xref: /titanic_50/usr/src/uts/common/inet/tcp/tcp.c (revision 8461248208fabd3a8230615f8615e5bf1b4dcdcb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 const char tcp_version[] = "%Z%%M%	%I%	%E% SMI";
31 
32 #include <sys/types.h>
33 #include <sys/stream.h>
34 #include <sys/strsun.h>
35 #include <sys/strsubr.h>
36 #include <sys/stropts.h>
37 #include <sys/strlog.h>
38 #include <sys/strsun.h>
39 #define	_SUN_TPI_VERSION 2
40 #include <sys/tihdr.h>
41 #include <sys/timod.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/suntpi.h>
45 #include <sys/xti_inet.h>
46 #include <sys/cmn_err.h>
47 #include <sys/debug.h>
48 #include <sys/vtrace.h>
49 #include <sys/kmem.h>
50 #include <sys/ethernet.h>
51 #include <sys/cpuvar.h>
52 #include <sys/dlpi.h>
53 #include <sys/multidata.h>
54 #include <sys/multidata_impl.h>
55 #include <sys/pattr.h>
56 #include <sys/policy.h>
57 #include <sys/zone.h>
58 
59 #include <sys/errno.h>
60 #include <sys/signal.h>
61 #include <sys/socket.h>
62 #include <sys/sockio.h>
63 #include <sys/isa_defs.h>
64 #include <sys/md5.h>
65 #include <sys/random.h>
66 #include <netinet/in.h>
67 #include <netinet/tcp.h>
68 #include <netinet/ip6.h>
69 #include <netinet/icmp6.h>
70 #include <net/if.h>
71 #include <net/route.h>
72 #include <inet/ipsec_impl.h>
73 
74 #include <inet/common.h>
75 #include <inet/ip.h>
76 #include <inet/ip6.h>
77 #include <inet/ip_ndp.h>
78 #include <inet/mi.h>
79 #include <inet/mib2.h>
80 #include <inet/nd.h>
81 #include <inet/optcom.h>
82 #include <inet/snmpcom.h>
83 #include <inet/kstatcom.h>
84 #include <inet/tcp.h>
85 #include <net/pfkeyv2.h>
86 #include <inet/ipsec_info.h>
87 #include <inet/ipdrop.h>
88 #include <inet/tcp_trace.h>
89 
90 #include <inet/ipclassifier.h>
91 #include <inet/ip_ire.h>
92 #include <inet/ip_if.h>
93 #include <inet/ipp_common.h>
94 #include <sys/squeue.h>
95 
96 /*
97  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
98  *
99  * (Read the detailed design doc in PSARC case directory)
100  *
101  * The entire tcp state is contained in tcp_t and conn_t structure
102  * which are allocated in tandem using ipcl_conn_create() and passing
103  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
104  * the references on the tcp_t. The tcp_t structure is never compressed
105  * and packets always land on the correct TCP perimeter from the time
106  * eager is created till the time tcp_t dies (as such the old mentat
107  * TCP global queue is not used for detached state and no IPSEC checking
108  * is required). The global queue is still allocated to send out resets
109  * for connection which have no listeners and IP directly calls
110  * tcp_xmit_listeners_reset() which does any policy check.
111  *
112  * Protection and Synchronisation mechanism:
113  *
114  * The tcp data structure does not use any kind of lock for protecting
115  * its state but instead uses 'squeues' for mutual exclusion from various
116  * read and write side threads. To access a tcp member, the thread should
117  * always be behind squeue (via squeue_enter, squeue_enter_nodrain, or
118  * squeue_fill). Since the squeues allow a direct function call, caller
119  * can pass any tcp function having prototype of edesc_t as argument
120  * (different from traditional STREAMs model where packets come in only
121  * designated entry points). The list of functions that can be directly
122  * called via squeue are listed before the usual function prototype.
123  *
124  * Referencing:
125  *
126  * TCP is MT-Hot and we use a reference based scheme to make sure that the
127  * tcp structure doesn't disappear when its needed. When the application
128  * creates an outgoing connection or accepts an incoming connection, we
129  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
130  * The IP reference is just a symbolic reference since ip_tcpclose()
131  * looks at tcp structure after tcp_close_output() returns which could
132  * have dropped the last TCP reference. So as long as the connection is
133  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
134  * conn_t. The classifier puts its own reference when the connection is
135  * inserted in listen or connected hash. Anytime a thread needs to enter
136  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
137  * on write side or by doing a classify on read side and then puts a
138  * reference on the conn before doing squeue_enter/tryenter/fill. For
139  * read side, the classifier itself puts the reference under fanout lock
140  * to make sure that tcp can't disappear before it gets processed. The
141  * squeue will drop this reference automatically so the called function
142  * doesn't have to do a DEC_REF.
143  *
144  * Opening a new connection:
145  *
146  * The outgoing connection open is pretty simple. ip_tcpopen() does the
147  * work in creating the conn/tcp structure and initializing it. The
148  * squeue assignment is done based on the CPU the application
149  * is running on. So for outbound connections, processing is always done
150  * on application CPU which might be different from the incoming CPU
151  * being interrupted by the NIC. An optimal way would be to figure out
152  * the NIC <-> CPU binding at listen time, and assign the outgoing
153  * connection to the squeue attached to the CPU that will be interrupted
154  * for incoming packets (we know the NIC based on the bind IP address).
155  * This might seem like a problem if more data is going out but the
156  * fact is that in most cases the transmit is ACK driven transmit where
157  * the outgoing data normally sits on TCP's xmit queue waiting to be
158  * transmitted.
159  *
160  * Accepting a connection:
161  *
162  * This is a more interesting case because of various races involved in
163  * establishing a eager in its own perimeter. Read the meta comment on
164  * top of tcp_conn_request(). But briefly, the squeue is picked by
165  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
166  *
167  * Closing a connection:
168  *
169  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
170  * via squeue to do the close and mark the tcp as detached if the connection
171  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
172  * reference but tcp_close() drop IP's reference always. So if tcp was
173  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
174  * and 1 because it is in classifier's connected hash. This is the condition
175  * we use to determine that its OK to clean up the tcp outside of squeue
176  * when time wait expires (check the ref under fanout and conn_lock and
177  * if it is 2, remove it from fanout hash and kill it).
178  *
179  * Although close just drops the necessary references and marks the
180  * tcp_detached state, tcp_close needs to know the tcp_detached has been
181  * set (under squeue) before letting the STREAM go away (because a
182  * inbound packet might attempt to go up the STREAM while the close
183  * has happened and tcp_detached is not set). So a special lock and
184  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
185  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
186  * tcp_detached.
187  *
188  * Special provisions and fast paths:
189  *
190  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
191  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
192  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
193  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
194  * check to send packets directly to tcp_rput_data via squeue. Everyone
195  * else comes through tcp_input() on the read side.
196  *
197  * We also make special provisions for sockfs by marking tcp_issocket
198  * whenever we have only sockfs on top of TCP. This allows us to skip
199  * putting the tcp in acceptor hash since a sockfs listener can never
200  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
201  * since eager has already been allocated and the accept now happens
202  * on acceptor STREAM. There is a big blob of comment on top of
203  * tcp_conn_request explaining the new accept. When socket is POP'd,
204  * sockfs sends us an ioctl to mark the fact and we go back to old
205  * behaviour. Once tcp_issocket is unset, its never set for the
206  * life of that connection.
207  *
208  * IPsec notes :
209  *
210  * Since a packet is always executed on the correct TCP perimeter
211  * all IPsec processing is defered to IP including checking new
212  * connections and setting IPSEC policies for new connection. The
213  * only exception is tcp_xmit_listeners_reset() which is called
214  * directly from IP and needs to policy check to see if TH_RST
215  * can be sent out.
216  */
217 
218 
219 extern major_t TCP6_MAJ;
220 
221 /*
222  * Values for squeue switch:
223  * 1: squeue_enter_nodrain
224  * 2: squeue_enter
225  * 3: squeue_fill
226  */
227 int tcp_squeue_close = 2;
228 int tcp_squeue_wput = 2;
229 
230 squeue_func_t tcp_squeue_close_proc;
231 squeue_func_t tcp_squeue_wput_proc;
232 
233 extern vmem_t *ip_minor_arena;
234 
235 /*
236  * This controls how tiny a write must be before we try to copy it
237  * into the the mblk on the tail of the transmit queue.  Not much
238  * speedup is observed for values larger than sixteen.  Zero will
239  * disable the optimisation.
240  */
241 int tcp_tx_pull_len = 16;
242 
243 /*
244  * TCP Statistics.
245  *
246  * How TCP statistics work.
247  *
248  * There are two types of statistics invoked by two macros.
249  *
250  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
251  * supposed to be used in non MT-hot paths of the code.
252  *
253  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
254  * supposed to be used for DEBUG purposes and may be used on a hot path.
255  *
256  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
257  * (use "kstat tcp" to get them).
258  *
259  * There is also additional debugging facility that marks tcp_clean_death()
260  * instances and saves them in tcp_t structure. It is triggered by
261  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
262  * tcp_clean_death() calls that counts the number of times each tag was hit. It
263  * is triggered by TCP_CLD_COUNTERS define.
264  *
265  * How to add new counters.
266  *
267  * 1) Add a field in the tcp_stat structure describing your counter.
268  * 2) Add a line in tcp_statistics with the name of the counter.
269  *
270  *    IMPORTANT!! - make sure that both are in sync !!
271  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
272  *
273  * Please avoid using private counters which are not kstat-exported.
274  *
275  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
276  * in tcp_t structure.
277  *
278  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
279  */
280 
281 #define	TCP_COUNTERS 1
282 #define	TCP_CLD_COUNTERS 0
283 
284 #ifndef TCP_DEBUG_COUNTER
285 #ifdef DEBUG
286 #define	TCP_DEBUG_COUNTER 1
287 #else
288 #define	TCP_DEBUG_COUNTER 0
289 #endif
290 #endif
291 
292 
293 #define	TCP_TAG_CLEAN_DEATH 1
294 #define	TCP_MAX_CLEAN_DEATH_TAG 32
295 
296 #ifdef lint
297 static int _lint_dummy_;
298 #endif
299 
300 #if TCP_COUNTERS
301 #define	TCP_STAT(x)		(tcp_statistics.x.value.ui64++)
302 #define	TCP_STAT_UPDATE(x, n)	(tcp_statistics.x.value.ui64 += (n))
303 #define	TCP_STAT_SET(x, n)	(tcp_statistics.x.value.ui64 = (n))
304 #elif defined(lint)
305 #define	TCP_STAT(x)		ASSERT(_lint_dummy_ == 0);
306 #define	TCP_STAT_UPDATE(x, n)	ASSERT(_lint_dummy_ == 0);
307 #define	TCP_STAT_SET(x, n)	ASSERT(_lint_dummy_ == 0);
308 #else
309 #define	TCP_STAT(x)
310 #define	TCP_STAT_UPDATE(x, n)
311 #define	TCP_STAT_SET(x, n)
312 #endif
313 
314 #if TCP_CLD_COUNTERS
315 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
316 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
317 #elif defined(lint)
318 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
319 #else
320 #define	TCP_CLD_STAT(x)
321 #endif
322 
323 #if TCP_DEBUG_COUNTER
324 #define	TCP_DBGSTAT(x) atomic_add_64(&(tcp_statistics.x.value.ui64), 1)
325 #elif defined(lint)
326 #define	TCP_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
327 #else
328 #define	TCP_DBGSTAT(x)
329 #endif
330 
331 typedef struct tcp_stat {
332 	kstat_named_t	tcp_time_wait;
333 	kstat_named_t	tcp_time_wait_syn;
334 	kstat_named_t	tcp_time_wait_syn_success;
335 	kstat_named_t	tcp_time_wait_syn_fail;
336 	kstat_named_t	tcp_reinput_syn;
337 	kstat_named_t	tcp_ip_output;
338 	kstat_named_t	tcp_detach_non_time_wait;
339 	kstat_named_t	tcp_detach_time_wait;
340 	kstat_named_t	tcp_time_wait_reap;
341 	kstat_named_t	tcp_clean_death_nondetached;
342 	kstat_named_t	tcp_reinit_calls;
343 	kstat_named_t	tcp_eager_err1;
344 	kstat_named_t	tcp_eager_err2;
345 	kstat_named_t	tcp_eager_blowoff_calls;
346 	kstat_named_t	tcp_eager_blowoff_q;
347 	kstat_named_t	tcp_eager_blowoff_q0;
348 	kstat_named_t	tcp_not_hard_bound;
349 	kstat_named_t	tcp_no_listener;
350 	kstat_named_t	tcp_found_eager;
351 	kstat_named_t	tcp_wrong_queue;
352 	kstat_named_t	tcp_found_eager_binding1;
353 	kstat_named_t	tcp_found_eager_bound1;
354 	kstat_named_t	tcp_eager_has_listener1;
355 	kstat_named_t	tcp_open_alloc;
356 	kstat_named_t	tcp_open_detached_alloc;
357 	kstat_named_t	tcp_rput_time_wait;
358 	kstat_named_t	tcp_listendrop;
359 	kstat_named_t	tcp_listendropq0;
360 	kstat_named_t	tcp_wrong_rq;
361 	kstat_named_t	tcp_rsrv_calls;
362 	kstat_named_t	tcp_eagerfree2;
363 	kstat_named_t	tcp_eagerfree3;
364 	kstat_named_t	tcp_eagerfree4;
365 	kstat_named_t	tcp_eagerfree5;
366 	kstat_named_t	tcp_timewait_syn_fail;
367 	kstat_named_t	tcp_listen_badflags;
368 	kstat_named_t	tcp_timeout_calls;
369 	kstat_named_t	tcp_timeout_cached_alloc;
370 	kstat_named_t	tcp_timeout_cancel_reqs;
371 	kstat_named_t	tcp_timeout_canceled;
372 	kstat_named_t	tcp_timermp_alloced;
373 	kstat_named_t	tcp_timermp_freed;
374 	kstat_named_t	tcp_timermp_allocfail;
375 	kstat_named_t	tcp_timermp_allocdblfail;
376 	kstat_named_t	tcp_push_timer_cnt;
377 	kstat_named_t	tcp_ack_timer_cnt;
378 	kstat_named_t	tcp_ire_null1;
379 	kstat_named_t	tcp_ire_null;
380 	kstat_named_t	tcp_ip_send;
381 	kstat_named_t	tcp_ip_ire_send;
382 	kstat_named_t   tcp_wsrv_called;
383 	kstat_named_t   tcp_flwctl_on;
384 	kstat_named_t	tcp_timer_fire_early;
385 	kstat_named_t	tcp_timer_fire_miss;
386 	kstat_named_t	tcp_freelist_cleanup;
387 	kstat_named_t	tcp_rput_v6_error;
388 	kstat_named_t	tcp_out_sw_cksum;
389 	kstat_named_t	tcp_zcopy_on;
390 	kstat_named_t	tcp_zcopy_off;
391 	kstat_named_t	tcp_zcopy_backoff;
392 	kstat_named_t	tcp_zcopy_disable;
393 	kstat_named_t	tcp_mdt_pkt_out;
394 	kstat_named_t	tcp_mdt_pkt_out_v4;
395 	kstat_named_t	tcp_mdt_pkt_out_v6;
396 	kstat_named_t	tcp_mdt_discarded;
397 	kstat_named_t	tcp_mdt_conn_halted1;
398 	kstat_named_t	tcp_mdt_conn_halted2;
399 	kstat_named_t	tcp_mdt_conn_halted3;
400 	kstat_named_t	tcp_mdt_conn_resumed1;
401 	kstat_named_t	tcp_mdt_conn_resumed2;
402 	kstat_named_t	tcp_mdt_legacy_small;
403 	kstat_named_t	tcp_mdt_legacy_all;
404 	kstat_named_t	tcp_mdt_legacy_ret;
405 	kstat_named_t	tcp_mdt_allocfail;
406 	kstat_named_t	tcp_mdt_addpdescfail;
407 	kstat_named_t	tcp_mdt_allocd;
408 	kstat_named_t	tcp_mdt_linked;
409 	kstat_named_t	tcp_fusion_flowctl;
410 	kstat_named_t	tcp_fusion_backenabled;
411 	kstat_named_t	tcp_fusion_urg;
412 	kstat_named_t	tcp_fusion_putnext;
413 	kstat_named_t	tcp_fusion_unfusable;
414 	kstat_named_t	tcp_fusion_aborted;
415 	kstat_named_t	tcp_fusion_unqualified;
416 	kstat_named_t	tcp_in_ack_unsent_drop;
417 } tcp_stat_t;
418 
419 #if (TCP_COUNTERS || TCP_DEBUG_COUNTER)
420 static tcp_stat_t tcp_statistics = {
421 	{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
422 	{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
423 	{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
424 	{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
425 	{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
426 	{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
427 	{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
428 	{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
429 	{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
430 	{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
431 	{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
432 	{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
433 	{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
434 	{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
435 	{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
436 	{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
437 	{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
438 	{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
439 	{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
440 	{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
441 	{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
442 	{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
443 	{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
444 	{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
445 	{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
446 	{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
447 	{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
448 	{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
449 	{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
450 	{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
451 	{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
452 	{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
453 	{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
454 	{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
455 	{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
456 	{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
457 	{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
458 	{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
459 	{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
460 	{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
461 	{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
462 	{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
463 	{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
464 	{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
465 	{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
466 	{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
467 	{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
468 	{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
469 	{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
470 	{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
471 	{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
472 	{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
473 	{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
474 	{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
475 	{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
476 	{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
477 	{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
478 	{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
479 	{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
480 	{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
481 	{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
482 	{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
483 	{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
484 	{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
485 	{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
486 	{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
487 	{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
488 	{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
489 	{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
490 	{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
491 	{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
492 	{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
493 	{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
494 	{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
495 	{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
496 	{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
497 	{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
498 	{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
499 	{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
500 	{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
501 	{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
502 	{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
503 	{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
504 	{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
505 	{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
506 };
507 
508 static kstat_t *tcp_kstat;
509 
510 #endif
511 
512 /*
513  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
514  * tcp write side.
515  */
516 #define	CALL_IP_WPUT(connp, q, mp) {					\
517 	ASSERT(((q)->q_flag & QREADR) == 0);				\
518 	TCP_DBGSTAT(tcp_ip_output);					\
519 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
520 }
521 
522 /*
523  * Was this tcp created via socket() interface?
524  */
525 #define	TCP_IS_SOCKET(tcp) ((tcp)->tcp_issocket)
526 
527 
528 /* Macros for timestamp comparisons */
529 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
530 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
531 
532 /*
533  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
534  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
535  * by adding three components: a time component which grows by 1 every 4096
536  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
537  * a per-connection component which grows by 125000 for every new connection;
538  * and an "extra" component that grows by a random amount centered
539  * approximately on 64000.  This causes the the ISS generator to cycle every
540  * 4.89 hours if no TCP connections are made, and faster if connections are
541  * made.
542  *
543  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
544  * components: a time component which grows by 250000 every second; and
545  * a per-connection component which grows by 125000 for every new connections.
546  *
547  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
548  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
549  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
550  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
551  * password.
552  */
553 #define	ISS_INCR	250000
554 #define	ISS_NSEC_SHT	12
555 
556 static uint32_t tcp_iss_incr_extra;	/* Incremented for each connection */
557 static kmutex_t tcp_iss_key_lock;
558 static MD5_CTX tcp_iss_key;
559 static sin_t	sin_null;	/* Zero address for quick clears */
560 static sin6_t	sin6_null;	/* Zero address for quick clears */
561 
562 /* Packet dropper for TCP IPsec policy drops. */
563 static ipdropper_t tcp_dropper;
564 
565 /*
566  * This implementation follows the 4.3BSD interpretation of the urgent
567  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
568  * incompatible changes in protocols like telnet and rlogin.
569  */
570 #define	TCP_OLD_URP_INTERPRETATION	1
571 
572 #define	TCP_IS_DETACHED(tcp)		((tcp)->tcp_detached)
573 
574 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
575 	(TCP_IS_DETACHED(tcp) && \
576 	    (!(tcp)->tcp_hard_binding))
577 
578 /*
579  * TCP reassembly macros.  We hide starting and ending sequence numbers in
580  * b_next and b_prev of messages on the reassembly queue.  The messages are
581  * chained using b_cont.  These macros are used in tcp_reass() so we don't
582  * have to see the ugly casts and assignments.
583  */
584 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
585 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
586 					(mblk_t *)(uintptr_t)(u))
587 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
588 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
589 					(mblk_t *)(uintptr_t)(u))
590 
591 /*
592  * Implementation of TCP Timers.
593  * =============================
594  *
595  * INTERFACE:
596  *
597  * There are two basic functions dealing with tcp timers:
598  *
599  *	timeout_id_t	tcp_timeout(connp, func, time)
600  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
601  *	TCP_TIMER_RESTART(tcp, intvl)
602  *
603  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
604  * after 'time' ticks passed. The function called by timeout() must adhere to
605  * the same restrictions as a driver soft interrupt handler - it must not sleep
606  * or call other functions that might sleep. The value returned is the opaque
607  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
608  * cancel the request. The call to tcp_timeout() may fail in which case it
609  * returns zero. This is different from the timeout(9F) function which never
610  * fails.
611  *
612  * The call-back function 'func' always receives 'connp' as its single
613  * argument. It is always executed in the squeue corresponding to the tcp
614  * structure. The tcp structure is guaranteed to be present at the time the
615  * call-back is called.
616  *
617  * NOTE: The call-back function 'func' is never called if tcp is in
618  * 	the TCPS_CLOSED state.
619  *
620  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
621  * request. locks acquired by the call-back routine should not be held across
622  * the call to tcp_timeout_cancel() or a deadlock may result.
623  *
624  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
625  * Otherwise, it returns an integer value greater than or equal to 0. In
626  * particular, if the call-back function is already placed on the squeue, it can
627  * not be canceled.
628  *
629  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
630  * 	within squeue context corresponding to the tcp instance. Since the
631  *	call-back is also called via the same squeue, there are no race
632  *	conditions described in untimeout(9F) manual page since all calls are
633  *	strictly serialized.
634  *
635  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
636  *	stored in tcp_timer_tid and starts a new one using
637  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
638  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
639  *	field.
640  *
641  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
642  *	call-back may still be called, so it is possible tcp_timer() will be
643  *	called several times. This should not be a problem since tcp_timer()
644  *	should always check the tcp instance state.
645  *
646  *
647  * IMPLEMENTATION:
648  *
649  * TCP timers are implemented using three-stage process. The call to
650  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
651  * when the timer expires. The tcp_timer_callback() arranges the call of the
652  * tcp_timer_handler() function via squeue corresponding to the tcp
653  * instance. The tcp_timer_handler() calls actual requested timeout call-back
654  * and passes tcp instance as an argument to it. Information is passed between
655  * stages using the tcp_timer_t structure which contains the connp pointer, the
656  * tcp call-back to call and the timeout id returned by the timeout(9F).
657  *
658  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
659  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
660  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
661  * returns the pointer to this mblk.
662  *
663  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
664  * looks like a normal mblk without actual dblk attached to it.
665  *
666  * To optimize performance each tcp instance holds a small cache of timer
667  * mblocks. In the current implementation it caches up to two timer mblocks per
668  * tcp instance. The cache is preserved over tcp frees and is only freed when
669  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
670  * timer processing happens on a corresponding squeue, the cache manipulation
671  * does not require any locks. Experiments show that majority of timer mblocks
672  * allocations are satisfied from the tcp cache and do not involve kmem calls.
673  *
674  * The tcp_timeout() places a refhold on the connp instance which guarantees
675  * that it will be present at the time the call-back function fires. The
676  * tcp_timer_handler() drops the reference after calling the call-back, so the
677  * call-back function does not need to manipulate the references explicitly.
678  */
679 
680 typedef struct tcp_timer_s {
681 	conn_t	*connp;
682 	void 	(*tcpt_proc)(void *);
683 	timeout_id_t   tcpt_tid;
684 } tcp_timer_t;
685 
686 static kmem_cache_t *tcp_timercache;
687 kmem_cache_t	*tcp_sack_info_cache;
688 kmem_cache_t	*tcp_iphc_cache;
689 
690 #define	TCP_TIMER(tcp, f, tim) tcp_timeout(tcp->tcp_connp, f, tim)
691 #define	TCP_TIMER_CANCEL(tcp, id) tcp_timeout_cancel(tcp->tcp_connp, id)
692 
693 /*
694  * To restart the TCP retransmission timer.
695  */
696 #define	TCP_TIMER_RESTART(tcp, intvl) \
697 { \
698 	if ((tcp)->tcp_timer_tid != 0) { \
699 		(void) TCP_TIMER_CANCEL((tcp),	\
700 					(tcp)->tcp_timer_tid); \
701 	} \
702 	(tcp)->tcp_timer_tid = TCP_TIMER((tcp), tcp_timer, \
703 	    MSEC_TO_TICK(intvl)); \
704 }
705 
706 /*
707  * For scalability, we must not run a timer for every TCP connection
708  * in TIME_WAIT state.  To see why, consider (for time wait interval of
709  * 4 minutes):
710  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
711  *
712  * This list is ordered by time, so you need only delete from the head
713  * until you get to entries which aren't old enough to delete yet.
714  * The list consists of only the detached TIME_WAIT connections.
715  *
716  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
717  * becomes detached TIME_WAIT (either by changing the state and already
718  * being detached or the other way around). This means that the TIME_WAIT
719  * state can be extended (up to doubled) if the connection doesn't become
720  * detached for a long time.
721  *
722  * The list manipulations (including tcp_time_wait_next/prev)
723  * are protected by the tcp_time_wait_lock. The content of the
724  * detached TIME_WAIT connections is protected by the normal perimeters.
725  */
726 
727 typedef struct tcp_squeue_priv_s {
728 	kmutex_t	tcp_time_wait_lock;
729 				/* Protects the next 3 globals */
730 	timeout_id_t	tcp_time_wait_tid;
731 	tcp_t		*tcp_time_wait_head;
732 	tcp_t		*tcp_time_wait_tail;
733 	tcp_t		*tcp_free_list;
734 } tcp_squeue_priv_t;
735 
736 /*
737  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
738  * Running it every 5 seconds seems to give the best results.
739  */
740 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
741 
742 
743 #define	TCP_XMIT_LOWATER	4096
744 #define	TCP_XMIT_HIWATER	49152
745 #define	TCP_RECV_LOWATER	2048
746 #define	TCP_RECV_HIWATER	49152
747 
748 /*
749  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
750  */
751 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
752 
753 #define	TIDUSZ	4096	/* transport interface data unit size */
754 
755 /*
756  * Bind hash list size and has function.  It has to be a power of 2 for
757  * hashing.
758  */
759 #define	TCP_BIND_FANOUT_SIZE	512
760 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
761 /*
762  * Size of listen and acceptor hash list.  It has to be a power of 2 for
763  * hashing.
764  */
765 #define	TCP_FANOUT_SIZE		256
766 
767 #ifdef	_ILP32
768 #define	TCP_ACCEPTOR_HASH(accid)					\
769 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
770 #else
771 #define	TCP_ACCEPTOR_HASH(accid)					\
772 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
773 #endif	/* _ILP32 */
774 
775 #define	IP_ADDR_CACHE_SIZE	2048
776 #define	IP_ADDR_CACHE_HASH(faddr)					\
777 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
778 
779 /* Hash for HSPs uses all 32 bits, since both networks and hosts are in table */
780 #define	TCP_HSP_HASH_SIZE 256
781 
782 #define	TCP_HSP_HASH(addr)					\
783 	(((addr>>24) ^ (addr >>16) ^			\
784 	    (addr>>8) ^ (addr)) % TCP_HSP_HASH_SIZE)
785 
786 /*
787  * TCP options struct returned from tcp_parse_options.
788  */
789 typedef struct tcp_opt_s {
790 	uint32_t	tcp_opt_mss;
791 	uint32_t	tcp_opt_wscale;
792 	uint32_t	tcp_opt_ts_val;
793 	uint32_t	tcp_opt_ts_ecr;
794 	tcp_t		*tcp;
795 } tcp_opt_t;
796 
797 /*
798  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
799  */
800 
801 #ifdef _BIG_ENDIAN
802 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
803 	(TCPOPT_TSTAMP << 8) | 10)
804 #else
805 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
806 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
807 #endif
808 
809 /*
810  * Flags returned from tcp_parse_options.
811  */
812 #define	TCP_OPT_MSS_PRESENT	1
813 #define	TCP_OPT_WSCALE_PRESENT	2
814 #define	TCP_OPT_TSTAMP_PRESENT	4
815 #define	TCP_OPT_SACK_OK_PRESENT	8
816 #define	TCP_OPT_SACK_PRESENT	16
817 
818 /* TCP option length */
819 #define	TCPOPT_NOP_LEN		1
820 #define	TCPOPT_MAXSEG_LEN	4
821 #define	TCPOPT_WS_LEN		3
822 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
823 #define	TCPOPT_TSTAMP_LEN	10
824 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
825 #define	TCPOPT_SACK_OK_LEN	2
826 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
827 #define	TCPOPT_REAL_SACK_LEN	4
828 #define	TCPOPT_MAX_SACK_LEN	36
829 #define	TCPOPT_HEADER_LEN	2
830 
831 /* TCP cwnd burst factor. */
832 #define	TCP_CWND_INFINITE	65535
833 #define	TCP_CWND_SS		3
834 #define	TCP_CWND_NORMAL		5
835 
836 /* Maximum TCP initial cwin (start/restart). */
837 #define	TCP_MAX_INIT_CWND	8
838 
839 /*
840  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
841  * either tcp_slow_start_initial or tcp_slow_start_after idle
842  * depending on the caller.  If the upper layer has not used the
843  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
844  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
845  * If the upper layer has changed set the tcp_init_cwnd, just use
846  * it to calculate the tcp_cwnd.
847  */
848 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
849 {									\
850 	if ((tcp)->tcp_init_cwnd == 0) {				\
851 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
852 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
853 	} else {							\
854 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
855 	}								\
856 	tcp->tcp_cwnd_cnt = 0;						\
857 }
858 
859 /* TCP Timer control structure */
860 typedef struct tcpt_s {
861 	pfv_t	tcpt_pfv;	/* The routine we are to call */
862 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
863 } tcpt_t;
864 
865 /* Host Specific Parameter structure */
866 typedef struct tcp_hsp {
867 	struct tcp_hsp	*tcp_hsp_next;
868 	in6_addr_t	tcp_hsp_addr_v6;
869 	in6_addr_t	tcp_hsp_subnet_v6;
870 	uint_t		tcp_hsp_vers;	/* IPV4_VERSION | IPV6_VERSION */
871 	int32_t		tcp_hsp_sendspace;
872 	int32_t		tcp_hsp_recvspace;
873 	int32_t		tcp_hsp_tstamp;
874 } tcp_hsp_t;
875 #define	tcp_hsp_addr	V4_PART_OF_V6(tcp_hsp_addr_v6)
876 #define	tcp_hsp_subnet	V4_PART_OF_V6(tcp_hsp_subnet_v6)
877 
878 /*
879  * Functions called directly via squeue having a prototype of edesc_t.
880  */
881 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
882 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
883 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
884 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
885 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
886 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
887 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
888 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
889 static void	tcp_output(void *arg, mblk_t *mp, void *arg2);
890 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
891 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
892 
893 
894 /* Prototype for TCP functions */
895 static void	tcp_random_init(void);
896 int		tcp_random(void);
897 static void	tcp_accept(tcp_t *tcp, mblk_t *mp);
898 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
899 		    tcp_t *eager);
900 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
901 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
902 		    int reuseaddr, boolean_t bind_to_req_port_only,
903 		    boolean_t user_specified);
904 static void	tcp_closei_local(tcp_t *tcp);
905 static void	tcp_close_detached(tcp_t *tcp);
906 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
907 			mblk_t *idmp, mblk_t **defermp);
908 static void	tcp_connect(tcp_t *tcp, mblk_t *mp);
909 static void	tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp,
910 		    in_port_t dstport, uint_t srcid);
911 static void	tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
912 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
913 		    uint32_t scope_id);
914 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
915 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
916 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
917 static char	*tcp_display(tcp_t *tcp, char *, char);
918 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
919 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
920 static void	tcp_eager_unlink(tcp_t *tcp);
921 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
922 		    int unixerr);
923 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
924 		    int tlierr, int unixerr);
925 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
926 		    cred_t *cr);
927 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
928 		    char *value, caddr_t cp, cred_t *cr);
929 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
930 		    char *value, caddr_t cp, cred_t *cr);
931 static int	tcp_tpistate(tcp_t *tcp);
932 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
933     int caller_holds_lock);
934 static void	tcp_bind_hash_remove(tcp_t *tcp);
935 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id);
936 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
937 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
938 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
939 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
940 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
941 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
942 static int	tcp_header_init_ipv4(tcp_t *tcp);
943 static int	tcp_header_init_ipv6(tcp_t *tcp);
944 int		tcp_init(tcp_t *tcp, queue_t *q);
945 static int	tcp_init_values(tcp_t *tcp);
946 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
947 static mblk_t	*tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim,
948 		    t_scalar_t addr_length);
949 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
950 static void	tcp_ip_notify(tcp_t *tcp);
951 static mblk_t	*tcp_ire_mp(mblk_t *mp);
952 static void	tcp_iss_init(tcp_t *tcp);
953 static void	tcp_keepalive_killer(void *arg);
954 static int	tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk);
955 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
956 static void	tcp_mss_set(tcp_t *tcp, uint32_t size);
957 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
958 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
959 static boolean_t tcp_allow_connopt_set(int level, int name);
960 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
961 int		tcp_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
962 static int	tcp_opt_get_user(ipha_t *ipha, uchar_t *ptr);
963 int		tcp_opt_set(queue_t *q, uint_t optset_context, int level,
964 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
965 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
966 		    mblk_t *mblk);
967 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
968 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
969 		    uchar_t *ptr, uint_t len);
970 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
971 static boolean_t tcp_param_register(tcpparam_t *tcppa, int cnt);
972 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
973 		    caddr_t cp, cred_t *cr);
974 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
975 		    caddr_t cp, cred_t *cr);
976 static void	tcp_iss_key_init(uint8_t *phrase, int len);
977 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
978 		    caddr_t cp, cred_t *cr);
979 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
980 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
981 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
982 static void	tcp_reinit(tcp_t *tcp);
983 static void	tcp_reinit_values(tcp_t *tcp);
984 static void	tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval,
985 		    tcp_t *thisstream, cred_t *cr);
986 
987 static uint_t	tcp_rcv_drain(queue_t *q, tcp_t *tcp);
988 static void	tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len);
989 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
990 static boolean_t tcp_send_rst_chk(void);
991 static void	tcp_ss_rexmit(tcp_t *tcp);
992 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
993 static void	tcp_process_options(tcp_t *, tcph_t *);
994 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
995 static void	tcp_rsrv(queue_t *q);
996 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
997 static int	tcp_snmp_get(queue_t *q, mblk_t *mpctl);
998 static int	tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr,
999 		    int len);
1000 static int	tcp_snmp_state(tcp_t *tcp);
1001 static int	tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp,
1002 		    cred_t *cr);
1003 static int	tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
1004 		    cred_t *cr);
1005 static int	tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
1006 		    cred_t *cr);
1007 static int	tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
1008 		    cred_t *cr);
1009 static int	tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp,
1010 		    cred_t *cr);
1011 static int	tcp_host_param_set(queue_t *q, mblk_t *mp, char *value,
1012 		    caddr_t cp, cred_t *cr);
1013 static int	tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value,
1014 		    caddr_t cp, cred_t *cr);
1015 static int	tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp,
1016 		    cred_t *cr);
1017 static void	tcp_timer(void *arg);
1018 static void	tcp_timer_callback(void *);
1019 static in_port_t tcp_update_next_port(in_port_t port, boolean_t random);
1020 static in_port_t tcp_get_next_priv_port(void);
1021 static void	tcp_wput(queue_t *q, mblk_t *mp);
1022 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
1023 void		tcp_wput_accept(queue_t *q, mblk_t *mp);
1024 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
1025 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
1026 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
1027 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
1028 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
1029 		    const int num_sack_blk, int *usable, uint_t *snxt,
1030 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
1031 		    const int mdt_thres);
1032 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
1033 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
1034 		    const int num_sack_blk, int *usable, uint_t *snxt,
1035 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
1036 		    const int mdt_thres);
1037 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
1038 		    int num_sack_blk);
1039 static void	tcp_wsrv(queue_t *q);
1040 static int	tcp_xmit_end(tcp_t *tcp);
1041 void		tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len);
1042 static mblk_t	*tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send,
1043 		    int32_t *offset, mblk_t **end_mp, uint32_t seq,
1044 		    boolean_t sendall, uint32_t *seg_len, boolean_t rexmit);
1045 static void	tcp_ack_timer(void *arg);
1046 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
1047 static void	tcp_push_timer(void *arg);
1048 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
1049 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len);
1050 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
1051 		    uint32_t ack, int ctl);
1052 static tcp_hsp_t *tcp_hsp_lookup(ipaddr_t addr);
1053 static tcp_hsp_t *tcp_hsp_lookup_ipv6(in6_addr_t *addr);
1054 static int	setmaxps(queue_t *q, int maxpsz);
1055 static void	tcp_set_rto(tcp_t *, time_t);
1056 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
1057 		    boolean_t, boolean_t);
1058 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
1059 		    boolean_t ipsec_mctl);
1060 static boolean_t tcp_cmpbuf(void *a, uint_t alen,
1061 		    boolean_t b_valid, void *b, uint_t blen);
1062 static boolean_t tcp_allocbuf(void **dstp, uint_t *dstlenp,
1063 		    boolean_t src_valid, void *src, uint_t srclen);
1064 static void	tcp_savebuf(void **dstp, uint_t *dstlenp,
1065 		    boolean_t src_valid, void *src, uint_t srclen);
1066 static mblk_t	*tcp_setsockopt_mp(int level, int cmd,
1067 		    char *opt, int optlen);
1068 static int	tcp_pkt_set(uchar_t *, uint_t, uchar_t **, uint_t *);
1069 static int	tcp_build_hdrs(queue_t *, tcp_t *);
1070 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
1071 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
1072 		    tcph_t *tcph);
1073 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
1074 boolean_t	tcp_reserved_port_add(int, in_port_t *, in_port_t *);
1075 boolean_t	tcp_reserved_port_del(in_port_t, in_port_t);
1076 boolean_t	tcp_reserved_port_check(in_port_t);
1077 static tcp_t	*tcp_alloc_temp_tcp(in_port_t);
1078 static int	tcp_reserved_port_list(queue_t *, mblk_t *, caddr_t, cred_t *);
1079 static void	tcp_timers_stop(tcp_t *);
1080 static timeout_id_t tcp_timeout(conn_t *, void (*)(void *), clock_t);
1081 static clock_t	tcp_timeout_cancel(conn_t *, timeout_id_t);
1082 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
1083 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
1084 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
1085 		    const boolean_t, const uint32_t, const uint32_t,
1086 		    const uint32_t, const uint32_t);
1087 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
1088 		    const uint_t, const uint_t, boolean_t *);
1089 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
1090 extern mblk_t	*tcp_timermp_alloc(int);
1091 extern void	tcp_timermp_free(tcp_t *);
1092 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
1093 static void	tcp_stop_lingering(tcp_t *tcp);
1094 static void	tcp_close_linger_timeout(void *arg);
1095 void		tcp_ddi_init(void);
1096 void		tcp_ddi_destroy(void);
1097 static void	tcp_kstat_init(void);
1098 static void	tcp_kstat_fini(void);
1099 static int	tcp_kstat_update(kstat_t *kp, int rw);
1100 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
1101 conn_t		*tcp_get_next_conn(connf_t *, conn_t *);
1102 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
1103 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
1104 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
1105 			tcph_t *tcph, mblk_t *idmp);
1106 static squeue_func_t tcp_squeue_switch(int);
1107 
1108 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *);
1109 static int	tcp_close(queue_t *, int);
1110 static int	tcpclose_accept(queue_t *);
1111 static int	tcp_modclose(queue_t *);
1112 static void	tcp_wput_mod(queue_t *, mblk_t *);
1113 
1114 static void	tcp_squeue_add(squeue_t *);
1115 static boolean_t tcp_zcopy_check(tcp_t *);
1116 static void	tcp_zcopy_notify(tcp_t *);
1117 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
1118 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
1119 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
1120 
1121 static void	tcp_fuse(tcp_t *, uchar_t *, tcph_t *);
1122 static void	tcp_unfuse(tcp_t *);
1123 static boolean_t tcp_fuse_output(tcp_t *, mblk_t *);
1124 static void	tcp_fuse_output_urg(tcp_t *, mblk_t *);
1125 static boolean_t tcp_fuse_rcv_drain(queue_t *, tcp_t *, mblk_t **);
1126 
1127 extern mblk_t	*allocb_tryhard(size_t);
1128 
1129 /*
1130  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
1131  *
1132  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
1133  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
1134  * (defined in tcp.h) needs to be filled in and passed into the kernel
1135  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
1136  * structure contains the four-tuple of a TCP connection and a range of TCP
1137  * states (specified by ac_start and ac_end). The use of wildcard addresses
1138  * and ports is allowed. Connections with a matching four tuple and a state
1139  * within the specified range will be aborted. The valid states for the
1140  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
1141  * inclusive.
1142  *
1143  * An application which has its connection aborted by this ioctl will receive
1144  * an error that is dependent on the connection state at the time of the abort.
1145  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
1146  * though a RST packet has been received.  If the connection state is equal to
1147  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
1148  * and all resources associated with the connection will be freed.
1149  */
1150 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
1151 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
1152 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
1153 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *);
1154 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
1155 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
1156     boolean_t);
1157 
1158 
1159 static void	tcp_clrqfull(tcp_t *);
1160 static void	tcp_setqfull(tcp_t *);
1161 
1162 static struct module_info tcp_rinfo =  {
1163 #define	TCP_MODULE_ID	5105
1164 	TCP_MODULE_ID, "tcp", 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
1165 };
1166 
1167 static struct module_info tcp_winfo =  {
1168 	TCP_MODULE_ID, "tcp", 0, INFPSZ, 127, 16
1169 };
1170 
1171 /*
1172  * Entry points for TCP as a module. It only allows SNMP requests
1173  * to pass through.
1174  */
1175 struct qinit tcp_mod_rinit = {
1176 	(pfi_t)putnext, NULL, tcp_open, tcp_modclose, NULL, &tcp_rinfo
1177 };
1178 
1179 struct qinit tcp_mod_winit = {
1180 	(pfi_t)tcp_wput_mod, NULL, tcp_open, tcp_modclose, NULL, &tcp_rinfo
1181 };
1182 
1183 /*
1184  * Entry points for TCP as a device. The normal case which supports
1185  * the TCP functionality.
1186  */
1187 struct qinit tcp_rinit = {
1188 	NULL, (pfi_t)tcp_rsrv, tcp_open, tcp_close, NULL, &tcp_rinfo
1189 };
1190 
1191 struct qinit tcp_winit = {
1192 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1193 };
1194 
1195 /* Initial entry point for TCP in socket mode. */
1196 struct qinit tcp_sock_winit = {
1197 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
1198 };
1199 
1200 /*
1201  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
1202  * an accept. Avoid allocating data structures since eager has already
1203  * been created.
1204  */
1205 struct qinit tcp_acceptor_rinit = {
1206 	NULL, (pfi_t)tcp_rsrv, NULL, tcpclose_accept, NULL, &tcp_winfo
1207 };
1208 
1209 struct qinit tcp_acceptor_winit = {
1210 	(pfi_t)tcp_wput_accept, NULL, NULL, NULL, NULL, &tcp_winfo
1211 };
1212 
1213 struct streamtab tcpinfo = {
1214 	&tcp_rinit, &tcp_winit
1215 };
1216 
1217 
1218 extern squeue_func_t tcp_squeue_wput_proc;
1219 extern squeue_func_t tcp_squeue_timer_proc;
1220 
1221 /* Protected by tcp_g_q_lock */
1222 static queue_t	*tcp_g_q;	/* Default queue used during detached closes */
1223 kmutex_t tcp_g_q_lock;
1224 
1225 /* Protected by tcp_hsp_lock */
1226 /*
1227  * XXX The host param mechanism should go away and instead we should use
1228  * the metrics associated with the routes to determine the default sndspace
1229  * and rcvspace.
1230  */
1231 static tcp_hsp_t	**tcp_hsp_hash;	/* Hash table for HSPs */
1232 krwlock_t tcp_hsp_lock;
1233 
1234 /*
1235  * Extra privileged ports. In host byte order.
1236  * Protected by tcp_epriv_port_lock.
1237  */
1238 #define	TCP_NUM_EPRIV_PORTS	64
1239 static int	tcp_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
1240 static uint16_t	tcp_g_epriv_ports[TCP_NUM_EPRIV_PORTS] = { 2049, 4045 };
1241 kmutex_t tcp_epriv_port_lock;
1242 
1243 /*
1244  * The smallest anonymous port in the priviledged port range which TCP
1245  * looks for free port.  Use in the option TCP_ANONPRIVBIND.
1246  */
1247 static in_port_t tcp_min_anonpriv_port = 512;
1248 
1249 /* Only modified during _init and _fini thus no locking is needed. */
1250 static caddr_t	tcp_g_nd;	/* Head of 'named dispatch' variable list */
1251 
1252 /* Hint not protected by any lock */
1253 static uint_t	tcp_next_port_to_try;
1254 
1255 
1256 /* TCP bind hash list - all tcp_t with state >= BOUND. */
1257 static tf_t	tcp_bind_fanout[TCP_BIND_FANOUT_SIZE];
1258 
1259 /* TCP queue hash list - all tcp_t in case they will be an acceptor. */
1260 static tf_t	tcp_acceptor_fanout[TCP_FANOUT_SIZE];
1261 
1262 /*
1263  * TCP has a private interface for other kernel modules to reserve a
1264  * port range for them to use.  Once reserved, TCP will not use any ports
1265  * in the range.  This interface relies on the TCP_EXCLBIND feature.  If
1266  * the semantics of TCP_EXCLBIND is changed, implementation of this interface
1267  * has to be verified.
1268  *
1269  * There can be TCP_RESERVED_PORTS_ARRAY_MAX_SIZE port ranges.  Each port
1270  * range can cover at most TCP_RESERVED_PORTS_RANGE_MAX ports.  A port
1271  * range is [port a, port b] inclusive.  And each port range is between
1272  * TCP_LOWESET_RESERVED_PORT and TCP_LARGEST_RESERVED_PORT inclusive.
1273  *
1274  * Note that the default anonymous port range starts from 32768.  There is
1275  * no port "collision" between that and the reserved port range.  If there
1276  * is port collision (because the default smallest anonymous port is lowered
1277  * or some apps specifically bind to ports in the reserved port range), the
1278  * system may not be able to reserve a port range even there are enough
1279  * unbound ports as a reserved port range contains consecutive ports .
1280  */
1281 #define	TCP_RESERVED_PORTS_ARRAY_MAX_SIZE	5
1282 #define	TCP_RESERVED_PORTS_RANGE_MAX		1000
1283 #define	TCP_SMALLEST_RESERVED_PORT		10240
1284 #define	TCP_LARGEST_RESERVED_PORT		20480
1285 
1286 /* Structure to represent those reserved port ranges. */
1287 typedef struct tcp_rport_s {
1288 	in_port_t	lo_port;
1289 	in_port_t	hi_port;
1290 	tcp_t		**temp_tcp_array;
1291 } tcp_rport_t;
1292 
1293 /* The reserved port array. */
1294 static tcp_rport_t tcp_reserved_port[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
1295 
1296 /* Locks to protect the tcp_reserved_ports array. */
1297 static krwlock_t tcp_reserved_port_lock;
1298 
1299 /* The number of ranges in the array. */
1300 uint32_t tcp_reserved_port_array_size = 0;
1301 
1302 /*
1303  * MIB-2 stuff for SNMP
1304  * Note: tcpInErrs {tcp 15} is accumulated in ip.c
1305  */
1306 mib2_tcp_t	tcp_mib;	/* SNMP fixed size info */
1307 kstat_t		*tcp_mibkp;	/* kstat exporting tcp_mib data */
1308 
1309 /*
1310  * Object to represent database of options to search passed to
1311  * {sock,tpi}optcom_req() interface routine to take care of option
1312  * management and associated methods.
1313  * XXX These and other externs should ideally move to a TCP header
1314  */
1315 extern optdb_obj_t	tcp_opt_obj;
1316 extern uint_t		tcp_max_optsize;
1317 
1318 boolean_t tcp_icmp_source_quench = B_FALSE;
1319 /*
1320  * Following assumes TPI alignment requirements stay along 32 bit
1321  * boundaries
1322  */
1323 #define	ROUNDUP32(x) \
1324 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1325 
1326 /* Template for response to info request. */
1327 static struct T_info_ack tcp_g_t_info_ack = {
1328 	T_INFO_ACK,		/* PRIM_type */
1329 	0,			/* TSDU_size */
1330 	T_INFINITE,		/* ETSDU_size */
1331 	T_INVALID,		/* CDATA_size */
1332 	T_INVALID,		/* DDATA_size */
1333 	sizeof (sin_t),		/* ADDR_size */
1334 	0,			/* OPT_size - not initialized here */
1335 	TIDUSZ,			/* TIDU_size */
1336 	T_COTS_ORD,		/* SERV_type */
1337 	TCPS_IDLE,		/* CURRENT_state */
1338 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1339 };
1340 
1341 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1342 	T_INFO_ACK,		/* PRIM_type */
1343 	0,			/* TSDU_size */
1344 	T_INFINITE,		/* ETSDU_size */
1345 	T_INVALID,		/* CDATA_size */
1346 	T_INVALID,		/* DDATA_size */
1347 	sizeof (sin6_t),	/* ADDR_size */
1348 	0,			/* OPT_size - not initialized here */
1349 	TIDUSZ,		/* TIDU_size */
1350 	T_COTS_ORD,		/* SERV_type */
1351 	TCPS_IDLE,		/* CURRENT_state */
1352 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1353 };
1354 
1355 #define	MS	1L
1356 #define	SECONDS	(1000 * MS)
1357 #define	MINUTES	(60 * SECONDS)
1358 #define	HOURS	(60 * MINUTES)
1359 #define	DAYS	(24 * HOURS)
1360 
1361 #define	PARAM_MAX (~(uint32_t)0)
1362 
1363 /* Max size IP datagram is 64k - 1 */
1364 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1365 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1366 /* Max of the above */
1367 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1368 
1369 /* Largest TCP port number */
1370 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1371 
1372 /*
1373  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1374  * layer header.  It has to be a multiple of 4.
1375  */
1376 static tcpparam_t tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1377 #define	tcp_wroff_xtra	tcp_wroff_xtra_param.tcp_param_val
1378 
1379 /*
1380  * All of these are alterable, within the min/max values given, at run time.
1381  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1382  * per the TCP spec.
1383  */
1384 /* BEGIN CSTYLED */
1385 tcpparam_t	tcp_param_arr[] = {
1386  /*min		max		value		name */
1387  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1388  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1389  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1390  { 1,		1024,		1,		"tcp_conn_req_min" },
1391  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1392  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1393  { 0,		10,		0,		"tcp_debug" },
1394  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1395  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1396  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1397  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1398  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1399  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1400  { 1,		255,		64,		"tcp_ipv4_ttl"},
1401  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1402  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1403  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1404  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1405  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1406  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1407  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1408  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1409  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1410  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1411  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1412  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1413  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1414  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1415  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1416  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1417  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1418  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1419  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1420  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1421  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1422  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1423  { 0,		TCP_MSS_MAX,	64,		"tcp_co_min"},
1424  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1425 /*
1426  * Question:  What default value should I set for tcp_strong_iss?
1427  */
1428  { 0,		2,		1,		"tcp_strong_iss"},
1429  { 0,		65536,		20,		"tcp_rtt_updates"},
1430  { 0,		1,		1,		"tcp_wscale_always"},
1431  { 0,		1,		0,		"tcp_tstamp_always"},
1432  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1433  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1434  { 0,		16,		2,		"tcp_deferred_acks_max"},
1435  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1436  { 1,		4,		4,		"tcp_slow_start_initial"},
1437  { 10*MS,	50*MS,		20*MS,		"tcp_co_timer_interval"},
1438  { 0,		2,		2,		"tcp_sack_permitted"},
1439  { 0,		1,		0,		"tcp_trace"},
1440  { 0,		1,		1,		"tcp_compression_enabled"},
1441  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1442  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1443  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1444  { 0,		1,		0,		"tcp_rev_src_routes"},
1445  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1446  { 100*MS,	60*SECONDS,	1*SECONDS,	"tcp_ndd_get_info_interval"},
1447  { 0,		16,		8,		"tcp_local_dacks_max"},
1448  { 0,		2,		1,		"tcp_ecn_permitted"},
1449  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1450  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1451  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1452  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1453  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1454 };
1455 /* END CSTYLED */
1456 
1457 
1458 #define	tcp_time_wait_interval			tcp_param_arr[0].tcp_param_val
1459 #define	tcp_conn_req_max_q			tcp_param_arr[1].tcp_param_val
1460 #define	tcp_conn_req_max_q0			tcp_param_arr[2].tcp_param_val
1461 #define	tcp_conn_req_min			tcp_param_arr[3].tcp_param_val
1462 #define	tcp_conn_grace_period			tcp_param_arr[4].tcp_param_val
1463 #define	tcp_cwnd_max_				tcp_param_arr[5].tcp_param_val
1464 #define	tcp_dbg					tcp_param_arr[6].tcp_param_val
1465 #define	tcp_smallest_nonpriv_port		tcp_param_arr[7].tcp_param_val
1466 #define	tcp_ip_abort_cinterval			tcp_param_arr[8].tcp_param_val
1467 #define	tcp_ip_abort_linterval			tcp_param_arr[9].tcp_param_val
1468 #define	tcp_ip_abort_interval			tcp_param_arr[10].tcp_param_val
1469 #define	tcp_ip_notify_cinterval			tcp_param_arr[11].tcp_param_val
1470 #define	tcp_ip_notify_interval			tcp_param_arr[12].tcp_param_val
1471 #define	tcp_ipv4_ttl				tcp_param_arr[13].tcp_param_val
1472 #define	tcp_keepalive_interval_high		tcp_param_arr[14].tcp_param_max
1473 #define	tcp_keepalive_interval			tcp_param_arr[14].tcp_param_val
1474 #define	tcp_keepalive_interval_low		tcp_param_arr[14].tcp_param_min
1475 #define	tcp_maxpsz_multiplier			tcp_param_arr[15].tcp_param_val
1476 #define	tcp_mss_def_ipv4			tcp_param_arr[16].tcp_param_val
1477 #define	tcp_mss_max_ipv4			tcp_param_arr[17].tcp_param_val
1478 #define	tcp_mss_min				tcp_param_arr[18].tcp_param_val
1479 #define	tcp_naglim_def				tcp_param_arr[19].tcp_param_val
1480 #define	tcp_rexmit_interval_initial		tcp_param_arr[20].tcp_param_val
1481 #define	tcp_rexmit_interval_max			tcp_param_arr[21].tcp_param_val
1482 #define	tcp_rexmit_interval_min			tcp_param_arr[22].tcp_param_val
1483 #define	tcp_deferred_ack_interval		tcp_param_arr[23].tcp_param_val
1484 #define	tcp_snd_lowat_fraction			tcp_param_arr[24].tcp_param_val
1485 #define	tcp_sth_rcv_hiwat			tcp_param_arr[25].tcp_param_val
1486 #define	tcp_sth_rcv_lowat			tcp_param_arr[26].tcp_param_val
1487 #define	tcp_dupack_fast_retransmit		tcp_param_arr[27].tcp_param_val
1488 #define	tcp_ignore_path_mtu			tcp_param_arr[28].tcp_param_val
1489 #define	tcp_smallest_anon_port			tcp_param_arr[29].tcp_param_val
1490 #define	tcp_largest_anon_port			tcp_param_arr[30].tcp_param_val
1491 #define	tcp_xmit_hiwat				tcp_param_arr[31].tcp_param_val
1492 #define	tcp_xmit_lowat				tcp_param_arr[32].tcp_param_val
1493 #define	tcp_recv_hiwat				tcp_param_arr[33].tcp_param_val
1494 #define	tcp_recv_hiwat_minmss			tcp_param_arr[34].tcp_param_val
1495 #define	tcp_fin_wait_2_flush_interval		tcp_param_arr[35].tcp_param_val
1496 #define	tcp_co_min				tcp_param_arr[36].tcp_param_val
1497 #define	tcp_max_buf				tcp_param_arr[37].tcp_param_val
1498 #define	tcp_strong_iss				tcp_param_arr[38].tcp_param_val
1499 #define	tcp_rtt_updates				tcp_param_arr[39].tcp_param_val
1500 #define	tcp_wscale_always			tcp_param_arr[40].tcp_param_val
1501 #define	tcp_tstamp_always			tcp_param_arr[41].tcp_param_val
1502 #define	tcp_tstamp_if_wscale			tcp_param_arr[42].tcp_param_val
1503 #define	tcp_rexmit_interval_extra		tcp_param_arr[43].tcp_param_val
1504 #define	tcp_deferred_acks_max			tcp_param_arr[44].tcp_param_val
1505 #define	tcp_slow_start_after_idle		tcp_param_arr[45].tcp_param_val
1506 #define	tcp_slow_start_initial			tcp_param_arr[46].tcp_param_val
1507 #define	tcp_co_timer_interval			tcp_param_arr[47].tcp_param_val
1508 #define	tcp_sack_permitted			tcp_param_arr[48].tcp_param_val
1509 #define	tcp_trace				tcp_param_arr[49].tcp_param_val
1510 #define	tcp_compression_enabled			tcp_param_arr[50].tcp_param_val
1511 #define	tcp_ipv6_hoplimit			tcp_param_arr[51].tcp_param_val
1512 #define	tcp_mss_def_ipv6			tcp_param_arr[52].tcp_param_val
1513 #define	tcp_mss_max_ipv6			tcp_param_arr[53].tcp_param_val
1514 #define	tcp_rev_src_routes			tcp_param_arr[54].tcp_param_val
1515 #define	tcp_local_dack_interval			tcp_param_arr[55].tcp_param_val
1516 #define	tcp_ndd_get_info_interval		tcp_param_arr[56].tcp_param_val
1517 #define	tcp_local_dacks_max			tcp_param_arr[57].tcp_param_val
1518 #define	tcp_ecn_permitted			tcp_param_arr[58].tcp_param_val
1519 #define	tcp_rst_sent_rate_enabled		tcp_param_arr[59].tcp_param_val
1520 #define	tcp_rst_sent_rate			tcp_param_arr[60].tcp_param_val
1521 #define	tcp_push_timer_interval			tcp_param_arr[61].tcp_param_val
1522 #define	tcp_use_smss_as_mss_opt			tcp_param_arr[62].tcp_param_val
1523 #define	tcp_keepalive_abort_interval_high	tcp_param_arr[63].tcp_param_max
1524 #define	tcp_keepalive_abort_interval		tcp_param_arr[63].tcp_param_val
1525 #define	tcp_keepalive_abort_interval_low	tcp_param_arr[63].tcp_param_min
1526 
1527 /*
1528  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1529  * each header fragment in the header buffer.  Each parameter value has
1530  * to be a multiple of 4 (32-bit aligned).
1531  */
1532 static tcpparam_t tcp_mdt_head_param = { 32, 256, 32, "tcp_mdt_hdr_head_min" };
1533 static tcpparam_t tcp_mdt_tail_param = { 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1534 #define	tcp_mdt_hdr_head_min	tcp_mdt_head_param.tcp_param_val
1535 #define	tcp_mdt_hdr_tail_min	tcp_mdt_tail_param.tcp_param_val
1536 
1537 /*
1538  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1539  * the maximum number of payload buffers associated per Multidata.
1540  */
1541 static tcpparam_t tcp_mdt_max_pbufs_param =
1542 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1543 #define	tcp_mdt_max_pbufs	tcp_mdt_max_pbufs_param.tcp_param_val
1544 
1545 /* Round up the value to the nearest mss. */
1546 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1547 
1548 /*
1549  * Set ECN capable transport (ECT) code point in IP header.
1550  *
1551  * Note that there are 2 ECT code points '01' and '10', which are called
1552  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1553  * point ECT(0) for TCP as described in RFC 2481.
1554  */
1555 #define	SET_ECT(tcp, iph) \
1556 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1557 		/* We need to clear the code point first. */ \
1558 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1559 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1560 	} else { \
1561 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1562 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1563 	}
1564 
1565 /*
1566  * The format argument to pass to tcp_display().
1567  * DISP_PORT_ONLY means that the returned string has only port info.
1568  * DISP_ADDR_AND_PORT means that the returned string also contains the
1569  * remote and local IP address.
1570  */
1571 #define	DISP_PORT_ONLY		1
1572 #define	DISP_ADDR_AND_PORT	2
1573 
1574 /*
1575  * This controls the rate some ndd info report functions can be used
1576  * by non-priviledged users.  It stores the last time such info is
1577  * requested.  When those report functions are called again, this
1578  * is checked with the current time and compare with the ndd param
1579  * tcp_ndd_get_info_interval.
1580  */
1581 static clock_t tcp_last_ndd_get_info_time = 0;
1582 #define	NDD_TOO_QUICK_MSG \
1583 	"ndd get info rate too high for non-priviledged users, try again " \
1584 	"later.\n"
1585 #define	NDD_OUT_OF_BUF_MSG	"<< Out of buffer >>\n"
1586 
1587 #define	IS_VMLOANED_MBLK(mp) \
1588 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1589 
1590 /*
1591  * These two variables control the rate for TCP to generate RSTs in
1592  * response to segments not belonging to any connections.  We limit
1593  * TCP to sent out tcp_rst_sent_rate (ndd param) number of RSTs in
1594  * each 1 second interval.  This is to protect TCP against DoS attack.
1595  */
1596 static clock_t tcp_last_rst_intrvl;
1597 static uint32_t tcp_rst_cnt;
1598 
1599 /* The number of RST not sent because of the rate limit. */
1600 static uint32_t tcp_rst_unsent;
1601 
1602 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1603 boolean_t tcp_mdt_chain = B_TRUE;
1604 
1605 /*
1606  * MDT threshold in the form of effective send MSS multiplier; we take
1607  * the MDT path if the amount of unsent data exceeds the threshold value
1608  * (default threshold is 1*SMSS).
1609  */
1610 uint_t tcp_mdt_smss_threshold = 1;
1611 
1612 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1613 
1614 /*
1615  * Forces all connections to obey the value of the tcp_maxpsz_multiplier
1616  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1617  * determined dynamically during tcp_adapt_ire(), which is the default.
1618  */
1619 boolean_t tcp_static_maxpsz = B_FALSE;
1620 
1621 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1622 uint32_t tcp_random_anon_port = 1;
1623 
1624 /*
1625  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1626  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1627  * data, TCP will not respond with an ACK.  RFC 793 requires that
1628  * TCP responds with an ACK for such a bogus ACK.  By not following
1629  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1630  * an attacker successfully spoofs an acceptable segment to our
1631  * peer; or when our peer is "confused."
1632  */
1633 uint32_t tcp_drop_ack_unsent_cnt = 10;
1634 
1635 /*
1636  * Hook functions to enable cluster networking
1637  * On non-clustered systems these vectors must always be NULL.
1638  */
1639 
1640 void (*cl_inet_listen)(uint8_t protocol, sa_family_t addr_family,
1641 			    uint8_t *laddrp, in_port_t lport) = NULL;
1642 void (*cl_inet_unlisten)(uint8_t protocol, sa_family_t addr_family,
1643 			    uint8_t *laddrp, in_port_t lport) = NULL;
1644 void (*cl_inet_connect)(uint8_t protocol, sa_family_t addr_family,
1645 			    uint8_t *laddrp, in_port_t lport,
1646 			    uint8_t *faddrp, in_port_t fport) = NULL;
1647 void (*cl_inet_disconnect)(uint8_t protocol, sa_family_t addr_family,
1648 			    uint8_t *laddrp, in_port_t lport,
1649 			    uint8_t *faddrp, in_port_t fport) = NULL;
1650 
1651 /*
1652  * The following are defined in ip.c
1653  */
1654 extern int (*cl_inet_isclusterwide)(uint8_t protocol, sa_family_t addr_family,
1655 				uint8_t *laddrp);
1656 extern uint32_t (*cl_inet_ipident)(uint8_t protocol, sa_family_t addr_family,
1657 				uint8_t *laddrp, uint8_t *faddrp);
1658 
1659 #define	CL_INET_CONNECT(tcp)		{			\
1660 	if (cl_inet_connect != NULL) {				\
1661 		/*						\
1662 		 * Running in cluster mode - register active connection	\
1663 		 * information						\
1664 		 */							\
1665 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1666 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1667 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET,\
1668 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1669 				    (in_port_t)(tcp)->tcp_lport,	\
1670 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1671 				    (in_port_t)(tcp)->tcp_fport);	\
1672 			}						\
1673 		} else {						\
1674 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1675 			    &(tcp)->tcp_ip6h->ip6_src)) {\
1676 				(*cl_inet_connect)(IPPROTO_TCP, AF_INET6,\
1677 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1678 				    (in_port_t)(tcp)->tcp_lport,	\
1679 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1680 				    (in_port_t)(tcp)->tcp_fport);	\
1681 			}						\
1682 		}							\
1683 	}								\
1684 }
1685 
1686 #define	CL_INET_DISCONNECT(tcp)	{				\
1687 	if (cl_inet_disconnect != NULL) {				\
1688 		/*							\
1689 		 * Running in cluster mode - deregister active		\
1690 		 * connection information				\
1691 		 */							\
1692 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1693 			if ((tcp)->tcp_ip_src != 0) {			\
1694 				(*cl_inet_disconnect)(IPPROTO_TCP,	\
1695 				    AF_INET,				\
1696 				    (uint8_t *)(&((tcp)->tcp_ip_src)),\
1697 				    (in_port_t)(tcp)->tcp_lport,	\
1698 				    (uint8_t *)				\
1699 				    (&((tcp)->tcp_ipha->ipha_dst)),\
1700 				    (in_port_t)(tcp)->tcp_fport);	\
1701 			}						\
1702 		} else {						\
1703 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1704 			    &(tcp)->tcp_ip_src_v6)) {			\
1705 				(*cl_inet_disconnect)(IPPROTO_TCP, AF_INET6,\
1706 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1707 				    (in_port_t)(tcp)->tcp_lport,	\
1708 				    (uint8_t *)				\
1709 				    (&((tcp)->tcp_ip6h->ip6_dst)),\
1710 				    (in_port_t)(tcp)->tcp_fport);	\
1711 			}						\
1712 		}							\
1713 	}								\
1714 }
1715 
1716 /*
1717  * Cluster networking hook for traversing current connection list.
1718  * This routine is used to extract the current list of live connections
1719  * which must continue to to be dispatched to this node.
1720  */
1721 int cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg);
1722 
1723 #define	IPH_TCPH_CHECKSUMP(ipha, hlen) \
1724 	((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + 16)))
1725 
1726 #ifdef  _BIG_ENDIAN
1727 #define	IP_TCP_CSUM_COMP	IPPROTO_TCP
1728 #else
1729 #define	IP_TCP_CSUM_COMP	(IPPROTO_TCP << 8)
1730 #endif
1731 
1732 #define	IP_HDR_CKSUM(ipha, sum, v_hlen_tos_len, ttl_protocol) {		\
1733 	(sum) += (ttl_protocol) + (ipha)->ipha_ident +			\
1734 	    ((v_hlen_tos_len) >> 16) +					\
1735 	    ((v_hlen_tos_len) & 0xFFFF) +				\
1736 	    (ipha)->ipha_fragment_offset_and_flags;			\
1737 	(sum) = (((sum) & 0xFFFF) + ((sum) >> 16));			\
1738 	(sum) = ~((sum) + ((sum) >> 16));				\
1739 	(ipha)->ipha_hdr_checksum = (uint16_t)(sum);			\
1740 }
1741 
1742 /*
1743  * Macros that determine whether or not IP processing is needed for TCP.
1744  */
1745 #define	TCP_IPOPT_POLICY_V4(tcp)					\
1746 	((tcp)->tcp_ipversion == IPV4_VERSION &&			\
1747 	((tcp)->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH ||		\
1748 	CONN_OUTBOUND_POLICY_PRESENT((tcp)->tcp_connp) ||		\
1749 	CONN_INBOUND_POLICY_PRESENT((tcp)->tcp_connp)))
1750 
1751 #define	TCP_IPOPT_POLICY_V6(tcp)					\
1752 	((tcp)->tcp_ipversion == IPV6_VERSION &&			\
1753 	((tcp)->tcp_ip_hdr_len != IPV6_HDR_LEN ||			\
1754 	CONN_OUTBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp) ||		\
1755 	CONN_INBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp)))
1756 
1757 #define	TCP_LOOPBACK_IP(tcp)						\
1758 	(TCP_IPOPT_POLICY_V4(tcp) || TCP_IPOPT_POLICY_V6(tcp) ||	\
1759 	!CONN_IS_MD_FASTPATH((tcp)->tcp_connp))
1760 
1761 boolean_t do_tcp_fusion = B_TRUE;
1762 
1763 /*
1764  * This routine gets called by the eager tcp upon changing state from
1765  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
1766  * and the active connect tcp such that the regular tcp processings
1767  * may be bypassed under allowable circumstances.  Because the fusion
1768  * requires both endpoints to be in the same squeue, it does not work
1769  * for simultaneous active connects because there is no easy way to
1770  * switch from one squeue to another once the connection is created.
1771  * This is different from the eager tcp case where we assign it the
1772  * same squeue as the one given to the active connect tcp during open.
1773  */
1774 static void
1775 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
1776 {
1777 	conn_t *peer_connp, *connp = tcp->tcp_connp;
1778 	tcp_t *peer_tcp;
1779 
1780 	ASSERT(!tcp->tcp_fused);
1781 	ASSERT(tcp->tcp_loopback);
1782 	ASSERT(tcp->tcp_loopback_peer == NULL);
1783 	/*
1784 	 * We need to check the listener tcp to make sure it's a socket
1785 	 * endpoint, but we can't really use tcp_listener since we get
1786 	 * here after sending up T_CONN_IND and tcp_wput_accept() may be
1787 	 * called independently, at which point tcp_listener is cleared;
1788 	 * this is why we use tcp_saved_listener.  The listener itself
1789 	 * is guaranteed to be around until tcp_accept_finish() is called
1790 	 * on this eager -- this won't happen until we're done since
1791 	 * we're inside the eager's perimeter now.
1792 	 */
1793 	ASSERT(tcp->tcp_saved_listener != NULL);
1794 
1795 	/*
1796 	 * Lookup peer endpoint; search for the remote endpoint having
1797 	 * the reversed address-port quadruplet in ESTABLISHED state,
1798 	 * which is guaranteed to be unique in the system.  Zone check
1799 	 * is applied accordingly for loopback address, but not for
1800 	 * local address since we want fusion to happen across Zones.
1801 	 */
1802 	if (tcp->tcp_ipversion == IPV4_VERSION) {
1803 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
1804 		    (ipha_t *)iphdr, tcph);
1805 	} else {
1806 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
1807 		    (ip6_t *)iphdr, tcph);
1808 	}
1809 
1810 	/*
1811 	 * We can only proceed if peer exists, resides in the same squeue
1812 	 * as our conn and is not raw-socket.  The squeue assignment of
1813 	 * this eager tcp was done earlier at the time of SYN processing
1814 	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
1815 	 * doesn't guarantee a safe condition to fuse, hence we perform
1816 	 * additional tests below.
1817 	 */
1818 	ASSERT(peer_connp == NULL || peer_connp != connp);
1819 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
1820 	    !IPCL_IS_TCP(peer_connp)) {
1821 		if (peer_connp != NULL) {
1822 			TCP_STAT(tcp_fusion_unqualified);
1823 			CONN_DEC_REF(peer_connp);
1824 		}
1825 		return;
1826 	}
1827 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
1828 
1829 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
1830 	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
1831 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
1832 
1833 	/*
1834 	 * Fuse the endpoints; we perform further checks against both
1835 	 * tcp endpoints to ensure that a fusion is allowed to happen.
1836 	 * In particular we bail out for TPI, non-simple TCP/IP or if
1837 	 * IPsec/IPQoS policy exists.  We could actually do it for the
1838 	 * XTI/TLI/TPI case but this requires more testing, so for now
1839 	 * we handle only the socket case.
1840 	 */
1841 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
1842 	    TCP_IS_SOCKET(tcp->tcp_saved_listener) && TCP_IS_SOCKET(peer_tcp) &&
1843 	    !TCP_LOOPBACK_IP(tcp) && !TCP_LOOPBACK_IP(peer_tcp) &&
1844 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) {
1845 		mblk_t *mp;
1846 		struct stroptions *stropt;
1847 		queue_t *peer_rq = peer_tcp->tcp_rq;
1848 		size_t sth_hiwat;
1849 
1850 		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
1851 
1852 		/*
1853 		 * We need to drain data on both endpoints during unfuse.
1854 		 * If we need to send up SIGURG at the time of draining,
1855 		 * we want to be sure that an mblk is readily available.
1856 		 * This is why we pre-allocate the M_PCSIG mblks for both
1857 		 * endpoints which will only be used during/after unfuse.
1858 		 */
1859 		if ((mp = allocb(1, BPRI_HI)) == NULL) {
1860 			CONN_DEC_REF(peer_connp);
1861 			return;
1862 		}
1863 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
1864 		tcp->tcp_fused_sigurg_mp = mp;
1865 
1866 		if ((mp = allocb(1, BPRI_HI)) == NULL) {
1867 			freeb(tcp->tcp_fused_sigurg_mp);
1868 			tcp->tcp_fused_sigurg_mp = NULL;
1869 			CONN_DEC_REF(peer_connp);
1870 			return;
1871 		}
1872 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
1873 		peer_tcp->tcp_fused_sigurg_mp = mp;
1874 
1875 		/* Allocate M_SETOPTS mblk */
1876 		mp = allocb(sizeof (*stropt), BPRI_HI);
1877 		if (mp == NULL) {
1878 			freeb(tcp->tcp_fused_sigurg_mp);
1879 			tcp->tcp_fused_sigurg_mp = NULL;
1880 			freeb(peer_tcp->tcp_fused_sigurg_mp);
1881 			peer_tcp->tcp_fused_sigurg_mp = NULL;
1882 			CONN_DEC_REF(peer_connp);
1883 			return;
1884 		}
1885 
1886 		/* Fuse both endpoints */
1887 		peer_tcp->tcp_loopback_peer = tcp;
1888 		tcp->tcp_loopback_peer = peer_tcp;
1889 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
1890 
1891 		/*
1892 		 * We never use regular tcp paths in fusion and should
1893 		 * therefore clear tcp_unsent on both endpoints.  Having
1894 		 * them set to non-zero values means asking for trouble
1895 		 * especially after unfuse, where we may end up sending
1896 		 * through regular tcp paths which expect xmit_list and
1897 		 * friends to be correctly setup.
1898 		 */
1899 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
1900 
1901 		tcp_timers_stop(tcp);
1902 		tcp_timers_stop(peer_tcp);
1903 
1904 		/*
1905 		 * Set the stream head's write offset value to zero, since we
1906 		 * won't be needing any room for TCP/IP headers, and tell it
1907 		 * to not break up the writes.  This would reduce the amount
1908 		 * of work done by kmem.  In addition, we set the receive
1909 		 * buffer to twice that of q_hiwat in order to simulate the
1910 		 * non-fusion case.  Note that we can only do this for the
1911 		 * active connect tcp since our eager is still detached;
1912 		 * it will be dealt with later in tcp_accept_finish().
1913 		 */
1914 		DB_TYPE(mp) = M_SETOPTS;
1915 		mp->b_wptr += sizeof (*stropt);
1916 
1917 		sth_hiwat = peer_rq->q_hiwat << 1;
1918 		if (sth_hiwat > tcp_max_buf)
1919 			sth_hiwat = tcp_max_buf;
1920 
1921 		stropt = (struct stroptions *)mp->b_rptr;
1922 		stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
1923 		stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
1924 		stropt->so_wroff = 0;
1925 		stropt->so_hiwat = MAX(sth_hiwat, tcp_sth_rcv_hiwat);
1926 
1927 		/* Send the options up */
1928 		putnext(peer_rq, mp);
1929 	} else {
1930 		TCP_STAT(tcp_fusion_unqualified);
1931 	}
1932 	CONN_DEC_REF(peer_connp);
1933 }
1934 
1935 /*
1936  * Unfuse a previously-fused pair of tcp loopback endpoints.
1937  */
1938 static void
1939 tcp_unfuse(tcp_t *tcp)
1940 {
1941 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
1942 
1943 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
1944 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
1945 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
1946 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
1947 	ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
1948 	ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
1949 
1950 	/*
1951 	 * Drain any pending data; the detached check is needed because
1952 	 * we may be called from tcp_fuse_output().  Note that in case of
1953 	 * a detached tcp, the draining will happen later after the tcp
1954 	 * is unfused.  For non-urgent data, this can be handled by the
1955 	 * regular tcp_rcv_drain().  If we have urgent data sitting in
1956 	 * the receive list, we will need to send up a SIGURG signal first
1957 	 * before draining the data.  All of these will be handled by the
1958 	 * code in tcp_fuse_rcv_drain() when called from tcp_rcv_drain().
1959 	 */
1960 	if (!TCP_IS_DETACHED(tcp)) {
1961 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
1962 		    &tcp->tcp_fused_sigurg_mp);
1963 	}
1964 	if (!TCP_IS_DETACHED(peer_tcp)) {
1965 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
1966 		    &peer_tcp->tcp_fused_sigurg_mp);
1967 	}
1968 	/* Lift up any flow-control conditions */
1969 	if (tcp->tcp_flow_stopped) {
1970 		tcp_clrqfull(tcp);
1971 		tcp->tcp_flow_stopped = B_FALSE;
1972 		TCP_STAT(tcp_fusion_backenabled);
1973 	}
1974 	if (peer_tcp->tcp_flow_stopped) {
1975 		tcp_clrqfull(peer_tcp);
1976 		peer_tcp->tcp_flow_stopped = B_FALSE;
1977 		TCP_STAT(tcp_fusion_backenabled);
1978 	}
1979 
1980 	/* Free up M_PCSIG mblk(s) if not needed */
1981 	if (!tcp->tcp_fused_sigurg && tcp->tcp_fused_sigurg_mp != NULL) {
1982 		freeb(tcp->tcp_fused_sigurg_mp);
1983 		tcp->tcp_fused_sigurg_mp = NULL;
1984 	}
1985 	if (!peer_tcp->tcp_fused_sigurg &&
1986 	    peer_tcp->tcp_fused_sigurg_mp != NULL) {
1987 		freeb(peer_tcp->tcp_fused_sigurg_mp);
1988 		peer_tcp->tcp_fused_sigurg_mp = NULL;
1989 	}
1990 
1991 	/*
1992 	 * Update th_seq and th_ack in the header template
1993 	 */
1994 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
1995 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
1996 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
1997 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
1998 
1999 	/* Unfuse the endpoints */
2000 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
2001 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
2002 }
2003 
2004 /*
2005  * Fusion output routine for urgent data.  This routine is called by
2006  * tcp_fuse_output() for handling non-M_DATA mblks.
2007  */
2008 static void
2009 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
2010 {
2011 	mblk_t *mp1;
2012 	struct T_exdata_ind *tei;
2013 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2014 	mblk_t *head, *prev_head = NULL;
2015 
2016 	ASSERT(tcp->tcp_fused);
2017 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
2018 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
2019 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
2020 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
2021 
2022 	/*
2023 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
2024 	 * Each occurence denotes a new urgent pointer.  For each new
2025 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
2026 	 * that it needs to go into urgent mode.  This is similar to the
2027 	 * urgent data handling in the regular tcp.  We don't need to keep
2028 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
2029 	 * "advances" the urgent pointer for us.
2030 	 *
2031 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
2032 	 * by a T_EXDATA_IND before being enqueued behind any existing data
2033 	 * destined for the receiving app.  There is only a single urgent
2034 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
2035 	 * data arrives before the receiving app reads some existing urgent
2036 	 * data, the previous marker is lost.  This behavior is emulated
2037 	 * accordingly below, by removing any existing T_EXDATA_IND messages
2038 	 * and essentially converting old urgent data into non-urgent.
2039 	 */
2040 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
2041 	/* Let sender get out of urgent mode */
2042 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
2043 
2044 	/*
2045 	 * Send up SIGURG to the receiving peer; if the peer is detached
2046 	 * or if we can't allocate the M_PCSIG, indicate that we need to
2047 	 * signal upon draining to the peer by marking tcp_fused_sigurg.
2048 	 * This flag will only get cleared once SIGURG is delivered and
2049 	 * is not affected by the tcp_fused flag -- delivery will still
2050 	 * happen even after an endpoint is unfused, to handle the case
2051 	 * where the sending endpoint immediately closes/unfuses after
2052 	 * sending urgent data and the accept is not yet finished.
2053 	 */
2054 	if (!TCP_IS_DETACHED(peer_tcp) &&
2055 	    ((mp1 = allocb(1, BPRI_HI)) != NULL ||
2056 	    (mp1 = allocb_tryhard(1)) != NULL)) {
2057 		peer_tcp->tcp_fused_sigurg = B_FALSE;
2058 		/* Send up the signal */
2059 		DB_TYPE(mp1) = M_PCSIG;
2060 		*mp1->b_wptr++ = (uchar_t)SIGURG;
2061 		putnext(peer_tcp->tcp_rq, mp1);
2062 	} else {
2063 		peer_tcp->tcp_fused_sigurg = B_TRUE;
2064 	}
2065 
2066 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
2067 	DB_TYPE(mp) = M_PROTO;
2068 	tei = (struct T_exdata_ind *)mp->b_rptr;
2069 	tei->PRIM_type = T_EXDATA_IND;
2070 	tei->MORE_flag = 0;
2071 	mp->b_wptr = (uchar_t *)&tei[1];
2072 
2073 	TCP_STAT(tcp_fusion_urg);
2074 	BUMP_MIB(&tcp_mib, tcpOutUrg);
2075 
2076 	head = peer_tcp->tcp_rcv_list;
2077 	while (head != NULL) {
2078 		/*
2079 		 * Remove existing T_EXDATA_IND, keep the data which follows
2080 		 * it and relink our list.  Note that we don't modify the
2081 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
2082 		 */
2083 		if (DB_TYPE(head) != M_DATA) {
2084 			mp1 = head;
2085 
2086 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
2087 			head = mp1->b_cont;
2088 			mp1->b_cont = NULL;
2089 			head->b_next = mp1->b_next;
2090 			mp1->b_next = NULL;
2091 			if (prev_head != NULL)
2092 				prev_head->b_next = head;
2093 			if (peer_tcp->tcp_rcv_list == mp1)
2094 				peer_tcp->tcp_rcv_list = head;
2095 			if (peer_tcp->tcp_rcv_last_head == mp1)
2096 				peer_tcp->tcp_rcv_last_head = head;
2097 			freeb(mp1);
2098 		}
2099 		prev_head = head;
2100 		head = head->b_next;
2101 	}
2102 }
2103 
2104 /*
2105  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
2106  */
2107 static boolean_t
2108 tcp_fuse_output(tcp_t *tcp, mblk_t *mp)
2109 {
2110 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
2111 	queue_t *peer_rq;
2112 	mblk_t *mp_tail = mp;
2113 	uint32_t send_size = 0;
2114 
2115 	ASSERT(tcp->tcp_fused);
2116 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
2117 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
2118 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
2119 	    DB_TYPE(mp) == M_PCPROTO);
2120 
2121 	peer_rq = peer_tcp->tcp_rq;
2122 
2123 	/* If this connection requires IP, unfuse and use regular path */
2124 	if (TCP_LOOPBACK_IP(tcp) || TCP_LOOPBACK_IP(peer_tcp) ||
2125 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) {
2126 		TCP_STAT(tcp_fusion_aborted);
2127 		tcp_unfuse(tcp);
2128 		return (B_FALSE);
2129 	}
2130 
2131 	for (;;) {
2132 		if (DB_TYPE(mp_tail) == M_DATA)
2133 			send_size += MBLKL(mp_tail);
2134 		if (mp_tail->b_cont == NULL)
2135 			break;
2136 		mp_tail = mp_tail->b_cont;
2137 	}
2138 
2139 	if (send_size == 0) {
2140 		freemsg(mp);
2141 		return (B_TRUE);
2142 	}
2143 
2144 	/*
2145 	 * Handle urgent data; we either send up SIGURG to the peer now
2146 	 * or do it later when we drain, in case the peer is detached
2147 	 * or if we're short of memory for M_PCSIG mblk.
2148 	 */
2149 	if (DB_TYPE(mp) != M_DATA)
2150 		tcp_fuse_output_urg(tcp, mp);
2151 
2152 	/*
2153 	 * Enqueue data into the peer's receive list; we may or may not
2154 	 * drain the contents depending on the conditions below.
2155 	 */
2156 	tcp_rcv_enqueue(peer_tcp, mp, send_size);
2157 
2158 	/* In case it wrapped around and also to keep it constant */
2159 	peer_tcp->tcp_rwnd += send_size;
2160 
2161 	/*
2162 	 * If peer is detached, exercise flow-control when needed; we will
2163 	 * get back-enabled either in tcp_accept_finish() or tcp_unfuse().
2164 	 */
2165 	if (TCP_IS_DETACHED(peer_tcp) &&
2166 	    peer_tcp->tcp_rcv_cnt > peer_rq->q_hiwat) {
2167 		tcp_setqfull(tcp);
2168 		tcp->tcp_flow_stopped = B_TRUE;
2169 		TCP_STAT(tcp_fusion_flowctl);
2170 	}
2171 
2172 	loopback_packets++;
2173 	tcp->tcp_last_sent_len = send_size;
2174 
2175 	/* Need to adjust the following SNMP MIB-related variables */
2176 	tcp->tcp_snxt += send_size;
2177 	tcp->tcp_suna = tcp->tcp_snxt;
2178 	peer_tcp->tcp_rnxt += send_size;
2179 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
2180 
2181 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
2182 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, send_size);
2183 
2184 	BUMP_MIB(&tcp_mib, tcpInSegs);
2185 	BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
2186 	UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, send_size);
2187 
2188 	BUMP_LOCAL(tcp->tcp_obsegs);
2189 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
2190 
2191 	if (!TCP_IS_DETACHED(peer_tcp)) {
2192 		/*
2193 		 * If we can't send SIGURG above due to lack of memory,
2194 		 * schedule push timer and try again.  Otherwise drain
2195 		 * the data if we're not flow-controlled.
2196 		 */
2197 		if (peer_tcp->tcp_fused_sigurg) {
2198 			if (peer_tcp->tcp_push_tid == 0) {
2199 				peer_tcp->tcp_push_tid =
2200 				    TCP_TIMER(peer_tcp, tcp_push_timer,
2201 				    MSEC_TO_TICK(tcp_push_timer_interval));
2202 			}
2203 		} else if (!tcp->tcp_flow_stopped) {
2204 			if (!canputnext(peer_rq)) {
2205 				tcp_setqfull(tcp);
2206 				tcp->tcp_flow_stopped = B_TRUE;
2207 				TCP_STAT(tcp_fusion_flowctl);
2208 			} else {
2209 				ASSERT(peer_tcp->tcp_rcv_list != NULL);
2210 				(void) tcp_fuse_rcv_drain(peer_rq,
2211 				    peer_tcp, NULL);
2212 				TCP_STAT(tcp_fusion_putnext);
2213 			}
2214 		}
2215 	}
2216 	return (B_TRUE);
2217 }
2218 
2219 /*
2220  * This routine gets called to deliver data upstream on a fused or
2221  * previously fused tcp loopback endpoint; the latter happens only
2222  * when there is a pending SIGURG signal plus urgent data that can't
2223  * be sent upstream in the past.
2224  */
2225 static boolean_t
2226 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
2227 {
2228 	mblk_t *mp;
2229 #ifdef DEBUG
2230 	uint_t cnt = 0;
2231 #endif
2232 
2233 	ASSERT(tcp->tcp_loopback);
2234 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
2235 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
2236 	ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
2237 
2238 	/* No need for the push timer now, in case it was scheduled */
2239 	if (tcp->tcp_push_tid != 0) {
2240 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
2241 		tcp->tcp_push_tid = 0;
2242 	}
2243 	/*
2244 	 * If there's urgent data sitting in receive list and we didn't
2245 	 * get a chance to send up a SIGURG signal, make sure we send
2246 	 * it first before draining in order to ensure that SIOCATMARK
2247 	 * works properly.
2248 	 */
2249 	if (tcp->tcp_fused_sigurg) {
2250 		/*
2251 		 * sigurg_mpp is normally NULL, i.e. when we're still
2252 		 * fused and didn't get here because of tcp_unfuse().
2253 		 * In this case try hard to allocate the M_PCSIG mblk.
2254 		 */
2255 		if (sigurg_mpp == NULL &&
2256 		    (mp = allocb(1, BPRI_HI)) == NULL &&
2257 		    (mp = allocb_tryhard(1)) == NULL) {
2258 			/* Alloc failed; try again next time */
2259 			tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
2260 			    MSEC_TO_TICK(tcp_push_timer_interval));
2261 			return (B_TRUE);
2262 		} else if (sigurg_mpp != NULL) {
2263 			/*
2264 			 * Use the supplied M_PCSIG mblk; it means we're
2265 			 * either unfused or in the process of unfusing,
2266 			 * and the drain must happen now.
2267 			 */
2268 			mp = *sigurg_mpp;
2269 			*sigurg_mpp = NULL;
2270 		}
2271 		ASSERT(mp != NULL);
2272 
2273 		tcp->tcp_fused_sigurg = B_FALSE;
2274 		/* Send up the signal */
2275 		DB_TYPE(mp) = M_PCSIG;
2276 		*mp->b_wptr++ = (uchar_t)SIGURG;
2277 		putnext(q, mp);
2278 		/*
2279 		 * Let the regular tcp_rcv_drain() path handle
2280 		 * draining the data if we're no longer fused.
2281 		 */
2282 		if (!tcp->tcp_fused)
2283 			return (B_FALSE);
2284 	}
2285 
2286 	/* Drain the data */
2287 	while ((mp = tcp->tcp_rcv_list) != NULL) {
2288 		tcp->tcp_rcv_list = mp->b_next;
2289 		mp->b_next = NULL;
2290 #ifdef DEBUG
2291 		cnt += msgdsize(mp);
2292 #endif
2293 		putnext(q, mp);
2294 	}
2295 
2296 	ASSERT(cnt == tcp->tcp_rcv_cnt);
2297 	tcp->tcp_rcv_last_head = NULL;
2298 	tcp->tcp_rcv_last_tail = NULL;
2299 	tcp->tcp_rcv_cnt = 0;
2300 	tcp->tcp_rwnd = q->q_hiwat;
2301 
2302 	return (B_TRUE);
2303 }
2304 
2305 /*
2306  * This is the walker function, which is TCP specific.
2307  * It walks through the conn_hash bucket searching for the
2308  * next valid connp/tcp in the list, selecting connp/tcp
2309  * which haven't closed or condemned. It also REFHOLDS the
2310  * reference for the tcp, ensuring that the tcp exists
2311  * when the caller uses the tcp.
2312  *
2313  * tcp_get_next_conn
2314  * 	get the next entry in the conn global list
2315  * 	and put a reference on the next_conn.
2316  * 	decrement the reference on the current conn.
2317  */
2318 conn_t *
2319 tcp_get_next_conn(connf_t *connfp, conn_t *connp)
2320 {
2321 	conn_t	*next_connp;
2322 
2323 	if (connfp == NULL)
2324 		return (NULL);
2325 
2326 	mutex_enter(&connfp->connf_lock);
2327 
2328 	next_connp = (connp == NULL) ?
2329 	    connfp->connf_head : connp->conn_g_next;
2330 
2331 	while (next_connp != NULL) {
2332 		mutex_enter(&next_connp->conn_lock);
2333 		if ((next_connp->conn_state_flags &
2334 		    (CONN_CONDEMNED | CONN_INCIPIENT)) ||
2335 			!IPCL_IS_TCP(next_connp)) {
2336 			/*
2337 			 * This conn has been condemned or
2338 			 * is closing.
2339 			 */
2340 			mutex_exit(&next_connp->conn_lock);
2341 			next_connp = next_connp->conn_g_next;
2342 			continue;
2343 		}
2344 		ASSERT(next_connp->conn_tcp != NULL);
2345 		CONN_INC_REF_LOCKED(next_connp);
2346 		mutex_exit(&next_connp->conn_lock);
2347 		break;
2348 	}
2349 
2350 	mutex_exit(&connfp->connf_lock);
2351 
2352 	if (connp != NULL) {
2353 		CONN_DEC_REF(connp);
2354 	}
2355 
2356 	return (next_connp);
2357 }
2358 
2359 /*
2360  * Figure out the value of window scale opton.  Note that the rwnd is
2361  * ASSUMED to be rounded up to the nearest MSS before the calculation.
2362  * We cannot find the scale value and then do a round up of tcp_rwnd
2363  * because the scale value may not be correct after that.
2364  *
2365  * Set the compiler flag to make this function inline.
2366  */
2367 static void
2368 tcp_set_ws_value(tcp_t *tcp)
2369 {
2370 	int i;
2371 	uint32_t rwnd = tcp->tcp_rwnd;
2372 
2373 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
2374 	    i++, rwnd >>= 1)
2375 		;
2376 	tcp->tcp_rcv_ws = i;
2377 }
2378 
2379 /*
2380  * Remove a connection from the list of detached TIME_WAIT connections.
2381  */
2382 static void
2383 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
2384 {
2385 	boolean_t	locked = B_FALSE;
2386 
2387 	if (tcp_time_wait == NULL) {
2388 		tcp_time_wait = *((tcp_squeue_priv_t **)
2389 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
2390 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
2391 		locked = B_TRUE;
2392 	}
2393 
2394 	if (tcp->tcp_time_wait_expire == 0) {
2395 		ASSERT(tcp->tcp_time_wait_next == NULL);
2396 		ASSERT(tcp->tcp_time_wait_prev == NULL);
2397 		if (locked)
2398 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
2399 		return;
2400 	}
2401 	ASSERT(TCP_IS_DETACHED(tcp));
2402 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
2403 
2404 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
2405 		ASSERT(tcp->tcp_time_wait_prev == NULL);
2406 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
2407 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
2408 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
2409 			    NULL;
2410 		} else {
2411 			tcp_time_wait->tcp_time_wait_tail = NULL;
2412 		}
2413 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
2414 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
2415 		ASSERT(tcp->tcp_time_wait_next == NULL);
2416 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
2417 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
2418 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
2419 	} else {
2420 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
2421 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
2422 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
2423 		    tcp->tcp_time_wait_next;
2424 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
2425 		    tcp->tcp_time_wait_prev;
2426 	}
2427 	tcp->tcp_time_wait_next = NULL;
2428 	tcp->tcp_time_wait_prev = NULL;
2429 	tcp->tcp_time_wait_expire = 0;
2430 
2431 	if (locked)
2432 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
2433 }
2434 
2435 /*
2436  * Add a connection to the list of detached TIME_WAIT connections
2437  * and set its time to expire.
2438  */
2439 static void
2440 tcp_time_wait_append(tcp_t *tcp)
2441 {
2442 	tcp_squeue_priv_t *tcp_time_wait =
2443 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
2444 		SQPRIVATE_TCP));
2445 
2446 	tcp_timers_stop(tcp);
2447 
2448 	/* Freed above */
2449 	ASSERT(tcp->tcp_timer_tid == 0);
2450 	ASSERT(tcp->tcp_ack_tid == 0);
2451 
2452 	/* must have happened at the time of detaching the tcp */
2453 	ASSERT(tcp->tcp_ptpahn == NULL);
2454 	ASSERT(tcp->tcp_flow_stopped == 0);
2455 	ASSERT(tcp->tcp_time_wait_next == NULL);
2456 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2457 	ASSERT(tcp->tcp_time_wait_expire == NULL);
2458 	ASSERT(tcp->tcp_listener == NULL);
2459 
2460 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
2461 	/*
2462 	 * The value computed below in tcp->tcp_time_wait_expire may
2463 	 * appear negative or wrap around. That is ok since our
2464 	 * interest is only in the difference between the current lbolt
2465 	 * value and tcp->tcp_time_wait_expire. But the value should not
2466 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
2467 	 * The corresponding comparison in tcp_time_wait_collector() uses
2468 	 * modular arithmetic.
2469 	 */
2470 	tcp->tcp_time_wait_expire +=
2471 	    drv_usectohz(tcp_time_wait_interval * 1000);
2472 	if (tcp->tcp_time_wait_expire == 0)
2473 		tcp->tcp_time_wait_expire = 1;
2474 
2475 	ASSERT(TCP_IS_DETACHED(tcp));
2476 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
2477 	ASSERT(tcp->tcp_time_wait_next == NULL);
2478 	ASSERT(tcp->tcp_time_wait_prev == NULL);
2479 	TCP_DBGSTAT(tcp_time_wait);
2480 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
2481 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
2482 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
2483 		tcp_time_wait->tcp_time_wait_head = tcp;
2484 	} else {
2485 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
2486 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
2487 		    TCPS_TIME_WAIT);
2488 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
2489 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
2490 	}
2491 	tcp_time_wait->tcp_time_wait_tail = tcp;
2492 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
2493 }
2494 
2495 /* ARGSUSED */
2496 void
2497 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
2498 {
2499 	conn_t	*connp = (conn_t *)arg;
2500 	tcp_t	*tcp = connp->conn_tcp;
2501 
2502 	ASSERT(tcp != NULL);
2503 	if (tcp->tcp_state == TCPS_CLOSED) {
2504 		return;
2505 	}
2506 
2507 	ASSERT((tcp->tcp_family == AF_INET &&
2508 	    tcp->tcp_ipversion == IPV4_VERSION) ||
2509 	    (tcp->tcp_family == AF_INET6 &&
2510 	    (tcp->tcp_ipversion == IPV4_VERSION ||
2511 	    tcp->tcp_ipversion == IPV6_VERSION)));
2512 	ASSERT(!tcp->tcp_listener);
2513 
2514 	TCP_STAT(tcp_time_wait_reap);
2515 	ASSERT(TCP_IS_DETACHED(tcp));
2516 
2517 	/*
2518 	 * Because they have no upstream client to rebind or tcp_close()
2519 	 * them later, we axe the connection here and now.
2520 	 */
2521 	tcp_close_detached(tcp);
2522 }
2523 
2524 void
2525 tcp_cleanup(tcp_t *tcp)
2526 {
2527 	mblk_t		*mp;
2528 	char		*tcp_iphc;
2529 	int		tcp_iphc_len;
2530 	int		tcp_hdr_grown;
2531 	tcp_sack_info_t	*tcp_sack_info;
2532 	conn_t		*connp = tcp->tcp_connp;
2533 
2534 	tcp_bind_hash_remove(tcp);
2535 	tcp_free(tcp);
2536 
2537 	conn_delete_ire(connp, NULL);
2538 	if (connp->conn_flags & IPCL_TCPCONN) {
2539 		if (connp->conn_latch != NULL)
2540 			IPLATCH_REFRELE(connp->conn_latch);
2541 		if (connp->conn_policy != NULL)
2542 			IPPH_REFRELE(connp->conn_policy);
2543 	}
2544 
2545 	/*
2546 	 * Since we will bzero the entire structure, we need to
2547 	 * remove it and reinsert it in global hash list. We
2548 	 * know the walkers can't get to this conn because we
2549 	 * had set CONDEMNED flag earlier and checked reference
2550 	 * under conn_lock so walker won't pick it and when we
2551 	 * go the ipcl_globalhash_remove() below, no walker
2552 	 * can get to it.
2553 	 */
2554 	ipcl_globalhash_remove(connp);
2555 
2556 	/* Save some state */
2557 	mp = tcp->tcp_timercache;
2558 
2559 	tcp_sack_info = tcp->tcp_sack_info;
2560 	tcp_iphc = tcp->tcp_iphc;
2561 	tcp_iphc_len = tcp->tcp_iphc_len;
2562 	tcp_hdr_grown = tcp->tcp_hdr_grown;
2563 
2564 	bzero(connp, sizeof (conn_t));
2565 	bzero(tcp, sizeof (tcp_t));
2566 
2567 	/* restore the state */
2568 	tcp->tcp_timercache = mp;
2569 
2570 	tcp->tcp_sack_info = tcp_sack_info;
2571 	tcp->tcp_iphc = tcp_iphc;
2572 	tcp->tcp_iphc_len = tcp_iphc_len;
2573 	tcp->tcp_hdr_grown = tcp_hdr_grown;
2574 
2575 
2576 	tcp->tcp_connp = connp;
2577 
2578 	connp->conn_tcp = tcp;
2579 	connp->conn_flags = IPCL_TCPCONN;
2580 	connp->conn_state_flags = CONN_INCIPIENT;
2581 	connp->conn_ulp = IPPROTO_TCP;
2582 	connp->conn_ref = 1;
2583 
2584 	ipcl_globalhash_insert(connp);
2585 }
2586 
2587 /*
2588  * Blows away all tcps whose TIME_WAIT has expired. List traversal
2589  * is done forwards from the head.
2590  */
2591 /* ARGSUSED */
2592 void
2593 tcp_time_wait_collector(void *arg)
2594 {
2595 	tcp_t *tcp;
2596 	clock_t now;
2597 	mblk_t *mp;
2598 	conn_t *connp;
2599 	kmutex_t *lock;
2600 
2601 	squeue_t *sqp = (squeue_t *)arg;
2602 	tcp_squeue_priv_t *tcp_time_wait =
2603 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
2604 
2605 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
2606 	tcp_time_wait->tcp_time_wait_tid = 0;
2607 
2608 	if (tcp_time_wait->tcp_free_list != NULL &&
2609 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
2610 		TCP_STAT(tcp_freelist_cleanup);
2611 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
2612 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
2613 			CONN_DEC_REF(tcp->tcp_connp);
2614 		}
2615 	}
2616 
2617 	/*
2618 	 * In order to reap time waits reliably, we should use a
2619 	 * source of time that is not adjustable by the user -- hence
2620 	 * the call to ddi_get_lbolt().
2621 	 */
2622 	now = ddi_get_lbolt();
2623 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
2624 		/*
2625 		 * Compare times using modular arithmetic, since
2626 		 * lbolt can wrapover.
2627 		 */
2628 		if ((now - tcp->tcp_time_wait_expire) < 0) {
2629 			break;
2630 		}
2631 
2632 		tcp_time_wait_remove(tcp, tcp_time_wait);
2633 
2634 		connp = tcp->tcp_connp;
2635 		ASSERT(connp->conn_fanout != NULL);
2636 		lock = &connp->conn_fanout->connf_lock;
2637 		/*
2638 		 * This is essentially a TW reclaim fast path optimization for
2639 		 * performance where the timewait collector checks under the
2640 		 * fanout lock (so that no one else can get access to the
2641 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
2642 		 * the classifier hash list. If ref count is indeed 2, we can
2643 		 * just remove the conn under the fanout lock and avoid
2644 		 * cleaning up the conn under the squeue, provided that
2645 		 * clustering callbacks are not enabled. If clustering is
2646 		 * enabled, we need to make the clustering callback before
2647 		 * setting the CONDEMNED flag and after dropping all locks and
2648 		 * so we forego this optimization and fall back to the slow
2649 		 * path. Also please see the comments in tcp_closei_local
2650 		 * regarding the refcnt logic.
2651 		 *
2652 		 * Since we are holding the tcp_time_wait_lock, its better
2653 		 * not to block on the fanout_lock because other connections
2654 		 * can't add themselves to time_wait list. So we do a
2655 		 * tryenter instead of mutex_enter.
2656 		 */
2657 		if (mutex_tryenter(lock)) {
2658 			mutex_enter(&connp->conn_lock);
2659 			if ((connp->conn_ref == 2) &&
2660 			    (cl_inet_disconnect == NULL)) {
2661 				ipcl_hash_remove_locked(connp,
2662 				    connp->conn_fanout);
2663 				/*
2664 				 * Set the CONDEMNED flag now itself so that
2665 				 * the refcnt cannot increase due to any
2666 				 * walker. But we have still not cleaned up
2667 				 * conn_ire_cache. This is still ok since
2668 				 * we are going to clean it up in tcp_cleanup
2669 				 * immediately and any interface unplumb
2670 				 * thread will wait till the ire is blown away
2671 				 */
2672 				connp->conn_state_flags |= CONN_CONDEMNED;
2673 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
2674 				mutex_exit(lock);
2675 				mutex_exit(&connp->conn_lock);
2676 				tcp_cleanup(tcp);
2677 				mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
2678 				tcp->tcp_time_wait_next =
2679 				    tcp_time_wait->tcp_free_list;
2680 				tcp_time_wait->tcp_free_list = tcp;
2681 				continue;
2682 			} else {
2683 				CONN_INC_REF_LOCKED(connp);
2684 				mutex_exit(lock);
2685 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
2686 				mutex_exit(&connp->conn_lock);
2687 				/*
2688 				 * We can reuse the closemp here since conn has
2689 				 * detached (otherwise we wouldn't even be in
2690 				 * time_wait list).
2691 				 */
2692 				mp = &tcp->tcp_closemp;
2693 				squeue_fill(connp->conn_sqp, mp,
2694 				    tcp_timewait_output, connp,
2695 				    SQTAG_TCP_TIMEWAIT);
2696 			}
2697 		} else {
2698 			mutex_enter(&connp->conn_lock);
2699 			CONN_INC_REF_LOCKED(connp);
2700 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
2701 			mutex_exit(&connp->conn_lock);
2702 			/*
2703 			 * We can reuse the closemp here since conn has
2704 			 * detached (otherwise we wouldn't even be in
2705 			 * time_wait list).
2706 			 */
2707 			mp = &tcp->tcp_closemp;
2708 			squeue_fill(connp->conn_sqp, mp,
2709 			    tcp_timewait_output, connp, 0);
2710 		}
2711 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
2712 	}
2713 
2714 	if (tcp_time_wait->tcp_free_list != NULL)
2715 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
2716 
2717 	tcp_time_wait->tcp_time_wait_tid =
2718 	    timeout(tcp_time_wait_collector, sqp, TCP_TIME_WAIT_DELAY);
2719 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
2720 }
2721 
2722 /*
2723  * Reply to a clients T_CONN_RES TPI message. This function
2724  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
2725  * on the acceptor STREAM and processed in tcp_wput_accept().
2726  * Read the block comment on top of tcp_conn_request().
2727  */
2728 static void
2729 tcp_accept(tcp_t *listener, mblk_t *mp)
2730 {
2731 	tcp_t	*acceptor;
2732 	tcp_t	*eager;
2733 	tcp_t   *tcp;
2734 	struct T_conn_res	*tcr;
2735 	t_uscalar_t	acceptor_id;
2736 	t_scalar_t	seqnum;
2737 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
2738 	mblk_t	*ok_mp;
2739 	mblk_t	*mp1;
2740 
2741 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
2742 		tcp_err_ack(listener, mp, TPROTO, 0);
2743 		return;
2744 	}
2745 	tcr = (struct T_conn_res *)mp->b_rptr;
2746 
2747 	/*
2748 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
2749 	 * read side queue of the streams device underneath us i.e. the
2750 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
2751 	 * look it up in the queue_hash.  Under LP64 it sends down the
2752 	 * minor_t of the accepting endpoint.
2753 	 *
2754 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
2755 	 * fanout hash lock is held.
2756 	 * This prevents any thread from entering the acceptor queue from
2757 	 * below (since it has not been hard bound yet i.e. any inbound
2758 	 * packets will arrive on the listener or default tcp queue and
2759 	 * go through tcp_lookup).
2760 	 * The CONN_INC_REF will prevent the acceptor from closing.
2761 	 *
2762 	 * XXX It is still possible for a tli application to send down data
2763 	 * on the accepting stream while another thread calls t_accept.
2764 	 * This should not be a problem for well-behaved applications since
2765 	 * the T_OK_ACK is sent after the queue swapping is completed.
2766 	 *
2767 	 * If the accepting fd is the same as the listening fd, avoid
2768 	 * queue hash lookup since that will return an eager listener in a
2769 	 * already established state.
2770 	 */
2771 	acceptor_id = tcr->ACCEPTOR_id;
2772 	mutex_enter(&listener->tcp_eager_lock);
2773 	if (listener->tcp_acceptor_id == acceptor_id) {
2774 		eager = listener->tcp_eager_next_q;
2775 		/* only count how many T_CONN_INDs so don't count q0 */
2776 		if ((listener->tcp_conn_req_cnt_q != 1) ||
2777 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
2778 			mutex_exit(&listener->tcp_eager_lock);
2779 			tcp_err_ack(listener, mp, TBADF, 0);
2780 			return;
2781 		}
2782 		if (listener->tcp_conn_req_cnt_q0 != 0) {
2783 			/* Throw away all the eagers on q0. */
2784 			tcp_eager_cleanup(listener, 1);
2785 		}
2786 		if (listener->tcp_syn_defense) {
2787 			listener->tcp_syn_defense = B_FALSE;
2788 			if (listener->tcp_ip_addr_cache != NULL) {
2789 				kmem_free(listener->tcp_ip_addr_cache,
2790 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
2791 				listener->tcp_ip_addr_cache = NULL;
2792 			}
2793 		}
2794 		/*
2795 		 * Transfer tcp_conn_req_max to the eager so that when
2796 		 * a disconnect occurs we can revert the endpoint to the
2797 		 * listen state.
2798 		 */
2799 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
2800 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
2801 		/*
2802 		 * Get a reference on the acceptor just like the
2803 		 * tcp_acceptor_hash_lookup below.
2804 		 */
2805 		acceptor = listener;
2806 		CONN_INC_REF(acceptor->tcp_connp);
2807 	} else {
2808 		acceptor = tcp_acceptor_hash_lookup(acceptor_id);
2809 		if (acceptor == NULL) {
2810 			if (listener->tcp_debug) {
2811 				(void) strlog(TCP_MODULE_ID, 0, 1,
2812 				    SL_ERROR|SL_TRACE,
2813 				    "tcp_accept: did not find acceptor 0x%x\n",
2814 				    acceptor_id);
2815 			}
2816 			mutex_exit(&listener->tcp_eager_lock);
2817 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
2818 			return;
2819 		}
2820 		/*
2821 		 * Verify acceptor state. The acceptable states for an acceptor
2822 		 * include TCPS_IDLE and TCPS_BOUND.
2823 		 */
2824 		switch (acceptor->tcp_state) {
2825 		case TCPS_IDLE:
2826 			/* FALLTHRU */
2827 		case TCPS_BOUND:
2828 			break;
2829 		default:
2830 			CONN_DEC_REF(acceptor->tcp_connp);
2831 			mutex_exit(&listener->tcp_eager_lock);
2832 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
2833 			return;
2834 		}
2835 	}
2836 
2837 	/* The listener must be in TCPS_LISTEN */
2838 	if (listener->tcp_state != TCPS_LISTEN) {
2839 		CONN_DEC_REF(acceptor->tcp_connp);
2840 		mutex_exit(&listener->tcp_eager_lock);
2841 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
2842 		return;
2843 	}
2844 
2845 	/*
2846 	 * Rendezvous with an eager connection request packet hanging off
2847 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2848 	 * tcp structure when the connection packet arrived in
2849 	 * tcp_conn_request().
2850 	 */
2851 	seqnum = tcr->SEQ_number;
2852 	eager = listener;
2853 	do {
2854 		eager = eager->tcp_eager_next_q;
2855 		if (eager == NULL) {
2856 			CONN_DEC_REF(acceptor->tcp_connp);
2857 			mutex_exit(&listener->tcp_eager_lock);
2858 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2859 			return;
2860 		}
2861 	} while (eager->tcp_conn_req_seqnum != seqnum);
2862 	mutex_exit(&listener->tcp_eager_lock);
2863 
2864 	/*
2865 	 * At this point, both acceptor and listener have 2 ref
2866 	 * that they begin with. Acceptor has one additional ref
2867 	 * we placed in lookup while listener has 3 additional
2868 	 * ref for being behind the squeue (tcp_accept() is
2869 	 * done on listener's squeue); being in classifier hash;
2870 	 * and eager's ref on listener.
2871 	 */
2872 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2873 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2874 
2875 	/*
2876 	 * The eager at this point is set in its own squeue and
2877 	 * could easily have been killed (tcp_accept_finish will
2878 	 * deal with that) because of a TH_RST so we can only
2879 	 * ASSERT for a single ref.
2880 	 */
2881 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2882 
2883 	/* Pre allocate the stroptions mblk also */
2884 	opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
2885 	if (opt_mp == NULL) {
2886 		CONN_DEC_REF(acceptor->tcp_connp);
2887 		CONN_DEC_REF(eager->tcp_connp);
2888 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2889 		return;
2890 	}
2891 	DB_TYPE(opt_mp) = M_SETOPTS;
2892 	opt_mp->b_wptr += sizeof (struct stroptions);
2893 
2894 	/*
2895 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2896 	 * from listener to acceptor. The message is chained on opt_mp
2897 	 * which will be sent onto eager's squeue.
2898 	 */
2899 	if (listener->tcp_bound_if != 0) {
2900 		/* allocate optmgmt req */
2901 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2902 		    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
2903 		    sizeof (int));
2904 		if (mp1 != NULL)
2905 			linkb(opt_mp, mp1);
2906 	}
2907 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2908 		uint_t on = 1;
2909 
2910 		/* allocate optmgmt req */
2911 		mp1 = tcp_setsockopt_mp(IPPROTO_IPV6,
2912 		    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
2913 		if (mp1 != NULL)
2914 			linkb(opt_mp, mp1);
2915 	}
2916 
2917 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2918 	if ((mp1 = copymsg(mp)) == NULL) {
2919 		CONN_DEC_REF(acceptor->tcp_connp);
2920 		CONN_DEC_REF(eager->tcp_connp);
2921 		freemsg(opt_mp);
2922 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2923 		return;
2924 	}
2925 
2926 	tcr = (struct T_conn_res *)mp1->b_rptr;
2927 
2928 	/*
2929 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2930 	 * which allocates a larger mblk and appends the new
2931 	 * local address to the ok_ack.  The address is copied by
2932 	 * soaccept() for getsockname().
2933 	 */
2934 	{
2935 		int extra;
2936 
2937 		extra = (eager->tcp_family == AF_INET) ?
2938 		    sizeof (sin_t) : sizeof (sin6_t);
2939 
2940 		/*
2941 		 * Try to re-use mp, if possible.  Otherwise, allocate
2942 		 * an mblk and return it as ok_mp.  In any case, mp
2943 		 * is no longer usable upon return.
2944 		 */
2945 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2946 			CONN_DEC_REF(acceptor->tcp_connp);
2947 			CONN_DEC_REF(eager->tcp_connp);
2948 			freemsg(opt_mp);
2949 			/* Original mp has been freed by now, so use mp1 */
2950 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2951 			return;
2952 		}
2953 
2954 		mp = NULL;	/* We should never use mp after this point */
2955 
2956 		switch (extra) {
2957 		case sizeof (sin_t): {
2958 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2959 
2960 				ok_mp->b_wptr += extra;
2961 				sin->sin_family = AF_INET;
2962 				sin->sin_port = eager->tcp_lport;
2963 				sin->sin_addr.s_addr =
2964 				    eager->tcp_ipha->ipha_src;
2965 				break;
2966 			}
2967 		case sizeof (sin6_t): {
2968 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2969 
2970 				ok_mp->b_wptr += extra;
2971 				sin6->sin6_family = AF_INET6;
2972 				sin6->sin6_port = eager->tcp_lport;
2973 				if (eager->tcp_ipversion == IPV4_VERSION) {
2974 					sin6->sin6_flowinfo = 0;
2975 					IN6_IPADDR_TO_V4MAPPED(
2976 					    eager->tcp_ipha->ipha_src,
2977 					    &sin6->sin6_addr);
2978 				} else {
2979 					ASSERT(eager->tcp_ip6h != NULL);
2980 					sin6->sin6_flowinfo =
2981 					    eager->tcp_ip6h->ip6_vcf &
2982 					    ~IPV6_VERS_AND_FLOW_MASK;
2983 					sin6->sin6_addr =
2984 					    eager->tcp_ip6h->ip6_src;
2985 				}
2986 				break;
2987 			}
2988 		default:
2989 			break;
2990 		}
2991 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2992 	}
2993 
2994 	/*
2995 	 * If there are no options we know that the T_CONN_RES will
2996 	 * succeed. However, we can't send the T_OK_ACK upstream until
2997 	 * the tcp_accept_swap is done since it would be dangerous to
2998 	 * let the application start using the new fd prior to the swap.
2999 	 */
3000 	tcp_accept_swap(listener, acceptor, eager);
3001 
3002 	/*
3003 	 * tcp_accept_swap unlinks eager from listener but does not drop
3004 	 * the eager's reference on the listener.
3005 	 */
3006 	ASSERT(eager->tcp_listener == NULL);
3007 	ASSERT(listener->tcp_connp->conn_ref >= 5);
3008 
3009 	/*
3010 	 * The eager is now associated with its own queue. Insert in
3011 	 * the hash so that the connection can be reused for a future
3012 	 * T_CONN_RES.
3013 	 */
3014 	tcp_acceptor_hash_insert(acceptor_id, eager);
3015 
3016 	/*
3017 	 * We now do the processing of options with T_CONN_RES.
3018 	 * We delay till now since we wanted to have queue to pass to
3019 	 * option processing routines that points back to the right
3020 	 * instance structure which does not happen until after
3021 	 * tcp_accept_swap().
3022 	 *
3023 	 * Note:
3024 	 * The sanity of the logic here assumes that whatever options
3025 	 * are appropriate to inherit from listner=>eager are done
3026 	 * before this point, and whatever were to be overridden (or not)
3027 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
3028 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
3029 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
3030 	 * This may not be true at this point in time but can be fixed
3031 	 * independently. This option processing code starts with
3032 	 * the instantiated acceptor instance and the final queue at
3033 	 * this point.
3034 	 */
3035 
3036 	if (tcr->OPT_length != 0) {
3037 		/* Options to process */
3038 		int t_error = 0;
3039 		int sys_error = 0;
3040 		int do_disconnect = 0;
3041 
3042 		if (tcp_conprim_opt_process(eager, mp1,
3043 		    &do_disconnect, &t_error, &sys_error) < 0) {
3044 			eager->tcp_accept_error = 1;
3045 			if (do_disconnect) {
3046 				/*
3047 				 * An option failed which does not allow
3048 				 * connection to be accepted.
3049 				 *
3050 				 * We allow T_CONN_RES to succeed and
3051 				 * put a T_DISCON_IND on the eager queue.
3052 				 */
3053 				ASSERT(t_error == 0 && sys_error == 0);
3054 				eager->tcp_send_discon_ind = 1;
3055 			} else {
3056 				ASSERT(t_error != 0);
3057 				freemsg(ok_mp);
3058 				/*
3059 				 * Original mp was either freed or set
3060 				 * to ok_mp above, so use mp1 instead.
3061 				 */
3062 				tcp_err_ack(listener, mp1, t_error, sys_error);
3063 				goto finish;
3064 			}
3065 		}
3066 		/*
3067 		 * Most likely success in setting options (except if
3068 		 * eager->tcp_send_discon_ind set).
3069 		 * mp1 option buffer represented by OPT_length/offset
3070 		 * potentially modified and contains results of setting
3071 		 * options at this point
3072 		 */
3073 	}
3074 
3075 	/* We no longer need mp1, since all options processing has passed */
3076 	freemsg(mp1);
3077 
3078 	putnext(listener->tcp_rq, ok_mp);
3079 
3080 	mutex_enter(&listener->tcp_eager_lock);
3081 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
3082 		tcp_t	*tail;
3083 		mblk_t	*conn_ind;
3084 
3085 		/*
3086 		 * This path should not be executed if listener and
3087 		 * acceptor streams are the same.
3088 		 */
3089 		ASSERT(listener != acceptor);
3090 
3091 		tcp = listener->tcp_eager_prev_q0;
3092 		/*
3093 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
3094 		 * deferred T_conn_ind queue. We need to get to the head of
3095 		 * the queue in order to send up T_conn_ind the same order as
3096 		 * how the 3WHS is completed.
3097 		 */
3098 		while (tcp != listener) {
3099 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
3100 				break;
3101 			else
3102 				tcp = tcp->tcp_eager_prev_q0;
3103 		}
3104 		ASSERT(tcp != listener);
3105 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
3106 		ASSERT(conn_ind != NULL);
3107 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
3108 
3109 		/* Move from q0 to q */
3110 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
3111 		listener->tcp_conn_req_cnt_q0--;
3112 		listener->tcp_conn_req_cnt_q++;
3113 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
3114 		    tcp->tcp_eager_prev_q0;
3115 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
3116 		    tcp->tcp_eager_next_q0;
3117 		tcp->tcp_eager_prev_q0 = NULL;
3118 		tcp->tcp_eager_next_q0 = NULL;
3119 		tcp->tcp_conn_def_q0 = B_FALSE;
3120 
3121 		/*
3122 		 * Insert at end of the queue because sockfs sends
3123 		 * down T_CONN_RES in chronological order. Leaving
3124 		 * the older conn indications at front of the queue
3125 		 * helps reducing search time.
3126 		 */
3127 		tail = listener->tcp_eager_last_q;
3128 		if (tail != NULL)
3129 			tail->tcp_eager_next_q = tcp;
3130 		else
3131 			listener->tcp_eager_next_q = tcp;
3132 		listener->tcp_eager_last_q = tcp;
3133 		tcp->tcp_eager_next_q = NULL;
3134 		mutex_exit(&listener->tcp_eager_lock);
3135 		putnext(tcp->tcp_rq, conn_ind);
3136 	} else {
3137 		mutex_exit(&listener->tcp_eager_lock);
3138 	}
3139 
3140 	/*
3141 	 * Done with the acceptor - free it
3142 	 *
3143 	 * Note: from this point on, no access to listener should be made
3144 	 * as listener can be equal to acceptor.
3145 	 */
3146 finish:
3147 	ASSERT(acceptor->tcp_detached);
3148 	acceptor->tcp_rq = tcp_g_q;
3149 	acceptor->tcp_wq = WR(tcp_g_q);
3150 	(void) tcp_clean_death(acceptor, 0, 2);
3151 	CONN_DEC_REF(acceptor->tcp_connp);
3152 
3153 	/*
3154 	 * In case we already received a FIN we have to make tcp_rput send
3155 	 * the ordrel_ind. This will also send up a window update if the window
3156 	 * has opened up.
3157 	 *
3158 	 * In the normal case of a successful connection acceptance
3159 	 * we give the O_T_BIND_REQ to the read side put procedure as an
3160 	 * indication that this was just accepted. This tells tcp_rput to
3161 	 * pass up any data queued in tcp_rcv_list.
3162 	 *
3163 	 * In the fringe case where options sent with T_CONN_RES failed and
3164 	 * we required, we would be indicating a T_DISCON_IND to blow
3165 	 * away this connection.
3166 	 */
3167 
3168 	/*
3169 	 * XXX: we currently have a problem if XTI application closes the
3170 	 * acceptor stream in between. This problem exists in on10-gate also
3171 	 * and is well know but nothing can be done short of major rewrite
3172 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
3173 	 * eager same squeue as listener (we can distinguish non socket
3174 	 * listeners at the time of handling a SYN in tcp_conn_request)
3175 	 * and do most of the work that tcp_accept_finish does here itself
3176 	 * and then get behind the acceptor squeue to access the acceptor
3177 	 * queue.
3178 	 */
3179 	/*
3180 	 * We already have a ref on tcp so no need to do one before squeue_fill
3181 	 */
3182 	squeue_fill(eager->tcp_connp->conn_sqp, opt_mp,
3183 	    tcp_accept_finish, eager->tcp_connp, SQTAG_TCP_ACCEPT_FINISH);
3184 }
3185 
3186 /*
3187  * Swap information between the eager and acceptor for a TLI/XTI client.
3188  * The sockfs accept is done on the acceptor stream and control goes
3189  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
3190  * called. In either case, both the eager and listener are in their own
3191  * perimeter (squeue) and the code has to deal with potential race.
3192  *
3193  * See the block comment on top of tcp_accept() and tcp_wput_accept().
3194  */
3195 static void
3196 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
3197 {
3198 	conn_t	*econnp, *aconnp;
3199 
3200 	ASSERT(eager->tcp_rq == listener->tcp_rq);
3201 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
3202 	ASSERT(!eager->tcp_hard_bound);
3203 	ASSERT(!TCP_IS_SOCKET(acceptor));
3204 	ASSERT(!TCP_IS_SOCKET(eager));
3205 	ASSERT(!TCP_IS_SOCKET(listener));
3206 
3207 	acceptor->tcp_detached = B_TRUE;
3208 	/*
3209 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
3210 	 * the acceptor id.
3211 	 */
3212 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
3213 
3214 	/* remove eager from listen list... */
3215 	mutex_enter(&listener->tcp_eager_lock);
3216 	tcp_eager_unlink(eager);
3217 	ASSERT(eager->tcp_eager_next_q == NULL &&
3218 	    eager->tcp_eager_last_q == NULL);
3219 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
3220 	    eager->tcp_eager_prev_q0 == NULL);
3221 	mutex_exit(&listener->tcp_eager_lock);
3222 	eager->tcp_rq = acceptor->tcp_rq;
3223 	eager->tcp_wq = acceptor->tcp_wq;
3224 
3225 	econnp = eager->tcp_connp;
3226 	aconnp = acceptor->tcp_connp;
3227 
3228 	eager->tcp_rq->q_ptr = econnp;
3229 	eager->tcp_wq->q_ptr = econnp;
3230 	eager->tcp_detached = B_FALSE;
3231 
3232 	ASSERT(eager->tcp_ack_tid == 0);
3233 
3234 	econnp->conn_dev = aconnp->conn_dev;
3235 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
3236 	econnp->conn_zoneid = aconnp->conn_zoneid;
3237 	aconnp->conn_cred = NULL;
3238 
3239 	/* Do the IPC initialization */
3240 	CONN_INC_REF(econnp);
3241 
3242 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
3243 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
3244 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
3245 	econnp->conn_ulp = aconnp->conn_ulp;
3246 
3247 	/* Done with old IPC. Drop its ref on its connp */
3248 	CONN_DEC_REF(aconnp);
3249 }
3250 
3251 
3252 /*
3253  * Adapt to the information, such as rtt and rtt_sd, provided from the
3254  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
3255  *
3256  * Checks for multicast and broadcast destination address.
3257  * Returns zero on failure; non-zero if ok.
3258  *
3259  * Note that the MSS calculation here is based on the info given in
3260  * the IRE.  We do not do any calculation based on TCP options.  They
3261  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
3262  * knows which options to use.
3263  *
3264  * Note on how TCP gets its parameters for a connection.
3265  *
3266  * When a tcp_t structure is allocated, it gets all the default parameters.
3267  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
3268  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
3269  * default.  But if there is an associated tcp_host_param, it will override
3270  * the metrics.
3271  *
3272  * An incoming SYN with a multicast or broadcast destination address, is dropped
3273  * in 1 of 2 places.
3274  *
3275  * 1. If the packet was received over the wire it is dropped in
3276  * ip_rput_process_broadcast()
3277  *
3278  * 2. If the packet was received through internal IP loopback, i.e. the packet
3279  * was generated and received on the same machine, it is dropped in
3280  * ip_wput_local()
3281  *
3282  * An incoming SYN with a multicast or broadcast source address is always
3283  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
3284  * reject an attempt to connect to a broadcast or multicast (destination)
3285  * address.
3286  */
3287 static int
3288 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
3289 {
3290 	tcp_hsp_t	*hsp;
3291 	ire_t		*ire;
3292 	ire_t		*sire = NULL;
3293 	iulp_t		*ire_uinfo;
3294 	uint32_t	mss_max;
3295 	uint32_t	mss;
3296 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
3297 	conn_t		*connp = tcp->tcp_connp;
3298 	boolean_t	ire_cacheable = B_FALSE;
3299 	zoneid_t	zoneid = connp->conn_zoneid;
3300 	ill_t		*ill = NULL;
3301 	boolean_t	incoming = (ire_mp == NULL);
3302 
3303 	ASSERT(connp->conn_ire_cache == NULL);
3304 
3305 	if (tcp->tcp_ipversion == IPV4_VERSION) {
3306 
3307 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
3308 			BUMP_MIB(&ip_mib, ipInDiscards);
3309 			return (0);
3310 		}
3311 
3312 		ire = ire_cache_lookup(tcp->tcp_connp->conn_rem, zoneid);
3313 		if (ire != NULL) {
3314 			ire_cacheable = B_TRUE;
3315 			ire_uinfo = (ire_mp != NULL) ?
3316 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
3317 			    &ire->ire_uinfo;
3318 
3319 		} else {
3320 			if (ire_mp == NULL) {
3321 				ire = ire_ftable_lookup(
3322 				    tcp->tcp_connp->conn_rem,
3323 				    0, 0, 0, NULL, &sire, zoneid, 0,
3324 				    (MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT));
3325 				if (ire == NULL)
3326 					return (0);
3327 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
3328 				    &ire->ire_uinfo;
3329 			} else {
3330 				ire = (ire_t *)ire_mp->b_rptr;
3331 				ire_uinfo =
3332 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
3333 			}
3334 		}
3335 		ASSERT(ire != NULL);
3336 		ASSERT(ire_uinfo != NULL);
3337 
3338 		if ((ire->ire_src_addr == INADDR_ANY) ||
3339 		    (ire->ire_type & IRE_BROADCAST)) {
3340 			/*
3341 			 * ire->ire_mp is non null when ire_mp passed in is used
3342 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
3343 			 */
3344 			if (ire->ire_mp == NULL)
3345 				ire_refrele(ire);
3346 			if (sire != NULL)
3347 				ire_refrele(sire);
3348 			return (0);
3349 		}
3350 
3351 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
3352 			ipaddr_t src_addr;
3353 
3354 			/*
3355 			 * ip_bind_connected() has stored the correct source
3356 			 * address in conn_src.
3357 			 */
3358 			src_addr = tcp->tcp_connp->conn_src;
3359 			tcp->tcp_ipha->ipha_src = src_addr;
3360 			/*
3361 			 * Copy of the src addr. in tcp_t is needed
3362 			 * for the lookup funcs.
3363 			 */
3364 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
3365 		}
3366 		/*
3367 		 * Set the fragment bit so that IP will tell us if the MTU
3368 		 * should change. IP tells us the latest setting of
3369 		 * ip_path_mtu_discovery through ire_frag_flag.
3370 		 */
3371 		if (ip_path_mtu_discovery) {
3372 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
3373 			    htons(IPH_DF);
3374 		}
3375 		tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
3376 	} else {
3377 		/*
3378 		 * For incoming connection ire_mp = NULL
3379 		 * For outgoing connection ire_mp != NULL
3380 		 * Technically we should check conn_incoming_ill
3381 		 * when ire_mp is NULL and conn_outgoing_ill when
3382 		 * ire_mp is non-NULL. But this is performance
3383 		 * critical path and for IPV*_BOUND_IF, outgoing
3384 		 * and incoming ill are always set to the same value.
3385 		 */
3386 		ill_t	*dst_ill = NULL;
3387 		ipif_t  *dst_ipif = NULL;
3388 		int match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT;
3389 
3390 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
3391 
3392 		if (connp->conn_outgoing_ill != NULL) {
3393 			/* Outgoing or incoming path */
3394 			int   err;
3395 
3396 			dst_ill = conn_get_held_ill(connp,
3397 			    &connp->conn_outgoing_ill, &err);
3398 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
3399 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
3400 				return (0);
3401 			}
3402 			match_flags |= MATCH_IRE_ILL;
3403 			dst_ipif = dst_ill->ill_ipif;
3404 		}
3405 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
3406 		    0, 0, dst_ipif, zoneid, match_flags);
3407 
3408 		if (ire != NULL) {
3409 			ire_cacheable = B_TRUE;
3410 			ire_uinfo = (ire_mp != NULL) ?
3411 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
3412 			    &ire->ire_uinfo;
3413 		} else {
3414 			if (ire_mp == NULL) {
3415 				ire = ire_ftable_lookup_v6(
3416 				    &tcp->tcp_connp->conn_remv6,
3417 				    0, 0, 0, dst_ipif, &sire, zoneid,
3418 				    0, match_flags);
3419 				if (ire == NULL) {
3420 					if (dst_ill != NULL)
3421 						ill_refrele(dst_ill);
3422 					return (0);
3423 				}
3424 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
3425 				    &ire->ire_uinfo;
3426 			} else {
3427 				ire = (ire_t *)ire_mp->b_rptr;
3428 				ire_uinfo =
3429 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
3430 			}
3431 		}
3432 		if (dst_ill != NULL)
3433 			ill_refrele(dst_ill);
3434 
3435 		ASSERT(ire != NULL);
3436 		ASSERT(ire_uinfo != NULL);
3437 
3438 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
3439 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
3440 			/*
3441 			 * ire->ire_mp is non null when ire_mp passed in is used
3442 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
3443 			 */
3444 			if (ire->ire_mp == NULL)
3445 				ire_refrele(ire);
3446 			if (sire != NULL)
3447 				ire_refrele(sire);
3448 			return (0);
3449 		}
3450 
3451 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
3452 			in6_addr_t	src_addr;
3453 
3454 			/*
3455 			 * ip_bind_connected_v6() has stored the correct source
3456 			 * address per IPv6 addr. selection policy in
3457 			 * conn_src_v6.
3458 			 */
3459 			src_addr = tcp->tcp_connp->conn_srcv6;
3460 
3461 			tcp->tcp_ip6h->ip6_src = src_addr;
3462 			/*
3463 			 * Copy of the src addr. in tcp_t is needed
3464 			 * for the lookup funcs.
3465 			 */
3466 			tcp->tcp_ip_src_v6 = src_addr;
3467 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
3468 			    &connp->conn_srcv6));
3469 		}
3470 		tcp->tcp_localnet =
3471 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
3472 	}
3473 
3474 	/*
3475 	 * This allows applications to fail quickly when connections are made
3476 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
3477 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
3478 	 */
3479 	if ((ire->ire_flags & RTF_REJECT) &&
3480 	    (ire->ire_flags & RTF_PRIVATE))
3481 		goto error;
3482 
3483 	/*
3484 	 * Make use of the cached rtt and rtt_sd values to calculate the
3485 	 * initial RTO.  Note that they are already initialized in
3486 	 * tcp_init_values().
3487 	 */
3488 	if (ire_uinfo->iulp_rtt != 0) {
3489 		clock_t	rto;
3490 
3491 		tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
3492 		tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
3493 		rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
3494 		    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5);
3495 
3496 		if (rto > tcp_rexmit_interval_max) {
3497 			tcp->tcp_rto = tcp_rexmit_interval_max;
3498 		} else if (rto < tcp_rexmit_interval_min) {
3499 			tcp->tcp_rto = tcp_rexmit_interval_min;
3500 		} else {
3501 			tcp->tcp_rto = rto;
3502 		}
3503 	}
3504 	if (ire_uinfo->iulp_ssthresh != 0)
3505 		tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
3506 	else
3507 		tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
3508 	if (ire_uinfo->iulp_spipe > 0) {
3509 		tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
3510 		    tcp_max_buf);
3511 		if (tcp_snd_lowat_fraction != 0)
3512 			tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
3513 			    tcp_snd_lowat_fraction;
3514 		(void) tcp_maxpsz_set(tcp, B_TRUE);
3515 	}
3516 	/*
3517 	 * Note that up till now, acceptor always inherits receive
3518 	 * window from the listener.  But if there is a metrics associated
3519 	 * with a host, we should use that instead of inheriting it from
3520 	 * listener.  Thus we need to pass this info back to the caller.
3521 	 */
3522 	if (ire_uinfo->iulp_rpipe > 0) {
3523 		tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe, tcp_max_buf);
3524 	} else {
3525 		/*
3526 		 * For passive open, set tcp_rwnd to 0 so that the caller
3527 		 * knows that there is no rpipe metric for this connection.
3528 		 */
3529 		if (tcp_detached)
3530 			tcp->tcp_rwnd = 0;
3531 	}
3532 	if (ire_uinfo->iulp_rtomax > 0) {
3533 		tcp->tcp_second_timer_threshold = ire_uinfo->iulp_rtomax;
3534 	}
3535 
3536 	/*
3537 	 * Use the metric option settings, iulp_tstamp_ok and iulp_wscale_ok,
3538 	 * only for active open.  What this means is that if the other side
3539 	 * uses timestamp or window scale option, TCP will also use those
3540 	 * options.  That is for passive open.  If the application sets a
3541 	 * large window, window scale is enabled regardless of the value in
3542 	 * iulp_wscale_ok.  This is the behavior since 2.6.  So we keep it.
3543 	 * The only case left in passive open processing is the check for SACK.
3544 	 *
3545 	 * For ECN, it should probably be like SACK.  But the current
3546 	 * value is binary, so we treat it like the other cases.  The
3547 	 * metric only controls active open.  For passive open, the ndd
3548 	 * param, tcp_ecn_permitted, controls the behavior.
3549 	 */
3550 	if (!tcp_detached) {
3551 		/*
3552 		 * The if check means that the following can only be turned
3553 		 * on by the metrics only IRE, but not off.
3554 		 */
3555 		if (ire_uinfo->iulp_tstamp_ok)
3556 			tcp->tcp_snd_ts_ok = B_TRUE;
3557 		if (ire_uinfo->iulp_wscale_ok)
3558 			tcp->tcp_snd_ws_ok = B_TRUE;
3559 		if (ire_uinfo->iulp_sack == 2)
3560 			tcp->tcp_snd_sack_ok = B_TRUE;
3561 		if (ire_uinfo->iulp_ecn_ok)
3562 			tcp->tcp_ecn_ok = B_TRUE;
3563 	} else {
3564 		/*
3565 		 * Passive open.
3566 		 *
3567 		 * As above, the if check means that SACK can only be
3568 		 * turned on by the metric only IRE.
3569 		 */
3570 		if (ire_uinfo->iulp_sack > 0) {
3571 			tcp->tcp_snd_sack_ok = B_TRUE;
3572 		}
3573 	}
3574 
3575 	/*
3576 	 * XXX: Note that currently, ire_max_frag can be as small as 68
3577 	 * because of PMTUd.  So tcp_mss may go to negative if combined
3578 	 * length of all those options exceeds 28 bytes.  But because
3579 	 * of the tcp_mss_min check below, we may not have a problem if
3580 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
3581 	 * the negative problem still exists.  And the check defeats PMTUd.
3582 	 * In fact, if PMTUd finds that the MSS should be smaller than
3583 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
3584 	 * value.
3585 	 *
3586 	 * We do not deal with that now.  All those problems related to
3587 	 * PMTUd will be fixed later.
3588 	 */
3589 	ASSERT(ire->ire_max_frag != 0);
3590 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
3591 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
3592 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
3593 			mss = MIN(mss, IPV6_MIN_MTU);
3594 		}
3595 	}
3596 
3597 	/* Sanity check for MSS value. */
3598 	if (tcp->tcp_ipversion == IPV4_VERSION)
3599 		mss_max = tcp_mss_max_ipv4;
3600 	else
3601 		mss_max = tcp_mss_max_ipv6;
3602 
3603 	if (tcp->tcp_ipversion == IPV6_VERSION &&
3604 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
3605 		/*
3606 		 * After receiving an ICMPv6 "packet too big" message with a
3607 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
3608 		 * will insert a 8-byte fragment header in every packet; we
3609 		 * reduce the MSS by that amount here.
3610 		 */
3611 		mss -= sizeof (ip6_frag_t);
3612 	}
3613 
3614 	if (tcp->tcp_ipsec_overhead == 0)
3615 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
3616 
3617 	mss -= tcp->tcp_ipsec_overhead;
3618 
3619 	if (mss < tcp_mss_min)
3620 		mss = tcp_mss_min;
3621 	if (mss > mss_max)
3622 		mss = mss_max;
3623 
3624 	/* Note that this is the maximum MSS, excluding all options. */
3625 	tcp->tcp_mss = mss;
3626 
3627 	/*
3628 	 * Initialize the ISS here now that we have the full connection ID.
3629 	 * The RFC 1948 method of initial sequence number generation requires
3630 	 * knowledge of the full connection ID before setting the ISS.
3631 	 */
3632 
3633 	tcp_iss_init(tcp);
3634 
3635 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
3636 		tcp->tcp_loopback = B_TRUE;
3637 
3638 	if (tcp->tcp_ipversion == IPV4_VERSION) {
3639 		hsp = tcp_hsp_lookup(tcp->tcp_remote);
3640 	} else {
3641 		hsp = tcp_hsp_lookup_ipv6(&tcp->tcp_remote_v6);
3642 	}
3643 
3644 	if (hsp != NULL) {
3645 		/* Only modify if we're going to make them bigger */
3646 		if (hsp->tcp_hsp_sendspace > tcp->tcp_xmit_hiwater) {
3647 			tcp->tcp_xmit_hiwater = hsp->tcp_hsp_sendspace;
3648 			if (tcp_snd_lowat_fraction != 0)
3649 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
3650 					tcp_snd_lowat_fraction;
3651 		}
3652 
3653 		if (hsp->tcp_hsp_recvspace > tcp->tcp_rwnd) {
3654 			tcp->tcp_rwnd = hsp->tcp_hsp_recvspace;
3655 		}
3656 
3657 		/* Copy timestamp flag only for active open */
3658 		if (!tcp_detached)
3659 			tcp->tcp_snd_ts_ok = hsp->tcp_hsp_tstamp;
3660 	}
3661 
3662 	if (sire != NULL)
3663 		IRE_REFRELE(sire);
3664 
3665 	/*
3666 	 * If we got an IRE_CACHE and an ILL, go through their properties;
3667 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
3668 	 */
3669 	if (tcp->tcp_loopback ||
3670 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
3671 		/*
3672 		 * For incoming, see if this tcp may be MDT-capable.  For
3673 		 * outgoing, this process has been taken care of through
3674 		 * tcp_rput_other.
3675 		 */
3676 		tcp_ire_ill_check(tcp, ire, ill, incoming);
3677 		tcp->tcp_ire_ill_check_done = B_TRUE;
3678 	}
3679 
3680 	mutex_enter(&connp->conn_lock);
3681 	/*
3682 	 * Make sure that conn is not marked incipient
3683 	 * for incoming connections. A blind
3684 	 * removal of incipient flag is cheaper than
3685 	 * check and removal.
3686 	 */
3687 	connp->conn_state_flags &= ~CONN_INCIPIENT;
3688 
3689 	/* Must not cache forwarding table routes. */
3690 	if (ire_cacheable) {
3691 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
3692 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
3693 			connp->conn_ire_cache = ire;
3694 			IRE_UNTRACE_REF(ire);
3695 			rw_exit(&ire->ire_bucket->irb_lock);
3696 			mutex_exit(&connp->conn_lock);
3697 			return (1);
3698 		}
3699 		rw_exit(&ire->ire_bucket->irb_lock);
3700 	}
3701 	mutex_exit(&connp->conn_lock);
3702 
3703 	if (ire->ire_mp == NULL)
3704 		ire_refrele(ire);
3705 	return (1);
3706 
3707 error:
3708 	if (ire->ire_mp == NULL)
3709 		ire_refrele(ire);
3710 	if (sire != NULL)
3711 		ire_refrele(sire);
3712 	return (0);
3713 }
3714 
3715 /*
3716  * tcp_bind is called (holding the writer lock) by tcp_wput_proto to process a
3717  * O_T_BIND_REQ/T_BIND_REQ message.
3718  */
3719 static void
3720 tcp_bind(tcp_t *tcp, mblk_t *mp)
3721 {
3722 	sin_t	*sin;
3723 	sin6_t	*sin6;
3724 	mblk_t	*mp1;
3725 	in_port_t requested_port;
3726 	in_port_t allocated_port;
3727 	struct T_bind_req *tbr;
3728 	boolean_t	bind_to_req_port_only;
3729 	boolean_t	backlog_update = B_FALSE;
3730 	boolean_t	user_specified;
3731 	in6_addr_t	v6addr;
3732 	ipaddr_t	v4addr;
3733 	uint_t	origipversion;
3734 	int	err;
3735 	queue_t *q = tcp->tcp_wq;
3736 
3737 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
3738 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
3739 		if (tcp->tcp_debug) {
3740 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE,
3741 			    "tcp_bind: bad req, len %u",
3742 			    (uint_t)(mp->b_wptr - mp->b_rptr));
3743 		}
3744 		tcp_err_ack(tcp, mp, TPROTO, 0);
3745 		return;
3746 	}
3747 	/* Make sure the largest address fits */
3748 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
3749 	if (mp1 == NULL) {
3750 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3751 		return;
3752 	}
3753 	mp = mp1;
3754 	tbr = (struct T_bind_req *)mp->b_rptr;
3755 	if (tcp->tcp_state >= TCPS_BOUND) {
3756 		if ((tcp->tcp_state == TCPS_BOUND ||
3757 		    tcp->tcp_state == TCPS_LISTEN) &&
3758 		    tcp->tcp_conn_req_max != tbr->CONIND_number &&
3759 		    tbr->CONIND_number > 0) {
3760 			/*
3761 			 * Handle listen() increasing CONIND_number.
3762 			 * This is more "liberal" then what the TPI spec
3763 			 * requires but is needed to avoid a t_unbind
3764 			 * when handling listen() since the port number
3765 			 * might be "stolen" between the unbind and bind.
3766 			 */
3767 			backlog_update = B_TRUE;
3768 			goto do_bind;
3769 		}
3770 		if (tcp->tcp_debug) {
3771 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE,
3772 			    "tcp_bind: bad state, %d", tcp->tcp_state);
3773 		}
3774 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
3775 		return;
3776 	}
3777 	origipversion = tcp->tcp_ipversion;
3778 
3779 	switch (tbr->ADDR_length) {
3780 	case 0:			/* request for a generic port */
3781 		tbr->ADDR_offset = sizeof (struct T_bind_req);
3782 		if (tcp->tcp_family == AF_INET) {
3783 			tbr->ADDR_length = sizeof (sin_t);
3784 			sin = (sin_t *)&tbr[1];
3785 			*sin = sin_null;
3786 			sin->sin_family = AF_INET;
3787 			mp->b_wptr = (uchar_t *)&sin[1];
3788 			tcp->tcp_ipversion = IPV4_VERSION;
3789 			IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &v6addr);
3790 		} else {
3791 			ASSERT(tcp->tcp_family == AF_INET6);
3792 			tbr->ADDR_length = sizeof (sin6_t);
3793 			sin6 = (sin6_t *)&tbr[1];
3794 			*sin6 = sin6_null;
3795 			sin6->sin6_family = AF_INET6;
3796 			mp->b_wptr = (uchar_t *)&sin6[1];
3797 			tcp->tcp_ipversion = IPV6_VERSION;
3798 			V6_SET_ZERO(v6addr);
3799 		}
3800 		requested_port = 0;
3801 		break;
3802 
3803 	case sizeof (sin_t):	/* Complete IPv4 address */
3804 		sin = (sin_t *)mi_offset_param(mp, tbr->ADDR_offset,
3805 		    sizeof (sin_t));
3806 		if (sin == NULL || !OK_32PTR((char *)sin)) {
3807 			if (tcp->tcp_debug) {
3808 				(void) strlog(TCP_MODULE_ID, 0, 1,
3809 				    SL_ERROR|SL_TRACE,
3810 				    "tcp_bind: bad address parameter, "
3811 				    "offset %d, len %d",
3812 				    tbr->ADDR_offset, tbr->ADDR_length);
3813 			}
3814 			tcp_err_ack(tcp, mp, TPROTO, 0);
3815 			return;
3816 		}
3817 		/*
3818 		 * With sockets sockfs will accept bogus sin_family in
3819 		 * bind() and replace it with the family used in the socket
3820 		 * call.
3821 		 */
3822 		if (sin->sin_family != AF_INET ||
3823 		    tcp->tcp_family != AF_INET) {
3824 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3825 			return;
3826 		}
3827 		requested_port = ntohs(sin->sin_port);
3828 		tcp->tcp_ipversion = IPV4_VERSION;
3829 		v4addr = sin->sin_addr.s_addr;
3830 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
3831 		break;
3832 
3833 	case sizeof (sin6_t): /* Complete IPv6 address */
3834 		sin6 = (sin6_t *)mi_offset_param(mp,
3835 		    tbr->ADDR_offset, sizeof (sin6_t));
3836 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
3837 			if (tcp->tcp_debug) {
3838 				(void) strlog(TCP_MODULE_ID, 0, 1,
3839 				    SL_ERROR|SL_TRACE,
3840 				    "tcp_bind: bad IPv6 address parameter, "
3841 				    "offset %d, len %d", tbr->ADDR_offset,
3842 				    tbr->ADDR_length);
3843 			}
3844 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
3845 			return;
3846 		}
3847 		if (sin6->sin6_family != AF_INET6 ||
3848 		    tcp->tcp_family != AF_INET6) {
3849 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
3850 			return;
3851 		}
3852 		requested_port = ntohs(sin6->sin6_port);
3853 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
3854 		    IPV4_VERSION : IPV6_VERSION;
3855 		v6addr = sin6->sin6_addr;
3856 		break;
3857 
3858 	default:
3859 		if (tcp->tcp_debug) {
3860 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE,
3861 			    "tcp_bind: bad address length, %d",
3862 			    tbr->ADDR_length);
3863 		}
3864 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3865 		return;
3866 	}
3867 	tcp->tcp_bound_source_v6 = v6addr;
3868 
3869 	/* Check for change in ipversion */
3870 	if (origipversion != tcp->tcp_ipversion) {
3871 		ASSERT(tcp->tcp_family == AF_INET6);
3872 		err = tcp->tcp_ipversion == IPV6_VERSION ?
3873 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
3874 		if (err) {
3875 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
3876 			return;
3877 		}
3878 	}
3879 
3880 	/*
3881 	 * Initialize family specific fields. Copy of the src addr.
3882 	 * in tcp_t is needed for the lookup funcs.
3883 	 */
3884 	if (tcp->tcp_ipversion == IPV6_VERSION) {
3885 		tcp->tcp_ip6h->ip6_src = v6addr;
3886 	} else {
3887 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
3888 	}
3889 	tcp->tcp_ip_src_v6 = v6addr;
3890 
3891 	/*
3892 	 * For O_T_BIND_REQ:
3893 	 * Verify that the target port/addr is available, or choose
3894 	 * another.
3895 	 * For  T_BIND_REQ:
3896 	 * Verify that the target port/addr is available or fail.
3897 	 * In both cases when it succeeds the tcp is inserted in the
3898 	 * bind hash table. This ensures that the operation is atomic
3899 	 * under the lock on the hash bucket.
3900 	 */
3901 	bind_to_req_port_only = requested_port != 0 &&
3902 	    tbr->PRIM_type != O_T_BIND_REQ;
3903 	/*
3904 	 * Get a valid port (within the anonymous range and should not
3905 	 * be a privileged one) to use if the user has not given a port.
3906 	 * If multiple threads are here, they may all start with
3907 	 * with the same initial port. But, it should be fine as long as
3908 	 * tcp_bindi will ensure that no two threads will be assigned
3909 	 * the same port.
3910 	 *
3911 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
3912 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
3913 	 * unless TCP_ANONPRIVBIND option is set.
3914 	 */
3915 	if (requested_port == 0) {
3916 		requested_port = tcp->tcp_anon_priv_bind ?
3917 		    tcp_get_next_priv_port() :
3918 		    tcp_update_next_port(tcp_next_port_to_try, B_TRUE);
3919 		user_specified = B_FALSE;
3920 	} else {
3921 		int i;
3922 		boolean_t priv = B_FALSE;
3923 		/*
3924 		 * If the requested_port is in the well-known privileged range,
3925 		 * verify that the stream was opened by a privileged user.
3926 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
3927 		 * but instead the code relies on:
3928 		 * - the fact that the address of the array and its size never
3929 		 *   changes
3930 		 * - the atomic assignment of the elements of the array
3931 		 */
3932 		if (requested_port < tcp_smallest_nonpriv_port) {
3933 			priv = B_TRUE;
3934 		} else {
3935 			for (i = 0; i < tcp_g_num_epriv_ports; i++) {
3936 				if (requested_port ==
3937 				    tcp_g_epriv_ports[i]) {
3938 					priv = B_TRUE;
3939 					break;
3940 				}
3941 			}
3942 		}
3943 		if (priv) {
3944 			cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
3945 
3946 			if (secpolicy_net_privaddr(cr, requested_port) != 0) {
3947 				if (tcp->tcp_debug) {
3948 					(void) strlog(TCP_MODULE_ID, 0, 1,
3949 					    SL_ERROR|SL_TRACE,
3950 					    "tcp_bind: no priv for port %d",
3951 					    requested_port);
3952 				}
3953 				tcp_err_ack(tcp, mp, TACCES, 0);
3954 				return;
3955 			}
3956 		}
3957 		user_specified = B_TRUE;
3958 	}
3959 
3960 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
3961 	    tcp->tcp_reuseaddr, bind_to_req_port_only, user_specified);
3962 
3963 	if (allocated_port == 0) {
3964 		if (bind_to_req_port_only) {
3965 			if (tcp->tcp_debug) {
3966 				(void) strlog(TCP_MODULE_ID, 0, 1,
3967 				    SL_ERROR|SL_TRACE,
3968 				    "tcp_bind: requested addr busy");
3969 			}
3970 			tcp_err_ack(tcp, mp, TADDRBUSY, 0);
3971 		} else {
3972 			/* If we are out of ports, fail the bind. */
3973 			if (tcp->tcp_debug) {
3974 				(void) strlog(TCP_MODULE_ID, 0, 1,
3975 				    SL_ERROR|SL_TRACE,
3976 				    "tcp_bind: out of ports?");
3977 			}
3978 			tcp_err_ack(tcp, mp, TNOADDR, 0);
3979 		}
3980 		return;
3981 	}
3982 	ASSERT(tcp->tcp_state == TCPS_BOUND);
3983 do_bind:
3984 	if (!backlog_update) {
3985 		if (tcp->tcp_family == AF_INET)
3986 			sin->sin_port = htons(allocated_port);
3987 		else
3988 			sin6->sin6_port = htons(allocated_port);
3989 	}
3990 	if (tcp->tcp_family == AF_INET) {
3991 		if (tbr->CONIND_number != 0) {
3992 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
3993 			    sizeof (sin_t));
3994 		} else {
3995 			/* Just verify the local IP address */
3996 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type, IP_ADDR_LEN);
3997 		}
3998 	} else {
3999 		if (tbr->CONIND_number != 0) {
4000 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
4001 			    sizeof (sin6_t));
4002 		} else {
4003 			/* Just verify the local IP address */
4004 			mp1 = tcp_ip_bind_mp(tcp, tbr->PRIM_type,
4005 			    IPV6_ADDR_LEN);
4006 		}
4007 	}
4008 	if (!mp1) {
4009 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
4010 		return;
4011 	}
4012 
4013 	tbr->PRIM_type = T_BIND_ACK;
4014 	mp->b_datap->db_type = M_PCPROTO;
4015 
4016 	/* Chain in the reply mp for tcp_rput() */
4017 	mp1->b_cont = mp;
4018 	mp = mp1;
4019 
4020 	tcp->tcp_conn_req_max = tbr->CONIND_number;
4021 	if (tcp->tcp_conn_req_max) {
4022 		if (tcp->tcp_conn_req_max < tcp_conn_req_min)
4023 			tcp->tcp_conn_req_max = tcp_conn_req_min;
4024 		if (tcp->tcp_conn_req_max > tcp_conn_req_max_q)
4025 			tcp->tcp_conn_req_max = tcp_conn_req_max_q;
4026 		/*
4027 		 * If this is a listener, do not reset the eager list
4028 		 * and other stuffs.  Note that we don't check if the
4029 		 * existing eager list meets the new tcp_conn_req_max
4030 		 * requirement.
4031 		 */
4032 		if (tcp->tcp_state != TCPS_LISTEN) {
4033 			tcp->tcp_state = TCPS_LISTEN;
4034 			/* Initialize the chain. Don't need the eager_lock */
4035 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
4036 			tcp->tcp_second_ctimer_threshold =
4037 			    tcp_ip_abort_linterval;
4038 		}
4039 	}
4040 
4041 	/*
4042 	 * We can call ip_bind directly which returns a T_BIND_ACK mp. The
4043 	 * processing continues in tcp_rput_other().
4044 	 */
4045 	if (tcp->tcp_family == AF_INET6) {
4046 		ASSERT(tcp->tcp_connp->conn_af_isv6);
4047 		mp = ip_bind_v6(q, mp, tcp->tcp_connp, &tcp->tcp_sticky_ipp);
4048 	} else {
4049 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
4050 		mp = ip_bind_v4(q, mp, tcp->tcp_connp);
4051 	}
4052 	/*
4053 	 * If the bind cannot complete immediately
4054 	 * IP will arrange to call tcp_rput_other
4055 	 * when the bind completes.
4056 	 */
4057 	if (mp != NULL) {
4058 		tcp_rput_other(tcp, mp);
4059 	} else {
4060 		/*
4061 		 * Bind will be resumed later. Need to ensure
4062 		 * that conn doesn't disappear when that happens.
4063 		 * This will be decremented in ip_resume_tcp_bind().
4064 		 */
4065 		CONN_INC_REF(tcp->tcp_connp);
4066 	}
4067 }
4068 
4069 
4070 /*
4071  * If the "bind_to_req_port_only" parameter is set, if the requested port
4072  * number is available, return it, If not return 0
4073  *
4074  * If "bind_to_req_port_only" parameter is not set and
4075  * If the requested port number is available, return it.  If not, return
4076  * the first anonymous port we happen across.  If no anonymous ports are
4077  * available, return 0. addr is the requested local address, if any.
4078  *
4079  * In either case, when succeeding update the tcp_t to record the port number
4080  * and insert it in the bind hash table.
4081  *
4082  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
4083  * without setting SO_REUSEADDR. This is needed so that they
4084  * can be viewed as two independent transport protocols.
4085  */
4086 static in_port_t
4087 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr, int reuseaddr,
4088     boolean_t bind_to_req_port_only, boolean_t user_specified)
4089 {
4090 	/* number of times we have run around the loop */
4091 	int count = 0;
4092 	/* maximum number of times to run around the loop */
4093 	int loopmax;
4094 	zoneid_t zoneid = tcp->tcp_connp->conn_zoneid;
4095 
4096 	/*
4097 	 * Lookup for free addresses is done in a loop and "loopmax"
4098 	 * influences how long we spin in the loop
4099 	 */
4100 	if (bind_to_req_port_only) {
4101 		/*
4102 		 * If the requested port is busy, don't bother to look
4103 		 * for a new one. Setting loop maximum count to 1 has
4104 		 * that effect.
4105 		 */
4106 		loopmax = 1;
4107 	} else {
4108 		/*
4109 		 * If the requested port is busy, look for a free one
4110 		 * in the anonymous port range.
4111 		 * Set loopmax appropriately so that one does not look
4112 		 * forever in the case all of the anonymous ports are in use.
4113 		 */
4114 		if (tcp->tcp_anon_priv_bind) {
4115 			/*
4116 			 * loopmax =
4117 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
4118 			 */
4119 			loopmax = IPPORT_RESERVED - tcp_min_anonpriv_port;
4120 		} else {
4121 			loopmax = (tcp_largest_anon_port -
4122 			    tcp_smallest_anon_port + 1);
4123 		}
4124 	}
4125 	do {
4126 		uint16_t	lport;
4127 		tf_t		*tbf;
4128 		tcp_t		*ltcp;
4129 
4130 		lport = htons(port);
4131 
4132 		/*
4133 		 * Ensure that the tcp_t is not currently in the bind hash.
4134 		 * Hold the lock on the hash bucket to ensure that
4135 		 * the duplicate check plus the insertion is an atomic
4136 		 * operation.
4137 		 *
4138 		 * This function does an inline lookup on the bind hash list
4139 		 * Make sure that we access only members of tcp_t
4140 		 * and that we don't look at tcp_tcp, since we are not
4141 		 * doing a CONN_INC_REF.
4142 		 */
4143 		tcp_bind_hash_remove(tcp);
4144 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(lport)];
4145 		mutex_enter(&tbf->tf_lock);
4146 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
4147 		    ltcp = ltcp->tcp_bind_hash) {
4148 			if (lport != ltcp->tcp_lport ||
4149 			    ltcp->tcp_connp->conn_zoneid != zoneid) {
4150 				continue;
4151 			}
4152 
4153 			/*
4154 			 * If TCP_EXCLBIND is set for either the bound or
4155 			 * binding endpoint, the semantics of bind
4156 			 * is changed according to the following.
4157 			 *
4158 			 * spec = specified address (v4 or v6)
4159 			 * unspec = unspecified address (v4 or v6)
4160 			 * A = specified addresses are different for endpoints
4161 			 *
4162 			 * bound	bind to		allowed
4163 			 * -------------------------------------
4164 			 * unspec	unspec		no
4165 			 * unspec	spec		no
4166 			 * spec		unspec		no
4167 			 * spec		spec		yes if A
4168 			 *
4169 			 * Note:
4170 			 *
4171 			 * 1. Because of TLI semantics, an endpoint can go
4172 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
4173 			 * TCPS_BOUND, depending on whether it is originally
4174 			 * a listener or not.  That is why we need to check
4175 			 * for states greater than or equal to TCPS_BOUND
4176 			 * here.
4177 			 *
4178 			 * 2. Ideally, we should only check for state equals
4179 			 * to TCPS_LISTEN. And the following check should be
4180 			 * added.
4181 			 *
4182 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
4183 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
4184 			 *		...
4185 			 * }
4186 			 *
4187 			 * The semantics will be changed to this.  If the
4188 			 * endpoint on the list is in state not equal to
4189 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
4190 			 * set, let the bind succeed.
4191 			 *
4192 			 * But because of (1), we cannot do that now.  If
4193 			 * in future, we can change this going back semantics,
4194 			 * we can add the above check.
4195 			 */
4196 			if (ltcp->tcp_exclbind || tcp->tcp_exclbind) {
4197 				if (V6_OR_V4_INADDR_ANY(
4198 				    ltcp->tcp_bound_source_v6) ||
4199 				    V6_OR_V4_INADDR_ANY(*laddr) ||
4200 				    IN6_ARE_ADDR_EQUAL(laddr,
4201 				    &ltcp->tcp_bound_source_v6)) {
4202 					break;
4203 				}
4204 				continue;
4205 			}
4206 
4207 			/*
4208 			 * Check ipversion to allow IPv4 and IPv6 sockets to
4209 			 * have disjoint port number spaces, if *_EXCLBIND
4210 			 * is not set and only if the application binds to a
4211 			 * specific port. We use the same autoassigned port
4212 			 * number space for IPv4 and IPv6 sockets.
4213 			 */
4214 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
4215 			    bind_to_req_port_only)
4216 				continue;
4217 
4218 			if (!reuseaddr) {
4219 				/*
4220 				 * No socket option SO_REUSEADDR.
4221 				 *
4222 				 * If existing port is bound to
4223 				 * a non-wildcard IP address
4224 				 * and the requesting stream is
4225 				 * bound to a distinct
4226 				 * different IP addresses
4227 				 * (non-wildcard, also), keep
4228 				 * going.
4229 				 */
4230 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
4231 				    !V6_OR_V4_INADDR_ANY(
4232 				    ltcp->tcp_bound_source_v6) &&
4233 				    !IN6_ARE_ADDR_EQUAL(laddr,
4234 				    &ltcp->tcp_bound_source_v6))
4235 					continue;
4236 				if (ltcp->tcp_state >= TCPS_BOUND) {
4237 					/*
4238 					 * This port is being used and
4239 					 * its state is >= TCPS_BOUND,
4240 					 * so we can't bind to it.
4241 					 */
4242 					break;
4243 				}
4244 			} else {
4245 				/*
4246 				 * socket option SO_REUSEADDR is set on the
4247 				 * binding tcp_t.
4248 				 *
4249 				 * If two streams are bound to
4250 				 * same IP address or both addr
4251 				 * and bound source are wildcards
4252 				 * (INADDR_ANY), we want to stop
4253 				 * searching.
4254 				 * We have found a match of IP source
4255 				 * address and source port, which is
4256 				 * refused regardless of the
4257 				 * SO_REUSEADDR setting, so we break.
4258 				 */
4259 				if (IN6_ARE_ADDR_EQUAL(laddr,
4260 				    &ltcp->tcp_bound_source_v6) &&
4261 				    (ltcp->tcp_state == TCPS_LISTEN ||
4262 				    ltcp->tcp_state == TCPS_BOUND))
4263 					break;
4264 			}
4265 		}
4266 		if (ltcp != NULL) {
4267 			/* The port number is busy */
4268 			mutex_exit(&tbf->tf_lock);
4269 		} else {
4270 			/*
4271 			 * This port is ours. Insert in fanout and mark as
4272 			 * bound to prevent others from getting the port
4273 			 * number.
4274 			 */
4275 			tcp->tcp_state = TCPS_BOUND;
4276 			tcp->tcp_lport = htons(port);
4277 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
4278 
4279 			ASSERT(&tcp_bind_fanout[TCP_BIND_HASH(
4280 			    tcp->tcp_lport)] == tbf);
4281 			tcp_bind_hash_insert(tbf, tcp, 1);
4282 
4283 			mutex_exit(&tbf->tf_lock);
4284 
4285 			/*
4286 			 * We don't want tcp_next_port_to_try to "inherit"
4287 			 * a port number supplied by the user in a bind.
4288 			 */
4289 			if (user_specified)
4290 				return (port);
4291 
4292 			/*
4293 			 * This is the only place where tcp_next_port_to_try
4294 			 * is updated. After the update, it may or may not
4295 			 * be in the valid range.
4296 			 */
4297 			if (!tcp->tcp_anon_priv_bind)
4298 				tcp_next_port_to_try = port + 1;
4299 			return (port);
4300 		}
4301 
4302 		if (tcp->tcp_anon_priv_bind) {
4303 			port = tcp_get_next_priv_port();
4304 		} else {
4305 			if (count == 0 && user_specified) {
4306 				/*
4307 				 * We may have to return an anonymous port. So
4308 				 * get one to start with.
4309 				 */
4310 				port =
4311 				    tcp_update_next_port(tcp_next_port_to_try,
4312 					B_TRUE);
4313 				user_specified = B_FALSE;
4314 			} else {
4315 				port = tcp_update_next_port(port + 1, B_FALSE);
4316 			}
4317 		}
4318 
4319 		/*
4320 		 * Don't let this loop run forever in the case where
4321 		 * all of the anonymous ports are in use.
4322 		 */
4323 	} while (++count < loopmax);
4324 	return (0);
4325 }
4326 
4327 /*
4328  * We are dying for some reason.  Try to do it gracefully.  (May be called
4329  * as writer.)
4330  *
4331  * Return -1 if the structure was not cleaned up (if the cleanup had to be
4332  * done by a service procedure).
4333  * TBD - Should the return value distinguish between the tcp_t being
4334  * freed and it being reinitialized?
4335  */
4336 static int
4337 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
4338 {
4339 	mblk_t	*mp;
4340 	queue_t	*q;
4341 
4342 	TCP_CLD_STAT(tag);
4343 
4344 #if TCP_TAG_CLEAN_DEATH
4345 	tcp->tcp_cleandeathtag = tag;
4346 #endif
4347 
4348 	if (tcp->tcp_linger_tid != 0 &&
4349 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
4350 		tcp_stop_lingering(tcp);
4351 	}
4352 
4353 	ASSERT(tcp != NULL);
4354 	ASSERT((tcp->tcp_family == AF_INET &&
4355 	    tcp->tcp_ipversion == IPV4_VERSION) ||
4356 	    (tcp->tcp_family == AF_INET6 &&
4357 	    (tcp->tcp_ipversion == IPV4_VERSION ||
4358 	    tcp->tcp_ipversion == IPV6_VERSION)));
4359 
4360 	if (TCP_IS_DETACHED(tcp)) {
4361 		if (tcp->tcp_hard_binding) {
4362 			/*
4363 			 * Its an eager that we are dealing with. We close the
4364 			 * eager but in case a conn_ind has already gone to the
4365 			 * listener, let tcp_accept_finish() send a discon_ind
4366 			 * to the listener and drop the last reference. If the
4367 			 * listener doesn't even know about the eager i.e. the
4368 			 * conn_ind hasn't gone up, blow away the eager and drop
4369 			 * the last reference as well. If the conn_ind has gone
4370 			 * up, state should be BOUND. tcp_accept_finish
4371 			 * will figure out that the connection has received a
4372 			 * RST and will send a DISCON_IND to the application.
4373 			 */
4374 			tcp_closei_local(tcp);
4375 			if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
4376 				CONN_DEC_REF(tcp->tcp_connp);
4377 			} else {
4378 				tcp->tcp_state = TCPS_BOUND;
4379 			}
4380 		} else {
4381 			tcp_close_detached(tcp);
4382 		}
4383 		return (0);
4384 	}
4385 
4386 	TCP_STAT(tcp_clean_death_nondetached);
4387 
4388 	/*
4389 	 * If T_ORDREL_IND has not been sent yet (done when service routine
4390 	 * is run) postpone cleaning up the endpoint until service routine
4391 	 * has sent up the T_ORDREL_IND. Avoid clearing out an existing
4392 	 * client_errno since tcp_close uses the client_errno field.
4393 	 */
4394 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
4395 		if (err != 0)
4396 			tcp->tcp_client_errno = err;
4397 
4398 		tcp->tcp_deferred_clean_death = B_TRUE;
4399 		return (-1);
4400 	}
4401 
4402 	q = tcp->tcp_rq;
4403 
4404 	/* Trash all inbound data */
4405 	flushq(q, FLUSHALL);
4406 
4407 	/*
4408 	 * If we are at least part way open and there is error
4409 	 * (err==0 implies no error)
4410 	 * notify our client by a T_DISCON_IND.
4411 	 */
4412 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
4413 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
4414 		    !TCP_IS_SOCKET(tcp)) {
4415 			/*
4416 			 * Send M_FLUSH according to TPI. Because sockets will
4417 			 * (and must) ignore FLUSHR we do that only for TPI
4418 			 * endpoints and sockets in STREAMS mode.
4419 			 */
4420 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
4421 		}
4422 		if (tcp->tcp_debug) {
4423 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE|SL_ERROR,
4424 			    "tcp_clean_death: discon err %d", err);
4425 		}
4426 		mp = mi_tpi_discon_ind(NULL, err, 0);
4427 		if (mp != NULL) {
4428 			putnext(q, mp);
4429 		} else {
4430 			if (tcp->tcp_debug) {
4431 				(void) strlog(TCP_MODULE_ID, 0, 1,
4432 				    SL_ERROR|SL_TRACE,
4433 				    "tcp_clean_death, sending M_ERROR");
4434 			}
4435 			(void) putnextctl1(q, M_ERROR, EPROTO);
4436 		}
4437 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
4438 			/* SYN_SENT or SYN_RCVD */
4439 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4440 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
4441 			/* ESTABLISHED or CLOSE_WAIT */
4442 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4443 		}
4444 	}
4445 
4446 	tcp_reinit(tcp);
4447 	return (-1);
4448 }
4449 
4450 /*
4451  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
4452  * to expire, stop the wait and finish the close.
4453  */
4454 static void
4455 tcp_stop_lingering(tcp_t *tcp)
4456 {
4457 	clock_t	delta = 0;
4458 
4459 	tcp->tcp_linger_tid = 0;
4460 	if (tcp->tcp_state > TCPS_LISTEN) {
4461 		tcp_acceptor_hash_remove(tcp);
4462 		if (tcp->tcp_flow_stopped) {
4463 			tcp->tcp_flow_stopped = B_FALSE;
4464 			tcp_clrqfull(tcp);
4465 		}
4466 
4467 		if (tcp->tcp_timer_tid != 0) {
4468 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4469 			tcp->tcp_timer_tid = 0;
4470 		}
4471 		/*
4472 		 * Need to cancel those timers which will not be used when
4473 		 * TCP is detached.  This has to be done before the tcp_wq
4474 		 * is set to the global queue.
4475 		 */
4476 		tcp_timers_stop(tcp);
4477 
4478 
4479 		tcp->tcp_detached = B_TRUE;
4480 		tcp->tcp_rq = tcp_g_q;
4481 		tcp->tcp_wq = WR(tcp_g_q);
4482 
4483 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4484 			tcp_time_wait_append(tcp);
4485 			TCP_DBGSTAT(tcp_detach_time_wait);
4486 			goto finish;
4487 		}
4488 
4489 		/*
4490 		 * If delta is zero the timer event wasn't executed and was
4491 		 * successfully canceled. In this case we need to restart it
4492 		 * with the minimal delta possible.
4493 		 */
4494 		if (delta >= 0) {
4495 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4496 			    delta ? delta : 1);
4497 		}
4498 	} else {
4499 		tcp_closei_local(tcp);
4500 		CONN_DEC_REF(tcp->tcp_connp);
4501 	}
4502 finish:
4503 	/* Signal closing thread that it can complete close */
4504 	mutex_enter(&tcp->tcp_closelock);
4505 	tcp->tcp_detached = B_TRUE;
4506 	tcp->tcp_rq = tcp_g_q;
4507 	tcp->tcp_wq = WR(tcp_g_q);
4508 	tcp->tcp_closed = 1;
4509 	cv_signal(&tcp->tcp_closecv);
4510 	mutex_exit(&tcp->tcp_closelock);
4511 }
4512 
4513 /*
4514  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
4515  * expires.
4516  */
4517 static void
4518 tcp_close_linger_timeout(void *arg)
4519 {
4520 	conn_t	*connp = (conn_t *)arg;
4521 	tcp_t 	*tcp = connp->conn_tcp;
4522 
4523 	tcp->tcp_client_errno = ETIMEDOUT;
4524 	tcp_stop_lingering(tcp);
4525 }
4526 
4527 static int
4528 tcp_close(queue_t *q, int flags)
4529 {
4530 	conn_t		*connp = Q_TO_CONN(q);
4531 	tcp_t		*tcp = connp->conn_tcp;
4532 	mblk_t 		*mp = &tcp->tcp_closemp;
4533 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
4534 
4535 	ASSERT(WR(q)->q_next == NULL);
4536 	ASSERT(connp->conn_ref >= 2);
4537 	ASSERT((connp->conn_flags & IPCL_TCPMOD) == 0);
4538 
4539 	/*
4540 	 * We are being closed as /dev/tcp or /dev/tcp6.
4541 	 *
4542 	 * Mark the conn as closing. ill_pending_mp_add will not
4543 	 * add any mp to the pending mp list, after this conn has
4544 	 * started closing. Same for sq_pending_mp_add
4545 	 */
4546 	mutex_enter(&connp->conn_lock);
4547 	connp->conn_state_flags |= CONN_CLOSING;
4548 	if (connp->conn_oper_pending_ill != NULL)
4549 		conn_ioctl_cleanup_reqd = B_TRUE;
4550 	CONN_INC_REF_LOCKED(connp);
4551 	mutex_exit(&connp->conn_lock);
4552 	tcp->tcp_closeflags = (uint8_t)flags;
4553 	ASSERT(connp->conn_ref >= 3);
4554 
4555 	(*tcp_squeue_close_proc)(connp->conn_sqp, mp,
4556 	    tcp_close_output, connp, SQTAG_IP_TCP_CLOSE);
4557 
4558 	mutex_enter(&tcp->tcp_closelock);
4559 	while (!tcp->tcp_closed)
4560 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
4561 	mutex_exit(&tcp->tcp_closelock);
4562 	/*
4563 	 * In the case of listener streams that have eagers in the q or q0
4564 	 * we wait for the eagers to drop their reference to us. tcp_rq and
4565 	 * tcp_wq of the eagers point to our queues. By waiting for the
4566 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
4567 	 * up their queue pointers and also dropped their references to us.
4568 	 */
4569 	if (tcp->tcp_wait_for_eagers) {
4570 		mutex_enter(&connp->conn_lock);
4571 		while (connp->conn_ref != 1) {
4572 			cv_wait(&connp->conn_cv, &connp->conn_lock);
4573 		}
4574 		mutex_exit(&connp->conn_lock);
4575 	}
4576 	/*
4577 	 * ioctl cleanup. The mp is queued in the
4578 	 * ill_pending_mp or in the sq_pending_mp.
4579 	 */
4580 	if (conn_ioctl_cleanup_reqd)
4581 		conn_ioctl_cleanup(connp);
4582 
4583 	qprocsoff(q);
4584 	inet_minor_free(ip_minor_arena, connp->conn_dev);
4585 
4586 	ASSERT(connp->conn_cred != NULL);
4587 	crfree(connp->conn_cred);
4588 	tcp->tcp_cred = connp->conn_cred = NULL;
4589 	tcp->tcp_cpid = -1;
4590 
4591 	/*
4592 	 * Drop IP's reference on the conn. This is the last reference
4593 	 * on the connp if the state was less than established. If the
4594 	 * connection has gone into timewait state, then we will have
4595 	 * one ref for the TCP and one more ref (total of two) for the
4596 	 * classifier connected hash list (a timewait connections stays
4597 	 * in connected hash till closed).
4598 	 *
4599 	 * We can't assert the references because there might be other
4600 	 * transient reference places because of some walkers or queued
4601 	 * packets in squeue for the timewait state.
4602 	 */
4603 	CONN_DEC_REF(connp);
4604 	q->q_ptr = WR(q)->q_ptr = NULL;
4605 	return (0);
4606 }
4607 
4608 int
4609 tcp_modclose(queue_t *q)
4610 {
4611 	conn_t *connp = Q_TO_CONN(q);
4612 	ASSERT((connp->conn_flags & IPCL_TCPMOD) != 0);
4613 
4614 	qprocsoff(q);
4615 
4616 	if (connp->conn_cred != NULL) {
4617 		crfree(connp->conn_cred);
4618 		connp->conn_cred = NULL;
4619 	}
4620 	CONN_DEC_REF(connp);
4621 	q->q_ptr = WR(q)->q_ptr = NULL;
4622 	return (0);
4623 }
4624 
4625 static int
4626 tcpclose_accept(queue_t *q)
4627 {
4628 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
4629 
4630 	/*
4631 	 * We had opened an acceptor STREAM for sockfs which is
4632 	 * now being closed due to some error.
4633 	 */
4634 	qprocsoff(q);
4635 	inet_minor_free(ip_minor_arena, (dev_t)q->q_ptr);
4636 	q->q_ptr = WR(q)->q_ptr = NULL;
4637 	return (0);
4638 }
4639 
4640 
4641 /*
4642  * Called by streams close routine via squeues when our client blows off her
4643  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
4644  * connection politely" When SO_LINGER is set (with a non-zero linger time and
4645  * it is not a nonblocking socket) then this routine sleeps until the FIN is
4646  * acked.
4647  *
4648  * NOTE: tcp_close potentially returns error when lingering.
4649  * However, the stream head currently does not pass these errors
4650  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
4651  * errors to the application (from tsleep()) and not errors
4652  * like ECONNRESET caused by receiving a reset packet.
4653  */
4654 
4655 /* ARGSUSED */
4656 static void
4657 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
4658 {
4659 	char	*msg;
4660 	conn_t	*connp = (conn_t *)arg;
4661 	tcp_t	*tcp = connp->conn_tcp;
4662 	clock_t	delta = 0;
4663 
4664 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
4665 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
4666 
4667 	/* Cancel any pending timeout */
4668 	if (tcp->tcp_ordrelid != 0) {
4669 		if (tcp->tcp_timeout) {
4670 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ordrelid);
4671 		}
4672 		tcp->tcp_ordrelid = 0;
4673 		tcp->tcp_timeout = B_FALSE;
4674 	}
4675 
4676 	mutex_enter(&tcp->tcp_eager_lock);
4677 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
4678 		/* Cleanup for listener */
4679 		tcp_eager_cleanup(tcp, 0);
4680 		tcp->tcp_wait_for_eagers = 1;
4681 	}
4682 	mutex_exit(&tcp->tcp_eager_lock);
4683 
4684 	connp->conn_mdt_ok = B_FALSE;
4685 	tcp->tcp_mdt = B_FALSE;
4686 
4687 	msg = NULL;
4688 	switch (tcp->tcp_state) {
4689 	case TCPS_CLOSED:
4690 	case TCPS_IDLE:
4691 	case TCPS_BOUND:
4692 	case TCPS_LISTEN:
4693 		break;
4694 	case TCPS_SYN_SENT:
4695 		msg = "tcp_close, during connect";
4696 		break;
4697 	case TCPS_SYN_RCVD:
4698 		/*
4699 		 * Close during the connect 3-way handshake
4700 		 * but here there may or may not be pending data
4701 		 * already on queue. Process almost same as in
4702 		 * the ESTABLISHED state.
4703 		 */
4704 		/* FALLTHRU */
4705 	default:
4706 		if (tcp->tcp_fused)
4707 			tcp_unfuse(tcp);
4708 
4709 		/*
4710 		 * If SO_LINGER has set a zero linger time, abort the
4711 		 * connection with a reset.
4712 		 */
4713 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
4714 			msg = "tcp_close, zero lingertime";
4715 			break;
4716 		}
4717 
4718 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
4719 		/*
4720 		 * Abort connection if there is unread data queued.
4721 		 */
4722 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
4723 			msg = "tcp_close, unread data";
4724 			break;
4725 		}
4726 		/*
4727 		 * tcp_hard_bound is now cleared thus all packets go through
4728 		 * tcp_lookup. This fact is used by tcp_detach below.
4729 		 *
4730 		 * We have done a qwait() above which could have possibly
4731 		 * drained more messages in turn causing transition to a
4732 		 * different state. Check whether we have to do the rest
4733 		 * of the processing or not.
4734 		 */
4735 		if (tcp->tcp_state <= TCPS_LISTEN)
4736 			break;
4737 
4738 		/*
4739 		 * Transmit the FIN before detaching the tcp_t.
4740 		 * After tcp_detach returns this queue/perimeter
4741 		 * no longer owns the tcp_t thus others can modify it.
4742 		 */
4743 		(void) tcp_xmit_end(tcp);
4744 
4745 		/*
4746 		 * If lingering on close then wait until the fin is acked,
4747 		 * the SO_LINGER time passes, or a reset is sent/received.
4748 		 */
4749 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
4750 		    !(tcp->tcp_fin_acked) &&
4751 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
4752 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
4753 				tcp->tcp_client_errno = EWOULDBLOCK;
4754 			} else if (tcp->tcp_client_errno == 0) {
4755 
4756 				ASSERT(tcp->tcp_linger_tid == 0);
4757 
4758 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
4759 				    tcp_close_linger_timeout,
4760 				    tcp->tcp_lingertime * hz);
4761 
4762 				/* tcp_close_linger_timeout will finish close */
4763 				if (tcp->tcp_linger_tid == 0)
4764 					tcp->tcp_client_errno = ENOSR;
4765 				else
4766 					return;
4767 			}
4768 
4769 			/*
4770 			 * Check if we need to detach or just close
4771 			 * the instance.
4772 			 */
4773 			if (tcp->tcp_state <= TCPS_LISTEN)
4774 				break;
4775 		}
4776 
4777 		/*
4778 		 * Make sure that no other thread will access the tcp_rq of
4779 		 * this instance (through lookups etc.) as tcp_rq will go
4780 		 * away shortly.
4781 		 */
4782 		tcp_acceptor_hash_remove(tcp);
4783 
4784 		if (tcp->tcp_flow_stopped) {
4785 			tcp->tcp_flow_stopped = B_FALSE;
4786 			tcp_clrqfull(tcp);
4787 		}
4788 
4789 		if (tcp->tcp_timer_tid != 0) {
4790 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4791 			tcp->tcp_timer_tid = 0;
4792 		}
4793 		/*
4794 		 * Need to cancel those timers which will not be used when
4795 		 * TCP is detached.  This has to be done before the tcp_wq
4796 		 * is set to the global queue.
4797 		 */
4798 		tcp_timers_stop(tcp);
4799 
4800 		tcp->tcp_detached = B_TRUE;
4801 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
4802 			tcp_time_wait_append(tcp);
4803 			TCP_DBGSTAT(tcp_detach_time_wait);
4804 			ASSERT(connp->conn_ref >= 3);
4805 			goto finish;
4806 		}
4807 
4808 		/*
4809 		 * If delta is zero the timer event wasn't executed and was
4810 		 * successfully canceled. In this case we need to restart it
4811 		 * with the minimal delta possible.
4812 		 */
4813 		if (delta >= 0)
4814 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
4815 			    delta ? delta : 1);
4816 
4817 		ASSERT(connp->conn_ref >= 3);
4818 		goto finish;
4819 	}
4820 
4821 	/* Detach did not complete. Still need to remove q from stream. */
4822 	if (msg) {
4823 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
4824 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
4825 			BUMP_MIB(&tcp_mib, tcpEstabResets);
4826 		if (tcp->tcp_state == TCPS_SYN_SENT ||
4827 		    tcp->tcp_state == TCPS_SYN_RCVD)
4828 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
4829 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
4830 	}
4831 
4832 	tcp_closei_local(tcp);
4833 	CONN_DEC_REF(connp);
4834 	ASSERT(connp->conn_ref >= 2);
4835 
4836 finish:
4837 	/*
4838 	 * Although packets are always processed on the correct
4839 	 * tcp's perimeter and access is serialized via squeue's,
4840 	 * IP still needs a queue when sending packets in time_wait
4841 	 * state so use WR(tcp_g_q) till ip_output() can be
4842 	 * changed to deal with just connp. For read side, we
4843 	 * could have set tcp_rq to NULL but there are some cases
4844 	 * in tcp_rput_data() from early days of this code which
4845 	 * do a putnext without checking if tcp is closed. Those
4846 	 * need to be identified before both tcp_rq and tcp_wq
4847 	 * can be set to NULL and tcp_q_q can disappear forever.
4848 	 */
4849 	mutex_enter(&tcp->tcp_closelock);
4850 	/*
4851 	 * Don't change the queues in the case of a listener that has
4852 	 * eagers in its q or q0. It could surprise the eagers.
4853 	 * Instead wait for the eagers outside the squeue.
4854 	 */
4855 	if (!tcp->tcp_wait_for_eagers) {
4856 		tcp->tcp_detached = B_TRUE;
4857 		tcp->tcp_rq = tcp_g_q;
4858 		tcp->tcp_wq = WR(tcp_g_q);
4859 	}
4860 	/* Signal tcp_close() to finish closing. */
4861 	tcp->tcp_closed = 1;
4862 	cv_signal(&tcp->tcp_closecv);
4863 	mutex_exit(&tcp->tcp_closelock);
4864 }
4865 
4866 
4867 /*
4868  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4869  * Some stream heads get upset if they see these later on as anything but NULL.
4870  */
4871 static void
4872 tcp_close_mpp(mblk_t **mpp)
4873 {
4874 	mblk_t	*mp;
4875 
4876 	if ((mp = *mpp) != NULL) {
4877 		do {
4878 			mp->b_next = NULL;
4879 			mp->b_prev = NULL;
4880 		} while ((mp = mp->b_cont) != NULL);
4881 
4882 		mp = *mpp;
4883 		*mpp = NULL;
4884 		freemsg(mp);
4885 	}
4886 }
4887 
4888 /* Do detached close. */
4889 static void
4890 tcp_close_detached(tcp_t *tcp)
4891 {
4892 	if (tcp->tcp_fused)
4893 		tcp_unfuse(tcp);
4894 
4895 	/*
4896 	 * Clustering code serializes TCP disconnect callbacks and
4897 	 * cluster tcp list walks by blocking a TCP disconnect callback
4898 	 * if a cluster tcp list walk is in progress. This ensures
4899 	 * accurate accounting of TCPs in the cluster code even though
4900 	 * the TCP list walk itself is not atomic.
4901 	 */
4902 	tcp_closei_local(tcp);
4903 	CONN_DEC_REF(tcp->tcp_connp);
4904 }
4905 
4906 /*
4907  * Stop all TCP timers, and free the timer mblks if requested.
4908  */
4909 static void
4910 tcp_timers_stop(tcp_t *tcp)
4911 {
4912 	if (tcp->tcp_timer_tid != 0) {
4913 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4914 		tcp->tcp_timer_tid = 0;
4915 	}
4916 	if (tcp->tcp_ka_tid != 0) {
4917 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4918 		tcp->tcp_ka_tid = 0;
4919 	}
4920 	if (tcp->tcp_ack_tid != 0) {
4921 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4922 		tcp->tcp_ack_tid = 0;
4923 	}
4924 	if (tcp->tcp_push_tid != 0) {
4925 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4926 		tcp->tcp_push_tid = 0;
4927 	}
4928 }
4929 
4930 /*
4931  * The tcp_t is going away. Remove it from all lists and set it
4932  * to TCPS_CLOSED. The freeing up of memory is deferred until
4933  * tcp_inactive. This is needed since a thread in tcp_rput might have
4934  * done a CONN_INC_REF on this structure before it was removed from the
4935  * hashes.
4936  */
4937 static void
4938 tcp_closei_local(tcp_t *tcp)
4939 {
4940 	ire_t 	*ire;
4941 	conn_t	*connp = tcp->tcp_connp;
4942 
4943 	if (!TCP_IS_SOCKET(tcp))
4944 		tcp_acceptor_hash_remove(tcp);
4945 
4946 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
4947 	tcp->tcp_ibsegs = 0;
4948 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
4949 	tcp->tcp_obsegs = 0;
4950 	/*
4951 	 * If we are an eager connection hanging off a listener that
4952 	 * hasn't formally accepted the connection yet, get off his
4953 	 * list and blow off any data that we have accumulated.
4954 	 */
4955 	if (tcp->tcp_listener != NULL) {
4956 		tcp_t	*listener = tcp->tcp_listener;
4957 		mutex_enter(&listener->tcp_eager_lock);
4958 		/*
4959 		 * tcp_eager_conn_ind == NULL means that the
4960 		 * conn_ind has already gone to listener. At
4961 		 * this point, eager will be closed but we
4962 		 * leave it in listeners eager list so that
4963 		 * if listener decides to close without doing
4964 		 * accept, we can clean this up. In tcp_wput_accept
4965 		 * we take case of the case of accept on closed
4966 		 * eager.
4967 		 */
4968 		if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
4969 			tcp_eager_unlink(tcp);
4970 			mutex_exit(&listener->tcp_eager_lock);
4971 			/*
4972 			 * We don't want to have any pointers to the
4973 			 * listener queue, after we have released our
4974 			 * reference on the listener
4975 			 */
4976 			tcp->tcp_rq = tcp_g_q;
4977 			tcp->tcp_wq = WR(tcp_g_q);
4978 			CONN_DEC_REF(listener->tcp_connp);
4979 		} else {
4980 			mutex_exit(&listener->tcp_eager_lock);
4981 		}
4982 	}
4983 
4984 	/* Stop all the timers */
4985 	tcp_timers_stop(tcp);
4986 
4987 	if (tcp->tcp_state == TCPS_LISTEN) {
4988 		if (tcp->tcp_ip_addr_cache) {
4989 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4990 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4991 			tcp->tcp_ip_addr_cache = NULL;
4992 		}
4993 	}
4994 	if (tcp->tcp_flow_stopped)
4995 		tcp_clrqfull(tcp);
4996 
4997 	tcp_bind_hash_remove(tcp);
4998 	/*
4999 	 * If the tcp_time_wait_collector (which runs outside the squeue)
5000 	 * is trying to remove this tcp from the time wait list, we will
5001 	 * block in tcp_time_wait_remove while trying to acquire the
5002 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
5003 	 * requires the ipcl_hash_remove to be ordered after the
5004 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
5005 	 */
5006 	if (tcp->tcp_state == TCPS_TIME_WAIT)
5007 		tcp_time_wait_remove(tcp, NULL);
5008 	CL_INET_DISCONNECT(tcp);
5009 	ipcl_hash_remove(connp);
5010 
5011 	/*
5012 	 * Delete the cached ire in conn_ire_cache and also mark
5013 	 * the conn as CONDEMNED
5014 	 */
5015 	mutex_enter(&connp->conn_lock);
5016 	connp->conn_state_flags |= CONN_CONDEMNED;
5017 	ire = connp->conn_ire_cache;
5018 	connp->conn_ire_cache = NULL;
5019 	mutex_exit(&connp->conn_lock);
5020 	if (ire != NULL)
5021 		IRE_REFRELE_NOTR(ire);
5022 
5023 	/* Need to cleanup any pending ioctls */
5024 	ASSERT(tcp->tcp_time_wait_next == NULL);
5025 	ASSERT(tcp->tcp_time_wait_prev == NULL);
5026 	ASSERT(tcp->tcp_time_wait_expire == 0);
5027 	tcp->tcp_state = TCPS_CLOSED;
5028 }
5029 
5030 /*
5031  * tcp is dying (called from ipcl_conn_destroy and error cases).
5032  * Free the tcp_t in either case.
5033  */
5034 void
5035 tcp_free(tcp_t *tcp)
5036 {
5037 	mblk_t	*mp;
5038 	ip6_pkt_t	*ipp;
5039 
5040 	ASSERT(tcp != NULL);
5041 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
5042 
5043 	tcp->tcp_rq = NULL;
5044 	tcp->tcp_wq = NULL;
5045 
5046 	tcp_close_mpp(&tcp->tcp_xmit_head);
5047 	tcp_close_mpp(&tcp->tcp_reass_head);
5048 	if (tcp->tcp_rcv_list != NULL) {
5049 		/* Free b_next chain */
5050 		tcp_close_mpp(&tcp->tcp_rcv_list);
5051 	}
5052 	if ((mp = tcp->tcp_urp_mp) != NULL) {
5053 		freemsg(mp);
5054 	}
5055 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
5056 		freemsg(mp);
5057 	}
5058 
5059 	if (tcp->tcp_fused_sigurg_mp != NULL) {
5060 		freeb(tcp->tcp_fused_sigurg_mp);
5061 		tcp->tcp_fused_sigurg_mp = NULL;
5062 	}
5063 
5064 	if (tcp->tcp_sack_info != NULL) {
5065 		if (tcp->tcp_notsack_list != NULL) {
5066 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
5067 		}
5068 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
5069 	}
5070 
5071 	if (tcp->tcp_hopopts != NULL) {
5072 		mi_free(tcp->tcp_hopopts);
5073 		tcp->tcp_hopopts = NULL;
5074 		tcp->tcp_hopoptslen = 0;
5075 	}
5076 	ASSERT(tcp->tcp_hopoptslen == 0);
5077 	if (tcp->tcp_dstopts != NULL) {
5078 		mi_free(tcp->tcp_dstopts);
5079 		tcp->tcp_dstopts = NULL;
5080 		tcp->tcp_dstoptslen = 0;
5081 	}
5082 	ASSERT(tcp->tcp_dstoptslen == 0);
5083 	if (tcp->tcp_rtdstopts != NULL) {
5084 		mi_free(tcp->tcp_rtdstopts);
5085 		tcp->tcp_rtdstopts = NULL;
5086 		tcp->tcp_rtdstoptslen = 0;
5087 	}
5088 	ASSERT(tcp->tcp_rtdstoptslen == 0);
5089 	if (tcp->tcp_rthdr != NULL) {
5090 		mi_free(tcp->tcp_rthdr);
5091 		tcp->tcp_rthdr = NULL;
5092 		tcp->tcp_rthdrlen = 0;
5093 	}
5094 	ASSERT(tcp->tcp_rthdrlen == 0);
5095 
5096 	ipp = &tcp->tcp_sticky_ipp;
5097 	if ((ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS |
5098 	    IPPF_DSTOPTS | IPPF_RTHDR)) != 0) {
5099 		if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) {
5100 			kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
5101 			ipp->ipp_hopopts = NULL;
5102 			ipp->ipp_hopoptslen = 0;
5103 		}
5104 		if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
5105 			kmem_free(ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
5106 			ipp->ipp_rtdstopts = NULL;
5107 			ipp->ipp_rtdstoptslen = 0;
5108 		}
5109 		if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
5110 			kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
5111 			ipp->ipp_dstopts = NULL;
5112 			ipp->ipp_dstoptslen = 0;
5113 		}
5114 		if ((ipp->ipp_fields & IPPF_RTHDR) != 0) {
5115 			kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
5116 			ipp->ipp_rthdr = NULL;
5117 			ipp->ipp_rthdrlen = 0;
5118 		}
5119 		ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTDSTOPTS |
5120 		    IPPF_DSTOPTS | IPPF_RTHDR);
5121 	}
5122 
5123 	/*
5124 	 * Free memory associated with the tcp/ip header template.
5125 	 */
5126 
5127 	if (tcp->tcp_iphc != NULL)
5128 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
5129 
5130 	/*
5131 	 * Following is really a blowing away a union.
5132 	 * It happens to have exactly two members of identical size
5133 	 * the following code is enough.
5134 	 */
5135 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
5136 
5137 	if (tcp->tcp_tracebuf != NULL) {
5138 		kmem_free(tcp->tcp_tracebuf, sizeof (tcptrch_t));
5139 		tcp->tcp_tracebuf = NULL;
5140 	}
5141 }
5142 
5143 
5144 /*
5145  * Put a connection confirmation message upstream built from the
5146  * address information within 'iph' and 'tcph'.  Report our success or failure.
5147  */
5148 static boolean_t
5149 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
5150     mblk_t **defermp)
5151 {
5152 	sin_t	sin;
5153 	sin6_t	sin6;
5154 	mblk_t	*mp;
5155 	char	*optp = NULL;
5156 	int	optlen = 0;
5157 	cred_t	*cr;
5158 
5159 	if (defermp != NULL)
5160 		*defermp = NULL;
5161 
5162 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
5163 		/*
5164 		 * Return in T_CONN_CON results of option negotiation through
5165 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
5166 		 * negotiation, then what is received from remote end needs
5167 		 * to be taken into account but there is no such thing (yet?)
5168 		 * in our TCP/IP.
5169 		 * Note: We do not use mi_offset_param() here as
5170 		 * tcp_opts_conn_req contents do not directly come from
5171 		 * an application and are either generated in kernel or
5172 		 * from user input that was already verified.
5173 		 */
5174 		mp = tcp->tcp_conn.tcp_opts_conn_req;
5175 		optp = (char *)(mp->b_rptr +
5176 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
5177 		optlen = (int)
5178 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
5179 	}
5180 
5181 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
5182 		ipha_t *ipha = (ipha_t *)iphdr;
5183 
5184 		/* packet is IPv4 */
5185 		if (tcp->tcp_family == AF_INET) {
5186 			sin = sin_null;
5187 			sin.sin_addr.s_addr = ipha->ipha_src;
5188 			sin.sin_port = *(uint16_t *)tcph->th_lport;
5189 			sin.sin_family = AF_INET;
5190 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
5191 			    (int)sizeof (sin_t), optp, optlen);
5192 		} else {
5193 			sin6 = sin6_null;
5194 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
5195 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
5196 			sin6.sin6_family = AF_INET6;
5197 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
5198 			    (int)sizeof (sin6_t), optp, optlen);
5199 
5200 		}
5201 	} else {
5202 		ip6_t	*ip6h = (ip6_t *)iphdr;
5203 
5204 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
5205 		ASSERT(tcp->tcp_family == AF_INET6);
5206 		sin6 = sin6_null;
5207 		sin6.sin6_addr = ip6h->ip6_src;
5208 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
5209 		sin6.sin6_family = AF_INET6;
5210 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
5211 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
5212 		    (int)sizeof (sin6_t), optp, optlen);
5213 	}
5214 
5215 	if (!mp)
5216 		return (B_FALSE);
5217 
5218 	if ((cr = DB_CRED(idmp)) != NULL) {
5219 		mblk_setcred(mp, cr);
5220 		DB_CPID(mp) = DB_CPID(idmp);
5221 	}
5222 
5223 	if (defermp == NULL)
5224 		putnext(tcp->tcp_rq, mp);
5225 	else
5226 		*defermp = mp;
5227 
5228 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
5229 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
5230 	return (B_TRUE);
5231 }
5232 
5233 /*
5234  * Defense for the SYN attack -
5235  * 1. When q0 is full, drop from the tail (tcp_eager_prev_q0) the oldest
5236  *    one that doesn't have the dontdrop bit set.
5237  * 2. Don't drop a SYN request before its first timeout. This gives every
5238  *    request at least til the first timeout to complete its 3-way handshake.
5239  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
5240  *    requests currently on the queue that has timed out. This will be used
5241  *    as an indicator of whether an attack is under way, so that appropriate
5242  *    actions can be taken. (It's incremented in tcp_timer() and decremented
5243  *    either when eager goes into ESTABLISHED, or gets freed up.)
5244  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
5245  *    # of timeout drops back to <= q0len/32 => SYN alert off
5246  */
5247 static boolean_t
5248 tcp_drop_q0(tcp_t *tcp)
5249 {
5250 	tcp_t	*eager;
5251 
5252 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
5253 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
5254 	/*
5255 	 * New one is added after next_q0 so prev_q0 points to the oldest
5256 	 * Also do not drop any established connections that are deferred on
5257 	 * q0 due to q being full
5258 	 */
5259 
5260 	eager = tcp->tcp_eager_prev_q0;
5261 	while (eager->tcp_dontdrop || eager->tcp_conn_def_q0) {
5262 		eager = eager->tcp_eager_prev_q0;
5263 		if (eager == tcp) {
5264 			eager = tcp->tcp_eager_prev_q0;
5265 			break;
5266 		}
5267 	}
5268 	if (eager->tcp_syn_rcvd_timeout == 0)
5269 		return (B_FALSE);
5270 
5271 	if (tcp->tcp_debug) {
5272 		(void) strlog(TCP_MODULE_ID, 0, 3, SL_TRACE,
5273 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
5274 		    " (%d pending) on %s, drop one", tcp_conn_req_max_q0,
5275 		    tcp->tcp_conn_req_cnt_q0,
5276 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5277 	}
5278 
5279 	BUMP_MIB(&tcp_mib, tcpHalfOpenDrop);
5280 
5281 	/*
5282 	 * need to do refhold here because the selected eager could
5283 	 * be removed by someone else if we release the eager lock.
5284 	 */
5285 	CONN_INC_REF(eager->tcp_connp);
5286 	mutex_exit(&tcp->tcp_eager_lock);
5287 
5288 	/* Mark the IRE created for this SYN request temporary */
5289 	tcp_ip_ire_mark_advice(eager);
5290 	(void) tcp_clean_death(eager, ETIMEDOUT, 5);
5291 	CONN_DEC_REF(eager->tcp_connp);
5292 
5293 	mutex_enter(&tcp->tcp_eager_lock);
5294 	return (B_TRUE);
5295 }
5296 
5297 int
5298 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
5299     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
5300 {
5301 	tcp_t 		*ltcp = lconnp->conn_tcp;
5302 	tcp_t		*tcp = connp->conn_tcp;
5303 	mblk_t		*tpi_mp;
5304 	ipha_t		*ipha;
5305 	ip6_t		*ip6h;
5306 	sin6_t 		sin6;
5307 	in6_addr_t 	v6dst;
5308 	int		err;
5309 	int		ifindex = 0;
5310 	cred_t		*cr;
5311 
5312 	if (ipvers == IPV4_VERSION) {
5313 		ipha = (ipha_t *)mp->b_rptr;
5314 
5315 		connp->conn_send = ip_output;
5316 		connp->conn_recv = tcp_input;
5317 
5318 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5319 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5320 
5321 		sin6 = sin6_null;
5322 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
5323 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
5324 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
5325 		sin6.sin6_family = AF_INET6;
5326 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
5327 		    lconnp->conn_zoneid);
5328 		if (tcp->tcp_recvdstaddr) {
5329 			sin6_t	sin6d;
5330 
5331 			sin6d = sin6_null;
5332 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
5333 			    &sin6d.sin6_addr);
5334 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
5335 			sin6d.sin6_family = AF_INET;
5336 			tpi_mp = mi_tpi_extconn_ind(NULL,
5337 			    (char *)&sin6d, sizeof (sin6_t),
5338 			    (char *)&tcp,
5339 			    (t_scalar_t)sizeof (intptr_t),
5340 			    (char *)&sin6d, sizeof (sin6_t),
5341 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5342 		} else {
5343 			tpi_mp = mi_tpi_conn_ind(NULL,
5344 			    (char *)&sin6, sizeof (sin6_t),
5345 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5346 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5347 		}
5348 	} else {
5349 		ip6h = (ip6_t *)mp->b_rptr;
5350 
5351 		connp->conn_send = ip_output_v6;
5352 		connp->conn_recv = tcp_input;
5353 
5354 		connp->conn_srcv6 = ip6h->ip6_dst;
5355 		connp->conn_remv6 = ip6h->ip6_src;
5356 
5357 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
5358 		ifindex = (int)mp->b_datap->db_cksumstuff;
5359 		mp->b_datap->db_cksumstuff = 0;
5360 
5361 		sin6 = sin6_null;
5362 		sin6.sin6_addr = ip6h->ip6_src;
5363 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
5364 		sin6.sin6_family = AF_INET6;
5365 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
5366 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
5367 		    lconnp->conn_zoneid);
5368 
5369 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
5370 			/* Pass up the scope_id of remote addr */
5371 			sin6.sin6_scope_id = ifindex;
5372 		} else {
5373 			sin6.sin6_scope_id = 0;
5374 		}
5375 		if (tcp->tcp_recvdstaddr) {
5376 			sin6_t	sin6d;
5377 
5378 			sin6d = sin6_null;
5379 			sin6.sin6_addr = ip6h->ip6_dst;
5380 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
5381 			sin6d.sin6_family = AF_INET;
5382 			tpi_mp = mi_tpi_extconn_ind(NULL,
5383 			    (char *)&sin6d, sizeof (sin6_t),
5384 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5385 			    (char *)&sin6d, sizeof (sin6_t),
5386 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5387 		} else {
5388 			tpi_mp = mi_tpi_conn_ind(NULL,
5389 			    (char *)&sin6, sizeof (sin6_t),
5390 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5391 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5392 		}
5393 	}
5394 
5395 	if (tpi_mp == NULL)
5396 		return (ENOMEM);
5397 
5398 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5399 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5400 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
5401 	connp->conn_fully_bound = B_FALSE;
5402 
5403 	if (tcp_trace)
5404 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5405 
5406 	/* Inherit information from the "parent" */
5407 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5408 	tcp->tcp_family = ltcp->tcp_family;
5409 	tcp->tcp_wq = ltcp->tcp_wq;
5410 	tcp->tcp_rq = ltcp->tcp_rq;
5411 	tcp->tcp_mss = tcp_mss_def_ipv6;
5412 	tcp->tcp_detached = B_TRUE;
5413 	if ((err = tcp_init_values(tcp)) != 0) {
5414 		freemsg(tpi_mp);
5415 		return (err);
5416 	}
5417 
5418 	if (ipvers == IPV4_VERSION) {
5419 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
5420 			freemsg(tpi_mp);
5421 			return (err);
5422 		}
5423 		ASSERT(tcp->tcp_ipha != NULL);
5424 	} else {
5425 		/* ifindex must be already set */
5426 		ASSERT(ifindex != 0);
5427 
5428 		if (ltcp->tcp_bound_if != 0) {
5429 			/*
5430 			 * Set newtcp's bound_if equal to
5431 			 * listener's value. If ifindex is
5432 			 * not the same as ltcp->tcp_bound_if,
5433 			 * it must be a packet for the ipmp group
5434 			 * of interfaces
5435 			 */
5436 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
5437 		} else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
5438 			tcp->tcp_bound_if = ifindex;
5439 		}
5440 
5441 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
5442 		tcp->tcp_recvifindex = 0;
5443 		tcp->tcp_recvhops = 0xffffffffU;
5444 		ASSERT(tcp->tcp_ip6h != NULL);
5445 	}
5446 
5447 	tcp->tcp_lport = ltcp->tcp_lport;
5448 
5449 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
5450 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
5451 			/*
5452 			 * Listener had options of some sort; eager inherits.
5453 			 * Free up the eager template and allocate one
5454 			 * of the right size.
5455 			 */
5456 			if (tcp->tcp_hdr_grown) {
5457 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
5458 			} else {
5459 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
5460 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
5461 			}
5462 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
5463 			    KM_NOSLEEP);
5464 			if (tcp->tcp_iphc == NULL) {
5465 				tcp->tcp_iphc_len = 0;
5466 				freemsg(tpi_mp);
5467 				return (ENOMEM);
5468 			}
5469 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
5470 			tcp->tcp_hdr_grown = B_TRUE;
5471 		}
5472 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5473 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5474 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5475 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
5476 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
5477 
5478 		/*
5479 		 * Copy the IP+TCP header template from listener to eager
5480 		 */
5481 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5482 		if (tcp->tcp_ipversion == IPV6_VERSION) {
5483 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
5484 			    IPPROTO_RAW) {
5485 				tcp->tcp_ip6h =
5486 				    (ip6_t *)(tcp->tcp_iphc +
5487 					sizeof (ip6i_t));
5488 			} else {
5489 				tcp->tcp_ip6h =
5490 				    (ip6_t *)(tcp->tcp_iphc);
5491 			}
5492 			tcp->tcp_ipha = NULL;
5493 		} else {
5494 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5495 			tcp->tcp_ip6h = NULL;
5496 		}
5497 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5498 		    tcp->tcp_ip_hdr_len);
5499 	} else {
5500 		/*
5501 		 * only valid case when ipversion of listener and
5502 		 * eager differ is when listener is IPv6 and
5503 		 * eager is IPv4.
5504 		 * Eager header template has been initialized to the
5505 		 * maximum v4 header sizes, which includes space for
5506 		 * TCP and IP options.
5507 		 */
5508 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
5509 		    (tcp->tcp_ipversion == IPV4_VERSION));
5510 		ASSERT(tcp->tcp_iphc_len >=
5511 		    TCP_MAX_COMBINED_HEADER_LENGTH);
5512 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5513 		/* copy IP header fields individually */
5514 		tcp->tcp_ipha->ipha_ttl =
5515 		    ltcp->tcp_ip6h->ip6_hops;
5516 		bcopy(ltcp->tcp_tcph->th_lport,
5517 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
5518 	}
5519 
5520 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5521 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
5522 	    sizeof (in_port_t));
5523 
5524 	if (ltcp->tcp_lport == 0) {
5525 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
5526 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
5527 		    sizeof (in_port_t));
5528 	}
5529 
5530 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5531 		ASSERT(ipha != NULL);
5532 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5533 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5534 
5535 		/* Source routing option copyover (reverse it) */
5536 		if (tcp_rev_src_routes)
5537 			tcp_opt_reverse(tcp, ipha);
5538 	} else {
5539 		ASSERT(ip6h != NULL);
5540 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
5541 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
5542 	}
5543 
5544 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5545 	/*
5546 	 * If the SYN contains a credential, it's a loopback packet; attach
5547 	 * the credential to the TPI message.
5548 	 */
5549 	if ((cr = DB_CRED(idmp)) != NULL) {
5550 		mblk_setcred(tpi_mp, cr);
5551 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5552 	}
5553 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5554 
5555 	return (0);
5556 }
5557 
5558 
5559 int
5560 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
5561     tcph_t *tcph, mblk_t *idmp)
5562 {
5563 	tcp_t 		*ltcp = lconnp->conn_tcp;
5564 	tcp_t		*tcp = connp->conn_tcp;
5565 	sin_t		sin;
5566 	mblk_t		*tpi_mp = NULL;
5567 	int		err;
5568 	cred_t		*cr;
5569 
5570 	sin = sin_null;
5571 	sin.sin_addr.s_addr = ipha->ipha_src;
5572 	sin.sin_port = *(uint16_t *)tcph->th_lport;
5573 	sin.sin_family = AF_INET;
5574 	if (ltcp->tcp_recvdstaddr) {
5575 		sin_t	sind;
5576 
5577 		sind = sin_null;
5578 		sind.sin_addr.s_addr = ipha->ipha_dst;
5579 		sind.sin_port = *(uint16_t *)tcph->th_fport;
5580 		sind.sin_family = AF_INET;
5581 		tpi_mp = mi_tpi_extconn_ind(NULL,
5582 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
5583 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
5584 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5585 	} else {
5586 		tpi_mp = mi_tpi_conn_ind(NULL,
5587 		    (char *)&sin, sizeof (sin_t),
5588 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
5589 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
5590 	}
5591 
5592 	if (tpi_mp == NULL) {
5593 		return (ENOMEM);
5594 	}
5595 
5596 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
5597 	connp->conn_send = ip_output;
5598 	connp->conn_recv = tcp_input;
5599 	connp->conn_fully_bound = B_FALSE;
5600 
5601 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
5602 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
5603 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
5604 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
5605 
5606 	if (tcp_trace) {
5607 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_NOSLEEP);
5608 	}
5609 
5610 	/* Inherit information from the "parent" */
5611 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
5612 	tcp->tcp_family = ltcp->tcp_family;
5613 	tcp->tcp_wq = ltcp->tcp_wq;
5614 	tcp->tcp_rq = ltcp->tcp_rq;
5615 	tcp->tcp_mss = tcp_mss_def_ipv4;
5616 	tcp->tcp_detached = B_TRUE;
5617 	if ((err = tcp_init_values(tcp)) != 0) {
5618 		freemsg(tpi_mp);
5619 		return (err);
5620 	}
5621 
5622 	/*
5623 	 * Let's make sure that eager tcp template has enough space to
5624 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
5625 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
5626 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
5627 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
5628 	 * extension headers or with ip6i_t struct). Note that bcopy() below
5629 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
5630 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
5631 	 */
5632 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
5633 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
5634 
5635 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
5636 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
5637 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
5638 	tcp->tcp_ttl = ltcp->tcp_ttl;
5639 	tcp->tcp_tos = ltcp->tcp_tos;
5640 
5641 	/* Copy the IP+TCP header template from listener to eager */
5642 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
5643 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
5644 	tcp->tcp_ip6h = NULL;
5645 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
5646 	    tcp->tcp_ip_hdr_len);
5647 
5648 	/* Initialize the IP addresses and Ports */
5649 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
5650 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
5651 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
5652 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
5653 
5654 	/* Source routing option copyover (reverse it) */
5655 	if (tcp_rev_src_routes)
5656 		tcp_opt_reverse(tcp, ipha);
5657 
5658 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
5659 
5660 	/*
5661 	 * If the SYN contains a credential, it's a loopback packet; attach
5662 	 * the credential to the TPI message.
5663 	 */
5664 	if ((cr = DB_CRED(idmp)) != NULL) {
5665 		mblk_setcred(tpi_mp, cr);
5666 		DB_CPID(tpi_mp) = DB_CPID(idmp);
5667 	}
5668 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
5669 
5670 	return (0);
5671 }
5672 
5673 /*
5674  * sets up conn for ipsec.
5675  * if the first mblk is M_CTL it is consumed and mpp is updated.
5676  * in case of error mpp is freed.
5677  */
5678 conn_t *
5679 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
5680 {
5681 	conn_t 		*connp = tcp->tcp_connp;
5682 	conn_t 		*econnp;
5683 	squeue_t 	*new_sqp;
5684 	mblk_t 		*first_mp = *mpp;
5685 	mblk_t		*mp = *mpp;
5686 	boolean_t	mctl_present = B_FALSE;
5687 	uint_t		ipvers;
5688 
5689 	econnp = tcp_get_conn(sqp);
5690 	if (econnp == NULL) {
5691 		freemsg(first_mp);
5692 		return (NULL);
5693 	}
5694 	if (DB_TYPE(mp) == M_CTL) {
5695 		if (mp->b_cont == NULL ||
5696 		    mp->b_cont->b_datap->db_type != M_DATA) {
5697 			freemsg(first_mp);
5698 			return (NULL);
5699 		}
5700 		mp = mp->b_cont;
5701 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
5702 			freemsg(first_mp);
5703 			return (NULL);
5704 		}
5705 
5706 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5707 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5708 		mctl_present = B_TRUE;
5709 	} else {
5710 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
5711 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
5712 	}
5713 
5714 	new_sqp = (squeue_t *)mp->b_datap->db_cksumstart;
5715 	mp->b_datap->db_cksumstart = 0;
5716 
5717 	ASSERT(OK_32PTR(mp->b_rptr));
5718 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5719 	if (ipvers == IPV4_VERSION) {
5720 		uint16_t  	*up;
5721 		uint32_t	ports;
5722 		ipha_t		*ipha;
5723 
5724 		ipha = (ipha_t *)mp->b_rptr;
5725 		up = (uint16_t *)((uchar_t *)ipha +
5726 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
5727 		ports = *(uint32_t *)up;
5728 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
5729 		    ipha->ipha_dst, ipha->ipha_src, ports);
5730 	} else {
5731 		uint16_t  	*up;
5732 		uint32_t	ports;
5733 		uint16_t	ip_hdr_len;
5734 		uint8_t		*nexthdrp;
5735 		ip6_t 		*ip6h;
5736 		tcph_t		*tcph;
5737 
5738 		ip6h = (ip6_t *)mp->b_rptr;
5739 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
5740 			ip_hdr_len = IPV6_HDR_LEN;
5741 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
5742 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
5743 			CONN_DEC_REF(econnp);
5744 			freemsg(first_mp);
5745 			return (NULL);
5746 		}
5747 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5748 		up = (uint16_t *)tcph->th_lport;
5749 		ports = *(uint32_t *)up;
5750 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
5751 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
5752 	}
5753 
5754 	/*
5755 	 * The caller already ensured that there is a sqp present.
5756 	 */
5757 	econnp->conn_sqp = new_sqp;
5758 
5759 	if (connp->conn_policy != NULL) {
5760 		ipsec_in_t *ii;
5761 		ii = (ipsec_in_t *)(first_mp->b_rptr);
5762 		ASSERT(ii->ipsec_in_policy == NULL);
5763 		IPPH_REFHOLD(connp->conn_policy);
5764 		ii->ipsec_in_policy = connp->conn_policy;
5765 
5766 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
5767 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
5768 			CONN_DEC_REF(econnp);
5769 			freemsg(first_mp);
5770 			return (NULL);
5771 		}
5772 	}
5773 
5774 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
5775 		CONN_DEC_REF(econnp);
5776 		freemsg(first_mp);
5777 		return (NULL);
5778 	}
5779 
5780 	/*
5781 	 * If we know we have some policy, pass the "IPSEC"
5782 	 * options size TCP uses this adjust the MSS.
5783 	 */
5784 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
5785 	if (mctl_present) {
5786 		freeb(first_mp);
5787 		*mpp = mp;
5788 	}
5789 
5790 	return (econnp);
5791 }
5792 
5793 /*
5794  * tcp_get_conn/tcp_free_conn
5795  *
5796  * tcp_get_conn is used to get a clean tcp connection structure.
5797  * It tries to reuse the connections put on the freelist by the
5798  * time_wait_collector failing which it goes to kmem_cache. This
5799  * way has two benefits compared to just allocating from and
5800  * freeing to kmem_cache.
5801  * 1) The time_wait_collector can free (which includes the cleanup)
5802  * outside the squeue. So when the interrupt comes, we have a clean
5803  * connection sitting in the freelist. Obviously, this buys us
5804  * performance.
5805  *
5806  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
5807  * has multiple disadvantages - tying up the squeue during alloc, and the
5808  * fact that IPSec policy initialization has to happen here which
5809  * requires us sending a M_CTL and checking for it i.e. real ugliness.
5810  * But allocating the conn/tcp in IP land is also not the best since
5811  * we can't check the 'q' and 'q0' which are protected by squeue and
5812  * blindly allocate memory which might have to be freed here if we are
5813  * not allowed to accept the connection. By using the freelist and
5814  * putting the conn/tcp back in freelist, we don't pay a penalty for
5815  * allocating memory without checking 'q/q0' and freeing it if we can't
5816  * accept the connection.
5817  *
5818  * Care should be taken to put the conn back in the same squeue's freelist
5819  * from which it was allocated. Best results are obtained if conn is
5820  * allocated from listener's squeue and freed to the same. Time wait
5821  * collector will free up the freelist is the connection ends up sitting
5822  * there for too long.
5823  */
5824 void *
5825 tcp_get_conn(void *arg)
5826 {
5827 	tcp_t			*tcp = NULL;
5828 	conn_t			*connp = NULL;
5829 	squeue_t		*sqp = (squeue_t *)arg;
5830 	tcp_squeue_priv_t 	*tcp_time_wait;
5831 
5832 	tcp_time_wait =
5833 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
5834 
5835 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
5836 	tcp = tcp_time_wait->tcp_free_list;
5837 	if (tcp != NULL) {
5838 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5839 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5840 		tcp->tcp_time_wait_next = NULL;
5841 		connp = tcp->tcp_connp;
5842 		connp->conn_flags |= IPCL_REUSED;
5843 		return ((void *)connp);
5844 	}
5845 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5846 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL)
5847 		return (NULL);
5848 	return ((void *)connp);
5849 }
5850 
5851 /* BEGIN CSTYLED */
5852 /*
5853  *
5854  * The sockfs ACCEPT path:
5855  * =======================
5856  *
5857  * The eager is now established in its own perimeter as soon as SYN is
5858  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5859  * completes the accept processing on the acceptor STREAM. The sending
5860  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5861  * listener but a TLI/XTI listener completes the accept processing
5862  * on the listener perimeter.
5863  *
5864  * Common control flow for 3 way handshake:
5865  * ----------------------------------------
5866  *
5867  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5868  *					-> tcp_conn_request()
5869  *
5870  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5871  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5872  *
5873  * Sockfs ACCEPT Path:
5874  * -------------------
5875  *
5876  * open acceptor stream (ip_tcpopen allocates tcp_wput_accept()
5877  * as STREAM entry point)
5878  *
5879  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5880  *
5881  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5882  * association (we are not behind eager's squeue but sockfs is protecting us
5883  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5884  * is changed to point at tcp_wput().
5885  *
5886  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5887  * listener (done on listener's perimeter).
5888  *
5889  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5890  * accept.
5891  *
5892  * TLI/XTI client ACCEPT path:
5893  * ---------------------------
5894  *
5895  * soaccept() sends T_CONN_RES on the listener STREAM.
5896  *
5897  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5898  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5899  *
5900  * Locks:
5901  * ======
5902  *
5903  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5904  * and listeners->tcp_eager_next_q.
5905  *
5906  * Referencing:
5907  * ============
5908  *
5909  * 1) We start out in tcp_conn_request by eager placing a ref on
5910  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5911  *
5912  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5913  * doing so we place a ref on the eager. This ref is finally dropped at the
5914  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5915  * reference is dropped by the squeue framework.
5916  *
5917  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5918  *
5919  * The reference must be released by the same entity that added the reference
5920  * In the above scheme, the eager is the entity that adds and releases the
5921  * references. Note that tcp_accept_finish executes in the squeue of the eager
5922  * (albeit after it is attached to the acceptor stream). Though 1. executes
5923  * in the listener's squeue, the eager is nascent at this point and the
5924  * reference can be considered to have been added on behalf of the eager.
5925  *
5926  * Eager getting a Reset or listener closing:
5927  * ==========================================
5928  *
5929  * Once the listener and eager are linked, the listener never does the unlink.
5930  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5931  * a message on all eager perimeter. The eager then does the unlink, clears
5932  * any pointers to the listener's queue and drops the reference to the
5933  * listener. The listener waits in tcp_close outside the squeue until its
5934  * refcount has dropped to 1. This ensures that the listener has waited for
5935  * all eagers to clear their association with the listener.
5936  *
5937  * Similarly, if eager decides to go away, it can unlink itself and close.
5938  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5939  * the reference to eager is still valid because of the extra ref we put
5940  * in tcp_send_conn_ind.
5941  *
5942  * Listener can always locate the eager under the protection
5943  * of the listener->tcp_eager_lock, and then do a refhold
5944  * on the eager during the accept processing.
5945  *
5946  * The acceptor stream accesses the eager in the accept processing
5947  * based on the ref placed on eager before sending T_conn_ind.
5948  * The only entity that can negate this refhold is a listener close
5949  * which is mutually exclusive with an active acceptor stream.
5950  *
5951  * Eager's reference on the listener
5952  * ===================================
5953  *
5954  * If the accept happens (even on a closed eager) the eager drops its
5955  * reference on the listener at the start of tcp_accept_finish. If the
5956  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5957  * the reference is dropped in tcp_closei_local. If the listener closes,
5958  * the reference is dropped in tcp_eager_kill. In all cases the reference
5959  * is dropped while executing in the eager's context (squeue).
5960  */
5961 /* END CSTYLED */
5962 
5963 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5964 
5965 /*
5966  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5967  * tcp_rput_data will not see any SYN packets.
5968  */
5969 /* ARGSUSED */
5970 void
5971 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5972 {
5973 	tcph_t		*tcph;
5974 	uint32_t	seg_seq;
5975 	tcp_t		*eager;
5976 	uint_t		ipvers;
5977 	ipha_t		*ipha;
5978 	ip6_t		*ip6h;
5979 	int		err;
5980 	conn_t		*econnp = NULL;
5981 	squeue_t	*new_sqp;
5982 	mblk_t		*mp1;
5983 	uint_t 		ip_hdr_len;
5984 	conn_t		*connp = (conn_t *)arg;
5985 	tcp_t		*tcp = connp->conn_tcp;
5986 	ire_t		*ire;
5987 
5988 	if (tcp->tcp_state != TCPS_LISTEN)
5989 		goto error2;
5990 
5991 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5992 
5993 	mutex_enter(&tcp->tcp_eager_lock);
5994 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5995 		mutex_exit(&tcp->tcp_eager_lock);
5996 		TCP_STAT(tcp_listendrop);
5997 		BUMP_MIB(&tcp_mib, tcpListenDrop);
5998 		if (tcp->tcp_debug) {
5999 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE|SL_ERROR,
6000 			    "tcp_conn_request: listen backlog (max=%d) "
6001 			    "overflow (%d pending) on %s",
6002 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
6003 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
6004 		}
6005 		goto error2;
6006 	}
6007 
6008 	if (tcp->tcp_conn_req_cnt_q0 >=
6009 	    tcp->tcp_conn_req_max + tcp_conn_req_max_q0) {
6010 		/*
6011 		 * Q0 is full. Drop a pending half-open req from the queue
6012 		 * to make room for the new SYN req. Also mark the time we
6013 		 * drop a SYN.
6014 		 *
6015 		 * A more aggressive defense against SYN attack will
6016 		 * be to set the "tcp_syn_defense" flag now.
6017 		 */
6018 		TCP_STAT(tcp_listendropq0);
6019 		tcp->tcp_last_rcv_lbolt = lbolt64;
6020 		if (!tcp_drop_q0(tcp)) {
6021 			mutex_exit(&tcp->tcp_eager_lock);
6022 			BUMP_MIB(&tcp_mib, tcpListenDropQ0);
6023 			if (tcp->tcp_debug) {
6024 				(void) strlog(TCP_MODULE_ID, 0, 3, SL_TRACE,
6025 				    "tcp_conn_request: listen half-open queue "
6026 				    "(max=%d) full (%d pending) on %s",
6027 				    tcp_conn_req_max_q0,
6028 				    tcp->tcp_conn_req_cnt_q0,
6029 				    tcp_display(tcp, NULL,
6030 				    DISP_PORT_ONLY));
6031 			}
6032 			goto error2;
6033 		}
6034 	}
6035 	mutex_exit(&tcp->tcp_eager_lock);
6036 
6037 	/*
6038 	 * IP adds STRUIO_EAGER and ensures that the received packet is
6039 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
6040 	 * link local address.  If IPSec is enabled, db_struioflag has
6041 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
6042 	 * otherwise an error case if neither of them is set.
6043 	 */
6044 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6045 		new_sqp = (squeue_t *)mp->b_datap->db_cksumstart;
6046 		mp->b_datap->db_cksumstart = 0;
6047 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
6048 		econnp = (conn_t *)tcp_get_conn(arg2);
6049 		if (econnp == NULL)
6050 			goto error2;
6051 		econnp->conn_sqp = new_sqp;
6052 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
6053 		/*
6054 		 * mp is updated in tcp_get_ipsec_conn().
6055 		 */
6056 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
6057 		if (econnp == NULL) {
6058 			/*
6059 			 * mp freed by tcp_get_ipsec_conn.
6060 			 */
6061 			return;
6062 		}
6063 	} else {
6064 		goto error2;
6065 	}
6066 
6067 	ASSERT(DB_TYPE(mp) == M_DATA);
6068 
6069 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
6070 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
6071 	ASSERT(OK_32PTR(mp->b_rptr));
6072 	if (ipvers == IPV4_VERSION) {
6073 		ipha = (ipha_t *)mp->b_rptr;
6074 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
6075 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
6076 	} else {
6077 		ip6h = (ip6_t *)mp->b_rptr;
6078 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
6079 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
6080 	}
6081 
6082 	if (tcp->tcp_family == AF_INET) {
6083 		ASSERT(ipvers == IPV4_VERSION);
6084 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
6085 	} else {
6086 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
6087 	}
6088 
6089 	if (err)
6090 		goto error3;
6091 
6092 	eager = econnp->conn_tcp;
6093 
6094 	/* Inherit various TCP parameters from the listener */
6095 	eager->tcp_naglim = tcp->tcp_naglim;
6096 	eager->tcp_first_timer_threshold =
6097 	    tcp->tcp_first_timer_threshold;
6098 	eager->tcp_second_timer_threshold =
6099 	    tcp->tcp_second_timer_threshold;
6100 
6101 	eager->tcp_first_ctimer_threshold =
6102 	    tcp->tcp_first_ctimer_threshold;
6103 	eager->tcp_second_ctimer_threshold =
6104 	    tcp->tcp_second_ctimer_threshold;
6105 
6106 	/*
6107 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
6108 	 * zone id before the accept is completed in tcp_wput_accept().
6109 	 */
6110 	econnp->conn_zoneid = connp->conn_zoneid;
6111 
6112 	eager->tcp_hard_binding = B_TRUE;
6113 
6114 	tcp_bind_hash_insert(&tcp_bind_fanout[
6115 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
6116 
6117 	CL_INET_CONNECT(eager);
6118 
6119 	/*
6120 	 * No need to check for multicast destination since ip will only pass
6121 	 * up multicasts to those that have expressed interest
6122 	 * TODO: what about rejecting broadcasts?
6123 	 * Also check that source is not a multicast or broadcast address.
6124 	 */
6125 	eager->tcp_state = TCPS_SYN_RCVD;
6126 
6127 
6128 	/*
6129 	 * There should be no ire in the mp as we are being called after
6130 	 * receiving the SYN.
6131 	 */
6132 	ASSERT(tcp_ire_mp(mp) == NULL);
6133 
6134 	/*
6135 	 * Adapt our mss, ttl, ... according to information provided in IRE.
6136 	 */
6137 
6138 	if (tcp_adapt_ire(eager, NULL) == 0) {
6139 		/* Undo the bind_hash_insert */
6140 		tcp_bind_hash_remove(eager);
6141 		goto error3;
6142 	}
6143 
6144 	/* Process all TCP options. */
6145 	tcp_process_options(eager, tcph);
6146 
6147 	/* Is the other end ECN capable? */
6148 	if (tcp_ecn_permitted >= 1 &&
6149 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
6150 		eager->tcp_ecn_ok = B_TRUE;
6151 	}
6152 
6153 	/*
6154 	 * listener->tcp_rq->q_hiwat should be the default window size or a
6155 	 * window size changed via SO_RCVBUF option.  First round up the
6156 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
6157 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
6158 	 * setting.
6159 	 *
6160 	 * Note if there is a rpipe metric associated with the remote host,
6161 	 * we should not inherit receive window size from listener.
6162 	 */
6163 	eager->tcp_rwnd = MSS_ROUNDUP(
6164 	    (eager->tcp_rwnd == 0 ? tcp->tcp_rq->q_hiwat :
6165 	    eager->tcp_rwnd), eager->tcp_mss);
6166 	if (eager->tcp_snd_ws_ok)
6167 		tcp_set_ws_value(eager);
6168 	/*
6169 	 * Note that this is the only place tcp_rwnd_set() is called for
6170 	 * accepting a connection.  We need to call it here instead of
6171 	 * after the 3-way handshake because we need to tell the other
6172 	 * side our rwnd in the SYN-ACK segment.
6173 	 */
6174 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
6175 
6176 	/*
6177 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
6178 	 * via soaccept()->soinheritoptions() which essentially applies
6179 	 * all the listener options to the new STREAM. The options that we
6180 	 * need to take care of are:
6181 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
6182 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
6183 	 * SO_SNDBUF, SO_RCVBUF.
6184 	 *
6185 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
6186 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
6187 	 *		tcp_maxpsz_set() gets called later from
6188 	 *		tcp_accept_finish(), the option takes effect.
6189 	 *
6190 	 */
6191 	/* Set the TCP options */
6192 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
6193 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
6194 	eager->tcp_oobinline = tcp->tcp_oobinline;
6195 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
6196 	eager->tcp_broadcast = tcp->tcp_broadcast;
6197 	eager->tcp_useloopback = tcp->tcp_useloopback;
6198 	eager->tcp_dontroute = tcp->tcp_dontroute;
6199 	eager->tcp_linger = tcp->tcp_linger;
6200 	eager->tcp_lingertime = tcp->tcp_lingertime;
6201 	if (tcp->tcp_ka_enabled)
6202 		eager->tcp_ka_enabled = 1;
6203 
6204 	/* Set the IP options */
6205 	econnp->conn_broadcast = connp->conn_broadcast;
6206 	econnp->conn_loopback = connp->conn_loopback;
6207 	econnp->conn_dontroute = connp->conn_dontroute;
6208 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
6209 
6210 	/* Put a ref on the listener for the eager. */
6211 	CONN_INC_REF(connp);
6212 	mutex_enter(&tcp->tcp_eager_lock);
6213 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
6214 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
6215 	tcp->tcp_eager_next_q0 = eager;
6216 	eager->tcp_eager_prev_q0 = tcp;
6217 
6218 	/* Set tcp_listener before adding it to tcp_conn_fanout */
6219 	eager->tcp_listener = tcp;
6220 	eager->tcp_saved_listener = tcp;
6221 
6222 	/*
6223 	 * Tag this detached tcp vector for later retrieval
6224 	 * by our listener client in tcp_accept().
6225 	 */
6226 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
6227 	tcp->tcp_conn_req_cnt_q0++;
6228 	if (++tcp->tcp_conn_req_seqnum == -1) {
6229 		/*
6230 		 * -1 is "special" and defined in TPI as something
6231 		 * that should never be used in T_CONN_IND
6232 		 */
6233 		++tcp->tcp_conn_req_seqnum;
6234 	}
6235 	mutex_exit(&tcp->tcp_eager_lock);
6236 
6237 	if (tcp->tcp_syn_defense) {
6238 		/* Don't drop the SYN that comes from a good IP source */
6239 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
6240 		if (addr_cache != NULL && eager->tcp_remote ==
6241 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
6242 			eager->tcp_dontdrop = B_TRUE;
6243 		}
6244 	}
6245 
6246 	/*
6247 	 * We need to insert the eager in its own perimeter but as soon
6248 	 * as we do that, we expose the eager to the classifier and
6249 	 * should not touch any field outside the eager's perimeter.
6250 	 * So do all the work necessary before inserting the eager
6251 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
6252 	 * will succeed but undo everything if it fails.
6253 	 */
6254 	seg_seq = ABE32_TO_U32(tcph->th_seq);
6255 	eager->tcp_irs = seg_seq;
6256 	eager->tcp_rack = seg_seq;
6257 	eager->tcp_rnxt = seg_seq + 1;
6258 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
6259 	BUMP_MIB(&tcp_mib, tcpPassiveOpens);
6260 	eager->tcp_state = TCPS_SYN_RCVD;
6261 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
6262 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
6263 	if (mp1 == NULL)
6264 		goto error1;
6265 	mblk_setcred(mp1, tcp->tcp_cred);
6266 	DB_CPID(mp1) = tcp->tcp_cpid;
6267 
6268 	/*
6269 	 * We need to start the rto timer. In normal case, we start
6270 	 * the timer after sending the packet on the wire (or at
6271 	 * least believing that packet was sent by waiting for
6272 	 * CALL_IP_WPUT() to return). Since this is the first packet
6273 	 * being sent on the wire for the eager, our initial tcp_rto
6274 	 * is at least tcp_rexmit_interval_min which is a fairly
6275 	 * large value to allow the algorithm to adjust slowly to large
6276 	 * fluctuations of RTT during first few transmissions.
6277 	 *
6278 	 * Starting the timer first and then sending the packet in this
6279 	 * case shouldn't make much difference since tcp_rexmit_interval_min
6280 	 * is of the order of several 100ms and starting the timer
6281 	 * first and then sending the packet will result in difference
6282 	 * of few micro seconds.
6283 	 *
6284 	 * Without this optimization, we are forced to hold the fanout
6285 	 * lock across the ipcl_bind_insert() and sending the packet
6286 	 * so that we don't race against an incoming packet (maybe RST)
6287 	 * for this eager.
6288 	 */
6289 
6290 	TCP_RECORD_TRACE(eager, mp1, TCP_TRACE_SEND_PKT);
6291 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
6292 
6293 
6294 	/*
6295 	 * Insert the eager in its own perimeter now. We are ready to deal
6296 	 * with any packets on eager.
6297 	 */
6298 	if (eager->tcp_ipversion == IPV4_VERSION) {
6299 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
6300 			goto error;
6301 		}
6302 	} else {
6303 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
6304 			goto error;
6305 		}
6306 	}
6307 
6308 	/* mark conn as fully-bound */
6309 	econnp->conn_fully_bound = B_TRUE;
6310 
6311 	/* Send the SYN-ACK */
6312 	tcp_send_data(eager, eager->tcp_wq, mp1);
6313 	freemsg(mp);
6314 
6315 	return;
6316 error:
6317 	(void) TCP_TIMER_CANCEL(eager, eager->tcp_timer_tid);
6318 	freemsg(mp1);
6319 error1:
6320 	/* Undo what we did above */
6321 	mutex_enter(&tcp->tcp_eager_lock);
6322 	tcp_eager_unlink(eager);
6323 	mutex_exit(&tcp->tcp_eager_lock);
6324 	/* Drop eager's reference on the listener */
6325 	CONN_DEC_REF(connp);
6326 
6327 	/*
6328 	 * Delete the cached ire in conn_ire_cache and also mark
6329 	 * the conn as CONDEMNED
6330 	 */
6331 	mutex_enter(&econnp->conn_lock);
6332 	econnp->conn_state_flags |= CONN_CONDEMNED;
6333 	ire = econnp->conn_ire_cache;
6334 	econnp->conn_ire_cache = NULL;
6335 	mutex_exit(&econnp->conn_lock);
6336 	if (ire != NULL)
6337 		IRE_REFRELE_NOTR(ire);
6338 
6339 	/*
6340 	 * tcp_accept_comm inserts the eager to the bind_hash
6341 	 * we need to remove it from the hash if ipcl_conn_insert
6342 	 * fails.
6343 	 */
6344 	tcp_bind_hash_remove(eager);
6345 	/* Drop the eager ref placed in tcp_open_detached */
6346 	CONN_DEC_REF(econnp);
6347 
6348 	/*
6349 	 * If a connection already exists, send the mp to that connections so
6350 	 * that it can be appropriately dealt with.
6351 	 */
6352 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid)) != NULL) {
6353 		if (!IPCL_IS_CONNECTED(econnp)) {
6354 			/*
6355 			 * Something bad happened. ipcl_conn_insert()
6356 			 * failed because a connection already existed
6357 			 * in connected hash but we can't find it
6358 			 * anymore (someone blew it away). Just
6359 			 * free this message and hopefully remote
6360 			 * will retransmit at which time the SYN can be
6361 			 * treated as a new connection or dealth with
6362 			 * a TH_RST if a connection already exists.
6363 			 */
6364 			freemsg(mp);
6365 		} else {
6366 			squeue_fill(econnp->conn_sqp, mp, tcp_input,
6367 			    econnp, SQTAG_TCP_CONN_REQ);
6368 		}
6369 	} else {
6370 		/* Nobody wants this packet */
6371 		freemsg(mp);
6372 	}
6373 	return;
6374 error2:
6375 	freemsg(mp);
6376 	return;
6377 error3:
6378 	CONN_DEC_REF(econnp);
6379 	freemsg(mp);
6380 }
6381 
6382 /*
6383  * In an ideal case of vertical partition in NUMA architecture, its
6384  * beneficial to have the listener and all the incoming connections
6385  * tied to the same squeue. The other constraint is that incoming
6386  * connections should be tied to the squeue attached to interrupted
6387  * CPU for obvious locality reason so this leaves the listener to
6388  * be tied to the same squeue. Our only problem is that when listener
6389  * is binding, the CPU that will get interrupted by the NIC whose
6390  * IP address the listener is binding to is not even known. So
6391  * the code below allows us to change that binding at the time the
6392  * CPU is interrupted by virtue of incoming connection's squeue.
6393  *
6394  * This is usefull only in case of a listener bound to a specific IP
6395  * address. For other kind of listeners, they get bound the
6396  * very first time and there is no attempt to rebind them.
6397  */
6398 void
6399 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
6400 {
6401 	conn_t		*connp = (conn_t *)arg;
6402 	squeue_t	*sqp = (squeue_t *)arg2;
6403 	squeue_t	*new_sqp;
6404 	uint32_t	conn_flags;
6405 
6406 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
6407 		new_sqp = (squeue_t *)mp->b_datap->db_cksumstart;
6408 	} else {
6409 		goto done;
6410 	}
6411 
6412 	if (connp->conn_fanout == NULL)
6413 		goto done;
6414 
6415 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
6416 		mutex_enter(&connp->conn_fanout->connf_lock);
6417 		mutex_enter(&connp->conn_lock);
6418 		/*
6419 		 * No one from read or write side can access us now
6420 		 * except for already queued packets on this squeue.
6421 		 * But since we haven't changed the squeue yet, they
6422 		 * can't execute. If they are processed after we have
6423 		 * changed the squeue, they are sent back to the
6424 		 * correct squeue down below.
6425 		 */
6426 		if (connp->conn_sqp != new_sqp) {
6427 			while (connp->conn_sqp != new_sqp)
6428 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
6429 		}
6430 
6431 		do {
6432 			conn_flags = connp->conn_flags;
6433 			conn_flags |= IPCL_FULLY_BOUND;
6434 			(void) cas32(&connp->conn_flags, connp->conn_flags,
6435 			    conn_flags);
6436 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
6437 
6438 		mutex_exit(&connp->conn_fanout->connf_lock);
6439 		mutex_exit(&connp->conn_lock);
6440 	}
6441 
6442 done:
6443 	if (connp->conn_sqp != sqp) {
6444 		CONN_INC_REF(connp);
6445 		squeue_fill(connp->conn_sqp, mp,
6446 		    connp->conn_recv, connp, SQTAG_TCP_CONN_REQ_UNBOUND);
6447 	} else {
6448 		tcp_conn_request(connp, mp, sqp);
6449 	}
6450 }
6451 
6452 /*
6453  * Successful connect request processing begins when our client passes
6454  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
6455  * our T_OK_ACK reply message upstream.  The control flow looks like this:
6456  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_connect() -> IP
6457  *   upstream <- tcp_rput()                <- IP
6458  * After various error checks are completed, tcp_connect() lays
6459  * the target address and port into the composite header template,
6460  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
6461  * request followed by an IRE request, and passes the three mblk message
6462  * down to IP looking like this:
6463  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
6464  * Processing continues in tcp_rput() when we receive the following message:
6465  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
6466  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
6467  * to fire off the connection request, and then passes the T_OK_ACK mblk
6468  * upstream that we filled in below.  There are, of course, numerous
6469  * error conditions along the way which truncate the processing described
6470  * above.
6471  */
6472 static void
6473 tcp_connect(tcp_t *tcp, mblk_t *mp)
6474 {
6475 	sin_t		*sin;
6476 	sin6_t		*sin6;
6477 	in_port_t	lport;
6478 	queue_t		*q = tcp->tcp_wq;
6479 	struct T_conn_req	*tcr;
6480 	ipaddr_t	*dstaddrp;
6481 	in_port_t	dstport;
6482 	uint_t		srcid;
6483 
6484 	tcr = (struct T_conn_req *)mp->b_rptr;
6485 
6486 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6487 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
6488 		tcp_err_ack(tcp, mp, TPROTO, 0);
6489 		return;
6490 	}
6491 
6492 	/*
6493 	 * Determine packet type based on type of address passed in
6494 	 * the request should contain an IPv4 or IPv6 address.
6495 	 * Make sure that address family matches the type of
6496 	 * family of the the address passed down
6497 	 */
6498 	switch (tcr->DEST_length) {
6499 	default:
6500 		tcp_err_ack(tcp, mp, TBADADDR, 0);
6501 		return;
6502 
6503 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
6504 		/*
6505 		 * XXX: The check for valid DEST_length was not there
6506 		 * in earlier releases and some buggy
6507 		 * TLI apps (e.g Sybase) got away with not feeding
6508 		 * in sin_zero part of address.
6509 		 * We allow that bug to keep those buggy apps humming.
6510 		 * Test suites require the check on DEST_length.
6511 		 * We construct a new mblk with valid DEST_length
6512 		 * free the original so the rest of the code does
6513 		 * not have to keep track of this special shorter
6514 		 * length address case.
6515 		 */
6516 		mblk_t *nmp;
6517 		struct T_conn_req *ntcr;
6518 		sin_t *nsin;
6519 
6520 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
6521 		    tcr->OPT_length, BPRI_HI);
6522 		if (nmp == NULL) {
6523 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
6524 			return;
6525 		}
6526 		ntcr = (struct T_conn_req *)nmp->b_rptr;
6527 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
6528 		ntcr->PRIM_type = T_CONN_REQ;
6529 		ntcr->DEST_length = sizeof (sin_t);
6530 		ntcr->DEST_offset = sizeof (struct T_conn_req);
6531 
6532 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
6533 		*nsin = sin_null;
6534 		/* Get pointer to shorter address to copy from original mp */
6535 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6536 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
6537 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6538 			freemsg(nmp);
6539 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6540 			return;
6541 		}
6542 		nsin->sin_family = sin->sin_family;
6543 		nsin->sin_port = sin->sin_port;
6544 		nsin->sin_addr = sin->sin_addr;
6545 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
6546 		nmp->b_wptr = (uchar_t *)&nsin[1];
6547 		if (tcr->OPT_length != 0) {
6548 			ntcr->OPT_length = tcr->OPT_length;
6549 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
6550 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
6551 			    (uchar_t *)ntcr + ntcr->OPT_offset,
6552 			    tcr->OPT_length);
6553 			nmp->b_wptr += tcr->OPT_length;
6554 		}
6555 		freemsg(mp);	/* original mp freed */
6556 		mp = nmp;	/* re-initialize original variables */
6557 		tcr = ntcr;
6558 	}
6559 	/* FALLTHRU */
6560 
6561 	case sizeof (sin_t):
6562 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
6563 		    sizeof (sin_t));
6564 		if (sin == NULL || !OK_32PTR((char *)sin)) {
6565 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6566 			return;
6567 		}
6568 		if (tcp->tcp_family != AF_INET ||
6569 		    sin->sin_family != AF_INET) {
6570 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6571 			return;
6572 		}
6573 		if (sin->sin_port == 0) {
6574 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6575 			return;
6576 		}
6577 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
6578 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6579 			return;
6580 		}
6581 
6582 		break;
6583 
6584 	case sizeof (sin6_t):
6585 		sin6 = (sin6_t *)mi_offset_param(mp, tcr->DEST_offset,
6586 		    sizeof (sin6_t));
6587 		if (sin6 == NULL || !OK_32PTR((char *)sin6)) {
6588 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
6589 			return;
6590 		}
6591 		if (tcp->tcp_family != AF_INET6 ||
6592 		    sin6->sin6_family != AF_INET6) {
6593 			tcp_err_ack(tcp, mp, TSYSERR, EAFNOSUPPORT);
6594 			return;
6595 		}
6596 		if (sin6->sin6_port == 0) {
6597 			tcp_err_ack(tcp, mp, TBADADDR, 0);
6598 			return;
6599 		}
6600 		break;
6601 	}
6602 	/*
6603 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
6604 	 * should key on their sequence number and cut them loose.
6605 	 */
6606 
6607 	/*
6608 	 * If options passed in, feed it for verification and handling
6609 	 */
6610 	if (tcr->OPT_length != 0) {
6611 		mblk_t	*ok_mp;
6612 		mblk_t	*discon_mp;
6613 		mblk_t  *conn_opts_mp;
6614 		int t_error, sys_error, do_disconnect;
6615 
6616 		conn_opts_mp = NULL;
6617 
6618 		if (tcp_conprim_opt_process(tcp, mp,
6619 			&do_disconnect, &t_error, &sys_error) < 0) {
6620 			if (do_disconnect) {
6621 				ASSERT(t_error == 0 && sys_error == 0);
6622 				discon_mp = mi_tpi_discon_ind(NULL,
6623 				    ECONNREFUSED, 0);
6624 				if (!discon_mp) {
6625 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6626 					    TSYSERR, ENOMEM);
6627 					return;
6628 				}
6629 				ok_mp = mi_tpi_ok_ack_alloc(mp);
6630 				if (!ok_mp) {
6631 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6632 					    TSYSERR, ENOMEM);
6633 					return;
6634 				}
6635 				qreply(q, ok_mp);
6636 				qreply(q, discon_mp); /* no flush! */
6637 			} else {
6638 				ASSERT(t_error != 0);
6639 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
6640 				    sys_error);
6641 			}
6642 			return;
6643 		}
6644 		/*
6645 		 * Success in setting options, the mp option buffer represented
6646 		 * by OPT_length/offset has been potentially modified and
6647 		 * contains results of option processing. We copy it in
6648 		 * another mp to save it for potentially influencing returning
6649 		 * it in T_CONN_CONN.
6650 		 */
6651 		if (tcr->OPT_length != 0) { /* there are resulting options */
6652 			conn_opts_mp = copyb(mp);
6653 			if (!conn_opts_mp) {
6654 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6655 				    TSYSERR, ENOMEM);
6656 				return;
6657 			}
6658 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6659 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6660 			/*
6661 			 * Note:
6662 			 * These resulting option negotiation can include any
6663 			 * end-to-end negotiation options but there no such
6664 			 * thing (yet?) in our TCP/IP.
6665 			 */
6666 		}
6667 	}
6668 
6669 	/*
6670 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
6671 	 * make sure that the template IP header in the tcp structure is an
6672 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
6673 	 * need to this before we call tcp_bindi() so that the port lookup
6674 	 * code will look for ports in the correct port space (IPv4 and
6675 	 * IPv6 have separate port spaces).
6676 	 */
6677 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
6678 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6679 		int err = 0;
6680 
6681 		err = tcp_header_init_ipv4(tcp);
6682 		if (err != 0) {
6683 			mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6684 			goto connect_failed;
6685 		}
6686 		if (tcp->tcp_lport != 0)
6687 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
6688 	}
6689 
6690 	switch (tcp->tcp_state) {
6691 	case TCPS_IDLE:
6692 		/*
6693 		 * We support a quick connect capability here, allowing
6694 		 * clients to transition directly from IDLE to SYN_SENT
6695 		 * tcp_bindi will pick an unused port, insert the connection
6696 		 * in the bind hash and transition to BOUND state.
6697 		 */
6698 		lport = tcp_update_next_port(tcp_next_port_to_try, B_TRUE);
6699 		lport = tcp_bindi(tcp, lport, &ipv6_all_zeros, 0, 0, 0);
6700 		if (lport == 0) {
6701 			mp = mi_tpi_err_ack_alloc(mp, TNOADDR, 0);
6702 			break;
6703 		}
6704 		/* FALLTHRU */
6705 
6706 	case TCPS_BOUND:
6707 	case TCPS_LISTEN:
6708 		if (tcp->tcp_family == AF_INET6) {
6709 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
6710 				tcp_connect_ipv6(tcp, mp,
6711 				    &sin6->sin6_addr,
6712 				    sin6->sin6_port, sin6->sin6_flowinfo,
6713 				    sin6->__sin6_src_id, sin6->sin6_scope_id);
6714 				return;
6715 			}
6716 			/*
6717 			 * Destination adress is mapped IPv6 address.
6718 			 * Source bound address should be unspecified or
6719 			 * IPv6 mapped address as well.
6720 			 */
6721 			if (!IN6_IS_ADDR_UNSPECIFIED(
6722 			    &tcp->tcp_bound_source_v6) &&
6723 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
6724 				mp = mi_tpi_err_ack_alloc(mp, TSYSERR,
6725 				    EADDRNOTAVAIL);
6726 				break;
6727 			}
6728 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
6729 			dstport = sin6->sin6_port;
6730 			srcid = sin6->__sin6_src_id;
6731 		} else {
6732 			dstaddrp = &sin->sin_addr.s_addr;
6733 			dstport = sin->sin_port;
6734 			srcid = 0;
6735 		}
6736 
6737 		tcp_connect_ipv4(tcp, mp, dstaddrp, dstport, srcid);
6738 		return;
6739 	default:
6740 		mp = mi_tpi_err_ack_alloc(mp, TOUTSTATE, 0);
6741 		break;
6742 	}
6743 	/*
6744 	 * Note: Code below is the "failure" case
6745 	 */
6746 	/* return error ack and blow away saved option results if any */
6747 connect_failed:
6748 	if (mp != NULL)
6749 		putnext(tcp->tcp_rq, mp);
6750 	else {
6751 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6752 		    TSYSERR, ENOMEM);
6753 	}
6754 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6755 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6756 }
6757 
6758 /*
6759  * Handle connect to IPv4 destinations, including connections for AF_INET6
6760  * sockets connecting to IPv4 mapped IPv6 destinations.
6761  */
6762 static void
6763 tcp_connect_ipv4(tcp_t *tcp, mblk_t *mp, ipaddr_t *dstaddrp, in_port_t dstport,
6764     uint_t srcid)
6765 {
6766 	tcph_t	*tcph;
6767 	mblk_t	*mp1;
6768 	ipaddr_t dstaddr = *dstaddrp;
6769 	int32_t	oldstate;
6770 
6771 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6772 
6773 	/* Check for attempt to connect to INADDR_ANY */
6774 	if (dstaddr == INADDR_ANY)  {
6775 		/*
6776 		 * SunOS 4.x and 4.3 BSD allow an application
6777 		 * to connect a TCP socket to INADDR_ANY.
6778 		 * When they do this, the kernel picks the
6779 		 * address of one interface and uses it
6780 		 * instead.  The kernel usually ends up
6781 		 * picking the address of the loopback
6782 		 * interface.  This is an undocumented feature.
6783 		 * However, we provide the same thing here
6784 		 * in order to have source and binary
6785 		 * compatibility with SunOS 4.x.
6786 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6787 		 * generate the T_CONN_CON.
6788 		 */
6789 		dstaddr = htonl(INADDR_LOOPBACK);
6790 		*dstaddrp = dstaddr;
6791 	}
6792 
6793 	/* Handle __sin6_src_id if socket not bound to an IP address */
6794 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6795 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6796 		    tcp->tcp_connp->conn_zoneid);
6797 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6798 		    tcp->tcp_ipha->ipha_src);
6799 	}
6800 
6801 	/*
6802 	 * Don't let an endpoint connect to itself.  Note that
6803 	 * the test here does not catch the case where the
6804 	 * source IP addr was left unspecified by the user. In
6805 	 * this case, the source addr is set in tcp_adapt_ire()
6806 	 * using the reply to the T_BIND message that we send
6807 	 * down to IP here and the check is repeated in tcp_rput_other.
6808 	 */
6809 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6810 	    dstport == tcp->tcp_lport) {
6811 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6812 		goto failed;
6813 	}
6814 
6815 	tcp->tcp_ipha->ipha_dst = dstaddr;
6816 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6817 
6818 	/*
6819 	 * Massage a source route if any putting the first hop
6820 	 * in iph_dst. Compute a starting value for the checksum which
6821 	 * takes into account that the original iph_dst should be
6822 	 * included in the checksum but that ip will include the
6823 	 * first hop in the source route in the tcp checksum.
6824 	 */
6825 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha);
6826 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6827 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6828 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6829 	if ((int)tcp->tcp_sum < 0)
6830 		tcp->tcp_sum--;
6831 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6832 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6833 	    (tcp->tcp_sum >> 16));
6834 	tcph = tcp->tcp_tcph;
6835 	*(uint16_t *)tcph->th_fport = dstport;
6836 	tcp->tcp_fport = dstport;
6837 
6838 	oldstate = tcp->tcp_state;
6839 	tcp->tcp_state = TCPS_SYN_SENT;
6840 
6841 	/*
6842 	 * TODO: allow data with connect requests
6843 	 * by unlinking M_DATA trailers here and
6844 	 * linking them in behind the T_OK_ACK mblk.
6845 	 * The tcp_rput() bind ack handler would then
6846 	 * feed them to tcp_wput_data() rather than call
6847 	 * tcp_timer().
6848 	 */
6849 	mp = mi_tpi_ok_ack_alloc(mp);
6850 	if (!mp) {
6851 		tcp->tcp_state = oldstate;
6852 		goto failed;
6853 	}
6854 	if (tcp->tcp_family == AF_INET) {
6855 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6856 		    sizeof (ipa_conn_t));
6857 	} else {
6858 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ,
6859 		    sizeof (ipa6_conn_t));
6860 	}
6861 	if (mp1) {
6862 		/* Hang onto the T_OK_ACK for later. */
6863 		linkb(mp1, mp);
6864 		if (tcp->tcp_family == AF_INET)
6865 			mp1 = ip_bind_v4(tcp->tcp_wq, mp1, tcp->tcp_connp);
6866 		else {
6867 			mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
6868 			    &tcp->tcp_sticky_ipp);
6869 		}
6870 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
6871 		tcp->tcp_active_open = 1;
6872 		/*
6873 		 * If the bind cannot complete immediately
6874 		 * IP will arrange to call tcp_rput_other
6875 		 * when the bind completes.
6876 		 */
6877 		if (mp1 != NULL)
6878 			tcp_rput_other(tcp, mp1);
6879 		return;
6880 	}
6881 	/* Error case */
6882 	tcp->tcp_state = oldstate;
6883 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
6884 
6885 failed:
6886 	/* return error ack and blow away saved option results if any */
6887 	if (mp != NULL)
6888 		putnext(tcp->tcp_rq, mp);
6889 	else {
6890 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6891 		    TSYSERR, ENOMEM);
6892 	}
6893 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6894 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6895 
6896 }
6897 
6898 /*
6899  * Handle connect to IPv6 destinations.
6900  */
6901 static void
6902 tcp_connect_ipv6(tcp_t *tcp, mblk_t *mp, in6_addr_t *dstaddrp,
6903     in_port_t dstport, uint32_t flowinfo, uint_t srcid, uint32_t scope_id)
6904 {
6905 	tcph_t	*tcph;
6906 	mblk_t	*mp1;
6907 	ip6_rthdr_t *rth;
6908 	int32_t  oldstate;
6909 
6910 	ASSERT(tcp->tcp_family == AF_INET6);
6911 
6912 	/*
6913 	 * If we're here, it means that the destination address is a native
6914 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6915 	 * reason why it might not be IPv6 is if the socket was bound to an
6916 	 * IPv4-mapped IPv6 address.
6917 	 */
6918 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6919 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6920 		goto failed;
6921 	}
6922 
6923 	/*
6924 	 * Interpret a zero destination to mean loopback.
6925 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6926 	 * generate the T_CONN_CON.
6927 	 */
6928 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6929 		*dstaddrp = ipv6_loopback;
6930 	}
6931 
6932 	/* Handle __sin6_src_id if socket not bound to an IP address */
6933 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6934 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6935 		    tcp->tcp_connp->conn_zoneid);
6936 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6937 	}
6938 
6939 	/*
6940 	 * Take care of the scope_id now and add ip6i_t
6941 	 * if ip6i_t is not already allocated through TCP
6942 	 * sticky options. At this point tcp_ip6h does not
6943 	 * have dst info, thus use dstaddrp.
6944 	 */
6945 	if (scope_id != 0 &&
6946 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6947 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6948 		ip6i_t  *ip6i;
6949 
6950 		ipp->ipp_ifindex = scope_id;
6951 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6952 
6953 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6954 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6955 			/* Already allocated */
6956 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6957 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6958 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6959 		} else {
6960 			int reterr;
6961 
6962 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6963 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6964 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6965 			reterr = tcp_build_hdrs(tcp->tcp_rq, tcp);
6966 			if (reterr != 0)
6967 				goto failed;
6968 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6969 		}
6970 	}
6971 
6972 	/*
6973 	 * Don't let an endpoint connect to itself.  Note that
6974 	 * the test here does not catch the case where the
6975 	 * source IP addr was left unspecified by the user. In
6976 	 * this case, the source addr is set in tcp_adapt_ire()
6977 	 * using the reply to the T_BIND message that we send
6978 	 * down to IP here and the check is repeated in tcp_rput_other.
6979 	 */
6980 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6981 	    (dstport == tcp->tcp_lport)) {
6982 		mp = mi_tpi_err_ack_alloc(mp, TBADADDR, 0);
6983 		goto failed;
6984 	}
6985 
6986 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6987 	tcp->tcp_remote_v6 = *dstaddrp;
6988 	tcp->tcp_ip6h->ip6_vcf =
6989 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6990 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6991 
6992 
6993 	/*
6994 	 * Massage a routing header (if present) putting the first hop
6995 	 * in ip6_dst. Compute a starting value for the checksum which
6996 	 * takes into account that the original ip6_dst should be
6997 	 * included in the checksum but that ip will include the
6998 	 * first hop in the source route in the tcp checksum.
6999 	 */
7000 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
7001 	if (rth != NULL) {
7002 
7003 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth);
7004 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
7005 		    (tcp->tcp_sum >> 16));
7006 	} else {
7007 		tcp->tcp_sum = 0;
7008 	}
7009 
7010 	tcph = tcp->tcp_tcph;
7011 	*(uint16_t *)tcph->th_fport = dstport;
7012 	tcp->tcp_fport = dstport;
7013 
7014 	oldstate = tcp->tcp_state;
7015 	tcp->tcp_state = TCPS_SYN_SENT;
7016 
7017 	/*
7018 	 * TODO: allow data with connect requests
7019 	 * by unlinking M_DATA trailers here and
7020 	 * linking them in behind the T_OK_ACK mblk.
7021 	 * The tcp_rput() bind ack handler would then
7022 	 * feed them to tcp_wput_data() rather than call
7023 	 * tcp_timer().
7024 	 */
7025 	mp = mi_tpi_ok_ack_alloc(mp);
7026 	if (!mp) {
7027 		tcp->tcp_state = oldstate;
7028 		goto failed;
7029 	}
7030 	mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, sizeof (ipa6_conn_t));
7031 	if (mp1) {
7032 		/* Hang onto the T_OK_ACK for later. */
7033 		linkb(mp1, mp);
7034 		mp1 = ip_bind_v6(tcp->tcp_wq, mp1, tcp->tcp_connp,
7035 		    &tcp->tcp_sticky_ipp);
7036 		BUMP_MIB(&tcp_mib, tcpActiveOpens);
7037 		tcp->tcp_active_open = 1;
7038 		/* ip_bind_v6() may return ACK or ERROR */
7039 		if (mp1 != NULL)
7040 			tcp_rput_other(tcp, mp1);
7041 		return;
7042 	}
7043 	/* Error case */
7044 	tcp->tcp_state = oldstate;
7045 	mp = mi_tpi_err_ack_alloc(mp, TSYSERR, ENOMEM);
7046 
7047 failed:
7048 	/* return error ack and blow away saved option results if any */
7049 	if (mp != NULL)
7050 		putnext(tcp->tcp_rq, mp);
7051 	else {
7052 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
7053 		    TSYSERR, ENOMEM);
7054 	}
7055 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
7056 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
7057 }
7058 
7059 /*
7060  * We need a stream q for detached closing tcp connections
7061  * to use.  Our client hereby indicates that this q is the
7062  * one to use.
7063  */
7064 static void
7065 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
7066 {
7067 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
7068 	queue_t	*q = tcp->tcp_wq;
7069 
7070 	mp->b_datap->db_type = M_IOCACK;
7071 	iocp->ioc_count = 0;
7072 	mutex_enter(&tcp_g_q_lock);
7073 	if (tcp_g_q != NULL) {
7074 		mutex_exit(&tcp_g_q_lock);
7075 		iocp->ioc_error = EALREADY;
7076 	} else {
7077 		mblk_t *mp1;
7078 
7079 		mp1 = tcp_ip_bind_mp(tcp, O_T_BIND_REQ, 0);
7080 		if (mp1 == NULL) {
7081 			mutex_exit(&tcp_g_q_lock);
7082 			iocp->ioc_error = ENOMEM;
7083 		} else {
7084 			tcp_g_q = tcp->tcp_rq;
7085 			mutex_exit(&tcp_g_q_lock);
7086 			iocp->ioc_error = 0;
7087 			iocp->ioc_rval = 0;
7088 			/*
7089 			 * We are passing tcp_sticky_ipp as NULL
7090 			 * as it is not useful for tcp_default queue
7091 			 */
7092 			mp1 = ip_bind_v6(q, mp1, tcp->tcp_connp, NULL);
7093 			if (mp1 != NULL)
7094 				tcp_rput_other(tcp, mp1);
7095 		}
7096 	}
7097 	qreply(q, mp);
7098 }
7099 
7100 /*
7101  * Our client hereby directs us to reject the connection request
7102  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
7103  * of sending the appropriate RST, not an ICMP error.
7104  */
7105 static void
7106 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
7107 {
7108 	tcp_t	*ltcp = NULL;
7109 	t_scalar_t seqnum;
7110 	conn_t	*connp;
7111 
7112 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
7113 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
7114 		tcp_err_ack(tcp, mp, TPROTO, 0);
7115 		return;
7116 	}
7117 
7118 	/*
7119 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
7120 	 * when the stream is in BOUND state. Do not send a reset,
7121 	 * since the destination IP address is not valid, and it can
7122 	 * be the initialized value of all zeros (broadcast address).
7123 	 *
7124 	 * If TCP has sent down a bind request to IP and has not
7125 	 * received the reply, reject the request.  Otherwise, TCP
7126 	 * will be confused.
7127 	 */
7128 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_hard_binding) {
7129 		if (tcp->tcp_debug) {
7130 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE,
7131 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
7132 		}
7133 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
7134 		return;
7135 	}
7136 
7137 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
7138 
7139 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
7140 
7141 		/*
7142 		 * According to TPI, for non-listeners, ignore seqnum
7143 		 * and disconnect.
7144 		 * Following interpretation of -1 seqnum is historical
7145 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
7146 		 * a valid seqnum should not be -1).
7147 		 *
7148 		 *	-1 means disconnect everything
7149 		 *	regardless even on a listener.
7150 		 */
7151 
7152 		int old_state = tcp->tcp_state;
7153 
7154 		/*
7155 		 * The connection can't be on the tcp_time_wait_head list
7156 		 * since it is not detached.
7157 		 */
7158 		ASSERT(tcp->tcp_time_wait_next == NULL);
7159 		ASSERT(tcp->tcp_time_wait_prev == NULL);
7160 		ASSERT(tcp->tcp_time_wait_expire == 0);
7161 		ltcp = NULL;
7162 		/*
7163 		 * If it used to be a listener, check to make sure no one else
7164 		 * has taken the port before switching back to LISTEN state.
7165 		 */
7166 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7167 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
7168 			    tcp->tcp_ipha->ipha_src,
7169 			    tcp->tcp_connp->conn_zoneid);
7170 			if (connp != NULL)
7171 				ltcp = connp->conn_tcp;
7172 		} else {
7173 			/* Allow tcp_bound_if listeners? */
7174 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
7175 			    &tcp->tcp_ip6h->ip6_src, 0,
7176 			    tcp->tcp_connp->conn_zoneid);
7177 			if (connp != NULL)
7178 				ltcp = connp->conn_tcp;
7179 		}
7180 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
7181 			tcp->tcp_state = TCPS_LISTEN;
7182 		} else if (old_state > TCPS_BOUND) {
7183 			tcp->tcp_conn_req_max = 0;
7184 			tcp->tcp_state = TCPS_BOUND;
7185 		}
7186 		if (ltcp != NULL)
7187 			CONN_DEC_REF(ltcp->tcp_connp);
7188 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
7189 			BUMP_MIB(&tcp_mib, tcpAttemptFails);
7190 		} else if (old_state == TCPS_ESTABLISHED ||
7191 		    old_state == TCPS_CLOSE_WAIT) {
7192 			BUMP_MIB(&tcp_mib, tcpEstabResets);
7193 		}
7194 
7195 		if (tcp->tcp_fused)
7196 			tcp_unfuse(tcp);
7197 
7198 		mutex_enter(&tcp->tcp_eager_lock);
7199 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
7200 		    (tcp->tcp_conn_req_cnt_q != 0)) {
7201 			tcp_eager_cleanup(tcp, 0);
7202 		}
7203 		mutex_exit(&tcp->tcp_eager_lock);
7204 
7205 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
7206 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
7207 
7208 		tcp_reinit(tcp);
7209 
7210 		if (old_state >= TCPS_ESTABLISHED) {
7211 			/* Send M_FLUSH according to TPI */
7212 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7213 		}
7214 		mp = mi_tpi_ok_ack_alloc(mp);
7215 		if (mp)
7216 			putnext(tcp->tcp_rq, mp);
7217 		return;
7218 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
7219 		tcp_err_ack(tcp, mp, TBADSEQ, 0);
7220 		return;
7221 	}
7222 	if (tcp->tcp_state >= TCPS_ESTABLISHED) {
7223 		/* Send M_FLUSH according to TPI */
7224 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
7225 	}
7226 	mp = mi_tpi_ok_ack_alloc(mp);
7227 	if (mp)
7228 		putnext(tcp->tcp_rq, mp);
7229 }
7230 
7231 /*
7232  * Diagnostic routine used to return a string associated with the tcp state.
7233  * Note that if the caller does not supply a buffer, it will use an internal
7234  * static string.  This means that if multiple threads call this function at
7235  * the same time, output can be corrupted...  Note also that this function
7236  * does not check the size of the supplied buffer.  The caller has to make
7237  * sure that it is big enough.
7238  */
7239 static char *
7240 tcp_display(tcp_t *tcp, char *sup_buf, char format)
7241 {
7242 	char		buf1[30];
7243 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
7244 	char		*buf;
7245 	char		*cp;
7246 	in6_addr_t	local, remote;
7247 	char		local_addrbuf[INET6_ADDRSTRLEN];
7248 	char		remote_addrbuf[INET6_ADDRSTRLEN];
7249 
7250 	if (sup_buf != NULL)
7251 		buf = sup_buf;
7252 	else
7253 		buf = priv_buf;
7254 
7255 	if (tcp == NULL)
7256 		return ("NULL_TCP");
7257 	switch (tcp->tcp_state) {
7258 	case TCPS_CLOSED:
7259 		cp = "TCP_CLOSED";
7260 		break;
7261 	case TCPS_IDLE:
7262 		cp = "TCP_IDLE";
7263 		break;
7264 	case TCPS_BOUND:
7265 		cp = "TCP_BOUND";
7266 		break;
7267 	case TCPS_LISTEN:
7268 		cp = "TCP_LISTEN";
7269 		break;
7270 	case TCPS_SYN_SENT:
7271 		cp = "TCP_SYN_SENT";
7272 		break;
7273 	case TCPS_SYN_RCVD:
7274 		cp = "TCP_SYN_RCVD";
7275 		break;
7276 	case TCPS_ESTABLISHED:
7277 		cp = "TCP_ESTABLISHED";
7278 		break;
7279 	case TCPS_CLOSE_WAIT:
7280 		cp = "TCP_CLOSE_WAIT";
7281 		break;
7282 	case TCPS_FIN_WAIT_1:
7283 		cp = "TCP_FIN_WAIT_1";
7284 		break;
7285 	case TCPS_CLOSING:
7286 		cp = "TCP_CLOSING";
7287 		break;
7288 	case TCPS_LAST_ACK:
7289 		cp = "TCP_LAST_ACK";
7290 		break;
7291 	case TCPS_FIN_WAIT_2:
7292 		cp = "TCP_FIN_WAIT_2";
7293 		break;
7294 	case TCPS_TIME_WAIT:
7295 		cp = "TCP_TIME_WAIT";
7296 		break;
7297 	default:
7298 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
7299 		cp = buf1;
7300 		break;
7301 	}
7302 	switch (format) {
7303 	case DISP_ADDR_AND_PORT:
7304 		if (tcp->tcp_ipversion == IPV4_VERSION) {
7305 			/*
7306 			 * Note that we use the remote address in the tcp_b
7307 			 * structure.  This means that it will print out
7308 			 * the real destination address, not the next hop's
7309 			 * address if source routing is used.
7310 			 */
7311 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
7312 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
7313 
7314 		} else {
7315 			local = tcp->tcp_ip_src_v6;
7316 			remote = tcp->tcp_remote_v6;
7317 		}
7318 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
7319 		    sizeof (local_addrbuf));
7320 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
7321 		    sizeof (remote_addrbuf));
7322 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
7323 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
7324 		    ntohs(tcp->tcp_fport), cp);
7325 		break;
7326 	case DISP_PORT_ONLY:
7327 	default:
7328 		(void) mi_sprintf(buf, "[%u, %u] %s",
7329 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
7330 		break;
7331 	}
7332 
7333 	return (buf);
7334 }
7335 
7336 /*
7337  * Called via squeue to get on to eager's perimeter to send a
7338  * TH_RST. The listener wants the eager to disappear either
7339  * by means of tcp_eager_blowoff() or tcp_eager_cleanup()
7340  * being called.
7341  */
7342 /* ARGSUSED */
7343 void
7344 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
7345 {
7346 	conn_t	*econnp = (conn_t *)arg;
7347 	tcp_t	*eager = econnp->conn_tcp;
7348 	tcp_t	*listener = eager->tcp_listener;
7349 
7350 	/*
7351 	 * We could be called because listener is closing. Since
7352 	 * the eager is using listener's queue's, its not safe.
7353 	 * Better use the default queue just to send the TH_RST
7354 	 * out.
7355 	 */
7356 	eager->tcp_rq = tcp_g_q;
7357 	eager->tcp_wq = WR(tcp_g_q);
7358 
7359 	if (eager->tcp_state > TCPS_LISTEN) {
7360 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
7361 		    eager, eager->tcp_snxt, 0, TH_RST);
7362 	}
7363 
7364 	/* We are here because listener wants this eager gone */
7365 	if (listener != NULL) {
7366 		mutex_enter(&listener->tcp_eager_lock);
7367 		tcp_eager_unlink(eager);
7368 		if (eager->tcp_conn.tcp_eager_conn_ind == NULL) {
7369 			/*
7370 			 * The eager has sent a conn_ind up to the
7371 			 * listener but listener decides to close
7372 			 * instead. We need to drop the extra ref
7373 			 * placed on eager in tcp_rput_data() before
7374 			 * sending the conn_ind to listener.
7375 			 */
7376 			CONN_DEC_REF(econnp);
7377 		}
7378 		mutex_exit(&listener->tcp_eager_lock);
7379 		CONN_DEC_REF(listener->tcp_connp);
7380 	}
7381 
7382 	if (eager->tcp_state > TCPS_BOUND)
7383 		tcp_close_detached(eager);
7384 }
7385 
7386 /*
7387  * Reset any eager connection hanging off this listener marked
7388  * with 'seqnum' and then reclaim it's resources.
7389  */
7390 static boolean_t
7391 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
7392 {
7393 	tcp_t	*eager;
7394 	mblk_t 	*mp;
7395 
7396 	TCP_STAT(tcp_eager_blowoff_calls);
7397 	eager = listener;
7398 	mutex_enter(&listener->tcp_eager_lock);
7399 	do {
7400 		eager = eager->tcp_eager_next_q;
7401 		if (eager == NULL) {
7402 			mutex_exit(&listener->tcp_eager_lock);
7403 			return (B_FALSE);
7404 		}
7405 	} while (eager->tcp_conn_req_seqnum != seqnum);
7406 	CONN_INC_REF(eager->tcp_connp);
7407 	mutex_exit(&listener->tcp_eager_lock);
7408 	mp = &eager->tcp_closemp;
7409 	squeue_fill(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
7410 	    eager->tcp_connp, SQTAG_TCP_EAGER_BLOWOFF);
7411 	return (B_TRUE);
7412 }
7413 
7414 /*
7415  * Reset any eager connection hanging off this listener
7416  * and then reclaim it's resources.
7417  */
7418 static void
7419 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
7420 {
7421 	tcp_t	*eager;
7422 	mblk_t	*mp;
7423 
7424 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7425 
7426 	if (!q0_only) {
7427 		/* First cleanup q */
7428 		TCP_STAT(tcp_eager_blowoff_q);
7429 		eager = listener->tcp_eager_next_q;
7430 		while (eager != NULL) {
7431 			CONN_INC_REF(eager->tcp_connp);
7432 			mp = &eager->tcp_closemp;
7433 			squeue_fill(eager->tcp_connp->conn_sqp, mp,
7434 			    tcp_eager_kill, eager->tcp_connp,
7435 			    SQTAG_TCP_EAGER_CLEANUP);
7436 			eager = eager->tcp_eager_next_q;
7437 		}
7438 	}
7439 	/* Then cleanup q0 */
7440 	TCP_STAT(tcp_eager_blowoff_q0);
7441 	eager = listener->tcp_eager_next_q0;
7442 	while (eager != listener) {
7443 		CONN_INC_REF(eager->tcp_connp);
7444 		mp = &eager->tcp_closemp;
7445 		squeue_fill(eager->tcp_connp->conn_sqp, mp,
7446 		    tcp_eager_kill, eager->tcp_connp,
7447 		    SQTAG_TCP_EAGER_CLEANUP_Q0);
7448 		eager = eager->tcp_eager_next_q0;
7449 	}
7450 }
7451 
7452 /*
7453  * If we are an eager connection hanging off a listener that hasn't
7454  * formally accepted the connection yet, get off his list and blow off
7455  * any data that we have accumulated.
7456  */
7457 static void
7458 tcp_eager_unlink(tcp_t *tcp)
7459 {
7460 	tcp_t	*listener = tcp->tcp_listener;
7461 
7462 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
7463 	ASSERT(listener != NULL);
7464 	if (tcp->tcp_eager_next_q0 != NULL) {
7465 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
7466 
7467 		/* Remove the eager tcp from q0 */
7468 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
7469 		    tcp->tcp_eager_prev_q0;
7470 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
7471 		    tcp->tcp_eager_next_q0;
7472 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
7473 		listener->tcp_conn_req_cnt_q0--;
7474 
7475 		tcp->tcp_eager_next_q0 = NULL;
7476 		tcp->tcp_eager_prev_q0 = NULL;
7477 
7478 		if (tcp->tcp_syn_rcvd_timeout != 0) {
7479 			/* we have timed out before */
7480 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
7481 			listener->tcp_syn_rcvd_timeout--;
7482 		}
7483 	} else {
7484 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
7485 		tcp_t	*prev = NULL;
7486 
7487 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
7488 			if (tcpp[0] == tcp) {
7489 				if (listener->tcp_eager_last_q == tcp) {
7490 					/*
7491 					 * If we are unlinking the last
7492 					 * element on the list, adjust
7493 					 * tail pointer. Set tail pointer
7494 					 * to nil when list is empty.
7495 					 */
7496 					ASSERT(tcp->tcp_eager_next_q == NULL);
7497 					if (listener->tcp_eager_last_q ==
7498 					    listener->tcp_eager_next_q) {
7499 						listener->tcp_eager_last_q =
7500 						NULL;
7501 					} else {
7502 						/*
7503 						 * We won't get here if there
7504 						 * is only one eager in the
7505 						 * list.
7506 						 */
7507 						ASSERT(prev != NULL);
7508 						listener->tcp_eager_last_q =
7509 						    prev;
7510 					}
7511 				}
7512 				tcpp[0] = tcp->tcp_eager_next_q;
7513 				tcp->tcp_eager_next_q = NULL;
7514 				tcp->tcp_eager_last_q = NULL;
7515 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
7516 				listener->tcp_conn_req_cnt_q--;
7517 				break;
7518 			}
7519 			prev = tcpp[0];
7520 		}
7521 	}
7522 	tcp->tcp_listener = NULL;
7523 }
7524 
7525 /* Shorthand to generate and send TPI error acks to our client */
7526 static void
7527 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
7528 {
7529 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
7530 		putnext(tcp->tcp_rq, mp);
7531 }
7532 
7533 /* Shorthand to generate and send TPI error acks to our client */
7534 static void
7535 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
7536     int t_error, int sys_error)
7537 {
7538 	struct T_error_ack	*teackp;
7539 
7540 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
7541 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
7542 		teackp = (struct T_error_ack *)mp->b_rptr;
7543 		teackp->ERROR_prim = primitive;
7544 		teackp->TLI_error = t_error;
7545 		teackp->UNIX_error = sys_error;
7546 		putnext(tcp->tcp_rq, mp);
7547 	}
7548 }
7549 
7550 /*
7551  * Note: No locks are held when inspecting tcp_g_*epriv_ports
7552  * but instead the code relies on:
7553  * - the fact that the address of the array and its size never changes
7554  * - the atomic assignment of the elements of the array
7555  */
7556 /* ARGSUSED */
7557 static int
7558 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
7559 {
7560 	int i;
7561 
7562 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7563 		if (tcp_g_epriv_ports[i] != 0)
7564 			(void) mi_mpprintf(mp, "%d ", tcp_g_epriv_ports[i]);
7565 	}
7566 	return (0);
7567 }
7568 
7569 /*
7570  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7571  * threads from changing it at the same time.
7572  */
7573 /* ARGSUSED */
7574 static int
7575 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7576     cred_t *cr)
7577 {
7578 	long	new_value;
7579 	int	i;
7580 
7581 	/*
7582 	 * Fail the request if the new value does not lie within the
7583 	 * port number limits.
7584 	 */
7585 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
7586 	    new_value <= 0 || new_value >= 65536) {
7587 		return (EINVAL);
7588 	}
7589 
7590 	mutex_enter(&tcp_epriv_port_lock);
7591 	/* Check if the value is already in the list */
7592 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7593 		if (new_value == tcp_g_epriv_ports[i]) {
7594 			mutex_exit(&tcp_epriv_port_lock);
7595 			return (EEXIST);
7596 		}
7597 	}
7598 	/* Find an empty slot */
7599 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7600 		if (tcp_g_epriv_ports[i] == 0)
7601 			break;
7602 	}
7603 	if (i == tcp_g_num_epriv_ports) {
7604 		mutex_exit(&tcp_epriv_port_lock);
7605 		return (EOVERFLOW);
7606 	}
7607 	/* Set the new value */
7608 	tcp_g_epriv_ports[i] = (uint16_t)new_value;
7609 	mutex_exit(&tcp_epriv_port_lock);
7610 	return (0);
7611 }
7612 
7613 /*
7614  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
7615  * threads from changing it at the same time.
7616  */
7617 /* ARGSUSED */
7618 static int
7619 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
7620     cred_t *cr)
7621 {
7622 	long	new_value;
7623 	int	i;
7624 
7625 	/*
7626 	 * Fail the request if the new value does not lie within the
7627 	 * port number limits.
7628 	 */
7629 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7630 	    new_value >= 65536) {
7631 		return (EINVAL);
7632 	}
7633 
7634 	mutex_enter(&tcp_epriv_port_lock);
7635 	/* Check that the value is already in the list */
7636 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
7637 		if (tcp_g_epriv_ports[i] == new_value)
7638 			break;
7639 	}
7640 	if (i == tcp_g_num_epriv_ports) {
7641 		mutex_exit(&tcp_epriv_port_lock);
7642 		return (ESRCH);
7643 	}
7644 	/* Clear the value */
7645 	tcp_g_epriv_ports[i] = 0;
7646 	mutex_exit(&tcp_epriv_port_lock);
7647 	return (0);
7648 }
7649 
7650 /* Return the TPI/TLI equivalent of our current tcp_state */
7651 static int
7652 tcp_tpistate(tcp_t *tcp)
7653 {
7654 	switch (tcp->tcp_state) {
7655 	case TCPS_IDLE:
7656 		return (TS_UNBND);
7657 	case TCPS_LISTEN:
7658 		/*
7659 		 * Return whether there are outstanding T_CONN_IND waiting
7660 		 * for the matching T_CONN_RES. Therefore don't count q0.
7661 		 */
7662 		if (tcp->tcp_conn_req_cnt_q > 0)
7663 			return (TS_WRES_CIND);
7664 		else
7665 			return (TS_IDLE);
7666 	case TCPS_BOUND:
7667 		return (TS_IDLE);
7668 	case TCPS_SYN_SENT:
7669 		return (TS_WCON_CREQ);
7670 	case TCPS_SYN_RCVD:
7671 		/*
7672 		 * Note: assumption: this has to the active open SYN_RCVD.
7673 		 * The passive instance is detached in SYN_RCVD stage of
7674 		 * incoming connection processing so we cannot get request
7675 		 * for T_info_ack on it.
7676 		 */
7677 		return (TS_WACK_CRES);
7678 	case TCPS_ESTABLISHED:
7679 		return (TS_DATA_XFER);
7680 	case TCPS_CLOSE_WAIT:
7681 		return (TS_WREQ_ORDREL);
7682 	case TCPS_FIN_WAIT_1:
7683 		return (TS_WIND_ORDREL);
7684 	case TCPS_FIN_WAIT_2:
7685 		return (TS_WIND_ORDREL);
7686 
7687 	case TCPS_CLOSING:
7688 	case TCPS_LAST_ACK:
7689 	case TCPS_TIME_WAIT:
7690 	case TCPS_CLOSED:
7691 		/*
7692 		 * Following TS_WACK_DREQ7 is a rendition of "not
7693 		 * yet TS_IDLE" TPI state. There is no best match to any
7694 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7695 		 * choose a value chosen that will map to TLI/XTI level
7696 		 * state of TSTATECHNG (state is process of changing) which
7697 		 * captures what this dummy state represents.
7698 		 */
7699 		return (TS_WACK_DREQ7);
7700 	default:
7701 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7702 		    tcp->tcp_state, tcp_display(tcp, NULL,
7703 		    DISP_PORT_ONLY));
7704 		return (TS_UNBND);
7705 	}
7706 }
7707 
7708 static void
7709 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7710 {
7711 	if (tcp->tcp_family == AF_INET6)
7712 		*tia = tcp_g_t_info_ack_v6;
7713 	else
7714 		*tia = tcp_g_t_info_ack;
7715 	tia->CURRENT_state = tcp_tpistate(tcp);
7716 	tia->OPT_size = tcp_max_optsize;
7717 	if (tcp->tcp_mss == 0) {
7718 		/* Not yet set - tcp_open does not set mss */
7719 		if (tcp->tcp_ipversion == IPV4_VERSION)
7720 			tia->TIDU_size = tcp_mss_def_ipv4;
7721 		else
7722 			tia->TIDU_size = tcp_mss_def_ipv6;
7723 	} else {
7724 		tia->TIDU_size = tcp->tcp_mss;
7725 	}
7726 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7727 }
7728 
7729 /*
7730  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7731  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7732  * tcp_g_t_info_ack.  The current state of the stream is copied from
7733  * tcp_state.
7734  */
7735 static void
7736 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7737 {
7738 	t_uscalar_t		cap_bits1;
7739 	struct T_capability_ack	*tcap;
7740 
7741 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7742 		freemsg(mp);
7743 		return;
7744 	}
7745 
7746 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7747 
7748 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7749 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7750 	if (mp == NULL)
7751 		return;
7752 
7753 	tcap = (struct T_capability_ack *)mp->b_rptr;
7754 	tcap->CAP_bits1 = 0;
7755 
7756 	if (cap_bits1 & TC1_INFO) {
7757 		tcp_copy_info(&tcap->INFO_ack, tcp);
7758 		tcap->CAP_bits1 |= TC1_INFO;
7759 	}
7760 
7761 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7762 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7763 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7764 	}
7765 
7766 	putnext(tcp->tcp_rq, mp);
7767 }
7768 
7769 /*
7770  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7771  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7772  * The current state of the stream is copied from tcp_state.
7773  */
7774 static void
7775 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7776 {
7777 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7778 	    T_INFO_ACK);
7779 	if (!mp) {
7780 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7781 		return;
7782 	}
7783 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7784 	putnext(tcp->tcp_rq, mp);
7785 }
7786 
7787 /* Respond to the TPI addr request */
7788 static void
7789 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7790 {
7791 	sin_t	*sin;
7792 	mblk_t	*ackmp;
7793 	struct T_addr_ack *taa;
7794 
7795 	/* Make it large enough for worst case */
7796 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7797 	    2 * sizeof (sin6_t), 1);
7798 	if (ackmp == NULL) {
7799 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7800 		return;
7801 	}
7802 
7803 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7804 		tcp_addr_req_ipv6(tcp, ackmp);
7805 		return;
7806 	}
7807 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7808 
7809 	bzero(taa, sizeof (struct T_addr_ack));
7810 	ackmp->b_wptr = (uchar_t *)&taa[1];
7811 
7812 	taa->PRIM_type = T_ADDR_ACK;
7813 	ackmp->b_datap->db_type = M_PCPROTO;
7814 
7815 	/*
7816 	 * Note: Following code assumes 32 bit alignment of basic
7817 	 * data structures like sin_t and struct T_addr_ack.
7818 	 */
7819 	if (tcp->tcp_state >= TCPS_BOUND) {
7820 		/*
7821 		 * Fill in local address
7822 		 */
7823 		taa->LOCADDR_length = sizeof (sin_t);
7824 		taa->LOCADDR_offset = sizeof (*taa);
7825 
7826 		sin = (sin_t *)&taa[1];
7827 
7828 		/* Fill zeroes and then intialize non-zero fields */
7829 		*sin = sin_null;
7830 
7831 		sin->sin_family = AF_INET;
7832 
7833 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7834 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7835 
7836 		ackmp->b_wptr = (uchar_t *)&sin[1];
7837 
7838 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7839 			/*
7840 			 * Fill in Remote address
7841 			 */
7842 			taa->REMADDR_length = sizeof (sin_t);
7843 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7844 						taa->LOCADDR_length);
7845 
7846 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7847 			*sin = sin_null;
7848 			sin->sin_family = AF_INET;
7849 			sin->sin_addr.s_addr = tcp->tcp_remote;
7850 			sin->sin_port = tcp->tcp_fport;
7851 
7852 			ackmp->b_wptr = (uchar_t *)&sin[1];
7853 		}
7854 	}
7855 	putnext(tcp->tcp_rq, ackmp);
7856 }
7857 
7858 /* Assumes that tcp_addr_req gets enough space and alignment */
7859 static void
7860 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7861 {
7862 	sin6_t	*sin6;
7863 	struct T_addr_ack *taa;
7864 
7865 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7866 	ASSERT(OK_32PTR(ackmp->b_rptr));
7867 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7868 	    2 * sizeof (sin6_t));
7869 
7870 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7871 
7872 	bzero(taa, sizeof (struct T_addr_ack));
7873 	ackmp->b_wptr = (uchar_t *)&taa[1];
7874 
7875 	taa->PRIM_type = T_ADDR_ACK;
7876 	ackmp->b_datap->db_type = M_PCPROTO;
7877 
7878 	/*
7879 	 * Note: Following code assumes 32 bit alignment of basic
7880 	 * data structures like sin6_t and struct T_addr_ack.
7881 	 */
7882 	if (tcp->tcp_state >= TCPS_BOUND) {
7883 		/*
7884 		 * Fill in local address
7885 		 */
7886 		taa->LOCADDR_length = sizeof (sin6_t);
7887 		taa->LOCADDR_offset = sizeof (*taa);
7888 
7889 		sin6 = (sin6_t *)&taa[1];
7890 		*sin6 = sin6_null;
7891 
7892 		sin6->sin6_family = AF_INET6;
7893 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7894 		sin6->sin6_port = tcp->tcp_lport;
7895 
7896 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7897 
7898 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7899 			/*
7900 			 * Fill in Remote address
7901 			 */
7902 			taa->REMADDR_length = sizeof (sin6_t);
7903 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7904 						taa->LOCADDR_length);
7905 
7906 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7907 			*sin6 = sin6_null;
7908 			sin6->sin6_family = AF_INET6;
7909 			sin6->sin6_flowinfo =
7910 			    tcp->tcp_ip6h->ip6_vcf &
7911 			    ~IPV6_VERS_AND_FLOW_MASK;
7912 			sin6->sin6_addr = tcp->tcp_remote_v6;
7913 			sin6->sin6_port = tcp->tcp_fport;
7914 
7915 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7916 		}
7917 	}
7918 	putnext(tcp->tcp_rq, ackmp);
7919 }
7920 
7921 /*
7922  * Handle reinitialization of a tcp structure.
7923  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7924  */
7925 static void
7926 tcp_reinit(tcp_t *tcp)
7927 {
7928 	mblk_t	*mp;
7929 	int 	err;
7930 
7931 	TCP_STAT(tcp_reinit_calls);
7932 
7933 	/* tcp_reinit should never be called for detached tcp_t's */
7934 	ASSERT(tcp->tcp_listener == NULL);
7935 	ASSERT((tcp->tcp_family == AF_INET &&
7936 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7937 	    (tcp->tcp_family == AF_INET6 &&
7938 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7939 	    tcp->tcp_ipversion == IPV6_VERSION)));
7940 
7941 	/* Cancel outstanding timers */
7942 	tcp_timers_stop(tcp);
7943 
7944 	if (tcp->tcp_flow_stopped) {
7945 		tcp->tcp_flow_stopped = B_FALSE;
7946 		tcp_clrqfull(tcp);
7947 	}
7948 	/*
7949 	 * Reset everything in the state vector, after updating global
7950 	 * MIB data from instance counters.
7951 	 */
7952 	UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
7953 	tcp->tcp_ibsegs = 0;
7954 	UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
7955 	tcp->tcp_obsegs = 0;
7956 
7957 	tcp_close_mpp(&tcp->tcp_xmit_head);
7958 	if (tcp->tcp_snd_zcopy_aware)
7959 		tcp_zcopy_notify(tcp);
7960 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7961 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7962 	tcp_close_mpp(&tcp->tcp_reass_head);
7963 	tcp->tcp_reass_tail = NULL;
7964 	if (tcp->tcp_rcv_list != NULL) {
7965 		/* Free b_next chain */
7966 		tcp_close_mpp(&tcp->tcp_rcv_list);
7967 		tcp->tcp_rcv_last_head = NULL;
7968 		tcp->tcp_rcv_last_tail = NULL;
7969 		tcp->tcp_rcv_cnt = 0;
7970 	}
7971 	tcp->tcp_rcv_last_tail = NULL;
7972 
7973 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7974 		freemsg(mp);
7975 		tcp->tcp_urp_mp = NULL;
7976 	}
7977 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7978 		freemsg(mp);
7979 		tcp->tcp_urp_mark_mp = NULL;
7980 	}
7981 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7982 		freeb(tcp->tcp_fused_sigurg_mp);
7983 		tcp->tcp_fused_sigurg_mp = NULL;
7984 	}
7985 
7986 	/*
7987 	 * Following is a union with two members which are
7988 	 * identical types and size so the following cleanup
7989 	 * is enough.
7990 	 */
7991 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7992 
7993 	CL_INET_DISCONNECT(tcp);
7994 
7995 	/*
7996 	 * The connection can't be on the tcp_time_wait_head list
7997 	 * since it is not detached.
7998 	 */
7999 	ASSERT(tcp->tcp_time_wait_next == NULL);
8000 	ASSERT(tcp->tcp_time_wait_prev == NULL);
8001 	ASSERT(tcp->tcp_time_wait_expire == 0);
8002 
8003 	/*
8004 	 * Reset/preserve other values
8005 	 */
8006 	tcp_reinit_values(tcp);
8007 	ipcl_hash_remove(tcp->tcp_connp);
8008 	conn_delete_ire(tcp->tcp_connp, NULL);
8009 
8010 	if (tcp->tcp_conn_req_max != 0) {
8011 		/*
8012 		 * This is the case when a TLI program uses the same
8013 		 * transport end point to accept a connection.  This
8014 		 * makes the TCP both a listener and acceptor.  When
8015 		 * this connection is closed, we need to set the state
8016 		 * back to TCPS_LISTEN.  Make sure that the eager list
8017 		 * is reinitialized.
8018 		 *
8019 		 * Note that this stream is still bound to the four
8020 		 * tuples of the previous connection in IP.  If a new
8021 		 * SYN with different foreign address comes in, IP will
8022 		 * not find it and will send it to the global queue.  In
8023 		 * the global queue, TCP will do a tcp_lookup_listener()
8024 		 * to find this stream.  This works because this stream
8025 		 * is only removed from connected hash.
8026 		 *
8027 		 */
8028 		tcp->tcp_state = TCPS_LISTEN;
8029 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
8030 		tcp->tcp_connp->conn_recv = tcp_conn_request;
8031 		if (tcp->tcp_family == AF_INET6) {
8032 			ASSERT(tcp->tcp_connp->conn_af_isv6);
8033 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
8034 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
8035 		} else {
8036 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
8037 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
8038 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
8039 		}
8040 	} else {
8041 		tcp->tcp_state = TCPS_BOUND;
8042 	}
8043 
8044 	/*
8045 	 * Initialize to default values
8046 	 * Can't fail since enough header template space already allocated
8047 	 * at open().
8048 	 */
8049 	err = tcp_init_values(tcp);
8050 	ASSERT(err == 0);
8051 	/* Restore state in tcp_tcph */
8052 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
8053 	if (tcp->tcp_ipversion == IPV4_VERSION)
8054 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
8055 	else
8056 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
8057 	/*
8058 	 * Copy of the src addr. in tcp_t is needed in tcp_t
8059 	 * since the lookup funcs can only lookup on tcp_t
8060 	 */
8061 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
8062 
8063 	ASSERT(tcp->tcp_ptpbhn != NULL);
8064 	tcp->tcp_rq->q_hiwat = tcp_recv_hiwat;
8065 	tcp->tcp_rwnd = tcp_recv_hiwat;
8066 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
8067 	    tcp_mss_def_ipv6 : tcp_mss_def_ipv4;
8068 }
8069 
8070 /*
8071  * Force values to zero that need be zero.
8072  * Do not touch values asociated with the BOUND or LISTEN state
8073  * since the connection will end up in that state after the reinit.
8074  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
8075  * structure!
8076  */
8077 static void
8078 tcp_reinit_values(tcp)
8079 	tcp_t *tcp;
8080 {
8081 #ifndef	lint
8082 #define	DONTCARE(x)
8083 #define	PRESERVE(x)
8084 #else
8085 #define	DONTCARE(x)	((x) = (x))
8086 #define	PRESERVE(x)	((x) = (x))
8087 #endif	/* lint */
8088 
8089 	PRESERVE(tcp->tcp_bind_hash);
8090 	PRESERVE(tcp->tcp_ptpbhn);
8091 	PRESERVE(tcp->tcp_acceptor_hash);
8092 	PRESERVE(tcp->tcp_ptpahn);
8093 
8094 	/* Should be ASSERT NULL on these with new code! */
8095 	ASSERT(tcp->tcp_time_wait_next == NULL);
8096 	ASSERT(tcp->tcp_time_wait_prev == NULL);
8097 	ASSERT(tcp->tcp_time_wait_expire == 0);
8098 	PRESERVE(tcp->tcp_state);
8099 	PRESERVE(tcp->tcp_rq);
8100 	PRESERVE(tcp->tcp_wq);
8101 
8102 	ASSERT(tcp->tcp_xmit_head == NULL);
8103 	ASSERT(tcp->tcp_xmit_last == NULL);
8104 	ASSERT(tcp->tcp_unsent == 0);
8105 	ASSERT(tcp->tcp_xmit_tail == NULL);
8106 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
8107 
8108 	tcp->tcp_snxt = 0;			/* Displayed in mib */
8109 	tcp->tcp_suna = 0;			/* Displayed in mib */
8110 	tcp->tcp_swnd = 0;
8111 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
8112 
8113 	ASSERT(tcp->tcp_ibsegs == 0);
8114 	ASSERT(tcp->tcp_obsegs == 0);
8115 
8116 	if (tcp->tcp_iphc != NULL) {
8117 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8118 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
8119 	}
8120 
8121 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
8122 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
8123 	DONTCARE(tcp->tcp_ipha);
8124 	DONTCARE(tcp->tcp_ip6h);
8125 	DONTCARE(tcp->tcp_ip_hdr_len);
8126 	DONTCARE(tcp->tcp_tcph);
8127 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
8128 	tcp->tcp_valid_bits = 0;
8129 
8130 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
8131 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
8132 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
8133 	tcp->tcp_last_rcv_lbolt = 0;
8134 
8135 	tcp->tcp_init_cwnd = 0;
8136 
8137 	tcp->tcp_urp_last_valid = 0;
8138 	tcp->tcp_hard_binding = 0;
8139 	tcp->tcp_hard_bound = 0;
8140 	PRESERVE(tcp->tcp_cred);
8141 	PRESERVE(tcp->tcp_cpid);
8142 	PRESERVE(tcp->tcp_exclbind);
8143 
8144 	tcp->tcp_fin_acked = 0;
8145 	tcp->tcp_fin_rcvd = 0;
8146 	tcp->tcp_fin_sent = 0;
8147 	tcp->tcp_ordrel_done = 0;
8148 
8149 	ASSERT(tcp->tcp_flow_stopped == 0);
8150 	tcp->tcp_debug = 0;
8151 	tcp->tcp_dontroute = 0;
8152 	tcp->tcp_broadcast = 0;
8153 
8154 	tcp->tcp_useloopback = 0;
8155 	tcp->tcp_reuseaddr = 0;
8156 	tcp->tcp_oobinline = 0;
8157 	tcp->tcp_dgram_errind = 0;
8158 
8159 	tcp->tcp_detached = 0;
8160 	tcp->tcp_bind_pending = 0;
8161 	tcp->tcp_unbind_pending = 0;
8162 	tcp->tcp_deferred_clean_death = 0;
8163 
8164 	tcp->tcp_snd_ws_ok = B_FALSE;
8165 	tcp->tcp_snd_ts_ok = B_FALSE;
8166 	tcp->tcp_linger = 0;
8167 	tcp->tcp_ka_enabled = 0;
8168 	tcp->tcp_zero_win_probe = 0;
8169 
8170 	tcp->tcp_loopback = 0;
8171 	tcp->tcp_localnet = 0;
8172 	tcp->tcp_syn_defense = 0;
8173 	tcp->tcp_set_timer = 0;
8174 
8175 	tcp->tcp_active_open = 0;
8176 	ASSERT(tcp->tcp_timeout == B_FALSE);
8177 	tcp->tcp_rexmit = B_FALSE;
8178 	tcp->tcp_xmit_zc_clean = B_FALSE;
8179 
8180 	tcp->tcp_snd_sack_ok = B_FALSE;
8181 	PRESERVE(tcp->tcp_recvdstaddr);
8182 	tcp->tcp_hwcksum = B_FALSE;
8183 
8184 	tcp->tcp_ire_ill_check_done = B_FALSE;
8185 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
8186 
8187 	tcp->tcp_mdt = B_FALSE;
8188 	tcp->tcp_mdt_hdr_head = 0;
8189 	tcp->tcp_mdt_hdr_tail = 0;
8190 
8191 	tcp->tcp_conn_def_q0 = 0;
8192 	tcp->tcp_ip_forward_progress = B_FALSE;
8193 	tcp->tcp_anon_priv_bind = 0;
8194 	tcp->tcp_ecn_ok = B_FALSE;
8195 
8196 	tcp->tcp_cwr = B_FALSE;
8197 	tcp->tcp_ecn_echo_on = B_FALSE;
8198 
8199 	if (tcp->tcp_sack_info != NULL) {
8200 		if (tcp->tcp_notsack_list != NULL) {
8201 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
8202 		}
8203 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
8204 		tcp->tcp_sack_info = NULL;
8205 	}
8206 
8207 	tcp->tcp_rcv_ws = 0;
8208 	tcp->tcp_snd_ws = 0;
8209 	tcp->tcp_ts_recent = 0;
8210 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
8211 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
8212 	tcp->tcp_if_mtu = 0;
8213 
8214 	ASSERT(tcp->tcp_reass_head == NULL);
8215 	ASSERT(tcp->tcp_reass_tail == NULL);
8216 
8217 	tcp->tcp_cwnd_cnt = 0;
8218 
8219 	ASSERT(tcp->tcp_rcv_list == NULL);
8220 	ASSERT(tcp->tcp_rcv_last_head == NULL);
8221 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
8222 	ASSERT(tcp->tcp_rcv_cnt == 0);
8223 
8224 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
8225 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
8226 	tcp->tcp_csuna = 0;
8227 
8228 	tcp->tcp_rto = 0;			/* Displayed in MIB */
8229 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
8230 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
8231 	tcp->tcp_rtt_update = 0;
8232 
8233 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8234 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
8235 
8236 	tcp->tcp_rack = 0;			/* Displayed in mib */
8237 	tcp->tcp_rack_cnt = 0;
8238 	tcp->tcp_rack_cur_max = 0;
8239 	tcp->tcp_rack_abs_max = 0;
8240 
8241 	tcp->tcp_max_swnd = 0;
8242 
8243 	ASSERT(tcp->tcp_listener == NULL);
8244 
8245 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
8246 
8247 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
8248 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
8249 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
8250 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
8251 
8252 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
8253 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
8254 	PRESERVE(tcp->tcp_conn_req_max);
8255 	PRESERVE(tcp->tcp_conn_req_seqnum);
8256 
8257 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
8258 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
8259 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
8260 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
8261 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
8262 
8263 	tcp->tcp_lingertime = 0;
8264 
8265 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
8266 	ASSERT(tcp->tcp_urp_mp == NULL);
8267 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
8268 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
8269 
8270 	ASSERT(tcp->tcp_eager_next_q == NULL);
8271 	ASSERT(tcp->tcp_eager_last_q == NULL);
8272 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
8273 	    tcp->tcp_eager_prev_q0 == NULL) ||
8274 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
8275 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
8276 
8277 	tcp->tcp_client_errno = 0;
8278 
8279 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
8280 
8281 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
8282 
8283 	PRESERVE(tcp->tcp_bound_source_v6);
8284 	tcp->tcp_last_sent_len = 0;
8285 	tcp->tcp_dupack_cnt = 0;
8286 
8287 	tcp->tcp_fport = 0;			/* Displayed in MIB */
8288 	PRESERVE(tcp->tcp_lport);
8289 
8290 	PRESERVE(tcp->tcp_acceptor_lockp);
8291 
8292 	ASSERT(tcp->tcp_ordrelid == 0);
8293 	PRESERVE(tcp->tcp_acceptor_id);
8294 	DONTCARE(tcp->tcp_ipsec_overhead);
8295 
8296 	/*
8297 	 * If tcp_tracing flag is ON (i.e. We have a trace buffer
8298 	 * in tcp structure and now tracing), Re-initialize all
8299 	 * members of tcp_traceinfo.
8300 	 */
8301 	if (tcp->tcp_tracebuf != NULL) {
8302 		bzero(tcp->tcp_tracebuf, sizeof (tcptrch_t));
8303 	}
8304 
8305 	PRESERVE(tcp->tcp_family);
8306 	if (tcp->tcp_family == AF_INET6) {
8307 		tcp->tcp_ipversion = IPV6_VERSION;
8308 		tcp->tcp_mss = tcp_mss_def_ipv6;
8309 	} else {
8310 		tcp->tcp_ipversion = IPV4_VERSION;
8311 		tcp->tcp_mss = tcp_mss_def_ipv4;
8312 	}
8313 
8314 	tcp->tcp_bound_if = 0;
8315 	tcp->tcp_ipv6_recvancillary = 0;
8316 	tcp->tcp_recvifindex = 0;
8317 	tcp->tcp_recvhops = 0;
8318 	tcp->tcp_closed = 0;
8319 	tcp->tcp_cleandeathtag = 0;
8320 	if (tcp->tcp_hopopts != NULL) {
8321 		mi_free(tcp->tcp_hopopts);
8322 		tcp->tcp_hopopts = NULL;
8323 		tcp->tcp_hopoptslen = 0;
8324 	}
8325 	ASSERT(tcp->tcp_hopoptslen == 0);
8326 	if (tcp->tcp_dstopts != NULL) {
8327 		mi_free(tcp->tcp_dstopts);
8328 		tcp->tcp_dstopts = NULL;
8329 		tcp->tcp_dstoptslen = 0;
8330 	}
8331 	ASSERT(tcp->tcp_dstoptslen == 0);
8332 	if (tcp->tcp_rtdstopts != NULL) {
8333 		mi_free(tcp->tcp_rtdstopts);
8334 		tcp->tcp_rtdstopts = NULL;
8335 		tcp->tcp_rtdstoptslen = 0;
8336 	}
8337 	ASSERT(tcp->tcp_rtdstoptslen == 0);
8338 	if (tcp->tcp_rthdr != NULL) {
8339 		mi_free(tcp->tcp_rthdr);
8340 		tcp->tcp_rthdr = NULL;
8341 		tcp->tcp_rthdrlen = 0;
8342 	}
8343 	ASSERT(tcp->tcp_rthdrlen == 0);
8344 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
8345 
8346 	tcp->tcp_fused = B_FALSE;
8347 	tcp->tcp_unfusable = B_FALSE;
8348 	tcp->tcp_fused_sigurg = B_FALSE;
8349 	tcp->tcp_loopback_peer = NULL;
8350 
8351 	tcp->tcp_in_ack_unsent = 0;
8352 	tcp->tcp_cork = B_FALSE;
8353 
8354 #undef	DONTCARE
8355 #undef	PRESERVE
8356 }
8357 
8358 /*
8359  * Allocate necessary resources and initialize state vector.
8360  * Guaranteed not to fail so that when an error is returned,
8361  * the caller doesn't need to do any additional cleanup.
8362  */
8363 int
8364 tcp_init(tcp_t *tcp, queue_t *q)
8365 {
8366 	int	err;
8367 
8368 	tcp->tcp_rq = q;
8369 	tcp->tcp_wq = WR(q);
8370 	tcp->tcp_state = TCPS_IDLE;
8371 	if ((err = tcp_init_values(tcp)) != 0)
8372 		tcp_timers_stop(tcp);
8373 	return (err);
8374 }
8375 
8376 static int
8377 tcp_init_values(tcp_t *tcp)
8378 {
8379 	int	err;
8380 
8381 	ASSERT((tcp->tcp_family == AF_INET &&
8382 	    tcp->tcp_ipversion == IPV4_VERSION) ||
8383 	    (tcp->tcp_family == AF_INET6 &&
8384 	    (tcp->tcp_ipversion == IPV4_VERSION ||
8385 	    tcp->tcp_ipversion == IPV6_VERSION)));
8386 
8387 	/*
8388 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
8389 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
8390 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
8391 	 * during first few transmissions of a connection as seen in slow
8392 	 * links.
8393 	 */
8394 	tcp->tcp_rtt_sa = tcp_rexmit_interval_initial << 2;
8395 	tcp->tcp_rtt_sd = tcp_rexmit_interval_initial >> 1;
8396 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
8397 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
8398 	    tcp_conn_grace_period;
8399 	if (tcp->tcp_rto < tcp_rexmit_interval_min)
8400 		tcp->tcp_rto = tcp_rexmit_interval_min;
8401 	tcp->tcp_timer_backoff = 0;
8402 	tcp->tcp_ms_we_have_waited = 0;
8403 	tcp->tcp_last_recv_time = lbolt;
8404 	tcp->tcp_cwnd_max = tcp_cwnd_max_;
8405 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
8406 
8407 	tcp->tcp_maxpsz = tcp_maxpsz_multiplier;
8408 
8409 	tcp->tcp_first_timer_threshold = tcp_ip_notify_interval;
8410 	tcp->tcp_first_ctimer_threshold = tcp_ip_notify_cinterval;
8411 	tcp->tcp_second_timer_threshold = tcp_ip_abort_interval;
8412 	/*
8413 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
8414 	 * passive open.
8415 	 */
8416 	tcp->tcp_second_ctimer_threshold = tcp_ip_abort_cinterval;
8417 
8418 	tcp->tcp_naglim = tcp_naglim_def;
8419 
8420 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
8421 
8422 	tcp->tcp_mdt_hdr_head = 0;
8423 	tcp->tcp_mdt_hdr_tail = 0;
8424 
8425 	tcp->tcp_fused = B_FALSE;
8426 	tcp->tcp_unfusable = B_FALSE;
8427 	tcp->tcp_fused_sigurg = B_FALSE;
8428 	tcp->tcp_loopback_peer = NULL;
8429 
8430 	/* Initialize the header template */
8431 	if (tcp->tcp_ipversion == IPV4_VERSION) {
8432 		err = tcp_header_init_ipv4(tcp);
8433 	} else {
8434 		err = tcp_header_init_ipv6(tcp);
8435 	}
8436 	if (err)
8437 		return (err);
8438 
8439 	/*
8440 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
8441 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
8442 	 */
8443 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
8444 	tcp->tcp_xmit_lowater = tcp_xmit_lowat;
8445 	tcp->tcp_xmit_hiwater = tcp_xmit_hiwat;
8446 
8447 	tcp->tcp_cork = B_FALSE;
8448 	/*
8449 	 * Init the tcp_debug option.  This value determines whether TCP
8450 	 * calls strlog() to print out debug messages.  Doing this
8451 	 * initialization here means that this value is not inherited thru
8452 	 * tcp_reinit().
8453 	 */
8454 	tcp->tcp_debug = tcp_dbg;
8455 
8456 	tcp->tcp_ka_interval = tcp_keepalive_interval;
8457 	tcp->tcp_ka_abort_thres = tcp_keepalive_abort_interval;
8458 
8459 	return (0);
8460 }
8461 
8462 /*
8463  * Initialize the IPv4 header. Loses any record of any IP options.
8464  */
8465 static int
8466 tcp_header_init_ipv4(tcp_t *tcp)
8467 {
8468 	tcph_t		*tcph;
8469 	uint32_t	sum;
8470 
8471 	/*
8472 	 * This is a simple initialization. If there's
8473 	 * already a template, it should never be too small,
8474 	 * so reuse it.  Otherwise, allocate space for the new one.
8475 	 */
8476 	if (tcp->tcp_iphc == NULL) {
8477 		ASSERT(tcp->tcp_iphc_len == 0);
8478 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8479 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8480 		if (tcp->tcp_iphc == NULL) {
8481 			tcp->tcp_iphc_len = 0;
8482 			return (ENOMEM);
8483 		}
8484 	}
8485 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8486 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
8487 	tcp->tcp_ip6h = NULL;
8488 	tcp->tcp_ipversion = IPV4_VERSION;
8489 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
8490 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8491 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
8492 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
8493 	tcp->tcp_ipha->ipha_version_and_hdr_length
8494 		= (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
8495 	tcp->tcp_ipha->ipha_ident = 0;
8496 
8497 	tcp->tcp_ttl = (uchar_t)tcp_ipv4_ttl;
8498 	tcp->tcp_tos = 0;
8499 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
8500 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
8501 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
8502 
8503 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
8504 	tcp->tcp_tcph = tcph;
8505 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8506 	/*
8507 	 * IP wants our header length in the checksum field to
8508 	 * allow it to perform a single pseudo-header+checksum
8509 	 * calculation on behalf of TCP.
8510 	 * Include the adjustment for a source route once IP_OPTIONS is set.
8511 	 */
8512 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8513 	sum = (sum >> 16) + (sum & 0xFFFF);
8514 	U16_TO_ABE16(sum, tcph->th_sum);
8515 	return (0);
8516 }
8517 
8518 /*
8519  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
8520  */
8521 static int
8522 tcp_header_init_ipv6(tcp_t *tcp)
8523 {
8524 	tcph_t	*tcph;
8525 	uint32_t	sum;
8526 
8527 	/*
8528 	 * This is a simple initialization. If there's
8529 	 * already a template, it should never be too small,
8530 	 * so reuse it. Otherwise, allocate space for the new one.
8531 	 * Ensure that there is enough space to "downgrade" the tcp_t
8532 	 * to an IPv4 tcp_t. This requires having space for a full load
8533 	 * of IPv4 options, as well as a full load of TCP options
8534 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
8535 	 * than a v6 header and a TCP header with a full load of TCP options
8536 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
8537 	 * We want to avoid reallocation in the "downgraded" case when
8538 	 * processing outbound IPv4 options.
8539 	 */
8540 	if (tcp->tcp_iphc == NULL) {
8541 		ASSERT(tcp->tcp_iphc_len == 0);
8542 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
8543 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
8544 		if (tcp->tcp_iphc == NULL) {
8545 			tcp->tcp_iphc_len = 0;
8546 			return (ENOMEM);
8547 		}
8548 	}
8549 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8550 	tcp->tcp_ipversion = IPV6_VERSION;
8551 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8552 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8553 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8554 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8555 	tcp->tcp_ipha = NULL;
8556 
8557 	/* Initialize the header template */
8558 
8559 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8560 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8561 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8562 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcp_ipv6_hoplimit;
8563 
8564 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8565 	tcp->tcp_tcph = tcph;
8566 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8567 	/*
8568 	 * IP wants our header length in the checksum field to
8569 	 * allow it to perform a single psuedo-header+checksum
8570 	 * calculation on behalf of TCP.
8571 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8572 	 */
8573 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8574 	sum = (sum >> 16) + (sum & 0xFFFF);
8575 	U16_TO_ABE16(sum, tcph->th_sum);
8576 	return (0);
8577 }
8578 
8579 /* At minimum we need 4 bytes in the TCP header for the lookup */
8580 #define	ICMP_MIN_TCP_HDR	4
8581 
8582 /*
8583  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8584  * passed up by IP. The message is always received on the correct tcp_t.
8585  * Assumes that IP has pulled up everything up to and including the ICMP header.
8586  */
8587 void
8588 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8589 {
8590 	icmph_t *icmph;
8591 	ipha_t	*ipha;
8592 	int	iph_hdr_length;
8593 	tcph_t	*tcph;
8594 	boolean_t ipsec_mctl = B_FALSE;
8595 	boolean_t secure;
8596 	mblk_t *first_mp = mp;
8597 	uint32_t new_mss;
8598 	uint32_t ratio;
8599 	size_t mp_size = MBLKL(mp);
8600 	uint32_t seg_ack;
8601 	uint32_t seg_seq;
8602 
8603 	/* Assume IP provides aligned packets - otherwise toss */
8604 	if (!OK_32PTR(mp->b_rptr)) {
8605 		freemsg(mp);
8606 		return;
8607 	}
8608 
8609 	/*
8610 	 * Since ICMP errors are normal data marked with M_CTL when sent
8611 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8612 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8613 	 */
8614 	if ((mp_size == sizeof (ipsec_info_t)) &&
8615 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8616 		ASSERT(mp->b_cont != NULL);
8617 		mp = mp->b_cont;
8618 		/* IP should have done this */
8619 		ASSERT(OK_32PTR(mp->b_rptr));
8620 		mp_size = MBLKL(mp);
8621 		ipsec_mctl = B_TRUE;
8622 	}
8623 
8624 	/*
8625 	 * Verify that we have a complete outer IP header. If not, drop it.
8626 	 */
8627 	if (mp_size < sizeof (ipha_t)) {
8628 noticmpv4:
8629 		freemsg(first_mp);
8630 		return;
8631 	}
8632 
8633 	ipha = (ipha_t *)mp->b_rptr;
8634 	/*
8635 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8636 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8637 	 */
8638 	switch (IPH_HDR_VERSION(ipha)) {
8639 	case IPV6_VERSION:
8640 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8641 		return;
8642 	case IPV4_VERSION:
8643 		break;
8644 	default:
8645 		goto noticmpv4;
8646 	}
8647 
8648 	/* Skip past the outer IP and ICMP headers */
8649 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8650 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8651 	/*
8652 	 * If we don't have the correct outer IP header length or if the ULP
8653 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8654 	 * send it upstream.
8655 	 */
8656 	if (iph_hdr_length < sizeof (ipha_t) ||
8657 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8658 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8659 		goto noticmpv4;
8660 	}
8661 	ipha = (ipha_t *)&icmph[1];
8662 
8663 	/* Skip past the inner IP and find the ULP header */
8664 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8665 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8666 	/*
8667 	 * If we don't have the correct inner IP header length or if the ULP
8668 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8669 	 * bytes of TCP header, drop it.
8670 	 */
8671 	if (iph_hdr_length < sizeof (ipha_t) ||
8672 	    ipha->ipha_protocol != IPPROTO_TCP ||
8673 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8674 		goto noticmpv4;
8675 	}
8676 
8677 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8678 		if (ipsec_mctl) {
8679 			secure = ipsec_in_is_secure(first_mp);
8680 		} else {
8681 			secure = B_FALSE;
8682 		}
8683 		if (secure) {
8684 			/*
8685 			 * If we are willing to accept this in clear
8686 			 * we don't have to verify policy.
8687 			 */
8688 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8689 				if (!tcp_check_policy(tcp, first_mp,
8690 				    ipha, NULL, secure, ipsec_mctl)) {
8691 					/*
8692 					 * tcp_check_policy called
8693 					 * ip_drop_packet() on failure.
8694 					 */
8695 					return;
8696 				}
8697 			}
8698 		}
8699 	} else if (ipsec_mctl) {
8700 		/*
8701 		 * This is a hard_bound connection. IP has already
8702 		 * verified policy. We don't have to do it again.
8703 		 */
8704 		freeb(first_mp);
8705 		first_mp = mp;
8706 		ipsec_mctl = B_FALSE;
8707 	}
8708 
8709 	seg_ack = ABE32_TO_U32(tcph->th_ack);
8710 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8711 	/*
8712 	 * TCP SHOULD check that the TCP sequence number contained in
8713 	 * payload of the ICMP error message is within the range
8714 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8715 	 */
8716 	if (SEQ_LT(seg_seq, tcp->tcp_suna) ||
8717 		SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8718 		SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8719 		/*
8720 		 * If the ICMP message is bogus, should we kill the
8721 		 * connection, or should we just drop the bogus ICMP
8722 		 * message? It would probably make more sense to just
8723 		 * drop the message so that if this one managed to get
8724 		 * in, the real connection should not suffer.
8725 		 */
8726 		goto noticmpv4;
8727 	}
8728 
8729 	switch (icmph->icmph_type) {
8730 	case ICMP_DEST_UNREACHABLE:
8731 		switch (icmph->icmph_code) {
8732 		case ICMP_FRAGMENTATION_NEEDED:
8733 			/*
8734 			 * Reduce the MSS based on the new MTU.  This will
8735 			 * eliminate any fragmentation locally.
8736 			 * N.B.  There may well be some funny side-effects on
8737 			 * the local send policy and the remote receive policy.
8738 			 * Pending further research, we provide
8739 			 * tcp_ignore_path_mtu just in case this proves
8740 			 * disastrous somewhere.
8741 			 *
8742 			 * After updating the MSS, retransmit part of the
8743 			 * dropped segment using the new mss by calling
8744 			 * tcp_wput_data().  Need to adjust all those
8745 			 * params to make sure tcp_wput_data() work properly.
8746 			 */
8747 			if (tcp_ignore_path_mtu)
8748 				break;
8749 
8750 			/*
8751 			 * Decrease the MSS by time stamp options
8752 			 * IP options and IPSEC options. tcp_hdr_len
8753 			 * includes time stamp option and IP option
8754 			 * length.
8755 			 */
8756 
8757 			new_mss = ntohs(icmph->icmph_du_mtu) -
8758 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8759 
8760 			/*
8761 			 * Only update the MSS if the new one is
8762 			 * smaller than the previous one.  This is
8763 			 * to avoid problems when getting multiple
8764 			 * ICMP errors for the same MTU.
8765 			 */
8766 			if (new_mss >= tcp->tcp_mss)
8767 				break;
8768 
8769 			/*
8770 			 * Stop doing PMTU if new_mss is less than 68
8771 			 * or less than tcp_mss_min.
8772 			 * The value 68 comes from rfc 1191.
8773 			 */
8774 			if (new_mss < MAX(68, tcp_mss_min))
8775 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8776 				    0;
8777 
8778 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8779 			ASSERT(ratio >= 1);
8780 			tcp_mss_set(tcp, new_mss);
8781 
8782 			/*
8783 			 * Make sure we have something to
8784 			 * send.
8785 			 */
8786 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8787 			    (tcp->tcp_xmit_head != NULL)) {
8788 				/*
8789 				 * Shrink tcp_cwnd in
8790 				 * proportion to the old MSS/new MSS.
8791 				 */
8792 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8793 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8794 				    (tcp->tcp_unsent == 0)) {
8795 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8796 				} else {
8797 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8798 				}
8799 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8800 				tcp->tcp_rexmit = B_TRUE;
8801 				tcp->tcp_dupack_cnt = 0;
8802 				tcp->tcp_snd_burst = TCP_CWND_SS;
8803 				tcp_ss_rexmit(tcp);
8804 			}
8805 			break;
8806 		case ICMP_PORT_UNREACHABLE:
8807 		case ICMP_PROTOCOL_UNREACHABLE:
8808 			switch (tcp->tcp_state) {
8809 			case TCPS_SYN_SENT:
8810 			case TCPS_SYN_RCVD:
8811 				/*
8812 				 * ICMP can snipe away incipient
8813 				 * TCP connections as long as
8814 				 * seq number is same as initial
8815 				 * send seq number.
8816 				 */
8817 				if (seg_seq == tcp->tcp_iss) {
8818 					(void) tcp_clean_death(tcp,
8819 					    ECONNREFUSED, 6);
8820 				}
8821 				break;
8822 			}
8823 			break;
8824 		case ICMP_HOST_UNREACHABLE:
8825 		case ICMP_NET_UNREACHABLE:
8826 			/* Record the error in case we finally time out. */
8827 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8828 				tcp->tcp_client_errno = EHOSTUNREACH;
8829 			else
8830 				tcp->tcp_client_errno = ENETUNREACH;
8831 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8832 				if (tcp->tcp_listener != NULL &&
8833 				    tcp->tcp_listener->tcp_syn_defense) {
8834 					/*
8835 					 * Ditch the half-open connection if we
8836 					 * suspect a SYN attack is under way.
8837 					 */
8838 					tcp_ip_ire_mark_advice(tcp);
8839 					(void) tcp_clean_death(tcp,
8840 					    tcp->tcp_client_errno, 7);
8841 				}
8842 			}
8843 			break;
8844 		default:
8845 			break;
8846 		}
8847 		break;
8848 	case ICMP_SOURCE_QUENCH: {
8849 		/*
8850 		 * use a global boolean to control
8851 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8852 		 * The default is false.
8853 		 */
8854 		if (tcp_icmp_source_quench) {
8855 			/*
8856 			 * Reduce the sending rate as if we got a
8857 			 * retransmit timeout
8858 			 */
8859 			uint32_t npkt;
8860 
8861 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8862 			    tcp->tcp_mss;
8863 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8864 			tcp->tcp_cwnd = tcp->tcp_mss;
8865 			tcp->tcp_cwnd_cnt = 0;
8866 		}
8867 		break;
8868 	}
8869 	}
8870 	freemsg(first_mp);
8871 }
8872 
8873 /*
8874  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8875  * error messages passed up by IP.
8876  * Assumes that IP has pulled up all the extension headers as well
8877  * as the ICMPv6 header.
8878  */
8879 static void
8880 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8881 {
8882 	icmp6_t *icmp6;
8883 	ip6_t	*ip6h;
8884 	uint16_t	iph_hdr_length;
8885 	tcpha_t	*tcpha;
8886 	uint8_t	*nexthdrp;
8887 	uint32_t new_mss;
8888 	uint32_t ratio;
8889 	boolean_t secure;
8890 	mblk_t *first_mp = mp;
8891 	size_t mp_size;
8892 	uint32_t seg_ack;
8893 	uint32_t seg_seq;
8894 
8895 	/*
8896 	 * The caller has determined if this is an IPSEC_IN packet and
8897 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8898 	 */
8899 	if (ipsec_mctl)
8900 		mp = mp->b_cont;
8901 
8902 	mp_size = MBLKL(mp);
8903 
8904 	/*
8905 	 * Verify that we have a complete IP header. If not, send it upstream.
8906 	 */
8907 	if (mp_size < sizeof (ip6_t)) {
8908 noticmpv6:
8909 		freemsg(first_mp);
8910 		return;
8911 	}
8912 
8913 	/*
8914 	 * Verify this is an ICMPV6 packet, else send it upstream.
8915 	 */
8916 	ip6h = (ip6_t *)mp->b_rptr;
8917 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8918 		iph_hdr_length = IPV6_HDR_LEN;
8919 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8920 	    &nexthdrp) ||
8921 	    *nexthdrp != IPPROTO_ICMPV6) {
8922 		goto noticmpv6;
8923 	}
8924 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8925 	ip6h = (ip6_t *)&icmp6[1];
8926 	/*
8927 	 * Verify if we have a complete ICMP and inner IP header.
8928 	 */
8929 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8930 		goto noticmpv6;
8931 
8932 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8933 		goto noticmpv6;
8934 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8935 	/*
8936 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8937 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8938 	 * packet.
8939 	 */
8940 	if ((*nexthdrp != IPPROTO_TCP) ||
8941 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8942 		goto noticmpv6;
8943 	}
8944 
8945 	/*
8946 	 * ICMP errors come on the right queue or come on
8947 	 * listener/global queue for detached connections and
8948 	 * get switched to the right queue. If it comes on the
8949 	 * right queue, policy check has already been done by IP
8950 	 * and thus free the first_mp without verifying the policy.
8951 	 * If it has come for a non-hard bound connection, we need
8952 	 * to verify policy as IP may not have done it.
8953 	 */
8954 	if (!tcp->tcp_hard_bound) {
8955 		if (ipsec_mctl) {
8956 			secure = ipsec_in_is_secure(first_mp);
8957 		} else {
8958 			secure = B_FALSE;
8959 		}
8960 		if (secure) {
8961 			/*
8962 			 * If we are willing to accept this in clear
8963 			 * we don't have to verify policy.
8964 			 */
8965 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8966 				if (!tcp_check_policy(tcp, first_mp,
8967 				    NULL, ip6h, secure, ipsec_mctl)) {
8968 					/*
8969 					 * tcp_check_policy called
8970 					 * ip_drop_packet() on failure.
8971 					 */
8972 					return;
8973 				}
8974 			}
8975 		}
8976 	} else if (ipsec_mctl) {
8977 		/*
8978 		 * This is a hard_bound connection. IP has already
8979 		 * verified policy. We don't have to do it again.
8980 		 */
8981 		freeb(first_mp);
8982 		first_mp = mp;
8983 		ipsec_mctl = B_FALSE;
8984 	}
8985 
8986 	seg_ack = ntohl(tcpha->tha_ack);
8987 	seg_seq = ntohl(tcpha->tha_seq);
8988 	/*
8989 	 * TCP SHOULD check that the TCP sequence number contained in
8990 	 * payload of the ICMP error message is within the range
8991 	 * SND.UNA <= SEG.SEQ < SND.NXT. and also SEG.ACK <= RECV.NXT
8992 	 */
8993 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt) ||
8994 	    SEQ_GT(seg_ack, tcp->tcp_rnxt)) {
8995 		/*
8996 		 * If the ICMP message is bogus, should we kill the
8997 		 * connection, or should we just drop the bogus ICMP
8998 		 * message? It would probably make more sense to just
8999 		 * drop the message so that if this one managed to get
9000 		 * in, the real connection should not suffer.
9001 		 */
9002 		goto noticmpv6;
9003 	}
9004 
9005 	switch (icmp6->icmp6_type) {
9006 	case ICMP6_PACKET_TOO_BIG:
9007 		/*
9008 		 * Reduce the MSS based on the new MTU.  This will
9009 		 * eliminate any fragmentation locally.
9010 		 * N.B.  There may well be some funny side-effects on
9011 		 * the local send policy and the remote receive policy.
9012 		 * Pending further research, we provide
9013 		 * tcp_ignore_path_mtu just in case this proves
9014 		 * disastrous somewhere.
9015 		 *
9016 		 * After updating the MSS, retransmit part of the
9017 		 * dropped segment using the new mss by calling
9018 		 * tcp_wput_data().  Need to adjust all those
9019 		 * params to make sure tcp_wput_data() work properly.
9020 		 */
9021 		if (tcp_ignore_path_mtu)
9022 			break;
9023 
9024 		/*
9025 		 * Decrease the MSS by time stamp options
9026 		 * IP options and IPSEC options. tcp_hdr_len
9027 		 * includes time stamp option and IP option
9028 		 * length.
9029 		 */
9030 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
9031 			    tcp->tcp_ipsec_overhead;
9032 
9033 		/*
9034 		 * Only update the MSS if the new one is
9035 		 * smaller than the previous one.  This is
9036 		 * to avoid problems when getting multiple
9037 		 * ICMP errors for the same MTU.
9038 		 */
9039 		if (new_mss >= tcp->tcp_mss)
9040 			break;
9041 
9042 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
9043 		ASSERT(ratio >= 1);
9044 		tcp_mss_set(tcp, new_mss);
9045 
9046 		/*
9047 		 * Make sure we have something to
9048 		 * send.
9049 		 */
9050 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
9051 		    (tcp->tcp_xmit_head != NULL)) {
9052 			/*
9053 			 * Shrink tcp_cwnd in
9054 			 * proportion to the old MSS/new MSS.
9055 			 */
9056 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
9057 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
9058 			    (tcp->tcp_unsent == 0)) {
9059 				tcp->tcp_rexmit_max = tcp->tcp_fss;
9060 			} else {
9061 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
9062 			}
9063 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
9064 			tcp->tcp_rexmit = B_TRUE;
9065 			tcp->tcp_dupack_cnt = 0;
9066 			tcp->tcp_snd_burst = TCP_CWND_SS;
9067 			tcp_ss_rexmit(tcp);
9068 		}
9069 		break;
9070 
9071 	case ICMP6_DST_UNREACH:
9072 		switch (icmp6->icmp6_code) {
9073 		case ICMP6_DST_UNREACH_NOPORT:
9074 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
9075 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
9076 			    (tcpha->tha_seq == tcp->tcp_iss)) {
9077 				(void) tcp_clean_death(tcp,
9078 				    ECONNREFUSED, 8);
9079 			}
9080 			break;
9081 
9082 		case ICMP6_DST_UNREACH_ADMIN:
9083 		case ICMP6_DST_UNREACH_NOROUTE:
9084 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
9085 		case ICMP6_DST_UNREACH_ADDR:
9086 			/* Record the error in case we finally time out. */
9087 			tcp->tcp_client_errno = EHOSTUNREACH;
9088 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
9089 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
9090 			    (tcpha->tha_seq == tcp->tcp_iss)) {
9091 				if (tcp->tcp_listener != NULL &&
9092 				    tcp->tcp_listener->tcp_syn_defense) {
9093 					/*
9094 					 * Ditch the half-open connection if we
9095 					 * suspect a SYN attack is under way.
9096 					 */
9097 					tcp_ip_ire_mark_advice(tcp);
9098 					(void) tcp_clean_death(tcp,
9099 					    tcp->tcp_client_errno, 9);
9100 				}
9101 			}
9102 
9103 
9104 			break;
9105 		default:
9106 			break;
9107 		}
9108 		break;
9109 
9110 	case ICMP6_PARAM_PROB:
9111 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
9112 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
9113 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
9114 		    (uchar_t *)nexthdrp) {
9115 			if (tcp->tcp_state == TCPS_SYN_SENT ||
9116 			    tcp->tcp_state == TCPS_SYN_RCVD) {
9117 				(void) tcp_clean_death(tcp,
9118 				    ECONNREFUSED, 10);
9119 			}
9120 			break;
9121 		}
9122 		break;
9123 
9124 	case ICMP6_TIME_EXCEEDED:
9125 	default:
9126 		break;
9127 	}
9128 	freemsg(first_mp);
9129 }
9130 
9131 /*
9132  * IP recognizes seven kinds of bind requests:
9133  *
9134  * - A zero-length address binds only to the protocol number.
9135  *
9136  * - A 4-byte address is treated as a request to
9137  * validate that the address is a valid local IPv4
9138  * address, appropriate for an application to bind to.
9139  * IP does the verification, but does not make any note
9140  * of the address at this time.
9141  *
9142  * - A 16-byte address contains is treated as a request
9143  * to validate a local IPv6 address, as the 4-byte
9144  * address case above.
9145  *
9146  * - A 16-byte sockaddr_in to validate the local IPv4 address and also
9147  * use it for the inbound fanout of packets.
9148  *
9149  * - A 24-byte sockaddr_in6 to validate the local IPv6 address and also
9150  * use it for the inbound fanout of packets.
9151  *
9152  * - A 12-byte address (ipa_conn_t) containing complete IPv4 fanout
9153  * information consisting of local and remote addresses
9154  * and ports.  In this case, the addresses are both
9155  * validated as appropriate for this operation, and, if
9156  * so, the information is retained for use in the
9157  * inbound fanout.
9158  *
9159  * - A 36-byte address address (ipa6_conn_t) containing complete IPv6
9160  * fanout information, like the 12-byte case above.
9161  *
9162  * IP will also fill in the IRE request mblk with information
9163  * regarding our peer.  In all cases, we notify IP of our protocol
9164  * type by appending a single protocol byte to the bind request.
9165  */
9166 static mblk_t *
9167 tcp_ip_bind_mp(tcp_t *tcp, t_scalar_t bind_prim, t_scalar_t addr_length)
9168 {
9169 	char	*cp;
9170 	mblk_t	*mp;
9171 	struct T_bind_req *tbr;
9172 	ipa_conn_t	*ac;
9173 	ipa6_conn_t	*ac6;
9174 	sin_t		*sin;
9175 	sin6_t		*sin6;
9176 
9177 	ASSERT(bind_prim == O_T_BIND_REQ || bind_prim == T_BIND_REQ);
9178 	ASSERT((tcp->tcp_family == AF_INET &&
9179 	    tcp->tcp_ipversion == IPV4_VERSION) ||
9180 	    (tcp->tcp_family == AF_INET6 &&
9181 	    (tcp->tcp_ipversion == IPV4_VERSION ||
9182 	    tcp->tcp_ipversion == IPV6_VERSION)));
9183 
9184 	mp = allocb(sizeof (*tbr) + addr_length + 1, BPRI_HI);
9185 	if (!mp)
9186 		return (mp);
9187 	mp->b_datap->db_type = M_PROTO;
9188 	tbr = (struct T_bind_req *)mp->b_rptr;
9189 	tbr->PRIM_type = bind_prim;
9190 	tbr->ADDR_offset = sizeof (*tbr);
9191 	tbr->CONIND_number = 0;
9192 	tbr->ADDR_length = addr_length;
9193 	cp = (char *)&tbr[1];
9194 	switch (addr_length) {
9195 	case sizeof (ipa_conn_t):
9196 		ASSERT(tcp->tcp_family == AF_INET);
9197 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9198 
9199 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9200 		if (mp->b_cont == NULL) {
9201 			freemsg(mp);
9202 			return (NULL);
9203 		}
9204 		mp->b_cont->b_wptr += sizeof (ire_t);
9205 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9206 
9207 		/* cp known to be 32 bit aligned */
9208 		ac = (ipa_conn_t *)cp;
9209 		ac->ac_laddr = tcp->tcp_ipha->ipha_src;
9210 		ac->ac_faddr = tcp->tcp_remote;
9211 		ac->ac_fport = tcp->tcp_fport;
9212 		ac->ac_lport = tcp->tcp_lport;
9213 		tcp->tcp_hard_binding = 1;
9214 		break;
9215 
9216 	case sizeof (ipa6_conn_t):
9217 		ASSERT(tcp->tcp_family == AF_INET6);
9218 
9219 		mp->b_cont = allocb(sizeof (ire_t), BPRI_HI);
9220 		if (mp->b_cont == NULL) {
9221 			freemsg(mp);
9222 			return (NULL);
9223 		}
9224 		mp->b_cont->b_wptr += sizeof (ire_t);
9225 		mp->b_cont->b_datap->db_type = IRE_DB_REQ_TYPE;
9226 
9227 		/* cp known to be 32 bit aligned */
9228 		ac6 = (ipa6_conn_t *)cp;
9229 		if (tcp->tcp_ipversion == IPV4_VERSION) {
9230 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
9231 			    &ac6->ac6_laddr);
9232 		} else {
9233 			ac6->ac6_laddr = tcp->tcp_ip6h->ip6_src;
9234 		}
9235 		ac6->ac6_faddr = tcp->tcp_remote_v6;
9236 		ac6->ac6_fport = tcp->tcp_fport;
9237 		ac6->ac6_lport = tcp->tcp_lport;
9238 		tcp->tcp_hard_binding = 1;
9239 		break;
9240 
9241 	case sizeof (sin_t):
9242 		/*
9243 		 * NOTE: IPV6_ADDR_LEN also has same size.
9244 		 * Use family to discriminate.
9245 		 */
9246 		if (tcp->tcp_family == AF_INET) {
9247 			sin = (sin_t *)cp;
9248 
9249 			*sin = sin_null;
9250 			sin->sin_family = AF_INET;
9251 			sin->sin_addr.s_addr = tcp->tcp_bound_source;
9252 			sin->sin_port = tcp->tcp_lport;
9253 			break;
9254 		} else {
9255 			*(in6_addr_t *)cp = tcp->tcp_bound_source_v6;
9256 		}
9257 		break;
9258 
9259 	case sizeof (sin6_t):
9260 		ASSERT(tcp->tcp_family == AF_INET6);
9261 		sin6 = (sin6_t *)cp;
9262 
9263 		*sin6 = sin6_null;
9264 		sin6->sin6_family = AF_INET6;
9265 		sin6->sin6_addr = tcp->tcp_bound_source_v6;
9266 		sin6->sin6_port = tcp->tcp_lport;
9267 		break;
9268 
9269 	case IP_ADDR_LEN:
9270 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
9271 		*(uint32_t *)cp = tcp->tcp_ipha->ipha_src;
9272 		break;
9273 
9274 	}
9275 	/* Add protocol number to end */
9276 	cp[addr_length] = (char)IPPROTO_TCP;
9277 	mp->b_wptr = (uchar_t *)&cp[addr_length + 1];
9278 	return (mp);
9279 }
9280 
9281 /*
9282  * Notify IP that we are having trouble with this connection.  IP should
9283  * blow the IRE away and start over.
9284  */
9285 static void
9286 tcp_ip_notify(tcp_t *tcp)
9287 {
9288 	struct iocblk	*iocp;
9289 	ipid_t	*ipid;
9290 	mblk_t	*mp;
9291 
9292 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
9293 	if (tcp->tcp_ipversion == IPV6_VERSION)
9294 		return;
9295 
9296 	mp = mkiocb(IP_IOCTL);
9297 	if (mp == NULL)
9298 		return;
9299 
9300 	iocp = (struct iocblk *)mp->b_rptr;
9301 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
9302 
9303 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
9304 	if (!mp->b_cont) {
9305 		freeb(mp);
9306 		return;
9307 	}
9308 
9309 	ipid = (ipid_t *)mp->b_cont->b_rptr;
9310 	mp->b_cont->b_wptr += iocp->ioc_count;
9311 	bzero(ipid, sizeof (*ipid));
9312 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
9313 	ipid->ipid_ire_type = IRE_CACHE;
9314 	ipid->ipid_addr_offset = sizeof (ipid_t);
9315 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
9316 	/*
9317 	 * Note: in the case of source routing we want to blow away the
9318 	 * route to the first source route hop.
9319 	 */
9320 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
9321 	    sizeof (tcp->tcp_ipha->ipha_dst));
9322 
9323 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
9324 }
9325 
9326 /* Unlink and return any mblk that looks like it contains an ire */
9327 static mblk_t *
9328 tcp_ire_mp(mblk_t *mp)
9329 {
9330 	mblk_t	*prev_mp;
9331 
9332 	for (;;) {
9333 		prev_mp = mp;
9334 		mp = mp->b_cont;
9335 		if (mp == NULL)
9336 			break;
9337 		switch (DB_TYPE(mp)) {
9338 		case IRE_DB_TYPE:
9339 		case IRE_DB_REQ_TYPE:
9340 			if (prev_mp != NULL)
9341 				prev_mp->b_cont = mp->b_cont;
9342 			mp->b_cont = NULL;
9343 			return (mp);
9344 		default:
9345 			break;
9346 		}
9347 	}
9348 	return (mp);
9349 }
9350 
9351 /*
9352  * Timer callback routine for keepalive probe.  We do a fake resend of
9353  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
9354  * check to see if we have heard anything from the other end for the last
9355  * RTO period.  If we have, set the timer to expire for another
9356  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
9357  * RTO << 1 and check again when it expires.  Keep exponentially increasing
9358  * the timeout if we have not heard from the other side.  If for more than
9359  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
9360  * kill the connection unless the keepalive abort threshold is 0.  In
9361  * that case, we will probe "forever."
9362  */
9363 static void
9364 tcp_keepalive_killer(void *arg)
9365 {
9366 	mblk_t	*mp;
9367 	conn_t	*connp = (conn_t *)arg;
9368 	tcp_t  	*tcp = connp->conn_tcp;
9369 	int32_t	firetime;
9370 	int32_t	idletime;
9371 	int32_t	ka_intrvl;
9372 
9373 	tcp->tcp_ka_tid = 0;
9374 
9375 	if (tcp->tcp_fused)
9376 		return;
9377 
9378 	BUMP_MIB(&tcp_mib, tcpTimKeepalive);
9379 	ka_intrvl = tcp->tcp_ka_interval;
9380 
9381 	/*
9382 	 * Keepalive probe should only be sent if the application has not
9383 	 * done a close on the connection.
9384 	 */
9385 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
9386 		return;
9387 	}
9388 	/* Timer fired too early, restart it. */
9389 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
9390 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9391 		    MSEC_TO_TICK(ka_intrvl));
9392 		return;
9393 	}
9394 
9395 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
9396 	/*
9397 	 * If we have not heard from the other side for a long
9398 	 * time, kill the connection unless the keepalive abort
9399 	 * threshold is 0.  In that case, we will probe "forever."
9400 	 */
9401 	if (tcp->tcp_ka_abort_thres != 0 &&
9402 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
9403 		BUMP_MIB(&tcp_mib, tcpTimKeepaliveDrop);
9404 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
9405 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
9406 		return;
9407 	}
9408 
9409 	if (tcp->tcp_snxt == tcp->tcp_suna &&
9410 	    idletime >= ka_intrvl) {
9411 		/* Fake resend of last ACKed byte. */
9412 		mblk_t	*mp1 = allocb(1, BPRI_LO);
9413 
9414 		if (mp1 != NULL) {
9415 			*mp1->b_wptr++ = '\0';
9416 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
9417 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
9418 			freeb(mp1);
9419 			/*
9420 			 * if allocation failed, fall through to start the
9421 			 * timer back.
9422 			 */
9423 			if (mp != NULL) {
9424 				TCP_RECORD_TRACE(tcp, mp,
9425 				    TCP_TRACE_SEND_PKT);
9426 				tcp_send_data(tcp, tcp->tcp_wq, mp);
9427 				BUMP_MIB(&tcp_mib, tcpTimKeepaliveProbe);
9428 				if (tcp->tcp_ka_last_intrvl != 0) {
9429 					/*
9430 					 * We should probe again at least
9431 					 * in ka_intrvl, but not more than
9432 					 * tcp_rexmit_interval_max.
9433 					 */
9434 					firetime = MIN(ka_intrvl - 1,
9435 					    tcp->tcp_ka_last_intrvl << 1);
9436 					if (firetime > tcp_rexmit_interval_max)
9437 						firetime =
9438 						    tcp_rexmit_interval_max;
9439 				} else {
9440 					firetime = tcp->tcp_rto;
9441 				}
9442 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9443 				    tcp_keepalive_killer,
9444 				    MSEC_TO_TICK(firetime));
9445 				tcp->tcp_ka_last_intrvl = firetime;
9446 				return;
9447 			}
9448 		}
9449 	} else {
9450 		tcp->tcp_ka_last_intrvl = 0;
9451 	}
9452 
9453 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
9454 	if ((firetime = ka_intrvl - idletime) < 0) {
9455 		firetime = ka_intrvl;
9456 	}
9457 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
9458 	    MSEC_TO_TICK(firetime));
9459 }
9460 
9461 static int
9462 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
9463 {
9464 	queue_t	*q = tcp->tcp_rq;
9465 	int32_t	mss = tcp->tcp_mss;
9466 	int	maxpsz;
9467 
9468 	if (TCP_IS_DETACHED(tcp))
9469 		return (mss);
9470 
9471 	if (tcp->tcp_mdt || tcp->tcp_maxpsz == 0) {
9472 		/*
9473 		 * Set the sd_qn_maxpsz according to the socket send buffer
9474 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
9475 		 * instruct the stream head to copyin user data into contiguous
9476 		 * kernel-allocated buffers without breaking it up into smaller
9477 		 * chunks.  We round up the buffer size to the nearest SMSS.
9478 		 */
9479 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
9480 		mss = INFPSZ;
9481 	} else {
9482 		/*
9483 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
9484 		 * (and a multiple of the mss).  This instructs the stream
9485 		 * head to break down larger than SMSS writes into SMSS-
9486 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
9487 		 */
9488 		maxpsz = tcp->tcp_maxpsz * mss;
9489 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
9490 			maxpsz = tcp->tcp_xmit_hiwater/2;
9491 			/* Round up to nearest mss */
9492 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
9493 		}
9494 	}
9495 	(void) setmaxps(q, maxpsz);
9496 	tcp->tcp_wq->q_maxpsz = maxpsz;
9497 
9498 	if (set_maxblk)
9499 		(void) mi_set_sth_maxblk(q, mss);
9500 
9501 	if (tcp->tcp_loopback)
9502 		(void) mi_set_sth_copyopt(tcp->tcp_rq, COPYCACHED);
9503 
9504 	return (mss);
9505 }
9506 
9507 /*
9508  * Extract option values from a tcp header.  We put any found values into the
9509  * tcpopt struct and return a bitmask saying which options were found.
9510  */
9511 static int
9512 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
9513 {
9514 	uchar_t		*endp;
9515 	int		len;
9516 	uint32_t	mss;
9517 	uchar_t		*up = (uchar_t *)tcph;
9518 	int		found = 0;
9519 	int32_t		sack_len;
9520 	tcp_seq		sack_begin, sack_end;
9521 	tcp_t		*tcp;
9522 
9523 	endp = up + TCP_HDR_LENGTH(tcph);
9524 	up += TCP_MIN_HEADER_LENGTH;
9525 	while (up < endp) {
9526 		len = endp - up;
9527 		switch (*up) {
9528 		case TCPOPT_EOL:
9529 			break;
9530 
9531 		case TCPOPT_NOP:
9532 			up++;
9533 			continue;
9534 
9535 		case TCPOPT_MAXSEG:
9536 			if (len < TCPOPT_MAXSEG_LEN ||
9537 			    up[1] != TCPOPT_MAXSEG_LEN)
9538 				break;
9539 
9540 			mss = BE16_TO_U16(up+2);
9541 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
9542 			tcpopt->tcp_opt_mss = mss;
9543 			found |= TCP_OPT_MSS_PRESENT;
9544 
9545 			up += TCPOPT_MAXSEG_LEN;
9546 			continue;
9547 
9548 		case TCPOPT_WSCALE:
9549 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
9550 				break;
9551 
9552 			if (up[2] > TCP_MAX_WINSHIFT)
9553 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
9554 			else
9555 				tcpopt->tcp_opt_wscale = up[2];
9556 			found |= TCP_OPT_WSCALE_PRESENT;
9557 
9558 			up += TCPOPT_WS_LEN;
9559 			continue;
9560 
9561 		case TCPOPT_SACK_PERMITTED:
9562 			if (len < TCPOPT_SACK_OK_LEN ||
9563 			    up[1] != TCPOPT_SACK_OK_LEN)
9564 				break;
9565 			found |= TCP_OPT_SACK_OK_PRESENT;
9566 			up += TCPOPT_SACK_OK_LEN;
9567 			continue;
9568 
9569 		case TCPOPT_SACK:
9570 			if (len <= 2 || up[1] <= 2 || len < up[1])
9571 				break;
9572 
9573 			/* If TCP is not interested in SACK blks... */
9574 			if ((tcp = tcpopt->tcp) == NULL) {
9575 				up += up[1];
9576 				continue;
9577 			}
9578 			sack_len = up[1] - TCPOPT_HEADER_LEN;
9579 			up += TCPOPT_HEADER_LEN;
9580 
9581 			/*
9582 			 * If the list is empty, allocate one and assume
9583 			 * nothing is sack'ed.
9584 			 */
9585 			ASSERT(tcp->tcp_sack_info != NULL);
9586 			if (tcp->tcp_notsack_list == NULL) {
9587 				tcp_notsack_update(&(tcp->tcp_notsack_list),
9588 				    tcp->tcp_suna, tcp->tcp_snxt,
9589 				    &(tcp->tcp_num_notsack_blk),
9590 				    &(tcp->tcp_cnt_notsack_list));
9591 
9592 				/*
9593 				 * Make sure tcp_notsack_list is not NULL.
9594 				 * This happens when kmem_alloc(KM_NOSLEEP)
9595 				 * returns NULL.
9596 				 */
9597 				if (tcp->tcp_notsack_list == NULL) {
9598 					up += sack_len;
9599 					continue;
9600 				}
9601 				tcp->tcp_fack = tcp->tcp_suna;
9602 			}
9603 
9604 			while (sack_len > 0) {
9605 				if (up + 8 > endp) {
9606 					up = endp;
9607 					break;
9608 				}
9609 				sack_begin = BE32_TO_U32(up);
9610 				up += 4;
9611 				sack_end = BE32_TO_U32(up);
9612 				up += 4;
9613 				sack_len -= 8;
9614 				/*
9615 				 * Bounds checking.  Make sure the SACK
9616 				 * info is within tcp_suna and tcp_snxt.
9617 				 * If this SACK blk is out of bound, ignore
9618 				 * it but continue to parse the following
9619 				 * blks.
9620 				 */
9621 				if (SEQ_LEQ(sack_end, sack_begin) ||
9622 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
9623 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
9624 					continue;
9625 				}
9626 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
9627 				    sack_begin, sack_end,
9628 				    &(tcp->tcp_num_notsack_blk),
9629 				    &(tcp->tcp_cnt_notsack_list));
9630 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
9631 					tcp->tcp_fack = sack_end;
9632 				}
9633 			}
9634 			found |= TCP_OPT_SACK_PRESENT;
9635 			continue;
9636 
9637 		case TCPOPT_TSTAMP:
9638 			if (len < TCPOPT_TSTAMP_LEN ||
9639 			    up[1] != TCPOPT_TSTAMP_LEN)
9640 				break;
9641 
9642 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
9643 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
9644 
9645 			found |= TCP_OPT_TSTAMP_PRESENT;
9646 
9647 			up += TCPOPT_TSTAMP_LEN;
9648 			continue;
9649 
9650 		default:
9651 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9652 				break;
9653 			up += up[1];
9654 			continue;
9655 		}
9656 		break;
9657 	}
9658 	return (found);
9659 }
9660 
9661 /*
9662  * Set the mss associated with a particular tcp based on its current value,
9663  * and a new one passed in. Observe minimums and maximums, and reset
9664  * other state variables that we want to view as multiples of mss.
9665  *
9666  * This function is called in various places mainly because
9667  * 1) Various stuffs, tcp_mss, tcp_cwnd, ... need to be adjusted when the
9668  *    other side's SYN/SYN-ACK packet arrives.
9669  * 2) PMTUd may get us a new MSS.
9670  * 3) If the other side stops sending us timestamp option, we need to
9671  *    increase the MSS size to use the extra bytes available.
9672  */
9673 static void
9674 tcp_mss_set(tcp_t *tcp, uint32_t mss)
9675 {
9676 	uint32_t	mss_max;
9677 
9678 	if (tcp->tcp_ipversion == IPV4_VERSION)
9679 		mss_max = tcp_mss_max_ipv4;
9680 	else
9681 		mss_max = tcp_mss_max_ipv6;
9682 
9683 	if (mss < tcp_mss_min)
9684 		mss = tcp_mss_min;
9685 	if (mss > mss_max)
9686 		mss = mss_max;
9687 	/*
9688 	 * Unless naglim has been set by our client to
9689 	 * a non-mss value, force naglim to track mss.
9690 	 * This can help to aggregate small writes.
9691 	 */
9692 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9693 		tcp->tcp_naglim = mss;
9694 	/*
9695 	 * TCP should be able to buffer at least 4 MSS data for obvious
9696 	 * performance reason.
9697 	 */
9698 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9699 		tcp->tcp_xmit_hiwater = mss << 2;
9700 
9701 	/*
9702 	 * Check if we need to apply the tcp_init_cwnd here.  If
9703 	 * it is set and the MSS gets bigger (should not happen
9704 	 * normally), we need to adjust the resulting tcp_cwnd properly.
9705 	 * The new tcp_cwnd should not get bigger.
9706 	 */
9707 	if (tcp->tcp_init_cwnd == 0) {
9708 		tcp->tcp_cwnd = MIN(tcp_slow_start_initial * mss,
9709 		    MIN(4 * mss, MAX(2 * mss, 4380 / mss * mss)));
9710 	} else {
9711 		if (tcp->tcp_mss < mss) {
9712 			tcp->tcp_cwnd = MAX(1,
9713 			    (tcp->tcp_init_cwnd * tcp->tcp_mss / mss)) * mss;
9714 		} else {
9715 			tcp->tcp_cwnd = tcp->tcp_init_cwnd * mss;
9716 		}
9717 	}
9718 	tcp->tcp_mss = mss;
9719 	tcp->tcp_cwnd_cnt = 0;
9720 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9721 }
9722 
9723 static int
9724 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9725 {
9726 	tcp_t		*tcp = NULL;
9727 	conn_t		*connp;
9728 	int		err;
9729 	dev_t		conn_dev;
9730 	zoneid_t	zoneid = getzoneid();
9731 
9732 	if (q->q_ptr != NULL)
9733 		return (0);
9734 
9735 	if (sflag == MODOPEN) {
9736 		/*
9737 		 * This is a special case. The purpose of a modopen
9738 		 * is to allow just the T_SVR4_OPTMGMT_REQ to pass
9739 		 * through for MIB browsers. Everything else is failed.
9740 		 */
9741 		connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9742 
9743 		if (connp == NULL)
9744 			return (ENOMEM);
9745 
9746 		connp->conn_flags |= IPCL_TCPMOD;
9747 		connp->conn_cred = credp;
9748 		connp->conn_zoneid = zoneid;
9749 		q->q_ptr = WR(q)->q_ptr = connp;
9750 		crhold(credp);
9751 		q->q_qinfo = &tcp_mod_rinit;
9752 		WR(q)->q_qinfo = &tcp_mod_winit;
9753 		qprocson(q);
9754 		return (0);
9755 	}
9756 
9757 	if ((conn_dev = inet_minor_alloc(ip_minor_arena)) == 0)
9758 		return (EBUSY);
9759 
9760 	*devp = makedevice(getemajor(*devp), (minor_t)conn_dev);
9761 
9762 	if (flag & SO_ACCEPTOR) {
9763 		q->q_qinfo = &tcp_acceptor_rinit;
9764 		q->q_ptr = (void *)conn_dev;
9765 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9766 		WR(q)->q_ptr = (void *)conn_dev;
9767 		qprocson(q);
9768 		return (0);
9769 	}
9770 
9771 	connp = (conn_t *)tcp_get_conn(IP_SQUEUE_GET(lbolt));
9772 	if (connp == NULL) {
9773 		inet_minor_free(ip_minor_arena, conn_dev);
9774 		q->q_ptr = NULL;
9775 		return (ENOSR);
9776 	}
9777 	connp->conn_sqp = IP_SQUEUE_GET(lbolt);
9778 	tcp = connp->conn_tcp;
9779 
9780 	q->q_ptr = WR(q)->q_ptr = connp;
9781 	if (getmajor(*devp) == TCP6_MAJ) {
9782 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9783 		connp->conn_send = ip_output_v6;
9784 		connp->conn_af_isv6 = B_TRUE;
9785 		connp->conn_pkt_isv6 = B_TRUE;
9786 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9787 		tcp->tcp_ipversion = IPV6_VERSION;
9788 		tcp->tcp_family = AF_INET6;
9789 		tcp->tcp_mss = tcp_mss_def_ipv6;
9790 	} else {
9791 		connp->conn_flags |= IPCL_TCP4;
9792 		connp->conn_send = ip_output;
9793 		connp->conn_af_isv6 = B_FALSE;
9794 		connp->conn_pkt_isv6 = B_FALSE;
9795 		tcp->tcp_ipversion = IPV4_VERSION;
9796 		tcp->tcp_family = AF_INET;
9797 		tcp->tcp_mss = tcp_mss_def_ipv4;
9798 	}
9799 
9800 	/*
9801 	 * TCP keeps a copy of cred for cache locality reasons but
9802 	 * we put a reference only once. If connp->conn_cred
9803 	 * becomes invalid, tcp_cred should also be set to NULL.
9804 	 */
9805 	tcp->tcp_cred = connp->conn_cred = credp;
9806 	crhold(connp->conn_cred);
9807 	tcp->tcp_cpid = curproc->p_pid;
9808 	connp->conn_zoneid = zoneid;
9809 
9810 	connp->conn_dev = conn_dev;
9811 
9812 	ASSERT(q->q_qinfo == &tcp_rinit);
9813 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9814 
9815 	if (flag & SO_SOCKSTR) {
9816 		/*
9817 		 * No need to insert a socket in tcp acceptor hash.
9818 		 * If it was a socket acceptor stream, we dealt with
9819 		 * it above. A socket listener can never accept a
9820 		 * connection and doesn't need acceptor_id.
9821 		 */
9822 		connp->conn_flags |= IPCL_SOCKET;
9823 		tcp->tcp_issocket = 1;
9824 
9825 		WR(q)->q_qinfo = &tcp_sock_winit;
9826 	} else {
9827 #ifdef	_ILP32
9828 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9829 #else
9830 		tcp->tcp_acceptor_id = conn_dev;
9831 #endif	/* _ILP32 */
9832 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9833 	}
9834 
9835 	if (tcp_trace)
9836 		tcp->tcp_tracebuf = kmem_zalloc(sizeof (tcptrch_t), KM_SLEEP);
9837 
9838 	err = tcp_init(tcp, q);
9839 	if (err != 0) {
9840 		inet_minor_free(ip_minor_arena, connp->conn_dev);
9841 		tcp_acceptor_hash_remove(tcp);
9842 		CONN_DEC_REF(connp);
9843 		q->q_ptr = WR(q)->q_ptr = NULL;
9844 		return (err);
9845 	}
9846 
9847 	RD(q)->q_hiwat = tcp_recv_hiwat;
9848 	tcp->tcp_rwnd = tcp_recv_hiwat;
9849 
9850 	/* Non-zero default values */
9851 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9852 	/*
9853 	 * Put the ref for TCP. Ref for IP was already put
9854 	 * by ipcl_conn_create. Also Make the conn_t globally
9855 	 * visible to walkers
9856 	 */
9857 	mutex_enter(&connp->conn_lock);
9858 	CONN_INC_REF_LOCKED(connp);
9859 	ASSERT(connp->conn_ref == 2);
9860 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9861 	mutex_exit(&connp->conn_lock);
9862 
9863 	qprocson(q);
9864 	return (0);
9865 }
9866 
9867 /*
9868  * Some TCP options can be "set" by requesting them in the option
9869  * buffer. This is needed for XTI feature test though we do not
9870  * allow it in general. We interpret that this mechanism is more
9871  * applicable to OSI protocols and need not be allowed in general.
9872  * This routine filters out options for which it is not allowed (most)
9873  * and lets through those (few) for which it is. [ The XTI interface
9874  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9875  * ever implemented will have to be allowed here ].
9876  */
9877 static boolean_t
9878 tcp_allow_connopt_set(int level, int name)
9879 {
9880 
9881 	switch (level) {
9882 	case IPPROTO_TCP:
9883 		switch (name) {
9884 		case TCP_NODELAY:
9885 			return (B_TRUE);
9886 		default:
9887 			return (B_FALSE);
9888 		}
9889 		/*NOTREACHED*/
9890 	default:
9891 		return (B_FALSE);
9892 	}
9893 	/*NOTREACHED*/
9894 }
9895 
9896 /*
9897  * This routine gets default values of certain options whose default
9898  * values are maintained by protocol specific code
9899  */
9900 /* ARGSUSED */
9901 int
9902 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9903 {
9904 	int32_t	*i1 = (int32_t *)ptr;
9905 
9906 	switch (level) {
9907 	case IPPROTO_TCP:
9908 		switch (name) {
9909 		case TCP_NOTIFY_THRESHOLD:
9910 			*i1 = tcp_ip_notify_interval;
9911 			break;
9912 		case TCP_ABORT_THRESHOLD:
9913 			*i1 = tcp_ip_abort_interval;
9914 			break;
9915 		case TCP_CONN_NOTIFY_THRESHOLD:
9916 			*i1 = tcp_ip_notify_cinterval;
9917 			break;
9918 		case TCP_CONN_ABORT_THRESHOLD:
9919 			*i1 = tcp_ip_abort_cinterval;
9920 			break;
9921 		default:
9922 			return (-1);
9923 		}
9924 		break;
9925 	case IPPROTO_IP:
9926 		switch (name) {
9927 		case IP_TTL:
9928 			*i1 = tcp_ipv4_ttl;
9929 			break;
9930 		default:
9931 			return (-1);
9932 		}
9933 		break;
9934 	case IPPROTO_IPV6:
9935 		switch (name) {
9936 		case IPV6_UNICAST_HOPS:
9937 			*i1 = tcp_ipv6_hoplimit;
9938 			break;
9939 		default:
9940 			return (-1);
9941 		}
9942 		break;
9943 	default:
9944 		return (-1);
9945 	}
9946 	return (sizeof (int));
9947 }
9948 
9949 
9950 /*
9951  * TCP routine to get the values of options.
9952  */
9953 int
9954 tcp_opt_get(queue_t *q, int level, int	name, uchar_t *ptr)
9955 {
9956 	int		*i1 = (int *)ptr;
9957 	conn_t		*connp = Q_TO_CONN(q);
9958 	tcp_t		*tcp = connp->conn_tcp;
9959 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9960 
9961 	switch (level) {
9962 	case SOL_SOCKET:
9963 		switch (name) {
9964 		case SO_LINGER:	{
9965 			struct linger *lgr = (struct linger *)ptr;
9966 
9967 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9968 			lgr->l_linger = tcp->tcp_lingertime;
9969 			}
9970 			return (sizeof (struct linger));
9971 		case SO_DEBUG:
9972 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9973 			break;
9974 		case SO_KEEPALIVE:
9975 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9976 			break;
9977 		case SO_DONTROUTE:
9978 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9979 			break;
9980 		case SO_USELOOPBACK:
9981 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9982 			break;
9983 		case SO_BROADCAST:
9984 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9985 			break;
9986 		case SO_REUSEADDR:
9987 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9988 			break;
9989 		case SO_OOBINLINE:
9990 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9991 			break;
9992 		case SO_DGRAM_ERRIND:
9993 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9994 			break;
9995 		case SO_TYPE:
9996 			*i1 = SOCK_STREAM;
9997 			break;
9998 		case SO_SNDBUF:
9999 			*i1 = tcp->tcp_xmit_hiwater;
10000 			break;
10001 		case SO_RCVBUF:
10002 			*i1 = RD(q)->q_hiwat;
10003 			break;
10004 		case SO_SND_COPYAVOID:
10005 			*i1 = tcp->tcp_snd_zcopy_on ?
10006 			    SO_SND_COPYAVOID : 0;
10007 			break;
10008 		default:
10009 			return (-1);
10010 		}
10011 		break;
10012 	case IPPROTO_TCP:
10013 		switch (name) {
10014 		case TCP_NODELAY:
10015 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
10016 			break;
10017 		case TCP_MAXSEG:
10018 			*i1 = tcp->tcp_mss;
10019 			break;
10020 		case TCP_NOTIFY_THRESHOLD:
10021 			*i1 = (int)tcp->tcp_first_timer_threshold;
10022 			break;
10023 		case TCP_ABORT_THRESHOLD:
10024 			*i1 = tcp->tcp_second_timer_threshold;
10025 			break;
10026 		case TCP_CONN_NOTIFY_THRESHOLD:
10027 			*i1 = tcp->tcp_first_ctimer_threshold;
10028 			break;
10029 		case TCP_CONN_ABORT_THRESHOLD:
10030 			*i1 = tcp->tcp_second_ctimer_threshold;
10031 			break;
10032 		case TCP_RECVDSTADDR:
10033 			*i1 = tcp->tcp_recvdstaddr;
10034 			break;
10035 		case TCP_ANONPRIVBIND:
10036 			*i1 = tcp->tcp_anon_priv_bind;
10037 			break;
10038 		case TCP_EXCLBIND:
10039 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
10040 			break;
10041 		case TCP_INIT_CWND:
10042 			*i1 = tcp->tcp_init_cwnd;
10043 			break;
10044 		case TCP_KEEPALIVE_THRESHOLD:
10045 			*i1 = tcp->tcp_ka_interval;
10046 			break;
10047 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10048 			*i1 = tcp->tcp_ka_abort_thres;
10049 			break;
10050 		case TCP_CORK:
10051 			*i1 = tcp->tcp_cork;
10052 			break;
10053 		default:
10054 			return (-1);
10055 		}
10056 		break;
10057 	case IPPROTO_IP:
10058 		if (tcp->tcp_family != AF_INET)
10059 			return (-1);
10060 		switch (name) {
10061 		case IP_OPTIONS:
10062 		case T_IP_OPTIONS: {
10063 			/*
10064 			 * This is compatible with BSD in that in only return
10065 			 * the reverse source route with the final destination
10066 			 * as the last entry. The first 4 bytes of the option
10067 			 * will contain the final destination.
10068 			 */
10069 			char	*opt_ptr;
10070 			int	opt_len;
10071 			opt_ptr = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
10072 			opt_len = (char *)tcp->tcp_tcph - opt_ptr;
10073 			/* Caller ensures enough space */
10074 			if (opt_len > 0) {
10075 				/*
10076 				 * TODO: Do we have to handle getsockopt on an
10077 				 * initiator as well?
10078 				 */
10079 				return (tcp_opt_get_user(tcp->tcp_ipha, ptr));
10080 			}
10081 			return (0);
10082 			}
10083 		case IP_TOS:
10084 		case T_IP_TOS:
10085 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
10086 			break;
10087 		case IP_TTL:
10088 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
10089 			break;
10090 		default:
10091 			return (-1);
10092 		}
10093 		break;
10094 	case IPPROTO_IPV6:
10095 		/*
10096 		 * IPPROTO_IPV6 options are only supported for sockets
10097 		 * that are using IPv6 on the wire.
10098 		 */
10099 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10100 			return (-1);
10101 		}
10102 		switch (name) {
10103 		case IPV6_UNICAST_HOPS:
10104 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
10105 			break;	/* goto sizeof (int) option return */
10106 		case IPV6_BOUND_IF:
10107 			/* Zero if not set */
10108 			*i1 = tcp->tcp_bound_if;
10109 			break;	/* goto sizeof (int) option return */
10110 		case IPV6_RECVPKTINFO:
10111 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
10112 				*i1 = 1;
10113 			else
10114 				*i1 = 0;
10115 			break;	/* goto sizeof (int) option return */
10116 		case IPV6_RECVTCLASS:
10117 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
10118 				*i1 = 1;
10119 			else
10120 				*i1 = 0;
10121 			break;	/* goto sizeof (int) option return */
10122 		case IPV6_RECVHOPLIMIT:
10123 			if (tcp->tcp_ipv6_recvancillary &
10124 			    TCP_IPV6_RECVHOPLIMIT)
10125 				*i1 = 1;
10126 			else
10127 				*i1 = 0;
10128 			break;	/* goto sizeof (int) option return */
10129 		case IPV6_RECVHOPOPTS:
10130 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
10131 				*i1 = 1;
10132 			else
10133 				*i1 = 0;
10134 			break;	/* goto sizeof (int) option return */
10135 		case IPV6_RECVDSTOPTS:
10136 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
10137 				*i1 = 1;
10138 			else
10139 				*i1 = 0;
10140 			break;	/* goto sizeof (int) option return */
10141 		case _OLD_IPV6_RECVDSTOPTS:
10142 			if (tcp->tcp_ipv6_recvancillary &
10143 			    TCP_OLD_IPV6_RECVDSTOPTS)
10144 				*i1 = 1;
10145 			else
10146 				*i1 = 0;
10147 			break;	/* goto sizeof (int) option return */
10148 		case IPV6_RECVRTHDR:
10149 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
10150 				*i1 = 1;
10151 			else
10152 				*i1 = 0;
10153 			break;	/* goto sizeof (int) option return */
10154 		case IPV6_RECVRTHDRDSTOPTS:
10155 			if (tcp->tcp_ipv6_recvancillary &
10156 			    TCP_IPV6_RECVRTDSTOPTS)
10157 				*i1 = 1;
10158 			else
10159 				*i1 = 0;
10160 			break;	/* goto sizeof (int) option return */
10161 		case IPV6_PKTINFO: {
10162 			/* XXX assumes that caller has room for max size! */
10163 			struct in6_pktinfo *pkti;
10164 
10165 			pkti = (struct in6_pktinfo *)ptr;
10166 			if (ipp->ipp_fields & IPPF_IFINDEX)
10167 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
10168 			else
10169 				pkti->ipi6_ifindex = 0;
10170 			if (ipp->ipp_fields & IPPF_ADDR)
10171 				pkti->ipi6_addr = ipp->ipp_addr;
10172 			else
10173 				pkti->ipi6_addr = ipv6_all_zeros;
10174 			return (sizeof (struct in6_pktinfo));
10175 		}
10176 		case IPV6_HOPLIMIT:
10177 			if (ipp->ipp_fields & IPPF_HOPLIMIT)
10178 				*i1 = ipp->ipp_hoplimit;
10179 			else
10180 				*i1 = -1; /* Not set */
10181 			break;	/* goto sizeof (int) option return */
10182 		case IPV6_TCLASS:
10183 			if (ipp->ipp_fields & IPPF_TCLASS)
10184 				*i1 = ipp->ipp_tclass;
10185 			else
10186 				*i1 = IPV6_FLOW_TCLASS(
10187 				    IPV6_DEFAULT_VERS_AND_FLOW);
10188 			break;	/* goto sizeof (int) option return */
10189 		case IPV6_NEXTHOP: {
10190 			sin6_t *sin6 = (sin6_t *)ptr;
10191 
10192 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
10193 				return (0);
10194 			*sin6 = sin6_null;
10195 			sin6->sin6_family = AF_INET6;
10196 			sin6->sin6_addr = ipp->ipp_nexthop;
10197 			return (sizeof (sin6_t));
10198 		}
10199 		case IPV6_HOPOPTS:
10200 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
10201 				return (0);
10202 			bcopy(ipp->ipp_hopopts, ptr, ipp->ipp_hopoptslen);
10203 			return (ipp->ipp_hopoptslen);
10204 		case IPV6_RTHDRDSTOPTS:
10205 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
10206 				return (0);
10207 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
10208 			return (ipp->ipp_rtdstoptslen);
10209 		case IPV6_RTHDR:
10210 			if (!(ipp->ipp_fields & IPPF_RTHDR))
10211 				return (0);
10212 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
10213 			return (ipp->ipp_rthdrlen);
10214 		case IPV6_DSTOPTS:
10215 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
10216 				return (0);
10217 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
10218 			return (ipp->ipp_dstoptslen);
10219 		case IPV6_SRC_PREFERENCES:
10220 			return (ip6_get_src_preferences(connp,
10221 			    (uint32_t *)ptr));
10222 		case IPV6_PATHMTU: {
10223 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
10224 
10225 			if (tcp->tcp_state < TCPS_ESTABLISHED)
10226 				return (-1);
10227 
10228 			return (ip_fill_mtuinfo(&connp->conn_remv6,
10229 				connp->conn_fport, mtuinfo));
10230 		}
10231 		default:
10232 			return (-1);
10233 		}
10234 		break;
10235 	default:
10236 		return (-1);
10237 	}
10238 	return (sizeof (int));
10239 }
10240 
10241 /*
10242  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
10243  * Parameters are assumed to be verified by the caller.
10244  */
10245 /* ARGSUSED */
10246 int
10247 tcp_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10248     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10249     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10250 {
10251 	tcp_t	*tcp = Q_TO_TCP(q);
10252 	int	*i1 = (int *)invalp;
10253 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
10254 	boolean_t checkonly;
10255 	int	reterr;
10256 
10257 	switch (optset_context) {
10258 	case SETFN_OPTCOM_CHECKONLY:
10259 		checkonly = B_TRUE;
10260 		/*
10261 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
10262 		 * inlen != 0 implies value supplied and
10263 		 * 	we have to "pretend" to set it.
10264 		 * inlen == 0 implies that there is no
10265 		 * 	value part in T_CHECK request and just validation
10266 		 * done elsewhere should be enough, we just return here.
10267 		 */
10268 		if (inlen == 0) {
10269 			*outlenp = 0;
10270 			return (0);
10271 		}
10272 		break;
10273 	case SETFN_OPTCOM_NEGOTIATE:
10274 		checkonly = B_FALSE;
10275 		break;
10276 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
10277 	case SETFN_CONN_NEGOTIATE:
10278 		checkonly = B_FALSE;
10279 		/*
10280 		 * Negotiating local and "association-related" options
10281 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
10282 		 * primitives is allowed by XTI, but we choose
10283 		 * to not implement this style negotiation for Internet
10284 		 * protocols (We interpret it is a must for OSI world but
10285 		 * optional for Internet protocols) for all options.
10286 		 * [ Will do only for the few options that enable test
10287 		 * suites that our XTI implementation of this feature
10288 		 * works for transports that do allow it ]
10289 		 */
10290 		if (!tcp_allow_connopt_set(level, name)) {
10291 			*outlenp = 0;
10292 			return (EINVAL);
10293 		}
10294 		break;
10295 	default:
10296 		/*
10297 		 * We should never get here
10298 		 */
10299 		*outlenp = 0;
10300 		return (EINVAL);
10301 	}
10302 
10303 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
10304 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
10305 
10306 	/*
10307 	 * For TCP, we should have no ancillary data sent down
10308 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
10309 	 * has to be zero.
10310 	 */
10311 	ASSERT(thisdg_attrs == NULL);
10312 
10313 	/*
10314 	 * For fixed length options, no sanity check
10315 	 * of passed in length is done. It is assumed *_optcom_req()
10316 	 * routines do the right thing.
10317 	 */
10318 
10319 	switch (level) {
10320 	case SOL_SOCKET:
10321 		switch (name) {
10322 		case SO_LINGER: {
10323 			struct linger *lgr = (struct linger *)invalp;
10324 
10325 			if (!checkonly) {
10326 				if (lgr->l_onoff) {
10327 					tcp->tcp_linger = 1;
10328 					tcp->tcp_lingertime = lgr->l_linger;
10329 				} else {
10330 					tcp->tcp_linger = 0;
10331 					tcp->tcp_lingertime = 0;
10332 				}
10333 				/* struct copy */
10334 				*(struct linger *)outvalp = *lgr;
10335 			} else {
10336 				if (!lgr->l_onoff) {
10337 				    ((struct linger *)outvalp)->l_onoff = 0;
10338 				    ((struct linger *)outvalp)->l_linger = 0;
10339 				} else {
10340 				    /* struct copy */
10341 				    *(struct linger *)outvalp = *lgr;
10342 				}
10343 			}
10344 			*outlenp = sizeof (struct linger);
10345 			return (0);
10346 		}
10347 		case SO_DEBUG:
10348 			if (!checkonly)
10349 				tcp->tcp_debug = onoff;
10350 			break;
10351 		case SO_KEEPALIVE:
10352 			if (checkonly) {
10353 				/* T_CHECK case */
10354 				break;
10355 			}
10356 
10357 			if (!onoff) {
10358 				if (tcp->tcp_ka_enabled) {
10359 					if (tcp->tcp_ka_tid != 0) {
10360 						(void) TCP_TIMER_CANCEL(tcp,
10361 						    tcp->tcp_ka_tid);
10362 						tcp->tcp_ka_tid = 0;
10363 					}
10364 					tcp->tcp_ka_enabled = 0;
10365 				}
10366 				break;
10367 			}
10368 			if (!tcp->tcp_ka_enabled) {
10369 				/* Crank up the keepalive timer */
10370 				tcp->tcp_ka_last_intrvl = 0;
10371 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
10372 				    tcp_keepalive_killer,
10373 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
10374 				tcp->tcp_ka_enabled = 1;
10375 			}
10376 			break;
10377 		case SO_DONTROUTE:
10378 			/*
10379 			 * SO_DONTROUTE, SO_USELOOPBACK and SO_BROADCAST are
10380 			 * only of interest to IP.  We track them here only so
10381 			 * that we can report their current value.
10382 			 */
10383 			if (!checkonly) {
10384 				tcp->tcp_dontroute = onoff;
10385 				tcp->tcp_connp->conn_dontroute = onoff;
10386 			}
10387 			break;
10388 		case SO_USELOOPBACK:
10389 			if (!checkonly) {
10390 				tcp->tcp_useloopback = onoff;
10391 				tcp->tcp_connp->conn_loopback = onoff;
10392 			}
10393 			break;
10394 		case SO_BROADCAST:
10395 			if (!checkonly) {
10396 				tcp->tcp_broadcast = onoff;
10397 				tcp->tcp_connp->conn_broadcast = onoff;
10398 			}
10399 			break;
10400 		case SO_REUSEADDR:
10401 			if (!checkonly) {
10402 				tcp->tcp_reuseaddr = onoff;
10403 				tcp->tcp_connp->conn_reuseaddr = onoff;
10404 			}
10405 			break;
10406 		case SO_OOBINLINE:
10407 			if (!checkonly)
10408 				tcp->tcp_oobinline = onoff;
10409 			break;
10410 		case SO_DGRAM_ERRIND:
10411 			if (!checkonly)
10412 				tcp->tcp_dgram_errind = onoff;
10413 			break;
10414 		case SO_SNDBUF:
10415 			if (*i1 > tcp_max_buf) {
10416 				*outlenp = 0;
10417 				return (ENOBUFS);
10418 			}
10419 			if (!checkonly) {
10420 				tcp->tcp_xmit_hiwater = *i1;
10421 				if (tcp_snd_lowat_fraction != 0)
10422 					tcp->tcp_xmit_lowater =
10423 					    tcp->tcp_xmit_hiwater /
10424 					    tcp_snd_lowat_fraction;
10425 				(void) tcp_maxpsz_set(tcp, B_TRUE);
10426 				/*
10427 				 * If we are flow-controlled, recheck the
10428 				 * condition. There are apps that increase
10429 				 * SO_SNDBUF size when flow-controlled
10430 				 * (EWOULDBLOCK), and expect the flow control
10431 				 * condition to be lifted right away.
10432 				 */
10433 				if (tcp->tcp_flow_stopped &&
10434 				    tcp->tcp_unsent < tcp->tcp_xmit_hiwater) {
10435 					tcp->tcp_flow_stopped = B_FALSE;
10436 					tcp_clrqfull(tcp);
10437 				}
10438 			}
10439 			break;
10440 		case SO_RCVBUF:
10441 			if (*i1 > tcp_max_buf) {
10442 				*outlenp = 0;
10443 				return (ENOBUFS);
10444 			}
10445 			/* Silently ignore zero */
10446 			if (!checkonly && *i1 != 0) {
10447 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10448 				(void) tcp_rwnd_set(tcp, *i1);
10449 			}
10450 			/*
10451 			 * XXX should we return the rwnd here
10452 			 * and tcp_opt_get ?
10453 			 */
10454 			break;
10455 		case SO_SND_COPYAVOID:
10456 			if (!checkonly) {
10457 				/* we only allow enable at most once for now */
10458 				if (tcp->tcp_loopback ||
10459 				    (!tcp->tcp_snd_zcopy_aware &&
10460 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10461 					*outlenp = 0;
10462 					return (EOPNOTSUPP);
10463 				}
10464 				tcp->tcp_snd_zcopy_aware = 1;
10465 			}
10466 			break;
10467 		default:
10468 			*outlenp = 0;
10469 			return (EINVAL);
10470 		}
10471 		break;
10472 	case IPPROTO_TCP:
10473 		switch (name) {
10474 		case TCP_NODELAY:
10475 			if (!checkonly)
10476 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10477 			break;
10478 		case TCP_NOTIFY_THRESHOLD:
10479 			if (!checkonly)
10480 				tcp->tcp_first_timer_threshold = *i1;
10481 			break;
10482 		case TCP_ABORT_THRESHOLD:
10483 			if (!checkonly)
10484 				tcp->tcp_second_timer_threshold = *i1;
10485 			break;
10486 		case TCP_CONN_NOTIFY_THRESHOLD:
10487 			if (!checkonly)
10488 				tcp->tcp_first_ctimer_threshold = *i1;
10489 			break;
10490 		case TCP_CONN_ABORT_THRESHOLD:
10491 			if (!checkonly)
10492 				tcp->tcp_second_ctimer_threshold = *i1;
10493 			break;
10494 		case TCP_RECVDSTADDR:
10495 			if (tcp->tcp_state > TCPS_LISTEN)
10496 				return (EOPNOTSUPP);
10497 			if (!checkonly)
10498 				tcp->tcp_recvdstaddr = onoff;
10499 			break;
10500 		case TCP_ANONPRIVBIND:
10501 			if ((reterr = secpolicy_net_privaddr(cr, 0)) != 0) {
10502 				*outlenp = 0;
10503 				return (reterr);
10504 			}
10505 			if (!checkonly) {
10506 				tcp->tcp_anon_priv_bind = onoff;
10507 			}
10508 			break;
10509 		case TCP_EXCLBIND:
10510 			if (!checkonly)
10511 				tcp->tcp_exclbind = onoff;
10512 			break;	/* goto sizeof (int) option return */
10513 		case TCP_INIT_CWND: {
10514 			uint32_t init_cwnd = *((uint32_t *)invalp);
10515 
10516 			if (checkonly)
10517 				break;
10518 
10519 			/*
10520 			 * Only allow socket with network configuration
10521 			 * privilege to set the initial cwnd to be larger
10522 			 * than allowed by RFC 3390.
10523 			 */
10524 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10525 				tcp->tcp_init_cwnd = init_cwnd;
10526 				break;
10527 			}
10528 			if ((reterr = secpolicy_net_config(cr, B_TRUE)) != 0) {
10529 				*outlenp = 0;
10530 				return (reterr);
10531 			}
10532 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10533 				*outlenp = 0;
10534 				return (EINVAL);
10535 			}
10536 			tcp->tcp_init_cwnd = init_cwnd;
10537 			break;
10538 		}
10539 		case TCP_KEEPALIVE_THRESHOLD:
10540 			if (checkonly)
10541 				break;
10542 
10543 			if (*i1 < tcp_keepalive_interval_low ||
10544 			    *i1 > tcp_keepalive_interval_high) {
10545 				*outlenp = 0;
10546 				return (EINVAL);
10547 			}
10548 			if (*i1 != tcp->tcp_ka_interval) {
10549 				tcp->tcp_ka_interval = *i1;
10550 				/*
10551 				 * Check if we need to restart the
10552 				 * keepalive timer.
10553 				 */
10554 				if (tcp->tcp_ka_tid != 0) {
10555 					ASSERT(tcp->tcp_ka_enabled);
10556 					(void) TCP_TIMER_CANCEL(tcp,
10557 					    tcp->tcp_ka_tid);
10558 					tcp->tcp_ka_last_intrvl = 0;
10559 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10560 					    tcp_keepalive_killer,
10561 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10562 				}
10563 			}
10564 			break;
10565 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10566 			if (!checkonly) {
10567 				if (*i1 < tcp_keepalive_abort_interval_low ||
10568 				    *i1 > tcp_keepalive_abort_interval_high) {
10569 					*outlenp = 0;
10570 					return (EINVAL);
10571 				}
10572 				tcp->tcp_ka_abort_thres = *i1;
10573 			}
10574 			break;
10575 		case TCP_CORK:
10576 			if (!checkonly) {
10577 				/*
10578 				 * if tcp->tcp_cork was set and is now
10579 				 * being unset, we have to make sure that
10580 				 * the remaining data gets sent out. Also
10581 				 * unset tcp->tcp_cork so that tcp_wput_data()
10582 				 * can send data even if it is less than mss
10583 				 */
10584 				if (tcp->tcp_cork && onoff == 0 &&
10585 				    tcp->tcp_unsent > 0) {
10586 					tcp->tcp_cork = B_FALSE;
10587 					tcp_wput_data(tcp, NULL, B_FALSE);
10588 				}
10589 				tcp->tcp_cork = onoff;
10590 			}
10591 			break;
10592 		default:
10593 			*outlenp = 0;
10594 			return (EINVAL);
10595 		}
10596 		break;
10597 	case IPPROTO_IP:
10598 		if (tcp->tcp_family != AF_INET) {
10599 			*outlenp = 0;
10600 			return (ENOPROTOOPT);
10601 		}
10602 		switch (name) {
10603 		case IP_OPTIONS:
10604 		case T_IP_OPTIONS:
10605 			reterr = tcp_opt_set_header(tcp, checkonly,
10606 			    invalp, inlen);
10607 			if (reterr) {
10608 				*outlenp = 0;
10609 				return (reterr);
10610 			}
10611 			/* OK return - copy input buffer into output buffer */
10612 			if (invalp != outvalp) {
10613 				/* don't trust bcopy for identical src/dst */
10614 				bcopy(invalp, outvalp, inlen);
10615 			}
10616 			*outlenp = inlen;
10617 			return (0);
10618 		case IP_TOS:
10619 		case T_IP_TOS:
10620 			if (!checkonly) {
10621 				tcp->tcp_ipha->ipha_type_of_service =
10622 				    (uchar_t)*i1;
10623 				tcp->tcp_tos = (uchar_t)*i1;
10624 			}
10625 			break;
10626 		case IP_TTL:
10627 			if (!checkonly) {
10628 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10629 				tcp->tcp_ttl = (uchar_t)*i1;
10630 			}
10631 			break;
10632 		case IP_BOUND_IF:
10633 			/* Handled at the IP level */
10634 			return (-EINVAL);
10635 		case IP_SEC_OPT:
10636 			/*
10637 			 * We should not allow policy setting after
10638 			 * we start listening for connections.
10639 			 */
10640 			if (tcp->tcp_state == TCPS_LISTEN) {
10641 				return (EINVAL);
10642 			} else {
10643 				/* Handled at the IP level */
10644 				return (-EINVAL);
10645 			}
10646 		default:
10647 			*outlenp = 0;
10648 			return (EINVAL);
10649 		}
10650 		break;
10651 	case IPPROTO_IPV6: {
10652 		ip6_pkt_t		*ipp;
10653 
10654 		/*
10655 		 * IPPROTO_IPV6 options are only supported for sockets
10656 		 * that are using IPv6 on the wire.
10657 		 */
10658 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10659 			*outlenp = 0;
10660 			return (ENOPROTOOPT);
10661 		}
10662 		/*
10663 		 * Only sticky options; no ancillary data
10664 		 */
10665 		ASSERT(thisdg_attrs == NULL);
10666 		ipp = &tcp->tcp_sticky_ipp;
10667 
10668 		switch (name) {
10669 		case IPV6_UNICAST_HOPS:
10670 			/* -1 means use default */
10671 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10672 				*outlenp = 0;
10673 				return (EINVAL);
10674 			}
10675 			if (!checkonly) {
10676 				if (*i1 == -1) {
10677 					tcp->tcp_ip6h->ip6_hops =
10678 					    ipp->ipp_hoplimit =
10679 					    (uint8_t)tcp_ipv6_hoplimit;
10680 					ipp->ipp_fields &= ~IPPF_HOPLIMIT;
10681 					/* Pass modified value to IP. */
10682 					*i1 = tcp->tcp_ip6h->ip6_hops;
10683 				} else {
10684 					tcp->tcp_ip6h->ip6_hops =
10685 					    ipp->ipp_hoplimit = (uint8_t)*i1;
10686 					ipp->ipp_fields |= IPPF_HOPLIMIT;
10687 				}
10688 			}
10689 			break;
10690 		case IPV6_BOUND_IF:
10691 			if (!checkonly) {
10692 				int error = 0;
10693 
10694 				tcp->tcp_bound_if = *i1;
10695 				error = ip_opt_set_ill(tcp->tcp_connp, *i1,
10696 				    B_TRUE, checkonly, level, name, mblk);
10697 				if (error != 0) {
10698 					*outlenp = 0;
10699 					return (error);
10700 				}
10701 			}
10702 			break;
10703 		/*
10704 		 * Set boolean switches for ancillary data delivery
10705 		 */
10706 		case IPV6_RECVPKTINFO:
10707 			if (!checkonly) {
10708 				if (onoff)
10709 					tcp->tcp_ipv6_recvancillary |=
10710 					    TCP_IPV6_RECVPKTINFO;
10711 				else
10712 					tcp->tcp_ipv6_recvancillary &=
10713 					    ~TCP_IPV6_RECVPKTINFO;
10714 				/* Force it to be sent up with the next msg */
10715 				tcp->tcp_recvifindex = 0;
10716 			}
10717 			break;
10718 		case IPV6_RECVTCLASS:
10719 			if (!checkonly) {
10720 				if (onoff)
10721 					tcp->tcp_ipv6_recvancillary |=
10722 					    TCP_IPV6_RECVTCLASS;
10723 				else
10724 					tcp->tcp_ipv6_recvancillary &=
10725 					    ~TCP_IPV6_RECVTCLASS;
10726 			}
10727 			break;
10728 		case IPV6_RECVHOPLIMIT:
10729 			if (!checkonly) {
10730 				if (onoff)
10731 					tcp->tcp_ipv6_recvancillary |=
10732 					    TCP_IPV6_RECVHOPLIMIT;
10733 				else
10734 					tcp->tcp_ipv6_recvancillary &=
10735 					    ~TCP_IPV6_RECVHOPLIMIT;
10736 				/* Force it to be sent up with the next msg */
10737 				tcp->tcp_recvhops = 0xffffffffU;
10738 			}
10739 			break;
10740 		case IPV6_RECVHOPOPTS:
10741 			if (!checkonly) {
10742 				if (onoff)
10743 					tcp->tcp_ipv6_recvancillary |=
10744 					    TCP_IPV6_RECVHOPOPTS;
10745 				else
10746 					tcp->tcp_ipv6_recvancillary &=
10747 					    ~TCP_IPV6_RECVHOPOPTS;
10748 			}
10749 			break;
10750 		case IPV6_RECVDSTOPTS:
10751 			if (!checkonly) {
10752 				if (onoff)
10753 					tcp->tcp_ipv6_recvancillary |=
10754 					    TCP_IPV6_RECVDSTOPTS;
10755 				else
10756 					tcp->tcp_ipv6_recvancillary &=
10757 					    ~TCP_IPV6_RECVDSTOPTS;
10758 			}
10759 			break;
10760 		case _OLD_IPV6_RECVDSTOPTS:
10761 			if (!checkonly) {
10762 				if (onoff)
10763 					tcp->tcp_ipv6_recvancillary |=
10764 					    TCP_OLD_IPV6_RECVDSTOPTS;
10765 				else
10766 					tcp->tcp_ipv6_recvancillary &=
10767 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10768 			}
10769 			break;
10770 		case IPV6_RECVRTHDR:
10771 			if (!checkonly) {
10772 				if (onoff)
10773 					tcp->tcp_ipv6_recvancillary |=
10774 					    TCP_IPV6_RECVRTHDR;
10775 				else
10776 					tcp->tcp_ipv6_recvancillary &=
10777 					    ~TCP_IPV6_RECVRTHDR;
10778 			}
10779 			break;
10780 		case IPV6_RECVRTHDRDSTOPTS:
10781 			if (!checkonly) {
10782 				if (onoff)
10783 					tcp->tcp_ipv6_recvancillary |=
10784 					    TCP_IPV6_RECVRTDSTOPTS;
10785 				else
10786 					tcp->tcp_ipv6_recvancillary &=
10787 					    ~TCP_IPV6_RECVRTDSTOPTS;
10788 			}
10789 			break;
10790 		case IPV6_PKTINFO:
10791 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10792 				return (EINVAL);
10793 			if (checkonly)
10794 				break;
10795 
10796 			if (inlen == 0) {
10797 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10798 			} else {
10799 				struct in6_pktinfo *pkti;
10800 
10801 				pkti = (struct in6_pktinfo *)invalp;
10802 				/*
10803 				 * RFC 3542 states that ipi6_addr must be
10804 				 * the unspecified address when setting the
10805 				 * IPV6_PKTINFO sticky socket option on a
10806 				 * TCP socket.
10807 				 */
10808 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10809 					return (EINVAL);
10810 				/*
10811 				 * ip6_set_pktinfo() validates the source
10812 				 * address and interface index.
10813 				 */
10814 				reterr = ip6_set_pktinfo(cr, tcp->tcp_connp,
10815 				    pkti, mblk);
10816 				if (reterr != 0)
10817 					return (reterr);
10818 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10819 				ipp->ipp_addr = pkti->ipi6_addr;
10820 				if (ipp->ipp_ifindex != 0)
10821 					ipp->ipp_fields |= IPPF_IFINDEX;
10822 				else
10823 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10824 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10825 					ipp->ipp_fields |= IPPF_ADDR;
10826 				else
10827 					ipp->ipp_fields &= ~IPPF_ADDR;
10828 			}
10829 			reterr = tcp_build_hdrs(q, tcp);
10830 			if (reterr != 0)
10831 				return (reterr);
10832 			break;
10833 		case IPV6_HOPLIMIT:
10834 			if (inlen != 0 && inlen != sizeof (int))
10835 				return (EINVAL);
10836 			if (checkonly)
10837 				break;
10838 
10839 			if (inlen == 0) {
10840 				ipp->ipp_fields &= ~IPPF_HOPLIMIT;
10841 				tcp->tcp_ip6_hops =
10842 				    (uint8_t)tcp_ipv6_hoplimit;
10843 			} else {
10844 				if (*i1 > 255 || *i1 < -1)
10845 					return (EINVAL);
10846 				if (*i1 == -1) {
10847 					ipp->ipp_hoplimit = tcp_ipv6_hoplimit;
10848 					*i1 = tcp_ipv6_hoplimit;
10849 				} else {
10850 					ipp->ipp_hoplimit = *i1;
10851 				}
10852 				ipp->ipp_fields |= IPPF_HOPLIMIT;
10853 				tcp->tcp_ip6_hops =
10854 				    ipp->ipp_hoplimit;
10855 			}
10856 			reterr = tcp_build_hdrs(q, tcp);
10857 			if (reterr != 0)
10858 				return (reterr);
10859 			break;
10860 		case IPV6_TCLASS:
10861 			if (inlen != 0 && inlen != sizeof (int))
10862 				return (EINVAL);
10863 			if (checkonly)
10864 				break;
10865 
10866 			if (inlen == 0) {
10867 				ipp->ipp_fields &= ~IPPF_TCLASS;
10868 			} else {
10869 				if (*i1 > 255 || *i1 < -1)
10870 					return (EINVAL);
10871 				if (*i1 == -1) {
10872 					ipp->ipp_tclass = 0;
10873 					*i1 = 0;
10874 				} else {
10875 					ipp->ipp_tclass = *i1;
10876 				}
10877 				ipp->ipp_fields |= IPPF_TCLASS;
10878 			}
10879 			reterr = tcp_build_hdrs(q, tcp);
10880 			if (reterr != 0)
10881 				return (reterr);
10882 			break;
10883 		case IPV6_NEXTHOP:
10884 			/*
10885 			 * IP will verify that the nexthop is reachable
10886 			 * and fail for sticky options.
10887 			 */
10888 			if (inlen != 0 && inlen != sizeof (sin6_t))
10889 				return (EINVAL);
10890 			if (checkonly)
10891 				break;
10892 
10893 			if (inlen == 0) {
10894 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10895 			} else {
10896 				sin6_t *sin6 = (sin6_t *)invalp;
10897 
10898 				if (sin6->sin6_family != AF_INET6)
10899 					return (EAFNOSUPPORT);
10900 				if (IN6_IS_ADDR_V4MAPPED(
10901 				    &sin6->sin6_addr))
10902 					return (EADDRNOTAVAIL);
10903 				ipp->ipp_nexthop = sin6->sin6_addr;
10904 				if (!IN6_IS_ADDR_UNSPECIFIED(
10905 				    &ipp->ipp_nexthop))
10906 					ipp->ipp_fields |= IPPF_NEXTHOP;
10907 				else
10908 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10909 			}
10910 			reterr = tcp_build_hdrs(q, tcp);
10911 			if (reterr != 0)
10912 				return (reterr);
10913 			break;
10914 		case IPV6_HOPOPTS: {
10915 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10916 			/*
10917 			 * Sanity checks - minimum size, size a multiple of
10918 			 * eight bytes, and matching size passed in.
10919 			 */
10920 			if (inlen != 0 &&
10921 			    inlen != (8 * (hopts->ip6h_len + 1)))
10922 				return (EINVAL);
10923 
10924 			if (checkonly)
10925 				break;
10926 
10927 			if (inlen == 0) {
10928 				if ((ipp->ipp_fields & IPPF_HOPOPTS) != 0) {
10929 					kmem_free(ipp->ipp_hopopts,
10930 					    ipp->ipp_hopoptslen);
10931 					ipp->ipp_hopopts = NULL;
10932 					ipp->ipp_hopoptslen = 0;
10933 				}
10934 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10935 			} else {
10936 				reterr = tcp_pkt_set(invalp, inlen,
10937 				    (uchar_t **)&ipp->ipp_hopopts,
10938 				    &ipp->ipp_hopoptslen);
10939 				if (reterr != 0)
10940 					return (reterr);
10941 				ipp->ipp_fields |= IPPF_HOPOPTS;
10942 			}
10943 			reterr = tcp_build_hdrs(q, tcp);
10944 			if (reterr != 0)
10945 				return (reterr);
10946 			break;
10947 		}
10948 		case IPV6_RTHDRDSTOPTS: {
10949 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10950 
10951 			/*
10952 			 * Sanity checks - minimum size, size a multiple of
10953 			 * eight bytes, and matching size passed in.
10954 			 */
10955 			if (inlen != 0 &&
10956 			    inlen != (8 * (dopts->ip6d_len + 1)))
10957 				return (EINVAL);
10958 
10959 			if (checkonly)
10960 				break;
10961 
10962 			if (inlen == 0) {
10963 				if ((ipp->ipp_fields & IPPF_RTDSTOPTS) != 0) {
10964 					kmem_free(ipp->ipp_rtdstopts,
10965 					    ipp->ipp_rtdstoptslen);
10966 					ipp->ipp_rtdstopts = NULL;
10967 					ipp->ipp_rtdstoptslen = 0;
10968 				}
10969 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10970 			} else {
10971 				reterr = tcp_pkt_set(invalp, inlen,
10972 				    (uchar_t **)&ipp->ipp_rtdstopts,
10973 				    &ipp->ipp_rtdstoptslen);
10974 				if (reterr != 0)
10975 					return (reterr);
10976 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10977 			}
10978 			reterr = tcp_build_hdrs(q, tcp);
10979 			if (reterr != 0)
10980 				return (reterr);
10981 			break;
10982 		}
10983 		case IPV6_DSTOPTS: {
10984 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10985 
10986 			/*
10987 			 * Sanity checks - minimum size, size a multiple of
10988 			 * eight bytes, and matching size passed in.
10989 			 */
10990 			if (inlen != 0 &&
10991 			    inlen != (8 * (dopts->ip6d_len + 1)))
10992 				return (EINVAL);
10993 
10994 			if (checkonly)
10995 				break;
10996 
10997 			if (inlen == 0) {
10998 				if ((ipp->ipp_fields & IPPF_DSTOPTS) != 0) {
10999 					kmem_free(ipp->ipp_dstopts,
11000 					    ipp->ipp_dstoptslen);
11001 					ipp->ipp_dstopts = NULL;
11002 					ipp->ipp_dstoptslen = 0;
11003 				}
11004 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
11005 			} else {
11006 				reterr = tcp_pkt_set(invalp, inlen,
11007 				    (uchar_t **)&ipp->ipp_dstopts,
11008 				    &ipp->ipp_dstoptslen);
11009 				if (reterr != 0)
11010 					return (reterr);
11011 				ipp->ipp_fields |= IPPF_DSTOPTS;
11012 			}
11013 			reterr = tcp_build_hdrs(q, tcp);
11014 			if (reterr != 0)
11015 				return (reterr);
11016 			break;
11017 		}
11018 		case IPV6_RTHDR: {
11019 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
11020 
11021 			/*
11022 			 * Sanity checks - minimum size, size a multiple of
11023 			 * eight bytes, and matching size passed in.
11024 			 */
11025 			if (inlen != 0 &&
11026 			    inlen != (8 * (rt->ip6r_len + 1)))
11027 				return (EINVAL);
11028 
11029 			if (checkonly)
11030 				break;
11031 
11032 			if (inlen == 0) {
11033 				if ((ipp->ipp_fields & IPPF_RTHDR) != 0) {
11034 					kmem_free(ipp->ipp_rthdr,
11035 					    ipp->ipp_rthdrlen);
11036 					ipp->ipp_rthdr = NULL;
11037 					ipp->ipp_rthdrlen = 0;
11038 				}
11039 				ipp->ipp_fields &= ~IPPF_RTHDR;
11040 			} else {
11041 				reterr = tcp_pkt_set(invalp, inlen,
11042 				    (uchar_t **)&ipp->ipp_rthdr,
11043 				    &ipp->ipp_rthdrlen);
11044 				if (reterr != 0)
11045 					return (reterr);
11046 				ipp->ipp_fields |= IPPF_RTHDR;
11047 			}
11048 			reterr = tcp_build_hdrs(q, tcp);
11049 			if (reterr != 0)
11050 				return (reterr);
11051 			break;
11052 		}
11053 		case IPV6_V6ONLY:
11054 			if (!checkonly)
11055 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
11056 			break;
11057 		case IPV6_USE_MIN_MTU:
11058 			if (inlen != sizeof (int))
11059 				return (EINVAL);
11060 
11061 			if (*i1 < -1 || *i1 > 1)
11062 				return (EINVAL);
11063 
11064 			if (checkonly)
11065 				break;
11066 
11067 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
11068 			ipp->ipp_use_min_mtu = *i1;
11069 			break;
11070 		case IPV6_BOUND_PIF:
11071 			/* Handled at the IP level */
11072 			return (-EINVAL);
11073 		case IPV6_SEC_OPT:
11074 			/*
11075 			 * We should not allow policy setting after
11076 			 * we start listening for connections.
11077 			 */
11078 			if (tcp->tcp_state == TCPS_LISTEN) {
11079 				return (EINVAL);
11080 			} else {
11081 				/* Handled at the IP level */
11082 				return (-EINVAL);
11083 			}
11084 		case IPV6_SRC_PREFERENCES:
11085 			if (inlen != sizeof (uint32_t))
11086 				return (EINVAL);
11087 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
11088 			    *(uint32_t *)invalp);
11089 			if (reterr != 0) {
11090 				*outlenp = 0;
11091 				return (reterr);
11092 			}
11093 			break;
11094 		default:
11095 			*outlenp = 0;
11096 			return (EINVAL);
11097 		}
11098 		break;
11099 	}		/* end IPPROTO_IPV6 */
11100 	default:
11101 		*outlenp = 0;
11102 		return (EINVAL);
11103 	}
11104 	/*
11105 	 * Common case of OK return with outval same as inval
11106 	 */
11107 	if (invalp != outvalp) {
11108 		/* don't trust bcopy for identical src/dst */
11109 		(void) bcopy(invalp, outvalp, inlen);
11110 	}
11111 	*outlenp = inlen;
11112 	return (0);
11113 }
11114 
11115 /*
11116  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
11117  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
11118  * headers, and the maximum size tcp header (to avoid reallocation
11119  * on the fly for additional tcp options).
11120  * Returns failure if can't allocate memory.
11121  */
11122 static int
11123 tcp_build_hdrs(queue_t *q, tcp_t *tcp)
11124 {
11125 	char	*hdrs;
11126 	uint_t	hdrs_len;
11127 	ip6i_t	*ip6i;
11128 	char	buf[TCP_MAX_HDR_LENGTH];
11129 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
11130 	in6_addr_t src, dst;
11131 	uint8_t hops;
11132 
11133 	/*
11134 	 * save the existing tcp header and source/dest IP addresses
11135 	 */
11136 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
11137 	src = tcp->tcp_ip6h->ip6_src;
11138 	dst = tcp->tcp_ip6h->ip6_dst;
11139 	hops = tcp->tcp_ip6h->ip6_hops;
11140 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
11141 	ASSERT(hdrs_len != 0);
11142 	if (hdrs_len > tcp->tcp_iphc_len) {
11143 		/* Need to reallocate */
11144 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
11145 		if (hdrs == NULL)
11146 			return (ENOMEM);
11147 		if (tcp->tcp_iphc != NULL) {
11148 			if (tcp->tcp_hdr_grown) {
11149 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
11150 			} else {
11151 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
11152 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
11153 			}
11154 			tcp->tcp_iphc_len = 0;
11155 		}
11156 		ASSERT(tcp->tcp_iphc_len == 0);
11157 		tcp->tcp_iphc = hdrs;
11158 		tcp->tcp_iphc_len = hdrs_len;
11159 		tcp->tcp_hdr_grown = B_TRUE;
11160 	}
11161 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
11162 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
11163 
11164 	/* Set header fields not in ipp */
11165 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
11166 		ip6i = (ip6i_t *)tcp->tcp_iphc;
11167 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
11168 	} else {
11169 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
11170 	}
11171 	/*
11172 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
11173 	 *
11174 	 * tcp->tcp_tcp_hdr_len doesn't change here.
11175 	 */
11176 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
11177 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
11178 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
11179 
11180 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
11181 
11182 	tcp->tcp_ip6h->ip6_src = src;
11183 	tcp->tcp_ip6h->ip6_dst = dst;
11184 
11185 	/*
11186 	 * If the hop limit was not set by ip_build_hdrs_v6(), restore
11187 	 * the saved value.
11188 	 */
11189 	if (!(ipp->ipp_fields & IPPF_HOPLIMIT))
11190 		tcp->tcp_ip6h->ip6_hops = hops;
11191 
11192 	/*
11193 	 * Set the IPv6 header payload length.
11194 	 * If there's an ip6i_t included, don't count it in the length.
11195 	 */
11196 	tcp->tcp_ip6h->ip6_plen = tcp->tcp_hdr_len - IPV6_HDR_LEN;
11197 	if (ipp->ipp_fields & IPPF_HAS_IP6I)
11198 		tcp->tcp_ip6h->ip6_plen -= sizeof (ip6i_t);
11199 	/*
11200 	 * If we're setting extension headers after a connection
11201 	 * has been established, and if we have a routing header
11202 	 * among the extension headers, call ip_massage_options_v6 to
11203 	 * manipulate the routing header/ip6_dst set the checksum
11204 	 * difference in the tcp header template.
11205 	 * (This happens in tcp_connect_ipv6 if the routing header
11206 	 * is set prior to the connect.)
11207 	 * Set the tcp_sum to zero first in case we've cleared a
11208 	 * routing header or don't have one at all.
11209 	 */
11210 	tcp->tcp_sum = 0;
11211 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
11212 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
11213 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
11214 		    (uint8_t *)tcp->tcp_tcph);
11215 		if (rth != NULL) {
11216 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
11217 			    rth);
11218 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
11219 			    (tcp->tcp_sum >> 16));
11220 		}
11221 	}
11222 
11223 	/* Try to get everything in a single mblk */
11224 	(void) mi_set_sth_wroff(RD(q), hdrs_len + tcp_wroff_xtra);
11225 	return (0);
11226 }
11227 
11228 /*
11229  * Set optbuf and optlen for the option.
11230  * Allocate memory (if not already present).
11231  * Otherwise just point optbuf and optlen at invalp and inlen.
11232  * Returns failure if memory can not be allocated.
11233  */
11234 static int
11235 tcp_pkt_set(uchar_t *invalp, uint_t inlen, uchar_t **optbufp, uint_t *optlenp)
11236 {
11237 	uchar_t *optbuf;
11238 
11239 	if (inlen == *optlenp) {
11240 		/* Unchanged length - no need to realocate */
11241 		bcopy(invalp, *optbufp, inlen);
11242 		return (0);
11243 	}
11244 	if (inlen != 0) {
11245 		/* Allocate new buffer before free */
11246 		optbuf = kmem_alloc(inlen, KM_NOSLEEP);
11247 		if (optbuf == NULL)
11248 			return (ENOMEM);
11249 	} else {
11250 		optbuf = NULL;
11251 	}
11252 	/* Free old buffer */
11253 	if (*optlenp != 0)
11254 		kmem_free(*optbufp, *optlenp);
11255 
11256 	bcopy(invalp, optbuf, inlen);
11257 	*optbufp = optbuf;
11258 	*optlenp = inlen;
11259 	return (0);
11260 }
11261 
11262 
11263 /*
11264  * Use the outgoing IP header to create an IP_OPTIONS option the way
11265  * it was passed down from the application.
11266  */
11267 static int
11268 tcp_opt_get_user(ipha_t *ipha, uchar_t *buf)
11269 {
11270 	ipoptp_t	opts;
11271 	uchar_t		*opt;
11272 	uint8_t		optval;
11273 	uint8_t		optlen;
11274 	uint32_t	len = 0;
11275 	uchar_t	*buf1 = buf;
11276 
11277 	buf += IP_ADDR_LEN;	/* Leave room for final destination */
11278 	len += IP_ADDR_LEN;
11279 	bzero(buf1, IP_ADDR_LEN);
11280 
11281 	for (optval = ipoptp_first(&opts, ipha);
11282 	    optval != IPOPT_EOL;
11283 	    optval = ipoptp_next(&opts)) {
11284 		opt = opts.ipoptp_cur;
11285 		optlen = opts.ipoptp_len;
11286 		switch (optval) {
11287 			int	off;
11288 		case IPOPT_SSRR:
11289 		case IPOPT_LSRR:
11290 
11291 			/*
11292 			 * Insert ipha_dst as the first entry in the source
11293 			 * route and move down the entries on step.
11294 			 * The last entry gets placed at buf1.
11295 			 */
11296 			buf[IPOPT_OPTVAL] = optval;
11297 			buf[IPOPT_OLEN] = optlen;
11298 			buf[IPOPT_OFFSET] = optlen;
11299 
11300 			off = optlen - IP_ADDR_LEN;
11301 			if (off < 0) {
11302 				/* No entries in source route */
11303 				break;
11304 			}
11305 			/* Last entry in source route */
11306 			bcopy(opt + off, buf1, IP_ADDR_LEN);
11307 			off -= IP_ADDR_LEN;
11308 
11309 			while (off > 0) {
11310 				bcopy(opt + off,
11311 				    buf + off + IP_ADDR_LEN,
11312 				    IP_ADDR_LEN);
11313 				off -= IP_ADDR_LEN;
11314 			}
11315 			/* ipha_dst into first slot */
11316 			bcopy(&ipha->ipha_dst,
11317 			    buf + off + IP_ADDR_LEN,
11318 			    IP_ADDR_LEN);
11319 			buf += optlen;
11320 			len += optlen;
11321 			break;
11322 		default:
11323 			bcopy(opt, buf, optlen);
11324 			buf += optlen;
11325 			len += optlen;
11326 			break;
11327 		}
11328 	}
11329 done:
11330 	/* Pad the resulting options */
11331 	while (len & 0x3) {
11332 		*buf++ = IPOPT_EOL;
11333 		len++;
11334 	}
11335 	return (len);
11336 }
11337 
11338 /*
11339  * Transfer any source route option from ipha to buf/dst in reversed form.
11340  */
11341 static int
11342 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
11343 {
11344 	ipoptp_t	opts;
11345 	uchar_t		*opt;
11346 	uint8_t		optval;
11347 	uint8_t		optlen;
11348 	uint32_t	len = 0;
11349 
11350 	for (optval = ipoptp_first(&opts, ipha);
11351 	    optval != IPOPT_EOL;
11352 	    optval = ipoptp_next(&opts)) {
11353 		opt = opts.ipoptp_cur;
11354 		optlen = opts.ipoptp_len;
11355 		switch (optval) {
11356 			int	off1, off2;
11357 		case IPOPT_SSRR:
11358 		case IPOPT_LSRR:
11359 
11360 			/* Reverse source route */
11361 			/*
11362 			 * First entry should be the next to last one in the
11363 			 * current source route (the last entry is our
11364 			 * address.)
11365 			 * The last entry should be the final destination.
11366 			 */
11367 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
11368 			buf[IPOPT_OLEN] = (uint8_t)optlen;
11369 			off1 = IPOPT_MINOFF_SR - 1;
11370 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
11371 			if (off2 < 0) {
11372 				/* No entries in source route */
11373 				break;
11374 			}
11375 			bcopy(opt + off2, dst, IP_ADDR_LEN);
11376 			/*
11377 			 * Note: use src since ipha has not had its src
11378 			 * and dst reversed (it is in the state it was
11379 			 * received.
11380 			 */
11381 			bcopy(&ipha->ipha_src, buf + off2,
11382 			    IP_ADDR_LEN);
11383 			off2 -= IP_ADDR_LEN;
11384 
11385 			while (off2 > 0) {
11386 				bcopy(opt + off2, buf + off1,
11387 				    IP_ADDR_LEN);
11388 				off1 += IP_ADDR_LEN;
11389 				off2 -= IP_ADDR_LEN;
11390 			}
11391 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
11392 			buf += optlen;
11393 			len += optlen;
11394 			break;
11395 		}
11396 	}
11397 done:
11398 	/* Pad the resulting options */
11399 	while (len & 0x3) {
11400 		*buf++ = IPOPT_EOL;
11401 		len++;
11402 	}
11403 	return (len);
11404 }
11405 
11406 
11407 /*
11408  * Extract and revert a source route from ipha (if any)
11409  * and then update the relevant fields in both tcp_t and the standard header.
11410  */
11411 static void
11412 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
11413 {
11414 	char	buf[TCP_MAX_HDR_LENGTH];
11415 	uint_t	tcph_len;
11416 	int	len;
11417 
11418 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
11419 	len = IPH_HDR_LENGTH(ipha);
11420 	if (len == IP_SIMPLE_HDR_LENGTH)
11421 		/* Nothing to do */
11422 		return;
11423 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
11424 	    (len & 0x3))
11425 		return;
11426 
11427 	tcph_len = tcp->tcp_tcp_hdr_len;
11428 	bcopy(tcp->tcp_tcph, buf, tcph_len);
11429 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
11430 		(tcp->tcp_ipha->ipha_dst & 0xffff);
11431 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
11432 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
11433 	len += IP_SIMPLE_HDR_LENGTH;
11434 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
11435 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
11436 	if ((int)tcp->tcp_sum < 0)
11437 		tcp->tcp_sum--;
11438 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
11439 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
11440 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
11441 	bcopy(buf, tcp->tcp_tcph, tcph_len);
11442 	tcp->tcp_ip_hdr_len = len;
11443 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11444 	    (IP_VERSION << 4) | (len >> 2);
11445 	len += tcph_len;
11446 	tcp->tcp_hdr_len = len;
11447 }
11448 
11449 /*
11450  * Copy the standard header into its new location,
11451  * lay in the new options and then update the relevant
11452  * fields in both tcp_t and the standard header.
11453  */
11454 static int
11455 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
11456 {
11457 	uint_t	tcph_len;
11458 	char	*ip_optp;
11459 	tcph_t	*new_tcph;
11460 
11461 	if (checkonly) {
11462 		/*
11463 		 * do not really set, just pretend to - T_CHECK
11464 		 */
11465 		if (len != 0) {
11466 			/*
11467 			 * there is value supplied, validate it as if
11468 			 * for a real set operation.
11469 			 */
11470 			if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11471 				return (EINVAL);
11472 		}
11473 		return (0);
11474 	}
11475 
11476 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
11477 		return (EINVAL);
11478 
11479 	ip_optp = (char *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
11480 	tcph_len = tcp->tcp_tcp_hdr_len;
11481 	new_tcph = (tcph_t *)(ip_optp + len);
11482 	ovbcopy((char *)tcp->tcp_tcph, (char *)new_tcph, tcph_len);
11483 	tcp->tcp_tcph = new_tcph;
11484 	bcopy(ptr, ip_optp, len);
11485 
11486 	len += IP_SIMPLE_HDR_LENGTH;
11487 
11488 	tcp->tcp_ip_hdr_len = len;
11489 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11490 		(IP_VERSION << 4) | (len >> 2);
11491 	len += tcph_len;
11492 	tcp->tcp_hdr_len = len;
11493 	if (!TCP_IS_DETACHED(tcp)) {
11494 		/* Always allocate room for all options. */
11495 		(void) mi_set_sth_wroff(tcp->tcp_rq,
11496 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcp_wroff_xtra);
11497 	}
11498 	return (0);
11499 }
11500 
11501 /* Get callback routine passed to nd_load by tcp_param_register */
11502 /* ARGSUSED */
11503 static int
11504 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11505 {
11506 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11507 
11508 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11509 	return (0);
11510 }
11511 
11512 /*
11513  * Walk through the param array specified registering each element with the
11514  * named dispatch handler.
11515  */
11516 static boolean_t
11517 tcp_param_register(tcpparam_t *tcppa, int cnt)
11518 {
11519 	for (; cnt-- > 0; tcppa++) {
11520 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11521 			if (!nd_load(&tcp_g_nd, tcppa->tcp_param_name,
11522 			    tcp_param_get, tcp_param_set,
11523 			    (caddr_t)tcppa)) {
11524 				nd_free(&tcp_g_nd);
11525 				return (B_FALSE);
11526 			}
11527 		}
11528 	}
11529 	if (!nd_load(&tcp_g_nd, tcp_wroff_xtra_param.tcp_param_name,
11530 	    tcp_param_get, tcp_param_set_aligned,
11531 	    (caddr_t)&tcp_wroff_xtra_param)) {
11532 		nd_free(&tcp_g_nd);
11533 		return (B_FALSE);
11534 	}
11535 	if (!nd_load(&tcp_g_nd, tcp_mdt_head_param.tcp_param_name,
11536 	    tcp_param_get, tcp_param_set_aligned,
11537 	    (caddr_t)&tcp_mdt_head_param)) {
11538 		nd_free(&tcp_g_nd);
11539 		return (B_FALSE);
11540 	}
11541 	if (!nd_load(&tcp_g_nd, tcp_mdt_tail_param.tcp_param_name,
11542 	    tcp_param_get, tcp_param_set_aligned,
11543 	    (caddr_t)&tcp_mdt_tail_param)) {
11544 		nd_free(&tcp_g_nd);
11545 		return (B_FALSE);
11546 	}
11547 	if (!nd_load(&tcp_g_nd, tcp_mdt_max_pbufs_param.tcp_param_name,
11548 	    tcp_param_get, tcp_param_set,
11549 	    (caddr_t)&tcp_mdt_max_pbufs_param)) {
11550 		nd_free(&tcp_g_nd);
11551 		return (B_FALSE);
11552 	}
11553 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports",
11554 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11555 		nd_free(&tcp_g_nd);
11556 		return (B_FALSE);
11557 	}
11558 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_add",
11559 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11560 		nd_free(&tcp_g_nd);
11561 		return (B_FALSE);
11562 	}
11563 	if (!nd_load(&tcp_g_nd, "tcp_extra_priv_ports_del",
11564 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11565 		nd_free(&tcp_g_nd);
11566 		return (B_FALSE);
11567 	}
11568 	if (!nd_load(&tcp_g_nd, "tcp_status", tcp_status_report, NULL,
11569 	    NULL)) {
11570 		nd_free(&tcp_g_nd);
11571 		return (B_FALSE);
11572 	}
11573 	if (!nd_load(&tcp_g_nd, "tcp_bind_hash", tcp_bind_hash_report,
11574 	    NULL, NULL)) {
11575 		nd_free(&tcp_g_nd);
11576 		return (B_FALSE);
11577 	}
11578 	if (!nd_load(&tcp_g_nd, "tcp_listen_hash", tcp_listen_hash_report,
11579 	    NULL, NULL)) {
11580 		nd_free(&tcp_g_nd);
11581 		return (B_FALSE);
11582 	}
11583 	if (!nd_load(&tcp_g_nd, "tcp_conn_hash", tcp_conn_hash_report,
11584 	    NULL, NULL)) {
11585 		nd_free(&tcp_g_nd);
11586 		return (B_FALSE);
11587 	}
11588 	if (!nd_load(&tcp_g_nd, "tcp_acceptor_hash", tcp_acceptor_hash_report,
11589 	    NULL, NULL)) {
11590 		nd_free(&tcp_g_nd);
11591 		return (B_FALSE);
11592 	}
11593 	if (!nd_load(&tcp_g_nd, "tcp_host_param", tcp_host_param_report,
11594 	    tcp_host_param_set, NULL)) {
11595 		nd_free(&tcp_g_nd);
11596 		return (B_FALSE);
11597 	}
11598 	if (!nd_load(&tcp_g_nd, "tcp_host_param_ipv6", tcp_host_param_report,
11599 	    tcp_host_param_set_ipv6, NULL)) {
11600 		nd_free(&tcp_g_nd);
11601 		return (B_FALSE);
11602 	}
11603 	if (!nd_load(&tcp_g_nd, "tcp_1948_phrase", NULL, tcp_1948_phrase_set,
11604 	    NULL)) {
11605 		nd_free(&tcp_g_nd);
11606 		return (B_FALSE);
11607 	}
11608 	if (!nd_load(&tcp_g_nd, "tcp_reserved_port_list",
11609 	    tcp_reserved_port_list, NULL, NULL)) {
11610 		nd_free(&tcp_g_nd);
11611 		return (B_FALSE);
11612 	}
11613 	/*
11614 	 * Dummy ndd variables - only to convey obsolescence information
11615 	 * through printing of their name (no get or set routines)
11616 	 * XXX Remove in future releases ?
11617 	 */
11618 	if (!nd_load(&tcp_g_nd,
11619 	    "tcp_close_wait_interval(obsoleted - "
11620 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11621 		nd_free(&tcp_g_nd);
11622 		return (B_FALSE);
11623 	}
11624 	return (B_TRUE);
11625 }
11626 
11627 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11628 /* ARGSUSED */
11629 static int
11630 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11631     cred_t *cr)
11632 {
11633 	long new_value;
11634 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11635 
11636 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11637 	    new_value < tcppa->tcp_param_min ||
11638 	    new_value > tcppa->tcp_param_max) {
11639 		return (EINVAL);
11640 	}
11641 	/*
11642 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11643 	 * round it up.  For future 64 bit requirement, we actually make it
11644 	 * a multiple of 8.
11645 	 */
11646 	if (new_value & 0x7) {
11647 		new_value = (new_value & ~0x7) + 0x8;
11648 	}
11649 	tcppa->tcp_param_val = new_value;
11650 	return (0);
11651 }
11652 
11653 /* Set callback routine passed to nd_load by tcp_param_register */
11654 /* ARGSUSED */
11655 static int
11656 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11657 {
11658 	long	new_value;
11659 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11660 
11661 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11662 	    new_value < tcppa->tcp_param_min ||
11663 	    new_value > tcppa->tcp_param_max) {
11664 		return (EINVAL);
11665 	}
11666 	tcppa->tcp_param_val = new_value;
11667 	return (0);
11668 }
11669 
11670 /*
11671  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11672  * is filled, return as much as we can.  The message passed in may be
11673  * multi-part, chained using b_cont.  "start" is the starting sequence
11674  * number for this piece.
11675  */
11676 static mblk_t *
11677 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11678 {
11679 	uint32_t	end;
11680 	mblk_t		*mp1;
11681 	mblk_t		*mp2;
11682 	mblk_t		*next_mp;
11683 	uint32_t	u1;
11684 
11685 	/* Walk through all the new pieces. */
11686 	do {
11687 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11688 		    (uintptr_t)INT_MAX);
11689 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11690 		next_mp = mp->b_cont;
11691 		if (start == end) {
11692 			/* Empty.  Blast it. */
11693 			freeb(mp);
11694 			continue;
11695 		}
11696 		mp->b_cont = NULL;
11697 		TCP_REASS_SET_SEQ(mp, start);
11698 		TCP_REASS_SET_END(mp, end);
11699 		mp1 = tcp->tcp_reass_tail;
11700 		if (!mp1) {
11701 			tcp->tcp_reass_tail = mp;
11702 			tcp->tcp_reass_head = mp;
11703 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11704 			UPDATE_MIB(&tcp_mib,
11705 			    tcpInDataUnorderBytes, end - start);
11706 			continue;
11707 		}
11708 		/* New stuff completely beyond tail? */
11709 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11710 			/* Link it on end. */
11711 			mp1->b_cont = mp;
11712 			tcp->tcp_reass_tail = mp;
11713 			BUMP_MIB(&tcp_mib, tcpInDataUnorderSegs);
11714 			UPDATE_MIB(&tcp_mib,
11715 			    tcpInDataUnorderBytes, end - start);
11716 			continue;
11717 		}
11718 		mp1 = tcp->tcp_reass_head;
11719 		u1 = TCP_REASS_SEQ(mp1);
11720 		/* New stuff at the front? */
11721 		if (SEQ_LT(start, u1)) {
11722 			/* Yes... Check for overlap. */
11723 			mp->b_cont = mp1;
11724 			tcp->tcp_reass_head = mp;
11725 			tcp_reass_elim_overlap(tcp, mp);
11726 			continue;
11727 		}
11728 		/*
11729 		 * The new piece fits somewhere between the head and tail.
11730 		 * We find our slot, where mp1 precedes us and mp2 trails.
11731 		 */
11732 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11733 			u1 = TCP_REASS_SEQ(mp2);
11734 			if (SEQ_LEQ(start, u1))
11735 				break;
11736 		}
11737 		/* Link ourselves in */
11738 		mp->b_cont = mp2;
11739 		mp1->b_cont = mp;
11740 
11741 		/* Trim overlap with following mblk(s) first */
11742 		tcp_reass_elim_overlap(tcp, mp);
11743 
11744 		/* Trim overlap with preceding mblk */
11745 		tcp_reass_elim_overlap(tcp, mp1);
11746 
11747 	} while (start = end, mp = next_mp);
11748 	mp1 = tcp->tcp_reass_head;
11749 	/* Anything ready to go? */
11750 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11751 		return (NULL);
11752 	/* Eat what we can off the queue */
11753 	for (;;) {
11754 		mp = mp1->b_cont;
11755 		end = TCP_REASS_END(mp1);
11756 		TCP_REASS_SET_SEQ(mp1, 0);
11757 		TCP_REASS_SET_END(mp1, 0);
11758 		if (!mp) {
11759 			tcp->tcp_reass_tail = NULL;
11760 			break;
11761 		}
11762 		if (end != TCP_REASS_SEQ(mp)) {
11763 			mp1->b_cont = NULL;
11764 			break;
11765 		}
11766 		mp1 = mp;
11767 	}
11768 	mp1 = tcp->tcp_reass_head;
11769 	tcp->tcp_reass_head = mp;
11770 	return (mp1);
11771 }
11772 
11773 /* Eliminate any overlap that mp may have over later mblks */
11774 static void
11775 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11776 {
11777 	uint32_t	end;
11778 	mblk_t		*mp1;
11779 	uint32_t	u1;
11780 
11781 	end = TCP_REASS_END(mp);
11782 	while ((mp1 = mp->b_cont) != NULL) {
11783 		u1 = TCP_REASS_SEQ(mp1);
11784 		if (!SEQ_GT(end, u1))
11785 			break;
11786 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11787 			mp->b_wptr -= end - u1;
11788 			TCP_REASS_SET_END(mp, u1);
11789 			BUMP_MIB(&tcp_mib, tcpInDataPartDupSegs);
11790 			UPDATE_MIB(&tcp_mib, tcpInDataPartDupBytes, end - u1);
11791 			break;
11792 		}
11793 		mp->b_cont = mp1->b_cont;
11794 		TCP_REASS_SET_SEQ(mp1, 0);
11795 		TCP_REASS_SET_END(mp1, 0);
11796 		freeb(mp1);
11797 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
11798 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes, end - u1);
11799 	}
11800 	if (!mp1)
11801 		tcp->tcp_reass_tail = mp;
11802 }
11803 
11804 /*
11805  * Send up all messages queued on tcp_rcv_list.
11806  */
11807 static uint_t
11808 tcp_rcv_drain(queue_t *q, tcp_t *tcp)
11809 {
11810 	mblk_t *mp;
11811 	uint_t ret = 0;
11812 	uint_t thwin;
11813 #ifdef DEBUG
11814 	uint_t cnt = 0;
11815 #endif
11816 	/* Can't drain on an eager connection */
11817 	if (tcp->tcp_listener != NULL)
11818 		return (ret);
11819 
11820 	/*
11821 	 * Handle two cases here: we are currently fused or we were
11822 	 * previously fused and have some urgent data to be delivered
11823 	 * upstream.  The latter happens because we either ran out of
11824 	 * memory or were detached and therefore sending the SIGURG was
11825 	 * deferred until this point.  In either case we pass control
11826 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11827 	 * some work.
11828 	 */
11829 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11830 		ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
11831 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11832 		    &tcp->tcp_fused_sigurg_mp))
11833 			return (ret);
11834 	}
11835 
11836 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11837 		tcp->tcp_rcv_list = mp->b_next;
11838 		mp->b_next = NULL;
11839 #ifdef DEBUG
11840 		cnt += msgdsize(mp);
11841 #endif
11842 		putnext(q, mp);
11843 	}
11844 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11845 	tcp->tcp_rcv_last_head = NULL;
11846 	tcp->tcp_rcv_last_tail = NULL;
11847 	tcp->tcp_rcv_cnt = 0;
11848 
11849 	/* Learn the latest rwnd information that we sent to the other side. */
11850 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11851 	    << tcp->tcp_rcv_ws;
11852 	/* This is peer's calculated send window (our receive window). */
11853 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11854 	/*
11855 	 * Increase the receive window to max.  But we need to do receiver
11856 	 * SWS avoidance.  This means that we need to check the increase of
11857 	 * of receive window is at least 1 MSS.
11858 	 */
11859 	if (canputnext(q) && (q->q_hiwat - thwin >= tcp->tcp_mss)) {
11860 		/*
11861 		 * If the window that the other side knows is less than max
11862 		 * deferred acks segments, send an update immediately.
11863 		 */
11864 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11865 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
11866 			ret = TH_ACK_NEEDED;
11867 		}
11868 		tcp->tcp_rwnd = q->q_hiwat;
11869 	}
11870 	/* No need for the push timer now. */
11871 	if (tcp->tcp_push_tid != 0) {
11872 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11873 		tcp->tcp_push_tid = 0;
11874 	}
11875 	return (ret);
11876 }
11877 
11878 /*
11879  * Queue data on tcp_rcv_list which is a b_next chain.
11880  * tcp_rcv_last_head/tail is the last element of this chain.
11881  * Each element of the chain is a b_cont chain.
11882  *
11883  * M_DATA messages are added to the current element.
11884  * Other messages are added as new (b_next) elements.
11885  */
11886 static void
11887 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11888 {
11889 	ASSERT(seg_len == msgdsize(mp));
11890 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11891 
11892 	if (tcp->tcp_rcv_list == NULL) {
11893 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11894 		tcp->tcp_rcv_list = mp;
11895 		tcp->tcp_rcv_last_head = mp;
11896 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11897 		tcp->tcp_rcv_last_tail->b_cont = mp;
11898 	} else {
11899 		tcp->tcp_rcv_last_head->b_next = mp;
11900 		tcp->tcp_rcv_last_head = mp;
11901 	}
11902 
11903 	while (mp->b_cont)
11904 		mp = mp->b_cont;
11905 
11906 	tcp->tcp_rcv_last_tail = mp;
11907 	tcp->tcp_rcv_cnt += seg_len;
11908 	tcp->tcp_rwnd -= seg_len;
11909 }
11910 
11911 /*
11912  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11913  *
11914  * This is the default entry function into TCP on the read side. TCP is
11915  * always entered via squeue i.e. using squeue's for mutual exclusion.
11916  * When classifier does a lookup to find the tcp, it also puts a reference
11917  * on the conn structure associated so the tcp is guaranteed to exist
11918  * when we come here. We still need to check the state because it might
11919  * as well has been closed. The squeue processing function i.e. squeue_enter,
11920  * squeue_enter_nodrain, or squeue_drain is responsible for doing the
11921  * CONN_DEC_REF.
11922  *
11923  * Apart from the default entry point, IP also sends packets directly to
11924  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11925  * connections.
11926  */
11927 void
11928 tcp_input(void *arg, mblk_t *mp, void *arg2)
11929 {
11930 	conn_t	*connp = (conn_t *)arg;
11931 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11932 
11933 	/* arg2 is the sqp */
11934 	ASSERT(arg2 != NULL);
11935 	ASSERT(mp != NULL);
11936 
11937 	/*
11938 	 * Don't accept any input on a closed tcp as this TCP logically does
11939 	 * not exist on the system. Don't proceed further with this TCP.
11940 	 * For eg. this packet could trigger another close of this tcp
11941 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11942 	 * tcp_clean_death / tcp_closei_local must be called at most once
11943 	 * on a TCP. In this case we need to refeed the packet into the
11944 	 * classifier and figure out where the packet should go. Need to
11945 	 * preserve the recv_ill somehow. Until we figure that out, for
11946 	 * now just drop the packet if we can't classify the packet.
11947 	 */
11948 	if (tcp->tcp_state == TCPS_CLOSED ||
11949 	    tcp->tcp_state == TCPS_BOUND) {
11950 		conn_t	*new_connp;
11951 
11952 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
11953 		if (new_connp != NULL) {
11954 			tcp_reinput(new_connp, mp, arg2);
11955 			return;
11956 		}
11957 		/* We failed to classify. For now just drop the packet */
11958 		freemsg(mp);
11959 		return;
11960 	}
11961 
11962 	if (DB_TYPE(mp) == M_DATA)
11963 		tcp_rput_data(connp, mp, arg2);
11964 	else
11965 		tcp_rput_common(tcp, mp);
11966 }
11967 
11968 /*
11969  * The read side put procedure.
11970  * The packets passed up by ip are assume to be aligned according to
11971  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11972  */
11973 static void
11974 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11975 {
11976 	/*
11977 	 * tcp_rput_data() does not expect M_CTL except for the case
11978 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11979 	 * type. Need to make sure that any other M_CTLs don't make
11980 	 * it to tcp_rput_data since it is not expecting any and doesn't
11981 	 * check for it.
11982 	 */
11983 	if (DB_TYPE(mp) == M_CTL) {
11984 		switch (*(uint32_t *)(mp->b_rptr)) {
11985 		case TCP_IOC_ABORT_CONN:
11986 			/*
11987 			 * Handle connection abort request.
11988 			 */
11989 			tcp_ioctl_abort_handler(tcp, mp);
11990 			return;
11991 		case IPSEC_IN:
11992 			/*
11993 			 * Only secure icmp arrive in TCP and they
11994 			 * don't go through data path.
11995 			 */
11996 			tcp_icmp_error(tcp, mp);
11997 			return;
11998 		case IN_PKTINFO:
11999 			/*
12000 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
12001 			 * sockets that are receiving IPv4 traffic. tcp
12002 			 */
12003 			ASSERT(tcp->tcp_family == AF_INET6);
12004 			ASSERT(tcp->tcp_ipv6_recvancillary &
12005 			    TCP_IPV6_RECVPKTINFO);
12006 			tcp_rput_data(tcp->tcp_connp, mp,
12007 			    tcp->tcp_connp->conn_sqp);
12008 			return;
12009 		case MDT_IOC_INFO_UPDATE:
12010 			/*
12011 			 * Handle Multidata information update; the
12012 			 * following routine will free the message.
12013 			 */
12014 			if (tcp->tcp_connp->conn_mdt_ok) {
12015 				tcp_mdt_update(tcp,
12016 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
12017 				    B_FALSE);
12018 			}
12019 			freemsg(mp);
12020 			return;
12021 		default:
12022 			break;
12023 		}
12024 	}
12025 
12026 	/* No point processing the message if tcp is already closed */
12027 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
12028 		freemsg(mp);
12029 		return;
12030 	}
12031 
12032 	tcp_rput_other(tcp, mp);
12033 }
12034 
12035 
12036 /* The minimum of smoothed mean deviation in RTO calculation. */
12037 #define	TCP_SD_MIN	400
12038 
12039 /*
12040  * Set RTO for this connection.  The formula is from Jacobson and Karels'
12041  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
12042  * are the same as those in Appendix A.2 of that paper.
12043  *
12044  * m = new measurement
12045  * sa = smoothed RTT average (8 * average estimates).
12046  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
12047  */
12048 static void
12049 tcp_set_rto(tcp_t *tcp, clock_t rtt)
12050 {
12051 	long m = TICK_TO_MSEC(rtt);
12052 	clock_t sa = tcp->tcp_rtt_sa;
12053 	clock_t sv = tcp->tcp_rtt_sd;
12054 	clock_t rto;
12055 
12056 	BUMP_MIB(&tcp_mib, tcpRttUpdate);
12057 	tcp->tcp_rtt_update++;
12058 
12059 	/* tcp_rtt_sa is not 0 means this is a new sample. */
12060 	if (sa != 0) {
12061 		/*
12062 		 * Update average estimator:
12063 		 *	new rtt = 7/8 old rtt + 1/8 Error
12064 		 */
12065 
12066 		/* m is now Error in estimate. */
12067 		m -= sa >> 3;
12068 		if ((sa += m) <= 0) {
12069 			/*
12070 			 * Don't allow the smoothed average to be negative.
12071 			 * We use 0 to denote reinitialization of the
12072 			 * variables.
12073 			 */
12074 			sa = 1;
12075 		}
12076 
12077 		/*
12078 		 * Update deviation estimator:
12079 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
12080 		 */
12081 		if (m < 0)
12082 			m = -m;
12083 		m -= sv >> 2;
12084 		sv += m;
12085 	} else {
12086 		/*
12087 		 * This follows BSD's implementation.  So the reinitialized
12088 		 * RTO is 3 * m.  We cannot go less than 2 because if the
12089 		 * link is bandwidth dominated, doubling the window size
12090 		 * during slow start means doubling the RTT.  We want to be
12091 		 * more conservative when we reinitialize our estimates.  3
12092 		 * is just a convenient number.
12093 		 */
12094 		sa = m << 3;
12095 		sv = m << 1;
12096 	}
12097 	if (sv < TCP_SD_MIN) {
12098 		/*
12099 		 * We do not know that if sa captures the delay ACK
12100 		 * effect as in a long train of segments, a receiver
12101 		 * does not delay its ACKs.  So set the minimum of sv
12102 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
12103 		 * of BSD DATO.  That means the minimum of mean
12104 		 * deviation is 100 ms.
12105 		 *
12106 		 */
12107 		sv = TCP_SD_MIN;
12108 	}
12109 	tcp->tcp_rtt_sa = sa;
12110 	tcp->tcp_rtt_sd = sv;
12111 	/*
12112 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
12113 	 *
12114 	 * Add tcp_rexmit_interval extra in case of extreme environment
12115 	 * where the algorithm fails to work.  The default value of
12116 	 * tcp_rexmit_interval_extra should be 0.
12117 	 *
12118 	 * As we use a finer grained clock than BSD and update
12119 	 * RTO for every ACKs, add in another .25 of RTT to the
12120 	 * deviation of RTO to accomodate burstiness of 1/4 of
12121 	 * window size.
12122 	 */
12123 	rto = (sa >> 3) + sv + tcp_rexmit_interval_extra + (sa >> 5);
12124 
12125 	if (rto > tcp_rexmit_interval_max) {
12126 		tcp->tcp_rto = tcp_rexmit_interval_max;
12127 	} else if (rto < tcp_rexmit_interval_min) {
12128 		tcp->tcp_rto = tcp_rexmit_interval_min;
12129 	} else {
12130 		tcp->tcp_rto = rto;
12131 	}
12132 
12133 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
12134 	tcp->tcp_timer_backoff = 0;
12135 }
12136 
12137 /*
12138  * tcp_get_seg_mp() is called to get the pointer to a segment in the
12139  * send queue which starts at the given seq. no.
12140  *
12141  * Parameters:
12142  *	tcp_t *tcp: the tcp instance pointer.
12143  *	uint32_t seq: the starting seq. no of the requested segment.
12144  *	int32_t *off: after the execution, *off will be the offset to
12145  *		the returned mblk which points to the requested seq no.
12146  *		It is the caller's responsibility to send in a non-null off.
12147  *
12148  * Return:
12149  *	A mblk_t pointer pointing to the requested segment in send queue.
12150  */
12151 static mblk_t *
12152 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
12153 {
12154 	int32_t	cnt;
12155 	mblk_t	*mp;
12156 
12157 	/* Defensive coding.  Make sure we don't send incorrect data. */
12158 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
12159 		return (NULL);
12160 
12161 	cnt = seq - tcp->tcp_suna;
12162 	mp = tcp->tcp_xmit_head;
12163 	while (cnt > 0 && mp != NULL) {
12164 		cnt -= mp->b_wptr - mp->b_rptr;
12165 		if (cnt < 0) {
12166 			cnt += mp->b_wptr - mp->b_rptr;
12167 			break;
12168 		}
12169 		mp = mp->b_cont;
12170 	}
12171 	ASSERT(mp != NULL);
12172 	*off = cnt;
12173 	return (mp);
12174 }
12175 
12176 /*
12177  * This function handles all retransmissions if SACK is enabled for this
12178  * connection.  First it calculates how many segments can be retransmitted
12179  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
12180  * segments.  A segment is eligible if sack_cnt for that segment is greater
12181  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
12182  * all eligible segments, it checks to see if TCP can send some new segments
12183  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
12184  *
12185  * Parameters:
12186  *	tcp_t *tcp: the tcp structure of the connection.
12187  *	uint_t *flags: in return, appropriate value will be set for
12188  *	tcp_rput_data().
12189  */
12190 static void
12191 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
12192 {
12193 	notsack_blk_t	*notsack_blk;
12194 	int32_t		usable_swnd;
12195 	int32_t		mss;
12196 	uint32_t	seg_len;
12197 	mblk_t		*xmit_mp;
12198 
12199 	ASSERT(tcp->tcp_sack_info != NULL);
12200 	ASSERT(tcp->tcp_notsack_list != NULL);
12201 	ASSERT(tcp->tcp_rexmit == B_FALSE);
12202 
12203 	/* Defensive coding in case there is a bug... */
12204 	if (tcp->tcp_notsack_list == NULL) {
12205 		return;
12206 	}
12207 	notsack_blk = tcp->tcp_notsack_list;
12208 	mss = tcp->tcp_mss;
12209 
12210 	/*
12211 	 * Limit the num of outstanding data in the network to be
12212 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
12213 	 */
12214 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12215 
12216 	/* At least retransmit 1 MSS of data. */
12217 	if (usable_swnd <= 0) {
12218 		usable_swnd = mss;
12219 	}
12220 
12221 	/* Make sure no new RTT samples will be taken. */
12222 	tcp->tcp_csuna = tcp->tcp_snxt;
12223 
12224 	notsack_blk = tcp->tcp_notsack_list;
12225 	while (usable_swnd > 0) {
12226 		mblk_t		*snxt_mp, *tmp_mp;
12227 		tcp_seq		begin = tcp->tcp_sack_snxt;
12228 		tcp_seq		end;
12229 		int32_t		off;
12230 
12231 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
12232 			if (SEQ_GT(notsack_blk->end, begin) &&
12233 			    (notsack_blk->sack_cnt >=
12234 			    tcp_dupack_fast_retransmit)) {
12235 				end = notsack_blk->end;
12236 				if (SEQ_LT(begin, notsack_blk->begin)) {
12237 					begin = notsack_blk->begin;
12238 				}
12239 				break;
12240 			}
12241 		}
12242 		/*
12243 		 * All holes are filled.  Manipulate tcp_cwnd to send more
12244 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
12245 		 * set to tcp_cwnd_ssthresh.
12246 		 */
12247 		if (notsack_blk == NULL) {
12248 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
12249 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
12250 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
12251 				ASSERT(tcp->tcp_cwnd > 0);
12252 				return;
12253 			} else {
12254 				usable_swnd = usable_swnd / mss;
12255 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
12256 				    MAX(usable_swnd * mss, mss);
12257 				*flags |= TH_XMIT_NEEDED;
12258 				return;
12259 			}
12260 		}
12261 
12262 		/*
12263 		 * Note that we may send more than usable_swnd allows here
12264 		 * because of round off, but no more than 1 MSS of data.
12265 		 */
12266 		seg_len = end - begin;
12267 		if (seg_len > mss)
12268 			seg_len = mss;
12269 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
12270 		ASSERT(snxt_mp != NULL);
12271 		/* This should not happen.  Defensive coding again... */
12272 		if (snxt_mp == NULL) {
12273 			return;
12274 		}
12275 
12276 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
12277 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
12278 		if (xmit_mp == NULL)
12279 			return;
12280 
12281 		usable_swnd -= seg_len;
12282 		tcp->tcp_pipe += seg_len;
12283 		tcp->tcp_sack_snxt = begin + seg_len;
12284 		TCP_RECORD_TRACE(tcp, xmit_mp, TCP_TRACE_SEND_PKT);
12285 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12286 
12287 		/*
12288 		 * Update the send timestamp to avoid false retransmission.
12289 		 */
12290 		snxt_mp->b_prev = (mblk_t *)lbolt;
12291 
12292 		BUMP_MIB(&tcp_mib, tcpRetransSegs);
12293 		UPDATE_MIB(&tcp_mib, tcpRetransBytes, seg_len);
12294 		BUMP_MIB(&tcp_mib, tcpOutSackRetransSegs);
12295 		/*
12296 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
12297 		 * This happens when new data sent during fast recovery is
12298 		 * also lost.  If TCP retransmits those new data, it needs
12299 		 * to extend SACK recover phase to avoid starting another
12300 		 * fast retransmit/recovery unnecessarily.
12301 		 */
12302 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
12303 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
12304 		}
12305 	}
12306 }
12307 
12308 /*
12309  * This function handles policy checking at TCP level for non-hard_bound/
12310  * detached connections.
12311  */
12312 static boolean_t
12313 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
12314     boolean_t secure, boolean_t mctl_present)
12315 {
12316 	ipsec_latch_t *ipl = NULL;
12317 	ipsec_action_t *act = NULL;
12318 	mblk_t *data_mp;
12319 	ipsec_in_t *ii;
12320 	const char *reason;
12321 	kstat_named_t *counter;
12322 
12323 	ASSERT(mctl_present || !secure);
12324 
12325 	ASSERT((ipha == NULL && ip6h != NULL) ||
12326 	    (ip6h == NULL && ipha != NULL));
12327 
12328 	/*
12329 	 * We don't necessarily have an ipsec_in_act action to verify
12330 	 * policy because of assymetrical policy where we have only
12331 	 * outbound policy and no inbound policy (possible with global
12332 	 * policy).
12333 	 */
12334 	if (!secure) {
12335 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
12336 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
12337 			return (B_TRUE);
12338 		ipsec_log_policy_failure(tcp->tcp_wq, IPSEC_POLICY_MISMATCH,
12339 		    "tcp_check_policy", ipha, ip6h, secure);
12340 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12341 		    &ipdrops_tcp_clear, &tcp_dropper);
12342 		return (B_FALSE);
12343 	}
12344 
12345 	/*
12346 	 * We have a secure packet.
12347 	 */
12348 	if (act == NULL) {
12349 		ipsec_log_policy_failure(tcp->tcp_wq,
12350 		    IPSEC_POLICY_NOT_NEEDED, "tcp_check_policy", ipha, ip6h,
12351 		    secure);
12352 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
12353 		    &ipdrops_tcp_secure, &tcp_dropper);
12354 		return (B_FALSE);
12355 	}
12356 
12357 	/*
12358 	 * XXX This whole routine is currently incorrect.  ipl should
12359 	 * be set to the latch pointer, but is currently not set, so
12360 	 * we initialize it to NULL to avoid picking up random garbage.
12361 	 */
12362 	if (ipl == NULL)
12363 		return (B_TRUE);
12364 
12365 	data_mp = first_mp->b_cont;
12366 
12367 	ii = (ipsec_in_t *)first_mp->b_rptr;
12368 
12369 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
12370 	    &counter)) {
12371 		BUMP_MIB(&ip_mib, ipsecInSucceeded);
12372 		return (B_TRUE);
12373 	}
12374 	(void) strlog(TCP_MODULE_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
12375 	    "tcp inbound policy mismatch: %s, packet dropped\n",
12376 	    reason);
12377 	BUMP_MIB(&ip_mib, ipsecInFailed);
12378 
12379 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter, &tcp_dropper);
12380 	return (B_FALSE);
12381 }
12382 
12383 /*
12384  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
12385  * retransmission after a timeout.
12386  *
12387  * To limit the number of duplicate segments, we limit the number of segment
12388  * to be sent in one time to tcp_snd_burst, the burst variable.
12389  */
12390 static void
12391 tcp_ss_rexmit(tcp_t *tcp)
12392 {
12393 	uint32_t	snxt;
12394 	uint32_t	smax;
12395 	int32_t		win;
12396 	int32_t		mss;
12397 	int32_t		off;
12398 	int32_t		burst = tcp->tcp_snd_burst;
12399 	mblk_t		*snxt_mp;
12400 
12401 	/*
12402 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
12403 	 * all unack'ed segments.
12404 	 */
12405 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
12406 		smax = tcp->tcp_rexmit_max;
12407 		snxt = tcp->tcp_rexmit_nxt;
12408 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
12409 			snxt = tcp->tcp_suna;
12410 		}
12411 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12412 		win -= snxt - tcp->tcp_suna;
12413 		mss = tcp->tcp_mss;
12414 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12415 
12416 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12417 		    (burst > 0) && (snxt_mp != NULL)) {
12418 			mblk_t	*xmit_mp;
12419 			mblk_t	*old_snxt_mp = snxt_mp;
12420 			uint32_t cnt = mss;
12421 
12422 			if (win < cnt) {
12423 				cnt = win;
12424 			}
12425 			if (SEQ_GT(snxt + cnt, smax)) {
12426 				cnt = smax - snxt;
12427 			}
12428 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12429 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12430 			if (xmit_mp == NULL)
12431 				return;
12432 
12433 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12434 
12435 			snxt += cnt;
12436 			win -= cnt;
12437 			/*
12438 			 * Update the send timestamp to avoid false
12439 			 * retransmission.
12440 			 */
12441 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12442 			BUMP_MIB(&tcp_mib, tcpRetransSegs);
12443 			UPDATE_MIB(&tcp_mib, tcpRetransBytes, cnt);
12444 
12445 			tcp->tcp_rexmit_nxt = snxt;
12446 			burst--;
12447 		}
12448 		/*
12449 		 * If we have transmitted all we have at the time
12450 		 * we started the retranmission, we can leave
12451 		 * the rest of the job to tcp_wput_data().  But we
12452 		 * need to check the send window first.  If the
12453 		 * win is not 0, go on with tcp_wput_data().
12454 		 */
12455 		if (SEQ_LT(snxt, smax) || win == 0) {
12456 			return;
12457 		}
12458 	}
12459 	/* Only call tcp_wput_data() if there is data to be sent. */
12460 	if (tcp->tcp_unsent) {
12461 		tcp_wput_data(tcp, NULL, B_FALSE);
12462 	}
12463 }
12464 
12465 /*
12466  * Process all TCP option in SYN segment.  Note that this function should
12467  * be called after tcp_adapt_ire() is called so that the necessary info
12468  * from IRE is already set in the tcp structure.
12469  *
12470  * This function sets up the correct tcp_mss value according to the
12471  * MSS option value and our header size.  It also sets up the window scale
12472  * and timestamp values, and initialize SACK info blocks.  But it does not
12473  * change receive window size after setting the tcp_mss value.  The caller
12474  * should do the appropriate change.
12475  */
12476 void
12477 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12478 {
12479 	int options;
12480 	tcp_opt_t tcpopt;
12481 	uint32_t mss_max;
12482 	char *tmp_tcph;
12483 
12484 	tcpopt.tcp = NULL;
12485 	options = tcp_parse_options(tcph, &tcpopt);
12486 
12487 	/*
12488 	 * Process MSS option.  Note that MSS option value does not account
12489 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12490 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12491 	 * IPv6.
12492 	 */
12493 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12494 		if (tcp->tcp_ipversion == IPV4_VERSION)
12495 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv4;
12496 		else
12497 			tcpopt.tcp_opt_mss = tcp_mss_def_ipv6;
12498 	} else {
12499 		if (tcp->tcp_ipversion == IPV4_VERSION)
12500 			mss_max = tcp_mss_max_ipv4;
12501 		else
12502 			mss_max = tcp_mss_max_ipv6;
12503 		if (tcpopt.tcp_opt_mss < tcp_mss_min)
12504 			tcpopt.tcp_opt_mss = tcp_mss_min;
12505 		else if (tcpopt.tcp_opt_mss > mss_max)
12506 			tcpopt.tcp_opt_mss = mss_max;
12507 	}
12508 
12509 	/* Process Window Scale option. */
12510 	if (options & TCP_OPT_WSCALE_PRESENT) {
12511 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12512 		tcp->tcp_snd_ws_ok = B_TRUE;
12513 	} else {
12514 		tcp->tcp_snd_ws = B_FALSE;
12515 		tcp->tcp_snd_ws_ok = B_FALSE;
12516 		tcp->tcp_rcv_ws = B_FALSE;
12517 	}
12518 
12519 	/* Process Timestamp option. */
12520 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12521 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12522 		tmp_tcph = (char *)tcp->tcp_tcph;
12523 
12524 		tcp->tcp_snd_ts_ok = B_TRUE;
12525 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12526 		tcp->tcp_last_rcv_lbolt = lbolt64;
12527 		ASSERT(OK_32PTR(tmp_tcph));
12528 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12529 
12530 		/* Fill in our template header with basic timestamp option. */
12531 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12532 		tmp_tcph[0] = TCPOPT_NOP;
12533 		tmp_tcph[1] = TCPOPT_NOP;
12534 		tmp_tcph[2] = TCPOPT_TSTAMP;
12535 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12536 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12537 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12538 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12539 	} else {
12540 		tcp->tcp_snd_ts_ok = B_FALSE;
12541 	}
12542 
12543 	/*
12544 	 * Process SACK options.  If SACK is enabled for this connection,
12545 	 * then allocate the SACK info structure.  Note the following ways
12546 	 * when tcp_snd_sack_ok is set to true.
12547 	 *
12548 	 * For active connection: in tcp_adapt_ire() called in
12549 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12550 	 * is checked.
12551 	 *
12552 	 * For passive connection: in tcp_adapt_ire() called in
12553 	 * tcp_accept_comm().
12554 	 *
12555 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12556 	 * That check makes sure that if we did not send a SACK OK option,
12557 	 * we will not enable SACK for this connection even though the other
12558 	 * side sends us SACK OK option.  For active connection, the SACK
12559 	 * info structure has already been allocated.  So we need to free
12560 	 * it if SACK is disabled.
12561 	 */
12562 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12563 	    (tcp->tcp_snd_sack_ok ||
12564 	    (tcp_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12565 		/* This should be true only in the passive case. */
12566 		if (tcp->tcp_sack_info == NULL) {
12567 			ASSERT(TCP_IS_DETACHED(tcp));
12568 			tcp->tcp_sack_info =
12569 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12570 		}
12571 		if (tcp->tcp_sack_info == NULL) {
12572 			tcp->tcp_snd_sack_ok = B_FALSE;
12573 		} else {
12574 			tcp->tcp_snd_sack_ok = B_TRUE;
12575 			if (tcp->tcp_snd_ts_ok) {
12576 				tcp->tcp_max_sack_blk = 3;
12577 			} else {
12578 				tcp->tcp_max_sack_blk = 4;
12579 			}
12580 		}
12581 	} else {
12582 		/*
12583 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12584 		 * no SACK info will be used for this
12585 		 * connection.  This assumes that SACK usage
12586 		 * permission is negotiated.  This may need
12587 		 * to be changed once this is clarified.
12588 		 */
12589 		if (tcp->tcp_sack_info != NULL) {
12590 			kmem_cache_free(tcp_sack_info_cache,
12591 			    tcp->tcp_sack_info);
12592 			tcp->tcp_sack_info = NULL;
12593 		}
12594 		tcp->tcp_snd_sack_ok = B_FALSE;
12595 	}
12596 
12597 	/*
12598 	 * Now we know the exact TCP/IP header length, subtract
12599 	 * that from tcp_mss to get our side's MSS.
12600 	 */
12601 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12602 	/*
12603 	 * Here we assume that the other side's header size will be equal to
12604 	 * our header size.  We calculate the real MSS accordingly.  Need to
12605 	 * take into additional stuffs IPsec puts in.
12606 	 *
12607 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12608 	 */
12609 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12610 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12611 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12612 
12613 	/*
12614 	 * Set MSS to the smaller one of both ends of the connection.
12615 	 * We should not have called tcp_mss_set() before, but our
12616 	 * side of the MSS should have been set to a proper value
12617 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12618 	 * STREAM head parameters properly.
12619 	 *
12620 	 * If we have a larger-than-16-bit window but the other side
12621 	 * didn't want to do window scale, tcp_rwnd_set() will take
12622 	 * care of that.
12623 	 */
12624 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss));
12625 }
12626 
12627 /*
12628  * Sends the T_CONN_IND to the listener. The caller calls this
12629  * functions via squeue to get inside the listener's perimeter
12630  * once the 3 way hand shake is done a T_CONN_IND needs to be
12631  * sent. As an optimization, the caller can call this directly
12632  * if listener's perimeter is same as eager's.
12633  */
12634 /* ARGSUSED */
12635 void
12636 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12637 {
12638 	conn_t			*lconnp = (conn_t *)arg;
12639 	tcp_t			*listener = lconnp->conn_tcp;
12640 	tcp_t			*tcp;
12641 	struct T_conn_ind	*conn_ind;
12642 	ipaddr_t 		*addr_cache;
12643 	boolean_t		need_send_conn_ind = B_FALSE;
12644 
12645 	/* retrieve the eager */
12646 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12647 	ASSERT(conn_ind->OPT_offset != 0 &&
12648 	    conn_ind->OPT_length == sizeof (intptr_t));
12649 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12650 		conn_ind->OPT_length);
12651 
12652 	/*
12653 	 * TLI/XTI applications will get confused by
12654 	 * sending eager as an option since it violates
12655 	 * the option semantics. So remove the eager as
12656 	 * option since TLI/XTI app doesn't need it anyway.
12657 	 */
12658 	if (!TCP_IS_SOCKET(listener)) {
12659 		conn_ind->OPT_length = 0;
12660 		conn_ind->OPT_offset = 0;
12661 	}
12662 	if (listener->tcp_state == TCPS_CLOSED ||
12663 	    TCP_IS_DETACHED(listener)) {
12664 		/*
12665 		 * If listener has closed, it would have caused a
12666 		 * a cleanup/blowoff to happen for the eager. We
12667 		 * just need to return.
12668 		 */
12669 		freemsg(mp);
12670 		return;
12671 	}
12672 
12673 
12674 	/*
12675 	 * if the conn_req_q is full defer passing up the
12676 	 * T_CONN_IND until space is availabe after t_accept()
12677 	 * processing
12678 	 */
12679 	mutex_enter(&listener->tcp_eager_lock);
12680 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12681 		tcp_t *tail;
12682 
12683 		/*
12684 		 * The eager already has an extra ref put in tcp_rput_data
12685 		 * so that it stays till accept comes back even though it
12686 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12687 		 */
12688 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12689 		listener->tcp_conn_req_cnt_q0--;
12690 		listener->tcp_conn_req_cnt_q++;
12691 
12692 		/* Move from SYN_RCVD to ESTABLISHED list  */
12693 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12694 		    tcp->tcp_eager_prev_q0;
12695 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12696 		    tcp->tcp_eager_next_q0;
12697 		tcp->tcp_eager_prev_q0 = NULL;
12698 		tcp->tcp_eager_next_q0 = NULL;
12699 
12700 		/*
12701 		 * Insert at end of the queue because sockfs
12702 		 * sends down T_CONN_RES in chronological
12703 		 * order. Leaving the older conn indications
12704 		 * at front of the queue helps reducing search
12705 		 * time.
12706 		 */
12707 		tail = listener->tcp_eager_last_q;
12708 		if (tail != NULL)
12709 			tail->tcp_eager_next_q = tcp;
12710 		else
12711 			listener->tcp_eager_next_q = tcp;
12712 		listener->tcp_eager_last_q = tcp;
12713 		tcp->tcp_eager_next_q = NULL;
12714 		/*
12715 		 * Delay sending up the T_conn_ind until we are
12716 		 * done with the eager. Once we have have sent up
12717 		 * the T_conn_ind, the accept can potentially complete
12718 		 * any time and release the refhold we have on the eager.
12719 		 */
12720 		need_send_conn_ind = B_TRUE;
12721 	} else {
12722 		/*
12723 		 * Defer connection on q0 and set deferred
12724 		 * connection bit true
12725 		 */
12726 		tcp->tcp_conn_def_q0 = B_TRUE;
12727 
12728 		/* take tcp out of q0 ... */
12729 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12730 		    tcp->tcp_eager_next_q0;
12731 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12732 		    tcp->tcp_eager_prev_q0;
12733 
12734 		/* ... and place it at the end of q0 */
12735 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12736 		tcp->tcp_eager_next_q0 = listener;
12737 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12738 		listener->tcp_eager_prev_q0 = tcp;
12739 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12740 	}
12741 
12742 	/* we have timed out before */
12743 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12744 		tcp->tcp_syn_rcvd_timeout = 0;
12745 		listener->tcp_syn_rcvd_timeout--;
12746 		if (listener->tcp_syn_defense &&
12747 		    listener->tcp_syn_rcvd_timeout <=
12748 		    (tcp_conn_req_max_q0 >> 5) &&
12749 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12750 			listener->tcp_last_rcv_lbolt)) {
12751 			/*
12752 			 * Turn off the defense mode if we
12753 			 * believe the SYN attack is over.
12754 			 */
12755 			listener->tcp_syn_defense = B_FALSE;
12756 			if (listener->tcp_ip_addr_cache) {
12757 				kmem_free((void *)listener->tcp_ip_addr_cache,
12758 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12759 				listener->tcp_ip_addr_cache = NULL;
12760 			}
12761 		}
12762 	}
12763 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12764 	if (addr_cache != NULL) {
12765 		/*
12766 		 * We have finished a 3-way handshake with this
12767 		 * remote host. This proves the IP addr is good.
12768 		 * Cache it!
12769 		 */
12770 		addr_cache[IP_ADDR_CACHE_HASH(
12771 			tcp->tcp_remote)] = tcp->tcp_remote;
12772 	}
12773 	mutex_exit(&listener->tcp_eager_lock);
12774 	if (need_send_conn_ind)
12775 		putnext(listener->tcp_rq, mp);
12776 }
12777 
12778 mblk_t *
12779 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12780     uint_t *ifindexp, ip6_pkt_t *ippp)
12781 {
12782 	in_pktinfo_t	*pinfo;
12783 	ip6_t		*ip6h;
12784 	uchar_t		*rptr;
12785 	mblk_t		*first_mp = mp;
12786 	boolean_t	mctl_present = B_FALSE;
12787 	uint_t 		ifindex = 0;
12788 	ip6_pkt_t	ipp;
12789 	uint_t		ipvers;
12790 	uint_t		ip_hdr_len;
12791 
12792 	rptr = mp->b_rptr;
12793 	ASSERT(OK_32PTR(rptr));
12794 	ASSERT(tcp != NULL);
12795 	ipp.ipp_fields = 0;
12796 
12797 	switch DB_TYPE(mp) {
12798 	case M_CTL:
12799 		mp = mp->b_cont;
12800 		if (mp == NULL) {
12801 			freemsg(first_mp);
12802 			return (NULL);
12803 		}
12804 		if (DB_TYPE(mp) != M_DATA) {
12805 			freemsg(first_mp);
12806 			return (NULL);
12807 		}
12808 		mctl_present = B_TRUE;
12809 		break;
12810 	case M_DATA:
12811 		break;
12812 	default:
12813 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12814 		freemsg(mp);
12815 		return (NULL);
12816 	}
12817 	ipvers = IPH_HDR_VERSION(rptr);
12818 	if (ipvers == IPV4_VERSION) {
12819 		if (tcp == NULL) {
12820 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12821 			goto done;
12822 		}
12823 
12824 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12825 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12826 
12827 		/*
12828 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12829 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12830 		 */
12831 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12832 		    mctl_present) {
12833 			pinfo = (in_pktinfo_t *)first_mp->b_rptr;
12834 			if ((MBLKL(first_mp) == sizeof (in_pktinfo_t)) &&
12835 			    (pinfo->in_pkt_ulp_type == IN_PKTINFO) &&
12836 			    (pinfo->in_pkt_flags & IPF_RECVIF)) {
12837 				ipp.ipp_fields |= IPPF_IFINDEX;
12838 				ipp.ipp_ifindex = pinfo->in_pkt_ifindex;
12839 				ifindex = pinfo->in_pkt_ifindex;
12840 			}
12841 			freeb(first_mp);
12842 			mctl_present = B_FALSE;
12843 		}
12844 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12845 	} else {
12846 		ip6h = (ip6_t *)rptr;
12847 
12848 		ASSERT(ipvers == IPV6_VERSION);
12849 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12850 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12851 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12852 
12853 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12854 			uint8_t	nexthdrp;
12855 
12856 			/* Look for ifindex information */
12857 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12858 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12859 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12860 					BUMP_MIB(&ip_mib, tcpInErrs);
12861 					freemsg(first_mp);
12862 					return (NULL);
12863 				}
12864 
12865 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12866 					ASSERT(ip6i->ip6i_ifindex != 0);
12867 					ipp.ipp_fields |= IPPF_IFINDEX;
12868 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12869 					ifindex = ip6i->ip6i_ifindex;
12870 				}
12871 				rptr = (uchar_t *)&ip6i[1];
12872 				mp->b_rptr = rptr;
12873 				if (rptr == mp->b_wptr) {
12874 					mblk_t *mp1;
12875 					mp1 = mp->b_cont;
12876 					freeb(mp);
12877 					mp = mp1;
12878 					rptr = mp->b_rptr;
12879 				}
12880 				if (MBLKL(mp) < IPV6_HDR_LEN +
12881 				    sizeof (tcph_t)) {
12882 					BUMP_MIB(&ip_mib, tcpInErrs);
12883 					freemsg(first_mp);
12884 					return (NULL);
12885 				}
12886 				ip6h = (ip6_t *)rptr;
12887 			}
12888 
12889 			/*
12890 			 * Find any potentially interesting extension headers
12891 			 * as well as the length of the IPv6 + extension
12892 			 * headers.
12893 			 */
12894 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12895 			/* Verify if this is a TCP packet */
12896 			if (nexthdrp != IPPROTO_TCP) {
12897 				BUMP_MIB(&ip_mib, tcpInErrs);
12898 				freemsg(first_mp);
12899 				return (NULL);
12900 			}
12901 		} else {
12902 			ip_hdr_len = IPV6_HDR_LEN;
12903 		}
12904 	}
12905 
12906 done:
12907 	if (ipversp != NULL)
12908 		*ipversp = ipvers;
12909 	if (ip_hdr_lenp != NULL)
12910 		*ip_hdr_lenp = ip_hdr_len;
12911 	if (ippp != NULL)
12912 		*ippp = ipp;
12913 	if (ifindexp != NULL)
12914 		*ifindexp = ifindex;
12915 	if (mctl_present) {
12916 		freeb(first_mp);
12917 	}
12918 	return (mp);
12919 }
12920 
12921 /*
12922  * Handle M_DATA messages from IP. Its called directly from IP via
12923  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12924  * in this path.
12925  *
12926  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12927  * v4 and v6), we are called through tcp_input() and a M_CTL can
12928  * be present for options but tcp_find_pktinfo() deals with it. We
12929  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12930  *
12931  * The first argument is always the connp/tcp to which the mp belongs.
12932  * There are no exceptions to this rule. The caller has already put
12933  * a reference on this connp/tcp and once tcp_rput_data() returns,
12934  * the squeue will do the refrele.
12935  *
12936  * The TH_SYN for the listener directly go to tcp_conn_request via
12937  * squeue.
12938  *
12939  * sqp: NULL = recursive, sqp != NULL means called from squeue
12940  */
12941 void
12942 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12943 {
12944 	int32_t		bytes_acked;
12945 	int32_t		gap;
12946 	mblk_t		*mp1;
12947 	uint_t		flags;
12948 	uint32_t	new_swnd = 0;
12949 	uchar_t		*iphdr;
12950 	uchar_t		*rptr;
12951 	int32_t		rgap;
12952 	uint32_t	seg_ack;
12953 	int		seg_len;
12954 	uint_t		ip_hdr_len;
12955 	uint32_t	seg_seq;
12956 	tcph_t		*tcph;
12957 	int		urp;
12958 	tcp_opt_t	tcpopt;
12959 	uint_t		ipvers;
12960 	ip6_pkt_t	ipp;
12961 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12962 	uint32_t	cwnd;
12963 	uint32_t	add;
12964 	int		npkt;
12965 	int		mss;
12966 	conn_t		*connp = (conn_t *)arg;
12967 	squeue_t	*sqp = (squeue_t *)arg2;
12968 	tcp_t		*tcp = connp->conn_tcp;
12969 
12970 	/*
12971 	 * RST from fused tcp loopback peer should trigger an unfuse.
12972 	 */
12973 	if (tcp->tcp_fused) {
12974 		TCP_STAT(tcp_fusion_aborted);
12975 		tcp_unfuse(tcp);
12976 	}
12977 
12978 	iphdr = mp->b_rptr;
12979 	rptr = mp->b_rptr;
12980 	ASSERT(OK_32PTR(rptr));
12981 
12982 	/*
12983 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12984 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12985 	 * necessary information.
12986 	 */
12987 	if (IPCL_IS_TCP4(connp)) {
12988 		ipvers = IPV4_VERSION;
12989 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12990 	} else {
12991 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12992 		    NULL, &ipp);
12993 		if (mp == NULL) {
12994 			TCP_STAT(tcp_rput_v6_error);
12995 			return;
12996 		}
12997 		iphdr = mp->b_rptr;
12998 		rptr = mp->b_rptr;
12999 	}
13000 	ASSERT(DB_TYPE(mp) == M_DATA);
13001 
13002 	tcph = (tcph_t *)&rptr[ip_hdr_len];
13003 	seg_seq = ABE32_TO_U32(tcph->th_seq);
13004 	seg_ack = ABE32_TO_U32(tcph->th_ack);
13005 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
13006 	seg_len = (int)(mp->b_wptr - rptr) -
13007 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
13008 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
13009 		do {
13010 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
13011 			    (uintptr_t)INT_MAX);
13012 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
13013 		} while ((mp1 = mp1->b_cont) != NULL &&
13014 		    mp1->b_datap->db_type == M_DATA);
13015 	}
13016 
13017 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
13018 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
13019 		    seg_len, tcph);
13020 		return;
13021 	}
13022 
13023 	if (sqp != NULL) {
13024 		/*
13025 		 * This is the correct place to update tcp_last_recv_time. Note
13026 		 * that it is also updated for tcp structure that belongs to
13027 		 * global and listener queues which do not really need updating.
13028 		 * But that should not cause any harm.  And it is updated for
13029 		 * all kinds of incoming segments, not only for data segments.
13030 		 */
13031 		tcp->tcp_last_recv_time = lbolt;
13032 	}
13033 
13034 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
13035 
13036 	BUMP_LOCAL(tcp->tcp_ibsegs);
13037 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
13038 
13039 	if ((flags & TH_URG) && sqp != NULL) {
13040 		/*
13041 		 * TCP can't handle urgent pointers that arrive before
13042 		 * the connection has been accept()ed since it can't
13043 		 * buffer OOB data.  Discard segment if this happens.
13044 		 *
13045 		 * Nor can it reassemble urgent pointers, so discard
13046 		 * if it's not the next segment expected.
13047 		 *
13048 		 * Otherwise, collapse chain into one mblk (discard if
13049 		 * that fails).  This makes sure the headers, retransmitted
13050 		 * data, and new data all are in the same mblk.
13051 		 */
13052 		ASSERT(mp != NULL);
13053 		if (tcp->tcp_listener || !pullupmsg(mp, -1)) {
13054 			freemsg(mp);
13055 			return;
13056 		}
13057 		/* Update pointers into message */
13058 		iphdr = rptr = mp->b_rptr;
13059 		tcph = (tcph_t *)&rptr[ip_hdr_len];
13060 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
13061 			/*
13062 			 * Since we can't handle any data with this urgent
13063 			 * pointer that is out of sequence, we expunge
13064 			 * the data.  This allows us to still register
13065 			 * the urgent mark and generate the M_PCSIG,
13066 			 * which we can do.
13067 			 */
13068 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13069 			seg_len = 0;
13070 		}
13071 	}
13072 
13073 	switch (tcp->tcp_state) {
13074 	case TCPS_SYN_SENT:
13075 		if (flags & TH_ACK) {
13076 			/*
13077 			 * Note that our stack cannot send data before a
13078 			 * connection is established, therefore the
13079 			 * following check is valid.  Otherwise, it has
13080 			 * to be changed.
13081 			 */
13082 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
13083 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13084 				freemsg(mp);
13085 				if (flags & TH_RST)
13086 					return;
13087 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
13088 				    tcp, seg_ack, 0, TH_RST);
13089 				return;
13090 			}
13091 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
13092 		}
13093 		if (flags & TH_RST) {
13094 			freemsg(mp);
13095 			if (flags & TH_ACK)
13096 				(void) tcp_clean_death(tcp,
13097 				    ECONNREFUSED, 13);
13098 			return;
13099 		}
13100 		if (!(flags & TH_SYN)) {
13101 			freemsg(mp);
13102 			return;
13103 		}
13104 
13105 		/* Process all TCP options. */
13106 		tcp_process_options(tcp, tcph);
13107 		/*
13108 		 * The following changes our rwnd to be a multiple of the
13109 		 * MIN(peer MSS, our MSS) for performance reason.
13110 		 */
13111 		(void) tcp_rwnd_set(tcp, MSS_ROUNDUP(tcp->tcp_rq->q_hiwat,
13112 		    tcp->tcp_mss));
13113 
13114 		/* Is the other end ECN capable? */
13115 		if (tcp->tcp_ecn_ok) {
13116 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
13117 				tcp->tcp_ecn_ok = B_FALSE;
13118 			}
13119 		}
13120 		/*
13121 		 * Clear ECN flags because it may interfere with later
13122 		 * processing.
13123 		 */
13124 		flags &= ~(TH_ECE|TH_CWR);
13125 
13126 		tcp->tcp_irs = seg_seq;
13127 		tcp->tcp_rack = seg_seq;
13128 		tcp->tcp_rnxt = seg_seq + 1;
13129 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13130 		if (!TCP_IS_DETACHED(tcp)) {
13131 			/* Allocate room for SACK options if needed. */
13132 			if (tcp->tcp_snd_sack_ok) {
13133 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13134 				    tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
13135 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
13136 			} else {
13137 				(void) mi_set_sth_wroff(tcp->tcp_rq,
13138 				    tcp->tcp_hdr_len +
13139 				    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra));
13140 			}
13141 		}
13142 		if (flags & TH_ACK) {
13143 			/*
13144 			 * If we can't get the confirmation upstream, pretend
13145 			 * we didn't even see this one.
13146 			 *
13147 			 * XXX: how can we pretend we didn't see it if we
13148 			 * have updated rnxt et. al.
13149 			 *
13150 			 * For loopback we defer sending up the T_CONN_CON
13151 			 * until after some checks below.
13152 			 */
13153 			mp1 = NULL;
13154 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
13155 			    tcp->tcp_loopback ? &mp1 : NULL)) {
13156 				freemsg(mp);
13157 				return;
13158 			}
13159 			/* SYN was acked - making progress */
13160 			if (tcp->tcp_ipversion == IPV6_VERSION)
13161 				tcp->tcp_ip_forward_progress = B_TRUE;
13162 
13163 			/* One for the SYN */
13164 			tcp->tcp_suna = tcp->tcp_iss + 1;
13165 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13166 			tcp->tcp_state = TCPS_ESTABLISHED;
13167 
13168 			/*
13169 			 * If SYN was retransmitted, need to reset all
13170 			 * retransmission info.  This is because this
13171 			 * segment will be treated as a dup ACK.
13172 			 */
13173 			if (tcp->tcp_rexmit) {
13174 				tcp->tcp_rexmit = B_FALSE;
13175 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13176 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
13177 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
13178 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13179 				tcp->tcp_ms_we_have_waited = 0;
13180 
13181 				/*
13182 				 * Set tcp_cwnd back to 1 MSS, per
13183 				 * recommendation from
13184 				 * draft-floyd-incr-init-win-01.txt,
13185 				 * Increasing TCP's Initial Window.
13186 				 */
13187 				tcp->tcp_cwnd = tcp->tcp_mss;
13188 			}
13189 
13190 			tcp->tcp_swl1 = seg_seq;
13191 			tcp->tcp_swl2 = seg_ack;
13192 
13193 			new_swnd = BE16_TO_U16(tcph->th_win);
13194 			tcp->tcp_swnd = new_swnd;
13195 			if (new_swnd > tcp->tcp_max_swnd)
13196 				tcp->tcp_max_swnd = new_swnd;
13197 
13198 			/*
13199 			 * Always send the three-way handshake ack immediately
13200 			 * in order to make the connection complete as soon as
13201 			 * possible on the accepting host.
13202 			 */
13203 			flags |= TH_ACK_NEEDED;
13204 
13205 			/*
13206 			 * Special case for loopback.  At this point we have
13207 			 * received SYN-ACK from the remote endpoint.  In
13208 			 * order to ensure that both endpoints reach the
13209 			 * fused state prior to any data exchange, the final
13210 			 * ACK needs to be sent before we indicate T_CONN_CON
13211 			 * to the module upstream.
13212 			 */
13213 			if (tcp->tcp_loopback) {
13214 				mblk_t *ack_mp;
13215 
13216 				ASSERT(!tcp->tcp_unfusable);
13217 				ASSERT(mp1 != NULL);
13218 				/*
13219 				 * For loopback, we always get a pure SYN-ACK
13220 				 * and only need to send back the final ACK
13221 				 * with no data (this is because the other
13222 				 * tcp is ours and we don't do T/TCP).  This
13223 				 * final ACK triggers the passive side to
13224 				 * perform fusion in ESTABLISHED state.
13225 				 */
13226 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
13227 					if (tcp->tcp_ack_tid != 0) {
13228 						(void) TCP_TIMER_CANCEL(tcp,
13229 						    tcp->tcp_ack_tid);
13230 						tcp->tcp_ack_tid = 0;
13231 					}
13232 					TCP_RECORD_TRACE(tcp, ack_mp,
13233 					    TCP_TRACE_SEND_PKT);
13234 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
13235 					BUMP_LOCAL(tcp->tcp_obsegs);
13236 					BUMP_MIB(&tcp_mib, tcpOutAck);
13237 
13238 					/* Send up T_CONN_CON */
13239 					putnext(tcp->tcp_rq, mp1);
13240 
13241 					freemsg(mp);
13242 					return;
13243 				}
13244 				/*
13245 				 * Forget fusion; we need to handle more
13246 				 * complex cases below.  Send the deferred
13247 				 * T_CONN_CON message upstream and proceed
13248 				 * as usual.  Mark this tcp as not capable
13249 				 * of fusion.
13250 				 */
13251 				TCP_STAT(tcp_fusion_unfusable);
13252 				tcp->tcp_unfusable = B_TRUE;
13253 				putnext(tcp->tcp_rq, mp1);
13254 			}
13255 
13256 			/*
13257 			 * Check to see if there is data to be sent.  If
13258 			 * yes, set the transmit flag.  Then check to see
13259 			 * if received data processing needs to be done.
13260 			 * If not, go straight to xmit_check.  This short
13261 			 * cut is OK as we don't support T/TCP.
13262 			 */
13263 			if (tcp->tcp_unsent)
13264 				flags |= TH_XMIT_NEEDED;
13265 
13266 			if (seg_len == 0 && !(flags & TH_URG)) {
13267 				freemsg(mp);
13268 				goto xmit_check;
13269 			}
13270 
13271 			flags &= ~TH_SYN;
13272 			seg_seq++;
13273 			break;
13274 		}
13275 		tcp->tcp_state = TCPS_SYN_RCVD;
13276 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
13277 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
13278 		if (mp1) {
13279 			mblk_setcred(mp1, tcp->tcp_cred);
13280 			DB_CPID(mp1) = tcp->tcp_cpid;
13281 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
13282 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
13283 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13284 		}
13285 		freemsg(mp);
13286 		return;
13287 	case TCPS_SYN_RCVD:
13288 		if (flags & TH_ACK) {
13289 			/*
13290 			 * In this state, a SYN|ACK packet is either bogus
13291 			 * because the other side must be ACKing our SYN which
13292 			 * indicates it has seen the ACK for their SYN and
13293 			 * shouldn't retransmit it or we're crossing SYNs
13294 			 * on active open.
13295 			 */
13296 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
13297 				freemsg(mp);
13298 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
13299 				    tcp, seg_ack, 0, TH_RST);
13300 				return;
13301 			}
13302 			/*
13303 			 * NOTE: RFC 793 pg. 72 says this should be
13304 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
13305 			 * but that would mean we have an ack that ignored
13306 			 * our SYN.
13307 			 */
13308 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
13309 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
13310 				freemsg(mp);
13311 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
13312 				    tcp, seg_ack, 0, TH_RST);
13313 				return;
13314 			}
13315 		}
13316 		break;
13317 	case TCPS_LISTEN:
13318 		/*
13319 		 * Only a TLI listener can come through this path when a
13320 		 * acceptor is going back to be a listener and a packet
13321 		 * for the acceptor hits the classifier. For a socket
13322 		 * listener, this can never happen because a listener
13323 		 * can never accept connection on itself and hence a
13324 		 * socket acceptor can not go back to being a listener.
13325 		 */
13326 		ASSERT(!TCP_IS_SOCKET(tcp));
13327 		/*FALLTHRU*/
13328 	case TCPS_CLOSED:
13329 	case TCPS_BOUND: {
13330 		conn_t	*new_connp;
13331 
13332 		new_connp = ipcl_classify(mp, connp->conn_zoneid);
13333 		if (new_connp != NULL) {
13334 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13335 			return;
13336 		}
13337 		/* We failed to classify. For now just drop the packet */
13338 		freemsg(mp);
13339 		return;
13340 	}
13341 	case TCPS_IDLE:
13342 		/*
13343 		 * Handle the case where the tcp_clean_death() has happened
13344 		 * on a connection (application hasn't closed yet) but a packet
13345 		 * was already queued on squeue before tcp_clean_death()
13346 		 * was processed. Calling tcp_clean_death() twice on same
13347 		 * connection can result in weird behaviour.
13348 		 */
13349 		freemsg(mp);
13350 		return;
13351 	default:
13352 		break;
13353 	}
13354 
13355 	/*
13356 	 * Already on the correct queue/perimeter.
13357 	 * If this is a detached connection and not an eager
13358 	 * connection hanging off a listener then new data
13359 	 * (past the FIN) will cause a reset.
13360 	 * We do a special check here where it
13361 	 * is out of the main line, rather than check
13362 	 * if we are detached every time we see new
13363 	 * data down below.
13364 	 */
13365 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13366 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13367 		BUMP_MIB(&tcp_mib, tcpInClosed);
13368 		TCP_RECORD_TRACE(tcp,
13369 		    mp, TCP_TRACE_RECV_PKT);
13370 		freemsg(mp);
13371 		tcp_xmit_ctl("new data when detached", tcp,
13372 		    tcp->tcp_snxt, 0, TH_RST);
13373 		(void) tcp_clean_death(tcp, EPROTO, 12);
13374 		return;
13375 	}
13376 
13377 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13378 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13379 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13380 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13381 	mss = tcp->tcp_mss;
13382 
13383 	if (tcp->tcp_snd_ts_ok) {
13384 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13385 			/*
13386 			 * This segment is not acceptable.
13387 			 * Drop it and send back an ACK.
13388 			 */
13389 			freemsg(mp);
13390 			flags |= TH_ACK_NEEDED;
13391 			goto ack_check;
13392 		}
13393 	} else if (tcp->tcp_snd_sack_ok) {
13394 		ASSERT(tcp->tcp_sack_info != NULL);
13395 		tcpopt.tcp = tcp;
13396 		/*
13397 		 * SACK info in already updated in tcp_parse_options.  Ignore
13398 		 * all other TCP options...
13399 		 */
13400 		(void) tcp_parse_options(tcph, &tcpopt);
13401 	}
13402 try_again:;
13403 	gap = seg_seq - tcp->tcp_rnxt;
13404 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13405 	/*
13406 	 * gap is the amount of sequence space between what we expect to see
13407 	 * and what we got for seg_seq.  A positive value for gap means
13408 	 * something got lost.  A negative value means we got some old stuff.
13409 	 */
13410 	if (gap < 0) {
13411 		/* Old stuff present.  Is the SYN in there? */
13412 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13413 		    (seg_len != 0)) {
13414 			flags &= ~TH_SYN;
13415 			seg_seq++;
13416 			urp--;
13417 			/* Recompute the gaps after noting the SYN. */
13418 			goto try_again;
13419 		}
13420 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
13421 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
13422 		    (seg_len > -gap ? -gap : seg_len));
13423 		/* Remove the old stuff from seg_len. */
13424 		seg_len += gap;
13425 		/*
13426 		 * Anything left?
13427 		 * Make sure to check for unack'd FIN when rest of data
13428 		 * has been previously ack'd.
13429 		 */
13430 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13431 			/*
13432 			 * Resets are only valid if they lie within our offered
13433 			 * window.  If the RST bit is set, we just ignore this
13434 			 * segment.
13435 			 */
13436 			if (flags & TH_RST) {
13437 				freemsg(mp);
13438 				return;
13439 			}
13440 
13441 			/*
13442 			 * The arriving of dup data packets indicate that we
13443 			 * may have postponed an ack for too long, or the other
13444 			 * side's RTT estimate is out of shape. Start acking
13445 			 * more often.
13446 			 */
13447 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13448 			    tcp->tcp_rack_cnt >= 1 &&
13449 			    tcp->tcp_rack_abs_max > 2) {
13450 				tcp->tcp_rack_abs_max--;
13451 			}
13452 			tcp->tcp_rack_cur_max = 1;
13453 
13454 			/*
13455 			 * This segment is "unacceptable".  None of its
13456 			 * sequence space lies within our advertized window.
13457 			 *
13458 			 * Adjust seg_len to the original value for tracing.
13459 			 */
13460 			seg_len -= gap;
13461 			if (tcp->tcp_debug) {
13462 				(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE,
13463 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13464 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13465 				    "seg_len %d, rnxt %u, snxt %u, %s",
13466 				    gap, rgap, flags, seg_seq, seg_ack,
13467 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13468 				    tcp_display(tcp, NULL,
13469 				    DISP_ADDR_AND_PORT));
13470 			}
13471 
13472 			/*
13473 			 * Arrange to send an ACK in response to the
13474 			 * unacceptable segment per RFC 793 page 69. There
13475 			 * is only one small difference between ours and the
13476 			 * acceptability test in the RFC - we accept ACK-only
13477 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13478 			 * will be generated.
13479 			 *
13480 			 * Note that we have to ACK an ACK-only packet at least
13481 			 * for stacks that send 0-length keep-alives with
13482 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13483 			 * section 4.2.3.6. As long as we don't ever generate
13484 			 * an unacceptable packet in response to an incoming
13485 			 * packet that is unacceptable, it should not cause
13486 			 * "ACK wars".
13487 			 */
13488 			flags |=  TH_ACK_NEEDED;
13489 
13490 			/*
13491 			 * Continue processing this segment in order to use the
13492 			 * ACK information it contains, but skip all other
13493 			 * sequence-number processing.	Processing the ACK
13494 			 * information is necessary in order to
13495 			 * re-synchronize connections that may have lost
13496 			 * synchronization.
13497 			 *
13498 			 * We clear seg_len and flag fields related to
13499 			 * sequence number processing as they are not
13500 			 * to be trusted for an unacceptable segment.
13501 			 */
13502 			seg_len = 0;
13503 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13504 			goto process_ack;
13505 		}
13506 
13507 		/* Fix seg_seq, and chew the gap off the front. */
13508 		seg_seq = tcp->tcp_rnxt;
13509 		urp += gap;
13510 		do {
13511 			mblk_t	*mp2;
13512 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13513 			    (uintptr_t)UINT_MAX);
13514 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13515 			if (gap > 0) {
13516 				mp->b_rptr = mp->b_wptr - gap;
13517 				break;
13518 			}
13519 			mp2 = mp;
13520 			mp = mp->b_cont;
13521 			freeb(mp2);
13522 		} while (gap < 0);
13523 		/*
13524 		 * If the urgent data has already been acknowledged, we
13525 		 * should ignore TH_URG below
13526 		 */
13527 		if (urp < 0)
13528 			flags &= ~TH_URG;
13529 	}
13530 	/*
13531 	 * rgap is the amount of stuff received out of window.  A negative
13532 	 * value is the amount out of window.
13533 	 */
13534 	if (rgap < 0) {
13535 		mblk_t	*mp2;
13536 
13537 		if (tcp->tcp_rwnd == 0) {
13538 			BUMP_MIB(&tcp_mib, tcpInWinProbe);
13539 		} else {
13540 			BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
13541 			UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
13542 		}
13543 
13544 		/*
13545 		 * seg_len does not include the FIN, so if more than
13546 		 * just the FIN is out of window, we act like we don't
13547 		 * see it.  (If just the FIN is out of window, rgap
13548 		 * will be zero and we will go ahead and acknowledge
13549 		 * the FIN.)
13550 		 */
13551 		flags &= ~TH_FIN;
13552 
13553 		/* Fix seg_len and make sure there is something left. */
13554 		seg_len += rgap;
13555 		if (seg_len <= 0) {
13556 			/*
13557 			 * Resets are only valid if they lie within our offered
13558 			 * window.  If the RST bit is set, we just ignore this
13559 			 * segment.
13560 			 */
13561 			if (flags & TH_RST) {
13562 				freemsg(mp);
13563 				return;
13564 			}
13565 
13566 			/* Per RFC 793, we need to send back an ACK. */
13567 			flags |= TH_ACK_NEEDED;
13568 
13569 			/*
13570 			 * Send SIGURG as soon as possible i.e. even
13571 			 * if the TH_URG was delivered in a window probe
13572 			 * packet (which will be unacceptable).
13573 			 *
13574 			 * We generate a signal if none has been generated
13575 			 * for this connection or if this is a new urgent
13576 			 * byte. Also send a zero-length "unmarked" message
13577 			 * to inform SIOCATMARK that this is not the mark.
13578 			 *
13579 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13580 			 * is sent up. This plus the check for old data
13581 			 * (gap >= 0) handles the wraparound of the sequence
13582 			 * number space without having to always track the
13583 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13584 			 * this max in its rcv_up variable).
13585 			 *
13586 			 * This prevents duplicate SIGURGS due to a "late"
13587 			 * zero-window probe when the T_EXDATA_IND has already
13588 			 * been sent up.
13589 			 */
13590 			if ((flags & TH_URG) &&
13591 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13592 			    tcp->tcp_urp_last))) {
13593 				mp1 = allocb(0, BPRI_MED);
13594 				if (mp1 == NULL) {
13595 					freemsg(mp);
13596 					return;
13597 				}
13598 				if (!TCP_IS_DETACHED(tcp) &&
13599 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13600 				    SIGURG)) {
13601 					/* Try again on the rexmit. */
13602 					freemsg(mp1);
13603 					freemsg(mp);
13604 					return;
13605 				}
13606 				/*
13607 				 * If the next byte would be the mark
13608 				 * then mark with MARKNEXT else mark
13609 				 * with NOTMARKNEXT.
13610 				 */
13611 				if (gap == 0 && urp == 0)
13612 					mp1->b_flag |= MSGMARKNEXT;
13613 				else
13614 					mp1->b_flag |= MSGNOTMARKNEXT;
13615 				freemsg(tcp->tcp_urp_mark_mp);
13616 				tcp->tcp_urp_mark_mp = mp1;
13617 				flags |= TH_SEND_URP_MARK;
13618 				tcp->tcp_urp_last_valid = B_TRUE;
13619 				tcp->tcp_urp_last = urp + seg_seq;
13620 			}
13621 			/*
13622 			 * If this is a zero window probe, continue to
13623 			 * process the ACK part.  But we need to set seg_len
13624 			 * to 0 to avoid data processing.  Otherwise just
13625 			 * drop the segment and send back an ACK.
13626 			 */
13627 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13628 				flags &= ~(TH_SYN | TH_URG);
13629 				seg_len = 0;
13630 				goto process_ack;
13631 			} else {
13632 				freemsg(mp);
13633 				goto ack_check;
13634 			}
13635 		}
13636 		/* Pitch out of window stuff off the end. */
13637 		rgap = seg_len;
13638 		mp2 = mp;
13639 		do {
13640 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13641 			    (uintptr_t)INT_MAX);
13642 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13643 			if (rgap < 0) {
13644 				mp2->b_wptr += rgap;
13645 				if ((mp1 = mp2->b_cont) != NULL) {
13646 					mp2->b_cont = NULL;
13647 					freemsg(mp1);
13648 				}
13649 				break;
13650 			}
13651 		} while ((mp2 = mp2->b_cont) != NULL);
13652 	}
13653 ok:;
13654 	/*
13655 	 * TCP should check ECN info for segments inside the window only.
13656 	 * Therefore the check should be done here.
13657 	 */
13658 	if (tcp->tcp_ecn_ok) {
13659 		if (flags & TH_CWR) {
13660 			tcp->tcp_ecn_echo_on = B_FALSE;
13661 		}
13662 		/*
13663 		 * Note that both ECN_CE and CWR can be set in the
13664 		 * same segment.  In this case, we once again turn
13665 		 * on ECN_ECHO.
13666 		 */
13667 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13668 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13669 
13670 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13671 				tcp->tcp_ecn_echo_on = B_TRUE;
13672 			}
13673 		} else {
13674 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13675 
13676 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13677 			    htonl(IPH_ECN_CE << 20)) {
13678 				tcp->tcp_ecn_echo_on = B_TRUE;
13679 			}
13680 		}
13681 	}
13682 
13683 	/*
13684 	 * Check whether we can update tcp_ts_recent.  This test is
13685 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13686 	 * Extensions for High Performance: An Update", Internet Draft.
13687 	 */
13688 	if (tcp->tcp_snd_ts_ok &&
13689 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13690 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13691 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13692 		tcp->tcp_last_rcv_lbolt = lbolt64;
13693 	}
13694 
13695 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13696 		/*
13697 		 * FIN in an out of order segment.  We record this in
13698 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13699 		 * Clear the FIN so that any check on FIN flag will fail.
13700 		 * Remember that FIN also counts in the sequence number
13701 		 * space.  So we need to ack out of order FIN only segments.
13702 		 */
13703 		if (flags & TH_FIN) {
13704 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13705 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13706 			flags &= ~TH_FIN;
13707 			flags |= TH_ACK_NEEDED;
13708 		}
13709 		if (seg_len > 0) {
13710 			/* Fill in the SACK blk list. */
13711 			if (tcp->tcp_snd_sack_ok) {
13712 				ASSERT(tcp->tcp_sack_info != NULL);
13713 				tcp_sack_insert(tcp->tcp_sack_list,
13714 				    seg_seq, seg_seq + seg_len,
13715 				    &(tcp->tcp_num_sack_blk));
13716 			}
13717 
13718 			/*
13719 			 * Attempt reassembly and see if we have something
13720 			 * ready to go.
13721 			 */
13722 			mp = tcp_reass(tcp, mp, seg_seq);
13723 			/* Always ack out of order packets */
13724 			flags |= TH_ACK_NEEDED | TH_PUSH;
13725 			if (mp) {
13726 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13727 				    (uintptr_t)INT_MAX);
13728 				seg_len = mp->b_cont ? msgdsize(mp) :
13729 					(int)(mp->b_wptr - mp->b_rptr);
13730 				seg_seq = tcp->tcp_rnxt;
13731 				/*
13732 				 * A gap is filled and the seq num and len
13733 				 * of the gap match that of a previously
13734 				 * received FIN, put the FIN flag back in.
13735 				 */
13736 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13737 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13738 					flags |= TH_FIN;
13739 					tcp->tcp_valid_bits &=
13740 					    ~TCP_OFO_FIN_VALID;
13741 				}
13742 			} else {
13743 				/*
13744 				 * Keep going even with NULL mp.
13745 				 * There may be a useful ACK or something else
13746 				 * we don't want to miss.
13747 				 *
13748 				 * But TCP should not perform fast retransmit
13749 				 * because of the ack number.  TCP uses
13750 				 * seg_len == 0 to determine if it is a pure
13751 				 * ACK.  And this is not a pure ACK.
13752 				 */
13753 				seg_len = 0;
13754 				ofo_seg = B_TRUE;
13755 			}
13756 		}
13757 	} else if (seg_len > 0) {
13758 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
13759 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
13760 		/*
13761 		 * If an out of order FIN was received before, and the seq
13762 		 * num and len of the new segment match that of the FIN,
13763 		 * put the FIN flag back in.
13764 		 */
13765 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13766 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13767 			flags |= TH_FIN;
13768 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13769 		}
13770 	}
13771 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13772 	if (flags & TH_RST) {
13773 		freemsg(mp);
13774 		switch (tcp->tcp_state) {
13775 		case TCPS_SYN_RCVD:
13776 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13777 			break;
13778 		case TCPS_ESTABLISHED:
13779 		case TCPS_FIN_WAIT_1:
13780 		case TCPS_FIN_WAIT_2:
13781 		case TCPS_CLOSE_WAIT:
13782 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13783 			break;
13784 		case TCPS_CLOSING:
13785 		case TCPS_LAST_ACK:
13786 			(void) tcp_clean_death(tcp, 0, 16);
13787 			break;
13788 		default:
13789 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13790 			(void) tcp_clean_death(tcp, ENXIO, 17);
13791 			break;
13792 		}
13793 		return;
13794 	}
13795 	if (flags & TH_SYN) {
13796 		/*
13797 		 * See RFC 793, Page 71
13798 		 *
13799 		 * The seq number must be in the window as it should
13800 		 * be "fixed" above.  If it is outside window, it should
13801 		 * be already rejected.  Note that we allow seg_seq to be
13802 		 * rnxt + rwnd because we want to accept 0 window probe.
13803 		 */
13804 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13805 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13806 		freemsg(mp);
13807 		/*
13808 		 * If the ACK flag is not set, just use our snxt as the
13809 		 * seq number of the RST segment.
13810 		 */
13811 		if (!(flags & TH_ACK)) {
13812 			seg_ack = tcp->tcp_snxt;
13813 		}
13814 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13815 		    TH_RST|TH_ACK);
13816 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13817 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13818 		return;
13819 	}
13820 	/*
13821 	 * urp could be -1 when the urp field in the packet is 0
13822 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13823 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13824 	 */
13825 	if (flags & TH_URG && urp >= 0) {
13826 		if (!tcp->tcp_urp_last_valid ||
13827 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13828 			/*
13829 			 * If we haven't generated the signal yet for this
13830 			 * urgent pointer value, do it now.  Also, send up a
13831 			 * zero-length M_DATA indicating whether or not this is
13832 			 * the mark. The latter is not needed when a
13833 			 * T_EXDATA_IND is sent up. However, if there are
13834 			 * allocation failures this code relies on the sender
13835 			 * retransmitting and the socket code for determining
13836 			 * the mark should not block waiting for the peer to
13837 			 * transmit. Thus, for simplicity we always send up the
13838 			 * mark indication.
13839 			 */
13840 			mp1 = allocb(0, BPRI_MED);
13841 			if (mp1 == NULL) {
13842 				freemsg(mp);
13843 				return;
13844 			}
13845 			if (!TCP_IS_DETACHED(tcp) &&
13846 			    !putnextctl1(tcp->tcp_rq, M_PCSIG, SIGURG)) {
13847 				/* Try again on the rexmit. */
13848 				freemsg(mp1);
13849 				freemsg(mp);
13850 				return;
13851 			}
13852 			/*
13853 			 * Mark with NOTMARKNEXT for now.
13854 			 * The code below will change this to MARKNEXT
13855 			 * if we are at the mark.
13856 			 *
13857 			 * If there are allocation failures (e.g. in dupmsg
13858 			 * below) the next time tcp_rput_data sees the urgent
13859 			 * segment it will send up the MSG*MARKNEXT message.
13860 			 */
13861 			mp1->b_flag |= MSGNOTMARKNEXT;
13862 			freemsg(tcp->tcp_urp_mark_mp);
13863 			tcp->tcp_urp_mark_mp = mp1;
13864 			flags |= TH_SEND_URP_MARK;
13865 #ifdef DEBUG
13866 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE,
13867 			    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13868 			    "last %x, %s",
13869 			    seg_seq, urp, tcp->tcp_urp_last,
13870 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13871 #endif /* DEBUG */
13872 			tcp->tcp_urp_last_valid = B_TRUE;
13873 			tcp->tcp_urp_last = urp + seg_seq;
13874 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13875 			/*
13876 			 * An allocation failure prevented the previous
13877 			 * tcp_rput_data from sending up the allocated
13878 			 * MSG*MARKNEXT message - send it up this time
13879 			 * around.
13880 			 */
13881 			flags |= TH_SEND_URP_MARK;
13882 		}
13883 
13884 		/*
13885 		 * If the urgent byte is in this segment, make sure that it is
13886 		 * all by itself.  This makes it much easier to deal with the
13887 		 * possibility of an allocation failure on the T_exdata_ind.
13888 		 * Note that seg_len is the number of bytes in the segment, and
13889 		 * urp is the offset into the segment of the urgent byte.
13890 		 * urp < seg_len means that the urgent byte is in this segment.
13891 		 */
13892 		if (urp < seg_len) {
13893 			if (seg_len != 1) {
13894 				uint32_t  tmp_rnxt;
13895 				/*
13896 				 * Break it up and feed it back in.
13897 				 * Re-attach the IP header.
13898 				 */
13899 				mp->b_rptr = iphdr;
13900 				if (urp > 0) {
13901 					/*
13902 					 * There is stuff before the urgent
13903 					 * byte.
13904 					 */
13905 					mp1 = dupmsg(mp);
13906 					if (!mp1) {
13907 						/*
13908 						 * Trim from urgent byte on.
13909 						 * The rest will come back.
13910 						 */
13911 						(void) adjmsg(mp,
13912 						    urp - seg_len);
13913 						tcp_rput_data(connp,
13914 						    mp, NULL);
13915 						return;
13916 					}
13917 					(void) adjmsg(mp1, urp - seg_len);
13918 					/* Feed this piece back in. */
13919 					tmp_rnxt = tcp->tcp_rnxt;
13920 					tcp_rput_data(connp, mp1, NULL);
13921 					/*
13922 					 * If the data passed back in was not
13923 					 * processed (ie: bad ACK) sending
13924 					 * the remainder back in will cause a
13925 					 * loop. In this case, drop the
13926 					 * packet and let the sender try
13927 					 * sending a good packet.
13928 					 */
13929 					if (tmp_rnxt == tcp->tcp_rnxt) {
13930 						freemsg(mp);
13931 						return;
13932 					}
13933 				}
13934 				if (urp != seg_len - 1) {
13935 					uint32_t  tmp_rnxt;
13936 					/*
13937 					 * There is stuff after the urgent
13938 					 * byte.
13939 					 */
13940 					mp1 = dupmsg(mp);
13941 					if (!mp1) {
13942 						/*
13943 						 * Trim everything beyond the
13944 						 * urgent byte.  The rest will
13945 						 * come back.
13946 						 */
13947 						(void) adjmsg(mp,
13948 						    urp + 1 - seg_len);
13949 						tcp_rput_data(connp,
13950 						    mp, NULL);
13951 						return;
13952 					}
13953 					(void) adjmsg(mp1, urp + 1 - seg_len);
13954 					tmp_rnxt = tcp->tcp_rnxt;
13955 					tcp_rput_data(connp, mp1, NULL);
13956 					/*
13957 					 * If the data passed back in was not
13958 					 * processed (ie: bad ACK) sending
13959 					 * the remainder back in will cause a
13960 					 * loop. In this case, drop the
13961 					 * packet and let the sender try
13962 					 * sending a good packet.
13963 					 */
13964 					if (tmp_rnxt == tcp->tcp_rnxt) {
13965 						freemsg(mp);
13966 						return;
13967 					}
13968 				}
13969 				tcp_rput_data(connp, mp, NULL);
13970 				return;
13971 			}
13972 			/*
13973 			 * This segment contains only the urgent byte.  We
13974 			 * have to allocate the T_exdata_ind, if we can.
13975 			 */
13976 			if (!tcp->tcp_urp_mp) {
13977 				struct T_exdata_ind *tei;
13978 				mp1 = allocb(sizeof (struct T_exdata_ind),
13979 				    BPRI_MED);
13980 				if (!mp1) {
13981 					/*
13982 					 * Sigh... It'll be back.
13983 					 * Generate any MSG*MARK message now.
13984 					 */
13985 					freemsg(mp);
13986 					seg_len = 0;
13987 					if (flags & TH_SEND_URP_MARK) {
13988 
13989 
13990 						ASSERT(tcp->tcp_urp_mark_mp);
13991 						tcp->tcp_urp_mark_mp->b_flag &=
13992 							~MSGNOTMARKNEXT;
13993 						tcp->tcp_urp_mark_mp->b_flag |=
13994 							MSGMARKNEXT;
13995 					}
13996 					goto ack_check;
13997 				}
13998 				mp1->b_datap->db_type = M_PROTO;
13999 				tei = (struct T_exdata_ind *)mp1->b_rptr;
14000 				tei->PRIM_type = T_EXDATA_IND;
14001 				tei->MORE_flag = 0;
14002 				mp1->b_wptr = (uchar_t *)&tei[1];
14003 				tcp->tcp_urp_mp = mp1;
14004 #ifdef DEBUG
14005 				(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE,
14006 				    "tcp_rput: allocated exdata_ind %s",
14007 				    tcp_display(tcp, NULL,
14008 				    DISP_PORT_ONLY));
14009 #endif /* DEBUG */
14010 				/*
14011 				 * There is no need to send a separate MSG*MARK
14012 				 * message since the T_EXDATA_IND will be sent
14013 				 * now.
14014 				 */
14015 				flags &= ~TH_SEND_URP_MARK;
14016 				freemsg(tcp->tcp_urp_mark_mp);
14017 				tcp->tcp_urp_mark_mp = NULL;
14018 			}
14019 			/*
14020 			 * Now we are all set.  On the next putnext upstream,
14021 			 * tcp_urp_mp will be non-NULL and will get prepended
14022 			 * to what has to be this piece containing the urgent
14023 			 * byte.  If for any reason we abort this segment below,
14024 			 * if it comes back, we will have this ready, or it
14025 			 * will get blown off in close.
14026 			 */
14027 		} else if (urp == seg_len) {
14028 			/*
14029 			 * The urgent byte is the next byte after this sequence
14030 			 * number. If there is data it is marked with
14031 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
14032 			 * since it is not needed. Otherwise, if the code
14033 			 * above just allocated a zero-length tcp_urp_mark_mp
14034 			 * message, that message is tagged with MSGMARKNEXT.
14035 			 * Sending up these MSGMARKNEXT messages makes
14036 			 * SIOCATMARK work correctly even though
14037 			 * the T_EXDATA_IND will not be sent up until the
14038 			 * urgent byte arrives.
14039 			 */
14040 			if (seg_len != 0) {
14041 				flags |= TH_MARKNEXT_NEEDED;
14042 				freemsg(tcp->tcp_urp_mark_mp);
14043 				tcp->tcp_urp_mark_mp = NULL;
14044 				flags &= ~TH_SEND_URP_MARK;
14045 			} else if (tcp->tcp_urp_mark_mp != NULL) {
14046 				flags |= TH_SEND_URP_MARK;
14047 				tcp->tcp_urp_mark_mp->b_flag &=
14048 					~MSGNOTMARKNEXT;
14049 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
14050 			}
14051 #ifdef DEBUG
14052 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE,
14053 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
14054 			    seg_len, flags,
14055 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14056 #endif /* DEBUG */
14057 		} else {
14058 			/* Data left until we hit mark */
14059 #ifdef DEBUG
14060 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE,
14061 			    "tcp_rput: URP %d bytes left, %s",
14062 			    urp - seg_len, tcp_display(tcp, NULL,
14063 			    DISP_PORT_ONLY));
14064 #endif /* DEBUG */
14065 		}
14066 	}
14067 
14068 process_ack:
14069 	if (!(flags & TH_ACK)) {
14070 		freemsg(mp);
14071 		goto xmit_check;
14072 	}
14073 	}
14074 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
14075 
14076 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
14077 		tcp->tcp_ip_forward_progress = B_TRUE;
14078 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
14079 		if (tcp->tcp_conn.tcp_eager_conn_ind != NULL) {
14080 			/* 3-way handshake complete - pass up the T_CONN_IND */
14081 			tcp_t	*listener = tcp->tcp_listener;
14082 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
14083 
14084 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
14085 			/*
14086 			 * We are here means eager is fine but it can
14087 			 * get a TH_RST at any point between now and till
14088 			 * accept completes and disappear. We need to
14089 			 * ensure that reference to eager is valid after
14090 			 * we get out of eager's perimeter. So we do
14091 			 * an extra refhold.
14092 			 */
14093 			CONN_INC_REF(connp);
14094 
14095 			/*
14096 			 * The listener also exists because of the refhold
14097 			 * done in tcp_conn_request. Its possible that it
14098 			 * might have closed. We will check that once we
14099 			 * get inside listeners context.
14100 			 */
14101 			CONN_INC_REF(listener->tcp_connp);
14102 			if (listener->tcp_connp->conn_sqp ==
14103 			    connp->conn_sqp) {
14104 				tcp_send_conn_ind(listener->tcp_connp, mp,
14105 				    listener->tcp_connp->conn_sqp);
14106 				CONN_DEC_REF(listener->tcp_connp);
14107 			} else if (!tcp->tcp_loopback) {
14108 				squeue_fill(listener->tcp_connp->conn_sqp, mp,
14109 				    tcp_send_conn_ind,
14110 				    listener->tcp_connp, SQTAG_TCP_CONN_IND);
14111 			} else {
14112 				squeue_enter(listener->tcp_connp->conn_sqp, mp,
14113 				    tcp_send_conn_ind, listener->tcp_connp,
14114 				    SQTAG_TCP_CONN_IND);
14115 			}
14116 		}
14117 
14118 		if (tcp->tcp_active_open) {
14119 			/*
14120 			 * We are seeing the final ack in the three way
14121 			 * hand shake of a active open'ed connection
14122 			 * so we must send up a T_CONN_CON
14123 			 */
14124 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
14125 				freemsg(mp);
14126 				return;
14127 			}
14128 			/*
14129 			 * Don't fuse the loopback endpoints for
14130 			 * simultaneous active opens.
14131 			 */
14132 			if (tcp->tcp_loopback) {
14133 				TCP_STAT(tcp_fusion_unfusable);
14134 				tcp->tcp_unfusable = B_TRUE;
14135 			}
14136 		}
14137 
14138 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
14139 		bytes_acked--;
14140 		/* SYN was acked - making progress */
14141 		if (tcp->tcp_ipversion == IPV6_VERSION)
14142 			tcp->tcp_ip_forward_progress = B_TRUE;
14143 
14144 		/*
14145 		 * If SYN was retransmitted, need to reset all
14146 		 * retransmission info as this segment will be
14147 		 * treated as a dup ACK.
14148 		 */
14149 		if (tcp->tcp_rexmit) {
14150 			tcp->tcp_rexmit = B_FALSE;
14151 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14152 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
14153 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14154 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14155 			tcp->tcp_ms_we_have_waited = 0;
14156 			tcp->tcp_cwnd = mss;
14157 		}
14158 
14159 		/*
14160 		 * We set the send window to zero here.
14161 		 * This is needed if there is data to be
14162 		 * processed already on the queue.
14163 		 * Later (at swnd_update label), the
14164 		 * "new_swnd > tcp_swnd" condition is satisfied
14165 		 * the XMIT_NEEDED flag is set in the current
14166 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
14167 		 * called if there is already data on queue in
14168 		 * this state.
14169 		 */
14170 		tcp->tcp_swnd = 0;
14171 
14172 		if (new_swnd > tcp->tcp_max_swnd)
14173 			tcp->tcp_max_swnd = new_swnd;
14174 		tcp->tcp_swl1 = seg_seq;
14175 		tcp->tcp_swl2 = seg_ack;
14176 		tcp->tcp_state = TCPS_ESTABLISHED;
14177 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
14178 
14179 		/* Fuse when both sides are in ESTABLISHED state */
14180 		if (tcp->tcp_loopback && do_tcp_fusion)
14181 			tcp_fuse(tcp, iphdr, tcph);
14182 
14183 	}
14184 	/* This code follows 4.4BSD-Lite2 mostly. */
14185 	if (bytes_acked < 0)
14186 		goto est;
14187 
14188 	/*
14189 	 * If TCP is ECN capable and the congestion experience bit is
14190 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
14191 	 * done once per window (or more loosely, per RTT).
14192 	 */
14193 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
14194 		tcp->tcp_cwr = B_FALSE;
14195 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
14196 		if (!tcp->tcp_cwr) {
14197 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
14198 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
14199 			tcp->tcp_cwnd = npkt * mss;
14200 			/*
14201 			 * If the cwnd is 0, use the timer to clock out
14202 			 * new segments.  This is required by the ECN spec.
14203 			 */
14204 			if (npkt == 0) {
14205 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14206 				/*
14207 				 * This makes sure that when the ACK comes
14208 				 * back, we will increase tcp_cwnd by 1 MSS.
14209 				 */
14210 				tcp->tcp_cwnd_cnt = 0;
14211 			}
14212 			tcp->tcp_cwr = B_TRUE;
14213 			/*
14214 			 * This marks the end of the current window of in
14215 			 * flight data.  That is why we don't use
14216 			 * tcp_suna + tcp_swnd.  Only data in flight can
14217 			 * provide ECN info.
14218 			 */
14219 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14220 			tcp->tcp_ecn_cwr_sent = B_FALSE;
14221 		}
14222 	}
14223 
14224 	mp1 = tcp->tcp_xmit_head;
14225 	if (bytes_acked == 0) {
14226 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
14227 			int dupack_cnt;
14228 
14229 			BUMP_MIB(&tcp_mib, tcpInDupAck);
14230 			/*
14231 			 * Fast retransmit.  When we have seen exactly three
14232 			 * identical ACKs while we have unacked data
14233 			 * outstanding we take it as a hint that our peer
14234 			 * dropped something.
14235 			 *
14236 			 * If TCP is retransmitting, don't do fast retransmit.
14237 			 */
14238 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
14239 			    ! tcp->tcp_rexmit) {
14240 				/* Do Limited Transmit */
14241 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
14242 				    tcp_dupack_fast_retransmit) {
14243 					/*
14244 					 * RFC 3042
14245 					 *
14246 					 * What we need to do is temporarily
14247 					 * increase tcp_cwnd so that new
14248 					 * data can be sent if it is allowed
14249 					 * by the receive window (tcp_rwnd).
14250 					 * tcp_wput_data() will take care of
14251 					 * the rest.
14252 					 *
14253 					 * If the connection is SACK capable,
14254 					 * only do limited xmit when there
14255 					 * is SACK info.
14256 					 *
14257 					 * Note how tcp_cwnd is incremented.
14258 					 * The first dup ACK will increase
14259 					 * it by 1 MSS.  The second dup ACK
14260 					 * will increase it by 2 MSS.  This
14261 					 * means that only 1 new segment will
14262 					 * be sent for each dup ACK.
14263 					 */
14264 					if (tcp->tcp_unsent > 0 &&
14265 					    (!tcp->tcp_snd_sack_ok ||
14266 					    (tcp->tcp_snd_sack_ok &&
14267 					    tcp->tcp_notsack_list != NULL))) {
14268 						tcp->tcp_cwnd += mss <<
14269 						    (tcp->tcp_dupack_cnt - 1);
14270 						flags |= TH_LIMIT_XMIT;
14271 					}
14272 				} else if (dupack_cnt ==
14273 				    tcp_dupack_fast_retransmit) {
14274 
14275 				/*
14276 				 * If we have reduced tcp_ssthresh
14277 				 * because of ECN, do not reduce it again
14278 				 * unless it is already one window of data
14279 				 * away.  After one window of data, tcp_cwr
14280 				 * should then be cleared.  Note that
14281 				 * for non ECN capable connection, tcp_cwr
14282 				 * should always be false.
14283 				 *
14284 				 * Adjust cwnd since the duplicate
14285 				 * ack indicates that a packet was
14286 				 * dropped (due to congestion.)
14287 				 */
14288 				if (!tcp->tcp_cwr) {
14289 					npkt = ((tcp->tcp_snxt -
14290 					    tcp->tcp_suna) >> 1) / mss;
14291 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14292 					    mss;
14293 					tcp->tcp_cwnd = (npkt +
14294 					    tcp->tcp_dupack_cnt) * mss;
14295 				}
14296 				if (tcp->tcp_ecn_ok) {
14297 					tcp->tcp_cwr = B_TRUE;
14298 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14299 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14300 				}
14301 
14302 				/*
14303 				 * We do Hoe's algorithm.  Refer to her
14304 				 * paper "Improving the Start-up Behavior
14305 				 * of a Congestion Control Scheme for TCP,"
14306 				 * appeared in SIGCOMM'96.
14307 				 *
14308 				 * Save highest seq no we have sent so far.
14309 				 * Be careful about the invisible FIN byte.
14310 				 */
14311 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14312 				    (tcp->tcp_unsent == 0)) {
14313 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14314 				} else {
14315 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14316 				}
14317 
14318 				/*
14319 				 * Do not allow bursty traffic during.
14320 				 * fast recovery.  Refer to Fall and Floyd's
14321 				 * paper "Simulation-based Comparisons of
14322 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14323 				 * This is a best current practise.
14324 				 */
14325 				tcp->tcp_snd_burst = TCP_CWND_SS;
14326 
14327 				/*
14328 				 * For SACK:
14329 				 * Calculate tcp_pipe, which is the
14330 				 * estimated number of bytes in
14331 				 * network.
14332 				 *
14333 				 * tcp_fack is the highest sack'ed seq num
14334 				 * TCP has received.
14335 				 *
14336 				 * tcp_pipe is explained in the above quoted
14337 				 * Fall and Floyd's paper.  tcp_fack is
14338 				 * explained in Mathis and Mahdavi's
14339 				 * "Forward Acknowledgment: Refining TCP
14340 				 * Congestion Control" in SIGCOMM '96.
14341 				 */
14342 				if (tcp->tcp_snd_sack_ok) {
14343 					ASSERT(tcp->tcp_sack_info != NULL);
14344 					if (tcp->tcp_notsack_list != NULL) {
14345 						tcp->tcp_pipe = tcp->tcp_snxt -
14346 						    tcp->tcp_fack;
14347 						tcp->tcp_sack_snxt = seg_ack;
14348 						flags |= TH_NEED_SACK_REXMIT;
14349 					} else {
14350 						/*
14351 						 * Always initialize tcp_pipe
14352 						 * even though we don't have
14353 						 * any SACK info.  If later
14354 						 * we get SACK info and
14355 						 * tcp_pipe is not initialized,
14356 						 * funny things will happen.
14357 						 */
14358 						tcp->tcp_pipe =
14359 						    tcp->tcp_cwnd_ssthresh;
14360 					}
14361 				} else {
14362 					flags |= TH_REXMIT_NEEDED;
14363 				} /* tcp_snd_sack_ok */
14364 
14365 				} else {
14366 					/*
14367 					 * Here we perform congestion
14368 					 * avoidance, but NOT slow start.
14369 					 * This is known as the Fast
14370 					 * Recovery Algorithm.
14371 					 */
14372 					if (tcp->tcp_snd_sack_ok &&
14373 					    tcp->tcp_notsack_list != NULL) {
14374 						flags |= TH_NEED_SACK_REXMIT;
14375 						tcp->tcp_pipe -= mss;
14376 						if (tcp->tcp_pipe < 0)
14377 							tcp->tcp_pipe = 0;
14378 					} else {
14379 					/*
14380 					 * We know that one more packet has
14381 					 * left the pipe thus we can update
14382 					 * cwnd.
14383 					 */
14384 					cwnd = tcp->tcp_cwnd + mss;
14385 					if (cwnd > tcp->tcp_cwnd_max)
14386 						cwnd = tcp->tcp_cwnd_max;
14387 					tcp->tcp_cwnd = cwnd;
14388 					if (tcp->tcp_unsent > 0)
14389 						flags |= TH_XMIT_NEEDED;
14390 					}
14391 				}
14392 			}
14393 		} else if (tcp->tcp_zero_win_probe) {
14394 			/*
14395 			 * If the window has opened, need to arrange
14396 			 * to send additional data.
14397 			 */
14398 			if (new_swnd != 0) {
14399 				/* tcp_suna != tcp_snxt */
14400 				/* Packet contains a window update */
14401 				BUMP_MIB(&tcp_mib, tcpInWinUpdate);
14402 				tcp->tcp_zero_win_probe = 0;
14403 				tcp->tcp_timer_backoff = 0;
14404 				tcp->tcp_ms_we_have_waited = 0;
14405 
14406 				/*
14407 				 * Transmit starting with tcp_suna since
14408 				 * the one byte probe is not ack'ed.
14409 				 * If TCP has sent more than one identical
14410 				 * probe, tcp_rexmit will be set.  That means
14411 				 * tcp_ss_rexmit() will send out the one
14412 				 * byte along with new data.  Otherwise,
14413 				 * fake the retransmission.
14414 				 */
14415 				flags |= TH_XMIT_NEEDED;
14416 				if (!tcp->tcp_rexmit) {
14417 					tcp->tcp_rexmit = B_TRUE;
14418 					tcp->tcp_dupack_cnt = 0;
14419 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14420 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14421 				}
14422 			}
14423 		}
14424 		goto swnd_update;
14425 	}
14426 
14427 	/*
14428 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14429 	 * If the ACK value acks something that we have not yet sent, it might
14430 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14431 	 * other side.
14432 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14433 	 * state is handled above, so we can always just drop the segment and
14434 	 * send an ACK here.
14435 	 *
14436 	 * Should we send ACKs in response to ACK only segments?
14437 	 */
14438 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14439 		BUMP_MIB(&tcp_mib, tcpInAckUnsent);
14440 		/* drop the received segment */
14441 		freemsg(mp);
14442 
14443 		/*
14444 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14445 		 * greater than 0, check if the number of such
14446 		 * bogus ACks is greater than that count.  If yes,
14447 		 * don't send back any ACK.  This prevents TCP from
14448 		 * getting into an ACK storm if somehow an attacker
14449 		 * successfully spoofs an acceptable segment to our
14450 		 * peer.
14451 		 */
14452 		if (tcp_drop_ack_unsent_cnt > 0 &&
14453 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14454 			TCP_STAT(tcp_in_ack_unsent_drop);
14455 			return;
14456 		}
14457 		mp = tcp_ack_mp(tcp);
14458 		if (mp != NULL) {
14459 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
14460 			BUMP_LOCAL(tcp->tcp_obsegs);
14461 			BUMP_MIB(&tcp_mib, tcpOutAck);
14462 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14463 		}
14464 		return;
14465 	}
14466 
14467 	/*
14468 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14469 	 * blocks that are covered by this ACK.
14470 	 */
14471 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14472 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14473 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14474 	}
14475 
14476 	/*
14477 	 * If we got an ACK after fast retransmit, check to see
14478 	 * if it is a partial ACK.  If it is not and the congestion
14479 	 * window was inflated to account for the other side's
14480 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14481 	 */
14482 	if (tcp->tcp_dupack_cnt >= tcp_dupack_fast_retransmit) {
14483 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14484 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14485 			tcp->tcp_dupack_cnt = 0;
14486 			/*
14487 			 * Restore the orig tcp_cwnd_ssthresh after
14488 			 * fast retransmit phase.
14489 			 */
14490 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14491 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14492 			}
14493 			tcp->tcp_rexmit_max = seg_ack;
14494 			tcp->tcp_cwnd_cnt = 0;
14495 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14496 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14497 
14498 			/*
14499 			 * Remove all notsack info to avoid confusion with
14500 			 * the next fast retrasnmit/recovery phase.
14501 			 */
14502 			if (tcp->tcp_snd_sack_ok &&
14503 			    tcp->tcp_notsack_list != NULL) {
14504 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14505 			}
14506 		} else {
14507 			if (tcp->tcp_snd_sack_ok &&
14508 			    tcp->tcp_notsack_list != NULL) {
14509 				flags |= TH_NEED_SACK_REXMIT;
14510 				tcp->tcp_pipe -= mss;
14511 				if (tcp->tcp_pipe < 0)
14512 					tcp->tcp_pipe = 0;
14513 			} else {
14514 				/*
14515 				 * Hoe's algorithm:
14516 				 *
14517 				 * Retransmit the unack'ed segment and
14518 				 * restart fast recovery.  Note that we
14519 				 * need to scale back tcp_cwnd to the
14520 				 * original value when we started fast
14521 				 * recovery.  This is to prevent overly
14522 				 * aggressive behaviour in sending new
14523 				 * segments.
14524 				 */
14525 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14526 					tcp_dupack_fast_retransmit * mss;
14527 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14528 				flags |= TH_REXMIT_NEEDED;
14529 			}
14530 		}
14531 	} else {
14532 		tcp->tcp_dupack_cnt = 0;
14533 		if (tcp->tcp_rexmit) {
14534 			/*
14535 			 * TCP is retranmitting.  If the ACK ack's all
14536 			 * outstanding data, update tcp_rexmit_max and
14537 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14538 			 * to the correct value.
14539 			 *
14540 			 * Note that SEQ_LEQ() is used.  This is to avoid
14541 			 * unnecessary fast retransmit caused by dup ACKs
14542 			 * received when TCP does slow start retransmission
14543 			 * after a time out.  During this phase, TCP may
14544 			 * send out segments which are already received.
14545 			 * This causes dup ACKs to be sent back.
14546 			 */
14547 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14548 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14549 					tcp->tcp_rexmit_nxt = seg_ack;
14550 				}
14551 				if (seg_ack != tcp->tcp_rexmit_max) {
14552 					flags |= TH_XMIT_NEEDED;
14553 				}
14554 			} else {
14555 				tcp->tcp_rexmit = B_FALSE;
14556 				tcp->tcp_xmit_zc_clean = B_FALSE;
14557 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14558 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14559 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14560 			}
14561 			tcp->tcp_ms_we_have_waited = 0;
14562 		}
14563 	}
14564 
14565 	BUMP_MIB(&tcp_mib, tcpInAckSegs);
14566 	UPDATE_MIB(&tcp_mib, tcpInAckBytes, bytes_acked);
14567 	tcp->tcp_suna = seg_ack;
14568 	if (tcp->tcp_zero_win_probe != 0) {
14569 		tcp->tcp_zero_win_probe = 0;
14570 		tcp->tcp_timer_backoff = 0;
14571 	}
14572 
14573 	/*
14574 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14575 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14576 	 * will not reach here.
14577 	 */
14578 	if (mp1 == NULL) {
14579 		goto fin_acked;
14580 	}
14581 
14582 	/*
14583 	 * Update the congestion window.
14584 	 *
14585 	 * If TCP is not ECN capable or TCP is ECN capable but the
14586 	 * congestion experience bit is not set, increase the tcp_cwnd as
14587 	 * usual.
14588 	 */
14589 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14590 		cwnd = tcp->tcp_cwnd;
14591 		add = mss;
14592 
14593 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14594 			/*
14595 			 * This is to prevent an increase of less than 1 MSS of
14596 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14597 			 * may send out tinygrams in order to preserve mblk
14598 			 * boundaries.
14599 			 *
14600 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14601 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14602 			 * increased by 1 MSS for every RTTs.
14603 			 */
14604 			if (tcp->tcp_cwnd_cnt <= 0) {
14605 				tcp->tcp_cwnd_cnt = cwnd + add;
14606 			} else {
14607 				tcp->tcp_cwnd_cnt -= add;
14608 				add = 0;
14609 			}
14610 		}
14611 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14612 	}
14613 
14614 	/* See if the latest urgent data has been acknowledged */
14615 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14616 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14617 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14618 
14619 	/* Can we update the RTT estimates? */
14620 	if (tcp->tcp_snd_ts_ok) {
14621 		/* Ignore zero timestamp echo-reply. */
14622 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14623 			tcp_set_rto(tcp, (int32_t)lbolt -
14624 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14625 		}
14626 
14627 		/* If needed, restart the timer. */
14628 		if (tcp->tcp_set_timer == 1) {
14629 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14630 			tcp->tcp_set_timer = 0;
14631 		}
14632 		/*
14633 		 * Update tcp_csuna in case the other side stops sending
14634 		 * us timestamps.
14635 		 */
14636 		tcp->tcp_csuna = tcp->tcp_snxt;
14637 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14638 		/*
14639 		 * An ACK sequence we haven't seen before, so get the RTT
14640 		 * and update the RTO. But first check if the timestamp is
14641 		 * valid to use.
14642 		 */
14643 		if ((mp1->b_next != NULL) &&
14644 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14645 			tcp_set_rto(tcp, (int32_t)lbolt -
14646 			    (int32_t)(intptr_t)mp1->b_prev);
14647 		else
14648 			BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14649 
14650 		/* Remeber the last sequence to be ACKed */
14651 		tcp->tcp_csuna = seg_ack;
14652 		if (tcp->tcp_set_timer == 1) {
14653 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14654 			tcp->tcp_set_timer = 0;
14655 		}
14656 	} else {
14657 		BUMP_MIB(&tcp_mib, tcpRttNoUpdate);
14658 	}
14659 
14660 	/* Eat acknowledged bytes off the xmit queue. */
14661 	for (;;) {
14662 		mblk_t	*mp2;
14663 		uchar_t	*wptr;
14664 
14665 		wptr = mp1->b_wptr;
14666 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14667 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14668 		if (bytes_acked < 0) {
14669 			mp1->b_rptr = wptr + bytes_acked;
14670 			/*
14671 			 * Set a new timestamp if all the bytes timed by the
14672 			 * old timestamp have been ack'ed.
14673 			 */
14674 			if (SEQ_GT(seg_ack,
14675 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14676 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14677 				mp1->b_next = NULL;
14678 			}
14679 			break;
14680 		}
14681 		mp1->b_next = NULL;
14682 		mp1->b_prev = NULL;
14683 		mp2 = mp1;
14684 		mp1 = mp1->b_cont;
14685 
14686 		/*
14687 		 * This notification is required for some zero-copy
14688 		 * clients to maintain a copy semantic. After the data
14689 		 * is ack'ed, client is safe to modify or reuse the buffer.
14690 		 */
14691 		if (tcp->tcp_snd_zcopy_aware &&
14692 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14693 			tcp_zcopy_notify(tcp);
14694 		freeb(mp2);
14695 		if (bytes_acked == 0) {
14696 			if (mp1 == NULL) {
14697 				/* Everything is ack'ed, clear the tail. */
14698 				tcp->tcp_xmit_tail = NULL;
14699 				/*
14700 				 * Cancel the timer unless we are still
14701 				 * waiting for an ACK for the FIN packet.
14702 				 */
14703 				if (tcp->tcp_timer_tid != 0 &&
14704 				    tcp->tcp_snxt == tcp->tcp_suna) {
14705 					(void) TCP_TIMER_CANCEL(tcp,
14706 					    tcp->tcp_timer_tid);
14707 					tcp->tcp_timer_tid = 0;
14708 				}
14709 				goto pre_swnd_update;
14710 			}
14711 			if (mp2 != tcp->tcp_xmit_tail)
14712 				break;
14713 			tcp->tcp_xmit_tail = mp1;
14714 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14715 			    (uintptr_t)INT_MAX);
14716 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14717 			    mp1->b_rptr);
14718 			break;
14719 		}
14720 		if (mp1 == NULL) {
14721 			/*
14722 			 * More was acked but there is nothing more
14723 			 * outstanding.  This means that the FIN was
14724 			 * just acked or that we're talking to a clown.
14725 			 */
14726 fin_acked:
14727 			ASSERT(tcp->tcp_fin_sent);
14728 			tcp->tcp_xmit_tail = NULL;
14729 			if (tcp->tcp_fin_sent) {
14730 				/* FIN was acked - making progress */
14731 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14732 				    !tcp->tcp_fin_acked)
14733 					tcp->tcp_ip_forward_progress = B_TRUE;
14734 				tcp->tcp_fin_acked = B_TRUE;
14735 				if (tcp->tcp_linger_tid != 0 &&
14736 				    TCP_TIMER_CANCEL(tcp,
14737 					tcp->tcp_linger_tid) >= 0) {
14738 					tcp_stop_lingering(tcp);
14739 				}
14740 			} else {
14741 				/*
14742 				 * We should never get here because
14743 				 * we have already checked that the
14744 				 * number of bytes ack'ed should be
14745 				 * smaller than or equal to what we
14746 				 * have sent so far (it is the
14747 				 * acceptability check of the ACK).
14748 				 * We can only get here if the send
14749 				 * queue is corrupted.
14750 				 *
14751 				 * Terminate the connection and
14752 				 * panic the system.  It is better
14753 				 * for us to panic instead of
14754 				 * continuing to avoid other disaster.
14755 				 */
14756 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14757 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14758 				panic("Memory corruption "
14759 				    "detected for connection %s.",
14760 				    tcp_display(tcp, NULL,
14761 					DISP_ADDR_AND_PORT));
14762 				/*NOTREACHED*/
14763 			}
14764 			goto pre_swnd_update;
14765 		}
14766 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14767 	}
14768 	if (tcp->tcp_unsent) {
14769 		flags |= TH_XMIT_NEEDED;
14770 	}
14771 pre_swnd_update:
14772 	tcp->tcp_xmit_head = mp1;
14773 swnd_update:
14774 	/*
14775 	 * The following check is different from most other implementations.
14776 	 * For bi-directional transfer, when segments are dropped, the
14777 	 * "normal" check will not accept a window update in those
14778 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14779 	 * segments which are outside receiver's window.  As TCP accepts
14780 	 * the ack in those retransmitted segments, if the window update in
14781 	 * the same segment is not accepted, TCP will incorrectly calculates
14782 	 * that it can send more segments.  This can create a deadlock
14783 	 * with the receiver if its window becomes zero.
14784 	 */
14785 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14786 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14787 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14788 		/*
14789 		 * The criteria for update is:
14790 		 *
14791 		 * 1. the segment acknowledges some data.  Or
14792 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14793 		 * 3. the segment is not old and the advertised window is
14794 		 * larger than the previous advertised window.
14795 		 */
14796 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14797 			flags |= TH_XMIT_NEEDED;
14798 		tcp->tcp_swnd = new_swnd;
14799 		if (new_swnd > tcp->tcp_max_swnd)
14800 			tcp->tcp_max_swnd = new_swnd;
14801 		tcp->tcp_swl1 = seg_seq;
14802 		tcp->tcp_swl2 = seg_ack;
14803 	}
14804 est:
14805 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14806 		switch (tcp->tcp_state) {
14807 		case TCPS_FIN_WAIT_1:
14808 			if (tcp->tcp_fin_acked) {
14809 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14810 				/*
14811 				 * We implement the non-standard BSD/SunOS
14812 				 * FIN_WAIT_2 flushing algorithm.
14813 				 * If there is no user attached to this
14814 				 * TCP endpoint, then this TCP struct
14815 				 * could hang around forever in FIN_WAIT_2
14816 				 * state if the peer forgets to send us
14817 				 * a FIN.  To prevent this, we wait only
14818 				 * 2*MSL (a convenient time value) for
14819 				 * the FIN to arrive.  If it doesn't show up,
14820 				 * we flush the TCP endpoint.  This algorithm,
14821 				 * though a violation of RFC-793, has worked
14822 				 * for over 10 years in BSD systems.
14823 				 * Note: SunOS 4.x waits 675 seconds before
14824 				 * flushing the FIN_WAIT_2 connection.
14825 				 */
14826 				TCP_TIMER_RESTART(tcp,
14827 				    tcp_fin_wait_2_flush_interval);
14828 			}
14829 			break;
14830 		case TCPS_FIN_WAIT_2:
14831 			break;	/* Shutdown hook? */
14832 		case TCPS_LAST_ACK:
14833 			freemsg(mp);
14834 			if (tcp->tcp_fin_acked) {
14835 				(void) tcp_clean_death(tcp, 0, 19);
14836 				return;
14837 			}
14838 			goto xmit_check;
14839 		case TCPS_CLOSING:
14840 			if (tcp->tcp_fin_acked) {
14841 				tcp->tcp_state = TCPS_TIME_WAIT;
14842 				if (!TCP_IS_DETACHED(tcp)) {
14843 					TCP_TIMER_RESTART(tcp,
14844 					    tcp_time_wait_interval);
14845 				} else {
14846 					tcp_time_wait_append(tcp);
14847 					TCP_DBGSTAT(tcp_rput_time_wait);
14848 				}
14849 			}
14850 			/*FALLTHRU*/
14851 		case TCPS_CLOSE_WAIT:
14852 			freemsg(mp);
14853 			goto xmit_check;
14854 		default:
14855 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14856 			break;
14857 		}
14858 	}
14859 	if (flags & TH_FIN) {
14860 		/* Make sure we ack the fin */
14861 		flags |= TH_ACK_NEEDED;
14862 		if (!tcp->tcp_fin_rcvd) {
14863 			tcp->tcp_fin_rcvd = B_TRUE;
14864 			tcp->tcp_rnxt++;
14865 			tcph = tcp->tcp_tcph;
14866 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14867 
14868 			/*
14869 			 * Generate the ordrel_ind at the end unless we
14870 			 * are an eager guy.
14871 			 * In the eager case tcp_rsrv will do this when run
14872 			 * after tcp_accept is done.
14873 			 */
14874 			if (tcp->tcp_listener == NULL &&
14875 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14876 				flags |= TH_ORDREL_NEEDED;
14877 			switch (tcp->tcp_state) {
14878 			case TCPS_SYN_RCVD:
14879 			case TCPS_ESTABLISHED:
14880 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14881 				/* Keepalive? */
14882 				break;
14883 			case TCPS_FIN_WAIT_1:
14884 				if (!tcp->tcp_fin_acked) {
14885 					tcp->tcp_state = TCPS_CLOSING;
14886 					break;
14887 				}
14888 				/* FALLTHRU */
14889 			case TCPS_FIN_WAIT_2:
14890 				tcp->tcp_state = TCPS_TIME_WAIT;
14891 				if (!TCP_IS_DETACHED(tcp)) {
14892 					TCP_TIMER_RESTART(tcp,
14893 					    tcp_time_wait_interval);
14894 				} else {
14895 					tcp_time_wait_append(tcp);
14896 					TCP_DBGSTAT(tcp_rput_time_wait);
14897 				}
14898 				if (seg_len) {
14899 					/*
14900 					 * implies data piggybacked on FIN.
14901 					 * break to handle data.
14902 					 */
14903 					break;
14904 				}
14905 				freemsg(mp);
14906 				goto ack_check;
14907 			}
14908 		}
14909 	}
14910 	if (mp == NULL)
14911 		goto xmit_check;
14912 	if (seg_len == 0) {
14913 		freemsg(mp);
14914 		goto xmit_check;
14915 	}
14916 	if (mp->b_rptr == mp->b_wptr) {
14917 		/*
14918 		 * The header has been consumed, so we remove the
14919 		 * zero-length mblk here.
14920 		 */
14921 		mp1 = mp;
14922 		mp = mp->b_cont;
14923 		freeb(mp1);
14924 	}
14925 	tcph = tcp->tcp_tcph;
14926 	tcp->tcp_rack_cnt++;
14927 	{
14928 		uint32_t cur_max;
14929 
14930 		cur_max = tcp->tcp_rack_cur_max;
14931 		if (tcp->tcp_rack_cnt >= cur_max) {
14932 			/*
14933 			 * We have more unacked data than we should - send
14934 			 * an ACK now.
14935 			 */
14936 			flags |= TH_ACK_NEEDED;
14937 			cur_max++;
14938 			if (cur_max > tcp->tcp_rack_abs_max)
14939 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14940 			else
14941 				tcp->tcp_rack_cur_max = cur_max;
14942 		} else if (TCP_IS_DETACHED(tcp)) {
14943 			/* We don't have an ACK timer for detached TCP. */
14944 			flags |= TH_ACK_NEEDED;
14945 		} else if (seg_len < mss) {
14946 			/*
14947 			 * If we get a segment that is less than an mss, and we
14948 			 * already have unacknowledged data, and the amount
14949 			 * unacknowledged is not a multiple of mss, then we
14950 			 * better generate an ACK now.  Otherwise, this may be
14951 			 * the tail piece of a transaction, and we would rather
14952 			 * wait for the response.
14953 			 */
14954 			uint32_t udif;
14955 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14956 			    (uintptr_t)INT_MAX);
14957 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14958 			if (udif && (udif % mss))
14959 				flags |= TH_ACK_NEEDED;
14960 			else
14961 				flags |= TH_ACK_TIMER_NEEDED;
14962 		} else {
14963 			/* Start delayed ack timer */
14964 			flags |= TH_ACK_TIMER_NEEDED;
14965 		}
14966 	}
14967 	tcp->tcp_rnxt += seg_len;
14968 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14969 
14970 	/* Update SACK list */
14971 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14972 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14973 		    &(tcp->tcp_num_sack_blk));
14974 	}
14975 
14976 	if (tcp->tcp_urp_mp) {
14977 		tcp->tcp_urp_mp->b_cont = mp;
14978 		mp = tcp->tcp_urp_mp;
14979 		tcp->tcp_urp_mp = NULL;
14980 		/* Ready for a new signal. */
14981 		tcp->tcp_urp_last_valid = B_FALSE;
14982 #ifdef DEBUG
14983 		(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE,
14984 		    "tcp_rput: sending exdata_ind %s",
14985 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14986 #endif /* DEBUG */
14987 	}
14988 
14989 	/*
14990 	 * Check for ancillary data changes compared to last segment.
14991 	 */
14992 	if (tcp->tcp_ipv6_recvancillary != 0) {
14993 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14994 		if (mp == NULL)
14995 			return;
14996 	}
14997 
14998 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14999 		/*
15000 		 * Side queue inbound data until the accept happens.
15001 		 * tcp_accept/tcp_rput drains this when the accept happens.
15002 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
15003 		 * T_EXDATA_IND) it is queued on b_next.
15004 		 * XXX Make urgent data use this. Requires:
15005 		 *	Removing tcp_listener check for TH_URG
15006 		 *	Making M_PCPROTO and MARK messages skip the eager case
15007 		 */
15008 		tcp_rcv_enqueue(tcp, mp, seg_len);
15009 	} else {
15010 		if (mp->b_datap->db_type != M_DATA ||
15011 		    (flags & TH_MARKNEXT_NEEDED)) {
15012 			if (tcp->tcp_rcv_list != NULL) {
15013 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15014 			}
15015 			ASSERT(tcp->tcp_rcv_list == NULL ||
15016 			    tcp->tcp_fused_sigurg);
15017 			if (flags & TH_MARKNEXT_NEEDED) {
15018 #ifdef DEBUG
15019 				(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE,
15020 				    "tcp_rput: sending MSGMARKNEXT %s",
15021 				    tcp_display(tcp, NULL,
15022 				    DISP_PORT_ONLY));
15023 #endif /* DEBUG */
15024 				mp->b_flag |= MSGMARKNEXT;
15025 				flags &= ~TH_MARKNEXT_NEEDED;
15026 			}
15027 			putnext(tcp->tcp_rq, mp);
15028 			if (!canputnext(tcp->tcp_rq))
15029 				tcp->tcp_rwnd -= seg_len;
15030 		} else if (((flags & (TH_PUSH|TH_FIN)) ||
15031 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_rq->q_hiwat >> 3) &&
15032 		    (sqp != NULL)) {
15033 			if (tcp->tcp_rcv_list != NULL) {
15034 				/*
15035 				 * Enqueue the new segment first and then
15036 				 * call tcp_rcv_drain() to send all data
15037 				 * up.  The other way to do this is to
15038 				 * send all queued data up and then call
15039 				 * putnext() to send the new segment up.
15040 				 * This way can remove the else part later
15041 				 * on.
15042 				 *
15043 				 * We don't this to avoid one more call to
15044 				 * canputnext() as tcp_rcv_drain() needs to
15045 				 * call canputnext().
15046 				 */
15047 				tcp_rcv_enqueue(tcp, mp, seg_len);
15048 				flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15049 			} else {
15050 				putnext(tcp->tcp_rq, mp);
15051 				if (!canputnext(tcp->tcp_rq))
15052 					tcp->tcp_rwnd -= seg_len;
15053 			}
15054 		} else {
15055 			/*
15056 			 * Enqueue all packets when processing an mblk
15057 			 * from the co queue and also enqueue normal packets.
15058 			 */
15059 			tcp_rcv_enqueue(tcp, mp, seg_len);
15060 		}
15061 		/*
15062 		 * Make sure the timer is running if we have data waiting
15063 		 * for a push bit. This provides resiliency against
15064 		 * implementations that do not correctly generate push bits.
15065 		 */
15066 		if ((sqp != NULL) && tcp->tcp_rcv_list != NULL &&
15067 		    tcp->tcp_push_tid == 0) {
15068 			/*
15069 			 * The connection may be closed at this point, so don't
15070 			 * do anything for a detached tcp.
15071 			 */
15072 			if (!TCP_IS_DETACHED(tcp))
15073 				tcp->tcp_push_tid = TCP_TIMER(tcp,
15074 				    tcp_push_timer,
15075 				    MSEC_TO_TICK(tcp_push_timer_interval));
15076 		}
15077 	}
15078 xmit_check:
15079 	/* Is there anything left to do? */
15080 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15081 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
15082 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
15083 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15084 		goto done;
15085 
15086 	/* Any transmit work to do and a non-zero window? */
15087 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
15088 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
15089 		if (flags & TH_REXMIT_NEEDED) {
15090 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
15091 
15092 			BUMP_MIB(&tcp_mib, tcpOutFastRetrans);
15093 			if (snd_size > mss)
15094 				snd_size = mss;
15095 			if (snd_size > tcp->tcp_swnd)
15096 				snd_size = tcp->tcp_swnd;
15097 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
15098 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
15099 			    B_TRUE);
15100 
15101 			if (mp1 != NULL) {
15102 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15103 				tcp->tcp_csuna = tcp->tcp_snxt;
15104 				BUMP_MIB(&tcp_mib, tcpRetransSegs);
15105 				UPDATE_MIB(&tcp_mib, tcpRetransBytes, snd_size);
15106 				TCP_RECORD_TRACE(tcp, mp1,
15107 				    TCP_TRACE_SEND_PKT);
15108 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
15109 			}
15110 		}
15111 		if (flags & TH_NEED_SACK_REXMIT) {
15112 			tcp_sack_rxmit(tcp, &flags);
15113 		}
15114 		/*
15115 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
15116 		 * out new segment.  Note that tcp_rexmit should not be
15117 		 * set, otherwise TH_LIMIT_XMIT should not be set.
15118 		 */
15119 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
15120 			if (!tcp->tcp_rexmit) {
15121 				tcp_wput_data(tcp, NULL, B_FALSE);
15122 			} else {
15123 				tcp_ss_rexmit(tcp);
15124 			}
15125 		}
15126 		/*
15127 		 * Adjust tcp_cwnd back to normal value after sending
15128 		 * new data segments.
15129 		 */
15130 		if (flags & TH_LIMIT_XMIT) {
15131 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
15132 			/*
15133 			 * This will restart the timer.  Restarting the
15134 			 * timer is used to avoid a timeout before the
15135 			 * limited transmitted segment's ACK gets back.
15136 			 */
15137 			if (tcp->tcp_xmit_head != NULL)
15138 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
15139 		}
15140 
15141 		/* Anything more to do? */
15142 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
15143 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
15144 			goto done;
15145 	}
15146 ack_check:
15147 	if (flags & TH_SEND_URP_MARK) {
15148 		ASSERT(tcp->tcp_urp_mark_mp);
15149 		/*
15150 		 * Send up any queued data and then send the mark message
15151 		 */
15152 		if (tcp->tcp_rcv_list != NULL) {
15153 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15154 		}
15155 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15156 
15157 		mp1 = tcp->tcp_urp_mark_mp;
15158 		tcp->tcp_urp_mark_mp = NULL;
15159 #ifdef DEBUG
15160 		(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE,
15161 		    "tcp_rput: sending zero-length %s %s",
15162 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
15163 		    "MSGNOTMARKNEXT"),
15164 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
15165 #endif /* DEBUG */
15166 		putnext(tcp->tcp_rq, mp1);
15167 		flags &= ~TH_SEND_URP_MARK;
15168 	}
15169 	if (flags & TH_ACK_NEEDED) {
15170 		/*
15171 		 * Time to send an ack for some reason.
15172 		 */
15173 		mp1 = tcp_ack_mp(tcp);
15174 
15175 		if (mp1 != NULL) {
15176 			TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
15177 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15178 			BUMP_LOCAL(tcp->tcp_obsegs);
15179 			BUMP_MIB(&tcp_mib, tcpOutAck);
15180 		}
15181 		if (tcp->tcp_ack_tid != 0) {
15182 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15183 			tcp->tcp_ack_tid = 0;
15184 		}
15185 	}
15186 	if (flags & TH_ACK_TIMER_NEEDED) {
15187 		/*
15188 		 * Arrange for deferred ACK or push wait timeout.
15189 		 * Start timer if it is not already running.
15190 		 */
15191 		if (tcp->tcp_ack_tid == 0) {
15192 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15193 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15194 			    (clock_t)tcp_local_dack_interval :
15195 			    (clock_t)tcp_deferred_ack_interval));
15196 		}
15197 	}
15198 	if (flags & TH_ORDREL_NEEDED) {
15199 		/*
15200 		 * Send up the ordrel_ind unless we are an eager guy.
15201 		 * In the eager case tcp_rsrv will do this when run
15202 		 * after tcp_accept is done.
15203 		 */
15204 		ASSERT(tcp->tcp_listener == NULL);
15205 		if (tcp->tcp_rcv_list != NULL) {
15206 			/*
15207 			 * Push any mblk(s) enqueued from co processing.
15208 			 */
15209 			flags |= tcp_rcv_drain(tcp->tcp_rq, tcp);
15210 		}
15211 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15212 		if ((mp1 = mi_tpi_ordrel_ind()) != NULL) {
15213 			tcp->tcp_ordrel_done = B_TRUE;
15214 			putnext(tcp->tcp_rq, mp1);
15215 			if (tcp->tcp_deferred_clean_death) {
15216 				/*
15217 				 * tcp_clean_death was deferred
15218 				 * for T_ORDREL_IND - do it now
15219 				 */
15220 				(void) tcp_clean_death(tcp,
15221 				    tcp->tcp_client_errno, 20);
15222 				tcp->tcp_deferred_clean_death =	B_FALSE;
15223 			}
15224 		} else {
15225 			/*
15226 			 * Run the orderly release in the
15227 			 * service routine.
15228 			 */
15229 			qenable(tcp->tcp_rq);
15230 			/*
15231 			 * Caveat(XXX): The machine may be so
15232 			 * overloaded that tcp_rsrv() is not scheduled
15233 			 * until after the endpoint has transitioned
15234 			 * to TCPS_TIME_WAIT
15235 			 * and tcp_time_wait_interval expires. Then
15236 			 * tcp_timer() will blow away state in tcp_t
15237 			 * and T_ORDREL_IND will never be delivered
15238 			 * upstream. Unlikely but potentially
15239 			 * a problem.
15240 			 */
15241 		}
15242 	}
15243 done:
15244 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15245 }
15246 
15247 /*
15248  * This function does PAWS protection check. Returns B_TRUE if the
15249  * segment passes the PAWS test, else returns B_FALSE.
15250  */
15251 boolean_t
15252 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15253 {
15254 	uint8_t	flags;
15255 	int	options;
15256 	uint8_t *up;
15257 
15258 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15259 	/*
15260 	 * If timestamp option is aligned nicely, get values inline,
15261 	 * otherwise call general routine to parse.  Only do that
15262 	 * if timestamp is the only option.
15263 	 */
15264 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15265 	    TCPOPT_REAL_TS_LEN &&
15266 	    OK_32PTR((up = ((uint8_t *)tcph) +
15267 	    TCP_MIN_HEADER_LENGTH)) &&
15268 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15269 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15270 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15271 
15272 		options = TCP_OPT_TSTAMP_PRESENT;
15273 	} else {
15274 		if (tcp->tcp_snd_sack_ok) {
15275 			tcpoptp->tcp = tcp;
15276 		} else {
15277 			tcpoptp->tcp = NULL;
15278 		}
15279 		options = tcp_parse_options(tcph, tcpoptp);
15280 	}
15281 
15282 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15283 		/*
15284 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15285 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15286 		 */
15287 		if ((flags & TH_RST) == 0 &&
15288 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15289 		    tcp->tcp_ts_recent)) {
15290 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15291 			    PAWS_TIMEOUT)) {
15292 				/* This segment is not acceptable. */
15293 				return (B_FALSE);
15294 			} else {
15295 				/*
15296 				 * Connection has been idle for
15297 				 * too long.  Reset the timestamp
15298 				 * and assume the segment is valid.
15299 				 */
15300 				tcp->tcp_ts_recent =
15301 				    tcpoptp->tcp_opt_ts_val;
15302 			}
15303 		}
15304 	} else {
15305 		/*
15306 		 * If we don't get a timestamp on every packet, we
15307 		 * figure we can't really trust 'em, so we stop sending
15308 		 * and parsing them.
15309 		 */
15310 		tcp->tcp_snd_ts_ok = B_FALSE;
15311 
15312 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15313 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15314 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15315 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN);
15316 		if (tcp->tcp_snd_sack_ok) {
15317 			ASSERT(tcp->tcp_sack_info != NULL);
15318 			tcp->tcp_max_sack_blk = 4;
15319 		}
15320 	}
15321 	return (B_TRUE);
15322 }
15323 
15324 /*
15325  * Attach ancillary data to a received TCP segments for the
15326  * ancillary pieces requested by the application that are
15327  * different than they were in the previous data segment.
15328  *
15329  * Save the "current" values once memory allocation is ok so that
15330  * when memory allocation fails we can just wait for the next data segment.
15331  */
15332 static mblk_t *
15333 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15334 {
15335 	struct T_optdata_ind *todi;
15336 	int optlen;
15337 	uchar_t *optptr;
15338 	struct T_opthdr *toh;
15339 	uint_t addflag;	/* Which pieces to add */
15340 	mblk_t *mp1;
15341 
15342 	optlen = 0;
15343 	addflag = 0;
15344 	/* If app asked for pktinfo and the index has changed ... */
15345 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15346 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15347 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15348 		optlen += sizeof (struct T_opthdr) +
15349 		    sizeof (struct in6_pktinfo);
15350 		addflag |= TCP_IPV6_RECVPKTINFO;
15351 	}
15352 	/* If app asked for hoplimit and it has changed ... */
15353 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15354 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15355 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15356 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15357 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15358 	}
15359 	/* If app asked for tclass and it has changed ... */
15360 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15361 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15362 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15363 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15364 		addflag |= TCP_IPV6_RECVTCLASS;
15365 	}
15366 	/* If app asked for hopbyhop headers and it has changed ... */
15367 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15368 	    tcp_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15369 		(ipp->ipp_fields & IPPF_HOPOPTS),
15370 		ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15371 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen;
15372 		addflag |= TCP_IPV6_RECVHOPOPTS;
15373 		if (!tcp_allocbuf((void **)&tcp->tcp_hopopts,
15374 		    &tcp->tcp_hopoptslen,
15375 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15376 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15377 			return (mp);
15378 	}
15379 	/* If app asked for dst headers before routing headers ... */
15380 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15381 	    tcp_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15382 		(ipp->ipp_fields & IPPF_RTDSTOPTS),
15383 		ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15384 		optlen += sizeof (struct T_opthdr) +
15385 		    ipp->ipp_rtdstoptslen;
15386 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15387 		if (!tcp_allocbuf((void **)&tcp->tcp_rtdstopts,
15388 		    &tcp->tcp_rtdstoptslen,
15389 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15390 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15391 			return (mp);
15392 	}
15393 	/* If app asked for routing headers and it has changed ... */
15394 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15395 	    tcp_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15396 		(ipp->ipp_fields & IPPF_RTHDR),
15397 		ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15398 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15399 		addflag |= TCP_IPV6_RECVRTHDR;
15400 		if (!tcp_allocbuf((void **)&tcp->tcp_rthdr,
15401 		    &tcp->tcp_rthdrlen,
15402 		    (ipp->ipp_fields & IPPF_RTHDR),
15403 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15404 			return (mp);
15405 	}
15406 	/* If app asked for dest headers and it has changed ... */
15407 	if ((tcp->tcp_ipv6_recvancillary &
15408 		(TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15409 	    tcp_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15410 		(ipp->ipp_fields & IPPF_DSTOPTS),
15411 		ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15412 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15413 		addflag |= TCP_IPV6_RECVDSTOPTS;
15414 		if (!tcp_allocbuf((void **)&tcp->tcp_dstopts,
15415 		    &tcp->tcp_dstoptslen,
15416 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15417 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15418 			return (mp);
15419 	}
15420 
15421 	if (optlen == 0) {
15422 		/* Nothing to add */
15423 		return (mp);
15424 	}
15425 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15426 	if (mp1 == NULL) {
15427 		/*
15428 		 * Defer sending ancillary data until the next TCP segment
15429 		 * arrives.
15430 		 */
15431 		return (mp);
15432 	}
15433 	mp1->b_cont = mp;
15434 	mp = mp1;
15435 	mp->b_wptr += sizeof (*todi) + optlen;
15436 	mp->b_datap->db_type = M_PROTO;
15437 	todi = (struct T_optdata_ind *)mp->b_rptr;
15438 	todi->PRIM_type = T_OPTDATA_IND;
15439 	todi->DATA_flag = 1;	/* MORE data */
15440 	todi->OPT_length = optlen;
15441 	todi->OPT_offset = sizeof (*todi);
15442 	optptr = (uchar_t *)&todi[1];
15443 	/*
15444 	 * If app asked for pktinfo and the index has changed ...
15445 	 * Note that the local address never changes for the connection.
15446 	 */
15447 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15448 		struct in6_pktinfo *pkti;
15449 
15450 		toh = (struct T_opthdr *)optptr;
15451 		toh->level = IPPROTO_IPV6;
15452 		toh->name = IPV6_PKTINFO;
15453 		toh->len = sizeof (*toh) + sizeof (*pkti);
15454 		toh->status = 0;
15455 		optptr += sizeof (*toh);
15456 		pkti = (struct in6_pktinfo *)optptr;
15457 		if (tcp->tcp_ipversion == IPV6_VERSION)
15458 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15459 		else
15460 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15461 			    &pkti->ipi6_addr);
15462 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15463 		optptr += sizeof (*pkti);
15464 		ASSERT(OK_32PTR(optptr));
15465 		/* Save as "last" value */
15466 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15467 	}
15468 	/* If app asked for hoplimit and it has changed ... */
15469 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15470 		toh = (struct T_opthdr *)optptr;
15471 		toh->level = IPPROTO_IPV6;
15472 		toh->name = IPV6_HOPLIMIT;
15473 		toh->len = sizeof (*toh) + sizeof (uint_t);
15474 		toh->status = 0;
15475 		optptr += sizeof (*toh);
15476 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15477 		optptr += sizeof (uint_t);
15478 		ASSERT(OK_32PTR(optptr));
15479 		/* Save as "last" value */
15480 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15481 	}
15482 	/* If app asked for tclass and it has changed ... */
15483 	if (addflag & TCP_IPV6_RECVTCLASS) {
15484 		toh = (struct T_opthdr *)optptr;
15485 		toh->level = IPPROTO_IPV6;
15486 		toh->name = IPV6_TCLASS;
15487 		toh->len = sizeof (*toh) + sizeof (uint_t);
15488 		toh->status = 0;
15489 		optptr += sizeof (*toh);
15490 		*(uint_t *)optptr = ipp->ipp_tclass;
15491 		optptr += sizeof (uint_t);
15492 		ASSERT(OK_32PTR(optptr));
15493 		/* Save as "last" value */
15494 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15495 	}
15496 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15497 		toh = (struct T_opthdr *)optptr;
15498 		toh->level = IPPROTO_IPV6;
15499 		toh->name = IPV6_HOPOPTS;
15500 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen;
15501 		toh->status = 0;
15502 		optptr += sizeof (*toh);
15503 		bcopy(ipp->ipp_hopopts, optptr, ipp->ipp_hopoptslen);
15504 		optptr += ipp->ipp_hopoptslen;
15505 		ASSERT(OK_32PTR(optptr));
15506 		/* Save as last value */
15507 		tcp_savebuf((void **)&tcp->tcp_hopopts,
15508 		    &tcp->tcp_hopoptslen,
15509 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15510 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15511 	}
15512 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15513 		toh = (struct T_opthdr *)optptr;
15514 		toh->level = IPPROTO_IPV6;
15515 		toh->name = IPV6_RTHDRDSTOPTS;
15516 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15517 		toh->status = 0;
15518 		optptr += sizeof (*toh);
15519 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15520 		optptr += ipp->ipp_rtdstoptslen;
15521 		ASSERT(OK_32PTR(optptr));
15522 		/* Save as last value */
15523 		tcp_savebuf((void **)&tcp->tcp_rtdstopts,
15524 		    &tcp->tcp_rtdstoptslen,
15525 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15526 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15527 	}
15528 	if (addflag & TCP_IPV6_RECVRTHDR) {
15529 		toh = (struct T_opthdr *)optptr;
15530 		toh->level = IPPROTO_IPV6;
15531 		toh->name = IPV6_RTHDR;
15532 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15533 		toh->status = 0;
15534 		optptr += sizeof (*toh);
15535 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15536 		optptr += ipp->ipp_rthdrlen;
15537 		ASSERT(OK_32PTR(optptr));
15538 		/* Save as last value */
15539 		tcp_savebuf((void **)&tcp->tcp_rthdr,
15540 		    &tcp->tcp_rthdrlen,
15541 		    (ipp->ipp_fields & IPPF_RTHDR),
15542 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15543 	}
15544 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15545 		toh = (struct T_opthdr *)optptr;
15546 		toh->level = IPPROTO_IPV6;
15547 		toh->name = IPV6_DSTOPTS;
15548 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15549 		toh->status = 0;
15550 		optptr += sizeof (*toh);
15551 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15552 		optptr += ipp->ipp_dstoptslen;
15553 		ASSERT(OK_32PTR(optptr));
15554 		/* Save as last value */
15555 		tcp_savebuf((void **)&tcp->tcp_dstopts,
15556 		    &tcp->tcp_dstoptslen,
15557 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15558 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15559 	}
15560 	ASSERT(optptr == mp->b_wptr);
15561 	return (mp);
15562 }
15563 
15564 
15565 /*
15566  * Handle a *T_BIND_REQ that has failed either due to a T_ERROR_ACK
15567  * or a "bad" IRE detected by tcp_adapt_ire.
15568  * We can't tell if the failure was due to the laddr or the faddr
15569  * thus we clear out all addresses and ports.
15570  */
15571 static void
15572 tcp_bind_failed(tcp_t *tcp, mblk_t *mp, int error)
15573 {
15574 	queue_t	*q = tcp->tcp_rq;
15575 	tcph_t	*tcph;
15576 	struct T_error_ack *tea;
15577 	conn_t	*connp = tcp->tcp_connp;
15578 
15579 
15580 	ASSERT(mp->b_datap->db_type == M_PCPROTO);
15581 
15582 	if (mp->b_cont) {
15583 		freemsg(mp->b_cont);
15584 		mp->b_cont = NULL;
15585 	}
15586 	tea = (struct T_error_ack *)mp->b_rptr;
15587 	switch (tea->PRIM_type) {
15588 	case T_BIND_ACK:
15589 		/*
15590 		 * Need to unbind with classifier since we were just told that
15591 		 * our bind succeeded.
15592 		 */
15593 		tcp->tcp_hard_bound = B_FALSE;
15594 		tcp->tcp_hard_binding = B_FALSE;
15595 
15596 		ipcl_hash_remove(connp);
15597 		/* Reuse the mblk if possible */
15598 		ASSERT(mp->b_datap->db_lim - mp->b_datap->db_base >=
15599 			sizeof (*tea));
15600 		mp->b_rptr = mp->b_datap->db_base;
15601 		mp->b_wptr = mp->b_rptr + sizeof (*tea);
15602 		tea = (struct T_error_ack *)mp->b_rptr;
15603 		tea->PRIM_type = T_ERROR_ACK;
15604 		tea->TLI_error = TSYSERR;
15605 		tea->UNIX_error = error;
15606 		if (tcp->tcp_state >= TCPS_SYN_SENT) {
15607 			tea->ERROR_prim = T_CONN_REQ;
15608 		} else {
15609 			tea->ERROR_prim = O_T_BIND_REQ;
15610 		}
15611 		break;
15612 
15613 	case T_ERROR_ACK:
15614 		if (tcp->tcp_state >= TCPS_SYN_SENT)
15615 			tea->ERROR_prim = T_CONN_REQ;
15616 		break;
15617 	default:
15618 		panic("tcp_bind_failed: unexpected TPI type");
15619 		/*NOTREACHED*/
15620 	}
15621 
15622 	tcp->tcp_state = TCPS_IDLE;
15623 	if (tcp->tcp_ipversion == IPV4_VERSION)
15624 		tcp->tcp_ipha->ipha_src = 0;
15625 	else
15626 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
15627 	/*
15628 	 * Copy of the src addr. in tcp_t is needed since
15629 	 * the lookup funcs. can only look at tcp_t
15630 	 */
15631 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
15632 
15633 	tcph = tcp->tcp_tcph;
15634 	tcph->th_lport[0] = 0;
15635 	tcph->th_lport[1] = 0;
15636 	tcp_bind_hash_remove(tcp);
15637 	bzero(&connp->u_port, sizeof (connp->u_port));
15638 	/* blow away saved option results if any */
15639 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
15640 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
15641 
15642 	conn_delete_ire(tcp->tcp_connp, NULL);
15643 	putnext(q, mp);
15644 }
15645 
15646 /*
15647  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15648  * messages.
15649  */
15650 void
15651 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15652 {
15653 	mblk_t	*mp1;
15654 	uchar_t	*rptr = mp->b_rptr;
15655 	queue_t	*q = tcp->tcp_rq;
15656 	struct T_error_ack *tea;
15657 	uint32_t mss;
15658 	mblk_t *syn_mp;
15659 	mblk_t *mdti;
15660 	int	retval;
15661 	mblk_t *ire_mp;
15662 
15663 	switch (mp->b_datap->db_type) {
15664 	case M_PROTO:
15665 	case M_PCPROTO:
15666 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15667 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15668 			break;
15669 		tea = (struct T_error_ack *)rptr;
15670 		switch (tea->PRIM_type) {
15671 		case T_BIND_ACK:
15672 			/*
15673 			 * Adapt Multidata information, if any.  The
15674 			 * following tcp_mdt_update routine will free
15675 			 * the message.
15676 			 */
15677 			if ((mdti = tcp_mdt_info_mp(mp)) != NULL) {
15678 				tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
15679 				    b_rptr)->mdt_capab, B_TRUE);
15680 				freemsg(mdti);
15681 			}
15682 
15683 			/* Get the IRE, if we had requested for it */
15684 			ire_mp = tcp_ire_mp(mp);
15685 
15686 			if (tcp->tcp_hard_binding) {
15687 				tcp->tcp_hard_binding = B_FALSE;
15688 				tcp->tcp_hard_bound = B_TRUE;
15689 				CL_INET_CONNECT(tcp);
15690 			} else {
15691 				if (ire_mp != NULL)
15692 					freeb(ire_mp);
15693 				goto after_syn_sent;
15694 			}
15695 
15696 			retval = tcp_adapt_ire(tcp, ire_mp);
15697 			if (ire_mp != NULL)
15698 				freeb(ire_mp);
15699 			if (retval == 0) {
15700 				tcp_bind_failed(tcp, mp,
15701 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15702 				    ENETUNREACH : EADDRNOTAVAIL));
15703 				return;
15704 			}
15705 			/*
15706 			 * Don't let an endpoint connect to itself.
15707 			 * Also checked in tcp_connect() but that
15708 			 * check can't handle the case when the
15709 			 * local IP address is INADDR_ANY.
15710 			 */
15711 			if (tcp->tcp_ipversion == IPV4_VERSION) {
15712 				if ((tcp->tcp_ipha->ipha_dst ==
15713 				    tcp->tcp_ipha->ipha_src) &&
15714 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15715 				    tcp->tcp_tcph->th_fport))) {
15716 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15717 					return;
15718 				}
15719 			} else {
15720 				if (IN6_ARE_ADDR_EQUAL(
15721 				    &tcp->tcp_ip6h->ip6_dst,
15722 				    &tcp->tcp_ip6h->ip6_src) &&
15723 				    (BE16_EQL(tcp->tcp_tcph->th_lport,
15724 				    tcp->tcp_tcph->th_fport))) {
15725 					tcp_bind_failed(tcp, mp, EADDRNOTAVAIL);
15726 					return;
15727 				}
15728 			}
15729 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
15730 			/*
15731 			 * This should not be possible!  Just for
15732 			 * defensive coding...
15733 			 */
15734 			if (tcp->tcp_state != TCPS_SYN_SENT)
15735 				goto after_syn_sent;
15736 
15737 			ASSERT(q == tcp->tcp_rq);
15738 			/*
15739 			 * tcp_adapt_ire() does not adjust
15740 			 * for TCP/IP header length.
15741 			 */
15742 			mss = tcp->tcp_mss - tcp->tcp_hdr_len;
15743 
15744 			/*
15745 			 * Just make sure our rwnd is at
15746 			 * least tcp_recv_hiwat_mss * MSS
15747 			 * large, and round up to the nearest
15748 			 * MSS.
15749 			 *
15750 			 * We do the round up here because
15751 			 * we need to get the interface
15752 			 * MTU first before we can do the
15753 			 * round up.
15754 			 */
15755 			tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
15756 			    tcp_recv_hiwat_minmss * mss);
15757 			q->q_hiwat = tcp->tcp_rwnd;
15758 			tcp_set_ws_value(tcp);
15759 			U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
15760 			    tcp->tcp_tcph->th_win);
15761 			if (tcp->tcp_rcv_ws > 0 || tcp_wscale_always)
15762 				tcp->tcp_snd_ws_ok = B_TRUE;
15763 
15764 			/*
15765 			 * Set tcp_snd_ts_ok to true
15766 			 * so that tcp_xmit_mp will
15767 			 * include the timestamp
15768 			 * option in the SYN segment.
15769 			 */
15770 			if (tcp_tstamp_always ||
15771 			    (tcp->tcp_rcv_ws && tcp_tstamp_if_wscale)) {
15772 				tcp->tcp_snd_ts_ok = B_TRUE;
15773 			}
15774 
15775 			/*
15776 			 * tcp_snd_sack_ok can be set in
15777 			 * tcp_adapt_ire() if the sack metric
15778 			 * is set.  So check it here also.
15779 			 */
15780 			if (tcp_sack_permitted == 2 ||
15781 			    tcp->tcp_snd_sack_ok) {
15782 				if (tcp->tcp_sack_info == NULL) {
15783 					tcp->tcp_sack_info =
15784 					kmem_cache_alloc(tcp_sack_info_cache,
15785 					    KM_SLEEP);
15786 				}
15787 				tcp->tcp_snd_sack_ok = B_TRUE;
15788 			}
15789 
15790 			/*
15791 			 * Should we use ECN?  Note that the current
15792 			 * default value (SunOS 5.9) of tcp_ecn_permitted
15793 			 * is 1.  The reason for doing this is that there
15794 			 * are equipments out there that will drop ECN
15795 			 * enabled IP packets.  Setting it to 1 avoids
15796 			 * compatibility problems.
15797 			 */
15798 			if (tcp_ecn_permitted == 2)
15799 				tcp->tcp_ecn_ok = B_TRUE;
15800 
15801 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
15802 			syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
15803 			    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
15804 			if (syn_mp) {
15805 				cred_t *cr;
15806 				pid_t pid;
15807 
15808 				/*
15809 				 * Obtain the credential from the
15810 				 * thread calling connect(); the credential
15811 				 * lives on in the second mblk which
15812 				 * originated from T_CONN_REQ and is echoed
15813 				 * with the T_BIND_ACK from ip.  If none
15814 				 * can be found, default to the creator
15815 				 * of the socket.
15816 				 */
15817 				if (mp->b_cont == NULL ||
15818 				    (cr = DB_CRED(mp->b_cont)) == NULL) {
15819 					cr = tcp->tcp_cred;
15820 					pid = tcp->tcp_cpid;
15821 				} else {
15822 					pid = DB_CPID(mp->b_cont);
15823 				}
15824 
15825 				TCP_RECORD_TRACE(tcp, syn_mp,
15826 				    TCP_TRACE_SEND_PKT);
15827 				mblk_setcred(syn_mp, cr);
15828 				DB_CPID(syn_mp) = pid;
15829 				tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
15830 			}
15831 		after_syn_sent:
15832 			/*
15833 			 * A trailer mblk indicates a waiting client upstream.
15834 			 * We complete here the processing begun in
15835 			 * either tcp_bind() or tcp_connect() by passing
15836 			 * upstream the reply message they supplied.
15837 			 */
15838 			mp1 = mp;
15839 			mp = mp->b_cont;
15840 			freeb(mp1);
15841 			if (mp)
15842 				break;
15843 			return;
15844 		case T_ERROR_ACK:
15845 			if (tcp->tcp_debug) {
15846 				(void) strlog(TCP_MODULE_ID, 0, 1,
15847 				    SL_TRACE|SL_ERROR,
15848 				    "tcp_rput_other: case T_ERROR_ACK, "
15849 				    "ERROR_prim == %d",
15850 				    tea->ERROR_prim);
15851 			}
15852 			switch (tea->ERROR_prim) {
15853 			case O_T_BIND_REQ:
15854 			case T_BIND_REQ:
15855 				tcp_bind_failed(tcp, mp,
15856 				    (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
15857 				    ENETUNREACH : EADDRNOTAVAIL));
15858 				return;
15859 			case T_UNBIND_REQ:
15860 				tcp->tcp_hard_binding = B_FALSE;
15861 				tcp->tcp_hard_bound = B_FALSE;
15862 				if (mp->b_cont) {
15863 					freemsg(mp->b_cont);
15864 					mp->b_cont = NULL;
15865 				}
15866 				if (tcp->tcp_unbind_pending)
15867 					tcp->tcp_unbind_pending = 0;
15868 				else {
15869 					/* From tcp_ip_unbind() - free */
15870 					freemsg(mp);
15871 					return;
15872 				}
15873 				break;
15874 			case T_SVR4_OPTMGMT_REQ:
15875 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15876 					/* T_OPTMGMT_REQ generated by TCP */
15877 					printf("T_SVR4_OPTMGMT_REQ failed "
15878 					    "%d/%d - dropped (cnt %d)\n",
15879 					    tea->TLI_error, tea->UNIX_error,
15880 					    tcp->tcp_drop_opt_ack_cnt);
15881 					freemsg(mp);
15882 					tcp->tcp_drop_opt_ack_cnt--;
15883 					return;
15884 				}
15885 				break;
15886 			}
15887 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15888 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15889 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15890 				    "- dropped (cnt %d)\n",
15891 				    tea->TLI_error, tea->UNIX_error,
15892 				    tcp->tcp_drop_opt_ack_cnt);
15893 				freemsg(mp);
15894 				tcp->tcp_drop_opt_ack_cnt--;
15895 				return;
15896 			}
15897 			break;
15898 		case T_OPTMGMT_ACK:
15899 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15900 				/* T_OPTMGMT_REQ generated by TCP */
15901 				freemsg(mp);
15902 				tcp->tcp_drop_opt_ack_cnt--;
15903 				return;
15904 			}
15905 			break;
15906 		default:
15907 			break;
15908 		}
15909 		break;
15910 	case M_CTL:
15911 		/*
15912 		 * ICMP messages.
15913 		 */
15914 		tcp_icmp_error(tcp, mp);
15915 		return;
15916 	case M_FLUSH:
15917 		if (*rptr & FLUSHR)
15918 			flushq(q, FLUSHDATA);
15919 		break;
15920 	default:
15921 		break;
15922 	}
15923 	/*
15924 	 * Make sure we set this bit before sending the ACK for
15925 	 * bind. Otherwise accept could possibly run and free
15926 	 * this tcp struct.
15927 	 */
15928 	putnext(q, mp);
15929 }
15930 
15931 /*
15932  * Called as the result of a qbufcall or a qtimeout to remedy a failure
15933  * to allocate a T_ordrel_ind in tcp_rsrv().  qenable(q) will make
15934  * tcp_rsrv() try again.
15935  */
15936 static void
15937 tcp_ordrel_kick(void *arg)
15938 {
15939 	conn_t 	*connp = (conn_t *)arg;
15940 	tcp_t	*tcp = connp->conn_tcp;
15941 
15942 	tcp->tcp_ordrelid = 0;
15943 	tcp->tcp_timeout = B_FALSE;
15944 	if (!TCP_IS_DETACHED(tcp) && tcp->tcp_rq != NULL &&
15945 	    tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
15946 		qenable(tcp->tcp_rq);
15947 	}
15948 }
15949 
15950 /* ARGSUSED */
15951 static void
15952 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15953 {
15954 	conn_t	*connp = (conn_t *)arg;
15955 	tcp_t	*tcp = connp->conn_tcp;
15956 	queue_t	*q = tcp->tcp_rq;
15957 	uint_t	thwin;
15958 
15959 	freeb(mp);
15960 
15961 	TCP_STAT(tcp_rsrv_calls);
15962 
15963 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15964 		return;
15965 	}
15966 
15967 	if (tcp->tcp_fused) {
15968 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15969 
15970 		ASSERT(tcp->tcp_fused);
15971 		ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
15972 		ASSERT(peer_tcp->tcp_loopback_peer == tcp);
15973 		ASSERT(!TCP_IS_DETACHED(tcp));
15974 		ASSERT(tcp->tcp_connp->conn_sqp ==
15975 		    peer_tcp->tcp_connp->conn_sqp);
15976 
15977 		if (tcp->tcp_rcv_list != NULL)
15978 			(void) tcp_rcv_drain(tcp->tcp_rq, tcp);
15979 
15980 		tcp_clrqfull(peer_tcp);
15981 		peer_tcp->tcp_flow_stopped = B_FALSE;
15982 		TCP_STAT(tcp_fusion_backenabled);
15983 		return;
15984 	}
15985 
15986 	if (canputnext(q)) {
15987 		tcp->tcp_rwnd = q->q_hiwat;
15988 		thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
15989 		    << tcp->tcp_rcv_ws;
15990 		thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
15991 		/*
15992 		 * Send back a window update immediately if TCP is above
15993 		 * ESTABLISHED state and the increase of the rcv window
15994 		 * that the other side knows is at least 1 MSS after flow
15995 		 * control is lifted.
15996 		 */
15997 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15998 		    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
15999 			tcp_xmit_ctl(NULL, tcp,
16000 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
16001 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
16002 			BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
16003 		}
16004 	}
16005 	/* Handle a failure to allocate a T_ORDREL_IND here */
16006 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
16007 		ASSERT(tcp->tcp_listener == NULL);
16008 		if (tcp->tcp_rcv_list != NULL) {
16009 			(void) tcp_rcv_drain(q, tcp);
16010 		}
16011 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
16012 		mp = mi_tpi_ordrel_ind();
16013 		if (mp) {
16014 			tcp->tcp_ordrel_done = B_TRUE;
16015 			putnext(q, mp);
16016 			if (tcp->tcp_deferred_clean_death) {
16017 				/*
16018 				 * tcp_clean_death was deferred for
16019 				 * T_ORDREL_IND - do it now
16020 				 */
16021 				tcp->tcp_deferred_clean_death = B_FALSE;
16022 				(void) tcp_clean_death(tcp,
16023 				    tcp->tcp_client_errno, 22);
16024 			}
16025 		} else if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16026 			/*
16027 			 * If there isn't already a timer running
16028 			 * start one.  Use a 4 second
16029 			 * timer as a fallback since it can't fail.
16030 			 */
16031 			tcp->tcp_timeout = B_TRUE;
16032 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16033 			    MSEC_TO_TICK(4000));
16034 		}
16035 	}
16036 }
16037 
16038 /*
16039  * The read side service routine is called mostly when we get back-enabled as a
16040  * result of flow control relief.  Since we don't actually queue anything in
16041  * TCP, we have no data to send out of here.  What we do is clear the receive
16042  * window, and send out a window update.
16043  * This routine is also called to drive an orderly release message upstream
16044  * if the attempt in tcp_rput failed.
16045  */
16046 static void
16047 tcp_rsrv(queue_t *q)
16048 {
16049 	conn_t *connp = Q_TO_CONN(q);
16050 	tcp_t	*tcp = connp->conn_tcp;
16051 	mblk_t	*mp;
16052 
16053 	/* No code does a putq on the read side */
16054 	ASSERT(q->q_first == NULL);
16055 
16056 	/* Nothing to do for the default queue */
16057 	if (q == tcp_g_q) {
16058 		return;
16059 	}
16060 
16061 	mp = allocb(0, BPRI_HI);
16062 	if (mp == NULL) {
16063 		/*
16064 		 * We are under memory pressure. Return for now and we
16065 		 * we will be called again later.
16066 		 */
16067 		if (!tcp->tcp_timeout && tcp->tcp_ordrelid == 0) {
16068 			/*
16069 			 * If there isn't already a timer running
16070 			 * start one.  Use a 4 second
16071 			 * timer as a fallback since it can't fail.
16072 			 */
16073 			tcp->tcp_timeout = B_TRUE;
16074 			tcp->tcp_ordrelid = TCP_TIMER(tcp, tcp_ordrel_kick,
16075 			    MSEC_TO_TICK(4000));
16076 		}
16077 		return;
16078 	}
16079 	CONN_INC_REF(connp);
16080 	squeue_enter(connp->conn_sqp, mp, tcp_rsrv_input, connp,
16081 	    SQTAG_TCP_RSRV);
16082 }
16083 
16084 /*
16085  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
16086  * We do not allow the receive window to shrink.  After setting rwnd,
16087  * set the flow control hiwat of the stream.
16088  *
16089  * This function is called in 2 cases:
16090  *
16091  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
16092  *    connection (passive open) and in tcp_rput_data() for active connect.
16093  *    This is called after tcp_mss_set() when the desired MSS value is known.
16094  *    This makes sure that our window size is a mutiple of the other side's
16095  *    MSS.
16096  * 2) Handling SO_RCVBUF option.
16097  *
16098  * It is ASSUMED that the requested size is a multiple of the current MSS.
16099  *
16100  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
16101  * user requests so.
16102  */
16103 static int
16104 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
16105 {
16106 	uint32_t	mss = tcp->tcp_mss;
16107 	uint32_t	old_max_rwnd;
16108 	uint32_t	max_transmittable_rwnd;
16109 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
16110 
16111 	if (tcp_detached)
16112 		old_max_rwnd = tcp->tcp_rwnd;
16113 	else
16114 		old_max_rwnd = tcp->tcp_rq->q_hiwat;
16115 
16116 	/*
16117 	 * Insist on a receive window that is at least
16118 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
16119 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
16120 	 * and delayed acknowledgement.
16121 	 */
16122 	rwnd = MAX(rwnd, tcp_recv_hiwat_minmss * mss);
16123 
16124 	/*
16125 	 * If window size info has already been exchanged, TCP should not
16126 	 * shrink the window.  Shrinking window is doable if done carefully.
16127 	 * We may add that support later.  But so far there is not a real
16128 	 * need to do that.
16129 	 */
16130 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
16131 		/* MSS may have changed, do a round up again. */
16132 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
16133 	}
16134 
16135 	/*
16136 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
16137 	 * can be applied even before the window scale option is decided.
16138 	 */
16139 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
16140 	if (rwnd > max_transmittable_rwnd) {
16141 		rwnd = max_transmittable_rwnd -
16142 		    (max_transmittable_rwnd % mss);
16143 		if (rwnd < mss)
16144 			rwnd = max_transmittable_rwnd;
16145 		/*
16146 		 * If we're over the limit we may have to back down tcp_rwnd.
16147 		 * The increment below won't work for us. So we set all three
16148 		 * here and the increment below will have no effect.
16149 		 */
16150 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
16151 	}
16152 	if (tcp->tcp_localnet) {
16153 		tcp->tcp_rack_abs_max =
16154 		    MIN(tcp_local_dacks_max, rwnd / mss / 2);
16155 	} else {
16156 		/*
16157 		 * For a remote host on a different subnet (through a router),
16158 		 * we ack every other packet to be conforming to RFC1122.
16159 		 * tcp_deferred_acks_max is default to 2.
16160 		 */
16161 		tcp->tcp_rack_abs_max =
16162 		    MIN(tcp_deferred_acks_max, rwnd / mss / 2);
16163 	}
16164 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
16165 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
16166 	else
16167 		tcp->tcp_rack_cur_max = 0;
16168 	/*
16169 	 * Increment the current rwnd by the amount the maximum grew (we
16170 	 * can not overwrite it since we might be in the middle of a
16171 	 * connection.)
16172 	 */
16173 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
16174 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
16175 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
16176 		tcp->tcp_cwnd_max = rwnd;
16177 
16178 	if (tcp_detached)
16179 		return (rwnd);
16180 	/*
16181 	 * We set the maximum receive window into rq->q_hiwat.
16182 	 * This is not actually used for flow control.
16183 	 */
16184 	tcp->tcp_rq->q_hiwat = rwnd;
16185 	/*
16186 	 * Set the Stream head high water mark. This doesn't have to be
16187 	 * here, since we are simply using default values, but we would
16188 	 * prefer to choose these values algorithmically, with a likely
16189 	 * relationship to rwnd.  For fused loopback tcp, we double the
16190 	 * amount of buffer in order to simulate the normal tcp case.
16191 	 */
16192 	if (tcp->tcp_fused) {
16193 		(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd << 1,
16194 		    tcp_sth_rcv_hiwat));
16195 	} else {
16196 		(void) mi_set_sth_hiwat(tcp->tcp_rq, MAX(rwnd,
16197 		    tcp_sth_rcv_hiwat));
16198 	}
16199 	return (rwnd);
16200 }
16201 
16202 /*
16203  * Return SNMP stuff in buffer in mpdata.
16204  */
16205 static int
16206 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
16207 {
16208 	mblk_t			*mpdata;
16209 	mblk_t			*mp_conn_ctl = NULL;
16210 	mblk_t			*mp_conn_data;
16211 	mblk_t			*mp6_conn_ctl = NULL;
16212 	mblk_t			*mp6_conn_data;
16213 	mblk_t			*mp_conn_tail = NULL;
16214 	mblk_t			*mp6_conn_tail = NULL;
16215 	struct opthdr		*optp;
16216 	mib2_tcpConnEntry_t	tce;
16217 	mib2_tcp6ConnEntry_t	tce6;
16218 	connf_t			*connfp;
16219 	conn_t			*connp;
16220 	int			i;
16221 	boolean_t 		ispriv;
16222 	zoneid_t 		zoneid;
16223 
16224 	if (mpctl == NULL ||
16225 	    (mpdata = mpctl->b_cont) == NULL ||
16226 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
16227 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL) {
16228 		if (mp_conn_ctl != NULL)
16229 			freemsg(mp_conn_ctl);
16230 		if (mp6_conn_ctl != NULL)
16231 			freemsg(mp6_conn_ctl);
16232 		return (0);
16233 	}
16234 
16235 	/* build table of connections -- need count in fixed part */
16236 	mp_conn_data = mp_conn_ctl->b_cont;
16237 	mp6_conn_data = mp6_conn_ctl->b_cont;
16238 	SET_MIB(tcp_mib.tcpRtoAlgorithm, 4);   /* vanj */
16239 	SET_MIB(tcp_mib.tcpRtoMin, tcp_rexmit_interval_min);
16240 	SET_MIB(tcp_mib.tcpRtoMax, tcp_rexmit_interval_max);
16241 	SET_MIB(tcp_mib.tcpMaxConn, -1);
16242 	SET_MIB(tcp_mib.tcpCurrEstab, 0);
16243 
16244 	ispriv =
16245 	    secpolicy_net_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
16246 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16247 
16248 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16249 
16250 		connfp = &ipcl_globalhash_fanout[i];
16251 
16252 		connp = NULL;
16253 
16254 		while ((connp = tcp_get_next_conn(connfp, connp))) {
16255 			tcp_t *tcp;
16256 
16257 			if (connp->conn_zoneid != zoneid)
16258 				continue;	/* not in this zone */
16259 
16260 			tcp = connp->conn_tcp;
16261 			UPDATE_MIB(&tcp_mib, tcpInSegs, tcp->tcp_ibsegs);
16262 			tcp->tcp_ibsegs = 0;
16263 			UPDATE_MIB(&tcp_mib, tcpOutSegs, tcp->tcp_obsegs);
16264 			tcp->tcp_obsegs = 0;
16265 
16266 			tce6.tcp6ConnState = tce.tcpConnState =
16267 			    tcp_snmp_state(tcp);
16268 			if (tce.tcpConnState == MIB2_TCP_established ||
16269 			    tce.tcpConnState == MIB2_TCP_closeWait)
16270 				BUMP_MIB(&tcp_mib, tcpCurrEstab);
16271 
16272 			/* Create a message to report on IPv6 entries */
16273 			if (tcp->tcp_ipversion == IPV6_VERSION) {
16274 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
16275 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
16276 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
16277 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
16278 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
16279 			/* Don't want just anybody seeing these... */
16280 			if (ispriv) {
16281 				tce6.tcp6ConnEntryInfo.ce_snxt =
16282 				    tcp->tcp_snxt;
16283 				tce6.tcp6ConnEntryInfo.ce_suna =
16284 				    tcp->tcp_suna;
16285 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16286 				    tcp->tcp_rnxt;
16287 				tce6.tcp6ConnEntryInfo.ce_rack =
16288 				    tcp->tcp_rack;
16289 			} else {
16290 				/*
16291 				 * Netstat, unfortunately, uses this to
16292 				 * get send/receive queue sizes.  How to fix?
16293 				 * Why not compute the difference only?
16294 				 */
16295 				tce6.tcp6ConnEntryInfo.ce_snxt =
16296 				    tcp->tcp_snxt - tcp->tcp_suna;
16297 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
16298 				tce6.tcp6ConnEntryInfo.ce_rnxt =
16299 				    tcp->tcp_rnxt - tcp->tcp_rack;
16300 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
16301 			}
16302 
16303 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16304 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16305 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
16306 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
16307 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
16308 			(void) snmp_append_data2(mp6_conn_data, &mp6_conn_tail,
16309 			    (char *)&tce6, sizeof (tce6));
16310 			}
16311 			/*
16312 			 * Create an IPv4 table entry for IPv4 entries and also
16313 			 * for IPv6 entries which are bound to in6addr_any
16314 			 * but don't have IPV6_V6ONLY set.
16315 			 * (i.e. anything an IPv4 peer could connect to)
16316 			 */
16317 			if (tcp->tcp_ipversion == IPV4_VERSION ||
16318 			    (tcp->tcp_state <= TCPS_LISTEN &&
16319 			    !tcp->tcp_connp->conn_ipv6_v6only &&
16320 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
16321 				if (tcp->tcp_ipversion == IPV6_VERSION) {
16322 					tce.tcpConnRemAddress = INADDR_ANY;
16323 					tce.tcpConnLocalAddress = INADDR_ANY;
16324 				} else {
16325 					tce.tcpConnRemAddress =
16326 					    tcp->tcp_remote;
16327 					tce.tcpConnLocalAddress =
16328 					    tcp->tcp_ip_src;
16329 				}
16330 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
16331 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
16332 				/* Don't want just anybody seeing these... */
16333 				if (ispriv) {
16334 					tce.tcpConnEntryInfo.ce_snxt =
16335 					    tcp->tcp_snxt;
16336 					tce.tcpConnEntryInfo.ce_suna =
16337 					    tcp->tcp_suna;
16338 					tce.tcpConnEntryInfo.ce_rnxt =
16339 					    tcp->tcp_rnxt;
16340 					tce.tcpConnEntryInfo.ce_rack =
16341 					    tcp->tcp_rack;
16342 				} else {
16343 					/*
16344 					 * Netstat, unfortunately, uses this to
16345 					 * get send/receive queue sizes.  How
16346 					 * to fix?
16347 					 * Why not compute the difference only?
16348 					 */
16349 					tce.tcpConnEntryInfo.ce_snxt =
16350 					    tcp->tcp_snxt - tcp->tcp_suna;
16351 					tce.tcpConnEntryInfo.ce_suna = 0;
16352 					tce.tcpConnEntryInfo.ce_rnxt =
16353 					    tcp->tcp_rnxt - tcp->tcp_rack;
16354 					tce.tcpConnEntryInfo.ce_rack = 0;
16355 				}
16356 
16357 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
16358 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
16359 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
16360 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
16361 				tce.tcpConnEntryInfo.ce_state =
16362 				    tcp->tcp_state;
16363 				(void) snmp_append_data2(mp_conn_data,
16364 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
16365 			}
16366 		}
16367 	}
16368 
16369 	/* fixed length structure for IPv4 and IPv6 counters */
16370 	SET_MIB(tcp_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
16371 	SET_MIB(tcp_mib.tcp6ConnTableSize, sizeof (mib2_tcp6ConnEntry_t));
16372 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
16373 	optp->level = MIB2_TCP;
16374 	optp->name = 0;
16375 	(void) snmp_append_data(mpdata, (char *)&tcp_mib, sizeof (tcp_mib));
16376 	optp->len = msgdsize(mpdata);
16377 	qreply(q, mpctl);
16378 
16379 	/* table of connections... */
16380 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
16381 	    sizeof (struct T_optmgmt_ack)];
16382 	optp->level = MIB2_TCP;
16383 	optp->name = MIB2_TCP_CONN;
16384 	optp->len = msgdsize(mp_conn_data);
16385 	qreply(q, mp_conn_ctl);
16386 
16387 	/* table of IPv6 connections... */
16388 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
16389 	    sizeof (struct T_optmgmt_ack)];
16390 	optp->level = MIB2_TCP6;
16391 	optp->name = MIB2_TCP6_CONN;
16392 	optp->len = msgdsize(mp6_conn_data);
16393 	qreply(q, mp6_conn_ctl);
16394 	return (1);
16395 }
16396 
16397 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16398 /* ARGSUSED */
16399 static int
16400 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16401 {
16402 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16403 
16404 	switch (level) {
16405 	case MIB2_TCP:
16406 		switch (name) {
16407 		case 13:
16408 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16409 				return (0);
16410 			/* TODO: delete entry defined by tce */
16411 			return (1);
16412 		default:
16413 			return (0);
16414 		}
16415 	default:
16416 		return (1);
16417 	}
16418 }
16419 
16420 /* Translate TCP state to MIB2 TCP state. */
16421 static int
16422 tcp_snmp_state(tcp_t *tcp)
16423 {
16424 	if (tcp == NULL)
16425 		return (0);
16426 
16427 	switch (tcp->tcp_state) {
16428 	case TCPS_CLOSED:
16429 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16430 	case TCPS_BOUND:
16431 		return (MIB2_TCP_closed);
16432 	case TCPS_LISTEN:
16433 		return (MIB2_TCP_listen);
16434 	case TCPS_SYN_SENT:
16435 		return (MIB2_TCP_synSent);
16436 	case TCPS_SYN_RCVD:
16437 		return (MIB2_TCP_synReceived);
16438 	case TCPS_ESTABLISHED:
16439 		return (MIB2_TCP_established);
16440 	case TCPS_CLOSE_WAIT:
16441 		return (MIB2_TCP_closeWait);
16442 	case TCPS_FIN_WAIT_1:
16443 		return (MIB2_TCP_finWait1);
16444 	case TCPS_CLOSING:
16445 		return (MIB2_TCP_closing);
16446 	case TCPS_LAST_ACK:
16447 		return (MIB2_TCP_lastAck);
16448 	case TCPS_FIN_WAIT_2:
16449 		return (MIB2_TCP_finWait2);
16450 	case TCPS_TIME_WAIT:
16451 		return (MIB2_TCP_timeWait);
16452 	default:
16453 		return (0);
16454 	}
16455 }
16456 
16457 static char tcp_report_header[] =
16458 	"TCP     " MI_COL_HDRPAD_STR
16459 	"zone dest            snxt     suna     "
16460 	"swnd       rnxt     rack     rwnd       rto   mss   w sw rw t "
16461 	"recent   [lport,fport] state";
16462 
16463 /*
16464  * TCP status report triggered via the Named Dispatch mechanism.
16465  */
16466 /* ARGSUSED */
16467 static void
16468 tcp_report_item(mblk_t *mp, tcp_t *tcp, int hashval, tcp_t *thisstream,
16469     cred_t *cr)
16470 {
16471 	char hash[10], addrbuf[INET6_ADDRSTRLEN];
16472 	boolean_t ispriv = secpolicy_net_config(cr, B_TRUE) == 0;
16473 	char cflag;
16474 	in6_addr_t	v6dst;
16475 	char buf[80];
16476 	uint_t print_len, buf_len;
16477 
16478 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16479 	if (buf_len <= 0)
16480 		return;
16481 
16482 	if (hashval >= 0)
16483 		(void) sprintf(hash, "%03d ", hashval);
16484 	else
16485 		hash[0] = '\0';
16486 
16487 	/*
16488 	 * Note that we use the remote address in the tcp_b  structure.
16489 	 * This means that it will print out the real destination address,
16490 	 * not the next hop's address if source routing is used.  This
16491 	 * avoid the confusion on the output because user may not
16492 	 * know that source routing is used for a connection.
16493 	 */
16494 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16495 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &v6dst);
16496 	} else {
16497 		v6dst = tcp->tcp_remote_v6;
16498 	}
16499 	(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16500 	/*
16501 	 * the ispriv checks are so that normal users cannot determine
16502 	 * sequence number information using NDD.
16503 	 */
16504 
16505 	if (TCP_IS_DETACHED(tcp))
16506 		cflag = '*';
16507 	else
16508 		cflag = ' ';
16509 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16510 	    "%s " MI_COL_PTRFMT_STR "%d %s %08x %08x %010d %08x %08x "
16511 	    "%010d %05ld %05d %1d %02d %02d %1d %08x %s%c\n",
16512 	    hash,
16513 	    (void *)tcp,
16514 	    tcp->tcp_connp->conn_zoneid,
16515 	    addrbuf,
16516 	    (ispriv) ? tcp->tcp_snxt : 0,
16517 	    (ispriv) ? tcp->tcp_suna : 0,
16518 	    tcp->tcp_swnd,
16519 	    (ispriv) ? tcp->tcp_rnxt : 0,
16520 	    (ispriv) ? tcp->tcp_rack : 0,
16521 	    tcp->tcp_rwnd,
16522 	    tcp->tcp_rto,
16523 	    tcp->tcp_mss,
16524 	    tcp->tcp_snd_ws_ok,
16525 	    tcp->tcp_snd_ws,
16526 	    tcp->tcp_rcv_ws,
16527 	    tcp->tcp_snd_ts_ok,
16528 	    tcp->tcp_ts_recent,
16529 	    tcp_display(tcp, buf, DISP_PORT_ONLY), cflag);
16530 	if (print_len < buf_len) {
16531 		((mblk_t *)mp)->b_wptr += print_len;
16532 	} else {
16533 		((mblk_t *)mp)->b_wptr += buf_len;
16534 	}
16535 }
16536 
16537 /*
16538  * TCP status report (for listeners only) triggered via the Named Dispatch
16539  * mechanism.
16540  */
16541 /* ARGSUSED */
16542 static void
16543 tcp_report_listener(mblk_t *mp, tcp_t *tcp, int hashval)
16544 {
16545 	char addrbuf[INET6_ADDRSTRLEN];
16546 	in6_addr_t	v6dst;
16547 	uint_t print_len, buf_len;
16548 
16549 	buf_len = mp->b_datap->db_lim - mp->b_wptr;
16550 	if (buf_len <= 0)
16551 		return;
16552 
16553 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16554 		IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6dst);
16555 		(void) inet_ntop(AF_INET6, &v6dst, addrbuf, sizeof (addrbuf));
16556 	} else {
16557 		(void) inet_ntop(AF_INET6, &tcp->tcp_ip6h->ip6_src,
16558 		    addrbuf, sizeof (addrbuf));
16559 	}
16560 	print_len = snprintf((char *)mp->b_wptr, buf_len,
16561 	    "%03d "
16562 	    MI_COL_PTRFMT_STR
16563 	    "%d %s %05u %08u %d/%d/%d%c\n",
16564 	    hashval, (void *)tcp,
16565 	    tcp->tcp_connp->conn_zoneid,
16566 	    addrbuf,
16567 	    (uint_t)BE16_TO_U16(tcp->tcp_tcph->th_lport),
16568 	    tcp->tcp_conn_req_seqnum,
16569 	    tcp->tcp_conn_req_cnt_q0, tcp->tcp_conn_req_cnt_q,
16570 	    tcp->tcp_conn_req_max,
16571 	    tcp->tcp_syn_defense ? '*' : ' ');
16572 	if (print_len < buf_len) {
16573 		((mblk_t *)mp)->b_wptr += print_len;
16574 	} else {
16575 		((mblk_t *)mp)->b_wptr += buf_len;
16576 	}
16577 }
16578 
16579 /* TCP status report triggered via the Named Dispatch mechanism. */
16580 /* ARGSUSED */
16581 static int
16582 tcp_status_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16583 {
16584 	tcp_t	*tcp;
16585 	int	i;
16586 	conn_t	*connp;
16587 	connf_t	*connfp;
16588 	zoneid_t zoneid;
16589 
16590 	/*
16591 	 * Because of the ndd constraint, at most we can have 64K buffer
16592 	 * to put in all TCP info.  So to be more efficient, just
16593 	 * allocate a 64K buffer here, assuming we need that large buffer.
16594 	 * This may be a problem as any user can read tcp_status.  Therefore
16595 	 * we limit the rate of doing this using tcp_ndd_get_info_interval.
16596 	 * This should be OK as normal users should not do this too often.
16597 	 */
16598 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16599 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16600 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16601 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16602 			return (0);
16603 		}
16604 	}
16605 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16606 		/* The following may work even if we cannot get a large buf. */
16607 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16608 		return (0);
16609 	}
16610 
16611 	(void) mi_mpprintf(mp, "%s", tcp_report_header);
16612 
16613 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16614 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
16615 
16616 		connfp = &ipcl_globalhash_fanout[i];
16617 
16618 		connp = NULL;
16619 
16620 		while ((connp = tcp_get_next_conn(connfp, connp))) {
16621 			tcp = connp->conn_tcp;
16622 			if (zoneid != GLOBAL_ZONEID &&
16623 			    zoneid != connp->conn_zoneid)
16624 				continue;
16625 			tcp_report_item(mp->b_cont, tcp, -1, tcp,
16626 			    cr);
16627 		}
16628 
16629 	}
16630 
16631 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16632 	return (0);
16633 }
16634 
16635 /* TCP status report triggered via the Named Dispatch mechanism. */
16636 /* ARGSUSED */
16637 static int
16638 tcp_bind_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16639 {
16640 	tf_t	*tbf;
16641 	tcp_t	*tcp;
16642 	int	i;
16643 	zoneid_t zoneid;
16644 
16645 	/* Refer to comments in tcp_status_report(). */
16646 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16647 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16648 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16649 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16650 			return (0);
16651 		}
16652 	}
16653 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16654 		/* The following may work even if we cannot get a large buf. */
16655 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16656 		return (0);
16657 	}
16658 
16659 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16660 
16661 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16662 
16663 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
16664 		tbf = &tcp_bind_fanout[i];
16665 		mutex_enter(&tbf->tf_lock);
16666 		for (tcp = tbf->tf_tcp; tcp != NULL;
16667 		    tcp = tcp->tcp_bind_hash) {
16668 			if (zoneid != GLOBAL_ZONEID &&
16669 			    zoneid != tcp->tcp_connp->conn_zoneid)
16670 				continue;
16671 			CONN_INC_REF(tcp->tcp_connp);
16672 			tcp_report_item(mp->b_cont, tcp, i,
16673 			    Q_TO_TCP(q), cr);
16674 			CONN_DEC_REF(tcp->tcp_connp);
16675 		}
16676 		mutex_exit(&tbf->tf_lock);
16677 	}
16678 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16679 	return (0);
16680 }
16681 
16682 /* TCP status report triggered via the Named Dispatch mechanism. */
16683 /* ARGSUSED */
16684 static int
16685 tcp_listen_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16686 {
16687 	connf_t	*connfp;
16688 	conn_t	*connp;
16689 	tcp_t	*tcp;
16690 	int	i;
16691 	zoneid_t zoneid;
16692 
16693 	/* Refer to comments in tcp_status_report(). */
16694 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16695 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16696 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16697 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16698 			return (0);
16699 		}
16700 	}
16701 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16702 		/* The following may work even if we cannot get a large buf. */
16703 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16704 		return (0);
16705 	}
16706 
16707 	(void) mi_mpprintf(mp,
16708 	    "    TCP    " MI_COL_HDRPAD_STR
16709 	    "zone IP addr         port  seqnum   backlog (q0/q/max)");
16710 
16711 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16712 
16713 	for (i = 0; i < ipcl_bind_fanout_size; i++) {
16714 		connfp =  &ipcl_bind_fanout[i];
16715 		connp = NULL;
16716 		while ((connp = tcp_get_next_conn(connfp, connp))) {
16717 			tcp = connp->conn_tcp;
16718 			if (zoneid != GLOBAL_ZONEID &&
16719 			    zoneid != connp->conn_zoneid)
16720 				continue;
16721 			tcp_report_listener(mp->b_cont, tcp, i);
16722 		}
16723 	}
16724 
16725 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16726 	return (0);
16727 }
16728 
16729 /* TCP status report triggered via the Named Dispatch mechanism. */
16730 /* ARGSUSED */
16731 static int
16732 tcp_conn_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16733 {
16734 	connf_t	*connfp;
16735 	conn_t	*connp;
16736 	tcp_t	*tcp;
16737 	int	i;
16738 	zoneid_t zoneid;
16739 
16740 	/* Refer to comments in tcp_status_report(). */
16741 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16742 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16743 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16744 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16745 			return (0);
16746 		}
16747 	}
16748 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16749 		/* The following may work even if we cannot get a large buf. */
16750 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16751 		return (0);
16752 	}
16753 
16754 	(void) mi_mpprintf(mp, "tcp_conn_hash_size = %d",
16755 	    ipcl_conn_fanout_size);
16756 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16757 
16758 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16759 
16760 	for (i = 0; i < ipcl_conn_fanout_size; i++) {
16761 		connfp =  &ipcl_conn_fanout[i];
16762 		connp = NULL;
16763 		while ((connp = tcp_get_next_conn(connfp, connp))) {
16764 			tcp = connp->conn_tcp;
16765 			if (zoneid != GLOBAL_ZONEID &&
16766 			    zoneid != connp->conn_zoneid)
16767 				continue;
16768 			tcp_report_item(mp->b_cont, tcp, i,
16769 			    Q_TO_TCP(q), cr);
16770 		}
16771 	}
16772 
16773 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16774 	return (0);
16775 }
16776 
16777 /* TCP status report triggered via the Named Dispatch mechanism. */
16778 /* ARGSUSED */
16779 static int
16780 tcp_acceptor_hash_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
16781 {
16782 	tf_t	*tf;
16783 	tcp_t	*tcp;
16784 	int	i;
16785 	zoneid_t zoneid;
16786 
16787 	/* Refer to comments in tcp_status_report(). */
16788 	if (cr == NULL || secpolicy_net_config(cr, B_TRUE) != 0) {
16789 		if (ddi_get_lbolt() - tcp_last_ndd_get_info_time <
16790 		    drv_usectohz(tcp_ndd_get_info_interval * 1000)) {
16791 			(void) mi_mpprintf(mp, NDD_TOO_QUICK_MSG);
16792 			return (0);
16793 		}
16794 	}
16795 	if ((mp->b_cont = allocb(ND_MAX_BUF_LEN, BPRI_HI)) == NULL) {
16796 		/* The following may work even if we cannot get a large buf. */
16797 		(void) mi_mpprintf(mp, NDD_OUT_OF_BUF_MSG);
16798 		return (0);
16799 	}
16800 
16801 	(void) mi_mpprintf(mp, "    %s", tcp_report_header);
16802 
16803 	zoneid = Q_TO_CONN(q)->conn_zoneid;
16804 
16805 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
16806 		tf = &tcp_acceptor_fanout[i];
16807 		mutex_enter(&tf->tf_lock);
16808 		for (tcp = tf->tf_tcp; tcp != NULL;
16809 		    tcp = tcp->tcp_acceptor_hash) {
16810 			if (zoneid != GLOBAL_ZONEID &&
16811 			    zoneid != tcp->tcp_connp->conn_zoneid)
16812 				continue;
16813 			tcp_report_item(mp->b_cont, tcp, i,
16814 			    Q_TO_TCP(q), cr);
16815 		}
16816 		mutex_exit(&tf->tf_lock);
16817 	}
16818 	tcp_last_ndd_get_info_time = ddi_get_lbolt();
16819 	return (0);
16820 }
16821 
16822 /*
16823  * tcp_timer is the timer service routine.  It handles the retransmission,
16824  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16825  * from the state of the tcp instance what kind of action needs to be done
16826  * at the time it is called.
16827  */
16828 static void
16829 tcp_timer(void *arg)
16830 {
16831 	mblk_t		*mp;
16832 	clock_t		first_threshold;
16833 	clock_t		second_threshold;
16834 	clock_t		ms;
16835 	uint32_t	mss;
16836 	conn_t		*connp = (conn_t *)arg;
16837 	tcp_t		*tcp = connp->conn_tcp;
16838 
16839 	tcp->tcp_timer_tid = 0;
16840 
16841 	if (tcp->tcp_fused)
16842 		return;
16843 
16844 	first_threshold =  tcp->tcp_first_timer_threshold;
16845 	second_threshold = tcp->tcp_second_timer_threshold;
16846 	switch (tcp->tcp_state) {
16847 	case TCPS_IDLE:
16848 	case TCPS_BOUND:
16849 	case TCPS_LISTEN:
16850 		return;
16851 	case TCPS_SYN_RCVD: {
16852 		tcp_t	*listener = tcp->tcp_listener;
16853 
16854 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16855 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16856 			/* it's our first timeout */
16857 			tcp->tcp_syn_rcvd_timeout = 1;
16858 			mutex_enter(&listener->tcp_eager_lock);
16859 			listener->tcp_syn_rcvd_timeout++;
16860 			if (!listener->tcp_syn_defense &&
16861 			    (listener->tcp_syn_rcvd_timeout >
16862 			    (tcp_conn_req_max_q0 >> 2)) &&
16863 			    (tcp_conn_req_max_q0 > 200)) {
16864 				/* We may be under attack. Put on a defense. */
16865 				listener->tcp_syn_defense = B_TRUE;
16866 				cmn_err(CE_WARN, "High TCP connect timeout "
16867 				    "rate! System (port %d) may be under a "
16868 				    "SYN flood attack!",
16869 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16870 
16871 				listener->tcp_ip_addr_cache = kmem_zalloc(
16872 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16873 				    KM_NOSLEEP);
16874 			}
16875 			mutex_exit(&listener->tcp_eager_lock);
16876 		}
16877 	}
16878 		/* FALLTHRU */
16879 	case TCPS_SYN_SENT:
16880 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16881 		second_threshold = tcp->tcp_second_ctimer_threshold;
16882 		break;
16883 	case TCPS_ESTABLISHED:
16884 	case TCPS_FIN_WAIT_1:
16885 	case TCPS_CLOSING:
16886 	case TCPS_CLOSE_WAIT:
16887 	case TCPS_LAST_ACK:
16888 		/* If we have data to rexmit */
16889 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16890 			clock_t	time_to_wait;
16891 
16892 			BUMP_MIB(&tcp_mib, tcpTimRetrans);
16893 			if (!tcp->tcp_xmit_head)
16894 				break;
16895 			time_to_wait = lbolt -
16896 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16897 			time_to_wait = tcp->tcp_rto -
16898 			    TICK_TO_MSEC(time_to_wait);
16899 			/*
16900 			 * If the timer fires too early, 1 clock tick earlier,
16901 			 * restart the timer.
16902 			 */
16903 			if (time_to_wait > msec_per_tick) {
16904 				TCP_STAT(tcp_timer_fire_early);
16905 				TCP_TIMER_RESTART(tcp, time_to_wait);
16906 				return;
16907 			}
16908 			/*
16909 			 * When we probe zero windows, we force the swnd open.
16910 			 * If our peer acks with a closed window swnd will be
16911 			 * set to zero by tcp_rput(). As long as we are
16912 			 * receiving acks tcp_rput will
16913 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16914 			 * first and second interval actions.  NOTE: the timer
16915 			 * interval is allowed to continue its exponential
16916 			 * backoff.
16917 			 */
16918 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16919 				if (tcp->tcp_debug) {
16920 					(void) strlog(TCP_MODULE_ID, 0, 1,
16921 					    SL_TRACE, "tcp_timer: zero win");
16922 				}
16923 			} else {
16924 				/*
16925 				 * After retransmission, we need to do
16926 				 * slow start.  Set the ssthresh to one
16927 				 * half of current effective window and
16928 				 * cwnd to one MSS.  Also reset
16929 				 * tcp_cwnd_cnt.
16930 				 *
16931 				 * Note that if tcp_ssthresh is reduced because
16932 				 * of ECN, do not reduce it again unless it is
16933 				 * already one window of data away (tcp_cwr
16934 				 * should then be cleared) or this is a
16935 				 * timeout for a retransmitted segment.
16936 				 */
16937 				uint32_t npkt;
16938 
16939 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16940 					npkt = ((tcp->tcp_timer_backoff ?
16941 					    tcp->tcp_cwnd_ssthresh :
16942 					    tcp->tcp_snxt -
16943 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16944 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16945 					    tcp->tcp_mss;
16946 				}
16947 				tcp->tcp_cwnd = tcp->tcp_mss;
16948 				tcp->tcp_cwnd_cnt = 0;
16949 				if (tcp->tcp_ecn_ok) {
16950 					tcp->tcp_cwr = B_TRUE;
16951 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16952 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16953 				}
16954 			}
16955 			break;
16956 		}
16957 		/*
16958 		 * We have something to send yet we cannot send.  The
16959 		 * reason can be:
16960 		 *
16961 		 * 1. Zero send window: we need to do zero window probe.
16962 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16963 		 * segments.
16964 		 * 3. SWS avoidance: receiver may have shrunk window,
16965 		 * reset our knowledge.
16966 		 *
16967 		 * Note that condition 2 can happen with either 1 or
16968 		 * 3.  But 1 and 3 are exclusive.
16969 		 */
16970 		if (tcp->tcp_unsent != 0) {
16971 			if (tcp->tcp_cwnd == 0) {
16972 				/*
16973 				 * Set tcp_cwnd to 1 MSS so that a
16974 				 * new segment can be sent out.  We
16975 				 * are "clocking out" new data when
16976 				 * the network is really congested.
16977 				 */
16978 				ASSERT(tcp->tcp_ecn_ok);
16979 				tcp->tcp_cwnd = tcp->tcp_mss;
16980 			}
16981 			if (tcp->tcp_swnd == 0) {
16982 				/* Extend window for zero window probe */
16983 				tcp->tcp_swnd++;
16984 				tcp->tcp_zero_win_probe = B_TRUE;
16985 				BUMP_MIB(&tcp_mib, tcpOutWinProbe);
16986 			} else {
16987 				/*
16988 				 * Handle timeout from sender SWS avoidance.
16989 				 * Reset our knowledge of the max send window
16990 				 * since the receiver might have reduced its
16991 				 * receive buffer.  Avoid setting tcp_max_swnd
16992 				 * to one since that will essentially disable
16993 				 * the SWS checks.
16994 				 *
16995 				 * Note that since we don't have a SWS
16996 				 * state variable, if the timeout is set
16997 				 * for ECN but not for SWS, this
16998 				 * code will also be executed.  This is
16999 				 * fine as tcp_max_swnd is updated
17000 				 * constantly and it will not affect
17001 				 * anything.
17002 				 */
17003 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
17004 			}
17005 			tcp_wput_data(tcp, NULL, B_FALSE);
17006 			return;
17007 		}
17008 		/* Is there a FIN that needs to be to re retransmitted? */
17009 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17010 		    !tcp->tcp_fin_acked)
17011 			break;
17012 		/* Nothing to do, return without restarting timer. */
17013 		TCP_STAT(tcp_timer_fire_miss);
17014 		return;
17015 	case TCPS_FIN_WAIT_2:
17016 		/*
17017 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
17018 		 * We waited some time for for peer's FIN, but it hasn't
17019 		 * arrived.  We flush the connection now to avoid
17020 		 * case where the peer has rebooted.
17021 		 */
17022 		if (TCP_IS_DETACHED(tcp)) {
17023 			(void) tcp_clean_death(tcp, 0, 23);
17024 		} else {
17025 			TCP_TIMER_RESTART(tcp, tcp_fin_wait_2_flush_interval);
17026 		}
17027 		return;
17028 	case TCPS_TIME_WAIT:
17029 		(void) tcp_clean_death(tcp, 0, 24);
17030 		return;
17031 	default:
17032 		if (tcp->tcp_debug) {
17033 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE|SL_ERROR,
17034 			    "tcp_timer: strange state (%d) %s",
17035 			    tcp->tcp_state, tcp_display(tcp, NULL,
17036 			    DISP_PORT_ONLY));
17037 		}
17038 		return;
17039 	}
17040 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
17041 		/*
17042 		 * For zero window probe, we need to send indefinitely,
17043 		 * unless we have not heard from the other side for some
17044 		 * time...
17045 		 */
17046 		if ((tcp->tcp_zero_win_probe == 0) ||
17047 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
17048 		    second_threshold)) {
17049 			BUMP_MIB(&tcp_mib, tcpTimRetransDrop);
17050 			/*
17051 			 * If TCP is in SYN_RCVD state, send back a
17052 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
17053 			 * should be zero in TCPS_SYN_RCVD state.
17054 			 */
17055 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
17056 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
17057 				    "in SYN_RCVD",
17058 				    tcp, tcp->tcp_snxt,
17059 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
17060 			}
17061 			(void) tcp_clean_death(tcp,
17062 			    tcp->tcp_client_errno ?
17063 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
17064 			return;
17065 		} else {
17066 			/*
17067 			 * Set tcp_ms_we_have_waited to second_threshold
17068 			 * so that in next timeout, we will do the above
17069 			 * check (lbolt - tcp_last_recv_time).  This is
17070 			 * also to avoid overflow.
17071 			 *
17072 			 * We don't need to decrement tcp_timer_backoff
17073 			 * to avoid overflow because it will be decremented
17074 			 * later if new timeout value is greater than
17075 			 * tcp_rexmit_interval_max.  In the case when
17076 			 * tcp_rexmit_interval_max is greater than
17077 			 * second_threshold, it means that we will wait
17078 			 * longer than second_threshold to send the next
17079 			 * window probe.
17080 			 */
17081 			tcp->tcp_ms_we_have_waited = second_threshold;
17082 		}
17083 	} else if (ms > first_threshold) {
17084 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
17085 		    tcp->tcp_xmit_head != NULL) {
17086 			tcp->tcp_xmit_head =
17087 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
17088 		}
17089 		/*
17090 		 * We have been retransmitting for too long...  The RTT
17091 		 * we calculated is probably incorrect.  Reinitialize it.
17092 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
17093 		 * tcp_rtt_update so that we won't accidentally cache a
17094 		 * bad value.  But only do this if this is not a zero
17095 		 * window probe.
17096 		 */
17097 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
17098 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
17099 			    (tcp->tcp_rtt_sa >> 5);
17100 			tcp->tcp_rtt_sa = 0;
17101 			tcp_ip_notify(tcp);
17102 			tcp->tcp_rtt_update = 0;
17103 		}
17104 	}
17105 	tcp->tcp_timer_backoff++;
17106 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
17107 	    tcp_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
17108 	    tcp_rexmit_interval_min) {
17109 		/*
17110 		 * This means the original RTO is tcp_rexmit_interval_min.
17111 		 * So we will use tcp_rexmit_interval_min as the RTO value
17112 		 * and do the backoff.
17113 		 */
17114 		ms = tcp_rexmit_interval_min << tcp->tcp_timer_backoff;
17115 	} else {
17116 		ms <<= tcp->tcp_timer_backoff;
17117 	}
17118 	if (ms > tcp_rexmit_interval_max) {
17119 		ms = tcp_rexmit_interval_max;
17120 		/*
17121 		 * ms is at max, decrement tcp_timer_backoff to avoid
17122 		 * overflow.
17123 		 */
17124 		tcp->tcp_timer_backoff--;
17125 	}
17126 	tcp->tcp_ms_we_have_waited += ms;
17127 	if (tcp->tcp_zero_win_probe == 0) {
17128 		tcp->tcp_rto = ms;
17129 	}
17130 	TCP_TIMER_RESTART(tcp, ms);
17131 	/*
17132 	 * This is after a timeout and tcp_rto is backed off.  Set
17133 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
17134 	 * restart the timer with a correct value.
17135 	 */
17136 	tcp->tcp_set_timer = 1;
17137 	mss = tcp->tcp_snxt - tcp->tcp_suna;
17138 	if (mss > tcp->tcp_mss)
17139 		mss = tcp->tcp_mss;
17140 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
17141 		mss = tcp->tcp_swnd;
17142 
17143 	if ((mp = tcp->tcp_xmit_head) != NULL)
17144 		mp->b_prev = (mblk_t *)lbolt;
17145 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
17146 	    B_TRUE);
17147 
17148 	/*
17149 	 * When slow start after retransmission begins, start with
17150 	 * this seq no.  tcp_rexmit_max marks the end of special slow
17151 	 * start phase.  tcp_snd_burst controls how many segments
17152 	 * can be sent because of an ack.
17153 	 */
17154 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
17155 	tcp->tcp_snd_burst = TCP_CWND_SS;
17156 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
17157 	    (tcp->tcp_unsent == 0)) {
17158 		tcp->tcp_rexmit_max = tcp->tcp_fss;
17159 	} else {
17160 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
17161 	}
17162 	tcp->tcp_rexmit = B_TRUE;
17163 	tcp->tcp_dupack_cnt = 0;
17164 
17165 	/*
17166 	 * Remove all rexmit SACK blk to start from fresh.
17167 	 */
17168 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
17169 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
17170 		tcp->tcp_num_notsack_blk = 0;
17171 		tcp->tcp_cnt_notsack_list = 0;
17172 	}
17173 	if (mp == NULL) {
17174 		return;
17175 	}
17176 	/* Attach credentials to retransmitted initial SYNs. */
17177 	if (tcp->tcp_state == TCPS_SYN_SENT) {
17178 		mblk_setcred(mp, tcp->tcp_cred);
17179 		DB_CPID(mp) = tcp->tcp_cpid;
17180 	}
17181 
17182 	tcp->tcp_csuna = tcp->tcp_snxt;
17183 	BUMP_MIB(&tcp_mib, tcpRetransSegs);
17184 	UPDATE_MIB(&tcp_mib, tcpRetransBytes, mss);
17185 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
17186 	tcp_send_data(tcp, tcp->tcp_wq, mp);
17187 
17188 }
17189 
17190 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
17191 static void
17192 tcp_unbind(tcp_t *tcp, mblk_t *mp)
17193 {
17194 	conn_t	*connp;
17195 
17196 	switch (tcp->tcp_state) {
17197 	case TCPS_BOUND:
17198 	case TCPS_LISTEN:
17199 		break;
17200 	default:
17201 		tcp_err_ack(tcp, mp, TOUTSTATE, 0);
17202 		return;
17203 	}
17204 
17205 	/*
17206 	 * Need to clean up all the eagers since after the unbind, segments
17207 	 * will no longer be delivered to this listener stream.
17208 	 */
17209 	mutex_enter(&tcp->tcp_eager_lock);
17210 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
17211 		tcp_eager_cleanup(tcp, 0);
17212 	}
17213 	mutex_exit(&tcp->tcp_eager_lock);
17214 
17215 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17216 		tcp->tcp_ipha->ipha_src = 0;
17217 	} else {
17218 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
17219 	}
17220 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
17221 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
17222 	tcp_bind_hash_remove(tcp);
17223 	tcp->tcp_state = TCPS_IDLE;
17224 	tcp->tcp_mdt = B_FALSE;
17225 	/* Send M_FLUSH according to TPI */
17226 	(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
17227 	connp = tcp->tcp_connp;
17228 	connp->conn_mdt_ok = B_FALSE;
17229 	ipcl_hash_remove(connp);
17230 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
17231 	mp = mi_tpi_ok_ack_alloc(mp);
17232 	putnext(tcp->tcp_rq, mp);
17233 }
17234 
17235 /*
17236  * Don't let port fall into the privileged range.
17237  * Since the extra privileged ports can be arbitrary we also
17238  * ensure that we exclude those from consideration.
17239  * tcp_g_epriv_ports is not sorted thus we loop over it until
17240  * there are no changes.
17241  *
17242  * Note: No locks are held when inspecting tcp_g_*epriv_ports
17243  * but instead the code relies on:
17244  * - the fact that the address of the array and its size never changes
17245  * - the atomic assignment of the elements of the array
17246  */
17247 static in_port_t
17248 tcp_update_next_port(in_port_t port, boolean_t random)
17249 {
17250 	int i;
17251 
17252 	if (random && tcp_random_anon_port != 0) {
17253 		(void) random_get_pseudo_bytes((uint8_t *)&port,
17254 		    sizeof (in_port_t));
17255 		/*
17256 		 * Unless changed by a sys admin, the smallest anon port
17257 		 * is 32768 and the largest anon port is 65535.  It is
17258 		 * very likely (50%) for the random port to be smaller
17259 		 * than the smallest anon port.  When that happens,
17260 		 * add port % (anon port range) to the smallest anon
17261 		 * port to get the random port.  It should fall into the
17262 		 * valid anon port range.
17263 		 */
17264 		if (port < tcp_smallest_anon_port) {
17265 			port = tcp_smallest_anon_port +
17266 			    port % (tcp_largest_anon_port -
17267 			    tcp_smallest_anon_port);
17268 		}
17269 	}
17270 
17271 retry:
17272 	if (port < tcp_smallest_anon_port || port > tcp_largest_anon_port)
17273 		port = (in_port_t)tcp_smallest_anon_port;
17274 
17275 	if (port < tcp_smallest_nonpriv_port)
17276 		port = (in_port_t)tcp_smallest_nonpriv_port;
17277 
17278 	for (i = 0; i < tcp_g_num_epriv_ports; i++) {
17279 		if (port == tcp_g_epriv_ports[i]) {
17280 			port++;
17281 			/*
17282 			 * Make sure whether the port is in the
17283 			 * valid range.
17284 			 *
17285 			 * XXX Note that if tcp_g_epriv_ports contains
17286 			 * all the anonymous ports this will be an
17287 			 * infinite loop.
17288 			 */
17289 			goto retry;
17290 		}
17291 	}
17292 	return (port);
17293 }
17294 
17295 /*
17296  * Return the next anonymous port in the priviledged port range for
17297  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
17298  * downwards.  This is the same behavior as documented in the userland
17299  * library call rresvport(3N).
17300  */
17301 static in_port_t
17302 tcp_get_next_priv_port(void)
17303 {
17304 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
17305 
17306 	if (next_priv_port < tcp_min_anonpriv_port) {
17307 		next_priv_port = IPPORT_RESERVED - 1;
17308 	}
17309 	return (next_priv_port--);
17310 }
17311 
17312 /* The write side r/w procedure. */
17313 
17314 #if CCS_STATS
17315 struct {
17316 	struct {
17317 		int64_t count, bytes;
17318 	} tot, hit;
17319 } wrw_stats;
17320 #endif
17321 
17322 /*
17323  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
17324  * messages.
17325  */
17326 /* ARGSUSED */
17327 static void
17328 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
17329 {
17330 	conn_t	*connp = (conn_t *)arg;
17331 	tcp_t	*tcp = connp->conn_tcp;
17332 	queue_t	*q = tcp->tcp_wq;
17333 
17334 	ASSERT(DB_TYPE(mp) != M_IOCTL);
17335 	/*
17336 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
17337 	 * Once the close starts, streamhead and sockfs will not let any data
17338 	 * packets come down (close ensures that there are no threads using the
17339 	 * queue and no new threads will come down) but since qprocsoff()
17340 	 * hasn't happened yet, a M_FLUSH or some non data message might
17341 	 * get reflected back (in response to our own FLUSHRW) and get
17342 	 * processed after tcp_close() is done. The conn would still be valid
17343 	 * because a ref would have added but we need to check the state
17344 	 * before actually processing the packet.
17345 	 */
17346 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
17347 		freemsg(mp);
17348 		return;
17349 	}
17350 
17351 	switch (DB_TYPE(mp)) {
17352 	case M_IOCDATA:
17353 		tcp_wput_iocdata(tcp, mp);
17354 		break;
17355 	case M_FLUSH:
17356 		tcp_wput_flush(tcp, mp);
17357 		break;
17358 	default:
17359 		CALL_IP_WPUT(connp, q, mp);
17360 		break;
17361 	}
17362 }
17363 
17364 /*
17365  * Write side put procedure for TCP module instance.
17366  * TCP as a module is only used for MIB browsers that push TCP over IP or
17367  * ARP. The only supported primitives are T_SVR4_OPTMGMT_REQ and
17368  * T_OPTMGMT_REQ. M_FLUSH messages are only passed downstream; we don't flush
17369  * our queues as we never enqueue messages there. All ioctls are NAKed and
17370  * everything else is freed.
17371  */
17372 static void
17373 tcp_wput_mod(queue_t *q, mblk_t *mp)
17374 {
17375 	switch (DB_TYPE(mp)) {
17376 	case M_PROTO:
17377 	case M_PCPROTO:
17378 		if ((MBLKL(mp) >= sizeof (t_scalar_t)) &&
17379 		    ((((union T_primitives *)mp->b_rptr)->type ==
17380 			T_SVR4_OPTMGMT_REQ) ||
17381 		    (((union T_primitives *)mp->b_rptr)->type ==
17382 			T_OPTMGMT_REQ))) {
17383 			/*
17384 			 * This is the only TPI primitive supported. Its
17385 			 * handling does not require tcp_t, but it does require
17386 			 * conn_t to check permissions.
17387 			 */
17388 			cred_t	*cr = DB_CREDDEF(mp, Q_TO_CONN(q)->conn_cred);
17389 			if (!snmpcom_req(q, mp, tcp_snmp_set,
17390 			    tcp_snmp_get, cr)) {
17391 				freemsg(mp);
17392 				return;
17393 			}
17394 		} else if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, ENOTSUP))
17395 		    != NULL)
17396 			qreply(q, mp);
17397 		break;
17398 	case M_FLUSH:
17399 		putnext(q, mp);
17400 		break;
17401 	case M_IOCTL:
17402 		miocnak(q, mp, 0, ENOTSUP);
17403 		break;
17404 	default:
17405 		freemsg(mp);
17406 		break;
17407 	}
17408 }
17409 
17410 /*
17411  * The TCP fast path write put procedure.
17412  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
17413  */
17414 /* ARGSUSED */
17415 static void
17416 tcp_output(void *arg, mblk_t *mp, void *arg2)
17417 {
17418 	int		len;
17419 	int		hdrlen;
17420 	int		plen;
17421 	mblk_t		*mp1;
17422 	uchar_t		*rptr;
17423 	uint32_t	snxt;
17424 	tcph_t		*tcph;
17425 	struct datab	*db;
17426 	uint32_t	suna;
17427 	uint32_t	mss;
17428 	ipaddr_t	*dst;
17429 	ipaddr_t	*src;
17430 	uint32_t	sum;
17431 	int		usable;
17432 	conn_t		*connp = (conn_t *)arg;
17433 	tcp_t		*tcp = connp->conn_tcp;
17434 
17435 	/*
17436 	 * Try and ASSERT the minimum possible references on the
17437 	 * conn early enough. Since we are executing on write side,
17438 	 * the connection is obviously not detached and that means
17439 	 * there is a ref each for TCP and IP. Since we are behind
17440 	 * the squeue, the minimum references needed are 3. If the
17441 	 * conn is in classifier hash list, there should be an
17442 	 * extra ref for that (we check both the possibilities).
17443 	 */
17444 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17445 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17446 
17447 	/* Bypass tcp protocol for fused tcp loopback */
17448 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp))
17449 		return;
17450 
17451 	mss = tcp->tcp_mss;
17452 	if (tcp->tcp_xmit_zc_clean)
17453 		mp = tcp_zcopy_backoff(tcp, mp, 0);
17454 
17455 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17456 	len = (int)(mp->b_wptr - mp->b_rptr);
17457 
17458 	/*
17459 	 * Criteria for fast path:
17460 	 *
17461 	 *   1. no unsent data
17462 	 *   2. single mblk in request
17463 	 *   3. connection established
17464 	 *   4. data in mblk
17465 	 *   5. len <= mss
17466 	 *   6. no tcp_valid bits
17467 	 */
17468 	if ((tcp->tcp_unsent != 0) ||
17469 	    (tcp->tcp_cork) ||
17470 	    (mp->b_cont != NULL) ||
17471 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
17472 	    (len == 0) ||
17473 	    (len > mss) ||
17474 	    (tcp->tcp_valid_bits != 0)) {
17475 		tcp_wput_data(tcp, mp, B_FALSE);
17476 		return;
17477 	}
17478 
17479 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
17480 	ASSERT(tcp->tcp_fin_sent == 0);
17481 
17482 	/* queue new packet onto retransmission queue */
17483 	if (tcp->tcp_xmit_head == NULL) {
17484 		tcp->tcp_xmit_head = mp;
17485 	} else {
17486 		tcp->tcp_xmit_last->b_cont = mp;
17487 	}
17488 	tcp->tcp_xmit_last = mp;
17489 	tcp->tcp_xmit_tail = mp;
17490 
17491 	/* find out how much we can send */
17492 	/* BEGIN CSTYLED */
17493 	/*
17494 	 *    un-acked           usable
17495 	 *  |--------------|-----------------|
17496 	 *  tcp_suna       tcp_snxt          tcp_suna+tcp_swnd
17497 	 */
17498 	/* END CSTYLED */
17499 
17500 	/* start sending from tcp_snxt */
17501 	snxt = tcp->tcp_snxt;
17502 
17503 	/*
17504 	 * Check to see if this connection has been idled for some
17505 	 * time and no ACK is expected.  If it is, we need to slow
17506 	 * start again to get back the connection's "self-clock" as
17507 	 * described in VJ's paper.
17508 	 *
17509 	 * Refer to the comment in tcp_mss_set() for the calculation
17510 	 * of tcp_cwnd after idle.
17511 	 */
17512 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
17513 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
17514 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
17515 	}
17516 
17517 	usable = tcp->tcp_swnd;		/* tcp window size */
17518 	if (usable > tcp->tcp_cwnd)
17519 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
17520 	usable -= snxt;		/* subtract stuff already sent */
17521 	suna = tcp->tcp_suna;
17522 	usable += suna;
17523 	/* usable can be < 0 if the congestion window is smaller */
17524 	if (len > usable) {
17525 		/* Can't send complete M_DATA in one shot */
17526 		goto slow;
17527 	}
17528 
17529 	/*
17530 	 * determine if anything to send (Nagle).
17531 	 *
17532 	 *   1. len < tcp_mss (i.e. small)
17533 	 *   2. unacknowledged data present
17534 	 *   3. len < nagle limit
17535 	 *   4. last packet sent < nagle limit (previous packet sent)
17536 	 */
17537 	if ((len < mss) && (snxt != suna) &&
17538 	    (len < (int)tcp->tcp_naglim) &&
17539 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
17540 		/*
17541 		 * This was the first unsent packet and normally
17542 		 * mss < xmit_hiwater so there is no need to worry
17543 		 * about flow control. The next packet will go
17544 		 * through the flow control check in tcp_wput_data().
17545 		 */
17546 		/* leftover work from above */
17547 		tcp->tcp_unsent = len;
17548 		tcp->tcp_xmit_tail_unsent = len;
17549 
17550 		return;
17551 	}
17552 
17553 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
17554 
17555 	if (snxt == suna) {
17556 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
17557 	}
17558 
17559 	/* we have always sent something */
17560 	tcp->tcp_rack_cnt = 0;
17561 
17562 	tcp->tcp_snxt = snxt + len;
17563 	tcp->tcp_rack = tcp->tcp_rnxt;
17564 
17565 	if ((mp1 = dupb(mp)) == 0)
17566 		goto no_memory;
17567 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
17568 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
17569 
17570 	/* adjust tcp header information */
17571 	tcph = tcp->tcp_tcph;
17572 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
17573 
17574 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
17575 	sum = (sum >> 16) + (sum & 0xFFFF);
17576 	U16_TO_ABE16(sum, tcph->th_sum);
17577 
17578 	U32_TO_ABE32(snxt, tcph->th_seq);
17579 
17580 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
17581 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
17582 	BUMP_LOCAL(tcp->tcp_obsegs);
17583 
17584 	/* Update the latest receive window size in TCP header. */
17585 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
17586 	    tcph->th_win);
17587 
17588 	tcp->tcp_last_sent_len = (ushort_t)len;
17589 
17590 	plen = len + tcp->tcp_hdr_len;
17591 
17592 	if (tcp->tcp_ipversion == IPV4_VERSION) {
17593 		tcp->tcp_ipha->ipha_length = htons(plen);
17594 	} else {
17595 		tcp->tcp_ip6h->ip6_plen = htons(plen -
17596 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
17597 	}
17598 
17599 	/* see if we need to allocate a mblk for the headers */
17600 	hdrlen = tcp->tcp_hdr_len;
17601 	rptr = mp1->b_rptr - hdrlen;
17602 	db = mp1->b_datap;
17603 	if ((db->db_ref != 2) || rptr < db->db_base ||
17604 	    (!OK_32PTR(rptr))) {
17605 		/* NOTE: we assume allocb returns an OK_32PTR */
17606 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
17607 		    tcp_wroff_xtra, BPRI_MED);
17608 		if (!mp) {
17609 			freemsg(mp1);
17610 			goto no_memory;
17611 		}
17612 		mp->b_cont = mp1;
17613 		mp1 = mp;
17614 		/* Leave room for Link Level header */
17615 		/* hdrlen = tcp->tcp_hdr_len; */
17616 		rptr = &mp1->b_rptr[tcp_wroff_xtra];
17617 		mp1->b_wptr = &rptr[hdrlen];
17618 	}
17619 	mp1->b_rptr = rptr;
17620 
17621 	/* Fill in the timestamp option. */
17622 	if (tcp->tcp_snd_ts_ok) {
17623 		U32_TO_BE32((uint32_t)lbolt,
17624 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
17625 		U32_TO_BE32(tcp->tcp_ts_recent,
17626 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
17627 	} else {
17628 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
17629 	}
17630 
17631 	/* copy header into outgoing packet */
17632 	dst = (ipaddr_t *)rptr;
17633 	src = (ipaddr_t *)tcp->tcp_iphc;
17634 	dst[0] = src[0];
17635 	dst[1] = src[1];
17636 	dst[2] = src[2];
17637 	dst[3] = src[3];
17638 	dst[4] = src[4];
17639 	dst[5] = src[5];
17640 	dst[6] = src[6];
17641 	dst[7] = src[7];
17642 	dst[8] = src[8];
17643 	dst[9] = src[9];
17644 	if (hdrlen -= 40) {
17645 		hdrlen >>= 2;
17646 		dst += 10;
17647 		src += 10;
17648 		do {
17649 			*dst++ = *src++;
17650 		} while (--hdrlen);
17651 	}
17652 
17653 	/*
17654 	 * Set the ECN info in the TCP header.  Note that this
17655 	 * is not the template header.
17656 	 */
17657 	if (tcp->tcp_ecn_ok) {
17658 		SET_ECT(tcp, rptr);
17659 
17660 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
17661 		if (tcp->tcp_ecn_echo_on)
17662 			tcph->th_flags[0] |= TH_ECE;
17663 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
17664 			tcph->th_flags[0] |= TH_CWR;
17665 			tcp->tcp_ecn_cwr_sent = B_TRUE;
17666 		}
17667 	}
17668 
17669 	if (tcp->tcp_ip_forward_progress) {
17670 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
17671 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
17672 		tcp->tcp_ip_forward_progress = B_FALSE;
17673 	}
17674 	TCP_RECORD_TRACE(tcp, mp1, TCP_TRACE_SEND_PKT);
17675 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
17676 	return;
17677 
17678 	/*
17679 	 * If we ran out of memory, we pretend to have sent the packet
17680 	 * and that it was lost on the wire.
17681 	 */
17682 no_memory:
17683 	return;
17684 
17685 slow:
17686 	/* leftover work from above */
17687 	tcp->tcp_unsent = len;
17688 	tcp->tcp_xmit_tail_unsent = len;
17689 	tcp_wput_data(tcp, NULL, B_FALSE);
17690 }
17691 
17692 /*
17693  * The function called through squeue to get behind eager's perimeter to
17694  * finish the accept processing.
17695  */
17696 /* ARGSUSED */
17697 void
17698 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
17699 {
17700 	conn_t			*connp = (conn_t *)arg;
17701 	tcp_t			*tcp = connp->conn_tcp;
17702 	queue_t			*q = tcp->tcp_rq;
17703 	mblk_t			*mp1;
17704 	mblk_t			*stropt_mp = mp;
17705 	struct  stroptions	*stropt;
17706 	uint_t			thwin;
17707 
17708 	/*
17709 	 * Drop the eager's ref on the listener, that was placed when
17710 	 * this eager began life in tcp_conn_request.
17711 	 */
17712 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17713 
17714 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17715 		/*
17716 		 * Someone blewoff the eager before we could finish
17717 		 * the accept.
17718 		 *
17719 		 * The only reason eager exists it because we put in
17720 		 * a ref on it when conn ind went up. We need to send
17721 		 * a disconnect indication up while the last reference
17722 		 * on the eager will be dropped by the squeue when we
17723 		 * return.
17724 		 */
17725 		ASSERT(tcp->tcp_listener == NULL);
17726 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17727 			struct	T_discon_ind	*tdi;
17728 
17729 			(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17730 			/*
17731 			 * Let us reuse the incoming mblk to avoid memory
17732 			 * allocation failure problems. We know that the
17733 			 * size of the incoming mblk i.e. stroptions is greater
17734 			 * than sizeof T_discon_ind. So the reallocb below
17735 			 * can't fail.
17736 			 */
17737 			freemsg(mp->b_cont);
17738 			mp->b_cont = NULL;
17739 			ASSERT(DB_REF(mp) == 1);
17740 			mp = reallocb(mp, sizeof (struct T_discon_ind),
17741 			    B_FALSE);
17742 			ASSERT(mp != NULL);
17743 			DB_TYPE(mp) = M_PROTO;
17744 			((union T_primitives *)mp->b_rptr)->type = T_DISCON_IND;
17745 			tdi = (struct T_discon_ind *)mp->b_rptr;
17746 			if (tcp->tcp_issocket) {
17747 				tdi->DISCON_reason = ECONNREFUSED;
17748 				tdi->SEQ_number = 0;
17749 			} else {
17750 				tdi->DISCON_reason = ENOPROTOOPT;
17751 				tdi->SEQ_number =
17752 				    tcp->tcp_conn_req_seqnum;
17753 			}
17754 			mp->b_wptr = mp->b_rptr + sizeof (struct T_discon_ind);
17755 			putnext(q, mp);
17756 		} else {
17757 			freemsg(mp);
17758 		}
17759 		if (tcp->tcp_hard_binding) {
17760 			tcp->tcp_hard_binding = B_FALSE;
17761 			tcp->tcp_hard_bound = B_TRUE;
17762 		}
17763 		tcp->tcp_detached = B_FALSE;
17764 		return;
17765 	}
17766 
17767 	mp1 = stropt_mp->b_cont;
17768 	stropt_mp->b_cont = NULL;
17769 	ASSERT(DB_TYPE(stropt_mp) == M_SETOPTS);
17770 	stropt = (struct stroptions *)stropt_mp->b_rptr;
17771 
17772 	while (mp1 != NULL) {
17773 		mp = mp1;
17774 		mp1 = mp1->b_cont;
17775 		mp->b_cont = NULL;
17776 		tcp->tcp_drop_opt_ack_cnt++;
17777 		CALL_IP_WPUT(connp, tcp->tcp_wq, mp);
17778 	}
17779 	mp = NULL;
17780 
17781 	/*
17782 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17783 	 * properly.  This is the first time we know of the acceptor'
17784 	 * queue.  So we do it here.
17785 	 */
17786 	if (tcp->tcp_rcv_list == NULL) {
17787 		/*
17788 		 * Recv queue is empty, tcp_rwnd should not have changed.
17789 		 * That means it should be equal to the listener's tcp_rwnd.
17790 		 */
17791 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17792 	} else {
17793 #ifdef DEBUG
17794 		uint_t cnt = 0;
17795 
17796 		mp1 = tcp->tcp_rcv_list;
17797 		while ((mp = mp1) != NULL) {
17798 			mp1 = mp->b_next;
17799 			cnt += msgdsize(mp);
17800 		}
17801 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17802 #endif
17803 		/* There is some data, add them back to get the max. */
17804 		tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17805 	}
17806 
17807 	stropt->so_flags = SO_HIWAT;
17808 	stropt->so_hiwat = MAX(q->q_hiwat, tcp_sth_rcv_hiwat);
17809 
17810 	stropt->so_flags |= SO_MAXBLK;
17811 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17812 
17813 	/*
17814 	 * This is the first time we run on the correct
17815 	 * queue after tcp_accept. So fix all the q parameters
17816 	 * here.
17817 	 */
17818 	/* Allocate room for SACK options if needed. */
17819 	stropt->so_flags |= SO_WROFF;
17820 	if (tcp->tcp_fused) {
17821 		size_t sth_hiwat;
17822 
17823 		ASSERT(tcp->tcp_loopback);
17824 		/*
17825 		 * For fused tcp loopback, set the stream head's write
17826 		 * offset value to zero since we won't be needing any room
17827 		 * for TCP/IP headers.  This would also improve performance
17828 		 * since it would reduce the amount of work done by kmem.
17829 		 * Non-fused tcp loopback case is handled separately below.
17830 		 */
17831 		stropt->so_wroff = 0;
17832 
17833 		/*
17834 		 * Override q_hiwat and set it to be twice that of the
17835 		 * previous value; this is to simulate non-fusion case.
17836 		 */
17837 		sth_hiwat = q->q_hiwat << 1;
17838 		if (sth_hiwat > tcp_max_buf)
17839 			sth_hiwat = tcp_max_buf;
17840 
17841 		stropt->so_hiwat = MAX(sth_hiwat, tcp_sth_rcv_hiwat);
17842 	} else if (tcp->tcp_snd_sack_ok) {
17843 		stropt->so_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17844 		    (tcp->tcp_loopback ? 0 : tcp_wroff_xtra);
17845 	} else {
17846 		stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17847 		    tcp_wroff_xtra);
17848 	}
17849 
17850 	/*
17851 	 * If loopback, set COPYCACHED option to make sure NOT to use
17852 	 * non-temporal access.
17853 	 */
17854 	if (tcp->tcp_loopback) {
17855 		stropt->so_flags |= SO_COPYOPT;
17856 		stropt->so_copyopt = COPYCACHED;
17857 	}
17858 
17859 	/* Send the options up */
17860 	putnext(q, stropt_mp);
17861 
17862 	/*
17863 	 * Pass up any data and/or a fin that has been received.
17864 	 *
17865 	 * Adjust receive window in case it had decreased
17866 	 * (because there is data <=> tcp_rcv_list != NULL)
17867 	 * while the connection was detached. Note that
17868 	 * in case the eager was flow-controlled, w/o this
17869 	 * code, the rwnd may never open up again!
17870 	 */
17871 	if (tcp->tcp_rcv_list != NULL) {
17872 		/* We drain directly in case of fused tcp loopback */
17873 		if (!tcp->tcp_fused && canputnext(q)) {
17874 			tcp->tcp_rwnd = q->q_hiwat;
17875 			thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
17876 			    << tcp->tcp_rcv_ws;
17877 			thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
17878 			if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17879 			    (q->q_hiwat - thwin >= tcp->tcp_mss)) {
17880 				tcp_xmit_ctl(NULL,
17881 				    tcp, (tcp->tcp_swnd == 0) ?
17882 				    tcp->tcp_suna : tcp->tcp_snxt,
17883 				    tcp->tcp_rnxt, TH_ACK);
17884 				BUMP_MIB(&tcp_mib, tcpOutWinUpdate);
17885 			}
17886 
17887 		}
17888 		(void) tcp_rcv_drain(q, tcp);
17889 
17890 		/*
17891 		 * For fused tcp loopback, back-enable peer endpoint
17892 		 * if it's currently flow-controlled.
17893 		 */
17894 		if (tcp->tcp_fused &&
17895 		    tcp->tcp_loopback_peer->tcp_flow_stopped) {
17896 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17897 
17898 			ASSERT(peer_tcp != NULL);
17899 			ASSERT(peer_tcp->tcp_fused);
17900 
17901 			tcp_clrqfull(peer_tcp);
17902 			peer_tcp->tcp_flow_stopped = B_FALSE;
17903 			TCP_STAT(tcp_fusion_backenabled);
17904 		}
17905 	}
17906 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17907 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17908 		mp = mi_tpi_ordrel_ind();
17909 		if (mp) {
17910 			tcp->tcp_ordrel_done = B_TRUE;
17911 			putnext(q, mp);
17912 			if (tcp->tcp_deferred_clean_death) {
17913 				/*
17914 				 * tcp_clean_death was deferred
17915 				 * for T_ORDREL_IND - do it now
17916 				 */
17917 				(void) tcp_clean_death(
17918 					tcp,
17919 					    tcp->tcp_client_errno, 21);
17920 				tcp->tcp_deferred_clean_death =
17921 				    B_FALSE;
17922 			}
17923 		} else {
17924 			/*
17925 			 * Run the orderly release in the
17926 			 * service routine.
17927 			 */
17928 			qenable(q);
17929 		}
17930 	}
17931 	if (tcp->tcp_hard_binding) {
17932 		tcp->tcp_hard_binding = B_FALSE;
17933 		tcp->tcp_hard_bound = B_TRUE;
17934 	}
17935 	tcp->tcp_detached = B_FALSE;
17936 
17937 	if (tcp->tcp_ka_enabled) {
17938 		tcp->tcp_ka_last_intrvl = 0;
17939 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17940 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17941 	}
17942 
17943 	/*
17944 	 * At this point, eager is fully established and will
17945 	 * have the following references -
17946 	 *
17947 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17948 	 * 1 reference for the squeue which will be dropped by the squeue as
17949 	 *	soon as this function returns.
17950 	 * There will be 1 additonal reference for being in classifier
17951 	 *	hash list provided something bad hasn't happened.
17952 	 */
17953 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17954 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17955 }
17956 
17957 /*
17958  * The function called through squeue to get behind listener's perimeter to
17959  * send a deffered conn_ind.
17960  */
17961 /* ARGSUSED */
17962 void
17963 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17964 {
17965 	conn_t	*connp = (conn_t *)arg;
17966 	tcp_t *listener = connp->conn_tcp;
17967 
17968 	if (listener->tcp_state == TCPS_CLOSED ||
17969 	    TCP_IS_DETACHED(listener)) {
17970 		/*
17971 		 * If listener has closed, it would have caused a
17972 		 * a cleanup/blowoff to happen for the eager.
17973 		 */
17974 		tcp_t *tcp;
17975 		struct T_conn_ind	*conn_ind;
17976 
17977 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
17978 		bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17979 		    conn_ind->OPT_length);
17980 		/*
17981 		 * We need to drop the ref on eager that was put
17982 		 * tcp_rput_data() before trying to send the conn_ind
17983 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17984 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17985 		 * listener is closed so we drop the ref.
17986 		 */
17987 		CONN_DEC_REF(tcp->tcp_connp);
17988 		freemsg(mp);
17989 		return;
17990 	}
17991 	putnext(listener->tcp_rq, mp);
17992 }
17993 
17994 
17995 /*
17996  * This is the STREAMS entry point for T_CONN_RES coming down on
17997  * Acceptor STREAM when  sockfs listener does accept processing.
17998  * Read the block comment on top pf tcp_conn_request().
17999  */
18000 void
18001 tcp_wput_accept(queue_t *q, mblk_t *mp)
18002 {
18003 	queue_t *rq = RD(q);
18004 	struct T_conn_res *conn_res;
18005 	tcp_t *eager;
18006 	tcp_t *listener;
18007 	struct T_ok_ack *ok;
18008 	t_scalar_t PRIM_type;
18009 	mblk_t *opt_mp;
18010 	conn_t *econnp;
18011 
18012 	ASSERT(DB_TYPE(mp) == M_PROTO);
18013 
18014 	conn_res = (struct T_conn_res *)mp->b_rptr;
18015 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
18016 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
18017 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18018 		if (mp != NULL)
18019 			putnext(rq, mp);
18020 		return;
18021 	}
18022 	switch (conn_res->PRIM_type) {
18023 	case O_T_CONN_RES:
18024 	case T_CONN_RES:
18025 		/*
18026 		 * We pass up an err ack if allocb fails. This will
18027 		 * cause sockfs to issue a T_DISCON_REQ which will cause
18028 		 * tcp_eager_blowoff to be called. sockfs will then call
18029 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
18030 		 * we need to do the allocb up here because we have to
18031 		 * make sure rq->q_qinfo->qi_qclose still points to the
18032 		 * correct function (tcpclose_accept) in case allocb
18033 		 * fails.
18034 		 */
18035 		opt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
18036 		if (opt_mp == NULL) {
18037 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
18038 			if (mp != NULL)
18039 				putnext(rq, mp);
18040 			return;
18041 		}
18042 
18043 		bcopy(mp->b_rptr + conn_res->OPT_offset,
18044 		    &eager, conn_res->OPT_length);
18045 		PRIM_type = conn_res->PRIM_type;
18046 		mp->b_datap->db_type = M_PCPROTO;
18047 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
18048 		ok = (struct T_ok_ack *)mp->b_rptr;
18049 		ok->PRIM_type = T_OK_ACK;
18050 		ok->CORRECT_prim = PRIM_type;
18051 		econnp = eager->tcp_connp;
18052 		econnp->conn_dev = (dev_t)q->q_ptr;
18053 		eager->tcp_rq = rq;
18054 		eager->tcp_wq = q;
18055 		rq->q_ptr = econnp;
18056 		rq->q_qinfo = &tcp_rinit;
18057 		q->q_ptr = econnp;
18058 		q->q_qinfo = &tcp_winit;
18059 		listener = eager->tcp_listener;
18060 		eager->tcp_issocket = B_TRUE;
18061 		eager->tcp_cred = econnp->conn_cred =
18062 		    listener->tcp_connp->conn_cred;
18063 		crhold(econnp->conn_cred);
18064 		econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
18065 
18066 		/* Put the ref for IP */
18067 		CONN_INC_REF(econnp);
18068 
18069 		/*
18070 		 * We should have minimum of 3 references on the conn
18071 		 * at this point. One each for TCP and IP and one for
18072 		 * the T_conn_ind that was sent up when the 3-way handshake
18073 		 * completed. In the normal case we would also have another
18074 		 * reference (making a total of 4) for the conn being in the
18075 		 * classifier hash list. However the eager could have received
18076 		 * an RST subsequently and tcp_closei_local could have removed
18077 		 * the eager from the classifier hash list, hence we can't
18078 		 * assert that reference.
18079 		 */
18080 		ASSERT(econnp->conn_ref >= 3);
18081 
18082 		/*
18083 		 * Send the new local address also up to sockfs. There
18084 		 * should already be enough space in the mp that came
18085 		 * down from soaccept().
18086 		 */
18087 		if (eager->tcp_family == AF_INET) {
18088 			sin_t *sin;
18089 
18090 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18091 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
18092 			sin = (sin_t *)mp->b_wptr;
18093 			mp->b_wptr += sizeof (sin_t);
18094 			sin->sin_family = AF_INET;
18095 			sin->sin_port = eager->tcp_lport;
18096 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
18097 		} else {
18098 			sin6_t *sin6;
18099 
18100 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
18101 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
18102 			sin6 = (sin6_t *)mp->b_wptr;
18103 			mp->b_wptr += sizeof (sin6_t);
18104 			sin6->sin6_family = AF_INET6;
18105 			sin6->sin6_port = eager->tcp_lport;
18106 			if (eager->tcp_ipversion == IPV4_VERSION) {
18107 				sin6->sin6_flowinfo = 0;
18108 				IN6_IPADDR_TO_V4MAPPED(
18109 					eager->tcp_ipha->ipha_src,
18110 					    &sin6->sin6_addr);
18111 			} else {
18112 				ASSERT(eager->tcp_ip6h != NULL);
18113 				sin6->sin6_flowinfo =
18114 				    eager->tcp_ip6h->ip6_vcf &
18115 				    ~IPV6_VERS_AND_FLOW_MASK;
18116 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
18117 			}
18118 			sin6->sin6_scope_id = 0;
18119 			sin6->__sin6_src_id = 0;
18120 		}
18121 
18122 		putnext(rq, mp);
18123 
18124 		opt_mp->b_datap->db_type = M_SETOPTS;
18125 		opt_mp->b_wptr += sizeof (struct stroptions);
18126 
18127 		/*
18128 		 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
18129 		 * from listener to acceptor. The message is chained on the
18130 		 * bind_mp which tcp_rput_other will send down to IP.
18131 		 */
18132 		if (listener->tcp_bound_if != 0) {
18133 			/* allocate optmgmt req */
18134 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18135 			    IPV6_BOUND_IF, (char *)&listener->tcp_bound_if,
18136 			    sizeof (int));
18137 			if (mp != NULL)
18138 				linkb(opt_mp, mp);
18139 		}
18140 		if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
18141 			uint_t on = 1;
18142 
18143 			/* allocate optmgmt req */
18144 			mp = tcp_setsockopt_mp(IPPROTO_IPV6,
18145 			    IPV6_RECVPKTINFO, (char *)&on, sizeof (on));
18146 			if (mp != NULL)
18147 				linkb(opt_mp, mp);
18148 		}
18149 
18150 
18151 		mutex_enter(&listener->tcp_eager_lock);
18152 
18153 		if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
18154 
18155 			tcp_t *tail;
18156 			tcp_t *tcp;
18157 			mblk_t *mp1;
18158 
18159 			tcp = listener->tcp_eager_prev_q0;
18160 			/*
18161 			 * listener->tcp_eager_prev_q0 points to the TAIL of the
18162 			 * deferred T_conn_ind queue. We need to get to the head
18163 			 * of the queue in order to send up T_conn_ind the same
18164 			 * order as how the 3WHS is completed.
18165 			 */
18166 			while (tcp != listener) {
18167 				if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
18168 					break;
18169 				else
18170 					tcp = tcp->tcp_eager_prev_q0;
18171 			}
18172 			ASSERT(tcp != listener);
18173 			mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
18174 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
18175 			/* Move from q0 to q */
18176 			ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
18177 			listener->tcp_conn_req_cnt_q0--;
18178 			listener->tcp_conn_req_cnt_q++;
18179 			tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
18180 			    tcp->tcp_eager_prev_q0;
18181 			tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
18182 			    tcp->tcp_eager_next_q0;
18183 			tcp->tcp_eager_prev_q0 = NULL;
18184 			tcp->tcp_eager_next_q0 = NULL;
18185 			tcp->tcp_conn_def_q0 = B_FALSE;
18186 
18187 			/*
18188 			 * Insert at end of the queue because sockfs sends
18189 			 * down T_CONN_RES in chronological order. Leaving
18190 			 * the older conn indications at front of the queue
18191 			 * helps reducing search time.
18192 			 */
18193 			tail = listener->tcp_eager_last_q;
18194 			if (tail != NULL) {
18195 				tail->tcp_eager_next_q = tcp;
18196 			} else {
18197 				listener->tcp_eager_next_q = tcp;
18198 			}
18199 			listener->tcp_eager_last_q = tcp;
18200 			tcp->tcp_eager_next_q = NULL;
18201 
18202 			/* Need to get inside the listener perimeter */
18203 			CONN_INC_REF(listener->tcp_connp);
18204 			squeue_fill(listener->tcp_connp->conn_sqp, mp1,
18205 			    tcp_send_pending, listener->tcp_connp,
18206 			    SQTAG_TCP_SEND_PENDING);
18207 		}
18208 		tcp_eager_unlink(eager);
18209 		mutex_exit(&listener->tcp_eager_lock);
18210 
18211 		/*
18212 		 * At this point, the eager is detached from the listener
18213 		 * but we still have an extra refs on eager (apart from the
18214 		 * usual tcp references). The ref was placed in tcp_rput_data
18215 		 * before sending the conn_ind in tcp_send_conn_ind.
18216 		 * The ref will be dropped in tcp_accept_finish().
18217 		 */
18218 		squeue_enter_nodrain(econnp->conn_sqp, opt_mp,
18219 		    tcp_accept_finish, econnp, SQTAG_TCP_ACCEPT_FINISH_Q0);
18220 		return;
18221 	default:
18222 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
18223 		if (mp != NULL)
18224 			putnext(rq, mp);
18225 		return;
18226 	}
18227 }
18228 
18229 static void
18230 tcp_wput(queue_t *q, mblk_t *mp)
18231 {
18232 	conn_t	*connp = Q_TO_CONN(q);
18233 	tcp_t	*tcp;
18234 	void (*output_proc)();
18235 	t_scalar_t type;
18236 	uchar_t *rptr;
18237 	struct iocblk	*iocp;
18238 
18239 	ASSERT(connp->conn_ref >= 2);
18240 
18241 	switch (DB_TYPE(mp)) {
18242 	case M_DATA:
18243 		CONN_INC_REF(connp);
18244 		(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18245 		    tcp_output, connp, SQTAG_TCP_OUTPUT);
18246 		return;
18247 	case M_PROTO:
18248 	case M_PCPROTO:
18249 		/*
18250 		 * if it is a snmp message, don't get behind the squeue
18251 		 */
18252 		tcp = connp->conn_tcp;
18253 		rptr = mp->b_rptr;
18254 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
18255 			type = ((union T_primitives *)rptr)->type;
18256 		} else {
18257 			if (tcp->tcp_debug) {
18258 				(void) strlog(TCP_MODULE_ID, 0, 1,
18259 				    SL_ERROR|SL_TRACE,
18260 				    "tcp_wput_proto, dropping one...");
18261 			}
18262 			freemsg(mp);
18263 			return;
18264 		}
18265 		if (type == T_SVR4_OPTMGMT_REQ) {
18266 			cred_t	*cr = DB_CREDDEF(mp,
18267 			    tcp->tcp_cred);
18268 			if (snmpcom_req(q, mp, tcp_snmp_set, tcp_snmp_get,
18269 			    cr)) {
18270 				/*
18271 				 * This was a SNMP request
18272 				 */
18273 				return;
18274 			} else {
18275 				output_proc = tcp_wput_proto;
18276 			}
18277 		} else {
18278 			output_proc = tcp_wput_proto;
18279 		}
18280 		break;
18281 	case M_IOCTL:
18282 		/*
18283 		 * Most ioctls can be processed right away without going via
18284 		 * squeues - process them right here. Those that do require
18285 		 * squeue (currently TCP_IOC_DEFAULT_Q and SIOCPOPSOCKFS)
18286 		 * are processed by tcp_wput_ioctl().
18287 		 */
18288 		iocp = (struct iocblk *)mp->b_rptr;
18289 		tcp = connp->conn_tcp;
18290 
18291 		switch (iocp->ioc_cmd) {
18292 		case TCP_IOC_ABORT_CONN:
18293 			tcp_ioctl_abort_conn(q, mp);
18294 			return;
18295 		case TI_GETPEERNAME:
18296 			if (tcp->tcp_state < TCPS_SYN_RCVD) {
18297 				iocp->ioc_error = ENOTCONN;
18298 				iocp->ioc_count = 0;
18299 				mp->b_datap->db_type = M_IOCACK;
18300 				qreply(q, mp);
18301 				return;
18302 			}
18303 			/* FALLTHRU */
18304 		case TI_GETMYNAME:
18305 			mi_copyin(q, mp, NULL,
18306 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
18307 			return;
18308 		case ND_SET:
18309 			/* nd_getset does the necessary checks */
18310 		case ND_GET:
18311 			if (!nd_getset(q, tcp_g_nd, mp)) {
18312 				CALL_IP_WPUT(connp, q, mp);
18313 				return;
18314 			}
18315 			qreply(q, mp);
18316 			return;
18317 		case TCP_IOC_DEFAULT_Q:
18318 			/*
18319 			 * Wants to be the default wq. Check the credentials
18320 			 * first, the rest is executed via squeue.
18321 			 */
18322 			if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
18323 				iocp->ioc_error = EPERM;
18324 				iocp->ioc_count = 0;
18325 				mp->b_datap->db_type = M_IOCACK;
18326 				qreply(q, mp);
18327 				return;
18328 			}
18329 			output_proc = tcp_wput_ioctl;
18330 			break;
18331 		default:
18332 			output_proc = tcp_wput_ioctl;
18333 			break;
18334 		}
18335 		break;
18336 	default:
18337 		output_proc = tcp_wput_nondata;
18338 		break;
18339 	}
18340 
18341 	CONN_INC_REF(connp);
18342 	(*tcp_squeue_wput_proc)(connp->conn_sqp, mp,
18343 	    output_proc, connp, SQTAG_TCP_WPUT_OTHER);
18344 }
18345 
18346 /*
18347  * Initial STREAMS write side put() procedure for sockets. It tries to
18348  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18349  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18350  * are handled by tcp_wput() as usual.
18351  *
18352  * All further messages will also be handled by tcp_wput() because we cannot
18353  * be sure that the above short cut is safe later.
18354  */
18355 static void
18356 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18357 {
18358 	conn_t			*connp = Q_TO_CONN(wq);
18359 	tcp_t			*tcp = connp->conn_tcp;
18360 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18361 
18362 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18363 	wq->q_qinfo = &tcp_winit;
18364 
18365 	ASSERT(IS_TCP_CONN(connp));
18366 	ASSERT(TCP_IS_SOCKET(tcp));
18367 
18368 	if (DB_TYPE(mp) == M_PCPROTO &&
18369 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18370 	    car->PRIM_type == T_CAPABILITY_REQ) {
18371 		tcp_capability_req(tcp, mp);
18372 		return;
18373 	}
18374 
18375 	tcp_wput(wq, mp);
18376 }
18377 
18378 static boolean_t
18379 tcp_zcopy_check(tcp_t *tcp)
18380 {
18381 	conn_t	*connp = tcp->tcp_connp;
18382 	ire_t	*ire;
18383 	boolean_t	zc_enabled = B_FALSE;
18384 
18385 	if (do_tcpzcopy == 2)
18386 		zc_enabled = B_TRUE;
18387 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18388 	    IPCL_IS_CONNECTED(connp) &&
18389 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18390 	    connp->conn_dontroute == 0 &&
18391 	    connp->conn_xmit_if_ill == NULL &&
18392 	    connp->conn_nofailover_ill == NULL &&
18393 	    do_tcpzcopy == 1) {
18394 		/*
18395 		 * the checks above  closely resemble the fast path checks
18396 		 * in tcp_send_data().
18397 		 */
18398 		mutex_enter(&connp->conn_lock);
18399 		ire = connp->conn_ire_cache;
18400 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18401 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18402 			IRE_REFHOLD(ire);
18403 			if (ire->ire_stq != NULL) {
18404 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18405 
18406 				zc_enabled = ill && (ill->ill_capabilities &
18407 				    ILL_CAPAB_ZEROCOPY) &&
18408 				    (ill->ill_zerocopy_capab->
18409 				    ill_zerocopy_flags != 0);
18410 			}
18411 			IRE_REFRELE(ire);
18412 		}
18413 		mutex_exit(&connp->conn_lock);
18414 	}
18415 	tcp->tcp_snd_zcopy_on = zc_enabled;
18416 	if (!TCP_IS_DETACHED(tcp)) {
18417 		if (zc_enabled) {
18418 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMSAFE);
18419 			TCP_STAT(tcp_zcopy_on);
18420 		} else {
18421 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18422 			TCP_STAT(tcp_zcopy_off);
18423 		}
18424 	}
18425 	return (zc_enabled);
18426 }
18427 
18428 static mblk_t *
18429 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18430 {
18431 	if (do_tcpzcopy == 2)
18432 		return (bp);
18433 	else if (tcp->tcp_snd_zcopy_on) {
18434 		tcp->tcp_snd_zcopy_on = B_FALSE;
18435 		if (!TCP_IS_DETACHED(tcp)) {
18436 			(void) mi_set_sth_copyopt(tcp->tcp_rq, ZCVMUNSAFE);
18437 			TCP_STAT(tcp_zcopy_disable);
18438 		}
18439 	}
18440 	return (tcp_zcopy_backoff(tcp, bp, 0));
18441 }
18442 
18443 /*
18444  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18445  * the original desballoca'ed segmapped mblk.
18446  */
18447 static mblk_t *
18448 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18449 {
18450 	mblk_t *head, *tail, *nbp;
18451 	if (IS_VMLOANED_MBLK(bp)) {
18452 		TCP_STAT(tcp_zcopy_backoff);
18453 		if ((head = copyb(bp)) == NULL) {
18454 			/* fail to backoff; leave it for the next backoff */
18455 			tcp->tcp_xmit_zc_clean = B_FALSE;
18456 			return (bp);
18457 		}
18458 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18459 			if (fix_xmitlist)
18460 				tcp_zcopy_notify(tcp);
18461 			else
18462 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18463 		}
18464 		nbp = bp->b_cont;
18465 		if (fix_xmitlist) {
18466 			head->b_prev = bp->b_prev;
18467 			head->b_next = bp->b_next;
18468 			if (tcp->tcp_xmit_tail == bp)
18469 				tcp->tcp_xmit_tail = head;
18470 		}
18471 		bp->b_next = NULL;
18472 		bp->b_prev = NULL;
18473 		freeb(bp);
18474 	} else {
18475 		head = bp;
18476 		nbp = bp->b_cont;
18477 	}
18478 	tail = head;
18479 	while (nbp) {
18480 		if (IS_VMLOANED_MBLK(nbp)) {
18481 			TCP_STAT(tcp_zcopy_backoff);
18482 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18483 				tcp->tcp_xmit_zc_clean = B_FALSE;
18484 				tail->b_cont = nbp;
18485 				return (head);
18486 			}
18487 			tail = tail->b_cont;
18488 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18489 				if (fix_xmitlist)
18490 					tcp_zcopy_notify(tcp);
18491 				else
18492 					tail->b_datap->db_struioflag |=
18493 					    STRUIO_ZCNOTIFY;
18494 			}
18495 			bp = nbp;
18496 			nbp = nbp->b_cont;
18497 			if (fix_xmitlist) {
18498 				tail->b_prev = bp->b_prev;
18499 				tail->b_next = bp->b_next;
18500 				if (tcp->tcp_xmit_tail == bp)
18501 					tcp->tcp_xmit_tail = tail;
18502 			}
18503 			bp->b_next = NULL;
18504 			bp->b_prev = NULL;
18505 			freeb(bp);
18506 		} else {
18507 			tail->b_cont = nbp;
18508 			tail = nbp;
18509 			nbp = nbp->b_cont;
18510 		}
18511 	}
18512 	if (fix_xmitlist) {
18513 		tcp->tcp_xmit_last = tail;
18514 		tcp->tcp_xmit_zc_clean = B_TRUE;
18515 	}
18516 	return (head);
18517 }
18518 
18519 static void
18520 tcp_zcopy_notify(tcp_t *tcp)
18521 {
18522 	struct stdata	*stp;
18523 
18524 	if (tcp->tcp_detached)
18525 		return;
18526 	stp = STREAM(tcp->tcp_rq);
18527 	mutex_enter(&stp->sd_lock);
18528 	stp->sd_flag |= STZCNOTIFY;
18529 	cv_broadcast(&stp->sd_zcopy_wait);
18530 	mutex_exit(&stp->sd_lock);
18531 }
18532 
18533 
18534 static void
18535 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18536 {
18537 	ipha_t		*ipha;
18538 	ipaddr_t	src;
18539 	ipaddr_t	dst;
18540 	uint32_t	cksum;
18541 	ire_t		*ire;
18542 	uint16_t	*up;
18543 	ill_t		*ill;
18544 	conn_t		*connp = tcp->tcp_connp;
18545 	uint32_t	hcksum_txflags = 0;
18546 	mblk_t		*ire_fp_mp;
18547 	uint_t		ire_fp_mp_len;
18548 	ill_poll_capab_t *ill_poll;
18549 
18550 	ASSERT(DB_TYPE(mp) == M_DATA);
18551 
18552 	ipha = (ipha_t *)mp->b_rptr;
18553 	src = ipha->ipha_src;
18554 	dst = ipha->ipha_dst;
18555 
18556 	/*
18557 	 * Drop off slow path for IPv6 and also if options are present.
18558 	 */
18559 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18560 	    !IPCL_IS_CONNECTED(connp) ||
18561 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18562 	    connp->conn_dontroute ||
18563 	    connp->conn_xmit_if_ill != NULL ||
18564 	    connp->conn_nofailover_ill != NULL ||
18565 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18566 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18567 	    IPP_ENABLED(IPP_LOCAL_OUT)) {
18568 		if (tcp->tcp_snd_zcopy_aware)
18569 			mp = tcp_zcopy_disable(tcp, mp);
18570 		TCP_STAT(tcp_ip_send);
18571 		CALL_IP_WPUT(connp, q, mp);
18572 		return;
18573 	}
18574 
18575 	mutex_enter(&connp->conn_lock);
18576 	ire = connp->conn_ire_cache;
18577 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18578 	if (ire != NULL && ire->ire_addr == dst &&
18579 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18580 		IRE_REFHOLD(ire);
18581 		mutex_exit(&connp->conn_lock);
18582 	} else {
18583 		boolean_t cached = B_FALSE;
18584 
18585 		/* force a recheck later on */
18586 		tcp->tcp_ire_ill_check_done = B_FALSE;
18587 
18588 		TCP_DBGSTAT(tcp_ire_null1);
18589 		connp->conn_ire_cache = NULL;
18590 		mutex_exit(&connp->conn_lock);
18591 		if (ire != NULL)
18592 			IRE_REFRELE_NOTR(ire);
18593 		ire = ire_cache_lookup(dst, connp->conn_zoneid);
18594 		if (ire == NULL) {
18595 			if (tcp->tcp_snd_zcopy_aware)
18596 				mp = tcp_zcopy_backoff(tcp, mp, 0);
18597 			TCP_STAT(tcp_ire_null);
18598 			CALL_IP_WPUT(connp, q, mp);
18599 			return;
18600 		}
18601 		IRE_REFHOLD_NOTR(ire);
18602 		/*
18603 		 * Since we are inside the squeue, there cannot be another
18604 		 * thread in TCP trying to set the conn_ire_cache now.  The
18605 		 * check for IRE_MARK_CONDEMNED ensures that an interface
18606 		 * unplumb thread has not yet started cleaning up the conns.
18607 		 * Hence we don't need to grab the conn lock.
18608 		 */
18609 		if (!(connp->conn_state_flags & CONN_CLOSING)) {
18610 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18611 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18612 				connp->conn_ire_cache = ire;
18613 				cached = B_TRUE;
18614 			}
18615 			rw_exit(&ire->ire_bucket->irb_lock);
18616 		}
18617 
18618 		/*
18619 		 * We can continue to use the ire but since it was
18620 		 * not cached, we should drop the extra reference.
18621 		 */
18622 		if (!cached)
18623 			IRE_REFRELE_NOTR(ire);
18624 	}
18625 
18626 	if (ire->ire_flags & RTF_MULTIRT ||
18627 	    ire->ire_stq == NULL ||
18628 	    ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18629 	    (ire_fp_mp = ire->ire_fp_mp) == NULL ||
18630 	    (ire_fp_mp_len = MBLKL(ire_fp_mp)) > MBLKHEAD(mp)) {
18631 		if (tcp->tcp_snd_zcopy_aware)
18632 			mp = tcp_zcopy_disable(tcp, mp);
18633 		TCP_STAT(tcp_ip_ire_send);
18634 		IRE_REFRELE(ire);
18635 		CALL_IP_WPUT(connp, q, mp);
18636 		return;
18637 	}
18638 
18639 	ill = ire_to_ill(ire);
18640 	if (connp->conn_outgoing_ill != NULL) {
18641 		ill_t *conn_outgoing_ill = NULL;
18642 		/*
18643 		 * Choose a good ill in the group to send the packets on.
18644 		 */
18645 		ire = conn_set_outgoing_ill(connp, ire, &conn_outgoing_ill);
18646 		ill = ire_to_ill(ire);
18647 	}
18648 	ASSERT(ill != NULL);
18649 
18650 	if (!tcp->tcp_ire_ill_check_done) {
18651 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18652 		tcp->tcp_ire_ill_check_done = B_TRUE;
18653 	}
18654 
18655 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18656 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18657 #ifndef _BIG_ENDIAN
18658 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18659 #endif
18660 
18661 	/*
18662 	 * Check to see if we need to re-enable MDT for this connection
18663 	 * because it was previously disabled due to changes in the ill;
18664 	 * note that by doing it here, this re-enabling only applies when
18665 	 * the packet is not dispatched through CALL_IP_WPUT().
18666 	 *
18667 	 * That means for IPv4, it is worth re-enabling MDT for the fastpath
18668 	 * case, since that's how we ended up here.  For IPv6, we do the
18669 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18670 	 */
18671 	if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18672 		/*
18673 		 * Restore MDT for this connection, so that next time around
18674 		 * it is eligible to go through tcp_multisend() path again.
18675 		 */
18676 		TCP_STAT(tcp_mdt_conn_resumed1);
18677 		tcp->tcp_mdt = B_TRUE;
18678 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18679 		    "interface %s\n", (void *)connp, ill->ill_name));
18680 	}
18681 
18682 	if (tcp->tcp_snd_zcopy_aware) {
18683 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18684 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18685 			mp = tcp_zcopy_disable(tcp, mp);
18686 		/*
18687 		 * we shouldn't need to reset ipha as the mp containing
18688 		 * ipha should never be a zero-copy mp.
18689 		 */
18690 	}
18691 
18692 	if ((ill->ill_capabilities & ILL_CAPAB_HCKSUM) && dohwcksum) {
18693 		ASSERT(ill->ill_hcksum_capab != NULL);
18694 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18695 	}
18696 
18697 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18698 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18699 
18700 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18701 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18702 
18703 	/*
18704 	 * Underlying interface supports hardware checksum offload for
18705 	 * the tcp payload, along with M_DATA fast path; leave the payload
18706 	 * checksum for the hardware to calculate.
18707 	 *
18708 	 * N.B: We only need to set up checksum info on the first mblk.
18709 	 */
18710 	if (hcksum_txflags & HCKSUM_INET_FULL_V4) {
18711 		/*
18712 		 * Hardware calculates pseudo-header, header and payload
18713 		 * checksums, so clear checksum field in TCP header.
18714 		 */
18715 		*up = 0;
18716 		mp->b_datap->db_struioun.cksum.flags |= HCK_FULLCKSUM;
18717 	} else if (hcksum_txflags & HCKSUM_INET_PARTIAL) {
18718 		uint32_t sum;
18719 		/*
18720 		 * Partial checksum offload has been enabled.  Fill the
18721 		 * checksum field in the TCP header with the pseudo-header
18722 		 * checksum value.
18723 		 */
18724 		sum = *up + cksum + IP_TCP_CSUM_COMP;
18725 		sum = (sum & 0xFFFF) + (sum >> 16);
18726 		*up = (sum & 0xFFFF) + (sum >> 16);
18727 		mp->b_datap->db_cksumstart = IP_SIMPLE_HDR_LENGTH;
18728 		mp->b_datap->db_cksumstuff = IP_SIMPLE_HDR_LENGTH + 16;
18729 		mp->b_datap->db_cksumend = ntohs(ipha->ipha_length);
18730 		mp->b_datap->db_struioun.cksum.flags |= HCK_PARTIALCKSUM;
18731 	} else {
18732 		/* software checksumming */
18733 		TCP_STAT(tcp_out_sw_cksum);
18734 		*up = IP_CSUM(mp, IP_SIMPLE_HDR_LENGTH,
18735 		    cksum + IP_TCP_CSUM_COMP);
18736 		mp->b_datap->db_struioun.cksum.flags = 0;
18737 	}
18738 
18739 	ipha->ipha_fragment_offset_and_flags |=
18740 	    (uint32_t)htons(ire->ire_frag_flag);
18741 
18742 	/*
18743 	 * Hardware supports IP header checksum offload; clear contents
18744 	 * of IP header checksum field.  Otherwise we calculate it.
18745 	 */
18746 	if (hcksum_txflags & HCKSUM_IPHDRCKSUM) {
18747 		ipha->ipha_hdr_checksum = 0;
18748 		mp->b_datap->db_struioun.cksum.flags |= HCK_IPV4_HDRCKSUM;
18749 	} else {
18750 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18751 		    ((uint16_t *)ipha)[4]);
18752 	}
18753 
18754 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18755 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18756 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18757 
18758 	UPDATE_OB_PKT_COUNT(ire);
18759 	ire->ire_last_used_time = lbolt;
18760 	BUMP_MIB(&ip_mib, ipOutRequests);
18761 
18762 	if (ill->ill_capabilities & ILL_CAPAB_POLL) {
18763 		ill_poll = ill->ill_poll_capab;
18764 		ASSERT(ill_poll != NULL);
18765 		ASSERT(ill_poll->ill_tx != NULL);
18766 		ASSERT(ill_poll->ill_tx_handle != NULL);
18767 
18768 		ill_poll->ill_tx(ill_poll->ill_tx_handle, mp);
18769 	} else {
18770 		putnext(ire->ire_stq, mp);
18771 	}
18772 	IRE_REFRELE(ire);
18773 }
18774 
18775 /*
18776  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18777  * if the receiver shrinks the window, i.e. moves the right window to the
18778  * left, the we should not send new data, but should retransmit normally the
18779  * old unacked data between suna and suna + swnd. We might has sent data
18780  * that is now outside the new window, pretend that we didn't send  it.
18781  */
18782 static void
18783 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18784 {
18785 	uint32_t	snxt = tcp->tcp_snxt;
18786 	mblk_t		*xmit_tail;
18787 	int32_t		offset;
18788 
18789 	ASSERT(shrunk_count > 0);
18790 
18791 	/* Pretend we didn't send the data outside the window */
18792 	snxt -= shrunk_count;
18793 
18794 	/* Get the mblk and the offset in it per the shrunk window */
18795 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18796 
18797 	ASSERT(xmit_tail != NULL);
18798 
18799 	/* Reset all the values per the now shrunk window */
18800 	tcp->tcp_snxt = snxt;
18801 	tcp->tcp_xmit_tail = xmit_tail;
18802 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18803 	    offset;
18804 	tcp->tcp_unsent += shrunk_count;
18805 
18806 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18807 		/*
18808 		 * Make sure the timer is running so that we will probe a zero
18809 		 * window.
18810 		 */
18811 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18812 }
18813 
18814 
18815 /*
18816  * The TCP normal data output path.
18817  * NOTE: the logic of the fast path is duplicated from this function.
18818  */
18819 static void
18820 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18821 {
18822 	int		len;
18823 	mblk_t		*local_time;
18824 	mblk_t		*mp1;
18825 	uint32_t	snxt;
18826 	int		tail_unsent;
18827 	int		tcpstate;
18828 	int		usable = 0;
18829 	mblk_t		*xmit_tail;
18830 	queue_t		*q = tcp->tcp_wq;
18831 	int32_t		mss;
18832 	int32_t		num_sack_blk = 0;
18833 	int32_t		tcp_hdr_len;
18834 	int32_t		tcp_tcp_hdr_len;
18835 	int		mdt_thres;
18836 	int		rc;
18837 
18838 	tcpstate = tcp->tcp_state;
18839 	if (mp == NULL) {
18840 		/*
18841 		 * tcp_wput_data() with NULL mp should only be called when
18842 		 * there is unsent data.
18843 		 */
18844 		ASSERT(tcp->tcp_unsent > 0);
18845 		/* Really tacky... but we need this for detached closes. */
18846 		len = tcp->tcp_unsent;
18847 		goto data_null;
18848 	}
18849 
18850 #if CCS_STATS
18851 	wrw_stats.tot.count++;
18852 	wrw_stats.tot.bytes += msgdsize(mp);
18853 #endif
18854 	ASSERT(mp->b_datap->db_type == M_DATA);
18855 	/*
18856 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18857 	 * or before a connection attempt has begun.
18858 	 */
18859 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18860 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18861 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18862 #ifdef DEBUG
18863 			cmn_err(CE_WARN,
18864 			    "tcp_wput_data: data after ordrel, %s",
18865 			    tcp_display(tcp, NULL,
18866 			    DISP_ADDR_AND_PORT));
18867 #else
18868 			if (tcp->tcp_debug) {
18869 				(void) strlog(TCP_MODULE_ID, 0, 1,
18870 				    SL_TRACE|SL_ERROR,
18871 				    "tcp_wput_data: data after ordrel, %s\n",
18872 				    tcp_display(tcp, NULL,
18873 				    DISP_ADDR_AND_PORT));
18874 			}
18875 #endif /* DEBUG */
18876 		}
18877 		if (tcp->tcp_snd_zcopy_aware &&
18878 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18879 			tcp_zcopy_notify(tcp);
18880 		freemsg(mp);
18881 		return;
18882 	}
18883 
18884 	/* Strip empties */
18885 	for (;;) {
18886 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18887 		    (uintptr_t)INT_MAX);
18888 		len = (int)(mp->b_wptr - mp->b_rptr);
18889 		if (len > 0)
18890 			break;
18891 		mp1 = mp;
18892 		mp = mp->b_cont;
18893 		freeb(mp1);
18894 		if (!mp) {
18895 			return;
18896 		}
18897 	}
18898 
18899 	/* If we are the first on the list ... */
18900 	if (tcp->tcp_xmit_head == NULL) {
18901 		tcp->tcp_xmit_head = mp;
18902 		tcp->tcp_xmit_tail = mp;
18903 		tcp->tcp_xmit_tail_unsent = len;
18904 	} else {
18905 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18906 		struct datab *dp;
18907 
18908 		mp1 = tcp->tcp_xmit_last;
18909 		if (len < tcp_tx_pull_len &&
18910 		    (dp = mp1->b_datap)->db_ref == 1 &&
18911 		    dp->db_lim - mp1->b_wptr >= len) {
18912 			ASSERT(len > 0);
18913 			ASSERT(!mp1->b_cont);
18914 			if (len == 1) {
18915 				*mp1->b_wptr++ = *mp->b_rptr;
18916 			} else {
18917 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18918 				mp1->b_wptr += len;
18919 			}
18920 			if (mp1 == tcp->tcp_xmit_tail)
18921 				tcp->tcp_xmit_tail_unsent += len;
18922 			mp1->b_cont = mp->b_cont;
18923 			if (tcp->tcp_snd_zcopy_aware &&
18924 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18925 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18926 			freeb(mp);
18927 			mp = mp1;
18928 		} else {
18929 			tcp->tcp_xmit_last->b_cont = mp;
18930 		}
18931 		len += tcp->tcp_unsent;
18932 	}
18933 
18934 	/* Tack on however many more positive length mblks we have */
18935 	if ((mp1 = mp->b_cont) != NULL) {
18936 		do {
18937 			int tlen;
18938 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18939 			    (uintptr_t)INT_MAX);
18940 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18941 			if (tlen <= 0) {
18942 				mp->b_cont = mp1->b_cont;
18943 				freeb(mp1);
18944 			} else {
18945 				len += tlen;
18946 				mp = mp1;
18947 			}
18948 		} while ((mp1 = mp->b_cont) != NULL);
18949 	}
18950 	tcp->tcp_xmit_last = mp;
18951 	tcp->tcp_unsent = len;
18952 
18953 	if (urgent)
18954 		usable = 1;
18955 
18956 data_null:
18957 	snxt = tcp->tcp_snxt;
18958 	xmit_tail = tcp->tcp_xmit_tail;
18959 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18960 
18961 	/*
18962 	 * Note that tcp_mss has been adjusted to take into account the
18963 	 * timestamp option if applicable.  Because SACK options do not
18964 	 * appear in every TCP segments and they are of variable lengths,
18965 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18966 	 * the actual segment length when we need to send a segment which
18967 	 * includes SACK options.
18968 	 */
18969 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18970 		int32_t	opt_len;
18971 
18972 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18973 		    tcp->tcp_num_sack_blk);
18974 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18975 		    2 + TCPOPT_HEADER_LEN;
18976 		mss = tcp->tcp_mss - opt_len;
18977 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18978 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18979 	} else {
18980 		mss = tcp->tcp_mss;
18981 		tcp_hdr_len = tcp->tcp_hdr_len;
18982 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18983 	}
18984 
18985 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18986 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18987 		SET_TCP_INIT_CWND(tcp, mss, tcp_slow_start_after_idle);
18988 	}
18989 	if (tcpstate == TCPS_SYN_RCVD) {
18990 		/*
18991 		 * The three-way connection establishment handshake is not
18992 		 * complete yet. We want to queue the data for transmission
18993 		 * after entering ESTABLISHED state (RFC793). A jump to
18994 		 * "done" label effectively leaves data on the queue.
18995 		 */
18996 		goto done;
18997 	} else {
18998 		int usable_r = tcp->tcp_swnd;
18999 
19000 		/*
19001 		 * In the special case when cwnd is zero, which can only
19002 		 * happen if the connection is ECN capable, return now.
19003 		 * New segments is sent using tcp_timer().  The timer
19004 		 * is set in tcp_rput_data().
19005 		 */
19006 		if (tcp->tcp_cwnd == 0) {
19007 			/*
19008 			 * Note that tcp_cwnd is 0 before 3-way handshake is
19009 			 * finished.
19010 			 */
19011 			ASSERT(tcp->tcp_ecn_ok ||
19012 			    tcp->tcp_state < TCPS_ESTABLISHED);
19013 			return;
19014 		}
19015 
19016 		/* NOTE: trouble if xmitting while SYN not acked? */
19017 		usable_r -= snxt;
19018 		usable_r += tcp->tcp_suna;
19019 
19020 		/*
19021 		 * Check if the receiver has shrunk the window.  If
19022 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
19023 		 * cannot be set as there is unsent data, so FIN cannot
19024 		 * be sent out.  Otherwise, we need to take into account
19025 		 * of FIN as it consumes an "invisible" sequence number.
19026 		 */
19027 		ASSERT(tcp->tcp_fin_sent == 0);
19028 		if (usable_r < 0) {
19029 			/*
19030 			 * The receiver has shrunk the window and we have sent
19031 			 * -usable_r date beyond the window, re-adjust.
19032 			 *
19033 			 * If TCP window scaling is enabled, there can be
19034 			 * round down error as the advertised receive window
19035 			 * is actually right shifted n bits.  This means that
19036 			 * the lower n bits info is wiped out.  It will look
19037 			 * like the window is shrunk.  Do a check here to
19038 			 * see if the shrunk amount is actually within the
19039 			 * error in window calculation.  If it is, just
19040 			 * return.  Note that this check is inside the
19041 			 * shrunk window check.  This makes sure that even
19042 			 * though tcp_process_shrunk_swnd() is not called,
19043 			 * we will stop further processing.
19044 			 */
19045 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
19046 				tcp_process_shrunk_swnd(tcp, -usable_r);
19047 			}
19048 			return;
19049 		}
19050 
19051 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
19052 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
19053 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
19054 
19055 		/* usable = MIN(usable, unsent) */
19056 		if (usable_r > len)
19057 			usable_r = len;
19058 
19059 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
19060 		if (usable_r > 0) {
19061 			usable = usable_r;
19062 		} else {
19063 			/* Bypass all other unnecessary processing. */
19064 			goto done;
19065 		}
19066 	}
19067 
19068 	local_time = (mblk_t *)lbolt;
19069 
19070 	/*
19071 	 * "Our" Nagle Algorithm.  This is not the same as in the old
19072 	 * BSD.  This is more in line with the true intent of Nagle.
19073 	 *
19074 	 * The conditions are:
19075 	 * 1. The amount of unsent data (or amount of data which can be
19076 	 *    sent, whichever is smaller) is less than Nagle limit.
19077 	 * 2. The last sent size is also less than Nagle limit.
19078 	 * 3. There is unack'ed data.
19079 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
19080 	 *    Nagle algorithm.  This reduces the probability that urgent
19081 	 *    bytes get "merged" together.
19082 	 * 5. The app has not closed the connection.  This eliminates the
19083 	 *    wait time of the receiving side waiting for the last piece of
19084 	 *    (small) data.
19085 	 *
19086 	 * If all are satisified, exit without sending anything.  Note
19087 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
19088 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
19089 	 * 4095).
19090 	 */
19091 	if (usable < (int)tcp->tcp_naglim &&
19092 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
19093 	    snxt != tcp->tcp_suna &&
19094 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
19095 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
19096 		goto done;
19097 	}
19098 
19099 	if (tcp->tcp_cork) {
19100 		/*
19101 		 * if the tcp->tcp_cork option is set, then we have to force
19102 		 * TCP not to send partial segment (smaller than MSS bytes).
19103 		 * We are calculating the usable now based on full mss and
19104 		 * will save the rest of remaining data for later.
19105 		 */
19106 		if (usable < mss)
19107 			goto done;
19108 		usable = (usable / mss) * mss;
19109 	}
19110 
19111 	/* Update the latest receive window size in TCP header. */
19112 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
19113 	    tcp->tcp_tcph->th_win);
19114 
19115 	/*
19116 	 * Determine if it's worthwhile to attempt MDT, based on:
19117 	 *
19118 	 * 1. Simple TCP/IP{v4,v6} (no options).
19119 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
19120 	 * 3. If the TCP connection is in ESTABLISHED state.
19121 	 * 4. The TCP is not detached.
19122 	 *
19123 	 * If any of the above conditions have changed during the
19124 	 * connection, stop using MDT and restore the stream head
19125 	 * parameters accordingly.
19126 	 */
19127 	if (tcp->tcp_mdt &&
19128 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
19129 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
19130 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19131 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
19132 	    tcp->tcp_state != TCPS_ESTABLISHED ||
19133 	    TCP_IS_DETACHED(tcp) || !CONN_IS_MD_FASTPATH(tcp->tcp_connp) ||
19134 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
19135 	    IPP_ENABLED(IPP_LOCAL_OUT))) {
19136 		tcp->tcp_connp->conn_mdt_ok = B_FALSE;
19137 		tcp->tcp_mdt = B_FALSE;
19138 
19139 		/* Anything other than detached is considered pathological */
19140 		if (!TCP_IS_DETACHED(tcp)) {
19141 			TCP_STAT(tcp_mdt_conn_halted1);
19142 			(void) tcp_maxpsz_set(tcp, B_TRUE);
19143 		}
19144 	}
19145 
19146 	/* Use MDT if sendable amount is greater than the threshold */
19147 	if (tcp->tcp_mdt &&
19148 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
19149 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
19150 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
19151 	    (tcp->tcp_valid_bits == 0 ||
19152 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
19153 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
19154 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19155 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19156 		    local_time, mdt_thres);
19157 	} else {
19158 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
19159 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
19160 		    local_time, INT_MAX);
19161 	}
19162 
19163 	/* Pretend that all we were trying to send really got sent */
19164 	if (rc < 0 && tail_unsent < 0) {
19165 		do {
19166 			xmit_tail = xmit_tail->b_cont;
19167 			xmit_tail->b_prev = local_time;
19168 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
19169 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
19170 			tail_unsent += (int)(xmit_tail->b_wptr -
19171 			    xmit_tail->b_rptr);
19172 		} while (tail_unsent < 0);
19173 	}
19174 done:;
19175 	tcp->tcp_xmit_tail = xmit_tail;
19176 	tcp->tcp_xmit_tail_unsent = tail_unsent;
19177 	len = tcp->tcp_snxt - snxt;
19178 	if (len) {
19179 		/*
19180 		 * If new data was sent, need to update the notsack
19181 		 * list, which is, afterall, data blocks that have
19182 		 * not been sack'ed by the receiver.  New data is
19183 		 * not sack'ed.
19184 		 */
19185 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
19186 			/* len is a negative value. */
19187 			tcp->tcp_pipe -= len;
19188 			tcp_notsack_update(&(tcp->tcp_notsack_list),
19189 			    tcp->tcp_snxt, snxt,
19190 			    &(tcp->tcp_num_notsack_blk),
19191 			    &(tcp->tcp_cnt_notsack_list));
19192 		}
19193 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
19194 		tcp->tcp_rack = tcp->tcp_rnxt;
19195 		tcp->tcp_rack_cnt = 0;
19196 		if ((snxt + len) == tcp->tcp_suna) {
19197 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19198 		}
19199 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
19200 		/*
19201 		 * Didn't send anything. Make sure the timer is running
19202 		 * so that we will probe a zero window.
19203 		 */
19204 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19205 	}
19206 	/* Note that len is the amount we just sent but with a negative sign */
19207 	len += tcp->tcp_unsent;
19208 	tcp->tcp_unsent = len;
19209 	if (tcp->tcp_flow_stopped) {
19210 		if (len <= tcp->tcp_xmit_lowater) {
19211 			tcp->tcp_flow_stopped = B_FALSE;
19212 			tcp_clrqfull(tcp);
19213 		}
19214 	} else if (len >= tcp->tcp_xmit_hiwater) {
19215 		tcp->tcp_flow_stopped = B_TRUE;
19216 		tcp_setqfull(tcp);
19217 	}
19218 }
19219 
19220 /*
19221  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
19222  * outgoing TCP header with the template header, as well as other
19223  * options such as time-stamp, ECN and/or SACK.
19224  */
19225 static void
19226 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
19227 {
19228 	tcph_t *tcp_tmpl, *tcp_h;
19229 	uint32_t *dst, *src;
19230 	int hdrlen;
19231 
19232 	ASSERT(OK_32PTR(rptr));
19233 
19234 	/* Template header */
19235 	tcp_tmpl = tcp->tcp_tcph;
19236 
19237 	/* Header of outgoing packet */
19238 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19239 
19240 	/* dst and src are opaque 32-bit fields, used for copying */
19241 	dst = (uint32_t *)rptr;
19242 	src = (uint32_t *)tcp->tcp_iphc;
19243 	hdrlen = tcp->tcp_hdr_len;
19244 
19245 	/* Fill time-stamp option if needed */
19246 	if (tcp->tcp_snd_ts_ok) {
19247 		U32_TO_BE32((uint32_t)now,
19248 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19249 		U32_TO_BE32(tcp->tcp_ts_recent,
19250 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19251 	} else {
19252 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19253 	}
19254 
19255 	/*
19256 	 * Copy the template header; is this really more efficient than
19257 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19258 	 * but perhaps not for other scenarios.
19259 	 */
19260 	dst[0] = src[0];
19261 	dst[1] = src[1];
19262 	dst[2] = src[2];
19263 	dst[3] = src[3];
19264 	dst[4] = src[4];
19265 	dst[5] = src[5];
19266 	dst[6] = src[6];
19267 	dst[7] = src[7];
19268 	dst[8] = src[8];
19269 	dst[9] = src[9];
19270 	if (hdrlen -= 40) {
19271 		hdrlen >>= 2;
19272 		dst += 10;
19273 		src += 10;
19274 		do {
19275 			*dst++ = *src++;
19276 		} while (--hdrlen);
19277 	}
19278 
19279 	/*
19280 	 * Set the ECN info in the TCP header if it is not a zero
19281 	 * window probe.  Zero window probe is only sent in
19282 	 * tcp_wput_data() and tcp_timer().
19283 	 */
19284 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19285 		SET_ECT(tcp, rptr);
19286 
19287 		if (tcp->tcp_ecn_echo_on)
19288 			tcp_h->th_flags[0] |= TH_ECE;
19289 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19290 			tcp_h->th_flags[0] |= TH_CWR;
19291 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19292 		}
19293 	}
19294 
19295 	/* Fill in SACK options */
19296 	if (num_sack_blk > 0) {
19297 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19298 		sack_blk_t *tmp;
19299 		int32_t	i;
19300 
19301 		wptr[0] = TCPOPT_NOP;
19302 		wptr[1] = TCPOPT_NOP;
19303 		wptr[2] = TCPOPT_SACK;
19304 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19305 		    sizeof (sack_blk_t);
19306 		wptr += TCPOPT_REAL_SACK_LEN;
19307 
19308 		tmp = tcp->tcp_sack_list;
19309 		for (i = 0; i < num_sack_blk; i++) {
19310 			U32_TO_BE32(tmp[i].begin, wptr);
19311 			wptr += sizeof (tcp_seq);
19312 			U32_TO_BE32(tmp[i].end, wptr);
19313 			wptr += sizeof (tcp_seq);
19314 		}
19315 		tcp_h->th_offset_and_rsrvd[0] +=
19316 		    ((num_sack_blk * 2 + 1) << 4);
19317 	}
19318 }
19319 
19320 /*
19321  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19322  * the destination address and SAP attribute, and if necessary, the
19323  * hardware checksum offload attribute to a Multidata message.
19324  */
19325 static int
19326 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19327     const uint32_t start, const uint32_t stuff, const uint32_t end,
19328     const uint32_t flags)
19329 {
19330 	/* Add global destination address & SAP attribute */
19331 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19332 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19333 		    "destination address+SAP\n"));
19334 
19335 		if (dlmp != NULL)
19336 			TCP_STAT(tcp_mdt_allocfail);
19337 		return (-1);
19338 	}
19339 
19340 	/* Add global hwcksum attribute */
19341 	if (hwcksum &&
19342 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19343 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19344 		    "checksum attribute\n"));
19345 
19346 		TCP_STAT(tcp_mdt_allocfail);
19347 		return (-1);
19348 	}
19349 
19350 	return (0);
19351 }
19352 
19353 /*
19354  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19355  * scheme, and returns one the following:
19356  *
19357  * -1 = failed allocation.
19358  *  0 = success; burst count reached, or usable send window is too small,
19359  *      and that we'd rather wait until later before sending again.
19360  */
19361 static int
19362 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19363     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19364     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19365     const int mdt_thres)
19366 {
19367 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19368 	multidata_t	*mmd;
19369 	uint_t		obsegs, obbytes, hdr_frag_sz;
19370 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19371 	int		num_burst_seg, max_pld;
19372 	pdesc_t		*pkt;
19373 	tcp_pdescinfo_t	tcp_pkt_info;
19374 	pdescinfo_t	*pkt_info;
19375 	int		pbuf_idx, pbuf_idx_nxt;
19376 	int		seg_len, len, spill, af;
19377 	boolean_t	add_buffer, zcopy, clusterwide;
19378 	boolean_t	rconfirm = B_FALSE;
19379 	boolean_t	done = B_FALSE;
19380 	uint32_t	cksum;
19381 	uint32_t	hwcksum_flags;
19382 	ire_t		*ire;
19383 	ill_t		*ill;
19384 	ipha_t		*ipha;
19385 	ip6_t		*ip6h;
19386 	ipaddr_t	src, dst;
19387 	ill_zerocopy_capab_t *zc_cap = NULL;
19388 	uint16_t	*up;
19389 	int		err;
19390 
19391 #ifdef	_BIG_ENDIAN
19392 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19393 #else
19394 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19395 #endif
19396 
19397 #define	TCP_CSUM_OFFSET	16
19398 #define	TCP_CSUM_SIZE	2
19399 
19400 #define	PREP_NEW_MULTIDATA() {			\
19401 	mmd = NULL;				\
19402 	md_mp = md_hbuf = NULL;			\
19403 	cur_hdr_off = 0;			\
19404 	max_pld = tcp->tcp_mdt_max_pld;		\
19405 	pbuf_idx = pbuf_idx_nxt = -1;		\
19406 	add_buffer = B_TRUE;			\
19407 	zcopy = B_FALSE;			\
19408 }
19409 
19410 #define	PREP_NEW_PBUF() {			\
19411 	md_pbuf = md_pbuf_nxt = NULL;		\
19412 	pbuf_idx = pbuf_idx_nxt = -1;		\
19413 	cur_pld_off = 0;			\
19414 	first_snxt = *snxt;			\
19415 	ASSERT(*tail_unsent > 0);		\
19416 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19417 }
19418 
19419 	ASSERT(mdt_thres >= mss);
19420 	ASSERT(*usable > 0 && *usable > mdt_thres);
19421 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19422 	ASSERT(!TCP_IS_DETACHED(tcp));
19423 	ASSERT(tcp->tcp_valid_bits == 0 ||
19424 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19425 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19426 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19427 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19428 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19429 	ASSERT(tcp->tcp_connp != NULL);
19430 	ASSERT(CONN_IS_MD_FASTPATH(tcp->tcp_connp));
19431 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp));
19432 
19433 	/*
19434 	 * Note that tcp will only declare at most 2 payload spans per
19435 	 * packet, which is much lower than the maximum allowable number
19436 	 * of packet spans per Multidata.  For this reason, we use the
19437 	 * privately declared and smaller descriptor info structure, in
19438 	 * order to save some stack space.
19439 	 */
19440 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19441 
19442 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19443 	if (af == AF_INET) {
19444 		dst = tcp->tcp_ipha->ipha_dst;
19445 		src = tcp->tcp_ipha->ipha_src;
19446 		ASSERT(!CLASSD(dst));
19447 	}
19448 	ASSERT(af == AF_INET ||
19449 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19450 
19451 	obsegs = obbytes = 0;
19452 	num_burst_seg = tcp->tcp_snd_burst;
19453 	md_mp_head = NULL;
19454 	PREP_NEW_MULTIDATA();
19455 
19456 	/*
19457 	 * Before we go on further, make sure there is an IRE that we can
19458 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19459 	 * in proceeding any further, and we should just hand everything
19460 	 * off to the legacy path.
19461 	 */
19462 	mutex_enter(&tcp->tcp_connp->conn_lock);
19463 	ire = tcp->tcp_connp->conn_ire_cache;
19464 	ASSERT(!(tcp->tcp_connp->conn_state_flags & CONN_INCIPIENT));
19465 	if (ire != NULL && ((af == AF_INET && ire->ire_addr == dst) ||
19466 	    (af == AF_INET6 && IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6,
19467 	    &tcp->tcp_ip6h->ip6_dst))) &&
19468 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19469 		IRE_REFHOLD(ire);
19470 		mutex_exit(&tcp->tcp_connp->conn_lock);
19471 	} else {
19472 		boolean_t cached = B_FALSE;
19473 
19474 		/* force a recheck later on */
19475 		tcp->tcp_ire_ill_check_done = B_FALSE;
19476 
19477 		TCP_DBGSTAT(tcp_ire_null1);
19478 		tcp->tcp_connp->conn_ire_cache = NULL;
19479 		mutex_exit(&tcp->tcp_connp->conn_lock);
19480 
19481 		/* Release the old ire */
19482 		if (ire != NULL)
19483 			IRE_REFRELE_NOTR(ire);
19484 
19485 		ire = (af == AF_INET) ?
19486 		    ire_cache_lookup(dst, tcp->tcp_connp->conn_zoneid) :
19487 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
19488 		    tcp->tcp_connp->conn_zoneid);
19489 
19490 		if (ire == NULL) {
19491 			TCP_STAT(tcp_ire_null);
19492 			goto legacy_send_no_md;
19493 		}
19494 
19495 		IRE_REFHOLD_NOTR(ire);
19496 		/*
19497 		 * Since we are inside the squeue, there cannot be another
19498 		 * thread in TCP trying to set the conn_ire_cache now. The
19499 		 * check for IRE_MARK_CONDEMNED ensures that an interface
19500 		 * unplumb thread has not yet started cleaning up the conns.
19501 		 * Hence we don't need to grab the conn lock.
19502 		 */
19503 		if (!(tcp->tcp_connp->conn_state_flags & CONN_CLOSING)) {
19504 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
19505 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
19506 				tcp->tcp_connp->conn_ire_cache = ire;
19507 				cached = B_TRUE;
19508 			}
19509 			rw_exit(&ire->ire_bucket->irb_lock);
19510 		}
19511 
19512 		/*
19513 		 * We can continue to use the ire but since it was not
19514 		 * cached, we should drop the extra reference.
19515 		 */
19516 		if (!cached)
19517 			IRE_REFRELE_NOTR(ire);
19518 	}
19519 
19520 	ASSERT(ire != NULL);
19521 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19522 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19523 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19524 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19525 	/*
19526 	 * If we do support loopback for MDT (which requires modifications
19527 	 * to the receiving paths), the following assertions should go away,
19528 	 * and we would be sending the Multidata to loopback conn later on.
19529 	 */
19530 	ASSERT(!IRE_IS_LOCAL(ire));
19531 	ASSERT(ire->ire_stq != NULL);
19532 
19533 	ill = ire_to_ill(ire);
19534 	ASSERT(ill != NULL);
19535 	ASSERT((ill->ill_capabilities & ILL_CAPAB_MDT) == 0 ||
19536 	    ill->ill_mdt_capab != NULL);
19537 
19538 	if (!tcp->tcp_ire_ill_check_done) {
19539 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19540 		tcp->tcp_ire_ill_check_done = B_TRUE;
19541 	}
19542 
19543 	/*
19544 	 * If the underlying interface conditions have changed, or if the
19545 	 * new interface does not support MDT, go back to legacy path.
19546 	 */
19547 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19548 		/* don't go through this path anymore for this connection */
19549 		TCP_STAT(tcp_mdt_conn_halted2);
19550 		tcp->tcp_mdt = B_FALSE;
19551 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19552 		    "interface %s\n", (void *)tcp->tcp_connp, ill->ill_name));
19553 		/* IRE will be released prior to returning */
19554 		goto legacy_send_no_md;
19555 	}
19556 
19557 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19558 		zc_cap = ill->ill_zerocopy_capab;
19559 
19560 	/* go to legacy path if interface doesn't support zerocopy */
19561 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19562 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19563 		/* IRE will be released prior to returning */
19564 		goto legacy_send_no_md;
19565 	}
19566 
19567 	/* does the interface support hardware checksum offload? */
19568 	hwcksum_flags = 0;
19569 	if ((ill->ill_capabilities & ILL_CAPAB_HCKSUM) &&
19570 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19571 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM)) &&
19572 	    dohwcksum) {
19573 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19574 		    HCKSUM_IPHDRCKSUM)
19575 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19576 
19577 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19578 		    HCKSUM_INET_FULL_V4)
19579 			hwcksum_flags |= HCK_FULLCKSUM;
19580 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19581 		    HCKSUM_INET_PARTIAL)
19582 			hwcksum_flags |= HCK_PARTIALCKSUM;
19583 	}
19584 
19585 	/*
19586 	 * Each header fragment consists of the leading extra space,
19587 	 * followed by the TCP/IP header, and the trailing extra space.
19588 	 * We make sure that each header fragment begins on a 32-bit
19589 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19590 	 * aligned in tcp_mdt_update).
19591 	 */
19592 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19593 	    tcp->tcp_mdt_hdr_tail), 4);
19594 
19595 	/* are we starting from the beginning of data block? */
19596 	if (*tail_unsent == 0) {
19597 		*xmit_tail = (*xmit_tail)->b_cont;
19598 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19599 		*tail_unsent = (int)MBLKL(*xmit_tail);
19600 	}
19601 
19602 	/*
19603 	 * Here we create one or more Multidata messages, each made up of
19604 	 * one header buffer and up to N payload buffers.  This entire
19605 	 * operation is done within two loops:
19606 	 *
19607 	 * The outer loop mostly deals with creating the Multidata message,
19608 	 * as well as the header buffer that gets added to it.  It also
19609 	 * links the Multidata messages together such that all of them can
19610 	 * be sent down to the lower layer in a single putnext call; this
19611 	 * linking behavior depends on the tcp_mdt_chain tunable.
19612 	 *
19613 	 * The inner loop takes an existing Multidata message, and adds
19614 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19615 	 * packetizes those buffers by filling up the corresponding header
19616 	 * buffer fragments with the proper IP and TCP headers, and by
19617 	 * describing the layout of each packet in the packet descriptors
19618 	 * that get added to the Multidata.
19619 	 */
19620 	do {
19621 		/*
19622 		 * If usable send window is too small, or data blocks in
19623 		 * transmit list are smaller than our threshold (i.e. app
19624 		 * performs large writes followed by small ones), we hand
19625 		 * off the control over to the legacy path.  Note that we'll
19626 		 * get back the control once it encounters a large block.
19627 		 */
19628 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19629 		    (*xmit_tail)->b_cont != NULL &&
19630 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19631 			/* send down what we've got so far */
19632 			if (md_mp_head != NULL) {
19633 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19634 				    obsegs, obbytes, &rconfirm);
19635 			}
19636 			/*
19637 			 * Pass control over to tcp_send(), but tell it to
19638 			 * return to us once a large-size transmission is
19639 			 * possible.
19640 			 */
19641 			TCP_STAT(tcp_mdt_legacy_small);
19642 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19643 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19644 			    tail_unsent, xmit_tail, local_time,
19645 			    mdt_thres)) <= 0) {
19646 				/* burst count reached, or alloc failed */
19647 				IRE_REFRELE(ire);
19648 				return (err);
19649 			}
19650 
19651 			/* tcp_send() may have sent everything, so check */
19652 			if (*usable <= 0) {
19653 				IRE_REFRELE(ire);
19654 				return (0);
19655 			}
19656 
19657 			TCP_STAT(tcp_mdt_legacy_ret);
19658 			/*
19659 			 * We may have delivered the Multidata, so make sure
19660 			 * to re-initialize before the next round.
19661 			 */
19662 			md_mp_head = NULL;
19663 			obsegs = obbytes = 0;
19664 			num_burst_seg = tcp->tcp_snd_burst;
19665 			PREP_NEW_MULTIDATA();
19666 
19667 			/* are we starting from the beginning of data block? */
19668 			if (*tail_unsent == 0) {
19669 				*xmit_tail = (*xmit_tail)->b_cont;
19670 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19671 				    (uintptr_t)INT_MAX);
19672 				*tail_unsent = (int)MBLKL(*xmit_tail);
19673 			}
19674 		}
19675 
19676 		/*
19677 		 * max_pld limits the number of mblks in tcp's transmit
19678 		 * queue that can be added to a Multidata message.  Once
19679 		 * this counter reaches zero, no more additional mblks
19680 		 * can be added to it.  What happens afterwards depends
19681 		 * on whether or not we are set to chain the Multidata
19682 		 * messages.  If we are to link them together, reset
19683 		 * max_pld to its original value (tcp_mdt_max_pld) and
19684 		 * prepare to create a new Multidata message which will
19685 		 * get linked to md_mp_head.  Else, leave it alone and
19686 		 * let the inner loop break on its own.
19687 		 */
19688 		if (tcp_mdt_chain && max_pld == 0)
19689 			PREP_NEW_MULTIDATA();
19690 
19691 		/* adding a payload buffer; re-initialize values */
19692 		if (add_buffer)
19693 			PREP_NEW_PBUF();
19694 
19695 		/*
19696 		 * If we don't have a Multidata, either because we just
19697 		 * (re)entered this outer loop, or after we branched off
19698 		 * to tcp_send above, setup the Multidata and header
19699 		 * buffer to be used.
19700 		 */
19701 		if (md_mp == NULL) {
19702 			int md_hbuflen;
19703 			uint32_t start, stuff;
19704 
19705 			/*
19706 			 * Calculate Multidata header buffer size large enough
19707 			 * to hold all of the headers that can possibly be
19708 			 * sent at this moment.  We'd rather over-estimate
19709 			 * the size than running out of space; this is okay
19710 			 * since this buffer is small anyway.
19711 			 */
19712 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19713 
19714 			/*
19715 			 * Start and stuff offset for partial hardware
19716 			 * checksum offload; these are currently for IPv4.
19717 			 * For full checksum offload, they are set to zero.
19718 			 */
19719 			if (af == AF_INET &&
19720 			    (hwcksum_flags & HCK_PARTIALCKSUM)) {
19721 				start = IP_SIMPLE_HDR_LENGTH;
19722 				stuff = IP_SIMPLE_HDR_LENGTH + TCP_CSUM_OFFSET;
19723 			} else {
19724 				start = stuff = 0;
19725 			}
19726 
19727 			/*
19728 			 * Create the header buffer, Multidata, as well as
19729 			 * any necessary attributes (destination address,
19730 			 * SAP and hardware checksum offload) that should
19731 			 * be associated with the Multidata message.
19732 			 */
19733 			ASSERT(cur_hdr_off == 0);
19734 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19735 			    ((md_hbuf->b_wptr += md_hbuflen),
19736 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19737 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19738 			    /* fastpath mblk */
19739 			    (af == AF_INET) ? ire->ire_dlureq_mp :
19740 			    ire->ire_nce->nce_res_mp,
19741 			    /* hardware checksum enabled (IPv4 only) */
19742 			    (af == AF_INET && hwcksum_flags != 0),
19743 			    /* hardware checksum offsets */
19744 			    start, stuff, 0,
19745 			    /* hardware checksum flag */
19746 			    hwcksum_flags) != 0)) {
19747 legacy_send:
19748 				if (md_mp != NULL) {
19749 					/* Unlink message from the chain */
19750 					if (md_mp_head != NULL) {
19751 						err = (intptr_t)rmvb(md_mp_head,
19752 						    md_mp);
19753 						/*
19754 						 * We can't assert that rmvb
19755 						 * did not return -1, since we
19756 						 * may get here before linkb
19757 						 * happens.  We do, however,
19758 						 * check if we just removed the
19759 						 * only element in the list.
19760 						 */
19761 						if (err == 0)
19762 							md_mp_head = NULL;
19763 					}
19764 					/* md_hbuf gets freed automatically */
19765 					TCP_STAT(tcp_mdt_discarded);
19766 					freeb(md_mp);
19767 				} else {
19768 					/* Either allocb or mmd_alloc failed */
19769 					TCP_STAT(tcp_mdt_allocfail);
19770 					if (md_hbuf != NULL)
19771 						freeb(md_hbuf);
19772 				}
19773 
19774 				/* send down what we've got so far */
19775 				if (md_mp_head != NULL) {
19776 					tcp_multisend_data(tcp, ire, ill,
19777 					    md_mp_head, obsegs, obbytes,
19778 					    &rconfirm);
19779 				}
19780 legacy_send_no_md:
19781 				if (ire != NULL)
19782 					IRE_REFRELE(ire);
19783 				/*
19784 				 * Too bad; let the legacy path handle this.
19785 				 * We specify INT_MAX for the threshold, since
19786 				 * we gave up with the Multidata processings
19787 				 * and let the old path have it all.
19788 				 */
19789 				TCP_STAT(tcp_mdt_legacy_all);
19790 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19791 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19792 				    snxt, tail_unsent, xmit_tail, local_time,
19793 				    INT_MAX));
19794 			}
19795 
19796 			/* link to any existing ones, if applicable */
19797 			TCP_STAT(tcp_mdt_allocd);
19798 			if (md_mp_head == NULL) {
19799 				md_mp_head = md_mp;
19800 			} else if (tcp_mdt_chain) {
19801 				TCP_STAT(tcp_mdt_linked);
19802 				linkb(md_mp_head, md_mp);
19803 			}
19804 		}
19805 
19806 		ASSERT(md_mp_head != NULL);
19807 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19808 		ASSERT(md_mp != NULL && mmd != NULL);
19809 		ASSERT(md_hbuf != NULL);
19810 
19811 		/*
19812 		 * Packetize the transmittable portion of the data block;
19813 		 * each data block is essentially added to the Multidata
19814 		 * as a payload buffer.  We also deal with adding more
19815 		 * than one payload buffers, which happens when the remaining
19816 		 * packetized portion of the current payload buffer is less
19817 		 * than MSS, while the next data block in transmit queue
19818 		 * has enough data to make up for one.  This "spillover"
19819 		 * case essentially creates a split-packet, where portions
19820 		 * of the packet's payload fragments may span across two
19821 		 * virtually discontiguous address blocks.
19822 		 */
19823 		seg_len = mss;
19824 		do {
19825 			len = seg_len;
19826 
19827 			ASSERT(len > 0);
19828 			ASSERT(max_pld >= 0);
19829 			ASSERT(!add_buffer || cur_pld_off == 0);
19830 
19831 			/*
19832 			 * First time around for this payload buffer; note
19833 			 * in the case of a spillover, the following has
19834 			 * been done prior to adding the split-packet
19835 			 * descriptor to Multidata, and we don't want to
19836 			 * repeat the process.
19837 			 */
19838 			if (add_buffer) {
19839 				ASSERT(mmd != NULL);
19840 				ASSERT(md_pbuf == NULL);
19841 				ASSERT(md_pbuf_nxt == NULL);
19842 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19843 
19844 				/*
19845 				 * Have we reached the limit?  We'd get to
19846 				 * this case when we're not chaining the
19847 				 * Multidata messages together, and since
19848 				 * we're done, terminate this loop.
19849 				 */
19850 				if (max_pld == 0)
19851 					break; /* done */
19852 
19853 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19854 					TCP_STAT(tcp_mdt_allocfail);
19855 					goto legacy_send; /* out_of_mem */
19856 				}
19857 
19858 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19859 				    zc_cap != NULL) {
19860 					if (!ip_md_zcopy_attr(mmd, NULL,
19861 					    zc_cap->ill_zerocopy_flags)) {
19862 						freeb(md_pbuf);
19863 						TCP_STAT(tcp_mdt_allocfail);
19864 						/* out_of_mem */
19865 						goto legacy_send;
19866 					}
19867 					zcopy = B_TRUE;
19868 				}
19869 
19870 				md_pbuf->b_rptr += base_pld_off;
19871 
19872 				/*
19873 				 * Add a payload buffer to the Multidata; this
19874 				 * operation must not fail, or otherwise our
19875 				 * logic in this routine is broken.  There
19876 				 * is no memory allocation done by the
19877 				 * routine, so any returned failure simply
19878 				 * tells us that we've done something wrong.
19879 				 *
19880 				 * A failure tells us that either we're adding
19881 				 * the same payload buffer more than once, or
19882 				 * we're trying to add more buffers than
19883 				 * allowed (max_pld calculation is wrong).
19884 				 * None of the above cases should happen, and
19885 				 * we panic because either there's horrible
19886 				 * heap corruption, and/or programming mistake.
19887 				 */
19888 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19889 				if (pbuf_idx < 0) {
19890 					cmn_err(CE_PANIC, "tcp_multisend: "
19891 					    "payload buffer logic error "
19892 					    "detected for tcp %p mmd %p "
19893 					    "pbuf %p (%d)\n",
19894 					    (void *)tcp, (void *)mmd,
19895 					    (void *)md_pbuf, pbuf_idx);
19896 				}
19897 
19898 				ASSERT(max_pld > 0);
19899 				--max_pld;
19900 				add_buffer = B_FALSE;
19901 			}
19902 
19903 			ASSERT(md_mp_head != NULL);
19904 			ASSERT(md_pbuf != NULL);
19905 			ASSERT(md_pbuf_nxt == NULL);
19906 			ASSERT(pbuf_idx != -1);
19907 			ASSERT(pbuf_idx_nxt == -1);
19908 			ASSERT(*usable > 0);
19909 
19910 			/*
19911 			 * We spillover to the next payload buffer only
19912 			 * if all of the following is true:
19913 			 *
19914 			 *   1. There is not enough data on the current
19915 			 *	payload buffer to make up `len',
19916 			 *   2. We are allowed to send `len',
19917 			 *   3. The next payload buffer length is large
19918 			 *	enough to accomodate `spill'.
19919 			 */
19920 			if ((spill = len - *tail_unsent) > 0 &&
19921 			    *usable >= len &&
19922 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19923 			    max_pld > 0) {
19924 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19925 				if (md_pbuf_nxt == NULL) {
19926 					TCP_STAT(tcp_mdt_allocfail);
19927 					goto legacy_send; /* out_of_mem */
19928 				}
19929 
19930 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19931 				    zc_cap != NULL) {
19932 					if (!ip_md_zcopy_attr(mmd, NULL,
19933 					    zc_cap->ill_zerocopy_flags)) {
19934 						freeb(md_pbuf_nxt);
19935 						TCP_STAT(tcp_mdt_allocfail);
19936 						/* out_of_mem */
19937 						goto legacy_send;
19938 					}
19939 					zcopy = B_TRUE;
19940 				}
19941 
19942 				/*
19943 				 * See comments above on the first call to
19944 				 * mmd_addpldbuf for explanation on the panic.
19945 				 */
19946 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19947 				if (pbuf_idx_nxt < 0) {
19948 					panic("tcp_multisend: "
19949 					    "next payload buffer logic error "
19950 					    "detected for tcp %p mmd %p "
19951 					    "pbuf %p (%d)\n",
19952 					    (void *)tcp, (void *)mmd,
19953 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19954 				}
19955 
19956 				ASSERT(max_pld > 0);
19957 				--max_pld;
19958 			} else if (spill > 0) {
19959 				/*
19960 				 * If there's a spillover, but the following
19961 				 * xmit_tail couldn't give us enough octets
19962 				 * to reach "len", then stop the current
19963 				 * Multidata creation and let the legacy
19964 				 * tcp_send() path take over.  We don't want
19965 				 * to send the tiny segment as part of this
19966 				 * Multidata for performance reasons; instead,
19967 				 * we let the legacy path deal with grouping
19968 				 * it with the subsequent small mblks.
19969 				 */
19970 				if (*usable >= len &&
19971 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19972 					max_pld = 0;
19973 					break;	/* done */
19974 				}
19975 
19976 				/*
19977 				 * We can't spillover, and we are near
19978 				 * the end of the current payload buffer,
19979 				 * so send what's left.
19980 				 */
19981 				ASSERT(*tail_unsent > 0);
19982 				len = *tail_unsent;
19983 			}
19984 
19985 			/* tail_unsent is negated if there is a spillover */
19986 			*tail_unsent -= len;
19987 			*usable -= len;
19988 			ASSERT(*usable >= 0);
19989 
19990 			if (*usable < mss)
19991 				seg_len = *usable;
19992 			/*
19993 			 * Sender SWS avoidance; see comments in tcp_send();
19994 			 * everything else is the same, except that we only
19995 			 * do this here if there is no more data to be sent
19996 			 * following the current xmit_tail.  We don't check
19997 			 * for 1-byte urgent data because we shouldn't get
19998 			 * here if TCP_URG_VALID is set.
19999 			 */
20000 			if (*usable > 0 && *usable < mss &&
20001 			    ((md_pbuf_nxt == NULL &&
20002 			    (*xmit_tail)->b_cont == NULL) ||
20003 			    (md_pbuf_nxt != NULL &&
20004 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
20005 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
20006 			    (tcp->tcp_unsent -
20007 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
20008 			    !tcp->tcp_zero_win_probe) {
20009 				if ((*snxt + len) == tcp->tcp_snxt &&
20010 				    (*snxt + len) == tcp->tcp_suna) {
20011 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20012 				}
20013 				done = B_TRUE;
20014 			}
20015 
20016 			/*
20017 			 * Prime pump for IP's checksumming on our behalf;
20018 			 * include the adjustment for a source route if any.
20019 			 * Do this only for software/partial hardware checksum
20020 			 * offload, as this field gets zeroed out later for
20021 			 * the full hardware checksum offload case.
20022 			 */
20023 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
20024 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20025 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
20026 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
20027 			}
20028 
20029 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
20030 			*snxt += len;
20031 
20032 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
20033 			/*
20034 			 * We set the PUSH bit only if TCP has no more buffered
20035 			 * data to be transmitted (or if sender SWS avoidance
20036 			 * takes place), as opposed to setting it for every
20037 			 * last packet in the burst.
20038 			 */
20039 			if (done ||
20040 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
20041 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
20042 
20043 			/*
20044 			 * Set FIN bit if this is our last segment; snxt
20045 			 * already includes its length, and it will not
20046 			 * be adjusted after this point.
20047 			 */
20048 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
20049 			    *snxt == tcp->tcp_fss) {
20050 				if (!tcp->tcp_fin_acked) {
20051 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
20052 					BUMP_MIB(&tcp_mib, tcpOutControl);
20053 				}
20054 				if (!tcp->tcp_fin_sent) {
20055 					tcp->tcp_fin_sent = B_TRUE;
20056 					/*
20057 					 * tcp state must be ESTABLISHED
20058 					 * in order for us to get here in
20059 					 * the first place.
20060 					 */
20061 					tcp->tcp_state = TCPS_FIN_WAIT_1;
20062 
20063 					/*
20064 					 * Upon returning from this routine,
20065 					 * tcp_wput_data() will set tcp_snxt
20066 					 * to be equal to snxt + tcp_fin_sent.
20067 					 * This is essentially the same as
20068 					 * setting it to tcp_fss + 1.
20069 					 */
20070 				}
20071 			}
20072 
20073 			tcp->tcp_last_sent_len = (ushort_t)len;
20074 
20075 			len += tcp_hdr_len;
20076 			if (tcp->tcp_ipversion == IPV4_VERSION)
20077 				tcp->tcp_ipha->ipha_length = htons(len);
20078 			else
20079 				tcp->tcp_ip6h->ip6_plen = htons(len -
20080 				    ((char *)&tcp->tcp_ip6h[1] -
20081 				    tcp->tcp_iphc));
20082 
20083 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
20084 
20085 			/* setup header fragment */
20086 			PDESC_HDR_ADD(pkt_info,
20087 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
20088 			    tcp->tcp_mdt_hdr_head,		/* head room */
20089 			    tcp_hdr_len,			/* len */
20090 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
20091 
20092 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
20093 			    hdr_frag_sz);
20094 			ASSERT(MBLKIN(md_hbuf,
20095 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
20096 			    PDESC_HDRSIZE(pkt_info)));
20097 
20098 			/* setup first payload fragment */
20099 			PDESC_PLD_INIT(pkt_info);
20100 			PDESC_PLD_SPAN_ADD(pkt_info,
20101 			    pbuf_idx,				/* index */
20102 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
20103 			    tcp->tcp_last_sent_len);		/* len */
20104 
20105 			/* create a split-packet in case of a spillover */
20106 			if (md_pbuf_nxt != NULL) {
20107 				ASSERT(spill > 0);
20108 				ASSERT(pbuf_idx_nxt > pbuf_idx);
20109 				ASSERT(!add_buffer);
20110 
20111 				md_pbuf = md_pbuf_nxt;
20112 				md_pbuf_nxt = NULL;
20113 				pbuf_idx = pbuf_idx_nxt;
20114 				pbuf_idx_nxt = -1;
20115 				cur_pld_off = spill;
20116 
20117 				/* trim out first payload fragment */
20118 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
20119 
20120 				/* setup second payload fragment */
20121 				PDESC_PLD_SPAN_ADD(pkt_info,
20122 				    pbuf_idx,			/* index */
20123 				    md_pbuf->b_rptr,		/* start */
20124 				    spill);			/* len */
20125 
20126 				if ((*xmit_tail)->b_next == NULL) {
20127 					/*
20128 					 * Store the lbolt used for RTT
20129 					 * estimation. We can only record one
20130 					 * timestamp per mblk so we do it when
20131 					 * we reach the end of the payload
20132 					 * buffer.  Also we only take a new
20133 					 * timestamp sample when the previous
20134 					 * timed data from the same mblk has
20135 					 * been ack'ed.
20136 					 */
20137 					(*xmit_tail)->b_prev = local_time;
20138 					(*xmit_tail)->b_next =
20139 					    (mblk_t *)(uintptr_t)first_snxt;
20140 				}
20141 
20142 				first_snxt = *snxt - spill;
20143 
20144 				/*
20145 				 * Advance xmit_tail; usable could be 0 by
20146 				 * the time we got here, but we made sure
20147 				 * above that we would only spillover to
20148 				 * the next data block if usable includes
20149 				 * the spilled-over amount prior to the
20150 				 * subtraction.  Therefore, we are sure
20151 				 * that xmit_tail->b_cont can't be NULL.
20152 				 */
20153 				ASSERT((*xmit_tail)->b_cont != NULL);
20154 				*xmit_tail = (*xmit_tail)->b_cont;
20155 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20156 				    (uintptr_t)INT_MAX);
20157 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
20158 			} else {
20159 				cur_pld_off += tcp->tcp_last_sent_len;
20160 			}
20161 
20162 			/*
20163 			 * Fill in the header using the template header, and
20164 			 * add options such as time-stamp, ECN and/or SACK,
20165 			 * as needed.
20166 			 */
20167 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
20168 			    (clock_t)local_time, num_sack_blk);
20169 
20170 			/* take care of some IP header businesses */
20171 			if (af == AF_INET) {
20172 				ipha = (ipha_t *)pkt_info->hdr_rptr;
20173 
20174 				ASSERT(OK_32PTR((uchar_t *)ipha));
20175 				ASSERT(PDESC_HDRL(pkt_info) >=
20176 				    IP_SIMPLE_HDR_LENGTH);
20177 				ASSERT(ipha->ipha_version_and_hdr_length ==
20178 				    IP_SIMPLE_HDR_VERSION);
20179 
20180 				/*
20181 				 * Assign ident value for current packet; see
20182 				 * related comments in ip_wput_ire() about the
20183 				 * contract private interface with clustering
20184 				 * group.
20185 				 */
20186 				clusterwide = B_FALSE;
20187 				if (cl_inet_ipident != NULL) {
20188 					ASSERT(cl_inet_isclusterwide != NULL);
20189 					if ((*cl_inet_isclusterwide)(IPPROTO_IP,
20190 					    AF_INET,
20191 					    (uint8_t *)(uintptr_t)src)) {
20192 						ipha->ipha_ident =
20193 						    (*cl_inet_ipident)
20194 						    (IPPROTO_IP, AF_INET,
20195 						    (uint8_t *)(uintptr_t)src,
20196 						    (uint8_t *)(uintptr_t)dst);
20197 						clusterwide = B_TRUE;
20198 					}
20199 				}
20200 
20201 				if (!clusterwide) {
20202 					ipha->ipha_ident = (uint16_t)
20203 					    atomic_add_32_nv(
20204 						&ire->ire_ident, 1);
20205 				}
20206 #ifndef _BIG_ENDIAN
20207 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
20208 				    (ipha->ipha_ident >> 8);
20209 #endif
20210 			} else {
20211 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
20212 
20213 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20214 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20215 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20216 				ASSERT(PDESC_HDRL(pkt_info) >=
20217 				    (IPV6_HDR_LEN + TCP_CSUM_OFFSET +
20218 				    TCP_CSUM_SIZE));
20219 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20220 
20221 				if (tcp->tcp_ip_forward_progress) {
20222 					rconfirm = B_TRUE;
20223 					tcp->tcp_ip_forward_progress = B_FALSE;
20224 				}
20225 			}
20226 
20227 			/* at least one payload span, and at most two */
20228 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20229 
20230 			/* add the packet descriptor to Multidata */
20231 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20232 			    KM_NOSLEEP)) == NULL) {
20233 				/*
20234 				 * Any failure other than ENOMEM indicates
20235 				 * that we have passed in invalid pkt_info
20236 				 * or parameters to mmd_addpdesc, which must
20237 				 * not happen.
20238 				 *
20239 				 * EINVAL is a result of failure on boundary
20240 				 * checks against the pkt_info contents.  It
20241 				 * should not happen, and we panic because
20242 				 * either there's horrible heap corruption,
20243 				 * and/or programming mistake.
20244 				 */
20245 				if (err != ENOMEM) {
20246 					cmn_err(CE_PANIC, "tcp_multisend: "
20247 					    "pdesc logic error detected for "
20248 					    "tcp %p mmd %p pinfo %p (%d)\n",
20249 					    (void *)tcp, (void *)mmd,
20250 					    (void *)pkt_info, err);
20251 				}
20252 				TCP_STAT(tcp_mdt_addpdescfail);
20253 				goto legacy_send; /* out_of_mem */
20254 			}
20255 			ASSERT(pkt != NULL);
20256 
20257 			/* calculate IP header and TCP checksums */
20258 			if (af == AF_INET) {
20259 				/* calculate pseudo-header checksum */
20260 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20261 				    (src >> 16) + (src & 0xFFFF);
20262 
20263 				/* offset for TCP header checksum */
20264 				up = IPH_TCPH_CHECKSUMP(ipha,
20265 				    IP_SIMPLE_HDR_LENGTH);
20266 
20267 				if (hwcksum_flags & HCK_FULLCKSUM) {
20268 					/*
20269 					 * Hardware calculates pseudo-header,
20270 					 * header and payload checksums, so
20271 					 * zero out this field.
20272 					 */
20273 					*up = 0;
20274 				} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20275 					uint32_t sum;
20276 
20277 					/* pseudo-header checksumming */
20278 					sum = *up + cksum + IP_TCP_CSUM_COMP;
20279 					sum = (sum & 0xFFFF) + (sum >> 16);
20280 					*up = (sum & 0xFFFF) + (sum >> 16);
20281 				} else {
20282 					/* software checksumming */
20283 					TCP_STAT(tcp_out_sw_cksum);
20284 					*up = IP_MD_CSUM(pkt,
20285 					    IP_SIMPLE_HDR_LENGTH,
20286 					    cksum + IP_TCP_CSUM_COMP);
20287 				}
20288 
20289 				ipha->ipha_fragment_offset_and_flags |=
20290 				    (uint32_t)htons(ire->ire_frag_flag);
20291 
20292 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20293 					ipha->ipha_hdr_checksum = 0;
20294 				} else {
20295 					IP_HDR_CKSUM(ipha, cksum,
20296 					    ((uint32_t *)ipha)[0],
20297 					    ((uint16_t *)ipha)[4]);
20298 				}
20299 			} else {
20300 				up = (uint16_t *)(((uchar_t *)ip6h) +
20301 				    IPV6_HDR_LEN + TCP_CSUM_OFFSET);
20302 
20303 				/*
20304 				 * Software checksumming (hardware checksum
20305 				 * offload for IPv6 will hopefully be
20306 				 * implemented one day).
20307 				 */
20308 				TCP_STAT(tcp_out_sw_cksum);
20309 				*up = IP_MD_CSUM(pkt,
20310 				    IPV6_HDR_LEN - 2 * sizeof (in6_addr_t),
20311 				    htons(IPPROTO_TCP));
20312 			}
20313 
20314 			/* advance header offset */
20315 			cur_hdr_off += hdr_frag_sz;
20316 
20317 			obbytes += tcp->tcp_last_sent_len;
20318 			++obsegs;
20319 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20320 		    *tail_unsent > 0);
20321 
20322 		if ((*xmit_tail)->b_next == NULL) {
20323 			/*
20324 			 * Store the lbolt used for RTT estimation. We can only
20325 			 * record one timestamp per mblk so we do it when we
20326 			 * reach the end of the payload buffer. Also we only
20327 			 * take a new timestamp sample when the previous timed
20328 			 * data from the same mblk has been ack'ed.
20329 			 */
20330 			(*xmit_tail)->b_prev = local_time;
20331 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20332 		}
20333 
20334 		ASSERT(*tail_unsent >= 0);
20335 		if (*tail_unsent > 0) {
20336 			/*
20337 			 * We got here because we broke out of the above
20338 			 * loop due to of one of the following cases:
20339 			 *
20340 			 *   1. len < adjusted MSS (i.e. small),
20341 			 *   2. Sender SWS avoidance,
20342 			 *   3. max_pld is zero.
20343 			 *
20344 			 * We are done for this Multidata, so trim our
20345 			 * last payload buffer (if any) accordingly.
20346 			 */
20347 			if (md_pbuf != NULL)
20348 				md_pbuf->b_wptr -= *tail_unsent;
20349 		} else if (*usable > 0) {
20350 			*xmit_tail = (*xmit_tail)->b_cont;
20351 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20352 			    (uintptr_t)INT_MAX);
20353 			*tail_unsent = (int)MBLKL(*xmit_tail);
20354 			add_buffer = B_TRUE;
20355 		}
20356 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20357 	    (tcp_mdt_chain || max_pld > 0));
20358 
20359 	/* send everything down */
20360 	tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20361 	    &rconfirm);
20362 
20363 #undef PREP_NEW_MULTIDATA
20364 #undef PREP_NEW_PBUF
20365 #undef IPVER
20366 #undef TCP_CSUM_OFFSET
20367 #undef TCP_CSUM_SIZE
20368 
20369 	IRE_REFRELE(ire);
20370 	return (0);
20371 }
20372 
20373 /*
20374  * A wrapper function for sending one or more Multidata messages down to
20375  * the module below ip; this routine does not release the reference of the
20376  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20377  */
20378 static void
20379 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20380     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20381 {
20382 	uint64_t delta;
20383 	nce_t *nce;
20384 
20385 	ASSERT(ire != NULL && ill != NULL);
20386 	ASSERT(ire->ire_stq != NULL);
20387 	ASSERT(md_mp_head != NULL);
20388 	ASSERT(rconfirm != NULL);
20389 
20390 	/* adjust MIBs and IRE timestamp */
20391 	TCP_RECORD_TRACE(tcp, md_mp_head, TCP_TRACE_SEND_PKT);
20392 	tcp->tcp_obsegs += obsegs;
20393 	UPDATE_MIB(&tcp_mib, tcpOutDataSegs, obsegs);
20394 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, obbytes);
20395 	TCP_STAT_UPDATE(tcp_mdt_pkt_out, obsegs);
20396 
20397 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20398 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v4, obsegs);
20399 		UPDATE_MIB(&ip_mib, ipOutRequests, obsegs);
20400 	} else {
20401 		TCP_STAT_UPDATE(tcp_mdt_pkt_out_v6, obsegs);
20402 		UPDATE_MIB(&ip6_mib, ipv6OutRequests, obsegs);
20403 	}
20404 
20405 	ire->ire_ob_pkt_count += obsegs;
20406 	if (ire->ire_ipif != NULL)
20407 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20408 	ire->ire_last_used_time = lbolt;
20409 
20410 	/* send it down */
20411 	putnext(ire->ire_stq, md_mp_head);
20412 
20413 	/* we're done for TCP/IPv4 */
20414 	if (tcp->tcp_ipversion == IPV4_VERSION)
20415 		return;
20416 
20417 	nce = ire->ire_nce;
20418 
20419 	ASSERT(nce != NULL);
20420 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20421 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20422 
20423 	/* reachability confirmation? */
20424 	if (*rconfirm) {
20425 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20426 		if (nce->nce_state != ND_REACHABLE) {
20427 			mutex_enter(&nce->nce_lock);
20428 			nce->nce_state = ND_REACHABLE;
20429 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20430 			mutex_exit(&nce->nce_lock);
20431 			(void) untimeout(nce->nce_timeout_id);
20432 			if (ip_debug > 2) {
20433 				/* ip1dbg */
20434 				pr_addr_dbg("tcp_multisend_data: state "
20435 				    "for %s changed to REACHABLE\n",
20436 				    AF_INET6, &ire->ire_addr_v6);
20437 			}
20438 		}
20439 		/* reset transport reachability confirmation */
20440 		*rconfirm = B_FALSE;
20441 	}
20442 
20443 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20444 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20445 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20446 
20447 	if (delta > (uint64_t)ill->ill_reachable_time) {
20448 		mutex_enter(&nce->nce_lock);
20449 		switch (nce->nce_state) {
20450 		case ND_REACHABLE:
20451 		case ND_STALE:
20452 			/*
20453 			 * ND_REACHABLE is identical to ND_STALE in this
20454 			 * specific case. If reachable time has expired for
20455 			 * this neighbor (delta is greater than reachable
20456 			 * time), conceptually, the neighbor cache is no
20457 			 * longer in REACHABLE state, but already in STALE
20458 			 * state.  So the correct transition here is to
20459 			 * ND_DELAY.
20460 			 */
20461 			nce->nce_state = ND_DELAY;
20462 			mutex_exit(&nce->nce_lock);
20463 			NDP_RESTART_TIMER(nce, delay_first_probe_time);
20464 			if (ip_debug > 3) {
20465 				/* ip2dbg */
20466 				pr_addr_dbg("tcp_multisend_data: state "
20467 				    "for %s changed to DELAY\n",
20468 				    AF_INET6, &ire->ire_addr_v6);
20469 			}
20470 			break;
20471 		case ND_DELAY:
20472 		case ND_PROBE:
20473 			mutex_exit(&nce->nce_lock);
20474 			/* Timers have already started */
20475 			break;
20476 		case ND_UNREACHABLE:
20477 			/*
20478 			 * ndp timer has detected that this nce is
20479 			 * unreachable and initiated deleting this nce
20480 			 * and all its associated IREs. This is a race
20481 			 * where we found the ire before it was deleted
20482 			 * and have just sent out a packet using this
20483 			 * unreachable nce.
20484 			 */
20485 			mutex_exit(&nce->nce_lock);
20486 			break;
20487 		default:
20488 			ASSERT(0);
20489 		}
20490 	}
20491 }
20492 
20493 /*
20494  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20495  * scheme, and returns one of the following:
20496  *
20497  * -1 = failed allocation.
20498  *  0 = success; burst count reached, or usable send window is too small,
20499  *      and that we'd rather wait until later before sending again.
20500  *  1 = success; we are called from tcp_multisend(), and both usable send
20501  *      window and tail_unsent are greater than the MDT threshold, and thus
20502  *      Multidata Transmit should be used instead.
20503  */
20504 static int
20505 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20506     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20507     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20508     const int mdt_thres)
20509 {
20510 	int num_burst_seg = tcp->tcp_snd_burst;
20511 
20512 	for (;;) {
20513 		struct datab	*db;
20514 		tcph_t		*tcph;
20515 		uint32_t	sum;
20516 		mblk_t		*mp, *mp1;
20517 		uchar_t		*rptr;
20518 		int		len;
20519 
20520 		/*
20521 		 * If we're called by tcp_multisend(), and the amount of
20522 		 * sendable data as well as the size of current xmit_tail
20523 		 * is beyond the MDT threshold, return to the caller and
20524 		 * let the large data transmit be done using MDT.
20525 		 */
20526 		if (*usable > 0 && *usable > mdt_thres &&
20527 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20528 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20529 			ASSERT(tcp->tcp_mdt);
20530 			return (1);	/* success; do large send */
20531 		}
20532 
20533 		if (num_burst_seg-- == 0)
20534 			break;		/* success; burst count reached */
20535 
20536 		len = mss;
20537 		if (len > *usable) {
20538 			len = *usable;
20539 			if (len <= 0) {
20540 				/* Terminate the loop */
20541 				break;	/* success; too small */
20542 			}
20543 			/*
20544 			 * Sender silly-window avoidance.
20545 			 * Ignore this if we are going to send a
20546 			 * zero window probe out.
20547 			 *
20548 			 * TODO: force data into microscopic window?
20549 			 *	==> (!pushed || (unsent > usable))
20550 			 */
20551 			if (len < (tcp->tcp_max_swnd >> 1) &&
20552 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20553 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20554 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20555 				/*
20556 				 * If the retransmit timer is not running
20557 				 * we start it so that we will retransmit
20558 				 * in the case when the the receiver has
20559 				 * decremented the window.
20560 				 */
20561 				if (*snxt == tcp->tcp_snxt &&
20562 				    *snxt == tcp->tcp_suna) {
20563 					/*
20564 					 * We are not supposed to send
20565 					 * anything.  So let's wait a little
20566 					 * bit longer before breaking SWS
20567 					 * avoidance.
20568 					 *
20569 					 * What should the value be?
20570 					 * Suggestion: MAX(init rexmit time,
20571 					 * tcp->tcp_rto)
20572 					 */
20573 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20574 				}
20575 				break;	/* success; too small */
20576 			}
20577 		}
20578 
20579 		tcph = tcp->tcp_tcph;
20580 
20581 		*usable -= len; /* Approximate - can be adjusted later */
20582 		if (*usable > 0)
20583 			tcph->th_flags[0] = TH_ACK;
20584 		else
20585 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20586 
20587 		/*
20588 		 * Prime pump for IP's checksumming on our behalf
20589 		 * Include the adjustment for a source route if any.
20590 		 */
20591 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20592 		sum = (sum >> 16) + (sum & 0xFFFF);
20593 		U16_TO_ABE16(sum, tcph->th_sum);
20594 
20595 		U32_TO_ABE32(*snxt, tcph->th_seq);
20596 
20597 		/*
20598 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20599 		 * set.  For the case when TCP_FSS_VALID is the only valid
20600 		 * bit (normal active close), branch off only when we think
20601 		 * that the FIN flag needs to be set.  Note for this case,
20602 		 * that (snxt + len) may not reflect the actual seg_len,
20603 		 * as len may be further reduced in tcp_xmit_mp().  If len
20604 		 * gets modified, we will end up here again.
20605 		 */
20606 		if (tcp->tcp_valid_bits != 0 &&
20607 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20608 		    ((*snxt + len) == tcp->tcp_fss))) {
20609 			uchar_t		*prev_rptr;
20610 			uint32_t	prev_snxt = tcp->tcp_snxt;
20611 
20612 			if (*tail_unsent == 0) {
20613 				ASSERT((*xmit_tail)->b_cont != NULL);
20614 				*xmit_tail = (*xmit_tail)->b_cont;
20615 				prev_rptr = (*xmit_tail)->b_rptr;
20616 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20617 				    (*xmit_tail)->b_rptr);
20618 			} else {
20619 				prev_rptr = (*xmit_tail)->b_rptr;
20620 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20621 				    *tail_unsent;
20622 			}
20623 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20624 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20625 			/* Restore tcp_snxt so we get amount sent right. */
20626 			tcp->tcp_snxt = prev_snxt;
20627 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20628 				/*
20629 				 * If the previous timestamp is still in use,
20630 				 * don't stomp on it.
20631 				 */
20632 				if ((*xmit_tail)->b_next == NULL) {
20633 					(*xmit_tail)->b_prev = local_time;
20634 					(*xmit_tail)->b_next =
20635 					    (mblk_t *)(uintptr_t)(*snxt);
20636 				}
20637 			} else
20638 				(*xmit_tail)->b_rptr = prev_rptr;
20639 
20640 			if (mp == NULL)
20641 				return (-1);
20642 			mp1 = mp->b_cont;
20643 
20644 			tcp->tcp_last_sent_len = (ushort_t)len;
20645 			while (mp1->b_cont) {
20646 				*xmit_tail = (*xmit_tail)->b_cont;
20647 				(*xmit_tail)->b_prev = local_time;
20648 				(*xmit_tail)->b_next =
20649 				    (mblk_t *)(uintptr_t)(*snxt);
20650 				mp1 = mp1->b_cont;
20651 			}
20652 			*snxt += len;
20653 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20654 			BUMP_LOCAL(tcp->tcp_obsegs);
20655 			BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20656 			UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20657 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20658 			tcp_send_data(tcp, q, mp);
20659 			continue;
20660 		}
20661 
20662 		*snxt += len;	/* Adjust later if we don't send all of len */
20663 		BUMP_MIB(&tcp_mib, tcpOutDataSegs);
20664 		UPDATE_MIB(&tcp_mib, tcpOutDataBytes, len);
20665 
20666 		if (*tail_unsent) {
20667 			/* Are the bytes above us in flight? */
20668 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20669 			if (rptr != (*xmit_tail)->b_rptr) {
20670 				*tail_unsent -= len;
20671 				tcp->tcp_last_sent_len = (ushort_t)len;
20672 				len += tcp_hdr_len;
20673 				if (tcp->tcp_ipversion == IPV4_VERSION)
20674 					tcp->tcp_ipha->ipha_length = htons(len);
20675 				else
20676 					tcp->tcp_ip6h->ip6_plen =
20677 					    htons(len -
20678 					    ((char *)&tcp->tcp_ip6h[1] -
20679 					    tcp->tcp_iphc));
20680 				mp = dupb(*xmit_tail);
20681 				if (!mp)
20682 					return (-1);	/* out_of_mem */
20683 				mp->b_rptr = rptr;
20684 				/*
20685 				 * If the old timestamp is no longer in use,
20686 				 * sample a new timestamp now.
20687 				 */
20688 				if ((*xmit_tail)->b_next == NULL) {
20689 					(*xmit_tail)->b_prev = local_time;
20690 					(*xmit_tail)->b_next =
20691 					    (mblk_t *)(uintptr_t)(*snxt-len);
20692 				}
20693 				goto must_alloc;
20694 			}
20695 		} else {
20696 			*xmit_tail = (*xmit_tail)->b_cont;
20697 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20698 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20699 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20700 			    (*xmit_tail)->b_rptr);
20701 		}
20702 
20703 		(*xmit_tail)->b_prev = local_time;
20704 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20705 
20706 		*tail_unsent -= len;
20707 		tcp->tcp_last_sent_len = (ushort_t)len;
20708 
20709 		len += tcp_hdr_len;
20710 		if (tcp->tcp_ipversion == IPV4_VERSION)
20711 			tcp->tcp_ipha->ipha_length = htons(len);
20712 		else
20713 			tcp->tcp_ip6h->ip6_plen = htons(len -
20714 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20715 
20716 		mp = dupb(*xmit_tail);
20717 		if (!mp)
20718 			return (-1);	/* out_of_mem */
20719 
20720 		len = tcp_hdr_len;
20721 		/*
20722 		 * There are four reasons to allocate a new hdr mblk:
20723 		 *  1) The bytes above us are in use by another packet
20724 		 *  2) We don't have good alignment
20725 		 *  3) The mblk is being shared
20726 		 *  4) We don't have enough room for a header
20727 		 */
20728 		rptr = mp->b_rptr - len;
20729 		if (!OK_32PTR(rptr) ||
20730 		    ((db = mp->b_datap), db->db_ref != 2) ||
20731 		    rptr < db->db_base) {
20732 			/* NOTE: we assume allocb returns an OK_32PTR */
20733 
20734 		must_alloc:;
20735 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20736 			    tcp_wroff_xtra, BPRI_MED);
20737 			if (!mp1) {
20738 				freemsg(mp);
20739 				return (-1);	/* out_of_mem */
20740 			}
20741 			mp1->b_cont = mp;
20742 			mp = mp1;
20743 			/* Leave room for Link Level header */
20744 			len = tcp_hdr_len;
20745 			rptr = &mp->b_rptr[tcp_wroff_xtra];
20746 			mp->b_wptr = &rptr[len];
20747 		}
20748 
20749 		/*
20750 		 * Fill in the header using the template header, and add
20751 		 * options such as time-stamp, ECN and/or SACK, as needed.
20752 		 */
20753 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20754 
20755 		mp->b_rptr = rptr;
20756 
20757 		if (*tail_unsent) {
20758 			int spill = *tail_unsent;
20759 
20760 			mp1 = mp->b_cont;
20761 			if (!mp1)
20762 				mp1 = mp;
20763 
20764 			/*
20765 			 * If we're a little short, tack on more mblks until
20766 			 * there is no more spillover.
20767 			 */
20768 			while (spill < 0) {
20769 				mblk_t *nmp;
20770 				int nmpsz;
20771 
20772 				nmp = (*xmit_tail)->b_cont;
20773 				nmpsz = MBLKL(nmp);
20774 
20775 				/*
20776 				 * Excess data in mblk; can we split it?
20777 				 * If MDT is enabled for the connection,
20778 				 * keep on splitting as this is a transient
20779 				 * send path.
20780 				 */
20781 				if (!tcp->tcp_mdt && (spill + nmpsz > 0)) {
20782 					/*
20783 					 * Don't split if stream head was
20784 					 * told to break up larger writes
20785 					 * into smaller ones.
20786 					 */
20787 					if (tcp->tcp_maxpsz > 0)
20788 						break;
20789 
20790 					/*
20791 					 * Next mblk is less than SMSS/2
20792 					 * rounded up to nearest 64-byte;
20793 					 * let it get sent as part of the
20794 					 * next segment.
20795 					 */
20796 					if (tcp->tcp_localnet &&
20797 					    !tcp->tcp_cork &&
20798 					    (nmpsz < roundup((mss >> 1), 64)))
20799 						break;
20800 				}
20801 
20802 				*xmit_tail = nmp;
20803 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20804 				/* Stash for rtt use later */
20805 				(*xmit_tail)->b_prev = local_time;
20806 				(*xmit_tail)->b_next =
20807 				    (mblk_t *)(uintptr_t)(*snxt - len);
20808 				mp1->b_cont = dupb(*xmit_tail);
20809 				mp1 = mp1->b_cont;
20810 
20811 				spill += nmpsz;
20812 				if (mp1 == NULL) {
20813 					*tail_unsent = spill;
20814 					freemsg(mp);
20815 					return (-1);	/* out_of_mem */
20816 				}
20817 			}
20818 
20819 			/* Trim back any surplus on the last mblk */
20820 			if (spill >= 0) {
20821 				mp1->b_wptr -= spill;
20822 				*tail_unsent = spill;
20823 			} else {
20824 				/*
20825 				 * We did not send everything we could in
20826 				 * order to remain within the b_cont limit.
20827 				 */
20828 				*usable -= spill;
20829 				*snxt += spill;
20830 				tcp->tcp_last_sent_len += spill;
20831 				UPDATE_MIB(&tcp_mib, tcpOutDataBytes, spill);
20832 				/*
20833 				 * Adjust the checksum
20834 				 */
20835 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20836 				sum += spill;
20837 				sum = (sum >> 16) + (sum & 0xFFFF);
20838 				U16_TO_ABE16(sum, tcph->th_sum);
20839 				if (tcp->tcp_ipversion == IPV4_VERSION) {
20840 					sum = ntohs(
20841 					    ((ipha_t *)rptr)->ipha_length) +
20842 					    spill;
20843 					((ipha_t *)rptr)->ipha_length =
20844 					    htons(sum);
20845 				} else {
20846 					sum = ntohs(
20847 					    ((ip6_t *)rptr)->ip6_plen) +
20848 					    spill;
20849 					((ip6_t *)rptr)->ip6_plen =
20850 					    htons(sum);
20851 				}
20852 				*tail_unsent = 0;
20853 			}
20854 		}
20855 		if (tcp->tcp_ip_forward_progress) {
20856 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20857 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
20858 			tcp->tcp_ip_forward_progress = B_FALSE;
20859 		}
20860 
20861 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
20862 		tcp_send_data(tcp, q, mp);
20863 		BUMP_LOCAL(tcp->tcp_obsegs);
20864 	}
20865 
20866 	return (0);
20867 }
20868 
20869 /* Unlink and return any mblk that looks like it contains a MDT info */
20870 static mblk_t *
20871 tcp_mdt_info_mp(mblk_t *mp)
20872 {
20873 	mblk_t	*prev_mp;
20874 
20875 	for (;;) {
20876 		prev_mp = mp;
20877 		/* no more to process? */
20878 		if ((mp = mp->b_cont) == NULL)
20879 			break;
20880 
20881 		switch (DB_TYPE(mp)) {
20882 		case M_CTL:
20883 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
20884 				continue;
20885 			ASSERT(prev_mp != NULL);
20886 			prev_mp->b_cont = mp->b_cont;
20887 			mp->b_cont = NULL;
20888 			return (mp);
20889 		default:
20890 			break;
20891 		}
20892 	}
20893 	return (mp);
20894 }
20895 
20896 /* MDT info update routine, called when IP notifies us about MDT */
20897 static void
20898 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
20899 {
20900 	boolean_t prev_state;
20901 
20902 	/*
20903 	 * IP is telling us to abort MDT on this connection?  We know
20904 	 * this because the capability is only turned off when IP
20905 	 * encounters some pathological cases, e.g. link-layer change
20906 	 * where the new driver doesn't support MDT, or in situation
20907 	 * where MDT usage on the link-layer has been switched off.
20908 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
20909 	 * if the link-layer doesn't support MDT, and if it does, it
20910 	 * will indicate that the feature is to be turned on.
20911 	 */
20912 	prev_state = tcp->tcp_mdt;
20913 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
20914 	if (!tcp->tcp_mdt && !first) {
20915 		TCP_STAT(tcp_mdt_conn_halted3);
20916 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
20917 		    (void *)tcp->tcp_connp));
20918 	}
20919 
20920 	/*
20921 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
20922 	 * so disable MDT otherwise.  The checks are done here
20923 	 * and in tcp_wput_data().
20924 	 */
20925 	if (tcp->tcp_mdt &&
20926 	    (tcp->tcp_ipversion == IPV4_VERSION &&
20927 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
20928 	    (tcp->tcp_ipversion == IPV6_VERSION &&
20929 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
20930 		tcp->tcp_mdt = B_FALSE;
20931 
20932 	if (tcp->tcp_mdt) {
20933 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
20934 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
20935 			    "version (%d), expected version is %d",
20936 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
20937 			tcp->tcp_mdt = B_FALSE;
20938 			return;
20939 		}
20940 
20941 		/*
20942 		 * We need the driver to be able to handle at least three
20943 		 * spans per packet in order for tcp MDT to be utilized.
20944 		 * The first is for the header portion, while the rest are
20945 		 * needed to handle a packet that straddles across two
20946 		 * virtually non-contiguous buffers; a typical tcp packet
20947 		 * therefore consists of only two spans.  Note that we take
20948 		 * a zero as "don't care".
20949 		 */
20950 		if (mdt_capab->ill_mdt_span_limit > 0 &&
20951 		    mdt_capab->ill_mdt_span_limit < 3) {
20952 			tcp->tcp_mdt = B_FALSE;
20953 			return;
20954 		}
20955 
20956 		/* a zero means driver wants default value */
20957 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
20958 		    tcp_mdt_max_pbufs);
20959 		if (tcp->tcp_mdt_max_pld == 0)
20960 			tcp->tcp_mdt_max_pld = tcp_mdt_max_pbufs;
20961 
20962 		/* ensure 32-bit alignment */
20963 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcp_mdt_hdr_head_min,
20964 		    mdt_capab->ill_mdt_hdr_head), 4);
20965 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcp_mdt_hdr_tail_min,
20966 		    mdt_capab->ill_mdt_hdr_tail), 4);
20967 
20968 		if (!first && !prev_state) {
20969 			TCP_STAT(tcp_mdt_conn_resumed2);
20970 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
20971 			    (void *)tcp->tcp_connp));
20972 		}
20973 	}
20974 }
20975 
20976 static void
20977 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_mdt)
20978 {
20979 	conn_t *connp = tcp->tcp_connp;
20980 
20981 	ASSERT(ire != NULL);
20982 
20983 	/*
20984 	 * We may be in the fastpath here, and although we essentially do
20985 	 * similar checks as in ip_bind_connected{_v6}/ip_mdinfo_return,
20986 	 * we try to keep things as brief as possible.  After all, these
20987 	 * are only best-effort checks, and we do more thorough ones prior
20988 	 * to calling tcp_multisend().
20989 	 */
20990 	if (ip_multidata_outbound && check_mdt &&
20991 	    !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
20992 	    ill != NULL && (ill->ill_capabilities & ILL_CAPAB_MDT) &&
20993 	    !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
20994 	    !(ire->ire_flags & RTF_MULTIRT) &&
20995 	    !IPP_ENABLED(IPP_LOCAL_OUT) &&
20996 	    CONN_IS_MD_FASTPATH(connp)) {
20997 		/* Remember the result */
20998 		connp->conn_mdt_ok = B_TRUE;
20999 
21000 		ASSERT(ill->ill_mdt_capab != NULL);
21001 		if (!ill->ill_mdt_capab->ill_mdt_on) {
21002 			/*
21003 			 * If MDT has been previously turned off in the past,
21004 			 * and we currently can do MDT (due to IPQoS policy
21005 			 * removal, etc.) then enable it for this interface.
21006 			 */
21007 			ill->ill_mdt_capab->ill_mdt_on = 1;
21008 			ip1dbg(("tcp_ire_ill_check: connp %p enables MDT for "
21009 			    "interface %s\n", (void *)connp, ill->ill_name));
21010 		}
21011 		tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21012 	}
21013 
21014 	/*
21015 	 * The goal is to reduce the number of generated tcp segments by
21016 	 * setting the maxpsz multiplier to 0; this will have an affect on
21017 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21018 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21019 	 * of outbound segments and incoming ACKs, thus allowing for better
21020 	 * network and system performance.  In contrast the legacy behavior
21021 	 * may result in sending less than SMSS size, because the last mblk
21022 	 * for some packets may have more data than needed to make up SMSS,
21023 	 * and the legacy code refused to "split" it.
21024 	 *
21025 	 * We apply the new behavior on following situations:
21026 	 *
21027 	 *   1) Loopback connections,
21028 	 *   2) Connections in which the remote peer is not on local subnet,
21029 	 *   3) Local subnet connections over the bge interface (see below).
21030 	 *
21031 	 * Ideally, we would like this behavior to apply for interfaces other
21032 	 * than bge.  However, doing so would negatively impact drivers which
21033 	 * perform dynamic mapping and unmapping of DMA resources, which are
21034 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21035 	 * packet will be generated by tcp).  The bge driver does not suffer
21036 	 * from this, as it copies the mblks into pre-mapped buffers, and
21037 	 * therefore does not require more I/O resources than before.
21038 	 *
21039 	 * Otherwise, this behavior is present on all network interfaces when
21040 	 * the destination endpoint is non-local, since reducing the number
21041 	 * of packets in general is good for the network.
21042 	 *
21043 	 * TODO We need to remove this hard-coded conditional for bge once
21044 	 *	a better "self-tuning" mechanism, or a way to comprehend
21045 	 *	the driver transmit strategy is devised.  Until the solution
21046 	 *	is found and well understood, we live with this hack.
21047 	 */
21048 	if (!tcp_static_maxpsz &&
21049 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21050 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21051 		/* override the default value */
21052 		tcp->tcp_maxpsz = 0;
21053 
21054 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21055 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21056 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21057 	}
21058 
21059 	/* set the stream head parameters accordingly */
21060 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21061 }
21062 
21063 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21064 static void
21065 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21066 {
21067 	uchar_t	fval = *mp->b_rptr;
21068 	mblk_t	*tail;
21069 	queue_t	*q = tcp->tcp_wq;
21070 
21071 	/* TODO: How should flush interact with urgent data? */
21072 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21073 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21074 		/*
21075 		 * Flush only data that has not yet been put on the wire.  If
21076 		 * we flush data that we have already transmitted, life, as we
21077 		 * know it, may come to an end.
21078 		 */
21079 		tail = tcp->tcp_xmit_tail;
21080 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21081 		tcp->tcp_xmit_tail_unsent = 0;
21082 		tcp->tcp_unsent = 0;
21083 		if (tail->b_wptr != tail->b_rptr)
21084 			tail = tail->b_cont;
21085 		if (tail) {
21086 			mblk_t **excess = &tcp->tcp_xmit_head;
21087 			for (;;) {
21088 				mblk_t *mp1 = *excess;
21089 				if (mp1 == tail)
21090 					break;
21091 				tcp->tcp_xmit_tail = mp1;
21092 				tcp->tcp_xmit_last = mp1;
21093 				excess = &mp1->b_cont;
21094 			}
21095 			*excess = NULL;
21096 			tcp_close_mpp(&tail);
21097 			if (tcp->tcp_snd_zcopy_aware)
21098 				tcp_zcopy_notify(tcp);
21099 		}
21100 		/*
21101 		 * We have no unsent data, so unsent must be less than
21102 		 * tcp_xmit_lowater, so re-enable flow.
21103 		 */
21104 		if (tcp->tcp_flow_stopped) {
21105 			tcp->tcp_flow_stopped = B_FALSE;
21106 			tcp_clrqfull(tcp);
21107 		}
21108 	}
21109 	/*
21110 	 * TODO: you can't just flush these, you have to increase rwnd for one
21111 	 * thing.  For another, how should urgent data interact?
21112 	 */
21113 	if (fval & FLUSHR) {
21114 		*mp->b_rptr = fval & ~FLUSHW;
21115 		/* XXX */
21116 		qreply(q, mp);
21117 		return;
21118 	}
21119 	freemsg(mp);
21120 }
21121 
21122 /*
21123  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21124  * messages.
21125  */
21126 static void
21127 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21128 {
21129 	mblk_t	*mp1;
21130 	STRUCT_HANDLE(strbuf, sb);
21131 	uint16_t port;
21132 	queue_t 	*q = tcp->tcp_wq;
21133 	in6_addr_t	v6addr;
21134 	ipaddr_t	v4addr;
21135 	uint32_t	flowinfo = 0;
21136 	int		addrlen;
21137 
21138 	/* Make sure it is one of ours. */
21139 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21140 	case TI_GETMYNAME:
21141 	case TI_GETPEERNAME:
21142 		break;
21143 	default:
21144 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21145 		return;
21146 	}
21147 	switch (mi_copy_state(q, mp, &mp1)) {
21148 	case -1:
21149 		return;
21150 	case MI_COPY_CASE(MI_COPY_IN, 1):
21151 		break;
21152 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21153 		/* Copy out the strbuf. */
21154 		mi_copyout(q, mp);
21155 		return;
21156 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21157 		/* All done. */
21158 		mi_copy_done(q, mp, 0);
21159 		return;
21160 	default:
21161 		mi_copy_done(q, mp, EPROTO);
21162 		return;
21163 	}
21164 	/* Check alignment of the strbuf */
21165 	if (!OK_32PTR(mp1->b_rptr)) {
21166 		mi_copy_done(q, mp, EINVAL);
21167 		return;
21168 	}
21169 
21170 	STRUCT_SET_HANDLE(sb, ((struct iocblk *)mp->b_rptr)->ioc_flag,
21171 	    (void *)mp1->b_rptr);
21172 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21173 
21174 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21175 		mi_copy_done(q, mp, EINVAL);
21176 		return;
21177 	}
21178 	switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
21179 	case TI_GETMYNAME:
21180 		if (tcp->tcp_family == AF_INET) {
21181 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21182 				v4addr = tcp->tcp_ipha->ipha_src;
21183 			} else {
21184 				/* can't return an address in this case */
21185 				v4addr = 0;
21186 			}
21187 		} else {
21188 			/* tcp->tcp_family == AF_INET6 */
21189 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21190 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
21191 				    &v6addr);
21192 			} else {
21193 				v6addr = tcp->tcp_ip6h->ip6_src;
21194 			}
21195 		}
21196 		port = tcp->tcp_lport;
21197 		break;
21198 	case TI_GETPEERNAME:
21199 		if (tcp->tcp_family == AF_INET) {
21200 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21201 				IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
21202 				    v4addr);
21203 			} else {
21204 				/* can't return an address in this case */
21205 				v4addr = 0;
21206 			}
21207 		} else {
21208 			/* tcp->tcp_family == AF_INET6) */
21209 			v6addr = tcp->tcp_remote_v6;
21210 			if (tcp->tcp_ipversion == IPV6_VERSION) {
21211 				/*
21212 				 * No flowinfo if tcp->tcp_ipversion is v4.
21213 				 *
21214 				 * flowinfo was already initialized to zero
21215 				 * where it was declared above, so only
21216 				 * set it if ipversion is v6.
21217 				 */
21218 				flowinfo = tcp->tcp_ip6h->ip6_vcf &
21219 				    ~IPV6_VERS_AND_FLOW_MASK;
21220 			}
21221 		}
21222 		port = tcp->tcp_fport;
21223 		break;
21224 	default:
21225 		mi_copy_done(q, mp, EPROTO);
21226 		return;
21227 	}
21228 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21229 	if (!mp1)
21230 		return;
21231 
21232 	if (tcp->tcp_family == AF_INET) {
21233 		sin_t *sin;
21234 
21235 		STRUCT_FSET(sb, len, (int)sizeof (sin_t));
21236 		sin = (sin_t *)mp1->b_rptr;
21237 		mp1->b_wptr = (uchar_t *)&sin[1];
21238 		*sin = sin_null;
21239 		sin->sin_family = AF_INET;
21240 		sin->sin_addr.s_addr = v4addr;
21241 		sin->sin_port = port;
21242 	} else {
21243 		/* tcp->tcp_family == AF_INET6 */
21244 		sin6_t *sin6;
21245 
21246 		STRUCT_FSET(sb, len, (int)sizeof (sin6_t));
21247 		sin6 = (sin6_t *)mp1->b_rptr;
21248 		mp1->b_wptr = (uchar_t *)&sin6[1];
21249 		*sin6 = sin6_null;
21250 		sin6->sin6_family = AF_INET6;
21251 		sin6->sin6_flowinfo = flowinfo;
21252 		sin6->sin6_addr = v6addr;
21253 		sin6->sin6_port = port;
21254 	}
21255 	/* Copy out the address */
21256 	mi_copyout(q, mp);
21257 }
21258 
21259 /*
21260  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21261  * messages.
21262  */
21263 /* ARGSUSED */
21264 static void
21265 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21266 {
21267 	conn_t 	*connp = (conn_t *)arg;
21268 	tcp_t	*tcp = connp->conn_tcp;
21269 	queue_t	*q = tcp->tcp_wq;
21270 	struct iocblk	*iocp;
21271 
21272 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21273 	/*
21274 	 * Try and ASSERT the minimum possible references on the
21275 	 * conn early enough. Since we are executing on write side,
21276 	 * the connection is obviously not detached and that means
21277 	 * there is a ref each for TCP and IP. Since we are behind
21278 	 * the squeue, the minimum references needed are 3. If the
21279 	 * conn is in classifier hash list, there should be an
21280 	 * extra ref for that (we check both the possibilities).
21281 	 */
21282 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21283 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21284 
21285 	iocp = (struct iocblk *)mp->b_rptr;
21286 	switch (iocp->ioc_cmd) {
21287 	case TCP_IOC_DEFAULT_Q:
21288 		/* Wants to be the default wq. */
21289 		if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
21290 			iocp->ioc_error = EPERM;
21291 			iocp->ioc_count = 0;
21292 			mp->b_datap->db_type = M_IOCACK;
21293 			qreply(q, mp);
21294 			return;
21295 		}
21296 		tcp_def_q_set(tcp, mp);
21297 		return;
21298 	case SIOCPOPSOCKFS:
21299 		/*
21300 		 * sockfs is being I_POP'ed, reset the flag
21301 		 * indicating this
21302 		 */
21303 		tcp->tcp_issocket = B_FALSE;
21304 
21305 		/*
21306 		 * Insert this socket into the acceptor hash.
21307 		 * We might need it for T_CONN_RES message
21308 		 */
21309 #ifdef	_ILP32
21310 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
21311 #else
21312 		tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21313 #endif
21314 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21315 		mp->b_datap->db_type = M_IOCACK;
21316 		iocp->ioc_count = 0;
21317 		iocp->ioc_error = 0;
21318 		iocp->ioc_rval = 0;
21319 		qreply(q, mp);
21320 		return;
21321 	}
21322 	CALL_IP_WPUT(connp, q, mp);
21323 }
21324 
21325 /*
21326  * This routine is called by tcp_wput() to handle all TPI requests.
21327  */
21328 /* ARGSUSED */
21329 static void
21330 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21331 {
21332 	conn_t 	*connp = (conn_t *)arg;
21333 	tcp_t	*tcp = connp->conn_tcp;
21334 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21335 	uchar_t *rptr;
21336 	t_scalar_t type;
21337 	int len;
21338 	cred_t *cr = DB_CREDDEF(mp, tcp->tcp_cred);
21339 
21340 	/*
21341 	 * Try and ASSERT the minimum possible references on the
21342 	 * conn early enough. Since we are executing on write side,
21343 	 * the connection is obviously not detached and that means
21344 	 * there is a ref each for TCP and IP. Since we are behind
21345 	 * the squeue, the minimum references needed are 3. If the
21346 	 * conn is in classifier hash list, there should be an
21347 	 * extra ref for that (we check both the possibilities).
21348 	 */
21349 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21350 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21351 
21352 	rptr = mp->b_rptr;
21353 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21354 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21355 		type = ((union T_primitives *)rptr)->type;
21356 		if (type == T_EXDATA_REQ) {
21357 			len = msgdsize(mp->b_cont) - 1;
21358 			if (len < 0) {
21359 				freemsg(mp);
21360 				return;
21361 			}
21362 			/*
21363 			 * Try to force urgent data out on the wire.
21364 			 * Even if we have unsent data this will
21365 			 * at least send the urgent flag.
21366 			 * XXX does not handle more flag correctly.
21367 			 */
21368 			len += tcp->tcp_unsent;
21369 			len += tcp->tcp_snxt;
21370 			tcp->tcp_urg = len;
21371 			tcp->tcp_valid_bits |= TCP_URG_VALID;
21372 
21373 			/* Bypass tcp protocol for fused tcp loopback */
21374 			if (tcp->tcp_fused && tcp_fuse_output(tcp, mp))
21375 				return;
21376 		} else if (type != T_DATA_REQ) {
21377 			goto non_urgent_data;
21378 		}
21379 		/* TODO: options, flags, ... from user */
21380 		/* Set length to zero for reclamation below */
21381 		tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21382 		freeb(mp);
21383 		return;
21384 	} else {
21385 		if (tcp->tcp_debug) {
21386 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE,
21387 			    "tcp_wput_proto, dropping one...");
21388 		}
21389 		freemsg(mp);
21390 		return;
21391 	}
21392 
21393 non_urgent_data:
21394 
21395 	switch ((int)tprim->type) {
21396 	case O_T_BIND_REQ:	/* bind request */
21397 	case T_BIND_REQ:	/* new semantics bind request */
21398 		tcp_bind(tcp, mp);
21399 		break;
21400 	case T_UNBIND_REQ:	/* unbind request */
21401 		tcp_unbind(tcp, mp);
21402 		break;
21403 	case O_T_CONN_RES:	/* old connection response XXX */
21404 	case T_CONN_RES:	/* connection response */
21405 		tcp_accept(tcp, mp);
21406 		break;
21407 	case T_CONN_REQ:	/* connection request */
21408 		tcp_connect(tcp, mp);
21409 		break;
21410 	case T_DISCON_REQ:	/* disconnect request */
21411 		tcp_disconnect(tcp, mp);
21412 		break;
21413 	case T_CAPABILITY_REQ:
21414 		tcp_capability_req(tcp, mp);	/* capability request */
21415 		break;
21416 	case T_INFO_REQ:	/* information request */
21417 		tcp_info_req(tcp, mp);
21418 		break;
21419 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21420 		/* Only IP is allowed to return meaningful value */
21421 		(void) svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21422 		break;
21423 	case T_OPTMGMT_REQ:
21424 		/*
21425 		 * Note:  no support for snmpcom_req() through new
21426 		 * T_OPTMGMT_REQ. See comments in ip.c
21427 		 */
21428 		/* Only IP is allowed to return meaningful value */
21429 		(void) tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj);
21430 		break;
21431 
21432 	case T_UNITDATA_REQ:	/* unitdata request */
21433 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21434 		break;
21435 	case T_ORDREL_REQ:	/* orderly release req */
21436 		freemsg(mp);
21437 
21438 		if (tcp->tcp_fused)
21439 			tcp_unfuse(tcp);
21440 
21441 		if (tcp_xmit_end(tcp) != 0) {
21442 			/*
21443 			 * We were crossing FINs and got a reset from
21444 			 * the other side. Just ignore it.
21445 			 */
21446 			if (tcp->tcp_debug) {
21447 				(void) strlog(TCP_MODULE_ID, 0, 1,
21448 				    SL_ERROR|SL_TRACE,
21449 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21450 				    "state %s",
21451 				    tcp_display(tcp, NULL,
21452 				    DISP_ADDR_AND_PORT));
21453 			}
21454 		}
21455 		break;
21456 	case T_ADDR_REQ:
21457 		tcp_addr_req(tcp, mp);
21458 		break;
21459 	default:
21460 		if (tcp->tcp_debug) {
21461 			(void) strlog(TCP_MODULE_ID, 0, 1, SL_ERROR|SL_TRACE,
21462 			    "tcp_wput_proto, bogus TPI msg, type %d",
21463 			    tprim->type);
21464 		}
21465 		/*
21466 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21467 		 * to recover.
21468 		 */
21469 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21470 		break;
21471 	}
21472 }
21473 
21474 /*
21475  * The TCP write service routine should never be called...
21476  */
21477 /* ARGSUSED */
21478 static void
21479 tcp_wsrv(queue_t *q)
21480 {
21481 	TCP_STAT(tcp_wsrv_called);
21482 }
21483 
21484 /* Non overlapping byte exchanger */
21485 static void
21486 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21487 {
21488 	uchar_t	uch;
21489 
21490 	while (len-- > 0) {
21491 		uch = a[len];
21492 		a[len] = b[len];
21493 		b[len] = uch;
21494 	}
21495 }
21496 
21497 /*
21498  * Send out a control packet on the tcp connection specified.  This routine
21499  * is typically called where we need a simple ACK or RST generated.
21500  */
21501 static void
21502 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21503 {
21504 	uchar_t		*rptr;
21505 	tcph_t		*tcph;
21506 	ipha_t		*ipha = NULL;
21507 	ip6_t		*ip6h = NULL;
21508 	uint32_t	sum;
21509 	int		tcp_hdr_len;
21510 	int		tcp_ip_hdr_len;
21511 	mblk_t		*mp;
21512 
21513 	/*
21514 	 * Save sum for use in source route later.
21515 	 */
21516 	ASSERT(tcp != NULL);
21517 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21518 	tcp_hdr_len = tcp->tcp_hdr_len;
21519 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21520 
21521 	/* If a text string is passed in with the request, pass it to strlog. */
21522 	if (str != NULL && tcp->tcp_debug) {
21523 		(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE,
21524 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21525 		    str, seq, ack, ctl);
21526 	}
21527 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
21528 	    BPRI_MED);
21529 	if (mp == NULL) {
21530 		return;
21531 	}
21532 	rptr = &mp->b_rptr[tcp_wroff_xtra];
21533 	mp->b_rptr = rptr;
21534 	mp->b_wptr = &rptr[tcp_hdr_len];
21535 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21536 
21537 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21538 		ipha = (ipha_t *)rptr;
21539 		ipha->ipha_length = htons(tcp_hdr_len);
21540 	} else {
21541 		ip6h = (ip6_t *)rptr;
21542 		ASSERT(tcp != NULL);
21543 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21544 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21545 	}
21546 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21547 	tcph->th_flags[0] = (uint8_t)ctl;
21548 	if (ctl & TH_RST) {
21549 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21550 		BUMP_MIB(&tcp_mib, tcpOutControl);
21551 		/*
21552 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21553 		 */
21554 		if (tcp->tcp_snd_ts_ok &&
21555 		    tcp->tcp_state > TCPS_SYN_SENT) {
21556 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21557 			*(mp->b_wptr) = TCPOPT_EOL;
21558 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21559 				ipha->ipha_length = htons(tcp_hdr_len -
21560 				    TCPOPT_REAL_TS_LEN);
21561 			} else {
21562 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21563 				    TCPOPT_REAL_TS_LEN);
21564 			}
21565 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21566 			sum -= TCPOPT_REAL_TS_LEN;
21567 		}
21568 	}
21569 	if (ctl & TH_ACK) {
21570 		if (tcp->tcp_snd_ts_ok) {
21571 			U32_TO_BE32(lbolt,
21572 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21573 			U32_TO_BE32(tcp->tcp_ts_recent,
21574 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21575 		}
21576 
21577 		/* Update the latest receive window size in TCP header. */
21578 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21579 		    tcph->th_win);
21580 		tcp->tcp_rack = ack;
21581 		tcp->tcp_rack_cnt = 0;
21582 		BUMP_MIB(&tcp_mib, tcpOutAck);
21583 	}
21584 	BUMP_LOCAL(tcp->tcp_obsegs);
21585 	U32_TO_BE32(seq, tcph->th_seq);
21586 	U32_TO_BE32(ack, tcph->th_ack);
21587 	/*
21588 	 * Include the adjustment for a source route if any.
21589 	 */
21590 	sum = (sum >> 16) + (sum & 0xFFFF);
21591 	U16_TO_BE16(sum, tcph->th_sum);
21592 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21593 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21594 }
21595 
21596 /*
21597  * If this routine returns B_TRUE, TCP can generate a RST in response
21598  * to a segment.  If it returns B_FALSE, TCP should not respond.
21599  */
21600 static boolean_t
21601 tcp_send_rst_chk(void)
21602 {
21603 	clock_t	now;
21604 
21605 	/*
21606 	 * TCP needs to protect itself from generating too many RSTs.
21607 	 * This can be a DoS attack by sending us random segments
21608 	 * soliciting RSTs.
21609 	 *
21610 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21611 	 * in each 1 second interval.  In this way, TCP still generate
21612 	 * RSTs in normal cases but when under attack, the impact is
21613 	 * limited.
21614 	 */
21615 	if (tcp_rst_sent_rate_enabled != 0) {
21616 		now = lbolt;
21617 		/* lbolt can wrap around. */
21618 		if ((tcp_last_rst_intrvl > now) ||
21619 		    (TICK_TO_MSEC(now - tcp_last_rst_intrvl) > 1*SECONDS)) {
21620 			tcp_last_rst_intrvl = now;
21621 			tcp_rst_cnt = 1;
21622 		} else if (++tcp_rst_cnt > tcp_rst_sent_rate) {
21623 			return (B_FALSE);
21624 		}
21625 	}
21626 	return (B_TRUE);
21627 }
21628 
21629 /*
21630  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21631  */
21632 static void
21633 tcp_ip_ire_mark_advice(tcp_t *tcp)
21634 {
21635 	mblk_t *mp;
21636 	ipic_t *ipic;
21637 
21638 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21639 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21640 		    &ipic);
21641 	} else {
21642 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21643 		    &ipic);
21644 	}
21645 	if (mp == NULL)
21646 		return;
21647 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21648 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21649 }
21650 
21651 /*
21652  * Return an IP advice ioctl mblk and set ipic to be the pointer
21653  * to the advice structure.
21654  */
21655 static mblk_t *
21656 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21657 {
21658 	struct iocblk *ioc;
21659 	mblk_t *mp, *mp1;
21660 
21661 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21662 	if (mp == NULL)
21663 		return (NULL);
21664 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21665 	*ipic = (ipic_t *)mp->b_rptr;
21666 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21667 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21668 
21669 	bcopy(addr, *ipic + 1, addr_len);
21670 
21671 	(*ipic)->ipic_addr_length = addr_len;
21672 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21673 
21674 	mp1 = mkiocb(IP_IOCTL);
21675 	if (mp1 == NULL) {
21676 		freemsg(mp);
21677 		return (NULL);
21678 	}
21679 	mp1->b_cont = mp;
21680 	ioc = (struct iocblk *)mp1->b_rptr;
21681 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21682 
21683 	return (mp1);
21684 }
21685 
21686 /*
21687  * Generate a reset based on an inbound packet for which there is no active
21688  * tcp state that we can find.
21689  *
21690  * IPSEC NOTE : Try to send the reply with the same protection as it came
21691  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21692  * the packet will go out at the same level of protection as it came in by
21693  * converting the IPSEC_IN to IPSEC_OUT.
21694  */
21695 static void
21696 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21697     uint32_t ack, int ctl, uint_t ip_hdr_len)
21698 {
21699 	ipha_t		*ipha = NULL;
21700 	ip6_t		*ip6h = NULL;
21701 	ushort_t	len;
21702 	tcph_t		*tcph;
21703 	int		i;
21704 	mblk_t		*ipsec_mp;
21705 	boolean_t	mctl_present;
21706 	ipic_t		*ipic;
21707 	ipaddr_t	v4addr;
21708 	in6_addr_t	v6addr;
21709 	int		addr_len;
21710 	void		*addr;
21711 	queue_t		*q = tcp_g_q;
21712 	tcp_t		*tcp = Q_TO_TCP(q);
21713 
21714 	if (!tcp_send_rst_chk()) {
21715 		tcp_rst_unsent++;
21716 		freemsg(mp);
21717 		return;
21718 	}
21719 
21720 	if (mp->b_datap->db_type == M_CTL) {
21721 		ipsec_mp = mp;
21722 		mp = mp->b_cont;
21723 		mctl_present = B_TRUE;
21724 	} else {
21725 		ipsec_mp = mp;
21726 		mctl_present = B_FALSE;
21727 	}
21728 
21729 	if (str && q && tcp_dbg) {
21730 		(void) strlog(TCP_MODULE_ID, 0, 1, SL_TRACE,
21731 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
21732 		    "flags 0x%x",
21733 		    str, seq, ack, ctl);
21734 	}
21735 	if (mp->b_datap->db_ref != 1) {
21736 		mblk_t *mp1 = copyb(mp);
21737 		freemsg(mp);
21738 		mp = mp1;
21739 		if (!mp) {
21740 			if (mctl_present)
21741 				freeb(ipsec_mp);
21742 			return;
21743 		} else {
21744 			if (mctl_present) {
21745 				ipsec_mp->b_cont = mp;
21746 			} else {
21747 				ipsec_mp = mp;
21748 			}
21749 		}
21750 	} else if (mp->b_cont) {
21751 		freemsg(mp->b_cont);
21752 		mp->b_cont = NULL;
21753 	}
21754 	/*
21755 	 * We skip reversing source route here.
21756 	 * (for now we replace all IP options with EOL)
21757 	 */
21758 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21759 		ipha = (ipha_t *)mp->b_rptr;
21760 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
21761 			mp->b_rptr[i] = IPOPT_EOL;
21762 		/*
21763 		 * Make sure that src address isn't flagrantly invalid.
21764 		 * Not all broadcast address checking for the src address
21765 		 * is possible, since we don't know the netmask of the src
21766 		 * addr.  No check for destination address is done, since
21767 		 * IP will not pass up a packet with a broadcast dest
21768 		 * address to TCP.  Similar checks are done below for IPv6.
21769 		 */
21770 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
21771 		    CLASSD(ipha->ipha_src)) {
21772 			freemsg(ipsec_mp);
21773 			BUMP_MIB(&ip_mib, ipInDiscards);
21774 			return;
21775 		}
21776 	} else {
21777 		ip6h = (ip6_t *)mp->b_rptr;
21778 
21779 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
21780 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
21781 			freemsg(ipsec_mp);
21782 			BUMP_MIB(&ip6_mib, ipv6InDiscards);
21783 			return;
21784 		}
21785 
21786 		/* Remove any extension headers assuming partial overlay */
21787 		if (ip_hdr_len > IPV6_HDR_LEN) {
21788 			uint8_t *to;
21789 
21790 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
21791 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
21792 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
21793 			ip_hdr_len = IPV6_HDR_LEN;
21794 			ip6h = (ip6_t *)mp->b_rptr;
21795 			ip6h->ip6_nxt = IPPROTO_TCP;
21796 		}
21797 	}
21798 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
21799 	if (tcph->th_flags[0] & TH_RST) {
21800 		freemsg(ipsec_mp);
21801 		return;
21802 	}
21803 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
21804 	len = ip_hdr_len + sizeof (tcph_t);
21805 	mp->b_wptr = &mp->b_rptr[len];
21806 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21807 		ipha->ipha_length = htons(len);
21808 		/* Swap addresses */
21809 		v4addr = ipha->ipha_src;
21810 		ipha->ipha_src = ipha->ipha_dst;
21811 		ipha->ipha_dst = v4addr;
21812 		ipha->ipha_ident = 0;
21813 		ipha->ipha_ttl = (uchar_t)tcp_ipv4_ttl;
21814 		addr_len = IP_ADDR_LEN;
21815 		addr = &v4addr;
21816 	} else {
21817 		/* No ip6i_t in this case */
21818 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
21819 		/* Swap addresses */
21820 		v6addr = ip6h->ip6_src;
21821 		ip6h->ip6_src = ip6h->ip6_dst;
21822 		ip6h->ip6_dst = v6addr;
21823 		ip6h->ip6_hops = (uchar_t)tcp_ipv6_hoplimit;
21824 		addr_len = IPV6_ADDR_LEN;
21825 		addr = &v6addr;
21826 	}
21827 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
21828 	U32_TO_BE32(ack, tcph->th_ack);
21829 	U32_TO_BE32(seq, tcph->th_seq);
21830 	U16_TO_BE16(0, tcph->th_win);
21831 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
21832 	tcph->th_flags[0] = (uint8_t)ctl;
21833 	if (ctl & TH_RST) {
21834 		BUMP_MIB(&tcp_mib, tcpOutRsts);
21835 		BUMP_MIB(&tcp_mib, tcpOutControl);
21836 	}
21837 	if (mctl_present) {
21838 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
21839 
21840 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
21841 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
21842 			return;
21843 		}
21844 	}
21845 	/*
21846 	 * NOTE:  one might consider tracing a TCP packet here, but
21847 	 * this function has no active TCP state nd no tcp structure
21848 	 * which has trace buffer.  If we traced here, we would have
21849 	 * to keep a local trace buffer in tcp_record_trace().
21850 	 */
21851 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
21852 
21853 	/*
21854 	 * Tell IP to mark the IRE used for this destination temporary.
21855 	 * This way, we can limit our exposure to DoS attack because IP
21856 	 * creates an IRE for each destination.  If there are too many,
21857 	 * the time to do any routing lookup will be extremely long.  And
21858 	 * the lookup can be in interrupt context.
21859 	 *
21860 	 * Note that in normal circumstances, this marking should not
21861 	 * affect anything.  It would be nice if only 1 message is
21862 	 * needed to inform IP that the IRE created for this RST should
21863 	 * not be added to the cache table.  But there is currently
21864 	 * not such communication mechanism between TCP and IP.  So
21865 	 * the best we can do now is to send the advice ioctl to IP
21866 	 * to mark the IRE temporary.
21867 	 */
21868 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
21869 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21870 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21871 	}
21872 }
21873 
21874 /*
21875  * Initiate closedown sequence on an active connection.  (May be called as
21876  * writer.)  Return value zero for OK return, non-zero for error return.
21877  */
21878 static int
21879 tcp_xmit_end(tcp_t *tcp)
21880 {
21881 	ipic_t	*ipic;
21882 	mblk_t	*mp;
21883 
21884 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
21885 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
21886 		/*
21887 		 * Invalid state, only states TCPS_SYN_RCVD,
21888 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
21889 		 */
21890 		return (-1);
21891 	}
21892 
21893 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
21894 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
21895 	/*
21896 	 * If there is nothing more unsent, send the FIN now.
21897 	 * Otherwise, it will go out with the last segment.
21898 	 */
21899 	if (tcp->tcp_unsent == 0) {
21900 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
21901 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
21902 
21903 		if (mp) {
21904 			TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
21905 			tcp_send_data(tcp, tcp->tcp_wq, mp);
21906 		} else {
21907 			/*
21908 			 * Couldn't allocate msg.  Pretend we got it out.
21909 			 * Wait for rexmit timeout.
21910 			 */
21911 			tcp->tcp_snxt = tcp->tcp_fss + 1;
21912 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
21913 		}
21914 
21915 		/*
21916 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
21917 		 * changed.
21918 		 */
21919 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
21920 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
21921 		}
21922 	} else {
21923 		/*
21924 		 * If tcp->tcp_cork is set, then the data will not get sent,
21925 		 * so we have to check that and unset it first.
21926 		 */
21927 		if (tcp->tcp_cork)
21928 			tcp->tcp_cork = B_FALSE;
21929 		tcp_wput_data(tcp, NULL, B_FALSE);
21930 	}
21931 
21932 	/*
21933 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
21934 	 * is 0, don't update the cache.
21935 	 */
21936 	if (tcp_rtt_updates == 0 || tcp->tcp_rtt_update < tcp_rtt_updates)
21937 		return (0);
21938 
21939 	/*
21940 	 * NOTE: should not update if source routes i.e. if tcp_remote if
21941 	 * different from the destination.
21942 	 */
21943 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21944 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
21945 			return (0);
21946 		}
21947 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21948 		    &ipic);
21949 	} else {
21950 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
21951 		    &tcp->tcp_ip6h->ip6_dst))) {
21952 			return (0);
21953 		}
21954 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21955 		    &ipic);
21956 	}
21957 
21958 	/* Record route attributes in the IRE for use by future connections. */
21959 	if (mp == NULL)
21960 		return (0);
21961 
21962 	/*
21963 	 * We do not have a good algorithm to update ssthresh at this time.
21964 	 * So don't do any update.
21965 	 */
21966 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
21967 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
21968 
21969 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21970 	return (0);
21971 }
21972 
21973 /*
21974  * Generate a "no listener here" RST in response to an "unknown" segment.
21975  * Note that we are reusing the incoming mp to construct the outgoing
21976  * RST.
21977  */
21978 void
21979 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len)
21980 {
21981 	uchar_t		*rptr;
21982 	uint32_t	seg_len;
21983 	tcph_t		*tcph;
21984 	uint32_t	seg_seq;
21985 	uint32_t	seg_ack;
21986 	uint_t		flags;
21987 	mblk_t		*ipsec_mp;
21988 	ipha_t 		*ipha;
21989 	ip6_t 		*ip6h;
21990 	boolean_t	mctl_present = B_FALSE;
21991 	boolean_t	check = B_TRUE;
21992 	boolean_t	policy_present;
21993 
21994 	TCP_STAT(tcp_no_listener);
21995 
21996 	ipsec_mp = mp;
21997 
21998 	if (mp->b_datap->db_type == M_CTL) {
21999 		ipsec_in_t *ii;
22000 
22001 		mctl_present = B_TRUE;
22002 		mp = mp->b_cont;
22003 
22004 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22005 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22006 		if (ii->ipsec_in_dont_check) {
22007 			check = B_FALSE;
22008 			if (!ii->ipsec_in_secure) {
22009 				freeb(ipsec_mp);
22010 				mctl_present = B_FALSE;
22011 				ipsec_mp = mp;
22012 			}
22013 		}
22014 	}
22015 
22016 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22017 		policy_present = ipsec_inbound_v4_policy_present;
22018 		ipha = (ipha_t *)mp->b_rptr;
22019 		ip6h = NULL;
22020 	} else {
22021 		policy_present = ipsec_inbound_v6_policy_present;
22022 		ipha = NULL;
22023 		ip6h = (ip6_t *)mp->b_rptr;
22024 	}
22025 
22026 	if (check && policy_present) {
22027 		/*
22028 		 * The conn_t parameter is NULL because we already know
22029 		 * nobody's home.
22030 		 */
22031 		ipsec_mp = ipsec_check_global_policy(
22032 			ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present);
22033 		if (ipsec_mp == NULL)
22034 			return;
22035 	}
22036 
22037 
22038 	rptr = mp->b_rptr;
22039 
22040 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22041 	seg_seq = BE32_TO_U32(tcph->th_seq);
22042 	seg_ack = BE32_TO_U32(tcph->th_ack);
22043 	flags = tcph->th_flags[0];
22044 
22045 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22046 	if (flags & TH_RST) {
22047 		freemsg(ipsec_mp);
22048 	} else if (flags & TH_ACK) {
22049 		tcp_xmit_early_reset("no tcp, reset",
22050 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len);
22051 	} else {
22052 		if (flags & TH_SYN) {
22053 			seg_len++;
22054 		} else {
22055 			/*
22056 			 * Here we violate the RFC.  Note that a normal
22057 			 * TCP will never send a segment without the ACK
22058 			 * flag, except for RST or SYN segment.  This
22059 			 * segment is neither.  Just drop it on the
22060 			 * floor.
22061 			 */
22062 			freemsg(ipsec_mp);
22063 			tcp_rst_unsent++;
22064 			return;
22065 		}
22066 
22067 		tcp_xmit_early_reset("no tcp, reset/ack",
22068 		    ipsec_mp, 0, seg_seq + seg_len,
22069 		    TH_RST | TH_ACK, ip_hdr_len);
22070 	}
22071 }
22072 
22073 /*
22074  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22075  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22076  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22077  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22078  * otherwise it will dup partial mblks.)
22079  * Otherwise, an appropriate ACK packet will be generated.  This
22080  * routine is not usually called to send new data for the first time.  It
22081  * is mostly called out of the timer for retransmits, and to generate ACKs.
22082  *
22083  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22084  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22085  * of the original mblk chain will be returned in *offset and *end_mp.
22086  */
22087 static mblk_t *
22088 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22089     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22090     boolean_t rexmit)
22091 {
22092 	int	data_length;
22093 	int32_t	off = 0;
22094 	uint_t	flags;
22095 	mblk_t	*mp1;
22096 	mblk_t	*mp2;
22097 	uchar_t	*rptr;
22098 	tcph_t	*tcph;
22099 	int32_t	num_sack_blk = 0;
22100 	int32_t	sack_opt_len = 0;
22101 
22102 	/* Allocate for our maximum TCP header + link-level */
22103 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcp_wroff_xtra,
22104 	    BPRI_MED);
22105 	if (!mp1)
22106 		return (NULL);
22107 	data_length = 0;
22108 
22109 	/*
22110 	 * Note that tcp_mss has been adjusted to take into account the
22111 	 * timestamp option if applicable.  Because SACK options do not
22112 	 * appear in every TCP segments and they are of variable lengths,
22113 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22114 	 * the actual segment length when we need to send a segment which
22115 	 * includes SACK options.
22116 	 */
22117 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22118 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22119 		    tcp->tcp_num_sack_blk);
22120 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22121 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22122 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22123 			max_to_send -= sack_opt_len;
22124 	}
22125 
22126 	if (offset != NULL) {
22127 		off = *offset;
22128 		/* We use offset as an indicator that end_mp is not NULL. */
22129 		*end_mp = NULL;
22130 	}
22131 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22132 		/* This could be faster with cooperation from downstream */
22133 		if (mp2 != mp1 && !sendall &&
22134 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22135 		    max_to_send)
22136 			/*
22137 			 * Don't send the next mblk since the whole mblk
22138 			 * does not fit.
22139 			 */
22140 			break;
22141 		mp2->b_cont = dupb(mp);
22142 		mp2 = mp2->b_cont;
22143 		if (!mp2) {
22144 			freemsg(mp1);
22145 			return (NULL);
22146 		}
22147 		mp2->b_rptr += off;
22148 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22149 		    (uintptr_t)INT_MAX);
22150 
22151 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22152 		if (data_length > max_to_send) {
22153 			mp2->b_wptr -= data_length - max_to_send;
22154 			data_length = max_to_send;
22155 			off = mp2->b_wptr - mp->b_rptr;
22156 			break;
22157 		} else {
22158 			off = 0;
22159 		}
22160 	}
22161 	if (offset != NULL) {
22162 		*offset = off;
22163 		*end_mp = mp;
22164 	}
22165 	if (seg_len != NULL) {
22166 		*seg_len = data_length;
22167 	}
22168 
22169 	/* Update the latest receive window size in TCP header. */
22170 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22171 	    tcp->tcp_tcph->th_win);
22172 
22173 	rptr = mp1->b_rptr + tcp_wroff_xtra;
22174 	mp1->b_rptr = rptr;
22175 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22176 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22177 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22178 	U32_TO_ABE32(seq, tcph->th_seq);
22179 
22180 	/*
22181 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22182 	 * that this function was called from tcp_wput_data. Thus, when called
22183 	 * to retransmit data the setting of the PUSH bit may appear some
22184 	 * what random in that it might get set when it should not. This
22185 	 * should not pose any performance issues.
22186 	 */
22187 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22188 	    tcp->tcp_unsent == data_length)) {
22189 		flags = TH_ACK | TH_PUSH;
22190 	} else {
22191 		flags = TH_ACK;
22192 	}
22193 
22194 	if (tcp->tcp_ecn_ok) {
22195 		if (tcp->tcp_ecn_echo_on)
22196 			flags |= TH_ECE;
22197 
22198 		/*
22199 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22200 		 * There is no TCP flow control for non-data segments, and
22201 		 * only data segment is transmitted reliably.
22202 		 */
22203 		if (data_length > 0 && !rexmit) {
22204 			SET_ECT(tcp, rptr);
22205 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22206 				flags |= TH_CWR;
22207 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22208 			}
22209 		}
22210 	}
22211 
22212 	if (tcp->tcp_valid_bits) {
22213 		uint32_t u1;
22214 
22215 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22216 		    seq == tcp->tcp_iss) {
22217 			uchar_t	*wptr;
22218 
22219 			/*
22220 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22221 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22222 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22223 			 * our SYN is not ack'ed but the app closes this
22224 			 * TCP connection.
22225 			 */
22226 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22227 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22228 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22229 
22230 			/*
22231 			 * Tack on the MSS option.  It is always needed
22232 			 * for both active and passive open.
22233 			 *
22234 			 * MSS option value should be interface MTU - MIN
22235 			 * TCP/IP header according to RFC 793 as it means
22236 			 * the maximum segment size TCP can receive.  But
22237 			 * to get around some broken middle boxes/end hosts
22238 			 * out there, we allow the option value to be the
22239 			 * same as the MSS option size on the peer side.
22240 			 * In this way, the other side will not send
22241 			 * anything larger than they can receive.
22242 			 *
22243 			 * Note that for SYN_SENT state, the ndd param
22244 			 * tcp_use_smss_as_mss_opt has no effect as we
22245 			 * don't know the peer's MSS option value. So
22246 			 * the only case we need to take care of is in
22247 			 * SYN_RCVD state, which is done later.
22248 			 */
22249 			wptr = mp1->b_wptr;
22250 			wptr[0] = TCPOPT_MAXSEG;
22251 			wptr[1] = TCPOPT_MAXSEG_LEN;
22252 			wptr += 2;
22253 			u1 = tcp->tcp_if_mtu -
22254 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22255 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22256 			    TCP_MIN_HEADER_LENGTH;
22257 			U16_TO_BE16(u1, wptr);
22258 			mp1->b_wptr = wptr + 2;
22259 			/* Update the offset to cover the additional word */
22260 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22261 
22262 			/*
22263 			 * Note that the following way of filling in
22264 			 * TCP options are not optimal.  Some NOPs can
22265 			 * be saved.  But there is no need at this time
22266 			 * to optimize it.  When it is needed, we will
22267 			 * do it.
22268 			 */
22269 			switch (tcp->tcp_state) {
22270 			case TCPS_SYN_SENT:
22271 				flags = TH_SYN;
22272 
22273 				if (tcp->tcp_snd_ts_ok) {
22274 					uint32_t llbolt = (uint32_t)lbolt;
22275 
22276 					wptr = mp1->b_wptr;
22277 					wptr[0] = TCPOPT_NOP;
22278 					wptr[1] = TCPOPT_NOP;
22279 					wptr[2] = TCPOPT_TSTAMP;
22280 					wptr[3] = TCPOPT_TSTAMP_LEN;
22281 					wptr += 4;
22282 					U32_TO_BE32(llbolt, wptr);
22283 					wptr += 4;
22284 					ASSERT(tcp->tcp_ts_recent == 0);
22285 					U32_TO_BE32(0L, wptr);
22286 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22287 					tcph->th_offset_and_rsrvd[0] +=
22288 					    (3 << 4);
22289 				}
22290 
22291 				/*
22292 				 * Set up all the bits to tell other side
22293 				 * we are ECN capable.
22294 				 */
22295 				if (tcp->tcp_ecn_ok) {
22296 					flags |= (TH_ECE | TH_CWR);
22297 				}
22298 				break;
22299 			case TCPS_SYN_RCVD:
22300 				flags |= TH_SYN;
22301 
22302 				/*
22303 				 * Reset the MSS option value to be SMSS
22304 				 * We should probably add back the bytes
22305 				 * for timestamp option and IPsec.  We
22306 				 * don't do that as this is a workaround
22307 				 * for broken middle boxes/end hosts, it
22308 				 * is better for us to be more cautious.
22309 				 * They may not take these things into
22310 				 * account in their SMSS calculation.  Thus
22311 				 * the peer's calculated SMSS may be smaller
22312 				 * than what it can be.  This should be OK.
22313 				 */
22314 				if (tcp_use_smss_as_mss_opt) {
22315 					u1 = tcp->tcp_mss;
22316 					U16_TO_BE16(u1, wptr);
22317 				}
22318 
22319 				/*
22320 				 * If the other side is ECN capable, reply
22321 				 * that we are also ECN capable.
22322 				 */
22323 				if (tcp->tcp_ecn_ok)
22324 					flags |= TH_ECE;
22325 				break;
22326 			default:
22327 				/*
22328 				 * The above ASSERT() makes sure that this
22329 				 * must be FIN-WAIT-1 state.  Our SYN has
22330 				 * not been ack'ed so retransmit it.
22331 				 */
22332 				flags |= TH_SYN;
22333 				break;
22334 			}
22335 
22336 			if (tcp->tcp_snd_ws_ok) {
22337 				wptr = mp1->b_wptr;
22338 				wptr[0] =  TCPOPT_NOP;
22339 				wptr[1] =  TCPOPT_WSCALE;
22340 				wptr[2] =  TCPOPT_WS_LEN;
22341 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22342 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22343 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22344 			}
22345 
22346 			if (tcp->tcp_snd_sack_ok) {
22347 				wptr = mp1->b_wptr;
22348 				wptr[0] = TCPOPT_NOP;
22349 				wptr[1] = TCPOPT_NOP;
22350 				wptr[2] = TCPOPT_SACK_PERMITTED;
22351 				wptr[3] = TCPOPT_SACK_OK_LEN;
22352 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22353 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22354 			}
22355 
22356 			/* allocb() of adequate mblk assures space */
22357 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22358 			    (uintptr_t)INT_MAX);
22359 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22360 			/*
22361 			 * Get IP set to checksum on our behalf
22362 			 * Include the adjustment for a source route if any.
22363 			 */
22364 			u1 += tcp->tcp_sum;
22365 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22366 			U16_TO_BE16(u1, tcph->th_sum);
22367 			BUMP_MIB(&tcp_mib, tcpOutControl);
22368 		}
22369 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22370 		    (seq + data_length) == tcp->tcp_fss) {
22371 			if (!tcp->tcp_fin_acked) {
22372 				flags |= TH_FIN;
22373 				BUMP_MIB(&tcp_mib, tcpOutControl);
22374 			}
22375 			if (!tcp->tcp_fin_sent) {
22376 				tcp->tcp_fin_sent = B_TRUE;
22377 				switch (tcp->tcp_state) {
22378 				case TCPS_SYN_RCVD:
22379 				case TCPS_ESTABLISHED:
22380 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22381 					break;
22382 				case TCPS_CLOSE_WAIT:
22383 					tcp->tcp_state = TCPS_LAST_ACK;
22384 					break;
22385 				}
22386 				if (tcp->tcp_suna == tcp->tcp_snxt)
22387 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22388 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22389 			}
22390 		}
22391 		/*
22392 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22393 		 * is smaller than seq, u1 will become a very huge value.
22394 		 * So the comparison will fail.  Also note that tcp_urp
22395 		 * should be positive, see RFC 793 page 17.
22396 		 */
22397 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22398 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22399 		    u1 < (uint32_t)(64 * 1024)) {
22400 			flags |= TH_URG;
22401 			BUMP_MIB(&tcp_mib, tcpOutUrg);
22402 			U32_TO_ABE16(u1, tcph->th_urp);
22403 		}
22404 	}
22405 	tcph->th_flags[0] = (uchar_t)flags;
22406 	tcp->tcp_rack = tcp->tcp_rnxt;
22407 	tcp->tcp_rack_cnt = 0;
22408 
22409 	if (tcp->tcp_snd_ts_ok) {
22410 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22411 			uint32_t llbolt = (uint32_t)lbolt;
22412 
22413 			U32_TO_BE32(llbolt,
22414 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22415 			U32_TO_BE32(tcp->tcp_ts_recent,
22416 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22417 		}
22418 	}
22419 
22420 	if (num_sack_blk > 0) {
22421 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22422 		sack_blk_t *tmp;
22423 		int32_t	i;
22424 
22425 		wptr[0] = TCPOPT_NOP;
22426 		wptr[1] = TCPOPT_NOP;
22427 		wptr[2] = TCPOPT_SACK;
22428 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22429 		    sizeof (sack_blk_t);
22430 		wptr += TCPOPT_REAL_SACK_LEN;
22431 
22432 		tmp = tcp->tcp_sack_list;
22433 		for (i = 0; i < num_sack_blk; i++) {
22434 			U32_TO_BE32(tmp[i].begin, wptr);
22435 			wptr += sizeof (tcp_seq);
22436 			U32_TO_BE32(tmp[i].end, wptr);
22437 			wptr += sizeof (tcp_seq);
22438 		}
22439 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22440 	}
22441 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22442 	data_length += (int)(mp1->b_wptr - rptr);
22443 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22444 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22445 	} else {
22446 		ip6_t *ip6 = (ip6_t *)(rptr +
22447 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22448 		    sizeof (ip6i_t) : 0));
22449 
22450 		ip6->ip6_plen = htons(data_length -
22451 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22452 	}
22453 
22454 	/*
22455 	 * Prime pump for IP
22456 	 * Include the adjustment for a source route if any.
22457 	 */
22458 	data_length -= tcp->tcp_ip_hdr_len;
22459 	data_length += tcp->tcp_sum;
22460 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22461 	U16_TO_ABE16(data_length, tcph->th_sum);
22462 	if (tcp->tcp_ip_forward_progress) {
22463 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22464 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22465 		tcp->tcp_ip_forward_progress = B_FALSE;
22466 	}
22467 	return (mp1);
22468 }
22469 
22470 /* This function handles the push timeout. */
22471 static void
22472 tcp_push_timer(void *arg)
22473 {
22474 	conn_t	*connp = (conn_t *)arg;
22475 	tcp_t *tcp = connp->conn_tcp;
22476 
22477 	TCP_DBGSTAT(tcp_push_timer_cnt);
22478 
22479 	ASSERT(tcp->tcp_listener == NULL);
22480 
22481 	tcp->tcp_push_tid = 0;
22482 	if ((tcp->tcp_rcv_list != NULL) &&
22483 	    (tcp_rcv_drain(tcp->tcp_rq, tcp) == TH_ACK_NEEDED))
22484 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22485 }
22486 
22487 /*
22488  * This function handles delayed ACK timeout.
22489  */
22490 static void
22491 tcp_ack_timer(void *arg)
22492 {
22493 	conn_t	*connp = (conn_t *)arg;
22494 	tcp_t *tcp = connp->conn_tcp;
22495 	mblk_t *mp;
22496 
22497 	TCP_DBGSTAT(tcp_ack_timer_cnt);
22498 
22499 	tcp->tcp_ack_tid = 0;
22500 
22501 	if (tcp->tcp_fused)
22502 		return;
22503 
22504 	/*
22505 	 * Do not send ACK if there is no outstanding unack'ed data.
22506 	 */
22507 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
22508 		return;
22509 	}
22510 
22511 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
22512 		/*
22513 		 * Make sure we don't allow deferred ACKs to result in
22514 		 * timer-based ACKing.  If we have held off an ACK
22515 		 * when there was more than an mss here, and the timer
22516 		 * goes off, we have to worry about the possibility
22517 		 * that the sender isn't doing slow-start, or is out
22518 		 * of step with us for some other reason.  We fall
22519 		 * permanently back in the direction of
22520 		 * ACK-every-other-packet as suggested in RFC 1122.
22521 		 */
22522 		if (tcp->tcp_rack_abs_max > 2)
22523 			tcp->tcp_rack_abs_max--;
22524 		tcp->tcp_rack_cur_max = 2;
22525 	}
22526 	mp = tcp_ack_mp(tcp);
22527 
22528 	if (mp != NULL) {
22529 		TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_SEND_PKT);
22530 		BUMP_LOCAL(tcp->tcp_obsegs);
22531 		BUMP_MIB(&tcp_mib, tcpOutAck);
22532 		BUMP_MIB(&tcp_mib, tcpOutAckDelayed);
22533 		tcp_send_data(tcp, tcp->tcp_wq, mp);
22534 	}
22535 }
22536 
22537 
22538 /* Generate an ACK-only (no data) segment for a TCP endpoint */
22539 static mblk_t *
22540 tcp_ack_mp(tcp_t *tcp)
22541 {
22542 	uint32_t	seq_no;
22543 
22544 	/*
22545 	 * There are a few cases to be considered while setting the sequence no.
22546 	 * Essentially, we can come here while processing an unacceptable pkt
22547 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
22548 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
22549 	 * If we are here for a zero window probe, stick with suna. In all
22550 	 * other cases, we check if suna + swnd encompasses snxt and set
22551 	 * the sequence number to snxt, if so. If snxt falls outside the
22552 	 * window (the receiver probably shrunk its window), we will go with
22553 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
22554 	 * receiver.
22555 	 */
22556 	if (tcp->tcp_zero_win_probe) {
22557 		seq_no = tcp->tcp_suna;
22558 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
22559 		ASSERT(tcp->tcp_swnd == 0);
22560 		seq_no = tcp->tcp_snxt;
22561 	} else {
22562 		seq_no = SEQ_GT(tcp->tcp_snxt,
22563 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
22564 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
22565 	}
22566 
22567 	if (tcp->tcp_valid_bits) {
22568 		/*
22569 		 * For the complex case where we have to send some
22570 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
22571 		 */
22572 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22573 		    NULL, B_FALSE));
22574 	} else {
22575 		/* Generate a simple ACK */
22576 		int	data_length;
22577 		uchar_t	*rptr;
22578 		tcph_t	*tcph;
22579 		mblk_t	*mp1;
22580 		int32_t	tcp_hdr_len;
22581 		int32_t	tcp_tcp_hdr_len;
22582 		int32_t	num_sack_blk = 0;
22583 		int32_t sack_opt_len;
22584 
22585 		/*
22586 		 * Allocate space for TCP + IP headers
22587 		 * and link-level header
22588 		 */
22589 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22590 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22591 			    tcp->tcp_num_sack_blk);
22592 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22593 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22594 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22595 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22596 		} else {
22597 			tcp_hdr_len = tcp->tcp_hdr_len;
22598 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22599 		}
22600 		mp1 = allocb(tcp_hdr_len + tcp_wroff_xtra, BPRI_MED);
22601 		if (!mp1)
22602 			return (NULL);
22603 
22604 		/* Update the latest receive window size in TCP header. */
22605 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22606 		    tcp->tcp_tcph->th_win);
22607 		/* copy in prototype TCP + IP header */
22608 		rptr = mp1->b_rptr + tcp_wroff_xtra;
22609 		mp1->b_rptr = rptr;
22610 		mp1->b_wptr = rptr + tcp_hdr_len;
22611 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22612 
22613 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22614 
22615 		/* Set the TCP sequence number. */
22616 		U32_TO_ABE32(seq_no, tcph->th_seq);
22617 
22618 		/* Set up the TCP flag field. */
22619 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22620 		if (tcp->tcp_ecn_echo_on)
22621 			tcph->th_flags[0] |= TH_ECE;
22622 
22623 		tcp->tcp_rack = tcp->tcp_rnxt;
22624 		tcp->tcp_rack_cnt = 0;
22625 
22626 		/* fill in timestamp option if in use */
22627 		if (tcp->tcp_snd_ts_ok) {
22628 			uint32_t llbolt = (uint32_t)lbolt;
22629 
22630 			U32_TO_BE32(llbolt,
22631 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22632 			U32_TO_BE32(tcp->tcp_ts_recent,
22633 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22634 		}
22635 
22636 		/* Fill in SACK options */
22637 		if (num_sack_blk > 0) {
22638 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22639 			sack_blk_t *tmp;
22640 			int32_t	i;
22641 
22642 			wptr[0] = TCPOPT_NOP;
22643 			wptr[1] = TCPOPT_NOP;
22644 			wptr[2] = TCPOPT_SACK;
22645 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22646 			    sizeof (sack_blk_t);
22647 			wptr += TCPOPT_REAL_SACK_LEN;
22648 
22649 			tmp = tcp->tcp_sack_list;
22650 			for (i = 0; i < num_sack_blk; i++) {
22651 				U32_TO_BE32(tmp[i].begin, wptr);
22652 				wptr += sizeof (tcp_seq);
22653 				U32_TO_BE32(tmp[i].end, wptr);
22654 				wptr += sizeof (tcp_seq);
22655 			}
22656 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
22657 			    << 4);
22658 		}
22659 
22660 		if (tcp->tcp_ipversion == IPV4_VERSION) {
22661 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
22662 		} else {
22663 			/* Check for ip6i_t header in sticky hdrs */
22664 			ip6_t *ip6 = (ip6_t *)(rptr +
22665 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22666 			    sizeof (ip6i_t) : 0));
22667 
22668 			ip6->ip6_plen = htons(tcp_hdr_len -
22669 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22670 		}
22671 
22672 		/*
22673 		 * Prime pump for checksum calculation in IP.  Include the
22674 		 * adjustment for a source route if any.
22675 		 */
22676 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
22677 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
22678 		U16_TO_ABE16(data_length, tcph->th_sum);
22679 
22680 		if (tcp->tcp_ip_forward_progress) {
22681 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22682 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22683 			tcp->tcp_ip_forward_progress = B_FALSE;
22684 		}
22685 		return (mp1);
22686 	}
22687 }
22688 
22689 /*
22690  * To create a temporary tcp structure for inserting into bind hash list.
22691  * The parameter is assumed to be in network byte order, ready for use.
22692  */
22693 /* ARGSUSED */
22694 static tcp_t *
22695 tcp_alloc_temp_tcp(in_port_t port)
22696 {
22697 	conn_t	*connp;
22698 	tcp_t	*tcp;
22699 
22700 	connp = ipcl_conn_create(IPCL_TCPCONN, KM_SLEEP);
22701 	if (connp == NULL)
22702 		return (NULL);
22703 
22704 	tcp = connp->conn_tcp;
22705 
22706 	/*
22707 	 * Only initialize the necessary info in those structures.  Note
22708 	 * that since INADDR_ANY is all 0, we do not need to set
22709 	 * tcp_bound_source to INADDR_ANY here.
22710 	 */
22711 	tcp->tcp_state = TCPS_BOUND;
22712 	tcp->tcp_lport = port;
22713 	tcp->tcp_exclbind = 1;
22714 	tcp->tcp_reserved_port = 1;
22715 
22716 	/* Just for place holding... */
22717 	tcp->tcp_ipversion = IPV4_VERSION;
22718 
22719 	return (tcp);
22720 }
22721 
22722 /*
22723  * To remove a port range specified by lo_port and hi_port from the
22724  * reserved port ranges.  This is one of the three public functions of
22725  * the reserved port interface.  Note that a port range has to be removed
22726  * as a whole.  Ports in a range cannot be removed individually.
22727  *
22728  * Params:
22729  *	in_port_t lo_port: the beginning port of the reserved port range to
22730  *		be deleted.
22731  *	in_port_t hi_port: the ending port of the reserved port range to
22732  *		be deleted.
22733  *
22734  * Return:
22735  *	B_TRUE if the deletion is successful, B_FALSE otherwise.
22736  */
22737 boolean_t
22738 tcp_reserved_port_del(in_port_t lo_port, in_port_t hi_port)
22739 {
22740 	int	i, j;
22741 	int	size;
22742 	tcp_t	**temp_tcp_array;
22743 	tcp_t	*tcp;
22744 
22745 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22746 
22747 	/* First make sure that the port ranage is indeed reserved. */
22748 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22749 		if (tcp_reserved_port[i].lo_port == lo_port) {
22750 			hi_port = tcp_reserved_port[i].hi_port;
22751 			temp_tcp_array = tcp_reserved_port[i].temp_tcp_array;
22752 			break;
22753 		}
22754 	}
22755 	if (i == tcp_reserved_port_array_size) {
22756 		rw_exit(&tcp_reserved_port_lock);
22757 		return (B_FALSE);
22758 	}
22759 
22760 	/*
22761 	 * Remove the range from the array.  This simple loop is possible
22762 	 * because port ranges are inserted in ascending order.
22763 	 */
22764 	for (j = i; j < tcp_reserved_port_array_size - 1; j++) {
22765 		tcp_reserved_port[j].lo_port = tcp_reserved_port[j+1].lo_port;
22766 		tcp_reserved_port[j].hi_port = tcp_reserved_port[j+1].hi_port;
22767 		tcp_reserved_port[j].temp_tcp_array =
22768 		    tcp_reserved_port[j+1].temp_tcp_array;
22769 	}
22770 
22771 	/* Remove all the temporary tcp structures. */
22772 	size = hi_port - lo_port + 1;
22773 	while (size > 0) {
22774 		tcp = temp_tcp_array[size - 1];
22775 		ASSERT(tcp != NULL);
22776 		tcp_bind_hash_remove(tcp);
22777 		CONN_DEC_REF(tcp->tcp_connp);
22778 		size--;
22779 	}
22780 	kmem_free(temp_tcp_array, (hi_port - lo_port + 1) * sizeof (tcp_t *));
22781 	tcp_reserved_port_array_size--;
22782 	rw_exit(&tcp_reserved_port_lock);
22783 	return (B_TRUE);
22784 }
22785 
22786 /*
22787  * Macro to remove temporary tcp structure from the bind hash list.  The
22788  * first parameter is the list of tcp to be removed.  The second parameter
22789  * is the number of tcps in the array.
22790  */
22791 #define	TCP_TMP_TCP_REMOVE(tcp_array, num) \
22792 { \
22793 	while ((num) > 0) { \
22794 		tcp_t *tcp = (tcp_array)[(num) - 1]; \
22795 		tf_t *tbf; \
22796 		tcp_t *tcpnext; \
22797 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)]; \
22798 		mutex_enter(&tbf->tf_lock); \
22799 		tcpnext = tcp->tcp_bind_hash; \
22800 		if (tcpnext) { \
22801 			tcpnext->tcp_ptpbhn = \
22802 				tcp->tcp_ptpbhn; \
22803 		} \
22804 		*tcp->tcp_ptpbhn = tcpnext; \
22805 		mutex_exit(&tbf->tf_lock); \
22806 		kmem_free(tcp, sizeof (tcp_t)); \
22807 		(tcp_array)[(num) - 1] = NULL; \
22808 		(num)--; \
22809 	} \
22810 }
22811 
22812 /*
22813  * The public interface for other modules to call to reserve a port range
22814  * in TCP.  The caller passes in how large a port range it wants.  TCP
22815  * will try to find a range and return it via lo_port and hi_port.  This is
22816  * used by NCA's nca_conn_init.
22817  * NCA can only be used in the global zone so this only affects the global
22818  * zone's ports.
22819  *
22820  * Params:
22821  *	int size: the size of the port range to be reserved.
22822  *	in_port_t *lo_port (referenced): returns the beginning port of the
22823  *		reserved port range added.
22824  *	in_port_t *hi_port (referenced): returns the ending port of the
22825  *		reserved port range added.
22826  *
22827  * Return:
22828  *	B_TRUE if the port reservation is successful, B_FALSE otherwise.
22829  */
22830 boolean_t
22831 tcp_reserved_port_add(int size, in_port_t *lo_port, in_port_t *hi_port)
22832 {
22833 	tcp_t		*tcp;
22834 	tcp_t		*tmp_tcp;
22835 	tcp_t		**temp_tcp_array;
22836 	tf_t		*tbf;
22837 	in_port_t	net_port;
22838 	in_port_t	port;
22839 	int32_t		cur_size;
22840 	int		i, j;
22841 	boolean_t	used;
22842 	tcp_rport_t 	tmp_ports[TCP_RESERVED_PORTS_ARRAY_MAX_SIZE];
22843 	zoneid_t	zoneid = GLOBAL_ZONEID;
22844 
22845 	/* Sanity check. */
22846 	if (size <= 0 || size > TCP_RESERVED_PORTS_RANGE_MAX) {
22847 		return (B_FALSE);
22848 	}
22849 
22850 	rw_enter(&tcp_reserved_port_lock, RW_WRITER);
22851 	if (tcp_reserved_port_array_size == TCP_RESERVED_PORTS_ARRAY_MAX_SIZE) {
22852 		rw_exit(&tcp_reserved_port_lock);
22853 		return (B_FALSE);
22854 	}
22855 
22856 	/*
22857 	 * Find the starting port to try.  Since the port ranges are ordered
22858 	 * in the reserved port array, we can do a simple search here.
22859 	 */
22860 	*lo_port = TCP_SMALLEST_RESERVED_PORT;
22861 	*hi_port = TCP_LARGEST_RESERVED_PORT;
22862 	for (i = 0; i < tcp_reserved_port_array_size;
22863 	    *lo_port = tcp_reserved_port[i].hi_port + 1, i++) {
22864 		if (tcp_reserved_port[i].lo_port - *lo_port >= size) {
22865 			*hi_port = tcp_reserved_port[i].lo_port - 1;
22866 			break;
22867 		}
22868 	}
22869 	/* No available port range. */
22870 	if (i == tcp_reserved_port_array_size && *hi_port - *lo_port < size) {
22871 		rw_exit(&tcp_reserved_port_lock);
22872 		return (B_FALSE);
22873 	}
22874 
22875 	temp_tcp_array = kmem_zalloc(size * sizeof (tcp_t *), KM_NOSLEEP);
22876 	if (temp_tcp_array == NULL) {
22877 		rw_exit(&tcp_reserved_port_lock);
22878 		return (B_FALSE);
22879 	}
22880 
22881 	/* Go thru the port range to see if some ports are already bound. */
22882 	for (port = *lo_port, cur_size = 0;
22883 	    cur_size < size && port <= *hi_port;
22884 	    cur_size++, port++) {
22885 		used = B_FALSE;
22886 		net_port = htons(port);
22887 		tbf = &tcp_bind_fanout[TCP_BIND_HASH(net_port)];
22888 		mutex_enter(&tbf->tf_lock);
22889 		for (tcp = tbf->tf_tcp; tcp != NULL;
22890 		    tcp = tcp->tcp_bind_hash) {
22891 			if (zoneid == tcp->tcp_connp->conn_zoneid &&
22892 			    net_port == tcp->tcp_lport) {
22893 				/*
22894 				 * A port is already bound.  Search again
22895 				 * starting from port + 1.  Release all
22896 				 * temporary tcps.
22897 				 */
22898 				mutex_exit(&tbf->tf_lock);
22899 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22900 				*lo_port = port + 1;
22901 				cur_size = -1;
22902 				used = B_TRUE;
22903 				break;
22904 			}
22905 		}
22906 		if (!used) {
22907 			if ((tmp_tcp = tcp_alloc_temp_tcp(net_port)) == NULL) {
22908 				/*
22909 				 * Allocation failure.  Just fail the request.
22910 				 * Need to remove all those temporary tcp
22911 				 * structures.
22912 				 */
22913 				mutex_exit(&tbf->tf_lock);
22914 				TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22915 				rw_exit(&tcp_reserved_port_lock);
22916 				kmem_free(temp_tcp_array,
22917 				    (hi_port - lo_port + 1) *
22918 				    sizeof (tcp_t *));
22919 				return (B_FALSE);
22920 			}
22921 			temp_tcp_array[cur_size] = tmp_tcp;
22922 			tcp_bind_hash_insert(tbf, tmp_tcp, B_TRUE);
22923 			mutex_exit(&tbf->tf_lock);
22924 		}
22925 	}
22926 
22927 	/*
22928 	 * The current range is not large enough.  We can actually do another
22929 	 * search if this search is done between 2 reserved port ranges.  But
22930 	 * for first release, we just stop here and return saying that no port
22931 	 * range is available.
22932 	 */
22933 	if (cur_size < size) {
22934 		TCP_TMP_TCP_REMOVE(temp_tcp_array, cur_size);
22935 		rw_exit(&tcp_reserved_port_lock);
22936 		kmem_free(temp_tcp_array, size * sizeof (tcp_t *));
22937 		return (B_FALSE);
22938 	}
22939 	*hi_port = port - 1;
22940 
22941 	/*
22942 	 * Insert range into array in ascending order.  Since this function
22943 	 * must not be called often, we choose to use the simplest method.
22944 	 * The above array should not consume excessive stack space as
22945 	 * the size must be very small.  If in future releases, we find
22946 	 * that we should provide more reserved port ranges, this function
22947 	 * has to be modified to be more efficient.
22948 	 */
22949 	if (tcp_reserved_port_array_size == 0) {
22950 		tcp_reserved_port[0].lo_port = *lo_port;
22951 		tcp_reserved_port[0].hi_port = *hi_port;
22952 		tcp_reserved_port[0].temp_tcp_array = temp_tcp_array;
22953 	} else {
22954 		for (i = 0, j = 0; i < tcp_reserved_port_array_size; i++, j++) {
22955 			if (*lo_port < tcp_reserved_port[i].lo_port && i == j) {
22956 				tmp_ports[j].lo_port = *lo_port;
22957 				tmp_ports[j].hi_port = *hi_port;
22958 				tmp_ports[j].temp_tcp_array = temp_tcp_array;
22959 				j++;
22960 			}
22961 			tmp_ports[j].lo_port = tcp_reserved_port[i].lo_port;
22962 			tmp_ports[j].hi_port = tcp_reserved_port[i].hi_port;
22963 			tmp_ports[j].temp_tcp_array =
22964 			    tcp_reserved_port[i].temp_tcp_array;
22965 		}
22966 		if (j == i) {
22967 			tmp_ports[j].lo_port = *lo_port;
22968 			tmp_ports[j].hi_port = *hi_port;
22969 			tmp_ports[j].temp_tcp_array = temp_tcp_array;
22970 		}
22971 		bcopy(tmp_ports, tcp_reserved_port, sizeof (tmp_ports));
22972 	}
22973 	tcp_reserved_port_array_size++;
22974 	rw_exit(&tcp_reserved_port_lock);
22975 	return (B_TRUE);
22976 }
22977 
22978 /*
22979  * Check to see if a port is in any reserved port range.
22980  *
22981  * Params:
22982  *	in_port_t port: the port to be verified.
22983  *
22984  * Return:
22985  *	B_TRUE is the port is inside a reserved port range, B_FALSE otherwise.
22986  */
22987 boolean_t
22988 tcp_reserved_port_check(in_port_t port)
22989 {
22990 	int i;
22991 
22992 	rw_enter(&tcp_reserved_port_lock, RW_READER);
22993 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
22994 		if (port >= tcp_reserved_port[i].lo_port ||
22995 		    port <= tcp_reserved_port[i].hi_port) {
22996 			rw_exit(&tcp_reserved_port_lock);
22997 			return (B_TRUE);
22998 		}
22999 	}
23000 	rw_exit(&tcp_reserved_port_lock);
23001 	return (B_FALSE);
23002 }
23003 
23004 /*
23005  * To list all reserved port ranges.  This is the function to handle
23006  * ndd tcp_reserved_port_list.
23007  */
23008 /* ARGSUSED */
23009 static int
23010 tcp_reserved_port_list(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23011 {
23012 	int i;
23013 
23014 	rw_enter(&tcp_reserved_port_lock, RW_READER);
23015 	if (tcp_reserved_port_array_size > 0)
23016 		(void) mi_mpprintf(mp, "The following ports are reserved:");
23017 	else
23018 		(void) mi_mpprintf(mp, "No port is reserved.");
23019 	for (i = 0; i < tcp_reserved_port_array_size; i++) {
23020 		(void) mi_mpprintf(mp, "%d-%d",
23021 		    tcp_reserved_port[i].lo_port, tcp_reserved_port[i].hi_port);
23022 	}
23023 	rw_exit(&tcp_reserved_port_lock);
23024 	return (0);
23025 }
23026 
23027 /*
23028  * Hash list insertion routine for tcp_t structures.
23029  * Inserts entries with the ones bound to a specific IP address first
23030  * followed by those bound to INADDR_ANY.
23031  */
23032 static void
23033 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23034 {
23035 	tcp_t	**tcpp;
23036 	tcp_t	*tcpnext;
23037 
23038 	if (tcp->tcp_ptpbhn != NULL) {
23039 		ASSERT(!caller_holds_lock);
23040 		tcp_bind_hash_remove(tcp);
23041 	}
23042 	tcpp = &tbf->tf_tcp;
23043 	if (!caller_holds_lock) {
23044 		mutex_enter(&tbf->tf_lock);
23045 	} else {
23046 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23047 	}
23048 	tcpnext = tcpp[0];
23049 	if (tcpnext) {
23050 		/*
23051 		 * If the new tcp bound to the INADDR_ANY address
23052 		 * and the first one in the list is not bound to
23053 		 * INADDR_ANY we skip all entries until we find the
23054 		 * first one bound to INADDR_ANY.
23055 		 * This makes sure that applications binding to a
23056 		 * specific address get preference over those binding to
23057 		 * INADDR_ANY.
23058 		 */
23059 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23060 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23061 			while ((tcpnext = tcpp[0]) != NULL &&
23062 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23063 				tcpp = &(tcpnext->tcp_bind_hash);
23064 			if (tcpnext)
23065 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23066 		} else
23067 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash;
23068 	}
23069 	tcp->tcp_bind_hash = tcpnext;
23070 	tcp->tcp_ptpbhn = tcpp;
23071 	tcpp[0] = tcp;
23072 	if (!caller_holds_lock)
23073 		mutex_exit(&tbf->tf_lock);
23074 }
23075 
23076 /*
23077  * Hash list removal routine for tcp_t structures.
23078  */
23079 static void
23080 tcp_bind_hash_remove(tcp_t *tcp)
23081 {
23082 	tcp_t	*tcpnext;
23083 	kmutex_t *lockp;
23084 
23085 	if (tcp->tcp_ptpbhn == NULL)
23086 		return;
23087 
23088 	/*
23089 	 * Extract the lock pointer in case there are concurrent
23090 	 * hash_remove's for this instance.
23091 	 */
23092 	ASSERT(tcp->tcp_lport != 0);
23093 	lockp = &tcp_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23094 
23095 	ASSERT(lockp != NULL);
23096 	mutex_enter(lockp);
23097 	if (tcp->tcp_ptpbhn) {
23098 		tcpnext = tcp->tcp_bind_hash;
23099 		if (tcpnext) {
23100 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23101 			tcp->tcp_bind_hash = NULL;
23102 		}
23103 		*tcp->tcp_ptpbhn = tcpnext;
23104 		tcp->tcp_ptpbhn = NULL;
23105 	}
23106 	mutex_exit(lockp);
23107 }
23108 
23109 
23110 /*
23111  * Hash list lookup routine for tcp_t structures.
23112  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23113  */
23114 static tcp_t *
23115 tcp_acceptor_hash_lookup(t_uscalar_t id)
23116 {
23117 	tf_t	*tf;
23118 	tcp_t	*tcp;
23119 
23120 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23121 	mutex_enter(&tf->tf_lock);
23122 	for (tcp = tf->tf_tcp; tcp != NULL;
23123 	    tcp = tcp->tcp_acceptor_hash) {
23124 		if (tcp->tcp_acceptor_id == id) {
23125 			CONN_INC_REF(tcp->tcp_connp);
23126 			mutex_exit(&tf->tf_lock);
23127 			return (tcp);
23128 		}
23129 	}
23130 	mutex_exit(&tf->tf_lock);
23131 	return (NULL);
23132 }
23133 
23134 
23135 /*
23136  * Hash list insertion routine for tcp_t structures.
23137  */
23138 void
23139 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23140 {
23141 	tf_t	*tf;
23142 	tcp_t	**tcpp;
23143 	tcp_t	*tcpnext;
23144 
23145 	tf = &tcp_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23146 
23147 	if (tcp->tcp_ptpahn != NULL)
23148 		tcp_acceptor_hash_remove(tcp);
23149 	tcpp = &tf->tf_tcp;
23150 	mutex_enter(&tf->tf_lock);
23151 	tcpnext = tcpp[0];
23152 	if (tcpnext)
23153 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23154 	tcp->tcp_acceptor_hash = tcpnext;
23155 	tcp->tcp_ptpahn = tcpp;
23156 	tcpp[0] = tcp;
23157 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23158 	mutex_exit(&tf->tf_lock);
23159 }
23160 
23161 /*
23162  * Hash list removal routine for tcp_t structures.
23163  */
23164 static void
23165 tcp_acceptor_hash_remove(tcp_t *tcp)
23166 {
23167 	tcp_t	*tcpnext;
23168 	kmutex_t *lockp;
23169 
23170 	/*
23171 	 * Extract the lock pointer in case there are concurrent
23172 	 * hash_remove's for this instance.
23173 	 */
23174 	lockp = tcp->tcp_acceptor_lockp;
23175 
23176 	if (tcp->tcp_ptpahn == NULL)
23177 		return;
23178 
23179 	ASSERT(lockp != NULL);
23180 	mutex_enter(lockp);
23181 	if (tcp->tcp_ptpahn) {
23182 		tcpnext = tcp->tcp_acceptor_hash;
23183 		if (tcpnext) {
23184 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23185 			tcp->tcp_acceptor_hash = NULL;
23186 		}
23187 		*tcp->tcp_ptpahn = tcpnext;
23188 		tcp->tcp_ptpahn = NULL;
23189 	}
23190 	mutex_exit(lockp);
23191 	tcp->tcp_acceptor_lockp = NULL;
23192 }
23193 
23194 /* ARGSUSED */
23195 static int
23196 tcp_host_param_setvalue(queue_t *q, mblk_t *mp, char *value, caddr_t cp, int af)
23197 {
23198 	int error = 0;
23199 	int retval;
23200 	char *end;
23201 
23202 	tcp_hsp_t *hsp;
23203 	tcp_hsp_t *hspprev;
23204 
23205 	ipaddr_t addr = 0;		/* Address we're looking for */
23206 	in6_addr_t v6addr;		/* Address we're looking for */
23207 	uint32_t hash;			/* Hash of that address */
23208 
23209 	/*
23210 	 * If the following variables are still zero after parsing the input
23211 	 * string, the user didn't specify them and we don't change them in
23212 	 * the HSP.
23213 	 */
23214 
23215 	ipaddr_t mask = 0;		/* Subnet mask */
23216 	in6_addr_t v6mask;
23217 	long sendspace = 0;		/* Send buffer size */
23218 	long recvspace = 0;		/* Receive buffer size */
23219 	long timestamp = 0;	/* Originate TCP TSTAMP option, 1 = yes */
23220 	boolean_t delete = B_FALSE;	/* User asked to delete this HSP */
23221 
23222 	rw_enter(&tcp_hsp_lock, RW_WRITER);
23223 
23224 	/* Parse and validate address */
23225 	if (af == AF_INET) {
23226 		retval = inet_pton(af, value, &addr);
23227 		if (retval == 1)
23228 			IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
23229 	} else if (af == AF_INET6) {
23230 		retval = inet_pton(af, value, &v6addr);
23231 	} else {
23232 		error = EINVAL;
23233 		goto done;
23234 	}
23235 	if (retval == 0) {
23236 		error = EINVAL;
23237 		goto done;
23238 	}
23239 
23240 	while ((*value) && *value != ' ')
23241 		value++;
23242 
23243 	/* Parse individual keywords, set variables if found */
23244 	while (*value) {
23245 		/* Skip leading blanks */
23246 
23247 		while (*value == ' ' || *value == '\t')
23248 			value++;
23249 
23250 		/* If at end of string, we're done */
23251 
23252 		if (!*value)
23253 			break;
23254 
23255 		/* We have a word, figure out what it is */
23256 
23257 		if (strncmp("mask", value, 4) == 0) {
23258 			value += 4;
23259 			while (*value == ' ' || *value == '\t')
23260 				value++;
23261 			/* Parse subnet mask */
23262 			if (af == AF_INET) {
23263 				retval = inet_pton(af, value, &mask);
23264 				if (retval == 1) {
23265 					V4MASK_TO_V6(mask, v6mask);
23266 				}
23267 			} else if (af == AF_INET6) {
23268 				retval = inet_pton(af, value, &v6mask);
23269 			}
23270 			if (retval != 1) {
23271 				error = EINVAL;
23272 				goto done;
23273 			}
23274 			while ((*value) && *value != ' ')
23275 				value++;
23276 		} else if (strncmp("sendspace", value, 9) == 0) {
23277 			value += 9;
23278 
23279 			if (ddi_strtol(value, &end, 0, &sendspace) != 0 ||
23280 			    sendspace < TCP_XMIT_HIWATER ||
23281 			    sendspace >= (1L<<30)) {
23282 				error = EINVAL;
23283 				goto done;
23284 			}
23285 			value = end;
23286 		} else if (strncmp("recvspace", value, 9) == 0) {
23287 			value += 9;
23288 
23289 			if (ddi_strtol(value, &end, 0, &recvspace) != 0 ||
23290 			    recvspace < TCP_RECV_HIWATER ||
23291 			    recvspace >= (1L<<30)) {
23292 				error = EINVAL;
23293 				goto done;
23294 			}
23295 			value = end;
23296 		} else if (strncmp("timestamp", value, 9) == 0) {
23297 			value += 9;
23298 
23299 			if (ddi_strtol(value, &end, 0, &timestamp) != 0 ||
23300 			    timestamp < 0 || timestamp > 1) {
23301 				error = EINVAL;
23302 				goto done;
23303 			}
23304 
23305 			/*
23306 			 * We increment timestamp so we know it's been set;
23307 			 * this is undone when we put it in the HSP
23308 			 */
23309 			timestamp++;
23310 			value = end;
23311 		} else if (strncmp("delete", value, 6) == 0) {
23312 			value += 6;
23313 			delete = B_TRUE;
23314 		} else {
23315 			error = EINVAL;
23316 			goto done;
23317 		}
23318 	}
23319 
23320 	/* Hash address for lookup */
23321 
23322 	hash = TCP_HSP_HASH(addr);
23323 
23324 	if (delete) {
23325 		/*
23326 		 * Note that deletes don't return an error if the thing
23327 		 * we're trying to delete isn't there.
23328 		 */
23329 		if (tcp_hsp_hash == NULL)
23330 			goto done;
23331 		hsp = tcp_hsp_hash[hash];
23332 
23333 		if (hsp) {
23334 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23335 			    &v6addr)) {
23336 				tcp_hsp_hash[hash] = hsp->tcp_hsp_next;
23337 				mi_free((char *)hsp);
23338 			} else {
23339 				hspprev = hsp;
23340 				while ((hsp = hsp->tcp_hsp_next) != NULL) {
23341 					if (IN6_ARE_ADDR_EQUAL(
23342 					    &hsp->tcp_hsp_addr_v6, &v6addr)) {
23343 						hspprev->tcp_hsp_next =
23344 						    hsp->tcp_hsp_next;
23345 						mi_free((char *)hsp);
23346 						break;
23347 					}
23348 					hspprev = hsp;
23349 				}
23350 			}
23351 		}
23352 	} else {
23353 		/*
23354 		 * We're adding/modifying an HSP.  If we haven't already done
23355 		 * so, allocate the hash table.
23356 		 */
23357 
23358 		if (!tcp_hsp_hash) {
23359 			tcp_hsp_hash = (tcp_hsp_t **)
23360 			    mi_zalloc(sizeof (tcp_hsp_t *) * TCP_HSP_HASH_SIZE);
23361 			if (!tcp_hsp_hash) {
23362 				error = EINVAL;
23363 				goto done;
23364 			}
23365 		}
23366 
23367 		/* Get head of hash chain */
23368 
23369 		hsp = tcp_hsp_hash[hash];
23370 
23371 		/* Try to find pre-existing hsp on hash chain */
23372 		/* Doesn't handle CIDR prefixes. */
23373 		while (hsp) {
23374 			if (IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6, &v6addr))
23375 				break;
23376 			hsp = hsp->tcp_hsp_next;
23377 		}
23378 
23379 		/*
23380 		 * If we didn't, create one with default values and put it
23381 		 * at head of hash chain
23382 		 */
23383 
23384 		if (!hsp) {
23385 			hsp = (tcp_hsp_t *)mi_zalloc(sizeof (tcp_hsp_t));
23386 			if (!hsp) {
23387 				error = EINVAL;
23388 				goto done;
23389 			}
23390 			hsp->tcp_hsp_next = tcp_hsp_hash[hash];
23391 			tcp_hsp_hash[hash] = hsp;
23392 		}
23393 
23394 		/* Set values that the user asked us to change */
23395 
23396 		hsp->tcp_hsp_addr_v6 = v6addr;
23397 		if (IN6_IS_ADDR_V4MAPPED(&v6addr))
23398 			hsp->tcp_hsp_vers = IPV4_VERSION;
23399 		else
23400 			hsp->tcp_hsp_vers = IPV6_VERSION;
23401 		hsp->tcp_hsp_subnet_v6 = v6mask;
23402 		if (sendspace > 0)
23403 			hsp->tcp_hsp_sendspace = sendspace;
23404 		if (recvspace > 0)
23405 			hsp->tcp_hsp_recvspace = recvspace;
23406 		if (timestamp > 0)
23407 			hsp->tcp_hsp_tstamp = timestamp - 1;
23408 	}
23409 
23410 done:
23411 	rw_exit(&tcp_hsp_lock);
23412 	return (error);
23413 }
23414 
23415 /* Set callback routine passed to nd_load by tcp_param_register. */
23416 /* ARGSUSED */
23417 static int
23418 tcp_host_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
23419 {
23420 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET));
23421 }
23422 /* ARGSUSED */
23423 static int
23424 tcp_host_param_set_ipv6(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23425     cred_t *cr)
23426 {
23427 	return (tcp_host_param_setvalue(q, mp, value, cp, AF_INET6));
23428 }
23429 
23430 /* TCP host parameters report triggered via the Named Dispatch mechanism. */
23431 /* ARGSUSED */
23432 static int
23433 tcp_host_param_report(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
23434 {
23435 	tcp_hsp_t *hsp;
23436 	int i;
23437 	char addrbuf[INET6_ADDRSTRLEN], subnetbuf[INET6_ADDRSTRLEN];
23438 
23439 	rw_enter(&tcp_hsp_lock, RW_READER);
23440 	(void) mi_mpprintf(mp,
23441 	    "Hash HSP     " MI_COL_HDRPAD_STR
23442 	    "Address         Subnet Mask     Send       Receive    TStamp");
23443 	if (tcp_hsp_hash) {
23444 		for (i = 0; i < TCP_HSP_HASH_SIZE; i++) {
23445 			hsp = tcp_hsp_hash[i];
23446 			while (hsp) {
23447 				if (hsp->tcp_hsp_vers == IPV4_VERSION) {
23448 					(void) inet_ntop(AF_INET,
23449 					    &hsp->tcp_hsp_addr,
23450 					    addrbuf, sizeof (addrbuf));
23451 					(void) inet_ntop(AF_INET,
23452 					    &hsp->tcp_hsp_subnet,
23453 					    subnetbuf, sizeof (subnetbuf));
23454 				} else {
23455 					(void) inet_ntop(AF_INET6,
23456 					    &hsp->tcp_hsp_addr_v6,
23457 					    addrbuf, sizeof (addrbuf));
23458 					(void) inet_ntop(AF_INET6,
23459 					    &hsp->tcp_hsp_subnet_v6,
23460 					    subnetbuf, sizeof (subnetbuf));
23461 				}
23462 				(void) mi_mpprintf(mp,
23463 				    " %03d " MI_COL_PTRFMT_STR
23464 				    "%s %s %010d %010d      %d",
23465 				    i,
23466 				    (void *)hsp,
23467 				    addrbuf,
23468 				    subnetbuf,
23469 				    hsp->tcp_hsp_sendspace,
23470 				    hsp->tcp_hsp_recvspace,
23471 				    hsp->tcp_hsp_tstamp);
23472 
23473 				hsp = hsp->tcp_hsp_next;
23474 			}
23475 		}
23476 	}
23477 	rw_exit(&tcp_hsp_lock);
23478 	return (0);
23479 }
23480 
23481 
23482 /* Data for fast netmask macro used by tcp_hsp_lookup */
23483 
23484 static ipaddr_t netmasks[] = {
23485 	IN_CLASSA_NET, IN_CLASSA_NET, IN_CLASSB_NET,
23486 	IN_CLASSC_NET | IN_CLASSD_NET  /* Class C,D,E */
23487 };
23488 
23489 #define	netmask(addr) (netmasks[(ipaddr_t)(addr) >> 30])
23490 
23491 /*
23492  * XXX This routine should go away and instead we should use the metrics
23493  * associated with the routes to determine the default sndspace and rcvspace.
23494  */
23495 static tcp_hsp_t *
23496 tcp_hsp_lookup(ipaddr_t addr)
23497 {
23498 	tcp_hsp_t *hsp = NULL;
23499 
23500 	/* Quick check without acquiring the lock. */
23501 	if (tcp_hsp_hash == NULL)
23502 		return (NULL);
23503 
23504 	rw_enter(&tcp_hsp_lock, RW_READER);
23505 
23506 	/* This routine finds the best-matching HSP for address addr. */
23507 
23508 	if (tcp_hsp_hash) {
23509 		int i;
23510 		ipaddr_t srchaddr;
23511 		tcp_hsp_t *hsp_net;
23512 
23513 		/* We do three passes: host, network, and subnet. */
23514 
23515 		srchaddr = addr;
23516 
23517 		for (i = 1; i <= 3; i++) {
23518 			/* Look for exact match on srchaddr */
23519 
23520 			hsp = tcp_hsp_hash[TCP_HSP_HASH(srchaddr)];
23521 			while (hsp) {
23522 				if (hsp->tcp_hsp_vers == IPV4_VERSION &&
23523 				    hsp->tcp_hsp_addr == srchaddr)
23524 					break;
23525 				hsp = hsp->tcp_hsp_next;
23526 			}
23527 			ASSERT(hsp == NULL ||
23528 			    hsp->tcp_hsp_vers == IPV4_VERSION);
23529 
23530 			/*
23531 			 * If this is the first pass:
23532 			 *   If we found a match, great, return it.
23533 			 *   If not, search for the network on the second pass.
23534 			 */
23535 
23536 			if (i == 1)
23537 				if (hsp)
23538 					break;
23539 				else
23540 				{
23541 					srchaddr = addr & netmask(addr);
23542 					continue;
23543 				}
23544 
23545 			/*
23546 			 * If this is the second pass:
23547 			 *   If we found a match, but there's a subnet mask,
23548 			 *    save the match but try again using the subnet
23549 			 *    mask on the third pass.
23550 			 *   Otherwise, return whatever we found.
23551 			 */
23552 
23553 			if (i == 2) {
23554 				if (hsp && hsp->tcp_hsp_subnet) {
23555 					hsp_net = hsp;
23556 					srchaddr = addr & hsp->tcp_hsp_subnet;
23557 					continue;
23558 				} else {
23559 					break;
23560 				}
23561 			}
23562 
23563 			/*
23564 			 * This must be the third pass.  If we didn't find
23565 			 * anything, return the saved network HSP instead.
23566 			 */
23567 
23568 			if (!hsp)
23569 				hsp = hsp_net;
23570 		}
23571 	}
23572 
23573 	rw_exit(&tcp_hsp_lock);
23574 	return (hsp);
23575 }
23576 
23577 /*
23578  * XXX Equally broken as the IPv4 routine. Doesn't handle longest
23579  * match lookup.
23580  */
23581 static tcp_hsp_t *
23582 tcp_hsp_lookup_ipv6(in6_addr_t *v6addr)
23583 {
23584 	tcp_hsp_t *hsp = NULL;
23585 
23586 	/* Quick check without acquiring the lock. */
23587 	if (tcp_hsp_hash == NULL)
23588 		return (NULL);
23589 
23590 	rw_enter(&tcp_hsp_lock, RW_READER);
23591 
23592 	/* This routine finds the best-matching HSP for address addr. */
23593 
23594 	if (tcp_hsp_hash) {
23595 		int i;
23596 		in6_addr_t v6srchaddr;
23597 		tcp_hsp_t *hsp_net;
23598 
23599 		/* We do three passes: host, network, and subnet. */
23600 
23601 		v6srchaddr = *v6addr;
23602 
23603 		for (i = 1; i <= 3; i++) {
23604 			/* Look for exact match on srchaddr */
23605 
23606 			hsp = tcp_hsp_hash[TCP_HSP_HASH(
23607 			    V4_PART_OF_V6(v6srchaddr))];
23608 			while (hsp) {
23609 				if (hsp->tcp_hsp_vers == IPV6_VERSION &&
23610 				    IN6_ARE_ADDR_EQUAL(&hsp->tcp_hsp_addr_v6,
23611 				    &v6srchaddr))
23612 					break;
23613 				hsp = hsp->tcp_hsp_next;
23614 			}
23615 
23616 			/*
23617 			 * If this is the first pass:
23618 			 *   If we found a match, great, return it.
23619 			 *   If not, search for the network on the second pass.
23620 			 */
23621 
23622 			if (i == 1)
23623 				if (hsp)
23624 					break;
23625 				else {
23626 					/* Assume a 64 bit mask */
23627 					v6srchaddr.s6_addr32[0] =
23628 					    v6addr->s6_addr32[0];
23629 					v6srchaddr.s6_addr32[1] =
23630 					    v6addr->s6_addr32[1];
23631 					v6srchaddr.s6_addr32[2] = 0;
23632 					v6srchaddr.s6_addr32[3] = 0;
23633 					continue;
23634 				}
23635 
23636 			/*
23637 			 * If this is the second pass:
23638 			 *   If we found a match, but there's a subnet mask,
23639 			 *    save the match but try again using the subnet
23640 			 *    mask on the third pass.
23641 			 *   Otherwise, return whatever we found.
23642 			 */
23643 
23644 			if (i == 2) {
23645 				ASSERT(hsp == NULL ||
23646 				    hsp->tcp_hsp_vers == IPV6_VERSION);
23647 				if (hsp &&
23648 				    !IN6_IS_ADDR_UNSPECIFIED(
23649 				    &hsp->tcp_hsp_subnet_v6)) {
23650 					hsp_net = hsp;
23651 					V6_MASK_COPY(*v6addr,
23652 					    hsp->tcp_hsp_subnet_v6, v6srchaddr);
23653 					continue;
23654 				} else {
23655 					break;
23656 				}
23657 			}
23658 
23659 			/*
23660 			 * This must be the third pass.  If we didn't find
23661 			 * anything, return the saved network HSP instead.
23662 			 */
23663 
23664 			if (!hsp)
23665 				hsp = hsp_net;
23666 		}
23667 	}
23668 
23669 	rw_exit(&tcp_hsp_lock);
23670 	return (hsp);
23671 }
23672 
23673 /*
23674  * Type three generator adapted from the random() function in 4.4 BSD:
23675  */
23676 
23677 /*
23678  * Copyright (c) 1983, 1993
23679  *	The Regents of the University of California.  All rights reserved.
23680  *
23681  * Redistribution and use in source and binary forms, with or without
23682  * modification, are permitted provided that the following conditions
23683  * are met:
23684  * 1. Redistributions of source code must retain the above copyright
23685  *    notice, this list of conditions and the following disclaimer.
23686  * 2. Redistributions in binary form must reproduce the above copyright
23687  *    notice, this list of conditions and the following disclaimer in the
23688  *    documentation and/or other materials provided with the distribution.
23689  * 3. All advertising materials mentioning features or use of this software
23690  *    must display the following acknowledgement:
23691  *	This product includes software developed by the University of
23692  *	California, Berkeley and its contributors.
23693  * 4. Neither the name of the University nor the names of its contributors
23694  *    may be used to endorse or promote products derived from this software
23695  *    without specific prior written permission.
23696  *
23697  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23698  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23699  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23700  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23701  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23702  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23703  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23704  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23705  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23706  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23707  * SUCH DAMAGE.
23708  */
23709 
23710 /* Type 3 -- x**31 + x**3 + 1 */
23711 #define	DEG_3		31
23712 #define	SEP_3		3
23713 
23714 
23715 /* Protected by tcp_random_lock */
23716 static int tcp_randtbl[DEG_3 + 1];
23717 
23718 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23719 static int *tcp_random_rptr = &tcp_randtbl[1];
23720 
23721 static int *tcp_random_state = &tcp_randtbl[1];
23722 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23723 
23724 kmutex_t tcp_random_lock;
23725 
23726 void
23727 tcp_random_init(void)
23728 {
23729 	int i;
23730 	hrtime_t hrt;
23731 	time_t wallclock;
23732 	uint64_t result;
23733 
23734 	/*
23735 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23736 	 * a longlong, which may contain resolution down to nanoseconds.
23737 	 * The current time will either be a 32-bit or a 64-bit quantity.
23738 	 * XOR the two together in a 64-bit result variable.
23739 	 * Convert the result to a 32-bit value by multiplying the high-order
23740 	 * 32-bits by the low-order 32-bits.
23741 	 */
23742 
23743 	hrt = gethrtime();
23744 	(void) drv_getparm(TIME, &wallclock);
23745 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23746 	mutex_enter(&tcp_random_lock);
23747 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23748 	    (result & 0xffffffff);
23749 
23750 	for (i = 1; i < DEG_3; i++)
23751 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23752 			+ 12345;
23753 	tcp_random_fptr = &tcp_random_state[SEP_3];
23754 	tcp_random_rptr = &tcp_random_state[0];
23755 	mutex_exit(&tcp_random_lock);
23756 	for (i = 0; i < 10 * DEG_3; i++)
23757 		(void) tcp_random();
23758 }
23759 
23760 /*
23761  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23762  * This range is selected to be approximately centered on TCP_ISS / 2,
23763  * and easy to compute. We get this value by generating a 32-bit random
23764  * number, selecting out the high-order 17 bits, and then adding one so
23765  * that we never return zero.
23766  */
23767 int
23768 tcp_random(void)
23769 {
23770 	int i;
23771 
23772 	mutex_enter(&tcp_random_lock);
23773 	*tcp_random_fptr += *tcp_random_rptr;
23774 
23775 	/*
23776 	 * The high-order bits are more random than the low-order bits,
23777 	 * so we select out the high-order 17 bits and add one so that
23778 	 * we never return zero.
23779 	 */
23780 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23781 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23782 		tcp_random_fptr = tcp_random_state;
23783 		++tcp_random_rptr;
23784 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23785 		tcp_random_rptr = tcp_random_state;
23786 
23787 	mutex_exit(&tcp_random_lock);
23788 	return (i);
23789 }
23790 
23791 /*
23792  * XXX This will go away when TPI is extended to send
23793  * info reqs to sockfs/timod .....
23794  * Given a queue, set the max packet size for the write
23795  * side of the queue below stream head.  This value is
23796  * cached on the stream head.
23797  * Returns 1 on success, 0 otherwise.
23798  */
23799 static int
23800 setmaxps(queue_t *q, int maxpsz)
23801 {
23802 	struct stdata	*stp;
23803 	queue_t		*wq;
23804 	stp = STREAM(q);
23805 
23806 	/*
23807 	 * At this point change of a queue parameter is not allowed
23808 	 * when a multiplexor is sitting on top.
23809 	 */
23810 	if (stp->sd_flag & STPLEX)
23811 		return (0);
23812 
23813 	claimstr(stp->sd_wrq);
23814 	wq = stp->sd_wrq->q_next;
23815 	ASSERT(wq != NULL);
23816 	(void) strqset(wq, QMAXPSZ, 0, maxpsz);
23817 	releasestr(stp->sd_wrq);
23818 	return (1);
23819 }
23820 
23821 static int
23822 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23823     int *t_errorp, int *sys_errorp)
23824 {
23825 	int error;
23826 	int is_absreq_failure;
23827 	t_scalar_t *opt_lenp;
23828 	t_scalar_t opt_offset;
23829 	int prim_type;
23830 	struct T_conn_req *tcreqp;
23831 	struct T_conn_res *tcresp;
23832 	cred_t *cr;
23833 
23834 	cr = DB_CREDDEF(mp, tcp->tcp_cred);
23835 
23836 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23837 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23838 	    prim_type == T_CONN_RES);
23839 
23840 	switch (prim_type) {
23841 	case T_CONN_REQ:
23842 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23843 		opt_offset = tcreqp->OPT_offset;
23844 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23845 		break;
23846 	case O_T_CONN_RES:
23847 	case T_CONN_RES:
23848 		tcresp = (struct T_conn_res *)mp->b_rptr;
23849 		opt_offset = tcresp->OPT_offset;
23850 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23851 		break;
23852 	}
23853 
23854 	*t_errorp = 0;
23855 	*sys_errorp = 0;
23856 	*do_disconnectp = 0;
23857 
23858 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23859 	    opt_offset, cr, &tcp_opt_obj,
23860 	    NULL, &is_absreq_failure);
23861 
23862 	switch (error) {
23863 	case  0:		/* no error */
23864 		ASSERT(is_absreq_failure == 0);
23865 		return (0);
23866 	case ENOPROTOOPT:
23867 		*t_errorp = TBADOPT;
23868 		break;
23869 	case EACCES:
23870 		*t_errorp = TACCES;
23871 		break;
23872 	default:
23873 		*t_errorp = TSYSERR; *sys_errorp = error;
23874 		break;
23875 	}
23876 	if (is_absreq_failure != 0) {
23877 		/*
23878 		 * The connection request should get the local ack
23879 		 * T_OK_ACK and then a T_DISCON_IND.
23880 		 */
23881 		*do_disconnectp = 1;
23882 	}
23883 	return (-1);
23884 }
23885 
23886 /*
23887  * Split this function out so that if the secret changes, I'm okay.
23888  *
23889  * Initialize the tcp_iss_cookie and tcp_iss_key.
23890  */
23891 
23892 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23893 
23894 static void
23895 tcp_iss_key_init(uint8_t *phrase, int len)
23896 {
23897 	struct {
23898 		int32_t current_time;
23899 		uint32_t randnum;
23900 		uint16_t pad;
23901 		uint8_t ether[6];
23902 		uint8_t passwd[PASSWD_SIZE];
23903 	} tcp_iss_cookie;
23904 	time_t t;
23905 
23906 	/*
23907 	 * Start with the current absolute time.
23908 	 */
23909 	(void) drv_getparm(TIME, &t);
23910 	tcp_iss_cookie.current_time = t;
23911 
23912 	/*
23913 	 * XXX - Need a more random number per RFC 1750, not this crap.
23914 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23915 	 */
23916 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23917 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23918 
23919 	/*
23920 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23921 	 * as a good template.
23922 	 */
23923 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23924 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23925 
23926 	/*
23927 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23928 	 */
23929 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23930 
23931 	/*
23932 	 * See 4010593 if this section becomes a problem again,
23933 	 * but the local ethernet address is useful here.
23934 	 */
23935 	(void) localetheraddr(NULL,
23936 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23937 
23938 	/*
23939 	 * Hash 'em all together.  The MD5Final is called per-connection.
23940 	 */
23941 	mutex_enter(&tcp_iss_key_lock);
23942 	MD5Init(&tcp_iss_key);
23943 	MD5Update(&tcp_iss_key, (uchar_t *)&tcp_iss_cookie,
23944 	    sizeof (tcp_iss_cookie));
23945 	mutex_exit(&tcp_iss_key_lock);
23946 }
23947 
23948 /*
23949  * Set the RFC 1948 pass phrase
23950  */
23951 /* ARGSUSED */
23952 static int
23953 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23954     cred_t *cr)
23955 {
23956 	/*
23957 	 * Basically, value contains a new pass phrase.  Pass it along!
23958 	 */
23959 	tcp_iss_key_init((uint8_t *)value, strlen(value));
23960 	return (0);
23961 }
23962 
23963 /* ARGSUSED */
23964 static int
23965 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23966 {
23967 	bzero(buf, sizeof (tcp_sack_info_t));
23968 	return (0);
23969 }
23970 
23971 /* ARGSUSED */
23972 static int
23973 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23974 {
23975 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23976 	return (0);
23977 }
23978 
23979 void
23980 tcp_ddi_init(void)
23981 {
23982 	int i;
23983 
23984 	/* Initialize locks */
23985 	rw_init(&tcp_hsp_lock, NULL, RW_DEFAULT, NULL);
23986 	mutex_init(&tcp_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23987 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23988 	mutex_init(&tcp_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23989 	mutex_init(&tcp_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23990 	rw_init(&tcp_reserved_port_lock, NULL, RW_DEFAULT, NULL);
23991 
23992 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
23993 		mutex_init(&tcp_bind_fanout[i].tf_lock, NULL,
23994 		    MUTEX_DEFAULT, NULL);
23995 	}
23996 
23997 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
23998 		mutex_init(&tcp_acceptor_fanout[i].tf_lock, NULL,
23999 		    MUTEX_DEFAULT, NULL);
24000 	}
24001 
24002 	/* TCP's IPsec code calls the packet dropper. */
24003 	ip_drop_register(&tcp_dropper, "TCP IPsec policy enforcement");
24004 
24005 	if (!tcp_g_nd) {
24006 		if (!tcp_param_register(tcp_param_arr, A_CNT(tcp_param_arr))) {
24007 			nd_free(&tcp_g_nd);
24008 		}
24009 	}
24010 
24011 	/*
24012 	 * Note: To really walk the device tree you need the devinfo
24013 	 * pointer to your device which is only available after probe/attach.
24014 	 * The following is safe only because it uses ddi_root_node()
24015 	 */
24016 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
24017 	    tcp_opt_obj.odb_opt_arr_cnt);
24018 
24019 	tcp_timercache = kmem_cache_create("tcp_timercache",
24020 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
24021 	    NULL, NULL, NULL, NULL, NULL, 0);
24022 
24023 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
24024 	    sizeof (tcp_sack_info_t), 0,
24025 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
24026 
24027 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
24028 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
24029 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
24030 
24031 	tcp_squeue_wput_proc = tcp_squeue_switch(tcp_squeue_wput);
24032 	tcp_squeue_close_proc = tcp_squeue_switch(tcp_squeue_close);
24033 
24034 	ip_squeue_init(tcp_squeue_add);
24035 
24036 	/* Initialize the random number generator */
24037 	tcp_random_init();
24038 
24039 	/*
24040 	 * Initialize RFC 1948 secret values.  This will probably be reset once
24041 	 * by the boot scripts.
24042 	 *
24043 	 * Use NULL name, as the name is caught by the new lockstats.
24044 	 *
24045 	 * Initialize with some random, non-guessable string, like the global
24046 	 * T_INFO_ACK.
24047 	 */
24048 
24049 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
24050 	    sizeof (tcp_g_t_info_ack));
24051 
24052 #if TCP_COUNTERS || TCP_DEBUG_COUNTER
24053 	if ((tcp_kstat = kstat_create("tcp", 0, "tcpstat",
24054 		"net", KSTAT_TYPE_NAMED,
24055 		sizeof (tcp_statistics) / sizeof (kstat_named_t),
24056 		KSTAT_FLAG_VIRTUAL)) != NULL) {
24057 		tcp_kstat->ks_data = &tcp_statistics;
24058 		kstat_install(tcp_kstat);
24059 	}
24060 #endif
24061 	tcp_kstat_init();
24062 }
24063 
24064 void
24065 tcp_ddi_destroy(void)
24066 {
24067 	int i;
24068 
24069 	nd_free(&tcp_g_nd);
24070 
24071 	for (i = 0; i < A_CNT(tcp_bind_fanout); i++) {
24072 		mutex_destroy(&tcp_bind_fanout[i].tf_lock);
24073 	}
24074 
24075 	for (i = 0; i < A_CNT(tcp_acceptor_fanout); i++) {
24076 		mutex_destroy(&tcp_acceptor_fanout[i].tf_lock);
24077 	}
24078 
24079 	mutex_destroy(&tcp_iss_key_lock);
24080 	rw_destroy(&tcp_hsp_lock);
24081 	mutex_destroy(&tcp_g_q_lock);
24082 	mutex_destroy(&tcp_random_lock);
24083 	mutex_destroy(&tcp_epriv_port_lock);
24084 	rw_destroy(&tcp_reserved_port_lock);
24085 
24086 	ip_drop_unregister(&tcp_dropper);
24087 
24088 	kmem_cache_destroy(tcp_timercache);
24089 	kmem_cache_destroy(tcp_sack_info_cache);
24090 	kmem_cache_destroy(tcp_iphc_cache);
24091 
24092 	tcp_kstat_fini();
24093 }
24094 
24095 /*
24096  * Generate ISS, taking into account NDD changes may happen halfway through.
24097  * (If the iss is not zero, set it.)
24098  */
24099 
24100 static void
24101 tcp_iss_init(tcp_t *tcp)
24102 {
24103 	MD5_CTX context;
24104 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
24105 	uint32_t answer[4];
24106 
24107 	tcp_iss_incr_extra += (ISS_INCR >> 1);
24108 	tcp->tcp_iss = tcp_iss_incr_extra;
24109 	switch (tcp_strong_iss) {
24110 	case 2:
24111 		mutex_enter(&tcp_iss_key_lock);
24112 		context = tcp_iss_key;
24113 		mutex_exit(&tcp_iss_key_lock);
24114 		arg.ports = tcp->tcp_ports;
24115 		if (tcp->tcp_ipversion == IPV4_VERSION) {
24116 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
24117 			    &arg.src);
24118 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
24119 			    &arg.dst);
24120 		} else {
24121 			arg.src = tcp->tcp_ip6h->ip6_src;
24122 			arg.dst = tcp->tcp_ip6h->ip6_dst;
24123 		}
24124 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
24125 		MD5Final((uchar_t *)answer, &context);
24126 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
24127 		/*
24128 		 * Now that we've hashed into a unique per-connection sequence
24129 		 * space, add a random increment per strong_iss == 1.  So I
24130 		 * guess we'll have to...
24131 		 */
24132 		/* FALLTHRU */
24133 	case 1:
24134 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
24135 		break;
24136 	default:
24137 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24138 		break;
24139 	}
24140 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24141 	tcp->tcp_fss = tcp->tcp_iss - 1;
24142 	tcp->tcp_suna = tcp->tcp_iss;
24143 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24144 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24145 	tcp->tcp_csuna = tcp->tcp_snxt;
24146 }
24147 
24148 /*
24149  * Exported routine for extracting active tcp connection status.
24150  *
24151  * This is used by the Solaris Cluster Networking software to
24152  * gather a list of connections that need to be forwarded to
24153  * specific nodes in the cluster when configuration changes occur.
24154  *
24155  * The callback is invoked for each tcp_t structure. Returning
24156  * non-zero from the callback routine terminates the search.
24157  */
24158 int
24159 cl_tcp_walk_list(int (*callback)(cl_tcp_info_t *, void *), void *arg)
24160 {
24161 	tcp_t *tcp;
24162 	cl_tcp_info_t	cl_tcpi;
24163 	connf_t	*connfp;
24164 	conn_t	*connp;
24165 	int	i;
24166 
24167 	ASSERT(callback != NULL);
24168 
24169 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24170 
24171 		connfp = &ipcl_globalhash_fanout[i];
24172 		connp = NULL;
24173 
24174 		while ((connp = tcp_get_next_conn(connfp, connp))) {
24175 
24176 			tcp = connp->conn_tcp;
24177 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
24178 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
24179 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
24180 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
24181 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
24182 			/*
24183 			 * The macros tcp_laddr and tcp_faddr give the IPv4
24184 			 * addresses. They are copied implicitly below as
24185 			 * mapped addresses.
24186 			 */
24187 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
24188 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24189 				cl_tcpi.cl_tcpi_faddr =
24190 				    tcp->tcp_ipha->ipha_dst;
24191 			} else {
24192 				cl_tcpi.cl_tcpi_faddr_v6 =
24193 				    tcp->tcp_ip6h->ip6_dst;
24194 			}
24195 
24196 			/*
24197 			 * If the callback returns non-zero
24198 			 * we terminate the traversal.
24199 			 */
24200 			if ((*callback)(&cl_tcpi, arg) != 0) {
24201 				CONN_DEC_REF(tcp->tcp_connp);
24202 				return (1);
24203 			}
24204 		}
24205 	}
24206 
24207 	return (0);
24208 }
24209 
24210 /*
24211  * Macros used for accessing the different types of sockaddr
24212  * structures inside a tcp_ioc_abort_conn_t.
24213  */
24214 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24215 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24216 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24217 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24218 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24219 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24220 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24221 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24222 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24223 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24224 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24225 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24226 
24227 /*
24228  * Return the correct error code to mimic the behavior
24229  * of a connection reset.
24230  */
24231 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24232 		switch ((state)) {		\
24233 		case TCPS_SYN_SENT:		\
24234 		case TCPS_SYN_RCVD:		\
24235 			(err) = ECONNREFUSED;	\
24236 			break;			\
24237 		case TCPS_ESTABLISHED:		\
24238 		case TCPS_FIN_WAIT_1:		\
24239 		case TCPS_FIN_WAIT_2:		\
24240 		case TCPS_CLOSE_WAIT:		\
24241 			(err) = ECONNRESET;	\
24242 			break;			\
24243 		case TCPS_CLOSING:		\
24244 		case TCPS_LAST_ACK:		\
24245 		case TCPS_TIME_WAIT:		\
24246 			(err) = 0;		\
24247 			break;			\
24248 		default:			\
24249 			(err) = ENXIO;		\
24250 		}				\
24251 	}
24252 
24253 /*
24254  * Check if a tcp structure matches the info in acp.
24255  */
24256 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24257 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24258 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24259 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24260 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24261 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24262 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24263 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24264 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24265 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24266 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24267 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24268 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24269 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24270 	&(tcp)->tcp_ip_src_v6)) &&				\
24271 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24272 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24273 	&(tcp)->tcp_remote_v6)) &&				\
24274 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24275 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24276 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24277 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24278 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24279 	(acp)->ac_end >= (tcp)->tcp_state))
24280 
24281 #define	TCP_AC_MATCH(acp, tcp)					\
24282 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24283 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24284 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24285 
24286 /*
24287  * Build a message containing a tcp_ioc_abort_conn_t structure
24288  * which is filled in with information from acp and tp.
24289  */
24290 static mblk_t *
24291 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24292 {
24293 	mblk_t *mp;
24294 	tcp_ioc_abort_conn_t *tacp;
24295 
24296 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24297 	if (mp == NULL)
24298 		return (NULL);
24299 
24300 	mp->b_datap->db_type = M_CTL;
24301 
24302 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24303 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24304 		sizeof (uint32_t));
24305 
24306 	tacp->ac_start = acp->ac_start;
24307 	tacp->ac_end = acp->ac_end;
24308 	tacp->ac_zoneid = acp->ac_zoneid;
24309 
24310 	if (acp->ac_local.ss_family == AF_INET) {
24311 		tacp->ac_local.ss_family = AF_INET;
24312 		tacp->ac_remote.ss_family = AF_INET;
24313 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24314 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24315 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24316 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24317 	} else {
24318 		tacp->ac_local.ss_family = AF_INET6;
24319 		tacp->ac_remote.ss_family = AF_INET6;
24320 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24321 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24322 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24323 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24324 	}
24325 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24326 	return (mp);
24327 }
24328 
24329 /*
24330  * Print a tcp_ioc_abort_conn_t structure.
24331  */
24332 static void
24333 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24334 {
24335 	char lbuf[128];
24336 	char rbuf[128];
24337 	sa_family_t af;
24338 	in_port_t lport, rport;
24339 	ushort_t logflags;
24340 
24341 	af = acp->ac_local.ss_family;
24342 
24343 	if (af == AF_INET) {
24344 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24345 				lbuf, 128);
24346 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24347 				rbuf, 128);
24348 		lport = ntohs(TCP_AC_V4LPORT(acp));
24349 		rport = ntohs(TCP_AC_V4RPORT(acp));
24350 	} else {
24351 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24352 				lbuf, 128);
24353 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24354 				rbuf, 128);
24355 		lport = ntohs(TCP_AC_V6LPORT(acp));
24356 		rport = ntohs(TCP_AC_V6RPORT(acp));
24357 	}
24358 
24359 	logflags = SL_TRACE | SL_NOTE;
24360 	/*
24361 	 * Don't print this message to the console if the operation was done
24362 	 * to a non-global zone.
24363 	 */
24364 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24365 		logflags |= SL_CONSOLE;
24366 	(void) strlog(TCP_MODULE_ID, 0, 1, logflags,
24367 		"TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24368 		"start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24369 		acp->ac_start, acp->ac_end);
24370 }
24371 
24372 /*
24373  * Called inside tcp_rput when a message built using
24374  * tcp_ioctl_abort_build_msg is put into a queue.
24375  * Note that when we get here there is no wildcard in acp any more.
24376  */
24377 static void
24378 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24379 {
24380 	tcp_ioc_abort_conn_t *acp;
24381 
24382 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24383 	if (tcp->tcp_state <= acp->ac_end) {
24384 		/*
24385 		 * If we get here, we are already on the correct
24386 		 * squeue. This ioctl follows the following path
24387 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24388 		 * ->tcp_ioctl_abort->squeue_fill (if on a
24389 		 * different squeue)
24390 		 */
24391 		int errcode;
24392 
24393 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24394 		(void) tcp_clean_death(tcp, errcode, 26);
24395 	}
24396 	freemsg(mp);
24397 }
24398 
24399 /*
24400  * Abort all matching connections on a hash chain.
24401  */
24402 static int
24403 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24404     boolean_t exact)
24405 {
24406 	int nmatch, err = 0;
24407 	tcp_t *tcp;
24408 	MBLKP mp, last, listhead = NULL;
24409 	conn_t	*tconnp;
24410 	connf_t	*connfp = &ipcl_conn_fanout[index];
24411 
24412 startover:
24413 	nmatch = 0;
24414 
24415 	mutex_enter(&connfp->connf_lock);
24416 	for (tconnp = connfp->connf_head; tconnp != NULL;
24417 	    tconnp = tconnp->conn_next) {
24418 		tcp = tconnp->conn_tcp;
24419 		if (TCP_AC_MATCH(acp, tcp)) {
24420 			CONN_INC_REF(tcp->tcp_connp);
24421 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24422 			if (mp == NULL) {
24423 				err = ENOMEM;
24424 				CONN_DEC_REF(tcp->tcp_connp);
24425 				break;
24426 			}
24427 			mp->b_prev = (mblk_t *)tcp;
24428 
24429 			if (listhead == NULL) {
24430 				listhead = mp;
24431 				last = mp;
24432 			} else {
24433 				last->b_next = mp;
24434 				last = mp;
24435 			}
24436 			nmatch++;
24437 			if (exact)
24438 				break;
24439 		}
24440 
24441 		/* Avoid holding lock for too long. */
24442 		if (nmatch >= 500)
24443 			break;
24444 	}
24445 	mutex_exit(&connfp->connf_lock);
24446 
24447 	/* Pass mp into the correct tcp */
24448 	while ((mp = listhead) != NULL) {
24449 		listhead = listhead->b_next;
24450 		tcp = (tcp_t *)mp->b_prev;
24451 		mp->b_next = mp->b_prev = NULL;
24452 		squeue_fill(tcp->tcp_connp->conn_sqp, mp,
24453 		    tcp_input, tcp->tcp_connp, SQTAG_TCP_ABORT_BUCKET);
24454 	}
24455 
24456 	*count += nmatch;
24457 	if (nmatch >= 500 && err == 0)
24458 		goto startover;
24459 	return (err);
24460 }
24461 
24462 /*
24463  * Abort all connections that matches the attributes specified in acp.
24464  */
24465 static int
24466 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp)
24467 {
24468 	sa_family_t af;
24469 	uint32_t  ports;
24470 	uint16_t *pports;
24471 	int err = 0, count = 0;
24472 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24473 	int index = -1;
24474 	ushort_t logflags;
24475 
24476 	af = acp->ac_local.ss_family;
24477 
24478 	if (af == AF_INET) {
24479 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24480 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24481 			pports = (uint16_t *)&ports;
24482 			pports[1] = TCP_AC_V4LPORT(acp);
24483 			pports[0] = TCP_AC_V4RPORT(acp);
24484 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24485 		}
24486 	} else {
24487 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24488 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24489 			pports = (uint16_t *)&ports;
24490 			pports[1] = TCP_AC_V6LPORT(acp);
24491 			pports[0] = TCP_AC_V6RPORT(acp);
24492 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24493 		}
24494 	}
24495 
24496 	/*
24497 	 * For cases where remote addr, local port, and remote port are non-
24498 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24499 	 */
24500 	if (index != -1) {
24501 		err = tcp_ioctl_abort_bucket(acp, index,
24502 			    &count, exact);
24503 	} else {
24504 		/*
24505 		 * loop through all entries for wildcard case
24506 		 */
24507 		for (index = 0; index < ipcl_conn_fanout_size; index++) {
24508 			err = tcp_ioctl_abort_bucket(acp, index,
24509 			    &count, exact);
24510 			if (err != 0)
24511 				break;
24512 		}
24513 	}
24514 
24515 	logflags = SL_TRACE | SL_NOTE;
24516 	/*
24517 	 * Don't print this message to the console if the operation was done
24518 	 * to a non-global zone.
24519 	 */
24520 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24521 		logflags |= SL_CONSOLE;
24522 	(void) strlog(TCP_MODULE_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24523 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24524 	if (err == 0 && count == 0)
24525 		err = ENOENT;
24526 	return (err);
24527 }
24528 
24529 /*
24530  * Process the TCP_IOC_ABORT_CONN ioctl request.
24531  */
24532 static void
24533 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24534 {
24535 	int	err;
24536 	IOCP    iocp;
24537 	MBLKP   mp1;
24538 	sa_family_t laf, raf;
24539 	tcp_ioc_abort_conn_t *acp;
24540 	zone_t *zptr;
24541 	zoneid_t zoneid = Q_TO_CONN(q)->conn_zoneid;
24542 
24543 	iocp = (IOCP)mp->b_rptr;
24544 
24545 	if ((mp1 = mp->b_cont) == NULL ||
24546 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24547 		err = EINVAL;
24548 		goto out;
24549 	}
24550 
24551 	/* check permissions */
24552 	if (secpolicy_net_config(iocp->ioc_cr, B_FALSE) != 0) {
24553 		err = EPERM;
24554 		goto out;
24555 	}
24556 
24557 	if (mp1->b_cont != NULL) {
24558 		freemsg(mp1->b_cont);
24559 		mp1->b_cont = NULL;
24560 	}
24561 
24562 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24563 	laf = acp->ac_local.ss_family;
24564 	raf = acp->ac_remote.ss_family;
24565 
24566 	/* check that a zone with the supplied zoneid exists */
24567 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24568 		zptr = zone_find_by_id(zoneid);
24569 		if (zptr != NULL) {
24570 			zone_rele(zptr);
24571 		} else {
24572 			err = EINVAL;
24573 			goto out;
24574 		}
24575 	}
24576 
24577 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24578 	    acp->ac_start > acp->ac_end || laf != raf ||
24579 	    (laf != AF_INET && laf != AF_INET6)) {
24580 		err = EINVAL;
24581 		goto out;
24582 	}
24583 
24584 	tcp_ioctl_abort_dump(acp);
24585 	err = tcp_ioctl_abort(acp);
24586 
24587 out:
24588 	if (mp1 != NULL) {
24589 		freemsg(mp1);
24590 		mp->b_cont = NULL;
24591 	}
24592 
24593 	if (err != 0)
24594 		miocnak(q, mp, 0, err);
24595 	else
24596 		miocack(q, mp, 0, 0);
24597 }
24598 
24599 /*
24600  * tcp_time_wait_processing() handles processing of incoming packets when
24601  * the tcp is in the TIME_WAIT state.
24602  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24603  * on the time wait list.
24604  */
24605 void
24606 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24607     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24608 {
24609 	int32_t		bytes_acked;
24610 	int32_t		gap;
24611 	int32_t		rgap;
24612 	tcp_opt_t	tcpopt;
24613 	uint_t		flags;
24614 	uint32_t	new_swnd = 0;
24615 	conn_t		*connp;
24616 
24617 	BUMP_LOCAL(tcp->tcp_ibsegs);
24618 	TCP_RECORD_TRACE(tcp, mp, TCP_TRACE_RECV_PKT);
24619 
24620 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24621 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24622 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24623 	if (tcp->tcp_snd_ts_ok) {
24624 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24625 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24626 			    tcp->tcp_rnxt, TH_ACK);
24627 			goto done;
24628 		}
24629 	}
24630 	gap = seg_seq - tcp->tcp_rnxt;
24631 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24632 	if (gap < 0) {
24633 		BUMP_MIB(&tcp_mib, tcpInDataDupSegs);
24634 		UPDATE_MIB(&tcp_mib, tcpInDataDupBytes,
24635 		    (seg_len > -gap ? -gap : seg_len));
24636 		seg_len += gap;
24637 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24638 			if (flags & TH_RST) {
24639 				goto done;
24640 			}
24641 			if ((flags & TH_FIN) && seg_len == -1) {
24642 				/*
24643 				 * When TCP receives a duplicate FIN in
24644 				 * TIME_WAIT state, restart the 2 MSL timer.
24645 				 * See page 73 in RFC 793. Make sure this TCP
24646 				 * is already on the TIME_WAIT list. If not,
24647 				 * just restart the timer.
24648 				 */
24649 				if (TCP_IS_DETACHED(tcp)) {
24650 					tcp_time_wait_remove(tcp, NULL);
24651 					tcp_time_wait_append(tcp);
24652 					TCP_DBGSTAT(tcp_rput_time_wait);
24653 				} else {
24654 					ASSERT(tcp != NULL);
24655 					TCP_TIMER_RESTART(tcp,
24656 					    tcp_time_wait_interval);
24657 				}
24658 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24659 				    tcp->tcp_rnxt, TH_ACK);
24660 				goto done;
24661 			}
24662 			flags |=  TH_ACK_NEEDED;
24663 			seg_len = 0;
24664 			goto process_ack;
24665 		}
24666 
24667 		/* Fix seg_seq, and chew the gap off the front. */
24668 		seg_seq = tcp->tcp_rnxt;
24669 	}
24670 
24671 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24672 		/*
24673 		 * Make sure that when we accept the connection, pick
24674 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24675 		 * old connection.
24676 		 *
24677 		 * The next ISS generated is equal to tcp_iss_incr_extra
24678 		 * + ISS_INCR/2 + other components depending on the
24679 		 * value of tcp_strong_iss.  We pre-calculate the new
24680 		 * ISS here and compare with tcp_snxt to determine if
24681 		 * we need to make adjustment to tcp_iss_incr_extra.
24682 		 *
24683 		 * The above calculation is ugly and is a
24684 		 * waste of CPU cycles...
24685 		 */
24686 		uint32_t new_iss = tcp_iss_incr_extra;
24687 		int32_t adj;
24688 
24689 		switch (tcp_strong_iss) {
24690 		case 2: {
24691 			/* Add time and MD5 components. */
24692 			uint32_t answer[4];
24693 			struct {
24694 				uint32_t ports;
24695 				in6_addr_t src;
24696 				in6_addr_t dst;
24697 			} arg;
24698 			MD5_CTX context;
24699 
24700 			mutex_enter(&tcp_iss_key_lock);
24701 			context = tcp_iss_key;
24702 			mutex_exit(&tcp_iss_key_lock);
24703 			arg.ports = tcp->tcp_ports;
24704 			/* We use MAPPED addresses in tcp_iss_init */
24705 			arg.src = tcp->tcp_ip_src_v6;
24706 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24707 				IN6_IPADDR_TO_V4MAPPED(
24708 					tcp->tcp_ipha->ipha_dst,
24709 					    &arg.dst);
24710 			} else {
24711 				arg.dst =
24712 				    tcp->tcp_ip6h->ip6_dst;
24713 			}
24714 			MD5Update(&context, (uchar_t *)&arg,
24715 			    sizeof (arg));
24716 			MD5Final((uchar_t *)answer, &context);
24717 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24718 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24719 			break;
24720 		}
24721 		case 1:
24722 			/* Add time component and min random (i.e. 1). */
24723 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24724 			break;
24725 		default:
24726 			/* Add only time component. */
24727 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24728 			break;
24729 		}
24730 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24731 			/*
24732 			 * New ISS not guaranteed to be ISS_INCR/2
24733 			 * ahead of the current tcp_snxt, so add the
24734 			 * difference to tcp_iss_incr_extra.
24735 			 */
24736 			tcp_iss_incr_extra += adj;
24737 		}
24738 		/*
24739 		 * If tcp_clean_death() can not perform the task now,
24740 		 * drop the SYN packet and let the other side re-xmit.
24741 		 * Otherwise pass the SYN packet back in, since the
24742 		 * old tcp state has been cleaned up or freed.
24743 		 */
24744 		if (tcp_clean_death(tcp, 0, 27) == -1)
24745 			goto done;
24746 		/*
24747 		 * We will come back to tcp_rput_data
24748 		 * on the global queue. Packets destined
24749 		 * for the global queue will be checked
24750 		 * with global policy. But the policy for
24751 		 * this packet has already been checked as
24752 		 * this was destined for the detached
24753 		 * connection. We need to bypass policy
24754 		 * check this time by attaching a dummy
24755 		 * ipsec_in with ipsec_in_dont_check set.
24756 		 */
24757 		if ((connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid)) !=
24758 		    NULL) {
24759 			TCP_STAT(tcp_time_wait_syn_success);
24760 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24761 			return;
24762 		}
24763 		goto done;
24764 	}
24765 
24766 	/*
24767 	 * rgap is the amount of stuff received out of window.  A negative
24768 	 * value is the amount out of window.
24769 	 */
24770 	if (rgap < 0) {
24771 		BUMP_MIB(&tcp_mib, tcpInDataPastWinSegs);
24772 		UPDATE_MIB(&tcp_mib, tcpInDataPastWinBytes, -rgap);
24773 		/* Fix seg_len and make sure there is something left. */
24774 		seg_len += rgap;
24775 		if (seg_len <= 0) {
24776 			if (flags & TH_RST) {
24777 				goto done;
24778 			}
24779 			flags |=  TH_ACK_NEEDED;
24780 			seg_len = 0;
24781 			goto process_ack;
24782 		}
24783 	}
24784 	/*
24785 	 * Check whether we can update tcp_ts_recent.  This test is
24786 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24787 	 * Extensions for High Performance: An Update", Internet Draft.
24788 	 */
24789 	if (tcp->tcp_snd_ts_ok &&
24790 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24791 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24792 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24793 		tcp->tcp_last_rcv_lbolt = lbolt64;
24794 	}
24795 
24796 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24797 		/* Always ack out of order packets */
24798 		flags |= TH_ACK_NEEDED;
24799 		seg_len = 0;
24800 	} else if (seg_len > 0) {
24801 		BUMP_MIB(&tcp_mib, tcpInClosed);
24802 		BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
24803 		UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, seg_len);
24804 	}
24805 	if (flags & TH_RST) {
24806 		(void) tcp_clean_death(tcp, 0, 28);
24807 		goto done;
24808 	}
24809 	if (flags & TH_SYN) {
24810 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24811 		    TH_RST|TH_ACK);
24812 		/*
24813 		 * Do not delete the TCP structure if it is in
24814 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24815 		 */
24816 		goto done;
24817 	}
24818 process_ack:
24819 	if (flags & TH_ACK) {
24820 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24821 		if (bytes_acked <= 0) {
24822 			if (bytes_acked == 0 && seg_len == 0 &&
24823 			    new_swnd == tcp->tcp_swnd)
24824 				BUMP_MIB(&tcp_mib, tcpInDupAck);
24825 		} else {
24826 			/* Acks something not sent */
24827 			flags |= TH_ACK_NEEDED;
24828 		}
24829 	}
24830 	if (flags & TH_ACK_NEEDED) {
24831 		/*
24832 		 * Time to send an ack for some reason.
24833 		 */
24834 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24835 		    tcp->tcp_rnxt, TH_ACK);
24836 	}
24837 done:
24838 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24839 		mp->b_datap->db_cksumstart = 0;
24840 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24841 		TCP_STAT(tcp_time_wait_syn_fail);
24842 	}
24843 	freemsg(mp);
24844 }
24845 
24846 /*
24847  * Return zero if the buffers are identical in length and content.
24848  * This is used for comparing extension header buffers.
24849  * Note that an extension header would be declared different
24850  * even if all that changed was the next header value in that header i.e.
24851  * what really changed is the next extension header.
24852  */
24853 static boolean_t
24854 tcp_cmpbuf(void *a, uint_t alen, boolean_t b_valid, void *b, uint_t blen)
24855 {
24856 	if (!b_valid)
24857 		blen = 0;
24858 
24859 	if (alen != blen)
24860 		return (B_TRUE);
24861 	if (alen == 0)
24862 		return (B_FALSE);	/* Both zero length */
24863 	return (bcmp(a, b, alen));
24864 }
24865 
24866 /*
24867  * Preallocate memory for tcp_savebuf(). Returns B_TRUE if ok.
24868  * Return B_FALSE if memory allocation fails - don't change any state!
24869  */
24870 static boolean_t
24871 tcp_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
24872     void *src, uint_t srclen)
24873 {
24874 	void *dst;
24875 
24876 	if (!src_valid)
24877 		srclen = 0;
24878 
24879 	ASSERT(*dstlenp == 0);
24880 	if (src != NULL && srclen != 0) {
24881 		dst = mi_alloc(srclen, BPRI_MED);
24882 		if (dst == NULL)
24883 			return (B_FALSE);
24884 	} else {
24885 		dst = NULL;
24886 	}
24887 	if (*dstp != NULL) {
24888 		mi_free(*dstp);
24889 		*dstp = NULL;
24890 		*dstlenp = 0;
24891 	}
24892 	*dstp = dst;
24893 	if (dst != NULL)
24894 		*dstlenp = srclen;
24895 	else
24896 		*dstlenp = 0;
24897 	return (B_TRUE);
24898 }
24899 
24900 /*
24901  * Replace what is in *dst, *dstlen with the source.
24902  * Assumes tcp_allocbuf has already been called.
24903  */
24904 static void
24905 tcp_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
24906     void *src, uint_t srclen)
24907 {
24908 	if (!src_valid)
24909 		srclen = 0;
24910 
24911 	ASSERT(*dstlenp == srclen);
24912 	if (src != NULL && srclen != 0) {
24913 		bcopy(src, *dstp, srclen);
24914 	}
24915 }
24916 
24917 /*
24918  * Allocate a T_SVR4_OPTMGMT_REQ.
24919  * The caller needs to increment tcp_drop_opt_ack_cnt when sending these so
24920  * that tcp_rput_other can drop the acks.
24921  */
24922 static mblk_t *
24923 tcp_setsockopt_mp(int level, int cmd, char *opt, int optlen)
24924 {
24925 	mblk_t *mp;
24926 	struct T_optmgmt_req *tor;
24927 	struct opthdr *oh;
24928 	uint_t size;
24929 	char *optptr;
24930 
24931 	size = sizeof (*tor) + sizeof (*oh) + optlen;
24932 	mp = allocb(size, BPRI_MED);
24933 	if (mp == NULL)
24934 		return (NULL);
24935 
24936 	mp->b_wptr += size;
24937 	mp->b_datap->db_type = M_PROTO;
24938 	tor = (struct T_optmgmt_req *)mp->b_rptr;
24939 	tor->PRIM_type = T_SVR4_OPTMGMT_REQ;
24940 	tor->MGMT_flags = T_NEGOTIATE;
24941 	tor->OPT_length = sizeof (*oh) + optlen;
24942 	tor->OPT_offset = (t_scalar_t)sizeof (*tor);
24943 
24944 	oh = (struct opthdr *)&tor[1];
24945 	oh->level = level;
24946 	oh->name = cmd;
24947 	oh->len = optlen;
24948 	if (optlen != 0) {
24949 		optptr = (char *)&oh[1];
24950 		bcopy(opt, optptr, optlen);
24951 	}
24952 	return (mp);
24953 }
24954 
24955 /*
24956  * TCP Timers Implementation.
24957  */
24958 static timeout_id_t
24959 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24960 {
24961 	mblk_t *mp;
24962 	tcp_timer_t *tcpt;
24963 	tcp_t *tcp = connp->conn_tcp;
24964 
24965 	ASSERT(connp->conn_sqp != NULL);
24966 
24967 	TCP_DBGSTAT(tcp_timeout_calls);
24968 
24969 	if (tcp->tcp_timercache == NULL) {
24970 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24971 	} else {
24972 		TCP_DBGSTAT(tcp_timeout_cached_alloc);
24973 		mp = tcp->tcp_timercache;
24974 		tcp->tcp_timercache = mp->b_next;
24975 		mp->b_next = NULL;
24976 		ASSERT(mp->b_wptr == NULL);
24977 	}
24978 
24979 	CONN_INC_REF(connp);
24980 	tcpt = (tcp_timer_t *)mp->b_rptr;
24981 	tcpt->connp = connp;
24982 	tcpt->tcpt_proc = f;
24983 	tcpt->tcpt_tid = timeout(tcp_timer_callback, mp, tim);
24984 	return ((timeout_id_t)mp);
24985 }
24986 
24987 static void
24988 tcp_timer_callback(void *arg)
24989 {
24990 	mblk_t *mp = (mblk_t *)arg;
24991 	tcp_timer_t *tcpt;
24992 	conn_t	*connp;
24993 
24994 	tcpt = (tcp_timer_t *)mp->b_rptr;
24995 	connp = tcpt->connp;
24996 	squeue_fill(connp->conn_sqp, mp,
24997 	    tcp_timer_handler, connp, SQTAG_TCP_TIMER);
24998 }
24999 
25000 static void
25001 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
25002 {
25003 	tcp_timer_t *tcpt;
25004 	conn_t *connp = (conn_t *)arg;
25005 	tcp_t *tcp = connp->conn_tcp;
25006 
25007 	tcpt = (tcp_timer_t *)mp->b_rptr;
25008 	ASSERT(connp == tcpt->connp);
25009 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
25010 
25011 	/*
25012 	 * If the TCP has reached the closed state, don't proceed any
25013 	 * further. This TCP logically does not exist on the system.
25014 	 * tcpt_proc could for example access queues, that have already
25015 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
25016 	 */
25017 	if (tcp->tcp_state != TCPS_CLOSED) {
25018 		(*tcpt->tcpt_proc)(connp);
25019 	} else {
25020 		tcp->tcp_timer_tid = 0;
25021 	}
25022 	tcp_timer_free(connp->conn_tcp, mp);
25023 }
25024 
25025 /*
25026  * There is potential race with untimeout and the handler firing at the same
25027  * time. The mblock may be freed by the handler while we are trying to use
25028  * it. But since both should execute on the same squeue, this race should not
25029  * occur.
25030  */
25031 static clock_t
25032 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
25033 {
25034 	mblk_t	*mp = (mblk_t *)id;
25035 	tcp_timer_t *tcpt;
25036 	clock_t delta;
25037 
25038 	TCP_DBGSTAT(tcp_timeout_cancel_reqs);
25039 
25040 	if (mp == NULL)
25041 		return (-1);
25042 
25043 	tcpt = (tcp_timer_t *)mp->b_rptr;
25044 	ASSERT(tcpt->connp == connp);
25045 
25046 	delta = untimeout(tcpt->tcpt_tid);
25047 
25048 	if (delta >= 0) {
25049 		TCP_DBGSTAT(tcp_timeout_canceled);
25050 		tcp_timer_free(connp->conn_tcp, mp);
25051 		CONN_DEC_REF(connp);
25052 	}
25053 
25054 	return (delta);
25055 }
25056 
25057 /*
25058  * Allocate space for the timer event. The allocation looks like mblk, but it is
25059  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
25060  *
25061  * Dealing with failures: If we can't allocate from the timer cache we try
25062  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
25063  * points to b_rptr.
25064  * If we can't allocate anything using allocb_tryhard(), we perform a last
25065  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
25066  * save the actual allocation size in b_datap.
25067  */
25068 mblk_t *
25069 tcp_timermp_alloc(int kmflags)
25070 {
25071 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
25072 	    kmflags & ~KM_PANIC);
25073 
25074 	if (mp != NULL) {
25075 		mp->b_next = mp->b_prev = NULL;
25076 		mp->b_rptr = (uchar_t *)(&mp[1]);
25077 		mp->b_wptr = NULL;
25078 		mp->b_datap = NULL;
25079 		mp->b_queue = NULL;
25080 	} else if (kmflags & KM_PANIC) {
25081 		/*
25082 		 * Failed to allocate memory for the timer. Try allocating from
25083 		 * dblock caches.
25084 		 */
25085 		TCP_STAT(tcp_timermp_allocfail);
25086 		mp = allocb_tryhard(sizeof (tcp_timer_t));
25087 		if (mp == NULL) {
25088 			size_t size = 0;
25089 			/*
25090 			 * Memory is really low. Try tryhard allocation.
25091 			 */
25092 			TCP_STAT(tcp_timermp_allocdblfail);
25093 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
25094 			    sizeof (tcp_timer_t), &size, kmflags);
25095 			mp->b_rptr = (uchar_t *)(&mp[1]);
25096 			mp->b_next = mp->b_prev = NULL;
25097 			mp->b_wptr = (uchar_t *)-1;
25098 			mp->b_datap = (dblk_t *)size;
25099 			mp->b_queue = NULL;
25100 		}
25101 		ASSERT(mp->b_wptr != NULL);
25102 	}
25103 	TCP_DBGSTAT(tcp_timermp_alloced);
25104 
25105 	return (mp);
25106 }
25107 
25108 /*
25109  * Free per-tcp timer cache.
25110  * It can only contain entries from tcp_timercache.
25111  */
25112 void
25113 tcp_timermp_free(tcp_t *tcp)
25114 {
25115 	mblk_t *mp;
25116 
25117 	while ((mp = tcp->tcp_timercache) != NULL) {
25118 		ASSERT(mp->b_wptr == NULL);
25119 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
25120 		kmem_cache_free(tcp_timercache, mp);
25121 	}
25122 }
25123 
25124 /*
25125  * Free timer event. Put it on the per-tcp timer cache if there is not too many
25126  * events there already (currently at most two events are cached).
25127  * If the event is not allocated from the timer cache, free it right away.
25128  */
25129 static void
25130 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
25131 {
25132 	mblk_t *mp1 = tcp->tcp_timercache;
25133 
25134 	if (mp->b_wptr != NULL) {
25135 		/*
25136 		 * This allocation is not from a timer cache, free it right
25137 		 * away.
25138 		 */
25139 		if (mp->b_wptr != (uchar_t *)-1)
25140 			freeb(mp);
25141 		else
25142 			kmem_free(mp, (size_t)mp->b_datap);
25143 	} else if (mp1 == NULL || mp1->b_next == NULL) {
25144 		/* Cache this timer block for future allocations */
25145 		mp->b_rptr = (uchar_t *)(&mp[1]);
25146 		mp->b_next = mp1;
25147 		tcp->tcp_timercache = mp;
25148 	} else {
25149 		kmem_cache_free(tcp_timercache, mp);
25150 		TCP_DBGSTAT(tcp_timermp_freed);
25151 	}
25152 }
25153 
25154 /*
25155  * End of TCP Timers implementation.
25156  */
25157 
25158 static void
25159 tcp_setqfull(tcp_t *tcp)
25160 {
25161 	queue_t *q = tcp->tcp_wq;
25162 
25163 	if (!(q->q_flag & QFULL)) {
25164 		TCP_STAT(tcp_flwctl_on);
25165 		mutex_enter(QLOCK(q));
25166 		q->q_flag |= QFULL;
25167 		mutex_exit(QLOCK(q));
25168 	}
25169 }
25170 
25171 static void
25172 tcp_clrqfull(tcp_t *tcp)
25173 {
25174 	queue_t *q = tcp->tcp_wq;
25175 
25176 	if (q->q_flag & QFULL) {
25177 		mutex_enter(QLOCK(q));
25178 		q->q_flag &= ~QFULL;
25179 		mutex_exit(QLOCK(q));
25180 		if (q->q_flag & QWANTW)
25181 			qbackenable(q, 0);
25182 	}
25183 }
25184 
25185 /*
25186  * TCP Kstats implementation
25187  */
25188 static void
25189 tcp_kstat_init(void)
25190 {
25191 	tcp_named_kstat_t template = {
25192 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
25193 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
25194 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
25195 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
25196 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
25197 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
25198 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
25199 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
25200 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
25201 		{ "inSegs",		KSTAT_DATA_UINT32, 0 },
25202 		{ "outSegs",		KSTAT_DATA_UINT32, 0 },
25203 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
25204 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
25205 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
25206 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
25207 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
25208 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
25209 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
25210 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
25211 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
25212 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
25213 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
25214 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
25215 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
25216 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
25217 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
25218 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
25219 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
25220 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
25221 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
25222 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
25223 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
25224 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
25225 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
25226 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
25227 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
25228 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
25229 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
25230 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
25231 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
25232 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
25233 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
25234 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
25235 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
25236 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
25237 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
25238 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
25239 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
25240 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
25241 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
25242 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
25243 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
25244 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
25245 	};
25246 
25247 	tcp_mibkp = kstat_create("tcp", 0, "tcp", "mib2", KSTAT_TYPE_NAMED,
25248 	    NUM_OF_FIELDS(tcp_named_kstat_t), 0);
25249 
25250 	if (tcp_mibkp == NULL)
25251 		return;
25252 
25253 	template.rtoAlgorithm.value.ui32 = 4;
25254 	template.rtoMin.value.ui32 = tcp_rexmit_interval_min;
25255 	template.rtoMax.value.ui32 = tcp_rexmit_interval_max;
25256 	template.maxConn.value.i32 = -1;
25257 
25258 	bcopy(&template, tcp_mibkp->ks_data, sizeof (template));
25259 
25260 	tcp_mibkp->ks_update = tcp_kstat_update;
25261 
25262 	kstat_install(tcp_mibkp);
25263 }
25264 
25265 static void
25266 tcp_kstat_fini(void)
25267 {
25268 
25269 	if (tcp_mibkp != NULL) {
25270 		kstat_delete(tcp_mibkp);
25271 		tcp_mibkp = NULL;
25272 	}
25273 }
25274 
25275 static int
25276 tcp_kstat_update(kstat_t *kp, int rw)
25277 {
25278 	tcp_named_kstat_t	*tcpkp;
25279 	tcp_t			*tcp;
25280 	connf_t			*connfp;
25281 	conn_t			*connp;
25282 	int 			i;
25283 
25284 	if (!kp || !kp->ks_data)
25285 		return (EIO);
25286 
25287 	if (rw == KSTAT_WRITE)
25288 		return (EACCES);
25289 
25290 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25291 
25292 	tcpkp->currEstab.value.ui32 = 0;
25293 
25294 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25295 		connfp = &ipcl_globalhash_fanout[i];
25296 		connp = NULL;
25297 		while ((connp = tcp_get_next_conn(connfp, connp))) {
25298 			tcp = connp->conn_tcp;
25299 			switch (tcp_snmp_state(tcp)) {
25300 			case MIB2_TCP_established:
25301 			case MIB2_TCP_closeWait:
25302 				tcpkp->currEstab.value.ui32++;
25303 				break;
25304 			}
25305 		}
25306 	}
25307 
25308 	tcpkp->activeOpens.value.ui32 = tcp_mib.tcpActiveOpens;
25309 	tcpkp->passiveOpens.value.ui32 = tcp_mib.tcpPassiveOpens;
25310 	tcpkp->attemptFails.value.ui32 = tcp_mib.tcpAttemptFails;
25311 	tcpkp->estabResets.value.ui32 = tcp_mib.tcpEstabResets;
25312 	tcpkp->inSegs.value.ui32 = tcp_mib.tcpInSegs;
25313 	tcpkp->outSegs.value.ui32 = tcp_mib.tcpOutSegs;
25314 	tcpkp->retransSegs.value.ui32 =	tcp_mib.tcpRetransSegs;
25315 	tcpkp->connTableSize.value.i32 = tcp_mib.tcpConnTableSize;
25316 	tcpkp->outRsts.value.ui32 = tcp_mib.tcpOutRsts;
25317 	tcpkp->outDataSegs.value.ui32 = tcp_mib.tcpOutDataSegs;
25318 	tcpkp->outDataBytes.value.ui32 = tcp_mib.tcpOutDataBytes;
25319 	tcpkp->retransBytes.value.ui32 = tcp_mib.tcpRetransBytes;
25320 	tcpkp->outAck.value.ui32 = tcp_mib.tcpOutAck;
25321 	tcpkp->outAckDelayed.value.ui32 = tcp_mib.tcpOutAckDelayed;
25322 	tcpkp->outUrg.value.ui32 = tcp_mib.tcpOutUrg;
25323 	tcpkp->outWinUpdate.value.ui32 = tcp_mib.tcpOutWinUpdate;
25324 	tcpkp->outWinProbe.value.ui32 = tcp_mib.tcpOutWinProbe;
25325 	tcpkp->outControl.value.ui32 = tcp_mib.tcpOutControl;
25326 	tcpkp->outFastRetrans.value.ui32 = tcp_mib.tcpOutFastRetrans;
25327 	tcpkp->inAckSegs.value.ui32 = tcp_mib.tcpInAckSegs;
25328 	tcpkp->inAckBytes.value.ui32 = tcp_mib.tcpInAckBytes;
25329 	tcpkp->inDupAck.value.ui32 = tcp_mib.tcpInDupAck;
25330 	tcpkp->inAckUnsent.value.ui32 = tcp_mib.tcpInAckUnsent;
25331 	tcpkp->inDataInorderSegs.value.ui32 = tcp_mib.tcpInDataInorderSegs;
25332 	tcpkp->inDataInorderBytes.value.ui32 = tcp_mib.tcpInDataInorderBytes;
25333 	tcpkp->inDataUnorderSegs.value.ui32 = tcp_mib.tcpInDataUnorderSegs;
25334 	tcpkp->inDataUnorderBytes.value.ui32 = tcp_mib.tcpInDataUnorderBytes;
25335 	tcpkp->inDataDupSegs.value.ui32 = tcp_mib.tcpInDataDupSegs;
25336 	tcpkp->inDataDupBytes.value.ui32 = tcp_mib.tcpInDataDupBytes;
25337 	tcpkp->inDataPartDupSegs.value.ui32 = tcp_mib.tcpInDataPartDupSegs;
25338 	tcpkp->inDataPartDupBytes.value.ui32 = tcp_mib.tcpInDataPartDupBytes;
25339 	tcpkp->inDataPastWinSegs.value.ui32 = tcp_mib.tcpInDataPastWinSegs;
25340 	tcpkp->inDataPastWinBytes.value.ui32 = tcp_mib.tcpInDataPastWinBytes;
25341 	tcpkp->inWinProbe.value.ui32 = tcp_mib.tcpInWinProbe;
25342 	tcpkp->inWinUpdate.value.ui32 = tcp_mib.tcpInWinUpdate;
25343 	tcpkp->inClosed.value.ui32 = tcp_mib.tcpInClosed;
25344 	tcpkp->rttNoUpdate.value.ui32 = tcp_mib.tcpRttNoUpdate;
25345 	tcpkp->rttUpdate.value.ui32 = tcp_mib.tcpRttUpdate;
25346 	tcpkp->timRetrans.value.ui32 = tcp_mib.tcpTimRetrans;
25347 	tcpkp->timRetransDrop.value.ui32 = tcp_mib.tcpTimRetransDrop;
25348 	tcpkp->timKeepalive.value.ui32 = tcp_mib.tcpTimKeepalive;
25349 	tcpkp->timKeepaliveProbe.value.ui32 = tcp_mib.tcpTimKeepaliveProbe;
25350 	tcpkp->timKeepaliveDrop.value.ui32 = tcp_mib.tcpTimKeepaliveDrop;
25351 	tcpkp->listenDrop.value.ui32 = tcp_mib.tcpListenDrop;
25352 	tcpkp->listenDropQ0.value.ui32 = tcp_mib.tcpListenDropQ0;
25353 	tcpkp->halfOpenDrop.value.ui32 = tcp_mib.tcpHalfOpenDrop;
25354 	tcpkp->outSackRetransSegs.value.ui32 = tcp_mib.tcpOutSackRetransSegs;
25355 	tcpkp->connTableSize6.value.i32 = tcp_mib.tcp6ConnTableSize;
25356 
25357 	return (0);
25358 }
25359 
25360 void
25361 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25362 {
25363 	uint16_t	hdr_len;
25364 	ipha_t		*ipha;
25365 	uint8_t		*nexthdrp;
25366 	tcph_t		*tcph;
25367 
25368 	/* Already has an eager */
25369 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25370 		TCP_STAT(tcp_reinput_syn);
25371 		squeue_enter(connp->conn_sqp, mp, connp->conn_recv,
25372 		    connp, SQTAG_TCP_REINPUT_EAGER);
25373 		return;
25374 	}
25375 
25376 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25377 	case IPV4_VERSION:
25378 		ipha = (ipha_t *)mp->b_rptr;
25379 		hdr_len = IPH_HDR_LENGTH(ipha);
25380 		break;
25381 	case IPV6_VERSION:
25382 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25383 		    &hdr_len, &nexthdrp)) {
25384 			CONN_DEC_REF(connp);
25385 			freemsg(mp);
25386 			return;
25387 		}
25388 		break;
25389 	}
25390 
25391 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25392 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25393 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25394 		mp->b_datap->db_cksumstart = (intptr_t)sqp;
25395 	}
25396 
25397 	squeue_fill(connp->conn_sqp, mp, connp->conn_recv, connp,
25398 	    SQTAG_TCP_REINPUT);
25399 }
25400 
25401 static squeue_func_t
25402 tcp_squeue_switch(int val)
25403 {
25404 	squeue_func_t rval = squeue_fill;
25405 
25406 	switch (val) {
25407 	case 1:
25408 		rval = squeue_enter_nodrain;
25409 		break;
25410 	case 2:
25411 		rval = squeue_enter;
25412 		break;
25413 	default:
25414 		break;
25415 	}
25416 	return (rval);
25417 }
25418 
25419 static void
25420 tcp_squeue_add(squeue_t *sqp)
25421 {
25422 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25423 		sizeof (tcp_squeue_priv_t), KM_SLEEP);
25424 
25425 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25426 	tcp_time_wait->tcp_time_wait_tid = timeout(tcp_time_wait_collector,
25427 	    sqp, TCP_TIME_WAIT_DELAY);
25428 }
25429