negative value. */ 19263 tcp->tcp_pipe -= len; 19264 tcp_notsack_update(&(tcp->tcp_notsack_list), 19265 tcp->tcp_snxt, snxt, 19266 &(tcp->tcp_num_notsack_blk), 19267 &(tcp->tcp_cnt_notsack_list)); 19268 } 19269 tcp->tcp_snxt = snxt + tcp->tcp_fin_sent; 19270 tcp->tcp_rack = tcp->tcp_rnxt; 19271 tcp->tcp_rack_cnt = 0; 19272 if ((snxt + len) == tcp->tcp_suna) { 19273 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19274 } 19275 } else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) { 19276 /* 19277 * Didn't send anything. Make sure the timer is running 19278 * so that we will probe a zero window. 19279 */ 19280 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 19281 } 19282 /* Note that len is the amount we just sent but with a negative sign */ 19283 tcp->tcp_unsent += len; 19284 mutex_enter(&tcp->tcp_non_sq_lock); 19285 if (tcp->tcp_flow_stopped) { 19286 if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) { 19287 tcp_clrqfull(tcp); 19288 } 19289 } else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) { 19290 tcp_setqfull(tcp); 19291 } 19292 mutex_exit(&tcp->tcp_non_sq_lock); 19293 } 19294 19295 /* 19296 * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the 19297 * outgoing TCP header with the template header, as well as other 19298 * options such as time-stamp, ECN and/or SACK. 19299 */ 19300 static void 19301 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk) 19302 { 19303 tcph_t *tcp_tmpl, *tcp_h; 19304 uint32_t *dst, *src; 19305 int hdrlen; 19306 19307 ASSERT(OK_32PTR(rptr)); 19308 19309 /* Template header */ 19310 tcp_tmpl = tcp->tcp_tcph; 19311 19312 /* Header of outgoing packet */ 19313 tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 19314 19315 /* dst and src are opaque 32-bit fields, used for copying */ 19316 dst = (uint32_t *)rptr; 19317 src = (uint32_t *)tcp->tcp_iphc; 19318 hdrlen = tcp->tcp_hdr_len; 19319 19320 /* Fill time-stamp option if needed */ 19321 if (tcp->tcp_snd_ts_ok) { 19322 U32_TO_BE32((uint32_t)now, 19323 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4); 19324 U32_TO_BE32(tcp->tcp_ts_recent, 19325 (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8); 19326 } else { 19327 ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH); 19328 } 19329 19330 /* 19331 * Copy the template header; is this really more efficient than 19332 * calling bcopy()? For simple IPv4/TCP, it may be the case, 19333 * but perhaps not for other scenarios. 19334 */ 19335 dst[0] = src[0]; 19336 dst[1] = src[1]; 19337 dst[2] = src[2]; 19338 dst[3] = src[3]; 19339 dst[4] = src[4]; 19340 dst[5] = src[5]; 19341 dst[6] = src[6]; 19342 dst[7] = src[7]; 19343 dst[8] = src[8]; 19344 dst[9] = src[9]; 19345 if (hdrlen -= 40) { 19346 hdrlen >>= 2; 19347 dst += 10; 19348 src += 10; 19349 do { 19350 *dst++ = *src++; 19351 } while (--hdrlen); 19352 } 19353 19354 /* 19355 * Set the ECN info in the TCP header if it is not a zero 19356 * window probe. Zero window probe is only sent in 19357 * tcp_wput_data() and tcp_timer(). 19358 */ 19359 if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) { 19360 SET_ECT(tcp, rptr); 19361 19362 if (tcp->tcp_ecn_echo_on) 19363 tcp_h->th_flags[0] |= TH_ECE; 19364 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 19365 tcp_h->th_flags[0] |= TH_CWR; 19366 tcp->tcp_ecn_cwr_sent = B_TRUE; 19367 } 19368 } 19369 19370 /* Fill in SACK options */ 19371 if (num_sack_blk > 0) { 19372 uchar_t *wptr = rptr + tcp->tcp_hdr_len; 19373 sack_blk_t *tmp; 19374 int32_t i; 19375 19376 wptr[0] = TCPOPT_NOP; 19377 wptr[1] = TCPOPT_NOP; 19378 wptr[2] = TCPOPT_SACK; 19379 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 19380 sizeof (sack_blk_t); 19381 wptr += TCPOPT_REAL_SACK_LEN; 19382 19383 tmp = tcp->tcp_sack_list; 19384 for (i = 0; i < num_sack_blk; i++) { 19385 U32_TO_BE32(tmp[i].begin, wptr); 19386 wptr += sizeof (tcp_seq); 19387 U32_TO_BE32(tmp[i].end, wptr); 19388 wptr += sizeof (tcp_seq); 19389 } 19390 tcp_h->th_offset_and_rsrvd[0] += 19391 ((num_sack_blk * 2 + 1) << 4); 19392 } 19393 } 19394 19395 /* 19396 * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach 19397 * the destination address and SAP attribute, and if necessary, the 19398 * hardware checksum offload attribute to a Multidata message. 19399 */ 19400 static int 19401 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum, 19402 const uint32_t start, const uint32_t stuff, const uint32_t end, 19403 const uint32_t flags) 19404 { 19405 /* Add global destination address & SAP attribute */ 19406 if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) { 19407 ip1dbg(("tcp_mdt_add_attrs: can't add global physical " 19408 "destination address+SAP\n")); 19409 19410 if (dlmp != NULL) 19411 TCP_STAT(tcp_mdt_allocfail); 19412 return (-1); 19413 } 19414 19415 /* Add global hwcksum attribute */ 19416 if (hwcksum && 19417 !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) { 19418 ip1dbg(("tcp_mdt_add_attrs: can't add global hardware " 19419 "checksum attribute\n")); 19420 19421 TCP_STAT(tcp_mdt_allocfail); 19422 return (-1); 19423 } 19424 19425 return (0); 19426 } 19427 19428 /* 19429 * Smaller and private version of pdescinfo_t used specifically for TCP, 19430 * which allows for only two payload spans per packet. 19431 */ 19432 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t; 19433 19434 /* 19435 * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit 19436 * scheme, and returns one the following: 19437 * 19438 * -1 = failed allocation. 19439 * 0 = success; burst count reached, or usable send window is too small, 19440 * and that we'd rather wait until later before sending again. 19441 */ 19442 static int 19443 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 19444 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 19445 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 19446 const int mdt_thres) 19447 { 19448 mblk_t *md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf; 19449 multidata_t *mmd; 19450 uint_t obsegs, obbytes, hdr_frag_sz; 19451 uint_t cur_hdr_off, cur_pld_off, base_pld_off, first_snxt; 19452 int num_burst_seg, max_pld; 19453 pdesc_t *pkt; 19454 tcp_pdescinfo_t tcp_pkt_info; 19455 pdescinfo_t *pkt_info; 19456 int pbuf_idx, pbuf_idx_nxt; 19457 int seg_len, len, spill, af; 19458 boolean_t add_buffer, zcopy, clusterwide; 19459 boolean_t buf_trunked = B_FALSE; 19460 boolean_t rconfirm = B_FALSE; 19461 boolean_t done = B_FALSE; 19462 uint32_t cksum; 19463 uint32_t hwcksum_flags; 19464 ire_t *ire = NULL; 19465 ill_t *ill; 19466 ipha_t *ipha; 19467 ip6_t *ip6h; 19468 ipaddr_t src, dst; 19469 ill_zerocopy_capab_t *zc_cap = NULL; 19470 uint16_t *up; 19471 int err; 19472 conn_t *connp; 19473 mblk_t *mp, *mp1, *fw_mp_head = NULL; 19474 uchar_t *pld_start; 19475 19476 #ifdef _BIG_ENDIAN 19477 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 28) & 0x7) 19478 #else 19479 #define IPVER(ip6h) ((((uint32_t *)ip6h)[0] >> 4) & 0x7) 19480 #endif 19481 19482 #define PREP_NEW_MULTIDATA() { \ 19483 mmd = NULL; \ 19484 md_mp = md_hbuf = NULL; \ 19485 cur_hdr_off = 0; \ 19486 max_pld = tcp->tcp_mdt_max_pld; \ 19487 pbuf_idx = pbuf_idx_nxt = -1; \ 19488 add_buffer = B_TRUE; \ 19489 zcopy = B_FALSE; \ 19490 } 19491 19492 #define PREP_NEW_PBUF() { \ 19493 md_pbuf = md_pbuf_nxt = NULL; \ 19494 pbuf_idx = pbuf_idx_nxt = -1; \ 19495 cur_pld_off = 0; \ 19496 first_snxt = *snxt; \ 19497 ASSERT(*tail_unsent > 0); \ 19498 base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \ 19499 } 19500 19501 ASSERT(mdt_thres >= mss); 19502 ASSERT(*usable > 0 && *usable > mdt_thres); 19503 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 19504 ASSERT(!TCP_IS_DETACHED(tcp)); 19505 ASSERT(tcp->tcp_valid_bits == 0 || 19506 tcp->tcp_valid_bits == TCP_FSS_VALID); 19507 ASSERT((tcp->tcp_ipversion == IPV4_VERSION && 19508 tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) || 19509 (tcp->tcp_ipversion == IPV6_VERSION && 19510 tcp->tcp_ip_hdr_len == IPV6_HDR_LEN)); 19511 19512 connp = tcp->tcp_connp; 19513 ASSERT(connp != NULL); 19514 ASSERT(CONN_IS_LSO_MD_FASTPATH(connp)); 19515 ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp)); 19516 19517 /* 19518 * Note that tcp will only declare at most 2 payload spans per 19519 * packet, which is much lower than the maximum allowable number 19520 * of packet spans per Multidata. For this reason, we use the 19521 * privately declared and smaller descriptor info structure, in 19522 * order to save some stack space. 19523 */ 19524 pkt_info = (pdescinfo_t *)&tcp_pkt_info; 19525 19526 af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6; 19527 if (af == AF_INET) { 19528 dst = tcp->tcp_ipha->ipha_dst; 19529 src = tcp->tcp_ipha->ipha_src; 19530 ASSERT(!CLASSD(dst)); 19531 } 19532 ASSERT(af == AF_INET || 19533 !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst)); 19534 19535 obsegs = obbytes = 0; 19536 num_burst_seg = tcp->tcp_snd_burst; 19537 md_mp_head = NULL; 19538 PREP_NEW_MULTIDATA(); 19539 19540 /* 19541 * Before we go on further, make sure there is an IRE that we can 19542 * use, and that the ILL supports MDT. Otherwise, there's no point 19543 * in proceeding any further, and we should just hand everything 19544 * off to the legacy path. 19545 */ 19546 if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire)) 19547 goto legacy_send_no_md; 19548 19549 ASSERT(ire != NULL); 19550 ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION); 19551 ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6))); 19552 ASSERT(af == AF_INET || ire->ire_nce != NULL); 19553 ASSERT(!(ire->ire_type & IRE_BROADCAST)); 19554 /* 19555 * If we do support loopback for MDT (which requires modifications 19556 * to the receiving paths), the following assertions should go away, 19557 * and we would be sending the Multidata to loopback conn later on. 19558 */ 19559 ASSERT(!IRE_IS_LOCAL(ire)); 19560 ASSERT(ire->ire_stq != NULL); 19561 19562 ill = ire_to_ill(ire); 19563 ASSERT(ill != NULL); 19564 ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL); 19565 19566 if (!tcp->tcp_ire_ill_check_done) { 19567 tcp_ire_ill_check(tcp, ire, ill, B_TRUE); 19568 tcp->tcp_ire_ill_check_done = B_TRUE; 19569 } 19570 19571 /* 19572 * If the underlying interface conditions have changed, or if the 19573 * new interface does not support MDT, go back to legacy path. 19574 */ 19575 if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) { 19576 /* don't go through this path anymore for this connection */ 19577 TCP_STAT(tcp_mdt_conn_halted2); 19578 tcp->tcp_mdt = B_FALSE; 19579 ip1dbg(("tcp_multisend: disabling MDT for connp %p on " 19580 "interface %s\n", (void *)connp, ill->ill_name)); 19581 /* IRE will be released prior to returning */ 19582 goto legacy_send_no_md; 19583 } 19584 19585 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) 19586 zc_cap = ill->ill_zerocopy_capab; 19587 19588 /* 19589 * Check if we can take tcp fast-path. Note that "incomplete" 19590 * ire's (where the link-layer for next hop is not resolved 19591 * or where the fast-path header in nce_fp_mp is not available 19592 * yet) are sent down the legacy (slow) path. 19593 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA 19594 */ 19595 if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) { 19596 /* IRE will be released prior to returning */ 19597 goto legacy_send_no_md; 19598 } 19599 19600 /* go to legacy path if interface doesn't support zerocopy */ 19601 if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 && 19602 (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) { 19603 /* IRE will be released prior to returning */ 19604 goto legacy_send_no_md; 19605 } 19606 19607 /* does the interface support hardware checksum offload? */ 19608 hwcksum_flags = 0; 19609 if (ILL_HCKSUM_CAPABLE(ill) && 19610 (ill->ill_hcksum_capab->ill_hcksum_txflags & 19611 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL | 19612 HCKSUM_IPHDRCKSUM)) && dohwcksum) { 19613 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19614 HCKSUM_IPHDRCKSUM) 19615 hwcksum_flags = HCK_IPV4_HDRCKSUM; 19616 19617 if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19618 (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6)) 19619 hwcksum_flags |= HCK_FULLCKSUM; 19620 else if (ill->ill_hcksum_capab->ill_hcksum_txflags & 19621 HCKSUM_INET_PARTIAL) 19622 hwcksum_flags |= HCK_PARTIALCKSUM; 19623 } 19624 19625 /* 19626 * Each header fragment consists of the leading extra space, 19627 * followed by the TCP/IP header, and the trailing extra space. 19628 * We make sure that each header fragment begins on a 32-bit 19629 * aligned memory address (tcp_mdt_hdr_head is already 32-bit 19630 * aligned in tcp_mdt_update). 19631 */ 19632 hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len + 19633 tcp->tcp_mdt_hdr_tail), 4); 19634 19635 /* are we starting from the beginning of data block? */ 19636 if (*tail_unsent == 0) { 19637 *xmit_tail = (*xmit_tail)->b_cont; 19638 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX); 19639 *tail_unsent = (int)MBLKL(*xmit_tail); 19640 } 19641 19642 /* 19643 * Here we create one or more Multidata messages, each made up of 19644 * one header buffer and up to N payload buffers. This entire 19645 * operation is done within two loops: 19646 * 19647 * The outer loop mostly deals with creating the Multidata message, 19648 * as well as the header buffer that gets added to it. It also 19649 * links the Multidata messages together such that all of them can 19650 * be sent down to the lower layer in a single putnext call; this 19651 * linking behavior depends on the tcp_mdt_chain tunable. 19652 * 19653 * The inner loop takes an existing Multidata message, and adds 19654 * one or more (up to tcp_mdt_max_pld) payload buffers to it. It 19655 * packetizes those buffers by filling up the corresponding header 19656 * buffer fragments with the proper IP and TCP headers, and by 19657 * describing the layout of each packet in the packet descriptors 19658 * that get added to the Multidata. 19659 */ 19660 do { 19661 /* 19662 * If usable send window is too small, or data blocks in 19663 * transmit list are smaller than our threshold (i.e. app 19664 * performs large writes followed by small ones), we hand 19665 * off the control over to the legacy path. Note that we'll 19666 * get back the control once it encounters a large block. 19667 */ 19668 if (*usable < mss || (*tail_unsent <= mdt_thres && 19669 (*xmit_tail)->b_cont != NULL && 19670 MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) { 19671 /* send down what we've got so far */ 19672 if (md_mp_head != NULL) { 19673 tcp_multisend_data(tcp, ire, ill, md_mp_head, 19674 obsegs, obbytes, &rconfirm); 19675 } 19676 /* 19677 * Pass control over to tcp_send(), but tell it to 19678 * return to us once a large-size transmission is 19679 * possible. 19680 */ 19681 TCP_STAT(tcp_mdt_legacy_small); 19682 if ((err = tcp_send(q, tcp, mss, tcp_hdr_len, 19683 tcp_tcp_hdr_len, num_sack_blk, usable, snxt, 19684 tail_unsent, xmit_tail, local_time, 19685 mdt_thres)) <= 0) { 19686 /* burst count reached, or alloc failed */ 19687 IRE_REFRELE(ire); 19688 return (err); 19689 } 19690 19691 /* tcp_send() may have sent everything, so check */ 19692 if (*usable <= 0) { 19693 IRE_REFRELE(ire); 19694 return (0); 19695 } 19696 19697 TCP_STAT(tcp_mdt_legacy_ret); 19698 /* 19699 * We may have delivered the Multidata, so make sure 19700 * to re-initialize before the next round. 19701 */ 19702 md_mp_head = NULL; 19703 obsegs = obbytes = 0; 19704 num_burst_seg = tcp->tcp_snd_burst; 19705 PREP_NEW_MULTIDATA(); 19706 19707 /* are we starting from the beginning of data block? */ 19708 if (*tail_unsent == 0) { 19709 *xmit_tail = (*xmit_tail)->b_cont; 19710 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 19711 (uintptr_t)INT_MAX); 19712 *tail_unsent = (int)MBLKL(*xmit_tail); 19713 } 19714 } 19715 19716 /* 19717 * max_pld limits the number of mblks in tcp's transmit 19718 * queue that can be added to a Multidata message. Once 19719 * this counter reaches zero, no more additional mblks 19720 * can be added to it. What happens afterwards depends 19721 * on whether or not we are set to chain the Multidata 19722 * messages. If we are to link them together, reset 19723 * max_pld to its original value (tcp_mdt_max_pld) and 19724 * prepare to create a new Multidata message which will 19725 * get linked to md_mp_head. Else, leave it alone and 19726 * let the inner loop break on its own. 19727 */ 19728 if (tcp_mdt_chain && max_pld == 0) 19729 PREP_NEW_MULTIDATA(); 19730 19731 /* adding a payload buffer; re-initialize values */ 19732 if (add_buffer) 19733 PREP_NEW_PBUF(); 19734 19735 /* 19736 * If we don't have a Multidata, either because we just 19737 * (re)entered this outer loop, or after we branched off 19738 * to tcp_send above, setup the Multidata and header 19739 * buffer to be used. 19740 */ 19741 if (md_mp == NULL) { 19742 int md_hbuflen; 19743 uint32_t start, stuff; 19744 19745 /* 19746 * Calculate Multidata header buffer size large enough 19747 * to hold all of the headers that can possibly be 19748 * sent at this moment. We'd rather over-estimate 19749 * the size than running out of space; this is okay 19750 * since this buffer is small anyway. 19751 */ 19752 md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz; 19753 19754 /* 19755 * Start and stuff offset for partial hardware 19756 * checksum offload; these are currently for IPv4. 19757 * For full checksum offload, they are set to zero. 19758 */ 19759 if ((hwcksum_flags & HCK_PARTIALCKSUM)) { 19760 if (af == AF_INET) { 19761 start = IP_SIMPLE_HDR_LENGTH; 19762 stuff = IP_SIMPLE_HDR_LENGTH + 19763 TCP_CHECKSUM_OFFSET; 19764 } else { 19765 start = IPV6_HDR_LEN; 19766 stuff = IPV6_HDR_LEN + 19767 TCP_CHECKSUM_OFFSET; 19768 } 19769 } else { 19770 start = stuff = 0; 19771 } 19772 19773 /* 19774 * Create the header buffer, Multidata, as well as 19775 * any necessary attributes (destination address, 19776 * SAP and hardware checksum offload) that should 19777 * be associated with the Multidata message. 19778 */ 19779 ASSERT(cur_hdr_off == 0); 19780 if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL || 19781 ((md_hbuf->b_wptr += md_hbuflen), 19782 (mmd = mmd_alloc(md_hbuf, &md_mp, 19783 KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd, 19784 /* fastpath mblk */ 19785 ire->ire_nce->nce_res_mp, 19786 /* hardware checksum enabled */ 19787 (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)), 19788 /* hardware checksum offsets */ 19789 start, stuff, 0, 19790 /* hardware checksum flag */ 19791 hwcksum_flags) != 0)) { 19792 legacy_send: 19793 if (md_mp != NULL) { 19794 /* Unlink message from the chain */ 19795 if (md_mp_head != NULL) { 19796 err = (intptr_t)rmvb(md_mp_head, 19797 md_mp); 19798 /* 19799 * We can't assert that rmvb 19800 * did not return -1, since we 19801 * may get here before linkb 19802 * happens. We do, however, 19803 * check if we just removed the 19804 * only element in the list. 19805 */ 19806 if (err == 0) 19807 md_mp_head = NULL; 19808 } 19809 /* md_hbuf gets freed automatically */ 19810 TCP_STAT(tcp_mdt_discarded); 19811 freeb(md_mp); 19812 } else { 19813 /* Either allocb or mmd_alloc failed */ 19814 TCP_STAT(tcp_mdt_allocfail); 19815 if (md_hbuf != NULL) 19816 freeb(md_hbuf); 19817 } 19818 19819 /* send down what we've got so far */ 19820 if (md_mp_head != NULL) { 19821 tcp_multisend_data(tcp, ire, ill, 19822 md_mp_head, obsegs, obbytes, 19823 &rconfirm); 19824 } 19825 legacy_send_no_md: 19826 if (ire != NULL) 19827 IRE_REFRELE(ire); 19828 /* 19829 * Too bad; let the legacy path handle this. 19830 * We specify INT_MAX for the threshold, since 19831 * we gave up with the Multidata processings 19832 * and let the old path have it all. 19833 */ 19834 TCP_STAT(tcp_mdt_legacy_all); 19835 return (tcp_send(q, tcp, mss, tcp_hdr_len, 19836 tcp_tcp_hdr_len, num_sack_blk, usable, 19837 snxt, tail_unsent, xmit_tail, local_time, 19838 INT_MAX)); 19839 } 19840 19841 /* link to any existing ones, if applicable */ 19842 TCP_STAT(tcp_mdt_allocd); 19843 if (md_mp_head == NULL) { 19844 md_mp_head = md_mp; 19845 } else if (tcp_mdt_chain) { 19846 TCP_STAT(tcp_mdt_linked); 19847 linkb(md_mp_head, md_mp); 19848 } 19849 } 19850 19851 ASSERT(md_mp_head != NULL); 19852 ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL); 19853 ASSERT(md_mp != NULL && mmd != NULL); 19854 ASSERT(md_hbuf != NULL); 19855 19856 /* 19857 * Packetize the transmittable portion of the data block; 19858 * each data block is essentially added to the Multidata 19859 * as a payload buffer. We also deal with adding more 19860 * than one payload buffers, which happens when the remaining 19861 * packetized portion of the current payload buffer is less 19862 * than MSS, while the next data block in transmit queue 19863 * has enough data to make up for one. This "spillover" 19864 * case essentially creates a split-packet, where portions 19865 * of the packet's payload fragments may span across two 19866 * virtually discontiguous address blocks. 19867 */ 19868 seg_len = mss; 19869 do { 19870 len = seg_len; 19871 19872 ASSERT(len > 0); 19873 ASSERT(max_pld >= 0); 19874 ASSERT(!add_buffer || cur_pld_off == 0); 19875 19876 /* 19877 * First time around for this payload buffer; note 19878 * in the case of a spillover, the following has 19879 * been done prior to adding the split-packet 19880 * descriptor to Multidata, and we don't want to 19881 * repeat the process. 19882 */ 19883 if (add_buffer) { 19884 ASSERT(mmd != NULL); 19885 ASSERT(md_pbuf == NULL); 19886 ASSERT(md_pbuf_nxt == NULL); 19887 ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1); 19888 19889 /* 19890 * Have we reached the limit? We'd get to 19891 * this case when we're not chaining the 19892 * Multidata messages together, and since 19893 * we're done, terminate this loop. 19894 */ 19895 if (max_pld == 0) 19896 break; /* done */ 19897 19898 if ((md_pbuf = dupb(*xmit_tail)) == NULL) { 19899 TCP_STAT(tcp_mdt_allocfail); 19900 goto legacy_send; /* out_of_mem */ 19901 } 19902 19903 if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy && 19904 zc_cap != NULL) { 19905 if (!ip_md_zcopy_attr(mmd, NULL, 19906 zc_cap->ill_zerocopy_flags)) { 19907 freeb(md_pbuf); 19908 TCP_STAT(tcp_mdt_allocfail); 19909 /* out_of_mem */ 19910 goto legacy_send; 19911 } 19912 zcopy = B_TRUE; 19913 } 19914 19915 md_pbuf->b_rptr += base_pld_off; 19916 19917 /* 19918 * Add a payload buffer to the Multidata; this 19919 * operation must not fail, or otherwise our 19920 * logic in this routine is broken. There 19921 * is no memory allocation done by the 19922 * routine, so any returned failure simply 19923 * tells us that we've done something wrong. 19924 * 19925 * A failure tells us that either we're adding 19926 * the same payload buffer more than once, or 19927 * we're trying to add more buffers than 19928 * allowed (max_pld calculation is wrong). 19929 * None of the above cases should happen, and 19930 * we panic because either there's horrible 19931 * heap corruption, and/or programming mistake. 19932 */ 19933 pbuf_idx = mmd_addpldbuf(mmd, md_pbuf); 19934 if (pbuf_idx < 0) { 19935 cmn_err(CE_PANIC, "tcp_multisend: " 19936 "payload buffer logic error " 19937 "detected for tcp %p mmd %p " 19938 "pbuf %p (%d)\n", 19939 (void *)tcp, (void *)mmd, 19940 (void *)md_pbuf, pbuf_idx); 19941 } 19942 19943 ASSERT(max_pld > 0); 19944 --max_pld; 19945 add_buffer = B_FALSE; 19946 } 19947 19948 ASSERT(md_mp_head != NULL); 19949 ASSERT(md_pbuf != NULL); 19950 ASSERT(md_pbuf_nxt == NULL); 19951 ASSERT(pbuf_idx != -1); 19952 ASSERT(pbuf_idx_nxt == -1); 19953 ASSERT(*usable > 0); 19954 19955 /* 19956 * We spillover to the next payload buffer only 19957 * if all of the following is true: 19958 * 19959 * 1. There is not enough data on the current 19960 * payload buffer to make up `len', 19961 * 2. We are allowed to send `len', 19962 * 3. The next payload buffer length is large 19963 * enough to accomodate `spill'. 19964 */ 19965 if ((spill = len - *tail_unsent) > 0 && 19966 *usable >= len && 19967 MBLKL((*xmit_tail)->b_cont) >= spill && 19968 max_pld > 0) { 19969 md_pbuf_nxt = dupb((*xmit_tail)->b_cont); 19970 if (md_pbuf_nxt == NULL) { 19971 TCP_STAT(tcp_mdt_allocfail); 19972 goto legacy_send; /* out_of_mem */ 19973 } 19974 19975 if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy && 19976 zc_cap != NULL) { 19977 if (!ip_md_zcopy_attr(mmd, NULL, 19978 zc_cap->ill_zerocopy_flags)) { 19979 freeb(md_pbuf_nxt); 19980 TCP_STAT(tcp_mdt_allocfail); 19981 /* out_of_mem */ 19982 goto legacy_send; 19983 } 19984 zcopy = B_TRUE; 19985 } 19986 19987 /* 19988 * See comments above on the first call to 19989 * mmd_addpldbuf for explanation on the panic. 19990 */ 19991 pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt); 19992 if (pbuf_idx_nxt < 0) { 19993 panic("tcp_multisend: " 19994 "next payload buffer logic error " 19995 "detected for tcp %p mmd %p " 19996 "pbuf %p (%d)\n", 19997 (void *)tcp, (void *)mmd, 19998 (void *)md_pbuf_nxt, pbuf_idx_nxt); 19999 } 20000 20001 ASSERT(max_pld > 0); 20002 --max_pld; 20003 } else if (spill > 0) { 20004 /* 20005 * If there's a spillover, but the following 20006 * xmit_tail couldn't give us enough octets 20007 * to reach "len", then stop the current 20008 * Multidata creation and let the legacy 20009 * tcp_send() path take over. We don't want 20010 * to send the tiny segment as part of this 20011 * Multidata for performance reasons; instead, 20012 * we let the legacy path deal with grouping 20013 * it with the subsequent small mblks. 20014 */ 20015 if (*usable >= len && 20016 MBLKL((*xmit_tail)->b_cont) < spill) { 20017 max_pld = 0; 20018 break; /* done */ 20019 } 20020 20021 /* 20022 * We can't spillover, and we are near 20023 * the end of the current payload buffer, 20024 * so send what's left. 20025 */ 20026 ASSERT(*tail_unsent > 0); 20027 len = *tail_unsent; 20028 } 20029 20030 /* tail_unsent is negated if there is a spillover */ 20031 *tail_unsent -= len; 20032 *usable -= len; 20033 ASSERT(*usable >= 0); 20034 20035 if (*usable < mss) 20036 seg_len = *usable; 20037 /* 20038 * Sender SWS avoidance; see comments in tcp_send(); 20039 * everything else is the same, except that we only 20040 * do this here if there is no more data to be sent 20041 * following the current xmit_tail. We don't check 20042 * for 1-byte urgent data because we shouldn't get 20043 * here if TCP_URG_VALID is set. 20044 */ 20045 if (*usable > 0 && *usable < mss && 20046 ((md_pbuf_nxt == NULL && 20047 (*xmit_tail)->b_cont == NULL) || 20048 (md_pbuf_nxt != NULL && 20049 (*xmit_tail)->b_cont->b_cont == NULL)) && 20050 seg_len < (tcp->tcp_max_swnd >> 1) && 20051 (tcp->tcp_unsent - 20052 ((*snxt + len) - tcp->tcp_snxt)) > seg_len && 20053 !tcp->tcp_zero_win_probe) { 20054 if ((*snxt + len) == tcp->tcp_snxt && 20055 (*snxt + len) == tcp->tcp_suna) { 20056 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20057 } 20058 done = B_TRUE; 20059 } 20060 20061 /* 20062 * Prime pump for IP's checksumming on our behalf; 20063 * include the adjustment for a source route if any. 20064 * Do this only for software/partial hardware checksum 20065 * offload, as this field gets zeroed out later for 20066 * the full hardware checksum offload case. 20067 */ 20068 if (!(hwcksum_flags & HCK_FULLCKSUM)) { 20069 cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20070 cksum = (cksum >> 16) + (cksum & 0xFFFF); 20071 U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum); 20072 } 20073 20074 U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq); 20075 *snxt += len; 20076 20077 tcp->tcp_tcph->th_flags[0] = TH_ACK; 20078 /* 20079 * We set the PUSH bit only if TCP has no more buffered 20080 * data to be transmitted (or if sender SWS avoidance 20081 * takes place), as opposed to setting it for every 20082 * last packet in the burst. 20083 */ 20084 if (done || 20085 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0) 20086 tcp->tcp_tcph->th_flags[0] |= TH_PUSH; 20087 20088 /* 20089 * Set FIN bit if this is our last segment; snxt 20090 * already includes its length, and it will not 20091 * be adjusted after this point. 20092 */ 20093 if (tcp->tcp_valid_bits == TCP_FSS_VALID && 20094 *snxt == tcp->tcp_fss) { 20095 if (!tcp->tcp_fin_acked) { 20096 tcp->tcp_tcph->th_flags[0] |= TH_FIN; 20097 BUMP_MIB(&tcp_mib, tcpOutControl); 20098 } 20099 if (!tcp->tcp_fin_sent) { 20100 tcp->tcp_fin_sent = B_TRUE; 20101 /* 20102 * tcp state must be ESTABLISHED 20103 * in order for us to get here in 20104 * the first place. 20105 */ 20106 tcp->tcp_state = TCPS_FIN_WAIT_1; 20107 20108 /* 20109 * Upon returning from this routine, 20110 * tcp_wput_data() will set tcp_snxt 20111 * to be equal to snxt + tcp_fin_sent. 20112 * This is essentially the same as 20113 * setting it to tcp_fss + 1. 20114 */ 20115 } 20116 } 20117 20118 tcp->tcp_last_sent_len = (ushort_t)len; 20119 20120 len += tcp_hdr_len; 20121 if (tcp->tcp_ipversion == IPV4_VERSION) 20122 tcp->tcp_ipha->ipha_length = htons(len); 20123 else 20124 tcp->tcp_ip6h->ip6_plen = htons(len - 20125 ((char *)&tcp->tcp_ip6h[1] - 20126 tcp->tcp_iphc)); 20127 20128 pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF); 20129 20130 /* setup header fragment */ 20131 PDESC_HDR_ADD(pkt_info, 20132 md_hbuf->b_rptr + cur_hdr_off, /* base */ 20133 tcp->tcp_mdt_hdr_head, /* head room */ 20134 tcp_hdr_len, /* len */ 20135 tcp->tcp_mdt_hdr_tail); /* tail room */ 20136 20137 ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base == 20138 hdr_frag_sz); 20139 ASSERT(MBLKIN(md_hbuf, 20140 (pkt_info->hdr_base - md_hbuf->b_rptr), 20141 PDESC_HDRSIZE(pkt_info))); 20142 20143 /* setup first payload fragment */ 20144 PDESC_PLD_INIT(pkt_info); 20145 PDESC_PLD_SPAN_ADD(pkt_info, 20146 pbuf_idx, /* index */ 20147 md_pbuf->b_rptr + cur_pld_off, /* start */ 20148 tcp->tcp_last_sent_len); /* len */ 20149 20150 /* create a split-packet in case of a spillover */ 20151 if (md_pbuf_nxt != NULL) { 20152 ASSERT(spill > 0); 20153 ASSERT(pbuf_idx_nxt > pbuf_idx); 20154 ASSERT(!add_buffer); 20155 20156 md_pbuf = md_pbuf_nxt; 20157 md_pbuf_nxt = NULL; 20158 pbuf_idx = pbuf_idx_nxt; 20159 pbuf_idx_nxt = -1; 20160 cur_pld_off = spill; 20161 20162 /* trim out first payload fragment */ 20163 PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill); 20164 20165 /* setup second payload fragment */ 20166 PDESC_PLD_SPAN_ADD(pkt_info, 20167 pbuf_idx, /* index */ 20168 md_pbuf->b_rptr, /* start */ 20169 spill); /* len */ 20170 20171 if ((*xmit_tail)->b_next == NULL) { 20172 /* 20173 * Store the lbolt used for RTT 20174 * estimation. We can only record one 20175 * timestamp per mblk so we do it when 20176 * we reach the end of the payload 20177 * buffer. Also we only take a new 20178 * timestamp sample when the previous 20179 * timed data from the same mblk has 20180 * been ack'ed. 20181 */ 20182 (*xmit_tail)->b_prev = local_time; 20183 (*xmit_tail)->b_next = 20184 (mblk_t *)(uintptr_t)first_snxt; 20185 } 20186 20187 first_snxt = *snxt - spill; 20188 20189 /* 20190 * Advance xmit_tail; usable could be 0 by 20191 * the time we got here, but we made sure 20192 * above that we would only spillover to 20193 * the next data block if usable includes 20194 * the spilled-over amount prior to the 20195 * subtraction. Therefore, we are sure 20196 * that xmit_tail->b_cont can't be NULL. 20197 */ 20198 ASSERT((*xmit_tail)->b_cont != NULL); 20199 *xmit_tail = (*xmit_tail)->b_cont; 20200 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20201 (uintptr_t)INT_MAX); 20202 *tail_unsent = (int)MBLKL(*xmit_tail) - spill; 20203 } else { 20204 cur_pld_off += tcp->tcp_last_sent_len; 20205 } 20206 20207 /* 20208 * Fill in the header using the template header, and 20209 * add options such as time-stamp, ECN and/or SACK, 20210 * as needed. 20211 */ 20212 tcp_fill_header(tcp, pkt_info->hdr_rptr, 20213 (clock_t)local_time, num_sack_blk); 20214 20215 /* take care of some IP header businesses */ 20216 if (af == AF_INET) { 20217 ipha = (ipha_t *)pkt_info->hdr_rptr; 20218 20219 ASSERT(OK_32PTR((uchar_t *)ipha)); 20220 ASSERT(PDESC_HDRL(pkt_info) >= 20221 IP_SIMPLE_HDR_LENGTH); 20222 ASSERT(ipha->ipha_version_and_hdr_length == 20223 IP_SIMPLE_HDR_VERSION); 20224 20225 /* 20226 * Assign ident value for current packet; see 20227 * related comments in ip_wput_ire() about the 20228 * contract private interface with clustering 20229 * group. 20230 */ 20231 clusterwide = B_FALSE; 20232 if (cl_inet_ipident != NULL) { 20233 ASSERT(cl_inet_isclusterwide != NULL); 20234 if ((*cl_inet_isclusterwide)(IPPROTO_IP, 20235 AF_INET, 20236 (uint8_t *)(uintptr_t)src)) { 20237 ipha->ipha_ident = 20238 (*cl_inet_ipident) 20239 (IPPROTO_IP, AF_INET, 20240 (uint8_t *)(uintptr_t)src, 20241 (uint8_t *)(uintptr_t)dst); 20242 clusterwide = B_TRUE; 20243 } 20244 } 20245 20246 if (!clusterwide) { 20247 ipha->ipha_ident = (uint16_t) 20248 atomic_add_32_nv( 20249 &ire->ire_ident, 1); 20250 } 20251 #ifndef _BIG_ENDIAN 20252 ipha->ipha_ident = (ipha->ipha_ident << 8) | 20253 (ipha->ipha_ident >> 8); 20254 #endif 20255 } else { 20256 ip6h = (ip6_t *)pkt_info->hdr_rptr; 20257 20258 ASSERT(OK_32PTR((uchar_t *)ip6h)); 20259 ASSERT(IPVER(ip6h) == IPV6_VERSION); 20260 ASSERT(ip6h->ip6_nxt == IPPROTO_TCP); 20261 ASSERT(PDESC_HDRL(pkt_info) >= 20262 (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET + 20263 TCP_CHECKSUM_SIZE)); 20264 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 20265 20266 if (tcp->tcp_ip_forward_progress) { 20267 rconfirm = B_TRUE; 20268 tcp->tcp_ip_forward_progress = B_FALSE; 20269 } 20270 } 20271 20272 /* at least one payload span, and at most two */ 20273 ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3); 20274 20275 /* add the packet descriptor to Multidata */ 20276 if ((pkt = mmd_addpdesc(mmd, pkt_info, &err, 20277 KM_NOSLEEP)) == NULL) { 20278 /* 20279 * Any failure other than ENOMEM indicates 20280 * that we have passed in invalid pkt_info 20281 * or parameters to mmd_addpdesc, which must 20282 * not happen. 20283 * 20284 * EINVAL is a result of failure on boundary 20285 * checks against the pkt_info contents. It 20286 * should not happen, and we panic because 20287 * either there's horrible heap corruption, 20288 * and/or programming mistake. 20289 */ 20290 if (err != ENOMEM) { 20291 cmn_err(CE_PANIC, "tcp_multisend: " 20292 "pdesc logic error detected for " 20293 "tcp %p mmd %p pinfo %p (%d)\n", 20294 (void *)tcp, (void *)mmd, 20295 (void *)pkt_info, err); 20296 } 20297 TCP_STAT(tcp_mdt_addpdescfail); 20298 goto legacy_send; /* out_of_mem */ 20299 } 20300 ASSERT(pkt != NULL); 20301 20302 /* calculate IP header and TCP checksums */ 20303 if (af == AF_INET) { 20304 /* calculate pseudo-header checksum */ 20305 cksum = (dst >> 16) + (dst & 0xFFFF) + 20306 (src >> 16) + (src & 0xFFFF); 20307 20308 /* offset for TCP header checksum */ 20309 up = IPH_TCPH_CHECKSUMP(ipha, 20310 IP_SIMPLE_HDR_LENGTH); 20311 } else { 20312 up = (uint16_t *)&ip6h->ip6_src; 20313 20314 /* calculate pseudo-header checksum */ 20315 cksum = up[0] + up[1] + up[2] + up[3] + 20316 up[4] + up[5] + up[6] + up[7] + 20317 up[8] + up[9] + up[10] + up[11] + 20318 up[12] + up[13] + up[14] + up[15]; 20319 20320 /* Fold the initial sum */ 20321 cksum = (cksum & 0xffff) + (cksum >> 16); 20322 20323 up = (uint16_t *)(((uchar_t *)ip6h) + 20324 IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET); 20325 } 20326 20327 if (hwcksum_flags & HCK_FULLCKSUM) { 20328 /* clear checksum field for hardware */ 20329 *up = 0; 20330 } else if (hwcksum_flags & HCK_PARTIALCKSUM) { 20331 uint32_t sum; 20332 20333 /* pseudo-header checksumming */ 20334 sum = *up + cksum + IP_TCP_CSUM_COMP; 20335 sum = (sum & 0xFFFF) + (sum >> 16); 20336 *up = (sum & 0xFFFF) + (sum >> 16); 20337 } else { 20338 /* software checksumming */ 20339 TCP_STAT(tcp_out_sw_cksum); 20340 TCP_STAT_UPDATE(tcp_out_sw_cksum_bytes, 20341 tcp->tcp_hdr_len + tcp->tcp_last_sent_len); 20342 *up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len, 20343 cksum + IP_TCP_CSUM_COMP); 20344 if (*up == 0) 20345 *up = 0xFFFF; 20346 } 20347 20348 /* IPv4 header checksum */ 20349 if (af == AF_INET) { 20350 ipha->ipha_fragment_offset_and_flags |= 20351 (uint32_t)htons(ire->ire_frag_flag); 20352 20353 if (hwcksum_flags & HCK_IPV4_HDRCKSUM) { 20354 ipha->ipha_hdr_checksum = 0; 20355 } else { 20356 IP_HDR_CKSUM(ipha, cksum, 20357 ((uint32_t *)ipha)[0], 20358 ((uint16_t *)ipha)[4]); 20359 } 20360 } 20361 20362 if (af == AF_INET && HOOKS4_INTERESTED_PHYSICAL_OUT|| 20363 af == AF_INET6 && HOOKS6_INTERESTED_PHYSICAL_OUT) { 20364 /* build header(IP/TCP) mblk for this segment */ 20365 if ((mp = dupb(md_hbuf)) == NULL) 20366 goto legacy_send; 20367 20368 mp->b_rptr = pkt_info->hdr_rptr; 20369 mp->b_wptr = pkt_info->hdr_wptr; 20370 20371 /* build payload mblk for this segment */ 20372 if ((mp1 = dupb(*xmit_tail)) == NULL) { 20373 freemsg(mp); 20374 goto legacy_send; 20375 } 20376 mp1->b_wptr = md_pbuf->b_rptr + cur_pld_off; 20377 mp1->b_rptr = mp1->b_wptr - 20378 tcp->tcp_last_sent_len; 20379 linkb(mp, mp1); 20380 20381 pld_start = mp1->b_rptr; 20382 20383 if (af == AF_INET) { 20384 DTRACE_PROBE4( 20385 ip4__physical__out__start, 20386 ill_t *, NULL, 20387 ill_t *, ill, 20388 ipha_t *, ipha, 20389 mblk_t *, mp); 20390 FW_HOOKS(ip4_physical_out_event, 20391 ipv4firewall_physical_out, 20392 NULL, ill, ipha, mp, mp); 20393 DTRACE_PROBE1( 20394 ip4__physical__out__end, 20395 mblk_t *, mp); 20396 } else { 20397 DTRACE_PROBE4( 20398 ip6__physical__out_start, 20399 ill_t *, NULL, 20400 ill_t *, ill, 20401 ip6_t *, ip6h, 20402 mblk_t *, mp); 20403 FW_HOOKS6(ip6_physical_out_event, 20404 ipv6firewall_physical_out, 20405 NULL, ill, ip6h, mp, mp); 20406 DTRACE_PROBE1( 20407 ip6__physical__out__end, 20408 mblk_t *, mp); 20409 } 20410 20411 if (buf_trunked && mp != NULL) { 20412 /* 20413 * Need to pass it to normal path. 20414 */ 20415 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 20416 } else if (mp == NULL || 20417 mp->b_rptr != pkt_info->hdr_rptr || 20418 mp->b_wptr != pkt_info->hdr_wptr || 20419 (mp1 = mp->b_cont) == NULL || 20420 mp1->b_rptr != pld_start || 20421 mp1->b_wptr != pld_start + 20422 tcp->tcp_last_sent_len || 20423 mp1->b_cont != NULL) { 20424 /* 20425 * Need to pass all packets of this 20426 * buffer to normal path, either when 20427 * packet is blocked, or when boundary 20428 * of header buffer or payload buffer 20429 * has been changed by FW_HOOKS[6]. 20430 */ 20431 buf_trunked = B_TRUE; 20432 if (md_mp_head != NULL) { 20433 err = (intptr_t)rmvb(md_mp_head, 20434 md_mp); 20435 if (err == 0) 20436 md_mp_head = NULL; 20437 } 20438 20439 /* send down what we've got so far */ 20440 if (md_mp_head != NULL) { 20441 tcp_multisend_data(tcp, ire, 20442 ill, md_mp_head, obsegs, 20443 obbytes, &rconfirm); 20444 } 20445 md_mp_head = NULL; 20446 20447 if (mp != NULL) 20448 CALL_IP_WPUT(tcp->tcp_connp, 20449 q, mp); 20450 20451 mp1 = fw_mp_head; 20452 do { 20453 mp = mp1; 20454 mp1 = mp1->b_next; 20455 mp->b_next = NULL; 20456 mp->b_prev = NULL; 20457 CALL_IP_WPUT(tcp->tcp_connp, 20458 q, mp); 20459 } while (mp1 != NULL); 20460 20461 fw_mp_head = NULL; 20462 } else { 20463 if (fw_mp_head == NULL) 20464 fw_mp_head = mp; 20465 else 20466 fw_mp_head->b_prev->b_next = mp; 20467 fw_mp_head->b_prev = mp; 20468 } 20469 } 20470 20471 /* advance header offset */ 20472 cur_hdr_off += hdr_frag_sz; 20473 20474 obbytes += tcp->tcp_last_sent_len; 20475 ++obsegs; 20476 } while (!done && *usable > 0 && --num_burst_seg > 0 && 20477 *tail_unsent > 0); 20478 20479 if ((*xmit_tail)->b_next == NULL) { 20480 /* 20481 * Store the lbolt used for RTT estimation. We can only 20482 * record one timestamp per mblk so we do it when we 20483 * reach the end of the payload buffer. Also we only 20484 * take a new timestamp sample when the previous timed 20485 * data from the same mblk has been ack'ed. 20486 */ 20487 (*xmit_tail)->b_prev = local_time; 20488 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt; 20489 } 20490 20491 ASSERT(*tail_unsent >= 0); 20492 if (*tail_unsent > 0) { 20493 /* 20494 * We got here because we broke out of the above 20495 * loop due to of one of the following cases: 20496 * 20497 * 1. len < adjusted MSS (i.e. small), 20498 * 2. Sender SWS avoidance, 20499 * 3. max_pld is zero. 20500 * 20501 * We are done for this Multidata, so trim our 20502 * last payload buffer (if any) accordingly. 20503 */ 20504 if (md_pbuf != NULL) 20505 md_pbuf->b_wptr -= *tail_unsent; 20506 } else if (*usable > 0) { 20507 *xmit_tail = (*xmit_tail)->b_cont; 20508 ASSERT((uintptr_t)MBLKL(*xmit_tail) <= 20509 (uintptr_t)INT_MAX); 20510 *tail_unsent = (int)MBLKL(*xmit_tail); 20511 add_buffer = B_TRUE; 20512 } 20513 20514 while (fw_mp_head) { 20515 mp = fw_mp_head; 20516 fw_mp_head = fw_mp_head->b_next; 20517 mp->b_prev = mp->b_next = NULL; 20518 freemsg(mp); 20519 } 20520 if (buf_trunked) { 20521 TCP_STAT(tcp_mdt_discarded); 20522 freeb(md_mp); 20523 buf_trunked = B_FALSE; 20524 } 20525 } while (!done && *usable > 0 && num_burst_seg > 0 && 20526 (tcp_mdt_chain || max_pld > 0)); 20527 20528 if (md_mp_head != NULL) { 20529 /* send everything down */ 20530 tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes, 20531 &rconfirm); 20532 } 20533 20534 #undef PREP_NEW_MULTIDATA 20535 #undef PREP_NEW_PBUF 20536 #undef IPVER 20537 20538 IRE_REFRELE(ire); 20539 return (0); 20540 } 20541 20542 /* 20543 * A wrapper function for sending one or more Multidata messages down to 20544 * the module below ip; this routine does not release the reference of the 20545 * IRE (caller does that). This routine is analogous to tcp_send_data(). 20546 */ 20547 static void 20548 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head, 20549 const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm) 20550 { 20551 uint64_t delta; 20552 nce_t *nce; 20553 20554 ASSERT(ire != NULL && ill != NULL); 20555 ASSERT(ire->ire_stq != NULL); 20556 ASSERT(md_mp_head != NULL); 20557 ASSERT(rconfirm != NULL); 20558 20559 /* adjust MIBs and IRE timestamp */ 20560 TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT); 20561 tcp->tcp_obsegs += obsegs; 20562 UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs); 20563 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes); 20564 TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs); 20565 20566 if (tcp->tcp_ipversion == IPV4_VERSION) { 20567 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs); 20568 } else { 20569 TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs); 20570 } 20571 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs); 20572 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs); 20573 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes); 20574 20575 ire->ire_ob_pkt_count += obsegs; 20576 if (ire->ire_ipif != NULL) 20577 atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs); 20578 ire->ire_last_used_time = lbolt; 20579 20580 /* send it down */ 20581 putnext(ire->ire_stq, md_mp_head); 20582 20583 /* we're done for TCP/IPv4 */ 20584 if (tcp->tcp_ipversion == IPV4_VERSION) 20585 return; 20586 20587 nce = ire->ire_nce; 20588 20589 ASSERT(nce != NULL); 20590 ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT))); 20591 ASSERT(nce->nce_state != ND_INCOMPLETE); 20592 20593 /* reachability confirmation? */ 20594 if (*rconfirm) { 20595 nce->nce_last = TICK_TO_MSEC(lbolt64); 20596 if (nce->nce_state != ND_REACHABLE) { 20597 mutex_enter(&nce->nce_lock); 20598 nce->nce_state = ND_REACHABLE; 20599 nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT; 20600 mutex_exit(&nce->nce_lock); 20601 (void) untimeout(nce->nce_timeout_id); 20602 if (ip_debug > 2) { 20603 /* ip1dbg */ 20604 pr_addr_dbg("tcp_multisend_data: state " 20605 "for %s changed to REACHABLE\n", 20606 AF_INET6, &ire->ire_addr_v6); 20607 } 20608 } 20609 /* reset transport reachability confirmation */ 20610 *rconfirm = B_FALSE; 20611 } 20612 20613 delta = TICK_TO_MSEC(lbolt64) - nce->nce_last; 20614 ip1dbg(("tcp_multisend_data: delta = %" PRId64 20615 " ill_reachable_time = %d \n", delta, ill->ill_reachable_time)); 20616 20617 if (delta > (uint64_t)ill->ill_reachable_time) { 20618 mutex_enter(&nce->nce_lock); 20619 switch (nce->nce_state) { 20620 case ND_REACHABLE: 20621 case ND_STALE: 20622 /* 20623 * ND_REACHABLE is identical to ND_STALE in this 20624 * specific case. If reachable time has expired for 20625 * this neighbor (delta is greater than reachable 20626 * time), conceptually, the neighbor cache is no 20627 * longer in REACHABLE state, but already in STALE 20628 * state. So the correct transition here is to 20629 * ND_DELAY. 20630 */ 20631 nce->nce_state = ND_DELAY; 20632 mutex_exit(&nce->nce_lock); 20633 NDP_RESTART_TIMER(nce, delay_first_probe_time); 20634 if (ip_debug > 3) { 20635 /* ip2dbg */ 20636 pr_addr_dbg("tcp_multisend_data: state " 20637 "for %s changed to DELAY\n", 20638 AF_INET6, &ire->ire_addr_v6); 20639 } 20640 break; 20641 case ND_DELAY: 20642 case ND_PROBE: 20643 mutex_exit(&nce->nce_lock); 20644 /* Timers have already started */ 20645 break; 20646 case ND_UNREACHABLE: 20647 /* 20648 * ndp timer has detected that this nce is 20649 * unreachable and initiated deleting this nce 20650 * and all its associated IREs. This is a race 20651 * where we found the ire before it was deleted 20652 * and have just sent out a packet using this 20653 * unreachable nce. 20654 */ 20655 mutex_exit(&nce->nce_lock); 20656 break; 20657 default: 20658 ASSERT(0); 20659 } 20660 } 20661 } 20662 20663 /* 20664 * Derived from tcp_send_data(). 20665 */ 20666 static void 20667 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss, 20668 int num_lso_seg) 20669 { 20670 ipha_t *ipha; 20671 mblk_t *ire_fp_mp; 20672 uint_t ire_fp_mp_len; 20673 uint32_t hcksum_txflags = 0; 20674 ipaddr_t src; 20675 ipaddr_t dst; 20676 uint32_t cksum; 20677 uint16_t *up; 20678 20679 ASSERT(DB_TYPE(mp) == M_DATA); 20680 ASSERT(tcp->tcp_state == TCPS_ESTABLISHED); 20681 ASSERT(tcp->tcp_ipversion == IPV4_VERSION); 20682 ASSERT(tcp->tcp_connp != NULL); 20683 ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp)); 20684 20685 ipha = (ipha_t *)mp->b_rptr; 20686 src = ipha->ipha_src; 20687 dst = ipha->ipha_dst; 20688 20689 ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED); 20690 ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 20691 num_lso_seg); 20692 #ifndef _BIG_ENDIAN 20693 ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8); 20694 #endif 20695 if (tcp->tcp_snd_zcopy_aware) { 20696 if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 || 20697 (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0)) 20698 mp = tcp_zcopy_disable(tcp, mp); 20699 } 20700 20701 if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) { 20702 ASSERT(ill->ill_hcksum_capab != NULL); 20703 hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags; 20704 } 20705 20706 /* 20707 * Since the TCP checksum should be recalculated by h/w, we can just 20708 * zero the checksum field for HCK_FULLCKSUM, or calculate partial 20709 * pseudo-header checksum for HCK_PARTIALCKSUM. 20710 * The partial pseudo-header excludes TCP length, that was calculated 20711 * in tcp_send(), so to zero *up before further processing. 20712 */ 20713 cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF); 20714 20715 up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH); 20716 *up = 0; 20717 20718 IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up, 20719 IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum); 20720 20721 /* 20722 * Append LSO flag to DB_LSOFLAGS(mp) and set the mss to DB_LSOMSS(mp). 20723 */ 20724 DB_LSOFLAGS(mp) |= HW_LSO; 20725 DB_LSOMSS(mp) = mss; 20726 20727 ipha->ipha_fragment_offset_and_flags |= 20728 (uint32_t)htons(ire->ire_frag_flag); 20729 20730 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20731 ire_fp_mp_len = MBLKL(ire_fp_mp); 20732 ASSERT(DB_TYPE(ire_fp_mp) == M_DATA); 20733 mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len; 20734 bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len); 20735 20736 UPDATE_OB_PKT_COUNT(ire); 20737 ire->ire_last_used_time = lbolt; 20738 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests); 20739 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits); 20740 UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, 20741 ntohs(ipha->ipha_length)); 20742 20743 if (ILL_DLS_CAPABLE(ill)) { 20744 /* 20745 * Send the packet directly to DLD, where it may be queued 20746 * depending on the availability of transmit resources at 20747 * the media layer. 20748 */ 20749 IP_DLS_ILL_TX(ill, ipha, mp); 20750 } else { 20751 ill_t *out_ill = (ill_t *)ire->ire_stq->q_ptr; 20752 DTRACE_PROBE4(ip4__physical__out__start, 20753 ill_t *, NULL, ill_t *, out_ill, 20754 ipha_t *, ipha, mblk_t *, mp); 20755 FW_HOOKS(ip4_physical_out_event, ipv4firewall_physical_out, 20756 NULL, out_ill, ipha, mp, mp); 20757 DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp); 20758 if (mp != NULL) 20759 putnext(ire->ire_stq, mp); 20760 } 20761 } 20762 20763 /* 20764 * tcp_send() is called by tcp_wput_data() for non-Multidata transmission 20765 * scheme, and returns one of the following: 20766 * 20767 * -1 = failed allocation. 20768 * 0 = success; burst count reached, or usable send window is too small, 20769 * and that we'd rather wait until later before sending again. 20770 * 1 = success; we are called from tcp_multisend(), and both usable send 20771 * window and tail_unsent are greater than the MDT threshold, and thus 20772 * Multidata Transmit should be used instead. 20773 */ 20774 static int 20775 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len, 20776 const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable, 20777 uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time, 20778 const int mdt_thres) 20779 { 20780 int num_burst_seg = tcp->tcp_snd_burst; 20781 ire_t *ire = NULL; 20782 ill_t *ill = NULL; 20783 mblk_t *ire_fp_mp = NULL; 20784 uint_t ire_fp_mp_len = 0; 20785 int num_lso_seg = 1; 20786 uint_t lso_usable; 20787 boolean_t do_lso_send = B_FALSE; 20788 20789 /* 20790 * Check LSO capability before any further work. And the similar check 20791 * need to be done in for(;;) loop. 20792 * LSO will be deployed when therer is more than one mss of available 20793 * data and a burst transmission is allowed. 20794 */ 20795 if (tcp->tcp_lso && 20796 (tcp->tcp_valid_bits == 0 || 20797 tcp->tcp_valid_bits == TCP_FSS_VALID) && 20798 num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20799 /* 20800 * Try to find usable IRE/ILL and do basic check to the ILL. 20801 */ 20802 if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill)) { 20803 /* 20804 * Enable LSO with this transmission. 20805 * Since IRE has been hold in 20806 * tcp_send_find_ire_ill(), IRE_REFRELE(ire) 20807 * should be called before return. 20808 */ 20809 do_lso_send = B_TRUE; 20810 ire_fp_mp = ire->ire_nce->nce_fp_mp; 20811 ire_fp_mp_len = MBLKL(ire_fp_mp); 20812 /* Round up to multiple of 4 */ 20813 ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4; 20814 } else { 20815 do_lso_send = B_FALSE; 20816 ill = NULL; 20817 } 20818 } 20819 20820 for (;;) { 20821 struct datab *db; 20822 tcph_t *tcph; 20823 uint32_t sum; 20824 mblk_t *mp, *mp1; 20825 uchar_t *rptr; 20826 int len; 20827 20828 /* 20829 * If we're called by tcp_multisend(), and the amount of 20830 * sendable data as well as the size of current xmit_tail 20831 * is beyond the MDT threshold, return to the caller and 20832 * let the large data transmit be done using MDT. 20833 */ 20834 if (*usable > 0 && *usable > mdt_thres && 20835 (*tail_unsent > mdt_thres || (*tail_unsent == 0 && 20836 MBLKL((*xmit_tail)->b_cont) > mdt_thres))) { 20837 ASSERT(tcp->tcp_mdt); 20838 return (1); /* success; do large send */ 20839 } 20840 20841 if (num_burst_seg == 0) 20842 break; /* success; burst count reached */ 20843 20844 /* 20845 * Calculate the maximum payload length we can send in *one* 20846 * time. 20847 */ 20848 if (do_lso_send) { 20849 /* 20850 * Check whether need to do LSO any more. 20851 */ 20852 if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) { 20853 lso_usable = MIN(tcp->tcp_lso_max, *usable); 20854 lso_usable = MIN(lso_usable, 20855 num_burst_seg * mss); 20856 20857 num_lso_seg = lso_usable / mss; 20858 if (lso_usable % mss) { 20859 num_lso_seg++; 20860 tcp->tcp_last_sent_len = (ushort_t) 20861 (lso_usable % mss); 20862 } else { 20863 tcp->tcp_last_sent_len = (ushort_t)mss; 20864 } 20865 } else { 20866 do_lso_send = B_FALSE; 20867 num_lso_seg = 1; 20868 lso_usable = mss; 20869 } 20870 } 20871 20872 ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1); 20873 20874 /* 20875 * Adjust num_burst_seg here. 20876 */ 20877 num_burst_seg -= num_lso_seg; 20878 20879 len = mss; 20880 if (len > *usable) { 20881 ASSERT(do_lso_send == B_FALSE); 20882 20883 len = *usable; 20884 if (len <= 0) { 20885 /* Terminate the loop */ 20886 break; /* success; too small */ 20887 } 20888 /* 20889 * Sender silly-window avoidance. 20890 * Ignore this if we are going to send a 20891 * zero window probe out. 20892 * 20893 * TODO: force data into microscopic window? 20894 * ==> (!pushed || (unsent > usable)) 20895 */ 20896 if (len < (tcp->tcp_max_swnd >> 1) && 20897 (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len && 20898 !((tcp->tcp_valid_bits & TCP_URG_VALID) && 20899 len == 1) && (! tcp->tcp_zero_win_probe)) { 20900 /* 20901 * If the retransmit timer is not running 20902 * we start it so that we will retransmit 20903 * in the case when the the receiver has 20904 * decremented the window. 20905 */ 20906 if (*snxt == tcp->tcp_snxt && 20907 *snxt == tcp->tcp_suna) { 20908 /* 20909 * We are not supposed to send 20910 * anything. So let's wait a little 20911 * bit longer before breaking SWS 20912 * avoidance. 20913 * 20914 * What should the value be? 20915 * Suggestion: MAX(init rexmit time, 20916 * tcp->tcp_rto) 20917 */ 20918 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 20919 } 20920 break; /* success; too small */ 20921 } 20922 } 20923 20924 tcph = tcp->tcp_tcph; 20925 20926 /* 20927 * The reason to adjust len here is that we need to set flags 20928 * and calculate checksum. 20929 */ 20930 if (do_lso_send) 20931 len = lso_usable; 20932 20933 *usable -= len; /* Approximate - can be adjusted later */ 20934 if (*usable > 0) 20935 tcph->th_flags[0] = TH_ACK; 20936 else 20937 tcph->th_flags[0] = (TH_ACK | TH_PUSH); 20938 20939 /* 20940 * Prime pump for IP's checksumming on our behalf 20941 * Include the adjustment for a source route if any. 20942 */ 20943 sum = len + tcp_tcp_hdr_len + tcp->tcp_sum; 20944 sum = (sum >> 16) + (sum & 0xFFFF); 20945 U16_TO_ABE16(sum, tcph->th_sum); 20946 20947 U32_TO_ABE32(*snxt, tcph->th_seq); 20948 20949 /* 20950 * Branch off to tcp_xmit_mp() if any of the VALID bits is 20951 * set. For the case when TCP_FSS_VALID is the only valid 20952 * bit (normal active close), branch off only when we think 20953 * that the FIN flag needs to be set. Note for this case, 20954 * that (snxt + len) may not reflect the actual seg_len, 20955 * as len may be further reduced in tcp_xmit_mp(). If len 20956 * gets modified, we will end up here again. 20957 */ 20958 if (tcp->tcp_valid_bits != 0 && 20959 (tcp->tcp_valid_bits != TCP_FSS_VALID || 20960 ((*snxt + len) == tcp->tcp_fss))) { 20961 uchar_t *prev_rptr; 20962 uint32_t prev_snxt = tcp->tcp_snxt; 20963 20964 if (*tail_unsent == 0) { 20965 ASSERT((*xmit_tail)->b_cont != NULL); 20966 *xmit_tail = (*xmit_tail)->b_cont; 20967 prev_rptr = (*xmit_tail)->b_rptr; 20968 *tail_unsent = (int)((*xmit_tail)->b_wptr - 20969 (*xmit_tail)->b_rptr); 20970 } else { 20971 prev_rptr = (*xmit_tail)->b_rptr; 20972 (*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr - 20973 *tail_unsent; 20974 } 20975 mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL, 20976 *snxt, B_FALSE, (uint32_t *)&len, B_FALSE); 20977 /* Restore tcp_snxt so we get amount sent right. */ 20978 tcp->tcp_snxt = prev_snxt; 20979 if (prev_rptr == (*xmit_tail)->b_rptr) { 20980 /* 20981 * If the previous timestamp is still in use, 20982 * don't stomp on it. 20983 */ 20984 if ((*xmit_tail)->b_next == NULL) { 20985 (*xmit_tail)->b_prev = local_time; 20986 (*xmit_tail)->b_next = 20987 (mblk_t *)(uintptr_t)(*snxt); 20988 } 20989 } else 20990 (*xmit_tail)->b_rptr = prev_rptr; 20991 20992 if (mp == NULL) { 20993 if (ire != NULL) 20994 IRE_REFRELE(ire); 20995 return (-1); 20996 } 20997 mp1 = mp->b_cont; 20998 20999 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21000 tcp->tcp_last_sent_len = (ushort_t)len; 21001 while (mp1->b_cont) { 21002 *xmit_tail = (*xmit_tail)->b_cont; 21003 (*xmit_tail)->b_prev = local_time; 21004 (*xmit_tail)->b_next = 21005 (mblk_t *)(uintptr_t)(*snxt); 21006 mp1 = mp1->b_cont; 21007 } 21008 *snxt += len; 21009 *tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr; 21010 BUMP_LOCAL(tcp->tcp_obsegs); 21011 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 21012 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 21013 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21014 tcp_send_data(tcp, q, mp); 21015 continue; 21016 } 21017 21018 *snxt += len; /* Adjust later if we don't send all of len */ 21019 BUMP_MIB(&tcp_mib, tcpOutDataSegs); 21020 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len); 21021 21022 if (*tail_unsent) { 21023 /* Are the bytes above us in flight? */ 21024 rptr = (*xmit_tail)->b_wptr - *tail_unsent; 21025 if (rptr != (*xmit_tail)->b_rptr) { 21026 *tail_unsent -= len; 21027 if (len <= mss) /* LSO is unusable */ 21028 tcp->tcp_last_sent_len = (ushort_t)len; 21029 len += tcp_hdr_len; 21030 if (tcp->tcp_ipversion == IPV4_VERSION) 21031 tcp->tcp_ipha->ipha_length = htons(len); 21032 else 21033 tcp->tcp_ip6h->ip6_plen = 21034 htons(len - 21035 ((char *)&tcp->tcp_ip6h[1] - 21036 tcp->tcp_iphc)); 21037 mp = dupb(*xmit_tail); 21038 if (mp == NULL) { 21039 if (ire != NULL) 21040 IRE_REFRELE(ire); 21041 return (-1); /* out_of_mem */ 21042 } 21043 mp->b_rptr = rptr; 21044 /* 21045 * If the old timestamp is no longer in use, 21046 * sample a new timestamp now. 21047 */ 21048 if ((*xmit_tail)->b_next == NULL) { 21049 (*xmit_tail)->b_prev = local_time; 21050 (*xmit_tail)->b_next = 21051 (mblk_t *)(uintptr_t)(*snxt-len); 21052 } 21053 goto must_alloc; 21054 } 21055 } else { 21056 *xmit_tail = (*xmit_tail)->b_cont; 21057 ASSERT((uintptr_t)((*xmit_tail)->b_wptr - 21058 (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX); 21059 *tail_unsent = (int)((*xmit_tail)->b_wptr - 21060 (*xmit_tail)->b_rptr); 21061 } 21062 21063 (*xmit_tail)->b_prev = local_time; 21064 (*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len); 21065 21066 *tail_unsent -= len; 21067 if (len <= mss) /* LSO is unusable (!do_lso_send) */ 21068 tcp->tcp_last_sent_len = (ushort_t)len; 21069 21070 len += tcp_hdr_len; 21071 if (tcp->tcp_ipversion == IPV4_VERSION) 21072 tcp->tcp_ipha->ipha_length = htons(len); 21073 else 21074 tcp->tcp_ip6h->ip6_plen = htons(len - 21075 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 21076 21077 mp = dupb(*xmit_tail); 21078 if (mp == NULL) { 21079 if (ire != NULL) 21080 IRE_REFRELE(ire); 21081 return (-1); /* out_of_mem */ 21082 } 21083 21084 len = tcp_hdr_len; 21085 /* 21086 * There are four reasons to allocate a new hdr mblk: 21087 * 1) The bytes above us are in use by another packet 21088 * 2) We don't have good alignment 21089 * 3) The mblk is being shared 21090 * 4) We don't have enough room for a header 21091 */ 21092 rptr = mp->b_rptr - len; 21093 if (!OK_32PTR(rptr) || 21094 ((db = mp->b_datap), db->db_ref != 2) || 21095 rptr < db->db_base + ire_fp_mp_len) { 21096 /* NOTE: we assume allocb returns an OK_32PTR */ 21097 21098 must_alloc:; 21099 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + 21100 tcp_wroff_xtra + ire_fp_mp_len, BPRI_MED); 21101 if (mp1 == NULL) { 21102 freemsg(mp); 21103 if (ire != NULL) 21104 IRE_REFRELE(ire); 21105 return (-1); /* out_of_mem */ 21106 } 21107 mp1->b_cont = mp; 21108 mp = mp1; 21109 /* Leave room for Link Level header */ 21110 len = tcp_hdr_len; 21111 rptr = &mp->b_rptr[tcp_wroff_xtra + ire_fp_mp_len]; 21112 mp->b_wptr = &rptr[len]; 21113 } 21114 21115 /* 21116 * Fill in the header using the template header, and add 21117 * options such as time-stamp, ECN and/or SACK, as needed. 21118 */ 21119 tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk); 21120 21121 mp->b_rptr = rptr; 21122 21123 if (*tail_unsent) { 21124 int spill = *tail_unsent; 21125 21126 mp1 = mp->b_cont; 21127 if (mp1 == NULL) 21128 mp1 = mp; 21129 21130 /* 21131 * If we're a little short, tack on more mblks until 21132 * there is no more spillover. 21133 */ 21134 while (spill < 0) { 21135 mblk_t *nmp; 21136 int nmpsz; 21137 21138 nmp = (*xmit_tail)->b_cont; 21139 nmpsz = MBLKL(nmp); 21140 21141 /* 21142 * Excess data in mblk; can we split it? 21143 * If MDT is enabled for the connection, 21144 * keep on splitting as this is a transient 21145 * send path. 21146 */ 21147 if (!do_lso_send && !tcp->tcp_mdt && 21148 (spill + nmpsz > 0)) { 21149 /* 21150 * Don't split if stream head was 21151 * told to break up larger writes 21152 * into smaller ones. 21153 */ 21154 if (tcp->tcp_maxpsz > 0) 21155 break; 21156 21157 /* 21158 * Next mblk is less than SMSS/2 21159 * rounded up to nearest 64-byte; 21160 * let it get sent as part of the 21161 * next segment. 21162 */ 21163 if (tcp->tcp_localnet && 21164 !tcp->tcp_cork && 21165 (nmpsz < roundup((mss >> 1), 64))) 21166 break; 21167 } 21168 21169 *xmit_tail = nmp; 21170 ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX); 21171 /* Stash for rtt use later */ 21172 (*xmit_tail)->b_prev = local_time; 21173 (*xmit_tail)->b_next = 21174 (mblk_t *)(uintptr_t)(*snxt - len); 21175 mp1->b_cont = dupb(*xmit_tail); 21176 mp1 = mp1->b_cont; 21177 21178 spill += nmpsz; 21179 if (mp1 == NULL) { 21180 *tail_unsent = spill; 21181 freemsg(mp); 21182 if (ire != NULL) 21183 IRE_REFRELE(ire); 21184 return (-1); /* out_of_mem */ 21185 } 21186 } 21187 21188 /* Trim back any surplus on the last mblk */ 21189 if (spill >= 0) { 21190 mp1->b_wptr -= spill; 21191 *tail_unsent = spill; 21192 } else { 21193 /* 21194 * We did not send everything we could in 21195 * order to remain within the b_cont limit. 21196 */ 21197 *usable -= spill; 21198 *snxt += spill; 21199 tcp->tcp_last_sent_len += spill; 21200 UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill); 21201 /* 21202 * Adjust the checksum 21203 */ 21204 tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len); 21205 sum += spill; 21206 sum = (sum >> 16) + (sum & 0xFFFF); 21207 U16_TO_ABE16(sum, tcph->th_sum); 21208 if (tcp->tcp_ipversion == IPV4_VERSION) { 21209 sum = ntohs( 21210 ((ipha_t *)rptr)->ipha_length) + 21211 spill; 21212 ((ipha_t *)rptr)->ipha_length = 21213 htons(sum); 21214 } else { 21215 sum = ntohs( 21216 ((ip6_t *)rptr)->ip6_plen) + 21217 spill; 21218 ((ip6_t *)rptr)->ip6_plen = 21219 htons(sum); 21220 } 21221 *tail_unsent = 0; 21222 } 21223 } 21224 if (tcp->tcp_ip_forward_progress) { 21225 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 21226 *(uint32_t *)mp->b_rptr |= IP_FORWARD_PROG; 21227 tcp->tcp_ip_forward_progress = B_FALSE; 21228 } 21229 21230 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 21231 if (do_lso_send) { 21232 tcp_lsosend_data(tcp, mp, ire, ill, mss, 21233 num_lso_seg); 21234 tcp->tcp_obsegs += num_lso_seg; 21235 21236 TCP_STAT(tcp_lso_times); 21237 TCP_STAT_UPDATE(tcp_lso_pkt_out, num_lso_seg); 21238 } else { 21239 tcp_send_data(tcp, q, mp); 21240 BUMP_LOCAL(tcp->tcp_obsegs); 21241 } 21242 } 21243 21244 if (ire != NULL) 21245 IRE_REFRELE(ire); 21246 return (0); 21247 } 21248 21249 /* Unlink and return any mblk that looks like it contains a MDT info */ 21250 static mblk_t * 21251 tcp_mdt_info_mp(mblk_t *mp) 21252 { 21253 mblk_t *prev_mp; 21254 21255 for (;;) { 21256 prev_mp = mp; 21257 /* no more to process? */ 21258 if ((mp = mp->b_cont) == NULL) 21259 break; 21260 21261 switch (DB_TYPE(mp)) { 21262 case M_CTL: 21263 if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE) 21264 continue; 21265 ASSERT(prev_mp != NULL); 21266 prev_mp->b_cont = mp->b_cont; 21267 mp->b_cont = NULL; 21268 return (mp); 21269 default: 21270 break; 21271 } 21272 } 21273 return (mp); 21274 } 21275 21276 /* MDT info update routine, called when IP notifies us about MDT */ 21277 static void 21278 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first) 21279 { 21280 boolean_t prev_state; 21281 21282 /* 21283 * IP is telling us to abort MDT on this connection? We know 21284 * this because the capability is only turned off when IP 21285 * encounters some pathological cases, e.g. link-layer change 21286 * where the new driver doesn't support MDT, or in situation 21287 * where MDT usage on the link-layer has been switched off. 21288 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE 21289 * if the link-layer doesn't support MDT, and if it does, it 21290 * will indicate that the feature is to be turned on. 21291 */ 21292 prev_state = tcp->tcp_mdt; 21293 tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0); 21294 if (!tcp->tcp_mdt && !first) { 21295 TCP_STAT(tcp_mdt_conn_halted3); 21296 ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n", 21297 (void *)tcp->tcp_connp)); 21298 } 21299 21300 /* 21301 * We currently only support MDT on simple TCP/{IPv4,IPv6}, 21302 * so disable MDT otherwise. The checks are done here 21303 * and in tcp_wput_data(). 21304 */ 21305 if (tcp->tcp_mdt && 21306 (tcp->tcp_ipversion == IPV4_VERSION && 21307 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21308 (tcp->tcp_ipversion == IPV6_VERSION && 21309 tcp->tcp_ip_hdr_len != IPV6_HDR_LEN)) 21310 tcp->tcp_mdt = B_FALSE; 21311 21312 if (tcp->tcp_mdt) { 21313 if (mdt_capab->ill_mdt_version != MDT_VERSION_2) { 21314 cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT " 21315 "version (%d), expected version is %d", 21316 mdt_capab->ill_mdt_version, MDT_VERSION_2); 21317 tcp->tcp_mdt = B_FALSE; 21318 return; 21319 } 21320 21321 /* 21322 * We need the driver to be able to handle at least three 21323 * spans per packet in order for tcp MDT to be utilized. 21324 * The first is for the header portion, while the rest are 21325 * needed to handle a packet that straddles across two 21326 * virtually non-contiguous buffers; a typical tcp packet 21327 * therefore consists of only two spans. Note that we take 21328 * a zero as "don't care". 21329 */ 21330 if (mdt_capab->ill_mdt_span_limit > 0 && 21331 mdt_capab->ill_mdt_span_limit < 3) { 21332 tcp->tcp_mdt = B_FALSE; 21333 return; 21334 } 21335 21336 /* a zero means driver wants default value */ 21337 tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld, 21338 tcp_mdt_max_pbufs); 21339 if (tcp->tcp_mdt_max_pld == 0) 21340 tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs; 21341 21342 /* ensure 32-bit alignment */ 21343 tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min, 21344 mdt_capab->ill_mdt_hdr_head), 4); 21345 tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min, 21346 mdt_capab->ill_mdt_hdr_tail), 4); 21347 21348 if (!first && !prev_state) { 21349 TCP_STAT(tcp_mdt_conn_resumed2); 21350 ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n", 21351 (void *)tcp->tcp_connp)); 21352 } 21353 } 21354 } 21355 21356 /* Unlink and return any mblk that looks like it contains a LSO info */ 21357 static mblk_t * 21358 tcp_lso_info_mp(mblk_t *mp) 21359 { 21360 mblk_t *prev_mp; 21361 21362 for (;;) { 21363 prev_mp = mp; 21364 /* no more to process? */ 21365 if ((mp = mp->b_cont) == NULL) 21366 break; 21367 21368 switch (DB_TYPE(mp)) { 21369 case M_CTL: 21370 if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE) 21371 continue; 21372 ASSERT(prev_mp != NULL); 21373 prev_mp->b_cont = mp->b_cont; 21374 mp->b_cont = NULL; 21375 return (mp); 21376 default: 21377 break; 21378 } 21379 } 21380 21381 return (mp); 21382 } 21383 21384 /* LSO info update routine, called when IP notifies us about LSO */ 21385 static void 21386 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab) 21387 { 21388 /* 21389 * IP is telling us to abort LSO on this connection? We know 21390 * this because the capability is only turned off when IP 21391 * encounters some pathological cases, e.g. link-layer change 21392 * where the new NIC/driver doesn't support LSO, or in situation 21393 * where LSO usage on the link-layer has been switched off. 21394 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE 21395 * if the link-layer doesn't support LSO, and if it does, it 21396 * will indicate that the feature is to be turned on. 21397 */ 21398 tcp->tcp_lso = (lso_capab->ill_lso_on != 0); 21399 TCP_STAT(tcp_lso_enabled); 21400 21401 /* 21402 * We currently only support LSO on simple TCP/IPv4, 21403 * so disable LSO otherwise. The checks are done here 21404 * and in tcp_wput_data(). 21405 */ 21406 if (tcp->tcp_lso && 21407 (tcp->tcp_ipversion == IPV4_VERSION && 21408 tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) || 21409 (tcp->tcp_ipversion == IPV6_VERSION)) { 21410 tcp->tcp_lso = B_FALSE; 21411 TCP_STAT(tcp_lso_disabled); 21412 } else { 21413 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, 21414 lso_capab->ill_lso_max); 21415 } 21416 } 21417 21418 static void 21419 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt) 21420 { 21421 conn_t *connp = tcp->tcp_connp; 21422 21423 ASSERT(ire != NULL); 21424 21425 /* 21426 * We may be in the fastpath here, and although we essentially do 21427 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return, 21428 * we try to keep things as brief as possible. After all, these 21429 * are only best-effort checks, and we do more thorough ones prior 21430 * to calling tcp_send()/tcp_multisend(). 21431 */ 21432 if ((ip_lso_outbound || ip_multidata_outbound) && check_lso_mdt && 21433 !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) && 21434 ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) && 21435 !(ire->ire_flags & RTF_MULTIRT) && 21436 !IPP_ENABLED(IPP_LOCAL_OUT) && 21437 CONN_IS_LSO_MD_FASTPATH(connp)) { 21438 if (ip_lso_outbound && ILL_LSO_CAPABLE(ill)) { 21439 /* Cache the result */ 21440 connp->conn_lso_ok = B_TRUE; 21441 21442 ASSERT(ill->ill_lso_capab != NULL); 21443 if (!ill->ill_lso_capab->ill_lso_on) { 21444 ill->ill_lso_capab->ill_lso_on = 1; 21445 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21446 "LSO for interface %s\n", (void *)connp, 21447 ill->ill_name)); 21448 } 21449 tcp_lso_update(tcp, ill->ill_lso_capab); 21450 } else if (ip_multidata_outbound && ILL_MDT_CAPABLE(ill)) { 21451 /* Cache the result */ 21452 connp->conn_mdt_ok = B_TRUE; 21453 21454 ASSERT(ill->ill_mdt_capab != NULL); 21455 if (!ill->ill_mdt_capab->ill_mdt_on) { 21456 ill->ill_mdt_capab->ill_mdt_on = 1; 21457 ip1dbg(("tcp_ire_ill_check: connp %p enables " 21458 "MDT for interface %s\n", (void *)connp, 21459 ill->ill_name)); 21460 } 21461 tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE); 21462 } 21463 } 21464 21465 /* 21466 * The goal is to reduce the number of generated tcp segments by 21467 * setting the maxpsz multiplier to 0; this will have an affect on 21468 * tcp_maxpsz_set(). With this behavior, tcp will pack more data 21469 * into each packet, up to SMSS bytes. Doing this reduces the number 21470 * of outbound segments and incoming ACKs, thus allowing for better 21471 * network and system performance. In contrast the legacy behavior 21472 * may result in sending less than SMSS size, because the last mblk 21473 * for some packets may have more data than needed to make up SMSS, 21474 * and the legacy code refused to "split" it. 21475 * 21476 * We apply the new behavior on following situations: 21477 * 21478 * 1) Loopback connections, 21479 * 2) Connections in which the remote peer is not on local subnet, 21480 * 3) Local subnet connections over the bge interface (see below). 21481 * 21482 * Ideally, we would like this behavior to apply for interfaces other 21483 * than bge. However, doing so would negatively impact drivers which 21484 * perform dynamic mapping and unmapping of DMA resources, which are 21485 * increased by setting the maxpsz multiplier to 0 (more mblks per 21486 * packet will be generated by tcp). The bge driver does not suffer 21487 * from this, as it copies the mblks into pre-mapped buffers, and 21488 * therefore does not require more I/O resources than before. 21489 * 21490 * Otherwise, this behavior is present on all network interfaces when 21491 * the destination endpoint is non-local, since reducing the number 21492 * of packets in general is good for the network. 21493 * 21494 * TODO We need to remove this hard-coded conditional for bge once 21495 * a better "self-tuning" mechanism, or a way to comprehend 21496 * the driver transmit strategy is devised. Until the solution 21497 * is found and well understood, we live with this hack. 21498 */ 21499 if (!tcp_static_maxpsz && 21500 (tcp->tcp_loopback || !tcp->tcp_localnet || 21501 (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) { 21502 /* override the default value */ 21503 tcp->tcp_maxpsz = 0; 21504 21505 ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on " 21506 "interface %s\n", (void *)connp, tcp->tcp_maxpsz, 21507 ill != NULL ? ill->ill_name : ipif_loopback_name)); 21508 } 21509 21510 /* set the stream head parameters accordingly */ 21511 (void) tcp_maxpsz_set(tcp, B_TRUE); 21512 } 21513 21514 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */ 21515 static void 21516 tcp_wput_flush(tcp_t *tcp, mblk_t *mp) 21517 { 21518 uchar_t fval = *mp->b_rptr; 21519 mblk_t *tail; 21520 queue_t *q = tcp->tcp_wq; 21521 21522 /* TODO: How should flush interact with urgent data? */ 21523 if ((fval & FLUSHW) && tcp->tcp_xmit_head && 21524 !(tcp->tcp_valid_bits & TCP_URG_VALID)) { 21525 /* 21526 * Flush only data that has not yet been put on the wire. If 21527 * we flush data that we have already transmitted, life, as we 21528 * know it, may come to an end. 21529 */ 21530 tail = tcp->tcp_xmit_tail; 21531 tail->b_wptr -= tcp->tcp_xmit_tail_unsent; 21532 tcp->tcp_xmit_tail_unsent = 0; 21533 tcp->tcp_unsent = 0; 21534 if (tail->b_wptr != tail->b_rptr) 21535 tail = tail->b_cont; 21536 if (tail) { 21537 mblk_t **excess = &tcp->tcp_xmit_head; 21538 for (;;) { 21539 mblk_t *mp1 = *excess; 21540 if (mp1 == tail) 21541 break; 21542 tcp->tcp_xmit_tail = mp1; 21543 tcp->tcp_xmit_last = mp1; 21544 excess = &mp1->b_cont; 21545 } 21546 *excess = NULL; 21547 tcp_close_mpp(&tail); 21548 if (tcp->tcp_snd_zcopy_aware) 21549 tcp_zcopy_notify(tcp); 21550 } 21551 /* 21552 * We have no unsent data, so unsent must be less than 21553 * tcp_xmit_lowater, so re-enable flow. 21554 */ 21555 mutex_enter(&tcp->tcp_non_sq_lock); 21556 if (tcp->tcp_flow_stopped) { 21557 tcp_clrqfull(tcp); 21558 } 21559 mutex_exit(&tcp->tcp_non_sq_lock); 21560 } 21561 /* 21562 * TODO: you can't just flush these, you have to increase rwnd for one 21563 * thing. For another, how should urgent data interact? 21564 */ 21565 if (fval & FLUSHR) { 21566 *mp->b_rptr = fval & ~FLUSHW; 21567 /* XXX */ 21568 qreply(q, mp); 21569 return; 21570 } 21571 freemsg(mp); 21572 } 21573 21574 /* 21575 * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA 21576 * messages. 21577 */ 21578 static void 21579 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp) 21580 { 21581 mblk_t *mp1; 21582 STRUCT_HANDLE(strbuf, sb); 21583 uint16_t port; 21584 queue_t *q = tcp->tcp_wq; 21585 in6_addr_t v6addr; 21586 ipaddr_t v4addr; 21587 uint32_t flowinfo = 0; 21588 int addrlen; 21589 21590 /* Make sure it is one of ours. */ 21591 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21592 case TI_GETMYNAME: 21593 case TI_GETPEERNAME: 21594 break; 21595 default: 21596 CALL_IP_WPUT(tcp->tcp_connp, q, mp); 21597 return; 21598 } 21599 switch (mi_copy_state(q, mp, &mp1)) { 21600 case -1: 21601 return; 21602 case MI_COPY_CASE(MI_COPY_IN, 1): 21603 break; 21604 case MI_COPY_CASE(MI_COPY_OUT, 1): 21605 /* Copy out the strbuf. */ 21606 mi_copyout(q, mp); 21607 return; 21608 case MI_COPY_CASE(MI_COPY_OUT, 2): 21609 /* All done. */ 21610 mi_copy_done(q, mp, 0); 21611 return; 21612 default: 21613 mi_copy_done(q, mp, EPROTO); 21614 return; 21615 } 21616 /* Check alignment of the strbuf */ 21617 if (!OK_32PTR(mp1->b_rptr)) { 21618 mi_copy_done(q, mp, EINVAL); 21619 return; 21620 } 21621 21622 STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag, 21623 (void *)mp1->b_rptr); 21624 addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t); 21625 21626 if (STRUCT_FGET(sb, maxlen) < addrlen) { 21627 mi_copy_done(q, mp, EINVAL); 21628 return; 21629 } 21630 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) { 21631 case TI_GETMYNAME: 21632 if (tcp->tcp_family == AF_INET) { 21633 if (tcp->tcp_ipversion == IPV4_VERSION) { 21634 v4addr = tcp->tcp_ipha->ipha_src; 21635 } else { 21636 /* can't return an address in this case */ 21637 v4addr = 0; 21638 } 21639 } else { 21640 /* tcp->tcp_family == AF_INET6 */ 21641 if (tcp->tcp_ipversion == IPV4_VERSION) { 21642 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 21643 &v6addr); 21644 } else { 21645 v6addr = tcp->tcp_ip6h->ip6_src; 21646 } 21647 } 21648 port = tcp->tcp_lport; 21649 break; 21650 case TI_GETPEERNAME: 21651 if (tcp->tcp_family == AF_INET) { 21652 if (tcp->tcp_ipversion == IPV4_VERSION) { 21653 IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6, 21654 v4addr); 21655 } else { 21656 /* can't return an address in this case */ 21657 v4addr = 0; 21658 } 21659 } else { 21660 /* tcp->tcp_family == AF_INET6) */ 21661 v6addr = tcp->tcp_remote_v6; 21662 if (tcp->tcp_ipversion == IPV6_VERSION) { 21663 /* 21664 * No flowinfo if tcp->tcp_ipversion is v4. 21665 * 21666 * flowinfo was already initialized to zero 21667 * where it was declared above, so only 21668 * set it if ipversion is v6. 21669 */ 21670 flowinfo = tcp->tcp_ip6h->ip6_vcf & 21671 ~IPV6_VERS_AND_FLOW_MASK; 21672 } 21673 } 21674 port = tcp->tcp_fport; 21675 break; 21676 default: 21677 mi_copy_done(q, mp, EPROTO); 21678 return; 21679 } 21680 mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE); 21681 if (!mp1) 21682 return; 21683 21684 if (tcp->tcp_family == AF_INET) { 21685 sin_t *sin; 21686 21687 STRUCT_FSET(sb, len, (int)sizeof (sin_t)); 21688 sin = (sin_t *)mp1->b_rptr; 21689 mp1->b_wptr = (uchar_t *)&sin[1]; 21690 *sin = sin_null; 21691 sin->sin_family = AF_INET; 21692 sin->sin_addr.s_addr = v4addr; 21693 sin->sin_port = port; 21694 } else { 21695 /* tcp->tcp_family == AF_INET6 */ 21696 sin6_t *sin6; 21697 21698 STRUCT_FSET(sb, len, (int)sizeof (sin6_t)); 21699 sin6 = (sin6_t *)mp1->b_rptr; 21700 mp1->b_wptr = (uchar_t *)&sin6[1]; 21701 *sin6 = sin6_null; 21702 sin6->sin6_family = AF_INET6; 21703 sin6->sin6_flowinfo = flowinfo; 21704 sin6->sin6_addr = v6addr; 21705 sin6->sin6_port = port; 21706 } 21707 /* Copy out the address */ 21708 mi_copyout(q, mp); 21709 } 21710 21711 /* 21712 * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL 21713 * messages. 21714 */ 21715 /* ARGSUSED */ 21716 static void 21717 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2) 21718 { 21719 conn_t *connp = (conn_t *)arg; 21720 tcp_t *tcp = connp->conn_tcp; 21721 queue_t *q = tcp->tcp_wq; 21722 struct iocblk *iocp; 21723 21724 ASSERT(DB_TYPE(mp) == M_IOCTL); 21725 /* 21726 * Try and ASSERT the minimum possible references on the 21727 * conn early enough. Since we are executing on write side, 21728 * the connection is obviously not detached and that means 21729 * there is a ref each for TCP and IP. Since we are behind 21730 * the squeue, the minimum references needed are 3. If the 21731 * conn is in classifier hash list, there should be an 21732 * extra ref for that (we check both the possibilities). 21733 */ 21734 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21735 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21736 21737 iocp = (struct iocblk *)mp->b_rptr; 21738 switch (iocp->ioc_cmd) { 21739 case TCP_IOC_DEFAULT_Q: 21740 /* Wants to be the default wq. */ 21741 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 21742 iocp->ioc_error = EPERM; 21743 iocp->ioc_count = 0; 21744 mp->b_datap->db_type = M_IOCACK; 21745 qreply(q, mp); 21746 return; 21747 } 21748 tcp_def_q_set(tcp, mp); 21749 return; 21750 case _SIOCSOCKFALLBACK: 21751 /* 21752 * Either sockmod is about to be popped and the socket 21753 * would now be treated as a plain stream, or a module 21754 * is about to be pushed so we could no longer use read- 21755 * side synchronous streams for fused loopback tcp. 21756 * Drain any queued data and disable direct sockfs 21757 * interface from now on. 21758 */ 21759 if (!tcp->tcp_issocket) { 21760 DB_TYPE(mp) = M_IOCNAK; 21761 iocp->ioc_error = EINVAL; 21762 } else { 21763 #ifdef _ILP32 21764 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 21765 #else 21766 tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev; 21767 #endif 21768 /* 21769 * Insert this socket into the acceptor hash. 21770 * We might need it for T_CONN_RES message 21771 */ 21772 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 21773 21774 if (tcp->tcp_fused) { 21775 /* 21776 * This is a fused loopback tcp; disable 21777 * read-side synchronous streams interface 21778 * and drain any queued data. It is okay 21779 * to do this for non-synchronous streams 21780 * fused tcp as well. 21781 */ 21782 tcp_fuse_disable_pair(tcp, B_FALSE); 21783 } 21784 tcp->tcp_issocket = B_FALSE; 21785 TCP_STAT(tcp_sock_fallback); 21786 21787 DB_TYPE(mp) = M_IOCACK; 21788 iocp->ioc_error = 0; 21789 } 21790 iocp->ioc_count = 0; 21791 iocp->ioc_rval = 0; 21792 qreply(q, mp); 21793 return; 21794 } 21795 CALL_IP_WPUT(connp, q, mp); 21796 } 21797 21798 /* 21799 * This routine is called by tcp_wput() to handle all TPI requests. 21800 */ 21801 /* ARGSUSED */ 21802 static void 21803 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2) 21804 { 21805 conn_t *connp = (conn_t *)arg; 21806 tcp_t *tcp = connp->conn_tcp; 21807 union T_primitives *tprim = (union T_primitives *)mp->b_rptr; 21808 uchar_t *rptr; 21809 t_scalar_t type; 21810 int len; 21811 cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred); 21812 21813 /* 21814 * Try and ASSERT the minimum possible references on the 21815 * conn early enough. Since we are executing on write side, 21816 * the connection is obviously not detached and that means 21817 * there is a ref each for TCP and IP. Since we are behind 21818 * the squeue, the minimum references needed are 3. If the 21819 * conn is in classifier hash list, there should be an 21820 * extra ref for that (we check both the possibilities). 21821 */ 21822 ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) || 21823 (connp->conn_fanout == NULL && connp->conn_ref >= 3)); 21824 21825 rptr = mp->b_rptr; 21826 ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX); 21827 if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) { 21828 type = ((union T_primitives *)rptr)->type; 21829 if (type == T_EXDATA_REQ) { 21830 uint32_t msize = msgdsize(mp->b_cont); 21831 21832 len = msize - 1; 21833 if (len < 0) { 21834 freemsg(mp); 21835 return; 21836 } 21837 /* 21838 * Try to force urgent data out on the wire. 21839 * Even if we have unsent data this will 21840 * at least send the urgent flag. 21841 * XXX does not handle more flag correctly. 21842 */ 21843 len += tcp->tcp_unsent; 21844 len += tcp->tcp_snxt; 21845 tcp->tcp_urg = len; 21846 tcp->tcp_valid_bits |= TCP_URG_VALID; 21847 21848 /* Bypass tcp protocol for fused tcp loopback */ 21849 if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize)) 21850 return; 21851 } else if (type != T_DATA_REQ) { 21852 goto non_urgent_data; 21853 } 21854 /* TODO: options, flags, ... from user */ 21855 /* Set length to zero for reclamation below */ 21856 tcp_wput_data(tcp, mp->b_cont, B_TRUE); 21857 freeb(mp); 21858 return; 21859 } else { 21860 if (tcp->tcp_debug) { 21861 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21862 "tcp_wput_proto, dropping one..."); 21863 } 21864 freemsg(mp); 21865 return; 21866 } 21867 21868 non_urgent_data: 21869 21870 switch ((int)tprim->type) { 21871 case T_SSL_PROXY_BIND_REQ: /* an SSL proxy endpoint bind request */ 21872 /* 21873 * save the kssl_ent_t from the next block, and convert this 21874 * back to a normal bind_req. 21875 */ 21876 if (mp->b_cont != NULL) { 21877 ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t)); 21878 21879 if (tcp->tcp_kssl_ent != NULL) { 21880 kssl_release_ent(tcp->tcp_kssl_ent, NULL, 21881 KSSL_NO_PROXY); 21882 tcp->tcp_kssl_ent = NULL; 21883 } 21884 bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent, 21885 sizeof (kssl_ent_t)); 21886 kssl_hold_ent(tcp->tcp_kssl_ent); 21887 freemsg(mp->b_cont); 21888 mp->b_cont = NULL; 21889 } 21890 tprim->type = T_BIND_REQ; 21891 21892 /* FALLTHROUGH */ 21893 case O_T_BIND_REQ: /* bind request */ 21894 case T_BIND_REQ: /* new semantics bind request */ 21895 tcp_bind(tcp, mp); 21896 break; 21897 case T_UNBIND_REQ: /* unbind request */ 21898 tcp_unbind(tcp, mp); 21899 break; 21900 case O_T_CONN_RES: /* old connection response XXX */ 21901 case T_CONN_RES: /* connection response */ 21902 tcp_accept(tcp, mp); 21903 break; 21904 case T_CONN_REQ: /* connection request */ 21905 tcp_connect(tcp, mp); 21906 break; 21907 case T_DISCON_REQ: /* disconnect request */ 21908 tcp_disconnect(tcp, mp); 21909 break; 21910 case T_CAPABILITY_REQ: 21911 tcp_capability_req(tcp, mp); /* capability request */ 21912 break; 21913 case T_INFO_REQ: /* information request */ 21914 tcp_info_req(tcp, mp); 21915 break; 21916 case T_SVR4_OPTMGMT_REQ: /* manage options req */ 21917 /* Only IP is allowed to return meaningful value */ 21918 (void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21919 break; 21920 case T_OPTMGMT_REQ: 21921 /* 21922 * Note: no support for snmpcom_req() through new 21923 * T_OPTMGMT_REQ. See comments in ip.c 21924 */ 21925 /* Only IP is allowed to return meaningful value */ 21926 (void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj); 21927 break; 21928 21929 case T_UNITDATA_REQ: /* unitdata request */ 21930 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21931 break; 21932 case T_ORDREL_REQ: /* orderly release req */ 21933 freemsg(mp); 21934 21935 if (tcp->tcp_fused) 21936 tcp_unfuse(tcp); 21937 21938 if (tcp_xmit_end(tcp) != 0) { 21939 /* 21940 * We were crossing FINs and got a reset from 21941 * the other side. Just ignore it. 21942 */ 21943 if (tcp->tcp_debug) { 21944 (void) strlog(TCP_MOD_ID, 0, 1, 21945 SL_ERROR|SL_TRACE, 21946 "tcp_wput_proto, T_ORDREL_REQ out of " 21947 "state %s", 21948 tcp_display(tcp, NULL, 21949 DISP_ADDR_AND_PORT)); 21950 } 21951 } 21952 break; 21953 case T_ADDR_REQ: 21954 tcp_addr_req(tcp, mp); 21955 break; 21956 default: 21957 if (tcp->tcp_debug) { 21958 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 21959 "tcp_wput_proto, bogus TPI msg, type %d", 21960 tprim->type); 21961 } 21962 /* 21963 * We used to M_ERROR. Sending TNOTSUPPORT gives the user 21964 * to recover. 21965 */ 21966 tcp_err_ack(tcp, mp, TNOTSUPPORT, 0); 21967 break; 21968 } 21969 } 21970 21971 /* 21972 * The TCP write service routine should never be called... 21973 */ 21974 /* ARGSUSED */ 21975 static void 21976 tcp_wsrv(queue_t *q) 21977 { 21978 TCP_STAT(tcp_wsrv_called); 21979 } 21980 21981 /* Non overlapping byte exchanger */ 21982 static void 21983 tcp_xchg(uchar_t *a, uchar_t *b, int len) 21984 { 21985 uchar_t uch; 21986 21987 while (len-- > 0) { 21988 uch = a[len]; 21989 a[len] = b[len]; 21990 b[len] = uch; 21991 } 21992 } 21993 21994 /* 21995 * Send out a control packet on the tcp connection specified. This routine 21996 * is typically called where we need a simple ACK or RST generated. 21997 */ 21998 static void 21999 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl) 22000 { 22001 uchar_t *rptr; 22002 tcph_t *tcph; 22003 ipha_t *ipha = NULL; 22004 ip6_t *ip6h = NULL; 22005 uint32_t sum; 22006 int tcp_hdr_len; 22007 int tcp_ip_hdr_len; 22008 mblk_t *mp; 22009 22010 /* 22011 * Save sum for use in source route later. 22012 */ 22013 ASSERT(tcp != NULL); 22014 sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum; 22015 tcp_hdr_len = tcp->tcp_hdr_len; 22016 tcp_ip_hdr_len = tcp->tcp_ip_hdr_len; 22017 22018 /* If a text string is passed in with the request, pass it to strlog. */ 22019 if (str != NULL && tcp->tcp_debug) { 22020 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22021 "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x", 22022 str, seq, ack, ctl); 22023 } 22024 mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22025 BPRI_MED); 22026 if (mp == NULL) { 22027 return; 22028 } 22029 rptr = &mp->b_rptr[tcp_wroff_xtra]; 22030 mp->b_rptr = rptr; 22031 mp->b_wptr = &rptr[tcp_hdr_len]; 22032 bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len); 22033 22034 if (tcp->tcp_ipversion == IPV4_VERSION) { 22035 ipha = (ipha_t *)rptr; 22036 ipha->ipha_length = htons(tcp_hdr_len); 22037 } else { 22038 ip6h = (ip6_t *)rptr; 22039 ASSERT(tcp != NULL); 22040 ip6h->ip6_plen = htons(tcp->tcp_hdr_len - 22041 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 22042 } 22043 tcph = (tcph_t *)&rptr[tcp_ip_hdr_len]; 22044 tcph->th_flags[0] = (uint8_t)ctl; 22045 if (ctl & TH_RST) { 22046 BUMP_MIB(&tcp_mib, tcpOutRsts); 22047 BUMP_MIB(&tcp_mib, tcpOutControl); 22048 /* 22049 * Don't send TSopt w/ TH_RST packets per RFC 1323. 22050 */ 22051 if (tcp->tcp_snd_ts_ok && 22052 tcp->tcp_state > TCPS_SYN_SENT) { 22053 mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN]; 22054 *(mp->b_wptr) = TCPOPT_EOL; 22055 if (tcp->tcp_ipversion == IPV4_VERSION) { 22056 ipha->ipha_length = htons(tcp_hdr_len - 22057 TCPOPT_REAL_TS_LEN); 22058 } else { 22059 ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - 22060 TCPOPT_REAL_TS_LEN); 22061 } 22062 tcph->th_offset_and_rsrvd[0] -= (3 << 4); 22063 sum -= TCPOPT_REAL_TS_LEN; 22064 } 22065 } 22066 if (ctl & TH_ACK) { 22067 if (tcp->tcp_snd_ts_ok) { 22068 U32_TO_BE32(lbolt, 22069 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22070 U32_TO_BE32(tcp->tcp_ts_recent, 22071 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22072 } 22073 22074 /* Update the latest receive window size in TCP header. */ 22075 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22076 tcph->th_win); 22077 tcp->tcp_rack = ack; 22078 tcp->tcp_rack_cnt = 0; 22079 BUMP_MIB(&tcp_mib, tcpOutAck); 22080 } 22081 BUMP_LOCAL(tcp->tcp_obsegs); 22082 U32_TO_BE32(seq, tcph->th_seq); 22083 U32_TO_BE32(ack, tcph->th_ack); 22084 /* 22085 * Include the adjustment for a source route if any. 22086 */ 22087 sum = (sum >> 16) + (sum & 0xFFFF); 22088 U16_TO_BE16(sum, tcph->th_sum); 22089 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22090 tcp_send_data(tcp, tcp->tcp_wq, mp); 22091 } 22092 22093 /* 22094 * If this routine returns B_TRUE, TCP can generate a RST in response 22095 * to a segment. If it returns B_FALSE, TCP should not respond. 22096 */ 22097 static boolean_t 22098 tcp_send_rst_chk(void) 22099 { 22100 clock_t now; 22101 22102 /* 22103 * TCP needs to protect itself from generating too many RSTs. 22104 * This can be a DoS attack by sending us random segments 22105 * soliciting RSTs. 22106 * 22107 * What we do here is to have a limit of tcp_rst_sent_rate RSTs 22108 * in each 1 second interval. In this way, TCP still generate 22109 * RSTs in normal cases but when under attack, the impact is 22110 * limited. 22111 */ 22112 if (tcp_rst_sent_rate_enabled != 0) { 22113 now = lbolt; 22114 /* lbolt can wrap around. */ 22115 if ((tcp_last_rst_intrvl > now) || 22116 (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) { 22117 tcp_last_rst_intrvl = now; 22118 tcp_rst_cnt = 1; 22119 } else if (++tcp_rst_cnt > tcp_rst_sent_rate) { 22120 return (B_FALSE); 22121 } 22122 } 22123 return (B_TRUE); 22124 } 22125 22126 /* 22127 * Send down the advice IP ioctl to tell IP to mark an IRE temporary. 22128 */ 22129 static void 22130 tcp_ip_ire_mark_advice(tcp_t *tcp) 22131 { 22132 mblk_t *mp; 22133 ipic_t *ipic; 22134 22135 if (tcp->tcp_ipversion == IPV4_VERSION) { 22136 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22137 &ipic); 22138 } else { 22139 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22140 &ipic); 22141 } 22142 if (mp == NULL) 22143 return; 22144 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22145 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22146 } 22147 22148 /* 22149 * Return an IP advice ioctl mblk and set ipic to be the pointer 22150 * to the advice structure. 22151 */ 22152 static mblk_t * 22153 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic) 22154 { 22155 struct iocblk *ioc; 22156 mblk_t *mp, *mp1; 22157 22158 mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI); 22159 if (mp == NULL) 22160 return (NULL); 22161 bzero(mp->b_rptr, sizeof (ipic_t) + addr_len); 22162 *ipic = (ipic_t *)mp->b_rptr; 22163 (*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY; 22164 (*ipic)->ipic_addr_offset = sizeof (ipic_t); 22165 22166 bcopy(addr, *ipic + 1, addr_len); 22167 22168 (*ipic)->ipic_addr_length = addr_len; 22169 mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len]; 22170 22171 mp1 = mkiocb(IP_IOCTL); 22172 if (mp1 == NULL) { 22173 freemsg(mp); 22174 return (NULL); 22175 } 22176 mp1->b_cont = mp; 22177 ioc = (struct iocblk *)mp1->b_rptr; 22178 ioc->ioc_count = sizeof (ipic_t) + addr_len; 22179 22180 return (mp1); 22181 } 22182 22183 /* 22184 * Generate a reset based on an inbound packet for which there is no active 22185 * tcp state that we can find. 22186 * 22187 * IPSEC NOTE : Try to send the reply with the same protection as it came 22188 * in. We still have the ipsec_mp that the packet was attached to. Thus 22189 * the packet will go out at the same level of protection as it came in by 22190 * converting the IPSEC_IN to IPSEC_OUT. 22191 */ 22192 static void 22193 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq, 22194 uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid) 22195 { 22196 ipha_t *ipha = NULL; 22197 ip6_t *ip6h = NULL; 22198 ushort_t len; 22199 tcph_t *tcph; 22200 int i; 22201 mblk_t *ipsec_mp; 22202 boolean_t mctl_present; 22203 ipic_t *ipic; 22204 ipaddr_t v4addr; 22205 in6_addr_t v6addr; 22206 int addr_len; 22207 void *addr; 22208 queue_t *q = tcp_g_q; 22209 tcp_t *tcp = Q_TO_TCP(q); 22210 cred_t *cr; 22211 mblk_t *nmp; 22212 22213 if (!tcp_send_rst_chk()) { 22214 tcp_rst_unsent++; 22215 freemsg(mp); 22216 return; 22217 } 22218 22219 if (mp->b_datap->db_type == M_CTL) { 22220 ipsec_mp = mp; 22221 mp = mp->b_cont; 22222 mctl_present = B_TRUE; 22223 } else { 22224 ipsec_mp = mp; 22225 mctl_present = B_FALSE; 22226 } 22227 22228 if (str && q && tcp_dbg) { 22229 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE, 22230 "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, " 22231 "flags 0x%x", 22232 str, seq, ack, ctl); 22233 } 22234 if (mp->b_datap->db_ref != 1) { 22235 mblk_t *mp1 = copyb(mp); 22236 freemsg(mp); 22237 mp = mp1; 22238 if (!mp) { 22239 if (mctl_present) 22240 freeb(ipsec_mp); 22241 return; 22242 } else { 22243 if (mctl_present) { 22244 ipsec_mp->b_cont = mp; 22245 } else { 22246 ipsec_mp = mp; 22247 } 22248 } 22249 } else if (mp->b_cont) { 22250 freemsg(mp->b_cont); 22251 mp->b_cont = NULL; 22252 } 22253 /* 22254 * We skip reversing source route here. 22255 * (for now we replace all IP options with EOL) 22256 */ 22257 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22258 ipha = (ipha_t *)mp->b_rptr; 22259 for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++) 22260 mp->b_rptr[i] = IPOPT_EOL; 22261 /* 22262 * Make sure that src address isn't flagrantly invalid. 22263 * Not all broadcast address checking for the src address 22264 * is possible, since we don't know the netmask of the src 22265 * addr. No check for destination address is done, since 22266 * IP will not pass up a packet with a broadcast dest 22267 * address to TCP. Similar checks are done below for IPv6. 22268 */ 22269 if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST || 22270 CLASSD(ipha->ipha_src)) { 22271 freemsg(ipsec_mp); 22272 BUMP_MIB(&ip_mib, ipIfStatsInDiscards); 22273 return; 22274 } 22275 } else { 22276 ip6h = (ip6_t *)mp->b_rptr; 22277 22278 if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) || 22279 IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) { 22280 freemsg(ipsec_mp); 22281 BUMP_MIB(&ip6_mib, ipIfStatsInDiscards); 22282 return; 22283 } 22284 22285 /* Remove any extension headers assuming partial overlay */ 22286 if (ip_hdr_len > IPV6_HDR_LEN) { 22287 uint8_t *to; 22288 22289 to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN; 22290 ovbcopy(ip6h, to, IPV6_HDR_LEN); 22291 mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN; 22292 ip_hdr_len = IPV6_HDR_LEN; 22293 ip6h = (ip6_t *)mp->b_rptr; 22294 ip6h->ip6_nxt = IPPROTO_TCP; 22295 } 22296 } 22297 tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len]; 22298 if (tcph->th_flags[0] & TH_RST) { 22299 freemsg(ipsec_mp); 22300 return; 22301 } 22302 tcph->th_offset_and_rsrvd[0] = (5 << 4); 22303 len = ip_hdr_len + sizeof (tcph_t); 22304 mp->b_wptr = &mp->b_rptr[len]; 22305 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22306 ipha->ipha_length = htons(len); 22307 /* Swap addresses */ 22308 v4addr = ipha->ipha_src; 22309 ipha->ipha_src = ipha->ipha_dst; 22310 ipha->ipha_dst = v4addr; 22311 ipha->ipha_ident = 0; 22312 ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl; 22313 addr_len = IP_ADDR_LEN; 22314 addr = &v4addr; 22315 } else { 22316 /* No ip6i_t in this case */ 22317 ip6h->ip6_plen = htons(len - IPV6_HDR_LEN); 22318 /* Swap addresses */ 22319 v6addr = ip6h->ip6_src; 22320 ip6h->ip6_src = ip6h->ip6_dst; 22321 ip6h->ip6_dst = v6addr; 22322 ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit; 22323 addr_len = IPV6_ADDR_LEN; 22324 addr = &v6addr; 22325 } 22326 tcp_xchg(tcph->th_fport, tcph->th_lport, 2); 22327 U32_TO_BE32(ack, tcph->th_ack); 22328 U32_TO_BE32(seq, tcph->th_seq); 22329 U16_TO_BE16(0, tcph->th_win); 22330 U16_TO_BE16(sizeof (tcph_t), tcph->th_sum); 22331 tcph->th_flags[0] = (uint8_t)ctl; 22332 if (ctl & TH_RST) { 22333 BUMP_MIB(&tcp_mib, tcpOutRsts); 22334 BUMP_MIB(&tcp_mib, tcpOutControl); 22335 } 22336 22337 /* IP trusts us to set up labels when required. */ 22338 if (is_system_labeled() && (cr = DB_CRED(mp)) != NULL && 22339 crgetlabel(cr) != NULL) { 22340 int err, adjust; 22341 22342 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) 22343 err = tsol_check_label(cr, &mp, &adjust, 22344 tcp->tcp_connp->conn_mac_exempt); 22345 else 22346 err = tsol_check_label_v6(cr, &mp, &adjust, 22347 tcp->tcp_connp->conn_mac_exempt); 22348 if (mctl_present) 22349 ipsec_mp->b_cont = mp; 22350 else 22351 ipsec_mp = mp; 22352 if (err != 0) { 22353 freemsg(ipsec_mp); 22354 return; 22355 } 22356 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22357 ipha = (ipha_t *)mp->b_rptr; 22358 adjust += ntohs(ipha->ipha_length); 22359 ipha->ipha_length = htons(adjust); 22360 } else { 22361 ip6h = (ip6_t *)mp->b_rptr; 22362 } 22363 } 22364 22365 if (mctl_present) { 22366 ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22367 22368 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22369 if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) { 22370 return; 22371 } 22372 } 22373 if (zoneid == ALL_ZONES) 22374 zoneid = GLOBAL_ZONEID; 22375 22376 /* Add the zoneid so ip_output routes it properly */ 22377 if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid)) == NULL) { 22378 freemsg(ipsec_mp); 22379 return; 22380 } 22381 ipsec_mp = nmp; 22382 22383 /* 22384 * NOTE: one might consider tracing a TCP packet here, but 22385 * this function has no active TCP state and no tcp structure 22386 * that has a trace buffer. If we traced here, we would have 22387 * to keep a local trace buffer in tcp_record_trace(). 22388 * 22389 * TSol note: The mblk that contains the incoming packet was 22390 * reused by tcp_xmit_listener_reset, so it already contains 22391 * the right credentials and we don't need to call mblk_setcred. 22392 * Also the conn's cred is not right since it is associated 22393 * with tcp_g_q. 22394 */ 22395 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp); 22396 22397 /* 22398 * Tell IP to mark the IRE used for this destination temporary. 22399 * This way, we can limit our exposure to DoS attack because IP 22400 * creates an IRE for each destination. If there are too many, 22401 * the time to do any routing lookup will be extremely long. And 22402 * the lookup can be in interrupt context. 22403 * 22404 * Note that in normal circumstances, this marking should not 22405 * affect anything. It would be nice if only 1 message is 22406 * needed to inform IP that the IRE created for this RST should 22407 * not be added to the cache table. But there is currently 22408 * not such communication mechanism between TCP and IP. So 22409 * the best we can do now is to send the advice ioctl to IP 22410 * to mark the IRE temporary. 22411 */ 22412 if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) { 22413 ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY; 22414 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22415 } 22416 } 22417 22418 /* 22419 * Initiate closedown sequence on an active connection. (May be called as 22420 * writer.) Return value zero for OK return, non-zero for error return. 22421 */ 22422 static int 22423 tcp_xmit_end(tcp_t *tcp) 22424 { 22425 ipic_t *ipic; 22426 mblk_t *mp; 22427 22428 if (tcp->tcp_state < TCPS_SYN_RCVD || 22429 tcp->tcp_state > TCPS_CLOSE_WAIT) { 22430 /* 22431 * Invalid state, only states TCPS_SYN_RCVD, 22432 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid 22433 */ 22434 return (-1); 22435 } 22436 22437 tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent; 22438 tcp->tcp_valid_bits |= TCP_FSS_VALID; 22439 /* 22440 * If there is nothing more unsent, send the FIN now. 22441 * Otherwise, it will go out with the last segment. 22442 */ 22443 if (tcp->tcp_unsent == 0) { 22444 mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 22445 tcp->tcp_fss, B_FALSE, NULL, B_FALSE); 22446 22447 if (mp) { 22448 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 22449 tcp_send_data(tcp, tcp->tcp_wq, mp); 22450 } else { 22451 /* 22452 * Couldn't allocate msg. Pretend we got it out. 22453 * Wait for rexmit timeout. 22454 */ 22455 tcp->tcp_snxt = tcp->tcp_fss + 1; 22456 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22457 } 22458 22459 /* 22460 * If needed, update tcp_rexmit_snxt as tcp_snxt is 22461 * changed. 22462 */ 22463 if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) { 22464 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 22465 } 22466 } else { 22467 /* 22468 * If tcp->tcp_cork is set, then the data will not get sent, 22469 * so we have to check that and unset it first. 22470 */ 22471 if (tcp->tcp_cork) 22472 tcp->tcp_cork = B_FALSE; 22473 tcp_wput_data(tcp, NULL, B_FALSE); 22474 } 22475 22476 /* 22477 * If TCP does not get enough samples of RTT or tcp_rtt_updates 22478 * is 0, don't update the cache. 22479 */ 22480 if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates) 22481 return (0); 22482 22483 /* 22484 * NOTE: should not update if source routes i.e. if tcp_remote if 22485 * different from the destination. 22486 */ 22487 if (tcp->tcp_ipversion == IPV4_VERSION) { 22488 if (tcp->tcp_remote != tcp->tcp_ipha->ipha_dst) { 22489 return (0); 22490 } 22491 mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN, 22492 &ipic); 22493 } else { 22494 if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6, 22495 &tcp->tcp_ip6h->ip6_dst))) { 22496 return (0); 22497 } 22498 mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN, 22499 &ipic); 22500 } 22501 22502 /* Record route attributes in the IRE for use by future connections. */ 22503 if (mp == NULL) 22504 return (0); 22505 22506 /* 22507 * We do not have a good algorithm to update ssthresh at this time. 22508 * So don't do any update. 22509 */ 22510 ipic->ipic_rtt = tcp->tcp_rtt_sa; 22511 ipic->ipic_rtt_sd = tcp->tcp_rtt_sd; 22512 22513 CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp); 22514 return (0); 22515 } 22516 22517 /* 22518 * Generate a "no listener here" RST in response to an "unknown" segment. 22519 * Note that we are reusing the incoming mp to construct the outgoing 22520 * RST. 22521 */ 22522 void 22523 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid) 22524 { 22525 uchar_t *rptr; 22526 uint32_t seg_len; 22527 tcph_t *tcph; 22528 uint32_t seg_seq; 22529 uint32_t seg_ack; 22530 uint_t flags; 22531 mblk_t *ipsec_mp; 22532 ipha_t *ipha; 22533 ip6_t *ip6h; 22534 boolean_t mctl_present = B_FALSE; 22535 boolean_t check = B_TRUE; 22536 boolean_t policy_present; 22537 22538 TCP_STAT(tcp_no_listener); 22539 22540 ipsec_mp = mp; 22541 22542 if (mp->b_datap->db_type == M_CTL) { 22543 ipsec_in_t *ii; 22544 22545 mctl_present = B_TRUE; 22546 mp = mp->b_cont; 22547 22548 ii = (ipsec_in_t *)ipsec_mp->b_rptr; 22549 ASSERT(ii->ipsec_in_type == IPSEC_IN); 22550 if (ii->ipsec_in_dont_check) { 22551 check = B_FALSE; 22552 if (!ii->ipsec_in_secure) { 22553 freeb(ipsec_mp); 22554 mctl_present = B_FALSE; 22555 ipsec_mp = mp; 22556 } 22557 } 22558 } 22559 22560 if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) { 22561 policy_present = ipsec_inbound_v4_policy_present; 22562 ipha = (ipha_t *)mp->b_rptr; 22563 ip6h = NULL; 22564 } else { 22565 policy_present = ipsec_inbound_v6_policy_present; 22566 ipha = NULL; 22567 ip6h = (ip6_t *)mp->b_rptr; 22568 } 22569 22570 if (check && policy_present) { 22571 /* 22572 * The conn_t parameter is NULL because we already know 22573 * nobody's home. 22574 */ 22575 ipsec_mp = ipsec_check_global_policy( 22576 ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present); 22577 if (ipsec_mp == NULL) 22578 return; 22579 } 22580 if (is_system_labeled() && !tsol_can_reply_error(mp)) { 22581 DTRACE_PROBE2( 22582 tx__ip__log__error__nolistener__tcp, 22583 char *, "Could not reply with RST to mp(1)", 22584 mblk_t *, mp); 22585 ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n")); 22586 freemsg(ipsec_mp); 22587 return; 22588 } 22589 22590 rptr = mp->b_rptr; 22591 22592 tcph = (tcph_t *)&rptr[ip_hdr_len]; 22593 seg_seq = BE32_TO_U32(tcph->th_seq); 22594 seg_ack = BE32_TO_U32(tcph->th_ack); 22595 flags = tcph->th_flags[0]; 22596 22597 seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len); 22598 if (flags & TH_RST) { 22599 freemsg(ipsec_mp); 22600 } else if (flags & TH_ACK) { 22601 tcp_xmit_early_reset("no tcp, reset", 22602 ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid); 22603 } else { 22604 if (flags & TH_SYN) { 22605 seg_len++; 22606 } else { 22607 /* 22608 * Here we violate the RFC. Note that a normal 22609 * TCP will never send a segment without the ACK 22610 * flag, except for RST or SYN segment. This 22611 * segment is neither. Just drop it on the 22612 * floor. 22613 */ 22614 freemsg(ipsec_mp); 22615 tcp_rst_unsent++; 22616 return; 22617 } 22618 22619 tcp_xmit_early_reset("no tcp, reset/ack", 22620 ipsec_mp, 0, seg_seq + seg_len, 22621 TH_RST | TH_ACK, ip_hdr_len, zoneid); 22622 } 22623 } 22624 22625 /* 22626 * tcp_xmit_mp is called to return a pointer to an mblk chain complete with 22627 * ip and tcp header ready to pass down to IP. If the mp passed in is 22628 * non-NULL, then up to max_to_send bytes of data will be dup'ed off that 22629 * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary 22630 * otherwise it will dup partial mblks.) 22631 * Otherwise, an appropriate ACK packet will be generated. This 22632 * routine is not usually called to send new data for the first time. It 22633 * is mostly called out of the timer for retransmits, and to generate ACKs. 22634 * 22635 * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will 22636 * be adjusted by *offset. And after dupb(), the offset and the ending mblk 22637 * of the original mblk chain will be returned in *offset and *end_mp. 22638 */ 22639 mblk_t * 22640 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset, 22641 mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len, 22642 boolean_t rexmit) 22643 { 22644 int data_length; 22645 int32_t off = 0; 22646 uint_t flags; 22647 mblk_t *mp1; 22648 mblk_t *mp2; 22649 uchar_t *rptr; 22650 tcph_t *tcph; 22651 int32_t num_sack_blk = 0; 22652 int32_t sack_opt_len = 0; 22653 22654 /* Allocate for our maximum TCP header + link-level */ 22655 mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra, 22656 BPRI_MED); 22657 if (!mp1) 22658 return (NULL); 22659 data_length = 0; 22660 22661 /* 22662 * Note that tcp_mss has been adjusted to take into account the 22663 * timestamp option if applicable. Because SACK options do not 22664 * appear in every TCP segments and they are of variable lengths, 22665 * they cannot be included in tcp_mss. Thus we need to calculate 22666 * the actual segment length when we need to send a segment which 22667 * includes SACK options. 22668 */ 22669 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 22670 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 22671 tcp->tcp_num_sack_blk); 22672 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 22673 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 22674 if (max_to_send + sack_opt_len > tcp->tcp_mss) 22675 max_to_send -= sack_opt_len; 22676 } 22677 22678 if (offset != NULL) { 22679 off = *offset; 22680 /* We use offset as an indicator that end_mp is not NULL. */ 22681 *end_mp = NULL; 22682 } 22683 for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) { 22684 /* This could be faster with cooperation from downstream */ 22685 if (mp2 != mp1 && !sendall && 22686 data_length + (int)(mp->b_wptr - mp->b_rptr) > 22687 max_to_send) 22688 /* 22689 * Don't send the next mblk since the whole mblk 22690 * does not fit. 22691 */ 22692 break; 22693 mp2->b_cont = dupb(mp); 22694 mp2 = mp2->b_cont; 22695 if (!mp2) { 22696 freemsg(mp1); 22697 return (NULL); 22698 } 22699 mp2->b_rptr += off; 22700 ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <= 22701 (uintptr_t)INT_MAX); 22702 22703 data_length += (int)(mp2->b_wptr - mp2->b_rptr); 22704 if (data_length > max_to_send) { 22705 mp2->b_wptr -= data_length - max_to_send; 22706 data_length = max_to_send; 22707 off = mp2->b_wptr - mp->b_rptr; 22708 break; 22709 } else { 22710 off = 0; 22711 } 22712 } 22713 if (offset != NULL) { 22714 *offset = off; 22715 *end_mp = mp; 22716 } 22717 if (seg_len != NULL) { 22718 *seg_len = data_length; 22719 } 22720 22721 /* Update the latest receive window size in TCP header. */ 22722 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 22723 tcp->tcp_tcph->th_win); 22724 22725 rptr = mp1->b_rptr + tcp_wroff_xtra; 22726 mp1->b_rptr = rptr; 22727 mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len; 22728 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 22729 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 22730 U32_TO_ABE32(seq, tcph->th_seq); 22731 22732 /* 22733 * Use tcp_unsent to determine if the PUSH bit should be used assumes 22734 * that this function was called from tcp_wput_data. Thus, when called 22735 * to retransmit data the setting of the PUSH bit may appear some 22736 * what random in that it might get set when it should not. This 22737 * should not pose any performance issues. 22738 */ 22739 if (data_length != 0 && (tcp->tcp_unsent == 0 || 22740 tcp->tcp_unsent == data_length)) { 22741 flags = TH_ACK | TH_PUSH; 22742 } else { 22743 flags = TH_ACK; 22744 } 22745 22746 if (tcp->tcp_ecn_ok) { 22747 if (tcp->tcp_ecn_echo_on) 22748 flags |= TH_ECE; 22749 22750 /* 22751 * Only set ECT bit and ECN_CWR if a segment contains new data. 22752 * There is no TCP flow control for non-data segments, and 22753 * only data segment is transmitted reliably. 22754 */ 22755 if (data_length > 0 && !rexmit) { 22756 SET_ECT(tcp, rptr); 22757 if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) { 22758 flags |= TH_CWR; 22759 tcp->tcp_ecn_cwr_sent = B_TRUE; 22760 } 22761 } 22762 } 22763 22764 if (tcp->tcp_valid_bits) { 22765 uint32_t u1; 22766 22767 if ((tcp->tcp_valid_bits & TCP_ISS_VALID) && 22768 seq == tcp->tcp_iss) { 22769 uchar_t *wptr; 22770 22771 /* 22772 * If TCP_ISS_VALID and the seq number is tcp_iss, 22773 * TCP can only be in SYN-SENT, SYN-RCVD or 22774 * FIN-WAIT-1 state. It can be FIN-WAIT-1 if 22775 * our SYN is not ack'ed but the app closes this 22776 * TCP connection. 22777 */ 22778 ASSERT(tcp->tcp_state == TCPS_SYN_SENT || 22779 tcp->tcp_state == TCPS_SYN_RCVD || 22780 tcp->tcp_state == TCPS_FIN_WAIT_1); 22781 22782 /* 22783 * Tack on the MSS option. It is always needed 22784 * for both active and passive open. 22785 * 22786 * MSS option value should be interface MTU - MIN 22787 * TCP/IP header according to RFC 793 as it means 22788 * the maximum segment size TCP can receive. But 22789 * to get around some broken middle boxes/end hosts 22790 * out there, we allow the option value to be the 22791 * same as the MSS option size on the peer side. 22792 * In this way, the other side will not send 22793 * anything larger than they can receive. 22794 * 22795 * Note that for SYN_SENT state, the ndd param 22796 * tcp_use_smss_as_mss_opt has no effect as we 22797 * don't know the peer's MSS option value. So 22798 * the only case we need to take care of is in 22799 * SYN_RCVD state, which is done later. 22800 */ 22801 wptr = mp1->b_wptr; 22802 wptr[0] = TCPOPT_MAXSEG; 22803 wptr[1] = TCPOPT_MAXSEG_LEN; 22804 wptr += 2; 22805 u1 = tcp->tcp_if_mtu - 22806 (tcp->tcp_ipversion == IPV4_VERSION ? 22807 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) - 22808 TCP_MIN_HEADER_LENGTH; 22809 U16_TO_BE16(u1, wptr); 22810 mp1->b_wptr = wptr + 2; 22811 /* Update the offset to cover the additional word */ 22812 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22813 22814 /* 22815 * Note that the following way of filling in 22816 * TCP options are not optimal. Some NOPs can 22817 * be saved. But there is no need at this time 22818 * to optimize it. When it is needed, we will 22819 * do it. 22820 */ 22821 switch (tcp->tcp_state) { 22822 case TCPS_SYN_SENT: 22823 flags = TH_SYN; 22824 22825 if (tcp->tcp_snd_ts_ok) { 22826 uint32_t llbolt = (uint32_t)lbolt; 22827 22828 wptr = mp1->b_wptr; 22829 wptr[0] = TCPOPT_NOP; 22830 wptr[1] = TCPOPT_NOP; 22831 wptr[2] = TCPOPT_TSTAMP; 22832 wptr[3] = TCPOPT_TSTAMP_LEN; 22833 wptr += 4; 22834 U32_TO_BE32(llbolt, wptr); 22835 wptr += 4; 22836 ASSERT(tcp->tcp_ts_recent == 0); 22837 U32_TO_BE32(0L, wptr); 22838 mp1->b_wptr += TCPOPT_REAL_TS_LEN; 22839 tcph->th_offset_and_rsrvd[0] += 22840 (3 << 4); 22841 } 22842 22843 /* 22844 * Set up all the bits to tell other side 22845 * we are ECN capable. 22846 */ 22847 if (tcp->tcp_ecn_ok) { 22848 flags |= (TH_ECE | TH_CWR); 22849 } 22850 break; 22851 case TCPS_SYN_RCVD: 22852 flags |= TH_SYN; 22853 22854 /* 22855 * Reset the MSS option value to be SMSS 22856 * We should probably add back the bytes 22857 * for timestamp option and IPsec. We 22858 * don't do that as this is a workaround 22859 * for broken middle boxes/end hosts, it 22860 * is better for us to be more cautious. 22861 * They may not take these things into 22862 * account in their SMSS calculation. Thus 22863 * the peer's calculated SMSS may be smaller 22864 * than what it can be. This should be OK. 22865 */ 22866 if (tcp_use_smss_as_mss_opt) { 22867 u1 = tcp->tcp_mss; 22868 U16_TO_BE16(u1, wptr); 22869 } 22870 22871 /* 22872 * If the other side is ECN capable, reply 22873 * that we are also ECN capable. 22874 */ 22875 if (tcp->tcp_ecn_ok) 22876 flags |= TH_ECE; 22877 break; 22878 default: 22879 /* 22880 * The above ASSERT() makes sure that this 22881 * must be FIN-WAIT-1 state. Our SYN has 22882 * not been ack'ed so retransmit it. 22883 */ 22884 flags |= TH_SYN; 22885 break; 22886 } 22887 22888 if (tcp->tcp_snd_ws_ok) { 22889 wptr = mp1->b_wptr; 22890 wptr[0] = TCPOPT_NOP; 22891 wptr[1] = TCPOPT_WSCALE; 22892 wptr[2] = TCPOPT_WS_LEN; 22893 wptr[3] = (uchar_t)tcp->tcp_rcv_ws; 22894 mp1->b_wptr += TCPOPT_REAL_WS_LEN; 22895 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22896 } 22897 22898 if (tcp->tcp_snd_sack_ok) { 22899 wptr = mp1->b_wptr; 22900 wptr[0] = TCPOPT_NOP; 22901 wptr[1] = TCPOPT_NOP; 22902 wptr[2] = TCPOPT_SACK_PERMITTED; 22903 wptr[3] = TCPOPT_SACK_OK_LEN; 22904 mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN; 22905 tcph->th_offset_and_rsrvd[0] += (1 << 4); 22906 } 22907 22908 /* allocb() of adequate mblk assures space */ 22909 ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <= 22910 (uintptr_t)INT_MAX); 22911 u1 = (int)(mp1->b_wptr - mp1->b_rptr); 22912 /* 22913 * Get IP set to checksum on our behalf 22914 * Include the adjustment for a source route if any. 22915 */ 22916 u1 += tcp->tcp_sum; 22917 u1 = (u1 >> 16) + (u1 & 0xFFFF); 22918 U16_TO_BE16(u1, tcph->th_sum); 22919 BUMP_MIB(&tcp_mib, tcpOutControl); 22920 } 22921 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 22922 (seq + data_length) == tcp->tcp_fss) { 22923 if (!tcp->tcp_fin_acked) { 22924 flags |= TH_FIN; 22925 BUMP_MIB(&tcp_mib, tcpOutControl); 22926 } 22927 if (!tcp->tcp_fin_sent) { 22928 tcp->tcp_fin_sent = B_TRUE; 22929 switch (tcp->tcp_state) { 22930 case TCPS_SYN_RCVD: 22931 case TCPS_ESTABLISHED: 22932 tcp->tcp_state = TCPS_FIN_WAIT_1; 22933 break; 22934 case TCPS_CLOSE_WAIT: 22935 tcp->tcp_state = TCPS_LAST_ACK; 22936 break; 22937 } 22938 if (tcp->tcp_suna == tcp->tcp_snxt) 22939 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 22940 tcp->tcp_snxt = tcp->tcp_fss + 1; 22941 } 22942 } 22943 /* 22944 * Note the trick here. u1 is unsigned. When tcp_urg 22945 * is smaller than seq, u1 will become a very huge value. 22946 * So the comparison will fail. Also note that tcp_urp 22947 * should be positive, see RFC 793 page 17. 22948 */ 22949 u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION; 22950 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 && 22951 u1 < (uint32_t)(64 * 1024)) { 22952 flags |= TH_URG; 22953 BUMP_MIB(&tcp_mib, tcpOutUrg); 22954 U32_TO_ABE16(u1, tcph->th_urp); 22955 } 22956 } 22957 tcph->th_flags[0] = (uchar_t)flags; 22958 tcp->tcp_rack = tcp->tcp_rnxt; 22959 tcp->tcp_rack_cnt = 0; 22960 22961 if (tcp->tcp_snd_ts_ok) { 22962 if (tcp->tcp_state != TCPS_SYN_SENT) { 22963 uint32_t llbolt = (uint32_t)lbolt; 22964 22965 U32_TO_BE32(llbolt, 22966 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 22967 U32_TO_BE32(tcp->tcp_ts_recent, 22968 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 22969 } 22970 } 22971 22972 if (num_sack_blk > 0) { 22973 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 22974 sack_blk_t *tmp; 22975 int32_t i; 22976 22977 wptr[0] = TCPOPT_NOP; 22978 wptr[1] = TCPOPT_NOP; 22979 wptr[2] = TCPOPT_SACK; 22980 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 22981 sizeof (sack_blk_t); 22982 wptr += TCPOPT_REAL_SACK_LEN; 22983 22984 tmp = tcp->tcp_sack_list; 22985 for (i = 0; i < num_sack_blk; i++) { 22986 U32_TO_BE32(tmp[i].begin, wptr); 22987 wptr += sizeof (tcp_seq); 22988 U32_TO_BE32(tmp[i].end, wptr); 22989 wptr += sizeof (tcp_seq); 22990 } 22991 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4); 22992 } 22993 ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX); 22994 data_length += (int)(mp1->b_wptr - rptr); 22995 if (tcp->tcp_ipversion == IPV4_VERSION) { 22996 ((ipha_t *)rptr)->ipha_length = htons(data_length); 22997 } else { 22998 ip6_t *ip6 = (ip6_t *)(rptr + 22999 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23000 sizeof (ip6i_t) : 0)); 23001 23002 ip6->ip6_plen = htons(data_length - 23003 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23004 } 23005 23006 /* 23007 * Prime pump for IP 23008 * Include the adjustment for a source route if any. 23009 */ 23010 data_length -= tcp->tcp_ip_hdr_len; 23011 data_length += tcp->tcp_sum; 23012 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23013 U16_TO_ABE16(data_length, tcph->th_sum); 23014 if (tcp->tcp_ip_forward_progress) { 23015 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23016 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23017 tcp->tcp_ip_forward_progress = B_FALSE; 23018 } 23019 return (mp1); 23020 } 23021 23022 /* This function handles the push timeout. */ 23023 void 23024 tcp_push_timer(void *arg) 23025 { 23026 conn_t *connp = (conn_t *)arg; 23027 tcp_t *tcp = connp->conn_tcp; 23028 23029 TCP_DBGSTAT(tcp_push_timer_cnt); 23030 23031 ASSERT(tcp->tcp_listener == NULL); 23032 23033 /* 23034 * We need to plug synchronous streams during our drain to prevent 23035 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop(). 23036 */ 23037 TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp); 23038 tcp->tcp_push_tid = 0; 23039 if ((tcp->tcp_rcv_list != NULL) && 23040 (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED)) 23041 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 23042 TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp); 23043 } 23044 23045 /* 23046 * This function handles delayed ACK timeout. 23047 */ 23048 static void 23049 tcp_ack_timer(void *arg) 23050 { 23051 conn_t *connp = (conn_t *)arg; 23052 tcp_t *tcp = connp->conn_tcp; 23053 mblk_t *mp; 23054 23055 TCP_DBGSTAT(tcp_ack_timer_cnt); 23056 23057 tcp->tcp_ack_tid = 0; 23058 23059 if (tcp->tcp_fused) 23060 return; 23061 23062 /* 23063 * Do not send ACK if there is no outstanding unack'ed data. 23064 */ 23065 if (tcp->tcp_rnxt == tcp->tcp_rack) { 23066 return; 23067 } 23068 23069 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 23070 /* 23071 * Make sure we don't allow deferred ACKs to result in 23072 * timer-based ACKing. If we have held off an ACK 23073 * when there was more than an mss here, and the timer 23074 * goes off, we have to worry about the possibility 23075 * that the sender isn't doing slow-start, or is out 23076 * of step with us for some other reason. We fall 23077 * permanently back in the direction of 23078 * ACK-every-other-packet as suggested in RFC 1122. 23079 */ 23080 if (tcp->tcp_rack_abs_max > 2) 23081 tcp->tcp_rack_abs_max--; 23082 tcp->tcp_rack_cur_max = 2; 23083 } 23084 mp = tcp_ack_mp(tcp); 23085 23086 if (mp != NULL) { 23087 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT); 23088 BUMP_LOCAL(tcp->tcp_obsegs); 23089 BUMP_MIB(&tcp_mib, tcpOutAck); 23090 BUMP_MIB(&tcp_mib, tcpOutAckDelayed); 23091 tcp_send_data(tcp, tcp->tcp_wq, mp); 23092 } 23093 } 23094 23095 23096 /* Generate an ACK-only (no data) segment for a TCP endpoint */ 23097 static mblk_t * 23098 tcp_ack_mp(tcp_t *tcp) 23099 { 23100 uint32_t seq_no; 23101 23102 /* 23103 * There are a few cases to be considered while setting the sequence no. 23104 * Essentially, we can come here while processing an unacceptable pkt 23105 * in the TCPS_SYN_RCVD state, in which case we set the sequence number 23106 * to snxt (per RFC 793), note the swnd wouldn't have been set yet. 23107 * If we are here for a zero window probe, stick with suna. In all 23108 * other cases, we check if suna + swnd encompasses snxt and set 23109 * the sequence number to snxt, if so. If snxt falls outside the 23110 * window (the receiver probably shrunk its window), we will go with 23111 * suna + swnd, otherwise the sequence no will be unacceptable to the 23112 * receiver. 23113 */ 23114 if (tcp->tcp_zero_win_probe) { 23115 seq_no = tcp->tcp_suna; 23116 } else if (tcp->tcp_state == TCPS_SYN_RCVD) { 23117 ASSERT(tcp->tcp_swnd == 0); 23118 seq_no = tcp->tcp_snxt; 23119 } else { 23120 seq_no = SEQ_GT(tcp->tcp_snxt, 23121 (tcp->tcp_suna + tcp->tcp_swnd)) ? 23122 (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt; 23123 } 23124 23125 if (tcp->tcp_valid_bits) { 23126 /* 23127 * For the complex case where we have to send some 23128 * controls (FIN or SYN), let tcp_xmit_mp do it. 23129 */ 23130 return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE, 23131 NULL, B_FALSE)); 23132 } else { 23133 /* Generate a simple ACK */ 23134 int data_length; 23135 uchar_t *rptr; 23136 tcph_t *tcph; 23137 mblk_t *mp1; 23138 int32_t tcp_hdr_len; 23139 int32_t tcp_tcp_hdr_len; 23140 int32_t num_sack_blk = 0; 23141 int32_t sack_opt_len; 23142 23143 /* 23144 * Allocate space for TCP + IP headers 23145 * and link-level header 23146 */ 23147 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 23148 num_sack_blk = MIN(tcp->tcp_max_sack_blk, 23149 tcp->tcp_num_sack_blk); 23150 sack_opt_len = num_sack_blk * sizeof (sack_blk_t) + 23151 TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN; 23152 tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len; 23153 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len; 23154 } else { 23155 tcp_hdr_len = tcp->tcp_hdr_len; 23156 tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len; 23157 } 23158 mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED); 23159 if (!mp1) 23160 return (NULL); 23161 23162 /* Update the latest receive window size in TCP header. */ 23163 U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, 23164 tcp->tcp_tcph->th_win); 23165 /* copy in prototype TCP + IP header */ 23166 rptr = mp1->b_rptr + tcp_wroff_xtra; 23167 mp1->b_rptr = rptr; 23168 mp1->b_wptr = rptr + tcp_hdr_len; 23169 bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len); 23170 23171 tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len]; 23172 23173 /* Set the TCP sequence number. */ 23174 U32_TO_ABE32(seq_no, tcph->th_seq); 23175 23176 /* Set up the TCP flag field. */ 23177 tcph->th_flags[0] = (uchar_t)TH_ACK; 23178 if (tcp->tcp_ecn_echo_on) 23179 tcph->th_flags[0] |= TH_ECE; 23180 23181 tcp->tcp_rack = tcp->tcp_rnxt; 23182 tcp->tcp_rack_cnt = 0; 23183 23184 /* fill in timestamp option if in use */ 23185 if (tcp->tcp_snd_ts_ok) { 23186 uint32_t llbolt = (uint32_t)lbolt; 23187 23188 U32_TO_BE32(llbolt, 23189 (char *)tcph+TCP_MIN_HEADER_LENGTH+4); 23190 U32_TO_BE32(tcp->tcp_ts_recent, 23191 (char *)tcph+TCP_MIN_HEADER_LENGTH+8); 23192 } 23193 23194 /* Fill in SACK options */ 23195 if (num_sack_blk > 0) { 23196 uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len; 23197 sack_blk_t *tmp; 23198 int32_t i; 23199 23200 wptr[0] = TCPOPT_NOP; 23201 wptr[1] = TCPOPT_NOP; 23202 wptr[2] = TCPOPT_SACK; 23203 wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk * 23204 sizeof (sack_blk_t); 23205 wptr += TCPOPT_REAL_SACK_LEN; 23206 23207 tmp = tcp->tcp_sack_list; 23208 for (i = 0; i < num_sack_blk; i++) { 23209 U32_TO_BE32(tmp[i].begin, wptr); 23210 wptr += sizeof (tcp_seq); 23211 U32_TO_BE32(tmp[i].end, wptr); 23212 wptr += sizeof (tcp_seq); 23213 } 23214 tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) 23215 << 4); 23216 } 23217 23218 if (tcp->tcp_ipversion == IPV4_VERSION) { 23219 ((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len); 23220 } else { 23221 /* Check for ip6i_t header in sticky hdrs */ 23222 ip6_t *ip6 = (ip6_t *)(rptr + 23223 (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ? 23224 sizeof (ip6i_t) : 0)); 23225 23226 ip6->ip6_plen = htons(tcp_hdr_len - 23227 ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc)); 23228 } 23229 23230 /* 23231 * Prime pump for checksum calculation in IP. Include the 23232 * adjustment for a source route if any. 23233 */ 23234 data_length = tcp_tcp_hdr_len + tcp->tcp_sum; 23235 data_length = (data_length >> 16) + (data_length & 0xFFFF); 23236 U16_TO_ABE16(data_length, tcph->th_sum); 23237 23238 if (tcp->tcp_ip_forward_progress) { 23239 ASSERT(tcp->tcp_ipversion == IPV6_VERSION); 23240 *(uint32_t *)mp1->b_rptr |= IP_FORWARD_PROG; 23241 tcp->tcp_ip_forward_progress = B_FALSE; 23242 } 23243 return (mp1); 23244 } 23245 } 23246 23247 /* 23248 * To create a temporary tcp structure for inserting into bind hash list. 23249 * The parameter is assumed to be in network byte order, ready for use. 23250 */ 23251 /* ARGSUSED */ 23252 static tcp_t * 23253 tcp_alloc_temp_tcp(in_port_t port) 23254 { 23255 conn_t *connp; 23256 tcp_t *tcp; 23257 23258 connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP); 23259 if (connp == NULL) 23260 return (NULL); 23261 23262 tcp = connp->conn_tcp; 23263 23264 /* 23265 * Only initialize the necessary info in those structures. Note 23266 * that since INADDR_ANY is all 0, we do not need to set 23267 * tcp_bound_source to INADDR_ANY here. 23268 */ 23269 tcp->tcp_state = TCPS_BOUND; 23270 tcp->tcp_lport = port; 23271 tcp->tcp_exclbind = 1; 23272 tcp->tcp_reserved_port = 1; 23273 23274 /* Just for place holding... */ 23275 tcp->tcp_ipversion = IPV4_VERSION; 23276 23277 return (tcp); 23278 } 23279 23280 /* 23281 * To remove a port range specified by lo_port and hi_port from the 23282 * reserved port ranges. This is one of the three public functions of 23283 * the reserved port interface. Note that a port range has to be removed 23284 * as a whole. Ports in a range cannot be removed individually. 23285 * 23286 * Params: 23287 * in_port_t lo_port: the beginning port of the reserved port range to 23288 * be deleted. 23289 * in_port_t hi_port: the ending port of the reserved port range to 23290 * be deleted. 23291 * 23292 * Return: 23293 * B_TRUE if the deletion is successful, B_FALSE otherwise. 23294 */ 23295 boolean_t 23296 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port) 23297 { 23298 int i, j; 23299 int size; 23300 tcp_t **temp_tcp_array; 23301 tcp_t *tcp; 23302 23303 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 23304 23305 /* First make sure that the port ranage is indeed reserved. */ 23306 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23307 if (tcp_reserved_port[i].lo_port == lo_port) { 23308 hi_port = tcp_reserved_port[i].hi_port; 23309 temp_tcp_array = tcp_reserved_port[i].temp_tcp_array; 23310 break; 23311 } 23312 } 23313 if (i == tcp_reserved_port_array_size) { 23314 rw_exit(&tcp_reserved_port_lock); 23315 return (B_FALSE); 23316 } 23317 23318 /* 23319 * Remove the range from the array. This simple loop is possible 23320 * because port ranges are inserted in ascending order. 23321 */ 23322 for (j = i; j < tcp_reserved_port_array_size - 1; j++) { 23323 tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port; 23324 tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port; 23325 tcp_reserved_port[j].temp_tcp_array = 23326 tcp_reserved_port[j+1].temp_tcp_array; 23327 } 23328 23329 /* Remove all the temporary tcp structures. */ 23330 size = hi_port - lo_port + 1; 23331 while (size > 0) { 23332 tcp = temp_tcp_array[size - 1]; 23333 ASSERT(tcp != NULL); 23334 tcp_bind_hash_remove(tcp); 23335 CONN_DEC_REF(tcp->tcp_connp); 23336 size--; 23337 } 23338 kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *)); 23339 tcp_reserved_port_array_size--; 23340 rw_exit(&tcp_reserved_port_lock); 23341 return (B_TRUE); 23342 } 23343 23344 /* 23345 * Macro to remove temporary tcp structure from the bind hash list. The 23346 * first parameter is the list of tcp to be removed. The second parameter 23347 * is the number of tcps in the array. 23348 */ 23349 #define TCP_TMP_TCP_REMOVE(tcp_array, num) \ 23350 { \ 23351 while ((num) > 0) { \ 23352 tcp_t *tcp = (tcp_array)[(num) - 1]; \ 23353 tf_t *tbf; \ 23354 tcp_t *tcpnext; \ 23355 tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \ 23356 mutex_enter(&tbf->tf_lock); \ 23357 tcpnext = tcp->tcp_bind_hash; \ 23358 if (tcpnext) { \ 23359 tcpnext->tcp_ptpbhn = \ 23360 tcp->tcp_ptpbhn; \ 23361 } \ 23362 *tcp->tcp_ptpbhn = tcpnext; \ 23363 mutex_exit(&tbf->tf_lock); \ 23364 kmem_free(tcp, sizeof (tcp_t)); \ 23365 (tcp_array)[(num) - 1] = NULL; \ 23366 (num)--; \ 23367 } \ 23368 } 23369 23370 /* 23371 * The public interface for other modules to call to reserve a port range 23372 * in TCP. The caller passes in how large a port range it wants. TCP 23373 * will try to find a range and return it via lo_port and hi_port. This is 23374 * used by NCA's nca_conn_init. 23375 * NCA can only be used in the global zone so this only affects the global 23376 * zone's ports. 23377 * 23378 * Params: 23379 * int size: the size of the port range to be reserved. 23380 * in_port_t *lo_port (referenced): returns the beginning port of the 23381 * reserved port range added. 23382 * in_port_t *hi_port (referenced): returns the ending port of the 23383 * reserved port range added. 23384 * 23385 * Return: 23386 * B_TRUE if the port reservation is successful, B_FALSE otherwise. 23387 */ 23388 boolean_t 23389 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port) 23390 { 23391 tcp_t *tcp; 23392 tcp_t *tmp_tcp; 23393 tcp_t **temp_tcp_array; 23394 tf_t *tbf; 23395 in_port_t net_port; 23396 in_port_t port; 23397 int32_t cur_size; 23398 int i, j; 23399 boolean_t used; 23400 tcp_rport_t tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE]; 23401 zoneid_t zoneid = GLOBAL_ZONEID; 23402 23403 /* Sanity check. */ 23404 if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) { 23405 return (B_FALSE); 23406 } 23407 23408 rw_enter(&tcp_reserved_port_lock, RW_WRITER); 23409 if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) { 23410 rw_exit(&tcp_reserved_port_lock); 23411 return (B_FALSE); 23412 } 23413 23414 /* 23415 * Find the starting port to try. Since the port ranges are ordered 23416 * in the reserved port array, we can do a simple search here. 23417 */ 23418 *lo_port = TCP_SMALLEST_RESERVED_PORT; 23419 *hi_port = TCP_LARGEST_RESERVED_PORT; 23420 for (i = 0; i < tcp_reserved_port_array_size; 23421 *lo_port = tcp_reserved_port[i].hi_port + 1, i++) { 23422 if (tcp_reserved_port[i].lo_port - *lo_port >= size) { 23423 *hi_port = tcp_reserved_port[i].lo_port - 1; 23424 break; 23425 } 23426 } 23427 /* No available port range. */ 23428 if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) { 23429 rw_exit(&tcp_reserved_port_lock); 23430 return (B_FALSE); 23431 } 23432 23433 temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP); 23434 if (temp_tcp_array == NULL) { 23435 rw_exit(&tcp_reserved_port_lock); 23436 return (B_FALSE); 23437 } 23438 23439 /* Go thru the port range to see if some ports are already bound. */ 23440 for (port = *lo_port, cur_size = 0; 23441 cur_size < size && port <= *hi_port; 23442 cur_size++, port++) { 23443 used = B_FALSE; 23444 net_port = htons(port); 23445 tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)]; 23446 mutex_enter(&tbf->tf_lock); 23447 for (tcp = tbf->tf_tcp; tcp != NULL; 23448 tcp = tcp->tcp_bind_hash) { 23449 if (IPCL_ZONE_MATCH(tcp->tcp_connp, zoneid) && 23450 net_port == tcp->tcp_lport) { 23451 /* 23452 * A port is already bound. Search again 23453 * starting from port + 1. Release all 23454 * temporary tcps. 23455 */ 23456 mutex_exit(&tbf->tf_lock); 23457 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23458 *lo_port = port + 1; 23459 cur_size = -1; 23460 used = B_TRUE; 23461 break; 23462 } 23463 } 23464 if (!used) { 23465 if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) { 23466 /* 23467 * Allocation failure. Just fail the request. 23468 * Need to remove all those temporary tcp 23469 * structures. 23470 */ 23471 mutex_exit(&tbf->tf_lock); 23472 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23473 rw_exit(&tcp_reserved_port_lock); 23474 kmem_free(temp_tcp_array, 23475 (hi_port - lo_port + 1) * 23476 sizeof (tcp_t *)); 23477 return (B_FALSE); 23478 } 23479 temp_tcp_array[cur_size] = tmp_tcp; 23480 tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE); 23481 mutex_exit(&tbf->tf_lock); 23482 } 23483 } 23484 23485 /* 23486 * The current range is not large enough. We can actually do another 23487 * search if this search is done between 2 reserved port ranges. But 23488 * for first release, we just stop here and return saying that no port 23489 * range is available. 23490 */ 23491 if (cur_size < size) { 23492 TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size); 23493 rw_exit(&tcp_reserved_port_lock); 23494 kmem_free(temp_tcp_array, size * sizeof (tcp_t *)); 23495 return (B_FALSE); 23496 } 23497 *hi_port = port - 1; 23498 23499 /* 23500 * Insert range into array in ascending order. Since this function 23501 * must not be called often, we choose to use the simplest method. 23502 * The above array should not consume excessive stack space as 23503 * the size must be very small. If in future releases, we find 23504 * that we should provide more reserved port ranges, this function 23505 * has to be modified to be more efficient. 23506 */ 23507 if (tcp_reserved_port_array_size == 0) { 23508 tcp_reserved_port[0].lo_port = *lo_port; 23509 tcp_reserved_port[0].hi_port = *hi_port; 23510 tcp_reserved_port[0].temp_tcp_array = temp_tcp_array; 23511 } else { 23512 for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) { 23513 if (*lo_port < tcp_reserved_port[i].lo_port && i == j) { 23514 tmp_ports[j].lo_port = *lo_port; 23515 tmp_ports[j].hi_port = *hi_port; 23516 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23517 j++; 23518 } 23519 tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port; 23520 tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port; 23521 tmp_ports[j].temp_tcp_array = 23522 tcp_reserved_port[i].temp_tcp_array; 23523 } 23524 if (j == i) { 23525 tmp_ports[j].lo_port = *lo_port; 23526 tmp_ports[j].hi_port = *hi_port; 23527 tmp_ports[j].temp_tcp_array = temp_tcp_array; 23528 } 23529 bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports)); 23530 } 23531 tcp_reserved_port_array_size++; 23532 rw_exit(&tcp_reserved_port_lock); 23533 return (B_TRUE); 23534 } 23535 23536 /* 23537 * Check to see if a port is in any reserved port range. 23538 * 23539 * Params: 23540 * in_port_t port: the port to be verified. 23541 * 23542 * Return: 23543 * B_TRUE is the port is inside a reserved port range, B_FALSE otherwise. 23544 */ 23545 boolean_t 23546 tcp_reserved_port_check(in_port_t port) 23547 { 23548 int i; 23549 23550 rw_enter(&tcp_reserved_port_lock, RW_READER); 23551 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23552 if (port >= tcp_reserved_port[i].lo_port || 23553 port <= tcp_reserved_port[i].hi_port) { 23554 rw_exit(&tcp_reserved_port_lock); 23555 return (B_TRUE); 23556 } 23557 } 23558 rw_exit(&tcp_reserved_port_lock); 23559 return (B_FALSE); 23560 } 23561 23562 /* 23563 * To list all reserved port ranges. This is the function to handle 23564 * ndd tcp_reserved_port_list. 23565 */ 23566 /* ARGSUSED */ 23567 static int 23568 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23569 { 23570 int i; 23571 23572 rw_enter(&tcp_reserved_port_lock, RW_READER); 23573 if (tcp_reserved_port_array_size > 0) 23574 (void) mi_mpprintf(mp, "The following ports are reserved:"); 23575 else 23576 (void) mi_mpprintf(mp, "No port is reserved."); 23577 for (i = 0; i < tcp_reserved_port_array_size; i++) { 23578 (void) mi_mpprintf(mp, "%d-%d", 23579 tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port); 23580 } 23581 rw_exit(&tcp_reserved_port_lock); 23582 return (0); 23583 } 23584 23585 /* 23586 * Hash list insertion routine for tcp_t structures. 23587 * Inserts entries with the ones bound to a specific IP address first 23588 * followed by those bound to INADDR_ANY. 23589 */ 23590 static void 23591 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock) 23592 { 23593 tcp_t **tcpp; 23594 tcp_t *tcpnext; 23595 23596 if (tcp->tcp_ptpbhn != NULL) { 23597 ASSERT(!caller_holds_lock); 23598 tcp_bind_hash_remove(tcp); 23599 } 23600 tcpp = &tbf->tf_tcp; 23601 if (!caller_holds_lock) { 23602 mutex_enter(&tbf->tf_lock); 23603 } else { 23604 ASSERT(MUTEX_HELD(&tbf->tf_lock)); 23605 } 23606 tcpnext = tcpp[0]; 23607 if (tcpnext) { 23608 /* 23609 * If the new tcp bound to the INADDR_ANY address 23610 * and the first one in the list is not bound to 23611 * INADDR_ANY we skip all entries until we find the 23612 * first one bound to INADDR_ANY. 23613 * This makes sure that applications binding to a 23614 * specific address get preference over those binding to 23615 * INADDR_ANY. 23616 */ 23617 if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) && 23618 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) { 23619 while ((tcpnext = tcpp[0]) != NULL && 23620 !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) 23621 tcpp = &(tcpnext->tcp_bind_hash); 23622 if (tcpnext) 23623 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23624 } else 23625 tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash; 23626 } 23627 tcp->tcp_bind_hash = tcpnext; 23628 tcp->tcp_ptpbhn = tcpp; 23629 tcpp[0] = tcp; 23630 if (!caller_holds_lock) 23631 mutex_exit(&tbf->tf_lock); 23632 } 23633 23634 /* 23635 * Hash list removal routine for tcp_t structures. 23636 */ 23637 static void 23638 tcp_bind_hash_remove(tcp_t *tcp) 23639 { 23640 tcp_t *tcpnext; 23641 kmutex_t *lockp; 23642 23643 if (tcp->tcp_ptpbhn == NULL) 23644 return; 23645 23646 /* 23647 * Extract the lock pointer in case there are concurrent 23648 * hash_remove's for this instance. 23649 */ 23650 ASSERT(tcp->tcp_lport != 0); 23651 lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock; 23652 23653 ASSERT(lockp != NULL); 23654 mutex_enter(lockp); 23655 if (tcp->tcp_ptpbhn) { 23656 tcpnext = tcp->tcp_bind_hash; 23657 if (tcpnext) { 23658 tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn; 23659 tcp->tcp_bind_hash = NULL; 23660 } 23661 *tcp->tcp_ptpbhn = tcpnext; 23662 tcp->tcp_ptpbhn = NULL; 23663 } 23664 mutex_exit(lockp); 23665 } 23666 23667 23668 /* 23669 * Hash list lookup routine for tcp_t structures. 23670 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 23671 */ 23672 static tcp_t * 23673 tcp_acceptor_hash_lookup(t_uscalar_t id) 23674 { 23675 tf_t *tf; 23676 tcp_t *tcp; 23677 23678 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23679 mutex_enter(&tf->tf_lock); 23680 for (tcp = tf->tf_tcp; tcp != NULL; 23681 tcp = tcp->tcp_acceptor_hash) { 23682 if (tcp->tcp_acceptor_id == id) { 23683 CONN_INC_REF(tcp->tcp_connp); 23684 mutex_exit(&tf->tf_lock); 23685 return (tcp); 23686 } 23687 } 23688 mutex_exit(&tf->tf_lock); 23689 return (NULL); 23690 } 23691 23692 23693 /* 23694 * Hash list insertion routine for tcp_t structures. 23695 */ 23696 void 23697 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 23698 { 23699 tf_t *tf; 23700 tcp_t **tcpp; 23701 tcp_t *tcpnext; 23702 23703 tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 23704 23705 if (tcp->tcp_ptpahn != NULL) 23706 tcp_acceptor_hash_remove(tcp); 23707 tcpp = &tf->tf_tcp; 23708 mutex_enter(&tf->tf_lock); 23709 tcpnext = tcpp[0]; 23710 if (tcpnext) 23711 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 23712 tcp->tcp_acceptor_hash = tcpnext; 23713 tcp->tcp_ptpahn = tcpp; 23714 tcpp[0] = tcp; 23715 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 23716 mutex_exit(&tf->tf_lock); 23717 } 23718 23719 /* 23720 * Hash list removal routine for tcp_t structures. 23721 */ 23722 static void 23723 tcp_acceptor_hash_remove(tcp_t *tcp) 23724 { 23725 tcp_t *tcpnext; 23726 kmutex_t *lockp; 23727 23728 /* 23729 * Extract the lock pointer in case there are concurrent 23730 * hash_remove's for this instance. 23731 */ 23732 lockp = tcp->tcp_acceptor_lockp; 23733 23734 if (tcp->tcp_ptpahn == NULL) 23735 return; 23736 23737 ASSERT(lockp != NULL); 23738 mutex_enter(lockp); 23739 if (tcp->tcp_ptpahn) { 23740 tcpnext = tcp->tcp_acceptor_hash; 23741 if (tcpnext) { 23742 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 23743 tcp->tcp_acceptor_hash = NULL; 23744 } 23745 *tcp->tcp_ptpahn = tcpnext; 23746 tcp->tcp_ptpahn = NULL; 23747 } 23748 mutex_exit(lockp); 23749 tcp->tcp_acceptor_lockp = NULL; 23750 } 23751 23752 /* ARGSUSED */ 23753 static int 23754 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af) 23755 { 23756 int error = 0; 23757 int retval; 23758 char *end; 23759 23760 tcp_hsp_t *hsp; 23761 tcp_hsp_t *hspprev; 23762 23763 ipaddr_t addr = 0; /* Address we're looking for */ 23764 in6_addr_t v6addr; /* Address we're looking for */ 23765 uint32_t hash; /* Hash of that address */ 23766 23767 /* 23768 * If the following variables are still zero after parsing the input 23769 * string, the user didn't specify them and we don't change them in 23770 * the HSP. 23771 */ 23772 23773 ipaddr_t mask = 0; /* Subnet mask */ 23774 in6_addr_t v6mask; 23775 long sendspace = 0; /* Send buffer size */ 23776 long recvspace = 0; /* Receive buffer size */ 23777 long timestamp = 0; /* Originate TCP TSTAMP option, 1 = yes */ 23778 boolean_t delete = B_FALSE; /* User asked to delete this HSP */ 23779 23780 rw_enter(&tcp_hsp_lock, RW_WRITER); 23781 23782 /* Parse and validate address */ 23783 if (af == AF_INET) { 23784 retval = inet_pton(af, value, &addr); 23785 if (retval == 1) 23786 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 23787 } else if (af == AF_INET6) { 23788 retval = inet_pton(af, value, &v6addr); 23789 } else { 23790 error = EINVAL; 23791 goto done; 23792 } 23793 if (retval == 0) { 23794 error = EINVAL; 23795 goto done; 23796 } 23797 23798 while ((*value) && *value != ' ') 23799 value++; 23800 23801 /* Parse individual keywords, set variables if found */ 23802 while (*value) { 23803 /* Skip leading blanks */ 23804 23805 while (*value == ' ' || *value == '\t') 23806 value++; 23807 23808 /* If at end of string, we're done */ 23809 23810 if (!*value) 23811 break; 23812 23813 /* We have a word, figure out what it is */ 23814 23815 if (strncmp("mask", value, 4) == 0) { 23816 value += 4; 23817 while (*value == ' ' || *value == '\t') 23818 value++; 23819 /* Parse subnet mask */ 23820 if (af == AF_INET) { 23821 retval = inet_pton(af, value, &mask); 23822 if (retval == 1) { 23823 V4MASK_TO_V6(mask, v6mask); 23824 } 23825 } else if (af == AF_INET6) { 23826 retval = inet_pton(af, value, &v6mask); 23827 } 23828 if (retval != 1) { 23829 error = EINVAL; 23830 goto done; 23831 } 23832 while ((*value) && *value != ' ') 23833 value++; 23834 } else if (strncmp("sendspace", value, 9) == 0) { 23835 value += 9; 23836 23837 if (ddi_strtol(value, &end, 0, &sendspace) != 0 || 23838 sendspace < TCP_XMIT_HIWATER || 23839 sendspace >= (1L<<30)) { 23840 error = EINVAL; 23841 goto done; 23842 } 23843 value = end; 23844 } else if (strncmp("recvspace", value, 9) == 0) { 23845 value += 9; 23846 23847 if (ddi_strtol(value, &end, 0, &recvspace) != 0 || 23848 recvspace < TCP_RECV_HIWATER || 23849 recvspace >= (1L<<30)) { 23850 error = EINVAL; 23851 goto done; 23852 } 23853 value = end; 23854 } else if (strncmp("timestamp", value, 9) == 0) { 23855 value += 9; 23856 23857 if (ddi_strtol(value, &end, 0, ×tamp) != 0 || 23858 timestamp < 0 || timestamp > 1) { 23859 error = EINVAL; 23860 goto done; 23861 } 23862 23863 /* 23864 * We increment timestamp so we know it's been set; 23865 * this is undone when we put it in the HSP 23866 */ 23867 timestamp++; 23868 value = end; 23869 } else if (strncmp("delete", value, 6) == 0) { 23870 value += 6; 23871 delete = B_TRUE; 23872 } else { 23873 error = EINVAL; 23874 goto done; 23875 } 23876 } 23877 23878 /* Hash address for lookup */ 23879 23880 hash = TCP_HSP_HASH(addr); 23881 23882 if (delete) { 23883 /* 23884 * Note that deletes don't return an error if the thing 23885 * we're trying to delete isn't there. 23886 */ 23887 if (tcp_hsp_hash == NULL) 23888 goto done; 23889 hsp = tcp_hsp_hash[hash]; 23890 23891 if (hsp) { 23892 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 23893 &v6addr)) { 23894 tcp_hsp_hash[hash] = hsp->tcp_hsp_next; 23895 mi_free((char *)hsp); 23896 } else { 23897 hspprev = hsp; 23898 while ((hsp = hsp->tcp_hsp_next) != NULL) { 23899 if (IN6_ARE_ADDR_EQUAL( 23900 &hsp->tcp_hsp_addr_v6, &v6addr)) { 23901 hspprev->tcp_hsp_next = 23902 hsp->tcp_hsp_next; 23903 mi_free((char *)hsp); 23904 break; 23905 } 23906 hspprev = hsp; 23907 } 23908 } 23909 } 23910 } else { 23911 /* 23912 * We're adding/modifying an HSP. If we haven't already done 23913 * so, allocate the hash table. 23914 */ 23915 23916 if (!tcp_hsp_hash) { 23917 tcp_hsp_hash = (tcp_hsp_t **) 23918 mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE); 23919 if (!tcp_hsp_hash) { 23920 error = EINVAL; 23921 goto done; 23922 } 23923 } 23924 23925 /* Get head of hash chain */ 23926 23927 hsp = tcp_hsp_hash[hash]; 23928 23929 /* Try to find pre-existing hsp on hash chain */ 23930 /* Doesn't handle CIDR prefixes. */ 23931 while (hsp) { 23932 if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr)) 23933 break; 23934 hsp = hsp->tcp_hsp_next; 23935 } 23936 23937 /* 23938 * If we didn't, create one with default values and put it 23939 * at head of hash chain 23940 */ 23941 23942 if (!hsp) { 23943 hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t)); 23944 if (!hsp) { 23945 error = EINVAL; 23946 goto done; 23947 } 23948 hsp->tcp_hsp_next = tcp_hsp_hash[hash]; 23949 tcp_hsp_hash[hash] = hsp; 23950 } 23951 23952 /* Set values that the user asked us to change */ 23953 23954 hsp->tcp_hsp_addr_v6 = v6addr; 23955 if (IN6_IS_ADDR_V4MAPPED(&v6addr)) 23956 hsp->tcp_hsp_vers = IPV4_VERSION; 23957 else 23958 hsp->tcp_hsp_vers = IPV6_VERSION; 23959 hsp->tcp_hsp_subnet_v6 = v6mask; 23960 if (sendspace > 0) 23961 hsp->tcp_hsp_sendspace = sendspace; 23962 if (recvspace > 0) 23963 hsp->tcp_hsp_recvspace = recvspace; 23964 if (timestamp > 0) 23965 hsp->tcp_hsp_tstamp = timestamp - 1; 23966 } 23967 23968 done: 23969 rw_exit(&tcp_hsp_lock); 23970 return (error); 23971 } 23972 23973 /* Set callback routine passed to nd_load by tcp_param_register. */ 23974 /* ARGSUSED */ 23975 static int 23976 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr) 23977 { 23978 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET)); 23979 } 23980 /* ARGSUSED */ 23981 static int 23982 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 23983 cred_t *cr) 23984 { 23985 return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6)); 23986 } 23987 23988 /* TCP host parameters report triggered via the Named Dispatch mechanism. */ 23989 /* ARGSUSED */ 23990 static int 23991 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr) 23992 { 23993 tcp_hsp_t *hsp; 23994 int i; 23995 char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN]; 23996 23997 rw_enter(&tcp_hsp_lock, RW_READER); 23998 (void) mi_mpprintf(mp, 23999 "Hash HSP " MI_COL_HDRPAD_STR 24000 "Address Subnet Mask Send Receive TStamp"); 24001 if (tcp_hsp_hash) { 24002 for (i = 0; i < TCP_HSP_HASH_SIZE; i++) { 24003 hsp = tcp_hsp_hash[i]; 24004 while (hsp) { 24005 if (hsp->tcp_hsp_vers == IPV4_VERSION) { 24006 (void) inet_ntop(AF_INET, 24007 &hsp->tcp_hsp_addr, 24008 addrbuf, sizeof (addrbuf)); 24009 (void) inet_ntop(AF_INET, 24010 &hsp->tcp_hsp_subnet, 24011 subnetbuf, sizeof (subnetbuf)); 24012 } else { 24013 (void) inet_ntop(AF_INET6, 24014 &hsp->tcp_hsp_addr_v6, 24015 addrbuf, sizeof (addrbuf)); 24016 (void) inet_ntop(AF_INET6, 24017 &hsp->tcp_hsp_subnet_v6, 24018 subnetbuf, sizeof (subnetbuf)); 24019 } 24020 (void) mi_mpprintf(mp, 24021 " %03d " MI_COL_PTRFMT_STR 24022 "%s %s %010d %010d %d", 24023 i, 24024 (void *)hsp, 24025 addrbuf, 24026 subnetbuf, 24027 hsp->tcp_hsp_sendspace, 24028 hsp->tcp_hsp_recvspace, 24029 hsp->tcp_hsp_tstamp); 24030 24031 hsp = hsp->tcp_hsp_next; 24032 } 24033 } 24034 } 24035 rw_exit(&tcp_hsp_lock); 24036 return (0); 24037 } 24038 24039 24040 /* Data for fast netmask macro used by tcp_hsp_lookup */ 24041 24042 static ipaddr_t netmasks[] = { 24043 IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET, 24044 IN_CLASSC_NET | IN_CLASSD_NET /* Class C,D,E */ 24045 }; 24046 24047 #define netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30]) 24048 24049 /* 24050 * XXX This routine should go away and instead we should use the metrics 24051 * associated with the routes to determine the default sndspace and rcvspace. 24052 */ 24053 static tcp_hsp_t * 24054 tcp_hsp_lookup(ipaddr_t addr) 24055 { 24056 tcp_hsp_t *hsp = NULL; 24057 24058 /* Quick check without acquiring the lock. */ 24059 if (tcp_hsp_hash == NULL) 24060 return (NULL); 24061 24062 rw_enter(&tcp_hsp_lock, RW_READER); 24063 24064 /* This routine finds the best-matching HSP for address addr. */ 24065 24066 if (tcp_hsp_hash) { 24067 int i; 24068 ipaddr_t srchaddr; 24069 tcp_hsp_t *hsp_net; 24070 24071 /* We do three passes: host, network, and subnet. */ 24072 24073 srchaddr = addr; 24074 24075 for (i = 1; i <= 3; i++) { 24076 /* Look for exact match on srchaddr */ 24077 24078 hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)]; 24079 while (hsp) { 24080 if (hsp->tcp_hsp_vers == IPV4_VERSION && 24081 hsp->tcp_hsp_addr == srchaddr) 24082 break; 24083 hsp = hsp->tcp_hsp_next; 24084 } 24085 ASSERT(hsp == NULL || 24086 hsp->tcp_hsp_vers == IPV4_VERSION); 24087 24088 /* 24089 * If this is the first pass: 24090 * If we found a match, great, return it. 24091 * If not, search for the network on the second pass. 24092 */ 24093 24094 if (i == 1) 24095 if (hsp) 24096 break; 24097 else 24098 { 24099 srchaddr = addr & netmask(addr); 24100 continue; 24101 } 24102 24103 /* 24104 * If this is the second pass: 24105 * If we found a match, but there's a subnet mask, 24106 * save the match but try again using the subnet 24107 * mask on the third pass. 24108 * Otherwise, return whatever we found. 24109 */ 24110 24111 if (i == 2) { 24112 if (hsp && hsp->tcp_hsp_subnet) { 24113 hsp_net = hsp; 24114 srchaddr = addr & hsp->tcp_hsp_subnet; 24115 continue; 24116 } else { 24117 break; 24118 } 24119 } 24120 24121 /* 24122 * This must be the third pass. If we didn't find 24123 * anything, return the saved network HSP instead. 24124 */ 24125 24126 if (!hsp) 24127 hsp = hsp_net; 24128 } 24129 } 24130 24131 rw_exit(&tcp_hsp_lock); 24132 return (hsp); 24133 } 24134 24135 /* 24136 * XXX Equally broken as the IPv4 routine. Doesn't handle longest 24137 * match lookup. 24138 */ 24139 static tcp_hsp_t * 24140 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr) 24141 { 24142 tcp_hsp_t *hsp = NULL; 24143 24144 /* Quick check without acquiring the lock. */ 24145 if (tcp_hsp_hash == NULL) 24146 return (NULL); 24147 24148 rw_enter(&tcp_hsp_lock, RW_READER); 24149 24150 /* This routine finds the best-matching HSP for address addr. */ 24151 24152 if (tcp_hsp_hash) { 24153 int i; 24154 in6_addr_t v6srchaddr; 24155 tcp_hsp_t *hsp_net; 24156 24157 /* We do three passes: host, network, and subnet. */ 24158 24159 v6srchaddr = *v6addr; 24160 24161 for (i = 1; i <= 3; i++) { 24162 /* Look for exact match on srchaddr */ 24163 24164 hsp = tcp_hsp_hash[TCP_HSP_HASH( 24165 V4_PART_OF_V6(v6srchaddr))]; 24166 while (hsp) { 24167 if (hsp->tcp_hsp_vers == IPV6_VERSION && 24168 IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, 24169 &v6srchaddr)) 24170 break; 24171 hsp = hsp->tcp_hsp_next; 24172 } 24173 24174 /* 24175 * If this is the first pass: 24176 * If we found a match, great, return it. 24177 * If not, search for the network on the second pass. 24178 */ 24179 24180 if (i == 1) 24181 if (hsp) 24182 break; 24183 else { 24184 /* Assume a 64 bit mask */ 24185 v6srchaddr.s6_addr32[0] = 24186 v6addr->s6_addr32[0]; 24187 v6srchaddr.s6_addr32[1] = 24188 v6addr->s6_addr32[1]; 24189 v6srchaddr.s6_addr32[2] = 0; 24190 v6srchaddr.s6_addr32[3] = 0; 24191 continue; 24192 } 24193 24194 /* 24195 * If this is the second pass: 24196 * If we found a match, but there's a subnet mask, 24197 * save the match but try again using the subnet 24198 * mask on the third pass. 24199 * Otherwise, return whatever we found. 24200 */ 24201 24202 if (i == 2) { 24203 ASSERT(hsp == NULL || 24204 hsp->tcp_hsp_vers == IPV6_VERSION); 24205 if (hsp && 24206 !IN6_IS_ADDR_UNSPECIFIED( 24207 &hsp->tcp_hsp_subnet_v6)) { 24208 hsp_net = hsp; 24209 V6_MASK_COPY(*v6addr, 24210 hsp->tcp_hsp_subnet_v6, v6srchaddr); 24211 continue; 24212 } else { 24213 break; 24214 } 24215 } 24216 24217 /* 24218 * This must be the third pass. If we didn't find 24219 * anything, return the saved network HSP instead. 24220 */ 24221 24222 if (!hsp) 24223 hsp = hsp_net; 24224 } 24225 } 24226 24227 rw_exit(&tcp_hsp_lock); 24228 return (hsp); 24229 } 24230 24231 /* 24232 * Type three generator adapted from the random() function in 4.4 BSD: 24233 */ 24234 24235 /* 24236 * Copyright (c) 1983, 1993 24237 * The Regents of the University of California. All rights reserved. 24238 * 24239 * Redistribution and use in source and binary forms, with or without 24240 * modification, are permitted provided that the following conditions 24241 * are met: 24242 * 1. Redistributions of source code must retain the above copyright 24243 * notice, this list of conditions and the following disclaimer. 24244 * 2. Redistributions in binary form must reproduce the above copyright 24245 * notice, this list of conditions and the following disclaimer in the 24246 * documentation and/or other materials provided with the distribution. 24247 * 3. All advertising materials mentioning features or use of this software 24248 * must display the following acknowledgement: 24249 * This product includes software developed by the University of 24250 * California, Berkeley and its contributors. 24251 * 4. Neither the name of the University nor the names of its contributors 24252 * may be used to endorse or promote products derived from this software 24253 * without specific prior written permission. 24254 * 24255 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24256 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24257 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24258 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24259 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24260 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24261 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24262 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24263 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24264 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24265 * SUCH DAMAGE. 24266 */ 24267 24268 /* Type 3 -- x**31 + x**3 + 1 */ 24269 #define DEG_3 31 24270 #define SEP_3 3 24271 24272 24273 /* Protected by tcp_random_lock */ 24274 static int tcp_randtbl[DEG_3 + 1]; 24275 24276 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 24277 static int *tcp_random_rptr = &tcp_randtbl[1]; 24278 24279 static int *tcp_random_state = &tcp_randtbl[1]; 24280 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 24281 24282 kmutex_t tcp_random_lock; 24283 24284 void 24285 tcp_random_init(void) 24286 { 24287 int i; 24288 hrtime_t hrt; 24289 time_t wallclock; 24290 uint64_t result; 24291 24292 /* 24293 * Use high-res timer and current time for seed. Gethrtime() returns 24294 * a longlong, which may contain resolution down to nanoseconds. 24295 * The current time will either be a 32-bit or a 64-bit quantity. 24296 * XOR the two together in a 64-bit result variable. 24297 * Convert the result to a 32-bit value by multiplying the high-order 24298 * 32-bits by the low-order 32-bits. 24299 */ 24300 24301 hrt = gethrtime(); 24302 (void) drv_getparm(TIME, &wallclock); 24303 result = (uint64_t)wallclock ^ (uint64_t)hrt; 24304 mutex_enter(&tcp_random_lock); 24305 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 24306 (result & 0xffffffff); 24307 24308 for (i = 1; i < DEG_3; i++) 24309 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 24310 + 12345; 24311 tcp_random_fptr = &tcp_random_state[SEP_3]; 24312 tcp_random_rptr = &tcp_random_state[0]; 24313 mutex_exit(&tcp_random_lock); 24314 for (i = 0; i < 10 * DEG_3; i++) 24315 (void) tcp_random(); 24316 } 24317 24318 /* 24319 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 24320 * This range is selected to be approximately centered on TCP_ISS / 2, 24321 * and easy to compute. We get this value by generating a 32-bit random 24322 * number, selecting out the high-order 17 bits, and then adding one so 24323 * that we never return zero. 24324 */ 24325 int 24326 tcp_random(void) 24327 { 24328 int i; 24329 24330 mutex_enter(&tcp_random_lock); 24331 *tcp_random_fptr += *tcp_random_rptr; 24332 24333 /* 24334 * The high-order bits are more random than the low-order bits, 24335 * so we select out the high-order 17 bits and add one so that 24336 * we never return zero. 24337 */ 24338 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 24339 if (++tcp_random_fptr >= tcp_random_end_ptr) { 24340 tcp_random_fptr = tcp_random_state; 24341 ++tcp_random_rptr; 24342 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 24343 tcp_random_rptr = tcp_random_state; 24344 24345 mutex_exit(&tcp_random_lock); 24346 return (i); 24347 } 24348 24349 /* 24350 * XXX This will go away when TPI is extended to send 24351 * info reqs to sockfs/timod ..... 24352 * Given a queue, set the max packet size for the write 24353 * side of the queue below stream head. This value is 24354 * cached on the stream head. 24355 * Returns 1 on success, 0 otherwise. 24356 */ 24357 static int 24358 setmaxps(queue_t *q, int maxpsz) 24359 { 24360 struct stdata *stp; 24361 queue_t *wq; 24362 stp = STREAM(q); 24363 24364 /* 24365 * At this point change of a queue parameter is not allowed 24366 * when a multiplexor is sitting on top. 24367 */ 24368 if (stp->sd_flag & STPLEX) 24369 return (0); 24370 24371 claimstr(stp->sd_wrq); 24372 wq = stp->sd_wrq->q_next; 24373 ASSERT(wq != NULL); 24374 (void) strqset(wq, QMAXPSZ, 0, maxpsz); 24375 releasestr(stp->sd_wrq); 24376 return (1); 24377 } 24378 24379 static int 24380 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp, 24381 int *t_errorp, int *sys_errorp) 24382 { 24383 int error; 24384 int is_absreq_failure; 24385 t_scalar_t *opt_lenp; 24386 t_scalar_t opt_offset; 24387 int prim_type; 24388 struct T_conn_req *tcreqp; 24389 struct T_conn_res *tcresp; 24390 cred_t *cr; 24391 24392 cr = DB_CREDDEF(mp, tcp->tcp_cred); 24393 24394 prim_type = ((union T_primitives *)mp->b_rptr)->type; 24395 ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES || 24396 prim_type == T_CONN_RES); 24397 24398 switch (prim_type) { 24399 case T_CONN_REQ: 24400 tcreqp = (struct T_conn_req *)mp->b_rptr; 24401 opt_offset = tcreqp->OPT_offset; 24402 opt_lenp = (t_scalar_t *)&tcreqp->OPT_length; 24403 break; 24404 case O_T_CONN_RES: 24405 case T_CONN_RES: 24406 tcresp = (struct T_conn_res *)mp->b_rptr; 24407 opt_offset = tcresp->OPT_offset; 24408 opt_lenp = (t_scalar_t *)&tcresp->OPT_length; 24409 break; 24410 } 24411 24412 *t_errorp = 0; 24413 *sys_errorp = 0; 24414 *do_disconnectp = 0; 24415 24416 error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp, 24417 opt_offset, cr, &tcp_opt_obj, 24418 NULL, &is_absreq_failure); 24419 24420 switch (error) { 24421 case 0: /* no error */ 24422 ASSERT(is_absreq_failure == 0); 24423 return (0); 24424 case ENOPROTOOPT: 24425 *t_errorp = TBADOPT; 24426 break; 24427 case EACCES: 24428 *t_errorp = TACCES; 24429 break; 24430 default: 24431 *t_errorp = TSYSERR; *sys_errorp = error; 24432 break; 24433 } 24434 if (is_absreq_failure != 0) { 24435 /* 24436 * The connection request should get the local ack 24437 * T_OK_ACK and then a T_DISCON_IND. 24438 */ 24439 *do_disconnectp = 1; 24440 } 24441 return (-1); 24442 } 24443 24444 /* 24445 * Split this function out so that if the secret changes, I'm okay. 24446 * 24447 * Initialize the tcp_iss_cookie and tcp_iss_key. 24448 */ 24449 24450 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 24451 24452 static void 24453 tcp_iss_key_init(uint8_t *phrase, int len) 24454 { 24455 struct { 24456 int32_t current_time; 24457 uint32_t randnum; 24458 uint16_t pad; 24459 uint8_t ether[6]; 24460 uint8_t passwd[PASSWD_SIZE]; 24461 } tcp_iss_cookie; 24462 time_t t; 24463 24464 /* 24465 * Start with the current absolute time. 24466 */ 24467 (void) drv_getparm(TIME, &t); 24468 tcp_iss_cookie.current_time = t; 24469 24470 /* 24471 * XXX - Need a more random number per RFC 1750, not this crap. 24472 * OTOH, if what follows is pretty random, then I'm in better shape. 24473 */ 24474 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 24475 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 24476 24477 /* 24478 * The cpu_type_info is pretty non-random. Ugggh. It does serve 24479 * as a good template. 24480 */ 24481 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 24482 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 24483 24484 /* 24485 * The pass-phrase. Normally this is supplied by user-called NDD. 24486 */ 24487 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 24488 24489 /* 24490 * See 4010593 if this section becomes a problem again, 24491 * but the local ethernet address is useful here. 24492 */ 24493 (void) localetheraddr(NULL, 24494 (struct ether_addr *)&tcp_iss_cookie.ether); 24495 24496 /* 24497 * Hash 'em all together. The MD5Final is called per-connection. 24498 */ 24499 mutex_enter(&tcp_iss_key_lock); 24500 MD5Init(&tcp_iss_key); 24501 MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie, 24502 sizeof (tcp_iss_cookie)); 24503 mutex_exit(&tcp_iss_key_lock); 24504 } 24505 24506 /* 24507 * Set the RFC 1948 pass phrase 24508 */ 24509 /* ARGSUSED */ 24510 static int 24511 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, 24512 cred_t *cr) 24513 { 24514 /* 24515 * Basically, value contains a new pass phrase. Pass it along! 24516 */ 24517 tcp_iss_key_init((uint8_t *)value, strlen(value)); 24518 return (0); 24519 } 24520 24521 /* ARGSUSED */ 24522 static int 24523 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags) 24524 { 24525 bzero(buf, sizeof (tcp_sack_info_t)); 24526 return (0); 24527 } 24528 24529 /* ARGSUSED */ 24530 static int 24531 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags) 24532 { 24533 bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH); 24534 return (0); 24535 } 24536 24537 void 24538 tcp_ddi_init(void) 24539 { 24540 int i; 24541 24542 /* Initialize locks */ 24543 rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL); 24544 mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL); 24545 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 24546 mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 24547 mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 24548 rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL); 24549 24550 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24551 mutex_init(&tcp_bind_fanout[i].tf_lock, NULL, 24552 MUTEX_DEFAULT, NULL); 24553 } 24554 24555 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24556 mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL, 24557 MUTEX_DEFAULT, NULL); 24558 } 24559 24560 /* TCP's IPsec code calls the packet dropper. */ 24561 ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement"); 24562 24563 if (!tcp_g_nd) { 24564 if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) { 24565 nd_free(&tcp_g_nd); 24566 } 24567 } 24568 24569 /* 24570 * Note: To really walk the device tree you need the devinfo 24571 * pointer to your device which is only available after probe/attach. 24572 * The following is safe only because it uses ddi_root_node() 24573 */ 24574 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 24575 tcp_opt_obj.odb_opt_arr_cnt); 24576 24577 tcp_timercache = kmem_cache_create("tcp_timercache", 24578 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 24579 NULL, NULL, NULL, NULL, NULL, 0); 24580 24581 tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache", 24582 sizeof (tcp_sack_info_t), 0, 24583 tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0); 24584 24585 tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache", 24586 TCP_MAX_COMBINED_HEADER_LENGTH, 0, 24587 tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0); 24588 24589 tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput); 24590 tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close); 24591 24592 ip_squeue_init(tcp_squeue_add); 24593 24594 /* Initialize the random number generator */ 24595 tcp_random_init(); 24596 24597 /* 24598 * Initialize RFC 1948 secret values. This will probably be reset once 24599 * by the boot scripts. 24600 * 24601 * Use NULL name, as the name is caught by the new lockstats. 24602 * 24603 * Initialize with some random, non-guessable string, like the global 24604 * T_INFO_ACK. 24605 */ 24606 24607 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 24608 sizeof (tcp_g_t_info_ack)); 24609 24610 if ((tcp_kstat = kstat_create(TCP_MOD_NAME, 0, "tcpstat", 24611 "net", KSTAT_TYPE_NAMED, 24612 sizeof (tcp_statistics) / sizeof (kstat_named_t), 24613 KSTAT_FLAG_VIRTUAL)) != NULL) { 24614 tcp_kstat->ks_data = &tcp_statistics; 24615 kstat_install(tcp_kstat); 24616 } 24617 24618 tcp_kstat_init(); 24619 } 24620 24621 void 24622 tcp_ddi_destroy(void) 24623 { 24624 int i; 24625 24626 nd_free(&tcp_g_nd); 24627 24628 for (i = 0; i < A_CNT(tcp_bind_fanout); i++) { 24629 mutex_destroy(&tcp_bind_fanout[i].tf_lock); 24630 } 24631 24632 for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) { 24633 mutex_destroy(&tcp_acceptor_fanout[i].tf_lock); 24634 } 24635 24636 mutex_destroy(&tcp_iss_key_lock); 24637 rw_destroy(&tcp_hsp_lock); 24638 mutex_destroy(&tcp_g_q_lock); 24639 mutex_destroy(&tcp_random_lock); 24640 mutex_destroy(&tcp_epriv_port_lock); 24641 rw_destroy(&tcp_reserved_port_lock); 24642 24643 ip_drop_unregister(&tcp_dropper); 24644 24645 kmem_cache_destroy(tcp_timercache); 24646 kmem_cache_destroy(tcp_sack_info_cache); 24647 kmem_cache_destroy(tcp_iphc_cache); 24648 24649 tcp_kstat_fini(); 24650 } 24651 24652 /* 24653 * Generate ISS, taking into account NDD changes may happen halfway through. 24654 * (If the iss is not zero, set it.) 24655 */ 24656 24657 static void 24658 tcp_iss_init(tcp_t *tcp) 24659 { 24660 MD5_CTX context; 24661 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 24662 uint32_t answer[4]; 24663 24664 tcp_iss_incr_extra += (ISS_INCR >> 1); 24665 tcp->tcp_iss = tcp_iss_incr_extra; 24666 switch (tcp_strong_iss) { 24667 case 2: 24668 mutex_enter(&tcp_iss_key_lock); 24669 context = tcp_iss_key; 24670 mutex_exit(&tcp_iss_key_lock); 24671 arg.ports = tcp->tcp_ports; 24672 if (tcp->tcp_ipversion == IPV4_VERSION) { 24673 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, 24674 &arg.src); 24675 IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst, 24676 &arg.dst); 24677 } else { 24678 arg.src = tcp->tcp_ip6h->ip6_src; 24679 arg.dst = tcp->tcp_ip6h->ip6_dst; 24680 } 24681 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 24682 MD5Final((uchar_t *)answer, &context); 24683 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 24684 /* 24685 * Now that we've hashed into a unique per-connection sequence 24686 * space, add a random increment per strong_iss == 1. So I 24687 * guess we'll have to... 24688 */ 24689 /* FALLTHRU */ 24690 case 1: 24691 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 24692 break; 24693 default: 24694 tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 24695 break; 24696 } 24697 tcp->tcp_valid_bits = TCP_ISS_VALID; 24698 tcp->tcp_fss = tcp->tcp_iss - 1; 24699 tcp->tcp_suna = tcp->tcp_iss; 24700 tcp->tcp_snxt = tcp->tcp_iss + 1; 24701 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 24702 tcp->tcp_csuna = tcp->tcp_snxt; 24703 } 24704 24705 /* 24706 * Exported routine for extracting active tcp connection status. 24707 * 24708 * This is used by the Solaris Cluster Networking software to 24709 * gather a list of connections that need to be forwarded to 24710 * specific nodes in the cluster when configuration changes occur. 24711 * 24712 * The callback is invoked for each tcp_t structure. Returning 24713 * non-zero from the callback routine terminates the search. 24714 */ 24715 int 24716 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg) 24717 { 24718 tcp_t *tcp; 24719 cl_tcp_info_t cl_tcpi; 24720 connf_t *connfp; 24721 conn_t *connp; 24722 int i; 24723 24724 ASSERT(callback != NULL); 24725 24726 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 24727 24728 connfp = &ipcl_globalhash_fanout[i]; 24729 connp = NULL; 24730 24731 while ((connp = 24732 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 24733 24734 tcp = connp->conn_tcp; 24735 cl_tcpi.cl_tcpi_version = CL_TCPI_V1; 24736 cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion; 24737 cl_tcpi.cl_tcpi_state = tcp->tcp_state; 24738 cl_tcpi.cl_tcpi_lport = tcp->tcp_lport; 24739 cl_tcpi.cl_tcpi_fport = tcp->tcp_fport; 24740 /* 24741 * The macros tcp_laddr and tcp_faddr give the IPv4 24742 * addresses. They are copied implicitly below as 24743 * mapped addresses. 24744 */ 24745 cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6; 24746 if (tcp->tcp_ipversion == IPV4_VERSION) { 24747 cl_tcpi.cl_tcpi_faddr = 24748 tcp->tcp_ipha->ipha_dst; 24749 } else { 24750 cl_tcpi.cl_tcpi_faddr_v6 = 24751 tcp->tcp_ip6h->ip6_dst; 24752 } 24753 24754 /* 24755 * If the callback returns non-zero 24756 * we terminate the traversal. 24757 */ 24758 if ((*callback)(&cl_tcpi, arg) != 0) { 24759 CONN_DEC_REF(tcp->tcp_connp); 24760 return (1); 24761 } 24762 } 24763 } 24764 24765 return (0); 24766 } 24767 24768 /* 24769 * Macros used for accessing the different types of sockaddr 24770 * structures inside a tcp_ioc_abort_conn_t. 24771 */ 24772 #define TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local) 24773 #define TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote) 24774 #define TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr) 24775 #define TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr) 24776 #define TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port) 24777 #define TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port) 24778 #define TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local) 24779 #define TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote) 24780 #define TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr) 24781 #define TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr) 24782 #define TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port) 24783 #define TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port) 24784 24785 /* 24786 * Return the correct error code to mimic the behavior 24787 * of a connection reset. 24788 */ 24789 #define TCP_AC_GET_ERRCODE(state, err) { \ 24790 switch ((state)) { \ 24791 case TCPS_SYN_SENT: \ 24792 case TCPS_SYN_RCVD: \ 24793 (err) = ECONNREFUSED; \ 24794 break; \ 24795 case TCPS_ESTABLISHED: \ 24796 case TCPS_FIN_WAIT_1: \ 24797 case TCPS_FIN_WAIT_2: \ 24798 case TCPS_CLOSE_WAIT: \ 24799 (err) = ECONNRESET; \ 24800 break; \ 24801 case TCPS_CLOSING: \ 24802 case TCPS_LAST_ACK: \ 24803 case TCPS_TIME_WAIT: \ 24804 (err) = 0; \ 24805 break; \ 24806 default: \ 24807 (err) = ENXIO; \ 24808 } \ 24809 } 24810 24811 /* 24812 * Check if a tcp structure matches the info in acp. 24813 */ 24814 #define TCP_AC_ADDR_MATCH(acp, tcp) \ 24815 (((acp)->ac_local.ss_family == AF_INET) ? \ 24816 ((TCP_AC_V4LOCAL((acp)) == INADDR_ANY || \ 24817 TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) && \ 24818 (TCP_AC_V4REMOTE((acp)) == INADDR_ANY || \ 24819 TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) && \ 24820 (TCP_AC_V4LPORT((acp)) == 0 || \ 24821 TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) && \ 24822 (TCP_AC_V4RPORT((acp)) == 0 || \ 24823 TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) && \ 24824 (acp)->ac_start <= (tcp)->tcp_state && \ 24825 (acp)->ac_end >= (tcp)->tcp_state) : \ 24826 ((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) || \ 24827 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)), \ 24828 &(tcp)->tcp_ip_src_v6)) && \ 24829 (IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) || \ 24830 IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)), \ 24831 &(tcp)->tcp_remote_v6)) && \ 24832 (TCP_AC_V6LPORT((acp)) == 0 || \ 24833 TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) && \ 24834 (TCP_AC_V6RPORT((acp)) == 0 || \ 24835 TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) && \ 24836 (acp)->ac_start <= (tcp)->tcp_state && \ 24837 (acp)->ac_end >= (tcp)->tcp_state)) 24838 24839 #define TCP_AC_MATCH(acp, tcp) \ 24840 (((acp)->ac_zoneid == ALL_ZONES || \ 24841 (acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ? \ 24842 TCP_AC_ADDR_MATCH(acp, tcp) : 0) 24843 24844 /* 24845 * Build a message containing a tcp_ioc_abort_conn_t structure 24846 * which is filled in with information from acp and tp. 24847 */ 24848 static mblk_t * 24849 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp) 24850 { 24851 mblk_t *mp; 24852 tcp_ioc_abort_conn_t *tacp; 24853 24854 mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO); 24855 if (mp == NULL) 24856 return (NULL); 24857 24858 mp->b_datap->db_type = M_CTL; 24859 24860 *((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN; 24861 tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr + 24862 sizeof (uint32_t)); 24863 24864 tacp->ac_start = acp->ac_start; 24865 tacp->ac_end = acp->ac_end; 24866 tacp->ac_zoneid = acp->ac_zoneid; 24867 24868 if (acp->ac_local.ss_family == AF_INET) { 24869 tacp->ac_local.ss_family = AF_INET; 24870 tacp->ac_remote.ss_family = AF_INET; 24871 TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src; 24872 TCP_AC_V4REMOTE(tacp) = tp->tcp_remote; 24873 TCP_AC_V4LPORT(tacp) = tp->tcp_lport; 24874 TCP_AC_V4RPORT(tacp) = tp->tcp_fport; 24875 } else { 24876 tacp->ac_local.ss_family = AF_INET6; 24877 tacp->ac_remote.ss_family = AF_INET6; 24878 TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6; 24879 TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6; 24880 TCP_AC_V6LPORT(tacp) = tp->tcp_lport; 24881 TCP_AC_V6RPORT(tacp) = tp->tcp_fport; 24882 } 24883 mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp); 24884 return (mp); 24885 } 24886 24887 /* 24888 * Print a tcp_ioc_abort_conn_t structure. 24889 */ 24890 static void 24891 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp) 24892 { 24893 char lbuf[128]; 24894 char rbuf[128]; 24895 sa_family_t af; 24896 in_port_t lport, rport; 24897 ushort_t logflags; 24898 24899 af = acp->ac_local.ss_family; 24900 24901 if (af == AF_INET) { 24902 (void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp), 24903 lbuf, 128); 24904 (void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp), 24905 rbuf, 128); 24906 lport = ntohs(TCP_AC_V4LPORT(acp)); 24907 rport = ntohs(TCP_AC_V4RPORT(acp)); 24908 } else { 24909 (void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp), 24910 lbuf, 128); 24911 (void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp), 24912 rbuf, 128); 24913 lport = ntohs(TCP_AC_V6LPORT(acp)); 24914 rport = ntohs(TCP_AC_V6RPORT(acp)); 24915 } 24916 24917 logflags = SL_TRACE | SL_NOTE; 24918 /* 24919 * Don't print this message to the console if the operation was done 24920 * to a non-global zone. 24921 */ 24922 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 24923 logflags |= SL_CONSOLE; 24924 (void) strlog(TCP_MOD_ID, 0, 1, logflags, 24925 "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, " 24926 "start = %d, end = %d\n", lbuf, lport, rbuf, rport, 24927 acp->ac_start, acp->ac_end); 24928 } 24929 24930 /* 24931 * Called inside tcp_rput when a message built using 24932 * tcp_ioctl_abort_build_msg is put into a queue. 24933 * Note that when we get here there is no wildcard in acp any more. 24934 */ 24935 static void 24936 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp) 24937 { 24938 tcp_ioc_abort_conn_t *acp; 24939 24940 acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t)); 24941 if (tcp->tcp_state <= acp->ac_end) { 24942 /* 24943 * If we get here, we are already on the correct 24944 * squeue. This ioctl follows the following path 24945 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn 24946 * ->tcp_ioctl_abort->squeue_fill (if on a 24947 * different squeue) 24948 */ 24949 int errcode; 24950 24951 TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode); 24952 (void) tcp_clean_death(tcp, errcode, 26); 24953 } 24954 freemsg(mp); 24955 } 24956 24957 /* 24958 * Abort all matching connections on a hash chain. 24959 */ 24960 static int 24961 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count, 24962 boolean_t exact) 24963 { 24964 int nmatch, err = 0; 24965 tcp_t *tcp; 24966 MBLKP mp, last, listhead = NULL; 24967 conn_t *tconnp; 24968 connf_t *connfp = &ipcl_conn_fanout[index]; 24969 24970 startover: 24971 nmatch = 0; 24972 24973 mutex_enter(&connfp->connf_lock); 24974 for (tconnp = connfp->connf_head; tconnp != NULL; 24975 tconnp = tconnp->conn_next) { 24976 tcp = tconnp->conn_tcp; 24977 if (TCP_AC_MATCH(acp, tcp)) { 24978 CONN_INC_REF(tcp->tcp_connp); 24979 mp = tcp_ioctl_abort_build_msg(acp, tcp); 24980 if (mp == NULL) { 24981 err = ENOMEM; 24982 CONN_DEC_REF(tcp->tcp_connp); 24983 break; 24984 } 24985 mp->b_prev = (mblk_t *)tcp; 24986 24987 if (listhead == NULL) { 24988 listhead = mp; 24989 last = mp; 24990 } else { 24991 last->b_next = mp; 24992 last = mp; 24993 } 24994 nmatch++; 24995 if (exact) 24996 break; 24997 } 24998 24999 /* Avoid holding lock for too long. */ 25000 if (nmatch >= 500) 25001 break; 25002 } 25003 mutex_exit(&connfp->connf_lock); 25004 25005 /* Pass mp into the correct tcp */ 25006 while ((mp = listhead) != NULL) { 25007 listhead = listhead->b_next; 25008 tcp = (tcp_t *)mp->b_prev; 25009 mp->b_next = mp->b_prev = NULL; 25010 squeue_fill(tcp->tcp_connp->conn_sqp, mp, 25011 tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET); 25012 } 25013 25014 *count += nmatch; 25015 if (nmatch >= 500 && err == 0) 25016 goto startover; 25017 return (err); 25018 } 25019 25020 /* 25021 * Abort all connections that matches the attributes specified in acp. 25022 */ 25023 static int 25024 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp) 25025 { 25026 sa_family_t af; 25027 uint32_t ports; 25028 uint16_t *pports; 25029 int err = 0, count = 0; 25030 boolean_t exact = B_FALSE; /* set when there is no wildcard */ 25031 int index = -1; 25032 ushort_t logflags; 25033 25034 af = acp->ac_local.ss_family; 25035 25036 if (af == AF_INET) { 25037 if (TCP_AC_V4REMOTE(acp) != INADDR_ANY && 25038 TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) { 25039 pports = (uint16_t *)&ports; 25040 pports[1] = TCP_AC_V4LPORT(acp); 25041 pports[0] = TCP_AC_V4RPORT(acp); 25042 exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY); 25043 } 25044 } else { 25045 if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) && 25046 TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) { 25047 pports = (uint16_t *)&ports; 25048 pports[1] = TCP_AC_V6LPORT(acp); 25049 pports[0] = TCP_AC_V6RPORT(acp); 25050 exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp)); 25051 } 25052 } 25053 25054 /* 25055 * For cases where remote addr, local port, and remote port are non- 25056 * wildcards, tcp_ioctl_abort_bucket will only be called once. 25057 */ 25058 if (index != -1) { 25059 err = tcp_ioctl_abort_bucket(acp, index, 25060 &count, exact); 25061 } else { 25062 /* 25063 * loop through all entries for wildcard case 25064 */ 25065 for (index = 0; index < ipcl_conn_fanout_size; index++) { 25066 err = tcp_ioctl_abort_bucket(acp, index, 25067 &count, exact); 25068 if (err != 0) 25069 break; 25070 } 25071 } 25072 25073 logflags = SL_TRACE | SL_NOTE; 25074 /* 25075 * Don't print this message to the console if the operation was done 25076 * to a non-global zone. 25077 */ 25078 if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES) 25079 logflags |= SL_CONSOLE; 25080 (void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: " 25081 "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' ')); 25082 if (err == 0 && count == 0) 25083 err = ENOENT; 25084 return (err); 25085 } 25086 25087 /* 25088 * Process the TCP_IOC_ABORT_CONN ioctl request. 25089 */ 25090 static void 25091 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp) 25092 { 25093 int err; 25094 IOCP iocp; 25095 MBLKP mp1; 25096 sa_family_t laf, raf; 25097 tcp_ioc_abort_conn_t *acp; 25098 zone_t *zptr; 25099 zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid; 25100 25101 iocp = (IOCP)mp->b_rptr; 25102 25103 if ((mp1 = mp->b_cont) == NULL || 25104 iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) { 25105 err = EINVAL; 25106 goto out; 25107 } 25108 25109 /* check permissions */ 25110 if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) { 25111 err = EPERM; 25112 goto out; 25113 } 25114 25115 if (mp1->b_cont != NULL) { 25116 freemsg(mp1->b_cont); 25117 mp1->b_cont = NULL; 25118 } 25119 25120 acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr; 25121 laf = acp->ac_local.ss_family; 25122 raf = acp->ac_remote.ss_family; 25123 25124 /* check that a zone with the supplied zoneid exists */ 25125 if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) { 25126 zptr = zone_find_by_id(zoneid); 25127 if (zptr != NULL) { 25128 zone_rele(zptr); 25129 } else { 25130 err = EINVAL; 25131 goto out; 25132 } 25133 } 25134 25135 if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT || 25136 acp->ac_start > acp->ac_end || laf != raf || 25137 (laf != AF_INET && laf != AF_INET6)) { 25138 err = EINVAL; 25139 goto out; 25140 } 25141 25142 tcp_ioctl_abort_dump(acp); 25143 err = tcp_ioctl_abort(acp); 25144 25145 out: 25146 if (mp1 != NULL) { 25147 freemsg(mp1); 25148 mp->b_cont = NULL; 25149 } 25150 25151 if (err != 0) 25152 miocnak(q, mp, 0, err); 25153 else 25154 miocack(q, mp, 0, 0); 25155 } 25156 25157 /* 25158 * tcp_time_wait_processing() handles processing of incoming packets when 25159 * the tcp is in the TIME_WAIT state. 25160 * A TIME_WAIT tcp that has an associated open TCP stream is never put 25161 * on the time wait list. 25162 */ 25163 void 25164 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq, 25165 uint32_t seg_ack, int seg_len, tcph_t *tcph) 25166 { 25167 int32_t bytes_acked; 25168 int32_t gap; 25169 int32_t rgap; 25170 tcp_opt_t tcpopt; 25171 uint_t flags; 25172 uint32_t new_swnd = 0; 25173 conn_t *connp; 25174 25175 BUMP_LOCAL(tcp->tcp_ibsegs); 25176 TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT); 25177 25178 flags = (unsigned int)tcph->th_flags[0] & 0xFF; 25179 new_swnd = BE16_TO_U16(tcph->th_win) << 25180 ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws); 25181 if (tcp->tcp_snd_ts_ok) { 25182 if (!tcp_paws_check(tcp, tcph, &tcpopt)) { 25183 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25184 tcp->tcp_rnxt, TH_ACK); 25185 goto done; 25186 } 25187 } 25188 gap = seg_seq - tcp->tcp_rnxt; 25189 rgap = tcp->tcp_rwnd - (gap + seg_len); 25190 if (gap < 0) { 25191 BUMP_MIB(&tcp_mib, tcpInDataDupSegs); 25192 UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, 25193 (seg_len > -gap ? -gap : seg_len)); 25194 seg_len += gap; 25195 if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) { 25196 if (flags & TH_RST) { 25197 goto done; 25198 } 25199 if ((flags & TH_FIN) && seg_len == -1) { 25200 /* 25201 * When TCP receives a duplicate FIN in 25202 * TIME_WAIT state, restart the 2 MSL timer. 25203 * See page 73 in RFC 793. Make sure this TCP 25204 * is already on the TIME_WAIT list. If not, 25205 * just restart the timer. 25206 */ 25207 if (TCP_IS_DETACHED(tcp)) { 25208 if (tcp_time_wait_remove(tcp, NULL) == 25209 B_TRUE) { 25210 tcp_time_wait_append(tcp); 25211 TCP_DBGSTAT(tcp_rput_time_wait); 25212 } 25213 } else { 25214 ASSERT(tcp != NULL); 25215 TCP_TIMER_RESTART(tcp, 25216 tcp_time_wait_interval); 25217 } 25218 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25219 tcp->tcp_rnxt, TH_ACK); 25220 goto done; 25221 } 25222 flags |= TH_ACK_NEEDED; 25223 seg_len = 0; 25224 goto process_ack; 25225 } 25226 25227 /* Fix seg_seq, and chew the gap off the front. */ 25228 seg_seq = tcp->tcp_rnxt; 25229 } 25230 25231 if ((flags & TH_SYN) && gap > 0 && rgap < 0) { 25232 /* 25233 * Make sure that when we accept the connection, pick 25234 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the 25235 * old connection. 25236 * 25237 * The next ISS generated is equal to tcp_iss_incr_extra 25238 * + ISS_INCR/2 + other components depending on the 25239 * value of tcp_strong_iss. We pre-calculate the new 25240 * ISS here and compare with tcp_snxt to determine if 25241 * we need to make adjustment to tcp_iss_incr_extra. 25242 * 25243 * The above calculation is ugly and is a 25244 * waste of CPU cycles... 25245 */ 25246 uint32_t new_iss = tcp_iss_incr_extra; 25247 int32_t adj; 25248 25249 switch (tcp_strong_iss) { 25250 case 2: { 25251 /* Add time and MD5 components. */ 25252 uint32_t answer[4]; 25253 struct { 25254 uint32_t ports; 25255 in6_addr_t src; 25256 in6_addr_t dst; 25257 } arg; 25258 MD5_CTX context; 25259 25260 mutex_enter(&tcp_iss_key_lock); 25261 context = tcp_iss_key; 25262 mutex_exit(&tcp_iss_key_lock); 25263 arg.ports = tcp->tcp_ports; 25264 /* We use MAPPED addresses in tcp_iss_init */ 25265 arg.src = tcp->tcp_ip_src_v6; 25266 if (tcp->tcp_ipversion == IPV4_VERSION) { 25267 IN6_IPADDR_TO_V4MAPPED( 25268 tcp->tcp_ipha->ipha_dst, 25269 &arg.dst); 25270 } else { 25271 arg.dst = 25272 tcp->tcp_ip6h->ip6_dst; 25273 } 25274 MD5Update(&context, (uchar_t *)&arg, 25275 sizeof (arg)); 25276 MD5Final((uchar_t *)answer, &context); 25277 answer[0] ^= answer[1] ^ answer[2] ^ answer[3]; 25278 new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0]; 25279 break; 25280 } 25281 case 1: 25282 /* Add time component and min random (i.e. 1). */ 25283 new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1; 25284 break; 25285 default: 25286 /* Add only time component. */ 25287 new_iss += (uint32_t)gethrestime_sec() * ISS_INCR; 25288 break; 25289 } 25290 if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) { 25291 /* 25292 * New ISS not guaranteed to be ISS_INCR/2 25293 * ahead of the current tcp_snxt, so add the 25294 * difference to tcp_iss_incr_extra. 25295 */ 25296 tcp_iss_incr_extra += adj; 25297 } 25298 /* 25299 * If tcp_clean_death() can not perform the task now, 25300 * drop the SYN packet and let the other side re-xmit. 25301 * Otherwise pass the SYN packet back in, since the 25302 * old tcp state has been cleaned up or freed. 25303 */ 25304 if (tcp_clean_death(tcp, 0, 27) == -1) 25305 goto done; 25306 /* 25307 * We will come back to tcp_rput_data 25308 * on the global queue. Packets destined 25309 * for the global queue will be checked 25310 * with global policy. But the policy for 25311 * this packet has already been checked as 25312 * this was destined for the detached 25313 * connection. We need to bypass policy 25314 * check this time by attaching a dummy 25315 * ipsec_in with ipsec_in_dont_check set. 25316 */ 25317 if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) != 25318 NULL) { 25319 TCP_STAT(tcp_time_wait_syn_success); 25320 tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp); 25321 return; 25322 } 25323 goto done; 25324 } 25325 25326 /* 25327 * rgap is the amount of stuff received out of window. A negative 25328 * value is the amount out of window. 25329 */ 25330 if (rgap < 0) { 25331 BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs); 25332 UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap); 25333 /* Fix seg_len and make sure there is something left. */ 25334 seg_len += rgap; 25335 if (seg_len <= 0) { 25336 if (flags & TH_RST) { 25337 goto done; 25338 } 25339 flags |= TH_ACK_NEEDED; 25340 seg_len = 0; 25341 goto process_ack; 25342 } 25343 } 25344 /* 25345 * Check whether we can update tcp_ts_recent. This test is 25346 * NOT the one in RFC 1323 3.4. It is from Braden, 1993, "TCP 25347 * Extensions for High Performance: An Update", Internet Draft. 25348 */ 25349 if (tcp->tcp_snd_ts_ok && 25350 TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) && 25351 SEQ_LEQ(seg_seq, tcp->tcp_rack)) { 25352 tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val; 25353 tcp->tcp_last_rcv_lbolt = lbolt64; 25354 } 25355 25356 if (seg_seq != tcp->tcp_rnxt && seg_len > 0) { 25357 /* Always ack out of order packets */ 25358 flags |= TH_ACK_NEEDED; 25359 seg_len = 0; 25360 } else if (seg_len > 0) { 25361 BUMP_MIB(&tcp_mib, tcpInClosed); 25362 BUMP_MIB(&tcp_mib, tcpInDataInorderSegs); 25363 UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len); 25364 } 25365 if (flags & TH_RST) { 25366 (void) tcp_clean_death(tcp, 0, 28); 25367 goto done; 25368 } 25369 if (flags & TH_SYN) { 25370 tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1, 25371 TH_RST|TH_ACK); 25372 /* 25373 * Do not delete the TCP structure if it is in 25374 * TIME_WAIT state. Refer to RFC 1122, 4.2.2.13. 25375 */ 25376 goto done; 25377 } 25378 process_ack: 25379 if (flags & TH_ACK) { 25380 bytes_acked = (int)(seg_ack - tcp->tcp_suna); 25381 if (bytes_acked <= 0) { 25382 if (bytes_acked == 0 && seg_len == 0 && 25383 new_swnd == tcp->tcp_swnd) 25384 BUMP_MIB(&tcp_mib, tcpInDupAck); 25385 } else { 25386 /* Acks something not sent */ 25387 flags |= TH_ACK_NEEDED; 25388 } 25389 } 25390 if (flags & TH_ACK_NEEDED) { 25391 /* 25392 * Time to send an ack for some reason. 25393 */ 25394 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, 25395 tcp->tcp_rnxt, TH_ACK); 25396 } 25397 done: 25398 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25399 DB_CKSUMSTART(mp) = 0; 25400 mp->b_datap->db_struioflag &= ~STRUIO_EAGER; 25401 TCP_STAT(tcp_time_wait_syn_fail); 25402 } 25403 freemsg(mp); 25404 } 25405 25406 /* 25407 * Allocate a T_SVR4_OPTMGMT_REQ. 25408 * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so 25409 * that tcp_rput_other can drop the acks. 25410 */ 25411 static mblk_t * 25412 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen) 25413 { 25414 mblk_t *mp; 25415 struct T_optmgmt_req *tor; 25416 struct opthdr *oh; 25417 uint_t size; 25418 char *optptr; 25419 25420 size = sizeof (*tor) + sizeof (*oh) + optlen; 25421 mp = allocb(size, BPRI_MED); 25422 if (mp == NULL) 25423 return (NULL); 25424 25425 mp->b_wptr += size; 25426 mp->b_datap->db_type = M_PROTO; 25427 tor = (struct T_optmgmt_req *)mp->b_rptr; 25428 tor->PRIM_type = T_SVR4_OPTMGMT_REQ; 25429 tor->MGMT_flags = T_NEGOTIATE; 25430 tor->OPT_length = sizeof (*oh) + optlen; 25431 tor->OPT_offset = (t_scalar_t)sizeof (*tor); 25432 25433 oh = (struct opthdr *)&tor[1]; 25434 oh->level = level; 25435 oh->name = cmd; 25436 oh->len = optlen; 25437 if (optlen != 0) { 25438 optptr = (char *)&oh[1]; 25439 bcopy(opt, optptr, optlen); 25440 } 25441 return (mp); 25442 } 25443 25444 /* 25445 * TCP Timers Implementation. 25446 */ 25447 timeout_id_t 25448 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim) 25449 { 25450 mblk_t *mp; 25451 tcp_timer_t *tcpt; 25452 tcp_t *tcp = connp->conn_tcp; 25453 25454 ASSERT(connp->conn_sqp != NULL); 25455 25456 TCP_DBGSTAT(tcp_timeout_calls); 25457 25458 if (tcp->tcp_timercache == NULL) { 25459 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 25460 } else { 25461 TCP_DBGSTAT(tcp_timeout_cached_alloc); 25462 mp = tcp->tcp_timercache; 25463 tcp->tcp_timercache = mp->b_next; 25464 mp->b_next = NULL; 25465 ASSERT(mp->b_wptr == NULL); 25466 } 25467 25468 CONN_INC_REF(connp); 25469 tcpt = (tcp_timer_t *)mp->b_rptr; 25470 tcpt->connp = connp; 25471 tcpt->tcpt_proc = f; 25472 tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim); 25473 return ((timeout_id_t)mp); 25474 } 25475 25476 static void 25477 tcp_timer_callback(void *arg) 25478 { 25479 mblk_t *mp = (mblk_t *)arg; 25480 tcp_timer_t *tcpt; 25481 conn_t *connp; 25482 25483 tcpt = (tcp_timer_t *)mp->b_rptr; 25484 connp = tcpt->connp; 25485 squeue_fill(connp->conn_sqp, mp, 25486 tcp_timer_handler, connp, SQTAG_TCP_TIMER); 25487 } 25488 25489 static void 25490 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2) 25491 { 25492 tcp_timer_t *tcpt; 25493 conn_t *connp = (conn_t *)arg; 25494 tcp_t *tcp = connp->conn_tcp; 25495 25496 tcpt = (tcp_timer_t *)mp->b_rptr; 25497 ASSERT(connp == tcpt->connp); 25498 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 25499 25500 /* 25501 * If the TCP has reached the closed state, don't proceed any 25502 * further. This TCP logically does not exist on the system. 25503 * tcpt_proc could for example access queues, that have already 25504 * been qprocoff'ed off. Also see comments at the start of tcp_input 25505 */ 25506 if (tcp->tcp_state != TCPS_CLOSED) { 25507 (*tcpt->tcpt_proc)(connp); 25508 } else { 25509 tcp->tcp_timer_tid = 0; 25510 } 25511 tcp_timer_free(connp->conn_tcp, mp); 25512 } 25513 25514 /* 25515 * There is potential race with untimeout and the handler firing at the same 25516 * time. The mblock may be freed by the handler while we are trying to use 25517 * it. But since both should execute on the same squeue, this race should not 25518 * occur. 25519 */ 25520 clock_t 25521 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 25522 { 25523 mblk_t *mp = (mblk_t *)id; 25524 tcp_timer_t *tcpt; 25525 clock_t delta; 25526 25527 TCP_DBGSTAT(tcp_timeout_cancel_reqs); 25528 25529 if (mp == NULL) 25530 return (-1); 25531 25532 tcpt = (tcp_timer_t *)mp->b_rptr; 25533 ASSERT(tcpt->connp == connp); 25534 25535 delta = untimeout(tcpt->tcpt_tid); 25536 25537 if (delta >= 0) { 25538 TCP_DBGSTAT(tcp_timeout_canceled); 25539 tcp_timer_free(connp->conn_tcp, mp); 25540 CONN_DEC_REF(connp); 25541 } 25542 25543 return (delta); 25544 } 25545 25546 /* 25547 * Allocate space for the timer event. The allocation looks like mblk, but it is 25548 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 25549 * 25550 * Dealing with failures: If we can't allocate from the timer cache we try 25551 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 25552 * points to b_rptr. 25553 * If we can't allocate anything using allocb_tryhard(), we perform a last 25554 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 25555 * save the actual allocation size in b_datap. 25556 */ 25557 mblk_t * 25558 tcp_timermp_alloc(int kmflags) 25559 { 25560 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 25561 kmflags & ~KM_PANIC); 25562 25563 if (mp != NULL) { 25564 mp->b_next = mp->b_prev = NULL; 25565 mp->b_rptr = (uchar_t *)(&mp[1]); 25566 mp->b_wptr = NULL; 25567 mp->b_datap = NULL; 25568 mp->b_queue = NULL; 25569 } else if (kmflags & KM_PANIC) { 25570 /* 25571 * Failed to allocate memory for the timer. Try allocating from 25572 * dblock caches. 25573 */ 25574 TCP_STAT(tcp_timermp_allocfail); 25575 mp = allocb_tryhard(sizeof (tcp_timer_t)); 25576 if (mp == NULL) { 25577 size_t size = 0; 25578 /* 25579 * Memory is really low. Try tryhard allocation. 25580 */ 25581 TCP_STAT(tcp_timermp_allocdblfail); 25582 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 25583 sizeof (tcp_timer_t), &size, kmflags); 25584 mp->b_rptr = (uchar_t *)(&mp[1]); 25585 mp->b_next = mp->b_prev = NULL; 25586 mp->b_wptr = (uchar_t *)-1; 25587 mp->b_datap = (dblk_t *)size; 25588 mp->b_queue = NULL; 25589 } 25590 ASSERT(mp->b_wptr != NULL); 25591 } 25592 TCP_DBGSTAT(tcp_timermp_alloced); 25593 25594 return (mp); 25595 } 25596 25597 /* 25598 * Free per-tcp timer cache. 25599 * It can only contain entries from tcp_timercache. 25600 */ 25601 void 25602 tcp_timermp_free(tcp_t *tcp) 25603 { 25604 mblk_t *mp; 25605 25606 while ((mp = tcp->tcp_timercache) != NULL) { 25607 ASSERT(mp->b_wptr == NULL); 25608 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 25609 kmem_cache_free(tcp_timercache, mp); 25610 } 25611 } 25612 25613 /* 25614 * Free timer event. Put it on the per-tcp timer cache if there is not too many 25615 * events there already (currently at most two events are cached). 25616 * If the event is not allocated from the timer cache, free it right away. 25617 */ 25618 static void 25619 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 25620 { 25621 mblk_t *mp1 = tcp->tcp_timercache; 25622 25623 if (mp->b_wptr != NULL) { 25624 /* 25625 * This allocation is not from a timer cache, free it right 25626 * away. 25627 */ 25628 if (mp->b_wptr != (uchar_t *)-1) 25629 freeb(mp); 25630 else 25631 kmem_free(mp, (size_t)mp->b_datap); 25632 } else if (mp1 == NULL || mp1->b_next == NULL) { 25633 /* Cache this timer block for future allocations */ 25634 mp->b_rptr = (uchar_t *)(&mp[1]); 25635 mp->b_next = mp1; 25636 tcp->tcp_timercache = mp; 25637 } else { 25638 kmem_cache_free(tcp_timercache, mp); 25639 TCP_DBGSTAT(tcp_timermp_freed); 25640 } 25641 } 25642 25643 /* 25644 * End of TCP Timers implementation. 25645 */ 25646 25647 /* 25648 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 25649 * on the specified backing STREAMS q. Note, the caller may make the 25650 * decision to call based on the tcp_t.tcp_flow_stopped value which 25651 * when check outside the q's lock is only an advisory check ... 25652 */ 25653 25654 void 25655 tcp_setqfull(tcp_t *tcp) 25656 { 25657 queue_t *q = tcp->tcp_wq; 25658 25659 if (!(q->q_flag & QFULL)) { 25660 mutex_enter(QLOCK(q)); 25661 if (!(q->q_flag & QFULL)) { 25662 /* still need to set QFULL */ 25663 q->q_flag |= QFULL; 25664 tcp->tcp_flow_stopped = B_TRUE; 25665 mutex_exit(QLOCK(q)); 25666 TCP_STAT(tcp_flwctl_on); 25667 } else { 25668 mutex_exit(QLOCK(q)); 25669 } 25670 } 25671 } 25672 25673 void 25674 tcp_clrqfull(tcp_t *tcp) 25675 { 25676 queue_t *q = tcp->tcp_wq; 25677 25678 if (q->q_flag & QFULL) { 25679 mutex_enter(QLOCK(q)); 25680 if (q->q_flag & QFULL) { 25681 q->q_flag &= ~QFULL; 25682 tcp->tcp_flow_stopped = B_FALSE; 25683 mutex_exit(QLOCK(q)); 25684 if (q->q_flag & QWANTW) 25685 qbackenable(q, 0); 25686 } else { 25687 mutex_exit(QLOCK(q)); 25688 } 25689 } 25690 } 25691 25692 /* 25693 * TCP Kstats implementation 25694 */ 25695 static void 25696 tcp_kstat_init(void) 25697 { 25698 tcp_named_kstat_t template = { 25699 { "rtoAlgorithm", KSTAT_DATA_INT32, 0 }, 25700 { "rtoMin", KSTAT_DATA_INT32, 0 }, 25701 { "rtoMax", KSTAT_DATA_INT32, 0 }, 25702 { "maxConn", KSTAT_DATA_INT32, 0 }, 25703 { "activeOpens", KSTAT_DATA_UINT32, 0 }, 25704 { "passiveOpens", KSTAT_DATA_UINT32, 0 }, 25705 { "attemptFails", KSTAT_DATA_UINT32, 0 }, 25706 { "estabResets", KSTAT_DATA_UINT32, 0 }, 25707 { "currEstab", KSTAT_DATA_UINT32, 0 }, 25708 { "inSegs", KSTAT_DATA_UINT64, 0 }, 25709 { "outSegs", KSTAT_DATA_UINT64, 0 }, 25710 { "retransSegs", KSTAT_DATA_UINT32, 0 }, 25711 { "connTableSize", KSTAT_DATA_INT32, 0 }, 25712 { "outRsts", KSTAT_DATA_UINT32, 0 }, 25713 { "outDataSegs", KSTAT_DATA_UINT32, 0 }, 25714 { "outDataBytes", KSTAT_DATA_UINT32, 0 }, 25715 { "retransBytes", KSTAT_DATA_UINT32, 0 }, 25716 { "outAck", KSTAT_DATA_UINT32, 0 }, 25717 { "outAckDelayed", KSTAT_DATA_UINT32, 0 }, 25718 { "outUrg", KSTAT_DATA_UINT32, 0 }, 25719 { "outWinUpdate", KSTAT_DATA_UINT32, 0 }, 25720 { "outWinProbe", KSTAT_DATA_UINT32, 0 }, 25721 { "outControl", KSTAT_DATA_UINT32, 0 }, 25722 { "outFastRetrans", KSTAT_DATA_UINT32, 0 }, 25723 { "inAckSegs", KSTAT_DATA_UINT32, 0 }, 25724 { "inAckBytes", KSTAT_DATA_UINT32, 0 }, 25725 { "inDupAck", KSTAT_DATA_UINT32, 0 }, 25726 { "inAckUnsent", KSTAT_DATA_UINT32, 0 }, 25727 { "inDataInorderSegs", KSTAT_DATA_UINT32, 0 }, 25728 { "inDataInorderBytes", KSTAT_DATA_UINT32, 0 }, 25729 { "inDataUnorderSegs", KSTAT_DATA_UINT32, 0 }, 25730 { "inDataUnorderBytes", KSTAT_DATA_UINT32, 0 }, 25731 { "inDataDupSegs", KSTAT_DATA_UINT32, 0 }, 25732 { "inDataDupBytes", KSTAT_DATA_UINT32, 0 }, 25733 { "inDataPartDupSegs", KSTAT_DATA_UINT32, 0 }, 25734 { "inDataPartDupBytes", KSTAT_DATA_UINT32, 0 }, 25735 { "inDataPastWinSegs", KSTAT_DATA_UINT32, 0 }, 25736 { "inDataPastWinBytes", KSTAT_DATA_UINT32, 0 }, 25737 { "inWinProbe", KSTAT_DATA_UINT32, 0 }, 25738 { "inWinUpdate", KSTAT_DATA_UINT32, 0 }, 25739 { "inClosed", KSTAT_DATA_UINT32, 0 }, 25740 { "rttUpdate", KSTAT_DATA_UINT32, 0 }, 25741 { "rttNoUpdate", KSTAT_DATA_UINT32, 0 }, 25742 { "timRetrans", KSTAT_DATA_UINT32, 0 }, 25743 { "timRetransDrop", KSTAT_DATA_UINT32, 0 }, 25744 { "timKeepalive", KSTAT_DATA_UINT32, 0 }, 25745 { "timKeepaliveProbe", KSTAT_DATA_UINT32, 0 }, 25746 { "timKeepaliveDrop", KSTAT_DATA_UINT32, 0 }, 25747 { "listenDrop", KSTAT_DATA_UINT32, 0 }, 25748 { "listenDropQ0", KSTAT_DATA_UINT32, 0 }, 25749 { "halfOpenDrop", KSTAT_DATA_UINT32, 0 }, 25750 { "outSackRetransSegs", KSTAT_DATA_UINT32, 0 }, 25751 { "connTableSize6", KSTAT_DATA_INT32, 0 } 25752 }; 25753 25754 tcp_mibkp = kstat_create(TCP_MOD_NAME, 0, TCP_MOD_NAME, 25755 "mib2", KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0); 25756 25757 if (tcp_mibkp == NULL) 25758 return; 25759 25760 template.rtoAlgorithm.value.ui32 = 4; 25761 template.rtoMin.value.ui32 = tcp_rexmit_interval_min; 25762 template.rtoMax.value.ui32 = tcp_rexmit_interval_max; 25763 template.maxConn.value.i32 = -1; 25764 25765 bcopy(&template, tcp_mibkp->ks_data, sizeof (template)); 25766 25767 tcp_mibkp->ks_update = tcp_kstat_update; 25768 25769 kstat_install(tcp_mibkp); 25770 } 25771 25772 static void 25773 tcp_kstat_fini(void) 25774 { 25775 25776 if (tcp_mibkp != NULL) { 25777 kstat_delete(tcp_mibkp); 25778 tcp_mibkp = NULL; 25779 } 25780 } 25781 25782 static int 25783 tcp_kstat_update(kstat_t *kp, int rw) 25784 { 25785 tcp_named_kstat_t *tcpkp; 25786 tcp_t *tcp; 25787 connf_t *connfp; 25788 conn_t *connp; 25789 int i; 25790 25791 if (!kp || !kp->ks_data) 25792 return (EIO); 25793 25794 if (rw == KSTAT_WRITE) 25795 return (EACCES); 25796 25797 tcpkp = (tcp_named_kstat_t *)kp->ks_data; 25798 25799 tcpkp->currEstab.value.ui32 = 0; 25800 25801 for (i = 0; i < CONN_G_HASH_SIZE; i++) { 25802 connfp = &ipcl_globalhash_fanout[i]; 25803 connp = NULL; 25804 while ((connp = 25805 ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) { 25806 tcp = connp->conn_tcp; 25807 switch (tcp_snmp_state(tcp)) { 25808 case MIB2_TCP_established: 25809 case MIB2_TCP_closeWait: 25810 tcpkp->currEstab.value.ui32++; 25811 break; 25812 } 25813 } 25814 } 25815 25816 tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens; 25817 tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens; 25818 tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails; 25819 tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets; 25820 tcpkp->inSegs.value.ui64 = tcp_mib.tcpHCInSegs; 25821 tcpkp->outSegs.value.ui64 = tcp_mib.tcpHCOutSegs; 25822 tcpkp->retransSegs.value.ui32 = tcp_mib.tcpRetransSegs; 25823 tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize; 25824 tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts; 25825 tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs; 25826 tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes; 25827 tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes; 25828 tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck; 25829 tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed; 25830 tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg; 25831 tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate; 25832 tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe; 25833 tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl; 25834 tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans; 25835 tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs; 25836 tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes; 25837 tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck; 25838 tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent; 25839 tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs; 25840 tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes; 25841 tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs; 25842 tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes; 25843 tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs; 25844 tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes; 25845 tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs; 25846 tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes; 25847 tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs; 25848 tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes; 25849 tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe; 25850 tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate; 25851 tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed; 25852 tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate; 25853 tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate; 25854 tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans; 25855 tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop; 25856 tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive; 25857 tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe; 25858 tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop; 25859 tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop; 25860 tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0; 25861 tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop; 25862 tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs; 25863 tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize; 25864 25865 return (0); 25866 } 25867 25868 void 25869 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp) 25870 { 25871 uint16_t hdr_len; 25872 ipha_t *ipha; 25873 uint8_t *nexthdrp; 25874 tcph_t *tcph; 25875 25876 /* Already has an eager */ 25877 if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) { 25878 TCP_STAT(tcp_reinput_syn); 25879 squeue_enter(connp->conn_sqp, mp, connp->conn_recv, 25880 connp, SQTAG_TCP_REINPUT_EAGER); 25881 return; 25882 } 25883 25884 switch (IPH_HDR_VERSION(mp->b_rptr)) { 25885 case IPV4_VERSION: 25886 ipha = (ipha_t *)mp->b_rptr; 25887 hdr_len = IPH_HDR_LENGTH(ipha); 25888 break; 25889 case IPV6_VERSION: 25890 if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr, 25891 &hdr_len, &nexthdrp)) { 25892 CONN_DEC_REF(connp); 25893 freemsg(mp); 25894 return; 25895 } 25896 break; 25897 } 25898 25899 tcph = (tcph_t *)&mp->b_rptr[hdr_len]; 25900 if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) { 25901 mp->b_datap->db_struioflag |= STRUIO_EAGER; 25902 DB_CKSUMSTART(mp) = (intptr_t)sqp; 25903 } 25904 25905 squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp, 25906 SQTAG_TCP_REINPUT); 25907 } 25908 25909 static squeue_func_t 25910 tcp_squeue_switch(int val) 25911 { 25912 squeue_func_t rval = squeue_fill; 25913 25914 switch (val) { 25915 case 1: 25916 rval = squeue_enter_nodrain; 25917 break; 25918 case 2: 25919 rval = squeue_enter; 25920 break; 25921 default: 25922 break; 25923 } 25924 return (rval); 25925 } 25926 25927 static void 25928 tcp_squeue_add(squeue_t *sqp) 25929 { 25930 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 25931 sizeof (tcp_squeue_priv_t), KM_SLEEP); 25932 25933 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 25934 tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector, 25935 sqp, TCP_TIME_WAIT_DELAY); 25936 if (tcp_free_list_max_cnt == 0) { 25937 int tcp_ncpus = ((boot_max_ncpus == -1) ? 25938 max_ncpus : boot_max_ncpus); 25939 25940 /* 25941 * Limit number of entries to 1% of availble memory / tcp_ncpus 25942 */ 25943 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 25944 (tcp_ncpus * sizeof (tcp_t) * 100); 25945 } 25946 tcp_time_wait->tcp_free_list_cnt = 0; 25947 } 25948